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Introduction

The modeling of stochastic dependence is an old subject both in theoretical and ap-
plied probability and statistics. From a statistical point of view, the pioneers were Pearson
(1857-1936) and Spearman (1863-1945), who introduced the concept of coefficient of cor-
relation to quantify by a scalar value the link between the joint measurement of two
quantities.

It is known from the elementary course in probability that the behaviour of a random
vector is given by its joint distribution function, and not only by the collection of its
marginal distribution functions. But when it comes to model real life random systems, or
to assess the robustness of an industrial system, the engineering practices are sometimes
quite far away from the theory. The joint distribution is either obtained from the marginal
distributions and the strong hypothesis of independent components, or the modelling is
restricted to the most classical multivariate distributions (Gaussian vectors, multinomial
distribution). To make things clear, we give an introduction to dependence modeling in
Chapter 1. There is no original material in this chapter, but it gives the basis to all
the other chapters. In particular, it defines the notion of copula, which is exactly the
mathematical object that represents fully the dependence structure of a random vector
with absolutely continuous marginal distributions, which will be the setting of all the
manuscript but the last chapter.

In the field of probabilistic uncertainty management, the objective is to quantify several
performance criteria related to a given system based on the ouput Y of a numerical model
g of this system and a probabilistic modeling of a set of uncertain parameters of this
model, grouped into a random vector X, and such that:

Y = g(X) (1)

Formally, the aim of the probabilistic uncertainty management is to gain knowledge
on the joint distribution of Y based on the knowledge of g and the distribution of X.
Typical performance criteria are the evaluation of probabilities of failure P (Y ∈ B) for
given events B that characterize the behaviour of a complex system.

A common belief in uncertainty management is that the full knowledge of the exact
joint distribution function may not be needed to compute eg. probabilities of failure, as
the decision making is mainly done based on the order of magnitude of these probabilities
rather than their exact value.

Another belief is that the joint distribution of a set of random variables is out of reach
of the practitioner, mainly due to the lack of statistical data. In this case, the probabilistic
modeling is either to consider independent random variables (which is a particular case of
dependence), or to summarize the dependence into a set of scalars, most of the time a set
of linear correlation coefficients.

As a result of these beliefs, any method able to compute a probability of failure based
on marginal information and partial dependence information should provide a meaningful
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result. But it should question people! From a methodological point of view, what is
the point of spending a lot of efforts in the definition of g, which is most of the time a
computationaly intensive simulation software based on the numerical integration of several
coupled partial differential equations that needed a tremendous amount of development
and validation work, if one try to quantify Y based only on a poor modeling of X? From
a probabilistic point of view, if there exists a procedure able to compute P (Y ∈ B) for any
Borelian set B and any measurable function g, based only on a partial description of the
joint distribution function of X, then the missing information is hidden in the procedure!
For a given x ∈ Rn, if we take B = {1}, g(s) = ✶s1≤x1,...,sn≤xn , then the procedure
computes P (X1 ≤ x1, . . . , Xn ≤ xn) for any x ∈ Rn. It is exactly the evaluation of the
joint distribution of X at x, which was supposed to be unknown!

The first belief must certainly be assessed by at least some experimental studies, which
is precisely the aim of the work presented in Chapter 2. It appears that in some situations,
it may be possible to get a reasonable estimate of probabilities of failure for any joint
distribution function that reproduces the available information on marginal distributions
and dependence structure, but it is certainly not a generic situation, in particular it is
possible to build generic examples for which the value of a probability of failure varies
by several orders of magnitude while preserving both the marginal distributions and the
correlation matrix. This work has been published in [DL09].

From a statistical point of view, the second belief is mostly true if one work in high
dimension due to the well-known curse of dimensionality. But instead of hidding the
copula in the computational algorithm, it may be desirable to let the practioner choose
it explicitely. Even if there is no statistical evidence to assess it, at least the practitioner
knows exactly what he is computing. In this view, the use of the Nataf transformation is
a common practice to induce dependence amongst random variables with known marginal
distributions and known correlation matrix. The detailed analysis of this transformation
allows to make explicit the choice of dependence structure it induces and its consequences
on uncertainty quantification such as the evaluation of probabilities of failure. This work
is presented in Chapter 3, and has been published in [LD09c]

This analysis of the Nataf transformation allows also to generalize this transformation
to a broader class of copulas, leading to the generalized Nataf transformation. This analysis
is the occasion to present classical material such as the first and second order reliability
methods (FORM and SORM) and the notion of standard space in a slightly unusual way
that we think is more adapted to the mathematical analysis. This work is presented in
Chapter 4, and has been published in [LD09b].

Often presented as an alternative to the Nataf transformation, the Rosenblatt trans-
formation is another tool to express the probability of failure with respect to an arbitrary
distribution function for X as a probability of failure for an event involving a standard
multi-dimensional normal distribution. Most of the time, this transformation is mentioned
only to say that it needs the full definition of the joint distribution function, which is sup-
posed to be unreachable, and even if one knows this distribution function, the results of
the FORM and SORM approximations are dependent on the choice of conditioning order
involved in the definition of the Rosenblatt transformation. In Chapter 5, we study in
detail both the relationship between the Rosenblatt transformation and the Nataf trans-
formation and the effect of the conditioning order on the Rosenblatt transformation. In
particular, we show that both transformations are equal in the case of a joint distribution
with normal copula, which is the copula underlying the Nataf transformation as seen in
Chapter 3. We also study the possible extension of the Rosenblatt transformation in the
way the Nataf transformation has been generalized in Chapter 4. This work has been
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published in [LD09a].
In some applications, one has to model the joint distribution of a random vector with

given marginal distributions and with a physical constraint that must be satisfied almost
surely. A typical situation is when the components (or a strictly monotonic function
of the components) of the vector have to be ordered in a given way. This modeling
problem is made of two parts: what are the compatibility conditions between the marginal
distributions and the constraints, and for compatible marginal distributions, what are the
possible copulas? We study in details this situation in Chapter 5, for the case where it
is possible to reduce the modeling problem to the determination of the possible marginal
distributions and copulas for the joint distribution function of order statistics, a problem
that has not yet been addressed in the literature as far as we know. While the compatibility
conditions are well-known for the marginal distributions, the compatibility condition for
the copulas is new. As it excludes all the classical continuous copulas, we also present a
new family of bi-dimensional copulas well suited to this modeling situation. We prove the
existence and uniqueness of the copula with the largest possible support with reasonable
assumptions, and we give all the needed algorithmic details for an actual use of these
copulas in simulation. This work is presented in Chapter 6, and has been proposed for
publication in [LD].

The use of copulas to study the dependence structure of random vectors is particulary
relevant when the marginal distributions are continuous, as there is a one-to-one rela-
tion between copulas and joint distribution functions. For discrete distributions, things
are less clear. There is no unique copula associated to a given multivariate discrete dis-
tribution, and the transposition of habits gained in the continuous case to the discrete
case can lead to erroneous conclusions. As such, there is no clear gain to separate the
copula and the marginal distributions for models such as the multinomial distribution,
the multi-dimensional hypergeometric or multi-dimensional Pólya distributions. Despite
the tremendous amount of literature on these models, mainly due to their wide range of
application in many fields of probability and statistics, no efficient algorithm is available
to compute their joint distribution function (or more generally rectangular probabilities)
for high-dimensional applications. We develop such an algorithm and prove its efficiency
both theoretically and numericaly. This algorithm is presented in Chapter 7, and has been
published in [Leb12].

We give some insight of possible future work on dependence modeling in the conclu-
sion.





Chapter 1

Introduction to dependence
modeling

In this chapter, we recall the main results on dependence modeling that will be used
in the remainder of the thesis. The interested reader will find a detailed introdution to
this theory in [Nel06], [Joe97] and [ELM03], from which the results of this section have
been extracted.

The joint distribution function of a random vector plays a central role in the proba-
bilistic modeling as it fully describes the probability distribution of the phenomenon under
study. Such a function is defined by:

Definition 1.1. Let E = (Ω,B(Ω),P) be a given probability space, X a n-dimensional
random vector defined on E and taking values in Rn, µX the push forward probability
measure of P by X, i.e such that:

∀B ∈ B(Rn), µX(B) = P
(
X−1(B)

)

where B(Rn) is the Borel σ-field of Rn. The joint distribution function FX of X (or
simply its distribution function F if there is no confusion) is the function defined by:

FX : Rn → [0, 1]
x 7→ FX(x) = µX((−∞, x1] × . . .× (−∞, . . . , xn]) = P (X1 ≤ x1, . . . , Xn ≤ xn)

and when X is absolutely continuous, its density function pX is given by:

pX : Rn → R+

x 7→ pX(x) =
∂nFX(x)
∂x1 . . . ∂xn

and is such that:

FX(x) =
∫ xn

−∞
· · ·
∫ x1

−∞
pX(ξ) dξ1 . . .dξn

The next proposition gives some properties of a joint distribution function:

Proposition 1.2. Let FX be the joint distribution function of a n-dimensional random
vector X.

1. The function FX is n-increasing:

∀a, b ∈ Rn,
2∑

i1=1

· · ·
2∑

in=1

(−1)i1+...+inFX(ξi11 , . . . , ξ
in
n ) ≥ 0

with ∀j ∈ {1, . . . , n}, ξ1
j = aj and ξ2

j = bj.
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2. The function FX is right-continuous:

lim
x′

1
↓x1,...,x′

n↓xn
FX(x′) = FX(x)

and such that

lim
x1→+∞,...,xn→+∞

FX(X) = 1

3. ∀x ∈ Rn, the left limit of FX at x exists and is equal to P (X1 < x1, . . . , Xn < xn):

lim
x′

1
↑x1,...,x′

n↑xn
FX(x′) = P (X1 < x1, . . . , Xn < xn)

The interest of such a function is that it fully characterizes the distribution µX of X:

Theorem 1.3. The joint distribution function FX of a n-dimensional random vector X

characterizes its distribution µX : two n-dimensional random vectors X and Y have the
same distribution µX = µY = µ if and only if they have the same joint distribution
function FX = FY = F . The probability measure of X can then be denoted either by µX

or by µF .

Proof. By the definition of a joint distribution function, if the random vectors X and Y

share the same probability measure, they have the same joint distribution function.
On the other side, the collection C =

(
(−∞, x1]×. . .×(−∞, xn]

)

x∈Rn
of n-dimensional

intervals is a monotone class that generate the Borel σ-field B(Rn), so if FX = FY , then
µX and µY are equal on C. By the monotone class theorem [Kal02, Theorem 1.1], they
are equal on B(Rn).

The study of a n-dimensional joint distribution F can be done without reference to
a random vector having this joint distribution, but some properties of a joint distribu-
tion are more easily expressed in terms of components of a random vector X. If not
explicitely mentioned, we consider a random vector defined over the canonical probability
space (Rn,B(Rn), µF ).

In order to ease the manipulation of distribution functions, it is useful to introduce
the set R = R ∪ {−∞,+∞} and to extend a given n-dimensional distribution function F
to R

n
the following way:

Proposition 1.4. Let F be the distribution function of a real valued n-dimensional random
vector, and let x be a vector in R

n\Rn. We denote by:
– I− the set of indices i such that xi = −∞,
– I+ the set of indices i such that xi = +∞,
– I0 the set of indices i such that xi ∈ R.

Then we have I− ∪ I+ 6= ∅.
– If I− 6= ∅, then F (x) = 0;
– If I− = ∅ (and I+ 6= ∅), then F (x) = lim

∀i∈I+,x′
i
→+∞

F (x′) with ∀i ∈ I0, x′i = xi .

The limit is well-defined thanks to the increasing property of F and the fact that F is
bounded by 1.

In the case of a uni-dimensional random vector, also called a random variable, the
distribution function possesses a generalized inverse called the quantile function:
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Definition 1.5. Let X be a random variable and F its distribution function. Its quantile
function F−1 is defined by:

∀q ∈ [0, 1], F−1(q) = inf{x ∈ R |F (x) ≥ q}

When the distribution function F is increasing, it is invertible and the quantile function
is equal to its inverse. The main properties of the quantile function are recalled in the
following proposition:

Proposition 1.6. Let F be a uni-dimensional distribution function and let F−1 be the
associated quantile function. We have:

1. F−1 is a left-continuous increasing function from [0, 1] into R, with the equivalence:

∀x ∈ R, q ∈ (0, 1], F (x) ≥ q ⇐⇒ x ≥ F−1(q)

2. For all q ∈ (0, 1], F (F−1(q)) ≥ q with equality if F is continuous at F−1(q);

3. Let U be a random variable uniformly distributed on [0, 1]. Then, F is the distribution
function of F−1(U);

4. Let X be a random variable with distribution function F . If F is continuous, then
F (X) is uniformly distributed over [0, 1].

When studying multivariate probabilistic models, a usual task is to extract multivariate
marginal or conditional distribution functions from a given joint distribution function. We
start by the definition of marginal random vectors of a given random vector:

Definition 1.7. Let X be a n-dimensional random vector, I a k-subset of distinct indices
(i1, . . . , ik) with 1 ≤ i1 < . . . < ik ≤ n and Ī = {1, . . . , n}\I. The k-dimensional marginal
random vector XI of X is the random vector defined on the same probability space as X

by:

XI = (Xi1 , . . . , Xik)

The joint distribution function FI of XI is given by:

FI : Rk → [0, 1]
x 7→ FI(x) = FX(x̃)

where x̃ ∈ Rn is such that ∀iℓ ∈ I, xiℓ = x̃ℓ and ∀iℓ ∈ Ī, xiℓ = +∞.

Two particular cases are of practical importance:
– When I is reduced to a singleton {k}, in which case XI reduces to the random

variable Xk and the corresponding marginal joint distribution function is often called
the k-th marginal distribution function of FX and is denoted Fk;

– When I = {1, . . . , k}, in which case the marginal distribution function is called the
cumulative k-th marginal of FX and is denoted F1,k.

The notion of conditional random vector is somewhat more complex. We restrict the
definition to continuous random vectors built by conditioning a part of a given continuous
random vector by another part of the same random vector:

Definition 1.8. Let X be a n-dimensional absolutely continuous random vector, I a
k-subset of distinct indices (i1, . . . , ik) with 1 ≤ i1 < . . . < ik ≤ n and J a ℓ subset of
distinct indices (j1, . . . , jℓ) with 1 ≤ j1 < . . . < jℓ ≤ n and I ∩ J = ∅. The k-conditional
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random vector XI|J of X given XJ is the random vector defined on the same probability
space as X, taking values into Rk and with the following distribution function FI|J :

FI|J : Rk → [0, 1]

x 7→ FI|J (x|x̃) =





∂ℓFI∪J (y)
∂x̃1, . . . , ∂x̃ℓ

/pJ (x̃) if pJ (x̃) > 0

FJ (x) otherwise

where x̃ is a parameter given in Rℓ and y is such that yi = xs if the i-th element of I ∪ J
is the s-th element of I and yi = x̃t if the i-th element of I ∪ J is the t-th element of J .

The associated density function pI|J is given by:

pI|J : Rk → R

x 7→ pI|J (x|x̃) =

{
pI∪J (y)/pJ (x̃) if pJ (x̃) > 0

pJ (x) otherwise

A special case of conditional random vector will play a major role in the definition of
the Rosenblatt transformation. It corresponds to I = {k} and J = {1, . . . , k − 1}, with
k ∈ {2, . . . , n}. In this case, the conditional random vector reduces to the random variable
Xk|X1 = x1, . . . , Xk−1 = xk−1, with a distribution function Fk|1,...,k−1 given by:

Fk|1,...,k−1 : R → [0, 1]
xk 7→ Fk|1,...,k−1(xk|x1, . . . , xk−1) ={

∂k−1F1,k(x1,...,xk)
∂x1...∂xk−1

/
∂k−1F1,k−1(x1,...,xk−1)

∂x1...∂xk−1
if ∂k−1F1,k−1(x1,...,xk−1)

∂x1...∂xk−1
> 0

F1,k(x) otherwise
(1.1)

1.1 Copulas

The main source for this section is [Nel06]. It is focused on the notion of copula, that
plays a central role in the modeling of stochastic dependence.

We start by the definition of a copula, as found in [Nel06, Definitions 2.10.5 and 2.10.6]:

Definition 1.9. A copula is a function C defined on [0, 1]n, taking value into [0, 1] and
verifying:

1. For all u ∈ [0, 1]n with at least one component equal to 0, C(u) = 0 (C is grounded);

2. C is n-increasing: ∀a, b ∈ [0, 1]n,

2∑

i1=1

· · ·
2∑

in=1

(−1)i1+...+inC(ui11 , . . . , u
in
n ) ≥ 0 (1.2)

with ∀j ∈ {1, . . . , n}, u1
j = aj and u2

j = bj .

3. For all u ∈ [0, 1]n with ∀i ∈ {1, . . . , n}\{k}, ui = 1:

C(u) = uk (1.3)

A first link between copulas and joint distribution functions is given in the following
theorem:
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Theorem 1.10. There is a one-to-one mapping between the n-dimensional copulas and
the restriction to [0, 1]n of the distribution functions of the n-dimensional random vectors
with one-dimensional marginal distributions uniform over [0, 1].

Proof. If F is the distribution function of a n-dimensional random vector U with one-
dimensional marginal distributions uniform over [0, 1], then its restriction F̃ to [0, 1]n is
such that:

1. For all u ∈ [0, 1]n with at least one component xi equal to 0,

F̃ (u) = P (U1 ≤ u1, . . . , Un ≤ un) ≤ P (Ui ≤ ui) = 0

so F̃ is grounded.

2. If a ∈ Rn and b ∈ Rn are such that a ≤ b, we note by ✶(a,b] =
∏n
j=1 ✶(aj ,bj ] the

characteristic function of the interval (a, b]. We have:

✶(a,b] =
2∑

i1=1

· · ·
2∑

in=1

(−1)i1+...+in
n∏

j=1

1
(0,u

ij
j

]

with ∀j ∈ {1, . . . , n}, u1
j = aj and u2

j = bj . Taking the expectation with respect to
U , as {Uk ≤ uk} = {0 < Uk ≤ uk} up to a negligible set, we get:

P (U ∈ (a, b]) =
2∑

i1=1

· · ·
2∑

in=1

(−1)i1+...+inF̃ (ui11 , . . . , u
in
n ) ≥ 0

with ∀j ∈ {1, . . . , n}, u1
j = aj and u2

j = bj .

3. As F has uniform one-dimensional marginal distributions over [0, 1], then for all
x ∈ [0, 1]n with ∀i ∈ {1, . . . , n}\{k}, xi = 1, F (x) = Fk(xk) = xk.

so F̃ is a copula.
Conversely, if C is a copula, to show that C is also the restriction to Ω = [0, 1]n of a

joint distribution function, we proceed as follows:
– We define a function P defined on the intervals of the form (0,u] for all u ∈ [0, 1]n

by P ((0,u]) = C(u), with P (∅) = 0 = C(u) if u has a component equal to 0.
– We extend P to the family A of finite unions of intervals (a, b] using the n-increasing

property of C.
– The family A generates the Borelian σ-field of (0, 1]n, and as P ((0, 1]n) = C(1) = 1,
P can be extended to a probability measure P on the measurable space (Ω,B(Ω)) to
get the probability space E = (Ω,B(Ω),P). If we consider the identity function on
E , it defines a random vector U and by construction, its joint distribution function
is C.

This theorem allows to see a given copula as a joint distribution function as far as it
is not evaluated on vectors outside of [0, 1]n.

The next theorem, due to Sklar [Skl59], is a central result in the theory of copulas as
it fully explains the link between copulas and joint distribution functions.
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Theorem 1.11 (Sklar, 1959). Let F be a n-dimensional distribution function whose
marginal distribution functions are F1, . . . , Fn. There exists a copula C of dimension
n such that for x ∈ Rn, we have:

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (1.4)

If the marginal distributions F1, . . . , Fn are continuous, the copula C is unique; otherwise,
it is uniquely determined on F1(R) × . . .× Fn(R). Conversely, if C is a copula of dimen-
sion n and F1, . . . , Fn are n univariate distribution functions, then the function F defined
by (1.4) is a multivariate distribution function of dimension n with marginal distribution
functions F1, . . . , Fn.

In the case of continuous marginal distributions, for all u ∈ [0, 1]n, we have:

C(u) = F (F1
(−1)(u1), . . . , Fn(−1)(un)) (1.5)

and if F is absolutely continuous with density p, so is C and the two density functions are
linked by:

p(x) = c(F1(x1), . . . , Fn(xn))
n∏

i=1

pi(xi) (1.6)

where c is the density function of C and pi is the density function of Xi.

In the continuous marginal case, one can see that there is a one-to-one correspon-
dence between the joint distribution and the set of marginal distributions and copula. In
this sense, the copula is exactly what remains of the dependence structure of the joint
distribution once the effect of the marginal distributions has been filtered out.

It can be interpreted in several ways in a modeling perspective. The first way is the
synthesis way: one want to build a joint distribution function given marginal distribution
functions and potentially some partial information about the interactions between the
marginals. It is a matter of copula selection, potentially under constraints. The second
way is the analysis way: given a joint distribution function or a sampling procedure, one
want to separate the effects of the marginal distributions and the dependence structure in
the probabilistic behaviour of such a multivariate model.

There is a link between marginal distribution functions and marginal copulas, as pre-
sented in the following proposition.

Proposition 1.12. Let X be a continuous random vector with a joint distribution func-
tion F defined by its copula C and its marginal distribution functions F1, . . . , Fn. The
distribution function F1,k of the cumulated k-th marginal random vector X1,k is linked to
C defined by its marginal distributions Fi and the copula C1,k through the relation:

F1,k(x1, . . . , xk) = C1,k(F1(x1), . . . , Fk(xk)) (1.7)

with

C1,k(u1, . . . , uk) = C(u1, . . . , uk, 1, . . . , 1) (1.8)

Proposition 1.13. Let X be an absolutely continuous random vector with a distribution
defined by its copula C and its marginal distribution functions Fi. The distribution function
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of the conditional variable Xk|X1, . . . , Xk−1 is defined by its marginal distributions Fi and
the copula Ck|1,...,k−1 through the relation:

Fk|1,...,k−1(xk|x1, . . . , xk−1) = Ck|1,...,k−1(Fk(xk)|F1(x1), . . . , Fk−1(xk−1)) (1.9)

with

Ck|1,...,k−1(uk|u1, . . . , uk−1) =
∂k−1C1,k(u1, . . . , uk)

∂u1 . . . ∂uk−1
/
∂k−1C1,k−1(u1, . . . , uk−1)

∂u1 . . . ∂uk−1
(1.10)

As a matter of fact, relation (1.10) is the direct application of Proposition 1.1 to the
distribution C. Furthermore, Definition 1.1 and relation (1.4) lead to:

Fk|1,...,k−1(xk|x1, . . . , xk−1) =

[
k−1∏

i=1

pi(xi)

]
∂k−1C1,k(F1(x1), . . . , Fk(xk))

∂u1 . . . ∂uk−1
/ . . .

. . .

[
k−1∏

i=1

pi(xi)

]
∂k−1C1,k−1(F1(x1), . . . , Fk(xk−1))

∂u1 . . . ∂uk−1

(1.11)

where pi is the probability density function of Xi.
A copula is Lipschitz on [0, 1]n by [Nel06, Theorem 2.10.7]:

Theorem 1.14. Let C be a n-dimensional copula. Then for every u and v in [0, 1]n,

|C(v) − C(u)| ≤
n∑

k=1

|vk − uk| (1.12)

In particular, the continuity of the marginal distributions of a copula implies that there
is no atom (ie mass point) in the associated distribution.

We give in Table 1.1 some classical bi-dimensional copulas that will be used in the
sequel of the manuscript for numerical applications.

Several key properties of copulas will be used in the sequel of the manuscript. The
first one is the Fréchet-Hoeffding bounds [Nel06, Theorem 2.10.12]:

Theorem 1.15. Let C be a n-dimensional copula. Then ∀u ∈ [0, 1]n, we have:

Wn(u) = max(u1 + . . .+ un − 1, 0) ≤ C(u) ≤ Mn(u) = min(u1, . . . , un) (1.13)

These bounds are tight, in the sense that for any point u ∈ [0, 1]n and any side of the
inequality, there exists a copula C such that this inequality is indeed an equality. The
lower bound Wn is a copula if and only if n = 2, while the upper bound Mn is always a
copula called the min copula.

The min copula has the following probabilistic interpretation, [Nel06, Theorem 2.10.14]:

Theorem 1.16. For n ≥ 2, each of the components X1, . . . , Xn of a continuous random
vector X is almost surely a strictly increasing function of any of the others if and only
if the copula of X is Mn. In this case, there exist n − 1 almost surely strictly increasing
functions φ2,. . . ,φn such that ∀i ∈ {2, . . . , n}, Xi = φi(X1).
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Name C(u1, u2) Parameter

Independent u1u2

Normal
∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1 − ρ2
exp

(
−s2 − 2ρst+ t2

2(1 − ρ2)

)
dsdt |ρ| < 1

Student
∫ T−1

ν (u1)

−∞

∫ T−1
ν (u2)

−∞

1

2π
√

1 − ρ2

(
1 +

s2 − 2ρst+ t2

ν(1 − ρ2)

)−(ν+2)/2

dsdt |ρ| < 1, ν > 0

Frank −1
θ

log

(
1 +

(e−θu1 − 1)(e−θu2 − 1
e−θ − 1

)
θ ∈ R∗

Clayton
(
u−θ1 + u−θ2 − 1

)−1/θ
θ ∈ [−1,+∞)\{0}

Comp. Clayton u1 + u2 − 1 + CClayton(1 − u1, 1 − u2)

Gumbel exp
(

−
(
(− log(u1))θ + (− log(u2))θ

)1/θ
)

θ ∈ [1,+∞)

Table 1.1: Examples of usual bi-dimensional copulas. Φ−1 (resp. T−1
ν ) stands for the

quantile function of the standard normal (resp. Student-ν) distribution.
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In the bi-dimensional case, the function W2 is also a copula, which has the following
interpretation, [Nel06, Theorem 2.5.5]:

Theorem 1.17. For a bi-dimensional continuous random vector X = (X1, X2), each of
its components is almost surely a strictly decreasing function of the other one if and only
if the copula of X is W2.

The next proposition plays a central role in the study of iso-probabilistic transforms
in link with copulas:

Proposition 1.18.
If X has as a joint distribution with copula C and if (α1, . . . , αn) are n almost everywhere

strictly increasing functions defined respectively on the supports of the Xi, then C is also
the copula of (α1(X1), . . . , αn(Xn)).

1.2 Dependence through scalars

Several attempts to quantify the stochastic dependence between two random variables
through a scalar value have been made. General classes of scalar measures have been
defined so far, namely the measures of concordance, the measures of dependence
and the measures of association, in order to describe the intensity of the stochastic
relationship that links two random variables. Given these notions, it is interesting to
review the most widely used quantities in order to check whether they are able to properly
summarize stochastic dependence.

A more detailed presentation of these quantities as well as many other ones can be
found in [Nel06], [Joe97] or [ELM03].

1.2.1 Measures of concordance, dependence and association

The first notion that summarizes some dependence information between two random
variables with a scalar is the notion of measure of concordance, introduced for the first
time in [Sca84] and recalled in [Nel06].

Definition 1.19. A measure of concordance κ between the two components X1 and
X2 of a bi-dimensional random vector X is a scalar function of its distribution function
that has the following properties:

1. κ is defined for all continuous bi-dimensional random vectors X,

2. κ(X1, X2) = κ(X2, X1),

3. κ depends only on the copula CX of X and is monotone in CX , it means that if X

and Y are two bi-dimensional random vectors with respective copulas CX and CY

and if ∀u ∈ [0, 1]2, CX(u) ≥ CY (u), then κ(X1, X2) ≥ κ(Y1, Y2).

4. κ(X1, X2) ∈ [−1, 1], κ(X1, X1) = 1,

5. If X1 and X2 are independent, then κ(X1, X2) = 0,

6. κ(X1,−X2) = κ(−X1, X2) = −κ(X1, X2),

7. If Cn is a sequence of copulas that converges pointwise to the copula C, then κ(Cn)
converges pointwise to κ(C), where κ(C) is a shorthand for κ(X1, X2), where the
support of X is [0, 1]2 and its distribution function restricted to this support is C.
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Examples of such measures are the Spearman rho or the Kendall tau [Nel06, Theo-
rem 5.1.8], defined in the next section. There is a visible link with the linear correlation
coefficient, as the next theorem shows [Sca84, Theorem 3]:

Theorem 1.20. Let X be a bi-dimensional Gaussian vector with correlation coefficient
r, then for any measure of concordance κ, κ is an increasing function of r.

The second notion is the notion of measure of dependence, where the aim is also
to summarize some dependence information between two random variables but with a
normalization that allows to interpret it as a probability, with less symmetry constraints
but with a stronger meaning for the zero value.

Definition 1.21. A measure of dependence δ between the two components X1 and
X2 of a bi-dimensional random vector X is a scalar function of its distribution function
that has the following properties:

1. δ is defined for all continuous bi-dimensional random vectors X,

2. δ(X1, X2) = δ(X2, X1),

3. δ(X1, X2) ∈ [0, 1]

4. X1 and X2 are independent if and only if δ(X1, X2) = 0,

5. δ(X1, X2) = 1 if and only if X2 = φ(X1) a.s., where φ is strictly monotone,

6. if g and h are almost everywhere strictly increasing functions defined respectively
over the support of X1 and the support of X2, then δ(g(X1), h(X2)) = δ(X1, X2),

7. If Cn is a sequence of copulas that converge pointwise to the copula C, then δ(Cn)
converges pointwise to δ(C), where δ(C) is a shortcut for δ(X1, X2), where the
support of X is [0, 1]2 and its distribution function restricted to this support is C.

Remark 1.22. The fourth property is very strong: it allows to characterize the indepen-
dence between two random variables through a scalar value.

Remark 1.23. The sixth property implies that a measure of dependence is a function
of the copula of X and not of its marginal distribution functions: as F1 and F2 are
almost everywhere strictly increasing over the support of X1 and the support of X2,
δ(W1,W2) = δ(X1, X2) where W is the random vector defined by W = (F1(X1), F2(X2).
By Proposition 1.18, X and W share the same copula C, and the distribution function
of W is exactly C, so δ(X1, X2) is a function of C only.

Remark 1.24. A measure of dependence is never a measure of concordance, due to the
symmetry constraint in the definition of measures of concordance (points 4 and 6), which
is not compatible with the nonnegativity of measures of dependence.

The following exemples of measures of dependence are taken from [SW81].

Example 1.25. Let X = (X1, X2) be a continuous bi-dimensional random vector with
copula C. The following measures are measures of dependence:

σ(X1, X2) =12
∫∫

[0,1]2
|C(u, v) − uv| dudv

γ(X1, X2) =

(
90
∫∫

[0,1]2
(C(u, v) − uv)2 dudv

)1/2
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These measures are respectively derived from the 1-distance and the 2-distance between
a given bidimensional copula and the bidimensional independent copula. The constants
are such that the range of each measure is exactly [−1, 1] over the set of bidimensional
copulas, obtained when C = M2 is the bidimensional min copula defined in Theorem 1.15.

Such a construction can be extended to any Lp distance for 1 ≤ p < +∞, the measure
obtained for p = +∞ satisfying all the properties of a measure of dependence excepted
the property (5).

The third notion is the weakest notion to summarize dependence information into a
scalar value.

Definition 1.26. A measure of association r between the two components X1 and X2

of a bi-dimensional random vector X is a scalar function of its distribution function that
has the following properties:

1. −1 ≤ r(X1, X2) ≤ 1

2. If X1 and X2 are independent, then r(X1, X2) = 0

3. If g and h are almost everywhere strictly increasing functions defined respectively
over the support of X1 and the support of X2, then r(g(X1), h(X2)) = r(X1, X2),

The aim of this definition is to cover any reasonable scalar function linked to the de-
pendence between the components of a random vector, with two normalization constraints
that allow to detect possible independence and to compare the dependence intensity on a
fixed scale.

Remark 1.27. The third property shows that a measure of association is a function of the
copula of X only, see the remark related to the sixth property of a measure of dependence.

Remark 1.28. Measures of concordance and measures of dependence are both measures
of association, but a measure of association can be neither a measure of concordance nor
a measure of dependence. An example of such a measure is the following:

1. Take a measure of concordance κ

2. For all continuous bi-dimensional random vector X, define the measure of association
κ̃ by:

κ̃(X1, X2) =





κ(X1, X2) if κ(X1, X2) ≥ 0
1
2
κ(X1, X2) otherwise

It satisfies the definition of a measure of association, but is neither a measure of
dependence nor a measure of concordance as κ̂(X1,−X1) = −1/2 is negative but
not equal to -1.

1.2.2 Overview of classical candidates for measures of association

In this section, we review four candidates as measure of association, namely the linear
correlation, the Spearman rho, the Kendall tau and the (upper and lower) coefficient of
tail dependence, and show that with the exception of the linear correlation, the three other
candidates are proper measures of association. In the sequel, we will restrict ourselves to
continuous random vectors.

The use of linear correlation coefficient to describe dependence is largely spread in
industrial studies. It is mainly because it is quite easy to estimate and because it appears



24 Chapter 1. Introduction to dependence modeling

to be a natural measure of dependence for Gaussian vectors, which is the most widely
used model in the case of correlated variables.

Definition 1.29. Let X = (X1, X2) be a random vector with finite and positive variance,
with marginal distribution functions F1 and F2 and copula C. The linear correlation
ρ(X) between X1 and X2 is given by:

ρ(X) = E

[(
X1 − E [X1]√

Var [X1]

)(
X2 − E [X2]√

Var [X2]

)]

In terms of the marginal distributions and copula, it is given by:

ρ(X) =
1√

Var [X1]
√

Var [X2]

∫∫

[0,1]2
[C(u, v) − uv] dF−1

1 (u)dF−1
2 (v) (1.14)

The linear correlation coefficient does not fullfil point (3) of the definition of a measure
of association. For example, if we consider a bidimensional Gaussian vector X = (X1, X2)
with standard marginal distributions and linear correlation ρ(X) 6= 0, then the random
vector Y = (X1, X2|X2|) should have the same linear correlation as X if the linear cor-
relation coefficient would be a measure of association, but the linear correlation between
X1 and X2|X2| is equal to:

ρ(Y ) =
2
√

2

π
√

3
ρ(X)

√
1 − ρ(X)2

which is different from ρ(X).
Relation (1.14) shows that the linear correlation depends both on the copula and the

marginal distributions. Thus, it is not possible to set its value independently of the de-
termination of the marginal distributions.

The following Fréchet-Hoeffding theorem [KC06, Theorem 3.1] discusses the link be-
tween the linear correlation coefficient and the marginals.

Theorem 1.30. Let X = (X1, X2) be a bi-dimensional random vector with given marginal
distribution functions F1 and F2. The possible values for the linear correlation coefficient
ρ(X) form an interval [ρmin, ρmax] included in [−1, 1] that depends on F1 and F2, the
inclusion being strict in the general case. The lower bound corresponds to the W2 copula
and the upper bound to the M2 copula.

An illustration of this fact is given by the following example, taken from [ELM03].
Let X1 be log-normaly distributed with E [log(X1)] = 0 and Var [log(X1)] = 1, and
X2 be log-normaly distributed with E [log(X2)] = 0 and Var [log(X2)] = σ2. Then,
ρ(X) ∈ [ρmin, ρmax]  [−1, 1] with:





ρmin =
e−σ − 1

√
e− 1

√
eσ2 − 1

ρmax =
eσ − 1

√
e− 1

√
eσ2 − 1

(1.15)
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Figure 1.1: Fréchet bounds for R = ρ(X) as a function of σ.

On Figure 1.1, we see that limσ→+∞ ρmin = limσ→+∞ ρmax = 0: even if X1 and X2

are linked by a strictly monotoneous relation, their linear correlation coefficient can be
arbitrarily close to zero!

The Spearman rho, also named rank correlation, and the Kendall tau are
another well-known quantities used to quantify the dependence between X1 and X2. The
Spearman rho is defined as the linear correlation between the ranks of X1 and X2, i.e.
when X1 and X2 have been transformed through their respective distribution functions:

Definition 1.31. Let X = (X1, X2) be a random vector with marginal distribution func-
tions F1 and F2 and copula C. Its rank correlation ρS(X), also named its Spearman
rho, is defined by:

ρS(X) = ρ(F1(X1), F2(X2))

= 12
∫∫

[0,1]2
uv dC(u, v) − 3

= 12
∫∫

[0,1]2
C(u, v) dudv − 3 (1.16)

while the Kendall tau measures the concordance between the two components of a
bi-dimensional random vector X = (X1, X2):

Definition 1.32. Let X = (X1, X2) be a random vector with marginal distribution
functions F1 and F2 and copula C, and (X ′1, X

′
2) be an independent copy of (X1, X2).

The Kendall tau τ(X) is the difference between the probability of concordance and the
probability of discordance between X1 and X2:

τ(X) = P
(
(X1 −X ′1)(X2 −X ′2) > 0

)− P ((X1 −X ′1)(X2 −X ′2) < 0
)
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The Kendall tau can be also computed using one of the following equivalente relations:

τ(X) =E
[
sgn(X1 −X ′1) sgn(X2 −X ′2)

]

= 4E [C(F1(X1), F2(X2))] − 1

= 4
∫∫

[0,1]2
C(u, v) dC(u, v) − 1 (1.17)

where the sign function sgn is defined by:

∀x ∈ R, sgn(x) =





−1 if x < 0
0 if x = 0
1 if x > 0

The Spearman rho and the Kendall tau are measures of concordance. They are easy
to estimate in a robust way (i.e not sensitive to outliers), and can be linked to the linear
correlation ρ by the following formulas in the case of Gaussian vectors :





ρS =
6
π

arcsin
(

1
2
ρ

)

τ =
2
π

arcsin (ρ)
(1.18)

Equations (1.16) and (1.17) allow to compute all the Spearman rho or the Kendall
tau between the components of a random vector, but in practice the problem is more to
find a copula compatible with a given set of Spearman rho or Kendall tau that have been
estimated from data. The next theorem shows that it is always possible to find such a
copula for small dimensions (see [KC06, Theorem 4.4]):

Theorem 1.33. Let M be a symmetric positive definite matrix of dimension n with unit
diagonal. If n = 2 or n = 3, there exists a copula such that its matrix of Spearman rho
is M . The same result holds if M is seen as a matrix of Kendall tau. No such result is
known for n > 3.

This result contrasts with the case of the linear correlation for which the compatibility
condition involves both the copula and the marginal distributions. The case of small
dimensions is much more useful than it seems at first glance: in real-life applications,
even if several dozens of variables are involved, most of the time they are independent by
blocks, each block involving only a small number of variables.

The coefficients of tail dependence are measures of association that aim at quan-
tifying the dependence between random variables when they take simultaneously extreme
values. These coefficients are based on the tail copulas of a random vector, and are an
important part of the multi-dimentional theory of extrems (see [KN00]). These tail
copulas are defined by:

Definition 1.34. Let X be a n-dimensional random vector with distribution function F .
If for the subsets I,J ⊂ {1, . . . , n}, I ∩ J = ∅, the following limit exists everywhere on
[0, 1]n:

ΛI,JU (u) = lim
t→∞

P

(
Fi(Xi) > 1 − ui

t
, ∀i ∈ I

∣∣∣∣Fj(Xj) > 1 − uj
t
, ∀j ∈ J

)
(1.19)
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then the function ΛI,JU : [0, 1]n → [0, 1] is called an upper tail-copula associated with F
with respect to I,J .

The corresponding lower tail-copula is defined by:

ΛI,JL (u) = lim
t→∞

P

(
Fi(Xi) ≤ ui

t
, ∀i ∈ I

∣∣∣∣Fj(Xj) ≤ uj
t
, ∀j ∈ J

)
(1.20)

provided the limit exists.

In the bidimensional case, we take I = {1} and J = {2} and we denote by ΛU (u1, u2) =
Λ{1},{2}U (u) and ΛL(u1, u2) = Λ{1},{2}L (u). The coefficients of tail dependence are then
defined by:

Definition 1.35. Let X = (X1, X2) be a bi-dimensional random vector with marginal
distribution functions F1 and F2, and copula C. The coefficients of upper and lower
tail dependence λU (X) and λL(X) are defined as :




λU (X) = limq→1− P

(
X2 > F−1

2 (q)|X1 > F−1
1 (q)

)
= ΛU (1, 1)

λL(X) = limq→0+ P
(
X2 < F−1

2 (q)|X1 < F−1
1 (q)

)
= ΛL(1, 1)

(1.21)

provided that these limits λU ∈ [0, 1] and λL ∈ [0, 1] exist. If F1 and F2 are continuous,
we also have:





λU (X) = lim
q→1−

(
2 − 1 − C(q, q)

1 − q

)

λL(X) = lim
q→0+

C(q, q)
q

(1.22)

In other words, the coefficient of upper (resp. lower) tail dependence is the probability
that the random variable X2 exceeds (resp. remains under) its quantile of order q, knowing
that X1 exceeds (resp. remains under) its quantile of the same order, when this order tends
to 1 (resp. 0) : it is clearly an indicator of the dependence for the upper (resp. lower)
extremes.

Relation (1.22) shows that the existence and the value of the coefficient of upper or
lower tail dependence are properties of the copula only : they are proper measures of
association. We remark that the existence of a coefficient of upper tail dependence does
not imply the existence of a coefficient of lower tail dependence.

As this coefficient can play a very important role in reliability studies, we give three
examples of 2D copulas and their coefficients of upper and lower tail dependence:

– Normal copula with correlation |ρ| < 1:

λL(X) = λU (X) = 0 (1.23)

– Student copula with correlation |ρ| < 1 and ν degrees of freedom (see Table 1.1):

λL(X) = λU (X) = 2
(

1 − Tν+1

(√
(ν + 1)(1 − ρ)/(1 + ρ)

))
(1.24)

where Tν+1 is the density function of the one-dimensional Student distribution with

ν + 1 degrees of freedom defined by ∀x ∈ R, Tν+1(x) =
1√
2π

(
1 +

x2

ν + 1

)−(ν+3)/2

.
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– Clayton copula with parameter θ ≥ 0 (see Table 1.1):

λU (X) = 0, λL(X) = 2−1/θ (1.25)

The presence or not of positive tail dependence will certainly play a major role in
reliability analysis, as we have in the case of an upper tail dependence λU > 0 1:

P
(
X1 > F−1

1 (q), X2 > F−1
2 (q)

)
= λU (1 − q) + o(1 − q) as q → 1 (1.26)

In the absence of upper tail dependence, also called upper tail independence, we have:

P
(
X1 > F−1

1 (q), X2 > F−1
2 (q)

)
= o(1 − q) as q → 1 (1.27)

It can be divided into 3 sub-cases:
– The perfect independence which corresponds to:

P
(
X1 > F−1

1 (q), X2 > F−1
2 (q)

)
= Θ

(
(1 − q)2

)
as q → 1 (1.28)

– The independence with positive association which corresponds to:

P
(
X1 > F−1

1 (q), X2 > F−1
2 (q)

)
= ω

(
(1 − q)2

)
as q → 1 (1.29)

– The independence with negative association which corresponds to:

P
(
X1 > F−1

1 (q), X2 > F−1
2 (q)

)
= o

(
(1 − q)2

)
as q → 1 (1.30)

If the failure domain has a significant part in the positive quadrant Q+ = {x ∈
Rn | ∀i ∈ {1, . . . , n}, xi ≥ 0}, one can expect that in the case of upper tail independence,
the probability of failure will be negligible compared to the case of positive upper tail
dependence.

The difference between the case of upper tail independence and upper tail perfect
independence is that in the independent case, negligible means of one order of magni-
tude smaller, whereas upper tail independence says nothing about the effective rate of
decrease: it can be much slower (independence with positive association) or much faster
(independence with negative association) than the perfect independent case.

Remark 1.36. When X1 and X2 are independent, we are in the case of perfect indepen-
dence as in this case, ∀q ∈ (0, 1), P

(
X1 > F−1

1 (q), X2 > F−1
2 (q)

)
= (1 − q)2

1. In many places in the manuscript, we will use Landau’s notations to compare functions. We recall
here the meaning of the different notations we will use.

Let f : R → R and g : R → R be two scalar functions. We have:

For x → x0 ∈ R

f(x) = o(g(x)) ⇐⇒ ∀ǫ > 0, ∃δ > 0, ∀x ∈ R, |x − x0| < δ =⇒ |f(x)| ≤ ǫ|g(x)|
f(x) = O(g(x)) ⇐⇒ ∃M > 0, ∃δ > 0, ∀x ∈ R, |x − x0| < δ =⇒ |f(x)| ≤ M |g(x)|
f(x) = Θ(g(x)) ⇐⇒ ∃m, M > 0, ∃δ > 0, ∀x ∈ R, |x − x0| < δ =⇒ m|g(x)| ≤ |f(x)| ≤ M |g(x)|
f(x) = ω(g(x)) ⇐⇒ ∀M > 0, ∃δ > 0, ∀x ∈ R, |x − x0| < δ =⇒ M |g(x)| ≤ |f(x)|

For x → +∞

f(x) = o(g(x)) ⇐⇒ ∀ǫ > 0, ∃ξ ∈ R, ∀x ∈ R, x > ξ =⇒ |f(x)| ≤ ǫ|g(x)|
f(x) = O(g(x)) ⇐⇒ ∃M > 0, ∃ξ ∈ R, ∀x ∈ R, x > ξ =⇒ |f(x)| ≤ M |g(x)|
f(x) = Θ(g(x)) ⇐⇒ ∃m, M > 0, ∃ξ ∈ R, ∀x ∈ R, x > ξ =⇒ m|g(x)| ≤ |f(x)| ≤ M |g(x)|
f(x) = ω(g(x)) ⇐⇒ ∀M > 0, ∃ξ ∈ R, ∀x ∈ R, x > ξ =⇒ M |g(x)| ≤ |f(x)|
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1.2.3 Statistical estimation

In this section, we present the most classical estimators of the measures of association
introduced in the previous section, including the linear correlation due to its widespread
use, even if it is not a measure of association.

The sampling definition of the linear correlation coefficient is given by:

Definition 1.37. Let
(
(Xk

1 , X
k
2 )
)
k=1,...,N

be a sample of size N of the random vector

X = (X1, X2). The sampling linear correlation coefficient ρ̂N (X1, X2) is defined by

ρ̂N (X) =
∑n
k=1(Xk

1 − X̄1)(Xk
2 − X̄2)√∑N

k=1(Xk
1 − X̄1)2

∑N
k=1(Xk

2 − X̄2)2
(1.31)

where X̄1 = 1
N

∑N
k=1X

k
1 and X̄2 = 1

N

∑N
k=1X

k
2 .

The asymptotic properties of this estimator are given in the following theorems [Gay51,
Equations 53 and 54]:

Theorem 1.38. Let X be a bi-dimensional random vector with finite second moments
E
[
X2

1

]
< ∞ and E

[
X2

2

]
< ∞. Then:

ρ̂N (X) a.s→ ρ(X) when N → ∞

Theorem 1.39. Let X be a bi-dimensional random vector with finite fourth-order mo-
ments E

[
X4

1

]
< ∞ and E

[
X4

2

]
< ∞. Then:

√
N (ρ̂N (X) − ρ(X)) D→ N (0, σ2

ρ) when N → ∞

where the asymptotic variance σ2
ρ is given by:

σ2
ρ =

(
1 +

ρ2(X)
2

)
m22

m20m02
+
ρ2(X)

4

(
m40

m2
20

+
m04

m2
02

− 4
m11

(
m31

m20
+
m13

m02

))

where mkℓ = E
[
(X1 − µ1)k(X2 − µ2)ℓ

]
, µ1 = E [X1] and µ2 = E [X2].

The notion of rank plays a key role in the estimation of measures of association.

Definition 1.40. Let (Xk)k=1,...,N be a sample of size N of the random variable X and
σ ∈ SN a random permutation such that Xσ(1) ≤ . . . ≤ Xσ(N) a.s. (such a permutation
is almost surely unique if X is continuous). The rank of Xk is defined by:

rank(Xk) = σ−1(k)

It is the random position of Xk in the sorted sample (Xσ(k))k=1,...,N .

The definition of the Spearman rho coupled with the expression of the linear correlation
coefficient estimator given previously, we estimate the Spearman rho as being the linear
correlation coefficient of the ranks of the observations. For the case where there is no
tie in the observations, which is the case of interest for applications with continuous
distributions, we are able to express this estimator in a more compact way:
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Definition 1.41. Let
(
(Xk

1 , X
k
2 )
)
k=1,...,N

be a sample of size N of the random vector

X = (X1, X2). The Spearman rho estimator ρ̂S,N (X) is the linear correlation coefficient
estimator applied to the ranks of the given sample:

ρ̂S,N (X) =

∑n
k=1

(
rank(Xk

1 ) − rank(X1)
) (

rank(Xk
2 ) − rank(X2)

)

√
∑N
k=1

(
rank(Xk

1 ) − rank(X1)
)2∑N

k=1

(
rank(Xk

2 ) − rank(X2)
)2

(1.32)

where rank(X1) = 1
N

∑N
k=1 rank(Xk

1 ) and rank(X2) = 1
N

∑N
k=1 rank(Xk

2 ). If there is no
tie, i.e. ∀i, j, (i 6= j) ⇒ (Xi

1 6= Xj
1 orXi

2 6= Xj
2), the sampling Spearman rho ρ̂S,N (X1, X2)

is given by

ρ̂S,N (X) = 1 −
6
∑N
k=1

(
rank(Xk

1 ) − rank(Xk
2 )
)2

N(N2 − 1)
(1.33)

The asymptotic properties of this estimator are given in the following theorems, de-
duced from the corresponding theorems for the linear correlation coefficient and the fact
that Fi(Xi) (i = 1, 2) is uniformly distributed over [0, 1] for continuous Fi:

Theorem 1.42. Let X be a bi-dimensional continuous random vector. Then:

ρ̂S,N (X) a.s→ ρS(X) when N → ∞

where ρS(X) is the Spearman rho between X1 and X2, as defined in Definition 1.2.2.

Theorem 1.43. Let X be a bi-dimensional continuous random vector. Then:

√
N (ρ̂S,N (X) − ρS(X)) D→ N (0, σ2

ρS
) when N → ∞

where the asymptotic variance σ2
ρS

is given by:

σ2
ρS

=

(
1 +

ρS(X)2

2

)
4(5 + 192η10)
3(4η00 − 1)2

+
ρS(X)2

4

(
342
125

− 12
5

(
24(η20 + η02) − 1)

4η00 − 1

))

where ηkℓ =
∫∫

[0,1]2

(
u1 − 1

2

)k (
u2 − 1

2

)ℓ
C(u1, u2) du1du2 and C is the copula of X.

The definition of the Kendall tau leads to an estimator that can also be expressed
easily in terms of the discordance and concordance of the observations when there is no
tie. In this case, the estimator reads:

Definition 1.44. Let
(
(Xk

1 , X
k
2 )
)
k=1,...,N

be a sample of size N of the random vector

X = (X1, X2). The sampling Kendall tau τ̂N (X1, X2) is given by

τ̂N (X) =
2

N(N − 1)

∑

1≤i<j≤N
sgn(Xi

1 −Xj
1) sgn(Xi

2 −Xj
2) (1.34)
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The asymptotic properties of this estimator are given in the following theorems:

Theorem 1.45. Let X be a bi-dimensional random vector. Then:

τ̂N (X) a.s→ τ(X) when N → ∞

Theorem 1.46. Let X be a bi-dimensional random vector. Then:
√
N (τ̂N (X) − τ(X)) D→ N (0, σ2

τ ) when N → ∞

where the asymptotic variance σ2
τ is given by:

σ2
τ = 4 Var

[
E
[
sgn(X1 −X ′1) sgn(X2 −X ′2) |X1, X2

]]

where X ′ = (X ′1, X
′
2) is an independent copy of X.

In contrast with the previous measures, no estimator for the upper or lower tail depen-
dence coefficients has become standard, despite the large amount of research in this area,
in relation with the estimation of extrem values copulas (see [KN00]). Being defined as
a limit, these quantities are difficult to estimate, and except in fully parametric contexts,
there will always be a trade-off between the bias (taking into account a large amount of
the available data, including non-extreme ones) and the variance (taking into account only
the most extreme data) of the estimator. We restrict the presentation to non-parametric
estimators, based on the empirical copula defined here:

Definition 1.47. Let
(
(Xk

1 , X
k
2 )
)
k=1,...,N

be a sample of size N of the random vector

X = (X1, X2). The empirical copula ĈN of this sample is the bivariate function defined
by:

∀(u1, u2) ∈ [0, 1]2, ĈN (u1, u2) =
1
N

N∑

k=1

✶(rank(Xk
1

)≤Nu1, rank(Xk
2

)≤Nu2) (1.35)

We present a non-parametric estimators of the upper-tail coefficient based on the
empirical copula of block maxima proposed in [SS04] and in [FJS05]:

Definition 1.48. Let
(
(Xk

1 , X
k
2 )
)
k=1,...,N

be a sample of size N of the random vector

X = (X1, X2). Let m be a positive integer and ℓ = [N/m]. We consider the sample(
(x∗j1 , x

∗j
2 )
)
j=1,...,m

of componentwise block maxima:

x∗j1 = max
{
Xi

1, i = 1 + (j − 1)ℓ, . . . , jℓ
}

x∗j2 = max
{
Xi

2, i = 1 + (j − 1)ℓ, . . . , jℓ
}

for j = 1, . . . ,m. For a given integer threshold 0 < k(m) < m, the upper tail coefficient
λU can be estimated by:

λ̂U,m(X) =2 −
1 − Ĉm

(
m−k
m , m−km

)

1 − m−k
m
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The parameters m and k allow to deal with the bias/variance trade-off. The properties
of this estimator are given in the following theorems, given in [SS04, Theorem 7] and [SS04,
Corollary 2]:

Theorem 1.49. Let X be a bi-dimensional random vector with continuous marginal
distribution function. If the upper tail copula ΛU 6= 0 exists and k(m) is such that
k(m)/ log logm → 0 as m → ∞. Then:

λ̂U,m(X) a.s→ λU (X) when m → ∞

Theorem 1.50. Let X be a bi-dimensional random vector with continuous marginal dis-
tribution function. If the upper tail copula ΛU 6= 0 exists, possesses continuous par-
tial derivatives, and satisfies the additional second order condition: it exists a function
A : R+ → R+ such that A(t) → 0 as t → ∞ and:

lim
t→∞

ΛU (u) − (1 − t)C(1 − u1/t, 1 − u2/t)
A(t)

= g(u) < ∞

locally uniformly for u ∈ [0, 1]2 and some nonconstant function g.
Then, if

√
k(m)A(m/k(m)) → 0 as m → ∞:

√
k(m)

(
λ̂U,m(X) − λU (X)

) D→ N (0, σ2
U ) when m → ∞

with

σ2
U =λU (X) +

(
∂

∂x
ΛU (1, 1)

)2

+
(
∂

∂y
ΛU (1, 1)

)2

+

2λU (X)
((

∂

∂x
ΛU (1, 1) − 1

)(
∂

∂y
ΛU (1, 1) − 1

)
− 1

)
.

Conclusion

In this introductory chapter, we have introduced several concepts and measures linked
with dependence modeling that will be used in the sequel of the manuscript. It covers both
the probabilistic aspects linked with the distribution function of a random vector and the
dependence quantification through scalar measures. We have also given some elements on
statistical estimation of these measures given a set of multidimensional data.



Chapter 2

A practical approach to
dependence modeling using
copulas

From the previous chapter, the copula concept appears as the natural way to express
the dependence structure of a random vector. Nevertheless, facing a problem of proba-
bilistic uncertainty propagation, one can hope that some limited but strategically chosen
information on dependence may lead to the description of a dependence structure surely
partial but actually enough to compute the decision criteria with enough accuracy.

In this chapter, we formalize and explore numerically the implicit assumption that a
set of measures of association is able to capture enough dependence information to provide
a meaningful estimation of a probability of failure for decision making under uncertainty.

This work has been published in [DL09].

2.1 On the good usage of measures of association for prob-
ability estimation

To formalize these considerations, in this section, we introduce the notion of depen-
dence information, that denotes the available information regarding the dependence
structure, and the notion of ε-synthesis that quantifies the pertinence of the dependence
information for the evaluation of a specific decision criterion. We will focus our attention
on a criterion based on the probability of failure as defined in the introduction.

2.1.1 Dependence information

The formal definition of dependence information and ε-synthesis of this informa-
tion are as follows.

Definition 2.1. Let µ1, . . . , µk be k measures of association and [a1, b1], . . . , [ak, bk] be
their possible range. We call dependence information the set I = {(µi, [ai, bi])}i=1,...,k.

Remark 2.2. We can have ai = bi, which means that the value of the i-th measure of
association µi is known. We can as well have ai = −∞ or bi = +∞, which means that
one can only give an upper or a lower bound on the value of µi.
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Definition 2.3. Let C be a copula and I a dependence information. I and C are said to
be compatible if and only if :

∀i ∈ {1, . . . , k}, µi(C) ∈ [ai, bi] (2.1)

otherwise I and C are said to be incompatible.
We note:

Ecomp(I) = {C |C is a copula compatible with I}

the set of copulas compatible with I.

Remark 2.4. It might happen that Ecomp(I) = ∅. For example, if we take k = 2, µ1 = ρS
, µ2 = τ , a1 = b1 = −1 and a2 = b2 = 1 then there exists no copula C such that I and C
are compatible, because for every copula C the following bounds hold (see [Nel06]):

−1 ≤ 3τ(C) − 2ρS(C) ≤ 1 (2.2)

Definition 2.5. Let X be a random vector with known marginal distributions and its
copula CX , partially known through the dependence information I. Let g be a numerical
model and s a scalar threshold. We define the bounds Pmin, Pmax and the ratio r as:

Pmin = min
C∈Ecomp(I)

P (C), Pmax = max
C∈Ecomp(I)

P (C) and r = Pmax/Pmin (2.3)

where P (C) = P (g(X ′) > s) with X ′ being a random vector with copula C and the same
marginal distributions as X.

We say that I is a ε-synthesis with respect to P (g(X) ≥ s) if and only if ε ≥ r.

Remark 2.6. We have obviously Pmin ≤ P (CX) ≤ Pmax because CX ∈ Ecomp(I). Fur-
thermore, it is possible that Pmin = Pmax = 0, in which case the ε-synthesis is not defined.
In this case, we adopt the convention that r = +∞ and I is then a ∞-synthesis.

The notion of ε-synthesis allows to quantify the maximum possible dispersion of the
probability of failure when the dependence structure varies whithin the set of copulas
compatible with the given dependence information.

As when one performs an effective computation of such a probability, one has to
choose a specific copula C0 based on the available dependence information, it is of interest
to quantify the dispersion between the value obtained using C0 instead of the unknown
copula CX :

Definition 2.7. Let I be a dependence information and C0 a copula compatible with I,
said to be a reference copula. The dispersion r(C0) with respect to C0 is defined as:

r(C0) = max
C∈Ecomp(I)

(Pmax/P (C0), P (C0)/Pmin) (2.4)

where Pmin and Pmax have been defined in (2.3).

The optimal choice for C0 is to take a copula that minimizes r(C0). It is a hard task
in the general case, so the minimization is done on a reduced set of copulas, typically by
inspection in a finite set of copulas.
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2.1.2 Usefulness of a dependence information

Depending on the usage that will be made of the value of P (C), one can be interested
by a more or less precise evaluation of P (C). For example, to determine in which class
of risk a specific industrial installation is, one is interested in the evaluation of the order
of magnitude of P (C) and not its precise value. Thus, we define two arbitrary levels of
ε-synthesis that will be adapted to different scenarii of exploitation of P : a qualitative
ε-synthesis and a quantitative ε-synthesis.

Definition 2.8. Let I be a ε-synthesis. We say that the dependence information I is
quantitative if 1 ≤ ε ≤ 1.5, and I is qualitative if 1.5 ≤ ε ≤ 10.

In order to illustrate the interest of a qualitative estimation of a probability of failure,
Table 2.1 gives the scale of risk defined in [RTC96], a technical report used by the Federal
Aviation Administration (FAA) to evaluate the risk induced by any disfunction per hour
of flight on an aircraft.

Risk Probability level Frequency

catastophic P (C) < 10−9 extremely improbable
hazardous 10−9 < P (C) < 10−7 extremely remote
major 10−7 < P (C) < 10−5 remote
minor 10−5 < P (C) < 10−3 reasonably probable
minor 10−3 < P (C) < 10−2 probable

Table 2.1: Risk classes according to DO-233

We see that an estimation precise whithin an order of magnitude of the probability of
failure has still some interest within this context.

2.2 Numerical experiments

With the measures of association presented in the previous chapter, have we progressed
in our quest of a compact but still accurate representation of the stochastic dependence?
In order to give a more quantitative analysis of the role played by the copula in reliability
analysis, we present here a series of numerical results related to a problem arising in the
aeronautic industry.

2.2.1 Risk induced by the portable electronic devices in aeronautic

There is a strong demand from the customers of flight companies to have the opportu-
nity to use their portable electronic devices (PEDs) during a flight: mobile phones, laptops
and so on. Up to now, this usage is prohibited, due to the risk of interference between the
PEDs and the flight control system.
This position results from an analysis made of two parts: first, physical measurements
have been carried out for a wide variety of PEDs in order to identify their spectral emis-
sion (mainly an electromagnetical energy as a function of the frequency). Then, several
configurations have been numerically studied, using a worst-case analysis : the most pe-
nalizing situation in terms of amplitude and frequency of the emission and location of the
emitter is considered, regardless of its probability of occurence. It is obviously not satis-
fying, since we base a decision on a very penalizing and very unlikely situation. That is
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why a reliablility approach of the problem has been performed. As the PED does not have
to be certified in the range of frequencies the aeronautic industry is interested in, the two
most important quantities that are the the main frequency of the PED (corresponding to
its maximum emission) and the energy emitted at this frequency, are very uncertain and
dependent quantities. We model these two uncertain parameters by a bi-dimensional
random vector X and we explore numerically the effect of the dependence between these
quantities.

2.2.2 Probabilistic approach for PED certification

Several classes of risk have been defined for qualifying the risk induced by PEDs. These
classes are recalled in Table 2.1.

The effect of a coupling between the emission of a PED and an antenna of the aircraft
might have a major impact on the safety of the flight. To perform the analysis, we will do
the following steps: First, we choose a measure of association between the main frequency
and the energy and we estimate it thanks to physical experiments. Then, we explore
numerically the effect of the copula by choosing different copulas that leads to the same
value for the selected measure of association on the probability P (C) of coupling between
the PED and the antenna.

We will not give more details on both the industrial context and the numerical model
of coupling, but we will perform a parametric study on a simplified and more generic
description of the problem.

2.2.3 Generic problem in the normalized space

The generic problem we consider is the following:
– The random vector X describing the uncertain physical parameters has a joint

distribution function F12 such that:

∀(x1, x2) ∈ R2, F12(x1, x2) = C(Φ(x1),Φ(x2)) (2.5)

where Φ is the distribution function of the standard normal distribution Φ(x) =∫ x
−∞

1√
2π

exp(−t2/2) dt and C is a copula chosen in Table 1.1, with two specific
choices for the degree of freedom of the Student copulas: ν = 3 and ν = 10. This
choice has been motivated by the fact that this set includes members that have any
combination of tail dependence (null/positive lower tail dependence, null/positive
upper tail dependence). For the sequel, the definition of ε-synthesis is restricted to
this specific set of copulas.

– The physical model g is an affine function from R2 to R defined by:

∀(x1, x2) ∈ R2, gα,β(x1, x2) = x1 cosα+ x2 sinα− β (2.6)

– The quantity of interest is Y = gα,β(X), and the failure event {ω |Y (ω) ≥ 0}.
The failure domain Fα,β = {x ∈ R2 | gα,β(x1, x2) ≥ 0} is a half-space, see Figure 2.1.

The parameter β is the distance from the origin which allows to change the probability
level of the problem, while α is the angle of rotation of the failure domain, it allows to
change the influence of a given dependence structure, between α = 0 (no influence of the
copula since then P (C) = Φ(β)) and α = π/4 (maximum influence of the dependence



2.2. Numerical experiments 37

0

Failure event

β

α

X1

X2

Figure 2.1: Generic failure domain in the normalized space.

structure, due to the symmetry of the chosen copulas).

The probability P (X ∈ Fα,β) will be written Pα,β(C) in order to underline its de-
pendence with respect to the copula C. It is computed using an adaptive Gauss-product
integration that gives very accurate results in a reasonable amount of time. The motivation
for using such an unusual integration procedure in the context of uncertainty propagation,
instead of e.g. a Monte Carlo method, is that we are focused on the influence of the
dependence modeling and we do not want to add further approximation induced by the
numerical method used to compute the probability of failure. The adaptive Gaussian
quadrature allows for a numerical integration with a relative accuracy better than 10−5,
so these values will be considered as exact for our purpose.

We will consider three kinds of dependence information for the numerical experiments,
as presented in Table 2.2.

Experiment 1 I is restricted to the value of ρS .
Experiment 2 I is restricted to the value of ρS and the information that λU > 0(∗).
Experiment 3 I is restricted to the value of λU .

Table 2.2: Three numerical experiments with different kinds of information on the depen-
dence.
(∗) we are not supposed here to know the value of λU .

Each numerical experiment is parametric on (α, β) in order to see both the influence
of the coupling between the random variables due to the failure domain as well as the level
of probability we are computing. We will monitor the following quantities:

– rmax(β) = max
α

r(α, β) with

r(α, β) =
Pmax(α, β)
Pmin(α, β)
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and using relation (2.3):

Pmin(α, β) = min
C∈Ecomp(I)

Pα,β(C)

Pmax(α, β) = max
C∈Ecomp(I)

Pα,β(C)

– α∗ = min{α | r(α, β) = rmax(β)}, which is the smallest value of α such that r(α, β) =
rmax(β);

– Pmax(α∗, β) and Pmin(α∗, β), which are the bounds of the interval of variation of
Pα∗,β(C) when C is any copula compatible with the given dependence information.

– rmax(C0, β) = max
α

rα,β(C0), cf. (2.4);

– α∗(C0) = min{α | rα,β(C0) = rmax(C0, β)}, which is the smallest value of α such
that rα,β(C0) = rmax(C0, β);

– P (C0, β) = Pα∗(C0),β(C0) which gives the evolution of the probability associated
with the reference copula with respect to β.

We also show the bounds corresponding to a quantitative and qualitative ε-synthesis
on the figures related to the evolution of rmax(β) and rmax(C0, β) with respect to β (see
Figures 2.3, 2.5 and 2.7).

2.2.4 First experiment: the value of the Spearman rho is given

In this experiment, we suppose that the copula CX is such that the Spearman corre-
lation ρS of X is equal to ρS = 0.5. The set of copulas compatible with this dependence
information is given in Table 2.3.

Copula Parameter.
Normal ρ = 0.518
Gumbel θ = 1.54
Frank θ = 3.45
Clayton θ = 1.08
Comp. Clayton θ = 1.08
Student copula, with ν = 3 ρ = 0.537
Student copula, with ν = 10 ρ = 0.523

Table 2.3: Three numerical experiments with different kinds of information on the depen-
dence.

Among these seven copulas, only the four last ones have positive upper tail dependence.
We also show the results obtained when using the independent copula (called Normal
indep. on Figure 2.2), in order to better see the influence of the dependence structure.

The extensive numerical exploration of the effect of the copula on a failure probability
is summarized on Figure 2.2. We show the case corresponding to α = π/4, as it is
the situation where the results are the most spread amongst the different copulas. We
distinguish 3 zones:

– The first zone (zone 1 on the figure) corresponds to failure domains for which the
probability does not vary by more than a factor 1.5 when the copula changes. We
say that we can have a quantitative estimate of the true probability when we take
any copula available and fix its parameters such that the associated Spearman rho
is equal to the needed value (here 0.5). This zone corresponds to probabilities of at
least 0.1, which is by no way the level we are interested in.
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– The second zone (zone 2 on the figure) corresponds to failure domains for which the
probability varies by more than a factor 1.5, but by less than a factor 10 between
the extremal values. We say that we can still have a qualitative estimate of the
true probability under the same conditions than in the previous zone. For this zone,
we are around probabilities of 0.005, which is still too high for our purpose.

– The third zone (zone 3 on the figure) corresponds to failure domains where the
knowledge of the Sperman rho value is not enough to estimate the probability by at
least one order of magnitude. It is precisely in this zone that we have to work.

Zone 1 Zone 2 Zone 3
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Figure 2.2: Evolution of the probability of failure with β, for different copulas with the
same Spearman rho (ρS = 0.5). We highlight three regions according to the quality of the
ε-synthesis of this information of dependence.

Using these graphs, we decide to take the normal copula as the reference copula C0.
The value of the different quantities we are monitoring are presented in Table 2.4.

β rmax(β) Pmin(α∗, β) Pmax(α∗, β)
√
PmaxPmin rmax(C0, β) P (C0, β)

1.89 1.5 6.5 10−2 8.7 10−2 7.5 10−2 – –
2.18 – – – – 1.5 5.2 10−2

3.41 10.0 1.1 10−3 8.6 10−3 3.1 10−3 – –
4.07 – – – – 10.0 5.8 10−4

6.5 2.3 104 8.3 10−11 1.9 10−6 1.3 10−8 7.9 102 6.6 10−8

Table 2.4: Maximum variation of Pα,β(C) and maximum dispersion with respect to the
normal copula Pα,β(C0) when ρS = 0.5 and α ∈ [0, π/4], for some characteristic values
of β.

On Figure 2.3, we see the evolution of rmax(β) and rmax(C0, β) that shows the transi-
tion between the quantitative and the qualitative estimate, with and without a reference
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copula.

0 1 2 3 4 5 6

0
10

1
10

2
10

3
10

4
10

5
10

beta

r_
m

ax
(b

et
a)

,r
_m

ax
(b

et
a,

 C
o)

r_max(beta)

r_max(beta,Co=normal copula)

epsilon=1.5

epsilon=10

Figure 2.3: Evolution of rmax(β) and rmax(C0, β) for ρS = 0.5. We see that the range over
which the estimate is quantitative is quite limited.

2.2.5 Second experiment: the value of the Spearman rho is given, and
we know that a positive upper tail dependence exists

In this second experiment, we suppose that the copula CX is such that the Spearman
correlation ρS of X is equal to ρS = 0.5 and that the coefficient of upper tail dependence
exists and is positive λU > 0. The copulas compatible with this dependence information
are the Gumbel one, the complementary Clayton one and both Student ones, parameter-
ized as previously.

The extensive numerical exploration of the effect of the copula on a failure probability
is summarized on Figure 2.4, for α = π/4. The two zones have the same meaning as in
the first experiment. We see that the additional dependence information of the existence
of a positive tail dependence allows to have an estimate that is at least qualitative in the
whole range of reliability index, and the range over which the estimate is quantitative is
much larger than in the previous experiment.

Using these graphs, we decide to take the Student copula with ν = 3 as the refer-
ence copula C0. The value of the different quantities we are monitoring are presented in
Table 2.5.

On Figure 2.5, we see the evolution of rmax(β) and rmax(C0, β).
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Figure 2.4: Evolution of the probability of failure with β, for different copulas with the
same Spearman rho (ρS = 0.5) and positive coefficient of upper tail dependence (λU > 0).
We highlight two regions according to the quality of the ε-synthesis of this information of
dependence: in this case, the estimate is always at least qualitative.

β rmax(β) Pmin(α∗, β) Pmax(α∗, β)
√
PmaxPmin rmax(C0, β) P (C0, β)

2.77 1.5 1.4 10−2 2.0 10−2 1.7 10−2 – –
3.97 – – – – 1.5 2.2 10−3

6.5 3.6 5.2 10−7 1.9 10−6 9.9 10−7 2.4 1.2 10−6

Table 2.5: Maximum variation of Pα,β(C) and maximum dispersion with respect to the
normal copula Pα,β(C0) when ρS = 0.5, λU > 0 and α ∈ [0, π/4], for some characteristic
values of β.
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Figure 2.5: Evolution of rmax(β) and rmax(C0, β) for ρS = 0.5. We see that the range over
which the estimate is quantitative is larger, even if it is still quite limited, and we see that
the estimate is always at least qualitative.

2.2.6 Third experiment: the value of the coefficient of upper tail depen-
dence is known

In this last experiment, we suppose that the copula CX has a known positive upper
tail coefficient equal to λU = 0.5. The set of copulas compatible with this dependence
information are given in Table 2.6 with their respective parameters.

Copula Parameter.

Gumbel θ = 1.71
Comp. Clayton θ = 1.00
Student copula, with ν = 3 ρ = 0.759
Student copula, with ν = 10 ρ = 0.915

Table 2.6: Copula of the third numerical experiment, parameterized in order to verify
λU = 0.5.

– The Gumbel copula, with θ = 1.71,
– The complementary Clayton copula, with θ = 1.00,
– The Student copula, with ν = 3 and ρ = 0.759,
– The Student copula, with ν = 10 and ρ = 0.915.
The extensive numerical exploration of the effect of the copula on a failure probability

is summarized on Figure 2.6, for α = π/4. The zone has the same meaning as in the first
experiment. We see that the existence of a positive tail dependence and the knowledge of
its value allows to have an estimate that is quantitative in the whole range of reliability
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Figure 2.6: Evolution of the probability of failure with β, for different copulas with the
same Spearman rho (ρS = 0.5) and positive coefficient of upper tail dependence (λU > 0).
We see that the estimate is always quantitative.

Using these graphs, we decide to take the Student copula with ν = 3 as the refer-
ence copula C0. The value of the different quantities we are monitoring are presented in
Table 2.7.

β = 6.5 rmax(β) Pmin(α∗, β) Pmax(α∗, β)
√
PmaxPmin rmax(C0, β) P (C0, β)

6.5 1.2 1.3 10−6 1.5 10−6 1.4 10−6 1.2 1.3 10−6

Table 2.7: Maximum variation of Pα,β(C) and maximum dispersion with respect to the
normal copula Pα,β(C0) when λU = 0.5 and α ∈ [0, π/4], for β = 6.5, which is the most
dispersed case.

On Figure 2.7, we see the evolution of rmax(β) and rmax(C0, β).

2.3 Conclusions

In this chapter, we have emphasized that taking into account the stochastic dependence
structure is of uttermost importance for a correct evaluation of a probability of failure,
and that this dependence cannot be properly represented by linear correlations as it is
frequently done.

We have shown in the previous chapter that the correct way to fully represent the
dependence is to determine the copula of the random vector. As this task can be uneasy,
we reviewed several scalar measures of association that are more adapted than the linear
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Figure 2.7: Evolution of rmax(β) and rmax(C0, β) for λU = 0.5. We see that the estimate
is quantitative on the whole range of β.

correlation to summarize the dependence structure. In this chapter, we have extended the
notion of measure of association into a notion of dependence information, associated with
a measure of the ability of such information to synthetize the dependence structure at a
given level of precision.

We illustrated these concepts through a set of numerical experiments related to an
aeronautical application. These experiments confirm that, in general, a single measure
of association does not properly summarize the information related to the dependence
structure, at least for the very low levels of probability occuring in reliability studies.
With more dependence information, for example the knowledge of the value taken by
another measure of association, it becomes possible to have a partial description of the
dependence structure that seems to be enough to quantify even low levels of probability
with an acceptable precision.

As the numerical experiments are based on very generic situations, we hope that these
conclusions are of wider scope than the specific application we were interested in. Using
only a small set of copulas, we were not able to fully explore the concept of dependence
information, but we hope to have initiated the formalization of a usefull field of investiga-
tion.



Chapter 3

The usual Nataf transformation
and copulas

As recalled in the general introduction, in the context of uncertainty management, one
is interested in the evaluation of the probability of failure of a complex system for a given
scenario of use. In many situations, the event associated with the failure of the system
reduces to the exceedance of a given threshold s for a specific key characteristic Y of the
system. For a continuous random vector of uncertain parameters X with joint density
pX linked to the quantity of interest though a complex numerical relation Y = g(X) the
characteristic variable of interest, the probability of failure we are interested in writes:

p = P (Y ≥ s) =
∫

Ds
pX(x)dx (3.1)

where Ds = {x ∈ Rn/g(x) ≥ s} is called the failure domain.

In the reliability context, authors such as in [DM05] mention two main difficulties:
– Neither g nor the boundary of Ds have explicite analytical expressions but they are

typically given by a finite element model often requiring high CPU costs
– The joint density pX is unknown.

The first point prevents from symbolic manipulations and the high CPU costs prevent from
the use of classical numerical methods to evaluate integrals (Monte Carlo simulations, . . . ),
whereas the second point raises the problem of modeling a joint probability distribution
based only on information often reduced to the marginal distributions of X and some linear
correlation coefficients when one wants to take into account some dependence between the
input parameters.

That is why many authors recommend the use of the Nataf isoprobabilistic transfor-
mation (see [DKL86b] and [Nat62]) to map the physical space of the probabilistic input
data into the standard space, where all the variables are independent and follow the
same normal distribution with zero mean and unit variance. Then, within the standard
space, it is possible to make a first-order or second-order geometrical approximation of
the boundary of the failure domain, which allows us to compute an approximation of p
thanks to an analytic expression.

This method, widely used in probabilistic uncertainty propagation studies, gives to the
Nataf transformation a key role in the probabilistic modeling of X. This role is largely
overlooked in most of the presentations of the transformation (see [DKL86b], [DM05]), the
accent being made on its analytical properties. The main drawback of such presentations
is that the practitioner is not informed of the probabilistic hypotheses he made by using



46 Chapter 3. The usual Nataf transformation and copulas

this transformation, hypotheses that can have a very significant impact on the result of
the uncertainty propagation.

In this chapter, we rewrite the Nataf transformation thanks to the copula theory. This
innovating point of view highlights the hypotheses necessary for the Nataf transformation,
which makes it possible to understand plainly the limitations of its use.
In the first part of the chapter, we detail the Nataf transformation in its usual presenta-
tion (as found in e.g. [HL74]) and how it is usually used in probabilistic propagation of
uncertainties (see e.g. [DKL86a]). We recall the interest of such a transformation and the
related probabilistic indicators obtained as by-products.
The concept of copula gives a new insight on the isoprobabilistic Nataf transformation
and its hypotheses : in the second part of the chapter, we demonstrate that the Nataf
transformation makes the important hypotheses of a normal dependence structure for the
random input vector X and maps it into a Gaussian vector with independent, zero mean
and unit variance components.
Finally, we list all the hypotheses underlying the Nataf transformation and the possible
risks associated with its use. In particular, we explain the probabilistic consequences of
using a normal dependence structure and the difficulties related to its parameterization
with a linear correlation matrix. This work has been published in [LD09c].

3.1 Traditional use of the Nataf transformation

Very often, probabilistic data available about the random vector X are the marginal
distributions (which are supposed here to have finite second-order moments) with marginal
distribution functions F1, . . . , Fn and, in the particular case of correlated components, the
linear correlation matrix R = (rij)ij of X. As a result of Theorem 1.30, we know that
these two pieces of information are subject to compatibility conditions: some correlation
matrices are impossible to obtain as the correlation matrix of any joint distribution with
marginal distributions Fi, or with these marginal distribution functions and a specific
copula. If we suppose that no such incompatibility occurs, we have

rij = E

[(
Xi − µi
σi

)(
Xj − µj
σj

)]
(3.2)

where µi and σi are the mean and standard deviation of Xi. We suppose that R is non-
singular.

In order to perform reliability analysis such as the computation of a probability of
failure, the probabilistic modeling is completed thanks to the Nataf transformation. From
a purely analytic point of view, this transformation reads:

Definition 3.1. Let F1, . . . , Fn be n continuous univariate distribution functions and
R0 be a definite positive matrix with unit diagonal. The Nataf transformation T is the
composition of two functions T = T2 ◦ T1 such that

T1 : Rn → Rn

x 7→ w =




Φ−1 ◦ F1(x1)
...

Φ−1 ◦ Fn(xn)




T2 : Rn → Rn

w 7→ u = Γ w
(3.3)
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The matrix Γ is any matrix such that ΓtΓ = R−1
0 or equivalently R0 = Γ−1

(
Γ−1

)t
, and

Φ is the distribution function of the univariate standard normal distribution defined in
the previous chapter, see (2.5).

Remark 3.2. A common choice for Γ is the inverse of the Cholesky factor of R0, i.e.
Γ = L−1 where M is the unique lower triangular matrix with positive diagonal elements
such that MM t = R0. The numerical computation of M and Γ needs some precautions
if R−1

0 is ill-conditioned. See [Hig02] for the management of the numerical stability issue.

The interest of this transformation resides in its action on a given random vector
X with marginal distribution functions F1, . . . , Fn. In this case, the random vector
W = T1(X) has standard normal marginal distribution functions. At this point, without
additional hypotheses, W is not in general a Gaussian vector.
In addition, if R0 is the correlation matrix of W , then the random vector U = T2(W ) =
T (X) has uncorrelated components, as one can see by computing its covariance matrix:

Cov [U ] = Cov [ΓW ]

= E
[
(ΓW − E [ΓW ]) (ΓW − E [ΓW ])t

]

= E
[
ΓW (ΓW )t − E [ΓW ](ΓW )t − ΓWE [ΓW ]t + E [ΓW ]E [ΓW ]t

]

= ΓE
[
W W t

]
Γt − ΓE [W ]E [W ]tΓt

= ΓCov [W ]Γt = In

as Cov [W ] = Cor [W ] = R0 due to the unit variance components of W and the relation
between Γ and R0. We deduce that U has also unit variance and uncorrelated components.

From a probabilistic modeling point of view, this transformation is used to map a
random vector X with given marginal distribution functions F1, . . . , Fn and correlation
matrix R to a random vector U that is supposed to be a Gaussian vector in the
traditional use of the Nataf transformation. This assumption encompasses two different
hypotheses:

– The random vector W is a Gaussian vector with a correlation matrix R0. This
correlation matrix is called the ficticious correlation matrix in the reliability
literature, see e.g. [DM05].

– The initial correlation R can be obtained as the correlation matrix of T−1
1 (W ),

which may not be possible even if R and F1, . . . , Fn are compatible.
The first hypothesis is the most important one for the modeling, as it expresses the

joint distribution of the random vector X indirectly, by specifying the joint distribution
of its image U through the Nataf transformation. The formalization of this hypothesis
and the study of its consequences is the subject of the remaining of this chapter.

The second hypothesis is closely linked to the Fréchet-Hoeffding Theorem 1.30. Even
if R and F1, . . . , Fn are compatible, one must check that there exists a correlation matrix
R0 such that the Gaussian vector W with standard normal marginal distributions and
correlation R0 is transformed into a random vector X with correlation matrix R by T−1,
the marginal distributions of X being equal to F1, . . . , Fn by construction.

In general R0 6= R. Indeed, we have the following relation between R and R0:

rij = E

[(
F−1
i (Φ(Wi)) − µi

σi

)(
F−1
j (Φ(Wj)) − µj

σj

)]

=
1

σiσj

∫∫

R2

(F−1
i (Φ(wi)) − µi)(F−1

j (Φ(wj)) − µj)ϕ2,r0ij
(wi, wj) dwidwj (3.4)
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where µi = E [Xi], µj = E [Xj ], σi =
√

Var [Xi], σj =
√

Var [Xj ] and ϕ2,r0ij
is the

bivariate standard normal probability density function with correlation r0ij :

ϕ2,r0ij
(wi, wj) =

1

2π
√

1 − r0
2
ij

exp

(
−
w2
i − 2r0ijwiwj + w2

j

2(1 − r0
2
ij)

)
(3.5)

Remark 3.3.

– We express rij as a function of r0ij because at this point, the only joint distribution
we know is the distribution of W . We have r0ij = E [WiWj ] as Wi and Wj have
both a standard normal distribution. Using the expression of T1, we get r0ij =
E
[
Φ−1(Fi(Xi))Φ−1(Fj(Xj))

]
but we are unable to compute this expectation as we

do not know the joint distribution of (Xi, Xj) and E
[
Φ−1(Fi(Xi))Φ−1(Fj(Xj))

]
is

not a function of rij , Fi and Fj only in the general case.
– The computation of the coefficients r0ij might be difficult for two reasons. The first

one is that it involves the resolution of the integral equation (3.4), which is not
guaranteed to have a solution, in particular if rij is too close to 1 or -1. The second
one is that even if each coefficient r0ij can be computed, there is no guarantee that
the resulting matrix R0 will be symmetric definite positive.

The Nataf transformation is said to map the physical space where X takes its values
into the standard space where U takes its values. The interest of the standard space is
that we can rewrite the expression of the probability of failure as

p = P (Y ≥ s) =
∫

Ds
f(x) dx

=
∫

DUs
ϕn(u) du

(3.6)

where the limit state function g has been transformed by T into G = g ◦ T−1 and the
failure domain Ds into Du

s = {u ∈ Rn/G(u) ≥ s}, where ϕn is the probability density
function of the standard n-dimensional normal distribution:

ϕn(u) =
1

(2π)n/2
exp

(
−1

2
‖u‖2

)
(3.7)

The first expression involves the integral of the unknown function f over a complex
domain Ds, whereas the second expression involves the integral of the known function ϕn
over the complex domain Du

s .
The main interest of the Nataf transformation is that ϕn is a rapidly decreasing func-

tion of ‖u‖, which leads us to suppose that most of the contribution of ϕn(u) to the
integral (3.6) is concentrated in the vicinity of the point of Du

s that is the nearest to the
origin of the standard space. This point, called the design point and denoted P ∗, is lo-
cated on the hypersphere of minimal radius that is tangent to the boundary of the failure
domain. It enables us to make a geometrical simplification of the failure domain Du

s , by
modifying its boundary. The so-called FORM method is obtained by a linearization of
this boundary at the design point.

We postpone the detailed presentation of the FORM method and the other various
extensions such as the SORM method to the chapter 4, as we are mainly focused in
this chapter on the reinterpretation of the Nataf transformation as a tool for modeling
stochastic dependence.
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3.2 New interpretation of the Nataf transformation through
the copula theory

The Nataf transformation is the composition of two transformations T1 and T2, with an
additional hypothesis that upon the action of T1, the initial random vector X is mapped
into a Gaussian vector W = T1(X) with zero mean, unit marginal covariance and correla-
tion matrix R0, i.e. with distribution N (0,R0), then the random vector U has a standard
n-dimensional normal distribution N (0, In).

Formalizing the hypothesis underlying the Nataf transformation leads to:

Proposition 3.4. Let X be a random vector with unknown copula CX , known marginal
distribution functions F1, . . . , Fn and known linear correlation matrix R. Assuming that
this vector is mapped into a Gaussian vector W = T1(X) with distribution N (0, r0) upon
the action of T1 as defined in (3.1) is equivalent to the assumption that CX is the normal
copula CNR0

parameterized by the correlation matrix R0.

Proof. The demonstration is a direct application of the invariance of the copula by strictly
increasing transformation of the components of a random vector. By definition of the
normal copula as a copula of a Gaussian vector, the copula CW of W is exactly the
normal copula CNR0

parameterized by Cor [W ] = R0. Then, the transformation T1 is
bijective and its inverse is

T−1
1 : Rn → Rn

w 7→ x =




F−1
1 ◦ Φ(w1)

...
F−1
n ◦ Φn(wn)




(3.8)

This transformation only acts on the marginal distributions of W , and is a strictly
increasing transformation which preserves the copula of the transformed random vector
(see Proposition 1.18). We conclude that CX = CW = CNR0

.

From Definition (3.4) of the correlation matrix R0 and the expression of a bi-dimensional
marginal probability density function using (1.6) and (1.12) with k = 2, we have

rij =
1

σiσj

∫∫

R2

(xi − µi)(xj − µj)cij(Fi(xi), Fj(xj))fi(xi)fj(xj) dxidxj (3.9)

where cij is the probability density function of the bi-dimensional normal copula with

correlation matrix

[
1 r0ij

r0ij 1

]
. The fact that CX = CNR0

shows that there is no hope

to express R0 as a function of R, F1, . . . , Fn and possibly other functions independent of
R0, as R0 will inevitably depend on the joint distribution function of X.

From a dependence modeling point of view, the use of the Nataf transformation and
the claim that W or U are Gaussian vectors is equivalent to the choice of a normal copula
for the joint distribution of the input random vector X. This copula is parameterized
by a correlation matrix R0 in such a way that the joint distribution has the given linear
correlation matrix R. The relation (3.9) allows us to compute R0 from R if this last
matrix is compatible with both the choice of marginal distributions and the choice of a
normal copula.
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Figure 3.1: Iso-density contours of bivariate distributions with standard normal marginal
distributions and different copulas such that the resulting linear correlation coefficient is
equal to 0.5 (all the graphs excepted the upper-left one). We also draw the iso-contours
in the case of the independent copula for comparison purpose.

3.3 Potential pitfalls of using the Nataf transformation due
to the normal copula hypothesis

Thus, the use of the Nataf transformation is an obfuscated way of choosing a normal
copula as a dependence structure for the input random vector. We have already seen the
danger of choosing badly adapted copulas in chapter 2. Here, we present new experiments
more specific to the normal copula case.

Figure 3.1 shows that with the usual available information, namely the marginal dis-
tributions and the linear correlation matrix, it is possible to choose different copulas that
lead to joint distributions with exactly these characteristics, despite the visible difference
between the corresponding joint probability density functions. Thus, the choice of the
normal copula implies a very specific form of dependence structure, which might not suit
the problem considered.
The symmetry that is visible on these graphs is only due to the specific choice of copulas
taken for this illustration. A very common example of multi-dimensional distribution that
arises in an industrial context such as the control of production is the case of mixtures
of normal distributions. We give an example of such a distribution:

F (x1, x2) =
1
2

Φ1
2(x1, x2) +

1
2

Φ2
2(x1, x2) (3.10)

where Φ1
2 is the distribution function of the bi-dimensional normal distribution with mean

vector µ1 = (−0.2, 0), marginal standard deviations σ1 = (0.7, 0.3) and correlation matrix

R1 =

[
1 0.936

0.936 1

]
and Φ2

2 is the distribution function of the bi-dimensional normal

distribution with mean vector µ2 = (0.0, 0.2), marginal standard deviations σ2 = (0.8, 0.2)
and correlation matrix R2 = R1.
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The copula of F is obtained thanks to the Sklar theorem:

C(u1, u2) = F (F−1
1 (u1), F−1

2 (u2)). (3.11)

Then, we build the distribution G with copula C and standard normal marginal distri-
butions. The distribution function G of this distribution is obtained thanks to the Sklar
theorem:

G(x1, x2) = C(Φ0,1(x1),Φ0,1(x2)) (3.12)

The value ρ = 0.936 has been chosen in such a way that G has a linear correlation of
0.8. We can see in Figure 3.2 the iso-density contours of C and G, which are clearly very
different from the figure we get with a normal copula.

Mixture copula
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Figure 3.2: Iso-density contours of a copula of a normal mixture (left picture) and a
distribution (right picture) with this copula and standard normal marginal distributions.
This copula is well suited in modeling dependent quantities such as those encountered in
production control.

Up to now, we have only illustrated the global effect of adopting the normal copula
instead of another one on the whole support of the joint distribution. We may wonder
whether these differences only affect the central part of the distribution or also modify its
behaviour in the tails, which is the region we are interested in when computing low levels
of probability when using first or second order reliability methods. To study this effect,
we know from the experiments of Chapter 2 that the coefficient of upper tail dependence
is a key parameter in the evaluation of such probabilities. From Chapter 1, for the normal
copula we have λU = λL = 0 (Equation (1.23)), thus it is not possible to take into account
any positive tail dependence with this copula, while for another copula such as the Student
copula (see Table 1.1) for example, it is possible to take such tail dependence into account,
as we have for this copula (Equation (1.24)):

λU = λL = 2 − 2T−1
ν+1

(√
(1 + ν)

1 − ρ

1 + ρ

)
(3.13)

This copula should be better suited to model the dependence structure when one is in-
terested, for example, in a failure domain that corresponds to simultaneous large values
of two components of the input random vector. To illustrate this point, we consider two
dependence modelings based first on a normal copula and second on a Student copula.
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These copulas share the same Spearman rho of ρS = 0.01, which leads to the linear cor-
relation coefficients ρgauss = 0.01047 and ρStudent = 0.01095 respectively for the normal
copula and the Student copula. We see that the two linear correlation coefficients are very
close and would be difficult to distinguish if they were estimated from real data.

The evolution of P
(
Y ≥ G−1(q) |X ≥ F−1(q)

)
with q can be seen on Figure 3.3.
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Figure 3.3: Evolution of P
(
Y ≥ G−1(q) |X ≥ F−1(q)

)
with q when X and Y are linked

by the normal copula or the Student copula, with ρS = 0.01. One can see that even for
moderately correlated variables, the behaviour might dramatically change in the extreme
values according to the value of the tail dependence.

We can see that even for moderately correlated variables, the presence of tail depen-
dence might dramatically change the behaviour of the distribution in its extreme values.
This situation is a very typical one: when we are interested in the evaluation of a proba-
bility of failure for a system with dependent random parameters, most of the time several
such parameters are in their extreme quantiles in the failure domain. Let us consider a
bi-dimensional failure domain of the form

D = {(x, y) | x ≥ xq, y ≥ yq} (3.14)

where xq = F−1
X (q), yq = F−1

Y (q) and q ≃ 1.
If the vector (X,Y ) has an upper tail dependence λU > 0 (see (1.22)), the probability

of failure is of order P ≃ (1 − q)λU , but otherwise it is of order P ≃ (1 − q)ε(1 − q), where
ε(1 − q) → 0 when q → 1. This means that we can be wrong not only by a constant
factor, but by several orders of magnitude if we do not take the upper tail dependence
into account in our probabilistic model.

The same figure shows that the impact is much less important when we are interested
in the central behaviour of the system, which means when the parameters are around their
median value (q = 0.5 in the figure).

From these observations, it seems that even if a measure of association is by no way
a full representation of the dependence structure, some such measures are better suited
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to summarize this structure in the case of extremal events or in the central part of the
joint distribution. This choice of measure of association has to be made in relation with
the choice of a specific family of copulas. Without going too far into the problem of
the selection of a copula, it is clear that the a priori restriction to a copula with no tail
dependence such as the normal copula might lead to estimation of probability of failure
well below their actual value if the actual copula present a positive tail dependence, with
all the consequences associated to this kind of error.

3.4 Potential pitfalls of using the linear correlation to pa-
rameterize the Nataf transformation.

The tradition has consecrated the use of the linear correlation matrix as a first attempt
to describe the presence of stochastic dependence. We have already seen that this choice
is not optimal from the viewpoint of the notion of measure of association. We have
also mentioned the two difficulties associated to the determination of the normal copula
parameters from a given set of marginal distributions and a linear correlation matrix. In
this section, we give more theoretical insight on these remarks. The main result upon
which we will build our analysis is the Frechet-Hoeffding Theorem 1.30.

In Example 1.15, we note that ρmin and ρmax tend to 0 as σ goes to +∞: the linear
correlation between X and Y can be made as small as desired, even if Y is a strictly
increasing (or decreasing) function of X (in which cases we could have expected correla-
tions close to -1 and 1). If we restrict ourselves to the normal copulas by using the Nataf
transformation, this can only emphasize this restriction. The direct consequence of this
incompatibility is the impossibility to solve the equation (3.4) for some pair of components
(Xi, Xj).

In industrial practices, it is common to have different teams working on the marginal
distribution estimation (experts from specific physics) and the dependence modeling (ex-
perts on system modeling and interactions between systems). The modeling of the de-
pendence resorts to the determination of a linear correlation matrix, based either on
multi-dimensional data or expert judgement, with a weak link with the estimation of the
marginal distribution functions. Even if the resulting marginal distribution functions and
the marginal distribution functions are compatible, which is by no way enforced in the
estimation process, there is no guarantee that this correlation matrix is also compatible
with a normal copula.

Finally, the linear correlation matrix evaluated by experts must be positive and sym-
metric, with all its diagonal elements equal to 1 and the others in [−1, 1]. If the first
properties are verified by construction of the matrix, the last one, in return, is generally
not verified when the linear correlation matrix is obtained from experts. This problem
becomes increasingly severe when the dimension of X grows: the set of positive matrices
becomes negligible in the set of symmetric matrices with unit diagonal and off-diagonal
coefficients in [−1, 1] when this dimension increases.

Some of these problems can be solved by using another measure of association to
parameter the dependence structure. The Spearman rho (1.16) as well as the Kendall
tau (1.17) can be used. As they are functions of the copula only, they do not have to
fulfill a compatibility condition with the marginal distributions. For a general copula that
depends on a vector of parameters θ, one can use relations between enough measures of
association and θ to get the value of the parameters, e.g. relations (1.18) in the case of
a normal copula. Using these relations, it is very easy to compute the whole correlation
matrix of a multi-dimensional normal copula from a matrix of corresponding Spearman
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rho or Kendall tau. Nevertheless, one must be aware of the fact that all the problems have
not been fixed: one has to check that the resulting correlation matrix is positive definite.
If this is not the case, it means that the given Spearman rho matrix or Kendall tau matrix
is not compatible with the normal copula hypothesis.

3.5 Conclusion

The objective of this chapter was to take benefit from the copula theory to give more
insight into the Nataf transformation than the presentations given so far. The central role
played by this transformation in probabilistic safety assessment studies plainly justifies
this need of insight.

This innovating viewpoint has enabled us to demonstrate that the Nataf transfor-
mation is a particular modeling of the stochastic dependence, using the normal copula.
Furthermore, the traditional use of the Nataf transformation requires the linear correlation
matrix of the input random vector in order to parameterize the normal copula.

We have shown the consequences of such an hypothesis and choice of parameters, which
has enabled us to guard against the pitfalls of a systematic use of the Nataf transforma-
tion, as presented in the literature. In particular, we have showed the impact of the choice
of a normal dependence structure on the morphology of the probabilistic distribution of
the input random vector and on its tail dependence properties.

Furthermore, we have made explicit why using the linear correlation matrix in or-
der to parameterize a normal copula might cause great difficulties, mainly because of the
Frechet-Hoeffding theorem which constrains the linear coefficients within a range of vari-
ation depending on the marginal distributions of the random vector. In particular, this
viewpoint has enabled us to understand why the application of the Nataf transformation
sometimes appears impossible, which has never been explained so far.

Finally, we raised the difficulties inherent to the determination of the linear correla-
tion matrix by expert judgements, often realized independently of the determination of
the marginal distributions of the random vector.

In order to deal with these difficulties, we proposed the parameterization of the nor-
mal copula from the Spearman rho correlation matrix or the Kendal tau matrix: these
measures of association are more adapted to give information on the dependence structure
than the linear correlation coefficient.

Thanks to this innovating viewpoint, the Nataf transformation can be extended to
more general dependence structures, namely the elliptical copulas of which the normal
copula is a special case, as it will be presented in the next chapter.



Chapter 4

The generalized Nataf
transformation

We saw in the previous chapter that the choice of an isoprobabilistic transformation is
one of the most important steps in the use of the First Order Reliability Method (FORM),
when one needs to compute an approximation of the probability of a rare event. This
isoprobabilistic transformation T is a diffeomorphism from supp (X) into Rn, such that
the distribution of the random vector U = T (X) has the following properties: U and
Q U have the same distribution for all orthogonal transformation Q ∈ On (R). In the
previous chapter, we detailed such a transformation when X has a normal copula, namely
the Nataf transformation.

The objective of this chapter is threefold: to give a quick introduction to elliptical
distributions and copulas, to propose a generalization of the Nataf transformation to any
random vector X whose copula is elliptical and not necessarily normal, and to provide an
extension of the FORM and SORM approximations to this generalized Nataf transforma-
tion. It is a detailed exposition of the results originally presented in [Leb04] and published
in an extended form in [LD09b].

4.1 Spherical and elliptical distributions

The objective of this section is to give a quick introduction to spherical and elliptical
distributions. It is a key step for the presentation of the elliptical copula and the general-
ized Nataf transformation. The reader will find a more detailed presentation in [KFN87],
as well as the proofs of the results we present. The notion of elliptical distributions can
be viewed as an extension of the notion of multivariate normal distribution (which is a
particular family of elliptical distributions) to families of multi-dimensional distributions
that share the property of being invariant by affine transformation, the same way a multi-
dimensional normal distribution remains a multivariate normal distribution after an affine
transformation.

4.1.1 Spherical distributions

We first define spherical distribution, which is a step towards the definition of elliptical
distribution. Three equivalent definitions are possible, depending on the viewpoint we
choose. The first definition is based on the particular form of the characteristic function
of such distributions. The second definition is based on invariance with respect to the
group of orthogonal transformations On (R). The third definition relies on the stochastic
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representation of any random vector whose distribution is spherical. As a preambule
of these definitions, we recall some basic facts about groups of transformations, taken
from [KFN87], in order to get the notion of maximal invariant.

We start by the notion of group of transformations:

Definition 4.1. Let G be a non-empty set of transformations from a space H into itself.
G is a group of transformations if and only if it satisfies the following conditions:

1. If g1 ∈ G and g2 ∈ G, then g1g2 ∈ G where g1g2 is defined as (g1g2) (x) = g1 (g2 (x))
for all x ∈ H.

2. If g ∈ G, there exists a g−1 ∈ G such that gg−1 = g−1g = e, where e is the identity
transformation in G.

Note that necessarily, e ∈ G and the inverse g−1 of g ∈ G is unique.

We define now the equivalence with respect to a group of transformations:

Definition 4.2. Two points x1 and x2 in H are said to be equivalent under G if there
exists a g ∈ G such that x2 = gx1. We write x1 ∼ x2 (mod G). This relation has the
following properties:

1. x ∼ x (mod G);

2. x ∼ y (mod G) implies y ∼ x (mod G);

3. x ∼ y (mod G) and y ∼ z (mod G) implies x ∼ z (mod G).

The notion of invariant is given in the following definition:

Definition 4.3. A function f defined on H is said to be invariant under G if

∀x ∈ H, ∀g ∈ G, f (g (x)) = f (x)

Then, we get the notion of maximal invariant:

Definition 4.4. A function f defined on H is said to be a maximal invariant under G
if it is invariant under G and if for x1, x2 ∈ H, f (x1) = f (x2) implies that x1 and x2 are
equivalent.

Considering the orthogonal group On (R) acting on Rn, i.e n-dimensional square ma-
trices Q such that Qt = Q−1, we verify that the function f defined by f (x) = xtx is a
maximal invariant under On (R). f is clearly invariant under On (R) as for all x ∈ Rn

and Q ∈ On (R), f (Qx) = xtQtQx = xtx = ‖x‖2. Furthermore, if ‖x1‖2 = f (x1) =
f (x2) = ‖x2‖2, by the Grahm-Schmidt process there exists a Q ∈ On (R) such that
x2 = Qx1, i.e x1 and x2 are equivalent; thus f is a maximal invariant under On (R).

We have the following theorem relating invariants and maximal invariants [KFN87,
Theorem 1.1]:

Theorem 4.5. Assume that the function f defined on H is a maximal invariant under G.
Then a function h defined on H is invariant under G if and only if there exists a function
v from f (H) into h (H) such that:

∀x ∈ H, h (x) = v (f (x)) (4.1)

The spherical distributions are defined in terms of invariance under the orthogonal
group:
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Definition 4.6. A n-dimensional random vector X has a spherical distribution if and
only if :

∀Q ∈ On (R) , X
D= Q X (4.2)

i.e X and QX have the same distribution.

This definition shows that spherical distributions are also exchangeable. Exchange-
able distributions are distributions invariant under the group Sn (R) of n-dimensional
permutations. As Sn (R) ⊂ On (R), it shows that a spherical distribution is also exchange-
able. The exchangeable distributions play a key role in statistics, as the joint distribution
of a statistical sample must be exchangeable as soon as it does not depend on the order
in which the observations are made.

When X has a spherical distribution and has also an absolutely continuous distribution
function, its density is also invariant under On (R):

Proposition 4.7. If the distribution function of X is absolutely continuous and its density
function is pX , then there exists a function θ of a scalar variable such that ∀x ∈ Rn,
pX (x) = θ

(‖x‖2
)
. The function θ is called the density generator of the distribution.

The density function pX is then invariant under On (R).

Proof. If X has a spherical distribution, then for all Q ∈ On (R), W = QX has the same
distribution as X thus the same density function. Since the density functions pW of W

is also related to the density function pX by:

∀w ∈ Rn, pW (w) = pX

(
Qtw

)
(4.3)

we have:

∀x ∈ Rn,∀Q ∈ On (R) , pX (x) = pX

(
Qtx

)
(4.4)

which shows that pX is invariant under On (R) and by Theorem 4.5 is a function of the
maximal invariant ‖x‖2.

The definition of spherical distributions imposes also a specific form for their charac-
teristic functions, as the following theorem (see [KFN87, Theorem 2.1]) shows:

Theorem 4.8. A n-dimensional random vector X has a spherical distribution if and only
if its characteristic function ϕX satisfies one of the following equivalent properties:

1. ∀t ∈ Rn, ∀Q ∈ On (R), ϕX (Qt) = ϕX (t)

2. There exists a function ψ of a scalar variable such that ∀t ∈ Rn, ϕX (t) = ψ
(‖t‖2

)
.

The function ψ is called the characteristic generator of the distribution.

The last property shows that the characteristic function is invariant under On (R). We
note Sψ the spherical distribution of X when it is characterized using its characteristic
function.

Proof. For any square matrix A, the characteristic function of AX equals ϕX

(
AtX

)
,

that is:

E
[
eit

tAX
]

= E
[
eiA

tt
t
X
]

= ϕX

(
Att

)
(4.5)
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thus the property 1 is equivalent to the relation 4.2. Now, the property 2 implies the
property 1, since:

ϕX

(
Qtt

)
= ψ

(
Qtt

t
Qtt

)
= ψ

(
ttQQtt

)
= ψ

(
‖t‖2

)
= ϕX (t) (4.6)

Conversely, the property 1 implies that ϕX is an invariant function with respect to
On (R) which has the maximal invariant ‖t‖2

This theorem allows one to prove easily the following classical result : "the only
spherical distributions with independent components are the normal distributions with
zero mean and covariance matrix proportional to the identity". For a demonstration, see
e.g. [AL82].

The function ψ characterizes the family of the spherical distribution (e.g. Gaussian,
Student etc.), up to a scaling factor: for any constant c > 0, X and cX are in the same
family, which means that ψ and ψ

(
c2 .
)

define the same family of spherical distributions.

Random vectors with spherical distributions are characterized by a specific stochastic
representation, as the next theorem shows:

Definition 4.9. A n-dimensional random vector X has a spherical distribution if and
only if there exists a random variate R ≥ 0 and a random vector U independent of R and
uniformly distributed on the hypersphere {x ∈ Rn | ‖x‖ = 1}, such that:

X = RU (4.7)

Proof. See [KFN87, Theorem 2.5]

This representation provides also an efficient way to sample the underlying distribution,
by sampling independently its radial part R and its standard spherical part U . It is also
very useful in order to reduce the computation of the probability content of a half-space
to an univariate integration of the radial part R (which is the basis of the FORM method,
see section 4.4).

The mean and the covariance of a spherical distribution exist if and only if they exist
for the distribution of the associated R (see equation (4.7)). Given that E [U ] = 0 and
the independence between R and U , we have :

If E [R] < ∞,

E [X] = E [RU ] = E [R]E [U ] = 0 (4.8)

If E
[
R2
]
< ∞,

Cov [X] = E
[
X Xt]− E [X]E [X]t

= E
[
R2
]
E
[
U U t]

= E
[
R2
]
Cov [U ]

(4.9)

If we take the standard normal distribution N (0, In) for X, the quantity ‖X‖2 = R2

is χ2 (n)-distributed, so E
[
R2
]

= n and (4.9) rewrites:

Cov [X] = nCov [U ] = In
Cov [U ] = 1

nIn
(4.10)
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From (4.9) and (4.10) we deduce that for a general spherically distributed X such that
E
[
R2
]
< ∞:

Cov [X] =
1
n
E
[
R2
]
In (4.11)

The definitions 4.8, 4.6 and 4.9 are equivalent according to [KFN87, Theorems 2.1, 2.2
and its corollary].

4.1.2 Elliptical distributions

We can now define the elliptical distributions:

Definition 4.10. A random vector X in Rn has an elliptical distribution if and only
if there exists a deterministic vector µ ∈ Rn, a n by p deterministic matrix A, and a
spherically distributed random vector V ∈ Rp with p = rank (X) ≤ n such that:

X = µ + A V (4.12)

where rank (X) is defined as the dimension of the smallest subspace of Rn in which X

takes its values almost surely.

A (possibly degenerated) elliptically distributed random vector is thus the image of a
(possibly lower dimensional) spherically distributed random vector by an affine transforma-
tion. Of course, the set of elliptical distributions contains the set of spherical distributions.
Using the stochastic representation of V , we get:

Proposition 4.11. A random vector X in Rn has an elliptical distribution if and only
it is possible to find a deterministic vector µ, a n by p matrix A with p = rank (X), a
positive scalar random variate R and a random vector U independent of R and uniformly
distributed on the unit hypersphere of Rp, such that:

X = µ +RA U

which is the decomposition used for the generation of realizations of an elliptical dis-
tribution. In terms of characteristic function, the following result holds.

Proposition 4.12. A random vector X in Rn has an elliptical distribution if and only if
there exists a deterministic vector µ such that the characteristic function of X − µ is a
scalar function of the quadratic form utΣ u:

ϕX−µ (u) = ψ
(
ut Σ u

)

with Σ a symmetric positive definite matrix of rank p. The matrix Σ is related to the A

of Proposition 4.11 through the relation Σ = A At.

We note Eµ,Σ,ψ the elliptical distribution of X.

If the distribution of X − µ is continuous (which implies that Σ is invertible), its
probability density function pX−µ takes the form:

pX−µ (x) = (det Σ)−1/2 θ
(
xt Σ−1 x

)
(4.13)
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where θ is a positive scalar function. The function θ is called density generator of the
distribution, which is related to ψ by:

∀t ∈ R, ψ(t) =
∫ +∞

0
Ωn

(
tu2
)
θ(u) du (4.14)

Elliptical distributions share many of the properties of the multivariate normal dis-
tribution (which is a special case of elliptical distributions), one of which is the algebra
under affine transformation:

Proposition 4.13. Let X in Rn be a random vector with distribution Eµ,Σ,ψ, A a deter-
ministic p by n matrix and b in Rp a deterministic vector. The distribution of Y = A X+b

is Eµ′,Σ′,ψ, where:

µ′ = b + A µ

Σ′ = A Σ At (4.15)

The set of elliptical distributions in a given family characterized by the function ψ is
invariant under affine transformation. In particular, the marginal distributions of a given
elliptical distribution are in the same family.

Let X be a random vector that follows a given elliptical distribution and µ and V

be defined as in Definition 4.10. If the spherical distribution of V has finite mean and
covariance, the elliptical distribution has finite mean and covariance too and we have:

E [X] = E [µ + A V ] = µ + AE [V ] = µ (4.16)

and

Cov [X] = Cov [µ + A V ] = A Cov [V ] At =
1
n
E
[
R2
]
Σ (4.17)

The probabilistic distribution of R characterizes the type of elliptical distribution. For
example, for a normal distribution of dimension n, R2 follows a χ2 distribution with n
degrees of freedom.

Remark 4.14. The expression in Proposition 4.11 shows that the pair (R,A) is defined
up to a multiplicative constant. If E

[
R2
]
< ∞, we will assume that this constant has

been chosen so that E
[
R2
]

= n. Then, Σ is exactly the covariance matrix of X. If
E
[
R2
]

= ∞, one can choose the constant such that R2 has the same median as a χ2 (n)
distribution. Whatever the normalization is, the pair (R,A) is uniquely defined for an
elliptically distributed random vector, and the pair (Σ, ψ) is uniquely defined for the
associated distribution. We will assume that such a normalization has been made for the
remaining of this chapter.

As Σ is a positive semidefinite symmetric matrix, it can be written in the form Σ =
D R D, where D is the diagonal matrix diag σi with ∀i ∈ {1, . . . , n}, σi =

√
Σii ≥ 0.

We note σ = (σ1, . . . , σn). If the distribution has a covariance matrix, with our choice of
normalization for ψ, we know that this covariance matrix is equal to Σ. The matrix R,
such that Rij = Σij√

ΣiiΣjj
, is then its linear correlation matrix. This matrix is well-defined,
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even if the distribution has no finite second moments. In all the cases, we call it the
correlation matrix of the distribution.

To summarize, an elliptical distribution is fully characterized by its location param-
eter µ, equal to the mean of the elliptical distribution if it has a finite first moment, its
marginal scale parameter σ, equal to the vector of standard deviations of the one-
dimensional marginal distributions if they have finite second moments, its correlation
matrix R, equal to the linear correlation matrix of the elliptical distribution if it has
finite second moments, and its characteristic generator ψ, which is a positive scalar
function that characterizes the type of the elliptical distribution.

From now on, we will denote by Eµ,σ,R,ψ the distribution function of Eµ,σ,R,ψ, corre-
sponding to the previous notation Eµ,Σ,ψ where σ = D R D.

4.2 Spherical and elliptical Copulas, generic elliptical rep-
resentative, standard spherical representative

Definition 4.15. An elliptical copula CER,ψ is the copula of an elliptical distribution
Eµ,σ,R,ψ.

Remark 4.16. Thanks to the normalization presented in Remark 4.14, the mapping
(R, ψ) 7→ CER,ψ is one-to-one. The type of the copula is given by ψ and its shape by R.

In general, the copula CER,ψ is not the distribution function of an elliptical distribution
itself.

It is clear that mapping between the elliptical distributions and elliptical copulas
is not one-to-one. Let R be the equivalence relation between elliptical distributions:

Eµ1,σ1,R1,ψ1

R≡ Eµ2,σ2,R2,ψ2
if and only if Eµ1,σ1,R1,ψ1

and Eµ2,σ2,R2,ψ2
share the same

copula CER,ψ. From Remark 4.16, this relation reads (R1, ψ1) = (R2, ψ2).
We introduce the notion of generic representative to distinguish one particular ellipti-

cal distribution in each class of equivalence:

Definition 4.17. The generic elliptical representative of an elliptical distribution
family Eµ,σ,R,ψ through the equivalence relation R is the elliptical distribution whose
distribution function is E0,1,R,ψ.

All other members of the equivalence class differ only by their location parameter µ

and their marginal scale parameter σ.
We introduce a last kind of elliptical distributions that allows one to focus on the type

of a elliptical distribution, throwing away the shape information.

Definition 4.18. The standard spherical representative of an elliptical distribu-
tion family Eµ,σ,R,ψ is Sψ, the spherical distribution whose distribution function is Sψ =
E0,1,In,ψ.

It is the only member of the elliptical family which is both spherical and with null
location parameter and unit marginal scale parameter.

Definition 4.19. The family of distributions with marginal distribution functions F1, . . . , Fn
and elliptical copula CER,ψ is denoted by DF1,...,Fn,CER,ψ

. The distribution function of this
distribution is denoted DF1,...,Fn,CER,ψ

.

The relationship between the different kinds of elliptical distributions is depicted in
Figure 4.1. We also show how general distributions with elliptical copulas interact with
these distributions.
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Figure 4.1: Graph showing the relations between the several kinds of elliptical and spheri-
cal distributions (oval nodes), and how general distributions with elliptical copulas (rectan-
gular nodes) are linked to these distributions through bijection between elliptical copulas
and generic elliptical representatives. The labels on the links are related to what is ex-
tracted from the left-hand side to go to the right-hand side. For example, extraction of the
dependence structure of a general distribution with elliptical copula leads to its copula.
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4.3 Generalized Nataf transformation

The usual Nataf transformation [Nat62] has already been analysed in the light of the
copula theory in the previous chapter. It transforms a random vector into a multivariate
standard Gaussian vector if and only if the copula of the random vector is normal, and
some of the consequences of such an hypothesis have been presented in the context of
the evaluation of low probabilities of failure. Here, we propose a generalization of this
transformation to a random vector with an elliptical copula CER,ψ. In this section, the
random vector X is supposed to be continuous and with full rank. We also suppose that
its marginal distribution functions are strictly increasing (so they are bijective) and that
the matrix R of its elliptical copula is symmetric positive definite.

The usual Nataf transformation has been described as the composition of two trans-
formations T1 and T2 in (3.1). The transformation T1 can also be decomposed into two
elementary transformations T ′1 and T ′′1 defined by:

T ′1 : Rn → Rn

x 7→ v =




F1 (x1)
...

Fn (xn)




(4.18)

which is the usual probabilistic integral transformation, and

T ′′1 : Rn → Rn

v 7→ w =




Φ−1 (v1)
...

Φ−1 (vn)




(4.19)

which leads to the decomposition T = T2 ◦ T ′′1 ◦ T ′1 for the usual Nataf transformation.
It has been shown in Chapter 3, Proposition 3.4 that if X has a normal copula, the dis-
tribution of U = T (X) is the standard n-dimensional normal distribution, namely the
standard spherical representative associated with CER,ψN

. The transformation T ′1 maps
X into a random vector V whose distribution is the normal copula CER,ψN

, the trans-
formation T ′′1 maps V into a random vector W whose distribution is the generic normal
representative associated with CER,ψN

and T2 maps W into a random vector whose distri-
bution is the standard normal representative associated to CER,ψN

. The U -space is called
the standard space whereas the X-space is called the physical space. With this point
of view, a natural generalization of the Nataf transformation is the following:

Definition 4.20. Let X in Rn be a continuous random vector following the distribution
DF1,...,Fn,CER,ψ

. The generalized Nataf transformation T gen : Rn → Rn is defined by:

T gen = T2 ◦ T ′′1
gen ◦ T ′1 (4.20)

where the transformations T ′′1
gen is given by:

T ′′1
gen : Rn → Rn

v 7→ w =



E−1 (v1)

...
E−1 (vn)




(4.21)
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where E is the distribution function of standard one-dimensional elliptical distribution
with characteristic generator ψ and Γ is the inverse of the Cholesky factor of R in Defi-
nition 3.1 of T2, which was supposed to be nonsingular.

This transformation differs from the usual one by its second step, which is modified
such that the distribution of W = T ′′1

gen ◦ T ′1 (X) is the generic elliptical representative
associated with the copula of X. The step T2 maps this distribution into its standard rep-
resentative, following exactly the same algebra as the normal copula. In the special case
where the distribution of X is already elliptical, with distribution function Eµ,σ,R,ψ, the
generalized Nataf transformation is an affine transformation: the transformation T ′′1

gen◦T ′1
maps the elliptical distribution into its generic representative, which is an affine transfor-
mation of each component, and the transformation T2 is linear, thus T gen = T2 ◦ T ′′1 gen◦T ′1
is affine. More precisely, if we note V = T ′′1

gen ◦T ′1 (X), we have Vi = (Xi − µi) /σi for all
i ∈ {1, . . . , n}. The generalized Nataf transformation can then be expressed in this case
as:

U = T gen (X) = S (X − µ) (4.22)

where S is the inverse of the Cholesky factor of Σ = D R D.

4.4 FORM and SORM approximations

Once the Nataf transformation has been extended to elliptical distributions, it is nec-
essary to provide an extension of the FORM (First Order Reliability Method) and SORM
(Second order Reliability Method) approximations to make the evaluation of the proba-
bility of exceedance possible. We start by recalling what these approximations are.

Given a numerical model f : Rn → R and a threshold s ∈ R, the evaluation of the
probability:

Pf = P (f (X) ≥ s) =
∫

Rn
1f(x)≥s pX (x) dx (4.23)

where pX is the probability density function of X, can be transformed into the evaluation
of the probability:

Pf = P (G (U) ≥ s) =
∫

Rn
1G(u)≥s pU (u) du (4.24)

using a suitable change of variable u = T (x) such that the transformed random vector
U = T (X) has a spherical distribution. Here, G = f ◦ T−1 is the standard model and
pU is the density function of U . The vector U is said to take values in the standard
space, whereas X is said to take values in the physical space. To be a proper trans-
formation, T must be defined on the support supp X = {x ∈ Rn | pX (x) > 0} of X and
be a continuously differentiable function from the interior of supp X into the interior of
T (supp X) such that its inverse is also continuously differentiable.

One may wonder if such transformations exist. If X has a normal copula, the Nataf
transformation is such a transformation, and we showed that if X has a general elliptical
distribution the generalized Nataf transformation is such a transformation. For the most
general case, the Rosenblatt transformation that will be presented in the next chapter is
such a transformation. The interest of such a transformation is that U has a spherical
distribution. If pU (i.e its density generator θ) is a decreasing function of ‖u‖ in the failure
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domain D = {u |G (u) ≥ s}, the integral in (4.24) can be approximated by an integral
of pU over an approximate domain D̃ close to D. This domain is usually obtained by an
approximation of the boundary ∂D of D at the vicinity of the point u∗ ∈ D with minimal
norm, i.e. with maximum density (such a point is called the design point). A linear
approximation of ∂D at u∗ leads to the FORM approximation, whereas a quadratic one
leads to the SORM approximation.

The components of the design point play also an important role in the sensitivity
analysis of the failure in the standard space. In this space, as u → u∗, the standard model
G writes:

G (u) = s+ ∇tG (u∗) (u − u∗) +
1
2

(u − u∗)t∇2G (u∗) (u − u∗) + o
(
||u − u∗||2

)
(4.25)

provided G is twice continuously differentiable at u∗. By definition of u∗:

u∗ = argmin
u∈D

||u||2 (4.26)

it exists λ ∈ R\{0} such that ∇G (u∗) = λu∗. Using Var [Ui] = 1, we get:

Var [G (U)] = λ2
n∑

i=1

(u∗i )
2 Var [Ui] + o(1) = λ2

n∑

i=1

(u∗i )
2 + o(1) as

∥∥∥∇2G (u∗)
∥∥∥ → 0

The reliability index β is defined by:

β = ||u∗||

The importance factors defined by:

Fi =
(u∗i )

2

∑n
i=1 (u∗i )

2 =
(u∗i )

2

β2

are the relative contributions of the marginal variances of U to the variance of G (U).

In order to derive the FORM and SORM approximations of the probability of failure
Pf , using the invariance of the standard distribution by orthogonal transformation of U ,
we can suppose that the design point u∗ has components (0, . . . , 0, β), see Figure 4.2.

The generalized FORM approximation is obtained by a linear approximation of the
boundary ∂D which has the form of the hyperplane tangent to ∂D of D at u∗. In this
case, the generalized FORM approximation of the probability of failure is:

P genFORM = P (U1 ≥ β) = 1 − E (β) = E (−β) (4.27)

where E is the distribution function of the 1-D standard elliptical representative of the
same type than the copula of X. We recover the standard FORM approximation when
X has a normal copula, as in this case E ≡ Φ, the distribution function of the standard
one-dimensional normal distribution.

For the generalized SORM approximation, more work is required. As in the case
of a normal copula (the usual Nataf transformation), the expression of the probability of
failure has no simple analytical formulation. The generalization of the Tvedt exact formula
(see [Tve88], [Tve90]) does not seem to extend easily to the more general context we study
here, as its proof relies on the independence of the components of the standard spherical
representative, which occurs only in the normal case. But it is possible to generalize
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Figure 4.2: Rotational invariance after the application of the generalized Nataf transfor-
mation. The rotational invariance of E0,1,In,ψ allows one to focus on the situation depicted
in dashed form without loss of generality, thanks to the rotation R that maps a general
failure domain D to a domain D′ for which the design point u∗′ is supported by the last
axis.
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Breitung’s asymptotic analysis derived in [Bre84] and [Bre94] to a more general spherical
case. We first derive such a generalization, then we comment its traditional use that leads
to Breitung’s formula. We reinterpret the resulting asymptotic approximation in terms
of standard models G obtained as a nonlinear transformation of a reference domain, in
order to get an asymptotically exact approximation of the probability of failure of such
domains.

Breitung’s approximation is based on the application of the multivariate Laplace
method to the evaluation of a parametric integral close to the integral in (4.24). The
application of this method requires some technical conditions known as the compactifi-
cation conditions, see [Bre94, Lemma 38]:

Lemma 4.21. Let F ⊂ Rn be a closed set and f, h : Rn → R be two continuous functions.
Assume further that:

1. The set M = {y ∈ F | f (y) = maxx∈F f (x)} is compact.

2.

∫

F
|h (x) |ef(x) dx < ∞.

3. For every neighborhood V of M, sup
y∈F\V

{f (y)} < max
x∈F

f (x).

4. There exists a neighborhood U of M such that for all x ∈ U always h (x) > 0 (or
h (x) < 0).

5. For all neighborhood V of M always

∫

F∩V
dx > 0.

Then for all δ > 1:
∫

F
|h (x) |eδf(x) dx < ∞

and for all neighborhood V of M, as δ → ∞:
∫

F
h (x) eδf(x) dx = (1 + o (1))

∫

F∩V
h (x) eδf(x) dx

This lemma gives conditions under which we can replace an integral over a possibly
non-compact set F by an integral over a compact set F ∩ V without changing its asymp-
totic behavior, by choosing a compact neighborhood V of M. It leads to the following
hypothesis [Bre94, Condition A] for asymptotic approximation:

Hypothesis 4.22. Let g : Rn → R be a twice continuously differentiable function such
that F = {x ‖ g (x) ≤ 0} is a compact set and its boundary ∂F = {x ‖ g (x) = 0} a
compact C2 hypersurface. The gradient ∇g (x) does not vanish on ∂F and the surface ∂F
is oriented by the normal field n (x) = ∇g (x) /||∇g (x) ||.

We get the following theorem, which is the root of the second order approximation of
the probability of failure known as the Breitung formula, see [Bre84] and [Bre94, Theo-
rem 46]:

Theorem 4.23. Let Hypothesis 4.22 be fulfilled. Let ℓ : Rn → R be a twice continuously
differentiable function and h : Rn → R be a continuous function.

Assume that the following conditions are satisfied

1. The function ℓ attains its global maximum with respect to F only at the point x∗ ∈
∂F .

2. The gradient of ℓ at x∗ does not vanish: ∇ℓ (x∗) 6= 0.
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3. The matrix H (x∗) = ∇2ℓ (x∗)− ||∇ℓ(x∗)||
||∇g(x∗)||∇

2g (x∗) is such that the (n− 1)× (n− 1)

matrix H∗ (x∗) = A (x∗)tH (x∗) A (x∗) is nonsingular, where:

∇2φ (x∗) =
(
∇2φ (x∗)

)
ij

=
∂2φ

∂xi∂xj
(x∗)

is the Hessian matrix of φ at x∗, for φ ∈ {g, ℓ}, A (x∗) = (a1 (x∗) , . . . , an−1 (x∗))
and the vectors a1 (x∗) , . . . ,an−1 (x∗) form an orthonormal basis of the tangential
space of F at x∗.

Then, as δ → ∞ we have the following asymptotic approximation:

∫

F
h (x) eδ

2ℓ(x)dx = (2π)(n−1)/2 h (x∗)√
|J (x∗) |

eδ
2h(x∗)

δn+1
(1 + o (1)) (4.28)

where J (x∗) = ∇ℓ (x∗)tC (x∗) ∇ℓ (x∗) and C (x∗) = matrix of cofactors of H (x∗).

We can use this theorem to derive an asymptotic expansion of the probability content
of a failure domain D which is homothetic to a reference domain F at unit distance from
the origin, it means D = βF . The resulting approximation is given in the next proposition.

Proposition 4.24. Let G be a standard model and U a random vector with a spherical
distribution of density generator θ such that:

1. θ is a decreasing function;

2. φ = log (θ) is separable in the following sense:

∀β ∈ R+, ∀x ∈ Rn, φ
(
β2‖x‖2

)
= η (β) ℓ (x) (4.29)

where η : R+ → R and ℓ : Rn → R are two twice continuously differentiable functions
such that:

(a) limβ→∞ η (β) = ∞;

(b) ℓ satisfies the conditions of Theorem 4.23.

Then, the asymptotic relation 4.28 reads:

P (βF) =

(
−πθ

(
β2
)

θ′ (β2)

)(n+1)/2
θ
(
β2
)

2πβ

(
n−1∏

i=1

1√
1 − κi

)
(1 + o (1)) as β → ∞ (4.30)

where x∗ = argminx∈F ||x||, (κi)i=1,...,n−1 are the main curvatures of ∂F at x∗ and θ′ is
the first derivative of θ.

Proof. The failure domain D is defined by D = {u |G (u) ≥ s}. The hypothesis that
D = βF with x∗ = argminx∈F ‖x‖ and ‖x∗‖ = 1 is equivalent to the hypothesis that the
standard model G is the member Gβ of a parametric family of models Gβ that writes:

∀u ∈ Rn, Gβ (u) = s− g
(
β−1u

)
(4.31)

where g : Rn → R is a given fixed function and F = {x ∈ Rn | g (x ≤ 0)}.
We look for an asymptotic expansion when β → ∞ of:

P (βF) =
∫

βF
θ
(
‖u‖2

)
du

=βn
∫

F
θ
(
β2‖x‖2

)
dx

=βn
∫

F
eη(β)ℓ(x) dx
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Due to the rotational invariance of θ with respect to a rotation around the origin, we can
take x∗ = en. Then, replacing δ by η (β) in Equation (4.28), we have as β → ∞:

P (βF) = βn (2π)(n−1)/2 eη(β)ℓ(en)

η (β)(n+1)/2

1√
|J (en) | (1 + o (1)) as β → ∞ (4.32)

As this formula involves g only through J , which is built using the gradient and Hessian
of g, we can assume that g is a second order polynomial with respect to x. Moreover, the
hypothesis that x∗ = en leads to:

g (x) = −ρetn (x − en) − 1
2

(x − en)tM (x − en)

where the symmetric matrix M writes:

M =

(
M∗ 0

0 0

)

The main curvatures (κi)i=1,...,n−1 of ∂F at en are exactly the eigenvalues of the Wein-
garten map W of g at en associated with eigenvectors that form an orthogonal basis of
the tangent space of F at en, see [Bre94, Definition 6]. The matrix W of W is given by:

W = − ||∇g (en) ||−1
(
In − ∇g (en) ∇tg (en)

)
M

= − ρ−1
(
In − ρ2enetn

)
M

=

(
−ρ−1M∗ 0

0 0

)

so the main curvatures (κi)i=1,...,n−1 are the eigenvalues of −ρ−1M∗.
The gradient and Hessian of ℓ at en are:

∇ℓ (en) =2β2φ
′ (β2

)

η (β)
en

∇2ℓ (en) =
2β2

η (β)

[
2β2φ′

(
β2
)

enetn + φ′
(
β2
)

In

]

The gradient and the Hessian of g at en are:

∇g (en) = − ρen

∇2g (en) = −M

Taking into account that φ ≤ 0 and η (β) ≥ 0 on F , the matrix H (en) reads:

H (en) =
2β2

η (β)

[
2β2φ′

(
β2
)

enetn + φ′
(
β2
)

In

]
− 2β2φ

′ (β2
)

η (β)
ρ−1M

=
2β2

η (β)

[
2β2φ′

(
β2
)

enetn + φ′
(
β2
)

In − φ′
(
β2
)
ρ−1M

]

from which we get the expression of J (en):

J (en) =

(
2β2φ

′ (β2
)

η (β)

)2

etnC (en) en =

(
2β2φ

′ (β2
)

η (β)

)2

Cnn (en)
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where Cnn (en) is the cofactor of Hnn (en), i.e. the determinant of its (n− 1) × (n− 1)
upper left block. We have:

Cnn (en) =

(
2β2φ

′ (β2
)

η (β)

)n−1

det
(
In−1 − ρ−1M

)

=

(
−2β2φ

′ (β2
)

η (β)

)n−1 n−1∏

i=1

(1 − κi)

so:

J (en) =

(
−2β2φ

′ (β2
)

η (β)

)n−1 n+1∏

i=1

(1 − κi) (4.33)

Using (4.33) in (4.32), we get:

where |φ| has been substituted by −φ since |φ ≤ 0. Substituting φ and φ′ by their expres-
sions in terms of θ and θ′ we get the expression (4.30), which is the Breitung approximation
extended to a more general spherical case.

In order to simplify the relation (4.30) we generalize Mill’s ratio to the spherical cases
we are interested in:

Proposition 4.25. Let θ be the density generator of an n-dimensional spherical distribu-
tion satisfying the conditions of Proposition 4.24 and E be its one-dimensional marginal
distribution function. Then we have the approximation:

E (−β) =

(
−πθ

(
β2
)

θ′ (β2)

)(n+1)/2
θ
(
β2
)

2πβ
(1 + o (1)) as β → ∞ (4.34)

Proof. When we write the relation (4.30) for a linear standard model G, we can evaluate
exactly the integral defining P (βF) to get P (βF) = E (−β). As all the curvatures are

equal to zero, we get E (−β) =
(

−πθ(β2)
θ′(β2)

)(n+1)/2
θ(β2)
2πβ (1 + o (1)) as β → ∞.

Using Propositions 4.24 and 4.25, we get the final form of Breitung’s approximation
extended to a more general spherical case:

Theorem 4.26. Let G be a standard model and U a random vector with a spherical
distribution of density generator θ such that the conditions of Theorem 4.23 are fulfilled.
Then, the asymptotic relation (4.30) reads:

P (βF) = E (−β)

(
n−1∏

i=1

1√
1 − κi

)
(1 + o (1)) as β → ∞ (4.35)

where x∗ = argminx∈F ||x||, (κi)i=1,...,n−1 are the main curvatures of ∂F at x∗ and θ′ is
the first derivative of θ.
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Remark 4.27. In practice, if one knows that the standard model G is in the parametric
family Gβ, then the value of β as well as the curvatures (κi)i=1,...,n−1 can be recovered
directly from the design point u∗ and the curvatures associated with G:

β =‖u‖∗
κi = − βκGi ∀i ∈ {1, . . . , n− 1}

where
(
κGi

)
i=1,...,n−1

are the main curvatures of ∂D at u∗, ∂D and ∂F having opposite

orientation convention.

Remark 4.28. The monotonicity condition and the separability condition (4.29) made
on φ are not really mandatory. They could be relaxed, for instance by imposing them only
asymptotically. It would gives the result (4.35) for a broader class of spherical distribu-
tions.

4.5 Conclusion

In this chapter, we have given an introduction to elliptical distributions and copulas,
and we proposed a generalization of the Nataf transformation to any distribution with
elliptical copula. In order to make an effective use of this generalized transformation, we
derived the associated FORM and SORM/Breitung approximation of the probability of
failure. These approximations appear to be very natural extensions of the normal copula
case associated with the usual Nataf transformation.





Chapter 5

Do Rosenblatt and Nataf
isoprobabilistic transformations
really differ?

In this chapter, we explore the relationship between two isoprobabilistic transforma-
tions widely used in the community of reliability analysts, namely the generalized Nataf
transformation and the Rosenblatt transformation.

The main results of this chapter are the demonstration that the Rosenblatt trans-
formation using the canonical order of conditioning is identical to the generalized Nataf
transformation in the normal copula case, which is the most usual case in reliability analy-
sis since it corresponds to the classical Nataf transformation. Then, we show that it is not
possible to extend the Rosenblatt transformation to distributions with general elliptical
copula the way the Nataf transformation has been generalized. Finally, we explore the
effect of the conditioning order of the Rosenblatt transformation on the usual reliability
indicators obtained from a FORM or SORM method. We show that in the normal cop-
ula case, all these reliability indicators, excepted the importance factors, are unchanged
whatever the conditioning order one choose.

These results are illustrated with two numerical applications that illustrate the previous
results.

This work has been published in [LD09a].

5.1 Introduction

We presented in the previous chapter the FORM and SORM approximations to com-
pute probabilities of failure as an alternative to the simulation methods. These methods
are based on an isoprobabilistic transformation that maps the physical space into a new
space called the standard space. To this end, two isoprobabilistic transformations are
presented in the literature: the generalized Nataf transformation that has been presented
in details in the previous chapter, and the Rosenblatt transformation [Ros52].

The main objective of this chapter is to compare the generalized Nataf transformation
with the Rosenblatt one and to prove that they are identical in the normal copula case,
which is the most common case in actual reliability studies as it corresponds to the use of
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the classical Nataf transformation.

We also study the possibility to modify the Rosenblatt transformation in a similar way
the Nataf transformation has been extended to lead to a non-normal standard space.

The second objective of this chapter is to study the impact of the conditioning or-
der of the Rosenblatt transformation on the usual reliability indicators obtained after an
analytical FORM / SORM method, with a focus on the normal copula case.

We denote by CNR a normal copula whose correlation matrix is R. We suppose that
R is a symmetric positive definite matrix.

We denote by Mn,n(R) the algebra of real square matrices of dimension n, by On(R)
the multiplicative sub-group of orthogonal matrices and by GLn(R) the multiplicative sub-
group of invertible matrices.

If R = (rij)1≤i,j≤n ∈ Mn,n(R), then Rk is its k-leading sub-block:

Rk = (rij)1≤i,j≤k (5.1)

and Rk is the (k + 1)-th partial column vector:

Rk = (r1,k+1, . . . , rk,k+1)t (5.2)

We call standard space the image space of an isoprobabilistic transformation.

5.2 The generalized Nataf and Rosenblatt transformations

We presented the generalized Nataf transformation in the previous chapter, with a
decomposition in three steps T = T2 ◦ T ′′1 gen ◦ T ′1. Here, we contract the action of T ′′1

gen

and T ′1 into a unique transformation T gen1 = T ′′1
gen ◦ T ′1 to get the representation that is

most adapted to a comparison with the Rosenblatt transformation. We also add an explicit
mention to the Nataf name in order to avoid confusion with the Rosenblatt transformation:
T genNataf = T2 ◦ T gen1 .

The interest of this transformation for uncertainty quantification purpose is that it
maps random vectors with elliptical copulas into random vectors with spherical distribu-
tion, which is mandatory to use approximation methods such as the FORM or SORM
approximations. More precisely, if the random vector X has a joint distribution function
with marginal distribution functions F1, . . . , Fn and copula Cψ,R, then the random vector
U = T (X) is distributed according to the standard spherical representative distribution
E0,1,In,ψ of Cψ,R.

Another widely used isoprobabilistic transformation is the Rosenblatt transforma-
tion [Ros52], defined as follows:

Definition 5.1. Let F be a continuous n-dimensional distribution function. The Rosen-
blatt transformation TR : Rn → Rn associated with F is defined by:

TR = TR2 ◦ TR1 (5.3)
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where the transformations TR1 and TR2 are given by:

TR1 : Rn → Rn

x 7→ w =




F1(x1)
...

Fk|1,...,k−1(xk|x1, . . . , xk−1)
...

Fn|1,...,n−1(xn|x1, . . . , xn−1)




TR2 : Rn → Rn

w 7→ u =




Φ−1(w1)
...

Φ−1(wn)




(5.4)

where Fk|1,...,k−1 is the conditional distribution function defined in (1.1).

The interest of this transformation is in its action on a random vector X with joint
distribution F , as given in the following theorem (see [DM05, Chapter 7.2] or [Ros52]):

Theorem 5.2. Let X be a n-dimensional random vector with continuous joint distribu-
tion function F and TR the associated Rosenblatt transformation. Then U = TRX is
distributed according to the standard n-dimensional normal distribution N (0, In).

Proof. Let Z be the random vector defined by Z = TR1 (X). By construction, Z takes
its values in [0, 1]n. To compute the distribution of Z, let g be a real valued bounded
continuous function defined on [0, 1]n. We have:

E [g(Z)] =E
[
g(TR1 (X))

]

=
∫

Rn
g(TR1 (x))pX(x) dx

=
∫

Ω
g(TR1 (x))pX(x) dx

where Ω = {x ∈ Rn ‖ pX(x) > 0}. The change of variable z = TR1 (x) is a diffeomorphism
between Ω and (0, 1)n, and we have dz = |det (J(x))| dx, where J is the Jacobian matrix
of TR1 defined by:

Ji,j =
∂(TR1 )i(x)

∂xj

=
∂Fi|1,...,i−1(xi|x1, . . . , xi−1)

∂xj

We note that for j > i, Ji,j = 0 as Fi|1,...,i−1 does not depend on xj . The matrix J is then
lower triangular, and its determinant is the product of its diagonal elements:

det (J(x)) =
n∏

k=1

∂Fk|1,...,k−1(xk|x1, . . . , xk−1)

∂xk
=

n∏

k=1

pk|1,...,k−1(xk|x1, . . . , xk−1) = pX(x) ≥ 0
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so dz = pX(x)dx and we get:

E [g(Z)] =
∫

[0,1]n
g(z) dz

=
∫

Rn
g(z)✶[0,1]n(z) dz

which proves that Z is uniformly distributed over [0, 1]n, i.e it has independent components
which are all uniformly distributed over [0, 1]. By Proposition 1.18, the transformation TR2
maps Z into a random vector Y = TR2 (Z) with the same copula, so Y has independent
components. Its marginal distribution functions are all equal to Φ thus Y has a standard
normal distribution.

In order to ease the further comparison between the generalized Nataf transformation
and the Rosenblatt one, it is useful to rewrite the Rosenblatt transformation as follows:

Proposition 5.3. Let F be a n-dimensional continuous distribution function with uni-
variate marginal distribution functions F1, . . . , Fn and copula C. The new formulation
of the Rosenblatt transformation TNR associated with F is defined by:

TNR = TR ◦ T0 (5.5)

where T0 is given by :

T0 : Rn → Rn

x 7→ w =




Φ−1 ◦ F1(x1)
...

Φ−1 ◦ Fn(xn)




(5.6)

where TR the Rosenblatt transformation of Definition 5.1 with the distribution function of
T0(X), i.e a distribution with standard normal marginal distributions and copula C.

Proof. Let us note that uNR = TNR(x) = TR2 ◦ TR1 ◦ T0(x).

If w = T0(x), then, thanks to (5.4), the kth component of uNR writes:

uNRk = Φ−1 ◦Gk|1,...,k−1(wk|w1, . . . , wk−1) (5.7)

where Gk|1,...,k−1(wk|w1, . . . , wk−1) is the conditional distribution function of a random
vector W distributed as T0(X), where X is a random vector with marginal distribu-
tion functions F1, . . . , Fn and copula C. We note by CW the copula of W . Thanks to
Proposition 1.13, the distribution function Gk|1,...,k−1(wk|w1, . . . , wk−1) writes:

Gk|1,...,k−1(wk|w1, . . . , wk−1) = CW
k|1,...,k−1 (Gk(wk)|G1(w1), . . . , Gk−1(wk−1)) (5.8)

From Proposition 1.18, it follows that X and W have the same copula C. Furthermore,
by construction of W , we have Gk = Φ and Φ(wk) = Fk(xk). Then, relation (5.8) rewrites:

Gk|1,...,k−1(wk|w1, . . . , wk−1) = Ck|1,...,k−1 (Fk(xk)|F1(x1), . . . , Fk−1(xk−1)) (5.9)

which finally leads to the relation:

Gk|1,...,k−1(wk|w1, . . . , wk−1) = Fk|1,...,k−1(xk|x1, . . . , xk−1) (5.10)

and then to:

TNRk (x) = Φ−1 ◦ Fk|1,...,k−1(xk|x1, . . . , xk−1) = TRk (x) (5.11)

where TR is the classical Rosenblatt transformation associated to F .
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5.3 Do generalized Nataf and Rosenblatt transformations
really differ?

In this section, we first consider the case where the copula of X is normal, which is the
most usual case in reliability analysis since it corresponds to the case where the classical
Nataf transformation applies.
Then, we make the comparison in all the other cases: non-normal elliptical copulas and
non-elliptical copulas.

5.3.1 The normal copula case

The new formulation (5.5) of the Rosenblatt transformation makes it easier to show
that when X has a normal copula, both transformations are identical:

Proposition 5.4. Let X in Rn be a continuous random vector defined by its univariate
marginal distribution functions Fi and its copula CNR supposed to be normal, with non-
singular correlation matrix R. Then, the Rosenblatt transformation and the generalized
Nataf one are identical:

TR(X) = TGN (X) (5.12)

We recall without demonstration the conditional expectation and covariance matrix of
a normal random vector, the action of an affine transformation on a normal random vector
and an elementary result on orthogonal matrices that will be used in the demonstration
of Proposition 5.4.

Proposition 5.5. Let U = (U1,U2) be a n1 + n2-dimensional normal random vector
such that Cov [U1, U1] is nonsingular. Then the conditional distribution of U2 given U1

is the normal distribution with mean vector and covariance matrix defined by:
{

E [U2 | U1] =E [U2] + Cov [U2, U1] [Cov [U1, U1]]−1 (U1 − E [U1])
Cov [U2 | U1] = Cov [U2, U2] − Cov [U2, U1] [Cov [U1, U1]]−1 Cov [U1, U2]

(5.13)

Proposition 5.6. Let U in Rn be a normal vector, with mean vector is µ, and covariance
matrix Σ, A a deterministic matrix in Mn,p(R) and b in Rp a deterministic vector. Then
V = A X + b is a normal vector which mean vector and covariance matrix are defined by:

{
E [V ] = A µ + b

Cov [V ] = A Σ At (5.14)

Proposition 5.7. Let T +(R) be the set of lower triangular matrix ofMn,n(R) with positive
diagonal elements. Then T +(R) is a multiplicative subgroup of GLn(R).
Furthermore, T +(R) ∩ On(R) = {In}.

Proof. We can now start to demonstrate Proposition 5.4, using the new formulation of
the Rosenblatt transformation of Proposition 5.3, whose different steps are the following
ones:

TNR : X
T07−→ W

TR
17−→ Y

TR
27−→ U (5.15)

Let us note Sk−1 = (W1, . . . ,Wk−1)t and Vk a random variable distributed as Wk given
Sk−1.
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As X has a normal copula, W is a n-dimensional normal vector whose univariate marginal
distributions are standard normal and whose correlation matrix is R.

Proposition 5.5 gives that for all k, Vk follows a univariate normal distribution and
relation (5.13) leads to:

E [Vk] = E [Wk] + Cov [Wk, Sk−1] [Cov [Sk−1, Sk−1]]−1 (Sk−1 − E [Sk−1])
= Cov [Wk, Sk−1] [Cov [Sk−1, Sk−1]]−1 Sk−1

(5.16)

the matrix Cov [Sk−1, Sk−1] being nonsingular as it is the (k − 1) × (k − 1) upper left
square block of the nonsingular matrix R.

We have Cov [W ] = Cor [W ] = R, and given the notations (5.1) and (5.2), we have:

E [Vk] =
(
Rk−1

)t
[Rk−1]−1 Sk−1 (5.17)

Furthermore, relation (5.13) also leads to:

Var [Vk] = Var [Wk] − Cov [Wk, Sk−1] [Cov [Sk−1, Sk−1]]−1 Cov [Sk−1, Wk]

= 1 −
(
Rk−1

)t
[Rk−1]−1 Rk−1

(5.18)

Given relations (5.17) and (5.18), the kth component of Y is defined by:

Yk = FW
k|1,...,k−1(Wk|W1, . . . ,Wk−1) = Φ



Wk −

(
Rk−1

)t
[Rk−1]−1Sk−1

√
1 −

(
Rk−1

)t
[Rk−1]−1Rk−1


 (5.19)

Finally, we obtain:

Uk = Φ−1(Yk) =
Wk −

(
Rk−1

)t
[Rk−1]−1Sk−1

√
1 −

(
Rk−1

)t
[Rk−1]−1Rk−1

= AkW (5.20)

where for all k ∈ [1, n], Ak = (ak,1, . . . , ak,k, 0, . . . , 0) ∈ M1n(R) with:





ak,k =

[√
1 −

(
Rk−1

)t
[Rk−1]−1Rk−1

]−1

ak,j = −ak,k
k−1∑

i=1

r1irji for ∀j ∈ [1, k − 1]

(5.21)

As Ak is a row matrix, Uk only depends on Sk. Let Γ̃ be the lower triangular matrix
whose kth row is Ak. Then relation (5.20) implies that:

U = Γ̃ W (5.22)

which is very close to relation (3.3). It remains to show that Γ̃ = Γ.
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Proposition 5.6 implies that Cov [U ] = Γ̃ R Γ̃
t

and Cov [U ] = In by construction of
U . If L is the Cholesky factor of R, then R = L Lt, and (Γ̃ L)(Γ̃ L)

t
= In, which leads

to Γ̃ L ∈ On(R).
Furthermore, by construction, Γ̃ ∈ T +(R). As L ∈ T +(R), Proposition 5.7 implies that
Γ̃ L ∈ T +(R) and Γ̃ L = In, which rewrites Γ̃ = L−1 = Γ.

In conclusion, we showed that in the case where X has a normal copula, we have the
relation TR2 ◦ TR1 ◦ T0(X) = TN2 ◦ TN1 (X) which leads to :

TR(X) = TN (X) a.s (5.23)

Thus, the equivalence of the Rosenblatt transformation and the generalized Nataf
transformation in the normal copula case is shown.

5.3.2 The other cases

In the case where the copula of X is elliptical but non-normal, both isoprobabilistic
transformations differ as their associated standard spaces are different. As a matter of
fact, the standard spaces of the generalized Nataf is associated with the standard spher-
ical representative of the elliptical family that defines the elliptical copula, whereas the
standard space of the Rosenblatt transformation is associated to the normal distribution.

At this step, it is interesting to check whether it is possible to modify the Rosenblatt
transformation in order to make its standard space be the same as the one associated with
the generalized Nataf transformation.

In the previous chapter, we have recalled that the essential characteristic of the stan-
dard space is the spherical symmetry of its associated distribution, which gives a sense to
the FORM and SORM approximations of the event probability.
Let us note that by construction, because of the conditioning step TR1 , the Rosenblatt
transformation leads to a final vector U with an independent copula.

Proposition 5.8. The only spherical distributions with independent components are the
normal distributions with zero mean and scalar covariance matrix proportional to the iden-
tity.

See [AL82] for a demonstration.

Thus, the only way to map a random vector with independent copula into a random
vector following a spherical distribution, is to map it into a normal vector such as de-
scribed in this proposition: thus, the standard space of the Rosenblatt transformation is
necessarily the normal one.
Therefore, the standard space of the Rosenblatt transformation and the standard space of
the generalized Nataf transformation only coincide in the normal copula case.

Finally, for all the other cases where the copula of X is not elliptical, the generalized
Nataf transformation is not defined and the comparison with the Rosenblatt transforma-
tion not possible.
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5.4 Impact of the conditioning order in the Rosenblatt trans-
formation in the normal copula case

In the literature [DM05], the presentation of the Rosenblatt transformation is given
with the warning that the conditioning order in step TR1 has an impact on the results
obtained from a FORM/SORM method. This warning was already present in the seminal
paper [Ros52] of Rosenblatt.
Let us call canonical order the order presented in the relation (5.4).

In that section, we study the impact of a change in the conditioning order of the Rosen-
blatt transformation on the quantities evaluated in the context of the use of the FORM or
SORM methods : the design point, which is used through its norm (reliability index) and
its components for the computation of the importance factors, and the curvatures of the
limit state surface at the design point in the standard space, where the limit state surface
is the boundary of the subspace of parameters verifying the event (for SORM approxima-
tion).

In the case where the copula of X is not normal, it has already been shown that such
a change has an impact on all these elements : see the example quoted by [Dol83] and
discussed by several authors, for example [DM05] and [Lem05].

However, this is not always the case. We will study in more detail the most frequent
situation where the copula of X is normal since, as mentioned previously, it is the copula
induced by the traditional use of the classical Nataf transformation.

Let us suppose now that we change the order of conditioning. It is equivalent to
consider the introduction of a new step in the Rosenblatt transformation between the
steps T0 and TR1 of relation (5.15) in order to make a permutation P ∈ Sn(R) of the
components of W to get W 2. The Rosenblatt transformations using the canonical order
or an arbitrary order are summarized graphically in Figure 5.1.

X W Y U

W 2 Y 2 U2

✲
T0

✲
TR

1

❄

P

✲
TR

2

♣

♣

♣

♣

♣

♣

♣

♣

♣

❄

✲
TR

1
✲

TR
2

Figure 5.1: Rosenblatt transformations when the conditioning of the components Wk

follow the canonical order or an arbitrary order.

We have the following result:

Proposition 5.9. In the normal copula case, changing the order of the conditioning in the
Rosenblatt transformation consists in making an orthogonal transformation in the standard
space of the Rosenblatt transformation.
More precisely, if we note P ∈ Sn(R) the permutation matrix associated to the arbitrary
order, TR2 the Rosenblatt transformation associated to this ordering, U2 = TR2 (X) and
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U = TR(X), then we have :

∃Q ∈ On(R) /U2 = QU (5.24)

where Q and P are in the same connected component of On(R), it means det (P ) =
det (Q) = ±1.

According to the notations of Figure 5.1, if R is the correlation matrix of the normal
copula of X, R2 the one of W 2, Γ and Γ2 the inverse of their respective Cholesky factors,
then the matrices P and Q are linked by:

Q = Γ2 P Γ−1 (5.25)

and in general, neither Q = P nor Q ∈ Sn(R).

The following result will help for the demonstration of Proposition 5.9:

Proposition 5.10. Let A and B be two deterministic matrices in Mn,n(R), with B

invertible. Then we have:

A At = B Bt =⇒ B−1 A ∈ On(R) (5.26)

which means that ∃Q ∈ On(R) such that A = B Q.

Proof. As a matter of fact, we have the following implications:

(B−1 A)(B−1 A)
t

= B−1 A At B−t = B−1 B Bt B−t = In (5.27)

which leads to the result of Proposition 5.10.

Proof. We are now ready to prove Proposition 5.9. As W 2 = P W , W 2 is a normal vector
which correlation matrix verifies R2 = P R P t and whose Cholesky factor is L2 = Γ−1

2 .
Therefore, R2 = L2 L2

t = (P L)(P L)t. Proposition 5.10 leads to:

∃Q ∈ On(R) such that P L = L2 Q (5.28)

By multiplying the relation (5.28) on the left by Γ2 and on the right by Γ, it rewrites:

Γ2 P = Q Γ (5.29)

which leads to the relation between P and Q given in relation (5.25).
We showed that in the normal copula case, the mapping from W 2 into U2 is linear

such as: U2 = Γ2 W 2. Finally, we obtain:

U2 = Γ2 P W (5.30)

Relations (5.29) and (5.30) finally imply that:

U2 = Q Γ W = Q U (5.31)

as required.

Given that det (Γ) > 0 and det (Γ2) > 0, relation (5.25) implies that det (Q) and
det (P ) have the same sign, which means that they belong to the same connected compo-
nent of On(R).
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In conclusion, if the random vector X has a normal copula, the effect of changing the
order of conditioning in the Rosenblatt transformation with respect to the canonical order
is to apply a further orthogonal transformation after applying the Rosenblatt transforma-
tion associated to the canonical ordering. It changes the location of the design point, i.e
its components, but neither its norm nor the curvatures of the limit state surface at the
design point.
Thus, in the context of the FORM or SORM method, the following quantities do not
depend on the conditioning order of the Rosenblatt transformation :

– The Hasofer reliability index [HL74], which is the norm of the design point,
– The FORM approximation of the event probability which relies only on the Hasofer

reliability index,
– The several SORM approximations of the event probability which rely on both the

Hasofer reliability index and the curvatures of the limit state function at the design
point.

However, the importance factors change in a way which is not in general a permutation
of the values obtained using the canonical order: relation (5.25) implies that in general,
Q 6= P .

To be more precise, we have the following result:

Proposition 5.11.
The random vector X has an independent copula if and only if for all permutation matrix
P , Q = P .

Proof. The first implication is obvious: if X has an independent copula, the correlation
matrix R is equal to the identity matrix In, which implies that R2 = In, Γ = In, Γ2 = In
and finally Q = P .
The second implication derives from the following computation. By definition of Γ2 and
Γ, we have:

Q = P =⇒ L2 = P L P t (5.32)

which implies the following relation on the coefficients of L2 = (ℓ2i,j)1≤i,j≤n and L =
(ℓi,j)1≤i,j≤n :

ℓ2i,j = ℓσ(i),σ(j) (5.33)

where σ is the permutation associated to P .
Thus, given that L and L2 are lower triangular matrices, if the relation (5.33) must
hold for all the permutations σ, it must hold in particular for any transposition τij that
exchanges i and j, thus if i < j, ℓ2i,j = 0 by construction, thus ℓσ(i),σ(j) = ℓji = 0: L is
a diagonal matrix and consequently, R = In, which is equivalent to the independence of
the components of X in the normal copula case.

In conclusion, a permutation with respect to the canonical order on the components of
X always corresponds to the same permutation with respect to the canonical order of the
components of the standard space random vector only in the independent case. Otherwise,
the choice of the conditioning order does not translate into a simple permutation of the
values of the design point coordinates.

The lack of invariance of the importance factors with respect to the conditioning order
of the Rosenblatt transformation is by no means specific to this transformation. There is
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no explicit conditioning order to choose in the classical Nataf transformation, but it is in
fact hidden in the choice of Γ in its definition. The usual choice based on the Cholesky
factor L of the correlation matrix R corresponds to the canonical conditioning ordering
for the Rosenblatt transformation, but other choices are possible. In fact, the set of
possible choices for Γ is exactly the set {Q L−1 | Q ∈ On(R)}. This way, we can recover
the Rosenblatt transformation with a non-canonical conditioning ordering and even other
transformations. As soon as R 6= In, each different choice for Γ will lead to different
importance factors that will not reduce to permutations of the one obtained using the
Cholesky factor.

The actual difficulty is in fact not in the choice of the conditioning ordering, but rather
to define importance factors that are invariant by permutation in the case of random vector
with dependent components. This definition is still an open question to the best of our
knowledge.

Let us recall that the exact value of the event probability remains unchanged whatever
the transformation we use, and whatever the conditioning order we use for the Rosenblatt
transformation!

5.5 Numerical applications

In this section, we illustrate the results obtained in the previous sections through two
numerical applications.
We consider a bi-dimensional random vector X = (X1, X2) defined by its marginal distri-
bution functions (F1, F2) and its copula CX .
For both applications, we choose exponential distributions X1 ∼ E(λ1) and X2 ∼ E(λ2)
for the marginal distributions and a limit state surface defined by:

8X1 + 2X2 − 1 = 0 (5.34)

We consider the event :

8X1 + 2X2 − 1 ≤ 0 (5.35)

which we want to evaluate the probability.

In the first application, we choose a normal copula CX = CNR where R =

(
1 ρ
ρ 1

)

and ρ ∈ [−1, 1] the correlation coefficient of the underlying generic representative of the
copula. For ρ = 0, the normal copula is the independent copula, for ρ = −1 it is the
Fréchet lower bound copula and for ρ = 1 it is the min copula.

Using the Fréchet-Hoeffding bounds (1.30) and the definition of the linear correlation
using copulas (1.14), we can compute the linear correlation ρ12 between X1 and X2 as a
function of ρ. As ρ12 is invariant by affine transformations, it does not depend on λ1 and
λ2, so we take λ1 = λ2 = 1 in the computation. We get that ρ12 is an increasing function
of ρ, with a minimum value of:

ρmin12 =
∫ +∞

0
−x log

(
1 − e−x

)
e−x dx− 1 =

∫ 1

0
log(u(1 − u)) du− 1 = 1 − π2/6 ≃ −0.645

for ρ = −1 (X1 and X2 are counter-monotone) and a maximum value of

ρmax12 =
∫ +∞

0
x2e−x dx− 1 = 1



84
Chapter 5. Do Rosenblatt and Nataf isoprobabilistic transformations

really differ?

for ρ = 1 (X1 and X2 are co-monotone). This example shows that ρ12 cannot be speci-
fied independently from the marginal distributions when one uses the normal copula: any
value below ρmin12 is not compatible with the given marginals and the normal copula.
The evolution of ρ12 as a function of ρ is given on Figure 5.2.
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Figure 5.2: Linear correlation ρ12 = (Cor [X])12 as a function of ρ for exponential
marginal distributions X1 ∼ E(1), X2 ∼ E(1) and a normal copula with correlation ρ.

In the first application (subsection 5.5.1), we check both the equivalence between the
canonical Rosenblatt transformation and the generalized Nataf transformation, and the
effect of a change in the conditioning order.

In the second application (subsection 5.5.2), we choose a non-elliptical copula, namely
the Frank copula CX = Cθ, which belongs to the class of Archimedean copulas, and we
verify that a change in the conditioning order is not equivalent to an orthogonal modifi-
cation of the transformation and has an impact on the FORM and SORM approximations.

We recall that the Frank copula is defined on [0, 1]2 by the expression:

Cθ(u1, u2) = −1
θ

log

(
1 +

(e−θu1 − 1)(e−θu2 − 1
e−θ − 1

)
(5.36)

where θ ∈ R∗. For θ → 0, the Frank copula tends to the independent copula, for θ → −∞
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it tends to the Fréchet lower bound copula and for θ → +∞ it tends to the min copula.

We can compute the linear correlation ρ12 between X1 and X2 as a function of θ the
same way we did for the preceeding example. We get that ρ12 is an increasing function of
θ, with the same minimum value of ρmin12 = 1 − π2/6 ≃ −0.645 for θ → −∞ and the same
maximum value of ρmax12 = 1 for θ → +∞. The evolution of ρ12 as a function of θ is given
on Figure 5.3.
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Figure 5.3: Linear correlation ρ12 = (Cor [X])12 as a function of θ for exponential
marginal distributions X1 ∼ E(1), X2 ∼ E(1) and a Frank copula Cθ.

In the numerical applications, we take λ1 = 1, λ2 = 3, ρ = 1/2 and θ = 10.

5.5.1 Application 1: normal copula

We use the new expression of the Rosenblatt transformation of Definition 5.3, with the
previous notation W = T0(X), in that particular case of normal copula.
Given Proposition 5.5, the conditional distribution of W2 given W1 is a normal dis-
tribution such that E [W2|W1] = ρW1 and Var [W2|W1] = 1 − ρ2, which implies that

FW2|W1(W2|W1) = Φ

(
W2 − ρW1√

1 − ρ2

)
.
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Finally, the random vector U is defined by:





U1 = Φ−1 ◦ FW1(W1) = W1

U2 = Φ−1 ◦ FW2|W1(W2|W1) =
W2 − ρW1√

1 − ρ2

(5.37)

The Rosenblatt transformation with canonical order on the conditionning step finally
defines the normal random vector U as:





U1 = Φ−1 ◦ F 1(X1)

U2 =
Φ−1 ◦ F 2(X2) − ρΦ−1 ◦ F 1(X1)√

1 − ρ2

(5.38)

In the Rosenblatt standard space, the limit state surface has the parametric expression,
where ξ ∈ [0,+∞):





u1 = Φ−1 ◦ F 1(ξ)

u2 =
Φ−1 ◦ F 2

(
1−8ξ

2

)
− ρΦ−1 ◦ F 1(ξ)

√
1 − ρ2

(5.39)

With the same considerations, the Rosenblatt transformation with the inverse order
on the conditioning step defines the normal random vector Ũ as:





Ũ1 = Φ−1 ◦ F 2(X2)

Ũ2 =
Φ−1 ◦ F 1(X1) − ρΦ−1 ◦ F 2(X2)√

1 − ρ2

(5.40)

which leads, in the standard space, to the expression of the limit state surface:




ũ1 = Φ−1 ◦ F 2(1−8ξ
2 )

ũ2 =
Φ−1 ◦ F 1(ξ) − ρΦ−1 ◦ F 2

(
1−8ξ

2

)

√
1 − ρ2

(5.41)

Figure 5.4 draws the graph of the limit state surface in the standard space after both
Rosenblatt transformations.

Thanks to relation (5.25), we can explicit the orthogonal matrix Q. The permutation

matrix is P =

(
0 1
1 0

)
which leads to R2 = R. Furthermore, we have Γ = Γ2 =




1 0
−ρ√
1 − ρ2

1√
1 − ρ2


 and finally Q =


 ρ

√
1 − ρ2

√
1 − ρ2 −ρ


.

We can easily verify that Ũ = QU . Furthermore, Q is a permutation matrix whith
det (Q) = −1, as the matrix P .

The director vector of the symmetry axis is

(√
1 + ρ

2
,

√
1 − ρ

2

)
. In the numerical appli-

cation drawn in Figure 5.4, the symmetry axis is (
√

3/2, 1/2).
The Hasofer reliability index is β = 1.30 and the FORM approximation of the event
probability p = P (8X1 + 2X2 − 1 < 0) is:

pFORM = Φ−1(−β) = 9.76 10−2 (5.42)
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Limit State Surface in Standard Space
through Rosenblatt Transformations

Canonical order
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Figure 5.4: Transformations of the limit state surface into the standard space when using
the canonical order in the Rosenblatt transformation and its inverse. The linear correlation
is ρ = 1/2, the copula is normal, X1 ∼ E(1) and X2 ∼ E(3). The limit state surface is
8X1 + 2X2 − 1 = 0. Note the symmetry that exchanges the two curves: its matrix is Q.
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An analytical computation of p leads to the numerical result :

p = 8.73 10−2 (5.43)

Let us verify now the equivalence between the Nataf transformation and the Rosenblatt
one (given that we consider the canonical order). The Nataf transformation leads to the
normal random vector U defined as:

U = Γ

(
Φ−1 ◦ F 1(X1)
Φ−1 ◦ F 2(X2)

)
(5.44)

As Γ =




1 0

− ρ√
1 − ρ2

1√
1 − ρ2


, we have:





U1 = Φ−1 ◦ F 1(X1)

U2 = −ρΦ−1 ◦ F 1(X1)√
1 − ρ2

+
Φ−1 ◦ F 2(X2)√

1 − ρ2

(5.45)

which is identical to the expression defined in (5.38).

5.5.2 Application 2: Frank copula

We consider here the Frank copula, which is an non-elliptical copula. This example
proves that both limit state surfaces in the standard space associated to two different
orders in the conditioning step of the Rosenblatt transformation are not linked by an
orthogonal transformation. We also illustrate that, according to this conditioning order,
the reliability indices are different which leads to different FORM approximations of the
probability.

Figure 5.5 draws the graph of the limit state function in the standard space after both
Rosenblatt transformations.

The respective reliability index are different in both cases:

{
βCanOrd = 1.24
βInvOrd = 1.17

(5.46)

which leads to different FORM approximations of the event probability:

{
PFORMCanOrd = 1.07 10−1

PFORMInvOrd = 1.22 10−1 (5.47)

There is a difference of 14% between the two approximations, only due to the conditioning
order, whereas the exact probability value is the same.

An analytical computation of p leads to the numerical value:

p = 1.038 10−1 (5.48)
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Figure 5.5: Transformations of the limit state surface into the standard space when using
the canonical order in the Rosenblatt transformation and its inverse. The copula is a Frank
one with θ = 10, X1 ∼ E(1) and X2 ∼ E(3). The limit state surface is 8X1 + 2X2 − 1 = 0.
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5.6 Conclusion

This chapter concludes our global reflections on isoprobabilistic transformations.

Its first main objective was to compare the generalized Nataf transformation with the
Rosenblatt transformation and to show that in the normal copula case, both transforma-
tions are identical.

In the use of the Rosenblatt transformation, there is a degree of freedom in the ordering
of the conditioning step. This point is often presented as a drawback of this transforma-
tion, as it leads to different numerical results for the FORM and SORM approximation.
The second main objective of this chapter was to show that, although the conditioning
order has such an impact in general, in the normal copula case there is indeed no impact
on the FORM and SORM approximations as well as on the reliability index. The only
impact is on the importance factors in the case of correlated components for X, which
underline the difficulty to interpret such factors in the correlated case.

The Nataf transformation has been successfully generalized to produce more general
standard spaces than the normal one. We showed that the Rosenblatt transformation
cannot be generalized this way. Thus, for the case of a non-normal elliptical copula, one
can choose between two isoprobabilistic transformations: the Rosenblatt transformation
or the generalized Nataf transformation.

We illustrated these results through two numerical applications, showing the equiva-
lence of both transformations in the normal copula case and the effect of the conditioning
order in a normal and non-normal copula case.

Let us recall that the exact value of the event probability remains the same whatever
the transformation we use, and whatever the conditioning order we use for the Rosenblatt
transformation. It is only the FORM and SORM approximations that are potentially
modified.



Chapter 6

Copulas for order statistics with
prescribed marginal distribution
functions

The probabilistic modeling of a random vector is not always based on information
about the marginal distributions and the dependence structure. In some cases, in ad-
dition to marginal information, we have an information about the support of the joint
distribution. This additional information usually constrains both the marginal distribu-
tions and the copula. In this chapter, we study in details this kind of modeling situation
in the case of constraints that reduce to a non-decreasing ordering that must be satistfied
almost surely.

The main results of this chapter are the characterization in the absolutely continuous
case of the one-dimensional marginal distributions and the n-dimensional copulas com-
patible with such constraints, and the definition of a new infinite-dimensional parametric
family of copulas well-suited to this modeling situation. We prove the existence and the
uniqueness of a copula with maximal support within this family in the bi-dimensional case,
and give efficient algorithms to work with this copula.

6.1 Introduction

Modeling the joint distribution of a random vector with prescribed marginal distribu-
tions and partial dependence information was a challenging task before the wide diffusion
of the copula concept. Thanks to the Sklar Theorem 1.11, we know that it is a problem
of copula selection: any copula able to reproduce this partial dependence information will
lead to a plausible multivariate distribution function. When the partial information is
given through a set of scalar measures of association, many procedures are available to
select a parametric family of copulas and to estimate its parameters using either estimates
of measures of association as presented in chapter 1, or more specific methods as presented
in [Nel06], [Joe97]. When one has a multivariate sample at hand, it is even possible to
resort to semi-parametric or non-parametric estimations of the copula [CFS07], [GN07].

But in some modeling situations, the dependence information is not given explicitely
but through a constraint that must be fulfilled almost surely by the random vector. More
precisely, if B ⊂ Rn is a given measurable set, we are interested in the characterization
of n-dimensional distribution functions G with prescribed marginal distribution functions
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G1, . . . , Gn for X such that:
X ∈ B a.s. (6.1)

This problem is known as the marginals problem (see e.g. [RT94] and [Str65]) and has
been studied in terms of variational conditions, but does not seem to have been extensively
studied from the viewpoint of copulas in the literature. We propose to adress it in the
particular setting where all the marginal distribution functions G1, . . . , Gn are continuous.
We also restrict our attention to domains B such that:

B = {x ∈ Rn |ψ1(x1) ≤ . . . ≤ ψn(xn)}
where (ψi)i=1,...,n are strictly monotonic continuous functions from R to R.

This problem can be reduced to the case where ∀i = 1, . . . , n,∀xi ∈ R, ψi(xi) = xi: if
we define Fi(xi) = Gi(ψ−1

i (xi)) if ψi is strictly increasing and Fi(xi) = 1 −Gi(ψ−1
i (xi)) if

ψi is strictly decreasing, then there is a bijection between the joint distribution functions
F of random vectors X with continuous marginal distribution functions F1, . . . , Fn and
satisfying:

X1 ≤ . . . ≤ Xn a.s (6.2)

and the joint distribution functions of the random vectors X with continuous marginal
distribution functions G1, . . . , Gn and satisfying (6.1).

This new formulation shows that the problem reduces to the determination of the
admissible copulas for the joint distribution function F of order statistics with prescribed
marginal distributions F1, . . . , Fn. The large literature on order statistics is mainly focused
on the derivation of F given an initial random vector X with unordered components and
a given joint distribution function H, the most common setting being random vectors
with identical marginal distribution functions H1, . . . ,Hn = Href and independent or
exchangeable components (see [ABNN08], [DN03]), the most involved setting being the
case of arbitrary marginal distribution functions H1, . . . ,Hn and independent components
wich leads to the Bapat-Beg theorem [BB89] which fully describes F in terms of the Hi.
More recently, some authors started to link order statistics and copulas such as in [JR08],
and to study the dependence structure of order statistics [AGK05], but with a focus
on measures of concordance rather than on admissible copulas. The closest published
work is [NS10], where the authors characterize the copulas associated with H when the
marginal distribution functions F1, . . . , Fn are prescribed, whereas we are interested in the
admissible copulas associated with F for given F1, . . . , Fn.

The chapter is organized as follows. We start by recalling the well known compatibility
conditions for continuous marginal distribution functions to be the marginal distribution
functions of order statistics and we give a synthetic table showing the pairs of marginal
distribution functions which do not satisfy this compatibility condition regardless of their
parameterization. Then, we fully characterize the set of copulas compatible with (6.2)
when the marginal distribution functions are also compatible. This characterization ex-
cludes all the classical absolutely continuous copulas, so we define a new family of copulas
dedicated to this modeling situation. We prove the existence and uniqueness of the copula
of largest support in this family, and we give all the algorithmic details that allows to sam-
ple such a copula, e.g. in order to perform Monte Carlo simulations. In the conclusion,
we mention some possible extensions to this work.

6.2 Compatibility conditions

The joint distribution of order statistics has been a long term research topic, but mainly
focused on the derivation of this distribution given the distribution of an initial unordered
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random vector. It is only recently that some work has been published concerning the
possible structure of the joint distribution of order statistics with no reference to a parent
distribution. While the necessary condition on its marginal distribution functions is a
well-known result, the fact that it is also a sufficient condition is not so well known, and
the characterization of compatible copulas has not been described so far.

In the next paragraph we recall the compatibility condition on the marginal distribu-
tions and give a synthetic view of it for classical marginal distributions in Table 6.1.

6.2.1 Conditions on marginals

In order to study the general case where the different continuous marginal distribution
functions are increasing but not strictly increasing, we have to define two generalized
inverse for such functions:

Definition 6.1. Let F be an increasing function from R to [a, b]. We define the two
generalized inverse F← and F→ by:

∀q ∈ [a, b], F←(q) = inf{x ∈ R |F (x) ≥ q}
F→(q) = sup{x ∈ R |F (x) ≤ q}

These two generalized inverse functions are increasing from [a, b] to R, and we have:

∀x ∈ R, F←(F (x)) ≤ x

F→(F (x)) ≥ x

and

∀q ∈ [a, b], F (F←(q)) ≥ q

F (F→(q)) ≤ q

these last two inequalities being equalities if F is continuous.

When applied to a distribution function F , we have a = 0, b = 1 and F← is equal to
the quantile function F−1 associated with F , see Definition 1.5.

We recall a well-known result on the marginal distribution functions of order statistics,
telling that order statistics are also ordered according to the usual stochastic ordering:

Theorem 6.2. Let X = (X1, . . . , Xn) be a random vector satisfying (6.2). Then its
marginal distribution functions (F1, . . . , Fn) verify the point-wise inequality:

∀i ∈ {1, . . . , n− 1}, ∀x ∈ R, Fi(x) ≥ Fi+1(x) (6.3)

or equivalently:
∀i ∈ {1, . . . , n− 1}, ∀t ∈ [0, 1], F←i (t) ≤ F←i+1(t) (6.4)

The condition (6.3) is also known as the first order dominance as in [Lev06] or also
the stochastic ordering of X1, . . . , Xn as in [Nel06].

Proof. By (6.2), ∀i ∈ {1, . . . , n − 1} and ∀x ∈ R, Ai+1 = {Xi+1 ≤ x} ⊂ Ai = {Xi ≤ x}
from which Fi(x) = P (Ai) ≥ Fi+1(x) = P (Ai+1).
The condition on the quantile functions is easily obtained from the definition of quasi-
inverse and the right-continuity of distribution functions. More precisely, for t ∈ [0, 1],
for all i ∈ {1, . . . , n} we define Ai(t) = {x ∈ R |Fi(x) ≥ t}. We deduce from Fi ≥ Fi+1
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that Ai+1(t) ⊂ Ai(t) from which F←i ≤ F←i+1. Conversely, if there exists x̃ ∈ R such that
Fi(x) < Fi+1(x̃) = t, then from the right-continuity of Fi there exists ǫ > 0 such that
∀x ∈ [x̃, x̃+ ǫ], Fi(x) < t and as Fi is non-decreasing, inf Ai(t) > x̃+ ǫ. Moreover, as Fi+1

is non-decreasing and Fi+1(x̃) = t, inf Ai(t) ≤ x̃, from which F←i (t) > F←i+1(t).

We can deduce from this proposition some easy-to-check necessary compatibility or
incompatibility conditions. We define the bounds of a random variable as:

Definition 6.3. Let X be a real valued random variable with marginal distribution func-
tion F . We define its lower bound X and its upper bound X by

X = F→(0) = sup{x ∈ R |F (x) = 0}
X = F←(1) = inf{x ∈ R |F (x) = 1} = F−1(1)

Then, a necessary compatibility condition is given by Corollary 6.4.

Corollary 6.4. If X satisfies the condition (6.2), the bounds of its components must
satisfy:

X1 ≤ . . . ≤ Xn and X1 ≤ . . . ≤ Xn (6.5)

Proof. If (6.5) is not fulfilled, there exists a i ∈ {1, . . . , n − 1} such that for example
Xi+1 < Xi. Let x be in (Xi+1, Xi) 6= ∅. Then we have FXi(x) = 0 and FXi+1

(x) > 0
which is incompatible with (6.3) and then (6.2). The case Xi+1 < Xi is dealt with in the
same way.

By studying the tails of the marginal distribution functions, one can also get sufficient
incompatibility conditions as given in Corollary 6.5.

Corollary 6.5. If Fi = o(Fi+1) in the vicinity of Xi or 1−Fi+1 = o(1−Fi) in the vicinity
of Xi+1 then the marginal distribution functions Fi and Fi+1 are not compatible with the
constraint (6.2).

In the case where Fi and Fi+1 are absolutely continuous, these criteria can be translated
in terms of marginal density functions pi and pi+1: if pi = o(pi+1) in the vicinity of Xi or
pi+1 = o(pi) in the vicinity of Xi+1 then the marginal distribution functions Fi and Fi+1

are not compatible with the constraint (6.2).

Proof. First, we note that Fi = o(Fi+1) implies that Xi+1 ≤ Xi, else we would have Fi > 0
and Fi+1 ≡ 0 on [Xi, Xi+1), which is not compatible with Fi = o(Fi+1).

In the vicinity of Xi, the condition Fi = o(Fi+1) translates into ∀ǫ > 0 and ǫ < 1,
∃η > 0 such that ∀x ∈ [Xi, Xi + η), Fi(x) ≤ ǫFi+1(x) < Fi+1(x) which is incompatible
with (6.3). The symmetric condition in the vicinity of Xi+1 is dealt with the same way.
The condition expressed in terms of marginal densities reduces to the condition on one-
dimensional marginal distribution functions by integration on (−∞, x].

If we consider the set of usual distributions given in Table 6.1, then using Corollaries 6.4
and 6.5, we can discard half of the couples of distributions as being incompatible with the
constraint, regardless of the set of parameters we choose for these distributions. For the
remaining couples, it may be possible to impose the constraint but with restrictions on the
values of the parameters. For example, in the case of two normal distributions N (µ1, σ

2
1)

and N (µ2, σ
2
2), we must have µ1 ≤ µ2 and σ2

1 = σ2
2, whereas for two uniform distributions

U(a1, b1) and U(a2, b2), we must have a1 ≤ a2 and b1 ≤ b2.
We conclude that the constraint (6.2) imposes strong conditions both on the family of

marginal distributions and on the possible values for their parameters. These conditions
have to be taken into account when one tries to infer marginal distributions from statistical
data if the underlying multivariate quantity is known to satisfy such a constraint.
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Beta ∅ ∅ ∅ ∅
Exponential ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
Gamma ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
Gumbel ∅ ∅ ∅ ∅ ∅ ∅
Laplace ∅ ∅ ∅ ∅ ∅
Logistic ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
LogNormal ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
Normal ∅ ∅ ∅ ∅ ∅ ∅
Rayleigh ∅ ∅ ∅ ∅ ∅ ∅ ∅
Student ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
Triangular ∅ ∅ ∅ ∅
Uniform ∅ ∅ ∅ ∅
Weibull ∅ ∅ ∅

Table 6.1: Possible couples of marginal distributions for (Xi, Xi+1) where the distribution
of Xi is given by rows and those of Xi+1 is given by columns. The ∅ symbol means the
marginal distributions are not compatible with the constraint (6.2), regardless of their pa-
rameters. In the other cases, there exists a possible combination of parameters compatible
with the constraint (6.2). For example, one cannot have an exponential distribution for Xi

and a uniform distribution for Xi+1, but the converse may be possible for specific values
of the parameters of these distributions.
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6.2.2 Conditions on copula

The main result of this section is Theorem 6.7 which characterizes the set of copulas
of order statistics with prescribed compatible marginal distributions. We will denote by
µF the unique positive measure defined on the σ-field B(Rn) associated with the distribu-
tion function F , and by µC the unique positive measure defined on the σ-field B([0, 1]n)
associated with the copula C.

For the remainder of the chapter, F1, . . . , Fn are n marginal distribution functions
verifying (6.3). Let C be the set of n-dimensional multivariate copulas and C(F1, . . . , Fn)
the set of multivariate copulas which, associated with F1, . . . , Fn lead to multivariate
distribution functions verifying (6.2). The next result shows that the copula selection
problem is well-posed, in the sense that if (6.3) is satisfied by F1, . . . , Fn, then there exist
copulas compatible with F1, . . . , Fn, i.e C(F1, . . . , Fn) 6= ∅.

Proposition 6.6. Let Mn be the min copula of dimension n, defined by

∀u ∈ [0, 1]n, Mn(u) = min(u1, . . . , un)

then Mn ∈ C(F1, . . . , Fn) so it is always possible to build a joint distribution function of
order statistics with compatible marginal distribution functions.

Proof. Let U be a random variable uniformly distributed on [0, 1] and X = (F←1 (U), . . . ,
F←n (U)). By construction, Mn is an admissible copula for X and its marginal distribution
functions are F1, . . . , Fn. By construction, using (6.4), X satisfies the constraint (6.2).

We introduce three sets that will play a key role in the study of C(F1, . . . , Fn):

SX =
{

x ∈ Rn |x1 ≤ . . . ≤ xn
}

=
n−1⋂

i=1

{
x ∈ Rn |xi ≤ xi+1

}
(6.6)

SU = {u ∈ [0, 1]n |u1 ≤ . . . ≤ un} =
n−1⋂

i=1

{u ∈ [0, 1]n |ui ≤ ui+1} (6.7)

∆(F1, . . . , Fn) = T (SX) ⊂ [0, 1]n (6.8)

where T is the usual probability integral transformation (see e.g [Rüs09]), defined by:

T : Rn → [0, 1]n

x 7→ u =




F1(x1)
...

Fn(xn)




We give now the characterization of the copulas of order statistics given compatible con-
tinuous marginal distributions.

Theorem 6.7. The set of copulas C(F1, . . . , Fn) is exactly the set of copulas C such that:

µC(∆(F1, . . . , Fn)) = 1

it means, copulas whose support is included in ∆(F1, . . . , Fn).

Proof. Let F be a multivariate distribution function with marginal distribution functions
F1, . . . , Fn and copula C. C is in C(F1, . . . , Fn) if and only if F satisfies the constraint 6.2,
which means µF (SX) = 1. By Theorem 1.11, we have:

µF (SX) = µC◦T (SX) = µC(∆(F1, . . . , Fn))

so µF (SX) = 1 if and only if µC(∆(F1, . . . , Fn)) = 1.
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An immediate corollary of Theorem 6.7 is the following:

Corollary 6.8. ∆(F1, . . . , Fn) = [0, 1]n, i.e. any copula is admissible, if and only if:

∀i ∈ {1, . . . , n}, Xi ≤ Xi+1 (6.9)

Proof. It is obvious that if we have (6.9), then the independent copula Πn of dimension n
is in ∆(F1, . . . , Fn). As its support is [0, 1]n, it shows that ∆(F1, . . . , Fn) = [0, 1]n.

On the other hand, if ∆(F1, . . . , Fn) = [0, 1]n, the independent copula Π is in C(F1, . . . ,
Fn). Let X be a random vector with marginal distribution functions F1, . . . , Fn and copula
Π. If there exists i ∈ {1, . . . , n} such that Xi+1 < Xi, then for any s ∈ R we have:

P (Xi > Xi+1) ≥ P (Xi > s ∩Xi+1 ≤ s) = (1 − Fi(s))Fi+1(s)

If we take s =
Xi+1

+Xi

2 , we get P (Xi > Xi+1) > 0, which contradicts the constraint.

As the compatibility condition is expressed as a constraint on the support of the copula
and as the set of n-dimensional copulas is convex, one gets the following corollary which
allows to construct new copulas in C(F1, . . . , Fn) from given ones:

Corollary 6.9. C(F1, . . . , Fn) is a convex subset of C.

The geometry of ∆(F1, . . . , Fn) plays a key role in the study of C(F1, . . . , Fn). The next
result shows that for a given n, ∆(F1, . . . , Fn) cannot be arbitrary small as it contains a
subset independent of F1, . . . , Fn with positive Lebesgue measure.

Proposition 6.10. We have:

SU ⊂ ∆(F1, . . . , Fn)

Proof. For all u ∈ SU , if we take x = (F←1 (u1), . . . , F←n (un)), from the definition of SU
and the property (6.4) we have x ∈ SX . The continuity of the distribution functions Fi
gives T (x) = u, so u ∈ ∆(F1, . . . , Fn).

The next proposition characterizes the situations where ∆(F1, . . . , Fn) is the smallest
possible set:

Proposition 6.11. The following properties are equivalent:

1. C(F1, . . . , Fn) = {Mn}
2. ∀x ∈ R, F1(x) = . . . = Fn(x)

3. ∆(F1, . . . , Fn) = SU

Proof. We will show that 1⇒ 2⇒ 3⇒ 1.
To show that 1⇒ 2, let us suppose that 2 is not verified. Then there exist i ∈ {1, . . . , n−

1} and ξ ∈ R such that β = Fi(ξ) > Fi+1(ξ) = α. We define the set Q by:

Q = {u ∈ [0, 1]n | (ui, ui+1) ∈ [α, β]2}

and the copula C by:

∀u ∈ [0, 1]n, C(u) =




α+ (β − α)C∗

(
u1 − α

β − α
, . . . ,

un − α

β − α

)
if u ∈ Q

Mn(u) otherwise
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where C∗ is the copula defined by:

∀u ∈ [0, 1]n, C∗(u) = min
j≤i

(uj) min
k≥i+1

(uk)

C∗ is the copula of a random vector for which the i first components are almost surely a
strictly increasing function of a random variable U uniformly distributed on [0, 1] and its
(n− i) remaining components a strictly increasing function of another random variable V
uniformly distributed on [0, 1], U and V being independent. C is the ordinal sum of C∗

with respect to [α, β], see [Nel06, Section 3.2.2].
The support Ω of C is:

Ω = Ω1 ∪ Ω2 ∪ Ω3

with:

Ω1 ={(s, . . . , s) ∈ [0, 1]n | s ∈ [0, α]}
Ω2 ={(t, . . . , t) ∈ [0, 1]n | t ∈ [β, 1]}
Ω3 ={u ∈ [0, 1]n | (s, t) ∈ [α, β]2,∀j ≤ i, uj = s,∀k ≥ i+ 1, uk = t}

It remains to show that Ω ⊂ ∆(F1, . . . , Fn). If u ∈ Ω1 ∪ Ω2, we take x = (F←1 (u1), . . . ,
F←n (un)) ∈ R

n
and we have T (x) = u by construction, and x ∈ SX by (6.4) so u ∈

∆(F1, . . . , Fn). If u ∈ Ω3, we take x ∈ R
n

defined by ∀j ≤ i, xj = F←j (uj) and ∀k ≥
i + 1, xk = F→k (uk). By construction, T (x) = u, and x1 ≤ . . . ≤ xi, xi+1 ≤ . . . ≤ xn. As
(ui, ui+1) ∈ [α, β]2, xi ∈ [F←i (α), F←i (β)] and xi+1 ∈ [F←i+1(α), F←i+1(β)] and F←i (β) ≤ ξ ≤
F←i+1(α) so x ∈ SX and u ∈ ∆(F1, . . . , Fn).

The implication 2⇒ 3 is an immediate consequence of the definition of ∆(F1, . . . , Fn)
and the fact that the transformation T is the identity transformation thanks to the hy-
pothesis made on F1, . . . , Fn.

The implication 3⇒ 1 results from the characterization of Mn by its diagonal section.
We know from Proposition 6.6 that Mn ∈ C(F1, . . . , Fn) 6= ∅. Let C be a copula in
C(F1, . . . , Fn).

For all u ∈ [0, 1], we have C(1, . . . , 1, u) = µC({v ∈ [0, 1]n | vn ≤ u}) = u by the
definition of a copula. We have the partition {v ∈ [0, 1]n | vn ≤ u} = {v ∈ [0, 1]n | v1 ≤
u, . . . , vn ≤ u} ∪ {v ∈ [0, 1]n | ∃i ∈ {1, . . . , n − 1}, vi > u and vn ≤ u}. The measure
of the first set is equal to C(u, . . . , u), and the measure of the second set is zero as it
corresponds to points v ∈ [0, 1]n such that vi > vn, i.e. points in ScU . We conclude that
∀u ∈ [0, 1], C(u, . . . , u) = u.

This last property characterizes the copula Mn. Let us take u ∈ [0, 1]n and define ũ =
min{u1, . . . , un} = Mn(u). We have Ã = {v ∈ [0, 1]n | v1 ≤ ũ, . . . , vn ≤ ũ} ⊂ A = {v ∈
[0, 1]n | v1 ≤ u1, . . . , vn ≤ un} so µC(Ã) = C(ũ, . . . , ũ) = ũ = Mn(u) ≤ µC(A) = C(u). On
the other hand, Theorem 1.15 give C(u) ≤ Mn(u), so C = Mn.

Corollary 6.12. If X is a random vector verifying the constraint (6.2) and with continu-
ous marginal distribution functions F1, . . . , Fn all equal to F0, then we have X1 = . . . = Xn

a.s.

Proof. From the definition of ∆F0
= ∆(F0, . . . , F0), we have ∆F0

⊂ SU and by Proposi-
tion 6.10, we have ∆F0

= SU and then the copula of X is Mn. From Theorem 1.16, there
exist increasing functions ψ2, . . . , ψn such that ∀i ∈ {2, . . . , n}, Xi = ψi(X1). We deduce
that ∀i ∈ {2, . . . , n}, ∀x ∈ ∆F0

, F0(x) = F0(ψi(x)). As ψi(∆F0
) = ∆F0

and F0 is invertible
on ∆F0

, we have ∀x ∈ ∆F0
, ψi(x) = x, i.e. ∀i ∈ {2, . . . , n}, Xi = X1 a.s.
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We illustrate the possible shapes for ∆(F1, F2) and the associated set C(F1, F2) on
Figure 6.1. The case (a) corresponds to marginal distributions (F1, F2) not compatible
with the constraint, as a result of Theorem 6.2. The case (b) corresponds to F1 = F2

and C(F1, F2) = M2 as a result of Proposition 6.11. The case (c) corresponds to {M2} ⊂
C(F1, F2) ⊂ C. The case (d) corresponds to C(F1, F2) = C as a result of Corollary 6.8.

0
0 1

1

u1

u2

0
0 1

1

u1

u2

(a) C(F1, F2) = ∅ (b) C(F1, F2) = {M2}

0
0 1

1

u1

u2

0
0 1

1

u1

u2

(c) {M2} ⊂ C(F1, F2) ( C (d) C(F1, F2) = C

Figure 6.1: Sketch of the possible shapes for ∆(F1, F2) (grey region) according to the
different possible choices for F1 and F2. The corresponding set of compatible copulas
C(F1, F2) can be empty in case (a), reduced to a single copula in case (b), be a proper
subset of all the copulas in case (c) or be the set of all the bi-dimensional copulas in case
(d).

We note that the case (c) is the only one where C(F1, F2) is a non-trivial subset of
C and which excludes all the classical continuous copulas as their support is [0, 1]2. In
the literature (see [Nel06, Chapter 3]), we find some examples of copulas with restricted
supports but none of these copulas are continuous. More precisely, we can find techniques
to construct:

– Singular copulas with prescribed support,
– Copulas with limited support from a countable collection of copulas (the ordinal

sum mechanics),
– Copulas as a convex sum of finite or infinite collection of copulas.

In the first case, we only get singular copulas which are not well suited to screening ap-
plications. In the second one, we are limited on the shape of the possible support of the
copula: by construction, the support is included inside a union of squares which diagonal
is part of the diagonal of [0, 1]n and share at most one corner. The third case requires
having a finite or infinite collection of copulas at hand. By Corollary 6.9, these techniques
are of all interest.

The next sections are dedicated to the presentation of a new family of continuous
copulas, the sub-hypercube copulas, with restricted support.
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6.3 Construction of compatible copulas: the sub-hypercube
copula family

In this part, we describe a general construction that allows us to build copulas with
restricted support from copulas with full support. We explore in more detail the copula
obtained starting from the independent copula, and in the bi-dimensional case, we give
a theorem on the existence and uniqueness of a copula with the largest possible support
within this family.

6.3.1 From copulas with full support to copulas with restricted support

The informal way to construct a copula with restricted support is to chain the following
steps:

1. Take a continuous copula H with support [0, 1]n;

2. Restrict the copula to a subset ∆ ⊂ [0, 1]n to get a multivariate distribution function
D∆;

3. Extract the copula C∆ of D∆: it will have a support that is a subset of [0, 1]n, in
general a strict subset if ∆ is not the cartesian product of two subsets of [0, 1].

In this construction, both H and ∆ are free parameters. The second step transforms
the copula H into a distribution supported by ∆ whereas the third step transforms this
distribution into a copula with support ∆̃ that will also be a proper subset of [0, 1]n for a
judicious choice for ∆. The goal is to choose H and ∆ such that ∆̃ ⊂ ∆(F1, . . . , Fn).

Definition 6.13. Let H = {φ ∈ C0(R, [0, 1]) |φ(0) = 0, φ is increasing}, where C0(R, [0, 1])
is the set of continuous functions from R to [0, 1], and let φ = (φ1, . . . , φn−1) be in
Hn−1 = H × · · · × H︸ ︷︷ ︸

n−1 times

. The sub-hypercube domain ∆φ is defined by:

∆φ = {x ∈ [0, 1]n | ∀i ∈ {1, . . . , n− 1}, φi(xi) ≤ xi+1}

and its lower boundary by:

∂∆φ = {x ∈ ∆φ | ∃i ∈ {1, . . . , n− 1}, φi(xi) = xi+1}

Definition 6.14. Let ∆φ be a sub-hypercube domain and H be a copula such that
mH,φ = µH(∆φ) > 0. The sub-hypercube distribution function DH,φ associated
to (H,φ) is defined as:

∀B ⊂ [0, 1]n, µDH,φ(B) =
µH(B ∩ ∆φ)

mH,φ

Definition 6.15. LetDH,φ be a sub-hypercube distribution function. The sub-hypercube
copula associated to DH,φ is defined as the copula CH,φ of DH,φ. This copula is uniquely
defined as DH,φ has continuous marginals, and its support ∆̃H,φ is given by:

∆̃H,φ =
{

u ∈ [0, 1]n | ∀i ∈ {1, . . . , n− 1}, D←i+1,H,φ(ui+1) ≥ φi(D←i,H,φ(ui))
}

with a lower boundary given by:

∂∆̃H,φ =
{

u ∈ ∆̃H,φ | ∃i ∈ {1, . . . , n− 1}, D←i+1,H,φ(ui+1) = φi(D←i,H,φ(ui))
}
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When H is absolutely continuous with density function h, so are DH,φ and CH,φ and
the density function cH,φ of CH,φ writes:

cH,φ(u) =
h(D←1,H,φ(u1), . . . , D←n,H,φ(un))✶∆φ

(D←1,H,φ(u1), . . . , D←n,H,φ(un))

mH,φ
∏n
i=1 gi,H,φ

(
D←i,H,φ(ui)

)

where Di,H,φ(xi) = DH,φ(1, . . . , 1, xi, 1, . . . , 1) is the i-th marginal distribution function of
DH,φ and gi,H,φ the associated density function.

In a simulation perspective, one may wonder how to generate realizations of such
a copula. An obvious way to do it is to use a rejection/transformation technique, as
presented in the following algorithm.

Algorithm 6.16. We suppose that we are able to generate realizations of the copula H.

1. Generate v ∈ [0, 1]n according to H,

2. If v 6∈ ∆φ, go back to 1

3. Compute ∀i ∈ {1, . . . , n}, ui = Di,H,φ(vi)

4. Return u

The point v obtained at the end of 2 is distributed to DH,φ by the rejection technique
and the final point u is distributed to CH,φ thanks to Theorem 1.11. The acceptance ratio
is mH,φ. The application of this algorithm in dimension 2 for different choices of copulas
H and the same choice of function φ : R → R such that φ(x) = x2 gives the realizations
illustrated in Figure 6.2.

The rejection rate of this algorithm can be very high, making Algorithm 6.16 very
inefficient. We present in section 6.4.2 a rejection-free algorithm (Algorithm 6.26), which
is much more efficient in this case.

6.3.2 Properties of the sub-hypercube distribution and copula

The independent copula Πn(u1, . . . , un) =
∏n
i=1 ui is the most entropic copula when

one has no information on the dependence structure of a random vector. It motivates us
to study the family of sub-square copulas obtained when H = Πn.
This section is dedicated to the study of this special case. We simplify the notation with
respect to the previous section by dropping the index H as it is implicitly equal to Πn.
We note by Cφ the set of sub-square copulas built with H = Π.

Proposition 6.17. In the settings of the previous section, the distribution function of Dφ

is given by:

∀s ∈ [0, 1]n, Dφ(s) =
N(s)
N(1)

(6.10)

where 1 = (1, . . . , 1) and N is given by:

N(s1, . . . , sn) =
∫ s1

0
gn−1(x1, s2 . . . , sn) dx1

with
g0 = 1

and for k = n− 1, . . . , 1:

gn−k(xk, sk+1, . . . , sn) = ✶{φk(xk)≤sk+1}

∫ sk+1

φk(xk)
gn−k−1(xk+1, sk+2, . . . , sn) dxk+1
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Clayton copula, θ = 2

0
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1 x1

x2

Gumbel copula, θ = 2
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Independent copula
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Normal copula, ρ = −0.75

Figure 6.2: 1000 realizations of DH,φ (left column) and CH,φ (right column) obtained
using Algorithm 6.16, for a given function φ(x) = x2 and different copulas H. The choice
of H modifies the repartition of the points and the support of CH,φ.
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Proof. As Πn is an absolutely continuous copula, the associated sub-hypercube distribu-
tion Dφ is also absolutely continuous, with a density function dφ given by:

∀x ∈ [0, 1]n, dφ(x) =

∏n
i=1 ✶{φi(xi)≤xi+1}∫ 1

0 . . .
∫ 1

0

∏n
i=1 ✶{φi(xi)≤xi+1} dx1 . . .dxn

from which we get the representation (6.10).

The representation given in Proposition 6.17 allows to compute sequentially both the
numerator and the denominator in the expression (6.10) for a given φ, using e.g. a com-
puter algebra system. To give an idea of the increasing complexity of these computations
with respect to the dimension n, we give the expression of the normalization factor for
n = 2 and n = 3:

n = 2, N(1) = 1 − Φ1(1)

n = 3, N(1) = 1 − Φ1(1) − Φ2(1) +
∫ 1

0
Φ2 ◦ φ1(s) ds

where Φi(t) =
∫ t

0 φi(s) ds.
We will now focus on the bi-dimensional case. We simplify the notation by taking

φ := φ = (φ1) and Φ := Φ1.

6.3.3 The bi-dimensional case: sub-square distributions and copulas

If we restrict the analysis to the bi-dimensional case, we are able to explicit all the
quantities related to the sub-hypercube distribution and copula, renamed as sub-square
distributions and copulas in order to avoid confusion with the general case:

Proposition 6.18. In the settings of the previous section, we have the following properties
for Dφ:

– The mass of ∆φ with respect to Π writes:

mφ = 1 − Φ(1)

– The density function of Dφ writes:

gφ(x) =
1
mφ

✶{φ(x1)≤x2}

– The distribution function of Dφ writes:

∀x ∈ [0, 1]2, Dφ(x) =





1
mφ

[x1x2 − Φ(x1)] on ∆φ

1
mφ

[x2φ
←(x2) − Φ ◦ φ←(x2)] on ∆c

φ

– The marginal distribution functions of Dφ write:

∀x1 ∈ [0, 1], D1,φ(x1) =
1
mφ

[x1 − Φ(x1)] (6.11)

∀x2 ∈ [0, 1], D2,φ(x2) =
1
mφ

[x2φ
←(x2) − Φ ◦ φ←(x2)] (6.12)
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– The marginal density functions of Dφ write:

∀x1 ∈ [0, 1], d1,φ(x1) =
1
mφ

[1 − φ(x1)] (6.13)

∀x2 ∈ [0, 1], d2,φ(x2) =
1
mφ

[φ←(x2)] (6.14)

– The distribution function of the sub-square copula Cφ writes:

∀u ∈ [0, 1]2, Cφ(u) = Dφ(D←1,φ(u1), D←2,φ(u2))

– The density function of the sub-square copula Cφ writes:

∀u ∈ [0, 1]2, cH,φ(u) =
mφ[

1 − φ ◦D←1,φ(u1)
] [
φ← ◦D←2,φ(u2)

]✶∆̃φ
(u)

– The lower boundary ∂∆̃φ can be parametrized by:

∂∆̃φ =

{(
1
mφ

[t− Φ(t)] ,
1
mφ

[tφ(t) − Φ(t)]

)
,∀t ∈ [0, 1]

}
(6.15)

We introduced the family of sub-square copula to exhibit elements in C(F1, F2) different
from the min copula M2 in the case (c) of Figure 6.1. More precisely, this case can be
subdivided into nine sub-cases depending on the slope of the boundary at (0, 0), (1, 1),
the relative positions of the lower boundaries X1 and X2 and the upper boundaries X1

and X2. This distinction is illustrated on Figure 6.3, focusing on the behaviour at (0, 0).

0
0 1

1

u1

u2

0
0 1

1

u1

u2

0
0 1

1

u1

u2

(c-1) X1 = X2, ρ(0) > 0 (c-2) X1 = X2, ρ(0) = 0 (c-3) X1 < X2, ρ(0) = 0

Figure 6.3: Some of the possible sub-cases of the non-trivial case C(F1, F2) ( C corre-
sponding to case (c) on Figure 6.1. The cases (c-2) and (c-3) differ by the fact that in
(c-3), the boundary of ∆(F1, F2) has an horizontal part on the left.

Cases (c-1) and (c-2) correspond to X1 = X2 with ρ(0) = lim
s→X+

1

F2(s)
F1(s)

> 0 in the case

(c-1) and ρ(0) = 0 in the case (c-2). The case (c-3) corresponds to X1 < X2, which means
that the boundary ∂∆(F1, F2) starts by an horizontal segment. The distinction between
cases (c-2) and (c-3) will play a central role in the study of the sub-square copulas.

Using the relation (6.15), we can study the slope of the lower boundary in the vicinity
of t = 0 or t = 1. In the vicinity of t = 0, the slope ρ(0) writes:

ρ(0) = lim
t→0+

tφ(t) − Φ(t)
t− Φ(t)
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As φ(0) = 0 and Φ(0) = 0, Φ(t) = Φ(0) + tφ(t) + o(t) = o(t), so ρ(0) = 0, which shows
that no sub-square copula is admissible in the case (c-1) of Figure 6.3. We will now focus
on the case where:

X1 < X2 < X1 < X2 (6.16)

and introduce α = F1(X2) ∈ (0, 1) and β = F2(X1) ∈ (0, 1).
The main result of the next section is to prove that in this case, there exists a unique

sub-square copula with maximal support ∆(F1, F2).

6.4 Characterization of compatible sub-square copulas with
largest possible support

In this part, under the hypothesis (6.16), we characterize the functions φ such that
the resulting copula Cφ has its support ∆̃φ such that ∆̃φ = ∆(F1, F2), which is the largest
support for copula in C(F1, F2).

6.4.1 Existence and uniqueness of a maximal sub-square copula

This characterization is based on the equality between the boundaries of ∆φ and
∆(F1, F2). In the case where X2 < X1, which is the situation we focus on, this boundary
is given by:

∂∆(F1, F2) =
{

(F1(s), F2(s)) , s ∈ [X1, X1]
}

(6.17)

which encompasses two parts: an horizontal segment for s ∈ [X1, X2] as F2(s) = 0, and a
curve for the other values of s. Using relations (6.15) and (6.17), the increasing properties
of Gi,φ, Fi and the relations Fi ◦ F←i = Id for i = 1, 2, we can rewrite the equality of the
two lower bounds of the supports as:





tφ(t) = Φ(t) +mΦJ
(
t−Φ(t)
mΦ

)
∀t ∈ [0, 1]

Φ(1) = 1 −mΦ

Φ(αmΦ) = 0
(6.18)

where J = F2 ◦ F←1 .

In order to solve (6.18), we introduce the following parametric problem with respect
to m ∈ (0, 1) defined for t ∈ (0,+∞):

{
Φ′m(t) = 1

tΦm(t) + m
t J
(
t−Φm(t)

m

)
∀t ∈ (0,+∞)

Φm(1) = 1 −m
(6.19)

and we look for m such that

Φm(αm) = 0 and Φm continuous at 0 with Φm(0) = 0 (6.20)

The solutions of (6.18) are the restrictions to [0, 1] of the solutions of (6.19) that
verify (6.20) and that can be extended to 0 by continuity. For a ∈ (0, 1) and b ∈ (a, 1] we
define Ja,b as:

Ja,b =
{
J ∈ C0(R,R) |J is increasing,∀x ≤ a, J(x) = 0,

∀x ≥ 1, J(x) = b, ∀x ≥ 0, J(x) ≤ x
}

(6.21)
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where C0(R,R) is the set of continuous functions from R to R.
One can easily check that for any continuous univariate distribution functions F1 and

F2 with F1 invertible, then F2 ◦ F−1
1 ∈ Jα,β where α and β are given in (6.16). The

following proposition shows that the converse is also true:

Proposition 6.19. Let J be in Ja,b. Then there exist continuous univariate distribution
functions F1, F2 with F1 invertible such that J = F2 ◦ F−1

1 .

Proof. It is enough to take for F1 the distribution function of U(0, 1) and to define F2 as
F2(x) = J(x) for all x ≤ 1 and to complete it on [1,+∞) such that the resulting F2 is
continuous, increasing and lims→+∞ F2(x) = 1.

Let v be defined by

∀s ∈ R, v(s) =
e−s − Φm(e−s)

m
(6.22)

Then, using (6.19), v satisfies:
{
v′(s) = −v(s) + J (v(s)) ∀s ∈ R
v(0) = 1

(6.23)

which is an autonomous ordinary differential equation which does not depend on m.

Remark 6.20. For a given m ∈ (0, 1), the transformation (t, φm(t)) → (s = − log t, v(s))
defined by equation (6.22) is a diffeomorphism. It ensures that the solutions of equa-
tion (6.19) are in one-to-one correspondence with the solutions of equation (6.23).

Remark 6.21. As ∀x ∈ R, J(x) ≤ x, any solution v of (6.23) is non-increasing on its
definition domain.

Remark 6.22. As ∀x ∈ R, 0 ≤ J(x) ≤ b, then any solution v of (6.23) verifies ∀s ≥
0, e−s ≤ v(s) ≤ b+ (1 − b)e−s and ∀s ≤ 0, b+ (1 − b)e−s ≤ v(s) ≤ e−s.

Theorem 6.23. Let J be in Ja,b with a ∈ (0, 1) and b ∈ (a, 1]. If J is k-lipschitz on
[a, 1], then (6.23) has a unique global solution v defined on R. This solution is such that
lims→+∞ v(s) = x∗, where x∗ = max{x ∈ [0, 1] |J(x) = x}.
Furthermore, the equation v(s) = a has a solution s∗ if and only if x∗ = 0. In this case,
s∗ is unique and verifies s∗ > − log a, and ∀s ≥ s∗, v(s) = αe−(s−s∗).

Proof. We first note that {x ∈ [0, 1] |J(x) = x} is closed, and non-empty as J(0) = 0. It
insures that x∗ is well defined.
The hypotheses made on J give that J is k-lipschitz on R. Using the Cauchy-Lipschitz
theorem, there exists a unique maximal solution of (6.23) defined on I ⊂ R. If v were
not a global solution, it would escape any compact subset of R in finite time, which is
incompatible with the bounds (6.22), so I = R.

Remarks 6.21 and 6.22 show that ℓ = lims→+∞ v(s) exists and for all s ∈ R, v(s) ≥
ℓ ≥ 0. Suppose that ℓ > x∗, then by definition of x∗, η = inf [ℓ,1](x − J(x)) > 0, and for
all s ≥ 0, v′(s) ≤ −η.It implies that v(s) ≤ 1 − ηs < x∗ for s > 1−x∗

η , which contradicts
v(s) ≥ ℓ > x∗, so ℓ = x∗. If x∗ > 0, as for all x ∈ (0, a], J(x) = 0 < x, we have x∗ > a.
In this case, for all s ≥ 0, v(s) ≥ x∗ > a and there is no s such that v(s) = a. If x∗ = 0,
as v(0) = 1 > a and lims→+∞ v(s) = 0 < a, by continuity Sa = {s ≥ 0 | v(s) < a} 6= ∅
and s∗ = inf Sa > 0 is such that v(s∗) = a and for all s ∈ [0, s∗), v(s) > a. We deduce
that v′(s∗) ≤ − inf [a,1](x− J(x)) < 0, and using Remark 6.21, for all s > s∗, v(s) < a. We
conclude that s∗ is the unique solution of v(s) = a.
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To show that s∗ > − log a, we refine the lower bound in Remark 6.22) for s > 0.
We have J(1) = b > 0. By continuity, there exists ǫ > 0 such that for all x ∈ [1 − ǫ, 1],
J(x) ≥ b/2 > 0. As we also have v(0) = 1, by continuity, there exists η > 0 such that for
all s ∈ [0, η], v(s) ∈ [1 − ǫ, 1]. Then, for all s ∈ [0, η], v′(s) ≥ −v(s) + b/2.

Let define uη as the solution of uη(0) = 1 and for all s ∈ [0, η], u′η(s) = −uη(s) + b/2.
Then for all s ∈ (0, η], uη(s) = (1 − b/2)e−s + b/2 and v(s) ≥ uη(s) > e−s.
Let define vη as the solution of vη(η) = uη(η) and for all s ∈ [η,+∞), v′η(s) = −vη(s).
Then vη(s) = [1 + b/2(eη − 1)]e−s and for all s ∈ [η,+∞), v(s) ≥ vη(s) > e−s.

We conclude that for all s > 0, v(s) > e−s. In particular, v(− log a) > a which
shows that s∗ > − log a. For s ≥ s∗, v is such that v(s∗) = α and v′(s) = −v(s) so
v(s) = αe−(s−s∗).

Corollary 6.24. Let F1 and F2 be continuous univariate distribution functions verifying
the compatibility condition (6.3) and the hypothesis (6.16). If J = F2 ◦ F←1 ∈ Jα,β is
k-lipschitz on [α, 1], then there exists a sub-square copula Cφ ∈ C(F1, F2) if and only if for
all x ∈ (X2, X1], F1(x) > F2(x). In this case, Cφ is unique and φ is given by:

{
φ(0) = 0

φ(t) = 1 + e−s∗

αt (J(v(− log t)) − v(− log t)) ∀t ∈ (0, 1]

where v is the solution (6.23). We note that for all t ∈ [0, e−s
∗

], φ(t) = 0.

Proof. The existence of a sub-square copula Cφ is equivalent to the existence of a pair
(m,Φm) where Φm is a solution of equation (6.19) that satisfies the constraint (6.20). By
Remark 6.20 the existence of φm for a given m is equivalent to the existence of a solution
v. Using (6.22), the constraint (6.20) translates into the existence of s∗ > − logα such
that v(s∗) = α and the existence of ℓ = lims→+∞ v(s) such that ℓ = 0. It results that the
existence and the uniqueness of a solution v of (6.23) with such a s∗ and ℓ is equivalent
to the existence and uniqueness of Cφ.

The hypotheses made on F1, F2 and J ensure that the solution v of (6.23) exists and
is unique, and the condition ∀x ∈ (X2, X1), F1(x) > F2(x) translates into x∗ = max{x ∈
[0, 1] |J(x) = x} = 0. By Proposition 6.23, it is equivalent to the existence and uniqueness
of a sub-square copula Cφ ∈ C(F1, F2).

Using (6.22) and (6.23), we have m∗ = e−s∗

α ∈ (0, 1) and φm∗ = Φ′m∗ is given by:

φm∗(t) = 1 +
e−s

∗

αt
(J(v(− log t)) − v(− log t)) ∀t ∈ (0, 1]

For s ≥ s∗, the expression of v(s) shows that ∀t ∈ (0, αm∗], Φm∗(t) = 0. As ℓ = 0, Φm∗

can be continuously extended to 0 by setting Φm(0) = −ℓm∗ = 0. It results that Φm∗ is
null on [0, αm∗] = [0, e−s

∗

], so is φm∗ .

6.4.2 Numerical aspects

It remains to translate the preceding results into a simulation procedure. A straight-
forward approach is presented in Algorithm 6.25.

Algorithm 6.25. Under the hypotheses of Corollary 6.24, the following procedure
builds a discretization of φ, the parameter of the unique maximal sub-square copula
Cφ ∈ C(F1, F2):
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1. Compute a lower bound η̃ ≤ η of η = min[α,1](t− J(t))

2. Define a regular grid (sk)k∈{0,...,N−1} on [0, 1/η̃] such that s0 = 0 and sN−1 = 1/η̃
and the associated grid (tk)k∈{0,...,N−1} such that tk = exp(−sN−1−k).

3. Solve numerically (6.23) using (sk)k∈{0,...,N−1}. It gives the pairs (sk, v̂k) as an ap-
proximation of (sk, v(sk)).

4. Compute an approximate value ŝ∗ of s∗ e.g. by linear interpolation in (sk, v̂k): if k∗

is the largest index such that v̂k∗ > α, ŝ∗ = sk∗ +(α− v̂k∗)
(
sk∗+1−sk∗

v̂k∗+1−v̂k∗

)
. As this step

is crucial for the quality of the resulting approximation, the linear interpolation may
be too crude. A possible alternative is to use a bisection approach: starting from
the bracketing interval [sk∗ , sk∗+1], we compute v̂k∗+1/2 ≃ v(sk∗+1/2) using one step

of the integration method with a step of length sk∗+1−sk∗

2 . We update the bounds of
the bracketing interval depending on the position of v̂k∗+1/2 with respect to α.

5. Using ŝ∗ and (sk, v̂k), build an approximation (tk, φ̂m̂∗,k) of (tk, φm∗(tk)) with m̂∗ =

e−ŝ∗

α and φ̂m̂∗,k = 1 + m̂∗

tk
(J(v̂N−k+1) − v̂N−k+1)

6. A continuous approximation φ̂ of φ is obtained as:

φ̂(t) =





0 ∀t ∈ [0, t∗](
t−t∗
tk∗−t∗

)
φ̂k∗ ∀t ∈ [t∗, tk∗ ]

φ̂k +
(

t−tk
tk+1−tk

)
(φ̂k+1 − φ̂k)

∀t ∈ [tk, tk+1] and
k ∈ {k∗ + 1, . . . , N − 1}

For the numerical experiments, we took a non-adaptive fixed-step fourth order Runge-
Kutta method for the step 3 of the algorithm and a bisection method for the step 4.

Once the piecewise linear continuous approximation φ̂ is obtained, it is possible to
compute all the functions associated to C

φ̂
, such as its density or its distribution function.

As ∆
φ̂

is a polygon, as it can be seen on Figure 6.4, it is possible to sample with respect to
the sub-square distribution D

φ̂
without rejection, thanks to Algorithm 6.26. The main cost

of Algorithm 6.16 is thus avoided, and the resulting random generator for C
φ̂

is efficient.

Algorithm 6.26. The distribution D
φ̂

can be written as a discrete mixture of uniform
distributions over the triangles T0, Tk∗ , . . . , TN+1, the weights wi of the mixture being
proportional to the surface of these triangles:

P (X1 ≤ x1, X2 ≤ x2) =
∑

i∈I
P (X1 ≤ x1, X2 ≤ x2 | (X1, X2) ∈ Ti)P ((X1, X2) ∈ Ti)

where I = {0, k∗, . . . , N + 1}.

1. Generate k, a realization of an integer-valued random variable K distributed ac-
cording to the discrete distribution (wi, I) with wi = P ((X1, X2) ∈ Ti), i.e. ∀i ∈ I,
P (K = i) = wi. This step can be done in O(1) time using e.g. the method of aliases.

2. Generate u and v, realizations of respectively U and V , two random variables uni-
formly distributed over [0, 1]. The variables U , V and K are independent.
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0

0

1

tN = 1tk∗

u1

u2

t∗ = e−ŝ
∗

T0 Tk∗

TN

TN+1

φ̂k∗

φ̂N

Figure 6.4: Graph of the piecewise function φ̂ and the associated support of D
φ̂
. The

polygonal nature of this support allows to sample D
φ̂

very efficiently, using Algorithm 6.26

3. Return the weighted average of the vertexes ak1, ak2, ak3 of the triangle Tk with weights
(min(u, v), |v − u|, 1 − max(u, v)). The vertices are given by:

ai1 = (0, 1) i = 0, k∗, . . . , N + 1

ai2 =





(t∗, 0) i = 0
(ti, φ̂i) i = k∗, . . . , N
(1, 1) i = N + 1

ai3 =





(0, 0) i = 0
(t∗, 0) i = k∗

ai−1
2 i = k∗ + 1, . . . , N + 1

Example 6.27. Let F1 be the distribution function of U [0, 1] and F2 of U [a, a + 1] with
0 ≤ a ≤ 1. The several functions involved in the construction of the associated sub-square
copula are:

J(t) =

{
0 ∀t ∈ [0, a)
t− a ∀t ∈ [a, 1]

v(s) =

{
1 − as ∀s ∈ [0, s∗)
a exp(−s+ 1/a− 1) ∀s ∈ [s∗,+∞)

with s∗ = 1/a− 1

φ(t) =





0 ∀t ∈ [0, e−s
∗

)

1 − e−s
∗

t
∀t ∈ [e−s

∗

, 1]
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The application of Algorithm 6.25 gives the results presented on Figure 6.5, for the
cases a ∈ {2−n |n = 1, . . . , 5}. The following numerical settings are used:

1. The value of η̂ is obtained as the minimum value of tk − J(tk), where k is such that
tk ∈

{ ⌈aN⌉
N−1 , . . . , 1

}
. Here, N = 104. For the given example, we have η̂ = η.

2. The grid is built using the same value N as in the previous step.

3. The numerical integration is done using a fixed-step fourth order Runge-Kutta
method with N points. It gives an approximation of v which is exact up to ma-
chine precision for s ≤ s∗ as v is linear on this interval.

4. The value of s∗ is computed using the bisection method, up to machine precision.

The sub-square copula is built using the piecewise linear approximation of φ as described
in Algorithm 6.25, in order to use Algorithm 6.26 for its simulation. The value of m̂∗

obtained from ŝ∗ is not the value associated to the piecewise linear approximation of φ
obtained at the last step of the algorithm. The quality of this approximation can be
assessed thanks to the relative error made on m∗ using the exact value m̃∗ associated to
the piecewise approximation. It leads to the quality measure ǫm∗ = |m∗−m̃∗|

m∗ ≃ |m̂∗−m̃∗|
m̂∗

.
As seen in Table 6.2, for small values of a, the associated mass m∗ is so small that

Algorithm 6.16 becomes unusable, justifying the use of Algorithm 6.26 that does not suffer
from this mass reduction. For example, with a = 1/32, m∗ = 32/e31 ≃ 1.10 10−12, which
means that only about one realization over one thousand billions is accepted in step 2 of
Algorithm 6.16!

a 1/2 1/4 1/8 1/16 1/32

s∗ 1 3 7 15 31

m∗ 0.736 0.199 7.30 × 10−3 4.89 × 10−6 1.10 × 10−12

ǫm∗ 3 × 10−9 2 × 10−8 9 × 10−8 4 × 10−7 2 × 10−6

Table 6.2: Numerical results of Algorithm 6.25 for the selected values of a. The relative
precision of the algorithm is quantified by ǫm∗ = |m∗−m̃∗|

m∗ . The values of m̃∗ are not given,
as it is equal to the value of m∗ to at least 5 digits for all the values of a.

6.5 Conclusion

In this chapter, we fully characterized multivariate distributions of order statistics
with continuous marginal distribution functions, first in terms of marginal distribution
functions, then in terms of copulas.

We showed that excepted in the trivial case of deterministic ordering of the supports
of the marginal distributions, for which any copula can be used to get a joint distribution
function that satisfies the ordering constraints, none of the classical copulas are compatible
with the constraints. Then, we proposed a generic construction of compatible copulas,
called sub-hypercube copulas, and fully characterized these copulas in the bivariate case.
We also provided all the algorithmic details to build and sample such a copula given
compatible marginal distribution functions.

Several extensions to the full multi-dimensional case are possible. The first one is to
explore in more details the general sub-hypercube copulas. The second one is to use the
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a s 7→ v(s) t 7→ φ(t) sub-square copula
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Figure 6.5: Computation of the maximal sub-square copula for the uniform/uniform case,
for various values of a. We see graphically the convergence of the sub-square copula to
the min copula M2 when a → 0+, as ∆(F1, F2) → SU .
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sub-square copulas in a vine pair-copulas approach, which is a tree-based association of bi-
dimensional copulas to build compatible multi-dimensional copulas. See [KC06, Chapter 4]
for an introdution to high dimensional dependence modeling using vine copulas.



Chapter 7

Multi-Dimensional discrete
distributions

In the continuous case, the copula theory is perfectly suited to the modeling of stochas-
tic dependence as there is a one-to-one correspondence between the joint distribution func-
tion and the set of marginal distributions and the copula. In the discrete case, it is no
longer the case, and many different copulas can be used to get exactly the same joint dis-
tribution function. As shown in [GN07], this lack of uniqueness can be the root of many
mistakes when transposing practices from the continuous case to the discrete one, and a
direct approach to the stochastic modeling of discrete models using the joint distribution
function is sometimes the best way to go.

The key result of this chapter is the presentation of an original and very efficient
algorithm to compute such a joint distribution function. It allows to deal with problem
dimensions that were out of reach using the previously published algorithms for an actual
accuracy that matches or even outperforms them.

This work has been published in [Leb12].

7.1 Introduction

The computation of rectangular probabilities of multi-dimensional discrete integer dis-
tributions such as the multinomial, multi-dimensional hypergeometric or multi-dimensional
Pólya distributions is of great interest both for statistical applications and for probabilistic
modeling purpose. All these distributions are members of a family of multi-dimensional
discrete integer distributions for which the existing methods to evaluate such probabilities
are either approximate, with no real control on the precision of the approximation, or
exact (if the computation is made using exact arithmetic) but available only for some of
these distributions or for particular rectangular probabilities.

We propose here a new approximate algorithm that allows performing these compu-
tations in the most general case for both the distribution and the rectangular region. Its
accuracy matches or even outperforms the exact algorithms when the rounding errors are
taken into account. In the worst case, the computational cost of our algorithm is the same
as the most efficient exact method published so far, and is much lower in many situations
of interest. Our algorithm does not need an intermediate storage that grows with the di-
mension or problem parameters, which allows dealing with large dimension/large counting
parameter applications at no memory cost and acceptable computation time, which is a
major difference with respect to the methods published so far.
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We are interested in the computation of rectangular probabilities for a d-dimensional
discrete integer-valued random vector X ∼ D:

∀a, b ∈ Nd,
pD(a, b) = P (a ≤ X ≤ b)

= P (a1 ≤ X1 ≤ b1, . . . , ad ≤ Xd ≤ bd) (7.1)

The computation of such quantities are of uttermost interest in many statistical appli-
cations for X distributed according to a multinomial, multi-dimensional hypergeometric
or multi-dimensional Pólya distribution (see [BS98], [Cor11], [Fre09], [Goo57], [Joh60],
[Lev81], [Lev83], [Lev92]), but despite the existing literature on the subject, no function
allows to perform this computation in the standard numerical softwares such as R, SAS,
Matlab, Scilab or Octave.

Several authors (see [BS98], [CB00], [Goo57], [Lev81], [Lev83], [Lev92], [Mal68]) have
described in details approximate algorithms for a long time, but these algorithms provide
only a limited precision which may be inadequate for some applications, and with no
control on the error. This lack of control of the error may be the reason why these
algorithms have not yet been implemented in a standard numerical package. Some of
these authors (see [Goo57], [Lev81], [Lev83], [Lev92]) have also indicated how to derive an
exact algorithm if one were able to compute a particular convolution exactly, but with no
indication on how to do it efficiently and accurately.

It is only recently that reasonably efficient algorithms for the computation of rectan-
gular probabilities have been described (see [Cor11], [Fre09]), using completely different
roots than the previous authors. But even with these algorithms, the only case covered
with full generality (see [Fre09]) is the multinomial one. The efficiency of an algorithm is
measured by two quantities:

– Its space complexity, which is a measure of how much storage the algorithm needs
to run;

– Its time complexity, which is a measure of how much time the algorithm needs
to complete. This complexity is often measured in terms of the number of elemen-
tary operations the algorithm needs to complete, assuming that all the elementary
operations (multiplication, addition, exponentiation, . . . ) take the same execution
time.

These complexities can be measured either in the worst case or in the mean case, assuming
a given distribution of the inputs. In our comparison, we will use worst cases complexities.
In the case of the algorithms described in [Cor11] and [Fre09], both the space and time
complexities are polynomials, it means bounded by polynomial expressions in the parame-
ters of the distribution of interest and the size of the problem, i.e the magnitude of a and b.

We list the available algorithms, the distributions they adress and the possible restric-
tions on a and b in the computation of (7.1) in Table 7.1 for the exact algorithms and in
Table 7.2 for the approximate ones.

We propose to change this situation by providing an algorithm which is essentially exact
up to machine precision for all the multi-dimensional discrete distributions considered
in [BS98] and [Lev83], which include the multinomial, multi-dimensional hypergeometric
and multi-dimensional Pólya distributions. In the multinomial case, our algorithm is more
efficient with respect to both space and time complexity than the algorithm described
in [Fre09], for an equivalent accuracy when implemented in double precision.

More precisely, we are interested in d-dimensional discrete distributions D with a (d−
1)-dimensional probability function. We suppose that there exists a random vector Y t =



7.1. Introduction 115

(Yt1, . . . , Ytd) with independent components such that X ∼ D has the same distribution
as Y t | ∑d

j=1 Ytj = N , where t > 0 is a scaling parameter for the mean of Y t.
With these hypotheses, the rectangular probability (7.1) admits the following repre-

sentation by a direct application of Bayes’ theorem:

pD(a, b) = P (Tt = N)

∏d
j=1 P (aj ≤ Ytj ≤ bj)

P (Yt = N)
(7.2)

where

Ttj = (Ytj |aj ≤ Ytj ≤ bj) , Tt =
d∑

j=1

Ttj and Yt =
d∑

j=1

Ytj (7.3)

We also suppose that all the variables Ytj are members of a parametric family of dis-
tributions L(θ) for which the distribution of Yt is known analytically. It is the case if L(θ)
is closed under convolution, i.e. ∀j ∈ {1, . . . , d}, Ytj ∼ L(θj) and Yt ∼ L(θ). This last
hypothesis is not essential: if it is not fulfilled, then one can evaluate P (Yt = N) using the
same method as the one used to evaluate P (Tt = N).

This set of hypotheses cover the multinomial, multi-dimensional hypergeometric and
multi-dimensional Pólya distributions. If we remove the last hypothesis, we can also
include the non-central multi-dimensional hypergeometric and the non-central negative
multi-dimensional hypergeometric distributions also called the non-central multi-dimensional
Pòlya distribution, as defined in [Ma99].

We recall some definitions concerning these distributions and make explicit the asso-
ciated family L(θ). We note S the set {a ∈ Nd|∑d

j=1 aj = N}, and we have:

Definition 7.1. The multinomial distribution Md(N,p) is defined by:

∀x ∈ Nd,

P (X = x) =
N !

∏d
j=1 xj !




d∏

j=1

p
xj
j


✶S(x) (7.4)

where ∀j ∈ {1, . . . , d}, pj ≥ 0 and
∑d
j=1 pj = 1.

The decomposition (7.2) is obtained with

L(θj) = P(tpj)

where P(tpj) is the Poisson distribution with mean tpj for any t > 0, and Yt ∼ P(t).

Definition 7.2. The multi-dimensional hypergeometric distribution Hd(N,h) is defined
by:

∀x ∈ Nd,

P (X = x) =




d∏

j=1

(
hj
xj

)
/

(
h

N

)
✶S′(x) (7.5)

where ∀j ∈ {1, . . . , d}, hj ∈ N, S ′ = S ∩ {0, . . . , h1} × · · · × {0, . . . , hd} and h =
∑d
j=1 hj .

The decomposition (7.2) is obtained with

L(θj) = B(hj , t)

the binomial distribution with mean thj for any t ∈ (0, 1), and Yt ∼ B(h, t).
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Definition 7.3. The multi-dimensional Pólya distribution Pd(N, q) is defined by:

∀x ∈ Nd,

P (X = x) =
Γ(q)N !

Γ(N + q)




d∏

j=1

Γ(xj + qj)
Γ(qj)xj !


✶S(x) (7.6)

where ∀j ∈ {1, . . . , d}, qj > 0 and q =
∑d
j=1 qj .

The decomposition (7.2) is obtained with

L(θj) = NB(qj , t)

the negative binomial distribution with mean qj(1−t)
t for any t ∈ (0, 1), and Yt ∼ NB(q, t).

and for the two distributions for which Yt is not in the parametric family of Ytj :

Definition 7.4. The multi-dimensional non-central hypergeometric distribution H∗d(N,h,θ)
is defined by:

∀x ∈ Nd,

P (X = x) =




d∏

j=1

(
hj
xj

)
θ
xj
j /C(θ)


✶S′(x) (7.7)

where ∀j ∈ {1, . . . , d}, hj ∈ N, S ′ = S ∩ {0, . . . , h1} × · · · × {0, . . . , hd},
∑d
j=1 θj = 1 and:

C(θ) =
∑

x∈S

d∏

j=1

(
hj
xj

)
θ
xj
x (7.8)

The decomposition (7.2) is obtained with

L(θj) = B
(
hj ,

tθj
1 + tθj

)

the binomial distribution with mean hj
(

tθj
1+tθj

)
for any t ∈ (0,+∞), and Yt has no closed-

form distribution.

Definition 7.5. The multi-dimensional non-central Pólya distribution P∗d(N, q,θ) is de-
fined by:

∀x ∈ Nd,

P (X = x) =



∏d
j=1

(xj+qj−1
xj

)
θ
xj
j

D(θ)


✶S(x) (7.9)

where ∀j ∈ {1, . . . , d}, qj > 0,
∑d
j=1 θj = 1 and:

D(θ) =
∑

x∈S

d∏

j=1

(
xj + qj − 1

xj

)
θ
xj
j

The decomposition (7.2) is obtained with

L(θj) = NB(qj , tθj)

the negative binomial distribution with mean qj
(

1−tθj
tθj

)
for any t ∈ (0, 1), and Yt has no

closed-form distribution.
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To contrast the performances of our algorithm with respect to the exact ones, let us
introduce the following notations:

σa =
d∑

j=1

aj , σb =
d∑

j=1

bj , σab = σb − σa, Na = N − σa (7.10)

We note that if N < σa or σb > N then pD(a, b) = 0. We also note that if N = σa or
N = σb, the evaluation of pD(a, b) reduces to the evaluation of the probability function
at a or b, and if σab = 0 with a ≤ b, then a = b and it reduces also to the evaluation of
the probability function at a. The only difficult case is then when σa < N < σb.

For all the distributions L(θ) we are interested in, there exist efficient and accurate
routines to evaluate both P (aj ≤ Ytj ≤ bj) and P (Yt = N). The only difficulty is the
evaluation of P (Tt = N), as noticed in [Goo57], [Lev81], [Lev83], [Lev92] and [Ma99], but
they gave no clue on how to do it both efficiently and accurately. Instead, they developed
several approximations of this quantity using either Edgeworth expansions or saddle-point
approximations. The approximate algorithm proposed in [BS98] results from the following
second order saddlepoint approximation of P (Tt = N):

P (Tt = N) ≃ eKt(ŝ)−Nŝ√
2πK ′′t (ŝ)

(
1 +

1
8
K

(4)
t (ŝ)

K ′′t (ŝ)2
+

5
24
K

(3)
t (ŝ)2

K ′′t (ŝ)3

)

where Kt(s) is the cumulant generating function logE
[
esTt

]
of Tt and the saddlepoint ŝ

is the unique solution to K ′t(s) = N , which is guaranteed to exist if σa < N < σb. As Tt =∑d
j=1 Ttj where the random variable Ttj are independent, we have Kt(s) =

∑d
j=1Ktj(s).

For the case of the evaluation of multinomial rectangular probabilities, Ktj(s) reads:

∀s ∈ R, Ktj(s) = log




bj∑

k=aj

eks−tpj
(tpj)k

k!


− log




bj∑

k=aj

e−tpj
(tpj)k

k!




and the saddlepoint ŝ has to be found numerically. The approximate algorithm pro-
posed in [Lev81] results from the following second-order Edgeworth expansion of P (Tt = N):

P (Tt = N) ≃ e−z
2/2

√
2πK ′′t (0)

(
1 +

1
6
K

(3)
t (0)

K ′′t (0)3/2
H3(z) +

1
24
K

(4)
t (0)

K ′′t (0)2
H4(z) +

1
72
K

(3)
t (0)2

K ′′t (0)3
H6(z)

)

where z = N−K′
t(0)√

K′′
t (0)

is the standardized value of N and H3, H4 and H6 are the third, fourth

and sixth degree Hermite polynomials.
While both approximations involve the parameter t, in the case of the saddlepoint

approximation this parameter cancel out with the remaining of (7.2) when P (Tt = N) is
replaced by its approximation. On the contrary, t does not cancel out when the approxi-
mation based on Edgeworth expansion is used in (7.2), thus a choice has to be made for
t in that case, and the value of t = N is recommanded in [Lev81].

The space complexity of both approximations is O(1) as σab → ∞ and the time com-
plexity is O (

σab log2

(σab
ǫ

))
as σab → ∞, ǫ → 0 for the saddlepoint approximation if ŝ

is computed using bisection on the interval [σa, σb] with a precision of ǫ, and O(N) as
N → ∞ for the Edgeworth expansion approximation.
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Reference [BM95] [Cor11] [Fre09]

Distributions Md Md, Hd Md

Restrictions a = 0 a = (a, . . . , a) none
on a, b b = (b, . . . , b)

Table 7.1: Exact algorithms applicability

Reference [BS98],[Lev83], [Lev92] [CB00] [Goo57]

Distributions Md, Hd, Pd Hd Md

Restrictions none none a = (a, . . . , a)
on a, b b = (b, . . . , b)

Reference [Ma99] [Lev81]

Distributions H∗d, P∗d Md

Restrictions a = 0, b = (b, . . . , b) or a = 0
on a, b a = (a, . . . , a), b = (∞, . . . ,∞)

Table 7.2: Approximate algorithms applicability

According to the theoretical analysis and numerical study presented in [BS98], the
saddlepoint approximation is the most accurate approximation, with a measured relative
error ranging from 0.005% to 5% on a set of configurations for multinomial rectangular
probabilities covering dimensions d from 8 up to 200 and population size N from 12 to
300, while the Edgeworth-based approximation gives relative errors ranging from 0.01%
to 5% on the same configurations.

Is the accurate (or even exact) evaluation P (Tt = N) intractable? A straightforward
approach is to compute the associated convolution by multiplying the generating functions
of the Ytj random variables and by extracting the coefficient of degree N . All these
generating functions are polynomials of degree bj , of which only the coefficients of order
not greater than N are of interest. It leads to a O(dN2) time complexity as d,N → ∞
if these multiplications are done using the naive polynomial multiplication algorithm, or
to a O(dN logN) time complexity as d,N → ∞ if these multiplications are done using a
FFT based algorithm. While it is clearly a much better algorithm than the brute force
enumeration method, it remains costly for large values of N and d.

The most efficient exact algorithm proposed so far for the evaluation of (7.1), in the case
of the multinomial distribution, is the one described in [Fre09] and recalled below. Its space
complexity is O(σab) as σab → ∞ and its time complexity is O(Naσab) as Na, σab → ∞.
The algorithm described in [Cor11] has the same space and time complexity, covers more
distributions but for restricted arguments of (7.1), so we take [Fre09] as a reference in
terms of accuracy, space and time complexity. These algorithms are not based on the
representation (7.2), but rather on an incremental evaluation of the summation of the
probability function associated to the evaluation of rectangular probabilities. We detail
here the algorithm presented in [Fre09] in the next section.

Using an appropriate numerical method, it is possible to evaluate the order N coeffi-
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cient efficiently in both space and time, not exactly but with a user-controlled accuracy
that can be made as small as the machine precision. In some sense, the resulting algorithm
is essentially exact.

To jump directly to the conclusion, and to motivate the reader, the key results con-
cerning the new algorithm we propose are that it has a constant (and small) O(1) space
complexity as σab → ∞, and has a worst case O(Naσab) time complexity as Na, σab → ∞
that drops to O(d

√
Na) as Na, σab → ∞ for most situations, for a relative precision com-

parable to [Fre09], which is a tremendous improvement with respect to the best current
exact algorithms.

The first section of the chapter presents the reference algorithm proposed in [Fre09].
The second section presents the foundations of the new algorithm and the third section
details some specific results that make the algorithm efficient, with a particular emphasize
on the multinomial case. The last section gives experimental evidences of both the time
complexity and the accuracy of the algorithm. Several test cases gathered in the literature
are also detailed.

7.2 Reference algorithm

We present here the algorithm proposed in [Fre09], which is an exact algorithm comput-
ing multinomial rectangular probabilities and which is based on an incremental evaluation
of the probabilistic contribution of all the integer-valued coordinates points in the rect-
angular region of interest. We focus on the case where σa < N < σb, as the other cases
lead either to a null probability or to a contribution limited to one point, which is readily
evaluated using (7.4).

The multinomial rectangular probability pM(a, b) can be writtten as follows:

pM(a, b) =
b1∑

x1=a1

· · ·
bd∑

xd=ad

(
N !

x1! · · ·xd!

)
px1

1 · · · pxdd ✶S(x)

=

(
N !pa1

1 · · · padd
a1! · · · ad!

)
b1∑

x1=a1

· · ·
bd∑

xd=ad





d∏

i=1

xi−ai∏

j=1

(
pi

ai + j

)
✶S(x) (7.11)

where the inner product is understood to be 1 if xi − ai = 0. Each non-zero summand
is the product of Na factors that can be associated in a one-to-one fashion to a vector ℓ

of indices ℓ = (ℓ1, . . . , ℓNa) such that the first (x1 − a1) entries are 1, the next (x2 − a2)
entries are 2, and so one. The first (x1 − a1) entries are for the terms of the form p1

a1+j ,
the next (x2 − a2) entries are for the terms of the form p2

a2+j and so on.
The set K of non-zero summands is then the set of all nondecreasing vectors ℓ in

{1, . . . , d}Na such that each value j appears no more than bj − aj times. We can then
write pM(a, b) as:

pM(a, b) =

(
N !pa1

1 · · · padd
a1! · · · ad!

)
∑

ℓ∈K
F1(ℓ1)F2(ℓ1, ℓ2) · · ·FNa(ℓ1, . . . , ℓNa) (7.12)

where F1(ℓ1),. . . ,FNa(ℓ1, . . . , ℓNa) are the factors
pℓ1
aℓ1 +j that contribute to non-zero sum-

mands in (7.11).
The key point of the algorithm is to evaluate (7.12) in a recursive way. To this end,

we introduce the set Km(i, j) defined as the set of all nondecreasing vectors of integers
ℓ ∈ {1, . . . , d}m so that:
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1. ℓm−j < ℓm−j+1 = · · · = ℓm = i

2. ℓ does not contain any value i more than bi − ai times.

By defining Pm(i, j) by:

Pm(i, j) =
∑

ℓ∈Km(i,j)

F1(ℓ1)F2(ℓ1, ℓ2) · · ·Fm(ℓ1, . . . , ℓm)

for all m ∈ {1, . . . , Na}, i ∈ {1, . . . , d} and j ∈ {1, . . . , bi−ai}, the multinomial rectangular
probability pM(a, b) can be expressed as:

pM(a, b) =

(
N !pa1

1 · · · padd
a1! · · · ad!

)
d∑

i=1

xi−ai∑

j=1

Pd(i, j) (7.13)

The values Pm(i, j) are evaluated recursively thanks to:

P1(i, j) =





pi
ai + 1

j = 1 and bi > ai

0 otherwise
(7.14)

for the initialization and to

Pm+1(i, j) =





(
pi

ai + 1

) i−1∑

k=1

min(bi−ai,m)∑

j=1

Pm(k, j) for j = 1

(
pi

ai + j

)
Pm(i, j − 1) for j > 1

(7.15)

for the recursion.

The resulting algorithm is then:

Algorithm 7.6.

Given a, b ∈ Nd such that a ≤ b, N ∈ N such that σa < N < σb and positive
probabilities p1, . . . , pd such that

∑d
j=1 pj = 1, do

1. Compute the Na values of P1(i, j) : i = 1, . . . , d; j = 1, . . . , bi − ai using (7.14)

2. For m = 1, . . . , Na − 1, compute the Na values of Pm+1(i, j) : i = 1, . . . , d; j =
1, . . . , bi − ai from Pm(i, j) : i = 1, . . . , d; j = 1, . . . , bi − ai using (7.15).

3. Compute pM(a, b) using (7.13).

The space complexity of this algorithm is O(σab) as σab → ∞ due to the storage of the
Na values of Pm(i, j) : i = 1, . . . , d; j = 1, . . . , bi −ai and its time complexity is O(Naσab)
as Na, σab → ∞ because m runs from 1 to Na. The final step has a cost of O(Na) as
Na → ∞ and is thus negligible with respect to the other steps.

7.3 Foundations of the new algorithm

In this section, our key result is the representation of the rectangular probability given
in Proposition 7.11, which is the basis of our new algorithm.

Here is the key result given in [AW91, equations 5.35–5.37] and allowing for a fast and
accurate evaluation of convolutions for discrete univariate distributions, using the Poisson
summation formula:
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Theorem 7.7. Let fX be the probability function of a discrete random variable X and
φX its associated probability generating function φX(z) =

∑
k≥0 fX(k)zk.

Then, for any non-negative integers n, m > n and real number 0 < r < 1:

fX(n) = P (X = n) =
1

mrn

m−1∑

k=0

ξ−knm φX
(
rξkm

)
− ǫn,m,r (7.16)

where ǫn,m,r =
∑
k≥1 fX(n+ km)rkm ≤ P (X ≥ m+ n)rm ≤ rm and ξm = e

2iπ
m .

We recall the proof of this result for the reader convenience.

Proof. The generating function φX is defined at least for z ∈ C such that |z| < 1. For
such a z, using polar coordinates we have:

∀r ∈ (0, 1), θ ∈ [0, 2π), φX
(
reiθ

)
=
∑

j≥0

fX(j)rjeijθ =
∑

j∈Z
aje

ijθ

where the sequence of real numbers (aj)j∈Z is defined by:

∀j ∈ Z, aj =

{
0 if j < 0

fX(j)rj if j ≥ 0

Let m ∈ N∗ be a positive integer. We form the m-periodic sequence
(
amj

)
j∈Z

defined by:

∀j ∈ {0, . . . ,m− 1}, amj =
∑

ℓ∈Z
aj+ℓm

Its discrete Fourier transform
(
bpk
)
k∈{0,...,m−1} reads:

∀k ∈ {0, . . . ,m− 1}, bmk =
1
m

m−1∑

j=0

amj e
2iπjk/m

=
1
m

m−1∑

j=0

∑

ℓ∈Z
aj+ℓme

2iπjk/m

=
1
m

∑

j∈Z
aje

2iπjk/m

=
1
m
φX

(
rξkm

)

where ξm = e
2iπ
m . Using the inversion formula of the discrete Fourier transform, we get:

∀j ∈ {0, . . . ,m− 1}, amj =
m−1∑

k=0

bmk e
−2iπjk/m

=
1
m

m−1∑

k=0

ξ−jkm φX
(
rξkm

)

from which we deduce that fX(n) = 1
mrn

∑m−1
k=0 ξ

−kn
m φX

(
rξkm

)
− ǫn,m,r with n ∈ N, m ∈ N

such that m > n, r ∈ (0, 1) and:

ǫn,m,r =
∑

k≥1

fX(n+ km)rkm

≤P (X ≥ m+ n)rm

≤ rm

as ∀k ≥ 1, rkm < rm and
∑
k≥1 fX(n+ km) ≤ ∑

j≥0 fX(n+m+ j).
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This theorem provides a numerical method to compute the probability function of a
discrete distribution from its generating function: the value of fX(n) is approximated by
the finite sum that appears in (7.16), with a positive error (i.e. fX(n) is over-estimated)
that can be made as small as needed by a judicious choice of r and m. We note that if X
has a bounded support with upper bound M , which is the case in the application we have
in mind, any choice of m such that m > M leads to an exact algorithm as ǫn,m,r = 0 for
such a choice.

Using m = 2n in (7.16) gives two advantages, namely the terms of the sum can be
paired in order to add to real values so the resulting formula has no more than n + 1
terms, and the factor ξ−knm reduces to (−1)k. The resulting formula is given in [AW91,
equations 5.38–5.39], and reads:

Proposition 7.8. If we take m = 2n in (7.16), we get:

fX(n) =
1

2nrn

n−1∑

k=0

(−1)kR
(
φX

(
rζkn

)
− φX

(
rζk+1
n

))
− ǫn,r (7.17)

where

ǫn,r =
∑

k≥1

fX((2k + 1)n)r2kn ≤ P (X ≥ 3n)r2n ≤ r2n (7.18)

and ζn = ξ2n = e
iπ
n

We will apply (7.16) if we want an exact algorithm, or (7.17) if we want an approximate
algorithm, to evaluate P (Tt = N), and plug the resulting formula into (7.2) in order to
derive our algorithm. In the approximate case, we see that the value of the error (7.18)
can be made smaller than a given ǫmax by choosing r such that r2n ≤ ǫmax:

r ≤ ǫ
1

2n
max (7.19)

It remains to express the generating probability function of Tt, which is an elementary
result stated without proof:

Proposition 7.9. ∀j ∈ {1, . . . , d}, ∀z ∈ C with |z| ≤ 1 we have:

φTtj (z) =
π

(j)
ajbj

(z)

P (aj ≤ Ytj ≤ bj)
(7.20)

with

π
(j)
ajbj

(z) =
bj∑

k=aj

P (Ytj = k)zk = π
(j)
bj

(z) − π
(j)
aj−1(z) (7.21)

where

π
(j)
−1(z) ≡ 0, ∀n ∈ N, π(j)

n (z) =
n∑

k=0

P (Ytj = k)zk (7.22)

The independence of the Ttj leads to:

φTt(z) =

∏d
j=1 π

(j)
ajbj

(z)
∏d
j=1 P (aj ≤ Ytj ≤ bj)

(7.23)
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We see that a key factor in the cost of (7.16) is the constraint m > n. When we are
interested in computing the value of a multi-dimensional discrete distribution function,
there is no choice but to take n = N and m > N in (7.16). But when we are interested in
computing a rectangular probability, i.e. when a 6= 0, we can express P (Tt = N) in a form
that leads to a less expensive summation. The elementary properties of the characteristic
functions lead to the following proposition:

Proposition 7.10. If a 6= 0, ∀j ∈ {1, . . . , d} we set Vtj = Ttj −aj. The random variables
Vtj are such that:

P (Vtj = k) = P (Ttj = aj + k) (7.24)

φVtj (z) = z−ajφTtj (z) (7.25)

and

P (Tt = N) = P (Vt = Na) (7.26)

φVt(z) = z−σaφTt(z) (7.27)

where Vt =
∑d
j=1 Vtj has support {0, . . . , σab}.

Replacing the evaluation of P (Tt = N) by the evaluation of P (Vt = Na) moves the
constraint m > N into m > Na with Na < N . Furthermore, the algorithm is now exact
as soon as m > σab.

Considering only the approximate version of the algorithm, we get:

Proposition 7.11. ∀a, b ∈ Nd, we have:

pD(a, b) = R

{
N−1∑

k=0

(−ζ−σaNa
)k
(

d∏

j=1

π
(j)
ajbj

(
rζkNa

)
− ζ−σaNa

d∏

j=1

π
(j)
ajbj

(
rζk+1
Na

))}
/

(
2Nar

NP (Yt = N)
)

− ηNa,r (7.28)

where K =

∏d
j=1 P (aj ≤ Ytj ≤ bj)

P (Yt = N)
and ηNa,r = KǫNa,r.

Except for the storage of the data a, b and p, which is a O(d) as d → ∞, the memory
complexity of this algorithm is O(1) as N, d → ∞ because no intermediate structure is
needed in the evaluation of (7.28). The time complexity is of order O(NaC) as Na, C → ∞,
where C is the time complexity of evaluating π

(j)
a1b1

, . . . , π
(j)
adbd

at a given point. A naive
evaluation of these polynomials leads to C ≃ σab and a total time complexity of O(Naσab)
as Na, σab → ∞, which is the same complexity as the algorithm proposed in [Fre09]. We
also note that the factor

∏d
j=1 P (aj ≤ Ytj ≤ bj) in (7.1) simplifies with the denominator

of (7.23), reducing the overall computational cost.
One can see that the error in (7.28) depends on t through the numerator of K, and

on r through ǫNa,r. The theoretical behavior of this error is clear: we can take r small
enough to get the absolute error we want. The numerical behavior of this error is less clear
as the summation in (7.28) can be subject to cancellation, increasing the error. The best
way to take into account these cancellations is to use the recommendations in [AW91] to
choose r using (7.19), then to choose t in order to minimize K. This point will be explored
numerically in the case of the multinomial distribution.
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7.4 Making the new algorithm more efficient

In this section, our key results are the efficient evaluation of the characteristic function
of Tt, as a result of Proposition 7.12, and the original stopping criterion given in Proposi-
tion 7.14. Combined, these results lead to Algorithms 7.13 and 7.15, which are our core
contribution.

Two remarks can lead to a dramatic improvement of the time complexity (or com-
plexity for short) of the proposed algorithm. The first one is that in many situations, the
evaluation of π(j)

ajbj
can be done with O(1) operations instead of O(bj −aj) within machine

precision when bj − aj → ∞, counting the evaluation of a transcendental function such as
exp as an unitary cost operation. In this case, C = O(d) as d → ∞ instead of C = O(σab)
as σab → ∞, and the total complexity drops to O(Nad) as Na, d → ∞. The second one
is that the terms involved in (7.28) are usually of very different magnitudes, and most of
them do not contribute significantly (up to machine precision) to the final result. It is
common that only O(

√
Na) terms are needed as Na → ∞. The overall complexity is thus

reduced to O(d
√
Na) as Na, d → ∞.

7.4.1 Efficient evaluation of π
(j)
aj ,bj

(z)

If bj − aj = O(1) as bj − aj → ∞, the evaluation of π(j)
ajbj

is obviously a O(1) as
bj − aj → ∞, so we restrict our attention to the case bj − aj → ∞. It covers two
different sub-cases: either we have aj of order the unity, for example in the case where
one is interested in the computation of the distribution function of the distribution, or we
have aj , bj → ∞. In the first case, the following proposition gives elements to make the

evaluation of π(j)
ajbj

cheaper than O(bj − aj) as bj − aj → ∞:

Proposition 7.12. Let n be a nonnegative integer and z a complex number such that
|z| ≤ 1. Let s̄ = sup{s ≥ 0, φYtj (es) < +∞}. If s̄ > 0, then

∣∣∣φYtj (z) − π(j)
n (z)

∣∣∣ ≤
φYtj

(
es

∗
)

e(n+1)s∗ (7.29)

where s∗ = argmin
0<s<s̄

φYtj (es)

e(n+1)s
.

Proof. By definition of φYtj and π
(j)
n (z), we have:

∣∣∣φYtj (z) − π(j)
n (z)

∣∣∣ =

∣∣∣∣∣∣

∑

k>n

P (Ytj = k)zk

∣∣∣∣∣∣

≤
∑

k>n

P (Ytj = k)|z|k

≤ F cYtj (n) as |z| ≤ 1

where F cYtj (n) = P (Ytj > n) is the complementary distribution function of Ytj evaluated
at n.

Then, applying the Markov inequality to esYtj and minimizing the bound with respect
to s such that 0 < s < s̄ we get (7.29).

The hypothesis made on φYtj is fulfilled in the particular cases of the Poisson, binomial

and negative binomial distributions, for which the respective values of s∗ are log
(
n+1
tpj

)
,
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log
(

1−t
t

n+1
hj−(n+1)

)
and log

(
n+1

(1−t)(qj+n+1)

)
. In the general case, the convergence of π(j)

n (z)
to φYtj (z) is at least exponential with n, and can be even faster in specific cases (e.g. in

the Poisson case). It results the following algorithm to evaluate π(j)
n (z):

Algorithm 7.13.

Given n ∈ N, z ∈ C, |z| ≤ 1, do:

1. Set k := n+ 1

2. Set vk := φYtj (z)

3. Set dvk = P (Ytj = k)zk

4. While |dvk| > |vk|ǫmachine do
(a) vk+1 := vk − dvk

(b) dvk+1 := P (Ytj = k + 1)zk+1 = f(dvk, k, z)

(c) k := k + 1
5. Return vk

This algorithm performs O(| log ǫmachine|) iterations as ǫmachine → 0. The evaluation
of φYtj (z) and P (Ytj = k) can be done in constant time complexity for the common distri-
butions, and the update (4b) can be made for usual distributions using a simple recursion
f(dvk, k, z) instead of the full evaluation of P (Ytj = k + 1)zk+1.

Considering the case of the multinomial distribution, i.e. Ytj ∼ P(tpj), the situation
of (7.12) is likely to occur when σb = O(dN) as N, d → ∞ and σa = O(d), i.e. when
bj = O(N) and aj = O(1), which corresponds to the worst complexity we get using the

naive evaluation of all the π(j)
ajbj

. In this case, the number of iterations of (7.13) is less than

18 for ǫmachine = 10−16 and tpj = 1, a situation typical of interacting particle algorithms

setting. The update is given by f(dvk, k, z) = dvk × tpjz

k + 1
.

When both aj and bj are large, the situation is more involved. A naive evaluation using

π
(j)
aj ,bj

= π
(j)
bj

− π
(j)
aj−1 can suffer from massive cancellation, providing a very inaccurate

result. Nevertheless, in the multinomial case, a systematic O(1) time complexity can be
achieved for the evaluation of π(j)

aj ,bj
(z), in connection with the evaluation of the regularized

incomplete gamma function, see [DM86], [Tem94] and the boost library (www.boost.org)
for an efficient implementation of these methods.

7.4.2 Fast (essentially) exact evaluation of the Poisson summation

The terms involved in (7.28) can have very different magnitudes. As a result, only
a few of them could have a significant contribution to the Poisson summation formula,
and taking advantage of it could reduce very significantly the cost in the evaluation of
the sum. We illustrate it in the computation of the multinomial distribution function. In
this case, Na = N , Vtj = Ttj and Vt = Tt. We restrict our analysis to the case where
φTt ≃ φYt = e−t(1−z):

Proposition 7.14. We consider the case where N ≫ 1 and φTt(z) ≃ e−t(1−z). Either
t = O(1) and no term of the sum in (7.28) is negligible, or t → +∞ with t = O(N)
and only the N∗ first terms of (7.28) have a relative contribution to pD(a, b) greater than
ǫ ≪ 1, with:

N∗ ≃ 1
π

√

−2 log ǫ
r

N2

t
(7.30)

The case t ≫ N is not relevant, as it leads to severe cancellations in (7.28).
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Proof. In order to study the magnitude of the terms occurring in (7.17), we use the
elementary relation:

|eβ − eα|2 = e2R(β)ρα,β (7.31)

with
ρα,β = 1 + e2R(α−β) − 2 cos (I(α− β)) eR(α−β) (7.32)

using β = −t
(
1 − rζkN

)
and α = −t

(
1 − rζk+1

N

)
.

Let ρk be the value of ρα,β for this choice of α and β, and δk = φTt

(
rζkN

)
−φTt

(
rζk+1
N

)
.

Three cases have to be considered: t = O(1), t = o(N) with t → +∞ and t = Θ(N) 1. For
the first and second cases, using ζN − 1 = iπ

N + O
(

1
N

)
we get:

|δk|
|δ0| = e−rt(1−cos(θk)) + O

(
t

N

)
(7.33)

We have |δk|/|δ0| < ǫ as soon as cos(θk) ≤ 1+ log ǫ
rt . For typical values of ǫ, when t = O(1),

it is not possible to fulfill this constraint so one must compute the N terms in (7.17). In
the second case, using the expansion arccos(1 − x) =

√
2x + O(x3/2) we get the value of

N∗ given in (7.30).
When t = Θ(N), the computation is more involved as the terms in t/N are no more

negligible. We proceed in two steps: first we show that |δk||δ0| is small as soon as k is greater
than a bound which is a o(N), justifying that one can use series expansions with respect
to θk = kπ

N = o(1), then one gets (7.30) by computations similar to the previous cases.
More precisely, defining γ = t

N and assuming that cos(γrπ) < 1, we get:

|δk|
|δ0| = e−rt(1−cos(θk))

√
1 − 2 cos(γrπ cos(θk))e−γrπ sin(θk) + e−2γrπ sin(θk)

2(1 − cos(γrπ))

+ O
(

1
N

)
(7.34)

from which we deduce that:

|δk|
|δ0| ≤ e−rt(1−cos(θk)) 1 + e−γrπ sin(θk)

√
2(1 − cos(γrπ))

≤ e−rt(1−cos(θk))

√
1 − cos(γrπ)

(7.35)

as θk ∈ [0, π]. The same computation as in the case t = o(N) shows that the upper bound

of (7.35) is smaller than ǫ as soon as k ≤ 1
π

√
N

2 log ǫ
√

1−cos(γrπ)

γr = o(N), i.e. θk = o(1).

It is thus possible to expand the square-root term of (7.34) with respect to θk, and one
gets (7.30) the same way as for the previous case.

If we choose t = N as suggested in [Lev81], we get N∗ = O(
√
N). The resulting

algorithm reads:

Algorithm 7.15.

1. The notation t = Θ(N) means that t is bounded above and below by a linear function of N , while
t = O(N) means that t is only bounded above by a linear function of N . Here, it is important to make
this distinction as the argument in the proof is not the same if t is a Θ(N) or a O(N) without being a
Θ(N).
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Given N ∈ N∗, p ∈ [0, 1]d, a, b ∈ Nd such that ∀j ∈ {1, . . . , d}, 0 ≤ aj ≤ bj ≤ N − 1,
ǫmax > 0, do:

1. Compute r := ǫ
1

2Na
max

2. Compute δ0 :=
d∏

j=1

π
(j)
ajbj

(r) − ζ−σaNa

d∏

j=1

π
(j)
ajbj

(rζNa)

3. Set v := δ0, k := 1

4. Repeat

(a) Compute δk := (−ζ−σaNa
)k
(∏d

j=1 π
(j)
ajbj

(rζkNa) − ζ−σaNa

∏d
j=1 π

(j)
ajbj

(rζk+1
Na

)
)

(b) Compute v := v + δk

(c) Set k := k + 1

5. Until k = N or |δk| < ǫmachine|δ0|
6. Return R(v)/(2Nar

NP (Yt = N))

The evaluation of π(j)
bjaj

is done using (7.13) or one of the more involved O(1) methods.
We note that the definitions of δ0 and δk is not the same as in Proposition 7.14, but
using (7.23) we see that the ratio |δk|/|δ0| is the same.

It must be emphasized that in an actual implementation of this algorithm, one should
include tests to detect trivial situations for which an early exit is possible. For example,
when one component of x is larger than N , the problem is reduced to a lower dimensional
one, or if σb < N or σa > N , the probability is zero.

This algorithm is available in the Open TURNS software [Ope], an Open Source C++
library dedicated to probabilistic modeling and uncertainty propagation.

7.5 Numerical experiments

The objectives of these numerical experiments are to assess the accuracy of the pro-
posed algorithm on various examples used in the literature, and to check its time complex-
ity. All the computations have been made using the Levin recommendation for t, namely
t = N . There is certainly more insight to be gained in the study of the influence of t on
the numerical accuracy.

7.5.1 Accuracy

In this numerical experiment, we check the accuracy of the proposed algorithm on the
computation of the multinomial distribution function in the following settings: d = N ,
p1 = · · · = pd = 1/d for N ∈ {⌊2k/2⌋ | k = 2, . . . , 20}. The distribution function is
computed at the points (x1 = · · · = xd = k) for k such that the resulting probability value
is in [10−5, 1 − 10−5]. For each value of N , the maximum relative error is plotted against
the size N on a logarithmic scale on Figure 7.1, for ǫmax taken in {10−7, 10−9, 10−11}. The
points with a zero maximal error are not plotted.

It was not possible to explore larger values for N due to the space complexity of the
reference algorithm.

We note several facts from this experiment. The first one is that the accuracy of the
proposed algorithm is close to the machine precision on a wide range of problem size, and
even better than the accuracy of the exact algorithm as soon as the problem size is larger
than a few tens. The second one is that the choice of ǫmax does not seems to have a
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Figure 7.1: Maximum relative error for various problem size N and various precision
parameter ǫmax. For problem size larger than 50, the proposed algorithm is consistently
more accurate than the reference algorithm, and the achieved accuracy does not depends
on the value of ǫmax. The two horizontal dashed lines correspond to the single and double
precision accuracies.

significant impact on the accuracy of the algorithm as soon as the problem size is larger
than a few tens. For smaller sizes, a value of ǫmax ≃ 10−9 seems to give the best overall
precision, even if in this case the algorithm [Fre09] should probably be preferred. The
third fact is that the implementation of the algorithm [Fre09] as given in the reference
paper seems to have an overflow for problems of size larger than few thousands.

7.5.2 Some classical examples

Here are the results (see Table 7.3)of our algorithm on the classical examples that can
be found in [BM95], [Cor11], [Lev81] etc. The algorithm is implemented in Python, using
double-precision for the computation. These results have been checked against both a
Monte Carlo simulation with 109 samples, and the algorithm in [Fre09] using the reference
implementation in R provided by the author as well as a multi-precision implementation
in Maple. For each example, we give the 16 digits of the computed result and underline
the digits that differ from the exact result. We also give the absolute and relative error of
the computed result.

Example 7.16. This example 2 is from [BM95], which consider the classification of N =
200 adult subjects into d = 4 marital status. This example leads to the following compu-
tation:

X ∼ M(200, [0.2, 0.35, 0.15, 0.3])

1. P (X1 ≤ 30, X2 ≤ 80, X3 ≤ 40, X4 ≤ 50)

Example 7.17. This example is exposed in both [Cor11] and [Lev81], and is attributed
to Mallows. It consists in the following computation:

X ∼ M(500, [p1 = · · · = p50 = 1/50])

1. P (X1 ≤ 19, . . . , X50 ≤ 19)

2. for which the wrong value of 0.030837 is reported (using a storage of 1373701 floating point numbers
for the computation)
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Example probability absolute error relative error

7.16-1 0.4784509465818295 10−5 1.5 10−17 3.2 10−12

0.4784509465802881 10−5

7.17-1 0.8527269852581543 1.5 10−14 1.8 10−14

0.8527269852581694
7.17-2 0.6026842811375376 2.3 10−14 3.9 10−14

0.6026842811375610
7.17-3 0.5202664925927378 2.3 10−14 4.4 10−14

0.5202664925927609
7.18-1 0.3126321887664741 1.6 10−15 4.9 10−15

0.3126321887664725
7.18-2 0.8370435377788633 1.0 10−14 1.2 10−14

0.8370435377788733

Table 7.3: Probability value and precision of the examples. The exact values, rounded to
the 16th significant figure, are also given in bold face.

Based on the same multinomial distribution, these two other computations 3 are proposed
in [Cor11]:

2. P (4 ≤ X1, . . . , 4 ≤ X50)

3. P (4 ≤ X1 ≤ 19, . . . , 4 ≤ X50 ≤ 19)

Example 7.18. This example is exposed in [Lev81], and is attributed to Barton and
David. It consists in the following computation:

X ∼ M(12, [p1 = · · · = p12 = 1/12])

1. P (X1 ≤ 2, . . . , X12 ≤ 2)

2. P (X1 ≤ 3, . . . , X12 ≤ 3)

The last computation is essentially the same as the one presented in [BS98], for which the
reported absolute error is of order 5 10−5, which illustrates the limited precision of the
best available approximate algorithm.

7.5.3 Time complexity assessment

The time complexity benchmark consists in the evaluation of the distribution func-
tion of the multinomial distribution in different settings for the pair (N, d). The objec-
tive is to verify the asymptotic time complexity of the algorithm with respect to both
the N and d parameters in the most demanding situation, namely the computation of
P (X1 ≤ N − 1, . . . , Xd ≤ N − 1) for equiprobable Xi.

We will test the configurations (N, d) ∈ {⌊10k/5⌋ | k = 10, . . . , 25}×{10k | k = 2, . . . , 5}
for the time complexity with respect to N , and (N, d) ∈ {10k | k = 2, . . . , 5}×{⌊10k/5⌋ | k =
10, . . . , 25} for the time complexity with respect to d.

The time complexity matches perfectly the theoretical bounds, as seen on Figures 7.2
and 7.3, which confirms that the algorithm is a significant improvement over the previous
ones: when d = N , we get a time complexity of O(N3/2) instead of O(N3) for the reference
algorithm.

3. for which the wrong values of resp. 0.877373 and 0.750895 are reported.
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7.6 Conclusion

In this chapter, we provide an algorithm that permits the computation of rectan-
gular probabilities to high accuracy for a class of multi-dimensional discrete probability
distributions that includes the multinomial, multi-dimensional hypergeometric and multi-
dimensional Pólya distributions. This algorithm can be made exact in exact arithmetic
with a constant space complexity and a polynomial time complexity that matches the best
available algorithms so far.

More interestingly, its approximate version allows for significant time complexity im-
provement for an actual accuracy that matches and even outperforms the accuracy of
previous exact algorithms that suffers from round-off errors when implemented in finite
precision arithmetic.

Several numerical experiments have demonstrated the performances of this algorithm
in the multinomial case, both with respect to its accuracy and time complexity.

This algorithm allows to address problems that were impossible to deal with using
previous state-of the art algorithms, either in terms of problem size or in terms of accuracy.
It has been implemented in the Open TURNS software [Ope], an Open Source software
dedicated to probabilistic modeling and uncertainty propagation. It is also available as a
Python [Pyt] script or as a Maple [Map] script upon request to the author.

Some additional work should be made regarding this algorithm, regarding its sensitivity
to round-off error or the optimal choice for t, even if the choice t = N seems to be effective
in the multinomial case.

With minor modifications, this algorithm could be extended to other discrete models
such as the combinatoric models considered e.g. in [ABT00].





Conclusions and perspectives

In this thesis, we have shed some insight on common practices in stochastic model-
ing thanks to the theory of copulas and we provided effective tools to deal with modeling
situations that were previously not covered by the literature such as the modeling of depen-
dence in presence of constraints, or only partially covered such as the efficient evaluation
of the distribution function of discrete distributions in a specific class that encompasses
distributions of universal use in probability and statistics.

The first work was to illustrate the necessity to fully describe the dependence structure
of a random vector through its copula instead of giving only a partial description of this
structure thanks to a set of measures of association. This was the main objective of chapter
2.

Using the theory of copulas, we have also highlighted the probabilistic modeling hy-
potheses hidden behind the common practices related to the use of iso-probabilistic trans-
formations, namely the Nataf transformation and the Rosenblatt transformation. It has
allowed us to generalize the Nataf transformation in order to relax some of these modeling
hypotheses, and we have provided an extension of the Breitung asymptotic formula used in
conjunction with such transformations in the context of the first or second order reliability
methods. Those were the main objectives of chapters 3, 4 and 5.

We have adressed an original dependence modeling situation: the modeling of random
vectors with prescribed marginal distributions and an additional constraint that must be
fulfilled almost surely, in the case where this constraint is an increasing ordering between
the components of the random vector. We have proved a theorem that fully describes the
copulas compatible with such constraints for a given set of compatible marginal distri-
bution functions, and we have defined a class of such copulas in the bi-dimensional case,
called the subsquare copulas. We have detailed all the analytical and algorithmic aspects
in order to allow the effective use of such copulas in numerical simulations. This work was
the objective of chapter 6.

Finally, we have presented a new efficient and accurate algorithm to evaluate the
rectangular probabilities of a class of multivariate discrete distributions that play a central
role in many probabilistic and statistical situations. This algorithm allows to address
high-dimensional situations essentially exactly (i.e up to machine precision) where the
practitioner was previously limited to asymptotic approximations with no control on the
approximation error. This was the objective of chapter 7.

For all these topics, we have identified possible extensions that we list below.
A possible extension of the work presented in chapter 2 could be an extension of

Fréchet-Hoeffding bounds to the set of copulas compatible with a given dependence infor-
mation, or conditions on the feasibility of a ε-synthesis with a finite dependence informa-
tion for a specific class of copulas.

A possible extension of the work presented in chapters 3, 4 and 5 could be to compare
the FORM and SORM approximations resulting from the use of the generalized Nataf
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transformation and the Rosenblatt transformation in the case of non-Gaussian elliptical
copulas. In particular, it would be interesting to see if the use of the generalized Nataf
transformation provides more accurate approximations than the use of the Rosenblatt
transformation, in addition to being more computationnaly efficient.

A possible extension of the work presented in chapter 6 could be to extend the results
to more general constraints than an ordering constraint, for exemple a general affine in-
equality constraint. The construction of compatible copulas other than the sub-square or
sub-hypercube copulas would be very valuable, and more generaly the geometry of the
set of compatible copulas could be described in more details. Such a work has already
started in collaboration with Anne Dutfoy (EDF) in the continuity of this thesis, using
the sub-square copulas as building blocks for the construction of high-dimensional copulas
in the spirit of vine copulas.

The ideas behind the algorithm presented in chapter 7 have a much broader scope
than the one presented in this chapter. They have already been used in the definition of
a highly efficient algorithm to compute essentially exactly the p-value of a new statistical
test dedicated to the detection of exceptional sequences in the DNA, in collaboration with
Professor Bernard Ycart (Joseph Fourier University).
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