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Abstract

Document page segmentation is one of the most crucial steps in document im-
age analysis. It ideally aims to explain the full structure of any document page,
distinguishing text zones, graphics, photographs, halftones, figures, tables, etc.

Although to date, there have been made several attempts of achieving cor-
rect page segmentation results, there are still many difficulties. The leader of
the project in the framework of which this PhD work has been funded1 uses a
complete processing chain in which page segmentation mistakes are manually
corrected by human operators. Aside from the costs it represents, it demands
tuning of a large number of parameters; moreover, sometimes segmentation mis-
takes escape the vigilance of the human operators.

Current automated page segmentation methods are well accepted for clean
printed documents; but, they often fail to separate regions in handwritten docu-
ments when the document layout structure is loosely defined or when side notes
are present inside the page. Moreover, tables and advertisements bring addi-
tional challenges for region segmentation algorithms. Our method addresses
these problems. The method is divided into four parts:

1. Unlike most of popular page segmentation methods, we first separate text
and graphical components of the page using a boosted decision tree clas-
sifier.

2. The separated text and graphical components are used among other fea-
tures to separate columns of text in a two-dimensional conditional random
fields framework.

3. A text line detection method, based on piecewise projection profiles is
then applied to detect text lines with respect to text region boundaries.

4. Finally, a new paragraph detection method, which is trained on the com-
mon models of paragraphs, is applied on text lines to find paragraphs
based on geometric appearance of text lines and their indentations.

Our contribution over existing work lies in essence in the use, or adaptation,
of algorithms borrowed from machine learning literature, to solve difficult cases.
Indeed, we demonstrate a number of improvements : on separating text columns
when one is situated very close to the other; on preventing the contents of a cell
in a table to be merged with the contents of other adjacent cells; on preventing
regions inside a frame to be merged with other text regions around, especially
side notes, even when the latter are written using a font similar to that the text
body.

Quantitative assessment, and comparison of the performances of our method
with competitive algorithms using widely acknowledged metrics and evaluation
methodologies, is also provided to a large extend.

1This PhD thesis has been funded by Conseil Général de Seine-Saint-Denis, through the
FU16 project Demat-Factory, lead by Safig SA



Resumé

La segmentation de page est l’une des étapes les plus importantes de l’analyse
d’images de documents. Idéalement, une méthode de segmentation doit être
capable de reconstituter la structure complète de toute page de document, en
distinguant les zones de textes, les parties graphiques, les photographies, les
croquis, les figures, les tables, etc.

En dépit de nombreuses méthodes proposées à ce jour pour produire une seg-
mentation de page correcte, les difficultés sont toujours nombreuses. Le chef de
file du projet qui a rendu possible le financement de ce travail de thése 2 utilise
une châıne de traitement complête dans laquelle les erreurs de segmentation
sont corrigées manuellement. Hormis les coûts que cela représente, le résultat
est subordonné au réglage de nombreux paramètres. En outre, certaines erreurs
échappent parfois à la vigilance des opérateurs humains.

Les résultats des méthodes de segmentation de page sont généralement ac-
ceptables sur des documents propres et bien imprimés; mais l’échec est souvent
à constater lorsqu’il s’agit de segmenter des documents manuscrits, lorsque la
structure de ces derniers est vague, ou lorsqu’ils contiennent des notes de marge.
En outre, les tables et les publicités présentent autant de défis supplémentaires
à relever pour les algorithmes de segmentation. Notre méthode traite ces
problèmes. La méthode est divisée en quatre parties :

1. A contrario de ce qui est fait dans la plupart des méthodes de segmentation
de page classiques, nous commençons par séparer les parties textuelles et
graphiques de la page en utilisant un arbre de décision boosté.

2. Les parties textuelles et graphiques sont utilisées, avec d’autres fonctions
caractéristiques, par un champ conditionnel aléatoire bidimensionnel pour
séparer les colonnes de texte.

3. Une méthode de détection de lignes, basée sur les profils partiels de pro-
jection, est alors lancée pour détecter les lignes de texte par rapport aux
frontières des zones de texte.

4. Enfin, une nouvelle méthode de détection de paragraphes, entrâınée sur
les modèles de paragraphes les plus courants, est appliquée sur les lignes
de texte pour extraire les paragraphes, en s’appuyant sur l’apparence
géométrique des lignes de texte et leur indentation.

2Cette thèse a été financée par le Conseil Général de Seine-Saint-Denis, par l’intermédiaire
du projet Demat-Factory, initié et conduit par SAFIG SA



Notre contribution sur l’existant réside essentiellement dans l’utilisation, ou
l’adaptation, d’algorithmes empruntés aux méthodes d’apprentissage automa-
tique de données, pour résoudre les cas les plus difficiles. Nous démontrons en
effet un certain nombre d’améliorations : sur la séparation des colonnes de texte
lorsqu’elles sont proches l’une de l’autre ; sur le risque de fusion d’au moins deux
cellules adjacentes d’une même table ; sur le risque qu’une région encadrée fu-
sionne avec d’autres régions textuelles, en particulier les notes de marge, même
lorsque ces dernières sont écrites avec une fonte proche de celle du corps du texte.

L’évaluation quantitative, et la comparaison des performances de notre méthode
avec des algorithmes concurrents par des métriques et des méthodologies d’évaluation
reconnues, sont également fournies dans une large mesure.
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Chapter 1

Introduction

1.1 Introduction

❋
or centuries, paper documents such as handwritten manuscripts and
books have been used as the main source for preserving knowledge.
Then, with the advent of printing, printed books, magazines and news-
papers have replaced the traditional way of preserving information.

Nowadays, the most common way to store documents is by storing them in a
digital format. It is fast to search, cheap and portable. While many of the
ancient documents have been lost over the years, a substantial number has been
preserved. Not only these documents are fragile, they are also inaccessible for
the public. As a consequence, many libraries and organizations around the
world have decided to convert their collections to a digital format.

Two most common ways for digitizing documents are to use image scanners
or digital cameras. However, both methods produce images that demand a large
storage and they are unsearchable. Here, document image analysis comes into
play. Document image analysis is the subfield of digital image processing with
the goal of converting document images to searchable text form. The whole
process starts with segmenting a document image into different parts such as
text, graphics and drawings and forming a layout structure of the document.
Finally, having a layout structure, methods can determine the reading order of
the document or send text regions to an optical character recognition (OCR)
module which converts text regions into searchable format.

In this thesis, we develop a method for segmenting a document image into its
different parts. Currently, Safig, the leader of Demat-Factory, use a software to
do the same task, but with the supervision of human. The undisclosed software
that they use has many tunable parameters that need to be monitored carefully
for each document in order to produce correct segmentation result. Our goal
is to automate this process and generalize the method in a way that it can be
applied to a broad range of documents. There are many open-source and com-
mercial applications such as Tesseract-OCR, OCRopus, ABBYY FineReader
that perform the same task. However, as we will examine later, they are more
fitted for well formatted printed documents that are free of noise. Our goal is to

2



Figure 1.1: A sample of a correctly segmented document image by ABBYY
FineReader 2011.

improve the segmentation quality for the corpus provided to us, which mostly
consists of handwritten documents with degraded quality and side notes, forms
and books. We start with an introduction to document page segmentation.

1.2 Document page segmentation

Document page segmentation is the main component of geometric layout anal-
ysis. Given an image of a document, the goal of page segmentation is to de-
compose the image into smaller homogeneous regions (zones or segments) of
handwritten and printed text. The difference between page segmentation and
layout analysis is that layout analysis algorithms use these segments to assign
contextual labels (title, author, footnote,...) to them and to also find the reading
order of each segment. Figure 1.1 shows a correctly segmented document image.
In multi-columns documents, a page segmentation algorithm is also responsible
for segmenting text columns separately, so that text lines from different columns
are not merged.

The reason for segmenting documents into smaller regions in the first place
is that text regions are sent to an OCR (Optical character recognition) or read-
ing order detection modules for further processing and to convert them into
ASCII format. Hence, obtained regions should also be classified as containing
text or non-text elements, because character recognition modules assume that
the incoming data contains text, so their outputs are unpredictable for regions
containing graphics or other non-textual components.
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Although it is not mandatory to segment text regions into paragraphs be-
fore passing text lines to optical character recognition modules, it is necessary to
have correct paragraphs for reading order detection. Thus, in this work we also
group text lines into paragraphs after identifying each text region. It is worth
noting that there are more than one possible way to segment a document im-
age into text regions correctly that depends on the reading order in the ground
truth, but there is only one solution for segmenting text regions into paragraphs.

Because of the important role page segmentation plays in document layout
analysis, and of its direct effect on the optical character recognition step, it has
been explored deeply for the last four decades by document imaging community
and many algorithms have been proposed in the literature. A comprehensive
overview of these algorithms is provided by Nagy in [65] and Cattoni et al.
in [22]. In this work we review many of these algorithms in the domain of
text/graphics separation, text line and region detection. Then a new system
for page segmentation is proposed that improves the results of segmentation in
areas where problems still exist by current algorithms.

1.3 Overview of the approach

We view a document as a scene of connected components (CCs). Thus, the
first step in our method is an image binarization and extraction of all connected
components. The goal of the system is to find locations of all paragraphs inside
the document image. In order to form paragraphs, we need to detect text lines
correctly. And to do so, we have to detect text regions considering the geomet-
ric alignment of CCs. Text lines in multi-column documents should be separate
from one another and in the case where side notes exist, we have to use the
alignment of the CCs to separate side notes from the main text. All these oper-
ations should be carried out without reading the actual text or understanding
the context of the text.

After binarization, we have a set of connected components that either belong
to text or non-text regions. The next step is to correctly classify each connected
component. Each CC has a set of intrinsic features (height, width, eccentricity,
...) and a set of extrinsic features (features from surrounding area). Using these
features, we train a set of weak classifiers by the help of boosting which allows
us to classify components as text or non-text. In chapter 3 we go deeply into
the details of this method.

At this point, we are interested to segment a document image into regions
of text that have some form of alignment. We consider both sets of textual and
non textual CCs for this task. Note that some non-text CCs such as tables and
rule lines are highly effective in separating regions, so we do not discard non
textual components. In chapter 4 we show how the method effectively makes
the best out of these sets to separate text inside tables.

Having all text elements and their regions, detecting text lines is the next
step. Chapter 2 thoroughly reviews major methods in the literature for text line
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detection and we conclude that the text line detection algorithm by Vassilio Pa-
pavassilious [75] is the most effective among the others. The original method
overlooks line detection in side notes, but being the best among the many and
the fact that we have already separated problematic areas such as side notes,
we adopt this method for the benefit of our own. Detailed explanation of this
method is chapter 5.

The final stage of the system is to group text lines into paragraphs. In
chapter 6 we propose a method based on a trainable binary tree model that
maximize the probability of preserving groups of lines using a goodness crite-
rion for paragraphs.

A brief outline of these processes is given here.

• Image binarization is the process that converts a given input gray-scale
image into a bi-level representation. In our case, pixels that belong to text
characters are assigned a value of 0 and pixels of non textual components
and background have a value of 1.

• Connected components analysis is the process of extracting and la-
beling connected components from an image. In our case, all pixels of
text and non-text elements that are connected and have the same value
are extracted and assigned to a separate component.

• Noise removal tries to detect and remove noise pixels from the document
image. At this stage we only remove components that contain less than
a predefined number of pixels. The exact number of pixels can only be
determined through trial and error. A large number may remove points,
diacritics and punctuation marks. On the other hand, a small number
may not remove some dust and speckles from the scene.

• Text/Graphics separation is the process that classifies each component
into being part of text or graphics.

• Text region detection is the process that separates homogeneous re-
gions of text that belong to separate columns. It is also responsible for
separation of side notes from the main text region.

• Text line detection is the process that finds text lines inside every text
region. It is also responsible for breaking characters that are touched from
two adjacent lines and have formed a single component incorrectly.

• Paragraph detection is the process that groups text lines into para-
graphs based on their indentations and geometry.

1.4 Contribution of this dissertation

The main contributions that are presented in this dissertation are:

1. A new hybrid method for text/graphics separation. Figure 1.2 shows the
ability of our text/graphics separation method in segmenting a document
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Figure 1.2: Left; A document page that is segmented incorrectly by ABBYY
FineReader 2011 and Right; The same document segmented by our method.

page. The proposed method is based on both intrinsic and extrinsic fea-
tures that have the advantages of both connected component based and
block-based methods in detecting graphical elements inside a document
image.

2. Identification of side notes in historical document images as a new step in
document image analysis.

Although due to the advances in page segmentation algorithms during
the last decade, page segmentation methods can segment multi-column
documents correctly, but problems still exist in some area such as detecting
side notes when they are situated close to the main text. Figure 1.3 shows
the result of page segmentation with ABBYY FineReader 2011 that has
gone wrong. Note that when the segmentation is wrong, the result of
OCR is also not impressive. Figure 1.4 demonstrates the result of page
segmentation, obtained from our method in the form of paragraphs for
the same image.

3. A powerful framework for text region detection and column separation
that provides the ability of inducing prior knowledge about the document
into the detector.

4. A new trainable method for grouping text lines into paragraphs based on
a binary tree model that maximize the probability of preserving groups
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Figure 1.3: Left; A document page that is segmented incorrectly by ABBYY Fine
Reader 2011 and Right; Its corresponding result for character recognition.

Figure 1.4: The result of paragraph detection of the image in figure 1.3 by our
method.
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of text lines using a criterion that depends on the geometric appearances
and indentations of text lines in a paragraph.

1.5 Our datasets

One of the datasets used for testing and training in this work is a selection of
document images from a huge corpus, that were provided for the purpose of
this project. The original corpus contains historical handwritten manuscripts
and old printed forms, documents and advertisements, mostly written in French
language. We have chosen a subset of 100 documents from this corpus that
represents the original set. Figure 1.5 shows some samples of our own dataset.

In addition, we gathered 61 documents used as part of the dataset in IC-
DAR2009 [6] page segmentation competition and 100 documents from the dataset
used in ICDAR2011 [4] historical document layout analysis competition, to be
able to compare our results with the state-of-the-art methods. Some samples
from these datasets are shown in figure 1.6.

For each document a ground truth file is available. The ground truth file
contains the true structure of text regions and text lines for each document. By
far ground truth data are the most important part of the work for the purpose
of both training and testing various parts of the system. They are usually in
text format and contain coordinates of objects in a hierarchical structure. For
text and graphics separation we only need the original document image and the
location of true text regions. Every component that does not belong to a text
region is considered a non-text element. A collection of textual and non-textual
components are used for the purpose of training. In text region detection, we
divide every document into sites with predefined heights and widths. By know-
ing whether a site is located on the text or non-text region of the ground truth,
we can easily generate our true labels for the purpose of training our region
detector. For text line and paragraph detection we consider the geometry ap-
pearance and relative position of text lines defined in the ground truth structure.

In the first stages of the project, we had no ground truth date for any of
the datasets. So we developed a software to generate our own true data. Fig-
ure 1.7 shows a screen shot of our developed software. After opening an image,
the software renders a scene of all connected components extracted from the
image. The user can group several connected components as a text line. With
the same strategy the user can group several text lines as a paragraph. In case a
large connected component (a table or a frame of advertisement) occults other
smaller components, the user has the option to deactivate that particular com-
ponent. Finally, the application generates an XML file for each document with
the correct structure to be used as a ground truth. Figure 1.8 shows part of an
XML file created by our software.

Later, we got access to ground truth data for ICDAR2009 dataset. The
new ground truth data are also provided in XML format but the nodes and
elements of the new XML documents are different from ours. Because the
dataset and ground truth data belong to Prima group at University of Salford,
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Figure 1.5: Some sample documents from our own corpus.
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Figure 1.6: Two sample documents from the dataset for ICDAR2009 competition
[6].

Figure 1.7: A screen shot of our developed software for generating XML ground
truth documents for each document image
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Figure 1.8: A screen shot that shows part of the contents of an XML file created by
our software

they can only be read and write using Aletheia[25] from Prima tools. The other
tool from Prima group is Prima Layout Evaluation[25] that compares the XML
output from a segmentation process with the ground truth data and provides
detailed evaluations on how they differ from each other. Due to this new tool,
we annotated every document with Aletheia and produced XML ground truth
documents for the purpose of evaluation.

1.6 Organization of this dissertation

Figure 1.9 gives an overview of the organization of this thesis, highlighting the
connection between different chapters of this thesis. This dissertation is orga-
nized as follows:

Chapter 2 outlines the major areas of work in document page segmentation
and addresses key parts of text segmentation in document literature.

We describe our system with all the details in the span of four chapters.
Chapter 3 deals with various aspects of text/graphics separation of out method.
Text region detection is explained in chapter 4. Text lines and paragraphs de-
tection are accounted in chapters 5 and 6, respectively. We note the experiments
and results for each part of the method at the end of its own chapter.

Finally, in chapter 7 we give recommendation for future work.
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Figure 1.9: A visualization of the structure of this thesis displaying the connection
between different chapters and their contribution to different areas of page segmenta-
tion.
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Chapter 2

Related work

2.1 Text/graphics separation

❙
eparating text and non-text elements inside a document image is the
foremost part of any page segmentation algorithm. In other words, the
output of a page segmentation algorithm should not contain graph-
ics, rule-lines or any other element that is not in coherence with

OCR/HCR1 modules.

Due to the importance of this step, attempts have been made to develop
effective methods and algorithms since the early days of document image anal-
ysis. However, the choice of an optimal method depends heavily on the type
of the document image that has to be processed. Documents in general can
be divided into two major categories [65]. Maps, music scores, engineering
drawing and organization charts are samples of the first category which contain
mostly graphics. Scanned pages, camera-captured forms, text books, historical
manuscripts and advertisements belong to the second category which contains
mostly text.

In general, obtaining text characters by analysis of connected components
is much easier in mostly text documents compared to mostly graphics due to
the simplicity of its background. Textured backgrounds are particularly difficult
to handle. Examples of such textured backgrounds can be found frequently in
camera-captured scenes. One might reason that camera captured scenes are out
of the scope of document image analysis, but sometimes methods for locating
text in these scenes can be adapted for the field of document analysis as it did
in ICDAR2005 text locating competition [59]. For this reason, two groups of
algorithms have emerged. The first group of methods work at the connected
component level. These methods assign a label text, non-text to each connected
component of the image. The methods in the second group analyze the texture
of a region containing pixels within an image which can be of convex or free
shape and assign one of the mentioned labels to that region. In this section, we
briefly note some of these methods and outline their strengths and weaknesses.

1Handprint character recognition
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2.1.1 Connected component based methods

As the name suggests, connected component based methods work with con-
nected components to discriminate text from graphical elements within the
document image. Maybe one of the earliest methods and still popular for its ro-
bustness and usability with increasingly complex documents is that of Fletcher
and Kasturi [33]. The method is based on Hough transform, working on the
center of the bounding boxes and works by grouping aligned components into
strings of characters. Then it classifies all isolated components as graphics.

There are major drawbacks to this approach:

• Tables and borders around advertisements have a center that is usually
located inside the text area. So it is easy to group them incorrectly as
part of a character chain, unless there are some constraints that govern
the size of component.

• The classifications of short strings of characters are not reliable due to
lack of votes in the Hough space to efficiently discriminate them.

• The method may find diagonal alignments when text lines are packed
closely and there are not enough gaps between them.

• Punctuation marks, diacritics and broken characters, are not aligned with
other components in a string of text, and they may become a seed for
misclassification.

Despite all these limitations, authors of [96] have recently published a paper
and the results are improved. The difficulty of the problem lies not only in
the classification of these components but also in the separation of interacting
components. When textual and non textual elements interact locally, finding a
solution becomes more difficult. Figure 2.1 shows two cases of such a problem.
In [28] Doermann tries to address this issue with a method based on stroke level
properties to separate components. As an illustration, of the potential discrim-
ination power of the stroke level properties, it is noted that in hand-completed
forms and pre-printed boxes, lines are produced by a machine and have more
regularity than the associated handwritten text. Considering only the widths
of the strokes and examining the population of widths at the cross section level,
strong separability can be achieved between the two populations.

Another type of problem that frequently arise in a connected component
based method is that large graphical components are often broken into pieces,
and they are composed of many small isolated components that behave like text
components. Many methods try to address this problem by isolating a graphi-
cal component and its sub elements as a whole rather than classifying each one
separately. Figure 2.2 illustrates graphical elements from two documents in our
corpus that exhibit this issue.

One possible solution is to apply a method like the one proposed by B. Waked
in his thesis [99]. The idea is that text regions can be regarded as a set of small
bounding boxes that are regular in height and are usually aligned horizontally
or vertically, whereas a non-text image or half-tone graphics is irregular. The

14



Figure 2.1: The image on the Left shows part of a document page from [96] when
text and numerical components touch graphical elements and the image on the Right
is part of a document from our corpus showing a difficult situation when underlines
touch characters of a text line.

Figure 2.2: Two graphical figures from our corpus that exhibit broken components
with text like features.
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size of its components varies from small to large, and they are rarely aligned
in either direction. Therefore, the sum projection of pixels in non-text regions
on x or y axis does not present a regularity between the peaks and the gaps.
The method uses the standard deviation of runs in projection profiles to decide
whether the region contains text or graphics. At this point, the reader might
wonder ”where do these regions come from?” As it turned out the method,
first performs region detection by analyzing diagonal run-lengths around each
connected component, so as to first detect regions before taking out graphical
elements. Because of this, if the region detection merges a text region with a
closely located non-textual element, the result from the method is unpredictable.

Another approach proposed by Bloomberg [10] is solely based on image pro-
cessing techniques and has been recently revisited by [15]. The main technique
in Bloomberg’s text/graphics separation method is based on multi-resolution
morphology. In this method, an image is closed with a rather large structure el-
ement to consolidate half-tone or broken components. Then the image is opened
with an even larger structure element to remove text blobs (strings of charac-
ters) and to preserve some portions of graphical components. The remaining
portions, called seeds, can be grown to cover graphics. In [15] Bukhari explains
that if a non-text component is only composed of thin lines and small drawings,
then it vanishes from the seed image after the second opening with the large
structure element. Therefore, Bloomberg’s method often fails to detect non-
textual components when they do not contain any solid bunch of pixels. Then,
Bukhari proposes several modifications to the original algorithm that improves
the classification accuracy by a 3% and 6% increase on UW-III and ICDAR2000
datasets, respectively. One of the modifications is to add a hole-filling morpho-
logical operation after the first closing. While the hole-filling step improves the
detection of non-text elements, it cannot be profitable for the documents in our
corpus because of the many document images that contain advertisements with
large frames around a bunch of text lines. The hole-filling step, fills inside these
frames and the page becomes empty of text. The same fate happens to table
structures with closed boundaries.

A rather different approach is utilized in [16] and [42]. Both methods extract
features from connected components and use some form of machine learning to
train a classifier. The first method extracts the shape of a component and
its surrounding area. Then a multi-layer perceptron (MLP) neural network is
trained to learn these shapes and classify the component as either text or non-
text. The second method extracts a set of 17 geometrical features (e.g. aspect
ratio, area ratio, compactness, number of holes) that are computed from the
component, and a support vector machine (SVM) is trained to handle classifi-
cation.

2.1.2 Region-based methods

Not all methods are applicable to documents with complex background struc-
ture. In fact, in some cases it is not even feasible to extract text components
because different shades of colors pass over and through the text region and
generate many components in such a way that text components are lost among
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them.

In such circumstances, it would be logical to take advantage of methods that
work on a block or a region of document instead of the connected components.
The idea is that regions of text have a particular texture that can be revealed
with methods such as wavelet analysis, co-occurrence matrices, Radon trans-
form, etc.

Shape of the regions can be rectangular or free form. They can be strips of
overlapping blocks or coming from a multi-resolution structure like quad-tree or
image pyramids. To name a few methods, Journet [44] uses a method based on
orientation of auto-correlation and frequency features to segment regions of text
in historical document images. In [46], Kim et al propose an approach based on
support vector machine (SVM) and CAMSHIFT algorithm.

In CC-based methods, the geometry of the components is clearly defined.
However, no matter how well the methods work, there is always an issue of
confidence at the boundaries of regions. This issue becomes larger as the gap
between text and non-textual components gets smaller. Using large block im-
plies high confidence on the computed features, but poor confidence on regions’
boundaries. Using small blocks implies just the opposite. One solution is to use
overlapping blocks, but then the problem becomes to assign a label to pixels
when two or more overlapping blocks have a disagreement about the label of the
pixels. Confidence based methods for combination of evidence (e.g. Dempster-
Shafer ) also may fail. Consider the case where two blocks have overlapping
pixels. One block is located on the mostly text area of the document, and the
other block is located on the mostly graphical one. The pixels in between get
evidences from two sources that have a high degree of conflict. The Dempster-
Shafer theory is criticized for being incompetence in the mentioned situation
[104].

The other problem with region-based methods is their ineffectiveness to de-
tect frames and lines that belong to a table. Thus, the result for parts of a table
that contain text, comes back as text for every pixel of that region, whereas it
includes separating rule lines.

2.1.3 Conclusion

Whenever it is feasible to compute the connected components of a document,
it is preferable to assign the label to the connected component itself and avoid
using a region-based method. However, to overcome some of the drawbacks
of the component based methods, a hybrid approach should be adapted that
also takes advantage of texture features around the component. Our method is
based on this strategy and is described in chapter 3.
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2.2 Text region detection

Text region detection is the actual process of segmenting a page into separate
homogeneous text regions. In our view, text region detection is only one part of
the page segmentation process along side node separation, graphics separation
and other pre-processing and post-processing steps. However, in the literature
authors often use page segmentation, page decomposition or geometrical layout
analysis on behalf of region detection. Maybe one reason is that in some cases,
methods do not explicitly separate text and graphics before segmenting page
into text regions. In one case that we reviewed before [99], separation of text
and graphics comes even after detecting regions. So the point is that region
detection, page segmentation, page decomposition may all refer to the same
process with the same goal.

Many methods have been proposed for this goal. Back to the days when
Nagy wrote his famous review on document image analysis [65], he divided page
segmentation methods into two major top-down and bottom-up approaches cat-
egories. Top-down analysis attempts to find larger components, like columns
and block of text before proceeding to find text lines, words and characters.
Bottom-up analysis forms words into text lines, lines into text blocks and so
on. Then within the last decade and due to advances in computation and op-
timization techniques, more and more authors began to report a new emerged
category. Khurshid wrote [45]: ”Many other methods that do not fit into either
of these categories are therefore called hybrid methods.”.

It is part of our belief that this type of categorization does not represent the
majority of the available methods in the literature any more. It is more conve-
nient to divide current methods into three categories; distance-based, texture-
based and white space analysis. Distance-based methods try to analyze the
distance between connected components and to separate regions that fall apart.
Examples of these methods use Voronoi diagram [2, 47, 48], Delauney tessel-
lation [102] or run-length features [93, 32], map of foreground and background
runs .

Texture-based methods use wavelets analysis [49, 1], spline wavelets [27],
wavelet packets [30], Markov random fields (MRF) with pixel density features
[69], auto correlation [44] in a single or multi-resolution framework to segment
pages into text regions. Finally, methods that focus in the white background of
the document and try to find the maximal empty rectangles that can separate
columns of text [13, 85, 14].

In [84], Shafait et al, evaluate the performance of six famous algorithms,
including X-Y cut [66], run-length smearing [101], whitespace analysis [8], Doc-
strum [71], and Voronoi-based [48] page segmentation. Also several methods for
historical document layout analysis are reported in [4], but unfortunately except
for their concise description in the paper, none of them is available publicly for
study and experimentation.

In the rest of this section, we briefly highlight some advantages and weak-
nesses of each category, and then we provide an overview of our approach.
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2.2.1 Distance-based methods

Run-length smearing (RLSA) [101] is perhaps the oldest known technique to
segment a page into homogeneous regions. It smears components using the per-
ceived text direction to form a distinct block of text. The Docstrum algorithm
[71] starts by finding the K-nearest neighbors of each connected component and
connects them by edges. Then the histogram of distances and angles are com-
puted for all edges. Text lines are found by grouping pairs of closest neighbors,
and the method proceeds to form text blocks by grouping text lines. Ferilli et
al., [32] indicate that white run lengths embody a distance-like feature simi-
lar to the one explored in the Docstrum method, and borrow the idea to merge
closest neighbors based upon the values of horizontal and vertical white runs be-
tween pairs of connected components. If adjacent regions from different columns
have a similar homogeneity, often they are merged. Because of this, other vari-
ants of the run-length method have also been proposed to improve the results.
To name a few, Constrained Run-Length Algorithm (CRLA) [98] and selective
CRLA [93].

Clearly, methods based on Voronoi diagram like [47, 48] also follow the same
strategy to filter the edges of a graph and separate regions of text. Voronoi++
[2] is the latest proposed method that utilizes dynamic distance thresholding
instead of global thresholds that, to some extent, addresses the problem of over
segmentation around large characters and grouping of dissimilar text sizes. De-
spite an increase of 33% in the detecting accuracy of regions compare to [48], the
text precision and recall of the method on Washington III (UW-III) database
are 68.78% and 78.30%, respectively.

The battle front in all these methods comes down to how well they can apply
distance thresholds to remove appropriate edges and group the remaining con-
nected components as a text region. In the mentioned works, different thresholds
have been set, not all of which are always suitable for other datasets. In other
words, these methods rely upon certain assumptions about document layouts,
and they fail when the underlying assumptions are not met. The other issue
with these methods is that because they rarely take advantage of the alignment
of components, they often merge side notes with the main text body. In fact,
we are not aware of a method that uses the alignment of components, shape of
regions or distance between components, all at the same time.

2.2.2 Whitespace analysis

Methods in this category try to analyze the background structure (whitespace)
of the document image to determine the physical document layout analysis. The
rudimentary algorithms for whitespace analysis were limited to axis-aligned rect-
angles. As a consequence, they have to correct document rotation before the
search operation every time. In 2003, [13] Breuel developed a method that can
find maximal empty rectangles more efficiently, which would consequently be
applied to considerably more complex type of documents. The new method
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seeks to find a set of parameters (location, width, height and orientation) for
each rectangle by using interval arithmetic and a branch-and-bound (B&B) re-
duction [51] over the four-dimensional parameter space to efficiently exclude
large regions of parameter space that does not contain good solutions.

The development of this algorithm has led to a system for document layout
analysis in [14]. In this system the algorithm finds N largest non-overlapping
maximal white-space rectangles in a resolution independent framework. Details
of the methods are noted in [12] as well as [13]. The algorithm is also used as
part of the method in [86, 85] to model document layouts statistically.

As noted on several occasions in the papers, finding maximal rectangles using
this method eliminates the need for page rotation correction prior to background
analysis and is efficient for complex documents. However over-segmentation er-
rors may occur where word gaps have exactly the same position and of the same
width as the column separator. In one reported case [85] noise prevented the
method to find the white space needed to correctly match the model. The au-
thors have not evaluated their algorithm on handwritten documents with side
notes and under-segmentation may appear in this situation. Furthermore, the
effects of having tables and advertisements’ frames are not considered in the
discussions and because of rule lines, the algorithm may not be able to separate
columns of text inside a table structure.

2.2.3 Texture-based methods

Page segmentation using texture-based methods utilizes filtering methods to
recognize the underlying texture of a region and to segment an image into ho-
mogeneous regions. In most instances, the main method aims at segmenting
an image into coherent and homogeneous regions containing text, graphics and
background all at the same time. Thus, these methods do not attempt to rec-
ognize graphical elements a priori.

The method in [27] is one that uses polynomial spline wavelets aiming to
segment documents and detecting graphical components at the same time. It
uses cubic B-spline wavelets for this purpose. It is suggested that B-spline and
D-spline wavelets can be a good candidate for document segmentation. Then
the method use k-means classification with k being the pre-defined number
of different textures in the processed image to classify wavelet features. The
final classification stage isolates each text line separately and authors use post-
processing, including morphological opening to merge text lines and correct
unsatisfactory results.

Kumar et al [49] also use wavelet filters for segmenting complex images, in-
cluding document images, written text with a pen and camera-captured image
from soda cans, into text, background and picture components, but the differ-
ence is that instead of using a pre-designed wavelet like D-spline or B-spline,
they train wavelet filters to match their needs using a collection of ground-truth
images. As a post-processing step they use pixel-based Markov random fields
to refine the segmentation results.
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[21] is another texture-based method that uses a neuro-fuzzy approach. The
accuracy of the main algorithm is about 59%. However, after morphological
operations, the authors report 96% as the accuracy of the method.

Finally, we mention the method in [69] based on Markov random fields
(MRF). The authors consider that any clique is constructed from 4-connected
neighbors, and the interaction terms only consider horizontal and vertical direc-
tions. For each node, nine features are gathered from each scale and just two
scales are considered. These features are density values of black pixels (text)
associated to the current clique in both scales. This method has not been evalu-
ated on popular datasets; however, we mention it because MRFs are one of the
predecessors to what we use in our method involving conditional random fields.

Texture-based methods on their own can be used to classify and isolate text
regions, but they are not specifically designed to separate regions of text. As a
consequence, refinement and merging operations are usually needed to correct
segmentation results. Because of these merging operations, under-segmentation
often occurs. The second issue is that in many circumstances, parts of graph-
ical elements are situated close to text regions, so they are recognized as text
and are merged with the text region. The third and fundamental problem with
texture-based methods is that there is no theoretical proof about which filtering
method is better than the other except to empirically report the results. The
main three parts of a texture-based method is the filtering strategy, the classifier
and the training method. So many authors publish methods by changing one
or all parts and report new results.

2.2.4 Conclusion

In conclusion, texture-based methods that are solely based on image filtering, fit
best for finding text in complex scenes other than document images. Example
of such scenes might be text detection from images of vehicle’s plates registra-
tion or from camera-captured scenes. Methods based on whitespace analysis
and distance-based methods have their own drawbacks. Clearly, a method is
desirable that takes all consideration into account.

2.3 Text line detection

Detecting text lines in document images is a critical step towards optical char-
acter recognition (OCR) or handwritten character recognition (HCR). This pro-
cess refers to the segmentation of each text region into distinct entities, namely
text lines. The overall performance of an OCR/HCR system strongly relies
upon the results from text line detection process. Different methods have been
proposed for detecting printed and handwritten text lines. In both cases there
exist several challenges; however, in printed documents, detecting text lines is
a rather straightforward process and is not a fit for detecting handwritten text
lines. In contrast, most of the proposed methods for detecting handwritten text
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Figure 2.3: Two documents in our corpus that exhibit variability of font sizes in
newspaper style documents.

lines are adaptable for detecting printed text lines.

Here are some challenges that arise in text line detection:

• Variability of font size is a challenge in some documents (e.g. news-
paper style). Most methods assume that the distribution of font sizes in
one page is Gaussian. As a result, they tune the parameters for the aver-
age font size. This often leads to overlook large characters in the title or
errors when there are sudden changes in font sizes. Figure 2.3 illustrates
this problem clearly.

• Slanted text lines are straight text lines that are not aligned with the
x-axis. Most algorithms prefer to start with a skew correction for the
whole page and then proceed to detect text lines. However, this is still
a challenge when text lines with different slant angles are present on the
same page.

• Touching text lines frequently occur in text regions, especially in hand-
written manuscripts where text lines are located close to one another.
This situation is a challenge for most methods. Connected component-
based methods that work their way by aligning and grouping connected
components together, fail because in the case of touching text lines, two
characters from two lines that have touched are registered as one large con-
nected components that is not in alignment with either of the text lines.
If not dealt with properly, this will lead to either under-segmentation of
two lines into one line, or over-segmentation of two different text lines into
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Figure 2.4: Part of a document in our corpus that contain large gaps between words.

Figure 2.5: Part of a document in our corpus that shows closely situated text lines.

5 or more text lines.

• Large gaps between words may lead to over-segmentation of text lines
and often cause fragments in text lines. Figure 2.4 shows an example of
large gaps between words.

• Closely situated text lines can become a challenge when the distance
between two components from a single text line is larger than the distance
between two components from different text lines. Text lines in Figure 2.5
are so close that distance-based methods such as minimum spanning tree,
fail to produce correct results.

• Highly curved text lines and calligraphy can be found in some freestyle
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Figure 2.6: Part of a camera-captured document from [17] that shows skewed text
lines.

Figure 2.7: Left image is a cropped part of a document from ICDAR2009 database
and Right image is an advertisement page from our own corpus. Both show vertical
text lines that are hard to detect.

historical document; however, they are seldom seen in more recent docu-
ments.

• Skewed text lines appear on camera-captured books. Thick books are
often hard and time-consuming to be scanned manually using flat scan-
ners. One solution is to use an automated system to turn pages and take
photos of each page. The downside is that text lines appear to be skewed
near the borders. Figure 2.6 shows part of a camera-captured document
from [17] containing the mentioned skewed text lines.

• Vertical text lines often exist in magazine-style pages or advertisements.
They come in two flavours. Either characters are in correct direction but
appear on top of each other, or the whole line with all characters is rotated
by ±90◦. Most methods are designed to detect slanted text lines with a
limited degree of freedom; however, over-segmentation errors occur when
the algorithm is not designed to deal with vertical text lines. Figure 2.7
shows an example of these vertical lines that can be found occasionally in
documents.
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• Degraded quality due to ageing process, is a challenge for ancient doc-
uments. Usually degraded areas affect the result of binarization step
which as a consequence introduces false connected components and noise
throughout the page that affect the true alignment of the characters in a
text line.

• Transparency effect is a challenge in copied documents. In some copied
documents, sheets are so thin that the contents on the back of the page
appear on the front side of the document and depending on the binariza-
tion strategy, they may appear as connected components in the main page.

• Scripting language is not a problem by itself; however, some analysis
techniques take advantages of the specific characteristic of the script to
detect text lines. For example, some methods look to finding one base
line or two base lines in order to detect text lines in English language.
These methods may easily produce unpredictable results when applied to
documents in other script languages such as Arabic or Chinese.

Many methods have been proposed to cope with these challenges, but be-
cause of the diversity of problems, each method has been designed specifically for
a particular application. Thus, it presumes some assumptions of the class of the
document and the scripting language to fit well for the majority of documents
in that class. Related reviews are published in [54] that presents a ten-year sur-
vey of methods for text line segmentation from historical documents and [79]
reviews handwritten text line detection. In this section, we review some of these
methods and then we decide which approach to take for detecting text lines in
text regions in our approach. The detailed description of our method is written
in chapter 5.

We divide methods into the ones that are designed for detecting printed
text lines and those for detecting handwritten text, but with more emphasis on
methods for detecting handwritten text lines, since they are easily applicable to
printed text regions.

2.3.1 Printed text line detection

Nagy wrote in his review [65]: ”Excellent methods are available for locating all
the text on high-contrast printed pages down to the word level with an accuracy
that exceeds that of subsequent steps...” It is a fact that text line detection from
clean and well-formatted printed documents is now a solved problem. Perhaps
projection based methods are one of the most successful top-down algorithms
for machine printed documents [52] because the gap between two adjacent text
lines is typically big, and the text line is easily separable by analyzing peaks and
valleys of the projection profiles. Even so, when one or more aforementioned
challenges exist, the success rate of the methods plummets substantially.
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Figure 2.8: These images from [18] illustrate how the snakes grow to engulf a text
line.

In the review section for text region detection, we already reviewed distance-
based methods that try to segment document image into text regions. Some
methods use the same strategy to detect text lines. In one method [102] Delau-
nay triangulation is used to find a set of edges between connected components.
Then the algorithm looks for the principal direction among the shortest edges
to estimate the direction of the text lines. This method can be applied to pages
containing slanted text lines successfully. Nevertheless, because the strategy for
filtering edges based on their lengths is somehow primitive and the method uses
a global threshold to remove edges, it becomes ineffective for detecting skewed
text lines or separating side notes.

To detect skewed text lines that exist on camera-captured documents, Bukhari
et al. [17, 18] propose a method based on active contour models. Active contour
model is a framework for finding the outline of an object from a possibly noisy
image [24]. The method starts with multiple initial closed contours (snakes)
that engulf text blobs. Each snake is associated with an energy that is usually
the sum of the internal and external forces, computed from the gradient vector
flow (GVF) at the boundaries of the contours. Then in each iteration, snakes
grow by a fixed number of pixels to minimize the associated energies. All over-
lapping pairs of snakes are merged together to form a single snake that covers
a curled text line. Results indicate that this method has the potential to detect
highly curled text lines with different spacing and font sizes. The analysis of
the errors shows that most of them are due to over-segmentation of a single line
in the ground-truth into multiple detected text lines. Figure 2.8 illustrates how
snakes grow on characters to engulf the skewed text line.

Another method [19] is also proposed for detecting text lines in camera-
captured documents. One advantage of this new method is its ability to lo-
cate curled text lines. The approach is using an oriented anisotropic Gaussian
smoothing function to generate a filter bank. For each pixel, the maximum
value among all scales and orientations is selected for the final smoothed image.
Then Horn-Riley based ridge detection algorithm [41, 80] is used to enhance
text line structures from the smoothed image. The result from this work is
mentioned in CBDAR2007 document image de-warping contest [83]. Although
the method performs well on documents with printed text, it would be hard to
be adapted for handwritten documents where alignment of the strings and non-
uniform gaps between words are an issue and the results many contain many
text line fragments.
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2.3.2 Handwritten text line detection

Detecting text lines from handwritten documents has been one of the grow-
ing trends in the past decade because of the high demand for digitization and
preservation of historical documents by most libraries around the world. In gen-
eral, detection of handwritten text lines has more challenges compare to printed
text lines, and it demands robust methods to deal with. We divide proposed
methods into three different categories namely; projection-based, texture-based
and distance based methods.

Projection based methods

Projection based methods divide into two categories; global and piecewise pro-
jections. Global projection based methods like X-Y cut have been one of the
earliest methods that were applied to printed documents. However, they were
not effective for detecting high skewed text lines. Moreover, the presence of
dark borders in some scanned documents or moderate noise could also affect
the detection rate of the method. To address this problem for handwritten his-
torical documents, piecewise projection based methods are proposed in many
works including [75, 90, 95]. Using piecewise projection, a document is divided
into either blocks or non-overlapping vertical zones with equal width. Then the
vertical projection is computed in each zone separately.

An example of using global projection profiles can be found in [62]. Manmatha
and Rothfeder use projection profiles to detect handwritten text lines, specif-
ically for the George Washington manuscripts. The assumption is that these
particular manuscripts contain lines that are approximately straight and roughly
parallel to the horizontal axis. Therefore, global projection profiles are used.
Global projections may fit this dataset, but in order to detect skewed text lines,
most authors use piecewise projections. Figure 2.9 displays application of this
method on one document for detecting text lines.

[87] presents an algorithm using adaptive local connectivity map for re-
trieving text lines from historical handwritten documents. The algorithm is
designed for solving particularly complex problems, including fluctuating text
lines, touching or crossing text lines, and low quality image that do not lend
themselves easily to binarization. First, it defines a local projection profile at
each pixel of the image and transforms the original image into an Adaptive local
connectivity map (ALCM), an acronym coined by the authors, that is a gray-
level image in which each pixel’s value represents a summation of foreground
pixel intensities. By thresholding the ALCM map, text lines reveal themselves
in the form of a binary image followed by a connected component analysis. Fig-
ure 2.10 shows the steps of this method to extract text lines.

In [105] Zahour et al. divide an image into non-overlapping vertical strips
and compute a projection profile for each strip to segment it into blocks based
on the peaks and valleys of the profiles. Just like the other method in [87], this
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Figure 2.9: Images [62] show line segmentation steps. a A rotated image. b Vertical
projection profile of the rotated image. c Smoothed version of the vertical projection
profile. d Detected text line separators by detecting peaks in the smoothed projection
profile.

(a) Part of a handwritten manuscript (b) ALCM

(c) Binarization of ALCM (d) Detected text lines

Figure 2.10: Text line detection method in [87] using adaptive local connectivity
map.
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(a) Divided strips and their projection profiles (b) Extracted blocks

Figure 2.11: Block extraction steps in [105]

method works on blocks. But the difference is that the authors assume two dif-
ferent types of documents, namely tightly spaced documents (TSD) and widely
spaced documents (WSD) to better cope with overlapping and multi-touching
components. Figure 2.11 shows the projection profiles for several strips and
the result of their block extraction. For each block, the method computes two
features based on fractal dimensions resulting from the classical box-counting
algorithm. Then an unsupervised fuzzy C-means 2-class classifier is used to
separate blocks into tightly packed or widely spaced. Each block type is ap-
proached differently for detecting text lines.

Another method is proposed by Arivazhagan et al. in [7] that starts by
obtaining candidate lines using piecewise vertical projection profiles similar to
the one used in [105]. Then the method draws a decision for any obstructing
element based on the bivariate Gaussian probability density of a distance met-
ric to find out whether the element belongs to the line above or the line below.
After applying the piecewise projection profile to the document image, the com-
plete set of text line separators are drawn by connecting a valley of a profile
associated with a block on the right, to a valley from the block on its left and
continuing the line straightly in a situation where a valley is still unconnected.
For each connected component in which a line passes through, it may belong
totally to either the line above or the live below, or it may need to be broken
into two components. The method uses a distance metric decision to determine
which approach should be taken for each obstructing component.

The last reviewed projection based method is proposed by Papavassiliou et
al. [75]. This method is very similar to the one in [7] with one difference that
it adds another stage based on Hidden Markov Models (HMM) to correct some
misleading peaks and valleys of projection profiles and therefore, it segments
vertical strips into better situated blocks compared to other methods. Initially,
like other methods, text and gap areas are extracted by detecting peaks and
valleys in a smoothed projection profile computed for each vertical strip. Then
a Viterbi algorithm locates the optimal succession of text and gap areas based
upon the statistics drawn from the initial set of blocks. Finally, a text line
separating technique is applied to assign connected components into appropri-
ate text lines. Results for preliminary version of this method are published in
[90] and submitted to the ICDAR2007 [38] and ICDAR2009 [40] handwritten
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Figure 2.12: Left image shows segmented lines from a document in [7] and Right
image displays projection profiles of vertical strips.

segmentation contests.

Hough-based methods can also be considered as projection based methods.
They are based on Hough transform but instead of projecting pixel values into
x or y axis, they project intensities onto parameter’s space. In general, the
purpose of Hough transform is to find imperfect instances of objects within a
certain class of shapes by a voting procedure. The classical Hough transform is
concerned with the identification of lines in an image, and text lines in the case
of document image. However, it is not limited to lines, and any kind of shape
can be found inside an image. In document image analysis, Hough transform
is used in a variety of situations. Some methods use it to detect text lines or
the skew angle of the text lines, or to drive different characteristics such as the
direction of a connected handwritten word, or even to detect table lines. Here
we note two methods that use Hough transform specifically for detecting text
lines.

In [58], G. Louloudis et al. have proposed a Hough transform based hand-
written segmentation method. Their earliest results have been published in
[56, 57]. The method is adapted to deal with challenges of handwritten docu-
ments, including arbitrary slanted and skewed text lines, accent marks above
or below the text lines and touching lines. After dividing the document image
into equally sized blocks, the aim of Hough transform becomes to find domi-
nant direction of connected components in each block. The algorithm also keeps
track of the dominant direction of all components inside the document. To form
text lines, for each connected component a decision is held based on rules that
compare the direction of each component in a block with its adjacent blocks.
An additional constraint is applied upon which, a text line is valid only if the
corresponding skew angle of the line deviates from the dominant direction by
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(a) Five zones 1-5 (b) Projection pro-
file of zone 3

(c) first derivative (d) initial, refined
and final regions

Figure 2.13: Steps for locating text line separators in part of document image. [75]

less than 2◦. This method is successful provided that the free parameters are
set correctly. Furthermore, because the algorithm keeps track of the dominant
direction, the whole document must have text lines with roughly the same di-
rection.

The method published in [61] is one more method based on Hough trans-
form. In the first step, authors apply a Hough transform to each connected
component namely the handwritten words to find the direction of a component.
Then the algorithm searches for the nearest neighbors of each component in four
principal directions. Once the neighbors are found, a weighted directed graph
is built by connecting each component to its neighbors with a weighted edge
proportional to the geometric distance between components. Finally, to form
text lines, the algorithm removes top to bottom edges based on thresholding
the length of edges.

Texture based methods

Any method that is based on some kind of filtering, shall it be Gabor, Wavelet,
Gaussian or just the averaging operator can fit into this category.

The first method that we review is for text line segmentation from freestyle
script-independent handwritten or printed documents. Y. Li et al. first have
published their preliminary results for this method in [52] and later in [53]. For
this method it is assumed that text lines have a horizontally elongated shape,
but still a variation of ±10◦ is allowed. The method estimates a probability den-
sity function based by convolving the image with a non-parametric anisotropic
Gaussian kernel. The initial estimates of the text line boundaries are computed
by thresholding this density function map and then a level set method evolves
from the initial estimations to obtain the final text line boundaries.

Another method is proposed in [29]. Du et al. propose a script-independent
method for segmentation of handwritten text lines based on a piecewise ap-
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proximation of a Mumford-Shah functional. They indicate that boundary based
level-set methods such as [52, 53] depend on the number of boundary evolution
steps, and they are also sensitive to touching text lines. To handle these dif-
ficulties, their method seeks to minimize a Mumford-Shah functional using a
piecewise constant approximation [92]. The initial estimates of the text lines
are the same as [85], and then they are refined by visiting each pixel of the
image in a given order. For each initial text line, a segmentation curve is set
to segment the text line into two regions; inner and outer. In each iteration,
these curves evolve by calculating their parameters based on the intensity of the
region. The final results may contain line fragments due to large gaps between
words; so morphological operators are used as part of the post-processing step
to merge some of these fragments.

The last reviewed method is published in paper [88] for detecting hand-
written Arabic text lines. Instead of summing values of adjacent pixels as in
projection profiles in [87], Shi et al. apply steerable directional filters, each with
a shape of an ellipse with a large focal distance. The height of the filter is chosen
to be the same as the height of an average text and the width to be five times
its height. Using a filter with a direction similar to the direction of text lines,
the pixel value for that location has a greater response than when using another
filter in any other direction. The result of filtering generates a map that is later
thresholded adaptively to enhance the location of text lines.

Distance based methods

We only review one method in this category. This method has been recently
proposed in [103] for segmentation of handwritten Chinese text regions into
text lines. The heart of this method is a minimum spanning tree algorithm.
In the first stage, the method extracts all the connected components of the
document. The reasonable assumption is that components which belong to a
single text line are close to one another compared to the components that be-
long to different text lines. Therefore, a minimum spanning tree is applied to
connect neighboring components of the same line, and each line corresponds to
a sub-tree. Then because of variability of layout of text lines and occasionally
large gaps between words, the results are not prefect. Hence, the method use a
second-stage clustering procedure to dynamically cut the edges of the tree into
groups corresponding to correct text lines. A detection accuracy rate of 98.02%
is reported for 803 unconstrained documents.

2.3.3 Conclusion

We have noted many methods in this section for text line detection, and even-
tually we have to decide which method is exploitable for detecting text lines
from our corpus. An evaluation and comparison between methods is valid only
if the results are available for the same dataset and with the same evaluation
metric. We identified three different performance evaluation metrics; Pixel Cor-
respondence, Match Counting and Overall Pixel-Level HitRate. We have already
described Match Counting in the first chapter. Unfortunately, in our case, it
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would be difficult to draw a conclusion solely based on the reported accuracy
rate of each method. Also it is impossible to implement or find every method
that is listed here. As a consequence we have to rely as much as possible on
the reported accuracies when comparison is possible and then a theoretical and
fundamental reasoning to decide which method is fit for our work. Table 2.1
shows some of the characteristics of our dataset.

Table 2.1: CHARACTERISTICS OF THE DOCUMENTS IN OUR CORPUS

Frequently occurs Seldom occurs Never occurs
Printed text lines Slanted text lines Calligraphy
Handwritten text lines Vertical text lines Highly skewed text lines
Large gaps between words Degraded quality
Rule lines Transparency effect
Close text lines Multi-script documents
Touching text lines Black borders
Multi-column documents
Salt & Paper noise
Side notes
Variety of font sizes

In order to choose the best line detection method as the base for our work,
first we have to compare methods in a situation where both datasets and the
evaluation metrics are the same, then after pruning weak methods, we have
to go into details of remaining methods to reason whether they might fail to
achieve good results when applied to our documents or not.

We have named fourteen methods for detection of text lines so far. Table 2.2
presents some of these methods, and the accuracy rate that they have achieved
by applying to ICDAR2007 [39] dataset.

Table 2.2: ACCURACY RATES FOR METHODS APPLIED TO ICDAR2007
DATASET [39]

Method Reported In dataset Evaluation Method Accuracy
Papavassiliou 2010 [75] [75] ICDAR07 Match Counting 98.3%
Louloudis 2009 [58] [58] ICDAR07 Match Counting 97.4%
Stafylakis 2008[90] [90] ICDAR07 Match Counting 97.1%
Louloudis 2006 [56] [39] ICDAR07 Match Counting 95.4%
Bukhari 2009a [18] [18] ICDAR07 Match Counting 90.7%

Another table 2.3 presents the detection accuracy rate for CBDAR2007
dataset. Note that for the two methods reported there, the comparison is a
challenge because one method gains the upper hand using one evaluation met-
ric and using another evaluation metric the situation changes. To solve this
dilemma, we decide to choose the evaluation metric that is more appropriate
and well designed. In this case, it is Match Counting, which is the same eval-
uation that we have described in Appendix A. Based on this evaluation metric
the result of both methods can be considered the same.
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Table 2.3: ACCURACY RATES FOR METHODS APPLIED TO CBDAR2007
DATASET

Method Reported In dataset Evaluation Method Accuracy
Bukhari 2009a [18] [18] CBDAR07 Match Counting 90.76%
Bukhari 2009a [18] [18] CBDAR07 Pixel Correspondence 97.96%
Bukhari 2009 [19] [19] CBDAR07 Match Counting 91.05%
Bukhari 2009 [19] [19] CBDAR07 Pixel Correspondence 90.50%

From this set, the proposed method by Papavassiliou [75] has gained the
upper hand. On the other hand, Shi has proposed two methods in [87] and
[88]. Both methods are applied to DARPA/MADCAT dataset and they have
achieved 95.00% and 99.5%, respectively. The evaluation metric is unclear, but
since both methods are proposed by the same author, we assume that they are
using the same evaluation metric. Therefore, the method in [88] is superior to
the one in [87].

One more comparison between the methods proposed by Du [29] and Li
[52, 53]. Both methods are applied to multi-lingual scripts from University of
Maryland handwritten dataset and pixel hit rate is used as the evaluation met-
ric. Table 2.4 summarizes the results. The results indicate that both methods
are roughly equal in their power to detect text lines and indeed both are similar
in the method that they use.

Table 2.4: ACCURACY RATES FOR METHODS APPLIED TO UNIVERSITY
OF MARYLAND’S DATASET

Method dataset Evaluation Method Accuracy
Li 2008 [53, 52] Hindi Scripts Pixel HitRate 97.00%
Du 2009 [29] Hindi Scripts Pixel HitRate 98.00%
Li 2008 [53, 52] Korean Scripts Pixel HitRate 98.00%
Du 2009 [29] Korean Scripts Pixel HitRate 96.00%
Li 2008 [53, 52] Chinese Scripts Pixel HitRate 98.00%
Du 2009 [29] Chinese Scripts Pixel HitRate 98.00%

To sum up, all other methods as well as the top methods from previous
groups are gathered in one table. Unfortunately, from this point forward these
methods cannot be compared quantitatively. Table 2.5 presents the results.

Table 2.5: ACCURACY RATES FOR ALL REMAINING METHODS

Method dataset Evaluation Method Average Accuracy
Xiao 2003 [102] N/A N/A N/A
Malleron 2009 [61] 1 Image N/A 84.71%
Yin 2009 [103] HIT-MW[92] Pixel HitRate 98.02%
Manmatha 2005 [62] George Washington Scripts N/A 83.00%
Li 2008 ,Du 2009 [53, 52, 29] Various Scripts Pixel HitRate 97.5.00%
Shi 2009 [88] DARPA/MADCAT N/A 99.5%
Zahour 2008 [105] N/A N/A N/A
Arivazhagan 2007 [7] CEDAR-FOX [23] N/A 97.00%
Papavassiliou 2010 [75] ICDAR07 Match Counting 98.3%
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The proposed methods by Xiao [102], Malleron [61] and Yin [103] depend on
the distance between connected components. Xiao’s method use a global thresh-
old to separate edges between lines from edges between words and characters.
However, in some of our documents various font sizes exist on one page. Larger
characters demand more gaps between them and thus a suitable threshold that
works well for part of the document may fail for the other part. Moreover, when
text lines are packed close to one another, Yin’s method and Malleron’s method
fail to find the correct text lines or text line fragments.

Manmatha’s method is using global projection profiles to detect text lines.
While this may work for documents that have aligned text lines, it is unsuitable
for freestyle handwritten documents.

Methods proposed by Du and Li [53, 52, 29] are very sensitive to touch-
ing text lines and large gaps between words. As a consequence many text
line fragments appear in segmentation results using these algorithms. Both au-
thors have tried to utilize post-processing steps such as morphology operators to
merge these line fragments. Such post-processing steps may improve the results
by merging some line fragments, but on the other hand, they may also merge
multi-column text lines and side notes.

The method proposed by Shi [88] works well as long as there are enough
gaps between lines. When text lines are packed, it is not guaranteed that the
maximum output value of several direction filters is pointing in the direction of
the text line. The reason is that characters from different lines may accidentally
align and form a false line.

The three remaining methods by Zahour [105], Arivazhagan [7] and Papavas-
siliou [75] are in the same category. All of them are using piecewise projection
profiles. There is not enough evaluation data from Zahour’s method, but Ari-
vazhagan and Papavassiliou methods are quite the same. The only difference
is that Papavassiliou is using a Hidden Markov Model to correct some of the
detected peaks and valleys of the projection profiles before drawing line separa-
tors. As a result, his results are slightly better, and it works well for our corpus.

In our approach, we use a variant of Papavassiliou’s method [75] to detect
text lines. Details of our method is written in chapter 5.
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Chapter 3

Text/graphics separation

❙
eparation of text and graphics in document images is the first step in
our methodology. This is an important stage that not only improves
the results of text region and text line detection by not allowing graph-
ical drawings to be merged with text regions but also by providing

assistance for separating text regions as we will see in the next chapter.

3.1 Preprocessing

Preprocessing is the first step that happens after reading a document image
into memory. The aim is to prepare the document for text and graphics sepa-
ration. Our method works with connected components. Each component can
be a character, punctuation, noise, part of a handwritten word, rule lines or
graphical elements. To extract these components, binarization first takes place.
It is worth noting that different binarization methods exist. When a document
image is in good condition, Otsu’s binarization method performs better than
other methods such as Sauvola [82, 11] or Niblack [68]. The reason is that
Otsu’s method often keeps all parts of graphical drawings in a single piece. On
the other hand Sauvola’s binarization method should be used when dealing with
low quality historical documents or bad lighting conditions. Figure 3.1 shows
a part of a gray-level document with bad lighting condition and compares the
result of binarization by Otsu and Sauvola methods. Figure 3.2 illustrates the
advantage of applying Otsu’s method to documents that contain drawings and
graphical components. After binarization, a connected component analysis can
simply extract all connected components (CCs) of the image.

3.2 Features

As already mentioned in the previous chapter, most methods use either block-
based or component based approach for labeling components. To clarify this,
if a method is assigning a label {text,graphics} to one component then it tends
to extract component based features such as size, area, etc. And if the method
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(a) Image (b) Otsu binarization

(c) Sauvola binarization

Figure 3.1: When dealing with low quality documents or documents that are cap-
tured in bad lighting condition, Sauvola’s binarization method is preferable to Otsu’s
binarization. Image is from [11]
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(a) Image (b) Otsu binarization

(c) Sauvola binarization

Figure 3.2: Sauvola’s binarization method breaks the integrity of graphical compo-
nents and drawings in healthy documents and produces many small connected com-
ponents that may resemble text characters. This image is part of a document from
ICDAR2009 dataset.

38



is assigning a label to a region of the image, it tends to extract features based
on texture analysis or projection profiles.

The method we describe here is a hybrid approach for separating text from
graphics. It is designed to assign a label to one connected component but fea-
tures are gathered based on both the characteristics of the components and the
components in its neighborhood.

We consider 16 features as potential features for the purpose of separating
text and graphics components. Each feature may help to discriminate compo-
nents in a particular situation. The first three features are computed relative to
other components of a page. Using these three features, the aim is to estimate
how likely the current component is different from other components on the
same page in regard to its elongation, height or solidity. The rest of the features
are global features, extracted from all components of the pages from our train-
ing dataset. Height and width of a component are equal to height and width
of the bounding box of the component. Elongation and solidity are defined as
follows:

elo =
min(height,width)

max(height,width)

and

solidity =
Number of pixels of the component

height× width

Considered features are:

• Log-normal distribution of 1/solidity 1. For most of characters, the
number of black pixels divided by the area of their bounding box, namely
solidity, is located in a fixed range. This property does not hold on ta-
bles, borders and many graphical drawings. Looking for outlier compo-
nents of the page regarding this criterion may help in classifying them as
non-textual components. Figure 3.3 shows histograms of 1/solidity and
log(1/Solidity) for text components on the whole corpus which visually
justify the use of Log-normal distribution.

solidity

σ
√
2π

exp−
(ln x−µ)2

2σ2

where x is 1/solidity and µ and σ are the mean and standard deviation of
1/solidity’s natural logarithm for all connected components on the page.

• Log-normal distribution of 1/elongation 2. Except for some char-
acters such as 1,l and I that resemble a very small rule line, the height
and width ratio of a character, namely elongation, is located roughly in a

1LogNormalDist(1/solidity)
2LogNormalDist(1/elo)
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(a) Histogram of 1/solidity of text components on the whole corpus.

(b) Histogram of log(1/solidity) of text components on the whole corpus.

Figure 3.3: Histograms of 1/solidity and log(1/solidity) of text components on the
whole corpus.
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fixed range. When the elongation approaches one, it represents a square.
Most of characters have an elongation of about 0.57. However when the
value approaches to zero, it usually represents a rule line. Figure 3.4 shows
histograms of 1/elongation and log(1/elongation) for text components on
the whole corpus.

elongation

σ
√
2π

exp−
(ln x−µ)2

2σ2

where x is 1/elongation and µ and σ are the mean and standard deviation
of 1/elongation’s natural logarithm for all connected components on the
page.

• Log-normal distribution of height 3. For pages that are written with
a single font size, heights are roughly equal. Even for handwriting with
connected scripts the width of CCs may be different but height values are
still the same. This feature is looking for outliers such as large graphical
elements and tables that have a considerably larger height compare to
other CCs on the page. Figure 3.5 displays histograms of height of text
components and its logarithm for components on the whole corpus.

1

(height)σ
√
2π

exp−
(ln x−µ)2

2σ2

where x is the height of a component and µ and σ are the mean and
standard deviation of height’s natural logarithm for all components of the
page.

• Normalized X 4 and Y 5 coordinates of the component’s center.
These two features have a range between 0 and 1. They are simply the X
and Y parts of a component’s center, divided by the width and height of
the document image respectively. The reason behind using this feature is
that most of the time noisy components, borders and frames are situated
near the boundaries of a document. By themselves they do not provide a
direct solution for locating non-textual elements but a classifier can utilize
this information along side of other features to form boundaries in a fea-
ture space that can better discriminate text and non-textual components.

• Logarithm of normalized height 6 and width 7. These two features
are computed as follows:

log
page’s height

component’s height

3LogNormalDist(height)
4center.x/src.cols
5center.y/src.rows
6log(src.rows/height)
7log(src.cols/width)
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(a) Histogram of 1/elongation of text components on the whole corpus.

(b) Histogram of log(1/elongation) of text components on the whole corpus.

Figure 3.4: Histograms of 1/elongation and log(1/elongation) of text components
on the whole corpus.
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(a) Histogram of height of text components on the whole corpus.

(b) Histogram of log(height) of text components on the whole corpus.

Figure 3.5: Histograms of height and log(height) of text components on the whole
corpus.
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log
page’s width

component’s width

They are normalized for the reason that document pages of our training
dataset come in different resolutions and sizes.

• Logarithm of 1/solidity 8 and 1/elongation 9. The importance of
solidity and elongation is noted above. Instead of computing the mean
or standard deviation of this feature for components of a page, these two
features are provided as raw and they allow the classifier to compare these
values globally for all images of the training dataset.

• Logarithm of Hu-moments of the component’s pixels 10. Image
moments are particular weighted average of the image pixels’ intensities.
They usually are chosen to have some attractive properties or interpreta-
tion. Hu moments are special moments that are proved to be invariant to
the image scale, rotation and reflection. There are a total of seven popu-
lar moments in the literature. Of these moments, the seventh one is not
invariant to reflection. Empirically we found that the first four moments
improve the classification results.

• Parents, children and siblings. Usually text characters that appear on
a page are not contained or do not contain any other components except
when they belong to a table. On the other hand large drawings often
contain many broken pieces. If a component contain another component,
the former is assigned the role of a parent and the latter is assigned the
role of a child. Any component that has a parent might have some other
siblings. By counting the number of parents, children and siblings they
serve as perfect features for our purpose.

3.3 Feature analysis

Having some features, it would make sense to know the contribution that each
feature may bring to the task of classification. Moreover, if a feature has no cor-
relation with the true labeling of the data, it may do more harm than good and
thus should be pruned. To do so, we apply some feature selection methods to our
dataset and their true labels and each method assigns a weight to each feature
which indicates the significance of the feature based on the method. All parts
of this analysis is carried out by an open-source software called RapidMiner [63]
and for this purpose we use the dataset from ICDAR2009 page segmentation
competition for the reason that it contains a good amount of irregular graphical
components and tables.

Tabled 3.1 summaries the result of feature analysis by showing the obtained
weights for four feature analysis methods. The first method calculates the rel-
evance of a feature by computing the information gain in class distribution.

8log(1/solidity)
9log(1/elo)

10log(HuMomentX+1)
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The second method calculates the correlation of each feature with the label and
returns the absolute value as its weight. The third method calculates the rel-
evance of a feature by measuring the symmetrical uncertainty with respect to
the class label and the fourth method uses the coefficients of the normal vector
of a linear SVM as weights.

Based on the obtained weights and considering the nature of each methods,
the most important opinion comes from the weights of SVM, however there
is one feature (normalized X center) that all methods have a negative opinion
about. This feature should be removed before we move to classifier selection.

Table 3.1: ANALYSIS OF FEATURES FOR TEXT GRAPHICS SEPARATION

Feature Information gain Correlation Uncertainty SVM
LogNormalDist(1/solidity) 0.024 0.086 0.076 0.131
LogNormalDist(1/elo) 0.147 0.217 0.06 0.135
LogNormalDist(height) 0.112 0.131 0.015 0.042
center.x/src.cols 0 0 0 0
center.y/src.rows 0.055 0.099 0.007 0.012
log(src.rows/height) 0.586 0.32 0.105 0.201
log(src.cols/width) 0.186 0.067 0.063 0.288
log(1/solidity) 0.231 0.126 0.076 0.315
log(1/elo) 0.152 0.324 0.067 0.099
log(HuMoment1+1) 0.28 0.196 0.178 0.711
log(HuMoment2+1) 0.158 0.394 0.214 0.727
log(HuMoment3+1) 0.094 0.279 0.11 0.323
log(HuMoment4+1) 0.108 0.286 0.112 0.134
parents 1 1 1 0.607
childs 0.014 0.096 0.013 0.075
siblings 1 0.919 0.897 0.355

3.4 Classifier selection

The goal in classifier selection is to find a classifier for our feature set that gener-
alize well with the data. In other words it should avoid over-fitting and perform
well for unseen data. To do so, we choose several available classifiers and train
each classifier on our dataset to find the most fitted one for our purpose.

The dataset used for this mean is again ICDAR2009 dataset for page seg-
mentation competition. This dataset contains 55 documents which translates to
211585 connected components of which about 6000 are graphical components.
Clearly, the dataset is biased toward text components and the amount of text
components is unnecessary large. To speed up the computation we keep all the
graphical components but we sample 12000 components from those with true
text label. To evaluate classifiers, it is necessary to use cross-validation. Here
we use a 5 folds cross-validation. In a 5 folds cross-validation the whole dataset
is divided randomly into 5 equal parts. Each time, one part is used for testing
purpose and the other four parts are used for training. This process occurs
five times and the average performance is used for the result of each classifier
evaluation.
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Table 3.2: AVERAGE PERFORMANCE OF SEVERAL CLASSIFIERS FOR
TEXT GRAPHICS SEPARATION

Classifier Text recall Graphics recall Text precision Graphics precision Accuracy Comments
LogitBoost 93.08 93.03 92.43 92.38 92.73% 500 weak learner
Decision Tree (gini-index) 95.33 88.19 90.47 94.14 92.94%+/-0.66
GentleBoost 93.32 90.63 90.92 93.12 91.97
GiniBoost 93.24 90.01 90.34 93.01 91.62
AutoMLP 95.32 80.54 90.7 89.64 90.38%+/-0.45 51 neurons
Linear C-SVC 98.21 57.06 81.99 94.12 84.45%+/-0.33 SV: 6470, C = 1.0
Decision Tree (accuracy) 96.65 60.69 83.03 90.1 84.62%+/-2.61
LDA 98.99 46.86 78.76 95.89 81.56%+/-0.48
Nave Bayes 98.67 43.26 77.58 94.22 80.14%+/-0.77
Linear C-SVC 99.81 37.68 76.12 99 79.03%+/-0.31 SV: 7942, C = 0.0
Decision Tree (gain-ratio) 99.82 15.43 70.12 97.68 71.57%+/-6.34

Based on our evaluation, LogitBoost classifier is selected.

3.5 LogitBoost for classification

Boosting is a machine learning algorithm for performing supervised learning.
It iteratively combines the performance of many weak classifiers to produce
a final strong classifier. A weak classifier is only required to be better than
chance, however the combination of them, results in a strong classifier which of-
ten outperforms most strong classifiers such as Neural Networks and SVMs [37].

We use boosted decision trees which are popular weak classifiers used in
boosting scheme. Our boosted model is based on a large number of training
examples (xi, yi) with xi ∈ R

K and yi ∈ {−1,+1}. xi is a vector with K ele-
ments (K = 15 is the number of our features). The desired two-class output is
encoded as −1 and +1.

Various boosting methods are known such as AdaBoost [35], LogitBoost and
GentleBoost [36]. Regarding the overall structure, all of them are similar. Ini-
tially each instance of data in our training dataset is assigned the same weight as
the other data points. Then a weak classifier is trained on the weighted training
data. A weight indicates the importance of a data point for the classification.
In each iteration the weights of misclassified data are increased and the weights
of each correctly classified sample are decreased. As a result the new classifier
focuses on the examples which have eluded correct classification in previous it-
erations.

LogitBoost is very similar to the original AdaBoost algorithm. If one con-
siders AdaBoost as a generalized additive model and then applies the cost func-
tional of logistic regression, LogitBoost algorithm can be derived. The imple-
mentation of LogitBoost comes from OpenCV machine learning library.

LogitBoost algorithm is as follows:

1. Given N instances (xi, yi) with xi ∈ R
K , yi ∈ {−1,+1}

2. Start with weights wi = 1/N, i = 1, ..., N, F (x) = 0 and probability esti-
mates p(xi) =

1
2
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3. Repeat for m = 1, 2, ...,M

• (a) Compute the working response and weights

zi =
y∗i − p(xi)

p(xi)(1− p(xi))
.

wi = p(xi)(1− p(xi)).

• Fit the classifier fm(x) ∈ {−1,+1}, by a weighted least-squares re-
gression of zi to xi using weights wi.

• Update F (x)← F (x) + 1
2fm(x) and p(x)← eF (x)/(eF (x) + e−F (x)).

4. Output the classifier sign[F (x)] = sign[
∑M

m=1 fm(x)].

3.6 Post processing

Based on our experiments, whenever a component is classified as graphics and
contains many other components, it goes into one of the two possible scenarios.
Either the component is a large graphics that contains many other broken parts,
or it is a frame or table that holds text characters. Because tables and frames
occupy a large area but the actual black pixels are far much less than this area,
they can be easily identified with their solidity feature. We choose a small solid-
ity value as the threshold that recognize tables from graphics. If the component
has a larger solidity than the threshold, it is identified as graphics and all its
children should also assigned a graphics label regardless of the label that are
assigned to them by LogitBoost Classifier. Otherwise the children retain their
original assigned labels.

3.7 Results

Results of our text/graphics separation comes in two flavors. In the first part
we evaluate the performance of our classifier on two datasets; dataset for IC-
DAR2009 page segmentation competition and dataset for ICDAR2011 historical
document layout analysis competition. Table 3.3 summaries these results. Note
that the cross-dataset evaluation results is also provided in the table. In cross-
dataset evaluation the system is trained on one dataset but is tested on the
other with totally different type of graphic structure. The indicated values are
component based and measure the precision and recall of component classifica-
tion regarding its class label.

Table 3.3: EVALUATION OF LOGITBOOST ON TWO DATASETS FOR
TEXT/GRAPHICS SEPARATION BEFORE POST-PROCESSING

Trained on Tested on Text recall Graphics recall Text precision Graphics precision Text Accuracy
ICDAR2009 ICDAR2009 99.88% 62.66% 98.91% 94.02% 98.82%
ICDAR2009 ICDAR2011 81.31% 57.2% 96.23% 18.53% 79.65%
ICDAR2011 ICDAR2011 99.15% 57.69% 96.92% 83.6% 96.29%
ICDAR2011 ICDAR2009 98.40% 45.928% 98.4% 41.98% 96.65%
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(a) 73.74% (b) 79.98%

Figure 3.6: Two documents that have obtained the lowest accuracy rate for
text/graphics separation. Black components are labelled correctly. Red components
should have been assigned a graphics label but they are incorrectly labelled as text.
Blue components on the other hand have text label in ground-truth, however they are
misclassified as graphics.

In the second part of the evaluation, we report the accuracy of text/graphics
separation per document. 78 documents from our own corpus are selected and
after applying text/graphics separation, each document obtains an accuracy rate
that indicates the percentage of components that are labelled correctly. The
average accuracy rate for 78 documents is 96.30% according to area weighted
match counting A criterion. Figure 3.6 displays two documents that have ob-
tained the lowest accuracy of 73.74% and 79.98%. In this figure all components
in black are labelled correctly. Red or blue components indicate that the label
was supposed to be graphics or text respectively, but they are labelled incor-
rectly.

The majority of errors are either due to misclassification of noise, punctu-
ations or part of drawings classified as text. The low graphics recall rates are
mostly due to broken drawings and the majority of them are corrected in post-
processing stage. Figure 3.7 displays example of errors that occasionally happen
in documents.
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Figure 3.7: Some of the misclassified components gathered from our own documents.
Black components are labelled correctly. Red components should have been assigned a
graphics label but they are incorrectly labelled as text. Blue components on the other
hand have text label in ground-truth, however they are misclassified as graphics.

A serious challenge in some documents is a problem that arises due to un-
derlines. Underlines that appear in the middle of a text region as shown in
figure 3.7, pose two problems. These underlines are treated as graphical com-
ponents and are removed from the set of text components, but in text region
detection, they are utilized to separate region of text. This behavior is ex-
pected from a true graphical component, but an underline in the middle of a
text region may split the region into two which is an understandable side effect
in this situation. Moreover, in some situations where text characters are at-
tached to the underline, not only the underline disappear from the text region,
it takes some characters with it and leaves large gaps in the middle of a text
region. This has a negative effect on our region detection stage when it happens.

Here is another comparison between the results of the method , described
here and the results of text and graphics separation from Tesseract-OCR and
EPITA methods. The classifier for our method is trained on 26 documents,
selected from both ICDAR2011 and our corpus datasets. Tables 3.4,3.5 and 3.6
show the results.

In conclusion, this chapter provides a method for separating text/graphics
components with good separation accuracy.
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Table 3.4: COMPARISON OF TEXT/GRAPHICS SEPARATION WITH LOGIT-
BOOST, TESSERACT-OCR AND EPITA ON ICDAR2009 (61 DOCUMENTS)

Method Text precision Text recall Graphics precision Graphics recall Text Accuracy
LogitBoost 97.45 98.04 79.21 88.00 97.52
TesseractOCR 93.32 95.44 88.52 85.87 92.96
Epita 94.95 96.25 81.62 92.45 95.78

Table 3.5: COMPARISON OF TEXT/GRAPHICS SEPARATION WITH LOGIT-
BOOST, TESSERACT-OCR AND EPITA ON ICDAR2011 (100 DOCUMENTS)

Method Text precision Text recall Graphics precision Graphics recall Text Accuracy
LogitBoost 98.05 93.42 56.58 73.52 94.22
TesseractOCR 94.76 87.60 84.66 94.08 90.16
Epita 97.85 95.43 62.33 85.29 95.23

Table 3.6: COMPARISON OF TEXT/GRAPHICS SEPARATION WITH LOGIT-
BOOST, TESSERACT-OCR AND EPITA ON OUR CORPUS (97 DOCUMENTS)

Method Text precision Text recall Graphics precision Graphics recall Text Accuracy
LogitBoost 93.82 93.62 59.41 74.11 92.40
TesseractOCR 88.58 95.90 76.80 63.15 89.90
Epita 95.75 90.20 61.28 85.23 91.20
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Chapter 4

Region detection

❆
fter obtaining two separate images, one containing textual components
and the other containing graphical components, we apply a region de-
tection method to separate text regions. It is already mentioned that
many authors do not separate text and graphics. They directly apply

their methods to segment regions of text and the decision to assign which region
is text and which is graphics, comes after segmentation. As mentioned before,
when parts of a graphical drawing are located close to text characters and are
aligned with them, they may be merged incorrectly as part of the text regions.
Other authors do apply a text and graphics separation, and then overlook all
graphical components and apply text line detection or region detection only on
textual components. Our method incorporates both textual components as well
as graphics. The method is designed to take advantages of graphical compo-
nents such as rule lines to separate text regions.

Although in many situations, rule lines may be helpful to separate text re-
gions or columns of text, there are many examples where rulers are simply not
available. Many authors have overcome this problem by using a distance-based
approach or analysis of white space with success. However, still the challenge
exists when columns of text are located very close to one another. One hard
case of such an example is to separate side notes from the main text body. The
problem is that in most documents from our corpus, side notes appear so close
to the main text that a distance-based method alone, fails to separate them.
We propose a framework based on two-dimensional Conditional random fields
(CRFs) to separate regions of text from one another that also aims to separate
side notes and text strings inside a table structure.

The first motivation to use CRFs compared to other locally trained machine
learning methods is the long-distance communication between sites in different
parts of the image. In figure 4.1 three regions are shown in red. By only con-
sidering the local information around each of these regions separately, it would
be difficult to recognize these regions as gaps between side notes and the main
text. However, by taking advantage of the CRFs’ long-distance message passing
between these regions and considering the alignment of same-labelled regions,
column separators can be easily detected.
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Figure 4.1: Long-distance communication between image sites in CRFs.
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The next advantage of using CRFs is that they provide a foundation that
easily induces global, local and regional knowledge of the document in the pro-
cess. Because of the conditional nature of the system, any interaction between
the fields’ labels in a Markov network can be learned from available knowledge.

In this chapter we first introduce two-dimensional CRFs. Next, we describe
feature functions which are the most important building blocks of CRFs. Then
we note different types of observations that we extract from a document im-
age. These observation are used inside our feature functions. This chapter also
includes methods for decoding optimal label configuration for two-dimensional
CRFs and methods for training parameters of the model. Finally, we note the
results.

4.1 Conditional random fields (CRFs)

First appeared in the domain of natural language processing, conditional ran-
dom fields are proposed by Lafferty et al. [50] as a framework for building
probabilistic models to segment and label sequence data. Example of such se-
quence data can be found in a wide variety of problems in text and speech
processing such as part-of-speech (POS) tagging.

Among probabilistic models that perform the same task, we can name Hid-
den Markov Models (HMMs) [78] that are well understood and widely used
throughout the literature. HMMs identify the most likely label sequence for
any given observation sequence. They assign a joint probability p(x, y) to pairs
of observation (x) and label (y) sequences. To define a joint probability of this
type, models must enumerate all possible observation sequences which is in-
tractable for most domains, unless the observation elements are independent of
each other within the observation sequence. Although this assumption is appro-
priate for simple toy examples, most practical observations are best represented
in terms of multiple features with long-range dependencies. CRFs address this
issue by using a conditional probability p(y|x) over label sequence given an
observation sequence, rather than a joint distribution over both label and ob-
servation sequences.

CRFs first appeared in the form of chain-conditional random fields. In other
words, several fields are connected in a sequential format and the label of each
field depends on the label of the field on its left and on the whole observation
sequence. This model best fits for applications in signal and natural language
processing in which the data appear naturally in a row format. In our applica-
tion, we deal with images, which can be expressed naturally in two dimensions.
Thus, we are interested in two-dimensional conditional random fields.

To obtain our two-dimensional random fields, we first divide the document
image into rectangular blocks with equal heights and widths. We call each block
a site. Contrary to other CRFs that use sites with fix sizes for all document
images, we choose the height and width of sites to be identical to half of the
mean of heights and widths of all text characters on the document, respectively.
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Figure 4.2: This figure shows our two-dimensional conditional random fields model.
Blue lines represent the boundaries between site. We divide the document image into
rectangular blocks with equal heights and equal widths. The label on each site depends
on the label of sites in its vicinity and observations defined for that site. Sites depend
on observations by means of feature functions. The ground truth label for each site is
also available for the purpose of training and evaluation. Note that the area that is
shown on the image is part of a document that shows text lines from the main text and
part of a side note. Width and height of sites in this image are not correct according
and are shown for visualization purposes only.

The reason is that documents come in different sizes and resolutions, and the
size of each site must be normalized and the width should be small enough to
pass between side notes and the main body. Each site may take one of the two
labels; ”text” or ”non-text”. However, the label of each site depends on the
labels of the sites in its vicinity; this includes the sites on its left, right, top
and bottom. Furthermore, the label of each site may depend on observations
from the document image. Generally, in conditional random fields, there is no
restriction on where these observations come from. However, we restrict the
observations to be the result from several filtering operations on the document
image under the current site. Figure 4.2

Let xs = {x1, ..., xN} be the vector of observations available to site s and ys
be one of the labels {text, non-text}. For each site s, the conditional probability
of having a label ys given observations xs is defined as:

ps(ys|xs) ∝ exp
(

F e

∑

k=1

λkf
e
k(yi,i∈N(s), ys, xi,i∈N(s), xs) +

Fn

∑

k=1

µkf
n
k (ys, xs)

)

where fn and fe are the node and edge feature functions,respectively, which
are discussed later in section 4.2. F e is the total number of edge feature func-
tions and Fn is the total number of node feature functions. N(s) is the set of
neighbors of the site s and is often called Markovian blanket of s. λ and µ are
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weights that are assigned to edge and node feature functions, respectively.

A node feature function fn judges how likely a label ys is assigned to site
s given the observations xs. An edge feature function fe indicates how likely
two adjacent sites have particular label configuration given the observations at
both sites. Feature functions and their weights can take any arbitrary real value.
With a slight abuse of notation, it is usual to write this probability in a compact
form as below:

ps(ys|xs) ∝ exp
(

F
∑

k=1

λkfk(yi,i∈N(s), ys, xi,i∈N(s), xs)

)

where F = F e + Fn is the total number of feature functions. According
to the Hammersley-Clifford theorem (1971), the conditional probability of a set
of sites given a set of observations is proportional to the product of potential
functions on cliques of the graph. If we take cliques to be pair of adjacent sites
then:

p(y|x) = 1

Z

∏

s∈S
exp

(

F
∑

k=1

λkfk(yi,i∈N(s), ys, xs, xi,i∈N(s), xs)

)

The scalar Z is the normalization factor, or partition function, to ensure
that the probability is valid. It is defined as the sum of exponential terms for all
possible label configurations. Computing such partition function is intractable
for most applications due to computational costs. As a consequence, by assum-
ing conditional independence of y’s given x’s, the conditional probability of the
CRF model for the whole image can be defined:

p(y|x) =
∏

s∈S

1

Zs

exp

(

F
∑

k=1

λkfk(yi,i∈N(s), ys, xs, xi,i∈N(s), xs)

)

Then Z for each site becomes:

Zs =
∑

(y1,y2)∈Y 2

exp

(

F
∑

i=1

λifi(y1, y2, xs, xN(s))

)

where Y = {text, non-text}. Notice that the summation in partition func-
tion is still composed of 512 terms for a 3× 3 sites.

4.1.1 The three basic problems for CRFs

Given the CRF model of the previous section, there are three basic problems
of interest that must be solved for the model to be useful in real-world applica-
tions. These problems are the following:

• Problem 1: Given all the observations x, the label configuration y and a
model ψ = (f, λ), how do we efficiently compute p(y|x, ψ), the conditional
probability of label configuration given the model? (Marginal inference)
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• Problem 2: Given the observations and the model ψ = (f, λ), how do we
choose a corresponding label configuration y∗ = y∗1y

∗
2 ...y

∗
s which is optimal

in some sense (i.e., best ”explains” the observations)? (Label decoding)

y∗ = argmax
y

p(y|x, ψ)

• Problem 3: Given the observations, the label configuration y = y1y2...yS
and a model ψ = (f, λ), how do we adjust the model parameters λ to
maximize P (y|x, ψ)? (Training)

We can also view the first problem as one of scoring how well a given model
matches a given observation sequence. This viewpoint is useful for the purpose
of recognition where we are trying to choose among several competing models
the model that best matches the observations. Thus, it does not play any part
in our system where we want to segment regions by labeling the observations.

Problem 2 is the one in which we attempt to find the ”correct” label config-
uration. Since we are using two labels text, non-text for each site, the problem
becomes to assign one of these labels to each site on the image. This is what
we want to do every time that we process a document for region detection. In
case of linear-chain conditional random fields, this operation is easily achieved
by using the Viterbi algorithm [97] that can assign the optimal labels using dy-
namic programming. However, in two-dimensional random fields approximate
techniques should be used.

Problem 3 is the one in which we attempt to optimize the model parame-
ters to best describe how the given observations and label configuration come
about. It is called training, and various methods have been proposed for that.
Among these, Limited Memory Broyden-Fletcher -Goldfarb-Shanno (L-BFGS or
LM-BFGS) [20] and Collin’s Voted Perceptron [26] are two popular chooses.

4.2 Feature functions

Perhaps feature functions are the most important components of the model. The
general form of a feature function is f(yi,i∈N(s), ys, xi,i∈N(s), xs), which looks at
a pair of adjacent sites to indicate how likely the given label configuration is
correct given the observations at both sites. Because this feature function de-
pends on two sites, it is called an edge feature function. However, if the feature
function only depends on the label and observation at one site, it is called a node
feature function. The value of the function is a real value that may depend on
labels and observations, including any non-linear combination of them.

The term ”feature function” is different from features and feature extraction
we are familiar with in image processing. Each feature function must be tied to
label configurations. For example, we can define a simple edge feature function
f1 which produces binary values: it is 1 if the label of the current site is ”text”
and the label of the site on its left is ”non-text”.
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f1(ys, yi,i∈N(s)) =

{

1 if ys = text and y← = non-text
0 otherwise

where y← is the label for the site on the left of s. Of course in the training
phase, the weight associated with feature function f1 has a correlation with the
number of times that a site s has a ”text” label and the site of its left has a
”non-text” label given all sites in the training dataset. If the training algorithm
finds that the number of times a site with a ”non-text” label appears at the left
side of a site with a ”text” label, is greater than all other label configurations
combined, then the associated weight for this feature obtains a positive value.
In any other case, the weight would be zero or negative.

Now we look at a more complex feature which produces real values. In the
previous chapter, all text and graphical elements were separated. We render
two separate images; one for each. Imagine that we pick the image (G) with all
graphic components which also includes rule lines and table lines. Every pixel
on this image has a value of 1 for every pixel of the graphical components, and
the rest of the pixels have a value of 0. In the new node feature function f2,
if the current site has the ”non-text” label, the value of the feature function is
the average of the intensity values of the pixels of the graphical image covered
by the current site.

f2(ys, G) =

{

Gs if ys = non-text
0 otherwise

where Gs is the average value of pixels on image G covered by the site s.
The value of feature function f2 is always positive for sites that are located on
graphical drawing and zero elsewhere. Thus, the λ2 weight for this function is
guaranteed to have a positive value. Suppose that we change the non-text label
in f2 to text, then the λ2 is guaranteed to have a negative value after training.

Often good feature function engineering can significantly increase the label-
ing accuracy of the model. We will describe our observations thoroughly later
in this chapter.

4.3 Observations

We described that feature functions in CRFs are functions that depend on both
the observations and labels at one or two sites. In other words, labels and ob-
servations are tied to each other in a feature function. But, before we design our
feature functions, we need to explain where our observations come from. Given
a document image, we often perform operations such as filtering or run-length
analysis on the image. Then each site in our model has access to the results
from these operations and by knowing the location of all the pixels on the site, it
makes an average estimate of the pixel values from the result of each operation
and generates a vector of observations. Later, we will bind these observations
with appropriate labels to be used in our feature functions. In this section, we
describe all the operations that lead to our observations.
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(a) Original image (b) Height map (c) Width map

Figure 4.3: Height and width maps

4.3.1 Height and width maps

These two maps represent the local average height and width of connected com-
ponents in a document image. We do not use them directly in feature functions;
instead, we use them as part of the computation for a distance-based feature.
Each pixel of a width/height map is the weighted average of the height or width
of all text-labeled connected components in a 300× 300 block around it.

Each map can be computed using the results of two image convolutions that
are divided pixel by pixel. Consider that our goal is to generate the height map.
We know the location of pixels for all text-labeled components of the page. We
first prepare two sparse images. The first image A has height of a component for
pixels of text components, and the rest of pixels are zero. The second image B
has a value of one for every pixel of text components, and the rest of the pixels
are zero. We also have a weighting function K of size 300×300 pixels defined as:

K(x, y) = cos(
πi

300
) cos(

πj

300
)

where x and y are the coordinates of pixels with (0, 0) being the center of
the window. Then

HeightMap(i,j) =
(K ∗A)i,j
(K ∗B)i,j

The width map can be computed in the same way but instead of having
the height of connected components in the A image, we use widths. Figure 4.3
displays one document image and its height and width map. We also normalize
our height and width maps by dividing every pixel’s value to the height and
width of the document, respectively.
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(a) Document (b) Filled text components (c) Graphical components

Figure 4.4: A document image, its filled text and graphical components, separated
using our text/graphics separation method.

4.3.2 Text components

We rendered image of text components. A morphological hole-filling algorithm
is applied to text components without any restrictions to ensure that there are
no holes in them. This also enhances the results of applied Gabor filters that
aim to capture text lines. Figure 4.4 shows a document image with all its filled
components. Note that tables are not filled because they are already taken out
for being graphical components.

4.3.3 Graphical components

Just like text components we also use graphical components in our feature func-
tion. Figure 4.4 also displays the extracted graphical components. Pixels that
belong to graphical components have a value of one, and the rest of the pixels
have a value of zero.

4.3.4 Horizontal and vertical run-lengths

Vertical and horizontal run-lengths are two other features computed for each
document image. Consider a document image containing plain black text on
a solid white background. In vertical run-length map, each white pixel of the
background is replaced with the number of white runs, which are confined verti-
cally between two black pixels of text. Then we normalize this map by dividing
each pixel by the height of the image.

According to this definition, pixels that belong to page margins have a max-
imum possible value of 1 and pixels that belong to text components have a
value of zero. We use the same strategy to compute horizontal run-lengths. By
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thresholding vertical run-lengths, we are able to find the margins of the page.
Margin map is another observation that we compute by thresholding the vertical
run-lengths map to find its maximal regions. We use margine map separately in
our feature functions. Figure 4.5 shows all these features for a sample document
image.

There is also another modification that we consider when computing vertical
and horizontal features. The raw vertical features can become a problem since
sometimes long vertical run-lengths penetrate in part of text regions. To mini-
mize those penetrations, we automatically change those values to zero whenever
the horizontal run-lengths are less than twice the value of the width map at the
same pixel location. Width map locally represents the width of connected com-
ponents and horizontal run-length represent the distance between components.
Changing the values to zero ensures that vertical run-lengths are unable to pen-
etrate in text regions, when the distance between connected components is less
than twice the width of components.

4.3.5 Gabor features

We use Gabor filters to generate several observation maps. Two sets of Gabor
filters are used. One set tries to capture text lines and the other set captures
vertical spaces between columns of text. It has been found that 2D Gabor fil-
ters are particularly appropriate for texture representation and discrimination.
They consist of a Gaussian kernel function modulated by a sinusoidal carrier.

The equation of a real 2D Gabor filter is:

g(x, y;λ, θ, φ, ψ, σ, γ) =
γ

2πσ2
exp

(

−x
′2 + γ2y′2

2σ2

)

cos

(

2π
x′

λ
+ ψ

)

where

x′ = xcosθ + ysinθ

and

y′ = −xsinθ + ycosθ

In the above equations, λ represents the wavelength of the carrier, θ repre-
sents the orientation of the sinusoidal strips, ψ is the phase offset, σ controls
the width of the Gaussian envelope and γ specifies the ellipticity of the Gabor
function.

We need to consider two issues here. The first issue is that we only want
one sinusoidal peak in g. Thus, we have to adjust σ in a way that it only allows
one peak to appear and attenuates all other peaks of the sinusoidal function.
This ensures that our kernel only captures one text line. We do not attempt
to capture several text lines with one kernel, and the reason is that the height
of text lines, and the space between them are not equal. In fact, it is easy to
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(a) Document image (b) Horizontal run-length

(c) Vertical run-length (d) Page margins

Figure 4.5: A document image and its computed vertical, horizontal and marginal
run-length maps features. Note that maps are computed using only text components
and table structure is ignored.
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determine the average height of text lines from text connected components, but
much harder to determine the spaces between lines. Furthermore, line-spacing
varies from one document to the other. To ensure that our kernel only captures
one text line, the value of σ should be tied to λ. The size of the kernel should
depend on the σ parameter. The size should normally be selected large enough
so that kernel coefficients of the border rows and columns contribute very little
to the sum of coefficients. As a rule of thumb the size (in pixels) of the kernel
window should be six times the value of σ or larger to ensure that the power
of coefficient values at the borders of the kernel window subside to 1% or lower
than the power of center coefficients. The second issue is that we want the λ
parameter to be dependent on the size of the text line. Our parameters are:

λ = 2×Avg. text height or width

σ =
λ

3.5
γ = 0.7

ψ =

{

π To capture text lines
0 To capture white space

Unfortunately, there is no efficient implementation of Gabor filter in which
the λ parameter varies locally. We could manually crop patches from a document
image and use a Gabor kernel for each patch that matches text heights locally,
but it would take a huge amount of time. Therefore, Gabor filtering using kernel
multiplication in frequency space and fixed parameters for each kernel per doc-
ument is still the only available option. As a consequence two different Gabor
kernels are used to capture text lines. For these kernels, the λ parameters are
set to 2×Average Text Height and 4×Average Text Height. Moreover, to cap-
ture white space gaps, three Gabor kernels are used. The λ parameters are set
to 1.5×Text Width, 3.5×Average Text Width and 5.5×Average Text Width.
Figure 4.6 shows the results of applying the mentioned Gabor filters to a docu-
ment in figure 4.5.

Figure 4.7 displays two additional examples of filtered images, highlighting
the effect of using various λ parameters to capture text lines of different font
sizes.

4.4 Feature functions

Each feature function has two parts. The first part depends on the label of the
site or a combination of the labels from its neighbors. The second part depends
on the observations. Theoretically, these observations can be generated from
anywhere on the image; however, we restrict them to be computed from and
around the site in question.

We described many features that we extract from document images. In order
to generate observations from these features, we compute mean and variance for
each feature map at the same site. These statistics serve as observations at each
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(a) ψ = π, λ = Avg. CC height× 2 (b) ψ = π, λ = Avg. CC height× 4

(c) ψ = 0, λ = Avg. CC width× 3.5 (d) ψ = 0, λ = Avg.n CC width× 5.5

Figure 4.6: Results of applying two sets of Gabor filters to a document image. (a)
and b display the results of the first set with two Gabor filters that try to capture text
lines with different heights. c and d show the results of two additional Gabor filters
that capture gaps between text columns.
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(a) Document image (b) Small Gabor kernel (c) Large Gabor kernel

Figure 4.7: Results of applying two Gabor filters with different kernel sizes to a
document image. This clearly shows the ability of Gabor filters to capture text lines
of different font sizes. The result in b belongs to a Gabor filter with medium kernel
size. As the size of the Gabor filter gets larger in c, it reveals larger text lines on the
page.

site. To reduce the effect of scale, mean and variance are not computed using
the same height and width as the site but by using a patch centered on the
site but with a size proportional to the local height of text components (which
comes from the height map) at that site.

Some global feature functions are used that do not depend on any observa-
tion. These functions are noted below. In these function yc refers to the label
of the current site at the center and yt, yl and ytl refer to labels on the top,
left and top-left of the site, respectively. Labels may be 1 for text and 0 for
non-textual sites. Note that these functions are separate independent feature
functions that each takes its own weight while training. Thus, they cannot be
merged into a single function.

f = [yc = yl]

f = [yc = yt]

f = [yc = 0]× [yl = 0]

f = [yc = 0]× [yl = 1]

f = [yc = 1]× [yl = 0]

f = [yc = 1]× [yl = 1]

f = [yc = 0]× [yt = 0]

f = [yc = 0]× [yt = 1]

f = [yc = 1]× [yt = 0]

f = [yc = 1]× [yt = 1]
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f = [yc = 0]× [ytl = 0]

f = [yc = 0]× [ytl = 1]

f = [yc = 1]× [ytl = 0]

f = [yc = 1]× [ytl = 1]

So far, the global feature functions are described. The weights of these fea-
ture functions control the smoothness and continuity of the labels. For example
if the weight for the first feature is positive and large enough compared to other
weights, it encourages the current site to have the same label as the site on its
left. On the other hand a negative weight for this feature discourages a site to
have the same label as its neighbor site on its left.

Apart from global feature functions, there are many number of feature func-
tions that are tied to observations. These feature functions are:

f = [yc = 0]× (xtl + 1)

f = [yc = 0]× (xt + 1)

f = [yc = 0]× (xtr + 1)

f = [yc = 0]× (xl + 1)

f = [yc = 0]× (xc + 1)

f = [yc = 0]× (xr + 1)

f = [yc = 0]× (xbl + 1)

f = [yc = 0]× (xb + 1)

f = [yc = 0]× (xbr + 1)

f = [yc = 0]× (xtl − 1)

f = [yc = 0]× (xt − 1)

f = [yc = 0]× (xtr − 1)

f = [yc = 0]× (xl − 1)

f = [yc = 0]× (xc − 1)

f = [yc = 0]× (xr − 1)

f = [yc = 0]× (xbl − 1)

f = [yc = 0]× (xb − 1)

f = [yc = 0]× (xbr − 1)

f = [yc = 0]× [yt = 0]× (xc + xt)

f = [yc = 0]× [yt = 1]× (xc + xt)

f = [yc = 1]× [yt = 0]× (xc + xt)

f = [yc = 1]× [yt = 1]× (xc + xt)

f = [yc = 0]× [yl = 0]× (xc + xl)

f = [yc = 0]× [yl = 1]× (xc + xl)

f = [yc = 1]× [yl = 0]× (xc + xl)
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f = [yc = 1]× [yl = 1]× (xc + xl)

The mentioned feature function prototypes are designed empirically with ex-
tensive testing. Again, we note that due to a limitation in our inference method,
the label of a site only depends on the labels of sites on its left or top; however,
observations do not have this restriction. The observation x in these functions
can be substitute by the normalized mean and variance of any extracted feature
on the previous sections.

There is one issue that deserves an explanation. In these feature functions,
we add +1 and -1 to each observation. Note that observations are normalized
between 1 and -1. The question is: what are the advantages of using two feature
functions for an observation instead of one? To explain this we turn into a toy
example. First, we define f1 which is a feature function that detects non-text
areas with a normalized observation. Equivalently, we have f2 and f3. We argue
that using f2 and f3 instead of f1 is more effective for the overall feature space.

f1 = [yc = 0]× x
f2 = [yc = 0]× 0.5× (x+ 1)

f3 = [yc = 0]× 0.5× (x− 1)

In figure 4.8, a ground-truth image with 3× 3 sites is shown. This ground-
truth shows that this particular toy example has three textual sites and six
non-textual sites. In addition, the extracted observation x is shown. Having
said that, all the feature functions f1,f2 and f3 only interact with non-textual
areas. In other words, their values for text sites are zero. The sum of the values
of f1 for non-textual sites is zero. It means that the values of x for non-textual
sites cancel each other and a training algorithm such as voted percepton assigns
a zero weight to this feature function. However, the sum of the values of f2 and
f3 are 3 and -3, respectively. It means that f2 positively contributes to some
sites for having a ”non-text” label and f3 with a negative sign contributes to
some other sites for having a ”non-text” label. Finally, the training algorithm
assigns a positive weight to f2 and a negative weight to f3 and both feature
functions would contribute positively to the overall classification.

4.5 Label decoding

Label decoding is one of the crucial steps in training a conditional random field’s
model and detecting text regions. For now, we assume that we have a trained
model in which every parameter in our model is set according to our training
dataset. Given a document image, we divide our image into sites and calculate
observation vectors for each site. Label decoding refers to the process of assign-
ing ”text” or ”non-text” labels to each size in such a way that the conditional
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(a) Ground-truth (b) yc = 0

(c) x (d) f1

(e) 0.5× (x+ 1) (f) 0.5× (x− 1)

(g) f2 (h) f3

Figure 4.8: A toy example that shows why a normalized observation is better to
appear in two feature functions instead of just one.
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probability p(y|x) is maximized according to the trained CRF model.

Finding the optimal label configuration in a linear-chain conditional ran-
dom field or graphical models with tree-like structure is a straightforward pro-
cess using the Viterbi algorithm. However, in two-dimensional CRF, no exact
method exists for label decoding. Nearly all methods that perform decoding in
two-dimensional CRFs are approximation methods that iteratively perform in-
ference and change label configuration until they reach to a predefined number
of iterations or until they converge. Examples of such methods are Monte Carlo
methods [3], Loopy Belief Propagation [64], variational methods [43]. While
the success of these methods is proven in some application like Turbo decoding
[67], in the domain of computer vision [31], the precise conditions under which
these methods will converge are still not well understood. Furthermore, since
we work on high-resolution document images with typically 300 dpi, methods
that demand high number of iterations to converge, are impractical.

Another simple to implement solution is Iterated Conditional Models (ICM).
ICM is an iterative method proposed by Besag in 1986 [9]. Instead of maximiz-
ing the probability as a whole, the method tries to maximize the conditional
probability of each site by considering only its neighbors. At each iteration, the
algorithm chooses sites from left to right and top to bottom and estimates the
probability for all possible label configurations for the site in question. Then it
picks the label that maximizes the local probability. Finding the global maxi-
mum is not guaranteed, but the method converges to a local maximum. More-
over, if instead of using all the neighbors of a site, we restrict the label of the
site to be dependent merely on the sites that we have already visited in one
iteration, then it takes just one iteration for the ICM to converge. Therefore,
ICM is the method that we choose for label decoding.

4.6 Training (parameter/weight estimation)

In this section, we discuss how to estimate the parameters λj of a conditional
random field. In general, conditional random fields may be trained with latent
variables or for structure learning. However, we are provided with fully labeled
data, which is the simplest case for training.

Maximum likelihood is the foundation for training CRFs. Weights are chosen
such that the training data has the highest probability under the model. The
conditional log-likelihood of a set of training sites (ss, ys) using λ as parameters
is given by:

ℓλ =
∑

s∈S

(

F
∑

k=1

λkfk(yi,i∈N(s), ys, xi,i∈N(s), xs)− logZ(xs, λ)

)

.

where S is the total number of sites in training dataset and F is the total
number of feature functions. Differentiating the log-likelihood function with
respect to parameter λk is given by:
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∂ℓλ
∂λk

=
∑

s∈S

(

fk(ys, xs)−
∑

y∈Y fk(ys, xs) exp
∑F

i=1 λifi(ys, xs)

Z(xs, λ)

)

=
∑

s∈S



fk(ys, xs)−
∑

y∈Y
fk(ys, xs)P (y|xs)





=
∑

s∈S

(

fk(ys, xs)− EP (y|xs)[fk(ys, xs)]
)

where Y = {text, non-text} and Ep()[.] is the expected value of the model
under the conditional probability distribution. For maximum likelihood solu-
tion, the equation will equal zero, and therefore the expectation of the feature
fk with respect to the model distribution must be equal to the expected value
of fk with respect to the empirical distribution. However, calculating the ex-
pectation requires the enumeration of all the y labels. In linear-chain models,
inference techniques based on a variation of forward-backward algorithms can be
performed to efficiently compute this expectation. However, in two-dimensional
CRFs, approximation techniques are needed to simplify the computations. One
solution is to use a Voted Perceptron Method.

4.6.1 Collin’s voted perceptron method

Perceptrons [81] use an approximation of the gradient of the unregularized con-
ditional log-likelihood. Perceptron-based training methods consider one mis-
classified instance at a time, along with its contribution to the gradient. The
expectation of features are further approximated by a point estimate of the fea-
ture function vector at the best possible labeling. The approximation for the
ith instance and the kth feature function can be written as:

∇kℓ(λ) ≈
(

fk(y
i, xi)− fk(ŷi, xk)

)

where

ŷi = argmax
y

λkfk(y, x
i)

Using this approximate gradient, the following first order update rule can
be used for maximization:

λt+1
k = λtk + α

(

fk(y
i, xi)− fk(ŷi, xi)

)

.

where α is the learning rate. This update step is applied once for each miss-
classified instance xi in the training set and multiple passes are made over the
training dataset. Thought, it has been noted that the final obtained weights
suffer from over-fitting. As a solution, Collins [26] suggests a voting scheme,
where, in a particular pass of the training data, all the updates are collected,
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and their unweighed average is used as an update to the set of weights in each
iteration. So the whole update-rule from iteration t to iteration t+ 1 becomes:

λt+1
k = λtk + α

1

|S|
∑

s∈S

(

fk(yN(s), ys, xs, xN(s))− fk(ŷN(s), ŷs, xs, xN(s))
)

.

where ys and yN(s) are true labels from ground-truth and ŷs and ŷN(s) are
labels, computed from the model using label decoding at each iteration. The
Collin’s voted perceptron is shown to achieve lower errors in fewer numbers of
iterations.

4.6.2 Loopy belief propagation

Another approach to take instead of Collin’s voted perceptron is to use L-BFGS
optimization method which is quite popular for training conditional random
fields because it takes few number of iterations to converge. But before we are
able to utilize it, we have to compute an approximation of marginal probabilities
for our model. One way of performing marginal inference on graphical models
is a message passing algorithm called Belief propagation, also known as Sum-
product algorithm. this algorithm was first proposed by Judea Pearl in 1982 [76]
for trees. This algorithm computes exact marginals and terminate after 2 steps.
In the first step, messages are passed inwards: staring at the leaves, each node
passes a message along the (unique) edge towards the root node. It is possible
to obtain messages from all other adjoining nodes until the root has obtained
messages from all of its adjoining nodes.

The same algorithm is used in general graphs, sometimes called ”loopy”
belief propagation [31]. The new modified algorithm works by passing messages
around the network defined by four-connected sites. Each message is a vector
of two dimensions, given by the number of possible labels. Let mt

pq be the
message that site p sends to a neighboring site q at time t. Using negative log
probabilities all entries in m0

pq are initialized to zero. At each iteration new
messages are computed according to the update rule below:

mt
pq(yp) = min

yp



V (yp, yq) +Dp(yp) +
∑

s∈N(p)\{q}
mt−1

sp (yp)



 .

where N(p)\{q} denotes the neighbors of p other than q. V (yp, yq), the
negated sum of our edge feature functions, is the cost of assigning labels yp
and yq to two neighboring sites p and q. Dp(yp), the negated sum of our node
feature functions, is the cost of assigning label yp to site p. After T iterations a
belief vector of two-dimensions is computed for each site.

bq(yq) = Dq(yq) +
∑

p∈N(q)

mT
pq(yq).

Beliefs may be used as the expected value of model parameters to compute
gradients for each feature function. It is known that on graphs containing a
single loop it will always converge, but the probabilities obtained might be
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incorrect [100]. Several sufficient (but not necessary) conditions for convergence
of loopy belief propagation to a unique fixed point exist [6]. Even so, the precise
conditions under which loopy belief propagation will converge are still not well
understood in its application for computer vision. As a consequence, through
our experiments we found that the usage of some feature functions will result
to no answer from L-BFGS optimization.

4.6.3 L-BFGS

Perhaps the simplest approach to optimize ℓ(λ) is by using a steepest ascent
algorithm, but in practice, this requires too many iterations. Newton’s method
converges much faster because it takes into account the second derivatives of the
likelihood function, but it needs to compute Hessian, the matrix of all second
derivatives. The size of the Hessian matrix is quadratic in the number of pa-
rameters and since real-world applications often use thousands (e.g. computer
vision) or even millions (e.g. natural language processing) of parameters, even
storing the full Hessian matrix in memory is impractical.

Instead, the latest optimization methods make approximate use of second-
order information. Quasi-Newton methods such as BFGS, which compute an
approximation of Hessian from only the first derivative of the objective function,
have been successfully applied [55]. A full K×K approximation to the Hessian
still requires quadratic size. Therefore, a limited-memory version of the method
(L-BFGS) is developed [20].

L-BFGS can simply be treated as a black-box optimization procedure, re-
quiring only that one provides the value and first-derivative of the function to
be optimized. The important note is that the use of L-BFGS does not make
it easier to compute the partition function. Recall that the partition function
Z(x, λ) and the marginal distributions p(ys|xs, λ) in the gradients, depend on λ;
thus, every training instance in each iteration has a different partition function
and marginal. Even in linear-chain CRFs that the partition function Z can be
computed efficiently by forward-backward algorithms, it is reported that on a
part-of-speech (POS) tagging data set, with 45 labels and one million words of
training data, training requires over a week [94].

Our implementation of L-BFGS is based on libLBFGS library [72] in C++.

4.7 Experimental results

Our training dataset consists of 28 pages from a collection of our corpus. It
contains a large variety of page layouts including articles, journals, forms and
multi-columns documents with or without side notes and graphical components.

For each page in our dataset we generated a ground-truth image and a map
that indicates the location of between-columns in multi-column documents. The
former is used only for tracking the rate of errors in those areas and is not part
of a training routine. Figure 4.9 shows two pages in our training dataset along
with their corresponding ground-truth. Note that three colors are used as part
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of each ground-truth image. Black and white areas represent text and back-
ground regions respectively. Gray areas however represents areas that could be
either text or background. In other words we ignore those areas and do not
penalize training algorithms for making a misclassification in those regions.

In our first attempts to train our 2D CRF model, we used Collin’s Voted
Perceptron. The voted perceptron algorithm does not converge to a global
minimum. Generally, depending on the learning rate, it starts with a large clas-
sification error, and traverses some local minima of the likelihood function until
it goes through a cycle. By analyzing the classification results for each iteration,
it became clear that in most of the iterations, the algorithm struggles with one
row or one column of pixels around the borders of text regions, which occupy
most of the training time without gaining any noticeable results for the human
eye. Our idea to resolve this situation is to ignore sites that are located on the
borders of text regions in our ground-truth images. We label the sites that are
not completely located on text or non-text regions as ”don’t care” regions.

The use of ”don’t care” regions has two advantages. The first advantage is
that computed errors indicate information for the sites that are visually impor-
tant for us and more reliably reflect the quality of the segmentation. The second
advantage is that the Voted perceptron method performs more smoothly and
well behaved during the training. Whenever we process a ”don’t care” site, we
simply do not count the error for that site, and we prevent that site to have any
influence on the approximate gradient. The drawback is that we still decode
their labels and use those labels in the feature functions of the active surround-
ing sites that demand it. Figure 4.10 illustrates the number of misclassified sites
in 400 iterations of training by Collin’s Voted Perceptron with or without con-
sidering ”don’t care” sites. The error rates with or without considering ”don’t
care” sites are shown in red and blue, respectively.

In each iteration of training, a large vector of weights are stored. The
dilemma is which weight vector to choose. Figure 4.10 clearly shows that as
the number of misclassified text sites starts to decrease, there is an increase
in the classification error for sites that are located between text columns. In
other words, those sites, located between text columns, should not be labeled
with text, but iteration after iteration text labels start to be build-up in those
regions. Considering both numbers, it seems reasonable to use the obtained
weights around iteration 147 as the trained parameters for our model.

Some obtained results are shown in figure 4.11. We have particularly chosen
examples that have more errors. These results are showing the output of CRF
without any post-processing. Though, in many cases there are holes inside text
regions that can be easily corrected in post-processing. In some cases penetra-
tion of non-text labels happen (sub-figure e) at the boundaries of text regions.
These penetrations do pose a problem if they divide a single text region into
two separate regions. It happens because some feature functions, responsible
for capturing gap between side notes, have obtained a large weight. Other type
of problem that often occurs (sub-figure g) is touching of a small region between
side notes and the main text. There is always a trade-off between misclassifica-
tion in text regions and gaps between side-notes.
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Figure 4.9: Two sample pages from our training dataset along with their ground-
truth images.
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(a) Number of misclassified sites for all sites (%)

(b) Number of misclassified text sites (%)

Figure 4.10: Number of misclassified sites per iteration in Voted Perceptron training.
The error rates with or without considering ”don’t care” sites are shown in red and
blue, respectively.
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(a) Number of misclassified non-textual sites (%)

(b) Number of misclassified sites between text columns (%)

Figure 4.10: Number of misclassified sites per iteration in Voted Perceptron training.
The error rates with or without considering ”don’t care” sites are shown in red and
blue, respectively.
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4.7.1 Post-processing

Three post-processing steps are applied to the output of the CRF:

• Removing regions whose width or height are smaller than the width of
height of the average character.

• Opening each regions separately from other regions. Since side notes are
very close to main text body, care should be taken not to merge two text
regions together.

• Applying a hole-filling method to fill holes inside each text region sepa-
rately.

Four pages are shown in figure 4.12 after applying these three post-processing
steps.

4.8 Results and discussion

At this point, regions of text are detected and ready for text line detection,
but paragraphs are yet to be found. Paragraphs may or may not be separated
depending on the distance between them. However since in most ground-truth
data for competitions such as ICDAR2011 Historical Document Layout Com-
petition, paragraphs are annotated separately, evaluation of the results based
on region matching with the true ground-truth data are meaningless for the
purpose of comparison.

We report the current success rate for site-wise classification. The statistics
aim to show how far the results are from the closest acceptable region segmenta-
tion for the means of text line detection. This means that instead of preparing
a ground-truth that separates all the paragraphs, we generate the ground-truth
data by correcting the segmentation results to make them acceptable for text
line detection.

Table 4.1 indicates number of misclassified sites from the output of our CRF
model.

Table 4.1: NUMBER OF MISCLASSIFIED SITES (%) FROM THE OUTPUT OF
OUR CRF MODEL

Total sites (%) Textual sites (%) Non-textual sites (%) Gap between columns (%)
0.97 1.32 0.88 3.5

Two other tables 4.2 and 4.3 show region segmentation success rates for
different images. The indicated rates are computed between the segmentation
output and the closest acceptable segmentation for text line detection. The
closest acceptable segmentation is a segmentation that is capable of producing
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(c) 37531011459550 00011 (d) 37531011459550 00023

(e) 37531022215512 00006 (f) 37531022215512 00002

Figure 4.11: Several obtained results for text region detection without post-
processing.
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(a) 9782738000064 0110 (b) 37502043571332 00074

(c) 37531011465979 00019 (d) 37531032730088 00703

Figure 4.11: Several obtained results for text region detection without post-
processing.
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(e) 37502043571332 00074 (f) 9782738000064 0110

(g) 37531032730088 00703 (h) 37531022215512 00006

Figure 4.12: Results of text region detection after post-processing.
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prefect results for text line detection. Accuracy rates are reported as received
by Prima Layout Evaluation software [25]. Table 4.2 reports the region segmen-
tation success rates based on weighted area. The other table 4.3 reports the
success rates for the same images based on weighted count. The weighted area
is more reliable because in methods that simply report counts, a tiny region
counts the same as a large region that covers most of the page. The weights are
set according to ICDAR2011 historical document layout analysis competition
[4]. These weights measure the pure segmentation performance. Miss and par-
tial miss errors are considered worst and have the highest weights. The weights
for merge and split errors are set to 50%, whereas false detection, as the least
important error type, has a weight of 10%.

Table 4.2: AREA WEIGHTED SUCCESS RATES FOR REGION SEGMENTA-
TION

Image Merge % Split % Miss % Partial miss % False detection % Overall success%
9782738000064 0110 0.6 1.32 0 0.06 0 99.66
9782738000064 0112 0 9.14 0 0.28 0.04 97.89
9782738000064 0267 0 12.19 0 0.14 0 97.02
9782738002082 0145 0 0.04 0 0.06 0 99.98
9782738003041 0337 0 0 0 0 0 100
9782738005151 0042 23.44 1.1 0 0.02 0 92.79
37502016547384 00275 0 19.91 0 2.38 0.08 94.03
37502043571332 00074 0 1.35 0 0 0.03 99.76
37502043571332 00129 0 0 0 0.03 0 99.99
37511000967896 00044 0 0 0 0 0 100
37531011459550 00011 0 0 0 0.02 0.04 99.99
37531011459550 00023 4.53 0 0 0.01 0.02 99.1
37531011465763 00009 7.08 0.06 0 0.46 0 98.41
37531011465979 00019 20.08 0 0 0.09 0 94.24
37531017210387 00004 0 12.33 0 1.73 5.73 95.83
37531021715306 00002 0 29.79 0 0.11 0.02 90.09
37531022215512 00002 14.92 0 0 0.01 0 96.14
37531022215512 00006 18.94 0 0 0.02 0.03 94.69
37531022331848 00165 0 0 0 0 0 100
37531022333950 00254 0 0 0 0 0 100
37531023943955 00010 0 0 9.14 0.01 0 99.97
37531023943955 00043 0.16 0.04 0 0.01 0 99.97
37531027315911 00007 0 0 0 0 0 100
37531032730088 00703 0 1.55 0 0.14 0 99.7
37531032730096 00692 0 2.8 0.14 0.96 0 99.3
37531032886898 00116 0 0 0 0.3 0.01 99.99
CIDELOT 00002 000112 0 4.21 0 0.54 0.01 99.09
SEPTLOT 00001 000547 5.63 0.61 0 0.2 0 98.73

Our experiments prove that the choice of training parameters has a ma-
jor effect on the segmentation results. There is always a trade-off between the
number of misclassified textual sites and the number of misclassified non-textual
sites, located between text columns. As described before, some features that
are responsible for capturing gaps between side notes and some features capture
text lines. If the trained model obtains larger weights for features that capture
gaps between side notes, then some errors appear on text areas. Four types of
errors can be identified. The first type is about non-textual holes that appear in
the middle of text regions. Figure 4.13 (A) illustrates this problem. The source
of the problem are due to observations that come from Gabor filtering and are
responsible for capturing side notes. This problem occurs when there are not
enough text characters in a particular location inside a text region. It can be
easily fixed in post-processing by applying a hole-filling algorithm.
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Table 4.3: COUNT WEIGHTED SUCCESS RATES FOR REGION SEGMENTA-
TION

Image Merge % Split % Miss % Partial miss % False detection % Overall success%
9782738000064 0110 13.33 23.53 0 13.33 9.09 87.85
9782738000064 0112 0 23.33 0 20.69 16.67 86.36
9782738000064 0267 0 34.43 0 23.08 0 83.84
9782738002082 0145 0 12.5 0 22.22 0 91.31
9782738003041 0337 0 0 0 33.33 0 88.41
9782738005151 0042 28.57 21.05 0 28.57 0 81.64
37502016547384 00275 0 86.02 0 17.14 9.09 56.85
37502043571332 00074 0 11.11 0 0 9.09 95.65
37502043571332 00129 0 0 0 40 0 85
37511000967896 00044 0 0 0 0 0 100
37531011459550 00011 0 0 0 28.57 16.67 87.9
37531011459550 00023 27.27 0 0 20 9.09 86.65
37531011465763 00009 33.33 11.11 0 33.33 0 80.27
37531011465979 00019 42.86 0 0 50 0 70.9
37531017210387 00004 0 55.56 0 66.67 67.74 48.64
37531021715306 00002 0 44.44 0 28.57 9.09 77.65
37531022215512 00002 15.38 0 0 26.67 0 88.96
37531022215512 00006 45.45 0 0 66.67 16.67 62.36
37531022331848 00165 0 0 0 0 0 100
37531022333950 00254 0 0 0 0 0 100
37531023943955 00010 0 0 40 40 0 76
37531023943955 00043 50 33.33 0 50 0 65.35
37531027315911 00007 0 0 0 0 0 100
37531032730088 00703 0 22.22 0 46.15 0 78.81
37531032730096 00692 0 22.58 14.29 40 0 80.44
37531032886898 00116 0 0 0 40 16.67 82.96
CIDELOT 00002 000112 0 47.22 0 42.42 9.09 72.17
SEPTLOT 00001 000547 12.9 6.9 0 12.9 0 93.22

A slightly more serious problem is when the same problem occurs near the
border of text regions, which leads to the second type of error, namely non-
textual penetrations. Figure 4.13 (B) displays penetration of non-textual sites
in text regions. This problem is also fixable in post-processing by isolating the
text region and applying morphological opening on the region while respecting
the borders. Morphological opening should only be applied after isolating a text
region, otherwise two text regions may merge incorrectly.

The third problem is of broken titles. Figure 4.14 shows this problem in
part of a document image. The title on this page is divided into two parts when
there are enough empty space around. This problem is a serious problem and
we do not have a fix for that.

The fourth problem is when sides notes are very close to main text and the
main text is slightly slanted to one side. Figure 4.15 illustrates this problem. Its
clear from the images that Gabor filters are not able to capture gaps between
side notes.

4.8.1 Discussion on parameters

The final matter that should be discussed is the choice of parameters and their
effects on the results of the region detector. For this purpose we train a CRF
on a selected subset of the dataset containing 16 documents. The goal is to
determine the effects of changing parameters such as learning rate, overlapping
ratio and the maximum number of cycles of ICM on the training error. For
this study, we consider the first 100 iterations of the training algorithm and the
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Figure 4.13: This figure displays two types of error that frequently occur in the
results of text region detection. They happen when there are gaps between words. If
the gap is located in the middle of the text region, it appears as holes A and if it exists
near the border of the text region, it causes penetrations B. Both problems can be
fixed in the post-processing stage.

Figure 4.14: This figure displays a serious problem when the title of the page divides
into two isolated text regions. Currently there is no fix for his problem and the use of
morphological opening is not recommended to solve it.
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Figure 4.15: This figure illustrates a problem when sides notes are very close to
main text and the main text is slightly slanted. In such situation, Gabor filters are
not able to capture the small gap between side notes which cause both text region to
be merged.
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Figure 4.16: This figure shows the evolution of training error rate with 5 different
learning rates. All other parameters remain the same.

obtained error in each iteration. Any other parameter of the training remains
the same unless if stated otherwise.

Learning rate

Learning rate refers to the learning rate of the voted perceptron training al-
gorithm. It controls the fraction of computed deltas in each iteration of the
training that are contributing to the weights of the feature functions. The num-
ber of ICM cycles is 10. The block overlap ratio is 0.25 and the width and height
of each block is half of the mean width and height of all text characters of the
page, respectively.

Figure 4.16 shows the evolution of training error with 5 different learning
rates. It suggests that a high value for learning rate forces the training to go into
a cycle. On the other hand, the training process is smooth with a small value
for learning rate (0.1 in this case) however the process converges to a higher
training error. In this particular experiment, a learning rate of 0.25 can be con-
sidered as good because the number of misclassified sites decreases reasonably
fast without going into cycles.

Unfortunately, there are no rules of thumb to determine a best value for
learning rate without considering the number of blocks, number of features
functions and their characteristics.
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Figure 4.17: This figure shows the evolution of training error rate with 3 different
overlapping ratios.

Overlapping ratio

Overlapping ratio refers to the amount that two consecutive blocks overlap. For
this experiment we consider three different overlapping ratio; without overlap,
with 25% and 50% overlap. Everything else remain the same but the total num-
ber of sites.

Figure 4.17 displays the percentage of misclassified sites during the training
process with 3 different overlapping ratios. In conclusion, a smaller overlap-
ping ratio results in less number of sites, much faster training process and less
number of misclassified sites. However, despite the decrease in the number of
misclassified sites, the number of misclassified sites that are located in between
columns of text increases. For this reason, it is in our best interest to use a
value higher than 0.25 for the overlapping ratio. Values higher than 0.5 result
in a huge number of sites and increase the memory consumption and training
time substantially.

Maximum number of ICM cycles

Maximum number of ICM cycles refers to the maximum number of cycles that
are allowed for the iterated conditional modes inference algorithm before the al-
gorithm converges. The ICM algorithm is supposed to converge to a fixed state
of the system after several cycles, however the convergence is not guaranteed. In
the former case, a maximum number of cycles is set to terminate the inference
algorithm prematurely.

Figure 4.18 shows the progress of the training algorithm with 5 different
maximum number of ICM cycles. The results indicate that except of the first
experiment with only one cycle, all other experiments perform the same way
with slight changes. In conclusion 5 cycles can be considered a good value as a
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Figure 4.18: This figure displays the number of misclassified sites per iteration for
5 experiments with different maximum number of ICM cycles.

trade-off between speed and accuracy of the training process.

4.9 Final Notes

This chapter provided a method for detecting and separating regions or columns
of text. Because we are yet to detect paragraphs within each region, a complete
evaluation and comparison of the results will be performed in chapter 6, when
other parts of the system are available.
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Chapter 5

Text line detection

❚
ext line detection refers to the segmentation of each text region into
distinct entities, namely text lines. In chapter 2 we mentioned and
analyzed many methods for detecting text line.

Our text line detection method is a variant of the method proposed by
Papavassiliou in [75]. The original method segments a document image into
non-overlapping vertical zones with equal width. The height of each zone is
equal to the height of the document image. Its width is equal to 5% of the
width of the document image so as to ignore the effect of skewed text lines, and
wide enough to contain decent amount of characters. Also the original method
disregards zones situated close to the left and right borders of the page; mainly
because they do not contain sufficient amount of text.

Since documents in our corpus contain side notes, it is not wise to dismiss
zones that do not contain sufficient amount of text compared to zones in the
middle of the document. One reason why the original method neglects these
zones is because of the effect of large gaps that affect the overall estimation
of model parameters. To solve this problem we ensure that parameters of the
model are estimated from detected text regions. Also we ensure that detected
lines do not cross from one text region to another as it happens in the original
method.

5.1 Initial text line separators

The first step is to calculate the projection profile of each vertical zone onto y
axis. Let PRi be the projection profile of the ith vertical zone onto y axis. Peaks
and valleys of PRs give rough indication of the location of text lines; however,
in the case where writing style results in large gaps between successive words, a
vertical zone many not contain enough foreground pixels for every text line. In
order to slake the influence of these instances on PRi, a smoothed projection
profile SPRi is estimated as a normalized weighted sum of M profiles on either
side of the ith zone. The dimension for PRi and SPRi is 1× Page’s height. In
figures 5.1 and 5.2, the bar chart view for PRi and SPRi are rendered at the
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same location of ith zone in sub-figure (a) and (b), respectively.

SPRi =

M
∑

j=−M
wjPRi+j .

where the weights are:

wj =
exp −3|j|

M+1
∑M

k=−M exp −3|k|
M+1

Weights are defined to decay exponentially with respect to the distance from
the zone in the middle.

Finally, the first derivative of a smoothed projection may be obtained using
a symmetric difference equation as follows:

△SPRi(j) =
2

h(h2 + 1)

2h
∑

k=1

k. (SPRi(j + k)− SPRi(j − k)) .

where h is set to the closest odd integer value to the mean height of all
CCs. The upper and lower bounds of text lines are the local maxima and local
minima of △SPRi respectively. Likewise gap regions are identified as the areas
between consecutive minima and maxima of △SPRi.

Having the first derivatives of the smoothed projection profiles, finding the
initial text and gap regions is a matter of applying a threshold to these first
derivatives. Figure 5.3 shows the initial text and gap regions for the two image
in figures 5.1 and 5.2. Initial separators for separating text lines can be drawn
in the middle of each gap in each vertical zone. In this regard, separators are
line segments that are defined in the middle of each gap region inside every
vertical zone. They are used later to find text lines.

5.2 Refinement of initial text line separators

Initial text line separators contain two types of errors: redundant separators re-
sulting from misclassified text and gaps due to poor local extrema, introduced in
the smoothed derivatives and separators that cut through descenders or ascen-
ders of text characters. In order to correct these errors and to locate separators
more accurately, a Hidden Markov Model (HMM) [78, 91] is formulated with
parameters drawn from statistics of the initial text and gap regions. For each
document, an HMM is formulated separately on-the-fly and is applied once to
each vertical strip of text and gap regions. Viterbi decoding scheme [34] is ap-
plied on each zone to obtain a better succession of text and gaps.

We briefly note some formal definitions of HMM. Our HMM is characterized
by the following items:

88



(a) Binary image (b) Vertical projection profiles

(c) Smoothed projection profiles (d) First derivatives of smoothed profiles

Figure 5.1: First steps in line detection to obtain initial lines and gaps for a single
document image.
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(a) Binary image (b) Vertical projection profiles

(c) Smoothed projection profiles (d) First derivatives of smoothed profiles

Figure 5.2: First steps in line detection to obtain initial lines and gaps for a single
document image.
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Figure 5.3: Initial text and gap regions for document images in figures 5.1 and 5.2.
Text line separators can be drawn in the middle of each gap (white).
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• N , the number of states in the model. In the application for text-gap
correction, we have two states: text and gap. Typically, the states are
interconnected in a way that any state can be reached from any other
state. With our two-states model, a text state may remain in text state
at each region, or it may transit to a gap state. The same statement is
also true for a gap state.

• M , the number of distinct observations per state. Generally, observations
are used to train a model and estimate transition and emission proba-
bility matrices. In other words, transition and emission probabilities are
estimated during the training phase based on training sequences and then
during inference the observations are used to find the optimal sequence of
states. However, in the method proposed by [75] the HMM model calcu-
lates transition and emission probabilities continuously on-the-fly based
on the height of each region and the mean of pixels’ intensities, covered
by the region.

• The state transition probability matrix A(k) for kth region of the vertical
strip is modeled by exponential distributions as follows:

A(k) =





exp
(

− hk

m0

)

1− exp
(

− hk

m0

)

1− exp
(

− hk

m1

)

exp
(

− hk

m1

)





where hk denotes the height of the kth region and mj , j ∈ {0, 1} is the
mean height of all regions of the whole document image in the initial state
j. A state transition occurs with high probability for regions that have a
height close to the mean height.

• The emission probability matrix B(k) for kth region of the vertical strip
is modeled by a log-normal distribution of the foreground (text) pixels
density for all regions. The emission matrix is defined by the following:

B(k) =





1
xkσ0

√
2π

exp
(

− (ln xk−µ0)
2

2σ2
0

)

1
xkσ1

√
2π

exp
(

− (ln xk−µ1)
2

2σ2
1

)





where xk is the foreground pixel density for the kth region. µj and σ2
j de-

note the mean and variance of the logarithm of foreground pixels’ density
for all region in the initial state j. This formulation indicates that the two
states may be distinguished by considering two log-normal distributions.
For estimation of the parameters of the HMM, regions with reasonable
heights, over one fifth of the mean height of all CCs, are used.

• πj , j ∈ {0, 1}, the initial state probabilities are set to be equal.
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Having specified the model, a vertical zone can be seen as a succession of ini-
tial text and gaps that form observations of the model. The corresponding state
sequence that characterizes the respective regions as text or gap, results with
the application of Viterbi algorithm for maximization of the sequence probabil-
ity. As mentioned before, separators of the text lines are drawn in the middle
of each resulting gap region.

Figure 5.4 shows the initial text and gap regions and the resulting regions
after applying the Viterbi algorithm for the two images in figures 5.1 and 5.2.

5.3 Connecting separators across vertical zones

Up to this point, text line separators are found in vertical zones. But these sep-
arators are line fragments that do not always meet end-to-end across different
vertical zones. The objective of a connecting algorithm is to correct the location
of line fragments, connect separators from adjacent vertical zones and extend
them until they isolate text lines. Our connecting algorithm is slightly different
from the one introduced in the original work. The steps are as follows:

• The first step of our connecting algorithm is to perturb the location of
each separator parallel to the x-axis by either moving it up or down until
it stays clear of any connected components or text characters. This step
is overlooked in the original algorithm. The reason for this perturbation
is that although the Viterbi algorithm does a good job on clearing many
false separators, it introduces some other false separators over text charac-
ters that have a considerably larger height than the average height of CCs.

• The second step is to remove any separator that is located partially or
completely outside of any text region detected in the previous chapter.

• The third step is to connect separators across vertical zones to one an-
other. All separators that are not connected from the right side to any
separator should search for the closest separator on the vertical zone to
their right. The new founded separator should be within half the height of
averaged CCs in vertical direction from the main separator, otherwise two
separators that separate different text lines may be connected incorrectly.
Another search should be performed likewise to connect open-ended sepa-
rators to their left counterparts. If a search is unsuccessful, the separator
should be left open-ended.

• The fourth step is to extend open-ended separators from left and right
sides until they either reach to the contours of text regions, or they reach
to the borders of the page. After traversing any new zone by extending
the separator, a new search should be perform to connect the extended
separator to another potentially available separator.
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Figure 5.4: Text and gap regions after applying Viterbi algorithm and the resulting
text line separators in red.
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• The fifth step is to remove extended separators that have cut through
more than one connected component. When two text lines are located
close to each other and contain touching components, a separator might
not be available at that particular location. The lack of this separator
should be compensated by extending separators in the adjacent zones to
pass over the touching characters and separate the two text lines. How-
ever, from time to time a separator may be found that incorrectly cuts all
the way through a misaligned text line. These extended separators often
cut more than one connected components and should be removed. If left
untreated, they will cut a single text line into two separate text lines by
passing through the middle of the characters.

• The final step is to group connected components into text lines. This can
be done by generating an image map that only contains text line separa-
tors and contours of the text regions, computed in the previous chapter.
A labeling strategy is performed on this map to assign a region id to the
pixels of each isolated region. Next, connected components of the page
should be analyzed. If a component belongs to two regions it should be
assigned to the region that includes the greater part of the component,
however if the two regions have roughly equal amount of the component,
as it happens in the case of touching text lines, then that component
should be divided into smaller pieces and each region takes its own piece.

Figure 5.5 displays some steps mentioned above for two document images,
illustrating how we get from text line separators to text lines.

5.4 Results

It is important to analyze the results of text line segmentation and know where
the errors come from. Unfortunately none of the methods are comparable. For
example Papavassiliou [75] has applied his method on ICDAR07 handwritten
segmentation contest [39], but the dataset used in the competition contains
simple double-spaced handwritten documents. These documents do not contain
any side notes or multi-column text regions. So applying our method to this
dataset, yields the same results as the method developed by Papavassiliou.

However, we apply our method on two datasets; the dataset for ICDAR2009
Page Segmentation Competition and the dataset for ICDAR2011 Historical Doc-
ument Layout Competition [4]. The first dataset contains 60 document pages
which reflect commonly occurring everyday documents that are likely to be
scanned including pages from magazines and technical journals. The second
dataset contains 100 historical documents from most national and major li-
braries in Europe that are very similar to our own corpus. This dataset consists
of handwritten and printed documents of various types, such as books, news-
papers, journals and legal documents. The 100 documents for the competition
are selected as a representative of different document types with aging artifices,
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(a) Separators (b) Removing unneeded separators

(c) Extending separators (d) Final text lines

Figure 5.5: Some steps to get from separators to text lines
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(a) Separators (b) Removing unneeded separators

(c) Extending separators (d) Final text lines

Figure 5.5: Some steps to get from separators to text lines
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dense printing, irregular spacing, side notes and varying text column widths.

Apart from our results, we managed to apply Tesseract-OCR engine to both
datasets. The Tesseract-OCR engine was one of the top 3 engines in the 1995
UNLV Accuracy test. Since then it has been improved by Google and is one of
the most accurate open source OCR engines available. Currently, it is one of
the most popular engines that has been used by many software and methods
including EPITA method that holds the second place in Historical Document
Layout Competition [4]. It is worth noting that the provided command line for
Tesseract-OCR can only produce layout segmentation results in hOCR format,
an open standard which defines a data format for representation of OCR output
by embedding this data into a standard HTML format.

Evaluation of the results is carried out by Prima Layout Evaluation Tool
[25]. The parameters of the evaluation are configured to measure the pure seg-
mentation performance. Therefore, missing and partial missing text lines are
considered worst and having the highest weights of 1. The weights for merge
and split errors are set to 0.5, whereas false detected text lines, as the least
important error type, has a weight of 0.1. Appropriately, the errors are also
weighted by the size of the affected area (excluding background pixels). In this
way, a partially missed text line, having one or two missed characters, has less
influence on the overall result than missing of a whole text line. These settings
are taken from [4] for the evaluation of paragraph detection; however, they are
also reasonable for evaluation of text line detection.

Table 5.1: LINE DETECTION SUCCESS RATES FOR 61 DOCUMENTS OF
ICDAR2009 DATASET

Area weighted error % Area weighted % Count weighted %
Method Merge Split Miss Partial miss False detection Success Success

Our Method 5.73 4.69 3.13 4.63 3.89 93.57 71.99
Tesseract 7.53 0.95 3.32 1.67 2.00 95.01 80.21

Table 5.2: LINE DETECTION SUCCESS RATES FOR 100 DOCUMENTS OF
ICDAR2011 DATASET

Area weighted error % Area weighted % Count weighted %
Method Merge Split Miss Partial miss False detection Success Success

Our Method 09.35 3.37 0.21 1.65 0.85 95.53 69.52
Tesseract 29.92 7.92 0.83 0.68 3.72 85.46 51.03

Table 5.3: LINE DETECTION SUCCESS RATES FOR 100 DOCUMENTS OF
OUR CORPUS

Area weighted error % Area weighted % Count weighted %
Method Merge Split Miss Partial miss False detection Success Success

Our Method 04.80 6.96 0.42 3.23 2.28 95.04 77.43
Tesseract 14.18 2.29 0.96 2.12 6.52 92.02 66.21

The majority of errors in our method happen because of the segmentation
results of region detection from the previous stage. Errors due to merging of
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text lines can be divided into two categories. Merging of adjacent text lines from
different columns are due to errors of region segmentation. Currently the most
occurring scenario that could contribute to this error is that in some documents,
pieces of broken rule lines that are supposed to separate two columns of text, are
mistaken for ’I’,’i’ and ’l’ and remain as text components. These misclassified
components merge two columns of text in region detection. In this situation
text line separators from text line detection stage of the method extends to the
boundaries of the region and eventually text lines from different columns of text
are merged. Merging of parallel adjacent text lines that are located on top of
each other is an error that may happen due to text line detection algorithm
where two text lines are intertwined. However chances of this happening is very
slim.

Table 5.1 shows that the Tesseract-OCR engine performs a slightly better
job on clean on clean and well-formatted documents. However, tables 5.2 and
5.3 indicate that as datasets move toward historical documents with handwrit-
ten text lines, our method perform significantly better than Tesseract-OCT.
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Chapter 6

Paragraph detection

❍
aving specified all text lines, in this stage of the method, we focus
on regrouping these lines to produce paragraphs. At this point it is
expected that text lines from different columns or marginal notes are
segmented properly and they belong to separate text regions. How-

ever the text region detection method described in chapter 4 has its focus on
separating text regions that are located far from one another or belong to dif-
ferent columns. Several factors that are overlooked are the size of the text lines
and the paragraph model that includes them. For example, a text line that has
a considerably larger text components compared to its adjacent text lines is ex-
pected to be a title, header or sub-header. These text lines should be separated
from the rest of the text lines in a region. Moreover there are several paragraph
models that exist on either handwritten or printed historical documents. They
can be immediately recognized from documents based on the geometric location
of text lines and their indentations. The simplest paragraph model is the model
for articles, magazines and technical journals that the first line of the paragraph
has a larger left indentation than the rest of the text lines. More complicated
paragraph models can be found in historical documents. One such paragraph
model is that except for the first text lines, all remaining text lines of the para-
graph have a large left indentation. Another paragraph model which can be
seen mostly in poems, has text lines that are center justified. The ending of
text lines may or may not be aligned. The paragraph detection module that we
describe in this section, should have the capability to handle all these cases.

Our paragraph model should be applies to each text region independently.
An overview of different stages for paragraph detection is as follows:

• A minimum spanning tree (MST) is applied to connect all text lines in a
way that only one link exists between each pair of lines. The weights of
the MST is specified in a way that the natural reading order of the text
lines are preserved.

• The MST is converted to a binary partition tree of text lines. The leaves
of the tree represent individual text lines. The remaining nodes represent
group of text lines that are obtained by merging text lines represented by
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the two children. The root node represents the entire text lines of the text
region.

• A set of features is extracted for each node of the binary tree. The cost to
preserve a node as a paragraph is a Gaussian weighted mixture of these
features. The cost to remove a node is equal to the sum of costs of pre-
serving both child nodes.

• At each node of the tree from root to the leaves, if the cost of preserving
a node is less than the cost of removing the node, that node is marked
to be preserved and the rest of the children for that particular node are
ignored. A dynamic programming framework is utilized to estimate these
costs.

• Training is performed using a training scheme similar to Collin’s voted
perceptron. It tunes weights to ensure that the cost of preserving a para-
graph (node) of the ground truth is less than that of its children. The
cost of removing a leaf node is ∞ which ensures that no leaf node can be
removed regardless of the cost for preserving the lead node.

6.1 Minimum spanning tree (MST)

All text lines in one text region are fully connected with links between them.
To compute the MST, first we need to compute a weight for each link. Consider
that all the text lines in figure 6.1 are part of one text region. The weight for
the link between the first text line (p) and the second line (q) is defined as:

Wmst(p, q) = (1 + d(p, d))(1 + sin(∠min(p, q))).

where d(p, q) is the Euclidean distances between the convex hull of the text
line p (red marks) and that of the text line q (blue marks). ∠min(p, q) is the
minimum positive angle between the axis of p and axis of q. The second term
ensures that if accidentally a vertical line is included in the text region, it would
be the last text line to join the spanning tree.

6.2 Binary partition tree (BPT)

The goal of converting a minimum spanning tree to a binary partition tree is
illustrated in figure 6.2. The root node contains all the text lines. Then at each
node based on a criterion that we describe below, the algorithm chooses one of
the remaining links inside the MST. The link is removed and the MST ensures
that the tree breaks into two set of text lines that are not connected with any
other links. Each set of lines are assigned to a child node until we reach to the
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Figure 6.1: A fictional text region including its text lines .

Figure 6.2: Binary partition tree generated from couple of text lines.
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leaves of the tree which contain only one text line.

For each pair of lines p and q, let a = (xL1 , y
L
1 ) and b = (xR1 , y

R
1 ) be the

coordinates of the axis points of the line at the top and let e = (xL2 , y
L
2 ) and

f = (xR2 , y
R
2 ) be the coordinates of the axis points of the second line. Then

LL = d(a, e) is the Euclidean distance between the two points on the left and
RR = d(b, f) is the Euclidean distance between the two points on the right.
The criterion for selecting a link at each node of the BPT is:

Wbpt(p, q) = (1 + min{LL,RR})(1 +Wmst(p, q)).

Starting from the root node, at each level the algorithm selects the link with
maximum Wbpt and removes that link. The two resulting set of lines are passed
to the child nodes of the node in process.

6.3 Paragraph features

Now that the BPT is generated and each node of the BPT contains a potential
paragraph, a set of features should be extracted from each paragraph. Features
are as follows:

• Left indentation of the first line. All computations of the indentation are
done in regard to the bounding box of the paragraph in question.

• Right indentation of the first line.

• Indentation ratio of the first line which is the minimum value between left
and right indentations divided by the maximum value between them.

• Difference between left and right indentations of the first line.

• Left indentation of the last line.

• Right indentation of the last line.

• Indentation ratio of the last line.

• Difference between left and right indentations of the last line.

• Average value of left indentations of the text lines in the paragraph ex-
cluding the first and the last line.

• Average value of right indentations of the text lines in the paragraph
excluding the first and the last line.

• Average indentation radio which is computed based on the average left
and right indentations of the text lines in the middle of the paragraph.

• Maximum left indentation of the text lines in the middle of the paragraph.

• Minimum left indentation of the text lines in the middle of the paragraph.
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• Maximum right indentation of the text lines in the middle of the para-
graph.

• Minimum right indentation of the text lines in the middle of the paragraph.

• Average vertical distance between text lines.

• Average height of text lines.

• Standard deviation of height for text lines.

• Average width of text lines.

• Standard deviation of width fro text lines.

• Average size of connected components.

• Standard deviation of size of connected components.

• Number of connected components.

• Paragraph’s width.

6.4 State decoding

State decoding is a procedure that determine the state of each node given their
weights. Two possible states are defined for each node: ”Preserve” or ”Remove”.
If a node takes the ”Preserve” state, that node and all its children should be
grouped as one paragraph. On the other hand a ”Remove” state indicates that
the two children of that node should not be grouped as one paragraph. Leaves
of the tree are single text lines and should always be preserved. The algorithm
is described in algorithm 1. W is the weight vector that should be trained.

6.5 Training method

The training method for our paragraph model is very similar to Collin’s voted
perceptron in regard to computing the direction of gradients. The major differ-
ence is that the values of the features are not available beforehand and should
be computed online while training. For each document image in our trainset,
we start from the leaves of the tree where we already know the values of the fea-
tures. Then we move upward toward the root of the tree. The implementation
can be done using dynamic programming where we appoint to the root and the
root ask for feature values from its children. The pseudo code for computing ∆
values is provided in algorithm 2. In each iteration we initialize ∆ to zero and
call the procedure for the root node of the binary tree for first document. Then,
we continue calling procedures for all other documents in our training dataset.
After one passage for all documents, ∆ should be divided by the total number of
processed nodes in the whole trainset. Then each element of ∆ vector should be
added to the current weight vector and the next iteration the procedure starts
over with the new weights and we continue until convergence.
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Algorithm 1 State decoding

procedure DecodeStates()
Fpreserve ← feature vector from current paragraph
if this paragraph has no children then

state ← ”Preserve”
F ← Fpreserve

else
First child → DecodeStates()
F1 ← feature vector from first child
Second child → DecodeStates()
F2 ← feature vector from second child
FRemove ← F1 + F2

Cpreserve ←WTFpreserve ⊲ Cost of preserving this paragraph
Cremove ←WTFremove ⊲ Cost of removing this paragraph
if Cpreserve < Cremove then

state ← ”Preserve”
F ← Fpreserve

else
state ← ”Remove”
F ← Fremove

end if
end if

end procedure

6.6 Results

We apply our paragraph detection method on three datasets. These datasets
include 55 documents from ICDAR2009 page segmentation competition [6], 100
documents from ICDAR2011 historical document layout analysis competition
[4] and 100 documents from our own corpus. We also apply the Tesseract-OCR
[89] and EPITA [4] page segmentation methods on all datasets for the purpose
of comparison.

The evaluations are carried out by Prima Layout Evaluation Tool [25]. The
full description of the evaluation method is noted in appendix A. Tables 6.1,
6.2 and 6.3 summarize the results. In the reported percentages, area weighted
errors and success rates are more important, because they also account for the
area that a violation happens.

Results show that all methods perform roughly the same on well format-
ted magazines and journals from ICDAR2009 dataset with our method doing
slightly better.

On the other hand, on historical documents of ICDAR2011 competition
dataset, our method and the EPITA perform significantly better than Tesseract-
OCR with our method performing slightly better. According to this result, the
reported results in [4] is updated in figure 6.3 computed based on scaled esti-
mates.
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Algorithm 2 Calculating delta

procedure CalcDelta(∆) ⊲ ∆ should be initialized with zero.
//* refers to ground truth
if state* = ”Preserve” or this paragraph has no children then

Fgt ← Fpreserve

else
Fgt ← Fremove

end if
∆← ∆+ Fgt − F
if this paragraph has children then

First child → CalcDelta(∆)
Second child → CalcDelta(∆)

end if
end procedure

Table 6.1: PARAGRAPH DETECTION SUCCESS RATES FOR 61 DOCUMENTS
OF ICDAR2009 DATASET

Area weighted error % Area weighted % Count weighted %
Method Merge Split Miss Partial Miss False Detection Overall Overall

Our Method 29.45 22.92 2.84 04.31 23.94 75.55 59.82
Tesseract 14.83 35.35 1.78 03.08 11.53 73.22 56.95
EPITA 13.46 02.45 0.22 05.27 53.27 73.65 59.48

Table 6.2: PARAGRAPH DETECTION SUCCESS RATES FOR 100 DOCU-
MENTS OF ICDAR2011 DATASET

Area weighted error % Area weighted % Count weighted %
Method Merge Split Miss Partial Miss False Detection Overall Overall

Our Method 32.31 20.11 0.02 1.38 04.16 82.22 66.59
Tesseract 29.62 49.24 0.83 0.98 16.07 72.00 52.28
EPITA 30.30 17.46 1.09 6.40 16.24 81.72 61.06

For the purpose of comparison, figure 6.4 shows the results of paragraph
detection on two documents from our corpus using our method and Tesseract-
OCR. These documents are selected in a way that the ratio of overall success
for our method divide by the ratio of overall success for Tesseract-OCR is max-
imized. In other words, our method performs way better on these two images
compared to Tesseract-OCR.

Results indicate that Tesseract fails at processing indentations, side notes
detection and also it fails to make use of rule lines and other clues such as bor-
ders and frames to correctly segment the document.

On the other side, figure 6.5 shows the results of paragraph detection on two
other documents from our corpus. This time for the selection of documents, the
mentioned success ratio is minimum. For the images in sub-figures a and b, the
overall area weighted success rate for Tesseract is 98.8% but that of our method
is 79.9%. In the second sub-figures c and d, our method misses many dots that
belong to text lines and due to this problem, the success rate is lower than that
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Figure 6.3: Updated results reported in [4] based on scaled estimates. In this figure,
the results from our method (Demat) and Tesseract-OCR are added based on scaled
estimates by using results of EPITA as a reference.

Table 6.3: PARAGRAPH DETECTION SUCCESS RATES FOR 100 DOCU-
MENTS OF OUR CORPUS

Area weighted error % Area weighted % Count weighted %
Method Merge Split Miss Partial Miss False Detection Overall Overall

Our Method 23.88 27.08 0.39 3.03 12.23 86.97 72.71
Tesseract 16.11 44.95 0.51 2.38 23.86 81.79 62.55
EPITA 23.08 19.03 0.85 8.82 12.82 88.05 67.84

of the Tessseract-OCR.
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(a) Tesseract-OCR (b) Our method

(c) Tesseract-OCR (d) Our method

Figure 6.4: This figure shows the result of paragraph detection for two documents
that have obtained the best detection rate using our method and at the same time the
worst detection rate using Tesseract-OCR.

108



(a) Tesseract-OCR (b) Our method

(c) Tesseract-OCR (d) Our method

Figure 6.5: This figure shows the result of paragraph detection for two more doc-
uments that have obtained the worst detection ratio using our method than that of
Tesseract-OCR.
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Chapter 7

Conclusion and future work

■
n this thesis, we have provided a new framework for document page
segmentation that brings some improvements upon current state-of-
the-art methods.

Unlike most methods that apply page segmentation on all components of the
page, we have presented a method to identify non-textual components and clear
them from the document image before applying a page segmentation method.
Moreover, the identified non-textual components such as rulers, table structures
and advertisement frames are utilized again to separate text regions.

For text region detection, we have introduced a framework based on two-
dimensional conditional random fields that can gather various observations from
whitespace analysis, graphical components, run-lengths and separate regions of
text according to these observations. As a result, we were able to improve the
results of separating text columns when one is situated very close to the other.
This framework also prevents the contents of a cell in a table to be merged with
the contents of other adjacent cells. Furthermore, the method does not allow
text regions inside a frame to be merged with other text regions around.

After carefully examining methods for text line detection that can sustain
the variety and variation of text lines in handwritten and printed document,
we have adopted a variant of Papavassiliou’s text line detection method [75] to
segment text regions into text lines.

Finally, a novel trainable method based on binary partition tree is proposed
to determine the paragraph structures based on the appearances of text lines in
a text region.

7.1 Future direction

As with every new work, there are many problems and challenges that can be
overcome with an improvement to the methods presented in this thesis. We
propose several ideas which would clearly be of benefit to this work. We are
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currently working on some of these ideas to improve our results and we decided
to set aside some others due to limitation in time.

For text and graphics separation, it would be a benefit to use three labels
of ”text”,”graphics” and ”text containers” instead of just two labels of ”text”
and ”non-text” components. Text containers refer to tables and frames that
contain text. Currently we are doing that by using a threshold on the number
of children and the solidity feature of non-textual components. Learning this
using a training dataset will make it more robust to errors but it requires a
modification to the ground truth data that we use.

For text region detection there is more room for improvement. Currently we
are computing several observations with Gabor features with different size of the
window and we send these observations to our feature functions. However, to
make it more robust and multi-scale what we should do is to change the window
size of the Gabor filter locally according to the local height of text connected
components. To do this, we have to compute a complete set of Gabor filters
and to convolve them with the original image to generate many filtering results.
Then for each site, based on the average local height of text components, we
have to pick the value from the filleting result that correspond to that local
height. Clearly, this approach is unfeasible due to its computation burden. It
would be desirable if one could benefit from a formulation and implementation
of non-stationary Gabor filters in which the size of the kernel changes locally
according to the local height of text components.

Feature functions in our CRF model depend on several observation maps
from the image. However, the number of features are not enough to separate
sites with great confidence. Also the dependency of these observation are not
exploited in our framework. As a result the contribution edge potentials in our
CRF model is very limited due to small number of feature functions. One can
benefit from more effective features such as Ferns [74, 73] to define feature func-
tions in CRF model.

As for inference in conditional random fields, we are using ICM [9] due to
its simplicity and fast training time which is less than 4 to 6 hours. However, it
is known that ICM fails to capture long-range interaction between sites’ labels.
We evaluated loopy belief propagation [64] in this work and it could not con-
verge to a good solution after considerable amount of time. One may benefit
from other inference methods to improve results for the CRF mdoel.

Finally, in the method for text line detection, the global median of height of
text connected components are used inside the transition and emission probabil-
ities of HMM. One can reformulate these probabilities to use the local average
height of text components instead of the global statistics.
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Appendix A

Performance evaluation
methods

Many segmentation algorithms have been proposed in the literature. However
without a common performance evaluation method, it is hard to compare the
performance of these methods. Care should be taken in using a performance
metric to predict how well a segmentation method will perform on a particular
task.

Three popular performance evaluation methods are:

1. Precision and recall

2. Match counting

3. Scenario driven region correspondence

A.1 Precision and recall

Precision and recall are two measures that evaluate the results of a classifica-
tion task. The precision for a class is the number of true positive1 divided by
the total number of objects that are labeled as belonging to the positive class.
Recall is defined as the number of true positives divided by the total number of
objects that actually belong to the positive class. In simple terms, high recall
means that a the classifier returned most of the relevant results. High precision
means that a classifier returned more relevant results than irrelevant.

In the context of text and graphics separation, a positive class is text and a
negative class is graphics. We define four counts:

• tp (true positive) is the number of correctly classified objects as text.

• fp (false positive) is the number of unexpected text objects.

• tn (true negative) is the number of correctly objects as graphics.

1the number of objects that are labeled correctly as belonging to the positive class
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• fn (false negative) is the number of unexpected graphical objects.

Then:

Text precision =
tp

tp+ fp

Text recall =
tp

tp+ fn

Graphics precision =
tn

tn+ fn

Graphics recall =
tn

tn+ fp

We use these measures for performance evaluation of our text/graphics sepa-
rator. It is visually desirable to use a performance metric that takes into account
the area of the objects. Because of this instead of using the number of connected
components, we use the number of pixels that belong to those connected com-
ponents. In this way, a missing component with one pixel does not affect the
classifier performance as much as a large component.

A.2 Match counting

First published in 1999, Phillips et al [77] present a methodology for evaluating
graphics recognition systems that operates on images containing lines, circles,
arcs and text blocks. Their method gained widespread acceptance in many
scientific communities including document imaging. [4, 75, 70, 5, 6] are only
some of the papers that have reported their results based on this performance
evaluation method. In order to compare our results with other results reported
in the literature, we also use the same evaluation method. For interested reader
the best resource to understand this method in detail is still the original paper
[77], but we also briefly describe the method here.

In this method, the accuracy of a segmentation algorithm is measured by
counting the number of matches between entities detected by the algorithm and
the entities in the ground-truth, the number of misses and under/over segmen-
tation. These entities can be characters, text lines, or text regions. We briefly
explain the steps for text lines but it can be applied to any other entities as
well. The steps to compute

1. Text lines within the recognition result are indexed.

2. Text lines within the ground-truth are indexed.

3. A MatchScore is computed between each detected line and each line in
the ground-truth. Match scores range from 0 to 1, 1 being a perfect
match. D being a text line within the set of detected lines and G being
a text line from ground-truth, D ∩ G is the intersection of D and G. If
D ∩ G is empty, then the match score is zero. Otherwise, the evaluator
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computes the area of D,G and D∩G. And theMatchScore(d, g) is set to:

area(D ∩G)
max(area(D), area(G))

4. The computed scores are stored in a match-score matrix.

5. The performance evaluator computes a match-count table by computing a
two-dimensional table from the computed match-score matrix. The entry
MatchCount(d, g) is set to 1 if the MatchScore(d, g) is greater or equal
acceptance threshold. Then two projection profiles, D-profile and G-profile
are computed from the match-count table. The entry D(d) is computed as
the sum of the matches in the dth row of the match-count table. Likewise,
G(g) is computed as the sum of the matches in the gth row. In the original
paper [77] the acceptance threshold for general purpose is set to 0.85 and
also it’s the same for [70] followed by the original paper. However in [75]
the threshold is set to 0.95 for text lines.

6. The evaluator computes the following counts:

• one2one: The number of the one-to-one matches. One to one
matches happen when D(i),MatchCount(i, j) and G(j) are all equal
to one. If the segmentation algorithm produces a perfect result, all
elements in the D-profile and the G-profile will be one.

• If g one2many is the number of lines in ground-truth that have
more than one detected line matches.

• d one2many is the number of detected lines that have more than
one line matches in ground-truths.

• g many2one is the count that many lines in ground-truth have only
one detected match line.

• d many2one is the count that many detected lines have only one
match in ground-truth.

7. Then, the evaluator defines three metrics. The Detection Rate, Recog-
nition Accuracy and F-Measure which can be considered as weighted
harmonic mean of detection rate and recognition accuracy [60]. They are
defined as follows:

DetectionRate(DR) =

W1 ∗
one2one

N
+W2 ∗

g one2many

N
+W3 ∗

g many2one

N

RecognitionAccuracy(RA) =

W4 ∗
one2one

M
+W5 ∗

d one2many

M
+W6 ∗

d many2one

M
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F −Measure =
2 ∗RA ∗DR
RA+DR

whereN is the number of lines in ground-truth andM is the number of rec-
ognized lines. w1,w2,w3,w4,w5,w6 are predetermined weights that are set
to 1, 0.25, 0.25, 1, 0.25, 0.25 respectively in [75] and to 1, 0.75, 0.75, 1, 0.75, 0.75
in [5]. The former is more generous towards errors in results.

A.3 Scenario driven region correspondence

Scenario driven region correspondence [25] is another performance evaluation
method implemented in Prima Layout Evaluation Tool. It is used as part of the
performance evaluation methods in [4] and [6]. The essence of this method from
a segmentation point of view is very similar to match counting. The method still
computes merge, split, miss/partial miss and false detection errors. However it
also takes into account the reading order of the document and assign different
weights to errors in each entity depending on the situation in which an error
occurs. For example, a merge between two text regions that belong to different
text columns is more significant than a merge between two regions that follow
each other in a single text column. The weights are set due to the scenario
that a evaluation is carried out. All performance evaluations for paragraph de-
tection are done using Prima Evaluation Tool under pure segmentation scenario.

115



Appendix B

Implementation and
software

During the course of this PhD thesis, many applications and command line tools
are developed. Some are developed for the purpose of document, data or fea-
ture visualization and some are developed to perform computation for different
parts of the system. Finally, all the pieces have come together as a single unified
program that can be applied on any document image using one command line
tool.

The command line tool is written in C++ using both QT, OpenCV and
libLBGFS libraries. The cross-platform software with 6800 lines of code is de-
veloped on a Windows machine using Microsoft Visual Studio and is ported into
Linux for testing and evaluation.

The general syntax of the command line tool is:

• DematSeg [Options] FolderPath

where folder path is the location of .TIFF document images. Without any
option, the application opens each document image in the folder path in a
multi-threaded framework and applies page segmentation on every document
image. Options can be used to generate features or to train different parts of
the system. Options are:

• ”-gn”: This option redirects the application to process all document im-
ages in the folder path for the purpose of extracting connected components
and generating features for them. All features will come together in a sin-
gle file that should later be used for training. The application expects to
find the corresponding XML ground truth file for each document image in
the same folder. XML ground-truths should have a name consisting of the
base name of the document plus one of the suffixes: ” GT”, ” PrimaGT”
or ”pc-” as prefix (ICDAR2009 default naming). If a ground truth file is
not available, the application simply ignores that document and continues
processing the remaining documents in the folder.
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• ”-tn”: This option uses the dataset that is generated with option ”-gn” to
train LogitBoost classifier for text/graphics separation.

• ”-gr”: This option redirects the application to process all document im-
ages in the folder path for the purpose of generating observations and
features for two-dimensional random fields model. Same as option ”-gn”,
the application expects to find the XML ground-truth file for each docu-
ment image. All features are appended to the database for further training
purposes.

• ”-tr”: This option uses the dataset that is generated with option ”-gr”
to train the two-dimensional random fields model using either Collin’s
voted perceptron or L-BFGS training algorithm. Selection of the training
method as well as many other details of the training can be changed inside
an .ini file that exists on the same folder as the executable command line.

• ”-tp”: This option redirects the application to process all document images
in the folder path for the purpose of training the paragraph detection
module. Unlike other training options, features should be computed online
and no feature is saved on the storage.

The .ini file along side the executable file can be manipulated to change the
behavior of the application. It is worth nothing that binarization methods, dif-
ferent parameters for Sauvola binarization, details of morphological operations,
parallelization method, training parameters can be set or changed inside this file.
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