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D.R. Philippe Ben-Abdallah Institut d’Optique Examinateur
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Mcf. Mauro Antezza Université Montpellier 2 Examinateur





Acknowledgements

These three years of doctorate have been a really great, professional and personal,

experience. First, I wish to thank Alexey Kavokin and Joël Bellessa for spending
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Introduction

Nanophotonics and micro-optics had a remarkable impact on all kinds of applica-

tions in communications, sensing, imaging, data storage, etc [1]... However, the

size of a dielectric waveguide is still ruled by the diffraction limit (λ/(2n), n being

the guide refractive index and λ being the free space wavelength of the incident

wave). It has been discovered that waveguides based on surface plasmon polaritons

can support propagation modes tightly bounded to the metallic surfaces and con-

fine the waves in deep sub-wavelength scales. Accordingly, plasmonics has received

tremendous attention for its scope to overcome the diffraction limit. In order to

present the context and the perspective of this work, it is appropriate to start out

with a short introduction to the plasmonics’ research history.

Plasmonics is a branch of nanophotonics devoted to the study of surface plas-

mon polaritons (SPs) and their applications. In 1902, R. W. Wood [2] observed

sudden variations of the intensity in the light beam spectrum, reflected by a diffrac-

tion grating under the transverse magnetic polarization. According to him, the

intensity of the incident beam being continuous, the reflected spectrum had to be

continuous too. These variations are strongly dependent on the incident angle of

the light beam, and it was demonstrated later that they are due to the coupling be-

tween the propagating incident waves and the surface plasmons waves. In 1957, R.

H. Ritchie [3] demonstrated theoretically the existence of transverse plasmons on

a metallic surface. In 1958, R. A. Ferrel studied, also theoretically, the coupling of

these modes with an electromagnetic wave and presented the first determination

of the dispersion relation corresponding to electromagnetic waves on a metallic

surface. Using a mono-kinetic electronic beam, C. J. Powell and J. B. Swan [4] ex-

perimentally observed surface plasmon excitations at metallic interfaces. A. Otto

proposed an experimental configuration based of the use on a prism, called the

FTR (Frustrated Total Reflection) configuration, to observe the coupling between

vii
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an electromagnetic wave and surface plasmons. E. Kretschmann [5] modified and

simplified this geometry towards the well-known ATR (Attenuated Total Reflec-

tion) configuration. It was only in 1989 that it became possible to observe surface

plasmons using Scanning Near-field Optical Microscopy (SNOM) [6, 7].

Research in plasmonics has made very fast progress in the following decades

[8, 9, 10, 11, 12, 13]. In 1998, T. W. Ebbesen et al. [14] described an experiment

in which nanoholes in a silver film allow a great transmission of light through

sub-wavelength nanostructures when the standard aperture theory [15] predicted

a very small light transmission for such small holes. To explain this phenomenon,

different devices were analysed and the experiments showed that this effect persists

on all metals and with a strong angle dependency. It was thus assumed that this

was a SP related effect. This result renewed the interest for studying SPs and

the term plasmonics began to be used shortly after.

Plasmonics have been very beneficial in terms of resolution for lenses [16] since

the studies carried out by J. B. Pendry [17] and by N. Fang et al. [18]. They

are also used to enhance light emission [19] or photovoltaic devices [20]. The

LSPR (localized surface plasmon resonance) allows the electromagnetic field en-

hancement that leads to surface-enhanced Raman scattering (SERS) [21], second

harmonic generation [22] and other surface-enhanced spectroscopic processes [23].

Imaging at the single molecule level has also taken advantage of the enhancement

of the fluorescence on plasmonic surfaces [24, 25] or in solutions containing metal-

lic nanoparticles [26]. At present, the range of plasmonics based biosensors is

dominated by instruments that operate using the Kretschmann arrangement (this

configuration is presented in Section 2.3.1). The physical size of the sensing ele-

ment is limited by the propagation length of the SP . The new approach pursued

now is to combine SPR with other types of guided modes (hybrid sensors). For

instance, in metamaterial arrays of silver nanorods capable of supporting a guided

mode, the interaction between the guided mode and the SPR leads to excellent

sensor performances in the near infrared [27].

In the field of sub-wavelength surface optics, Zhijun et al. [28] presented the

possibility of creating metallic Fresnel-like lenses. These were designed in such a

way that each nanoslit element transmits light with phase retardation controlled

by the metal thickness in the aperture region. The advantage, as compared to

the conventional lenses, is the possibility to control each phase shift separately by
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changing the corresponding slit depth.

The SP modes play key roles in today’s nanophotonics [29] and are also used

in many applications such as detection, or in surface optics. However, the intrinsic

losses due to the metal limit their propagation length and thus their applications

[30, 31, 32, 33]. To enhance this propagation length, many possibilities have been

considered. The older one consists in coupling two surface plasmons. When a

metallic film becomes too thin, the two SP modes which are on each interface

between the metal and the dielectric media can interact and there is a coupling

[34, 35, 36]. The result is the creation of two new modes, known as the LRSP

(Long Range Surface Plasmon) which is characterized by a better propagation

length than the SP on a metallic bulk [37] and the SRSP (Short Range Surface

Plasmon) which has a lower propagation length. Going on from there, a large

range of applications [38, 39, 40], such as in photonic crystals, stratified media,

quantum systems or with anisotropy, become possible.

A more recent and famous way to enhance the propagation length of the SP

modes is the use of gain media. These structures involve adding gain in a dielec-

tric medium with a metallic film directly deposited on it [41, 42]. However, the

improvement of the field is limited by the depth penetration of the plasmon in the

two media. Thus, the efficiency of this approach is insufficient.

Another point of view consists in thinking that the SPs are light waves that we

want to amplify as a laser. This possibility has been explored and has been called a

SPASER. It could generate stimulated emission of surface plasmons in resonating

metallic nanostructures adjacent to a gain medium [43, 44]. The light emission

could also be coherent, which can give interesting applications in sub-wavelength

surface optics.

In the same idea, it was reported the use of confined Tamm plasmon modes

towards the realization of nano-lasers [45]. Their advantage in comparison of clas-

sical SP modes is that they can be directly excited with light wave because their

in-plane wave vector is less than the wave vector of light in vacuum. They can

also be formed in both TM and TE polarizations [46, 47]. A first demonstration

of laser emission for Tamm structures is presented in [45].

The configuration we propose here consists of putting gain into the medium

between a SP and a classical waveguide under the regime of the strong coupling.

This regime allows a significant improvement of the SP emission as will be pre-
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sented in this work.

Scope of this thesis

We begin by providing an overview of the theoretical foundations of SPs by the

means of Maxwell’s equations. The aim of this first chapter is to present the tools

used to compute and study multistratified media through both the dispersion and

absorption relations. Thus, we present the transfer and scattering matrix methods,

which are usual methods to study multistratified media. These methods need to be

extended in order to find the modes and to account for the losses of the structure.

The losses lead to a complex dispersion relation. It is also possible to demonstrate

that the existence of solutions corresponds to the maximisation of the determinant

of the scattering matrix, that is to say the poles of this matrix. Thereafter, it is

demonstrated that the poles of a complex function can be found though Cauchy’s

integral theorem. The development of our technique of computation, called the

tetrachotomy method, according to [48] is also presented.

Chapter 2 concerns the definition of the surface plasmon polaritons and their

coupling, when a metallic film supporting two SP modes becomes thin enough to

allow the interaction. To begin, the coupling between a volume plasmon and a pho-

ton generates a surface plasmon. When the collective oscillation of the electrons’

gas is coupled with light at the interface between a metal and a dielectric, we also

talk about surface plasmon polaritons (noted SPs). The SP modes correspond to

solutions of Maxwell’s equations. There are two ways to find them: we can search

solutions corresponding to evanescent waves on both sides of the interface; or we

can search for the response of the structure with the determination of the reflection

and transmission coefficients r and t when an electromagnetic plane wave comes

to hurt the structure.

The scope of this chapter is to present the coupling between SP modes, the

result being the creation of two modes, known as the LRSP (Long Range Surface

Plasmon) which is characterized by better propagation length than the SP on a

metallic bulk, and the SRSP (Short Range Surface Plasmon) defined by a lower

propagation length. The main drawback of using the SP modes resides in their

intrinsic losses, and the LRSP modes can provide a first solution to reduce them.

We finally demonstrate the possibility to excite a LRSP mode without the SRSP
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mode on a perfect electric conductor (PEC) substrate. This last possibility is a

first step towards the use of the LRSP for applications such as the detection of

molecules, the experimental realization being possible with a PEC on one side and

vacuum on the other.

In Chapter 3, the coupling between two dielectric waveguides is studied in order

to understand the basic physical mechanisms at play. Dielectric waveguides provide

simple models for the confining mechanism of waves propagating in optical devices.

The coupling of waveguides has been intensively studied, in particular with the

coupled-mode theory [49, 50, 51, 52, 53]. After a reminder concerning the dielectric

slab waveguides, the coupled-mode theory will be presented. This theory can be

derived from the variational principle for the frequencies of the system. When

a trial solution is introduced into the electric field in a lossless electromagnetic

system, such as the linear superposition of modes, the coupled-mode theory gives

the result. The coupled-modes theory is presented both for the transverse electric

and transverse magnetic polarizations, the latter one never having been published.

The last section deals with the case of two optical waveguides respecting the parity

time (PT) symmetry. This symmetry has been evidenced in quantum mechanics

by C. M. Bender [54] but it can also apply to optical devices. Furthermore, a

numerical application is also presented.

The last chapter focuses on the strong coupling regime. This regime has been

particularly studied in microcavities since the work of C. Weisbuch et al. [55]. The

strong coupling is characterized by an anticrossing between the original modes

dispersion relations and by the apparition of a Rabi splitting [56] between the

new modes of the structures. In the first section, the characteristics of the strong

coupling regime are introduced, with the classical case of two coupled oscillators.

Then, the properties of the strong coupling regime in microcavities are presented

until recent works implying surface plasmons. Finally, we demonstrate the strong

coupling regime between SP modes and guided modes in a layered structure. More

precisely, we study the features of the new modes so as to justify the interest of

this kind of structure. Gain is added in order to further enhance the plasmon

emission. In this way, we obtain an improvement of the propagation length for a

hybrid surface plasmon mode (that is still confined on the surface) of more than

six thousand times the length of the strongly coupled case without gain.
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Chapter 1

Theoretical and Numerical Tools

Overview All the structures we are going to study are stratified media,

thin and smooth films alternated in layers. We study more precisely the

corresponding dispersion relations which allow the determination of the

modes living in the structures and also give information about their inter-

actions. After reminding the wave equation, the propagation equations

in a stratified media are introduced. The transfer matrix (T-matrix)

method is also presented and compared to the scattering matrix (S-

matrix) method. The S-matrix formalism allows to find the coefficients

of reflection R and transmission T but also the modes of the structure.

We demonstrate that it is sufficient to find the poles of the determinant

of the S-matrix to obtain the dispersion curves and the corresponding ab-

sorption curves. The fundamental properties of polology are summed up

and we describe the method we used, namely the tetrachotomy method.

1.1 Wave equation

1.1.1 Maxwell’s equations

Published in 1864, Maxwell’s equations predicted the propagation - even in vacuum

- of electromagnetic waves. More precisely, they predicted a velocity c for these

waves in vacuum. It is possible to demonstrate that this velocity is the speed of

light and only depends on two known constants: c = (µ0ε0)
−1/2 with µ0 and ε0 the

1
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permeability and the permittivity of the vacuum, respectively1.

In linear, isotropic, homogeneous (LIH) and source-free medium, Maxwell’s

equations are:

∇× E = −∂B

∂t
, (1.1)

∇×H =
∂D

∂t
, (1.2)

∇ ·D = 0, (1.3)

∇ ·B = 0, (1.4)

with εr(x, y, z), the permittivity of the medium. In what follows, we only consider

non-magnetic media, where µ = µ0.

To find a self-consistent solution for the electromagnetic field, Maxwell’s equa-

tions must be supplemented by the constitutive relations that describe the behavior

of matter under the influence of the fields. Thus, the electric displacement field D

is defined by:

D = ε0E+P, (in vacuum D = ε0E). (1.5)

D is used to avoid explicit inclusion of the charge associated with the polarization

P in Gauss’s flux law (Eq. 1.3). Equivalently, we can also write the polarization

P = χε0E, where the electric susceptibility χ is given by χ = εr − 1. Then, the

expression of the magnetic induction field B is:

B = µ0(H+M). (1.6)

In what follows, B will always be replaced by its equivalent µ0H because M = 0

for LIH and non-magnetic medium.

Combining Eqs. 1.1 and 1.2 leads to Helmholtz’s equations for E and H:

1

εr(x, y, z)
∇× [∇× E]− ω2

c2
E = 0, (1.7)

1By definition, the exact value of µ0 is 4π.10−7 H.m−1 and the measured value of ε0 is
8, 854.10−12 F.m−1.
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∇×
[

1

εr(x, y, z)
∇×H

]

− ω2

c2
H = 0, (1.8)

where ω/c = k0 = 2π/λ0 with λ0, the wavelength of light in vacuum.

In the case of metallic media, Ampere’s equation (Eq. 1.2) includes the differ-

ential form of Ohm’s law j = σE, because the conductivity σ 6= 0 (more precisely,

it is not negligibly small). Eq. 1.2 becomes:

∇×H+ iωεE− j = ∇×H+ iω
(

ε+ i
σ

ω

)

E = 0. (1.9)

To rewrite this equation in its initial form, we have to introduce an effective di-

electric permittivity ε̃ in order to account for the conductivity term σ:

ε̃ = ε+ i
σ

ω
. (1.10)

In the case of homogeneous metals, ε̃ is constant and independent of the direction

in space, it follows that ∇ · E = 0 is still used. The corresponding Helmholtz’s

equation is also given by Eq. 1.7 with εr(x, y, z) = ε̃/ε0.

1.1.2 Solution of the wave equation

We consider Maxwell’s equations for vacuum (εr(x, y, z) = 1) in order to obtain

the simplest form of the electromagnetic wave equation and to present the well

known solution of the wave equation. The Ampere and Faraday equations are

rewritten as:

∇× E = −µ0
∂H

∂t
, (1.11)

∇×H = ε0
∂E

∂t
. (1.12)

The solutions for E and H can be separated by taking the curl of Eq. 1.11 and the

time derivative of Eq. 1.12. Then, using the fact that the order of differentiation

can be reversed, the two Maxwell’s wave equations are:

∇2E = µ0ε0
∂2E

∂t2
, (1.13)
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∇2H = µ0ε0
∂2H

∂t2
. (1.14)

These equations are the form:

d2A

dx2
=

1

c2
d2A

dt2
. (1.15)

For simplicity, we only consider the wave propagation in a single spatial direction,

the x-direction. The vector A becomes a function of x and t and may be expressed

as A(x, t). It could represent either the electric field vector E(x, t) or the magnetic

field vector H(x, t). c is still the velocity of light in vacuum.

It is possible to demonstrate that A(x, t) is an oscillatory wave function with

an amplitude that is transverse to the direction of propagation. We assume that

the wave function A(x, t) is separable and thus can be written as a product of

functions Az(z) and At(t). Eq. 1.15 becomes:

c2

Az

d2Az

dz2
=

1

At

d2At

dt2
. (1.16)

Both sides must be equal to a negative constant−ω2 in order to satisfy the equation
2. That leads to the following equations:

d2Ax

dx2
+

ω2

c2
Ax = 0, (1.17)

d2At

dt2
+ ω2At = 0. (1.18)

And the corresponding solutions are:

Ax = c1e
ikxx + c2e

−ikxx, (1.19)

At = d1e
iωt + d2e

−iωt, (1.20)

where the constants c1, c2, d1 and d2 are determined by the boundary conditions

2The consequence of the choice of a positive constant for At(t) would be real exponential that
cannot represent a real field. On the other hand, taking a negative constant leads to periodic
functions At(t) = e±iωt with ω = kc, so the solutions could be monochromatic waves.



1.2. WAVE PROPAGATION IN A STRATIFIED MEDIUM 5

and the propagation constant kx = ω/c = 2π/λ. Finally, the general solution

involves a complex wave function:

A(x, t) = Ax(x)At(t) ∝ e±i[kxx∓ωt]. (1.21)

The wave described by Eq. 1.21 represents a wave that, for any value of x, has

the same amplitude value for all values of y and z. It is thus referred to as a plane

wave since it represents planes of constant value that are of infinite lateral extent.

We consider a wave travelling from left to right that is a function of the form

A(x, t) = cei(kxx−ωt) and the more general form for A(x, y, z, t) is:

A = A0e
i(k·r−ωt). (1.22)

with A the electric or magnetic component of an electromagnetic wave. So, with

this type of solution, ∇ · E = 0 can be associated to ∇ · E = ik · E from Eq.

1.22. That involves ik · E = 0, and thus E is perpendicular to k, the direction

of propagation. The same conclusion is found with the magnetic field H and Eq.

1.4. Hence, these electromagnetic waves are referred to as transverse waves.

1.2 Wave propagation in a stratified medium

All the structures we are going to study are stratified media, thin and smooth

films alternated in layers. More precisely, we study the corresponding dispersion

relations which allow the determination of the modes living in the structures, and

also give information concerning their interactions.

The relation between the angular frequency of an incident wave and the mag-

nitude of its wave vector is the dispersion relation 3. In this work, we will always

consider ω real, and the propagation constant α complex.
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N+1
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I
0
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2
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p
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b1
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ap bp

aN bN

x

y

Figure 1.1: Stratified medium with layers from 1 to N . We note the outgoing amplitudes R
and T and the incoming ones I and I ′. The intermediate layers have the amplitudes ap and bp
(p = 1 . . . N).

1.2.1 Propagation equations

Expression of the field

We consider a stratified medium with layers from 0 to N + 1 (Fig. 1.1) [57]. In

a LIH medium, with the time dependence e−iωt and the TM polarization in the

plane (x, y), we denote the magnetic field as H = H(x, y)ez. The field H(x, y)

satisfies the following Helmholtz’s equation:

div(ε−1
j ∇H) + k2

jH = 0, (1.23)

where k2
j = k2

0εj is the wave vector in each layer j. This equation has to be solved

separately in regions of constant εj, and the solutions obtained must be matched

using appropriate boundary conditions. We note α and βj the wave vectors in the

3The dispersion relation, ω = ω(α) with α the in-plane component of the wave vector (the
propagation constant), is a linear equation with constant coefficients which determines how the
temporal oscillations exp(−iωt) are linked to the spatial oscillations exp(iαx), with plane waves
exp(iαx) exp(−iω(α)t) as solutions.
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x and the y directions.

We note H(x, y) = eiαxu(y) and the field u(y) in each medium j satisfies:

∂2u

∂y2
+ (k2

j − α2)u = 0, (1.24)

The solutions are plane waves ei(k·r−ωt) = ei(αx+βjy−ωt) and the dispersion rela-

tion is given by α2 + β2
j = k2

0εj with µr = 1.

The field in the different layers is:

u0(x, y) = Iei(αx+β0y) +Rei(αx−β0y), (1.25)

up(x, y) = ape
i(αx+βpy) + bpe

i(αx−βpy) with p = 1 . . . N, (1.26)

uN+1(x, y) = Tei(αx+βN+1y) + I ′ei(αx−βN+1y). (1.27)

Before applying the boundary conditions, we can simplify the previous expres-

sions. First, we must impose that there are no incoming waves in the medium of

transmission (N + 1), I ′ = 0. Moreover, the quantity βj is defined in terms of the

quantities kj and α:

βj =

{

√

k2
0εj − α2 if | α |< k0

√
εj,

i
√

α2 − k2
0εj if | α |> k0

√
εj.

(1.28)

The first condition | α |< k0
√
εj implies that βj is real and corresponds to

propagating waves. The second condition | α |> k0
√
εj implies that βj is imaginary

and corresponds to evanescent waves. Evanescent waves are solutions that remain

confined in the near vicinity of an interface between two media.

Boundary conditions

We apply the boundary conditions to solve Eqs. 1.25, 1.26 and 1.27 with p =

1 . . . N . For each interface, u and ε−1
j ∂yu must be conserved in the TM polariza-
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tion. For y = 0:

{

eiαx
(

Ieiβ00 +Re−iβ00
)

= eiαx
(

a1e
iβ10 + b1e

−iβ10
)

,

iβ0

ε0
eiαx

(

Ieiβ00 −Re−iβ00
)

= iβ1

ε1
eiαx

(

a1e
iβ10 − b1e

−iβ10
)

.
(1.29)

For y = yp:

{

eiαx
(

ape
iβpyp + bpe

−iβpyp
)

= eiαx
(

ap+1e
iβp+1yp + bp+1e

−iβp+1yp
)

,

iβp

εp
eiαx

(

ape
iβpyp − bpe

−iβpyp
)

= iβp+1

εp+1
eiαx

(

ap+1e
iβp+1yp − bp+1e

−iβp+1yp
)

.

(1.30)

For y = yN :

{

eiαx
(

aN+1e
iβNyN + bN+1e

−iβNyN
)

= eiαx
(

TeiβN+1yN + 0e−iβN+1yN
)

,

iβN

εN
eiαx

(

aN+1e
iβNyN − bN+1e

−iβNyN
)

= iβN+1

εN+1
eiαx

(

TeiβN+1yN − 0e−iβN+1yN
)

.

(1.31)

These systems of equations can be solved by using the following matrix-methods

which give access to the expression of the fields in each layer.

1.2.2 The Transfer matrix method

The T-matrices are found by considering Eqs. 1.29, 1.30 and 1.31 under matrix

form. For y = 0:

[

1 1
β0

ε0
−β0

ε0

][

I

R

]

=

[

1 1
β1

ε1
−β1

ε1

][

a1

b1

]

. (1.32)

For y = yp:

[

1 1
βp

εp
−βp

εp

][

eiβpyp 0

0 e−iβpyp

][

ap

bp

]

=

[

1 1
βp+1

εp+1
−βp+1

εp+1

][

eiβp+1yp 0

0 e−iβp+1yp

][

ap+1

bp+1

]

.

(1.33)
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For y = yN :

[

1 1
βN

εN
−βN

εN

][

eiβNyN 0

0 e−iβNyN

][

aN

bN

]

=

[

1 1
βN+1

εN+1
−βN+1

εN+1

][

eiβN+1yN 0

0 e−iβN+1yN

][

T

0

]

.

(1.34)

The T-matrices relate the amplitudes I and R to the amplitudes T and I ′

(I ′ = 0):
[

I

R

]

=

[

τ11 τ12

τ21 τ22

][

T

I ′

]

. (1.35)

⇔
[

I

R

]

=

[

1 1
β0

ε0
−β0

ε0

]−1

T1 × T2 × . . . TN ×
[

1 1
βN+1

εN+1
−βN+1

εN+1

][

T

0

]

, (1.36)

with the T-matrices written as:

Tp =

[

1 1
βp

εp
−βp

εp

][

e−iβp(yp+1−yp) 0

0 eiβp(yp+1−yp)

][

1 1
βp

εp
−βp

εp

]−1

, p = 1 . . . N.

(1.37)

With the T -matrix method, finding the expression of the fields in a stratified

medium is reduced to the multiplication of the T -matrices obtained for each ele-

mentary layer of the structure. The coefficients of transmission T and reflection

R are given by T = I/τ11 and R = τ11T , respectively. In Eq. 1.37, the presence of

two opposed exponentials in the matrix, eiβp(yp+1−yp) and e−iβp(yp+1−yp), causes bad

conditioned matrices and instability for the resolution of great systems [58].

In the next section, we present the S-matrix method that relates the outgoing

fields to incoming ones, and removes the problem of instability [59].

1.2.3 The Scattering matrix method

The S-matrix formalism allows to find the coefficients of reflection and transmission

R and T , but also all the modes of the structure [60, 61, 62, 63, 64]. It relates the

outgoing amplitudes, R and T , to the incoming ones, I and I
′

(Fig. 1.1).

The combination of the S-matrices obtained for each elementary layer of the

structure is no longer simple. It is necessary to cascade the S matrices [65]. This
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I
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T

a11

x

y

2

h

Figure 1.2: Slab with the outgoing amplitudes R and T and the incoming ones I and I ′. The
intermediate layer has the amplitudes a1 and b1. The thickness of the slab is h.

technique is presented for the case of a slab (Fig. 1.2).

The field in the different layers is written as (Eq. 1.26):

u0(x, y) = Iei(αx+β0y) +Rei(αx−β0y), (1.38)

u1(x, y) = a1e
i(αx+β1y) + b1e

i(αx−β1y), (1.39)

u2(x, y) = Tei(αx+β2(y−h)) + I ′ei(αx−β2(y−h)). (1.40)

We directly apply the boundary conditions (as in Section 1.2.1) and simplify

the expressions. For y = 0:

{

I +R = a1 + b1,
β0

ε0
(I −R) = β1

ε1
(a1 − b1).

(1.41)

For y = h:
{

a1e
iβ1h + b1e

−iβ1h = T + I ′,
β1

ε1
(a1e

iβ1h − b1e
−iβ1h) = β2

ε2
(T − I ′).

(1.42)

Under the matrix form, the S matrices are obtained from:

[

a1

R

]

=

[

1 −1
β1

ε1

β0

ε0

]−1 [

−1 1
β1

ε1

β0

ε0

][

b1

I

]

, (1.43)
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I

R

a1

b1

S = Sa ∗ Sb

Sb
I’

T
Sa

Figure 1.3: Cascade of the S-matrix with S = Sa ∗ Sb: in red, the outgoing amplitudes; in
blue, the incoming ones.

and:

[

T

b1

]

=

[

1 0

0 eiβ1h

][

1 −1
β2

ε2

β1

ε1

]−1 [

−1 1
β2

ε2

β1

ε1

][

1 0

0 eiβ1h

][

I ′

a1

]

. (1.44)

We denote Sa and Sb the two intermediate S-matrices (Fig. 1.3), and their

expressions are respectively:

[

a1

R

]

=

[

Sa11 Sa12

Sa21 Sa22

][

b1

I

]

, (1.45)

and:
[

T

b1

]

=

[

Sb11 Sb12

Sb21 Sb22

][

I ′

a1

]

. (1.46)

The global matrix, noted S, has the following components:























S11 = Sa11 + Sa12(Id − Sb11Sa22)
−1Sb11Sa21,

S12 = Sa12(Id − Sb11Sa22)
−1Sb12,

S21 = Sb21(Id − Sa22Sb11)
−1Sa21,

S22 = Sb22 + Sb21(Id − Sa22Sb11)
−1Sa22Sb12.

(1.47)

The final result is also:

(

T

R

)

= (Sa ∗ Sb)

(

I ′

I

)

= S

(

I ′

I

)

=

(

S11 S12

S21 S22

)(

I ′

I

)

.

(1.48)
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In Eq. 1.44, the presence of only one exponential, eiβ1h, implies that the condi-

tioning of the S-matrix is better than in the case of the T -matrices. It is possible

to demonstrate that this result can be generalized to N layers.

The modes of the structure are defined by the existence of outgoing waves in

the absence of excitation. With OUT = (R, T ), this condition is equivalent to

S−1OUT = 0. Thus, to find the modes of the structure, for each frequency ω, we

have to find the propagation constant α which corresponds to the cancellation of

the determinant of the S−1-matrix. It is equivalent to finding the maximization of

the determinant of the S-matrix, that is the poles of det S(ω, α).

However, the S-matrix contains complex variables and the numerical determi-

nation of its poles is not a simple extension of the equivalent problem for a function

of a real variable.

There are two types of methods to find the zeros or the poles of a function

of a complex variable. The first are the iterative methods. The most common

one is the Newton method (also known as the Newton-Raphson method). In this

method, we need a first estimated value of the sought zero or pole. After that,

successive approximations are generated and can converge to the right solution.

This method has not been sufficient to find the poles of the S-matrix because of

its intrinsic instability (the convergence is a function of the first estimated value)

and the requirement to give this first value. Similarly, the Muller’s method did

not give us more satisfaction. This method, which is based on the secant method,

also requires initial values.

The second type of methods implies the use of Cauchy’s integrals for holomor-

phic functions. For each frequency ω, we look for the corresponding poles in the

complex plane. The extension in the complex plane requires a recap of the complex

analysis and more precisely the polology theory [66].

1.3 The polology theory

1.3.1 Cauchy’s integral formula and Laurent series

We consider a path integral which encloses a point singularity z = z0, and the

function to be integrated is:

g(z) =
f(z)

z − z0
, (1.49)
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z0

x

y

C0
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r

(a)

C1

-C2

z

x

y

0

(b)

Figure 1.4: (a) A path C0 which is a circle of radius r centred on the point z0. (b) The contour
used to derive the Laurent expansion of a function.

where f(z) is analytic on and within the contour of integration C. g(z) at the

singularity z = z0 is non-analytic. It is possible to demonstrate that the integral

over any closed path around z = z0 gives the same result. We can also consider a

path C0 which is a circle of radius r centred on the point z0 as illustrated in Fig.

1.4a.

In polar coordinates, z − z0 = reiθ and dz = ireiθdθ. The integral is thus:

∫

C0

f(z)

z − z0
dz = if(z0)

∫

dθ = 2πif(z0). (1.50)

Theorem [67]: Cauchy’s integral formula Let f(z) be analytic inside and

on a simple closed contour C. Then at any point z inside the contour,

f(z) =
1

2πi

∮

C

f(z
′

)

z′ − z
dz

′

. (1.51)

To accommodate expansions about singular point, we have to consider the

Laurent expansions that are more general expansions than Taylor series. For an

analytic function f(z) in an annular region, we consider Cauchy’s formula for the

contour shown in Fig 1.4b with C2 defined as the counter-clockwise path around

the circle. We take the limit that the segments which join the two circles come
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arbitrarily close together, so that their contributions cancel. Cauchy’s formula

then becomes:

f(z) =
1

2πi

∫

C1

f(z
′

)

z′ − z
dz

′ − 1

2πi

∫

C2

f(z
′

)

z′ − z
dz

′

. (1.52)

We can write z
′−z = (z

′−z0)−(z−z0). However, on the curve C1, |z′−z0| > |z−z0|,
while for C2, |z′−z0| < |z−z0|. In the first integral, we pull out the term 1/(z

′−z0)

and in the second integral we pull out the term 1/(z − z0). Then, expanding the

geometric term, we have:

f(z) =
1

2πi

∞
∑

n=0

(z − z0)
n

∮

C1

f(z
′

)

(z′ − z0)n+1
dz

′

+
1

2πi

∞
∑

n=0

(z − z0)
−n−1

∮

C2

(z
′ − z0)

nf(z
′

)dz
′

.

(1.53)

The first summation looks like the usual Taylor series expansion of an analytic

function, while the second summation is singular at the point z = z0. These two

series may be combined into one, referred to as a Laurent series:

f(z) =
∞
∑

n=−∞

an(z − z0)
n, (1.54)

where

an =
1

2πi

∮

C

f(z
′

)

(z′ − z0)n+1
dz

′

, (1.55)

and C is now any counter-clockwise contour within the annulus.

The last step in finding an expression of the pole z0 is to consider the Residue

theorem.

1.3.2 Residue theorem

Let us consider a function which has a Laurent expansion about the point z = z0.

The integral about a circle of radius r (the closed path) centred on this point is:

∮ ∞
∑

n=−∞

an(z − z0)
ndz =

∞
∑

n=−∞

an

∮

(z − z0)
ndz. (1.56)
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The evaluation of this integral is possible term by term because the series is uni-

formly convergent.

Then, it is possible to demonstrate with Cauchy’s theorem that all terms for

which n ≥ 0 vanish. For n = −m < 0,

a−m

∮

(z − z0)
−m = a−m

∫ 2π

0

r−me−imθireiθdθ = ia−mr
−m+1

∫ 2π

0

e−i(m−1)θdθ.

(1.57)

This integral is identically zero, except for m = 1, or n = −1 and the contour

integral about the point z = z0 reduces to:

∮

f(z)dz = 2πia−1. (1.58)

This contour integral only depends on the value a−1, which is called the residue

of the function f(z) at z = z0, which we will write as Res(z0). In the case when

the contour encloses several singular points of f(z) as in Fig. 1.5, it is possible to

demonstrate that we finally obtain:

∮

C

f(z)dz = 2πi

[

∑

i

Res(zi)

]

. (1.59)

This equation may be stated as a theorem and this theorem reduces the eval-

uation of a contour integral of the function f(z) to the algebraic determination of

the residues of the function.

Theorem: Residue theorem [67] The integral of a function f(z) which

is analytic on and within a closed contour except at a finite number of isolated

singular points is given by 2πi times the sum of the residues enclosed by the contour.

If the singularity z = z0 is a simple pole (pole of order 1), the corresponding

Laurent expansion is:

f(z) =
a−1

z − z0
+

∞
∑

n=0

an(z − z0)
n. (1.60)

Cauchy’s theorem allows to obtain:

a−1 =
1

2iπ

∫

C

f(z)dz, (1.61)
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Figure 1.5: A contour which can be used to evaluate a path integral enclosing numerous isolated
singularities.

and also:

z0a−1 =
1

2iπ

∫

C

zf(z)dz. (1.62)

Then, by comparing both results, the value of the pole z0 is:

z0 =

∫

C
zf(z)dz

∫

C
f(z)dz

. (1.63)

1.3.3 Branch points and cut lines

The existence of a square root in the quantity βj (Eq. 1.28) implies a problem

of definition in the complex plane. Indeed, some singularities cannot be classified

using an ordinary Laurent series. A classical example is also the square root of a

complex function:

f(z) = z1/2. (1.64)

For a real function f(x) =
√
x, we already have to choose between two possible

roots, +
√
x and −√

x. For the roots of a complex number z with z = z0e
2πni, we
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Figure 1.6: The multivalued nature of the function f(z) = z1/2 with the branch point z = 0:

(a) Starting at point z0 with f(z0) = z
1/2
0 ; (b) Ending at point z0 with f(z0) = −z

1/2
0 . (c)

The cut line (where argument discontinuous) introduced by defining a multivalued function by
a branch defined by 0 < arg(z) < 2π.

have the same dilemma:

z1/2 = z
1/2
0 eπni =











+z1/2,

or

−z1/2.

(1.65)

Likewise, there are two possible choices for the square root, except at the point

z = 0, where the only possibility is 0. Then, we have the following problem: when

we consider a closed circular path around the point z = 0 and if we are starting at

the point z = z0 (Fig. 1.6a), we are ending up at a different value than when we

started,

f(z) → z
1/2
0 eπi = −z

1/2
0 , (1.66)

as it is illustrated in Fig. 1.6b. It is not possible to develop a Taylor or Laurent

series for the point z = 0. This kind of point is called a branch point and the

function z1/2 has two ”branches”, a positive one and a negative one.

In this case, we always choose the positive branch of f(z) = z1/2, but one line

in the complex plane along which the function f(z) is discontinuous always exists

as illustrated in Fig 1.6c.

Such a line is usually referred to as a cut line. Fortunately, its location depends

on the phase of the complex number. If 0 ≤ arg(z) < 2π, the cut line runs from
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the origin to infinity along the positive x-axis. If −π < arg(z) ≤ π, the cut line

runs from the origin to infinity along the negative x-axis. It is possible to choose

other arguments to move the cut lines in other directions. In our case, it is often

necessary to move it because the function f(z) is non-analytic along this cut line

and Cauchy’s theorem cannot be used across this line. Therefore, we wrote a

function in Matlab in order to move it and to have access to the poles we were

looking for 4.

Riemann sheets

Another possibility, introduced by B. Riemann, is to consider both branches to-

gether. As we have noted, our choice of the location of the cut line is arbitrary

for the function f(z) = z1/2. Riemann suggested that the proper domain of the

function f(z) is a pair of complex planes which are joined together along the cut

line, as opposed to a single complex plane.

This geometry is illustrated in Fig. 1.7 and corresponds to the construction of

a surface by cutting each of the two complex planes along their cut lines, and then

connecting the cut edges of one plane to the opposing edges of the other.

Therefore, the function f(z) is analytic on this pair of complex planes except at

the point z = 0. This linked set of planes is referred to as a Riemann surface, and

each individual complex plane is called a Riemann sheet. It must be noted that

the Riemann surfaces cannot be constructed in three-dimensional space without

the surfaces crossing. If we consider the function f(z) = z1/3, we find that the

Riemann surface consists of three complex planes joined together along a cut line.

Branch points are broadly grouped into three categories. Algebraic branch

points are those of the form of a fractional power of z and can be expressed by a

series,

f(z) = (z − z0)
α

∞
∑

n=−∞

an (z − z0)
n , (1.67)

when an = 0 for all n < −N . In such a case, the function can be described by

a finite number of Riemann sheets. If an 6= 0, as n → −∞, it is referred to as

a transcendental branch point, and it is the multivalued analogue of an isolated

4According to the location of the cut line, a pole can be seen as a zero and a zero as a
pole. That is why we need to know in advance where we have to look in order to find the poles
corresponding to the physical modes.
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(a) (b)

Figure 1.7: (a) An illustration of the Riemann surfaces of the multivalued function f(z) = z1/2.
(b) The real part of

√
z, showing how the two surfaces are tied together.

essential singularity. Logarithmic branch points are those which behave as follows:

f(z) = (z − z0)
α log (z − z0)

∞
∑

n=−∞

an (z − z0)
n . (1.68)

In such a case, the function can be described with an infinite number of Riemann

sheets.

The main drawback for our study is the presence of the square root in the

expression of βj (Eq. 1.28). We stay in the case of algebraic branch points and

the use of our function to move the cut line is always enough to apply Cauchy’s

theorem at the right regions. An interesting method that applies Cauchy’s theorem

to find the modes in a structure - initially in photonic crystals - was developed by

F. Zolla et al. [48]. This method is called the tetrachotomy method and we have

adapted it to our study.

1.4 The tetrachotomy method

1.4.1 Poles of a meromorphic function

The tetrachotomy method allows to find the poles in the complex plane corre-

sponding to a given meromorphic function f(α) in C [48]. If f(α) has a single

pole at α0, then in the neighbourhood of that point there exists a non-vanishing
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holomorphic function G(α) (in C\{α0}) and the function f can be written as [68]:

f(α) =
G(α)

α− α0

. (1.69)

First, we consider a Jordan loop Γ which only contains the pole α0. We assume

that the pole α0 is simple and that G does not have a pole at α = 0, so that we

can rewrite it G(α) = αF (α) with F a holomorphic function. We can demonstrate

that the following integrals allow to determine the pole α0:

I0 =
1

2iπ

∫

Γ

f(α)

α
dα =

1

2iπ

∫

Γ

F (α)

α− α0

dα, (1.70)

I1 =
1

2iπ

∫

Γ

f(α)dα =
1

2iπ

∫

Γ

α
F (α)

α− α0

dα, (1.71)

I2 =
1

2iπ

∫

Γ

αf(α)dα =
1

2iπ

∫

Γ

α2 F (α)

α− α0

dα. (1.72)

F being a holomorphic function, that implies the integrals
∫

Γ
F (α)dα and

∫

Γ
αF (α)dα are vanishing. Then,

I1 =
1

2iπ

∫

Γ

α
F (α)

α− α0

dα =
1

2iπ

∫

Γ

α0
F (α)

α− α0

dα +
1

2iπ

∫

Γ

F (α)dα, (1.73)

and after simplification:

I1 =
α0

2iπ

∫

Γ

F (α)

α− α0

dα = α0I0. (1.74)

The expression of the pole is also α0 = I1/I0. Similarly,

I2 =
1

2iπ

∫

Γ

α2 F (α)

α− α0

dα =
1

2iπ

∫

Γ

αF (α)dα+
α0

2iπ

∫

Γ

F (α)dα+
α2
0

2iπ

∫

Γ

F (α)

α− α0

dα.

(1.75)

The expression of the pole is then α2
0 = I2/I0 = α0I1/I0.

The pole α0 of the function f(α) is precisely given by:

α0 =
I2
I1

=
I1
I0
. (1.76)

This is the direct application in the case where there is only one pole. As a
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Figure 1.8: The Tetrachotomy algorithm performed on a rectangle in the complex plane
(αR, αI). The poles are represented by red crosses.

matter of fact, for a given meromorphic function f in C, the number of correspond-

ing poles {αi} in the complex plane is unknown. The schematic representation of

the tetrachotomy method is shown in Fig. 1.8.

The first step is then to isolate the poles from each other. The evaluation of

the integrals I0, I1 and I2 enables to know if there is no pole, one pole or several

poles inside the loop Γ. Indeed, three possibilities arise:

1. If I0 = I1 = 0, there is no pole inside the considering loop (as in the loops

Γ1, Γ4 and Γ24 in Fig. 1.8).

2. If I2/I1 6= I1/I0, that means there are several poles (as the loop Γ2 in Fig.

1.8).

3. When I2/I1 = I1/I0, there is one pole in the considering loop and the evalu-

ation of one of the fractions of Eq. 1.76 gives very precisely the sought pole

(as in the loops Γ3, Γ21, Γ22 and Γ23 in Fig. 1.8).

The principle of the tetrachotomy method is, whenever the second situation

arises, to divide the rectangle Γ into four equal rectangles Γi (i = [1, 2, 3, 4]), and
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to repeat the process until the initial rectangle is divided into rectangles which all

contain only one pole as it is illustrated in Fig. 1.8.

The efficiency of this method is linked to the numeric evaluation of the integrals

I0, I1 and I2. Their precise determination is possible because f(α) is analytic in

C \ {αi}. The restrictive function f to the rectangle Γ, noted f(α)|Γ, is regular as

the curve Γ and that means it is continue only. However, if we split the initial loop

as (Fig. 1.8):

∫

Γ

f(α)dα =

∫

Γd

f(α)dα +

∫

Γr

f(α)dα +

∫

Γu

f(α)dα +

∫

Γl

f(α)dα, (1.77)

the function f(α)|Γa
(a = d, r, u, l) is also always derivable.

We suppose that Γ is parametrised by z(t) with z(t) ∈ [0, 2π]. The integrals of

f(α)|Γa
along the loops Γa are given by:

∫

Γd

f(α)dα =

∫ π
2

0

f(z(t))z′(t)dt, (1.78)

∫

Γr

f(α)dα =

∫ π

π
2

f(z(t))z′(t)dt, (1.79)

∫

Γu

f(α)dα =

∫ 3π
2

π

f(z(t))z′(t)dt, (1.80)

∫

Γr

f(α)dα =

∫ 2π

3π
2

f(z(t))z′(t)dt. (1.81)

We can show that the quantities of these integrals only depend on Γ (they do

not depend on the parametrisation). The trajectories are parametrised with:

z(t) =































2

π
(x1 − x0)t+ x0 + iy0 on Γd,

x1 + i[
2

π
(y1 − y0)(t−

π

2
)] + y0 on Γr,

2

π
(x1 − x0)(

3π

2
− t) + x0 + iy1 on Γu,

x0 + i[d 2
π
(y1 − y0)(2π − t) + y0] on Γl.

(1.82)

The numerical evaluation is obtained by the method of integration called the

periodisation method [69]. This is based on the fact that if In(f) is the approx-
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imation of I =
∫ b

a
f(t)dt, the error yielded by the rectangle method integration

en = In − I decreases as O( 1
N
), where N is the number of rectangles used to ap-

proximate the function and goes to infinity [70]. However, if f is a function of

class C2k on the integration interval [a, b] and if its odd-order derivatives satisfy

the condition:

∀p ∈ {1, . . . , k − 1}q(2p−1)(a) = q(2p−1)(b), (1.83)

then the error behaves like O(N−2k) when N goes to infinity, which means the

evaluation is more efficient and more precise. The functions f(z(t))z′(t) are func-

tions of class C∞([a, b]) but they are not functions that satisfy the condition Eq.

1.83.

With the periodisation method, it is possible to find a change of variables such

that the parametrisation of the integrals yields an integrand that verifies condition

Eq. 1.83. Hence, the computation of the integrals is made fast and accurate.

The change of variable is t = P (x), where P (x) is a 4k − 3-degree polynomial

given by:

P (x) =

∫ b

a
(t− a)2k−2(b− t)2k−2dt

∫ x

a
(t− a)2k−2(b− t)2k−2dt

. (1.84)

This polynomial is strictly increasing on [a, b] and verifies the following properties:

P (a) = 0, P (b) = 1, (1.85)

P [l](a) = P [l](b) = 0, 1 ≤ l ≤ 2k − 1. (1.86)

Thus, the integral of the function f is given by:

I =

∫ b

a

g(x)dx, (1.87)

with g(x) = P ′(x)f(P (x)) where g(x) is a function of class C2k that satisfies the

condition of Eq. 1.83.

In practice, taking k = 2 is enough. The convergence in O( 1
N4 ) is sufficient

(ten times more points give four supplementary significant numbers). Thus, to

calculate the integral I, the rectangle method is applied to g(x) so as to obtain

the periodisation method.
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Figure 1.9: The poles found using the tetrachotomy method for a test function (red crosses)
plotted against the exact (simple) poles of the meromorphic test function (black circles).

1.4.2 Application

To test the validity of the tetrachotomy method, we consider the following function:

f(α) =
g(α)

(α− αi)n
, (1.88)

where f is meromorphic in C \ {αi} and αi are the poles of the f .

In the complex plane defined by (αR ∈ [0, 1], αI ∈ [0, 1]), we consider twenty

five poles αi randomly chosen (with the function rand of Matlab) and we apply the

algorithm to this function. The results show that the poles found by the program

are extremely close to the ones we entered as input data (see Fig. 1.9). The

corresponding randomly values are shown in Table 1.1. We also have at least eight

identical numbers which is the tolerance number we imposed in our computations.

The CPU took around 8 seconds to find these poles.
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Re(f) Re(αi) Im(f) Im(αi)
0.120187017987081 0.120187019625525 0.419048292043586 0.419048293624883
0.540884081241476 0.540884081237328 0.064187087388841 0.064187087391899
0.255386740488051 0.255386740486275 0.505636617569718 0.505636617571756
0.546449439903068 0.546449439902904 0.317427863654375 0.317427863655850
0.020535774658185 0.020535774658272 0.635661388861370 0.635661388861377
0.525045164762609 0.525045164762852 0.390762082203825 0.390762082204175
0.036563018048453 0.036563018048448 0.671202185356518 0.671202185356536
0.516558208351270 0.516558208351338 0.440035595760317 0.440035595760254
0.702702306950475 0.702702306950754 0.257613736712109 0.257613736712438
0.153590376619400 0.153590376619546 0.751946393867338 0.751946393867450
0.653699889008253 0.653699889008506 0.443964155018388 0.443964155018810
0.180737760254794 0.180737760254770 0.852263890343852 0.852263890343846
0.325833628763249 0.325833628762824 0.816140102875546 0.816140102875323
0.163512368527526 0.163512368527536 0.866749896999316 0.866749896999319
0.415093386613047 0.415093386613128 0.789073514938985 0.789073514938958
0.398880752383199 0.398880752383432 0.814539772900878 0.814539772900651
0.932613572048564 0.932613572048764 0.060018819779211 0.060018819779476
0.163569909784993 0.163569909784167 0.921097255892383 0.921097255892197
0.953457069886248 0.953457069886728 0.228669482105789 0.228669482105501
0.748618871776197 0.748618871774508 0.642060828437204 0.642060828433852
0.679733898210467 0.679733898210444 0.767329510776502 0.767329510776574
0.665987216411111 0.665987216411121 0.794657885388843 0.794657885388753
0.894389375354243 0.894389375354296 0.577394196706578 0.577394196706649
0.809203851293793 0.809203851294856 0.715212514781598 0.715212514785840
0.923675612620407 0.923675612618613 0.950894415380493 0.950894415378135

Table 1.1: The real part Re(f) and the imaginary part Im(f) of the poles of the test function f as compared
to the calculated poles αi = Re(αi) + iIm(αi) with the tetrachotomy method. The agreement is pretty good
with at least eight identical numbers for the real and imaginary parts, which is the tolerance number we
imposed in our computations.
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Chapter 2

Coupling Surface Plasmon

Polaritons

Overview Research in plasmonics has gone made very fast progress in
the last decades [8, 9, 10, 11, 12, 13]. Since 1990, the study of plas-
monic waveguides and plasmonic enhanced (extraordinary) transmission
[14] has greatly boosted the exposure of the subject. Plasmonics is a
branch of optical condensed matter devoted to optical phenomena at the
nanoscale in structured metallic systems, due to modes called surface
plasmon polaritons (SPPs). SPPs, predicted more than 50 years ago
by R. H. Ritchie [3] and extensively studied ever since [5, 71], play key
roles in today’s nanophotonics [29]. They are optical surface waves that
propagate (typically) along the metal-dielectric interface. But they are
also characterized by a high attenuation due to the intrinsic losses in the
metal, limiting the applications [30, 31, 32, 33]. The aim of this chap-
ter is to present the best known way to enhance the surface plasmon
emission, which is coupling it with another surface plasmon. It is possi-
ble in structures which are composed of a metallic film in a symmetric
medium. Indeed, a metallic film supports two SPP that are coupled and
the strength of this coupling depends on the metallic thickness. This cou-
pling helps improve the propagation length of surface plasmons. After a
reminder of the basic properties of the SPP modes, we present the long
range surface plasmon polariton (LRSPP ) which corresponds to one of
the coupled SPP in thin metallic film. It is demonstrated how to obtain
this mode on a metallic film deposited on a perfect electric conductor
substrate. This possibility allows to not excite the short range surface
plasmon polariton (SRSPP ) mode and to obtain the LRSPP without
a symmetric device.

27
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2.1 Surface plasmon polaritons at a single inter-

face

2.1.1 Existence conditions

In order to investigate the physical properties of SPPs, we have to begin by the

Drude model. This model gives a well known relation between metal permittivity

and plasma frequency. It was proposed by Paul Drude in 1900 [72] in order to

explain the transport properties of electrons in materials, especially in metals.

To describe the optical properties of metals, we can consider a gas made up of

free conduction electrons. This free electron gas can collectively oscillate and this

longitudinal displacement of the density of charges is called a plasmon. Its energy

quantum is ~ωp, where ωp is the plasma frequency:

ωp =

√

Nee2

ε0me

, (2.1)

where Ne is the electrons’ density, e the charge of electrons, ε0 the dielectric con-

stant of the vacuum and me the electron mass. In this work, we apply the kinetic

theory. As a consequence, the electron gas is treated as neutral solid spheres. Its

motion is uniform rectilinear until collision. The metal is also like a set of conduc-

tion electrons which are free to move with these negative charges and relatively

immobile positive ions.

The dielectric permittivity εm, which is the response of the metal to an exci-

tation with the pulsation ω is given by:

εm(ω) = 1−
ω2
p

ω(ω + iΓ)
, (2.2)

where Γ is the damping factor (it is used to account for the dissipation of the

electron motion) and ωp the plasma frequency. In the present work, we mostly

consider silver metal for computations where Γ = ωp/428 and ωp = 1.374 × 1016

s−1 [73] 1. In the case of metal without losses, the dielectric permittivity becomes

1A reason for not using gold is that, it was demonstrated for a wavelength λ < 520 nm that
the photons do not transfer their energy to the SPs but to the individual electrons to generate
intraband transitions, which cancels the SP resonance [74]. M. Watanabe et al. [75] present
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εm
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εm

εd

x0

(b)

Figure 2.1: (a) Volume plasmon in a bulk metal with a permittivity εm. (b) Surface plasmon
at the interface between a dielectric (εd) and a metal (εm).

εm(ω) = 1− ω2
p/ω

2.

Two types of plasmons can be distinguished. In bulk metal (Fig. 2.1a), the

collective oscillation of the electron gas is called volume plasmon, whereas the

interface between a metal and a dielectric support is a surface plasmon (Fig. 2.1b).

Lastly, when the collective oscillation of the electron gas is coupling with light, this

mode is called a surface plasmon polariton (SPP ). In what follows, we will only

consider these SPP modes and we can use SP to simplify the notation.

SPs are surface mode solutions of Maxwell’s equations with appropriate bound-

ary conditions. We search these solutions at a flat interface between a metal and a

dielectric. It is possible to demonstrate that SPs only exist in transverse magnetic

(TM) polarization. We consider time harmonic modes with the magnetic field lin-

early polarized along a direction which is transverse to the direction of propagation

z. We denote the magnetic field asH = u(x, y)ez and the time dependence is e−iωt.

The field u(x, y) satisfies the following Helmholtz’s equation:

div(ε−1
j ∇u) + k2

ju = 0, (2.3)

where k2
j = k2

0εj is the wave vector in each medium (j = d,m). This equation has

to be solved separately in regions of constant εj. The solutions obtained have to

be matched using appropriate boundary conditions. We note εm for y < 0 and εd

for y > 0, the permittivities of the metal and the dielectric respectively. α and β̃j

this as ”anomalous reflection of gold” because below this wavelength, the gold loses its metallic
properties of reflectivity.
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(j = d,m) are the wave vectors in the x and the y directions.

We note u(x, y) = eiαxU(y) and the field U(y) satisfied the following equations:

y > 0:
∂2U

∂y2
+ (k2

d − α2)U = 0,

y < 0:
∂2U

∂y2
+ (k2

m − α2)U = 0.

(2.4)

The solutions are:

y > 0: U(y) = a1e
−iβ̃dy + b1e

iβ̃dy,

y < 0: U(y) = a2e
−iβ̃my + b2e

iβ̃my,
(2.5)

where β̃j (j = d,m) are defined by the relation α2 + β̃j
2
= k2

0εj.

The solution corresponding to surface waves along the x direction imposes that

the field is evanescent along the y direction so that βj must be imaginary. We have

| α |> k0
√
εj and β̃j are written as:

β̃j = i
√

α2 − k2
0εj. (2.6)

We note β̃j = iβj. However, we must impose a1 = 0 and b2 = 0 (as the modes

are bound to the surface, they must decay with increasing/decreasing y) and the

field is rewritten as:

y > 0: U(y) = b1e
−βdy,

y < 0: U(y) = a2e
βmy.

(2.7)

At y = 0, U and ε−1
j ∂yU must be conserved in the TM polarization:

b1 = a2,

−βd

εd
b1 =

βm

εm
a2.

(2.8)

To obtain the solution, we can solve the system of Eq. 2.8 or consider the

cancellation of the coefficient of reflection’s denominator. The result must be the
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same:
β̃d

εd
+

β̃m

εm
= 0. (2.9)

And the corresponding dispersion relation for the SP is:

kSP = ±k0

√

εdεm
εd + εm

, (2.10)

where kSP is the corresponding in-plane wave vector (propagation constant) α for

the surface plasmon.

In the case of a real metal (with losses), kSP and necessarily βm and βd are

complex, which implies a sinusoidal supplementary component (along the y direc-

tion) to the evanescent envelope of the field. We note εm = ε
′

m + iε
′′

m. With the

convention of signs in the exponents and to verify Eq. 2.9, the real part dielectric

permittivities ε
′

m and εd must have opposite signs. Since dielectrics have a positive

(and real) εd, that means εm must be negative. In addition, the real part of the

dispersion relation (Eq. 2.10) involves a supplementary condition: the propagation

along x is only possible through the existence of a real part for kSP . These two

conditions imply ε
′

m > −1 [5].

These conditions are largely fulfilled by several metals in the visible and near-

infrared ranges of the spectrum. In these ranges, εm for silver has a large negative

real part and a small positive imaginary part associated to the absorption and the

scattering losses in the metal.

2.1.2 The dispersion relation

To properly understand SP modes, we have to examine the corresponding dis-

persion relation, the relationship between the frequency ω and the in-plane wave

vector α. The in-plane wave vector is the wave vector of the mode in the plane of

the surface along which it propagates. For light in free space, the wave vector is

given by k0 = ω/c (the light line), c being the speed of light. In a medium with

the dielectric permittivity εd, the dispersion relation becomes k =
√
εdk0. Lastly,

for SPs propagating along the interface between a metal and a dielectric, the dis-

persion relation (Eq. 2.10) is found by looking for the surface mode solutions of

Maxwell’s equations in the section 2.1.1.

Fig. 2.2a illustrates an interface between air (εd = 1) and a metal (εm). By
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Figure 2.2: (a) Single plane interface between a dielectric (εd = 1 ) and a metal (εm) which
supports a SP . (b) The dispersion relation, found by taking the real part of Eq. 2.10 with the
metallic permittivity based on the Drude model (Eq. 2.2) and the plasma frequency ωp for silver.
The constant of propagation α is plotted in units of ωp/c and the frequency ω in units of ωp. The
light line is the dispersion line for light in free space, k0 = ω/c. The asymptotic surface plasmon
frequency corresponds to ωSP = ωp/

√
1 + εd. The dispersion curve for a SP mode shows the

momentum mismatch problem: the SP mode is always lying beyond the light line because its
wave vector kSP is greater than the wave vector of a free space photon k0 at a given frequency
ω. It is a non-radiative mode.

substituting the expression of εm by the dielectric permittivity of silver based on

the Drude model (Eq. 2.2), and by taking the real part of Eq. 2.10, we can plot

the corresponding dispersion relation (Fig. 2.2b).

Fig. 2.2b illustrates the dispersion curve of the SP modes. At low frequencies,

the dispersion curve lies very close to the light line, also said to be light-like. It

is a region where this mode is best described as a polariton. Then, the frequency

rises and the mode moves further away from the light line, approaching gradually

an asymptotic limit, the surface plasmon resonant frequency ωSP = ωp/
√
1 + εd

which translates in term of frequencies the condition ε
′

m > −1. This occurs when

the permittivity of the metal and of the dielectric are of the same magnitude (but

opposite sign), which is producing a pole in the dispersion relation.

By definition, for propagating waves (PW ), kPW < k0 = ω/c (these waves have

a dispersion relation above the light line) when for SP modes, kSP > k0. The wave

vector corresponding to SP mode is always higher than the light line. We also

say that the SP is a non-radiative mode. This is the evanescent behavior of these

surface modes that forbids a direct excitation with a propagating electromagnetic
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wave. A photon and a SP at the same energy level, never have the same quantity

of motion.

There are two distinct ways to excite SP modes: with high energy electrons [76]

or with electromagnetic waves. We will only consider the use of electromagnetic

waves. In this case, classical techniques used to excite SP modes employ diffraction

by gratings or attenuated total reflection (ATR). In this work, we will consider SPs

supported by silver films and excited by electromagnetic waves using the ATR in

the Kretschmann configuration [5], which will be presented in section 2.3.1.

2.1.3 SP length scales

The first important length characterizing the SP is its wavelength λSP , which

corresponds to the period of the surface charge density oscillation and the field

distribution of the mode. The wavelength λSP comes from the real part of the

complex dispersion relation k
′

SP (Eq. 2.10):

λSP =
2π

k
′

SP

= λ0

√

εd + ε′

m

εdε
′

m

, (2.11)

where λ0 is the free space wavelength.

This SP wavelength is very similar, but always less than the free space wave-

length λ0. The fact that λSP < λ0 is a consequence of the bound nature of the SP

modes.

The propagation length

The propagation length δSP of the SP mode corresponds to the extension in the

x-direction of the field along the surface [77, 78, 79]. It is defined by the distance

over which the intensity of the mode decreases to 1/e of its initial value [80]. It is

given by δSP = 1/2k
′′

SP . The imaginary part k
′′

SP is:

k
′′

SP = k0
ε
′′

m

2(ε′

m)
2

(

ε
′

mεd
ε′

m + εd

)

3

2

. (2.12)

So then:

δSP = λ0
(ε

′

m)
2

2πε′′

m

(

ε
′

m + εd
ε′

mεd

)

3

2

. (2.13)
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Figure 2.3: The SP propagation length δSP as a function of the free space wavelength λ which
varies from visible to near-infrared range. The metal considered is silver, based on the Palik data
[81] and the dielectric is air, εd = 1.

The SP propagation length δSP as a function of the free space wavelength is

plotted in Fig. 2.3. The dielectric permittivity of the metal εm is taken from the

Palik data set [81] (experimental data) for silver. This choice will be justified in

Section 2.2. The increase of the propagation length is explained by the fact that for

longer wavelengths, the metal becomes a better conductor. The SP wave vector is

closer to the free space wave vector and, as it is shown with the dispersion curve,

the mode is thus light-like. Consequently, the mode is less confined to the surface.

Furthermore, it is possible to approximate the propagation length when using

low loss metal and when the condition | ε′

m |> εd is satisfied:

δSP ≈ λ0
(ε

′

m)
2

2πε′′

m

. (2.14)

With this approximation, we can see that to have a much higher propagation

length δSP , we need a large (negative) real part ε
′

m and a small imaginary part ε
′′

m.

In the visible and near-infrared ranges, silver respects these properties.

The penetration depths

By definition, the penetration depths of a surface mode correspond to the spatial

(vertical) extension of its field in both media in the y-direction [82]. For a material

with a dielectric permittivity εi (i = d,m), it is possible to express the total wave
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vector with its components in the plane (the wave propagates in the y-direction):

εik
2
0 = k2

x + k2
y, (2.15)

where k0 is the wave vector for free space, kx is the in-plane component and ky is

the perpendicular component to the plane.

If we consider now the particular case of surface plasmons, the in-plane wave

vector kx corresponds to kSP (Eq. 2.10). Or as we noted, the SP wave vector

always exceeds the wave vector of a photon in the adjacent medium, k2
SP > εik

2
0.

For this reason, the y-component of the wave vector in both media must be imagi-

nary, and thus represent the exponential decay of the fields with distance into both

media (Fig. 2.4).

From the dispersion relation (Eq. 2.10 with Eq. 2.15), the penetration depths

δd and δm into the dielectric and the metal respectively can be written as:

δd =
1

k0

√

| ε′

m + εd |
ε2d

, (2.16)

δm =
1

k0

√

| ε′

m + εd |
(ε′

m)
2

, (2.17)

with the condition | ε′

m |>>| ε′′

m |.
Fig. 2.5a illustrates the SP penetration depth into the dielectric δd (with

εd = 1) plotted as a function of the wavelength. In the visible spectrum, δd is less

than the free space wavelength; when in the near-infrared spectrum, it becomes

more than it. The increase of the penetration depth is again explained by the fact

that for longer wavelength, the metal becomes a better conductor and the mode

is thus light-like.

The distance below the decay rate of molecules is enhanced by SP modes

[83, 24] and is linked to δd. In many cases, this mode of decay is undesirable,

as in the case in diodes where the efficiency can be reduced by the presence of

metallic electrical contacts. To overcome this drawback, solutions such as the

nanostructuring of the device have been studied [84].

The SP penetration depth into the metal, δm, as a function of the wavelength

is plotted in Fig. 2.5b. This penetration depth is largely independent of the free
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Figure 2.4: The field in the perpendicular direction is evanescent, reflecting the bound, non-
radiative nature of SPs. This prevents power from propagating away from the surface. In the
dielectric medium (typically air or glass), the penetration depth is δd, whereas the penetration
length into the metal is δm.
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Figure 2.5: The SP penetration depths as a function of the free space wavelength λ which
varies from visible to near-infrared range. The metal considered is silver, based on the Palik data
[81] and the dielectric is air, εd = 1. (a) The SP penetration depth into the dielectric δd. (b)
The SP penetration depth into the metal δd.
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Figure 2.6: The real (a) and imaginary (b) parts of the silver dielectric permittivity εm(ω) =
ε
′

m(ω)+ε
′′

m(ω) using the Drude model (gray dashed line), the Palik data [81] (black line) and the
Johnson and Christy data [85] (red line). A zoom is made on the region of wavelengths between
200 nm and 600 nm.

space wavelength in this wavelength range. Indeed, in this range ω << ωp and we

can approximate δm as:

δm =
λp

2π
, (2.18)

where λp is the wavelength corresponding to the plasma frequency ωp. For silver,

ωp = 1.374×1016 s−1 and the penetration depth in the metal is δm = 22 nm, which

is not so far from the average value in Fig. 2.5b. Note that the penetration depth

rises for short wavelengths because the condition ω << ωp is no longer valid.

The parameter δm represents the necessary thickness for the metallic films that

allows the coupling of a SP mode, as with propagating light in the prism coupling

configuration (Kretschmann) or with another SP modes in a metallic thin film

device.

2.2 Dielectric permittivity of metals

The Drude model presented in Section 2.1.1 allows to obtain the main properties

of surface plasmons. However, it gives only an approximation of the dielectric

permittivity of metals, and its validity is limited to near-infrared frequencies. We

are going to compare it to experimentally determined dielectric permittivity of

silver, as adopted from Johnson and Christy [85] and Palik [81] data sets.
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Figure 2.7: Dispersion relation of SP mode on the Ag/air interface with respectively the
permittivities εm and εd = 1. The metal permittivity εm is determined from the Palik (black
line) and the Johnson and Christy (red line) data sets. For frequencies below ωSP = ωp/

√
1 + εd,

the typical bound SP mode is observed below the light line plotted in dashed line (as in Fig. 2.2b).
Above the asymptote at ωR, there is the radiative plasmon polariton (RPP) mode. Between these
two asymptotes, it is the plasmon bandgap where the plasmon wave vector is purely imaginary
and the modes in this regime (called quasibound modes) are forbidden [86].

Fig. 2.6 shows the dielectric permittivity εm(ω) = ε
′

m(ω) + iε
′′

m(ω) of silver as

derived from the Johnson and Christy (JC) data, the Palik data and the Drude

model (Eq. 2.2). The JC and Palik data sets are in agreement for wavelengths

between 200 nm and 600 nm. At greater wavelengths, ε
′

m from JC data falls off

faster and ε
′′

m grows more slowly than the corresponding results from the Palik

data. With this difference, we have to compare the results of both data sets on a

practical case, the dispersion relation of SP .

The dispersion curve of a SP supported at the interface between air (εd = 1)

and a metal (εm) is presented in Fig. 2.7, both for the JC and the Palik data sets.

As there are experimental results, the asymptote at ωSP = ωp/
√
1 + εd (defined

by the wavelength where ε
′

m = −εd) does not go to infinity. Note here that ωp

is not well defined with its asymptote, an uncertainty still exists. For frequencies

below this asymptote, the typical bound SP mode is observed (as in Fig. 2.2b).

Above the asymptote at ωR, there is the radiative plasmon polariton (RPP) mode.

Between these two asymptotes, we have the plasmon bandgap where the plasmon

wave vector is purely imaginary and the modes in this regime (called quasibound
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modes) are forbidden [86]. The agreement between the two curves from JC and

Palik data sets is satisfactory. We also chose to use the Palik data on silver in all

computations unless otherwise specified.

2.3 Metallic film in non-symmetric medium

In this section, we will describe the properties of the surface plasmons supported

by a metallic film in a non-symmetric medium. It is the most commonly used

configuration to excite and exploit SPs. To begin, the optical methods used to

excite them shall be detailed. Afterwards, two well known figures of merit of the

surface plasmons will be presented: the characterized dip of reflectivity on the

metallic surface for a specific angle of incidence; and the map of the magnetic field

corresponding to the surface plasmon (in the transmitted medium).

2.3.1 Optical coupling of SPs

As we saw in the first section, SP modes are non-radiative modes. To couple

these modes with light waves, special devices must to be employed [87]. Indeed,

the coupling can be achieved using a coupling medium, such as a grating or a

prism, to match the photon and surface plasmon wave vectors. A grating coupler

matches the wave vectors by increasing the parallel wave vector component by

an amount related to the grating period. A prism can be positioned very close

to a metal surface in the Otto configuration or against a thin metallic film in

the Kretschmann configuration. We will give more precisions for both of these

methods.

Metallic gratings

Metallic gratings can be used to satisfy the energy and momentum matching con-

ditions of the wave vectors. We consider an incident wave vector ki = k0
√
εi with

kx
i its in-plane component and θi the incident angle of this wave. We recall that

to excite a plasmon, we have to satisfy the condition:

kx
i = kSP (ω). (2.19)
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Figure 2.8: A metallic grating constituted by a periodic structure with a period Λ.

However, kx
i = ω/c sin θi < ω/c and ω/c <| kSP (ω) |. A possibility for obtaining

the equality 2.19 is to use the grating coupling [5].

A grating is a periodically corrugated surface modulation. It can be character-

ized by its periodicity or grating constant Λ. The periodic corrugation breaks the

translational invariance of the metal surface. An incident plane wave can interact

with the grating grooves, acting as an array of scattering centres. The total field

can be generated from the constructive interference of the individual scattered

waves, resulting in different diffraction orders. We consider a grating constituted

by a periodic structure with a period Λ (Fig. 2.8). The wave vectors are equal

modulo 2π/Λ (as a consequence of the Bloch theorem) and we can write:

k0 sin θd = k0 sin θi + p
2π

Λ
, (2.20)

where k0 = ω/c and p is a relative integer and represents the order of diffraction.

It is always possible to find an order p where:

kSP (ω) = kx
i + p

2π

Λ
. (2.21)

It becomes possible to excite a SP with an incident electromagnetic plane wave.

In this configuration, we have a total absorption: for a given frequency ω, we can

find an incident angle θi which respects the condition 2.21 and the corresponding

wave vector kx
i = ω/c sin θi can match with kSP . It is this method that was

used in the first - accidental - observation of the SPs, and that is reported in [2] as

Wood’s anomalies. Indeed, in 1902, R. W. Wood observed sudden variations of the

intensity in the light beam spectrum, reflected by a diffraction grating in the TM
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polarization. The intensity of the incident beam being continuous, the spectrum

had to be continuous too. These variations are due to the coupling between the

propagating incident waves and the SP waves. Following this, gratings have been

much studied by A. Hessel and A. A. Oliner [88], and more precisions are given by

R. Petit [89] and H. Raether [5].

It is also possible to excite the SP mode with a high refractive index prism, as

we are going to present.

Otto configuration

Two configurations are possible to excite SPs optically by employing a high re-

fractive index prism. In the Otto configuration [5] (Fig. 2.9a), an incident beam

is reflected on the base of a prism of high refractive index material (εd > 1). Near

to the base, there is a gap of low refractive index material (we take εa = 1), with a

thickness on the order of the incident beam wavelength [5, 90]. On the other side

of the gap, there is a metallic film (εm). The ATR takes place when the incident

angle θi is equal to, or larger than, the critical angle and creates an evanescent

field. In the prism with a permittivity εd (we take glass, εd = 2.25), the in-plane

component of the incident wave vector is kx
i =

√
εd sin θi. It can be higher than k0

because εd > εa. In these conditions, the incident wave can excite the SP modes

on the air/metal interface. We plot the reflectivity as a function of the incident

angle θi (Fig. 2.9b), and the coupling condition appears as a minimum of the

reflectivity for θi = 43.7◦. This dip of the reflectivity represents the excitation on

the SP mode.

This excitation is very sensitive to changes in the gap between the dielectric

prism and the metallic film, which explains why the method is rather unused today.

Kretschmann configuration

The Kretschmann configuration [5] is the most commonly used method to couple

light to surface plasmons because of its relative simplicity and robustness. As

illustrated in Fig. 2.10a, an incident beam is reflected on the base of a high

refractive index prism (εd > 1). A thin metallic film is located on the prism base.

The thickness of the metal layer needs to be precisely controlled in order to obtain

the most efficient coupling. Again, there is an ATR when the incident angle θi is
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Figure 2.9: (a) Prism coupling in the Otto configuration with the permittivities εd = 2.25
(glass), εa = 1 (air) and εm (metal), taken from the Palik data [81] for silver. (b) The reflectivity
is plotted as a function of the incident angle θi, with a wavelength λ = 632.8 nm. The minimum
of reflectivity occurs for an angle θi = 43.7◦, and corresponds to the excitation of the SP when
the thickness of the spacer is on the order of the incident wavelength.

equal to, or larger than, the critical angle and creates an evanescent field.

The in-plane component of the incident wave vector kx
i can be higher than k0.

In Fig. 2.10b, reflectivity is plotted as a function of the incident angle θi. Three

cases are distinguished. The first extreme case, when there is no metallic film

(in red), represent the total internal reflection of the field between the media with

εd = 2.25 and εa = 1. The second case (in blue) corresponds to the situation where

the metallic film is too thick (as a metallic bulk). The layer becomes opaque to the

electromagnetic field and the system is like a mirror. The corresponding reflection

is still high, but lower than 1 because of the metal absorption. Finally, when the

metallic film thickness is em = 45 nm for λ = 632.8 nm, the coupling of the SP

mode occurs for an angle θi = 43.7◦C.

The choice of the metallic film thickness occurs from the plot of the minimum

reflectivity obtained as a function of the metallic thickness em (Fig. 2.12). The

minimum occurs for em = 45 nm.

So, it is possible to match the propagating wave vector kx
i with the wave vec-

tor kSP corresponding to the interface metal/air (Fig. 2.11). The propagating

electromagnetic wave in the dielectric is also able to excite SP modes which prop-

agate in the air. An important point here is that a metallic film supports two

plasmons. In the present case, there is a plasmon at the metal/air interface and
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Figure 2.10: (a) Prism coupling in the Kretschmann configuration with the permittivities
εd = 2.25 (glass), εa = 1 (air) and εm (metal), taken from the Palik data [81] for silver. (b)
Reflectivity plotted as a function of the incident angle θi with a wavelength λ = 632.8 nm. The
minimum of reflectivity occurs for an angle θi = 43.7◦ and corresponds to the excitation of the
SP when em = 45 nm. The red curve represents the case where there is no metallic film, the
incident beam is reflected on the base of the prism towards the air. Because εd > εa, that is the
classical case of total internal reflection. The blue curve represents the case where the metallic
film is as a metal bulk. The system becomes like a mirror and it is impossible to excite the SP
mode.
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Figure 2.11: For light wave in vacuum, ω = k0c, when in dielectric medium (εd > 1), ω =
k0
√
εdc = kxi c. The in-plane component of the incident wave vector can be higher than k0. There

is a frequency for which kxi = kSP and the coupling between light wave and the SP mode, which
exists at the interface metal/air becomes possible.
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Figure 2.12: The reflectivity plotted as a function of the metallic thickness em at a wavelength
λ = 632.8 nm for the structure of Fig. 2.10a. The minimum occurs for a thickness em = 45 nm.

another one at the dielectric/metal interface. This method of excitation allows the

excitation of the plasmon at the metal/air interface, the other having again a too

high propagation constant.

2.3.2 ATR configuration

The classical ATR configuration also corresponds to the Kretschmann configura-

tion. We consider a metallic film, with a thickness em and a permittivity εm,

embedded between two dielectric media with the permittivities εd and εa (Fig.

2.13). This film supports two SPs, one on the d/m interface and another on the

m/a interface.

The more immediate way to determine the solutions is to consider the can-

cellation of the denominator of the coefficient of reflection r. We recall that the

dispersion relation is given by α2 + β2
j = k2

0εj, j = d,m. We consider the TM-

polarization and the time dependence exp(−iωt). The magnetic field can be writ-

ten as H(x, y) = [a1e
−βdy + b1e

βdy]eiαx. By definition, the coefficient of reflection r

is defined by r = b1/a1. It can also be written as:

r =
rdm + rmae

2βmem

1 + rdmrmae2βmem
, (2.22)
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Figure 2.13: Silver film with a thickness em and a permittivity εm embedded between two
dielectric media with the permittivities εd and εa. For computations, εd = 2.25, εa = 1, εm is
taken from the Palik data [81], em = 45 nm and the incident wavelength is λ = 632.8 nm.

where:

rdm =

βd

εd
− βm

εm
βd

εd
+ βm

εm

and rma =

βm

εm
− βa

εa
βm

εm
+ βa

εa

. (2.23)

A mode in this structure is defined by the existence of an outgoing field in

absence of excitation. That means b1 6= 0, a1 = 0 and corresponds to the equation

1 + rdmrmae
2βmem = 0 :

(

βd

εd
+

βm

εm

)(

βm

εm
+

βa

εa

)

+

(

βd

εd
− βm

εm

)(

βm

εm
− βa

εa

)

e2βmem = 0. (2.24)

In the case of a thick metallic film, the term of propagation becomes negligible,

| exp(2βmem) | << 1 and Eq. 2.24 is simplified:

(

βd

εd
+

βm

εm

)(

βm

εm
+

βa

εa

)

= 0. (2.25)

Eq. 2.25 admits two solutions which correspond to SPs propagating without

coupling along the d/m and m/a interfaces as the solution given by Eq. 2.9.

We consider now the case of a thin metallic film which corresponds to the

Kretschmann configuration (section 2.3.1). In this case, εd > εa, and the metallic

thickness is em = 45 nm for an incident beam with a wavelength λ = 632.8 nm

(Fig 2.13). The modes propagating along each interface have different velocity and
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Figure 2.14: (a) Map of the magnetic field in the structure corresponding to the Kretschmann
configuration (Fig. 2.13) with εd = 2.25, εa = 1 and εm is taken from the Palik data [81] for
silver. (b) Precise map of the transmitted magnetic field: the SP mode is excited and we can
see its propagation length, as well as the exponential decay of the field in the air.

decay rates. An incident beam in the dielectric, with the angle θi = 43.7◦, allows

the excitation of the surface plasmon in the air (Fig. 2.14a).

In Fig. 2.14b, the SP mode is very visible with its propagation length and the

exponential decay of the field in the air. From Eq. 2.3, the propagation length

is δSP ≃ 21µm, and the corresponding propagation length from the map of the

magnetic field is δSP ≃ 14µm (see Fig. 2.14b). The calculated penetration depth

(Eqs. 2.5a and 2.5b) are δair = 388 nm and δm = 24.5 nm, which are in agreement

with the magnetic field map.

2.4 Metallic film in symmetric media

In this section, we will consider the case of a metallic film in a symmetric medium.

For thin metallic film, the properties of the two coupled SP modes supported by

the structure are presented. The involvement of the long range SP (LRSP ) is

explained through a review about it and the comparison between the length scales

of this mode and the classical SP mode is made.
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2.4.1 The dispersion relations

One way to extend the length scale of SP modes is to make use of the coupled

SP modes supported by symmetrically thin metallic films [36]. When the metal

is thin enough, the SP modes associated to the two metal surfaces may interact

and form two coupled SP modes.

For a metallic film in a symmetric medium, εd = εa and Eq. 2.24 is simplified

as:
(

βm

εm
+

βd

εd

)

±
(

βm

εm
− βd

εd

)

eβmem = 0. (2.26)

There are two solutions for guiding modes by the metallic film depending on

the sign ”± ” in Eq. 2.26. These solutions correspond to the dispersion relations:

ω+: βdεm + βmεd tanh

(

βmem
2

)

= 0, (2.27)

ω−: βdεm + βmεd coth

(

βmem
2

)

= 0. (2.28)

In a symmetric medium, the SP frequency is the same on both sides of the

metallic film, so that in the case of a thin film (below 50 nm [91]) the electromag-

netic fields of both surfaces interact and the frequency splits into a low-frequency

ω− and a high frequency ω+. The splitting is associated with asymmetric (ω−)

and symmetric (ω+) electric field Ey distributions, as compared to the symmetry

of the structure. For ω−, the electric field is not cancelled in the metal, which

increases absorption due to the losses in the metal. It attenuates rapidly during

the propagation (Fig. 2.15a). This asymmetric mode is also called the short range

surface plasmon polariton (SRSP ). For ω+, the electric field is cancelled in the

metal, and the mode has a long propagation length as compared to the SP mode

supported by a bulk metallic surface. Indeed, the electric field of these modes has

a bigger depth penetration in the dielectric, and the losses by absorption in the

metal decrease (Fig. 2.15b). This symmetric surface plasmon mode is called a

long range surface plasmon polariton (LRSP ).

There is a compromise between the propagation length and the penetration

depth in a symmetric structure. It is possible to obtain high propagation length in

comparison to the case of the single interface but at the expense of the penetration

depth. The LRSP mode that propagates very far will not still remain, a surface
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Figure 2.15: (a) Symmetric electric field Ey corresponding to the LRSP . (b) Asymmetric
electric field Ey corresponding to the SRSP .

mode if the the metallic film becomes too thin.

Fig. 2.16a represents the dispersion curves ω+ and ω− of the LRSP and

the SRSP modes, respectively. These dispersion curves are obtained with the

tetrachotomy method (see Chapter 1) for which the real part of the poles is noted

α and corresponds to the propagation constant of the modes. Solutions for Eq.

2.26 are found for a silver film embedded in air. Palik data for silver is used for

the metal. In the same conditions, the reflectivity is plotted as a function of the

incident angle θi (Fig. 2.16b). The half-width of the mode ω+ is smaller than the

half-width of the mode ω−. Thus, the absorption of the LRSP mode is smaller

than that of the SRSP mode.

2.4.2 Review on LRSPs

In a symmetric structure, the most interesting surface mode supported by a metal-

lic film in a symmetric media is the LRSP mode because of its low absorption in

comparison to the SRSP mode.

The first theoretical study on the existence of the LRSPs was done in the 1960s

[92]. This prediction was then confirmed by electron-loss spectroscopy in the same

decade. It was noticed that the damping of the ω+ mode slightly decreased with

a smaller thickness of the metallic film [93, 94, 95, 96, 97, 98, 34, 35]. We justify

further on our choice of metallic thickness. In the 1980s, Sarid [37] confirmed and
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Figure 2.16: (a) Dispersion curves ω+ and ω− of the LRSP and the SRSP modes, respectively.
εd = 1 is the permittivity of vacuum and the permittivity of the metal εm is taken from the
experimental data of Palik [81]. The metallic thickness is em = 30 nm. (b) In the same conditions,
the reflectivity is plotted as a function of the incident angle θi. The half-width of the mode ω+ is
smaller than the half-width of the mode ω−. Thus, the absorption of the LRSP mode is smaller
than that of the SRSP mode.

established the main characteristics of LRSPs as a measure of the propagation

length of these modes, twenty-seven higher than the propagation length of a surface

plasmon at the surface of a bulk metal [99, 100].

These plasmonic guides, despite the good propagation length (it can be mea-

sured in centimetres), are not interesting for optic guiding [101, 102, 103]. Indeed,

the confinement is only in one dimension (perpendicular to the interfaces), which is

a limitation for integrating these guides into electronic components. A possibility

for using it would be to reduce the width of the metallic films [36].

Up until 2009, a large bibliography on LRSPs was produced by P. Berini

[36]. In the study of LRSPs, many methods have been employed, either based

on Fresnel’s coefficients [5], on Maxwell’s equations with appropriate boundary

conditions [91] or on the method of lines [104, 105]. The method we used to find

the dispersion curves as in Fig. 2.16a, and to determine characteristic properties of

our structures consists in finding the poles of the scattering matrix. This method

is described in Chapter 1 as the tetrachotomy method.

The large range of recent applications [38, 106, 107, 108, 39, 40], such as in

photonic crystals, stratified media, quantum systems or with anisotropy, appeal to

us with respect to finding a way to excite LRSP without the short mode, and are
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δSP = 1/2Im(kSP ) Map of the magnetic field Tetrachotomy algorithm
SPATR 21µm 14µm 25µm

LRSPem1=30nm 262µm
LRSPem2=20nm 8.2mm

Table 2.1: Compared propagation lengths between a SP mode in the ATR configuration and the LRSP for
two thicknesses em1 = 30 nm and em2 = 20 nm. The results tabulated here are obtained from the theoretical
expression of the propagation length, the map of the magnetic field and the tetrachotomy algorithm. The
order of size is correct.

experimentally feasible.

We theoretically demonstrate the equivalence between a metallic film embedded

into a symmetric medium of thickness em, and a metallic film of thickness em/2

deposited on a perfect electric conductor substrate (PECS). The interesting point

of this device is that it only supports a LRSP and is less complicated to realize

experimentally.

2.4.3 Comparison of the length scales

Table 2.1 shows the compared propagation lengths for a SP in the ATR configu-

ration and a LRSP with two metallic thicknesses em1 = 30 nm and em2 = 20 nm.

The SPATR results are determined with λ = 632.8 nm, em = 45 nm, εd = 2.25 and

εa = 1 (Fig. 2.13). The propagation length from the magnetic field map is slightly

smaller than the calculated one, which in turn is shorter than the one from the

tetrachotomy algorithm. The order of size is correct and the agreement is correct

[79].

The propagation lengths for the LRSP mode are determined with the tetra-

chotomy algorithm. They are truly higher than in the case of a single SP mode.

It is for this reason that the study of this mode is interesting for many different

applications.

2.5 Theoretical LRSP on PECS

In this section, we demonstrate the equivalence between a LRSP mode in a sym-

metric structure and the guided mode which exists on a metallic layer deposited

on a perfect electric conductor (PEC) substrate [109]. First, we consider the image
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charge theory and adapt it to our configuration. Then, we present the theoretical

equivalence with the compared dispersion relations of the classical LRSP and the

guided mode excited on a metallic film deposited on a PEC substrate. In perspec-

tive, we present that it would be possible to realize this device experimentally in

the terahertz (THz) frequency range.

2.5.1 Reviewed image charge theory

The image charge theory is a problem of boundary conditions [110]. We consider

a charge +q localized at a distance y = d from a perfect electric conducting plane

(Fig. 2.17a). The boundary conditions imply that the tangential components of

the electric field have vanished on the surface of the PEC. The classical illustra-

tion of this theory uses the electrostatic dipole, where a charge −q is localized

symmetrically on the other side of the plane, at a distance y = −d. The field

lines observed in the half-space containing the charge +q correspond to the field

lines of an electrical dipole, with a dipolar moment 2dq. Fig. 2.17b illustrates the

equivalent system.

That is the image charge theory that implies the equivalence between the two

configuration. In practice, the charge +q attracts the free electrons, and a density

of non-uniform surface negative charge is induced at the surface of the PEC [111].

The normal component of the field, created by the positive charge at a point P ,

located on the PEC plane at a distance r from the origin (see Fig. 2.17a), can be

written as:
~Enq+

(P ) = ~Enq+
(r) = − 1

4πε0

dq

(d2 + r2)3/2
~ez. (2.29)

The field created by the negative charge at the point P , which cancels the

tangential components on the surface of the PEC, is given by:

~Enq−
(P ) = ~Enq−

(r) = − 1

4πε0

dq

(d2 + r2)3/2
~ez. (2.30)

The surface charge density at P is also:

σS(P ) = σS(r) = ε0E(r) = ε0(Enq+
(r) + Enq−

(r)) = − 1

4π

2dq

(d2 + r2)3/2
. (2.31)

The integration of the last expression for the charge on the surface is equal to
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(a) (b)

Figure 2.17: (a) Field lines created by an electric charge +q near a PEC substrate. (b) Field
lines created by on electric dipole with a dipolar moment 2dq.

−q. Indeed, the conducting plane is an asymmetric plane for charges. A fictitious

charge on the other side of the plane is created at a same distance from the surface,

d. This result can be generalized to an object with an assembly of charges +q. If

that distribution of charges is placed at a distance y = d/2 from the conducting

plane, an equal and opposite distribution of charges exists at y = −d/2. With

these fictitious charges, the system becomes equivalent to a dipole with a dipolar

moment dq.

This theory can be extend to our configuration. In this case, a symmetric

metallic film with a thickness em has the same properties as a metallic film of

thickness em/2 deposited on a PEC substrate.

From an experimental point of view, it is difficult to deposit homogeneous

metallic film of less than 15 nm thickness since metals form nanoscale islands

in the initial deposition process [112]. That is why we will consider a metallic

layer of thickness em = 30 nm in the symmetric structure to obtain the limit case

where the metallic layer of thickness em/2 = 15 nm will be deposited on a PEC

substrate. However, recent studies show new possibilities for depositing thinner

metallic layers [113] but the foremost goal is to demonstrate the equivalence by

using common devices.
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Figure 2.18: (a) A metallic film embedded in a symmetric medium with a thickness em and
(b) a metallic layer with a thickness em/2 deposited on a PEC substrate.

2.5.2 Equivalence of the structures

We recall that the dispersion relation corresponding to the LRSP with a metallic

thickness em is (Fig. 2.18a):

ω+: βdεm + βmεd tanh

(

βmem
2

)

= 0. (2.32)

The dispersion relation corresponding to the case of a metallic film deposited

on a PEC substrate can be deduced from the expression of the field in the different

layers (in TM polarization with the time dependence e−iωt):

{

y ≥ d/2: Hd(x, y) = a2e
iαxeβ

′

d
y,

0 ≤ y ≤ d/2: Hm(x, y) = eiαx(a1e
β
′

my + b1e
−β

′

my),
(2.33)

and the magnetic field in the PEC (y < 0) is zero. We recall that β
′

d > 0.

Let’s consider the boundary conditions in the TM polarization. First, for y = 0,
1
εm

∂yHm = 0:

a1 = b1. (2.34)

And the magnetic fields become:

{

Hd(x, y) = a2e
iαxeβ

′

d
y,

Hm(x, y) = 2a1e
iαxch(β

′

my).
(2.35)
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Figure 2.19: The dispersion curve obtained in Fig. 2.16a in black points with a thickness
em = 30 nm and in red points, the dispersion curve corresponding to a metallic layer deposited
on the PEC substrate with a metallic thickness em/2 = 15 nm.

Then, for y = d/2, Hm = Hd and 1
εm

∂yHm = 1
εd
∂yHd:

{

−2a1
β
′

m

εm
sh(β

′

md/2) = a2
β
′

d

εd
eβ

′

d
d/2,

2a1ch(β
′

md/2) = a2e
β
′

d
d/2.

(2.36)

Thus, the dispersion relation is:

β
′

m

εm
tanh(

β
′

md

2
) +

β
′

d

εd
= 0. (2.37)

Eqs. 2.32 and 2.37 are equivalent for β
′

j = βj, j = d,m.

Fig. 2.19 illustrates the comparison between the corresponding dispersion

curves. This shows the equivalence between the dispersion relation ω+ of a LRSP

(upper black-squares curve), supported by a metallic layer embedded in a symmet-

ric medium, and the dispersion relation of the SP mode supported by a metallic

layer deposited on PECS (red-squares curve).

The advantage is that it is simpler to deposit a metallic layer on a plane than

to have a perfect symmetric medium around a metallic film, especially a medium

as such air. Indeed, with this configuration, it is possible to directly excite the

LRSP in air. This permits to extend its use to the enhancement of the decay rate

of molecules, for example.

The difficulty comes from the lack of availability of a PEC in the visible range.
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In theory, it is possible to use supraconductors2, but an immediate solution is to

consider the THz frequency range. Indeed, in this range, a doped-semiconductor

(DSC) can have the behavior of a metal in the visible range and support a SP

mode [114, 115, 116]. Metal also has the behavior of a PEC (a very high negative

real value of permittivity) [116, 109]. This study will be the subject of a future

publication.

2At wavelength range shorter than their gap.
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Chapter 3

Coupling Dielectric Waveguides

Overview Dielectric waveguides provide simple models for the confin-

ing mechanism of waves propagating in optical devices. The coupling of

waveguides has been intensively studied, in particular with the coupled-

mode theory [49, 50, 51, 52, 53]. After a recall concerning the dielectric

slab waveguides, we present the coupled-mode theory. This theory can

be derived from the variational principle for the frequencies of the sys-

tem. When a trial solution is introduced to the electric field in a lossless

electromagnetic system such as the linear superposition of modes, the

coupled-mode theory gives the result. This theory is also presented in

TM polarization, an unpublished result in the state-of-the-art. The last

section relates to the case of two optical waveguides which respect the

parity time (PT) symmetry. This symmetry has been demonstrated in

quantum mechanics by C. M. Bender [54] but it can also be applied to

optical devices. A numerical application is also presented.

3.1 Symmetric dielectric waveguides

A symmetric dielectric waveguide is a slab of dielectric material surrounded by

media of lower refractive indices. The light is guided inside the slab by total

internal reflection. The inner medium and outer media may be the ”core” and the

”cladding” of the waveguide, respectively. Rather than the metallic waveguides,

the waves propagate along the structure without being totally confined. This is

57
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Figure 3.1: A symmetric dielectric waveguide structure. The wave is propagating along the
+z direction.

the basic idea underlying dielectric waveguide structures [117, 118, 119].

The waveguides have different forms such as planar waveguides, optical fibers

or channel waveguides, for example. In this section, we study the propagation of

light in a symmetric planar dielectric waveguide made of a slab of width d and

refractive index n1, surrounded by a cladding of smaller refractive index n2, as

illustrated in Fig. 3.1. All materials are assumed to be lossless.

The propagating fields are confined and guided primarily inside the slab. Only

a certain reflection angle θ will constructively interfere in the waveguide and hence

only certain waves can exist in the waveguide. Evanescent waves outside it also

exist, decaying exponentially with distance from the slab. Fig. 3.2 shows a typical

electric field pattern as a function of x.

3.1.1 Expression of the modes

To determine the waveguide modes, a formal approach may be pursued by de-

veloping solutions to Maxwell’s equations in the inner and outer media with the

appropriate boundary conditions. We will consider the transverse magnetic (TM)

polarization. Time harmonic modes, with the magnetic field linearly polarized

along a direction transverse to the direction of propagation z, are also considered.

We denote the magnetic field as H = H(x, z)ey and the time dependence is e−iωt.

We note H(x, z) = eikzzHx(x) and the field Hx(x) satisfied the following equations:
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x < −d/2:
∂2Hx

∂x2
+ (k2

2 − k2
z)Hx = 0,

−d/2 < x < d/2:
∂2Hx

∂x2
+ (k2

1 − k2
z)Hx = 0,

x > d/2:
∂2Hx

∂x2
+ (k2

2 − k2
z)Hx = 0,

(3.1)

where k2
1,2 = k2

0ε1,2 is the wave vector in the media 1 and 2. We have the dispersion

relation k2
x,j+k2

z = k2
0εj (j = 1, 2)) and kx,j takes different values inside and outside

the guide.

For waves that remain confined in the near vicinity of the slab, the quantity

kx,2 must be imaginary (if it is real, the field would propagate at large x distances

from the slab). We can note kx,2 = −ikc and the solutions outside the core take

the form e±kcx. If kc is positive, the physically acceptable solutions are e−kcx for

x > d/2 and e+kcx for x < −d/2. The interesting modes are oscillatory modes

inside the core and exponentially decaying modes outside, and the corresponding

expression of the field is:

Hx =

∣

∣

∣

∣

∣

∣

∣

Ae+kcx for x ≤ −d/2,

Be+ikxx + Ce−ikxx for − d/2 ≤ x ≤ d/2,

De−kcx for x ≥ d/2,

(3.2)

where kc =
√

k2
z − k2

2, kx =
√

k2
1 − k2

z and k1,2 = k0
√
ε1,2.

It is possible to identify two types of solutions, the even modes (where the

magnetic field is symmetric at x = 0) and the odd modes (where the magnetic

field is antisymmetric at x = 0). The even modes can be written as:

Hx =

∣

∣

∣

∣

∣

∣

∣

Ae+kc(x+d/2) for x ≤ −d/2,

B cos(kxx) for − d/2 ≤ x ≤ d/2,

Ae−kc(x−d/2) for x ≥ d/2.

(3.3)

And the odd modes can be written as:

Hx =

∣

∣

∣

∣

∣

∣

∣

−Ae+kc(x+d/2) for x ≤ −d/2,

B sin(kxx) for − d/2 ≤ x ≤ d/2,

Ae−kc(x−d/2) for x ≥ d/2.

(3.4)
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Figure 3.2: A symmetric dielectric waveguide structure. The wave is propagating along the
+z direction.

3.1.2 Graphical solutions

At x = ±d/2, Hx and 1
εj
∂yHx must be conserved in the TM polarization:

Hx,1(±d/2) = Hx,2(±d/2) ⇔
∣

∣

∣

∣

∣

A = B cos(kxd/2) for even modes.

A = B sin(kxd/2) for odd modes.
(3.5)

1

ε1
∂xHx,1(x = ±d/2) =

1

ε2
∂xHx,2(x = ±d/2)

⇔
∣

∣

∣

∣

∣

Akc = Bkx sin(kxd/2) for even modes.

−Akc = Bkx cos(kxd/2) for odd modes.

(3.6)

The Eq. 3.5 and 3.6 allow to find the following transcendental equations:

kcd

2
=

ε2
ε1

kxd

2
tan

(

kxd

2

)

, (3.7)

−kcd

2
=

ε2
ε1

kxd

2
cot

(

kxd

2

)

, (3.8)

for the even and the odd modes, respectively. The solutions of these equations can
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Figure 3.3: Graphical solutions for the guidance conditions. The solutions of the transcendental
equations 3.7 and 3.8 are the intersections of the circles with the tangent (for even modes, in
solid black curves) and the cotangent (for odd modes, in dashed black curves), respectively.

be found by considering their definitions kc =
√

k2
z − k2

2 and kx =
√

k2
1 − k2

z :

(

kcd

2

)2

+

(

kxd

2

)2

=
(k2

z − k2
2)d

2

4
+

(k2
1 − k2

z)d
2

4

=
(k2

1 − k2
2)d

2

4

=
ω2(µ1ε1 − µ2ε2)d

2

4
=

ω2µ0ε0(n
2
1 − n2

2)d
2

4

= (n2
1 − n2

2)

(

k0d

2

)2

= R2,

(3.9)

where k0 = ω
√
µ0ε0 is the propagation constant in vacuum. This last relation

describes a circle of radius R in the plane defined by (kc, kx). The solutions of the

transcendental equations will be the intersections of this circle and the tangent

(Eq. 3.7) and cotangent (Eq. 3.8) for each parity as illustrated in Fig. 3.3.

To determine the number of TM modes supported by the dielectric waveguide,

we examine the graphical solutions (Fig. 3.3). R is the ratio of the thickness of

the core on the wavelength in vacuum. Depending on its values, only a limited

number of modes can exist. The number of modes increases with the thickness d

of the core of the waveguide.

A mode is only allowed when the intersection is on the abscissae, i.e. for



62 CHAPTER 3. COUPLING DIELECTRIC WAVEGUIDES

k
z

ω

Radiation modes region

Forbidden modes region

Guided modes region

k
z
 = ω n

2
 / c

k
z
 = ω n

1
 / c

Figure 3.4: Forbidden modes, radiation modes and guided modes regions in the (kz, ω) plane.

kxd/2 = mπ/2. It exists only for structures with a thickness:

mπ

2
6=
√

n2
1 − n2

2

πd

λ0

. (3.10)

So,
d

λ0

≥ m

2
√

n2
1 − n2

2

. (3.11)

For a given thickness, a cut-off exists of each mode, except for the fundamental

one, noted TM0. It is the only possible mode when:

d

λ0

6= 1

2
√

n2
1 − n2

2

. (3.12)

The waveguide is then a single mode waveguide. This occurs when the slab is

sufficiently thin or the wavelength is sufficiently long. Unlike the mirror waveguide,

the dielectric waveguide has no absolute cut-off wavelength (or cut-off frequency).

In a dielectric waveguide, there is at least one TM mode, the fundamental mode.

3.1.3 Low and high frequency limits

As illustrated in Fig. 3.4, the guided modes are confined to the region between

the two dispersion light curves of both media.

At low frequency limit (Fig. 3.5a), we have (πd/λ0)
√

n2
1 − n2

2 = mπ/2 at the
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Figure 3.5: The profile of the guided mode in the low (a) and high (b) frequency limits.

cut-off, as we can see with the graphical solutions. Therefore, the propagation

constant of the guided mode kz is near the light line corresponding to the cladding

(n2) outside the waveguide. That means the waveguide mode does not really decay

outside the guide. Almost all of the mode power propagates outside the guide and

the velocity of this mode is equal to the speed of light outside the guide.

At high frequency limit (Fig. 3.5b), R → ∞ and the graphical solutions show

that the propagation constant kz approaches the light line corresponding to the

core (n1). In this case, the mode decays rapidly outside the guide. Most of the

mode power is guided inside it.

3.2 Coupled dielectric waveguides

In this section, we discuss how light can be coupled between two parallel dielec-

tric waveguides. More precisely, we present the coupled-mode theory for wave

propagation modes in these parallel waveguides [51, 49, 50, 120].

This theory can be derived from the variational principle for the frequencies of

the system [121]. When a trial solution is introduced into the electric field in a

lossless electromagnetic system as the linear superposition of modes, the coupled-

mode theory gives the result.
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Figure 3.6: Two coupled oscillators with the amplitudes a1(t) and a2(t).

3.2.1 Coupling of modes in time

We consider lossless coupling of two modes in time as optical resonators [52, 53].

An analogy of this coupling between the two propagation modes in dielectric waveg-

uides is coupled oscillators (Fig. 3.6). With a time dependence eiωt, the system

consists on two differential equations for the amplitudes:

da1
dt

= iω1a1, (3.13)

da2
dt

= iω2a2. (3.14)

With the coupling coefficients between the two resonators, we can write:











da1
dt

= iω1a1 + iκ12a2,

da2
dt

= iω2a2 + iκ21a1.
(3.15)

This assumes that the coupling is weak; thus the coupling coefficients | κ12 |<<

ω1 and | κ21 |<< ω2. An assumption made in the conventional coupled-mode

theory is that the modes of the uncoupled systems are orthogonal to each other.

Therefore, energy conservation imposes that the eigenfrequencies are real and the
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total energy in the two resonators stays constant [122, 123, 124]:

d

dt
(| a1 |2 + | a2 |2) = a1a

∗
2i(κ21 − κ∗

12) + a∗1a2i(κ12 − κ∗
21) = 0. (3.16)

Since a1 and a2 are arbitrarily defined, Eq. 3.16 can only be satisfied for:

κ12 = κ∗
21 = κ. (3.17)

To find the eigenstate solution of the coupled resonator, we assume that the

form of the solution is ap(t) = Ape
iωt with p = 1, 2 and ω is the sought frequency

of the entire coupled system. Substituting these solutions, in Eqs. 3.15, we obtain

a linear system of equations for which the determinant should vanish to obtain

non trivial solutions, for A1,2. The solutions are also:

ω± =
ω1 + ω2

2
±

√

(

ω1 − ω2

2

)2

+ | κ |2. (3.18)

We denote from now:

Φ =
ω1 + ω2

2
, Ω =

√

∆2+ | κ |2 and ∆ =
ω1 − ω2

2
.

Thus, the general solution for a1(t) and a2(t) can be written as:

(

a1(t)

a2(t)

)

= C1

(

κ

∆+Ω

)

eiω+t + C2

(

κ

∆− Ω

)

eiω−t. (3.19)

The solution consists of the beating between two new modes with the frequen-

cies ω+ and ω−. We denote a1(t = 0) = a10 and a2(t = 0) = a20. At the time

t = 0, a10 = (C1 + C2)κ and a20 = C1(∆ + Ω) + C2(∆ − Ω). Eq. 3.19 can be

written as:

(

a1(t)

a2(t)

)

= eiΦt







cosΩt− i
∆

Ω
sinΩt i

κ12

Ω
sinΩt

i
κ21

Ω
sinΩt cosΩt+ i

∆

Ω
sinΩt







(

a1(0)

a2(0)

)

.

(3.20)
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Figure 3.7: The frequency splitting in the case of asynchronous coupling, ω1 6= ω2.

We assume now that a2(0) = 0 and | a1 |2= 1. The solutions become:











a1(t) = a1(0)

(

cosΩt− i
∆

Ω
sinΩt

)

eiΦt,

a2(t) = a1(0)i
κ21

Ω
sinΩteiΦt.

(3.21)

Two cases can be distinguished as a function of the initial frequencies. If

ω1 6= ω2, we have an asynchronous coupling:

| a2(t) |2=| κ21

Ω
|2 sin2 Ωt, (3.22)

| a1(t) |2= 1− | a2(t) |2 . (3.23)

In this configuration, the energy is never completely transferred from resonator

1 to 2. The energies | a1(t) |2 and | a2(t) |2 are plotted in Fig. 3.8a. The energy

oscillates periodically between the two resonators with a period π/Ω. We can

define a ”beat” angular frequency ωB = ω+ − ω− = 2Ω which characterises the

energy exchange rate. Fig. 3.7 illustrates the fact that this frequency splitting is

larger than the frequency splitting before the coupling ω2 − ω1 = 2∆.
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Figure 3.8: Energies in the resonators 1 and 2, | a1(t) |2 and | a2(t) |2, as a function of time. (a)
For asynchronous coupling, ω1 6= ω2 where the energy transfer is incomplete. (b) For synchronous
coupling, ω1 = ω2 where the energy transfer is complete for the first time t = π/(2κ).

If ω1 = ω2, we have a synchronous coupling:

| a1(t) |2= cos2 κt, (3.24)

| a2(t) |2= sin2 κt. (3.25)

At the time t = (n + 1/2)π/κ (n is an integer), the energy is completely

transferred from resonator 1 to 2. The energies | a1(t) |2 and | a2(t) |2 are plotted

in Fig. 3.8b. The one beat period is π/κ and the beat angular frequency is

ωB = ω+ − ω− = 2κ, as shown in Fig 3.9. The initial degenerate frequency

(ω1 = ω2) splits into two resonant frequencies, ω+ and ω−. The energy splitting is

2 | κ |, twice the magnitude of the coupling coefficient.

3.2.2 Coupling optical waveguides

At present, the coupled-mode theory is especially useful to study the coupling of

identical optical waveguides [125, 51].
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Figure 3.9: The frequency splitting in the case of synchronous coupling, ω1 = ω2.
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Figure 3.10: Two dielectric parallel waveguides in a symmetric media.
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TE polarization

We consider two coupled parallel waveguides, 1 and 2, in the TE polarization (Fig.

3.10). Without coupling, the expressions of the electric and magnetic fields contain

the following amplitudes:

a1(z) = a01e
iβ1z, (3.26)

a2(z) = a02e
iβ2z. (3.27)

And these amplitudes are satisfactory for propagation in the +z direction in

the following system:
da1(z)

dz
= iβ1a1(z), (3.28)

da2(z)

dz
= iβ2a2(z). (3.29)

With the coupling between the two dielectric waveguides, the field of the system

can be written as a linear combination of the individual waveguide modes:

{

E(x, y, z) = a1(z)E1(x, y) + a2(z)E2(x, y),

H(x, y, z) = a1(z)H1(x, y) + a2(z)H2(x, y).
(3.30)

The amplitudes a1(z) and a2(z) satisfy the following coupled system:











da1(z)

dz
= iβ1a1(z) + iκ12a2(z),

da2(z)

dz
= iκ21a1(z) + iβ2a2(z),

(3.31)

with κ12 and κ21, the coupling coefficients.

The total guided power is:

P = 1
2
Re
∫ ∫

E×H∗(x, y) · zdxdy
= s1 | a1(z) |2 +s2 | a2(z) |2 +Re[a1(z)a

∗
2(z)C21 + a2(z)a

∗
1(z)C12],

(3.32)

with the cross overlap integrals:

Cpq =
1

2

∫ ∫ ∞

−∞

Eq(x, y)×H(p)∗(x, y) · dxdy. (3.33)
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s1, s2 = +1 for propagation in the +z direction, and −1 for propagation in the −z

direction.

We assume that the coupling is weak, so the cross overlap integrals C12 and

C21 are negligible. The total power becomes:

P = s1 | a1(z) |2 +s2 | a2(z) |2 . (3.34)

For a lossless system, the power conservation implies:

dP

dz
= 0 (3.35)

Using Eqs. 3.31, this condition can be written as:

κ12 = κ∗
21 if s1s2 > 0 (codirectional coupling), (3.36)

κ12 = −κ∗
21 if s1s2 < 0 (contradirectional coupling). (3.37)

Under matrix form, the coupled equations 3.31 become:

d

dz

(

a1

a2

)

= iM

(

a1

a2

)

⇔ d

dz

(

a1

a2

)

= i

(

β1 κ12

κ21 β2

)(

a1

a2

)

. (3.38)

The solutions take the form:

(

a1

a2

)

=

(

A1

A2

)

eiβz (3.39)

The two corresponding eigenvalues for β are:

β =
β1 + β2

2
±Ψ, (3.40)

with:

Ψ =
√

∆2 + κ12κ21, (3.41)

∆ =
β2 − β1

2
. (3.42)
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Figure 3.12: Anticrossing of the dispersion curves β+ and β− for codirectional coupling. The
splitting (β+ − β−) is 2κ.
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For codirectional coupling, κ21 = κ∗
12, Ψ is real for a lossless system. The

energy conservation implies that the eigenvalues for β are real and the form of the

two new modes is represented in Fig. 3.11. However, Fig. 3.12 illustrates in the

plane (β, ω) the corresponding dispersion curves for β1 and β2 in dashed curves,

in comparison to the dispersion curves of eigensolutions β+ and β− of the coupled

system, in solid curves. β1 and β2 intersect at a given value (β0, ω0) when the

eigenvalues β+ and β− split. Their dispersion curves do not intersect anymore,

Ψ =| κ12 |= κ and the splitting (β+ − β−) is 2κ.

The general solution for a1(z) and a2(z) can be written as:

(

a1(z)

a2(z)

)

= e
i
β1 + β2

2
z







cosΨz − i
∆

Ψ
sinΨz i

κ12

Ψ
sinΨz

i
κ21

Ψ
sinΨz cosΨz + i

∆

Ψ
sinΨz







(

a1(0)

a2(0)

)

.

(3.43)

We assume that a1(0) = 1, a2(0) = 0 and we find:

| a2(z) |2=| κ21

Ψ
|2 sin2 Ψz, (3.44)

| a1(z) |2= 1− | a2(z) |2 . (3.45)

The power transfer is complete for Ψz = (2n + 1)π/2, where n is an integer.

This is the synchronous coupling when β1 = β2 (Fig. 3.13b). We have Ψ =| κ12 |
and the solutions become:

{

a1(z) = cosκzeiβz,

a2(z) = i sinκzeiβz,
(3.46)

where κ = κ12 = κ21 and β = β1 = β2.

When β1 6= β2, we have an asynchronous coupling:

| κ12

Ψ
|2= | κ21 |2

[(β2 − β1)/2]2+ | κ21 |2
< 1. (3.47)

The power transfer is never complete in this case (Fig. 3.13a). We take initial
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Figure 3.13: Guided powers, | a1(z) |2 and | a2(z) |2, as a function of z. (a) For asynchronous
coupling, β1 6= β2 where the power transfer is incomplete. (b) For synchronous coupling, β1 = β2

where the power transfer can be complete.

values that allow a power transfer in comparison to the case of asynchronous

coupling in time (Fig. 3.8a); but whatever the initial conditions, if β1 6= β2, the

transfer cannot be complete.

TM polarization

The coupled-mode theory is always presented for TE polarization and for two

identical waveguides. In this section, we will present this theory in the case of the

TM polarization for the same structure (Fig. 3.10). Finally, we will discuss the

difficulty of applying this theory if the two modes are not identical.

As denoted in the previous section, the magnetic field is H = u(x, z)ey. The

permittivity for all the structure is ε. For the two modes taken separately, the

permittivities are ε1 and ε2, respectively. We present an advantageous form of

Maxwell’s equations that linearises the equations in TM polarization:

div(χ) = −k2
0,

∇u = εχ.
(3.48)

We recall that in this form, Maxwell’s equations in TE polarization would be

div(χ) = −k2
0εu and ∇u = χ.
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The mode for the first waveguide is written (u1, χ1) with:

u1(x, z) = υ1(x)e
iγ1z, χ1(x, z) = X1(x)e

iγ1z, (3.49)

and the mode for the second one is written (u2, χ2) with:

u2(x, z) = υ2(x)e
iγ2z, χ2(x, z) = X2(x)e

iγ2z. (3.50)

We have the relations:

{

div(χ1) = −k2
0u1, ∇u1 = ε1χ1,

div(χ2) = −k2
0u2, ∇u2 = ε2χ2.

(3.51)

The mode of the structure is sought with the ansatz:

(u, χ) = a1(z)(u1, χ1) + a2(z)(u2, χ2). (3.52)

Maxwell’s equations can be rewritten as:

{

a1div(χ1) + a2div(χ2) +∇a1 · χ1 +∇a2 · χ2 = −k2
0(a1u1 + a2u2),

a1∇u1 + a2∇u2 + u1∇a1 + u2∇a2 = ε(a1χ1 + a2χ2).
(3.53)

We simplify and project on z the coupled equations with δ1 = ε−ε1, δ2 = ε−ε2:

{

χ1z∂za1 + χ2z∂za2 = 0,

u1∂za1 + u2∂za2 = δ1χ1za1 + δ2χ2za2.
(3.54)

The Poynting vector is defined by Pz = Im(ūχz). To extract the Poynting

vector from the coupled equations, we begin by multiplying the first equation by

ū1 and the second one by χ̄1z:

{

ū1χ1z∂za1 + ū1χ2z∂za2 = 0,

χ̄1zu1∂za1 + χ̄1zu2∂za2 = δ1 | χ1z |2 a1 + δ2χ̄1zχ2za2.
(3.55)
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We subtract:

(ū1χ1z − χ̄1zu1)∂za1 + (ū1χ2z − χ̄1zu2)∂za2 = −δ1 | χ1z |2 a1 − δ2χ̄1zχ2za2,

⇔
2iP1z∂za1 + (ū1χ2z − χ̄1zu2)∂za2 = −δ1 | χ1z |2 a1 − δ2χ̄1zχ2za2.

(3.56)

Then, we multiply the first equation by ū2 and the second one by χ̄2z to obtain:

(ū2χ1z − χ̄2zu1)∂za1 + 2iP2z∂za2 = −δ2 | χ2z |2 −δχ̄2zχ1za1. (3.57)

We also have the following system:

{

2iP1z∂za1 + (ū1χ2z − χ̄1zu2)∂za2 = −δ1 | χ1z |2 a1 − δ2χ̄1zχ2za2.

(ū2χ1z − χ̄2zu1)∂za1 + 2iP2z∂za2 = −δ2 | χ2z |2 −δχ̄2zχ1za1.
(3.58)

Under matrix form, it becomes:

(

2iP1z ū1χ2z − χ̄1zu2

ū2χ1z − χ̄2zu1 2iP2z

)(

∂za1

∂za2

)

=

(

δ1 | χ1z |2 δ2χ̄1zχ2z

δ1χ̄2zχ1z δ2 | χ2z |2

)(

a1

a2

) (3.59)

The matrix in front of ∂zap is hermitian. We integrate in x with the relations

u(x, z) = υ(x)eiγz, χ(x, z) = X(x)eiγz:

(

2iP1z ū1χ2z − χ̄1zu2

ū2χ1z − χ̄2zu1 2iP2z

)

=

(

2iP1z (ῡ1X2z − X̄1zυ2)e
i(γ2−γ1)z

(ῡ2X1z − X̄2zυ1)e
i(γ1−γ2)z 2iP2z

)

,

(3.60)

and:

(

δ1 | χ1z |2 δ2χ̄1zχ2z

δ1χ̄2zχ1z δ2 | χ2z |2

)

=

(

δ1 | X1z |2 δ2X̄1zX2ze
i(γ2−γ1)z

δ1X̄2zX1ze
i(γ1−γ2)z δ2 | X2z |2

)

.

(3.61)



76 CHAPTER 3. COUPLING DIELECTRIC WAVEGUIDES

We consider the following notations:

∆ = γ2 − γ1, R =

∫

(ῡ1X2z − X̄1zυ2)dx,

T = X̄1zX2z, t2 =

∫

δ2Tdx, t1 =

∫

δ1T̄dx,

W1 =

∫

δ1 | X1z |2 dx, W2 =

∫

δ2 | X2z |2 dx,

P2 =

∫

P2zdz, P1 =

∫

P1zdz.

And the system under the matrix form becomes:

(

2iP1 R

−R̄ 2iP2

)(

∂za1

ei∆z∂za2

)

=

(

W1 t2

t1 W2

)(

a1

ei∆za2

)

(3.62)

i.e.:

(

∂za1

ei∆z∂za2

)

=

(

2iP2W1−Rt1
4P1P2−|R|2

2iP2t2−RW2

4P1P2−|R|2

2iP1t1+W1R̄
4P1P2−|R|2

2iP1W2+t2R̄
4P1P2−|R|2

)(

a1

ei∆za2

)

. (3.63)

We note that the modes 1 and 2 are defined up to a multiplicative constant.

We take 2P2z = 2P1z = 1.

(

∂za1

ei∆z∂za2

)

=

(

iW1−Rt1
1−|R|2

it2−RW2

1−|R|2

it1+W1R̄
1−|R|2

iW2+t2R̄
1−|R|2

)(

a1

ei∆za2

)

. (3.64)

We assume that W1 and W2 are negligible and simplify the coupled equations.

The solutions have the same form as in the case of TE polarization, but with

modified variables:

(

∂za1

ei∆z∂za2

)

=
1

1− | R |2

(

−Rt1 it2

it1 t2R̄

)(

a1

ei∆za2

)

. (3.65)

The solutions take the form Ape
iγz (p = 1, 2) and the two eigenvalues for γ are:

γ = Υ± Γ, (3.66)
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where:

Γ =

√

Υ2 − t1t2
1− | R |2 , (3.67)

Υ =
R̄t2 −Rt1
2(1− | R |2) . (3.68)

To obtain physical solutions, we also need t1 = t2. In other words, we are still

in the case of two similarly coupled waveguides. This form of the theory does not

allow for the treatment of asymmetric coupled structures.

In the last section, we will discuss the case of parity-time (PT ) symmetric

waveguides. In this type of structures, the two guides are identical at the beginning.

Then, gain is applied to one guide and losses are applied to the other (with the

same opposite value).

3.3 PT-Symmetry

In recent years, C. M. Bender published work that allows a continuity of the

quantum mechanics into the complex plane [54]. He explored the spectra of non-

Hermitian Hamiltonians and found that in fact, many non-Hermitian Hamiltoni-

ans can produce entirely real spectra, provided they possess something known as

parity-time (PT ) symmetry [126, 127, 128].

In quantum mechanics, the fundamental condition of Hermicity of the Hamil-

tonian operator associated with the physically observable implies real eigenvalues

(and probability conservation). The PT symmetry extends the study of the class

of non-Hermitian Hamiltonians. The properties of PT symmetry in quantum me-

chanics is still studied nowadays. In optics, it was also demonstrated in symmetric

coupler [129, 130], and in optical lattices [131, 132]. Experimental observations

have also been realized [133, 134].

3.3.1 In quantum mechanics

First, we begin with basic aspects of this symmetry in quantum mechanics [134].

The Hermicity of the Hamiltonian in conventional quantum mechanics is replaced

by the PT symmetry with non-Hermitian Hamiltonians. The actions of the parity
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P and time T operators are defined as follows:

P : p̂ → −p̂, x̂ → −x̂, (3.69)

T : p̂ → −p̂, x̂ → x̂, î → −î, (3.70)

where p̂ and x̂ are the momentum and position operators, respectively.

In general, a Hamiltonian Ĥ can be written as:

Ĥ =
p̂2

2m
+ V (x̂), (3.71)

where x̂ and p̂ are position and momentum operators respectively, m is mass and

V is the potential.

This Hamiltonian is PT symmetric if it shares the same eigenfunctions as the

PT operator and satisfies PTĤ = ĤPT [135, 136, 137, 138]. This condition

corresponds to an exact or unbroken PT symmetry, as opposed to that of broken

PT symmetry, where, even though this condition is still valid, Ĥ and PT have

different eigenvectors [139].

PT symmetry requires that the Hamiltonian Ĥ commutes with the PT oper-

ator. This implies that the real part of the potential V is an even function of the

position x and its imaginary part is an odd one. The Hamiltonian becomes:

Ĥ =
p̂2

2m
+ VR(x̂) + iεVI(x̂), (3.72)

where VR,I are the symmetric and antisymmetric components of the potential V ,

respectively [129, 140, 131].

An important property of the PT -symmetric operators appears for the transi-

tion from a completely real spectrum to a non strictly one. The transition between

an exact PT symmetry to broken PT symmetry is controlled with the parameter

ε, which is a measure of the non-Hermicity in the Hamiltonian. If ε = 0, this

Hamiltonian is Hermitian. It is also possible to demonstrate that as long as ε is

below a critical threshold, noted ε < εth, this class of potentials can still describe

a real spectra. If this limit is crossed, ε > εth, the spectrum is not real any more

and starts to involve imaginary eigenvalues. This is the phase transition from the
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exact to broken-PT phase [130, 137]. We can speak of a spontaneous PT symmetry

breaking.

3.3.2 In optics

In optics, several physical processes have an equivalent form to the Schrödinger

equation in quantum mechanics such as the spatial diffraction and temporal dis-

persion. Indeed, K. G. Makris et al. [140] suggested that complex PT -symmetric

structures could be realized within an optical framework, and in particular through

the paraxial theory of diffraction. In order to have a PT symmetric optical model,

it is necessary (but not sufficient) to impose the commutation between the Hamil-

tonian Ĥ and the PT operator. This is also a constraint on the potential:

ĤPT =
p̂2

m
+ V (x), (3.73)

PTĤ =
p̂2

m
+ V ∗(−x), (3.74)

ĤPT = ĤPT, (3.75)

which implies:

V (x) = V ∗(−x). (3.76)

By writing the condition of commutation of the operators like that, it is easier

to understand that a PT symmetric waveguide can be realized with a symmetric

index guiding profile and an antisymmetric gain/loss profile for the refractive index

[129]:

n(x) = n∗(−x), (3.77)

where n(x) plays the part of the potential and we can consider two coupled planar

waveguides as illustrated in Fig. 3.15, for which the refractive index only varies

in the x direction. The direction of propagation in the waveguides is along the z

axis.

We write the complex refractive index distribution n(x) as a sum of its real
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and imaginary parts and a constant index n0:

n(x) = n0 + nR(x) + inI(x). (3.78)

For a PT symmetric Hamiltonian, the refractive index nR(x) is then an even

function, and the gain/loss distribution nI(x) an odd function of the position

[130, 129, 140, 132]. We must also satisfy the conditions nR(x) = nR(−x) and

nI(x) = −nI(−x).

In the past years, the double-channel waveguide structure has been studied

extensively, and the results have shown that the coupler can support symmetry

preserving solutions, which have linear counterparts, and symmetry breaking so-

lutions without any linear counterparts [141, 142, 143].

K. G. Makris et al. [140] achieved the construction of a coupled system with

two channels, one of which would receive gain, G, through optical pumping and

the other only loss, L. For optical beams, the electric envelope E is governed by

the paraxial equation of diffraction:

i∂zE +
1

2k0n0

∂2
xE + k0[nR(x) + inI(x)]E = 0, (3.79)

where k0 = 2π/λ, with λ the wavelength.

Under these conditions and by using the coupled-mode approach, the optical

field dynamics in the two coupled waveguides are described by:

i
dE1

dz
− i

γGeff

2
E1 + κE2 = 0, (3.80)

i
dE2

dz
+ i

γGeff

2
E2 + κE1 = 0, (3.81)

with E1,2 the field amplitudes in the respective channels, κ = π/2Lc the coupling

constant with coupling length Lc and γGeff = γG − γL the effective gain. To have

a PT symmetric system, we need γGeff = γL = γ.

The PT symmetric coupled equations in matrix form with the non-Hermitian

Hamiltonian are written as:

i
d

dz

[

E1(z)

E2(z)

]

= H

[

E1(z)

E2(z)

]

, (3.82)
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Figure 3.14: Intensity at the output with the analytic solutions of the coupled equations 3.85
and 3.86. (a) The channel 1 is excited. (b) The channel 2 is excited.

with

H =

[

1
2
iγ −κ

−κ 1
2
iγ

]

. (3.83)

The solutions can be written as:

[

E1(z)

E2(z)

]

= e−iHt

[

E1(0)

E2(0)

]

. (3.84)

Thus, the electric fields E1,2(z) are a function of the initial states E1(0) and

E2(0):

E1(z) =

(

cosh(1/2ξ(z)) +
γz sinh(1/2ξ(z))

ξ(z)

)

E1(0) +
2iz sinh(1/2ξ(z))κ

ξ(z)
E2(0),

(3.85)

E2(z) =

(

− cosh(1/2ξ(z)) +
γz sinh(1/2ξ(z))

ξ(z)

)

E2(0)

+
2iz sinh((1/2ξ(z))κ)

ξ(z)
E1(0),

(3.86)

with ξ(z) =
√

z2(−4κ2 + γ2).

In addition, it is possible to measure and plot the intensity distribution at the

output. Fig. 3.14 illustrates the intensities E1,2 as a function of the distance z.
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Figure 3.15: Two coupled waveguides where one waveguide has gain (with a negative imaginary
part of the refractive index) and the other has losses (with a positive imaginary part of the
refractive index) [130].

3.3.3 Numerical application

We consider the following optical PT symmetric structures, illustrated in Fig.

3.15. This consists of two coupled waveguides where one waveguide has gain (with

a positive imaginary part of the refractive index), and the other has losses (with

a negative imaginary part of the refractive index) [130]. The separation between

the waveguides and their thickness are taken to be the same, noted d [129]. It was

demonstrated that the coupling between the two PT symmetric waveguides is an

increasing function of the separation between the waveguides, as in the case with

classical directional waveguides.

We use the result in [130] where the background index is n0 = 3.3, the incident

wavelength in vacuum is λ = 1.55µm. The real part of the refractive index for

the two waveguides is n0 + 10−3 and the separation between the waveguides is

d = 5µm. It has been demonstrated that these parameters allows the existence of

only a single guided modes in the two waveguides. Then, imaginary parts for the

refractive index are added into the two waveguides: ∆αλ/(2π), that adds losses in

the first guide; and −∆αλ/(2π), that adds gain in the other.

The propagation constants of the two modes are plotted in Fig. 3.16 as a

function of the non-Hermicity parameter ∆α. When ∆α increases, the propagation

constants of the two modes move towards a critical point ∆αc. Such a point in the

spectrum is often referred to as an exceptional point [144]. The two guided modes
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Figure 3.16: The propagation constant kz as a function of the non-Hermicity parameter ∆α.
The eigenmodes approach each other up to a critical point ∆αc ∼ 8.4 [130]. Beyond this
critical point, the propagation constants become complex conjugates of one another and the
PT symmetry breaks.

are always PT symmetric. At this critical point, the propagation constants of the

two modes and the corresponding electric field become equal. Beyond this critical

point, the propagation constants become complex conjugates of one another and

we can see a break in the PT symmetry. The behavior of the propagation constant

can be also illustrated in the complex plane (Re[kz], Im[kz]) as in Fig. 3.17. The

breaking of the PT symmetry arises when the two modes have the same real value.

The imaginary part grows towards surrealistic values of gain.

The evolution of the two coupled modes is obtained by considering the power

distribution:

| Ey(x, z) |2=| 1√
2
[E1(x)e−iβ1z + E2(x)e−iβ2z] |2, (3.87)

for three values of ∆α (Fig. 3.18). When ∆α increases and goes to the critical

value, the beat length increases. It is an interesting way to observe the movement

of the propagation constants on the real axis. At the critical value ∆α, there are

no longer oscillations between the waveguides, but a simultaneous propagation in

both waveguides. An interpretation of this phenomenon is that the critical value

of ∆α corresponds to the maximum value of the matching index profile, which can

still be treated with the perturbation theory.
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Figure 3.17: The propagation constant in the complex plane (Re[kz], Im[kz]) with a global
view in (a) and a zoom in (b). After the breaking of the PT symmetry, the imaginary parts
grow towards surrealistic values.
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Figure 3.18: Color maps of the field for three values of ∆α. The beat length increases with
the value of ∆α until the critical point [130].
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Chapter 4

Strong Coupling Surface Plasmon

Polaritons

Overview When the emitter-photon interaction becomes larger than

the linewidths of either the cavity photon or the exciton, the strong cou-

pling regime occurs. This regime has been intensively studied since the

work of C. Weisbuch et al. [55]. In this case, the irreversible sponta-

neous emission is replaced by a reversible exchange of energy between

the emitter and the photon. The strong coupling is manifest by an an-

ticrossing between the emitter and the cavity mode dispersion relations,

characterized by a vacuum Rabi splitting [56]. The energy exchange is

periodic with time-scales shorter than the inverse cavity field decay rate.

In the first section, we introduce the characteristics of the strong cou-

pling regime with the classical case of two coupled oscillators. Then, the

properties of the strong coupling regime in microcavities are presented

until recent works involving surface plasmons. Finally, we will demon-

strate the strong coupling regime between SP modes and guided modes

in a layered structure. We study more precisely the features of the new

modes to justify the interest in this kind of structure and add gain to

enhance the plasmon emission.

87
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k1 k2

x2(t)x1(t)

κ

m1 m2

Figure 4.1: Two coupled oscillators with a coupling constant κ.

4.1 Classical coupled oscillators

We consider a classical coupled oscillator model as a canonical example for strong

coupling [145, 146]. Firstly, we consider two identical coupled oscillators with

damping to shed light in the transition between the weak coupling regime to the

strong coupling regime, as well as to show the oscillations between the two strongly

coupled modes. Then, we study the case of two different oscillators without damp-

ing in order to present the characteristic anticrossing of the dispersion curves in

the strong coupling regime.

4.1.1 Strong coupling transition

In the absence of coupling (κ = 0), the two oscillators have the eigenfrequencies

ω0
1 =

√

k1/m1 and ω0
2 =

√

k2/m2, with mp and kp, where p = 1, 2 are the masses

and the spring constants of the oscillators, respectively. In the presence of coupling

(κ 6= 0) as illustrated in Fig. 4.1, the equations of the motion become:

{

m1ẍ1 + k1x1 + κ(x1 − x2) = −γ1ẋ1,

m2ẍ2 + k2x2 + κ(x2 − x1) = −γ2ẋ2,
(4.1)

where γ1ẋ1 and γ2ẋ2 are frictional terms representing the damping of the two

oscillators.

We are looking for the solution to the form xp(t) = x0
pe

iω±t, where ω± are

the new eigenfrequencies of the coupled system. We note ω2
p = (kp + κ)/mp and
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κ/mp = ωpΩ with p = 1, 2. We insert this ansatz into Eq. 4.1 and the two coupled

linear equations for x0
1 and x0

2 are:

(

ω2 − ω2
1 − iωγ1 ω1Ω

ω2Ω ω2 − ω2
2 − iωγ2

)(

x0
1

x0
2

)

= 0. (4.2)

Let us consider that the two oscillators are the same, m1 = m2 = m0, k1 =

k2 = k0 and ω2
1 = ω2

2 = ω2
0. Near the resonance, the sought eigenfrequency is

ω ∼ ω0. We denote ∆ = ω − ω0 and ω2 − ω2
0 = (ω − ω0)(ω + ω0) ∼ 2ω0∆.

In matrix form such asM [x0
1x

0
2]

T = 0, the two coupled linear equations become:

(

2∆− iγ1 Ω

Ω 2∆− iγ2

)(

x0
1

x0
2

)

= 0. (4.3)

Non-trivial solutions ∆± correspond to det[M ] = 0. The reduced discriminant

is also Ω2− (γ1− γ2)
2 and the solutions ∆± depend on the sign of the square root.

We denoted Ωc =| γ1 + γ2 | /2 the critical coupling value.

If Ω < Ωc, the system is in the weak coupling regime and the solutions are:

∆± =
i

4
(γ1 + γ2)±

i

4

√

(

γ1 − γ2
2

)2

− Ω2. (4.4)

The corresponding eigenfrequencies ω± and damping coefficients γ± are:

ω± = Re(ω0 +∆±) = ω0, (4.5)

γ± = 2Im(ω0 +∆±) =
γ1 + γ2

2
± 1

2

√

(

γ1 − γ2
2

)2

− Ω2. (4.6)

The two modes have also the same eigenfrequency ω0 and different damping co-

efficients which change from γ1 to γ2 with no coupling (Ω = 0). At the critical

coupling value Ωc, the damping coefficients have a unique value (γ1 + γ2)/2.

If Ω > Ωc, the system is in the strong coupling regime and the solutions are:

∆± =
i

4
(γ1 + γ2)±

1

4

√

Ω2 −
(

γ1 − γ2
2

)2

. (4.7)
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Figure 4.2: (a) Variation of the eigenfrequencies ω± and (b) variation of the damp-
ing coefficients γ± as a function of the coupling coefficient Ω. We take ω0 = 1,
Ωc/ω0 = 0.01, γ1/ω0 = 0.1 and γ2/ω0 = 0.3. At the critical coupling value Ωc, the
eigenfrequencies are splitting, whereas the damping coefficients become equal.

The corresponding eigenfrequencies ω± and damping coefficients γ± are:

ω± = ω0 ±
1

4

√

Ω2 −
(

γ1 − γ2
2

)2

, (4.8)

γ± =
γ1 + γ2

2
= γ. (4.9)

The two modes also have eigenfrequencies for which the gap increases with the

coupling, and a same damping coefficient equal to the mean of the non-coupled

oscillators’ damping coefficients.

Figs. 4.2a and 4.2b respectively illustrate the variation of the eigenfrequencies

ω/pm and the damping coefficients γ± as a function of the coupling coefficient

Ω, with Ωc/ω0 = 0.01 [147]. For ω±, we consider the following adimensioned

expressions:

ω±

ω0

= 1± Ωc

4ω0

√

(

Ω

Ωc

)2

− 1. (4.10)

Before the critical coupling value Ωc, the modes have the same eigenfrequency.

At Ωc, the eigenfrequencies split into ω+ and ω−. In the strong coupling regime, the

initial uncoupled modes do not exist anymore, two new states of the system replace
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them with the corresponding frequencies ω+ and ω− for new eigenfrequencies. This

splitting is commonly called a Rabi splitting.

For γ±, we also consider the following adimensioned expressions:

γ± = γ ± Ωc

2

√

1−
(

Ω

Ωc

)2

. (4.11)

Before the critical coupling value Ωc, the modes have different damping coef-

ficients γ− and γ+, that start from γ1 and γ2, respectively, if γ1 > γ2. At Ωc, the

damping coefficients become equal to the value (γ1+γ2)/2. In the strong coupling

regime, the damping in the system cannot be considered separately anymore.

4.1.2 Temporal oscillations

From now on, we only consider the case of a strong coupling regime and we suppose

that Ω >> Ωc. The sought solutions have the form xp(t) = x0
pe

iω±t, p = 1, 2 that

can be rewritten as:

x1(t) = Re(x0
1e

iω̃t) with x0
1 = b1e

iφ1 ,

x2(t) = Re(x0
2e

iω̃t) with x0
2 = b2e

iφ2 ,

with ω̃ = ω+ iγ
2
, where ω > 0 is the frequency and γ > 0, the damping coefficient

of the system. Its amplitude decreases such as exp(−γ
2
t) and its energy decreases

such as exp(−γt).

The general solutions can be written as:

x1(t) = A+e
− γ

2
t cos(ω+t+ φ+) + A−e

− γ

2
t cos(ω−t+ φ−), (4.12)

x2(t) = −A+e
− γ

2
t cos(ω+t+ φ+) + A−e

− γ

2
t cos(ω−t+ φ−). (4.13)

In the case when only one mode is excited, we have the following expressions:

mode ω+:

{

x1(t) = A+e
− γ

2
t cos(ω+t+ φ+),

x2(t) = −A+e
− γ

2
t cos(ω+t+ φ+).

(4.14)
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Figure 4.3: Temporal evolution of the modes x1(t) and x2(t) with the initial con-
ditions x1(0) = x0, x2(0) = 0, ∂tx1(0) = 0 and ∂tx2(0) = 0. We take ω0 = 1,
Ω/ω0 = 0.02, γ/ω0 = 0.002, Ω >> Ωc and x0/w0 = 2. Each mode is the sum of a
sinusoidal amplitude with a different frequency but with the same damping. The
energy of the oscillator 1 is completely transferred to the other oscillator after a
time equal to π/Ω. It is totally back after a time equal to 2π/Ω. The two modes
have the same amplitude for an impulsion of π/2, after a time equal to π/(2Ω).

And:

mode ω−:

{

x1(t) = A−e
− γ

2
t cos(ω−t+ φ−),

x2(t) = A−e
− γ

2
t cos(ω−t+ φ−).

(4.15)

At the time t = 0, the oscillator 1 is excited and the initial conditions are

x1(0) = x0, x2(0) = 0, ∂tx1(0) = 0 and ∂tx2(0) = 0. The solutions become:















x1(t) = x0e
− γ

2
t cos

(√
Ω2−Ω2

c

2

)

cos(ω0t),

x2(t) = x0e
− γ

2
t sin

(√
Ω2−Ω2

c

2

)

sin(ω0t),
(4.16)

and Fig. 4.3 illustrates the result. We observe coherent oscillations between the

modes. Each mode is the sum of a sinusoidal amplitude with a different frequency

but with the same damping. The energy of the oscillator 1 is completely transferred

to the other oscillator after a time equal to π/Ω. It is totally back after a time

equal to 2π/Ω. The two modes have the same amplitude for an impulsion of π/2,

after a time equal to π/(2Ω). Theses oscillations are called Rabi oscillations.
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Figure 4.4: Eigenfrequencies of the two oscillators as a function of the coefficient ∆k. Their
spring constants are k0 and k0 +∆k, respectively, and their masses are equal. We take k0 = 1.
(a) In the uncoupled case (κ = 0), the dispersion curves intersect for ∆k = 0. (b) In the coupled
case (κ = 0.08k0), the strong coupling regime is characterized by an anticrossing of the dispersion
curves with a frequency splitting [ω+ − ω−] = Γ.

4.1.3 Anticrossing of the dispersion curves

Let’s consider the two oscillators without damping (γp = 0, p = 1, 2) and with dif-

ferent spring constants (Fig. 4.1). The corresponding eigenfrequencies ω± become:

ω± =
1

2
[ω2

1 + ω2
2 ±

√

(ω2
1 − ω2

2)
2 + 4Γ2ω1ω2], (4.17)

where ω1 =
√

(k1 + κ)/m1, ω2 =
√

(k2 + κ)/m2 and:

Γ =

√

κ/m1

√

κ/m2√
ω1ω2

. (4.18)

We seek solutions for Eq. 4.17 with k1 = k0, k2 = k0+∆k and m1 = m2 = m0.

Fig. 4.4a illustrates the case where there is no coupling (κ = 0). When the

coefficient ∆k is increased from −k0 to k0, the frequency of the oscillator 1 stays

constant and the frequency of the oscillator 2 increases from zero to
√
2ω0. At

∆k = 0, the two dispersion curves intersect.

Fig. 4.4b shows the dispersion curves corresponding to the presence of coupling

(κ 6= 0). In this case, the two curves do not intersect any more. Instead, there is
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a characteristic anticrossing of the dispersion curves with a:

[ω+ − ω−] = Γ. (4.19)

This anticrossing is the main proof of the strong coupling regime. We note

that Γ is proportional to κ and that the Rabi splitting increases with the coupling

strength.

4.2 Microcavity polaritons

4.2.1 Definition in quantum physics

In this section, the physics of semiconductor microcavities in the strong coupling

regime, known as microcavity polaritons, will be reviewed. We take the point of

view of the quantum mechanics to express the features of the strong coupling in

terms of energy [148].

We consider an atomic system with two levels, a ground level |g〉 and an ex-

cited level |e〉 with the energies E1 and E2 from the ground level. This system is

considered in an optical cavity, with an electromagnetic resonant mode with the

transition e− g. We only consider two possible states in the cavity: the state |0〉
without photon, and the state |1〉 with a photon in the cavity. The atom-photon

system with the Hamiltonian H0 has two excited states with the same energy,

|e, 0〉 (the atom is in its excited state without photon) and |g, 1〉 (the atom is in

its ground state with a photon), above the ground state |g, 0〉 (Fig. 4.5). The

eigenvalues E1 and E2 of the Hamiltonian H0 are also:

{

H0 |e, 0〉 = E1 |e, 0〉 ,
H0 |g, 1〉 = E2 |g, 1〉 .

(4.20)

To take into account an external perturbation of the system, we denote a new

Hamiltonian as:

H = H0 +W. (4.21)
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Figure 4.5: Energy diagram of the atom-cavity system.

The eigenstates and eigenvalues of H are |Φ±〉 and E±, respectively:

{

H |Φ+〉 = E+ |Φ+〉 ,
H |Φ−〉 = E− |Φ−〉 .

(4.22)

H0 is called the non-perturbed Hamiltonian, and W is the perturbation, also

called the coupling. We suppose that W does not depend on the time. In the basis

{|e, 0〉 , |g, 1〉} of the eigenstates of H0, W is the following hermitian matrix:

W =

(

W11 W12

W21 W22

)

, (4.23)

where W11 and W22 are real and W12 = W ∗
21.

In the absence of coupling, E1 and E2 are the energies of the system, and

|e, 0〉 and |g, 1〉 are stationary states. The problem consists in determining the

modifications due to the coupling W . A consequence of the coupling is that a

measure of the energy of the system can only give one of the eigenvalues E+ and

E− of the Hamiltonian H. These eigenvalues are generally not equal to E1 and

E2.

The first step in the resolution of this problem consists to calculate E+ and E−

as a function of E1, E2 and the matrix elements of W . We also study the effect
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of the coupling on the position of the energy levels. The next step consists in to

determining the corresponding eigenstates |Φ+〉 and |Φ−〉 of the system.

So, in the base {|e, 0〉 , |g, 1〉}, the Hamiltonian in the matrix form is:

H =

(

E1 +W11 W12

W21 E2 +W22

)

. (4.24)

The corresponding eigenvalues are:

E± =
1

2
(E1+W11+E2+W22)±

1

2

√

(E1 +W11 − E2 −W22)2 + 4 | W12 |2, (4.25)

and the corresponding eigenstates are:

{

|Φ+〉 = cos θ
2
|e, 0〉+ sin θ

2
|g, 1〉 ,

|Φ−〉 = − sin θ
2
|e, 0〉+ cos θ

2
|g, 1〉 ,

(4.26)

where the angle θ is defined as:

tan θ =
2 | W12 |

E1 +W11 − E2 −W22

with 0 ≤ θ < π. (4.27)

We admit now that the light-matter coupling between the two states only

includes the non-diagonal terms, which are positive and real:

{

〈g, 1|W |e, 0〉 = 〈e, 0|W |g, 1〉 > 0,

〈e, 0|W |e, 0〉 = 〈g, 1|W |g, 1〉 = 0.
(4.28)

Eqs. 4.25 and 4.27 become:

E± =
1

2
(E1 + E2)±

1

2

√

(E1 − E2)2 + 4 | W12 |2, (4.29)

tan θ =
2 | W12 |
E1 − E2

with 0 ≤ θ < π. (4.30)

We denote Em = (E1 + E2)/2 and ∆ = (E1 − E2)/2. The variation of the

parameter Em implies to put the origin on the energy axis. The eigenstates do

not depend on Em. The significant parameter is ∆. As a function of ∆, the two
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energies of the system are:

E± = Em ±
√

∆2+ | W12 |2. (4.31)

The energies E+ and E− are two branches of a symmetric hyperbola separated

by a distance 2 | W12 |. In absence of coupling, the two curves for E1 and E2

intersect at ∆ = 0. In the presence of coupling, the two curves for E+ and E− do

not intersect anymore. There is again the characteristic anticrossing of the strong

coupling regime.

Thus, whatever the value of ∆, we always have | E+ − E− |>| E1 − E2 |. The
coupling of the system increases the distance between the eigenfrequencies. The

separation between them is the Rabi splitting, noted W12 here.

Near the asymptotes, | ∆ |>>| W12 | and the eigenvalues can be written as:

E± = Em ±∆

(

1 +
1

2
| W12

∆

2

+ · · ·
)

. (4.32)

The characteristic angle (Eq. 4.30) becomes θ ≃ 0 (we suppose ∆ ≥ 0) and the

eigenstates are:










|Φ+〉 = |e, 0〉+ | W12 |
∆

|g, 1〉+ · · ·

|Φ−〉 = |g, 1〉 − | W12 |
∆

|e, 0〉+ · · ·
(4.33)

In this case, the perturbed states are not really different to the non-perturbed

ones. The strong coupling cannot be established in these regions.

In the center of the hyperbola, of ∆ = 0 (E1 = E2), the coupling becomes

strong and eigenvalues are:

E± = Em± | W12 | . (4.34)

The effect of the coupling is more important when the two levels have the same

energy. The characteristic angle (Eq. 4.30) becomes θ ≃ π/2 and the eigenstates

are:










|Φ+〉 =
1√
2
[|e, 0〉+ |g, 0〉],

|Φ−〉 =
1√
2
[− |e, 0〉+ |g, 0〉].

(4.35)

In the strong coupling, the perturbed states become really different to the non-
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perturbed ones. They are a linear superposition of the initial eigenstates.

The temporal evolution of the system is found by considering Schrödinger’s

equation:

i~
d

dt
|Φ(t)〉 = (H0 +W ) |Φ(t)〉 , (4.36)

where |Φ(t)〉 = a1(t) |e, 0〉+ a2(t) |g, 1〉 is the eigenstate of the system at the time

t. In the base {|e, 0〉 , |g, 1〉}:










i~
d

dt
a1(t) = E1a1(t) +W12a2(t),

i~
d

dt
a2(t) = W21a1(t) + E2a2(t).

(4.37)

In the presence of coupling (| W12 |6= 0), these equations constitute a linear

system of homogeneous differential coupled equations. To determine the temporal

evolution of the states, we consider the system in the state |Φ(0)〉 = |e, 0〉 at t = 0.

In the base {|Φ+〉 , |Φ−〉}, |Φ(0)〉 can be written as:

|Φ(0)〉 = cos

(

θ

2

)

|Φ+〉 − sin

(

θ

2

)

|Φ−〉 . (4.38)

At a given time t, the system is in the state |Φ(t)〉:

|Φ(t)〉 = cos

(

θ

2

)

e−iE+t/~ |Φ+〉 − sin

(

θ

2

)

e−iE−t/~ |Φ−〉 . (4.39)

The probability P12(t) to find the system in the state |g, 1〉 is deduced from

P12(t) =| 〈g, 1 | Φ(t)〉 |2:

P12(t) =
1

2
sin2 θ

[

1− cos

(

E+ − E−

~
t

)]

= sin2 θ sin2

(

E+ − E−

2~
t

)

. (4.40)

With Eqs 4.29, the probability P12(t) becomes:

P12(t) =
4 | W12 |2

4 | W12 |2 +(E1 − E2)2
sin2

[

√

4 | W12 |2 +(E1 − E2)2
t

2~

]

. (4.41)

This expression of the probability is called the Rabi formula.
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4.2.2 Review on the strong coupling regime

In microcavities

When a single emitter is placed in a cavity, it is demonstrated that the spontaneous

emission rate can be greatly modified due to the Purcell effect, and even vacuum

Rabi splitting can be achieved. The Rabi splitting is illustrated in the previous

section and simply called a ”frequency splitting”. Indeed, if we consider a system

with two coupled states of energy, the electromagnetic field periodically oscillates

between two localized states inside the structure [55, 149, 150, 151]. In quantum

semiconductor microcavity, the Rabi oscillations were first experimentally observed

in 1994 [152].

In the weak coupling regime, the interaction between the exciton and the cavity

photon is irreversible, as an excited exciton cannot transfer its energy back to the

cavity and the oscillations exponentially decrease. As a consequence of the Purcell

effect, the optical properties of an electronic state are not intrinsic to the state

but depend on the electromagnetic field that couples the state. Fermi’s golden

rule states that the rate of spontaneous emission is proportional to the density of

photon states at the spatial position of the exciton. The radiative lifetime of an

exciton in an optical microcavity can either be extended or reduced with respect

to its lifetime in vacuum.

The strong coupling regime occurs if the coupling coefficient is larger than any

of the dissipation rates in the system. This regime was first experimentally demon-

strated in GaAs quantum wells by C. Weisbuch [55]. The research on the strong

coupling regime has been strongly extended due to the interest in coherent and

stimulated effects in such systems, which can lead to optical devices, as it is shown

in the overview by R. Houdré et al. [153]. Strong coupling implies a periodic ex-

change between the energies of the atom and the cavity at the Rabi splitting, under

the resonant condition, where the Rabi frequency in turn depends on the coupling

factor of the system [154, 155, 156]. The time evolution and the interaction be-

tween the emitter and the cavity can no longer be described by Fermi’s golden

rule. The excitonic and confined photon modes cannot be considered independent

eigenmodes of the system. The normal modes are a linear and coherent superpo-

sition of the exciton and photon states. The anticrossing between the exciton and

the photon modes is also related to the Rabi splitting.
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With organic materials

The excitonic state has a low saturation density [157] and can generally be ionized

at room temperature. These features often limit the observation and study of the

strongly coupled state to low temperatures and small excitation densities. The

low exciton oscillator strength results in small Rabi splittings that are typically

6-10 meV [158, 159]. The strong coupling regime in microcavities recently has

expanded been to microcavities containing thin layers of organic materials [160],

such as J-aggregates of cyanine dyes or zinc-porphyrin [161, 162]. Organic materi-

als possess a number of interesting physical properties relevant to strong coupling

that contrast with those of inorganic semiconductors. Because of the relatively

large oscillator strengths of the organic exciton, anticrossings larger than 100 meV

at room temperature have been reported [163, 164, 165].

Strong coupling was first demonstrated in organic materials by D. G. Lidzey et

al. [161] using tetra-(2,6-t butyl) phenol-porphyrin zinc (4TBPPZn), in polystyrene

located in a planar microcavity. This demonstration took place at room tempera-

ture, with a Rabi splitting > 100 meV. The large Rabi splitting obtained in organic

microcavities are of particular significance for current efforts to achieve polariton

lasing in microcavities at room temperature, because it will be possible to maintain

the strong coupling at 300K.

An even more interesting organic material still is the J-aggregates for which

the strong coupling was also demonstrated by D. G. Lidzey [166]. Indeed, this

organic material has narrow absorption in the red and near infrared frequencies

which makes many applications possible. The Rabi splitting is increased with a

large oscillator strength [167, 168], but also with the possibility of increasing the

absorption coefficient [169].

Concerning the methods, the majority of these experiments has been carried out

at room temperature with angular-resolved reflectivity measurements corroborated

by transfer-matrix simulations [170, 171, 168, 161, 162, 169].

Involving surface plasmons

In the strong coupling regime, Fermi’s golden rule fails and coherent dynamics

dominate. SP modes provide an alternative route to enhance the coupling and

extend to nanoscale. The corresponding Rabi splitting, for example in the strong
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coupling between SP modes and J-aggregates which have a particularly narrow

absorption linewidth, is demonstrated in [172, 173, 174] and is always higher than

100 meV.

Using the Kretschmann geometry [5, 13], the strong coupling regime with SP

mode is possible with a wide variety of organic molecules, such as the Rhodamine

6G, for which the Rabi splitting can be equal to 400 meV [175, 176]. It is also

demonstrated that the coupling strength is proportional to the square root of the

molecular density, which is an important mechanism for SERS (Surface enhanced

Raman scattering) [177]. In addition, it is proved that the high local field ampli-

tudes generated by SPs of the metallic structures also has an important impact

on the result, and more precisely, on the value of the Rabi splitting. The strong

coupling of SP modes with a sulforhodamine 101 dye [178] or β-carotene in a

nanolayered system [179] extend the potential applications in biology, with a Rabi

splitting that remains high, between 130 meV and 360 meV. Other possibilities

involve a Fabry-Pérot metallic device [180], metallic nanowire [181, 182] or meta-

materials [183], with a Rabi splitting higher than 250 meV.

The values of the measured Rabi splitting have to be taken with precaution

as reminded in [184]. Indeed, due to the large interaction energies, the calcula-

tions at a constant angle can induce an overestimation of the Rabi splitting of

more than a factor of 2. Most of the experiments consist of the measurement

of the reflectivity as a function of the incidence angle [185, 172, 186, 176, 182]

(angle-resolved reflectivity spectra) within a theoretical model based on the trans-

fer matrix method [187]. Some works also present the absorption curves in order

to study the evolution of the losses of the modes when the strong coupling regime

occurs [186, 176].

But the stringent condition of strong coupling requires that the coupling co-

efficient be larger than any of the dissipation rates in the system. A key feature

of many approaches is to reduce the effective mode volume of the cavity, thereby

achieving a substantial increase in the coupling strength, which is inversely pro-

portional to the square root of the mode volume [188]. Compared with a normal

photonic cavity, a plasmonic cavity has smaller mode volumes and higher field en-

hancement to provide an important platform for cavity quantum electrodynamics

investigations [189, 190]. For applications such as quantum information processing,

a large Rabi splitting is especially important for coherent manipulation of mixed
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θ

dye layer

Ag layer

Detection

Figure 4.6: Illustration of the device used to allow reflectometry experiment and to obtain a
strong coupling regime between surface plasmons (Ag) and excitons (J-aggregates): a dielectric
prism with a silver film of thickness em = 45 nm, a small layer of T iO2 of thickness eTiO2

= 2
nm, and a layer containing the cyanide dye J-aggregates of thickness ec = 35 nm.

states [191].

Otherwise, another interesting configuration implies Tamm plasmon-polaritons

[46]. These modes can be directly excited with light wave because their in-plane

wave vector is less than the wave vector of light in vacuum. They can also be formed

in both TM and TE polarizations. Their existence was theoretically demonstrated

at the interface between two periodic dielectric planar multilayer structures [192]

and more recently at the interface between a metallic layer and a Bragg mirror

[193]. Their first experimental observation between a metal and dielectric Bragg

reflector was reported in [47] and their experimental observation in strong coupling

regime with an exciton from inorganic quantum wells was reported in [194]. A Rabi

splitting energy of 11.5 meV was found.

From now, we consider more precisely the strong coupling between surface

plasmons and excitons in an organic semiconductor [172, 184, 186]. We use the

tetrachotomy method to find the same results, and thus, to validate our method.

First, the device consists of a layer containing the cyanide dye J-aggregates which

has been deposited on a silver film (Fig. 4.6), the whole being embedded between

a dielectric (a prism) and air. A very small layer of T iO2 is placed between the

dye and the metallic layers in order to allow the experimental realization of the

device. The SP is excited in a similar way as in the ATR structure. It is on the

interface between the active layer and the air (see Fig. 4.6).

In order to observe the interaction between the surface plasmon and the exci-
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Figure 4.7: Dispersion and absorption relations obtained with the tetrachotomy: (a) Energy
dependence of the modes E as a function of the propagation constant αR with an anticrossing
of the dispersion curves. In red, the dispersion curve of the SP mode in the device without the
dye layer. The Rabi splitting is ER = 174 meV [172]. (b) The absorption of the modes αI as a
function of αR with a crossing of the absorption curves at the same value of the anticrossing of
the dispersion curves. The modes exchange energy and are hybrid modes, mixed modes of the
initial ones.

tons, it is necessary that the dispersion curves of the SP mode and the exciton

mode can cross. With the J-aggregates, the exciton does not have dispersion. Its

energy is constant and equal to approximately 2100 meV. It is possible to demon-

strate that if a too thin dye layer is used, the absorption is not sufficient to obtain

a strong coupling regime. The metallic thickness is equal to approximately 35

nm which is not a too important thickness as compared to the penetration depth

δdye = 23 nm, which allows the SP excitation (at the wavelength λ = 600 nm).

The result we obtained is plotted in Fig. 4.7a. There is an anticrossing of

the dispersion curves associated with a crossing of the absorption curves (obtained

with the imaginary part of the propagation constant), at the same propagation

constant (Fig. 4.7b). Theses two phenomena are proof of the strong coupling

regime between the plasmon and the exciton modes. The crossing of the absorption

curves is necessary to justify the transfer of energy between the modes. The Rabi

splitting expected is 180 meV [172]. We found a Rabi splitting ER = 174 meV, in

keeping with its value.
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4.3 Strongly coupled SP and guided modes

Most structures that have been used to enhance the plasmon emission consist of

adding gain in a dielectric medium, with a metallic film directly deposited on it

[41, 42]. The only progress in the field has been in the depth penetration of the

plasmon in the two media. This is a drawback that needs to improved, as we want

the SP emission, and it is necessary to use relatively high values of gain in order

to obtain a notable enhancement. The configuration we propose here allows to

put gain into the medium between the SP mode which is strongly coupled with a

guided mode. The strong coupling regime allows a very significant improvement of

the SP emission, as we will discuss in Section 4.4. In this section, we demonstrate

the strong coupling regime between the guided and SP modes, and study the

properties of the hybrid modes which are created.

4.3.1 The device

We consider the structure as illustrated in Fig. 4.8. This is a stratified medium

which is composed of a dielectric waveguide, which contains a guided mode GM

deposited on a metallic film which supports two surface plasmons, SPu and SPd.

This configuration allows the interaction between the guided mode GM and the

SPd mode as we are going to show.

The dielectric waveguide is composed of the experimental values of the per-

mittivities. The core of the waveguide has a dielectric permittivity εg = 4.84

(ng = 2.20) which corresponds to the permittivity of SiO2 at the wavelength

λ = 650 nm. The cladding of the waveguide also has a dielectric permittivity

εd = 2.1025 (nd = 1.45), which corresponds to the permittivity of T iO2 at the

same wavelength. The two materials are possible to be experimentally made in

thin films, as it is showed in [195].

The dielectric permittivity for the metallic film is again taken from the Palik

data [81] for silver and the dielectric permittivity for the transmitted medium is

εt = 3. This last value is arbitrary and allows to keep down the dispersion curve

of the SPu mode so as to not hinder the other dispersion curves. The choice of

taking into consideration a metallic film rather than an semi-infinite metallic bulk

is justified by the aim of obtaining a more realistic result. The influence of the

SPu mode is negligible so long as the dielectric medium (with εt) has a dielectric
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Figure 4.8: Planar guided structure which allows a strong coupling regime between the surface
plasmon SPd and the guided mode GM . The permittivities of each of the layers are εd = 2.1025,
εg = 4.84, εt = 3, and εm is taken from the Palik data [81] for silver. The thickness of the core
of the waveguide eg and the metallic thickness em are fixed. Only the thickness ed, the distance
between the two coupled modes, has to change in order to determine the best configuration for
the strong coupling regime.

permittivity higher than the cladding of the waveguide (with εd).

The coupled plasmons/guided mode dispersions can be represented with a cou-

pled oscillator model [196]. The dispersion relations are obtained by diagonalizing

the plasmons-guided mode Hamiltonians:

H =







EGM − iγGM VSPd
/2 0

VSPd
ESPd

− iγSPd
0

0 0 ESPu
− iγSPu






, (4.42)

where EGM is the guided mode energy, γGM is the guided mode linewidth, ESPd

and ESPu
are the SP modes energies, γSPd

and γSPu
are the plasmon linewidth and

VSPd
is the interaction energy between the SPd mode and the guided mode GM .
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Figure 4.9: Planar guided structure when ed = 0 nm. This configuration does not allow an
interaction between the surface plasmon SPd and the guided mode GM .

4.3.2 Variation of the characteristic parameters

Variation of the thickness ed

In our study, we always consider a real frequency ω and a complex propagation

constant, defined by α = αR+iαI . αR is the real part and corresponds to the usual

propagation constant. That is why, we will always directly name it the propagation

constant.

We take into account the structure of Fig. 4.8 and fix the thicknesses eg and

em. The distance eg is chosen to have a quasi mono-mode in the waveguide in the

visible range, eg = 130 nm. The thickness of the metallic film is em = 45 nm, a

usual thickness for a metallic layer.

We recall that the strong coupling regime is characterized by an anticrossing

of the dispersion curves and a crossing of the absorption curves. Plotting the

dispersion curves corresponding to Fig. 4.8 with different values for ed allows to

see the characteristic anticrossing of the dispersion curves.

First, if ed = 0 nm, the metallic film is directly deposited on the core of the

waveguide (Fig. 4.9). The corresponding dispersion curves and absorption curves

are plotted in Fig. 4.10. The dispersion curve of GM is confined between the two

light lines and the dispersion curve of SPd is always below the dashed light line
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Figure 4.10: (a) Dispersion curves if ed = 0 nm: the frequency ω, normalized to the plasma
frequency ωp, as a function of the propagation constant αR. The dotted line and the dashed
line represent the light lines for εd = 2.1025 and εg = 4.84, respectively. The dispersion curve of
GM is confined between the two light lines and the dispersion curve of SPd is always below the
dashed light line (εg = 4.84) because of the intrinsic properties of the surface plasmons which
are non-radiative modes. In this case, the GM and SPd modes cannot interact. (b) Absorption
curves if ed = 0 nm: the frequency ω, normalized to the plasma frequency ωp, as a function of
the imaginary part of the propagation constant αI .

(εg = 4.84), because of the intrinsic properties of the surface plasmons which are

non-radiative modes. There exists an inherent momentum mismatch between the

two modes GM and SPd, so they do not interact. The absorption curves also do

not cross, there is no coupling.

Next, the other extreme case is if ed is too large. The corresponding dispersion

curves and absorption curves are plotted in Fig. 4.11. The two parts of the

structure can be considered separately (Fig. 4.12): in black points, the dispersion

curves of the structure when ed = 200 nm; in red and blue crosses, the dispersion

curves of the two parts of the structure determined independently. The dispersion

curves are pretty equivalent, the crossing occurs at αR = 0.028 nm−1. This is the

uncoupled case.

We note the value of the propagation constant corresponding to the crossing

of the dispersion curves in Fig. 4.11a: α = 0.028 nm−1 for a wavelength λ = 421.5

nm (ω/ωp = 0.325 with ωp = 1.374× 1016 for silver). This is the region for which

the modes can interact. The dielectric permittivity of the metallic layer taken from

the Palik data [81] for λ = 421.5 nm is εm = −4.8+0.728∗i. Note that the absolute
value of the effective index corresponding to the SPd and GM modes are almost
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Figure 4.11: (a) Dispersion curves if ed = 200 nm: the frequency ω, normalized to the plasma
frequency ωp, is plotted as a function of the propagation constant αR. The black-square curve
represents the dispersion relation of all the structure illustrated in Fig. 4.8. The red- and blue-
diamond curves represent the dispersion relations for the two parts of the structure considered
independently: in red, a metallic film embedded between media with the dielectric permittivities
εd and εt; in blue, a waveguide with the dielectric permittivities εg and εd (Fig. 4.12). (b)
Absorption curves if ed = 200 nm: the frequency ω, normalized to the plasma frequency ωp, is
plotted as a function of the imaginary part of the propagation constant αI .
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Figure 4.12: The two parts of the complete structure considered separately: (a) the dielectric
waveguide; (b) the metallic film in a non-symmetric medium.
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Figure 4.13: (a) The propagation constant αR as a function of the distance ed. The splitting
between the curves for the GM and SPd modes decreases with the increase of ed. (b) The
imaginary part of the propagation constant αI as a function of the distance ed. The crossing of
the absorption curves for the GM and the SPd modes occurs at ed = 100 nm, the optimal value
to obtain a strong coupling regime between the GM and SPd modes.

equal at this wavelength. This is an important condition in order to obtain the

coupling. We plot the propagation constants of the three modes as a function of

the thickness ed at the wavelength λ = 421.5 nm in Fig. 4.13a. Without surprise,

the splitting between the GM and SPd modes decreases with the increase of the

distance ed.

To find the corresponding value of the strong coupling regime, we have to

consider the absorption curves which are deduced from the imaginary parts αI

of the propagation constant. This is the reason why the tetrachotomy method is

useful, since it allows to find the poles of the S-matrix with simultaneously the real

and imaginary parts. Fig. 4.13b shows the imaginary parts αI corresponding to

the propagation constants as a function of the distance ed. The crossing of the two

absorption curves for GM and SPd corresponds to the strong coupling between

the two modes. The GM mode sees its absorption increases, when the absorption

for the SPd mode decreases, until the intersection for ed = 100 nm.

The structure evolves from the case in which the SPd mode cannot be directly

excited by the GM when ed = 0 nm, to the uncoupled case where the two modes

are too far from each other to interact. Between these two extreme cases, there is a

range for the distance ed where the SPd mode can exist in the medium characterized

by εd, because ed becomes higher than its penetration length. In this range, the
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Figure 4.14: Dispersion curves if ed = 100 nm, the optimal thickness for obtaining the strong
coupling regime: the frequency ω, normalized to the plasma frequency ωp, is plotted as a function
of the propagation constant αR. In blue and red, the dispersion curves of the modes before the
coupling with a crossing between them. The anticrossing of the dispersion curves (black squares)
is a feature of the strong coupling between the GM and SPd modes. The new modes also created
are hybrid modes between the initial ones. The Rabi splitting is ER = 134 meV.
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Figure 4.15: Absorption curves if ed = 100 nm, the optimal thickness for obtaining the strong
coupling regime: the frequency ω, normalized to the plasma frequency ωp, is plotted as a function
of the imaginary part of propagation constant αI . The crossing of the absorption curves is another
feature of the strong coupling between the GM and SPd modes. GM exchanges energy with
SPd and its losses increase when the losses for the surface plasmon decrease if we compare with
the blue and red curves corresponding of the modes before the coupling.
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SPd mode can interact with the GM mode. Its dispersion curve can cross the one

of the guided mode. We note that the behavior of the SPu mode is independent

from the parameter ed.

We plot the dispersion curves and the absorption curves for ed = 100 nm in

Figs. 4.14 and 4.15, respectively. We also see the characteristic anticrossing of the

dispersion curves of GM and SPd, with a deformation of the curves as compared

to the uncoupled ones. The two modes corresponding to the propagation constant

αR = 0.028 nm−1 are new modes of the structure, hybrid modes between the initial

modes. We denote them SPd,c and GMc the lower and the higher modes at the

wavelength λl = 421.5 nm and λh = 405 nm, respectively. The Rabi splitting is

ER = 134 meV.

This anticrossing is associated to the crossing of the absorption curves at the

same value of the propagation constant αR = 0.028 nm−1. The frequency is plotted

as a function of the imaginary part of the propagation constant, so as to better

see the movement of the absorption curves between the uncoupling case and the

strong coupling case with the crossing. This crossing is another feature of the

strong coupling regime. However, the coupling implies a guided mode which does

not have losses and a surface plasmon which has intrinsic losses. We also see that

the exchange of energy between these modes involves an increase of the losses for

GM and, at the same time, the decrease of the losses for SPd. GM gives energy

to SPu. The propagation length has to be enhanced in this configuration, as we

will see.

The possibility of obtaining a strong coupling regime between SPd and GM

modes has been demonstrated. We will study the properties of the hybrid modes

SPd,c and GMc in Part 4.3.3. In particular, we need to verify whether or not the

SPd,c mode is still a surface mode, and to quantify its confinement.

Variation of the range of frequency

The result obtained previously can be transposed to other ranges of frequency

without losing in generalities. The strong coupling regime can be obtained with

an appropriate modulation of the distance between the core of the waveguide and

the metallic film.
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Figure 4.16: Range of the frequencies enabling to observe temporal oscillations in the strong
coupling regime at the propagation constant αR = 0.028 nm−1.

4.3.3 Numerical results for the optimal coupling

Temporal oscillations of the modes

The direct consequence of the strong coupling regime is temporal oscillations. The-

ses oscillations correspond to the case in which we consider a constant value of the

propagation constant and observe the variations of the corresponding frequencies

as illustrated in Fig 4.16. These can be observed with the Finite Difference Time

Domain (FDTD) method. We adapt it to the case of dispersive media to take the

metallic film into account. Details about the implementation of the FDTD method

are given in appendix A.

We consider the complete device (Fig. 4.8) in the case of the strong coupling

regime between the SPd and the GM modes when the distance ed = 100 nm. The

temporal oscillations between the hybrid modes SPd,c and GMc are represented in

Fig. 4.17. The size of the cell is ∆l = 5 nm and the corresponding time step is

∆t = ∆l/(2c), with c the speed of light in vacuum. The permittivity of the metallic

layer is taken from the Drude model. The magnitude of the field corresponding to

the plasmon mode is lower than the magnitude of the field in the waveguide. The

period of the oscillations is Tt = 30.7 fs1.

Fig. 4.18 illustrates snapshots of the structure when the elapsed time is t1 =

62.5 fs and t2 = 83 fs. In Fig. 4.18a, the SPd,c mode is excited for the first time

when in Fig. 4.18b, the surface plasmon mode is excited again after one period Tt.

1If we consider the energy as E = ~ω = ~2 ∗ pi/Tt, we find ER = 134.7 meV.
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Figure 4.17: Temporal oscillations between the hybrid modes deduced from the FDTD calcu-
lations. The period of the oscillations is Tt = 30.7 fs.

Spatial oscillations of the modes

In the case of the strong coupling between plasmons and excitons recalled in the

previous section, the initial excitons do not have dispersion so their dispersion rela-

tion is constant depending on the propagation constant. The temporal oscillations

between the modes can be easily observed or determined with the coupled-mode

theory. In the case of our complete device (Fig. 4.8), which allows the strong

coupling between plasmons and guided modes, the inclination of the dispersion

relations in comparison with the non-dispersive plane implies the possibility of

observing spatial oscillations, as we will present in this part.

The aim is to excite only the modes in a precise range of the propagation

constant, including the two hybrid modes (Fig. 4.19). The range of the gaussian

beam is reduced and we name it an evanescent gaussian beam.

We consider the complete device (Fig. 4.8) in the case of the strong coupling

regime between the SPd and the GM modes when the distance ed = 100 nm.

The spatial oscillations between the hybrid modes SPd,c and GMc are represented

in Fig. 4.20, with a dielectric permittivity of the metallic film taken from the

Drude model. We see oscillations between the two modes and can already observe

a good confinement for the hybrid SPd,c mode, the energy of the guided mode

being transferred to the hybrid plasmon SPd,c which spends twice less time on the

metallic surface. Its intrinsic decay has to be reduced.

This result is calculated from the Drude model and is idealized. If we consider
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(a)

(b)

Figure 4.18: Snapshots of the structure after two elapsed times: (a) t1 = 62.5 fs, the SPd mode
is excited for the first time. (b) t2 = 83 fs, the SPd mode is excited again after one period Tt.
The structure is mapped in two parts because of the relative weakness of the field’s amplitude
for the surface mode, as compared to the guided mode.

the Palik data [81] for calculating the permittivity of the metallic layer, the result

is shown in Fig. 4.21. The spatial oscillations between the modes are no longer as

marked and a steady state of the system is difficult to see. This result shows that

the spatial oscillations are present, but the losses of the metal rapidly attenuate

the field. Fig. 4.22 illustrates in one dimension the spatial oscillations between

the two modes, with the Drude model and the Palik data. The period of the

oscillations is Ts = 1.7µm.

With an evanescent gaussian beam, we can also observe the modes far away

from the region of the strong coupling regime. Fig. 4.23a shows the region of the

dispersion relation we want to observe. We are looking to excite the fundamental
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Figure 4.19: Range of the propagation constant, including the two hybrid modes in order to
observe spatial oscillations between them, at the wavelength λl = 421.5 nm.

Figure 4.20: Map of the field with an incident evanescent gaussian beam used to observe the
spatial oscillations in the complete structure when ed = 100 nm. The metallic permittivity εm is
taken from the Drude model. The energy of the hybrid guided mode is transferred to the hybrid
plasmon which passes approximatively twice less time on the metallic surface. Its intrinsic decay
has to be reduced.



116CHAPTER 4. STRONG COUPLING SURFACE PLASMON POLARITONS

Figure 4.21: Spatial oscillations between the two hybrid modes when the strong coupling
regime occurs, using the Palik data for the metallic permittivity [81]. The propagation length of
the hybrid SPd,c mode is approximatively 1µm, against only 400 nm in the uncoupled case.
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Figure 4.22: Spatial oscillations between the two hybrid modes when the strong coupling
regime occurs (a) with the Drude model and (b) the Palik data for silver permittivity [81]. GMc

exchanges energy with SPd,c, with a period Ts = 1.7µm.
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Figure 4.23: The fundamental guided mode far away from the anticrossing, excited by an
evanescent gaussian beam with the Palik data [81]. (a) In the dispersion curves, we consider the
point noted by a red dot characterized by αR = 0.0346 nm−1, at a wavelength λ = 349.5 nm. (b)
In one dimension, the intensity of the field in the center of the waveguide. (c) The corresponding
map of the field in the plane (x, y).

guided mode. Once again, we use the Palik data for the metallic permittivity [81].

In Fig. 4.23b, the intensity of the field in the center of the dielectric waveguide

is plotted as a function of the distance x. The corresponding map of the field is

in Fig. 4.23c. Having no losses, the guided mode has a propagation length and a

shape strongly related to what was expected.

Confinement of the SPd,c mode

The confinement of the SPd,c mode relates to the depth penetration of the surface

plasmon in the dielectric, with εd (εd = 2.1025). Theoretically, the depth pene-
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Figure 4.24: Propagation length δ as a function of the distance ed for the modes in the complete
structure (Fig. 4.8) for λl = 421.5 nm. The crossing of the curves corresponds to the maximum
of the propagation length for the SPd,c mode, what occurs for ed = 100 nm, δSP = 1036 nm.

tration of an uncoupled SP in this configuration is δd,uncoupled = 80 nm. With the

maps of the field (Figs. 4.20 and 4.21), we deduced that the field of SPd,c mode

decays of 1/e along the y-direction after a distance δd ∼ 50 nm. The confinement

of the plasmon is fairly good, better than the one in an uncoupled structure. The

hybrid mode also created is still a surface mode and keeps the main property of

the classical SPs.

Enhancement of the propagation length

In Fig. 4.21, the hybrid SPd,c mode has a propagation length equalling approxima-

tively to 1µm, when in the uncoupled case2, its propagation length is only 400 nm.

To confirm this result, we use the tetrachotomy method to determine the propa-

gation constant as a function of the thickness ed at the wavelength λl = 421.5 nm.

The result is plotted in Fig. 4.24.

For a SP mode at the interface between a metallic medium with εm (εm is

taken from the Palik data) and a dielectric medium with εd (εd = 2.1025), the

theoretical propagation length (Eq. 2.13) is 300 nm. The crossing of the curves

corresponds to the maximum of the propagation length for the SPd,c mode that

occurs for ed = 100 nm, δSPd,c
= 1036 nm. The table 4.1 includes the propagation

2The uncoupled structure is a metallic layer embedded between a two dielectric media with
the permittivities εd and εa (see Fig. 4.12b)
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uncoupled SP strongly coupled SP
δSPd

(theoretical)= 300 nm δSPd,c
(map of the field)∼ 1000 nm

δSPd
(tetrachotomy)= 400 nm δSPd,c

(tetrachotomy)= 1036 nm
δSPu

(theoretical)= 94 nm
δSPu

(tetrachotomy)= 91 nm

Table 4.1: Propagation lengths obtained in different manners for the uncoupled/strongly cou-
pled SPd and the uncoupled SPu, when λl = 421.5 nm. For the uncoupled case, the match
between the theory and the tetrachotomy method is pretty good. The propagation length of
SPd,c in the strong coupling regime is calculated with the tetrachotomy method and verified
with the map of the field.

lengths obtained in different manners for the uncoupled/strongly coupled SPd and

the uncoupled SPu. The propagation length for SPd,c increases by more than a

factor of two, as compared to the uncoupled case. This result is encouraging for

enhancing the plasmon emission.

The same study can be carried out at the wavelength λh = 405 nm. The

crossing of the curves corresponding to the maximum of the propagation length

for the SPd,c mode is δSPd,c
= 1200 nm, and occurs for ed = 100 nm.

4.4 Adding gain in the strongly coupled struc-

ture

We consider the complete device of Fig. 4.8 with a distance ed = 100 nm that

allows the strong coupling regime between the guided and surface modes. We look

the two wavelength λl = 421.5 nm and λh = 405 nm which correspond to the lower

and the higher branches at the anticrossing. They are related to the hybrid SPd,c

and GMc modes, respectively, and that is verified for this part. We also consider a

distance ed corresponding to the maximum propagation length of the surface mode

for the wavelength: λl = 421.5 nm is associated with ed = 100 nm; λh = 405 nm is

associated with ed = 110 nm. The gain we are going to apply will always be within

the nanometer range. We check that the break of the PT symmetry (see Section

3.3) for two coupled dielectric waveguides, with εg = 4.84 ± igλ/(2π), embedded

in media, with εd = 2.1025 takes place for higher values than the ones we used.

The critical value of the gain that corresponds to the break of the PT symmetry
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ed λ SPd,c GMc

100 nm 421.5 nm δSP = 16.3 µm δGM = 202.4 µm
gn = 0.4522 gn = 0.2733

g = 6.7 ∗ 10−3 nm−1 g = 4.1 ∗ 10−3 nm−1

110 nm 405 nm δSP = 1 µm δGM = 7722 µm
no notable variation with the gain gn = 0.1018

g = 1.6 ∗ 10−3 nm−1

Table 4.2: Maximum of the propagation lengths of SPd,c and GMc as a function of the gain,
added in the core of the waveguide, and for the notable wavelengths λl = 421.5 nm (with
ed = 100 nm) and λh = 405 nm (with ed = 110 nm). The dielectric permittivity of the core
of the waveguide is changed such as εg = 4.84 − i ∗ gn. There is no notable variation of the
propagation length of the SPd,c mode with the added gain.

is g ∼ 400 nm.

4.4.1 Adding gain in the core of the waveguide

Gain is added in the core of the dielectric waveguide. Its dielectric permittivity

becomes:

εg = 4.84− i ∗ gn, (4.43)

where gn is the normalized gain with gn = (λ/2π)g, and g the gain in nm−1.

Fig. 4.25 illustrates the propagation length δ as a function of the normalized

gain gn in the core of the waveguide when the wavelength is λl = 421.5 nm and

ed = 100 nm.

Although the excitation at this wavelength matches the SPd,c mode, the prop-

agation length δGM of the GMc mode is higher than the propagation length δSP of

the SPd,c mode, since the gain is inserted in the core of the waveguide. We have

δGM = 202.4 µm, whereas δSP = 16.3 µm. The increase of the propagation length

of the surface mode exists but it is not notable. The increase of normalized gain

beyond 1 does not enable to obtain another maximum of the propagation length.

There is a limit to the enhancement of the propagation length in this configuration.

Fig. 4.26 shows δ as a function of the normalized gain gn when λh = 405

nm and ed = 110 nm. The predominant mode becomes the GMc mode at this

wavelength. The maximum of its propagation length is δGM = 7.7 mm, a very

high value as compared to the 1 µm obtained when the strong coupling between
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Figure 4.25: The propagation length δ of the modes as a function of the gain in the core of
the waveguide when λl = 421.5 nm and ed = 100 nm. The maximum of the propagation lengths
are δGM = 202.4 µm for gn = 0.2733 and δSP = 16.3 µm for gn = 0.4522.
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Figure 4.26: The propagation length δ of the modes as a function of the gain in the core of
the waveguide when λh = 405 nm and ed = 110 nm. The maximum of the propagation length
for the GMc mode is δGM = 7722 µm for gn = 0.1018.
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ed λ SPd,c GMc

100 nm 421.5 nm δSP = 6461 µm δGM = 4149 µm
gn = 0.1031 gn = 0.118

g = 1.5 ∗ 10−3 nm−1 g = 1.8 ∗ 10−3 nm−1

110 nm 405 nm δSP = 1435 µm δGM = 4400 µm
gn = 0.1578 gn = 0.1386

g = 2.4 ∗ 10−3 nm−1 g = 2.2 ∗ 10−3 nm−1

Table 4.3: Maximum of the propagation lengths of SPd,c and GMc as a function of the gain
added into the dielectric layer between the two strongly coupled modes, and for the notable
wavelengths λl = 421.5 nm (with ed = 100 nm) and λh = 405 nm (with ed = 110 nm). The
dielectric permittivity of the dielectric layer is changed such as εd = 2.1025− i ∗ gn.

this mode and the surface plasmon occurs. The propagation length of the surface

mode is not amplified at all, δSP = 1 µm. The results are summarized in table 4.2.

This configuration cancels the losses for the guided mode due to the strong

coupling with the SPd mode. The propagation length δSP of the SPd,c can be

enhanced sixteen times as compared to the strong coupling case without gain, but

the introduction of gain in the medium between the two strongly coupled modes

has to improve the SP mode.

4.4.2 Adding gain in the medium between the two strongly

coupled modes

We add gain in the medium of permittivity εd, with the thickness ed, between

the two strongly coupled modes. Fig. 4.27 shows the propagation length δ of the

modes as a function of the normalized gain gn in the layer, when λl = 421.5 nm

and ed = 100 nm. At this wavelength, the SPd,c mode is predominant and its

propagation length is δSP = 6461 µm for gn = 0.1031.

The propagation length δ of the modes when λh = 405 nm and ed = 110 nm

is plotted in Fig. 4.28. The propagation length corresponding to the guided mode

δGM stays almost constant at the two wavelengths when δSP goes down 1435 µm

when λh = 405 nm. The results are summarized in table 4.3.

The understanding of the improvement of propagation lengths passes by the

study of the evolution of the dispersion and absorption curves (Figs. 4.29 and

4.30), as well as the evolution of the poles in the complex plane (αR, αI), plotted
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Figure 4.27: The propagation length δ of the modes as a function of the gain in the layer
between the two strongly coupled modes when λl = 421.5 nm and ed = 100 nm. The maximum of
the propagation lengths are δGM = 4149 µm for gn = 0.118 and δSP = 6461 µm for gn = 0.1031.
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Figure 4.28: The propagation length δ of the modes as a function of the gain in the layer
between the two strongly coupled modes when λl = 405 nm and ed = 110 nm. The maximum of
the propagation lengths are δGM = 4400 µm for gn = 0.1386, and δSP = 1435 µm for gn = 0.1578.
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Figure 4.29: Dispersion curves of the complete device as a function of the gain in the dielectric
layer between the two strongly coupled modes. First, the anticrossing increases up to a normalized
gain gn = 0.14. Then, the dispersion curve of the SPu mode moves towards lower values of the
propagation constant.

in Fig. 4.31.

The anticrossing of the dispersion curves (Fig. 4.29) increases with the gain to

attain a Rabi splitting ER,a = 145 meV, when gn = 0.14, when the losses for the

surface mode are the most compensated. The crossing of the absorption curves

(Fig. 4.30) moves to lower losses with the increase of the gain, and reaches almost

zero when gn = 0.14. The conservation of the crossing up to this value of the gain

is a proof of the strong coupling regime between these modes despite the added

gain.

The poles of the S-matrix plotted in the complex plane (αR, αI) move as a

function of the gain. First, the poles corresponding to the hybrid coupled modes

move down until reaching the real axis, when gn = 0.14. Then, these poles do not

evolve anymore, whereas the poles for the SPu mode move towards a minimum

of absorption, before a new increase of the losses with a decreasing propagation

constant (as is confirmed with the dispersion curve).

Fig. 4.32 represents the map of the field obtained with an incident evanescent

beam for observing the spatial oscillations, for a gain gn = 0.1031 at the wavelength

λl = 421.5 nm. The metallic permittivity εm is taken from the Palik data [81].

The energy of the hybrid guided mode is transferred with an amplified dielectric

separating medium to the hybrid plasmon. The period of the oscillations increases
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Figure 4.30: Absorption curves of the complete device as a function of the gain in the dielectric
layer between the two strongly coupled modes. First, the crossing moves towards lower values of
the absorption up to a normalized gain gn = 0.14. Then, the absorption curve of the SPu mode
also moves towards lower values of the absorption.
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Figure 4.31: Poles of the S-matrix of the complete device in the strong coupling, as a function
of the gain in the dielectric layer between the two strongly coupled modes. The hybrid guided
mode GMc and the hybrid surface mode SPd,c are noted 1 and 2 without gain, respectively.
The upper surface mode SPu is noted 3. First, the poles corresponding to the hybrid coupled
modes move down until attaining the real axis when gn = 0.14. Then, these poles do not move
anymore, whereas the poles for the SPu mode move towards a minimum of absorption, before a
new increase of the losses, with a decreasing propagation constant.
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Figure 4.32: Map of the field obtained with an incident evanescent beam to observe the spatial
oscillations for a gain gn = 0.1031 at the wavelength λl = 421.5 nm. The metallic permittivity
εm is taken from the Palik data [81]. The energy of the hybrid guided mode is transferred with
an amplified dielectric separating medium to the hybrid plasmon. The period of the oscillations
is Ts,a = 2.6 µm.

to Ts,a = 2.6 µm, whereas the spatial oscillations with the Palik data for the metal

rapidly vanish without gain (Fig. 4.21). The amplitude of the field corresponding

to the hybrid plasmon becomes greater than the amplitude of the hybrid guided

mode, which is coherent with a greater propagation length in this configuration.

The results obtained in Figs. 4.26, 4.25, 4.28 and 4.27 are with a constant value

of the wavelength (421.5 or 405 nm). If we consider Fig. 4.30, we see that at a

given value of frequency, we do not follow the crossing of the absorption curves.

The two successive peaks in the plot of the propagation length as a function of

the added gain also correspond to both quasi-coupled modes which have different

values of propagation constant.

Fig. 4.33 shows the propagation length δ of the hybrid modes as a function of

the gain in the layer between both strongly coupled modes when the wavelength

changes with the crossing of the absorption curves as a function of the added

gain. We find that the propagation length increases until the value we consider

as the limit in the plot of the poles in the complex plane (Fig. 4.31), gn = 0.14.

The propagation length for the hybrid plasmon is δSPd,c
= 1237 µm. Fig. 4.34

represents the map of the field obtained with an incident evanescent beam for

observing the spatial oscillations, for a gain gn = 0.14 at the wavelength λl = 409

nm, the corresponding value of the wavelength to the crossing of the absorption
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Figure 4.33: The propagation length δ of the hybrid modes as a function of the gain in the
layer between both strongly coupled modes when the wavelength corresponds to the crossing of
the absorption curves as a function of the added gain. The maximum of the propagation lengths
are at the same value of the propagation constant, δSPd,c

= 1237 µm.

curves. After this critical value, the gain starts to enhance the emission of the SPu

mode (Fig. 4.30).

4.4.3 Adding gain without a strong coupling device

The necessity of a device, which allows a strong coupling regime, is demonstrated

with the plot of the propagation length as a function of the gain in two cases:

firstly, an incident medium with a permittivity εd and a layer of thickness ed with

a permittivity ε = εd− i∗gn deposited directly against the metallic layer; secondly,

an incident medium directly with the gain, ε = εd − i ∗ gn against the metallic

layer. The results are summarized in Table 4.4. In both cases, the increase of

the propagation length for the SPd mode is not comparable to the result obtained

with the complete waveguide in strong coupling regime.

In conclusion, we demonstrate the possibility to enhance the SP emission in

the strong coupling regime with added gain. Next, the necessity of the strong

coupling configuration for obtaining this improvement has also been demonstrated.

It is important to note that the surface plasmon SPd is not the most efficient

type of plasmon we can obtain in the visible range3, because it is taken too high

on the dispersion curve. However, it is easy to observe with these characteristic

3as compared to the SP in the air for a wavelength λ = 633 nm)
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Figure 4.34: Map of the field obtained with an incident evanescent beam to observe the spatial
oscillations for a gain gn = 0.14 at the wavelength λl = 409 nm, the corresponding value of the
wavelength to the crossing of the absorption curves.

ed λ δSPu
gn

100 nm 421.5 nm 3.38 µm gn = 0.15
110 nm 405 nm 36.1 µm gn = 0.12

no ed 421.5 nm 3.9 µm gn = 0.15
no ed 405 nm 12.9 µm gn = 0.11

Table 4.4: Maximum of the propagation lengths of SPd,c as a function of the gain without the
dielectric waveguide (no layer with εg = 4.84) and for the notable wavelengths λl = 421.5 nm
(with ed = 100 nm) and λh = 405 nm (with ed = 110 nm). The dielectric permittivity of the
dielectric layer is changed as εd = 2.1025− i∗gn. Then, the dielectric permittivity of the incident
medium is changed in the same way without a layer before the metal.

distances. The result is still instructive for imagining device for enhancing the

SP emission such as the surface plasmon amplification by stimulated emission of

radiation (SPASER) [43, 44].



Conclusion

This work dealt with the theoretical and numerical study of the strong coupling

between surface plasmons and guided modes with added gain in different layers of

the complete stratified structure. We have focused on the phenomenon of coupling

in different cases and, in the last chapter, specifically on the strong coupling regime.

More precisely, the coupling between two surface plasmons has been recalled in

order to present a new device that allows the excitation of a long range surface plas-

mon without a symmetric medium. Currently, this structure can be experimentally

achieved in the terahertz range of frequencies where metal has the behavior of a

perfect electric conductor, and a doped semiconductor can take on the character-

istic of metal. The surface mode which lives at the interface between the doped

semiconductor and the vacuum is a classical long range surface plasmon.

Better understanding of the coupling was made possible with the presenta-

tion of the case of two coupled dielectric waveguides, with the application of the

coupled-mode theory in the transverse electric and transverse magnetic polariza-

tions. The special case of the PT symmetry was also presented.

The strong coupling regime is defined in the simple case of two coupled oscil-

lators with the characteristic anticrossing of the dispersion curves, as compared to

the weak regime. The strong coupling regime between a plasmon and a guided

mode has been demonstrated. This regime is highlighted by both the dispersion

and absorption curves that were numerically obtained. Special care was given to

determinating the absorption curves. The usual approaches (Newton-like meth-

ods) being inefficient, we developed - after [48] - a version of the tetrachotomy

algorithm which is derived from Cauchy’s integral theorem.

We also demonstrated that the strong coupling regime enables to increase the

propagation length of the created hybrid surface plasmon mode, which is still a

very confined mode on the metallic surface. The last step involved putting gain

129
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into different layers of the structure. We demonstrated that gain directly added

into the core of the waveguide does not really enhance the plasmon emission in

comparison to the guided mode. However, gain in the layer that separates the two

strongly coupled modes greatly improves the propagation length of the two hybrid

modes. We finally obtained a hybrid surface plasmon with a propagation length

superior to 6 mm and a very satisfactory confinement of 50 nm on the metallic

surface.

These results were obtained in the visible range of frequencies and can be easily

reproduced in other frequency ranges with other materials. For a given structure,

those are the properties, and more precisely the dispersion relation of the surface

plasmon, which impose the other parameters such as the distance of the SP mode

from the core of the dielectric waveguide or the thickness of this core, in order to

obtain the coupling.

This work can be extended to the numerical and experimental observations of

an excited long range surface plasmon on a doped semiconductor layer, deposited

on a metal in the terahertz range of frequencies. But the most important goal is

the continuation of the work concerning the enhancement of the SP emission. An

interesting approach would be to use the Maxwell-Bloch equations so as to take into

account the gain medium [197, 198, 199, 200] and allow a more physical result. This

system of equations is often used in the computation of lasing phenomena. When

an experimental realization of a SPASER is made with spherical nanoparticles

[44], the present approach gives new possibilities for the creation of a SPASER

in stratified media that could have more practical use. Finally, we carried out

the study of Maxwell-Bloch equations in one dimension with a Crank-Nicolson

algorithm [201]. However, the study has to be extended to two dimensions [202]

for it to be applicable in the strongly coupled structure.



Appendix A

2D dispersive FDTD

Classical studies concerning the Finite-Difference Time-Domain (FDTD) method

are also published by A. Taflove [203] or D. M. Sullivan [204]. Sullivan’s book gives

an excellent starting reference to learn this method.

We begin by recalling Maxwell’s equations with the flux density D in the fre-

quency domain. The equations for the fields E and B are very similar but the

presence of the coefficients ε0 and µ0 implies a difference of several orders of mag-

nitude. We also consider the following change of variables:

Ẽ =

√

ε0
µ0

· E, (A.1)

D̃ =

√

1

ε0µ0

·D. (A.2)

And Maxwell’s equations can be written as:

∂D̃

∂t
=

1√
ε0µ0

∇×H, (A.3)

D̃(ω) = ε∗r(ω) · Ẽ(ω), (A.4)

∂H̃

∂t
= − 1√

ε0µ0

∇× E. (A.5)

For two-dimensional simulation, we have to choose between the transverse mag-
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netic (TM) modes and the transverse electric (TE) modes. We will work only in

TM polarization, which is composed of Ẽx, Ẽy and H̃z, in order to always allow

the excitation of the surface plasmon mode. Maxwell’s equations are rewritten

with the fields noted as Ex, Ey and Hz :

∂tDx =
1√
ε0µ0

∂yHz, (A.6)

∂tDy = − 1√
ε0µ0

∂xHz, (A.7)

Dx(ω) = ε∗r(ω) · Ex(ω), (A.8)

Dy(ω) = ε∗r(ω) · Ey(ω), (A.9)

∂tHz =
1√
ε0µ0

(∂yEx − ∂xEy). (A.10)

The finite differencing method gives the following differential equations (Fig.

A.1):

Dn+1
x (i, j + 1/2)−Dn

x(i, j + 1/2)

∆t
=

1√
ε0µ0

[

H
n+1/2
z (i, j + 1)−H

n+1/2
z (i, j)

∆y

]

,

(A.11)

Dn+1
y (i+ 1/2, j)−Dn

x(i+ 1/2, j)

∆t
= − 1√

ε0µ0

[

H
n+1/2
z (i+ 1, j)−H

n+1/2
z (i, j)

∆x

]

,

(A.12)

H
n+1/2
z (i, j)−H

n−1/2
z (i, j)

∆t
= − 1√

ε0µ0

[

En
y (i+ 1/2, j)− En

y (i− 1/2, j)

∆x

]

+
1√
ε0µ0

[

En
x (i, j + 1/2)− En

x (i, j − 1/2)

∆y

]

.

(A.13)
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Figure A.1: Yee’s scheme: Interleaving of the E and H fields for the two-dimensional TM
formulation.

The time step

We consider that the cell size is the same in the two directions ∆x = ∆y = ∆l,

and the time step is noted ∆t. An electromagnetic wave propagating in vacuum

cannot go faster than the speed of light c. To propagate to a distance of one

cell requires a minimum time ∆t = ∆l/c. Obviously, two-dimensional simulation

requires ∆t = ∆l/
√
2 and three-dimensional simulation requires ∆t = ∆l/

√
3.

These conditions are summarized as the ”Courant condition”:

∆t ≤ ∆l√
nc

, (A.14)

with n the dimension of the simulation. To simplify our computations, we deter-

mine ∆t by:

∆t =
∆l

2c
. (A.15)

Therefore:
1√
ε0µ0

∆t

∆l
= c

(∆l/2)c

∆l
=

1

2
. (A.16)



134 APPENDIX A. 2D DISPERSIVE FDTD

We also replace the coefficient 1/
√
ε0µ0 by 1/2 in our computations.

Reformulation in the time domain

We rewrite these equations in the time domain. We also assume that we are dealing

with a lossy dielectric medium of the form:

ε∗r(ω) = εr +
σ

iωε0
, (A.17)

and substitute Eq. A.17 into Eq. A.4:

D(ω) = εr · E(ω) +
σ

iωε0
E. (A.18)

In the time domain:

D(t) = εr · E(t) +
σ

ε0

∫ t

0

E(t′) · dt′. (A.19)

The integral can be approximated as a summation over the time step ∆t:

Dn = εr · En +
σ∆t

ε0
En +

σ∆t

ε0

n−1
∑

i=0

Ei. (A.20)

Then:

En =
Dn − σ∆t

ε0

∑n−1
i=0 Ei

εr +
σ∆t
ε0

. (A.21)

We denote a new parameter for the summation:

In =
σ∆t

ε0

n−1
∑

i=0

Ei, (A.22)

and Eq. A.21 can be reformulated as:

En =
D

n−
σ∆t

ε0

∑n−1

i=0
Ei

εr+
σ∆t

ε0

,

In = In−1 +
σ∆t

ε0
En.

(A.23)
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The absorbing boundary condition

The FDTD computation is always in a ”close window”. Absorbing boundary con-

ditions are necessary to keep outgoing fields from being reflected back into the

problem space. To avoid this reflection, we have to add a layer known as a per-

fectly matched layer (PML).

To calculate the E field, we need to know the surrounding H values. At the

edge of the problem space, we do not have the value for one side but we also know

that there are no sources outside the problem space. Therefore, the fields at the

edge must be propagating outward.

We look for a boundary condition at the end where j = 0. The speed of a wave

which is propagating toward a boundary in free space, noted c, is the speed of light

in vacuum. Then, for one time step, the wave travels the following distance:

d = c ·∆t = c
∆l

2c
=

∆l

2
. (A.24)

In this case, the wave takes two time steps to cross one cell. An acceptable bound-

ary condition might be:

En
y (0) = En−2

y (1). (A.25)

This kind of PML is enough for us if the metallic film does not touch the

absorbing layer. The implementation of this PML in two dimensions is presented

in [204].

Dispersive media

The dielectric permittivity and the conductivity of most media vary at different

frequencies, as in the case of a metallic medium for which a Drude model has to

be implemented in the FDTD.

A very simple point of view is the following. Let us consider a medium in one

dimension for which the dielectric permittivity and the conductivity vary over a

given frequency range. The electric field is also noted E and the flux density D.

A classical formulation of its permittivity is the Debye formulation:

ε∗r(ω) = εr +
σ

iωε0
+

χ

1 + iωt0
. (A.26)
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In order to stimulate this medium, Eq. A.26 must be put into the time domain.

We also defined:

S(ω) =
χ

1 + iωt0
E(ω). (A.27)

In the time domain, Eq. A.27 in the frequency domain becomes the convolution:

S(t) =
χ

t0

∫ t

0

e−(t′−t)/t0E(t′) · dt′. (A.28)

The integral can be approximated as a summation over the time step ∆t:

Sn = χ · ∆t

t0

n
∑

i=0

e−∆t(n−i)/t0 · Ei

= χ · ∆t

t0

(

En +
n−1
∑

i=0

e−∆t(n−i)/t0 · Ei

)

,

(A.29)

and:

Sn−1 = χ · ∆t

t0

n−1
∑

i=0

e−∆t(n−1−i)/t0 · Ei

= χ · ∆t

t0
e∆t/t0

n−1
∑

i=0

e−∆t(n−i)/t0 · Ei.

(A.30)

Substituting this value into Eq. A.29 gives:

Sn = χ · ∆t

t0
· En + e−∆t/t0Sn−1. (A.31)

The flux density becomes:

Dn = εr · En + In + Sn

= εr · En +

[

σ ·∆t

ε0
· En + In−1

]

+

[

χ · ∆t

t0
· En + e−t/t0 · Sn−1

]

,
(A.32)

and the electric field can be written as:

En =
Dn − In−1 − e−∆t/t0Sn−1

εr +
σ·∆t
ε0

+ χ · ∆t
t0

, (A.33)
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with:

In = In−1 +
σ ·∆t

ε0
· En, (A.34)

Sn = e−∆t/t0Sn−1 + χ · ∆t

t0
· En. (A.35)

However, another possibility, more powerful, is the use of the Z transforms

for the FDTD formulation of dispersive media [204]. We start again with the

calculation of E in a Debye media, in one dimension. We begin in the frequency

domain:

D(ω) =

(

εr +
σ

iωε0
+

χ

1 + iωt0

)

· E(ω). (A.36)

In the Z domain, the flux density becomes directly:

D(z) = εr · E(z) +
σ ·∆t/ε0
1− z−1

· E(z) +
χ ·∆t/t0
1 + z−1

· E(z). (A.37)

This equation can be rewritten as:

D(z) = εr · E(z) + z−1I(z) +
σ ·∆t

ε0
E(z) + e−∆t/t0z−1S(z) +

χ ·∆t

t0
E(z), (A.38)

with:

I(z) =
σ ·∆t/ε0
1− z−1

· E(z) = z−1I(z) +
σ ·∆t

ε0
E(z), (A.39)

S(z) =
χ ·∆t/t0

1− e−∆t/t0z−1
· E(z) = e−∆t/t0z−1S(z) +

χ∆t

t0
E(z). (A.40)

The electric field is also:

E(z) =
D(z)− z−1I(z)− e−∆t/t0z−1S(z)

εr +
σ·∆t
ε0

+ χ · ∆t
t0

. (A.41)

The advantage of the Z transforms is that the summation in the time domain

only consists in replacing, for example, E(z) by En or z−1E(z) by En−1. Moreover,

we get exactly the same expressions for En, In and Sn without doing anything to

the integrals and their approximations.
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Metallic media

A metallic media can be implemented by starting with the Drude model for the

dielectric permittivity:

ε∗(ω) = 1−
ω2
p

ω(ω + iΓ)
, (A.42)

where Γ is the damping factor and ω2
p the plasma frequency. The expression of the

permittivity can also be written as:

ε∗(ω) = 1
ω2
p/Γ

iω
−

ω2
p/Γ

Γ + iω
. (A.43)

With the Z transforms, it becomes:

ε∗(z) =
1

∆t
+

ω2
p/Γ

1− z−1
−

ω2
p/Γ

1− e−Γ·∆tz−1
. (A.44)

The flux density is:

D(z) = ε∗(z) · E(z) ·∆t

= E(z) +
ω2
p∆t

Γ

[

(1− e−Γ·∆t)z−1

1− (1− e−Γ·∆t)z−1 + e−Γ·∆tz−2

]

E(z).
(A.45)

And the electric field is:

E(z) = D(z)− z−1S(z), (A.46)

S(z) = (1− e−Γ·∆t)z−1S(z)− e−Γ·∆tz−2 +
ω2
p∆t

Γ
(1− e−Γ·∆t)E(z), (A.47)

with:

S(z) =
ω2
p∆t

Γ

[

(1− e−Γ·∆t)

1− (1− e−Γ·∆t)z−1 + e−Γ·∆tz−2

]

E(z). (A.48)

The differential equations are written similarly to Eqs. A.11, A.12 and A.13.

Properties of the source wave

Next, we present the properties of the source wave we used. First, the temporal

confinement of the source wave can be obtained with a gaussian beam of the form:
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∝ ξy0

j

i∝ τ

Figure A.2: Diagram of the shape of the source wave depending on parameters τ (for the
temporal confinement), y0 and ξ (for the spatial confinement).

e

1

2





ndt− t0
τ





2

, (A.49)

where n is the step in our algorithm, dt is the time step and ndt gives the com-

putation time in seconds. The parameters t0 and τ must be of the same order of

size as the time step: t0 represents the delay in time as compared to the starting

time; τ characterizes the ”thickness” of the source wave (Fig. A.2).

In addition, to obtain a quasi-monochromatic beam, we use a sinus of the form:

sin(kxx+ kyy − ωt), (A.50)

where kx = k0∆l cos θ, ky = k0∆l sin θ and ω is the frequency of the source wave.

We always consider that ∆x = ∆y = ∆l = 5 nm and dt = ∆l/(2c). To

compute the strong coupling regime, we take ω corresponding to the anticrossing

of the dispersion curves and the angle θ corresponding to the excitation of the SP

mode, as a function of the dielectric permittivities of the structure.

For the spatial confinement of the source wave, we add the following exponen-

tial:

e−(1/ξ4)[y−y0]4 , (A.51)

where the parameter ξ allows to control the spatial spread of the wave (Fig. A.2).

Then, it is possible to demonstrate that we always have the following condition
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to compute a source wave:

λ ≥ 10∆l. (A.52)

Thus, the maximal frequency is fmax = c/(10∆l). This frequency gives the maxi-

mal value for which the fourier transformation of the incident field has to be equal

to zero. It is equivalent to say that we need ”enough sinus” in the envelope con-

taining the incident field to have a quasi-monochromatic incident beam (around

the frequency ω).
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