
Statistics and Computing manuscript No.
(will be inserted by the editor)

Efficient time/space algorithm to compute rectangular probabilities
of multinomial, multivariate hypergeometric and multivariate Pólya
distributions

Régis LEBRUN

Received: date / Accepted: date

Abstract The computation of rectangular probabilities of
multivariate discrete integer distributions such as the multi-
nomial, multivariate hypergeometric or multivariate Pólya
distributions is of great interest both for statistical applica-
tions and for probabilistic modeling purpose. All these dis-
tributions are members of a family of multivariate discrete
integer distributions for which the existing methods to eval-
uate such probabilities are either approximate, with no real
control on the precision of the approximation, or exact (if
the computation is made using exact arithmetic) but avail-
able only for some of these distributions or for particular
rectangular probabilities.

We propose here a new approximate algorithm that al-
lows performing these computations in the most general case
for both the distribution and the rectangular region. Its accu-
racy matches or even outperforms the exact algorithms when
the rounding errors are taken into account. In the worst case,
the computational cost of our algorithm is the same as the
most efficient exact method published so far, and is much
lower in many situations of interest. Our algorithm does not
need an intermediate storage that grows with the dimension
or problem parameters, which allows dealing with large di-
mension/large counting parameter applications at no mem-
ory cost and acceptable computation time, which is a major
difference with respect to the methods published so far.

Keywords Rectangular probabilities, cumulative distribu-
tion function, multinomial, multivariate hypergeometric,
multivariate Pólya, Poisson summation formula

R. Lebrun
EADS Innovation Works
Department of applied mathematics and modeling
12, rue Pasteur BP76
92152 Suresnes Cedex, FRANCE
Tel.: +33-(0)1-46-97-35-80
Fax: +33-(0)1-46-97-35-08
E-mail: regis.lebrun@eads.net

1 Introduction

We are interested in the computation of rectangular proba-
bilities for a d dimensional discrete integer-valued random
vector X∼D :

∀a,b ∈ Nd ,

pD (a,b) = P(a≤ X≤ b)

= P(a1 ≤ X1 ≤ b1, . . . ,ad ≤ Xd ≤ bd) (1)

The computation of such quantities are of uttermost interest
in many statistical applications for X distributed according
to a multinomial, multivariate hypergeometric or multivari-
ate Pólya distribution (see [3], [5], [7], [8], [9], [11], [12],
[13]), but despite the existing literature on the subject, no
function allows to perform this computation in the standard
numerical softwares such as R, SAS, Matlab, Scilab or Oc-
tave.

Several authors (see [3], [4], [8], [11], [12], [13], [14])
have described in details approximate algorithms for a long
time, but these algorithms provide only a limited precision
which may be inadequate for some applications, and with
no control on the error. This lack of control of the error may
be the reason why these algorithms have not yet been im-
plemented a standard numerical package. Some of these au-
thors (see [8], [11], [12], [13]) have also indicated how to
derive an exact algorithm if one was able to compute a par-
ticular convolution exactly, but with no indication on how to
do it efficiently and accurately.

It is only recently that reasonably efficient algorithms for
the computation of rectangular probabilities have been de-
scribed (see [5], [7]), using completely different roots than
the previous authors. But even with these algorithms, the
only case covered with full generality (see [7]) is the multi-
nomial one, with a polynomial space and time complexity.

We propose to change this situation by providing an al-
gorithm which is essentially exact up to machine precision

2 Régis LEBRUN

for all the multivariate discrete distributions considered in
[3] and [12], amongst which the multinomial, multivariate
hypergeometric and multivariate Pólya distributions. In the
multinomial case, our algorithm is more efficient with re-
spect to both space and time complexity than the algorithm
described in [7], for an equivalent accuracy when imple-
mented in double precision.

More precisely, we are interested in d-dimensional dis-
crete distributions D with a d− 1 dimensional probability
function. We suppose that there exists a random vector Yt =
(Yt1, . . . ,Ytd) with independent components such that X∼D
has the same distribution as Yt | ∑d

j=1 Yt j = N, where t > 0
is a scaling parameter for the mean of Yt .

With these hypotheses, the rectangular probability (1)
admits the following representation by a direct application
of Bayes’ theorem:

pD (a,b) = P(Tt = N)
∏

d
j=1 P(a j ≤ Yt j ≤ b j)

P(Yt = N)
(2)

where

Tt j = (Yt j|a j ≤ Yt j ≤ b j) , Tt =
d

∑
j=1

Tt j andYt =
d

∑
j=1

Yt j (3)

We also suppose that all the variables Yt j are members of
a parametric family of distributions L (θ) for which the dis-
tribution of Yt is known analytically. It is the case if L (θ) is
closed under convolution, i.e. ∀ j ∈ {1, . . . ,d}, Yt j ∼L (θ j)
and Yt ∼L (θ).

This set of hypotheses cover the multinomial, multidi-
mensional hypergeometric and multidimensional Pólya dis-
tributions.

We recall some definitions concerning these distributions
and make explicit the associated family L (θ). We note S
the set {a ∈ Nd |∑d

j=1 a j = N}, and we have:

Definition 1 The multinomial distribution Md(N,p) is de-
fined by:

∀x ∈ Nd ,

P(X = x) =
N!

∏
d
j=1 x j!

(
d

∏
j=1

p
x j
j

)
1S (x) (4)

where ∀ j ∈ {1, . . . ,d}, p j ≥ 0 and ∑
d
j=1 p j = 1.

The decomposition (2) is obtained with

L (θ j) = P(t p j)

where P(t p j) is the Poisson distribution with mean t p j for
any t > 0, and Yt ∼P(t).

Definition 2 The multivariate hypergeometric distribution
Hd(N,h) is defined by:

∀x ∈ Nd ,

P(X = x) =

(
d

∏
j=1

(
h j

x j

)
/

(
h
N

))
1S ′(x) (5)

Table 1 Exact algorithms applicability

Reference [2] [5] [7]

Distributions Md Md , Hd Md
Restrictions a = 0 a = (a, . . . ,a) none
on a, b b = (b, . . . ,b)

Table 2 Approximate algorithms applicability

Reference [3], [12], [13] [4] [8] [11]

Distributions Md , Hd , Pd Hd Md Md
Restrictions none none a = (a, . . . ,a) a = 0
on a, b b = (b, . . . ,b)

where ∀ j ∈ {1, . . . ,d},h j ∈N, S ′ = S ∩{0, . . . ,h1}×· · ·×
{0, . . . ,hd} and h = ∑

d
j=1 h j.

The decomposition (2) is obtained with

L (θ j) = B(h j, t)

the binomial distribution with mean th j for any t ∈ (0,1),
and Yt ∼B(h, t).

Definition 3 The multivariate Pólya distribution Pd(N,q)
is defined by:

∀x ∈ Nd ,

P(X = x) =
Γ (q)N!

Γ (N +q)

(
d

∏
j=1

Γ (x j +q j)
Γ (q j)x j!

)
1S (x) (6)

where ∀ j ∈ {1, . . . ,d},q j > 0 and q = ∑
d
j=1 q j.

The decomposition (2) is obtained with

L (θ j) = NB(q j, t)

the negative binomial distribution with mean q j(1− t)/t for
any t ∈ (0,1), and Yt ∼NB(q, t).

For all the distributions L (θ) we are interested in, there
exist efficient and accurate routines to evaluate both P(a j ≤
Yt j ≤ b j) and P(Yt = N). The only difficulty is the evalua-
tion of P(Tt = N), as noticed in [8], [11], [12] or [13], but
they gave no clue on how to do it both efficiently and ac-
curately. Instead, they developed several approximations of
this quantity using either Edgeworth expansions or saddle-
point approximations.

We list the available algorithms, the distributions they
adress and the possible restrictions on a and b in the compu-
tation of (1) in table 1 for the exact algorithms and in table 2
for the approximate ones.

Is the accurate (or even exact) evaluation P(Tt = N) in-
tractable? A naive use of the definition of the convolution is
clearly enough to address situations with small values of d,

Efficient time/space algorithm to compute rectangular probabilities 3

N and b j−a j, for exemple using the following trivial repre-
sentation:

P(Tt = N) =
b1

∑
y1=a1

P1 . . .
bd−1

∑
yd−1=ad−1

Pd−1Qd (7)

where Pj = P(Yt j = y j) and Qd = P(Ytd = N−∑
d−1
k=1 yk), but

it is clear that even for moderate values of d and b j−a j, the
cost of such an approach is prohibitive.

Using an appropriate numerical method, it is possible
to evaluate such a convolution efficiently in both space and
time, not exactly but with a user-controlled accuracy that can
be made as small as the machine precision. In some sense,
the resulting algorithm is essentially exact.

To contrast the performances of our algorithm with re-
spect to the exact ones, let’s introduce the following nota-
tions:

σa =
d

∑
j=1

a j, σb =
d

∑
j=1

b j, σab = σb−σa, Na = N−σa (8)

The most efficient exact algorithm proposed so far for
the evaluation of (1), in the case of the multinomial distri-
bution, is the one described in [7]. Its space complexity is
O(σab) and its time complexity is O(Naσab). The algorithm
described in [5] has the same space and time complexity,
covers more distributions but for restricted arguments of (1),
so we take [7] as a reference in terms of accuracy, space and
time complexity . To jump directly to the conclusion, and to
motivate the reader, the key results are that the proposed al-
gorithm has a constant (and small) O(1) space complexity,
and has a worst case O(Naσab) time complexity that drops to
O(d
√

Na) for most situations, for a relative precision com-
parable to [7], which is a tremendous improvement with re-
spect to the best current exact algorithms.

The first section of the article presents the foundations of
the algorithm and the second section details some specific
results that make the algorithm efficient, with a particular
emphasize on the multinomial case. The last section gives
experimental evidences of both the time complexity and the
accuracy of the algorithm. Several test cases gathered in the
literature are also detailed.

2 Foundations of the algorithm

In this section, our key result is the representation of the
rectangular probability given in Proposition 4, which is the
basis of our new algorithm.

Here is the key result given in [1, equations 5.35–5.37]
and allowing for a fast and accurate evaluation of convo-
lutions for discrete univariate distributions, using Poisson’s
summation formula:

Theorem 1 Let fX be the probability function of a discrete
random variable X and φX its associated probability gener-
ating function φX (z) = ∑k≥0 fX (k)zk.

Then, for any non-negative integers n, m > n and real
number 0 < r < 1:

fX (n) = P(X = n) =
1

mrn

m−1

∑
k=0

ξ
−kn
m φX

(
rξ

k
m

)
− εn,m,r (9)

where εn,m,r = ∑k≥1 fX (n + km)rkm ≤ rm

1−rm ' rm and ξm =

e
2iπ
m .

This theorem provides a numerical method to compute
the probability function of a discrete distribution from its
generating function: the value of fX (n) is approximated by
the finite sum that appears in (9), with a positive error (i.e.
fX (n) is over-estimated) that can be made as small as needed
by a judicious choice of r and m. We note that if X has a
bounded support with upper bound M, which is the case in
the application we have in mind, any choice of m such that
m > M leads to an exact algorithm as εn,m,r = 0 for such a
choice.

Using m = 2n in (9) gives two advantages, namely the
terms of the sum can be paired in order to add to real values
so the resulting formula has no more than n + 1 terms, and
the factor ξ−kn

m reduces to (−1)k. The resulting formula is
given in [1, equations 5.38–5.39], and reads:

Proposition 1 If we take m = 2n in (9), we get:

fX (n) =
1

2nrn

n−1

∑
k=0

(−1)kR
(

φX

(
rζ

k
n

)
−φX

(
rζ

k+1
n

))
− εn,r

(10)

where

εn,r = ∑
k≥1

fX ((2k +1)n)r2kn ≤ r2n

1− r2n ' r2n (11)

where ζn = ξ2n = e
iπ
n

We will apply (9) if we want an exact algorithm, or (10)
if we want an approximate algorithm, to evaluate P(Tt = N),
and plug the resulting formula into (2) in order to derive our
algorithm. In the approximate case, we see that the value
of the error (11) can be made smaller than a given εmax by
choosing r such that r2n ≤ εmax:

r ≤ ε
1

2n
max (12)

It remains to express the generating probability function
of Tt , which is an elementary result stated without proof:

4 Régis LEBRUN

Proposition 2 ∀ j ∈ {1, . . . ,d}, ∀z∈C with |z| ≤ 1 we have:

φTt j(z) =
π

(j)
a jb j

(z)

P(a j ≤ Yt j ≤ b j)
(13)

with

π
(j)
a jb j

(z) =
b j

∑
k=a j

P(Yt j = k)zk = π
(j)
b j

(z)−π
(j)
a j−1(z) (14)

where

π
(j)
−1(z)≡ 0, ∀n ∈ N,π

(j)
n (z) =

n

∑
k=0

P(Yt j = k)zk (15)

The independence of the Tt j leads to:

φTt (z) =
∏

d
j=1 π

(j)
a jb j

(z)

∏
d
j=1 P(a j ≤ Yt j ≤ b j)

(16)

We see that a key factor in the cost of (9) is the constraint
m > n. When we are interested in computing the value of a
multivariate discrete cumulative distribution function, there
is no choice but to take n = N and m > N in (9). But when
we are interested in computing a rectangular probability, i.e.
when a 6= 0, we can express P(Tt = N) in a form that leads
to a less expensive summation. The elementary properties
of the characteristic functions lead to the following proposi-
tion:

Proposition 3 If a 6= 0, ∀ j ∈ {1, . . . ,d} we set Vt j = Tt j−a j.
The random variables Vt j are such that:

P(Vt j = k) = P(Tt j = a j + k) (17)

φVt j(z) = z−a j φTt j(z) (18)

and

P(Tt = N) = P(Vt = Na) (19)

φVt (z) = z−σaφTt (z) (20)

where Vt = ∑
d
j=1 Vt j has support {0, . . . ,σab}.

Replacing the evaluation of P(Tt = N) by the evaluation
of P(Vt = Na) moves the constraint m > N into m > Na with
Na < N. Furthermore, the algorithm is now exact as soon as
m > σab.

Considering only the approximate version of the algo-
rithm, we get:

Proposition 4 ∀a,b ∈ Nd , we have:

pD (a,b) = R

{
N−1

∑
k=0

(−ζ
−σa
Na

)k

(
d

∏
j=1

π
(j)
a jb j

(
rζ

k
Na

)
−ζ
−σa
Na

d

∏
j=1

π
(j)
a jb j

(
rζ

k+1
Na

))}
/(

2NarNP(Yt = N)
)
−ηNa,r (21)

where K =
∏

d
j=1 P(a j ≤ Yt j ≤ b j)

P(Yt = N)
and ηNa,r = KεNa,r.

Except for the storage of the data a, b and p, which is a
O(d), the memory complexity of this algorithm is O(1) as
no intermediate structure is needed in the evaluation of (21).
The time complexity is of order O(NaC), where C is the time
complexity of evaluating π

(j)
a1b1

, . . . ,π
(j)
adbd

at a given point.
A naive evaluation of these polynomials leads to C ' σab
and a total time complexity of O(Naσab), which is the same
complexity as the algorithm proposed in [7]. We also note
that the factor ∏

d
j=1 P(a j ≤ Yt j ≤ b j) in (1) simplifies with

the denominator of (16), reducing the overall computational
cost.

One can see that the error in (21) depends on t through
the numerator of K, and on r through εNa,r. The theoretical
behavior of this error is clear: we can take r small enough
to get the absolute error we want. The numerical behavior
of this error is less clear as the summation in (21) can be
subject to cancellation, increasing the error. The best way
to take into account these cancellations is to use the recom-
mendations in [1] to choose r using (12), then to choose t
in order to minimize K. This point will be explored numeri-
cally in the case of the multinomial distribution.

3 Making the algorithm more efficient

In this section, our key results are the efficient evaluation of
the characteristic function of Tt , as a result of Proposition
5, and the original stopping criterion given in Proposition 6.
Combined, these results lead to Algorithms 1 and 2, which
are our core contribution.

Two remarks can lead to a dramatic improvement of the
time complexity (or complexity for short) of the proposed
algorithm. The first one is that in many situations, the eval-
uation of π

(j)
a jb j

can be done with O(1) operations instead
of O(b j− a j) within machine precision when b j− a j � 1,
counting the evaluation of a transcendental function such as
exp as a O(1) operation. In this case, C = O(d) instead of
C = O(σab), and the total complexity drops to O(Nad). The
second one is that the terms involved in (21) are usually of
very different magnitude, and most of them does not con-
tribute significantly (up to machine precision) to the final
result. It is common that only O(

√
Na) terms are needed.

The overall complexity is thus reduced to O(d
√

Na).

3.1 Efficient evaluation of π
(j)
a j ,b j

(z)

If b j − a j = O(1), the evaluation of π
(j)
a jb j

is obviously a
O(1), so we restrict our attention to the case b j − a j � 1.
It covers two different sub-cases: either we have a j = O(1),
for example in the case where one is interested in the com-
putation of the cumulative distribution function of the distri-
bution, or we have a j,b j� 1. In the first case, the following

Efficient time/space algorithm to compute rectangular probabilities 5

proposition gives elements to make the evaluation of π
(j)
a jb j

cheaper than O(b j−a j):

Proposition 5 Let n be a nonnegative integer and z a com-
plex number such that |z| ≤ 1. Let s̄ = sup{s≥ 0,φYt j(e

s) <

+∞}. If s̄ > 0, then

∣∣∣φYt j(z)−π
(j)
n (z)

∣∣∣≤ φYt j(e
s∗)

e(n+1)s∗ (22)

where s∗ = argmin
0<s<s̄

φYt j(e
s)

e(n+1)s .

Proof By definition of φYt j and π
(j)
n (z), we have:

∣∣∣φYt j(z)−π
(j)
n (z)

∣∣∣ =

∣∣∣∣∣∑k>n
P(Yt j = k)zk

∣∣∣∣∣
≤ ∑

k>n
P(Yt j = k)|z|k

≤ Fc
Yt j

(n) as |z| ≤ 1

where Fc
Yt j

(n) = P(Yt j > n) is the complementary cumulative
distribution function of Yt j evaluated at n.

Then, applying Markov’s inequality to esYt j and mini-
mizing the bound with respect to s such that 0 < s < s̄ we
get (22). ut

The hypothesis made on φYt j is fulfilled in the particular
cases of the Poisson, binomial and negative binomial distri-
butions, for which the respective values of s∗ are log

(
n+1
t p j

)
,

log
(

1−t
t

n+1
h j−(n+1)

)
and log

(
n+1

(1−t)(q j+n+1)

)
. In the general

case, the convergence of π
(j)
n (z) to φYt j(z) is at least expo-

nential with n, and can be even faster in specific cases (e.g.
in the Poisson case). It results the following algorithm to
evaluate π

(j)
n (z):

Algorithm 1

Given n ∈ N, z ∈ C, |z| ≤ 1, do:
1. Set k := n+1
2. Set vk := φYt j(z)
3. Set dvk = P(Yt j = k)zk

4. While |dvk|> |vk|εmachine do
(a) vk+1 := vk−dvk
(b) dvk+1 := P(Yt j = k +1)zk+1 = f (dvk,k,z)
(c) k := k +1

5. Return vk

This algorithm performs O(| logεmachine|) iteration. The eval-
uation of φYt j(z) and P(Yt j = k) can be done in O(1) time
complexity for the common distributions, and the update
(4b) can be made for usual distributions using a simple re-
cursion f (dvk,k,z) instead of the full evaluation of P(Yt j =
k +1)zk+1.

Considering the case of the multinomial distribution, i.e.
Yt j ∼P(t p j), the situation of (5) is likely to occur when
σb = O(dN) and σa = O(d), i.e. when b j = O(N) and a j =
O(1), which corresponds to the worst complexity we get us-
ing the naive evaluation of all the π

(j)
a jb j

. In this case, the num-

ber of iterations of (1) is less than 18 for εmachine = 10−16 and
t p j = 1, a situation typical of interacting particle algorithms

setting. The update is given by f (dvk,k,z) = dvk×
t p jz
k +1

.

When both a j and b j are large, the situation is more in-
volved. A naive evaluation using π

(j)
a j ,b j

= π
(j)
b j
− π

(j)
a j−1 can

suffer from massive cancellation, providing a very inaccu-
rate result. Nevertheless, in the multinomial case, a system-
atic O(1) time complexity can be achieved for the evaluation
of π

(j)
a j ,b j

(z), in connection with the evaluation of the regular-
ized incomplete gamma function, see [6], [18] and the boost
library (www.boost.org) for an efficient implementation of
these methods.

3.2 Fast (essentially) exact evaluation of Poisson’s
summation

The terms involved in (21) can have very different magni-
tudes. As a result, only a few of them could have a signifi-
cant contribution to Poisson’s summation formula, and tak-
ing advantage of it could reduce very significantly the cost
in the evaluation of the sum. We illustrate it in the compu-
tation of the multinomial cumulative distribution function.
In this case, Na = N, Vt j = Tt j and Vt = Tt . We restrict our
analysis to the case where φTt ' φYt = e−t(1−z):

Proposition 6 We consider the case where N� 1 and φTt (z)'
e−t(1−z). Either t = O(1) and no term of the sum in (21) is
negligible, or t → +∞ with t = O(N) and only the N∗ first
terms of (21) have a relative contribution to pD (a,b) greater
than ε � 1, with:

N∗ ' 1
π

√
−2logε

r
N2

t
(23)

The case t� N is not relevant, as it leads to severe cancel-
lations in (21).

Proof In order to study the magnitude of the terms occurring
in (10), we use the elementary relation:

|eβ − eα |2 = e2R(β)
ρα,β (24)

with

ρα,β = 1+ e2R(α−β)−2cos(I(α−β))eR(α−β) (25)

using β =−t
(
1− rζ k

N
)

and α =−t
(
1− rζ

k+1
N

)
.

6 Régis LEBRUN

Let ρk be the value of ρα,β for this choice of α and β ,
and δk = φTt (rζ k

N)−φTt (rζ
k+1
N). Three cases have to be con-

sidered: t = O(1), t = o(N) with t → +∞ and t = Θ(N)1.
For the first and second cases, using ζN − 1 = iπ

N + O
(1

N

)
we get:

|δk|
|δ0|

= e−rt(1−cos(θk)) +O
(t

N

)
(26)

We have |δk|/|δ0| < ε as soon as cos(θk) ≤ 1 + logε

rt . For
typical values of ε , when t = O(1), it is not possible to fulfill
this constraint so one must compute the N terms in (10). In
the second case, using the expansion arccos(1−x) =

√
2x+

O(x3/2) we get the value of N∗ given in (23).
When t = Θ(N), the computation is more involved as

the terms in t/N are no more negligible. We proceed in
two steps: first we show that |δk|

|δ0| is small as soon as k is
greater than a bound which is an o(N), justifying that one
can use series expansions with respect to θk = kπ

N = o(1),
then one gets (23) by computations similar to the previous
cases. More precisely, defining γ = t

N and assuming that
cos(γrπ) < 1, we get:

|δk|
|δ0|

= e−rt(1−cos(θk))

×
√

1−2cos(γrπ cos(θk))e−γrπ sin(θk) + e−2γrπ sin(θk)

2(1− cos(γrπ))

+ O

(
1
N

)
(27)

from which we deduce that:

|δk|
|δ0|
≤ e−rt(1−cos(θk)) 1+ e−γrπ sin(θk)√

2(1− cos(γrπ))

≤ e−rt(1−cos(θk))√
1− cos(γrπ)

(28)

as θk ∈ [0,π]. The same computation as in the case t = o(N)
shows that the upper bound of (28) is smaller than ε as soon

as k ≤ 1
π

√
N 2logε

√
1−cos(γrπ)
γr = o(N), i.e. θk = o(1). It is

thus possible to expand the square-root term of (27) with
respect to θk, and one gets (23) the same way as for the
previous case. ut

If we choose t = N as suggested in [11], we get N∗ =
O(
√

N). The resulting algorithm reads:

Algorithm 2

Given N ∈ N∗, p ∈ [0,1]d , a, b ∈ Nd such that ∀ j ∈
{1, . . . ,d}, 0≤ a j ≤ b j ≤ N−1, εmax > 0, do:

1 The notation t = Θ(N) means that t is bounded above and below
by a linear function of N, while t = O(N) means that t is only bounded
above by a linear function of N. Here, it is important to make this dis-
tinction as the argument in the proof is not the same if t is a Θ(N) or a
O(N) without being a Θ(N).

1. Compute r := ε

1
2Na

max

2. Compute δ0 :=
d

∏
j=1

π
(j)
a jb j

(r)−ζ
−σa
Na

d

∏
j=1

π
(j)
a jb j

(rζNa)

3. Set v := δ0, k := 1
4. Repeat

(a) Compute δk := (−ζ
−σa
Na

)k
(

∏
d
j=1 π

(j)
a jb j

(rζ k
Na

)−
ζ
−σa
Na ∏

d
j=1 π

(j)
a jb j

(rζ
k+1
Na

)
)

(b) Compute v := v+δk
(c) Set k := k +1

5. Until k = N or |δk|< εmachine|δ0|
6. Return R(v)/(2NarNP(Yt = N))

The evaluation of π
(j)
b ja j−1 is done using (1) or one of the

more involved O(1) methods. We note that the definitions
of δ0 and δk is not the same as in proposition 6, but using
(16) we see that the ratio |δk|/|δ0| is the same.

It must be emphasized that in an actual implementation
of this algorithm, one should include tests to detect trivial
situations for which an early exit is possible. For example,
when one component of x is larger than N, the problem is
reduced to a lower dimensional one, or if σb < N or σa > N,
the probability is zero.

This algorithm is available in the Open TURNS soft-
ware [16], an Open Source C++ library dedicated to proba-
bilistic modeling and uncertainty propagation.

4 Numerical experiments

The objectives of these numerical experiments are to assess
the accuracy of the proposed algorithm on various exam-
ples used in the literature, and to check its time complexity.
An application to interacting particles algorithm will also
be made through the computation of the cumulative dis-
tribution function of the most occupied site at the end of
the resampling step of such algorithms. All the computa-
tions have been made using Levin’s recommendation for t,
namely t = N. There is certainly more insight to be gained
in the study of the influence of t on the numerical accuracy.

4.1 Accuracy

In this numerical experiment, we check the accuracy of the
proposed algorithm on the computation of the multinomial
cumulative distribution function in the following settings:
d = N, p1 = · · ·= pd = 1/d for N ∈ {b2k/2c |k = 2, . . . ,20}.
The cumulative distribution function is computed at the points
(x1 = · · · = xd = k) for k such that the resulting probability
value is in [10−5,1− 10−5]. For each value of N, the maxi-
mum relative error is plotted against the size N on a logarith-
mic scale on figure 1, for εmax taken in {10−7,10−9,10−11}.
The points with a zero maximal error are not plotted.

Efficient time/space algorithm to compute rectangular probabilities 7

5 10 50 500 5000

1
0

0
1

0
−

4
1

0
−

8
1

0
−

1
2

1
0
−

1
6

re
la

ti
v
e

er
ro

r

N

Ref. algo.

ε = 10−7

ε = 10−9

ε = 10−11

Fig. 1 Maximum relative error for various problem size N and various
precision parameter εmax. For problem size larger than 50, the proposed
algorithm is consistently more accurate than the reference algorithm,
and the achieved accuracy does not depends on the value of εmax. The
two horizontal dashed lines correspond to the single and double preci-
sion accuracies.

It was not possible to explore larger values for N due to
the space complexity of the reference algorithm.

We note several facts from this experiment. The first one
is that the accuracy of the proposed algorithm is near to the
machine precision on a wide range of problem size, and even
better than the accuracy of the exact algorithm as soon as
the problem size is larger than a few tens. The second one
is that the choice of εmax does not seems to have a signifi-
cant impact on the accuracy of the algorithm as soon as the
problem size is larger than a few tens. For smaller sizes, a
value of εmax ' 10−9 seems to give the best overall preci-
sion, even if in this case the algorithm [7] should probably
be preferred. The third fact is that the implementation of the
algorithm [7] as given in the reference paper seems to have
an overflow for problems of size larger than few thousands.

4.2 Some classical examples

Here are the results of our algorithm on the classical exam-
ples that can be found in [2], [5], [11] etc. The algorithm
is implemented in Python, using double-precision for the
computation. These results have been checked against both
a Monte Carlo simulation with 109 samples, and the algo-
rithm in [7] using the reference implementation in R pro-
vided by the author as well as a multi-precision implemen-
tation in Maple. For each example, we give the 16 digits of
the computed result and underline the digits that differ from
the exact result/ We also give the absolute and relative error
of the computed result.

Table 3 Probability value and precision of the examples

Example probability absolute error relative error

1-1 0.478450946581829510−5 1.510−17 3.210−12

2-1 0.8527269852581543 1.510−14 1.810−14

2-2 0.6026842811375376 2.310−14 3.910−14

2-3 0.5202664925927378 2.310−14 4.410−14

3-1 0.3126321887664741 1.610−15 4.910−15

3-2 0.8370435377788633 1.010−14 1.210−14

Example 1 This example2 is from [2], which consider the
classification of N = 200 adult subjects into d = 4 marital
status. This example leads to the following computation:

X∼M (200, [0.2,0.35,0.15,0.3])
1. P(X1 ≤ 30,X2 ≤ 80,X3 ≤ 40,X4 ≤ 50)

Example 2 This example is exposed in both [5] and [11],
and is attributed to Mallows. It consists in the following
computation:

X∼M (500, [p1 = · · ·= p50 = 1/50])
1. P(X1 ≤ 19, . . . ,X50 ≤ 19)

Based on the same multinomial distribution, these two other
computations3 are proposed in [5]:

2. P(4≤ X1, . . . ,4≤ X50)
3. P(4≤ X1 ≤ 19, . . . ,4≤ X50 ≤ 19)

Example 3 This example is exposed in [11], and is attributed
to Barton and David. It consists in the following computa-
tion:

X∼M (12, [p1 = · · ·= p12 = 1/12])
1. P(X1 ≤ 2, . . . ,X12 ≤ 2)
2. P(X1 ≤ 3, . . . ,X12 ≤ 3)

The last computation is essentially the same as the one pre-
sented in [3], for which the reported absolute error is of or-
der 510−5, which illustrate the limited precision of the best
available approximate algorithm.

4.3 Time complexity assessment

The time complexity benchmark consists in the evaluation
of the cumulative distribution function of the multinomial
distribution in different settings for the pair (N,d). The ob-
jective is to verify the asymptotic time complexity of the
algorithm with respect to both the N and d parameters in
the most demanding situation, namely the computation of
P(X1 ≤ N−1, . . . ,Xd ≤ N−1) for equiprobable Xi.

2 for which the wrong value of 0.030837 is reported (using a storage
of 1373701 floating point numbers for the computation)

3 for which the wrong values of resp. 0.877373 and 0.750895 are
reported.

8 Régis LEBRUN

5
.1

0
−

1
5
.1

0
−

2
5
.1

0
−

3
1

0
−

3

10
2

5.10
2

5.10
3

5.10
4

t

d

t = O(d)
N = 10

2

N = 10
3

N = 10
4

N = 10
5

Fig. 2 Evolution of the time complexity with respect to the dimension
d in logarithmic scale, for several values of N. The time is normalized
such that it is equal to 1 for the largest value of d. We see the perfect
matching of the O(d) complexity as all the curves are superposed with
the dashed line t = d.

0
.0

5
0
.1

0
0
.2

0
0
.5

0
1
.0

0

10
2

5.10
2

5.10
3

5.10
4

t

N

t = O(
√

N)
d = 10

2

d = 10
3

d = 10
4

d = 10
5

Fig. 3 Evolution of the time complexity with respect to N in logarith-
mic scale, for several values of the dimension d. The time is normalized
such that it is equal to 1 for the largest value of N. We see the almost
perfect matching of the O(

√
N) complexity as all the curves are almost

superposed with the dashed curve t =
√

N.

We will test the configurations (N,d) ∈ {b10k/5c |k =
10, . . . ,25}×{10k |k = 2, . . . ,5} for the time complexity with
respect to N, and (N,d)∈{10k |k = 2, . . . ,5}×{b10k/5c |k =
10, . . . ,25} for the time complexity with respect to d.

The time complexity matches perfectly the theoretical
bounds, which confirms that the algorithm is a significant
improvement over the previous ones: when d = N, we get a
time complexity of O(N3/2) instead of O(N3) for the refer-
ence algorithm.

5 Conclusion

In this article, we provide an algorithm that permits the com-
putation of rectangular probabilities to high accuracy for a
class of multidimensional discrete probability distributions
that includes the multinomial, multivariate hypergeometric
and multivariate Pólya distributions. This algorithm can be
made exact in exact arithmetic with a constant space com-
plexity and a polynomial time complexity that matches the
best available algorithms so far.

More interestingly, its approximate version allows for
significant time complexity improvement for an actual ac-
curacy that matches and even outperform the accuracy of
previous exact algorithms that suffers from round-off errors
when implemented in finite precision arithmetic.

Several numerical experiments have demonstrated the
performances of this algorithm in the multinomial case, both
with respect to its accuracy and time complexity.

This algorithm allows to address problems that were im-
possible to deal with using previous state-of the art algo-
rithms, either in terms of problem size or in terms of ac-
curacy. It has been implemented in the Open TURNS soft-
ware [16], an Open Source software dedicated to probabilis-
tic modeling and uncertainty propagation. It is also available
as a Python [17] script or as a Maple [15] script upon request
to the author.

Some additional work should be made regarding this al-
gorithm, regarding its sensitivity to round-off error or the
optimal choice for t, even if the choice t = N seems to be
effective in the multinomial case.

Acknowledgements I would like to thank Pr. Kenneth J. Berry and Pr.
Jesse Frey, who kindly provided the source code of their algorithm and
additional bibliographical material. I would also thank the two anony-
mous reviewers for their very valuable remarks and advices that im-
proved the manuscript significantly.

References

1. Joseph Abate, Ward Whitt, ”The Fourier-series method for in-
verting transforms of probability distributions”, Queueing Systems,
10:1-2, 5–87 (1992).

2. Kenneth J. Berry and Paul W. Mielke Jr., ”Exact cumulative proba-
bilities fort the multinomial distribution”, Colorado State University,
technical report 19 (1995).

3. Ronald W. Butler, Richard K. Stutton, ”Saddlepoint Approximation
for Multivariate Cumulative Distribution Functions and Probability
Computations in Sampling Theory and Outlier Testing”, Journal of
the American Statistical Association, 93:442, 596–604 (1998).

4. Aaron Childs, N. Balakrishnan, ”Some approximations to the mul-
tivariate hypergeometric distribution with applications to hypothesis
testing”, Computational Statistics & Data Analysis, 35:2, 137–154
(2000).

5. Charles J. Corrado, ”The exact distribution of the maximum, min-
imum and the range of Multinomial/Dirichlet and Multivariate Hy-
pergeometric frequencies”, Statistics and Computing, 21, 349–359
(2011).

Efficient time/space algorithm to compute rectangular probabilities 9

6. A. R. Didonato and A. H. Morris, ”Computation of the Incom-
plete Gamma Function Ratios and their Inverse.”, ACM TOMS, 12:4,
377–393 (1986).

7. Jesse Frey, ”An algorithm for computing rectangular multinomial
probabilities”, Journal of Statistical Computation and Simulation,
79:12, 1483–1489 (2009).

8. I. J. Good, ”Saddle-point methods for the multinomial distribution”,
Annals of Mathematical Statistics, 4, 861–881 (1957).

9. N. L. Johnson, ”An approximation to the multinomial distribu-
tion some properties and applications”, Biometrika, 47:1–2, 93–102
(1960).

10. Olav Kallenberg, ”Foundations of Modern Probability second edi-
tion”, 537–562. Springer, New-York (2002).

11. Bruce Levin, ”A representation for multinomial cumulative distri-
bution functions”, The Annals of Statistics, 9:5, 1123–1126 (1981).

12. Bruce Levin, ”On Calculations Involving the Maximum Cell Fre-
quency”, Communications in Statistics, special edition on the Anal-
ysis of Categorical Data 12(11):1299-1327 (1983).

13. Bruce Levin, In re: ”Siobhan’s Problem: The Coupon Collector
Revisited”, The American Statistician 46:76 (Letter to the Editor)
(1992).

14. C. L. Mallows, ”An inequality involving multinomial probabili-
ties”, Biometrika, 55, 422-424 (1968).

15. Maple computer algebra system, www.maplesoft.com.
16. Open TURNS software, www.openturns.org.
17. Python programming language, python.org.
18. N. M. Temme, ”A Set of Algorithms For the Incomplete Gamma

Functions.”, Probability in the Engineering and Informational Sci-
ences, 8, 291– (1994).

