

Généralisation de la méthode Nitsche XFEM pour la discrétisation de problèmes d'interface elliptiques

Nelly BARRAU

sous la direction de R. Luce et E. Dubach Université de Pau et des Pays de l'Adour, Laboratoire de Mathématiques et leurs Applications de Pau, U.M.R. C.N.R.S. 5142.

Pau, le 10 octobre 2013

Image: A math a math

Introduction	Robustesse	Extensions	Applications	Perspectives

Motivations et Objectifs

Outils pour la capture et le traitement d'interfaces.

- 2D 3D,
- $\mathbb{P}^k \mathbb{Q}^k$,
- Différents types d'éléments finis,
- Différents types d'équations.

Introduction	Robustesse	Extensions	Applications	Perspectives

Plan de l'exposé

1 Introduction

(日) (個) (E) (E) (E) (E) 3/57

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 回

4/57

Introduction

- Illustration du principe de Nitsche
- Principe de la méthode NXFEM

Introduction	Robustesse	Extensions	Applications	Perspectives
Principe de Nitsche				

Laplacien avec condition de Dirichlet non homogène

$$\left\{ egin{array}{rl} -\bigtriangleup u &=& f & {
m dans}\;\Omega, \ u &=& g & {
m sur}\;\partial\Omega. \end{array}
ight.$$

Soit $V = H^1(\Omega)$.

$$\int_{\Omega} \nabla u . \nabla v \, dx - \int_{\partial \Omega} \frac{\partial u}{\partial n} v \, ds \qquad \qquad = \int_{\Omega} f v \, dx$$

<ロト < 部 ト < 臣 ト < 臣 ト 三 の Q () 5/57

Introduction	Robustesse	Extensions	Applications	Perspectives
Principe de Nitsche				

Laplacien avec condition de Dirichlet non homogène

$$\begin{cases} -\bigtriangleup u &= f & \text{dans } \Omega, \\ u &= g & \text{sur } \partial \Omega. \end{cases}$$

Soit $V = H^1(\Omega)$.

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\partial \Omega} \frac{\partial u}{\partial n} v \, ds - \int_{\partial \Omega} \left(\frac{\partial v}{\partial n} u \right) \, ds = \int_{\Omega} f v \, dx - \int_{\partial \Omega} \left(\frac{\partial v}{\partial n} g \right) \, ds.$$

 $\curvearrowright \mathsf{Sym\acute{e}trisation}$

Introduction	Robustesse	Extensions	Applications	Perspectives
Principe de Nitsche				

Laplacien avec condition de Dirichlet non homogène

$$\begin{cases} -\triangle u = f & \text{dans } \Omega, \\ u = g & \text{sur } \partial \Omega. \end{cases}$$

Soit $V = H^1(\Omega)$. On obtient la formulation variationnelle pour $u \in V$ et pour tout $v \in V$:

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\partial \Omega} \frac{\partial u}{\partial n} v \, ds - \int_{\partial \Omega} \left(\frac{\partial v}{\partial n} u + \gamma \, uv \right) \, ds = \int_{\Omega} fv \, dx - \int_{\partial \Omega} \left(\frac{\partial v}{\partial n} g + \gamma \, gv \right) \, ds.$$

 \curvearrowright Symétrisation $~\curvearrowright$ Stabilisation

$$[u](x) := u_{|\Gamma}^{\mathrm{in}}(x) - u_{|\Gamma}^{\mathrm{ex}}(x), \quad \{u\}_{\kappa}(x) := \kappa_{\mathrm{in}} u_{|\Gamma}^{\mathrm{in}}(x) + \kappa_{\mathrm{ex}} u_{|\Gamma}^{\mathrm{ex}}(x).$$

La méthode NXFEM est définie par la formulation variationnelle discrète suivante :

$$\begin{cases} \text{Trouver } u_h \in \mathbb{V}_h \text{ tel que }:\\ a_h(u_h, v_h) = l(v_h), \quad \forall v_h \in \mathbb{V}_h \end{cases}$$
(2)

A. Hansbo and P. Hansbo; An unfitted finite element method, based on Nitsche's method, for elliptic interface problems; 2002.

Introduction	Robustesse	Extensions	Applications	Perspectives
Méthode NXFEM				

La forme bilinéaire s'écrit

$$a_h(u_h, v_h) \quad := \quad \sum_{M \in \mathcal{K}_h^{in} \cup \mathcal{K}_h^{ex}} \int_M \mathfrak{K} \nabla u_h \cdot \nabla v_h \, dx - \sum_{S \in \mathcal{S}_h^{\Gamma}} \int_S \left\{ \partial_{n, \mathfrak{K}} u_h \right\}_{\kappa} \left[v_h \right] \, ds$$

(3)

8/57

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

et la forme linéaire :

$$I(v_h) := \int_{\Omega} fv_h \, dx + \int_{\mathcal{S}_h^{\Gamma}} g_N \{v_h\}_{\hat{\kappa}} \, ds \tag{4}$$

où
$$\partial_{n,\mathfrak{K}} \bullet := \mathfrak{K} \frac{\partial \bullet}{\partial n}$$

Introduction	Robustesse	Extensions	Applications	Perspectives
Méthode NXFEM				

La forme bilinéaire s'écrit

$$a_{h}(u_{h},v_{h}) := \sum_{M \in \mathcal{K}_{h}^{in} \cup \mathcal{K}_{h}^{ex}} \int_{M} \Re \nabla u_{h} \cdot \nabla v_{h} \, dx - \sum_{S \in \mathcal{S}_{h}^{\Gamma}} \int_{S} \left\{ \partial_{n,\mathfrak{K}} u_{h} \right\}_{\kappa} [v_{h}] \, ds$$
$$- \sum_{S \in \mathcal{S}_{h}^{\Gamma}} \int_{S} \left([u_{h}] \left\{ \partial_{n,\mathfrak{K}} v_{h} \right\}_{\kappa} \qquad ds,$$
(3)

et la forme linéaire :

$$I(v_h) := \int_{\Omega} fv_h \, dx + \int_{\mathcal{S}_h^{\Gamma}} g_N \{v_h\}_{\hat{\kappa}} \, ds - \int_{\mathcal{S}_h^{\Gamma}} g_D \left(\{\partial_{n,\hat{\kappa}} v_h\}_{\kappa} \, ds \, (4)\right)$$

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うくの

8/57

où $\partial_{\mathrm{n},\mathfrak{K}} \bullet := \mathfrak{K} \frac{\partial \bullet}{\partial n}$

Introduction	Robustesse	Extensions	Applications	Perspectives
Méthode NXFEM				

La forme bilinéaire s'écrit

$$a_{h}(u_{h},v_{h}) := \sum_{M \in \mathcal{K}_{h}^{i_{n}} \cup \mathcal{K}_{h}^{e_{x}}} \int_{M} \Re \nabla u_{h} \cdot \nabla v_{h} \, dx - \sum_{S \in \mathcal{S}_{h}^{\Gamma}} \int_{S} \left\{ \partial_{n,\mathfrak{K}} u_{h} \right\}_{\kappa} \left[v_{h} \right] \, ds$$
$$- \sum_{S \in \mathcal{S}_{h}^{\Gamma}} \int_{S} \left(\left[u_{h} \right] \left\{ \partial_{n,\mathfrak{K}} v_{h} \right\}_{\kappa} - \gamma \left[u_{h} \right] \left[v_{h} \right] \right) \, ds,$$
(3)

et la forme linéaire :

$$I(v_{h}) := \int_{\Omega} fv_{h} dx + \int_{\mathcal{S}_{h}^{\Gamma}} g_{N} \{v_{h}\}_{\hat{\kappa}} ds - \int_{\mathcal{S}_{h}^{\Gamma}} g_{D} \left(\{\partial_{n,\hat{\kappa}}v_{h}\}_{\kappa} - \gamma [v_{h}]\right) ds \quad (4)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□ ● ● ●

8/57

où $\partial_{\mathrm{n},\mathfrak{K}} \bullet := \mathfrak{K} \frac{\partial \bullet}{\partial n}$

Introduction	Robustesse	Extensions	Applications	Perspectives
Méthode NXFEM				

Choix de paramètres

$$\kappa_{\mathrm{in}} = rac{|K_{in}|}{|K|}, \quad \kappa_{\mathrm{ex}} = rac{|K_{ex}|}{|K|}, \quad \gamma := rac{4C \max\left\{\mathfrak{K}_{\mathrm{in}}, \mathfrak{K}_{\mathrm{ex}}
ight\}}{|K|} \quad (C > 0)$$

Quelques propriétés importantes :

- Coercivité de *a_h*,
- Formulation consistante,
- Orthogonalité de Galerkin,
- Estimations d'erreur.

Introduction	Robustesse	Extensions	Applications	Perspectives
Implémentation				

Librairie C++ Concha

Introduction	Robustesse	Extensions	Applications	Perspectives
Implémentation				

Principes

Aspects géométriques :

- repérage des cellules coupées,
- identification sous-domaines, caractéristiques,

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 回

11/57

Introduction	Robustesse	Extensions	Applications	Perspectives
Implémentation				
Principes				

Aspects géométriques :

- repérage des cellules coupées,
- identification sous-domaines, caractéristiques,

イロト イポト イヨト イヨト

Э

つへで 11/57

Aspects numériques :

• doublage des degrés de liberté,

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト … ヨ

12/57

• conditions de bord,

Aspects numériques :

• doublage des degrés de liberté,

12/57

• conditions de bord,

13/57

Robustesse

- Robustesse,
- 2 Estimation d'erreur a priori,
- 3 Estimation d'erreur a posteriori.

Introduction	Robustesse	Extensions	Applications	Perspectives
Paramètres robustes				
		4		
		K = K		
	<	-1 in -1 ex		
		<		
		17		
		$\widetilde{\mathbf{C}}$		
		$\boldsymbol{\mathfrak{I}}$		

< □ > < @ > < ≥ > < ≥ > ≥ ∽ < < 14/57

Introduction	Robustesse	Extensions	Applications	Perspectives
Paramètres robustes				
	<	K_{in} K_{ex} K S		
Choix de p	aramètres			
	$\kappa_{ m in} = rac{\mathfrak{K}_{ m ex} K_{ m in}}{\mathfrak{K}_{ m ex} K_{ m in} + \mathfrak{K}_{ m in}}$	$\frac{ }{ \kappa_{\mathrm{ex}} }, \qquad \kappa_{\mathrm{ex}} = \frac{1}{\mathfrak{K}_{\mathrm{ex}}}$	$rac{\mathfrak{K}_{\mathrm{in}} \mathcal{K}_{ex} }{ \mathcal{K}_{in} +\mathfrak{K}_{\mathrm{in}} \mathcal{K}_{ex} }$	
	$\gamma := C_{\overline{\mathfrak{K}}}$	$rac{\mathfrak{K}_{\mathrm{in}}\mathfrak{K}_{\mathrm{ex}} \mathcal{S} }{\mathrm{ex} \mathcal{K}_{\mathit{in}} +\mathfrak{K}_{\mathrm{in}} \mathcal{K}_{\mathit{ex}} }$ (C	> 0)	

Introduction	Robustesse	Extensions	Applications	Perspectives
Résultats Numériques				
Robustesse $\mathbb P$)1			

Considérons le problème (1), avec $g_D = g_N = 0$:

- $\bullet \ \Omega =]0,1[\times]0,1[$
- $\Gamma_{\xi} := \xi \times [0,1]$, $\xi \in \mathbb{R}$.,

$$\bullet~\mathfrak{K}_{\mathrm{in}}=0.1,~\mathfrak{K}_{\mathrm{ex}}=10000$$
 .

 $\mathsf{où}\ \partial^*_{n,\mathfrak{K}}\bullet := \left\{\partial_{n,\mathfrak{K}}\bullet\right\}_\kappa - \gamma \ [\bullet]\,.$

Introduction	Robustesse	Extensions	Applications	Perspectives
Estimation d'erreur a prior	i			

Estimation d'erreur a priori

Pour u_h solution du problème discret (2) et u solution du problème continu (1), on obtient les estimations d'erreur *a priori* suivantes :

$$|||u - u_h||| \le Cd_h ||u||_{2,\Omega_{\rm in} \cup \Omega_{\rm ex}}$$
(5)

et

$$\|u-u_h\|_{0,\Omega} \leq Cd_h^2 \|u\|_{2,\Omega_{\rm in}\cup\Omega_{\rm ex}}$$
(6)

où

$$\left|\left|\left|\phi\right|\right|\right|^{2} := \left\|\nabla\phi\right\|_{0,\Omega_{\mathrm{in}}\cup\Omega_{\mathrm{ex}}}^{2} + \left\|\left\{\nabla_{\mathbf{n}}\phi\right\}\right\|_{-1/2,h,\Gamma_{\mathbf{h}}}^{2} + \left\|\left[\phi\right]\right\|_{1/2,h,\Gamma_{\mathbf{h}}}^{2}$$

avec

$$\|\phi\|_{-1/2,h,\Gamma_h}^2 := \sum_{K \in \mathcal{K}_h^{\operatorname{cut}}} d_K \|\phi\|_{0,\Gamma_h}^2, \qquad \|\phi\|_{1/2,h,\Gamma_h}^2 := \sum_{K \in \mathcal{K}_h^{\operatorname{cut}}} \frac{1}{d_K} \|\phi\|_{0,\Gamma_h}^2.$$

Introduction	Robustesse	Extensions	Applications	Perspectives
Estimateur d'erreur a post	eriori			

Considérons le problème (1), avec $g_D = g_N = 0$ et avec une interface rectiligne/plane Γ .

Norme énergie

$$\left|\left|\left|u-u_{h}\right|\right|\right|_{h}^{2} := \left\|\mathfrak{K}^{1/2}\nabla(u-u_{h})\right\|^{2} + \sum_{\boldsymbol{s}\in\mathcal{S}_{h}^{\Gamma}}\gamma\left\|\left[u-u_{h}\right]\right\|^{2}$$

Estimation d'erreur a posteriori

Il existe une constante C indépendante du maillage et des coefficients $\mathfrak{K}_{\mathrm{in/ex}}$, telle que

$$|||u - u_h||| \le C \eta_h. \tag{7}$$

Introduction	Robustesse	Extensions	Applications	Perspectives
Estimateur d'erreur a post	eriori			

Estimateur d'erreur

$$\eta_h^2 := \sum_{\substack{M \in \mathcal{K}_h^{in} \cup \mathcal{K}_h^{ex}}} \eta_M^2 + \sum_{\substack{S \in \mathcal{S}_h^{in} \cup \mathcal{S}_h^{ex} \cup \mathcal{S}_h^{\Gamma}}} \eta_S^2 + \sum_{\substack{S \in \mathcal{S}_h^{\Gamma}}} \zeta_S^2.$$
(8)

avec

$$\eta_M^2 := \frac{d_K^2}{\Re} \|f + \operatorname{div}(\Re \nabla u_h)\|_M^2, \quad \eta_S^2 := d_S \| \left[\Re \frac{\partial u_h}{\partial n_S} \right] \|_S^2, \quad \zeta_S^2 := C \| [u_h] \|_S^2, \quad (9)$$

et

$$d_{\mathcal{S}} := \left\{ \begin{array}{cc} \frac{d_{\mathcal{K}}}{\mathfrak{K}} & \text{si } \mathcal{S} \cap \mathsf{\Gamma} = \emptyset, \\ \frac{|\mathcal{S}|}{|\hat{\mathcal{S}}| \min\{\mathfrak{K}_{\mathrm{in}}, \mathfrak{K}_{\mathrm{ex}}\}} & \text{sinon.} \end{array} \right.$$

<ロト < □ ト < □ ト < 三 ト < 三 ト 三 の Q () 19/57

Introduction	Robustesse	Extensions	Applications	Perspectives
Implémentation				

Procédure adaptative

Figure: Raffinement d'un maillage CC

<ロ > < 昂 > < 臣 > < 臣 > 三 の Q (や 20/57

Introduction	Robustesse	Extensions	Applications	Perspectives
Résultats numériques				

La solution exacte est donnée par

$$u(x,y) = \begin{cases} \frac{r^2}{\mathfrak{K}_{in}} & \text{si } r \leq r_0, \\ \\ \frac{r^2 - r_0^2}{\mathfrak{K}_{ex}} + \frac{r_0^2}{\mathfrak{K}_{in}} & \text{sinon,} \end{cases}$$
(10)

•
$$\Omega =] -1, 1[^2,$$

• $r := \sqrt{x^2 + y^2}, r_0 = 0.78,$

 $\bullet \ \mathfrak{K}_{\mathrm{in}} = 1 \ \text{et} \ \mathfrak{K}_{\mathrm{ex}} = 1000.$

22/57

Avec NXFEM

FEM classique

Introduction	Robustesse	Extensions	Applications	Perspectives

Extensions

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 回

24/57

Prise en compte de la dimension N, du degré d'approximation k, d'une interface quelconque :

- Éléments finis CG,
- éléments finis DG,
- Éléments finis NC.

interface quelconque :

Aspects géométriques :

- repérage des cellules coupées,
- identification sous-domaines, caractéristiques,

イロト イポト イヨト イヨト

25/57

Prise en compte de la dimension N, du degré d'approximation k, d'une interface quelconque :

Aspects géométriques :

- repérage des cellules coupées,
- identification sous-domaines, caractéristiques,

<ロト < 部 > < 目 > < 目 > 目 の Q () 26/57

Considérons le problème (1), avec $g_D = g_N = 0$ et une interface rectiligne/plane Γ .

(□) (@) (E) (E) (E)

27/57

- Ω =]0, 1[^N,
 x₀ = 0.71,
- $\Re_{in} = 1$, $\Re_{ex} = 1000$.

Figure: Norme énergie (gauche) et Erreur L^2 (droite) sur un maillage triangulaire

Figure: Norme énergie (gauche) et Erreur L^2 (droite) sur un maillage quadrangulaire

A B + A B +
 A
 B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

30/57

Figure: Norme énergie/Erreur L^2 (gauche) et coupe de la solution (droite) sur un maillage hexaédrique

Considérons le problème (1), avec $g_D = g_N = 0$ et avec une interface Γ courbe.

・ロト ・ ア・ ・ ヨ・ ・ ヨ・ ク

31/57

•
$$\Omega =]-1, 1[^N,$$

• $r := \sqrt{x_1^2 + ... + x_N^2}, r_0 = 0.74,$
• $\Re_{in} = 1$ et $\Re_{ex} = 1000.$

Figure: \mathbb{P}^2 sur maillage CC - \mathbb{Q}^2 sur maillage quadrangulaire

Introduction	Robustesse	Extensions	Applications	Perspectives
Analyse $\mathbb{P}^{m{k}}-\mathbb{Q}^{m{k}}$				

Analyse pour interface rectiligne/plane

$$CG_h := \left\{ v_h \in C(\overline{\Omega}), v_h|_{\mathcal{K}} \circ \mathcal{F}_{\mathcal{K}} \in R^k(\mathcal{K}) \ \forall \mathcal{K} \in \mathcal{K}_h \right\},$$

et

$$\mathbb{V}_h := \{ v_h |_{\Omega_{\mathrm{in}}} + w_h |_{\Omega_{\mathrm{ex}}}, \ v_h, w_h \in CG_h \}.$$

Pour $u_h, v_h \in \mathbb{V}_h$, on définit la forme bilinéaire :

$$\begin{aligned} a_h(u_h, v_h) &= \sum_{M \in \mathcal{K}_h^{in} \cup \mathcal{K}_h^{ex}} \int_M \mathfrak{K} \nabla u_h \cdot \nabla v_h \, dx - \sum_{S \in \mathcal{S}_h^{\Gamma}} \int_S \left\{ \partial_{n, \mathfrak{K}} u_h \right\}_{\kappa} \, [v_h] \, ds \\ &- \sum_{S \in \mathcal{S}_h^{\Gamma}} \int_S \left[u_h \right] \left(\left\{ \partial_{n, \mathfrak{K}} v_h \right\}_{\kappa} - \gamma \, [v_h] \right) \, ds, \end{aligned}$$

et la forme linéaire :

$$I(v_{h}) = \int_{\Omega} fv_{h} dx + \int_{\mathcal{S}_{h}^{\Gamma}} \left(g_{N} \{ v_{h} \}_{\hat{\kappa}} - g_{D} \left(\{ \partial_{n, \hat{\kappa}} v_{h} \}_{\kappa} - \gamma \left[v_{h} \right] \right) \right) ds.$$

33/57

IntroductionRobustesseExtensionsApplicationsPerspectiveAnalyse
$$\mathbb{P}^k - \mathbb{Q}^k$$
Coercivité de a_h Pour γ_S pris suffisamment grand, la forme bilinéaire $a_h(\cdot, \cdot)$ est coercive $a_h(v_h, v_h) \ge C |||v_h|||^2$, $\forall v_h \in \mathbb{V}_h$, (11)dans l'espace discret \mathbb{V}_h muni de la $||| \cdot |||$ -norme suivante : $|||\phi|||^2 := ||\nabla \phi||^2_{0,\Omega_{in} \cup \Omega_{ex}} + || \{\nabla_n \phi\} ||^2_{-1/2,h,\Gamma_h} + || [\phi] ||^2_{1/2,h,\Gamma_h}, (12)$ avec $||\phi||^2_{-1/2,h,\Gamma_h} := \sum_{K \in \mathcal{K}_h^{cut}} d_K ||\phi||^2_{0,\Gamma_h}, ||\phi||^2_{1/2,h,\Gamma_h} := \sum_{K \in \mathcal{K}_h^{cut}} \frac{1}{d_K} ||\phi||^2_{0,\Gamma_h}.$ Pour conserver la stabilité et la robustesse de notre méthode, cette constante C

doit être indépendante de la géométrie employée et de la position de l'interface.

Inégalité inverse

Il existe $C_I > 0$ telle que pour tout $v_h \in \mathbb{V}_h$, nous avons :

$$\|\{\nabla_{n}v_{h}\}\|_{-1/2,h,\Gamma_{h}}^{2} \leq C_{I}\|\nabla v_{h}\|_{0,\Omega_{\mathrm{in}}\cup\Omega_{\mathrm{ex}}}^{2}.$$
(13)

Inégalité inverse pour un N-simplexe

Soit *D* un N-simplexe, *S* l'un de ces bords. On a $\forall u \in \mathbb{P}_N^k(D)$:

$$||u||_{\mathcal{S}} \leq \sqrt{rac{(k+1)(k+N)}{N}rac{|S|}{|D|}} ||u||_{D}$$

T. Warburton and J. S. Hesthaven ; *On the constants in hp-finite element trace inverse inequalities* ; 2003.

35/57

Inégalité inverse pour un N-simplexe

Soit D un N-simplexe, S l'un de ces bords. On a $\forall u \in \mathbb{Q}_{N}^{k}(D)$:

$$||u||_{\boldsymbol{S}} \leq \sqrt{\frac{(N \times k + 1) (N \times k + N)}{N} \frac{|S|}{|D|}} ||u||_{D}$$

36/57

3

⇔ Retour à l'élément de référence,

⇔ Équivalence de normes :

$$\exists c(k,\hat{K}): \|\hat{p}_h\|_{\infty,\hat{K}}^2 \leq c(k,\hat{K}) \|\hat{p}_h\|_{0,\hat{K}}^2.$$

 \Rightarrow But : Triangulation de \hat{K}_i telle que $|\hat{K}_i| \leq C \times |\hat{T}_i| \leq |\hat{K}|$.

 \Rightarrow Hypothèses de régularité du maillage et de l'interface $|\Gamma_h| \leq d_K$ et $|K| \geq C d_K^2$

Introduction	Robustesse	Extensions	Applications	Perspectives
Analyse $\mathbb{P}^{m{k}} - \mathbb{Q}^{m{k}}$				

Élément d'analyse en bord courbe

Hypothèse

Soit Γ une interface régulière. Pour tout $K \in \mathcal{K}_h$, on note $\hat{\Gamma}$

$$\hat{\Gamma} = (F_{\kappa})^{-1} (\Gamma).$$

 $\hat{\Gamma}_h$ est l'approximation de degré k de $\hat{\Gamma}$. Enfin, Γ_h est définie par

$$\Gamma_h = F_K \left(\hat{\Gamma}_h \right).$$

Ex. Soit Γ une discontinuité régulière, et k = 2.

Inégalité inverse pour un (polytope) convexe

Soit D un (polytope) convexe en dimension N et S l'un de ces bords. Soit $p : \mathbb{R}^N \to \mathbb{R}$ un polynôme de degré inférieur ou égal à k. Alors

$$\|p\|_{0,S} \le C_1 \, \frac{|S|^{1/2}}{|D|^{1/2}} \, \|p\|_{0,D},\tag{14}$$

où $C_1 > 0$ dépend seulement du degré k et de la dimension N.

• K_i^{\sharp} l'enveloppe convexe de K_i ,

•
$$\tilde{K}_i := K_i^{\sharp} \setminus K_i$$
.

Hypothèse sur \tilde{K}_i

On suppose qu'il existe $0 < \alpha < 1$ tel que $\forall h > 0$ et $\forall K \in \mathcal{K}_{h}^{cut}$:

$$\frac{|\tilde{K}_i|}{|K_i^{\sharp}|} \leq \frac{\alpha}{C_1^2}, \qquad i = in/ex.$$

Introduction	Robustesse	Extensions	Applications	Perspectives
Galerkin Discontinu				
<u> </u>				

Sans interface

Problème modèle DG

$$\begin{cases} div (-\Re \nabla u) = f & \text{dans } \Omega, \\ u = 0 & \text{sur } \partial \Omega. \end{cases}$$
(15)

Soit DG_h défini par

$$DG_{h} := \left\{ v_{h} \in L^{2}(\Omega), v_{h}|_{K} \circ \mathcal{F}_{K} \in \mathbb{R}^{k}(K), \forall K \in \mathcal{K}_{h} \right\}.$$
(16)

La formulation variationnelle discrète de (15) est :

$$\begin{cases} \text{Trouver } u_h \in DG_h \text{ tel que }:\\ a_h(u_h, v_h) = l(v_h), \quad \forall v_h \in DG_h \end{cases}$$
(17)

Introduction	Robustesse	Extensions	Applications	Perspectives
Galerkin Discontinu				

Pour $u_h, v_h \in DG_h$, on définit la forme bilinéaire par :

$$\begin{aligned} a_h(u_h, v_h) &:= \sum_{K \in \mathcal{K}_h} \int_K \mathfrak{K} \nabla u_h \cdot \nabla v_h \, dx \\ &- \sum_{S \in \mathcal{S}_h^{int}} \int_S \left([u_h] \left\{ \partial_{n, \mathfrak{K}} v_h \right\} + \left\{ \partial_{n, \mathfrak{K}} u_h \right\} [v_h] - \gamma_{int} \left[u_h \right] [v_h] \right) \, ds, \end{aligned}$$

et la forme linéaire par

$$l(v_h):=\int_\Omega fv_h\,dx.$$

▲ロト ▲御ト ▲注ト ▲注ト 注 の

42/57

Introduction	Robustesse	Extensions	Applications	Perspectives
Galerkin Discontinu				
NXFEM				

Reprenons le problème modèle (1).

La méthode NXFEM est définie par la formulation variationnelle discrète suivante :

$$\begin{cases} \text{Trouver } u_h \in \mathbb{V}_h \text{ tel que }:\\ a_h(u_h, v_h) = l(v_h), \quad \forall v_h \in \mathbb{V}_h \end{cases}$$
(18)

43/57

où

$$\mathbb{V}_h := \left\{ v_h |_{\Omega_{\mathrm{in}}} + w_h |_{\Omega_{\mathrm{ex}}}, \ v_h, w_h \in DG_h \right\}.$$

Introduction	Robustesse	Extensions	Applications	Perspectives
Galerkin Discontinu				

Pour $u_h, v_h \in \mathbb{V}_h$, on définit la forme bilinéaire par :

$$a_h(u_h, v_h) := \sum_{M \in \mathcal{K}_h^{in} \cup \mathcal{K}_h^{ex}} \int_M \mathfrak{K} \nabla u_h \cdot \nabla v_h \, dx$$

$$-\sum_{\boldsymbol{S}\in\mathcal{S}_{\boldsymbol{h}}^{in}\cup\mathcal{S}_{\boldsymbol{h}}^{ex}}\int_{\boldsymbol{S}}\left(\left[u_{h}\right]\left\{\partial_{n,\vec{n}}v_{h}\right\}+\left\{\partial_{n,\vec{n}}u_{h}\right\}\left[v_{h}\right]-\gamma_{int}\left[u_{h}\right]\left[v_{h}\right]\right)\,ds$$

$$-\sum_{\boldsymbol{S}\in\mathcal{S}_{\boldsymbol{h}}^{\Gamma}}\int_{\boldsymbol{S}}\left(\left[u_{\boldsymbol{h}}\right]\left\{\partial_{\boldsymbol{n},\boldsymbol{\mathfrak{K}}}\boldsymbol{v}_{\boldsymbol{h}}\right\}_{\boldsymbol{\kappa}}+\left\{\partial_{\boldsymbol{n},\boldsymbol{\mathfrak{K}}}\boldsymbol{u}_{\boldsymbol{h}}\right\}_{\boldsymbol{\kappa}}\left[\boldsymbol{v}_{\boldsymbol{h}}\right]-\gamma\left[u_{\boldsymbol{h}}\right]\left[\boldsymbol{v}_{\boldsymbol{h}}\right]\right)\,d\boldsymbol{s},$$
(19)

et la forme linéaire :

$$I(v_h) := \int_{\Omega} fv_h \, dx + \int_{\mathcal{S}_h^{\Gamma}} g_N \{v_h\}_{\hat{\kappa}} \, ds - \int_{\mathcal{S}_h^{\Gamma}} g_D \left(\{\partial_{n,\hat{\kappa}} v_h\}_{\kappa} - \gamma [v_h]\right) \, ds \quad (20)$$

Introduction	Robustesse	Extensions	Applications	Perspectives
Galerkin Discontinu				
Résultats nu	mériques			

Considérons le problème (1), avec $g_D = g_N = 0$ et avec une interface rectiligne/plane Γ .

•
$$\Omega =]0,1[^N,$$

•
$$\Re_{in} = 1$$
, $\Re_{ex} = 1000$.

Introduction	Robustesse	Extensions	Applications	Perspectives
Galerkin Discontinu				

Figure: Norme énergie (gauche) et Erreur L^2 (droite) pour des éléments finis DG \mathbb{P}^k sur un maillage CC

Introduction	Robustesse	Extensions	Applications	Perspectives
Galerkin Discontinu				

Figure: Norme énergie (gauche) et Erreur L^2 (droite) pour des éléments finis DG \mathbb{Q}^k sur un maillage quadrangulaire

48/57

Applications

- Prise en compte de plusieurs interfaces,
- Problème asymptotique,
- Operation Problème instationnaire (interface fixe),
- Problème de diffusion-convection.

Introduction	Robustesse	Extensions	Applications	Perspectives
Multi-Interfaces				
Implémentat	ion			

 ${\scriptstyle \textcircled{O}}$ Gestion des interfaces : Aspects géométriques et numériques individuellement,

2 Identification globale des sous-domaines :

Introduction	Robustesse	Extensions	Applications	Perspectives
Multi-Interfaces				
Implémenta	tion			

- ${\scriptstyle \textcircled{1}}$ Gestion des interfaces : Aspects géométriques et numériques individuellement,
- 2 Identification globale des sous-domaines :

- ndisc nombre de discontinuités,
- f_{idisc} description implicite de Γ_{idisc} ,
- $(f_{ndisc}(M), ..., f_0(M))$ ndisc-uplet de valeurs 0 ou 1.

イロト イポト イヨト イヨト

Introduction	Robustesse	Extensions	Applications	Perspectives
Multi-Interfaces				

Résultats numériques

$$\begin{cases} div (-\Re \nabla u) = 0 & dans \bigcup_{i=1}^{4} \Omega_{i}, \\ u = 0 & sur \partial \Omega_{d}, \\ \Re \nabla_{n} u = 0 & sur \partial \Omega_{n}, \\ [u] = 0 & sur \bigcup_{i=1}^{3} \Gamma_{i}, \\ [\Re \nabla_{n} u] = 0 & sur \bigcup_{i=1}^{4} \Gamma_{i} \\ avec \end{cases}$$

$$\Omega =]-1; +1[^{3}, \qquad \qquad \hat{\kappa} = \begin{cases} 1000 & \text{ sur } \Omega_{1}, \\ 10000 & \text{ sur } \Omega_{2} \\ 1 & \text{ sur } \Omega_{3}, \\ 10 & \text{ sur } \Omega_{4}. \end{cases}$$

.

Figure: Tranche de la solution et des interfaces (gauche) et Coupe (droite)

Introduction	Robustesse	Extensions	Applications	Perspectives
Problème instationnaire				

Problème modèle

$$\begin{cases} \Phi \frac{\partial u}{\partial t} - div \left(\Re \nabla u \right) &= f & \text{dans } \Omega^{\mathcal{T}} := \left(\Omega_{\text{in}} \cup \Omega_{\text{ex}} \right) \times \left] 0; \mathcal{T} \right[, \\ u(t, .) &= 0 & \text{sur } \Sigma^{\mathcal{T}} := \partial \Omega \times \left] 0; \mathcal{T} \right[, \\ \left[u \right] &= 0 & \text{sur } \Gamma^{\mathcal{T}} := \Gamma \times \left] 0; \mathcal{T} \right], \\ \left[\Re \nabla_{n} u \right] &= 0 & \text{sur } \Gamma^{\mathcal{T}}, \\ u(0, .) &= u_{0} & \text{dans } \Omega_{\text{in}} \cup \Omega_{\text{ex}}. \end{cases}$$
(21)

Pour $u_h, v_h \in \mathbb{V}_h$, on définit la forme bilinéaire par :

$$a_{h}^{t}(u_{h},v_{h}) := \int_{\Omega} \Phi \, \frac{u_{h}^{n+1}}{\triangle t} \, v_{h} \, dx \, + \, a_{h}(u_{h}^{n+1},v_{h}), \tag{22}$$

et la forme linéaire s'écrira :

$$I^{t}(v_{h}) := \int_{\Omega} \Phi \, \frac{u_{h}^{n} \, v_{h}}{\bigtriangleup t} \, dx \, + \, I(v_{h}), \tag{23}$$

<□ ト < 部 ト < 注 ト < 注 ト 注 の Q () 52/57

Introduction	Robustesse	Extensions	Applications	Perspectives
Problème instationnaire				

Résultats Numériques

<ロト < 部 > < 目 > < 目 > 三 の Q () 53/57

Perspectives

- Approfondissement de l'analyse
- 2 Développement d'outils et d'applications

- Estimateur d'erreur a posteriori : démonstration, optimisation, extensions...,
- £ matriciel.

イロト イポト イモト イモト 一日

55/57

• Analyse en NC.

Development of a state of the sectors	Introduction	Robustesse	Extensions	Applications	Perspectives
Developpement d outlis et d applications	Développement d'outils e	t d'applications			

NXFEM en milieu poreux : écoulements multiphasiques, réservoirs fracturés Slit problème, problèmes avec croisements d'interfaces, volumes finis (NXFV)

NXFEM en biologie : *modélisation de globules rouges* équations de Navier-Stokes, problèmes avec *interfaces mobiles*, éléments finis / modèles différents sur chaque domaine roduction

Merci pour votre attention

<ロト < 部 > < 目 > < 目 > 三 の Q (~ 57/57