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RÉSUMÉ

Cette thèse a été effectuée dans un contexte industriel et présente un framework complet
pour la detection et le suivi de personnes dans un réseau de caméras de surveillance. Les trois
principales étapes du processus sont traitées: la détection de personnes, le suivi de person-
nes dans un contexte mono-caméra et enfin la ré-identification de personnes dans le contexte
multi-caméras. Les performances élevées, la généricité et la facilité de déploiement ainsi que
le traitement en temps réel sont les contraintes fortes qui ont guidé ces travaux. Certaines par-
ties du travail proposé ont déjà été intégrées et déployées dans un produit commercial de vidéo
surveillance intelligente alors que les autres parties sont à l’état de prototypes et seront intégrés
dans un futur proche.

La détection de personnes vise à localiser et délimiter les personnes sur les séquences vidéo
ainsi que sur les images statiques. Le détecteur de personnes proposé appartient à la catégorie
des détecteurs de silouhette entière et opère à l’aide d’une cascade de classifieurs, appris en
utilisant l’algorithme LogitBoost sur les descripteurs de covariances de régions. Une approche
de l’état de l’art, fournissant de bonnes performances mais non applicable pour le traitement
en temps réel a été prise comme base de travail et a été optimisée afin de permettre le traite-
ment en temps réel tout en améliorant légérement les performances de détection. La méthode
d’optimisation proposée est généralisable à de nombreux autres types de détecteurs basés sur
les cascades de classifieurs, et dont l’espace de tous les classifieurs faibles possible ne peut Ãatre
testé exhaustivement dans un temps raisonable.

Le suivi de personnes dans le contexte mono-caméra vise à fournir un ensemble d’imagette de
chaque personne observé par chaque caméra, afin de permettre le calcul de la signature visuelle
de ces personnes. Il fournit aussi certaines informations du monde réel qui sont trÃ¨s utiles pour
améliorer les résultats de la ré-identification, du moment que ce suivi est réalisé en utilisant
des caméras statiques et calibrées. Ce suivi de personne est effectué à l’aide du suivi de points
d’intérêt SIFT en utilisant un filtre à particule spécifique, prenant en compte un certain nombre
d’informations utiles telles que le résultats de la soustraction de fond et la mesure de fiabilité des
descripteurs SIFT que nous proposons dans ce travail, en plus d’un framework d’association de
données qui permet d’inferer le suivi d’objets à partir du suivi des points SIFT, et qui permet de
gérer la plus part des cas possibles, particulièrement les occultations.

Enfin, la ré-identification de personnes est effectuée à l’aide d’une approche de type ap-
parence globale. Une approche de l’état de l’art, permettant un traitement en temps réel mais
fournissant des performances très variables en fonction des données fournies en entrée, est
améliorée afin de fournir de meilleures performances tout en maintenant l’avantage du traite-
ment en temps réel. Les ameliorations ont été introduites à différents niveau du traitement de
l’approche originale, soit en remplaçant certaines étapes initiales ou en ajoutant de nouvelles.
Une partie “connaissance du contexte” a été introduite afin de rendre la signature visuelle plus
robust aux changement d’orientation des personnes, assurant de meilleures performances de
ré-identification dans le cas d’applications réelles.

Cette thèse fourni les contributions suivantes: Un détecteur de personnes qui propose (1)
une approche généralisable de clustering pour les données néganives avant l’apprentissage du
détecteur, accélérant la phase d’apprentissage et optimisant le détecteur dont le traitement de-
vient plus rapide (temps réel) et plus précis (de meilleurs performances). Un framework de suivi
d’objets, basé sur le suivi de points d’intérêts SIFT à l’aide d’un filtre à particules, en plus d’un
processus d’association de données, qui propose: (2) une méthode de détection et de sélection
d’un nombre constant et correctement réparti de points SIFT sur l’objet d’intérêt, permettant
une meilleure représentation de l’objet et de ce fait, de meileures performances de suivi parti-
culièrement dans le cas d’occultations partielles, (3) une méthode hybride de pondération de
particules, qui améliore le suivi des points SIFT, prenant en compte la mesure de similarité du
descritpeur SIFT ainsi que les résultats de la soustraction de fond d’une manière plus complexe



qu’une simpe pondération binaire, (4) une méthode d’association de données détéctant toutes
les situations possibles durant le suivi (incluant les occultations partielles et complètes) et trai-
tant chancune d’elles. Cette méthode d’association de données utilise la position des points SIFT
et leurs mesure de fiabilité (introduite dans l’étape précédente) pour identifier l’état de chaque
objet détecté/suivi et de mettre à jour les états de l’ensemble des objets suivis, (5) une methode
rapide (temps réelle) de gestion des occultations, utilisant les points SIFT suivis, l’information
couleur, ainsi que certaines données du monde réel (véritable dimensions, véritable vitesse),
apprises durat le suivi de l’objet, afin de ré-acquérir l’objet occulté lorsqu’il réapparait. Enfin,
pour la détection de personnes, une méthode de l’état de l’art is fortement améliorée avec (6)
une máthode temps réel pour l’allignement des images d’une même personne pour minimiser
les erreurs de detection des personnes (7) l’enrichissement de la signatuer visuelle en ajoutant
l’information de la texture sous la forme de descripteurs SIFT et de matrices de covariance en-
codant la couleur et la texture en même temps pour la description des patches RHSP, (8) la
classification de la face visible de chaque personne sur chaque image, permettant de calculer des
signatures visuelles pour chaque classe, augmentant l’efficacité de ces signatures visuelles et per-
mettant aussi une meilleure pondération de chaque type d’information utilisée (9) l’utilisation de
l’information fourni par la calibration des cameras et le suivi mono-camera des personnes pour
filtrer les candidats dont l’état ne respecte pas les contraintes spatio-temporelles (10) une method
de ponderation automatique et adaptative pour mieux focaliser l’algorithme de re-identification
sur l’information la plus discriminante, et de diminuler ou supprimer l’importance de certain
descripteurs locaux.



ABSTRACT

This thesis is performed in industrial context and presents a whole framework for people
detection and tracking in a camera network. The three main processing steps are addressed:
people detection, people tracking in mono-camera context, and people re-identification in multi-
camera context. High performances, system genericity and ease of deployment, and the real-time
processing are the most important constraints which have guided this work. Some parts of the
proposed work are already integrated and deployed in a commercial product while others are in
prototype state and are planned to be integrated in future.

People detection aims to localise and delimits people in video sequences and static images.
The proposed people detection is a full body one and it is performed using a cascade of classifiers
trained using LogitBoost algorithm on region covariance descriptors. A state of the art approach,
providing good performances but not applicable for real time is taken as basis and is optimized
to process in real time while detection performances are slightly improved. The optimization
scheme is generalizable to many other kind of detectors based on cascade of classifiers where all
possible weak classifiers cannot be reasonably tested.

People tracking in mono-camera context aims to provide a set of reliable images of every
observed person by each camera, to extract his visual signature for re-identification purpose. It
provides also some real world information which are useful to improve re-identification process,
as long as this mono-camera tracking is performed using static and calibrated cameras. It is
achieved by tracking SIFT features using a specific particle filter, taking in account many use-
ful information like background subtraction results and a proposed reliability measure of SIFT
descriptors, in addition to a data association framework which infer object tracking from SIFT
points one, and which deals with most of possible cases, especially occlusions.

Finally, people re-identification is performed using an appearance based approach. A state of
the art approach, which performs in real time, but provides various performances depending on
the input data is improved to provide better performances while keeping the real-time processing
advantage. The improvements are introduced at different levels of the original approach, by re-
placing some of initial steps or by adding new ones. A context-aware part is introduced to robus-
tify the extracted visual signature against people orientations, ensuring better re-identification
performances in real application case.

This thesis makes the following contributions: A people detector which proposes (1) a gen-
eralizable clustering approach for negative data before people detector training, speeding-up
training process and optimizing the trained detector which performs faster (real-time) and bet-
ter (performance improvements). An object tracking framework, based on SIFT feature tracking
by particle filter and data association process, which proposes: (2) a method to detect and select
constant number of well distributed SIFT points on the object of interest for tracking, allow-
ing better representation of the object and thereby, a better tracking performances especially
in partial occlusion situations, (3) an hybrid particle weighting method, which improves SIFT
points tracking, taking in account the SIFT descriptor similarity measure and the background
subtraction result in a sophisticated way (not a simple binary weighting), (4) a data association
process to detect all possible situations during tracking (including partial/full occlusions) and
to manage each of them. This data association process use the tracked SIFT points localisa-
tion and their reliability measures (introduced in the previous step) to identify the state of each
detected/tracked object, and to update the whole tracked object states, (5) a fast (real-time)
occlusion management method, using tracked SIFT points, color information, and some other
“real world” information (real dimensions, real velocity), learned during object tracking, to reac-
quire occluded objects after their reappearance. Finally, for people re-identification, a state of
the art method is strongly improved by (6) a fast method for images alignment for multiple-shot
case, to reduce people delimitation error in images and allow same parts comparison (7) the
add of texture information to the computed visual signatures, by adding SIFT features as a new



feature in the signature and by characterizing RHSP patchs by covariance descriptors encoding
both color and texture information at the same time, (8) a method for people visible side clas-
sification, allowing to compute more accurate and discriminant visual signatures for each class,
and allowing a better feature weighing (9) a method to use camera calibration information to
filter candidate people who does not match spatio-temporal constraints (10) an adaptive fea-
ture weighting method to allow each re-identification query to focus on the more discriminant
features, and to reduce or cancel local feature weights in some cases, according to visible side
classification.
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1

INTRODUCTION

1.1 Motivation

With the rapid technological advances of the last 15 years and the easy accessibility

of cameras and digital media storage, video surveillance is widely used and developed

in all aspects of life in modern societies. The recent global security context, with the

terrorist attacks in New York (2001), Madrid (2004) and London (2005) have obvi-

ously contributed to this growth, to ensure the protection of people and assets against

terrorism acts, but not only. The recent attack in Boston (2013) demonstrates the effec-

tiveness of video surveillance, thanks to which the two authors were quickly identified.

The prevention and repression of crime and delinquency, the protection of industrial and

administrative buildings, securing airports, train stations and ports, road safety, people

flow management and other needs have shown the necessity to increase the capacity of

video surveillance of cities, businesses, and other concerned stakeholders.

Video surveillance systems are used both in live and differed modes. Live streams

are viewed by video operators in real time, allowing rapid interventions if an event

of interest is detected. But the high number of deployed cameras and the volume of

incoming data hinder the live processing of all streams. For these reasons, many acquired

streams are stored on digital media for a predefined time, and are used a posteriori to

replay any event of interest and extract useful information, like person identification or

evidence extraction.

This continuous increase in the number of deployed surveillance cameras increases

the workload of video operators in both modes.

17



18 Introduction

Figure 1.1: Video-surveillance center: too many screens and difficulty to monitor all screens.

In live surveillance mode, each video operator has to monitor more streams, causing

a decrease in efficiency. The large number of video streams assigned to each video oper-

ator increases the probability of missing important events when operator is not focussing

on the right camera at the right time, because he/she is monitoring many screens, or by

the fact that one screen is dedicated to many cameras and displays the viewed scene of

each of them periodically. In addition to that, some recent medical studies have shown

that after 20 minutes of focusing on surveillance screens, a video operator lose 90 per-

cent of his concentration and vigilance. Most of the time, no particular event occurs

so after a while of monitoring images where nothing happens, sleepiness of vigilance,

fatigue and decreased concentration often cause failure in some important event detec-

tion.

For the a posteriori mode, especially for government security agencies like police,

searching for a given person of interest in hundreds or thousands hours of recorded

videos, provided by many cameras, requires to assign a large number of enforcement of-

ficers to this task, and requires a lot of hours or days to be performed. Dedicate so much

manpower is often complicated, due to the high financial cost and the unavailability

of competent agents who are assigned to other tasks. In addition to that, enforcement

officers are humans and thereby, they are subject to the same problems of fatigue and

decreased concentration similarly to video operators.
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To overcome all these problems and process all the video data provided as live

streams and recorded videos, there is a growing demand of automated analysis and

understanding of video contents. Reproducing human analysis and reasoning on ob-

served events is becoming a critical field of research. This research domain covers many

tasks like object detection and recognition, tracking in mono-camera and more recently

in multi-camera contexts, gesture recognition, behaviour analysis and understanding,

etc. All these tasks are used in many domains like robotics, entertainment, but also and

in a large proportion, in security and video surveillance.

This thesis takes place in this context and consists in answering to this question: How

an automatic system can characterize a person of interest, to track him/her in real time

in a camera network and determine his/her localization in a huge volume of recorded

videos?

1.2 Context of Study

My work was conducted under a collaboration between STARS team from INRIA and

Digital Barriers company.

STARS (Spatio-Temporal Activity Recognition Systems) team is an INRIA research

team, which focuses on the design of cognitive vision systems for Activity Recogni-

tion. The research team is interested in the real-time semantic interpretation of dy-

namic scenes observed by video cameras and other sensors. It studies long-term spatio-

temporal activities performed by agents such as human beings, animals or vehicles in

the physical world. The major issue in semantic interpretation of dynamic scenes is

to bridge the gap between the subjective interpretation of data and the objective mea-

sures provided by sensors. To address this problem Stars develops new techniques in

the field of cognitive vision and cognitive systems for physical object detection, activ-

ity understanding, activity learning, vision system design and evaluation. Stars focuses

on two principal application domains: visual surveillance and healthcare monitoring.

STARS has two main research themes: Scene understanding for activity recognition and

Software architecture for activity recognition.

Digital Barriers is a security company which provides advanced surveillance tech-

nologies to the international homeland security and defence markets. It brings innova-

tive thinking and solutions to the protection of most critical national assets, locations

and infrastructure. It combines a long heritage in the security and defence sectors, with

operational expertise and an understanding of how best to apply and deploy emerging

technologies. Digital Barriers is specialised in delivering intelligent surveillance informa-

tion from challenging environments. It conducts advanced research in computer vision
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for video surveillance purpose. Among the issues that the company is interested, we can

mention securing sensitive sites against all intrusion, recognizing suspicious behaviours

like loitering, detection of dangerous events like abandoned luggage in public places and

tracking the person who has abandoned it across the camera network which covers this

public place. It is also interested on forensics fields, by finding evidences and people a

posteriori in recorded videos.

The work presented in this thesis is also directly related to an ITEA2 European project

called ViCoMo (Visual Context Modelling), in which both STARS and Digital Barriers

have participated. The ViCoMo project was a 3 years project, started in September

2009 and ended in November 2012. The ViCoMo project is developing advanced video-

interpretation algorithms to enhance images acquired with multiple camera systems. By

modelling the context in which such systems are used, ViCoMo significantly improves

the intelligence of visual systems and enables recognition of the behaviour of persons,

objects and events in a 3D view. The project enables advanced content and context

based applications in surveillance and security, and transport/logistics with spin-offs in

the consumer & multimedia domains.

1.3 Issues in People Detection, Mono-Camera Tracking and

Person Re-identification

1.3.1 From Practical Point of View: Large scale video-surveillance con-

straints

As mentioned before, the aim of this thesis is to provide an automatic system to re-

identify people across a camera network (see figure 1.3). Many studies have been done

on this topic, using various techniques and under different constraints. We can divide

these approaches into two main types: biometric and appearance-based approaches.

The main types of biometric techniques for re-identification in video surveillance

context are face recognition and gait recognition. We can mention also iris and finger-

print analysis as other biometric techniques, but these last ones can not be considered as

a mean of (re)identification for wide scale video surveillance field, because they require

a cooperation and voluntary actions from individuals evolving in the monitored envi-

ronment. Indeed, capturing the iris image for analysis requires the person of interest

to position his eye close to a specific sensor and directly in front of it (See figure 1.4).

Similarly, the capture of fingerprint of the person of interest requires from him to put his

finger on a specific sensor (See figure 1.5). At the opposite, face recognition (Figure 1.6)

and gait recognition (Figure 1.7) techniques do not require (or in a lesser extent for face



22 Introduction
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Figure 1.3: iLids multi-camera tracking challenge environment: 5 cameras with and without

overlapping of field of views. C1, C2 and C3 are the viewed scene of the corresponding cameras.

The position and orientation of each camera is displayed in the floor plan.

recognition) the collaboration of observed people. They can be applied in large areas

with many people and many entrance and exit possibilities as long as few constraints

are verified.

Many approaches have been proposed for face recognition [Bauml 2010, Belhumeur 1997,

Kirby 1990, Lee 2003a] and gait recognition [Wang 2003b, Lee 2003b, Chellappa 2007].

When the conditions and constraints are satisfied, some of these approaches provide high

performance, especially for face recognition. Unfortunately, some of these constraints

are not satisfied by most deployed surveillance systems.

First, for economic and optimization reasons, most of surveillance cameras cover

large fields of view, providing images with small persons/objects of interest, so the ex-

tractable information is insufficient to provide acceptable performance after processing



1.3 Issues in People Detection, Tracking and Re-identification 23

Figure 1.4: Iris identification: Collaboration and specific actions from people are required. The

person has to put his eye in front of the sensor.

Figure 1.5: Fingerprint identification: Collaboration and specific actions from people are re-

quired. The person has to put his finger on the sensor.

(face size under the minimum required size, indistinguishable gait, etc.).

Second, the large number of deployed cameras in a given site and the distance be-

tween this site from the monitoring or storage location may overload transfer network.

For this reason, the streams are generally compressed by the cameras, sent to the pro-

cessing or storage location, before to be decompressed for display or for processing.

The storage of huge volume of videos also requires compression. Most of compres-

sion/decompression techniques introduce a loss of information and some noise. These

issues directly impact the performance of face and gait recognition.

Finally, biometric approaches are significantly dependent on the point of view of the

camera and the orientation of the person of interest with respect to this camera. If the

face is not visible (the person is seen from behind or from the side), face recognition
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Figure 1.6: Face recognition: People in front of camera (green rectangles) can be processed for

face recognition. The person who is seen from behind (red rectangle) cannot be processed. The

last person seen from the side (orange rectangle) is in the limit of constraints and processing can

fail. Here, collaboration of people is not required.

cannot be performed.

For these reasons, we have oriented our work on appearance-based approaches,

which have less constraints than biometric ones, and are more adapted to the video

surveillance requirements.

Achieving people re-identification with good performances requires to use reliable

information as input. For this reason, this thesis focuses on three main parts. The first

part consists in people detection on static images and video sequences. The second

part consists in people tracking in mono-camera context. The last task, which is the

final aim of this thesis, consists in people visual-signature extraction and comparison for

re-identification.

These three parts are interlinked and the performances of any of them affect directly

one or both other parts. The dependence of these three parts is shown in the figure 1.8.

People detection on static images and video sequences provides/validates the tar-

gets to track to mono-camera tracking algorithm in collaboration with a background

subtraction algorithm (this collaboration will be detailed in chapter 5) and provides the

candidates for re-identification to the re-identification algorithm.

Mono-camera tracking algorithm provides the different locations and images of a

given person through out time to the re-identification algorithm, allowing it to learn a

robust visual signature for this person, taking into account observed variations of his/her

images.

In the same time, re-identification algorithm allows mono-camera tracking algorithm

to deal with occlusions, by maintaining tracks of partially occluded objects thanks to



1.3 Issues in People Detection, Tracking and Re-identification 25

Figure 1.7: Gait recognition: gait is decomposed into different identifiable phases which are

processed. No collaboration from people is required.

their partial visual signatures and by reacquiring lost targets using their whole visual

signatures.

Two important points can be noted:

� The distinction between static images and video sequences in people detection,

which will be more detailed in the corresponding chapter, is mainly due to the

features used in each case and to the type of addressed problems.

� Even if the final aim of this work is mainly dedicated to people detection, mono-

camera tracking and re-identification on video sequences, the second part concern-

ing mono-camera will be generalized to all types of objects of interest, and not only

people. This choice is motivated by the fact that object tracking is an important

task in many security applications. Digital Barriers is interested by this generic

object tracking algorithm for other purposes (for example: car tracking). Never-
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Figure 1.8: Dependency between people detection, mono-camera tracking and re-identification.

In this figure, two cameras are used but the architecture can be generalised for a network of

many cameras.



1.3 Issues in People Detection, Tracking and Re-identification 27

theless, we will take care to report and discuss the specificities of people tracking

whenever it is necessary.

1.3.2 From Computer Vision Limitations Point of View

Automated person detection finds its applications in many areas including human-

robot interaction, surveillance, pedestrian protection systems, automated image and

video indexing. In the video surveillance context, detecting the whereabouts of humans

is the first requirement if any event involving people has to be detected. This ranges

from simple events like intrusion in forbidden area to complex events like behaviour

analysis.

Object tracking is the task of following one or more objects in a scene, from their first

appearance to their exit [Forsyth 2002]. An object may be anything of interest within

the scene that can be detected and depends on the requirements of the application.

Given a sequence of image frames to track a set of objects, these objects correspond to

sub-images, in each frame. In general, in a dynamic environment both background and

objects may vary. In principle, solving this general unconstrained problem is hard. One

can add a set of constraints to help solving this problem. The more the constraints, the

easier the problem is to solve.

Person re-identification consists in determining if a person of interest has already

been observed over a network of cameras (see figure 1.3). As mentioned before, this

task can be performed using different approaches depending on constraints and avail-

able information, using biometric-based techniques like face and gait recognition or

using appearance-based approaches. Due to the cited reasons before, concerning the

difficulty to ensure biometric approach constraints, appearance-based approaches are

more suitable for large wide video-surveillance purpose. The global appearance of an

individual has to be modelled to re-identify it. This modelling is the last topic of our

work.

All these tasks are complex to achieve, due to the numerous challenges which affect

their performances. Some of these challenges are common to the three tasks, and affect

them with different degrees, and some other challenges are specific to a given task. In

the following paragraphs, we present the most important challenges and we discuss how

they affect our tasks.

• Physical variation of persons: Person appearance can vary greatly. People do not

share a common body size, color, texture, and the appearance is highly influenced

by the clothing they wear. This is a specific issue for people detection only, and

can be considered as an advantage for mono-camera tracking and re-identification
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tasks.

In fact, People detection consists in finding the most common characteristics of all

people which are absent in other object classes. This large variations in physical

aspect requires to “enlarge” the model of persons and thereby, increase the risk

to have false positives (objects which are not people but detected as such because

their appearance is close to the one of a person). In the same time, trying to

avoid false positives by restricting the person model may cause miss detection of

persons with physical appearance out of the bounds of the model. This issue is

an important but not a critical one. Most of approaches ignore color and textures,

and are based on external shape or part detection in gray scale level domain. The

size variation is managed by a multi-scale detection.

Concerning mono-camera object tracking and re-identification, this physical varia-

tion can be considered as an advantage due to the nature of this two tasks. unlike

people detection which consists in separating a class of objects from all others,

mono-camera object tracking and people re-identification require to separate an

individual entity from all other entities, from the same class or not. The more

physical variation are, the more likely to better characterize an individual entity is.

• Body deformations: For a task that depends highly on the shape of a person, body

shape deformations can adversely affect the performances. This issue impacts the

three tasks, but at different degrees.

For people detection, it is a critical issue. It is hard to build a unique model for

all possible body shapes. Body deformation introduces a variation in parts local-

ization/visibility. A people detector which is build to detect a standing person will

probably fail to detect a crouching or a sitting person. A people detector based on

part detection can have more chances to detect than a global person detector, but

it can also fail if some important parts are not detected (legs of crouched person

are hard to identify). The most used solution for this issue is to build as many de-

tectors as identified body shapes. This solution implies a very important detection

time, due to the necessity to use all detectors without any a priori information. An-

other issue of this solution is that some intermediate states of the body shape can

be miss-detected. In fact, to pass from the standing state to the crouching one, the

body part algorithm acquires many intermediate states which can not be included

in existing models.

For appearance-base people re-identification also, this issue is an important one.

Most of appearance models are built by taking into account the localisation of each

interesting feature on the person body. A learned visual signature of a standing
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person in a camera can be useless if this person appears in another camera in

different position (sitting for example). Some interest features can be observed in

different position than extracted/learned ones, or can not be visible.

For mono-camera tracking task, this issue can be relatively well managed in most

of cases. If the video frame-rate is sufficient, the body deformation occurs contin-

uously, and the whole deformation can be divided into small successive deforma-

tions, which can be recognized and managed. With a correct similarity measure of

the used features for tracking, successive states of deformation can be linked and

the tracked target identity can be maintained.

• Illumination: For a task that depends on the lighting conditions, varying illumi-

nations and shadings in different environments can affect the performances.

For people detection, this issue is a medium one. Depending on the used features

for people modelling and the use of illumination normalization step, most of state

of the art approaches deal more or less well with this issue.

For mono-camera object tracking, this issue is more or less important, especially if

the light variation occurs suddenly. Depending on the robustness to light changes

of the used features for tracking, the similarity measures can greatly vary and

cause tracking failure. Nevertheless, the temporal continuity of the processing

with a sufficient frame-rate and the localisation of tracked objects before and after

illumination changes provide a useful way to decrease failure probability.

For people re-identification, this issue is a critical one, especially in the case of

cameras without overlapping field of view. The same person observed with two

cameras under different illumination conditions can have two different appear-

ances. This phenomenon is extreme in the case of bad light acquisition. Unfor-

tunately, the temporal continuity of mono-camera object tracking is missing here,

increasing the importance of this issue.

• Viewpoint changes: Depending on which angle people/objects are viewed, differ-

ent shapes can be observed with varying aspect ratios.

For people detection task, this issue is similar to “Physical variation of persons” one.

The variation in viewpoint implies a variation in appearance and size of persons

in addition to aspect ratio changes also. For the reasons cited in the “Physical

variation of persons” issue, this issue is a critical one.

For mono-camera people tracking, this issue is a lower one. In the case of static

cameras, this issue does not exist. In the case of moving cameras, if the motion

is uniform or if the frame rate is sufficient, the temporal continuity of information
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allows to deal with successive small variations, and thereby, maintain the track

objects identities.

For people re-identification, this issue is more important. The observed features

in a given camera can not be visible in another camera, or can be observed with

different size and aspect ratio, causing the failure of the re-identification.

• Crowded scene: The number of persons in the scene is an important parameter

for the task performances.

For people detection, this issue can be a medium or an important one, depending

on the position of all these persons. The number of persons itself in the scene is

not an issue. If the scene is crowded but the persons do not occlude each others,

the number of persons is not a problem. Each person is detected independently

as long as their important features from the detection model are visible. On the

other hand, if the important features are occluded, the detection can fail for the

occluded persons.

For the mono-camera object tracking, this issue is a critical one. The high number

of persons in the scene has two negative effects: first, the probability of occlusion

increases with the increase of person number. Second, the high number of persons

increases the risk of permutations and tracking errors due to the high probability

of having close models for tracked persons/objects.

For people re-identification, this issue is an important one. The high number of

persons in the scene increases the number of candidates for each re-identification

query, and thereby, it increases the probability of error. This high number increases

the probability to have similar visual signatures too.

• Background clutter: Sometimes background structures exhibit similar texture and

shape as the one of a person or tracked objects, making distinction difficult.

This issue does not concern directly the re-identification task as long as this last

one gets its inputs (request and candidates) from the two other algorithms (peo-

ple detection and mono-camera object tracking), so a failure in this task because

background clutter is in reality a failure in people detection or in mono-camera

people tracking.

For people detection task, this issue is an important one. The desire to obtain

a generic person model with all possible physical variations and a robust model

against illumination changes is generally satisfied by ignoring some kinds of infor-

mation like color or internal textures and by accepting large range of shape defor-

mations. This enlargement of the model causes some wrong classification when a
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background part has similar shape/model to the person one (a traffic signal, tree

leaves and branches, etc.).

For mono-camera object tracking, this is also an issue, but less important than for

people detection. There is always a risk that a tracked model clings to a back-

ground object when the tracked object passes near this background object if this

last one has a high similarity with the tracked object, but thanks to the largest

amount of information which can be used to model the tracked object, this risk is

minimized.

• Occlusions: Sometimes people/objects are partially or completely occluded by

objects they are carrying, by overlaps with other people/objects, or by structures

in the environment.

For people detection, this issue is important or critical depending if the occlusion

is partial or full one. People detection becomes impossible by complete occlusion

due to the unavailability of any information. In the partial occlusion case, this

detection becomes difficult and depends on the used person model for detection.

If all the features of interest of the model are visible despite the partial occlusion

of the person, the detection can be performed. If only some of these features are

visible, it will depends on the way the detection is performed, i.e. if an infer-

ence/extrapolation process is available. This kind of process is the most difficult

to provide.

For mono-camera object tracking, both partial an full occlusion are important is-

sues, but the full occlusion is more important issue. In fact, in case of partial

occlusion, depending on the used features and techniques for tracking, the still

visible part of the tracked person/object can be sufficient to keep the tracking per-

forming until the person/object re-appears entirely. In the case of full occlusion,

this issue becomes a problem which can be solved by a collaboration between

re-identification and spatio-temporal coherency. The results of full occlusion man-

agement depends on the re-identification performance, but also on many other

parameters like occlusion duration, scene configuration (possible exits during oc-

clusion), etc.

People re-identification task is concerned by this issue only for partial occlusion

case. In full occlusion situation, it means that the request/candidate person(s)

are not available yet. The re-identification is performed when the request person

reappears. The partial occlusion case is an important issue. If some important

features of the visual signature are not visible, the re-identification fails.
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• Shadows and reflections: Depending on illumination conditions, light angle,

floor/wall smoothness, shadows and reflection can be important issues.

For people detection and mono-camera object tracking, this issue is critical. Shad-

ows and reflections are difficult to handle during people detection and object track-

ing. Depending on the features (such as motion, shape and background) used for

a people detection or the object tracking, a shadow on the ground or reflected by

a wall/window may behave and appear like the person/object that casts it.

This issue does not concern directly the re-identification task as long as this last

one gets its inputs (request and candidates) from both other algorithms (people

detection and mono-camera object tracking), so a failure in this task due to shadow

non-removal or reflection is in reality a failure in people detection or in mono-

camera people tracking.

• Different sensor response: This issue concerns people detection and re-identification

tasks.

People detection is highly affected by this issue. State of the art people detectors,

which are based on an off-line training, are strongly dependent on the condition

of acquisition of training images. One of the most important acquisition condition

is the sensor response. People detectors witch are trained using some specific

cameras may not perform correctly in other situations where different kinds of

sensors are used.

mono-camera object tracking is a mono-camera processing. It means that the pro-

cess is performed on each camera independently, and thereby, it is not affected by

external (other camera) information.

For people re-identification, this issue is a critical one. In a camera network, noth-

ing ensures that all the cameras have the same model, and event if it is the case,

the sensors may have small or large difference in their responses. The most im-

portant issue is the color response of the sensors. The same person with the same

clothes can be rendered in different ways by two different cameras. Sometimes,

a red pullover can be displayed as red in one camera and orange in an other one.

The same for white and yellow colors. A practical example will be presented in the

chapter 6.

• Computational cost: This is an important issue for real-time processing for live

video-surveillance purpose.

For people detection, techniques and methods that achieve state of the art detec-

tion usually require heavy computation time (for training and for detection) com-
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pared to trivial person detection method. This is a difficulty especially in video

surveillance context, where it is required to have reactive response acceptable for

humans. Balancing detection performance with computational requirement adds

to the challenges faced in person detection. Time detection can be constant or vary

according to the number of persons, depending on the used technique. For exam-

ple, [Dalal 2005] approach (HOG with SVM) takes the same time to test each

candidate region while [Tuzel 2007] approach takes different times to test each

candidate region, depending on the depth of the reached level of the cascade of

classifier before rejection. Nevertheless, both kinds of approach are slow.

For mono-camera object tracking, the computational cost depends on three main

parameters: first, the complexity of the used model for tracked targets. Using

global color histogram is faster than computing a set of features with various in-

formation types. Second, the tracking technique. A simple Kalman filter is faster

than a complex particle filter. Finally, an important parameter is the number of

targets which are tracked simultaneously. The more the tracked targets are, the

higher the computational cost is.

For re-identification task, computational cost is an important issue too. The com-

plexity of the computed signature impact directly the processing time. The number

of candidates for a re-identification is an other important parameter, which can

make processing time explode if no filtering candidate step is performed before.

The issues mentioned above show that a successful person detection based on a

single sensor is very difficult. For real world scenarios, more promising approaches com-

bine more inputs from more than one sensory channel. In multi-modal person detection,

detections from the different sensors (collaboration between visible and IR cameras, fu-

sion of several cameras with joint fields of view, etc.) can be used to cross validate the

mono-modal detection to obtain a robust detector. Features that are not captured by one

sensor can be captured by another one making the detection more invariant to the above

listed challenges. Unfortunately, in video surveillance context, this kind of improvement,

based on multi-sensors, can not be ensured most of the time.

These issues are also significant to both single-object tracking and multi-object track-

ing. However, multi-object tracking also requires to solve some other issues e.g. mod-

elling multiple object interactions. Tracking methods should be able to distinguish dif-

ferent objects in order to keep them consistently labelled. Although during the last few

years, there has been a substantial progress towards moving object detection and track-

ing. But tracking an object in an unconstrained, noisy and dynamic environment still

makes this problem a central focus of research interest.
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A summary of the different issues and challenges, and their impact on people detec-

tion, mono-camera tracking and re-identification tasks is presented in the table 1.1

People Detection Mono-Camera Tracking People Re-identification

Physical variations ×××
Body/Shape deformations ××× × ×××
Illumination changes ×× ×× ×××
View point changes ××× × ×××
Crowded scene ×× ××× ×××
Background clutter ××× ×
Partial occlusions ××× ×× ×××
Full occlusions ×××
Shadows and reflections ××× ××× ×××
Different sensor response ××× ×××
Computational cost ×× ×× ×××

Table 1.1: Summary of different issues and their impact on each task. ×: low impact. ××:

medium impact. ×××: high impact. No cross: not concerned by the issue.

1.4 Hypotheses and Constraints

This thesis has been performed with some hypothesis. Some of them are common

to the three presented tasks and some others are dedicated to specific tasks. These

hypothesis are:

Static cameras: Due to the industrial context of Digital Barriers, and the use of

background subtraction algorithm as a provider of targets to track for mono-camera

object tracking, only static cameras are considered in our study.

CIF images: For the same reason (industrial context of Digital Barriers), the ne-

cessity to run multiple analyses per server (each camera has it’s own process), the net-

work limitations (bandwidth), and for some other constraints, small size images (CIF)

are used most of the time for the processing, to comply with these constraints. This

implies that all the developed algorithms have to be robust enough to deal with low

information amount (small people/objects sizes and resolution). When largest images

are used, the performances are equivalent or better due to the availability of more infor-

mation/details.

Calibrated and not calibrated cameras: All used cameras for our work are cal-

ibrated. Detected objects by background subtraction algorithm are classified using 3D
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world information, and requires calibrated cameras for that. In addition, camera calibra-

tion allows to learn fast and simple real world information of tracked objects, allowing

a fast occlusion management.

For people detection part, the calibration of cameras is not critical. The detailed

approach can be performed on images/videos without the availability of camera calibra-

tion, but the use of camera calibration speeds up greatly the detection process in a way

which is explained in the chapter 5.

Sufficient frame-rate: This constraint is concerning exclusively mono-camera object

tracking task. To be able to manage all temporal variations, a minimum frame-rate of

8fps is needed.

1.5 Contributions

Our goal is to propose the innovative ameliorations on state of the art algorithms

to obtain an operational (effective and efficient) framework for tracking people through

a camera network. This framework has to be a turnkey system, by being as generic as

possible and by do not requiring new parametrization for each deployment case while

it has to provide high performances and to process in real time, due to the industrial

constraints.

The presented work brings 11 significant contributions comparing to state of the

art. The first contribution consists of a general framework to process the three suc-

cessive steps which are ”people detection”, ”mono-camera tracking” and ”people re-

identification” (See figure 1.8). One contribution is related to people detection part,

four contributions to mono-camera object tracking and finally five contributions to peo-

ple re-identification.

1.5.1 Contribution to People Detection

- An optimization method to improve cascade of classifiers based people de-

tectors: In order to speed-up classifier training, detection task and to improve

detection performances, we propose a preprocessing step which optimizes a state

of the art approach. This optimization is based on clustering negative training

samples before classifier training in a specific way, which can be generalized and

used for all techniques which use trained cascade of classifiers. This work has been

published in VISAPP 2013 [Souded 2013].

We have evaluated and compared our people detector on four datasets: INRIA, Daim-

lerChrysler, Caltech and CAVIAR datasets.
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1.5.2 Contributions to Mono-Camera Object Tracking

- A new method for SIFT feature detection and selection for object tracking:

We propose a new method to ensure an optimal representation of the tracked

object of interest using SIFT features. This method allows better object tracking

especially for partial occlusion cases. This work has been published in ICDP 2011

[Souded 2011].

- An hybrid particle weighting method for SIFT feature particle filtering: We

use a particle filter to track all SIFT features representing the object of interest. Our

proposed method allows to weight the used particles using both SIFT descriptors

similarity measures and background subtraction results in a sophisticated way (not

a binary weighting), dealing with various background subtraction qualities. This

work has been published in ICDP 2011 [Souded 2011].

- A data association framework for object tracking: Once SIFT features are

tracked from previous frames to the current one, our proposed data association

method allows to infer object tracking state from SIFT features one, detecting and

managing the several cases which may occur during object tracking (especially

occlusions). This work has been published in ICDP 2011 [Souded 2011].

- A fast occlusion management method: We propose a fast methods to deal

with full occlusion issue. it consists in learning real world information concerning

the tracked object (dimensions and velocity variations), using the dominant colors

extracted during the tracking and finally, using the tracked SIFT features as ad-

ditional information for object re-acquisition after occlusion. This work has been

published in ICDP 2011 [Souded 2011].

We have evaluated and compared our mono-camera object tracking algorithm on

four datasets: PETS 2001, ETISEO, Caretaker and CAVIAR datasets.

1.5.3 Contribution to Person Re-identification

- Fast image alignments before signature computing for multiple-shot case: We

propose a fast method to align automatically extracted images of each person be-

fore visual signature computing. The people detection and delimitation errors may

provide some truncated or badly centred people images, which alter the computed

signature if no processing is performed to deal with this issue. Our method allows

to correct the delimitation of slightly bad delimited people, to remove the image



1.6 Outline 37

with significant errors, and to align the kept images to improve the computed vi-

sual signature and the comparison.

- Use of texture information in addition to color: The baseline method we take

for our work ([Farenzena 2010]) exclusively uses color information for visual sig-

nature computation. We propose to introduce texture in addition to color in two

separate ways: replacing the color characterization of the signature component

(RHSP features) by a color+texture characterization using covariance descriptors,

and adding SIFT features to the final signature. The SIFT features are provided by

mono-camera object tracking algorithm when the whole system is used.

- Visible side classification for more reliable signatures comparison: People ap-

pearance may be different according to their visible side, a unique visual signature

for each person may not be efficient enough. We propose a method to detect and

classify the visible side of observed people in 8 classes, based on our mono-camera

object tracking algorithm, and assigning a sub-signature to each observed class,

and providing a more precise signature comparison method.

- Spatio-temporal coherency filtering method: Depending if the considered cam-

eras share overlapping fields of view or not, we propose for each case a method to

exploit the camera calibration information to reduce the number of candidates for

a re-identification query by filtering incoherent spatio-temporal matching, and to

weight the appearance based matching by a real world distance weight in the case

of overlapping field of view.

- Adaptive weights for signature components: To make the re-identification ap-

proach generic, we propose an adaptive weighting method for all used features,

taking in account the amount and the quality of available information (Color/Texture)

and the considered people visible side if this information is available.

We have evaluated and compared our mono-camera object tracking algorithm on

four datasets: VIPeR, ETHZ, iLids and CAVIAR datasets.

1.6 Outline

This PhD manuscript is organized as follows:

• Chapter 2 presents a state of the art for each of the three studied domains: People

detection, Mono-camera object tracking and People re-identification.
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• Chapter 3 presents a general overview of the whole framework for person re-

identification as a complete processing chain, starting by people detection, fol-

lowed by people tracking in each single camera independently, and finally people

re-identification through a camera network. The dependencies and the collabora-

tion between these three processing steps including feedback are presented. After

that, an overview of the proposed approaches for each processing step is presented.

• Chapter 4 details the proposed approach for people detection on static images

and video sequences. First, a summary of Tuzel et al. [Tuzel 2007] approach

for people detection and its improvement by Yao et al. [Yao 2008] are presented

because our work is based on these approaches. The choice of these approaches

as a basis for extension and their issues are explained and detailed, introducing

and justifying our contributions, consisting in an optimization process to speed-

up classifier training and detection process, in addition to improving detection

performances.

• Chapter 5 presents the proposed approach for object tracking in mono-camera

context. As mentioned in the introduction, a generic object tracking algorithm

is targeted first, due to the industrial needs of Digital Barriers. We highlight all

specific parts restricted to people tracking when this is the case. The presented

object tracking is based on SIFT features using Particle Filtering approach, followed

by a data association reasoning stage to lead to a complete object tracking. Several

contributions are presented at different levels of this process.

• Chapter 6 presents the proposed improvements to state of the art algorithms for

people re-identification. The baseline approach is explained, and its limitations are

highlighted. The approach is based on the symmetry-driven accumulation of local

features. The contributions are detailed and tested to show the improvements they

provide.

• Chapter 7 is dedicated to experimental results and benchmarking with state of

the art studies. Each of the presented processing steps is evaluated on several

dedicated benchmarking datasets and compared with state of the art approaches.

The proposed approaches and contributions of each processing step are validated

by comparing with the state of the art approaches performances.

• Chapter 8 presents the concluding remarks and limitations of the thesis contribu-

tions for each processing step. We also discuss about the short-term and long-term

perspectives of this study.
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STATE OF THE ART

This chapter presents the state of the art of the three topics covered in this thesis.

The first section concerns the state of the art in people detection on images and

video sequences. This separation between static images and video sequences is mainly

related to the type of used features due to the additional information provided by the

movement. The state of the art in people detection can be divided into three categories,

depending on the processing step for detection: candidate region selection, pertinent

feature extraction and learning/classification techniques.

The second section concerns the state of the art in mono-camera object tracking,

which can be classified according to two criteria: ”how to represent/model the tracked

object” (i.e. which features to characterize it) and ”how to update search for its model

over time?”. The object modelling is performed in several ways, according to the used

information: color, shape, texture and motion. Tracking techniques can be divided into

two main categories: deterministic and probabilistic approaches.

The last section concerns the state of the art in people re-identification. Approaches

are divided into two main families: biometric and appearance-based approaches. The

biometric approaches include iris recognition, fingerprint recognition, face recognition

and gait recognition. The appearance based approaches are classified into single-shot

approaches and multiple-shot approaches, according to the number of used images per

person. In both of them, the appearance modelling is performed following two main

kinds of methods: Feature oriented methods and Learning methods. Some recent ap-

proaches use context information instead of focusing on people on interest images only.

41
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2.1 People detection

People detection on static images and video sequences is a critical task in many com-

puter vision applications, including human-robot interactions, robot navigation in pres-

ence of humans, pedestrian detection for Automated Driver Assistance Systems (Stereo

vision-based pedestrian detection system is included in both the new 2013 Mercedes-

Benz E-Class and S-Class models, since june 2013), content based image and video

processing, and in a large proportion, video surveillance which is our topic of interest.

At the same time, it is one of the most challenging problems in computer vision due

to the large number of possible situations, including variations in people appearance and

poses. These challenges are further augmented in video surveillance applications due to

computational time requirements for a reactive system, especially when this detection is

not the final aim, but one step in a more complex processing like in our case.

Due to its importance and its several challenges, People detection is an active re-

search area with a rapid rate of innovations.

In this section, different people detection approaches from the state of the art are

presented. People detection methods can be categorized into two main families: Trained

classifier approaches and template matching approaches.

The trained classifier based approaches are performed in two distinguished steps:

training and detection. The training step focuses on the significant features extraction

using several machine learning methods to obtain a person-class model. The obtained

model is then used for detection using different ways.

The template matching approaches aims at extracting a generic template for person’s

class using pertinent features. Detection is performed using a direct template matching

procedure, using several proposed matching measures and distances.

To help structure the flow of this chapter, figure 2.1 shows a typical flow diagram

of training based people detectors procedures. In the training step, discriminative and

pertinent features are extracted from a training dataset and labelled according to their

class (positive or negative data). A classifier is then trained on these data using several

machine learning techniques, providing a person class model. For detection step, images

for the observed scene are acquired, then the searching areas on the images are defined

as the candidate regions, either by searching on the whole image with any a priori

knowledge, or by targeting specific regions using real world information. From these

candidate regions, discriminative and pertinent features from the same type than the

used ones for training are extracted for classification. The trained classier is finally used

to decide whether the evaluated candidate region corresponds to a person or not.

In the following paragraphs, we present the used techniques in the main state of



2.1 People detection 43

Features 

selection

   Trained classifier

(person-class model)
Classifier

 training

Features 

selection

Candidate 

  regions

 selection

   Deteciton

(Classification)

Training

Detection

- Dense searching 

  (Sliding window) 

- Filtering by real 

  world knowledge

- HOG

- Haar-like

- LBP

- shape context

- region covariance

   ...

- SVM 

- Boosting

  (AdaBoost,

   LogitBoost, ....)

   ....

Detected
Persons

Figure 2.1: Successive steps for people detector training and detection.

the art approaches, starting by exposing the most used features for person class mod-

elling, the two candidate region selection methods and finishing by the classification

techniques.

2.1.1 Pertinent Features

An image consists in a array of pixels. Using each pixel independently does not allow

to extract any information about image content. For this reason, many approaches for

visual features extraction from groups of pixels are proposed in the state of the art.

These features enable us to extract meaningful information from image. In this section,

different image features that are used in visual person detection are briefly presented.

2.1.1.1 Haar-Like Features

Haar Wavelets were first introduced in the context of Object Detection in late 90s

by Papageorgiou et al. [Papageorgiou 1998]. Viola and Jones [Viola 2001] adapted

the idea of using Haar wavelets and developed the so-called Haar-like features. They

introduced the notion of Integral Image so as to compute these features in a fast way.

The Haar-like features encode the relationships between average intensities of neigh-

bouring regions along different orientations capturing edges or changes in texture. This

makes them suitable to capture the structural similarities between various instances of

a class. Figure 2.2a shows the three types of 2-dimensional Haar-like features used by

[Oren 1997]. These features capture change in local intensity along horizontal, vertical

and diagonal directions. When applied to images, the value of a two rectangle feature

is the difference between the sum of the pixels lying in the unshaded area with the sum
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(a) Three of the Haar-like features used by 

[Oren et al., 1997], (horizontal, vertical, and diagonal)

(b) Complete set of extended Haar-like, including center surround, 

feature templates used by [Lienhart et al., 2002]

Figure 2.2: Haar like features templates.

of pixels lying in the shaded area. A four rectangle feature computes the difference

between diagonal pairs of rectangles.

Leinhart et al. [Lienhart 2002] introduced a set of extended haar-like features by

adding upright, 45 ◦C oriented and center-surround rectangular features allowing the

prototypes to be scaled independently in vertical and horizontal axis. Figure 2.2(b)

shows the complete Haar-like feature template used by [Lienhart 2002].

2.1.1.2 Edge Orientation Histograms (EOH)

Silhouette and edge information are important features to discriminate a person in

images. To encode these information, Edge Oriented Histograms (see figure 2.3) have

been proposed initially for face detection by Levi and Weiss [Levi 2004]. These features

not only maintain invariance to global illumination changes, but also capture geometric

properties that are difficult to capture with other features. Later, Edge Oriented His-

tograms have been used for people detection. In [Gerónimo 2007], a combination be-

tween Haar-like features and Edge Oriented Histograms is used as discriminant feature

for classification.

2.1.1.3 Histogram of Oriented Gradients (HOG)

Another feature for silhouette and edge information encoding, called Histogram of

Orientation Gradients, is proposed by Dalal and Triggs in [Dalal 2005] for people de-

tection. The feature extraction is more complex than in Edge Orientation Histograms,

increasing the discriminative power of the descriptor while ensuring a certain degree of

invariance. As described in [Dalal 2005], HOG descriptor computation is done in five
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Figure 2.3: Edge orientation histogram. (Left) Example image. (Center) Edge strength image.

(Right) Polar plot of edge orientation histogram. (souce [Yang 2005]).

steps:

1. A global image normalization equalization, using a gamma compression, is per-

formed to reduce the effects of local shadowing and influence of illumination vari-

ation effects.

2. Computation of first order image gradients.

3. The image window is divided into small spatial regions, called “cells”, and a local

1D histogram of edge orientations with K orientation bins over all the pixels in

the cell is accumulated. Each edge pixel contributes to each orientation bin with a

value proportional to the magnitude of its orientation.

4. A normalization step is carried out by accumulating a measure of local histogram

“energy” over local groups of cells called “blocks”. Each cell is normalized with

respect to the block which it belongs.

5. The final HOG descriptor of the whole detection window is obtained by concate-

nating all HOG descriptors of all blocks of a dense overlapping grid.

The HOG feature extraction is depicted in Figure 2.4 taken from [Dalal 2005].

Four variants of the HOG descriptor have been presented by the authors. The dif-

ference between them lies in the shape of considered cells. These four variants are:

Rectangular HOG(R-HOG), which is the original one, Circular HOG(C-HOG) where the

cells are defined into grids of log-polar shape. Bar HOG where the descriptors are com-

puted similar to the R-HOG, but use oriented second derivative filters rather than first

derivatives and Center-Surround HOG which use a centre-surround style cell normaliza-

tion scheme.

Many other approaches for people detection, using HOG descriptors, have been pro-

posed. We can cite [Zhu 2006b, Corvee 2010, Bertozzi 2007]. They mainly differs in the
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way that the HOG descriptor is used (describing the whole person image or body parts

independently) or in the used classification method (SVM, boosting, etc.).

Figure 2.4: HOG feature extraction steps (From [Dalal 2005])

2.1.1.4 Local Binary Pattern (LBP)

Local Binary Patterns is texture encoding feature. It is a particular case of the Texture

Spectrum model proposed in [Wang 1990] and [He 1990]. It has been first described in

[Ojala 1996]. The original version of the local binary pattern feature for each pixel is

based on a 3 × 3 pixel block of an image. The pixels in this block are thresholded by its

center pixel value, multiplied by powers of two and then summed to obtain a label for

the center pixel. As the neighbourhood consists of 8 pixels, a total of 28 = 256 different

labels can be obtained depending on the relative gray values of the center and the pixels

in the neighborhood. A more generic LBP feature is proposed in [Ojala 2002]. It allows

more information extraction from variable circular neighbourhood of the center pixel,

according to two parameter which are the radius of circular neighborhood “R” and the

number of considered neighborhood points “P” (see figure 2.5).

Many people detection approaches are based on the use of LBP descriptors only, or

in collaboration with other features, improving the classification performance rates. In

[Mu 2008], Semantic LBP (S-LBP) and Fourier LBP (F-LBP), two new variants of LBP

feature, are proposed and used for human detection. Semantic LBP (S-LBP) feature is

computed by binarizing the image on a color space such as CIE-LAB. Neighbors whose
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(P=4, R=1.0)           (P=8, R=1.0)          (P=12, R=1.5)         (P=16, R=2.0)         (P=24, R=3.0)

Figure 2.5: Generic LBP: Examples of circular neighbour sets for different (P, R) ([Ojala 2002])

distances to the central pixel exceed local threshold are marked as “1”, else “0”. Then

arches number is counted and non-uniform arches (i.e. having more than one arches)

are abandoned. The 2D histogram descriptor for any image region can be obtained by

collecting information from all its inner pixels. The final feature vector is obtained by

concatenating each column of the 2D histogram to get a 1D vector (see figure 2.6). The

Fourier LBP is designed via similar idea ot Fourier boundary descriptor [Gonzalez 2001].

First, color distances between the considered neighbourhood pixels and the center one

are grouped in a raw feature vector. Then, this raw feature vector is transformed into

frequency domain. Coefficient for low frequencies are kept and used for F-LBP represen-

tation since they capture salient local structures around the center pixel.

in [Zhou 2012], standard HOG and LBP features are extracted from Regions of In-

terest (ROI) of human body, and are combined to characterise persons, providing better

detection performance in comparison of using each descriptor independently. The clas-

sifier is trained with simple linear SVM.

Figure 2.6: [Mu 2008] S-LBP computing method. Step A: Calculate principle directions and

lengths for each arch. Step B: Vote for corresponding histogram bins.
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2.1.1.5 Shape Context

Shape Contexts were first introduced by [Belongie 2002] in the context of object

recognition. The approach consists in picking n points on the contours of a shape, ex-

tracted using an edge detector. Then the edges are stored in the bins of a log polar

histogram formed by quantizing the locations around the picked points in both radial

and angular directions. Orientation is then quantized in pre-defined number of bins. By

making the location bins uniform in log-polar space, the descriptor can be made sensi-

tive to nearby sample points more than those points further away. These descriptors are

very well suited for matching purposes and have also been used for pedestrian detection

by [Leibe 2005].

(a)                           (b)                                 (c)

(d)                      (e)                      (f)                       (g)

Figure 2.7: [Belongie 2002] Shape Context computation and matching. (a,b) Sample edges

points of two shapes. (c) Diagram of log-polar histogram bins used in computing the shape

context. 5 bins for logr and 12 bins for θ are used. (d,e,f) Example shape contexts for reference

samples marked by ◦, ⋄, ⊳ in (a,b). Each shape context is a log-polar histogram of the coordinates

of the rest of the point set measured using the reference point as the origin. (Dark=large value.)

Note the visual similarity of the shape contexts for ◦, ⋄, which were computed for relatively

similar points on the two shapes. By contrast, the shape context for ⊳ is quite different. (g)

Correspondences found using bipartite matching, with costs defined by the χ2 distance between

histograms.

2.1.1.6 Region Covariance Descriptor

Region covariance descriptors have been first introduced for people detection by

Tuzel et al. in [Tuzel 2006]. Each image pixel can provide a large amount of basic infor-
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mation like its coordinate, its intensity and color values, its first and second derivative

values according to X and Y axis and many other values obtained by applying several

filters and operators. By extracting a d-dimensional vector of features from each pixel of

a given image region, it is possible to compute the variance of each type of considered

feature and the correlation between these different features, and encapsulate all these

information in a single d-dimension square matrix which will describe the considered re-

gion. More details concerning the way to compute this descriptor and its characteristics,

in addition to all the related metrics are presented in the chapter 4 to avoid information

redundancy, since our proposed method is based on this descriptor.

In [Tuzel 2007], 8-dimensional covariance descriptors are used for the people de-

tection training. The computation of these region covariance descriptors is speeded up

using Integral Images. A cascade of classifiers is trained using a boosting scheme in

Riemannian Manifold, due to the nature of covariance matrices. This approach provide

interesting detection performances but it requires non-negligible processing time, due

essentially to the eigenvectors decomposition which the basis of all metrics computa-

tion, and which is directly proportional to the region covariance descriptors dimension.

Yao and Odobez improve [Tuzel 2007] method by introducing three modifications

to the initial approach in [Yao 2008]. First, the second derivative features on X and

Y axis which were used in [Tuzel 2007] 8-dimensional features are replaced by two

other features, related to the background subtraction, speeding up the detection in

video sequences. Then, they greatly speed up the detection by building classifiers with

4-dimensional region covariance descriptors instead of the 8-dimensional covariance

descriptor in [Tuzel 2007], using the best subset of 4 features from the initial set of 8

features, for each considered region of interest. Finally, they increase the discrimina-

tive power of extracted features for each region of interest by concatenating the mean

feature vector of the same region upon all positive training images to the projected co-

variance matrices on vector space before regression computation. These improvements,

their justification and the way in which they are performed are detailed in chapter 4.

2.1.2 Candidate Region Selection

This processing step concerns the detection process only as long as the positive train-

ing dataset are provided by labelled person images.

The candidate region selection is the first step for person detection in images. In

general, images contain various environment objects. They may contain none or many

people. In the case of images containing people, a person is defined by a sub-image

region containing a set of specific features. It is therefore necessary to select and test

“some” candidate image regions to check if they correspond to persons or not. This can-
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didate selection presents two main advantages: First, the processing time would be de-

creased by checking only selected regions and second, possible false positives would be

filtered out by this selection. In the same time, this selection can lead to miss-detections

if relevant image regions are not checked.

Candidate region selection is done according to specific criteria and can be divided

into two categories: Dense searching by sliding window and real world a priori knowl-

edge (camera calibration).

2.1.2.1 Dense Searching by Sliding Window

This method is generally used when no information is available concerning the scene

in the image. It consists in scanning the whole image using a sliding window (see

figure 2.8 (a,b)). The size of the scanning window as well as the displacement step

are dependent on some criteria like the sensitivity of the used features with respect to

small/large shifts and rescales. To ensure the detection of people with different sizes

in the image, a multi-scale scan is performed. Some approaches rescale the image by

keeping the search window with a constant size, corresponding to the positive training

images size, while others approaches rescale the scanning windows to detect people at

various scales on the same image.

The choice between these two policies depends on the constraints on the types of

used features and classifiers. For example, Dalal and Triggs [Dalal 2005] construct an

image pyramid by scaling the input image by a factor of 1.2 and use a scanning window

with a constant size of 64x128 pixels. They shift this scanning window by 8 pixel in both

axis (the scanning shift is constrained by HOG cell dimension which is 8 pixels. Only

multiples of cell dimension can be used as browsing step). The size of scanning window

corresponds to the size of the images which were used to train a SVM classifier. Due to

the nature of the SVM classifier, it is not possible de rescale the scanning window because

the corresponding SVM classifier has to be adapted to the new window size, which is

not a trivial operation (SVM hyperplane dimension is dictated by the dimension of the

whole image HOG feature vector, which depends on the image size).

In opposition to this example, Tuzel et al. [Tuzel 2007] have tested and compared

both possibilities in their approach: First they rescaled input image at different scales

and applied a scanning window with constant size on each scaled image, and second,

they keep the original image for scanning and applied different detection window sizes.

In their approach, the nature of region covariance descriptor that they used as a feature

allows to rescale classifier with a negligible variation. This is due to the fact that the

information contained in a given region in term of feature variances and correlation be-

tween them does not vary by a uniform rescaling on both axis theoretically. In practice,
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(a) Exhaustive seach                                 (b) Exhaustive search with

                                                                   10% of candidate windows

(c) Flat world assumption                          (d) Projected rectangles with

projected rectanbles.                                 flat world assumptions

Figure 2.8: Illustration of sliding window and flat world assumption for candidate regions selec-

tion ([Gerónimo 2009]).

a negligible variation occurs du to the discrete (non-continuous) nature of image pix-

els, and the information modification introduced by anti-aliasing filtering after rescales

(bilinear filtering for example).

Note that it is better, when it is possible, to rescale the scanning window (and adapt

the corresponding classifier) instead of rescaling input image. The processing time can

be highly reduced by this choice. In fact, rescaling input images, in addition to the

necessity to re-extract the whole image raw feature vector at each scale, are high time

consuming if the number of scales is important. This rescaling time must be multiplied

by the number of images in case of videos.

Rescaling scanning window is faster, even by training a classifier on one images size

only and rescale this classifier directly using its mathematical properties (e.g. region

covariance descriptors) or by training several classifiers on predefined set of image sizes

(predefined set of detection scales). Even if the classifier adaptation (rescaling) requires

computational time, this operation can be done off-line, before the on-line processing.

Unlike input images content that change over the time (and thereby the contained fea-

ture values), a classifier for a given scanning window size is constant (it corresponds to a

fixed model). All the needed classifier scales are computed and stored before processing

and directly used during detection process.
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2.1.2.2 Filtering by Real World Knowledge

This approach uses a kind of scanning window similar to the previous method, but

the main difference is that scanning is not performed on the whole image, and the

searching scales are highly reduced.

This approach is strongly constrained by the camera calibration information avail-

ability, and is based on the assumption that people are on the ground floor. For a

calibrated camera, rectangular regions corresponding to the aspect ratio of a person

are placed on the ground floor of the 3D world up front and projected onto the image

using camera transformation matrix. These regions then constitute the candidate win-

dows for further processing (see figure 2.8 (c,d)). These approach has been applied in

pedestrian detection from a vehicle by Gavrila et al. [Gavrila 2004] and Gerónimo et

al. [Gerónimo 2006]. Using this approach, the number of possible regions for subse-

quent steps is highly reduced. Gerónimo et al. [Gerónimo 2006] have shown that the

performance of this candidate generation scheme is very dependant on the accuracy of

the camera calibration parameters.

2.1.3 Classification

The classification is the final step of people detection. During the classification, a

candidate region is evaluated and a decision is taken whether it is a person or not. State

of the art of people detection is dominated with classifier training approaches. Most of

them use variants of Boosting and SVMs machine learning. But a silhouette matching

technique known as Chamfer System has also been used.

Both of these kind of classification methods are presented in the following para-

graphs.

2.1.3.1 Chamfer Matching

Chamfer Matching, introduced by [Barrow 1977], is a technique used to compare

the shapes of two collections of shape fragments. For example, for an edge template T

composed of edge features t and an image’s edge map I, the Chamfer Distance is given

by the average distance dI to the nearest feature.

DChamfer(T, I) =
1

|T |
∑

t∈T

dI(t) (2.1)

Depending on how well the template represents the person’s class and how good the

features used are, this measure can be used for people detection. In order to make a pre-

cise decision about the object location, orientation, and scale, it may be necessary to use
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subsequent verification stage [Gavrila 2004]. This method has been applied successfully

for person detection from images [Gavrila 2004].

2.1.3.2 Support Vector Machines (SVMs)

Support Vector Machines are supervised learning models with associated learning al-

gorithms that analyse data and recognize patterns, used for classification and regression

analysis. they were introduced by Vladmir Vapnik [Vapnik 1995]. SVMs are widely used

in people detection approaches due to their high generalization performance without

any needed a priori knowledge, even when the dimension of the input space is very high

[Vapnik 1995].

The aim of SVM machine learning is to find the optimal hyperplane that separates

two classes of data. Depending on the nature of data, this separation may be a linear or

non-linear one. The most used non-linear kernels for SVM are polynomial and Gaussian

kernels, but most of approaches for people detection assume that the class separation

can be performed well with linear SVM’s.

In the case of linear SVM, considering a set of N linearly separable training examples

(xi, yi)i:1..N, where xi ∈ Rp are p-dimensional real vectors and yi ∈ {−1, 1} their corre-

sponding class labels, an infinite number of separation hyperplanes can be taken (see

figure 2.9(a)). SVMs aim to select the optimal hyperplane for separation. It is done by

introducing “maximum-margin” notion.

Any hyperplane can be written as the set of points x satisfying w · x − b = 0 where

“·” denotes the dot product and w the normal vector to the hyperplane. The parameter
b

‖w‖ determines the offset of the hyperplane from the origin along the normal vector w.

The margin maximization is performed by finding the furthest two parallel hyper-

planes which delimits a points-free space between them (see figure 2.9(b)). These two

hyperplane are defined by the two equations w · x − b = 1 and w · x − b = −1. The

distance between these two hyperplanes is 2
‖w‖ , so maximizing this distance is done by

minimizing ‖w‖. To prevent data points from falling into the margin, this minimization

have to be done under the two following constrains:

w · xi − b ≥ 1 for xi of the first class, and

w · xi − b ≤ −1 for xi of the second class.

These two constraints can be grouped, using the class labelling, in the following

equation:

yi(w · xi − b) ≥ 1, ∀1 ≤ i ≤ N

The optimal separation hyperplane is taken as the one between the two parallel

hyperplanes, at equal distance from each of them.
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Figure 2.9: Linear SVM illustration with 2-dimensional points separation. (i) H1, H2, H3 are

three sample plans from the infinite possible plans which can separate the two point classes.

(ii) Optimal plan(in red) is taken, by maximizing the margin between Support Vector points

(surrounded by purple circles).

Note that a variant of SVMs, called Relevant Vector Machines (RVM) has been pro-

posed in [Tipping 2000] and [Tipping 2001]. The RVM has an identical functional form

to the support vector machine, but provides probabilistic classification.

Several approaches for people detection, based on SVM training were proposed.

In [Dalal 2005], people detection is performed by a linear SVM classifier trained on

Histogram of Oriented Gradients features. In [Miezianko 2008], a linear SVM classi-

fier is trained on gradient patches extracted from low resolution infrared videos. In

[Papageorgiou 2000], haar wavelets are used to train a polynomial SVM.

In [Ronfard 2002], a body part based people detector is trained using Relevant Vector

Machines (RVM). It will be presented in subsection 2.1.4.2.

2.1.3.3 Boosting

Boosting is a field of machine learning domain. The principle consists in iterative

addition of trained weak classifiers to perform a strong classifier. A weak classifier is

defined as classifier which can separate two classes at least as well as a random classifier,

i.e. it does not exceed 50% of an average error rate if the classes are equivalently

distributed. Each added weak classifier is weighted in the strong classifier according

to its classification quality: the more it classes well, the more important is (higher his

weight is).

The name of this machine learning method comes from its main common process-

ing step: training samples witch are incorrectly classified after a given iteration are

“boosted” by assigning them more important weights in the next iteration step, to make

the machine learning “focus” more on them.

The final strong classifier consists in a set of weighted weak classifiers, and its clas-
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sification decision is performed using the sum of weighted responses from all its weak

classifiers.

Many variants of Boosting algorithms were proposed, we can cite Bootstraping, Ad-

aBoost, Discrete AdaBoost, Real AdaBoost, GentleBoost, BrownBoost, LogitBoost, Asym-

Boost, KLBoost, FloatBoost, GloBoost, RankBoost, etc.

As the subject of our thesis does not relies to machine learning technique, we can not

detail all these algorithms. We can only indicate that they all share the basic principle,

but differs on the way they perform some computing step, like the new weight update

for incorrectly classified training samples, the weak classifier selection criteria, the type

of data for which they are dedicated and the number of initialization parameters that

they requires.

Nevertheless, and due to its large use in many people detection approaches, we will

focus on AdaBoost algorithm and its very close variants LogitBoost and RealAdaBoost.

AdaBoost (Adaptive Boosting) has been introduced by Freund and Schapire in

[Freund 1995]. The following paragraph summaries it’s algorithm.

For a binary classification, let us consider a set of N training p-dimensional samples

(x1, y1), . . . , (xm, ym) where xi ∈ Rp, yi ∈ Y = {−1,+1}. The number of weak classifiers

to train, which correspond the number of iterations of the main algorithm’s loop, is fixed

at the beginning. we will note it T.

� The first step consists in initializing the weight distribution Di of all training sam-

ples: D1(i) =
1
N ,.

� For each iteration t = 1,. . . ,T:

– A set Ht of q weak classifiers h
(j)
t is formed first (j=1,. . . ,q). The correspond-

ing weighting error ǫ
(j)
t of each weak classifier h

(j)
t is computed with respect

to Dt by:

ǫ
(j)
t =

∑N
i=1 Dt(i)I(yi 6= h

(j)
t (xi)), while I is the indicator function.

The best weak classifier ht is then selected as the one with the maximum ab-

solute value of the difference of the corresponding weighted error rate ǫt and

0.5: ht = argmax
h
(j)
t ∈Ht

∣

∣

∣
0.5 − ǫ

(j)
t

∣

∣

∣

– If |0.5 − ǫt| ≤ β, where β is a previously chosen threshold, then stop.

– Choose αt ∈ R, typically αt =
1
2
ln 1−ǫt

ǫt
.

– Update all sample weights. For i = 1,. . . ,N:

Dt+1(i) =
Dt(i) exp(αtI(yi 6=ht(xi))∑
i Dt(i) exp(αtI(yi 6=ht(xi))

where the denominator is the normalization factor ensuring that Dt+1 will be

a probability distribution.
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The final binary classifier is then obtained as: H(x) = sign
(∑T

t=1 αtht(x)
)

AdaBoost has proven to be very useful in feature selection. At the end of the training,

the features with prominent discriminative power have higher weights. It is frequently

used for image classification as a result of its simplistic implementation, very good fea-

ture selection abilities, and fairly good generalization.

It has been used for person detector in many approaches. Note that all proposed ap-

proaches train final classifiers which can be either a single strong classifiers or a cascades

of strong classifiers.

Cascade of classifiers perform in a rejection scheme. It is implicitly associated to a

class of interest (the positive one). The tested data is evaluated by the cascade levels

in increasing order. If any cascade level returns a negative response, the data is im-

mediately considered as not belonging to the class of interest and is rejected. Is is not

evaluated by the remaining levels. Only positive data (belonging to the associated class)

fully pass through the whole levels of cascade when they are evaluated.

In both [Zhu 2006b] and [Jia 2007], a cascade of classifiers is trained using Ad-

aBoost algorithm on Histogram of Oriented Gradients.

Other Adaboost derivatives method are used for the same purpose. In [Gerónimo 2007],

a Real AdaBoost is used train a classifier based on a combination between Haar-like fea-

tures and Edge Oriented Histograms. Chen et al. [Chen 2007b] people consists in a

cascade of Real AdaBoost trained classifiers, using Edge Oriented Histograms features.

LogitBoost is used by Tuzel et al. [Tuzel 2007] and by Yao et al. [Yao 2008] to

train a cascade of classifiers based on Region Covariance Descriptors. Note that in these

approaches, the LogitBoost algorithm has been slightly modified to deal with the Rie-

mannian manifold which Region Covariance Descriptors belongs.

Real Adaboost differs from the original Adaboost in the way than the original Ad-

aboost classifier returns only a binary value (response) for a tested data, depending on

this data belongs to the the first or to the second class. The Real Adaboost algorithm

provide a real valued probability of class membership.

LogitBoost algorithm is first presented in [Friedman 1998]. The authors have in-

troduced more direct approximations to AdaBoost algorithm and have shown that they

exhibit nearly identical results to boosting while the computation cab be reduced by fac-

tors of 10 to 50. The main difference between Adaboost an Logitboost resides in the

way the weak classifier errors are computed and thereby the way the best weak classi-

fier is selected at each iteration. AdaBoost minimizes an exponential loss function while

LogitBoost minimizes a logistic loss (hence its name).
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2.1.4 Person Detection Approaches

In the previous sections, we have presented the several used features and the differ-

ent classification/matching methods. People detectors can also be categorized into two

major types, one which searches the image for full human bodies by scanning the input

images in different ways, known as full body detection approaches, and the other which

tries to aggregate evidence of existence of a person by modelling and detecting human

body models, known as part based approaches. Some approaches are designed to detect

the full body as well as the body-parts([Felzenszwalb 2010, Wu 2005])

2.1.4.1 Full Body Detection

In full body detection, the input image is scanned for people searching using a win-

dow with an average human aspect ratio. Most of the works in full body detection were

done either from a pedestrian detection context [Gavrila 2004, Gerónimo 2006] or from

a general object detection framework context [Dalal 2005].

In pedestrian detection, the fist promising results were reported by Oren et al. [Oren 1997].

In this approach, Haar-like templates are used to extract features, an SVM classifier is

trained on a selected subset of them. Only significant features for the task, identified

using a template learning stage, are used for training.

Jones et al. in [Jones 2003] improve [Oren 1997] method by incorporating motion

information to detect pedestrians. Feature vectors consist in motion information as well

as intensity information, extracted using Haar-like features. AdaBoost is used to train

a cascade of classifiers. This approach outperforms previous one, but due to the use of

motion information, this approach can be only applicable to static camera.

In [Gerónimo 2006], different extended Haar-like filter sets are combined with Edge

Orientation Histograms (EOH) to model human body. Real AdaBoost is used for classifier

training. The person detection is optimized by restricting the search area at specific

image locations, determined by estimating the current ground plane. Once the ground

plane is estimated, a 3D grid, sampling the road plane is projected on the 2D image

defining candidate regions (subsection 2.1.2.2). The results showed that the proposed

approach improves detection performances, due to two reasons. First the combination of

extended Haar-like features with the Edge Oriented Histograms provides better results

thant the use of Haar-like features only. Second, the ground plane estimation improves

the true pedestrian location hypothesis.

In a similar context, Monteiro et al. [Monteiro 2007] used Haar like features to de-

tect pedestrians with an AdaBoost trained cascade of classifier. In this approach, pedes-

trian detection is done by a sliding window approach, and the multi-scale search is
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performed by and scaling the detector rather than the image.

Other approaches for person detection are performed in a general object detection

context. In [Dalal 2005], HOGs as features and a Linear SVM as a classifier, and a

sliding window approach for candidate generation are used. The major contribution

was the construction of particular effective features, HOGs, and a data-mining approach

during training in which resulting false positives were re-introduced as hard negative

examples. This approach was the winner of the 2006 PASCAL object detection challenge

[Everingham 2009].

Zhu et al. [Zhu 2006b] reformulated [Dalal 2005] detector in cascade of classifiers

method to achieve fast and accurate human detection system. In this approach, variable

block sizes HOG features are used. The selection of the important sets of blocks is per-

formed using AdaBoost. Their final implementation used an integral array representa-

tion to speed-up the detection in comparison to [Dalal 2005] detector while maintaining

similar performance levels.

Laptev [Laptev 2006] used the AdaBoost framework to select prominent features for

object detection. Weighted local histogram of gradient orientations in all rectangular

sub-window of the object are used as features. Weighted fisher discriminant analysis is

used as a weak classifier, and AdaBoost selects the best features out of all histograms

computed on all sub-windows.

2.1.4.2 Body Parts Based Detection Approaches

Body parts based detection approaches are performed in two steps. First, the dif-

ferent parts of the body (head, face, arms, torso, leg) are detected. Then, an inference

process using the detected parts and/or some geometrical constraints is performed to

deduct the presence and position of a person. Performing these two steps require to

model human body parts using visual features and classifiers, and to model the topology

of these body parts.

In [Forsyth 1997] body plans for people and animals detection in images are in-

troduced. Body plans model people as an assembly of cylindrical parts, each cylinder

corresponding to part of a body, where the individual geometry of the parts and the re-

lationship between parts are constrained by the geometry of the skeleton and ligaments.

A human Body Plan is constructed by segmenting human skin using color and texture

criteria, assembling the extended segments, and using a hand built body plan to support

geometric reasoning. In [Mikolajczyk 2004], the authors have reported that this body

detector fails in the presence of clutter and loose clothing.

In [Felzenszwalb 2000], authors propose a parts based detector using pictorial struc-

tures. A pictorial structure is a collection of parts arranged in a deformable configura-
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tion. Each deformable configuration is represented by spring-like connexions between

pairs of parts. The parts are modelled as rectangle with fixed aspect ratio, average color,

and color variance. The authors propose an algorithm for finding the global match of

pictorial structure to an image.

Due to the use of simple color as feature for parts characterization, the proposed

detector in [Felzenszwalb 2000] is not really robust. Ronford et al. [Ronfard 2002] im-

prove the previous method by using better part features and detectors. A hand-labelled

articulated body model with 14 joints and 15 body parts and a feature set consisting

of Gaussian filtered image and its first and second derivatives are used. 15 body-parts

detectors are trained using Support Vector (SVM) Machines and Relevance Vector Ma-

chines (RVM), and are applied for people detection (see figure 2.10).

(a)                                                                                         (b)

Figure 2.10: [Felzenszwalb 2000] body parts based people detector. (a) Articulated body model

with its 14 joints and 15 body parts (the whole body is considered as a part, but not displayed in

the figure for illustration clarity). (b) A hand-labelled training image and its extracted body part

sub-images. Reading vertically from left to right: left upper arm, forearm, hand; left thigh, calf

and foot;head, torso and whole body; right thigh, calf, foot; right upper arm, forearm and hand

In [Mikolajczyk 2004], Humans are modelled as flexible assemblies of parts. These

parts are represented by co-occurrences of local features which capture the spatial lay-

out of the part’s appearance. Features selection and the part detectors are learnt from

training images using AdaBoost. In total 7 different body parts (frontal head, frontal

face, profile head, profile face, frontal upper body, profile upper body, and legs) are used

(see figure 2.11). The geometric relationship between body parts is represented by a

Gaussian and its parameters are learned from the training set. Dominant orientations

based on first and second derivatives over a neighbourhood computed at different scales

and combined, each three neighbouring horizontal and vertical orientations, to make
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feature groups along with location of the feature group in a local coordinate system at-

tached to the object are used as feature sets. AdaBoost is used to build a strong reliable

classier for detection of each part. For a given image, a scale-space pyramid is built and

the described features computed at each scale. The different strong classifiers, learned

using the AdaBoost framework, of each body part are used to detect the presence of their

respective body parts. Given the locations and magnitudes of local maxima provided by

individual detectors, a likelihood model is used to combine the detection results. The

overall system achieved an 87% detection rate with a 1 false positive per 1.8 images on

400 images taken from the MIT Pedestrian Database 2 and took less than 10 seconds on

a 2GHz P4 machine for a 640 × 480 image.

(a)                      (b)                           (c)                        (d)                 (e)

Figure 2.11: [Mikolajczyk 2004] body parts. (a) Frontal head and face (inner frame). (b) Profile

head and face (inner frame). (c) Frontal upper body. (d) Profile upper body. (e) Legs

In [Felzenszwalb 2010], a person detection scheme in a general object detection

framework with discriminatingly trained parts based models is presented. The person

detector is based on mixtures of multi-scale deformable parts models that have the ability

to represent a highly variable object class like the one of a person. Used features consists

in Histograms of Orientation Gradients (HOGs) with analytically reduced dimension. All

model parameter learning was done by constructing a latent SVM problem and training

the latent SVM using a coordinated descent approach (see figure 2.12).

In general body parts detection approaches are better suited during occlusions than

full body approaches as their detection depends not only on the whole body but on the

different parts of the body, head, torso, legs, detected.

In [Yang 2012], a new method for articulated human detection and human pose es-

timation in static images is proposed. It is based on a new representation of deformable

part models. Rather than modelling articulation using a family of warped (rotated and

foreshortened) templates, a mixture of small, non-oriented parts are used. The model

describes a general, flexible mixture model that jointly captures spatial relations be-

tween part locations and co-occurrence relations between part mixtures, augmenting



2.1 People detection 61

(a)             (b)              (c)

Figure 2.12: Detection obtained with a single component person model ([Felzenszwalb 2010]).

The model is defined by: coarse root filter (a), several higher resolution part filters (b) and a

spatial model for the location of each part relative to the root (c). The filters specify weights

for histogram of oriented gradients features. Their visualisation show the positive weights at

different orientations. The visualization of the spatial models reflects the “cost” of placing the

center of a part a different locations relative to the root.

standard pictorial structure models ([Felzenszwalb 2000, Ronfard 2002]) that encode

just spatial relations (see figure 2.13). All parameters, including local appearances, spa-

tial relations, and co-occurrence relations (which encode local rigidity) are learnt with

a structured SVM solver.

2.1.5 Discussion

In this section, we have presented the several existing approaches for people detec-

tion in images. The most used scheme fort people detection consists in two main steps:

classifiers training, and detection task. Both of these steps require to represent image

region information in a significant and useful way. Many features have been used for

this purpose. Some of them are specifically designed for object/people detection, like

HOGs, Haar-like and Region Covariance Descriptors, and are used for other purpose

later, while other features were proposed initially for different tasks, like LBP for texture

analysis and Shape Context for shape matching, and have been adapted or added as

additional information for people detection task.

The selection of more significant features for the classification is performed using
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Figure 2.13: [Yang 2012] flexible mixture-of-parts model (middle) differs from classic ap-

proaches (left) that model articulation by warping a single template to different orientation

and foreshortening states (top right). Small warps are approximated by translating patches con-

nected with a spring (bottom right). For a large warp, a different set of patches and a different

spring are used. The proposed model captures the dependence of local part appearance on

geometry (i.e. elbows indifferent spatial arrangements look different).

several techniques. The most popular techniques in people detection state of the art

relies on machine learning techniques. Two kinds of machine learning stand out from

all other by their popularity in people detection state of the art. Support Vector Machines

and Adaboost regroup the most proposed training-based approaches.

Final boosting classifiers can be single strong classifiers or cascade of partial strong

classifiers. The first type encodes the separation between two classes in a unique struc-

ture containing a large set of weak classifiers (the number of required weak classifiers is

directly proportional to the separability level of the data), and requires the computing

of its whole weak classifiers to provide a classification response for each tested data. It

requires constant evaluation time for each candidate data.

On the opposite, the second type encodes the classes separation in successive partial

strong classifiers and performs in a rejection scheme, stopping classification evaluation

at the first level of cascade which returns a negative response for the tested data. Each

cascade level contains significantly less weak classifiers in comparison to a single struc-

ture strong classifier for the same data separation. This is due to the role of the consid-

ered cascade level which is supposed to separate the class of interest from a subset of

the other class only. The candidate data evaluation time is variable and depends on the

number of evaluated cascade levels before the rejection (if negative data) or acceptance

(if positive data).

Due to the complex separability of human and non-human classes, cascade of classi-

fiers seems to be more adapted and more efficient in term of required processing time as

long as their structures are optimal. They have to ensure a high rate of non-human data

rejection in the first levels, requiring less weak classifiers evaluation than for a single
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strong classifiers. Only small proportion of hard negative data has to require the whole

cascade evaluation.

People detection approaches either use a full body or body parts detection approaches.

An important advantage of the part based approach is its better robustness to partial

occlusions than the standard approach considering the whole object, due to its object

parts segmentation and their independent detection. Nevertheless, part detection meth-

ods present two main issues in comparison with full body based approaches, depending

on the way they are performed and the resolution of images in which the detection is

performed.

First, for the same type of classifiers trained on the same set of features, but one

on full body and the other one on body parts, it is clear that body part approaches

require more processing time. A full body detector will perform the classifier once on

a candidate region while part based detectors require as many classifier applying as

considered number of parts. This processing time is more important when no topological

constraints are applied to restrict specific body part searching (topological constraints

are generally used after detection to infer the existence of a person or not).

Second, according to the defined body part sizes, and the resolution of images, some

parts are hard to detect if their corresponding regions in image are too small or have

low resolution. We have seen than some proposed approaches ([Yang 2012]) use a large

number of very small body parts to ensure a better flexibility of the built model. It may

cause miss-detection of some parts and increase processing time. Most of proposed body

part based approaches using small part detection, have been tested and evaluated on

images in which, people have sufficient image sizes and resolution. This constrains can

not be ensured in all situations. The approaches which were evaluated on low resolution

images use larger and fewer parts segmentation, loosing some of the effectiveness of

using more and smaller parts (for example, [Bak 2010] on iLids dataset, with 5 parts:

head, torso, arms and legs).

From these observations, we can deduct that feature selection as well as detection

strategy (full body VS. body parts) are dependent on the training data parameters (im-

ages resolutions and quality) and final addressed task requirements (real-time constraint

for live processing VS. off-line processing).

Due to the addressed problem context, which is video surveillance, and its constraints

(low resolution images and small person sizes most of the time), we have decided to

focus our work on full body detection approaches. We have used cascade of classifiers

structure to reduce decision time (which is a critical point for live surveillance systems)

by proposing an efficient approach to optimize the structure of the cascade and to reduce

greatly training and detection times.
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2.2 Mono-camera Object Tracking

Object tracking is a critical task for scene event understanding. Detecting objects

of interest on independent images allows to know that these objects are present in the

scene, but does not help to understand what they are doing. In computer vision systems,

all kinds of event and behaviour detections require temporal information as long as

an event or a behaviour has a starting and ending time (a duration) and consists in

successive states. To reason at the level of scene events, it is necessary for a computer

vision system to be able to continuously associate the same identifier to the detected

object of interest.

The aim of an object tracking algorithm is to ensure this “object of interest”-“unique

identifier” association as long as this object is present in the observed scene, and thereby,

provide the full trajectory of the object in the scene. This is done by locating its position

in each video frame.

Object modelling plays a crucial role in visual tracking because it helps to charac-

terize the object of interest. The modelling is performed in a different sense than for

people detection purpose. For people detection the model is a class model. It has to be

as generic as possible to cover all possible variations between persons, size and like pose

differences, clothing types, etc. while being discriminative against other object classes.

In object tracking task, the model is an individual model. It means that an object model

has to be full-discriminative against both other type objects as well the ones of the same

type. The way in which object modeling is performed can be considered as a first criteria

for object tracking approach classification.

Once a model of an object of interest is computed, it is used to track this object by

searching it through out the video frames. The model searching/matching over time

methods constitute a second criteria for object tracking method classification.

We first present the object modelling methods for tracking. Then, we present object

model searching over time methods.

2.2.1 Object Modelling

For object tracking purpose, a wide variety of object modelling approaches have been

proposed, depending on the amount and the type of information which are extracted

from the object. At the low level, the object can be represented simply by intensity

value of its pixels [Pahlavan 1992]. At the middle level it can be represented by some

features used independently like, color [Pérez 2002, Comaniciu 2000] or feature points
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[Yao 1995, Tissainayagam 2003]. At the highest level it can be represented by a global

feature vector which can be boosted from many features to perform a better represen-

tation of the object, like [Chau 2011, Zhou 2006] (distance, area, shape ratio and color

histogram) or [Serby 2004] (interest points, straight and curved edges, textured regions

and homogeneous regions).

In the following paragraphs, some object modelling features are presented.

2.2.1.1 Color Modelling:

Color is one of most fundamental feature to describe an object, due to its strong

descriptive power. RGB color space is usually used to represent images; however, the

RGB color model is perceptually not a uniform color model. Some other color spaces are

more adapted for intra-color distance computation. HSV (Hue, Saturation, Value) and

HSL (Hue, Saturation, Lightness) is an approximately uniform color spaces and used

intensively in literature.

The color information of object can be modeled in several ways. we can cite:

� Color histograms: Color histogram is the most used color encoding method for

object modelling [Pérez 2002, Comaniciu 2000, Qian 2007]. It is a representa-

tion of the distribution of colors in an image, i.e. it represents the number of

pixels that have colors in each of a fixed list of color ranges (bins). It provide

an interesting information about the frequency of each color in the object im-

age, but present the inconvenient to do not encode the spacial distribution of the

colors. To deal with this issue, some other color encoding methods, which keep

color spatial repartition information, have been proposed. We can cite color spa-

tiograms [Birchfield 2005] and Maximally Stable Colour Regions for Recognition

and Matching [Forssén 2007].

� Color spatiogram (for spatial histogram): Spatiograms capture both occur-

rences and spatial repartition of colors. In [Birchfield 2005], a second-order spa-

tiogram of an image I is defined as:

h
(2)
I (b) = 〈nb, µb, Σb〉 b = 1,. . . ,B

where (2) is related to the second order of spatiogram (the proposed spatiogram

can be generalized to higher orders), B is the number of used bins, nb is the num-

ber of pixels whose value is the one of the bth bin, and µb and Σb are the mean

vector and covariance matrices, respectively, of the coordinates of those pixels.

A comparison between image generation from color histograms and from color

spatiograms is provided by authors in figure 2.14.
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Figure 2.14: Three different poses of a person (top), with images generated from the histogram

(middle) and spatiogram (bottom). The spatiogram captures spatial relationships among the

colors, whereas the histogram discards all spatial information ([Birchfield 2005]).

� Maximally Stable Colour Regions (MSCR): In [Forssén 2007], extends the Max-

imally Stable Extremal Regions (MSER) [Matas 2002] method to color images.

Color regions are iteratively clustered until stable color regions are formed, using

predefined thresholds. This method provide a feature vector containing: the color

region area, the coordinates of the is color region centroid, the first and the sec-

ond order moments of the color regions according to the two axis (X and Y). An

example MSCR extraction from a color image is provided in figure 2.15.

� The Dominant Color Descriptor allows specification of a small number of dom-

inant color values as well as their statistical properties like distribution and vari-

ance. Its purpose is to provide an effective, compact and intuitive representation

of colors present in a region or image.

� The Scalable Color Descriptor is derived from a color histogram defined in the

Hue-Saturation-Value (HSV) color space with fixed color space quantization. It

uses a Haar transform coefficient encoding, allowing scalable representation of

description, as well as complexity scalability of feature extraction and matching

procedures.

� The Color Structure Descriptor: is also based on color histograms, but aims at

identifying localized color distributions using a small structuring window. To guar-

antee interoperability, the color structure descriptor is bound to the Hue-Min-Max-

Difference (HMMD) color space.
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� The Color Layout Descriptor: captures the spatial layout of the dominant colors

on a grid superimposed on a region or image. Representation is based on coeffi-

cients of the Discrete Cosine Transform (DCT). This is a very compact descriptor

being highly efficient in fast browsing and search applications. It can be applied to

still images as well as to video segments.

(a)                            (b)

Figure 2.15: Example of Maximally Stable Color Regions (MSCR) extraction using

[Birchfield 2005] method. (a) The original image. (b) An elliptical approximation of the ex-

tracted regions

2.2.1.2 Shape Modelling:

The shape features are used as a powerful cue to track object in video frame se-

quences. Several representation are used (see figure 2.16):

� Point Representation: In visual object tracking, the trivial shape is the point. An

object is represented with a pixel location representing either some statistics on

the object shape, such as the centroid and , or a particular characteristic of interest

like the centred contact point with the floor. Many approaches use single or multi-

ple points to represent tracked objects. For instance, it has been used for in vehicle

tracking [Kanhere 2008] or extended objects, such as ships or a convoy of vehicles

moving in urban environment tracking [Angelova 2008] and in [Gustafsson 2002]

for automotive and airborne tracking applications. In [Chen 2007a], A point repre-

sentation is used to represent the variance of pixels in the object of interest shape.

Points are also used in the calculation of optical flow: due to the large number of

vectors to estimate, only the point representation can be afforded [Kragik 2000].

� Primitive geometric shapes: The point representation of an object is a simple

model. However, it does not grasp the entire dynamics of the object. To rem-
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edy this gap, more advanced parametric shapes are necessary. The most popular

parametric shapes are primitive geometric shape (rectangle, square, ellipse and

circle). The rectangle representation is frequently used for tracked objects rep-

resentation like for vehicles tracking [Melo 2006, Chen 2003] or people tracking

[Yang 2005]. An adaptive square shape has been used for object representation

in [Bradski 1998]. The ellipse offers the advantage of “rounding” the edges com-

pared to the rectangle when the object does not have sharp edges [Chang 2005].

In [Comaniciu 2000, Comaniciu 2003], the author used an elliptical shapes to rep-

resent the moving object.

� Articulated shape models: Articulated shapes are employed for tracking if different

portions of the object of interest are to be described individually ( e.g. legs, arms

and head). This kind of representation is much suitable for a human body, which is

an articulated object with head, hands, legs etc. These body parts should be linked

by a kinematic model. The parts can be represented by any primitive geometric

shape such as rectangles, circles and ellipses. In [Ramanan 2003], an articulated

shape model, describing the body configuration and disambiguating overlapping

tracks, is developed.

� Skeletal models: In this representation a skeleton of object is extracted to model

both articulated and rigid objects. A skeleton consists in as a set of articulations

within an object that describes the dependencies and defines constraints between

the representations of the parts. In [Ali 2001], the skeletal model is used for auto-

matic segmentation and recognition of continuous human activity.

� Object silhouette: The silhouette,also called “Blob”, is a dense, non-disjoint, bi-

nary mask that represents an object of interest. Blobs are of particular impor-

tance for pixel-wise processing. For instance, background subtraction provides

blobs identifying the foreground or the moving objects in a scene [Wren 1997],

[Stauffer 1999, Elgammal 2002].

� Contour: In this representation the boundary of an object is defined as a con-

tour. A non-rigid object shape can be better represented by these representations

[Yilmaz 2004].

2.2.1.3 Texture Modelling:

Texture is another important information for object characterization. It provides a

useful information about the spatial arrangement of color or intensities in an image or
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(a)                         (b)                         (c)                         (d)                        (e)

(a)                         (b)                         (c)                          (d) 

Figure 2.16: Object representations. (a) Centroid, (b) multiple points, (c) rectangular patch, (d)

elliptical patch, (e) part-based multiple patches, (f) object skeleton, (g) complete object contour,

(h) control points on object contour, (i) object silhouette. (source [Yilmaz 2006])

selected region of an image. Texture is concerned with representing regular patterns in

an image [Forsyth 2002]. The texture representations can be performed in several ways,

providing different features. These features may differ in the described region sizes, the

main extracted information or in the level of robustness and invariance to rotations

and illumination changes. Upon the several existing texture features, we can cite Local

Binary Pattern (LBP) and Haar-like features (please refer to sections 2.1.1.1 and 2.1.1.4

for more details concerning this two texture features), Co-occurrence Matrices, Edges

and Gradient-based local descriptors.

� Co-occurrence Matrices: also referred to as GLCM (Gray-Level Co-occurrence

Matrices) capture numerical features of a texture using spatial relations of similar

gray tones. Numerical features computed from the co-occurrence matrix can be

used to represent, compare, and classify textures. The following are a subset of

standard features derivable from a normalized co-occurrence matrix:

Angular 2nd Moment =
∑

i

∑
j p[i, j]

2

Contrast =
∑Ng−1

n=0 n2{
∑Ng

i=1

∑Ng
j=1 p[i, j]}, where |i − j| = n

Correlation =
∑Ng

i=1

∑Ng
j=1(ij)p[i,j]−µxµy

σxσy
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Entropy = −
∑

i

∑
j p[i, j]log(p[i, j])

where p[i, j] is the [i, j]th entry in a gray-tone spatial dependence matrix, and Ng is

the number of distinct gray-levels in the quantized image.

For object tracking purpose, Chen et al. [Chen 2009] construct Kernel Co-occurrence

Matrices (KCMs) to represent the target model and the target candidates. Those

matrices are employed as the tracking cues in mean shift framework. The angle

relation between pixel-pairs is redefined to depict the asymmetric characteristic

of the objects. The KCMs of the target model and the candidates are normalized

to a same integer to increase calculation accuracy. The computation of each pixel

weight is modified to improve operation speed. The tracking results of several

real world sequences with dark illumination or lighting variance show that the

proposed algorithm can track the target effectively.

� Edges: Edge detection aims to identify image pixels with brightness discontinu-

ities, i.e. pixels at which the image brightness changes sharply. The points at which

image brightness changes sharply are typically organized into a set of curved line

segments named edges.

Edge detection is performed by applying specific operators on image. Many edge

detection operators have been proposed. We can cite Sobel Operator, Robert́s cross

operator, Laplacian of Gaussian, and Canny edge detection algorithm which is

known to many as the optimal edge detector (see figure 2.17). The main difference

between the operators resides is they handle different edge orientations.

Edges have been used for people tracking in some approaches. In [Murshed 2011],

Canny edge map is used to characterize moving object region. Curvature-based

features are used for moving edge registration due to its transformation invari-

ance nature. Each individual edge segment is tracked using a Kalman filter. Edge

segments are clustered by using a weighted mean shift algorithm. The final mov-

ing object tracking is performed using a group motion tracker, applied on each

cluster. Due to the robustness of edges against illumination changes and partial

occlusions, the proposed tracked performs efficiently.

In [Zhu 2006a], an edge-based tracking algorithm is proposed. The feature points

are extracted by efficiently utilizing the image edges in the object region. Then the

parameter vector of the object’s motion model is estimated based on minimizing

the sum-of-squared differences between the reference feature points in the refer-

ence frame and the observed feature points in the tracking sequence frame. The
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(a)                                                (b)

Figure 2.17: Comparison between edge detectors. (a) A test image. (b) Results of edge detection

on Figure 7. Canny had the best results (source [Maini 2009]).

experiments show that the edge-based tracking algorithm proposed by us can track

object efficiently under uniform and varying illumination conditions.

� Gradient-based local descriptors: Many gradient-based local descriptors have

been proposed to characterize the textures of an image region. SIFT (Scale In-

variant Feature Transform) [Lowe 2004] (see 5.2.1 section for more details) and

its derivative (PCA-SIFT, GLOH, DAISY, etc.) and HOG (Histograms of Oriented

Gradients) [Dalal 2005] (see section 2.1.1.3) are the most known and the most

used for tracking.

SIFT and HOG descriptors perform with similar principle in the sense that both

take the raw information from the magnitudes and orientations of pixel gradients

in the described region of image to build histograms. The main difference consists

in:

– The way the raw information (gradient magnitudes and orientations) is pro-

cessed: different weights for pixel contributions, according to their position

with respect to the centre of considerer region, are used for SIFT descriptor

computing while similar weight for all pixel contributions are used in a HOG

cell.

– The way the information is encoded: gradient histograms are extracted from
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independent pixel regions for SIFT, requiring and independent normalization

to ensure robustness against illumination changes, while HOG use overlapped

block of pixels for computation, which implicitly ensure the local invariance

to illumination changes

– The robustness to 2D rotations: SIFT descriptor is invariant to 2D rotations

because it is computed using relative gradient orientations with respect to the

main gradients orientation in the considered region. HOG descriptor does not

integrate a 2D rotation invariance and is computed using absolute gradients

orientations in the image region.

Note that these two descriptors were initially proposed to perform using gray scale

images. Some variants SIFT descriptor integrating color information have been

proposed, like in [Verma 2011] and [Abdel-Hakim 2006] using RGB color space,

and [Bosch 2006] where HSV color space has been used.

These two descriptors were used for object tracking in a large amount of ap-

proaches.

In [Zhou 009], a SIFT based mean shift algorithm is presented for object track-

ing. SIFT features are used to correspond the region of interests across frames.

Meanwhile, mean shift is applied to conduct similarity search via color histograms.

The probability distributions from these two measurements are evaluated in an

expectation-maximization scheme so as to achieve maximum likelihood estima-

tion of similar regions. This mutual support mechanism provides better tracking

performance if one of the two measurements becomes unstable.

In [Fazli 2009], A color SIFT based particle filter algorithm is proposed for ob-

ject tracking. It provides interesting tracking performances in partial occlusions,

rotation and scale variations conditions.

2.2.1.4 Motion Modelling:

Motion detection is a critical part of the human vision system [Sonka 2007]. Optical

flow is the most widespread depiction of motion. Optical flow represents motion as a

displacement vectors which defines the movement of each pixel in a region between sub-

sequent frames [Horn 1981]. Horn and Schunk [Horn 1981] computed displacement

vectors using brightness constraint, which assumes brightness constancy of correspond-

ing pixels in consecutive frames. Lucas and Kanade [Lucas 1981] proposed a method

that computes optical flow more robustly over multiple scales using a pyramid scheme.
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Optical flow is used for object tracking in some approaches. In [Shin 2005], the pro-

posed tracking algorithm performs in three steps: First, the object of interest is localized

using optical flow detection. Then prediction and correction of the object’s position is

performed using spatio-temporal information of the optical flow computed on before-

hand detected feature points. Finally restoration of occlusion using an introduced non-

prior training (NPT) active feature model (AFM) framework. The proposed algorithm

can track both rigid and deformable objects, and is robust against the object’s sudden

motion because both a feature point and the corresponding motion direction are tracked

at the same time. The authors claim that the proposed AFM enables stable tracking of

occluded objects with maximum 60% occlusion.

In [Chen 2011], object contours are tracked with optical flow. This algorithm achieves

accurate, rapid and stable object tracking on the evaluated situation.

Optical flow is an interesting way to model moving object as long as the addressed

situations are not complex, like the conditions in which [Shin 2005] and [Chen 2011]

were evaluated. Single moving object in the scene or collusions resulting from uniform

object movements can be well handled. In more complex scenes with multiple moving

objects with non-uniform movements, this technique may fail.

2.2.2 Object Tracking Techniques

Once an object of interest is modelled, the next step consists in its localization in

each frame of the video sequence. Tracking methods can be divided into two general

types: deterministic and probabilistic methods. Deterministic methods look for the local

maxima of a similarity measure between the object model and the considered candidate

regions of current image while probabilistic methods aim at modelling object movement

and to perform the object localisation through successive state prediction/update steps.

2.2.2.1 Deterministic Methods

A deterministic systems is a system in which no randomness is involved in the de-

velopment of the future states. Deterministic tracking methods always provide the same

tracking results on the same input data (video sequences and parameters). In this kind of

approaches, the object localization may be performed either by an exhaustive search of

the object model on the whole image (least-square tracking), by an iterative neighbour

exploration (Mean-shift tracking), by point matching, or by many other methods.

� Least-square tracking: Least-square tracking consists in an exhaustive search of

the tracked object model in the whole image. A Similarity measure between the ob-

ject model and candidate models extracted from all image positions is computed.
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The position of the candidate model which provides the best similarity measure is

considered as the new localisation of the tracked object.

Least-square tracking methods, applied on the whole image, are the most effec-

tive tracking methods in terms of correct localisation of tracked objects on video

sequences since they explore all the possibilities space. However, these methods

are also the most time consuming among all tracking methods. The required pro-

cessing time is unacceptable for most of applications. The evaluation of the model

matching in all possible positions requires many computations, especially if the

model building and the similarity measure computing are complexes to perform

(multi-features model for example). To avoid this critical issue, two main heuristic

solutions can be used.

The first one consists in the reduction of the possibility space by performing the

exhaustive search in a “local” region instead of the whole image. This really de-

creases the computation time in relative proportion to the region reduction, lead-

ing to another difficulty: “local” is an ambiguous term. It is hard to define an

optimal local region for exhaustive search without any a priori knowledge on the

object motion. Bad local region localization automatically induces a tracking fail-

ure if the correct matching region is not included.

The second heuristic solution consists in a progressive search. Instead of testing

the whole possibility space, a uniform browsing step is used to evaluate a subset

of positions. For example, a searching process with 2 pixels step in both directions

divide the number of the tested possibilities by 4, which is not a negligible factor.

The more important the step is, the lesser the number of matching tests are. How-

ever, this solution, as the previous one, presents an important issue: how to choose

the optimal browsing step? Object feature sensitivity to shifting may greatly vary.

Some features like color histograms are less sensitive to small shifting (due to the

contained information nature, i.e. color frequency and non-spatial information)

than other features like Region Covariance Descriptors built with spatial infor-

mation. For more sensitive feature-based object models, the maximum similarity

measure may not correspond to the real object but to another image region, if the

browsing process does not test the real object region.

� Mean-shift tracking: Mean-shift tracking assumes that the object locations in suc-

cessive images are close to each other. Thus, the searching process in the current

image starts from the same location as the object location in the previous image

and is performed iteratively. At each iteration, the direct neighbourhood of the

current mean-shift window location is tested. A similarity measure is performed
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between the tracked object model, and those of candidate region located in neigh-

bouring positions. The location with the best similarity value is taken as the new

position of the mean-shift window for next iteration. The process is repeated until

it stabilizes, i.e. all the similarity values of all neighbouring positions are less than

the one for the current mean-shift window position. Mean shift-tracking seems to

be an efficient approach, but it presents two main issues.

First, the assumption of small object displacements in successive frames can not

be ensured. If the mean shift window is not correctly initialized (smaller than the

object displacement), the tracking will probably fail.

Second, the convergence time is very variable and depends mainly on the object

displacement magnitude and on the type and distribution of the features on which

the object model has been built.

Many deterministic approaches have been proposed in the state of the art.

In [Chen 2009], moving object models are constructed using Kernel Co-occurrence

Matrices (KCMs). Then those matrices are employed as the tracking cues in a mean

shift framework. In [Birchfield 2005], proposed spatiograms are used as object model

for tracking. They are tracked by a proposed kernel-based tracker deriving from mean

shift method. Another mean-shift based approach is proposed in [Comaniciu 2000] to

track non-rigid objects. The dissimilarity between the target model (its color distribu-

tion) and the target candidates is expressed by a metric derived from the Bhattacharyya

coefficient. In [Zhou 2006], a Mean-shift method is used to track SIFT [Lowe 2004]

features and color histograms, which are to model the tracked objects. Finally, in

[Thayananthan 2003], a derived mean-shift method is applied to track human hand

using its shape. The hand is modelled with Shape Context feature [Belongie 2002]

(see section 2.1.1.5) and the used similarity measure is the Chamfer Matching method

[Barrow 1977] (see section 2.1.3.1)

Previously mentioned issues for mean-shift tracking methods can affect the tracking

performance since they were not handled in this proposed approach.

In [Zhu 2006a], a multi-feature points correspondences approaches is proposed. Fea-

ture points are extracted on the image edges in the object region. Then the parameter

vector of the object’s motion model is estimated based on minimizing the sum-of-squared

differences between the reference feature points in the reference frame and the observed

feature points in the tracking sequence frame. The experiments show that the edge-

based tracking algorithm proposed by us can track object efficiently under uniform and

varying illumination conditions.
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In [Bilinski 2009], another point matching based method is proposed. FAST points

detector [Rosten 2006] is applied to detect points of interest on moving objects, and

this on each frame. Each detected point is associated to a HOG descriptor [Dalal 2005]

computed around it. The tracking is then performed by a direct point matching between

object of previous frame with those of the current frame, by computing their HOG de-

scriptors similarity. The final object movement is determined using the trajectories of all

matched points of interest.

The point matching based methods provide good tracking performances, but present

the main issue of high computational time consuming. These approaches requites to

repeat two non-basic tasks which are interest point detection, and descriptors compu-

tation. In addition to that, the matching process consist in a kind of Cartesian product

matching, i.e. each interest point from the object to track is compared to all interest

points of the candidate object by their associated descriptor similarities. It is a slow

task. This last issue can be partially handled by using some localisation constrains. For

example, points belonging to the upper part of the object to track will be compared with

those of the upper part of the candidate object only, and not with all the points. This

solution decrease matching time but can cause matching fail in case of deformable or

partially occluded objects.

2.2.2.2 Probabilistic Methods

They consist in a recursive estimation of a hidden state of a moving object using

noisy observations. Considering that the hidden state evolves over the time, it is neces-

sary to introduce an a priori model of displacement for the mobile, and to consider the

estimation problem in a Bayesian framework.

According to the types of motion and noise, different kinds of Bayesian filters are

defined. Two main Bayesian filters are used for object tracking. In the particular case

of Gaussian linear systems, the filtering problem has an explicit solution, called Kalman

Filter. In the case of non-linear systems with noise which is not necessary a Gaussian

one, or in the general case of hidden Markonv models, some very effective Monte Carlo

methods have appeared under the name of Particle Filters. Intuitively, each particle rep-

resents a possible state, explores the state space following the a priori motion model and

is duplicated or eliminated at the next generation depending on its coherency with the

current observations, quantified by likelihood function. This mutation/selection mecha-

nism has the effect of automatically concentrating the particles in the regions of interest

inside the state space.
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� The Kalman Filter

As it was indicated before, Kalman filter allows to estimate the parameters of a

system which evolves over the time, using some noisy measurements.

The Kalman filter is performed in two successive steps:

– Prediction: The first step is the prediction of the estimation according to the

system model. To perform it, the Kalman filter takes the previous estimation

of the parameters and the error, and uses them to predict the new parameters

and the error depending on the system model.

X−
t = DX+

t−1 +W (2.2)

P−
t = DP+

t−1D
T +Q (2.3)

where:

X−
t and X+

t−1 are respectively the predicted and corrected states at time t and

t-1; P−
t and P+

t−1 are respectively the predicted and corrected covariances at

time t and t-1; D is the state transition matrix which defines the relation

between the state variables at time t and t-1; W is a noise matrix and Q is its

covariance.

– Correction: The second step updates this prediction thanks to the new mea-

surements Zt. These measure (which are noisy) allow to obtain an estimation

of the parameters and the error from the performed prediction. If the model

contains errors, this update step allows to correct them.

Kt = P−
t M

T [MP−
t M

T + Rt]
−1 (2.4)

X+
t = X−

t + Kt[Zt−MX−
t ] (2.5)

P+
t = P−

t − KtMP−
t (2.6)

where M is the measurement prediction matrix, K is the Kalman gain and R

is the covariance matrix of measurements noise.

Kalman filter has several interesting aspects. The power of this filter lies in its

ability to predict the parameters and to correct errors, not only the sensor ones but

also those of the model itself.
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In fact, to apply a Kalman filter to estimate the parameters of a given system, it

is necessary to provide a linear model before. Some variants of the Kalman filter,

to deal with non-linear models, have been proposed, for example the Extended

Kalman Filter which is discussed below.

In a classical estimation method, like least squares method, a simple error in the

system model inevitably leads to an error in the estimation. The advantage of

Kalman filter is to integrate a term of imprecision on the model itself, allowing it

to correct the estimation instead of model errors (Of course, the model error has

to be reasonable).

Another advantage of the Kalman filter is its ability to determine the mean error

of its estimation. In fact, Kalman filter provides a vector of estimated parameters,

but also the error covariance matrix. This matrix informs us about the precision

of the estimation. Another interesting information is that the convergence of this

error is guaranteed (in case of linear dynamics).

However, this filter is not necessarily the tool to apply in all cases. In fact, as we

have seen, we need to model the system precisely to design an efficient filter. The

problem is that some systems are hard to model and are not linear.

In the case where the model is a rough approximation, the filter will not be efficient

enough to correct the error, which will converge quickly.

To avoid this problem of linear model of the system, the Extended Kalman filter

was developed. It allows to deal with non-linear models. However, this method

has some defects. First, the error covariance will not necessary converge (unlike

the standard Kalman filter for linear models). The second defect is the high com-

puting cost. In fact, some costly new matrices appear in the filtering computation

(matrices of partial derivatives of the state equations and measurement of the sys-

tem model).

Another important limitation of this method is that the Kalman filter allows us to

consider only a Gaussian noise model. Noise can generally be modeled as Gaus-

sian, but in some cases, other types of noise can occur. This restriction limits the

use of the Kalman filter.

The Kalman filter is an interesting method of estimation, but can only be used

when it is possible to accurately model the system and when the noise is a Gaussian

one. When it is impossible to find a correct model for the system, it is better to

refer to other methods such as Monte Carlo method, called Particle Filter, which is

a statistical method, but it requires significant computing power.
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� The Particle Filter

Like Kalman filter, Particle filter allows to estimate the parameters of systems which

evolve linearly over the time, but also non-linearly, using some noisy measures,

even if this noise in not a Gaussian one. It is performed in prediction and correction

steps too.

Particle filtering is a global method based on the exploration of the state space

of the problem using a set of particles. These particles are distributed according

to the conditional probability of the process to be estimated constrained by the

observations provided by the sensors.

This method does not require the explicit resolution of the equations of the prob-

lem, so it is applicable regardless of the complexity of these equations, especially

in terms of non-linear and non-Gaussian nature.

In its basic version, a particle filter consists of N particles which evolve in parallel.

Each particle evolves according to the measurements provided by the sensors at

the sampling time “t” and simulates a possible trajectory, ie. the evolution of a

process respecting the same equations than the process to estimate. Each particle

provides two information as output:

– A state vector with the same structure than the state vector of the process to

estimate.

– A scalar value called weight, representative of the probability that this vector

is the one of the process to be estimated.

Sequential importance sampling (SIS) is the most basic method used for particle

weighting in Particle filters. The weight of each particle is continuously updated

over the time. For a given particle, its weight at current time depends on its previ-

ous weight, its previous and current state estimations, and the current observation

measurements:

wi
t ∼ f(wi

t−1, x
i
t−1, x

i
t, zt) (2.7)

where wi
t and wi

t−1 are respectively the weights of a given particle Pi at time t and

t-1; xit−1 and xit the estimated state of this particle at time t and t-1 respectively,

and zt is the observation measurements at time t.

This method present the important issue of information degeneration. In fact,

only few particles may have a significant weight at each iteration. The particles
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corresponding to unlikely hypothesis may continuously degenerate, causing pos-

sible divergence of the particle filter, or useless processing of very low weighted

particles.

One common way to deal with this degeneracy is resampling. Sampling Impor-

tance Resampling (SIR) method consists in removing less significant particles (with

the lowest weights) while creating new particles at the same position than the most

significant particles (with the highest weights). The number of created particles

at the same position of an important particle is proportional to the weight of this

important particle. The last step consist in affecting the same normalized weight

1/N to all the particles (N is the number of considered particles) (see figure 2.18).

In this method, the importance of a given hypothesis at the end of an iteration is

not represented by its associated particle’s weight, but by the number of particles

which are related to it. The most important hypothesis at a given iteration will be

the basis of more new hypothesis in the next iteration, and information degeneracy

is avoided.

For a high enough number of particles, it is possible to demonstrate that the set of

all the states of the weighted particles is representative of the conditional proba-

bility law of the state vector of the process.

This procedure allows to concentrate the exploratory ability of the network of

particles in areas where probability is maximum, thus increasing the precision of

the estimate.

The most important limitation of Particle filtering method is its high computation

time in comparison with other probabilistic methods (Kalman filter). It is directly

proportional to the number of hypothesis to maintain and to process in parallel and

to the hypothesis verification (particle weighting) complexity (complex features

comparison for example).

For object tracking in video sequences, probabilistic tracking methods have been

widely used. In [Elgammal 2002, Comaniciu 2003, Melo 2006, Murshed 2011], a Kalman

filter is used to track the several proposed models of object of interest. In [Pérez 2002,

Serby 2004, Yang 2005, Fazli 2009], the authors used particles filters for their object

tracking approaches.

A summary of all cited state of the art approaches for object tracking, according to

their proposed models and their tracking techniques is displayed in Table 2.1;
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Figure 2.18: Sampling Importance Resampling (SIR) process

2.2.3 Discussion

Due to its importance for scene understanding and useful event information extrac-

tion, object tracking has always highly attracted attention of researchers. Many works

have been done to deal with the most important challenges (object occlusions, crowded

scenes, etc.).

The object modelling is the first important task to be performed. The models have

to be highly discriminative to allow a more reliable matching between the same object

images over time while avoiding matching errors with a third object. It has to be robust

to partial occlusions, illumination changes, and rotations.

Many feature extraction techniques have been proposed in the state of the art. All

these features are extracted from one of the main image information families which are

texture, color, shape and motion. Several encoding ways have been proposed for each

information type, focusing more on some aspect rather than others. For example, color

histograms encode the occurrence frequency of each color value without considering the

spacial information of the color distribution while The Color Layout Descriptor captures

the spatial layout of dominant colors only.

Some state of the art object models are built using a unique feature type while others

are built using combination of different features (see Table 2.1). These second kinds of

models generally use a concatenation of feature descriptors to provide the final model

feature.

Using several concatenated features to build the final object model is an efficient way

to improve the discriminative power and the robustness of the object of interest, but it

has a cost in term of processing time. Features extraction as well as similarity measure
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Object Modelling

Texture Color Shape Motion

[Angelova 2008]

[Gustafsson 2002]

[Melo 2006]

[Comaniciu 2003]

Probabilistic [Murshed 2011] [Pérez 2002] [Stauffer 1999]

Tracking [Mörwald 2009] [Qian 2007] [Wren 1997]

[Ramanan 2003]

[Chang 2005]

[Yang 2005]

[Chau 2011]

[Elgammal 2002]

[Fazli 2009]

[Serby 2004]

[Zhu 2006a] [Birchfield 2005]

Deterministic [Chen 2009]
[Comaniciu 2000] [Thayananthan 2003]

[Shin 2005]

Tracking [Bilinski 2009]

[Zhou 009]

Table 2.1: Summary of object tracking approaches, organized by the model information and the

tracking technique.

take more time than the computation of a single feature model. In addition, the simple

concatenation of feature descriptors provide a decorrelated inter-feature information,

which is not efficient since the information is extracted anyway.

This last defect can be handled by using other representation that a simple concate-

nation. Region Covariance descriptors are a good solution since many image features

can be encoded in a single structure which captures not only each feature variation but

also correlation between all features. The main disadvantage of this descriptor is its high

computation and comparing processing time. A detailed presentation of this descriptor

is provided in the chapter 4.

Object modelling is also very dependent on the video properties (color, resolution,

compression (noise)) and context (occlusions, illuminations changes, crowded scenes,

restricted trajectories, et.). State of the art proposed methods perform well in some

conditions while they fail in others.
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For all these reasons, and due to the addressed context, which is video surveillance,

and its constraints (real-time processing, small objects in large view images, both rigid

and non-rigid object tracking, compressed and medium resolution images), we have

decided to model our tracked objects using a single feature type which is SIFT feature.

This choice is justified by many reasons. First, the real-time processing requirement is

better ensured by single feature model. Second, the necessity to have a non-rigid model

and to handle partial occlusions are ensured by SIFT point representation. Finally, the

robustness of the model to illumination changes, provided by the illumination invariance

of SIFT features.

The weakness of single feature models are compensated by our proposed SIFT fea-

ture detection, selection, and tracking methods. The other video properties which usu-

ally affect tracking performances, like noise (due to image compression) and small object

size in images (due to large view of video surveillance camera) are also handled in our

proposed method which is detailed in chapter 5.

From tracking technique point of view, the state of the art approaches are divided into

deterministic and probabilistic methods. Exhaustive research tracking method, which

belongs to deterministic techniques, is the most effective method due to the fact that

all the possibilities are evaluated. However, it is not applicable for many applications,

especially video surveillance, due to the high processing time it requires. Other deter-

ministic methods such as Mean-shift or direct point matching are interesting methods

and provide good tracking results as long as the main conditions are reached (initial-

ization of mean-shift, reduction of point matching possibilities), otherwise, tracking can

fail or become very slow.

Probabilistic tracking methods are widely used in object tracking approaches in the

state of the art. In opposite to deterministic approaches, probabilistic approaches inte-

grate some randomness in their processing, generally assigned to measurement uncer-

tainty or noise modelling. The same input data may provide different results from a

processing to another one.

The main common principle of these methods is to model object motion and to use

this model to localize tracked object in two successive steps which are the prediction and

the correction (update) one.

The two main used probabilistic tracking methods are Kalman filters and Particle

filters. While the Kalman filter tracks an object of interest in a single hypothesis mode,

Particle filters use a set of particles to perform tracking. Each particle corresponds to

a hypothesis of the system state (mainly tracked object localisation). Particle filters are

more interesting since they allow to explore a large space of hypotheses in a parallel way.

This advantage constitutes at the same time the most important inconvenient of Particle
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filters. In fact, processing a large set of particles, especially during the weighting step

which generally requires feature similarity measure computation, can be unmanageable

for real-time tracking. However, by using a small but sufficient set of particle, the real-

time processing becomes possible.

Due to its previously cited advantages, we have decided to use a particle filtering

method for our object tracking. The selected parameters allow our tracking to be per-

formed in real-time.

2.3 People Re-identification

People re-identification in camera network has become a critical task in these last

years. With the increase in the number of deployed cameras in restricted and large

areas, it has become important to have a global understanding of what is happening in

a given location covered by many cameras. Data coming from several cameras should

no longer be treated as independent information but rather as global information. Some

behaviours or events of interest can only be inferred from a long term tracking of the

person of the interest across the camera network (for instance, a person who leaves

his/her luggage in an airport and stays more or less near it, is not a suspicious person.

On the other hand, if this person goes away from his/her luggage and leaves the airport

observed by several cameras, this behaviour should attract attention). Being able to

track or find a given person in a camera network on live stream or to localize him/her

a posteriori on recorded videos become very important in many applications, especially

for security, but not only. Many other applications like marketing for shopping mall and

statistics in some sports require to track people on multiple cameras to infer the most

frequent shopping paths and thereby to reorganize shops, or to calculate the travelled

distance by a football player and the number of passes and shots he has made.

This global reasoning on large areas, under camera networks cannot be automat-

ically performed without robust techniques to maintain the same identity of a given

tracked person, regardless of where he/she is located and which camera is observing

him/her. This identity maintaining for a given person from a camera to another one is

called “re-identification”. Recently, a growing number of studies have been done and this

problematic is still attracting more interest from researchers. In the following sections,

a literature review of different people re-identification approaches are presented.

According to the kind of used information for re-identification, we can distinguish

two main families of approaches: biometric approaches and appearance-based approaches.
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2.3.1 Biometric Approaches

Biometric approaches seem to be the most efficient techniques for people re-identification

as long as they use biological characteristics of people to identify them. For instance,

Pr. John DAUGMAN (Computer vision laboratory of University of Cambridge) estimates

that the probability to find two identical irises is approximately 1/1072 (even for identical

twins). The same observation can be done for fingerprint comparison. Sir Francis Galton

[Galton 1892] published a detailed statistical model of fingerprint analysis a in his book

“Finger Prints”. He had calculated that the chance to have two different individuals with

the same fingerprints was about 1 in 64 billion.

Unfortunately and as it was mentioned in the first chapter of this thesis, this kind

of approach cannot be used in large wide video surveillance systems due to the techni-

cal and practical constraints. In fact, this kind of approaches requires specific sensors

(for iris and fingerprint recognition), or a high resolution images and sufficient frame-

rate (for faces and gait recognition). In addition to this technical issues, this kind of

approaches requires entire collaboration and voluntary actions from people for iris and

fingerprint analysis, and depend highly on the orientation of the observed people for

face and gait recognition.

In the following sections, we present the state of the art of the most important bio-

metric approaches which are iris, fingerprint, face and gait recognition.

2.3.1.1 Iris Recognition

The concept of iris recognition has been proposed initially in 1936 by the ophthal-

mologist Frank Burch as a way for people identification. In 1987, Dr. Aran Safir and Dr.

Léonard Flom, two ophthalmologists, have patented this idea and in 1989, they asked Pr.

John Daugman (Teacher at Harvard University at this time) to develop some algorithms

for iris recognition. These algorithms (based on Gabor wavelets) which Daugman have

patented in 1994 became the basis for all iris recognition systems. This algorithms are

implemented in a system called IrisCode R©

In [Daugman 2002], the author explain his algorithm for iris recognition, which is

performed in four successive steps. The approach starts by localizing, segmenting and

normalizing the iris on image. To capture the rich details of iris patterns, it is necessary

to ensure a minimum of 70 pixels in iris radius. Image captures are performed with sen-

sors using NIR (near infra-red) illumination in the 700-900 nm band to be unintrusive

to humans. Once iris localized and normalized, its features are extracted and encoded

using 2D Gabor filters providing the iris “signature” (See figure 2.19). The dissimilarity

measure between two irises is calculates using a fractional Hamming Distance. The last
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step consists in the final decision when two irises are compared and their dissimilarity

measure is calculated. Generally, in this kind of tasks (check if two data matches), the

usual way to take the decision is to define a threshold under which, a dissimilarity mea-

sure means that the two data effectively matches. This threshold is generally obtained by

a training on a large database of labelled data. Daugman propose another and interest-

ing way to take the final decision for iris recognition. Using the Bernoulli distribution,

he predict the distribution between inter-class distances and thereby he fixed optimal

thresholds that he generalized for larger datasets without any training dataset.

a b

(i) (ii)

(iii)

Figure 2.19: Daugman’s IrisCode: (i) The set of used Gabor filters with different orientations and

different resolution ((a) real parts / (b) imaginary parts). (ii) Localized irises with IrisCode R©.

(iii) Pictorial representation of IrisCode R©.

Wildes [Wildes 1997] proposed an alternative method for iris recognition, keeping

the same steps than Daugman, but with different methods for each step. The localization

and segmentation of the iris is performed by a circular and elliptic Hough transform, and

the filtering is performed by Laplacian of Gaussian filters on four resolutions.

Miyazawa et al. [Miyazawa 2005] introduce the concept of phase correlation for iris

recognition. They use a phase correlation based on a band-limited Fourier transform to

avoid low quality iris images. They proposed a method to normalize correlation scores



2.3 People Re-identification 87

according to the used image size after noise detection.

The IriTech company proposed another patented alternative system to IrisCode R©
of Daugman. In [Kim 2001], the proposed approach uses Haar wavelets for multi-

resolution analysis. 1024 Haar coefficient are computed on different iris zones (See

figure 2.20). These coefficients are compared with each other by calculating the differ-

ence between coefficients of high frequences and those of low frequences which are not

generated by eyelids and eyelashes.

Masek [Masek 2003] and OSIRIS (Open Source for Iris) are two open source refer-

ence systems for iris recognition benchmarking. They are built on Daugman and Wildes

approaches.
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Figure 2.20: IriTech iris subdivision in zones

2.3.1.2 Finger Print Analysis

The Scientific Working Group on Friction Ridge Analysis, Study and Technology

(SWGFAST) defines the fingerprint as an impression of the friction ridges of all or any

part of the finger (See figure 2.21(a)). Fingerprint identification, also known as “dacty-

loscopy”, consists in comparing the major features of two fingerprints, called “Minutiae”

(See figure 2.21(b)), to determine whether these fingerprints could have come from the

same individual. These major features are:

� Crossover or bridge: a short ridge that runs between two parallel ridges

� Core: a U-turn in the ridge pattern

� Bifurcation: a single ridge that divides into two ridges

� Ridge ending: the abrupt end of a ridge
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� Island: a single small ridge inside a short ridge or ridge ending that is not con-

nected to all other ridges

� Delta: a Y-shaped ridge meeting

� Pore, or independent ridge: a ridge that commences, travels a short distance and

then ends

crossover

core

bifurcation

ridge ending

island

delta

pore

(a) (b)

Figure 2.21: Ridges and minutiae: (a) Ridges on real finger. (b) Minutiae identification on

fingerprint

Even if all automated fingerprint identification systems use several biometric acqui-

sition sensors (optical, capacitive, thermal or ultrasound sensors) and different analysis

methods, the identification principle remains substantially the same. It consist in two

main phase: extraction/encoding useful features, and compare features from two fin-

gerprints.

The state of the art in fingerprint recognition contains two main categories.

The first category concerns the conventional approaches which simply compare the

relative positions of minutiae. In [Jain 1997], the fist steps of processing consist in

applying a directional filtering on fingerprint image, followed by a binarization and

finally a by a thinning of ridges. The last step consists in determining minutiae positions

on the image to quantify the similarity characteristics between two templates by “point

pattern matching”. Maio et al. [Maio 1998] propose an alternative method to localize

minutiae in a direct way by using neural networks.

The second category concerns more complex approaches which extract and use more

information from the fingerprint, like local directions of some minutiae [Halici 1996]

and [Capelli 1999], or the local frequential component of textures on images [Jain 1999]



2.3 People Re-identification 89

2.3.1.3 Face Recognition

Face recognition has been the subject of many researches since many years, espe-

cially the two last decades. It has special attention from computer vision community

due to its importance and effectiveness for people identification. The performances of

face recognition systems have greatly increased since the first works in the 1960-1970s

[Bledsoe 1964, Kelly 1971, Kanade 1977] and many new face recognition algorithms

have been proposed since that time. These approaches can be categorized into three

kinds according to the input information type: 2D-based approaches which use images

and videos, 3D approaches based on 3D scanning, and finally hybrid approaches which

combine both information. Unfortunately, these two last types of approaches, despite

the highest performances that they can provide, have some drawbacks. The first one

concerns high cost of 3D facial scanners. The second inconvenient is the high amount of

information that have to be processed, which does not allow real-time processing. The

last inconvenient concerns the unavailability of large datasets of 3D data for evaluation.

For these reasons, most of studies are carried on 2D-based approaches, which are more

practical.

Face recognition methods can be divided in two main categories according to the

used information level: global (holistic) methods and local methods, based on models.

Global methods are based on statistical analysis and does not requires any face

features localization or extraction (like eyes, nose, mouth, etc.). In this methods, the

whole face image is processed as grid of pixels which is generally transformed to vector,

more practical to process (See figure 2.22). This transformation is accompanied by a

dimensional reduction to model face in a low dimensional sub-space, more significant

and with faster processing. Global methods are divided in two main types of techniques

which linear and non-linear techniques which determine.

Linear techniques project initial information to a lower sub-space linearly. The most

known technique is the Principle Component Analysis (PCA). This technique was initially

used for face representation in [Sirovich 1987, Kirby 1990] and was taken as ”Eigen-

faces” technique in [Turk 1991]. Some other techniques based on linear decomposition

have been used, like Linear Discriminant Analysis (LDA) [Belhumeur 1997] or Indepen-

dent Component Analysis (ICA) [Bartlett 2002]. The linear techniques present the main

issue of inability to conserve the geometric manifolds contained in original face images.

This is due to the limitation to manage their non-linearity. To deal with this issue, lin-

ear methods have been extended to non-linear techniques based on “kernel” notion like

Kernel PCA [Schölkopf 1998] and Kernel LDA [Mika 1999].

Global methods present the main advantage of being relatively faster, due to the

medium complexity of required computations. However, they have are highly sensitive
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to variations of illumination, pose, and facial expressions, which represent an important

issue. This issue is due to the fact that processed information is a low level one, directly

extracted from pixel values and not encoded to more robust and invariant features.

Figure 2.22: Global vector obtained from the whole image without any feature localization

Local methods are based on the a priori knowledge on the face morphology and

use face features (See figure 2.23). Kanade [Kanade 1973] have proposed one of the

first algorithms of this kind of approaches, by detecting some points and features on

face image and by comparing them to points and features extracted from other face

images. Other kinds of local approaches like Bayesian approaches [Liu 1998], Support

Vector Machines (SVM) [Guo 2000], Active Appearance Models (AAM) [Cootes 2001]

or Local Binary Pattern method (LBP) [Ahonen 2004] have been proposed. All these

local methods have the advantage to model easily pose, illumination and face expression

variations. Nevertheless, this kind of methods are more complex and requires more

processing time in comparison with global methods.

Some works are based on a combination between global and local methods, provid-

ing hybrid method. Local Feature Analysis (LFA) [Penev 1996] and extracted features by

oriented Gabor wavelets, like Elastic Bunch Graph Matching (EBGM) [Wiskott 1997] are

some of hybrid methods examples. More recently, Log Gabor PCA (LG-PCA) [Perlibakas 2005]

has been presented.

There are other approaches, based on neural networks [Lin 1997] or on Hidden

Markov Models [Nefian 1998], but these approaches present important issues when the

number of individuals increases, due to the complexity of computation. In addition to

this, these two approaches requires many images for each face to train systems and to



2.3 People Re-identification 91

Figure 2.23: [Heisele 2003] face detection and recognition approaches: (a) The 14 components

of the proposed face detector. The white crosses denote the center of each component. (b) The

10 used components for face recognition

configure parameters optimally.

2.3.1.4 Gait Recognition

Gait recognition addresses the problem of human identification by characterizing

and discriminating the way they walk. Each person seems to have a distinctive way of

walking. The differences in gait can be observed from many walking parameters, like

gait cycle information (step frequencies and magnitudes) (See figure 2.24), person’s

pelvis/centroid vertical oscillations range, the maximum height of the foot when it leave

the floor, etc.

One of the first attempts of automated gait analysis was performed in 1994 by Niyogi

and Adelson [Niyogi 1993]. Individual gaits is recognized by applying standard pattern

recognition techniques to the contour of individual, extracted by snakes approach. Many

approaches have been published later. Lee et al. [Lee 2003b] perform a gait represen-

tation by a simple localization of image features such as moments extracted from or-

thogonal view video silhouettes of human walking motion. A suite of time-integration

methods, spanning a range of coarseness of time aggregation and modelling of feature

distributions, are applied to these image features to create a suite of gait sequence rep-

resentations. Yoo et al. [Yoo 2002] generate gait signatures by extracted kinematic

features in order to recognize people. He also propose a new method for extracting the

body points by topological analysis and linear regression guided by anatomical knowl-



92 Chapter 2: State Of The Art

Initial Contact

(IC)

Loading

Response

(LR)

Midstance

(MST)

Terminal

Stance

(TST)

Preswing

(PS)

Initial

Swing

(ISW)

Midswing

(MSW)

Terminal

Swing

(TSW)

Weight Acceptance Single Limb Support Limb Advancement

Figure 2.24: A complete gait cycle with its three tasks and eight phases displayed. (Source

[Søndrål 2005])

edge.

In their approach, Canado et al.[Cunado 1997] consider legs only. The extract lines

which represent legs on images using the Hough transform. The change in inclination

of these lines follows simple harmonic motion; this motion is used as the gait biomet-

ric. The method of least squares is used to smooth the data and to infill for missing

points. Then, Fourier transform analysis is used to reveal the frequency components of

the change in inclination of the legs. The transform data is then classified using the

k-nearest neighbour rule.

Kale et al. [Kale 2004] use two different image features: the width of the outer

contour of the binarized silhouette of the walking person and the entire binary silhouette

itself. From these two features, characterisation is performed following two different

methods. In the first method, the high-dimensional image feature is transformed to a

lower dimensional space. In second method, they work with the feature vector directly

by training a Hidden Markov Model.

Wang et al. [Wang 2003a] use statistical shape analysis. Moving silhouettes of walk-

ing figures are extracted using a background subtraction algorithm. Temporal changes

of the detected silhouettes are then represented as an associated sequence of complex

vector configurations in a common coordinate frame, and are further analysed using the

Procrustes shape analysis method to obtain mean shape as gait signature. Supervised

pattern classification techniques based on the full Procrustes distance measure are finally

used for recognition.
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[Liu 2004] simply align and average the silhouettes over one gait cycle (See figure

2.25). The recognition is then performed using the Euclidean distance between these

averaged silhouette representations.

Figure 2.25: [Liu 2004] average silhouette computation: First and second rows show samples

of the binary silhouettes over one gait cycle, for two subjects, respectively. The third row shows

the averaged silhouettes for the subject in the second row; each averaged over a different gait

cycle.

2.3.2 Appearance-based approaches

Despite their effectiveness, the hard constraints of biometric approaches, presented

in the previous section, make this kind of approaches inadequate for large wide video-

surveillance purpose. The alternative consists in using global appearance information,

which seems to be “easier” to extract in term of constraints. Nevertheless, despite the

availability of this information, a major problem remains: how to use the global appear-

ance information to characterize an individual in a robust and reliable way? As people

re-identification concerns a large set of individuals acquired from different cameras, un-

der several conditions, it is necessary to provide a distinctive and invariant to camera

changes signature. This visual signature has to be invariant to some external variations,

like changes in illumination, person pose and orientation and camera point of view. It

has to be robust against internal camera parameters also. The sensitivity of different

camera sensors and the color acquisition vary from a camera to another one, providing

different images of the same person in terms of color (See figure 2.26). This last issue

has been handled in two different ways in appearance-based re-identification methods.



94 Chapter 2: State Of The Art

Many approaches use some color normalization methods without any a priori informa-

tion about camera parameters, while other methods are based on multi-camera color

calibration, using some colorimetric transfer functions.

Figure 2.26: Difference in color rendering between cameras: The same person observed by two

different cameras. (Images from iLids multi-camera tracking dataset).

In appearance-based re-identification approaches, a visual signature of a given per-

son consists in a set of extracted features from a single or multiple images of him. The

choice of these features and the manner in which they are combined to obtain a discrim-

inative visual signature is the main challenge. The visual signature of a given person has

to be as restrictive as possible to maximize inter-class distance between different person

signatures, and at the same time, sufficiently permissive to minimize intra-class distance

between possible appearances of the same person observed under different conditions

and by different cameras. Many approaches with different levels of complexity have

been proposed to address this challenge.

The simplest approaches are based on statistical computations on the whole person

images, using low level information and thereby, avoiding spatial information, applying

a histogram representation. More complex techniques uses more sophisticated features,

taking into account spatial information which is very useful to solve matching problem.

This spatial information can be classified into two categories: As a result of feature ex-

traction techniques or as an initialization for them. In the first case, feature extraction

does not use any a priori information concerning the localization of the wanted features.

The spatial information is obtained once the features are extracted, for instance the coor-

dinates of points of interest, the coordinates of the centroid and the area of a stable color

region, etc. In the second case, features are extracted in predefined regions. They can be

the result of uniform subdivision of the person image (horizontal strips in [Bird 2005]

[Truong Cong 2010] or grid [Bak 2011]) or a specific region delimitation like human

body parts [Bak 2010] or symmetry/asymmetry body subdivision [Farenzena 2010].

The more sophisticated approaches can be categorized in two main groups accord-
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ing to the way on which they focus to perform the people re-identification. The first

category concerns the Feature Oriented (FO) approaches, which focus on designing an

invariant feature, which should handle viewpoint and camera changes [Bazzani 2010]

[Farenzena 2010]. The second category contains approaches which concentrate on

learning aspects or on feature modelling. Learning approaches use training data of dif-

ferent individuals to select the best features and to find the best way to combine them.

These approaches focus either on metric learning for matching appearances regardless of

the representation choice [Dikmen 2011], or on discriminative methods which enhance

discriminative features of a specific individual [Schwartz 2009].

Another classification of the existing approaches can be performed, based on the

number of used images per person. According to this creteria, two families of approaches

for appearance-base people re-identification exist: Single-shot approaches which extract

information from a single image of a person and Multiple-shot approaches which use

information of multiple images of a person to encode possible variations and learn a

reliable representation of the person.

The two classification point of views intersect as much as some feature oriented ap-

proaches use single images per person while other feature oriented approaches are based

on multiple images per person. Similarly, some learning approaches are performed us-

ing single images per person while other approaches require multiple images per person.

We take the second classification point of view as a basis for the presentation of the state

of the art, as long as it relies on a primary parameter: the number of used images per

person. Nevertheless, before exposing single-shot and multiple-shot state of the art, a

brief presentation of existing works for colorimetric transfer function is presented first.

This task is important as long as it can allows to deal with difference in color acquisition

between different cameras.

2.3.2.1 Colorimetric Transfer Function

As mentioned before, the acquired images of the same person by two cameras can

present a significant difference in rendered colors (see figure 2.26). It may be due to

sensor sensitivity difference or to external reasons, like difference in illumination or

camera orientation. This issue becomes critical as soon as a re-identification process

requires to compute a color-based people signatures.

To handle this issue, most of appearance-based people re-identification approaches

integrate a color normalization step in their process, generally before the extraction of

any feature. However, many researches have been done to provide a “link” between

different color rendering. This task is called “Colorimetric calibration” between different

cameras.
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Porikli [Porikli 2003] proposes an initial method for colorimetric calibration between

different cameras, called “Brightness Transfer Function”. He proposes a distance metric

and a model function to evaluate the inter-camera radiometric properties. Instead of

depending on the shape assumptions of brightness transfer function to find separate

radiometric responses, he derives a non-parametric function to model color distortion

for pair-wise camera combinations. This method is based on correlation matrix analysis.

The correlation matrix is computed from three 1-D color histograms, and the model

function is obtained from a minimum cost path traced within the matrix. The model

function enables accurate compensation of color mismatches, which cannot be done

with conventional distance metrics. An illustration is given in figure 2.27

(a)                                                                              

                                                                   

histograms

model function

0                   50                  100                 150                200                 250

0                   50                  100                 150                200                 250

0.025

0.02

0.015

0.01

0.005

50

0

-50

-100

Figure 2.27: [Porikli 2003] example of Brightness Transfer Function application on one channel

image: (a) Reference image. (b) over-exposed image. (c) Intensity histograms of the input image

(shown as black), of the overexposed image (blue), and of the compensated image (red). (d) The

model function that maps the over-exposed image to the original (red). (d) The compensated

image.

[Gilbert 2006] approach is based on [Porikli 2003], but integrates an on-line learn-

ing phase to update illumination variations between cameras, extending the use of cor-

relation matrices. However, this approach is greatly sensitive to the initialisation phase

of the Transfer Function and requires a large training dataset (more than 5000 trajecto-

ries).

[Javed 2005] and later [Javed 2008] propose another extension of [Porikli 2003]

approach. In this approach, a Brightness Transfer Function is estimated for each pair of

images of the same person acquired by two different cameras under different illumina-

tion conditions. It obtains as many BTFs as image pairs number. The final Brightness

Transfer Function, which provides the best representation of the color changes between

cameras is computed by applying a Principle Component analysis (PCA) on all the indi-

vidual Brightness Transfer Functions.
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These previous approaches assume that the considered objects are observed with

relatively same point of view by the different cameras. Prosser et al. [Prosser 2008]

address a more general case where objects are not observed with the same point of view.

In this case, the observed proportions of object colors may vary greatly from a camera to

another one. [Prosser 2008] propose a Cumulative Brightness Transfer Function (CBTF).

It cumulates many images of the same person, observed by the same camera, in the same

histogram, before applying Porikli’s method on the cumulated histograms, obtaining the

Cumulative Brightness Transfer Function.

Colorimetric calibration presents two main issues for our addressed problematic.

First, colorimetric transfer functions are generally not bijective depending on the ac-

quisition conditions (camera orientation, lighting conditions, etc.). Some large ranges

of colors from a given camera may have unique color (in case of discretization) or a

smaller range of colors as correspondence. This phenomenon is most observable for

very low/high saturation values. This decrease the efficiency of colorimetric calibration.

The second issue is more important for our work since it is related to the difficulty to

apply this kind of approaches in large scale video-surveillance systems. It requires to

annotate a sufficient pairs of persons observed by each pair of deployed cameras. This

is not conceivable as a generic method since these transfer functions are not related to

the internal cameras only, but also to external conditions (light conditions, orientations,

etc.).

In the following paragraphs, the main approaches of the state of the art in appearance-

based re-identification are presented. These approaches are divided in two categories:

Single-shot approaches and Multiple-shot approaches.

2.3.2.2 Single-shot Approaches

In the single-shot methods, the re-identification is performed using a single image for

each person. As mentioned before, two categories of approaches can be distinguishes:

feature-oriented approaches and learning approaches.

� Feature-oriented approaches

Feature-oriented (FO) approaches focus on finding the best feature representation

to be invariant to the possible variation.

In [Park 2006], the proposed approach, called Visual Search Engine (ViSE), is

based first on a segmentation of the person’s body in three parts: the head, the



98 Chapter 2: State Of The Art

torso, and the legs. This segmentation aims at keeping spatial correlation of fea-

ture distributions and is based on approximative dimensions of each body part with

respect to the whole height (the two separation lines are at 1/5th and 3/5th of the

person height). The head part is ignored due to the low discriminative power of

its features when no biometric techniques are used. Each shirt and pants region

(corresponding respectively to the torso and the legs) is characterized with a 10

bins color histogram in HSV space. These 10 bins correspond to most distinguish-

able colors by human and are: red, brown, yellow, green, blue, violet, pink, white,

black and gray. The final color for each shirt and pants region is decided as the bin

with the largest count. A schematic diagram of the proposed ViSE is presented in

figure 2.28

Figure 2.28: Schematic Diagram of ViSE [Park 2006]

In [Gallagher 2008], a collaboration between clothing segmentation and charac-

terization in one side, and facial features in the other is performed to recognize

individuals. The face detection is performed using [Viola 2003] and the clothing

segmentation is obtained using graph cuts and clothing mask. Each face is char-

acterized by a 37-dimensional vector, obtained by projecting the face image onto

a set of Fisherfaces [Belhumeur 1997]. Clothing regions are represented by 5-

dimensional feature vectors corresponding to a linear transformation of the three

RGB color values and the responses to a horizontal and vertical edge detector. The

final appearance is represented by the set of histograms over each of the 5 features

on the segmented image. Examples of the clothing segmentation is presented in

figure 2.29.

In [Cai 2008], the proposed approach uses color patches to represent the person

on interest. These patches are localized along edges, which are extracted using

Canny edge detection algorithm [Canny 1986]. Each region is represented by the
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(A)                                              (B)                                (C)                                        (D)

(E)                                              (F)                                              (G)                                   (H)

Figure 2.29: Clothing segmentation using graph cuts [Gallagher 2008]: For each group of per-

son images, the top row shows the resized person images, the middle row shows the result of

applying graph cuts to segment clothing on each person image individually, and the bottom row

shows the result of segmenting the clothing using the entire group of images.

dominant color and its frequency in this region. The top of the head is taken as

reference point to encode the spacial correlation between edge points. The spatial

information of each candidate point is encoded using the distance D between it and

the head point in addition to the angle θ (See figure 2.30). To be invariant to scale

variations, the distance between the head point and any edge point is normalized

by the height of the silhouette. This spatial correlation is used in addition to color

characterisation of patches to perform matching.

(a)                                                   (b)

Figure 2.30: Human appearance [Cai 2008]: (a) From left: original image, results of Canny

edge detection, region signatures on the edges; (b) geometric constraints.
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[Yu 2007] present an appearance model for human re-identification. The appear-

ance model is constructed by kernel density estimation. To incorporate structural

information and to achieve invariance to motion and pose, besides color features,

an additional feature of path-length of the pixels inside the silhouette of a person

is used, by taking the top the head as a reference point. To achieve illumination

invariance, two types of illumination insensitive color features are tested: bright-

ness color feature and RGB rank feature. The similarity between a test image and

an appearance model is measured by the information gain or Kullback-Leibler dis-

tance [Kullback 1968]. To thoroughly represent the information contained in a

video sequence with as little data as possible, a key frame selection and matching

scheme is proposed.

In [Kang 2004], they model the object of interest for reacquisition purpose using

stochastic models. The appearance of the object is described by multiple models

representing spatial distributions of objects’ colors and edges. It is performed using

the smallest circle containing the object blob. This circle is uniformly sampled into

a set of control points, from which a set of concentric circles of various radii are

used for defining bins of the appearance model. Inside each bin, a Gaussian color

model is computed for modelling the color properties of the overlapping pixels of

the detected blob (see figure 2.31).

[Wang 2007] introduce the concept of shape and appearance context (See fig-

ure 2.32). A pedestrian image is segmented into regions and their color spatial

information is registered into a co-occurrence matrix. A region appearance is rep-

resented by histogram of oriented gradients (HOG) in the Log-RGB color space

[Funt 2002]. Parts identification is done by modified shape context algorithm

[Belongie 2002], which uses a shape dictionary learnt a priori. The context of

the appearance and shape is handled by using occurrence/co-occurrence function

which describes probability distributions and their correlations over the image re-

gion.

[Bak 2010] approach is base on spatial covariance regions extracted from human

body parts. A human body part detector, based on Histogram of Oriented Gradient

technique (HOG) [Corvee 2009] is trained and applied to detect 5 body parts: the

top, the torso, legs, the left arm and the right arm. To handle color dissimilarities

caused by camera and illumination differences, a color normalization technique

called histogram equalization [Hordley 2005] is applied. After that, the covariance

regions of body parts are computed on normalized images to generate a human

signature. The dissimilarities between these regions corresponding to different
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Figure 2.31: Computation of the color and shape based appearance model of detected moving

blobs [Kang 2004]

(a)           (b)           (c)          (a')          (b')          (c')

Figure 2.32: [Wang 2007] Shape and appearance labelled images. (a) and (a’) are two images

of the same person, acquired by two different cameras at different locations. (b) and (b’) are

their corresponding shape labelled images respectively. (c) and (c’) are their appearance labelled

images respectively.

images are combined using an idea derived from the spatial pyramid match kernels

[Grauman 2005] (See figure 2.33).

� Learning approaches

Learning approaches require training data to find the best way to perform appear-

ance matching. We can distinguish two types of learning methods, according to

the aspect on which they focus: Some approaches concentrate on metric learning

(ML) for matching regardless of the person representation choice, while other ap-

proaches focus on the way to enhance discriminative features of an individual and

are called discriminative methods (DM).
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x 1/4              x 1/4          x 1/2

Level 0        Level 1       Level 2

Figure 2.33: Example of constructing a three-level pyramid. The left column represents two

person images with the detected body parts. Level 0 corresponds to the full body part. Level 1

and level 2 correspond to the rest of detected body parts and grids inside body parts, respectively

[Bak 2010]

From the recent metric learning (ML) approaches, we can cite [Dikmen 2011,

Hirzer 2012, Ijiri 2012] works. [Dikmen 2011] use a metric learning framework

to obtain a robust metric for large margin nearest neighbor classification with re-

jection (i.e., classifier will return no matches if all neighbours are beyond a certain

distance). The rejection condition necessitates the use of a uniform threshold for

a maximum allowed distance for deeming a pair of images as a match. In order to

handle the rejection case, they propose a novel cost function called Large Margin

Nearest Neighbour with Rejection (LMNN-R), similar to the Large Margin Nearest

Neighbour (LMNN).

[Hirzer 2012] address the problem of cameras point of view and property differ-

ences by learning the transition from one camera to the other. The human rep-

resentation is performed using HSV and Lab color channels for color information

and LPB for texture information. The human image is divided on a grid of 8x16

rectangular regions, using an overlap of 50 % between regions in both directions.

In each rectangular patch, the mean values per color channel is calculated and

discretized to the range 0 to 40. Additionally, a histogram of LBP codes is gen-

erated from a gray value representation of the patch. These values are then put

together to form a feature vector. The vectors from all regions are concatenated

to build a representation for the whole image. A PCA is applied for dimension-
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ality reduction. The proposed classification method is built on the ideas of Large

Margin Nearest Neighbour classification solution. This is realized by learning a

Mahalanobis metric using pairs of labelled samples from different cameras.

[Ijiri 2012] proposes an other metric learning based approach to handle the same

issue. To learn the optimal metric, human body images are divided into several ver-

tically segmented regions following [Bird 2005] approach. The color histogram of

each body region is computed in HSV color space and the entire person representa-

tion is obtained by concatenating all the HSV part histograms. The corresponding

label is assigned to each person histogram representation, providing a training

dataset. The optimal metric learning is based on Large Margin Component Analy-

sis (LMCA) [Torresani 2006]. A non-linear projection is used to project the input

histograms onto a higher dimensional space. For non-linear projection, several

types of kernel functions were investigated (X2 kernel, Bhattacharyya kernel, Jef-

frey divergence kernel, Jensen-Shannon kernel). This approach is illustrated in

figure 2.34.

(a)

(b)

Figure 2.34: [Ijiri 2012] metric learning for re-identification: (a) conventional and (b) proposed

color matching schemes

Metric learning approaches are usually performed off-line. The positive data con-

sists in pairs of images of the same person acquired by different cameras, and

negative data consists in pairs of images of different person acquired by different

cameras.

Concerning Discriminative methods (DM), we can cite [Lin 2008, Schwartz 2009]

approaches. In [Lin 2008], the person appearance is represented with a 4-dimensional
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vectors, containing 3 color components and the height coordinate. Features are ag-

gregated using the probability density function (PDF). The distance between two

appearances is established using pairwise dissimilarity profiles which are learned

beforehand. The nearest neighbour classification is adapted to perform re-identification.

In [Schwartz 2009], a rich set of feature descriptors based on color, textures and

edges is used. Features are extracted from overlapping blocks constructing a high-

dimensional feature vector. The high-dimensional signature is transformed into

a low-dimensional discriminant latent space using a statistical tool called Partial

Least Squares (PLS) in one-against-all scheme (the discriminative appearance of

person is learned using information about the appearances of other persons). For

the one-against-all scheme, PLS gives higher weights to features located in regions

containing discriminative characteristics.

Opposite to Metric Learning (ML) approaches, the discriminative approaches learn-

ing is usually performed on-line.

2.3.2.3 Multiple-shot Approaches

In the multiple-shot methods, the re-identification is performed using multiple im-

ages of the same person. This allows to better take into account appearance variations

of the same person and thereby, provides a more informative signature. As single-shot

approaches, multiple-shot approaches can also be divided into two classes: feature-

oriented approaches and learning approaches.

� Feature-oriented approaches

In the multiple-shot case, the availability of more than one image per person allows

the use of powerful mathematical tools, such as clustering, Principal Component

Analysis and many other ones, to extract most reliable features.

In [Gheissari 2006], the human representation is based on edge extraction. A

spatio-temporal graph which uses multiple images is proposed to group spatio-

temporally similar regions. Temporally unstable edges are rejected using spatio-

temporal segmentation (see figure 2.35 (a)). Only edges which are interior to the

foreground are considered. Then, a triangulated person model is used to handle a

correspondence between different body parts. The person model is represented by

a decomposable triangulated graph as a method for model fitting to people (see

figure2.35 (b)). A dynamic programming algorithm is used to fit the model to

the image of the person. Image regions are compared using color and structural
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information. The color information is represented by normalized histograms based

on hue and saturation. The structural appearance is captured using edge detector.

A                B              C                D

(a) Spatiotemporal segmentation                                       (b) Triangulated Model                                                         (c) Model fitting

Figure 2.35: Spatio-temporal appearance [Gheissari 2006]. (a) Upper row: segmentation for

single frames. Lower row: A) original image, B) frequency image, C) final segmentation after

graph partitioning, D) median image for final segmentation; (b) left: an example of a decom-

posable triangulated graph used as a person model. The blue edges correspond to the boundary

of the person while the red edges are interior edges. Right: partitioning of the person into body

parts. (c) Left: foreground mask. Right: fitting results.

In [Hamdoun 2008], the person signature consists in an accumulation of SURF

points of interest [Bay 2008] extracted from multiple images of each person. These

cumulated points of interest are stored in KD-tree to speed-up the query processing

time (see figure 2.36 (a)). The association of the models is obtained by a voting

approach: every interest point extracted from the query is compared to all models

points stored in the KD-tree, and a vote is added for each model containing the

nearest descriptor. Finally the re-identification is performed with the highest vote

for the model (see figure 2.36 (b)).

In [Huang 2009], the person image is divided into three parts: the head, the torso,

and the legs. This segmentation is performed using approximative ratios of 1/5,

2/5 and 2/5 (see figure 2.37 (c)). The head is ignored due to the low amount

of extractable information without using biometric techniques. From the two re-

maining parts, a tree structure containing medians of RGB colors is extracted. The

median value of a given node is used to separate its corresponding histogram and

thereby creating the two child histograms. The final appearance feature is a vector

obtained by merging median vectors. Finally, a Bayesian-based tracker combines a

set of features using a multivariate normal distribution.

In [Farenzena 2010], proposes another method to divide person body image into

three main parts which are the head, the torso and the legs. The head is ignored

in this approach too. This segmentation is based on maximizing the Euclidean dis-

tance between the colors of two adjacent parts (head/torso and torso/legs) while



106 Chapter 2: State Of The Art

Person 1

Person 2

Person 3

Person 4
Extraction of 

interest points

KD-tree buildong

Vote

Interest point descriptor matching

?

(a)                                                                    (b)

Figure 2.36: [Hamdoun 2008] people re-identification process: (a) Schematic view of model

building. For each tracked person, interest points are collected from multiple images, and the

personś signature is the union of all these key-points stored in a global KD-tree. (b) Schematic

view of re-identification of a query. Interest points are collected similarly multiple images images

of the person to be re-identified, and a vote is made according to the respective identifications

associated to all matching key-points

(a)               (b)                                     (c)

Figure 2.37: Segmented parts of the human body: (a) original image; (b) 10 horizontal strips

[Bird 2005]; (c) The tree structure extracted from upper and lower body In [Huang 2009].

minimizing normalized areas difference between these two (the normalization is

obtained by the ratio between foreground pixel of the part and its whole bound-

ing box rectangular area, using a mask). Another segmentation, using symmetry

axis, is performed on torso and legs to ensure robustness against people rota-

tions (see figure 2.38(b)). The appearance of each body region is represented by

the combination of three features: chromatic content (HSV histogram) (see fig-

ure 2.38(c)); maximally stable color regions (MSCR) [Forssén 2007] (see figure

2.38(d)) and (3) recurrent highly structured patches (RHSP)(see figure 2.38(e)).

The final matching score between two extracted signatures is the weighted sum
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of distances between every couple of similar features, belonging to the two signa-

tures.

(a)       (b)        (c)        (d)        (e)

Figure 2.38: Sketch of SDALF approach [Farenzena 2010]: (a) two instances of the same per-

son; (b) x- and y-axes of asymmetry and symmetry, respectively; (c) weighted histogram back-

projection (brighter pixels mean a more important color), (d) Maximally Stable Color Regions;

(e) Recurrent Highly Structured Patches.

� Learning approaches

In multiple-shot approaches, the different approaches often use dimensionality

reduction methods, classification using SVM or Boosting and Fisher discriminants

to discriminate between different individuals.

Figure 2.39: Example obtained by the graph-based approach for nonlinear dimension-

ality reduction. Multiple images of 5 different persons, acquired by two cameras are

used.[Truong Cong 2009]

In [Nakajima 2003], images of full-body persons are represented by color-based

and shape-based features. Recognition is carried out through combinations of



108 Chapter 2: State Of The Art

Support Vector Machine (SVM) classifiers. Different types of multi-class strate-

gies based on SVMs are explored and compared to k-Nearest Neighbours classi-

fiers. The best performance is obtained using two dimensional normalized color

histograms, where d1 = R=(R + G + B) and d2 = G=(R + G + B) build two

dimensional space (every dimension is represented by 32 bins)

In [Truong Cong 2009], the approach uses different color-based features, com-

bined with several illuminant invariant normalizations in order to characterize the

silhouettes in static frames. A color-based feature vector is extracted from each im-

age of each person. The hight dimensional extracted vector features are projected

to a lower dimensional space using a proposed graph-based approach which is ca-

pable of learning the global structure of the manifold and preserving the properties

of the original data in a lower dimensional. Each person is represented by a set

of points in the lower dimension space (see figure 2.39), and the centroid of these

points is taken as the reference point for signature comparison. The dissimilarity

measure between two signature is computed using the distance between the two

corresponding centroids.

In [Truong Cong 2010], the authors propose two improvements to their previous

approach [Truong Cong 2009]. They use the same graph-based approach for di-

mensionality reduction as in [Truong Cong 2009], but this time, it has been ap-

plied on a new proposed descriptor called the color-position histogram. The hu-

man body is vertically divided into n equal parts and the mean color is computed

to characterize each part(see figure 2.40). This approach allow to use spatial in-

formation of color ant thereby, it provides better results than a classical color his-

togram. The second improvement concerns the dissimilarity measure between two

signatures. Instead of using the distance between centroids of points groups, the

authors use the optimal margin and the miss-classification error obtained by SVM

to compute distance between signatures which can not be separated by a linear

model.

In [Bak 2011], a new appearance model based on Mean Riemannian Covariance

(MRC) is proposed. Person images are obtained by detecting and tracking them

using an HOG-based algorithm [Corvee 2009]. Once multiple images of each per-

son are extracted, a color normalization technique called histogram equalization

[Hordley 2005] is applied on them. This step aims at minimizing illumination and

color acquisition variations between cameras effect (see figure 2.26). All the im-

ages are then resized to the same dimensions. Two set of patches are extracted

from each image, using two specific patch sizes and using an overlapping shift. A
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(a)                    (b)                     (c)

Figure 2.40: Color-position histogram [Truong Cong 2010]: (a) original image; (b) localization

of the silhouette; (c) color distribution in the silhouette.

mean covariance is computed for each patch location, using all patches at the same

location, upon all the images of each person (see figure 2.41). A person is repre-

sented in a first time by a set of mean covariance regions of all its patches. The

final person signature is obtained by selecting the most significant patch and re-

moving most variable ones, assuming that these last patches are the noisiest ones.

Authors propose two ways to perform this selection. First, a reliability measure on

patches is introduced. For each region, this reliability measure is computed using

the standard deviation which is associated to the mean covariance. Only patches

with a high reliability measure are used for person signature (see figure 2.42(b)).

The second way for significant patches selection is performed using a boosting

scheme. Finally, a new similarity measure between signatures using Riemannian

manifold theory is proposed. It enables to hold discriminative power coming from

the relative position of MRC patches.

Figure 2.41: [Bak 2011] computation of three MRC patches. Covariances gathered from tracking

results are used to compute the mean covariance using Riemannian manifold space (depicted

with the surface of the sphere). The mean covariance forms MRC patch.
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(a)                     (b)                       (c)

Figure 2.42: Illustration of patch significance: (a) one of many frames obtained during track-

ing; (b) reliability map obtained by the first method; (c) confidence map obtained by boosting.

Colours correspond to significance of patches (for clarity only W
4
xW

4
patches, shifted by W

8
pixels

are illustrated, red indicates the highest significance, blue the lowest).

2.3.2.4 Context-Aware Approaches: Group Context / Space-time Approaches

All the previous cited approaches, both in single-shot and multiple-shot categories

focus exclusively on the visual information contained in images of persons of interest

only. Some other works, called Context-Aware approaches, use additional information

to increase the discriminative power of their appearance-based approaches. This infor-

mation can be classified into two groups: Group context information and Space-time

information.

Group context information still uses visual information extracted from images, but

does not focus on the person of interest silhouette only. It takes into account surrounding

people also. This kind of approach is relatively recent in comparison with all previous

cited techniques and thereby, very few works have been published. However, it will

certainly attract more attention in the future, due to the improvements that they can

provide, according to published works results, which are still medium, but which open

many perspectives (keeping the main idea of using group information, but proposing

more sophisticated techniques to deal with non-rigidity of people in a group, partial

occlusion depending on the camera position, etc.).

In [Zheng 2009], a novel people group representation and a group matching algo-

rithm are proposed to reduce ambiguity in person identification. Assuming that in a

crowded public space, people often walk in groups, either with people they know or

strangers, visual information coming from the surrounding is also used. The appearance

of the group is represented by visual words. First, each pixel is represented by a feature

vector consisting in a concatenation of SIFT [Lowe 2004] features for each RGB channel

of this pixel. Then, a code book of n visual words is built by quantizing the previous fea-
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ture vectors into n clusters by k-means. Finally, the group is represented by combining

two descriptors: a center rectangular ring ratio-occurrence descriptor which aims at de-

scribing the ratio information of visual words within and between different rectangular

ring regions, and a block based ratio-occurrence descriptor to explore more specific local

spatial information between visual words that could be stable.

In [Cai 2010], covariance descriptor [Tuzel 2006] are used to encode group context

information to improves person re-identification performances. The appearance of a

person as well as the appearance of a group have been represented using covariance

descriptor.

Space-time information is another useful information which allows better people

re-identification performances. It can be used either as a filtering method, to reduce

the space of possible candidates for a given re-identification request before applying

appearance-based matching, and this by removing all candidates which do not respect

spatio-temporal coherency (A person cannot be at two different locations at the same

time. He/She cannot travel a given distance in a time which corresponds to incoherent

velocity, etc.), or as an identification information (especially when camera fields of view

overlap) by validating the same location of the same person at the same moment in the

different camera images. The spatio-temporal information may be provided as an input

information (floor plans with distances and possible paths provided to the system which

manage the camera network), or learned automatically by the re-identification methods.

In [Javed 2003], a novel approach for establishing object correspondence across non-

overlapping cameras is proposed. The multi-camera tracking algorithm exploits the re-

dundancy in paths that people and cars tend to follow (e.g. roads, walk-ways or corri-

dors), by using motion trends and appearance of objects, to establish correspondence.

The proposed method does not require any inter-camera calibration, instead the system

learns the camera topology and path probabilities of objects using Parzen windows, dur-

ing a training phase. Once the training is complete, correspondences are assigned using

the maximum a posteriori (MAP) estimation framework. The learned parameters are

updated with changing trajectory patterns.

[Iwama 2012] propose a combined approach using group and space-time informa-

tion. The relationships between the people in an input sequence are modelled using

a graphical model. The identity of each person is then propagated to their neighbours

in the form of message passing in a graph via belief propagation, depending on each

personś group affiliation information and their characteristics, such as spatial distance

and velocity vector difference, so that the members of the same group with similar char-

acteristics enhance each otherś identities as group members.



112 Chapter 2: State Of The Art

feature oriented learning

[Cai 2008]

[Kang 2004] [Lin 2008]

[Park 2006] [Schwartz 2009]

single-shot [Yu 2007] [Dikmen 2011]

[Wang 2007] [Hirzer 2012]

[Gallagher 2008] [Ijiri 2012]

[Bak 2010]

[Gheissari 2006] [Nakajima 2003]

multiple-shot [Hamdoun 2008] [Truong Cong 2009]

[Huang 2009] [Truong Cong 2010]

[Farenzena 2010] [Bak 2011]

Table 2.2: Summary of cited appearance-based approaches for people re-identification.

group [Zheng 2009]

context-aware context [Cai 2010] [Iwama 2012]

space-time [Javed 2003]

Table 2.3: Context-Aware approaches for people re-identification

2.3.3 Discussion

In this section, we have presented several existing approaches for people re-identification.

These approaches are classified according to a first level criterion which is the nature of

used information, and each criteria is categorized using many sub-criteria.

We have seen that the first family of approaches, belonging to biometrics methods

(iris, finger print, face and gait recognitions), are the most powerful methods to per-

form the people re-identification task, due to the discriminative power of human bio-

metric characteristics. At the same time, these methods are the most constrained ones

also. They require many conditions which cannot be ensured most of the time in video

surveillance systems. The most important constraints we can cite are the voluntary col-

laboration of individuals (the acquisition of iris and fingerprint images by specific sen-

sors), the restricted situation in which these approaches can be performed (visible faces

for face recognition, walking direction allowing the segmentation of gait, i.e. as far as

possible from to the camera optical axis direction), high resolution images (to provide

face features) and high frame-rate acquisition (to capture all the gait cycle parts).

The second family of approaches, related to appearance-based approaches, are less
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constrained than biometric ones and thereby can be used on large wide surveillance

camera systems. These approaches are separated into single-shot approaches which re-

quire only a single image of a person to model his/her appearance, and multiple-shot

approaches which requires multiple-images. In both of these categorises, the appear-

ance representation can be extracted using feature-oriented procedures or by learning

approaches.

Another group of approaches, called context-aware approaches, integrate additional

information coming from environment to achieve people re-identification. Group-context

information is used to improve individual signature by integration his surrounding peo-

ple. Spatio-temporal information is also used to increase the reliability of re-identification.

Multiple-image approaches seem to be the ones which provide better results, due

to their capability to encode the possible variation of human appearance and to ex-

tract/learn the most significant appearance model. Nevertheless, they have three main

issues:

� Their computation cost is relatively high. The complexity of the extracted fea-

tures and the learning techniques require complex computations, slowing down

greatly the re-identification process. On the other hand, many approaches require

the availability of a large set of images of a given person person of interest and

a large set of other people images before performing the learning, i.e. they can-

not compute the visual signature of a given person progressively, starting with the

first image of this person and updating the signature every time a new image of

him/her or of other people is provided (acquired by mono-camera tracking algo-

rithm) . These issues make the use of this kind of approaches hard or impossible for

live processing purpose. They are more suitable for off-line tasks like a posteriori

people searching, where the processing time is less important and all people im-

ages can be extracted in a first processing pass, before performing re-identification

in a second pass.

� They are sensitive to the precision of extracted images of the same person. Im-

ages of a given person are extracted from the video sequence using background

subtraction or people detectors. Due to many reasons (background clutter, oc-

clusions, etc.), the person silhouette can be badly aligned at different location of

the extracted sub-images, or may even be truncated (missing occluded part, bad

background subtraction segmentation, etc.). These issues may compromise the sig-

nature extraction as long as the learning of variations of a given body part feature

requires to localize it at the same position on input images. Some approaches try to

deal with this issue using a pairing step between images of a same person in term
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silhouette localisation. They perform this pairing using some features matching

increasing computation time.

We propose a fast method to perform the pairing step before signature extraction.

This method is based on a fast color region comparison in Lab space, and it is

detailed in the chapter 6.

� Despite they claim their robustness against people orientation variation, it seems

that all the cited approaches were evaluated on datasets containing manually an-

notated images showing the same side of each person or with a small range of

rotations in each camera. In the case of a person with a full rotation in the scene,

all his/her side images are acquired. If the appearance of front side differs greatly

from his/her back side (due to a backpack for example), a single signature for

his/her appearance may be insufficient to allow his/her re-identification. Two

cases may occur with the presented approaches: either only few features are kept

if the approach is based on a selection of stable features, providing poor signature,

or the variation of each feature are encoded in a large model, which may increase

the re-identification failure probability due to less discriminative signature.

We propose a context-aware approach, using spatio-temporal information, to di-

vide a person signature into several sub-signatures corresponding to different visi-

ble sides. The processing time is not increased significantly as long as the signature

extraction is performed using the same approach as if no signature subdivision is

done. The sub-signatures are labelled according to the viewed side from which

they are computed, allowing a faster matching process, while taking into account

possible error of labels.
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3

OVERVIEW OF THE PROPOSED

APPROACH

In this manuscript, we propose a complete framework for people re-identification.

The proposed approach includes three successive tasks: people detection, people track-

ing in mono-camera context and finally, visual signature extraction and comparison for

re-identification. This chapter presents a general description of these three steps. The

details of these tasks can be found in the next three chapters.

3.1 People Detection

The objective of this detection is to provide reliable inputs for both mono-camera

people tracking and for people re-identification tasks (see figure 1.8). Detected persons

on video sequences will be used as target initialization for mono-camera tracking in

some specific cases, and as confirmation for other cases which will be more explained in

mono-camera object tracking chapter (See chapter 5 ). They will also be used as request

or candidates definition for re-identification task in both cases: static images and video

sequences. The aim of separating these two cases is related to the type of used re-

identification approach. According to some constraints which will be discussed in the

chapter 6 concerning people re-identification, this task can use single-shot or multiple-

shots to compute the visual signature of any person of interest or any candidate.

Like the most of state of the art approaches for people detection, the proposed ap-

proach follows the same global schema which consists in two main and separate steps:

classifier training and people detection.

117
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The proposed approach strongly optimize a state of the art approach proposed by

Tuzel et al. [Tuzel 2007] and improved by Yao et al. [Yao 2008]. It keeps the origi-

nal and improvements steps, but introduce an additional processing step in the training

stage which speeds-up strongly both training and detection phases and improves detec-

tion performances.

A short discussion about the generalizability of the proposed optimization and its

possible application on any training approach based on boosting to learn a cascade of

classifier, regardless of the type of used features, is provided at the end of chapter 4

An overview of the proposed people detection algorithm is presented in the following

sections. It contains the three main parts of people detection approaches: the pertinent

features extraction, the classifier training and finally the candidate region selection for

detection.

3.1.1 Pertinent Feature Selection: Region Covariance Descriptor

To highlight the improvements provided by our optimization method to people de-

tector approaches, we have taken Tuzel et al. [Tuzel 2007] approach as baseline, and

we have shown the improvements of our proposed approach by comparing our results

with those of [Tuzel 2007] and also with those of [Yao 2008] which proposed other

improvements to the original method, and with several other state of the art detectors.

The used features in these two approaches [Tuzel 2007, Yao 2008] and thus in our

approach is Region Covariance Descriptor. Region covariance descriptor is a powerful

way to encode a large amount of information inside in a given image region. It allows

the encapsulation of a large range of different features in a single structure, representing

the variances of each feature and the correlation between features.

Our choice to base our work on the approach of [Tuzel 2007] is partly due to this

descriptor. In fact, Region Covariance Descriptor differs from the other local descriptors

in two main ways.

First, Region Covariance Descriptor can be considered more as a generic container

for various features, with a powerful bag of mathematical tools than a “rigid” local de-

scriptor like SIFT [Lowe 2004], SURF [Bay 2008], HOG [Dalal 2005], LBP [Ojala 1996]

and other local descriptors. In fact, while each local descriptor uses specific image infor-

mation in a specific way, imposing a kind of rigidity to it, region covariance descriptor

allows to use a large set of “basic” features (large amount, as there is more extractable

basic features for each pixel). For example, both SIFT and HOG are based on image

gradients only while LBP uses the values of direct neighbouring pixels of each pixel of

interest. Some authors have combined some features to create hybrid features, by con-

catenating different descriptors for example but this kind of technique does not provide
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the relationship between the different features belonging to the hybrid one. In contrast,

Region Covariance Descriptors allow to uses several features in the same structure, and

provide the information about the relationship between these features.

The second main difference is the scope of the descriptors or in other terms, the area

of image that they describe. Local features generally describe areas with constant sizes.

For example, unitary SIFT descriptor, in its standard version, is computed on a square

region on 16x16 pixels and provide, after specific subdivisions on sub-regions of 4x4

pixels and bins separations on 8 bins, a feature vector of 128 dimensions. Of course,

it is possible to enlarge or reduce the computing window size, but it requires impor-

tant modifications, either in the subdivision method or in the resulting descriptor size.

It also requires to ensure some constraints concerning the size of computing window

and its square shape: for example, it is impossible to divide a square region of 17x17

equivalently or to use a rectangular window without losing some robustness to rotation

in comparison to the standard version. In contrast, a region covariance descriptor can

describe a very small region of few pixels in the same way that it can describe the whole

image, without any necessary adaptation, and independently of the shape of the region

(square or rectangular one), providing descriptors with same structures and dimensions.

In fact, the dimension of a covariance descriptor relies to the size of the used feature set

and not to the size of the described region.

Due to these advantages, region covariance descriptors will be used in the re-identification

part by changing only the used basic features.

More details and explanations about Region Covariance Descriptors and their advan-

tages are provided in chapter 4.

3.1.2 Classifier Training: Cascade of Classifiers Using LogitBoost Algo-

rithm in Riemannian Manifold

Our main contribution takes place in this processing step. The proposed approach

uses an adapted form of LogitBoost algorithm to train a cascade of classifiers for people

detection. Due to the fact that region covariance descriptors relies to Riemannian Man-

ifolds, the original LogitBoost algorithm was modified by Tuzel et al. [Tuzel 2007] to

deal with this specificity.

Like all state of the art approaches which are based on an off-line training of a binary

classifier to separate persons from non-person images, two type of images datasets are

used: a set of positive images corresponding to various persons with different appear-

ances and clothes to ensure the genericity of the classifier and a set of negative images

corresponding to various things except people. This second dataset must be as various

as possible and in term of content, and is supposed to be many times larger than the
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positive dataset.

In the chapter 4, the training algorithm will be entirely detailed. The trained cascade

of classifiers consist in a set of ordered strong classifiers, each of which consists in a set

of weak classifiers. We will see that to train one weak classifier, heavy computations

are required. The processing time required for training one weak classifiers is directly

proportional to the number of randomly selected weak learners, but also and in large

extent to the number of used samples. It is then clear that the larger the training dataset

is, the slower the training is. At the same time, the more various and numerous the

negative training data are, the less false positive detection rate is.

We propose a pre-training step which allows the use of large training negative datasets

while it decrease significantly training time in a first stage and it provide a better cascade

of classifiers in term of structure and content in a second stage, speeding-up the detec-

tion also. This step consists in clustering negative data before training in a specific way,

to train each cascade level with a given cluster, specializing the corresponding strong

classifier to reject a specific kind of image information.

The other main reason of our choice to take Tuzel et al. [Tuzel 2007] as a basis for

our work lies in the nature of the trained classifier. Training a cascade of classifiers using

a LogitBoost algorithm in Riemannian Manifolds is an interesting way to show that our

method can be generalized to any kind of object detector which is based on cascade

of classifier, due to the fact that both vector space and Riemannian manifolds are used

during the training and in for method.

3.1.3 Candidate Regions Selection for People Detection: Dense Searching,

Real World Candidate selection and Background Subtraction Filter-

ing

Three methods for candidate regions selection are used. Dense searching method

is the standard and the usable method in any case because it does not requires any

additional external information. It can be applied on any image, but it is also the slowest

method due to the highest number of tested candidate regions.

Whether camera calibration information is available, the candidate region selection

is focused on the areas where it is more likely to find people, i.e. all areas of the image

touching the ground floor in the real world. If scene context information is available

too, this targeting is more precise by avoiding all areas that can not contain people due

to the presence of scene static objects (Walls, buildings, etc.).

The last selection method, which is mainly used for our mono-camera tracking algo-

rithm, is based on motion regions targeting. This method can be used in both previously
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mentioned methods, as long as it is applied on video sequences. It is more a filtering

method than an independent one for candidate regions selection. It consists in focusing

the detection only on moving objects, detected by background subtraction algorithm,

and using camera calibration to reduce scale and width/height ratios of searching win-

dows. Using this filtering method reduces strongly detection time, but can avoid some

detection in case of static people on images.

Due to the context of our study and the work hypothesis concerning the use of static

and calibrated cameras, all the possible candidate regions are pre-computed once before

the detection or during the detection on the first frame of the input video sequence.

These candidate regions are stored and used on each new frame where motion is de-

tected, avoiding the necessity to calculate the 3D-2D projections at each frame.

3.2 Mono-Camera Object Tracking

In our study, the objective of tracking people in mono-camera context consists in two

main points: it allows to extract and to learn robust appearance-based visual signatures

and it provides useful information for spatio-temporal filtering step during people re-

identification.

To re-identify people in a camera network using appearance matching, it can be suf-

ficient to detect all appearing persons on all the frames of available video sequences

using a people detector, and extract single-shot visual signatures for each detected per-

son. However, this method increases strongly the number of possible candidate as it

considers each detection as a different person, due to the non-use of temporal informa-

tion. Generally, it is better to use multiple-shot based visual signature for many reasons

which are detailed in the re-identification chapter (see chapter 6). Using multiple im-

ages of a person to compute its visual signature requires to detect him on several frames

on the video sequences provided by one camera, and to ensure that all these detections

represent the same person. Mono-camera person tracking is the best way to perform this

task.

We also use person tracking information to robustify our visual signatures by par-

titioning it in sub-visual signatures according to the visible side of a person in a given

camera. In fact, the motion direction of a person with respect to a given camera can

be easily extracted and used to infer if that this person is seen from front/behind or in

profile, so the extracted visual information can be assigned to the right person position

and allow more precise comparison during re-identification process. All these aspects

are more discussed in the chapter 6.

Finally, mono-camera people tracking with calibrated cameras provides also useful
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information for spatio-temporal coherency filtering in both cases of overlapping and

non-overlapping fields of view between the cameras. In case of overlapped fields of

view, only people in the neighbourhood of a given person at a given time are considered

as candidates for re-identification. In case of non-overlapped fields of view between

cameras, using buildings plans or city maps or any contextual information, in addition

to camera calibration information, allows to avoid incoherent and unlikely candidates in

some cameras for a targeted person in an other camera, by checking distance/velocity

coherency or possible trajectories.

We propose a mono-camera “object” tracking framework based on SIFT features

(Scale-Invariant Feature Transform) [Lowe 2004] tracking by particle filtering. It mainly

use detected moving object by background subtraction as target initialisation and can-

didates providing, and in some cases which will be discussed in chapter 5, the people

detector we present in chapter 4. A data association method, based on the reliability of

tracked SIFT features, is proposed to pass reliably from point tracking to object tracking

to create the temporal links between objects of each frame and thereby provide objects

trajectories. This data association method also allows to detect partial and full occlusion

situations, which are managed by our proposed “fast occlusion managment approach”.

This last task is performed using several information: SIFT Features matching, dominant

colors descriptor and “real world” object information like size and velocity (provided

thanks to camera calibration).

This framework is a generic object tracking algorithm which can track any kind of

objects. People tracking is performed by targeting only people among detected moving

persons, either by using the “real world” information of the object (especially the real di-

mensions), by applying the people detector or by using both. All the cases are discussed

in the chapter 5. It is also generic in term of used features for tracking as long as the

object model consists in sparse local descriptors. In fact, in our presented work, we use

SIFT features for this task, but any interesting local descriptor can be used as long as it

ensures invariance and robustness to classical challenges.

3.2.1 Object Detection: Background Subtraction VS. People Detection

Our object tracking algorithm performs by creating temporal links between detected/tracked

objects on the frame at time “t-1” with their corresponding objects detected on the frame

at time “t”. It means that objects have to be detected at each frame in a fist stage. At time

“t”, some new detected objects can appear for the first time, other objects can disappear

by leaving the field of view or by being occluded. All possible cases are managed in the

data association step.

This object detection is performed by a state of the art background subtraction al-
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gorithm. It provides all moving objects delimitations on the images. These moving

objects can be various things: objects of interest (people, cars, etc.), other objects (tree

branches, flags, etc.), illumination change and noise.

Focusing on a given type of objects can be performed using camera calibration in-

formation, by checking the estimated real world dimension of any detected object and

its velocity for example and verifying that it correspond to known value ranges. This

method provides good results in simple situations, but it fails when some complicate

cases occurs: shadows, grouped people, closest objects, etc.

We propose to use the presented person detector in collaboration with background

subtraction to focus on people by applying it on the moving image regions.

3.2.2 SIFT Features Detection and Selection

In the proposed approach, tracked object are modelled by a set of point features.

This choice is justified by two main reasons: the flexibility of points representation of

an object allow to deal with objects deformations and rotations easily since points are

independent. The object occlusions can be detected easily by noting the disappearance

of a part or all used points.

Once one target object detected, we model this object by a set of SIFT features. A

SIFT feature [Lowe 2004] consist in a SIFT point of interest, detected following some

conditions, around which a SIFT descriptor is computed in specific way. This descriptor

is assigned to the point of interest.

The several steps of SIFT feature computing, which will be recalled in chapter 5,

ensure their robustness and invariance. The optimal algorithm parameters and thresh-

olds provided in [Lowe 2004] ensure the best robustness and invariance level. However,

these parameters are too restrictive to ensure a minimal representation of object of in-

terest with enough amount of points, and with a whole covering. Small and noisy object

images provided by many video surveillance systems may be fully or partially empty in

term of SIFT points.

The proposed approach changes some SIFT points detection parameters (curvature

and contract thresholds) and provide more detected points. This allows to ensure a suf-

ficient number of points on all the object image, even if the robustness of these points is

decreased. The reliability decreasing of SIFT points is compensated by the proposed gen-

eral data association frameworks witch use reliability measure on tracked SIFT features

to create the temporal links between objects.

The approach filters the detected SIFT points using a grid subdivision of the object

image. A uniform distribution of SIFT features on the whole image is then provided by

this method.
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3.2.3 SIFT Features Tracking by Particle Filtering Method

Due to the cited advantages of particle filtering methods for tracking (see sec. 2.2.2.2),

the proposed approach track detected and selected SIFT points using a customized par-

ticle filter. Each SIFT point is tracked using a set of particles. The point tracking is

performed by the two standard steps which are perdition and update.

Each SIFT point movement is characterised by an adaptive dynamic model, based

on SIFT points position and velocity. Our approach use a linear regression function,

computed on a definite number of the last positions of the SIFT point, to adapt the

motion model. By this way, movement velocity and direction changes are well handled.

The prediction step for each SIFT point tracking is performed by applying its motion

model to all associated particles, including a random noise estimation to each particle

location projection.

Once all particles are projected in the current frame, the update (or correction) step

provide the estimation of the current location of the tracked SIFT point as the centroid

of all its particles. Before new SIFT point location estimation, its particles are weighted,

sampled and resampled to make them focus on the most likely positions for SIFT point.

We use the Importance Sampling Resampling method due to its ability to avoid informa-

tion degeneration (see section 2.2.2.2). Our method propose a new hybrid weighting

method for particles.

3.2.3.1 Hybrid Particles Weighting for Sampling Resampling Step

Most of state of the art particle weighting in object tracking particle filters methods

are based on a similarity measure between the used descriptors. The proposed method

keeps this weighting technique since the similarity measure is an important information,

but due to the addressed context (video surveillance), the low resolution of image, the

small size of objects of interest, and the low contrast with background may greatly alter

this similarity measure. A practical example is provided in chapter 5. To avoid this risk,

a second information type is used for weighting.

The proposed approach combine background subtraction result with the similarity

measure in an effective way to ensure a better weighting process. The background sub-

traction result is used in a continuous way even if it is provided in binary form. Our

hybrid weighting method has the other advantage to be robust to background subtrac-

tion algorithm performances. It is based on the moving pixel density calculation, and is

explained in chapter 5.
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3.2.4 Data association: Temporal Links Creation

The previous steps allow to track SIFT points independently. To infer the object

of interest movement and localization, a data association step, based on tracked SIFT

points, is performed.

Temporal links between objects of successive frames are built depending on the lo-

calisation of tracked SIFT points on the currently detected object, weighted by their

reliability measures. This method is faster than a basic detected points matching.

The proposed approach allows to detect all tracking situations: single objects mov-

ing, grouping object, separation of group of objects, and occlusions. This is performed

using the tracked SIFT points localization and visibility on current frame. This method

is detailed in the chapter 5.

We propose a method to build these temporal links in a reliable way, using all avail-

able information from SIFT features: (1) The spatial repartition of SIFT points to detect

occlusions and to delimit the object and (2) the reliability of SIFT features to weight all

the possible links between tracked objects at time “t-1” and the detected objects at time

“t”

3.2.5 Fast Occlusion Management

The proposed data association method allows to detect occlusion situations thanks

to point representation and tracking.

Partially occlusions are handled by a continuous tracking process on the remaining

visible SIFT points. If the partially occluded object became fully visible, new additional

SIFT points are detected and assigned to the tracked object using the same process as the

one described for SIFT points detection and selection. This is due to maintain a global

and well distributed representation of the object

Full occluded objects are handled differently. If a tracked object is lost due to a full

collusion, it is stored as an “object to reaquire”.

During the tracking process of a fully visible object, some additional features are

extracted and used to “learn” a coarse model for reacquisition purpose only (not for

tracking). This model consists in a combination of the variation of real world object di-

mension and velocity extracted thanks to camera calibration in addition to the extracted

dominant color descriptor (the two main colors are considered in our approach).

A matching between the last visible set of SIFT point of occluded object (taken be-

fore occlusion starting) and those of a non linked candidate object in current frame is

also performed. We can afford this computational time consuming task since it is not

performed in each tracking iteration (on each video frame), but on specific cases.
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Note that this last matching method is used as a validation-only criteria. If a can-

didate object present a high matching rate of matching SIFT points with the previously

occluded one, and according to defined thresholds, this candidate object can be con-

sidered as the required one of the previously occluded object. Otherwise, if SIFT point

matching fails, the candidate point is not rejected. The previous cited model for reac-

quisition is used to test object matching. This is due to the fact that occluded object may

reappear in another pose or orientation with respect to camera, hiding its previously

used SIFT points. The object model for reacquisition is a more general one witch can be

used even if object pose or orientation change during the occlusion.

Once a previous fully occluded object have reappeared and reacquired, new SIFT

points are detected and assigned to the tracked object using the same process as the one

described for SIFT points detection and selection.

Finally, non linked detected objects in the current frames, either by continuous track-

ing or by reacquisition, are used to initialize new object tracking since they are consid-

ered as new appearing objects in the scene.

3.3 People Re-identification

People re-identification is the final aim of the proposed framework. The proposed

approach is based on [Farenzena 2010] approach which provides good performances

and which performs in real-time (or in pseudo-real time if the number of considered

images per person is larger). Some of the baseline issues and more general state of

the art approach issues are identified and some solutions are proposed to solve them,

improving the performances of the approach, making it more generic (no off-line train-

ing or video-operator interaction are required), while maintaining low processing time

requirements.

The initial approach of [Farenzena 2010] performs in three steps:

First, human body image is divided into four parts using two asymmetry axes which

separates vertically the head from the torso and the torso from the legs, and two symme-

try axes which separate horizontally torso into two parts, and legs into two parts also.

The head part is ignored in this approach because of low amount of information it pro-

vides in general case (large scale video surveillance). This body subdivision is performed

using both foreground pixels separation and their color values.

Once the human body separation performed, three different features are computed

on each body part: Weighted color histograms (WH) in HSV space, Maximally Stable

Color Regions (MSCR) and Recurrent High-Structured Patches (RHSP). The final signa-

ture consists of the combination of these features.



3.3 People Re-identification 127

Finally, the comparison between two signatures is performed by computing a dissim-

ilarity measure between them. This dissimilarity measure is the sum of weighted dissim-

ilarity measures between each pair of similar features (WH). The weights are fixed once

by an off-line learning step on a subset of images from VIPeR dataset.

In the following paragraphs, the main identified issues of this baseline approach (and

some other more general issues) as the proposed solutions are briefly exposed.

3.3.1 Dependency of Visual Signatures to People Orientations

This is a general issue for many state of the art appearance-based approaches for

people re-identification. People appearance may probably be different on its several

sides. Opened jackets with different color than the t-shirt may provide different colors

whether it the person is observed from his/her frontal or back side. Backpacks introduce

erroneous information on the back side of people when they are not visible when the

people are observed from front side. Some textures and patterns which are on front side

of cloths are not observed if the person in observed from back or in profile. Many other

examples can illustrate the importance of people visible side identification for visual

signatures computation and comparison.

We propose method to classify people images according the their visible side, using

real world information, provided by our mono-camera tracking algorithm. The people

trajectories are segmented according their walking directions. Assuming that people

walk forward, their trajectories indicate their orientation and thereby, their visible side

with respect to the cameras, thanks to some processing steps using camera calibration

information. These processing steps are detailed in chapter 6. The unique visual signa-

ture is replaced then by a set of sub-visual signatures assigned to each visible side class.

This classification method is accompanied by the corresponding signature comparison

method, dealing with the all possible cases (common visible side classes, adjacent visi-

ble side classes, neither common nor adjacent visible side classes).

3.3.2 Unreliable Body Subdivision + Images Alignment Issue for Multiple-

shot Case

The proposed method for human body subdivision (symmetry and asymmetry axes

estimation) is mainly dependent on the quality of background subtraction and to the

contrast between people and the foreground. Generally, the estimated axes are not cor-

rect but more or less inaccurate. For small shifting of the asymmetry axes with respect to

their real localization, the final visual signature alteration is negligible. For this reason,

we have decided to avoid this processing step and to use statistical subdivision of human
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body, by positioning the head-torso separation line at 1/5 of the human height (starting

from the top) and the torso-legs at 3/5 of the human height.

This solution may cause an important issue: it is dependent on the quality of people

delimitation. People who are not well centred on the used images (or bounding boxes)

or who have some missing parts (cropped head, feet, etc.) due to bad background sub-

traction or people detection results provides bad statistical body subdivision. For this

reason, and to improve part-to-part comparison, we propose a fast method to align cor-

rectly all the images of a given person. This allows to correct some images by shifting

people to the center and by removing background in images margins, and also to re-

move images with significant error (cropped important parts). This image alignment is

performed using fast browsing of superposed images using Lab color space for similarity

maximization. Some processing steps like image downscaling and camera calibration

information use speed up the alignment processing.

3.3.3 Exclusive Use of Unnormalized Color Information

The initial approach of [Farenzena 2010] uses images directly without managing the

difference in color rendering between cameras issue. We propose to use color histogram

equalization to minimize the effect of this issue. We prefer this kind of approaches

instead of colorimetric camera calibration due to the issues and constraints of this last

approaches, which consist of non-bijectivity of transfer functions and the complexity of

their application in large scale video-surveillance system.

On the other hand, [Farenzena 2010] characterize a visual signature exclusively us-

ing color information. Weighted color histograms and Maximally Stable Color Regions

are fully color-based features. Recurrent High-Structured Patches, even they are selected

using texture information (patches entropy and LNCC maps), their final characterization

is performed using simple color histograms too.

We propose to replace the simple color histograms which characterize RHSP features

by covariance descriptors which are built using both color and texture information, im-

proving the discriminative power of RHSP features.

To use additional texture information, we propose to add tracked SIFT features the

the final signature too. All the required modifications in the initial approach to manage

this add are performed (modification of the signature comparison by adding a weighted

dissimilarity measure of SIFT features in the final dissimilarity measure between signa-

tures).

Both SIFT and RHSP features being local descriptors, their use is controlled and

managed by the adaptive feature weighing system we propose and which is described in

the next paragraph.
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3.3.4 Fixed Weights for Each Descriptor

In the baseline approach of [Farenzena 2010], The weight of each feature in the final

signature comparison is fixed after an off-line learning on a part of the used dataset. This

poses the three following issues:

First, the off-line learning of the best weights is not conceivable for our work since

we try to provide a generic and turnkey system for people re-identification, which does

not require any external interaction after deployment.

Second, the used weights are the same for the whole dataset. We believe that this

kind of weighting method is not the best one. In fact, for each person to re-identify, the

system may focus more on the most discriminant information in this person appearance.

A given person appearance may be highly rich in terms of color while it is poor in terms

of textures (uniform large color regions on the cloths for example) and another person

appearance in the same dataset (or in the same camera network) may be poor in terms

of color (a unique dark color for example) while it is rich in terms of textures (created by

another unique color). These two persons may not be compared with candidate people

using the same features weights. The first person re-identification may focus more on

color information while the second person re-identification may focus more on texture,

event whether both people are in the same dataset or observed by the same camera.

Finally, using the visible side classification, the local nature of SIFT and RHSP fea-

tures implies the integration the people orientations in these two feature weighting.

It means that SIFT and RHSP feature weights vary greatly for the same query person

according the compared visible sides.

To deal with these issues, we propose an adaptive weighting method, to assign

the adequate weight to each feature of the visual signature, according to the rich-

ness/discriminative power of each type of information (Color and Texture) and to the

considered visible sides. The assigned weights are then not dataset/camera network re-

lated, but visible side and information richness/discriminative power based for each per-

son. The heterogeneity of the computed distances for the several people re-identifications

is not an issue since the aim is to find for each query person, the most likely correspond-

ing candidate, independently on the other re-identification queries.
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4

EFFICIENT PEOPLE DETECTOR BASED

ON COVARIANCE DESCRIPTORS

This chapter describes in detail the proposed people detector, mainly based on Tuzel

et al. [Tuzel 2007] approach and its improvements by Yao et al [Yao 2008]. This people

detector is based on a cascade of classifiers, trained using LogitBoost algorithm on Re-

gion Covariance Decriptors to detect full human body on both static images and video

sequences. The process is performed in two separate steps: an offline training step, and

a classification step.

4.1 Region Covariance Descriptor

Region covariance descriptors are a powerful way to encode a large amount of infor-

mation inside a given image region. Unlike the concatenation of several feature vectors,

which provide a final vector containing independent feature information, a Region Co-

variance Descriptor allows the encapsulation of a large range of different features in

a single structure, representing the variances of each feature in the represented image

region and the correlation between these features.

Tuzel et al. [Tuzel 2006] first introduce the use of covariance matrices as a descriptor

for object classification.

Let I be an image of dimension W × H. We can extract at each pixel location x

= (x, y)T a set of d features such as intensity, color, gradients, filter responses, etc.

For a given rectangular region R of I, let {zk}k=1..S be the d-dimensional feature points

inside R. The region R is represented with the d × d covariance matrix of the feature

131
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points

CR =
1

S− 1

S∑

k=1

(zk − µ)(zk − µ)T (4.1)

where µ is the mean vector of the points zk and S the number of pixels within R.

The diagonal entries of covariance matrix represent the variances of each feature,

and the non-diagonal entries are their respective correlations.

4.1.1 Fast Covariance Computation Using Integral Images

A large number of covariance descriptors are required to achieve the training of

classifier cascade and for an effective process. The computation of all the feature sums,

means and variances for each region has a high cost in term of processing time. To deal

with this issue, Integral Images are ideally suited to minimize the number of numerical

operations.

Integral Images are intermediate image representations used for the fast calculation

of region sums [Simard 1999, Viola 2001]. Each pixel of the integral image is the sum

of all the pixels inside the rectangle bounded by the upper left corner of the image and

the pixel of interest. For an image (i), the Integral Image value at a pixel coordinates

(x, y) is given by:

II(x, y) =
∑

x
′

≤x

y
′

≤y

i(x
′

, y
′

) (4.2)

The Integral Image of any image can be computed efficiently in a single pass over

the considered image, using the fact that the value in the summed area table at (x, y) is

just:

II(x, y) = i(x, y) + II(x− 1, y) + II(x, y− 1) − II(x− 1, y − 1) (4.3)

The main interest of Integral Image representation is the possibility to compute the

sum of pixels in any rectangular region of the image (see figure 4.1) using a constant

number of 4 access and 3 simple mathematical operations:

∑

x1<x
′

≤x2

y1<y
′

≤y2

i(x
′

, y
′

) = II(x2, y2) + II(x1, y1) − II(x1, y2) − II(x2, y1) (4.4)
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(0, 0)

(x2, y2)

(i)

i
x1 x2
y1 y2

(x1, y1)

Figure 4.1: Fast computation of the sum of pixels inside any rectangular region, using Integral

Image representation.

Integral Images can be used to reduce greatly Region Covariance Descriptors com-

putation. From equation 4.1, any entry CR(i, j) of the covariance matrix can be written

as:

CR(i, j) =
1

S− 1

S∑

k=1

(zk(i) − µ(i))((zk(j) − µ(j)) (4.5)

This equation can be rewritten as:

CR(i, j) =
1

S− 1

[

S∑

k=1

zk(i)zk(j) −
1

S

S∑

k=1

zk(i)

S∑

k=1

zk(j)

]

(4.6)

The covariance matrix in a given rectangular region R can be computed by firstly

computing the sum of each feature dimension z(i)i=1...d as well as the sum of the multi-

plications of any two feature dimensions z(i)(j)i,j=1...d .

An integral image P(x, y, i) is computed for each sum of each feature dimension i

and an integral image Q(x, y, i, j) is computed for each sum of the multiplication of any

two feature dimensions i and j

Due to the symmetric nature of covariance matrices, only upper (or lower) triangle

values are computed, it means that d Integral Images P(i)i=1...d and (d2 + d)/2 Integral

Images Q(i, j)i,j=1...d are computed

Considering any rectangular region R(x1, y1, x2, y2) of image, and using equation

(4.6) and equation (4.4), it is possible to compute the associated covariance matrix in a

constant number of operations as:
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CR(x1,y1,x2,y2) =
1

S− 1

[

Qx2,y2 +Qx1−1,y1−1 −Qx2,y1−1 −Qx1−1,y2

−
1

S
(Px2,y2 + Px1−1,y1−1 − Px2,y1−1 − Px1−1,y2)

(Px2,y2 + Px1−1,y1−1 − Px2,y1−1 − Px1−1,y2)
T
]

(4.7)

4.1.2 Used Features

For people detection purpose, we use an initial set of 8-dimensional set for features,

like in [Tuzel 2007] and in [Yao 2008]. Tuzel et al. [Tuzel 2007] use the following set

of pixel features (see figure 4.2):

[

x y |Ix| |Iy|
√

I2x + I2y |Ixx| |Iyy| arctan
|Ix |

|Iy|

]T

(4.8)

where:

x and y are the pixel coordinates

Ix and Ixx are respectively the first and the second order intensity derivatives on X axis

Iy and Iyy are respectively the first and the second order intensity derivatives on Y axis
√

I2x + I2y and arctan
|Ix |
|Iy

| are respectively the magnitude and the orientation of the gra-

dient (the edge).
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Figure 4.2: The 8 pixel features used in [Tuzel 2007].
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Yao and Odobez [Yao 2008] replace the two second derivatives features |Ixx| and

|Iyy| by two foreground measures G and
√

G2
x + G2

y . G denotes the foreground

probability value (a real number between 0 and 1 indicating the probability that the

pixel x belongs to the foreground), and Gx and Gy are the corresponding first order

derivatives. These foreground features are obtained using a background subtraction

technique which is restricted to moving people (see figure 4.3). In the context of human

detection in videos, foreground measures should be much more informative.

Figure 4.3: [Yao 2008] positive examples with corresponding foreground probability maps (light

- high probability, dark - low probability).

Despite the improvements provided by the use of these two background features in-

stead of the two second order derivative ones, we have used both set of features. The

final evaluation and comparison of our people detector is performed using [Yao 2008]

features but some necessary tests and comparisons to highlight our intermediate contri-

bution are performed using [Tuzel 2007] features set. This is due to the availability of

more details concerning the trained classifier in [Tuzel 2007]: the cascade of classifiers

structure, the required training time, the negative rejection rate per cascade level, the

average detection time per image, etc. so to make sense to the comparison, it has to be

performed in the same conditions.

In [Yao 2008], only global evaluation results and their comparison with state of the

art ones are provided.

Note that in the considered case of 8-feature set, the covariance matrix will contain
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36 different values (due to the symmetry), and 44 Integral Images are computed to

speed up the computing process (8 integral images for the representation of the sums

of each feature independently and 36 for the representation of the sums of product for

each pair of features).

4.1.3 Covariance Normalisation

The covariance features are robust towards constant illumination changes. To en-

hance the robustness against local linear variations of the illumination on a given subre-

gion r with respect to its largest containing region R, a normalization step is performed

on the covariance matrix.

First, both covariance matrices Cr and CR are computed using integral represen-

tation. The values of covariance matrix Cr are normalized with respect to the standard

deviations of their corresponding features inside the containing region R as:

Ĉr = diag(CR)
− 1

2 · Cr · diag(CR)
− 1

2 (4.9)

where Ĉr is the normalized covariance matrix of the subregion r, Cr its initial covari-

ance matrix, CR the covariance matrix of the containing region and diag(CR) is a matrix

equal to CR at the diagonal entries and zero value at all other entries.

4.2 Region Covariance Descriptors as Riemannian Manifold

A manifold is a topological space which is locally similar to an Euclidean space. Ev-

ery point on the manifold has a neighborhood for which there exists a homeomorphism

(one-to-one, onto, and continuous mapping in both directions) mapping the neighbor-

hood to R
m. For differentiable manifolds, it is possible to define the derivatives of the

curves on the manifold. The derivatives at a point X on the manifold lie in a vector space

TX, which is the tangent space at that point.

A Riemannian manifold M is a differentiable manifold in which each tangent space

has an inner product <,>X∈M , which varies smoothly from point to point. The inner

product induces a norm for the tangent vectors in the tangent space such as that ‖v‖2X =

< v, v >X .

The minimum length curve connecting two points Xi and Xj on the manifold is called

the geodesic and the distance between the points d(Xi,Xj) is given by the length of this

curve (see figure 4.4).

Let v ∈ TXi
and Xi ∈ M. From Xi, there exists a unique geodesic γv(t) starting

with the tangent vector y. The exponential map expXi
: TXi

7−→ M maps the vector
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y to the point reached by this geodesic, and the distance of the geodesic is given by

d(Xi, expXi
(v)) = ‖v‖Xi

. The inverse mapping is defined by logXi
: M 7−→ TXi

.

Figure 4.4: A two-dimensional manifold. The tangent plane at Xi, together with the exp and

log maps relating Xi and Xj are shown. (source [Goh 2008]).

In the following paragraphs, points in the vector space are noted with small bold

letters while points on the Riemannian manifold are noted with capital bold letters.

The covariance matrices are symmetric positive definite matrices. The set of d × d

dimensional symmetric positive definite matrices, noted Sym+
d can be formulated as a

connected Riemannian manifold, and an invariant Riemannian metric on the tangent

space of Sym+
d is given by [Pennec 2006]

< y, z >X= trace(X− 1
2 yX−1zX− 1

2 ) (4.10)

The two mapping functions are:

expX(y) = X
1
2 exp(X− 1

2yX− 1
2 )X

1
2 (4.11)

logX(y) = X
1
2 log(X− 1

2yX− 1
2 )X

1
2 (4.12)

The exp and log are the ordinary matrix exponential and logarithm operators. Not

to be confused with expX and logX which are manifold specific operators, and which are

point dependent, X ∈ Sym+
d . The tangent space of Sym+

d is the space of s×d symmetric

matrices, and both the manifold and the tangent spaces are m = d(d+1)/2 dimensional.

The ordinary matrix exponential and logarithm of a symmetric matrix can be com-

puted easily using its eigenvalue decomposition. Let Σ = UDUT the eigenvalue decom-

position of a symmetric matrix. The ordinary exp and log matrix operators are given

by:

exp(Σ) =
∞∑

k=0

Σk

k!
= U exp(D)UT (4.13)
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log(Σ) =
∞∑

k=1

(−1)k−1

k
(Σ− I)k = U log(D)UT (4.14)

exp(D) and log(D) are obtained by applying respectively exponential and logarithm

functions on the diagonal entries of the diagonal matrix D.

Note that the exponential operator is always defined whereas the logarithms only

exists for symmetric matrices with positive eigenvalues, Sym+
d , which is the case for the

considered covariance matrices.

From the definition of the geodesic given above, the distance between two points on

Sym+
d is measured by substituting (4.12) into (4.10)

d2(X,Y) =< logX(Y), logX(Y) >X

= trace(log2(X− 1
2 YX− 1

2 ))
(4.15)

A minimal representation of the points (covariance matrices) in the tangent space are

required for classification. Tuzel et al. [Tuzel 2007] define an orthonormal coordinate

system for the tangent space with the vector operation. The orthonormal coordinates of

a tangent vector y in the tangent space at point X is given by the vector operator:

vecX(y) = vecI(X
− 1

2 yX− 1
2 ) (4.16)

where I is the identity matrix, and the vector operator at identify is defined as

vecI(y) =
[

y1,1

√
2y1,2

√
2y1,2 ... y2,2

√
2y2,3 ... yd,d

]T
(4.17)

Given a set of points (covariance matrices), the tangent space used for the mini-

mal representation defined above is tangent to the Riemannian manifold of covariance

matrices at a specific point which is the mean of all the considered points (covariance

matrices).

The mean of a set of point {Xi}i=1...N on Riemannian manifold is defined as:

µ = arg min
X∈M

N∑

i=1

d2(Xi,X) (4.18)

where d2 is the distance metric defined in (4.15).

The mean point can be computed iteratively using the following gradient descent

procedure

µt+1 = expµt

[

1

N

N∑

i=1

logµt(Xi)

]

(4.19)
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A weighted mean can be computed similarly, by

µt+1 = expµt

[

1
∑N

i=1 wi

N∑

i=1

wi logµt(Xi)

]

(4.20)

4.3 LogitBoost Algorithm on Riemannian Manifolds

The classification process is performed using a cascade of classifiers which is trained

using a LogitBoost algorithm on Riemannian Manifolds like in [Tuzel 2007] to allow

comparison of our cascade of classifiers with the one obtained in [Tuzel 2007]. As it

was mentioned in section 2.1.3.3, the main difference between Adaboost an Logitboost

resides in the way the weak classifier errors are computed and thereby the way the best

weak classifier is selected at each iteration. AdaBoost minimizes an exponential loss

function while LogitBoost minimizes a logistic loss.

4.3.1 Standard LogitBoost Algorithm on Vector Spaces

As presented in [Friedman 1998], let {(xi, yi)}i=1...N be the set of training samples,

with yi ∈ {0, 1} and xi ∈ Rn. The goal is to find a decision function F which divides the

input space into the 2 classes.

In LogitBoost, this function is defined as a sum of weak classifiers, and the probability

of a sample x being in class 1 (positive) is represented by

p(x) =
eF(x)

eF(x) + e−F(x)
(4.21)

F(x) =
1

2

NL∑

l=1

fl(x). (4.22)

where fl(x) is the trained weak classifier at the lth iteration.

The LogitBoost algorithm iteratively learns the set of weak classifiers {fl}l=1...NL
by

minimizing the negative binomial log-likelihood of the training data:

−

N∑

i

[yilog(p(xi)) + (1 − yi)log(1 − p(xi))], (4.23)

through Newton iterations. At each iteration l, this is achieved by solving a weighted

least-square regression problem:
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N∑

i=1

wi‖fl(xi) − zi‖2 (4.24)

where

zi =
yi−p(xi)

p(xi)(1−p(xi))
denotes the response values,

and the sample weights are given by wi = p(xi)(1 − p(xi)).

4.3.2 LogitBoost Algorithm on Riemannian Manifolds

The trained cascade consists of a list of ordered strong classifiers. Each strong clas-

sifier contains a set of weak classifiers. A weak classifier is defined by a subregion of

interest inside the detection region, the corresponding mean value of covariance de-

scriptors of all positive samples in the same subregion, and the corresponding regression

function.

To train the LogitBoost cascade of classifier using covariance descriptors, the stan-

dard LogitBoost algorithm is not usable as it is. In fact, covariance descriptors do not

belong to vector spaces but to the Riemannian manifold M of d× d symmetric positive

definite matrices Sym+
d .

Based on the previously presented invariant Riemannian metric, and the minimal

representation of covariance matrices on the tangent space proposed in [Tuzel 2007],

Tuzel et al. have introduced a modification to the original LogitBoost algorithm to

specifically account for the Riemannian geometry. The modified LogitBoost algorithm

is presented in figure 4.5

To train a level “k” of the cascade, a given number of weak classifiers are successively

added. To add a weak classifier “l” to the current training classifier, 200 candidate weak

classifiers are evaluated: 200 subwindows are randomly selected.

Let ri be one of these subwindows and Ĉj
ri

the corresponding normalized covariance

descriptor on the sample j. For each subregion ri, the weighted mean µi of all the

normalized covariance descriptors Ĉj
ri

of the positive samples is computed using a

gradient descent procedure (eq. 4.20).

Using this mean µi, all Ĉj
ri

of all the samples (positives and negatives) are projected

onto the tangent space using (eq. 4.16) obtaining vectors in Euclidean space. Using

these vectors and the corresponding weights of all samples, a regression fucntion gi is

computed.

The best weak classifier candidate, which minimizes negative binomial log-likelihood

(eq. 4.23), is added to the current training classifier.
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Figure 4.5: Pedestrian detection with cascade of LogitBoost classifiers on Sym+
8 (source

[Tuzel 2007]).

The weights and the probabilities of all the samples are updated according to the

new added weak classifier. The positive and the negative samples are sorted in a de-

creasing order using their probabilities. The current strong classifier is considered as

fully trained if the difference between the probability of the (99.8%)th positive sam-

ple and the (35%)th negative sample is greater than 0.2. This means than the current

trained cascade level has to reject at least 35% of the remaining negatives while it has to

correctly detect at least 99.8% of the positive samples, and the value “0.2” represent a

minimum margin to ensure between the 35% rejected negatives and the 99.8% positive.

It is used to make the separation more reliable.

In this case, the training of the current cascade level is achieved. The negative sam-
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ples are tested with the new cascade and all correctly classified samples (recognized as

negatives) are removed from the training dataset. The next cascade level is trained using

remaining negatives.

The training algorithm produces a set of K LogitBoost strong classifiers.

Yao et. al [Yao 2008] have introduced two important improvements that we use also.

First, classifiers are trained on a covariance descriptors with lower dimension. The

initial set of 8-dimensional features is always kept and all the corresponding Integral

Images (for individual features and the feature products) are computed, but a weak

classifier is defined by a lower dimensional covariance matrix, computed with the more

representative subset of features in the considered image subregion, and can vary from

a region to another one.

Practically, each candidate subregion among the 200 randomly selected does not

provide a unique candidate weak classifier with a 8 × 8 covariance matrix, but a set of

candidate weak classifiers, each of them is computed using a 4 × 4 covariance matrix.

All the possible combinations of 4 features from the 8 initial ones are considered.

This provides

(

8

4

)

= 70 covariance matrices to consider for each candidate subre-

gion. To avoid the high computational cost required to test all these 70 covariance ma-

trices for each subregion, a substitute of the negative binomial log-likelihood for each

4× 4 matrix for each subregion is calculated as follow:

� The

(

8

2

)

= 28 possible 2×2 covariance matrices of the all possible pairs of features

(from the 8 initial ones) are computed for each subregion.

� The negative binomial log-likelihood for each 2× 2 matrix is computed using (eq.

4.23).

� Instead of computing the real negative binomial log-likelihood of a given 4 × 4

matrix computed with the four features {f1, f2, f3, f4}, this value is replaced by the

sum of the negative binomial log-likelihood of all the 2 × 2 matrices which are

computed with at least one of {f1, f2, f3, f4} features.

� The subset of 4 features which provides the minimal sum is considered as the best

(more representative) subset for the considered region.

The second improvement consists in the concatenation of the mean feature vector

of each random subregion to its corresponding mapped vector of each sample before

regression computing, improving performances by increasing the amount of information

in the final vector.
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4.3.3 Cascade of Classifiers Optimization

4.3.3.1 Main Issues

The structure of the cascade of classifiers is as important as its content. The cascade

content (weak and strong classifier discriminative power) defines the detection perfor-

mances in terms of false positive (false detection) and false negative (miss detection)

rates, while the cascade structure (the number of strong classifiers in the cascade and

the number of weak classifiers in each of them) greatly defines the processing time cost.

The discriminative power of a weak classifier depends directly on its selected sub-

region (the information contained in this subregion). The main issue in the proposed

method is related to the fact that each weak classifier is selected as the best one from “n”

randomly selected candidate weak classifiers (n=200 is taken in the approach) but not

the best possible one at all. For the iteration “l”, the best weak-classifier candidate from

the “n” randomly selected ones can be insufficiently discriminant, and its selection will

require to add more weak-classifiers to compensate its low discriminative power, and

thereby lengthening the strong classifiers of each cascade level.

The optimal cascade of classifier in term of discriminative power and time processing

can be obtained by selecting the best weak classifier from all the possible ones, at each

iteration “l” of each level “k”, because in this case, we ensure that the selected weak

classifier is the most discriminative one, but in practice, this is impossible to perform (or

at least, in a reasonable training time).

In fact, if we take the INRIA training dataset as example, it contains people training

images with 64 × 128 pixel size in which, the person image is surrounded by a 16 pixel

margin. Considering the minimum size of subregions as 10% of image width and height

as proposed in [Tuzel 2007], the number of all possible subregions with a minimum size

of 6× 12 pixels is 12.218.310, and if only person sub-image is considered (ignoring the

margin), i.e. images of 32 × 96 with subregions of 3 × 9 minimum size, the number of

all possible subregions is 1.820.940 subregions.

This represent a high number of subregions to process at each iteration “l” of each

level “k”, knowing that even if it is possible to compute the normalized covariances of

all these subregions on all training images once before training (because the covariance

matrices do not change), the mean covariance of each subregion will change from train-

ing iteration to another one, due to the used weighting process which evolves according

to the previous iteration and to the considered samples at a given time. This requires to

compute a weighted mean of more than 1.8 million covariance matrices (or more than

12 million covariances matrices in the case of the whole images, with margin), using the

gradient descent procedure (eq. 4.20) which is an iterative procedure, requiring several
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iterations. In addition to this, the minimal representation of each covariance matrix in

tangent space and the regression function will change due to the dependency of the

projection function to the mean covariance matrix.

By using only 200 subregions at each iteration, the training time indicated in [Tuzel 2007]

is approximatively 2 days. We can easily see that processing more than 1.8 million subre-

gions (or 12 millions subregions depending on the inclusion of margin) is not reasonable.

It is then necessary to select a subset of subregions at each iteration, but without any a

priori knowledge concerning the more informative regions, this selection is performed

randomly, increasing the probability to have more weak classifier in each cascade level

than in the optimal case.

The previously described people detector provides interesting detection performances,

with a lower rate of miss-detections and false positives (see 7.1), but it has the disad-

vantage of being highly time consuming for the detection process and not applicable for

real-time processing. In [Tuzel 2007], the authors indicate that detection time on a 320

x 240 image is approximatively 3 seconds for a dense scan, with 3 pixel jumps vertically

and horizontally.

The feature subset selection approach, proposed by Yao and Odobez in [Yao 2008]

allows to work in a lower dimensional symmetric positive definite matrices, making

eigenvalue decomposition faster and thereby allowing real time processing, but the pro-

cessing time reduction is greatly due to the use of foreground features, extracted using

background subtraction algorithm. Non moving image regions are quickly rejected. Un-

fortunately, the unavailability of high quality foreground information (as the ones used

in [Yao 2008], shown in figure 4.3), and some time the unavailability of the background

subtraction (in static image case) limits this improvement dedicated to video sequences

only, with the availability of an efficient background subtraction.

Note that most computationally expensive operation during the training and the clas-

sification is eigenvalue decomposition. This decomposition is the basis of all operators in

Sym+
d . Eigenvalue decomposition of a symmetric d×d matrix requires O(d3) arithmetic

operations.

We focus in our work on another way to make the classification faster while main-

taining high classification performance. At the end, the obtained approach improves

also the training stage. This is performed by compensating the random selection of

subregions issue with a pre-training step.

In the following paragraphs, we will illustrate the improvements of our contribution

using tests on INRIA Person dataset [], due to the availability of more information con-

cerning cascade structure and processing time in [Tuzel 2007] on this dataset, but the

reasoning and the proposed method can be generalized to all datasets.
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4.3.3.2 Clustering Negative Data Before Training

Using a large number of samples slows down the training process. Of course, the

larger the training dataset is, the more efficient the classifier cascade is. But most of

the time, especially for first cascade levels, a large number of negative samples contains

very similar information. This is due to the fact that a new level is trained using false

positives of previous levels, and in this case, these false positives are generally resulting

from successive small shifts of testing window on the image, providing very similar

content.

The trained cascade of classifiers on INRIA Person dataset by Tuzel et al. in [Tuzel 2007]

contains 30 strong classifiers (levels) (see figure 4.6 (a)).

A first idea to speed up the training process is to use a smaller subset of randomly

selected negative samples to train a given cascade level. We can suppose that a ran-

domly selected subset can be statistically representative of all remaining negatives, and

a trained cascade level on this subset will reject a proportional number of negatives from

the whole training dataset than the one rejected from the selected subset.

We have tested this approach and we have observed that random selection effec-

tively speeds up slightly training and provides 4 less cascade levels in comparison than

[Tuzel 2007] but with longer classifiers (figure 4.6 (b)), slowing down the detection in

comparison to the previous mentioned approaches. In fact, one cascade level consists of

a set of weak classifiers. The response of one classifier is obtained after computing the

output values of all its weak classifiers. It means than a long classifier containing a large

number of weak classifiers takes more time to return a decision, so a cascade of long

classifiers is very slow for detection.

Decreasing the training time by increasing the detection one is not acceptable as long

as the detection process is the final aim, but the idea of training each cascade level on a

subset of negative samples to speed up the training is still an interesting way to explore.

It is just necessary to find the best way to select the negative sample subsets to decrease

the number of necessary weak classifiers per cascade level and to take into account the

random nature of the subregion selection.

We have constructed our reasoning starting from this observation: the number of

weak classifiers per cascade level depends mainly on the diversity of negative samples

used for the training. The characterisation of positive samples and their separation from

the negative ones require as many subregions of interest as the samples are diverse.

To illustrate the relationship between negative sample diversity and classifier cas-

cade structure, let us use a simple example which can be generalized to understand the

concept.

Suppose that we have to separate a person image from three non-person images: a
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(b) Random subset selection

Figure 4.6: Comparison between structures of the cascade of classifiers: (a) Tuzel et

al.[Tuzel 2007]. (b) Random subset selection: shorter cascade (4 levels less than original ap-

proach) but more weak classifiers in most of cascade levels. (c) our proposed approach: less

cascade levels with less weak classifiers in most of them in comparison with (a) and (b).

blue sky image, a vertical barrier image and a lamppost image.

� Due to the poverty of texture and gradient on the blue sky image, a unique large

covariance region (figure 4.7(a)) is sufficient to separate the blue sky image from

the person image, which has many gradients and a vertical shape.

� For vertical barriers, the previous region is not appropriate due to the vertical

shape of a barrier. A smaller region around the person’s head is more appropriate

(figure 4.7(b)). The circular shape of the head provides a good separation between

a person and a vertical barrier.

� Now, for the lamppost, the two previous regions are not suitable. It is necessary

to take a region around legs to encode the separation between the legs (figure

4.7(c)).

(a)               (b)                 (c)

Figure 4.7: Three possible weak classifiers to reject: (a) low texture and non vertical shapes. (b)

non circular shape at the top (head). (c) not separated shape at the bottom (legs).

For this example, there are two methods to train the classifier. The first cascade is

trained with the three negative images at the same time, using appropriate parameters.

The second cascade is trained with one negative image at a time in the mentioned order.
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The first method provides “a cascade” of a unique strong classifier containing three

weak classifiers at least (the number can be larger due to the possible combinations)

(figure 4.8(a)). The second method provides a cascade with three levels (figure 4.8(b)),

each level containing one weak classifier corresponding to one case (textured and verti-

cal shapes only, circular shape at the top of vertical shape, separation between legs).

(a)

(b)

The response of 3 weak classifiers is computed

for each tested image region ⇒ Detection time 

= N x 3 x t

N: the number of tested regions on the image

t: processing time for a weak classifer response

The response of 3 weak classifiers at most is

is computed at each tested image region:

 -   Low gradient / non vertical shape regions are 

     rejected at the first level, requiring to compute only

     1 weak classifier response.

 -   Non circular shape at the top are rejected after 

     computing only 2 weak classifiers

The second cascade is better and can be

optimal if the cascade levels are ordered from

the more rejecting to hte less rejectiong levels

Cascade of 1 level with 

3 weak classifiers

Cascade of 3 levels with 

1 weak classifier at each level

Lv.1

Lv.1

Lv.2

Lv.3

Figure 4.8: Two possible cascade structures: (a) One level cascade with three weak classifiers.

(b) Three levels cascade, with one weak classifier per level. The second cascade is more opti-

mized.

Suppose now that we have to perform a people detection on a large image which

contains only sky, a low textured road, some vertical barriers and some lampposts. Both

cascades will provide equivalent detection performances, but the second one will be

faster. This is because most of tested windows (sky and road) are rejected after eval-

uating only one covariance descriptor (the one of the first cascade level), while the

second classifier cascade needs to evaluate three (or more) covariance descriptors for

each tested window.

We propose an approach using a smaller subset of negatives at each cascade level

training to make it faster. Our approach provides shorter cascade with smaller classifiers

on average (figure 4.6 (c)) in comparison with the [Tuzel 2007] one (figure 4.6 (a))

speeding up the detection process. At the same time, the experimental results show that

our approach provides slightly better detection performance than the original one.

The idea consists in regrouping negative samples per groups containing similar con-

tent in terms of covariance information, and in training each cascade level with one

group of similar samples.

The previously described Logitboost algorithm achieves characterization of people

against a group of negative samples faster when these negative samples are more similar.
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It also specializes each cascade level faster and reduces the effect of random subregion

selection method for best weak classifier extraction in this case.

We have tested two clustering methods to achieve the negative sample regrouping.

The first one is performed directly in the Riemannian manifold of covariance matrices

while the second one is performed in the Tangent vector space.

4.3.3.3 Hierarchical Clustering in Riemannian Manifold of Covariance Matrices

The first clustering method to group similar negative samples in term of covariance

information is performed directly using the distance between covariance matrices pro-

vided by eq. (4.15).

To compare two negative images in term of covariance information, and due to the

unavailability of a priori knowledge concerning the most important subregions in these

images, we perform a pyramidal division of the images in 4 levels where level 0 is the

whole image (see figure 4.9).

Figure 4.9: The 4 levels pyramidal subdivision of negative images for clustering. The level 0

(the left one) is the whole image.

The distances between all pairs of negative images is performed in each pyramid

level. For a given pyramid level, the distance between two negative images I1 and I2

is given by the sum of squared distances between all pairs of subregions at the same

location from the two images. The distance between two image subregions is provided

by the distance between their corresponding covariance matrices using eq. (4.15) (see

figure 4.10).

A triangular matrix containing distances between all pairs of negative images is then

computed for each pyramid level. From a given matrix of distances, it is easy to ex-

tract iteratively the largest cluster which contains the most similar n% of images. We

take the value of 35% of remaining negative samples to be similar and comparable to

[Tuzel 2007] and [Yao 2008]. The hierarchical clustering is illustrated in figure 4.11.

From each pyramid level, we can extract the largest clusters of the most similar

remaining negative samples. This provides 4 candidate largest clusters, the largest one

from each pyramid level. We select the best cluster as the one which provides the lowest
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Figure 4.10: Negative image distance in the last pyramid level (4× 4 subdivision), computed as

the sum of squared distances between each pair of covariance matrices of the same subregion.
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Figure 4.11: Hierarchical tree of clustered negative samples.

inter-images distances. This value is computed as the sum of all distances between all

pairs of images belonging to the considered cluster.

The training is now done by using the largest cluster of most similar negative images

for each trained cascade level. Once a cascade level is trained using the selected cluster,

the new cascade is applied to all the remaining negative samples, those used for training

and the others which are not in the selected cluster. The next cluster is selected using

the same method described below, applied on the remaining negative images.

Note that for a given cascade level, we observe that 80% to 95% of the negatives

from the used cluster are correctly classified and removed and a small part of unused

negative images (not belonging to the used cluster) also.
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The comparison between the structure of our cascade of classifiers and the one from

[Tuzel 2007], shown in figure 4.6, shows the effectiveness of our method. Our cascade

of classifiers is shorter than [Tuzel 2007] one and most levels in our cascade of classifiers

are shorter than their corresponding levels in [Tuzel 2007] one.

A more detailed comparison in terms of detection performances and processing time

and a global evaluation which validates the effectiveness of the proposed people detector

are provided in the chapter 7.

The second tested clustering approach consists in projecting all the remaining neg-

ative samples to the tangent space on their mean points. In this method, we consider

the covariance matrix of the whole image as its representation (equivalent to the level

0 of the used pyramid in the previous method). The mean of all negative samples is

computed and used to project all covariance descriptors to the Euclidean space. Finally

in Euclidean space, the clustering is performed using adaptive bandwidth mean shift

filtering [Comaniciu 2002]. (See Figure. 4.12)

X2X4

X1

X3

μ

M

Tμ
0

x1

x3 x2

x4

the largest cluster

logμ

logμ

Figure 4.12: Illustration of clustering on a tangent space to a 2D Manifold.

The obtained cascade of classifiers, trained using clustered negative samples by this

second method is substantially similar to the one we have obtained with the original

method (without clustering). This is due to the negative sample sparsity.

Unlike for positive samples, the mean of negative samples does not have a physical

sense (see figure 4.13, second row), or at least, it has a sense for the largest clusters

of the first training levels which share some similar content. Positive samples share a

similar shapes, even if variations can occur in these shapes (see figure 4.13, first row).

The mean covariance matrix of a given subregion can be considered as the covariance

matrix of the mean shape of this subregion on all positive samples.

Generally, remaining negative samples after few iteration do not share similar shapes
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in the same image locations, so the resulting mean does not represent a physical infor-

mation from the considered negative samples. Therefore, projecting negative samples

using insignificant mean loses the topological distribution of these negative samples in

the tangent space. This is illustrated in figure 4.14

For this reason, our final people detector is trained using the hierarchical clustering

in Riemannian manifold of covariance matrices.

...

...

Figure 4.13: Mean of gradient images. First row: some various positive image samples with the

mean gradient image of the positive training dataset. Second row: some various negative image

samples with the mean gradient image of the negative training dataset. The mean of positive

images represent a mean shape of the human body while the mean of negative images does not

represent any shape.

4.4 Conclusion

We have proposed an approach to optimize people detection using covariance de-

scriptors. This approach consists in clustering negative data before the training step to

obtain better classifier structure. The resulting detector is faster than original one and

was trained in shorter time (detailed evaluations are provided in chapter 7).

Clustering negative data before training allows to reduce the effect of random sub-

regions selection for best weak classifier training. As explained above, the exhaustive

testing of all possible weak classifiers at each iteration is impossible in a reasonable pro-

cessing time, and a targeted subregion selection is not possible due to the unavailability

of any a priori information concerning the most interesting regions.

Of course, the unavailability of any a priori information concerning the most inter-

esting regions can be considered as an issue for the negative image comparison and

clustering. To compare two negative images and compute a distance between them, it

is necessary to focus on the region of interest on each of them, which is not possible
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Figure 4.14: Illustration of negative samples sparsity in a 2D Manifold: In the first iteration,

many negative samples are available. The largest cluster in the Riemanian manifold M attracts

the mean near to it, and the projected points keep a large amount of topological distribution.

Thereby, the first cluster has a sense in term of covariance matrices similarity. In the second

iteration, once the largest cluster is removed, the negative samples are sparse, and the computed

mean provides a projection with a changed topological distribution. The samples X2 and X4

which are clearly different in M are grouped in the same cluster (x2 and x4).

for the same reason. To deal with this, a clustering stage is performed using several

subdivisions of images. It is not the optimal way but it reduces significantly the random

nature of subregion selection during the training.

We have shown that this clustering is better when it is performed directly in Rie-

mannian manifold of covariance matrices, due to the fact that a distance between two

covariance matrices is more precisely represented by the length of the geodesic which

links them, instead of the euclidean distance between their projected points in the tan-

gent space. This euclidean distance may be altered by a non-significant mean computed

on sparse negative data.

The basic method [Tuzel 2007] on which we have built our reasoning and improve-

ments are not the last and the most efficient ones in the state of the art [Dollar 2010,

Walk 2010, Felzenszwalb 2010]) when this thesis has been written, but when we have

performed this work, [Tuzel 2007] was one of the most efficient approach in the state

of the art , and our interest for this method is also justified by the nature of the trained

classifier and the high processing time required. It allows us to highlight the contribu-

tion of our proposed method and to discuss its generalisation to other approaches based

on cascade of classifier training.

In fact, clustering negative data before training is an efficient way to optimize the

trained cascade of classifiers, for which the training cannot explore all the space of
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possible weak classifiers to select the best one at each iteration. According to the used

descriptor (Haar-like, LPB, etc.), to its similarity measure, and to the way the candidate

weak classifiers are preselected for the selection of the best one, it is possible to speed

up the training phase using this clustering method in the appropriate descriptor space

(generally in Euclidean space for most of descriptors).
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5

ROBUST OBJECT TRACKING USING

PARTICLE FILTERING

This chapter describes the proposed object tracking algorithm in mono-camera con-

text. This tracking is performed with static and calibrated cameras. The tracked objects

are modelled with a set of SIFT features, selected in a specific way. The object tracking

is performed in three separate levels: first the SIFT features are tracked independently

using a particle filter. Then, object localisation and temporal links are built using a data

association framework based on the localisation and the reliability of the tracked SIFT

features. Finally, occluded objects are managed with two methods, the first one, based

on real world information and dominant color descriptor, is faster and is sufficient to

deal with occlusion situations in most of the cases, but for ambiguous or complex cases,

the re-identification method, presented in chapter 6 is used.

5.1 Tracked Target Initialization

In the proposed tracking algorithm, moving object detection in the scene is per-

formed using a state of the art background subtraction algorithms based on adaptive

background mixture models [Stauffer 1999]. In this algorithm, moving image regions

are extracted as group of foreground pixels. These groups of pixels are more or less con-

nected, depending on the contrast of the corresponding object and some parameters of

the background subtraction algorithms (several thresholds, number of considered Gaus-

sian, etc.). A clustering step is performed to regroup the foreground pixels in blobs

representing one or several grouped objects in the scene, and to filter too small groups

155
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of pixels which are probably noise (see figure 5.1). Finally, these blobs are delimited by

minimal bounding boxes (the smallest ones which surround blobs) which will be used

to define the localisation of the objects in image.

Figure 5.1: Background subtraction results for real video. The top-left image is the original

one, the three other images are the results of background subtraction using different parameter

values [McHugh 2009]

Figure 5.2: Screenshot of Digital Barriers calibration tool

5.1.1 Classification by Real Dimension Estimation

As mentioned in the introduction chapter, our work is performed using calibrated

cameras. The camera calibration is performed using a proprietary software developed
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by Digital Barriers France (previously Keeneo). The calibration is based on vanishing

lines approach (see figure 5.2). It provides both extrinsic and intrinsic calibration ma-

trices in an Y-top coordinate system. These matrices are used for real world ⇄ image

projection. Note that this tool is easy to use and requires few operations from video

operators (defining 4 straight lines on the ground floor and one vertical line, in addition

to an estimation of the height of any object in the scene). This does not affect the “easy

to use” constraint we try to respect.

A first classification of the moving objects is performed using an estimation of their

real dimensions (3D width “W” and 3D height “H”) provided by camera calibration

matrix (see figure 5.3).

W

H

D

h

w

x

y

X

Z

Y

World

Image

Figure 5.3: Real world dimension projection. Depth is ignored

Any real world point P1(X, Y, Z) has a unique projection p1(x, y) in the image, but a

given 2D image point p2(x, y) has infinite possible corresponding points in real world.

All these points belong to a straight line (L) which passes through the optical center of

the camera (see figure 5.4). To obtain a unique corresponding point (X, Y, Z) in the real

world for a 2D point (x, y) in the image, an additional constraint is required. Generally,

the ground plane is considered as the plane with coordinate Y = 0, then all 2D points

on the ground image can be easily projected to real world and their real coordinates in

the camera coordinate system can be computed.

� To estimate the real width W of a given object in the scene, the two bottom cor-

ners of its bounding box pbl (bottom-left point) and pbr (bottom-right point) are

projected with Y = 0 assuming that the object is on the ground. Once the two real

coordinates of the object borders Pbl and Pbr are computed, the distance between

them is considered as the object width W (see figure 5.5).

� For the real height H estimation, a double constraint is considered. The bottom-

center point of the bounding box pbc is projected to real world coordinates Pbc
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Figure 5.4: World to image and image to world projections: a unique image point p1(x, y)
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Figure 5.5: Real width W estimation

using Y = 0 providing a first point Pbc(X1, 0, Z1). The top-center point of the

bounding box is also projected in real world using Y = 0, providing second point

P2(X2, 0, Z2) but this point does not really represent the top point of the object. It

represents the intersection point between the ground plane (G) on one hand and

the straight line (L) passing through the optical center of the camera and the top

point of the considered object in the other hand. To estimate the real coordinates

of the top point of the object, the intersection point between this straight line (L)

and the plane (π) containing the two points Pbl and Pbr and which is perpendicular

to the ground plane (G) is computed and considered as the wanted point Ptc (real

top-center point of the object). The distance between Pbc and Ptc is considered as

the object height (see figure 5.6).

The depth of objects is ignored due to the impossibility to estimate it from a single
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Figure 5.6: Real height H estimation

monocular camera.

The first classification of moving objects is then performed by fitting the real dimen-

sions with previously defined dimension ranges for known classes of objects of interest

(see figure 5.7).

5.1.2 People Detection

The previously detailed method is fast to perform and provides, most of the time,

good detected and classified objects, but can be imprecise in some situations. For ex-

ample, if no shadow removal is performed, the bounding box representing the object is

not precise and includes shadow pixels, providing erroneous projections and real dimen-

sions which did not fit with known classes or fit with incorrect ones. Another example

concerns grouped objects. If a group of individuals are too close to each others, the

extracted bounding box will include all the people and its projected dimensions will not

fit with any class or will fit with wrong one (see figure 5.8).

To deal with these possible situations for people tracking, while keeping the interest-

ing aspect of fast detection and classification using background subtraction and camera

calibration information, we use our people detector following two rules:

� The people detector is applied on the moving regions on which the first classifica-

tion is ambiguous (object dimensions which do not fit with any class dimensions,

large objects which can be a group of people, etc.). This allows to reduce the area

of searching to a subregion instead of the whole image.

� The calibration information is used to limit the searching scales of the people de-

tector. The admitted interval of people height (the human model) is used to project
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realistic searching window size on the moving region, avoiding useless scale de-

tection.

These two rules allow to perform the detection in negligeable time, and thereby, did

not slow all the tracking process which is still performed in real time.

Note that the real world dimension estimation and the background subtraction infor-

mation are also used during the tracking itself. One for fast occlusion management and

the other for the particle filtering process. This will be detailed in the following sections.

Our tracking algorithm requires the set of all detected moving objects of interest in

every frame of the video sequence, in the form of bounding boxes and their correspond-

ing extracted foreground pixels.

5.2 Object modeling

To be tracked, an object of interest has to be modeled using its discriminant features.

Among the different possible representations for an object (colors, shapes, etc.), we

choose to model each tracked object by a set of features points. This choice is motivated

by the independence of points between them, which allows to deal with partial occlusion

and object deformations.

Our tracking algorithm is built on SIFT features for object modeling, but any other

kind of point of interest around which a descriptor can be computed (SURF [Bay 2008],

HOG [Dalal 2005], etc.) and can be used with slightly lesser point tracking perfor-

mances. SIFT features are known to be among the most robust local descriptors. Even if

some authors have claimed that their proposed new descriptors, like SURF [Bay 2008],

are faster than SIFT and provide comparable performances, these affirmations were

probably correct since years ago but actually, using recent computers (more processing

power) and optimized implementations, we have observed than no significant difference

in processing time exists between SIFT and the other similar local descriptors.

5.2.1 SIFT features

Scale-Invariant Feature Transform (SIFT) is an algorithm in computer vision to detect

and describe local features in images. It was first proposed by Lowe [Lowe 1999]. SIFT

features correspond to a set of points of interest called SIFT keypoints which are detected

in a specific way, and around which a local descriptor, called SIFT descriptor, is computed

and assigned to them.
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5.2.1.1 SIFT Points

The SIFT point detection is performed in four successive steps. Each step provides to

these points some robustness against a kind of issues or variations.

� Scale-space extrema detection: A pyramid of multiple octaves containing Dif-

ference of Gaussian images is built (see figure 5.9 (a)). The image is convolved

with Gaussian filters at different scales kσ , and then the difference of successive

Gaussian-blurred (DoG) (D (x, y, σ)) images are taken. DoG images are given by:

D (x, y, σi) = L (x, y, σi+1) − L (x, y, σi) (5.1)

where

L (x, y, σ) = G (x, y, σ) ∗ I (x, y) (5.2)

I (x, y) is the original image and G (x, y, kσ) is a Gaussian filer at scale σ.

Candidate SIFT points are then taken as extrema of the Difference of Gaussians

(DoG) that occur at multiple scales. Each pixel in the DoG images is compared

with its eight neighbors at the same scale and nine corresponding neighboring

pixels in each of the neighboring scales (see figure 5.9 (a)). If the pixel value is

the maximum or minimum among all compared pixels, it is selected as a candidate

keypoint.

(a)                                                                                                                  (b)

Figure 5.9: Extrema points detection on the DoG (Difference of Gaussian) pyramid. (a) The

build multi-octave pyramid. (b) Extrema detection (source [Lowe 2004])

� Keypoint accurate localisation: The selected extrema are (re)localised more ac-

curately by interpolating their initial positions using the quadratic Taylor expan-

sion of the Difference-of-Gaussian scale-space function, D (x, y, σ) with the candi-

date keypoint as the origin. This Taylor expansion is given by:
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D(x) = D+
∂DT

∂x
x +

1

2
xT

∂2D

∂x2
x (5.3)

where D and its derivatives are evaluated at the candidate keypoint and x =

(x, y, σ) is the offset from this point. If the offset is larger than 0.5 in any dimen-

sion, then that is an indication that the extremum lies closer to another candidate

keypoint. In this case, the candidate keypoint is changed and the interpolation

performed instead about that point. Otherwise the offset is added to its candidate

keypoint to get the interpolated estimate for the location of the extremum.

� Low-contrast keypoint elimination: The value of the second-order Taylor expan-

sion (eq. 5.3) is computed at the new localisation of each keypoint. If this value is

less that 0.03 (this contrast threshold has been fixed in [Lowe 2004] as the optimal

one), it is considered as a low contrast point and it is eliminated.

� Edge response elimination: The keypoints that have poorly determined locations

(during the keypoint accurate localisation step) but have high edge responses are

eliminated. This is performed using the second-order Hessian matrix H defined as:

H =

[

Dxx Dxy

Dxy Dyy

]

(5.4)

The eigenvalues of H are proportional to the principal curvatures of D. The cur-

vature value is taken as r = α/β, where α is the larger eigenvalue of H and β

its smaller one. The trace of H (Dxx + Dyy) gives us the sum of the two eigen-

values of H, while its determinant (DxxDyy − D2
xy) yields the product. The ratio

R = Tr (H)2 /Det (H) can be shown to be equal to (r + 1)2 /r, which depends only

on the ratio of the eigenvalues rather than their individual values. R is minimum

when the eigenvalues are equal to each other. Therefore the higher the absolute

difference between the two eigenvalues, which is equivalent to a higher absolute

difference between the two principal curvatures of D, the higher the value of R. It

follows that, for some threshold eigenvalue ratios rth, if R for a candidate keypoint

is larger than (rth + 1)2 /rth, that keypoint is poorly localised and hence eliminated.

In [Lowe 2004], rth = 10 is taken as the optimal value.

The remaining candidate points are the final SIFT points. These steps provide in-

variance to image location and scale to the detected SIFT points. They also ensure a

sufficient contrast and avoid curvature to them.
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5.2.1.2 SIFT Descriptors

Once SIFT points are detected, the next step consists in computing SIFT descriptors

around each of them. This is performed in two steps:

� Main orientation assignment: To achieve invariance of SIFT descriptor to 2D

rotations (in image), each keypoint is assigned with one or more orientations based

on local image gradient directions. For a SIFT point (x, y, σ), the nearest Gaussian

image L (x, y, σ ′) to the DoG image on which this point is detected is taken to

construct an orientation histogram of 36 bins (each bin covering 10 degrees). Each

pixel in a neighboring window of the considered SIFT point will contribute to this

histogram by its weighted gradient magnitude. The weighting is provided using

a circular Gaussian windows centred on the SIFT point. The gradient magnitude

and orientation of each neighboring pixel are computed as:

m (x, y) =

√

(L (x+ 1, y) − L (x− 1, y))2 + (L (x, y+ 1) − L (x, y − 1))2 (5.5)

θ (x, y) = atan2 (L (x, y+ 1) − L (x, y− 1) , L (x+ 1, y) − L (x− 1, y)) (5.6)

Once the histogram of 36 bins is computed, the orientation corresponding to the

highest peak is taken as the main orientation and assigned to the SIFT point. If any

other local peak value is greater than or equal to 80% of the highest peak value,

the corresponding orientation is also taken as another main orientation. In this

case, the SIFT point is duplicated and each of these SIFT points will be assigned

with one main orientation. There will be as many SIFT points at the same location

and same scale as the number of main orientations.

� Descriptor computing: For each SIFT point, the image closest in scale to its own

scale is taken for computing the descriptor. On this image, a square region of

16× 16 around the SIFT point is considered. This window is divided in 4× 4 equal

subregions (of 4 × 4 pixels). An orientation histogram of 8 bins is created from

each subregion. These histograms are computed from magnitude and orientation

values of the pixels in these subregions. The gradient orientations are reported to

the main orientation computed before, to provide the invariance of the descriptor

to rotations. The magnitudes are further weighted by a Gaussian function (see

figure 5.10). The final SIFT descriptor is a 128 dimensional vector obtained by
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concatenating all these histograms (4×4×8 = 128). This vector is then normalized

to unit length in order to enhance invariance to affine changes in illumination. To

reduce the effects of non-linear illumination a threshold of 0.2 is applied and the

vector is again normalized.

Figure 5.10: A keypoint descriptor is created by first computing the gradient magnitude and

orientation at each image sample point in a region around the keypoint location, as shown on the

left. These are weighted by a Gaussian window, indicated by the overlaid circle. These samples

are then accumulated into orientation histograms summarizing the contents over 4x4 subregions,

as shown on the right, with the length of each arrow corresponding to the sum of the gradient

magnitudes near that direction within the region. This figure shows a 2x2 descriptor array

computed from an 8x8 set of samples, whereas the optimal and described optimal descriptor use

4x4 descriptors computed from a 16x16 sample array (source [Lowe 2004]).

SIFT descriptor is highly distinctive and partially invariant to the remaining varia-

tions such as illumination and 3D viewpoint (affine transformation).

5.2.2 SIFT Feature Detection and Selection For Object tracking

The detailed SIFT descriptor can describe any 16 × 16 square region of image, inde-

pendently of the existence of a point of interest on its center or not, but computing it

around a point of interest (SIFT point) is more efficient for matching purpose.

We want to exploit the effectiveness and the discriminative power of SIFT descriptors

in our object tracking algorithm, but due to the related constraints to the addressed

context (video surveillance) like small objects, low resolution and noisy images, etc.

the SIFT point detection method described below does not always ensure a sufficient

number of SIFT points to describe the whole object of interest, and their localisation is

not necessary uniformly distributed (see figure 5.11 (b)). This detection can also provide

too many points, and tracking all these points increase the required processing time.

For these reasons, we use a modified method for SIFT point selection for the object

representation. First, a more permissive SIFT point detection is performed, by avoiding
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low contrast and edge response filtering. More SIFT points are then detected (see figure

5.11 (c)).

(a)                (b)               (c)

Figure 5.11: SIFT points detection results. (a) The original low resolution image. (b) Detected

SIFT points using the whole detection process. 37 points are detected on the image, 16 of them

are on the object of interest (the person). (c) Detected SIFT points without low contrast and

edge response filtering. More points are detected: 74 points are detected on the image, 39 of

them are on the object of interest (the person).

Once a large number of points of interest is detected inside the bounding box which

delimits the object of interest, only foreground points of interest are kept. This is per-

formed using the object mask provided by the background subtraction algorithm (see

figure 5.11 (b)).

Finally, object image is divided into subregions, in which a constant number n of

SIFT features is kept and the other points are rejected (see figure 5.12 (c)). If a given

subregion contains more than n points, the most reliable of them, in terms of contrast

and curvature values are selected. In fact, even if these two values are not used during

SIFT point detection for candidate point filtering, we use them to sort detected points in

each subregion and to select the most reliable of them.

The object image subdivision can be performed in several subregion sizes. We have

tried many configurations and have seen that for people, a grid of 4 × 6 subregions

provides the best compromise between tracking performance and processing time. The

same remark can be done for the number of selected SIFT points in each subregion.

When the subregions are relatively small (like the considered 4 × 6 subregion subdivi-

sion for video surveillance images), using one point per subregion provides slightly less

good results than using two points per subregions, but the processing time is multiplied

by 2 for a non significative improvement in performances, especially after performing

our data association framework, which will be detailed in next sections, and which

compensates for the slightly decreased performances provided by only one point per

subregion.

Finally, the object is represented with a sufficient number of SIFT points, uniformly
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distributed on the image (see figure 5.12 (d)), allowing better partial occlusions man-

agement as we will explain it in next sections. For people images, the number of repre-

sentative points generally varies from 15 to 20 points.

Note that even a subset of selected points are less reliable due to the non-filtering of

low contrast and edge points, they are still better than randomly selected points in SIFT

points-free regions. The aim is to describe uniformly distributed local regions on the

person. The low reliability level of these points is compensated by the data association

method described few sections below.

(a)                (b)               (c)                (d)

Figure 5.12: SIFT point selection for object representation. Red points are the ones selected and

the blue ones are the ones removed at each step. (a) All the detected SIFT points without low

contrast and edge response filtering. (b) Background point of interest removed by background

subtraction mask. (c) Object of interest subdivision and selection of constant number points of

interest per subregion, by keeping the most reliable ones. (d) Final object of interest (person)

representation using SIFT points

5.3 SIFT Feature Tracking By Particle Filtering

After object of interest detection and modeling using SIFT features, the first level of

tracking is performed on the SIFT features only. At this level, the tracking algorithm does

not care about to which object belongs a given SIFT point. It tracks all SIFT features as

independent entities. These points are tracked over time using a specific particle filter.

As a reminder about Bayesian filters, detailed in sec. 2.2.2.2, let xt denote the state

of the system at the current time t, and yt = (y1, ..., yt) the observations up to time

t. The filtering problem involves the estimation of the state vector at time t, given all

the measurements (observations) up to and including time t. In a Bayesian setting, this

problem can be formalized as the computation of the distribution p(xt|y1:t), which can

be done recursively in two steps.

prediction

In the prediction step, p(xt|y1:t−1) is computed from the filtering distribution p(xt−1|y1:t−1)
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at time t− 1:

p(xt|y1:t−1) =

∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (5.7)

where p(xt−1|y1:t−1) is assumed to be known due to recursion. The distribution

p(xt|y1:t−1) can be thought of as a prior over xt before receiving the most recent mea-

surement yt.

update

The previous prior is updated with the new measurement yt using the Bayes’ rule to

obtain the posterior over xt:

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) (5.8)

In general, the computations in the prediction and update steps (eq. 5.7 and 5.8)

cannot be carried out analytically, hence the need for approximate methods such as

Monte Carlo sampling, also called Particle Filtering methods. Here, the space of hypoth-

esis is explored using a set of particles, which are projected in the prediction step, and

sampled by their importance in the update step, allowing to estimate the new system

state.

The recursion requires the specification of a dynamic model describing the state

evolution p(xt|xt−1), and a model giving the likelihood of any state in the light of the

current observation p(yt|xt). The recursion is initialized with some initial distribution

p(x0).

In our approach, the state of a SIFT feature x = {x, y, u, v,h, n} consists of:

� The SIFT feature position (x, y).

� The velocity component (u, v).

� The SIFT descriptor h associated to the SIFT point.

� The measurement error estimation n following a normalized distribution.

We have tested the use of acceleration component as an additional state information,

but no significant improvement has been observed. This is due to the constant or slow

variations of objects velocity.

In particle filtering, each hypothesis about the new state is represented by a particle

which has its own state with the same structure as the SIFT feature one. Each SIFT

feature is then tracked using a constant number of particles.
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The prediction step consists in applying the dynamic model of each SIFT feature to

all its associated particles to compute the new estimated location of each particle (see

figure 5.13). This is done for each particle by:

(x, y)t = (x, y)t−1 + (u, v)t−1.∆t + nt−1(x, y) (5.9)

Figure 5.13: Prediction step: The red point is the previous location of the SIFT point to track

at time t − 1, and the cyan points represents the predicted positions of all the particles at the

current time t

The update step consists in estimating the new location of the tracked feature using

the predicted state of all particles and some measurements provided by the current

image at time t. This step is performed in three sub-steps: particle weighting, particle

sampling-resampling and new state estimation.

5.3.1 Hybrid Particles Weighting

Generally, when a given descriptor is tracked using a particle filter, the particle

weighting is performed using a similarity measure between the tracked descriptor and

each particle descriptor.

In our case, we have followed this method in a first time. For a given tracked SIFT

point, a SIFT descriptor is computed around each associated particle. The weight of a

given particle is then provided by:

Wp =
1

σ
√

2π
e
−

d(Hf ,Hp)
2

2σ2 (5.10)

where

d(Hf, Hp) denotes the similarity between the SIFT descriptor of the tracked point (Hf)

and SIFT descriptor the considered particle descriptor (Hp). We use an Euclidean dis-

tance after having tested some other distances without getting significant improvements.
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σ denotes a standard deviation computed on the tracked feature similarity variations up

to time t− 1.

The tracking of SIFT points using this weighting method for particle filtering per-

forms well in most of cases, but we have observed a critical issue for some tracked SIFT

points in some situations. Due to the small size of object images provided in video

surveillance context, and to the low resolution of images, when a SIFT point is located

too close to the object contours, and if the described region and the nearest background

are low textured, the tracked SIFT can leave the object of interest and cling on the back-

ground because most of particles are located on the background after prediction (see

figure 5.14).

(a) Frame: 830                                (b) Frame: 850

(c) Frame: 870                                (d) Frame: 890

(e) Frame: 900                                (f) Frame: 910

Figure 5.14: SIFT point tracking failure due to small size of the person’s image, the proximity of

the SIFT point to the person contour and to the low texture on the containing region. The SIFT

point (red cross) is tracked correctly until frame 890, where it clings on the background which

presents similar descriptor region (red square) at this location

We deduce that the particle weighting by only similarity measure between SIFT de-

scriptor of the tracked point and those of the particles is not sufficient. It is necessary

to deal with background proximity during the weighting, especially when particles are

scattered to cover a maximum amount of likely hypotheses and when a large amount of
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them are on the background (see figure 5.13).

The intuitive idea can be to use the background subtraction results to directly avoid

particles which are on the background by assigning a null weight to them. This idea is

risky because the quality and the reliability of background subtraction algorithm may

greatly vary according to the scene context (contrast, illumination, etc.) and to the

background subtraction algorithm itself (the used method, parameters, etc.). Thereby,

using a binary weighting, i.e. 1 for foreground particle and 0 for background one, is

not a satisfactory solution. We have observed that using this binary weighting causes

incorrect SIFT point tracking according to the background subtraction quality. When

the extracted foreground pixels are too low, like in figure 5.15(b) (low contrast and

hight thresholds in the background subtraction algorithm), the new localisation of the

SIFT point in each new frame slides on the foreground pixels and varies greatly. The

localisation is then not precise.

We propose a method to take into account background subtraction results to assign a

real foreground weight to particles, even if the background subtraction provides a binary

separation between background and foreground. This method allows to deal with the

diverse background subtraction qualities. By modifying some parameters in the used

background subtraction algorithm (contrast thresholds and the number of considered

gaussian per pixel), we have obtained three different background subtraction qualities

(see figure 5.15).

- a - - b - - c - - d -

Figure 5.15: Different qualities of motion detection. (a) Original image. (b) Low detection. (c)

Medium detection. (d) High detection

The particle weighting used in our tracking algorithm is then given by:

Wp =
c

σ
√

2π
e
−

d(Hf ,Hp)
2

2σ2 (5.11)
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where c ∈ {c0, 1} is the foreground probability weight.

If the corresponding pixel to the considered particle is an indication of a foreground

one by the background subtraction result, c = 1. Otherwise, c = c0.

c0 is computed for each detected object at each frame as:

c0 = cos(ρ
π

2
) (5.12)

and:

ρ = min

{

1,
density

density0

}

(5.13)

where density is the ratio between the number of foreground pixels inside the object

bounding box and the area of this bounding box, and density0 is the approximate real

density of the foreground pixels of an object inside its bounding box. For a given type of

objects, density is a variable value, provided at each frame by the background subtrac-

tion results while density0 is constant and estimated off-line using some ground truth

on the considered object type. For example, for a walking person, the average density0

is approximately 0.5 (it means that in the minimal bounding box of a walking person

image, approximately 50% of the pixels inside the bounding box belongs to the person).

Let us consider the possible situations of several background subtraction qualities at

both localisation of a given particle: in the foreground and in the background. In all

these cases, if the particle is on a foreground pixel, c = 1.0. Here, the similarity measure

between the SIFT descriptor of the tracked SIFT point and the one of the particle will

decid the association. The ambiguity occurs for background pixels.

� For a low and medium foreground pixel detection (figure 5.16 (a,b)), the value

of ρ increases with the increase of the foreground extraction quality, and thereby,

particles on the background obtain decreased weight c0 but are not discarded, to

avoid the loss of useful information.

� For a good foreground pixel detection (figure 5.16 (c)), the value of ρ is near 1.0

and thereby, the value of c0 is near 0. It means that the more the background

subtraction is precise, the less the particles on background are important (lower

weight).
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� For an excessive foreground pixels detection (figure 5.16 (d)), the value of ρ is

equal to 1.0 and thereby, the value of c0 is near 0. It means that an estimated

background pixel in this case has a high probability to be a real background pixel.

Real background pixels which are detected as foreground ones in this case will

have a value of c = 1.0, but does not alter the particle weighting as long as this

weighting is not worse than a standard weighting method which is only based on

similarity measure (eq. 5.10), but equal to it.

density = 0.1497               density = 0.2319                density = 0.4048             density = 0.82419

 = 0.2994                          = 0.4638                          = 0.8096                        = 1.0

c0= 0.8914                         c0= 0.7661                         c0= 0.2946                      c0= 0

c[1] = 1.0                           c[1] = 1.0                            c[1] = 1.0                        c[1] = 1.0

c[2] = c0 = 0.8914              c[2] = c0 = 0.7661               c[2] = c0 = 0.2946           c[2] = c0 = 0

c[3] = c0 = 0.8914              c[2] = c0 = 0.7661              

(a)                       (b)                        (c)                      (d)

Figure 5.16: Hybrid particle weighting.

Hybrid particle weighting, taking into account background subtraction result qualities.

The density0 value is taken as density0 = 0.50. (a-c) From low to good foreground

extraction, by varying the contrast thresholds in the background subtraction algorithm.

(d) Excessive (erroneous) foreground pixel extraction by decreasing contrast threshold

and considering the mean of large blocks of pixels during the background subtraction

By using this new weighting method, previously lost tracked points, due to the ex-

plained phenomenon, are tracked correctly.

Note that we have chosen to take a cos function to encode the transition from the

lower background subtraction quality to higher one smoothly (eq. 5.12). We have tested

a linear function to perform this task and we have obtained satisfactory results, but the

transition is encoded roughly and the precision is lower than the cos function one.

This test consists in annotating manually the localisation of a given point on the head

of the walking person on each frame of a small video sequence, providing a ground truth

of the real localisation of the same point in each frame. We have tested both linear and

cos function by automatically tracking the same point along this sequence, by varying

the background subtraction parameters, and by computing localisation error during each
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tracking. This error is taken as the mean of distances between the estimated position

of the point by the tracking and its real position (ground truth one). We have observed

that this error is lower with the cos function (see table 5.1).

cos linear

Low detection quality 5.7 6.1

Medium detection quality 5.2 5.3

High detection quality 3.4 3.6

Table 5.1: Comparison between the cos function and a linear function for background quality

transition encoding. The mean error of point position estimation (in pixels) is lower for cos

function.

5.3.2 Particles Sampling and Resampling

After weighting, all particles are sampled using a ”Sampling Importance Re-sampling”

(SIR) method [Tanner 1987, Smith 1992] to keep the most important ones, drop the less

important and replace them by new particles generated from the kept ones. The sam-

pling step allows the tracker to keep the more reliable particles and the re-sampling

step avoids information degeneration, as explained in sec. 2.2.2.2 (Particle filters para-

graph). Each feature keeps a constant number of particles over time, which makes the

processing time easier to control. Finally, all particles are re-weighted with the same

normalized weight.

5.3.3 New State Estimation

The estimation of the new location of the tracked feature is obtained as the centroid

of all its particles (see figure 5.17). The descriptor of the tracked feature is computed

around the new location.

A variation measure between the previous descriptor and the new one is computed

for each tracked point. This variation measure is used for the feature variation learning

in a Gaussian model in order to decide if a new state is acceptable or not (if it fits the

Gaussian model variations according to the standard deviation). If the variation is too

important the SIFT point is discarded and replaced by a new detected point in the same

subregion as the discarded one (see 5.2.2 for subregion division). Otherwise, the point

is kept and a reliability measure γ is computed using the variation measure as:

γt = 1 −
variation measure at time t

max accepted variation measure in the Gaussian model
(5.14)
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This reliability measure γ is used for link weighting during the data association step,

as described in the next section.

After prediction, sampling/

resampling of particuls, the

new position of the tracked

SIFT point is computed

(a) (b)

Figure 5.17: Tracking of one SIFT point on the head of a person by particle filter: (a) the

predicted position of all particles in blue and yellow. The yellow particles are the sampled ones,

which will be used to generate new ones to replace degenerated particles in blue. (b) in red,

the new location of the tracked SIFT point, computed as the barycentre of all weighted sampled

particles.

After the update step, the velocity (u, v)t and the measurement error estimation

nt(x, y) components of each SIFT feature are also updated. For each SIFT feature, a

linear regression function is computed on the p last localisations of the considered SIFT

features. The regression line direction provides the estimated direction of motion for

next time t+1 (velocity vector direction), the mean of displacement magnitude between

these successive p positions provides the motion velocity magnitude, and the variance

on these displacements provides the measurement estimation error for the next time

t + 1. In our experiments, the optimal value for p is 10 (see figure 5.18(c)). We have

observed that for lower values, the regression line direction, the mean and the variance

of displacements vary too fast due to “non-smooth” SIFT point trajectories (see figure

5.18(a)). In the other hand, for large values of p, the regression line direction takes more

time to follow the changes in motion directions (see figure 5.18(b)) causing tracking

failure du to poor prediction process.

Note that the value p = 10 is extracted experimentally, and is not the optimal value

for all situations. The optimal value depends strongly on the movement, but statistically,

a medium value between 7 and 10 provides the best tracking results in most of the cases.
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Figure 5.18: Velocity component update using regression function performed on various set of

last estimated positions. The 22 last positions of a tracked SIFT point are used for illustration.

(a) Only the 3 last positions are used for regression computation. The resulting velocity vector

is too sensitive to local variations and the prediction at next time are erroneous. (b) The 20 last

positions are used for regression computing. The resulting velocity vector does not follow move-

ment direction variations quickly. at time t, the estimated movement direction (green vector)

indicated that the movement direction is to the top-left side while the real movement direction is

to the left (see the 8 last positions). (c) The 10 last positions are used for regression computing.

In this case, movement direction changes are managed better than in the two previous cases

5.4 Data Association

At the end of previously detailed step, all the SIFT points of all the considered objects

at time “t-1” are localised in the current video frame. Data association step consists in

linking previously tracked objects at time “t-1”, noted “to(t-1)”, with the new detected

objects at the current frame “t” , noted “do(t)”, while dealing with complex situations

like partial or full occlusions.

From the previous frame (at time “t-1”) to the current one (at time “t”), only five

general cases can occur (see figure 5.19):

� In the first case, called “1 to 1” correspondence (figure 5.19 (a)), a unique detected

object “do(t)” corresponds to only one previously tracked object “to(t-1)”. This is

the simplest case. Here the algorithm updates the “to(t-1)” localisation at time “t”

by linking it directly to “do(t)”.

� In the second case, called “N to 1” correspondence (figure 5.19 (b)), a unique

detected object do(t) corresponds to a set of Q tracked objects {tok(t − 1)}k:1...Q.

This situation occurs when the detection at time “t” did not correctly split detected
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moving objects, typically during partial occlusions or high object proximity. Here

the algorithm splits the bounding box of “do(t)” into Q smaller bounding boxes

using the spatial distribution of the SIFT points before the merge. This distribution

is given by the ratios between feature locations and the borders of the bounding

box when the objects were separated.

� In the third case, called “1 to N” correspondence (figure 5.19 (c)), a set of R de-

tected objects {dol(t)}l:1...R corresponds to a unique tracked object “to(t-1)”. This

situation occurs during the dispersion of a group of objects or at the end of occlu-

sion between objects of interest. Here two situations can be distinguished:

– “toi(t−1)” can be the result of a previous merge (occlusion) of tracked objects

at time “t-p” as described in the previous case (b). In this case, the tracking is

resumed using the occlusion management approach described in next section

(5.4.2).

– “toi(t − 1)” has always been tracked as a group of objects since its appear-

ance in the scene, new tracked objects {tol(t)}l:1...R are initialized by each

{dol(t)}l:1...R after the split.

� In the fourth case, called “1 to 0” correspondence (figure 5.19 (d)), no detected

object “do(t)” corresponds to the tracked object “to(t-1)”. This occurs in full oc-

clusion situations or when the tracked object “to(t-1)” leaves the scene at time “t”.

The two cases are managed differently:

– If the tracked object is close enough to a scene exit (image borders or known

exit zones in the image) at time “t-1”, the tracking algorithm considers that

this object has left the scene and stops its tracking definitely.

– In the other case, the tracked object “to(t-1)” is considered as in occlusion

situation. Here, the tracking algorithm stores the lost object for tracking re-

covery if it re-appears later. This process if performed using the occlusion

management approach described in next section (5.4.2).

� In the last case, called “0 to 1” correspondence (figure 5.19 (e)), a detected object

“do(t)” does not correspond to any previously tracked object “toi(t − 1)”. This

situation occures either when a new object apprears in the scene for the first time

or when an previously tracked object has been occluded few time before and reap-

pears. In the case of new object appearence, a new tracked object is initialisez.

In the case of occluded object reappearance, the occlusion managment resume its

tracking as described in the occlusion management section (sec. 5.4.2).
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do(t)

to(t-1)

                        (c)                 

...

...

Figure 5.19: The five possible cases during the object tracking from a previous frame to the

current one. (a) A simple 1 to 1 correspondence. (b) Merged tracked objects due to high

object proximity or partial occlusion. (c) Split tracked object due to grouped object separation

or occlusion end. (d) Lost tracked object due to scene exit or full occlusion situation. (e) New

detected object without correspondance with any tracked object in previous frame. It can be a

new appearing object or a priviously occluded one.

5.4.1 Case Identification

The first step of our data association method consists in identifying in which case

each tracked object “to(t-1)” is at time “t” before managing the case.

To do this, an M×N link score matrix, denoted S, is constructed. M is the number

of tracked objects “to(t-1)” and N is the number of detected objects “do(t)”.

Each element s(i, j) of S is calculated as the weighted proportion of SIFT points

from the ith tracked object “to(t-1)” that geometrically belongs to the jth detected object

“do(t)” using the following formula:

s(i, j) =
1

∑p
q=1 γq

p∑

k=1

γk(i, j) (5.15)

where p is the number of SIFT points of the tracked object “toi(t−1)” which belongs

geometrically to the detected object “doj(t)”, γk(i, j) ∈ [0, 1] is the reliability measure

of the kth tracked SIFT point, computed at the end of particle filtering update step (eq.

5.14). The contribution of each SIFT point in the link score value is directly proportional

to its reliability, providing a better temporal linking process.

Putting these link score values in a matrix form eases and speeds up the decision

process. We use the Hungarian algorithm [Kuhn 1955] to select the best links, i.e. we

do not take the absolute best links one by one, but we select the links which provides

the best global score. The case identification is performed using the link scores.

� “1 to 1” correspondence is represented by a high link score (≈ 1.0) between a

tracked object and a detected one.
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� “N to 1” correspondence is represented by a set of N close link scores (≈ 1/N)

between a N tracked object and one detected one.

� “1 to N” correspondence is represented by a set of N close link scores (≈ 1/N)

between a tracked object and a set of N detected one.

� “1 to 0” correspondence is represented by low link scores (≈ 0.0) between a

tracked object and all the detected ones.

� “0 to 1” correspondence is represented by remaining columns in S after linking, i.e.

detected objects “doj(t)” which are not linked with any tracked objects “toi(t−1)”.

Note that after this data association step, SIFT points outside of their objects (moved

onto the background or onto other objects during occlusions) are dropped and replaced

by new detected SIFT features following the detection and selection process described

in sec (5.2.2). Sub-regions which are common to multiple objects in the case of partial

occlusions are not used for the detection to avoid ambiguous situations.

On the other hand, the tracking algorithm keeps a uniform spatial repartition of the

SIFT features by filtering out too close features. The system keeps the most reliable fea-

ture and replaces others by new detected ones in sub-regions of the object with no/fewer

SIFT points.

Data association process:

From SIFT points tracking

to object (person) tracking

(a) (b)

Figure 5.20: From SIFT point tracking to Object (Person) tracking: (a) four SIFT points at

different location of the person body are tracked using particle filter. (b) The person tracking

result after data association step.
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5.4.2 Occlusion Management

The partially occlusions are handled by a continuous tracking process on the re-

maining visible SIFT points. If the partially occluded object became fully visible, new

additional SIFT points are detected and assigned to the tracked object using the same

process as the one described for SIFT points detection and selection. This is due to

maintain a global and well distributed representation of the object.

After link creation using S, some detected objects “do(t)” may not be linked with any

“to(t-1)”. They can corresponds to new objects appearing for the first time in the scene

or previously occluded objects which re-appear.

Before initializing new tracked objects “to(t)” with unlinked “do(t)”, an attempt to

match these unlinked detected objects “do(t)” with tracked objects in occlusion state

is performed using two reacquisition methods. The first one is fast and requires some

basic information, extracted during the tracking of objects. The second one is more

sophisticated and uses the visual signatures of the occluded objects to re-identify them.

This visual signature computing is described in the re-identification chapter (chapter 6).

The second reacquisition method is performed only if the first one provides ambiguous

result, i.e. if the matching is not validated and not rejected with reliable decision (score).

Most of the time, the first method is sufficient to manage the occluded object tracking

recovery. It is performed as follow:

During the tracking process of a fully visible object, four kinds of information are

extracted :

� The last state of its associated SIFT points (the point localisations on the object

and their descriptors) are stored from the last fully visible image of the object.

� The variations of its estimated real world dimensions (W and H), extracted using

the camera calibration matrix as explained in (sec 5.1) are encoded in a Gaussian

model.

� The variations of its estimated real world velocity on the ground plane, also ex-

tracted using the camera calibration matrix, are encoded in another Gaussian

model.

� Its n dominant colors in HSV space are stored. We take only Hue value in consid-

eration. n depends on the class of tracked object. For people, we use n = 2 (due

to the general separation of a person body in torso and legs) while we use n = 1

for vehicles.

A first matching attempt is performed using SIFT descriptors matching. A set of

SIFT points are detected and their SIFT descriptors computed on the detected object. A
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standard point to point matching is performed. If the SIFT point matching is successful,

the reacquisition is validated at this point and no other matching process is required.

This is due to the high discriminative power of SIFT descriptors. On the other side, if

SIFT point matching fails, the object matching process continues. This is due to the point

of view dependence of detected SIFT points. The occluded object may reappear with a

different visible side than the one with which it disappears and on which the stored SIFT

points have been detected.

A second matching rejection process is performed using real object dimensions. If the

dimensions of the detected object “do(t)” does not fit in the computed Gaussian model

of the occluded object (using the variance of dimensions of the Gaussian model), the

matching is rejected.

Finally, a matching score between a detected object “do(t)” and an occluded one

“to(t-p)” is computed by:

score =
1

3
(ScoreW + ScoreH + Scorehue) (5.16)

where:

ScoreW = 1−
(detected object W − occluded object mean W)2

max observed W variation
(5.17)

ScoreH = 1−
(detected object H − occluded object mean H)2

max observed H variation
(5.18)

Scorehue =
1

n

n∑

i=1

(

1−
|θ

(i)
1 − θ

(i)
2 |

180

)

(5.19)

n is the number of considered dominant colors, θ1 is the corresponding angle in Hue

color disc to the dominant hue value of detected object, and θ2 is the corresponding

angle of the dominant hue value of occluded object. These angle values are taken in

degrees.

Two remarks are to be done for this matching score.

The first one concerns the uniform weighting of each information. In future work,

an importance weighting method may be proposed according to the tracking result ob-

servations.

The second remark concerns the non use of velocity information in this matching

score. In fact, a detected object “do(t)” does not have a velocity as it is a static object

at the current frame and no temporal information are available for it. This velocity

information will be used later.

High matching scores are used to validate occluded object reacquisition.
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Non linked detected objects in the current frames, either by continuous tracking or

by the first reacquisition attempt, are used to initialize new object tracking since they

are considered as new appearing objects in the scene.

After few frames of tracking these new object, a second attempt for occluded objects

reacquisition is performed using the velocity information. If the computed velocity of

the new tracked object during few frames does not fit the velocity Gaussian model of

occluded object, the matching is avoided. Otherwise, a new matching score is computed

by:

score =
1

4
(ScoreW + ScoreH + Scorehue + Scorevelocity) (5.20)

where:

Scorevelocity = 1 −
|new tracked object velocity − occluded object velocity|

max observed velocity variation
(5.21)

Note that each occluded object is stored for requisition purpose only for a prede-

fined time, to avoid the combinatorial explosion which can occur when the number of

occluded object to reacquire increases greatly.

In our experiments, we start this second matching attempt, based on the new ob-

ject velocity, after 50 frames of tracking to have a stable and reliable object velocity to

compare, and we keep occluded objects for a maximum time of 1 mn before definitely

considering them as lost (out of the scene).

This method allows to deal with most of occlusion situations, and is validated by the

experimental results provided in chapter 7

5.5 Conclusion

We have proposed an object tracking algorithm, based on SIFT features for object

representation, particle filtering for SIFT point tracking, and a data association frame-

work to achieve the object tracking reliably.

The use of SIFT features is justified by two main reasons: the sparse point representa-

tion of the object allows more flexible tracking and object deformations/partial occlusion

management. The robustness of SIFT descriptors and their high discriminative power

increase the reliability of the tracking.

Particle filtering for SIFT point tracking draws its interest in the ability of paralleled

exploration of several hypotheses for the new localisation of the tracked SIFT point. The

contribution which we have proposed for particle weighting and SIFT point reliability

measures allows a more reliable tracking.



184 Chapter 5: Robust Object Tracking Using Particle Filtering

The final data association framework allows to detect all possible kinds of situation

which can occur during object tracking, especially the occlusion case. A Weighted tem-

poral linking process is proposed, achieving the visible object tracking.

For occluded objects, we have proposed a real time method to perform their reacqui-

sition if they reappear in the scene.

A modified version of our tracking algorithm, using FAST interest points and HOG

descriptors around them, has been integrated in the main intelligent video surveillance

software of Digital Barriers company, called “SafeZone R©”, which has been deployed on

many video surveillance systems in the world since 2011. It provides better tracking

performance in comparison with the previous used tracking algorithm. This validate

also the genericity of the proposed algorithm to any kind of local descriptor computed

arround some points of interest.

The evaluation and comparison with state of the art results which validate our track-

ing approach is be provided in chapter 7, but some issues still exists with our tracking

method. The first one is the use of image intensity information only during SIFT point

tracking. The use of color SIFT descriptor will be tested in future work. The use of other

type of information (local/global color descriptors, covariance descriptors, etc.) is also

considered and will be tested in future work.
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6

FAST PEOPLE RE-IDENTIFICATION

Color and texture are two important pieces of information for people appearance

modelling. We have built our re-identification technique based on Farenzena et al. ap-

proach [Farenzena 2010]. This approach can be used both for single-shot and multi-shot

cases, the . We present both cases but we focus more on multi-shot one due to the avail-

ability of mono-camera tracking results and the better results of re-identification when

multiple images of each person are used.

Our choice to take [Farenzena 2010] as work basis is motivated by the possibil-

ity to apply it in both single and multiple shot cases and by the fast processing (real

time processing for small sampled set of images per person). The original approach

([Farenzena 2010]) provides interesting performances but has some issues. Some other

recent approaches provide better re-identification results like MRCG ([Bak 2011]), CPS

([Cheng 2011]) and LMNN-R ([Dikmen 2011]) (see chapter 7) but are more constrained

or are inadequate for real deployed video-surveillance systems (as we will see in eval-

uation chapter 7, some popular datasets for re-identification evaluation does not re-

ally match real video-surveillance requirements and constraints). For example, MRCG

([Bak 2011]), is highly time consuming (it requires 6 s in average to compute a visual

signature of a person using 46 images, more details are available in chapter 7) due to

the covariance means computation (eigenvalues decomposition and gradient descent it-

erations) computed on many grid cells (after dividing human body into a grid), and it

provide a hardly updatable signature, i.e. the computed signature of a person with “n”

images cannot be updated with a new image “n+1” (because of gradient descent iter-

ation for mean covariance computing), and requires to recomputed the signature with

the “n+1” images as a new signature if we want to use new acquired images during

187
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processing.

We start by presenting the standard approach proposed in [Farenzena 2010]. After

that, we discuss the main issues of this approach, some of them are also issues for

more recent and efficient approaches. Finally, we detail our contribution to solve these

issues, achieving an improved version of [Farenzena 2010] approach which provides

comparable/slightly better results than state of the art ones while keeping the real-time

processing of the original approach and dealing with more complex situations (object

rotations, etc.).

6.1 Person Re-identification by Symmetry-Driven Accumula-

tion of Local Features

The basic approach requires a background/foreground separation obtained by a

background subtraction algorithm in the multi-shot case, or by using STEL (Structure

Element) technique [Jojic 2009] in case of single-shot. It computes a visual signature

which is exclusively based on color information. This signature consists of three different

representations of the color information, each representation focuses on specific aspect

of the frequency/localisation of the color. To make the representation more robust to

rotations and partial occlusions, the image of a human body is divided into 4 parts, ac-

cording to two symmetry and two asymmetry axes. The extracted color descriptors are

then reported to the body part to which they belong

6.1.1 Body subdivision: Assymmetry and Symmetry Axes

To perform the body image subdivision, the two horizontal asymmetry axes which

separate head from torso, and torso from legs are firstly searched. Once they are defined,

two other vertical symmetry axes, one dividing the torso and the other dividing legs in

two symmetric parts are searched.

Farenzena et al. [Faranzena] define two operators to perform this task. Given a

person image of width J and height I, the first operator is the chromatic bilateral operator

defined by:

C(i, δ) =
∑

B[i−δ,i+δ]

d2(pi, p̂i) (6.1)

where d(., .) is the Euclidean distance, evaluated between HSV pixel values pi,p̂i,

located symmetrically with respect to the horizontal axis at height i. This distance is

summed inside a vertically sliding rectangular window B[i−δ, i+δ], with the same width
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J, and a height of 2δ centred vertically on the height i. To achieve the independence to

scale changes, δ is taken as I/8 (See figure 6.1).

Figure 6.1: Symmetry-based Silhouette Partition. On the top row, overview of the method: first

the asymmetrical axis iTL is extracted, then iHT ; afterwards, for each Rk region the symmet-

rical axis jLRk are computed. On the bottom row, examples of symmetry-based partitions on

images from the datasets. As you can notice, they coherently follow the pose variation. (source

[Farenzena 2010]).

The second operator is the spatial covering operator, which calculates the difference

of foreground areas for two regions, defined by:

S(i, δ) =
1

Jδ
|A(B[i− δ, i]) −A(B[i, i + δ])| (6.2)

where A(B[i − δ, i]) is the foreground area in the window of width J and height δ,

delimited by [i− δ, i].

Using these two operators (eq. 6.1 and eq. 6.2), the four axes (2 asymmetry and 2

symmetry axes) can be estimated as follow:

� The asymmetry axis iTL which separate torso from legs is defined as:

iTL = argmin
i

(1− C(i, δ) + S(i, δ)) (6.3)

this provides the horizontal axis which separates two neighbouring regions with

strongly different appearance (colors) and similar areas. The values of C are nor-

malized. To reduce searching time and avoid some possible errors, the search of

iTL holds in the interval [δ, 1 − δ].
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� The asymmetry axis iHT , separating the head from the torso is defined as:

iTL = argmin
i

(−S(i, δ)) (6.4)

this provides the horizontal axis which separates two neighbouring regions which

strongly differ in area. For the same reason as previously, the search for iHT is

performed in the interval [δ, iTL − δ].

� The two symmetry axes separating torso and legs horizontally are defined by:

jLRk = argmin
i

(C(j, δ) + S(j, δ)) (6.5)

where k = 1, 2 corresponds to the regions R1 and R2, respectively the regions

defining the torso and the legs. Here, the searching of the torso symmetry axis is

performed in the region delimited vertically by [iHT , iTL], and the legs symmetry

axis in performed in the region delimited vertically by [iTL, I], both by a sliding

window in interval [δ, 3δ], δ = J/4 for this time.

Note that the head part (delimited vertically by [0, iHT ] is ignored in this approach

due to the poverty of extractable information from this region in video surveillance

context (low resolution, small images, etc.) and the non-use of biometric techniques.

6.1.2 Feature Extraction

Three types of color features are extracted from torso and leg parts. Their distance

with respect to the symmetry axes jLRk is taken into account in order to minimize the

effect of pose variations.

6.1.2.1 Weighted Color Histogram

HSV weighted histograms are computed in each of the 4 body parts. The weight-

ing is performed according to the distance of each foreground pixel to jLRk of the re-

gion to which it belongs. More precisely, each foreground pixel is weighted by a one-

dimensional Gaussian kernel N(µ, σ) where µ is the coordinate of the symmetry axis and

σ is a priori set to J/4. In this way, pixel values near jLRk have more importance in the

final histogram. At the end, four weighted color histograms are obtained (one per part).
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(a)       (b)        (c)        (d)        (e)

Figure 6.2: Sketch of [Farenzena 2010] approach: a) two instances of the same person; b) x-

and y-axes of asymmetry and symmetry, respectively; c) weighted histogram back-projection

(brighter pixels mean a more important color), d) Maximally Stable Color Regions; e) Recurrent

Highly Structured Patches.

6.1.2.2 Maximally Stable Color Regions (MSCR)

The approach segments the people images in regions with stable colors using the

MSCR (Maximally Stable Color Regions) algorithm [Forssén 2007] (see figure 6.2 (d)).

The extracted regions are then described by their area, centroid, second moment matrix

and average color, forming 9-dimensional patterns.

MSCR algorithm is applied on foreground pixels. In the single-shot case and in order

to discard outliers, only MSCRs that lay inside the Gaussian kernel used for color his-

tograms are selected. In the multiple-shot case, the MSCRs coming from the different im-

ages are accumulated by employing a Gaussian clustering procedure [Figueiredo 2000],

which automatically selects the number of components. The clustering is carried out

using the 5-dimensional MSCR sub-pattern composed by the centroid and the average

color of the blob. Blobs similar in appearance and position are clustered, since they

yield redundant information. This clustering operation allows to capture only the rele-

vant information and keeps low the computational cost of the matching process, where

the clustering results are used.

6.1.2.3 Recurrent High-Structured Patches

This new descriptor is proposed by Farenzena et al. [Farenzena 2010] to highlight

image patches with texture characteristics that are highly recurrent in the person ap-

pearance (see figure 6.3). The extraction of RHSP is performed in three steps:
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First, a set of patches p of size [I/6×J/6] are extracted randomly on each torso and leg

regions independently. These patches are mainly sampled around the jLRk-axes in order

to take symmetries into consideration. The more informative patches are selected by

thresholding the values of entropy of all the extracted patches. This entropy is computed

as

H = HR
p +HG

p +HB
p (6.6)

where HR
p, HG

p , HB
p are the entropy of red, green and blue channels respectively. The

entropy of one channel image is given by:

Hp = −

n∑

i=1

Pi log2 Pi (6.7)

where Pi is the probability of occurrence of pixel value i and is provided by the

corresponding bin of the image histogram.

In the presented approach, patches with H higher than a fixed threshold τH = 13 are

kept (the authors have fixed this value experimentally)

The second step consists in discarding low recurrent patches. For each patch p, a

set of transformations Ti, i = 1, 2, ...,NT are applied to generate a set of NT patches pi,

and to obtain an enlarged set p̂ = {p1, ..., pNT
, p}. These transformations Ti consists in

rotations along the y central axis of the patch with several angles. The Local Normalized

Cross-Correlation (LNCC) is then computed for each patch in p̂ by considering only

the LNCC value of the local region containing p and not the one of the whole person

image. All the NT+1 LNCC maps (matrix representations of LNCC values for each patch)

are then merged together into the average map. Patches containing small values (with

respect to a fixed threshold) in this map are discarded.

The last step consists in clustering remaining patches p in order to avoid patches

with similar content. This is done using the Gaussian clustering [Figueiredo 2000] on

the HSV histogram of the patches, keeping for each final cluster the patch nearest to the

cluster’s centroid.

In the multi-shot case the candidate RHSPs are accumulated over all frames.

6.1.3 Signature Comparison

To compare images of two persons, a dissimilarity measure is computed between

their signatures. The signature consists in the combination of the three extracted fea-

tures. The dissimilarity measure between a signature IA and another signature IB is

given by:
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Clustering

High-entropy

    patches
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   patches LNCC maps
Merging and

Thresholding

Figure 6.3: [Farenzena 2010] Recurrent High-Structured Patches (RHSP) extraction. The final

result of this process is a set of patches (in this case only one) characterizing each body part of

the pedestrian.

d(IA, IB) = βWH.dWH(WH(IA),WH(IB))+

βMSCR.dMSCR(MSCR(IA),MSCR(IB))+

βRHSP.dRHSP(RHSP(IA), RHSP(IB))

(6.8)

where the WH(.), MSCR(.), and RHSP(.) are the proposed Weighted Histograms,

Maximally Stable Color Regions, and Recurrent High-Structured Patches respectively,

and βWH, βMSCR, and βRHSP are their normalized weights respectively.

� The distance dWH evaluates the weighted color histograms. The HSV histograms of

each part are concatenated, channel by channel, and compared via Bhattacharyya

distance. In the multi-shot case, each possible pair of histograms contained in the

different signatures are compared, and the obtained lowest distance is selected.

� For dMSCR, in the case of single-shot signature comparison, the final distance be-

tween MSCRs is the sum of all minimum distances between all possible pairs of

MSCR elements (a, b) (a is an MSCR element from IA and b is an MSCR element

from IB). This distance is defined by two components: dab
y that compares the y

component of the MSCR centroids, and dab
c that compares their mean color. In

both cases, the comparison is carried out using the Euclidean distance. This re-

sults:

dMSCR =
∑

b∈IB

min
a∈IA

γ · dab
y + (1 − γ) · dab

c (6.9)
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where γ is a real parameter which takes values between 0 and 1 and is used to

take more importance to color position (with respect to the considered axis) than

color value or vice versa.

In case of multiple-shot comparison, the first step consists in clustering all the

MSCRs of the multiple images of a given person to provide a unique represen-

tation of this person in terms of MSCRs, as if it is provided by a single image.

This clustering is performed on the images of the same person using the distance

dMSCR (eq. 6.9). Once each multiple-shots MSCRs has been clustered and a repre-

sentation of each person as a unique image MSCR is obtained, the final distance is

computed exactly in the same way as in the single-shot case, using eq.(6.9)

� dRHSP is obtained by selecting the best pair of RHSP, one in IA and one in IB. The

minimum Bhattacharyya distance among the RHSP’s HSV histograms is evaluated.

This is done independently for each body part, summing all the distances achieved

and then normalizing with the number of pairs.

In their experiments, Farenzena et al. [Farenzena 2010] have used the first 100

images of the VIPeR dataset to estimate several parameters values, and have fixed them

as follows: βWH = 0.4, βMSCR = 0.4, βRHSP = 0.2 and γ = 0.4.

6.2 Approach Limitations

6.2.1 Fixed Weights for Each Descriptor

In the initial approach, the weight of each descriptor is fixed using an experimenta-

tion on a subset of only 100 images from a unique dataset which is VIPeR (viewpoint

invariant pedestrian recognition [Gray 2007]) dataset. These fixed weights are used for

all the experiments.

These parameters are “probably” the best ones for VIPeR dataset as they were ex-

tracted by experiments on it, but it is clear that each dataset has its own characteris-

tics. More generally, each video surveillance system provides different content for anal-

ysis, depending on several conditions: depending on the season/weather, it is observed

that people generally wear cloths with uniform/dark colors and poor textures (overcoat

for example) in winter or when it is cold while they wear cloths with various bright

colors and textures in the summer or when the weather is mild. Indoor and outdoor

surveillance systems may also provide different levels of information due to illumination

changes. The deployment location of the video surveillance system also may provide

different types of content. For example, an airport system will provide more people with
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Backpacks or carrying luggages (both can be integrated in the visual signature of peo-

ple if they are not correctly separated or if they occlude body parts) than a downtown

surveillance system. Many other factors may provide different types of content.

In [Meden 2013], the author provides an experimentation on the whole VIPeR dataset

to show that only weighted color histograms provide the most significant information

and the most important discriminant power of the approach. By testing some combina-

tions of weights for each descriptor, the author demonstrates that MSCR and RHSP does

not provide a meaningful improvement. The results of this experiment is provided in

the CMC curves of figure 6.4.
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Figure 6.4: Different weighting of SDALF components: (a) Only weighted color histogram

(nAUC = 89.11%). (b) only MSCR (nAUC = 83.56%). (c) Weighted color histograms and MSCR

with equal weights (nAUC = 91.81%). (d) Original weighting of SDALF like in [Farenzena 2010]

(WH = 0.4, MSCR = 0.4, RHSP = 0.2) (nAUC = 91.57%).

CMC (Cumulative Matching Curve) represents the probability to find a correct match-

ing among the r best matching, for r = 1...R (R is the number of sorted matchs). r is

the rank of re-identification. In [Bazzani 2012], the nAUC (Normalized Area Under the

Curve) value is used to evaluate the re-identification performances. It represents the

area under the CMC curve expressed in %. More explanations and details concerning

CMC cuves and nAUC are provided in sec. 7.3.1 (Experiments chapter).

Following this experiment, Meden [Meden 2013] uses the following weights: βWH =

1.0, βMSCR = 0.0 and βRHSP = 0.0.

This demonstrate that the original weights provided by [Farenzena 2010] are not

necessarily the best on the whole VIPeR dataset, and thereby, may be inappropriate

for other datasets, but as we will show in next sections, removing totally the MSCR

and RHSP descriptors is not the best way to obtain better re-identification results. An
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adaptive weighting system is suitable to deal with the current conditions and to give

more importance to the most discriminant descriptor for each situation.

6.2.2 Exclusive Use of Color Information, Without Managing Color Ren-

dering Difference Between Cameras

In the original approach, the three extracted types of feature (Weighted color his-

tograms, MSCRs and RHSPs) use exclusively color information to characterize a per-

son. Even if recurrent high-structured patches (RHSP) are extracted and selected using

a complex process based on textures (by selecting patches with a minimal amount of

entropy and by performing some transformations to keep the most robust patches to ro-

tation using LNCC maps), the final characterization of each selected patch is performed

using a simple color histogram. Adding these histograms to weighted color histograms

and MSCR’s, which are also color-based descriptors, provide some kind of redundancy

and may be not sufficient.

Farenzena et al. use HSV histograms instead of a more specific feature for texture de-

scribing. They claim that this is because the RHSP’s content is not necessarily a texture,

since it exhibits less regularity.

We agree with this last assertion in the sense that effectively, the patches may do

not contain enough texture information, but in the case they do, this useful information

should be exploited.

For this reason, it is necessary to characterize the patches with both color and texture

to provide better results.

More generally, using only color to compute people signature is risky, due to the

various situations where this information is not reliable or is poor (the same remark as

in the previous paragraph, concerning frequent dark clothes in many situations). For

this reason, it is suitable to integrate texture information, which is decorrelated from

color information, in the computed signature.

Note that the three initial color features are extracted directly from input images,

without managing one of most important color-based signatures issue which is the dif-

ference in color acquisition between cameras, i.e. the images of the same object acquired

by different cameras may show color dissimilarities. This issue affect greatly the original

approach results especially on some dataset like iLids, where many people clothe colors

are rendered differently (see in figure 2.26)
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6.2.3 Dependency to Orientation

Another important issue of the [Farenzena 2010] approach, which is also a general

issue, common to many state of the art approaches, is the dependency of extracted

signature to the visible side of people. For example, [Farenzena 2010] approach assumes

implicitly that the extracted features from a given person in one camera will be “visible”

in the other cameras. This assumption may be verified in several situations especially

for weighted color histograms and MSCR if the considered people are wearing clothes

with same appearance from all sides, but most of time and depending on the context,

this assumption may be not correct. A person wearing an opened jacket with different

colors than his/her t-shirt will provide different color histograms and MSCRs depending

on whether they are observed from front or from back. Same remark for a person having

a backpack or dragging a luggage behind him/her which occlude partially his/her legs.

Concerning RHSPs, their are strongly dependent on the visible side of people from which

they have been extracted especially as they are more local descriptors than the weighted

color histograms and MSCRs.

More generally, we can distinguish three main types of signature computing ap-

proaches for multiple-shot case, each of them can be impacted differently with the ori-

entation dependency issue:

� Accumulation and mean/variance modelling: This kind of approach aims at mod-

elling the people appearance by encoding the variations of the observation/features

as a “most likely appearance” and an interval of admissible variations for each fea-

ture, extracted from the available images of a given person. This kind of approach

has the inconvenient to be too permissive and to enlarge the possible variation in-

terval if the accumulation of features is performed without any control process and

without any a priori knowledge concerning the provenance of information (visible

side of the person). A “large” model may lead to a high rate of incorrect match

during the re-identification process, due to its permissivity.

� Filtering and selection of recurrent/constant features: This kind of approach aims

at selecting and keeping only features which are stable among all available images

of a given person. For example in [Bak 2011], all the images of a given person

are resized into the same size and divided on a grid of small subregions. These

subregions are characterized by covariance matrices. A mean covariance matrix

is computed for each subregion location. Only subregions with salient covariance

matrices are kept for the person signature, computed by the proposed reliability

measure in [Bak 2011], based on the variance of each region in terms of covariance

matrices, or by automatic learning using boosting. This kind of approach is too
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restrictive and has the inconvenient to provide a poor signature when the different

sides of a given person are significantly different and are all used to compute this

kind of signature.

� Use of multiple-shot case as a set of single-shot: This kind of method (mainly the

case of [Farenzena 2010] approach) does not combine all the multiple images of

a given person in a unique model, but keeps all the single-shot signatures of all

people and compares all possible pairs of single-shot signatures from the query

person with all signatures of candidate humans, and takes the lowest distance as

the one for the given person comparison. This method has the inconvenient to

be highly time consuming due to the number of considered person pairs, and the

number of used images per person. It is possible to decrease the processing time

by sampling images of the same person and by taking a small set only, but without

any a priori knowledge concerning the visible side of the person, this sampling

may lead to select images of similar content and avoid those representing other

situations (other visible sides).

For these reasons, it is necessary to add the people orientation information to the

computed signature.

6.2.4 Unreliable Body Subdivision

The symmetry and asymmetry axis estimation proposed in the original approach

generally provides correct results when the background subtraction is correct and when

the people are wearing t-shirt and pants with different colors. Both of these constraints

are not always verified. In the case of bad results of background subtraction or their

unavailability (static images, or detected people using a detector instead of background

subtraction process) or in the case of uniform cloth color, the torso/legs separation may

be incorrect and the asymmetry axis may be shifted up or down with respect to its real

position (see figure 6.5 (a)). If the asymmetry axis is positioned differently between

each image of the same person in multi-shot case (due to the variation of background

subtraction for example), the matching performances may be decreased proportionally

to the axis estimation error, due to the weighting process with respect to the position of

this axis. We have indicated the torso/legs asymmetry axis manually on a set of images

from VIPeR dataset, and we have compared the provided re-identification performances

with those provided by automatic axis estimation. We have observed that small errors of

positioning (like in figure 6.5 (a)) provide negligible performance difference while more

important axis positioning errors lead to decrease the re-identification performances.
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(a)                             (b)

Figure 6.5: Symmetry and asymmetry issues: (a) incorrect torso/legs separation. (b) insignifi-

cant symmetry division.

On the other hand, the symmetry division may do not have sense if people are ob-

served from profile. The symmetry axis aims at separating torso and legs into two “simi-

lar” and symmetric parts. In the case of profile view (see figure 6.5 (b)), this subdivision

may be incorrect and does not provide any useful information. It is then better to per-

form this second division only if the front or the back side of the person is visible, which

leads to the previous mentioned issue, concerning orientation dependence of signatures.

6.3 Proposed improvements

To deal with the previously mentioned issues, we propose the following improve-

ments:

� Geometrical body subdivision and image alignment: To deal with the unreli-

ability of the initial body subdivision and to improve information localisation on

all images of the same person, we propose to use another method to divide hu-

man body, based on statistical dimension of body parts with respect to the whole

body height. We also propose a method to align all the images of a given per-

son to extract the corresponding information from the same parts, improving the

re-identification process.

� Color normalization before feature extraction: To deal with the difference in

color rendering between cameras, we propose to use a color normalisation method

instead of camera colorimetric calibration approaches, due to the issues and con-

straints of this last kind of solution, which consists in the non-bijectivity of color

projections and to the practical complexity to setup a real deployed camera net-

work system by annotating a sufficient number of people and to perform the learn-

ing on all possible pairs of cameras (see 2.3.2.1).
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� RHSP characterisation by color and texture: The RHSP characterisation by color

histograms is replaced by region covariance descriptors, containing both color and

texture information, enriching the available information for matching.

� Use of SIFT descriptors as an additional texture descriptor: An additional tex-

ture information is used in the final signature, without any additional processing

cost due to the availability of this information provided by mono-camera tracking

process.

� Use orientation information for visible side classification: To deal with ori-

entation dependency of visual signatures, each person is represented by a set of

sub-signatures, depending on his/her visible side. Each acquired image is assigned

to the corresponding sub-signature for update.

� Use real world positions to filter incoherent/impossible matching: To de-

crease the number of candidate for each re-identification query and thereby, the

re-identification error rate, a filtering step is performed using real world informa-

tions provided by camera calibration information

� Adaptive weights for each descriptor: The weights are adapted to each person

to provide better re-identification performances. No off-line learning is required to

extract selected the weights.

6.3.1 Geometrical Body Subdivision and Image Alignment

As it was mentioned, the proposed symmetry and asymmetry separation is strongly

constrained by the quality of background subtraction results and the difference of colors

between torso and legs. To be independent from these constraints, and to “save” some

processing time which is dedicated to asymmetry/symmetry axes estimation without a

guarantee of success, we propose to not perform axis estimations and replace them by a

statistical and geometrical body subdivision as in [Huang 2009], by positioning the first

asymmetry axis which separates the head from torso at 1/5 of the people image height

and the second axis which separates torso from legs at 3/5 of the people image height.

The symmetry axes on the torso and leg parts are kept only if the visible side of the

considered person is not known (see sec. 6.3.5). In fact, in addition to the imprecision

of their estimation in general case (where background subtraction and people delimi-

tation are not precise), these axes are proposed by [Farenzena 2010] to provide some

robustness to the used features against people rotations. Our visible side classification

(detailed in sec. 6.3.5) allows to deal with people rotations in a more reliable way. This

decision provides another non negligible effect: The weighted color histogram (WH) size
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is divided by two (Only whole torso and whole legs histograms are concatenated, unlike

for [Farenzena 2010] approach where 4 body part histograms are concatenated). This

divide weighted color histograms comparison time by two for two images comparison.

By multiplying this saved time per the number of testes pairs of images in multiple-shot

images and per the number of considered people, the saved processing time becomes

not negligible.

In the following paragraphs, we keep the name of “Weighted Histogram” (WH) in all

situations to keep the same feature names as in the baseline approach of [Farenzena 2010],

even if in practice, if the visible side is known, the removing of symmetry axes cancels

the weighting of pixel colors (pixel colors are weighted with respect to the distance of

these pixels to symmetry axes). In this case, we can consider that all pixels have the

same weight.

Another issue still persists: most of the time, people are delimited by bounding boxes

with acceptable precision, and small errors provide negligible matching errors as men-

tioned in sec. 6.2.4. However sometimes, the person bounding box may not be precisely

computed due to an incorrect background subtraction or an error from the people de-

tector, cropping a part of the body (missing head in figure 6.5 (a)) or adding more

background area providing a bad centering of the person within the bounding box. De-

tecting the images which contain these situations is not a trivial task, and the use of these

images for the subdivision of 1/5, 3/5 of the height, and 1/2 of width may be greatly

erroneous and it may decrease significantly the re-identification performances. For this

reason, we propose also a method to align all the images of a given person provided by

the mono-camera algorithm.

This alignment method assumes that most of extracted images of a person are cor-

rectly delimited and tries to identify and to remove/readjust those with cropped parts of

the person or with additional background.

Given two images I1 and I2 of the same person, obtained from the mono-camera

tracking algorithm, two cases can be distinguished:

� The two considered images are successive or acquired in a small time interval. In

this case, the variations in person size on images, and in the pose are negligible.

� The two considered images are acquired at different moments (low acquisition

frame rate or a sparse sampling). In this case, the size (scale) of the person images

may be different if one image is acquired when the person is near the camera and

the other image when he/she is far from it. The pose of this person may have

probably changed too.

Both cases are handled by our alignment algorithm. This algorithm aims at position-
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ing I2 on I1 so that the body parts (head, shoulders, torso, legs and arms) are aligned as

much as possible and with the most similar sizes.

The first step consists in determining the scaling interval. If the images are provided

by our mono-camera tracking, which is the case in this work, the camera calibration

information and the projection functions detailed in the mono-camera tracking chapter

are used to define an interval of scaling factors in which we extract the best factor to

apply on I2 to reach I1 scale.

It is possible to compute a scaling factor directly by dividing the width and height of

I1 by those of I2 but due to the motivation of this process, i.e. unreliability of bounding

boxes which delimit person images (cropped persons or additional background), the

direct scale factor may not be correct. Taking an interval around this factor is possible

too and is better than the unique factor obtained by dividing, but the magnitude of this

interval cannot be determined without any a priori knowledge. For this reason, using

real world information (camera calibration) when it is available (as in our case) is well

suitable.

In the case of unavailable real world information (no calibration information avail-

able), which is the case of many datasets on which we evaluate our methods too, like

VIPeR dataset for example, we use the second method cited in the previous paragraph,

that defines a sufficient large interval around the factor computed by dividing width and

height of I2 by those of I1.

Once the scaling interval is defined, for each scaling factor, the following process is

performed:

� Rescale image I2 with the current computed factor to obtain image I
′

2

� Downscale both images I1 and I
′

2 using an integer factor n by dividing both images

on a grid of subregions of n × n, compute the mean color inside each subregion

of the grid and assign it to the corresponding pixels of the smaller image. Two

corresponding smaller images i1 and i2 are obtained.

� Considering the top-left corner of i1 as the origin, the image i2 is slided on i1

browsing many possible positions (x, y), x ∈ [xmin, xmax] and y ∈ [ymin, ymax],

and for each position (x, y) of i2, a dissimilarity distance between the content of

overlapped area of i1 and i2 is computed. This global distance of matching is

given as the mean of distances between colors of each corresponding pixels in the

overlapped area (following figure 6.6):
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d(x,y)(i1, i2) =
1

n

∑

x≤u<x
′

y≤v<y
′

dL∗a∗b∗(u, v) (6.10)

where n is the number of pixels in the overlapping area and dL∗a∗b∗(u, v) is the dis-

tance between colors of two superposed pixels in the overlapped area, computed

in L∗a∗b∗ color space as follow:

dL∗a∗b∗(u, v) =
√

(L∗2 − L∗1)
2 + (a∗

2 − a∗
1)

2 + (b∗
2 − b∗

1)
2 (6.11)

where (L∗1, a
∗
1, b

∗
1) is the color of pixel (u, v) of the image i1 and (L∗2, a

∗
2, b

∗
2) is the

color of pixel (u, v) of the image i2 (in the same referential)

This formula (6.11) is the CIE76 formula (proposed in 1976). It is the first color-

difference formula that has been verified by Lab experimentation. More recent

and sophisticated formulas (CIE94 and CIEDE2000) have been proposed to im-

prove the distance computing and to deal with saturated regions, but we keep

the first formula (6.11) due to the negligible contribution of the other formulas in

our context and to their higher requested processing time (more parameters and

mathematical operations per pixel:
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∆C ′
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∆H ′

kHSH
).

The choice of working in L∗a∗b∗ color space is motivated by the fact that this color

space provides the most similar color distribution as human perception and allows

better color comparison. The non-linear relations for L*, a*, and b* are intended

to mimic the non-linear response of the eye. Furthermore, uniform changes of

components in the L*a*b* color space correspond to uniform changes in perceived

color, so the relative perceptual differences between any two colors in L*a*b* can

be approximated by treating each color as a point in a three-dimensional space

(with three components: L*, a*, b*) and taking the Euclidean distance between

them ([Jain 1989]).

� Once all dissimilarity distances are computed for all possible positions of i2 in

the defined intervals, the coordinates p(1,2)(x, y) which corresponds to the lowest

distance are taken as the ones providing the best alignment.

� A reverse computing is performed by multiplying the found coordinates p(1,2)(x, y)

by n to obtain the superposing coordinates of the original images.
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(i1)

(i2)

(0, 0)

(x, y)

Figure 6.6: Images alignment

For a set of q images {I1, I2, ...Iq} of a given person, which is the general case, this

process is performed for each pair of successive images Im, Im+1 providing q − 1 super-

position points p(m,m+1)(x, y). These coordinates p(m,m+1)(x, y) are relative to different

origins which are the top-left corner of the first image of the considered pair of images.

Once the process is achieved, all these coordinates are reported to an absolute origin

which is the top-left corner of the first image I1 of the considered set. This is done easily

by a simple summation as long as the pairs are processed in successive order.

With the assumption that a sufficient number of images are correctly delimiting the

person, we have observed than these images have very close superposing coordinates,

which are null or very close to the origin if the first image delimits well the person.

The largest group of closest superposed images is considered as the correct delimita-

tion of the person. All the other images which are slightly shifted/rescaled in comparison

with the largest group of superposed images are kept after being adjusted. The other im-

ages which have an important shift (i.e. important crop) are dropped and not considered

for the signature computation due to the lack of useful information.

Note that the downscale step is performed to speed up the alignment process. It is

possible to apply this algorithm without downscaling, but the required processing time

for testing all possible superposing positions after downscaling by a factor n is ≈ n2

lower. This factor has to be multiplied by the number of image pairs to align per person.

We can then deduct the importance of saved processing time.

In our method, n depends on the size of people images. For example, we use n =

3 for small images like for CAVIAR dataset while we use n = 5 or n = 7 for large

people images like for iLids dataset. For the shifting interval, by considering W1 and H1

respectively the width and the height of the image i1 (of each pair of images), we use:
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xmin = −W1/2
xmax = W1/2
ymin = −H1/2
ymax = H1/2

Some examples of the image alignment results are shown in figure 6.7.

6.3.2 Color Normalization Before Feature Extraction

As mentioned before, the color rendering difference between cameras, due to sensor

sensibility difference or to external conditions (camera point of view/orientation, illu-

mination conditions, etc.) is an important issue for visual signature comparison as long

as color is an important information for this purpose.

Due to the issues and constraints of colorimetric calibration approaches, discussed at

the end of section 2.3.2.1, related to the non-bijectivity of transfer functions and to the

complexity to apply this kind of method in a large scale video-surveillance system with

many cameras, we prefer to use a color normalization method.

Like in [Bak 2011], we use histogram equalization [Finlayson 2005] method. This

method supposes that the rank of colors are preserved during illumination changes. The

rank measured for a level “i” of a channel “k” is given by:

Mk(i) =

i∑

u=0

Hk(u)/

Nb∑

u=0

Hk(u) (6.12)

where Hk() is the histogram of the channel k and Nb its bins number.

Histogram equalisation stretches a range of histogram to be as close as possible to a

uniform histogram. It is applied to each color channel (RGB) to maximize their entropy

and obtain an invariant image.

6.3.3 RHSP Characterisation by Color and Texture

To deal with the exclusive use of color information for the signature computation,

two improvements are proposed. The first one consists in the modification of the RHSP

characterization method, and the second one, which is detailed in the next section,

consists in the addition of another texture-based feature to the signature.

As mentioned before, the extraction method of RHSP patches, described in 6.1.2.3,

provides a set of recurrent patches, which are also robust to rotations. Unfortunately, the

final characterization of these patches is performed by simple color histograms, loosing

the information of color repartition inside the patchs and does not encode any texture

information, despite the use of LNCC in the selection process.
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Figure 6.7: Image alignment process illustration and results on iLids-AA dataset samples. In the first row, the alignment process is detailed:

(a) 8 sampled images of the same person obtained by automatic people detection and tracking. The person is not delimited and centred

correctly in images (various shifting). (b) Samples of alignment of successive pairs of images. (c) The final alignment results. (d) Some other

results of people images alignments. In this figures, red bounding box corresponds to the first image of each set of images (defining the origin

of coordinate system), and the blue bounding boxes are those of the remaining images of each set. Image transparencies have been modified

to show the alignment results.
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We keep the same method for patches selection, but we propose to replace color

histograms by region covariance descriptors (see sec. 4.1), containing both color and

texture information. We use the following feature vector to construct our 7×7 covariance

descriptors:

[

x y R G B
√

I2x + I2y arctan
|Ix |

|Iy |

]T

(6.13)

where:

x and y are the pixel coordinates,

R, G and B are respectively the values of red, green and blue channels,
√

I2x + I2y and arctan
|Ix |
|Iy

| are respectively the magnitude and the orientation of the gra-

dient (the edge) computed on the green channel (to save conversion processing time).

Using these features provide the needed information: the localisation of both color

and texture information (x and y coordinates), the color information (R, G, and B) and

the texture information (
√

I2x + I2y and arctan
|Ix |
|Iy

|).

Note that contrary to the use of covariance descriptor for people detection (chapter

4), where the processing time is relatively high, the use of this descriptor here does not

increase the processing time. This is due to the fact that no mean covariance is required

(and thereby, no iterative gradient descent computations), but only a simple covariance

matrix computing for each patch, which can be speeded up using integral images, as

explained in the chapter 4.

6.3.4 Use of SIFT Features as an Additional Texture Descriptor

To enhance the final signature by texture information, the SIFT features which have

been used in mono-camera tracking are added to the final signature. The last known

state (coordinates and descriptors) of all SIFT features of a given person are stored and

used to provide a partial matching score which is weighted and summed to eq. 6.8).

The new signature matching formula becomes:

d(IA, IB) = βWH.dWH(WH(IA),WH(IB))+

βMSCR.dMSCR(MSCR(IA),MSCR(IB))+

βRHSP.dRHSP(RHSP(IA), RHSP(IB))+

βSIFT .dSIFT (SIFT(IA), SIFT(IB))

(6.14)

where the SIFT(.) is the partial signature consisting of SIFT features, and βSIFT is its

normalized weight in the final signature.
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The distance dSIFT evaluates the SIFT features similarity. Given two persons A and B

to compare, each of them has its set of SIFT features provided by mono-camera tracking

algorithm.

As described in sec 5.2.2, each person image is divided into a grid of subregions

and each subregion contains a constant number of SIFT features. Thanks to the images

alignment algorithm we use (sec 6.3.1), we can assume that these two persons are

well delimited by their bounding box. It is then possible to resize their images to the

same dimensions and thereby to obtain aligned grids of subregions and to compute the

corresponding SIFT feature coordinates in the new images size.

Each SIFT feature fi(A) from A is compared to a set of SIFT features {fj(B)}j:1..nB

from B. This set of features from B consists of the nB SIFT features which are inside

the same grid cell (subregion) than fi(A) and those inside adjacent cells (subregions)

to take in account possible shifting of features located near subregions borders. We also

compute a SIFT descriptor on B image at the same location than fi(A) even if is not a

detected SIFT point, and compare it with fi(A). This last point has the interest to ensure

one point at least for comparison, so each SIFT feature from A provides a matching

distance.

The comparison between two SIFT features is performed using an Euclidean distance

like during mono-camera tracking. The smallest distance is taken as the one of fi(A)

with its corresponding feature in B. The final distance dSIFT is taken as the mean of all

the smallest distances between all {fi(A)}i:1..nA
and their corresponding features in B.

Concerning βSIFT and as it was indicated in sec 6.2.1, this weight (as all the other) is

no longer constant in our approach and is fixed according to the available information

as it is described in the next section (sec 6.3.7).

Note that due to the local nature of both RHSP and SIFT features, their corresponding

signatures are strongly dependent on the visible side of the person. This issue is managed

by the use sub-signatures per person, detailed in sec 6.3.5

6.3.5 Use Orientation Information for Visible Side Classification

As it was mentioned before, the orientation change of a given person is an important

issue for re-identification task. Both global and local features may be affected with

different levels.

It is possible to use face detection to identify whether an observed person is in front

of the camera or not, but this solution presents the following issues: First, face detection

requires additional processing time, slowing down the whole process. Then, the detec-

tion performances are strongly dependent on image resolution and face sizes, which are

not appropriate with most of large area surveillance systems. Finally, if no face is de-
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tected, that mean that the person is not observed on his frontal side. It can be observed

from behind or in profile. A binary classification of visible side (frontal side / not frontal

side) is not sufficient.

To make the visual signature more discriminant, we have decided to consider 8 pos-

sible classes for visible sides for each person (see figure 6.10(b)). Each visible side

correspond to a walking direction. These 8 side classes are: the 4 main sides which are

the front side (S), the back side (N), the left profile (W) and the right profile (E), in

addition to the 4 intermediate sides which are the front-left profile (SW), the front-right

profile (SE), the back-left side (NW) and the back-right side (NE).

The availability of camera calibration information and the real world information

concerning people movements, provided by mono-camera tracking algorithm allow us

to obtain more detailed information concerning the visible side of each person, assuming

that people move forward.

The used calibration tool (figure 5.2) allows to position the the coordinate system

as desired on the ground floor. If the coordinate system is not positioned manually, a

default position is assigned by the calibration tool as follow (see figure 6.8):

� The origin “o” is positioned at the vertical projection of the optical center of the

camera on the ground floor.

� The “Y” axis is perpendicular to the ground floor and is directed upwards and thus

it passes through the optical center of the camera (hence, the term “Y-top” for this

kind of calibration).

� The “X” axis is the projection of the optical axis of the camera on the ground floor,

and is oriented in the camera view direction.

� The “Z” axis is defined as perpendicular to the plan defined by the two axes “X”

and “Y”. The direction of “Z” axis is defined using the standard “right-hand rule”

(see figure 6.9).

We use this default positioning and orientation of the coordinate system. If another

calibration tool is used with a different coordinate system configuration, obtained extrin-

sic matrix has to be transformed using the necessary translation and rotation matrices

to reach the desired configuration of the coordinate system.

The mono-camera tracking algorithm provides the trajectory on the ground floor of

each tracked person. The trajectory of a given tracked person consists in the set of its

localization coordinates {(Xi, 0, Zi)}i:1...N on the ground floor, where N is the number

of frames where the tracked person is tracked, obtained using the “image to world”

projection process (explained in sec 5.1.1).
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Camera optical axis
Camera optical center

Ground floor

x
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y

o

Figure 6.8: Used (default) camera calibration coordinate system.

Figure 6.9: Right-hand rule for Cartesian 3D coordinate system.

By ignoring Y coordinate (which is always null), we can consider the trajectory of a

given person in the corresponding two dimensional plan to the ground floor (see figure

6.10 (a)).

For a given person, his/her trajectory points are used to compute a regression line.

The slope of this regression allows to classify the visible side into one of the 8 defined

classes (see figure 6.10 (b)). Unfortunately, people trajectories are not always straight,

so the regression line of the whole points of the trajectory may not be representative of

all observed visible sides. The trajectory of “Person 4” in the figure 6.10 (a) shows that 3
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different sides have been observed successively (left side, front-left side and front side)

while the global regression line correspond to a unique front-left side.

To deal with this frequent issue (no straight trajectories), the trajectories are di-

vided into subsets of “n” consecutive location points. We consider that the change in

visible side may not be important in a walking interval of 2 meters. Knowing that the

average human walking speed is about 5km/h ([TranSafety 1997]), a person need ap-

proximately 1.44 seconds to walk 2 meters. Depending on the acquisition frame-rate, it

is then possible to define the number “n” of successive location points which are trav-

eled by a person in this time. In our case, most our used sequences are acquired at

8 fps by deployed systems of Digital Barriers, so the corresponding position points is

11.52 which is rounded to n = 12 points. This value has to be adjusted according to the

average walking/running speed in the monitored area and to the acquisition frame-rate.

x

z

Person 1

Person 2

Person 3

Person 4

(0, 0)

N

S

EW

NE

SW SE

NW

0

π/8

3π/85π/8

7π/8

9π/8

11π/8 13π/8

15π/8

(a)                                                          (b)

Figure 6.10: Visible side classification into 8 sub-classes according to the walking direction. (a)

Example of trajectories in the ground floor projection plan. (b) The 8 classes of visible sides

To increase the precision of the visible side classification, we do not assign the cur-

rent person image to it’s visible side class directly using the regression line on the last

“n” position. A buffer of “n/2” images (6 in our case) is used to assign the image to its

class with a delay of “n/2” images. This policy allows to take the “n/2” previous loca-

tions and the “n/2” next locations of a given image to decide in which class it belongs.

Otherwise, if the current image is directly classified using the “n” last locations (includ-

ing the current one as the last one), there is a risk that the current image correspond

to the end of orientation change (see the last position of the “Person 4” in figure 6.10

(a): the visible side is the front one while it may be classified as a front-left side if the

orientation change is rough).

Now it is possible to estimate the visible side of a given person on each acquired
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image, his/her global signature is replaced by a set of 8 sub-signatures, one per class of

visible side. One or several visible side classes may have null signatures due to the fact

that the person has never been observed by this side(s).

To compare the signatures of two persons A and B, three cases can be distinguished:

� The two persons share some classes with non-null sub-signatures (i,e. they have

been observed under some similar sides).

� The two persons do not share any similar classes of non-null sub-signatures, but

some of their non-null sub-signatures belongs to adjacent classes (for example,

the person A has a “N” sub-signature while the person B does not have a a “N”

sub-signature but have a “NE” or “NW” one).

� The two persons do not share any similar classes of non-null sub-signatures, and

any adjacent classes of non-null sub-signatures.

In the first case, where at least one non-null sub-signature class exists for both per-

sons, the dissimilarity measure between the signature SA of A and the signature SB of B

is given by:

d(SA, SB) =
1

n

n∑

i=1

d(SS
(i)
A , SS

(i)
B ) (6.15)

where n is the number of common classes with non-null sub-signatures, SS(i) is the

sub-signature of the class i, and d(SS
(i)
A , SS

(i)
B ) is the dissimilarity distance between two

sub-signatures, computed using eq. (6.14) as for usual signatures before.

In the second case, where only some adjacent classes of sub-signatures are shared

between the two persons (no common classes), the dissimilarity measure between the

signatures SA and SB is given by:

d(SA, SB) =
1

n

n∑

i=1

d(SS
(i)
A , SS

(j)
B ) (6.16)

where n is the number of pairs of adjacent classes with non-null sub-signatures,

SS(i) and SS(i) are respectively the sub-signatures of the adjacent classes i and j, and

d(SS
(i)
A , SS

(j)
B ) is the dissimilarity distance between two sub-signatures, computed using

eq. (6.14) as for usual signatures before.

Finally, in the last case where neither common classes nor adjacent ones are shared,

the dissimilarity distance between the two persons is computed as in the initial approach,

by considering all the sub-signatures as a unique one, but using the new formula 6.14
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including SIFT features signature. In this case, the result is similar to the one of the

initial approach (not worsen).

This subdivision into 8 classes of visible sides has the following three main advan-

tages:

� In the general case, when the computed visual signature consists of a large model

encoding all the possible observations from all acquired images of a given person,

or consists of a selection of salient features which are present in all person images,

this sub-signatures subdivision allows the extraction of information from the same

sides and thereby, avoids too permissive or too restrictive signatures obtained from

important variations in the appearance of each person side.

� In our case, where the comparison between two persons consists in keeping the

minimum distance of all tested pairs for WH and RHSP, the sub-signatures de-

crease the number of pairs to test by focusing on smaller subset of images belong-

ing to the selected classes.

� It allows a better feature weighting (βWH, βMSCR, βRHSP, βSIFT ) in the final dissim-

ilarity measure computation (See next section). Due to the local nature of SIFT

and RHSP features, their weight may be increased, decreased or totally avoided

depending on their provenance (if they are not extracted from common sides).

Two important remarks have to be taken into account here:

- If the number of available images for a given person is high, using all these images

may provides the best results but due to processing time requirements, we use only

a smaller subset of these images. Our criteria for images sampling is mainly based

on the visible side classification: For each not empty class, we select a constant

number “n” of images at constant intervals of the trajectory which belongs to this

class. In our experiments, we select the value of n according to the number of

non-empty classes, the aim being to take 8 to 16 images at most. The selection

is done by taking images at approximately constant intervals of position in the

same visible side class. If no visible side classification is available, the 8 images are

sampled with the same method as they belongs to the same class.

- After a full computing of MSCR features for a given image (generally the first one

of a class of visible side), the MSCR computation on the next images of the same

visible side class is performed faster. For each new image, we initialize MSCR

detector with the optimal parameters (number of clusters to find, initial mean

colors, initial color region centers and areas) according to the detected MSCRs on
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the previous image, assuming that images of the same sides provides closer MSCRs.

This speeds up MSCR computing process. In the case this visible side classification

is not available, the same process is applied on all the acquired images.

The improvements provided by this contribution are evaluated and highlighted in

section 7.3.3.2. It consists on an experimentation and performance comparison on an

extracted dataset which contains mainly people who changes significantly their visible

side (by rotation) with respect to the camera.

6.3.6 Use Real World Positions/Velocity to Filter and Weight Matching

Depending on the availability of the monitored area plan (containing the delimitation

of observed area per camera and the distances between them) and/or the calibration of

the deployed cameras in this are in a common coordinate system, the re-identification

process can be strongly improved in terms of performances and processing time.

In our study, we use a second tool for camera network calibration, developed by

Digital Barriers France for the ViCoMo project, providing calibration matrices for each

camera, but reported to a unique coordinate system.

This part of improvements has been tester only on ViCoMo project sequences and

has proven his effectiveness. The ViCoMo project video sequences were acquired in

Eindhoven airport by 10 cameras, providing both overlapping and non-overlapping fields

of view situations. Unfortunately, It is not possible to evaluate it on the most used

benchmarking re-identification datasets (iLids, TrecVid, Viper) due a lack of time and to

the fact that dataset images are provided as detected and cropped persons, without any

real world information. We are planing to evaluate this part on large video sequences

like TrecVid ones in our feature work when more time will be available.

We can distinguish two different situations concerning the re-identification between

two cameras: The first case concerns cameras with overlapped fields of view. The second

one concerns the case of the cameras do not have overlapped fields of view.

� Cameras with overlapped fields of view: in this case, the re-identification of

a person from the first camera to the second one is performed when this person

is observed by the two cameras simultaneously (i,e. when this person is on the

overlapping area).

Due to the possible imprecision of the detection bounding box (even provided

by background subtraction or by people detector), the same person may provide

slightly different coordinates on the ground floor between the two cameras. This

is not an issue if the person is alone in a relatively small surrounding perimeter,
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but if more than one person is near the provided locations (which is the case in

the processed ViCoMo sequences), the re-identification became non-trivial.

For this reason, a circular perimeter with a sufficient radius “r” is centered on the

person position from the first camera. All persons who are out of this perimeter

are not considered as candidates. The persons inside this perimeter are tested as

candidate, by comparing their visual signatures with the query person one. In our

experiments on ViCoMo video sequences, we use r = 2m.

The visual signatures comparison is performed as described in previous sections.

The dissimilarity measure between two signatures is weighted by the normalized

distance (on the ground floor) of the corresponding candidate location to the one

of the query person.

d(A,B) = d(IA, IB).

√

(XA − XB)2 + ((ZA − ZB)2

r
(6.17)

where d(A,B) is the final distance used to perform the re-identification task and

d(IA, IB) is the dissimilarity distance between visual signatures, provided by eq.

(6.14).

Note that we are assigning the same importance to the visual signature comparison

and to the real world distance. In future work, we are planning to find a better

weight for real world distance, taking in account the calibration precision and the

number of persons inside the perimeter (the more persons inside the perimeter

are, the more the risque of imprecise real world distance computation is, due to

increased risk of incorrect projections)

� Cameras without overlapped fields of view: if the monitored area plan is avail-

able, the velocity of tracked people and their location at the re-identification mo-

ment are used to remove all candidates who can not satisfy the spatio-temporal

constraints: A person cannot be at two different locations at the same time. A per-

son cannot travail a given distance in a given time if this displacement requires a

superhuman velocity. We have used the maximum possible velocity as 44.72 km/h

which was the maximum observed human velocity (reached by Usain Bolt in a

100 meters sprint). We know that we can decrease this maximum velocity because

normal people, in usual monitored areas have less important velocity, but despite

this high value, a large percentage of incoherent candidates have been filtered in

our tests on ViCoMo sequences.

For future work, we are interested by finding a reliable way to learn automatically

the possible trajectories and the distances between the covered areas of a camera
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network. A first idea consists in assuming that people move with constant veloc-

ities and using the elapsed time between the exit from one camera view and the

appearance in another one, it is possible to estimate a traveled distance. To avoid

cases where a person stops for few time between the two cameras, or he/she takes

a small/large detour, it may be necessary to use a large set of manually annotated

trajectory samples and to perform some clustering to eliminate outliers.

6.3.7 Adaptive Weights for Each Descriptor

As mentioned in sec 6.2.1, Farenzena et al. [Farenzena 2010] use fixed weights

for all the experiments. These weights are extracted experimentally as the best ones

for a subset of 100 persons from VIPeR dataset. This approaches is limited due to the

possible diversity of situations (indoor/outdoor, weather, illumination, location, visi-

ble side of people, etc.) and their provided type of information (poor/rich amount of

color/texture).

We propose to use adaptive weights according to the kind of available information

and to the visible side of each person, and this without any necessary offline learning,

allowing to use this method easily in live surveillance system.

The most important point in our weighting method is that the used weights are not

specific for a whole dataset or for all viewed persons in a given surveillance system, but

the are specific for each query person independently, and more precisely, they are specific

to each considered visible side information. The weights used to re-identify a person A

may probably be different from those which are used to re-identify a person B even both

persons are belonging to the same dataset or are observed by the same camera.

This policy has the effect of providing heterogeneous dissimilarity distances for dif-

ferent query persons, but it does not constitute an issue for the re-identification task

as long as the dissimilarity distances are homogeneous for a given query person, i.e,

the query person is compared to all the candidates using the same weights, providing

coherent ranking. The lowest distance correspond to the most likely correspondence.

The weights are assigned to a given person depending on the his/her visible side(s),

the importance and the discriminative power of the visual information this person pro-

vides. SIFT and RHSP features being local features, their weights vary according to the

compared visible sides. On the other hand, the more his/her appearance is rich/discriminant

in terms of colors, the higher βWH and βMSCR are. The same remark concerns the rich-

ness power of his/her appearance in terms of texture and the importance of βRHSP and

βSIFT .

The following paragraphs explain how a given person appearance is considered as

rich or poor in terms of color/texture and how, according to this decision, the different
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weights are assigned.

6.3.7.1 Color/Texture Importance Measures

Color:

Each time a new image of a person is acquired by a given camera, the different fea-

tures (WH, MSCR, RHSP) are computed on this image and used to update the person

signature as described before. At the same time, we extract a Hue histogram of this

person image, we assign it to the considered person as additional information (it is not

used for signature comparison) and we add it to a global histogram assigned to the

camera network (no additional image browsing is needed, the WH bins which belong

to the same hue value are summed). The camera network has its own normalized Hue

histogram representing the frequency of all observed colors on all observed people.

When a given person re-identification is required, the distance between the hue his-

togram of each candidate person and the global hue histogram (of the camera network)

is computed. The max distance is kept as Distcolor(max).

The distance between the hue histogram of the person p to re-identify and the global

hue histogram is also computed and noted as Distcolor(p). Our color importance estima-

tion is based on our assumption that the higher Distcolor(p) is, the more informative the

color of this person is. This is due to the fact that the global hue histogram of the cam-

era network is representing a mean of observed colors. If Distcolor(p) is high, it means

that this person has a high probability to be separated from most of people thanks to its

colors.

For the considered person p and to quantify this importance as an importance score,

we use the following formula:

Scorecolor(p) =
Distcolor(p)

Distcolor(max)
(6.18)

Scorecolor(p) values are in [0, 1]. We are aware that computing an importance score

with respect to the max distance is not the best way to obtain an absolute information

about the richness of color and its discriminative power, especially if Distcolor(max)

is too low, but this method provides good results as it is demonstrated in the eval-

uation chapter (chapter 7). We believe that the main reason for this is that when

Distcolor(max) is too low, it corresponds to the case where all of people have quite

similar colors. In large scale video-surveillance systems or large people datasets, this

case is unlikely to occur, since if only one person has significantly different colors,

Distcolor(max) will be high enough. Even assuming that no person has significantly

different colors compared to all the other people, this case happen generally with dark
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colors. In this case, the texture features (RHSP and SIFT) are generally impacted too

(low textures because dark cloths), and since feature importance weighting is a relative

one (Color VS. texture), the computed weights still have sens even if both color and

textures are not discriminative enough (in similar proportions).

The Weighted histogram and MSCR features are not fully redundant and have the

same importance in our approach since they are complementary and provide different

contribution to the visual signature even if both are color-based features. MSCR encodes

the spacial information of color distribution and some discriminative color region shapes

and orientations (color stripes, circles, etc.) but are more sensitive to deformations

(region centroid and orientations may vary) while color histograms are more robust to

deformations but does not encore any spacial information.

RHSP:

A similar process as for color is performed. Each time a new image of a person p is

acquired by a given camera, the different features (WH, MSCR, RHSP) are computed

on this image and used to update the person signature as described before. The mean

entropy of the selected RHSP patches (eq. 6.6) for this person is computed and assigned

to him/her as additional information (it is not used for signature comparison). This

value is noted MeanRHSP(p).

The max value of of all computed MeanRHSP(pi), noted MeanRHSP(max), is as-

signed to the camera network as the corresponding value to the most textured person

image.

Our RHSP importance estimation is based on our assumption that the higher MeanRHSP(p)

is, the more informative the texture of this person is (both gray values and color textures

since we use region covariance descriptor with both information to characterise RHSPs).

If MeanRHSP(p) is high, it means that this person has a high probability to be separated

from most of people thanks to its texture.

For the considered person p and to quantify this importance as an importance score,

we use the following formula:

ScoreRHSP(p) =
MeanRHSP(p)

MeanRHSP(max)
(6.19)

ScoreRHSP(p) values are in [0, 1].

SIFT:

For SFIT features, two cases can be distinguished: If the SIFT features of the consid-

ered person p are provided by mono-camera tracking algorithm, we use the mean of

their reliability measures, provided also by mono-camera tracking (eq. 5.14) as SIFT
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importance score ScoreSIFT (p). ScoreSIFT (p) values are in [0, 1] since each SIFT feature

reliability value is in [0, 1] (eq. 5.14). Otherwise, if SIFT features are detected directly

on the last image of the person like for some evaluation datasets (see sec. 7.3) (due to

the unavailability of tracking information), we use ScoreSIFT (p) = ScoreRHSP(p). SIFT

features being texture descriptors, we assume that the importance may be quite similar.

6.3.7.2 Feauture Weighting

Now the importance of each information type measured for a given person p, the

used features (WH, MSCR, RHSP, SIFT) have the following intermediate normalized

weights:

wWH(p) =
2 · Scorecolor(p)

2 · Scorecolor(p) + ScoreRHSP(p) + ScoreSIFT (p)
(6.20)

wMSCR(p) =
2 · Scorecolor(p)

2 · Scorecolor(p) + ScoreRHSP(p) + ScoreSIFT (p)
(6.21)

wRHSP(p) =
ScoreRHSP(p)

2 · Scorecolor(p) + ScoreRHSP(p) + ScoreSIFT (p)
(6.22)

wSIFT (p) =
ScoreSIFT (p)

2 · Scorecolor(p) + ScoreRHSP(p) + ScoreSIFT (p)
(6.23)

with wWH(p) +wMSCR(p) +wRHSP(p) +wSIFTH(p) = 1.0.

The final weights βWH, βMSCR, βRHSP and βSIFT of the used features for signature

comparison are given by:

βWH(p) = αcolor ·wWH(p) (6.24)

βMCSR(p) = αcolor ·wMCSR(p) (6.25)

βRHSP(p) = αRHSP ·wRHSP(p) (6.26)

βSIFT (p) = αSIFT ·wSIFT (p) (6.27)

where αcolor, αRHSP and αSIFT are the visible side classification coefficients. It means

that depending on the availability or not of the visible side classification, and to the

compared visible side classes if they are available, the feature weights are different.
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In the case of availability of visible side classifications and depending to which of the

three mentioned cases in sec 6.3.5 the re-identification query belongs, the weights are

assigned as follow:

� Comparison of the same visible side classes:

In this case, all the features have the same importance from visible side point of

view. The difference between their importance is then exclusively dictated by the

intermediate weights (eq. 6.20, 6.21, 6.22 and 6.23) which are directly related

to the information importance measures. The coefficients are then: αcolor = 1.0,

αRHSP = 1.0 and αSIFT = 1.0

� Comparison of the adjacent visible side classes:

In this case, Color being more global descriptors than RHSP and SIFT (which

are local descriptors), the color features (WH and MSCR) take more important

weights. We have decided to keep the same proportion between these two kinds

of information (color and texture) as in the baseline approach (sec. 6.1.3), i.e.

80% of weight to color based features (WH and MSCRs) and 20% of weight to

texture based feature (RHSPs, even if their characterisation was exclusively done

by color, their selection are texture-based approach).

We assign the coefficient as follow: αcolor = 0.4, αRHSP = 0.05 and αSIFT = 0.15,

with αRHSP + αSIFT = 0.2.

We assign a more important coefficient to SIFT features in comparison with RHSP

due to their good invariance with respect to affine transformation (object rotation)

([Lowe 2004]) in comparison with covariance matrices. In fact, both SIFT features

and RHSP patches may still be visible on images of adjacent classes of visible sides

but with some affine transformation.

Note that in this case, another normalization step, as in equations 6.20, 6.21, 6.22

and 6.23, is required for βWH, βMSCR, βRHSP and βSIFT weights since their sum

does not equal 1.0 in general case.

� Comparison of signatures without common or adjacent visible side classes:

In this case, we completely avoid the use of SIFT features and RHSP for visual

signature comparison, since they are local descriptors and then, the same fea-

tures are not visible on the two considered signature, by setting their coefficient

as αRHSP = 0 and αSIFT = 0. Color coefficient is set as αcolor = 1.0, and as for the

previous case, βWH, βMSCR are normalized again to have βWH + βMSCR = 1.0.

In the case of unavailability of visible side classification, we do not have any infor-

mation to decide if local features (SIFT and RHSP) have to be considered or not, and
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with which importance. We believe that the middle case (using these features but with

a lower importance) is a good compromise to exploit their effectiveness if the compared

signatures are acquired from same or close visible sides, and to do not alter the compar-

ison process greatly if the visible sides are neither common nor adjacent, thanks to the

low coefficient these local features have.

6.4 Conclusion

We have proposed a context-aware and appearance based approach for people re-

identification through video camera network. This approach is fully on-line processing

and satisfies the genericity and easy deployment on large scale video systems constrains.

Our approach is based on a state of the art one ([Farenzena 2010]). The main issues of

the baseline approach have been identified and some improvements have been proposed

to deal with these issues. Some other improvements have been added to increase the

efficiency of the final approach.

From visual signature efficiency point of view, we have proposed an image align-

ment method to make the computed multi-shot based signatures more reliable by taking

and comparing the information from corresponding body parts on all images. We have

also increased the discriminative power of RHSP patches by characterizing them using

covariance descriptors, containing both color and texture information. We have added

SIFT features to the final signatures, adding more texture information. We have also

proposed a classification method for people visible side, based on our object tracking

algorithm and the camera calibration information, allowing more precise comparison.

We have finally proposed a method to use camera calibration information to reduce the

number of candidate for re-identification and to weight some matching hypothesis using

real world distance.

From processing time point of view, the baseline method [Farenzena 2010] is a real-

time method for small sets of images per person (up to 8 images) and pseudo real-time

method (up to 12 images). The improvements we have proposed does not increase

greatly the processing time, and the final approach requires similar processing time.

This is due to many reasons.

First, symmetry and asymmetry axes computation time is saved by the simple con-

stant vertical division of the people bounding boxes. Second MSCR features are com-

puted using some optimisations. In fact, after computing all MSCR features of the first

image of a person, the MSCR of the following images are computed faster using better

initialization parameters (centroid localisations, region areas and orientations, region

colors) knowing the results of MSCR of the previous image and with the strong assump-
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tion that the most important MSCR vary slightly from an image to the next one.

Even if covariance matrices are the most time consuming features, the simple com-

putation and comparison still stay in real-time (or pseudo-real time) range. In people

detection approach, the most consuming process step is the covariance mean computing,

which is based on iterative gradient descent process. Here, this process is not required.

Images alignment process is also fast thanks to the used downscale step and the use of

calibration information for dimension range definition.

SIFT features detection and and their reliability measure computation is provided by

our mono-camera tracking algorithm and do not have to be performed here. In the case

of unavailability of our mono-camera tracking results, the SIFT features are detected

on the last image of each person using the same detection and selection method as

described in 5.2.2. This does not increase greatly the processing time. Finally, The same

mono-camera tracking algorithm provides the real world trajectories which allows to

perform the visible side classification and the spatio-temporal coherency filtering. The

visible side classification consisting in simple regression function computation on subsets

of the trajectory, the processing time is negligible.

The evaluation and comparison with state of the art results which validate our re-

identification approach are provided in chapter 7, but some issues still exists with our

method. The two main issues consists in the used features and also in the way they

are weighted. The proposed adaptive feature weighing method, even it provides good

results in our tests, is not the optimal method. Some importance scores are computed

relatively (to the max distances of observed color, or to the max of observed entropy)

and provides then a measure of discriminance in comparison with other people, but not

a global measure on the richness in term of a given information type which may be more

informative for better weighting. On the other hand, both color and textures may not be

available in enough amount in some cases (dark and uniform clothes). This is a more

general issue in state of the art and does not concerns only our approach.
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7

EXPERIMENTAL RESULTS

This chapter presents a large evaluation of the proposed methods for people detec-

tion, mono-camera tracking and re-identification. It shows the performance improve-

ments and the remaining limitations. Due to the unavailability of a whole evaluation

framework (people detection, tracking, and re-identification) evaluation in the state of

the art, the evaluations are performed for each processing task independently. We com-

pare the results of each task with the state of the art results. The evaluation datasets are

selected according to their popularity (the availability of results) and/or for the chal-

lenge they provide.

For each processing task, the corresponding evaluation metrics are firstly presented.

Then, the state of the art datasets used for evaluation and benchmarking are presented.

Finally, the evaluation results on each dataset are discussed, highlighting the improve-

ment but also the limitations, explaining the most important reasons and proposing

some ideas to solve the remaining issues for future work.

7.1 Efficient People Detector

7.1.1 Evaluation Metrics

There are two methodologies for people detector evaluation in the literature: the

“Per-Window (PW)” performance evaluation and the “Full Image” performance evalu-

ation. The “Per-Window (PW)” methodology is more dedicated to evaluate the perfor-

mances of the classifiers only, by returning a decision concerning predefined candidate

regions (selected by another process or delimited manually), while the “Full Image”

methodology evaluates the whole detector, including the classifier (if it exists, because

225
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some detectors are not classifer-based), the browsing image method, the scaling search,

etc.

“Full Image” methodology provides a natural measure of error of an overall detection

system, for this reason and because most state of the art approaches are evaluated using

“Full Image” methodology, we use this methodology for our evaluations too. To decide if

a region detected as a person is considered as a correct detection or not, the overlapping

area between the detected bounding box (BBdet) and a ground truth one (BBgt) has to

be greater than a threshold. We use the PASCAL [Everingham 2009] measure, which

states that the overlapping must exceed 50% as follow:

area(BBdet ∩ BBgt)

area(BBdet ∪ BBgt)
> 0.5 (7.1)

An efficient people detector has to detect the maximum number of appearing people

(true positives or TP) in images while it has to make the minimum number of errors, i.e.

the number of non-people detected as people (false positive or FP).

In literature, the first variable, i.e. true positive (TP) rate is generally replaced in

evaluation by the false negative (FN) one, called also miss-detection rate. These two

values are correlated since: TP rate = 1.0 − FN rate

False positive and miss-detection rates are also correlated in a more general sense.

In fact, the more a given people detector is “permissive” the lower the miss-detection

rate is, but at the same time, the higher the false positive rate is too. In the other hand,

the more this people detector is “restrictive”, the lower the false positive rate is, but the

higher the miss-detection rate is.

The evolution of miss-detection rate with respect to false positive one can be obtained

by varying the permissivity of the evaluated people detector. This is done in several

ways depending on the nature of the detector, even by varying the detection parameters

(searching scales, browsing steps, width/height ratio of the detection window, etc...)

of by varying the classifier parameters: for example, in the case of SVM classifiers, the

permissivity variation can be obtained by shifting the separation hyperplan more in the

positive class direction (increasing FN and decreasing FP rates) or the negatvive class one

(increasing FP and decreasing FN rates. SVM hyperplan separation is explained in sec

2.1.3.2). For a boosted classifier, this permissivity variation can be obtained by varying

the classifier threshold which is used for decision after summing the weak classifier

responses. For a boosted cascade of classifiers, the threshold of each cascade level can

be varied too, obtaining a variation in the permissivity of the detector. Another method

consists in changing the number of considered cascade levels. By decreasing the number

of cascade levels, the permissivity of the cascade is increased too (due to the rejection

mechanism of this kind of classifiers).
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Miss-detection and false-positive rates are given by the following equations:

miss-detection rate =
NFN

NFN +NTP
(7.2)

false positive rate =
NFP

NFP +NTN
(7.3)

where TP, TN, FP and FN are the numbers of true positive, true negative, false

positive and false negative respectively. NFN + NTP (the denominator of eq. (7.2))

corresponds to the number of annotated people in the ground truth while NFP + NTN

(the denominator of eq. (7.3)) corresponds to the number of tested negative regions.

To compare detectors we plot miss rate against false positives per image in log-log

scale.

7.1.2 Dataset Presentation

The proposed people detector has been evaluated on four dataset: INRIA Person

dataset, DaimlerChrysler dataset, Caltech Pedestrian dataset and CAVIAR dataset.

7.1.2.1 INRIA Person Dataset

The INRIA person dataset [Dalal 2005] consists of two subsets of color images: a

training set containing 2416 person annotations and 1218 person-free images and a

test dataset with 1132 persons and 453 person-free images. The pedestrian annotations

were scaled into a fixed size 64 × 128 window, which includes a margin of 16 pixels

around the pedestrians.

This dataset is quite challenging due to the various scenes, content, and persons

appearence and poses (see some samples in figure 7.1).

Figure 7.1: Samples from INRIA dataset. The first row consists of some examples of annotated

people. The second row consists of some croped negative samples with the same size as anno-

tated people (64× 128 pixels).
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7.1.2.2 DaimlerChrysler Dataset

The DaimlerChrysler data set [Munder 2006] contains gray scale images with 4,000

pedestrian (24,000 with reflections and small shifts) and 25,000 non-pedestrian anno-

tations. As opposed to the INRIA data set, nonpedestrian annotations were selected by a

preprocessing step from the negative samples, which match a pedestrian shape template

based on the average Chamfer distance score. Both annotations were scaled into a fixed

size 18× 36 window, and pedestrian annotations include a margin of 2 pixels around.

The data set is organized into three training and two test sets, each of them having

4,800 positive and 5,000 negative examples. The small size of the windows, combined

with a carefully arranged negative set, makes detection on the Daimler- Chrysler data set

extremely challenging. In addition, 3,600 person-free images with varying sizes between

360× 288 and 640 × 480 are also supplied.

Figure 7.2: Samples from DaimlerChrysler dataset. The first row consists of some examples of

annotated people. The second row consists of some croped negative samples with the same size

as annotated people (18× 36 pixels)

7.1.2.3 Caltech Pedestrian Dataset

The Caltech Pedestrian Dataset consists of approximately 10 hours of 640x480 30Hz

video taken from a vehicle driving through regular traffic in an urban environment.

About 250,000 frames (in 137 approximately minute long segments) with a total of

350,000 bounding boxes and 2300 unique pedestrians were annotated. The annota-

tion includes temporal correspondence between bounding boxes and detailed occlusion

labels.

This dataset is divided into a training and a test datasets. The training dataset con-

sists of six training sets, each with 6-13 one-minute long sequence files, along with all

annotation information. The testing data consists of five sets.

The sequences being acquired by a mobile camera, the annotated people are used

as single images in our evaluation, due to the inability to use background subtraction
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Figure 7.3: Samples from Caltech dataset.

information in the feature vector for covariance computation, in addition to the inability

to use real world information (calibration) for candidate windows selection.

7.1.2.4 CAVIAR Dataset

The CAVIAR dataset consists of a set of 80 color video clips which were recorded act-

ing out the different scenarios of interest. These include people walking alone, meeting

with others, window shopping, fighting and passing out and last, but not least, leaving

a package in a public place.

The CAVIAR dataset is divided into two sets of data. The first section contains 28

video clips which were filmed for the CAVIAR project with a wide angle camera lens

in the entrance lobby of the INRIA Labs at Grenoble, France. The resolution is half-

resolution PAL standard (384 x 288 pixels, 25 frames per second) and compressed using

MPEG2. The second set of data also used a wide angle lens along and across the hallway

in a shopping centre in Lisbon, Portugal. It contains 26 scenario. For each scenario,

there are two time synchronised videos, one with the view across and the other along

the hallway. The resolution is half-resolution PAL standard (384 x 288 pixels, 25 frames

per second) and compressed using MPEG2.

(a)                                             (b)                                               (c)

Figure 7.4: CAVIAR dataset: (a) INRIA Grenoble sequences. (b,c) Lisbon shopping center se-

quences (Front and Corridor views respectively).

The sequences from INRIA Grenoble have been rotated by 90◦ (and the correspond-
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ing ground truth data) in clockwise before processing, due to the roll angle of acquisition

(see figure 7.4 (a)). Our people detector has been trained with images in which people

have vertical pose or with small inclination (see figure 7.1; first row).

The interest of this dataset for people detection evaluation in comparison with the

three previous ones is the availability of video sequences. This allows to uses background

subtraction based features in the feature vector for covariance computation.

7.1.3 Evaluation Results

In the following evaluations, we have varied the miss-detection and false positive

rates by removing iteratively the last level of our cascade of classifiers. The shorter the

cascade is, the more permissive the detector is, i.e. it provides lower miss-detection rate

while it increase false positive rate.

7.1.3.1 INRIA Dataset

This dataset being provided as single images acquired at different locations with dif-

ferent backgrounds, the background subtraction features ( G and
√

G2
x + G2

y , see sec.

4.1.2) are not used in the covariance descriptors due to their unavailability. The camera

calibration information is not available too, avoiding the use of real world information

for candidate region selections. This increases the processing time of the detection pro-

cess.

We have evaluated our method on INRIA People dataset and compare the obtained

results first with the ones obtained with the baseline approaches ([Tuzel 2007] and

[Yao 2008]) to quantify the improvements and second with the results of state of the

art approaches.
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Figure 7.5: Results on INRIA dataset
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Figure 7.5 (a) shows the performance comparison with [Tuzel 2007] and [Yao 2008]

which have served as the basis of our work. Our method outperforms these two ap-

proaches. This is due to the more accurate strong classifiers at each cascade level. As

mentioned in the explanation of our approach (see chapter 4), the random nature of

candidate weak classifier selection in [Tuzel 2007] and [Yao 2008] does not allow to

select the best possible weak classifier at each iteration. Our method limits the effect

of the random selection by using groups of similar negatives (in terms of content with

respect to the used region covariance descriptors) to train each cascade level. Thanks to

this, the characterisation of positive data (people) is achieved more reliably.

Figure 7.5 (b) shows the performance comparison with state of the art approaches.

The best performance on this dataset is achieved by our method and “The Fastest Pedes-

trian Detector in the West” (FPDW) approach [Dollar 2010], based on a trained classifier

with Adaboost on gradients of both gray scale and color images. Our method provides

the lowest false positive rate while it has the lower miss-detection rate in comparison

with [Dollar 2010] ones. Our detector performs the detection with an average frame

rate of 7 fps while [Dollar 2010] does it in 9 fps approximatively.

Note that by removing at least the two last levels of our cascade of classifiers, the

evolution of the miss-detection rate against the false positive rate is better ensured by

[Dollar 2010]. From a pure detection performance point of view, this last remark does

not have any interest as long as the main objective is to obtain a detector with the

lowest miss-detection and false positive rates, which is the case with our detector, but

in practice, other parameters have to be taken into account to decide which detector is

the best one for specific requirements. The most important parameter is the detection

time. While [Dollar 2010] approach allows to vary progressively the permissivity of the

classifier without impacting processing time (only by changing the classifier threshold),

in our case, adding or removing some cascade levels change the processing time in a

non-linear way with respect to the number of added/removed levels (due to the non-

constant number of weak classifiers per cascade level). This means that depending on

the processing time requirements of a given system and its tolerance to miss-detection

and false positive rates, even our method or [Dollar 2010] one may be more adequate.

7.1.3.2 DaimlerChrysler Dataset

As for the INRIA People dataset, we have evaluated our method on DaimlerChrysler

dataset and compared the obtained results first with the ones obtained with the base-

line approaches [Tuzel 2007, Yao 2008] and second with the results of state of the art

approaches.

Figure 7.6 (a) shows the performance comparison with [Tuzel 2007] and [Yao 2008].



232 Chapter 7: Experimental Results

m
is

s
 r

a
te

false positives per window

10-2 10-1 100-310 101

0.1

0.2

0.3

0.4

0.5

1

0.6

0.8

m
is

s
 r

a
te

false positives per window

10-2 10-1 100-310 101

0.1

0.2

0.3

0.4

0.5

1

0.6

0.8

Shapelet

Haar-Like

HOG

ained art Models

HOG+HOF+CSS+Motion

Our approach

[Sabzmeydani 2007]

[Viola 2004]

[Dalal 2005]

[Felzenszwalb 2009]

[Walk 2010]

[Tuzel 2007]

[Yao 2008]

Cov Desc (Sym  )

Cov Desc (Sym  )

Our approach: Cov Desc (Sym  ) + Neg Clust.

+

8
+

4
+

4

(a)                                                                                    (b)

Figure 7.6: Results on DaimlerChrysler dataset

Our method outperforms these two approaches on this dataset for the same reason as

for INRIA dataset, related to the more accurate strong classifiers at each cascade level.

Figure 7.6 (b) shows the performance comparison with state of the art approaches.

The best performance on this dataset is achieved by [Walk 2010] approach, based on a

combination of features (HOG, HOF, CSS, Optical flow) with a linear SVM classifier, and

[?] approach, based on mixtures of multiscale deformable part models trained with a

latent SVM.

Our method provides interesting results as long as they are not too far from those

of the best approaches on this dataset. It outperforms the well-known [Dalal 2005] and

[Viola 2004] approaches.

7.1.3.3 Caltech Pedestrian Dataset
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Figure 7.7: Results on Caltech dataset

We keep the same evaluation schema, by evaluating our method on Caltech Pedes-
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trian dataset and by comparing our results first with the results obtained with [Tuzel 2007]

and [Yao 2008] approaches on this dataset, and then with the results of state of the art

approaches.

Figure 7.7 (a) shows the performance comparison with [Tuzel 2007] and [Yao 2008].

Our method outperforms these two approaches on this dataset.

Figure 7.7 (b) shows the performance comparison with state of the art approaches.

The best performance on this dataset is achieved by [Walk 2010] approach too, as for

DaimlerChrysler dataset.

Our method provides the second best results on this dataset. The most miss-detections

in this dataset are due to partial occlusion. More than 50% of pedestrians are occluded

on at least one frame. Our detector being a full body one, it is then more sensitive to

occlusions with comparison with part-based detector.

7.1.3.4 CAVIAR Dataset

This dataset is provided as full video sequences, allowing the use of background

subtraction features in region covariance descriptors. These sequences are acquired by

static cameras, allowing their calibration and thereby the evaluation of the use of real

world information for candidate region selection.

There is no available evaluation of state of the art people detection approaches on

this dataset (initially, this dataset was used for tracking evaluation). For this reason,

we have evaluated our detector and compared it with [Tuzel 2007] and [Yao 2008]

approaches only.
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Figure 7.8: Results on CAVIAR dataset

Figure 7.8 shows the results of [Tuzel 2007] and [Yao 2008] approaches, as well

as the results of two versions of our detector: the first version consists of our detector

without using camera calibration information for candidate region selection while the
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second one uses the camera calibration information.

We can observe that even without using the camera calibration information, our

detector outperforms the [Tuzel 2007] and [Yao 2008] ones. The reason is due to the

negative sample clustering to reduce the effect of random selection of candidate weak

classifiers, as explained above.

The most interesting remark concerns the contribution of camera calibration infor-

mation. In fact, using this information allows to strongly reduce the number of tested

regions during detection. The first effect is an important processing time reduction

(around 60% in average in this dataset, but may vary from a camera to another one,

depending on the height of the camera and the view angle). The second effect, which is

visible on the curve is an important improvement of detection performances (less miss-

detection with respect to false positives). This last effect is explained by the fact that

less negative candidate regions are tested. During the detection process without using

camera calibration information, several scales of testing windows are used. For each

scale, several width/height ratios are used too (around a mean ratio of 1/3). Camera

calibration information allows to reduce not only the number of localisation to test (ac-

cording to the ground floor) but also the range of scales and width/height ratio for each

location. This leads to a lower rate of false positives.

7.1.3.5 Dataset Dependency of the Detector
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Figure 7.9: Results of the trained detector on INRIA dataset, applied on DaimlerChrysler, Caltech

and CAVIAR datasets.

We have conducted a last experimentation to test how a trained detector on a given

dataset is efficient on other datasets. To do this experimentation, we have selected the

trained detector on INRIA dataset, due to the best results it provides in comparison with

our other trained detectors on other datasets (except CAVIAR dataset, but we decide to
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do not select it because it is background subtraction features based).

We have applied this detector on the test images of each other dataset (Daimler-

Chrysler, Caltech and CAVIAR). The evaluation results are shown in figure 7.9. We can

observe that the detection performances are very bad. This demonstrate the dependency

of a people detector to the dataset which has served for its training.

We are convinced that this is not an overfitting issue since the application of this

detector (trained on INRIA dataset) on several images which are found on internet and

not in the INRIA dataset (see figure 7.10) still provides good results. We believe that

some specific characteristics of each dataset are not managed well during training stage

(in all state of the art approaches) and are not integrated as full part features.

Figure 7.10: Examples of detection results using our people detector trained on INRIA dataset,

applied on several images that do not belong to INRIA dataset.
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7.2 Robust People Tracking Using Particle Filter

7.2.1 Evaluation Metrics

Object tracking performances can be evaluated under several criteria, according to

all possible situations which can occur during the tracking. Most generally, an “efficient”

tracking algorithm must track all objects of interest in the scene, it must start tracking

them as soon as possible after they appear in the scene, it must maintain the tracking of

these objects are in the scene and does not stop the tracking until they leave the scene.

It must also assign a unique ID to each tracked object all the time this object is in the

scene (not necessary visible at all the time: occlusion management).

Using ground truth data, several metrics are proposed in state of the art to quantify

how a given tracking algorithm complies with all or a part of these conditions.

In our evaluation, we use two types of metrics to compare our results on state of the

art results:

7.2.1.1 ETISEO metrics

ETISEO dataset, as it is presented in the next section, is rich in terms of environments

and external conditions, so it is an interesting dataset to evaluate our tracking algorithm.

In order to be able to compare our tracker performances with the other ones on the

ETISEO videos and on Caretaker dataset (presented in the next section), we use the

tracking evaluation metrics defined in the ETISEO project [Nghiem 2007]. These metrics

allows to quantify precisely how the trackers comply with all the previously mentioned

conditions.

In the following paragraphs, “reference object” refers to an annotated object in

ground truth (object to track), and “tracked object” refers to an object delimited and

tracked by the evaluated tracker. The match between a reference object and a tracked

object is done with respect to their bounding boxes.

ETISEO evaluation metrics for object tracking consists of three metrics:

� Tracking time metric, denoted M1, measures the percentage of time during which

objects of interest (reference objects) are really tracked. It is given by:

M1 =
1

N

N∑

i=1

Ti

Fi
(7.4)
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where N is the number of reference objects; Ti is the number of frames in which

the reference object i is tracked (by the considered tracking algorithm); Fi is the

number of frames for which the reference object i is annotated.

� Object ID persistence metric, denoted M2, is used to evaluate the ID persistence.

It computes over the time how many tracked objects are associated to one refer-

ence object as follows:

M2 =
1

N

N∑

i=1

1

Fragi
(7.5)

where N is the number of reference objects, Fragi is the number of different

tracked objects (provided by the evaluated tracker) which corresponds to the ref-

erence object i.

� Object ID confusion metric, denoted M3, computes the number of reference object

IDs per detected object as follows:

M3 =
1

D

D∑

i=1

1

Confi
(7.6)

where D is the number of tracked objects (provided by the evaluated tracker)

matching with ground truth data, Confi is the number of different reference ob-

jects which corresponds to the tracked object i.

Each of these metrics helps to evaluate a given aspect of the tracking algorithm

efficiency. Their values are in the interval [0, 1]. The higher the metric value is, the

better the tracking algorithm performance gets.

7.2.1.2 MT, PT and ML metrics

Wu et al. have defined in [Wu 2007] five other metrics to quantify differently how

a given tracking algorithm complies with the criteria mentioned at the beginning of this

section. Three of these metrics are mainly used in several state of the art publications

[Xing 2009, Huang 2009, Huang 2008, Li 2009, Kuo 2010, Chau 2011]. Let NbGT Traj

be the number of trajectories in the ground-truth of the considered video sequence.

These three metrics are defined as follows :

� Mostly tracked trajectories (MT) : it correspond to the number of trajectory

which are tracked correctly for more than 80% divided by NbGT Traj.
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� Partially tracked trajectories (PT) : it correspond to the number of trajectory

which are tracked between, 20% and 80% divided by NbGT Traj.

� Mostly lost trajectories (ML) : it correspond to the number of trajectory which

are tracked less than 20% divided by NbGT Traj.

For each GT object, the trajectory of the considered tracker which overlaps the one

of GT object for most of the time is considered as the correct one.

7.2.2 Dataset Presentation

We have conducted the experimentation of our object tracking algorithm on four

datasets: PETS 2001, ETISEO, CAVIAR and Caretaker.

7.2.2.1 PETS 2001 Dataset

The PETS 2001 dataset consists of five separate sets of training and test sequences,

containing outdoor people and vehicles. All the datasets are multi-view (2 cameras)

and provide significant lighting variation, occlusion, scene activity and use of multi-view

data. Only the 3 first sets are used for our evaluation. The two last sets are out of scope

for our study. In fact, the 4th dataset contains sequence provided by fisheye camera

while the 5th one contains sequences provided by moving camera, fixed on a car and

acquiring video on the road.

Dataset 1             Dataset 2               Dataset 3              Dataset 4              Dataset 5

Figure 7.11: PETS 2001 dataset.

7.2.2.2 ETISEO Dataset

The ETISEO videos are provided by the ETISEO project. This project seeks to work

out a new structure contributing to an increase in the evaluation of video scene under-
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standing ; with the active participation of industrial and many research laboratories,

such as French, European and International research centers.

Project ETISEO focuses on the treatment and interpretation of videos involving pedes-

trians and (or) vehicles. The dataset contains 86 video clips. These sequences constitute

a representative panel of different video surveillance areas. They merge indoor and

outdoor scenes, corridors, streets, building entries, subway station, etc. They also mix

different types of sensors and complexity levels. This makes this dataset relatively chal-

lenging and allows to evaluate the generecity of the proposed tracking algorithms.

The ETISEO project provides a set of tracker evaluation results. We test the pro-

posed mono-camera tracking algorithm on this dataset and we compare our results with

these available results and with more recent trackers results which are evaluated on this

dataset.

Figure 7.12: Samples from ETISEO dataset

7.2.2.3 CAVIAR Dataset

The Caviar dataset is presented in sec. 7.1.2.4. Both INRIA Grenoble and Shopping

center of Lisbon are used for the evaluation of our object tracking algorithm.

The INRIA Grenoble sequences are used as they are provided, without any rotation

to obtain vertical people like for people detection evaluation. This is a deliberate choice,

to show the efficiency of our approach and the used particle filter for object tracking,

independently of flat world constraints, as long as the calibration is correctly done. In

the ambiguous cases, where the classification by the real dimensions is not reliable (see

explaination in sec 5.1.2 and figure 5.8), we apply a rotation of 90◦ to the ambiguous

object (unclassified bounding box) and we apply our people detector as explained in sec.

5.1.2. This does not happen frequently in this dataset, so the real-time processing is not

affected.
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7.2.2.4 Caretaker Dataset

The Caretaker project focuses on the extraction of a structured knowledge from large

multimedia collections recorded over networks of cameras and microphones deployed in

subways. This dataset is highly challenging due to many factors: the scenes are crowded

most of the time, the light reflection on smooth floor deteriorates the background sub-

traction providing imprecise people detection and delimitation, the poor video quality

(highly compressed data), and the numerous static and dynamic occlusions. The frame

rate of the videos (5 frames per second) also makes this dataset challenging for our

proposed approach (due to the prediction-update nature of our approach).

Figure 7.13: Samples from Caretaker dataset.

7.2.3 Evaluation Results

7.2.3.1 Comparative Evaluation on ETISEO Dataset Using ETISEO Metrics

We have evaluated our mono-camera tracking algorithm on ETISEO dataset. This

dataset has been acquired in several indoor/outdoor places and it contains various en-

vironements. It has been proposed for ETISEO project and has been used by several

teams to evaluate their detection and tracking algorithms. Unfortunately, the names of

these teams are not available and they are identified by numbers in the ETISEO project

to preserve their anonymity. Details about their tracking approaches are also missing.

Available ETISEO project data provides only the final results.

We have compared our tracking algorithm with those of 7 teams from the project and

with two tracking algorithms proposed in [Chau 2011] on two sequences of the dataset.

The first sequence, denoted ETI-VS1-BE-18-C4 shows a building entrance. This sequence

provides low difficulty level. The second sequence denoted ETI-VS1-MO-7-C1 shows an

underground station. It is more challenging since it contains occlusions and is acquired

with low contrast and bad illumination.

The results of this comparison is shown in figure 7.14.

Our tracking algorithm outperforms all other evaluated algorithms (or is equal to

the best ones in some cases) except for the Object ID persistence metric (M2) in the
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Figure 7.14: Detailed results and comparison on two sequences from ETISEO dataset. First row:

ETI-VS1-BE-18-C4 sequence results. Second row: ETI-VS1-MO-7-C1 sequence results. Bold text

corresponds to the approach which provides the best results per metric. [Chau 2011](1) refers

to an off-line learning based tracker; [Chau 2011](1) is and estimator-based tracker.

underground station sequence. For this metric, [Chau 2011](1) tracking algorithm per-

forms better. This is due to the crowd environment in this sequence. [Chau 2011](1)

tracking algorithm is based on an off-line learning to extract the best features and pa-

rameters. In opposite, our algorithm does not use any off-line learning and thereby, in

on-line processing, it does not have enough time to learn correct reliability measures for

each tracked SIFT features in one hand, and to learn correct real world dimensions and

velocity to manage occlusions. More ID switches happen due to the unreliability of these

measures.

A global evaluation result on the whole dataset is shown in figure 7.15.

7.2.3.2 Evaluation on ETISEO, PETS 2001, CAVIAR and Caretaker Sequences Us-

ing ETISEO Metrics

We have also evaluated our mono-camera tracking algorithm on PETS 2001, CAVIAR

and Caretaker datasets. The global results are shown in figure 7.15.

We can see that the results on PETS 2001 and CAVIAR are quite close to each other

and close to the global results on ETISEO dataset, except for M2 on ETISEO (see figure

7.15). The close results are explained by the fact that even if the environments and
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sequences of ETISEO, CAVIAR, and PETS 2001 are different in terms of color rendering

and illumination conditions, they have similar/close resolution, people size on images

and the most important common point is that they do not contain crowded scenes (ex-

cept for the underground station sequences from ETISEO).

Our tracking algorithm does not use color information for tracking, and uses it for

occlusion management in a simple way (dominant color, see sec. 5.4.2). The SIFT fea-

tures have proven their robustness against illumination changes, so the context of these

three datasets is quite similar with respect to the nature of our tracker (SIFT features +

particle filtering).

The low value of M1 on ETISEO dataset (see figure 7.15) is mainly due to the un-

derground station sequences which decrease the global mean values of metrics on the

whole datasets. In these crowded sequences, the large amount of occlusions, especially

at the begining of sequences delays the tracking start, decreasing the final tracking time.

M1 0.70

M2 0.91

M3 0.92

M1 0.81

M2 0.90

M3 0.94

M1 0.78

M2 0.88

M3 0.91

ETISEO                                         PETS 2001                                         CAVIAR

Figure 7.15: Global results of the proposed approach on ETISEO, PETS 2001 and CAVIAR

datasets.

The same reason (crowd scene) explains the low score of M1 and M2 for Caretaker

sequence (see figure 7.16), concerning the initial tracking algorithm (red bars, without

offline learning). In fact, the crowded scenes at some moments of the sequence does not

provide enough time to our tracking algorithm to learn (on-line) the correct reliability

measures of each SIFT feature, to allow dynamic models of SIFT features to converge

(for particle filtering) and to learn the real dimensions and velocity of tracked people.

This issue concerns the new appearing people in the scene directly in crowded situations.

People who appear relatively separated from crow for enough time are well managed by

our tracker event if they interact with the crowd later.

Even if our presented tracking system does not include any offline learning step to be

deployed, we have conducted a special experiments to highlight the fact that our tracker

performs better if complex situations (crowd/oclusions) does not occure immediately

when a new object of interest appear in the scene, i.e. if the tracker has enough time

to “learn” SIFT features reliability measures, dynamic models and object real world di-

mensions and velocity in online mode. To simulate this “enough time” requirement, we
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have modified slightly our tracking algorithm to allow it to load tracking ground truth

data from xml file when they are available and to use them exclusively as the tracking

result at each frame, changing all the variables and parameters values accordingly (use

ground truth objects as delemitation instead of background subtraction/people detector

results, correction/removing of SIFT features if they do not coorespond to the tracking

state, correct real world dimensions and velocity after ground truth data projection us-

ing camera calibration information, etc.). When the ground truth data of a given object

at a given moment are no longer available, the tracker resumes it process for this object

normally as it was desinged initially.

After that, we have created a partial ground truth data by taking the original dataset

ground truth and by keeping only the first 10 to 15 frames data for each object of inter-

est. This correspond to 2 to 3 seconds (this dataset is acquired at 5 frame per second).

Finally, we load this partial ground truth in our modified tracking algorithm and we

start the processing (object tracking on this sequence). For the evaluation, we did not

count the annotated frames of the partial ground truth in the metrics computations (it is

not fair to count them as long as the output of these frames is exactly the ground truth

data for each involved object), we start metric computation for each object at the first

frame the tracker resumes the tracking with autonomy. The results of this evaluation are

presented in figure 7.16 at the upper bar (pink bar). We can observe that if our tracking

algorithm has enought time (10 to 15 frame in our experiments) to learn and stabilize

the several parameters involved in the process, which occures autonomously and online

(without ground truth data) if objects of interest appears and evolve without occlusion

in few frames, the results of tracking may be much better. Unfortunately, the offline

learning is not a part of our proposed tracking algorithm, due to the hard application in

real deployed video-surveillance systems.

osed tracker 0.66

[Chau 2011] (2) 0.68

[Chau 2011] (1) 0.83

Proposed tracker 0.75

[Chau 2011] (2) 0.88

[Chau 2011] (1) 0.80

M3M1 M2

Proposed tracker 0.28

Proposed tracker Proposed tracker

(offline learning) 0.93
Proposed tracker

(offline learning) 0.61

Figure 7.16: Comparative results on Caretaker sequence. [Chau 2011](1) refers to an off-line

learning based tracker; [Chau 2011](2) is and estimator-based tracker.

7.2.3.3 Comparative Evaluation on CAVIAR Dataset Using MT, PT and ML Metrics

We have evaluated our tracking algorithm on CAVIAR dataset using [Wu 2007] met-

rics to be able to compare our results with state of the art trackers. The results are shown
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in figure 7.17.

0                                                       100% 

PT (%)

MT (%)

Proposed tracker

]

[Li 2009] 143

[Chau 2011] (a) 10.3140

[Xing 2009] 3.6140

[Chau 2011] (b) 140

[Huang 2008] 143

[Wu 2007] 140

Figure 7.17: Comparative results on CAVIAR dataset. [Chau 2011](a) refers to the tracker with

the proposed controller; [Chau 2011](b) is the tracker without the proposed controller.

We can observe that our tracking algorithm provides good results, but it is outper-

formed by some state of the art tracking algorithms. The partially tracked and mostly

lost people are due to the image noise and low resolution. In fact, people tracking per-

formances depend on people detection, and in this conditions, background subtraction

and people detection results are altered, impacting the tracking start of some people,

especially those who come from the far end of the corridor, and then decreasing the

time these people are correctly tracked.

On the other hand, the best results are provided by [Kuo 2010], [Li 2009] and

[Chau 2011] (a) trackers. The higher performances of [Li 2009] approach are due to

the off-line learning step (HybridBoost) performed to select the best parameters and/or

the most discriminative features. This adapts the tracker for this specific sequences. Our

aim being to provide a tracker which is as generic as possible and which may be de-

ployed with a minimum parameter tuning stage by operators, this explains the lower

performance of our tracking algorithm, even if they are not bad.

[Chau 2011] better performances are due also to an off-line learning, but not only.

[Chau 2011] propose an hybrid-based (on line/off-line) controller to select the best fea-

tures and parameters and to refine the parameters on-line according to the tracking

performances and scene context changes. The on-line part of this controller may be an

interesting way to investigate to improve our tracker performances without decreasing

its genericity.
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7.3 Fast People Re-Identification

Most of datasets for benchmarking consists of extracted (cropped) images of people

of interest. Some datasets provides only one image per person and per camera while

the others are provided without real world information (real world coordinates and

velocity), preventing the use of some of our improvements, especially the visible side

classification and the spatio-temporal coherency filtering.

However, the other improvements are evaluated and compared to the initial ap-

proach of [Farenzena 2010] and to the other state of the art approaches.

7.3.1 Evaluation Metrics

The re-identification system performance is strongly dependent on the number of

considered candidate people for any re-identification query. The larger the candidate

number is, the higher the probability to have similar people than the query person (in

terms of appearance) is, and thereby, the lower the probability to find the corresponding

person among the candidate ones is. It is then necessary to associate a performance

measure to the number of considered people.

For assisted people tracking under camera network, or for an off-line system of peo-

ple retrieval on stored videos, re-identification systems may significantly decrease the

number of possible matching per query person, by filtering the less-similar people and

by proposing the most “n” likely ones for the real matching (n depends on the size

number of considered people in all the available video sequences and the expected per-

formances). This helps operators to speed up their tracking/search of people of interest.

For these reasons, the most used metric for re-identification system evaluation is the

Cumulative Matching Characteristic (CMC) curve.

7.3.1.1 Cumulative Matching Characteristic (CMC) Curve

For re-identification performance evaluation, we use a metric known as the cumula-

tive matching characteristic (CMC) curve (see figures 7.18). The CMC curve represents

the expectation of finding the correct match in the top n matches. The best case is given

by a re-identification rate of 100% at the first rank (see figure 7.18 (b)). The higher

the re-identification rate is at the lower ranks, the more performant the re-identification

algorithm is.
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Figure 7.18: Cumulative matching characteristic (CMC) curve illustration. (a) Usual form of a

CMC curve with with 25% of correct re-identification at the first rank and 80% of correct re-

identification at the tenth rank; (b) The best (ideal) case with 100% of correct re-identification

at the first rank.

7.3.1.2 Normalized Area Under Curve (nAUC)

The cumulative matching characteristic (CMC) curve provides a detailed perfor-

mances per re-identification rank. To be able to evaluate and compare several re-

identification algorithms, [Bazzani 2012] has introduced the “Normalized Area Under

the Curve” (nAUC) value which provides re-identification performance measure as a

scalar. It represents the area under the CMC curve expressed in % (see figure 7.19). The

best case of 100% of re-identification at the first rank corresponds to nAUC = 100% (see

figure 7.19 (b)). The higher the re-identification rate is at the lower ranks, the larger the

area under the CMC curve is, and thereby, the higher the nAUC value is, corresponding

to the better re-identfication performances.
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Figure 7.19: Corresponding nAUC value to the previous CMC curves (figure 7.18). (a) nAUC =

83.24% for the first case; (b) nAUC = 100% for the second case.

The nAUC values are not always provided by authors for their appraoches. For this

reason, we will indicate the nAUC values only in two cases: If they are provided by the

authors or if the published CMC curves reach 100% of re-identifcation in the provided

figures (for large datasets, only a partial range of first ranks is displayed in published
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CMC curves, and in these ranges, curves do not reach 100% of re-identification perfor-

mances). For the second case, we provide a nAUC value thanks to a geometry software

which allows us to estimate the area of the polygon delimited by the provided curve and

its straight line extrapolation (knowing the size of the dataset and the fact that once a

curve reach 100% it will be constant at this value for the remaining ranks).

7.3.2 Dataset Presentation

7.3.2.1 VIPeR Dataset

The VIPeR contains two views of 632 pedestrians. Each pair is made up of images

of the same pedestrian taken from different cameras, under different viewpoint, pose

and light conditions. All images are normalized to 128× 48 pixels. The dataset contains

pairs which viewpoint angle changes from 45 up to 180 degrees. Each pair is randomly

split into two sets: CAM A and CAM B. The video was compressed before pairs of image

extraction, so many compression artefacts are present on images.

Considering images from CAM B as the gallery set, and images from CAM A as the

probe set, each image of the probe set is matched with the images of the gallery. This

provides a ranking for every image in the gallery with respect to the probe.

This dataset is the most challenging dataset currently available for the single-shot

human re-identification, but unfortunately, it does not correspond to a video surveillance

case for two main reasons: first, only one image per camera is available in this dataset

while many images per person and per camera may be provided by a surveillance system,

and the acquisition position of the cameras is quite low, providing frontal view while in

surveillance context, cameras are frequently higher and provide angled view acquisition.

(Note: the random assignment of images to one set or to the other one makes the

colorimetric calibration useless (erroneous) here.)

Figure 7.20: Samples from VIPeR dataset
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7.3.2.2 i-Lids Dataset

The Imagery Library for Intelligent Detection Systems (i-LIDS) is the U.K. govern-

ment’s benchmark dataset for video analytics (VA) systems. It has been collected by the

Centre for Applied Science and Technology (CAST) in partnership with the Centre for

the Protection of National Infrastructure (CPNI).

i-LIDS comprises a library of CCTV video footage based around “scenarios” central

to the government’s requirements. The footage accurately represents real operating

conditions and potential threats.

i-LIDS provides two types of scenario datasets: the event detection scenarios which

consists of sterile zone, parked vehicle, abandoned baggage, doorway surveillance, and

new technology scenarios, and the tracking scenario which contains the multiple cam-

era tracking scenario (MCTS) which is our scenario of interest, and which contains ap-

proximately 50 hours of footage provided by 5 cameras deployed in an airport, providing

very challenging situations: many occlusions and large variation in appearance from a

camera to another one, due to people wearing backpacks, carrying luggages or pushing

carts.

Four subsets of images have been extracted for re-identification evaluation:

� i-LIDS-119

This evaluation dataset contains 476 images with 119 individuals (each individ-

ual is represented by an average number of 4 images). These images have been

extracted automatically by [Zheng 2009] from the sequences provided by two dif-

ferent cameras.

Figure 7.21: Samples from i-Lids-119 dataset

� i-LIDS-MA (Manually Annotated)

Due to the low number of images per person in i-LIDS-119 dataset (4 images in
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average), which is not sufficient to exploit the advantages of using multiple images

in generating human signature, Bak ([Bak 2011]) has extracted two other subsets

of images for re-identification evaluation: i-LIDS-MA and i-LIDS-AA datasets.

i-LIDS-MA dataset contains 40 individuals extracted manually from two cameras.

For each individual 46 frames have been annotated manually for both cameras.

Therefore this dataset contains 40× 2× 46 = 3680 annotated images.

This dataset provides images where in most of which, people are well delimited

and centred in images.

Figure 7.22: Samples from i-Lids-MA dataset

� i-LIDS-AA (Automatically Annotated)

The manually annotated dataset (i-LIDS-MA) does not reflect real video surveil-

lance scenario where humans are detected and tracked automatically. Conse-

quently, Bak et al. ([Bak 2011]) have extracted a new subset of people images

automatically by applying HOG-based human detector and tracker to obtain mul-

tiple images of individuals seen from both cameras. In this case, detection and

tracking results are noisy which makes the dataset more challenging. This dataset

contains 100 individuals. For each individual, a different number of frames is

automatically extracted, depending on tracking difficulties. In total, the dataset

contains 10754 images.

� i-LIDS-AA-RP (Automatically Annotated with Rotating People)

This dataset contains 30 individuals extracted automatically using our people de-

tector (chapter 4) and mono-camera tracking (chapter 5) algorithms, providing

multiple images for each person. The aim of this dataset, in comparison with i-

LIDS-AA one, is the fact that only people who change significantly their walking

direction while they are observed by the same camera are selected. This is a more
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Figure 7.23: Samples from i-Lids-AA dataset

general case in comparison with those used in state of the art for re-identification

evaluation. It allows us to evaluate the visible side classification contribution.

7.3.2.3 ETHZ Dataset

This dataset is captured from a moving camera, and it has been used originally for

pedestrian detection [Ess 2007]. Schwartz and Davis in [Schwartz 2009] extract a set

of samples for each different person in the videos, and use the resulting set of images

to test their Partial Least Squares Analysis method for re-identification. The moving

camera setup provides a range of variations in people appearance. Variation in pose is

relatively small, though, in comparison with the other two datasets. The most challeng-

ing aspects of ETHZ are illumination changes and occlusions. Using the same camera

to acquire all images deprives this dataset of a main challenge which is largely met in

video surveillance context: rendering variation due to sensor difference.

All images are normalized to 64× 32 pixels. The dataset is structured as follows:

� SEQ. #1 contains 83 pedestrians, for a total of 4.857 images.

� SEQ. #2 contains 35 pedestrians, for a total of 1.936 images.

� SEQ. #3 contains 28 pedestrians, for a total of 1.762 images.

7.3.2.4 CAVIAR4REID Dataset

The CAVIAR dataset is presented in sec. 7.1.2.4. For re-identification evaluation, only

Lisbon shopping center sequences are used due to the availability of synchronized video

sequences provided by two cameras with overlapping field of view (INRIA Grenoble

sequences are provided by a unique camera).
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Figure 7.24: Samples from ETHZ dataset

Cheng et al. ([Cheng 2011]) have created a new re-identification dataset called

CAVIAR4REID by extracting a set of 50 individuals observed by both cameras, using the

ground truth data provided by CAVIAR project. Each individual is represented by a set

of 10 images selected by maximizing the variance with respect to resolution changes,

light conditions, occlusions, and pose changes.

This dataset is very challenging due to the perpendicular view axes of the two cam-

eras. People are mainly observed in front/back side in one camera while they are mainly

observed from profile side in the other camera.

7.3.3 Evaluation Results

In the following paragraphs, we detail the evaluation of our approach on several

dataset and compare our results with state of the art algorithms. We provide the results

in two forms: a CMC curve displaying the results on a range of ranks which is common

to all the state of the art approaches with which we compare our results, and a table

containing numerical values of correct re-identification rates on the first and the 5th

ranks in addition to the nAUC values when they are available/estimable. “–” means that

the nAUC is not available/estimable.

7.3.3.1 VIPeR Dataset

We have tested our approach on VIPeR dataset and compared our results with state

of the art ones. The results are shown in figure 7.25 and Table 7.1. Our approach

outperforms the initial approach proposed by [Farenzena 2010] thanks to the use of

SIFT features and covariance descriptors for Recurrent High-Structured Patches (RHSP)

characterization. Unfortunately, our approach is outperformed by [Dikmen 2011] and

[Cheng 2011] approaches. VIPeR dataset consists of a set of single-shot images per
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Figure 7.25: CMC curves obtained on VIPeR dataset.

person and per camera. This reduces strongly the effectiveness of our approach even it

is designed for both single-shot and multiple-shot cases. Image alignment contribution

cannot be applied in this case since it requires multiple images per person, reducing the

performances of our approach. In addition to that, people images are acquired under

viewpoint angle changes from 45 up to 180 degrees. With single image per person and

without any real world information (the dataset is provided as cropped images without

any additional information), the use of SIFT features and covariance descriptors for

RHSP characterization by default weights (see sec. 6.3.7), may alter the final result by

providing bad scores for people observed from different sides. The best performance on

this dataset is achieved by LMNN-R [Dikmen 2010] and PS [Cheng 2011] approaches.

Both approaches use color histograms as a feature representation; LMNN-R is based on

metric learning while PS use body-part segmentation method.

Approach 1st rank (%) 5th rank (%) nAUC (%)

PS [Cheng 2011] 21.93 44.73 93.60

Our approach 20.25 40.98 91.45

LMNN-R [Dikmen 2011] 20.22 55.27 –

SDALF [Farenzena 2010] 20.12 39.06 89.90

PRDC [Zheng 2011] 16.03 38.72 –

SCR [Bak 2011] 10.13 24.17 80.75

Table 7.1: Detailed results on VIPeR dataset.



7.3 Fast People Re-Identification 253

7.3.3.2 i-Lids Dataset

� i-LIDS-119
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Figure 7.26: CMC curves obtained on iLids-119 dataset.

This dataset is very challenging since the number of images per individual is very

low (4 images in average), in addition to the many partial occlusions it contains.

It has been used to evaluate single-shot approaches as long as multiple-shot ap-

proaches. Most of state of the art authors have proposed approaches for both

cases, and the evaluation of their approaches has shown that the multiple-shot ap-

proaches provide better results. For this reason, we will focus the comparison on

the multiple-shot case since it corresponds to the best results that each author has

obtained.

The results of our evaluation on this dataset, and the comparison to the state of

the art approaches are shown in figure 7.26 and Table 7.2. We can observe that the

best results are provided by our method and [Cheng 2011] (CPS: Custom Pictural

Structure) one. Our method outperforms the initial approach of [Farenzena 2010]

tanks to the several improvements we propose, especially the use of SIFT features,

the covariance descriptors for RHSP characterisation, and a better feature weight-

ing instead of those which are fixed and used by [Farenzena 2010] and which have

been learnt from VIPeR dataset, demonstrating that some parameters are dataset-

dependent.

Another contribution which may justify the better results obtained by our approach

is the image alignment method we use to used comparable information (from

the same body parts). This is also the reason why CPS ([Cheng 2011]) provides
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the best results. In fact, CPS approach is based on the localization of the body

parts, after a heavy learning, and on the extraction and the matching of their

descriptors. The fact that our method and [Cheng 2011] one provide the best

results demonstrate the importance of precise spacial matching between body part

for the re-identification task.

Approach 1st rank (%) 5th rank (%) nAUC (%)

Our approach 52.94 72.27 93.49

SDALF [Farenzena 2010] 50.62 70.08 93.14

CPS [Cheng 2011] 47.42 73.15 93.52

LCP [Bak 2011] 37.81 54.24 –

Group-Context [Zheng 2009] 23.95 43.26 –

HPE [Bazzani 2010] 21.66 46.76 –

Table 7.2: Detailed results on iLids-119 dataset.

� i-LIDS-MA
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Figure 7.27: CMC curves obtained on iLids-MA dataset.

The results of the evaluation of our approach on the i-LIDS-MA dataset, displayed

in figure 7.27 and Table 7.3, shows that our method outperforms the initial one

proposed by [Farenzena 2010], but it is still less efficient in comparison with

[Bak 2011] approach.

The i-LIDS-MA dataset contains 40 individuals extracted manually from two cam-

eras. The individuals are observed from back and back-right sides in both cameras

and are well delimited and centred in the images.

The back side acquisition of people in both cameras allows the use of SIFT features

and RHSP with covariance descriptors in our signature computation and compar-

ison (their weights are not null), improving the re-identification performances in
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comparison with [Farenzena 2010] approach. On the other hand, the textures on

people cloth are not sufficient to allow the SIFT and RHSP features to provides the

required discriminative power to outperform the “Mean Riemannian Covariance

Grid” (MRCG) of [Bak 2011]. The MRCG signature is discriminative in general,

and it is especially the case in this dataset, thanks to the good delimitation and

alignment of people in the provided images, and thanks to the same side acquisi-

tion of all individuals in both cameras.

Note that our approach is significantly faster than [Bak 2011] MRCG which uses

11 × 11 covariance matrices. In fact, the computation of one person signature

using 46 images requires about 6 s with MRCG approach while our method re-

quires about 620 ms for the same 46 images and 138 ms in average using 10

sampled images by counting the computation of SIFT features which are not pro-

vided by mono-camera tracking algorithm in this case). This is due to the high

computational cost of covariance mean (iterative gradient descent, with all the

required eigenvalue decomposition), performed for a large number of grid cells,

in comparison with the simple 7 × 7 covariance matrices computation for RHSP

characterization, without any mean covariance computation.

The processing time for color histogram is negligible in comparison with all other

feature computation (a simple image browsing with the increase of histogram

bins). The Maximally Stable Color Regions (MSCR) computation time for most

images is decreased thanks to the apriori information concerning the number of

required iterations and the initial clustering parameters, provided by the MCSR

computation results on the first images of each visible side class. Finally, if we con-

sider the SIFT feature computation as a part of the visual signature computation

(which is a special case here, because it is supposed to be provided by mono-

camera tracking algorithm in the whole system use), the SIFT feature detection

and selection does not require important processing time since they are performed

on the last image of each visible side class, using the grid subdivision as explained

in the mono-camera tracking algorithm chapter (see sec. 5.2.2).

Approach 1st rank (%) 5th rank (%) nAUC (%)

MRCG [Bak 2011] 79.98 92.66 86.01

Our approach 72.50 85.00 83.69

SDALF [Farenzena 2010] 65.50 82.50 80.84

Table 7.3: Detailed results on iLids-MA dataset.

� i-LIDS-AA
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Figure 7.28: CMC curves obtained on iLids-AA datasets.

We have evaluated our approach on the iLids-AA dataset which contains 100 indi-

viduals automatically detected and tracked in two cameras. The results are shown

in figure 7.28 and Table 7.4. Our approach outperforms both [Farenzena 2010]

and [Bak 2011] approaches.

As in iLids-MA dataset, the people images are acquired from the same/close sides

(back and back-right sides). This allows our method to use SIFT features and

covariance descriptors for RHPS characterization in the visual signature (non null

weights), improving the discriminative power of the initial approach of [Farenzena 2010]

and outperforming it.

Unlike for iLids-MA dataset, our approach outperforms [Bak 2011] MRCG on this

dataset. The main reason is the better management of the badly aligned and

delimited images of people by our approach in comparison to [Bak 2011]. Cropped

images are noisy and many person images are not centred on the croped images or

are missing some parts. The MRCG approach being based on a mean covariance

computation using a grid subdivision of images, badly aligned images alter the

resulting means. [Bak 2011] proposes a method to deal with this issue by testing

grid shift, but the magnitude of the shifting is not sufficient in all situations and

increases greatly processing time.

Approach 1st rank (%) 5th rank (%) nAUC (%)

Our approach 51.00 66.00 94.35

MRCG [Bak 2011] 37.67 55.67 92.87

SDALF [Farenzena 2010] 32.00 41.00 89.29

Table 7.4: Detailed results on iLids-AA dataset.

� i-LIDS-AA-RP



7.3 Fast People Re-Identification 257

100

90

80

70

60

50
1                    5                        10                       15                       20

MRCG [Bak 2011]

SDALF [Farenzena 2010]

Our method

Figure 7.29: CMC curves obtained on iLids-AA-RP datasets.

The results of the evaluation of our approach on the i-LIDS-AA-RP dataset is dis-

played in figure 7.29 and Table 7.5. We can observe that our approach outperforms

both [Farenzena 2010] and [Bak 2011] approaches.

In this dataset, people images do not suffer a lot from bad alignement and delim-

itation issues like in iLids-AA dataset. This is due to two main reasons: First, we

have used our own people detector (chapter 4) and mono-camera tracking (chap-

ter 5) algorithms which outperform the used ones for iLids-AA extraction (based

on HOG detector and tracker). Second, we have selected the people following the

main criteria that they change their visible side by turning with at least 90◦ (some

people are operating rotations higher than 180◦). The chance has made this people

fully visible (it was not intentional as long as we were focusing on the visible side

changes).

With this dataset, we were expecting [Bak 2011] MRCG to provide the best results,

due to the high similarity of this dataset with the iLids-MA one in terms of good

people delimitation and alignment in images and the low number of people in

the dataset (30 in this dataset and 40 in iLids-MA). The evaluation shows that

our approach outperforms [Bak 2011] approach, which has decreased in terms of

performances for the first ranks in comparison with iLids-MA even if the number of

candidates is lower (the smaller the dataset is, the better the results are expected to

be). In fact, [Bak 2011] provides 80% of correct matches at the first rank in iLids-

MA while it provides 70% at the first rank for iLids-AA-RP dataset. This shows the

dependence of their approach to the visible side of people. The computed mean

covariances are altered due to the variation of visible information in the same grid

location when a given person turns. Our approach handles better this situation

and is less dependent on the orientation of people.
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Approach 1st rank (%) 5th rank (%) nAUC (%)

Our approach 80.00 90.00 80.76

MRCG [Bak 2011] 70.00 80.00 74.96

SDALF [Farenzena 2010] 60.00 80.00 71.36

Table 7.5: Detailed results on iLids-AA-RP dataset.

7.3.3.3 ETHZ Dataset

We have evaluated our approach on the ETHZ dataset too. The results are shown

in figure 7.30 and Tables 7.6, 7.7 and 7.8. We can observe that all state of the art

approaches perform well on this dataset. The ETHZ dataset is the less challenging one

in comparison with the other used datasets, due to the image acquisition system. In fact,

all images are acquired using a single camera, avoiding most of the main challenges

which can be encountered for real camera network (different color rendering, image

resolution, etc.). This, in addition to the low number of people (in comparison with

VIPeR dataset for example), explains the good results of our approach and those of the

state of the art approaches.

The best results are obtained by CPS ([Cheng 2011]), based on precise body part

detection and color histograms, thanks to the good quality of images in this dataset

(good resolution and highly rich in terms of color and textures). This image quality

allows our approach and LCP one ([Bak 2011]) to have high performances, even if they

are slightly worse than CPS approach.
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Figure 7.30: CMC curves obtained on ETHZ datasets.
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Approach 1st rank (%) 5th rank (%) nAUC (%)

CPS [Cheng 2011] 98.32 99.66 –

LCP [Bak 2011] 95.78 97.02 –

Our approach 93.98 97.59 99.97

SDALF [Farenzena 2010] 90.29 93.58 98.76

HPE [Bazzani 2010] 84.81 93.80 –

PLS [Schwartz 2009] 79.61 88.90 –

Table 7.6: Detailed results on ETHZ Sequence# 1 (83 individuals).

Approach 1st rank (%) 5th rank (%) nAUC (%)

CPS [Cheng 2011] 95.74 100 99.93

LCP [Bak 2011] 94.30 95.81 –

Our approach 94.29 100 99.65

SDALF [Farenzena 2010] 87.86 92.03 95.85

HPE [Bazzani 2010] 81.07 92.74 –

PLS [Schwartz 2009] 73.77 83.92 –

Table 7.7: Detailed results on ETHZ Sequence# 2 (35 individuals).

Approach 1st rank (%) 5th rank (%) nAUC (%)

CPS [Cheng 2011] 97.00 100 99.94

LCP [Bak 2011] 96.53 100 99.82

Our approach 96.43 100 99.67

SDALF [Farenzena 2010] 94.15 97.29 98.96

HPE [Bazzani 2010] 87.02 96.41 –

PLS [Schwartz 2009] 76.71 85.27 –

Table 7.8: Detailed results on ETHZ Sequence# 3 (28 individuals).

7.3.3.4 CAVIAR4REID Dataset

For CAVIAR4REID dataset, we have evaluated two versions of our approach and com-

pared them with state of the art approaches. Initially, this dataset is provided as cropped

images of people, without the real world information (people positions in the scene).

We have then evaluated a first version of our approach without any real world informa-

tion, only using appearance based method with the related improvements (geometric

body subdivision, SIFT, Covariance descriptors for RHSP characterization and adaptive

weighting). For the second version, we have extracted the same set of people using our

people detector (chapter 4) and mono-camera tracking (chapter 5) algorithms. We have
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Figure 7.31: CMC curves obtained on CAVIAR4REID dataset.

manually made sure that the same people are available in our extracted dataset and we

have selected 10 images per person by sampling all the available images using constant

sampling step. This is done to compare with the other approaches. This dataset contains

additional real world information for re-identification task and allows us to have global

evaluation of the whole system (people detection, mono-camera tracking and people

re-identification).

The extremely low resolution of images of the corridor camera makes this dataset

very challenging. As expected, our first version (without real world information) outper-

forms slightly the initial approach of [Farenzena 2010] which outperforms [Bak 2011]

MRCG. We suppose that the low improvement of our approach in comparison with

[Farenzena 2010] approach is due to the difference between the used weights in our

approach and those used in [Farenzena 2010] approach. SIFT features and covariance

descriptors for RHSP characterization do not contribute due to the difference of 90◦ be-

tween the two views. Fortunately, the low resolution of the images lowers the entropy

of images, and thereby, the importance given to texture, leading to low weights for SIFT

and RHSP features. We believe that otherwise, an important weight for SIFT or RHSP

features would have decreased the re-identification performances of our approach due

to the unavailability of matching between these features from one camera to the other

one (perpendicular view axes). Note that this last point is not a real issue in real case

application because the SIFT and RHSP weights would be decreased or avoided thanks

to the visible side classification stage using real world information. This is demonstrated

with the second version of our approach.

Our first version is outperformed by CPS [Cheng 2011] approach, which provides the

best results on this dataset (if we considered only pure appearance-base approaches).

In the second version of our approach, we use the available real world information

obtained from mono-camera tracking algorithm. As expected, the performances are
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significantly better, outperforming CPS [Cheng 2011] approach and providing the best

re-identification performances. On the other hand, and surprisingly, the performances

are lower than expected. The overlapping field of view between cameras is supposed

to help strongly the re-identification process by filtering the incoherent spatio-temporal

matches, but it seems that the successive algorithms (people detection and mono-camera

tracking), in addition to the equal weighting between real world distance and visual

signature matching scores (see eq. 6.17) when many people are too close to each other,

have introduced some errors which impact the final re-identification performances.

Approach 1st rank (%) 5th rank (%) nAUC (%)

Our approach (Whole framework) 58.00 70.00 91.46

CPS [Cheng 2011] 17.36 47.88 82.99

Our approach (initial CAVIAR4REID dataset) 14.00 40.00 79.49

MRCG [Bak 2011] 10.22 35.22 76.20

SDALF [Farenzena 2010] 9.00 39.11 76.24

Table 7.9: Detailed results on CAVIAR4REID dataset.

7.4 Conclusion

In this chapter, we have presented the experimental results of the three proposed al-

gorithms for people detection, mono-camera object tracking and people re-identification

in a camera network. For each part, we have presented the usually used metrics and

some benchmarking datasets.

7.4.1 People Detector

We have tested various challenging datasets, providing a large amount of complex

situations like various scenes, content, and people appearance and poses (INRIA Person

dataset), small people images, low resolution (DaimlerChrysler and CAVIAR datasets),

low contrast (DaimlerChrysler dataset) and large amount of partial occlusions (Caltech

dataset). In addition to the inability to use background subtraction and camera calibra-

tion for our people detector in most of these datasets (except for CAVIAR dataset) due

to the single images nature or the moving camera acquisition system.

The comparison result shows that the proposed detector have close performances to

those of the best detectors of the state of the art. The remaining gap with the best results

and with even better results is due to two main issues of our detector: First, the used
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covariance descriptors, even if they are very discriminant for regions with small dimen-

sions (from 6× 6 in our experiments on INRIA and Caltech dataset), smaller regions in

the case of low resolution/noisy images alter the efficiency of this descriptor (observed

especially in DaimlerChrysler dataset). The Second issue is related to the full-body type

of our detector. Even if the training set of INRIA dataset and in a greater extent the

one of Caltech dataset contains people with several levels of partial occlusions, the most

miss-detected people in our experiments are due to the partially occluded people, espe-

cially for Caltech dataset. Body parts based detectors seems to be more adequate for this

kind of situations.

Note that we have shown that people detectors are strongly dependent on the train-

ing dataset. In our experiments, we have seen that a trained detector on a given dataset

is not applicable on the other datasets with acceptable performances. On one hand,

images of the same dataset contain similar characteristics: the same sensor for all acqui-

sitions in a given dataset provides the same resolution and the same noise level, and the

similar acquisition conditions for the same dataset provides close people sizes and close

point of view acquisition (people pictures acquired by a pedestrian in cities, walking

people on sidewalk acquired by embedded camera on a car, etc.). This specializes the

trained detector and enables it to integrate these characteristics in the associate thresh-

olds and parameters. On the other hand, these acquisition characteristics differ strongly

from a dataset to another one, providing bad performances when detectors are used on

different datasets than those used for their training. We suppose that this is a general

issue for all people detector approaches since we did not find any evaluation of a unique

detector on cross datasets in the literature. For this reason, it is unfortunately not pos-

sible to quantify the dependency of the other state of the art detectors to their training

datasets.

The dataset dependency of people detectors complicates strongly the wanted gener-

icity for our system (video-surveillance conditions).

7.4.2 Mono-camera Tracking

We have evaluated our mono-camera object tracking algorithm on several sequences

from different datasets, in indoor and outdoor situations, with many object occlusion,

low object contrast and low object resolution conditions.

The results show that our tracking algorithm provides the best performances on some

sequences and close performances to the best trackers on other sequences. The lower

performances occur mainly due to crowded scenes. In fact, to track a given object,

our tracker requires to learn on-line some parameters on few frames (correct dynamic

models, SIFT feature reliability, real world dimension and velocity, dominant colors). To
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allow this learning, the object to track should be correctly separated from other objects

(no occlusion) for the few first frames in which it appears. This condition is hardly

ensured in crowded environments like subway stations.

The state of the art approaches which outperform slightly our tracker use off-line

learning to extract the most discriminative features and/or the best parameters for their

algorithm. Off-line learning step, even if it improves on-line tracking performances,

cannot be envisaged for our tracker due to the deployment requirements of surveillance

systems. It may be hard to ask video operators to acquire some sequences and to apply

the off-line learning to fine tune the tracking algorithm for each camera, because this

operation may be too long for networks with many cameras, but not only. The other

main reason is the fact that video operators are generally not experts.

For this reason, our tracker, even if it does not provide the best results on all datasets,

represents a good compromise between performances and genericity/autonomy while

being deployed in several environments and context.

7.4.3 People re-identification

Finally, we have evaluated our people re-identification algorithm and compared it

with state of the art approaches on several datasets. Our method outperforms the initial

approach we have taken as basis on all tested datasets, validating our improvements. It

also outperforms many other state of the art approaches on several datasets. We have

demonstrated the importance of three issues/solutions:

First, we have seen the importance of a correct part-to-part accumulation/comparison

on human body. The most effective approach from the state of the art on the tested

datasets (PS and CPS [Cheng 2011]) uses an effective body part segmentation. Our im-

age alignment method, even if it is not as precise as a body-part segmentation, seems

to be sufficient to improve the re-identification performances in comparison with ap-

proaches which do not manage this issue.

Second, we have shown the importance of obtaining the people visible side infor-

mation. Unfortunately, the used datasets in the state of the art do not highlight enough

this issue (even by providing few numbers of people observed from different sides or by

selecting people with similar appearance from all sides when the rotation is considered),

while this issue is a frequent one in many environments. The dataset we have collected

especially for this issue (iLids-AA-RP) shows the effectiveness of our method to manage

these cases, thanks to real-world information provided by our mono-camera tracking

algorithm.

Finally, we have demonstrated the contribution of the use of context knowledge by

using camera calibration allows to improve re-identification performances, by filtering
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candidates with incoherent real world positions.

Note that most approaches which provide the best performances (LMNN-R [Dikmen 2011])

on some datasets (VIPeR) use off-line learning step. As it was mentioned for mono-

camera tracking and in the objectives of our work, offline learning steps are not consid-

ered as possible stages to perform wide scale surveillance, due to the important required

time it requires for a large number of cameras and to the inexperience of most video

operators with respect to this task.
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8

CONCLUSION AND FUTURE WORK

This thesis presents our work to achieve the final aim which is providing a whole

framework for people tracking through camera network. In this chapter, we expose the

conclusions we have drawn after conducting this work, beginning by highlighting our

main contributions (sec. 8.1.1), followed by their limitations (sec. 8.2), and concluding

by perspectives (sec. 8.3) which have to be investigated to improve the performances in

the corresponding fields.

8.1 Conclusion

In this thesis, we present our methods for people detection, mono-camera object

tracking, and people re-identification for video camera networks. The three main con-

straints which have guided our work, namely high performances, real-time processing,

and genericity/easy deployment in industrial context have been generally respected ex-

cept for the genericity of people detection part. The genericity and easy deployment

constraints have led to slightly lower performances in comparison of state of the art ap-

proaches in some cases (not always) but the gap between our algorithm performances

and the best ones is sufficiently low to be considered as a good compromise between all

the constraints.

Wide scale video surveillance constraints and challenges have been addressed and

most of them have been well managed.

267
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8.1.1 Contributions

This thesis brings the following three main contributions: an efficient (fast train-

ing, real-time/pseudo-real-time detection, high performances) people detector, a ro-

bust (high performances), real-time and generic mono-camera object tracking algorithm

(turnkey system, without operator configuration or offline learning steps), and a fast

(real-time/pseudo-real-time) and generic people re-identification algorithm (turnkey

system, without operator configuration or offline learning steps).

The 10 detailed contributions of the presented work in this thesis consists of:

8.1.1.1 An Optimization Method to Improve Cascade of Classifiers for People De-

tectors

This method has been applied on a state of the art approach, improving its perfor-

mances significantly while it speeds up both training and detection processing time. It

consists in clustering negative data and training each cascade level by the largest re-

maining cluster. This step has three general and one specific benefit effects: firstly, the

use of smaller subsets of negative data for each cascade training speeds up significantly

the whole training process. Secondly, the clustering stage provides similar negative con-

tents (with respect to the used information/features), specializing each cascade level to

reject this type of content. Thirdly, the use of the largest remaining cluster ensures an

optimized cascade level, selecting the most rejecting levels at the first positions, speed-

ing up the detection time. Finally, and this is the most specific benefit, this clustering

stage allows to reduce the effect of random selection of candidate weak classifiers when

testing all possible candidate weak classifiers is not possible in reasonable time.

8.1.1.2 A New Method for SIFT Feature Detection and Selection for Object Track-

ing

It consists in a more permissive SIFT feature detection in a first stage, providing

a larger number of points on object to track, and in a reliability based selection of a

subset of these points on a second stage, according to a grid subdivision of the object,

the background subtraction and the SIFT feature robustness. This extension provides a

good representation of the whole object to track and allows better tracking especially in

partial occlusion cases.
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8.1.1.3 An Hybrid Particle Weighting Method for SIFT Feature Particle Filtering

In order to deal with extremal cases (low resolution, noise, small object sizes and

bad background subtraction results) which cause bad/lost SIFT feature tracking in some

situations, the particles of each SIFT feature are weighted using two different pieces

of information: the similarity measure of their descriptors and the “estimated” back-

ground/foreground state of their location. To deal with possible errors of background

subtraction results, a continuous (not binary) weighting method is proposed by estimat-

ing the background subtraction quality and assigning a weight according to its reliability.

8.1.1.4 A Data Association Framework for Object Tracking

This step infers object tracking (localisations and trajectories) from SIFT feature

tracking, taking into account the on-line learned reliability of tracked SIFT features and

their positions, and managing all possible situations: simple isolated objects, appear-

ing/disappearing objects (leaving the scene or being occluded) and grouping/splitting

objects. It creates reliable temporal links between object delimitation on each frame,

providing the final object trajectories.

8.1.1.5 A Fast Occlusion Management Method

The mono-camera tracking algorithm being dedicated to static and calibrated cam-

eras as it was mentioned in the hypotheses and constraints (in the introduction chapter),

it is able to manage occlusions by taking advantage of useful real world information. We

use object real dimensions (width and height) and velocities, after learning their varia-

tions during object tracking, to estimate matching scores between occluded objects and

a candidate appearing ones. This information is used in addition to the matching score

of tracked/detected SIFT features and to dominant color descriptors comparison to get

the final matching score and to decide whether a new appearing object corresponds to a

previously occluded one.

8.1.1.6 Fast Image Alignments Before Signature Computing for Multiple-shot Case

In order to deal with part-to-part correct matching issue for multiple-shot signature

computation, a fast image alignment algorithm is proposed. This algorithm is based

on fast search of best matching score, using Lab color distance which is the closest

color space to human perception. The use of camera calibration information to reduce

searching scales speeds up the image alignment stage. Signatures which are computed

after image alignment are more discriminative and more efficient.
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8.1.1.7 Use of Texture Information in Addition to Color

The characterisation of Recurrent High-Structured Patches (RHSP) features using

covariance descriptors, based on both texture and color information, instead of simple

color histograms improves the discriminative power of these features. The use of SIFT

features as additional texture information with a negligible additional processing time

(due to the fact that they are provided by mono-camera object tracking algorithm) in-

creases this discriminative power and provides better re-identification results when these

two features are usable. The local nature of both RHSP and SIFT makes them usable

only when the same/nearest sides of people are visible in different cameras.

8.1.1.8 Visible Side Classification for More Reliable Signature Comparison

Appearance of people being different according to the their visible side in many

cases, a unique visual signature for each person is not adequate. Assigning a signature

to each visible side is a better way to identify a person. A visible side classification

method is proposed. This method is fast and does not require complex computations. It

is based on people real world trajectories subdivision and clustering, thanks to camera

calibration information.

8.1.1.9 Spatio-temporal Coherency Filtering Method

Depending on whether cameras have overlapping fields of view or not, two methods

using global camera calibration (in the same coordinate system) information and even-

tually environment maps if they are available are proposed. In the case of overlapping

field of view, people move from a camera to another one by crossing the common field

of view. The best opportunity to apply re-identification is then at this moment. Using

camera calibration and images to world projections, a surrounding perimeter around the

person to re-identify is used to filter all candidates who are too far and to weight visual

signature matching scores by a real world distance. In the case of non-overlapping field

of view, candidates with incoherent localisation (with respect to their velocity and the

elapsed time) are filtered out, reducing the candidate number and thereby, increasing

re-identification performances a speed.

8.1.1.10 Adaptive Weights for Signature Components

The proposed visual signature consisting of different features, the importance of

each of them depends on the nature of used information and the considered people

appearance. Off-line training being proscribed as much as possible, an adaptive method
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for feature weighting is proposed. This method assigns the weights per person and

not per dataset. It takes in account the visible side of people to decide whether local

features (SIFT and RHSP) are used or not, and to assign the several weights according

to the richness/poverty of colors and textures.

8.2 Limitations

The proposed approaches still suffer from some limitations. Some of these limitations

are specific to our proposed methods while others are more general limitations, impact-

ing all state of the art approaches and constituting open issues. This section presents

these limitations and the next section provides some ideas to deal with them, and which

will be investigated in future work.

8.2.1 People Detection Limitations

Low resolution, noisy images and small people size

The combination of these three challenges demonstrate the limitation of covariance

descriptors. Even if covariance descriptor is a powerful way to encode a large amount

of information in a single discriminative and robust structure, it seems that it is not

adequate for low resolution images. In addition, too small regions (less than 6 × 6

pixels) on noisy images are not well characterized.

Processing time

Despite the use of integral images to speed up processing, covariance matrix still have

heavy computational cost (due to the several required eigenvalue decompositions). Our

people detector, as a stand alone process, can perform in pseudo real time (and in real

time for scenes with low complexity), but as a part of a more important framework like

ours, containing mono-camera tracking and re-identification tasks which are also time

consuming processes, it is not conceivable to use our people detector intensively, on each

frame of each sequence, without any region targeting system.

Partial occlusions

The proposed people detector is a full-body based algorithm. It is supposed to be faster

than equivalent body-part based detectors (using comparable features) due to the lower

testing operations during detection and to the absence of a spatial reasoning step to infer

whether detected parts correspond to a human, but present the main disadvantage of

being less effective in case of partially occluded people.
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Dataset/Acquisition dependency

This is a more general issue for people detection task in the state of the art. Even if

the proposed approaches (including ours) are efficient and provide good results when

they are tested on data belonging to the same dataset/acquisition conditions than those

used for their training, these detectors cannot be used everywhere else, or on a specific

dataset if they are trained on a particular other dataset. This issue compromises our

search for generic solutions.

8.2.2 Mono-camera Object Tracking Limitations

Dependency on detection results

The proposed tracking algorithm aims at creating temporal links between detected/tracked

objects on successive frames. So the tracking algorithm needs to be provided by object

localisation and delimitations. This task is performed by a collaboration between a state

of the art background subtraction algorithm and our people detector. If some objects are

not detected or are badly delimited, it impacts strongly the tracking performances.

Crowd/Occlusion object state at the starting of its tracking

The proposed algorithm being designed for generic and turnkey deployment, off-line

learning steps are not considered. The algorithm learns some parameters (SIFT features

reliability and real world information) on-line during the tracking. To learn correct val-

ues and dynamic models for SIFT features, the proposed algorithm requires for each

tracked object to be “easily” identified and tracked for the first frames it appears. This

does not necessary mean that the algorithm is only dedicated for sterile zone surveil-

lance, it can track correctly people belonging to a group if their separation has been

correctly detected by our people detector and if the group has uniform displacement

over few frames (no people crossing during these first frames).

Exclusive use of a unique feature: SIFT

Even if SIFT features are known to be highly discriminative and robust against many

condition changes, they still are only texture-based features. We believe that the more

the object model is rich in terms in information, the better the tracking is, as long as the

information is smartly used and allows real-time processing.

Processing time

The proposed tracking algorithm performs in real time for scenes with maximum num-

ber of 7 to 10 tracked objects. The grid subdivision and SIFT features selection methods

we have used allow to reduce the impact of object size on processing time since the good
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spatial repartition of SIFT features allows to take approximatively constant number of

SIFT features even if a person has a large size or not in the image. However, our tracker

cannot be used for real time processing in crowded scenes.

8.2.3 People Re-identification Limitations

Low resolution images and small people size

As for people detection, covariance descriptors are not adequate to characterize RHSP

with small dimensions (on small people images) especially when images are noisy.

Exclusive use of color for people image alignment

The proposed method to align images of the same person in multi-shot case generally

provides good results. However, in some cases, when the contrast between people and

the background is low, the computed color distances during the alignment process may

lead to an erroneous alignment.

Processing time / sampling method for multiple-shot case

The proposed method performs in real time or pseudo real time depending on the

number of used images to compute each person’s signature. The more images are con-

sidered per person, the better the re-identification performances are, but the slower the

processing is. Our method to samples the available images of a person, based only on

selecting images after constant trajectory intervals and per visible class side may not

be optimal. This sampling method does not take into account any visual information.

The sampled images may be too similar and do not represent the possible variations in

appearance of the considered person.

Fully autonomous people tracking under camera network

As it was shown in the evaluation chapter, the performances of the re-identification

task in the state of the art are not good enough to allow a fully-autonomous people

tracking under a camera network. This kind of system requires a high re-identification

rate at the first rank to be interesting (as long as the aim is to track reliably and unsu-

pervisedly a person in the camera network). State of the art re-identification approaches

are not yet mature enough to address this task for generic and wide scale surveillances

systems, with many more people than in the used datasets and with a large number of

cameras (which increase the combinatorial complexity and the classical issues). More

research work remains to be done to reach this objective. However, many other types of

application can take advantage of proposed approaches and their current performances.
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We can cite the two main examples which are “Assisted tracking” and “People retrieval a-

posteriori”. In fact, assisted tracking is a kind of partial-autonomous system which tries

to track people through the camera network, but which can be guided and corrected

by the video operator by simple actions such us clicking on the person of interest. For

the people a-posteriori retrieval, the contribution of re-identification algorithm may be

more important by greatly reducing the number of candidates that human operators or

enforcement officiers have to manually check, and this, by proposing only people in the

10% first ranks for example.

8.3 Future Work

8.3.1 Short-term Perspectives

8.3.1.1 People Detection

Another kind or part-based people detector for partial occlusion management

We have highlighted the fact that partial occlusion cases are better managed by body

part based detectors. We have avoided this kind of approach due to the higher required

processing time and to the additional spatial positioning reasoning. Noting that partial

occlusions mainly occur uniformly from one of the four sides of a person (upper side,

lower side, right side, left side), and instead of training a large number of body part

detectors (for head, shoulders, hands, arms, legs, etc.), another way to explore this

challenge may be to train only four detectors on the four global cited sides, with different

levels of occlusion (for example, upper occlusion which ends at different levels, starting

occlusion from waist to knee for lower body part detector, etc.). This possible solution

has two main advantages: the number of parts to consider is lower (only 4) and the

spatial positioning reasoning is easier due to the considered parts.

Evaluating genericity of people detectors by merging several datasets

To have more generic people detectors, it may be interesting to train the detectors on

enlarged datasets containing many datasets. A preprocessing step to resize all images

on the same size is necessary, and the selected size has to produce the lowest amount of

information loss and image alteration. This approach may show how a given detector

is able to integrate images characteristics (as resolution, noise, people size, acquisition

point of view, etc.) as full part features in addition to classical features (color, textures,

etc.).
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8.3.1.2 Mono-camera Object Tracking

Use of additional and “light” features for tracking initialization

To solve our issue of bad parameter learning in the few first frames when complex

situation occurs, a possible solution may be to apply another kind of object tracking,

based on simple information like color histograms and pseudo-exhaustive search (low

processing time requirement), to provide the first positions of a tracked object and to

allow the main tracking algorithm to learn the necessary values.

Integrate color information more efficiently in the tracking process

The proposed approach uses color information only for occlusion management pur-

pose, and in a simple way (dominant color descriptor). It may be more efficient to

integrate color information in the core tracking algorithm, by computing Color SIFT

features or by tracking color patches using similar particle filter.

8.3.1.3 People Re-identification

Better image sampling for multiple-shot case

Instead of sampling multi-shot images only by selecting images after constant trajec-

tory intervals and per visible class side, which may take too similar images, this sampling

should be performed using visual information criteria, by maximizing the variance of the

considered features on the images to select. This may lead to use more representative

images of possible variations in people appearance for signature computation.

Use of texture as additional information for image alignment

The presented image alignment algorithm provides good results most of the time but

fails when the people cloth colors are too close to background ones. Adding texture

information may solve this issue in a larger extent.

8.3.2 Long-term Perspectives

8.3.2.1 People Detection

Automatic Context Classification

Depending on the used features for people detection, it may be very useful to iden-

tify a way to characterize and classify the deployment environments (or datasets) by

grouping them in similar context sets. Once this classification is performed, dedicated

people detectors may be trained on each class of context. The final aim is to be able to

identify to which class a given new deployment environment (or dataset) belongs, and



276 Chapter 8: Conclusion And Future Work

to automatically select the corresponding detector which is supposed to provide the best

results. This may solve the genericity lack of current people detection systems.

Hybrid and hierarchical use of several features

Even if covariance descriptors have proven their effectiveness in most of cases, their

required heavy processing time leads us to consider a smarter way to use them. Some

simple cases may be easily managed with faster features like LBP or Haar-Like features.

We do not believe that the concatenation of features in the same strong classifiers is the

best way to use other types of information. Quite the contrary, we believe that training

each cascade level using a unique type of features, by taking care of training the first

cascade levels using faster features for simple negatives fast rejection, and use more

complex features (like covariance descriptor) at the end of the cascade to reject more

complex negatives may be a better way to use multiple features approaches. This may be

justified by two reasons: generally, most of negative regions in images are not complex

cases (road, walls, sky, cars, etc.). Many fast and simple features may easily be used to

reject these simple cases. The second reason is related to our desire to specialize each

cascade level to reject a given kind of information.

8.3.2.2 Mono-camera Object Tracking

High level, long term on-line tracking controller

As alternative to off-line learning, which cannot be considered for the addressed re-

quirements, it may be interesting to investigate the on-line tracking controller solutions.

In fact, in our tracking algorithm, once a decision is taken by our data association frame-

work concerning the temporal links between objects of the previous frame and those of

the current frame, this decision is no longer questioned and the tracking continues even

if some links are incorrect. Using long-term control to check the coherency of trajecto-

ries provided by our tracker may help to correct bad tracks and to update the state of

our tracking for better incoming results.

Multiple feature based tracking, with smart and alternating features use

Generally, the more discriminative a given feature is, the more processing time it

requires to be computed. The scene complexity is not constant: sometimes people are

isolated while in other times the scene is crowed. It is even possible to have both cases in

the same scene at the same time, with crowded zones and relatively empty ones. Start-

ing from these two observations, it may be interesting to find a way to have a multi-

feature tracker which switches easily from a feature to another one without tracking

interruption and to manage this tracker under a high level controller which may predict
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incoming complex situations for a given tracked object, thanks to some predictions on

object trajectories in the scene, their separating distances, their velocities, etc. For exam-

ple, it may be interesting when in the same scene, some objects are fastly tracked using

simple color histograms due to the fact that they are isolated while other objects are

tracked using more complex and discriminative features like SIFT due to their proximity

to each other or because they are partially occluded. This leads to a system in which,

at the same moment, in the same scene, some objects are tracked with only their color

histograms while other are tracked using SIFT features. This kind of approach allows

to save some processing time in simple case tracking. This is a different approach than

those [Li 2009, Chau 2011] which use off-line learning step to select the best features

which may be used later for all objects.

8.3.2.3 People Re-identification

Automatic Context Classification

As for people detection, an automatic context classification method may help to iden-

tify which features are more relevant to reach the best re-identification performances.

In our case, the feature weights used for each signature component may be more pre-

cisely selected knowing more information concerning the deployment environment (or

dataset).

Group-context information as additional descriptor

In many surveillance area (airport, train station, etc.), the possible displacement ways

are limited, and people move following very frequent trajectories and thereby, consti-

tuting more or less constant groups. It would be interesting to explore group-context

additional information, in a more sophisticated way than in [Zheng 2009], by adding

real world information combined with all other our proposed improvements.

Use object detectors for usual object removing

Many occlusions are due to usual objects which are taken by people. For example,

in airport backpacks, luggages and trolleys are frequently occluding people. When the

people are well delimited and the occlusion amount is low with respect to people size

(small backpack, carried luggage which occlude a small part of a person, etc.), this oc-

clusion affects the visual signature by integrating wrong information, but the effect may

be low. On the other side, if the occlusion amount is high, the computed visual signature

is highly altered. To deal with this issue, the use of detectors for usual objects may be

an interesting solution. If these objects are well delimited also, their corresponding im-

age regions will not be used in the visual signature computing, and may be replaced by
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extrapolated information if their zones are directly on the people (like backpack viewed

from behind).
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