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Abstract/Résumé

Abstract

This thesis is concerned with the merging of two active research domains: Knowl-
edge Discovery in Databases (KDD), more precisely the Association Rule Mining
technique, and Knowledge Engineering (KE) with a main interest in knowledge rep-
resentation languages developed around the Semantic Web.

In Data Mining, the usefulness of association rule technique is strongly limited by
the huge amount and the low quality of delivered rules. Experiments show that rules
become almost impossible to use when their number exceeds 100. At the same time,
nuggets are often represented by those rare (low support) unexpected association
rules which are surprising to the user. Unfortunately, the lower the support is, the
larger the volume of rules becomes. Thus, it is crucial to help the decision maker
with an efficient technique to reduce the number of rules.

To overcome this drawback, several methods have been proposed in the literature
such as itemset concise representations, redundancy reduction, filtering, ranking and
post-processing. Even though rule interestingness strongly depends on user knowledge
and goals, most of the existing methods are generally based on data structure. For
instance, if the user looks for unexpected rules, all the already known rules should be
pruned. Or, if the user wants to focus on specific family of rules, only this subset of
rules should be selected.

In this context, we address two main issues: the integration of user knowledge
in the discovery process and the interactivity with the user. The first issue requires
defining an adapted formalism to express user knowledge with accuracy and flexibility
such as ontologies in the Semantic Web. Second, the interactivity with the user
allows a more iterative mining process where the user can successively test different
hypotheses or preferences and focus on interesting rules.

The main contributions of this work can be summarized as follows:

(i) A model to represent user knowledge. First, we propose a new rule-like formal-
ism, called Rule Schema, which allows the user to define his/her expectations
regarding the rules through ontology concepts. Second, ontologies allow the user
to express his/her domain knowledge by means of a high semantic model. Last,
the user can choose among a set of Operators for interactive processing the one
to be applied over each Rule Schema (i.e. pruning, conforming, unexpectedness,
. . . ).
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(ii) A new post-processing approach, called ARIPSO (Association Rule Interactive
Post-processing using rule Schemas and Ontologies), which helps the user to
reduce the volume of the discovered rules and to improve their quality. It
consists in an interactive process integrating user knowledge and expectations
by means of the proposed model. At each step of ARIPSO, the interactive
loop allows the user to change the provided information and to reiterate the
post-processing phase which produces new results.

(iii) The implementation in post-processing of the proposed approach. The devel-
oped tool is complete and operational, and it implements all the functionalities
described in the approach. Also, it makes the connection between different el-
ements like the set of rules and rule schemas stored in PMML/XML files, and
the ontologies stored in OWL files and inferred by the Pellet reasoner.

(iv) An adapted implementation without post-processing, called ARLIUS (Asso-
ciation Rule Local mining Interactive Using rule Schemas), consisting in an
interactive local mining process guided by the user. It allows the user to focus
on interesting rules without the necessity to extract all of them, and without
minimum support limit. In this way, the user may explore the rule space incre-
mentally, a small amount at each step, starting from his/her own expectations
and discovering their related rules.

(v) The experimental study analyzing the approach efficiency and the discovered
rule quality. For this purpose, we used a real-life and large questionnaire
database concerning customer satisfaction. For ARIPSO, the experimenta-
tion was carried out in complete cooperation with the domain expert. For
different scenarios, from an input set of nearly 400 thousand association rules,
ARIPSO filtered between 3 and 200 rules validated by the expert. Clearly,
ARIPSO allows the user to significantly and efficiently reduce the input rule
set. For ARLIUS, we experimented different scenarios over the same question-
naire database and we obtained reduced sets of rules (less than 100) with very
low support.

Keywords: Data Mining, Association Rules, Ontologies, Semantic Web
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Résumé

Cette thèse s’inscrit à la confluence de deux domaines actifs de recherche: l’Extraction
de Connaissances à partir des Données (ECD), plus précisément la technique de fouille
de Règles d’Association, et l’Ingénierie des Connaissances (KE), en s’intéressant par-
ticulièrement aux principaux langages de représentation de connaissances développés
autour du Web Sémantique.

Dans le domaine de l’extraction de connaissances, l’utilité de la technique de fouille
de règles d’association est fortement limitée par la quantité énorme et par la faible
qualité des règles découvertes. Les différents tests montrent que les règles deviennent
presque impossibles à utiliser dès que leur nombre dépasse 100. De plus, les pépites
(nuggets) sont souvent représentées par ces règles d’association rares (support faible)
et inattendues, surprenantes pour l’utilisateur. Malheureusement, plus le support
est faible, plus le volume des règles sera important. Ainsi, il est essentiel d’aider le
décideur avec une technique efficace de réduction du nombre de règles.

Pour réduire cet inconvénient, plusieurs méthodes ont été proposées dans la
littérature comme les représentations concises de motifs, la réduction des redondances,
le filtrage, le ranking et le post-traitement. Même si l’intérêt des règles dépend forte-
ment des connaissances et objectifs de l’utilisateur, la plupart des méthodes existantes
sont généralement basées sur la structure des données. Par exemple, si l’utilisateur
cherche des règles inattendues, toutes les règles déjà connues doivent être élaguées.
Ou, si l’utilisateur veut se concentrer sur une famille spécifique de règles, seul ce
sous-ensemble de règles devra être sélectionné.

Dans ce contexte, nous abordons deux thèmes principaux: l’intégration des con-
naissances de l’utilisateur dans le processus de découverte et l’interactivité avec
l’utilisateur. Le première problème exige la définition d’un formalisme adapté afin
d’exprimer les connaissances de l’utilisateur avec précision et flexibilité comme les
ontologies dans le Web Sémantique. Deuxièmement, l’interactivité avec l’utilisateur
permet la mise en oeuvre d’un processus d’exploration plus itératif où l’utilisateur
peut tester successivement des hypothèses et des préférences différentes, lui permet-
tant ainsi de se concentrer sur les règles intéressantes.

Les principales contributions de ce travail peuvent être résumées comme suit:

(i) Un modèle pour représenter les connaissances de l’utilisateur. Premièrement,
nous proposons un nouveau formalisme de règles, appelé Schéma de Règles, qui
permet à l’utilisateur de définir, à travers des concepts ontologiques, ses attentes
concernant les règles. Deuxièmement, les ontologies permettent à l’utilisateur
d’exprimer, à l’aide d’un modèle sémantique de haut niveau, ses connaissances
de domaine. Enfin, l’utilisateur peut choisir parmi un ensemble d’Opérateurs
de traitement interactif celui à appliquer sur chaque schéma de règles (élagage,
conforme, inattendu, ...).

(ii) Une nouvelle approche de post-traitement, nommée ARIPSO (Association Rule
Interactive Post-processing using rule Schemas and Ontologies), qui permet
à l’utilisateur de réduire le volume de règles découvertes et d’améliorer leur
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qualité. Il consiste en un processus interactif intégrant les connaissances et
les attentes de l’utilisateur à l’aide du modèle proposé. La boucle interactive
permet à l’utilisateur, à chaque étape du ARIPSO, de modifier les informations
fournies et de réitérer la phase de post-traitement qui produit des nouveaux
résultats.

(iii) L’implémentation en post-traitement de l’approche proposée. L’outil développé
est complet et opérationnel, et il met en oeuvre toutes les fonctionnalités décrites
dans l’approche. En outre, il fait le lien entre les différents éléments comme
l’ensemble de règles et de schémas de règles stocké dans des fichiers PMML/XML,
et les ontologies stockées dans des fichiers OWL et inférées à l’aide du raisonneur
Pellet.

(iv) Une implémentation adaptée, sans post-traitement, nommée ARLIUS (Asso-
ciation Rule Local Interactive mining Using rule Schemas), consistant en un
processus d’exploration locale et interactive guidée par l’utilisateur. Elle per-
met à l’utilisateur de se concentrer sur les règles intéressantes sans qu’il soit
nécessaire d’extraire toutes les règles et sans une limite pour le support mini-
mum. De cette faon, l’utilisateur peut explorer l’espace de règles progressive-
ment, une petite quantité à chaque étape, à partir de ses propres attentes et
des règles découvertes liées à ces dernières.

(v) L’étude expérimentale analysant l’efficacité de l’approche et la qualité des règles
découvertes. À cette fin, nous avons utilisé une grande base de questionnaires
réelle concernant la satisfaction des clients. Pour ARIPSO, l’étude a été réalisée
en coopération complète avec l’expert de domaine. A partir d’un set de près de
400 milliers de règles d’association, ARIPSO a filtré, selon différents scénarios,
entre 3 et 200 règles validées par l’expert. En toute évidence, ARIPSO permet à
l’utilisateur de réduire de manière significative et efficace le set de règles. Pour
ARLIUS, nous avons expérimenté différents scénarios sur la base de données
et nous avons obtenu des ensembles réduits de règles (moins de 100) avec un
support très faible.

Mots-clefs: Extraction de Connaissances à partir de Données, Règles d’Association,
Mesures d’Intérêt, Ingénierie de Connaissances, Ontologies, Web Sémantique
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educational. First, it was
educational because most of the
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2 Introduction

1.1 Research Context

Knowledge Discovery in Databases: Association Rule Mining Technique

Since the 1960s, with the apparition of computer science and databases, informa-
tion volumes stored in databases have been growing exponentially. Nowadays, we are
living in a world mainly defined by connections between people, devices and machines
managed generally through the Internet. In this context, important amounts of data
are generated in different domains such as supermarket transaction data, credit card
usage records, telephone call details, government statistics and medical records [99].

Three decades ago, this specific context motivated and encouraged the develop-
ment of a new research field, called Knowledge Discovery in Databases (KDD), which
was defined by Frawley et al. 1992 [64, 70] as the non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable patterns in data. The
main objective is to provide new information, starting from a set of information/data,
which will prove useful for the user in taking decisions/actions. The KDD process
is composed of different steps which can be summarized in three main phases: first,
the pre-processing phase cleans and prepares the database; second, the data mining
phase consists in applying mining techniques over the database in order to discover
new patterns; last, the post-mining phase deals with evaluation and visualization
techniques which help the user to validate the discovered patterns.

Association rule mining [5] is one of the most important techniques of data min-
ing. It aims to discover regularities in databases under the form of implications
if X then Y , denoted as X → Y , where X and Y are named the antecedent and
the consequent, respectively, and they are defined by conjunctions of database items.
This implication can be read as follows: if the items in X exist in a transaction, then,
it is probable that the items in Y also exist in the same transaction; in addition, an
association rule is defined by two metrics – support and confidence.

The association rule mining technique was first applied in the case of Wal-Mart1

supermarket basket problem in order to study purchase trends of supermarket cus-
tomers. One of the main discoveries was that if a male customer buys diapers on a
Friday afternoon, then he will be interested in buying beers. As a result, by moving
beers next to diapers, Wal-Mart noticed an important increase in beer sales. This
discovery clearly explains the interest of association rule mining technique – the dis-
covery of new surprising and useful knowledge.

But, why is this technique so popular in the data mining research field? At
least two reasons can be stated. First, the model of the extracted patterns is very
simple and comprehensible for a data mining non-specialist user. The reason is that
implications are the core of human thinking. Second, the technique extracts the
complete set of association rules without the need of an important user implication
during the process.

Nevertheless, the usefulness of association rule technique is strongly limited by the
huge amount and the low quality of delivered rules; thousands of rules are extracted
by classical techniques from a database of several dozens of attributes and several

1http://www.walmart.com/
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hundreds of transactions. To reduce the rule volume, one possibility is to increase the
support threshold. But, as suggested by Silbershatz and Tuzilin 1996 [184], nuggets
are often represented by those rare - low support - and unexpected association rules
which are surprising to the user. So, the more we increase the support threshold, the
more efficient the algorithms are and the more the discovered rules are obvious and,
hence, the less they are interesting for the user.

As a result, it is necessary to bring the support threshold low enough in order to
extract valuable information. Unfortunately, the lower the support is, the larger the
volume of rules becomes, making it intractable for a decision maker to analyze the
mining result. Experiments show that rules become almost impossible to use when
their number exceeds 100. Thus, it is crucial to help the decision maker with an
efficient technique for reducing the number of rules.

To overcome this drawback, several methods have been proposed in the literature
such as itemset concise representations, redundancy reduction, filtering, ranking and
post-processing. However, most of the existing methods are generally based on sta-
tistical information in the database. Since rule interestingness strongly depends on
the user knowledge and goals, these methods do not guarantee that interesting rules
will be extracted. For instance, if the user looks for unexpected rules, all the already
known rules should be pruned. Or, if the user wants to focus on a specific family of
rules, only this subset of rules should be selected.

In this context, several approaches propose to integrate the user knowledge in
association rule mining process in order to reduce the rule number [122, 136, 154, 183].
The main limitations of these techniques can be summarized as:

• first, the models for user knowledge representation are limited and they do not
permit to define user knowledge with accuracy and flexibility. The more the
knowledge is represented in a flexible, expressive and accurate formalism, the
more efficient the rule selection is;

• second, these approaches do not address the problem of interactivity with the
user in depth. Interactivity would allow a more iterative mining process where
the user can successively test different hypotheses or preferences, and focus on
interesting rules, as stated by Blanchard et al. 2003 [28].

Knowledge Representation: Ontologies and Semantic Web

Knowledge Engineering (KE) research field attempts at describing a set of tech-
niques and concepts which aim to acquire, represent and exploit domain knowledge
in order to be integrated in Knowledge-Based Systems (KBS). KBSs are described
as systems based on knowledge and reasoning mechanisms, proposing solutions to
real-world problems. In this context, Knowledge Representation (KR) is the area of
Artificial Intelligence (AI) field which aims to propose adapted formalisms for domain
knowledge representation with important facilities for knowledge reusing, sharing and
inference [34].

In the past fifteen years, we saw an increase in the development of ontologies such
as knowledge representation formalism. In computer science, they are used in order
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to gather the information (knowledge) concerning a given domain. A first notable
definition was proposed by Gruber 1993 [89, 90] who defines an ontology as a formal,
explicit specification of a shared conceptualization. This definition gathers the most
important characteristics of an ontology: (1) it represents the concepts of a domain;
(2) it should be described in a well-defined language so that machines should be
able to interpret it; (3) it should explicitly define its elements; (4) it collects some
knowledge which is common to a community.

In the meantime, information over the Web grew more and more making the Web
search nearly impossible. The Semantic Web was introduced by Tim Berners-Lee
2001 [25] and it proposes to extend the traditional Web with well-structured anno-
tations in order to develop a content that can be understood at the same time by
humans and by machines. In the past decade, W3C aimed to propose formalisms
for meta-data representation over the Web. The simpler language, XML [212], was
introduced for data publishing and transmission via networks. Further, RDF [123]
is the first semantic-oriented language that describes resources over the Web. Nev-
ertheless, it has important limits such as the lack of axioms and of reasoning. In
this context, OWL was introduced as the most complex representation language for
ontologies taking as basis the RDF language and the class- and property-structuring
capabilities of RDFS, but improving this formalism from different points of view.

The main advantage of OWL language is that it is based on Description Logics.
Thus, it brings important improvements to RDF like: describing classes as logical
combinations (intersection, unions, etc), describing restrictions on how properties be-
have locally on a specific class – it allows to define classes where particular properties
are restricted –, and allowing a reasoning process. The inference process has multiple
interests: first, it permits to test whether an ontology is consistent or not (i.e. two
concepts are equivalent), second, it reconstructs the taxonomy of the concepts follow-
ing the subsumption relation, and last, it checks whether an individual is a member
of a concept.

1.2 Contributions

In order to fulfill the drawbacks in the association rule mining, this work addresses
two issues: the integration of user knowledge in the discovery process and the in-
teractivity with the user. The first issue requires defining an adapted formalism to
express user knowledge with accuracy and flexibility. In this context, this work tries
to benefit from the research carried out in the Semantic Web field, and more precisely
from the representation languages developed in order to be used as user knowledge
representation in the discovery process. Second, the interactivity with the user al-
lows a more iterative mining process where the user can successively test different
hypotheses or preferences and focus on interesting rules.

The contributions of this thesis can be summarized as follows:

1. A model to represent user knowledge

We define a model to represent user knowledge in the discovery process. It is
composed of three formalisms of knowledge:
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(a) Ontologies permit the user to express his/her domain knowledge by means
of a high semantic model;

(b) Rule Schema is a new rule-like formalism that we propose which al-
lows the user to define his/her expectations regarding the discovered rules
through ontology concepts;

(c) A set of Operators for interactive processing can be applied over Rule
Schemas. They help the user to take several actions like pruning and
selection of conform or unexpected rules from the set. The user can choose
an Operator to be applied over each Rule Schema. For instance, if the user
chooses the Pruning Operator to be applied over a Rule Schema, all the
rules conforming to the Rule Schema are eliminated.

2. A new post-processing approach

We propose a new approach, called ARIPSO (Association Rule Interactive Post-
processing using rule Schemas and Ontologies), which helps the user to reduce
the volume of the discovered rules and to improve their quality. It consists in an
interactive process integrating user knowledge and expectations by means of the
proposed model, and different interestingness measures that assess the quality
of the discovered rules. At each step of ARIPSO, the interactive loop allows
the user to change the provided information and to reiterate the post-processing
phase which produces new results.

3. Implementation of ARIPSO tool

We implemented the proposed approach in post-processing; for this purpose,
we developed a tool which is complete and operational, and which implements
all the functionalities described in the approach. More particularly, it proposes
a visualization interface which helps the user in editing the knowledge and vali-
dating the discovered rules. From a technical point of view, the implementation
makes the connection between different elements like the set of rules and rule
schemas stored in PMML/XML files, and the ontologies stored in OWL files
and inferred by the Pellet reasoner.

4. An adapted implementation without post-processing

Called ARLIUS (Association Rule Local Interactive mining Using rule Schemas),
the new implementation consists in an interactive local mining process guided
by the user. It allows the user to focus on interesting rules without the necessity
to extract all of them and without minimum support limit. In this way, the user
may explore the rule space incrementally, a small amount at each step, starting
from his/her own expectations and discovering their related rules.

5. Experimental studies

The experimental study analyzes the approach efficiency and the discovered rule
quality. For this purpose, we used a real-life and large database questionnaire
concerning customer satisfaction. For ARIPSO, the experimentation was car-
ried out in complete cooperation with the domain expert. From an input set of
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nearly 400 thousand association rules, for different scenarios ARIPSO filtered
between 3 and 200 rules validated by the expert. Clearly, ARIPSO allows the
user to significantly and efficiently reduce the input rule set. For ARLIUS, we
experimented different scenarios over the same questionnaire database and we
obtained reduced sets of rules (less than 100) with very low support.

1.3 Thesis Organization

This thesis is organized as follows:

Chapter 2 is concerned with the Knowledge Discovery in Databases process, and
more precisely the Association Rule Mining technique. It provides formal definitions
and considers the improvements done in the frequent itemset generation and rule
discovery phases in more detail.

Chapter 3 introduces the Knowledge Engineering and the Knowledge Represen-
tation domains, and gives a brief overview of the ontology notion. More specifically,
it details the interest of the Semantic Web field, and it presents the languages pro-
posed by W3C for knowledge representation.

Chapter 4 describes interestingness measures over association rules, with a par-
ticular interest in subjective measures. It provides detailed presentations of most
important approaches proposed in the literature.

Chapter 5 is dedicated to the post-processing ARIPSO approach; in detail, it de-
scribes the model for knowledge representation along with the interactivity with the
user. Further, it presents an adaptation of ARIPSO in local mining (without post-
processing), called ARLIUS.

Chapter 6 provides the architecture of the ARIPSO tool that represents the im-
plementation of the method. Also, it details the technical choices that were made.

Chapter 7 proposes experimental studies with ARIPSO and ARLIUS in order to
analyze the approach efficiency and the discovered rule quality. For this purpose, we
used a real-life questionnaire database, and the experimentation was carried out in
complete cooperation with the domain expert.

Chapter 8 draws our conclusions and perspectives. One of the most important
perspectives is to develop an Oracle-based implementation of ARIPSO.
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8 Data Mining and Association Rules

2.1 Introduction

Knowledge Discovery in Databases deals with the process of extracting interesting
patterns starting from data. It consists of different steps starting with Data Cleaning
and Data Pre-Processing till Data Mining and Post-Mining of Patterns. In Data
Mining, different mining techniques can be applied among which association rule
mining is one of the most popular.

Association rule mining proposes the discovery of knowledge in the form of impli-
cation IF Antecedent THEN Consequent that we note Antecedent→ Consequent. In
an association rule, the antecedent and the consequent are conjunctions of attributes
in a database. More particularly, an association rule Antecedent→ Consequent ex-
presses the implicative tendency (validated by statistical metrics) between the two
conjunctions of attributes – from the antecedent toward the consequent.

The main advantage of association rules mining technique is that it extracts com-
prehensible knowledge which can be manipulated by unscientific users. Moreover,
it premits the extraction of complete sets of association rules for a given scenario.
Unfortunately, this important advantage represents also its main limit. On the one
hand, classical algorithms require important resources and time to produce the fi-
nal result. On the other hand, even when the rules can be generated, their number
increases once with the number of attributes (and/or transactions) in the database,
and it often overpasses hundreds of millions. In this context, it is impossible for a
user to manipulate the set of discovered rules.

In order to fulfill these drawbacks, several techniques were proposed in the liter-
ature. First, for the rapidity problem, different algorithms were developed with the
aim to reduce the execution time and the resources that are used. Second, to increase
the efficiency of the rule generation process – to reduce the number of discovered rules
– different methods were proposed with the aim to filter the rules. In this chapter
we will study two of them – constraint-based association rule mining and redundancy
rule reduction techniques –, and in Chapter 4 we will discuss interestingness measures.

The discovery of association rules using constraint-based techniques represents a
first method for the reduction of the number of rules. Constraints are here provided by
the user in different formalisms – user knowledge, data, dimensional, interestingness
or rule-based. They permit to determine the content of extracted rules and to reduce
the rule volume. The main characteristic of constraint-based association rule mining
techniques is that the constraints are generally integrated in the mining algorithm
permitting an execution time reduction also.

A second technique to reduce the rule volume consists of pruning the redundant
rules from the entire set of discovered rules. A redundant rule is informally defined
as a rule which does not bring important information to the complete set of rules,
and thus, pruning it does not decrease the quality of the rules set. Further, we can
consider that a rules is redundant regarding one or several rules.

This chapter starts with a brief presentation of Knowledge Discovery in Databases
Process and, afterwords it goes deeply in the association rule mining technique –
definitions and notations are presented. The second part of this chapter is dedicated
to the improvements made in generating frequent itemsets and/or association rules.
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Further, constraint-based association rule mining techniques and the reduction of rule
redundancy are studied.

2.2 Knowledge Discovery in Databases Process

Knowledge Discovery in Databases process (KDD) was defined by Frawley et al. 1992
[70], and revised by Fayyad et al. 1996 [64], as the non-trivial process of identifying
valid, novel, potentially useful, and ultimately understandable patterns in data.

This definition regroups the main elements of the process. First, a data is defined
as a set of facts, F , describing the application domain. Next, a pattern is formalized
as an expression E over a language L defining facts (relationships) among a subset
FE ⊆ F , such as E is simpler than the enumeration of all facts in FE .

The KDD process is a multi-step task with the aim to extract patterns from data.
It is characterized as being a non-trivial process because it can decide which actions
to perform and whether the results are interesting enough. This defines the degree of
pre-processing and evaluation autonomy.

Four notions characterize the extracted patterns: validity, novelty, usefulness and
comprehension by users. First, the extracted patterns should be valid on new data
with some degree of certainty described by a set of metrics. Second, the novelty of
patterns can be measured with respect to previous or expected values, or knowledge.
Next, the patterns should be useful to the user, i.e. they can help the user to take
benefic actions. The utility can be measured using dedicated metrics. Last, the
extracted patterns should be comprehensible to humans in order to be able to use
them to take actions.

The notion of interestingness is employed in order to describe the interest of a
pattern. This notion is defined as a general measure over the 4 features described
above: the validity, the novelty, the utility and the comprehensibility. Thus, a pattern
which is interesting, i.e. it has the interestingness measures greater than a certain
threshold, is called knowledge.

The four characteristics reveal a direct user implication in the discovery process.
The interactivity in the KDD process outlines the importance of the user decisions
along the KDD process. Figure 2.1 presents the main steps of the KDD process:
Data Cleaning and Data Integration, Data Pre-Processing, Data Mining, and Post-
Processing.

KDD is a multi-disciplinary field, being integrated in areas such as artificial intelli-
gence, machine learning, neural networks, data base technology, information retrieval
and data visualization. Furthermore, the KDD process is applied overs different re-
search domains. In 1990s, there were only a few examples of discovery in real data.
Nowadays, more and more domains benefit from the utilization of KDD techniques,
such as medicine, finance, agriculture, social, marketing, military, and many others.

2.2.1 Data Cleaning and Data Integration

This step consists of two pre-mining tasks: Data Cleaning used in order to remove
noise and inconsistent data, and Data Integration focused on bringing data from
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Figure 2.1: An overview over the steps of the KDD process [64].

multiple sources and represented in different formats.
In most of cases, real-life data contains noise and missing values, so they are con-

sidered inconsistent. Applying the knowledge discovery process over this data may
extract unreliable knowledge. The Data Cleaning step consists in correcting incon-
sistencies in data appeared during the insertion phase. If it is possible, some types
of inconsistencies are corrected manually by the user, but in lot of cases, automatic
systems are needed in order to check the range of the attribute values.

For example, if values are missing for some attributes, this step tries to compute
them by using some heuristics or to insert them manually, always keeping the same
statistical information over data.

Another example is the case when some values are inserted into the data by error.
In this case, a set of methods can be applied in order to determine which values are
not in the range (i.e. clustering).

Data Integration step assesses the process of combining data from different sources
(databases, external sources, etc). The problem consists in the incoherency of the
resulting database. A valuable example for this step is the redundancy: if an attribute
A can be determined from another attribute B, we can say that A is redundant
comparing to B. Another type of redundancy is the existence of two attributes with
different names and from different sources, but which have the same meaning. The
Data Integration step proposes solutions for this type of problems.

In conclusion, the goal of this two pre-mining tasks is to generate datawarehouses
and/or datamarts containing modified data making easier the futures analysis pro-
cesses.

2.2.2 Data Pre-Processing

Data Pre-Processing step deals with two important problems. The first one is the
verification if the datawarehouse was well developed during the data cleaning and data
integration phase; if needed, data are re-cleaned. The second goal of this step is to
transform (or to reduce) the data in order to be able to apply a knowledge discovery
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technique. Once the datawarehouse is well-developed, this step make possible the
improvement the results proposed by the data mining phase.

2.2.3 Data Mining

Data Mining step is essential in the KDD process. Using intelligent methods applied
over data, it extracts interesting patterns. Several techniques were developed in the
literature in order to extract interesting patterns:

• Predictive modeling - supervised classification or regression. The classification
builds a model in order to predict the class of an object whose class label
is unknown. The classification is composed of two phases. The first one is
represented by a learning phase - description of a set of classification rules
called learning model. The second phase is the classification one - testing data
are used in order to verify the precision of the classification rules generated
during the first phase. The main classification techniques are: Decision Trees,
Bayesian Classification, Neural Networks.

• Descriptive modeling - clustering. The clustering technique partitions the data
into classes so that the intraclass similarity be maximized and the interclass
similarity be minimized. In a first step, all the adequate classes are discovered,
and then the data are classified according to the discovered classes. We can note
that, comparing to classification, the classes are not known from the beginning,
they are discovered using a set of observations. Different methods of clustering
were developed among which we remind K-means.

• Discovering patterns and association rules. This technique proposes to find reg-
ularities in data, revealed to be useful in many domains, as business, medicine,
etc. Finding association rules consists in finding frequent implications in data
of the type IF X THEN Y ; X and Y represent the antecedent and, respectively,
the consequent, and they are propositions constructed using attributes from a
database. The main advantage of this model is that association rules are easily
exploitable and comprehensible by humans.

2.2.4 Post-Mining of Discovered Patterns

Usually called post-processing [15] or post-mining, this phase is the last one of the
KDD process. It is composed of three important steps which make it possible for a
discovered pattern to be considered as a knowledge: the validation, the evaluation
and the visualization (a complete state of art of visualization is presented by Ben
Said et al. 2010 [23]).

In a first step, after proposing for evaluation the results of a certain model, it
is important that the user validates the proposed model. The validation should be
made from the point of view of the comprehensibility of the extracted patterns and
their possible utility.

The mining process discovers a list of patterns with a given level of interestingness.
In the evaluation step, the user is able to evaluate the patterns, i.e. to determine the
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importance of the extracted patterns, using several user-driven methods or statistical
database oriented methods. Another method of pattern evaluation is the visualiza-
tion, which is related to the model of extracted patterns.

2.3 Association Rule Mining Technique

This section will outline the main motivations of association rule mining technique
and it will formally describe the main notions as they are at the very foundation of
this thesis. Then, the most important algorithms are detailed and the most important
improvements that were proposed in the literature.

2.3.1 Motivations

The idea of discovering relationships in data started with the well-known problem of
the supermarket basket discussed for the first time by Agrawal et al. 1993 [5]. At that
moment, the supermarkets found themselves with a huge stock of shopping tickets
and using KDD techniques could help them to improve the supermarket layout and,
thus, to increase their sales. But, how could a set of shopping tickets produce some
modifications in the supermarket layout?

In a first analysis of shopping basket data frequent itemsets were extracted, for
example {nappies, beer} which expresses that nappies and beer appear together in
a great part of shopping baskets.

Later, association rule technique proposes the extraction of implications, and a
valuable information was discovered, that nappies → beer, which specifies that if a
man customer buys nappies, it is very probable that he will buy beer too. Thus, plac-
ing beer products next to nappies products the sales of beer increased considerably.

2.3.2 Problem Definition

In general, association rule mining technique is applied over a database D = {I, T}.
Let us consider I = {i1, i2, . . . , im} a set of m binary attributes, called items. Let
T = {t1, t2, . . . , tn} be a set of n transactions, where each transaction ti represents
a binary vector, with ti[k] = 1 if ti contains the item ik, and ti[k] = 0 otherwise. A
unique identifier is associated to each transaction, called TID. Let X be a set of items
in I. A transaction ti satisfies X if all the items of X exist also in ti, formally, we
can say that ∀ik ∈ X, ti[k] = 1. In conclusion, a transaction ti can be viewed as a
subset of I, ti ⊆ I.

Definition 2.3.1
An itemset X = {i1, i2, . . . , ik} is a set of items X ⊆ I. We can denote the

itemset X by i1, i2, . . . , ik, the comma being used as a conjunction, but most commonly
it is denoted by i1i2 . . . ik, omitting the commas. �

Example 2.3.2 The set X = Milk Pear Apple (or X = Milk, Pear, Apple) is an
itemset composed by three items: Milk, Pear and Apple. �
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Definition 2.3.3
An itemset X is a k-itemset if X is an itemset X ⊆ I and if it contains k items:

|X| = k. �

Example 2.3.4 The itemset Milk, Pear, Apple is a 3 -itemset. �

Definition 2.3.5
Let X ⊆ I and ti ∈ T . We say that the set of all transactions which contain

the itemset X is defined by:

t : P(I)→ T, t(X) = {tj ∈ T | X ⊆ tj}.

Similarly, the set of items contained by all the transactions in T ′ ⊆ T is described
by:

i : T → P(I), i(T ′) = {ij ∈ I | ∀tk ∈ T ′, ij ∈ t}. �

Definition 2.3.6
The support of an itemset X is defined as the number of transactions in T

that support X. Thus, the fraction of transactions in T that satisfy the itemset X
represents the support of X. This is denoted by:

supp(X) =
|{t ∈ T |X ⊆ t}|

|t ∈ T |
. �

Definition 2.3.7
Un itemset X is defined as a frequent itemset if the support of X is greater than

a given threshold minsupp: supp(X) = |t(X)| ≥ minsupp. �

The model of association rules was for the first time introduced by Agrawal et al.
1993 [5], and revised, one year later, by Agrawal and Srikant 1994 [6].

Definition 2.3.8
In a first attempt, an association rule was defined as an implication of the form

X => ij, where X is an itemset X ⊆ I and ij is an item ij ∈ I with {ij} ∩X = ∅
[5].

Later, the definition was extended to an implication of the form X => Y , where
X and Y are itemsets and X ∩ Y = ∅ [6]. The former, X, is called the antecedent of
the rule, and the latter, Y , is called the consequent of the rule.

A rule X → Y is described by two important statistical factors:

• The support of the rule which is defined as the support of the itemset created by
the union of the antecedent and the consequent of the rule

supp(X → Y ) = supp(X ∪ Y ) = |t(X ∪ Y )|.

It presents the ratio of the number of transactions containing X∪Y . If supp(X →
Y ) = s, s% of transactions contain the itemset X ∪ Y .
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• The confidence of an association rule is defined as the probability that a trans-
action contains Y knowing X. In other words, the confidence is the ratio (c%)
of the number of transactions that, containing X, contain also Y :

confidence(X → Y ) =
supp(X → Y )

supp(X)
=

supp(X ∪ Y )

supp(X)
. �

Definition 2.3.9
If we provide the minimum thresholds provided by the user for the support, and

respectively for the confidence as minsup and minconf , an association rule X → Y
is valid if:

• the support of the rule is greater than minsupp: supp(X → Y ) ≥ minsup;

• the confidence of the rule is greater than minconf : conf(X → Y ) ≥ minconf .
�

Definition 2.3.10
X is denoted as a maximal itemset if the itemset X is frequent and no supersets

of X are frequent. �

Definition 2.3.11
Let us consider two association rules R1 and R2. The rule R1 is more general

than the rule R2, denoted R1 ≼ R2, if R2 can be generated by adding additional
items to either the antecedent or consequent of R1. Then, a rule Rj is denoted as
redundant by Zaki 2004 [220] if there exists some rule Ri, such that Ri ≼ Rj. Thus,
the non-redundant rules in a collection of rules are those rules that are most general,
i.e. those having minimal antecedents and consequents. �

Definition 2.3.12
A rule set is defined as optimal by Li 2006 [130] with respect to an interesting-

ness metric if it contains all rules except those with no greater interestingness than
one of its more general rules. An optimal rule set is a subset of a non-redundant rule
set. �

2.3.3 CHARADE System

Long before the introduction of the association rule notion, Ganascia 1987 [73] pro-
posed a system, named CHARADE, which aims to learn automatically a rule system.
CHARADE is applied over a training set of examples described by means of con-
junctions of descriptors; in our notation we can consider that examples correspond
to transaction, and descriptors to items. In this context, the author argues that, if a
set of examples has a conjunction of descriptors D and it has also the descriptor d,
then there is possible to have an implication D → d.

For this purpose, two covering functions are suggested – they describe the set of
examples that covers a conjunction of descriptor (TR), or vice versa (SUB).
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Example 2.3.13 Let us consider the following set of examples:

E1 : milk, pork, pear, apple

E2 : milk, pork, grape, pear

E3 : pork, pear

E4 : milk, pork, pear.

If we consider milk and pork descriptors, using TR and SUB functions we are able
to find the descriptors associated to milk and pork through their common examples,
as follows:

SUB◦TR(milk, pork)

= SUB(E1, E2, E4)

= {milk, pork, pear}.

In this context, we can say that pear can be associated withmilk and pork descriptors,
and, moreover, to generate the following rule:

milk, pork → pear. �

The system proposes an exploration of the descriptor space from the more general
to the more specific, and it uses a measure in order to assesses the useless of a set
of descriptors which permits to reduce the exploring – in the case of a useless set of
descriptors, the system does not access the more specific sets of descriptors.

2.3.4 Apriori – Classical Association Rule Mining

Generally, the problem of discovering association rules from database is composed of
two main subproblems [5]:

• The first one consists in generating all frequent itemsets;

• Starting from frequent itemsets produced above, the second problem deals with
the generation of the association rules having the confidence greater than min-
conf.

For the first problem which is generally known as frequent itemset generation a
first algorithm, named Apriori, was designed by Agrawal and Srikant 1994 [6] and it
has its bases on the CHARADE System. Apriori algorithm is presented in the Table
2.1.

The algorithm gradually generates the set of itemsets from 1-itemsets to 2-itemsets
to . . . etc. In the first pass over the data (line 1 in the algorithm), supports for the
1-itemsets are computed in order to select only the frequent ones.

In the next steps (lines 2 to 10), starting from the (k-1)-itemsets and using the
downward closure property k-itemsets are generated. Thus, starting from the frequent
(k-1)-itemsets already generated in the previous step, the function apriori-gen (line
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Table 2.1: The frequent itemset generation in Apriori algorithm [6].

Input: Database D

Output: The set L of itemsets

1. L1 = {1-itemsets}

2. forall (k = 2;Lk−1 ̸= ∅; k ++) do begin

3. Ck = apriori-gen(Lk−1)

4. forall transactions t ∈ D do begin

5. Ct = subset(Ck, t)

6. forall candidates c ∈ Ct do

7. c.count++

8. endfor

9. Lk = {c ∈ Ck | c.count ≥ minsup}

10. endfor

apriori-gen(Lk−1)

12. forall itemsets c ∈ Ck do begin

13. forall (k-1)-subsets s of c do begin

14. if (s ∈ Lk−1) then

15. delete c from Ck

16. endfor

17. endfor

3) generates new potentially frequent k-itemsets, called candidates. The candidates
are validated during a new pass over data when the support of each candidate is
computed (lines 4 to 8). The particularity of the algorithm comes from the support
counting method; in fact, the function subset (line 5) receives the set of candidates
and a transaction t of the database and returns the set of candidates satisfying the
transaction. In line 7 the support of each candidate is increased. In line 9, the
frequent k-itemsets are selected and they become the entry for the next step of the
algorithm. The algorithm ends when no frequent itemset is generated.

The Apriori algorithm is based on a bottom-up, breadth-first search method which
enumerates every single frequent itemset. Moreover, the algorithm uses the downward
closure property. The latter is defined as the property that every frequent itemset
is composed of frequent subsets (sub-itemsets). For the frequent itemset generation
step the algorithm uses lattices1.

Example 2.3.14 Let us consider a sample of the supermarket transaction database

1A lattice is an ordered set with several specific properties. A detailed description will be given
in section 2.4.3
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(Table 2.2) and a minimum support threshold of 50%.

Table 2.2: Supermarket database sample for the Apriori algorithm example.

Tuple Transaction

1 milk, pork, pear

2 milk, pork, apple

3 pork, pear

4 milk, pork, pear

In Figure 2.2, we present the process of generating frequent itemsets by using the
Apriori algorithm. The algorithm starts with an empty list of candidates, and, during
the first pass, all 1 -itemsets are generated, but only those satisfying the support
constraint (50%) become candidates. Therefore, the itemset {apple} with the support
of 25% does not satisfy the support constraint, and, thus it is not frequent and it is
not considered in the following as a candidate.

In the next passes, the k -itemsets which include no frequent (k-1)-itemsets are de-
noted as not frequent; thus, they are not computed in order to reduce time execution.
For instance, {pork, apple} itemset is not generated.

In this figure the itemsets not containing {apple} itemset are potentially frequent.
For instance, the itemset {milk, pork, apple} is not frequent because {milk, apple}
and {pork, apple} itemsets are not frequent. On the contrary, the {milk, pork, pear}
itemset is frequent because the three 2 -itemsets composing it are frequent ({milk,
pork}, {pork, pear} and {milk, pear}), and its support is 50%.

Figure 2.2: An example tree of the frequent itemset generation.

The second problem in the association rule mining technique is the generation of
rules; the objective is to create association rules from the frequent itemsets generated
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above. The algorithm for rule generation integrated in Apriori is presented in Table
2.3.

Table 2.3: Rule generation step in Apriori algorithm [6].

Input: Set of itemsets l

Output: Set of association rules Rules

1. forall itemsets lk, k ≥ 2 do

2. call genrules(lk, lk);

3. procedure genrules(lk: k-itemset, am: m-itemset)

4. A = {(m− 1)-itemsets am−1 | am−1 ⊂ am }

5. forall am−1 ∈ A do begin

6. conf = support(lk)/support(am−1)

7. if (conf ≥ minconf) then

8. R = am−1 ⇒ (lk − am−1)

9. if (m− 1 > 1) then

10. call genrules(lk, am−1)

11. Rules = Rules ∪R

12. return Rules

The method of rule extraction is very simple. Let us consider the set L of frequent
itemsets. Considering li ∈ L, the method finds all subsets a of li, a ⊆ li, and proposes
a set of rule candidates of the form a→ (li−a) which are tested against the confidence
measure.

In lines (1-2) the recursive procedure genrules is called for each set of k-itemsets.
genrule generates recursively the sub-itemsets level by level (line 4) in order to pro-
duce the rules which are further tested against the confidence.

Example 2.3.15 Let us consider the itemset l1 = {milk, pork, pear} [S = 50%]. One
of the rule that we could generate is R: milk, pork → pear. To compute the confidence
of this rule we use only the support of the complete itemset and the support of the
l2 = {milk, pork} itemset:

conf(R) =
supp(l1)

supp(l2)
=

0.5

0.75
= 0.67. �

In this section, we saw that the Apriori algorithm is able to extract a set of
association rules starting from a database. In this context, two problems concerning
the quality of the Apriori algorithm emerge: the rapidity and the efficiency.

The first one, the rapidity, deals with the capacity of the algorithm to generate the
expected results in a reasonable execution time without using important quantities
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of resources. The generation of frequent itemsets is an exponential problem, because
the search space to enumerate all the frequent itemsets is 2m, where m is the number
of items. Furthermore, the algorithm makes several passes over data depending on
the length of the generated itemsets. These tasks imply an exponential growth of the
resources employed during the rule mining process and an important increase of the
execution time.

Rule generation is an exponential problem depending on the number of items in
the frequent itemsets; for example, for a k-itemset, the number of possible association
rules is 2k − 2. In this context, we can note that the execution time is not very high.
First, because there is no need for new passes over the database in this step. And
second, because for the cases of a large database, the execution time of this step
becomes less important than that of the frequent itemsets generation step.

Consequently, the rapidity is equivalent to the rapidity of the process of frequent
itemset generation. Thus, to improve this characteristic of the rule mining process,
it is imperative to improve the frequent itemset generation step. For this purpose,
different propositions were made in the literature, presented in Section 2.4.

Second, the efficiency deals with the capacity of the algorithm to produce the
researched results. The main drawback in the association rule mining is that classical
techniques produce a hight number of rules which are quasi unusable by the user
because millions of association rules can be extracted from large databases with a
reduced threshold of support. In consequence, in the last decade, an intense research
was done on reducing the number of extracted rules. Unfortunately, deciding whether
a set of association rules is useful is both an objective and a subjective problem. The
objective one is data-oriented, and the subjective one is user-oriented – a set of
rules might correspond to a user and might not correspond to another one. For this
purpose, in Section 2.5 we make a survey of rule number reduction methods, that will
be extended in Chapter 4.

2.4 Improvements in Frequent Itemset Generation

In this section we will study different techniques and methods developed in the liter-
ature aiming to extract rapidly and efficiently frequent itemsets. A selection of the
main algorithms on frequent itemset mining is presented by Celgar and Roddick 2006
[51].

One of the first techniques for the discovery of correlations between boolean val-
ues appeared as early as 1966, the GUHA method, which introduces support and
confidence metrics and which was proposed by Hajek et al. 1996 [97]. Several years
later, the interest in the extraction of correlations from a database increased and a
big volume of dedicated algorithms was developed.

2.4.1 Candidate Generation Algorithms

Candidate generation algorithms are based on the following technique: a set of candi-
date itemsets are identified in order to be validated with respect to the incorporated
constraints. The first algorithms proposing the discovery of frequent itemsets using
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the candidate generation technique are AIS developed by Agrawal et al. 1993 [5]
and SETM proposed by Houtsma and Swami 1995 [110]. These two algorithms gen-
erate candidates by scanning frequent itemset lattices. Unfortunately, they do not
make an important effort in the reduction of the combinatoric explosion. As a re-
sult, an important number of improvements were brought once with new generation
algorithms.

Apriori [6] is known as the frequent itemset generation algorithm based on can-
didate generation. Nevertheless, it is important to note that, at the same time (but
independently), other researchers came up with the same idea of the reflexive con-
straint inclusion (support), and they proposed OCD (Offline Candidate Determina-
tion) [139].

Apriori algorithm suggested a standard for reducing the search space by the pro-
posed heuristic support. An important number of algorithms, based on Apriori, were
proposed with the aim to optimize the frequent itemset generation by introducing
condensed representations, dataset partitioning, dataset pruning or dataset access
reduction. Among the new algorithms we outline the most important ones: Apriori-
TID [6], Direct Hashing and Pruning (DHP) [157], Partition [177], Dynamic Itemset
Couting (DIC) [37], Tree Projection [4].

Using a new database for counting the itemsets support, AprioriTID algorithm,
developed by Agrawal and Srikant 1994 [6], extends Apriori through decreasing the
number of passes over the database. This new database has the form < TID,Ci

k >,
where TID is the identifier of an itemset, and Ci

k represents the subsets of the itemset
TID of k length. Thus, transactions are represented by the k-itemsets that describe
them. Nevertheless, the problem of the high dimension of this new database for lower
values of k is very important.

Direct Hashing and Pruning (DHP) algorithm, suggested by Park et al. 1997
[157], uses hashtables in order to reduce the number of candidates. The type of tree
structures used during the candidate generation phase is important because it permits
different access to elements, or different representations of the items/itemsets. Thus,
we can distinguish between 3 main data structures: hash trees, enumeration-set trees
and prefix trees. For instance, the difference between enumeration-set trees and prefix
trees comes from the fact that, on the one hand, for prefix trees case, the nodes are
items and the itemsets are constructed during depth first search in the tree, and,
on the other hand, in an enumeration-set tree the nodes are itemsets. The Tree
Projection algorithm, developed by Agarwal et al. 2001 [4], uses an enumeration-set
tree to generate candidates.

As its name denotes, Partition algorithm, developed by Savasere et al. 1995 [177]
is based on the idea of partitioning the database in order to fit into the memory.

Dynamic Itemset Couting (DIC) algorithm, introduced by Brin et al. 1997 [37],
reduces the number of passes over the database by introducing a new interesting idea
– (k + 1) candidates are computed from the k pass. When a k-itemset is considered
frequent, all the (k+1)-itemset candidates that the latter can produce are generated.
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2.4.2 FP-Growth Algorithms

The algorithms based on candidate generation are an intuitive solution for frequent
itemset extraction, but also a resources consuming one. In the last ten years, this sit-
uation led to the aim of proposing new techniques allowing frequent itemset discovery
and improving the user of resources.

Starting with 2000, Pattern Growth algorithms were introduced; they have the
specificity to use complex hyperstructures for data storage. Generally, a hyperstruc-
ture is composed of two principal structures:

• Item List – contains the list of frequent items. Each item is linked to the first
element in the pattern frame that contains it;

• Pattern Frame – represents a tree structure containing items with their support.
The particularity of this tree is that it is constructed in a database pass by using
each transaction.

The first pattern growth algorithm is the FP-Growth algorithm introduced by
Han and Pei 2000 [98]. Later, in 2005, Grahne and Zhu [85] developed FP-Growth*
algorithm which improves the previous algorithm performances due to FP-array, a
new data structure. FP-array permits to improve the passes over the FP-tree.

Example 2.4.1 Let us consider the data base presented in Example 2.3.14 slightly
modified (Table 2.4). We will consider a support threshold of 50%.

Table 2.4: Supermarket database sample for FP-Growth algorithm example.

Tuple TID Transaction

1 pork, milk, pear

2 pork, milk, apple

3 pear, apple

4 pork, milk, pear

In the first pass over the database, the support of each item is computed, and
infrequent items are discarded. Next, frequent items are sorted in decreasing order
based on their support. In the Table 2.4, the items are already sorted, and we can
note that none of the items is infrequent.

Figure 2.3 presents the second pass over the database. During this pass the FP-
tree is constructed as follows:

• transaction 1: {pork, milk, pear} – three nodes are created (pork, milk and
pear) and their counts are set to 1. Also, the path null→ pork → milk → pear
is created;
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Figure 2.3: An example tree for the frequent itemset generation using the FP-Growth
algorithm.

• transaction 2: {pork, milk, apple}. As the first and the second transaction
share the same prefix (items pork and milk), the first part of this path is
common to the previous created path. Thus, one node is created (apple) and
its count is set to 1, while the pork and milk counts are incremented to 2;

• transaction 3: {pear, apple}. As this transaction does not share the prefix with
the previous two transaction, 2 nodes are created (pear and apple), and their
counts are set to 1;

• in the same manner transaction 4 is treated.

Thus, the frequent itemsets are: {pork, milk, pear}, {pork, milk, apple} and {pear,
apple}. �

2.4.3 Condensed Representations based Algorithms

Apriori -based algorithms perform one pass over the database for each itemset length
growth. Thus, the number of passes of an Apriori -based algorithm depends on the
length of the largest frequent itemset, growing exponentially the execution time [38].
In this context, discovering all the frequent itemsets in a large database becomes
quickly an intractable problem. This exponential complexity is fundamentally re-
stricting Apriori -like algorithms to discover only short patterns.

Nowadays, the literature proposes two main approaches to the long itemset mining
problem. The first one is to extract only the maximal frequent itemsets, and the
second one to extract frequent closed itemsets. These approaches are detailed in this
section.

Since frequent itemset generation is considered as an expensive operation in terms
of database passes, mining frequent closed itemsets was introduced in order to reduce
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the number of frequent itemsets. The bases of this theory were first presented by Zaki
et Ogihara 1990 [219]. The authors developed a formal framework for the problem
of association rules based on the Formal Concept Analysis (FCA) introduced by
Wille 1982 [215]. FCA is a mathematical approach to data analysis based on the
lattice theory presented in [27]. The FCA method is applied in a great variety of
research fields such as psychology, ecology, library, information science, or software
engineering. One of the most important goals of the FCA is to produce graphical
visualizations of the conceptual structures in data.

A basic notion in FCA is the formal context defined as a triple < O,A,R >,
where O is a set of objects, A is a set of attributes, and R ⊆ O × A is a binary
relation between O and A which should be read as the object O has the attribute A.
The definition of the formal context is quite close to the definition of the association
rule mining problem. Thus, it is not very difficult to define a formal framework for
association rule mining based on this method.

A data mining context [160] is defined as a triple D =< O, I,R > where D
is the database. In this context, for the association rule technique O is a set of
transactions, I is a set of items and R is the binary relation between O and I. Each
couple (ti, ij) ∈ R describes the existence of the item ij in the transaction ti. Thus,
we can define the formal context for the association rule technique as D =< T, I,R >.
�

Definition 2.4.2
Let (P,≤) be an ordered set with the binary relation ≤, and let S, S ⊆ P . An

element u ∈ P (l ∈ P ) is a upper bound (lower bound) of S if s ≤ u (s ≥ l) ∀s ∈ S.
The least upper bound is called the join of S, and the greatest lower bound is called
the meet of S [220]. �

Definition 2.4.3
An ordered not-empty set (L,≤) is a lattice if, ∀x, y ∈ L the set {x, y} has a

join and a meet [220]. An ordered not-empty set (L,≤) is a complete lattice if all the
subsets P ⊆ L have a join and a meet. �

Definition 2.4.4
Let us consider the formal context presented below. For Oi ⊆ O and Aj ⊆ A

two mappings are defined as follows. The first one, projects the objects in the set of
attributes:

f : P(O)→ P(A)

f(Oi) = {a ∈ A | ∀o ∈ O, (o, i) ∈ R}

and the second one projects the attributes in the set of objects:

g : P(A)→ P(O)

g(Aj) = {o ∈ O | ∀a ∈ A, (o, i) ∈ R}

The couple (f, g) is the Galois connection, and the operators h = fog and h′ = gof
are Galois closure operators [77, 215]. �
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If we transpose this theory in the context of association rule mining, the set of
objects are represented by the transactions, and the set of attributes, by the items
in the database. Thus, using the Galois closure operators, we are able to define the
notion of closed itemset.

Definition 2.4.5
A set of items X ⊆ I is called closed itemset if and only if h(X) = X. The

minimal closed itemset of X is generated by applying h to X, h(X). �

Definition 2.4.6
A formal concept is a pair c = (Oi, Ij), with Oi ⊆ O and Ij, if Oi and Ij are

relied by the Galois operator, i.e. h(Oi) = Ij and h′(Ij) = Oi. Oi is called extension
and Ij is called intension. �

Definition 2.4.7
A closed itemset lattice is defined as the ordered set of all closed itemsets, P =

{X ⊆ I | h(X) = X}. The lattice is described by: LP = (P,≤). �

Definition 2.4.8
A closed itemset X ⊆ I from the formal context D =< O, I,R > is denoted

as frequent if its support is higher than threshold of minimum support, supp(X) ≥
minsupp. �

Several algorithms were proposed in the literature in order to extract frequent
closed itemsets. The first proposition was made in 1998, by Pasquier et al. with the
Close algorithm [160, 161], and later, with an improved version, A-Close [159]. These
algorithms start, as Apriori, from a lexicographical ordered set of 1–itemsets, and
the generation of frequent closed itemsets is an iterative process. In the first step,
starting from generators (elements to which the galois closure operator h is applied)
frequent closed itemset candidates are generated. Applying support constraints, fre-
quent closed itemsets of this level are determined. In the next step, starting from
frequent closed itemsets, the generators for the next level are computed. The pseudo–
code of the Close algorithm is presented in the Table 2.5.

PASCAL algorithm was developed by Bastide et al. 2000 [18] as an improvement
of earlier frequent closed itemset mining algorithms, but very soon it was outper-
formed by a new proposition. The CLOSET algorithm was developed by Pei et al.
2000 [163] as a new efficient method for mining closed itemsets. CLOSET uses a novel
frequent pattern tree (FP-tree) structure which is a compressed representation of all
the transactions in the database. Moreover, it uses a recursive divide-and-conquer
and database projection approach to mine long patterns.

Introduced by Zaki and Hsiao 2002 [222], the CHARM algorithm expands the
search space to itemset and transaction space using a representation structure -
itemset-tidset tree, called IT–tree. Moreover, the authors suggested to use a new
data structure (diffset) so that the frequencies of itemsets should be easier computed.
The search method employed in the approach is more efficient than the other search
methods proposed so far, frequent closed itemsets being discovered after less enumer-
ations.
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Table 2.5: Frequent close itemset generation algorithm [160].

1. Input: The database D

1. Output: The set of frequent closed itemsets FC

1. generators in FCC1 ← {1-itemsets}

2. forall (i← 1; FCCi.generator ̸= ∅; i++) do begin

3. closures in FCCi ← ∅

4. supports in FCCi ← 0

5. FCCi ← Gen-Closure(FCCi)

6. forall candidate closed itemsets c ∈ FCCi do begin

7. if (c.support ≥ minsupport) then

8. FCi ← FCi ∪ {c}

9 FCCi+l ← Gen-Generator(FCi)

10. Return FC ←
∪j=i−1

j=1
{FCj .closure, FCj .support}

The advantage of extracting the set of frequent closed itemsets is that no infor-
mation is lost because they determine the complete set of frequent itemsets and their
exact frequency.

Another solution for reducing the number of frequent itemsets is mining max-
imal frequent itemsets. A maximal frequent itemset is a frequent itemset without
any frequent superset. Thus, the set of maximal frequent itemsets is more reduced
comparing to the complete set of frequent itemsets and even comparing to frequent
closed itemsets. Using a bottom-up and top-down search, these algorithms assure a
reduced execution time.

The most important algorithm was proposed in 2001 by Burdick et al. [43] and
it was called MAFIA algorithm. It is based on the depth-first traversal and on sev-
eral pruning methods as Parent Equivalence Pruning (PEP), FHUT, HUTMFI or
Dynamic Recording. But, the main drawback of maximal frequent itemsets methods
is the loss of information because the subset frequency is not available, thus, in this
case, the generation of rules is impossible.

Nevertheless, Zaki et Hsiao proved in their paper [222] that the developed algo-
rithm, CHARM, outperforms CLOSET, Close, and Mafia algorithms.

2.5 Improvements in Rule Generation

In the previous section we studied about the improvements proposed in the literature
in the generation of frequent itemsets. This section is dedicated to the improvements
in rule generation – in other words, we will discuss about the solutions developed to
reduce the number of discovered rules or to improve their quality.
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Among available techniques for rule reduction, in this section we discuss about
constraint-based association rule mining techniques and about the reduction of the
redundancy of rules.

2.5.1 Constraints-based Association Rule Mining

In this particular context where huge volumes of association rules are generated by
classical techniques, the paradigm of constraint-based rules mining was introduced
[71]. It provides to the user the possibility to impose a set of constraints over the
content of the discovered rules which could produce an important reduction of the
rule volume. Moreover, an important part of computation operations are avoided,
improving the execution time or decreasing the used resources. Generally, constraints
(C) are provided by means of different formalisms – user knowledge constraints, data
constraints, dimensional constraints, interestingness constraints, and rule constraints.

The role of constraints is very well-defined – they generate only those association
rules that are interesting to users [223], and the technique is quite trivial – the rule
space is reduced so the remaining rules satisfy the constraints. If we take the example
of the Apriori algorithm and its variants, they use two basic constraints: minimal
thresholds for support and confidence. Nevertheless, even if these two constraints
are basic, it is quite difficult to find the right values that produce interesting rules.
Using wrong thresholds could have two consequences: first, the algorithm could miss
some interesting rules and, second, it could generate trivial ones. Further, users could
have difficulties to understand the meaning of data-oriented constraints and to give
minimal thresholds.

Ng et al. 1998 [150] introduced a first classfication of two types of constraints
according to two orthogonal properties: anti-monotonicity and succinctness.

Definition 2.5.1
Given an itemset X, a constraint CAM is anti-monotone if ∀Y ⊆ X, CAM (X)⇒

CAM (Y ). The most known anti-monotone constraints is the frequency (support) con-
straint (Cfreq). It is integrated in the Apriori-like algorithms with the following in-
terpretation: if an itemset X does not satisfy the frequency constraint Cfreq, then no
superset of X can satisfy Cfreq, and, they are pruned. Other CAM constraints can
easily be pushed deep down into the frequent itemset mining computation since they
behave exactly as Cfreq:if an itemset does not satisfy the constraint, then none of its
supersets satisfy it. �

Succinct constraints are totally different from anti-monotonic constraints. While
the latter are applied iteratively over sets of candidate itemsets, the former has the
particularity of being able to generate itemsets without generating candidate itemsets.

Example 2.5.2 Let us consider the database in Table 2.6; each item is described
by a weight as showing Table 2.7.

The constraint sum(weight) ≤ 10 requires that for an itemset X, the total weight
of the items in X must be no greater than 10. It is an anti-monotone constraint,
because if an itemset, i.e. pork, violates the constraint, all of its supersets will violate
it; as a consequence, the itemset pork can be removed from the candidate set during
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Table 2.6: Supermarket database sample for constraints-based rule mining.

Tuple Transaction

1 milk, pork, pear

2 milk, pork, apple

3 pork, pear

4 milk, pork, pear

Table 2.7: The weights (such as profit) of items.

Item Weight

milk 2

pork 20

pear 10

apple 9

an Apriori -like frequent itemset mining process. On the contrary, the 1 -itemset
milk has the weight of 2, so, it satisfies the constraint, and it can participate to the
generation of 2 -itemsets. Further, the itemset milk apple is generated, but its weight
is 11; in this case, this itemset does not satisfy the constraint, and it will be pruned.

The constraint max(weight(ϕ)) < 15 requires that for an itemset X, each item
must have the weight no greater than 14. It is an succinct constraint, in the sens that
all the items of the itemset must satisfy the constraint, in order to be satisfied by the
itemset. For instance, the itemset milk pear satisfies the constraint, but the itemset
milk pork not. �

In the following, we will outline the main approaches proposed in constraint-
based association rule mining. Ng et al. 1998 [150] and Srikant et al. 1996 [190, 191]
have investigated applying item constraints for the generation of frequent itemsets.
They restrict the items or the combinations of items that are allowed to participate
in the mining process. Earlier, in 1992, Smyth and Goodman 1992 [187] described
a constraint-based rule miner integrating an interestingness constraint described by
the dimension of rules, thus, long rules are considered less interesting. Padmanabhan
et al. 2000 [156] developed a new algorithm, called ZoomUAR, which integrates
constraints describing user knowledge expressed in a rule-like formalism of the form
A → B. The main idea is that, interesting rules contradict the user beliefs from a
logical point of view. This approach will be detailed in Chapter 4, Section 4.4.6.

Bayardo et al. 1999 [20] developed an new algorithm, called Dense-Miner which
integrates two types of constraints. First, consequent constraints help the authors
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to reduce the set of rules by constraining the consequent of all the rules to a certain
itemset. Second, they proposed the Minimum Improvement Constraint in order to
prune uninteresting rules. The Minimum Improvement Constraint of a rule R is
computed using the entire set of general rules which can be generated starting from
R.

Definition 2.5.3
Let us consider the Rspec : X → Y association rule and Rgen : X ′ → Y where

X ′ ⊂ X; that is to say that the rule Rspec is a specification of the rules Rgen, or,
inversely, the rule Rgen is a generalization of the rule Rspec.

The improvement of the rule Rspec is computed as the minimum difference between
its confidence and the confidence of its more general rules. More formally, it can be
defined as:

imp(Rspec) = min(conf(Rspec)− conf(Rgen) | ∀Rgen, X
′ ⊂ X). �

Further, if the improvement of the rule Rspec is positive, then we can conclude
that this rule is interesting because it brings more information than all its general
rules separately. If the improvement is negative we can conclude that the rule may
improve the confidence of several general rules, but not of all of them. In other words,
the rule Rspec could be simplified without loosing any information.

The threshold of minimum improvement is provided by the user (i.e. 5%) with
the support and confidence.

Example 2.5.4 To illustrate the minimum improvement constraint, we will con-
sider the following set of association rules

R1 : milk, pork → pear [S = 20%, C = 80%]

R2 : milk, apple→ pear [S = 27%, C = 76%]

R3 : milk → pear [S = 25%, C = 70%]

R4 : pork → pear [S = 30%, C = 72%]

R5 : apple→ pear [S = 40%, C = 83%]

where R1 is the specialization of rules R3 and R4, and R2 is the specialization of rules
R3 and R5. Also, we consider that the threshold of minimum improvement is 5%.

Thus, we can compute the improvement of R1 and R2 as follows:

imp(R1) = min(conf(R1)− conf(R3), conf(R1)− conf(R4))

= min(10, 8)

= 8 (%)

imp(R2) = min(conf(R2)− conf(R3), conf(R2)− conf(R5))

= min(6,−7)

= −7 (%)

and we can conclude that the rule R1 – with an improvement of 8% which exceeds
the minimum improvement threshold of 5% – is an interesting rule because it brings
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additional information comparing to its generalizations. On the contrary, the im-
provement of rule R2 is negative, less than the threshold limit of 5%, so, the rule is
not interesting. �

2.5.2 Redundancy Rule Reduction

This second section of rule extraction improvement is dedicated to redundant rule
reduction techniques. Classical algorithms propose good methods for association rule
extraction, but the number of rules is too large and too many rules are redundant.

Different definitions are suggested in the literature for redundant rules; in the
following we will use the definition suggested by Zaki 2000 [221].

Definition 2.5.5
Zaki 2000 [221] denotes generalization/specialization relation between two rules

by R1 ≼ R2 which describes that rule R1 is more general than the rule R2, or, on the
contrary, that the rule R2 is more specific than the rule R1.

A rule Rj is denoted as redundant if ∃Ri, Ri ≼ Rj, where Ri, Rj ∈ R =
{R1, . . . , Rn}, R being a set of rules with the same support and confidence.

In conclusion, non-redundant rules are the most general rules in a rule set.

In 2004, Zaki [220] proposed to extract non-redundant rules using frequent closed
itemsets. He suggested the first ideas concerning non-redundant rule generation in
2000 [221], but it is in 2004 that he developed a real algorithm. Let us consider two
closed itemsets X and Y , where X ⊆ Y . In a first step, the algorithm developed by
Zaki produces the set of minimal generators for each itemset. A generator X ′ of an
itemset X is a subset of X (X ′ ⊂ X) that has the same support as X (supp(X) =
supp(X ′)). A generator of X which has no subset generators of X is called minimal
generator of X. Then, each minimal generator can be the left part or, respectively
the right part of an non-redundant association rule.

Comparable with the propositions of Zaki, Pasquier et al. 2005 [162] introduced
two condensed association bases to represent non-redundant association rules: Min-
max Approximative Basis and Min-max Exact Basis. These two definitions describe
different possibilities to extract non-redundant rules using closed methods. Later, Xu
and Li 2007 [218] improved the definitions suggested by Pasquier et al. proposing a
more concise association rule basis called Reliable exact basis.

Nevertheless, both closed and maximal itemset mining still break down at low
support thresholds. To address these limitations, Omiecinski 2003 [153] proposed
three new important interestingness measures: any-confidence, all-confidence and
bond. All these measures are indicators of the degree to which items in an association
are related to each other. The most interesting one, all-confidence, introduced as
an alternative to support, represents the minimum confidence of all association rules
extracted from an itemset. Bond is another measure of the interestingness of an
association. It is similar to support, but with respect to a subset of the data rather
than the entire database.

Li 2006 [130] proposed recently optimal rule sets defined with respect to an inter-
estingness metric. An optimal rule set contains all rules except those with no greater
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interestingness than one of its more general rules. A set of techniques for the re-
duction of redundant rule number was developed and implemented by Ashrafi et al.
2005 [13]. The proposed techniques are based on generalization/specification of an-
tecedent/consequent of the rules and they are divided in methods for multi-antecedent
rules and multi-consequent rules. Complementary, several researches suggested that
pruning redundant rules can seriously decreases rule number and the number of re-
dundant rules is exponential in the length of the longest frequent itemset [220].

A novel reducing redundancy technique based on rule covers was developed by
Toivonen et al. 1995 [204]. The notion of rule cover defines the subset of a rule set
describing the same database transaction set. The authors developed an algorithm
to efficiently extract a rule cover from a set of given rules.

2.6 Conclusions

In this chapter, we described Knowledge Discovery in Databases process and, more
particularly, we focused on the association rule mining technique. We presented the
definitions, the notations and the most important drawbacks that limit the mining
potential of the technique.

In this context, we studied different existing methods that ameliorate the asso-
ciation rule mining process. First, for the rapidity problem, we detailed different
algorithms developed in the literature with the aim to reduce the execution time and
the resources that are used. Second, to increase the efficiency of the rule generation
process – the reduction of rule number – different methods are proposed with the
aim to filter the rules. In this chapter we studied two of them – constraint-based
association rule mining and redundancy rule reduction.

The advantages of these techniques are numerous. For instance, mining algo-
rithms based on frequent closed itemsets are at the same time able to reduce the time
execution and to considerably reduce the rule volume. The same improvements are
also brought by constraints-based association rule mining algorithms. Redundancy
reduction methods are generally known for the important reduction of the number of
rules and for the significant increase of the quality of the discovered rules.

Nevertheless, these approaches have their own limits. First, we will focus on the
number of generated rules which is still important to be processed by a user. These
techniques could permit to reduce the number of rules from millions to thousands, but
even thousand rules a user is not able to exploit manually. In conclusion, the useful
characteristic of patterns suggested by Fayyad et al. cannot be met in this case.
At the same time, these techniques are generally based on database information;
nevertheless, the interest and the utility of a rule is decided by the user. Thus, new
filters/techniques are needed to extract reduced sets of rules which are useful and
interesting for the user.
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3.1 Introduction

In the previous Chapter, we studied the association rule mining technique and we
outlined its main problem – the mining technique discovers high volumes of rules.
Moreover, the generated rules are trivial, redundant or uninteresting for the user.
Unfortunately, techniques such as redundancy rule reduction do not guarantee that
the selected rules are interesting for the user. In this context, the integration of user
knowledge in the rule discovery process could produce a notable increase of the rule
quality. For this purpose, since the more the knowledge is represented in a flexible,
expressive and accurate formalism, the more the rule selection is efficient, the user
knowledge should be represented by means of an adequate formalism.

In this context, Knowledge Engineering (KE) research field attempts to describe
a set of techniques and concepts which aim to acquire, represent and exploit domain
knowledge in order to be integrated in Knowledge-Based Systems (KBS). KBSs are
described as systems based on knowledge and reasoning mechanisms which propose
solutions to real-world problems. In this context, Knowledge Representation (KR)
is the area of the Artificial Intelligence (AI) field which aims to propose suitable
formalisms for domain knowledge representation with important facilities for knowl-
edge reusing, shearing and inference [34]. The knowledge can come from different
sources: documents, archives, Web and experts. In the case of expert knowledge, a
step of knowledge acquisition is developed which sometimes is more difficult than the
knowledge representation one.

In this Chapter we will focus on Knowledge Representation field and we will
study ontology-based formalisms. A first objective is to outline the development
of models from controlled vocabularies to ontologies. An ontology is a a formal,
explicit specification of a shared conceptualization [89, 90]. Ontologies, with concepts,
relations and axioms, offer a powerful and complete formalism for human knowledge.
Further, reasoning techniques complete the representation by allowing ontologies to
infer information in order to generate new knowledge.

Second, we will stop over the knowledge representation languages developed in
the Semantic Web field. The latter has as main purpose to provide representation
languages which are comprehensible by machines and enough powerful and expressive
when used for user knowledge representation. We will focus on XML, RDF and
OWL, and we will give a detailed presentation of the advantages of OWL language –
description logic and inference engines.

3.2 From controlled vocabularies to ontologies

As suggested in [68], The word ontology comes from the Greek onto, meaning of
being, and logos meaning science, theory, and describes a philosophical study of the
nature of the existence. This idea was introduced for the first time by Aristotle, in his
Metaphysics, as the categorization of things regarding the way in which they exist,
but the word ontology will be used 1900 years later.

Since their first apparition in the philosophy branch, ontologies have evolved and
have been used in several domains. But, it is at the beginning of the 20th century
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that philosophers studied the methods for building ontologies, while in computer
science researchers tried to build them directly. The Artificial Intelligence field [142]
aims to develop intelligent machines with a human reasoning; during its evolution,
a great part of the research made in the philosophy branch was assimilated. In
consequence, ontologies were considered as being the most appropriate solution for
knowledge representation in Information Systems.

Before giving a formal description of an ontology, we will make a short presenta-
tion of their degree of formality since organizations or controlled vocabularies until
ontologies. This idea was firstly discussed in [210], where Uschold and Grüninger
study the degree of formality of ontologies. In this context, our presentation starts
with the most informal representations and we will end with the ontologies in high
formal representations as pointed out in Figure 3.1.

Figure 3.1: The degree of formality of ontologies [126].

3.2.1 Controlled vocabularies

Humans prefer to have an organized life. The nature of the human being is to organize,
to structure things into groups depending on their differences and on the elements they
have in common. In order to permit the interoperability of these groups, a vocabulary
must be defined; generally, a controlled vocabulary registration authority is in charge
of this. Subject–based classification [80] represents the method of grouping/classifying
objects regarding their subject.

The advantage of controlled vocabularies is that they facilitate the research in a
database. A controlled vocabulary is defined as a list of terms, where a term is a
particular name for a concept. As already noted, the list of terms is controlled by a
controlled vocabulary registration authority. It is obvious that it may be possible that
the same term describes multiple concepts, and that a concept is named by several
terms. That depends on how strict the controlled vocabulary registration authority
is, but generally two rules are imposed [167]:

• if there is a term with the same name for different concepts, then its name is
explicitly qualified to solve the ambiguity;

• if several terms are used in order to denote the same concept, one principal
term is selected, and the other terms are defined as synonyms for the principal
one.
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For instance, a catalog can be an example of controlled vocabulary because it
provides a unambiguous interpretation of terms.

Example 3.2.1 Let us consider the following two phrases I like green apples and I
like Apple’s iPhone. We can remark that in these phrases the word apple does not
name the same concept, as the Fruits group does not use the concept apple in the
same way as the Phones groups. In the first case, an apple is a Fruit, which is not
related to Apple Company. �

3.2.2 Glossaries and Thesauri

After controlled vocabularies, Glossaries represent the next solution for ontology spec-
ification. They consist of a list of terms with meanings. The meanings are generally
described in natural language, so the humans easily understand them.

More developed, thesauri integrate additional meaning (semantics) for the re-
lations between terms. Generally, these relations are linguistics such as synonyms,
antonyms, homonyms1, etc. In addition, thesauri do not provide an explicit hierarchy,
but we could deduce one using thesaurus terms.

One of the most known thesauri for English language is WordNet[65], which is
described by its authors as the lexical reference system. Its design is inspired by
current psycholinguistic theories of human lexical memory. WordNet 2.0 contains
a total of 203,145 word-sense-pairs, and relates terms as synonyms, hypernyms2,
hyponyms3, holonyms4 and meronyms5.

3.2.3 Taxonomies

The term of taxonomy was introduce by Carl von Linné6 who structured the system of
life forms. A taxonomy is a subject-driven classification of the terms of a controlled
vocabulary into an hierarchy. The process of classifying terms in a taxonomy is
comparable to the one of connecting the terms using a specialization relation, called
is-a relation. In natural language, this relation is father to son relation translated
by: A is-a B or A is the son of B or B is the father of A.

Example 3.2.2 Figure 3.2 presents a sample of a taxonomy on supermarket prod-
ucts.

For example, the nodes are products in the supermarket, and the→ arcs represent
the is-a relation. Thus, each element of the taxonomy is-a Fooditem. For instance, if
we consider the Meat element, it is in a relation is-a with the Fooditem element, and
it has three sons : beef, pork and chicken. �

1the same words with different senses
2A word that is more generic than a given word
3A word that is more specific than a given word
4A concept that has another concept as a part
5A concept that is part of another concept
6Swedish botanist, physician, and zoologist, 1707 – 1778
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Figure 3.2: Example of taxonomy – supermarket taxonomy [136].

3.2.4 Ontologies

Taxonomies represent a great advancement in knowledge representation, but more
complex systems are needed in order to represent the functioning of the reasoning
process behind the human thinking. For example, taxonomies permit only an is-a
relation between elements, but a more expressive structure could allow the definition
of different properties (relations). For instance, in our case of supermarket food
products, the isEatenWith property could connect two products in order to express
which two products can be eaten together. Moreover, types of products can be defined
by using restrictions. For example, if we add the property hasPrice – expressing the
price of a product – between a product and a value, we can say, for instance, that
if the price of a product does not overpass a x value, the product is a part of the
CheapProducts.

3.3 Ontology – Definitions and Structure

In its very early definition, the Knowledge Engineering was viewed as a transfer
process of problem–solving from a knowledge source to a program [100]. The transfer
process is generally based on the idea that the knowledge necessary to solve a problem
already exists (i.e. the expert knowledge). Thus, the KE concentrates on the acqui-
sition of problem solving knowledge [147]. Later, several remarks came out pointing
that a part of expert knowledge is hidden in expert skills which are difficult to collect.
This is why the transfer process is replaced with a model construction process [145],
permitting to build up and structure the knowledge. It is obvious that this type
of model could not collect all expert knowledge, but it can become a good approx-
imation of the real expert knowledge. It is also important to note that, in real life,
daily modifications of expert knowledge are possible, so the model should be cyclical
[195]. Three important frameworks can be cited: CommonKADS, by Schreiber et al.
1999 [178], suggests for construction a set of different models depending on the KBS
specificity; MIKE (Model-based and Incremental Knowledge Engineering), by Angele
et al. 1993 [9], improves the existing models with the integration of an incremental
system development process into a model-based framework; and PROTEGE–II, by
Musen et al. 1995 [146], proposes to modelize KBSs using ontologies.
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Knowledge Representation (KR) is the area of the Artificial Intelligence (AI) field
concerned with how knowledge can be formally represented [34]. In this context,
Semantic Networks [188] were proposed in early 1970s as a model for relational ref-
erences including conceptualization. In the same line of Knowledge Representation
formalisms, Frames [90] were introduced in 1993 as a model described using classes,
slots, facets and instances. The most complex language, Description Logic – DL [14]
was proposed as an extension to the first two ones incorporating formal logic-based
semantics and allowing inference process. In the last decade, having their bases on
description logics, ontologies came out as being the closest representation language
to human reasoning.

Since the introduction of the notion of ontology, several definitions have been pro-
posed in the literature. We consider that the most appropriate one is the proposition
of Gruber 1993 [89, 90] which describes the ontology as a formal, explicit specification
of a shared conceptualization. In order to understand this definition, it is important
to define the notion of conceptualization. By conceptualization we understand an ab-
stract model of some phenomenon in the world described by its important concepts.
The formal notion denotes that machines should be able to interpret an ontology.
Moreover, explicit term refers to the explicit definition of ontology elements. Finally,
shared outlines that an ontology groups some knowledge common to a certain group,
and not individual knowledge [195].

In 1995, Guarino [93] criticized the definition of Gruber which relies on an exten-
sional notion of conceptualization. Thus, Guarino proposed in [92] a new definition
of an ontology: An ontology is a logical theory accounting for the intended meaning
of a formal vocabulary, i.e. its ontological commitment to a particular conceptualiza-
tion of the world. The intended models of a logical language using such a vocabulary
are constrained by its ontological commitment. An ontology indirectly reflects this
commitment (and the underlying conceptualization) by approximating these intended
models.

In 1998, Uschold and Grüninger described the notion of ontology as the term used
to refer to the shared understanding of some domain of interest which may be used
as a unifying framework to solve the above problems in the above-described manner
[210].

Later, in 2001, another definition of ontologies was proposed by Maedche and
Staab but, this time more a artificial intelligence oriented one. Thus, the authors
describe ontologies as (meta)data schemas, providing a controlled vocabulary of con-
cepts, each with an explicitly defined and machine processable semantics [138].

Nevertheless, how do ontologies participate to systems improvement ? The anal-
ysis made by Gandon 2006 [75] regarding Information Systems can be also applied
to general systems; thus, he considers that the introduction of an ontology in an
information system aims to reduce or to exclude conceptual and terminological confu-
sion and to tend toward a shared comprehension in order to improve communication,
sharing, interoperability, and the reusability level. An ontology can be viewed as a
unifying framework and it provides ”primitives”, basic elements helping the commu-
nication to improve between people, between people and systems, and between systems.
Integrating an ontology in an information system allows to formally declare a number
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of knowledge used to describe the information managed by the system and to rely on
these descriptions and on the formalization of their meaning in order to automate the
information processing tasks.

3.3.1 Concept, relations (properties) and axioms

First, it is important to note that it does not exist a single one correct way to model
a domain, there are always viable alternatives. The best solution depends on the
application that we have in mind and the extensions that we anticipate [152].

In addition to the definition given by Gruber, Genesereth and Nilsson 1987 [82]
described the conceptualization as a set of objects and a set of relationships. The
concepts are the key elements describing a knowledge domain connected between
each other by means of relationships. Starting from this idea, Gruber described in
[89] the universe of discourse as the set of objects of a domain that can be represented
in a formal way. These objects are represented as taxonomies enriched by several
relationships between the objects. Moreover, axioms may help users to correctly
interpret the ontology elements.

This definition was extended by Maedche and Staab 2001 [138] and reviewed by
Pretorius 2004 [170] presenting ontology components as follows:

• L – lexical entries (defined as a set of strings) for concepts and relations ;

• C – the set of concepts representing the elements in the domain. This can be
any thing, a notion or an idea [211];

• H – the concepts taxonomy (hierarchy) structuring ontology concepts using the
subsumption relation;

• R – the set of relations different from the subsumption relation. A relation
connects domain concepts with range concepts;

• a set of relations relating lexical entries with concepts from C and relations
from R;

• A – a set of axioms bringing additional constraints on the ontology.

To this description we add the set of instances (I) which represent the individuals
of the concepts.

A concept is defined by one term, one notion (or semantical significance) and
a set of objects. There are two ways of interpreting the concepts: in intension or
in extension [33]. The concept is described in extension using the set of objects,
generally denoted as instances of the concept, while the concept semantics (intension)
is expressed by its properties and relations. If we consider the concept of happiness
we can consider that this concept is described in intension because we cannot verify
all the happiness in the world in order to correctly describe the concept. Thus, it is
important not to confuse the two descriptions. On the contrary, the concept grape
can be described in intension and extension, as the following example outlines.
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Example 3.3.1 Let us consider the grape element in the taxonomy in Figure 3.2
on page 35. We can extend its description as follows: a grape is a fruit that can be
eaten with cheese and used to cook beef or pork. White and red grapes are varieties of
grapes. In intension, grape concept is defined by using the following three concepts:
cheese, beef and pork. The Figure 3.3 presents the extension of Figure 3.2. �

Figure 3.3: Example of ontology.

We can note that the development of a concept is also based on other concepts,
either in terms of identity or in terms of difference. It is considered as an element
located within a structured network, a network representative of a knowledge domain
where concepts are linked by relationships.

These relations represent relevant associations between concepts as follows:

• subsumses the (is-a): generalization/specialization relation.

A taxonomy of concepts organizes the ontology concepts in a hierarchical struc-
ture. The concepts are connected using the relation of subsumption. We say
that the concept C1 is subsumed by the concept C2 if C1 has all the characteris-
tics of C2. We say also that the concept C1 is the child of the concept C2 or that
C2 is the parent of C1. Thus, we will have a difference between specific/general
concepts: C1 is more specific than the general concept C2.

Example 3.3.2 Let us consider the ontology presented in Figure 3.3; the
specific concept Grape is subsumed by the concept Fruits. �

• is a part of : aggregation/composition relation.

• is instance of : instances are individuals of concepts.

Example 3.3.3 In our case, the wine grape and red grape elements are indi-
viduals of Grape concept.
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• is in a relation r with (property).

A property connects concepts and the instances of these concepts. Generally,
a relation (property) relates two concepts called domain and range. A first
classification of properties is made by the type of the range:

– Object properties connect two concepts; in our example Grape concept is
connected to Cheese concept by the object property EatenWith, and to
Beef and Pork concepts by the object property UsedToCook.

– Data properties connect a concept to a data-type concept. They can be
viewed as attributes.

Another property classification can be outlined from the work of Guarino [94]
who mainly discussed about the importance of properties for concept definition.
First, we have the properties the are used for concept definition and they are
essential for the concept existence. Removing these properties implies the loss
of these concepts. Second, there are properties that are not crucial for the
concept existence, but they bring additional information about the concept in
the given domain.

Finally, axioms bring additional information to ontogies comparing to taxonomies.
Thus, they allow user to define new constraints in the ontology in order to make
implicit facts explicit, as presented in [192].

Designing ontologies is not an easy task. In this context, a set of criteria for
ontology designing evaluation were proposed by Gruber 1993 [90] as it follows:

• Clarity/Completeness – Ontology terms should be described objectively and
they should reveal their real meaning. As a result, definitions of concepts using
necessary and sufficient conditions are preferred to partial definitions.

• Coherence – It represents the measure which assesses the quality of an ontology.
For an ontology to be coherent, axioms should be described in such a manner
permitting consistent inferences.

• Extendibility – One important characteristic of ontologies is the reusability and
extendibility. Due to the formal representation of ontologies, one important
advantage is that, for a given project in a specific domain, it is very probable
to find ontologies already developed that the users can enrich with additional
information.

• Diversification of hierarchies – The more an ontology is well detailed concern-
ing its concepts, the easier it will be to add new concepts by using multiple
inheritance.

• Minimum semantic distance between concepts which are children of the same
parent – It is important to gather the most similar concepts, and create sub-
classes if necessary. It is estimated that a parent should not have more than
twenty children [181].
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3.3.2 Top level or domain ontologies ?

Ontologies can be classified following two directions: the level of detail and the level of
dependence on a particular task or point of view. The former classifies the ontologies
depending on the reference/shareable ontologies or off-line/on-line ontologies. Very
detailed ontologies are more interesting because they propose a powerful specification
of the vocabulary. Unfortunately, rich ontologies limit their development in collabo-
rative tasks, while very simple ontologies can be shared between collaborators since
they are easier to validate.

The second dimension allows ontologies to be classified in four classes depending
on their granularity: upper (or top-level) ontologies, domain ontologies, task ontologies
and application ontologies as suggested by Guarino 1998 [92]. Figure 3.4 presents the
relations between the 4 classes of ontologies. We see here granularity as the measure
for assessing the generalization/specialization of the concepts.

top level ontology

domain ontology task ontology

application ontology

Figure 3.4: Classes of ontologies according to their level of dependence on a particular
task or point of view [91].

Top-level ontologies define general concepts – as space, time, matter – which
are independent of a particular problem or domain. Domain ontologies and task
ontologies respectively describe the vocabulary of a certain domain, or a certain task.
The former are composed of domain concepts and the relations that connect the
concepts, while the latter describes how to solve and/or to manage a given task. The
relation of generalization/specialization in the top of Figure 3.4 is explained by the
fact that domain and task ontologies detail the description of concepts used in top
level ontologies.

Application ontologies are specialized from domain and task ontologies because
they define concepts from these two types of ontologies. Usually, the concepts corre-
spond to roles of domain entities in executing an activity.
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3.4 Semantic Web Languages – Toward the Formaliza-
tion of Ontologies

In the last decade, information over the Web grew more and more making the Web
information search nearly impossible. For the first time, the Semantic Web was intro-
duced in [24] by the W3C7 founder, Tim Berners-Lee, and discussed along multiple
papers as [25]. Semantic Web proposes a machine-usable content Web [209], defined
by Berners-Lee [24, 25] as an extension of the current Web in which information is
given well-defined meaning, better enabling computers and people to work in cooper-
ation. This definition is discussed in the Econtent Magazine and Trippe 2001 [205],
suggested that something has semantics when it can be processed and understood by a
computer, such as how a bill can be processed by a software package. This definition
can be explained as follows: the Semantic Web proposes to extend the traditional
Web with well-structured annotations which has as main aim to give to the Web
a content that can be understood both by humans and by machines. In order to
determine the meaning of a collection of documents over the Web, it is necessary to
formalize the representation of these documents.

URI Unicode

XML Namespaces

XML Query XML Schema

RDF Model & Syntax

RDF Schema

Ontology

Rules

Logic

Proof

Trust

Figure 3.5: Semantic Web Layer Cake: enabling standards and technologies for the
Semantic Web (adapted after Tim Berners-Lee, W3C).

In the last decade, W3C worked in order to propose formalisms for meta-data
representation over the Web. An hierarchy – layer cake – of these representation
languages/models is presented in Figure 3.5 and the main languages are detailed
below.

We should note that the evolution of the Semantic Web layer cake is compara-
ble with the evolution of knowledge representation formalisms (see Figure 3.6). In
this paradigm, Semantic Networks [188] were proposed in early 70s as a model for
relational references including conceptualization. In the same line of Knowledge Rep-
resentation formalism, Frames [90] were introduced in 1993 as a model described
using classes, slots, facets and instances. On the top of the stack, Description Logic

7http://www.w3.org/
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– DL [14] was developed as an extension of the first two ones incorporating formal
logic-based semantics and proposing an inference process.
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Figure 3.6: Comparison between the evolutions of Knowledge Representation formalisms
and Semantic Web languages (adapted after [57]).

A similar evolution of representation languages is present in the field of Semantic
Web. Thus, starting with eXtensible Markup Language – XML and RDF the se-
mantic is introduced over the web. RDFS completed later RDF, and OWL extends
RDF and RDFS in order to propose an accurate and flexible language for ontology
representation.

3.4.1 XML Language and RDF Structure and Syntaxes

The most primitive representation language developed in Semantic Web is XML [212].
Suitable for transmission via networks, it is flexible and it allows users to easily insert
annotations in a document. However, it does not allow users to describe semantic
information in a large way. In spite of this, XML language is very present in this
area and it has been chosen as the basic language for other languages proposed in
the Semantic Web. The notion eXtensible from the large appellation of XML denotes
its most important characteristic: XML is defined as a metalanguage – it permits to
represent other languages in a standardized way [121].

Example 3.4.1 In Table 3.1 we present an example of an XML document. We can
note that fruits, fruit and from are elements of the XML document, and name is an
attribute of the element fruit.

XML is only a syntax for data structures representation, and the semantics of
represented data is not available. In order to specify the vocabulary used, Document
Type Definitions – DTDs and XML Schemas were proposed. Thus, in our case, a
DTD can contain the vocabulary used in the XML document: fruits, fruit, type and
from, but also it can impose the existence of an attribute name for the element fruit.
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Table 3.1: Example of an XML document.

< ?xml version=”1.0” ? >

< fruits>

Fruits in supermarket

< fruit name = ”Grape” >

< type > White < / type >

< from > France < / from >

< / fruit >

< / fruits >

Using XML language, information is represented over the Web with an implicit
semantics – elements are easily understandable by humans, and, in this context, they
can be easily shared. However, there is a great disadvantage of implicit semantics:
the elements are not clearly defined and they are ambiguous. Consequently, it will be
very useful to be able to semantically connect web pages and to develop a semantics
of page knowledge in oder to help the web research tools.

In order to fulfill the drawback of XML, W3C introduced Resource Description
Framework – RDF [123] as the first language semantic oriented that describes re-
sources over the Web. RDF has a very simple data model that can be summed up as
follows: everything is a resource that is connected with other resources via properties
[214]. A resource is anything that is identifiable by a Uniform Resource Identifier
(URI) reference [140]. Properties are also defined as resources, but they are used in
order to define relations between resources.

The fundamental composition of all expressions in RDF is a collection of triplets
< subjet, property, objet > in which the elements can be URIs, literals or variables.
The RDF triplet can be viewed as a statement, and moreover, as presented in Figure
3.7, RDF statements can be gathered in a directed labeled graph (DLG) with the
subjects and the objects as nodes, and the properties as edges connecting subjects to
objects.

Figure 3.7: Graph model of an RDF statement (triplet) (adapted after [123]).

Example 3.4.2 The Table 3.2 presents an RDF document which is represented by
a directed labeled graph in Figure 3.8. This example consists of a list of Fruits in a
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supermarket. We have several fruits characterized by a name, a type, and the origin.

Table 3.2: Example of an RDF document.

< ?xml version=”1.0”? >

< rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:list=”http://www.w3.org/list#” >

< rdf:Description rdf:about=”http://www.w3.org/list#Fruits >

< list:Text > Fruits in supermarket < / list:Text >

< rdf:Description rdf:about=”http://www.w3.org/list#Fruit/ >

< list:Name > Grape < / list:Name >

< list:Type > White < / list:Type >

< list:from > France < / list:From >

< / rdf:Description >

< / rdf:Description >

< / rdf:RDF >

Figure 3.8: RDF graph for the XML document in Table 3.2.

RDQL [179], SeRQL [40], and SPARQL [171] are the main query languages pro-
posed in the literature for the RDF language; nevertheless SPARQL is currently the
most widely used, being defined by W3C as a standard. SPARQL is based on the
notion of RDF triple patterns and its semantics is based on matching triples with
RDF graphs.
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3.4.2 RDFS and OWL meta-ontologies

It is important to note that RDF is designed to provide a basic object-attribute-
value data model for metadata. Other than the intentional semantics described only
informally in the standard RDF makes no data-modeling commitments [54]. Thus,
RDF data model does not provide mechanisms for defining the relationships between
properties (attributes) and resources. Just as XML Schema (DTD) provides a vo-
cabulary definition facility, RDF Schema permits to developers to define a particular
vocabulary for RDF data and specify the object to which these attributes can be
applied [35]. In other words, RDF Schema (RDFS) is extending RDF vocabulary
proposing to organize classes in taxonomies using subClassOf property, and, in the
same idea, subPropertyOf permits to create taxonomies of properties. The second
major improvement brought by RDFS is the possibility of defining domain and range
for a property, i.e. the class to which the property is applied, and the class of values
of the property. Last, but not least, RDFS proposes several relationships between
properties enriching the representation language.

Unfortunately, RDF does not offer background for axiom representation and rea-
soning with axioms. In order to fulfill this drawback, several improvements on RDFS
were proposed to express axioms as rules and to define classes and properties using
other classes et/or properties [55].For this purpose, the language Ontology Interchange
Language – OIL [66, 67] was developed. OIL defines new language primitives using
description logics methods, and to define more complex ontology structures.

Later, OIL merged with DAML language in order to create DAML+OIL8. In this
context, DAML - DARPA Agent Markup Language [102] became the first language
proposing a basic primitives for simple inferences and simple requests. For example,
let us consider the following two phrases Parenthood is a more general relationship
than motherhood andMary is the mother of Bill. DAMLmakes possible the extraction
of new facts by inference as Mary is the parent of Bill. Moreover, a query system is
able to answer questions such as Who are Bill’s parents?, even if all the necessary
facts are not stated effectively.

In the evolution of ontology languages, RDF/RDFS joined the last generated
language, DAML+OIL, forming the new standard for knowledge representation over
the web – OWL. OWL was introduced as a proposition for an accurate and flexible
representation language for ontologies; it is based on the RDF language – the class-
and property-structure of RDFS – and it improves it from different points of view.
First, we will stop on the features common to both OWL and RDF:

• OWL integrates the class declaration and organization using the subsumption
relation;

• OWL declares properties between domain and range;

• OWL organizes properties into hierarchies.

In addition to RDF/RDFS capabilities, OWL brings essential improvements:

8http://www.w3.org/TR/daml+oil-reference
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• OWL can describe classes as logical combinations (intersections, unions, or
complements) of other classes, or as enumerations of specified objects;

• OWL is able to state that a property is transitive, symmetric, functional, or is
the inverse of another property;

• OWL can express which individuals belong to which classes, and what the
property values are for specific individuals;

• OWL can provide restrictions on how properties behave locally on a specific
class. This improvement was inherited from Description Logic (which is dis-
cussed in the following Section) and is one of the most important improvements
of OWL. The feature offers the possibility to define classes where particular
properties are restricted; thus, only the individuals satisfying the set of restric-
tion are individuals of the class;

• OWL proposes to infer information in ontology with the main purpose to gen-
erate interesting new knowledge.

OWL syntax is based on the RDF one, and the two important OWL constructors
are specializations of the corresponding RDF constructors – class and property con-
structors – owl: Class and, owl: DataProperty or owl: ObjectProperty. Figure 3.9
presents the relation between the main constructors in OWL and RDF.

Figure 3.9: OWL constructors inherited from RDF constructors (adapted after [10]).

The OWL language provides three increasing expressive sublanguages [10]:

• OWL Lite is a very simple model. It is proposed for the organization of concepts
and properties in hierarchies, but it permits also to define certain restrictions
over properties. Due to the limitation of restrictions used in this sublanguage,
the computability time of inference processes is limited..

• OWL DL (Description Logic) provides an important expressiveness, and, at the
same time, it restricts the utilization of OWL and RDF constructors in order to
ensure decidability, computational completeness and useful reasoning methods.
It is based on Description Logics and it includes all OWL language constructors
based on restrictions.
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• OWL Full – The main advantage of OWL Full is that it provides no limits in
expressiveness. For example, the type restriction is not as strict as in OWL
DL; in OWL Full a defined class can be treated both as a collection of different
individuals and as an individual. The great inconvenient of OWL Full is that
it is so powerful in expressiveness that it became undecidable.

The differences regarding the features integrated in each of three languages are
presented in Table 3.3.

Table 3.3: Differences between OWL Lite, OWL DL and OWL Full.

OWL Lite OWL DL OWL Full

(sub)classes, individuals

(sub)properties, domain, range

conjunction negation

(in)equality disjunction meta-classes

cardinality 0/1 full cardinality modify language

datatypes enumerated types

inverse, transitive hasValue

symmetric properties

someValuesFrom

allValuesFrom

3.4.3 Descriptions Logic and OWL

The aim of the knowledge representation research field was to find a suitable language
to describe the world – or an application domain – that can be properly used in order
to create intelligent applications. In this purpose, Description Logic (previously called
terminological logic) was introduced and it represents a family of class-based (concept-
based) knowledge representation formalisms [14]. Compared to its predecessors, its
particularity comes directly from its name – Logic – which outlines that this set of
KRs are based on a formal and logic semantic. That is the reason why it can be
considered as a subset of First-Order Logic (FOL) [32] with a decidable inferencing
process.

Generally, a Description Logic knowledge base is composed of two components:

• a terminological box – TBox – containing the terminology (the vocabulary) of
the application domain. The vocabulary is composed of two important elements:

– the concepts – corresponding to classes in OWL and represent sets of in-
dividuals (i.e. Fuits or Meat);
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– the roles – corresponding to properties in OWL and represent binary re-
lations between concepts (i.e. isEcological or isDiet).

• an assertional box – ABox – containing assertions about individuals (instances)
of the concepts – C(a) – or about roles – R(a, b) –, where C is a concept, R a
role (relationship or property), and, a and b individuals (i.e. pear(white grape)
or isEcological(white grape, true)).

Table 3.4: Acronym meaning – Description Logic expressiveness.

Symbol Meaning

ALC AL with Complement

S ALC with transitive properties

H Property hierarchy (subproperties – rdf:subPropertyOf )

O Nominals – enumerated classes of object value restrictions

(i.e. owl:oneOf, owl:hasValue)

I Inverse properties

N Cardinality restrictions (owl:Cardinality, owl:MaxCardinality)

Q Qualified property restrictions

(D) Data types

F Functional properties

The AL-language (attributive language) is the minimal description language. In
the AL-language the following concept descriptions are available: atomic concept,
universal concept, bottom concept, atomic negation, intersection, value restriction,
and limited existential quantification. Each new Description Logic is based on AL-
language and it enriches the terminology by adding to atomic concepts and atomic
roles concept constructors in order to create new concepts.

Nevertheless, a great part of research in this field deals with the improvement
of expressiveness and computational properties. Thus, the expressive power of the
DL affects directly the decidability and the complexity of the inference process. It is
obvious that we find two cases: first, if the DL is very expressive the probability for
a undecidable inference problem is very high; second, less (minimal) expressive DLs
have decidable inference process, but they are limited in expressiveness [105].

The design of OWL was significantly influenced by Description Logics, and par-
ticularly by the choice of language constructors. In fact, each OWL language is based
on different expressive Description Logics, and the difference comes from the inten-
tion to create three OWL languages with three different types of expressiveness and
decidability.

OWLDL and OWL Lite are based on the expressive Description Logic SHOIN (D)
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Table 3.5: List of OWL DL constructors.

Classes

A

intersectionOf(C1 . . .Cn) C1 ⊓ · · · ⊓ Cn

unionOf(C1 . . .Cn) C1 ⊔ · · · ⊔ Cn

complementOf(C) ¬C

oneOf(o1 . . . on) {o1} ⊔ · · · ⊔ {on}

restriction R

someValuesFrom(C) ∃R.C

allValuesFrom(C) ∀R.C

hasValue(o) R : o

minCardinality(n) ≥ n R

maxCardinality(n) ≤ n R

cardinality(n) = n R

restriction T

someValuesFrom(D) ∃T.D

allValuesFrom(D) ∀T.D

hasValue(o) T : o

minCardinality(n) ≥ n T

maxCardinality(n) ≤ n T

cardinality(n) = n T

Data Range

B

oneOf(v1 . . . vn) {v1} ⊔ · · · ⊔ {vn}

and SHIF(D) respectively (see Table 3.4 for acronym meaning). OWL DL and OWL
Lite provide the expressiveness of two powerful DLs, but OWL Lite limits the com-
plexity: comparing to OWL DL, OWL Lite does not permit enumerations, individuals
to occur in description or class axioms, and cardinality restrictions are limited to 0
and 1. The main advantage is that, with the loss in expressiveness power, OWL Lite
gains in tractability. OWL Full is based on OWL DL, but it overpasses it. Unfor-
tunately, the inference process is undecidable, and moreover, the abstract syntax of
OWL DL is inadequate, and the RDF/XML syntax should be used.

In Table 3.5 we present the main constructors integrated in OWL DL, where A
is a class name, C is a description, o is an individual, R is an object property, T is
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a data property, B is a data type, D is a data range, v is a value and n is a non-
negative integer. In the first column, constructors are expressed in OWL abstract
syntax, while in the second column, they are presented in Description Logic syntax.

In the following, we will consider restriction constructors and we will show their
interest in OWL ontologies. An ontology concept is denoted as a restriction concept
(defined concept in OWL language) if it is defined using necessary and sufficient con-
ditions based on at least a restriction constructor. A restriction constructor describes
a constraint on relationships that the individuals participates in for a given property,
and it has as consequence the limitation of individuals belonging to a concept.

Three types of restrictions are available as follows [104]:

• Quantifier Restrictions – propose, as their name denotes, a quantification of
the individuals composing the class. This type of restrictions is composed of a
quantifier, a property, and a filler. Two types of quantifier restrictions may be
used:

– The existential quantifier – someValuesFrom – (or (∃) in DL), can be read
as at least one, or some;

– The universal quantifier – allValuesFrom – (or (∀) in DL), which can be
read as only.

There is an important difference between these two quantifier restrictions which
is generally difficult to understand by novice users. The existential quantifier
is employed to denote that a class contains those individuals that have at least
one relationship along a certain property to an individual that is a member of a
second class – the filler. On the contrary, the universal quantifier unifies all those
individuals that have only relationships along a certain property to individuals
from a well defined class. In other words, individuals from classes defined by
the existential quantifier can have relationships along the same property to
individual from another class, while universal quantifier does not allow it.

Example 3.4.3 To exemplify the quantifier restrictions and to present the
differences between them, we will consider an ontology with:

– a FoodItem class containing all food products sold in a supermarket (as
individuals), and

– the Country class with two sub classes: WesternEurope and EasternEurope
regrouping as individuals all countries in west and, respectively, in east of
the Europe;

– isFromCountry property defines the country(s) each product comes from.

If we want to define a new class – EasternEuropeProducts – containing the
products produced in Eastern Europe countries we can use one of the two
quantifiers in function of the semantic that we want to express.

The structure of this ontology is drawn in Figure 3.10.
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Figure 3.10: The ontology in 3.4.3 example.

Figure 3.11 presents the difference of using the two techniques. The upper part
presents the use of existential restriction:

EasternEuropeProducts ≡

FoodItem ⊓ isFromCountry someValuesFrom EasternEurope

or

FoodItem ⊓ ∃ isFromCountry.EasternEurope

CountryFoodItem

EasternEuropeProducts

EasternEurope

WesternEurope

X XX

CountryFoodItem X XX

X XX

Legend

Individual
Class
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Class-Individual relation
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Figure 3.11: A semantic of using quantifiers. Upper figure presents the semantic of the
Existential Restriction – ∃ isFromCountry.EasternEurope, while the bottom one presents a
Universal Restriction – ∀ isFromCountry.EasternEurope.

That is to say that we consider that the EasternEuropeProducts class contains
those food items that have as provenance country at least one Eastern Europe
country. This interpretation could help in cases when the same product could
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be imported from different countries. For instance, in France, strawberries
are produced in France, but we import also strawberries from Spain. The
particularity of this interpretation and of the existential restriction use is that
individuals of EasternEuropeProducts are not limited to have as provenance a
country from the East of Europe. It does not exist a product coming from
Eastern Europe and which is not in this class.

The other part presents the use of universal restriction:

EasternEuropeProducts ≡

FoodItem ⊓ isFromCountry allValuesFrom EasternEurope

or

FoodItem ⊓ ∀ isFromCountry.EasternEurope

The difference between this interpretation and the last one, is that, in this case,
the single provenance possible for the products is only Eastern Europe countries.

Figure 3.12: Graphical representation of restriction concept based on hasValue restric-
tions (adapted from [104]).

• hasValue Restrictions (�) describe a class of individuals that are related to
another specific individual along a specified property. The difference with the
quantifier restriction is that the individuals that are described by the quantifier
restriction are related to any individual from a specified class along a specified
property.

Example 3.4.4 We will base our example on the scenario given in the pre-
vious example. Let us consider that we integrate one data property in our
ontology – Fooditem.isDiet() – a boolean property which denotes if a product
is a dietetic one or not.

Based on this data property, we are able to define a concept describing the
individuals related to the boolean data TRUE by the isDiet property:

DietProducts ≡ FoodItems ⊓ isDiet hasV alue TRUE
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In Figure 3.12 we present graphically the restriction concept DietProducts. The
difference between quantifiers and hasValue restrictions is that the latter limits
the individuals of a class to those individuals that are connected along a given
property to a given individual. It is not forbidden for the individuals to be
connected to other individuals along the same property.

• Cardinality Restrictions are used to test the number of relationships that
an individual may participate in for a given property and with different val-
ues/objects.

3.4.4 Query Languages and Inference Engines

To access the asserted and inferred facts represented in Semantic Web languages, a
common, well-defined interface is needed. This is accomplished through standardized
query languages, which have the advantage of a higher abstraction level.

Basically, query languages can be categorized by the storage format of the ontology
on which the queries can perform [81]. As query languages are used to access ontolgies,
they are based on the OWL, RDFS or DAML/OIL format. The ontology query
language syntax is derived from other popular query languages, as SQL, or functional
and logic programming languages, as LISP. Depending on the language, the expressive
power of the queries may differ.

Although SPARQL achieves to define a standard in composing and submitting
conjunctive queries to RDF documents, it does not take in charge the inference ca-
pabilities, taxonomic queries and the particularities of the OWL language. Unfor-
tunately, it is quite difficult to provide a semantics for these query languages under
OWL-DL semantics because RDF representation mixes the syntax of the language
with its assertions.

In order to fulfill these drawbacks, SPARQ-DL was introduced by Sirin and Persia
[186]; it is defined as a substantial subset of SPARQL, which is designed for querying
certain OWL-DL based semantics. SPARQL-DL has the ability to combine queries
about the schema (classes and properties) and the data (individuals) that brings new
challenges to query answering. Moreover, one of its grate advantages is that it can
be implemented on top of existing OWL-DL reasoners (like Pellet).

As we could see in the previous section, the description logic terminology and
assertion boxes can be significantly enriched by constructors and, we can quickly
arrive to inconsistent structures.

Example 3.4.5 For instance, we will consider the previous example presented in
Figure 3.11 and, more precisely, the case of the universal restriction. For this example,
we rename the defined concept in NewProducts. Thus, the NewProducts concept is
defined as following:

NewProducts = FoodItem ⊓ ∀ isFromCountry.EasternEurope.
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Next, we will consider that we add to this definition the ∀ isFromCountry. West-
ernEurope restriction, thus, the definitive definition is:

NewProducts ≡ FoodItem

⊓ ∀ isFromCountry.EasternEurope

⊓ ∀ isFromCountry.WesternEurope.

Now, the concept NewProducts regroups those products only from Eastern Europe
countries, and, at the same time, only from Western Europe countries. It is obvious
that it is not possible for a product to come only from two countries. Thus, the
definition that we proposed is inconsistent. �

In order to easily find these types of errors, reasoners over the description logic
were proposed. They attempt to find inconsistencies such as:

• Subsumption – to check whether a concept is more general than another: C ⊑ D;

• Equivalence – to check whether two concepts are equivalent: C ≡ D;

• Instantiation (membership) – to check weather an individual i is a member of
a concept C: i ∈ C;

• Correctness – to capture intentions of domain experts;

• Minimal redundancy – to capture unintended synonymous.

Furthermore, reasoners infer new information by reorganizing the concepts tax-
onomy and by defining the real relationships between individuals and concepts. For
instance, let us consider that pear is the instance of the FoodItem concept, and
that isFromCountry(pear, Romania) – pear products come from Romania, where
Romania is an instance of EasternEurope concept (Romania is a country in the East
of Europe). If we consider EasternEuropeProducts defined by a universal quantifier,
after the inference, the pear individual will also be an instance of the EasternEu-
ropeProducts concept because the former has all its isFromCountry relationships to
instances of EasternEurope concept.

As a global consequence, a description logic-based system can be described by the
architecture in Figure 3.13. The latter is composed of several levels: first, description
logic defines application domain terminology and its concrete elements (individuals);
second, inference engine verify the consistency of the proposed system, and also infer
new information, and in the last, a user interface.

In Semantic Web, OWL DL and OWL Lite languages benefit of all the advantages
of Description Logic among which DIG interface for DL reasoners is one of the most
important. Thus, the inference engines developed for the Semantic Web languages
were designed starting form DL reasoners.

Nowadays, a great number of inference engines free or commercial exist with
the main aim to extract new knowledge such as Racer [96], Pellet [158], Fact [107],
Fact++ [206], Surnia9, F-OWL10 and Hoolet11. A great part of these engines were

9Surnia web site: http://www.w3.org/2003/08/surnia/
10F-OWL web site: http://fowl.sourceforge.net/
11Hoolet web site: http://owl.man.ac.uk/hoolet/
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Figure 3.13: Architecture of a description logic system [106].

designed to reason over description logics, but they were also adapted to OWL on-
tologies. F-OWL, Hoolet and Surnia are based on experimental reasoning methods
which point out interesting performances for simple problems; unfortunately, these
three reasoners are not suitable for important projects due to their inefficacy and to
the undecidability of the integrated algorithms. Thus, in this section we will concen-
trate on the rest of inference engines: Fact, Fact++, Racer, and Pellet. Table 3.6
presents a comparative study between these four reasoners.

Table 3.6: Comparative study between the main inference engines [69].

Racer Pellet Fact Fact++

Description Logic SHIQ,SHF SHIN (D) SHOQ(D) SHIF(D)

SHON (D)

Implementation C++ Java Common Lisp C++

Inference TBox/ABox TBox/ABox TBox TBox

API Java yes native yes yes

OWL OWL DL OWL DL OWL DL OWL Lite

DIG Interface yes yes yes yes

Direct Connection non yes non non

We can remark that all these engines reason over TBox and ABox, apart Fact and
Fact++ engines which are specialized in reasoning only over TBox. That is to say
that Fact and Fact++ (the new C++ version of Fact) do not reason over individuals,
but only over the terminology box. This is an important inconvenient for a reasoner,
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knowing that a great part of applications is based on ABox reasoning.
Further, we can note that a great part of reasoners is based on the DIG interface.

DIG interface is a standard interface/protocol that was suggested in order to propose
a common interface to description logic reasoners for these ones to be accessed by
different applications. But, invoking reasoners through a DIG interface has important
limitations – ontologies suffer different modifications when being sent to the reasoner.
Pellet is the only reasoner which integrates a direct connection, and, moreover, it is
the native reasoner in Jena12. In this context, Pellet is the more appropriate reasoner.

3.5 Conclusion

In this Chapter, we presented different formalisms for knowledge representation and
we stopped over the Semantic Web languages: XML, RDF and OWL. In a first part,
we studied the development of representation formalisms from controlled vocabularies
to ontologies. Next, we discussed the advantages that ontologies provide as knowledge
representation formalism starting with classical structure – concept, properties and
axioms –, and ending with inference engines.

Web Ontology Language (OWL) was the center of the second part of this Chapter.
We outlined the advantages of using this Semantic Web language, how description
logic guides it, and the application of inference engines over the OWL knowledge. We
concluded with a brief study over the available inference engines for OWL.

12Jena web site: http://jena.sourceforge.net/
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4.1 Introduction

In the Chapter 2, we proposed a brief description of the KDD field, and more par-
ticularly, we detailed the association rule mining technique. The two main problems
outlined during this chapter were: the lack of rapidity and of efficiency of mining
algorithms. The former deals with the exponential characteristic of execution time
of mining algorithms, and the latter with the useless of discovered rules due to their
huge number which makes impossible their analyze by a user.

In this context, interestingness measures evaluate the relevance and the interest
of the discovered rules. Interestingness measures were classified by Piatetsky-Shapiro
and Matheus 1994 [166] in objective and subjective. Objective or data-driven measures
assess discovered rules from a data (statistical or descriptive) point of view. They
have a main advantage of being autonomic and of generating a satisfactory result
without user implication. Nevertheless, these measures could not ensure an important
reduction of rule number, and moreover, the quality of rules for different users varies.
In other words, a user can find a set of rules interesting, while another user could find
it trivial. This Chapter states about the interest of objective measures and it makes
a brief description and presentation of their advantages/inconvenience.

Subjective or user-driven measures attempt to select those rules corresponding to
a given user. In this context, it is important to find the right representation model for
the background knowledge of each user. In Chapter 3, we studied different formalisms
for knowledge representation. In the second part of this Chapter we make a survey
over the approaches using those knowledge representation formalisms to filter the
interesting rules.

The Chapter concludes with a comparative study between post-processing and
measure-embedded mining techniques.

4.2 Interestingness Measure Evolution

In the first years of their apparition, knowledge discovery techniques were considered
as simple processes in the way that all extracted patterns were presented to the
user. Gradually, these processes evolved and important methods came up for pattern
selection. In Figure 4.1, we compare three important categories of pattern discovery
techniques (here, we are not interested in the specificity of data mining techniques
applied over data, so the data mining process is treated as a closed black box).

First, in Figure 4.1–a) we can observe a graphical representation of the most
simple process of knowledge discovery. Its principal advantage is that it generates
a complete set of patterns satisfying the given conditions which are generally very
simple. Nevertheless, this advantage becomes its main drawbacks – the important
volume of patterns presented to the user, and, the time consumed in a such generation
process. Therefore, the selection of interesting patterns became a major problem
in KDD field and interestingness measures were proposed to assess the quality of
patterns.

Figures 4.1–b)/c) outline two techniques to integrate interestingness measures.
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Figure 4.1: Different techniques for the KDD Process (proposed in [183] and revised later
in [143]).

The first technique is the application of interestingness measures in a phase of post-
processing of discovered knowledge (Figure 4.1–b)), and only a selection of discovered
patterns is presented to the user. This solution is quite easy to develop, but not ef-
ficient due to the important execution time of the pattern generation phase. The
second solution is the application of interestingness measures during the pattern gen-
eration phase (Figure 4.1–c)). This technique is more interesting than the former,
being more efficient because the patterns that are not interesting are pruned early
enough. Nevertheless, this technique is difficult to conceive.

In 2006, Geng and Hamilton [83] introduced a new description for the knowl-
edge discovery process (Figure 4.2) taking into account three possible roles for the
interestingness measures:

• metrics can be used to prune uninteresting patterns during the mining process
– minimizing the search space and improving the efficiency;

• metrics can be used to rank patterns after the mining process;

• metrics can filter the patterns in the post-processing task.

Section 4.6 offers a complete comparative study between the utilization of metrics
as post-processing techniques or directly in the mining algorithms.

In the last decade, interestingness measure field had an important activity and,
more particularly, in the association rule mining field. A hight number of measures
was proposed in the literature, and for the first time in 1994, they were classified by
Piatetsky-Shapiro and Matheus [166] as follows:

• objective (or data-oriented) measures are metrics depending on data;

• subjective (or user-oriented) measures take into account the user goals and
beliefs.
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Figure 4.2: Roles of interestingness measures in the KDD process [83].

This classification was refined by Silberchatz and Tuzilin 1995 [183] who intro-
duced a first classification (discussed in Section 4.4) of subjective measures in action-
ability and unexpectedness.

Later, in 2006, Geng and Hamilton [83] proposed a new classification, taking
into consideration the researches done in the field and the proposed interestingness
measures:

• Objective Measures:

– Based on probability – these measures evaluate the generality and the
reliability of a rule and generally, they are defined starting from a 2 × 2
contingency table;

– Based on the form of the rules – these measures evaluate a rule comparing
to its neighborhood; the more the rule is different from its neighborhood,
the more it is considered interesting (i.e. peculiarity, surprisingness and
conciseness).

• Subjective Measures – comparing to objective measures, these measures are not
based on database properties, but on user goals and beliefs. They are classified
in:

– Surprisingness (unexpectedness);

– Novelty and/or actionability.

• Semantic Measures – domain-based measures:

– Utility – generally, this type of measure is based on the notion of weighted
association rule mining [44];

– Actionability - this type of measures is business-oriented and assesses the
help that the mining result can bring to the user in taking decisions.
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Surely, this new classification is more precise than the first one. Nevertheless,
the measure categories are not disjoint and it is easy to confuse one with the other.
For instance, let us consider the case of the Utility category. Speaking of the first
approach proposed, weighted association rule mining, the action of weighting the
patterns or the transactions is made by the user. Thus, we can consider that this
is a subjective measure and not a semantic one. In the same way, we can view
actionability measures as user or business oriented, so, in some cases, it should be
more appropriate to consider actionability as a subjective measure.

4.3 Objective Interestingness Measures

Objective measures are defined as metrics capturing dependencies among variables
in a dataset with the main goal to assess the association rules. Their principal char-
acteristics are as follows:

• they are domain-independent – they do not assess the rules by using information
from the domain field;

• they are partial user-dependent – understanding by this that the user is re-
quested to give threshold levels for the measures, but he/she is not interactively
involved in the mining process;

• they are fully data-dependent – giving the interestingness in terms of statistics
or information theory applied over the database.

4.3.1 Presentation

An objective measure is generally computed on the contingency table of itemsets
frequency over the database, D. In Table 4.1 we show an example of contingency
table for the X, Y binary variables, X,Y ⊆ I and X ∩ Y = Ø, where I is the set of
attributes in the database. Let us note with NX and NY the number of transactions
verifying X and, respectively, Y over the total set of N transactions. In this context,
we can define X̄ as the negation of X; in other words, X̄ verifies the complementary
set of transactions verified by X, thus it verifies NX̄ = N − NX transactions. Now,
we can define the frequency of X as: P (X) = NX

N
.

Table 4.1: Contingency table for X and Y binary variables

Y Ȳ

X NX,Y NX,Ȳ NX

X̄ NX̄,Y NX̄,Ȳ NX̄

NY NȲ N
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In this context, we define the examples of the rule as the set of transactions
verifyingXY , i.e. NX,Y , and the counterexamples of the rule as the set of transactions
verifying X but not Y , thus verifying XȲ , i.e. NX,Ȳ . The more a rule has fewer
counterexample and numerous examples, the more it is interesting.

Proposed with the introduction of association rules, support and confidence [5]
are the most basic and widely used interestingness measures. Support evaluates the
rule from the generality point of view and it is equal to the frequency of the two
itemsets (antecedent and consequent) in the data:

support(X → Y ) =
NX,Y

N
.

Example 4.3.1 Let us take the example of supermarket basket. The following
association rule apples→ milk is discovered by the mining process and its support is
52%. That is to say that 52% of baskets contains at the same time apples and milk.
�

The confidence is viewed as the strength rate of an association rule, assessing the
validity of the rule. This metric is computed as the fraction between the frequency
of the two itemsets and the one of the antecedent. This metric can be formalized as
follows:

confidence(X → Y ) =
NX,Y

NX

.

Example 4.3.2 Let us consider that the association rule apples → milk has the
confidence of 83%. That is to say that 83% of baskets containing apples, contain also
milk. �

Unfortunately, a great part of past research [19, 202] agreed on the limitation of
the rule evaluation by only these two metrics. The limit can be viewed at several
levels. First, the huge amount of rules limits the utility of the technique, and second,
the triviality of a great part of the generated rules implies a real necessity of new
metrics.

As a consequence, in the last two decades, a surprising number of interestingness
measures was developed in order to fulfill the drawback of the basic metrics. Never-
theless, the problem is far from being solved because new questions have been raised:
How could someone know which are the best metrics to use in a specific situation
and a particular application field?. Or, pushing this issue further, it is reasonable to
question whether the measures can produce similar results when applied to a set of
association rules [193].

A great number of surveys attempt to characterize, to differentiate, to classify and
to rank the interestingness measures [19, 30, 83, 95, 111, 143, 202]. In this section
we will briefly resume the main propositions and we will discuss the classification of
measures suggested by Blanchard and al. 2009 [30].

In 1991, Piatetsky-Shapiro proposed a first set of principles concerning the value
of a metric applied over an association rule [165]. If we consider the association rule
X → Y , Piatetsky-Shapiro outlined that:
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• the metric is equal to 0, if X and Y are statistically independent ⇒ P (X,Y ) =
P (X)P (Y );

• the metric is monotonically increasing with P (X,Y ), when P (X) and P (Y )
remain the same;

• the metric is monotonically decreasing with P (Y ).

Starting from these three principles, several new properties/classifications are sug-
gested. In a first attempt, Hilderman and Hamilton 1991 [103] introduced five inter-
esting principles: minimum value, maximum value, skewness, permutation invariance,
transfer. Later, Tan et al. 2004 [202] pointed out five important properties: symme-
try on variable permutation, invariance on row or column scaling, antisymmetry on
row/column permutation, invariance on row and column permutation, no relationship
with transaction not dealing with the rule. But, symmetric/antisymmetric properties
cannot be defined for all the interestingness measures (i.e. the confidence), thus, the
authors proposed to transform each asymmetric measure into a symmetric measure.

Lenca et al. 2004 [128] suggested five properties to evaluate an interestingness
measure: the metric has a constant value if there is no counterexample; convex
decrease is desirable when few counterexamples are added; increase with the total
number of records; facility to fix a threshold; and facility of its comprehension. For
more details on principles of interestingness measure you can refer to [83, 111].

4.3.2 Semantics-Based Classification

In the following, we will focus on the methods for classifying interestingness mea-
sures, and, more precisely we will discuss the method introduced by Blanchard et al.
in 2009 [30]. The proposed method classifies the interestingness measures according
to the subject, the scope and the nature of the measure. In other words, a metric is
evaluated according to the notion that it measures, the elements regarding its results
concern, and the type of the metric: descriptive or statistical.

Subject-based classification. According to the subject, there are two situations
when the rule interestingness takes extreme valuesNX,Ȳ = min(NX , NȲ ) andNX,Ȳ =
max(0, NX+NY −N). Between these two cases, there exist two important situations
when rules cannot be considered interesting, being non-oriented. In the following we
will discuss these two specific situations: the independence and the equilibrium. In
consequence, if a rule is in independence or equilibrium, it is not interesting for the
mining process, thus it should be pruned. On the contrary, the deviation cases could
give interesting rules. In other words, the metrics should be able to quantify the
deviation from these two situations.

A rule is in the situation of independence if its variables, X and Y , are indepen-
dent. In consequence, each variable brings no information about the other (knowing
the value of one of them does not influence the distribution of the other variable) which
can be formalized as follows: P (Y \X) = P (Y \X̄) = P (Y ). In the case of indepen-
dence, the probability of having at the same time X and Y is P (X∩Y ) = P (X)P (Y )
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and the number of rule examples will be NX,Y = NP (X)P (Y ) = NXNY

N
. The way

of deviating from the independence is to have the two variables correlated, and two
types of correlations are possible: first, the two variable could be positively corre-
lated (P (X ∩ Y ) > P (X)P (Y )), and, second, they could be negatively correlated
(P (X ∩ Y ) < P (X)P (Y ))

Definition 4.3.3
An interestingness measure, called mi, evaluates a deviation from independence

if it has a constant value at the independence, vi: mi(X → Y ) = vi. �

On the other hand, a rule is in the situation of equilibrium if it has the same
number of examples and counterexamples, NX,Y = NX,Ȳ = NX

2
[29]. That is to say

that, the variable X simultaneously appears with both Y and Ȳ in the same number.
The particularity of the equilibrium is that it is not defined over the two variables X
and Y , but more particularly over the variable Y , knowing the presence of X. As for
the independence, two ways of deviation are possible:

• X appears simultaneously with Y in more cases than with Ȳ ;

• X appears simultaneously with Ȳ in more cases than with Y .

Definition 4.3.4
An interestingness measure, called me, evaluates the deviation from equilibrium

if it has a fixed value at the equilibrium, ve: me(X → Y ) = ve. �

These two subject-based measures evaluate association rules from different and com-
plementary points of view. For a better comprehension, a rule having a good deviation
from independence can be interpreted as ”WhenX is true, then Y ismore often true”.
That is to say that, Y is true more than usual, when no information about X is avail-
able. Similarly, a rule having a good deviation from equilibrium can be interpreted
as ”When X is true, then Y is very often true”.

Scope-based classification. Since their apparition, association rules have been
compared to implications (X ⇒ Y ), conjunctions (X ∧ Y ) or equivalences (X ⇔
Y ). In this study, Blanchard et al. outlined that depending on metric focus type,
association rules are described as quasi–implication, quasi–conjunction and quasi–
equivalence.

A quasi-implication is a rule, noted as X ⇒ Y , with the specificity that its exam-
ples are XY and X̄Ȳ , and the counterexamples are XȲ . Thus, a quasi-implication is
equivalent with its contrapositive Ȳ ⇒ X̄. Based on this equivalence, we can define
a measure of quasi-implication as follows.

Definition 4.3.5
A quasi-implication measure, denoted as mqi, is an interestingness measure

verifying the following condition: mqi(X → Y ) = mqi(Ȳ → X̄). �

Starting from logical conjunctions, we can say that a quasi-conjunction (denoted
as X∧Y ) has the examples X∩Y and the counter-examples X∩ Ȳ and X̄∩Y . Thus,
the quasi-conjunction X ∧ Y is equivalent to Y ∧X.
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Definition 4.3.6
A quasi-conjunction measure, denoted as mqc, is an interestingness measure

verifying the following condition: mqc(X → Y ) = mqi(Y → X). �

A quasi-equivalence, denoted as X ⇔ Y , has as examples X∩Y and X̄∩Ȳ , and as
counter-examplesX∩Ȳ and X̄∩Y . Thus, the quasi-equivalent rule is equivalent to its
contrapositive and the reciprocal. In this context, we can define a quasi-equivalence
measure, as a measure mqe verifying

mqe(X → Y ) = mqe(Y → X) = mqe(Ȳ → X̄) = mqe(X̄ → Ȳ )

Nature-based classification. This last classification of measure criterion concerns
their descriptive or statistic nature. Thus, an interestingness measure is descriptive if
it does not vary with the cardinality variation. On the contrary, a measure is stated
as statistical if it varies with the cardinality variation.

In the following we will make a detailed presentation of several important inter-
estingness measures starting from the above classification. The measures chosen for
the section below are the main measures used in the approach that we propose.

Table 4.2 contains a selection of metrics organized by means of the semantic
classification. It is important to note that there are few implication, inclusion and
statistical measures.
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Table 4.2: The main interestingness measures organized by means of the semantic classification. The measures according to the nature
are indicated by the font style: statistical measures are italic and the others are descriptive. Also, p-value test (probabilistic) based measures
are suggested by the * symbol.

Rule Quasi-Implication Quasi-Conjunction Quasi-Equivalence

X → Y & ¬Y → X X → Y & ¬Y → ¬X X → Y & Y → X both

Confidence, Precision [5]

Equilibrium Sebag-Schoenauer [180]

Example and Counterexample Rate [112]

Laplace Correction [84]

J-Measure Loevinger [137] Lift [36] Leverage [127]

Independence Implication Index [87] *Likelihood linkage [129] Odds Ratio [144]

*Implication Intensity [87] Yule’s Q and Y[208]

Rule interest [165]

Jaccard [116] Rogers-Tanimoto [176]

Other Dice [56]

Item-relatedness [182]
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4.3.3 Lift (or Interest)

The lift measure was firstly defined by Brin et al. 1997 [36]. Regarding the previous
classification, we can denote that lift is a deviation from independence measure and,
also, a quasi-conjunction measure. Concerning the nature of the measure, it is a
descriptive measure.

Definition 4.3.7
The lift measure is defined as

lift(X → Y ) =
P (X,Y )

P (X)P (Y )
=

Confidence(X,Y )

P (Y )

pointing out the importance of the correlation between the two variables. �

Let us consider the deviation from independence case. We outlined that a rule
is in the case of independence if its variables X and Y are independent, thus, the
probability of having in the same time X and Y is equal to P (X ∩ Y ) = P (X)P (Y ).
Let us compute now the value of the lift measure in case of independence:

lift(X → Y ) =
P (X,Y )

P (X)P (Y )
=

P (X)P (Y )//independence case

P (X)P (Y )
= 1.

In consequence, as the lift takes a constant value on independence, we can say that
the lift is a measure of deviation from independence.

Example 4.3.8 Let us consider a simple association rule Pork → Pear [C = 83%]
– in 83% of cases, when we have Pork in a supermarket basket, we have also Pear.
The confidence metric evaluates the rule as being interesting. On the contrary, the
lift value could prove the contrary; the result depends on the support of the Pear
item in the database. Two cases are possible:

• supp(Pear) = 83% – this is to say that, alone, Pear item appears in 83% of bas-
kets, thus, it is not surprising to have a confidence of 83%, and in reality, Pork
does not increase its chances to be in a supermarket basket. In consequence,
computing the lift as lif(R) = 1, the rule is in the situation of independence;

• supp(Pear)! = 83% – the more the support of Pear is different of 83%, the
more the rule is interesting. �

4.3.4 Implication Intensity

Implication intensity metric was proposed for the first time by Gras 1996 [86] and
revised later by Gras and Kuntz 2008 [87]. It is based on a probabilistic model
permitting to compare the number of counter-examples observed in data, NXȲ ,with
their theoretic number. Thus, we randomly create two independent subsets A and
B, under the hypothesis H0; in this context, we note NAB̄ = |A ∩ B̄|.

The rule X → Y is accepted with a threshold of 1−α, if the probability that the
number of counter examples in the observations is greater that the number of counter
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examples in the theoretic distribution is less than a tolerated error α; that is to say
that Pr(NX∩Ȳ ≥ NA∩B̄) ≤ α.

Several distributions can be used as the hypergeometric, binomial or Poisson
distributions, but in this study we will consider that the NA∩B̄ variable is distributed
following the Poisson distribution with the parameter λ = NP (X)P (Ȳ ). When the

approximation is justified (λ ≥ 4), the variable ÑA∩B̄ =
N

A∩B̄
−λ√

λ
is following the

central normal distribution. The observed value of ÑA∩B̄ is ñX∩Ȳ =
n
X∩Ȳ

−λ√
λ

.

Concerning the semantic classification, the implication intensity is a statistical
and deviation from the independence metric.

4.3.5 Item-Relatedness Measure

Let us consider the supermarket taxonomy. It is obvious that the pork concept is
semantically more close to the beef concept than the pear concept. As already states,
taxonomy-like structures propose the organization of concepts by means of the is-a
relation in function of their shared characteristics. Thus, in our case, pork concept
is more close to beef because it shares more characteristics together than it shares
with the other concept: for example, we can say that beef and pork are meals that
we eat as a main dish, while pears are eaten as a dessert.

In this context, an important number of semantic measures were proposed in the
literature. The most basic ones are defined through subsumption relations and they
are described by the shortest path or by the shared information. Interesting surveys
are proposed by Blanchard et al. 2005 [29] and Gandon 2008 [76].

Let us consider that the following association rule is extracted by a traditional
technique: milk → butter with a comfortable support and confidence so that the
system could consider it interesting and could show it to the user. Nevertheless,
is this rule really interesting? Although a great part of objective indicators could
establish that the rule is interesting, it could fail when studying the relation between
its items – the milk item is very close semantically to the butter item. Generally,
rules composed by related items are trivial, thus, we can conclude that this rule is
trivial.

A descriptive quasi-conjunction metric, Item-Relatedness, was developed by Shekar
and Natarajan 2004 [182] in order fulfill this drawback. Its main purpose is to mea-
sure the relatedness between the items of already discovered association rules. For
this purpose, the authors proposed to use a fuzzy taxonomy in order to describe the
relations between rule items. The difference between simple taxonomies and fuzzy
ones is that fuzzy taxonomies allow a node to have multiple parents and also they
permit weighted is-a relations.

Definition 4.3.9
Let us consider two items X and Y and a fuzzy taxonomy organizing the items.

The item-relatedness metric is defined according to all possible paths from X to Y
in the taxonomy by means of three important measures. The first measure, HM
(Highest-Level Node Membership), computes the implication of each item in their
common parent node; the second one, HR (Highest-Level Relatedness), measures the
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level difference between the parent of X and Y , and the taxonomy root. And, finally,
the last measure, NSR (Node Separation Relatedness), is defined as the length of the
path connecting the two items.

As a consequence, the item-relatedness measure of X and Y can be defined for-
mally as follows:

IR(X,Y ) = Σpath

(1 +HRX,Y (path))HMX,Y (path)

NSRX,Y (path)

with the variable path being all the possible paths between X and Y . �

To qualify the interestingness of an association rule, we can compute the item-
relatedness metric between each pair of items. Generally, we can distinguished three
types of similarity: between the antecedent items, between the consequent items or
between the antecedent and the consequent items.

Example 4.3.10 In this example we will consider that only the NSR metric forms
the item-relatedness measure of two items, and that the item pairs of a rule are formed
between the antecedent and the consequent.

Considering the taxonomy in Figure 4.3 and the conditions imposed above, we
will compute the item-relatedness of the following association rule:

grape, pear, butter → milk

Figure 4.3: Supermarket taxonomy [136].

So, we will compute the metric for the following pairs: (grape,milk), (pear,milk)
and (butter,milk) and we can note that one single path is available for each pair:

NSRgrape,milk = 4

NSRpear,milk = 4

NSRbutter,milk = 2

and the interestingness of the rule is computed as follows:

IR = min{NSRgrape,milk, NSRpear,milk, NSRbutter,milk} = 2. �
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While Shekar and Natarajan measure the item-relatedness of an association rule,
Garcia et al. developed in [79], and extended in [78], a novel technique called Knowl-
edge Cohesion (KC). The proposed metric is composed of two measures: Semantic
Distance (SD) and Relevance Assessment (RA). The SD one measures how close two
items are semantically, using the ontology - each type of relation being weighted dif-
ferently. The numerical value RA expresses the interest of the user in certain pairs
of items in order to encourage the selection of rules containing those pairs. In this
paper the ontology is used only for the SD computation and the authors propose a
metric-based approach for itemset selection.

4.4 User-driven Interestingness Techniques

Previously, we showed the interest of using objective measures – the selected rules
are interesting from statistical point of view. Nevertheless, are they interesting for
the user? Generally, the rules selected by objective measures are far away from being
interesting also from the user point of view. In this context, Carvalho et al. 2005
[50] tried to find a relation between the objective measures and the user interest.
Thus, in the last decade, it was outlined a real need in integrating user knowledge
(domain knowledge) in the discovering process of association rules [124]. Proposed as
a solution for the selection of interesting rules, the user-based techniques are known
as subjective interestingness measures.

The ENIGME system, developed by Ganascia et al. 1993 [74, 203], defends the
idea that Machine Learning algorithms need to be connected to the Knowledge Ac-
quisition environment. This research was proposed as a solution to the main problem
of the CHARADE system – the huge amount of rules generated. In this context,
ENIGME proposes to help the expert to acquire his knowledge which will guide the
learning process.

ENIGME integrates a partial model of expertise proposed by the KADS method-
ology in order to express the expert knowledge. In this context, it uses three of
the four layers of KADS: domain layer, inference layer and task layer. First, the
domain layer covers domain knowledge such as basic facts, concepts and relations
used within the domain. For example, we can have here the attributes and their
possible values. Second, the inference layer describes abstract inferences, which can
be possibly applied on domain layer knowledge, and the connections among them,
forming an inference structure. The former is composed of inference steps consisting
of knowledge sources describing the inference, and roles linked to domain concepts.
For example, we can imagine an inference structure composed of different connec-
tions between the attributes or sets of attributes. Third, the task layer has the role
to specify which inferences are applied for a given problem, and which is their appli-
cation order. Last, semantic networks are proposed in order to describe associations
between role concepts.

The system is able to learn only those relations following the inference steps given
by the expert. In this context, the dimension of the search space is importantly
reduced.
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The problem of user integration in the KDD process was first suggested by Fayyad
et al. 1996 [63] while presenting the importance of prior and domain knowledge in all
KDD steps. In the same year, Silberschatz et al. 1996 [185] detailed the ways of user
integration, coming up with three types of discovery process, each type describing
differently the division of work between the search engines and user knowledge:

• Automatic – The first one is an automatic process where the search engine
discovers the knowledge and no action from the user is proposed;

• Semi-automatic – The second one is a semi-automatic process combining user
prior knowledge with the search engine power. The goal of this type of approach
is to limit considerably the search space in order to generate a limited number
of patterns;

• Manual – The last process type concerns the knowledge extraction done only
by the user and by using queries.

The first and the last processes are two extreme approaches and, unfortunately, it
was proved that on the one hand it is nearly impossible for a user to find alone, us-
ing queries, the information that interests her/him. On the other hand, the patterns
discovered using only search engines are frequently delivered to the user in a huge vol-
ume, that makes impossible their interpretation. In consequence, the most interesting
solution is the second proposition – to integrate prior and/or domain knowledge in
the KDD process.

This section is dedicated to subjective measures and, in the following, we will make
a briefly presentation of the important notions of unexpectedness, and actionability,
we will continue by detailing the most important works in user-based association rule
mining, we will present the first approaches using ontologies, and we will conclude
with a comparison between post-processing and measure-based techniques.

4.4.1 Actionability vs. Unexpectedness

A first important classification of subjective measure was done by Silbershatz and
Tuzilin in [183, 184]:

• unexpectedness – a pattern is interesting if it is surprising to the user;

• actionability – a pattern is interesting if it can help the user take some actions.

Comparing these measures, we can note that they are independent, and they charac-
terize the discovered rules from two subjective different points of view [183].

First, let us consider the market basket application field; the main interest is
to find important information in order to help the managers to improve sells. In
consequence, the goal of this technique is to propose a set of new knowledge over
the initial database that could be used in order to take useful actions. Starting from
this idea, Silberschatz and Tuzhilin 1995 [183] introduced the notion of actionability
as a subjective measure. In a first attempt, actionability was considered an abstract
notion and defining it was not an easy task – Silbershatz and Tuzilin continued their
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presentation based only on unexpectedness. On the contrary, nowadays, actionability
interests more and more researchers because of the increase of association rule mining
applications in commercial and benefits-based databases; thus, several surveys discuss
the actionability problem [101].

A first attempt in defining a process to extract actionable rules was done by
Adomavicius and Tuzhilin 1997 [1] with the proposition to use a hierarchy of actions.
These actions should be taken when some trigger rules are discovered. The authors
proposed to assign to each node-action actionable rules/patterns by data mining
queries. Later, Gamberger and Lavrac [72] suggested an expert-guided approach for
knowledge discovery based on the idea of finding subgroups of rules which can be
valuable information for the user.

Introduced by Ras et al. 2008 [173] and further investigated in [174, 207], the
action rule notion is defined as a rule extracted from a decision system that describes
a possible transition of objects (here, denoted as transactions in database) from one
state to another with respect to a given attribute, called decision attribute. The
attributes used in this type of decision systems are organized in stable and flexible
attributes. Date of Birth or Family Name are examples of stable attributes – they do
not change their values. On the contrary, flexible attributes can change their value;
for example, in banking case, the bank can change the interest rate on an account. In
a first step, the proposed algorithm generates the set of transactions corresponding to
each combination of attributes. Next, classification rules are easily generated. Action
rules are constructed from pairs of classification rules defined with respect to the
decision attribute, as presented in the following example.

Example 4.4.1 Let us consider the following sampling database from a basket
market database (Table 4.3) where Pear is the decision attribute, Date of Birth and
Family Name are stable attributes, and Pork is a flexible attribute.

Table 4.3: Basket market sampling database

TID Date of Birth Family Name Pork Pear

1 26/08/1977 Martin 0 0

2 2/03/1985 David 1 0

3 26/08/1977 Martin 1 1

4 2/03/1985 Martin 0 0

The first step defines the set of transactions for each attribute combination. For
example, for Pork attribute we have the following set of transactions: {t1, t4} for
Pork = 0 and {t2, t3} for Pork = 1.
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Next, after the first step, the following classification rules are generated:

R1 : FamilyName = Martin ∧ Pork = 0→ Pear = 0

R2 : FamilyName = Martin ∧ Pork = 1→ Pear = 1

R3 : FamilyName = David ∧ Pork = 1→ Pear = 0

. . .

It is important to note that the FamilyName attribute is stable, so it cannot be
modified. Thus, we can generate action rules using only the Pork attribute. Thus,
starting from rules R1 and R2 we generate the following action rule:

(R1, R2)-action rule [(Pork, 0→ 1)](x)⇒ [(Pear, 0→ 1)]. �

Later, in [172], Ras et al. defined association action rules as action-based asso-
ciation rules and they proposed an Apriori -like algorithm based on a support-like
constraint. For this purpose, atomic action sets and action sets are defined, which
are comparable with frequent items and, respectively, frequent itemsets, but action-
oriented. This method is very interesting for business companies in order to improve
their profit. Nevertheless, the use of action rules does not ensure us that the number
of extracted values is more reduced compared to the other techniques.

In the same direction, Cao et al. [46, 49] proposed the notion of domain-driven
data mining. The Actionable Knowledge Discovery (AKD) problem aims to discover
deliverable knowledge in the form of business-friendly and decision-making actions,
and can be taken over by business people seamlessly. To this end, domain driven data
mining, known asD3M , aims at an effective involvement of several intelligences: Data
Intelligence, Domain Intelligence, Network Intelligence, Human Intelligence, Social
Intelligence, Intelligence Metasynthesis.

Continuing this study, Cao et al. were interested in discovering interesting knowl-
edge for constrained business. Thus, they proposed a new methodology, called
domain-driven in-depth pattern discovery (DDID-PD) [47, 48] expressing a domain
driven view of discovering knowledge satisfying real business needs.

Figure 4.4: DDID-PD Methodology [48]

The Figure 4.4 represents the actionable knowledge discovery process steps and
highlights the specific steps of the DDID-PD methodology. Every step of DDID-PD
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methodology could involve user/domain knowledge and expert evaluation.

The authors also outline that four user-driven procedures guide a real world data
mining process and that they are necessary in order to successfully discover interesting
knowledge: constraint mining, in-depth mining, human-cooperated mining and loop-
closed mining.

The second type of measures – unexpectedness (or novelty [16] by certain re-
searchers) – was proposed in order to solve the pattern triviality problem. Thus,
unexpectedness metrics measure the surprise level of the discovered patterns regard-
ing different notions that vary in function of the proposed approach. For example,
Dong and Li [59] view the unexpectedness notion in terms of neighbourhood param-
eters. The authors proposed a neighbourhood based on a item difference distance,
and they researched the rules the most unexpectedness regarding its neighbourhood.
Another unexpectedness approach is to compare the extracted patterns (rules) with
rule-based user knowledge using syntactical [132, 133, 135, 136] or logical [154, 155]
techniques. The rest of this section is dedicated to user-driven techniques based on
unexpectedness.

4.4.2 Templates

A first approach of template-guiding association rule mining by syntactic constraints
was proposed at the same time as the association rule technique by Agrawal et al.
[5]. Later, in 1994, extending this notion of syntactic constraints and inspired from
the work in [109], Klemettinen et al. [122] proposed templates in order to allow the
user to define family of rules that interests or not her/him. First, the user has to
structure database attributes in a hierarchy which classifies them by means of an is-a
relation.

Definition 4.4.2
A template is defined as follows:

A1 . . . An → An+1

where an element Ai is a class name from the hierarchy or an expression C+ or
C∗, where C is a class name. �

The difference between this proposition and Agrawal’s one comes from the fact
that all elements in syntactic constraints are attributes of the database, while in
this proposition, they are concepts of an attributes hierarchy. Moreover, two types
of templates are introduced: inclusive and restrictive templates. For a rule to be
considered interesting, it has to match an inclusive template. However, if it matches
one of the restrictive templates it is considered uninteresting, and it will not be
proposed to the user. An association rule matches a template if it is an instance of
the template.

Example 4.4.3 We will exemplify this approach over the supermarket database.
Suggested partially in Figure 4.5, an hierarchy is proposed by the user in order to
organize the food items in the supermarket.
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Figure 4.5: Supermarket hierarchy sample.

Proposing the following inclusive template:

(Inclusive Template) : Fruits ,DailyProducts → Meal

the user selects a set of interesting rules and two of these are presented below:

R1 : Pear, Milk → Pork

R2 : Apple, Milk → Chicken

Then, the user decides that Pear elements should not be included in rules, thus
he/she proposes the following restrictive template:

(Restrictive Template) : Pear, DailyProducts → Meal.

Thus, the system will declare the first rule uninteresting, and it will propose only the
rule R2 as being interesting. �

The main problem of this approach resides on the method of matching rules to
templates. For a rule to match a template, all its elements should be instances of
elements in templates, and all template elements should have at least one instance
in the rule. That is why, we consider that templates is a quite restrictive solution.
Moreover, due to matching definition, restrictive templates are not so powerful that
we thought. In fact, a restrictive template in order to declare a rule uninteresting,
it should be composed of elements subsuming all the attributes of the rule, being in
a subsuming relation with the inclusive template elements. We think that it is more
interesting to describe differently the matching technique in order to use all the power
of selecting/filtering templates.

Another way of using user templates is proposed by Silberschatz and Tuzhilin 1996
[185] in the Data Monitoring and Discovery Triggering (DMDT) system. The system
limits the user feedback by guiding the system while searching for new knowledge.
The main idea is that first a set of triggers and a set of templates are declared. A
trigger has an IF-THEN form and it is composed of classical trigger conditions over the
database in the IF clause, and a set of templates to be activated in the THEN clause.
Then, considering a database D, when a trigger is fired because several significant
changes suggested in the IF-clause of the trigger are detected in data, templates from
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Figure 4.6: The DMDT System - User Feedback based on Fired Pattern Templates
[143, 185].

THEN-clause are activated. Thus, the set of all templates from all the triggers fired
is given in the input of the discovery process module as shown in Figure 4.6.

The set of activated pattern templates extract several patterns according to the
user templates. Moreover, the discovered patterns could be used in order to modify
the IF-THEN triggers or the templates, so that patterns closer to user interest could
be extracted. New triggers and templates are injected and the whole process is
restarted.

4.4.3 Beliefs

In 1995, with the classification of subjective measures, Silbershatz and Tuzilin [183,
184] defined user knowledge as a set of convictions – called beliefs – used in order to
evaluate the unexpectedness of extracted patterns. Comparable with the templates
proposition, this approach brings new interesting ideas. First, each belief is defined as
arbitrary predicate formulae expressed in first–order logic, and second, a confidence
degree is attached to each belief measuring how much the user trusts the belief.

This approach integrates two types of beliefs, in function of the character of each
one:

• Soft beliefs are those knowledge that the user accepts to modify if the discovered
patterns contradict them. In other words, the user wants to confirm and, later,
to develop, this type of knowledge. In order to define the confidence degree with
the extraction of a new pattern, several methods were proposed as the bayesian,
the Dempster–Shafer and the frequency approach. The interestingness of the
new extracted pattern is computed by how the new pattern changes the degrees
of beliefs.

• Hard beliefs are those knowledge that the user will not change whatever new
patterns are extracted. Thus, the confidence degree is not defined to this type
of beliefs. In conclusion, patterns which contradict a hard belief are always
interesting for the user.

Example 4.4.4 In order to exemplify this approach, we consider the supermarket
case, and we define the following belief:

α = for a complete day, the supermarket propose 500kg of grapes to their cus-
tomers.
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First, we take the case when the previous belief is a hard belief. Assume that the
following pattern is discovered by a mining technique:

p = 527kg of grapes are sold each day.

It is obvious that the discovered pattern contradicts the belief because it is not
possible that 527kg of grapes are sold in a day, knowing that the supermarket offers
only 500kg. This contradiction with the hard belief outlines possible errors in data
and the pattern worths the attention of the users.

Second, we take the case when the proposed beliefs is a soft one. In this context,
we consider the Bayesian approach proposed by the authors to compute the degree of
the belief α, and we assume that the conditional probability of the belief on the initial
evidence E is P (α|E) = 0.85. If we consider a new pattern, E0 = 527kg of grapes
are sold each day, we can assume in this context that the conditional probability is
P (α|E0, E) = 0.89. The interest of a pattern is defined by the difference between the
conditional probability of the belief λ with and without the pattern. In our case, the
interest is I(p, λ, E) = 0.04 and the pattern is not considered very interesting. �

Unfortunately, this work is still in a development state, and no further advance-
ments were done. As a result, this approach is not functional.

4.4.4 Fuzzy Rules

In [131] and later in [136], Liu and Hsu suggested to integrate user knowledge in the
post-analysis of classification rules. The user knowledge are defined in a fuzzy way
using the same syntax as the classification rules, as follows:

IFP1, P2, P3, . . . Pn then C

where Pi and C mean attribute OP value, with OP ∈ {=, ̸=, <,>,≤,≥}.
Liu and Hsu introduced for the first time several ideas related to the similarity

between the user knowledge and the extracted rules, ideas that will be detailed in
their future works. Thus, the notion of similarity and difference between the user
knowledge and the discovered rules are defined as it follows:

• Rule Similarity – two rules are similar if their antecedents and consequents are
similar;

• Rule Difference – two rules are different if they are dissimilar; in consequence,
the discovered rule is unexpected regarding the fuzzy rule provided by the
user. Several types of dissimilarity are proposed according the differences of
antecedents and/or of consequents:

– Unexpected consequent – the conditions are similar, but the consequents
of the two rules are dissimilar;

– Unexpected antecedent – the consequents are similar, but the antecedents
of the two rules are dissimilar. Two types of unexpectedness regarding the
antecedent are proposed:
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∗ Contradictory antecedent – the rule antecedent attributes are the same,
but they have different values;

∗ Unanticipated condition – the rule antecedent attributes are different.

Example 4.4.5 Let us consider the following set of classification rules:

R1 : IF Age > 60, P ear >= 3 then Class = V egetarian

R2 : IF Age < 50, P ear = 2 then Class = V egetarian

R3 : IF Age < 30, P ear = 0.5 then Class = NotV egetarian

R4 : IF Apple = 3 then Class = V egetarian

and the following user knowledge expressed as a fuzzy rule:

IF Age = OLD, Pear = HIGHT then Class = GOOD

where OLD is considered to be someone aged of more that 50 years, products are de-
noted with HIGHT if someone bought more than 2 kilos of this product, and, finally,
the Class is considered to be GOOD if the person is classified to be V egetarian.

Thus, we can note that the rule R4 has a unanticipated antecedent regarding the
user knowledge, and that the rule R3 has a contradictory antecedent. Also, the rule
R1 is similar to the given rule. �

4.4.5 User Expectations – General Impressions

In the previous approach, Liu et al. [131] proposed fuzzy rules for user to give his/her
knowledge, but they noted that it is quite difficult for a user to express exactly what
he/she knows. Thus, Liu et al. 1997 [132] made an important classification of user
knowledge:

• General Impressions (GIs) – user vague feelings about the domain. For example,
in a supermarket, the user may know that customers may buy both pork and
pears, but he/she does not know if one product sale implies the sale of the other
one;

• Reasonably Precise Knowledge (PRK) – the user has precise ideas of concern-
ing discovered rules. For example, if a customer buys pork, with a certain
probability, he/she will also buy grapes.

In a first attempt, the authors concentrated their work on general impressions
and they developed the following two syntaxes for the general impressions:

TYPE1 : i1ID1, . . . iwIDw → Cj

TYPE2 : i1ID1, . . . ikIDk AND ik+1IDk+1, . . . iwIDw → Cj

where ij is an attribute, ID ∈ {<,>,≪, |, [aset]} and Cj is a class.
The formalism i1ID1 → Cj can be explained by: the more the attribute i1 has

a variation defined by the operator ID1, the more there are chances to lead to class
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Cj . For the second type, the second part in the antecedent of the rule is optional and
helps the user to define more flexible general impressions.

For matching and ranking discovered rules, Liu et al. use the same method em-
ployed for fuzzy rules, composed by two important steps:

• in the first step, the user defines his/her expectations using general impressions;

• in a second step, the discovered rules are analyzed and compared to general
impressions, and those interesting rules are selected.

In 1999, Liu et al. [136] proposed to adequate their General Impressions formalism
that they developed later in [133]. Thus, a specification language was designed in
order to allow the user to express his/her expectations and goals. Based on the
general impression definition introduced in [132], the main idea of this specification
language is to represent user feelings concerning item relations and implications in
the database. Thus, three levels of specification are developed: General Impressions
and Reasonably Precise Concept (already defined in [132]), and a new one – Precise
Knowledge. The third level, Precise Knowledge, was added in the idea to allow the
user to express exact prior knowledge with the vague feelings represented by the first
two specifications.

Inspired from the generalized association rules [189] (for more details go to the
Section 4.5), Liu et al. integrated concepts of item taxonomies as elements in their
specification languages in order to generalize the rule selection. Thus, let us consider
the taxonomy of items presented in Figure 4.7. In this taxonomy, the leaves such as
grape, pear, . . . are items from the database, and the other concepts such as Fooditem,
Fruit, . . . are classes of items. Thus, we can say that {grape, pear, apple} ⊂ Fruit ⊂
Fooditem.

Figure 4.7: Supermarket taxonomy [136].

Definition 4.4.6
The new formalism of General Impressions (GIs) is described as follows:

gi(< S1, . . . , Sm >)[support, confidence]

where each Si can be an element of the taxonomy and ∗, +, {} operators can be applied
over. Si+ represents one or more occurrences of the element Si, Si∗ represents zero
or more occurrences of the element Si, {Si1 , Si2} expresses Si1 OR Si2. �



4.4 User-driven Interestingness Techniques 81

Even if the authors reworked their formalism already proposed in [132], the ob-
jectives of the General Impressions remain the same – to represent user vague feelings
concerning some associations in the database.

The matching process between general impressions and association rules consists
in a syntactic comparison between the antecedent/consequent elements. Thus, each
element in the general impression should find a correspondent in the association rule.
Moreover, there should not be any item in the rule that is not the correspondent of
an element from the GI.

Example 4.4.7 Let us consider the taxonomy in Figure 4.7 and let us also consider
that the user might believe that there is an association between cheese or milk, Meat
items (zero ore more) and pear. In consequence, we can express these expectations
using the following General Impression:

GI : gi(< {cheese, milk}, Meat∗, pear >)

Let us consider that the following association rules were discovered using classical
techniques:

R1 : cheese→ pear

R2 : pork → pear, apple

R3 : milk, pear → pork

We can note that the rules R1 and R3 match the general impression, and that
the rule R2 does not match the GI because no element from {cheese, milk} exists in
this rules, and furthermore, the item apple is not the correspondent for any element
in the GI. �

Definition 4.4.8
Reasonably Precise Concept represents the vague feelings of the user con-

cerning the existence of some implicative associations between items, and the proposed
syntax is described as follows:

rpc(< S1, . . . , Sj → Sj+1, . . . , Sm >)[support, confidence]

with the same notations as for GIs. �

The main difference between GIs and RPCs is that when the user expresses his/her
expectations using GIs, he/she is not sure on which elements he/she should put in the
antecedent, and which elements in the consequent. On the contrary, RPCs express
implicative associations.

Example 4.4.9 For this example we will use the same set of rules as for the General
Impression:

R1 : cheese→ pear

R2 : pork → pear, apple

R3 : milk, pear → pork.
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In this case, the user believes that the customers buying cheese or milk, and maybe
buying Meat products, could also buy pears. This can be expressed using the RPC
formalism as follows:

RPC : rpc(< {cheese, milk}, Meat∗ → pear >).

In this context, the rule R1 matches the RPC, and the rules R2 and R3 do not
match the RPC: R2 does not contain cheese or milk products in the antecedent, and
R3 does not contain pear products in the consequent. �

Precise Knowledge expresses that the user believes in a specific implicative asso-
ciation between items with exact thresholds of support and confidence. The main
difference between PKs and RPCs is that the specification of support and confidence
threshold in the PKs case is obligatory, and that in the case of GIs and RPCs it is
optional.

4.4.6 Logical Contradiction and Exception Rules

A new technique to match user knowledge with discovered association rules was pro-
posed by Padmanabhan and Tuzilin in [154], and revised and developed later in
[155, 156]. The logical contradiction view of unexpectedness, slightly comparable
with the exceptions idea of Suzuki [197], consists in extracting only those rules which
logically contradict the consequent of the corresponding belief.

Definition 4.4.10
Let us consider an association rule X → Y and a user belief A → B. The

association rule is unexpected with respect to the user belief if:

• Y ∧B |= FALSE – B and Y are in logical contradiction;

• X ∧ B has an important support in the database – this condition eliminates
those rules which could be considered unexpected, but which do not concern the
same transaction in the database;

• A, X → B holds. �

Example 4.4.11 In order to exemplify this approach we consider the supermarket
database in Table 4.4.

Further, assume that we have a belief outlining that customers who buy pork tend
to buy also milk:

Belief : pork → milk,

and we propose minimal thresholds of 30% for the support and 60% for the con-
fidence.

In order to extract rules that contradict the previous belief, the generation starts
with the itemset pork,¬milk with the aim to extract itemsets of the form pork,¬milk,X,
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Table 4.4: Supermarket database for Logical Contradiction.

Pork Milk Apple Beef

1 1 1 1

1 1 1 0

1 1 1 0

1 1 0 1

1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

1 1 1 1

where X is an itemset. Using the other two items (apple and beef), the following
itemsets and rules are generated:

pork,¬milk,apple [S = 0%− pruned]

pork,¬milk,¬apple [S = 30%]

pork, apple→ ¬milk [C = 75%]

pork,¬milk,beef [S = 0%− pruned]

pork,¬milk,¬beef [S = 30%]

pork, beef → ¬milk [C = 60%]

pork,¬milk,¬apple,¬beef [S = 30%]

pork,¬apple,¬beef → ¬milk [C = 100%]

�

Exception rules were introduced by Suzuki [196–200] and an extended survey was
done by Duval et al. [60]. The search of exception rules aims at discovering a pair of
rules composed of:

• a common sense rule, CSR : X → y, where X is an itemset and y an item,

• and an exception rule, ER : X,Z → y′, where Z is an itemset and y′ is the
negation of the y item.

Further, the unexpectedness of an exception rule is defined by an additional constraint
– the reference rule Z → y′ should have a low confidence. The reason is that if the
reference rule has a high confidence we can consider that the itemset Z implies the
y′ item and not the X one, so, in this context, the exception rule is not connected to
the common sense one.
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The difference between this approach and the logical contradiction one mainly
comes from the fact that beliefs in logical contradiction, which correspond to common
sense rules, are provided by the user, while the common sense rules are discovered
with the exception rules. In this context, the search algorithms are quite different:
Padmanabhan and Tuzilin proposedApriori -like trees in order to generate unexpected
rules starting from user beliefs, while Suzuki developed a new algorithm based on a
tree-like structure having as nodes the rule-pair common sense-exception.

4.4.7 Preference Model

Jiang 2006 [119, 213] introduced an approach comparable with the Logical Contra-
diction, but different by its diverse views over the unexpectedness and by the use of a
preference model. The proposed method is designed for the extraction of classification
rules.

In this context, Wang et al. studied what the user attempts to do with its knowl-
edge and came with an original idea – to separate the user knowledge for each trans-
action in database. Thus, the novelty of this approach is the preference model which
is a specific type of user knowledge representing how the basic knowledge of the user,
called knowledge rules (K), will be applied over a given scenario or tuples of the
database. Thus, the user proposes a covering knowledge (Ct) for each tuple (t) – a
subset of the knowledge rule set K that the user prefers to apply to the tuple t. At
the end, the approach validates the transactions which satisfy the extracted rule, and
the latter is interesting if the cover violates the transactions.

More formally, given a database D, a discovered rule r and a set of tuples S
satisfying r, the following metric defines the unexpectedness (support/confidence):

Usup(r) =

∑

{agg({v(t, R)|R ∈ Ct})|t ∈ S}

|D|
.

The metric is computed using a violation measure between the user knowledge K
and each data tuple in S, and defined using agg – a well-behaved aggregate function
(i.e. min(V ) ≤ agg(V ) ≤ max(V ) and for V ≤ V ′, agg(V ) ≤ agg(V ′), where V and
V ′ are vectors).

Wang et al. further detailed the unexpectedness of a rule r as:

Unexp(r) =
Usup(r)

supp(r)
.

Example 4.4.12 In order to exemplify this approach, let us consider a supermarket
example. In Table 4.5 we present a supermarket database where the first column rep-
resents the transaction identifier, the following 4 columns the value of each attribute,
and the last column the target-attribute – Grape? with possibilities 1 or 0.

Let us consider that the following two rules form the user knowledge K:

R1 : Pork = Not 1→ Grape? = 1

R2 : Milk = Not 3→ Grape? = 1.
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Table 4.5: Supermarket database for Preference Model approach.

TID Pork Milk Apple Beef Grape?

t1(R1) 3 3 2 0 0

t2(R1) 3 3 2 1 0

t3(R1) 2 3 2 0 0

t4(R2) 1 2 2 0 1

t5(R2) 1 1 1 0 1

t6(R2) 1 1 1 1 0

t7(R1) 2 1 1 1 1

t8(R1) 3 2 2 0 0

t9(R1) 3 1 1 0 1

t10(R2) 3 2 1 0 1

t11(R1) 3 2 1 1 1

t12(R1) 2 2 2 1 1

t13(R1) 2 3 1 0 1

t14(R2) 1 2 2 1 0

The fuzzy values match the nearest values in the database. In this example we
will consider that the depth of the covering – the number of knowledge rules – for
each tuple is 1, and, in function of the matching/violating result between the user
knowledge base K and the tuples of the database, to each tuple a knowledge rule is
attached (column 1 in the Table 4.5).

Applying a minimum Usup of 20%, the following unexpected rules are generated:

r1 : Beef = 1→ Grape? = 0

r2 : Apple = 2→ Grape? = 0

r3 : Pork = 3→ Grape? = 0.

Let us consider the first rule r1. The transactions satisfying this rule are {t2, t6, t14},
knowing that in these 3 transactions: {t2} violates the knowledge rule R1 and {t6, t14}
violate R2, each transaction satisfying r1 violates its covering, in consequence r1 is
interesting. Formally, we can compute the three metrics of the rule: Usup = 3/14 =
21.43%, Uconf = 3/6 = 50%, Unexp = 3/3 = 100%. �

4.4.8 Comparative Study

In the following, we will discuss the comparative study that we made in the field of
user-based interestingness measures. We studied 25 techniques for association rules or
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classification rules, and we could note different formalisms used in order to represent
the knowledge in the mining process: templates, beliefs, meta-rules, query language,
taxonomies, ontologies.

Next, we organized the 25 techniques in 3 classes:

• the techniques using implications/templates/query language;

• the techniques using both templates and taxonomies;

• the techniques using taxonomies or ontologies.

For the first class, we observe three main limits. First, the representation language
is limited and static; it does not propose possibilities to evolve. Second, in the
most part of cases, the user cannot choose the action to apply over the templates
(pruning, selection, exception, . . . ). Last, in several cases, the formalisms are difficult
to understand.

For the second class, we have the limits of the first class to which we add the limits
related only to taxonomies. Thus, taxonomies have a weak expressiveness; they do
not allow users to improve the knowledge base with new informations.

The third class offers interesting solutions, but, unfortunately, these techniques
deal with only one problem at a time (a quite marginal one) which does not permit to
definitively validate the quality of discovered rules. Moreover, the techniques using
ontologies do not use the power of ontologies – the reasoners.

The complete study is presented in Tables 4.6 and 4.7.
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Table 4.6: Comparative study over the subjective measures. (1)

Interestingness Measure Year Application Foundation Subjective User Knowledge

Aspects Representation

1 Shapiro and Matheus 1994 summaries unexpectedness Pattern deviation
Projected Savings [141, 166]

2 Klementinen et al. 1994 association rules syntactic unexpectedness Templates
Templates[122]

3 Silberchatz and Tuzilin 1995 probabilistic unexpectedness Beliefs
Beliefs[183]

4 Anand et al. 1995 classification rules syntactic unexpectedness Hierarchical Gen. Trees
EDM Framework [8] Attribute Relationship Rules

Environment Constraints

5 Liu et al. 1996 classification rules syntactic unexpectedness Fuzzy rules
Fuzzy Matching [131, 132]

6 Imielinski et al. 1996 association rules queries M-SQL
M-SQL [113, 115] query language

7 Kamber et al. 1997 multi-dimensional syntactic unexpectedness Metarules
Metarules [120] association rules

8 Liu et al. 1997 association rules syntactic actionability General Impressions
General Impressions [133, 136] unexpectedness Reasonably Precise Concepts

Precise Knowledge

9 Baralis and Psaila 1997 association rules syntactic Scenario Templates
Scenario Templates [17] Query Languages

10 Ng et al. 1998 association rules syntactic syntactic Constrained Association
Constrained Queries [150] Queries

11 Adomavicius and Tuzhilin 1999 profile rules rule grouping novelty Taxonomies
Web Profiling [2, 3] syntactic actionability Templates

12 Padmanabhan and Tuzhilin 1999 association rules logical unexpectedness Beliefs
Logical Contradiction [154–156] statistic

13 Wang et al. 2003 classification rules violation unexpectedness Knowledge Rules
Preference Model [213] measure Covering Knowledge
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Table 4.7: Comparative study over the subjective measures. (2)

Interestingness Measure Year Application Foundation Subjective User Knowledge

Aspects Representation

14 Chen et al. 2003 association rules generalization with actionability Ontologies
Raising [53, 225] higher support

15 An et al. 2003 association rules semantic distance unexpectedness Taxonomy
Semantic Groups [7] groups Semantic Networks

16 Jaroszewicz and Simovici 2004 patterns support unexpectedness Bayesian Networks
Using Bayesian Networks [117, 118] comparaison

17 Shekar and Natarajan 2004 association rules similarity distance unexpectedness Taxonomy
Item-relatedness [182]

18 Nazeri and Bloedorn 2004 association rules syntactic unexpectedness Facts
Facts, Beliefs [149] Beliefs/Preferences

19 Domingues and Rezende 2005 association rules generalization actionability Taxonomies
Taxonomy-based Generalization [58]

20 Faure et al. 2006 association rules dependencies unexpectedness Bayesian Networks
Using Bayesian Networks [62] comparison

21 Xin et al. 2006 patterns progressive shrinking novelty Log-linear model
User Interactive Feedback [217] clustering Biased belief model

22 Kotsifakos et al. 2007 association rules class membership actionability Ontologies
[125]

23 Antunes 2007 association rules semantical distance actionability Ontologies
[11, 12] based constraints Constraints

24 Bellandi et al. 2007 association rules syntactic unexpectedness Ontologies
[21, 22] based constraints Pruning Constraints

Abstraction Constraints

25 Garcia et al. 2008 association rules semantic distance actionability Ontologies
[78, 79] relevance assessment Item Weight
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4.5 Toward Ontologies in Association Rule Mining

In the above section we made a detailed survey on subjective measures integrating
user knowledge in order to assess the quality of selected rules. In this context, the
formalism for user knowledge representation has a real influence over the selection
capability of the resulting interestingness measures. Rule-like formalisms allow users
to express their expectations according to discovered rules by means of an intuitive
formalisms.

Proposed in the philosophy branch by Aristotle, ontologies have interested re-
searchers in Knowledge Engineering and Semantic Web fields. Ontologies have evolved
over the years, from controlled vocabularies, to thesauri (glossaries), and later to tax-
onomies [210]. These representation structures were, step by step, proposed as user
domain knowledge representations for association rule selection. Later, ontologies
were considered as one of the most complex formalisms for knowledge representation,
as a consequence the interest of researchers of association rule mining field toward
ontologies was quite natural.

As stated by Nigro et al. 2007 [151], ontologies can be used in several ways in
data mining as follows:

• Ontologies for Data Mining Process;

• Metadata Ontologies;

• Domain and Background Knowledge Ontologies.

A global vision over data mining with ontologies is presented in Figure 4.8.

Ontologies for Data Mining Process aim to codify the mining process description
and to choose the most appropriate task according to the given problem. Thus,
this type of ontology should contain important informations and characteristics of
various techniques of data mining. As showed in Figure 4.8, these ontologies could be
employed in several steps during the KDD process as it follows: the pre-processing
data step in order to propose the most appropriate techniques of pre-processing, in
the data mining step by choosing the right algorithms, and in the pattern generation
by choosing the most interesting model for the discovered knowledge (for different
interesting propositions see [26, 45]).

Metadata Ontologies aim to describe the construction process and the character-
istics of items.

Domain and Background Knowledge Ontologies organize domain knowledge and/or
user domain knowledge, or they could bring a basis for discovered knowledge repre-
sentation. As a result, this type of ontology plays important roles at several levels of
the knowledge discovery process: in pre-processing, but more important is the vali-
dation of knowledge. Further, we will detail approaches integrating two of the three
types of ontologies: Metadata Ontologies and Domain and Background Knowledge
Ontologies; generally, these two types of ontologies are used together because with
the representation of background domain knowledge according to the database items,
the construction of the database items is also described.
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Figure 4.8: Data Mining with Ontologies [151].

The use of ontologies in association rule mining technique was anticipated with the
use of a particular case of ontologies – taxonomies. The first ideas were introduced by
Srikant and Agrawal [189] with the concept of Generalized Association Rules (GAR).
The authors proposed taxonomies of mined data in order to generalize/specify rules.
Later, taxonomies were used for item representation in General Impressions [136]
or in the computing process of Item-Relatedness measure [182]. At the same time,
one of the first papers to underline the utility of domain knowledge proposed also to
use a taxonomy-like structure for knowledge representation. Anand et al. 1995 [8]
suggested that the user should provide two kinds of information: domain knowledge
and bias information (basic information used to guide the search). Domain knowl-
edge is represented in three different types of structures: Hierarchical Generalization
Trees (HG-Trees), Attribute Relationship Rules (AR-rules) and Environment Based
Constraints (EBC).

Related to Generalized Association Rules, several approaches were proposed (i.e.
by Won et al. 2006 [216]), but one of the most important suggests the notion of
raising, developed by Chen et al. [53, 225]. Raising is a generalizing-like operation
increasing support by keeping confidence high enough. This allows for strong rules
to be discovered and also to obtain sufficient support for rules that, before raising,
would not have minimum support due to the particular items they referred to. As
GARs, this approach uses a taxonomy of items to generalize. The difference with
GARs is that this solution proposes to use a specific level for raising and mining.

Very close to approaches developed in [189, 201], the GART algorithm proposed
by Domingues and Rezende 2005 [58], is more user-oriented than the previous ones



4.5 Toward Ontologies in Association Rule Mining 91

by proposing to the user a set of discovered association rules so that he/she could
design one (or more) taxonomies of items. Recursively, taxonomies are applied over
sets of consequent-equal rules with the purpose to group the generalized rules.

Pilot studies was done for integrating ontologies in the extraction of association
rules with no further detailed results [168, 169]. One of the first works on ontology-
driven KDD was developed by Phillips and Buchanan 2001 [164] and it proposed
to use prolog ontologies. Later, a Pattern Base Management System is introduced
by Kotsifakos et al. [125], based on a mixture of data mining process and domain
ontologies for both user knowledge description and pattern storage. The selection of
interesting association rules is particular, all the items of a rule should come from
the same class. This is very interesting because, while a great part of subjective
approaches are interested in finding unexpected knowledge, this approach is based on
the idea that a rule is interesting only if it is conforming with the prior knowledge.

Cespivova et al. 2004 [52] outlined that the ontologies could be used in each step
of the KDD process defined with the CRISP-DM1 model. The role of ontologies is
based on the given mining task and method, and on data characteristics. Next, the
authors studied, and developed later in [201], the use of medical ontologies and other
background knowledge into the process of association mining (rules are extracted
using the 4ft-Miner procedure [175]). They use UMLS (Unified Medical Language
System) which provides terminological ontology to semantically group up variables.
Then, the grouped variables can decompose general mining task into more specific
tasks. Presumably, the mined hypotheses entering the evaluation phase will be smaller
and homogeneous, hence easier to examine for a human evaluator.

A very recent approach proposed by Bellandi et al. 2007 [21] and developed later in
[22], uses ontologies in a pre-processing step. Several domain-specific and user-defined
constraints are introduced, grouped into two types: pruning constraints, meant to
filter uninteresting items, and abstraction constraints permitting the generalization
of items toward ontology concepts. The dataset is first pre-processed according to the
constraints extracted from the ontology and then the data mining step takes place.
The advantage of the pruning constraints is that it permits to exclude from the start
the information that the user is not interested in, thus permitting to apply the Apriori
algorithm to this new database. Let us consider that the user is not sure about which
items he/she should prune. In this case he/she should create several pruning tests,
and for each test he/she will have to apply the Apriori algorithm whose execution
time is very high.

Onto4AR is a new constraint-based algorithm for association mining proposed by
Antunes 2007 [11] and revised later in [12], where taxonomical and non-taxonomical
(not is-a relation-based) constraints are defined over an item ontology. This approach
is interesting in the way that the ontology offers a high level of expression for the
constraints. Nevertheless, the proposed constraints are relation-based constraints,
reminding the item-relatedness measure studied in [182]; the difference comes from
the fact that, in this new approach, the distance is computed by using the entire set
of onotological relations (is-a and data/object properties).

1CRoss Industry Standard Process for Data Mining, http://www.crisp-dm.org
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The KEOPS methodology was developed by Brisson et al. [39, 39, 39]. It aims to
guide the process of user knowledge integration in the data mining process. First, the
user knowledge regarding the discovered association rules is represented by means of
a rule-like formalism. Their main goal is to select the most interesting rules according
to user knowledge. KEOPS approach integrates also an ontology which is used in the
pre-processing phase, in order to prepare the database for mining.

4.6 Post-Processing Techniques vs. Measures-Embedded
Algorithms

In the previous section, we focused over the reduction of the number of rules by
means of interestingness measures and we presented a large survey on this field – on
the one hand, concerning objective measures, and on the other hand, the subjective
ones. For the latter, we outlined the importance of user and domain knowledge in
the extraction of interesting knowledge. Nevertheless, an interesting question arises:
Which technique is more efficient: to apply the interestingness measures in a post-
processing step, or to integrate them in the mining algorithm?.

4.6.1 Post-Processing Techniques

The idea of selecting good rules during a post-processing step appeared as early as
1998, when Imielinski and Virmani [114] defined rule post-processing as a process
which involves selecting rules which are relevant or interesting, building applications
which use the rules and finally, combining rules together to form a larger and more
meaningful statements. Later, in 2000, the interest in post-processing methods in-
creased, and they were grouped as follows: knowledge filtering – rule truncation and
rule post-pruning, interpretation and explanation of the acquired knowledge, evalua-
tion of the mining algorithm, or knowledge integration [41]. But, the most accurate
classification – here, with the sens of definition of post-processing tasks – was done by
Baesens et al. 2000 [15]. The authors suggested that post-processing consists of dif-
ferent techniques that can be used independently or together: pruning, summarizing,
grouping and visualization.

Pruning means removal of rules generated as effect of anomalies or unwanted
phenomena or rules that are simply not interesting to the user. In this category we can
find different approaches. Interestingness measures applied after the rule extraction
are pruning techniques: objective measures – i.e. lift [36] or implication intensity [86]
– remove those rules not satisfying the measure threshold, and subjective measures
generally prune those rules that are not conforming with the user knowledge [7,
136]. Redundancy reduction is a well known technique of rule pruning, and different
methods were proposed as subsumed rules (i.e. minimum improvement constraint
[20]), transitivity of rules, or circular chains.

Summarizing generates a more compact representation of discovered knowledge
by using more general or abstract concepts which are more comprehensive for the
expert. Different techniques exist to summarize rules among which we remind the
use of hierarchical structures and direction setting [134].
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The former consists of those techniques integrating taxonomies or ontologies with
the aim to generalize the rules and to summarize them [58, 189, 225]. These techniques
were already presented in Section 4.5 on page 89, thus we will focus on the latter one.

The concept direction setting (DS) rules was proposed by Liu et al. 1999 [134] in
order to define the set of rules which defines a behavior for the entire set of discovered
rules. They represent the essential relationships (or the skeleton) of the domain, and
more details are given by non-DS rules. To this end, Liu et al. first proposed to
prune more specific rules by the use of chi-square test, and then, to summarize the
remaining rules, generating DS rules.

Example 4.6.1 Let us consider that the following rules are discovered by classical
techniques:

R1 : apple→ pork [S = 40%, C = 80%]

R2 : pear → pork [S = 30%, C = 81%]

R3 : apple, pear → pork [S = 22%, C = 88%].

If we consider that chi-square test shows a positive correlation between apple and
pork, and between pear and pork, this new approach considers that the rule R3 does
not bring new information to the set R1 + R2; moreover, this rule can be generated
by combining the first two ones. Rules R1 and R2 are DS-rules because they show
the direction (positive correlation) for the rule R3. �

In the same idea, Toivonen et al. 1995 introduced in [204] the notion of association
rule covers. The notion of rule cover is defined as the subset of a rule set describing
the same database transaction set as the rule set. The number of rules in a cover
can be quite small. A greedy algorithm is proposed to find a good cover and the
remaining rules are pruned. The problem with this method is that the advantage of
association rules, its completeness, is lost.

Using clustering, based on economic assessment or time based patterns, grouping
the rules helps the user to focus on the group of rules that is more interesting. In [224],
Zhao et al. use the clustering algorithms in order to group the items and to compute
distances between them. The notion of subsumed rules, introduced by Bayardo et al.
1999 [19], describes a set of rules having the same consequent and several additional
conditions in the antecedent regarding another rule.

Visualization proposes specific graphical representations of discovered knowledge
with the main interest of helping experts to find useful patterns. Several important
elements compose this type of techniques as follows: first, the representation model
should be comprehensible for the user, but also it should be able to group a hight
level of information. Second, the results of the visualization technique are more sig-
nificant if it is interactive and iterative – the user should be able to execute iteratively
different actions over the discovered rules. In [31], Blanchard et al. 2007 present a 3D
framework – ARViZ – for user-guided local mining. Another proposition of frame-
work is made by Bruzzese and Davino 2003 [42]; the visual framework is proposed
for user-guided post-treatment of discovered rules, very interesting from the point of
view of graphical representation of rule support. A wide survey over the visualization
techniques in data mining is proposed by Ben Said et al. 2010 [23].
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The post-processing step is definitely necessary to the KDD process; however,
generating a great number of rules and then pruning or grouping most of them is not
very efficient. It has been suggested by Silberschatz and Tuzhilin 1995 [183] that a
more practical approach would be to include the selection process of interesting rules
in the actual rule mining process, such that the primary output already contains only
the rules that are interesting to the user.

This new method and the previous one have their advantages and inconveniences.
The main advantage of the post-processing methods is that working on a complete set
of association rules allows to have a general view over the extracted rules, and then,
a user could be able to apply different interesting methods of reduction of number
of rules. The main inconvenience of post-processing techniques comes once with the
necessity of generating the whole set of rules. This is due to the fact that extracting
the entire set of rules takes a lot of resources, and in certain cases (i.e. low support)
it is an intractable task. Next, let us consider that generating millions of rules is
possible; the second main inconvenience is the impossibility to work on a huge set
of rules correctly (millions of rules). This cannot be an interactive process due to
execution time explosion. It is also important to note that, several post-processing
techniques cannot work efficiently with a partial set of rules.

4.6.2 Measures-Embedded Algorithms

Concerning the methods that integrate interestingness measures in mining algorithm
such as [28, 155], their main advantage is that they propose as result a set of rules
highly limited in volume comparing to the number of rules delivered by the classical
techniques. Nevertheless, their main inconvenience comes from the impossibility to
integrate certain measures in the mining algorithm. For instance, to integrate in-
terestingness measures in the Apriori algorithm they should satisfy the downward
closure property. That is way, in the case of measure-based mining, and more spe-
cially, in the case of user-based mining, it is more interesting to use local mining
techniques as it was proposed by Blanchard et al. 2003 [28].

In Section 4.2 on page 59 we presented in Figure 4.1 and Figure 4.2 different
frameworks of knowledge discovery process. Liu et al. 1999 [135] proposed a new
type for the KDD framework. In contradiction with the former ones, in Figure 4.9
we can note that Liu et al. suggest a new step in the KDD process, after the pattern
extraction, consisting of tools that allow the user to rank the patterns.

It is important to note that this is the first real proposition of a framework inte-
grating the user in the KDD process. However, we consider this point of view quite
limited because it does not permit user-driven mining process. Therefore, we pro-
pose a new framework for the knowledge discovery process presented in Figure 4.10.
The particularity of this framework resides in the implication of the user in the two
processes: data mining and pattern analysis.
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Figure 4.9: A new proposition for knowledge discovery process [135].
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Figure 4.10: A new framework for knowledge discovery process.

4.7 Conclusion

In this Chapter, we studied the integration of interestingness measures in the asso-
ciation rule mining technique. First, we discussed objective (data-driven) measures
which are defined by statistical and descriptive functions over the data. Nevertheless,
the extracted rules are still in an important number, and, more important, the objec-
tive measures do not guarantee the pruning of non trivial rules. Subjective measures
come to complete the objective measures. They are user-driven, based on the goals
and beliefs of users.
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While a great part of these approaches acts in the post-processing step by filtering
interesting rules, specific approaches, such as Logical Contradiction, integrate user
knowledge in the mining algorithm.

The main limitations of these techniques come from different aspects:

• volume and quality of filtered rules – the existing techniques do not guarantee an
important reduction of rule number to a maximum rule number in order to be
possible for a user to analyze them manually. Further, it is still possible to find
some trivial rules, depending on the user. The reasons are the representation
formalisms and the matching methods used in the filtering approaches.

Using templates or rule-like formalisms could be interesting, but the language
is not enough powerful to express the entire human reasoning process. Later,
ontologies were proposed as domain knowledge representation, but they are not
used to their entire capacity of representation. In other words, the restriction
and reasoning techniques are not integrated in these techniques, even if they
represent the difference between ontologies and the other hierarchy-based rep-
resentation formalisms.

In other words, the more the user domain knowledge/expectations are rep-
resented in a accurate and flexible manner, the more the filtering process is
efficient, and the selected rules correspond to user knowledge and they are gen-
erated in a limited number.

• interactivity of the mining process and completeness of the mining framework
– the achievement of the mining process also depends on the possibilities that
the mining framework offers to the user. That is to say that, in order to filter
the rules that interest him/her, the user should be able to combine objective
measures with subjective ones and to refine his/her knowledge in function of
partial results.
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Every addition to true knowledge is
an addition to human power.

Horace Mann
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5.1 Introduction

This Chapter presents ARIPSO (Association Rule Interactive Post-processing using
Rule Schemas and Ontologies) and ARLIUS (Association Rule Local Interactive min-
ing Using rule Schemas), our novative approaches for extracting reduced number of
association rules. Our main motivation comes from the problem itself: we started
this work with the principal purpose to transform the large and inextricable set of
discovered rules in an easier analyzable one by reducing the number of rules and in-
creasing their quality. To this end, we oriented our approach toward the user in order
to help the discovery process to select only those pertinent rules. For this reason, we
consider user knowledge integration in KDD process as very valuable.

First, we introduce the ARIPSO approach which works in the post-processing
step of the KDD process. The novelty of our approach relies on supervising the
association rule mining process using two different conceptual structures to represent
user domain knowledge – one or several Ontologies – and user expectations – several
Rule Schemas generalizing general impressions. In addition, the approach integrates
Operators over Rule Schemas that aim to produce an well defined action over the set
of association rules. Finally, ARIPSO framework provides an interactive and iterative
post-mining process, which facilitates the analyzing task.

Second, we detail ARLIUS approach which is different from the former because
it concentrates on the mining algorithm; it does not consist in a post-processing
approach. It proposes a new algorithm for association rule mining integrating user
knowledge by means of Rule Schemas. The formalism developed in this method is
different from the one proposed in ARIPSO – it is more flexible and more expressive.
Beyond the Rule Schema formalism, the novelty of this approach stands on a new
set of Operators and on a new mining technique proposing a local rule mining. The
main interest relies on the fact that the number of discovered rules during a research
is low, and that partial results can be injected in the mining algorithm.

5.2 ARIPSO Approach

ARIPSO is an association rule filtering approach. It proposes to select only the asso-
ciation rules that are interesting for the user. ARIPSO works in the post-processing
step of the KDD process. In this context, KDD process is executed in two steps:
first, association rules are generated by classical techniques; next, ARIPSO selects
only the interesting ones.

ARIPSO approach is composed of two main parts as shown in Figure 5.1. In a first
instance, we focus on user knowledge. This part consists in a knowledge base allowing
to formalize user prior knowledge. Three semantic components are integrated in the
approach:

• Domain;

• Expectation;

• Action.
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First, we integrate user domain knowledge. The user has several information con-
cerning the domain of the database. Moreover, if the user is a domain expert, he/she
should hold a complete description of the domain. Thus, user domain knowledge
is integrated in our ARIPSO approach offering a subjective general view over the
database domain.

Secondly, we integrate user expectations. The user might also have several infor-
mation concerning the discovered rules, he/she might know the type of rules he/she
wants or does not want to find. Thus, we suggest to the user to provide his/her ex-
pectations and goals representing his/her prior knowledge over the discovered rules.

Last but not least, in our approach, we give the possibility to the user to apply
different operators over his/her expectations. Let us consider that an user knows
already that a set of associations exists in the database. As these associations are
trivial for the user, they should be pruned from the final set of rules. On the contrary,
rules contradicting this set of associations could interest the user, having a surprise
effect. For this purpose, we propose to the user to assign to each expectation an action
to be taken when applied over the set of rules. In consequence, user expectations work
as a filter over the entier set of rules.

Figure 5.1: ARIPSO approach description.

The second part of our approach refers to the post-processing task. As already
stated in the literature and in this manuscript, the post-processing task deals with
analyzing of entire sets of association rules by using different interestingness measures,
with the main goal to propose to the user a rule set highly limited in volume. In our
approach, this process consists in applying iteratively a set of filters over the extracted
rules in order to propose in the end of this task a small set (less than 100 rules) of
rules interesting to the user. Described in the sections below, this set of filters is
composed of new filters that we propose – the rule schema filters/pruning created by
applying operators over rule schemas, or filters already proposed in the literature –
additional filters – discussed in Section 5.2.4.3.

5.2.1 Motivations

The main motivations of our ARIPSO approach are described by the drawbacks of
the association rule mining process outlined in Chapter 2 and Chapter 4, such as:
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• the huge volume of rules, and

• the quality of rules.

The assessment of the quality of rules is both an objective and subjective problem.
As outlined in Chapter 4, a great number of objective measures were proposed in
the literature which are able to measure the quality/interest of discovered rules and,
thus, to reduce the rule number.

Nevertheless, in this context, the user plays an important role since a rule can
be interesting to an user, but not interesting to another one. This depends on user
background knowledge and expectations. Subjective measures propose to integrate
user knowledge in the association rule mining process and different approaches were
developed. In this context, the user beliefs should be represented by means of accurate
and flexible formalisms in order to express in the best way what the user knows and/or
expects; thus, the selection process is more efficient.

The actual user-driven approaches suggest different formalisms for knowledge rep-
resentation starting from templates, rules, taxonomies, till ontologies. As stated in
Chapter 3, ontologies represent an accurate and flexible formalism for the represen-
tation of user knowledge, due to restriction and reasoning techniques. Ontologies
propose to express the reasoning behind the human thinking which completes the
descriptive part. Nevertheless, the few approaches using ontologies for knowledge
representation do not benefit of this great advantage of ontologies – the reasoning.

Further, we could notice also that existing mining frameworks do not combine
different types of interestingness measures and/or different types of knowledge repre-
sentation formalisms. This could permit to generate reduced sets of association rules
and could increase the rule quality. In this context, it is important to develop a com-
plete, interactive and iterative framework allowing the user to test different scenarios
till he/she arrives to the researched information.

Since early 2000’s, in the Semantic Web field, the number of available ontologies
has been increasing covering a wide domain of applications. This is a great advantage
for a system integrating ontology-based user knowledge representations because it can
limit the ontology development time.

One of our most important contributions on reducing the number of association
rules relies on using ontologies as user background knowledge representation. That is
to say that we extend the specification language proposed by Liu et al. [135] - General
Impressions (GI), Reasonably Precise Concepts (RPC) and Precise Knowledge (PK),
denoted in a general manner by General Impressions - by the use of ontology con-
cepts. For now on we will refer to this specification language using the term general
impressions.

First, let us remind one of the specifications language proposed by Liu et al.: the
Reasonably Precise Concept one. A RPC represents user vague feelings concerning
some associations in the database, including also the direction of the implication. The
formalism of RPCs is described as follows:

rpc(< S1, . . . , Sj → Sj+1, . . . , Sm >)[support, confidence]
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where each Si is an element of the taxonomy (i.e. the taxonomy in Figure 5.2) and ∗,
+, {} is a set of operators that can be applied over the elements. Si+ represents one
or more occurrences of the elements of Si, Si∗ represents zero or more occurrences of
the elements of Si, {Si1 , Si2} expresses Si1 OR Si2 .

The RPC -association rule matching process consists in a syntactic comparison be-
tween elements involving the item taxonomy. Thus, each element in the RPC should
find a correspondent in the association rule. Inversely, each item in the association
rule, should be a correspondent of an element from the RPC.

Figure 5.2: Supermarket item taxonomy [136].

Example 5.2.1 Let us consider that the user might think that if somebody buys
milk OR cheese and beef, then it is probable that she/he will also buy Fruit items
(assume the user uses the taxonomy in Figure 5.2). In consequence, using Reasonably
Precise Concepts, the user could specify this belief as following:

rpc(< {milk, cheese}∗, beef → Fruit+ >)

The following rules are examples of association rules that are conform to the specifi-
cation:

beef → apple

milk, beef → grape, pear �

Example 5.2.2 In this second example, let us consider that the user would need
to find if customers buying diet products, also buy ecological ones. When using the
Liu et al. proposition we can make two major observations. On the one hand, we
can notice that the user does not have the necessary tools to find which products are
proposed in diets or which ones are ecological. On the other hand, no possibility of
extension of the existing taxonomy is proposed by the authors so that the user could
instantiate the different types of products.

Nevertheless, the user has the possibility to propose a RPC by using directly the
database items. Let us consider that the diet products are apple and chicken items,
and milk, grape and beef items are ecological products. Thus, the user could propose
the following RPC described using the OR operator:

rpc(< {apple, chicken} → {milk, grape, beef} >)
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In the given example the number of items is not very high, so it is still possible to
enumerate an entire subset of items. But, what if we use a database of hundreds of
items? It is clear that working directly with database items is not a solution for the
user.

If it was possible for the user to extend the taxonomy, it would be able to create
an RPC such as:

rpc(< DietProducts→ EcologicalProducts >)

where DietProducts and EcologicalProducts represent, respectively, the set of the
products integrated in diets, and those products which are produced in an ecological
way.

It is important to outline that the two concepts of diet products and ecological
products do not contain information already existing in the database. So, being able
to create such a RPC consists also of being able to propose additional information
comparing to those proposed by the database which will permit to the user to treat
the data from another level. Defining such concepts is not possible using taxonomies.

Figure 5.3: Visualization of the ontology created based on the supermarket item taxon-
omy.

This type of information could be integrated in ontologies. Used in designing
ontologies, description logic [108] allows concept to be defined using restrictions. In
consequence, based on the earlier considerations and starting from the taxonomy
presented in Figure 5.2, we developed an ontology presented in Figure 5.3. We propose
to integrate two data properties of Boolean type in order to define two types of
products:

• those that are useful in diets (IsDiet) and

• those that are ecological (IsEcological).
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And, using these two properties, the concept DietProducts is defined as a restric-
tion on FoodItem hierarchy using the data property isDiet, describing the items useful
in a diet. Similarly, the EcologicalProducts concept is defined.

In Figure 5.3, we can notice that the definition proposed of the two concepts is
followed; so, apple and chicken are instances of DietProducts concept, and milk, grape
and beef are instances of EcologicalProducts concept. �

5.2.2 Ontologies – User Domain Knowledge

5.2.2.1 Ontology Structure

Domain knowledge, defined as the user knowledge concerning the database, is de-
scribed in our framework using ontologies.

Compared to taxonomies used in the specification language proposed in [136],
ontologies offer a more complex knowledge representation model by extending the
only is-a relation presented in a taxonomy with the set R of relations. In addition,
the axioms bring important improvements permitting concept definition starting from
existing information in the ontology permitting to infer new information by means of
reasoning process.

In order to explain the interest of ontologies in our approach, let us present the
structure of the ontology and the key concepts that our method is based on. For this
purpose, we consider three types of concepts:

• leaf-concepts;

• generalized concepts created by the use of the subsumption relation (≤) in H
of O;

• restriction concepts created by using restrictions over the other concepts and
properties.

The particularity of these concepts is that leaf-concepts and generalized concepts
are common to taxonomies and ontologies, while restriction concepts are particular
to ontologies. In order to proceed to the definition of each type of concepts, let us
remind that a set of items in a database is defined as I = {i1, i2, ..., in} and that
the notation ≤ stands for the subsuming relation.

Definition 5.2.3
A concept is denoted as leaf-concept (LC) if it does not subsume other con-

cepts in the ontology. Formally, it is defined as follows:

LC = {C0 ∈ C | ∄C ′ ∈ C, C ′ ≤ C0}. �

The Figure 5.4 presents the set of leaf-concepts in the supermarket ontology.

Definition 5.2.4
A concept is denoted as generalized concept (GC) if it subsumes at least one

concept in the ontology. Formally, a generalized concept is defined as follows:

GC = {C1 ∈ C | ∃C ′ ∈ C, C ′ ≤ C1}. �
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Figure 5.4: Example of leaf-concepts in supermarket ontology.

Figure 5.5: Example of generalized concepts in supermarket ontology.

Example 5.2.5 In the Figure 5.5 we can remark that the concepts Fooditem, Fruit,
DairyProducts and Meat are generalized concepts. Let us consider the DairyProducts
concept. It subsumes the following concepts: milk, cheese and butter. Thus, we
can formalize that: milk ≤ DairyProducts, cheese ≤ DairyProducts and butter ≤
DairyProducts. �

Definition 5.2.6
A concept is denoted as a restriction concept (RC) – or defined concept in

OWL language – if it is described using a set of restrictions.

Thus, we can define the set of restriction concepts as those concepts described
using a set of restrictions over the properties and over the rest of the concepts as
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follows:

RC = {C2 ∈ C ∧ C2 =
k
∪

i=1

Ri | Ri = (Oi, Pi, Ci/Ii/Di)}

where Ri represents a restriction over the set of properties and the set of concepts/
instances/data in the ontology. It can be generally defined as:

R = Restriction Operator(Oi)Property(Pi)Concept/Instance/Data(Ci/Ii/Di)

where Oi stands for the restriction operator, Pi for property, Ci for the concepts, Ii
for the instances and Di for the data. �

A restriction describes a constraint on relationships within the individuals partici-
pates for a given property. Let us remind that three types of restrictions are available
as follows [104] (for more details see Section 3.4.3 on page 47): Quantifier Restrictions
(existential quantifier (∃) and universal quantifier (∀)), hasValue Restrictions (�) and
Cardinality Restrictions.

The main interest in proposing the use of restriction concepts in our ontology is
that these concepts do not contain the usual information that we find in the database.
An important improvement in information quantity is brought by the use of restriction
concepts. They allow the user to create concepts that can be used in the filtering
step.

Example 5.2.7 In order to exemplify restriction concepts we will use the hasValue
restriction to create our restriction concepts. First, let us consider that we integrate
2 data properties in our ontology:

• Fooditem.isDiet() is a boolean property which denotes if a product is a diet one
or not. It connects the FoodItem concept to boolean data (TRUE or FALSE);

• Fooditem.isEcological() is a boolean property which denotes if a product is pro-
duced in ecological ways or not (the same structure as for isDiet).

Based on these data properties, we are able now to define two restriction concepts
which describes respectively the individuals related to the boolean data TRUE by
the isDiet property, and by the isEcological property:

DietProducts ≡ FoodItems ⊓ isDiet hasV alue TRUE

EcologicalProducts ≡ FoodItems ⊓ isEcological hasV alue TRUE �

The restriction concepts DietProducts and EcologicalProducts are reproduced in
Figure 5.6.

Last but not least, the instances (I) of the ontology are defined as the individuals
of the concepts. For instance, apple concept has two individuals: red apple and
green apple. They can be viewed in the bottom part of the Figure 5.6.
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5.2.2.2 Ontology Reasoning

In the previous section we propose to classify the concepts of the ontology in: leaf,
generalized and restriction concepts. The first two are quite natural because they
describe the taxonomy structure, while the last one is more difficult to understand
and to implement.

Figure 5.6: Example of restriction concepts and of the ontolgy structure after inference.

The advantage of restriction concepts comes from the main advantage of Descrip-
tion Logic – the reasoning process. As presented in Section 3.4.4 on page 53, reasoners
allow users to find inconsistencies over knowledge bases, and to generate new infor-
mation. More precisely, in ARIPSO approach we are interested in three important
actions of reasoners:

• finding inconsistencies;

• reorganizing the concepts;

• creating the corresponding relations between individuals and concepts.

First, finding inconsistencies is a classical task which informs the user concerning
important anomalies in the ontology.

Second, reorganizing concepts is a more delicate task.

Example 5.2.8 For instance, let us consider that in the previous example we add
a new concept – ProductTypes – which subsumes the concepts EcologicalProducts
and DietProducts, but which is in no relation with the Fooditem concept. After the
reasoning, it is obvious that EcologicalProducts and DietProducts concepts will be
also subsumed by the Fooditem concept. �

Third, creating new relations between the individuals and the concepts is a crucial
feature proposed by the reasoners. During this task, the real interest of restriction
concepts can be evaluated. In the asserted state (before reasoning) we consider that
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a set of individuals is asserted in the ontology by the user such as the restriction con-
cepts. After reasoning the ontology is able to answer which individuals are instances
of a given restriction concept. In other words, the reasoning can to provide to a given
restriction concepts the individuals that satisfy the corresponding restrictions.

Example 5.2.9 For instance, in our example, the Figure 5.6 represents the ontol-
ogy after reasoning. We will consider that red apple, green apple and chicken wings
individuals have the isDiet property on the boolean TRUE. In consequence, after rea-
soning, these three individuals will be individuals of the DietProducts concept also,
because they fulfill its restrictions. �

5.2.2.3 Ontology-Database Mapping

In this scenario, it is fundamental to connect ontology concepts C to the database,
each one of them being connected to one/several items of I. The direct connection is
realized by the bottom elements of the ontology. Thus, if the ontology is instantiated,
the direct connection is done through instances, other way, through leaf-concepts.

For the case of an instantiated ontology, the instances are connected in the easiest
way to the database:

f ′
0 : Inst → I, ∀i0 ∈ Inst

∃i ∈ I, i = f ′
0(i0).

And, in this case, leaf-concepts are connected to the database through its instances
as follows:

f0 : C0 → P(I), ∀c0 ∈ C0

f0(c0) =
∪

i0∈Inst

{i = f ′
0(i0) | i0 instance of c0, i ∈ I}.

For the cases when the ontology is not instantiated, leaf-concepts are connected in
the easiest way to database – each concept from LC is associated to one item in the
database through the function f0:

f0 : C0 → I, ∀c0 ∈ C0

∃i ∈ I, i = f0(c0).

A generalized concept is connected to the database through its subsumed concepts.
That means that, recursively, only the leaf-concepts subsumed by the generalized
concept contribute to its database connection:

f : C1 → P(I), ∀c1 ∈ C1

f(c1) =
∪

c0∈C0∧c0≤c1

{i = f0(c0)}.

The connection of restriction concepts (in the case of an instantiated ontology) is
quite comparable with the connection of leaf-concepts. Let us consider that after
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the inference process a restriction concept contains a set of individuals, InstRC
, that

satisfy the restrictions. The connection to the database is done through this set of
individual, as in the case of leaf-concepts.

Example 5.2.10 Let us consider the database presented in Figure 5.7 and described
by three transactions. Also, let us consider the ontology presented in the same figure
as being the ontology developed over items of database and described as follows.

The ontology is defined by the concepts {FoodItems, Fruits, DairyProducts, Meat,
DietProducts, EcologicProducts, . . . } which are organized as follows:

Leaf Concepts: {grape, pear, apple, milk, cheese, butter, beef, chicken, pork}

Generalized Concepts: {Fruits, DairyProducts, Meat, FoodItem}

Restriction Concepts: {DietProducts, EcologicalProducts}

and by the following instances:

Instances: {grape espagne, nashi, red apple, green apple, . . . }.

Two data properties are also integrated in order to define whether a product is
useful for a diet, or is ecological. For example, the DietProduct restriction concept
is described using description logics language by:

DietProducts ≡ FoodItems ⊓ ∃isDiet.TRUE

defining all food items that have the boolean property isDiet on TRUE. For our
example isDiet is instantiated as follows:

isDiet: {(red apple, TRUE), (green apple, TRUE), (chicken wings, TRUE)}.

Figure 5.7: Ontology-database mapping trough instances.

Now, we are able to connect the ontology and the database. As already presented,
instances are connected to items in a very simple way, for example, the instance
green apple is connected to the same item f ′

0(green apple) = green apple. Further,
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the apple leaf-concept is connected to the database via its instances such as:

f0(apple) = {f
′
0(red apple), f ′

0(green apple)}

= {red apple, green apple}.

On the contrary, the generalized-concept Fruits is connected through its three sub-
sumed concepts:

f(Fruits) = {f0(grape), f0(pear), f0(apple)}

= {f ′
0(grape espagne), f ′

0(nashi), f
′
0(red apple), f ′

0(green apple)}

= {grape espagne, nashi, red apple, green apple}.

Similarly, we can describe the connection for the other concepts.
More interesting, the DietProducts restriction concept will be connected through

those instances satisfying the restrictions in the definition of the concept. Thus, Diet-
Products is connected through the instances red apple, green apple and chicken wings :

f(DietProducts) = { red apple, green apple, chicken wings }. �

5.2.3 Rule Schemas – User Expectations

The model of user expectations in ARIPSO is based on the proposition made by Liu
et al. 1999 [135]. In this approach, Liu et al. developed general impressions in the
view of helping the user to select interesting rules. The general impressions come as
a representation language especially for user vague feelings about generated rules.

The model proposed by Liu et al. is described by elements from an item taxonomy
which develops an is-a organization of database attributes. Using taxonomies of items
has many advantages: the items are organized in more general concepts and the
representation of user expectations is more general, thus, the rules that are filtered
are more interesting to the user. However, a taxonomy of items might not be enough
to express heterogeneous knowledge as user domain knowledge. The mainly limits of
taxonomies can be cited as follows: first, the concepts are connected using only the
is-a relation, thus, the lack of different types of concept relations does not permit the
diversification of types of concepts – only generalized concepts are available. Second,
the lack of different relations between concepts does not permit to taxonomies to infer
new information.

For example, the user might want to use concepts that are more expressive and
accurate than the generalized concepts in taxonomies. Moreover, concepts resulting
from relationships more precise than the is-a relation (i.e. IsEcological, IsCooked-
With) are more useful. These two points describe the domain knowledge of a human
being: humans are able to make a hight series of connections in a short time and to
infer the present facts in order to generate new ones.

In the last decade, a lot of research was done in knowledge management field,
and a part of it was stated in the Section 3. An important number of representation
languages were proposed in order to formalize human knowledge, but, in the last
years, ontologies were considered to be a complex language with a very well developed
framework permitting the definition of an important type of elements.
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Compared to a taxonomy, an ontology includes the features of taxonomies, but
adds more representation power. In a taxonomy, the means for subject description
consists essentially of one relationship: the subsumption relationship used to build
the hierarchy. Thus, the set of items is opened, but the language used to describe
them is closed [80]. In conclusion, a taxonomy is simply a hierarchical categorization
or classification of items in a domain. On the contrary, an ontology is a specification
of several characteristics of a domain, defined using an open vocabulary.

Starting from general impressions and from the ideas presented above, we propose
a new representation language for user expectations replacing item taxonomies with
ontologies based on database items. We called this new knowledge representation
formalism Rule Schemas (RS). Therefore, Rule Schemas bring the expressiveness of
ontologies in the post-processing task of association rules combining not only item
constraints, but also ontology concept constraints.

Going back to general impressions, it is difficult for a domain expert to know
exactly the support and confidence thresholds for each rule schema proposed, because
of their statistical definition. That is why we consider that using Precise Knowledge
in user expectation representation might be useless. Thus, we propose to improve
only two of the three representations introduced in [136]: General Impressions and
Reasonably Precise Concepts.

Definition 5.2.11
We describe a Rule Schema as a set of ontology concepts expressing the fact

that the user expects these concepts to be present in the extracted association rules.
Formally, a Rule Schema is defined as:

RS(< X1, ..., Xn (→) Y1, ..., Ym >)

where Xi, Yj ∈ C of O = {C, R, I, H, A}. The optional implication ”→” outlines
that the proposed formalism combines General Impressions and Reasonably Precise
Concepts. On the one hand, if we use the formalism as an implication, an implicative
Rule Schema is defined extending the RPCs. On the other hand, if we remove the
implication, we define non implicative Rule Schemas, generalizing GIs. Moreover, we
propose the use of several operators over the elements of the rule schemas as follows:

• OR is a logical operator which can be used as S1 OR S2 – the concept S1 or the
concept S2;

• * operator is used to express that an element can be present in the rule schema
zero or more times;

• + operator is used to express that an element can be present in the rule schema
one or more times. �

Example 5.2.12 Let us consider the ontology presented in Figure 5.3. Using the
concepts of the ontology, we can define the following Rule Schemas:

RS1 : RS(< DietProducts, EcologicalProducts >)

RS2 : RS(< DietProducts+→ EcologicalProducts >)
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In the first Rule Schema, the user knows that there is a connection between the two
concepts, meanwhile in the second one the user knows exactly that he/she expects
to find in the discovered rules one or more diet products in the antecedent and one
ecological product in the consequent. �

The main goal of a Rule Schema is to filter and to prune discovered association
rules. To this end, we propose a set of operators to be applied over the Rule Schemas
in order to realize several types of actions. We will detail operators in Section 5.2.4.2.

In conclusion, in a rule-like formalism, a rule schema describes, the user expecta-
tions in terms of interesting/obvious rules. As a result, Rule Schemas act as a rule
grouping, defining rule families.

5.2.4 User Interactivity – Action

In post-processing data mining frameworks, and more particularly in association rule
field, it is difficult for an user to find in only one search all interesting knowledge
discovered by the mining process. Thus, an important contribution of our work is to
propose an interactive approach with the possibility for the user to come back over
his/her decisions/actions to finally find the knowledge researched.

First, the interactivity of our approach comes from the process itself, designed so
that the user has the liberty to choose the best action to take after testing an entire
set. Second, actions proposed via the rule schema operators increase the degree of
user interactivity, giving to the user an great set of actions to take.

5.2.4.1 Interactive Process

The interactive process of the ARIPSO framework (presented in Figure 5.8) aims
at guiding the user through the post-processing phase. Taking into account his/her
feedbacks, the user is able to revise his/her expectations or actions to take in function
of intermediate results. Several steps are suggested as follows:

Figure 5.8: Interactive process description

1. Ontology Construction. This first phase consists in developing the first part of
the user knowledge base. Starting from the database, and eventually from exist-
ing ontologies, the user develops an ontology of database items. It is important
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to encourage the user to propose a wide range of knowledge, and, if possible, to
complete with different information comparing to those found in the database;

2. Rule Schemas Definition. The second phase consists in creating the second part
of the user knowledge base. The user uses ontology concepts in order to express
his/her local goals and expectations concerning the discovered association rules;

3. Operators Definition. The use of operators increases the level of the framework
interactivity. Letting the user to choose the operators to be applied over the
Rule Schemas represents an important point in the liberty of the users in this
framework, because choosing the operators is choosing the actions to be per-
formed. Once the operators are selected, selecting/pruning filters are generated
and applied over the set of rules;

4. Visualization. The visualization phase is very important, proposing to the user
the result of his/her actions. An important set of interesting measures evaluates
the filtered association rules so that, in case of an unanalyzable high volume,
the user could at least know which is the more appropriate decision to take;

5. Selection/Validation. In this final phase, users evaluate subjectively the set
of filtered rules starting from these preliminary results. Two possibilities are
proposed: first, the user can validate the result and stop the research or, second,
he/she can revise his/her information and restart the research;

6. Additional Filters. This phase proposes important methods for the reduction
of the rule number: two filters already existing in the literature and detailed in
Section 5.2.4.3. These two filters can be applied over the set of rules whenever
the user needs them;

7. Interactive Loop. It allows the user to revise the set of knowledge that he/she
provided in the precedent phases. Thus, he/she can return to phase 2 in order
to modify the rule schemas, or he/she can return to phase 3 in order to change
the operators. Moreover, in the interactive loop the user could decide to apply
one of the two predefined filters discussed in phase 6.

5.2.4.2 Interactivity by using Operators over Rule Schemas

Before presenting the operators that we propose in our framework, let us remind
the types of rules that Liu et al. [136] filter using general impressions. The basic
idea of Liu et al. to compare association rules with general impressions was to verify
syntactically if the rules contain the same items as the general impression. Thus,
they proposed four types of rules:

• Conforming rules - association rules that are conforming with the specified
beliefs;

• Unexpected antecedent rules - association rules having the antecedent non con-
forming with the belief one, but the consequent conforming with the belief one;
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• Unexpected consequent rules - association rules having the conclusion non con-
forming with the belief one, but the antecedent conforming with the belief one;

• Both-side unexpected rules - association rules having the antecedent and the
consequent non conforming with the belief ones.

The operators that we propose in our framework to be applied over rule schemas
are slightly inspired from the types of filtered rules proposed by Liu et al., with several
differences that we will present in this section.

First, we would like to begin our presentation by explaining the association of
3 important notions: rule schemas, operators and filters. Let us remind you that
rule schemas express user expectations in a rule-like formalism. Operators come
as an action to be applied over the rules schemas (i.e. we can apply the operator
Conforming over the rule schema R1 : A → B in order to apply the conforming
action over R1, thus finally we select those association rules conforming to R1). The
notion of filter comes from the verb to filter and it is defined in our framework by
the process of applying an operator over a rule schema. In other words, we create a
filter which will realize over the association rule set the action of filtering based on
conditions given by the operator and the rule schema.

Below, we will define the types of operators that we use in our framework. We
propose two important sets of operators: Pruning and Selecting – Conforming, Un-
expectedness and Exception.

On the one hand, for the first two operators of Selecting we propose to reuse the
ideas behind the types of filtered rules proposed by Liu et al.: conforming and unex-
pectedness. On the other hand, we bring two new operators in the post-processing
task: Pruning and Exception.

The filtering technique of the association rules is based on the idea of comparing
association rules with the rule schemas. Therefore, we use as comparison technique
a modified version of the syntactical method which is defined as follows.

Definition 5.2.13
Let us consider an ontology concept C associated in the database to

f(C) = {y1, ..., yn},

where y1, ..., yn ∈ I and an itemset

X = {x1, ..., xk}.

We say that the itemset X is conforming to the concept C if conf(X,C) = TRUE,
where:

conf(X,C) =

{

TRUE if ∃yi, yi ∈ X
FALSE otherwise

In other words, an itemset is conforming to an ontology concept if the latter is
associated to at least one item of the itemset. �
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In the following we describe the four operators that we integrate in ARIPSO.

Pruning. In databases, there exist relations between items that we consider obvious
or that we already know. Thus, it is not useful to find these relations among the
discovered associations. Applied over a rule schema, the pruning operator, P (RS),
removes all association rules matching the rule schema. Thus, it permits to remove
families of rules. To extract all the rules matching a rule schema the conforming
operator is used.

Conforming. Applied over a rule schema, the conforming operator, C(RS), confirms
an implication or finds the implication between several concepts. For an association
rule to be selected by the Conforming operator over a rule schema, the following set of
conditions should be completed in function of the different types of the rule schema:

• if the rule schema is not an implication, an association rule is conformed to it if
the itemset created by the union of the antecedent and the conclusion itemsets
of the association rule is conforming to each concept composing the rule schema.

Let us consider the following association rule

A→ B,

where A and B are itemsets, and a rule schema

RS(< M >)

where
M = {C1, . . . , Ck}.

We say that the association rule is selected by the Conforming operator, in
other words, the association rule is conforming to the rule schema if

∀Ci ∈M, conf(A ∪B,Ci) = TRUE.

• if the rule schema is defined as an implication, an association rule is conformed
to if the antecedent and the consequent itemsets of the association rule are
conforming to the each antecedent concept and, respectively, to each consequent
concept of the rule schema. A graphical representation of this definition is given
in Figure 5.9.

In order to formalize this definition, let us consider the following association
rule

A→ B

and the rule schema
RS(< MA →MB >)

where
MA = {C1, . . . , Ck} and MB = {C ′

1, . . . , C
′
k′}.
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Figure 5.9: Selecting A→ B association rule using Conforming operator over X,Y, Z →
T, U, V rule schema

We say that the association rule is selected by the Conforming operator, in
other words, the association rule is conforming to the rule schema if

∀Ci ∈MA, conf(A,Ci) = TRUE

and

∀C ′
i′ ∈MB, conf(B,C ′

i′) = TRUE.

Example 5.2.14 Let us consider the implicative rule schema

RS1 : RS(< Fruits→ EcologicalProducts >)

where
f(Fruits) = { grape espagne, red apple, nashi, green apple },
f(EcologicalProducts) = { grape espagne, milk 100, steack beef 100 } and
I = { grape espagne, red apple, nashi, green apple, milk 100, steack beef 100,

chicken wings, chicken legs }.
Also, let us consider that the following set of association rules is extracted by

traditional techniques starting from the database:

C(RS1)

R1 : grape espagne, steack beef 100→ milk 100, nashi ⊕

R2 : red apple→ steack beef 100 ⊕

R3 : green apple, nashi, milk 100→ chicken wings ⊕

R4 : grape espagne, nashi→ red apple ⊖

R5 : steack beef 100→ grape espagne ⊖

R6 : milk 100, steack beef 100→ grape espagne ⊖

Let us consider the association rule R1. Next, we will verify if R1 is selected by the
Conforming operator applied over the rule schema:

• first, we verify if the antecedent of the rule is conforming to the Fruit concept
of the rule schema antecedent. The antecedent of the rule contains the item
grape espagne, which is a fruit product also (grape espagne ∈ f(Fruit)), thus,
the antecedent of the rule is conforming to the antecedent of the rule schema;



116 ARIPSO and ARLIUS Approaches

• second, we verify if the consequent of the rule is conforming to the Ecological-
Products concept of the rule schema consequent. The consequent of the rule
contains the item milk 100, which is an ecological product also (milk 100 ∈
f(EcologicalProducts)), thus, the consequent of the rule is conforming to the
consequent of the rule schema

In conclusion, the association rule R1 is selected by the Conforming operator
applied over the rule schema. Two other association rules are selected by the operator:
R2 and R3. �

Unexpectedness. With a higher interest for the user, the unexpectedness operator,
U(RS), proposes to filter a set of rules with a surprise effect for the user. This type
of rules interests the user more than the conforming one since, generally, a decision
maker searches to discover new knowledge with regard to his/her prior knowledge.

Moreover, several types of unexpected operators are proposed:

• antecedent unexpectedness operator, Up(RS) – a rule is selected by this operator
if it is not conformed to the rule schema by its antecedent;

• consequent unexpectedness operator, Uc(RS) – a rule is selected by this operator
if it is not conformed to the rule schema by its consequent;

• and both sides unexpectedness operator , Ub(RS) – a rule is selected by this
operator if it is not conformed to the rule schema by both its antecedent and
consequent.

Figure 5.10: Selecting A→ B association rule using antecedent Unexpectedness operator
over X,Y, Z → T, U, V rule schema

Next, due to space limit and to repetitiveness of the definitions, in the following,
we will detail only the antecedent unexpectedness operator applied over implicative
rule schemas. Given a rule schema, an association rule is unexpected regarding the
antecedent if the antecedent itemset of the association rule is not conforming to each
antecedent concept of the rule schema, and if the consequent itemset of the association
rule is conforming to each concept in the consequent of the rule schema. A graphical
representation of this definition is given in Figure 5.10.

In order to formalize this definition, let us consider the following association rule

A→ B
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and a rule schema

RS(< MA →MB >)

where

MA = {C1, . . . , Ck} and MB = {C ′
1, . . . , C

′
k′}.

We say that the association rule is selected by the antecedent unexpectedness op-
erator, in other words, that the association rule is conforming to the rule schema
if

∀Ci ∈MA, conf(A,Ci) = FALSE

and

∀C ′
i′ ∈MB, conf(B,C ′

i′) = TRUE.

Example 5.2.15 For the antecedent unexpectedness operator example, we will use
the above example given in the Example 5.2.14 on page 115. Let us consider the rule
R6 and the given rule schema RS1. We will verify if R6 is selected by the antecedent
unexpectedness operator applied over the rule schema RS1:

• first, we verify if the antecedent of the rule {milk 100, steak beef 100} is NOT
conforming to the Fruit concept of the rule schema antecedent. None of the
antecedent items of the association rule is a fruit product

f(Fruit) ∩ {milk 100, steak beef 100} = ø;

thus, the antecedent of the rule is not conforming to the antecedent of the rule
schema;

• second, we verify if the consequent of the rule is conforming to the Ecological-
Products concept of the rule schema consequent. The consequent of the rule con-
tains the item grape espagne, which is an ecological product also (grape espagne
∈ f(EcologicalProducts)); thus, the consequent of the rule is conforming to the
consequent of the rule schema.

In conclusion, the association rule R6 is selected by the antecedent unexpectedness
operator applied over the rule schema RS1. Another association rule (R5) is selected
by the operator. �

Exception. Finally, the exception operator is defined only over implicative rule
schemas and extracts exception rules. Exception rules are rare phenomena which
contradict more general rules. Thus, they come from a lower population, but they
are very strong – having a hight confidence.

Presented by Suzuki 1997 [197], the research process of exception rules uses two
important notions:

• the common rule which represents the initial rule, X → Y . The goal is to
extract the exceptions of this rule;
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• the exception rule which contradicts the common rule. It can be expressed as
X ∧ z → ¬Y , where z is an item and ¬Y represents the negation of Y – for
binary databases this is expresses by the absence of the itemset Y , but in multi
modal databases this can be viewed as the Y itemset with different values for
its items.

Example 5.2.16 For the exception operator example, let us consider the rule R3

in the Example 5.2.14 on page 115 and the given rule schema RS1 : RS(< Fruits→
EcologicalProducts >). To verify if R3 is selected by the exception operator applied
over RS1, it should be conforming to the following rule schema:

RSE : RS(< Fruits, z → ¬EcologicalProducts >)

where z is an item. Thus, we follow the following steps:

• first, we verify if the antecedent of the rule is conforming to the Fruit concept
of the rule schema antecedent. The antecedent of the rule contains the items
green apple and nashi, which are fruit products, thus, the antecedent of the rule
is conforming to the Fruit concept in the antecedent of the rule schema;

• second, we verify if, apart the Fruits items in the antecedent, an additional
item exists. The milk 100 item verifies this condition;

• finally, we verify if the conclusion of the rule does not contain ecological product
items in order to verify the ¬EcologicalProducts concept of the RSE conse-
quent. The consequent of the rule contains the item chicken wings, which
is an ecological product, thus, the conclusion of the rule is conforming to the
conclusion of the RSE rules.

In conclusion, the association rule R3 is selected by the exception operator applied
over the rule schema. �

5.2.4.3 Additional Filters

In order to reduce the number of rules, we integrate two additional filters in the
framework: minimum improvement constraint filter [20] and item-relatedness filter
[148]. In this section we propose to brievly present these two interestingness measures
that were already detailed in Chapter 2 and Chapter 4.

5.2.4.3.1 Minimum Improvement Constraint filter (MICF ), developed by
Bayardo et al. 1999 [20], selects only those rules whose confidence is greater with
minimp than the confidence of any of its simplifications.

Definition 5.2.17
Let us consider the Rspec : X → Y association rule and Rgen : X ′ → Y where

X ′ ⊂ X; that is to say that the rule Rspec is a specification of the rules Rgen, or,
inversely, the rule Rgen is a generalization of the rule Rspec.



5.2 ARIPSO Approach 119

The improvement of the rule Rspec is computed as the minimum difference between
its confidence and the confidence of its more general rules. More formally, it can be
defined as:

imp(Rspec) = min(conf(Rspec)− conf(Rgen) | Rgen : X ′ → X, ∀X ′ ⊂ X). �

Further, if the improvement of the rule Rspec is positive, then we can conclude
that this rule is interesting because it brings more information than all its general
rules separately. If the improvement is negative we can conclude that the rule may
improve the confidence of several general rules, but not of all of them. In other words,
the rule Rspec could be simplified without loosing any information.

The threshold of minimum improvement (minimp) is provided by the user (i.e.
5%) once with the support and confidence.

Example 5.2.18 To illustrate the minimum improvement constraint, we will con-
sider the following set of association rules

R1 : milk, pork → pear [S = 20%, C = 80%]

R2 : milk, apple→ pear [S = 27%, C = 76%]

R3 : milk → pear [S = 25%, C = 70%]

R4 : pork → pear [S = 30%, C = 72%]

R5 : apple→ pear [S = 40%, C = 83%]

where R1 is the specialization of rules R3 and R4, and R2 is the specialization of
rules R3 and R5. Also, we consider that the threshold of minimum improvement is
minimp = 5%.

Thus, we can compute the improvement of R1 and R2 as follows:

imp(R1) = min(conf(R1)− conf(R3), conf(R1)− conf(R4))

= min(10, 8)

= 8 (%)

imp(R2) = min(conf(R2)− conf(R3), conf(R2)− conf(R5))

= min(6,−7)

= −7 (%)

and we can conclude that the rule R1 – with an improvement of 8% which overpasses
the minimum improvement threshold of 5% – is an interesting rule because it brings
additional information comparing to its generalizations (general rules). On the con-
trary, the improvement of rule R2 is negative, then less than the threshold limit of
5%, so, the rule is not interesting. �

5.2.4.3.2 Item-relatedness filter (IRF ) was proposed by Shekar and Natarajan
2005 [148]. Starting from the idea that the discovered rules are generally obvious, they
introduced the idea of relatedness between items measuring their semantic distance
using item taxonomies. This measure computes the relatedness of item couples.
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Definition 5.2.19
Let us consider two items – X and Y –, and a fuzzy taxonomy organizing the

items. The item-relatedness metric is defined in function of all possible paths from
X to Y in the taxonomy by means of three important measures. The first measure,
HM (Highest-Level Node Membership), computes the implication of each item in their
common parent node; the second one, HR (Highest-Level Relatedness), measures the
level difference between the parent of X and Y , and the taxonomy root. And, finally,
the last measure, NSR (Node Separation Relatedness), is defined as the length of the
simple path connecting the two items.

As a consequence, the item-relatedness measure of X and Y can be defined for-
mally as:

IR(X,Y ) = Σpath

(1 +HRX,Y (path))HMX,Y (path)

NSRX,Y (path)

with the variable path being all the possible paths between X and Y . �

To qualify the interestingness of an association rule, we can compute the item-
relatedness metric between each pair of items. Generally, we can distinguished three
types of similarity: between the antecedent items, between the consequent items
or between the antecedent and the consequent items. In our approach we use the
last type of item-relatedness because users are interested to find association between
itemsets with different functionalities, coming from different domains. This measure
is computed as the minimum distance between the condition items and the consequent
items as presented hereafter.

Definition 5.2.20
The distance between each pair of items from the condition and, respectively,

from the consequent is computed as the minimum path that connects the two items
in the ontology, defined as d(a, b). Thus, in our case, the item-relatedness (IR) for a
rule is defined as the minimum of all the distance computed between the items in the
condition and in the consequent:

RA1 : A→ B

IR(A,B) = NSRA,B(pathmin) = MIN(dij(ai, bj)), ∀ai ∈ A and bj ∈ B �

Example 5.2.21 Considering the taxonomy in Figure 5.11 and the conditions im-
posed above, we will compute the item-relatedness of the following association rule:

grape, pear, butter → milk

So, we will compute the metric for the following pairs: (grape,milk), (pear,milk)
and (butter,milk) and we can note that one single path is available for each pair:

d(grape,milk) = 4

d(pear,milk) = 4

d(butter,milk) = 2



5.3 ARLIUS Approach 121

Figure 5.11: Supermarket taxonomy [136].

and the interestingness of the rule is computed as it follows:

IR = min{d(grape,milk), d(pear,milk), d(butter,milk)} = 2.�

5.3 ARLIUS Approach

With this second approach1 we propose to bring user knowledge and post-mining
principles in the mining process. The main interest is that in a local method the user
can focus on interesting rules without the necessity of extracting all rules existing in
the database. In consequence, a local solution is faster than the post-mining one. The
user may explore the rule space incrementally, a small amount at each step, starting
from his/her own beliefs and knowledge; thus, the user is able to discover rules related
to its knowledge. At each step the user chooses the most relevant rules for further
exploration.

The differences with the ARIPSO approach are multiple. First, as we mentioned,
ARLIUS approach (Association Rule Local Interactive mining Using rule Schemas)
is based on a local search algorithm, while our first proposition is a post-processing
technique. Second, the Rule Schema formalism developed in ARLIUS is different
from the first one. It does not use ontology concepts, but it is more flexible and
more interesting to use in an interactive approach. Next, the mining algorithm is not
common to these two approaches, and last, one operator is comparable to conforming
and exception in ARIPSO, and we propose two new ones. Nevertheless, we present
them all because they work differently.

ARLIUS approach is composed of two main parts as shown in Figure 5.12. The
first one, dedicated to user knowledge integrates new formalisms to represent user
expectations and user actions.

On the one hand, we consider that the user has several knowledge concerning
the discovered rules – he/she might have a set of elements which can be considered
as starting points for the local mining algorithm. On the other hand, we integrate
Operators over user beliefs in order to permit several types of actions that will be
detailed further.

1that we developed during the collaboration with Andrei Olaru
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Figure 5.12: ARLIUS framework description.

The second part of the local approach consists in the mining algorithm itself. Its
main goal is to propose to the user a set of association rule highly limited in volume.
For this purpose, we suggest to start with the user beliefs and, by applying several
operators, to generate directly the candidate rules.

An important characteristic of the ARLIUS approach is that it is described by a
important interactivity with the user. At each generation of a set of association rules,
the user is invited to select the interesting ones and also to propose an Operator (one
action) to be applied over.

5.3.1 Rule Schema formalism

This approach is based on a novel, flexible and unitary specification language that
we propose in order to represent user interests – the Rule Schema. This formalism
is based on the specification language proposed by Liu et al. [136], but it improves
it by completely covering the three levels of specification presented in the General
Impressions formalism.

Let us consider that an user wants to find all rules that have the item milk in
the antecedent and that contain also the following items: apple, pear and pork. For
the last three items, the user is not sure of their position in the rule: if they are
in the antecedent or in the consequent. We can attempt to create a belief with
these elements. First, we will use the Reasonably Precise Concepts because the
user has some ideas concerning the position of certain elements in the antecedent
and/or consequent. Second, we try to express the existence of some elements in
either one of the parts, by using the ∗ operator defining elements that have zero or
more occurrences. Thus, the user beliefs can be expressed as follows:

rpc(< milk, apple∗, pear∗, pork∗ → apple∗, pear∗, pork∗ >).

Nevertheless, this representation could not satisfy entirely the user; first, because
it is more difficult to express and not so logic knowing that we cannot have the same
item in the antecedent and consequent, and, second, because permitting to have the
same item several times in a certain part it is not possible. In a second attempt we
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can propose to use the ? operator. This representation is also inappropriate for the
expectations that the user wanted to express because we can have rules matching this
rpc that do not contain the pear item (for example). Thus, this type of beliefs cannot
be clearly expressed using the Liu’s General Impressions formalism. As a conclusion,
this is our motivation to propose a new language for user expectations, inspired from
General Impression.

Definition 5.3.1
A Rule Schema is represented as follows:

rs(Antecedent→ Consequent [General]) [s% c%]

where the Antecedent and the Consequent contain the items that the user believes
to be present in the antecedent and, respectively, in the consequent of the association
rules. The General part contains the items that the user is not sure in which part to
place.

The three parts – Antecedent, Consequent and General – are all Expressions of
the form Expr = {Expr} | [Expr] | Expr? | Item – a disjunction or a conjunction of
Expressions or an optional Expression (the items contained might not be present in the
rule). The Rule Schema also contains optional constraints of support and confidence.
�

Example 5.3.2 For instance, let us consider the case presented previously – the
user knows that the item milk is in the antecedent and that the items apple, pear
and pork are implicated also in this relation, but he/she is not sure how, or where to
place these items. Then the user may define the following Rule Schema:

rs([milk]→ [ ] [apple, pear, pork]).

In this example we can remark that a part constituting the rule schema can be empty
– as the Consequent in our case. �

Example 5.3.3 Let us give a second example. The user may know that buying
pork implies buying apple, and might believe that there is also a relation with milk
and cheese items, but without knowing on what side of the implication they are
and not even if cheese is really part of any rule. Moreover, the user wants to find
only those rules with a support greater than 10% and a confidence greater than 40%.
Thus, the user may define the following Rule Schema:

rs([pork]→ [apple] [milk, cheese?]) [10% 40%].

In this example, we show the use of the ? operator. It permits to put an option on
the cheese item. �

The improvement that we bring to General Impressions is a more important flex-
ibility and a higher belief expression because Rule Schema may use all three parts
simultaneously, and in some particular cases the Liu languages are simulated. For
instance, if the Antecedent and Consequent are used omitting the General part, the
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Rule Schema is more like a Reasonably Precise Concept or Precise Knowledge. If the
General part is used without the Antecedent and the Consequent, the Rule Schema
simulates a General Impression. But, outward these two cases, our formalism brings
new expressions to the knowledge language.

5.3.2 User Interactivity

5.3.2.1 Interactive Process

The interactive process of the Local ARIPSO framework (presented in Figure 5.13)
aims at guiding the user through the rule extraction phase. Taking into account
his/her feedbacks, the user is able to revise his/her expectations and actions. Several
steps are suggested as follows:

Figure 5.13: Interactive process description for the ARLIUS Framework

1. Rule Schemas Definition.

2. Operators Definition.

These first two phases have the same role as in the ARIPSO approach. They
help the user to define Rule Schemas and Operators, and to increase the inter-
activity of the framework;

3. Local Mining Algorithm. In this phase, candidate rules are searched locally.
The research is based on the rule schemas and operators given in the two last
phases;

4. Association Rules Visualization. The visualization phase is very important,
proposing to the user the result of his/her research. After visualizing the asso-
ciation rules generated by the research, the user has two possibilities: to validate
the extracted rules and to stop the mining process (phase 6), or to select several
association rules to be used further in the mining process (phase 5);

5. Selection of Association Rules. If the user didn’t find what he/she was searching
for, he/she can continue the mining process by selecting a set of rules in order
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to be injected in the Local Mining Process as Rule Schemas; in this case the
user goes back to first phase. This interactive loop gives the user a great liberty
for choosing the Rule Schemas;

6. Discovered Association Rules. This is the last phase of the framework. Once
the user considers the rules that he/she searched was found he/she can stop the
mining process and validate the discovered rules.

5.3.2.2 Operators over Rule Schemas

Interesting rules are in a certain relation – confirmation or contradiction – with the
current beliefs of the user. As a consequence, we extend previous works [136] by
proposing 4 Operations that allow the user to explore the rule space starting from
his/her beliefs and knowledge.

5.3.2.2.1 Confirmation. The Confirmation Operator is the simplest operation
that we propose. The user can insert concept expressions in all three lists, according
to what he/she knows or suspects to know. This operation can be used to confirm an
implication, to find what is the direction of the implication among several items, or
to find how different concepts influence a rule by allowing them to be placed on any
side of the implication. It filters all rules that contain the items of the Antecedent
and of the Consequent in the antecedent, and respectively, in the consequent, and
the items of the General part in any of the two sides of the implication. The items
in the General part may be split in any possible ways between the antecedent and
the consequent.

Definition 5.3.4
Formally, the Confirmation Operator generates rules of the form:

Antecedent ∪ Subset→ Consequent ∪ (General − Subset)

∀Subset ⊆ General. �

During Confirmation, the Expressions present in the Rule Schema are transformed
into lists of items. Disjunctive and optional expressions result into different groups
of rules, each corresponding to one element in the disjunction. For example, if the
antecedent is an Expression of the form [{milk, pork} pear?], the resulting rules
could have the following antecedents:

[milk, pear]

[pork, pear]

[milk]

[pork].

Example 5.3.5 For instance, let us consider the following Rule Schema:

rs([pear]→ [grape,milk?] [pork, apple]).
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The following eight rules confirm the Rule Schema:

R1 : pear, pork, apple→ grape,milk

R2 : pear, pork, apple→ grape

R3 : pear, pork → grape,milk, apple

R4 : pear, pork → grape, apple

R5 : pear, apple→ grape,milk, pork

R6 : pear, apple→ grape, pork

R7 : pear → grape,milk, pork, apple

R8 : pear → grape, pork, apple

We can remark that we have used all the possibilities to dispatch the two items pork
and apple from the General part, and that we duplicate the rules in order to generate
rules with or without the milk item. �

5.3.2.2.2 k-Specialization. This second Operator is based on minimum im-
provement constraint metric proposed by Bayardo et al. [19] and it allows the user to
find the rules that have a more specific antecedent, the same consequent, and which
improve the confidence of the initial rule. That is to say that, this Operator allows
to specialize the Rule Schema by specializing the antecedent; thus, a set of items are
added to the antecedent. The variable k defines the number of items that are added
in the antecedent during the specialization. For example, a specialization of the rule
X → Y [s1 c1] is the rule X,Z → Y [s2 c2], if c2 > c1; if Z contains only one item,
we can say that this is an 1 -Specialization.

The k -Specialization is an operation that can be applied only over a rule containing
clearly an antecedent and a consequent. Thus, the k -Specialization is not performed
directly on the initial Rule Schemas, but it is preceded by a Confirmation Operator,
in order to transform expressions into item lists, to split the General part and to
calculate confidence and support. The k -Specialization is performed on rules in the
output of the Confirmation operation.

Definition 5.3.6
Let us consider that the following rule is resulted after applying the Confirmation

Operator over a typical Rule Schema:

Antecedent→ Consequent [s%, c%].

The rules generated by the application of the k-Specialization Operator over this rule
are of the form:

Antecedent ∪ Set→ Consequent [ss%, cs%]

∀Set ⊆ (I − (Antecedent ∪ Consequent)), where |Set| = k and with I the full set of
items. Further, the confidence of the specialized rule should improve the confidence of
the initial rule, so, the following condition should be satisfied: cs > c. �
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Example 5.3.7 Let us consider the following Rule Schema

rs([milk]→ [pork][chicken])

and the set of items I = {tomatoes, pork, pear, grape, chicken}. In a first phase, the
Confirmation Operator is applied, and two rules are generated with the corresponding
support and confidence. The output of the 1 -Specialization operation is:

milk, chicken→ pork [10% 75%]

milk, chicken, pear → pork [8% 79%]

milk → pork, chicken [10% 70%]

milk, grape→ pork, chicken [7% 73%]

milk, pear → pork, chicken [8% 80%]

We should note that other specializations can be generated starting from the Rule
Schema, but we consider here that they do not improve the confidences of 75% and
70% of the Rule Schemas.

Furthermore, if we apply a 2 -Specialization Operator, not only one, but two items
are added in the antecedent, and the confidence improvement constraint remains.
Thus, we have the following result:

milk, chicken→ pork [10% 75%]

milk → pork, chicken [10% 70%]

milk, grape, pear → pork, chicken [6% 75%]. �

5.3.2.2.3 k-Generalization. This Operator is the opposite of k -Specialization.
It finds the rules that have a more general antecedent implying the same conse-
quent. Support is expected to be higher and confidence slightly lower. As for the
k -Specialization, the variable k represents the number of items that are removed.
Moreover, as the k -Specialization Operator, the k -Generalization Operator cannot
be applied directly over the Rule Schemas, and the same process presented earlier
should be done.

Definition 5.3.8
Searched rules by k-Generalization Operator are of the form:

Antecedent− Set→ Consequent

∀Set ⊆ Antecedent, where |Set| = k. �

Example 5.3.9 Let us consider the following Rule Schema:

rs([milk, pear, apple]→ [pork] [chicken]).
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In a first phase, the Confirmation Operator is applied, and two rules are generated
with the corresponding support and confidence. The 1 -Generalization Operator is
applied over these two rules, and the output is:

milk, pear, apple, chicken→ pork [10% 75%]

milk, pear, chicken→ pork [15% 79%]

. . .

milk, pear, apple→ pork, chicken [10% 70%]

milk, pear → pork, chicken [20% 80%]

. . .

Furthermore, if we apply a 2 -Generalization Operator, two items are removed
from the antecedent. Thus, we can have the following result:

milk, pear, apple, chicken→ pork [10% 75%]

milk, pear → pork [30% 70%]

. . .

milk, pear, apple→ pork, chicken [10% 70%]

apple→ pork, chicken [60% 80%]

. . . �

5.3.2.2.4 k-Exception. This is an important operation as it finds rules with a
unexpected consequent, in the context of a more specialized antecedent. That is, for
rules of the form X → y [s1 c1] exceptions are of the form X, Z → ¬y [s2 c2]. In
[197] an exception is considered valuable knowledge if, knowing that the confidence of
Z → ¬y is c3, then c2 ≥ c1, and c3 must be fairly low, as it must not be Z alone, but
the association withX that leads to ¬y. k -Exception operation is the k -Specialization
of the rules with negated conclusion. For binary attributes, the negation is defined as
the negated value (usually it means that the item does not exist in the transaction).
For multi-modal attributes, the negation is represented by any other value than in
the Schema.

Definition 5.3.10
Let us consider the following Rule Schema:

rs(Antecedent→ consequent []),

where consequent is an item. The rules resulting from the application of the k-
Exception Operator over this rule are of the form:

Antecedent ∪ Set→ ¬consequent

∀Set ⊆ (I − (Antecedent∪{consequent})), where |Set| = k and with I the full set of
items and item ∈ I. �
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5.3.3 Local Mining Algorithm

There are many types of algorithms for the extraction of patterns and association
rules from transaction databases. One of the most popular is the Apriori algorithm.
By an incremental approach, Apriori finds all frequent itemsets – all itemsets that
have a support above a certain threshold. On the basis of the frequent itemsets,
the algorithm builds all rules that have a confidence value above a given threshold.
Another idea to extract associations was to integrate user knowledge and expectations
into the rule mining process. However, modifying the pruning strategy in order to
focus on interesting rules, in conjunction with the operations described in the previous
section, is not very efficient and generates limited results. Moreover, certain issues
arose, like how to remove already known rules in a mining algorithm like Apriori,
in the context of keeping exception rules and, if necessary, confirmations. As an
alternative, post-mining filtering step may be applied, but a better approach could
be to integrate the filtering techniques into the mining algorithm itself reversing the
direction of previously developed mining algorithms.

5.3.3.1 Presentation

In this approach, the search for interesting rules is done locally, in the neighborhood
of rules and associations that the user already knows, or that the user believes to
be true, specified by means of the Rule Schemas. Instead of generating all rules (by
means of frequent itemsets), and filtering those that are conform to user knowledge,
the new approach consists of first generating locally all candidate rules, based on
the rule schemas, and then checking their support and confidence against the trans-
action database. The candidate rules are all possible rules that are conforming to
the specified schemas and operations. After generation, a pass through the database
is performed in which the support and the confidence of candidate rules are com-
puted. In order to be present in the output, rules must comply with the support and
confidence requirements specified globally or for each rule schema.

The pseudocode of the Confirmation Operator algorithm is presented in Table
5.1. First, the lines 2 and 3 are especially dedicated to manipulate the Expressions,
more precisely to create the lists of items by evaluating the operators in Expressions.
Second, the lines 4 and 5 take each list of items of the Antecedent (Ant) and the
Consequent (Cons), and each subset (GS) of each item list (Gen) of the General
part (all generated in the previous steps) in order to create a new candidate rule:
(Ant∪GS)→ Cons∪ (Gen−GS). In lines 7-8 the support and the confidence of the
candidate rules are tested against the database, and in line 9, all rules that are not
satisfying the support threshold are eliminated and the remaining rules are presented
to the user.

One of the most complex Operator is the k -Specialization one; the Table 5.2
presents the pseudocode of the algorithm for 1 -Specialization Operator integrated
in the ARLIUS framework. As already stated, the k -Specialization operation is
always done in two important steps: first, a list of candidate rules is generated by
applying the Confirmation Operator over the rule schema; second, starting from each
rule the k -Specialization rules are generated. In our algorithm, the k -Specialization
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Table 5.1: Confirmation Operator Algorithm.

Input: Rule Schema described by Antecedent, Consequent, General

Output: rList – the list of rule confirming the Rule Schema

1. create empty lists of rule candidates rList and rListS

2. for each side Sd in {Antecedent, Consequent, General }

3. create set C[Sd] containing all item lists resulting from

expending the Expressions in Sd

4. for each item list Ant ∈ C[Antecedent], Cons ∈ C[Consequent],

Gen ∈ C[General]

5. for each subset GS of Gen

6. add to rList a new candidate rule

CR(Ant ∪GS → Cons ∪ (Gen−GS))

7. for each candidate rule CR ∈ rList

8. check support s and confidence c for CR

9. remove from rList all rules with s < minsup

10. return rList

operation is performed by k 1 -Specialization consecutive operations. Thus, when a
2 -Specialization Operator is applied over a Rule Schema, the algorithm in Table 5.2 is
applied 2 times consecutively. The algorithm is quite simple: first, starting from the
rules generated by the Confirmation Operator, specific rules of level 1 are generated,
in lines 1-3, by adding an item in the antecedent of the candidate rules. Second, for
each candidate rule the support and the confidence metric are computed against the
database. Last, those rules not over-passing the support and the confidence threshold,
and more important, the basis rule confidence, are pruned.

The algorithms for k -Generalization and k -Exception Operators are quite similar
and we will not develop them.

Example 5.3.11 Suppose the user wants to find all 1 -Specialization rules of the
Rule Schema

rs( [milk]→ [{pear, pork}] [apple]) [10%, 60%].

That is to say that, milk leads to either pear or pork, and they are associated with
apple. Support and confidence must be over 10% and, respectively, 60%. The full
item set is I = {milk, pear, pork, apple, grape, chicken}. The algorithm works as
follows:

• first, the Confirmation Operator is applied over the given rule schema in order to
expend the Expressions and to split the General part between the Antecedent
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Table 5.2: 1 -Specialization Operator Algorithm.

Input: Rule Schema described by Antecedent, Consequent, General

Output: rListS – the list of specialization rules of the Rule Schema

rList = Confirmation(Antecedent, Consequent,General)

1. for each candidate rule CR(X → Y ) ∈ rList

2. for each item i ∈ I − (X ∪ Y )

3. add to rListS the CR(X ∪ {i} → Y )

4. for each CR(X ∪ {i} → Y ) ∈ rListS

5. check support s and confidence c1 for CR and

check confidence c2 for {i} → B

6. remove from rListS all rules with s < minsup or

c1 < minconf or c1 < c2

7. return rListS

and the Consequent. Generated rules are then checked against the database
and candidate rules with support lower than 10% are pruned:

[milk]→ [pear, apple] [25%, 67%]

[milk, apple]→ [pear] [25%, 44%]

[milk]→ [pork, apple] [8%, 26%] −−pruned

[milk, apple]→ [pork] [8%, 35%] −−pruned

• the second step corresponds to the 1 -Specialization operation itself. Starting
from the first two rules provided by the first step, new candidate rules are
generated by adding one item from I in the antecedent. Next, candidates rules
are checked and pruned if support or confidence are lower than the threshold
specified in the Schema, or if there is no improvement in confidence comparing
to the more general rule.

Let us consider the first rule validated by the Confirmation Operator

[milk]→ [pear, apple] [25%, 67%].

{pork, grape, chicken} are the items in I that do not appear in the rule,
and that can be used in order to make the specialization. Thus, one by one,
the items are added in the antecedent of the rule, and new candidate rules
are generated. These rules are validated against the support and confidence
thresholds of [10%, 60%] provided with the Rule Schema, and, moreover, they
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are validated against the confidence improvement constraint – if the candidate
rule does not improve the confidence of 67% of the rule, the candidate rule is
pruned.

[milk, chicken]→ [pear, apple] [20%, 83%]

[milk, pork]→ [pear, apple] [7%, 20%]−−pruned for support constraint

[milk, grape]→ [pear, apple] [17%, 62%]−−pruned for confidence

improvement constraint

In the same way, for the second rule [milk, apple] → [pear] [25%, 44%]
validated during the Confirmation phase we have the following result:

[milk, apple, chicken]→ [pear] [14%, 66%]

[milk, apple, pork]→ [pear] [7%, 35%]−−pruned for support

[milk, apple, grape]→ [pear] [9%, 48%]−−pruned for support

• results are sorted according to the confidence:

[milk chicken]→ [pear apple] [20% 83%]
[milk apple chicken]→ [pear] [14% 66%]

�

5.3.3.2 Advantages and Complexity

There are a number of advantages that this approach has compared to the Apriori
algorithm. They result in great part from the fact that the Rule Schemas are partially
instantiated, so the search space is greatly reduced. Moreover, the more the user
refines current Rule Schemas, the lower is the number of generated candidate rules.

Compared to Apriori, the number of passes through the databases is lower. Once
all candidate rules are generated, only one pass through the database is necessary, to
check the support of the candidates. For complexity reasons, in the case of multi-level
operations, one pass per specificity/generality level is necessary.

One important issue in the presented approach is the number of generated can-
didate rules. This depends on the Operator and on the properties of particular Rule
Schemas, as shown below.

For the operation of Confirmation on a Rule Schema rs([X] → [Y ] [Z]) (where
X,Y, Z are itemsets), the number of generated rules is equal to the number of pos-
sibilities of splitting the Z set into two subsets, computed by the Stirling number of
the second kind2, it is comparable to 2|Z|. For each subset S in Z, S is added to the
antecedent and Z − S to the consequent. Usually, the number of items in Z will be
fairly low.

2http://en.wikipedia.org/wiki/Stirling number of the second kind
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In Specialization, all the rules of the form X ∪ S → Y are generated, where

S ̸⊂ X∪Y and |S| is the specificity level. The number of candidate rules is C
|S|
|I|−|X∪Y |

where I contains all items in the database. It is important to note that the number
of items in S is quite low, so this combinatorial problem is not time consuming.

For the operation of k -Generalization on a rule schema rs([X]→ [Y ] []) , candidate
rules with fewer items in the antecedent are generated. For all levels of generality,
2|X| candidate rules are generated, but X is likely to not have more than 5 or 6 items.

For the operation of k -Exception on a schema rs([X] → [y] []), where X is an
itemset, and y an item, the rules of the form X ∪S → ¬y are generated (S is a set of
items not in X and not containing y, and |S| = k). The number of candidate rules is
of the same order with the k -Specialization Operator, but, in the case of multi-modal
attributes, it is multiplied with the number of modalities of the attribute y, minus 1.

5.4 Conclusion

In this Chapter we presented our two mining/filtering approaches which aim to reduce
the number of discovered association rules and to improve their quality. The first
method, called ARIPSO, performs in the post-processing step of the KDD process.
The novelty of this approach resides in supervising the association rule mining process
using two different conceptual structures to represent user domain knowledge – one
or several Ontologies – and user expectations – several Rule Schemas generalizing
general impressions. Further, the approach integrates Operators over Rule Schemas
that aim to produce an well defined action over the set of association rules. Finally,
ARIPSO framework provides an interactive and iterative post-mining process, which
facilitates the user task.

In a first place, we detailed the structure of the ontology, then we defined the Rule
Schema formalism, in order to present the connection between the two ones and to
describe the filtering process using Operators.

The second method, called ARLIUS, is different from the former because it con-
centrates on the mining algorithm. It proposes a new algorithm for association rule
mining integrating user knowledge by means of Rule Schemas. The formalism de-
veloped in this method is different from the one proposed in ARIPSO – it is more
flexible and more expressive. The novelty of this approach, beyond the Rule Schema
formalism, stands on a new set of Operators and on a new mining technique proposing
a local rule mining. The main interest is that the number of discovered rules during
a research is low, and that partial results can be injected in the mining algorithm.

The presentation of ARLIUS started with the definition of the Rule Schema
formalism and of the Operators. Next, the mining algorithms developed for each
Operator were detailed.
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6
ARIPSO Tool Development

A successful tool is one that was
used to do something undreamed of
by its author.

Stephen C. Johnson
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6.1 Introduction

In the last decade, using subjective measures in association rule mining techniques
has been an important research field with a hight number of publications in the
most well coted journals and conferences. While, a great part of these publications
conceive different approaches, a real tool implementing the most interesting subjective
measures was not yet developed. The main reason comes from the difficulty of putting
together all the necessary blocks in such an approach. On the one hand, one of the
most difficult problems is to choose the right models for user knowledge representation
and the technical solutions that could connect the models with the software tool. On
the other hand, the developed tool should be regularly validated by domain experts.
As the knowledge acquisition research field pointed out, this task is quite difficult
because experts are rarely available for this type of projects.

In this Chapter, we are interested in presenting the ARIPSO tool which imple-
ments the ARIPSO approach. This Chapter is motivated by the important efforts
that were deployed in order to choose the right representation languages for user
knowledge and the technical tools.

First, we discuss the architecture of the ARIPSO tool, and we detail the most
important modules. Second, we outline the technical choices that we made. Next,
we present the details of the development of each module, and, finally, we study the
development process.

6.2 Tool Architecture

The ARIPSO Tool proposes to implement the ARIPSO approach introduced in the
previous chapter. For this purpose, we elaborate a modular and evolving architecture
that we designed as it shows Figure 6.1.

The tool is organized in 2 important modules: the IHM and the Core. In gray
nuances we distinguished external modules for data processing: User Knowledge and
Classic KDD Process.

The Classic KDD Process consists of two different parts: the first one is a classic
iterative process of association rule extraction, while the second one transforms as-
sociation rules in PMML format. The KDD process starts with the entire database
which, in an initial phase, is pre-processed depending on expert needs and trans-
formed in an ARFF file. Next, we use the association rule mining module of Weka1

to extract the association rules, and Arval Tool2 to compute additional metrics of
the rules and to represent them in the PMML3 format.

The User Knowledge module consists of stocking the user knowledge. We propose
to represent ontologies using the OWL language – they will be saved in OWL files –,
and the rule schemas in the XML format – XML files.

The IHM module is working on the display problems, and the Core one deals with
the most important tool units: the engines for rule analyzing and ontology treatment,

1http://www.cs.waikato.ac.nz/ml/weka/
2http://www.polytech.univ-nantes.fr/arval/
3http://www.dmg.org/v4-0/GeneralStructure.html
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Figure 6.1: General architecture of the ARIPSO tool and its interactions with the envi-
ronment.

and the management of all the elements – rule schemas, rules, ontologies, database.

6.3 The Choice of Technical Solutions

The main constraint for our tool was to be developed based on Open Source software.
Concerning the programming language, we have chose to use Java4 language and
the development framework, Eclipse5. Choosing Java as programming language was
decided by the numerous APIs available for XML, PMML, or OWL treatment.

The access to XML files (which we have detailed in section 3.4) is done by using
an XML parser and the technique of parsing XML files is presented in Figure 6.2.
Two XML parsers are proposed in the literature: DOM and SAX.

The DOM (Document Object Model) API is built to access and to work on an
entire XML stream. The latter is seen as a tree to which we can change, delete or

4http://java.sun.com/
5http://www.eclipse.org/



138 ARIPSO Tool Development

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE Cours SYSTEM "Cours.dtd">

<Cours>

       <Title>Cours XML</Title>

       <Author>              <Name>John</Name>

                                    <LastName>Smith<LastName>

       </Author>

       <Description>This cours presents the basic

                 concepts in XML

       </Description>

</Cours>

Parcer XML

DOM Tree SAX Events

Application

Physical

Structure

Logical

Model

Application

Figure 6.2: Principle of DOM and SAX API utilization.

retrieve data. It provides all functionalities allowing complex modifications in the
file. Its main drawback is the need of important memory resources.

The SAX (Simple API for XML) API is a library designed to respond to the
content of an XML document. SAX performs a sequential reading of XML files.
Events are generated for each element of the XML file (tag, attribute, data). Only
current reading data are available. Further, it is not possible to search through the
file, but, comparing to DOM API it uses few memory and it can handle large files.

In this case, our choice goes to SAX because, unlike DOM, it has no limit regarding
the size of the treated files.

As already discussed, we proposed to use ontologies in OWL-DL for knowledge
domain representation and the choice of this language was made naturally. The reason
of making this choice is that OWL is a complex and flexible language for knowledge
representation. Its provenance from DLs brings it all DL power – reasoners. An
important influence in our choice had also the great number of inference engines
APIs available for OWL language.

To develop and to view the ontology we proposed to use the Protégé editor.
This tool overcomes the syntax OWL-XML and RDF-XML, providing a graphical
representation of the ontology. It is easy to visualize relationships, intersection of
classes or the restrictions of properties.

To exploit our ontology in the software, we had to choose an ontology frame-
work. Following extensive testing, we chose Jena framework6, developed by Hewlett
Packard. It provides all the functionalities to manipulate the ontology, the hierar-
chy of classes and their properties. In addition, detailed documentation is available
with the installation version. Finally, comparing to OWL API7, Jena is designed to
interface easily with the main inference engines (i.e. Pellet).

6http://jena.sourceforge.net/
7http://owlapi.sourceforge.net/
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Our application is described by an architecture of thick (fat) client type, and it
is designed to be autonome. In consequence, this criterion was predominant in the
choice of the inference engine. The propositions implementing DIG interface are not
a solution because of several know flaws – very limited support for datatypes and
problems in fitting exactly DIG relations and OWL properties. Thus, we privileged
direct reasoning – Pellet – to DIG-based reasoners (RacerPro, FACT++, . . . ). The
main advantage of direct reasoning is that it has a direct access to the ontology, while,
in the case of DIG-based reasoners, the ontology is transformed in different structures
in order to permit reasoner access. As already stated, this process could produce
important limitations. Further, Pellet is natively included in Jena distribution.

6.4 Packaging Organization

The diagram in Figure 6.3 presents the organization of different modules in Java
packages.

ihm

param engine schemas

ontopmmlarff

ARIPSO.

Ontology

OWL File

XML File

Schemas

DataFlow

DataFlow

Arff File

Database

PMML File

Association

Rules

DataFlowDataFlow

user

Figure 6.3: Diagram Packaging of the ARIPSO Tool.

The application is composed of 7 packages and 35 Java classes (detailed in Figure
6.4). The advantage of such a division comes from a weak connexion between different
components of the application. The result is time saving when adding new features.

In order to improve clarity, the names of the classes are standardized. The names
of all classes specific to the application start by Aripso, and the second part describes
the role of the class. For instance, in the Aripso.ihm package, the class AripsoDlgXxx
corresponds to dialog boxes, and AripsoMenuXxx regroups the menus.
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ARIPSO
src

Aripso.ihm

+ ColumnHeaderListener.java

+ ColumnSorter.java

+ FiltreFichier.java

+ AripsoApplication.java

+ AripsoDlgSelItem.java

+ AripsoDlgGraph.java

+ AripsoDlgRecherche.java

...

Aripso.param

+ AripsoParameters.java

Aripso.onto

+ LoaderOnto.java

Aripso.engine

+ AripsoEngineLoader.java

+ AripsoInterfaceAction.java

+ AripsoInterfaceInfo.java

...

Aripso.schemas

+ AripsoSchema.java

+ AripsoSchItem.java

+ LoaderSchemas.java

......

Aripso.pmml

+ AripsoAssociationModel.java

+ AripsoAssociationRule.java
...

Aripso.arff

+ AripsoArffAttributes.java

+ AripsoArffData.java
...

Figure 6.4: The application classes organized in packages.

6.5 Modules Development

6.5.1 Association Rule Management Module

Browsing association rules is an essential feature of the application. During various
experiments, we determined that the number of rules to handle is from several hun-
dreds of thousands to several millions. Therefore, we must have a reliable, robust
and powerful tool which does not penalize the processing time. For this purpose, we
chose to represent association rules in PMML language8. PMML is an XML-based
markup language for association rule representation, and its main advantages is that
it is easily exploitable due to XML parser tools (we use SAX API as stated in Section
6.3), and, further, it permits items, itemsets, and different metrics integration.

The functionality of saving association rules in PMML format completes the
browsing one. The class diagram in Figure 6.5 allows to stock the informations
and to browse them as follows:

• LoaderPmml – controls the analyzing phase of a PMML file;

• AripsoAssociationModel – contains the entire set of rules, itemsets and items.
We used hash trees that ensure consistent response timed which do not depend
on the number of processed rules. To improve the response time, the system
also maintains a hash tree that acts as indexes by referencing the lists of rules
for different number of itemsets;

• AripsoItemSet – contains information relative to an itemset;

• AripsoAssociationRule – contains information relative to an association rule.

8http://www.dmg.org
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LoaderPmml

parserSaxPmml()

baliseItem()

baliseItemRef()

baliseItemSet()

baliseXNomIndice()

baliseXValIndice()

AripsoAssociationModel

addNomIndice()

getItem()

getItemSet()

getAssociationRule()

addItem()

addItemSet()

addRule()

addRuleIndice()
saveRA()

isSpecialize: boolean

miMaxCardItemRule: integer

miMinCardItemRule: integer

lstIndice: undefined

*

AripsoItemSet

mdSupport: real

lstItemRef: undefined

AripsoAssociationRule

lstIndice: undefined

getConsequent()

getAntecedent()

mdConfiance: real

mdSupport: real

miRefAntecedent: integer

miRefConsquent: integer

*

*

1

1

1

1 1

1

consequent antecedent

Figure 6.5: Class diagram for association rules management (PMML files).

This module functions as follows: the LoaderPmml starts the procedure of reading
the Pmml file by the parserSaxPmml() method. The latter starts by instantiating
an object of the class AripsoAssociationModel which will ensure the persistence of
information. While reading the file, the discovery of a tag described in Table 6.1
triggers the call of the corresponding method named baliseXxx, where Xxx denotes
the name of the discovered tag. The method activates its counterpart addXxx of the
object AripsoAssociationModel. At the end of treatment, LoaderPmml returns the
object AripsoAssociationModel.

Complementary, the class AripsoAssociationModel allows to save a PMML file by
calling the SaveRA method.

6.5.2 Rule Schema Management Module

In this section, we will present and discuss the components of the rule schema mod-
ule. Choosing the representation language for this type of knowledge was a crucial
step. We proposed an XML-based language in order to ensure the persistence of
the schemas. Actually, XML-based languages have a great advantage – they have a
low error level comparing to other representation languages. Indeed, the parser APIs
takes in charge the entire file structure, so that the user should take in charge only
the management of these knowledge in tags and attributes.

The proposed XML-based formalism is defined by easily comprehensible tags and
attributes as presented in Table 6.2.

The Management of Rule Schemas module allows two main actions:

• creating Rule Schemas;

• or using Rule Schemas.

The former consists of an interface which helps user in creating the rule schemas.
A tree of the ontology concepts is presented, thus the user can choose the concepts that
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Table 6.1: Description of the tags in PMML Files.

XML Elements Type Description

X-QualityIndice Tag Defines a quality metric

Id Attribute Metric ident

name Attribute Metric name

Item Tag Defines an item

Id Attribute Item ident

name Attribute Item name

ItemSet Tag Defines an itemset

numberOfItems Attribute Number of items

support Attribute itemset support

Id Attribute Itemset ident

ItemRef Tag Ident of the item composing the itemset

itemref Attribute Reference item

AssociationRule Tag Defines an association rule

confidence Attribute Rule Confidence

support Attribute Rule support

antecedent Attribute Antecedent itemset

consequent Attribute Consequent itemset

X-QIV Tag Additional metric

id Attribute Metric ident

value Attribute Metric value

he/she wants to use. Moreover, the latter has the possibility to choose a restriction,
general or leaf concept.

The second action allows the user to use already defined rule schemas. Thus, it
is possible to manipulate the components of a rule schema – to read and to save (in
XML files) –, and to transform these schemas in regular expressions in order to be
further used.

The entire process of Rule Schema Management is quite comparable to the one
of Association Rule Management. The diagram class in Figure 6.6 presents the man-
agement process which works as follows: the LoaderSchemas class controls the XML
file reading task (containing rule schemas) by calling the SAX API. As in the case of
PMML files, the latter allows an event-based reading file process.

Further, LoaderSchemas class instantiates an AripsoSchemas object containing
the entire set of rule schemas. We note also that each class AripsoSchema, Arip-
soSchItemSet, AripsoSchItem AripsoSchItemElem have a toString() method which
returns to the user their information in the form of regular expressions. Similarly,
they propose the method saveSchema() which saves in XML the information.
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Table 6.2: Description of the Tags of XML Files.

XML Elements Type Values Description

Schemas Tag Defines the entire set of Rule Schemas

Schema Tag Defines a Rule Schema

type Attribute GI Non-implicative Rule Schema

RPC Implicative Rule Schema

action Attribute Matching Confirming Operator

Pruning Pruning Operator

Exception Exception Operator

ItemSet Tag Itemset

member Attribute Condition The itemset is an antecedent

Consequent The itemset is a consequent

Both The type is unknown – used for GIs

Item Tag Defines an item and its cardinality

card Attribute Item cardinality

ItemElem Tag Describes an item

LoaderPmml

parserSaxPmml()

baliseItem()

baliseItemRef()

baliseItemSet()

baliseXNomIndice()

baliseXValIndice()

AripsoAssociationModel

addNomIndice()

getItem()

getItemSet()

getAssociationRule()

addItem()

addItemSet()

addRule()

addRuleIndice()
saveRA()

isSpecialize: boolean

miMaxCardItemRule: integer

miMinCardItemRule: integer

lstIndice: undefined

*

AripsoItemSet

mdSupport: real

lstItemRef: undefined

AripsoAssociationRule

lstIndice: undefined

getConsequent()

getAntecedent()

mdConfiance: real

mdSupport: real

miRefAntecedent: integer

miRefConsquent: integer

*

*

1

1

1

1 1

1
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Figure 6.6: Class diagram for rule schemas management module.

6.5.3 Ontology Engine Module

The Ontology Engine Module is the core of our tool. In Section 5.2.2 on page 103 we
discussed the three types of concepts available in the ontology – leaf, generalized and
restriction. Our rule schema management module can access all these three types of
concepts, whatever its semantic level. This is possible due to the individuals-based
description of ontologies and to reasoning techniques.
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In Section 5.2.2.2 on page 106 (and in Example 5.2.10 on page 108) we detailed
in Description Logic formalism the interest of reasoners in our tool. In this section,
we will show how this is done, and which algorithm the technique follows.

The main reasoners action that we use in ARIPSO tool is the recreation of rela-
tionships between individuals and concepts. Thus, after reasoning, we could clearly
verify which individuals belongs to which class. In other words, for restriction con-
cepts, we will be able to say which are the individuals that are gathered in, and,
further, to define the set of items that produce the connection of restriction concepts
with the database.

ARIPSO Tool uses reasoners in the conforming association rules – rule schemas
task, which can be generally reduced to itemsets – concepts conforming (Section 5.2.4.2,
Definition 5.2.13). As defined, an itemset is conforming to a concept, if the concept
is connected to at least an item of the itemset in the database. The action of testing
the conformity between an association rule and a concept is accomplished by the
following phases (the algorithm pseudocode is presented in Table 6.3):

• The initialization phase. In order to optimize the execution time, before the
analysis, for all the association rules we instantiate the ontology with the asso-
ciation rules items;

• Reasoning phase. In this phase, an inference engine is called. In our tool we
chose Pellet reasoner. After this phase, all (restriction) concepts should contain
their individuals;

• The analyzing phase. In this phase, each association rule is tested against
each rule schema to evaluate the conforming status. First, we define the set of
individuals corresponding to association rule items in the ontology. Second, for
each concept of rule schema we verify if at least one of its individuals is also an
individual of an item.

6.5.4 Additional Filters Modules

In this section we propose the technical solutions for the two additional filters that
we integrated in our framework. First, we will discuss about minimum improvement
constraint filter, and second, we will detail item-relatedness filter implementation.

6.5.4.1 Minimum Improvement Constraint Filter Module

As already stated, the minimum improvement constraint filter implemented in ARIPSO
approach is based on the proposition made in [20]. In short, an association rule
X → Y [s, c] – with the support and the confidence c% – is interesting (i.e. it
brougths important information to the rule set) if all its ancestors Xi → Y [si, ci]
with Xi ⊆ X have their confidence lower than the confidence of the more specific
rule: ∀i, ci ≤ c.

The function of filtering is implemented at the rule management level – in the
AripsoAssociationModel class.



6.5 Modules Development 145

Table 6.3: Association Rule – Rule Schema conforming algorithm.

Input: Rule Schema (rs), Association Rules Set (AR), Ontology (O)

Output: Association Rules conforming to the Rule Schema (ARrs)

1. ARrs = ø

2. forall association rules r in AR do

3. forall items i in r do

4. create individual i0 in the ontology O

as correspondence of the item i

5. call Pellet inference engine

6. forall association rules r in AR do

7. bool = TRUE

8. forall concepts C in rs do

9. IC = list of individuals belonging to concept C in O

10. Ir = list of individuals in O corresponding

to all items i of the rule r

11. if (IC ∩ Ir = ø) then

12. bool = FALSE

13. if (bool = TRUE) then

14. ARrs = ARrs ∪ {r}

15. return ARrs

The algorithm developed in our tool is described in Table 6.4. The process of rule
filtering starts with the 2-length rules (with one item in the antecedent and one in
the consequent), and continues with longer rules. Further, the main principle is to
start with the complete set of association rules, and to remove the rules which do not
satisfy the minimum improvement constraint.

For instance, the algorithm starts with the entire set of association rules. For a
given k length, in line 2, the set of possible ancestor rules (A) of the k-length rules is
initialize by the complete set of association rules with the length from 2 to k − 1.

The next step is to prune the uninteresting rules from the set AR(k). In this
purpose, for each association rule of length k in AR(k) we test that if a rule in A
is confirmed to be its ancestor, the confidence of the latter does not overpass the
confidence of the former; in a contrary case, the tested association rule is pruned
from AR.

In order to reduce execution time, we use in the algorithm special structures as
temporary hash trees. The first hash tree is developed to save the association rules
of k-length, and the second hash tree is used to define the set of ancestors formed by
all the rules of length less than k.

When an association rule has a confidence lower than its ancestor, its reference is
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Table 6.4: Minimum improvement constraint filter algorithm.

Input: Association Rule Set (AR)

Output: Filtered Association Rules (filtered AR)

1. forall k possible lengths of a rule do

2. A = AR(2 . . . k − 1)

3. forall rules rc in AR(k) do

4. forall rules a in A do

5. if (a is an ancestor of rc) then

6. a.D = a.D ∪ {rc}

7. if (rc.conf ≤ a.conf) then

8. delete rc from AR(k)

9. return AR

removed from the list of temporary association rules of k length. At the end of the
process, only the references of not pruned rules are kept in memory.

6.5.4.2 Item-relatedness Filter Module

Already discussed in previous sections, Item-Relatedness measure comes to help the
user to prune trivial association rules. The triviality is here represented by a se-
mantic proximity between the items of a rule (i.e. red grape fruits are very close
to white grape). The general principle of this item-relatedness metric measuring the
semantic proximity is discussed in [148].

In Section 5.2.4.3.2 on page 119, we discussed the integration of such a metric
in our framework and the advantages that it brings. In this section we present the
methodology that we developed in order to implement the item-relatedness metric.

First, we will discuss the technique to compute the item-relatedness metric be-
tween two items. In the following we will consider the taxonomic part of the ontology,
the distance between the items being determined by the number of arcs that sepa-
rate the concepts that match the items. The algorithm proposed to compute the
item-relatedness measure is describe in Table 6.5.

First, the concepts related to the two items are determined, and they are declared
as starting points of the algorithm. The technique is to make a bottom-up partial
traversal of the ontology, level by level, till we find a common ancestor. When passing
from level l to level l−1, the distance between the two items increases by two points.
Next, specific methods are proposed for the cases of asymmetric paths – one path is
longer than the other.
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Table 6.5: The algorithm for the computation of the distance between two items.

Input: Ontology (O), First Item (i1), Second Item (i2)

Output: Distance between the two items (d)

1. C1 = the ontology concept containing

the instance corresponding to i1 item

2. C2 = the ontology concept containing

the instance corresponding to i2 item

3. d = 0

4. while (C1 ̸= ROOT) & (C2 ̸= ROOT) & (C1 ̸= C2)

& (C1 is not a child of C2) & (C2 is not a child of C1)

5. C1 = the parent of C1

6. C2 = the parent of C2

7. d = d+ 2

8. bool = false

9. if (C2=ROOT & C1 ̸= ROOT) OR & (C1 is not a child of C2)

10. child concept = C1

11. parent concept = C2

12. bool = true

13. if (C1=ROOT & C2 ̸= ROOT) OR & (C2 is not a child of C1)

14. child concept = C2

15. parent concept = C1

16. bool = true

17. if (bool)

18. while (child concept ̸= parent concept)

19. child concept = parent of child concept

20. d++

21. return d

6.5.5 Exceptions Generating Module

The various features that we have detailed reflect the same need: to find the strongest
rules from a statistical point of view, but also the most unexpected for the user. In
this context, we could not ignore exception rules [61] which are briefly described in
Section 5.2.4.2 on page 117.

A first idea on implementing this types of filtering process was to discover ex-
ception rules from the entire set of association rules stocked in PMML file. During
different experimentations, we noted that a limited number of rules is extracted due
to support limit. Moreover, as a general note, in classical extraction techniques, it
is always difficult to decrease the minimum support threshold in order to find rare
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association rules. As a consequence, a second method of discover exceptions is to find
them in the initial database.

First, we will discuss the generation of exceptions using the set of association rules.
For the implementation technique, we were motivated by reusing the implementation
of the rule schemas management module. In this purpose, we proposed an algorithm
for generating a rule schema which describes the researched exceptions. For instance,
if we are searching the exceptions of the rule schema X → Y , we will generate a rule
schema rs < X, z → ¬Y > which takes the form of an exception with z being an
item. Next, this new rule schema will be used to generate conforming rules. As the
implementation of this module was already presented in Section 6.5.3, we will detail
below the implementation of the second type of exception generation.

In this second approach, we proposed to develop a research of exceptions starting
from the initial database stored in an Arff file. Arff is a type of file storing databases.
The first lines contain the description of each attribute with the possible values that
it can take, and the following lines represent the transactions. In order to make an
efficient research of exception rules, we developed a module that deals with exploiting
Arff files. The class diagram is presented in Figure 6.7.

LoaderArff

loadArff()

getArffData()

AripsoArffData

addAttribut()

addEnreg()

getEnreg()

getNbEnregWithItem()

getNbAttributs()

getAttributsName()

getAttributsModalite()

*

AripsoArffAttributs

lstModalite: undefined

addModalite()

AripsoArffEnreg

addEnreg()

getEnreg()

lstData: undefined

*

*

1

1

getModalite()

addNbModalite()

Figure 6.7: Class diagram for Arff file management module.

The major difference with the exception research in post-processing comes from
the step of generation of exceptions candidates. The latter is followed by a validation
step which computes the confidence and support of the candidate rule. If the confi-
dence is greater than or equal to the confidence of the general rule, the new exception
rule is validated.

From the class diagram we can note that a charging class LoaderArff creates an
object of the class AripsoArffData containing hash trees which permit to accede to
the entire set of attributes and transactions. Using getNbEnregWithItem method it
is possible to determine the number of transactions validating a set of items.

6.6 Development Process

The development process of the ARIPSO tool was quite heavy due to the complexity
of the proposed approach. In the starting point, the only known need was to post-
process rules by schemas and ontologies. During experiments, new functionalities
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were proposed and they were integrated in the tool. In consequence, the development
phase was accomplished as an iterative process which can be described as in Figure
6.89.

Main Needs

Feasibility

Drawing up

Solutions
Development

Experimentation

Final Tool

New Needs

Figure 6.8: Iterative cycle of the development process.

We can remark seven different phases:

• Main Needs – this phase represents the starting point of the development process
and it describes the initial main needs and objectives of the tool;

• Feasibility – main (or new – see below) needs are studied in order to verify if
solutions can be proposed;

• Drawing up Solutions – in this phase technical specifications are conceived and
they help to draw up the final solutions;

• Development – implementation of the proposed solution;

• Experimentation – tool testing phase;

• New Needs – after the experimentation phase, new needs can be proposed, and,
further, injected in the development process;

• Final Tool – delivery of the final tool.

The interest of this type of process is to be able to deliver a valid tool which fulfills
the needs. For the ARIPSO tool we met the following main cycles:

• Visualization of association rules, visualization under constraints – in function
of the number of items;

• Post-processing by using rule schemas and ontologies;

• Implementation of the minimum improvement constraint;

9Adaptation after fr.wikipedia.org
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• Implementation of item-relatedness measure;

• Rule exception extraction;

• Interface for the creation of rule schemas.

6.7 Conclusion

This Chapter was consecrated to the implementation of the ARIPSO approach.
ARIPSO tool allows the user to interactively filter the whole set of association rules
by means of an iterative process.

We have mainly detailed how the elements which compose the approach were
implemented. We discussed different problems that we met during the development
and the choices that we made, in particular concerning the software technologies. For
the most important modules we described the proposed algorithms and we argued
our choices.



7
Experimental Results

However beautiful the strategy, you
should occasionally look at the
results.

Winston Churchill
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7.1 Introduction

This Chapter is dedicated to experimentations that we conducted in order to test
our approaches in an application domain. The studies were driven over a real-life
database composed of answers to questionnaires.

For ARIPSO approach, the experimentation was carried out in complete cooper-
ation with the Nantes Habitat expert. In a first step, we have established the needs
and the objectives that our approach should follow. Next, several sessions were nec-
essary to conceive an ontology structure and to start the Rule Schema development.
During different partial result deliveries, these knowledge were refined in order to
reach the most appropriate description which will give the expected results presented
along this Chapter.

For the ARLIUS approach, we describe different case studies which insist on the
main characteristics of the new algorithm: an important reduction of the number of
association rules proposed to the user, a hight reduction of the execution time and
the quality of the generated rules.

7.2 Nantes Habitat Database and Objectives

This study is based on a questionnaire database, provided by Nantes Habitat1, deal-
ing with customers satisfaction concerning accommodation. Monitoring and Study
Services of Nantes Habitat conducts an annual satisfaction investigation over a repre-
sentative panel of customers. In 2003, a process of rationalization of the information
system of Nantes Habitat led to the development of a data center to store the re-
sults. In order to extract trends emerging from these investigations, dashboards were
implemented. So far, no data mining treatment had been done on these data.

Nantes Habitat has the results of investigations between 2003-2007. Each year,
1,500 out of a total of 21,500 customers are chosen to represent the population. The
surveys consist of a set of questions with different answers. The questionnaire consists
of 67 different questions with 7 possible answers expressing the degree of satisfaction:
very satisfied, quite satisfied, rather not satisfied and dissatisfied coded as {1, 2, 3, 4},
not applicable cases coded as 95/96, don’t know answers coded as 99, and no answer
– 0.

The table 7.1 introduces a sample of questions with the meaning for each one. For
instance, the item q1 = 1 describes that a customer is very satisfied by the transport
in his/her district (q1 =”Are you satisfied with the transport in your district”).

In the questionnaire, the 67 questions are organized in several topics which in-
spired us for the experimentation phase. A sample of the questions organized in topics
is presented in Table 7.2.

The main objective of the Nantes Habitat expert was to find explications for
some well-defined dissatisfactions of the customers, such as the price, the district, the
services, or to find interesting implications that she did not know.

1http://www.nantes-habitat.fr/
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Table 7.1: Examples of questions & meaning

Question number and description

q1 Convenient transport

q2 City center access

q3 Shopping facilities

q11 Is it safe to take a walk in the district at night?

q44 Apartment soundproofing

q47 Apartment ventilation

q48 Apartment strands

q70 Clarity of the documents from Nantes Habitat

Table 7.2: Questions organization in topics.

District

→֒ Practical District

→֒ q1 – Convenient transport

→֒ q2 – City center access

→֒ q3 – Shopping facilities

→֒ Calm District

→֒ q11 — Is it safe to take a walk in the district at night?

Apartment

→֒ Comfort Apartment

→֒ q44 – Apartment soundproofing

→֒ q47 – Apartment ventilation

→֒ q48 – Apartment strands

Nantes Habitat Service

→֒ Communication

→֒ q70 – Clarity of the documents from Nantes Habitat

During our study, we verified the knowledge that classical techniques generate
starting from the database. For technical issues, we fixed a minimum support of 2%,
a maximum support of 30%, and a minimum confidence of 80% for the association
rules mining process. Among available algorithms, we used the Apriori algorithm in
order to extract association rules and 358, 072 rules were discovered.

For instance, the following association rule describes the relationship between the
questions q2, q3, q47 and the question q70. Thus, if the customers are very satisfied
by the access to the city center (q2), the shopping facilities (q3) and the apartment
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ventilation (q47), then they can be satisfied by the documents received from Nantes
Habitat Agency (q70) with a confidence of 85.9%.

q2 = 1, q3 = 1, q47 = 1 → q70 = 1 [S = 15.2%, C = 85.9%]

Analyzing manually over 300, 000 of association rules is an intractable task for a
human. In consequence, the need of efficient and easy filtering techniques becomes
an important issue. In the following sections we will study the comportment and the
performance of ARIPSO and ARLIUS approaches over this database.

7.3 ARIPSO Approach

In the pre-processing phase, modifications were brought to the database in function
of the interest of the expert. First, she decided to remove from the database those
answers which do not express satisfaction, i.e. 95, 96, 99 and 0,. This decision was
took due to her interest in satisfaction/dissatisfaction answers.

As ARIPSO is a post-processing approach, we chose the Apriori algorithm to
extract the entire set of association rules. As presented above, a set of 358, 072
association rules was generated.

7.3.1 Ontology Structure and Ontology-Database Mapping

In the first step of the interactive process described in the Section 5.2.4.1 on page 111,
the user develops an ontology on database items. In our case, starting from the
database attributes, the ontology was created by the Nantes Habitat expert starting
from the topic organization of questions available in the questionnaire. During several
sessions, the expert proposed a classification of attributes and items, and, further,
she suggested other interesting information by developing her domain knowledge as-
sociated to database attributes. In this section, we will present the development of
the ontology in our case study.

7.3.1.1 Conceptual Structure of the Ontology

The ontology is one of the most important elements of the ARIPSO approach. The
reason is that a well-defined user domain knowledge representation brings good re-
sults. Inversely, a representation which is not developed enough will limit the quality
of generated information and will reduce the efficacy of the method. It is important
to note that a ontology perfect structure does not exist, and the most important is
to capture all user domain knowledge.

Due to all these reasons, the ontology construction phase took an important time
(several sessions). Also, ontology structure was improved during first experimenta-
tions, in function of partial results. Thus, the ontology development was an interactive
and iterative process.

The final structure of the ontology is composed of two main parts and a sample
of it is presented in Figure 7.1. The ontology has the following characteristics: 7
depth levels, a total of 130 concepts among which 113 are primitive concepts and 17
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are restriction concepts. Concerning siblings, the concepts have a mean of 6 child
concepts, with a maximum of 13 children.

Figure 7.1: Ontology structure visualized with Jambalaya Protégé plug-in [194] in Protégé
software [88] after reasoning.

The first part of the ontology is a database attribute organization with the root
defined by the Attribute concept; it groups 113 subsumed concepts. The attributes
are organized among the question topic in the Nantes Habitat questionnaire. For
instance, if we consider the District concept, it regroups 14 questions (from q1 to
q14) concerning the facilities and the life quality in a district.

Moreover, the subsumption relation (≤) is completed by the relation hasAnswer
associating the Attribute concepts to an integer from {1, 2, 3, 4}, simulating the rela-
tion attribute-value in the database. The value 1 represents a high satisfaction, while
the value 4 represents a low satisfaction.

The instances in the ontology represent several versions of a question, the differ-
ence being made by the value of the answer.

The second hierarchy, Topics, regroups all 17 restriction concepts created by the
expert using necessary and sufficient conditions.

For instance, let us consider the restriction concept SatisfactionDistrict. In nat-
ural language, it expresses a satisfaction answer (1 or 2) for the questions concerning
the district. The SatisfactionDistrict restriction concept is described in OWL using
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description logics language by:

SatisfactionDistrict ≡ District ⊓ hasAnswer hasValue 1

OR hasAnswer hasValue 2.

In other words, an individual instantiates the SatisfactionDistrict concept if it rep-
resents a question between q1 and q14 – subsumed by the District concept – and if
it has an answer denoting satisfaction (the hasAnswer property has the value 1 or 2).

7.3.1.2 Ontology-Database Mapping

The ontology - database connection is made manually by the expert. In our case, with
the 67 attributes and 4 values the expert did not meet important problems to realize
the connection, but we agree that for large databases, a manual connection could be
time consuming. That is why integrating an automatic ontology construction plug-in
in our tool is one of our principal perspectives.

As a part of rule schemas, ontology concepts are mapped to database items.
Thus, several connections between ontology and database can be designed. Due to
implementation requirements, the ontology and the database are mapped through
instances.

Thus, using the simplest ontology-database mapping, the expert directly con-
nected one instance of the ontology to an item (semantically, the nearest one). An
item is defined by the connection attribute-value (question-value). In this context,
an instance (individual) represents the instantiation of a concept (question) and it is
connected by the hasAnswer property to the value of the answer. For example, the
expert connected the instance Q11 1 to the item (q11 = 1): f ′

0(Q11 1) = (q11 = 1)
Then, leaf-concepts (C0) of the Attribute hierarchy were connected by the expert

to a set of items (semantically, the nearest one). Considering the concept Q11 of
the ontology; semantically, it is associated to the attribute q1 =”Are you satisfied
with the transport in your district?”. In Figure 7.1, we consider that the concept
Q11 has 2 instances describing the question q11 with 2 possible answers: 1 and 3. In
consequence, the concept Q11 was connected by the expert to 2 items, through its
two instances, as follows:

f ′′
0 (Q11) = {f ′

0(Q11 1), f ′
0(Q11 3)}

= {q11 = 1, q11 = 3}.

The connection of generalized concepts follows the same idea. They are connected
through the instances of the concepts that they subsume. For example, the concept
CalmDistrict is connected to the database as follows:

f(CalmDistrict) = {f ′′
0 (Q8), f ′′

0 (Q9), f ′′
0 (Q10), f ′′

0 (Q11))}

= {q8 = 3, q11 = 1, q11 = 3}.

The last type of connection implies connecting concepts of the Topic hierarchy
to the database. Let us consider the restriction concept DissastisfactionCalmDistrict
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(Figure 7.2). In natural language, it is defined by all this questions concerning the
tranquility of the district (questions q8, q9, q10 and q11) having an answer denoting
the dissatisfaction of the customer. In our ontology, these questions are represented
by 4 concepts subsumed by the CalmDistrict concept.

Figure 7.2: Restriction concept construction using necessary and sufficient conditions in
Protégé.

The DissastisfactionCalmDistrict restriction concept is described by the expert
using description logics language as follows:

DissastisfactionCalmDistrict ≡ CalmDistrict ⊓ hasAnswer hasValue 3

OR hasAnswer hasValue 4.

Considering that the user has instantiated the concept Q8 with the answer 3, and the
concept Q11 with the answers 1 and 3, instances Q8 3, Q11 1 and Q11 3 are added
in the ontology. Then, the concept DissastisfactionCalmDistrict is connected in the
database as it follows:

f(DissastisfactionCalmDistrict)

= {f ′
0(i) | i ∈ Q8 ∪Q9 ∪Q10 ∪Q11 ⊓ i hasAnswer hasValue 3

OR i hasAnswer hasValue 4}

= {f ′
0(Q8 3), f ′

0(Q11 3)}

= {q8 = 3, q11 = 3}.

7.3.2 Rule Schema Development

Using the ontology proposed in the previous section, the user developed a set of Rule
Schema and suggested different Operators to be applied over. First, the expert was
interested in finding relations between the dissatisfaction of the customers concerning
different elements. For this purpose, she proposed 4 rule schemas presented in Figure
7.3. For example, the RS3 Rule Schema wants to find the relation that exists between
the dissatisfaction of price and the dissatisfaction of common areas.

Further, during different experimentations the expert has noted several implica-
tions that she found trivial, but which were not removed by the item-relatedness
filter. The expert proposed the set of pruning Rule Schemas in Figure 7.4.

7.3.3 Efficacy Evaluation

This first example proposes to present the efficiency of our new approach concerning
the reduction of the number of rules. To this end, we propose to the expert to test the
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Table 7.3: Filtering Rule Schemas suggested by the expert.

Rule Schema Operator

RS1 < DissatisfactionPrice > Conforming

RS2 < DissatisfactionCalmDistrict > Conforming

RS3 < DissasisfactionPrice, DissatisfactionCommonAreas > Conforming

RS4 < DissasisfactionPrice → Unexpectedness

DissatisfactionCommonAreas > Exception

Table 7.4: Pruning Rule Schemas proposed by the expert.

Rule Schema

RS5 <EntryHall → CloseSurrounding>

RS6 <Stairwell → EntryHall>

RS7 <CloseSurrounding → EntryHall>

RS8 <EntryHall → Stairwell>

RS9 <CommonAreas → GarbageRoom>

RS10 <TechnicalMaintenance → TechnicalMaintenance>

four filters: on the one hand the pruning filters - minimum improvement constraint
filter (MICF), item-relatedness filter (IRF) and pruning rule schemas -, and on the
other hand the selection filters - rule schema filters (meanings of acronyms in Table
7.5). The expert separately tested each filter and in several combinations in order to
compare the results and to validate them.

Table 7.5: Notation meaning.

Nb The id of the filter combination

MICF Minimum improvement constraint filter

IRF Item-relatedness filter

PRS Pruning with Rule Schemas

Rule number The number of rules remaining

after filter application

At the beginning, the expert is faced to the whole set of 358,072 association rules
extracted. In a first attempt, we focus on pruning filters. If the MICF is applied,
all the specialized rules not improving confidence are pruned. In Table 7.6 we can
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see that the MICF prunes 92.3% of rules, being a very efficient filter for redundancy
pruning. In addition, IRF prunes 71% of rules - these rules associating items close
semantically. The third pruning filter, Pruning Rule Schemas, prunes 43% of rules.

We propose to compare the three pruning filters and the combinations of the
pruning filters as presented in Table 7.6. The first line is the reference for our exper-
iments. The rates of number of rules remaining after the three filters are separately
used are presented in lines 2, 3 and 4. We can note that the MICF filter is the most
discriminatory, pruning 92.3% of rules, comparing to other two ones pruning 71%
and, respectively, 43% of rules.

Table 7.6: Pruning rate for each filter combination.

Nb MICF IRF PRS Rule number

1 358,072 (100%)

2 X 27,602 (7.7%)

3 X 103,891 (29%)

4 X 207,196 (57%)

5 X X 16,473 (4.6%)

6 X X 21,822 (7.7%)

7 X X 73,091 (20%)

8 X X X 13,382 (3.7%)

We can also note, that combining the first two filters, MICF and IRF, the pruning
is more powerful than combining the first one with the third one. Nevertheless,
applying the three filters over the set of the association rules implies a rule reduction
of 96.3%.

However, applying the most reducing combination, number 8 (Table 7.6), the ex-
pert should analyze 13, 382 rules which is impossible manually. Thus, other filters
should be applied. The expert was interested in the dissatisfaction phenomena, pre-
sented by answers 3 and 4 in the questionnaire. The expert is interested in applying
all the rule schemas with the corresponding operator (Table 7.3) for each combination
of the first three filters presented in Table 7.6. Table 7.7 presents the number of rules
filtered by each rule schema.

In Table 7.7, the first column, Nb, represents the identification of each filter com-
bination as denoted in Table 7.6. We can note that the rule schema filters are very
efficient. Moreover, studying the dissatisfaction of the clients improves the filtering
power of the rule schemas.

Let us consider the second rule schema. Applied over the initial set of 358, 072
association rules with the conforming operator, it filters 1, 008 rules representing
0.28% of the complete set. But it is obvious that it is very difficult for an expert
to analyze a set of rules of the order of thousands of rules. Thus, we can note the
importance of the pruning filters, the set of rules extracted in each case having less
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Table 7.7: Rates for Rule Schema filters applied after the other three filter combinations.

Nb C(RS1) C(RS2) C(RS3) Up(RS4) E(RS4)

1 185 1,008 96 1399 98

(100%) (100%) (100%) (100%) (100%)

2 92 361 50 462 48

(49%) (35%) (52%) (33%) (48.9%)

3 39 162 39 401 3

(21%) (16%) (40%) (28.7%) (3.1%)

4 107 472 20 238 96

(57%) (46%) (20%) (17%) (6.9%)

5 28 77 28 187 3

(15%) (7.6%) (29%) (13.4%) (3.1%)

6 56 231 14 154 48

(30%) (22%) (14%) (11%) (48.9%)

7 3 3 3 24 3

(1.6%) (0.2%) (3.1%) (1.7%) (3.1%)

8 3 3 3 11 3

(1.6%) (0.2%) (3.1%) (0.8%) (3.1%)

than 500 rules. We can also note that the IRF filter is more powerful than the
other pruning filters, and that the combination of two filters at the same time gives
remarkable results:

• on the fifth line, combining MICF with IRF reduces the number of rules to 77
rules;

• combining IRF with Pruning Rule Schemas the set of rules is reduced to 3 rules;

• we can also note that in the last two rows the filters have the same results.
We can explain this by the fact that we are working on an incomplete set of
rules because of the maximum support threshold that we impose in the mining
process.

7.3.4 Interactivity and Discovered Rule Quality Evaluation

This second example is proposed in order to outline the quality of the filtered rules,
and to confirm the importance of the interactivity in our framework. To this end, we
present the sequence of steps (Figure 7.3) performed by the expert during the inter-
activity process, steps already described in Section 7.3.1. We have already presented
the first step of the interactive process – ontology construction – in Section 5.2.4.1.
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As in the first example, the expert is faced to the whole set of rules. In a first
attempt (step 2 and 3 ), she proposed to investigate the quality of rules filtered by
two of the rule schemas RS2 and RS3 with the conforming operator. The first one
deals with dissatisfaction concerning the tranquility in the district, and the second
one searches rules associating dissatisfaction in price with dissatisfaction concerning
the common areas of the building.

Applying these two schemas to the whole rule set, an important selection is made:

• C(RS2) filters 1, 008 association rules;

• C(RS3) filters 96 association rules.

The expert is in the visualization and validation steps (4 and 5 ), and she analyses
the 96 rules filtered by C(RS3), because of the reduced number of rules comparing to
1008 filtered by C(RS2). For example, let us consider the following set of association
rules:

q17= 4, q26 = 4, q97 = 4→ q28 = 4 [S = 2.6%, C = 92.8%]

q16 = 4, q17 = 4, q26 = 4, q97 = 4→ q28 = 4 [S = 2.5%, C = 92.5%]

q15 = 4, q17 = 4, q97 = 4→ q28 = 4 [S = 1.9%, C = 80.5%]

q15 = 4, q17 = 4, q97 = 4→ q26 = 4, q28 = 4 [S = 1.9%, C = 80.5%]

Figure 7.3: Description of the interactive process during the experiment.

The expert noted that the second rule is a specialization of the first rule - the
item q16 = 4 is added in the antecedent, and she also noted that its confidence is
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lower than the confidence of the more general rule. Thus, the second rule does not
bring important information to the whole set of rules, hence, it can be pruned. In the
same way, the expert noted that the forth rule is the specialization of the third one,
and that the confidence is not improved in this case neither. The expert decided to
modify her initial information (step 5 ) and to go to the beginning of the process via
the interactivity loop (step 7 ), choosing to apply the MCIF (step 6 ) which extracts
27,602 rules. The expert decided to keep these results (step 4 and 5 ) and to return
in the interactivity loop, going back to steps 2 and 3 in order to redefine rule schemas
and operators.

This time, the expert proposed to use only the rule schema C(RS3) as a conse-
quence of high volume of rules extracted by the other one. Using C(RS3), 50 rules
are filtered, and the presence of rules 1 and 3, and the absence of rules 2 and 4 (from
the set presented above) validate the use of MICF (step 4 and 5 ). Moreover, the
hight reduction of number of rules validates the application of C(RS3). In this state,
the expert returned to step 2 in order to modify the rule schema proposing RS4 and
first, she applied the unexpectedness regarding the antecedent operator, Up(RS4), and
then she returned to step 3 in order to modify the operator, choosing the exception
one E(RS4). This results are briefly presented in Table 7.7, but due to space limit
they are not detailed in this Section.

The expert analyzed the 50 rules extracted by C(RS3) and she found several
trivial implications noting that the implication between several items did not interest
her. For instance, let us consider the following set of rules:

q17 = 4, q97 = 4→ q16 = 4 C = 86.7% S = 3.5%

q25 = 4, q28 = 4, q97 = 4→ q26 = 4 C = 100% S = 2.0%

This rules imply items from EntryHall and CloseSurrounding, thus the expert pro-
posed to apply rule schemas RS5 to RS8 with the pruning operator (step 2 and 3 )
in order to prune those not interesting rules. In consequence, 15 rules are extracted,
and the absence of the above rules validates the application of pruning rule schemas
(step 4 and 5 ).

Let us consider the following two rules:

q28 = 4, q97 = 4→ q17 = 4 C = 81.1% S = 2.9%

q8 = 4, q16 = 4, q97 = 4→ q9 = 4 C = 88.6% S = 2.1%

The expert noted that a great part of the 15 rules are implications between attributes
subsumed by the same concept in the ontology. For instance, the attributes q28 and
q17 of the first rule, described by the Q28 and the Q17 concepts, are subsumed by
the concept Stairwell. Similarly, for the second rule, q8 and q9 are subsumed by
CalmDistrict concept. Thus, the expert applied the IRF filter, and only 3 rules are
filtered. One of those rules attracts the interest of the expert:

q15 = 4, q16 = 4, q97 = 4 → q9 = 4

Support = 2.3% Confidence = 79.1%
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which can be translated by: if a customer is not satisfied with the cleaning of the close
surrounding and of the entry hall, and if he is not satisfied with the service charges,
then it is possible with a confidence of 79.1% that he consider that his district has
a bad reputation. This rule is very interesting because the expert thought that the
building state does not influence the opinion concerning the district, but it is obvious
that this is the case.

It is very important to note that the quality of the selected rules was certified by
the Nantes Habitat expert.

7.4 ARLIUS Approach

For the ARLIUS approach, because the algorithm needs binary attributes, items of
the form question=answer are formed, for example the item Q35 1 represents an
answer of very satisfied to the question number Q35 - about the lighting of common
spaces. Therefore there are a total of 624 items. For testing, two databases were
used, from year 2003 and 2006, containing 1490 transactions each.

7.4.1 Case Study 1

In the first case study, the analyst is interested on the dissatisfaction related to
common spaces in the proximity of the accommodation. The search starts with un-
satisfied answers of two questions related to the problem: question 7 – The quantity of
green spaces is sufficient and question 65 – The cohabitation difficulties are efficiently
treated. The analyst already knows the direction of the implication (which is quite
obvious) and creates a Rule Schema of the form:

rs([Q7 4]→ [Q65 4] [ ])

with no support and confidence constraints.
The application of an 1 -Specialization Operator over this Rule Schemas has the

following output:

62results :

[Q7 4, Q72 4]→ [Q65 4] [S = 1.2%, C = 81.8%]

[Q7 4, Q93 4]→ [Q65 4] [S = 1.2%, C = 78.2%]

[Q7 4, Q37 4]→ [Q65 4] [S = 0.9%, C = 76.4%]

[Q7 4, Q55 4]→ [Q65 4] [S = 0.8%, C = 75.0%]

[Q7 4, Q22 4]→ [Q65 4] [S = 0.5%, C = 70.0%]

. . .

It is the rule with the highest confidence that shows the relationship with question72
– In case of works performed in the common spaces, are you satisfied with the infor-
mation received. This relation with maintenance works leads the analyst to want to
add another item to the search: the unsatisfied answer to question58 – Delays of the
interventions to repair degradation of common spaces. However the analyst does not
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know how this answer relates to the other elements in the rule, so he just puts it in
the General part of the Schema. Thus, an operation of Confirmation is performed
on the resulted Rule Schema

rs([Q7 4]→ [Q65 4] [Q58 4])

and it shows that item Q58 4 is most likely in the antecedent rather than in the
consequent because the confidence of the first rule is greater that the confidence of
the second one:

2results :

[Q7 4, Q58 4]→ [Q65 4] [S = 1.4%, C = 75.0%]

[Q7 4]→ [Q65 4, Q58 4] [S = 1.4%, C = 18.2%]

Now, the analyst is interested to find which other elements are related to this rule, thus
he/she runs a 1 -Specialization on the same Rule Schema. The results are interesting:

72results :

[Q7 4, Q39 4, Q58 4]→ [Q65 4] [S = 0.8%, C = 100.0%]

[Q7 4, Q49 4, Q58 4]→ [Q65 4] [S = 0.9%, C = 93.3%]

[Q7 4, Q25 4, Q58 4]→ [Q65 4] [S = 0.9%, C = 92.9%]

[Q7 4, Q93 4, Q58 4]→ [Q65 4] [S = 0.7%, C = 91.7%]

[Q7 4, Q57 4, Q58 4]→ [Q65 4] [S = 0.7%, C = 90.9%]

[Q7 4, Q50 4, Q58 4]→ [Q65 4] [S = 0.5%, C = 88.9%]

[Q7 4, Q6 1, Q58 4]→ [Q65 4] [S = 0.5%, C = 87.5%]

[Q7 4, Q63 4, Q58 4]→ [Q65 4] [S = 0.9%, C = 86.7%]

[Q7 4, Q5 1, Q58 4]→ [Q65 4] [S = 0.8%, C = 85.7%]

[Q7 4, Q2 1, Q58 4]→ [Q65 4] [S = 1.1%, C = 84.2%]

. . .

A number of relevant conclusions was drawn related to the dissatisfaction about
common spaces. The rules extracted have low support showing that there is a less
probability for the rules to be trivial. In the same time, the high confidence shows
that the rules are important and that they must be considered. The new items in the
conditions of the extracted rules show that the problem relates to unsatisfied answers
to other questions like:

• Q39 – on the building’s ambiance,

• Q25 – state of building’s proximity, or

• Q57 – important reparations on common parts.

However, the last rules in the first 10 results are unexpected: the problem relates
with very satisfied answers to the following three questions: Q2, Q5 and Q6 – access
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to the city center, administrative services and parking spaces. This can mean that
the problems of common spaces and repair works in the common spaces are most
likely related to the accommodations closer to the center. That may be considered
as valuable information.

7.4.2 Case Study 2

In this second example, the expert knows that there is a relation between questions
Q13 and Q2 – There are sufficient spaces for children and Access to the city cen-
ter, more precisely between the satisfaction of the two questions. A Confirmation
Operator on the following Rule Schema

rs([ ]→ [ ] [Q13 1, Q2 1])

shows that the implication is from the first question to the second one, due to the
high confidence of the first rule:

2 results :

[Q13 1]→ [Q2 1] [S = 15.30%, C = 75.50%]

[Q2 1]→ [Q13 1] [S = 15.30%, C = 23.46%].

The first rule that resulted is strong (confidence of 75.50%), so the analyst wants
to know if there are any exceptions to the rule. She performs a 1 -Exception operation
and she gets the result below:

1 result :

[Q1 4, Q13 1]→ [Q2 2] [S = 0.20%, C = 100.00%].

Although the resulting rule has a low support, it has a very strong confidence, which
is much higher than the confidence of the initial rule, even if the support is smaller.
Moreover, the confidence is higher than the confidence of the rule Q1 4→ Q2 2 [S =
0.87% C = 56.52%], so it is the association of Q1 4 and Q13 1 that leads to the
result.

The result shows that, although generally the satisfaction about spaces for children
leads to a satisfaction about the access to the center, in the special case where there is
dissatisfaction related to transportation (question1 ), people tend to be less satisfied
about access to the center.

7.4.3 Case Study 3

In this last case study the expert is interested on what relates to the implication of the
dissatisfaction about price – question97 – on the dissatisfaction about the state of the
entry hall – question26 – as a part of the common spaces in the building. The search
starts with a Rule Schema containing unsatisfied answers to two questions related to
the problem: Q97 and Q26. Support must be reasonable (2%) and confidence must
be high (95%). The expert formalized this situation by the following Rule Schema:
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rs([Q97 4]→ [Q26 4] [] [2%, 95%]).

An operation of 2 -Specialization applied over has the following output, finding
items that are related to the implication:

17 results :

[Q29 4, Q65 4, Q97 4]→ [Q26 4][S = 2.6%, C = 97.5%]

[Q29 4, Q32 4, Q97 4]→ [Q26 4][S = 2.4%, C = 97.3%]

[Q16 4, Q29 4, Q97 4]→ [Q26 4][S = 4.6%, C = 97.1%]

[Q29 4, Q60 1, Q97 4]→ [Q26 4][S = 2.2%, C = 97.0%]

[Q29 4, Q37 4, Q97 4]→ [Q26 4][S = 2.0%, C = 96.7%]

[Q18 4, Q31 4, Q97 4]→ [Q26 4][S = 2.0%, C = 96.7%]

. . .

The output shows a number of interesting relations: apart from dissatisfaction about
the state and cleanness of common spaces (entry hall, building level, etc) and equip-
ment (interphone), there is also an indication about the efficiency with which the
technical requests are addressed (Q65). There is also an interesting rule, the forth
one:

[Q29 4, Q60 1, Q97 4]− > [Q26 4][S = 2.2%, C = 97.0%];

there is a strong implication between the state of the building (particularly the
level – Q29), the price (Q97) and the customer expectations (Q60), in that the ex-
pectations actually correspond, although the price is considered too high.

Next, the expert might also want to check if there are exceptions to the specified
Rule Schema. For this purpose, the expert lowered the support threshold to 1% –
exceptions are rare rules –, and she applied the 2 -Exception Operator over the new
Rule Schema

rs([Q97 4]→ [Q26 4] [] [1%, 95%]).

The results are presented below:

15 results :

[S boi,Q18 1, Q97 4]→ [Q26 1][S = 1.5%, C = 100.0%]

[S boi,Q29 1, Q97 4]→ [Q26 1][S = 1.5%, C = 100.0%]

[S boi,Q16 1, Q97 4]→ [Q26 1][S = 1.3%, C = 100.0%]

[S boi,Q47 1, Q97 4]→ [Q26 1][S = 1.2%, C = 100.0%]

[S boi,Q78 1, Q97 4]→ [Q26 1][S = 1.2%, C = 100.0%]

[S boi,Q92 1, Q97 4]→ [Q26 1][S = 1.0%, C = 100.0%]

. . .
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This result is very interesting. It shows that dissatisfaction in price can actually
lead to a better opinion on the building, if it is connected, among with some other
items, with a certain neighborhood (Boissiere – S boi), which is also very calm (Q18).
This is important to know, because, although customers are quite happy with the
conditions in that neighborhood, they are unhappy with the price.

Considering the rules discovered by the 2 -Exception Operator, the expert might
want to look a bit more into the first rule, so she performs a 2 -Generalization over
the following Rule Schema:

rs([S boi,Q18 1, Q97 4]→ [Q26 1] []).

The extracted rules

3 results :

[S boi]→ [Q26 1][S = 5.0%, C = 88.1%]

[Q97 4]→ [Q26 1][S = 22.5%, C = 59.1%]

[Q18 1]→ [Q26 1][S = 63.2%, C = 76.2%]

show that, indeed, the Boissiere neighborhood has a great influence on the satisfaction
about state of the hall (Q26) – first rule; this is outlined by the important confidence
of the rule (88.1%).

Last, the expert want to investigate the relation of the first rule in the last result
with the satisfaction about adequacy of Nantes Habitat services (Q92). In this case,
the expert considers that less frequent rules could interest him/her, and less stronger
also, thus he/she decreases the support and confidence value. The expert performs a
Confirmation operation on the following Rule Schema:

rs([S boi]→ [Q26 1] [Q92]) [1% 60%].

We can note here that in the element Q92 the expert gives only the attribute,
without proposing a certain value for. That is to say that, in the proposed framework,
the expert has two possibilities to denote elements in a general way – all values can be
taken bu the attribute, or in a more specific way – values for attributes are specified.

There are 2 results:

[S boi,Q92 1]→ [Q26 1] [3.7%, 88.7%]

[S boi]→ [Q26 1, Q92 1] [3.7%, 65.4%]

It appears that the rules relate more to the satisfaction answer to the question92
(Q92 1) and it is usually perceived by the customers in this neighborhood that a
good adequacy of the agency’s services leads, among others, to a good state of the
building.

7.5 Conclusion

This Chapter presented the experimentations that we conducted in order to test our
approaches in an application domain. The studies were driven over a real-life database
composed of questionnaires answers.
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For ARIPSO approach, the experimentation was carried out in a complete co-
operation with the Nantes Habitat expert. This Chapter outlines the efficiency of
ARIPSO and the hight quality of discovered rules.

For the ARLIUS approach we described different case studies which focused on
the main characteristics of the new algorithm: an important reduction of the number
of association rules proposed to the user, a hight reduction of the execution time and
the quality of generated rules.



8
Conclusion and Perspectives

This thesis is concerned with the merging of two active research domains: Knowl-
edge Discovery in Databases (KDD), more precisely the Association Rule Mining
technique, and Knowledge Engineering (KE) with a main interest in knowledge rep-
resentation languages developed around the Semantic Web.

In Data Mining, association rule mining algorithms generate huge volumes of
rules that cannot be directly used. As a consequence, it is necessary to develop a
post-processing task with the main goal to find interesting rules among the complete
delivered set. As a first solution, the analyzing task was proposed to be done manually
by the user; obviously, when the complete set exceeds 100 rules, the analyzing task
becomes impossible. In this context, it is important to help the user during this phase
with efficient post-processing techniques.

Our work addresses two main issues: the integration of user knowledge in the dis-
covery process of association rules, and the interactivity with the user. The first issue
requires defining an adapted formalism to express user knowledge with accuracy and
flexibility. For this purpose, we take advantage from the research carried out in the
Semantic Web field, and more precisely from the representation languages developed
in order to be used as user knowledge representation in the discovery process. Sec-
ond, the interactivity with the user allows a more iterative mining process where the
user can successively test different hypotheses or preferences and focus on interesting
rules.

Contributions

Our main contributions are organized around 3 areas: techniques for post-processing
and mining association rules, ontologies for knowledge management, and development

169
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and validation of tools.

A model to represent user knowledge

We proposed a new model to represent user knowledge in the discovery process of
association rules. It is composed of three formalisms:

1. Ontologies permit the user to express his/her domain knowledge by means of
a high semantic model. Its main advantage is to integrate reasoning techniques
which are comparable with the human thinking;

2. Rule Schema defines a new rule-like formalism which allows the user to de-
scribe his/her expectations regarding the discovered rules. In order to benefit
from the flexibility and complexity of the ontologies, Rule Schemas are defined
through ontology concepts;

3. Operators bring the interactivity in the rule mining process. We designed
them to be applied over Rule Schemas and to help the user to take several
actions like pruning or selecting over the set of discovered rules. We proposed
the user 4 Operators: Pruning, Conforming, Unexpectedness and Exception.

For instance, if the user chooses the Pruning Operator to be applied over a Rule
Schema, all the rules conforming to the Rule Schema are removed from the rule
set.

ARIPSO – An innovative post-processing approach

The main contribution of this thesis consists in proposing an innovative approach,
called ARIPSO (Association Rule Interactive Post-processing using rule Schemas and
Ontologies), helping the user to reduce the volume of the discovered rules and to im-
prove their quality.

Different elements outline the innovative characteristic of our approach. First, it
relies on the knowledge representation model that we proposed, which supports the
process of integration of user knowledge and expectations in the mining process. Sec-
ond, it proposes to combine different interestingness measures that assess the quality
of the discovered rules. And third, it consists in an interactive process which allows
the user to change the provided information at each step and to reiterate the post-
processing phase which produces new results.

Implementation of ARIPSO tool

The technical realization of this thesis consists in the implementation of the pro-
posed approach in post-processing. For this purpose, we developed a tool which is
complete and operational, and which implements all the functionalities described in
the approach. More particularly, it proposes a visualization interface which helps
the user in editing his/her knowledge and in validating the discovered rules. From a
technical point of view, the implementation makes the connection between different
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elements like the set of rules and rule schemas stored in PMML/XML files, and the
ontologies stored in OWL files and inferred by the Pellet reasoner.

ARLIUS – An adapted implementation without post-processing

Working in post-processing has multiple advantages such as having a global view
over the discovered rules, but also major drawbacks. The most significant is that
extracting all association rules, using classical techniques, is time and resource con-
suming; this process can quickly became intractable. In this context, we proposed a
new implementation of our approach, consisting in an interactive local mining process
guided by the user, that we called ARLIUS (Association Rule Local Interactive min-
ing Using rule Schemas). It allows the user to focus on interesting rules without the
necessity to extract all of them and without minimum support limit. In this way, the
user may explore the rule space incrementally, a small amount at each step, starting
from his/her own expectations and discovering their related rules.

Experimental studies

A significant part of our work relies on testing and validating the proposed approaches.
The experimental study aims to analyze the approach efficiency and the discovered
rule quality. For this purpose, we used a real-life and large questionnaire database
concerning customer satisfaction. For ARIPSO, the experimentation was carried out
in complete cooperation with the domain expert. From an input set of nearly 400
thousand association rules, for different scenarios, ARIPSO filtered between 3 and
200 rules validated by the expert. Clearly, ARIPSO allows the user to significantly
and efficiently reduce the input rule set. For ARLIUS, we experimented different
scenarios over the same questionnaire database and we obtained reduced sets of rules
(less than 100) with very low support.

Perspectives

The validation of ARIPSO and ARLIUS over new data

The validation of our approaches can be carried out according to two axes. First,
they can be tested on different data in collaboration with domain experts. These
experimentations will validate the approaches over new data, but, more importantly,
they will be done by distinct experts having completely different expectations. Thus,
we will be able to validate the interactivity of the approaches with the user and the
quality of the interestingness measures. Moreover, through their different needs, the
new experts could help us to enrich the approaches with new interestingness measures.

Second, it will be possible to compare our approaches with the existing ones. In
the case of user-driven approaches, comparing them with other approaches is a diffi-
cult task due to the lack of benchmarks. Nevertheless, proposing to domain experts
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to test different approaches following a well-defined scenario could be a solution. In
this context, notions such as quality, rapidity, satisfaction and facility could be as-
sessed during the process.

Towards an Oracle1-based implementation of ARIPSO

During the experimentation phase, ARIPSO generated remarkable results. Never-
theless, we noted several drawbacks. First, the current Apriori -based mining tools
that we used in order to extract the complete set of association rules have an exe-
cution time and use a memory percentage that grow with the increase of database
dimensions and/or the decrease of the given support thresholds. In this context, it
is important to bear in mind that interesting rules have low support, while trivial
ones have high support. When searching interesting rules, decreasing considerably
the support threshold causes the explosion of the memory used, the execution time
of the mining process, and makes the process intractable. Second, after generating a
complete set of rules, the execution of the procedures that we proposed in order to
filter interesting rules have an execution time that grows along with the increase of
the number of rules.

In this context, we were interested in the possibilities to reduce time and resources.
Using database management systems could considerably improve the percentage of
memory used by the processes that access database information repeatedly. Moreover,
in the past decade, some database management systems have proposed embedded
procedures for association rule mining generally based on the Apriori algorithm. For
instance, in the Oracle Data Mining module, Oracle develops a set of predictive
applications, including association rule extraction via Apriori. The great advantage
of these approaches is that they store information on storage devices and not on the
random-access memory. Thus, for the same reasons, we proposed to transform all
our filters in stored procedures in Oracle.

1www.oracle.com
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