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ABSTRACT: Simplified silica (Zeosil 1165 MP) and SBR
(140k carrying silanol end-groups) nanocomposites have been
formulated by mixing of a reduced number of ingredients with
respect to industrial applications. The thermo-mechanical his-
tory of the samples during the mixing process was monitored
and adjusted to identical final temperatures. The filler structure
on large scales up to micrometers was studied by transmission
electron microscopy (TEM) and very small-angle X-ray scatter-
ing (SAXS). A complete quantitative model extending from
the primary silica nanoparticle (of radius ≈10 nm), to nano-
particle aggregates, up to micrometer-sized branches with typical lateral dimension of 150 nm is proposed. Image analysis of the
TEM-pictures yields the fraction of zones of pure polymer, which extend between the branches of a large-scale filler network.
This network is compatible with a fractal of average dimension 2.4 as measured by scattering. On smaller length scales, inside the
branches, small silica aggregates are present. Their average radius has been deduced from a Kratky analysis, and it ranges between
35 and 40 nm for all silica fractions investigated here (Φsi = 8−21% vol.). A central piece of our analysis is the description of the
interaggregate interaction by a simulated structure factor for polydisperse spheres representing aggregates. A polydispersity of
30% in aggregate size is assumed, and interactions between these aggregates are described with a hard core repulsive potential.
The same distribution in size is used to evaluate the polydisperse form factor. Comparison with the experimental intensity leads to the
determination of the average aggregate compacity (assumed identical for all aggregates in the distribution, between 31% and 38%
depending on Φsi), and thus aggregation number (ca. 45, with a large spread). Because of the effect of aggregate compacity and of pure
polymer zones, the volume fraction of aggregates is higher in the branches thanΦsi. The repulsion between aggregates has a strong effect
on the apparent isothermal compressibility: it leads to a characteristic low-q depression, which cannot be interpreted as aggregate mass
decrease in our data. In addition, the reinforcement effect of these silica structures in the SBR-matrix is characterized with oscillatory
shear and described with a model based on the same aggregate compacity. Finally, our results show that it is possible to analyze the
complex structure of interacting aggregates in nanocomposites of industrial origin in a self-consistent and quantitative manner.

1. INTRODUCTION

The mechanical reinforcement of polymer matrices by nano-
particles is a fundamental problem with far reaching applica-
tions, e.g., for car tires.1,2 From a conceptual point of view, it is
generally recognized that the filler structure has a strong impact
on the mechanical properties,3−5 accompanied by the effect of
chain structure evolving in the hard filler environment,6−9 and
the filler-chain interactions.10−15 All these contributions are
related to the filler structure, and it is thus important to be able
to characterize it in detail. Unfortunately, two typical situations
are usually encountered: either the system is a model system of
individually dispersed nanoparticles,16 which is easier to
understand but is further away from applications, or the system
is made by mixing of powders of aggregated nanoparticles,
together with many additives, and analysis becomes difficult. In

the literature, the list of typical ingredients of industrial systems
comprises the filler and the polymer matrix (often styrene−buta-
diene rubber (SBR), or polybutadiene), silane coupling agents
like TESPT, known also as Si69, or its successor Si363, coating
or compatibilizing agents like octyl-triethoxysilane (octeo) with
catalyzers (diphenyl guanidine (DPG)), cross-linking agents
(sulfur), cure activators like ZnO nanoparticles, stearic acids,
accelerator providing fast cure rate like sulfenamides (TBBS,
CBS), antioxidants like v arious substituted paraphenylenedi-
amines (PPD) and phenol-based antioxidants (AO2246).17−21

Note that ZnO nanoparticles, e.g., may contribute to the
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scattering signature even at low concentrations due to their
high electron density,22 unless their contribution is suppressed
using sophisticated anomalous scattering techniques.23 In
contrast, apart from the antioxidants added after the polymer
synthesis, we address here the issue of a simplified industrial
system containing only the filler and its compatibilizer octeo
with DPG. We have compiled typical industrial formulations in
the Appendix highlighting the reduction of parameters in our
simplified system.
Structural studies of the dispersion of precipitated silica filler

of the type used here have been undertaken by several groups.
Ramier et al. have studied the silica structure in SBR by tran-
smission electron microscopy (TEM) and small-angle X-ray
scattering (SAXS), without further analysis of the SAXS-data as
they focused on the rheology.20 Conzatti et al. have investigated
the morphology of the same silica in SBR by TEM with
automated image analysis, and dynamic mechanical analysis
(DMA), varying the surface modification.18 A similar approach
was presented by Stöckelhuber et al. on the flocculation of
precipitated silica as a function of coupling.21 The reinforce-
ment by fractal aggregates with again the same silica in SBR was
addressed by Meĺe ́ et al. by SAXS and AFM.19 An in-depth
analysis of the SAXS data was outside the scope of this article.
Other groups have focused on the fractal dimensions extracted
from the power-law decay of the scattered intensity.24,25 Schneider
et al. have presented scattering data on precipitated silica in
poly(dimethylsiloxane) and SBR, with a two-level description
based on the Teixeira26 or Beaucage27 equations for fractals
made of beads.28,29 A qualitative analysis of SAXS-curves has
been proposed by Shinohara et al.30 In the present paper, a
quantitative view in the same spirit will be presented. Several
theoretical studies on scattering in complex systems have been
published. For example, Schweizer et al. on interacting fractals
propose apparent structure factors as a function of filler volume
fraction.31

Analysis of structural data is usually considerably less difficult
and ambiguous in model systems. In such systems, the filler par-
ticles are available as individually dispersed beads in a solvent,
and particular care is taken by the experimentalists in order to
maintain or control colloidal stability throughout the nano-
composite formulation process, which is often solvent casting.
Meth et al. have studied silica nanoparticles in poly(methyl metha-
crylate) and polystyrene (PS) by SAXS.32 Some aggregation is
often present and visible at small angles, but due to the high
monodispersity bead−bead interaction peaks are found. Janes
et al. have investigated the influence of annealing history on the
structure as seen by scattering.33 After strong annealing, no
low-angle indication for aggregation is found and the curves
strongly resemble perfect dispersions of spheres. In articles by
Chevigny et al.15,34 and Jouault et al.,35,36 the structure of silica
nanoparticles in PS is analyzed, by TEM and scattering. There,
a focus is made on the relationship between filler structure and
mechanical reinforcement in systems with well-defined
dispersion of small aggregates in the matrix. Reverse Monte
Carlo (RMC) modeling has been applied to interacting aggregates
measured in a silica−latex model system.37 Recently, we have
also contributed with a structural model used to follow the film
formation of silica-latex films.8

The effect of fractal aggregates on the rheology has been
investigated theoretically in a seminal paper by Witten et al.38

Several empirical equations usually based on extensions of the
original Einstein hydrodynamic reinforcement39,40 exist and
have been summarized in the literature.41 The standard analysis

is commonly based on three methods: either DMA, where the
sample is subject to oscillatory torsion at fixed amplitude and
frequency, as a function of temperature, e.g. refs 42 and 43.
From such studies, carried further with NMR measurements, a
strong interest in the so-called glassy layer of polymer on filler
surface has arisen.10,44,45 The second standard method is
oscillatory linear rheology in shear, which however is limited to
low moduli.35,46 The latter one is often applied to characterize
the non linear Payne-effect at small strains, which is responsible
for the decrease of the storage modulus with shear ampli-
tude.20,21,47−49 The third method is uniaxial strain, which is
strongly non linear and leads to high deformations, up to
rupture.50,51 The latter method is often used to characterize the
Mullins effect;52 it can also be combined with scattering53 or
with NMR as is done in an outstanding paper by Klüppel et al.
in SBR nanocomposites.54 In many of the rheological studies of
nanocomposite systems, the effect of, e.g., silane coupling or
compatibilization is studied and tentatively correlated with filler
structure, if available.20,47 For the sake of completeness, other
techniques allowing a characterization of the dynamics of nano-
composite systems are dielectric spectroscopy55,56 and quasi-
elastic neutron scattering.57−60

In this article, we investigate a “simplified industrial system”,
i.e., ingredients have been limited to the strict minimum. For
the structural analysis of nanocomposites of increasing filler
fraction, we have chosen to combine direct imaging methods
like TEM, which has the advantage of intuitive analysis but the
drawback of limited representativity of local details, with a
reciprocal space method, SAXS, which is highly representative
but is difficult to interpret. The structure of the silica within the
nanocomposites will be modeled in a step-by-step, multiscale
manner, starting with the primary silica beads as basic building
units (10−20 nm range). These beads are found to be
aggregated in small clusters, the typical radius of which (40 nm
range) will be determined by Kratky plots. These aggregates are
themselves concentrated in large-scale fractal branches (thick-
ness ca. 150 nm, extending over micrometers). Inside these
branches, the small aggregates repel each other. Within our
model, this is described with a hard-sphere excluded volume
interaction potential, which induces a characteristic depression
of the scattered intensity at intermediate angles. This depression is
directly related to the local concentration of aggregates, which
is higher than the nominal silica volume fraction due to the
confinement in the fractal branches, and the presence of
polymer inside the aggregates. Therefore, a quantitative TEM
analysis was used to estimate the volume fraction of fractal
branches, Φfract. Second, we have set up an independent Monte
Carlo (MC) simulation in order to calculate the low-q limit
of the polydisperse interaggregate structure factor, which
quantifies the depression. Using a polydisperse aggregate form
factor obeying the same polydispersity, the mass of the small
aggregates (or, equivalently, their internal silica volume fraction,
here called compacity) and their concentration inside the frac-
tal branches can be extracted from the scattered intensity.
In parallel, mechanical measurements allowed us to extract
an average aggregate compacity in good agreement with the
former analysis.
The outline of this article is as follows. After the Materials

and Methods section, all results are discussed in section 3. The
thermomechanical history of the mixing process characterized
by the observed torque and temperature during mixing is
discussed in section 3.1. It is followed by an analysis of the
large-scale structure of the nanocomposites using TEM and the
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low-angle scattering in section 3.2. The next section is devoted
to an in-depth analysis of the complete scattering curve, which
takes aggregation and interaction between aggregates into
account. Finally, the rheological and mechanical properties are
studied and discussed in section 3.4.

2. MATERIALS AND METHODS

Nanocomposite formulation. Silica-SBR nanocomposites are
formulated by stepwise introduction and mixing of SBR chains with
silica pellets in an internal mixer (Haake). Note that particular care
was taken to avoid any trace of carbon black, catalyzing nanoparticles
(ZnO), cross-linking or coupling agents, which may impede
interpretation of, e.g., scattering experiments. Compared to the
complex samples usually studied in the literature, our system is thus
designed to be a simplified industrial nanocomposite, conserving
namely aggregated multiscale silica as filler particles, SBR-chains, and a
mixing process, all related to tire applications.
The mixing chamber is preheated as a function of nanocomposite

composition, in order to obtain the same final mixing temperature of
160 ± 5 °C, and thus a comparable thermo-mechanical history. For
the same reason, the rotor speed is adjusted during the process to
between 95 and 105 rpm. The polymer is introduced first, in the form
of centimetric lamellae. After about 1 min, the mixture of silica pellets,
DPG (Vulcacit from Bayer, 1%w with respect to polymer), and the
liquid coating agent (octeo from Dynasylan, 8%w with respect to
silica) is incorporated via the same piston. The process is finished after
typically 5 min. The hot sample is then rapidly cooled and homo-
genized by lamination 10 times in the 1 mm gap between rotating
cylinders (two roll mill). The silica volume fractions in the nanocom-
posites reported here have been measured by thermogravimetric
analysis (Mettler Toledo) using a first ramp at 30 K/min from 25 to
550 °C under nitrogen, followed by a second ramp at 20 K/min from
550 to 750 °C under air. They are found to be systematically by 15%
lower than the weighted quantities, presumably due to losses in the
mixer. Only the silica volume fractions above 8% vol. have been
considered here. For lower silica contents, inhomogeneous composites
were obtained due to a less effective mixing process.
System Characterization. The silica pellets (Zeosil 1165 MP

from Rhodia) have been dispersed by sonification in water under basic
conditions and have been studied by SAXS and small-angle neutron
scattering (SANS). The resulting scattering pattern is rather
unstructured, indicating high polydispersity. A characteristic size
corresponding to a radius of 10 nm is found. A complete analysis
reveals a log-normal size distribution (R0 = 8.55 nm, σ = 27%, leading
to ⟨Rsi⟩ = 8.9 nm and an average bead volume of Vsi = 3.6 × 10

3 nm3,
the corresponding specific surface is 160 m2/g), in agreement with
TEM studies. Vsi will be used to estimate aggregation numbers of silica
nanoparticles (or beads) in aggregates.
The polymer (with antioxidants 6PPD and AO2246) has been

purpose-synthesized by Michelin, and the chain mass characterized by
size exclusion chromatography. The polymer matrix is made of two
types of chains of molecular mass 140 kg mol−1 (PI = 1.07). Each
chain is a statistical copolymer with styrene (26%w) and butadiene
(74%w) units (41% of which are 1−2 and 59% of 1−4). The glass-
transition temperature as measured by differential scanning calorim-
etry (DSC, 200F3Maia from Netzsch) with a heating rate of 20 K/min
is −31 °C. This is in agreement with Fox’s law predicting −38 °C for a
mixture of 1,2- and 1,4-butadiene and styrene (Tg(1,4-butadiene 59%)
= −65 °C;61 Tg(PS) = 100 °C) and suggests that polymerization is
thus indeed statistical. For the loaded samples, Tg shows no significant
variation as compared to the pure SBR matrix: Tg = −32 ± 0.5 °C for
all the silica contents investigated here.
Here, 50% of the chains are linear unmodified SBR chains, whereas

the other 50% bear a single graftable silanol end-function. This func-
tional group may graft the chain on the silica by silanol condensation
with the surface silanol.
Structural Analysis. The silica microstructure in the nanocom-

posites has been studied by transmission electron microscopy and
SAXS. TEM pictures were obtained with samples prepared by

ultracryomicrotomy at −80 °C on a LEICA FC-7 (Diatome ultra 35°,
desired thickness set to 50−70 nm). Electron microscopic observations in
transmission were achieved with a Philips CM200 LaB6 (200 kV, bright
field mode). A gray scale analysis of the pictures using ImageJ was
performed to determine the pure polymer fraction. The average and
the standard deviation of this quantity were obtained via a statistical
analysis over several pictures (e.g., 12 for the sample with 8.4% vol. of
silica). SAXS experiments (beamline ID2, ESRF, Grenoble) were
performed at a wavelength of 1.1 Å (12.46 keV), using two sample-to-
detector distances (1 and 10 m), yielding a total q-range from 0.001 to
0.5 Å−1. Even lower-q data was measured on the Bonse-Hart setup on
ID2 (qmin = 10

−4 Å−1). Samples were cut into pieces of approximate
thickness 0.8 mm. The scattering cross section per unit sample volume
dΣ/dΩ (in cm−1)which we term scattered intensity I(q)was
obtained by using standard procedures including background
subtraction and calibration given by ESRF. The contrast of silica in
polymer in SAXS experiments was calculated from the scattering
length densities (ρSBR = 8.85 × 10

10 cm−2, ρsi = 1.97 × 10
11 cm−2, Δρ =

1.09 × 1011 cm−2), which were themselves known from the chemical
composition.

Data Analysis of Small-Angle Scattering. The scattering
patterns of industrial nanocomposites usually show a complex
multiscale behavior. Starting at high q (q > 1/Rsi), the signature of
the primary particles can be found, and in particular their specific
surface, associated with a particular scattering power law. When going
toward intermediate q, a break in slope (or peak) may be observed. Its
position, qsi, is related to the typical interparticle distance, and for
crowded nanoparticles in contact, it is located close to π/Rsi. If a
superstructure of nanoparticles exists, then another break in slope at
low q-values may be found, located at the inverse of the typical size of
such structures. For aggregates in contact, e.g., the position is qagg =
π/Ragg. To summarize this overview, different scaling regimes may be
observed, the transition between them identifying characteristic sizes.
It is possible to visualize these breaks in slope by counterbalancing the
power-law decrease. In Kratky-plots, for instance, q2I(q) is plotted
versus q. The breaks in slope then appear as easily recognizable
maxima.
The relationship between the crossovers of the scaling laws, and the

typical sizes characterizing the microstructure, can be clarified based
on the general scattering law for spherically symmetric, monodisperse
particles and aggregates, which is presented for didactical reasons first.
A generalization to include polydispersity will be developed afterward,
cf. the Monte Carlo simulations below. Besides the difference in
contrast Δρ, the scattered intensity I(q) of monodisperse and spherical
silica beads in the polymer can be written in an identical manner for
SAXS and SANS:

ρ= Φ ΔI q V S q P q( ) ( ) ( )si
2

si (1)

where Φsi is the volume fraction of silica, Δρ the contrast between
silica and the SBR matrix, S(q) the total bead−bead structure factor,
and P(q) the normalized form factor of the beads, i.e. P(q→0) = 1.
If the silica particles are organized in aggregates of approximately

the same size, the total structure factor S(q) may be factorized in two
terms:62 the interaggregate structure factor Sinter(q), which is the
Fourier transform of the pair-correlation function of the center-
of-mass of (average) aggregates. The second is the intra-aggregate
structure factor, Sintra(q), which is the Fourier transform of the pair
correlation of beads inside the aggregate. If a higher order organization
of such aggregates exists, a third structure factor Sfract(q) describing this
structural level may be introduced to describe the complete q-range:

=S q S q S q S q( ) ( ) ( ) ( )fract inter intra (2)

Even in absence of any detailed structural model, the fractal
structure factor of non interacting fractals has the following properties:
At low q, it decreases from the total mass of the fractal with a
characteristic power law, ∼ 1/qd, where d is the fractal dimension of
the network. At higher q, which is where Sinter(q) begins to describe
the intermediate scale structure, Sfract equals 1. The location of
crossover from one regime to the other can be estimated, e.g., based
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on a fractal made of monodisperse spheres of radius a. The crossover is
then located at qbranch = √3/(ea), where e is the Euler constant, i.e.,
the lateral branch dimension is 2a ≈ 1.3/qbranch. Another property of
this structure factor is that it can be approximated by the sum of 1 (at
intermediate and high q) and a low-q power law. This is the reason
why low-q power laws can in general be subtracted from the total
scattered intensity in spite of the product in eq 2. The product of
Sintra(q) and the form factor of the particles can then be merged into a
single expression, the form factor of the average aggregate:

=P q S q P q( ) ( ) ( )agg intra (3)

The limiting value of Pagg at low q is given by the aggregation
number, Nagg. At high q, Sintra tends to one, and Pagg thus reproduces
the local structure of the beads making up the aggregates. The
transition of Sintra(q) from Nagg (and some power law) at low q to one
at high q is achieved typically at qsi, where one may also find a structure
factor peak in case of close contact. The internal structure described by
Sintra(q) is thus the origin of the first break in slope discussed above.
The multiplication by the other factors in eq 1 may slightly shift this
feature. The same argument may then be repeated on a bigger scale
with Sinter(q), which is responsible of (at least) one break in slope at
lower angles. Finally, note that the low-q limit of the structure factor
tends toward the (relative) isothermal compressibility. In systems with
repulsive (e.g., hard core) interactions, this compressibility may be well
below one, and therefore decrease the low-q scattering. This decrease
is a concentration effect which cannot be interpreted as a reduction of
the aggregate mass.
Monte Carlo Simulation of the Structure Factor of

Polydisperse Systems. We have discussed structure factors in
monodisperse systems in the preceding section. In this article, a fully
polydisperse description will be used. In this case, the relevant
structure factor, Sinter, has to be replaced by an apparent one, Sinter

app , the
calculation of which is outlined here. We have used a simulation box
containing between 20 000 and 50 000 beads depending on the
volume fraction in the range from 5% vol. to 30% vol. in order to have
a roughly constant box size, Lbox = 2.5 μm. The minimum accessible
q value is obtained from 55/Lbox ≈ 2.8 × 10−3 Å−1 (the prefactor of
55 has been determined by comparison with the known monodisperse
Percus−Yevick structure factor). Here we are interested in the effect of
polydispersity in aggregate size on the low-q limit, which is why the
exact radius of the bead representing the aggregate is not of
importance. In our simulations, the bead radius is described by a
log-normal size distribution for the polydispersity with R0 = 20 nm and
σ = 0, 15%, and 30%. This size distribution has been converted in a 15-
population histogram. Standard Monte Carlo steps verifying the
excluded volume conditions have been performed. After equilibration,
the partial structure factors Sij(q) between populations i and j have
been calculated using the Debye formula.63 They were used to
determine the total scattered intensity which is given as the sum of the

products of Sij(q) weighted by the appropriate form factors Pi(q) and
Pj(q). The apparent structure factor is then obtained by dividing by the
average form factor:

= =
∑

∑
S q

I q

I P q

NN VV P q P q S q

NV P q
( )

( )

( ))

( ) ( ) ( )

( )

i j i j i j i j ij

i i i i
inter
app

0

,

2
(4)

Rheology. The rheological response in the linear regime of the
nanocomposites was obtained with a stress-controlled rheometer AR
2000, used in the strain-controlled mode in plate−plate geometry
(20 mm diameter). Isothermal frequency sweeps at fixed low
deformation level (γ = 0.1%) were performed in the temperature
range from 10 to 80 °C. Using the principle of time−temperature
superposition, master curves of the storage modulus, G′(ω), and the
loss modulus, G″(ω), corresponding to measurements at 50 °C were
established between ω = 2πf = 2π10−3 and 2π103 rad/s.

3. RESULTS AND DISCUSSION

3.1. Thermo-Mechanical Characterization of the
Mixing Process. During the mixing process in the internal
mixer, the torque as a measurement of the evolving material
viscoelasticity, and the temperature are monitored as a function
of time. These quantities are plotted in Figure 1a and 1b,
respectively, for various silica volume fractions from 8.4% vol.
to 21.1% vol. The incorporation of silica and octeo leads to an
important increase in torque after about 1 min 30 s. During the
nanocomposite mixing, the silica pellets are crushed for several
minutes. This leads to the desired temperature increase to
about 160 °C (Figure 1b), which is essential for the silanol end-
function (50% of reactive chains) and octeo grafting chemistry.
Toward the end of the mixing, the high temperature induces a
decrease in nanocomposite viscosity, as is visible in Figure 1a.
As expected, a higher silica volume fraction leads to a higher
maximum torque.

3.2. Large-Scale Structural Characterization by SAXS
and TEM. The microstructure of the silica in nanocomposites
has been studied by X-ray scattering and transmission electron
microscopy. The scattering data are shown in Figure 2a for the
series in silica volume fractions in the SBR matrix. If one wishes
to compare samples of different silica contents, it is obvious from
eq 1, that the reduced representation I(q)/Φsi gives direct access
to the variations in the structure factor S(q), P(q) being fixed.
In Figure 2a, the complete scattering curves are shown.

There is a strong low-q upturn at q-values down to 10−4 Å−1.
It cannot be described by any simple function, but can rough-
ly be represented by a power law Aq−d, with fractal dimension

Figure 1. (a) Torque observed during mixing of SBR nanocomposites for a series in silica volume fractions (8.4−21.1% vol.). (b) Temperature in
the mixing chamber of the same samples during the process.
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d = 2.4 ± 0.3. It can also be noted that in the reduced
representation I(q)/Φsi, the value of the prefactor A decreases
with increasing Φsi. We will see below that this is related to the
decrease in isothermal compressibility at intermediate q-values.
The standard model of fractal structures made of blob-

structures relates the radius of the fractal, Rfract, to the number
of spherical subunits, Nb, and their radius, a:

=R aN d
fract b

1/
(5)

In Figure 2a, the transition from the large-scale network to
internal branch structure, i.e., the breakdown of fractality, can
be located at the intersection of the power-laws describing the
low-q and the intermediate-q scattering, around qbranch = 1 ×
10−3 − 2 × 10−3 Å−1. Using the fractal model of agglomerated
spheres for the large-scale fractal structure factor, Sfract(q), as
outlined in section 2, the lateral branch dimension can be
estimated to 2a = 1.3/qbranch ≈ 100 nm, with large error bars
due to the limited precision on the crossover and the
rudimentary model. We will see below that electron microscopy
gives 150 nm. On the other extreme of the geometry of the
fractals, in the q-range under study, there is no appreciable
cutoff of the power-law at low q. This means that their upper
size Rfract extends up to the micrometer range. The mass-fractal
model (eq 5) can be used to estimate the pure polymer fraction
between branches, (1 − Φfract), where Φfract denotes the volume
fraction of fractal branches. For micrometer-size fractals, a
rough estimate of the pure polymer fraction of ≈84% is found,
which is certainly an overestimation due to the unrealistic
space-filling properties of spheres as compared to branches.

To summarize this analysis, the large-scale structure of the
nanocomposite as seen by SAXS up to dimensions of
micrometers can be interpreted as a network of branch size
around 100 nm, and significant amounts of empty space
between them.
Figure 2b focuses on the intermediate and high-q features,

after subtraction of the low-q upturn. A slowly varying
scattering curve is found for all silica volume fractions in the
intermediate q-range. A model for the structures observed in
this range will be proposed in the next section.
The large-scale structure of nanocomposites has been studied

by TEM. In Figure 3, representative pictures for two samples
(Φsi = 8.4 and 21.1% vol.) are shown.
The 8.4% vol.-sample shows nice structural features, which

can be summarized as follows: (a) A dense branched structure
of lateral dimension of around 2a ≈ 150 nm is seen, made of
small silica beads aggregated together. (b) A gray scale analysis
of the pictures reveals that the pure polymer fraction is about
41 ± 4% in surface. Note that in the slice, most of the silica
beads are visible individually, leading to a first level of gray,
whereas a small number overlap giving a darker gray. From
simple geometric considerations, it appears that in thin enough
slices, of thickness smaller than the structural length under
study in the sample (≈ 150 nm), the surface and volume
fractions of matter (branches) coincide. It is thus concluded
that approximately 41% of the sample is not occupied by
branches. Similarly, the higher volume fraction sample shown in
Figure 3b is much denser, with a pure polymer fraction of about
20 ± 4% in surface (and thus also in volume).

Figure 3. TEM pictures of nanocomposite samples: (a) Φsi = 8.4% vol. (b) Φsi = 21.1% vol.

Figure 2. Silica structure of nanocomposites studied by SAXS. (a) Reduced scattered intensity I(q)/Φsi for a series of silica volume fractions
(8.4−21.1% vol.). Dotted line: form factor of the silica beads. Arrows indicate the breaks in slope discussed in the text. (b) Intermediate-q structures
highlighted after subtraction of the low-q power law.
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3.3. Modeling of the SAXS Data on Intermediate and
Small Scales. In this section, the average aggregate size based
on a Kratky analysis, the interaggregate structure factor, and the
aggregate form factor will be discussed. Putting these separated
descriptions together will allow us to extract the average
aggregate compacity, and thus aggregation number. Note that
our model is based on a full description of polydispersity:
aggregates monodisperse in size would lead to unphysical
characteristics (namely compacity), and would contradict the
TEM pictures.
Average aggregate size. We start with the discussion of the

highest curve (Φsi = 8.4% vol.) in Figure 2. The two high-q
arrows indicate the crossovers between three power laws, at qsi
= 0.022 Å−1 and qagg = 0.0065 Å

−1. The ratio qsi/qagg suggests
that this first superstructure has a typical linear dimension of
only some four bead-sizes, which is why it is identified with
small aggregates. Following our interpretation outlined in
section 2, π/qsi gives a typical bead radius. 14.1 nm is found,
bigger than but of the same magnitude as the silica beads (⟨Rsi⟩
= 8.9 nm). From the second break in slope, an aggregate radius
which we associate with the average ⟨Ragg⟩ = π/qagg = 48.4 nm
is deduced. Introducing the compacity κ, or internal aggregate
volume fraction, the aggregation number Nagg can be related to
⟨Ragg⟩. Allowing for a generalization to polydispersity, the
definitions for an aggregate of radius Ragg read:

κ =
V

V

si in agg

agg (6)

π
κ

=N R
V

4

3
agg agg

3

si (7)

Vagg = 4π/3Ragg
3 is the total volume of such an aggregate, and

Vsi in agg the volume effectively occupied by silica in this
aggregate, i.e., NaggVsi, with Vsi the average bead volume. The
aggregates (with ⟨Ragg⟩ = 48.4 nm) are rather small, as even if
one assumes random close packing (κ = 0.64),64 only Nagg ≈ 83
beads would be part of one aggregate. The use of more realistic
values for κ (i.e., below 64%) would give lower aggregation
numbers. A model for the determination of κ will be developed
below including a polydisperse description of both the
aggregate form factor and the interaggregate structure factor.
In Figure 2b, the low-q upturn discussed in section 3.2 has

been subtracted. The scattering curves at different Φsi in the

reduced representation I(q)/Φsi differ at low q and are seen to
overlap perfectly above a critical wave vector ≈0.01 Å−1,
corresponding to primary silica nanoparticles in close contact.
Because of the high-q overlap, the break in slope associated
with the nanoparticle size is seen to stay constant: indeed, its
value is 13.7 nm for the higher silica concentrations (12.7, 16.8,
and 21.1% vol.), and we will use an average value of 13.85 nm
in the Kratky analysis below. On the other hand, the break in
slope associated with aggregate size moves to higher q-values
with increasing Φsi. The associated aggregate radius <Ragg>
decreases to 39.2 nm (respectively 36.1 and 34.4 nm) for 12.7%
vol. (respectively 16.8% vol. and 21.1% vol.).
In order to determine the position of qagg(Φsi) more

precisely, a Kratky presentation of the data has been chosen.
In Figure 4a, the breaks in slope are seen to be transformed in
well-identified maxima. A multiparameter fit of the two
overlapping maxima has been achieved using the following
sum of two functions Gsi and Gagg:

65

π σ σ

= −

⎜ ⎟
⎛

⎝

⎜
⎜
⎜⎜

⎛
⎝

⎞
⎠

⎞

⎠

⎟
⎟
⎟⎟

G q
A

q
( )

2
exp

ln

2
i

i

i

q

q

i

2

2

i

(8a)

= +G q G q G q( ) ( ) ( )si agg (8b)

Each of these functions describes a log-normal function of
amplitude Ai, position qi, and width σi (i = si, agg). Note that
the parameter qi is slightly shifted to higher values as compared
to the peak position but is preferred due to its vicinity with the
corresponding break in slope (see in Figure 4b). Again, we
associate qagg with ⟨Ragg⟩. The width and position of the high-q
log-normal describing the silica bead qsi = (π/13.85 nm) was
kept fixed, thereby reducing the number of free parameters. An
example of the underlying lognormals is shown in the inset of
Figure 4a for the 8.4% vol. sample.
The log-normal position parameters related to the aggregates

are found to evolve less than the breaks in slope discussed
before. All values are plotted in Figure 4b, together with the
silica bead peak position fixed in the Kratky analysis. The
corresponding average aggregate radii are ⟨Ragg⟩ = 40.2 nm
(respectively 35.9, 36.1, and 35.2 nm) for 8.4% vol.
(respectively 12.7, 16.4, and 21.1% vol.). To summarize, both
methods of analysisbreaks in slope and Kratky plotsgive

Figure 4. (a) Same data as Figure 2 in Kratky representation of the reduced scattered intensity q2I(q)/Φsi for Φsi = 8.4−21.1% vol. Inset: Zoom on
8.4% vol. data with fit by sum of two log-normal functions. (b) Φsi-dependence of the log-normal position parameters qsi (dotted line) and qagg
associated with the interaggregate structure factor. qsi and qagg values obtained from the breaks in slope are also included.
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similar aggregate radii, in the range between 34 and 48 nm. The
maxima in the Kratky plots are better defined, and the radii
grouped together, between 35 and 40 nm, values, which we will
use in the following analysis as the average values of the size
distributions.
Polydisperse Interaggregate Structure Factor. As already

indicated above, the aggregate compacity κ is a key quantity, as
it relates the size of the aggregates to the amount of silica they
carry, i.e., it characterizes the internal aggregate structure. It has
also a strong impact on the overall structure of the sample: by
silica volume conservation, the higher the compacity, the less
aggregates are located in a given volume to satisfy the nominal
volume fraction, Φsi. As a consequence, the number density of
aggregates depends on κ and affects the (interaggregate)
structure factor, Sinter

app . Increasing the number of mutually
repelling aggregates leads to a decrease in the isothermal
compressibility, a feature which is clearly visible in Figure 2b:
the intermediate and low-q reduced intensity decreases with
increasing Φsi. In this picture, the Kratky-peak is due to the
excluded volume interactions between aggregates, and thus
located close to qagg = π/⟨Ragg⟩. The observation of this peak
together with the low-q decrease suggests two points. First, it is
not possible to conclude on aggregate mass and size from a
pure form factor analysis of the intensity decrease in such
interacting systems. This decrease is caused by the structure
factor dependence on the filler concentration. Second, one may
quantitatively account for the decrease using a model for the
structure factor of polydisperse hard spheres representing
aggregates, which is what is proposed now.
In order to obtain the polydisperse structure factor, we have

performed Monte Carlo simulations. In case of polydispersity
in size, no general formula exists, and the thermodynamic
properties of the system are not described by a single structure
factor any more.66 The partial structure factors Sij(q) between
two size populations i and j, weighted by the form factors of
these populations, have to be added up to obtain the total
intensity. Often, an apparent structure factor Sinter

app (q) obtained
by dividing the intensity by the average form factor is used, as
defined in eq 4. It is not a thermodynamic quantity because of
its dependence on the shape and contrast of the objects, but
can be looked at as a useful representation of the correlations.
Our approach is the following: the Sinter

app (q) have been calculated

by MC simulations assuming excluded volume interactions as
described in section 2. They are shown in Figure 5a for dif-
ferent volume fractions Φagg of polydisperse spheres represent-
ing aggregates. The low-q limiting values, Sinter

app (q → 0), are
needed to determine the aggregate compacity in the next
section. They have been determined by extrapolation, as
presented in Figure 5a. In our model, the aggregate poly-
dispersity is the only unknown parameter. From the absence of a
strong peak at close contactonly a break in slope is observed in
Figure 2b − it is concluded that polydispersity of aggregates in
size is at least 30%. Then the structure factor peak of, e.g., the
simulation with Φagg = 20% vol. is close to one, in agreement
with the experimental data. In addition, taking a too low poly-
dispersity would lead to unphysical aggregate compacities.
Polydispersity of aggregates has thus been fixed to 30% in our
model, i.e., of the same order as the primary bead polydispersity.
Such a value also accounts for the fact that one cannot distinguish
aggregates of finite size in the TEM pictures (Figure 3).
After extrapolation, the obtained Sinter

app (q → 0) values are
plotted in Figure 5b, for various polydispersities (σ = 0%, 15%,
30%), as a function of Φagg. The description of these values can
be achieved using a Percus−Yevick (PY) structure factor.67,68

Its limiting value for q → 0 can be easily determined from the
full expression:

α

α

→ =
− Φ

+ Φ
S q( 0)

(1 )

(1 2 )
PY

agg
4

agg
2

(9)

Here we have introduced a prefactor α for the volume
fraction. α = 1 for the standard monodisperse PY-formula, and
it will be used here as a free parameter for polydisperse spheres.
Indeed, it is observed in Figure 5b that a higher polydispersity
leads to higher low-q limiting values, as if the higher
polydispersity had a similar effect at low-q than decreasing
the volume fraction. A surprisingly good fit is found with the
PY-expression given in eq 9, with α = 0.72 and 0.60 for σ = 15%
and 30%, respectively. This enables us to use the PY-equation
with α = 0.6, representing a typical polydispersity of σ = 30%,
for Sinter

app (q → 0) and thus the determination of the aggregate
compacity κ.
To finish this discussion on the silica microstructure as

probed by SAXS, Sinter
app has a low-q contribution below one due

Figure 5. MC simulations of polydisperse systems. (a) Apparent structure factor obtained by the division of simulated I(q) by the average P(q) as
defined in eq 4. I(q) is calculated for polydisperse hard spheres representing the aggregates using a log-normal distribution with R0 = 20 nm
(arbitrarily fixed) and σ = 30%. Lines are fit of the low-q part with an arbitrary function: Sinter

app (q) = Sinter
app (0) + (Aq)B in order to extract Sinter

app (0). (b)
Evolution of Sinter

app (0) versus the aggregate volume fraction for σ = 0%, 15%, and 30%. Lines are fits using eq 9.
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to aggregate repulsion. Sinter
app corresponds to the structure factor

of an inf inite homogeneous sample of aggregates at aggregate
volume fraction Φsi/(κΦfract), whereas here aggregates are only
in the branches. The point is that this apparent isothermal
compressibility is lower for more concentrated samples, and by
continuity, this intensity depression is passed on to the struc-
ture factor describing the fractal: the complete scattering curve
is thus lowered in the intermediate- and low-q range.
Polydisperse Aggregate Form Factor. Our analysis is based

in Figure 2b. Combining eqs 1-3 and subtracting the low-q
upturn treated in the preceding paragraph, the scattering at
intermediate q reads for a polydisperse system:

ρ
Φ
= Δ ⟨ ⟩

I q
V S q P q

( )
( ) ( )

si

2
si inter

app
agg

(10)

For I(q→ 0), we focus on the region around q* = 0.003 Å−1.
Such a value provides a good estimate (compared to π/⟨Ragg⟩)
for the determination of the low-q limit Sinter

app (q→ 0), which has
been calculated in the preceding section. We now focus on the
average form factor of aggregates. The calculation is based on
the polydispersity in radius of the aggregates. We have seen that
the absence of the structure factor peak suggests a
polydispersity of σ = 0.3. From the Kratky plots, the average
aggregate radius was determined. For the example of Φsi =
8.4% vol., aggregates are chosen to be described (as in the
simulation) by a log-normal distribution of radii, with
parameters R0 = 38.4 nm and σ = 0.3, giving the average of
⟨Ragg⟩ = 40.2 nm. The conversion into aggregate mass is based
on the main assumption of the polydisperse description: It is
assumed that the compacity κ is the same for all aggregates of
different size. One can thus use eq 7 to transform the size
distribution in the distribution of Nagg, an example of which is
shown in Figure 6, for κ = 31%.

Concerning the aggregate form factor, recall that in the
monodisperse case, Pagg(q→0) = Nagg. For polydisperse
systems, Pagg(q → 0) = ⟨Nagg

2⟩/⟨Nagg⟩. The moments of Nagg

are easily calculated from the distribution function (Figure 6).
At nonzero q (we focus on q* = 0.003 Å−1), the decrease of the
form factor of the aggregates has to be included. In this limit,
the polydisperse form factor becomes:

⟨ * ⟩ =
⟨ ⟩

⟨ ⟩
−
*⎛

⎝
⎜

⎞

⎠
⎟P q

N

N

q R
( ) exp

5
agg

agg
2

agg

2
G

2

(11)

where Nagg depends on compacity via eq 7 and the radius
distribution function, and RG

2 = ⟨Ragg
8⟩/⟨Ragg

6⟩ is the correctly
averaged Guinier radius.69

Determination of Compacity. The description of the
scattered intensity (eq 10) includes both previously defined
quantities, the structure factor Sinter

app and the average form
factor ⟨Pagg⟩ (eq 11). The apparent isothermal compressibility
Sinter
app (q → 0) depends on the aggregate volume fraction in the
branches, which is given by

κ
Φ =

Φ

Φ
agg

si

fract (12)

The volume fraction of fractal Φfract appears because it
accounts for the concentration effect in the fractal branches,
due to the existence of pure polymer zones surrounding the
branches. The latter quantity has been determined by TEM in
section 3.2 for the highest and lowest Φsi values, and
interpolated in between.
The procedure to determine the compacity κ (assumed to be

identical for all aggregates in the distribution) is thus to (a)
assume an initial value for κ, (b) calculate the structure factor
with eqs 9 and 12, (c) determine the distribution of Nagg, (d)
calculate ⟨Pagg⟩ using eq 11, and (e) assess the intensity level
(eq 10). κ is then changed until eq 10 for q = q* is fulfilled. The
values of κ for all silica volume fractions are reported in Table 1,

together with aggregate radii, average aggregation numbers,
width of dispersion, and radius of an aggregate of average
aggregation number.
Following this procedure, the compacity found for, e.g., Φsi =

8.4% vol. is 31%. The resulting distribution function of Nagg was
already shown in Figure 6. One immediately sees in this figure
that the Ragg

3-dependence strongly increases the polydispersity
and asymmetry of the distribution, which has a pronounced tail.
The resulting average of Nagg is 51, and the standard deviation
ΔNagg = √(⟨Nagg

2⟩ − ⟨Nagg⟩
2) = 53, i.e., of the same order of

magnitude, which illustrates the width of the distribution. For
comparison, the radius of the average aggregate (⟨Nagg⟩ = 51) is
also given in the table (Ragg

eq = 52.3 nm). On the other hand,
most of the aggregates are considerably smaller, as the peak of
the distribution is located close to Nagg

max ≈ 15 (corresponding
to Ragg ≈ 35 nm). Again, such a wide distribution is in line with

Figure 6. Aggregation number distribution function deduced from the
log-normal distribution of radii (parameters R0 = 38.4 nm, σ = 0.3)
and eq 7 supposing κ = 31%.

Table 1. Results of the Analysis of SAXS Data of
Nanocomposites Containing Polydisperse Aggregates (σ =
0.3 in Radius)a

Φsi, %
vol.

⟨Ragg⟩ (nm)
± 5%

Φfract
± 4%

κ

± 2%
Φagg
± 3%

⟨Nagg⟩
± 15% ΔNagg

Ragg
eq (nm)
± 5%

8.4 40.2 0.59 0.31 0.47 51 53 52.3

12.7 35.9 0.66 0.33 0.57 40 43 46.9

16.8 36.1 0.73 0.36 0.64 44 47 47.1

21.1 35.2 0.80 0.38 0.69 44 47 46.0
aAverage aggregate radius ⟨Ragg⟩ (from Kratky analysis), volume
fraction of fractal branches Φfract, compacity κ, aggregate volume
fraction Φagg, average aggregation number ⟨Nagg⟩, standard deviation of
the distribution in Nagg, and equivalent radius of an aggregate of
average mass.
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the TEM observations, where actually no aggregates are clearly
identified, presumably due to the large size distribution.
As the silica concentration is increased, only minor changes

are observed in Table 1: clusters conserve their average mass
(in the range between ⟨Nagg⟩ = 40 and 51), but contract
slightly, leading to an increase of their compacity from 31 to
38%. Note that such compacities are compatible with the
choice of hard sphere interactions for the interaggregate
structure factor. Concentrating aggregates in the fractal
branches induces a considerable depression of the scattering
(via the isothermal compressibility) at intermediate q-values, as
observed in Figure 2. Again, in the light of the discussion
including both Sinter

app (q) and ⟨Pagg(q)⟩ in eq 10, interpreting the
intensity decrease at intermediate-q as a decrease of ⟨Pagg⟩ only
could lead to the erroneous interpretation of decreasing
aggregate mass. On the contrary, our analysis confirms that
the average aggregate mass remains approximately constant in
our system. Finally, one may note that the error bar on Φfract

has only a minor effect (±5%) on ⟨Nagg⟩, whereas the 5% error
on ⟨Ragg⟩ causes most of the uncertainty on ⟨Nagg⟩ (±15%).
In Figure 7, the real-space and reciprocal space models in

terms of the three structure factors are shown. In real space, the

multiscale structure is represented by the large scale fractal
network of dimension 2.4, the branches of which are made of
dense assemblies of aggregates of typical aggregate radius, Ragg,
and volume fraction Φagg. Finally, these aggregates are
themselves made up of on average some forty-five primary

particles of radius Rsi, and possess a compacity κ, which is
typically 35%.

3.4. Rheology and Reinforcement. The motivation for
the determination of the structure of simplified industrial nano-
composites relies in its link with the remarkable rheological and
mechanical properties of such materials. Therefore, we focus
now on the characterization of the rheology of these nanocom-
posites. In absence of curing agents in our simplified formula-
tion, nanocomposites are not cross-linked. Silica-free samples
are thus polymer melts, i.e. viscoelastic liquids; adding silica
may change their rheological character. The series of samples of
increasing silica volume fraction (0−21.1% vol.) has been
studied by small amplitude (linear regime) oscillatory shear
experiments. Moduli at various temperatures have been
measured and used for the construction of master curves for
G′(ω) and G″(ω) applying the time−temperature superposition
at a reference temperature of 50 °C. At low enough Φsi

(≤12.7% vol.), the superposition of curves at different tem-
peratures (horizontal shift factors are discussed below) yields
unambiguous master curves. The resulting moduli of the matrix
and the two lower silica volume fractions are plotted in Figure 8a.
Note that no vertical shift factors were required to achieve
superposition as occasionally necessary for composites.46,70

In the viscoelastic response of the matrix, the flow regime at
low frequency (G″ ∼ ω

1.2, close to the expected exponent of one),
a characteristic time given by the maximum of G″ (τ = 1/ωmax =
2 s), and a high frequency modulus (G0 = 0.79 MPa) can be
identified. In addition, the G″ curve displays a high-frequency
upturn toward the glass transition regime. With 8.4% vol. and
12.7% vol. of silica, respectively, the curves are mainly shifted to
higher moduli: this increase will be analyzed in terms of the
reinforcement factor. In parallel, small changes in the shape of
the curve can be observed: the characteristic G″ maximum
shifts to slightly lower frequencies with respect to the matrix,
and G′ and G″ overlap and finally do not cross any more at low
ω. A common criterion for liquid-like samples is that G″ is
greater than G′ in a given frequency range. The impact of filler
is to increase the elastic component above the viscous one over
the whole range, and thus “gel” the samples. In this case, there
is no hint of a terminal relaxation for the polymer, but a solid-
like behavior. This is probably related to the existence of a
percolated network microstructure which is not able to relax
completely and becomes more pronounced with increasing Φsi.
As the volume fraction is increased to 16.8% vol. and 21.1%

vol., the quality of the master curves suffers. This is exemplified
in Figure 8b, where in particular the G″ cannot be
superimposed neatly any more by applying only horizontal
shift factors. The storage moduli G′ stay within an envelope,
but it is unclear if these values are entirely trustworthy. The
reasons for this discrepancy may lie either in slip on the plate
due to the too high moduli, or in the failure of time−
temperature superposition for dynamically heterogeneous
samples.10 With our data, we are unable to judge. It can be
concluded that the moduli of these samples increase
considerably, and that G′ is always at least a factor of 2 higher
than G″. We observe a broadening of the G″ peak in its high
frequency range corresponding to a larger and more
asymmetric distribution of relaxation times. It may be envisaged
as a slower contribution (possible glassy layers) from the glass
transition process located at higher frequency (out of our
experimental window).
The horizontal shift factors, aT, obtained from the master

curve construction are found to change slightly from the matrix

Figure 7. (a) Model decomposition of the scattered intensity into the
three contributions to the reciprocal-space structure: Sfract(q), Sinter

app (q)
(red line), and Sintra(q) (green line, Sintra(q→ 0) = ⟨Nagg

2⟩/⟨Nagg⟩). (b)
Real-space representation of the multiscale structure of the silica
nanocomposites associated with part a.

Macromolecules Article

dx.doi.org/10.1021/ma302248p | Macromolecules 2013, 46, 317−329325



to the two lower silica contents. Their evolution with the
inverse of temperature can be well described with an Arrhenius
equation. The flow activation energy thus obtained is estimated
to be 53, 58, and 60 kJ mol−1 for silica loadings of 0, 8.4 and
12.7% vol., respectively. Alternatively, the classical Williams−
Landel−Ferry (WLF) equation71 could also be used leading to
the system constants C1 = 6.9 and C2 = 265 K for the pure
polymer matrix at the reference temperature of 50 °C. For the
nanocomposites, the values are C1 = 8.1 and C2 = 280 K (C1 =
6.1, C2 = 210 K) for 8.4% vol. and 12.7% vol. of silica, respectively.
The fact that the characteristics of the time−temperature
superposition (aT, Ea, or C1, C2) are not significantly modified
by the introduction of filler in spite of strong variation of the
G′ and G″ shapes was already observed in the literature for
nanocomposite systems.36,46,70,72 Such results suggest that the
temperature-dependent relaxation process probed here is similar in
the composites and the unfilled polymer.
From the high-frequency storage modulus (estimated here at

150 Hz), the relative reinforcement of the nanocomposites
G/G0 with respect to the pure matrix can be calculated as a
function of silica volume fraction. For the highly loaded
samples, the modulus at 150 Hz is estimated from the average
of the data point dispersion (see in Figure 8b). All resulting
reinforcement factors are plotted in Figure 9. The reinforce-
ment factor has the advantage of highlighting the influence of
the filler, as it cancels the matrix contribution. It can also be
compared directly to the Einstein equation for hydrodynamic
reinforcement,39 and its application by Smallwood40 or
Mooney73 to reinforcement of polymer matrices (see, e.g., ref
41 for different reinforcement factor descriptions). Here, a
specific model based of percolation of aggregates inside the
branches, which themselves extend across the whole sample, is
proposed. Indeed, Figure 8a suggests a crossover from liquid-
like to solid-like behavior at low frequency with increasing Φsi,
and thus with the volume fraction in the branches, Φagg. We
have therefore adapted a simple percolation model to the
reinforcement data in Figure 9. Our model is based on a
hydrodynamic description below a critical percolation volume
fraction Φagg

c, and on a percolation expression above74,75

= + Φ + Θ Φ − Φ
Φ − Φ

− Φ
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c
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c

b

0
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0

(13)

where Θ(Φagg − Φagg
c) denotes the Heaviside step function

(zero for negative arguments, one for positive ones), and Gf

is the modulus of the fractal network. Note that eq 13 relies
on eq 12, which relates the aggregate volume fraction in the
branches to the silica volume fraction in a non linear manner.
For Φagg, we have used linear interpolations of the aggregate
compacity κ and the volume fraction of fractal branches Φfract

as determined by TEM and SAXS (Table 1). The exponent
of the percolation term, b, was set to 1.8 in agreement with
the literature.74 We are thus left with two virtually
independent parameters, Φagg

c and Gf/G0, which have been
varied to optimize the fit. The critical percolation volume
fraction of aggregates in the branches is found to be Φagg

c =
56% vol., which corresponds to a silica volume fraction of Φsi

c =
12% vol. The rather high value of Φagg

c is consistent with our
picture of aggregates percolating within the fractal branches, i.e., in
a space of reduced dimension. In one dimension, the exact result is
a percolation only at full coverage.76 The remaining parameter is
the ratio of the moduli. A value of Gf/G0 = 50 is found to

Figure 8. Master curves for G′ and G″ (Pa) as a function of angular frequency ω (rad/s) at the reference temperature of 50 °C for nanocomposites
with (a) Φsi = 0% vol., 8.4% vol., and 12.7% vol. and (b) Φsi = 21.1% vol.

Figure 9. Reinforcement factor G/G0 of nanocomposites with Φsi =
8.4−21.1% vol., where G is the storage modulus at 150 Hz, and G0 the
corresponding one of the matrix (squares). Line is a fit with eq 13
using the compacity and Φfract of the structural analysis as input. The
fit parameters are Φfract

c = 0.56 (corresponding to Φsi
c = 0.12) and

Gf/G0 = 50. The purely hydrodynamic reinforcement is also indicated
(dotted line).
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correctly reproduce the increase of the reinforcement factor
with silica volume fraction.
Given the simplicity of the rheological model, the com-

patibility with our previous analysis by SAXS (see in Table 1, κ =
31−38%) is encouraging. This underlines the consistency of the
methods. In particular, we have checked that fixing the
compacity to other values (30% or 40%) reduces the quality
of the fit strongly. The ratio of the moduli seems a bit low, as
one might expect much higher moduli for pure silica, at least
103 times higher than the one of the matrix. The branches,
however, are made of noncompact aggregates, with coating
agents on the silica nanoparticle surface. These may be the
reasons for a lower modulus of the branches. The resulting
percolation upturn observed in Figure 9 is thus weaker than
in cases of uncoated silica,35 as also observed by Chevigny
et al,15 but with a similar filler connectivity threshold. To
finish this discussion, one may note that the data could also
be described with other models (however with a much lower
quality of the fit), like an exponential increase with the filler
volume fraction which was found to describe reinforcement
data in carbon black reinforced rubbers.77

4. CONCLUSION

The structure of nanocomposites designed to reproduce key
features of industrial samples, but of simplified composition,
has been studied on length scales extending from the
nanometric primary particles to micrometers. We have
developed an original method for scattering data analysis of
such multiscale systems. The combination of TEM, SAXS, and
computer simulations allowed for a quantitative analysis,
evidencing the formation of small aggregates of average radius
in the 35−40 nm range, with a large polydispersity in aggregate
size (estimated to be about 30%) and thus in aggregation
number: most of the aggregates contain some 15 primary
particles, but the average amounts to about 45. Compacity of
aggregates was assumed to be identical for all sizes, and it was
found to increase from 31% to 38% with Φsi. Here one may add
that these numbers are necessarily model dependent, which
may impact the evolution of the compacity, which in any
event stays in the 35%-range. Within our model, we have
considered that these aggregates possess excluded volume
interactions, which generate a visible shoulder in the
scattering curves. It is important to recognize that this
shoulder cannot be interpreted as a Guinier-signature of
objects. The polydisperse aggregates fill up branches with a
volume fraction of aggregates Φagg increasing from about
45 to 70%, as Φsi goes up from 8.4 to 21.1% vol. The
approximate lateral dimension of the branches is 150 nm, i.e.,
it is only a few aggregates wide. The large-scale spatial
arrangement of the branches can be described by a fractal of
average dimension of 2.4. The structure contains pure polymer
zones. Their volume fraction (1 − Φfract) decreases from 41 to
20% for 8.4% vol. and 21.1% vol. of silica, respectively. To
summarize, it is demonstrated that the complex structure of
interacting aggregates in nanocomposites of industrial origin can
be quantitatively modeled by including self-consistent polydisperse
form and structure factors of aggregates.
The rheology of the simplified industrial nanocomposites has

been studied as a function of filler volume fraction, in small
amplitude oscillatory shear experiments. Master curves for the
storage and loss moduli could be constructed up to Φsi = 12.7%
vol. These curves display a crossover from a flow regime to
solid-like behavior with increasing filler fraction at low

frequency, as well as an increase of the high-frequency moduli.
The resulting reinforcement curve of the high-frequency
storage modulus can be described using a combination of
hydrodynamic reinforcement for Φsi below a critical percolation
volume fraction (Φsi

c = 12% vol.), and a percolation law above.
It is interesting to note that the aggregate compacity obtained
from the structural analysis (SAXS and TEM) is fully
compatible with the reinforcement data.
To finish the conclusions of this article, one may note that

the polymer matrix was a mixture of reactive and inert chains.
The influence of the ratio of reactive chains on the structure
will be studied in a forthcoming article.78 Up to here, following
our idea of simplification of the system, we have also
deliberately avoided another key ingredient, the coupling
agent. Its influence on microstructure in these systems is
currently under investigation.79 Finally, for future work, it may
be important to be able to compare the results obtained here to
model systems where the filler is a well-defined nanoparticle.

■ APPENDIX

Table 2 shows the typical formulations of industrial nano-
composites.
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Table 2. Typical Industrial Formulations in SBR−Silica
Nanocompositesa

function name abbreviation
simplified
system

coupling agent bis(3-triethoxysilylpropyl)
tetrasulfide

TESPT (Si69)

coupling agent 3-mercaptopropyltriethoxysilane
reacted with ethoxylated C13-
alcohol

Si363

coating agent octyltriethoxysilane octeo X

catalyzer diphenyl guanidine DPG X

cross-linking
agent

sulfur

cure activator ZnO particles

cure activator stearic acids

cure accelerator N-butyl-2-benzothiazole
sulfonamide

TBBS

cure accelerator N-cyclohexyl-2-benzothiazole
sulfonamide

CBS

antioxidant N-isopropyl-N′-phenyl-para-
phenylenediamine

IPPD

antioxidant N-(1,3-dimethylbutyl)-N′-phenyl-
para-phenylenediamine

6PPD X

antioxidant 2,2′-methylenebis(4-methyl-6-
tertiary-butylphenol)

AO2246 X

aThe last column indicates the components used in the simplified
system studied in this article.

Macromolecules Article

dx.doi.org/10.1021/ma302248p | Macromolecules 2013, 46, 317−329327



■ REFERENCES

(1) Boonstra, B. B. Polymer 1979, 20 (6), 691−704.
(2) Heinrich, G.; Kluppel, M.; Vilgis, T. A. Curr. Opin. Solid State
Mater. Sci. 2002, 6 (3), 195−203.
(3) Guth, E. J. Appl. Phys. 1945, 16, 20−25.
(4) Mark, J. E.; Erman, B.; Eirich, F. R. Science and Technology of
Rubber; Academic Press: San Diego, CA, 1994.
(5) Kohls, D. J.; Beaucage, G. Curr. Opin. Solid State Mater. Sci. 2002,
6 (3), 183−194.
(6) Nusser, K.; Neueder, S.; Schneider, G. J.; Meyer, M.; Pyckhout-
Hintzen, W.; Willner, L.; Radulescu, A.; Richter, D. Macromolecules
2010, 43 (23), 9837−9847.
(7) Jouault, N.; Dalmas, F.; Said, S.; Di Cola, E.; Schweins, R.; Jestin,
J.; Boue,́ F. Macromolecules 2010, 43 (23), 9881.
(8) Genix, A.-C.; Tatou, M.; Imaz, A.; Forcada, J.; R., S.; Grillo, I.;
Oberdisse, J. Macromolecules 2012, 45 (3), 1663−1675.
(9) Nakatani, A.; Chen, W.; Schmidt, R.; Gordon, G.; Han, C.
Polymer 2001, 42, 3713−3722.
(10) Berriot, J.; Montes, H.; Lequeux, F.; Long, D.; Sotta, P.
Macromolecules 2002, 35 (26), 9756−9762.
(11) Frohlich, J.; Niedermeier, W.; Luginsland, H. D. Composites Part
A: Appl. Sci. Manuf. 2005, 36 (4), 449−460.
(12) Papakonstantopoulos, G. J.; Doxastakis, M.; Nealey, P. F.;
Barrat, J.-L.; de Pablo, J. J. Phys. Rev. E 2007, 75 (3), 031803.
(13) Robertson, C. G.; Rackaitis, M. Macromolecules 2011, 44 (5),
1177−1181.
(14) Tsagaropoulos, G.; Eisenberg, A. Macromolecules 1995, 28 (1),
396−398.
(15) Chevigny, C.; Jouault, N.; Dalmas, F.; Boue,́ F.; Jestin, J. J.
Polym. Sci., Part B: Polym. Phys. 2011, 49 (11), 781−791.
(16) Oberdisse, J. Soft Matter 2006, 2 (1), 29−36.
(17) Choi, S. S.; Kim, I. S.; Lee, S. G.; Joo, C. W. J. Polym. Sci., Part B:
Polym. Phys. 2004, 42 (4), 577−584.
(18) Conzatti, L.; Costa, G.; Castellano, M.; Turturro, A.; Negroni, F.
M.; Gerard, J. F. Macromol. Mater. Eng. 2008, 293 (3), 178−187.
(19) Mele, P.; Marceau, S.; Brown, D.; de Puydt, Y.; Alberola, N. D.
Polymer 2002, 43 (20), 5577−5586.
(20) Ramier, J.; Gauthier, C.; Chazeau, L.; Stelandre, L.; Guy, L. J.
Polym. Sci., Part B: Polym. Phys. 2007, 45 (3), 286−298.
(21) Stockelhuber, K. W.; Svistkov, A. S.; Pelevin, A. G.; Heinrich, G.
Macromolecules 2011, 44 (11), 4366−4381.
(22) Belina, G.; Urban, V.; Straube, E.; Pyckhout-Hintzen, W.;
Kluppel, M.; Heinrich, G. Macromol. Symp. 2003, 200, 121−128.
(23) Morfin, I.; Ehrburger-Dolle, F.; Grillo, I.; Livet, F.; Bley, F. J.
Synchrotron Radiat. 2006, 13, 445−452.
(24) Schaefer, D. W.; Rieker, T.; Agamalian, M.; Lin, J. S.; Fischer,
D.; Sukumaran, S.; Chen, C. Y.; Beaucage, G.; Herd, C.; Ivie, J. J. Appl.
Crystallogr. 2000, 33 (1), 587−591.
(25) Schaefer, D. W.; Suryawanshi, C.; Pakdel, P.; Ilavsky, J.; Jemian,
P. R. Physica A 2002, 314 (1−4), 686−695.
(26) Teixeira, J. J. Appl. Crystallogr. 1988, 21, 781−785.
(27) Beaucage, G. J. Appl. Crystallogr. 1995, 28, 717−728.
(28) Schneider, G. J.; Vollnhals, V.; Brandt, K.; Roth, S. V.; Goeritz,
D. J. Chem. Phys. 2010, 133 (9), 094902.
(29) Schneider, G. J. J. Chem. Phys. 2009, 130 (23), 234912.
(30) Shinohara, Y.; Kishimoto, H.; Yagi, N.; Amemiya, Y.
Macromolecules 2010, 43 (22), 9480−9487.
(31) Chakrabarti, R.; Delannoy, J.-Y.; Couty, M.; Schweizer, K. S. Soft
Matter 2011, 7 (11), 5397−5407.
(32) Meth, J. S.; Zane, S. G.; Chi, C.; Londono, J. D.; Wood, B. A.;
Cotts, P.; Keating, M.; Guise, W.; Weigand, S. Macromolecules 2011,
44 (20), 8301−8313.
(33) Janes, D. W.; Moll, J. F.; Harton, S. E.; Durning, C. J.
Macromolecules 2011, 44 (12), 4920−4927.
(34) Chevigny, C.; Dalmas, F.; Di Cola, E.; Gigmes, D.; Bertin, D.;
Boue,́ F.; Jestin, J. Macromolecules 2011, 44 (1), 122−133.
(35) Jouault, N.; Vallat, P.; Dalmas, F.; Said, S.; Jestin, J.; Boue, F.
Macromolecules 2009, 42 (6), 2031−2040.

(36) Jouault, N.; Dalmas, F.; Boue,́ F.; Jestin, J. Polymer 2012, 53 (3),
761−775.
(37) Oberdisse, J.; Hine, P.; Pyckhout-Hintzen, W. Soft Matter 2007,
2, 476−485.
(38) Witten, T. A.; Rubinstein, M.; Colby, R. H. J. Phys. II 1993, 3
(3), 367−383.
(39) Einstein, A. Ann. Phys. 1906, 19, 289.
(40) Smallwood, H. M. J. Appl. Phys. 1944, 15, 758−766.
(41) Ahmed, S.; Jones, F. R. J. Mater. Sci. 1990, 25 (12), 4933−4942.
(42) Arrighi, V.; McEwen, I. J.; Qian, H.; Prieto, M. B. S. Polymer
2003, 44 (20), 6259−6266.
(43) Vieweg, S.; Unger, R.; Hempel, E.; Donth, E. J. Non-Cryst. Solids
1998, 235, 470−475.
(44) Berriot, J.; Montes, H.; Lequeux, F.; Long, D.; Sotta, P.
Europhys. Lett. 2003, 64 (1), 50−56.
(45) Papon, A.; Saalwac̈hter, K.; Schal̈er, K.; Guy, L.; Lequeux, F.;
Montes, H. Macromolecules 2011, 44 (4), 913−922.
(46) Ren, J. X.; Silva, A. S.; Krishnamoorti, R. Macromolecules 2000,
33 (10), 3739−3746.
(47) Gauthier, C.; Reynaud, E.; Vassoille, R.; Ladouce-Stelandre, L.
Polymer 2004, 45 (8), 2761−2771.
(48) Payne, A. R.; Whitaker, R. E. Rubber Chem. Technol. 1971, 44,
440−478.
(49) Heinrich, G.; Kluppel, M. Filled Elastomers Drug Delivery Syst.

2002, 160, 1−44.
(50) Oberdisse, J. Macromolecules 2002, 35 (25), 9441−9450.
(51) Tatou, M.; Genix, A.-C.; Imaz, A.; Forcada, J.; Banc, A.; R., S.;
Grillo, I.; Oberdisse, J. Macromolecules 2011, 44, 9029.
(52) Suzuki, N.; Ito, M.; Yatsuyanagi, F. Polymer 2005, 46 (1), 193−
201.
(53) Rezende, C. A.; Braganca, F. C.; Doi, T. R.; Lee, L.-T.;
Galembeck, F.; Boue, F. Polymer 2010, 51 (16), 3644−3652.
(54) Luo, H.; Kluppel, M.; Schneider, H. Macromolecules 2004, 37
(21), 8000−8009.
(55) Vo, L. T.; Anastasiadis, S. H.; Giannelis, E. P. Macromolecules

2011, 44 (15), 6162−6171.
(56) Fragiadakis, D.; Bokobza, L.; Pissis, P. Polymer 2011, 52 (14),
3175−3182.
(57) Arrighi, V.; Higgins, J. S.; Burgess, A. H.; Floudas, G. Polymer
1998, 39 (25), 6369−6376.
(58) Triolo, A.; Celso, F. L.; Negroni, F.; Arrighi, V.; Qian, H.;
Lechner, R. E.; Desmedt, A.; Pieper, J.; Frick, B.; Triolo, R. Appl. Phys.
A: Mater. Sci. Process. 2002, 74 (Suppl.), S490−S492.
(59) Anastasiadis, S. H.; Chrissopoulou, K.; Frick, B. Mater. Sci. Eng.

B: Adv. Funct. Solid-State Mater. 2008, 152 (1−3), 33−39.
(60) Schneider, G. J.; Nusser, K.; Willner, L.; Falus, P.; Richter, D.
Macromolecules 2011, 44 (15), 5857−5860.
(61) Roovers, J.; Toporowski, P. M. Macromolecules 1992, 25 (3),
1096−1102.
(62) Oberdisse, J.; Rharbi, Y.; Boue,́ F. Comput. Theor. Polym. Sci.
2000, 10 (1−2), 207−217.
(63) Debye, P. Ann. Phys. 1915, 46 (6), 809−823.
(64) Bernal, J. D. Proc. R. Soc. London, Ser, A: Math. Phys. Sci. 1964,
280 (1380), 299−322.
(65) Ehrburger-Dolle, F.; Hindermann-Bischoff, M.; Livet, F.; Bley,
F.; Rochas, C.; Geissler, E. Langmuir 2001, 17 (2), 329−334.
(66) Klein, R. Neutrons, X-ray and Light Scattering; North-Holland
Elsevier: Amsterdam, 2002.
(67) Percus, J. K.; Yevick, G. J. Phys. Rev. 1958, 110 (1), 1−13.
(68) Ashcroft, N. W.; Langreth, D. C. Phys. Rev. 1967, 156 (3), 685−
692.
(69) Oberdisse, J.; Deme, B. Macromolecules 2002, 35 (11), 4397−
4405.
(70) Krishnamoorti, R.; Giannelis, E. P. Macromolecules 1997, 30
(14), 4097−4102.
(71) Williams, M. L.; Landel, R. F.; Ferry, J. D. J. Am. Chem. Soc.
1955, 77 (14), 3701−3707.

Macromolecules Article

dx.doi.org/10.1021/ma302248p | Macromolecules 2013, 46, 317−329328



(72) Solomon, M. J.; Almusallam, A. S.; Seefeldt, K. F.;
Somwangthanaroj, A.; Varadan, P. Macromolecules 2001, 34 (6),
1864−1872.
(73) Mooney, M. J. Colloid Sci. 1951, 6, 162−170.
(74) de Gennes, P. G. J. Phys., Lett. 1976, 37, 1−2.
(75) Kolarik, J. Eur. Polym. J. 1998, 34 (5−6), 585−590.
(76) Stauffer, D., Introduction to Percolation Theory; Taylor and
Francis: London, 1985.
(77) Payne, A. R. J. Appl. Polym. Sci. 1963, 7 (3), 873−885.
(78) Baeza, G. P. et al. Manuscript in preparation.
(79) Bouty, A. et al. Manuscript in preparation.

Macromolecules Article

dx.doi.org/10.1021/ma302248p | Macromolecules 2013, 46, 317−329329



Effect of Grafting on Rheology and Structure of a Simplified
Industrial Nanocomposite Silica/SBR

Guilhem P. Baeza,†,‡,§ Anne-Caroline Genix,*,†,‡ Christophe Degrandcourt,§ Laurent Petitjean,§
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ABSTRACT: An un-cross-linked SBR-system filled with
precipitated silica nanoparticles of radius ≈10 nm by mixing
is studied as a function of the fraction of graftable matrix
chains (140 kg mol−1) varying from 0% to 100%, for a low
(ΦSi = 8.5 vol %) and high (16.7 vol %) silica volume fraction.
The linear rheology in shear shows a strong impact of the
grafting on the terminal flow regime, and a shift to longer
relaxation times with increasing grafting. Simultaneously, the
plateau modulus stays approximately constant for the low ΦSi,
suggesting a link to the silica content. The microstructure of
the silica is characterized by using a combination of transmission electron microscopy and small-angle X-ray scattering data. We
apply a quantitative model of interacting aggregates, and determine the average aggregation number (decreasing from 160 to 30
with grafting), aggregate size (50 to 30 nm), and compacity (55% to 35%). While the linear rheology seems to be dominated by
the matrix composition, both the mixing rheology and the structure display a saturation with increasing grafting fraction. A closer
analysis of this effect indicates that a critical amount of grafting is needed to trigger structural evolution. To summarize, a
quantitative study of complex nanocomposites with several features of industrial systems demonstrates that the grafting density
can be used as a fine-tuning parameter of rheology and microstructure.

I. INTRODUCTION

Nanocomposites may be formed by dispersion of nanoparticles
in polymer matrices, usually with the aim of improving
macroscopic properties like rheological ones.1−4 Which aspect
of the rheological or mechanical behavior is to be reinforced
depends on the desired application, which may favor stronger
moduli, or lower dissipation under cyclic stress, like, e.g., rolling
resistance. How this happens in microscopic detail is still a
matter of debate, even if the role of the different system
parameters has been progressively clarified in the literature.
These parameters are as follows: (a) The volume fraction and
dispersion of the filler particles, which may vary from
individually dispersed beads to network structures.5−9 Strong
variations in mechanical properties are provoked by, e.g.,
percolation, which depends on the space-filling properties of
(possibly fractal) aggregates.6,10,11 (b) The surface properties of
the filler particles. Most polymer matrices are hydrophobic, and
hydrophilic nanoparticles like silica may be surface modified,
e.g., by grafting silane molecules12−16 or short hydrocarbons,17

in order to increase the compatibility with the matrix. This is
usually accompanied by a better dispersion, i.e., there is a link
between surface properties and structure.16 Note that surface

properties have a strong impact on the dynamical properties of
the chains.18−20 The existence of dynamical heterogeneities
substantially affects the mechanical properties. (c) Grafting of a
coupling agent. This is an alternative to grafting a coating agent,
which allows to covalently couple the matrix to the
particles.21−26 (d) Grafting polymer layers.27−38 One may go
one step further by grafting polymer chains onto the filler
surface, possibly visualizing them using small-angle neutron
scattering (SANS).32 In this case, the mass of the grafted
molecules, as well as the grafting density, influences the
rheological properties of the nanocomposites.30,31,35,37,38 Note
that the conformation of bulk chains has also been studied by
SANS in presence of silica.17,39,40

In our nanocomposites with graftable polymer chains and
silica of industrial origin, the silica nanoparticles are aggregated
and the aggregates are agglomerated in the pellets. In the
mixing phase, the agglomerates are destroyed (depending on
the torque during the process), aggregates are possibly broken
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into pieces and these objects may reaggregate up to a certain
point depending on the nanoparticle interactions in the melt.
These nanoparticle interactions can be caused either by
depletion due to ungrafted chains, van der Waals dispersion
forces, or steric repulsion due to grafting. The balance between
these contributions depends on the masses of the matrix and
grafted chains and the grafting density. In the limit of high
grafting density and short matrix chains (Mgraft/Mmatrix > 1),
good dispersion is achieved in model systems38 due to the
steric stabilization of the swollen brushes and the short-range
attraction due to depletion by short chains. In the opposite
limit, still with high grafting density, the small grafted chains
collapse on the surface while the large matrix chains lead to
depletion attraction between particles.38 At low grafting
densities, finally, aggregation may be caused by a lack of steric
repulsion. In this article, the grafting density is around 0.1
chain/nm2 and we are in the exact intermediate case where the
matrix and the grafted masses are equal. Similar studies36,37

taking into account this particular case (Mgraft/Mmatrix ≈ 1) have
been published.
Different types of rheological experiments are needed to fully

characterize a given material. Here we focus on the linear
rheology, but one should mention that nonlinear effects
(Payne,41,42 Mullins43) have attracted considerable attention
for cross-linked systems in the past. It has been recognized that
the linear rheology of nanocomposites can be subdivided in two
classes, depending on the filler structure.44 For fractal filler
aggregates like fumed silica, a solid filler network can be built
up at comparatively low volume fractions, thus inducing
percolation. These nanocomposites then show a solid-like
behavior, the key features of which are weakly varying (∝ ωn

with n small) moduli G′ and G″ at low frequencies,45 with G′ >
G″: in other words, absence of a terminal flow regime. Clearly,
this regime is dominated by particle−particle interactions. In
the case of individually dispersed colloidal nanoparticles,
percolation is not reached at comparable volume fractions,
and the polymer−particle interfacial properties dominate the
rheological response.14

The dispersion state of filler nanoparticles in the bulk
polymer is usually monitored by electron microscopy,27,46−49 or
scattering methods.6,50−55 The problem with both methods is
that for high filler loadings, and in particular for complex, i.e.,
aggregated and interacting structures, the data are difficult to
analyze. For the simplified industrial nanocomposite system
studied in the present article, such complex silica micro-
structures are present, and we have developed a quantitative
method of data analysis, based both on transmission electron
microscopy (TEM) and small-angle X-ray scattering (SAXS).56

The term ‘simplified’ refers to the fact that only a reduced
number of ingredients is used, namely silica, polymer (with
antioxidants), and the coating agent. In particular, there are no
sulfur-containing molecules related to cross-linking, nor
catalyzing nanoparticles like ZnO. This method was then
applied to investigate the filler structure as a function of filler
volume fraction, extracting size distribution parameters
characterizing aggregation (⟨Nagg⟩ = 45), compacity of
aggregates (κ = 31% to 38%), their interaction via the apparent
isothermal compressibility, and their large-scale organization.56

The aim of the present paper is to study the influence of end-
grafting of the polymer chains: the same analysis is performed,
but now the matrix composition is varied, from 100%
nongraftable to 100% graftable chains, whereas it was set to
50% in ref 56. It is important to realize that this is not in the

same spirit as the polymer grafting performed in the
literature,27−35 which is based on nanoparticles with a grafted
layer dispersed in an inert matrix. In the present work, the
control parameter is the fraction of graftable chains which will
be varied from 0 to 100%, the others forming the matrix. Thus,
at 100%, all chains in the sample may become grafted chains.
The outline of this article is the following. After reviewing the

methods in section II, the thermomechanical mixing process is
presented in section III.1. The linear rheology of the matrix,
which is an important reference for the reinforcement by silica
nanoparticles studied in section III.3, is discussed in section
III.2. In section III.4, the silica microstructure is analyzed using
our recently developed model. A discussion of the data is
proposed in section IV, including an interpretation of the
observed saturation of structural details with the fraction of
graftable chains.

II. MATERIALS AND METHODS

Nanocomposite Formulation. Details are given in ref 56.
Simplified industrial nanocomposites containing silica and un-
cross-linked SBR are formulated by stepwise introduction and
mixing of SBR chains with silica pellets in an internal mixer,
keeping the final temperature constant at 160 ± 5 °C. For
simplicity, all the polymer additives, DPG (Vulcacit, Bayer, 1 wt
% with respect to polymer added only in presence of silica), the
liquid coating agent OCTEO (Dynasylan, 8 wt % with respect
to silica) and silica are incorporated simultaneously. The hot
sample is laminated 10 times through a 1 mm gap. Real silica
volume fractions in the nanocomposites reported here have
been measured by thermogravimetric analysis (Mettler
Toledo).

System Characterization. The silica pellets (Zeosil 1165
MP from Rhodia) have the nominal specific surface of 160 m2/
g, and the size distribution of the nanoparticles obeys a log-
normal law in agreement with TEM studies (R0 = 8.55 nm, σ =
27%, leading to the average bead volume of VSi = 3.6 × 103

nm3). The latter value will be used to estimate aggregation
numbers of silica nanoparticles (or beads) in aggregates.
Random SBR copolymers (with antioxidants N-(1,3-

dimethylbutyl)-N′-phenyl-p-phenylenediamine and 4,4′-meth-
ylene-bis-2,6-tert-butylphenol) were generated by anionic
polymerization initiated by n-BuLi in a methylcyclohexane
solution. The polymer matrix is made of two types of chains of
number-average molecular mass determined by size exclusion
chromatography (SEC): MSBR = 140 kg mol−1 (PDI = 1.07).
The absence of substantial chain degradation due to mixing was
checked by SEC on chains extracted from the nanocomposites.
Average mass and polydispersity remain close around the value
directly after synthesis of 140 kg mol−1 and PDI = 1.07−1.11.
The polymerization is either terminated using a protic
terminating agent to recover the nonfunctional SBR or by
reaction with hexamethylcyclotrisiloxane (D3, 1/3 eq of chains)
to obtain the silanol one-end functionalized copolymer SBR−
SiMe2−OH denoted D3 in the present article. The SiMe2−OH
terminated chain fraction, determined using 1H and 29Si NMR,
is greater than 98%. Since the polymerization process is
identical for nonfunctionalized and silanol functionalized
chains, they share the same microstructure: each chain is a
statistical copolymer with styrene (26 wt %) and butadiene (74
wt %) units (41 wt % of which are 1,2-butadiene and 59 wt %
of 1,4-butadiene units). The calorimetric results are given in ref
56. Deuterated silanol-functionalized SBR copolymer (mono-
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mers from Eurisotop, Saclay, France) has been synthesized
using the same protocol.
The matrix composition is defined by % D3, which is the

mole fraction of chains bearing a single graftable silanol end-
function, the remaining chains being linear unmodified SBR-
chains. This functional group may graft the chain on the silica
by condensation with the surface silanol. An important
parameter is the nominal grafting density, i.e., the number of
grafting functions per unit silica surface:

ρ
σ

=
− Φ

Φ

N d R

M

(1 ) (%D3) exp(2.5 )

3D3
si A SBR 0

2

SBR si (1)

where dSBR = 0.94 g·cm
−3 is the density of the polymer, and NA

is the Avogadro number. The exponential in eq 1 stems from
the log-normal description of the average silica nanoparticle
surface and volume. Note that ρD3 is a nominal value, as it does
not consider any loss of silica surface with respect to spherical
nanoparticles, e.g., due to aggregation, or any other reason. The
real grafting density is γρD3, where γ is the advance of the
grafting process (ranging from 0 with no grafting to 1 with all
chains grafted). Values of ρD3 are reported in Table 1 for two

series in silica volume fraction, one close to 8.5 ± 0.1% and the
other around 16.7 ± 0.1%. For comparison, the highest
nominal grafting density of ca. 0.15 nm−2 gives typically 150
chains attached to a single nanoparticle.
The fraction of bound rubber has been determined by

extraction of the free chains in toluene and measuring the
resulting sample mass after evaporation of the solvent. As the
nanocomposite total mass and the filler volume fraction are
known, the bound rubber fraction corresponding to the
advance of grafting γ is easily calculated. Note that the bound
rubber fraction evolves during the mixing process due to the
grafting kinetics, and we report here the values of the final
samples.
Structural Analysis. The silica microstructure in the

nanocomposites has been studied by transmission electron
microscopy and SAXS. TEM pictures were obtained with
samples of nominal thickness 50−70 nm prepared by
ultracryomicrotomy at −80 °C on a LEICA FC-7 (Diatome
ultra 35°). Electron microscopic observations in transmission
were achieved with a Philips CM200 LaB6 (200 kV, bright field
mode). A gray scale analysis of the pictures using ImageJ was
performed to determine the pure polymer fraction. The average
and the standard deviation of this quantity were obtained via a
statistical analysis over several pictures (from 12 up to 20
depending on the samples). SAXS experiments (beamline ID2,
ESRF, Grenoble) were performed at a wavelength of 1.1 Å
(12.46 keV), using two sample-to-detector distances (1 and 10
m), yielding a total q-range from 0.001 to 0.5 Å−1. Even lower-q

data was measured on the Bonse-Hart setup on ID2 (qmin =
10−4 Å−1). Approximate sample thickness was 0.8 mm. The
scattering cross section per unit sample volume dΣ/dΩ (in
cm−1)which we term scattered intensity I(q)was obtained
by using standard procedures including background subtraction
and calibration given by ESRF. The matrix contribution was
systematically subtracted. The contrast of silica in polymer in
SAXS experiments was calculated from the scattering length
densities (ρSBR = 8.85 × 1010 cm−2, ρSiO2

= 1.97 × 1011 cm−2,

Δρ = 1.09 × 1011 cm−2), which were themselves known from
the chemical composition. SANS measurements of the chain
conformations were performed on beamline D11 (ILL,
Grenoble, France).

Rheology. The rheological response in the linear regime of
the nanocomposites was obtained with a stress-controlled
rheometer AR 2000 in the strain-controlled mode (plate−plate
geometry, 20 mm diameter). Frequency sweeps at fixed low
deformation level (0.1%) were performed from 10 to 80 °C.
Using time−temperature superposition, master curves of the
storage modulus, G′(ω), and the loss modulus, G″(ω),
corresponding to measurements at 50 °C were established
between ω = 2πf = 2π 10−3 and 2π 103 rad/s.

Data Analysis of Small-Angle Scattering. The scattering
patterns of industrial nanocomposites usually show a complex
multiscale behavior, which has been discussed in detail in ref 56.
After subtraction of the low-q scattering law reminiscent of a
large-scale fractal organization, the remaining intensity can be
described with polydisperse interacting aggregates made of
small primary silica beads:

ρ
Φ

= Δ ⟨ ⟩
I q

V S q P q
( )

( ) ( )
si

2
si inter

app
agg

(2)

where ΦSi is the volume fraction of silica, Δρ the contrast
between silica and the SBR matrix, VSi the silica particle volume
given above, Sinter

app the apparent interaggregate structure factor,
and ⟨Pagg(q)⟩ the average form factor of the aggregates, with
⟨Pagg(q→0)⟩ = ⟨Nagg

2⟩/⟨Nagg⟩ exp(−q2RG
2/5), and RG

2 =
⟨Ragg

8⟩/⟨Ragg
6⟩ the average Guinier (i.e., equivalent sphere)

radius of aggregates deduced from the aggregate size
distribution discussed in the text.56 Here Nagg is the number
of primary nanoparticles in a given aggregate of radius Ragg:

=N
V

V
agg

Si in agg

Si (3)

Nagg is related to the aggregate compacity κ (or internal
aggregate volume fraction) defined by the ratio between silica
and total aggregate volume:

κ

π

= =
V

V

V

R

Si in agg

agg

Si in agg

4

3 agg
3

(4)

For the determination of the average aggregation numbers in
nanocomposites, a quantitative expression for the low-q limit of
Sinter
app as a function of the aggregate volume fraction Φagg is
needed. Such an expression has been determined by Monte
Carlo simulations in ref 56, and it is recalled here:

α

α

→ =
− Φ

+ Φ
S q( 0)

(1 )

(1 2 )
app
inter agg

4

agg
2

(5)

where α is an empirical parameter related to the polydispersity
in size. For polydisperse aggregates of log-normal size

Table 1. Nominal Grafting Densities ρD3 of Nanocomposite
Samples Studied in This Article, for Two Silica Volume
Fractions ΦSi and Fractions of Graftable Units between 0%
and 100%

% D3 ΦSi (≈8.5%) ρD3 (10
‑3 nm‑2) ΦSi (≈16.7%) ρD3 (10

‑3 nm‑2)

0 0.086 0 0.167 0

25 0.086 37 0.168 17

50 0.084 76 0.168 34

75 0.086 110 0.166 52

100 0.085 148 0.168 69
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distribution with σ = 0.3, α = 0.6 was found to reproduce the
simulation data, and this value will be used here.
For the determination of the typical aggregate radius, we will

focus on the evolution of Sinter
app (q) of nanocomposites as a

function of experimental parameters. Characteristic breaks in
slope are found in the scattered intensity, which are directly
related to the shape of Sinter

app . It is possible to visualize these
breaks in slope by counterbalancing the overall power-law
decrease of the scattered intensity. In Kratky plots, for instance,
q2I(q) is plotted versus q. A break in slope may then appear as
an easily recognizable maximum, characterized by qagg, which is
directly related to Ragg = π/qagg.

56,57 A second maximum at
higher q is related to the silica nanoparticles. In this article, the
maxima in the Kratky plots will be fitted by the following log-
normal expression (i = si, agg):

π σ σ
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(6a)

= +G q G q G q( ) ( ) ( )si agg (6b)

III. RESULTS AND DISCUSSION

III.1. Thermomechanical Characterization of Mixing.
The introduction of the polymer and the filler in the mixing
chamber leads to a strong increase of torque and temperature,
both measured continuously during the process. In our
previous article,56 torque and temperature were discussed for
different filler contents (8−21 vol %), at fixed matrix
composition (50% D3, 140 kg mol−1). The resulting curves
were similar in shape to the ones discussed here, only that they
displayed a strong increase in torque with ΦSi. In this section,
we study the qualitative behavior observed when changing the
matrix composition from 0% D3 to 100% D3 at fixed silica
volume fraction (8.5 vol %), and the same chain mass. In Figure
1a, the torque is seen to increase to a quasi-plateau after
introduction of the silica. The height of the plateau is rather low
for the unmodified polymer (0% D3), and higher and roughly
identical for all other values of grafting fractions. This is a first

signature of a saturation effect with the amount of D3 polymer
in the samples, to be discussed later in this article. At this stage
of the study, it is not possible to relate the increase of the
torque level to system properties: as we will see, the grafting
also influences the silica structure itself, which certainly affects
the rheology of the nanocomposites.
To analyze the amount of grafting after the mixing process,

the fractions of bound rubber15 of the nanocomposite
samplesi.e., the fractions of nonextractable chains among
the totality of the chainshave been determined (Figure 1b).
As one can see, the bound rubber fraction increases linearly
with the fraction of D3, up to more than 75% that defines the
advance γ of the grafting process, showing that the grafting
procedure works. The facts that the bound rubber is evolving
linearly with % D3 and that its value is zero at 0% D3 strongly
suggest that physisorbed chains can be extracted and that
bound rubber corresponds to those which are covalently linked
in this case.
To summarize, the level of the mixing torque is found to be

only weakly dependent on the D3-fraction, showing saturation
between 25% and 50% of D3. For further comparison, one may
refer to the density of grafting functions as defined in eq 1:
saturation is achieved above γρD3 ≈ 0.03 nm−2. A similar
phenomenon is observed for the 16.7% samples. Together with
the bound rubber analysis, these results illustrate that increasing
the fraction of D3 chains leads to a higher fraction of grafted
chains, but only to a small increase in torque, if any.

III.2. Matrix Rheology. The linear rheology of the pure
polymer matrices (ΦSi = 0%) is important as it serves as
reference for the nanocomposite samples. The silica-free
matrices at various % D3 have been mixed by lamination in a
1 mm gap. Their rheological properties have been studied by
small amplitude shear experiments, as a function of matrix
composition (% D3). In Figure 2, the storage and loss moduli,
G′(ω) and G″(ω), respectively, are plotted, for different matrix
compositions (0%, 50%, 100% D3). The effect of composition
on the matrix rheology is weak. Some minor changes in
modulus and terminal relaxation time may be observed, leading
to a slightly lower viscosity (by some 20%) in the case of the
fully graftable polymer matrix. This might be due to differences

Figure 1. (a) Torque observed during mixing of SBR nanocomposites for a series in matrix composition (0−100% D3), for SBR chains with 140 kg
mol−1, 8.5 vol % silica. (b) Fraction of bound rubber as a function of the D3-fraction for nanocomposites with 8.5 and 16.7 vol % of silica. Lines are
linear fits.
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in topology, like some small amount of branching.58We will see
shortly that this (weak) tendency is inverted in presence of
filler.
The G′ and G″ curves have the typical shape of an entangled

polymer melt, with an identical high-frequency rubbery plateau
(G0 ≈ 0.9 MPa), and a characteristic crossover to an asymptotic
flow regime toward G′ ∼ ω2 (G = Go(ωτ)2) at low ω. The
corresponding loss modulialso shown in Figure 2are
equally characteristic, with a prominent maximum at ωτ = 1
leading to τ = 1.6 ± 0.3 s for all samples. The similarity of these
curves confirms that the fraction of graftable function has only a
marginal impact on the linear rheology of the silica-free melts.
III.3. Nanocomposite Rheology. In the presence of the

silica filler, the rheological properties of the samples evolve
considerably, which is one of the reasons of existence of
nanocomposites. In parts a and b of Figure 3, the linear moduli

G′ and G″ are superimposed for nanocomposites (8.5% of
silica) for different fractions of graftable units D3, 0% to 100%
D3.
Compared to the pure polymer case, the result is radically

different as observed in the literature for grafted model
systems.29,37,38,44 The low-frequency storage modulus increases
considerably with the D3-fraction, and the power-law exponent
β decreases from 0.75 to 0.25 with increasing % D3, as shown
in the inset of Figure 3a. At the same time, the plateau modulus
is seen to be unaffected for samples with 25% to 100% D3.
Note the particular case of the sample with 0% D3 which
displays a higher plateau modulus. In this case, the level of the
modulus for different runs was within the vertical range
indicated by the line in Figure 3a. Independent dynamic
mechanical analysis (DMA) measurements at 10 Hz have
confirmed that the 0% D3 high-frequency modulus is
significantly higher than the others. The flow-regime of the
nanocomposite samples is shifted to smaller frequencies. The
characteristic relaxation time, which can also be measured from
the position of the G″-maximum, thus increases with D3 by
almost a factor of 2, as shown in the inset of Figure 3b. Finally,
the overall decrease of the loss modulus with the D3-fraction, in
particular at large frequencies, shows that the sample becomes
more elastic, or gelled, as the grafting functions are introduced
into the material. It is interesting to confront the elastic moduli
for different % D3 to the ones deduced from the integration of
G″:59

∫
π

ω ω= ″
−∞

+∞
G G

2
( ) d[ln ]N (7)

In Figure 4, three sets of values are shown. The dotted line is
the plateau modulus determined in Figure 3a. By integrating
(eq 7) from the lowest experimental frequencies (10−2 rad/s)
up to the minimum in G″, a second set is created. The 0% D3
integral is found to be larger than the others in agreement with
Figure 3a. Then a decrease by some 20% is observed for the
integrals of samples with 25% to 100% D3. This suggests that
some of the relaxation of the chains have been moved to a
lower (retarded) frequency window with grafting. Indeed, visual

Figure 2. Master curves for the storage and loss modulus G′(ω) and
G″(ω) at the reference temperature of 50 °C for pure polymer
matrices of chain mass 140 kg mol−1, for 0, 50, and 100% D3.

Figure 3. Master curves for (a) Storage modulus G′(ω) for nanocomposites (8.5 vol % silica) of chain mass 140 kg mol−1, for 0, 25, 50, 75, and
100% D3, at the reference temperature of 50 °C. The slope β of the terminal regime versus the fraction of graftable units is shown in the inset. The
vertical black line at high frequency represents the error bar for the 0% D3 sample. (b) Loss modulus G″(ω) from the same experiments. In the inset,
the relaxation time obtained from the maximum of G″ is plotted as a function of the fraction of % D3.
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inspection of Figure 3b shows that the integral is incomplete on
the low frequency side, the importance of the “missing” part
depending on % D3. We have therefore extrapolated the G″
functions, and recalculated the integral, giving the third set of
data in Figure 4. Now the values are constant within the
experimental uncertainty in the range from 25% to 100% D3,
and it is concluded that the grafting retards the relaxation of the
chains.60 This effect is related to the above-mentioned decrease
in slope with % D3 of the storage modulus at low frequency.
To summarize, the subtle effect of the D3-fraction on pure

melts is found to become of considerable importance in
presence of the silica filler. This is yet another hint that the
grafting chemistry during the mixing process affects the
nanocomposites. Its effect is to lower the viscous contribution
of the nanocomposites at moderate and high frequencies, and
to increase the low frequency modulus and the relaxation time
τ. On the basis of the silica structure to be discussed in the next
section, the specific contributions of the chains and the silica
aggregates on the low and high frequency domains will be
identified below.
III.4. Filler Structure in Nanocomposites. The filler

structure of nanocomposites has been measured by SAXS and
TEM. The two methods are complementary inasmuch as the
first gives averages over macroscopic sample regions (with the
drawback of difficult interpretation), and the second local (with
the drawback of limited statistical relevance) but more easily
interpretable data. The way the filler is structured on the
nanoscaleand how this structure evolves with filler volume
fraction in our simplified industrial nanocompositeshas been
measured and modeled in our previous article.56 There, a
constant matrix composition (50% D3) was used in order to
focus on the effect of ΦSi. Here, the same quantitative model of
the SAXS data is applied to our data. As with the rheological
data presented in the previous sections, our objective is to
characterize the impact of the fraction of graftable polymer
chains (% D3).
The large-scale structure of the nanocomposites has been

characterized by TEM. In Figure 5, TEM-pictures of the

nanocomposite containing 8.5% of silica for five grafting
fractions are compared (0%, 25%, 50%, 75% and 100% D3).
The scale bar is 200 nm for all pictures, and the presence of
primary silica beads of approximately 10 nm radius is visible.
The large-scale structure of these nanoparticles in the polymer
matrix evolves from a rather heterogeneous spatial distribution
at 0% D3 to a much more homogeneous dispersion at 100%
D3. Without grafting functions in the matrix, connected
polydisperse aggregates forming large irregular branches are
observed, leaving space to large zones without silica. It is
impossible to conclude on any typical size of these branches
from the picture. More regular branches are found from 50%
D3 on. There the primary beads still form very polydisperse
aggregates, but the size distribution of the branches appears to
be centered around some finite value. When all chains bear
grafting end functions, a possible breakup of these fractal
branches appears. These branches are well dispersed in space,
with “channels” of approximately constant width separating the
“islands” of aggregates. Analogous TEM pictures suggesting the
existence of pure polymer zones (channels) in nanocomposites
have also been observed by Castellano et al.48 using the same
silica with silane modifiers in SBR. The large-scale geometry of
the branches reveals some fractality in SAXS experiments (as
evidenced by a low-q power-law behavior discussed below).
Following our model presented in section II, the presence of

silica-free zones leads to a concentration of the silica in the
remaining sample, namely in the branches and islands, above its
nominal volume fraction. The fraction of silica-free zones, or its
complementary value, the volume fraction of fractal branches
Φfract, has been estimated from electron microscopy by
averaging over 12 up to 20 TEM-pictures of different sample
regions. The low (absolute) standard deviations (ca. 5%)
indicate that the average values are representative of the
samples. Moreover, we have studied the influence of the silica

Figure 4. Numerical values of integral over G″ as a function of ln(ω)
up to the minimum of G″, for different fractions of graftable chains %
D3 considering the lowest experimental frequency (full symbols), and
an extrapolation to take into account the missing low-frequency tail of
G″ (empty squares). For comparison, the high-frequency elastic
moduli (150 Hz) are reported as a dotted line.

Figure 5. TEM pictures of nanocomposites with ΦSi = 8.5 vol % and
SBR chains. % D3 = 0%, 25%, 50%, 75%, and 100%. The 50% image
was taken from ref 56 for completeness.
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volume fraction and of the matrix composition (% D3). All
Φfract-data can be described consistently with linear interpola-
tion laws as a function of ΦSi, the slope depending on the
fraction of graftable chains. To check the influence of a possible
error on these slopes, in particular at the high silica volume
fraction, two limiting estimations have been made and are
shown in the Appendix. Only for 0% D3, this led to a
noticeable difference and an interval will be given for Φfract. The
linear laws have been used to interpolate Φfract for samples
where TEM-pictures had not been taken, and enable us to
calculate the effective aggregate volume fraction within the
fractal branches:

κ
Φ =

Φ

Φagg
Si

fract (8)

where κ denotes the aggregate compacity as defined in section
II. The values for Φagg are reported in Table 2 for the 8.5% Si
series.

The effect of the matrix composition (D3-fraction) on the
SAXS intensity distributions is demonstrated in Figure 6, for
8.5% and 16.7% samples. The large-scale structure (low-q
upturn) is found to be very similar for the 8.5%-nano-
composites (0−100% D3), and to follow the same scaling law
albeit with different prefactors for the 16.7%-samples (0−100%
D3). The position of the crossover (qbranch) of the low-q scaling

law to an intermediate regime may be interpreted as the typical
size of the branches making up a fractal-like structure. From the
fractal model,56 the average thickness of the branches (2a =
1.3/qbranch) is found to evolve from 220 to 90 nm for increasing
% D3 at 8.5% silica. This seems to correspond to the decrease
of the large channels at 0% D3 to thinner ones at 100% D3 in
the TEM pictures.
The local structure as probed by the high-q scattering is

found to be identical, which indicates that the structure and in
particular the specific surface of the primary silica particles
remains unchanged. The intensity in the intermediate q-range is
found to depend on the D3-fraction: as % D3 increases, the
intensity level decreases continuously, both for ΦSi = 8.5% and
16.7%. Upon closer inspection, one may notice that the
decrease becomes less pronounced for values of the D3-fraction
above 50%. This is a second indication for a saturation effect,
and we will come back to this point in the discussion.
It is important to note that the intensity decrease in the mid-

q range seems to be similar to the one observed when
increasing ΦSi.

56 In the latter article, the decrease was traced
back to the lower low-q structure factor, due to additional
crowding of small silica aggregates. Our quantitative model
clearly showed that the average aggregation number of these
aggregates stayed quite constant (⟨Nagg⟩ ≈ 45), in contrary to
the intuitive idea that the intensity decrease would be related to
a decrease in aggregation. In the present article, the situation is
different, due to the fixed silica volume fraction, which implies
comparable crowding. It thus appears that the silica aggregates
organized differently in space for different polymer matrices, at
constant total silica concentration. This effect will now be
analyzed quantitatively.
A central element of our SAXS-analysis is the use of Kratky

plots (q2I(q) vs q) to identify the position of two peaks, qagg and
qSi; cf. section II. As an example, the Kratky plot for the 8.5%
samples is shown in Figure 7. A peak around qSi ≈ 0.02 Å−1 is
seen to be present in all data sets, with a convincing
superposition of all intensity curves for q ≥ qSi. It is related
to the average radius RSi of touching primary silica particles (qSi
= π/RSi), and as before a unique value RSi = 13.85 nm was used
for all further Kratky fits. The second peak qagg is related to the
average aggregate radius ⟨Ragg⟩. It appears at lower wave
vectors, and it is shifted to higher q values as the D3-fraction is

Table 2. Results of the Analysis of SAXS Data of
Nanocomposites with 140 kg mol−1 Matrix andΦSi ≈ 8.5 vol
%a

% D3
⟨Ragg⟩ (nm)
± 5%

Φfract
± 5% κ ± 2%

Φagg
± 3%

⟨Nagg⟩
± 15% ΔNagg

0 49.4 0.35 0.545 0.45 162 153

25 42.3 0.51 0.37 0.46 72 74

50 40.2 0.59 0.305 0.47 51 53

75 40.2 0.48 0.35 0.51 58 61

100 40.0 0.44 0.365 0.53 60 63
aAverage aggregate radius Ragg (from Kratky analysis), volume fraction
of fractal Φfract, compacity κ, aggregate volume fraction Φagg, average
aggregation number ⟨Nagg⟩, and standard deviation of the distribution
in Nagg.

Figure 6. Silica structure in nanocomposites. (a) Reduced SAXS intensity I(q)/ΦSi with ΦSi = 8.5 vol %, chain mass 140 kg mol
−1, for D3-fractions 0,

25, 50, 75, and 100%. qbranch and qagg are indicated for the 100% D3 sample. (b) Same results for ΦSi = 16.7 vol %.
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increased. Performing the fit procedure with eq 6, the values of
⟨Ragg⟩ = π/qagg are determined and found to decrease from
about 50 to 40 nm, cf. Table 2. One may notice that the
saturation observed with the intensity levels in Figure 6 is
reflected here in the saturation of the ⟨Ragg⟩ values above 25%
D3, at around 40 nm. The same analysis has been applied to the
16.7%-nanocomposites, and a similar but steeper evolution is
found, cf. Table 3. In agreement with our previous silica-

concentration study, the aggregates thus occupy less space for
higher silica loadings for grafting fractions above 25%. The new
finding of the present study is that the average aggregate radius
⟨Ragg⟩ decreases and saturates as the grafting fraction is
increased in the matrix, for both silica volume fractions, and the
decrease is more pronounced at 16.7% than at 8.5%.
The final objective of our analysis is the determination of

internal aggregate characteristics, namely average compacity
and aggregation number. It is based on a quantitative analysis of
the scattering (eq 2) at intermediate wave vectors, i.e. the
scattering due to aggregates only. Therefore, the low-q structure

was fitted with a power law and subtracted. The result is shown
in Figure 8.

The intensity remaining after subtraction of the low-q power-
law is found to be strongly dependent on the fraction of grafted
chains. In the absence of grafting functions, the intensity
decreases across the intermediate q-range (q < 0.005 Å−1),
albeit in a weaker manner than before subtraction. As soon as
graftable chains are introduced in the nanocomposites, the
remaining intermediate-q scattering function levels off, and
approaches a plateau-like behavior. Within the framework of
our model, this remaining structure (Figure 8) at intermediate
wave vector is described by eq 2. The model focuses on one q-
value, on the plateau, and q* = 0.003 Å−1 was chosen. This
value satisfies the constraints on the apparent structure factor
(i.e., low-q plateau is reached, q → 0), as well as on the Guinier
regime of the average form factor of aggregates, cf. section II.
The procedure for the determination of κ developed in ref 56

is in four steps: (a) From the absence of a nearest neighbor
peak at qagg a polydispersity in aggregate size of the order of
30% is inferred. Knowing the average ⟨Ragg⟩, and assuming a
log-normal distribution, the complete size distribution is
constructed. (b) A first guess for the compacity κ is used to
construct a distribution function of aggregation numbers,
following eqs 3 and 4, and assuming identical compacity for all
aggregates. (c) On the basis of the quantitative analysis of the
TEM pictures, the fraction of (possibly fractal) branches Φfract

is used (eq 8) to calculate the volume fraction of aggregates
inside the branches. (d) Finally, the intensity level in the
intermediate q-range (at q*) is calculated using eq 2. The
apparent interaggregate structure factor for this specific
aggregate volume fraction Φagg is determined with eq 5, using
α = 0.6 to account for polydispersity. The average aggregate
form factor as given in section II can also be calculated knowing
the size- and Nagg-distribution function. The method can be
used in an iterative manner; i.e., a closer agreement with the
experimental intensity level can be sought by going back to step

Figure 7. Kratky plot q2I(q) vs q of nanocomposites with ΦSi = 8.5%,
in SBR matrix with % D3 = 0 to 100% as given in the legend. Inset:
Zoom on 0% D3 data with fit by sum of two log-normal functions with
parameters qagg and qSi.

Table 3. Results of the Analysis of SAXS Data of
Nanocomposites with 140 kg mol−1 Matrix and ΦSi ≈ 16.7
vol %a

% D3
⟨Ragg⟩ (nm)
± 5%

Φfract
± 5% κ ± 2%

Φagg
± 3%

⟨Nagg⟩
± 15% ΔNagg

0 49.4 0.52 0.575 0.55 171 162

0.63 0.505 0.52 150 142

25 42.1 0.68 0.385 0.64 74 76

50 36.1 0.73 0.35 0.66 41 46

75 32.9 0.66 0.38 0.66 36 39

100 31.3 0.66 0.365 0.70 29 32
aAverage aggregate radius Ragg (from Kratky analysis), volume fraction
of fractal Φfract, compacity κ, aggregate volume fraction Φagg, average
aggregation number ⟨Nagg⟩, and standard deviation of the distribution
in Nagg. Two sets of values are given for 0% D3: they are obtained from
two limiting estimations (see text for details).

Figure 8. Intensity I(q) after subtraction of the low-q power laws vs q
for intermediate q of nanocomposites with ΦSi = 8.5%, in 140 kg
mol−1 matrix with % D3 = 0 to 100% as given in the legend. Note that
the intensity for the 0% D3 sample differs from the others at
intermediate q.
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b and improving the compacity value. Equivalently, the
intensity values can also be tabulated by a program and the
compacity read off knowing the experimental intensity level.
For ΦSi = 8.5%, in absence of graftable chains, the resulting

aggregate compacity is very high, close to 55%. Taking into
account the aggregate radius determined by the Kratky plots (≈
50 nm), a high average aggregation number of about 160 is
found. This sample appears to have a singular structure as with
increasing fraction of graftable chains the compacity is found to
fluctuate around ≈35%. Our analysis yields average aggregation
numbers decreasing from 72 to ≈55. Similarly to our analysis as
a function of silica volume fraction,56 the width of the
distribution in aggregation number is very large. This is
reported in the form of ΔNagg, which is of the same order of
magnitude as ⟨Nagg⟩. All results are given in Table 2, where one
also finds the consequence of the saturation in intensity
observed in Figures 7 and 8: after a rather abrupt change,
aggregate radius, compacity and aggregation number level off to
more or less constant values for D3 values above 25%.
For ΦSi = 16.7%, the same procedure has been applied and

the results summarized in Table 3. The latter show the same
trends as the 8.5%-samples with the fraction of graftable chains
% D3. We have already noted with the Kratky analysis that the
aggregate radius decreases more steeply, from about 50 to 30
nm. The compacity is comparable to the 8.5%-case, i.e. it is very
high for 0% D3 (51−58%) and decreases to ≈37% with % D3.
Regarding the high values of Φagg, this is consistent with our
model of polydisperse aggregates (30%) as dense assemblies are
more easily obtained than in the case of monodispersity. Ragg
and κ result in aggregation numbers going down from about
150−170 to some 30 silica beads per aggregate. In Table 3, two
numbers are given for the 0% D3-sample, in order to get an
estimate of the error introduced by the interpolation of Φfract

needed for eq 8. The two values correspond to two extreme
choices of the slope of Φfract with ΦSi as done in the Appendix.
As one can see from the close agreement, choosing one slope or
the other has only a marginal influence on the result (and no
effect for higher % D3). To finish the model analysis of the
16.7% data, the polydispersity expressed through the width of
the dispersion ΔNagg is again found to be of the same order of
magnitude as ⟨Nagg⟩; i.e., the distribution of aggregation
numbers is very wide.
To summarize the influence of graftable chains on the

structure of silica aggregates in the nanocomposites, the TEM
pictures reveal that the large-scale structure is more
homogeneous in presence of graftable chains. The characteristic
mid-q feature in the scattered intensity is enhanced, and within
our quantitative model this is interpreted as smaller aggregates
(down to a radius of 40 nm for 8.5%, and to 30 nm for 16.7%),
containing less and less silica beads (down to some 55 or 30,
for 8.5% and 16.7%, respectively), with a high polydispersity,
and a compacity decrease down to the 35% range for both
volume fractions. The similarity of the aggregate characteristics
for different silica volume fractions56 is thus confirmed for low
and intermediate grafting fractions (50% D3), while at high
fractions the compacity stays constant and the aggregate size
decreases.

IV. DISCUSSION

We have studied the influence of the fraction of graftable chains
of the matrix polymer on the structure and rheology of
simplified industrial silica−SBR nanocomposites. As a first
question, one may consider to which extent grafting is

compatible with the morphology. The bound-rubber analysis
shows that about γ = 75% of the graftable chains are effectively
grafted, in spite of nanoparticle aggregation and the resulting
formation of large-scale silica-free channels (Figure 5). In order
to estimate the quantity of chains close enough to silica to be
grafted, one has to know the radius of gyration of the chains. In
Figure 9, we show the SANS scattering curves of perdeuterated

D3−SBR chains in two hydrogenated but otherwise identical
matrices (0 and 100% D3). The fit with a Debye function61,62

for q > 5.10−3 Å−1 gives a radius of gyration of 12 nm
(respectively, 13 mm) for H chains (respectively, D chains) in
both cases.
Note that the width of the channels of typically 100 nm (see

Figure 5) is superior to the radius of gyration Rg. For
comparison, we can consider a simple geometrical calculation
of pores describing the channels. The extension of the grafted
chains on the silica surface ranges from Rg to a maximum
length, which can be calculated through volume conservation in
the ‘dry brush’ case. We obtain thus a thickness between 12 nm
at low grafting density and 26 nm (taking into account the
advance of grafting) at the highest nominal grafting density
(100% D3).
A first estimate based on cylindrical pores shows that only a

fraction of 58% to 23% of the polymer in the channels is more
than 12 or 26 nm, respectively, from the surrounding filler
surface. As the fraction of branches Φfract is about 50% for
nonzero D3-fractions, the volume fraction of channels is also
about 50%, 58% (respectively 23%) of which is out of reach of
the filler surface, i.e., a total of 29% (respectively 11.5%) cannot
be grafted. Given the simplicity of the calculation, this is
reasonably close to the 25% found by the bound-rubber
analysis. A second estimate based on 2D-channels (sheets),
would give 38% (respectively 24%) of nongrafted chains. Note
that if 100% of the chains were grafted at the end of the mixing
procedure, the final morphology would not be compatible with
the one observed in Figure 5. There, a small fraction of the
polymer chains is geometrically unable to be grafted on the

Figure 9. Single-chain form factor for two H/D SBR matrices (Mn(H)
= 140 kg mol−1, Mn(D) = 163 kg mol−1) measured by small angle
neutron scattering. Red circles are for a mixture of 10% of deuterated
100% D3 chains in 90% of protonated 100% D3 chains. Blue squares:
same but the protonated chains are 0% D3. Lines are fits using a
Debye function.
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silica as estimated by the above calculation. Finally, such a
simple calculation leads to a self-consistent bound rubber value
of 75%.
The structure of silica aggregates in the nanocomposites was

studied by TEM and SAXS. It was found that the silica
structure becomes more homogeneous on the scale of branches
with increasing fraction of graftable functions, and the silica
aggregates become smaller in size and mass. A large
polydispersity of aggregates in size of 30% was deduced from
the absence of any structure peak. Here one should note that an
evolution of the size distribution toward higher monodispersity
(for the highest % D3 where the break in slope is more
pronounced) could lead to higher compacities. It would limit
the variation of κ, but is not envisaged in this study. The
aggregate size distribution functions were assumed to be log-
normal, and thus averages and moments could be determined.
However, due to the large polydispersity, the average aggregate
radius ⟨Ragg⟩ and the average aggregation number ⟨Nagg⟩ do not
correspond in the sense that the radius of an aggregate of
average mass is not the average radius. Therefore, for an easier
visualization of the size distribution, we give here the equivalent
radius of an average aggregate. For the 8.5% samples, these
equivalent radii decrease with the D3-fraction from 64 to 52
nm, and from 64 to 41 nm for the 16.7% ones. Most of the
aggregates are smaller than these radii, and the distribution can
be roughly characterized as lying mostly between ⟨Ragg⟩ and the
equivalent radius.
We have noted that the evolution of thermomechanical

history (Figure 1) and of the structural parameters seem to
saturate as a function of the fraction of graftable functions,
typically above 25% D3. The latter parameters can be directly
read off from the data, like the height of the intensity level
(Figures 6 and 8), or average aggregate radii deduced from the
Kratky-plot (Figure 7). Naturally, these evolutions translate in
the results of the data modeling, e.g., in the quantities ⟨Nagg⟩,
Φagg, and κ in Tables 2 and 3. In Figure 10, ⟨Ragg⟩ and ⟨Nagg⟩
are plotted as a function of % D3, for the low (8.5 vol %) and
the high (16.7 vol %) silica volume fraction.

From the analysis of the shape of the curves shown in Figure
10, it can be concluded that a saturation effect is indeed
observed: the curves decrease with % D3 and tend to a plateau
value. We have described the data by a simple exponential
decrease with a vertical offset, i.e., given by A + B exp(−% D3/
% D3c), where A and B are constants to be determined for each
function. The fit functions are shown in Figure 10. The typical
decay constant % D3c is 12.4% (Nagg) and 17.5% (Ragg), i.e., on
average 15 ± 2.5% for the samples with lower silica volume
fraction (8.5 vol %). It almost doubles for ⟨Nagg⟩, going from
12.4% to 22.9% for ΦSi = 8.5 vol % and 16.7 vol %, respectively.
For Ragg, % D3c is much higher (57%) at 16.7 vol %, which
reflects the more pronounced decrease in Ragg with D3 as
already discussed. In spite of this scatter in data, the analysis in
Figure 10 illustrates that a critical fraction of graftable functions
% D3c is needed to make the structure evolve, and that this
quantity is higher if more silica surface is available.
To understand the saturation of several observables with the

fraction of graftable chains, one may try to relate this feature to
the physical−chemical mechanism of grafting. Going back to
the quantity defined in eq 1, one may translate the matrix
composition (% D3) and availability of silica surface (ΦSi) into
the nominal grafting density on the silica surface, ρD3. The
values for ρD3, cf. Table 1, are in the range of 0.02−0.15 nm

−2,
the highest ρD3 being reached for % D3 equal to 100%. For the
composites with 8.5 vol %, the critical saturation values, % D3c
≈ 15%, correspond to ρD3

c = 0.022 nm−2, while for 16.7 vol %,
ρD3

c = 0.015 nm−2 is found (ignoring the very high value
related to Ragg). Taking into account the effective grafting, γρD3

c

becomes 0.017 nm−2 (and 0.011 nm−2 for 16.7 vol %,
respectively). For comparison, one may evaluate the order of
magnitude of maximum grafting as the crossover from a
mushroom to a brush regime. Below this crossover density, the
surface can be considered weakly grafted, while above it the
density is high enough to affect the polymer conformations
(chain stretching). Following a De Gennes approach, the order
of magnitude of the crossover is located at a critical density of
one chain per Rg

2,63,64 giving 0.007 nm−2 using the measured
unperturbed Rg values. The agreement within a factor of about
two makes it tempting to identify the critical grafting density
with the onset of the saturation regime that would thus vary
with the polymer chain length as MSBR

−1. For comparison, the
critical grafting density can also be compared to literature
values of grafting on colloidal nanoparticles in cases where
experiments are optimized for high grafting densities.65 In such
experiments, nanoparticles are usually individually suspended,
and sophisticated grafting techniques (“grafting from”) are used
for this optimization. The grafting density of initiator molecules
is typically in the 0.1−1 nm−2 range, but maximum final
polymer grafting densities on nanoparticles in solution lie
between 0.05 and 0.15 nm−2. Note that in our case the critical
grafting density does not correspond to a maximum possible
grafting, but to the threshold above which the grafted interfaces
tend to have similar properties. To summarize, it is not
surprising to encounter a saturation effect in grafting, for a ρD3

c-
parameter of the exponential decay of about 0.02 nm−2, leading
to a saturation in the structure of the samples, or of the torque
during the mixing process which can be associated with a
nonlinear rheological response. Finally, note that we do not
observe any enhancement of the aggregation state when the
grafting density goes above the critical density as observed by
Hasegawa et al.37

Figure 10. Evolution of structural parameters (⟨Nagg⟩, ⟨Ragg⟩) as a
function of fraction of graftable chains % D3 for ΦSi = 8.5% and 16.7%.
To illustrate the robustness of the method, two points at 0% D3 have
been calculated using as Φfract the upper and lower estimation in Table
3. The fits are exponential functions with offset in y.
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The linear rheological properties of the pure matrix were
found to be only weakly affected by the matrix composition.
The addition of a functional end-group changes the chain
dynamics only marginally. As the silica is added, the rheology
changes, and in particular the characteristic time is increased,
accompanied by an increase of the storage modulus at low
frequencies, and a decrease of the viscous contribution at high
frequencies. Theses rheological changes may be linked
differently to the matrix composition for high and low
frequency. At low frequency, increasing the amount of grafted
chains changes the flow behavior of the polymer matrix by
connecting it to the solid scaffold. The grafting may thus induce
a retardation of the flow and increase in terminal relaxation
time. At high frequency, the silica structure is modified for low-
D3 content and levels off at high content as shown in section
III.4, and later in Figure 10. This results in a change in the
aggregate volume fraction. Taking the data of Table 2, it is
found that Φagg increases by some 18% at ΦSi = 8.5%. To check
the impact of this change on the high-frequency reinforcement
factor of the storage modulus, we use the percolation law as a
function of the aggregate volume fraction Φagg in the branches
defined in ref.56 It leads to a modest increase in the modulus, of
up to ca. 10% by considering that we are below the critical
percolation volume fraction Φagg

c. In this calculation, only the
hydrodynamic contribution was assumed (Φagg

c = 56 vol % was
found for the 50% D3 series56). This is compatible with the
plateau modulus values obtained for the samples with 25% to
100% D3 (Figure 3a). However the 0% D3 sample displays a
higher plateau value (higher reinforcement) that would suggest
a lower Φagg

c. It means that this sample would be closer to
percolation.
Our previous analysis56 as a function of silica volume fraction

has shown that the silica network influences the low-frequency
slope of the elastic modulus. It also determines the reinforce-
ment of the high-frequency plateau. In the present paper, we
have shown that the silica structure is very similar (Figures 6
and 10, and Tables 2 and 3) above 25−50% D3 at a fixed silica
fraction (please note that it is difficult to judge on the
connectivity from the 2D-TEM pictures, and SAXS intensities
are identical). Therefore, the low-frequency changes in slope
observed when increasing the % D3 from 50 to 100% (at fixed
silica) must be attributed to the retarded relaxation of the
grafted polymer only, and thus depend on the grafting density.
Note that the evolution of the G′-slopes and relaxation times in
Figure 3 do not show any saturation. On the other hand,
regarding the high-frequency side, the observation of constant
modulus at fixed ΦSi suggests that the reinforcement in the
nanocomposite with at least 25% D3 is independent of the
chain grafting density and thus dominated by the filler
contribution (same aggregates characteristics in this % D3
range due to saturation). In this sense, the only impact of
grafting in this high-frequency range is that it can lead the
system closer to percolation at % D3 < 25% due to the
difference in filler arrangement.
In the introduction, the different mechanisms leading to

potential reaggregation have been discussed. The particularity
of our system is that grafting and aggregate formation happen
all at the same time. We have therefore presented a correlation
of the final structure with the initial control parameters, namely
the fraction of graftable chains (% D3). Our scattering results
(Figure 10) show that when increasing the grafting density (%
D3 increase), the reaggregation mechanism during mixing is

hindered (constant aggregation number above % D3 = 25−
50%).

V. CONCLUSION

We have applied a recently developed model relating
quantitatively the SAXS and TEM data to the silica micro-
structure in simplified industrial nanocomposites. The main
hypotheses of our model are an aggregate polydispersity of 30%
and identical compacity for all aggregates. The effect of silica
volume fraction and matrix composition expressed as the
fraction of graftable polymer chains has been studied. The
structure is described with a few parameters, namely the
average aggregation number (decreasing from 160 to 30 with
grafting), the aggregate compacity (55% at 0% D3 and then
≈35%), and the aggregate size (50 to 30 nm). A saturation
effect of the structural parameters with the fraction of graftable
chains is observed, suggesting a threshold in grafting density
below which the insufficient coverage of the silica surface makes
the system prone to structural changes. The linear rheology of
the nanocomposites has been reported, and was found to be
dominated by the matrix composition, in particular in the flow
regime. In a future article,66 the matrix composition will be
varied using both the fraction of graftable chains (% D3) and
the polymer chains molecular mass to change the grafting
density and study its role in the rheology and dispersion of
silica in SBR.

■ APPENDIX

The volume fraction of fractal branches Φfract is shown in Figure
11 for samples with various silica volume fractions and different

% D3. The measured points (plain symbols) suggest a
triangular shape (thick solid lines) leading to an almost
identical Φfract at high ΦSi, and a group of close values at 16.7%
silica. To test the limit of validity, we have considered a
radically different choice for the slope (dotted line), giving Φfract

Figure 11. Evolution of the volume fraction of fractal branches as a
function of the silica volume fraction in the nanocomposites. Plain
symbols are measured by image analysis of the TEM pictures, and
empty extrapolated Φfract. Thick solid lines display a triangular shape
whereas the dotted line shows a radically different estimation.
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= 52% instead of 63% at 0% D3. Both values have been used for
the results in Table 3.
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