Nanocomposites industriels simplifiés: analyse structurale et propriétés mécaniques
 Guilhem Baeza

- To cite this version:

Guilhem Baeza. Nanocomposites industriels simplifiés: analyse structurale et propriétés mécaniques. Matériaux. Université Montpellier II - Sciences et Techniques du Languedoc, 2013. Français. NNT: tel-00913636

HAL Id: tel-00913636
https://theses.hal.science/tel-00913636
Submitted on 4 Dec 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Collège

THĖSE
 Pour obtenir le grade de Docteur

Délivrée par l'Université de Montpellier 2
 Préparée au sein de l'école doctorale Information, Structures et Systèmes (12S)

Et de l'unité de recherche
UMR 5221 / Laboratoire Charles Coulomb

Spécialité : Physique

Présentée par Guilhem P. Baeza

Nanocomposites industriels simplifiés : analyse structurale et propriétés mécaniques

Soutenue le 12 novembre 2013 devant le jury composé de

M. Sanat, K. Kumar, Professeur, Université Columbia (New-York)	Examinateur
M. Kay Saalwächter, Professeur, Université Martin-Luther (Halle)	Examinateur
M. Christian Ligoure, Professeur, Université de Montpellier 2	Examinateur
M. François Lequeux, Directeur de recherche, CNRS-ESPCI (Paris)	Rapporteur
M. Wim Pyckhout-Hintzen, Docteur, Institut für Festkörperforschung (Jülich)	Rapporteur
M. Julian Oberdisse, Directeur de recherche, CNRS - Université de Montpellier 2	Directeur
M. Marc Couty, Docteur, Centre de technologie de Ladoux (Clermont-Ferrand)	Co-directeur
M $^{\text {me }}$ Anne-Caroline Genix, Maître de conférences, Université de Montpellier 2	Co-directrice

Partenaires et Financement :

Remerciements

Je voudrais commencer par remercier Jean-Louis Sauvajol, le premier directeur du récent laboratoire Charles Coulomb pour m'avoir accueilli au sein de cette grande communauté qu'est la physique montpelliéraine. J'en profite également pour remercier tout le personnel administratif du L2C et en particulier Jean-Christophe, Adoration, Doris et Tina qui m'ont souvent guidé dans le labyrinthe des procédures et de la «paperasse».

Je suis très reconnaissant à l'ensemble des membres de mon jury. Je remercie ainsi, François Lequeux et Wim Pyckhout-Hintzen pour avoir accepté de jouer le rôle de rapporteurs, Christian Ligoure pour la présidence de ce jury cosmopolite, et enfin, Sanat Kumar et Kay Saalwächter pour avoir accepté de participer en tant qu'examinateurs extérieurs.

Je veux ici exprimer toute ma gratitude et mon plus grand respect à mes deux encadrants Julian Oberdisse et Anne-Caroline Genix qui m'ont énormément appris aussi bien scientifiquement que personnellement. Je reste aujourd'hui intimement persuadé que notre《petite équipe», son mode de fonctionnement, et l'ambiance qui a régné en son sein ont été les clés de la réussite de nos travaux et je suis sur que nos chemins se croiseront de nouveau. De la même façon, je remercie mon troisième «directeur» chez Michelin, Marc Couty, pour sa confiance, ses conseils et son exigence qui ont attisé ma curiosité scientifique et ma soif de savoir.

Je remercie également toutes les personnes qui ont contribué scientifiquement à cette thèse en commençant par Amélie Banc qui s'est chargée de la mise en route de mon travail et avec qui j'ai pu échanger à de nombreuses reprises tout au long de ces trois années. Je pense aussi à nos collègues de Saclay et Clermont-Ferrand avec qui nous avons largement collaboré : Jacques, François, Adrien, Nathalie, Christophe (et son équipe), Laurent, Rachid et les autres. Je tiens aussi à souligner le travail des équipes du L2C, notamment le support technique de Philippe D., Philippe G., Ty, Jean-Marc, Raymond, Christelle, Pascal...

Cette thèse a été l'occasion de rencontrer bon nombre de collègues scientifiques en Europe à travers les nombreuses expériences très enrichissantes que j'ai pu mener. En premier lieu, je voudrais remercier les «local contacts» de l'ESRF, de l'ILL, de Soleil, du LLB et du FRM2 : respectivement Jérémie Gummel, Ralph Schweins, Florian Meneau, Didier Lairez et Zhenyu Di. Je n'oublie pas non plus Angel Alegria (San Sebastian), Anas Mujtaba (Halle) et Claire Negrell (Montpellier) qui par leur expertise ont contribué à notre compréhension des nanocomposites.

D'autre part je tiens à saluer l'équipe «matière molle» du L2C pour sa bonne humeur, depuis les stagiaires de passage aux chercheurs titulaires. Merci à Martin, Luca, Michel, Antonio, Domenico (in bocca al lupo per l'anno prossimo), Christophe, et Laurence pour leur bienveillance. Merci à mes camarades thésards, Elisa, Guillaume et Mohsen pour cette folle semaine à Rimini et bonne chance aux derniers arrivés Giuseppe, Clara, Valentin, Mayssa, Céline et Xiaolu.

Ces pages de remerciements sont également pour moi l'occasion de me rappeler l'ensemble de ces huit années d'études et des personnes qui ont joué un rôle clé dans ma progression. Je pense tout particulièrement à M. Mahiet mon professeur de physique-chimie de terminale, qui par son enseignement m'a véritablement transmis l'amour des sciences et à Eric Anglaret, professeur à Polytech', qui m'a considérablement soutenu lors de mon passage en thèse.

Les personnes qui ont partagées ma vie en dehors de la thèse ont eu, elles aussi, un rôle majeur quant à ce projet de vie, et même si leurs oreilles ont souvent entendu la même rengaine, elles ont su rester à l'écoute... Un grand merci à mes amis les plus proches, Alexy (23 ans après - félicitations pour tout), Anthony, Guilhem, Ugo, Maxime, Brice, et à Laure, Julien, Rosa, David, Aurélien, Rayan et toute la bande créole ..

Je ne peux bien sur pas clore toutes ces belles paroles sans citer ma vétérinaire personnelle rencontrée lors d'une (im)mémorable soirée d'été : le Dr. Nel (Déborah pour les intimes), qui partage mes jours et mes nuits depuis maintenant plus de deux ans, et avec qui je l'espère de tout cœur, l'aventure ne fait que commencer.

Pour terminer, (last but not least), je remercie mes parents et leurs nouvelles moitiés respectives Yves et Pilar qui font aujourd'hui parties intégrantes de la famille. Ils m'ont donné le goût d'apprendre et de me dépasser, je leur en serai toujours reconnaissant. Merci à mes nombreux cousins (Alex, Batou, Raph ...) ainsi qu'à mon oncle et ma tante Jean-Yves et Nadine pour leur conseils avisés.

Merci à mes frères Quentin et Mathieu et à ma sœur Lucile.

Le vrai point d'honneur n'est pas d'être toujours dans le vrai. Il est d'oser, de proposer des idées neuves, et ensuite de les vérifier.
P.G. De Gennes

Sommaire

Introduction générale 9

1. Introduction et état de l'art 14
1.1. Physique des polymères 14
1.1.1. Généralités et structure statique 14
1.1.2. Viscoélasticité et dynamique des polymères 18
1.1.3. Le caoutchouc 22
1.2. Les charges 24
1.2.1. Aspect géométrique et nature 24
1.2.2. La silice 24
1.2.3. Etats de surface. 27
1.3. Nanocomposites 29
1.3.1. Etat de dispersion 29
1.3.2. Courte revue des méthodes de formulation. 33
1.3.3. Systèmes «Industriels» SBR-silice 34
1.3.4. Systèmes « Modèles » SBR-silice. 35
1.4. Renforcement 35
1.4.1. Modèles hydrodynamiques et percolation 36
1.4.2. Couche vitreuse, altération du polymère 39
2. Section expérimentale 42
2.1. Mise en œuvre des nanocomposites 42
2.1.1. Le système industriel simplifié 42
2.1.2. Formulation des échantillons 《 gonflés » 45
2.2. Analyse de gomme liée <Bound Rubber» 46
2.3. Diffusion du rayonnement aux petits angles 48
2.3.1. Généralités sur la diffusion 48
2.3.2. Prise en compte de la polydispersité 52
2.3.3. Application aux systèmes agrégés 55
2.3.4. Cas des polymères 57
2.3.5. Conformation de chaîne dans un composite 58
2.4. Autres techniques de caractérisation 59
2.4.1. Analyse mécanique dynamique / rhéologie 59
2.4.2. Spectroscopie diélectrique à large bande 61
3. Analyse structurale 65
3.1. Analyse du polymère et de la charge 65
3.1.1. Matrice pure 65
3.1.2. Silice hautement dispersible en suspension 66
3.2. Variation du taux de charge 67
3.3. Variation du taux de polymère fonctionnel 78
3.4. Impact combiné de la masse molaire et des fonctions D3 84
4. Propriétés mécaniques 92
4.1. Variation du taux de charge 92
4.2. Variation du taux de polymère fonctionnel D3 96
4.3. Impact de la masse molaire 99
5. Propriétés diélectriques 105
5.1. Etude de la matrice - relaxations α et β 106
5.2. Cas des composites industriels simplifiés 108
5.3. Impact de la formulation 110
5.3.1. Influence du taux de charge 111
5.3.2. Influence du taux de polymère fonctionnel 113
6. Relations : formule, structure et propriétés 117
6.1. Corrélations formule/structure 117
6.1.1. Désagglomération de la silice 117
6.1.2. Saturation due au greffage 120
6.1.3. Echantillons gonflés 122
6.2. Compréhension des propriétés mécaniques via le lien formule - structure. 130
6.2.1. Greffage et percolation 130
6.2.2. Comportement à iso- $\rho_{\mathrm{D} 3}$ 134
6.2.3. Couche vitreuse ($\mathrm{RMN}{ }^{1} \mathrm{H}$ à bas champ) 136
Conclusion générale 143
Annexes 146
A1. Nanocomposites 《 modèles» 148
A2. Autres résultats sur la structure des échantillons industriels simplifiés. 180
A3. Pourcentage élastomère 184
A4. Contraste en diffusion du rayonnement 186
A5. Publications 192
A6. (confidentielle) 221
Bibliographie 229
Résumés 239

Introduction Générale

Introduction générale

Al'heure où les crises économiques se succèdent et où les problèmes écologiques, notamment liés à l'énergie, se font menaçants, la course à l'innovation et au progrès scientifique menée par les entreprises et les laboratoires académiques à travers le monde apparaît comme être un moyen efficace pour amorcer la mutation industrielle et faire évoluer les habitudes de production et de consommation. L'industrie automobile qui produit et vend aujourd'hui plus de 60 millions de véhicules par an à travers le monde est bien entendu un acteur majeur des enjeux sociauxéconomiques globaux. De même, l'ensemble des équipementiers fournissant les grands groupes assembleurs réalise un chiffre d'affaire annuel supérieur à 10 milliards d'euro mettant en évidence le poids considérable du secteur sur l'économie mondiale. L'innovation dans le domaine est permanente et l'apparition de moteurs hybrides et électriques permet d'envisager un avenir meilleur pour les constructeurs faisant de l'automobile un moyen de transport encore incontournable pour les prochaines décennies. La demande en véhicules étant toujours présente bien qu'elle ait également subi les séismes économiques de ces dernières années permet donc aux équipementiers de se projeter sur de nouveaux marchés.

L'un des secteurs les plus importants associés aux transports est la fabrication des pneumatiques. En France, l'entreprise Michelin voit le jour en 1889, cinquante ans après le dépôt du brevet sur la vulcanisation du caoutchouc par Charles Goodyear (1839). L'entreprise clermontoise s'est largement développée depuis lors et reste aujourd'hui l'une des rares entreprises françaises leader mondial dans son domaine. La culture de la recherche est importante chez Michelin, son implantation à travers le monde et ses nombreux partenariats académiques lui assure d'être à la pointe de la technologie quant à la production et à la caractérisation des matériaux utilisés dans la fabrication de ses pneumatiques. Récemment, le lancement du pneumatique Energy Saver a clairement montré la prise de conscience de l'entreprise quant aux menaces qui pèsent sur l'environnement s'inscrivant ainsi dans le cadre des problématiques actuelles.

Cette thèse CIFRE est le fruit de la collaboration entre l'entreprise auvergnate et le Laboratoire Charles Coulomb à Montpellier. Son but est d'apporter de nouveaux éléments de compréhension sur la structure des nanocomposites silice-polymère, largement présents dans la formulation des pneumatiques, notamment dans leurs bandes de roulement. L'approfondissement des connaissances dans ce domaine permettra à terme d'ajuster les propriétés des matériaux en fonction des besoins, par exemple, de diminuer la consommation de carburant en limitant les transferts énergétiques avec le sol, de renforcer la tenue de route ou de favoriser leur résistance à l'usure.

Les matériaux traditionnellement utilisés dans l'industrie pneumatiques depuis plus d'un siècle sont des matériaux de pointe dits «composites» ou «nanocomposites» à matrice polymère. Ils sont majoritairement composés de caoutchouc et de charges renforçantes. Le caoutchouc provient traditionnellement de l'exploitation de l'hévéa (coagulation du latex) mais son coût élevé et ses propriétés physico-chimiques limitées ont peu à peu mené à son remplacement par un caoutchouc synthétique formulé à base de monomères issus du pétrole : le Styrene-Butadien-Rubber (SBR) dont le fondu (non réticulé) a été étudié dans cette thèse.

Concernant les charges, le noir de carbone a longtemps été le seul composé employé pour renforcer les matrices polymères jusqu'à l'apparition de la silice hautement dispersible en 1992 permettant ainsi la production de matériaux aux propriétés optimisées. La création de cette nouvelle génération de pneumatiques dits «verts » a ainsi occasionné le lancement du «compteur vert Michelin» évaluant en temps réel les économies de carburant à l'échelle mondiale occasionnées par cette avancée technologique. L'économie estimée depuis 1992 se monte ainsi à environ 15 milliards de litres de carburant soit 39 millions de tonnes de CO_{2}. Rapporté à une échelle plus concrète, cela correspond aux émissions d'une ville comme Montpellier chaque année (250 000 personnes).

Le compteur vert Michelin
Ce travail de thèse s'effectue dans une logique de mesure et de caractérisation expérimentale. Bien qu'il soit résolument tourné vers la compréhension fondamentale, il se veut également être une contribution au développement d'un modèle physique décrivant les processus mis en jeu dans les nanocomposites. L'établissement d'un tel modèle a notamment pour but de décrire l'agrégation des charges, l'état des chaînes polymères et le renforcement macroscopique. A partir de ces données, il sera alors possible de passer d'une formulation empirique basée sur le lien formule-propriétés à une formulation optimisée dans laquelle l'évolution des propriétés en fonction de la formulation sera expliquée par un changement de structure des charges.

Dans ce cadre, nous nous intéressons aux matériaux dits «industriels simplifiés » produits en phase solide à base de SBR et de silice précipitée selon un procédé très proche de celui employé pour la fabrication des véritables matériaux destinés aux pneumatiques. Leur étude concerne la description des corrélations entre formulation (taux de charge, chimie du système), structure des charges et propriétés macroscopiques.

Nous proposons également en annexe 1 la production et l'étude de matériaux nanocomposites dits «modèles», basés cette fois-ci sur une silice colloïdale et formés par évaporation de solvant (《Solvent Casting»). Ces matériaux modèles, plus facilement caractérisables du point de vue de la structure, permettront notamment de remonter à des informations complémentaires concernant les interactions entre charges et polymère.

Une grande partie de la caractérisation des matériaux s'est faite par diffusion aux petits angles (Small Angle Scattering). Cette technique largement expliquée au chapitre 2 et dont les résultats sont présentés au chapitre 3 ainsi qu'en annexes permet d'obtenir une grande quantité d'informations structurales sur les composites. La microscopie électronique (MEB/MET) donnant accès à des coupes 2D du matériau a été utilisée de manière quantitative permettant ainsi de fournir des données chiffrées à la modélisation de la structure des charges dans les composites industriels simplifiés.

Le savoir-faire lié à la production des matériaux ainsi que les connaissances scientifiques sont ici combinés pour apporter des réponses aussi bien qualitatives que quantitatives sur la morphologie des nanocomposites et faire le lien avec leurs propriétés macroscopiques par le biais d'une loi de comportement «structure/propriétés ». Ce travail s'articule en six grands chapitres détaillés ci-dessous:

Chapitre 1: Introduction et état de l'art

Dans ce premier chapitre nous revenons sur la physique des polymères, notamment sur leurs propriétés viscoélastiques. Nous nous attachons ensuite à définir une charge renforçante, sa géométrie, son état de surface et sa nature. Dans le cas de la silice, nous nous référons à différents travaux permettant de distinguer clairement les composites modèles et les composites industriels. Finalement, nous étudions la littérature sur les matériaux composites de façon générale puis de manière plus ciblée dans le cas des caoutchoucs renforcés.

Chapitre 2:Section expérimentale

Cette partie traite des informations relatives aux expériences menées tout au long de la thèse. Nous revenons dans un premier temps sur les modes de formulations respectifs des deux familles de composites (phase solide et évaporation de solvant) ainsi que sur les méthodes de caractérisation de leur structure et des propriétés mécaniques et électriques qui leur sont associées. On définit en particulier tous les concepts utiles pour la diffusion de rayonnement aux petits angles dans un cas simple, puis dans des cas plus complexes prenant en compte l'agrégation et la polydispersité en taille.

Chapitre 3 : Analyse structurale

Ce chapitre reprend en détail tous les résultats de diffusion de rayons-X (et neutrons) aux petits angles et de microscopie électronique réalisés sur les échantillons industriels simplifiés. Il est divisé en trois parties dans lesquelles nous traitons l'impact du taux de charge via un modèle quantitatif original, puis l'impact du taux de polymère fonctionnel et finalement celui de la masse molaire du SBR sur la structure multi-échelle des nanocomposites.

Chapitre 4: Propriétés mécaniques

Cette partie est consacrée à l'étude du comportement mécanique des composites industriels simplifiés. De même que pour le chapitre précédent, les résultats sont présentés selon trois axes : impact du taux de charge, de la quantité de polymère fonctionnel et de la masse molaire du polymère. Deux modèles «semi-empiriques» permettant de décrire le renforcement en fonction du taux de charge y sont proposés.

Chapitre. 5 : Propriétés diélectriques

Dans le but de compléter les informations extraites des essais mécaniques, deux séries d'échantillons chargés avec de la silice hautement dispersible ont été analysées en spectrométrie diélectrique à large bande. Les informations récoltées grâce à cette technique ont permis de valider les hypothèses faites au chapitre 4 concernant la percolation des charges.

Chapitre. 6 : Etude des corrélations : formule, structure et propriétés

Ce dernier chapitre est l'occasion de revenir sur l'ensemble des résultats pour faire ressortir les points importants de la thèse. Nous y discutons de l'impact de la formulation sur la structure des charges et sur les propriétés mécaniques à travers l'ensemble des données expérimentales produites. De nouvelles expériences de diffusion sur des échantillons《gonflés» semblent valider une grande partie des hypothèses structurales alors que des essais complémentaires d'analyse mécanique ou de résonnance magnétique nucléaire (RMN) achèvent le travail de caractérisation.

Les annexes présentées à la fin de ce manuscrit complètent notre vision des nanocomposites SBR/silice en proposant l'étude moins systématique de systèmes différents de ceux étudiés dans le corps de thèse.

Annexe 1: Nanocomposites modèles

Nous présentons dans cette partie l'ensemble des résultats concernant les composites produits en «solvent casting» à partir de silice colloïdale. Nous traitons dans un premier temps l'influence de la formulation (taux de charge, taux de polymère fonctionnel, masse molaire du SBR, ...) sur la structure des charges via une grande campagne de mesure de diffusion et de microscopie avant de nous intéresser brièvement au comportement mécanique. A terme, les échantillons modèles doivent nous renseigner sur les interactions charge-polymère du fait de l'analyse structurale facilitée par la géométrie très bien définie des billes de silice.

Annexe 2:Autres résultats sur les nanocomposites industriels simplifiés
Nous traitons ici brièvement quelques essais effectués via les mélangeurs internes et externes concernant leur impact sur la dispersion de la silice dans les composites industriels.

Annexe 3 : Pourcentage élastomère

Le pourcentage élastomère (pce) est une unité couramment utilisée en caoutchouterie, nous donnons ici sa définition et faisons le lien avec les grandeurs physiques traditionnelles.

Annexe 4: Contraste en diffusion du rayonnement
Cette dernière annexe regroupe les informations nécessaires au calcul théorique du contraste en diffusion du rayonnement (lumière, rayons-X ou neutrons) et rappelle la méthode de la «variation de contraste» permettant de le mesurer expérimentalement.

Annexe 5 : Publications

Nous donnons ici les références des publications écrites et orales relatives aux travaux menés dans cette thèse.

Annexe 6 : confidentielle

1. Introduction et état de l'art

1. Introduction et état de l'art

1.1. Physique des polymères

Dans ces travaux, nous cherchons à comprendre l'impact de la structure de charges renforçantes sur les propriétés de fondus de polymères. Le comportement mécanique de ces derniers est lié aux caractéristiques physico-chimiques et topologiques des chaînes qui les composent, il est donc crucial d'étudier le polymère pur avant d'aborder le matériau composite.

1.1.1. Généralités et structure statique

Un polymère est une macromolécule formée par la répétition d'un motif chimique. Leur synthèse consiste à «empiler» des monomères les uns sur les autres pour obtenir des «chaînes», on parle alors de polymérisation. Dans l'industrie, on retrouve fréquemment les polymérisations dites radicalaires et ioniques [1].

A l'issue de la synthèse, la longueur moyenne des chaînes peut être évaluée via leur masse molaire. On définit ci-après la masse molaire moyenne en nombre $\overline{\mathrm{M}_{\mathrm{n}}}$ et la masse molaire moyenne en masse $\overline{\mathrm{M}_{\mathrm{w}}}$, respectivement $1^{\text {er }}$ et $2^{\text {ème }}$ moment de la distribution en taille des chaînes permettant de calculer l'indice de polymolécularité I_{p} comme :

$$
\begin{gather*}
\overline{\mathrm{M}_{\mathrm{n}}}=\frac{\sum_{\mathrm{i}} \mathrm{~N}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{~N}_{\mathrm{i}}} \tag{1.1}\\
\overline{\mathrm{M}_{\mathrm{w}}}=\frac{\sum_{\mathrm{i}} \mathrm{~N}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}} \mathrm{~N}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}} \tag{1.2}\\
\mathrm{I}_{\mathrm{p}}=\frac{\overline{\mathrm{M}_{\mathrm{w}}}}{\overline{\mathrm{M}_{\mathrm{n}}}} \tag{1.3}
\end{gather*}
$$

Pour $\mathrm{I}_{\mathrm{p}}=1$, les chânes ont toutes la même masse et $\overline{\mathrm{M}_{\mathrm{n}}}=\overline{\mathrm{M}_{\mathrm{w}}}=\mathrm{M}$
N_{i} : Nombre de chaîne de masse M_{i}
M_{i} : Masse de la chaîne d'indice i.

L'organisation générale de la chaîne dans l'espace - sa conformation - est donnée par l'orientation de chaque unité de répétition. Cette conformation est associée d'un point de vue thermodynamique au concept d'entropie apparenté au désordre qui pour un polymère est maximisé de façon spontanée (énergie libre négative). Ainsi, une sollicitation extérieure menant à une déformation de la chaîne change la conformation et génère une force de rappel $\overrightarrow{\mathrm{F}}$ («ressort entropique») vers l'état le plus probable. Cette force est définie par :

$$
\begin{equation*}
\overrightarrow{\mathrm{F}}=-\frac{3 \mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{nl}^{2}} \overrightarrow{\mathrm{R}} \tag{1.4}
\end{equation*}
$$

k_{B} : Constante de Boltzmann
n : Nombre de segments (unité de répétition)
1: Longueur d'un segment
$\overrightarrow{\mathrm{R}}$: Vecteur définissant la distance bout à bout de la chaîne

Un exemple très concret est l'étirement des chaînes sous une contrainte mécanique menant à leur orientation dans une direction préférentielle réduisant de fait l'entropie en émettant de la chaleur (exothermie).

De façon générale on définit la taille de la pelote statistique de polymère par son rayon de giration caractérisant la distribution de masse autour du centre de gravité de la chaîne et satisfaisant [2]:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{g}}=\mu \mathrm{M}^{\nu} \tag{1.5}
\end{equation*}
$$

v : Exposant dépendant de la «qualité» de l'environnement (contribution enthalpique). Dans un environnement incompatible avec le polymère celui-ci a tendance à s'effondrer sur lui-même ($\nu=0.33$), au contraire en bon solvant, la chaîne est gonflée et tend donc à occuper un espace plus important ($\nu \approx 0.6$) alors qu'en fondu ($=$ solvant thêta) la chaîne n'est pas contrainte ($\nu=0.5$).
μ : Préfacteur dépendant du type de polymère, typiquement proche de 0.37 pour un rayon de giration exprimé en \AA et une masse molaire en $\mathrm{g} / \mathrm{mol}$.

En outre, on pourra noter que dans le cas idéal (distribution Gaussienne), pour un fondu de polymère, la distance bout à bout et le rayon de giration sont liés par [3]:

$$
\begin{equation*}
\left\langle\mathrm{R}_{\mathrm{g}}{ }^{2}\right\rangle=\frac{\left\langle\mathrm{R}^{2}\right\rangle}{6} \tag{1.6}
\end{equation*}
$$

En termes de microstructuration de la chaîne on a:

$$
\begin{equation*}
\left\langle\mathrm{R}^{2}\right\rangle=\mathrm{C}_{\infty} \mathrm{nl}^{2}=\mathrm{Nb}^{2} \tag{1.7}
\end{equation*}
$$

1: Longueur caractéristique du monomère. La liaison C-C vaut environ $1.54 \AA$.
n : Nombre d'unité de répétition par châne (degré de polymérisation)
N: Nombre d'unité de Kuhn
C_{∞} : Flexibilité locale de la chaîne
b: Longueur de Kuhn correspondant à la longueur caractéristique à partir de laquelle l'orientation des unités de répétions dans la chaîne n'est plus corrélée (typiquement de l'ordre de 3 à 5 unités).

Les polymères peuvent se présenter sous différentes formes, on parle d'homopolymères lorsque l'unité de répétition est identique dans toute la chaîne et de copolymères lorsque l'on retrouve plusieurs motifs. L'enchaînement de ces différents motifs, ainsi que leurs fractions volumiques respectives jouent un rôle important (cf.1.1.3) sur les propriétés physicochimiques des copolymères, on en définit généralement trois types (Fig.1.1) :

- «statistique » où l'enchaînement se fait de façon aléatoire.
- «à blocs» où les unités de répétition d'un même type sont regroupées.
- 《alternés » où les différents motifs s'enchainent à tour de rôle.

Nous noterons que le nombre de motifs différents ne se limite pas à deux, on peut trouver par exemple des copolymères 《tri-blocs».

Homopolymères

$\ldots-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-\ldots$

Copolymères

statistiques
...-A-A-B-A-B-B-B-A-B-A-A-A-A-B-...
à blocs (linéaire)
$\ldots-A-A-A-B-B-A-A-A-B-B-A-A-A-B-B-\ldots$
alternés
...-A-B-A-B-A-B-A-B-A-B-A-B-A-B-...
à blocs (greffé)
$\begin{array}{ccc}\ldots-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-\ldots \\ 1 & 1 & 1 \\ B & B & B \\ 1 & 1 & 1 \\ B & B & B\end{array}$

Figure 1.1 : Structure statique générale des polymères (homo- et co-).

La structure moléculaire particulière des polymères confère au matériau qu'ils composent des propriétés macroscopiques inhabituelles en comparaison avec des solides ou des liquides usuels. En termes de propriétés mécaniques, l'état solide se caractérise notamment par :

$$
\begin{equation*}
\sigma=\mathrm{E} \varepsilon=\mathrm{G} \gamma \tag{1.8}
\end{equation*}
$$

σ : Contrainte (Pa)
ε : Déformation en traction
E: Module élastique en traction (Pa)
γ : Déformation en cisaillement ou torsion
G : Module élastique en cisaillement ou torsion (Pa)
Nous rapellons brièvement ici que les deux modules élastiques (G et E) sont reliés par le coefficient de poisson μ_{p} (≈ 0.5 pour un caoutchouc) par :

$$
\begin{equation*}
\mathrm{E}=2 \mathrm{G}\left(1+\mu_{\mathrm{p}}\right) \approx 3 \mathrm{G} \tag{1.9}
\end{equation*}
$$

L'état liquide est quant à lui décrit par la viscosité telle que :

$$
\begin{equation*}
\sigma=\dot{\gamma} \eta \tag{1.10}
\end{equation*}
$$

η : Viscosité du liquide (Pa.s)
$\dot{\gamma}$: Vitesse de déformation en cisaillement $\left(=\frac{d \gamma}{d t}\right)$

Dans le cas d'un fondu de polymère, les propriétés rhéologiques sont très dépendantes de la structure des chaînes notamment en termes de masse molaire, d'enchevêtrements physiques et/ou chimiques ou de mobilité (cf.1.1.2). Ce comportement à mi-chemin entre un solide et un liquide, fortement dépendant de la température ou de la fréquence de sollicitation est appelé viscoélasticité, il est formalisé dans le cas le plus simple par le modèle de Maxwell (Fig.1.2) consistant à la mise en série d'un amortisseur (contribution visqueuse) et d'un ressort (contribution élastique) :

Figure 1.2 : Modèle rhéologique de Maxwell.

Lors d'un essai mécanique, la contribution visqueuse occasionnant un déphasage entre la contrainte appliquée et la réponse en déformation, on introduit le module d'élasticité complexe $G^{*}(\omega)$ définit dans le cas Maxwellien par :

$$
\begin{equation*}
\mathrm{G}^{*}(\omega)=\mathrm{G}^{\prime}(\omega)+\mathrm{i} \mathrm{G}^{\prime \prime}(\omega)=\mathrm{G}_{\mathrm{N}}^{0}\left(\frac{\omega^{2} \tau_{\mathrm{d}}{ }^{2}}{1+\omega^{2} \tau_{\mathrm{d}}{ }^{2}}+\mathrm{i} \frac{\omega \tau_{\mathrm{d}}}{1+\omega^{2} \tau_{\mathrm{d}}{ }^{2}}\right) \tag{1.11}
\end{equation*}
$$

$\mathrm{G}^{\prime}(\omega)$: Module de stockage (relatif à l'élasticité) (Pa)
$\mathrm{G}^{\prime \prime}(\omega)$: Module de perte visqueuse (relatif aux pertes visqueuses) (Pa)
τ_{d} : Temps caractéristique de relaxation du polymère, $\tau_{d}=\eta / G$
Nous notons que de façon plus générale les deux composantes G' et G" du module viscoélastique G^{*} sont liées par les relations de Kramers-Kronig [4] imposant qu'à $G^{\prime}(\omega)$ donné il ne peut correspondre qu'un seul $G^{\prime \prime}(\omega)$ et vice versa.

Finalement, d'un point de vue ingénierie, on a l'habitude de classer les matrices polymères en trois grandes familles:

- Les fondus (cf.1.1.2.), dans lesquels les chaînes ne sont liées que par des liens physiques (enchevêtrements) ce qui implique leur écoulement à haute température. Cette propriété est notamment très utile pour la mise en forme par moulage ou leur recyclage. Un exemple bien connu est le polystyrène.
- Les fondus hautement réticulés, dans lesquels les chaînes sont liées chimiquement par une tierce molécule (peroxyde ou amine) de façon irréversible ce qui supprime l'écoulement à haute température et rend donc leur recyclage plus difficile. On peut citer en exemple les résines époxy.
- Les fondus faiblement réticulés (élastomères), dans lesquels les chaînes sont liées chimiquement mais où le nombre de ces liens est beaucoup plus faible que dans le cas précédent. On parle typiquement de vulcanisation des poly-diènes où les chaînes forment un réseau via des ponts sulfures [5].

1.1.2. Viscoélasticité et dynamique des polymères

Nous nous intéressons ici au comportement mécanique des fondus de polymères, linéaires, amorphes, tels que le caoutchouc non-réticulé (SBR, NR ...) à basses déformations (régime d'élasticité linéaire). Comme expliqué dans la section précédente, ce type de matériau présente un comportement très différent en fonction de la température que nous nous attachons ici à décrire via l'emploi d'une expérience de rhéologie type présentée Fig.1.3, à fréquence constante.

Cette section s'articule selon 4 axes qui reprennent les concepts importants permettant de décrire le comportement de ce type de polymère dans chaque gamme de température : état vitreux, transition vitreuse, état caoutchoutique et écoulement. On notera ici que le principe de superposition temps-température permet de raisonner aussi bien avec l'une ou l'autre des grandeurs. En effet, on associera à une température basse un temps court (ou une fréquence de sollicitation élevée) et à une température haute un temps long (ou une fréquence faible).

Figure 1.3 : Comportement viscoélastique (module élastique E) des polymères non-réticulés en fonction de la température. Les mécanismes responsables des relaxations sont schématisés [6].

a) Etat vitreux

Lorsque la température du fondu est inférieure à sa température de transition vitreuse ($\mathrm{T}<$ T_{g}), le polymère se trouve dans un état vitreux (ou gelé) dans lequel la mobilité des chaînes est inexistante et le module élastique vaut typiquement 1 GPa . Dans cette zone, on observe cependant des changements locaux de conformations (très rapides) tels que des vibrations de liaisons ou des rotations de groupes méthyles. Un temps caractéristique est associé à ce processus communément appelé relaxation β difficilement mesurable en rhéologie mais détectable en spectroscopie diélectrique (cf. chapitre 5). De façon générale chaque relaxation est associée à un temps caractéristique définissant le temps que le système met pour revenir à l'équilibre après qu'il ait subi une perturbation (différentes échelles espace/temps selon la nature de la relaxation, cf. ci-après \boldsymbol{b}) et \boldsymbol{c})).

Cette transition (β) suit une loi de type Arrhenius via le principe de superposition tempstempérature telle que:

$$
\begin{equation*}
\tau=\tau_{0} \exp \left(\frac{E_{a}}{k_{B} T}\right) \tag{1.12}
\end{equation*}
$$

τ : Temps caractéristique de relaxation β à une température donnée T
τ_{0} : Temps caractéristique de la relaxation β à la température de référence ($\mathrm{T} \rightarrow \infty$)
E_{a} : Energie d'activation du processus

b) Transition vitreuse

A partir de la température de transition vitreuse $\left(T=T_{g}\right)$, l'énergie thermique du polymère est suffisante pour permettre des mouvements coopératifs dans le réseau de chaînes. On parle ici de transition α clairement observable en rhéologie : le module élastique chute brutalement pour atteindre une valeur typique de l'ordre de 1 MPa . La transition α suit la loi WLF du nom des chercheurs qui l'ont mise au point (William-Landel-Ferry) et s'exprime pour $\mathrm{T}=\mathrm{Tg}$ $\pm 100^{\circ} \mathrm{C}$ de la façon suivante [7]:

$$
\begin{equation*}
\log \left(\mathrm{a}_{\mathrm{T}}\right)=\frac{-\mathrm{C}^{0}{ }_{1}\left(\mathrm{~T}-\mathrm{T}_{0}\right)}{\mathrm{C}^{0}{ }_{2}+\mathrm{T}-\mathrm{T}_{0}} \tag{1.13}
\end{equation*}
$$

$\mathrm{C}^{0}{ }_{1}$: Coefficient WLF (≈ 8 à 25)
$\mathrm{C}^{0}{ }_{2}$: Coefficient WLF (≈ 25 à $80^{\circ} \mathrm{C}$) pour $\mathrm{T}_{0}=\mathrm{Tg}(1 \mathrm{~Hz})$
T_{0} : Température de référence
a_{T} : Facteur de glissement horizontal (facteur multiplicatif de la fréquence permettant le passage d'un essai effectué à T à un essai équivalent effectué à T_{0})

La superposition des différents essais à une température de référence via la loi WLF permet la formation d'une courbe maitresse s'étendant sur des gammes (de temps ou de température) plus importantes. Elle permet ainsi une caractérisation plus profonde du matériau sans réduire la faisabilité de l'expérience. Par exemple, des essais à hautes températures où une détérioration du matériau est possible, peuvent être remplacés par des essais à température plus basses en diminuant la fréquence de sollicitation. On pourra noter qu'un formalisme équivalent à la loi WLF a été mis en place par Vogel-Fulcher et Tamman et décrit la «fragilité» du polymère [8-10].

La loi WLF a été formulée pour un fondu de polymère et ne permet à priori pas de décrire le comportement des composites. En pratique, on observe qu'elle reste applicable pour de faibles taux de charge. A taux de charge plus élevé, un recollage empirique «vertical» (insertion d'un coefficient b_{T}) est requis pour former la courbe maitresse (Fig.1.4).

Figure 1.4 : Limite de la loi WLF, ici la superposition temps-température nécessite un ajustement vertical supplémentaire (cercle pointillé vert) [11].

c) Etat caoutchoutique

Dans le cas de chaînes suffisamment longues pour être enchevêtrés et à $T>T_{g}$ on observe une mobilité moléculaire à l'échelle de la chaîne. Ce phénomène, dont l'analogie avec un serpent se déplaçant dans une forêt a été proposée par De Gennes en 1971 [12] est nommée reptation (Fig.1.5). Chaque enchevêtrement définit un obstacle (contrainte topologique) pour la chaîne qui se voit alors progresser dans un tube de diamètrea. La reptation intervient pour des polymères satisfaisant $M>M_{c}=2 M_{e}$ (où M_{c} est la masse critique d'enchevêtrement et M_{e} la masse entre enchevêtrement, toutes deux dépendantes de la chimie du polymère).

Figure 1.5 : Reptation des polymères, mobilité dans un tube [13].

Le module au plateau caoutchoutique est directement fonction de la masse entre enchevêtrement et s'écrit :

$$
\begin{equation*}
G_{N}^{0}=\frac{\rho R T}{M_{e}}=v_{e} k_{B} T \tag{1.14}
\end{equation*}
$$

$\mathrm{G}_{\mathrm{N}}^{0}$: Module au plateau caoutchoutique (polymère pur)
ρ : Masse volumique du polymère
R : Constante des gaz parfaits $\left(\mathrm{R}=8.314 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)$
v_{e} : Densité numérique d'enchevêtrements $\left(\mathrm{m}^{-3}\right)$

Dans le cadre de ce modèle, le module au plateau caoutchoutique (ou la masse entre enchevêtrement) peut donc être utilisé pour déterminer certaines caractéristiques microstructurales du polymère. On définit par exemple N_{e} le nombre d'unité de répétition entre deux enchevêtrements.

$$
\begin{equation*}
N_{e}=\frac{M_{e}}{M_{0}} \tag{1.15}
\end{equation*}
$$

M_{0} : Masse molaire de l'unité de répétition

En outre, le temps associé à la mobilité à l'échelle de la chaîne, est appelé temps de reptation $\left(\tau_{\mathrm{d}}\right)$ et définit le temps que met une chaîne à sortir de son tube initial. Il peut être calculé en fonction de certains paramètres physiques et géométriques du modèle (1.16), la polymolécularité implique dans ce cas une distribution de temps de reptation.

$$
\begin{equation*}
\tau_{\mathrm{d}} \approx \frac{\zeta \mathrm{~b}^{2} \mathrm{~N}^{3}}{\mathrm{k}_{\mathrm{B}} \mathrm{TN}_{\mathrm{e}}} \tag{1.16}
\end{equation*}
$$

ζ : Coefficient de friction monomérique
b: Longueur de Kuhn

L'affinement du modèle de reptation a permis de se rapprocher des données expérimentales pour lesquelles on obtient en réalité (cf. section 4.3) :

$$
\begin{equation*}
\tau_{\mathrm{d}} \propto \mathrm{~N}^{3.4} \tag{1.17}
\end{equation*}
$$

L'application du modèle de la reptation reste néanmoins difficilement applicable en l'état à des données expérimentales. En effet, la prise en compte d'autres phénomènes tels que la relaxation de contrainte (Constraint Release «CR») ou les fluctuations de longueurs de contours (contour-lenght fluctuations «CLF») traduisant le comportement des bouts de chaînes doivent être pris en compte afin de reproduire fidèlement la dynamique des chaînes [14] (a fortiori dans les matériaux composites où le comportement mécanique est modifié par les charges). Le cas échéant, un modèle complet permet d'obtenir un bon accord entre modèle et expérience [15, 16].

d) Ecoulement

Au-delà de $\boldsymbol{\tau}_{\boldsymbol{d}}$, (équivaut à $\mathrm{T}>\mathrm{T}_{\mathrm{m}}$) les châ̂nes ont suffisamment d'énergie pour pouvoir sortir entièrement de leur tube initial, il en résulte un renouvellement des enchevêtrements physiques plus rapide responsable de la chute du module, laissant de fait les interactions de Van der Waals seules sources de la cohésion du matériau ayant alors les caractéristiques d'un liquide avec une viscosité intrinsèque $\eta_{\mathbf{0}}$ définie par:

$$
\begin{equation*}
\eta_{0}=\boldsymbol{G}_{N}^{0} \boldsymbol{\tau}_{\boldsymbol{d}} \tag{1.18}
\end{equation*}
$$

Dans le cas de matériaux vulcanisé (Fig.1.3 «cross-linked» - Fig.1.6) tels que les élastomères, la chute de module n'a pas lieu car les chaînes sont contraintes chimiquement et ne peuvent donc pas diffuser en dehors de leur tube initial, le nombre d'enchevêtrements global (topologique+chimique) demeure environ constant supprimant de fait le régime d'écoulement.

Figure 1.6 : Processus de vulcanisation des diènes.

1.1.3. Le caoutchouc

Le caoutchouc est traditionnellement produit à partir de la coagulation du latex sécrété par certains végétaux tels que l'hévéa ou le guayule [17]. On parle alors de «Natural Rubber (NR) », d'un point de vue chimique ce caoutchouc est composé de poly-isoprène (Fig.1.7) auquel viennent s'ajouter d'autres molécules biologiques pouvant modifier les propriétés du polymère.

Figure 1.7 : Polyisoprène (Formule semi-développée).

Dans le but de diversifier les propriétés du caoutchouc (T_{g} par exemple) et d'étendre sa production, plusieurs autres molécules synthétiques voient le jour au cours du XXe siècle (boom industriel). Le copolymère Styrene-Butadiene-Rubber (SBR) est alors produit en grande quantité pour la fabrication des bandes de roulement des pneumatiques (Fig.1.8). Ce copolymère statistique, linéaire et amorphe, est ensuite vulcanisé pour obtenir un élastomère.

Figure 1.8: SBR (Formule semi-développée).

De façon qénérale, le SBR se présente sous la forme d'un polymère statistique synthétisé par polymérisation anionique vivante initiée par n-BuLi dans le methylcyclohexane permettant d'obtenir des indices de polymolécularité de l'ordre de 1.1 et un taux de conversion proche de 100%. En ce qui concerne le SBR étudié dans cette thèse, chaque chaîne est composée de 25% de styrène et 75% de butadiène parmi lesquels on trouve 40% de monomère $1-2$ et 60% de
monomère 1-4 (cis et trans). Cette microstructure fait de ce SBR un copolymère pouvant être vu comme formé par 4 unités différentes (Fig.1.9).

Figure 1.9 : Les 4 types de "monomères" constituant les SBR.

En se basant sur les travaux de Roovers [18], ($\mathrm{T}_{\mathrm{g}}(\mathrm{PB}-59 \%$ cis $1-4)=-69^{\circ} \mathrm{C}$ et $\left.\mathrm{T}_{\mathrm{g}}(\mathrm{PS})=100^{\circ} \mathrm{C}\right)$ et en considérant le caractère statistique du SBR, il est possible de calculer à l'aide de la loi de Fox (1.19) la température de transition vitreuse globale ($\approx-35^{\circ} \mathrm{C}$):

$$
\begin{equation*}
\mathrm{T}_{\mathrm{g}}{ }^{\text {copo }}=\left(\sum_{\mathrm{i}}^{\mathrm{N}} \frac{\mathrm{w}_{\mathrm{i}}}{\mathrm{~T}_{\mathrm{g}}^{\mathrm{i}}}\right)^{-1} \tag{1.19}
\end{equation*}
$$

$\mathrm{T}_{\mathrm{g}}{ }^{\text {copo }}$: Température de transition vitreuse du copolymère statistique
$\mathrm{T}_{\mathrm{g}}{ }^{\mathrm{i}}$: Température de transition vitreuse correspondant au monomère i
w_{i} : Fraction molaire de l'espèce i
On récapitule ci-après les caractéristiques physico-chimiques principales du SBR (à $25^{\circ} \mathrm{C}$ pour $\approx 23.5 \%$ styrène):

$\boldsymbol{\rho}$ (densité)	$\mathrm{g} / \mathrm{cm}^{3}$	0.913
$\mathbf{T}_{\mathbf{g}}$ (température de transition vitreuse)	${ }^{\circ} \mathrm{C}$	$\approx-35^{*}$
\mathbf{C}_{∞} (flexibilité de la chaîne)	-	6.41
$\mathbf{G}_{\mathbf{N}}{ }^{\mathbf{}}$ (module au plateau caoutchoutique)	MPa	0.78
$\mathbf{M}_{\mathbf{e}}$ (masse entre enchevêtrements)	$\mathrm{kg} / \mathrm{mol}$	$2.9-3.0^{* *}$
$\mathbf{M}_{\mathbf{0}}$ (masse du monomère)	$\mathrm{kg} / \mathrm{mol}$	0.17
\mathbf{a} (diamètre du tube)	\AA	48.7
\mathbf{b} (longueur de Kuhn)	\AA	11.9
ζ (coefficient de frottement monomérique)	dynes.sec/cm ($\left.\sim \mathrm{g} \cdot \mathrm{s}^{-1}\right)$	$7.7610^{-7} * *$

Tableau 1.1 : Caractéristiques physico-chimique du SBR [19] (Sauf *[20], et ${ }^{* *}[21]$).

1.2. Les charges

Dans le cadre des matériaux composites, sont appelées charges, tous les matériaux observables entre l'échelle nanométrique et l'échelle macroscopique permettant d'améliorer les propriétés de la matrice dans lesquels ils se trouvent. Leur domaine d'application est très vaste et concerne généralement les propriétés barrières, la résistance au feu, la conductivité électrique ou le renforcement mécanique. Nous nous concentrerons ici sur les charges employées dans les nanocomposites à matrice polymère.

1.2.1. Aspect géométrique et nature

La diversité des charges utilisées est très importante. Elles peuvent se diviser en trois grandes catégories selon leur forme (Fig.1.10). Nous trouvons ainsi les charges sous formes de particules (0D), de fibres (1D) ou de lamelles (2D). Leur nature est dépendante de la matrice dans laquelle elles sont incorporées et de leur impact sur les propriétés macroscopiques du matériau. Les plus employées d'entre elles sont la silice [22, 23], les argiles [24, 25] et le carbone que l'on trouve sous différentes variétés allotropiques en particulier sous forme de noir de carbone [26], de fullerènes [27], de nanotubes [28] ou de graphène [29], ce dernier suscitant un très grand intérêt industriel du fait de ses propriétés électriques exceptionnelles ayant notamment fait l'objet du prix Nobel de physique d'A. Geim et K. Novoselov en 2009.

Figure 1.10 : Les trois grandes géométries de charges utilisées dans les nanocomposites et leur surface spécifique (rapport de la surface sur le volume) [30].

1.2.2. La silice

La silice $\left(\mathrm{SiO}_{2}\right)$ est une espèce chimique très répandue dans la croute terrestre et qui se présente sous de nombreuses formes cristallines (le quartz par exemple) ou amorphes comme dans certaines roches volcaniques ou une fois mis en forme dans le verre à vitre. Son abondance, son faible coût, et sa nature chimique (céramique) lui conférant des propriétés mécaniques très intéressantes en termes de dureté ou de résistance à la chaleur font d'elle un matériau de choix pour l'utilisation en tant que charge renforçante.

Silice Précipitée (utilisée dans les échantillons industriels simplifiés)

Industriellement, la silice précipitée est fabriquée en plusieurs étapes [31] :

- Mélange intime de sable et de carbonate de sodium porté à $1400^{\circ} \mathrm{C}$ pour former un silicate de sodium. Ce dernier est ensuite dissout dans l'eau puis dilué.
- La solution de silicate de sodium est ensuite neutralisée par l'ajout d'acide sulfurique formant ainsi la silice et du sulfate de sodium éliminé par filtration.
- La silice est ensuite lavée puis séchée avant d'être broyée et conditionnée.

Durant l'étape de précipitation, les propriétés physico-chimiques (pH , densité de site silanol, compressibilité ...) de la silice peuvent être modifiées en changeant la composition et le ratio des réactifs, le temps de réaction ainsi que la concentration. Elle se présente finalement sous forme de poudre blanche aux grains submillimétriques formés d'agglomérats (Fig.1.11).

Figure 1.11 : Différents états d'agrégation de la silice industrielle hautement dispersible [32].

En France, l'usine de Collonges appartenant à Rhodia (groupe Solvay) produit 100000 tonnes de silice par an dont 90% est destinée à l'incorporation dans les pneumatiques. On parle de silice précipitée ayant l'avantage d'être «hautement dispersible»caractérisée par une surface spécifique de l'ordre de $150 \mathrm{~m}^{2} / \mathrm{g}$.

Ce type de silice permettant une grande production de composites en phase solide est la plus employée dans l'industrie. Cependant, son étude structurale est rendue difficile du fait de la polydispersité en taille et en forme élevée des objets qui la composent (Fig.1.12). La problématique du lien entre structure des charges et propriétés macroscopiques est d'ailleurs toujours sujette à débat pour ce type de système largement étudié par différentes techniques : en mécanique [33, 34], et en diffusion du rayonnement [35, 36].

Figure 1.12: Cliché TEM d'un agrégat de silice précipitée renforçant une matrice de SBR, les particules élémentaires composant cet objet sont clairement identifiables [37].

Silice Colloïdale (utilisée dans les systèmes modèles, annexe 1)

La silice nanométrique en suspension dans un solvant est largement utilisée dans la formulation des nanocomposites (Fig.1.13) produits par casting (défini ci-dessous). On la trouve dans l'industrie à des concentrations allant de 20 à 40% massique (soit environ 10 à 20% volumique) où les particules sont stabilisées par des charges électriques (double couches ioniques : théorie DLVO [38]). Elles se trouvent typiquement en milieu basique ($\mathrm{pH}>7$) où le contre-ion assurant la neutralité électrique est Na^{+}. Nous rappelons que le point isoélectrique, c'est-à-dire, le pH pour lequel la surface n'est plus chargée électriquement, de la silice se trouve à $\mathrm{pH}=2$ [39].

Leur synthèse se fait par polymérisation de l'acide silicique $\mathrm{Si}(\mathrm{OH})_{4}$. En milieu basique, la condensation du monomère donne lieu à la croissance de particules stables en solution alors qu'en milieu acide (ou en présence de sels floculants) on forme des gels (réseau 3D).

La silice peut également être synthétisée via le procédé mis en place par Stöber en 1968 permettant d'obtenir une distribution en taille étroite et une gamme de taille étendue dans lequel la formation des colloïdes se fait par condensation de composés tel que le TetraEthylOrthoSilicate (TEOS) catalysés en milieux acides ou basiques selon [40]:

$$
\begin{equation*}
\mathrm{Si}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \tag{1.20}
\end{equation*}
$$

Un autre type de silice largement étudié est la silice pyrogénique (ou fumée) produite à haute température à la surface de laquelle on a minimisé le nombre de silanol. Elles sont typiquement produite par oxydation de composé du silicium tels que SiH_{4} ou SiCl_{4} avec de l'oxygène «sec » ou dans une flamme d'hydrocarbure [39].

$$
\begin{equation*}
\mathrm{SiCl}_{4}+\mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl} \tag{1.21}
\end{equation*}
$$

La silice colloïdale permet d'avoir des charges très bien définies en terme de forme et une distribution de taille très étroite $(<10 \%)$ à condition de ne pas la sécher. La formulation des composites se fait donc à partir d'une solution de polymère dans laquelle la silice colloïdale est dispersée avant évaporation du solvant. La principale difficulté dans ce cas est le maintient de la stabilité colloïdale lors du changement d'environnement de la silice, elle passe typiquement d'un milieu aqueux à un milieu organique capable de dissoudre le polymère formant la matrice (cf.1.3.4 et annexe 1).

Figure 1.13 : Cliché TEM d'un nanocomposite à base de PMMA et de silice colloïdale [41].

1.2.3. Etats de surface

L'état de surface des charges est un paramètre crucial quant aux interactions entre les différentes phases du matériau composite, on parle alors d'interactions charge-charge et charge-polymère. Elles jouent un rôle prépondérant sur plusieurs caractéristiques du système telles que la dispersion des charges dans la matrice ou l'état du polymère à l'interface impactant directement les propriétés macroscopiques. Quelque soit le mode de formulation des composites, on cherche à répartir les charges de façon homogène dans la matrice (sans pour autant toujours chercher la dispersion individuelle) afin d'éviter la création de défauts macroscopiques menant à des propriétés physiques hétérogènes comme dans le cas d'une décomposition spinodale ou d'une agrégation non contrôlée. Le concept de compatibilité charge/matrice entre en jeu.

L'exemple d'un polymère tel que le polystyrène renforcé par de la silice illustre bien ce propos. En effet, les macromolécules organiques présentent généralement un caractère hydrophobe alors que la silice dont la surface est recouverte d'ions hydroxyde apparaît clairement comme un matériau hydrophile. Ainsi, lors de l'incorporation des charges dans la matrice, on s'attend à ce que les deux phases se repoussent menant inévitablement à une structure fortement hétérogène. Il est cependant possible de modifier l'état de surface des charges pour augmenter la compatibilité en greffant des molécules amphiphiles permettant de modifier les interactions entre les différents composés.

Dans le cas de la silice, les molécules utilisées sont essentiellement des silanes [42] possédant un ou plusieurs groupes fonctionnels polaires permettant le greffage sur les particules et une queue alkyle compatible avec les chaînes apolaires du polymère environnant. Plusieurs variantes peuvent alors être envisagées.
a) Agent de recouvrement (Fig.1.14 - Fig.1.16a): Doté d'un ou plusieurs groupes greffable, il recouvre la particule de chaîne alkyles courtes permettant de comptabiliser la surface (interaction charge-particule faible).

Exemple: OctylTriEthOxysilane (nom commercial «OCTEO») - utilisé dans ces travaux.

Figure 1.14 : Formule semi développée de la molécule d'OCTEO.
b) Agent de couplage (Fig.1.15 - Fig.1.16b): Il se greffe sur la particule de la même façon que l'agent de recouvrement et sur la chaîne polymère de façon covalente (interaction chargeparticule forte).

Exemple: Bis[3-(triethoxysilyl)propyl|tetrasulfide] (nom commercial «Si69»).

Figure 1.15 : Formule semi-développée de la molécule de Si69 [43], X correspond à une distribution centré autour de 4.
c) "Grafting-to" (Fig.16c): Le polymère qui constitue la matrice possède une fonction permettant le greffage covalent directement sur la particule.

Exemple: Fonctionnalisation des nanotubes de carbone simple feuillet [44]
d) "Grafting-from" (Fig.16d): Un amorceur est greffé sur la particule et permet ainsi la polymérisation des monomères environnant (passage d'une suspension à un matériau solide).

Exemple: Travaux sur le polystyrène chargé avec de la silice colloïdale [45, 46]

Figure 1.16 : Différents mécanismes de greffage permettant de contrôler l'état de surface des charges.
a) Agent de recouvrement, b) Agent de couplage, c) Grafting-to, d) Grafting-from.

De plus, afin de d'améliorer l'efficacité du greffage, des catalyseurs peuvent être utilisés. Traditionnellement, les silanes sont catalysés par des amines dite «protiques» en raison de leurs liaisons N-H [47] telle que la diphénylguadinine (utilisé dans cette thèse DPG Fig.1.17).

Figure 1.17: La DPG, amine secondaire utilisé comme catalyseur de greffage, est un composé fréquemment employé dans l'industrie pneumatique.

1.3. Nanocomposites

Les nanocomposites sont formés par dispersion de charges dans une matrice polymère avec le but de la renforcer. Les mécanismes de renforcement ne sont pas encore pleinement expliqués même si de nombreux travaux dans ce domaine ont permis des avancées notables. Plusieurs paramètres ont été identifiés comme jouant un rôle important: l'état de dispersion des charges (d'objets isolés à la formation de réseaux tridimensionnels [33, 48, 49]), l'état du polymère (conformation en fondu, à l'interface avec la charge ou encore greffé) et leurs conséquences comme le ralentissement de la dynamique ou le nombre d'enchevêtrement.

1.3.1. Etat de dispersion

Généralités

La répartition des charges est un point crucial impactant directement les propriétés des composites. L'état de dispersion définit par exemple la surface d'interaction entre la charge et la matrice, la quantité de polymère occlus dans des agrégats ou la formation d'un réseau percolé. De plus, une répartition des charges homogène permet de limiter la présence de défauts, zones à partir desquelles l'endommagement peut «naître» dans le matériau.

Le haut pouvoir renforçant des nano-charges réside dans le fait qu'elles offrent une surface de contact (interface) avec le polymère très importante permettant ainsi de modifier le comportement d'une fraction de chaînes élevée à travers le matériau. Les notions de dispersion et de distribution peuvent être utilisées pour qualifier la répartition des charges dans une matrice (Fig.1.18).

Mauvaise dispersion Mauvaise distribution

Mauvaise dispersion Bonne distribution

Bonne dispersion Mauvaise distribution

Bonne dispersion Bonne distribution

Figure 1.18 : Distribution et dispersion d'une charge dans un milieu continu. Dans ce contexte, les termes de «bonne dispersion» et de «bonne distribution» sont respectivement synonymes d'une agrégation faible et d'une répartition spatiale homogène [32].

En particulier dans les nanocomposites formulés par mélangeage en phase solide, la désagglomération (ici définie comme dispersion) et l'homogénéisation spatiale des charges se font à l'aide de deux outils distincts: le mélangeur interne et le mélangeur externe (cf. chapitre 2).

De façon plus générale, on introduit d'autres concepts géométriques (explicités chapitre 2) permettant de quantifier l'état de dispersion (ou d'agrégation) dépendant fortement des interactions charges-charges :

- Le nombre d'objets élémentaires dans un agrégat (nombre d'agrégation moyen, $\mathrm{N}_{\text {agg }}$).
- La fraction volumique occupée par la charge dans un agrégat, (compacité, к).
- La dimension fractale (D_{f}), renseignant sur la répartition de la masse dans l'espace.
- La percolation (Fig.1.19), indiquant s'il existe un «chemin» continu à travers le matériau formé par un empilement ininterrompu de charges. La percolation est le plus souvent détectable par l'évolution brutale d'un paramètre physique comme la conductivité électrique [50] ou le module élastique [51].

Figure 1.19 : Représentation 2D de la percolation. Ici, l'agrégat le plus gros est représenté en noir et les sites inoccupés en blanc. Pour un taux d'occupation de 59% le plus gros agrégat lie deux côtés opposés de l'espace: on parle de seuil de percolation [52].

Concernant le renforcement mécanique, le saut notable de module élastique observé lors de la percolation peut être expliqué de différentes façons :

- Percolation physique de la charge : dans ce cas de figure on imagine que les espèces présentes en surface des charges réagissent chimiquement entre elles et forment des liaisons covalentes. Un exemple peut être la réaction de condensation entre deux silanols à la surface de la silice formant un pont siloxane entre deux particules en éliminant une molécule d'eau. Dans ce cas de figure, les liaisons covalentes Si-O étant bien plus fortes d'un point de vue énergétique que les liaisons de Van der Waals assurant la cohésion du polymère, il en résulte une augmentation du module élastique.
- Suivant la même logique mais en considérant des liaisons hydrogènes ou dipôlesdipôles (toujours plus stables énergétiquement que les liaisons VdW) à la place des liaisons covalentes on arrive qualitativement au même résultat que dans le premier cas.
- Finalement, en considérant la modification de comportement des chaînes confinées, on peut expliquer le saut de propriété par la percolation des zones de polymère vitreux au voisinage des charges [53]. Ici, un gradient de température de transition vitreuse due au confinement des chaînes est considéré (et observé expérimentalement cf. section 6.2.3.) pour expliquer le renforcement à une température donnée.

Greffage de chaînes et impact sur la structure

Le greffage de chânes sur des charges (grafting-to ou grafting-from) est une méthode très employée afin de contrôler leur état de dispersion en induisant un potentiel répulsif d'origine stérique. La description des brosses de polymères (particule sur laquelle les chaînes se greffent à une extrémité) a été étudiée en bon solvant par Alexander [54] et De Gennes [55] et a permis d'établir une théorie dont les concepts sont utilisables en fondu.

Dans le cas des composites, de nombreux travaux regroupés dans la récente revue de S.K. Kumar [56] mettent en évidence les différents paramètres clés quant à la stabilisation des particules par des brosses de polymères. En particulier, la densité de greffage $\boldsymbol{\sigma}$ et la longueur des greffons jouent un rôle crucial quant à l'etat de dispersion des charges dans le fondu de polymère libre. Nous présentons Fig.1.20, les différents cas de figures en fonctions des masses molaires respectives des polymères greffés (P) et libres (N) :

Figure 1.20 : Diagramme des phases qualitatif représentant les différents états de dispersion des charges en fonctions de la densité de greffage (typiquement de 0 à $0.8 \mathrm{~nm}^{-2}$) et du rapport de longueurs entre chaînes libres (N) et chaînes greffées (P) [57]. La région pour laquelle $P / N=1$ est représenté en traits pointillés bleus (cas des échantillons formulés dans cette thèse)

- Complete Wetting : La densité de greffage est suffisamment importante pour générer un potentiel répulsif stérique. Les chaînes non-greffées peuvent pénétrer la «brosse» ainsi formée pour mouiller la brosse et donc la charge.
- Autophobic Dewetting : Ici, la densité de greffage, importante, ne permet plus la pénétration des chaînes libres. On parle d'autophobicité, phénomène d'origine purement entropique menant à une séparation des phases par expulsion des chaînes libres des brosses. Etymologiquement, auto $=$ identique et phobia $=$ peur, $(«$ peur de
l’identique») équivalent à une séparation de phase : polymère en brosse (+silice) / polymère libre.
- Allophobic Dewetting : Dans ce dernier cas, la densité de greffage est trop faible pour générer une répulsion permettant la stabilisation des charges. Etymologiquement allo $=$ différent ($«$ peur du différent $»$) équivalent à une séparation de phase d'origine enthalpique (polarité, hydrophobicité) : silice / polymère

D'un point de vue de la microstructure du polymère au voisinage de la charge on peut schématiser les différents régimes de la façon suivante cf. Fig.1.21. Dans chaque cas, des valeurs indicatives de la densité de greffage sont données d'après [58].
a) Densité de greffage faible $\left(\sigma<0.05 \mathrm{~nm}^{-2}\right)$: les chaînes greffées n'interagissent pas entre elles, leur conformations ne sont pas perturbées («champignons»). Le potentiel répulsif généré est faible et ne permet pas de stabiliser les charges sous une certaine limite.
b) Densité de greffage intermédiaire $\left(0.05<\sigma<0.1 \mathrm{~nm}^{-2}\right)$: dans ce régime, la densité de greffage est importante et mène à l'étirement des chaînes greffées, les espaces de la brosse non occupés sont néanmoins suffisamment important pour accueillir les chânes libres. Le mouillage de la brosse se fait plus facilement avec des chaînes courtes, en effet, pour une densité de greffage donné, on peut définir une masse molaire critique au-delà de laquelle le polymère libre ne peut plus pénétrer la brosse (autophobicité). On pourra noter ici les travaux de Daoud et Cotton sur l'évolution de la conformation des chaîne greffées en fonction de la distance de l'interface (《blobs ») [59].
c) Densité de greffage forte $\left(0.1<\sigma<0.2 \mathrm{~nm}^{-2}\right)$: dans ce dernier cas, les chaînes greffées s'étirent fortement, la haute densité de la brosse ne permet plus sa pénétration et les chaînes libres qui la mouillaient dans le cas précédent, sont expulsées menant de fait à une séparation de phase (polymère libre / polymère greffé+silice).

a)

b)

c)

Figure 1.21 : Représentation schématique des différents régimes dans les composites contenants des polymères greffés.

Ainsi, le fait que la relation entre la dispersion des charges et les propriétés mécaniques d'une part et la densité de greffage d'autre part ne soit pas monotone (figures 1,2 et 3 référence [58]), il apparaît nécessaire d'identifier sa valeur optimale [58]. On notera que dans les cas étudiés dans cette thèse $(\mathrm{P}=\mathrm{N})$, les densités de greffage $\left(<0.2 \mathrm{~nm}^{-2}\right)$ ne sont pas assez importantes (polymère trop long) pour induire un potentiel d'autophobicité.

1.3.2. Courte revue des méthodes de formulation

De nombreuses méthodes permettent de produire des nanocomposites. Leur choix se fait en fonction des contraintes expérimentales, des matériaux et des propriétés désirées via l'état de dispersion des charges. Industriellement, le coût de la production est bien évidemment crucial.

Phase Solide

Les composites peuvent être préparés en phase solide à l'aide de mélangeurs mécaniques [60]. Dans ce cas de figure, le polymère est inséré en morceaux dans le mélangeur où il est préchauffé pour former une phase homogène (fondu) avant de recevoir la charge agrégée en granulés et les additifs. La dispersion de la charge se fait sous l'effet des (deux) rotors du mélangeur [32] qui génèrent un couple important (force de friction) menant à l'élévation de la température et favorisant la fragmentation des objets macroscopiques en agrégats submicroniques. Des mécanismes tels que le greffage des polymères sur les charges (limitant une possible réagrégation de la silice) ou la déplétion (attraction entre les charges à courte portée générée par la différence de taille agrégat/chaîne) gouvernent ici la structure de la silice que l'on retrouvera dans le matériau final.

En solvant

Un nombre important de travaux scientifiques sont basés sur les techniques de solvent casting. Ici, le polymère et la charge sont dispersés dans un solvant, avant que le tout soit déposé sur un support et séché. Les enjeux majeurs de ce type de formulation résident dans le maintien de la stabilité des phases et dans l'étape de séchage. Le mélange peut être effectué par agitation mécanique ou par sonification [28]. Le fait que les polymères soient le plus souvent solubles dans des solvants organiques impose à la charge d'être dispersée dans un milieu de même nature (solvants miscibles). Pour les rares exceptions telles que le PEO, le mélange peut se faire en phase aqueuse [61].

Dans le cas de la formulation via l'emploi de latex [62, 63] c'est le polymère qui est synthétisé en milieu aqueux, facilitant ainsi l'incorporation des charges hydrophiles et limitant de fait la consommation de solvants. Ici, le polymère hydrophobe est stabilisé dans l'eau par la présence de groupes hydrophiles ou de tensioactifs (polymère «hydro-dispersible»). La production de latex peut se faire à partir d'un polymère déjà formé comme dans le cas du procédé Ouzo [64] ou de monomères subséquemment polymérisés dans des microréacteurs formés par des tensioactifs [65], on parle alors de synthèse en émulsion.

In-situ

Les procédés de polymérisations in-situ ont une large part dans la production de composites. Ils consistent à mettre en présence la charge et les précurseurs de la matrice (monomère+amorceur) puis à provoquer la polymérisation des chaînes autour des charges. En industrie on parle par exemple de pultrusion (extrusion pour les composites) [66]. Le procédé est également très utilisé en recherche fondamentale du fait de son caractère polyvalent, on le
retrouve dans la synthèse de composites à base de silice [67], de nanotubes de carbone [68], de graphite [69], ou d'argiles [70].

Les charges peuvent être également polymérisées in-situ dans différents types de polymères. Un exemple bien connu est la formation de la silice via la condensation du TEOS [71] ou celle des nanotubes de carbone.

1.3.3. Systèmes « Industriels » SBR-silice

On appelle ici <systèmes industriels» les composites formulés en phase solide à partir de SBR et de silice hautement dispersible. Ce type de silice est incorporé dans les pneumatiques depuis une vingtaine d'année et permet d'atteindre des propriétés mécaniques supérieures à celles des composites chargés uniquement avec du noir de carbone [72], on recherche en particulier la résistance à l'usure et l'abaissement de la résistance de roulement. La silice précipitée utilisée se présente sous forme d'agglomérats submillimétriques composés d'agrégats (insécables) formés eux-mêmes de particules élémentaires dont le diamètre avoisine généralement 10 nm , soit une surface spécifique autour de $150 \mathrm{~m}^{2} / \mathrm{g}$.

Une fois incorporée dans le mélangeur, la silice doit se désagglomérer et être distribuée de façon homogène dans tout l'échantillon. En général, les groupes de recherche s'intéressent à l'impact de la formulation sur la structure de la silice et sur les propriétés du composite ainsi formé.

Deux types de composites sont présents dans la littérature : les systèmes réticulés contenant de nombreux agents utiles à la vulcanisation dont les châ̂nes de SBR sont liées chimiquement, et les systèmes non-réticulés, plus simples, ne contenant que le polymère et la charge. Les systèmes réticulés sont utilisés dans les produits finis alors que les systèmes nonréticulés permettent d'effectuer des études ciblées du fait de leur formulation épurée. On notera en particulier l'élimination de ZnO dans ces formules (catalyseur de la vulcanisation) du fait de son haut pouvoir diffusant en DXPA (pollution du signal diffusé par la silice).

La structure de ces charges est le plus souvent étudiée par microscopie électronique [37] ou AFM [73] et par diffusion du rayonnement aux petits angles [36, 74]. Ces deux types d'analyses permettent une caractérisation optimale: la microscopie a l'avantage de donner une image dans l'espace réel (directement interprétable) d'une petite zone de l'échantillon alors que la diffusion aux petits angles donne des informations sur une zone plus étendue (neutrons $\sim \mathrm{cm}^{2}$, rayons- $\mathrm{X} \sim \mathrm{mm}^{2}$) mais doit être interprétée (espace réciproque). De façon générale, les résultats issus de ces travaux mettent en évidence la présence d'une structure multi-échelle allant du réseau tridimensionnel formé d'agrégats d'environ 100 nm à la particule élémentaire dans laquelle la présence d'agent de recouvrement et/ou de couplage joue un rôle important [75-77]. Bien que de nombreuses observations qualitatives aient été réalisées sur ces systèmes, une quantification précise de la structure reste à définir. Ainsi, un modèle basé sur les deux méthodes (DXPA et TEM) et permettant de quantifier la morphologie de la silice est proposé au chapitre 3.

Les propriétés mécaniques de ces composites sont traditionnellement caractérisées par analyse mécanique dynamique (DMA), où l'échantillon est soumis à une contrainte cyclique alors que
la fréquence ou la température varient [78-80]. On s'intéresse alors qénéralement à l'évolution de la viscosité [33] ou du module élastique [81, 82] en fonction du taux de charge. L'ensemble des résultats montrent ici que le renforcement peut être modélisé par des lois d'échelle (exponentielles). Pour des taux de charge importants, ces lois traduisent la divergence du renforcement occasionnée par la percolation du réseau de silice.

D'autres analyses concernant la dynamique des chaînes aux interfaces, notamment leur ralentissement (couche vitreuse cf. section 1.3.4) peuvent également apporter des informations utiles à corréler avec l'état de la structure. On notera en particulier les expériences de spectroscopie diélectrique [83], neutron spin-écho [84] et RMN [85].

1.3.4. Systèmes « Modèles » SBR-silice

La littérature ne fournit pas d'exemples de travail dans lesquels des nanocomposites SBRsilice ont été formulés par solvent casting à partir de silice colloïdale. Ce type de système étant destiné à l'industrie pneumatique, seuls les systèmes proches des compositions commerciales ont été étudiés (silice précipitée, SBR réticulé ...).

Cependant, la problématique des corrélations structure-propriétés requiert une bonne compréhension des interactions charges-polymères plus facilement descriptible dans les systèmes modèles dans lesquels la «brique» de base est bien connue. C'est notamment le cas en microscopie électronique ou en diffusion du rayonnement où les oscillations du facteur de forme à grands angles, caractéristiques de la taille de l'objet, sont apparentes quand la polydispersité est faible (cf. section 2.3.).

On retrouve ce cas de figure dans le renforcement des poly-méthyl-méthacrylates [41] [86], du polystyrène [87-89], ou du poly-(2-vinylpyridine) (P2VP) [90]. En ce qui concerne les polymères solubles dans l'eau (PEO) [61] ou les latex [63, 65], le mélange des phases peut se faire directement en milieux aqueux facilitant ainsi la phase d'incorporation de la silice.

Dans cette même logique, on peut également s'intéresser aux interactions en phase liquide (avant le séchage) où les charges, le polymère et le solvant coexistent. Kim et Zukoski [91] ont étudié l'affinité des charges pour le polymère en fonction de sa chimie et de sa concentration via la théorie PRISM [92], ils remarquent notamment une augmentation de l'agrégation avec une fraction volumique de polymère plus faible dans le solvant. Les interactions polymère-charge sont également largement étudiées par diffusion de neutrons aux petits angles [93-95], où l'on considère l'influence du confinement, du process ou de la chimie sur le rayon de giration des chaines.

1.4. Renforcement

Les essais mécaniques menés dans cette thèse concernent le régime linéaire, c'est-à-dire la zone de déformation du matériau pour laquelle le module élastique reste constant avec la déformation. Il est cependant reconnu que l'exploration de la zone non-linéaire a un intérêt certain quant à la caractérisation globale du comportement mécanique des composites. Les effets non-linéaires dans les composites réticulés, Payne [96, 97] (diminution de la zone de
linéarité et chute du module avec le taux de charge) et Mullins [98] (affaiblissement des propriétés avec le nombre de sollicitations) ont notamment fait l'objet de nombreux travaux.

1.4.1. Modèles hydrodynamiques et percolation

De manière générale, le renforcement d'une matrice polymère permet d'améliorer ses propriétés mécaniques [82, 99]. On cherche le plus souvent à augmenter son module d'élasticité ou à limiter la dissipation d'énergie comme dans le cas de l'abaissement de la résistance au roulement. Dans le cadre de ces travaux, nous définissons le renforcement comme le ratio entre le module de stockage (plateau caoutchoutique) du matériau composite $\left(\mathrm{G}_{\mathrm{N}}^{\mathrm{c}}\right)$ et celui de la matrice non chargée $\left(\mathrm{G}_{\mathrm{N}}^{0}\right)$. Il peut ainsi être fonction de la température, de la fréquence de sollicitation et du taux de charge.

$$
\begin{equation*}
\mathrm{R}=\frac{\mathrm{G}_{\mathrm{N}}^{\mathrm{c}}}{\mathrm{G}_{\mathrm{N}}^{0}} \tag{1.22}
\end{equation*}
$$

On note en particulier qu'à fréquence constante R décroît avec la température laissant supposer que le module élastique des objets (agrégats ou réseau) conférant au composite ses hautes propriétés mécaniques dépend également de la température et en particulier de la dynamique des chaînes à l'interface. Le concept de «couche vitreuse» sera explicité en section 1.4 .2 et des données expérimentales prouvant son existence dans les systèmes industriels simplifiés seront présentées section 6.2.3.

1er cas : charge infiniment plus «dure» que la matrice

Dans le cas d'une suspension colloïdale, on peut étudier l'évolution de la viscosité intrinsèque en fonction de la fraction volumique en particules. Pour des basses fractions volumiques (pas d'interactions entre les charges), l'accroissement de viscosité réside dans la perturbation de l'écoulement du liquide autour des colloïdes. Ce ralentissement à l'écoulement est alors traité comme un renforcement hydrodynamique et exprimé pour la première fois en 1906 par Einstein [100] (ici, les interactions charges-polymères sont négligées «slip conditions »). Les travaux sur la perturbation hydrodynamique dans les liquides ont ensuite été généralisés aux matériaux composites par Smallwood [101], où l'on ne considère plus d'écoulement mais des champs de forces, ce qui, permet d'exprimer le renforcement en terme de module élastique tel que :

$$
\begin{equation*}
\frac{\mathrm{G}}{\mathrm{G}_{0}}=1+2.5 \Phi \tag{1.23}
\end{equation*}
$$

D'autres modèles basés sur la même physique mais prenant en compte les interactions entre charges (ajout du $2^{\text {nd }}$ ordre) décrivent le renforcement de manière plus exacte. L'équation de Guth-Gold en est un exemple bien connu [102] :

$$
\begin{equation*}
\frac{\mathrm{G}}{\mathrm{G}_{0}}=1+2.5 \Phi+14.1 \Phi^{2} \tag{1.24}
\end{equation*}
$$

Pour de hauts taux de charge, le seuil de percolation défini par la fraction volumique en objet critique $\left(\Phi^{c}\right)$ est un paramètre essentiel car il décrit le changement de régime du module élastique. Comme expliqué précédemment, ce changement de régime peut être occasionné par la percolation complète des charges ou possiblement par celle des couches de polymères ralentis (cf. section 1.4.2.) à la surface de ces dernières (Fig.1.22) :

Figure 1.22: Renforcement par des charges
a) $\Phi<\Phi^{\mathrm{c}}$; b) percolation de la couche vitreuse ; c) $\Phi>\Phi^{\mathrm{c}}$.

En effet :

- Pour $\Phi<\Phi^{\mathrm{c}}$: Le module élastique est fonction des interactions entre chaînes (dominées par les enchevêtrements physiques) et de la perturbation apportée par la charge (champ de contrainte modifié par la présence d'occlusions).
- Pour $\Phi>\Phi^{\mathrm{c}}$: Les charges forment un réseau tridimensionnel à travers tout l'échantillon. Il apparait donc une nouvelle contribution due aux interactions entre charges pouvant être de nature diverse selon leur chimie de surface.

Dans ce cas il est possible de décrire le renforcement par un modèle parallèle prenant en compte le renforcement hydrodynamique et la percolation :

$$
\begin{equation*}
\frac{\mathrm{G}}{\mathrm{G}_{0}}=1+2.5 \Phi+\Theta\left(\Phi-\Phi_{\mathrm{c}}\right) \mathrm{P}\left(\Phi, \Phi_{\mathrm{c}}\right) \tag{1.25}
\end{equation*}
$$

Θ : Fonction créneau de Heaviside ($=1$ pour $\Phi \geq \Phi_{c} \operatorname{sinon}=0$)
$\mathrm{P}\left(\Phi, \Phi_{\mathrm{c}}\right)$: Terme décrivant la contribution de la percolation
P est ici fonction de la fraction volumique en objet renforçant, de la fraction volumique critique, du module élastique du polymère G_{0}, du module élastique du réseau G_{f} et d'un exposant b décrivant l'évolution de la structure post-percolation (valant 1.8 selon De Gennes [103]).

$$
\begin{equation*}
\mathrm{P}=\frac{\mathrm{G}_{\mathrm{f}}}{\mathrm{G}_{0}}\left(\frac{\Phi-\Phi_{\mathrm{c}}}{1-\Phi_{\mathrm{c}}}\right)^{\mathrm{b}} \tag{1.26}
\end{equation*}
$$

G_{f} fait référence aux interactions entre charges. Dans le cas d'un réseau uniforme (sans interphase) il correspond au module de la charge. Dans le cas contraire, sa valeur correspond au module du réseau (différent de ce lui de la charge). Ce point est développé chapitre 4.

2nd cas : Modèle de Palierne - charge «molle»

Un autre modèle que nous appliquerons à nos données est l'approche développée par Palierne en 1991 [104]. Dans ce cas plus général, où le module de la charge n'est pas infiniment plus important que celui de la matrice, le renforcement s'écrit :

$$
\begin{equation*}
\mathrm{R}=\frac{1+3 \Phi \mathrm{H}^{*}}{1-2 \Phi \mathrm{H}^{*}} \tag{1.27}
\end{equation*}
$$

Avec:

$$
\begin{equation*}
\mathrm{H}^{*}=\frac{\mathrm{G}_{\text {charge }}-\mathrm{G}_{\text {matrice }}}{2 \mathrm{G}_{\text {charge }}+3 \mathrm{G}_{\text {matrice }}} \tag{1.28}
\end{equation*}
$$

Et en effectuant le développement limité de l'expression (1.27) pour Φ faible, on obtient finalement:

$$
\begin{equation*}
\mathrm{R} \approx\left(1+3 \Phi \mathrm{H}^{*}\right)\left(1-2 \Phi \mathrm{H}^{*}\right)=1+5 \Phi \mathrm{H}^{*}+6 \Phi \mathrm{H}^{* 2} \tag{1.29}
\end{equation*}
$$

Cette expression au $1^{\text {er }}$ ordre est équivalente à l'équation du renforcement d'Einstein pour une charge infiniment dure, on a alors $\mathrm{H}^{*}=1 / 2$. Elle pourra être utilisée dans nos travaux pour décrire le renforcement macroscopique de la matrice polymère par des objets viscoélastiques composés de charge et de polymère confiné.

Modification du comportement à basse fréquence

L'ajout de charges dans une matrice n'impacte pas uniquement le niveau du module élastique mais également son évolution en fonction de la température ou de la fréquence de sollicitation. En particulier à basse fréquence ($\mathrm{t}>\tau_{\mathrm{d}}$), un polymère Maxwellien voit son module de stockage décroitre en ω^{2}, alors qu'en présence de charge, «l'écoulement» est ralenti, voire éliminé [105] du fait des interactions polymère-charge. Le phénomène est accentué pour des taux de charges croissant, le changement de régime solide-liquide à basse fréquence ($\mathrm{G}^{\prime}>\mathrm{G}^{\prime \prime} \rightarrow \mathrm{G}^{\prime \prime}>\mathrm{G}^{\prime}$) n'a alors plus lieu et l'apparition d'un plateau secondaire (élasticité à très basse fréquence) peut révéler la présence d'un réseau de charge percolé [81].

Ce type de comportement peut être retrouvé pour un taux de charge constant lorsque la chimie du polymère est modifiée. Dans le cas du greffage, les chaînes liées de façon covalente aux charges ne peuvent plus relaxer aussi rapidement (reptation rendue plus difficile voire impossible) limitant ainsi l'écoulement à basse fréquence (figure 1 référence [58]).

1.4.2. Couche vitreuse, altération du polymère

Comme expliqué précédemment, les composites sont des systèmes complexes dans lesquels la charge aussi bien que la matrice polymère joue un rôle important sur les propriétés macroscopiques du matériau. De nombreux travaux montrent que l'ajout de charges modifie l'état du polymère. On observe en particulier des décalages de transition vitreuse vers des températures plus hautes par DMA [67, 79] ou RMN du proton [106, 107]. De plus, l'ajout de charge dans le réseau de polymère modifie également sa structure topologique. Mutjaba et al. ont notamment montré par RMN [49] l'impact du taux de charge sur la densité d'enchevêtrement. Dans cette étude, les composites voient leur modules au plateau croitre (du fait de la présence des charges) alors que M_{e} augmente. Nous rappelons, en revanche, que dans les polymères purs le module au plateau décroit avec l'augmentation de M_{e} (équation 1.14). Cette comparaison naïve met en évidence l'importance des interactions entre charge et matrice. Dans le même contexte nous pouvons aussi relever les travaux de simulations numériques de Masnada et al [108] sur l'effet du greffage des chaînes à la surface des charges.

Au début des années 2000, le concept de «couche vitreuse» apparaît pour expliquer le changement de dynamique des polymères dans les composites [67, 109]. Il traduit le fait que les chaînes greffées, ou adsorbés à la surface des charges voient leur dynamique ralentie créant ainsi une (ou plusieurs) phases séparant la charge et le polymère inaltéré (Fig.1.23) : on parle de polymère immobilisé autour de la charge ($2-3 \mathrm{~nm}$), puis de polymère altéré par cette couche vitreuse (jusqu'à 10 nm). Cette vision des choses est soutenue par des mesures sur des films de polymères déposés sur un substrat pour lesquels on peut mettre en évidence la présence d'un gradient de T_{g} avec l'épaisseur [110].

Ces considérations mènent à prendre en compte la percolation des zones altérées dont le volume est plus important que celui des simples charges (cf.1.4.1) ainsi que la forte dépendance des zones «vitreuses » à la température.

Un récent travail de Papon et al. [85] montre que ces différents états du polymère impactent directement le comportement mécanique global et notamment l'Effet Payne qui voit son amplitude grandir avec le volume de chaîne altéré soulignant une fois de plus l'importance de la prise en compte des interactions charge-polymère dans la description mécanique des composites.

Figure 1.23 : Représentation schématique des différents états du polymère selon leur distance par rapport à la charge [111].

D'autres approches différentes de la «couche vitreuse» existent dans la littérature pour expliquer certaines observations. Un article de Robertson publié en 2011 [112] montre que les pics du facteur de perte $\tan \delta\left(=\mathrm{G}^{\prime \prime} / \mathrm{G}^{\prime}\right)$ observés à des températures très supérieures à T_{g} en DMA ($\mathrm{T}_{\mathrm{g}}+60^{\circ} \mathrm{C}$) ne peuvent pas être systématiquement attribués au ralentissement local de segments du polymère. En effet, il attribue ce phénomène à la relaxation globale de la chaîne (reptation) et montre qu'en la bloquant par réticulation, il supprime l'effet observé sur tan δ. D'autres travaux en simulation montrent que la présence de particules n'affecte pas la conformation des chaines, et que le renforcement est dû à un réseau éphémère formé de charges reliées par les chaînes polymères. On parle alors de pontage consistant à étirer une partie d'un polymère adsorbé sur deux particules voisines [113].
2. Section expérimentale

2. Section expérimentale

2.1. Mise en œuvre des nanocomposites

2.1.1. Le système industriel simplifié

Les échantillons dits industriels simplifiés sont préparés au centre de recherche de Ladoux (Michelin) à partir de composés utilisés dans la formulation des matériaux pour la fabrication des bandes de roulement des pneumatiques. Le système est simplifié pour faciliter l'interprétation des résultats lors de la phase de caractérisation. En particulier pour les analyses en DXPA, le nombre de constituants et leur contraste électronique sont à prendre en compte. On s'affranchira notamment de l'ensemble des réactifs nécessaires à la vulcanisation (soufre), des particules de catalyse (ZnO) et du noir de carbone pour obtenir la formulation suivante:

- Styrène-Butadiène-Rubber (SBR), contenant les antioxydants AO2246 et 6PPD [114]
- Silice Zeosil 1165MP hautement dispersible - Solvay/Rhodia [115]
- OctylTriEthoxySilane (OCTEO)
- Diphénylguadinine (DPG)

Dans le but de comprendre l'impact des différents composés sur la structure du composite et sur ses propriétés mécaniques, la formule des échantillons est modifiée un paramètre après l'autre. La même optique de travail sera suivie pour les échantillons «modèles» dont la formulation est présentée en annexe 1 . Les paramètres clés utilisés comme variables dans la formulation sont :

- Le taux de charge (10 à $25 \% \mathrm{v}$).
- Le pourcentage de SBR-D3 dans la matrice (0 à 100% de chaînes fonctionnalisées) (Fig.2.1).
- La masse molaire du $\operatorname{SBR}(40,80,140$ et $280 \mathrm{~kg} / \mathrm{mol})$.

Figure 2.1 : Chaîne de SBR-D3 capable de se greffer sur un silanol de surface de la silice - Le nombre de silanols de surface dépend du milieu environnant, en particulier du pH et peut atteindre $4 / \mathrm{nm}^{2}$.

Le protocole de fabrication des échantillons industriels nécessite l'emploi de deux types d'outils thermostatés :

- Le mélangeur interne (M.I. - Fig.2.2a) est composé d'une chambre équipée de deux rotors ayant une forme optimisée pour fragmenter et disperser la silice dans la matrice de polymère, son utilisation permet de mettre en présence les différents composés en phase solide. Pour que son action soit efficace (fragmentation des charges), le couple doit être suffisamment important, ainsi les échantillons sont préparés avec au moins $10 \% \mathrm{v}$ de silice.
- Le mélangeur externe, ou outils à cylindres (M.E. Fig.2.2b) permet quant à lui après plusieurs passages de redistribuer les charges à travers tout l'échantillon. Ici, la température (T_{ME}) et l'entrefer (e) doivent être judicieusement choisis, typiquement nous imposons $\mathrm{e}=1 \mathrm{~mm}$ et $\mathrm{T}_{\mathrm{ME}}=80^{\circ} \mathrm{C}$.

Figure 2.2: Représentation schématique et photographie de a) mélangeur interne permettant d'effectuer la fragmentation des agglomérats de silice et b) mélangeur externe permettant d'optimiser la distribution des charges dans la matrice.

La figure 2.3 présente une mesure du couple dans le mélangeur interne en fonction du temps lors de la phase de mélangeage. La phase de préparation s'effectue en plusieurs étapes :

- Le SBR sous forme de lamelles est introduit dans la chambre avant qu'elle ne soit fermée par un piston. Les rotors du M.I via la température et les forces mécaniques permettent d'obtenir une pâte homogène après une dizaine de secondes.
- La chambre est rouverte pour y ajouter la silice et la DPG conjointement puis immédiatement refermée. Cette étape peut se faire en deux fois pour des hauts taux de charge. Il est important de laisser le temps au polymère d'incorporer la silice sous peine d'en perdre une partie et de créer des hétérogénéités dans le matériau.
- L'OCTEO est ajouté à la seringue directement dans la chambre ou disposé sur la silice avant son incorporation.
- La chambre peut être rouverte puis refermée pour permettre au mélange de passer d'une demi-cuve à l'autre (un rotor dans chaque demi-cuve).

La phase d'incorporation des composés dure environ 1 minute 30 secondes. Une fois qu'elle est terminée, le matériau est malaxé pendant 3 minutes jusqu'à atteindre un plateau en température aux alentours de $160^{\circ} \mathrm{C}$. Lors de cette phase, la silice est broyée et dispersée, la réaction de greffage de l'OCTEO et du SBR-D3 sur les particules est alors rendue possible par l'apport d'énergie (température + forces mécaniques) et catalysée par la présence de DPG. Il est important de noter que le couple et la température à l'intérieur de la chambre sont dépendants de la formulation du matériau. Ainsi pour atteindre une température équivalente pour tous les échantillons à la fin du mélangeage, la température de la chambre doit être modifiée au préalable à l'aide d'échantillons tests. La vitesse de rotation des rotors est fixée à $95 \pm 10 \mathrm{tr} / \mathrm{min}$ et peut être utilisée comme variable d'ajustement quant à la température désirée. Ici, le point important réside dans le fait que la température soit ajustée à $160^{\circ} \mathrm{C}$ à la fin du mélangeage quelque soit la formulation.

Figure 2.3 : Histoire thermomécanique des échantillons industriels dans le M.I. ($\Phi_{\mathrm{si}}=8.4 \% \mathrm{v}$ à $21.1 \% \mathrm{v}$) - a) Couple appliqué par les rotors, b) Température dans le mélangeur.

Le matériau extrait du M.I passe ensuite deux fois au M.E pour être mis en forme et refroidi. Une fois celui-ci à température ambiante il est ensuite passé une douzaine de fois entre les cylindres ($\mathrm{T} \approx 70^{\circ} \mathrm{C}$) afin que la silice soit répartie de façon homogène dans l'échantillon (un nombre de passage supérieur ne change pas la structure observé en DXPA (cf. annexe 3).

Attention, certaines limites ont été rencontrées : des échantillons «dilués» en phase solide au M.E. (composite à $\Phi<10 \% \mathrm{v}+\mathrm{SBR}$ pur) ont montré des hétérogénéités à l'échelle microscopique, typiquement des zones non chargées (Fig.2.4), bien que le matériau semble homogène à l'œil:

Figure 2.4 : Cliché MET d'un échantillon contenant 10% v en silice «dilué » en phase solide pour atteindre $2 \% \mathrm{v}$. Le procédé d'homogénéisation réalisé au M.E. ne suffit pas à obtenir une structure homogène à l'échelle microscopique.

La mise en forme finale des films nanocomposites se fait à l'aide d'une presse à chaud. Quelques grammes de matière sont disposés entre deux feuilles de mylar et pressés pendant 3 minutes à $60^{\circ} \mathrm{C}$ et 60 bars . Cette étape permet l'obtention de films composites ayant une épaisseur de l'ordre du millimètre bien adaptée pour les essais de diffusion du rayonnement ou de sollicitations en cisaillement.

2.1.2. Formulation des échantillons « gonflés»

Les échantillons dits «gonflés» ont été produits afin d'écarter les agrégats de silice pour pouvoir mesurer un signal en DXPA proche de leur facteur de forme nous renseignant directement sur leur taille. [116].

En effet, comme expliqué ci-avant, les composites industriels doivent être formulés avec au moins $10 \% \mathrm{v}$ en silice. Or, en DXPA, pour ces valeurs de taux de charge, le facteur de structure (complexe du fait de la polydispersité) a un fort impact sur l'intensité mesurée, il est donc plus difficile d'en extraire des informations purement liée à la taille et à la forme des objets. Ici, le but est donc de supprimer l'impact du facteur de structure sans modifier ces derniers.

Dans l'hypothèse où les superstructures branchées sont scindées au niveau de l'agrégat on obtient alors le facteur de forme moyen (polydisperse) de ces derniers. Notre espoir est ensuite de déduire le facteur de structure dans les échantillons non-gonflés donnant ainsi des informations sur les potentiels d'interaction présents lors de la production des composites (cf. section 6.1.3).

Expérimentalement le gonflement d'un échantillon se fait en plusieurs étapes, il permet d'atteindre un rapport « $\mathrm{V}_{\text {gonfle }} / \mathrm{V}_{\text {see }}$ » proche de 10 :
a) Le composite est réticulé à chaud. La chimie de l'agent réticulant peut être différente (soufre ou peroxyde tel que le dicumyl peroxide), le but étant de lier les chaînes afin que l'échantillon ne se dissolve pas dans le styrène qui permettra son gonflement ultérieur. La quantité d'agent doit être ajustée précisément car une réticulation trop forte empêchera l'incorporation du monomère alors qu'une réticulation trop faible engendrera la dissolution du composite. Typiquement nous ajoutons quelques milligrammes d'agent réticulant pour un gramme de matériau.
b) L'échantillon réticulé est plongé dans un mélange styrène + amorceur où il gonfle pendant 3 jours.
c) Le styrène est ensuite égoutté et le composite gonflé est chauffé à $100^{\circ} \mathrm{C}$ pendant une heure pour permettre de polymériser le monomère dans le réseau $\mathrm{SBR}+$ silice (Fig.2.5a). Si le gonflement est réussi, le polystyrène occupant la plus grande partie de l'échantillon le rend transparent (Fig.2.5b). Une couleur laiteuse est ici synonyme de la création de gros objets (diffusion de la lumière) indiquant la floculation des charges et donc l'hétérogénéité de l'échantillon.

Figure 2.5 : a) Dispositif expérimental utilisé pour la polymérisation in-situ du styrène, b) photo d'un échantillon transparent indiquant un gonflement homogène.

Attention, le fait d'obtenir un échantillon gonflé transparent ne signifie pas nécessairement que le gonflement a permis de séparer individuellement tous les agrégats présents dans la formulation originale. En effet, les agrégats formant des superstructures telles que des agglomérats ou étant arrangés en réseau tridimensionnel sont soumis à des interactions attractives relativement importantes pouvant «résister» aux forces de répulsion induites par le gonflement.

2.2. Analyse de gomme liée « Bound Rubber»

Les producteurs de pneumatiques utilisent la technique du Bound Rubber pour quantifier le taux de chaîne liée à la charge dans les composites. Elle permet notamment de prouver le greffage des chaînes dotées de fonctions telles que le D3 ou de façon générale d'observer la quantité de polymère 《attaché» à la charge. Le taux de polymère fonctionnel n'est pas l'unique paramètre impactant la mesure de Bound Rubber. En effet, la présence d'agent de couplage ou de polymère occlus (croissant avec le taux de charge) peut ainsi être évaluée.

Typiquement, le composite est plongé dans un bon solvant pendant plusieurs jours (toluène, THF ...) où il gonfle et parfois se délite complètement selon la formulation utilisée. La partie de polymère non liée passe en solvant puis est éliminée alors que le polymère lié et la charge sont isolés en filtrant, puis pesés. Connaissant la formulation de départ (taux de matière insoluble ...) il est alors facile de corréler la perte de masse et le taux de bound rubber.

Il se calcule formellement comme le pourcentage massique de chaîne lié de la façon suivante :

$$
\begin{array}{cc}
\text { Langage caoutchouterie (Michelin) } & \text { Langage physique (L2C) : } \\
\operatorname{BR}(\%)=\frac{100-\mathrm{FS}-100 \times \mathrm{INS} / \mathrm{PTF}}{100 / \mathrm{PTF}} & \mathrm{BR}=\frac{\mathrm{M}_{\mathrm{s}}-\mathrm{M}_{\mathrm{i}} \Phi_{\mathrm{w}}}{\mathrm{M}_{\mathrm{i}}\left(1-\Phi_{\mathrm{w}}\right)} \tag{2.1a-b}
\end{array}
$$

Avec:
$\mathrm{BR}(\%)$ \% gomme liée
FS Fraction soluble : $100^{*}\left(\mathrm{M}_{\mathrm{i}}-\mathrm{M}_{\mathrm{s}}\right) / \mathrm{M}_{\mathrm{i}}$
INS Masse insoluble par nature (silice en pce)
$\mathrm{M}_{\mathrm{i}} \quad$ Masse de l'échantillon

PTF Masse totale échantillon (pce)

$M_{s} \quad$ Masse sèche (après extraction)

$\Phi_{\mathrm{w}} \quad$ Fraction massique en silice

De façon qénérale, le \%BR croit linéairement avec le taux de polymère fonctionnel (Fig.2.6). Il augmente légèrement avec le taux de charge (polymère occlus) et ne dépend pas de la quantité d'agent de recouvrement. D'autres mesures concernant l'effet de la DPG pourrait également apporter des réponses quant à son rôle de catalyseur de greffage.

Figure 2.6 : Mesures de Bound Rubber réalisées sur deux séries d'échantillons chargés respectivement à 8.5 et 16.7% vet contenant de 0 à $100 \% \mathrm{D} 3$.

2.3. Diffusion du rayonnement aux petits angles

2.3.1. Généralités sur la diffusion

La diffusion du rayonnement aux petits angles a largement été utilisée dans ces travaux car elle permet d'obtenir des informations structurelles à l'échelle nanométrique, c'est-à-dire, dans notre cas, l'échelle des objets élémentaires dispersés dans la matrice de polymère. Cette section est principalement documentée par le livre de T. Zemb et P. Lindner publié en 2002 faisant écho à l'école d'été de Bombannes ayant lieu tous les deux ans «Neutrons, X-ray and light : Scattering methods applied to soft condensed matter »[117].

Elle repose sur l'interaction élastique rayonnement-matière. La sonde, pouvant être de différentes natures (laser, rayons-X, ou neutrons), est diffusée par les hétérogénéités de l'échantillon. L'intensité diffusée (ou《spectre») est directement proportionnelle au contraste entre ces hétérogénéités et le milieu environnant.

Note: Le contraste entre les phases dépend de la sonde utilisée via la densité de longueur de diffusion. Les expressions de ces deux grandeurs sont données dans chaque cas (neutron, rayon- X ou lumière visible) en annexe 5 .

Lors de la diffusion de la sonde, aucun transfert d'énergie n'intervient (diffusion élastique), en revanche l'interaction rayonnement-matière donne lieu à un transfert de quantité de mouvement q qui détermine la direction dans laquelle la sonde est diffusée (Fig.2.7).

Figure 2.7: Principe de la diffusion de rayonnement aux petits angles.

$$
\begin{equation*}
\mathrm{q}=\frac{4 \pi \mathrm{n}}{\lambda} \sin \frac{\vartheta}{2} \tag{2.2}
\end{equation*}
$$

λ : Longueur d'onde du rayonnement sonde
ϑ : Angle selon lequel la sonde est diffusée
n : Indice de réfraction du milieu environnant les objets dans le cas où la source employée est la lumière visible (pour le cas des neutrons ou des rayons- X on prend $\mathrm{n}=1$)

La majeure partie des expériences de diffusion du rayonnement aux petits angles a été réalisée sur la ligne de lumière ID02 à l'European Synchrotron Radiation Facility (ESRF) en utilisant une longueur de d'onde de $1.1 \AA(12.6 \mathrm{keV})$ et deux distances échantillon-détecteur : 1 m (grands angles) et 10 m (petits angles). De plus, la configuration Bonse-Hart [118] installée sur la même ligne a permis d'atteindre les très petits angles ($\mathrm{q}<10^{-3} \AA^{-1}$).

L'intensité totale diffusée $\mathrm{I}(\mathrm{q})$, ou de façon plus formelle, la section efficace différentielle de diffusion par unité de volume $\left(\left.\frac{\mathrm{d} \Sigma}{\mathrm{d} \Omega}\right|_{\mathrm{v}}\right)$, peut être calculée simplement pour une population monodisperse de sphères comme:

$$
\begin{equation*}
\left.\frac{\mathrm{d} \Sigma}{\mathrm{~d} \Omega}\right|_{\mathrm{v}}(\mathrm{q})=\mathrm{I}(\mathrm{q})=\Delta \rho^{2} \Phi V_{0} \mathrm{P}(\mathrm{q}) \mathrm{S}(\mathrm{q}) \tag{2.3}
\end{equation*}
$$

$\Delta \rho^{2}$: Contraste entre les phases (dépendant de la sonde)
Φ : Fraction volumique en objet
V_{o} : Volume individuel de l'objet
$\mathrm{P}(\mathrm{q}):$ Facteur de forme normalisé, $\mathrm{P}(\mathrm{q} \rightarrow 0)=1$
$S(q):$ Facteur de structure statique, $S(q \rightarrow \infty)=1$

Facteur de forme :

Pour de faibles concentrations ($\Phi \rightarrow 0 \%_{\mathrm{v}}$), le facteur de structure est égal à 1 sur toute la gamme de q sondée. Dans ce cas, il est possible d'extraire facilement le facteur de forme. Expérimentalement, on disperse une faible quantité ($\Phi_{\min }<1 \% \mathrm{v}$) d'objets dans le milieu étudié pour mesurer $\mathrm{I}(\mathrm{q}) \sim \mathrm{P}(\mathrm{q})$. Cette mesure est très utile pour recalculer les facteurs de structure des échantillons ayant une densité d'objets plus élevée et ainsi remonter à l'organisation spatiale des objets dispersés.

$$
\begin{equation*}
\mathrm{P}(\mathrm{q})=\frac{\mathrm{I}(\mathrm{q})}{\Delta \rho^{2} \mathrm{~V}_{0} \Phi_{\min }} \tag{2.4}
\end{equation*}
$$

Le facteur de forme (Fig.2.8), renseigne sur la répartition spatiale de la masse de l'objet dans l'espace ($=$ forme). Son expression vient des corrélations spatiales existantes entre les sources secondaires (nucléon ou électron selon la sonde) composant un objet. Son expression dans le cas d'une sphère homogène de rayon R est :

$$
\begin{equation*}
\mathrm{P}(\mathrm{q})=\left(3 \frac{\sin (\mathrm{qR})-\mathrm{qR} \cos (\mathrm{qR})}{(\mathrm{qR})^{3}}\right)^{2} \tag{2.5}
\end{equation*}
$$

Figure 2.8: Facteur de forme de sphère ($\mathrm{R}=100 \AA$).

Plusieurs régimes sont observables:
** Pour $\mathrm{q} \rightarrow 0$, on parle de régime de Guinier, le niveau du plateau renseigne sur la masse (volume sec) des objets diffusant. Ce régime est décrit par l'approximation de Guinier :

$$
\begin{equation*}
\mathrm{I}(\mathrm{q})=\mathrm{I}_{0} \mathrm{e}^{\frac{-\mathrm{q}^{2} \mathrm{Rg}^{2}}{3}} \tag{2.6}
\end{equation*}
$$

$\mathrm{I}_{0}=\Delta \rho^{2} \Phi \mathrm{~V}_{\mathrm{o}}$
R_{g} : Rayon de giration de l'objet diffusant
L'expression précédente peut être modifiée pour faire apparaître le rayon de la sphère équivalente telle que:

$$
\begin{equation*}
\mathrm{I}(\mathrm{q})=\mathrm{I}_{0} \mathrm{e}^{\frac{-\mathrm{q}^{2} \mathrm{R}_{\mathrm{G}}^{2}}{5}} \tag{2.7}
\end{equation*}
$$

R_{G} : Rayon de l'objet diffusant, appelé aussi dans ce cas «Rayon de Guinier»
De ces deux expressions on tire simplement la relation entre le rayon qéométrique et le rayon de giration pour des sphères homogènes:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{g}}=\sqrt{\frac{3}{5}} \mathrm{R}_{\mathrm{G}} \tag{2.8}
\end{equation*}
$$

** Aux 《grands angles », c'est-à-dire pour $q>1 / r_{c}$, où r_{c} est le rayon de courbure de l'interface, on parle de régime de Porod (typiquement dans notre cas $q>10^{-1} \AA$). Dans cette gamme de transfert de quantité de mouvement, on sonde la surface de l'objet. Le signal est décrit par:

$$
\begin{equation*}
\mathrm{I}(\mathrm{q})=\frac{\mathrm{A}}{\mathrm{q}^{6-D_{s}}} \tag{2.9}
\end{equation*}
$$

D_{s} : Dimension fractale de la surface de l'objet. Pour une surface parfaitement plane $\mathrm{D}_{\mathrm{s}}=2$. Ainsi, le signal d'un objet «lisse », décroit en q ${ }^{-4}$ (loi de Porod).
Dans le cas général, pour $D_{s}=2$, le préfacteur A est directement relié aux dimensions de l'objet par :

$$
\begin{equation*}
A=2 \pi \Delta \rho^{2} \frac{S}{V} \tag{2.10}
\end{equation*}
$$

$\frac{\mathrm{s}}{\mathrm{V}}$: Surface spécifique cumulée des objets sondés (S : surface cumulée, V : volume cumulé)
Dans le cas d'objets sphériques, on peut ainsi remonter au rayon ou à la fraction volumique en objet à partir de la surface spécifique:

$$
\begin{equation*}
\frac{\mathrm{S}}{\mathrm{~V}}=\frac{\Phi N S_{0}}{\mathrm{NV} V_{0}}=\frac{3 \Phi}{\mathrm{R}_{\mathrm{pd}}} \tag{2.11}
\end{equation*}
$$

R_{pd} : Rayon de Porod
S_{0} : Surface d'un objet sphérique
V_{0} : Volume d'un objet sphérique

Les deux régimes sont dépendants de la qéométrie de l'objet, de leur polydispersité, et de la composition du milieu diffusant. Pour des géométries simples on peut extraire les dimensions de l'objet aussi bien en travaillant à « petits-angles » qu'à « grands angles», cela permet en outre de vérifier la cohérence des résultats obtenus. Pour des géométries plus complexes, nous verrons que chaque régime apporte des informations essentielles.

Facteur de structure:

Le facteur de structure statique $\mathrm{S}(\mathrm{q})$ (équation 2.12), renseigne sur les corrélations spatiales entre les objets. Cette grandeur thermodynamique est directement liée aux interactions (potentiels) entre les objets.

$$
\begin{equation*}
\mathrm{S}(\mathrm{q})=\frac{1}{\mathrm{~N}}\left\langle\sum_{\mathrm{j}=1}^{\mathrm{N}} \sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{e}^{\mathrm{i} \mathrm{q}\left(\overrightarrow{\mathrm{R}_{\mathrm{j}}}-\overrightarrow{\mathrm{R}_{\mathrm{k}}}\right)}\right\rangle \tag{2.12}
\end{equation*}
$$

N : Nombre d'objets

$\mathrm{R}_{\mathrm{j}}, \mathrm{R}_{\mathrm{k}}$: Position des centres de masse des objets

La double somme intervient pour décrire le signal diffusé par chacun des N objets présents dans le milieu. Les corrélations spatiales entre un centre de masse donné et les N-1 restants sont ainsi prises en compte pour chaque objet.

L'expression du facteur de structure statique pour ($q \rightarrow 0$) permet d'extraire la compressibilité isotherme $\left(\chi_{\mathrm{T}}\right)$ du système telle que :

$$
\begin{equation*}
\mathrm{S}(\mathrm{q} \rightarrow 0)=\rho_{\mathrm{n}} \mathrm{k}_{\mathrm{B}} \mathrm{~T} \chi_{\mathrm{T}} \tag{2.13}
\end{equation*}
$$

$\mathrm{k}_{\mathrm{B}} \mathrm{T}$: Produit de la constant de Boltzmann et de la température, (énergie thermique)
Dans l'approximation de Percus-Yevick (cas ou le potentiel entre les objets se réduit à l'interaction de sphère dure) [119], il est également possible d'exprimer $\mathrm{S}(0)$ en fonction de la fraction volumique en objet comme :

$$
\begin{equation*}
\mathrm{S}_{\mathrm{PY}}(\mathrm{q} \rightarrow 0)=\frac{(1-\Phi)^{4}}{(1+2 \Phi)^{2}} \tag{2.14}
\end{equation*}
$$

L'allure générale du facteur de structure statique PY est présenté Fig.2.9. Le pic de structure est dû à la répulsion stérique des objets au contact «touche-touche ».

Figure 2.9 : Facteur de structure statique $P Y$ avec $R=100 \AA$ et $\Phi=0.1$.
Il est important de souligner ici que les matériaux composites traités dans cette thèse ne sont pas des systèmes à l'équilibre mais métastables du fait des natures respectives hydrophile et hydrophobe de la silice et du polymère. De fait, le facteur de structure décrivant la morphologie des charges ne peut être calculé par une théorie à l'équilibre thermodynamique (ici l'approximation de Percus-Yevick). Néanmoins, pour des matériaux hautement chargés ($\Phi_{\mathrm{si}}>8.4 \% \mathrm{v}$), caractérisés par des structures très contraintes d'un point de vue stérique, nous considérerons dans la suite de ces travaux que la théorie de la diffusion telle que décrite dans ce chapitre s'applique.

2.3.2. Prise en compte de la polydispersité

Ces différents concepts peuvent être généralisés au cas polydisperse. En effet, de façon générale, les systèmes réels sont composés d'objets présentant une polydispersité qui peut considérablement impacter les mesures de diffusion du rayonnement. Nous ne considérerons ici que la polydispersité en taille (cas d'objets homothétiques). Cette polydispersité peut être décrite par différentes fonctions de distribution telle que la loi log-normale:

$$
\begin{equation*}
\mathrm{P}\left(\mathrm{R}, \mathrm{R}_{0}, \sigma\right)=\frac{1}{\mathrm{R} \sigma \sqrt{2 \pi}} \exp \left(\frac{-\ln ^{2}\left(\frac{\mathrm{R}}{\mathrm{R}_{0}}\right)}{2 \sigma^{2}}\right) \tag{2.15}
\end{equation*}
$$

$P\left(R, R_{0}, \sigma\right)$: Probabilité de trouver un objet ayant une taille R sur l'ensemble des objets (normée à 1)
R_{0} : Rayon caractéristique de la loi log-normale
σ : Ecart type du logarithme de R. On définit la polydispersité comme: $\mathrm{P}_{\mathrm{LN}}=\sqrt{\exp \left(\sigma^{2}\right)-1}$, largeur de la distribution à mi-hauteur.

En outre, il est possible de calculer les moments de la distribution log-normale en se basant sur l'expression suivante :

$$
\begin{equation*}
\left\langle\mathrm{R}_{0}{ }^{\mathrm{n}}\right\rangle=\mathrm{R}_{0}{ }^{\mathrm{n}} \exp \left(\frac{\mathrm{n}^{2} \sigma^{2}}{2}\right) \tag{2.16}
\end{equation*}
$$

$\left\langle\mathrm{R}_{0}{ }^{\mathrm{n}}\right\rangle$: Moment d'ordre n de la loi log-normale
Ainsi, à partir de R_{0}, il est possible de calculer le volume moyen des objets $\left\langle\mathrm{V}_{0}\right\rangle$. Le rayon équivalent $R_{\text {eq }}$ correspond au rayon de la sphère ayant pour volume $\left\langle V_{0}\right\rangle$.

$$
\begin{gather*}
\left\langle V_{0}\right\rangle=\frac{4 \pi}{3}\left\langle R^{3}\right\rangle=\frac{4 \pi}{3} R_{e q}{ }^{3}=\frac{4 \pi}{3} R_{0}{ }^{3} \exp \left(\frac{9 \sigma^{2}}{2}\right) \tag{2.17}\\
R_{e q}=R_{0} \exp \left(\frac{3 \sigma^{2}}{2}\right) \tag{2.18}
\end{gather*}
$$

Cas dilué $\boldsymbol{\Phi}=\boldsymbol{\Phi}_{\text {min }}$

Pour de faibles concentrations en objets diffusant on rappelle que $\mathrm{S}(\mathrm{q})$ vaut 1 quelque soit q . La polydispersité n'impacte donc que le facteur de forme (Fig.2.10), en particulier on montre que le préfacteur considéré dans l'équation (2.6) peut se réécrire comme:

$$
\begin{equation*}
\mathrm{I}_{0}=\Phi \Delta \rho^{2} \frac{\left\langle V_{0}{ }^{2}\right\rangle}{\left\langle V_{0}\right\rangle}=\Phi \Delta \rho^{2} \frac{4 \pi}{3} R_{0}{ }^{3} \exp \left(\frac{27 \sigma^{2}}{2}\right) \tag{2.19}
\end{equation*}
$$

Où nous avons utilisé 2.16
Du fait de la polydispersité, les oscillations aux grands angles tendent à disparaître tout en conservant une décroissance en q^{-4}. En suivant le même raisonnement dans les domaines de Guinier et Porod, il est possible d'étendre les expressions de R_{G} et $R_{p d}$ au cas polydisperse [120] :

$$
\begin{align*}
\left\langle\mathrm{R}_{\mathrm{G}}{ }^{2}\right\rangle & =\frac{\left\langle\mathrm{R}^{8}\right\rangle}{\left\langle\mathrm{R}^{6}\right\rangle} \tag{2.20}\\
\left\langle\mathrm{R}_{\mathrm{pd}}\right\rangle & =\frac{\left\langle\mathrm{R}^{3}\right\rangle}{\left\langle\mathrm{R}^{2}\right\rangle} \tag{2.21}
\end{align*}
$$

2. Section expérimentale

Figure 2.10 : Impact de la polydispersité sur le facteur de forme de sphère. Ici le facteur de forme résultant est la somme pondérée des N facteurs de forme calculés avec des rayons suivant une loi lognormale.

Cas concentré $\Phi>\Phi_{\min }$

Dans le cas où des objets de tailles différentes interagissent, la prise en compte de la polydispersité se complexifie notablement. En effet, le facteur de structure statique définit précédemment décrit les interactions entre des objets identiques ce qui n'est plus le cas lorsque une polydispersité en taille est introduite. Il en résulte notamment l'impossibilité d'utiliser l'expression 2.3 pour modéliser un tel système.

On note que contrairement au cas précédent ($\mathrm{P}(\mathrm{q}$) polydisperse), le facteur de structure d'un tel système n'est pas une simple somme pondérée de facteurs de structures décrivant respectivement les interactions entre billes de mêmes tailles.

Il est cependant possible de calculer un facteur de structure apparent $S_{\text {app }}(q)$ numériquement tel que:

$$
\begin{equation*}
S^{\text {app }}(q)=\frac{I(q)}{\overline{I_{0}} \bar{P}(q)}=\frac{\sum_{i, j} \sqrt{N_{i} N_{j}} V_{i} V_{j} \sqrt{P_{i}(q) P_{j}(q)} S_{i j}(q)}{\sum_{i} N_{i} V_{\mathrm{i}}^{2} \mathrm{P}_{\mathrm{i}}(q)} \tag{2.22}
\end{equation*}
$$

$\overline{\mathrm{P}(\mathrm{q})}$: Facteur de forme moyen des objets simulés.
$\overline{I_{0}}=\Delta \rho^{2} \Phi\left\langle V_{o}\right\rangle^{2} /\left\langle V_{0}\right\rangle$. Dans le cas où les objets n'interagissent pas, on a : $\overline{\mathrm{I}_{0}}=\Delta \rho^{2} \Phi\left\langle\mathrm{~V}_{\mathrm{o}}\right\rangle$
$\mathrm{S}_{\mathrm{ij}}(\mathrm{q})$: Facteur de structure partiel
On peut alors clairement identifier l'impact de la polydispersité sur $\mathrm{S}_{\text {app }}(\mathrm{q})$ (Fig.2.11). En particulier, on observe l'accroissement de $S_{\text {app }}(0)$, l'abaissement du pic de structure «touchetouche» et son décalage aux plus petits angles à Φ constant (différent de $S_{\text {app }}(\mathrm{q})$ calculé par Klein pour N/V constant [117]).

Figure 2.11: Facteurs de structure apparents calculés à partir de sphères polydisperses $(\sigma=0,15$ et 30%) par simulation Monte-Carlo.

2.3.3. Application aux systèmes agrégés

De nombreux systèmes physiques sont constitués de «superstructures» composés d'objets élémentaires. Dans ce cas, plus complexe que la simple observation d'objets bien dispersés, de nouveaux concepts sont à introduire afin de traiter au mieux les données expérimentales.

La diffusion aux petits angles étant susceptibles à la masse ou «volume sec» des objets, il convient de définir le nombre d'agrégation $\mathrm{N}_{\text {agg }}$:

$$
\begin{equation*}
N_{\mathrm{agg}}=\frac{\left\langle\mathrm{V}_{0 \text { in agg }}\right\rangle}{\left\langle\mathrm{V}_{0}\right\rangle} \tag{2.23}
\end{equation*}
$$

$\left\langle\mathrm{V}_{0 \text { in agg }}\right\rangle$: Volume de matière diffusante dans un agrégat
Afin de lier la masse (《volume sec») et le volume total (《volume mouillé ») on définit la compacité κ pour des objets sphériques (Fig.2.12) comme:

$$
\begin{equation*}
\kappa=\frac{\left\langle V_{0 \text { in agg }}\right\rangle}{\left\langle V_{\mathrm{agg}}\right\rangle}=\frac{\mathrm{N}_{\mathrm{agg}}\left\langle\mathrm{~V}_{0}\right\rangle}{\frac{4}{3} \pi\left\langle\mathrm{R}_{\mathrm{agg}}{ }^{3}\right\rangle} \tag{2.24}
\end{equation*}
$$

Figure 2.12 : Morphologie d'un agrégat

En diffusion du rayonnement aux petits angles la notion de dimension fractale (D_{f}) est beaucoup utilisée car elle décrit le comportement de la variation de masse avec les dimensions de l'agrégat (Fig.2.13)

$$
\begin{equation*}
N_{\mathrm{agg}}=\left(\frac{\mathrm{R}_{\mathrm{agg}}}{\mathrm{R}_{\mathrm{eq}}}\right)^{\mathrm{D}_{\mathrm{f}}} \tag{2.25}
\end{equation*}
$$

$R_{\text {eq }}$: Rayon de la sphère ayant un volume équivalent au volume moyen des sphères polydisperses.
Elle est en théorie, facilement atteignable car elle correspond à la pente de l'intensité mesurée entre les régimes de Guinier de l'agrégat et de l'objet élémentaire (l'intensité varie alors comme $\left.\mathrm{I}(\mathrm{q}) \sim \mathrm{q}^{-\mathrm{D}_{\mathrm{f}}}\right)$. Elle est comprise entre 1 (agrégat linéaire) et 3 (agrégat infiniment dense) du fait des trois dimensions de l'espace.

Le cas de la sphère élémentaire est singulier. En effet, l'intensité diffusée aux petits angles est constante (plateau du facteur de forme Fig.2.8) ce qui dans ce contexte peut être assimilé à $\mathrm{D}_{\mathrm{f}}=0$.
Objet élémentaire

$$
D_{\mathrm{f}}=0
$$

> Cylindre

$$
\mathrm{D}_{\mathrm{f}}=1
$$

Phase lamellaire

$$
\mathrm{D}_{\mathrm{f}}=2
$$

Pelote statistique Polymère Gaussien

$$
D_{f}=2
$$

Agrégat fractal

En principe $1<\mathrm{D}_{\mathrm{f}}<3$

Figure 2.13 : Géométries usuelles et fractalité

L'équation. 2.26 permet en outre un lien direct avec la compacité :

$$
\begin{equation*}
\kappa=\left(\frac{\mathrm{R}_{\mathrm{agg}}}{\mathrm{R}_{\mathrm{eq}}}\right)^{\mathrm{D}_{\mathrm{f}}-3} \tag{2.26}
\end{equation*}
$$

Finalement, en se basant sur les relations 2.19 et 2.23, on peut donner une expression de l'intensité diffusée pour ($\mathrm{q} \rightarrow 0$) par une population polydisperse d'agrégats sans interaction composés de billes polydisperses de volume moyen $\left\langle\mathrm{V}_{0}\right\rangle$:

$$
\begin{equation*}
\mathrm{I}_{0}=\Phi \Delta \rho^{2} \frac{\left\langle\mathrm{~V}_{0 \text { in agg }}{ }^{2}\right\rangle}{\left\langle\mathrm{V}_{0 \text { in agg }}\right\rangle}=\Phi \Delta \rho^{2}\left\langle\mathrm{~V}_{0}\right\rangle \frac{\left\langle\mathrm{N}_{\mathrm{agg}}{ }^{2}\right\rangle}{\left\langle\mathrm{N}_{\mathrm{agg}}\right\rangle} \tag{2.27}
\end{equation*}
$$

On notera que par analogie au cas général (polydispersité de la bille faible), on peut exprimer le rayon de l'agrégat équivalent (dont le volume est égal au volume moyen des agrégats polydisperses) comme:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{agg}}{ }^{\mathrm{eq}}=\sqrt[3]{\frac{3\left\langle\mathrm{~V}_{0 \text { in agg }}{ }^{2}\right\rangle}{4 \pi\left\langle\mathrm{~V}_{0 \text { in agg }}\right\rangle}}=\sqrt[3]{\frac{3\left\langle\mathrm{~V}_{0}\right\rangle\left\langle\mathrm{N}_{\mathrm{agg}}{ }^{2}\right\rangle}{4 \pi\left\langle\mathrm{~N}_{\mathrm{agg}}\right\rangle}}=\mathrm{R}_{\mathrm{eq}} \sqrt[3]{\frac{\left\langle\mathrm{N}_{\mathrm{agg}}{ }^{2}\right\rangle}{\left\langle\mathrm{N}_{\mathrm{agg}}\right\rangle}} \tag{2.28}
\end{equation*}
$$

2.3.4. Cas des polymères

Dans de nombreux cas, l'étude de la conformation des chaînes par diffusion de neutrons apporte de précieuses informations. Deux exemples courants sont l'étude des polymères aux interfaces comme dans le cas des «brosses » de chaînes greffées [55] [93] [121] ou celle des latex dans lesquels les chaînes regroupées en billes diffusent sous l'effet de la température pour finalement former un fondu homogène [65]. On s'intéresse en particulier à évaluer le rayon de giration des objets dans différents cas :

- Le polymère peut être mis en solvant à une faible concentration $(S(q)=1)$. On mesure alors le facteur de forme de la chaîne (dépend fortement de la qualité du solvant).
- En fondu, on utilise le marquage isotopique. Ce procédé consiste à effectuer un mélange de polymère hydrogéné et deutéré afin d'obtenir un contraste suffisant en diffusion. Typiquement, le facteur de forme de chaine en fondu est obtenu en dispersant une petite quantité de polymère deutéré (D) (très couteux) dans une matrice de polymère hydrogéné (H).

Dans le cas idéal, (dispersion aléatoire de D dans H et vice versa), le facteur de forme du polymère (pelote statistique) est directement relié au rayon de giration de ce dernier par la fonction de Debye [122] (2.29). La représentation de cette fonction pour $\mathrm{Rg}=100 \AA$ est donnée Fig.2.14.

$$
\begin{equation*}
P_{\text {Debye }}(q)=\frac{2}{q^{4} R_{g}{ }^{4}}\left[\exp \left(-q^{2} R_{g}{ }^{2}\right)-1+q^{2} R_{g}{ }^{2}\right] \tag{2.29}
\end{equation*}
$$

Figure 2.14: Facteur de forme d'une chaîne polymère Gaussienne idéale (« $\mathrm{P}_{\text {Debye }}(\mathrm{q})$ »).

Dans le cas où les polymères H et D entrent en interaction et ont tendance à former des domaines préférentiellement composés de H ou de D , le signal mesuré peut être exprimé en fonction des facteurs de formes dans le cas idéal et du paramètre d'interaction monomérique de Flory-Huggins $\chi_{H D}$ permettant de quantifier l'homogénéité du mélange. Cette modélisation (équation 2.30), est connue sous le nom de Random Phase Approximation (RPA [123]).

$$
\begin{equation*}
\frac{\Delta \rho^{2}}{\mathrm{I}(\mathrm{q})}=\frac{1}{\Phi_{\mathrm{H}} \mathrm{~N}_{\mathrm{H}} \mathrm{~V}_{\mathrm{H}} \mathrm{P}_{\mathrm{H}}(\mathrm{q})}+\frac{1}{\Phi_{\mathrm{D}} \mathrm{~N}_{\mathrm{D}} V_{\mathrm{D}} \mathrm{P}_{\mathrm{D}}(\mathrm{q})}-\frac{2 \chi_{\mathrm{HD}}}{\mathrm{~V}_{\mathrm{M}}} \tag{2.30}
\end{equation*}
$$

$\Phi_{\mathrm{H}}, \Phi_{\mathrm{D}}$: Fraction volumique de chaque espèce
$\mathrm{N}_{\mathrm{H}}, \mathrm{N}_{\mathrm{D}}$: Indices respectifs de polymérisation des chaînes H et D
$\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{D}}$: Volumes respectifs des monomères H et D
V_{M} : Volume moyen du monomère avec $\mathrm{V}_{\mathrm{M}}=\Phi_{\mathrm{H}} \mathrm{N}_{\mathrm{H}}+\Phi_{\mathrm{D}} \mathrm{N}_{\mathrm{D}}$

Ainsi pour des polymères H et D n'interagissant pas (bonne miscibilité) on a un paramètre d'interaction faible. Au contraire, lorsque χ_{HD} tend vers sa valeur critique χ_{S}, chaque polymère a tendance à repousser l'autre, on assiste alors à la formation de domaines. Ces fluctuations de concentrations supplémentaires observées à une échelle plus grande que celle de la chaîne individuelle donne lieu à une remontée aux petits angles. Finalement, pour $\chi_{\mathrm{HD}}>\chi_{\mathrm{S}}$ on observe une décomposition spinodale. La valeur critique du paramètre d'interaction est donnée (2.31). Il en ressort que la miscibilité du système est plus grande pour des petites chaînes. Expérimentalement, il est donc difficile de mesurer le signal diffusé par une chaîne en fondu si sa masse molaire ($\sim \mathrm{N}$) est plus importante que la valeur limite correspondant à χ_{s} critique pour une température donnée.

$$
\begin{equation*}
\chi_{\mathrm{s}}=\frac{1}{2}\left(\frac{1}{\mathrm{~N}_{\mathrm{H}} \Phi_{\mathrm{H}}}+\frac{1}{\mathrm{~N}_{\mathrm{D}} \Phi_{\mathrm{D}}}\right) \tag{2.31}
\end{equation*}
$$

2.3.5. Conformation de chaîne dans un composite

L'étude des composites en diffusion aux petits angles ne se limite pas à déterminer la structure des charges à travers l'échantillon mais peut s'étendre à l'étude des conformations des chaînes de polymères. Il est en particulier intéressant d'observer les macromolécules dans des environnements confinés, c'est-à-dire à l'interface avec une charge ou à l'intérieur d'un agrégat (polymère occlus). Comme expliqué ci-avant, le marquage isotopique permet de «régler» la densité de longueur de diffusion d'un fondu rendant possible le masquage de la contribution des charges en diffusion neutronique. En effet, pour une valeur du contraste nulle, c'est-à-dire pour $\rho_{\mathrm{HD}}=\rho_{\text {charge }}$ on n'observera seulement la diffusion des chaînes, on parle de «Zero Average Contrast» (ZAC) ou en français de «contraste moyen nul». Cette technique, explicitée en Fig.2.15, a notamment permis d'observer la transition de l'état mouillé (《wet») à l'état sec (《dry») de chaînes de polystyrène greffées sur de la silice colloïdale [124].

Figure 2.15 : Représentation schématique du «Zero Average Contrast».

En pratique, cette méthode nécessite de connaître précisément les densités de longueurs de diffusion des polymères H et D ainsi que celle de la charge, chacune pouvant être mesurée grâce à la variation de contraste, technique explicitée en annexe 5. De même que précédemment, les deux types de polymères doivent être distribués aléatoirement autour des charges pour pouvoir les masquer, dans le cas contraire, on observera non seulement un signal provenant de la charge mais également des domaines préférentiellement composés de H ou de D. Un exemple bien connu est l'adsorption préférentielle d'un type de chaîne à la surface de la charge menant à une diffusion de type «core-shell».

Le signal obtenu dans les conditions idéales est caractéristique de la «conformation moyenne» de la chaine dans l'échantillon et dépend donc fortement des fractions volumiques de polymère dans chaque état (libre, greffé, occlus, ...).

2.4. Autres techniques de caractérisation

L'analyse structurale a principalement reposé sur la diffusion des rayons-X aux petits angles et sur la microscopie électronique à transmission réalisée au centre de technologie Michelin de Ladoux (technique non détaillée ici, résultats présentés chapitre 3). Dans cette section nous revenons sur les principales méthodes de caractérisation des propriétés macroscopiques (gomme liée, mécaniques et électriques).

2.4.1. Analyse mécanique dynamique / rhéologie

Une grande partie des informations liées aux propriétés macroscopiques a concerné le comportement mécanique dynamique des composites à faibles déformations. Deux qéométries (Fig.2.16) ont été utilisées: «plateau-plateau» (sollicitation en cisaillement) et «entre mors» (sollicitation en torsion). Une expérience a également été réalisée en traction.

Figure 2.16 : Géométries typiques en cisaillement et torsion.

Géométrie plateau-plateau (cisaillement)

Pour des systèmes proches de l'état liquide et ne présentant pas de rugosité marquée (généralement pour M , $\% \mathrm{D} 3$ et/ou Φ bas) nous avons largement utilisé des essais en cisaillement avec une géométrie plateau-plateau en faisant varier la fréquence entre 100 et 0.01 Hz ainsi que la température entre 80 et $10^{\circ} \mathrm{C}$ dans le but d'obtenir des courbes maitresses rendant compte des propriétés mécaniques sur la plus large gamme de fréquence possible (loi WLF cf. 1.1.2). La déformation appliquée a été déterminée par un balayage en déformation (Fig.2.17) permettant de sonder le composite dans la zone linéaire tout en limitant le bruit. La majorité des essais ont été réalisé avec un rhéomètre (AR2000 TA Instruments) doté d'un plateau mobile de 20 mm de rayon.

Avant de démarrer un essai, les échantillons sont chauffé à $100^{\circ} \mathrm{C}$ sur le rhéomètre où l'on applique une pression de 10 N pendant 10 minutes afin de faire disparaitre les possibles aspérités présentes à la surfaces, qui évoluant au cours de l'expérience, provoquent des artefacts de mesure. On observe typiquement une augmentation du module provenant de l'augmentation de la surface de contact entre les plateaux et l'échantillon au cours du temps, le prétraitement permet de rejoindre l'état final (stable) directement.

Figure 2.17 : Rhéologie en cisaillement - Balayage en déformation sur un composite chargé à $26 \% \mathrm{v}$ pour $\mathrm{T}=100^{\circ} \mathrm{C}$ (cas où la zone linéaire est la plus courte : effet Payne).

Géométrie mors (torsion)

Pour des échantillons formulés avec des taux de charge élevés, nous avons constaté l'impossibilité de former une courbe maîtresse en utilisant la seule loi WLF, un décalage vertical des mesures effectuées semble nécessaire (Fig.4.2). De plus, l'aspect le plus souvent rugueux des échantillons induit une large barre d'erreur lors de la mesure en cisaillement. Pour remédier à ce type de problème, nous mesurons les propriétés mécaniques en torsion (DMA Ares-G2 TA Instruments) sur des échantillons parallélépipédiques à fréquence donné (1 ou 10 Hz) en faisant varier la température de $-80^{\circ} \mathrm{C}$ à $80^{\circ} \mathrm{C}$. La vitesse de chauffe est de $3 \mathrm{~K} / \mathrm{min}$ avec une minute de stabilisation avant d'effectuer chaque mesure. Le taux de déformation est choisi identique au précédent $\varepsilon=0.1 \%$. Les dimensions des échantillons sont typiquement: $1.5^{*} 8^{*} 15 \mathrm{~mm}^{3}$.

Mesure

Expérimentalement nous déterminons le module d'élasticité complexe G^{*} en fonction de la fréquence de sollicitation ω ou de la température (cf. équation 1.13) via la mesure de couple effectué par le rhéomètre pour une déformation imposée (ici 0.1%). $\mathrm{G}^{*}(\omega)$ est directement relié au module d'élasticité en fonction du temps $\mathrm{G}(\mathrm{t})$ par la transformée de Fourier (FT) tel que :

$$
\begin{equation*}
\mathrm{G}^{*}(\omega)=\mathrm{FT}[\mathrm{G}(\mathrm{t})]=\mathrm{i} \omega \int_{0}^{\infty} \mathrm{G}(\mathrm{t}) \exp (-\mathrm{i} \omega \mathrm{t}) \mathrm{dt} \tag{2.32}
\end{equation*}
$$

$G(t)$ se mesure typiquement en essai de relaxation où une déformation est appliquée brusquement à un temps donné et maintenue constante alors que l'on suit l'évolution de la contrainte dans le matériau (《relaxation de contrainte »).

2.4.2. Spectroscopie diélectrique à large bande

La spectroscopie diélectrique à large bande ou Broadband Dielectric Spectroscopy (BDS) est une technique expérimentale permettant de caractériser un matériau d'un point de vue dynamique. Elle utilise les moments dipolaires (μ) des constituants de la matière (ions et dipôles électriques) comme source d'information en les sollicitant à des fréquences / températures différentes pour ainsi identifier leurs mécanismes de relaxation. Elle est basée sur la mesure de deux grandeurs électriques relatives au matériau que sont la possibilité à stocker les charges (capacité) et la possibilité à les transférer (conductivité). L'appareillage utilisé dans cette thèse est un spectromètre Novocontrol Alpha-S.

D'un point de vue expérimental, l'échantillon sondé ($\approx 0.15 \mathrm{~mm}$ d'épaisseur et 3 cm de diamètre), superposé à une croix en téflon permettant d'éviter les court-circuits, est placé entre deux électrodes recouvertes d'or à la façon d'un condensateur (Fig.2.18). La tension appliquée aux bornes est alors modulée en fréquence (10^{-2} à $10^{7} \mathrm{~Hz}$) dans le but d'observer la possibilité des charges à suivre l'alternance du champ électrique permettant ainsi de remonter aux pertes électriques dans le matériau. Le dispositif est placé dans une chambre permettant de faire évoluer la température sur une très large gamme (ici, entre -150 et $150^{\circ} \mathrm{C} \pm 0.1^{\circ} \mathrm{C}$)
sous un flux constant d'azote. Typiquement on mesure la permittivité diélectrique complexe du milieu en fonction de la fréquence $\varepsilon^{*}(\omega)$ définie comme:

$$
\begin{equation*}
\varepsilon^{*}(\omega)=\varepsilon^{\prime}(\omega)-\mathrm{i} \varepsilon^{\prime \prime}(\omega)=\frac{\mathrm{C}^{*}(\omega)}{\mathrm{C}_{0}}=\frac{\mathrm{I}^{*}(\omega)}{\mathrm{i} \omega \mathrm{U}^{*}(\omega) \mathrm{C}_{0}} \tag{2.33}
\end{equation*}
$$

ε^{\prime} : Partie réelle de la permittivité, proportionnelle à l'énergie stockée dans l'échantillon
$\varepsilon^{\prime \prime}$: Partie imaginaire de la permittivité, proportionnelle à l'énergie dissipée
C_{0} : Capacité du système sans l'échantillon
$\mathrm{U}^{*}(\omega)$: Tension sinusoïdale appliquée à l'échantillon
$I^{*}(\omega)$: Courant mesuré dû à la polarisation entre les deux électrodes
a)

b)

Figure 2.18: a) Schéma simplifié de la mesure de BDS - b) cellule typique formée des deux électrodes et du composite.

De manière générale, le comportement des relaxations diélectriques dépend de la fonction de corrélation dipôle-dipôle dépendant du temps $\Phi_{\mu}(\mathrm{t})$ [125]. Dans le cas de polymères, elle peut être exprimée en fonction de plusieurs composantes, chacune caractéristique d'un processus physique lié à la nature de la macromolécule.

$$
\begin{equation*}
\Phi_{\mu}=\Phi_{\text {Local }}+\Phi_{\mathrm{S}}+\Phi_{\text {Chain }} \tag{2.34}
\end{equation*}
$$

$\Phi_{\text {Local }}$: Composante liée aux mouvements des dipôles localisés (relaxations secondaires), l'évolution du processus avec la température se fait suivant une loi Arrhénienne.
Φ_{S} : Composante liée aux mouvements des segments (changement de conformation, relaxation α), dans ce cas l'évolution du processus avec la température se fait suivant une loi WLF (cf. équation 1.13).
$\Phi_{\text {Chain }}$: Composante liée au mouvement global de la chaîne (reptation), cette composante est nulle pour des polymères de «Type-B » comme le SBR, pour lesquels la composante du moment dipolaire parallèle à la chaîne est nulle $\left(\vec{\mu}_{\|}=0 ; \vec{\mu}=\vec{\mu}_{\perp}\right)$.

De plus, à basse fréquence ou haute température la conductivité ionique σ_{c} contribue à la partie imaginaire de la permittivité avec une fonction de la forme $\sigma_{\mathrm{c}} / \varepsilon_{0} \omega$ (où ε_{0} est la permittivité diélectrique du vide).

Ces différents régimes sont clairement identifiables pour une matrice pure. Dans le cas de matériaux composites, de nouvelles composantes peuvent potentiellement intervenir (si on
ajoute des espèces possédant des dipôles électriques) et ainsi compliquer l'interprétation des spectres. Un bon exemple est le cas de la silice à la surface de laquelle les interactions faibles (type liaisons hydrogène) permettent l'adsorption de molécules d'eau, composé sensible aux variations de champs électrique ($\mu_{\mathrm{H}_{2} \mathrm{O}}=1.85 \mathrm{D}$). En effet, de nombreux travaux ont montré que des processus propres aux matériaux composites interviennent. Ils sont, le plus souvent, générés par le confinement des charges électriques aux interfaces polymère-charge. On parle alors de processus Maxwell-Wagner-Sillars (MWS) [126] pouvant intervenir dans différentes gammes de fréquence en fonction de la structure et de la taille des objets renforçants. Ces contributions additionnelles peuvent masquer celles de la matrice sur une large gamme de fréquence rendant difficilement atteignable les processus α et β du polymère.

D'un point de vue quantitatif, tous ces phénomènes générant des pics sur ε " et des marches sur ε^{\prime} peuvent être analysés par le modèle de Debye [127, 128] ou son extension développée par Havriliak et Negami [129]:

$$
\begin{equation*}
\varepsilon^{*}(\omega)=\varepsilon_{\infty}+\frac{\Delta \varepsilon}{\left(1+(\mathrm{i} \omega \tau)^{\gamma}\right)^{\delta}} \tag{2.35}
\end{equation*}
$$

Avec $\Delta \varepsilon=\varepsilon_{s}-\varepsilon_{\infty}$, la force diélectrique
ε_{∞} : Permittivité à haute fréquence
ε_{s} : Permittivité statique (basse fréquence)
γ, δ : Coefficients traduisant l'élargissement du pic, respectivement symétrique et asymétrique avec $\gamma>0$ et $\gamma \delta \leq 1$. Dans le modèle de Debye (cas idéal) $\gamma=\delta=1$.
τ : Temps caractéristique associé à la relaxation décrite (processus α, β, MWS ...).
3. Analyse Structurale

3. Analyse structurale

Dans cette partie nous reprenons l'ensemble des résultats issus des expériences de diffusion du rayonnement et de microscopie concernant l'influence de la formulation sur la structure des charges dans les matériaux industriels simplifiés. Ces derniers sont formulés uniquement avec le SBR NF ou D3, la silice Zeosil 1165MP, l'OCTEO et la DPG (cf. chapitre.2). Nous traitons en particulier l'impact du taux de charge, du taux de polymère fonctionnel et de la masse molaire des chaînes. En outre, comme expliqué section 2.3.1, l'analyse qui suit est réalisée en considérant l'état de quasi-équilibre thermodynamique pour tous les systèmes.

3.1. Analyse du polymère et de la charge

3.1.1. Matrice pure

Avant de faire varier la formulation des composites, il est important de caractériser la matrice du point de vue de la DXPA. Cette technique, au cœur de notre travail, est largement utilisée dans ce chapitre pour décrire la structure des charges à différentes échelles. La figure 3.1 présente les spectres de diffusion des SBR- $140 \mathrm{~kg} / \mathrm{mol}$. Cette contribution (identique quelque soit M et \% D 3), pondérée par la fraction de polymère dans l'échantillon (\approx $1-\Phi_{\mathrm{si}}$) sera systématiquement soustraite aux spectres des composites.

Figure 3.1 : DXPA de la matrice $140 \mathrm{~kg} / \mathrm{mol} \mathrm{NF}$.

Aux grands angles, la matrice présente un plateau très bas synonyme d'un milieu homogène comme on pouvait s'y attendre. En revanche, l'intensité remonte significativement aux petits angles indiquant la présence d'objets diffusant à plus grande échelle. Typiquement l'évolution en $q^{-3.2}$ peut être attribuée au régime de Porod d'objets microniques tels que des impuretés, microfissures ou bulles.

La question de la nature de ces objets n'a pas été résolue. Bien que des essais en filtrant (impuretés) ou en gonflant (bulles) la matrice aient été effectués, cette remontée est toujours présente. Cependant, il est important de noter qu'à $1 \quad 10^{-3} \AA^{-1}$, son intensité demeure inférieure de plus d'un facteur 10 à celle des échantillons chargés (Fig.3.3) dans lesquels le contraste silice-SBR est très important. Ce phénomène n'est donc pas très « gênant » pour étudier la structure des charges et ne peut donc pas être invoqué pour expliquer la remontée du signal $\left(\mathrm{q}<110^{-3} \AA^{-1}\right)$ bien plus intense dans les composites.

3.1.2. Silice hautement dispersible en suspension

De la même façon, il est intéressant d'avoir des informations sur la structure de la charge avant son incorporation dans la matrice polymère. Pour cela, nous avons tenté de disperser la silice Zeosil 1165MP dans de l'eau via sonification. La figure 3.2 présente le spectre DXPA de cette suspension. Dans ce cas, la fraction volumique en silice n'est pas connue précisément, l'intensité est donc recollée aux grands angles sur le spectre d'un composite pour lequel le taux de charge a été déterminé par ATG.

Cette opération revient à normaliser $\mathrm{I}(\mathrm{q})$ par Φ_{si} et le rapport des contrastes correspondant aux deux milieux : $\Delta \boldsymbol{\rho}_{\text {silice/eau }}^{2} / \Delta \boldsymbol{\rho}^{2}{ }_{\text {silice } / \text { SBR }}$.

Figure 3.2 : DXPA d'une suspension de silice hautement dispersible dans l'eau. Les ajustements sont réalisés en utilisant l'approximation de Guinier. L'intensité est recollée aux grands angles sur un spectre silice-SBR.

Aux grands angles, l'intensité décroit en $q^{-3.7}$ dans le régime de Porod indiquant que l'interface entre la surface de la silice n'est pas parfaitement lisse $\left(q^{-4}\right)$. Le changement de pente observé à $q \approx 210^{-1} \AA^{-1}$ est ajusté par l'approximation de Guinier afin d'extraire la taille caractéristique de la bille élémentaire ($\mathbf{R}_{\mathrm{G}} \approx \mathbf{1 0} \mathbf{n m}$). Il s'en suit un régime en $\mathrm{q}^{-2.3}$ nous renseignant sur l'agrégation des objets élémentaires ($\mathrm{D}_{\mathrm{f}}=2.3$). Finalement aux très petits angles, l'intensité sature suggérant la présence de gros agglomérats d'environ 300 nm de rayon non fracturés par la sonification.

En utilisant les unités absolues, on peut effectuer une analyse comparable en faisant l'hypothèse de la sphéricité des particules et en considérant le contraste silice/eau. D'après l'expression du préfacteur I_{0} de l'équation 2.6 il vient en particulier pour la bille :

$$
\begin{equation*}
\frac{\mathrm{I}_{0}{ }^{\text {bille }}}{\Phi_{\text {si }}}=\Delta \rho^{2} V_{\text {bille }} \rightarrow R_{\text {bille }}=\sqrt[3]{\frac{3 \mathrm{I}_{0}}{4 \pi \Delta \rho^{2} \Phi_{\text {si }}}} \approx 7.7 \mathrm{~nm} \tag{3.1}
\end{equation*}
$$

L'écart avec la valeur déterminée en utilisant le seul axe horizontal $\left(\mathrm{R}_{\mathrm{G}}\right)$ provient du fait que la bille n'est pas parfaitement sphérique (le régime de Porod en $q^{-3.7}$ l'atteste).

Concernant les agglomérats, ils apparaissent très gros mais peu denses. En effet en se basant sur la même hypothèse géométrique on peut calculer leur compacité à partir du rayon des
agglomérats, celui des billes élémentaires et de leur dimension fractale (équation 2.26) tel que :

$$
\begin{equation*}
\kappa=\left(\frac{\mathrm{R}_{\text {agglo }}}{\mathrm{R}_{\text {bille }}}\right)^{\mathrm{D}_{\mathrm{f}}-3} \approx 10 \% \tag{3.2}
\end{equation*}
$$

Le nombre d'agrégation (nombre de bille élémentaire par agglomérat) est déterminé à partir des intensités absolues, ou de façon auto-cohérente, à partir de la compacité et du rayon de chaque objet.

$$
\begin{equation*}
\mathrm{N}_{\mathrm{agg}}=\frac{\mathrm{I}_{0}^{\text {agglo }} / \Phi_{\text {si }}}{\mathrm{I}_{0}{ }^{\text {bille }} / \Phi_{\text {si }}}=\kappa\left(\frac{\mathrm{R}_{\text {agglo }}}{\mathrm{R}_{\text {bille }}}\right)^{3} \approx 2700 \tag{3.3}
\end{equation*}
$$

La nature des agglomérats dans l'eau est sans aucun doute dépendante des conditions de sonification (puissance et pH du solvant par exemple). Aussi, elle n'est décrite ici qu'à titre indicatif et ne sera pas comparée à celle des objets présents dans les composites. Pour la bille élémentaire en revanche, nous retrouverons dans la section suivante ses principales caractéristiques.

3.2. Variation du taux de charge

Compréhension générale

Le premier paramètre susceptible d'apporter des modifications de comportement au matériau composite est le taux de charge. Dans le cas des échantillons industriels simplifiés, nous avons fait varier la fraction volumique en silice hautement dispersible de 10 à $25 \% \mathrm{v}$ (nominal) afin d'observer et caractériser des changements de structure potentiels. La série d'échantillons caractérisée ici est formulée de la façon suivante :

- Silice hautement dispersible Zeosil 1165MP, taux de charge variable
- SBR-140 kg/mol (50% D3 et $50 \% \mathrm{NF}$)
- OCTEO $8 \% w_{\text {si }}$
- DPG 1 pce

Les résultats obtenus en diffusion des rayons-X aux petits angles sur 4 échantillons chargés à 8.4, 12.7, 16.8 et 21.1% v (mesurés par ATG) sont présentés Fig.3.3.

Figure 3.3 : DXPA - Structure des nanocomposites industriels simplifiés par DXPA - Intensité I(q) en fonction du taux de charge. On note l'absence d'oscillations aux grands angles synonymes d'une polydispersité importante des objets élémentaires (taille et forme).

Aux grands angles, l'intensité absolue est directement proportionnelle à la fraction volumique en silice. Cette dépendance est clairement visible pour $q>310^{-2} \AA^{-1}$ où l'intensité mesurée dépend de la morphologie de l'objet (identique dans tous les échantillons) et de leur densité numérique: le fait d'observer des niveaux différents aux grands angles n'est pas du à une structuration différente mais au nombre d'objets diffusants.

Ainsi, afin de s'affranchir de l'effet du taux de charge sur les spectres mesurés (translation sur l'axe des ordonnées), il suffit de normaliser chaque spectre par le taux de charge de l'échantillon associé. On obtient alors une intensité réduite $\mathrm{I}(\mathrm{q}) / \Phi_{\text {si }}$ caractéristique de la structure des objets et non plus de leur nombre (Fig.3.4).

Figure 3.4 : Intensité réduite $\mathrm{I}(\mathrm{q}) / \Phi_{\text {si }}$ pour différents taux de charge. Le trait pointillé noir donne une idée du facteur de forme de la bille élémentaire (cf. section 3.1). Les lignes verticales délimitent les gammes de transfert de quantité de mouvement, on parle respectivement de gauche à droite de «petits angles », « moyens angles » et « grands angles».

Qualitativement, il est d'ores et déjà possible de relever la présence de tendances et d' «accidents» susceptibles d'être liés à la structure de la silice.

- Le signal décroît avec le taux de charge aux «petits» et «moyens» angles.
- Une première cassure de pente est observée pour $q=q_{s i}$.
- Une seconde cassure de pente est observée pour $q=q_{\text {agg }}$.
- Un dernier changement de régime se fait à $q=q_{\text {branch }}$.

Dans le but d'établir des corrélations entre ces observations et la structure réelle des objets, une analyse dans l'espace direct apparaît indispensable. Les échantillons chargés avec 8.4 et $16.8 \% \mathrm{v}$ de silice sont analysés en microscopie électronique à transmission (Fig.3.5).

Figure 3.5 : Structure des nanocomposites industriels simplifiés par MET - Echantillons chargés à 8.4 et $16.8 \% \mathrm{v}$.

Ces clichés, combinés aux spectres de diffusion, permettent de poser des hypothèses quantitatives sur la structure du composite. On définit notamment le facteur de structure multi-échelle $S(q)$ tel que :

$$
\begin{equation*}
S(q)=S_{\text {intra }}(q) S_{\text {inter }}(q) S_{\text {fract }}(q) \tag{3.4}
\end{equation*}
$$

$S_{\text {intra }}(q):$ Facteur de structure intra-agrégat (interactions entre les particules élémentaires)
$S_{\text {inter }}(\mathrm{q}):$ Facteur de structure inter-agrégats (interactions entre les agrégats)
$\mathrm{S}_{\text {fract }}(\mathrm{q})$: Facteur de structure «fractal» (interactions entre les branches du réseau de silice)
Cette décomposition multiplicative est basée sur une approximation de monodispersité et de symétrie sphérique de tous les objets et agrégats.

On approfondit, ainsi, l'analyse qualitative proposée précédemment:

- La cassure de pente observée à $q=q_{s i}$ est liée à la présence d'un pic de structure intra-agrégats $\mathrm{S}_{\text {intra }}(\mathrm{q})$ traduisant le fait que les objets élémentaires sont en contact à l'intérieur d'un agrégat. La position de ce pic renseigne directement sur la taille des particules élémentaires.
On note $\pi / q_{s i} \approx R_{s i}$.
- De la même façon, une échelle au dessus, les agrégats sont également en contact dans des branches clairement visibles en microscopie. La position de la cassure $\mathrm{q}_{\text {agg }}$ donne dans ce cas aussi des informations directes sur la taille des agrégats en «touchetouche » par le biais du pic de structure inter-agrégats $\mathrm{S}_{\text {inter }}(\mathrm{q})$.
On note $\pi / q_{\text {agg }} \approx R_{\text {agg }}$.
- La remontée observée aux petits angles est expliquée par la présence des branches formant un réseau tridimensionnel possiblement fractal (pente constante à $\mathrm{q}<\mathrm{q}_{\text {branch }}$), on parle de facteur de structure fractal $\mathrm{S}_{\text {fract }}(\mathrm{q})$. La position de la cassure permet de définir une taille caractéristique de branche (passage du régime agrégat au régime réseau 3D).
Le diamètre de la branche est noté «2a» et vaut environ 120 nm (MET Fig.3.5).
- Finalement, la décroissance du signal en augmentant $\Phi_{\text {si }}$ peut être interprétée de plusieurs façons. En effet, l'intensité mesurée est directement proportionnelle au facteur de forme et au facteur de structure. Une décorrélation de ces deux contributions doit donc être effectuée par le biais d'un modèle cohérent (cf. ci-après). Deux idées simples peuvent être considérées: i) l'intensité décroit du fait de la taille des objets plus petite (possible fragmentation plus efficace dans le M.I du fait du couple supérieur à taux de charge élevé), ii) l'intensité décroit du fait du facteur de structure inter-agrégats (compressibilité isotherme abaissée par le taux de charge élevé). Nous verrons qu'une combinaison de ces deux hypothèses permet d'expliquer nos données.

La figure 3.6 rassemble les différentes contributions utilisées dans la description multi-échelle de la silice :

Figure 3.6 : Représentation schématique de l'interprétation multi-échelle proposée quant à la structure des charges renforçantes dans la matrice (espace réciproque et espace réel). $\left\langle\mathrm{N}_{\text {agg }}\right\rangle$ et $<\mathrm{R}_{\text {agg }}>$ seront déterminés par la suite via un modèle quantitatif.

De façon informelle, on définit ce système comme un réseau tridimensionnel formé d'agrégats composés de nanoparticules.

Modèle quantitatif

Nous proposons ici un modèle permettant d'extraire des données numériques concernant la morphologie de la silice dans ces nanocomposites industriels simplifiés. Il est basé sur la caractérisation des agrégats (rayon, masse, compacité) à l'échelle mésoscopique. Comme expliqué précédemment, le but est de décorréler les contributions du facteur de forme et du facteur de structure afin de pouvoir quantifier de façon cohérente la géométrie des objets.

- Détermination de $\left\langle\mathrm{P}_{\mathrm{agg}}(\mathrm{q})\right\rangle$

Le calcul du facteur de forme moyen des agrégats repose sur la distribution en taille de ces derniers, nous proposons donc dans un premier temps de nous affranchir de la contribution du réseau fractal en soustrayant une loi de puissance aux petits angles comme représenté Fig.3.7.

Figure 3.7 : a) Identification de la contribution du réseau fractal - b) Résultats obtenus après soustraction pour les quatre taux de charge (focus à l'échelle mésoscopique caractéristique des agrégats).

On obtient des quasi-plateaux synonymes d'une taille (ou masse) d'objet relativement bien définie. Il est alors possible de travailler à partir de ce signal réduit pour extraire des informations quantitatives sur la structure des agrégats polydisperses décrite par :

$$
\begin{equation*}
\frac{\mathrm{I}(\mathrm{q})}{\Phi_{\mathrm{si}}}=\Delta \rho^{2} V_{\mathrm{si}} \mathrm{~S}_{\mathrm{inter}}^{\mathrm{app}}(\mathrm{q})\left\langle\mathrm{P}_{\mathrm{agg}}(\mathrm{q})\right\rangle \tag{3.5}
\end{equation*}
$$

$\Delta \rho^{2}:$ Contraste silice-SBR (électronique dans ce cas)
V_{si} : Volume de la particule élémentaire
$S_{\text {inter }}^{\text {app }}(\mathrm{q}):$ Facteur de structure apparent inter-agrégats
$\left\langle\mathrm{P}_{\text {agg }}(\mathrm{q})\right\rangle$: Facteur de forme moyen des agrégats : $\left\langle\mathrm{P}_{\text {agg }}(\mathrm{q})\right\rangle=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}} \mathrm{N}_{\mathrm{i}} \mathrm{P}_{\text {agg }}(\mathrm{q})$

$$
P_{\text {agg }}(q)=S_{\text {intra }}(q) P_{\text {si }}(q)
$$

$P_{s i}(q)$: Facteur de forme de la particule élémentaire

Dans le but de séparer la contribution des objets élémentaires de celle des agrégats, les données sont tracées en représentation de Kratky Fig.3.8a et décomposées en deux fonctions log-normales (cf. inset) selon :

$$
\begin{gather*}
\mathrm{G}_{\mathrm{i}}(\mathrm{q})=\frac{\mathrm{A}_{\mathrm{i}}}{\sqrt{2 \pi} \sigma_{\mathrm{i}} \mathrm{q}} \exp \left(-\frac{\ln ^{2}\left(\frac{\mathrm{q}}{\mathrm{q}_{\mathrm{i}}}\right)}{2 \sigma_{\mathrm{i}}^{2}}\right) \tag{3.6a}\\
\mathrm{G}(\mathrm{q})=\mathrm{G}_{\mathrm{si}}(\mathrm{q})+\mathrm{G}_{\mathrm{agg}}(\mathrm{q}) \tag{3.6b}
\end{gather*}
$$

Les valeurs de $\mathrm{q}_{\text {agg }}$ et $\mathrm{q}_{\text {si }}$ peuvent être comparées selon leur provenance (représentation standard par rupture de pente ou Kratky) pour vérifier que dans la barre d'erreur, les résultats sont similaires (Fig.3.8b).

Figure 3.8 : a) Données DXPA en représentation de Kratky transformant les cassures de pentes en pics associés aux agrégats et aux objets élémentaires - b) Comparaison des résultats issus de la représentation classique et de la représentation de Kratky, la ligne pointillée représente la valeur fixée pour la position du pic de la silice élémentaire en représentation Kratky. On note que la valeur des $\mathrm{q}_{\text {agg }}$ est proche de $810^{-3} \AA^{-1}$ ce qui correspond à un diamètre de l'ordre de $2 \pi / \mathrm{q}_{\text {agg }} \approx 80 \mathrm{~nm}$.

Note - Fig.3.8: De façon générale, en représentation de Kratky, le pic de $\mathbf{q}^{2} \mathbf{I}(\mathbf{q})$ est principalement dû à la transformation du régime de Guinier de l'objet observé (c'est-à-dire de la transformation $\mathrm{P}(\mathrm{q}) \rightarrow \mathrm{q}^{2} \mathbf{P}(\mathrm{q})$). L'emplacement de ce pic est décalé par la présence du facteur de structure $q^{2} S(q)$ comme on peut le voir sur l'exemple présenté Fig.3.9a issu d'une simulation Monte-Carlo. Or, dans le traitement ci-dessus, nous avons considéré que la position du pic observé pour $\mathbf{q}^{2} \mathbf{I}(\mathbf{q})$ en représentation de Kratky correspondait à la position du pic touche-touche du facteur de structure $\mathrm{q}^{2} \mathrm{~S}(\mathrm{q})$. Néanmoins, la Fig.3.9b souligne le fait que dans notre cas, en prenant en compte la polydispersité et les incertitudes quant à la géométrie des agrégats, les positions respectives des deux pics sont voisines ce qui justifie notre démarche.

Figure 3.9 : a) Représentation générique des différentes composantes du signal en représentation de Kratky. L'ajustement des données réalisé permet d'extraire une position légèrement décalée (20-30\%) par rapport au pic d'interaction du facteur de structure.
b) Facteur de structure apparent, le pic de structure (\sim taille des objets) a une position très proche de la valeur calculée en ajustant l'intensité en représentation de Kratky.

Les positions des cassures q_{si} et $\mathrm{q}_{\text {agg }}$ seront par la suite associées respectivement aux rayons moyens des particules élémentaires et des agrégats tels que $\left.<\mathrm{R}_{\mathrm{i}}\right\rangle=\pi / \mathrm{q}_{\mathrm{i}}$.

Cette approximation explique notamment le fait que le rayon de la particule extrait de l'analyse de Kratky dans les composites ($\mathrm{R}_{0}=14.1$ et $\mathrm{R}_{\mathrm{eq}}=9.51 \mathrm{~nm}$) soit plus élevé que celui déterminé à partir du signal diffusé par la silice hautement dispersible sonifiée dans l'eau (R_{0} $=8.55$ et $\left.\left\langle\mathrm{R}_{\mathrm{si}}\right\rangle=8.9 \mathrm{~nm}\right)$.

En émettant une hypothèse sur leur distribution, il est désormais possible de reconstituer une population d'agrégat à partir de la valeur de $\mathrm{q}_{\text {agg. }}$. Du fait de l'absence d'un pic de structure plus marqué en augmentant le taux de charge sur les données Fig.3.4, on choisit une polydispersité importante ($\sigma=0.3$) associée à une distribution log-normale (Fig.3.10a). En outre, il est possible de passer d'une distribution en taille à une distribution en masse en faisant une hypothèse supplémentaire sur la géométrie des agrégats (considérés sphériques) et en introduisant la compacité telle que :

$$
\begin{equation*}
\mathrm{N}_{\mathrm{agg}}=\frac{4}{3} \pi \mathrm{R}_{\mathrm{agg}}{ }^{3} \frac{\mathrm{\kappa}}{\mathrm{~V}_{\mathrm{si}}} \tag{3.7}
\end{equation*}
$$

La valeur initiale de la compacité est ici choisie arbitrairement (= 30%) avant d'être ajustée par dichotomie sur les données expérimentales (cf. ci-après). Cette valeur est considérée indépendante de la taille des agrégats dans tous les calculs.

On obtient finalement une population d'agrégats caractérisée par une polydispersité en masse (Fig.3.10b).

Figure 3.10 : Construction d'une population d'agrégats suivant une distribution log-normale a) en taille - b) en masse (nombre d'agrégation).

Le facteur de forme moyen des agrégats est alors calculable analytiquement, au moins dans le domaine de Guinier $\left(\mathrm{q}<1 / \mathrm{R}_{G}\right)$:

$$
\begin{equation*}
\left\langle\mathrm{P}_{\mathrm{agg}}(\mathrm{q})\right\rangle \approx \frac{\left\langle\mathrm{N}_{\mathrm{agg}}^{2}\right\rangle}{\left\langle\mathrm{N}_{\mathrm{agg}}\right\rangle} \exp \left(-\frac{\mathrm{q}^{2} \mathrm{R}_{\mathrm{G}}^{2}}{5}\right) \tag{3.8}
\end{equation*}
$$

Avec R_{G} le rayon de Guinier équivalent défini par (chapitre 2):

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}^{2}=\frac{\left\langle\mathrm{R}_{\mathrm{agg}}^{8}\right\rangle}{\left\langle\mathrm{R}_{\mathrm{agg}}^{6}\right\rangle} \tag{3.9}
\end{equation*}
$$

Notons que le calcul du facteur de forme complet nécessiterait la connaissance de la structure interne des agrégats.

La contribution du facteur de forme dans l'intensité diffusée au niveau du quasi-plateau est donc désormais atteignable en fonction de la compacité. De la même façon, on recherche la valeur du facteur de structure apparent inter-agrégats dans la même gamme de q.

- Détermination de $S_{\text {inter }}^{\text {app }}(\mathrm{q})$

La valeur du facteur de structure apparent inter-agrégats est fonction de la fraction volumique en agrégats interagissant dans les branches $\Phi_{\text {agg. }}$. C'est donc ce paramètre que l'on s'attache à déterminer dans un premier temps.

L'analyse en microscopie électronique a montré que les agrégats ne sont pas répartis uniformément à l'échelle mésoscopique mais sont concentrés dans des branches (formant ainsi des canaux de polymères purs). A condition que la taille des objets observés soit proche de l'épaisseur du film sondé, la fraction volumique de ces branches peut être approximée à partir de la fraction surfacique $\Phi_{\text {fract }}$ observée en microscopie électronique.

L'analyse précédente fournit un diamètre typique pour les agrégats autour de 80 nm , or les clichés présentés Fig. 3.11 sont réalisés à partir de matériaux découpés par microtomie avec une consigne de 70 nm . L'approximation est donc validée et la fraction volumique en agrégat à l'intérieur des branches est calculée comme :

$$
\begin{equation*}
\Phi_{\mathrm{agg}}=\frac{\Phi_{\mathrm{si}}}{\Phi_{\mathrm{fract}} \kappa} \tag{3.10}
\end{equation*}
$$

Ici, on choisit la même valeur de compacité que pour la détermination du facteur de forme moyen des agrégats.

La détermination de $\Phi_{\text {fract }}$ se fait avec le logiciel ImageJ en soustrayant le bruit de fond (zone plus claire au centre de l'image du fait du faisceau d'électron), en ajustant le contraste et en appliquant un filtre «médian » permettant de lisser les zones sombres dans lesquelles la silice est présente. Un seuil dans les nuances de gris est ensuite choisi pour discriminer les zones chargées de celles non chargées. Ce protocole est utilisé sur une dizaine d'images prises avec des grossissements différents pour chaque échantillon permettant d'obtenir une valeur représentative de $\Phi_{\text {fract }}$ et un écart type faible.

Figure 3.11 : MET - Traitement d'image et segmentation permettant de déterminer la fraction surfacique en branche dans le matériau composite (ici $\Phi_{\mathrm{si}}=8.4 \% \mathrm{v}$).

La deuxième étape consiste à calculer le facteur de structure apparent inter-agrégats à partir d'une simulation Monte-Carlo [130] et de la fraction en agrégat précédemment évaluée.

Dans un espace cubique, on considère ainsi une population polydisperse ($\sigma=0.3$) d'objets sphériques représentant les agrégats où chaque objet est initialement placé de façon aléatoire et interagit avec les autres objets selon un potentiel choisi (ici, sphères dures). La simulation génère ensuite des déplacements pour chacun d'entre eux de façon à arriver à l'équilibre, synonyme d'une structure n'évoluant plus. Il est alors possible de calculer l'intensité qui
serait diffusée par un tel système polydisperse et de la diviser par le facteur de forme moyen des objets considérés pour obtenir un facteur de structure apparent inter-objets (Fig.3.12a).

Ici, l'interaction entre les agrégats a été définie par un potentiel de sphères dures limité à la simple répulsion stérique au contact. Dans ce cas, Percus et Yevick [131] ont déterminé une loi permettant de calculer analytiquement la valeur du facteur de structure quand $q \rightarrow 0$ en fonction de la fraction volumique en objets monodisperses (Chap.2). Nous avons établi que cette loi peut être modifiée de façon empirique pour prendre en compte la polydispersité via l'emploi d'un coefficient α tel que:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{PY}}(\mathrm{q} \rightarrow 0)=\frac{\left(1-\alpha \Phi_{\mathrm{agg}}\right)^{4}}{\left(1+2 \alpha \Phi_{\mathrm{agg}}\right)^{2}} \tag{3.11}
\end{equation*}
$$

Ainsi, à chaque valeur de polydispersité correspond une valeur empirique α. Dans notre cas ($\sigma=0.3$), α vaut 0.6 (Fig.3.12b). Cette loi permet d'extrapoler les résultats obtenus à des fractions volumiques plus importantes difficilement atteignables par simulation, typiquement dans notre cas, entre 50 et $70 \% \mathrm{v}$ (cf. Tableau 3.1).

Figure 3.12 : a) Facteur de structure apparent généré par simulation Monte-Carlo pour différentes fractions volumique en objet (5 à $30 \% \mathrm{v}$) - b) Evolution de $S_{\text {inter }}^{\text {app }}(\mathrm{q} \rightarrow 0)$ en fonction de la fraction volumique en objet pour différentes valeurs de polydispersité. Les lignes continues sont ajustées sur les données via l'équation (3.8). Pour $\sigma=0,15$ et 30%, les valeurs de α sont respectivement $1,0.72$ et 0.6.

Ainsi, en fonction de la fraction volumique en agrégat déterminée par microscopie, on peut calculer une valeur pour le facteur de structure dans la zone du quasi-plateau ($210^{-3}-410^{-3}$ \AA^{-1}). La taille des objets considérés dans la simulation ($R=20 \mathrm{~nm}$, choisi arbitrairement) est différente de la taille des agrégats dans l'échantillon. A priori cette différence ne pose pas de problème car la valeur de $S_{\text {inter }}^{\text {app }}(\mathrm{q} \rightarrow 0)$ dépend seulement de $\Phi_{\text {agg }}$. Cependant, un changement de taille a pour effet le déplacement du pic sur l'axe des q (décalage «à gauche» pour un rayon plus grand), compensé par le fait que $\Phi_{\text {agg }}$ soit élevé ($>50 \% \mathrm{v}$).

Le choix du potentiel d'interaction est déterminant quant à la détermination du facteur de structure, ici nous avons choisi une interaction de sphère dure pour sa simplicité. Il est cependant clair qu'elle ne rend pas complètement compte de la réalité, le pic de structure de plus en plus marqué avec la fraction volumique en objet (Fig.3.12a) n'est en particulier pas
visible sur les spectres DXPA suggérant l'utilisation de potentiels "mous" permettant l'interpénétration des agrégats (pas forcément sphériques) [132]. L'implémentation d'un potentiel différent nécessiterait cependant de pouvoir extrapoler les valeurs de $S_{\text {inter }}^{\text {app }}(q \rightarrow 0)$ à des hautes fractions volumiques en se basant sur une autre loi semi-empirique.

- Détermination finale de la compacité et résultats

Une fois tous les termes de l'équation 3.5 paramétrés, il nous suffit de faire varier la compacité des agrégats pour calculer l'intensité diffusée à une valeur de q donnée (q^{*}) de façon cohérente selon :

$$
\begin{equation*}
\frac{\mathrm{I}\left(\mathrm{q}^{*}, \kappa\right)}{\Phi_{\mathrm{si}}}=\Delta \rho^{2} \mathrm{~V}_{\mathrm{si}} \mathrm{~s}_{\mathrm{inter}}^{\mathrm{app}}(\mathrm{q} \rightarrow 0)\left\langle\mathrm{P}_{\mathrm{agg}}\left(\mathrm{q}^{*}, \kappa\right)\right\rangle \tag{3.12}
\end{equation*}
$$

Ainsi, en se plaçant sur le plateau définit par les agrégats ($\mathrm{q}^{*}=310^{-3} \AA^{-1}$) et en lisant la valeur expérimentale de l'intensité obtenue, on peut déterminer la compacité des agrégats (Fig.3.13a-b) dans chaque échantillon et, grâce à l'hypothèse sur la polydispersité, calculer le nombre d'agrégation moyen $\left\langle\mathrm{N}_{\mathrm{agg}}\right\rangle$, son écart type $\Delta \mathrm{N}_{\mathrm{agg}}$ et le rayon de l'agrégat équivalent $\mathrm{R}_{\mathrm{agg}}^{\mathrm{eq}}$.

Figure 3.13 : a) Relation liant l'intensité normalisée par le taux de charge à la compacité des agrégats - b) lecture de l'intensité sur le quasi-plateau pour $q=q^{*}$.

On obtient finalement les résultats regroupés dans le Tableau 3.1 où l'on constate notamment que la masse des agrégats est environ constante quelque soit le taux de charge. Cela nous permet de conclure quant aux deux hypothèses formulées au début du chapitre : la baisse du signal observée en DXPA est majoritairement due à l'impact du facteur de structure traduisant le fait que la compressibilité isotherme du matériau diminue et non pas à la fragmentation plus importante des agrégats avec le couple croissant dans le M.I.

$\boldsymbol{\Phi}_{\mathbf{s i}}(\% \mathbf{v})$	$\left\langle\mathbf{R}_{\text {agg }}\right\rangle(\mathbf{n m})$ $\mathbf{\pm 5} \%$	$\left\langle\boldsymbol{\Phi}_{\text {fract }}\right\rangle$ $\mathbf{\pm 4 \%} \%$	$\mathbf{\kappa}$ $\mathbf{\pm 2} \%$	$\left\langle\boldsymbol{\Phi}_{\text {agg }}\right\rangle$ $\mathbf{\pm 3} \%$	$\left\langle\mathbf{N}_{\text {agg }}\right\rangle$ $\mathbf{\pm 1 5} \%$	$\mathbf{D N}_{\text {agg }}$	$\mathbf{R}_{\text {agg }}^{\text {eq }}(\mathbf{n m})$ $\mathbf{\pm 5} \%$
8.4	40.2	0.59	0.31	0.47	51	53	52.3
12.7	35.9	0.66	0.33	0.57	40	43	46.9
16.8	36.1	0.73	0.36	0.64	44	47	47.1
21.1	35.2	0.80	0.38	0.69	44	47	46.0

Tableau 3.1 : Résultats du modèle quantitatif proposé pour décrire la structure des charges.

Variation du taux de charge pour $M=40,80$ et $280 \mathrm{~kg} / \mathrm{mol}$

La variation du taux de charge a également été effectuée dans d'autres formules, en particulier en utilisant des polymères de masses molaires différentes, aussi bien plus basses (40 et $80 \mathrm{~kg} / \mathrm{mol}$) que plus haute ($280 \mathrm{~kg} / \mathrm{mol}$). L'OCTEO et la DPG sont toujours insérés dans les mêmes proportions (cf. chapitre 2).

Pour chaque série d'échantillon, une mesure en DXPA a été effectuée afin d'observer des possibles changements de tendance par rapport à celle décrite précédemment dans le SBR 140 $\mathrm{kg} / \mathrm{mol}$. Les résultats sont présentés Fig.3.14.

Figure 3.14 : Impact du taux de charge sur l'intensité réduite mesurée en DXPA
a) $40 \mathrm{~kg} / \mathrm{mol}-\mathrm{b}) 80 \mathrm{~kg} / \mathrm{mol}-\mathrm{c}) 140 \mathrm{~kg} / \mathrm{mol}$ d) $280 \mathrm{~kg} / \mathrm{mol}$.

Comme attendu, l'intensité normalisée par le taux de charge est la même aux grands angles quelque soit la masse molaire ou le taux de charge dans tous les échantillons car la silice employée est la même dans toutes les formules. On retrouve également la présence des cassures de pentes définissant la taille des particules élémentaires et celle des agrégats. Finalement, la décroissance du signal observée dans le SBR-140kg/mol est qénéralisée aux autres masses molaires. Ce résultat est en accord avec le modèle quantitatif proposé, dans le sens où il exclut le fait qu'une augmentation du couple soit responsable d'une fragmentation plus importante des agrégats. En effet, les échantillons formulés avec du SBR-40kg/mol sont
soumis à des couples bien moins importants que leur homologues formés avec des SBR de masses molaires plus importantes alors que les intensités mesurées en DXPA issues de ces échantillons ne sont pas plus élevées (agrégats plus gros). Elles ont tendance, au contraire, à être plus basses, du fait d'une structuration plus marquée, conséquence d'une densité de greffage plus importante (point discuté section 3.3). Le même modèle quantitatif peut être appliqué sur ces échantillons pour remonter à la structure des agrégats à condition d'avoir suffisamment de clichés MET des échantillons.

On notera cependant que l'échantillon formulée avec $25 \% \mathrm{v}$ de silice et du SBR- $280 \mathrm{~kg} / \mathrm{mol}$ n'a pas pu être réalisé pour des raisons pratiques. Le SBR, trop «dur » dans ce cas là, n'est pas capable d'incorporer toute la silice. Il en résulte la décohésion macroscopique du matériau qui tombe littéralement en poudre empêchant la formation d'un film homogène. A l'autre extrémité, l'échantillon formulé avec le SBR-40k chargé à $10 \% \mathrm{v}$ est soumis à un couple très faible dans le mélangeur (cf. chapitre 2), qui ne permet pas la fragmentation des agglomérats millimétriques de silice. Sa structure est quasiment identique à la silice Zeosil 1165MP déposée sur un papier adhésif (Fig.3.15). On note que le composite (très mou) formulé avec du SBR-NF $80 \mathrm{~kg} / \mathrm{mol}$ chargé à $10 \% \mathrm{v}$ est dans le même cas de Figure

Figure 3.15 : DXPA - comparaison de la structure de la silice Zeosil 1165MP déposée sur un papier adhésif et de celle de composites « mous » SBR-50\%D3 $40 \mathrm{~kg} / \mathrm{mol}$ et SBR-0D3 $80 \mathrm{~kg} / \mathrm{mol}$ chargés à 10% v. Le signal de la silice pure est «recollé » aux grands angles sur le signal des composites étant donné que la fraction volumique en objet n'est pas connue avec précision dans ce cas.

3.3. Variation du taux de polymère fonctionnel

$M=140 \mathrm{~kg} / \mathrm{mol}$

Dans cette partie, nous observons l'impact du polymère fonctionnel «SBR-D3» par rapport au «SBR-NF » sur la structure de la silice à taux de charge constant. L'idée de départ est d'induire un potentiel répulsif entre les agrégats par le biais du greffage de chaînes.

Deux séries de mesures DXPA ont été effectuées pour $\Phi_{\mathrm{si}}=10$ et $20 \% \mathrm{v}$ (Fig.3.16), la masse molaire des polymères D3 et NF est $140 \mathrm{~kg} / \mathrm{mol}$, la DPG et l'OCTEO sont ajoutés dans les mêmes proportions que dans la section 3.2. La quantité de polymère effectivement greffée a été caractérisée par Bound Rubber (chapitre 2) et donne un rendement d'environ 75% sans montrer de saturation.

Figure 3.16 : DXPA - Impact du taux de SBR-D3 sur la structure des charges
a) $\Phi_{\mathrm{si}}=8.5 \% \mathrm{v} \mathrm{b)} \Phi_{\mathrm{si}}=16.8 \% \mathrm{v}$

Le SBR-D3 semble considérablement modifier la structure de la silice. Dans la section 3.2, nous avions identifié des «accidents» sur les intensités mesurées. Avec le SBR-D3, plusieurs évolutions de ces derniers sont à relever sur les spectres DXPA ci-dessus :

Le signal aux moyens angles décroit et la position de $\mathrm{q}_{\text {agg }}$ se décale vers «la droite » quand le taux de D3 augmente.

- Pour $\Phi_{\mathrm{si}}=8.5 \% \mathrm{v}$, la décroissance du signal semble saturer après $50 \% \mathrm{D} 3$, ce n'est pas le cas pour $\Phi_{\mathrm{si}}=16.8 \% \mathrm{v}$.
- L'ajout du SBR-D3 semble favoriser l'apparition d'un plateau.
- De la même façon que dans la section 3.2, les signaux sont normalisés par le taux de charge et se superposent donc aux grands angles. Ils semblent également tendre vers des valeurs identiques aux petits angles, en particulier pour $\Phi_{\mathrm{si}}=8.5 \% \mathrm{v}$.

Encore une fois, ces observations sont à corréler avec les clichés de microscopie afin d'établir des hypothèses fondées. Pour $\Phi_{\mathrm{si}}=8.5 \% \mathrm{v}$, les clichés permettent d'observer de nettes différences de structure (Fig.3.17) du fait de la densité de charge réduite.

La décroissance du signal aux moyens angles et le décalage de la cassure de pente pour $\mathrm{q}=$ $\mathrm{q}_{\text {agg }}$ est interprétée ici comme la diminution de la taille des agrégats avec le taux de SBR-D3. Les images MET confirment que dans le SBR-NF, les agrégats formés sont nettement plus gros laissant ainsi des zones de polymères non chargées plus étendues. L'ajout de polymère fonctionnel permet au contraire de faire apparaitre petit à petit un réseau plus fin de charges mieux calibrées en taille. Ce phénomène est corrélé en DXPA à l'apparition de plateaux pour des taux de D3 importants, synonyme d'un facteur de structure inter-agrégats plus marqué
dont on peut deviner le pic dans l'échantillon $\Phi_{\text {si }}=16.8 \% \mathrm{v}-100 \% \mathrm{D} 3$ pour $\mathrm{q} \approx 10^{-2} \AA^{-1}$. Dans la même logique le décalage vers les grands angles de la cassure observée à $q=q_{b r a n c h}$, indique que la taille de ces objets diminue avec le taux de polymère fonctionnel.

De façon qénérale, il semble que le SBR-D3 permette de réduire la taille des objets (branches, agrégats) et d'améliorer leur distribution dans l'espace. Une hypothèse crédible consiste à lier ces effets structuraux au potentiel répulsif de nature stérique induit par le greffage des chaînes formant des «brosses» de polymères (Fig.1.21).

Figure 3.17 : Evolution de la structure de la silice avec le taux de SBR-D3 pour $\Phi_{\mathrm{si}}=8.5 \% \mathrm{v}(0,25$, $50,75,100 \%$ de SBR-D3 $140 \mathrm{~kg} / \mathrm{mol}$) observée en MET.

Attention, l'effet visuel donné par la projection 2D laisserait penser qu'à hauts taux de SBRD3 (75 et 100%), les agrégats ne soient plus organisés en branches. Les analyses DXPA ne sont pas en faveur de cette hypothèse du fait de la présence de la remontée aux petits angles, synonyme de la diffusion par une superstructure.

Ces observations qualitatives peuvent désormais être approfondies et transformées en données quantitatives par le biais du modèle proposé en 3.2. Ainsi, de la même façon, à partir des résultats DXPA et microscopie, on recalcule le facteur de forme moyen des agrégats $\left\langle\mathrm{P}_{\text {agg }}(\mathrm{q})\right\rangle$ en se basant sur l'analyse «Kratky» (Fig.3.18) et le facteur de structure apparent interagrégats $\mathrm{S}_{\mathrm{inter}}^{\mathrm{app}}(\mathrm{q} \rightarrow 0)$ pour la valeur de $\Phi_{\text {agg }}$ issue de la microscopie.

Figure 3.18 : Représentation de Kratky des données DXPA relatives aux échantillons chargés avec $\Phi_{\mathrm{si}}=8.5 \% \mathrm{v}(0,25,50,75$ et 100% SBR-D3 $140 \mathrm{~kg} / \mathrm{mol})$. L'insert montre la procédure de décomposition du signal en deux contributions (agrégats et particules).

Pour ce dernier, des extrapolations de $\Phi_{\text {fract }}$ sont réalisées afin de limiter le nombre d'échantillons à analyser de façon statistique (5 à 10 clichés) (Fig.3.19). Les points mesurés (pleins) suggèrent une forme triangulaire (lignes épaisses) impliquant une valeur quasi constante de $\Phi_{\text {fract }}$ pour des taux de charge élevés et un groupe de valeur très proches à $16.8 \% \mathrm{v}$.

Fig.3.19 : Evolution de la fraction volumique en branches en fonction du taux de charge dans les nanocomposites industriels simplifiés. Les symboles pleins ont été mesurés par analyse d'images et les vides sont des valeurs extrapolées. La double-flèche représente les deux valeurs de $\Phi_{\text {fract }}$ déterminées sur l'échantillon $0 \% \mathrm{D} 3$ chargé à $16.8 \% \mathrm{v}$.

Pour tester les limites de validité, deux extrapolations ont été considérée à $0 \% \mathrm{D} 3$, (pentes radicalement différentes) donnant $\Phi_{\text {fract }}=52$ et $63 \% \mathrm{v}$. Les deux valeurs ont été utilisées dans le modèle afin d'obtenir une idée de la barre d'erreur.

Nous obtenons ainsi les résultats concernant la morphologie des agrégats dans les deux séries d'échantillons (10 et $20 \% \mathrm{v}$) pour des taux de SBR-D3 allant de 0 à 100% (Tableaux 3.2 et 3.3 et Fig.3.20).

$\boldsymbol{\%} \mathbf{D 3}$	$\left\langle\mathbf{R}_{\text {agg }}>(\mathbf{n m})\right.$ $\mathbf{\pm 5 \%}$	$\boldsymbol{\Phi}_{\text {fract }}$ $\mathbf{\pm 5 \%}$	$\boldsymbol{\kappa}$ $\mathbf{\pm 2 \%}$	$\boldsymbol{\Phi}_{\text {agg }}$ $\mathbf{\pm 3 \%}$	$\left\langle\mathbf{N}_{\text {agg }}>\right.$ $\mathbf{\pm 1 5 \%}$	$\Delta \mathbf{N}_{\text {agg }}$
$\mathbf{0 \%}$	49.4	0.35	0.55	0.45	162	153
$\mathbf{2 5 \%}$	42.3	0.51	0.37	0.46	72	74
$\mathbf{5 0 \%}$	40.2	0.59	0.30	0.47	50	52
$\mathbf{7 5 \%}$	40.2	0.48	0.35	0.51	58	61
$\mathbf{1 0 0 \%}$	40.0	0.44	0.37	0.53	60	63

Tableau 3.2: Structure des agrégats en fonction du $\%$ SBR-D3 pour $\Phi_{\mathrm{si}}=8.5 \% \mathrm{v}$

$\boldsymbol{\%} \mathbf{D 3}$	$\left\langle\mathbf{R}_{\text {agg }}>(\mathbf{n m})\right.$ $\mathbf{\pm 5 \%}$	$\mathbf{\Phi}_{\text {fract }}$ $\mathbf{\pm 5 \%}$	$\boldsymbol{\kappa}$ $\mathbf{\pm 2 \%}$	$\boldsymbol{\Phi}_{\text {agg }}$ $\mathbf{\pm 3 \%}$	$\left\langle\mathbf{N}_{\text {agg }}>\right.$ $\mathbf{\pm 1 5 \%}$	$\Delta \mathbf{N}_{\text {agg }}$
$\mathbf{0 \%}$	49.4	0.52	0.58	0.55	171	162
$\mathbf{2 5 \%}$	42.1	0.63	0.51	0.52	150	142
$\mathbf{5 0 \%}$	36.1	0.73	0.39	0.64	74	76
$\mathbf{7 5 \%}$	32.9	0.66	0.38	0.66	41	46
$\mathbf{1 0 0 \%}$	31.3	0.66	0.37	0.66	36	39

Tableau 3.3: Structure des agrégats en fonction du $\%$ SBR-D3 pour $\Phi_{\mathrm{si}}=16.8 \% \mathrm{v}$ - Les deux valeurs pour l'échantillon $0 \% \mathrm{D} 3$ sont issues des deux extrapolations de $\Phi_{\text {fract. }}$.

Soit, en représentation graphique :

Figure 3.20 : Evolution du rayon moyen des agrégats et du nombre d'agrégation en fonction du taux de polymère fonctionnel D 3 pour $\Phi_{\mathrm{si}}=8.5$ et $16.8 \% \mathrm{v}$. Les ajustements sont réalisés avec des fonctions de type $y=y_{0}+A \exp \left(-x / x^{c}\right)$.

L'analyse quantitative apporte des précisions sur les tendances observées en DXPA et MET :
La diminution du rayon et de la masse des agrégats est confirmée. Cette évolution à cependant tendance à saturer lorsque le taux de SBR-D3 est supérieur à 50%. On retrouve cette saturation dans l'évolution du couple dans le mélangeur interne (section 6.1.1) suggérant que la structure des charges dans les conditions du mélangeage est déterminante en ce qui concerne les propriétés mécaniques. Le SBR-D3 continue néanmoins à se greffer pour des taux supérieurs à 50% (cf. Bound Rubber chapitre 2) mais ne modifie plus la morphologie du matériau. Nous verrons section 4.2 qu'en rhéologie linéaire, la quantité de polymère greffé change les propriétés du composite même sans modification de la structure des charges.

De plus, le modèle prédit des compacités de l'ordre de 35% en accord avec la première série étudiée dans la section 3.2. Dans le cas des échantillons avec 0\%de SBR-D3, ces compacités prennent des valeurs bien plus importantes ($\kappa>50 \%$) pouvant montrer les limites imposées par les hypothèses du modèle. Plusieurs paramètres importants ne sont en effet pas considérés et peuvent potentiellement jouer un rôle.

- La compacité peut dépendre de la taille des agrégats.
- La meilleure calibration de la taille des objets avec le greffage joue à priori sur la polydispersité des agrégats fixée ici à $\sigma=30 \%$. Nous ne savons pas cependant comment σ évolue avec le taux de SBR-D3.
- Le potentiel de type sphère dure dans la simulation Monte-Carlo pourrait être modifié pour prendre en compte le caractère répulsif croissant avec le taux de SBR-D3. On pourrait également y ajouter une composante attractive à courte distance (agrégation).

Les résultats obtenus section 3.2 montrent que le taux de charge n'influence pas la masse des agrégats. Or, si entre 0 et 50% de polymère fonctionnel la tendance semble confirmée, on voit qu'à des taux de greffage supérieurs la masse des agrégats décroit avec le taux de charge $\left(\mathrm{N}_{\text {agg }} \approx 60\right.$ à $10 \% \mathrm{v}$ et $\mathrm{N}_{\text {agg }} \approx 40$ à $20 \% \mathrm{v}$ et 100% de SBR-D3).

$M=40,80$ et $280 \mathrm{~kg} / \mathrm{mol}$

De même que pour l'étude de la structure en variant le taux de charge, différentes séries d'échantillons ont été produites avec des masses molaires différentes afin de qénéraliser l'effet des fonctions D3 sur la silice.

Des mesures DXPA équivalentes à celles présentées ci-avant ont ainsi été réalisées pour $\mathrm{M}=$ 40,80 et $280 \mathrm{~kg} / \mathrm{mol}$, les résultats sont présentés Fig.3.21. De façon générale, on observe la même tendance univoque: le SBR-D3 réduit la taille des objets et rend la distribution des charges vraisemblablement plus homogène. La différence se fait dans la «vitesse » de saturation (cf. chapitre 6). Il semblerait donc intéressant d'étudier simultanément les effets de la masse molaire et du taux de polymère fonctionnel.

Figure 3.21 : DX(N)PA - Impact du taux de polymère fonctionnel sur la structure de la silice pour plusieurs masses molaires et taux de charge. Toutes les courbes sont normalisées pour correspondre à un essai DXPA. (Contraste SBR-Silice $\approx 1.210^{22} \mathrm{~cm}^{-4}$). En diffusion de neutrons, (a) et (c), il n'a pas été possible de mesurer la structure pour $\mathrm{q}<10^{-3} \AA^{-1}$.
a) $40 \mathrm{~kg} / \mathrm{mol}, 20 \% \mathrm{v}-\mathrm{b}) 80 \mathrm{~kg} / \mathrm{mol}, 20 \% \mathrm{v}-$ c) $80 \mathrm{~kg} / \mathrm{mol}, 10 \% \mathrm{v}-\mathrm{d}) 280 \mathrm{~kg} / \mathrm{mol}, 10 \% \mathrm{v}$

3.4. Impact combiné de la masse molaire et des fonctions D3

Le dernier paramètre important de la formulation est la masse molaire des chaînes de SBR. La longueur des chaînes étant directement liée à la viscosité du polymère, elle influence fortement les contraintes appliquées sur les charges dans le mélangeur interne et de façon plus générale les propriétés mécaniques. En section 3.3, nous avons déjà regardé la structure pour différentes masses molaires et taux de charge; ici, nous regroupons ces mêmes données en ne variant que la masse molaire. Les spectres relatifs aux échantillons formulés à 50% de SBR-D3 chargés à 9 et 19% v en silice sont présentés Fig.3.22. Les tendances sont ici plus difficilement observables, à $9 \% \mathrm{v}$, le 40 k ne présente pas de taille caractéristique d'agrégat (cf. Fig.3.15) nous l'avons donc écarté de cette discussion. Les trois autres échantillons semblent avoir des structures proches. A 19% v, le 140 k et le 280 k montrent un plateau à peine plus
visible qu'à $9 \% \mathrm{v}$ alors que le 40 k et le 80 k présentent un pic de structure très marqué. Ici la cassure à $\mathrm{q}=\mathrm{q}_{\text {agg }}$ semble être plus prononcée et se décaler à droite (objets plus petits et mieux calibrés) quand on baisse la masse molaire.

Figure 3.22 : DXPA - Impact de la masse molaire sur des composites formulés à 50% de SBR-D3 a)

$$
\Phi_{\mathrm{si}} \approx 9 \% \mathrm{v} \text { et b) } \Phi_{\mathrm{si}} \approx 19 \% \mathrm{v}
$$

A taux de charge et de SBR-D3 constants, la masse molaire influence fortement le nombre de fonctions D3 par unité de surface de charge. Chaque polymère greffable portant un groupe fonctionnel, une réduction de la masse molaire induit inévitablement à masse de polymère constante, une augmentation du nombre absolu de fonctions D3 dans le matériau (excepté pour un composite formulé avec 100% de SBR-NF, dans ce cas la densité de fonctions D3 vaut toujours 0). La densité nominale de fonctions greffables peut s'exprimer en nombre de chaînes par nm^{2} via l'équation 3.13 basée sur la surface spécifique de la silice. La densité de fonction réelle devrait prendre en compte le taux de greffage et l'agrégation des particules limitant ainsi la surface offerte aux SBR pour le greffage.

$$
\begin{equation*}
\rho_{\mathrm{D} 3}=\frac{\left(1-\Phi_{\mathrm{si}}\right) \mathrm{N}_{\mathrm{A}} \% \mathrm{D} 3 \mathrm{~d}_{\mathrm{SBR}} \mathrm{R}_{0} \exp \left(2.5 \sigma^{2}\right)}{3 \mathrm{M}_{\mathrm{SBR}} \Phi_{\mathrm{si}}} \tag{3.13}
\end{equation*}
$$

$\rho_{\mathrm{D} 3}$: Densité de fonctions D3 par unité de surface
N_{A} : Constante d'Avogadro
\%D3 : Pourcentage de chaînes portant une fonction
$\mathrm{d}_{\mathrm{SBR}}$: Masse volumique du polymère
R_{0} : Rayon de la particule élémentaire
σ : Polydispersité sur la taille des particules
$\mathrm{M}_{\text {SBR }}$: Masse molaire du SBR
Dans la suite de cette thèse, nous appellerons deux échantillons formulés avec un $\rho_{D 3}$ équivalent «twin samples».

Nous avons vu dans la section précédente que le taux de polymère D3 permettait de considérablement changer la structure des charges. Nous proposons ici un changement de
variable en observant les structures en fonctions de $\rho_{\mathrm{D} 3}$ et non plus en fonction de la masse molaire ou du taux de chaînes fonctionnelles pris individuellement.

Ainsi, nous avons comparé les spectres DXPA des échantillons formulés avec des densités de fonctions D3 voisines (Fig.3.23). Dans chaque cas, le taux de charge reste constant pour ne pas avoir d'effet important dû au facteur de structure (compressibilité isotherme très différente). Nous observons systématiquement que les paires de spectres à $\rho_{\mathrm{D} 3}$ constant se superposent quasi-parfaitement suggérant qu'à taux de charge donné, la structure de ces composites est contrôlée (uniquement) par la densité de greffage. Ce résultat soutient encore une fois le fait qu'une fois dépassé un certain seuil, le couple ressenti par les charges dans le M.I. n'impacte plus la structure multi-échelle du composite. En revanche, sa structure apparaît comme étant très dépendante du nombre de sites silanol occupés par les chaînes D3. On note ici que les taux de greffage nominaux sont très inférieurs à la densité de silanol théorique à la surface de la silice avoisinant $4 \mathrm{~nm}^{-2}[39]$.

Figure 3.23 : DXPA - Structure des charges pour des échantillons «twins » formulés à iso- $\rho_{D 3}$

$$
\left(0,0,16,35,51,71 \text { et } 111(\pm 2) 10^{-3} \text { chaîne.nm }{ }^{-2}\right)
$$

Afin de quantifier la ressemblance des structures observées en DXPA nous définissons un critère de ressemblance «déviation intégrale» DI calculé à partir des zones hachurées représentées Fig.3.24. Ce dernier nous permet de comparer relativement les «twins» avec le reste des échantillons.

$$
\begin{equation*}
\operatorname{DI}=\int_{q^{\inf }}^{q^{\text {sup }}}\left(\frac{I_{1}(q)}{I_{2}(q)}-1\right)^{2} \operatorname{dlog}(q) \tag{3.14}
\end{equation*}
$$

$\mathrm{I}_{\mathrm{i}}(\mathrm{q})$: Intensité normalisée par le taux de charge pour un échantillon donné i.

Figure 3.24 : Représentation graphique pour déterminer le critère de ressemblance. (L'échantillon de référence est le 100% D3 - cf. insert)

Le résultat de la comparaison des structures pour différentes familles d'échantillons est présenté Fig.3.25. Il apparaît clairement que la «ressemblance» structurale entre deux échantillons dans la zone des q intermédiaires associée aux agrégats est définie par la densité de fonctions D3. On notera également un effet de saturation: pour des taux de fonctionnalisation importants (50,75 et 100%), la structure des charges à tendance à se stabiliser. En outre, comme attendu, DI est significativement plus bas pour les échantillons «twins» que pour une famille donnée quelconque (variation de $\% \mathrm{D} 3$ à M et Φ_{si} constants) avant d'arriver à saturation.

Figure 3.25 : Quantification de la déviation entre les structures par le critère DI pour différentes familles d'échantillons (variation de \%D3). Les valeurs de DI pour les couples d'échantillons formulés à iso- $\rho_{\mathrm{D} 3}$ sont faibles (les lignes continues représentent les «twins samples ») car les structures sont très proches les unes des autres par rapport aux autres échantillons.

La structure de ces composites peut également être comparée dans l'espace réel à l'aide de la microscopie électronique (Fig.3.26). Pour trois couples de composites chargés à $10 \% \mathrm{v}$ on obtient ici aussi un très bon accord permettant de valider l'hypothèse de l' «iso-structure»
sur une gamme de densité de fonctions D3 relativement étendue au vu des possibilités de formulation.

Figure 3.26 : MET - Exemple de structure des composites à iso- $\mathrm{p}_{\mathrm{D}} 3$
a) $\rho_{\mathrm{D} 3}=35.10^{-3} \mathrm{~nm}^{-2}(280 / 140 \mathrm{~kg} / \mathrm{mol})$
b) $\rho_{\mathrm{D} 3}=71.10^{-3} \mathrm{~nm}^{-2}(280 / 140 \mathrm{~kg} / \mathrm{mol})$
c) $\rho_{\mathrm{D} 3}=111.10^{-3} \mathrm{~nm}^{-2}(140 / 80 \mathrm{~kg} / \mathrm{mol})$

Comme attendu, les clichés MET montrent que les structures des twins ($\Phi_{\mathrm{si}}=10 \% \mathrm{v}$) sont très proches. Nous remarquons également que le phénomène de saturation observé en DXPA (Fig.3.21 par exemple) est visible à travers le fait que les différents couples semblent avoir des structures voisines. L'état de la silice entre $\rho_{\mathrm{D} 3}=35.10^{-3}$ et $110.10^{-3} \mathrm{~nm}^{-2}$ observé ici est toutefois très différent de celui observé à $\rho_{\mathrm{D} 3}=0.10^{-3} \mathrm{~nm}^{-2}$ (Fig.3.17) soulignant l'évolution de la structure avec le greffage.

Résumé : Analyse Structurale

- Une description quantitative de la structure des nanocomposites industriels simplifiés est rendue possible par la mise en place d'un modèle basé sur la DXPA d'une part, et sur la MET et la simulation numérique d'autre part. La silice est organisée en trois niveaux: la bille élémentaire ($R_{s i} \approx 10 \mathrm{~nm}$), l'agrégat ($\mathrm{R}_{\mathrm{agg}} \approx 50 \mathrm{~nm}$) et le réseau tridimensionnel branché ($\mathrm{a} \approx 120 \mathrm{~nm}$).
- La décroissance caractéristique du signal aux petits angles observée en diffusion avec un taux de charge croissant est principalement due au facteur de structure (compressibilité isotherme diminuant avec $\Phi_{\text {si }}$) et pas à une fragmentation beaucoup plus forte des agrégats causée par une augmentation du couple dans le M.I.
- Dans la même logique, la masse molaire impactant fortement le couple mesuré dans le mélangeur interne ne provoque pas de changement notable quant à la taille des agrégats. En effet, la décroissance du signal avec $\Phi_{\text {si }}$ est systématiquement visible quelque soit la valeur de M . La longueur des chaînes joue en revanche un rôle important sur la structure de la silice via la densité de greffage (cf. dernier point).
- Le taux de polymère fonctionnel est un paramètre déterminant quant à la structure des charges. Entre 0 et 50%, il diminue fortement la masse des agrégats ($\mathrm{N}_{\text {agg }} \approx 160$ à 40) et homogénéise la structure à l'échelle mésoscopique. Son impact semble cependant saturer pour des hautes densités de greffage.
- La masse molaire et le taux de SBR-D3 peuvent être regroupés en une variable indépendante : la densité de fonctions D 3 ($\mathrm{PD} 3^{2}$). Cette grandeur définit la structure du composite pour une large gamme de valeurs (0 à $100 \mathrm{~nm}^{-2}$). Son influence sur la structure et les propriétés mécaniques sera discutée plus en détail au chapitre 6 .

4. Propriétés mécaniques

4. Propriétés mécaniques

Nous cherchons désormais à comprendre l'effet des différents paramètres de la formulation sur le comportement mécanique des nanocomposites industriels simplifiés. Les essais sont réalisés en géométrie plan-plan (cisaillement) ou en DMA (traction) dans la zone linéaire (module indépendant de la déformation). Les résultats obtenus sont corrélés aux analyses structurales précédentes.

Les essais de rhéologie donnent systématiquement lieu à la formation de courbes maitresses via l'emploi du principe de superposition temps-température ($30<\mathrm{T}<80^{\circ} \mathrm{C}$) (section 1.1.2.)[21]. Le traitement effectué pour la matrice non fonctionnalisée (NF) est donné en exemple Fig.4.1. La masse entre enchevêtrement extraite depuis le module au plateau caoutchoutique est calculée via l'équation 1.14 et vaut environ $2.5 \mathrm{~kg} / \mathrm{mol}$ en bon accord avec la littérature (Tableau 1.1).

Figure 4.1 : a) Courbes maitresses $\mathrm{G}^{\prime}(\bullet)$ et $\mathrm{G}^{\prime \prime}(\cdot)$ de la matrice $\mathrm{SBR}-140 \mathrm{~kg} / \mathrm{mol} \operatorname{NF}\left(\mathrm{T}_{\text {ref }}=50^{\circ} \mathrm{C}\right)$
b) $\log \tau$ déduit du facteur de décalage a_{T} utilisé pour la formation de la courbe maitresse en
(a). Ajustement de cette dynamique par la loi WLF (équation 1.13), on rappelle que

$$
\mathrm{a}_{\mathrm{T}}(\mathrm{~T})=\tau(\mathrm{T}) / \tau\left(\mathrm{T}_{\mathrm{ref}}\right)
$$

4.1. Variation du taux de charge

De même que précédemment, le taux de charge est le paramètre le plus naturel à faire varier lorsque l'on veut renforcer un composite. Nous nous attachons donc à comprendre l'impact de la fraction volumique en silice sur les propriétés mécaniques dans les différents domaines de fréquence pour les mêmes échantillons que ceux étudiés en section 3.2. La superposition temps-température est ici utilisée en rhéologie linéaire entre 10 et $80^{\circ} \mathrm{C}$ pour construire des courbes maîtresses où l'on observe l'évolution des modules dynamiques de stockage G' et de perte G' en fonction de la fréquence de sollicitation. Il apparaît clair qu'au-delà d'un taux de charge supérieur à $12.7 \% \mathrm{v}$, la superposition horizontale ne permet plus de reconstruire une courbe cohérente (Fig.4.2), l'écart au principe de superposition temps-température semble d'autant plus important que ce que le taux de charge est élevé. Cette impossibilité d'utiliser
le principe d'équivalence temps-température pourrait être due à la contribution d'un réseau percolé dont la dynamique est bien différente de celle du polymère.

Figure 4.2: G' et G" en fonction de la fréquence de sollicitation (pulsation $\omega=2 \pi f$) a) $\Phi_{\mathrm{si}}=0,8.4$ et $\left.12.7 \% \mathrm{v}-\mathrm{b}\right) \Phi_{\mathrm{si}}=16.8 \% \mathrm{v}-$ c) $\Phi_{\mathrm{si}}=21.1 \% \mathrm{v}$.

Plusieurs effets sont observés. Le taux de charge croissant augmente clairement le module au plateau caoutchoutique (renforcement - cf. suite de cette section) mais permet aussi de limiter l'écoulement aux basses fréquences («pente de plus en plus faible»). De plus, la position du maximum de G', souvent considéré comme l'inverse du temps de reptation semble se décaler vers les basses fréquences suggérant un léger ralentissement de la dynamique des polymères avec le taux de charge.

Modèle parallèle

Le renforcement a été définie section 1.4.1 comme le rapport des modules au plateau caoutchoutique d'un composite et de la matrice associée ($\mathrm{R}=\mathrm{G}_{\text {Ncomposite }} / \mathrm{G}_{\text {Nmatrice }}$). Nous proposons ici un modèle parallèle (équations 1.25 et 4.1) de branches à l'intérieur desquelles les agrégats peuvent percoler et de polymère contenant des agrégats isolés. Il est basé sur la fraction volumique en objet renforçant $\Phi_{\text {agg }}$ extraite dans la section précédente à partir du modèle structural quantitatif. On définit également un seuil de percolation $\Phi_{\text {agg }}^{\text {c }}$ délimitant le régime du seul renforcement hydrodynamique de celui auquel vient s'ajouter la contribution du réseau percolé d'agrégats décrite par la fonction de Heaviside Θ. Ce modèle est simple et
une version «Modèle de Palierne» tenant mieux compte de la structure observée est proposée juste après.

$$
\begin{equation*}
\frac{\mathrm{G}}{\mathrm{G}_{0}}=1+2.5 \Phi_{\mathrm{agg}}+\Theta\left(\Phi_{\mathrm{agg}}-\Phi_{\mathrm{agg}}^{\mathrm{c}}\right) \frac{\mathrm{G}_{\mathrm{f}}}{\mathrm{G}_{0}}\left(\frac{\Phi_{\mathrm{agg}}-\Phi_{\mathrm{agg}}^{\mathrm{c}}}{1-\Phi_{\mathrm{agg}}^{\mathrm{c}}}\right)^{1.8} \tag{4.1}
\end{equation*}
$$

Ce modèle est ajusté sur les points expérimentaux Fig.4.3. Les paramètres libres sont le rapport des modules du réseau et de la matrice $\left(\mathrm{G}_{\mathrm{f}} / \mathrm{G}_{0}\right)$ et le seuil de percolation.

Figure 4.3 : Renforcement à $950 \mathrm{rd} / \mathrm{s}-50^{\circ} \mathrm{C}$ en fonction du taux de charge. La courbe ajustée correspond à un modèle parallèle utilisant les données structurales obtenues en section 3.1.

Le modèle parallèle permet d'extraire les valeurs suivantes :

- $\quad \mathrm{G}_{\mathrm{f}} / \mathrm{G}_{0}$ prend ici la valeur de 50 , signifiant que le réseau de silice aurait un module 50 fois supérieur à celui du polymère. On rappelle que le module de la silice est de l'ordre de 30 GPa et que celui du polymère fondu environ $\mathrm{d}^{\prime} 1 \mathrm{MPa}$ (1 GPa pour l'état vitreux), soit un rapport de 30000. Cette différence traduit le fait que le réseau est également formé de polymère greffé, d'OCTEO et d'agrégats à l'intérieur desquels (et entre lesquels) les forces de cohésion ne sont pas aussi fortes que dans une pièce de silice homogène.
- Le seuil de percolation des agrégats dans les branches est estimé à $56 \% \mathrm{v}$ ce qui correspond à un taux de charge nominal de l'ordre de $12 \% \mathrm{v}$ en silice, en accord avec la limite à partir de laquelle le principe de superposition temps-température ne s'applique plus (Fig.4.2). Nous verrons que ces résultats sont également supportés par les analyses de spectroscopie diélectrique chapitre 5 .
- L'exposant 1.8 sur le terme de la percolation est choisi conforme à la littérature (De Gennes - cf.1.4.1).

Modèle de Palierne

Bien que le modèle parallèle décrive bien le renforcement observé (avec le peu de points mesurés), il n'est pas satisfaisant car il ne décrit pas la structure à toutes les échelles. En effet, les branches contenant du polymère ne peuvent pas être considérées comme infiniment «dures » comme l'impose la formule de Smallwood. De plus, la prise en compte du terme du deuxième ordre (en $14.1 \Phi^{2}$) ne permet pas d'ajuster correctement les données.

Ainsi le renforcement de la matrice polymère peut être décrit de façon plus «physique» en prenant en compte les différents niveaux de structuration des charges comme expliqué au chapitre 3. Nous traitons ici le problème en décorrélant le renforcement des branches par les agrégats infiniment durs (Smallwood), et un niveau au dessus, le renforcement du composite par les branches molles composées de polymère et de silice (Palierne - cf.1.4.1).

Le renforcement des branches par les agrégats suit l'expression de Guth-Gold (4.2) :

$$
\begin{equation*}
\mathrm{R}_{\text {branch }}=\frac{\mathrm{G}_{\mathrm{branch}}}{\mathrm{G}_{0}}=1+2.5 \Phi_{\mathrm{agg}}+14.1 \Phi_{\mathrm{agg}}^{2} \tag{4.2}
\end{equation*}
$$

$\mathrm{G}_{\text {branch }}$: Module élastique de la branche renforcée contenant du polymère et des charges.

A partir de l'équation 4.3, on détermine $\mathrm{H}_{\mathrm{branch}}^{*}$ le coefficient du modèle de Palierne permettant de lier les deux échelles (branches et composite global). Il vient:

$$
\begin{equation*}
\mathrm{H}_{\text {branch }}^{*}=\frac{\mathrm{G}_{\text {branch }}-\mathrm{G}_{0}}{2 \mathrm{G}_{\text {branch }}+3 \mathrm{G}_{0}}=\frac{\mathrm{R}_{\text {branch }}-1}{2 \mathrm{R}_{\text {branch }}+3} \tag{4.3}
\end{equation*}
$$

Le renforcement global du composite se fait alors en considérant le volume des branches $\Phi_{\text {fract }}$ et le développement limité au deuxième ordre présenté (équation.1.29). Nous notons ici que le terme du deuxième ordre $\left(6 \mathrm{H}_{\mathrm{branch}}{ }^{2}\right)$ est très inférieur à celui du modèle de Smallwood (valant 14.1) ce qui permet l'ajustement des données Fig.4.4. Cette différence vient d'une hypothèse concernant la localisation de la divergence du module avec Φ_{si}.

$$
\begin{equation*}
\mathrm{R}_{\text {composite }}=1+5 \Phi_{\text {fract }} \mathrm{H}_{\text {branch }}^{*}+6\left(\Phi_{\text {fract }} \mathrm{H}_{\text {branch }}^{*}\right)^{2} \tag{4.4}
\end{equation*}
$$

Finalement de la même façon que précédemment, la percolation du réseau de branches apparaît quand $\Phi_{\text {agg }} \geq \Phi_{\text {agg }}{ }^{\mathrm{c}}$ pour donner :

$$
\begin{equation*}
\mathrm{R}_{\text {composite }}^{\text {percolé }}=1+5 \Phi_{\text {fract }} \mathrm{H}^{*}+6\left(\Phi_{\text {fract }} \mathrm{H}^{*}\right)^{2}+\Theta\left(\Phi_{\mathrm{agg}}-\Phi_{\mathrm{agg}}{ }^{\mathrm{c}}\right) \frac{\mathrm{G}_{\mathrm{f}}}{\mathrm{G}_{0}}\left(\frac{\Phi_{\mathrm{agg}}-\Phi_{\mathrm{agg}}{ }^{\mathrm{c}}}{1-\Phi_{\mathrm{agg}}{ }^{\mathrm{c}}}\right)^{1.8} \tag{4.5}
\end{equation*}
$$

L'ajustement des données expérimentales par l'équation 4.5 est présenté Fig.4.4 et semble être en très bon accord avec l'expérience. On notera que les paramètres ajustables $\left(\mathrm{G}_{\mathrm{f}} / \mathrm{G}_{0}\right.$ et $\Phi_{\text {agg }}^{\mathrm{c}}$) sont très proches des précédents obtenus avec le "modèle parallèle" suggérant leur robustesse.

Fig.4.4 : Renforcement ajusté par le modèle de Palierne.

4.2. Variation du taux de polymère fonctionnel D3

Le SBR-D3 permet un changement important de la structure des charges, il est donc nécessaire d'analyser son impact du point de vue mécanique. Le polymère pur est dans un premier temps caractérisé afin d'observer d'éventuels changement de comportement apporté par les fonctions D3 (Fig.4.5). On constante que si à hautes fréquences les modules mesurés sont identiques du fait de la chimie identique des polymères leur conférant une masse entre enchevêtrement constante, à basse fréquence, l'écoulement se fait plus lentement pour le polymère NF que pour le D3. Ce dernier étant très proche d'un comportement Maxwellien, ce résultat suggère que la structure du SBR NF est différente, possiblement plus branchée.

Figure 4.5 : Comportement rhéologique ($\mathrm{G}^{\prime}, \mathrm{G}^{\prime \prime}$) des matrices de $\operatorname{SBR}(0,50$ et $100 \% \mathrm{D} 3$)

On se propose ensuite de faire la même analyse sur les composites chargés avec $10 \% \mathrm{v}$. Les résultats sur G' et G" sont respectivement présentés Fig.4.6a et 4.6b.

Figure 4.6: Comportement rhéologique des échantillons chargés à $\Phi_{\mathrm{si}}=10 \% \mathrm{v}$ avec des taux de SBRD3 de $0,25,50,75$ et $100 \% \mathrm{D} 3$: a) G', insert : pente de G'à basse fréquence - b) G", insert : temps de relaxation terminal

Ici aussi, plusieurs observations importantes peuvent être faites :

- La pente du module de stockage (《vitesse d'écoulement») aux basses fréquences (β) diminue avec le greffage du SBR-D3 sans montrer de phénomène de saturation. Ce point peut être directement corrélé avec la quantité de polymère lié mesuré par Bound Rubber au chapitre précédent, ne montrant pas non plus de saturation. Nous notons en revanche qu'en DXPA la structure ne semble plus évoluer (Fig.3.16a). Dans cette gamme de fréquence on sonde prioritairement les interactions polymères-charges où les chaînes greffées ne peuvent pas relaxer (sortir de leur tube initial) du fait de leur ancrage sur la silice. On peut remarquer que le SBR-D3 pur «s'écoulait» plus rapidement que le $\mathrm{SBR}-\mathrm{NF}$, alors que dans les composites, la tendance s'inverse, prouvant de fait le processus de greffage.
- Le SBR-D3 ne semble pas impacter le comportement à hautes fréquences où la valeur du module au plateau caoutchoutique est constante. Une exception est cependant notée pour le composite formulé avec 0% de SBR-D3. Dans ce cas le module est supérieur, suggérant que la structure de la silice, très différente par rapport aux autres matériaux de cette série (cf. section 3.3), implique un renforcement supérieur. Un résultat analogue est obtenu en DMA, où une fois le seuil de percolation dépassé (Φ_{si} $=20 \% \mathrm{v}$), le taux de SBR-D3 croissant semble diminuer le renforcement (possible décalage du seuil de percolation vers des taux de charges plus élevés - Fig.4.8a).
- Le module de perte visqueuse décroit de façon monotone avec le taux de polymère fonctionnel signifiant que le caractère élastique du composite est de plus en plus marqué par rapport aux pertes visqueuses.
- Il est également intéressant de confronter ici les modules au plateau pour les différents \%D3 avec ceux déduits de l'intégration de G' $[21]$.

$$
\begin{equation*}
\mathrm{G}_{\mathrm{N}}=\frac{2}{\pi} \int_{-\infty}^{+\infty} \mathrm{G}^{\prime \prime}(\omega) \operatorname{dln}(\omega) \tag{4.6}
\end{equation*}
$$

La figure 4.8 présente trois séries de données. La ligne pointillée représente le module au plateau mesuré précédemment (Fig.4.6a). En intégrant depuis la plus basse fréquence mesurée expérimentalement jusqu'au minimum de G", une seconde famille est créée via l'équation 4.6. L'intégrale de G'0 $0 \% \mathrm{D} 3$ donne une valeur supérieure aux autre cas en accord avec les mesures de G'. Ensuite, entre 25 et 100% D3, une décroissance de l'ordre de 20% est observée. Ce point suggère qu'une partie de la relaxation des chaînes a été déplacée vers des fréquences plus basses (ralentissement) avec le greffage. En effet, une inspection attentive de la figure 4.7 b montre que l'intégrale est incomplète aux basses fréquences où l'importance de la partie manquante apparaît clairement comme dépendre du \%D3. Nous avons donc extrapolé les fonctions G" et recalculé les intégrales, donnant ainsi une troisième famille de points. Dans ce cas, les valeurs sont constantes à la barre d'erreur expérimentale près entre 25 et 100% D3. On en conclut que le greffage retarde la relaxation des chaînes, cet effet est relié à la décroissance de pente (β) observé à basse fréquence sur G' mentionné ci-dessus.

Figure 4.7 : Valeurs de l'intégrale de G " en fonction de $\ln (\omega)$ jusqu'au minimum de G " pour différentes fractions de SBR-D3. Le calcul est fait en considérant les fréquences les plus basses atteintes expérimentalement (\bullet) et une extrapolation pour tenir compte des valeurs manquantes de G" (\square). En comparaison les valeurs expérimentales de G^{\prime} à $950 \mathrm{rad} / \mathrm{s}$ sont tracés (ligne pointillée)

- Dans le même cadre que précédemment, le temps de reptation pris comme l'inverse de la position du maximum de G " semble croître de façon monotone avec le greffage suggérant une fois de plus, un ralentissement des chaînes. Ici, le greffage (lien covalent supposé) accentue les interactions charges-polymères contraignant de fait le mouvement des chaînes. Un phénomène analogue est également observable en DMA dans la région de la transition vitreuse pour un taux de charge plus important (Fig.4.8b-20\%v nominal). Le pic de E" se décale vers des températures plus hautes systématiquement. La décroissance du module au plateau «post-percolation» observée figure 4.8a suggère le retardement de la percolation avec le \%D3 de même qu'en figure 4.6a: ce point important sera discuté chapitre 6 .

Figure 4.8 : DMA $(1 \mathrm{~Hz}=6.28 \mathrm{rad} / \mathrm{s})$ - Echantillons chargés à 20% v entre 0 et $100 \% \mathrm{D} 3$. Les données ne sont pas renormalisées. a) module de stockage E' en fonction de la température. b) module de perte E", l'inset est un zoom du pic de E"

4.3. Impact de la masse molaire

La taille des chaînes est un paramètre important quant au comportement mécanique des polymères. Elle définit en particulier la longueur du plateau caoutchoutique c'est-à-dire le temps de reptation. Avant de s'intéresser aux composites il est donc important de vérifier les propriétés mécaniques des matrices pures (Fig.4.9a-b).

Figure 4.9 : Comportement mécanique en cisaillement des matrices de SBR en fonction de leur masse molaire, a) $\left.\mathrm{G}^{\prime}(\omega)-\mathrm{b}\right) \mathrm{G}^{\prime \prime}(\omega)$

Comme attendu dans le cas des polymères purs, on retrouve un module au plateau caoutchoutique constant (masse entre enchevêtrement identique) synonyme d'une chimie similaire où M est systématiquement très supérieur à $\mathrm{M}_{\mathrm{e}}[21]$. Dans le cas des nanocomposites (Fig.4.10a-b) chargés à $10 \% \mathrm{v}$ cela ne semble plus être le cas, indiquant des différences d'interactions entre charges et des évolutions de structure: le renforcement apparait supérieur pour des petites masses molaires. A basse fréquence, sans surprise, la longueur du plateau caoutchoutique dépend fortement de la masse molaire employée dans la formulation. Il est tout de même intéressant de noter que la «vitesse d'écoulement» (~ pente de G' à basse fréquence) diminue avec la masse molaire dans le cas des composites alors qu'elle est
constante dans le cas des matrices. Comme observé dans la section précédente, ce régime est contrôlé par la fraction de polymère lié. Il semblerait que les chaînes de SBR $280 \mathrm{~kg} / \mathrm{mol}$, moins nombreuses, aient plus de facilité à se greffer sur la silice comme le suggère la décroissance de la pente (β) à basse fréquence avec la masse molaire (Fig.4.10a). Le module au plateau des composites avec la masse molaire est différent du fait de la structuration de la silice en raison de la densité de greffage et de la fragmentation (cf. chapitre 6). Le minimum de G" est également impacté par les charges mais dépend surtout des propriétés intrinsèques du polymère, autour de $200 \mathrm{rad} / \mathrm{s}$, la valeur du facteur de perte ($\tan \delta$) varie de façon importante avec M (cf. section 6.2.2).

Figure 4.10 : Comportement mécanique des nanocomposites chargés à $\Phi_{\mathrm{si}}=10 \% \mathrm{v}$ en fonction de leur masse molaire, a) $\left.\mathrm{G}^{\prime}(\omega)-\mathrm{b}\right) \mathrm{G}^{\prime \prime}(\omega)$

Les temps de reptation des matrices et des nanocomposites, extraits des positions des maxima de G" ($\tau_{\mathrm{d}}=1 / \omega_{\max }$) sont quant à eux très voisins et sont en bon accord avec les prédictions expérimentales $\tau \sim M^{3.4}$ (Fig.4.11). Nous rappelons que le but de cette thèse n'est pas de vérifier ce type de loi avec précision.

Figure 4.11: Evolution du temps de reptation en fonction de la masse molaire pour les SBR purs et les nanocomposites chargés à $\Phi_{\mathrm{si}}=10 \% \mathrm{v}-(40,80,140$ et $280 \mathrm{~kg} / \mathrm{mol})$. Les valeurs expérimentales sont comparées avec la loi semi-empirique (1.17) où τ et M sont respectivement exprimés en secondes et $\mathrm{g} /$ mole.

Echantillons à isodensité de greffage «twins»

Dans le cas de composites formulés avec des densités de greffage ($\rho_{\mathrm{D} 3}$) équivalentes (cf. section 3.4), on remarque en rhéologie ($\Phi_{\mathrm{si}}=10 \%$ v - Fig.4.12) que le module au plateau des échantillons est proche. En DMA, ($\Phi_{\mathrm{si}}=10$ et 20% v - Fig.4.13) des mesures plus précises permettant de s'affranchir des artefacts liés à l'état de surface des échantillons, donnent des modules au plateau G_{N} identiques pour les échantillons 《twins».

Nous pensons ici que les mesures réalisées en rhéologie (plateau-plateau) sont altérées par l'état de surface des composites et leur écoulement durant la mesure ce qui explique les légères différences avec les expériences réalisées en DMA.

Les essais de rhéologie à «iso-structure» permettent néanmoins de vérifier le greffage des chaînes de SBR-D3 via la pente de G' à basse fréquence. En effet, de la même façon que Fig.4.7a, la masse de polymère liée (\sim Bound Rubber) est directement liée à l'écoulement. Ainsi, hormis le cas où $\rho_{\mathrm{D} 3}=0 \mathrm{~nm}^{-2}$ pour lequel les pentes sont identiques (pas de greffage), on retrouve systématiquement une pente plus forte pour les échantillons formulés avec peu de SBR-D3 (équivalent ici à une faible masse molaire car nous travaillons à iso- $\mathrm{\rho D} 3$).

Rhéologie plateau-plateau

Figure 4.12 : Rhéologie $\left(\mathrm{G}^{\prime}\right)$ à iso- $\rho_{\mathrm{D} 3}-$ a) $\rho_{\mathrm{D} 3}=0$, b) $33 \cdot 10^{-3}$ c) 66.10^{-3}, d) $110 \cdot 10^{-3} \mathrm{~nm}^{-2}$.

DMA

Figure 4.13 : DMA - G' et G" à iso- $\rho_{\mathrm{D} 3}$, respectivement ($\left.\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\right) 0,0,15,35$, et $51 \pm 2 \mathrm{~nm}^{-2}, \mathrm{f}$) $71 \pm 4 \mathrm{~nm}^{-2}$ et g) rapport des modules G_{N} de chaque couple «twins» pris à $2^{\circ} \mathrm{C}$ en fonction de $\rho_{\mathrm{D} 3}$. Les mesures sont normalisées à la fréquence du maximum de G ".

Ces observations suggèrent que la structure de la silice (définie par la densité de greffage) contrôle le renforcement. Ce résultat n'était pas nécessairement prévisible, il sera discuté en parallèle de l'évolution du module de perte visqueuse G" au chapitre 6 . On notera que pour les faibles masses molaires, le plateau caoutchoutique est très court avant l'écoulement, le renforcement doit ainsi être observé près de la transition vitreuse.

Résumé : Propriétés mécaniques

- Le comportement des polymères purs satisfait les prédictions théoriques: $\mathrm{M}_{\mathrm{e}} \approx 2.5$ $\mathrm{kg} / \mathrm{mol}$ et $\tau_{\mathrm{d}} \sim \mathrm{M}^{3.4}$. Le temps terminal de relaxation dans les composites suit globalement la même tendance indiquant que la dynamique des chaînes n'est pas fortement impactée par $\Phi_{\text {si }}$ ou \%D3. Des mesures de spectroscopie diélectrique et de RMN viendront respectivement appuyer ce résultat aux chapitres 5 et 6 .
- L'ajout de silice au SBR permet d'augmenter le module au plateau et de ralentir «l'écoulement» aux basses fréquences. Le principe de superposition tempstempérature n'est plus directement applicable pour des taux de charges importants (> $13 \% \mathrm{v}$) du fait d'une probable percolation des charges.
- Le renforcement observé peut être ajusté selon le modèle de Palierne dans lequel le renforcement est décrit à deux échelles :
- Chaque branche du réseau 3D de silice est renforcée par une fraction volumique en objets infiniment durs $\Phi_{\text {agg }}$. Le module des branches est estimé à environ 50 fois celui du polymère pur.
- Le composite est renforcé une échelle au dessus par ces branches molles constituées de polymère et de silice. Leur seuil de percolation correspond à $\Phi_{\text {agg }}^{\mathrm{c}}=58 \% \mathrm{v}$ soit un taux de charge de $\Phi_{\mathrm{si}}=13 \% \mathrm{v}$. Une fois le réseau percolé atteint, le module diverge avec un exposant 1.8 [103].
- Un modèle parallèle, plus simple, dont le module est calculé en prenant en compte le seul renforcement hydrodynamique (Einstein) et la percolation du réseau d'agrégats permet également d'ajuster les données. Les paramètres de l'ajustement sont identiques à ceux obtenus avec le modèle de Palierne suggérant leur robustesse.
- Le taux de polymère D3, permet de réduire considérablement «la vitesse d'écoulement (β) » pour un taux de charge donné. Il ralentit la dynamique des chaînes et diminue le module de perte visqueuse sur une large gamme de fréquence. Il paraît décaler le seuil de percolation vers des valeurs de $\Phi_{\text {si }}$ plus importantes du fait de son impact sur la structure (cf. chapitre 3 et 6). Nous rappelons que la quantité de polymère effectivement greffée évolue linéairement avec le taux nominal \%D3 sans saturer (Fig.2.6).
- Dans le cas des échantillons formulés avec une même densité de greffage «twins », nous avons vu au chapitre 3 que la structure de la silice est similaire. Les résultats d'analyse dynamique mécanique semblent indiquer, de plus, que le module au plateau caoutchoutique (c.à.d. le renforcement) est identique dans chaque couple d'échantillons suggérant qu'une même structure des charges induit un même renforcement. Ce résultat discuté au chapitre 6 , ouvre une nouvelle réflexion sur la décorrélation de G' et G".

5. Propriétés diélectriques

5. Propriétés diélectriques

Dans le but d'appuyer les analyses structurales et mécaniques précédemment établies, nous complétons dans ce chapitre la caractérisation des composites par spectroscopie diélectrique à large bande (BDS, cf. section 2.4.2). Nous avons étudié deux séries d'échantillons en faisant varier le taux de charge à $50 \% \mathrm{D} 3$ et le taux de polymère fonctionnel à $10 \% \mathrm{v}$ de silice pour M $=140 \mathrm{~kg} / \mathrm{mol}$. Tous les résultats $\left(\varepsilon^{\prime}(\omega)\right.$ et $\left.\varepsilon^{\prime \prime}(\omega)\right)$ sont normalisés pour satisfaire $\varepsilon^{\prime}(\omega \rightarrow \infty)=$ 2.5, valeur typique pour un polymère, permettant ainsi de s'affranchir des effets de géométrie du capacitor, en particulier de son épaisseur mal contrôlée. Les différents processus de relaxation (α, β, et Maxwell-Wagner-Sillars) ont été décrits à l'aide de fonctions Havriliak Negami (HN), expression 2.35 rappelée ici, équation 5.1.

Nous pourrons noter que pour chaque échantillon et chaque température, les données ont été ajustées simultanément sur la partie réelle et sur la partie imaginaire de la permittivité électrique.

$$
\begin{equation*}
\varepsilon^{*}(\omega)=\sum_{\mathrm{j}} \mathrm{HN}_{\mathrm{j}}=\sum_{\mathrm{j}} \varepsilon_{\infty \infty_{\mathrm{j}}}+\frac{\Delta \varepsilon_{\mathrm{j}}}{\left(1+\left(\mathrm{i} \omega \tau_{\mathrm{j}}\right)^{\gamma_{\mathrm{j}}}\right)^{\delta_{\mathrm{j}}}} \tag{5.1}
\end{equation*}
$$

HN_{j} : Contribution arbitraire à la permittivité électrique (ici processus α, β ou MWS) ; $\mathbf{j}<\mathbf{3}$.

Note: Pour l'ajustement réalisé sur ε " à haute température, nous ajoutons aux contributions décrites par la somme de fonctions $H N$ exprimée par l'équation 5.1, celle de la conductivité ionique qui a pour forme $\sigma_{c} / \varepsilon_{0} \omega$, où ε_{0} représente la permittivité du vide.

Dans le SBR, plusieurs groupes moléculaires (cf. section 1.1.3) possèdent un moment dipolaire : styrène, butadiène 1,2 et butadiène 1,4 cis (le butadiène 1,4 trans n'en possède pas). La réponse diélectrique est dominée par les deux derniers groupes pour lesquels la valeur du moment dipolaire est équivalente et supérieure à celle du styrène [133].

Dans le but de caractériser tous les processus présents dans les matériaux composites, chaque échantillon a été mesuré suivant la rampe de température (s'étendant entre 153 et 393 K) donnée Fig.5.1. On remarquera que la même série de mesure entre 333 et 253 K est réalisée avant et après la montée en température à 393 K pour détecter un éventuel effet du traitement thermique.

Figure 5.1 : Rampe en température utilisée pour les mesures de BDS.

Cette étude est complétée par des mesures de calorimétrie différentielle à balayage (DSC) et d'analyse thermogravimétrique (ATG).

5.1. Etude de la matrice - relaxations α et β

La spectroscopie diélectrique permet de sonder les propriétés dynamiques des chaînes via les dipôles électriques présents dans leurs microstructures. Dans le cas du SBR on observe en particulier la relaxation principale α liée aux mouvements coopératifs des chaînes et donc à la transition vitreuse, ainsi que la relaxation secondaire β qui a été associée à des mouvements locaux des segments de butadiène dans le SBR [133].

Processus a

La relaxation principale est détectée dans notre fenêtre de fréquence pour des températures allant de 243 à 303 K (Fig.5.2a). Les données sont décrites par une fonction HN (équation 2.35) dont les paramètres γ, δ et $\Delta \varepsilon_{\alpha}{ }^{\prime \prime}$ sont respectivement associés à la largeur, l'asymétrie et l'amplitude du processus. L'évolution des paramètres en fonction de la température est présentée Fig.5.2b.

Figure 5.2 : Dynamique de la relaxation α dans le SBR $140 \mathrm{~kg} / \mathrm{mol} 50 \%$ D3.
a) Evolution de la permittivité imaginaire en fonction de la fréquence à différentes températures. Les données sont ajustées par une fonction HN avec une contrainte sur γ et δ (lignes continues), b) Evolution des paramètres de la fonction HN avec la température. Les lignes sont des ajustements linéaires pour γ et δ.

On remarque que γ et δ évoluent linéairement ($\gamma=0.0012 \mathrm{~T}+0.2582$ et $\delta=0.001 \mathrm{~T}+0.3799$) et nous avons imposé cette variation dans l'ajustement des données qui reste de bonne qualité en particulier dans la région du maximum de ε ". Nous notons que les valeurs de $\Delta \varepsilon$ " (Fig.5.2b) présentent une différence avant et après la montée à 393 K .

L'évolution de $\tau_{\alpha}\left(=1 / 2 \pi f_{\max }\right)$ en fonction de l'inverse de la température est donnée Fig.5.3. La dépendance en température de τ_{α} est clairement non-Arhénienne et peut être décrite par une loi WLF.

Figure 5.3 : Ajustement du temps caractéristique τ_{α} d'une matrice de $\mathrm{SBR} 50 \% \mathrm{D} 3140 \mathrm{~kg} / \mathrm{mol}$ avec la loi WLF et comparaison avec la littérature (Ferry [21] et Cerveny et al. [133]) (•0\%D3, • 50\%D3, • 50% D3 chauffé à $393 \mathrm{~K}, \bullet 100 \% \mathrm{D} 3$)

Les mesures ont été réalisées pour 3 types de matrices (0,50 et $100 \% \mathrm{D} 3$). Dans chaque cas, les résultats obtenus en ajustant la loi WLF sur τ_{α} sont proches $\left(9.8<\mathrm{C}_{\underline{1}} \leq 10.8\right.$ et $\underline{38<\mathrm{C}_{2} \leq 50}$ $\left.{ }^{\circ} \mathrm{C}\right)$ suggérant que la dynamique de la matrice n'est pas fortement impactée par la fonctionnalisation. Cependant, en comparant les valeurs de la température à $\tau_{\alpha}=100 \mathrm{~s}$ (considérée proche de la T_{g} calorimétrique [133]) nous obtenons respectivement pour les SBR 0 et $100 \% \mathrm{D} 3,-39$ et $-43^{\circ} \mathrm{C}$, pouvant suggérer une légère différence de structure.

La relaxation α du SBR 100% D3 est décalée vers des fréquences plus hautes, synonyme d'un temps de relaxation plus court (Fig.5.4a). Cette tendance est confirmée Fig.5.4b par une mesure de DSC qui souligne l'écart de température de transition vitreuse entre les SBR 0 et 100% D3 (respectivement -37 et $-40.5^{\circ} \mathrm{C}$). Ces observations sont cohérentes avec l'écoulement ralenti du SBR 0\%D3 observé en rhéologie (Fig.4.6a) et confirment une différence de structure, le SBR-0\%D3 étant probablement légèrement ramifié.

Figure 5.4 : a) Evolution de la relaxation α à $273 \mathrm{~K}\left(\tan \delta=\varepsilon^{\prime \prime} / \varepsilon^{\prime}\right)$ en fonction du taux de polymère fonctionnel pour des SBR $140 \mathrm{~kg} / \mathrm{mol}$. b) Dérivée de la chaleur spécifique mesurée par DSC modulée (3 $\mathrm{K} / \mathrm{min}$) pour les différentes matrices - résultats lissés recalculés à partir des 150 points voisins.

Processus β

Le processus β a été étudié dans la matrice $50 \% \mathrm{D} 3$. De même que pour le processus α, il se décale vers des fréquences plus élevées quand la température augmente. En outre, l'intensité du pic qui lui est associé croît bien que restant nettement inférieure à celle du processus α, qui elle, décroît avec la température (Fig.5.5 et Kremer [125]). La relaxation secondaire est ajustée avec une loi HN symétrique ($\delta=1$) appelée aussi «Cole-Cole ». Ici, nous obtenons le temps de relaxation qui suit une loi Arrhénienne ($\mathrm{E}_{\mathrm{a}}=33.5 \mathrm{~kJ} / \mathrm{mol}$) pour un taux de styrène de 26%. Cerveny et al. [133] mesure quant à elle, une énergie d'activation de $35 \mathrm{~kJ} / \mathrm{mol}$ dans un échantillon contenant 23.5% de styrène.

Figure 5.5 : Dynamique de la relaxation β dans le SBR $140 \mathrm{~kg} / \mathrm{mol} 50 \%$ D3
a) Evolution avec la température, les données sont ajustées avec des fonctions HN de type Cole-Cole (δ
$=1)$ (lignes) -b) Ajustement de $\log \tau_{\beta}=1000 / \mathrm{T}$ avec une loi Arrhénienne.

5.2. Cas des composites industriels simplifiés

L'ajout de silice à la matrice de SBR implique la présence de nouveaux dipôles tels que des molécules d'eau ou des fonctions OH présentes à la surface des particules et sensibles au champ électrique. Leur contribution se manifeste par la présence de nouveaux processus visibles sur une très large gamme de température et fréquence. Dans cette section on analyse l'ensemble des contributions d'un composite chargé à $16.8 \% \mathrm{v} 50 \% \mathrm{D} 3$ en les comparant à celle de la matrice. Pour chaque température, nous présentons Fig.5.6 l'ajustement de ε " par une somme de contributions définie équation 5.1.

- A très basse température (173K - Fig.5.6a), la relaxation β du polymère se superpose à une contribution beaucoup plus forte de la silice (déjà observée par Klüppel [11]). L'évolution de ce pic noté β ' suit une loi Arrhénienne avec la température mais son énergie d'activation est supérieure ($57 \mathrm{~kJ} / \mathrm{mol}$) à celle de la relaxation β du SBR précédemment mesurée. Le processus β ' est également ajusté avec une fonction ColeCole.
- A basse température (273 K - Fig.5.6b), la relaxation α du polymère se superpose à une contribution bien plus intense générée par le processus Maxwell-Wagner-Sillars (MWS1) traduisant l'effet de concentration des charges électriques aux interfaces polymère/silice.

5. Propriétés diélectriques

- A haute température (373K - Fig.5.6c), la conductivité ionique σ augmente considérablement du fait de la concentration en dipôles électriques accrue. Dans la gamme de fréquence sondée (1 à $10^{6} \mathrm{~Hz}$), la réponse diélectrique du composite est composée de la conductivité ionique, du processus MWS1 lié à la quantité d'eau et d'un processus additionnel MWS2 (également ajusté par une fonction HN) apparaissant dès $\Phi_{\mathrm{si}} \geq 12.7 \% \mathrm{v}$.

Figure 5.6 : Spectroscopie diélectrique d'un composite chargé à 16.8% v et d'une matrice de SBR pur. - a) $\mathrm{T}=173 \mathrm{~K}, \mathrm{~b}) 273 \mathrm{~K}$ et c) 373 K . Les différentes contributions décrites par une fonction HavriliakNegami sont représentées en trait pointillés (α, β, MWS1, MWS2). Les traits continus représentent la somme de ces contributions plus le signal dû à la conductivité ionique $\left(\sigma_{c} / \varepsilon_{0} \omega\right)$.

Ici les paramètres γ et δ relatifs à la relaxation principale α du polymère sont contraints tels que mesurés pour la matrice pure précédemment (Fig.5.2b). L'intensité $\Delta \varepsilon^{\prime \prime}{ }_{\alpha}$ est quant à elle contrainte à suivre une variation linéaire intermédiaire entre les deux «régimes » pré- et post-393 K observés dans la matrice $\left(\Delta \varepsilon^{\prime \prime}{ }_{\alpha}=-0.0009 \mathrm{~T}+0.355\right)$.

Les autres paramètres du processus MWS1 ajustés avec la fonction HN sont présentés Fig.5.7. Ici, $\gamma_{\text {MWS } 1}$ et $\delta_{\text {MWS1 }}$ sont systématiquement compris entre 0.3 et 0.6 et $\Delta \varepsilon{ }^{\prime \prime}{ }_{\text {MWS1 }}$ entre 1 et 3 avec une tendance à la baisse avec la température.

Figure 5.7 : Processus MWS1 - évolution des paramètres $\gamma, \delta, \Delta \varepsilon$ " de la fonction HN utilisée pour ajuster les données expérimentales avec la température.

Le processus MWS1 associé à la silice hautement dispersible a été étudié par Otegui et al [126] dans des systèmes comparables. Il apparait clair que le temps caractéristique qui lui est associé (Fig.5.8) est fonction de la quantité d'eau présente à la surface de la silice. En effet, l'augmentation de la température causant l'évaporation de l'eau a pour effet de déplacer le processus MWS1 vers des fréquences plus basses validant l'interprétation de l'origine du pic observé. Nous retrouvons ici cette tendance à travers la comparaison des temps caractéristiques avant et après «séchage» à 393 K . En se référant à la mesure effectuée à 333 $\mathrm{K}\left(1000 / \mathrm{T} \approx 3 \mathrm{~K}^{-1}\right)$, on note qu'avant séchage, la dynamique du process MWS1 est identique que l'on effectue une montée ou une descente en température ($\mathrm{E}_{\mathrm{a} 1}{ }^{a v}=57 \mathrm{~kJ} / \mathrm{mol}$). Elle augmente légèrement après séchage, $\mathrm{E}_{\mathrm{a} 1}{ }^{\mathrm{ap}}=66 \mathrm{~kJ} / \mathrm{mol}$.

Bien que l'origine du processus MWS2 ne soit pas entièrement comprise, le fait que sa contribution ne soit significative que dans les échantillons hautement chargés ($\Phi_{\mathrm{si}}=12.7$, 16.8 et $21.1 \% \mathrm{v}$) suggère qu'elle est reliée à la percolation des charges. L'énergie d'activation associée à sa dynamique est quant à elle supérieure à celle du processus MWS1 ($\mathrm{E}_{\mathrm{a} 2}=108$ $\mathrm{kJ} / \mathrm{mol}$).

Figure 5.7 : Carte de relaxation pour un composite $140 \mathrm{~kg} / \mathrm{mol} 50 \% \mathrm{D} 3$ chargé à $16.8 \% \mathrm{v}$ obtenue par spectroscopie diélectrique. Les données associées aux procédés MWS sont ajustées par des fonctions Arhénienne (cf. équation (1.12)) dont les énergies d'activation sont inscrites sur la figure.

5.3. Impact de la formulation

Une fois toutes les contributions de la réponse diélectrique associées aux processus physiques, il est intéressant de faire varier la formulation des composites afin d'observer les différences de comportement liées à la structure des charges. Nous avons donc dans un premier temps fait varier le taux de charge (à 50% de SBR-D3), puis le pourcentage de polymère fonctionnel (à $10 \% \mathrm{v}_{\text {si }}$).

5.3.1. Influence du taux de charge

De la même façon que précédemment, on observe la réponse diélectrique à différentes températures selon le processus que l'on veut étudier. Les figures 5.9 a et 5.9 b montrent respectivement l'évolution de ε " à 273 et 173 K pour différentes fractions volumique en silice.

Figure 5.9 : Impact du taux de charge sur les propriétés diélectriques. a) 273 K - b) 173 K .

A 273 K , on observe clairement le processus MWS1 qui voit son intensité augmenter et sa dynamique légèrement accélérer (fréquence plus élevée) avec le taux de charge. Nous pouvons néanmoins noter une saturation de cet effet après $12.7 \% \mathrm{v}_{\mathrm{si}}$. La relaxation α ne semble pas modifiée bien qu'il soit difficile d'extraire sa contribution pour des fractions volumiques élevées.

A 173 K , nous retrouvons la même évolution du signal avec Φ_{si} : l'intensité du processus β ' augmente avec le taux de charge et semble se décaler vers des fréquences plus hautes.

Nous étudions finalement en Fig.5.10 la réponse diélectrique à haute température correspondant aux très basses fréquences (cf. section 1.1.2). Dans ce cas, nous observons que la conductivité ionique du matériau ne varie pas de façon monotone avec le taux de charge. Nous proposons une explication en plusieurs étapes du résultat présenté Fig.5.10b en considérant le déplacement à grande échelle des espèces ayant un moment dipolaire :

- A : Les espèces ioniques présentes dans la matrice (résidus de polymérisation) sont captées par la silice dispersée à travers tout l'échantillon, les molécules d'eau sont confinées sur des agrégats isolés. Il en résulte une baisse de la conductivité relativement au SBR pur.
- B : Le taux de charge croissant permet la formation de branches isolées, les molécules d'eau et les ions hydroxyde sont alors capables de se mouvoir à une plus grande échelle ce qui fait croitre la conductivité (compensation du captage des ions de la matrices et du mouvement des ions apportés par la silice).
- C : Percolation des branches, la silice crée désormais un chemin «infini», les molécules d'eau et les ions hydroxydes peuvent se mouvoir à travers tout l'échantillon. La conductivité fait un bond important (échelle logarithmique

Fig. 5.10b). On note que le seuil de percolation proche de $12 \% \mathrm{v}$ coïncide avec les résultats de diffusion et de rhéologie présentés dans les chapitres 3 et 4 .

- D: Le réseau (déjà percolé) se densifie, l'ajout de silice implique une concentration légèrement plus haute en porteurs de charge, il en résulte une légère croissance de la conductivité.

Figure 5.10 : a) impact du taux de charge sur ε " à $393 \mathrm{~K}-\mathrm{b}$) évolution de la conductivité ionique (préfacteur de : $\sigma_{c} / \varepsilon_{0} \omega$).

Afin de vérifier l'hypothèse quant à la présence d'eau adsorbée à la surface de la silice Zeosil 1165 MP , nous pratiquons une analyse thermogravimétrique (Fig.5.11) sur toute la série d'échantillon ($0 \% \mathrm{v}$ à $21.1 \% \mathrm{v}$). Ce traitement consiste à appliquer une isotherme à 393 K (température de «séchage» utilisée dans les essais BDS) pendant une heure aux composites et à la matrice afin d'observer une éventuelle perte de masse (évaporation de l'eau).

Figure 5.11 : ATG - Isotherme d'une heure à 393 K.
Impact du taux de charge sur la perte de masse.

L'obtention d'une évolution de la perte de masse en fonction du taux de charge dans les films composites confirme qu'une quantité non négligeable d'eau adsorbée à la surface de la silice est présente. Elle modifie considérablement le comportement diélectrique du composite (conductivité, MWS, ...) comme vu précédemment. On notera que dans la matrice pure $(0 \% \mathrm{v})$, la perte de masse n'est pas nulle. Elle peut provenir des additifs contenus dans le polymère ou de traces d'humidité.

5.3.2. Influence du taux de polymère fonctionnel

De la même façon, il est possible d'étudier l'impact du taux de polymère fonctionnel sur le comportement diélectrique des différents nanocomposites chargés à $10 \% \mathrm{v}$. La DXPA et l'étude rhéologique ont d'ores et déjà montré un gros impact du taux de polymère fonctionnel aussi bien sur la structure où il permet de réduire significativement la taille des agrégats, que sur les propriétés mécaniques. On se propose ici de confirmer les tendances observées.

Le léger décalage de température de transition vitreuse vers des températures plus hautes observé en DMA (Fig.4.8b) est difficilement atteignable ici (Fig.5.12-a) en raison de la superposition des contributions des chaînes et de l'eau (MWS1). Le maximum de ε " associé au processus MWS1 est clairement observable dans tous les échantillons excepté celui formulé avec $0 \% \mathrm{D} 3$ qui présente une très forte permittivité à basse fréquence (Fig.5.12-b) synonyme d'une grande mobilité des dipôles (processus MWS2). Il est intéressant de noter que le pic MWS1 observé à 0.1 Hz sature en intensité. Ce phénomène étant lié à la surface interfaciale charge-polymère, il est raisonnable de le relier à la saturation de la structure (taille des agrégats et homogénéité) avec la densité de greffage obtenue au chapitre 3 .

Figure 5.12 : Impact du taux de SBR-D3, a) 273 K - b) 333 K .

A des températures plus hautes, on observe l'influence du taux de SBR-D3 sur la conductivité ionique. Il apparaît très clair Fig.5.13a que l'échantillon formulé avec 0% de SBR-D3 a un comportement singulier. L'échantillon formulé avec 25% de SBR-D3 montre un comportement intermédiaire, puis le signal sature entre 50 et 100% D3, là aussi comme en

DXPA. Figure 5.13b, nous montrons l'évolution de la conductivité ionique extraite de la Fig.5.13a avec le taux de fonctionnalisation. Nous retrouvons ici cette baisse caractéristique.

En recoupant l'évolution de σ_{c} présentée Fig. 5.13 b avec les résultats DXPA (gros objets mal organisés) et de rhéologie (module au plateau supérieur), on peut conclure à la formation d'un réseau de silice percolé offrant aux molécules d'eau une très grande mobilité dans le matériau menant à une conductivité 300 fois supérieures aux autres composites.

Figure 5.13 : a) impact du taux de polymère fonctionnel sur ε " à $393 \mathrm{~K}-\mathrm{b}$) Evolution de la conductivité ionique.

Résumé : Spectroscopie diélectrique

- L'évolution des relaxations α et β du SBR avec la température peut être étudiée et comparée avec les résultats provenant de la littérature. Pour la relaxation principale α, aucune différence significative entre la matrice et les composites n'a été notée. En effet, dans chaque cas, une très bonne qualité d'ajustement des données a été obtenue bien que les paramètres γ, δ, et $\Delta \varepsilon$ " aient été fixés à la même valeur. La relaxation β de la matrice est quant à elle masquée dans les composites par un processus β^{\prime} provenant de la silice.
- Les expériences de BDS et DSC effectuées sur les différents types de SBR ont permis de confirmer la légère différence de structure détectée en rhéologie.
- La spectroscopie diélectrique permet de soutenir les résultats obtenus en analyse structurale et mécanique. Le seuil de percolation pour un SBR 140k 50\%D3 est évalué autour de $\Phi_{\mathrm{si}}=12.7 \% \mathrm{v}$ grâce à la présence de molécules d'eau rendues mobiles par la différence de potentiel appliquée. Une analyse thermogravimétrique a démontré que la concentration en eau évolue linéairement avec le taux de charge.
- Le processus MWS1 généré aux interfaces charge-polymère et dont la dynamique dépend de la concentration en eau adsorbée, sature avec le taux de SBR-D3 de la même façon que le signal DXPA. Cette observation suggère une constance de la structure pour des taux de fonctionnalisation supérieurs à 50% comme explicité par le modèle structural quantitatif en section 3.2.
- Le comportement singulier de l'échantillon formulé avec 0% de SBR-D3 observé en rhéologie est confirmé. L'hypothèse de la percolation due à une structure hétérogène et la présence de gros objets est soutenue par la mesure d'une conductivité ionique très supérieure aux autres échantillons.

6. Relations :
formule, structure et propriétés

6. Relations : formule, structure et propriétés

Dans cette dernière partie, nous reprenons les résultats présentés aux chapitres 3,4 et 5 et y ajoutons des expériences complémentaires afin de discuter de la structure et des propriétés des nanocomposites d'un point de vue plus général. Nous développons dans un premier temps les corrélations existantes entre la formulation et la structure des matériaux. Nous revenons en particulier sur la fragmentation de la silice dans le mélangeur et sur l'impact de la densité de greffage. Ces résultats sont ensuite confrontés à l'étude des échantillons gonflés. Dans un second temps nous nous intéresserons aux propriétés mécaniques où nous analysons notamment l'impact du greffage des chaînes sur la percolation avant de finir par une étude RMN permettant de quantifier la fraction de couche vitreuse présente dans les composites en fonctions de leur formulation.

6.1. Corrélations formule/structure

Cette section est l'occasion de revenir sur des points importants concernant la structure de la silice. Nous traitons en particulier des problématiques concernant la phase de mélangeage pendant laquelle la silice se désagglomère ou le phénomène de greffage et son impact sur la taille des agrégats. De récents résultats de DXPA provenant de nanocomposites gonflés au styrène dont l'élaboration est présentée au chapitre 2 sont ajoutés à la discussion et permettent de soutenir les résultats obtenus au chapitre 3 quant à l'évolution de la taille des agrégats avec Φ_{si} et \%D3.

6.1.1. Désagglomération de la silice

Nous rappelons que les rotors du mélangeur interne tournent à une fréquence de 90 tours $/ \mathrm{min}(=10 \mathrm{rad} / \mathrm{s})$, à cette fréquence le $S B R$ montre un module élastique ($\varepsilon=0.1 \%$) très différent selon sa masse molaire, en particulier à $40 \mathrm{~kg} / \mathrm{mol}$ (cf. Fig.4.9). Nous verrons dans la suite de cette section que ce paramètre joue un rôle important sur la structuration des charges lorsque le polymère est soumis à de fortes déformations dans le M.I.

L'étape de fracturation et/ou désagglomération de la silice Zeosil 1165MP dans le mélangeur interne est cruciale quant à la structure du composite à l'état final. Ainsi, un suivi précis de la température et du couple pendant la phase de mélangeage apparaît comme être un bon outil pour établir des corrélations avec les analyses structurales et mécaniques. Au chapitre 2, la figure 2.3 montre l'évolution du couple (a) et de la température (b) en fonction du temps de mélangeage pour des échantillons dont on a fait varier le taux de charge. Il est clair que ce dernier impacte fortement l'histoire thermomécanique des composites du fait des interactions charges-polymères influençant notablement la viscosité du mélange. Néanmoins, l'analyse structurale menée section 3.2 a montré que la structuration de la silice n'était pas très différente à l'échelle des agrégats dans le cas présent ($M=140 \mathrm{~kg} / \mathrm{mol}$ et 50% de SBR-D3). En effet, la taille, le nombre d'agrégation et in fine la compacité des objets n'évoluent que faiblement avec le taux de charge.

Au contraire, la figure 3.15 présentée au chapitre 3 montre que dans le cas ou la masse molaire du polymère est abaissée à $40 \mathrm{~kg} / \mathrm{mol}(50 \% \mathrm{D} 3)$ ou $80 \mathrm{~kg} / \mathrm{mol}(0 \% \mathrm{D} 3)$ (pour $\Phi_{\mathrm{si}}=$ $10 \% \mathrm{v}$), la silice dans le composite a la même structuration qu'à l'état de poudre déposée sur un ruban adhésif. Dans ce cas, la viscosité du mélange est très inférieure aux autres échantillons préparés avec des SBR de masses plus importantes ou des taux de charge plus élevés. Le couple appliqué est alors trop faible empêchant la fragmentation de la silice et donc sa répartition dans la matrice. De façon générale, la masse molaire est le paramètre influençant le plus l'histoire thermomécanique des matériaux industriels simplifiés (Fig.6.1). Ici, une masse molaire trop basse rend le contrôle de la température très difficile ne permettant pas d'atteindre la valeur finale désirée $\left(160^{\circ} \mathrm{C}\right)$.

Figure 6.1: Impact de la masse molaire sur l'histoire thermomécanique des composites formulés avec $10 \% \mathrm{v}$ de silice et 50% de SBR-D3 - a) couple, b) température

En outre, nous remarquons paradoxalement que le taux de charge entrânant de fortes variations de couple dans le M.I. ne semble pas modifier significativement la structure des agrégats alors que le taux de SBR-D3 qui ne provoque pas de réelles différences quant à l'histoire thermomécanique (Fig.6.2), entraine, lui, une forte variation de structure (cf. section 3.3).

Figure 6.2: Impact du taux de SBR-D3 sur l'histoire thermomécanique des composites formulés avec $10 \% \mathrm{v}$ de silice et $\mathrm{M}=140 \mathrm{~kg} / \mathrm{mol}-\mathrm{a}$) couple, b) température

Ces différents cas de figure montrent qu'il est difficile a priori de connaître l'état de la structure d'un composite en se basant simplement sur son histoire thermomécanique (ou formulation) bien que nous ayons systématiquement essayé de contraindre la température finale à $160^{\circ} \mathrm{C}$. Les mesures en DXPA et MET, parfois appuyées par la rhéométrie, permettent cependant d'établir un lien qualitatif entre ces éléments et en particulier de définir les cas limites pour lesquels ce lien est validé.

Nous considérons un nanocomposite comme «exploitable» pour nos travaux si la structure de ses charges est homogène à l'échelle de l'agrégat ($\sim 100 \mathrm{~nm}$) impliquant de fait une désagglomération des granulés de silice originels. La loi reliant la densité de greffage ($\rho_{\mathrm{D} 3}$) et la structure (cf. section 3.4) semble être valide dans la majorité des cas mais n'est plus vérifiée lorsque la fragmentation ne se fait pas.

Si l'on s'intéresse aux composites formulés avec du SBR-40kg/mol, il apparaît qu'à $20 \% \mathrm{v}$ en silice, la structure est homogène et suit le comportement habituel alors que le couple présente un pic atteignant 40 N.m (Fig.6.3). Dans le cas du SBR- $80 \mathrm{~kg} / \mathrm{mol}$ chargé à 10% v (la valeur du couple est juste au dessus de celle du $40 \mathrm{~kg} / \mathrm{mol}$) nous verrons dans la section suivante que la structure semble être fragmentée en partie, le rayon de l'agrégat ne suit pas la tendance des autres échantillons mais n'est pas aberrant. On défini donc une zone de transition (en jaune) entre le régime fragmenté (en vert) et non-fragmenté (en rouge) définissant la limite basse du couple menant à la fragmentation des objets autour de 25 N.m.

La valeur du couple étant ici environ constante après 3 minutes, la fragmentation des agrégats est associée au premier pic de couple (entre 1 et 2 minutes) correspondant à un bref instant après l'insertion de la silice. La suite du mélangeage permet d'homogénéiser les agrégats dans la matrice via le mouvement des rotors et les possibles réactions de greffage de l'agent de recouvrement et du polymère limitant la réagglomération de la silice.

Figure 6.3 : Mesure de couple pour les échantillons les plus « mous» permettant de définir la valeur critique du couple en dessous de laquelle la fragmentation des agrégats n'a pas lieu.

Il est également possible d'imaginer la définition d'une valeur limite haute pour le couple. Cette limite semble avoir été franchie dans le cas d'un composite formulé avec du SBR-280 $\mathrm{kg} / \mathrm{mol} 50 \% \mathrm{D} 3$ chargé à $25 \% \mathrm{v}$. Ici, l'incorporation de toute la silice mène à la désagrégation complète du composite qui se retrouve à l'état de poudre (SBR+silice) dans le mélangeur interne empêchant par la suite une quelconque mise en forme par pressage. La valeur du
couple la plus haute enregistrée dans ce cas de figure est d'environ $80 \mathrm{~N} . \mathrm{m}$ après laquelle il chute brusquement du fait de l'état du matériau. Cette valeur de couple a également été atteinte avec un échantillon formulé avec du $\mathrm{SBR} 140 \mathrm{~kg} / \mathrm{mol} 50 \% \mathrm{D} 3$ chargé à $25 \% \mathrm{v}$ pour lequel aucun problème de désagrégation n'a été noté. En effet, dans le cas du SBR 280 $\mathrm{kg} / \mathrm{mol}$, la désagrégation semble être due au module basse fréquence (ou à la viscosité) trop élevé du polymère rendant plus difficile l'incorporation de la silice et donc la formation d'un composite homogène.

6.1.2. Saturation due au greffage

Comme nous l'avons montré dans les chapitres précédents, le greffage du polymère sur la charge joue un rôle majeur aussi bien au niveau structural que sur les propriétés macroscopiques des nanocomposites. Dans cette section nous mettrons en évidence le fait que l'évolution de la structure tende à saturer avec le taux de polymère fonctionnel.

En DXPA, les figures 3.16 et 3.21 (chapitre 3) montrent l'évolution de la structure en fonction du taux de SBR-D3 en faisant varier la masse molaire ($M=40,80,140$ et 280 $\mathrm{kg} / \mathrm{mol}$) et le taux de charge ($\Phi_{\mathrm{si}}=10$ et $20 \% \mathrm{v}$). En étudiant attentivement ces résultats, on remarque que la structure évolue différemment selon les cas. Au premier coup d'œil on note par exemple que les spectres DXPA saturent très vite dans le cas où les chaînes greffables sont nombreuses, c'est-à-dire courtes (Fig. $3.21 \mathrm{a}: 40 \mathrm{~kg} / \mathrm{mol}$), ou que le taux de charge est bas (Fig.3.16a: 10% v). Ces observations suggèrent donc d'employer le concept de densité de greffage (équation 3.13) pour étudier ces évolutions. Ce paramètre qui semble définir la structure de la silice est fonction de la masse molaire qui, nous l'avons vu précédemment, impacte fortement le couple dans le mélangeur et peut empêcher la fragmentation des agglomérats.

La Figure 6.4 présente l'évolution du rayon des agrégats en fonction de la longueur des chaines pour un taux de SBR-D3 fixé à $50 \% \mathrm{D} 3$. A $20 \% \mathrm{v}_{\mathrm{si}}$, l'augmentation de M entraine une diminution de la densité de greffage menant à l'accroissement monotone de $\mathrm{R}_{\text {agg. }}$. A $10 \% \mathrm{v}_{\mathrm{si}}$, le rayon des agrégats dans les composites formulés avec des SBR courts (40 et $80 \mathrm{~kg} / \mathrm{mol}$) ne suit plus cette tendance, soulignant le fait que la densité de greffage ne définit la structure de la silice qu'à condition que le critère de fragmentation proposé en section 6.1.1 soit validé.

Figure 6.4 : Rayon moyen des agrégats en fonction de la masse molaire du SBR (50\%D3) à 10 et $20 \% \mathrm{v}_{\text {si }}$. Le point jauni correspond à l'échantillon $80 \mathrm{~kg} / \mathrm{mol}-50 \% \mathrm{D} 3-10 \% \mathrm{v}_{\mathrm{si}}$. La valeur de $\mathrm{R}_{\mathrm{agg}}$, plus élevée que la tendance décrite par les autres échantillons suggère une fragmentation partielle.

En suivant la même logique, on peut généraliser ce résultat à tous les échantillons satisfaisant le critère de fragmentation en étudiant $R_{\text {agg }}$ et $\mathrm{N}_{\text {agg }}$ via le modèle quantitatif en fonction de la densité de greffage. Les résultats sont regroupés Fig.6.5 et ajustés avec une loi de type :

$$
\begin{equation*}
\mathrm{R}_{\mathrm{agg}}=\mathrm{R}_{\mathrm{agg}}^{\infty}+\Delta \mathrm{R} \exp \left(\frac{-\rho_{\mathrm{D} 3}}{\rho_{\mathrm{D} 3}^{\mathrm{c}}}\right) \tag{6.1}
\end{equation*}
$$

$\rho_{\mathrm{D} 3}^{\mathrm{c}}$: Densité de greffage caractéristique.
$\mathrm{R}_{\mathrm{agg}}^{\infty}$: Valeur asymptotique du rayon de l'agrégat pour une densité de greffage maximale. $\Delta \mathrm{R}$: Paramètre traduisant l'amplitude de la décroissance exponentielle

Figure 6.5 : a) rayon moyen des agrégats $\mathrm{R}_{\mathrm{agg}}$ et b$)$ nombre d'agrégation moyen en fonction de la densité de greffage nominale $\rho_{\mathrm{D} 3}$ pour tous les échantillons formulés à 10 et $20 \% \mathrm{v}$. Les points dans les zones hachurées appartiennent à la série formulée avec 50% de SBR-D3 $140 \mathrm{~kg} / \mathrm{mol}$.

Pour $\mathrm{R}_{\text {agg }}$, on obtient respectivement à 10 et $20 \% \mathrm{v}_{\mathrm{si}}, \rho_{\mathrm{D} 3}^{\mathrm{c}}=52.10^{-3}$ et $41.10^{-3} \mathrm{~nm}^{-2}$. On pourra noter que Fig.3.20, un résultat analogue, basé sur un nombre de points expérimentaux plus faible avait été obtenu en traçant $R_{\text {agg }}$ et $N_{\text {agg }}$ en fonction du taux de SBR fonctionnel. En recalculant ces tendances en fonctions de $\rho_{\mathrm{D} 3}$, nous pouvons déterminer les densités de greffage caractéristiques $\rho_{\mathrm{D} 3}^{\prime \mathrm{c}}$ associées, on obtient alors respectivement pour 10 et $20 \% \mathrm{v}_{\mathrm{si}}$: $\rho_{\mathrm{D} 3}^{\mathrm{c}}=26.10^{-3}$ et $38.10^{-3} \mathrm{~nm}^{-2}$.

Si à $20 \% \mathrm{v}$ le résultat précédent semble être confirmé ($\rho_{\mathrm{D} 3}^{\mathrm{c}} \approx \rho_{\mathrm{D} 3}^{\mathrm{c}}$), à $10 \% \mathrm{v}$ on obtient une valeur différente venant probablement du faible nombre de points (barre d'erreur plus importante sur la Fig.3.20). Nous en concluons finalement que la densité de greffage caractéristique se situe quelque soit la formule autour de $45.10^{-3} \mathrm{~nm}^{-2}$.

Note: Le même traitement appliqué sur les courbes décrivant l'évolution de $N_{\text {agg }}$ (Fig.6.5b) avec $\rho_{D 3}$ donne une valeur moyenne de $\rho_{D 3}^{c}$ proche de $20.10^{-3} \mathrm{~nm}^{-2}$. Les différences entre les densités de greffage caractéristiques pour $N_{\text {agg }}$ et $R_{\text {agg }}$ traduisent le fait que ces paramètres n'évoluent pas de la même manière. L'équation 6.1 se réécrit en remplaçant respectivement $R_{\text {agg }}, R_{\text {agg }}^{\infty}$ et ΔR par leurs homologues $N_{\text {agg }}, N_{\text {agg }}^{\infty}$ et ΔN.

Les valeurs des autres paramètres employées pour ajuster les courbes Fig.6.5a-b sont rassemblées dans le Tableau 6.1. Elles suggèrent dans les deux cas ($\mathrm{R}_{\text {agg }}$ et $\mathrm{N}_{\text {agg }}$) que les agrégats formés au dessus de la densité de greffage caractéristique sont plus petits quand le taux de charge est important ($\mathrm{R}_{\mathrm{agg}}=36.6 \mathrm{~nm}$ à $\Phi_{\mathrm{si}}=10 \% \mathrm{v}$ contre 26.9 nm à $\Phi_{\mathrm{si}}=20 \% \mathrm{v}$) alors que ces objets ont des tailles voisines en dessous de cette limite ($\mathrm{R}_{\text {agg }} \approx 50 \mathrm{~nm}$). De plus, l'évolution de $\mathrm{R}_{\text {agg }}$ et $\mathrm{N}_{\text {agg, }}$, c'est-à-dire l'amplitude de leur décroissance avec la densité de greffage ($\Delta \mathrm{R}, \Delta \mathrm{N}$), est accentuée avec le taux de charge passant respectivement de 11.1 à 20.4 nm et de 93.1 à 98.3 .

Fig.6.5a (R $\mathbf{R}_{\text {agg }}$)	$\mathrm{R}_{\text {agg }}^{\infty}(\mathrm{nm})$	$\Delta \mathrm{R}(\mathrm{nm})$	Fig.6.5b ($\left.\mathbf{N}_{\text {agg }}\right)$	$\mathbf{N}_{\text {agg }}^{\infty}$	$\Delta \mathrm{N}$
$\Phi_{\text {si }}=10 \% \mathrm{v}$	39.6	11.1	$\Phi_{\text {si }}=10 \% \mathrm{v}$	63.2	93.1
$\Phi_{\text {si }}=20 \% \mathrm{v}$	26.9	20.4	$\Phi_{\mathrm{si}}=20 \% \mathrm{v}$	22.0	98.3

Tableau 6.1 : Paramètres relatifs aux ajustements réalisés Fig.6.5.

Nous remarquons que les points hachurés correspondant à la série d'échantillons traitée en section 3.2 (SBR $140 \mathrm{~kg} / \mathrm{mol}-50 \% \mathrm{D} 3)$ donnent des valeurs de $\mathrm{R}_{\text {agg }}$ et $\mathrm{N}_{\text {agg }}$ très proches en se situant de part et d'autres de $\rho_{\mathrm{D} 3}^{\mathrm{c}} \approx 50.10^{-3} \mathrm{~nm}^{-2}$. La conclusion de la section 3.2 selon laquelle le taux de charge n'impactait pas la taille des agrégats appartient donc a un régime différent à basse densité de greffage.

Finalement, l'interprétation évidente qui peut être faite est d'affirmer que la densité de greffage est le paramètre qui définit la structure de la silice dans les composites mais qu'audelà de sa valeur caractéristique elle ne joue plus de rôle. Attention, il est intéressant de noter que bien que la structure de la silice n'évolue plus dépassée $\rho_{\mathrm{D} 3}^{\mathrm{c}}$, le SBR fonctionnel continue à se greffer et à influencer les propriétés mécaniques du matériau tel que présenté en rhéologie figure $4.6 \mathrm{a}-\mathrm{b}$ dans le régime terminal. Le comportement macroscopique des composites n'est donc pas uniquement (pas à toutes les fréquences) lié à la morphologie de la silice.

6.1.3. Echantillons gonflés

Afin de renforcer les résultats et les interprétations obtenus sur la structure des échantillons industriels simplifiés, nous avons réalisé trois séries d'échantillons comparables à ceux étudiés dans les précédents chapitres où nous avons fait varier le taux de charge ($10 \mathrm{à} 25 \% \mathrm{v}$) et le $\%$ D3 (0 à 100%). Ces composites ont ensuite été gonflés au styrène suivant le protocole présenté chapitre 2 dans le but d' «écarter» les objets à l'échelle des agrégats pour extraire directement depuis les données DXPA, les données géométriques $\left(\mathrm{R}_{\text {agg, }}, \mathrm{N}_{\text {agg }}, \kappa\right)$ concernant ces derniers.

Cependant, il est a priori difficile de savoir à quelle échelle le gonflement intervient et s'il permet de «diluer» la silice de façon homogène. Les expériences de DXPA et MEB qui suivent dans cette section nous donnent des éléments de réponse.

On notera que la masse molaire des SBR NF et D3 employés ici est $175 \mathrm{~kg} / \mathrm{mol}$ (contre 140 $\mathrm{kg} / \mathrm{mol}$ auparavant) réduisant légèrement les densités de greffage (0 à $0.118 \mathrm{~nm}^{-2}$).

Ainsi, les échantillons originaux, leurs homologues réticulés (cf. chapitre 2) et les versions correctement gonflées (c'est-à-dire transparents cf. Fig.2.5) de ces derniers sont mesurés en DXPA. On rappelle que le gonflement des échantillons est réalisé afin d'éliminer des spectres de diffusion le facteur de structure pour pouvoir extraire directement le facteur de forme et les caractéristiques morphologiques qui en découlent. Le gonflement occasionne ainsi une dilution des charges d'un facteur proche de 10. Les résultats sont présentés sous leurs trois formes (originale, réticulée et gonflée) suivant les trois séries d'échantillons :

- Variation du taux de charge à 50% de SBR-D3 (Fig.6.6)
- Variation du taux de SBR-D3 pour des composites chargés à $10 \% \mathrm{v}$ (Fig.6.7)
- Variation du taux de SBR-D3 pour des composites chargés à 20% v (Fig.6.8)

Variation du taux de charge

Figure 6.6 : DXPA - Impact du taux de charge sur la structure de la silice dans les échantillons formulés avec du SBR $175 \mathrm{~kg} / \mathrm{mol}-50 \% \mathrm{D} 3-\mathrm{a}$) originaux, b) réticulés, c) gonflés

La figure 6.6 met en évidence plusieurs points discutables d'un point de vue qualitatif ici :

- Le graphe a) montre la même tendance qu'observée précédemment avec les autres masses molaires. Au total, cinq familles d'échantillons dans lesquelles le taux de charge varie entre 10 et 25% v ont été mesurées pour un résultat identique: Alors que la structure à grands angles est identique (intra-agrégat), on observe une diminution du signal aux petits angles suggérant la présence d'un facteur de structure décroissant avec Φ_{si} à prendre absolument en compte lors du traitement des données. Cette décroissance n'est en aucun cas la conséquence unique de la réduction de la taille des agrégats mais correspond à une baisse de la compressibilité isotherme (cf. section 3.2).
- Le graphe b) met en évidence le fait que la structure de la silice n'est pas significativement impactée par la réticulation du polymère bien que des anisotropies puissent apparaitre du fait du pressage mécanique pendant ce processus.
- Le graphe c), dans lequel tous les signaux se superposent y compris entre 10^{-2} et 10^{-1} \AA^{-1} (échelle à laquelle on observe les agrégats), donne un argument de poids en faveur de l'interprétation faite précédemment en section 3.2. En effet, le fait d'obtenir des intensités superposées en DXPA signifie simultanément deux choses:
i) Tous les échantillons ont rejoint le même état en terme de structure. Ce point est visible à travers la remontée du signal aux petits angles quelque soit $\Phi_{\text {si }}$ et sousentend que les composites sont tous gonflés de façon optimale, c'est-à-dire, que l'écartement des objets est suffisant pour éliminer le facteur de structure.
ii) L'intensité étant désormais uniquement fonction du facteur de forme des agrégats à une constante près, la superposition des signaux indique que les agrégats diffusant provenant des différentes formulations ont des morphologies similaires.

Une réserve demeure néanmoins sur le fait que l'intensité continue de croitre aux petits angles car on s'attendrait ici à mesurer un plateau si les objets diffusant avaient tous été isolés idéalement. Ce phénomène est probablement lié à la présence de parties de branches non rompues par le gonflement posant la question de la suppression totale du facteur de structure.

Variation du taux de SBR-D3 à $\Phi_{s i}=10 \% v$

Figure 6.7 : DXPA - Impact du taux de SBR-D3 sur la structure de la silice dans les échantillons formulés avec du SBR $175 \mathrm{~kg} / \mathrm{mol}-\Phi_{\mathrm{si}}=10 \% \mathrm{v}-\mathrm{a}$) originaux, b) réticulés, c) gonflés

Dans ce cas également l'expérience se révèle concluante, plusieurs points peuvent être relevés :

- Le graphe a), une fois encore, montre la répétabilité de l'effet du SBR-D3. Ce résultat est le quatrième à $10 \% \mathrm{v}$ montrant que le polymère fonctionnel tend à diminuer l'intensité aux moyens angles et à décaler $\mathrm{q}_{\text {agg }}$ vers les grands angles, le tout interprété section 3.3 comme une réduction de la taille des objets générant une structure plus homogène.
- Le graphe b), de même que dans le cas de la variation du taux de charge, montre que la réticulation du SBR n'impacte pas significativement la structure de la silice bien qu'ici aussi de petites différences puissent être notées.
- La tendance observée sur le graphe c) est quant à elle bien différente de la précédente. Bien qu'ils soient plus intenses aux petits angles du fait de l'extinction du facteur de structure, les signaux ne se superposent pas après gonflement. Ce résultat appuie considérablement les conclusions de la section 3.3 où le taux de polymère fonctionnel a clairement été identifié comme permettant de réduire la taille des agrégats. Ainsi, dans l'hypothèse où le facteur de structure soit devenu négligeable dans les échantillons gonflés, ce qui est vraisemblable étant donné la superposition des signaux dans l'expérience précédente, nous nous attendions à une diminution de l'intensité aux petits angles avec le pourcentage de SBR-D3 : c'est précisément le cas ici.

En ce qui concerne les échantillons originaux, il est important de répéter ici que la décroissance du signal dans le cas précédent (Fig.6.6a, variation du taux de charge) et ici (Fig.6.8a, variation du taux de SBR-D3), n'a pas la même origine physique. Elle provient des interférences destructives des photons-X diffusés donnant naissance à un facteur de structure dans le premier cas alors qu'elle est directement liée à la masse des objets dans le second.

Variation du taux de SBR-D3 à $\Phi_{s i}=20 \% v$

Figure 6.8 : DXPA - Impact du taux de SBR-D3 sur la structure de la silice dans les échantillons formulés avec du SBR $175 \mathrm{~kg} / \mathrm{mol}-\Phi_{\mathrm{si}}=20 \% \mathrm{v}-\mathrm{a}$) originaux, b) réticulés, c) gonflés

A $20 \% \mathrm{v}$, hormis le fait que les spectres des échantillons gonflés (graphe c) remontent davantage aux petits angles que dans le cas précédent du fait de la suppression du facteur de structure plus marqué dans les échantillons originaux chargés à $20 \% \mathrm{v}$ (graphe a), les observations que l'on peut faire sont identiques à celles faites à $10 \% \mathrm{v}$.

Il demeure néanmoins très intéressant de comparer les échantillons gonflés des figures 6.7 et 6.8. En effet, si la théorie selon laquelle le taux de charge n'impacte pas significativement la structure de la silice dans ces échantillons ($\rho_{\mathrm{D} 3}$ relativement faible du fait de la haute masse molaire - cf discussion Fig.6.5), les spectres des échantillons formulés avec un taux de SBRD3 identique devraient se superposer deux à deux aux incertitudes près. Le résultat attendu de cette comparaison est présenté Fig.6.9.

Figure 6.9 : DXPA - structure de la silice en fonction du taux de SBR-D3 à $\Phi_{\mathrm{si}}=10$ et $20 \% \mathrm{v}$. La superposition deux à deux des spectres valide le fait que pour de faibles densités de greffage, le taux de charge n'impacte pas la structure de la silice.

Bien que le résultat exposé en figure 6.9 valide une très grande partie des travaux présentés précédemment dans cette thèse, l'accord du point de vue quantitatif n'est pas parfait avec certains résultats. En effet, on observe figure 6.5 une réelle différence sur $\mathrm{R}_{\text {agg }}$ pour $\rho_{\mathrm{D} 3}=0.1$ nm^{-2} entre la série à 10 et celle à $20 \% \mathrm{v}$, or pour une densité de greffage comparable (courbes 100% D3 Fig.6.9), les spectres DXPA des échantillons gonflés sont similaires. Ce désaccord peut provenir comme exprimé précédemment du fait que les objets ne soient pas complètement isolés malgré le gonflement pouvant ainsi biaiser l'interprétation de la figure 6.9. Il peut également venir de la façon d'extraire le rayon des agrégats, qui nous l'avons vu au chapitre 3, est dépendante de la polydispersité de ces derniers pouvant ici potentiellement diminuer avec le taux de SBR-D3 permettant l'obtention d'une structure mieux définie (cf. section 3.3).

Exemple de quantification

Dans le but d'approfondir l'analyse comparative précédente, il est possible de décrire les données relatives aux échantillons gonflés de manière quantitative. Pour cela nous prenons ici en exemple l'échantillon formulé avec 50% de SBR-D3 chargé à $10 \% \mathrm{v}$ ($\mathrm{M}=140 \mathrm{~kg} / \mathrm{mol}$). Nous représentons Fig.6.10 les données DXPA ajustées par deux approximations de Guinier (équation 2.7) correspondant à la bille élémentaire $\left(\mathrm{R}_{\mathrm{G}}{ }^{\text {bille }}=10 \mathrm{~nm}\right)$ et à l'agrégat moyen $\left(\mathrm{R}_{\mathrm{G}}{ }^{\text {agg }}=40 \mathrm{~nm}\right)$.

Figure 6.10 : Analyse quantitative de la structure de l'échantillon gonflé formulé à la base avec 50% de SBR-D3 et $10 \% \mathrm{v}_{\text {si }}$. Les «cassures de pente» sont ajustées avec l'approximation de Guinier (agrégat et bille élémentaire).

En se basant sur les intensités de ces deux fonctions pour $q \rightarrow 0$, il est également possible de déterminer le nombre d'agrégation moyen ainsi que la compacité des agrégats via la dimension fractale (ici $\mathrm{D}_{\mathrm{f}}=2.6$).

En effet, d'après les équations 2.23 et 2.26 , on a respectivement:

$$
\begin{equation*}
\left\langle\mathrm{N}_{\mathrm{agg}}\right\rangle=\frac{\mathrm{I}_{\mathrm{agg}}(\mathrm{q} \rightarrow 0)}{\mathrm{I}_{\text {bille }}(\mathrm{q} \rightarrow 0)}=\frac{7.10^{5}}{1.8 \cdot 10^{4}} \approx 39 \tag{6.2}
\end{equation*}
$$

Et :

$$
\begin{equation*}
\kappa=\left(\frac{\mathrm{R}_{\mathrm{G}}^{\text {agg }}}{\mathrm{R}_{\mathrm{G}}^{\text {bille }}}\right)^{\mathrm{D}_{\mathrm{f}}-3} \approx 0.57 \tag{6.3}
\end{equation*}
$$

La valeur de la compacité ainsi déterminée est supérieure à celles précédemment obtenues Tableau 3.1. Elle correspond ici à une dimension fractale plus élevée. On peut également vérifier que l'on retrouve la même valeur du nombre d'agrégation en passant par la valeur de κ et celles des rayons de Guinier.

$$
\begin{equation*}
\left\langle\mathrm{N}_{\mathrm{agg}}\right\rangle=\kappa\left(\frac{\mathrm{R}_{\mathrm{G}}{ }_{\mathrm{R}_{\mathrm{G}}}^{\text {ailg }}}{\mathrm{b}^{\text {bile }}}\right)^{3} \approx 36 \tag{6.4}
\end{equation*}
$$

Cette analyse très simple permet de valider les ordres de grandeurs du nombre d'agrégation et de la compacité tels qu'ils ont été déterminés dans les sections 3.2 et 3.3 en DXPA. On retrouve également le régime de Porod de la bille élémentaire aux grands angles évoluant en $q^{-3.7}$.

La remontée du signal aux petits angles en $q^{-1.4}$ indique que certains agrégats sont en contact formant ainsi des structures à une échelle supérieure. En observant au MEB les échantillons gonflés on obtient des clichés tel que celui présenté Fig.6.11 dans lesquels on imagine très bien que tous les agrégats n'ont pas été suffisamment écartés pour éliminer totalement la remontée aux petits angles (et le facteur de structure). Nous retrouvons cependant grossièrement les tailles caractéristiques telles que déterminées en DXPA.

Figure 6.11: Clichés typiques d'un échantillon gonflé formulé avec du SBR-NF et $10 \% \mathrm{v}_{\mathrm{si}}$.

Le même type d'analyse (via l'équation 2.7) a été mené sur les autres échantillons gonflés. Pour chaque formulation, $\mathrm{R}_{\mathrm{G}}{ }^{\text {agg }}$ est donnée dans le tableau 6.2. Nous retrouvons dans ces résultats la saturation de la structure après $50 \% \mathrm{D} 3$ décrite précédemment. La même observation est émise quant au fait que le taux de charge n'impacte pas la taille des agrégats pour des densités de greffage de l'ordre de $0.1 \mathrm{~nm}^{-2}$, or c'était le cas Fig. 6.5 dans le cas d'échantillons non gonflés.

$\left.\mathbf{R}_{\mathbf{G}} \mathbf{(n m}\right)$	$\mathbf{1 0 \%} \mathbf{v}$	$\mathbf{1 5 \%} \mathbf{v}$	$\mathbf{2 0 \%} \mathbf{v}$	$\mathbf{2 5 \%} \mathbf{v}$
$\mathbf{0 \%} \mathbf{D 3}$	77	x	68	x
25\%D3	57	x	56	x
50\%D3	55	53	50	55
75\%D3	49	x	49	x
100\%D3	50	x	50	x

Tableau 6.2 : Rayons de Guinier extraits des spectres DXPA des échantillons gonflés pour différentes formulations originales. Les croix indiquent l'absence de mesure.

Finalement, en considérant l'élimination du facteur de structure dans les spectres DXPA des échantillons gonflés, nous atteignons en théorie le facteur de forme des agrégats. La figure 6.6 montre que ce dernier est indépendant du taux de charge ce qui permet d'utiliser ce signal pour déterminer le facteur de structure apparent dans les échantillons dits originaux formulés avec 50% de SBR-D3 $175 \mathrm{~kg} / \mathrm{mol}$ via la simple opération décrite équation 6.5. Dans cette équation, tous les termes sont normalisées par le taux de charge afin d'obtenir systématiquement un recollage aux grands angles.

Nous rappelons que le signal issu des échantillons gonflés (Fig.6.6c) ne décrit pas rigoureusement un agrégat mais s'apparente plutôt au facteur de forme d'un morceau de branche vu comme un petit agglomérat d'agrégats.

$$
\begin{equation*}
S_{\text {app }}^{\text {original }}(q)=\frac{I^{\text {original }}(q)}{I^{\text {gonfle }}(q)}=\frac{I^{\text {original }}(q)}{\left\langle\mathrm{P}_{\text {agg }}(q)\right\rangle} \tag{6.5}
\end{equation*}
$$

La figure 6.12 présente l'évolution du facteur de structure apparent défini par l'équation 6.5 pour différents taux de charges (échantillons présentés Fig.6.6a).

Figure 6.12 : Facteur de structure apparent des échantillons formulés avec du SBR $175 \mathrm{~kg} / \mathrm{mol}$ $50 \% \mathrm{D} 3$ et un taux de charge allant de 10 à $25 \% \mathrm{v}_{\mathrm{si}}$ nominal. Les données sont normalisées telles que $\mathrm{S}(\mathrm{q} \rightarrow \infty)=1$ (pas montré ici).

Dans ce cas, la densité de greffage est relativement faible, elle varie de $21.10^{-3} \mathrm{~nm}^{-2}\left(\Phi_{\text {si }}=\right.$ $25 \% \mathrm{v})$ à $60.10^{-3} \mathrm{~nm}^{-2}\left(\Phi_{\mathrm{si}}=10 \% \mathrm{v}\right)$. Plusieurs observations importantes peuvent être faites :

- L'évolution du facteur de structure aux petits angles décroit de façon monotone avec le taux de charge comme attendu du fait de la compressibilité isotherme. Le fait que tous les $S(q \rightarrow 0)$ suivent un plateau indique que les branches présentes dans les échantillons originaux (menant à $\mathrm{I}(\mathrm{q}) \sim q^{-\mathrm{Df}}$) sont identiques quelque soit le taux de charge et identiques à celles que l'on peut encore retrouver dans les échantillons gonflés. Seul leur nombre par unité de volume change d'un échantillon à l'autre.
- Le pic de structure caractéristique de la taille des agrégats est décalé vers les grands angles avec le taux de charge de la même façon que dans l'approximation de PY (potentiel sphères dures). Dans ce contexte, sa position, bien définie à
$10 \% \mathrm{v}_{\text {si }}$ permet d'estimer le rayon des agrégats tel que $\mathrm{R}_{\text {agg }} \approx \pi / \mathrm{q}_{\mathrm{s}} \approx 42 \mathrm{~nm}$ en bon accord avec l'analyse de Kratky réalisée sur cet échantillon et donnant 39 nm .
- L'évolution de l'intensité du pic montre en revanche un comportement singulier. En effet, dans le modèle de sphères dures, l'intensité croit avec le taux de charge alors que nous observons ici la tendance inverse. Cette observation peut néanmoins être expliquée par l'effet de la densité de greffage sur la silice, puisque $\rho_{\mathrm{D} 3}$ baisse quand Φ_{si} augmente. Nous avons vu Fig.3.17 que le SBR-D3 menait à la formation d'objets de mieux en mieux définis générant des cassures de pentes plus marquées en DXPA retrouvées sous la forme de pic de structure ici.

Pour se convaincre de la validité de ce dernier point il suffit d'extraire les facteurs de structure apparents dans des composites à hautes densités de greffage dans lesquels les objets sont biens définis quelque soit le taux de charge comme dans la série formulée avec des SBR $40 \mathrm{~kg} / \mathrm{mol} 50 \%$ D3. En figure.6.13, nous représentons donc les intensités mesurées en DXPA sur des échantillons originaux formulés avec du SBR $40 \mathrm{~kg} / \mathrm{mol}\left(0.1<\Phi_{\mathrm{si}}<0.25\right)$ divisées par l'intensité mesurée sur l'échantillon gonflé préparé à partir d'un composite formulé avec du SBR $140 \mathrm{~kg} / \mathrm{mol}$ et $\Phi_{\mathrm{si}}=0.084$.

Figure 6.13 : Facteur de structure apparent des échantillons formulés avec du SBR $40 \mathrm{~kg} / \mathrm{mol} 50 \% \mathrm{D} 3$ et un taux de charge allant de 10 à $25 \% \mathrm{v}_{\mathrm{si}}$ nominal. Les données sont normalisées telles que $\mathrm{S}(\mathrm{q} \rightarrow$ $\infty)=1$ (pas montré ici).

Ici la densité de greffage évolue de $75 \cdot 10^{-3} \mathrm{~nm}^{-2}\left(\Phi_{\mathrm{si}}=25 \% \mathrm{v}\right)$ à $208 \cdot 10^{-3} \mathrm{~nm}^{-2}\left(\Phi_{\mathrm{si}}=10 \% \mathrm{v}\right)$, les échantillons sont donc systématiquement au dessus de la valeur caractéristique de 45.10^{-3} nm^{-2} définie dans la section précédente. Nous observons les mêmes tendances que précédemment excepté que l'intensité du pic caractéristique des agrégats voit son intensité augmenter avec le taux de charge. Nous rappelons que l'échantillon formulé avec $10 \% \mathrm{v}_{\text {si }}$ ne satisfait pas le critère de fragmentation, il est donc caractérisé par une très grande polydispersité rendant le pic presque invisible. Ensuite, son intensité croit jusqu'à 25% v ce qui semble valider notre hypothèse.

6.2. Compréhension des propriétés mécaniques via le lien formule - structure.

Nous reprenons ici les conclusions du chapitre 4 pour y ajouter de nouvelles expériences de rhéologie et DMA (cette fois ci en torsion) permettant d'élargir notre compréhension du système industriel simplifié. Nous revenons en particulier sur l'influence de la structure sur le renforcement via la percolation de la silice, sur le comportement des composites à iso- $\rho_{\mathrm{D} 3}$ (structure similaire) et sur l'évolution de la transition vitreuse avec le taux de charge et le greffage.

6.2.1. Greffage et percolation

En rhéologie la figure 4.6a semble montrer un renforcement supérieur du composite quand le SBR n'est pas fonctionnalisé pour $\Phi_{\mathrm{si}}=10 \% \mathrm{v}$ (confirmé au chapitre 5 en BDS). En DMA, la figure 4.8 indique que pour des composites chargés à $\Phi_{\mathrm{si}}=20 \% \mathrm{v}$, le module au plateau décroit de façon quasi-monotone avec le taux de SBR-D3. En outre, au chapitre 3, un fort impact du taux de greffage est observé sur la structure des charges, pouvant à priori modifier le seuil de percolation de la silice.

Afin de répondre clairement à la question de l'impact du greffage sur la percolation et de valider les essais de rhéologie plateau-plateau, nous avons remesuré en DMA, pour une fréquence de $63 \mathrm{rad} / \mathrm{s}(=10 \mathrm{~Hz})$, les échantillons composés de 0,50 et $100 \% \mathrm{D} 3$ en faisant varier le taux de charge. Les résultats sont présentés Fig.6.14.

Figure 6.14: DMA ($63 \mathrm{rad} / \mathrm{s}$) $-\varepsilon=0.1 \%$. G' et G" en fonction du taux de charge pour $0(\mathrm{a}, \mathrm{b}), 50(\mathrm{c}$, d) et $100 \% \mathrm{D} 3$ (e, f). Les données (G^{\prime} et $\mathrm{G}^{\prime \prime}$) sont normalisées pour la fréquence correspondant au maximum de G" sur la matrice de SBR $50 \% \mathrm{D} 3$.

Comme attendu, le module au plateau augmente systématiquement avec le taux de charge quelque soit le taux de polymère fonctionnel. On devine également un élargissement et un léger décalage de la transition vitreuse pour des hauts taux de charge en particulier lorsque la matrice est composée de SBR-D3 (Fig.6.14 comparer \mathbf{a} et \mathbf{e} ou \mathbf{b} et \mathbf{f}). De la même façon qu'en rhéologie, le module de perte visqueuse croît avec le taux de charge.

En se basant sur les résultats de rhéologie (Fig.4.2), nous comparons désormais le renforcement en fonction du taux de charge pour les différents taux de polymère fonctionnel (Fig.6.15a).

Les données de renforcement extraites de la figure 6.12 en DMA ($63 \mathrm{rad} / \mathrm{s}$) sont renormalisées (Fig.6.15b) en utilisant la loi WLF. En effet, le renforcement pris à $50^{\circ} \mathrm{C}$ et 950 $\mathrm{rad} / \mathrm{s}$ en rhéologie, correspond en DMA, à $2^{\circ} \mathrm{C}$ et $63 \mathrm{rad} / \mathrm{s}$. Quantitativement, ces données ne sont pas en très bon accord avec les mesures de rhéologie (Fig.6.15a), en particulier au dessus de la percolation. Ce problème n'a pas été résolu mais nous pensons qu'il provient de la normalisation effectuée en DMA où nous avons appliqué un même facteur correctif sur G' et G" pour «recoller» les essais à différents taux de charge sur celui de la matrice à la fréquence correspondant au maximum de G'". Nous pensons qu'au dessus du seuil de
percolation, il se pourrait que la silice impacte de façon non négligeable les mesures de G^{\prime} à $\mathrm{T}<\mathrm{T}_{\mathrm{g}}$. On observe toutefois un bon accord qualitatif entre les deux expériences: les composites formulés avec 0% de SBR-D3 voient leur renforcement augmenter davantage à taux de charge égal (0 à $20 \% \mathrm{v}_{\mathrm{si}}$).

Figure 6.15 : Renforcement dans les composites contenant 0 (rouge) et 50% (noir) et 100% (bleu) de SBR-D3. a) Rhéologie à $50^{\circ} \mathrm{C}$ et $950 \mathrm{rad} / \mathrm{s}$, les données sont ajustées avec le modèle parallèle proposé équation (4.1). Les valeurs de $\Phi_{\text {agg }}$ (et de κ) pour la série $0 \% \mathrm{D} 3$ proviennent de l'extension du modèle développé sur les composites $50 \% \mathrm{D} 3 . \mathrm{b}$) DMA à $2^{\circ} \mathrm{C}$ et $63 \mathrm{rad} / \mathrm{s}$, les lignes pointillées sont des guides pour faciliter l'interprétation.

En effet, le résultat semble clair, le SBR-D3 décale le seuil de percolation vers des taux de charges plus importants. Il «retarde» de fait le renforcement du composite via le changement de structure de la silice occasionné par le potentiel répulsif dû au greffage. On notera ici que le modèle parallèle proposé au chapitre 4 semble être bien adapté aussi bien pour un SBR 0% D3 que 50% D3. Les fractions volumiques critiques respectives obtenues par l'ajustement des données sont $\Phi_{\text {agg }}^{\mathrm{c}}=47$ et $56 \% \mathrm{v}$ correspondant à $\Phi_{\mathrm{si}}^{\mathrm{c}}=10.2$ et $12.7 \% \mathrm{v}$.

La représentation des mêmes données complétée par les échantillons formulés avec 25 et 75% de SBR-D3 à 10 et 20% v est présentée Fig.6.16 en fonction du taux de polymère fonctionnel.

Figure 6.16 : DMA ($10 \mathrm{Hz)} \mathrm{-} \mathrm{Comportement} \mathrm{viscoélastique} \mathrm{en} \mathrm{fonction} \mathrm{de} \mathrm{la} \mathrm{température} \mathrm{pour} \mathrm{des}$ échantillons contenant de 0 à 100% de SBR-D3
a) G' et b) G" pour $\left.\Phi_{\mathrm{si}}=10 \% \mathrm{v}-\mathrm{c}\right) \mathrm{G}$ ' et d) G'" pour $\Phi_{\mathrm{si}}=20 \% \mathrm{v}$

La tendance précédemment observée est confirmée. A $10 \% \mathrm{v}$, la figure a) montre ici aussi un comportement différent pour l'échantillon ne contenant que du SBR-NF : un module au plateau caoutchoutique plus élevé synonyme d'un renforcement plus important. La figure b), bien que relativement bruitée confirme également une baisse du module de perte visqueuse avec le taux de polymère fonctionnel. A $20 \% \mathrm{v}$, les résultats sont plus marqués, la figure c) montre très clairement une chute du module au plateau entre 0 et $50 \% \mathrm{D} 3$ puis semble saturer. On retrouve ici encore les signes d'un retardement à la percolation puis d'une structure identique une fois la densité de greffage critique atteinte: à 50 et $75 \% \mathrm{D} 3$ les densités de greffage respectives valent 34.10^{-3} et $52.10^{-3} \mathrm{~nm}^{-2}$, or la densité de greffage caractéristique déterminée section 6.2 à $20 \% \mathrm{v}$ vaut $45.10^{-3} \mathrm{~nm}^{-2}$, expliquant de fait la saturation. Finalement, de façon analogue à la figure b), on retrouve en d) une diminution des pertes visqueuses avec le taux de SBR-D3.

En conclusion, le SBR-D3 permet la formation d'objets plus petits et mieux calibrés rendant la structure du composite plus homogène. Or la distribution de taille des objets et l'homogénéité sont des paramètres essentiels quant à la percolation. En effet, une taille bien définie et une distribution homogène dans l'espace des objets repoussent le seuil de percolation vers des valeurs plus élevées. En rhéologie linéaire, le SBR-D3 ne permet donc pas d'obtenir un renforcement plus élevé tel qu'il a été définit dans cette thèse (au contraire), il joue en revanche énormément sur les propriétés aux basses fréquences et sur le module de perte visqueuse.

En outre, le greffage des chaînes implique un léger ralentissement de la dynamique moyenne des chaînes du fait de leurs fortes interactions avec les charges entrainant un faible décalage du temps de reptation et jouant potentiellement un rôle sur la transition vitreuse (discuté section 6.2.3.).

6.2.2. Comportement à iso- $\rho_{\mathrm{D} 3}$

En section 3.4 nous avons présenté un résultat important montrant que la structure de la silice dans les composites industriels simplifiés ne semble dépendre que de la densité de fonctions greffable : $\rho_{\mathrm{D} 3}$. Ainsi, il nous est possible de faire varier la formulation, c'est-à-dire, le pourcentage de chaîne fonctionnelle (ou Bound rubber - cf. Fig.2.6) et la masse molaire tout en gardant une structure identique pour former des «twin samples» (cf. section 3.4).

En section 4.3, nous avons établi que le fait d'avoir une structure de la silice identique conférait au matériau un module au plateau caoutchoutique équivalent. Tout l'intérêt de ce résultat réside en réalité dans le fait qu'il devienne possible de «décorréler» le module de stockage et le module de perte visqueuse. En effet, alors que l'état de la silice définit les propriétés élastiques (G^{\prime}), le fait de pouvoir modifier la masse molaire et le taux de SBR-D3 sans altérer ces dernières permet de régler le niveau de pertes visqueuses (G ").

Dans le cadre de la loi de Kramers-Kronig (cf. 1.1.1), un module au plateau caoutchoutique (ou renforcement) égal pour deux échantillons «twins» ne signifie pas que leurs G' (ω) respectifs sont identiques sur une gamme de fréquence plus large, il en est donc de même pour leurs G " (ω). Il en résulte une liberté d'ajuster les propriétés de nos composites dans une gamme de fréquence (ou température) bien ciblée.

Arbitrairement, nous nous intéressons à la zone autour de 10 Hz ($63 \mathrm{rad} / \mathrm{s}$) pour une température proche de $50^{\circ} \mathrm{C}$. La figure 6.17 présente, pour 4 couples d'échantillons chargés à $10 \% \mathrm{v}$, le rapport $\mathrm{G} " / \mathrm{G}$ ' $(\tan \delta)$ en fonction de la fréquence.

Figure 6.17 : Rhéologie $-\tan \delta=f(\omega)$ pour quatre couples d'échantillons préparés à iso- $\rho_{\mathrm{D} 3}$.

Deux vraies tendances ressortent de cette comparaison :

- tano décroit avec \%D3 à masse molaire constante (on ignore dans un premier temps les symboles violets). On retrouve la tendance sur les symboles creux ($140 \mathrm{~kg} / \mathrm{mol}$) et sur les symboles pleins ($280 \mathrm{~kg} / \mathrm{mol}$). Ce résultat fait écho à ceux obtenus précédemment pour lesquels G " voyait son amplitude diminuer avec le taux de polymère fonctionnel (Fig.6.16d par exemple).
- tanó décroit avec M. Ainsi, à densité de greffage constante (couleur donnée), l'échantillon formulé avec la plus haute masse molaire et donc le taux de SBR D3 le plus élevé voit son facteur de perte décroitre sensiblement. Ce résultat provient du fait que non seulement le haut taux de polymère fonctionnel limite G" mais que l'on déplace son minimum autour de $63 \mathrm{rad} / \mathrm{s}$ en jouant sur la masse molaire. De plus, les SBR de masses molaires élevées sont caractérisés par une valeur du minimum de G" plus basses que dans le cas de SBR courts (cf. Fig.4.11b).

Une lecture plus simple de la figure 6.17 peut être obtenue en traçant l'évolution de $\tan \delta$ à $20 \mathrm{rad} / \mathrm{s}$ en fonction de la masse molaire pour les échantillons 《twins» chargés à $10 \% \mathrm{v}$ (Fig.6.18). Les deux tendances précédemment observées apparaissent ici plus clairement:

- A densité de greffage constante, le facteur de perte décroit avec la masse molaire.
- A masse molaire constante, le facteur de perte décroit avec la densité de greffage.

Figure 6.18 : Evolution du facteur de perte $(\tan \delta)$ à $20 \mathrm{rad} / \mathrm{s}$ en fonction de la masse molaire pour les échantillons 《twins » ($\rho_{\mathrm{D} 3}=0$ à $\left.110 \mathrm{~nm}^{-2}\right)$

Puis, de la même façon que l'on a décrit la structure de la silice ($\mathrm{R}_{\text {agg }}$ et $\mathrm{N}_{\text {agg }}$) en fonction de la densité de greffage Fig.6.5, on peut étudier l'évolution du module au plateau caoutchoutique en fonction de ce paramètre (Fig.6.19). Les données y sont ajustées avec une fonction similaire à l'équation 6.1.

Figure 6.19: DMA $\left(2^{\circ} \mathrm{C}-63 \mathrm{rad} / \mathrm{s}\right)$ - Evolution de G_{N} avec la densité de greffage à 10 et $20 \% \mathrm{v}_{\mathrm{si}}$. Les zones grisées rassemblent les couples d'échantillons «twins».

Comme énoncé ci-avant, et au chapitre 4, la densité de greffage semble non seulement déterminer la structure du composite mais également son module au plateau caoutchoutique. Ce dernier résultat concernant les propriétés mécaniques confirme les analyses réalisées jusqu’ici.

- A $\Phi_{\mathrm{si}}=10 \% \mathrm{v}_{\mathrm{si}}$, le module G_{N} semble constant. Dans ce cas, le taux de charge est la seule variable jouant un rôle sur le renforcement, on se situe dans la gamme où ce dernier est gouverné par les lois hydrodynamiques uniquement (Smallwood). Bien que la structure de la silice évolue entre 0 et $0.1 \mathrm{~nm}^{-2}$ (sections 3.3 et 3.4), elle n'impacte pas le module au plateau. Nous noterons toutefois qu'à 0% D3, le comportement est légèrement différent comme observé précédemment (Fig.4.6a). La structure du composite étant ici très hétérogène, nous pensons que le renforcement légèrement plus élevé provient du seuil de percolation abaissé.
- A $\Phi_{\mathrm{si}}=20 \% \mathrm{v}_{\mathrm{si}}$, la structure de la silice joue un rôle important sur le renforcement. Dans ce cas, la densité de greffage impacte considérablement le module au plateau caoutchoutique via le changement de morphologie de la silice (abaissement de $\mathrm{R}_{\text {agg }}$ et $\mathrm{N}_{\text {agg }}$) menant à l'augmentation de la valeur du seuil de percolation (analogue à Fig.6.15). La densité critique de greffage extraite de cette tendance vaut $\rho_{\mathrm{D} 3}^{\mathrm{c}-\mathrm{G}}=$ $48.10^{-3} \mathrm{~nm}^{-2}$, en bon accord avec les conclusions tirées de la Fig.6.5.

Finalement, nous avons réussi à regrouper l'ensemble des données obtenues via la DMA et la rhéologie pour définir une loi de comportement liant les propriétés mécaniques ($\mathrm{G}_{\mathrm{N}}, \mathrm{G}$ "), la structure ($\mathrm{R}_{\text {agg }}, \mathrm{N}_{\text {agg }}$) et la formulation ($\rho_{\mathrm{D} 3}$). Concrètement, il nous est possible de régler le module au plateau et les pertes visqueuses (dans certaines limites) à partir d'une formulation bien adaptée ($\Phi_{\mathrm{si}}, \mathrm{M}, \% \mathrm{D} 3$ et $\rho_{\mathrm{D} 3}$).

De façon pédagogique, on peut imaginer choisir la valeur du renforcement via Φ_{si} et $\rho_{\mathrm{D} 3}$ (Fig.6.19), puis ajuster M et $\% \mathrm{D} 3$ (en gardant $\rho_{\mathrm{D} 3}$ constant - Fig.6.17) pour obtenir un comportement adapté pour G".

6.2.3. Couche vitreuse ($\mathrm{RMN}{ }^{1} \mathrm{H}$ à bas champ)

Afin de compléter notre compréhension concernant l'état du polymère à l'interface charge/polymère et sonder en particulier la présence éventuelle d'une couche vitreuse, des mesures de résonnance magnétique nucléaire à bas champ ont été réalisées à l'université Martin-Luther de Halle dans le groupe de K. Saalwächter. Nous ne détaillerons pas ici les séquences utilisées (voir [134, 135]).

Méthode

Ces essais ont été réalisés sur un spectromètre Bruker Minispec mq20 à une fréquence de résonnance des protons de 20 MHz (0.5 Tesla). Les expériences de double-quantum (DQ), free induction decay (FID), et magic sandwich echo free induction decay (MSE-FID) ont été réalisées entre 10 et $70^{\circ} \mathrm{C}$ avec un délai de 2 s entre chaque impulsion.

Choix de la gamme de température: Nous rappelons que la température de transition vitreuse calorimétrique est d'environ $-35^{\circ} \mathrm{C}$ ce qui correspond à une température de $T_{g}+40 \approx$ $5{ }^{\circ} \mathrm{C}$ pour les grandeurs observables en RMN. En effet, le temps caractéristique pour la relaxation des segments de chaines (principale) en RMN est associé à une gamme de fréquence allant de 10 à 100 kHz . Nous avons donc choisi de travailler juste au-dessus de $T_{g}^{R M N}$ pour repérer la présence de la couche vitreuse.

FID: Après une impulsion à 90° du champ électromagnétique B_{1}, le signal mesuré suit la décroissance de l'aimantation macroscopique (M) dans le plan $x y$ (M_{xy}). Dans cette représentation (Fig.6.20), le champ magnétique statique B_{0} est le long de l'axe z alors que B_{1} suit l'axe x . La mesure de la relaxation de M_{xy} donne des informations sur la mobilité des chaînes dans l'échantillon via le temps caractéristique de retour à l'équilibre T_{2} (temps de relaxation spin-spin). Une décroissance rapide (T_{2} court) correspond à la réponse de la partie rigide du polymère alors qu'une décroissance plus lente (T_{2} long) est associée à la partie mobile. Cependant, du fait du délai du récepteur après l'impulsion à 90°, les premières 10 15 us ne peuvent pas être mesurées. Comme cette gamme de temps correspond à la décroissance rapide du signal (signature du polymère immobilisé), cette technique ne peut pas être exploitée directement pour déterminer la fraction de matériau vitreux.

Figure 6.20 : Schéma représentant le mouvement de précession de l'aimantation macroscopique mesurée en RMN.

MSE-FID: Nous utilisons une séquence particulière (MSE) [111] dans le but de refocaliser la FID. Une mesure de FID après une séquence MSE permet ainsi d'accéder à la totalité du signal. Toutefois, cette mesure n'est pas quantitative car la séquence MSE déforme le signal de la matrice qui peut avoir une mobilité intermédiaire dans notre gamme de température. Elle conduit ainsi à une perte d'intensité aux temps courts/moyens.

DQ: Cette mesure permet d'extraire préférentiellement la composante rigide du signal (elle utilise aussi la séquence MSE et est non quantitative). Elle va nous permettre de déterminer précisément le temps de relaxation associé à la partie immobilisée (vitreuse) du polymère.

Traitement et discussion

Description des données: dans tous les cas, nous avons considéré que la dynamique du polymère contenait deux contributions décrites par la somme de deux exponentielles modifiées (équation 6.3): une composante mobile (exposant β dans l'exponentielle, $\beta \approx 1$), et une composante rigide pour le polymère vitreux aux interfaces avec les charges (exposant égal

6. Relations : formule, structure et propriétés

à 2). Les données sont ajustées avec cette expression jusqu'à $\mathrm{t}=20 \mathrm{~ms}$ (pour des temps supérieurs, le signal est dominé par des inhomogénéités du champ magnétique).

$$
\begin{equation*}
\mathrm{M}(\mathrm{t})=\mathrm{M}_{1} \exp \left(-\left(\frac{\mathrm{t}}{\tau_{\text {mobile }}}\right)^{\beta}\right)+\mathrm{M}_{2} \exp \left(-\left(\frac{\mathrm{t}}{\tau_{\text {vitreux }}}\right)^{2}\right) \tag{6.3}
\end{equation*}
$$

Nous présentons Fig.6.21 deux exemples du signal obtenu à $30^{\circ} \mathrm{C}$ après une séquence DQ pour une matrice et un échantillon chargé à 21.1% v (SBR $50 \% \mathrm{D} 3, \mathrm{M}=140 \mathrm{~kg} / \mathrm{mol})$.

Figure 6.21 : Intensité $D Q$ en fonction du temps pour une matrice de SBR et son homologue chargé à $21.1 \% \mathrm{v}$. L'ajustement est réalisé avec l'équation (6.3).

Une composante rigide est clairement observable dans l'échantillon chargé (décroissance au temps courts) contrastant avec le signal provenant de la matrice (\approx plateau). La comparaison de ces deux mesures suggère ainsi fortement que l'ajout de silice dans le SBR provoque le changement d'état d'une fraction des chaînes depuis l'état fondu vers l'état vitreux. Le temps caractéristique extrait de l'ajustement du signal DQ du composite chargé à $21.1 \% \mathrm{v}$ est $\tau_{\mathrm{vitreux}}^{21.1 \% \mathrm{v}}=29.5 \mu \mathrm{~s}$. La même mesure a été réalisée pour des composites contenant 8.4, 12.7 et $16.8 \% \mathrm{v}$ de silice aux différentes températures. La valeur moyenne de $\tau_{\text {vitreux }}$ obtenue sur l'ensemble de ces mesures est de $\mathbf{3 0} \boldsymbol{\mu}$ s avec un écart-type de $\mathbf{3} \boldsymbol{\mu}$ s.

Pour obtenir la fraction de polymère vitreux, nous utilisons ensuite les séquences FID et MSEFID. L'exemple de la matrice et du composite chargé à $21.1 \% \mathrm{v}$ est présenté Fig.6.22 à $30^{\circ} \mathrm{C}$. Ces mesures sont répétées pour tous les échantillons dans lesquels nous avons fait varier Φ_{si} et $\% \mathrm{D} 3(\mathrm{M}=140 \mathrm{~kg} / \mathrm{mol})$. Dans chaque cas, les données sont ajustées en imposant le temps caractéristique vitreux moyen $\tau_{\text {vitreux }}$ précédemment mesuré.

Figure 6.22 : RMN (FID, MSEFID et DQ) - T $=30^{\circ} \mathrm{C}$. a) Matrice de SBR $50 \% \mathrm{D} 3140 \mathrm{~kg} / \mathrm{mol}, \mathrm{b}$) Composite de même matrice chargé à $21.1 \% \mathrm{v}_{\mathrm{si}}$. Les données sont ajustées à l'aide de l'équation 6.3 dans laquelle $\tau_{\text {vitreux }}$ est fixé à $30 \mu \mathrm{~s}$.

Une première mesure de la fraction de polymère vitreux est obtenue directement à partir de la FID: \%vitreux $=\mathrm{M}_{2} /\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)$. Comme indiqué précédemment cette mesure est imprécise car il manque les premiers points du signal. Une mesure plus précise est obtenue en combinant les résultats des mesures FID et MSE-FID:

$$
\begin{equation*}
\%_{\text {vitreux }}=\frac{\mathrm{M}_{2}^{\text {MSE-FID }}}{\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)^{\mathrm{FID}}} \tag{6.4}
\end{equation*}
$$

On suppose dans ce cas :

1) Que la mesure de l'intensité totale sur la FID est suffisamment précise
2) Que le signal vitreux est complètement retenu lors de la mesure de MSE-FID. Cela signifie donc que le signal perdu après la MSE est entièrement lié à la matrice.

Finalement, nous présentons Fig.6.23 l'évolution de la fraction de polymère vitreux en fonction du taux de charge (a) et du taux de polymère fonctionnel (b).

Figure 6.23 : Fraction de polymère vitreux
a) en fonction de la température pour différents taux de charge
b) en fonction du taux de SBR-D3 à $50^{\circ} \mathrm{C}$ à $\Phi_{\mathrm{si}}=16.7 \% \mathrm{v}$. L'impact de l'agent de couplage Si69 (cf. chapitre 1) a également été étudié ici.

La fraction de polymère vitreux augmente avec le taux de charge ce qui confirme le changement d'état du polymère à l'interface avec la silice (couche vitreuse). Le nombre de chaînes ainsi ralenties représente respectivement 1.7 et 3% du SBR à $\Phi_{\mathrm{si}}=8.4$ et $21.1 \% \mathrm{v}$ à $50^{\circ} \mathrm{C}$. Cette quantité, demeurant modeste, est en bon accord avec les mesures de spectrométrie diélectrique dans lesquelles la contribution de la relaxation principale α a été gardée constante pour ajuster les données quelque soit le taux de charge. En considérant une coque de polymère vitreux autour de chaque particule élémentaire, on obtient respectivement des épaisseurs équivalentes variant entre 0.85 et 0.6 nm pour $\Phi_{\mathrm{si}}=8.4$ et $21.1 \% \mathrm{v}$.

Nous remarquons en outre que la fraction de SBR immobile décroit avec la température (3.4 à 2% entre 10 et $70^{\circ} \mathrm{C}$ pour $\Phi_{\mathrm{si}}=21.1 \% \mathrm{v}$) indiquant la réduction du nombre de ponts vitreux dans les objets viscoélastiques que sont les branches. Ce phénomène est à corréler avec la diminution du renforcement (ramollissement des branches) avec la température déjà observé par Mujtaba et al [49]. Par ailleurs, ni le taux de polymère fonctionnel, ni l'emploi d'un agent de couplage (Si69) ne semble impacter le pourcentage de polymère vitreux systématiquement proche de 2.5% à $50^{\circ} \mathrm{C}$ pour $\Phi_{\mathrm{si}}=16.7 \% \mathrm{v}$.

Finalement, la présence d'une couche vitreuse a été démontrée dans nos systèmes industriels simplifiés par RMN. Bien qu'elle puisse jouer un rôle dans le renforcement, son impact sur la dynamique globale du SBR demeure toutefois infime. Ceci est en accord avec les mesures macroscopiques de DMA et de spectrométrie diélectrique dans lesquelles, la transition vitreuse n'est pas significativement modifiée avec la formulation du composite.

Résumé : Relations : formule, structure et propriétés

- Nous estimons à partir des mesures DXPA et du modèle quantitatif associé (section 3.2) que la désagglomération de la silice ne peut s'effectuer que si le couple dans le mélangeur interne atteint au moins 25 N.m lors de l'introduction des charges. Pour des SBR de viscosité trop élevée (ici $280 \mathrm{~kg} / \mathrm{mol}-50 \% \mathrm{D} 3$), le taux de charge ne doit pas excéder $20 \% \mathrm{v}$ sous peine de ne pas pouvoir mettre en forme l'échantillon.
- La densité de greffage est clairement identifiée comme le paramètre définissant la structure des agrégats. La taille et la masse de ces derniers évoluent selon une loi exponentielle décroissante caractérisée par une densité de greffage critique $\rho_{\mathrm{D} 3}^{\mathrm{c}}$ d'environ $45.10^{-3} \mathrm{~nm}^{-2}$. Pour $\rho_{\mathrm{D} 3}<\rho_{\mathrm{D} 3}^{\mathrm{c}}$, les agrégats ne semblent pas impactés par le taux de charge alors que pour $\rho_{\mathrm{D} 3}>\rho_{\mathrm{D} 3}^{\mathrm{c}}$, leur taille décroit significativement.
- Les mesures DXPA sur les échantillons gonflés révèlent que le taux de charge n'a pas d'impact sur la structure de la silice pour des densités de greffage allant de 0 à 110.10^{-} ${ }^{3} \mathrm{~nm}^{-2}$. Cette observation valide sur le principe les résultats obtenus section 3.2 quant à l'indépendance de la taille des agrégats avec le taux de charge. Cependant, elle est en désaccord avec le point précédent ce qui peut être dû à la différence des systèmes (gonflement) ou de régime.
- Des mesures analogues réalisées sur des échantillons gonflés en variant le taux de polymère fonctionnel montrent en revanche que ce dernier impacte fortement la taille des agrégats. Ici encore, ces observations viennent valider les résultats issus du modèle quantitatif en section 3.3.
- Des mesures de DMA appuient les résultats issus de la rhéométrie quant au fait que la densité de greffage décale le seuil de percolation vers des taux de charge plus élevés. A $20 \% \mathrm{v}$, le changement de structure occasionné par le greffage diminue considérablement le module au plateau caoutchoutique entre 0 et 100% de SBR-D3.
- En couplant la caractérisation structurale aux analyses faites sur les propriétés mécaniques nous pouvons conclure que la densité de greffage définit le module au plateau caoutchoutique G_{N} dans les composites via le réglage de la structure des charges. Cette propriété est notamment remarquable car elle nous permet de fixer G_{N} tout en ajustant le module de perte G" autorisant ainsi une décorrélation de G' et G".
- Finalement, la dynamique des chaines ne se trouve pas significativement impactée par le taux de charge ou le greffage. Des mesures de RMN donnent une fraction de polymère ralenti variant entre 1.7 et 3%, soit des épaisseurs de couche vitreuse de l'ordre du nanomètre. Les résultats précédents obtenus respectivement en DMA et BDS aux chapitres 4 et 5 sont donc confirmés.

Conclusions générales

Conclusion générale

Bilan du travail effectué

Ce travail, fruit de la collaboration entre l'université et le monde industriel, a permis d'approfondir nos connaissances sur les matériaux complexes que sont les nanocomposites. La diversité des techniques expérimentales a en effet fourni de très nombreuses données aussi bien au niveau de la structure des charges que des propriétés microscopiques et macroscopiques des nanocomposites. En utilisant des méthodes innovantes, nous avons pu mettre en avant le rôle de chaque paramètre de la formulation (taux de charge, fraction de polymère fonctionnel, masse molaire...) et améliorer notre compréhension des corrélations entre structure et propriétés.

Les avancées principales concernant les échantillons industriels simplifiés ont été décrites en plusieurs étapes aux chapitres $3,4,5$ et 6 , nous en faisons la synthèse ici :

- La silice est organisée selon une structure à 3 échelles : bille élémentaire - agrégat branche (ou réseau) dont les caractéristiques peuvent être extraites via la diffusion de rayons-X aux petits angles et la microscopie électronique en transmission couplées à la simulation numérique. Ces systèmes composés d'objets très polydisperses sont caractérisés par un rayon d'agrégat moyen, un nombre d'agréation moyen et l'écart type qui lui est associé. Le modèle quantitatif détaillé dans cette thèse permet d'estimer ces valeurs respectives, typiquement: $\left\langle\mathrm{R}_{\text {agg }}\right\rangle \approx 35 \mathrm{~nm},\left\langle\mathrm{~N}_{\text {agg }}\right\rangle \approx 45$ et $\Delta \mathrm{Nagg} \approx 45$.
- Dans une matrice de SBR-140 kg/mol, $50 \% \mathrm{D} 3$, le fait d'augmenter le taux de charge mène à la densification du réseau tridimensionnel jusqu'à atteindre la percolation autour de $13 \% \mathrm{v}$. La taille des agrégats n'est pas significativement impactée ($\mathrm{R}_{\text {agg }} \approx 50$ nm) par la fraction volumique en silice bien que le couple enregistré dans le mélangeur interne croisse sensiblement. Le taux de charge mène au renforcement de la matrice de polymère: le module au plateau caoutchoutique croit jusqu'à la percolation en suivant l'équation de Smallwood (renforcement hydrodynamique) puis voit son amplitude augmenter brutalement. Ce comportement a été décrit avec succès par deux modèles semi-empiriques («parallèle» et «Palierne»). La fraction volumique en silice croissante mène également à une réduction de l'écoulement du polymère à basse fréquence (haute température).
- La fraction de polymère fonctionnel (SBR-D3) impacte fortement la structure des charges, en particulier à l'échelle des agrégats. Son greffage, avéré par la mesure de Bound Rubber, à la surface de la silice induit un potentiel répulsif de nature stérique entre les objets menant à la formation d'une structure plus homogène formé de plus petits agrégats percolant à des taux de charge plus élevés. Pour des taux de charge inférieurs à la percolation des branches, le taux de polymère fonctionnel ne semble pas impacter le renforcement qui suit simplement le modèle de Smallwood en $1+2.5 \Phi$. Le SBR-D3 diminue en revanche fortement le module de perte visqueuse G" et ralentit
globalement la dynamique des chaînes. Du fait de leur ancrage l'écoulement à basse fréquence se fait beaucoup plus lentement.
- Les résultats précédemment cités concernant l'influence du taux de charge et de la fraction de polymère fonctionnel sur la structure de la silice ont été validés par la préparation et l'analyse d'échantillons gonflés au styrène. Dans ces derniers, nous avons essayé d'éliminer le facteur de structure visible en DXPA afin d'extraire directement des données chiffrées sur la taille des objets via l'approximation de Guinier (beaucoup plus simple que le modèle quantitatif évoqué ci-avant).
- En outre, les expériences de spectroscopie diélectrique ont validées les estimations concernant la fraction volumique critique en silice responsable de la percolation des charges. Elles ont confirmé que cette valeur était proche de $\Phi_{\mathrm{si}}{ }^{\mathrm{c}}=12.7 \% \mathrm{v}$ pour une matrice composée de 50% de SBR-D3 avec $\mathrm{M}=140 \mathrm{~kg} / \mathrm{mol}$. Pour un composite formulé uniquement avec du polymère non-fonctionnel, la percolation des charges intervient en revanche dès $10 \% \mathrm{v}_{\text {si }}$ nominal.
- La masse molaire du SBR employé change drastiquement la valeur du couple mis en jeu durant la phase de mélangeage menant dans les cas les plus défavorables ($M=40$ $\mathrm{kg} / \mathrm{mol}$) à l'obtention de composites non-structurés dans lesquels les agglomérats millimétriques de silice hautement dispersibles ne sont pas fragmentés. Nous estimons la valeur du couple limite nécessaire à la formation de nanocomposites homogènes à l'échelle de l'agrégat à 25 N.m.
- La densité de greffage ($\rho_{\mathrm{D} 3}$) à taux de charge constant semble être le paramètre définissant la structure de la silice. En effet, nous avons remarqué qu'il est possible d'obtenir des nanocomposites ayant la même structure malgré des formulations différentes à la condition de garder $\rho_{\mathrm{D} 3}$ constant. Ce résultat est tout particulièrement intéressant car il semble de plus que la structure des charges définisse le module au plateau caoutchoutique (c.à.d. le renforcement) ce qui revient à contrôler au final les propriétés mécaniques grâce à la formulation. Il devient notamment possible de décorréler G' et G" en choisissant par exemple un taux de charge et une densité de greffage pour fixer G^{\prime}, puis à ajuster les valeurs de la masse molaire et du taux de fonctionnalisation des polymères pour régler G^{\prime} '.
- La dynamique locale des chaînes (\sim transition vitreuse) n'est semble t-il que très peu perturbée par le taux de charge et le greffage sur la silice. En effet, en spectroscopie diélectrique, la transition α du SBR ne semble pas évoluer significativement avec la formulation. En RMN, le taux de polymère ralentit, bien qu'évoluant de façon monotone avec le taux de charge ne dépasse pas les 3%.

Une partie non-négligeable de cette thèse a été consacrée au développement d'un protocole permettant de produire des nanocomposites SBR-silice par «solvent casting » basé sur un changement de solvant EAU \rightarrow MEK. Les très nombreux résultats concernant la structure permettent d'envisager un travail plus approfondi sur ces matériaux dans le but de repousser les limites de notre compréhension en particulier au niveau des interactions physico-chimiques existantes entre le polymère et la charge. Nous avons d'ores et déjà pu montrer dans ces systèmes que le greffage du polymère fonctionnel jouait un rôle important en favorisant

Conclusions générales

l'apparition d'une structure filaire (réseau) induisant un renforcement très important, que le choix de la masse molaire était crucial quant aux forces de déplétion générées durant le séchage ou que la DPG avait tendance à déstabiliser la suspension colloïdale à la base de la formation du composite.

Perspectives

Plusieurs axes de recherches peuvent être développés à partir des travaux menés dans cette thèse.

Le premier d'entre eux concerne l'évolution du modèle quantitatif proposé au chapitre 3 permettant d'extraire des données chiffrées des spectres de DXPA. Une amélioration consisterait à obtenir des informations supplémentaires quant au potentiel réel existant entre les objets. Cela permettrait de remplacer dans la modélisation le facteur de structure basée sur l'interaction de sphère dure (modèle de PY) par un facteur de structure décrivant l'attraction à courte distance et/ou l'interpénétration possible d'objets fractals. La recherche d'éléments concernant cette modélisation peut être imaginée à partir des mesures réalisées sur les échantillons modèles. Dans ces derniers, le facteur de structure est très bien décrit et doit donc permettre de remonter jusqu'à l'estimation numérique de paramètres décrivant les interactions entre les deux phases tel que $\varepsilon_{\mathrm{pc}}[91]$ présent dans la théorie PRISM.

Dans le même contexte, l'évolution de la polydispersité sur la taille des agrégats avec la densité de greffage devra également être prise en compte. Elle joue un impact majeur sur les mesures DXPA et influence donc grandement les résultats qui en sont extraits via les hypothèses de travail. Ce point a notamment était soulevé par l'analyse des échantillons gonflés dont l'étude systématique en variant la formulation peut aussi être envisagée.

A propos du greffage et des brosses de polymères, il serait opportun d'étudier avec plus de précision l'état de la chaîne de SBR à l'interface avec la charge, en particulier lorsque la densité de greffage est susceptible d'induire l'étirement du polymère ($\rho_{\mathrm{D} 3}$ élevé). Au chapitre 3 , en diffusion de neutrons aux petits angles, nous avons montré que pour des chaînes longues $(\mathrm{M}=140 \mathrm{~kg} / \mathrm{mol})$, le paramètre d'interactions H / D menait à une séparation de phase entre les deux types de chaînes. Il serait intéressant d'observer ce qu'il advient en réduisant la masse molaire à $40 \mathrm{~kg} / \mathrm{mol}$. Pour cette longueur de chaîne, A. Bouty a montré que le taux de charge n'intervenait pas sur les conformations des chaines, l'impact de la densité de greffage reste quant à lui à déterminer. De telles expériences nécessiteraient néanmoins la synthèse de polymères courts NF et D3 chacun dans leur version hydrogéné et deutéré.

Annexes

Annexe 1 :
Nanocomposites 《 modèles »

A1. Nanocomposites « modèles »

A1.1. Protocole de fabrication

La dénomination «modèles» fait référence dans cette annexe à des nanocomposites formulés à partir de charges ayant une forme et une taille très bien définie contrastant fortement avec les échantillons dits «industriels simplifiés » précédemment étudiés. En effet, dans le but de simplifier l'analyse structurale, la silice hautement dispersible Zeosil 1165MP est remplacée par une silice en suspension colloïdale Ludox-TM40 produite par Aldrich.

Le protocole de filmification des nanocomposites modèles consiste en la mise en solution d'un mélange silice + SBR suivi de l'évaporation du solvant dans un moule permettant l'obtention de films stables.

Changement de solvant

La suspension colloïdale de silice utilisée est composée à $40 \% \mathrm{w}$ de silice dans l'eau. Les particules sont stabilisées grâce aux charges négatives de surface ($\mathrm{pH}=9$), le contre ion assurant la neutralité électrique est Na^{+}. Le SBR est quant à lui hautement hydrophobe ce qui empêche le choix de l'eau comme solvant permettant d'effectuer le mélange charge + polymère [64]. La première étape de la formulation consiste donc à faire passer la silice dans un solvant organique qui permettra de solubiliser facilement le SBR.

Plusieurs candidats peuvent être envisagés tels que le diméthylacétamide (DMaC) (cf. Thèse de Adrien Bouty soutenue en 2013 au LLB, Saclay), le toluène, le cyclohexane, le chloroforme ou la 2-butanone (Methyl-Ethyl-Ketone : MEK) [41]. Cette dernière est choisie ici car elle permet d'atteindre une bonne stabilité de la silice en suspension et autorise l'utilisation de la DXPA pour caractériser l'état des colloïdes contrairement aux solvants ayant des densités électroniques trop élevée comme le chloroforme. Ce solvant n'étant pas miscible avec l'eau, le passage du milieu aqueux au milieu organique se fait en utilisant un solvant de transition, l'éthanol.

Nous commençons par préparer un mélange hydro-alcoolique ($1 / 5$) acidifié ($\mathrm{pH}=3$) permettant de recevoir la Ludox-TM40. Cette dernière est incorporée goutte à goutte dans le mélange dans lequel une sonde ultrason permet l'homogénéisation de la suspension durant 90 minutes. A ce stade, la concentration en silice passe de $40 \% \mathrm{w}$ (aqueux) à environ $3 \% \mathrm{w}$ (hydro-alcoolique), des concentrations notablement plus hautes dans ce milieu ne permettent pas de maintenir la stabilité colloïdale, le pH est de 5 . Les charges négatives restantes à la surface de la silice et le milieu hydro-alcoolique (interactions complexes) assurent la dispersion des charges.

L'étape suivante est l'élimination de l'eau. Après des essais décevants par centrifugation, c'est finalement la dialyse qui est choisie bien que le temps nécessaire (1 jour) et la consommation de solvant soient plus importants. La suspension hydro-alcoolique est donc dialysée contre cinq fois son volume d'éthanol pur : la concentration relative en eau passe de $1 / 5$ à $1 / 25$ ce qui est jugé suffisant pour passer en milieu organique sans déstabiliser les particules.

La substitution de l'éthanol par la MEK se fait de la même façon mais demande plus de moyens étant donné que 100% du solvant est cette fois-ci remplacé. Nous procédons donc à
deux dialyses successives (2 jours) afin d'obtenir une concentration en éthanol suffisamment faible pour permettre la bonne dissolution du SBR (non-miscible dans l'éthanol). La concentration en silice dans la MEK est systématiquement mesurée par extrait sec et se situe autour $2.2 \pm 0.2 \% \mathrm{v}$. Ce résultat, plus élevé que les $3 \% \mathrm{w}$ de départ, s'explique par les dialyses successives menant à un changement du volume de suspension présent dans le sac de dialyse. Typiquement, nous observons un rapport 1.8 entre le volume de la suspension hydroalcoolique (pré-dialyses) et celui de la suspension dans la MEK (post-dialyses). En outre, quelques milligrammes de silice sont perdus par précipitation lors de l'agitation ultrasonore et sur le sac de dialyse.

Finalement, ce protocole permet de stabiliser la silice colloïdale dans un solvant organique capable de dissoudre le SBR à température ambiante. La concentration étant bien inférieure au 40% w de la Ludox TM- 40 de départ, nous pourrons facilement éliminer une partie du solvant à l'aide d'un rotavapor ($\mathrm{T}^{\mathrm{eb}}{ }_{\text {MEK }}=80^{\circ} \mathrm{C}$) afin d'obtenir des concentrations allant jusqu'à $10 \% \mathrm{v}$, utiles pour formuler des composites hautement chargés en silice.

Les particules de Ludox-TM40 stabilisées dans l'eau peuvent faire l'objet d'une caractérisation par diffusion de rayons X aux petits angles. Pour des fractions volumiques très faibles $(<0.5 \% \mathrm{v})$ il est possible d'extraire le facteur de forme de l'objet élémentaire. L'ajustement du signal en incluant la polydispersité en taille permet de remonter aux caractéristiques géométriques des charges (Fig.A1.1a). Cette démarche peut également s'appliquer aux charges stabilisées dans la MEK après le protocole défini ci-avant. Dans ce cas, il est non seulement intéressant d'observer la géométrie mais aussi les interactions présentes entre les objets impliquant l'apparition d'un facteur de structure (Fig.A1.1b) dont la position du pic est directement liée à la distance la plus probable entre deux particules.

Figure A1.1 : a) SAXS - Ludox TM-40(Eau) diluée à $0.4 \% \mathrm{v}$, le fit représente le signal théorique obtenu pour des sphères sans interaction. b) SANS - LudoxTM40(MEK) obtenue après le changement de solvant. La solution n'étant pas rediluée, il est possible d'observer les interactions répulsives entre objets dans la MEK (pic de structure à a $\approx 10^{-2} \AA^{-1}$) modélisées ici par un potentiel de Yukawa.

Mélange avec le polymère

Une fois les charges stabilisées en solvant organique, il nous faut solubiliser le SBR dans le même solvant. La MEK ayant été choisie pour être un bon solvant du polymère à température ambiante, il est facile d'obtenir des solutions en découpant simplement des lamelles centimétriques et en les plongeant dans le solvant sous agitation mécanique. La fraction volumique en $\operatorname{SBR}\left(\mathrm{R}_{\mathrm{p}}[91]\right)$ est un paramètre important car elle joue un rôle clé lors du séchage des films composites (Fig.A1.2). En effet, une concentration trop haute ne permettra pas à la silice de s'incorporer de façon homogène lors du mélange alors qu'une concentration trop faible ne permettra pas de conserver la stabilité lors de l'évaporation du solvant. Pour la majorité des systèmes (formulés avec du SBR-140 $\mathrm{kg} / \mathrm{mol}$) on a fixé $\mathrm{R}_{\mathrm{p}}=0.1$. Dans le cas des autres masses molaires, la solution a été formulée pour conserver une viscosité constante [3]. La dissolution complète du polymère à cette concentration nécessite une dizaine d'heures pour 200 mL à $25^{\circ} \mathrm{C}$.

$$
\mathrm{R}_{\mathrm{p}}=0.063
$$

$\mathrm{R}_{\mathrm{p}}=0.076$

$$
\mathrm{R}_{\mathrm{p}}=0.1
$$

Figure A1.2 : Effet de la fraction volumique en polymère sur la stabilité de la silice sur des échantillons chargés à $5 \% \mathrm{v}_{\mathrm{si}}$. Une augmentation de Rp permet une meilleure stabilité des charges lors du séchage.

Le mélange des deux solutions se fait par incorporation goutte à goutte de la solution de silice dans la solution de SBR soumise à une forte agitation mécanique. L'ajout d'agent de greffage et / ou de catalyseur de greffage se fait une fois la suspension de silice + SBR obtenue. Le mélange réactionnel est ensuite chauffé à $50^{\circ} \mathrm{C}$ pendant 90 minutes afin de favoriser les possibles réactions de greffage entre les silanols de surface de la silice et ceux présents sur le SBR-D3 ou l'OCTEO.

Le greffage de l'agent de recouvrement peut être étudié par spectroscopie infrarouge (ATR) ou RMN. Il n'est cependant pas possible de remonter à une valeur de densité de greffage à cause de la recombinaison des silanes. La figure A1.3 présente des résultats quantitatifs (One Pulse) de ${ }^{29}$ Si-RMN du solide obtenus à partir de solutions de Ludox TM-40 + OCTEO lavées puis séchées (Laboratoire Charles Coulomb). Il est clairement visible que le pic Q^{4} (112 ppm) associé au silicium de cœur (Fig.A1.4a) n'est pas modifié alors qu'une variation monotone d'intensité sur les pics T (-70 à -50 ppm), associés au greffage des silanes est observée avec la quantité d'OCTEO.

Figure A1.3: RMN - a) RMN ${ }^{29}$ Si sur des échantillons de Ludox TM-40 séchés contenant divers taux d'OCTEO, b) évolution relative des configurations des siliciums : le signal des T 2 augmente sans saturer probablement à cause de l'oligomérisation des OCTEO.

Figure A1.4 : Différentes configurations de l'atome ${ }^{29}$ Si et nomenclature RMN associée.

L'évolution de la configuration des siliciums (Fig.A1.3b) présents sur la silice greffée peut être interprétée de la façon suivante [47] :

- Le nombre de T1 (silanes greffés avec 1 liaison) augmente rapidement lors de l'ajout d'OCTEO. Les OCTEO supplémentaires peuvent ensuite se greffer sur la silice comme précédemment ou se recombiner avec les OCTEO déjà greffés pour donner des T2. Lorsque le système est saturé en agent de greffage, les OCTEO se recombinent ce qui fait diminuer le nombre de T1.
- Le signal des T2 vient de deux sources différentes, les silanes greffés sur la silice par 2 liaisons et les silanes branchés les uns sur les autres donnant des oligomères pour des hautes quantités d'agent. Cette deuxième source de Silicium T2 explique que leur nombre ne sature pas (croissance des oligomères).
- Les OCTEO ne peuvent pas être greffés sur les particules avec 3 liaisons du fait de la densité de silanol intrinsèque à la silice. L'apparition des T3 peut être due au branchement de deux OCTEO déjà greffés sur la silice ($\mathrm{T} 1+\mathrm{T} 2$ par exemple) ou à la ramification d'oligomères.

La mise en évidence de la présence d'oligomères empêche donc de caractériser la densité de greffage de façon simple comme par analyse thermogravimétrique bien que celle-ci donne des informations sur la quantité de silane présent dans un échantillon.

Filmification

Pour pouvoir passer à l'étape de filmification, les solutions doivent êtres les plus homogènes possibles pour empêcher par exemple la localisation de contraintes ou l'apparition de bulles dans le film. Ainsi, une étape de dégazage est effectuée aussi bien sur le moule que sur la solution à filmifier dans une étuve à vide ou un dessiccateur à température ambiante. Le temps de dégazage et la pression sont ici des paramètres importants pouvant potentiellement détériorer la qualité des échantillons. En effet, une pression trop faible appliquée pendant trop longtemps mène inévitablement à l'ébullition de la MEK. Au contraire, une pression trop forte ne permet pas d'éliminer les bulles apparues pendant l'étape de greffage.

La dernière étape de la production des échantillons modèles est le moulage. Un moule en téflon est utilisé pour faciliter le «décollage» des films de SBR pouvant être particulièrement collant selon la formulation de l'échantillon. La température et la pression doivent être optimisées ici aussi pour éviter la déstabilisation des charges durant l'évaporation du solvant. Dans la majorité des cas, le moyen le plus adapté pour filmifier a été de travailler à pression atmosphérique sur une grande plaque chauffante pouvant accueillir une série entière d'échantillon (5 à 6). Ce protocole, facile à mettre en œuvre, permet d'obtenir des films composites rapidement (environ 12 h pour un chauffage à $50^{\circ} \mathrm{C}$). Pour un meilleur contrôle de la température, une étude à vide dotée d'un piège à solvant peut être utilisée. Finalement, et avant de procéder à la caractérisation, tous les échantillons sont passés sous vide durant une demi-journée afin d'éliminer les traces de solvants résiduels.

Dans certains cas, ce protocole peut mener à la scission de l'échantillon en deux parties. Pour des taux de silice importants ($>10 \% \mathrm{v}$), le module du film formé à la surface est assez important pour ne pas fléchir lors de l'évaporation du solvant. Il en résulte la création d'un film dans la partie supérieure du moule alors que le reste de la solution continue de s'évaporer pour donner un autre film dans la partie inférieure. Les analyses effectuées montrent que le taux de charge est identique dans les deux parties mais que la silice observée n'a pas forcément la même structure (Fig.A1.30).

Le protocole menant à la production de films nanocomposites modèles proposé ci-avant a permis de formuler plus de 150 échantillons aux propriétés très différentes. Néanmoins, il doit pouvoir être optimisé notamment pour augmenter la concentration de silice dans la MEK et ainsi réduire la consommation de solvant par échantillon.

A1.2.Analyse structurale

De même qu'au chapitre 3 (systèmes industriels simplifiés), nous nous intéressons ici à décrire l'organisation des charges (silice colloïdale) dans la matrice de SBR pour les échantillons
modèles formulés par un procédé solvent casting. Nous étudions l'impact du taux de charge, du taux de polymère fonctionnel D3, de la longueur des chaînes ou des petites molécules (OCTEO, DPG). Dans cette annexe, on rappelle que le calcul du facteur de structure se fait simplement, en divisant l'intensité diffusée par l'échantillon par le facteur de forme de la Ludox TM-40 renormalisé (systématiquement représenté sur les résultats DXPA).

On appellera, ici, «Ludox TM-40» la silice commerciale Aldrich dans l'eau et 《SiMEK », la même silice dans la 2-Butanone (MEK).

Modèle cubique

Dans cette partie, nous utiliserons régulièrement le modèle dit «cubique» pour analyser les données expérimentales obtenues en DXPA. Ce modèle, très simple, décrit la structure de la silice selon des agrégats séparés par une distance caractéristique. Cette dernière sera typiquement extraite de la position des pics associés à des potentiels répulsifs ($\mathrm{q}_{\text {rep }}$) présents dans les facteurs de structure aux petits angles. Un schéma représentatif est proposé Fig.A1.5.

Fig.A1.5 : Schéma représentant l'agrégation dans les solutions de $\mathrm{SBR}+$ silice.

Ce modèle simple permet d'écrire le volume moyen des agrégats en fonction de la distance qui les sépare comme:

$$
\begin{equation*}
\left\langle\mathrm{V}_{\mathrm{agg}}\right\rangle=\Phi_{\mathrm{si}} \mathrm{~V}_{\text {maille }}=\Phi_{\mathrm{si}}\left(\frac{2 \pi}{\mathrm{q}_{\mathrm{rep}}}\right)^{3} \tag{A1.1}
\end{equation*}
$$

Connaissant le volume de la particule élémentaire, nous pouvons en tirer le nombre d'agrégation :

$$
\begin{equation*}
\mathrm{N}_{\mathrm{agg}}=\frac{\mathrm{V}_{\mathrm{agg}}}{\mathrm{~V}_{\mathrm{si}}}=\frac{3(2 \pi)^{3} \Phi_{\mathrm{si}}}{\mathrm{q}_{\mathrm{rep}}{ }^{3} 4 \pi \mathrm{R}_{\mathrm{si}}{ }^{3}} \tag{A1.2}
\end{equation*}
$$

A1.2.1. Impact du taux de charge

Nous nous proposons dans un premier temps de faire varier le taux de charge (1 à $10 \% \mathrm{v}$) dans une matrice de SBR-NF en ajoutant un excès d'OCTEO à un taux nominal de 15 molécules par nanomètre carré de silice. Les mesures d'intensités DXPA ainsi que les facteurs de structure associés sont respectivement présentées Fig.A1.6a et A1.6b.

Figure A1.6 : a) Evolution de la structure de composites modèles en fonction du taux de charge (SBR-NF + 15 OCTEO/nm2), b) facteurs de structure associés

Aux grands angles, les intensités normalisées par le taux de charge se superposent comme attendu. Nous observons néanmoins un léger écart à la loi de Porod (décroissance en q^{-4}) Cet écart systématique, habituellement attribué à une rugosité surfacique des charges (cas du chapitre 3), est susceptible d'être généré dans le cas des composites modèles par des impuretés ou par un problème de soustraction du bruit de fond.

Pour $\mathrm{q} \approx 2.710^{-2} \AA^{-1}$, le pic de structure observé est représentatif de la distance «touchetouche » entre deux centres de masses de particules (indépendante du taux de charge). Elle donne directement le diamètre de ces dernières soit : $\mathrm{d} \approx 2 \pi / \mathrm{q}=24 \mathrm{~nm}$ (soit un rayon de 12 nm comparable à la valeur déterminée au chapitre 2 et valant 13.8 nm).

Aux petits angles, on retrouve une diminution du signal pour des taux de charges croissants (compressibilité isotherme abaissée). La remontée du facteur de structure dans cette zone est synonyme de l'agrégation des particules élémentaires. La morphologie de ces agrégats peut être caractérisée par la pente de $\mathrm{I}(\mathrm{q})$ évoluant ici en $\mathrm{q}^{-1.5}$, indiquant la présence d'objets se situant, en termes de qéométrie, entre le régime filaire $\left(q^{-1}\right)$ et l'agrégation en nappe $\left(q^{-2}\right)$. Ce point est également observable en microscopie électronique à balayage (Fig.A1.7). L'évolution de la structure de la silice avec le taux de charge semble ainsi se faire de façon continue, sans changement de régime. Finalement, la présence d'un pic répulsif (ou saturation du signal) à $\mathrm{q}_{\text {rep }} \approx 1.610^{-3} \AA^{-1}$ confirme la bonne stabilité de la silice à travers tout l'échantillon. Ce pic peut être analysé via le modèle cubique présenté précédemment pour calculer le nombre d'agrégation moyen en fonction de sa position. En considérant ici que $q_{\text {rep }}$ ne dépend pas du
taux de charge (Fig.A1.6b) pour $\Phi_{\mathrm{si}}=1,2,5$ et $10 \% \mathrm{v}$ on obtient respectivement $\mathrm{N}_{\text {agg }} \approx 5,10$, 25 et 50 .

La comparaison pour $q \rightarrow 0$ des facteurs de structure extraits des $\mathrm{I}(\mathrm{q})$ expérimentaux avec des facteurs de structure théoriques suivant le modèle de PY peut également être envisagée. De cette façon on pourrait décorréler l'influence de l'agrégation (forme) et de la compressibilité isotherme (structure) sur l'intensité aux petits angles I(0).

$10 \% \mathrm{v}$

Figure A1.7: Structure des composites modèles en fonction du taux de charge (2, 5 et $10 \% \mathrm{v}$, SBR$\mathrm{NF}+15 \mathrm{OCTEO} / \mathrm{nm}^{2}$). Les objets à plusieurs branches, synonymes d'une dimension fractale comprise entre 1 et 2 apparaissent clairement.

A1.2.2. Effet du greffage

Dans cette section nous nous intéressons aux possibles effets de greffons sur la structure de la silice. Nous étudions l'influence de l'OCTEO dont le greffage a été prouvé de manière qualitative par RMN et celle du SBR-D3 dont le greffage est impossible à prouver par ${ }^{29} \mathrm{Si}$ RMN à cause du fait que les fonctions D3 donnent le même signal que les silanols de surface des charges.

Partie A : Taux de charge faible ($\Phi \leq 5 \% \mathrm{v}$)

Les échantillons modèles à taux de charge bas sont plus facilement réalisables car ils nécessitent une quantité de Si-MEK plus faible et sont donc moins sujets au risque d'agrégation mal contrôlée et d'instabilité.

Impact du SBR-D3

Le SBR-D3 ne semble pas jouer de rôle important quant à la structure de la silice, il nous est d'ailleurs impossible de confirmer son greffage. En effet, aussi bien sur l'intensité diffusée que sur le facteur de structure, respectivement Fig.A1.8a et A1.8b, il est difficile d'observer une tendance claire. Les différents signaux semblent très proches les uns des autres ce qui suggère que pour un taux de charge faible le SBR-D3 n'influence pas, ou peu la structure des charges ; (la remontée du facteur de structure semble cependant plus faible à 75 et $100 \% \mathrm{D} 3$ qu'à 0 et 25% D3).

Figure A1.8 : a) Influence du SBR-D3 sur des composites chargés à 5% v contenant un taux nominal d'OCTEO de $15 \mathrm{~nm}^{-2}$, b) facteurs de structure associés.

En microscopie électronique à balayage (Fig.A1.9a-b), il est également compliqué de se risquer à une interprétation bien que l'échantillon formulé avec le SBR-D3 semble montrer une agrégation légèrement plus faible. De façon générale, on retrouve ici de petits agrégats de quelques billes [136] en accord avec la saturation du facteur de structure. L'application du modèle cubique donne ici : $\mathrm{N}_{\text {agg }} \approx 37$.

Figure A1.9 : Influence du SBR-D3 (0 et 100% D3) sur la structure de composites chargés à 5% v.

Impact de l'OCTEO

L'impact de l'OCTEO est ici étudié à $\Phi_{\mathrm{si}}=5 \% \mathrm{v}$ en faisant varier son taux nominal de 0 à 20 molécules $/ \mathrm{nm}^{2}$ de silice dans une matrice de SBR-NF. De même que pour le cas précédent, d'après les figures A1.10a et A1.10b, il semble difficile de tirer une conclusion claire quant à l'effet du silane qui ne joue à priori pas fortement sur la structure des charges.

Figure A1.10 : a) Effet de l'OCTEO dans une matrice de SBR-NF pour $\Phi_{\mathrm{si}}=5 \% \mathrm{v}$, b) facteurs de structure associés

La microscopie (Fig. A1.11a-b) donne une idée de la structure des charges sans pour autant permettre de trancher quant à l'effet de l'OCTEO qui parait ici favoriser une légère agrégation menant à la formation d'objets linéaires. On notera toutefois que l'observation de petits agrégats semble ici aussi être en accord avec le facteur de structure déterminé en DXPA. En se basant sur le modèle cubique on calcule un nombre d'agrégation moyen (0 à 20 OCTEO $/ \mathrm{nm}^{2}$) en se basant sur la position de $\mathrm{q}_{\text {rep }}$: $\left\langle\mathrm{N}_{\text {agg }}\right\rangle \approx 23$.

Figure A1.11 : Effet de l'OCTEO à taux de charge faible ($5 \% \mathrm{v}$), SBR-NF $140 \mathrm{~kg} / \mathrm{mol}$.

Finalement, les deux séries d'échantillons précédentes montrent que le greffage (supposé pour le SBR-D3) ne joue pas de rôle important sur la structure de la silice pour des taux de charge faibles. Dans le chapitre 3, le taux de charge était au minimum de 10% ven raison du couple nécessaire à la fragmentation de la silice Zeosil 1165MP et l'effet du greffage observé (en DXPA) semblait augmenter avec le taux de charge (Fig.3.16a-b). Cet effet croissant, à priori dû au fait que les charges soient davantage contraintes spatialement à taux de charge élevé (10 et $20 \% \mathrm{v}$), doit pouvoir également être visible dans les échantillons modèles à condition d'avoir un greffage effectif.

Partie B : Taux de charge élevé ($\Phi_{\mathrm{si}}=10$ et $20 \% \mathrm{v}$)

Les échantillons formulés avec un taux de charge élevé nécessitent de concentrer la Si-MEK un mélange de volume constant lors du séchage. Cette étape est réalisée à l'aide d'un rotavapor sur un volume conséquent de suspension $(100 \mathrm{~mL})$ pour éviter de générer une perte relative en silice trop importante (agrégation de la silice sur les parois du ballon).

Effet du SBR-D3

- $10 \% \mathrm{v}_{\mathrm{si}}$

De même que précédemment, on cherche à montrer l'effet du SBR-D3 sur la morphologie des charges en prenant cette fois $\Phi_{\mathrm{si}}=10 \% \mathrm{v}$. Les résultats DXPA (Fig.A1.12a-b) montrent cette fois ci un effet important du polymère fonctionnel suggérant le greffage à la surface des charges. Bien que la décroissance de l'intensité (et du facteur de structure) aux petits angles ne soient pas monotones, la tendance globale montre clairement que l'ajout de SBR-D3 permet de limiter l'agrégation, nous remarquons en particulier les différences induites par le polymère D3 :

- Signal aux petits angles, relatif à la masse des objets, très inférieur.
- Trou de corrélation moins profond ($110^{-2}<\mathrm{q}<210^{-2} \AA^{-1}$), équivalent à une compressibilité isotherme plus élevée (agrégation limitée) (Fig.A1.12b).
- Oscillations légèrement moins intenses $\left(\mathrm{q}>210^{-2} \AA^{-1}\right)$: probabilité plus faible de trouver deux billes en contact ($=$ nombre de voisin moyen plus faible).

Figure A1.12 : Impact du SBR-D3 sur la structure des composites chargés à $10 \% \mathrm{v}$.
a) Intensité mesurée en DXPA - b) facteurs de structure associés.

En outre, on observe un pic de répulsion clairement défini pour tous les échantillons. Ce pic est susceptible d'être généré par les mailles d'un réseau formé par les agrégats. Sa position se déplaçant vers les grands angles avec l'ajout de SBR-D3 $\left(\mathrm{q}_{\mathrm{rep}(0 \% \mathrm{D} 3)}=1.310^{-3} \AA^{-1}\right.$ et $\mathrm{q}_{\mathrm{rep}(100 \% \mathrm{D} 3)}=2.410^{-3} \AA^{-1}$) confirme l'évolution de la structure des charges vers la formation d'agrégats plus fins quadrillant de façon plus régulière l'échantillon. On note finalement que

Annexe 1

la pente $\left(\mathrm{q} \approx 510^{-2} \AA^{-1}\right.$) décroit fortement pour l'échantillon formulé avec 100% de SBR-D3 indiquant que les agrégats ont tendance à se rapprocher d'une structure filaire.

L'illustration de ce phénomène, comparable à ce qui a été observé dans les échantillons industriels, est proposée Fig.A1.13.

0D3

100D3

Figure A1.13 : Représentation schématique 2D de l'effet du SBR-D3 dans les échantillons modèles. Les agrégats (ou branches) formés sont plus petit mais plus proches les uns des autres. Les flèches noires représentent les distances typiques de répulsion traduite en DXPA par la présence de pics de répulsion.

On note ici que dans cette configuration, nous nous attendons à ce que la percolation des charges intervienne plus rapidement avec un taux de polymère fonctionnel élevé. Des résultats de rhéologie soutenant cette hypothèse sont présentés dans la 2ème partie de cette annexe.

- $\mathbf{2 0} \% \mathrm{v}_{\mathrm{si}}$

L'expérience précédente est répétée avec un taux de charge valant $20 \% \mathrm{v}$, les résultats DXPA sont présentés Fig.A1.14a-b.

Fig.A1.14 : Impact du SBR-D3 sur la structure des composites chargés à $20 \% \mathrm{v}$.
a) Intensité mesurée en DXPA - b) facteurs de structure associés.

Les observations réalisées sur la série précédente peuvent être répétées ici où l'effet du SBRD3 est encore plus marqué (silice spatialement plus contrainte). On observe par exemple clairement la décroissance de l'intensité des oscillations du facteur de structure aux grands
angles (Fig.A1.14b) ou la décroissance de la pente aux moyens angles avec l'ajout de SBRD3. Ces observations peuvent également être corrélées à des clichés de microscopie électronique à transmission (Fig.A1.15) où l'impact des greffons apparait clairement, on note en particulier la présence de zones de SBR purs d'environ $150-200 \mathrm{~nm}$ de diamètre identifiées aux mailles du réseau précédemment défini. En se basant sur l'emplacement du pic de répulsion dans cette série ($\mathrm{q}_{\text {rep }} \approx 3.510^{-3} \AA^{-1}$) on vérifie alors : $\mathrm{d}=2 \pi / \mathrm{q}_{\text {rep }} \approx 180 \mathrm{~nm}$, soit un très bon accord entre les observations réalisées dans l'espace réciproque et l'espace réel.

Figure A1.15 : Impact du D3 sur l'agrégation pour des composites chargés à $20 \% \mathrm{v}$. Le pic de répulsion est directement lié à la taille des domaines de SBR purs (distance entre branches). Les structures filaires générées par le SBR-D3 sont ici, aisée à observer.

De la même façon qu'à faible taux de charge nous avons estimé un nombre d'agrégation moyen via le modèle cubique et la position du pic de répulsion, nous pouvons ici complexifier légèrement notre raisonnement pour prendre en compte la structure filaire de la silice ou la distance $2 \pi / \mathrm{q}_{\text {rep }}$ représente le paramètre de maille du réseau (et non plus la distance entre agrégats bien définis). En suivant une géométrie cubique (Fig.A1.16) on a :
a)

b)

Figure A1.16 : Schéma représentant la géométrie considérée pour modèle du réseau cubique. a) organisation générale, b) $\frac{1}{4}$ du volume de chaque arrête appartient à la maille.

Soit a le paramètre de maille du réseau :

$$
\mathrm{a}=2 \pi / \mathrm{q}_{\mathrm{rep}}
$$

Le volume de silice dans une maille du réseau cubique est :

$$
\mathrm{V}_{\mathrm{a}}=\Phi_{\mathrm{si}} \mathrm{a}^{3}
$$

Chaque cube est constitué de 12 arrêtes chacune à $\frac{1}{4}$ dans le cube, soit un volume de silice correspondant à 3 arrêtes (entières). Il vient donc :

$$
\mathrm{V}_{\mathrm{a}}=3 \mathrm{a} \pi \mathrm{R}_{\mathrm{si}}^{2}
$$

Finalement, on définit un nombre d'agrégation linéaire (nombre de bille / arrête du réseau) :

$$
\mathrm{Na}_{\mathrm{agg}}^{\mathrm{branch}}=\frac{\mathrm{V}_{\mathrm{a}}}{3 \mathrm{~V}_{\mathrm{si}}}=\frac{3 \mathrm{a}}{4 \mathrm{R}_{\mathrm{si}}}
$$

En appliquant ce modèle très simple à nos résultats en considérant $\mathrm{q}_{\text {rep }}=3.510^{-3} \AA^{-1}$ on obtient $\mathrm{N}_{\mathrm{agg}}^{\mathrm{branch}}=15$ billes / branche. L'alignement de 15 billes représente une longueur d'environ $15^{*} 9^{*} 2=270 \mathrm{~nm}$, soit une épaisseur moyenne d'arrête de $270 / 180=1.5$ billes. Finalement, en comparant ces données chiffrées à la photo MET «D3» de la Fig.A1.15 on peut conclure quant à la validité de ce modèle (le nombre de bille par arrête et l'épaisseur de l'arrête sont en bon accord).

Dans le cas «NF », le paramètre de maille prend la même valeur mais le réseau est beaucoup moins bien défini impliquant une épaisseur moyenne des arrêtes plus importantes.

Nous notons que bien que le pic de répulsion soit très marqué et décalé à droite par rapport à la série à $10 \% \mathrm{v}$ (distance entre objets diminue avec le remplissage) du fait du taux de charge élevé, sa position ne semble plus évoluer. Cette saturation est probablement liée au fait qu'à $20 \% \mathrm{v}$, la silice occupant un très grand volume dans l'échantillon (forte contrainte spatiale), ne peut affiner sa structure davantage pour former des mailles plus petites (les zones de SBR purs semblent avoir des tailles très proches à 0 et 100% D3 Fig.A1.15).

Effet de l'OCTEO

L'effet de l'OCTEO pour $\Phi_{\mathrm{si}}=20 \% \mathrm{v}$ a pu être identifié à l'aide d'un couple d'échantillons appartenant à deux séries différentes (préparés indépendamment) par diffusion de neutrons. Le résultat, est présenté Fig.A1.17a-b, où les intensités mesurées ont été «recollées »sur le facteur de forme de la silice colloïdale. Une fois encore, les mêmes observations (intensité aux petits angles et trou de corrélation) montrent que l'OCTEO permet de limiter la taille des agrégats et de faire évoluer leur forme vers le régime filaire.

Figure A1.17 : Impact de l'OCTEO sur la structure des composites chargés à $20 \% \mathrm{v}$, a) Intensité en DNPA recollées sur le facteur de forme de la Ludox TM-40, b) facteurs de structure associés

Ainsi, contrairement aux échantillons chargés faiblement, il apparait clairement ici que les greffons impactent fortement la structure des nanocomposites modèles permettant de limiter la formation de gros agrégats et rendant ainsi la structure à l'échelle mésoscopique plus homogène comme dans le cas des échantillons industriels simplifiés (chapitre 3).

A1.2.3. Effet de la DPG

Durant l'étape de production des échantillons, nous avons noté plusieurs fois que l'ajout goutte à goutte de la solution de DPG dans la MEK provoquait une agrégation locale de la silice dans le mélange. Cet effet, disparaissant au bout de quelques secondes sous l'agitation mécanique suggère que l'amine abaisse significativement les potentiels de répulsion maintenant la Si-MEK stable. L'ajout de DPG dans certaines formules a même rendu impossible la formation des films correspondants menant à une rapide séparation de phase (par exemple SBR-NF $140 \mathrm{~kg} / \mathrm{mol}$ chargé avec $20 \% \mathrm{v}_{\mathrm{si}}$).

Variation du taux de charge (avec DPG)

Ici, notre travail a consisté à faire varier le taux de charge dans une matrice de SBR donnée dans laquelle la même quantité de DPG a été ajoutée (1 pce). Les intensités mesurées en DXPA sur des échantillons formulés avec 50% de SBR-D3 et $8 \% \mathrm{w}_{\text {si }}$ d'OCTEO ainsi que les facteurs de structures associés sont présentés Fig.A1.18.

Figure A1.18 : Influence du taux de charge sur la structure d'échantillons contenant 1 pce de DPG. a) Intensités normalisées DXPA - b) facteurs de structures associés.

L'effet observé lors de la préparation des échantillons se retrouve ici, l'agrégation apparaît comme non contrôlée du fait de la forte remontée aux petits angles observée sur les facteurs de structure et de la disparition des pics de répulsion. Le fait que dans cette gamme de q , le signal décroisse avec le taux de charge est uniquement dû à la variation de compressibilité isotherme (liée à la dimension fractale des gros agrégats ou des branches présents ici), phénomène déjà observé plusieurs fois au chapitre 3 et précédemment dans cette section.

Variation du taux de SBR-D3 (avec DPG)

De façon analogue, on s'intéresse à l'effet du SBR-D3 en présence de DPG pour des échantillons chargés à $10 \% \mathrm{v}$ (Fig.A1.19).

Figure A1.19 : Influence du taux de SBR-D3 sur la structure d'échantillons avec 1 pce de DPG.
a) Intensités normalisées DXPA - b) facteurs de structures associés.

Dans cette série, l'agrégation non contrôlée qénérée par la DPG semble pouvoir être contrée dans certains cas par le greffage des chaînes (catalysé). En effet, pour les échantillons formulés à 25,50 et $75 \% \mathrm{D} 3$, le pic de répulsion réapparait et suggère donc la présence d'agrégats de taille finie séparés par une distance caractéristique. Le cas du 100% D3 ne suivant pas la tendance est difficile à analyser. Néanmoins, la pente et l'intensité aux petits angles demeurent inférieures au cas précédent ($50 \% \mathrm{D} 3$ avec OCTEO). Reste le cas du $0 \% \mathrm{D} 3$ pour lequel l'intensité obtenue est clairement différente: le facteur de structure est significativement inférieur jusqu'à $\mathrm{q}=310^{-3} \AA^{-1}$ puis diverge. Ce comportement peut suggérer la formation de très gros objets réduisant notablement la compressibilité isotherme.

L'application du modèle cubique semble adaptée dans ce cas (agrégats moins gros et donc plus rapprochés avec le taux de polymère fonctionnel croissant). Il donne pour $0,25,50$ et $75 \% \mathrm{D} 3$ respectivement, $\mathrm{N}_{\mathrm{agg}}=150,93,61$ et 14.

Autres variations de SBR-D3 avec $\operatorname{DPG}(40,80$ et $280 \mathrm{~kg} / \mathrm{mol})$

Le même travail est réalisé sur des SBR de masses molaires différentes 40,80 et $280 \mathrm{~kg} / \mathrm{mol}$ (Fig.A1.20). Les résultats ne semblent pas montrer les mêmes effets. Dans le 80 et le 280 $\mathrm{kg} / \mathrm{mol}$ il semble que l'on retrouve la tendance à la formation de plus petits objets avec le $\%$ D3 croissant alors que dans le $40 \mathrm{~kg} / \mathrm{mol}$ il n'existe pas de réelle tendance. La DPG semble ici aussi empêcher le bon contrôle de la structure de la silice.

$40 \mathrm{~kg} / \mathrm{mol}$

$80 \mathrm{~kg} / \mathrm{mol}$

$280 \mathrm{~kg} / \mathrm{mol}$

Figure A1.20 : Impact du SBR-D3 sur la structure de la silice pour un SBR de masse molaire a) 40, c) 80 et e) $280 \mathrm{~kg} / \mathrm{mol}($ avec DPG$)$, b) d) f) facteurs de structure associés respectifs.

Variation quantité DPG

On se propose désormais de varier la quantité de DPG dans un échantillon de formule donnée afin d'observer l'évolution probable de la structure. Nous avons vu précédemment que la DPG semblait jouer le rôle de déstabilisateur pour les charges. La figure A1.21 présente les intensités mesurées en DXPA d'échantillon contenant 0,2 et 5 pce de DPG où il apparaît clair que la structure est significativement modifiée par la quantité d'amine. En particulier, on note un abaissement du signal entre 310^{-3} et $10^{-2} \AA^{-1}$ puis une très forte remontée accrue par la présence de DPG. Qualitativement, on peut décrire cet effet de façon analogue aux observations faites en variant le taux de SBR-D3 en présence de DPG (Fig.A1.19) : l'agrégation non contrôlée se manifeste par la divergence du signal aux petits angles et l'abaissement de la compressibilité isotherme aux moyens angles.

Figure A1.21: a) Evolution de la structure d'un nanocomposite en fonction de la quantité de DPG (SBR $50 \% \mathrm{D} 3140 \mathrm{~kg} / \mathrm{mol}$ chargé à $10 \% \mathrm{v}$), b) facteurs de structure associés.

Une expérience comparable est réalisée avec des échantillons contenant 100% de SBR-D3 (Fig.A1.22). Dans ce cas, la divergence du signal n'apparaît qu'à 5 pce de DPG et demeure plus faible que dans le cas précédent. Il est aisé de voir la différence de comportement des facteurs de structure par rapport au cas précédent, ici ils sont très proches jusqu'à $\mathrm{q}=210^{-3}$ \AA^{-1}. Ces observations suggèrent de nouveau que dans ces systèmes, le SBR-D3 joue bien son rôle de stabilisateur.

Figure A1.22 : a) Evolution de la structure d'un nanocomposite en fonction de la quantité de DPG (SBR 100% D3 $140 \mathrm{~kg} / \mathrm{mol}$ chargé à $10 \% \mathrm{v}$), b) facteurs de structure associés.

Finalement, nous avons étudié l'effet conjugué de l'OCTEO et de la DPG. Dans les résultats précédents, le silane ne semblait pas affecter la structure de la silice en présence de l'amine. Nous retrouvons Fig.A1.23b, le «plateau»caractéristique des échantillons formulés avec $0 \% \mathrm{D} 3$ et de la DPG dans les facteurs de structure pour la gamme : $3.10^{-3}<\mathrm{q}<7.10^{-3} \AA^{-1}$ indiquant ici aussi que la perturbation apportée par l'ajout de DPG ne peut être contrée par l'OCTEO.

Figure A1.23 : a) Impact conjugué de la DPG et de l'OCTEO sur un composite SBR-NF chargé à $10 \% \mathrm{v}, \mathrm{b})$ facteurs de structure associés.

Résumé : Effet de la DPG

- L'ajout de diphénylguadinine semble impacter fortement la structure de la silice depuis les mélanges en solvant jusqu'aux composites modèles finaux dans lesquels elle favorise l'agrégation. En effet, la stabilité de la silice colloïdale «Si-MEK» dépend fortement de son environnement (pH , force ionique, polarité du solvant ...) et semble s'effondrer en présence de DPG.
- Cette déstabilisation est directement visible à l'œil lorsqu'une goutte de solution hautement concentrée en DPG arrive dans le mélange SBR+silice+MEK. La silice semble précipiter rapidement et doit alors être redispersée mécaniquement pour éviter une séparation de phase complète. Pour les formulations les plus chargées, la préparation de films est même rendue impossible en présence de l'amine.
- Dans les cas ou la formation d'un composite est possible, il apparait clair que la DPG mène à la formation de gros agrégats denses, y compris en présence d'OCTEO. Le polymère fonctionnel semble toutefois pouvoir limiter le phénomène suggérant une compétition entre l'effet déstabilisateur (pas clairement identifié) et la catalyse du greffage induisant un potentiel répulsif entre les particules de silice.

A1.2.4. Effet de la Masse molaire

Le dernier effet susceptible d'influencer la structure des charges est la masse molaire du SBR employé. En effet, nous avons vu au chapitre 3 qu'elle jouait un rôle déterminant par le biais de la densité de fonctions D3 et imposait des limites de formulations en raisons des contraintes de couples à appliquer dans le mélangeur interne : des échantillons formulé avec une faible masse molaire ($40 \mathrm{~kg} / \mathrm{mol}$) devait être chargés suffisamment alors que ceux formés avec une masse importante ne pouvait pas accepter plus d'un certain taux de silice (280
$\mathrm{kg} / \mathrm{mol})$. Ce type de contrainte est retrouvé dans les échantillons modèles par le biais de la viscosité des mélanges en solvant. Nous avons montré que la concentration en polymère dans la 2-Butanone était un paramètre crucial quant à l'obtention de composites homogènes, or, pour des concentrations importantes, il devient difficile d'incorporer la silice, surtout si le mélange est visqueux (c.à.d. composé de SBR de masse molaire élevée). Dans cette section, nous traitons uniquement des polymères chargés à $10 \% \mathrm{v}$, sans DPG ni OCTEO. Les analyses DXPA ont bénéficié de la configuration Bonse-Hart permettant d'obtenir des informations à une plus grande échelle (plus petits angles).

Films (0 et 100\%D3)

Nous étudions ici deux séries de composites formulés avec 0 et 100% de SBR-D3. Les résultats DXPA sont présentés ci-dessous Fig.A1.24.

Figure A1.24: Impact de la masse molaire sur des composites chargés à $10 \% \mathrm{v}_{\mathrm{si}}$, a) $0 \% \mathrm{D} 3$ et c) $100 \% \mathrm{D} 3 \mathrm{~b})$ et d) facteurs de structures associés respectifs.

L'effet de la masse molaire sur les composites modèles apparait ici comme très fort. En particulier en présence de fonctions D3, on observe que la masse molaire décroissante mène à une agrégation de plus en plus importante. En effet, le composite formé avec du SBR-40 $\mathrm{kg} / \mathrm{mol}$ est caractérisé par une remontée en q^{-2} (nappes) et une intensité aux petits angles plus de dix fois supérieure à celles mesurées sur les 80 et $140 \mathrm{~kg} / \mathrm{mol}$ dans lesquels on obtient des pentes plus faibles et même un court plateau dans le cas de la masse molaire la plus
élevée. La présence de ce dernier est synonyme d'une agrégation moins forte générant des objets moins denses tels que des branches menant finalement à une structure plus homogène. Le rayon de ces agrégats bien définis par l'approximation de Guinier donne $\mathrm{R}_{\mathrm{G}}=23 \mathrm{~nm}(\approx 6$ billes).

On note que l'échantillon formulé avec le $S B R 280 \mathrm{~kg} / \mathrm{mol}$ a donné une séparation de phase (charge-polymère) rendant impossible une analyse de la structure à l'échelle microscopique.

Dans le cas du SBR-NF l'effet semble moins monotone, nous observons cependant le même écart entre les échantillons formulés avec $M=40 \mathrm{~kg} / \mathrm{mol}$ d'une part et $\mathrm{M}=80$ et 140 $\mathrm{kg} / \mathrm{mol}$ d'autre part, suggérant de fait que la masse molaire est bien un paramètre critique quant à la structure des charges. A $280 \mathrm{~kg} / \mathrm{mol}$, la structure semble être stabilisée de la même façon qu'à $140 \mathrm{~kg} / \mathrm{mol}$ à petite échelle puis montre une importante remontée (proche de q^{-3}) difficilement attribuable à la seule silice.

Ces nombreux résultats DXPA peuvent être corrélés à la microscopie électronique en transmission présentées Fig.A1.25 où nous avons étudié la série formulée avec le SBR NF. Les différents grossissements employé permettent ici de se faire une bonne idée quant à la structure multi-échelle du composite. En champ large, on observe très clairement les nappes présentes dans le $S B R 40 \mathrm{~kg} / \mathrm{mol}$ où de très nombreuses particules s'entassent sans réellement former de structure particulière. A $80 \mathrm{~kg} / \mathrm{mol}$, la structure est encore grossière mais l'on perçoit néanmoins un début d'arrangement des charges du fait de l'apparition plus fréquentes de zones de polymères purs et de l'amincissement des nappes formant ainsi des « branches épaisses» bien identifiables en zoomant. A $140 \mathrm{~kg} / \mathrm{mol}$, la structure de la silice apparait radicalement différente de celle observée à $40 \mathrm{~kg} / \mathrm{mol}$: les charges sont agrégées en fines branches réparties à travers tout l'échantillon et formant un réseau très homogène tombant en parfait accord avec les observations réalisées dans l'espace réciproque. Finalement, à 280 $\mathrm{kg} / \mathrm{mol}$, la structure en fines branches est retrouvée comme attendu, mais l'on observe en plus des zones moins bien définies où le contraste électronique est radicalement différent (ces zones ressortent beaucoup plus claires que le fond de l'image).

Comme expliqué précédemment, la remontée très forte de l'intensité aux petits angles dans cet échantillon peut difficilement être attribuée à un agrégat infiniment compact de silice, or, la présence de ces zones en microscopie permet de formuler l'hypothèse selon laquelle elles seraient responsables de ce phénomène. En effet, on imagine très bien qu'un contraste électronique différent en MEB puisse être corrélé avec un contraste électronique différent en DXPA, le SBR serait alors dans un état particulier dans ces zones. Nous remarquons de plus, que ces taches claires ne sont pas dispersées au hasard mais se trouvent à l'intérieur de gros agrégats pouvant suggérer les concepts de polymère occlus ou de couche vitreuse.

Etude en solvant :

Ces résultats mènent à poursuivre notre compréhension du système à travers la quantification des interactions SBR-silice en fonction de la masse molaire. Pour cela on se propose d'étudier la structure de la silice lorsqu'elle se trouve toujours en solvant (au début du séchage).

Figure A1.25 : Clichés MET des composites ($10 \% \mathrm{v}$) modèles formulés avec des SBR-NF de différentes masses molaires ($40,80,140,280 \mathrm{~kg} / \mathrm{mol}$)

On appelle ici《composite liquide» le mélange SBR-silice dans la 2-Butanone (Fig.A1.26). Nous nous intéressons dans ce cas à l'état de la silice en suspension en présence du polymère. Le protocole de production est identique à celui de tous les échantillons modèles mais l'étape de filmification (séchage) est supprimée.

Figure A1.26 : Schéma représentatif des échantillons «composites liquides »

Nous étudions pour deux masses molaires différentes du SBR (40 et $140 \mathrm{~kg} / \mathrm{mol}$), la structure de la silice colloïdale en fonction du taux de charge ($0.55,1.1,2.7$ et $5.7 \% \mathrm{v}$). La fraction volumique en polymère dans le solvant est fixée à $R_{p}=8 \% \mathrm{v}$, représentative de la formulation utilisée pour la production des composites. Les résultats DXPA de ces suspensions placées dans des capillaires sont présentées ci-après Fig.A1.27.

Figure A1.27 : Evolution de la structure de «composites liquides» en fonction du taux de charge pour deux masses molaires de SBR différentes, a) $140 \mathrm{~kg} / \mathrm{mol}$ et c) $40 \mathrm{~kg} / \mathrm{mol}$ - b) et d) facteur de structure associés respectifs révélant l'influence de $\Phi_{\text {si }}$ sur la position du pic de répulsion.

Comme la silice Si-MEK est stable, on s'intéresse particulièrement à l'emplacement du pic de répulsion caractéristique de la distance entre les objets et à son évolution en fonction du taux de charge. Ici, un pic se déplaçant vers les grands angles suggère un abaissement de la distance inter-objets (par exemple quand on ajoute des particules) alors qu'un pic se déplaçant vers les petits angles suggère l'agrégation de ces objets élémentaires (les centres de masses des agrégats sont alors séparés par une plus grande distance). L'expérience montre que pour les deux masses molaires, la distance entre les objets diminue puis stagne et augmente (cf. facteurs de structure).

A partir du modèle cubique (Fig.A1.5) il est alors possible d'évaluer le nombre d'agrégation moyen des objets présents dans la solution. En faisant cette analyse sur les deux séries de composites liquides (40 et $140 \mathrm{~kg} / \mathrm{mol}$) nous pouvons déterminer qualitativement l'impact des différents polymères sur la silice (Fig.A1.28).

Une étude quantitative via des théories plus complexes telles que PRISM [92] peut être effectuée en calculant, par exemple, le paramètre d'interaction $\varepsilon_{p c}$.

Figure A1.28 : Evolution du nombre d'agrégation en fonction du taux de charge dans les «composites liquides » avec une concentration en SBR de 8% (calcul selon modèle cubique)

De la même façon que dans les films composites, il semble que l'agrégation soit beaucoup plus importante dans les échantillons formulés avec une petite masse molaire. Ces observations ne doivent pas être corrélées avec les expériences menées sur les échantillons industriels simplifiés dans lesquels l'agrégation des charges était contrôlée par la densité de fonctions D3 (l'agrégation diminuait avec les petites masses molaires du fait de $\rho_{D 3}$), ici, une physique différente est à considérer, celle des colloïdes.

La viscosité du mélange est une piste intéressante pour expliquer l'agrégation d'un point de vue cinétique. En effet, la fraction volumique en polymère étant identique, les viscosités des composites liquides formulés avec des SBR de masses molaires différentes sont nécessairement différentes (loi de Mark-Houwink [3]). Il est alors aisé d'imaginer que dans un milieu plus visqueux, le coefficient de frottement particule/environnement est plus élevé, ralentissant de fait le mouvement des objets responsable de l'agrégation.

Ce raisonnement peut également être utilisé pour expliquer les observations faites en section A1.1: une concentration plus élevée de polymère dans le mélange à sécher permet la production de composite aux structures plus homogènes, au contraire une séparation de phase intervient pour des valeurs de R_{p} trop faibles.

Un autre phénomène est susceptible de jouer un rôle important : la déplétion [137]. En effet, la différence de structure est surtout visible entre les échantillons formulés avec le SBR-40 $\mathrm{kg} / \mathrm{mol}$ et les autres (relativement proches) suggérant que la petite taille du polymère favorise l'apparition d'un potentiel attractif de déplétion. En bon solvant (MEK), une mesure complémentaire de DNPA de la taille de la pelote serait nécessaire pour conclure. En fondu, le rayon de giration du SBR- $40 \mathrm{~kg} / \mathrm{mol}$ a été mesuré à 8.5 nm (Thèse de A. Bouty, LLB, 2013), soit bien inférieur au rayon des particules de silice ($\approx 14 \mathrm{~nm}$) pouvant ainsi générer un potentiel de déplétion. La même mesure faite sur le SBR-140 $\mathrm{kg} / \mathrm{mol}$ donne 13 nm (Fig.A1.29), rayon identique aux particules de silice excluant à priori un potentiel de cette nature.

Figure A1.29 : Mesure DNPA du facteur de forme des chaînes des SBR. Le contraste est généré par le marquage isotopique d'une partie des chaines D3 - En bleu : 90% SBR-D3 (H) $+10 \%$ SBR-D3(D) -

En rouge : 90% SBR-NF (H) $+10 \%$ SBR-D3 (D) - Les données sont ajustées avec un modèle de Debye permettant d'extraire le rayon de giration $\mathrm{R}_{\mathrm{g}}=13 \mathrm{~nm}$.

A1.2.5. Scission des films pendant le séchage

Il est arrivé que les composites hautement chargés ($\Phi_{\mathrm{si}}=20 \% \mathrm{v}$) se scindent en deux parties dans le plan du film. Ce phénomène est dû au séchage rapide de la couche de mélange à la surface du moule générant la formation d'une «coque» composite dure suspendue alors que le reste du mélange continue de sécher normalement. Le taux de charge dans les deux parties de chaque film ainsi formé a été mesuré en ATG, les résultats sont systématiquement identiques et très proches du taux de charge nominal. La structure de la silice a toutefois été comparée en DXPA et les résultats sont donnés à titre indicatif Fig.A1.30.

Figure A1.30: DXPA - Structure des parties hautes (top) et basses (bottom) des films composites hautement chargés ($\Phi_{\mathrm{si}}=20 \% \mathrm{v}$) ayant subi une scission. $\mathrm{M}=140 \mathrm{~kg} / \mathrm{mol}$ a) $0 \% \mathrm{D} 3$, b) $25 \% \mathrm{D} 3$, c) 100% D3.

Pour chaque échantillon, les structures des parties hautes et basses ne sont pas très différentes. Nous remarquons tout de même que si à 0 et $25 \% \mathrm{D} 3$, un changement de morphologie est visible, à 100% D3 les deux parties du film semblent être identiques. Ce résultat, bien que qualitatif, suggère une fois de plus la meilleure stabilité de la silice en présence de polymère greffé.

A1.3. Nanocomposites formulés avec du SBR H/D

Nous nous proposons ici d'utiliser une formulation à base de SBR hydrogéné et deutéré pour observer les conformations de chaînes dans les composites. Nous commencerons par décrire l'état de la silice dans de tels mélanges (conditions ZAC : $50 \% \mathrm{SBR}(\mathrm{H})+50 \% \mathrm{SBR}(\mathrm{D})$) puis par étudier la structure du polymère (section 2.3.4.).

A1.3.1. Structure de la silice (DXPA)

La figure A1.31 présente les résultats de diffusion des rayons X aux petits angles pour deux séries de mélanges dans lesquelles le taux de charge est varié de 5 à $15 \% \mathrm{v}$, et où la matrice satisfaisant les conditions de contraste moyen nul (neutrons) est composée de SBR-D3 deutéré et respectivement de SBR-NF et SBR-D3 hydrogénés. Dans les deux cas, la remontée monotone $\left(I \sim q^{-1.5}{ }^{\text {à -1.6 }}\right)$ observée jusqu'aux très petits angles indique une forte agrégation des particules de silice alors que la décroissance du signal avec le taux de charge est due à la baisse de la compressibilité isotherme de même que précédemment. En outre, le type de matrice ne semble pas jouer de rôle significatif suggérant la formation de systèmes instables (très agrégés) possiblement causée par le procédé de fabrication et les interactions avec polymère deutéré (cf. section suivante).

Figure A1.31: DXPA - composites modèles contenant 5,10 et $15 \% \mathrm{v}_{\text {si }}$ dans une matrice composé de a) SBR-NF (H) + SBR-D3(D) et b) SBR-D3(H) + SBR-D3(D)

A1.3.2. Structure du polymère dans les composites (DNPA)

Les mélanges H / D permettent d'établir un contraste entre les chaînes et ainsi de remonter à des grandeurs caractéristiques telles que leur rayon de giration.

La figure A1.32 présente les mêmes séries d'échantillons (ZAC) que dans la section précédente sondées cette fois ci avec des neutrons. Ici la pente en q^{-2} observée aux grands angles est caractéristique des chaînes polymères (dimension fractale) alors que la remontée aux petits angles indique la présence de domaines de taille importante ayant des contrastes différents. Cette dernière observation est typique de la répulsion entre chaînes H et D lorsque le paramètre d'interaction dépasse sa valeur critique χ_{s} (équation 2.31). En effet, aussi bien dans la matrice pure que dans les composites, nous assistons à une séparation de phase H/D pour les SBR de masse molaire $140 \mathrm{~kg} / \mathrm{mol}$.

Ce cas de figure est différent de la mesure présentée Fig.A1.29 où le SBR deutéré est très minoritaire (10%) ce qui limite la formation de domaines importants et rend possible l'ajustement des données par le modèle de Debye. Nous noterons finalement que l'intensité diffusée remonte plus fortement dans le cas des composites que dans la matrice alors que la silice est supposée être masquée (conditions ZAC). Cela est probablement dû à la forte agrégation des charges (Fig.A1.31) en plus de la séparation de phase du polymère. Ces deux phénomènes, probablement liés, mènent ainsi à des fluctuations importantes de la densité de longueurs de diffusion dans l'échantillon.

Figure A1.32 : DNPA - composites modèles contenant 5, 10 et $15 \% \mathrm{v}_{\mathrm{si}}$ dans une matrice composé de a) SBR-NF (H) + SBR-D3(D) et b) SBR-D3(H) + SBR-D3(D)

La condition de contraste moyen nul est atteinte pour 50% de $\operatorname{SBR}(H)+50 \%$ de $\operatorname{SBR}(\mathrm{D})$

Finalement, il n'aura pas été possible d'étudier l'impact de la silice ou du greffage sur les chaînes de SBR en raison de l' instabilité du système, cette dernière peut être réduite en diminuant la masse molaire des polymères H et D pour optimiser leur paramètre d'interaction (Thèse A Bouty avec $M=$ $40 \mathrm{~kg} / \mathrm{mol}$).

A1.4. Propriétés mécaniques

Une fois la structure des échantillons modèles définie et les paramètres importants de la formulation identifiés, on s'intéresse à leurs propriétés mécaniques. Cette partie regroupe un petit nombre de mesures effectuées en rhéologie linéaire (Lab. Charles Coulomb) et une mesure de DMA (Halle).

A1.4.1. Impact du taux de charge

L'impact du taux de charge a été étudié sur des composites formulés avec 100% de SBR-D3, le résultat est présenté Fig.A1.33.

Figure A1.33 : Rhéologie - Impact du taux de charge sur les composites modèles formulés avec 100\% de SBR-D3 (sans DPG) a) données brutes - b) données normées au plateau de la matrice (inset : β pente du régime terminal)

Il apparaît clair que ces expériences ne mènent pas au résultat attendu. En effet, le module au plateau ne suit pas une tendance monotone, en particulier pour l'échantillon chargé à $5 \% \mathrm{v}$, le renforcement est inférieur à 1 . Aussi, nous avons choisi de normaliser les différentes mesures en les «recollant» sur la matrice pour observer l'impact de la silice sur l'écoulement (G'à basse fréquence). La tendance est très claire, comme dans le cas des échantillons industriels simplifiés, une augmentation du taux de charge tend à ralentir voire à éliminer l'écoulement (10 et $20 \% \mathrm{v}$) suggérant la formation d'un réseau percolé entre 5 et $10 \% \mathrm{v}$ pour un SBR 100% D3.

En représentant le rapport G " $/ \mathrm{G}^{\prime}$ ($\tan \delta$) pour ces échantillons (et donc s'affranchir du niveau absolu des mesures) on obtient cette fois un résultat attendu: tan δ décroit significativement avec le taux de charge montrant de fait que le matériau voit son caractère élastique amplifié (Fig.A1.34).

Figure A1.34 : tan δ pour des composites modèles chargés entre 0 et $20 \% \mathrm{v}$

A1.4.2. Impact du taux de SBR-D3

De la même façon nous avons étudié l'impact du greffage sur le comportement mécanique des composites chargés à 10 et $20 \% \mathrm{v}_{\text {si }}$ respectivement en rhéologie linéaire plateau-plateau et en DMA.

On rappelle ici qu'aux chapitres 4 et 6 nous avons observé une diminution du module au plateau avec le taux de SBR-D3 dans les composites industriels simplifiés. Cette baisse a été interprétée via le changement important de structure de la silice depuis une organisation hétérogène menant à la création d'un réseau percolé $(0 \% \mathrm{D} 3)$ vers une meilleure dispersion des agrégats $(100 \% \mathrm{D} 3)$. Les résultats issus des échantillons modèles présentés figure A1.35 présentent une tendance inverse. En effet, le module au plateau croît de façon monotone avec le taux de SBR fonctionnel suggérant ici aussi un changement important de structure des charges tel que présenté précédemment figure A1.14. Nous pensons que dans ce cas de figure, le SBR-D3 favorise la formation d'un réseau régulier d'agrégats filaires dont le paramètre de maille est caractérisé en DXPA et visible en MET (Fig.A1.15). L'augmentation du module de perte visqueuse est moins marquée que celle du module de stockage signifiant qu'ici encore le matériau voit son caractère élastique renforcé ($\tan \delta$ non représenté).

Figure A1.35 : a) G' pour des composites chargés à $10 \% \mathrm{v}$ contenant de 25 à 100% de $\mathrm{SBR}-\mathrm{D} 3, \mathrm{~b}) \mathrm{G}$ ' correspondants

A $20 \% \mathrm{v}$, les échantillons ont des modules trop importants pour être mesurés en rhéologie, on utilise donc une géométrie à mors (DMA) pour effectuer la mesure (variation de température de -80 à $+80^{\circ} \mathrm{C}$ à 10 Hz). La figure A 1.36 présente les résultats G^{\prime} et G " pour trois échantillons contenant respectivement 0,50 et 100% de polymère fonctionnel. Comme dans le cas précédent, une forte augmentation du module au plateau est notée, on atteint même ici un renforcement de l'ordre de 70 pour le composite formulé avec 100% de SBR-D3 !

Figure A1.36 : DMA- échantillons modèles chargé à 20% contenant 0,50 et 100% de SBR-D3
a) G^{\prime}, b) G" - (normalisation de G' et G" au maximum de G"')

De même qu'à 10%, les composites voient leur module au plateau croitre avec le taux de polymère fonctionnel permettant d'atteindre des renforcements bien supérieurs aux matériaux industriels simplifiés ayant les mêmes compositions. La structure de la silice paraît être le paramètre influençant le plus les propriétés mécaniques mais dans ce cas là nous pouvons légitimement nous questionner quant à l'impact de l'évolution de la conformation des chaînes avec le greffage. Comme expliqué au chapitre 1, une forte densité de greffage impacte l'entropie du système (étirement des chaînes) ce qui pourrait avoir tendance à augmenter leur force de rappel lors de la sollicitation en DMA et ainsi faire croitre significativement le module élastique du composite. Cette interprétation n'a pas pu être vérifiée dans cette thèse, un moyen de le faire serait une mesure du rayon de giration des chaînes en diffusion de neutrons aux petits angles avec un SBR plus court ($40 \mathrm{~kg} / \mathrm{mol}$) afin d'éviter la démixtion des espèces H et D .

A1.4.3. Impact de la masse molaire

Une seule série de trois échantillons a pu être mesurée en DMA (traction - 1 Hz) afin d'observer l'effet de la masse molaire sur les propriétés mécaniques des échantillons modèles (Fig.A1.37). Ici le SBR n'est pas fonctionnalisé, on s'affranchira donc d'hypothèses quant au greffage. Nous rappelons que les clichés MET correspondants à ces composites sont présentés figure A1.24. Dans ce cas la bonne dispersion de la silice (140 et $280 \mathrm{~kg} / \mathrm{mol}$) semble occasionner un renforcement plus faible qu'une forte agrégation ($40 \mathrm{~kg} / \mathrm{mol}$).

A haute température, l'écoulement intervient plus tôt pour les petites masses molaires d'où le «croisement » des trois courbes E' entre 10 et $80^{\circ} \mathrm{C}$ et la présence de pics de E" observés à 20 et $70^{\circ} \mathrm{C}$.pour les composites contenant respectivement du SBR 40 et $140 \mathrm{~kg} / \mathrm{mol}$.

Figure A1.37 : DMA (1 Hz) -échantillons modèles chargé à 10% v formulés avec du SBR-0D3 de 40, 140 et $280 \mathrm{~kg} / \mathrm{mol}$, a) E^{\prime}, b) E"

Nous relevons en outre, un décalage de la transition vitreuse d'environ $5^{\circ} \mathrm{C}$ dans le cas du composite formulé avec le SBR $40 \mathrm{~kg} / \mathrm{mol}$ et un pic secondaire (E ") à $-20^{\circ} \mathrm{C}$ dans le composite $280 \mathrm{~kg} / \mathrm{mol}$. Cette dernière observation est particulièrement intéressante et peut être corrélée avec les images MET (Fig.A1.25) dans lesquelles nous avons remarqué des zones sensiblement plus claires dans les agrégats de silice suggérant un état différent du polymère. Ici, le décalage d'une vingtaine de degré de la température de transition vitreuse pourrait être en accord avec un possible état vitreux des chaînes confinées.

Annexe 2 :
Autres résultats sur les nanocomposites industriels simplifiés

A2. Autres résultats sur la structure des échantillons industriels simplifiés

Cette courte annexe reprend plusieurs expériences menées en parallèle du plan d'expérience d'origine afin de répondre à de simples questions avec rapidité.

A2.1. La silice modèle (Ludox TM40 - Aldrich) peut elle être utilisée dans le mélangeur interne?

Nous nous proposons ici de sécher la suspension de silice colloïdale pour obtenir 10 g de silice que nous incorporons de la même façon que la silice Rhodia dans le mélangeur interne selon le protocole Michelin (chapitre 2). La figure A2.1 présente les spectres DXPA de deux échantillons ayant la même formulation mais un type de silice différent.

Figure A2.1 : DXPA - Echantillons formulés avec du SBR $140 \mathrm{~kg} / \mathrm{mol} 50 \%$ D3 chargés à $10 \% \mathrm{v}$ avec la silice Rhodia Zeosil 1165MP et la silice provenant de la suspension colloïdale Ludox TM40.

La différence de structure est très importante. Cette expérience met en avant le fait que la silice Rhodia soit hautement dispersible. En effet, il apparaît très clairement un pic de structure (touche-touche) dans le composite chargé avec la Ludox signifiant que les billes de silice se sont agrégées très fortement, la remontée importante de l'intensité aux petits angles ainsi que le «trou» de corrélation du facteur de structure autour de $q=110^{-2} \AA^{-1}$ en sont d'autres indications. On remarque également les oscillations du facteur de forme de la bille aux petits angles.

Selon toute vraisemblance, un cliché MET de cet échantillon montrerait une structure très hétérogène composée de silice regroupée en gros objets et de polymère pur. En conclusion, il n'est évidemment pas possible d'utiliser n'importe quel type de silice dans le procédé de fabrication Michelin.

A2.2. De légères différences de température dans le mélangeur interne influent elles sur la structure de la silice dans le composite?

De nombreuses formulations d'échantillons ont été réalisées dans cette thèse et il n'a pas toujours été facile de reproduire exactement le protocole de mélangeage en respectant la température d'arrivée (utile au greffage par exemple). Deux échantillons strictement identique d'un point de vue formulation mais fabriqués à des températures légèrement différentes (130 et $160^{\circ} \mathrm{C}$) ont donc été analysés en DXPA (Fig.A2.2).

Figure A2.2: DXPA - Impact de la température finale sur la structure des composites. $30^{\circ} \mathrm{C}$ de différence à l'arrivée ne semble vraisemblablement pas avoir d'influence sur l'organisation des charges dans des échantillons aux formules identiques.

A2.3. La structure des charges à l'échelle microscopique dans des échantillons dilués en phase solide est elle affectée par le nombre de passage aux mélangeurs externe ou interne ?

Le protocole Michelin fixé dans ces travaux comprend 12 passages au mélangeur externe à la suite du mélange effectué au mélangeur interne. Ici nous avons essayé de diluer un composite en phase solide en ajoutant dans le mélangeur externe du SBR pur jusqu'à atteindre 1% v en silice et d'observer des changements potentiels de structure avec le nombre de passage (12 ou $50)$. La figure A2.3a présente le résultat de cette expérience.

Ce type d'échantillon peut être associé au cliché MET (Fig.2.4) où la dilution en phase solide n'a pas été réussie, la structure à l'échelle des agrégats demeurant inchangée.

De même, nous avons essayé de diluer un composite déjà formé en le mélangeant avec du SBR pur dans le mélangeur interne. Dans ce cas de figure le couple appliqué au mélange est très bas (taux de charge insuffisant), et, même si la silice est dispersée à grande échelle (homogénéisation visible à l'œeil), elle ne l'est pas à l'échelle des objets qui nous intéresse. La figure A2.3b montre que cette méthode n'est pas plus efficace que l'emploi du mélangeur externe pour séparer les objets à l'échelle microscopique.

Annexe 2

Figure A2.3 : DXPA - a) Impact du nombre de passage au mélangeur externe sur la structure de la silice dans un composite «dilué », b) comparaison des dilutions effectuées au mélangeur externe (M.E.) et mélangeur interne (M.I.).

Annexe 3 :
Pourcentage élastomère

A3. Pourcentage élastomère

De manière générale en caoutchouterie, la formulation des échantillons est basée sur l'unité de masse appelé «pourcentage élastomère» (pce) ou «parts per hundred» (phr) en anglais qui fait référence à la quantité de polymère incorporé dans le mélange. Ainsi, on considère quelque soit la formulation, 100 parts massique de polymère, les quantités des autres composants étant exprimés relativement à ces 100 pce sont liées aux fractions massique et volumique par les relations suivantes :

Soit un ingrédient 《 i »:

$$
\begin{equation*}
\frac{\text { pce }_{\text {polymère }}}{\text { pce }_{i}}=\frac{M_{\text {polymère }}}{M_{i}} \rightarrow \text { pce }_{i}=\frac{100 M_{i}}{M_{\text {polymère }}} \tag{A3.1}
\end{equation*}
$$

De la même façon on définit pce $_{\mathrm{v}_{\mathrm{i}}}$ le nombre de part volumique relatif à pce e_{i}, les deux grandeurs n'ont pas la même unité.

$$
\begin{equation*}
\text { pce }_{\mathrm{v}_{\mathrm{i}}}=\frac{\text { pce }_{\mathrm{i}}}{\rho_{\mathrm{i}}}=\frac{100 \mathrm{~V}_{\mathrm{i}}}{\mathrm{M}_{\text {polymère }}} \tag{A3.2}
\end{equation*}
$$

ρ_{i} : Densité massique du composant i
V_{i} : Volume de l'ingrédient i

De cette façon on peut déterminer les fractions massiques (x_{i}) et volumiques (Φ_{i}) de chaque composant du mélange :

$$
\begin{equation*}
\% w_{i}=x_{i}=\frac{\text { pce }_{i}}{\sum_{\mathrm{i}} \mathrm{pce}_{\mathrm{i}}} \quad \% \mathrm{v}_{\mathrm{i}}=\Phi_{\mathrm{i}}=\frac{\mathrm{pce}_{\mathrm{v}_{\mathrm{i}}}}{\sum_{\mathrm{i}} \mathrm{pce}_{\mathrm{v}_{\mathrm{i}}}} \tag{A3.3}
\end{equation*}
$$

$\sum_{\mathrm{i}} \mathrm{pce}_{\mathrm{i}}$: On parle de «Poids » total de la formule
Finalement, connaissant le volume de la chambre ($\mathrm{V}_{\text {mél }}$) dans laquelle le mélange est réalisé et son taux de remplissage optimal (α_{mel}) d'une part et les densités de chaque ingrédient d'autre part, on peut calculer la masse de chaque ingrédient à insérer dans le mélangeur pour obtenir la formulation désirée en fonction de la fraction volumique en ingrédient i:

$$
\begin{equation*}
\mathrm{M}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \rho_{\mathrm{mél}} V_{\text {mél }} \alpha_{\text {mél }} \tag{A3.4}
\end{equation*}
$$

$\rho_{\mathrm{mél}}$: Masse volumique du mélange des i ingrédients
Avec :

$$
\begin{equation*}
\mathrm{x}_{\mathrm{i}}=\Phi_{\mathrm{i}} \frac{\rho_{\mathrm{i}} \sum_{\mathrm{i}} \mathrm{pce}_{\mathrm{v}_{\mathrm{i}}}}{\sum_{\mathrm{i}} \mathrm{pce}_{\mathrm{i}}} \quad \quad \rho_{\mathrm{mél}}=\sum_{\mathrm{i}} \rho_{\mathrm{i}} \Phi_{\mathrm{i}} \tag{A3.5}
\end{equation*}
$$

Annexe 4 :
Contraste en diffusion du rayonnement

A4. Contraste en diffusion du rayonnement

A4.1. Généralités

Dans une expérience de diffusion aux petits angles, l'intensité diffusée par les objets est fonction de plusieurs paramètres propres au système étudié. Son expression est proportionnelle au facteur de forme $\mathrm{P}(\mathrm{q})$ normé par définition à 1 . Dans le cas de particules n'interagissant pas, l'expression de l'intensité diffusée en fonction du vecteur d'onde q est donnée par :

$$
\begin{equation*}
\frac{\mathrm{d} \sigma(\mathrm{q})}{\mathrm{d} \Omega}=\mathrm{I}(\mathrm{q})=\Phi \Delta \rho^{2} \mathrm{~V}_{0} \mathrm{P}(\mathrm{q}) \tag{A4.1}
\end{equation*}
$$

$\Delta \rho^{2}$ représente le contraste entre les phases. Sa nature varie en fonction de la sonde utilisée (cf. partie B). Le contraste dépend des caractéristiques physico-chimiques de chaque phase.
V_{0} représente le volume de l'objet diffusant considéré.
Φ (fraction volumique) représente le volume global des objets diffusant par rapport au volume total de l'échantillon. Ce paramètre est typiquement mesuré par ATG dans les composites à matrices polymère. On le note souvent: $\Phi=\mathrm{V}_{0} \mathrm{~N} / \mathrm{V}$, où N est le nombre de particules.

A4.2. Contraste de diffusion

Le contraste entre deux phases s'exprime en fonction des densités de longueurs de diffusion ρ_{i} de ces dernières, elles mêmes dépendantes de la sonde utilisée et des caractéristiques physicochimiques des espèces considérées. De façon générale on écrit :

$$
\begin{equation*}
\Delta \rho^{2}=\left(\rho_{1}-\rho_{2}\right)^{2} \tag{A4.2}
\end{equation*}
$$

Avec:

$$
\begin{equation*}
\rho=\frac{1}{v} \sum_{i} b_{i} \tag{A4.3}
\end{equation*}
$$

Où b_{i} représente la longueur de diffusion cohérente de tous les atomes (ou nucléons) dans un «monomère» de la phase considérée et où la somme couvre l'ensemble des atomes (ou nucléons).
Dans chaque cas (c'est à dire pour chaque sonde), on pourra expliciter le calcul de la densité de longueur de diffusion en fonction des objets diffusant le rayonnement considéré.

En diffusion aux petits angles, il existe trois grands types de sondes que sont la lumière, les rayons-X et les neutrons froids (d'énergie $\approx 1 \mathrm{meV}$), on parle respectivement d'expérience SALS, SAXS ou SANS pour Small Angle Light/X-ray/Neutrons Scattering. Le calcul théorique du contraste dans chaque cas est explicité ci après.

A4.2.1. Contraste neutronique

La densité de longueur de diffusion neutronique (en Diffusion de Neutrons aux Petits angles) s'exprime :

$$
\begin{equation*}
\rho_{\mathrm{N}}=\frac{\sum \mathrm{N}_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}}}{v} \tag{A4.4}
\end{equation*}
$$

Avec:
ρ_{N} : La densité de longueur de diffusion $\left(\mathrm{cm}^{-2}\right)$
N_{i} : Le nombre d'atomes de type i présent dans l'espèce considérée (\varnothing)
v : Le volume moléculaire de l'espèce $\left(\mathrm{cm}^{3}\right)$
b_{i} : La longueur de diffusion de l'atome de type i présent dans l'espèce $\left(\mathrm{cm}^{1}\right)$
Le contraste neutronique est dépendant de la géométrie des espèces considérées et du nombre de nucléons présents dans leurs noyaux via le paramètre $\mathbf{b}_{\mathbf{i}}$. Cette caractéristique rend très intéressante l'utilisation de la DNPA et permet de faire varier le contraste en utilisant des isotopes. Dans cette thèse, on peut notamment masquer la contribution de la silice pour faire ressortir celle des chaînes de SBR en utilisant la méthode «Zero Average Contrast».

Ici, les densités de longueurs de diffusions considérées sont principalement celles de la silice et du SBR valant respectivement $3.64 * 10^{10}$ et $6.52^{*} 10^{9} \mathrm{~cm}^{-2}$ (pondération styrène/butadiène), soit un contraste neutronique égal à $8.93^{*} 10^{20} \mathrm{~cm}^{-4}$.

A4.2.2. Contraste électronique

De même qu'en diffusion de neutrons, on peut exprimer en diffusion de rayons- X aux petits angles (DXPA) un contraste électronique entre deux phases dont les densités de longueurs de diffusion se calculent comme:

$$
\begin{equation*}
\rho_{\mathrm{X}}=\frac{\mathrm{b}_{\mathrm{e}}}{v} * \sum \mathrm{Z}_{\mathrm{i}} \mathrm{~N}_{\mathrm{i}} \tag{A4.5}
\end{equation*}
$$

Avec :
$\rho_{\mathrm{X}}:$ La densité de longueur de diffusion électronique $\left(\mathrm{cm}^{-2}\right)$
N_{i} : Le nombre d'atomes de type i présent dans l'espèce considérée (\varnothing)
v : Le volume moléculaire de l'espèce $\left(\mathrm{cm}^{3}\right)$
b_{e} : La longueur de diffusion de l'électron $=2.85^{*} 10^{-13}\left(\mathrm{~cm}^{1}\right)$, on parle aussi de rayon de l'électron ou rayon de Thomson exprimé comme $r_{e}=e^{2} / 4 \pi \varepsilon_{0} m_{e} c^{2}$
Z_{i} : Le numéro atomique de l'atome i constituant l'espèce considérée (\varnothing)
Contrairement au contraste neutronique, le contraste électronique est dépendant de la densité électronique des espèces mises en jeu.

Les densités de longueur de diffusion calculée pour la silice et le SBR donnent respectivement : $1.97^{*} 10^{11}$ et $8.78^{*} 10^{10} \mathbf{c m}^{-2}$, soit un contraste de $\mathbf{1 . 2 0} \mathbf{N a}^{\mathbf{2 2}} \mathrm{cm}^{-4}$.

A4.2.3. Contraste lumineux

En diffusion statique de la lumière, le principe de l'expérience est identique aux deux premiers cas. On utilise cette fois des photons fournis par une source laser sensibles aux différences d'indice de réfraction dans l'échantillon. La densité de longueur de diffusion se calcule à partir de (A4.3) en prenant :

$$
\begin{equation*}
\mathrm{b}_{\mathrm{i}}=\frac{2}{\lambda^{2}} \frac{\mathrm{M}}{\mathcal{N}_{\mathrm{A}}} \mathrm{n}_{\mathrm{s}}\left(\frac{\mathrm{dn}}{\mathrm{dc}}\right) \tag{A4.6}
\end{equation*}
$$

Avec :
λ : La longueur d'onde du rayon lumineux (cm)
\mathcal{N}_{A} : La constante d'Avogadro (mol^{-1})
M: La masse molaire du «monomère» constituant les particules ($\mathrm{g} . \mathrm{mol}^{-1}$)
n_{s} : L'indice de réfraction du solvant (\varnothing)
$\frac{\mathrm{dn}}{\mathrm{dc}}$: L'évolution de l'indice de réfraction en fonction de la concentration en particules pour le couple particule-solvant considéré $\left(\mathrm{cm}^{3} \cdot \mathrm{~g}^{-1}\right)$

Le polymère utilisé dans ces travaux n'étant pas transparent, aucune expérience en diffusion statique de la lumière n'a été effectuée.

A4.3. Calcul de densité de longueur de diffusion pour un copolymère statistique

Lors des travaux effectués en diffusion, la microstructure de notre polymère a été prise en compte afin de calculer le plus précisément possible sa densité de longueur de diffusion. Pour un copolymère statistique les expressions présentées précédemment se compliquent légèrement et donnent :

$$
\begin{equation*}
\rho_{\text {copo }}=\frac{\sum \varphi_{\mathrm{i}} \sum \frac{\mathrm{~b}_{\mathrm{i}} \mathrm{~N}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{i}}}}{\sum \frac{\varphi_{\mathrm{i}}}{\mathrm{~d}_{\mathrm{i}}}} \mathcal{N}_{\mathrm{A}} \tag{A4.7}
\end{equation*}
$$

Avec :
$\rho_{\text {copo }}$: La densité de longueur de diffusion du copolymère $\left(\mathrm{cm}^{-2}\right)$
φ_{i} : La fraction en nombre de l'unité de répétition $\mathrm{i}(\varnothing)$, par exemple styrène ou butadiène.
M_{i} : La masse molaire de l'unité de répétition $\mathrm{i}\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$
d_{i} : La masse volumique de l'unité de répétition i , égale à celle du polymère associé ($\mathrm{g} . \mathrm{cm}^{-2}$)

A4.4. Détermination expérimentale de la densité de longueur de diffusion d'un composé par variation de contraste (DNPA)

Comme expliqué précédemment, les sondes utilisées en diffusion de rayonnement aux petits angles sont sensibles à différentes caractéristiques de l'échantillon analysé. Dans le cas des neutrons, c'est la différence de densité de nucléons qui détermine le contraste entre deux espèces. Il est possible de jouer sur ce paramètre via la substitution isotopique, qui, typiquement, consiste à remplacer dans le polymère, les atomes d'hydrogène (1 nucléon) par des atomes de deutérium (2 nucléons). Ainsi, en faisant varier le rapport H/D, et donc la densité de longueur de diffusion du polymère, le contraste neutronique peut être modifié à travers une large gamme.

Il est important de noter que le contraste électronique (DXPA) n'est pas sensible à cette substitution puisque le nombre d'électrons par atome reste constant. Le signal mesuré n'est donc à priori pas modifié que l'on soit en présence de polymère H ou de polymère D .

Dans le cas des polymères hydrocarbonés, la substitution isotopique se fait à partir de monomères deutérés et donne lieu à des châ̂nes de même structure mais ayant une densité de nucléons très différente. Il est aussi possible dans certains cas de former des macromolécules «hybrides» contenant de l'hydrogène et du deutérium pour obtenir des densités de longueur de diffusion intermédiaires.

Nous avons vu dans la section précédente que les densités de longueur de diffusion pouvaient être calculées par la théorie, il n'en demeure pas moins important de les mesurer en utilisant la variation de contraste. Dans le cas du SBR, nous avons utilisé des solutions de cyclohexane H et D afin de déterminer expérimentalement la densité de longueur de diffusion du polymère hydrogéné et de son homologue deutéré. De façon pratique, il suffit de mesurer l'intensité diffusée par le mélange SBR / cyclohexane H - cyclohexane D en fonction du ratio H/D dans le solvant (ou de la densité de longueur de diffusion correspondante) et d'extrapoler jusqu'à un niveau d'intensité diffusée nul «masquer le polymère».

$$
\lim _{\rho_{\text {solvant }} \rightarrow \rho_{\text {SBR }}} \pm\left(\sqrt{I\left(\rho_{\text {solvant }}\right)}\right)^{2}=0 \mathrm{~cm}^{-1}
$$

Dans l'équation précédente, si la différence des densités de longueur de diffusion du solvant et du polymère est positive, on prend (+), si elle est négative (-). Un exemple de mesure est donné ci-dessous pour le SBR-D3 deutéré. La figure A4.1a présente les intensités diffusées par les chaînes de SBR-D3 deutéré dans trois mélange de cyclohexane H et D (respectivement 20,40 et 60% de cyclohexane H). Une fois la contribution incohérente soustraite, on retrouve un signal évoluant en q^{-2} caractéristique d'une châ̂ne Gaussienne, il est alors possible de relever les valeurs de l'intensité à plusieurs transferts de quantité de mouvement (ici: $\mathrm{q}_{1}, \mathrm{q}_{2}$, q_{3}) et tracer leur évolution en fonction de la densité de longueur de diffusion du solvant (Fig.A4.1b). En théorie les extrapolations linéaires provenant des trois séries de données doivent se croiser et couper l'axe des abscisses à la valeur recherchée pour le SBR-D3 deutéré. Ici la valeur déterminée par le calcul $\left(4.7710^{10} \mathrm{~cm}^{-2}\right)$ et celle trouvée expérimentalement (5.95 $10^{10} \mathrm{~cm}^{-2}$) ne sont pas en parfait accord, l'erreur vient probablement des hypothèses faites quant à la structure du SBR via l'équation (A4.7).

Figure A4.1 : Variation de contraste, a) Intensité diffusée par les chaînes de SBR-D3 deutéré pour différents ratio de cyclohexane $\mathrm{H} / \mathrm{D}, \mathrm{b}$) détermination de la densité de longueur de diffusion à partir de trois relevés effectués à des valeurs de q différentes - dans le cas idéal les trois extrapolations se croisent en $\mathrm{I}(\mathrm{q})=0$ et donnent précisément la valeur recherchée. On notera ici que les densités de longueur de diffusion des solvants sont systématiquement inférieures à celle du SBR-D3 deutéré ce qui ne permet pas d'avoir de points expérimentaux négatifs (extrapolation de meilleure qualité).

Annexe 5 :
Publications

A5. Publications

- Articles
- Multi-scale filler structure in simplified industrial nanocomposites systems silica/SBR studied by SAXS and TEM. Macromolecules 2013, 46 (1), pp 317329 , issue front cover (*)
- Effect of grafting on rheology and structure of a simplified industrial nanocomposite silica/SBR. Macromolecules 2013, 46 (16), pp 6621-6633
- Evidence for a unique structure determining parameter in simplified industrial silica/styrene-butadiene nanocomposite. submitted
- Effect of chain mass and grafting on rheology and structure of a simplified industrial silica butadiene-styrene nanocomposite. in preparation

- Conférences

- Annual ESMI/Softcomp meeting 2013, Mai 2013, Rimini, Italie - Combined study of structure and dynamics in simplified industrial nanocomposites silica/SBR
- Jülich Soft Matter Days, Novembre 2012, Jülich, Allemagne Crossroads between structure and mechanics in nanocomposites SBR/silica for tire applications
- $13^{\text {èmes }}$ Journées de la Matière Condensée, Août 2012, Montpellier, France - Mechanical behavior of nanosilica reinforced unvulcanized SBR nanocomposites
- Congrès annuel du GFP 2011, Novembre 2011, Pau, France - Caractérisation de la Structure de Nanocomposites Silice/SBR par DXPA-DNPA \& MET
(*)

Macromolecules

Towards a quantitative modeling of the complex structure of interacting aggregates

Multiscale Filler Structure in Simplified Industrial Nanocomposite Silica/SBR Systems Studied by SAXS and TEM

Guilhem P. Baeza, ${ }^{\dagger, \hbar, \S}$ Anne-Caroline Genix, ${ }^{*}{ }^{\dagger, \%}$ Christophe Degrandcourt, ${ }^{\S}$ Laurent Petitjean, ${ }^{\S}$ Jérémie Gummel, ${ }^{\perp}$ Marc Couty, ${ }^{\S}$ and Julian Oberdisse ${ }^{\dagger,}{ }^{\dagger,}$
${ }^{\dagger}$ Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, F-34 095, Montpellier, France
${ }^{\ddagger}$ CNRS, Laboratoire Charles Coulomb UMR 5221, F-34 095, Montpellier, France
${ }^{\S}$ Manufacture Française des Pneumatiques MICHELIN, Site de Ladoux, 23 place des Carmes Déchaux, F-63 040, Clermont-Ferrand, Cedex 9, France
${ }^{\perp}$ European Synchrotron Radiation Facility, ESRF, 6 rue Jules Horowitz, BP 220, F-38 043, Grenoble, Cedex 9, France

Abstract

Simplified silica (Zeosil 1165 MP) and SBR (140k carrying silanol end-groups) nanocomposites have been formulated by mixing of a reduced number of ingredients with respect to industrial applications. The thermo-mechanical history of the samples during the mixing process was monitored and adjusted to identical final temperatures. The filler structure on large scales up to micrometers was studied by transmission electron microscopy (TEM) and very small-angle X-ray scatter- ing (SAXS). A complete quantitative model extending from the primary silica nanoparticle (of radius $\approx 10 \mathrm{~nm}$), to nanoparticle aggregates, up to micrometer-sized branches with typical lateral dimension of 150 nm is proposed. Image analysis of the TEM-pictures yields the fraction of zones of pure polymer, which extend between the branches of a large-scale filler network. This network is compatible with a fractal of average dimension 2.4 as measured by scattering. On smaller length scales, inside the branches, small silica aggregates are present. Their average radius has been deduced from a Kratky analysis, and it ranges between 35 and 40 nm for all silica fractions investigated here ($\Phi_{\mathrm{si}}=8-21 \%$ vol. $)$. A central piece of our analysis is the description of the interaggregate interaction by a simulated structure factor for polydisperse spheres representing aggregates. A polydispersity of 30% in aggregate size is assumed, and interactions between these aggregates are described with a hard core repulsive potential. The same distribution in size is used to evaluate the polydisperse form factor. Comparison with the experimental intensity leads to the determination of the average aggregate compacity (assumed identical for all aggregates in the distribution, between 31% and 38% depending on Φ_{si}), and thus aggregation number (ca. 45, with a large spread). Because of the effect of aggregate compacity and of pure polymer zones, the volume fraction of aggregates is higher in the branches than $\Phi_{\text {si: }}$ The repulsion between aggregates has a strong effect on the apparent isothermal compressibility: it leads to a characteristic low- q depression, which cannot be interpreted as aggregate mass decrease in our data. In addition, the reinforcement effect of these silica structures in the SBR-matrix is characterized with oscillatory shear and described with a model based on the same aggregate compacity. Finally, our results show that it is possible to analyze the complex structure of interacting aggregates in nanocomposites of industrial origin in a self-consistent and quantitative manner.

1. INTRODUCTION

The mechanical reinforcement of polymer matrices by nanoparticles is a fundamental problem with far reaching applications, e.g., for car tires. ${ }^{1,2}$ From a conceptual point of view, it is generally recognized that the filler structure has a strong impact on the mechanical properties, ${ }^{3-5}$ accompanied by the effect of chain structure evolving in the hard filler environment, ${ }^{6-9}$ and the filler-chain interactions. ${ }^{10-15}$ All these contributions are related to the filler structure, and it is thus important to be able to characterize it in detail. Unfortunately, two typical situations are usually encountered: either the system is a model system of individually dispersed nanoparticles, ${ }^{16}$ which is easier to understand but is further away from applications, or the system is made by mixing of powders of aggregated nanoparticles, together with many additives, and analysis becomes difficult. In
the literature, the list of typical ingredients of industrial systems comprises the filler and the polymer matrix (often styrene-butadiene rubber (SBR), or polybutadiene), silane coupling agents like TESPT, known also as Si69, or its successor Si363, coating or compatibilizing agents like octyl-triethoxysilane (octeo) with catalyzers (diphenyl guanidine (DPG)), cross-linking agents (sulfur), cure activators like ZnO nanoparticles, stearic acids, accelerator providing fast cure rate like sulfenamides (TBBS, CBS), antioxidants like v arious substituted paraphenylenediamines (PPD) and phenol-based antioxidants (AO2246). ${ }^{17-21}$ Note that ZnO nanoparticles, e.g., may contribute to the

[^0]scattering signature even at low concentrations due to their high electron density, ${ }^{22}$ unless their contribution is suppressed using sophisticated anomalous scattering techniques. ${ }^{23}$ In contrast, apart from the antioxidants added after the polymer synthesis, we address here the issue of a simplified industrial system containing only the filler and its compatibilizer octeo with DPG. We have compiled typical industrial formulations in the Appendix highlighting the reduction of parameters in our simplified system.
Structural studies of the dispersion of precipitated silica filler of the type used here have been undertaken by several groups. Ramier et al. have studied the silica structure in SBR by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS), without further analysis of the SAXS-data as they focused on the rheology. ${ }^{20}$ Conzatti et al. have investigated the morphology of the same silica in SBR by TEM with automated image analysis, and dynamic mechanical analysis (DMA), varying the surface modification. ${ }^{18} \mathrm{~A}$ similar approach was presented by Stöckelhuber et al. on the flocculation of precipitated silica as a function of coupling. ${ }^{21}$ The reinforcement by fractal aggregates with again the same silica in SBR was addressed by Mélé et al. by SAXS and AFM. ${ }^{19}$ An in-depth analysis of the SAXS data was outside the scope of this article. Other groups have focused on the fractal dimensions extracted from the power-law decay of the scattered intensity. ${ }^{24,25}$ Schneider et al. have presented scattering data on precipitated silica in poly(dimethylsiloxane) and SBR, with a two-level description based on the Teixeira ${ }^{26}$ or Beaucage ${ }^{27}$ equations for fractals made of beads. ${ }^{28,29}$ A qualitative analysis of SAXS-curves has been proposed by Shinohara et al. ${ }^{30}$ In the present paper, a quantitative view in the same spirit will be presented. Several theoretical studies on scattering in complex systems have been published. For example, Schweizer et al. on interacting fractals propose apparent structure factors as a function of filler volume fraction. ${ }^{31}$

Analysis of structural data is usually considerably less difficult and ambiguous in model systems. In such systems, the filler particles are available as individually dispersed beads in a solvent, and particular care is taken by the experimentalists in order to maintain or control colloidal stability throughout the nanocomposite formulation process, which is often solvent casting. Meth et al. have studied silica nanoparticles in poly(methyl methacrylate) and polystyrene (PS) by SAXS. ${ }^{32}$ Some aggregation is often present and visible at small angles, but due to the high monodispersity bead-bead interaction peaks are found. Janes et al. have investigated the influence of annealing history on the structure as seen by scattering. ${ }^{33}$ After strong annealing, no low-angle indication for aggregation is found and the curves strongly resemble perfect dispersions of spheres. In articles by Chevigny et al. ${ }^{15,34}$ and Jouault et al., ${ }^{35,36}$ the structure of silica nanoparticles in PS is analyzed, by TEM and scattering. There, a focus is made on the relationship between filler structure and mechanical reinforcement in systems with well-defined dispersion of small aggregates in the matrix. Reverse Monte Carlo (RMC) modeling has been applied to interacting aggregates measured in a silica-latex model system. ${ }^{37}$ Recently, we have also contributed with a structural model used to follow the film formation of silica-latex films. ${ }^{8}$
The effect of fractal aggregates on the rheology has been investigated theoretically in a seminal paper by Witten et al. ${ }^{38}$ Several empirical equations usually based on extensions of the original Einstein hydrodynamic reinforcement ${ }^{39,40}$ exist and have been summarized in the literature. ${ }^{41}$ The standard analysis
is commonly based on three methods: either DMA, where the sample is subject to oscillatory torsion at fixed amplitude and frequency, as a function of temperature, e.g. refs 42 and 43. From such studies, carried further with NMR measurements, a strong interest in the so-called glassy layer of polymer on filler surface has arisen. ${ }^{10,44,45}$ The second standard method is oscillatory linear rheology in shear, which however is limited to low moduli. ${ }^{35,46}$ The latter one is often applied to characterize the non linear Payne-effect at small strains, which is responsible for the decrease of the storage modulus with shear amplitude. ${ }^{20,21,47-49}$ The third method is uniaxial strain, which is strongly non linear and leads to high deformations, up to rupture. ${ }^{50,51}$ The latter method is often used to characterize the Mullins effect; ${ }^{52}$ it can also be combined with scattering ${ }^{53}$ or with NMR as is done in an outstanding paper by Klüppel et al. in SBR nanocomposites. ${ }^{54}$ In many of the rheological studies of nanocomposite systems, the effect of, e.g., silane coupling or compatibilization is studied and tentatively correlated with filler structure, if available. ${ }^{20,47}$ For the sake of completeness, other techniques allowing a characterization of the dynamics of nanocomposite systems are dielectric spectroscopy ${ }^{55,56}$ and quasielastic neutron scattering. ${ }^{57-60}$

In this article, we investigate a "simplified industrial system", i.e., ingredients have been limited to the strict minimum. For the structural analysis of nanocomposites of increasing filler fraction, we have chosen to combine direct imaging methods like TEM, which has the advantage of intuitive analysis but the drawback of limited representativity of local details, with a reciprocal space method, SAXS, which is highly representative but is difficult to interpret. The structure of the silica within the nanocomposites will be modeled in a step-by-step, multiscale manner, starting with the primary silica beads as basic building units ($10-20 \mathrm{~nm}$ range). These beads are found to be aggregated in small clusters, the typical radius of which (40 nm range) will be determined by Kratky plots. These aggregates are themselves concentrated in large-scale fractal branches (thickness ca. 150 nm , extending over micrometers). Inside these branches, the small aggregates repel each other. Within our model, this is described with a hard-sphere excluded volume interaction potential, which induces a characteristic depression of the scattered intensity at intermediate angles. This depression is directly related to the local concentration of aggregates, which is higher than the nominal silica volume fraction due to the confinement in the fractal branches, and the presence of polymer inside the aggregates. Therefore, a quantitative TEM analysis was used to estimate the volume fraction of fractal branches, $\Phi_{\text {fract }}$ Second, we have set up an independent Monte Carlo (MC) simulation in order to calculate the low-q limit of the polydisperse interaggregate structure factor, which quantifies the depression. Using a polydisperse aggregate form factor obeying the same polydispersity, the mass of the small aggregates (or, equivalently, their internal silica volume fraction, here called compacity) and their concentration inside the fractal branches can be extracted from the scattered intensity. In parallel, mechanical measurements allowed us to extract an average aggregate compacity in good agreement with the former analysis.

The outline of this article is as follows. After the Materials and Methods section, all results are discussed in section 3. The thermomechanical history of the mixing process characterized by the observed torque and temperature during mixing is discussed in section 3.1. It is followed by an analysis of the large-scale structure of the nanocomposites using TEM and the
low-angle scattering in section 3.2. The next section is devoted to an in-depth analysis of the complete scattering curve, which takes aggregation and interaction between aggregates into account. Finally, the rheological and mechanical properties are studied and discussed in section 3.4.

2. MATERIALS AND METHODS

Nanocomposite formulation. Silica-SBR nanocomposites are formulated by stepwise introduction and mixing of SBR chains with silica pellets in an internal mixer (Haake). Note that particular care was taken to avoid any trace of carbon black, catalyzing nanoparticles (ZnO), cross-linking or coupling agents, which may impede interpretation of, e.g., scattering experiments. Compared to the complex samples usually studied in the literature, our system is thus designed to be a simplified industrial nanocomposite, conserving namely aggregated multiscale silica as filler particles, SBR-chains, and a mixing process, all related to tire applications.

The mixing chamber is preheated as a function of nanocomposite composition, in order to obtain the same final mixing temperature of $160 \pm 5{ }^{\circ} \mathrm{C}$, and thus a comparable thermo-mechanical history. For the same reason, the rotor speed is adjusted during the process to between 95 and 105 rpm . The polymer is introduced first, in the form of centimetric lamellae. After about 1 min , the mixture of silica pellets, DPG (Vulcacit from Bayer, 1% w with respect to polymer), and the liquid coating agent (octeo from Dynasylan, 8\%w with respect to silica) is incorporated via the same piston. The process is finished after typically 5 min . The hot sample is then rapidly cooled and homogenized by lamination 10 times in the 1 mm gap between rotating cylinders (two roll mill). The silica volume fractions in the nanocomposites reported here have been measured by thermogravimetric analysis (Mettler Toledo) using a first ramp at $30 \mathrm{~K} / \mathrm{min}$ from 25 to $550{ }^{\circ} \mathrm{C}$ under nitrogen, followed by a second ramp at $20 \mathrm{~K} / \mathrm{min}$ from 550 to $750^{\circ} \mathrm{C}$ under air. They are found to be systematically by 15% lower than the weighted quantities, presumably due to losses in the mixer. Only the silica volume fractions above 8% vol. have been considered here. For lower silica contents, inhomogeneous composites were obtained due to a less effective mixing process.

System Characterization. The silica pellets (Zeosil 1165 MP from Rhodia) have been dispersed by sonification in water under basic conditions and have been studied by SAXS and small-angle neutron scattering (SANS). The resulting scattering pattern is rather unstructured, indicating high polydispersity. A characteristic size corresponding to a radius of 10 nm is found. A complete analysis reveals a log-normal size distribution $\left(\mathrm{R}_{0}=8.55 \mathrm{~nm}, \sigma=27 \%\right.$, leading to $\left\langle R_{\mathrm{si}}\right\rangle=8.9 \mathrm{~nm}$ and an average bead volume of $V_{\mathrm{si}}=3.6 \times 10^{3} \mathrm{~nm}^{3}$, the corresponding specific surface is $160 \mathrm{~m}^{2} / \mathrm{g}$), in agreement with TEM studies. $V_{\text {si }}$ will be used to estimate aggregation numbers of silica nanoparticles (or beads) in aggregates.

The polymer (with antioxidants 6PPD and AO2246) has been purpose-synthesized by Michelin, and the chain mass characterized by size exclusion chromatography. The polymer matrix is made of two types of chains of molecular mass $140 \mathrm{~kg} \mathrm{~mol}^{-1}(\mathrm{PI}=1.07)$. Each chain is a statistical copolymer with styrene ($26 \% \mathrm{w}$) and butadiene $(74 \% \mathrm{w})$ units (41% of which are $1-2$ and 59% of $1-4$). The glasstransition temperature as measured by differential scanning calorimetry (DSC, 200F3Maia from Netzsch) with a heating rate of $20 \mathrm{~K} / \mathrm{min}$ is $-31{ }^{\circ} \mathrm{C}$. This is in agreement with Fox's law predicting $-38^{\circ} \mathrm{C}$ for a mixture of 1,2- and 1,4-butadiene and styrene ($T_{\mathrm{g}}(1,4$-butadiene 59%) $\left.=-65{ }^{\circ} \mathrm{C} ;{ }^{61} T_{\mathrm{g}}(\mathrm{PS})=100{ }^{\circ} \mathrm{C}\right)$ and suggests that polymerization is thus indeed statistical. For the loaded samples, T_{g} shows no significant variation as compared to the pure SBR matrix: $T_{\mathrm{g}}=-32 \pm 0.5^{\circ} \mathrm{C}$ for all the silica contents investigated here.

Here, 50% of the chains are linear unmodified SBR chains, whereas the other 50% bear a single graftable silanol end-function. This functional group may graft the chain on the silica by silanol condensation with the surface silanol.

Structural Analysis. The silica microstructure in the nanocomposites has been studied by transmission electron microscopy and SAXS. TEM pictures were obtained with samples prepared by
ultracryomicrotomy at $-80^{\circ} \mathrm{C}$ on a LEICA FC-7 (Diatome ultra 35°, desired thickness set to $50-70 \mathrm{~nm}$). Electron microscopic observations in transmission were achieved with a Philips CM200 LaB6 (200 kV , bright field mode). A gray scale analysis of the pictures using ImageJ was performed to determine the pure polymer fraction. The average and the standard deviation of this quantity were obtained via a statistical analysis over several pictures (e.g., 12 for the sample with 8.4% vol. of silica). SAXS experiments (beamline ID2, ESRF, Grenoble) were performed at a wavelength of $1.1 \AA(12.46 \mathrm{keV})$, using two sample-todetector distances (1 and 10 m), yielding a total q-range from 0.001 to $0.5 \AA^{-1}$. Even lower- q data was measured on the Bonse-Hart setup on ID2 $\left(q_{\min }=10^{-4} \AA^{-1}\right)$. Samples were cut into pieces of approximate thickness 0.8 mm . The scattering cross section per unit sample volume $\mathrm{d} \Sigma / \mathrm{d} \Omega$ (in cm^{-1})—which we term scattered intensity $I(q)$-was obtained by using standard procedures including background subtraction and calibration given by ESRF. The contrast of silica in polymer in SAXS experiments was calculated from the scattering length densities $\left(\rho_{\text {SBR }}=8.85 \times 10^{10} \mathrm{~cm}^{-2}, \rho_{\text {si }}=1.97 \times 10^{11} \mathrm{~cm}^{-2}, \Delta \rho=\right.$ $1.09 \times 10^{11} \mathrm{~cm}^{-2}$), which were themselves known from the chemical composition.

Data Analysis of Small-Angle Scattering. The scattering patterns of industrial nanocomposites usually show a complex multiscale behavior. Starting at high $q\left(q>1 / R_{\mathrm{si}}\right)$, the signature of the primary particles can be found, and in particular their specific surface, associated with a particular scattering power law. When going toward intermediate q, a break in slope (or peak) may be observed. Its position, $q_{\text {si, }}$ is related to the typical interparticle distance, and for crowded nanoparticles in contact, it is located close to π / R_{si}. If a superstructure of nanoparticles exists, then another break in slope at low q-values may be found, located at the inverse of the typical size of such structures. For aggregates in contact, e.g., the position is $q_{\text {agg }}=$ $\pi / R_{\text {agg. }}$. To summarize this overview, different scaling regimes may be observed, the transition between them identifying characteristic sizes. It is possible to visualize these breaks in slope by counterbalancing the power-law decrease. In Kratky-plots, for instance, $q^{2} I(q)$ is plotted versus q. The breaks in slope then appear as easily recognizable maxima.

The relationship between the crossovers of the scaling laws, and the typical sizes characterizing the microstructure, can be clarified based on the general scattering law for spherically symmetric, monodisperse particles and aggregates, which is presented for didactical reasons first. A generalization to include polydispersity will be developed afterward, cf. the Monte Carlo simulations below. Besides the difference in contrast $\Delta \rho$, the scattered intensity $I(q)$ of monodisperse and spherical silica beads in the polymer can be written in an identical manner for SAXS and SANS:

$$
\begin{equation*}
I(q)=\Phi_{\mathrm{si}} \Delta \rho^{2} V_{\mathrm{si}} S(q) P(q) \tag{1}
\end{equation*}
$$

where Φ_{si} is the volume fraction of silica, $\Delta \rho$ the contrast between silica and the SBR matrix, $S(q)$ the total bead-bead structure factor, and $P(q)$ the normalized form factor of the beads, i.e. $P(q \rightarrow 0)=1$.

If the silica particles are organized in aggregates of approximately the same size, the total structure factor $S(q)$ may be factorized in two terms: ${ }^{62}$ the interaggregate structure factor $S_{\text {inter }}(q)$, which is the Fourier transform of the pair-correlation function of the center-of-mass of (average) aggregates. The second is the intra-aggregate structure factor, $S_{\text {intra }}(q)$, which is the Fourier transform of the pair correlation of beads inside the aggregate. If a higher order organization of such aggregates exists, a third structure factor $S_{\text {fract }}(q)$ describing this structural level may be introduced to describe the complete q-range:

$$
\begin{equation*}
S(q)=S_{\text {fract }}(q) S_{\text {inter }}(q) S_{\text {intra }}(q) \tag{2}
\end{equation*}
$$

Even in absence of any detailed structural model, the fractal structure factor of non interacting fractals has the following properties: At low q, it decreases from the total mass of the fractal with a characteristic power law, $\sim 1 / q^{d}$, where d is the fractal dimension of the network. At higher q, which is where $S_{\text {inter }}(q)$ begins to describe the intermediate scale structure, $S_{\text {fract }}$ equals 1 . The location of crossover from one regime to the other can be estimated, e.g., based

Figure 1. (a) Torque observed during mixing of SBR nanocomposites for a series in silica volume fractions (8.4-21.1\% vol.). (b) Temperature in the mixing chamber of the same samples during the process.
on a fractal made of monodisperse spheres of radius a. The crossover is then located at $q_{\text {branch }}=\sqrt{ } 3 /(\mathrm{ea})$, where e is the Euler constant, i.e., the lateral branch dimension is $2 a \approx 1.3 / q_{\text {branch }}$. Another property of this structure factor is that it can be approximated by the sum of 1 (at intermediate and high q) and a low- q power law. This is the reason why low- q power laws can in general be subtracted from the total scattered intensity in spite of the product in eq 2 . The product of $S_{\text {intra }}(q)$ and the form factor of the particles can then be merged into a single expression, the form factor of the average aggregate:

$$
\begin{equation*}
P_{\mathrm{agg}}(q)=S_{\mathrm{intra}}(q) P(q) \tag{3}
\end{equation*}
$$

The limiting value of $P_{\text {agg }}$ at low q is given by the aggregation number, $N_{\text {agg }}$. At high $q, S_{\text {intra }}$ tends to one, and $P_{\text {agg }}$ thus reproduces the local structure of the beads making up the aggregates. The transition of $S_{\text {intra }}(q)$ from $N_{\text {agg }}$ (and some power law) at low q to one at high q is achieved typically at $q_{\text {sij }}$, where one may also find a structure factor peak in case of close contact. The internal structure described by $S_{\text {intra }}(q)$ is thus the origin of the first break in slope discussed above. The multiplication by the other factors in eq 1 may slightly shift this feature. The same argument may then be repeated on a bigger scale with $S_{\text {inter }}(q)$, which is responsible of (at least) one break in slope at lower angles. Finally, note that the low-q limit of the structure factor tends toward the (relative) isothermal compressibility. In systems with repulsive (e.g., hard core) interactions, this compressibility may be well below one, and therefore decrease the low- q scattering. This decrease is a concentration effect which cannot be interpreted as a reduction of the aggregate mass.

Monte Carlo Simulation of the Structure Factor of Polydisperse Systems. We have discussed structure factors in monodisperse systems in the preceding section. In this article, a fully polydisperse description will be used. In this case, the relevant structure factor, $S_{\text {inter }}$, has to be replaced by an apparent one, $S_{\text {interer }}^{\text {app }}$, the calculation of which is outlined here. We have used a simulation box containing between 20000 and 50000 beads depending on the volume fraction in the range from 5% vol. to 30% vol. in order to have a roughly constant box size, $L_{\text {box }}=2.5 \mu \mathrm{~m}$. The minimum accessible q value is obtained from $55 / L_{\mathrm{box}} \approx 2.8 \times 10^{-3} \AA^{-1}$ (the prefactor of 55 has been determined by comparison with the known monodisperse Percus-Yevick structure factor). Here we are interested in the effect of polydispersity in aggregate size on the low- q limit, which is why the exact radius of the bead representing the aggregate is not of importance. In our simulations, the bead radius is described by a log-normal size distribution for the polydispersity with $R_{0}=20 \mathrm{~nm}$ and $\sigma=0,15 \%$, and 30%. This size distribution has been converted in a $15-$ population histogram. Standard Monte Carlo steps verifying the excluded volume conditions have been performed. After equilibration, the partial structure factors $S_{i j}(q)$ between populations i and j have been calculated using the Debye formula. ${ }^{63}$ They were used to determine the total scattered intensity which is given as the sum of the
products of $S_{i j}(q)$ weighted by the appropriate form factors $P_{i}(q)$ and $P_{j}(q)$. The apparent structure factor is then obtained by dividing by the average form factor:

$$
\begin{equation*}
S_{\text {inter }}^{\text {app }}(q)=\frac{I(q)}{I_{0} \overline{P(q))}}=\frac{\sum_{i, j} \sqrt{N_{i} N_{j}} V_{i} V_{j} \sqrt{P_{i}(q) P_{j}(q)} S_{i j}(q)}{\sum_{i} N_{i} V_{i}^{2} P_{i}(q)} \tag{4}
\end{equation*}
$$

Rheology. The rheological response in the linear regime of the nanocomposites was obtained with a stress-controlled rheometer AR 2000, used in the strain-controlled mode in plate-plate geometry $(20 \mathrm{~mm}$ diameter). Isothermal frequency sweeps at fixed low deformation level $(\gamma=0.1 \%)$ were performed in the temperature range from 10 to $80{ }^{\circ} \mathrm{C}$. Using the principle of time-temperature superposition, master curves of the storage modulus, $G^{\prime}(\omega)$, and the loss modulus, $G^{\prime \prime}(\omega)$, corresponding to measurements at $50^{\circ} \mathrm{C}$ were established between $\omega=2 \pi f=2 \pi 10^{-3}$ and $2 \pi 10^{3} \mathrm{rad} / \mathrm{s}$.

3. RESULTS AND DISCUSSION

3.1. Thermo-Mechanical Characterization of the

Mixing Process. During the mixing process in the internal mixer, the torque as a measurement of the evolving material viscoelasticity, and the temperature are monitored as a function of time. These quantities are plotted in Figure 1a and 1b, respectively, for various silica volume fractions from 8.4% vol. to 21.1% vol. The incorporation of silica and octeo leads to an important increase in torque after about 1 min 30 s . During the nanocomposite mixing, the silica pellets are crushed for several minutes. This leads to the desired temperature increase to about $160{ }^{\circ} \mathrm{C}$ (Figure 1 b), which is essential for the silanol endfunction (50% of reactive chains) and octeo grafting chemistry. Toward the end of the mixing, the high temperature induces a decrease in nanocomposite viscosity, as is visible in Figure 1a. As expected, a higher silica volume fraction leads to a higher maximum torque.
3.2. Large-Scale Structural Characterization by SAXS and TEM. The microstructure of the silica in nanocomposites has been studied by X-ray scattering and transmission electron microscopy. The scattering data are shown in Figure 2a for the series in silica volume fractions in the SBR matrix. If one wishes to compare samples of different silica contents, it is obvious from eq 1, that the reduced representation $I(q) / \Phi_{\text {si }}$ gives direct access to the variations in the structure factor $S(q), P(q)$ being fixed.

In Figure 2a, the complete scattering curves are shown. There is a strong low- q upturn at q-values down to $10^{-4} \AA^{-1}$. It cannot be described by any simple function, but can roughly be represented by a power law $A q^{-d}$, with fractal dimension

Figure 2. Silica structure of nanocomposites studied by SAXS. (a) Reduced scattered intensity $I(q) / \Phi_{\text {si }}$ for a series of silica volume fractions ($8.4-21.1 \%$ vol.). Dotted line: form factor of the silica beads. Arrows indicate the breaks in slope discussed in the text. (b) Intermediate-q structures highlighted after subtraction of the low- q power law.

Figure 3. TEM pictures of nanocomposite samples: (a) $\Phi_{\mathrm{si}}=8.4 \%$ vol. (b) $\Phi_{\mathrm{si}}=21.1 \%$ vol.
$d=2.4 \pm 0.3$. It can also be noted that in the reduced representation $I(q) / \Phi_{s j}$ the value of the prefactor A decreases with increasing $\Phi_{\text {sit }}$. We will see below that this is related to the decrease in isothermal compressibility at intermediate q-values.

The standard model of fractal structures made of blobstructures relates the radius of the fractal, $R_{\text {fract }}$ to the number of spherical subunits, N_{b}, and their radius, a :

$$
\begin{equation*}
R_{\text {fract }}=a N_{\mathrm{b}}^{1 / d} \tag{5}
\end{equation*}
$$

In Figure 2a, the transition from the large-scale network to internal branch structure, i.e., the breakdown of fractality, can be located at the intersection of the power-laws describing the low- q and the intermediate-q scattering, around $\mathrm{q}_{\text {branch }}=1 \times$ $10^{-3}-2 \times 10^{-3} \AA^{-1}$. Using the fractal model of agglomerated spheres for the large-scale fractal structure factor, $S_{\text {fract }}(q)$, as outlined in section 2, the lateral branch dimension can be estimated to $2 a=1.3 / q_{\text {branch }} \approx 100 \mathrm{~nm}$, with large error bars due to the limited precision on the crossover and the rudimentary model. We will see below that electron microscopy gives 150 nm . On the other extreme of the geometry of the fractals, in the q -range under study, there is no appreciable cutoff of the power-law at low q. This means that their upper size $\mathrm{R}_{\text {fract }}$ extends up to the micrometer range. The mass-fractal model (eq 5) can be used to estimate the pure polymer fraction between branches, ($1-\Phi_{\text {fract }}$), where $\Phi_{\text {fract }}$ denotes the volume fraction of fractal branches. For micrometer-size fractals, a rough estimate of the pure polymer fraction of $\approx 84 \%$ is found, which is certainly an overestimation due to the unrealistic space-filling properties of spheres as compared to branches.

To summarize this analysis, the large-scale structure of the nanocomposite as seen by SAXS up to dimensions of micrometers can be interpreted as a network of branch size around 100 nm , and significant amounts of empty space between them.
Figure 2 b focuses on the intermediate and high- q features, after subtraction of the low-q upturn. A slowly varying scattering curve is found for all silica volume fractions in the intermediate q-range. A model for the structures observed in this range will be proposed in the next section.
The large-scale structure of nanocomposites has been studied by TEM. In Figure 3, representative pictures for two samples ($\Phi_{\text {si }}=8.4$ and 21.1% vol.) are shown.
The 8.4% vol.-sample shows nice structural features, which can be summarized as follows: (a) A dense branched structure of lateral dimension of around $2 a \approx 150 \mathrm{~nm}$ is seen, made of small silica beads aggregated together. (b) A gray scale analysis of the pictures reveals that the pure polymer fraction is about $41 \pm 4 \%$ in surface. Note that in the slice, most of the silica beads are visible individually, leading to a first level of gray, whereas a small number overlap giving a darker gray. From simple geometric considerations, it appears that in thin enough slices, of thickness smaller than the structural length under study in the sample ($\approx 150 \mathrm{~nm}$), the surface and volume fractions of matter (branches) coincide. It is thus concluded that approximately 41% of the sample is not occupied by branches. Similarly, the higher volume fraction sample shown in Figure 3 b is much denser, with a pure polymer fraction of about $20 \pm 4 \%$ in surface (and thus also in volume).

Figure 4. (a) Same data as Figure 2 in Kratky representation of the reduced scattered intensity $q^{2} I(q) / \Phi_{\text {si }}$ for $\Phi_{\text {si }}=8.4-21.1 \%$ vol. Inset: Zoom on 8.4% vol. data with fit by sum of two log-normal functions. (b) $\Phi_{\text {si }}$-dependence of the log-normal position parameters $q_{\text {si }}$ (dotted line) and $q_{\text {agg }}$ associated with the interaggregate structure factor. q_{si} and q_{agg} values obtained from the breaks in slope are also included.

3.3. Modeling of the SAXS Data on Intermediate and

 Small Scales. In this section, the average aggregate size based on a Kratky analysis, the interaggregate structure factor, and the aggregate form factor will be discussed. Putting these separated descriptions together will allow us to extract the average aggregate compacity, and thus aggregation number. Note that our model is based on a full description of polydispersity: aggregates monodisperse in size would lead to unphysical characteristics (namely compacity), and would contradict the TEM pictures.Average aggregate size. We start with the discussion of the highest curve ($\Phi_{\text {si }}=8.4 \%$ vol.) in Figure 2. The two high-q arrows indicate the crossovers between three power laws, at $q_{\text {si }}$ $=0.022 \AA^{-1}$ and $q_{\text {agg }}=0.0065 \AA^{-1}$. The ratio $q_{\mathrm{si}} / q_{\text {agg }}$ suggests that this first superstructure has a typical linear dimension of only some four bead-sizes, which is why it is identified with small aggregates. Following our interpretation outlined in section $2, \pi / q_{\text {si }}$ gives a typical bead radius. 14.1 nm is found, bigger than but of the same magnitude as the silica beads ($\left\langle R_{\mathrm{s} i}\right\rangle$ $=8.9 \mathrm{~nm})$. From the second break in slope, an aggregate radius which we associate with the average $\left\langle R_{\text {agg }}\right\rangle=\pi / q_{\text {agg }}=48.4 \mathrm{~nm}$ is deduced. Introducing the compacity κ, or internal aggregate volume fraction, the aggregation number $N_{\text {agg }}$ can be related to $\left\langle R_{\text {agg }}\right\rangle$. Allowing for a generalization to polydispersity, the definitions for an aggregate of radius $R_{\text {agg }}$ read:

$$
\begin{align*}
& \kappa=\frac{V_{\text {si in agg }}}{V_{\mathrm{agg}}} \tag{6}\\
& N_{\mathrm{agg}}=\frac{4}{3} \pi R_{\mathrm{agg}}{ }^{3} \frac{\kappa}{V_{\mathrm{si}}} \tag{7}
\end{align*}
$$

$V_{\mathrm{agg}}=4 \pi / 3 R_{\mathrm{agg}}{ }^{3}$ is the total volume of such an aggregate, and $V_{\text {si in agg }}$ the volume effectively occupied by silica in this aggregate, i.e., $N_{\mathrm{agg}} \mathrm{V}_{\mathrm{si}}$, with V_{si} the average bead volume. The aggregates (with $\left\langle R_{\text {agg }}\right\rangle=48.4 \mathrm{~nm}$) are rather small, as even if one assumes random close packing $(\kappa=0.64),{ }^{64}$ only $N_{\text {agg }} \approx 83$ beads would be part of one aggregate. The use of more realistic values for κ (i.e., below 64\%) would give lower aggregation numbers. A model for the determination of κ will be developed below including a polydisperse description of both the aggregate form factor and the interaggregate structure factor.

In Figure 2b, the low-q upturn discussed in section 3.2 has been subtracted. The scattering curves at different $\Phi_{\text {si }}$ in the
reduced representation $I(q) / \Phi_{\text {si }}$ differ at low q and are seen to overlap perfectly above a critical wave vector $\approx 0.01 \AA^{-1}$, corresponding to primary silica nanoparticles in close contact. Because of the high-q overlap, the break in slope associated with the nanoparticle size is seen to stay constant: indeed, its value is 13.7 nm for the higher silica concentrations (12.7, 16.8, and 21.1% vol.), and we will use an average value of 13.85 nm in the Kratky analysis below. On the other hand, the break in slope associated with aggregate size moves to higher q -values with increasing $\Phi_{\text {si }}$. The associated aggregate radius $<R_{\mathrm{agg}}>$ decreases to 39.2 nm (respectively 36.1 and 34.4 nm) for 12.7% vol. (respectively 16.8% vol. and 21.1% vol.).

In order to determine the position of $q_{\text {agg }}\left(\Phi_{\text {si }}\right)$ more precisely, a Kratky presentation of the data has been chosen. In Figure 4a, the breaks in slope are seen to be transformed in well-identified maxima. A multiparameter fit of the two overlapping maxima has been achieved using the following sum of two functions $G_{\text {si }}$ and $G_{\text {agg }}{ }^{65}$

$$
\begin{align*}
& G_{i}(q)=\frac{A_{i}}{\sqrt{2 \pi} \sigma_{i} q} \exp \left(-\frac{\ln ^{2}\left(\frac{q}{q_{i}}\right)}{2 \sigma_{i}^{2}}\right) \tag{8a}\\
& G(q)=G_{\mathrm{si}}(q)+G_{\mathrm{agg}}(q) \tag{8b}
\end{align*}
$$

Each of these functions describes a log-normal function of amplitude A_{i}, position q_{i}, and width $\sigma_{i}(i=s i, \operatorname{agg})$. Note that the parameter q_{i} is slightly shifted to higher values as compared to the peak position but is preferred due to its vicinity with the corresponding break in slope (see in Figure 4b). Again, we associate $q_{\text {agg }}$ with $\left\langle R_{\text {agg }}\right\rangle$. The width and position of the high- q log-normal describing the silica bead $\mathrm{q}_{\mathrm{si}}=(\pi / 13.85 \mathrm{~nm})$ was kept fixed, thereby reducing the number of free parameters. An example of the underlying lognormals is shown in the inset of Figure 4a for the 8.4% vol. sample.

The log-normal position parameters related to the aggregates are found to evolve less than the breaks in slope discussed before. All values are plotted in Figure 4b, together with the silica bead peak position fixed in the Kratky analysis. The corresponding average aggregate radii are $\left\langle R_{\text {agg }}\right\rangle=40.2 \mathrm{~nm}$ (respectively $35.9,36.1$, and 35.2 nm) for 8.4% vol. (respectively $12.7,16.4$, and 21.1% vol.). To summarize, both methods of analysis-breaks in slope and Kratky plots-give

Figure 5. MC simulations of polydisperse systems. (a) Apparent structure factor obtained by the division of simulated $I(q)$ by the average $P(q)$ as defined in eq 4. $I(q)$ is calculated for polydisperse hard spheres representing the aggregates using a log-normal distribution with $R_{0}=20 \mathrm{~nm}$ (arbitrarily fixed) and $\sigma=30 \%$. Lines are fit of the low- q part with an arbitrary function: $S_{\text {inter }}^{\text {app }}(q)=S_{\text {inter }}^{\text {app }}(0)+(A q)^{B}$ in order to extract $S_{\text {inter }}^{\text {app }}(0)$. (b) Evolution of $S_{\text {inter }}^{\text {app }}(0)$ versus the aggregate volume fraction for $\sigma=0 \%, 15 \%$, and 30%. Lines are fits using eq 9 .
similar aggregate radii, in the range between 34 and 48 nm . The maxima in the Kratky plots are better defined, and the radii grouped together, between 35 and 40 nm , values, which we will use in the following analysis as the average values of the size distributions.

Polydisperse Interaggregate Structure Factor. As already indicated above, the aggregate compacity κ is a key quantity, as it relates the size of the aggregates to the amount of silica they carry, i.e., it characterizes the internal aggregate structure. It has also a strong impact on the overall structure of the sample: by silica volume conservation, the higher the compacity, the less aggregates are located in a given volume to satisfy the nominal volume fraction, $\Phi_{\text {si: }}$ As a consequence, the number density of aggregates depends on κ and affects the (interaggregate) structure factor, $S_{\text {inter }}^{\text {app }}$. Increasing the number of mutually repelling aggregates leads to a decrease in the isothermal compressibility, a feature which is clearly visible in Figure 2b: the intermediate and low-q reduced intensity decreases with increasing $\Phi_{\text {si }}$ In this picture, the Kratky-peak is due to the excluded volume interactions between aggregates, and thus located close to $q_{\text {agg }}=\pi /\left\langle R_{\text {agg }}\right\rangle$. The observation of this peak together with the low- q decrease suggests two points. First, it is not possible to conclude on aggregate mass and size from a pure form factor analysis of the intensity decrease in such interacting systems. This decrease is caused by the structure factor dependence on the filler concentration. Second, one may quantitatively account for the decrease using a model for the structure factor of polydisperse hard spheres representing aggregates, which is what is proposed now.

In order to obtain the polydisperse structure factor, we have performed Monte Carlo simulations. In case of polydispersity in size, no general formula exists, and the thermodynamic properties of the system are not described by a single structure factor any more. ${ }^{66}$ The partial structure factors $S_{i j}(q)$ between two size populations i and j, weighted by the form factors of these populations, have to be added up to obtain the total intensity. Often, an apparent structure factor $S_{\text {inter }}^{\text {app }}(q)$ obtained by dividing the intensity by the average form factor is used, as defined in eq 4. It is not a thermodynamic quantity because of its dependence on the shape and contrast of the objects, but can be looked at as a useful representation of the correlations. Our approach is the following: the $S_{\text {inter }}^{\text {app }}(q)$ have been calculated
by MC simulations assuming excluded volume interactions as described in section 2. They are shown in Figure 5a for different volume fractions $\Phi_{\text {agg }}$ of polydisperse spheres representing aggregates. The low-q limiting values, $S_{\text {inter }}^{\text {app }}(q \rightarrow 0)$, are needed to determine the aggregate compacity in the next section. They have been determined by extrapolation, as presented in Figure 5a. In our model, the aggregate polydispersity is the only unknown parameter. From the absence of a strong peak at close contact-only a break in slope is observed in Figure $2 \mathrm{~b}-\mathrm{it}$ is concluded that polydispersity of aggregates in size is at least 30%. Then the structure factor peak of, e.g., the simulation with $\Phi_{\text {agg }}=20 \%$ vol. is close to one, in agreement with the experimental data. In addition, taking a too low polydispersity would lead to unphysical aggregate compacities. Polydispersity of aggregates has thus been fixed to 30% in our model, i.e., of the same order as the primary bead polydispersity. Such a value also accounts for the fact that one cannot distinguish aggregates of finite size in the TEM pictures (Figure 3).
After extrapolation, the obtained $S_{\text {inter }}^{\text {app }}(q \rightarrow 0)$ values are plotted in Figure 5b, for various polydispersities ($\sigma=0 \%, 15 \%$, $30 \%)$, as a function of $\Phi_{\text {agg }}$. The description of these values can be achieved using a Percus-Yevick (PY) structure factor. ${ }^{67,68}$ Its limiting value for $q \rightarrow 0$ can be easily determined from the full expression:

$$
\begin{equation*}
S_{\mathrm{PY}}(q \rightarrow 0)=\frac{\left(1-\alpha \Phi_{\mathrm{agg}}\right)^{4}}{\left(1+2 \alpha \Phi_{\mathrm{agg}}\right)^{2}} \tag{9}
\end{equation*}
$$

Here we have introduced a prefactor α for the volume fraction. $\alpha=1$ for the standard monodisperse PY-formula, and it will be used here as a free parameter for polydisperse spheres. Indeed, it is observed in Figure 5b that a higher polydispersity leads to higher low-q limiting values, as if the higher polydispersity had a similar effect at low- q than decreasing the volume fraction. A surprisingly good fit is found with the PY-expression given in eq 9 , with $\alpha=0.72$ and 0.60 for $\sigma=15 \%$ and 30%, respectively. This enables us to use the PY-equation with $\alpha=0.6$, representing a typical polydispersity of $\sigma=30 \%$, for $S_{\text {inter }}^{\text {app }}(q \rightarrow 0)$ and thus the determination of the aggregate compacity κ.
To finish this discussion on the silica microstructure as probed by SAXS, $S_{\text {inter }}^{\text {app }}$ has a low-q contribution below one due
to aggregate repulsion. $S_{\text {inter }}^{\text {app }}$ corresponds to the structure factor of an infinite homogeneous sample of aggregates at aggregate volume fraction $\Phi_{\mathrm{si}} /\left(\kappa \Phi_{\text {fract }}\right)$, whereas here aggregates are only in the branches. The point is that this apparent isothermal compressibility is lower for more concentrated samples, and by continuity, this intensity depression is passed on to the structure factor describing the fractal: the complete scattering curve is thus lowered in the intermediate- and low- q range.

Polydisperse Aggregate Form Factor. Our analysis is based in Figure 2b. Combining eqs 1-3 and subtracting the low-q upturn treated in the preceding paragraph, the scattering at intermediate q reads for a polydisperse system:

$$
\begin{equation*}
\frac{I(q)}{\Phi_{\mathrm{si}}}=\Delta \rho^{2} V_{\mathrm{si}} \mathrm{a}_{\mathrm{intter}}^{\mathrm{app}}(q)\left\langle P_{\mathrm{agg}}(q)\right\rangle \tag{10}
\end{equation*}
$$

For $I(q \rightarrow 0)$, we focus on the region around $q^{*}=0.003 \AA^{-1}$. Such a value provides a good estimate (compared to $\pi /\left\langle R_{\text {agg }}\right\rangle$) for the determination of the low- q limit $S_{\text {inter }}^{\text {app }}(q \rightarrow 0)$, which has been calculated in the preceding section. We now focus on the average form factor of aggregates. The calculation is based on the polydispersity in radius of the aggregates. We have seen that the absence of the structure factor peak suggests a polydispersity of $\sigma=0.3$. From the Kratky plots, the average aggregate radius was determined. For the example of $\Phi_{\text {si }}=$ 8.4% vol., aggregates are chosen to be described (as in the simulation) by a log-normal distribution of radii, with parameters $R_{0}=38.4 \mathrm{~nm}$ and $\sigma=0.3$, giving the average of $\left\langle R_{\text {agg }}\right\rangle=40.2 \mathrm{~nm}$. The conversion into aggregate mass is based on the main assumption of the polydisperse description: It is assumed that the compacity κ is the same for all aggregates of different size. One can thus use eq 7 to transform the size distribution in the distribution of $N_{\text {agg }}$, an example of which is shown in Figure 6, for $\kappa=31 \%$.

Figure 6. Aggregation number distribution function deduced from the log-normal distribution of radii (parameters $R_{0}=38.4 \mathrm{~nm}, \sigma=0.3$) and eq 7 supposing $\kappa=31 \%$.

Concerning the aggregate form factor, recall that in the monodisperse case, $P_{\text {agg }}(\mathrm{q} \rightarrow 0)=N_{\text {agg }}$. For polydisperse systems, $P_{\text {agg }}(q \rightarrow 0)=\left\langle N_{\text {agg }}{ }^{2}\right\rangle /\left\langle N_{\text {agg }}\right\rangle$. The moments of $N_{\text {agg }}$ are easily calculated from the distribution function (Figure 6). At nonzero q (we focus on $q^{*}=0.003 \AA^{-1}$), the decrease of the form factor of the aggregates has to be included. In this limit, the polydisperse form factor becomes:

$$
\begin{equation*}
\left\langle P_{\mathrm{agg}}\left(q^{*}\right)\right\rangle=\frac{\left\langle N_{\mathrm{agg}}{ }^{2}\right\rangle}{\left\langle N_{\mathrm{agg}}\right\rangle} \exp \left(-\frac{q^{* 2} R_{\mathrm{G}}{ }^{2}}{5}\right) \tag{11}
\end{equation*}
$$

where $N_{\text {agg }}$ depends on compacity via eq 7 and the radius distribution function, and $R_{\mathrm{G}}{ }^{2}=\left\langle R_{\mathrm{agg}}{ }^{8}\right\rangle /\left\langle R_{\mathrm{agg}}{ }^{6}\right\rangle$ is the correctly averaged Guinier radius. ${ }^{69}$

Determination of Compacity. The description of the scattered intensity (eq 10) includes both previously defined quantities, the structure factor $S_{\text {inter }}^{\text {app }}$ and the average form factor $\left\langle P_{\text {agg }}\right\rangle$ (eq 11). The apparent isothermal compressibility $S_{\text {inter }}^{\mathrm{app}}(q \rightarrow 0)$ depends on the aggregate volume fraction in the branches, which is given by

$$
\begin{equation*}
\Phi_{\mathrm{agg}}=\frac{\Phi_{\mathrm{si}}}{\Phi_{\mathrm{fract}} \kappa} \tag{12}
\end{equation*}
$$

The volume fraction of fractal $\Phi_{\text {fract }}$ appears because it accounts for the concentration effect in the fractal branches, due to the existence of pure polymer zones surrounding the branches. The latter quantity has been determined by TEM in section 3.2 for the highest and lowest $\Phi_{\text {si }}$ values, and interpolated in between.

The procedure to determine the compacity κ (assumed to be identical for all aggregates in the distribution) is thus to (a) assume an initial value for κ, (b) calculate the structure factor with eqs 9 and 12, (c) determine the distribution of $N_{\text {agg }}$ (d) calculate $\left\langle P_{\text {agg }}\right\rangle$ using eq 11, and (e) assess the intensity level (eq 10). κ is then changed until eq 10 for $q=q^{*}$ is fulfilled. The values of κ for all silica volume fractions are reported in Table 1,

Table 1. Results of the Analysis of SAXS Data of Nanocomposites Containing Polydisperse Aggregates ($\sigma=$ 0.3 in Radius) ${ }^{a}$

$\Phi_{\text {siv }} \%$	$\left\langle R_{\text {agg }}\right\rangle(\mathrm{nm})$ vol. $\pm 5 \%$	$\Phi_{\text {fract }}$ $\pm 4 \%$	κ $\pm 2 \%$	$\Phi_{\text {agg }}$ $\pm 3 \%$	$\left\langle N_{\text {agg }}\right\rangle$ $\pm 15 \%$	$\Delta N_{\text {agg }}$	$R_{\text {agg }}{ }^{\text {eq }}(\mathrm{nm})$ $\pm 5 \%$
8.4	40.2	0.59	0.31	0.47	51	53	52.3
12.7	35.9	0.66	0.33	0.57	40	43	46.9
16.8	36.1	0.73	0.36	0.64	44	47	47.1
21.1	35.2	0.80	0.38	0.69	44	47	46.0

${ }^{a}$ Average aggregate radius $\left\langle R_{\mathrm{agg}}\right\rangle$ (from Kratky analysis), volume fraction of fractal branches $\Phi_{\text {fract }}$ compacity κ, aggregate volume fraction $\Phi_{\text {agg }}$, average aggregation number $\left\langle N_{\mathrm{agg}}\right\rangle$, standard deviation of the distribution in $N_{\text {agg }}$ and equivalent radius of an aggregate of average mass.
together with aggregate radii, average aggregation numbers, width of dispersion, and radius of an aggregate of average aggregation number.

Following this procedure, the compacity found for, e.g., $\Phi_{\text {si }}=$ 8.4% vol. is 31%. The resulting distribution function of $N_{\text {agg }}$ was already shown in Figure 6. One immediately sees in this figure that the $R_{\text {agg }}{ }^{3}$-dependence strongly increases the polydispersity and asymmetry of the distribution, which has a pronounced tail. The resulting average of $N_{\text {agg }}$ is 51 , and the standard deviation $\Delta N_{\text {agg }}=\sqrt{ }\left(\left\langle N_{\text {agg }}{ }^{2}\right\rangle-\left\langle N_{\text {agg }}\right\rangle^{2}\right)=53$, i.e., of the same order of magnitude, which illustrates the width of the distribution. For comparison, the radius of the average aggregate $\left(\left\langle N_{\text {agg }}\right\rangle=51\right)$ is also given in the table $\left(R_{\text {agg }}{ }^{\text {eq }}=52.3 \mathrm{~nm}\right)$. On the other hand, most of the aggregates are considerably smaller, as the peak of the distribution is located close to $N_{\text {agg }}{ }^{\text {max }} \approx 15$ (corresponding to $R_{\mathrm{agg}} \approx 35 \mathrm{~nm}$). Again, such a wide distribution is in line with
the TEM observations, where actually no aggregates are clearly identified, presumably due to the large size distribution.
As the silica concentration is increased, only minor changes are observed in Table 1: clusters conserve their average mass (in the range between $\left\langle N_{\text {agg }}\right\rangle=40$ and 51), but contract slightly, leading to an increase of their compacity from 31 to 38%. Note that such compacities are compatible with the choice of hard sphere interactions for the interaggregate structure factor. Concentrating aggregates in the fractal branches induces a considerable depression of the scattering (via the isothermal compressibility) at intermediate q-values, as observed in Figure 2. Again, in the light of the discussion including both $S_{\text {inter }}^{\text {app }}(q)$ and $\left\langle P_{\text {agg }}(q)\right\rangle$ in eq 10 , interpreting the intensity decrease at intermediate- q as a decrease of $\left\langle P_{\text {agg }}\right\rangle$ only could lead to the erroneous interpretation of decreasing aggregate mass. On the contrary, our analysis confirms that the average aggregate mass remains approximately constant in our system. Finally, one may note that the error bar on $\Phi_{\text {fract }}$ has only a minor effect ($\pm 5 \%$) on $\left\langle N_{\text {agg }}\right\rangle$, whereas the 5% error on $\left\langle R_{\text {agg }}\right\rangle$ causes most of the uncertainty on $\left\langle N_{\text {agg }}\right\rangle(\pm 15 \%)$.

In Figure 7, the real-space and reciprocal space models in terms of the three structure factors are shown. In real space, the

Figure 7. (a) Model decomposition of the scattered intensity into the three contributions to the reciprocal-space structure: $S_{\text {fract }}(q), S_{\text {inter }}^{\text {app }}(q)$ (red line), and $S_{\text {intra }}(q)$ (green line, $\left.S_{\text {intra }}(q \rightarrow 0)=\left\langle N_{\text {agg }}{ }^{2}\right\rangle /\left\langle N_{\text {agg }}\right\rangle\right)$. (b) Real-space representation of the multiscale structure of the silica nanocomposites associated with part a.
multiscale structure is represented by the large scale fractal network of dimension 2.4, the branches of which are made of dense assemblies of aggregates of typical aggregate radius, $R_{\text {agg }}$, and volume fraction $\Phi_{\text {agg. }}$ Finally, these aggregates are themselves made up of on average some forty-five primary
particles of radius $\mathrm{R}_{\mathrm{s} j}$, and possess a compacity κ, which is typically 35%.
3.4. Rheology and Reinforcement. The motivation for the determination of the structure of simplified industrial nanocomposites relies in its link with the remarkable rheological and mechanical properties of such materials. Therefore, we focus now on the characterization of the rheology of these nanocomposites. In absence of curing agents in our simplified formulation, nanocomposites are not cross-linked. Silica-free samples are thus polymer melts, i.e. viscoelastic liquids; adding silica may change their rheological character. The series of samples of increasing silica volume fraction ($0-21.1 \%$ vol.) has been studied by small amplitude (linear regime) oscillatory shear experiments. Moduli at various temperatures have been measured and used for the construction of master curves for $G^{\prime}(\omega)$ and $G^{\prime \prime}(\omega)$ applying the time-temperature superposition at a reference temperature of $50{ }^{\circ} \mathrm{C}$. At low enough $\Phi_{\text {si }}$ ($\leq 12.7 \%$ vol.), the superposition of curves at different temperatures (horizontal shift factors are discussed below) yields unambiguous master curves. The resulting moduli of the matrix and the two lower silica volume fractions are plotted in Figure 8a. Note that no vertical shift factors were required to achieve superposition as occasionally necessary for composites. ${ }^{46,70}$
In the viscoelastic response of the matrix, the flow regime at low frequency ($G^{\prime \prime} \sim \omega^{1.2}$, close to the expected exponent of one), a characteristic time given by the maximum of $G^{\prime \prime}\left(\tau=1 / \omega_{\max }=\right.$ 2 s), and a high frequency modulus ($G_{0}=0.79 \mathrm{MPa}$) can be identified. In addition, the $G^{\prime \prime}$ curve displays a high-frequency upturn toward the glass transition regime. With 8.4% vol. and 12.7% vol. of silica, respectively, the curves are mainly shifted to higher moduli: this increase will be analyzed in terms of the reinforcement factor. In parallel, small changes in the shape of the curve can be observed: the characteristic $G^{\prime \prime}$ maximum shifts to slightly lower frequencies with respect to the matrix, and G^{\prime} and $G^{\prime \prime}$ overlap and finally do not cross any more at low ω. A common criterion for liquid-like samples is that $G^{\prime \prime}$ is greater than G^{\prime} in a given frequency range. The impact of filler is to increase the elastic component above the viscous one over the whole range, and thus "gel" the samples. In this case, there is no hint of a terminal relaxation for the polymer, but a solidlike behavior. This is probably related to the existence of a percolated network microstructure which is not able to relax completely and becomes more pronounced with increasing $\Phi_{\text {si: }}$
As the volume fraction is increased to 16.8% vol. and 21.1% vol., the quality of the master curves suffers. This is exemplified in Figure 8b, where in particular the $G^{\prime \prime}$ cannot be superimposed neatly any more by applying only horizontal shift factors. The storage moduli G^{\prime} stay within an envelope, but it is unclear if these values are entirely trustworthy. The reasons for this discrepancy may lie either in slip on the plate due to the too high moduli, or in the failure of timetemperature superposition for dynamically heterogeneous samples. ${ }^{10}$ With our data, we are unable to judge. It can be concluded that the moduli of these samples increase considerably, and that G^{\prime} is always at least a factor of 2 higher than $G^{\prime \prime}$. We observe a broadening of the $G^{\prime \prime}$ peak in its high frequency range corresponding to a larger and more asymmetric distribution of relaxation times. It may be envisaged as a slower contribution (possible glassy layers) from the glass transition process located at higher frequency (out of our experimental window).
The horizontal shift factors, a_{T}, obtained from the master curve construction are found to change slightly from the matrix

Figure 8. Master curves for G^{\prime} and $G^{\prime \prime}(\mathrm{Pa})$ as a function of angular frequency $\omega(\mathrm{rad} / \mathrm{s})$ at the reference temperature of $50^{\circ} \mathrm{C}$ for nanocomposites with (a) $\Phi_{\text {si }}=0 \%$ vol., 8.4% vol., and 12.7% vol. and (b) $\Phi_{\text {si }}=21.1 \%$ vol.
to the two lower silica contents. Their evolution with the inverse of temperature can be well described with an Arrhenius equation. The flow activation energy thus obtained is estimated to be 53,58 , and $60 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for silica loadings of $0,8.4$ and 12.7% vol., respectively. Alternatively, the classical Williams-Landel-Ferry (WLF) equation ${ }^{71}$ could also be used leading to the system constants $C_{1}=6.9$ and $C_{2}=265 \mathrm{~K}$ for the pure polymer matrix at the reference temperature of $50^{\circ} \mathrm{C}$. For the nanocomposites, the values are $C_{1}=8.1$ and $C_{2}=280 \mathrm{~K}\left(C_{1}=\right.$ $\left.6.1, C_{2}=210 \mathrm{~K}\right)$ for 8.4% vol. and 12.7% vol. of silica, respectively. The fact that the characteristics of the time-temperature superposition $\left(a_{\mathrm{T}}, E_{\mathrm{a}}\right.$, or $\left.C_{1}, C_{2}\right)$ are not significantly modified by the introduction of filler in spite of strong variation of the G^{\prime} and $G^{\prime \prime}$ shapes was already observed in the literature for nanocomposite systems. ${ }^{36,46,70,72}$ Such results suggest that the temperature-dependent relaxation process probed here is similar in the composites and the unfilled polymer.

From the high-frequency storage modulus (estimated here at 150 Hz), the relative reinforcement of the nanocomposites $\mathrm{G} / \mathrm{G}_{0}$ with respect to the pure matrix can be calculated as a function of silica volume fraction. For the highly loaded samples, the modulus at 150 Hz is estimated from the average of the data point dispersion (see in Figure 8b). All resulting reinforcement factors are plotted in Figure 9. The reinforcement factor has the advantage of highlighting the influence of the filler, as it cancels the matrix contribution. It can also be compared directly to the Einstein equation for hydrodynamic reinforcement, ${ }^{39}$ and its application by Smallwood ${ }^{40}$ or Mooney ${ }^{73}$ to reinforcement of polymer matrices (see, e.g., ref 41 for different reinforcement factor descriptions). Here, a specific model based of percolation of aggregates inside the branches, which themselves extend across the whole sample, is proposed. Indeed, Figure 8a suggests a crossover from liquidlike to solid-like behavior at low frequency with increasing $\Phi_{\text {si }}$ and thus with the volume fraction in the branches, $\Phi_{\text {agg. }}$. We have therefore adapted a simple percolation model to the reinforcement data in Figure 9. Our model is based on a hydrodynamic description below a critical percolation volume fraction $\Phi_{\text {agg }}{ }^{c}$, and on a percolation expression above ${ }^{74,75}$

$$
\begin{equation*}
\frac{G}{G_{0}}=1+2.5 \Phi_{a g g}+\Theta\left(\Phi_{a g g}-\Phi_{a g g}^{c}\right) \frac{G_{f}}{G_{0}}\left(\frac{\Phi_{a g g}-\Phi_{a g g}^{c}}{1-\Phi_{a g g}^{c}}\right)^{b} \tag{13}
\end{equation*}
$$

Figure 9. Reinforcement factor G / G_{0} of nanocomposites with $\Phi_{\text {si }}=$ $8.4-21.1 \%$ vol., where G is the storage modulus at 150 Hz , and G_{0} the corresponding one of the matrix (squares). Line is a fit with eq 13 using the compacity and $\Phi_{\text {fract }}$ of the structural analysis as input. The fit parameters are $\Phi_{\text {fract }}{ }^{c}=0.56$ (corresponding to $\Phi_{\text {si }}{ }^{c}=0.12$) and $G_{\mathrm{f}} / G_{0}=50$. The purely hydrodynamic reinforcement is also indicated (dotted line).
where $\Theta\left(\Phi_{\text {agg }}-\Phi_{\text {agg }}{ }^{c}\right)$ denotes the Heaviside step function (zero for negative arguments, one for positive ones), and G_{f} is the modulus of the fractal network. Note that eq 13 relies on eq 12, which relates the aggregate volume fraction in the branches to the silica volume fraction in a non linear manner. For $\Phi_{\text {agg }}$, we have used linear interpolations of the aggregate compacity κ and the volume fraction of fractal branches $\Phi_{\text {fract }}$ as determined by TEM and SAXS (Table 1). The exponent of the percolation term, b, was set to 1.8 in agreement with the literature. ${ }^{74} \mathrm{We}$ are thus left with two virtually independent parameters, $\Phi_{\text {agg }}{ }^{c}$ and G_{f} / G_{0}, which have been varied to optimize the fit. The critical percolation volume fraction of aggregates in the branches is found to be $\Phi_{\mathrm{agg}}{ }^{c}=$ 56% vol., which corresponds to a silica volume fraction of $\Phi_{\text {si }}{ }^{c}=$ 12% vol. The rather high value of $\Phi_{\text {agg }}{ }^{c}$ is consistent with our picture of aggregates percolating within the fractal branches, i.e., in a space of reduced dimension. In one dimension, the exact result is a percolation only at full coverage. ${ }^{76}$ The remaining parameter is the ratio of the moduli. A value of $G_{f} / G_{0}=50$ is found to
correctly reproduce the increase of the reinforcement factor with silica volume fraction.

Given the simplicity of the rheological model, the compatibility with our previous analysis by SAXS (see in Table $1, \kappa=$ $31-38 \%$) is encouraging. This underlines the consistency of the methods. In particular, we have checked that fixing the compacity to other values (30% or 40%) reduces the quality of the fit strongly. The ratio of the moduli seems a bit low, as one might expect much higher moduli for pure silica, at least 10^{3} times higher than the one of the matrix. The branches, however, are made of noncompact aggregates, with coating agents on the silica nanoparticle surface. These may be the reasons for a lower modulus of the branches. The resulting percolation upturn observed in Figure 9 is thus weaker than in cases of uncoated silica, ${ }^{35}$ as also observed by Chevigny et al, ${ }^{15}$ but with a similar filler connectivity threshold. To finish this discussion, one may note that the data could also be described with other models (however with a much lower quality of the fit), like an exponential increase with the filler volume fraction which was found to describe reinforcement data in carbon black reinforced rubbers. ${ }^{77}$

4. CONCLUSION

The structure of nanocomposites designed to reproduce key features of industrial samples, but of simplified composition, has been studied on length scales extending from the nanometric primary particles to micrometers. We have developed an original method for scattering data analysis of such multiscale systems. The combination of TEM, SAXS, and computer simulations allowed for a quantitative analysis, evidencing the formation of small aggregates of average radius in the $35-40 \mathrm{~nm}$ range, with a large polydispersity in aggregate size (estimated to be about 30%) and thus in aggregation number: most of the aggregates contain some 15 primary particles, but the average amounts to about 45 . Compacity of aggregates was assumed to be identical for all sizes, and it was found to increase from 31% to 38% with $\Phi_{\text {si. }}$. Here one may add that these numbers are necessarily model dependent, which may impact the evolution of the compacity, which in any event stays in the 35%-range. Within our model, we have considered that these aggregates possess excluded volume interactions, which generate a visible shoulder in the scattering curves. It is important to recognize that this shoulder cannot be interpreted as a Guinier-signature of objects. The polydisperse aggregates fill up branches with a volume fraction of aggregates $\Phi_{\text {agg }}$ increasing from about 45 to 70%, as $\Phi_{\text {si }}$ goes up from 8.4 to 21.1% vol. The approximate lateral dimension of the branches is 150 nm , i.e., it is only a few aggregates wide. The large-scale spatial arrangement of the branches can be described by a fractal of average dimension of 2.4 . The structure contains pure polymer zones. Their volume fraction ($1-\Phi_{\text {fract }}$) decreases from 41 to 20% for 8.4% vol. and 21.1% vol. of silica, respectively. To summarize, it is demonstrated that the complex structure of interacting aggregates in nanocomposites of industrial origin can be quantitatively modeled by including self-consistent polydisperse form and structure factors of aggregates.

The rheology of the simplified industrial nanocomposites has been studied as a function of filler volume fraction, in small amplitude oscillatory shear experiments. Master curves for the storage and loss moduli could be constructed up to $\Phi_{\mathrm{si}}=12.7 \%$ vol. These curves display a crossover from a flow regime to solid-like behavior with increasing filler fraction at low
frequency, as well as an increase of the high-frequency moduli. The resulting reinforcement curve of the high-frequency storage modulus can be described using a combination of hydrodynamic reinforcement for $\Phi_{\text {si }}$ below a critical percolation volume fraction ($\Phi_{\mathrm{si}}{ }^{\mathrm{c}}=12 \%$ vol.), and a percolation law above. It is interesting to note that the aggregate compacity obtained from the structural analysis (SAXS and TEM) is fully compatible with the reinforcement data.
To finish the conclusions of this article, one may note that the polymer matrix was a mixture of reactive and inert chains. The influence of the ratio of reactive chains on the structure will be studied in a forthcoming article. ${ }^{78}$ Up to here, following our idea of simplification of the system, we have also deliberately avoided another key ingredient, the coupling agent. Its influence on microstructure in these systems is currently under investigation. ${ }^{79}$ Finally, for future work, it may be important to be able to compare the results obtained here to model systems where the filler is a well-defined nanoparticle.

APPENDIX

Table 2 shows the typical formulations of industrial nanocomposites.

Table 2. Typical Industrial Formulations in SBR-Silica Nanocomposites ${ }^{a}$

function	name	abbreviation	simplified system
coupling agent	bis(3-triethoxysilylpropyl) tetrasulfide	TESPT (Si69)	
coupling agent	3-mercaptopropyltriethoxysilane reacted with ethoxylated $\mathrm{C}_{13^{-}}$ alcohol	Si363	
coating agent	octyltriethoxysilane	octeo	X
catalyzer	diphenyl guanidine	DPG	X
cross-linking agent	sulfur		
cure activator	ZnO particles		
cure activator	stearic acids		
cure accelerator	N -butyl-2-benzothiazole sulfonamide	TBBS	
cure accelerator	N-cyclohexyl-2-benzothiazole sulfonamide	CBS	
antioxidant	N-isopropyl- N^{\prime}-phenyl-paraphenylenediamine	IPPD	
antioxidant	N-(1,3-dimethylbutyl)- N^{\prime}-phenyl-para-phenylenediamine	6PPD	X
antioxidant	2,2'-methylenebis(4-methyl-6-tertiary-butylphenol)	AO2246	X

${ }^{a}$ The last column indicates the components used in the simplified system studied in this article.

AUTHOR INFORMATION

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are thankful for a "Chercheur d'Avenir" grant by the Languedoc-Roussillon region (J.O.) and Ph.D. funding "CIFRE" (G.P.B.). We are indebted to C. Negrell-Guirao (ENSCM, Montpellier) for experimental support. Fruitful discussions with A. Bouty, F. Boué, J. Jestin (LLB Saclay), and M. In (L2C) are gratefully acknowledged.

REFERENCES

(1) Boonstra, B. B. Polymer 1979, 20 (6), 691-704.
(2) Heinrich, G.; Kluppel, M.; Vilgis, T. A. Curr. Opin. Solid State Mater. Sci. 2002, 6 (3), 195-203.
(3) Guth, E. J. Appl. Phys. 1945, 16, 20-25.
(4) Mark, J. E.; Erman, B.; Eirich, F. R. Science and Technology of Rubber; Academic Press: San Diego, CA, 1994.
(5) Kohls, D. J.; Beaucage, G. Curr. Opin. Solid State Mater. Sci. 2002, 6 (3), 183-194.
(6) Nusser, K.; Neueder, S.; Schneider, G. J.; Meyer, M.; PyckhoutHintzen, W.; Willner, L.; Radulescu, A.; Richter, D. Macromolecules 2010, 43 (23), 9837-9847.
(7) Jouault, N.; Dalmas, F.; Said, S.; Di Cola, E.; Schweins, R.; Jestin, J.; Boué, F. Macromolecules 2010, 43 (23), 9881.
(8) Genix, A.-C.; Tatou, M.; Imaz, A.; Forcada, J.; R., S.; Grillo, I.; Oberdisse, J. Macromolecules 2012, 45 (3), 1663-1675.
(9) Nakatani, A.; Chen, W.; Schmidt, R.; Gordon, G.; Han, C. Polymer 2001, 42, 3713-3722.
(10) Berriot, J.; Montes, H.; Lequeux, F.; Long, D.; Sotta, P. Macromolecules 2002, 35 (26), 9756-9762.
(11) Frohlich, J.; Niedermeier, W.; Luginsland, H. D. Composites Part A: Appl. Sci. Manuf. 2005, 36 (4), 449-460.
(12) Papakonstantopoulos, G. J.; Doxastakis, M.; Nealey, P. F.; Barrat, J.-L.; de Pablo, J. J. Phys. Rev. E 2007, 75 (3), 031803.
(13) Robertson, C. G.; Rackaitis, M. Macromolecules 2011, 44 (5), 1177-1181.
(14) Tsagaropoulos, G.; Eisenberg, A. Macromolecules 1995, 28 (1), 396-398.
(15) Chevigny, C.; Jouault, N.; Dalmas, F.; Boué, F.; Jestin, J. J. Polym. Sci., Part B: Polym. Phys. 2011, 49 (11), 781-791.
(16) Oberdisse, J. Soft Matter 2006, 2 (1), 29-36.
(17) Choi, S. S.; Kim, I. S.; Lee, S. G.; Joo, C. W. J. Polym. Sci., Part B: Polym. Phys. 2004, 42 (4), 577-584.
(18) Conzatti, L.; Costa, G.; Castellano, M.; Turturro, A.; Negroni, F. M.; Gerard, J. F. Macromol. Mater. Eng. 2008, 293 (3), 178-187.
(19) Mele, P.; Marceau, S.; Brown, D.; de Puydt, Y.; Alberola, N. D. Polymer 2002, 43 (20), 5577-5586.
(20) Ramier, J.; Gauthier, C.; Chazeau, L.; Stelandre, L.; Guy, L. J. Polym. Sci., Part B: Polym. Phys. 2007, 45 (3), 286-298.
(21) Stockelhuber, K. W.; Svistkov, A. S.; Pelevin, A. G.; Heinrich, G. Macromolecules 2011, 44 (11), 4366-4381.
(22) Belina, G.; Urban, V.; Straube, E.; Pyckhout-Hintzen, W.; Kluppel, M.; Heinrich, G. Macromol. Symp. 2003, 200, 121-128.
(23) Morfin, I.; Ehrburger-Dolle, F.; Grillo, I.; Livet, F.; Bley, F. J. Synchrotron Radiat. 2006, 13, 445-452.
(24) Schaefer, D. W.; Rieker, T.; Agamalian, M.; Lin, J. S.; Fischer, D.; Sukumaran, S.; Chen, C. Y.; Beaucage, G.; Herd, C.; Ivie, J. J. Appl. Crystallogr. 2000, 33 (1), 587-591.
(25) Schaefer, D. W.; Suryawanshi, C.; Pakdel, P.; Ilavsky, J.; Jemian, P. R. Physica A 2002, 314 (1-4), 686-695.
(26) Teixeira, J. J. Appl. Crystallogr. 1988, 21, 781-785.
(27) Beaucage, G. J. Appl. Crystallogr. 1995, 28, 717-728.
(28) Schneider, G. J.; Vollnhals, V.; Brandt, K.; Roth, S. V.; Goeritz, D. J. Chem. Phys. 2010, 133 (9), 094902.
(29) Schneider, G. J. J. Chem. Phys. 2009, 130 (23), 234912.
(30) Shinohara, Y.; Kishimoto, H.; Yagi, N.; Amemiya, Y. Macromolecules 2010, 43 (22), 9480-9487.
(31) Chakrabarti, R.; Delannoy, J.-Y.; Couty, M.; Schweizer, K. S. Soft Matter 2011, 7 (11), 5397-5407.
(32) Meth, J. S.; Zane, S. G.; Chi, C.; Londono, J. D.; Wood, B. A.; Cotts, P.; Keating, M.; Guise, W.; Weigand, S. Macromolecules 2011, 44 (20), 8301-8313.
(33) Janes, D. W.; Moll, J. F.; Harton, S. E.; Durning, C. J. Macromolecules 2011, 44 (12), 4920-4927.
(34) Chevigny, C.; Dalmas, F.; Di Cola, E.; Gigmes, D.; Bertin, D.; Boué, F.; Jestin, J. Macromolecules 2011, 44 (1), 122-133.
(35) Jouault, N.; Vallat, P.; Dalmas, F.; Said, S.; Jestin, J.; Boue, F. Macromolecules 2009, 42 (6), 2031-2040.
(36) Jouault, N.; Dalmas, F.; Boué, F.; Jestin, J. Polymer 2012, 53 (3), 761-775.
(37) Oberdisse, J.; Hine, P.; Pyckhout-Hintzen, W. Soft Matter 2007, 2, 476-485.
(38) Witten, T. A.; Rubinstein, M.; Colby, R. H. J. Phys. II 1993, 3 (3), 367-383.
(39) Einstein, A. Ann. Phys. 1906, 19, 289.
(40) Smallwood, H. M. J. Appl. Phys. 1944, 15, 758-766.
(41) Ahmed, S.; Jones, F. R. J. Mater. Sci. 1990, 25 (12), 4933-4942.
(42) Arrighi, V.; McEwen, I. J.; Qian, H.; Prieto, M. B. S. Polymer 2003, 44 (20), 6259-6266.
(43) Vieweg, S.; Unger, R.; Hempel, E.; Donth, E. J. Non-Cryst. Solids 1998, 235, 470-475.
(44) Berriot, J.; Montes, H.; Lequeux, F.; Long, D.; Sotta, P. Europhys. Lett. 2003, 64 (1), 50-56.
(45) Papon, A.; Saalwächter, K.; Schäler, K.; Guy, L.; Lequeux, F.; Montes, H. Macromolecules 2011, 44 (4), 913-922.
(46) Ren, J. X.; Silva, A. S.; Krishnamoorti, R. Macromolecules 2000, 33 (10), 3739-3746.
(47) Gauthier, C.; Reynaud, E.; Vassoille, R.; Ladouce-Stelandre, L. Polymer 2004, 45 (8), 2761-2771.
(48) Payne, A. R.; Whitaker, R. E. Rubber Chem. Technol. 1971, 44, 440-478.
(49) Heinrich, G.; Kluppel, M. Filled Elastomers Drug Delivery Syst. 2002, 160, 1-44.
(50) Oberdisse, J. Macromolecules 2002, 35 (25), 9441-9450.
(51) Tatou, M.; Genix, A.-C.; Imaz, A.; Forcada, J.; Banc, A.; R., S.; Grillo, I.; Oberdisse, J. Macromolecules 2011, 44, 9029.
(52) Suzuki, N.; Ito, M.; Yatsuyanagi, F. Polymer 2005, 46 (1), 193201.
(53) Rezende, C. A.; Braganca, F. C.; Doi, T. R.; Lee, L.-T.; Galembeck, F.; Boue, F. Polymer 2010, 51 (16), 3644-3652.
(54) Luo, H.; Kluppel, M.; Schneider, H. Macromolecules 2004, 37 (21), 8000-8009.
(55) Vo, L. T.; Anastasiadis, S. H.; Giannelis, E. P. Macromolecules 2011, 44 (15), 6162-6171.
(56) Fragiadakis, D.; Bokobza, L.; Pissis, P. Polymer 2011, 52 (14), 3175-3182.
(57) Arrighi, V.; Higgins, J. S.; Burgess, A. H.; Floudas, G. Polymer 1998, 39 (25), 6369-6376.
(58) Triolo, A.; Celso, F. L.; Negroni, F.; Arrighi, V.; Qian, H.; Lechner, R. E.; Desmedt, A.; Pieper, J.; Frick, B.; Triolo, R. Appl. Phys. A: Mater. Sci. Process. 2002, 74 (Suppl.), S490-S492.
(59) Anastasiadis, S. H.; Chrissopoulou, K.; Frick, B. Mater. Sci. Eng. B: Adv. Funct. Solid-State Mater. 2008, 152 (1-3), 33-39.
(60) Schneider, G. J.; Nusser, K.; Willner, L.; Falus, P.; Richter, D. Macromolecules 2011, 44 (15), 5857-5860.
(61) Roovers, J.; Toporowski, P. M. Macromolecules 1992, 25 (3), 1096-1102.
(62) Oberdisse, J.; Rharbi, Y.; Boué, F. Comput. Theor. Polym. Sci. 2000, 10 (1-2), 207-217.
(63) Debye, P. Ann. Phys. 1915, 46 (6), 809-823.
(64) Bernal, J. D. Proc. R. Soc. London, Ser, A: Math. Phys. Sci. 1964, 280 (1380), 299-322.
(65) Ehrburger-Dolle, F.; Hindermann-Bischoff, M.; Livet, F.; Bley, F.; Rochas, C.; Geissler, E. Langmuir 2001, 17 (2), 329-334.
(66) Klein, R. Neutrons, X-ray and Light Scattering; North-Holland Elsevier: Amsterdam, 2002.
(67) Percus, J. K.; Yevick, G. J. Phys. Rev. 1958, 110 (1), 1-13.
(68) Ashcroft, N. W.; Langreth, D. C. Phys. Rev. 1967, 156 (3), 685692.
(69) Oberdisse, J.; Deme, B. Macromolecules 2002, 35 (11), 43974405.
(70) Krishnamoorti, R.; Giannelis, E. P. Macromolecules 1997, 30 (14), 4097-4102.
(71) Williams, M. L.; Landel, R. F.; Ferry, J. D. J. Am. Chem. Soc. 1955, 77 (14), 3701-3707.
(72) Solomon, M. J.; Almusallam, A. S.; Seefeldt, K. F.; Somwangthanaroj, A.; Varadan, P. Macromolecules 2001, 34 (6), 1864-1872.
(73) Mooney, M. J. Colloid Sci. 1951, 6, 162-170.
(74) de Gennes, P. G. J. Phys., Lett. 1976, 37, 1-2.
(75) Kolarik, J. Eur. Polym. J. 1998, 34 (5-6), 585-590.
(76) Stauffer, D., Introduction to Percolation Theory; Taylor and Francis: London, 1985.
(77) Payne, A. R. J. Appl. Polym. Sci. 1963, 7 (3), 873-885.
(78) Baeza, G. P. et al. Manuscript in preparation.
(79) Bouty, A. et al. Manuscript in preparation.

Effect of Grafting on Rheology and Structure of a Simplified Industrial Nanocomposite Silica/SBR

Guilhem P. Baeza, ${ }^{\dagger, \ddagger, \S}$ Anne-Caroline Genix, ${ }^{*, t, \ddagger}$ Christophe Degrandcourt, ${ }^{\S}$ Laurent Petitjean, ${ }^{\S}$ Jérémie Gummel, ${ }^{\perp}$ Ralf Schweins, ${ }^{\|}$Marc Couty, ${ }^{\S}$ and Julian Oberdisse ${ }^{\dagger, \dagger}{ }^{\dagger,}$
${ }^{\dagger}$ Laboratoire Charles Coulomb UMR 5221, Université Montpellier 2, F-34 095, Montpellier, France
${ }^{\ddagger}$ Laboratoire Charles Coulomb UMR 5221, CNRS, F-34 095, Montpellier, France
${ }^{\S}$ Manufacture Française des Pneumatiques MICHELIN, Site de Ladoux, 23, place des Carmes Déchaux, F-63 040 Clermont-Ferrand, Cedex 9, France
${ }^{\perp}$ European Synchrotron Radiation Facility, ESRF, 6 rue Jules Horowitz, BP 220, F-38 043, Grenoble, Cedex 9, France
"Institut Laue-Langevin, DS/LSS, F-38 042 Grenoble, France

Abstract

An un-cross-linked SBR-system filled with precipitated silica nanoparticles of radius $\approx 10 \mathrm{~nm}$ by mixing is studied as a function of the fraction of graftable matrix chains ($140 \mathrm{~kg} \mathrm{~mol}^{-1}$) varying from 0% to 100%, for a low $\left(\Phi_{\mathrm{Si}}=8.5 \mathrm{vol} \%\right)$ and high ($16.7 \mathrm{vol} \%$) silica volume fraction. The linear rheology in shear shows a strong impact of the grafting on the terminal flow regime, and a shift to longer relaxation times with increasing grafting. Simultaneously, the plateau modulus stays approximately constant for the low $\Phi_{S j}$ suggesting a link to the silica content. The microstructure of the silica is characterized by using a combination of transmission electron microscopy and small-angle X-ray scattering data. We apply a quantitative model of interacting aggregates, and determine the average aggregation number (decreasing from 160 to 30 with grafting), aggregate size (50 to 30 nm), and compacity (55% to 35%). While the linear rheology seems to be dominated by the matrix composition, both the mixing rheology and the structure display a saturation with increasing grafting fraction. A closer analysis of this effect indicates that a critical amount of grafting is needed to trigger structural evolution. To summarize, a quantitative study of complex nanocomposites with several features of industrial systems demonstrates that the grafting density can be used as a fine-tuning parameter of rheology and microstructure.

I. INTRODUCTION

Nanocomposites may be formed by dispersion of nanoparticles in polymer matrices, usually with the aim of improving macroscopic properties like rheological ones. ${ }^{1-4}$ Which aspect of the rheological or mechanical behavior is to be reinforced depends on the desired application, which may favor stronger moduli, or lower dissipation under cyclic stress, like, e.g., rolling resistance. How this happens in microscopic detail is still a matter of debate, even if the role of the different system parameters has been progressively clarified in the literature. These parameters are as follows: (a) The volume fraction and dispersion of the filler particles, which may vary from individually dispersed beads to network structures. ${ }^{5-9}$ Strong variations in mechanical properties are provoked by, e.g., percolation, which depends on the space-filling properties of (possibly fractal) aggregates. ${ }^{6,10,11}$ (b) The surface properties of the filler particles. Most polymer matrices are hydrophobic, and hydrophilic nanoparticles like silica may be surface modified, e.g., by grafting silane molecules ${ }^{12-16}$ or short hydrocarbons, ${ }^{17}$ in order to increase the compatibility with the matrix. This is usually accompanied by a better dispersion, i.e., there is a link between surface properties and structure. ${ }^{16}$ Note that surface
properties have a strong impact on the dynamical properties of the chains. ${ }^{18-20}$ The existence of dynamical heterogeneities substantially affects the mechanical properties. (c) Grafting of a coupling agent. This is an alternative to grafting a coating agent, which allows to covalently couple the matrix to the particles. ${ }^{21-26}$ (d) Grafting polymer layers. ${ }^{27-38}$ One may go one step further by grafting polymer chains onto the filler surface, possibly visualizing them using small-angle neutron scattering (SANS). ${ }^{32}$ In this case, the mass of the grafted molecules, as well as the grafting density, influences the rheological properties of the nanocomposites. ${ }^{30,31,35,37,38}$ Note that the conformation of bulk chains has also been studied by SANS in presence of silica. ${ }^{17,39,40}$

In our nanocomposites with graftable polymer chains and silica of industrial origin, the silica nanoparticles are aggregated and the aggregates are agglomerated in the pellets. In the mixing phase, the agglomerates are destroyed (depending on the torque during the process), aggregates are possibly broken

[^1]into pieces and these objects may reaggregate up to a certain point depending on the nanoparticle interactions in the melt. These nanoparticle interactions can be caused either by depletion due to ungrafted chains, van der Waals dispersion forces, or steric repulsion due to grafting. The balance between these contributions depends on the masses of the matrix and grafted chains and the grafting density. In the limit of high grafting density and short matrix chains $\left(M_{\text {graft }} / M_{\text {matrix }}>1\right)$, good dispersion is achieved in model systems ${ }^{38}$ due to the steric stabilization of the swollen brushes and the short-range attraction due to depletion by short chains. In the opposite limit, still with high grafting density, the small grafted chains collapse on the surface while the large matrix chains lead to depletion attraction between particles. ${ }^{38}$ At low grafting densities, finally, aggregation may be caused by a lack of steric repulsion. In this article, the grafting density is around 0.1 chain $/ \mathrm{nm}^{2}$ and we are in the exact intermediate case where the matrix and the grafted masses are equal. Similar studies ${ }^{36,37}$ taking into account this particular case $\left(M_{\text {graft }} / M_{\text {matrix }} \approx 1\right)$ have been published.

Different types of rheological experiments are needed to fully characterize a given material. Here we focus on the linear rheology, but one should mention that nonlinear effects (Payne, ${ }^{41,42}$ Mullins ${ }^{43}$) have attracted considerable attention for cross-linked systems in the past. It has been recognized that the linear rheology of nanocomposites can be subdivided in two classes, depending on the filler structure. ${ }^{44}$ For fractal filler aggregates like fumed silica, a solid filler network can be built up at comparatively low volume fractions, thus inducing percolation. These nanocomposites then show a solid-like behavior, the key features of which are weakly varying ($\alpha \omega^{n}$ with n small) moduli G^{\prime} and $G^{\prime \prime}$ at low frequencies, ${ }^{45}$ with $G^{\prime}>$ $G^{\prime \prime}$: in other words, absence of a terminal flow regime. Clearly, this regime is dominated by particle-particle interactions. In the case of individually dispersed colloidal nanoparticles, percolation is not reached at comparable volume fractions, and the polymer-particle interfacial properties dominate the rheological response. ${ }^{14}$

The dispersion state of filler nanoparticles in the bulk polymer is usually monitored by electron microscopy, ${ }^{27,46-49}$ or scattering methods. ${ }^{6,50-55}$ The problem with both methods is that for high filler loadings, and in particular for complex, i.e., aggregated and interacting structures, the data are difficult to analyze. For the simplified industrial nanocomposite system studied in the present article, such complex silica microstructures are present, and we have developed a quantitative method of data analysis, based both on transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). ${ }^{56}$ The term 'simplified' refers to the fact that only a reduced number of ingredients is used, namely silica, polymer (with antioxidants), and the coating agent. In particular, there are no sulfur-containing molecules related to cross-linking, nor catalyzing nanoparticles like ZnO . This method was then applied to investigate the filler structure as a function of filler volume fraction, extracting size distribution parameters characterizing aggregation $\left(\left\langle N_{\text {agg }}\right\rangle=45\right)$, compacity of aggregates ($\kappa=31 \%$ to 38%), their interaction via the apparent isothermal compressibility, and their large-scale organization. ${ }^{56}$ The aim of the present paper is to study the influence of endgrafting of the polymer chains: the same analysis is performed, but now the matrix composition is varied, from 100\% nongraftable to 100% graftable chains, whereas it was set to 50% in ref 56 . It is important to realize that this is not in the
same spirit as the polymer grafting performed in the literature, ${ }^{27-35}$ which is based on nanoparticles with a grafted layer dispersed in an inert matrix. In the present work, the control parameter is the fraction of graftable chains which will be varied from 0 to 100%, the others forming the matrix. Thus, at 100%, all chains in the sample may become grafted chains.
The outline of this article is the following. After reviewing the methods in section II, the thermomechanical mixing process is presented in section III.1. The linear rheology of the matrix, which is an important reference for the reinforcement by silica nanoparticles studied in section III.3, is discussed in section III.2. In section III.4, the silica microstructure is analyzed using our recently developed model. A discussion of the data is proposed in section IV, including an interpretation of the observed saturation of structural details with the fraction of graftable chains.

II. MATERIALS AND METHODS

Nanocomposite Formulation. Details are given in ref 56. Simplified industrial nanocomposites containing silica and un-cross-linked SBR are formulated by stepwise introduction and mixing of SBR chains with silica pellets in an internal mixer, keeping the final temperature constant at $160 \pm 5^{\circ} \mathrm{C}$. For simplicity, all the polymer additives, DPG (Vulcacit, Bayer, 1 wt $\%$ with respect to polymer added only in presence of silica), the liquid coating agent OCTEO (Dynasylan, 8 wt \% with respect to silica) and silica are incorporated simultaneously. The hot sample is laminated 10 times through a 1 mm gap. Real silica volume fractions in the nanocomposites reported here have been measured by thermogravimetric analysis (Mettler Toledo).

System Characterization. The silica pellets (Zeosil 1165 MP from Rhodia) have the nominal specific surface of $160 \mathrm{~m}^{2} /$ g , and the size distribution of the nanoparticles obeys a lognormal law in agreement with TEM studies $\left(R_{0}=8.55 \mathrm{~nm}, \sigma=\right.$ 27%, leading to the average bead volume of $V_{\mathrm{Si}}=3.6 \times 10^{3}$ nm^{3}). The latter value will be used to estimate aggregation numbers of silica nanoparticles (or beads) in aggregates.

Random SBR copolymers (with antioxidants N -(1,3-dimethylbutyl)- N^{\prime}-phenyl- p-phenylenediamine and $4,4^{\prime}$-meth-ylene-bis-2,6-tert-butylphenol) were generated by anionic polymerization initiated by $n-\mathrm{BuLi}$ in a methylcyclohexane solution. The polymer matrix is made of two types of chains of number-average molecular mass determined by size exclusion chromatography (SEC): $M_{\text {SBR }}=140 \mathrm{~kg} \mathrm{~mol}^{-1}(\mathrm{PDI}=1.07)$. The absence of substantial chain degradation due to mixing was checked by SEC on chains extracted from the nanocomposites. Average mass and polydispersity remain close around the value directly after synthesis of $140 \mathrm{~kg} \mathrm{~mol}^{-1}$ and PDI $=1.07-1.11$. The polymerization is either terminated using a protic terminating agent to recover the nonfunctional SBR or by reaction with hexamethylcyclotrisiloxane (D3, $1 / 3$ eq of chains) to obtain the silanol one-end functionalized copolymer SBR-$\mathrm{SiMe}_{2}-\mathrm{OH}$ denoted D3 in the present article. The $\mathrm{SiMe}_{2}-\mathrm{OH}$ terminated chain fraction, determined using ${ }^{1} \mathrm{H}$ and ${ }^{29} \mathrm{Si}$ NMR, is greater than 98%. Since the polymerization process is identical for nonfunctionalized and silanol functionalized chains, they share the same microstructure: each chain is a statistical copolymer with styrene ($26 \mathrm{wt} \%$) and butadiene (74 wt \%) units ($41 \mathrm{wt} \%$ of which are 1,2-butadiene and $59 \mathrm{wt} \%$ of 1,4-butadiene units). The calorimetric results are given in ref 56. Deuterated silanol-functionalized SBR copolymer (mono-
mers from Eurisotop, Saclay, France) has been synthesized using the same protocol.

The matrix composition is defined by \% D3, which is the mole fraction of chains bearing a single graftable silanol endfunction, the remaining chains being linear unmodified SBRchains. This functional group may graft the chain on the silica by condensation with the surface silanol. An important parameter is the nominal grafting density, i.e., the number of grafting functions per unit silica surface:

$$
\begin{equation*}
\rho_{\mathrm{D} 3}=\frac{\left(1-\Phi_{\mathrm{si}}\right) N_{\mathrm{A}}(\% \mathrm{D} 3) d_{\mathrm{SBR}} R_{0} \exp \left(2.5 \sigma^{2}\right)}{3 M_{\mathrm{SBR}} \Phi_{\mathrm{si}}} \tag{1}
\end{equation*}
$$

where $d_{\mathrm{SBR}}=0.94 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ is the density of the polymer, and N_{A} is the Avogadro number. The exponential in eq 1 stems from the log-normal description of the average silica nanoparticle surface and volume. Note that $\rho_{\mathrm{D} 3}$ is a nominal value, as it does not consider any loss of silica surface with respect to spherical nanoparticles, e.g., due to aggregation, or any other reason. The real grafting density is $\gamma \rho_{\mathrm{D} 3}$, where γ is the advance of the grafting process (ranging from 0 with no grafting to 1 with all chains grafted). Values of $\rho_{\mathrm{D} 3}$ are reported in Table 1 for two

Table 1. Nominal Grafting Densities $\rho_{\text {D3 }}$ of Nanocomposite Samples Studied in This Article, for Two Silica Volume Fractions $\Phi_{\mathrm{Si}_{\mathrm{i}}}$ and Fractions of Graftable Units between 0\% and 100%

$\% \mathrm{D} 3$	$\Phi_{\mathrm{Si}}(\approx 8.5 \%)$	$\rho_{\mathrm{D} 3}\left(10^{-3} \mathrm{~nm}^{-2}\right)$	$\Phi_{\mathrm{Si}}(\approx 16.7 \%)$	$\rho_{\mathrm{D} 3}\left(10^{-3} \mathrm{~nm}^{-2}\right)$
0	0.086	0	0.167	0
25	0.086	37	0.168	17
50	0.084	76	0.168	34
75	0.086	110	0.166	52
100	0.085	148	0.168	69

series in silica volume fraction, one close to $8.5 \pm 0.1 \%$ and the other around $16.7 \pm 0.1 \%$. For comparison, the highest nominal grafting density of ca. $0.15 \mathrm{~nm}^{-2}$ gives typically 150 chains attached to a single nanoparticle.

The fraction of bound rubber has been determined by extraction of the free chains in toluene and measuring the resulting sample mass after evaporation of the solvent. As the nanocomposite total mass and the filler volume fraction are known, the bound rubber fraction corresponding to the advance of grafting γ is easily calculated. Note that the bound rubber fraction evolves during the mixing process due to the grafting kinetics, and we report here the values of the final samples.

Structural Analysis. The silica microstructure in the nanocomposites has been studied by transmission electron microscopy and SAXS. TEM pictures were obtained with samples of nominal thickness $50-70 \mathrm{~nm}$ prepared by ultracryomicrotomy at $-80^{\circ} \mathrm{C}$ on a LEICA FC-7 (Diatome ultra 35°). Electron microscopic observations in transmission were achieved with a Philips CM200 LaB6 (200 kV , bright field mode). A gray scale analysis of the pictures using ImageJ was performed to determine the pure polymer fraction. The average and the standard deviation of this quantity were obtained via a statistical analysis over several pictures (from 12 up to 20 depending on the samples). SAXS experiments (beamline ID2, ESRF, Grenoble) were performed at a wavelength of $1.1 \AA$ (12.46 keV), using two sample-to-detector distances (1 and 10 m), yielding a total q -range from 0.001 to $0.5 \AA^{-1}$. Even lower- q
data was measured on the Bonse-Hart setup on $\operatorname{ID} 2\left(q_{\text {min }}=\right.$ $10^{-4} \AA^{-1}$). Approximate sample thickness was 0.8 mm . The scattering cross section per unit sample volume $\mathrm{d} \Sigma / \mathrm{d} \Omega$ (in cm^{-1}) -which we term scattered intensity $I(q)$-was obtained by using standard procedures including background subtraction and calibration given by ESRF. The matrix contribution was systematically subtracted. The contrast of silica in polymer in SAXS experiments was calculated from the scattering length densities $\left(\rho_{\mathrm{SBR}}=8.85 \times 10^{10} \mathrm{~cm}^{-2}, \rho_{\mathrm{SiO}_{2}}=1.97 \times 10^{11} \mathrm{~cm}^{-2}\right.$, $\Delta \rho=1.09 \times 10^{11} \mathrm{~cm}^{-2}$), which were themselves known from the chemical composition. SANS measurements of the chain conformations were performed on beamline D11 (ILL, Grenoble, France).
Rheology. The rheological response in the linear regime of the nanocomposites was obtained with a stress-controlled rheometer AR 2000 in the strain-controlled mode (plate-plate geometry, 20 mm diameter). Frequency sweeps at fixed low deformation level (0.1%) were performed from 10 to $80^{\circ} \mathrm{C}$. Using time-temperature superposition, master curves of the storage modulus, $G^{\prime}(\omega)$, and the loss modulus, $G^{\prime \prime}(\omega)$, corresponding to measurements at $50{ }^{\circ} \mathrm{C}$ were established between $\omega=2 \pi f=2 \pi 10^{-3}$ and $2 \pi 10^{3} \mathrm{rad} / \mathrm{s}$.

Data Analysis of Small-Angle Scattering. The scattering patterns of industrial nanocomposites usually show a complex multiscale behavior, which has been discussed in detail in ref 56 . After subtraction of the low- q scattering law reminiscent of a large-scale fractal organization, the remaining intensity can be described with polydisperse interacting aggregates made of small primary silica beads:

$$
\begin{equation*}
\frac{I(q)}{\Phi_{\mathrm{si}}}=\Delta \rho^{2} V_{\mathrm{si}} \mathrm{ainter}_{\mathrm{app}}(q)\left\langle P_{\mathrm{agg}}(q)\right\rangle \tag{2}
\end{equation*}
$$

where Φ_{Si} is the volume fraction of silica, $\Delta \rho$ the contrast between silica and the SBR matrix, $V_{S \mathrm{i}}$ the silica particle volume given above, $S_{\text {inter }}^{\text {app }}$ the apparent interaggregate structure factor, and $\left\langle P_{\text {agg }}(q)\right\rangle$ the average form factor of the aggregates, with $\left\langle P_{\text {agg }}(q \rightarrow 0)\right\rangle=\left\langle N_{\text {agg }}{ }^{2}\right\rangle /\left\langle N_{\text {agg }}\right\rangle \exp \left(-q^{2} R_{\mathrm{G}}{ }^{2} / 5\right)$, and $R_{\mathrm{G}}{ }^{2}=$ $\left.\left\langle R_{\mathrm{agg}}\right\rangle\right\rangle /\left\langle R_{\mathrm{agg}}{ }^{6}\right\rangle$ the average Guinier (i.e., equivalent sphere) radius of aggregates deduced from the aggregate size distribution discussed in the text. ${ }^{56}$ Here $N_{\text {agg }}$ is the number of primary nanoparticles in a given aggregate of radius $R_{\text {agg }}$:

$$
\begin{equation*}
N_{\mathrm{agg}}=\frac{V_{\mathrm{Si} \mathrm{in} \mathrm{agg}}}{V_{\mathrm{Si}}} \tag{3}
\end{equation*}
$$

$N_{\text {agg }}$ is related to the aggregate compacity κ (or internal aggregate volume fraction) defined by the ratio between silica and total aggregate volume:

$$
\begin{equation*}
\kappa=\frac{V_{\mathrm{Si} \mathrm{i} \mathrm{agg}}}{V_{\mathrm{agg}}}=\frac{V_{\mathrm{Si} \mathrm{in} \mathrm{agg}}}{\frac{4}{3} \pi R_{\mathrm{agg}}{ }^{3}} \tag{4}
\end{equation*}
$$

For the determination of the average aggregation numbers in nanocomposites, a quantitative expression for the low-q limit of $S_{\text {inter }}^{\text {app }}$ as a function of the aggregate volume fraction $\Phi_{\text {agg }}$ is needed. Such an expression has been determined by Monte Carlo simulations in ref 56, and it is recalled here:

$$
\begin{equation*}
S_{\mathrm{app}}^{\mathrm{inter}}(q \rightarrow 0)=\frac{\left(1-\alpha \Phi_{\mathrm{agg}}\right)^{4}}{\left(1+2 \alpha \Phi_{\mathrm{agg}}\right)^{2}} \tag{5}
\end{equation*}
$$

where α is an empirical parameter related to the polydispersity in size. For polydisperse aggregates of log-normal size

Figure 1. (a) Torque observed during mixing of SBR nanocomposites for a series in matrix composition ($0-100 \%$ D3), for SBR chains with 140 kg $\mathrm{mol}^{-1}, 8.5 \mathrm{vol} \%$ silica. (b) Fraction of bound rubber as a function of the D3-fraction for nanocomposites with 8.5 and 16.7 vol \% of silica. Lines are linear fits.
distribution with $\sigma=0.3, \alpha=0.6$ was found to reproduce the simulation data, and this value will be used here.

For the determination of the typical aggregate radius, we will focus on the evolution of $S_{\text {inter }}^{\text {app }}(q)$ of nanocomposites as a function of experimental parameters. Characteristic breaks in slope are found in the scattered intensity, which are directly related to the shape of $S_{\text {inter }}^{\mathrm{app}}$. It is possible to visualize these breaks in slope by counterbalancing the overall power-law decrease of the scattered intensity. In Kratky plots, for instance, $q^{2} I(q)$ is plotted versus q. A break in slope may then appear as an easily recognizable maximum, characterized by $q_{\text {agg }}$, which is directly related to $R_{\text {agg }}=\pi / q_{\text {agg. }}{ }^{56,57}$ A second maximum at higher q is related to the silica nanoparticles. In this article, the maxima in the Kratky plots will be fitted by the following lognormal expression ($i=\mathrm{si}$, agg):

$$
\begin{equation*}
G_{i}(q)=\frac{A_{i}}{\sqrt{2 \pi} \sigma_{i} q} \exp \left(-\frac{\ln ^{2}\left(\frac{q}{q_{i}}\right)}{2 \sigma_{i}^{2}}\right) \tag{6a}
\end{equation*}
$$

$$
\begin{equation*}
G(q)=G_{\text {si }}(q)+G_{\text {agg }}(q) \tag{6b}
\end{equation*}
$$

III. RESULTS AND DISCUSSION

III.1. Thermomechanical Characterization of Mixing.

The introduction of the polymer and the filler in the mixing chamber leads to a strong increase of torque and temperature, both measured continuously during the process. In our previous article, ${ }^{56}$ torque and temperature were discussed for different filler contents ($8-21 \mathrm{vol} \%$), at fixed matrix composition (50% D3, $140 \mathrm{~kg} \mathrm{~mol}^{-1}$). The resulting curves were similar in shape to the ones discussed here, only that they displayed a strong increase in torque with Φ_{Si}. In this section, we study the qualitative behavior observed when changing the matrix composition from 0% D3 to 100% D3 at fixed silica volume fraction ($8.5 \mathrm{vol} \%$), and the same chain mass. In Figure 1a, the torque is seen to increase to a quasi-plateau after introduction of the silica. The height of the plateau is rather low for the unmodified polymer ($0 \% \mathrm{D} 3$), and higher and roughly identical for all other values of grafting fractions. This is a first
signature of a saturation effect with the amount of D3 polymer in the samples, to be discussed later in this article. At this stage of the study, it is not possible to relate the increase of the torque level to system properties: as we will see, the grafting also influences the silica structure itself, which certainly affects the rheology of the nanocomposites.
To analyze the amount of grafting after the mixing process, the fractions of bound rubber ${ }^{15}$ of the nanocomposite samples-i.e., the fractions of nonextractable chains among the totality of the chains-have been determined (Figure 1b). As one can see, the bound rubber fraction increases linearly with the fraction of D3, up to more than 75% that defines the advance γ of the grafting process, showing that the grafting procedure works. The facts that the bound rubber is evolving linearly with \% D3 and that its value is zero at 0\% D3 strongly suggest that physisorbed chains can be extracted and that bound rubber corresponds to those which are covalently linked in this case.
To summarize, the level of the mixing torque is found to be only weakly dependent on the D3-fraction, showing saturation between 25% and 50% of D3. For further comparison, one may refer to the density of grafting functions as defined in eq 1 : saturation is achieved above $\gamma \rho_{\mathrm{D} 3} \approx 0.03 \mathrm{~nm}^{-2}$. A similar phenomenon is observed for the 16.7% samples. Together with the bound rubber analysis, these results illustrate that increasing the fraction of D3 chains leads to a higher fraction of grafted chains, but only to a small increase in torque, if any.
III.2. Matrix Rheology. The linear rheology of the pure polymer matrices ($\Phi_{\mathrm{Si}}=0 \%$) is important as it serves as reference for the nanocomposite samples. The silica-free matrices at various \% D3 have been mixed by lamination in a 1 mm gap. Their rheological properties have been studied by small amplitude shear experiments, as a function of matrix composition (\% D3). In Figure 2, the storage and loss moduli, $G^{\prime}(\omega)$ and $G^{\prime \prime}(\omega)$, respectively, are plotted, for different matrix compositions $(0 \%, 50 \%, 100 \%$ D3). The effect of composition on the matrix rheology is weak. Some minor changes in modulus and terminal relaxation time may be observed, leading to a slightly lower viscosity (by some 20\%) in the case of the fully graftable polymer matrix. This might be due to differences

Figure 2. Master curves for the storage and loss modulus $G^{\prime}(\omega)$ and $G^{\prime \prime}(\omega)$ at the reference temperature of $50{ }^{\circ} \mathrm{C}$ for pure polymer matrices of chain mass $140 \mathrm{~kg} \mathrm{~mol}^{-1}$, for 0,50 , and 100% D3.
in topology, like some small amount of branching. ${ }^{58}$ We will see shortly that this (weak) tendency is inverted in presence of filler.

The G^{\prime} and $G^{\prime \prime}$ curves have the typical shape of an entangled polymer melt, with an identical high-frequency rubbery plateau $\left(\mathrm{G}_{0} \approx 0.9 \mathrm{MPa}\right)$, and a characteristic crossover to an asymptotic flow regime toward $G^{\prime} \sim \omega^{2}\left(G=G_{0}(\omega \tau)^{2}\right)$ at low ω. The corresponding loss moduli-also shown in Figure 2-are equally characteristic, with a prominent maximum at $\omega \tau=1$ leading to $\tau=1.6 \pm 0.3 \mathrm{~s}$ for all samples. The similarity of these curves confirms that the fraction of graftable function has only a marginal impact on the linear rheology of the silica-free melts.
III.3. Nanocomposite Rheology. In the presence of the silica filler, the rheological properties of the samples evolve considerably, which is one of the reasons of existence of nanocomposites. In parts a and b of Figure 3, the linear moduli
G^{\prime} and $G^{\prime \prime}$ are superimposed for nanocomposites (8.5\% of silica) for different fractions of graftable units D3, 0% to 100% D3.
Compared to the pure polymer case, the result is radically different as observed in the literature for grafted model systems. ${ }^{29,37,38,44}$ The low-frequency storage modulus increases considerably with the D3-fraction, and the power-law exponent β decreases from 0.75 to 0.25 with increasing \% D3, as shown in the inset of Figure 3a. At the same time, the plateau modulus is seen to be unaffected for samples with 25% to 100% D3. Note the particular case of the sample with 0% D3 which displays a higher plateau modulus. In this case, the level of the modulus for different runs was within the vertical range indicated by the line in Figure 3a. Independent dynamic mechanical analysis (DMA) measurements at 10 Hz have confirmed that the 0\% D3 high-frequency modulus is significantly higher than the others. The flow-regime of the nanocomposite samples is shifted to smaller frequencies. The characteristic relaxation time, which can also be measured from the position of the $G^{\prime \prime}$-maximum, thus increases with D3 by almost a factor of 2, as shown in the inset of Figure 3b. Finally, the overall decrease of the loss modulus with the D3-fraction, in particular at large frequencies, shows that the sample becomes more elastic, or gelled, as the grafting functions are introduced into the material. It is interesting to confront the elastic moduli for different \% D3 to the ones deduced from the integration of $G^{\prime \prime}:{ }^{59}$

$$
\begin{equation*}
G_{\mathrm{N}}=\frac{2}{\pi} \int_{-\infty}^{+\infty} G^{\prime \prime}(\omega) \mathrm{d}[\ln \omega] \tag{7}
\end{equation*}
$$

In Figure 4, three sets of values are shown. The dotted line is the plateau modulus determined in Figure 3a. By integrating (eq 7) from the lowest experimental frequencies $\left(10^{-2} \mathrm{rad} / \mathrm{s}\right)$ up to the minimum in $G^{\prime \prime}$, a second set is created. The 0% D3 integral is found to be larger than the others in agreement with Figure 3a. Then a decrease by some 20% is observed for the integrals of samples with 25% to 100% D3. This suggests that some of the relaxation of the chains have been moved to a lower (retarded) frequency window with grafting. Indeed, visual

Figure 3. Master curves for (a) Storage modulus $G^{\prime}(\omega)$ for nanocomposites ($8.5 \mathrm{vol} \%$ silica) of chain mass $140 \mathrm{~kg} \mathrm{~mol}{ }^{-1}$, for $0,25,50,75$, and $100 \% \mathrm{D} 3$, at the reference temperature of $50^{\circ} \mathrm{C}$. The slope β of the terminal regime versus the fraction of graftable units is shown in the inset. The vertical black line at high frequency represents the error bar for the $0 \% \mathrm{D} 3$ sample. (b) Loss modulus $G^{\prime \prime}(\omega)$ from the same experiments. In the inset, the relaxation time obtained from the maximum of $G^{\prime \prime}$ is plotted as a function of the fraction of \% D3.

Figure 4. Numerical values of integral over $G^{\prime \prime}$ as a function of $\ln (\omega)$ up to the minimum of $G^{\prime \prime}$, for different fractions of graftable chains \% D3 considering the lowest experimental frequency (full symbols), and an extrapolation to take into account the missing low-frequency tail of $G^{\prime \prime}$ (empty squares). For comparison, the high-frequency elastic moduli $(150 \mathrm{~Hz})$ are reported as a dotted line.
inspection of Figure 3b shows that the integral is incomplete on the low frequency side, the importance of the "missing" part depending on \% D3. We have therefore extrapolated the $G^{\prime \prime}$ functions, and recalculated the integral, giving the third set of data in Figure 4. Now the values are constant within the experimental uncertainty in the range from 25% to 100% D3, and it is concluded that the grafting retards the relaxation of the chains. ${ }^{60}$ This effect is related to the above-mentioned decrease in slope with \% D3 of the storage modulus at low frequency.

To summarize, the subtle effect of the D3-fraction on pure melts is found to become of considerable importance in presence of the silica filler. This is yet another hint that the grafting chemistry during the mixing process affects the nanocomposites. Its effect is to lower the viscous contribution of the nanocomposites at moderate and high frequencies, and to increase the low frequency modulus and the relaxation time τ. On the basis of the silica structure to be discussed in the next section, the specific contributions of the chains and the silica aggregates on the low and high frequency domains will be identified below.
III.4. Filler Structure in Nanocomposites. The filler structure of nanocomposites has been measured by SAXS and TEM. The two methods are complementary inasmuch as the first gives averages over macroscopic sample regions (with the drawback of difficult interpretation), and the second local (with the drawback of limited statistical relevance) but more easily interpretable data. The way the filler is structured on the nanoscale-and how this structure evolves with filler volume fraction in our simplified industrial nanocomposites-has been measured and modeled in our previous article. ${ }^{56}$ There, a constant matrix composition (50% D3) was used in order to focus on the effect of $\Phi_{\mathrm{Si}_{\mathrm{i}}}$. Here, the same quantitative model of the SAXS data is applied to our data. As with the rheological data presented in the previous sections, our objective is to characterize the impact of the fraction of graftable polymer chains (\% D3).
The large-scale structure of the nanocomposites has been characterized by TEM. In Figure 5, TEM-pictures of the

Figure 5. TEM pictures of nanocomposites with $\Phi_{\mathrm{Si}}=8.5 \mathrm{vol} \%$ and SBR chains. \% D3 $=0 \%, 25 \%, 50 \%, 75 \%$, and 100%. The 50% image was taken from ref 56 for completeness.
nanocomposite containing 8.5% of silica for five grafting fractions are compared ($0 \%, 25 \%, 50 \%, 75 \%$ and 100% D3). The scale bar is 200 nm for all pictures, and the presence of primary silica beads of approximately 10 nm radius is visible. The large-scale structure of these nanoparticles in the polymer matrix evolves from a rather heterogeneous spatial distribution at 0% D3 to a much more homogeneous dispersion at 100% D3. Without grafting functions in the matrix, connected polydisperse aggregates forming large irregular branches are observed, leaving space to large zones without silica. It is impossible to conclude on any typical size of these branches from the picture. More regular branches are found from 50% D3 on. There the primary beads still form very polydisperse aggregates, but the size distribution of the branches appears to be centered around some finite value. When all chains bear grafting end functions, a possible breakup of these fractal branches appears. These branches are well dispersed in space, with "channels" of approximately constant width separating the "islands" of aggregates. Analogous TEM pictures suggesting the existence of pure polymer zones (channels) in nanocomposites have also been observed by Castellano et al. ${ }^{48}$ using the same silica with silane modifiers in SBR. The large-scale geometry of the branches reveals some fractality in SAXS experiments (as evidenced by a low- q power-law behavior discussed below).

Following our model presented in section II, the presence of silica-free zones leads to a concentration of the silica in the remaining sample, namely in the branches and islands, above its nominal volume fraction. The fraction of silica-free zones, or its complementary value, the volume fraction of fractal branches $\Phi_{\text {fract }}$ has been estimated from electron microscopy by averaging over 12 up to 20 TEM-pictures of different sample regions. The low (absolute) standard deviations (ca. 5\%) indicate that the average values are representative of the samples. Moreover, we have studied the influence of the silica
volume fraction and of the matrix composition (\% D3). All $\Phi_{\text {fract }}$-data can be described consistently with linear interpolation laws as a function of $\Phi_{S j}$, the slope depending on the fraction of graftable chains. To check the influence of a possible error on these slopes, in particular at the high silica volume fraction, two limiting estimations have been made and are shown in the Appendix. Only for 0% D3, this led to a noticeable difference and an interval will be given for $\Phi_{\text {fract }}$ The linear laws have been used to interpolate $\Phi_{\text {fract }}$ for samples where TEM-pictures had not been taken, and enable us to calculate the effective aggregate volume fraction within the fractal branches:

$$
\begin{equation*}
\Phi_{\mathrm{agg}}=\frac{\Phi_{\mathrm{Si}}}{\kappa \Phi_{\text {fract }}} \tag{8}
\end{equation*}
$$

where κ denotes the aggregate compacity as defined in section II. The values for $\Phi_{\text {agg }}$ are reported in Table 2 for the 8.5% Si series.

Table 2. Results of the Analysis of SAXS Data of Nanocomposites with $140 \mathrm{~kg} \mathrm{~mol}^{-1}$ Matrix and $\Phi_{\mathrm{Si}} \approx 8.5 \mathrm{vol}$ $\%^{a}$

| | $\left\langle\mathrm{R}_{\text {agg }}\right\rangle(\mathrm{nm})$
 $\pm \mathrm{D} 3$ | $\Phi_{\text {fract }}$
 $\pm 5 \%$ | $\pm 5 \%$ | $\kappa \pm 2 \%$ | $\Phi_{\text {agg }}$
 $\pm 3 \%$ | $\left\langle\mathrm{N}_{\text {agg }}\right\rangle$
 $\pm 15 \%$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | | $\Delta N_{\text {agg }}$ |
| :---: |
| 0 |

${ }^{\text {a }}$ Average aggregate radius $R_{\text {agg }}$ (from Kratky analysis), volume fraction of fractal $\Phi_{\text {fract }}$ compacity κ, aggregate volume fraction $\Phi_{\text {agy }}$ average aggregation number $\left\langle N_{\text {agg }}\right\rangle$, and standard deviation of the distribution in $N_{\text {agg }}$.

The effect of the matrix composition (D3-fraction) on the SAXS intensity distributions is demonstrated in Figure 6, for 8.5% and 16.7% samples. The large-scale structure (low-q upturn) is found to be very similar for the 8.5%-nanocomposites ($0-100 \% \mathrm{D} 3$), and to follow the same scaling law albeit with different prefactors for the 16.7%-samples ($0-100 \%$ D3). The position of the crossover ($\mathrm{q}_{\mathrm{branch}}$) of the low-q scaling
law to an intermediate regime may be interpreted as the typical size of the branches making up a fractal-like structure. From the fractal model, ${ }^{56}$ the average thickness of the branches $(2 a=$ $1.3 / \mathrm{q}_{\text {branch }}$) is found to evolve from 220 to 90 nm for increasing $\%$ D3 at 8.5% silica. This seems to correspond to the decrease of the large channels at 0\% D3 to thinner ones at 100% D3 in the TEM pictures.
The local structure as probed by the high- q scattering is found to be identical, which indicates that the structure and in particular the specific surface of the primary silica particles remains unchanged. The intensity in the intermediate q-range is found to depend on the D3-fraction: as \% D3 increases, the intensity level decreases continuously, both for $\Phi_{\mathrm{Si}}=8.5 \%$ and 16.7%. Upon closer inspection, one may notice that the decrease becomes less pronounced for values of the D3-fraction above 50%. This is a second indication for a saturation effect, and we will come back to this point in the discussion.

It is important to note that the intensity decrease in the midq range seems to be similar to the one observed when increasing $\Phi_{\text {Si }}{ }^{56}$ In the latter article, the decrease was traced back to the lower low-q structure factor, due to additional crowding of small silica aggregates. Our quantitative model clearly showed that the average aggregation number of these aggregates stayed quite constant $\left(\left\langle N_{\text {agg }}\right\rangle \approx 45\right)$, in contrary to the intuitive idea that the intensity decrease would be related to a decrease in aggregation. In the present article, the situation is different, due to the fixed silica volume fraction, which implies comparable crowding. It thus appears that the silica aggregates organized differently in space for different polymer matrices, at constant total silica concentration. This effect will now be analyzed quantitatively.
A central element of our SAXS-analysis is the use of Kratky plots $\left(q^{2} I(q)\right.$ vs $\left.q\right)$ to identify the position of two peaks, $q_{\text {agg }}$ and q_{si}; cf. section II. As an example, the Kratky plot for the 8.5% samples is shown in Figure 7. A peak around $q_{\mathrm{Si}} \approx 0.02 \AA^{-1}$ is seen to be present in all data sets, with a convincing superposition of all intensity curves for $q \geq q_{\mathrm{Si}^{\mathrm{i}}}$. It is related to the average radius R_{Si} of touching primary silica particles (q_{Si} $=\pi / R_{\mathrm{Si}}$), and as before a unique value $R_{\mathrm{Si}}=13.85 \mathrm{~nm}$ was used for all further Kratky fits. The second peak $q_{\text {agg }}$ is related to the average aggregate radius $\left\langle R_{\text {agg }}\right\rangle$. It appears at lower wave vectors, and it is shifted to higher q values as the D3-fraction is

Figure 6. Silica structure in nanocomposites. (a) Reduced SAXS intensity $I(q) / \Phi_{\mathrm{Si}}$ with $\Phi_{\mathrm{Si}}=8.5$ vol $\%$, chain mass $140 \mathrm{~kg} \mathrm{~mol}{ }^{-1}$, for D3-fractions 0 , $25,50,75$, and 100%. $q_{\text {branch }}$ and $q_{\text {agg }}$ are indicated for the 100% D3 sample. (b) Same results for $\Phi_{\mathrm{Si}}=16.7$ vol $\%$.

Figure 7. Kratky plot $q^{2} I(q)$ vs q of nanocomposites with $\Phi_{\mathrm{Si}_{\mathrm{i}}}=8.5 \%$, in SBR matrix with $\%$ D3 $=0$ to 100% as given in the legend. Inset: Zoom on 0% D3 data with fit by sum of two log-normal functions with parameters $q_{\text {agg }}$ and q_{Si}.
increased. Performing the fit procedure with eq 6, the values of $\left\langle R_{\text {agg }}\right\rangle=\pi / q_{\text {agg }}$ are determined and found to decrease from about 50 to 40 nm , cf. Table 2 . One may notice that the saturation observed with the intensity levels in Figure 6 is reflected here in the saturation of the $\left\langle R_{\text {agg }}\right\rangle$ values above 25% D 3 , at around 40 nm . The same analysis has been applied to the 16.7%-nanocomposites, and a similar but steeper evolution is found, cf. Table 3. In agreement with our previous silica-

Table 3. Results of the Analysis of SAXS Data of Nanocomposites with $140 \mathrm{~kg} \mathrm{~mol}^{-1}$ Matrix and $\Phi_{\mathrm{Si}} \approx 16.7$ vol \% ${ }^{a}$

$\% \mathrm{D} 3$	$\left\langle\mathrm{R}_{\text {agg }}\right\rangle(\mathrm{nm})$ $\pm 5 \%$	$\Phi_{\text {fract }}$ $\pm 5 \%$	$\kappa \pm 2 \%$	$\Phi_{\text {agg }}$ $\pm 3 \%$	$\left\langle N_{\text {agg }}\right\rangle$ $\pm 15 \%$	$\Delta N_{\text {agg }}$
0	49.4	0.52	0.575	0.55	171	162
		0.63	0.505	0.52	150	142
25	42.1	0.68	0.385	0.64	74	76
50	36.1	0.73	0.35	0.66	41	46
75	32.9	0.66	0.38	0.66	36	39
100	31.3	0.66	0.365	0.70	29	32

${ }^{a}$ Average aggregate radius $R_{\text {agg }}$ (from Kratky analysis), volume fraction of fractal $\Phi_{\text {fract }}$ compacity κ, aggregate volume fraction $\Phi_{\text {agy }}$ average aggregation number $\left\langle N_{\text {agg }}\right\rangle$, and standard deviation of the distribution in $N_{\text {agg. }}$. Two sets of values are given for 0% D3: they are obtained from two limiting estimations (see text for details).
concentration study, the aggregates thus occupy less space for higher silica loadings for grafting fractions above 25%. The new finding of the present study is that the average aggregate radius $\left\langle R_{\text {agg }}\right\rangle$ decreases and saturates as the grafting fraction is increased in the matrix, for both silica volume fractions, and the decrease is more pronounced at 16.7% than at 8.5%.

The final objective of our analysis is the determination of internal aggregate characteristics, namely average compacity and aggregation number. It is based on a quantitative analysis of the scattering (eq 2) at intermediate wave vectors, i.e. the scattering due to aggregates only. Therefore, the low-q structure
was fitted with a power law and subtracted. The result is shown in Figure 8.

Figure 8. Intensity $I(q)$ after subtraction of the low- q power laws vs q for intermediate q of nanocomposites with $\Phi_{\mathrm{Si}}=8.5 \%$, in 140 kg mol^{-1} matrix with $\% \mathrm{D} 3=0$ to 100% as given in the legend. Note that the intensity for the 0\% D3 sample differs from the others at intermediate q.

The intensity remaining after subtraction of the low-q powerlaw is found to be strongly dependent on the fraction of grafted chains. In the absence of grafting functions, the intensity decreases across the intermediate q-range ($q<0.005 \AA^{-1}$), albeit in a weaker manner than before subtraction. As soon as graftable chains are introduced in the nanocomposites, the remaining intermediate- q scattering function levels off, and approaches a plateau-like behavior. Within the framework of our model, this remaining structure (Figure 8) at intermediate wave vector is described by eq 2 . The model focuses on one q value, on the plateau, and $q^{*}=0.003 \AA^{-1}$ was chosen. This value satisfies the constraints on the apparent structure factor (i.e., low- q plateau is reached, $q \rightarrow 0$), as well as on the Guinier regime of the average form factor of aggregates, cf. section II.
The procedure for the determination of κ developed in ref 56 is in four steps: (a) From the absence of a nearest neighbor peak at $q_{\text {agg }}$ a polydispersity in aggregate size of the order of 30% is inferred. Knowing the average $\left\langle R_{\text {agg }}\right\rangle$, and assuming a log-normal distribution, the complete size distribution is constructed. (b) A first guess for the compacity κ is used to construct a distribution function of aggregation numbers, following eqs 3 and 4, and assuming identical compacity for all aggregates. (c) On the basis of the quantitative analysis of the TEM pictures, the fraction of (possibly fractal) branches $\Phi_{\text {fract }}$ is used (eq 8) to calculate the volume fraction of aggregates inside the branches. (d) Finally, the intensity level in the intermediate q-range (at q^{*}) is calculated using eq 2 . The apparent interaggregate structure factor for this specific aggregate volume fraction $\Phi_{\text {agg }}$ is determined with eq 5, using $\alpha=0.6$ to account for polydispersity. The average aggregate form factor as given in section II can also be calculated knowing the size- and $N_{\text {agg }}$-distribution function. The method can be used in an iterative manner; i.e., a closer agreement with the experimental intensity level can be sought by going back to step
b and improving the compacity value. Equivalently, the intensity values can also be tabulated by a program and the compacity read off knowing the experimental intensity level.

For $\Phi_{\mathrm{Si}_{\mathrm{i}}}=8.5 \%$, in absence of graftable chains, the resulting aggregate compacity is very high, close to 55%. Taking into account the aggregate radius determined by the Kratky plots (\approx 50 nm), a high average aggregation number of about 160 is found. This sample appears to have a singular structure as with increasing fraction of graftable chains the compacity is found to fluctuate around $\approx 35 \%$. Our analysis yields average aggregation numbers decreasing from 72 to ≈ 55. Similarly to our analysis as a function of silica volume fraction, ${ }^{56}$ the width of the distribution in aggregation number is very large. This is reported in the form of $\Delta N_{\text {agg }}$, which is of the same order of magnitude as $\left\langle N_{\text {agg }}\right\rangle$. All results are given in Table 2, where one also finds the consequence of the saturation in intensity observed in Figures 7 and 8: after a rather abrupt change, aggregate radius, compacity and aggregation number level off to more or less constant values for D3 values above 25%.

For $\Phi_{\mathrm{Si}}=16.7 \%$, the same procedure has been applied and the results summarized in Table 3. The latter show the same trends as the 8.5%-samples with the fraction of graftable chains \% D3. We have already noted with the Kratky analysis that the aggregate radius decreases more steeply, from about 50 to 30 nm . The compacity is comparable to the 8.5%-case, i.e. it is very high for 0% D3 ($51-58 \%$) and decreases to $\approx 37 \%$ with \% D3. Regarding the high values of $\Phi_{\text {agg, }}$ this is consistent with our model of polydisperse aggregates (30\%) as dense assemblies are more easily obtained than in the case of monodispersity. $R_{\text {agg }}$ and κ result in aggregation numbers going down from about $150-170$ to some 30 silica beads per aggregate. In Table 3, two numbers are given for the $0 \% \mathrm{D} 3$-sample, in order to get an estimate of the error introduced by the interpolation of $\Phi_{\text {fract }}$ needed for eq 8 . The two values correspond to two extreme choices of the slope of $\Phi_{\text {fract }}$ with Φ_{Si} as done in the Appendix. As one can see from the close agreement, choosing one slope or the other has only a marginal influence on the result (and no effect for higher \% D3). To finish the model analysis of the 16.7% data, the polydispersity expressed through the width of the dispersion $\Delta N_{\text {agg }}$ is again found to be of the same order of magnitude as $\left\langle N_{\text {agg }}\right\rangle$; i.e., the distribution of aggregation numbers is very wide.

To summarize the influence of graftable chains on the structure of silica aggregates in the nanocomposites, the TEM pictures reveal that the large-scale structure is more homogeneous in presence of graftable chains. The characteristic mid-q feature in the scattered intensity is enhanced, and within our quantitative model this is interpreted as smaller aggregates (down to a radius of 40 nm for 8.5%, and to 30 nm for 16.7%), containing less and less silica beads (down to some 55 or 30 , for 8.5% and 16.7%, respectively), with a high polydispersity, and a compacity decrease down to the 35% range for both volume fractions. The similarity of the aggregate characteristics for different silica volume fractions ${ }^{56}$ is thus confirmed for low and intermediate grafting fractions ($50 \% \mathrm{D} 3$), while at high fractions the compacity stays constant and the aggregate size decreases.

IV. DISCUSSION

We have studied the influence of the fraction of graftable chains of the matrix polymer on the structure and rheology of simplified industrial silica-SBR nanocomposites. As a first question, one may consider to which extent grafting is
compatible with the morphology. The bound-rubber analysis shows that about $\gamma=75 \%$ of the graftable chains are effectively grafted, in spite of nanoparticle aggregation and the resulting formation of large-scale silica-free channels (Figure 5). In order to estimate the quantity of chains close enough to silica to be grafted, one has to know the radius of gyration of the chains. In Figure 9, we show the SANS scattering curves of perdeuterated

Figure 9. Single-chain form factor for two H/D SBR matrices $\left(M_{n}(H)\right.$ $\left.=140 \mathrm{~kg} \mathrm{~mol}^{-1}, M_{\mathrm{n}}(\mathrm{D})=163 \mathrm{~kg} \mathrm{~mol}^{-1}\right)$ measured by small angle neutron scattering. Red circles are for a mixture of 10% of deuterated 100% D3 chains in 90% of protonated 100% D3 chains. Blue squares: same but the protonated chains are 0% D3. Lines are fits using a Debye function.

D3-SBR chains in two hydrogenated but otherwise identical matrices (0 and 100% D3). The fit with a Debye function ${ }^{61,62}$ for $q>5.10^{-3} \AA^{-1}$ gives a radius of gyration of 12 nm (respectively, 13 mm) for H chains (respectively, D chains) in both cases.
Note that the width of the channels of typically 100 nm (see Figure 5) is superior to the radius of gyration R_{g}. For comparison, we can consider a simple geometrical calculation of pores describing the channels. The extension of the grafted chains on the silica surface ranges from R_{g} to a maximum length, which can be calculated through volume conservation in the 'dry brush' case. We obtain thus a thickness between 12 nm at low grafting density and 26 nm (taking into account the advance of grafting) at the highest nominal grafting density (100\% D3).
A first estimate based on cylindrical pores shows that only a fraction of 58% to 23% of the polymer in the channels is more than 12 or 26 nm , respectively, from the surrounding filler surface. As the fraction of branches $\Phi_{\text {fract }}$ is about 50% for nonzero D3-fractions, the volume fraction of channels is also about $50 \%, 58 \%$ (respectively 23%) of which is out of reach of the filler surface, i.e., a total of 29% (respectively 11.5%) cannot be grafted. Given the simplicity of the calculation, this is reasonably close to the 25% found by the bound-rubber analysis. A second estimate based on 2D-channels (sheets), would give 38% (respectively 24%) of nongrafted chains. Note that if 100% of the chains were grafted at the end of the mixing procedure, the final morphology would not be compatible with the one observed in Figure 5. There, a small fraction of the polymer chains is geometrically unable to be grafted on the
silica as estimated by the above calculation. Finally, such a simple calculation leads to a self-consistent bound rubber value of 75%.

The structure of silica aggregates in the nanocomposites was studied by TEM and SAXS. It was found that the silica structure becomes more homogeneous on the scale of branches with increasing fraction of graftable functions, and the silica aggregates become smaller in size and mass. A large polydispersity of aggregates in size of 30% was deduced from the absence of any structure peak. Here one should note that an evolution of the size distribution toward higher monodispersity (for the highest \% D3 where the break in slope is more pronounced) could lead to higher compacities. It would limit the variation of κ, but is not envisaged in this study. The aggregate size distribution functions were assumed to be lognormal, and thus averages and moments could be determined. However, due to the large polydispersity, the average aggregate radius $\left\langle R_{\text {agg }}\right\rangle$ and the average aggregation number $\left\langle N_{\text {agg }}\right\rangle$ do not correspond in the sense that the radius of an aggregate of average mass is not the average radius. Therefore, for an easier visualization of the size distribution, we give here the equivalent radius of an average aggregate. For the 8.5% samples, these equivalent radii decrease with the D3-fraction from 64 to 52 nm , and from 64 to 41 nm for the 16.7% ones. Most of the aggregates are smaller than these radii, and the distribution can be roughly characterized as lying mostly between $\left\langle R_{\text {agg }}\right\rangle$ and the equivalent radius.

We have noted that the evolution of thermomechanical history (Figure 1) and of the structural parameters seem to saturate as a function of the fraction of graftable functions, typically above 25% D3. The latter parameters can be directly read off from the data, like the height of the intensity level (Figures 6 and 8), or average aggregate radii deduced from the Kratky-plot (Figure 7). Naturally, these evolutions translate in the results of the data modeling, e.g., in the quantities $\left\langle N_{\text {agg }}\right\rangle$, $\Phi_{\text {agg }}$ and κ in Tables 2 and 3. In Figure 10, $\left\langle R_{\text {agg }}\right\rangle$ and $\left\langle N_{\text {agg }}\right\rangle$ are plotted as a function of \% D3, for the low ($8.5 \mathrm{vol} \%$) and the high (16.7 vol \%) silica volume fraction.

Figure 10. Evolution of structural parameters $\left(\left\langle N_{\text {agg }}\right\rangle,\left\langle R_{\text {agg }}\right\rangle\right)$ as a function of fraction of graftable chains $\% \mathrm{D} 3$ for $\Phi_{\mathrm{Si}}=8.5 \%$ and 16.7%. To illustrate the robustness of the method, two points at $0 \% \mathrm{D} 3$ have been calculated using as $\Phi_{\text {fract }}$ the upper and lower estimation in Table 3. The fits are exponential functions with offset in y.

From the analysis of the shape of the curves shown in Figure 10 , it can be concluded that a saturation effect is indeed observed: the curves decrease with \% D3 and tend to a plateau value. We have described the data by a simple exponential decrease with a vertical offset, i.e., given by $A+B \exp (-\% \mathrm{D} 3 /$ $\% \mathrm{D} 3_{c}$), where A and B are constants to be determined for each function. The fit functions are shown in Figure 10. The typical decay constant \% D3 ${ }_{\mathrm{c}}$ is $12.4 \%\left(N_{\text {agg }}\right)$ and $17.5 \%\left(R_{\text {agg }}\right)$, i.e., on average $15 \pm 2.5 \%$ for the samples with lower silica volume fraction ($8.5 \mathrm{vol} \%$). It almost doubles for $\left\langle N_{\text {agg }}\right\rangle$, going from 12.4% to 22.9% for $\Phi_{5 \mathrm{i}}=8.5 \mathrm{vol} \%$ and $16.7 \mathrm{vol} \%$, respectively. For $R_{\text {agg }} \% \mathrm{D} 3_{\mathrm{c}}$ is much higher (57%) at $16.7 \mathrm{vol} \%$, which reflects the more pronounced decrease in $R_{\text {agg }}$ with D3 as already discussed. In spite of this scatter in data, the analysis in Figure 10 illustrates that a critical fraction of graftable functions $\% \mathrm{D} 3_{\mathrm{c}}$ is needed to make the structure evolve, and that this quantity is higher if more silica surface is available.

To understand the saturation of several observables with the fraction of graftable chains, one may try to relate this feature to the physical-chemical mechanism of grafting. Going back to the quantity defined in eq 1 , one may translate the matrix composition (\% D3) and availability of silica surface (Φ_{Si}) into the nominal grafting density on the silica surface, $\rho_{\mathrm{D} 3}$. The values for $\rho_{\mathrm{D} 3}$, cf. Table 1 , are in the range of $0.02-0.15 \mathrm{~nm}^{-2}$, the highest $\rho_{\mathrm{D} 3}$ being reached for \% D3 equal to 100%. For the composites with 8.5 vol $\%$, the critical saturation values, $\% \mathrm{D} 3_{\text {c }}$ $\approx 15 \%$, correspond to $\rho_{\mathrm{D} 3}{ }^{c}=0.022 \mathrm{~nm}^{-2}$, while for $16.7 \mathrm{vol} \%$, $\rho_{\mathrm{D} 3}{ }^{\mathrm{c}}=0.015 \mathrm{~nm}^{-2}$ is found (ignoring the very high value related to R_{agg}). Taking into account the effective grafting, $\gamma \rho_{\mathrm{D}}{ }^{c}$ becomes $0.017 \mathrm{~nm}^{-2}$ (and $0.011 \mathrm{~nm}^{-2}$ for $16.7 \mathrm{vol} \%$, respectively). For comparison, one may evaluate the order of magnitude of maximum grafting as the crossover from a mushroom to a brush regime. Below this crossover density, the surface can be considered weakly grafted, while above it the density is high enough to affect the polymer conformations (chain stretching). Following a De Gennes approach, the order of magnitude of the crossover is located at a critical density of one chain per $R_{\mathrm{g}}{ }^{2}{ }^{63,64}$ giving $0.007 \mathrm{~nm}^{-2}$ using the measured unperturbed R_{g} values. The agreement within a factor of about two makes it tempting to identify the critical grafting density with the onset of the saturation regime that would thus vary with the polymer chain length as $M_{\text {SBR }}{ }^{-1}$. For comparison, the critical grafting density can also be compared to literature values of grafting on colloidal nanoparticles in cases where experiments are optimized for high grafting densities. ${ }^{65}$ In such experiments, nanoparticles are usually individually suspended, and sophisticated grafting techniques ("grafting from") are used for this optimization. The grafting density of initiator molecules is typically in the $0.1-1 \mathrm{~nm}^{-2}$ range, but maximum final polymer grafting densities on nanoparticles in solution lie between 0.05 and $0.15 \mathrm{~nm}^{-2}$. Note that in our case the critical grafting density does not correspond to a maximum possible grafting, but to the threshold above which the grafted interfaces tend to have similar properties. To summarize, it is not surprising to encounter a saturation effect in grafting, for a $\rho_{\mathrm{D}}{ }^{\mathrm{c}}{ }^{\mathrm{c}}$ parameter of the exponential decay of about $0.02 \mathrm{~nm}^{-2}$, leading to a saturation in the structure of the samples, or of the torque during the mixing process which can be associated with a nonlinear rheological response. Finally, note that we do not observe any enhancement of the aggregation state when the grafting density goes above the critical density as observed by Hasegawa et al. ${ }^{37}$

The linear rheological properties of the pure matrix were found to be only weakly affected by the matrix composition. The addition of a functional end-group changes the chain dynamics only marginally. As the silica is added, the rheology changes, and in particular the characteristic time is increased, accompanied by an increase of the storage modulus at low frequencies, and a decrease of the viscous contribution at high frequencies. Theses rheological changes may be linked differently to the matrix composition for high and low frequency. At low frequency, increasing the amount of grafted chains changes the flow behavior of the polymer matrix by connecting it to the solid scaffold. The grafting may thus induce a retardation of the flow and increase in terminal relaxation time. At high frequency, the silica structure is modified for lowD3 content and levels off at high content as shown in section III.4, and later in Figure 10. This results in a change in the aggregate volume fraction. Taking the data of Table 2, it is found that $\Phi_{\text {agg }}$ increases by some 18% at $\Phi_{\mathrm{Si}}=8.5 \%$. To check the impact of this change on the high-frequency reinforcement factor of the storage modulus, we use the percolation law as a function of the aggregate volume fraction $\Phi_{\text {agg }}$ in the branches defined in ref. ${ }^{56}$ It leads to a modest increase in the modulus, of up to ca. 10% by considering that we are below the critical percolation volume fraction $\Phi_{\text {agg }}{ }^{c}$. In this calculation, only the hydrodynamic contribution was assumed ($\Phi_{\text {agg }}{ }^{c}=56 \mathrm{vol} \%$ was found for the 50% D3 series ${ }^{56}$). This is compatible with the plateau modulus values obtained for the samples with 25% to 100% D3 (Figure 3a). However the 0\% D3 sample displays a higher plateau value (higher reinforcement) that would suggest a lower $\Phi_{\text {agg }}{ }^{c}$. It means that this sample would be closer to percolation.
Our previous analysis ${ }^{56}$ as a function of silica volume fraction has shown that the silica network influences the low-frequency slope of the elastic modulus. It also determines the reinforcement of the high-frequency plateau. In the present paper, we have shown that the silica structure is very similar (Figures 6 and 10, and Tables 2 and 3) above $25-50 \%$ D3 at a fixed silica fraction (please note that it is difficult to judge on the connectivity from the 2D-TEM pictures, and SAXS intensities are identical). Therefore, the low-frequency changes in slope observed when increasing the \% D3 from 50 to 100% (at fixed silica) must be attributed to the retarded relaxation of the grafted polymer only, and thus depend on the grafting density. Note that the evolution of the G^{\prime}-slopes and relaxation times in Figure 3 do not show any saturation. On the other hand, regarding the high-frequency side, the observation of constant modulus at fixed Φ_{Si} suggests that the reinforcement in the nanocomposite with at least 25% D3 is independent of the chain grafting density and thus dominated by the filler contribution (same aggregates characteristics in this \% D3 range due to saturation). In this sense, the only impact of grafting in this high-frequency range is that it can lead the system closer to percolation at \% D3 $<25 \%$ due to the difference in filler arrangement.
In the introduction, the different mechanisms leading to potential reaggregation have been discussed. The particularity of our system is that grafting and aggregate formation happen all at the same time. We have therefore presented a correlation of the final structure with the initial control parameters, namely the fraction of graftable chains (\% D3). Our scattering results (Figure 10) show that when increasing the grafting density (\% D3 increase), the reaggregation mechanism during mixing is
hindered (constant aggregation number above \% D3 = 25$50 \%)$.

V. CONCLUSION

We have applied a recently developed model relating quantitatively the SAXS and TEM data to the silica microstructure in simplified industrial nanocomposites. The main hypotheses of our model are an aggregate polydispersity of 30\% and identical compacity for all aggregates. The effect of silica volume fraction and matrix composition expressed as the fraction of graftable polymer chains has been studied. The structure is described with a few parameters, namely the average aggregation number (decreasing from 160 to 30 with grafting), the aggregate compacity (55% at 0% D3 and then $\approx 35 \%$), and the aggregate size (50 to 30 nm). A saturation effect of the structural parameters with the fraction of graftable chains is observed, suggesting a threshold in grafting density below which the insufficient coverage of the silica surface makes the system prone to structural changes. The linear rheology of the nanocomposites has been reported, and was found to be dominated by the matrix composition, in particular in the flow regime. In a future article, ${ }^{66}$ the matrix composition will be varied using both the fraction of graftable chains (\% D3) and the polymer chains molecular mass to change the grafting density and study its role in the rheology and dispersion of silica in SBR.

APPENDIX

The volume fraction of fractal branches $\Phi_{\text {fract }}$ is shown in Figure 11 for samples with various silica volume fractions and different

Figure 11. Evolution of the volume fraction of fractal branches as a function of the silica volume fraction in the nanocomposites. Plain symbols are measured by image analysis of the TEM pictures, and empty extrapolated $\Phi_{\text {fract }}$. Thick solid lines display a triangular shape whereas the dotted line shows a radically different estimation.
\% D3. The measured points (plain symbols) suggest a triangular shape (thick solid lines) leading to an almost identical $\Phi_{\text {fract }}$ at high Φ_{Si} and a group of close values at 16.7% silica. To test the limit of validity, we have considered a radically different choice for the slope (dotted line), giving $\Phi_{\text {fract }}$
$=52 \%$ instead of 63% at 0% D3. Both values have been used for the results in Table 3.

AUTHOR INFORMATION

Corresponding Author

*E-mail: (A.-C.G.) anne-caroline.genix@univ-montp2.fr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are thankful for a "Chercheur d'Avenir" grant by the Languedoc-Roussillon region (J.O.) and Ph.D. funding "CIFRE" (G.P.B.). Fruitful discussions with A. Bouty, F. Boué and J. Jestin (LLB Saclay) are acknowledged. The deuterated polymer has been kindly synthesized by R. Matmour (Michelin). We are grateful for the cross-check with DMA measurements, which have been performed by A. Mujtaba during a stay (A.-C.G.) in the Saalwächter group (Halle).

REFERENCES

(1) Jancar, J.; Douglas, J. F.; Starr, F. W.; Kumar, S. K.; Cassagnau, P.; Lesser, A. J.; Sternstein, S. S.; Buehler, M. J. Polymer 2010, 51 (15), 3321-3343.
(2) Heinrich, G.; Kluppel, M.; Vilgis, T. A. Curr. Opin. Solid State Mater. Sci. 2002, 6 (3), 195-203.
(3) Mark, J. E.; Erman, B.; Eirich, F. R. Science and Technology of Rubber; Academic Press: San Diego, CA, 1994.
(4) Schmidt, G.; Malwitz, M. M. Curr. Opin. Colloid Interface Sci. 2003, 8 (1), 103-108.
(5) Jouault, N.; Vallat, P.; Dalmas, F.; Said, S.; Jestin, J.; Boue, F. Macromolecules 2009, 42 (6), 2031-2040.
(6) Jouault, N.; Dalmas, F.; Boue, F.; Jestin, J. Polymer 2012, 53 (3), 761-775.
(7) Choi, S. S.; Park, B. H.; Song, H. Polym. Adv. Technol. 2004, 15 (3), 122-127.
(8) Capuano, G.; Filippone, G.; Romeo, G.; Acierno, D. Langmuir 2012, 28 (12), 5458-5463.
(9) Aranguren, M. I.; Mora, E.; Degroot, J. V.; Macosko, C. W. J. Rheol. 1992, 36 (6), 1165-1182.
(10) Witten, T. A.; Rubinstein, M.; Colby, R. H. J Phys II 1993, 3 (3), 367-383.
(11) Mele, P.; Marceau, S.; Brown, D.; de Puydt, Y.; Alberola, N. D. Polymer 2002, 43 (20), 5577-5586.
(12) Meth, J. S.; Zane, S. G.; Chi, C.; Londono, J. D.; Wood, B. A.; Cotts, P.; Keating, M.; Guise, W.; Weigand, S. Macromolecules 2011, 44 (20), 8301-8313.
(13) Le Strat, D.; Dalmas, F.; Randriamahefa, S.; Jestin, J.; Wintgens, V. Polymer 2013, in press.
(14) Zhang, Q.; Archer, L. A. Langmuir 2002, 18 (26), 1043510442.
(15) Aranguren, M. I.; Mora, E.; Macosko, C. W. J. Colloid Interface Sci. 1997, 195 (2), 329-337.
(16) Becker, C.; Kutsch, B.; Krug, H.; Kaddami, H. J. Sol-Gel Sci. Technol. 1998, 13 (1-3), 499-502.
(17) Nusser, K.; Neueder, S.; Schneider, G. J.; Meyer, M.; PyckhoutHintzen, W.; Willner, L.; Radulescu, A.; Richter, D. Macromolecules 2010, 43 (23), 9837-9847.
(18) Berriot, J.; Lequeux, F.; Monnerie, L.; Montes, H.; Long, D.; Sotta, P. J. Non-Cryst. Solids 2002, 307, 719-724.
(19) Papon, A.; Saalwächter, K.; Schäler, K.; Guy, L.; Lequeux, F.; Montes, H. Macromolecules 2011, 44 (4), 913-922.
(20) Papon, A.; Montes, H.; Hanafi, M.; Lequeux, F.; Guy, L.; Saalwachter, K. Phys. Rev. Lett. 2012, 108 (6), 065702.
(21) Ramier, J.; Gauthier, C.; Chazeau, L.; Stelandre, L.; Guy, L. J. Polym. Sci., Part B: Polym. Phys. 2007, 45 (3), 286-298.
(22) Gauthier, C.; Reynaud, E.; Vassoille, R.; Ladouce-Stelandre, L. Polymer 2004, 45 (8), 2761-2771.
(23) Suzuki, N.; Ito, M.; Yatsuyanagi, F. Polymer 2005, 46 (1), 193201.
(24) Castellano, M.; Conzatti, L.; Costa, G.; Falqui, L.; Turturro, A.; Valenti, B.; Negroni, F. Polymer 2005, 46 (3), 695-703.
(25) Stockelhuber, K. W.; Svistkov, A. S.; Pelevin, A. G.; Heinrich, G. Macromolecules 2011, 44 (11), 4366-4381.
(26) Luo, H.; Kluppel, M.; Schneider, H. Macromolecules 2004, 37 (21), 8000-8009.
(27) Akcora, P.; Kumar, S. K.; Moll, J.; Lewis, S.; Schadler, L. S.; Li, Y.; Benicewicz, B. C.; Sandy, A.; Narayanan, S.; Illavsky, J.; Thiyagarajan, P.; Colby, R. H.; Douglas, J. F. Macromolecules 2010, 43 (2), 1003-1010.
(28) Chevigny, C.; Dalmas, F.; Di Cola, E.; Gigmes, D.; Bertin, D.; Boué, F.; Jestin, J. Macromolecules 2011, 44 (1), 122-133.
(29) Chevigny, C.; Jouault, N.; Dalmas, F.; Boue, F.; Jestin, J. J. Polym. Sci., Part B: Polym. Phys. 2011, 49 (11), 781-791.
(30) Akcora, P.; Liu, H.; Kumar, S. K.; Moll, J.; Li, Y.; Benicewicz, B. C.; Schadler, L. S.; Acehan, D.; Panagiotopoulos, A. Z.; Pryamitsyn, V.; Ganesan, V.; Ilavsky, J.; Thiyagarajan, P.; Colby, R. H.; Douglas, J. F. Nat. Mater. 2009, 8 (4), 354-U121.
(31) Moll, J. F.; Akcora, P.; Rungta, A.; Gong, S.; Colby, R. H.; Benicewicz, B. C.; Kumar, S. K. Macromolecules 2011, 44 (18), 74737477.
(32) Chevigny, C.; Jestin, J.; Gigmes, D.; Schweins, R.; Di-Cola, E.; Dalmas, F.; Bertin, D.; Boue, F. Macromolecules 2010, 43 (11), 48334837.
(33) Goel, V.; Chatterjee, T.; Bombalski, L.; Yurekli, K.; Matyjaszewski, K.; Krishnamoorti, R. J. Polym. Sci, Part B: Polym. Phys. 2006, 44 (14), 2014-2023.
(34) Inoubli, R.; Dagreou, S.; Lapp, A.; Billon, L.; Peyrelasse, J. Langmuir 2006, 22 (15), 6683-6689.
(35) Bartholome, C.; Beyou, E.; Bourgeat-Lami, E.; Cassagnau, P.; Chaumont, P.; David, L.; Zydowicz, N. Polymer 2005, 46 (23), 99659973.
(36) (a) Maillard, D.; Kumar, S. K.; Rungta, A.; Benicewicz, B. C.; Prud'homme, R. E. Nano Lett. 2011, 11 (11), 4569-4573.
(b) Srivastava, S.; Agarwal, P.; Archer, L. A. Langmuir 2012, 28 (15), 6276-6281. (c) Gohr, K.; Schartl, W. Macromolecules 2000, 33 (6), 2129-2135.
(37) Hasegawa, R.; Aoki, Y.; Doi, M. Macromolecules 1996, 29 (20), 6656-6662.
(38) Kumar, S. K.; Jouault, N.; Benicewicz, B.; Neely, T. Macromolecules 2013, 46 (9), 3199-3214.
(39) Jouault, N.; Dalmas, F.; Said, S.; Di Cola, E.; Schweins, R.; Jestin, J.; Boué, F. Macromolecules 2010, 43 (23), 9881.
(40) Genix, A. C.; Tatou, M.; Imaz, A.; Forcada, J.; R., S.; Grillo, I.; Oberdisse, J. Macromolecules 2012, 45 (3), 1663-1675.
(41) Payne, A. R.; Whitaker, R. E. Rubber Chem. Technol. 1971, 44, 440-478.
(42) Frohlich, J.; Niedermeier, W.; Luginsland, H. D. Composites Part A: Appl. Sci. Manuf. 2005, 36 (4), 449-460.
(43) Bueche, F. J. Appl. Polym. Sci. 1960, 4 (10), 107-114.
(44) Cassagnau, P. Polymer 2008, 49 (9), 2183-2196.
(45) Chambon, F.; Winter, H. H. J. Rheol. 1987, 31 (8), 683-697.
(46) Conzatti, L.; Costa, G.; Castellano, M.; Turturro, A.; Negroni, F. M.; Gerard, J. F. Macromol. Mater. Eng. 2008, 293 (3), 178-187.
(47) Chevigny, C.; Dalmas, F.; Di Cola, E.; Gigmes, D.; Bertin, D.; Boue, F.; Jestin, J. Macromolecules 2011, 44 (1), 122-133.
(48) Castellano, M.; Conzatti, L.; Turturro, A.; Costa, G.; Busca, G. J. Phys. Chem. B 2007, 111 (17), 4495-4502.
(49) Yatsuyanagi, F.; Suzuki, N.; Ito, M.; Kaidou, H. Polym. J. 2002, 34 (5), 332-339.
(50) Oberdisse, J.; Boue, F. Prog. Colloid Polym. Sci. 2004, 136, 124129.
(51) Schneider, G. J.; Vollnhals, V.; Brandt, K.; Roth, S. V.; Goeritz, D. J. Chem. Phys. 2010, 133 (9), 094902.
(52) Shinohara, Y.; Kishimoto, H.; Yagi, N.; Amemiya, Y. Macromolecules 2010, 43 (22), 9480-9487.
(53) Tatou, M.; Genix, A. C.; Imaz, A.; Forcada, J.; Banc, A.; R., S.; Grillo, I.; Oberdisse, J. Macromolecules 2011, 44, 9029-9039.
(54) Oberdisse, J. Soft Matter 2006, 2 (1), 29-36.
(55) Botti, A.; Pyckhout-Hintzen, W.; Richter, D.; Urban, V.; Straube, E.; Kohlbrecher, J. Polymer 2003, 44 (24), 7505-7512.
(56) Baeza, G. P.; Genix, A. C.; Degrandcourt, C.; Petitjean, L.; Gummel, J.; Couty, M.; Oberdisse, J. Macromolecules 2013, 46 (1), 317-329.
(57) Ehrburger-Dolle, F.; Hindermann-Bischoff, M.; Livet, F.; Bley, F.; Rochas, C.; Geissler, E. Langmuir 2001, 17 (2), 329-334.
(58) Lohse, D. J.; Milner, S. T.; Fetters, L. J.; Xenidou, M.; Hadjichristidis, N.; Mendelson, R. A.; Garcia-Franco, C. A.; Lyon, M. K. Macromolecules 2002, 35 (8), 3066-3075.
(59) Ferry, J. D. Viscoelastic properties of polymers; Wiley: New York, 1980.
(60) We are thankful to the reviewer for pointing this out to us.
(61) Debye, P. J. Phys. Colloid Chem. 1947, 51 (1), 18-32.
(62) Benoit, H. C.; Higgins, J. S. Polymers and neutron scattering; Oxford University Press: Oxford, U.K., 1994.
(63) De Gennes, P. G. Macromolecules 1980, 13 (5), 1069-1075.
(64) Aubouy, M.; Brochard-Wyart, F.; Raphael, E. Macromolecules 1993, 26 (22), 5885-5889.
(65) El Harrak, A.; Carrot, G.; Oberdisse, J.; Eychenne-Baron, C.;

Boue, F. Macromolecules 2004, 37 (17), 6376-6384.
(66) Baeza, G. P. et al. Manuscript in preparation.

Annexe 6 : (confidentielle)

A6. (confidentielle)

Annexe 6

Annexe 6

Annexe 6

Annexe 6

Annexe 6

Annexe 6

Bibliographie

Bibliographie

1. Halary, J.L. and F. Laupretre, De la macromolécule au matériau polymère, ed. C. Echelles. 2006: Belin.
2. Flory, P.J., Statistical Mechanics of Chain Molecules, ed. I. Publishers. 1969: J. Wiley \& Sons.
3. Rubinstein, M. and R.H. Colby, Polymer Physics. 2003: Oxford University Press, USA; 1 edition.
4. Toll, J.S., Causality and the Dispersion Relation - Logical Foundations. Physical Review, 1956. 104(6): p. 1760-1770.
5. White, J., S.K. De, and K. Naskar, Rubber Technologist's Handbook, ed. Smithers. Vol. 2. 2009.
6. Capponi, S., The structure and the dynamics of poly(vynil methyl ether) PVME and PVME in concentrated water solution. 2011, Universidad deal pais Vasco: San Sebastian.
7. Ferry, J.D., R.F. Landel, and M.L. Williams, J.Appl.Phys, 1955. 26(359).
8. Vogel, H., Z. Phys. , 1921. 22(645).
9. Fulcher, G.S., J.Am. Ceram. Soc, 1925. 8(339).
10. Tammann, G., G. Hesse, and Z. Anorg, Chemical \& Engineering News, 1926. 156(245).
11. Klüppel, Evaluation of viscoeleastic master curves of filled elastomers and applications to fracture mechanics. Journal of physics: Condensed Matter, 2009. 21.
12. Degennes, P.G., Reputation of a Polymer Chain in Presence of Fixed Obstacles. Journal of chemical physics, 1971. 55(2): p. 572-579.
13. http://itf.fys.kuleuven.be/~enrico/Research/rept.html.
14. McLeish, Tube theory of entagled polymer dynamics. Advances in Physics, 2002. 51: p. 1379-1527.
15. Gerstl, C., Segmental and Normal Modes Relaxations of Poly(alkylene oxide)s Studied by Dielectric Spectroscopy and Rheology. Macromolecules, 2010. 43: p. 4968-4977.
16. Likhtman, M.L., Quantitative Theory for Linear Dynamics of Linear Entangled Polymers. Macromolecules, 2002. 35: p. 6332-6343.
17. http://fr.wikipedia.org/wiki/Caoutchouc_(matériau).
18. Roovers, J. and P.M. Toporowski, 1992. Macromolecules. 3(25): p. 1096-1102.
19. L. J. Fetters, D.J.L.a.R.H.C., Chain Dimensions and Entanglement Spacings. 2005.
20. Arrighi, V., et al., The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller. Polymer, 2003. 44(20): p. 6259-6266.
21. Ferry, J.D., Viscoelastic properties of polymers (3rd edition). 1980: John Wiley \& sons.
22. Wang, Reinforcement of Natural Rubber with Core-shell structure silica-Poly(Methyl Mathacrylate) Nanoparticles. Journal of nanomaterials, 2011. 2012.
23. Janes, D., Dispersion Morphology of Poly(methyl acrylate)/Silica Nanocomposites. Macromolecules, 2011.
24. Zhang, L.Q., et al., Morphology and mechanical properties of clay/styrene-butadiene rubber nanocomposites. Journal of applied polymer science, 2000. 78(11): p. 18731878.
25. Carn, F., et al., Biopolymer folding driven nanoparticle reorganization in bionanocomposites. Soft Matter, 2012. 8(10): p. 2930-2944.
26. Zhang, H., et al., Nanocavitation in Carbon Black Filled Styrene-Butadiene Rubber under Tension Detected by Real Time Small Angle X-ray Scattering. Macromolecules, 2012. 45(3): p. 1529-1543.
27. Tuteja, A., P.M. Duxbury, and M.E. Mackay, Multifunctional nanocomposites with reduced viscosity. Macromolecules, 2007. 40(26): p. 9427-9434.
28. Moniruzzaman, M. and K.I. Winey, Polymer nanocomposites containing carbon nanotubes. Macromolecules, 2006. 39(16): p. 5194-5205.
29. Kim, H., A.A. Abdala, and C.W. Macosko, Graphene/Polymer Nanocomposites. Macromolecules, 2010. 43(16): p. 6515-6530.
30. Hussain, F., Review article: Polymer matrix Nanocomposites, Processing, Manufacturing and Application: An overview. Journal of Composite Materials, 2006.
31. http://www.rhodia.com/fr/markets_and_products/product_ranges/.
32. Roux, C., Caractérisation in-situ des mécanismes de dispersion de la silice dans une matrice élastomère soumise à un cisaillement. 2008, Mines-ParisTech: Paris.
33. Choi, Influence of filler type and content on properties of Styrene-Butadiene-Rubber (SBR) compound reinforced with carbon black or silica. Polymer for advanced technoloies, 2004. 15: p. 122-127.
34. Ramier, J., et al., Payne effect in silica-filled styrene-butadiene rubber: Influence of surface treatment. Journal of Polymer Science Part B-Polymer Physics, 2007. 45(3): p. 286-298.
35. Schneider, Correlation of mass fractal dimension and cluster size of silica in styrene butadiene rubber composites. The journal of chemical physics, 2010. 133.
36. Shinohara, Y., et al., Microscopic Observation of Aging of Silica Particles in Unvulcanized Rubber. Macromolecules, 2010. 43(22): p. 9480-9487.
37. Suzuki, N., M. Ito, and F. Yatsuyanagi, Effect of rubber/filler interactions on deformation behavior of silica filled SBR systems. Polymer, 2004. 46: p. 193-201.
38. Derjaguin, B. and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physico Chemica, 1941. 14.
39. Iler, The chemistry of silica, ed. A.W.I. Publication. 1979: John Wiley \& Sons.
40. Stöber, W. and A. Fink, Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science, 1968. 26(1): p. 62-69.
41. Meth, J.S., et al., Development of Filler Structure in Colloidal Silica-Polymer Nanocomposites. Macromolecules, 2011. 44(20): p. 8301-8313.
42. Hasse, Special silanes for elastomers. Rohstoffe und anwendungen, 2003: p. 471-477.
43. http://www.google.com/patents/EP1940973A2?cl=en.
44. Qin, S.H., et al., Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules, 2004. 37(3): p. 752-757.
45. El Harrak, A., et al., Control of the colloidal stability of polymer-grafted-silica nanoparticles obtained by atom transfer radical polymerization. Macromolecular Symposia, 2005. 226: p. 263-278.
46. Chevigny, Wet-to-dry conformational transition of polymer layers grafted to nanoparticles in nanocomposite. Macromolecules, 2010.
47. Monredon, S.d., Intéractions Organosilanes/Silice de précipitation, du milieu hydroalcoolique au milieu aqueux, in Physique et chimie des matériaux. 2004, UPMC: paris.
48. Capuano, G., Universal Features of the Melt Elasticity of Interacting Polymer Nanocomposites. Langmuir, 2012.
49. Mujtaba, A., et al., Mechanical Properties and Cross-Link Density of StyreneButadiene Model Composites Containing Fillers with Bimodal Particle Size Distribution. Macromolecules, 2012. 45(16): p. 6504-6515.
50. Feng, Y.C., et al., Relationship between Dispersion and Conductivity of Polymer Nanocomposites: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2012. 116(43): p. 13081-13088.
51. Bogosolov, R.B., et al., Effect of Silica Nanoparticles on the Local Segmental Dynamics in Poly(vinyl acetate). Macromolecules, 2008. 41: p. 1289-1296.
52. Christensen, K., Percolation theory. 2002: Imperial College London.
53. Pérez-Aparicio, R., et al., Local Chain Deformation and Overstrain in reinforced Elastomers: An NMR study. Macromolecules, 2013.
54. Alexander, S., Polymer Adsorption on Small Spheres - Scaling Approach. Journal De Physique, 1977. 38(8): p. 977-981.
55. Degennes, P.G., Conformations of Polymers Attached to an Interface. Macromolecules, 1980. 13(5): p. 1069-1075.
56. Kumar, S.K., et al., Nanocomposites with Polymer Grafted Nanoparticles. Macromolecules, 2013. 46(9): p. 3199-3214.
57. Sunday, D., J. Ilavsky, and D.L. Green, A Phase Diagram for Polymer-Grafted Nanoparticles in Homopolymer Matrices. Macromolecules, 2012. 45(9): p. 4007-4011.
58. Hasegawa, R., Y. Aoki, and M. Doi, Optimum graft density for dispersing particles in polymer melts. Macromolecules, 1996. 29(20): p. 6656-6662.
59. Daoud, M. and J.P. Cotton, Star Shaped Polymers - a Model for the Conformation and Its Concentration-Dependence. Journal De Physique, 1982. 43(3): p. 531-538.
60. Choi, Filler-Polymer Interaction in Filled styrene-butadiene rubber compounds. Korea Polymer Journal, 2000. 9: p. 45-50.
61. Anderson, Z., Rheology and microstructure of Entagled polymer Nanocomposite Melts. Macromolecules, 2009. 42: p. 8370-8384.
62. Oberdisse, Aggregation of colloidal nanoparticles in polymer matrices. Soft Matter, 2006. 2: p. 29-36.
63. Oberdisse, Structure and rhological properties of soft-hard nanocomposites: influence of aggregation and interfacial modification. polymer, 2005. 46: p. 6695-6705.
64. Ganachaud, F. and J.L. Katz, Nanoparticles and nanocapsules created using the Ouzo effect: Spontaneous emulsification as an alternative to ultrasonic and high-shear devices. Chemphyschem, 2005. 6(2): p. 209-216.
65. Genix, A.C., et al., Modeling of Intermediate Structures and Chain Conformation in Silica-Latex Nanocomposites Observed by SANS During Annealing. Macromolecules, 2012. 45(3): p. 1663-1675.
66. Reyne, M., Les composites dans les sports et loisirs, T.d. l'ingénieur, Editor. 2012.
67. Berriot, J., et al., Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules, 2002. 35(26): p. 9756-9762.
68. Park, S.J., et al., Synthesis and dispersion characteristics of multi-wall carbon nanotubes composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromolecular Rapid Communications, 2003. 24: p. 1070-1073.
69. Zheng, G., et al., Characterizations of expanded graphite/polymer composites prepared by in situ polymerization. Carbon, 2004. 42(2839-2847).
70. Lepoittevin, B., et al., Poly(e-caprolactone)/Clay Nanocomposites by in-Situ Intercalative Polymerization Catalyzed by Dibutyltin Dimethoxide. Macromolecules, 2002(35): p. 8385-8390.
71. Yoshikai, K., T. Ohsaki, and M. Furukawa, Silica reinforcement of synthetic diene rubbers by sol-gel process in the latex. Journal of applied polymer science, 2002. 85(10): p. 2053-2063.
72. Stockelhuber, K.W., et al., Impact of Filler Surface Modification on Large Scale Mechanics of Styrene Butadiene/Silica Rubber Composites. Macromolecules, 2011. 44(11): p. 4366-4381.
73. Mele, P., et al., Reinforcement effects in fractal-structure-filled rubber. Polymer, 2002. 43(20): p. 5577-5586.
74. Schneider, G.J. and D. Goritz, Structural changes in precipitated silica induced by external forces. Journal of chemical physics, 2010. 132(15).
75. Conzatti, L., et al., Morphology and viscoelastic behaviour of a silica filled styrene/butadiene random copolymer. Macromolecular Materials and Engineering, 2008. 293(3): p. 178-187.
76. Hasse, A., et al., Influence of the amount of diand polysulfane silanes on the crosslinking density of silica filled rubber compounds. Kautschuk Gummi Kunststoffe, 2002. 55(5): p. 236-243.
77. Castellano, M., et al., Surface modification of silica: 1. Thermodynamic aspects and effect on elastomer reinforcement. Polymer, 2005. 46(3): p. 695-703.
78. Stöckelhuber, Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules, 2011.
79. Arrighi, The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller. Polymer, 2003. 44: p. 6259-6266.
80. Ramier, Payne Effect in silica filled styrene butadiene rubber: Influence of surface treatment. Journal of polymer science: Part B: Polymer Physics, 2006. 45: p. 286-298.
81. Cassagnau, P., Melt rheology of organoclay and fumed silica nanocomposites. Polymer, 2008. 49(9): p. 2183-+.
82. Heinrich, G., M. Kluppel, and T.A. Vilgis, Reinforcement of elastomers. Current Opinion in Solid State \& Materials Science, 2002. 6(3): p. 195-203.
83. Cerveny, S., et al., Glass-transition and secondary relaxation in SBR-1502 from dynamic mechanical data. Polymer, 2000. 41(6): p. 2227-2230.
84. Schneider, G.J., et al., Dynamics of Entangled Chains in Polymer Nanocomposites. Macromolecules, 2011. 44(15): p. 5857-5860.
85. Papon, A., et al., Solid particles in an elastomer matrix: impact of colloid dispersion and polymer mobility modification on the mechanical properties. Soft Matter, 2012. 8(15): p. 4090-4096.
86. Janes, D.W., et al., Dispersion Morphology of Poly(methyl acrylate)/Silica Nanocomposites. Macromolecules, 2011. 44(12): p. 4920-4927.
87. Chevigny, C., et al., Polymer-Grafted-Nanoparticles Nanocomposites: Dispersion, Grafted Chain Conformation, and Rheological Behavior. Macromolecules, 2011. 44(1): p. 122-133.
88. Chevigny, Tuning the Mechanical Properties in Model Nanocomposites: Influence of the Polymer-Filler Interfacial Interactions. Polymer Physics, 2011.
89. Jouault, N., et al., Well-Dispersed Fractal Aggregates as Filler in Polymer-Silica Nanocomposites: Long-Range Effects in Rheology. Macromolecules, 2009. 42(6): p. 2031-2040.
90. Harton, S.E., et al., Immobilized Polymer Layers on Spherical Nanoparticles. Macromolecules, 2010. 43(7): p. 3415-3421.
91. Kim, S.Y. and C.F. Zukoski, Super- and sub-Einstein intrinsic viscosities of spherical nanoparticles in concentrated low molecular weight polymer solutions. Soft Matter, 2012. 8(6): p. 1801-1810.
92. Schweizer, K.S. and J.G. Curro, Prism Theory of the Structure, Thermodynamics, and Phase-Transitions of Polymer Liquids and Alloys. Atomistic Modeling of Physical Properties, 1994. 116: p. 319-377.
93. Oberdisse, J., Adsorption and grafting on colloidal interfaces studied by scattering techniques. Current opinion in colloid \& interface science, 2007. 12(1): p. 3-8.
94. Jouault, N., et al., Direct Measurement of Polymer Chain Conformation in WellControlled Model Nanocomposites by Combining SANS and SAXS. Macromolecules, 2010. 43(23): p. 9881-9891.
95. Berriot, J., et al., Reinforcement of model filled elastomers: synthesis and characterization of the dispersion state by SANS measurements. Polymer, 2003. 44(17): p. 4909-4919.
96. Payne, A.R. and R.E. Whitaker, Rubber Chem Technol, 1971. 44: p. 440-478.
97. Frohlich, J., W. Niedermeier, and H.D. Luginsland, Composites Part a-Applied Science and Manufacturing, 2005. 4(36): p. 449-460.
98. Bueche, F., Journal of Applied Polymer Science, 1960. 4(10): p. 107-114.
99. Ahmed, S. and F.R. Jones, A Review of Particulate Reinforcement Theories for Polymer Composites. Journal of Materials Science, 1990. 25(12): p. 4933-4942.
100. Einstein, A., Ann. Phys., 1906. 19(289).
101. Smallwood, H.M., J Appl Phys, 1944(15): p. 758-766.
102. Guth, E. and O. Gold, On the hydrodynamical theory of the viscosity of suspensions. Phys. Rev., 1938. 53.
103. DeGennes, P.G., J. Physique Lett., 1976. 37(1-2).
104. Palierne, J.F., Linear Rheology of Viscoelastic Emulsions with Interfacial-Tension. Rheologica Acta, 1990. 29 (3): p. 204-214.
105. Nusser, K., G.J. Schneider, and D. Richter, Microscopic origin of the terminal relaxation time in polymer nanocomposites: an experimental precedent. Soft Matter, 2011. 7(18): p. 7988-7991.
106. Berriot, J., et al., Reinforcement of model filled elastomers: characterization of the crosslinking density at the filler-elastomer interface by H-1 NMR measurements. Polymer, 2003. 44(5): p. 1437-1447.
107. Saalwachter, K., Microstructure and Molecular Dynamics of Elastomers as Studied by Advanced Low-Resolution Nuclear Magnetic Resonance Methods. Rubber chemistry and technology, 2012. 85(3): p. 350-386.
108. Masnada, E.M., et al., Entanglement-induced reinforcement in polymer nanocomposites. Soft Matter, 2013.
109. Long, D. and F. Lequeux, Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. European Physical Journal E, 2001. 4(3): p. 371-387.
110. Fryer, D.S., P.F. Nealey, and J.J. de Pablo, Thermal probe measurements of the glass transition temperature for ultrathin polymer films as a function of thickness. Macromolecules, 2000. 33(17): p. 6439-6447.
111. Papon, A., et al., Low-Field NMR Investigations of Nanocomposites: Polymer Dynamics and Network Effects. Macromolecules, 2011. 44(4): p. 913-922.
112. Robertson, C.G. and M. Rackaitis, Further Consideration of Viscoelastic Two Glass Transition Behavior of Nanoparticle-Filled Polymers. Macromolecules, 2011. 44(5): p. 1177-1181.
113. Ozmusul, M.S., et al., Lattice Monte Carlo simulations of chain conformations in polymer nanocomposites. Macromolecules, 2005. 38(10): p. 4495-4500.
114. Huntink, N.M., Durability of rubber product products development of new antidegradants for long term protection. 2003, Université de Twente.
115. Durel, O., [160 MP] Dienkautschukzusammensetzung für reifen mit einem speziellen silikonals verstärkendem füllstoff, S.d.T.d. Michelin, Editor. 2002: France.
116. Garnero, A., Traitements de matériaux pour la caractérisation MEB et SAXS (Stage DUT Michelin). 2013.
117. Zemb, T. and P. Lindner, Neutrons, X-ray, and Light: Scattering Methods Applied to Soft Condensed Matter. Delta series, ed. Noth-Holland. 2002.
118. http://www.esrf.eu/UsersAndScience/Experiments/SoftMatter/ID02/.
119. Hansen, J.-P. and I.R. McDonald, Theory of simple liquids, ed. U. StatesEdition. 1990: Academic Press, INC.
120. Oberdisse, J. and B. Deme, Structure of latex-silica nanocomposite films: A smallangle neutron scattering study. Macromolecules, 2002. 35(11): p. 4397-4405.
121. Auroy, P. and L. Auvray, About the Sensitivity of the Small-Angle Neutron-Scattering Technique in the Determination of a Polymer Interfacial Density Profile. Journal de physique II, 1993. 3(2): p. 227-243.
122. Debye, P., Molecular-Weight Determination by Light Scattering. Journal of Physical and Colloid Chemistry, 1947. 51(1): p. 18-32.
123. Gennes, P.G.D., Theory of X-Ray Scattering by Liquid Macromolecules with Heavy Atom Labels. Journal De Physique, 1970. 31(2-3): p. 235-\&.
124. Chevigny, C., et al., "Wet-to-Dry" Conformational Transition of Polymer Layers Grafted to Nanoparticles in Nanocomposite. Macromolecules, 2010. 43(11): p. 48334837.
125. Kremer, F. and A. Schönhals, Broadband Dielectric Spectroscopy. 2003: Springer.
126. Otegui, J., et al., Influence of Water and Filler Content on the Dielectric Response of Silica-Filled Rubber Compounds. Macromolecules, 2013. 46(6): p. 2407-2416.
127. Fröhlich, H., Theory of dielectrics: dielectric constant and dielectric loss. 1958, London: Oxford at the Clarendon, Press.
128. Debye, P., Polar molecules. 1929, New York: Chemical catalog company.
129. Havrilia.S and Negami.S, A Complex Plane Representation of Dielectric and Mechanical Relaxation Processes in Some Polymers. Polymer, 1967. 8(4): p. 161-\&.
130. Baeza, G.P., et al., Multiscale Filler Structure in Simplified Industrial Nanocomposite Silica/SBR Systems Studied by SAXS and TEM. Macromolecules, 2013. 46(1): p. 317-329.
131. Percus, J.K. and G.J. Yevick, Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. Physical Review, 1958. 110(1): p. 1-13.
132. Chakrabarti, R., et al., Packing correlations, collective scattering and compressibility of fractal-like aggregates in polymer nanocomposites and suspensions. Soft Matter, 2011. 7(11): p. 5397-5407.
133. Cerveny, S., et al., Dielectric alpha- and beta-relaxations in uncured styrene butadiene rubber. Macromolecules, 2002. 35(11): p. 4337-4342.
134. Saalwachter, K., B. Herrero, and M.A. Lopez-Manchado, Chain order and cross-link density of elastomers as investigated by proton multiple-quantum NMR.
Macromolecules, 2005. 38(23): p. 9650-9660.
135. Saalwachter, K., et al., $1 H$ multiple-quantum nuclear magnetic resonance investigations of molecular order distributions in poly(dimethylsiloxane) networks: Evidence for a linear mixing law in bimodal systems. The journal of chemical physics, 2003. 119(6): p. 3468.
136. Oberdisse, J., P. Hine, and W. Pyckhout-Hintzen, Structure of interacting aggregates of silica nanoparticles in a polymer matrix: small-angle scattering and reverse Monte Carlo simulations. Soft Matter, 2007. 3(4): p. 476-485.
137. Tuinier, R., J. Rieger, and C.G. de Kruif, Depletion-induced phase separation in colloid-polymer mixtures. Advances in Colloid and Interface Science, 2003. 103(1): p. 1-31.

Résumés

Résumé

Cette thèse propose l'étude de matériaux composites industriels simplifiés constitués de caoutchouc non réticulé (copolymère styrène-butadiène «SBR ») renforcés par des charges nanométriques de silice hautement dispersible. Afin d'identifier les mécanismes physicochimiques responsables de ce renforcement et être capable de l'optimiser, nous devons comprendre les corrélations existantes entre les propriétés macroscopiques du matériau et la structure des charges à différentes échelles.

Pour cela, une large campagne d'expériences de diffusion des rayons-X aux petits angles (DXPA) ainsi que de nombreux clichés de microscopie électronique ont été réalisés. En couplant ces données avec des simulations Monte-Carlo, il a été notamment possible de mettre en avant la présence d'une organisation à trois niveaux en partant de billes élémentaires d'une dizaine de nanomètres formant des agrégats eux-mêmes arrangés selon un réseau tridimensionnel branché existant à travers tout l'échantillon.

L'analyse du renforcement dans les nanocomposites a été effectuée par rhéométrie et analyse dynamique mécanique. D'autres techniques telles que la spectroscopie diélectrique, la résonnance magnétique nucléaire, l'analyse thermogravimétrique ou la spectrométrie infrarouge ont également contribué à une caractérisation complète de ces matériaux, en particulier pour sonder la dynamique des chaînes de SBR à l'interface avec la charge.

Afin de déceler les corrélations existantes entre structure et propriétés, nous nous sommes attachés à décrire systématiquement l'influence de paramètres-clés tels que la fraction volumique en silice, le type de polymère employé (greffable sur la silice ou pas) ou leur masse molaire sur la morphologie des charges (par exemple la taille des agrégats) ainsi que sur le comportement mécanique (par exemple leur module d'élasticité) des composites. Ce travail a permis d'identifier la densité de greffage des chaines comme le paramètre définissant la structure des composites et impactant significativement le renforcement.

Cette thèse, résolument tournée vers la compréhension fondamentale, est aussi une contribution à la recherche d'une loi de comportement décrivant l'effet de la structure des charges sur les performances des pneumatiques. Cette dernière doit permettre de répondre à des problématiques rencontrées en ingénierie telles que la résistance à l'usure, l'adhérence, ou la résistance au roulement.

De plus, dans le but d'atteindre des informations supplémentaires quant aux interactions entre caoutchouc et silice, nous avons mis au point un protocole expérimental permettant de formuler des échantillons dits «modèles» renforcés avec une silice colloïdale. Cette dernière étant beaucoup mieux définie d'un point de vue géométrique, son analyse structurale est grandement facilitée rendant possible l'étude des potentiels mis en jeu pendant la production des nanocomposites.

Mots clés :
nanocomposite - silice - polymère - SBR - diffusion - structure - rhéologie - renforcement greffage - DXPA - DNPA - diélectrique -Michelin.

Abstract

In this thesis, we study nanocomposite materials made of rubber (styrene-butadien copolymer "SBR") reinforced by highly dispersible silica nanofillers. In order to identify physico-chemical mechanisms responsible for such a reinforcement and being able to optimize it, we must understand existing correlations between the material macroscopic properties and the multiscale structure of the filler.

For this purpose, a wide campaign of small angle X-ray scattering (SAXS) and electronic microscopy experiments have been performed. Coupling this data with Monte-Carlo simulations led to the emergence of a concept describing the silica morphology: A branched tridimensional network built up from aggregates (radius $\approx 50 \mathrm{~nm}$) made of nanoparticles (radius $\approx 10 \mathrm{~nm}$) spreading across in the whole sample.

The analysis of the reinforcement in nanocomposites is based on rheometry and dynamic mechanical analysis. Other techniques like dielectric spectroscopy, nuclear magnetic resonance, thermogravimetric analysis or infra-red spectrometry contributed as well to fully characterize these materials, particularly to probe the SBR chains dynamic at the interface with the filler.

In order to reveal the correlations between structure and properties, we systematically described the impact of key parameters such as filler fraction, polymer grafting or the chain molar mass on the silica morphology (aggregates size, ...) as well as on the mechanical behavior (elastic modulous, ...) of the composites. This work allowed identifying the polymer grafting density as the parameter defining the filler structure and playing a significant role on the reinforcement.

This thesis, firmly focused on fundamental comprehension, contributes to the development of a general law describing the effect of the filler structure on the performance of tires. The latter must provide answers to engineering issues concerning wear resistance, wet grip or rolling resistance.

Moreover, in order to obtain additional information regarding the rubber-silica interactions, we developed an experimental process allowing the production of "model" systems reinforced with colloidal silica. The use of such filler, very well defined in terms of size and shape, makes much easier the structural analysis giving the opportunity to investigate deeper the effective potential between the two phases during the composite production.

Key words

nanocomposite - polymer - silica - SBR - scattering - structure - rheology - reinforcement grafting - SAXS - SANS - dielectric - solvent casting - Michelin.

Résumé grand public

Depuis une vingtaine d'année, les pneumatiques sont fabriqués en ajoutant des particules nanoscopiques (quelques milliardièmes de mètre) de silice au caoutchouc dans le but de former un matériau «composite» dont les propriétés sont optimisées (adhérence, résistance à l'usure, consommation de carburant...). L'organisation spatiale de ces charges renforçantes et les interactions qu'elles ont avec le caoutchouc joue un rôle déterminant quant au comportement du matériau lors d'une sollicitation extérieure, il apparait donc essentiel pour les manufacturiers de comprendre les mécanismes physico-chimiques reliant la formulation, la structure et les propriétés du composite.

Dans cette thèse, nous nous attachons dans un premier temps à décrire la morphologie de la silice dans le caoutchouc par microscopie et diffusion du rayonnement, puis à observer l'impact de cette dernière sur les propriétés mécaniques et diélectriques. La mise en commun de ces données nous permet finalement d'isoler les paramètres critiques de la formulation afin de comprendre de quelle façon il est possible d'améliorer le comportement du futur pneumatique.

General public abstract

Since 1992, tires are made by adding nanosized (a few billionth of meter) silica particles within rubber in order to produce a "composite" material in which properties are optimized (wear resistance, grip, fuel consumption...). The spatial organization of those reinforcing fillers and their interactions with the rubber play a decisive role on the material behavior which obligate manufacturers to understand physico-chemical mechanisms responsible for the correlations between formulation, structure and properties of the composite.

In this thesis, we firstly describe the silica morphology in rubber using microscopy and scattering methods. Then, we observe its impact on the mechanical and dielectric properties. Finally, putting together all the data allow us isolating critical parameters of the formula in order to understand what is the best way to enhance the behavior of the future tire.

Direct Montpellier

A ma ville de cœur...

[^0]: Received: October 30, 2012
 Revised: December 10, 2012
 Published: December 19, 2012

[^1]: Received: May 15, 2013
 Revised: July 8, 2013

