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Abstract

We propose to model the output of transcriptome sequencing technologies (RNA-Seq)

using the negative binomial distribution, as well as build segmentation models suited to

their study at different biological scales, in the context of these technologies becoming a

valuable tool for genome annotation, gene expression analysis, and new-transcript discovery.

We develop a fast segmentation algorithm to analyze whole chromosomes series, and we

propose two methods for estimating the number of segments, a key feature related to the

number of genes expressed in the cell, should they be identified from previous experiments

or discovered at this occasion.

Research on precise gene annotation, and in particular comparison of transcription

boundaries for individuals, naturally leads us to the statistical comparison of change-points

in independent series. To address our questions, we build tools, in a Bayesian segmentation

framework, for which we are able to provide uncertainty measures. We illustrate our models,

all implemented in R packages, on an RNA-Seq dataset from a study on yeast, and show

for instance that the intron boundaries are conserved across conditions while the beginning

and end of transcripts are subject to differential splicing.

Key words: Segmentation, negative binomial, algorithm, credibility intervals, model

selection, RNA-Seq
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Résumé

Nous proposons de modéliser les données issues des technologies de séquençage du tran-

scriptome (RNA-Seq) à l’aide de la loi binomiale négative, et nous construisons des modèles

de segmentation adaptés à leur étude à différentes échelles biologiques, dans le contexte où

ces technologies sont devenues un outil précieux pour l’annotation de génome, l’analyse de

l’expression des gènes, et la détection de nouveaux transcrits. Nous développons un algo-

rithme de segmentation rapide pour analyser des séries à l’échelle du chromosome, et nous

proposons deux méthodes pour l’estimation du nombre de segments, directement lié au

nombre de gènes exprimés dans la cellule, qu’ils soient précédemment annotés ou détectés

à cette même occasion.

L’objectif d’annotation précise des gènes, et plus particulièrement de comparaison des

sites de début et fin de transcription entre individus, nous amène naturellement à nous

intéresser à la comparaison des localisations de ruptures dans des séries indépendantes.

Nous construisons ainsi dans un cadre de segmentation bayésienne des outils de réponse

à nos questions pour lesquels nous sommes capable de fournir des mesures d’incertitude.

Nous illustrons nos modèles, tous implémentés dans des packages R, sur des données RNA-

Seq provenant d’expériences sur la levure, et montrons par exemple que les frontières des

introns sont conservées entre conditions tandis que les débuts et fin de transcriptions sont

soumis à l’épissage différentiel.

Mots Clés : Segmentation, binomiale négative, Sélection de modèle, algorithmes, in-

tervalles de crédibilité, RNA-Seq
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18 Biological framework

1.1 Biological framework

1.1.1 The central dogma of molecular biology

Discovering the role of DNA: When one thinks about the laws of genetic information

transmission, the first thing that comes to mind is experiments with peas: characteristics

of a strain (color of the flowers, shape of the peas, etc.) are observed in the offspring with

proportions resulting from the transmission of half of each parent’s information. Yet these

experiments led by Johann Gregor Mendel throughout his years in his monastery (?) did not

encounter at the time the enthusiasm one could expect. Even though he is now recognized

as the pioneer of molecular biology, and the father of hereditary genetic information, it

is not until the early 20th century that credit was given to his work. Even then, when

in 1944 the biological specificity of the Deoxyribonucleic Acid (DNA) was discovered (?),

the work was not well accepted and diffused in the scientific community. It is only when

its structure was discovered by ? that DNA turned fundamental in the comprehension of

living organisms.

DNA and genetic information: DNA is a molecule made of two long sequences of

nucleotides called strands, and is present under the form of chromosomes in each cell of an

organism: in the cytoplasm in prokaryotes, and in the nucleus in eukaryotes. Nucleotides

are made of a five-carbon sugar, one or more phosphate groups and one of 4 possible

nucleobases: Adenine (A), Guanine (G), Thymine (T ) and Cytosine (C). The structure of

nucleotides (most commonly referred to as bases) gives an orientation, said 5′ to 3′, to the

strand of DNA: the numbers refer to the direction of the 3rd and 5th carbon atoms of the

sugar molecule. The couples of nucleotides A-T and C-G are complementary, meaning that

they can hybridize, i.e. bound together, through hydrogen bounds in such a way that their

orientation is opposite. DNA strands, the Watson (or positive) strand, and the Crick (or

negative) strand, are themselves said complementary as the sequence of nucleotides they

are made of are hybridized. Figure 1.1 illustrates a possible fragment of DNA.



1.1.1 - The central dogma of molecular biology 19

Figure 1.1: Example of a sequence of nucleotides forming a DNA fragment.

DNA is made of two oriented strands: sequences of nucleotides that are hybridized

through hydrogen bounds.

This hybridization property is the base of natural perpetuation and propagation of the

genetic information. It is also the foundation of all sequencing technologies (see Section

1.1.2). When two complementary sequences of nucleotides are present in a medium, they

will naturally tend to hybridize to form a double-stranded molecule. Moreover, some specific

enzymes, the DNA polymerases, are responsible for DNA replication: reading a strand of

DNA from the 5′ to the 3′ end, they create the complementary strand by associating a T

to an A, an A to a T , a C to a G and a G to a C. These sequences of nucleotides are

now known to encode for the expression of the phenotype (observable characteristics of

organisms) by a process known as the Central Dogma illustrated in Figure 1.2.

Central dogma: In its simplest form, the central dogma can be described as follows.

Some regions of the DNA, called genes, contain the inherited genetic information; they are

separated by regions said ‘non-coding’. Genes are transcribed into Ribonucleic Acid (RNA).

RNA is a molecule very similar to DNA with the two main following differences: it is usually

single-stranded, and Thymine (T ) is replaced by a very similar Uracil (U) nucleobase.

This RNA molecule is then itself translated into sequences of amino acids named proteins,

essential components responsible for most regulating activities of the organism.

Depending on the complexity of organisms, the non-coding regions represent from 2 %

(as in bacteria) to 98 % of the DNA (as in humans). They not only separate genes from
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Figure 1.2: The Central Dogma of molecular biology. In its simplest version,

the Central Dogma states that DNA is transcribed into RNA which is then translated

into proteins.

one-another, but can also be present inside a gene: the latter is then made of a succession

of coding sequences, called exons, and non-coding sequences, called introns. For instance,

in the human genome, a gene is on average made of 9 exons thus separated by 8 introns.

In eukaryote organisms, on which we will focus from now on, the central dogma can be

detailed as follows (see Figure 1.3). In the nucleus, genes (both exons and introns) present

on DNA are transcribed into pre-RNA, which will be subject to a series of processes before

reaching maturity. Among these processes, we find the splicing and removal of transcribed

introns, the migration of RNA from the nucleus to the cytoplasm, the addition of a 5′ cap

(a sequence of a few nucleotides) to the 5′ end, and the addition of a poly-A tail, a sequence

of As with average length varying between species (50-70 nucleotides in yeast, about 250

nucleotides in mammalian cells) to the 3′ end. Most importantly, this tail is the last of the

transformations undergone by the RNA, and its presence thus characterizes a mature RNA

(also called ’messenger’, and denoted mRNA). Part of this mRNA will then be translated

into proteins through the ’Genetic Code’: to each triplet of nucleotides corresponds one

amino acid.

This last 5′ to 3′ directed translation process only concerns parts of mRNA: on both
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ends, sequences of nucleotides are not translated. These include the cap and tail, as well as

sequences which were present on DNA, thus which have been transcribed. These sections

are called UnTranslated Regions (UTR) on which we will be focusing.

Figure 1.3: The Central Dogma detailed in eukaryotes. DNA is translated into

pre-RNA in the nucleus of the cell. This RNA goes through a number of steps before

reaching maturity: intron splicing, 5′ cap and 3′ poly-A tail addition, migration from

nucleus to cytoplasm, etc. Once RNA is mature, the coding sequences (region delimited

by the UTRs) are translated into protein.

UnTranslated Regions: The central dogma, even in the detailed version described

above, is often read in one direction: DNA → RNA → proteins. Because the sequence

of UTRs is not directly responsible for protein composition, initially little attention was
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paid to them. In the last decades however, it was shown that proteins and RNA in turn

regulate DNA, and micro-RNA and their role were discovered. It was then realized that

UTRs do have an influence over the functionality of organisms. Recent studies have ev-

idenced that they play a number of important roles: for instance, they are binding sites

for proteins responsible for translation (??), they promote the initiation of translation (?),

they are involved in translational regulation (?) and in the location of the translated pro-

tein in the cell (?). Moreover, mutations (change of a nucleotide in the DNA sequence)

occurring in UTRs may be responsible for genetic diseases (??), for instance by preventing

the expression of the gene.

UTRs of a given gene may vary in size depending on the environment condition. In

almost all organisms, a large proportion of genes —40 to 50 % in mouse and humans (?),

about 72 % in yeast (?)— have more than one polyadenylation sites (position of the genome

where the poly-A tail will be added), and thus different possible UTR length. Even though

5′ UTRs have been less studied, genes may also allow different 5′ UTR length, and for

instance, ? show that they are longer when genes are up-regulated (i.e. are more expressed

than in a normal environment).

While each cell of an organism has the exact same genetic information, their specificity

is determined by which genes they express. For instance, a gene coding for eye color might

be expressed in eye cells but not in heart cells, or the gene coding for cell proliferation

might be more expressed in an individual affected by cancer than in another individual.

This cell specificity and gene regulatory role call for methods to assess both genotype and

gene expression with the goal of better understanding organism functionality, a key element

in the study of pathologies such as cancer. To this end, it is necessary to have the annotation

of the genome of the species studied, i.e. the knowledge of the boundaries between coding

and non-coding regions, in order to determine the variations between different individuals

of the same species. The studies cited above and many others agree about the importance

of UTRs and the need to annotate them, study their mutations, or compare their length in

different environment.

Now remembering that UTRs are present both on DNA and mature RNA molecules
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(they are transcribed but untranslated sequences), sequencing the latter (i.e. the recon-

structing its sequence of nucleotides) is an appropriate approach to their study. Section

1.1.2 will briefly recall the history of genome sequencing (be it DNA or RNA) and present

a recent technology called ’Next-Generation Sequencing’ (NGS).

Yeast genome: Yeast is a unicellular eukaryote family of about 1500 known species,

among which Saccharomyces Cerevisiae is the most famous, mostly due to its use as baking

powder. As is commonly the case, when there is no ambiguity we will use the term ’yeast’

to refer to this particular species.

The yeast genome is composed of about 12 million nucleotides divided into 16 chromo-

somes. Approximately 6300 genes, with an average length of 1450 base-pairs (bp), have been

annotated, and an official annotation is available on the Saccharomyces Genome Database

(SGD) website: www.yeastgenome.org. Those genes have a rate of 0.007 intron per gene

and account for 72 % of the genome. Figure 1.4 presents a portion of the yeast genome:

even though genes represent a large percentage of the total DNA, they are usually well

separated from one-another, rarely located on both strands at the same time, and very few

have introns.

The SGD annotation is that of coding sequences: it consists of a description of tran-

script boundaries (introns and internal UTR delimitations). However, up until recently no

annotation of the UTRs was available, and though information are included with time, it

still needs completion. A few studies have annotated the UTR boundaries of a fraction of

genes, with heuristic methods: the use of in vitro experiments during which the impact of

imposing different 5′ UTR boundaries is studied (?), detection of a shift in the signal of

sequencing experiments (Nagalakshmi et al., 2008), peak calling, development of specific

sequencing methods to target the 3′ UTR (??), etc. While this work is not complete and

might be improved, some useful general trends can still be used: the median lengths are

respectively 50 and 100 bases for the 5′ and 3′ UTRs, but UTR’s length of a gene are not

correlated.

www.yeastgenome.org


24 Biological framework

Figure 1.4: Map of the yeast genome. Figure extracted from the SGD website

yeastgenome.org, accessed 03-14-2012, representing a subset of chromosome 3. Red

(respectively blue) boxes indicate coding regions on the positive (respectively nega-

tive) strand of the chromosome, while purple and grey boxes indicate features that are

typically transcribed but that will not form messenger RNA.

1.1.2 Next-Generation Sequencing technology

Brief overview of the history: The first genome ever fully sequenced, bacteriophage

φX174, had a length of 5386 nucleotides and the sequencing earned its publisher a Nobel

yeastgenome.org
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Prize (?). Less than 30 years later, the cost of sequencing a human genome (3.2× 109

nucleotides) is less than 10 thousand dollars. Figure 1.5 compares the evolution of this

cost to Moore’s Law, which describes the observed trend that the number of transistors in

computers doubles every two years. This comparison shows that we are facing a scientific

field which improvement and performance translate into costs trends similar to computer

power, and this calls for the development of new methodologies to analyze the tremendous,

continually-growing resulting data sets.

This might also lead to wonder whether statistical methods proposed to deal with these

data will not be outdated as soon as they are developed. In fact, if a continued decrease of

sequencing costs can be expected, as will be described in the next paragraph with a brief

history of genome sequencing, the evolution of the resolution has reached its maximum as

we are now able to obtain information at the nucleotide scale. Methods developed for these

technologies will therefore hopefully be improved, but never outdated.

Genome sequencing began in 1975 and 1977 as Sanger and Gilbert proposed almost

simultaneously two methods for sequencing DNA: an “enzyme approach” (?), and a “chem-

istry approach” (?). While the second method was at first more popular, the surge for gene

sequencing really started when Sanger sequencing imposed itself with the development in

1984 of Polymerase Chain Reaction (PCR), a technique for the amplification of DNA.

This method, still at the core of all sequencing technologies today, is based on creating

complementary strands of the target, as illustrated in Figure 1.6.

Sanger sequencing: A polymerase enzyme is introduced in the medium along with a

large amount of nucleotides, some of which are colored with a fluorescent nucleobase-specific

marker, and tied to a reversible terminator, a molecule which prevents further ligation to

other nucleotides. The polymerase reads the target fragment (from 5′ to 3′) and associates

to each base a complementary nucleotide from those available in the medium. When this

nucleotide is tied to a terminator, the fragment of DNA thus created and completed is

freed in the medium, and the enzyme starts over again. When all nucleotides are used,
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Figure 1.5: Evolution of the sequencing cost in the last decade. Compar-

ison of the cost of sequencing the human genome (in dollars) to Moore’s law. Data

from the NHGRI Genome Sequencing Program (GSP) Available at: www.genome.gov/

sequencingcosts. Accessed 07-20-2013.

the fragments obtained are analyzed: their length is assessed by chromatography, and their

last base is read by fluorescence. Because of the large amount of fragments, there is a very

large probability that each possible fragment-length will be observed, and then combining

the information provided by length and last base composition allows to obtain the whole

sequence of the initial target fragment. In the context of NGS sequencing, this fragment is

called a read.

In the two decades following the development of PCR, over 20 sequencing methods were

developed, and many genomes were at least partly sequenced. In parallel, detecting and

determining the relative abundance of transcripts in RNA samples became a central theme

in a number of biological studies. Microarrays, which had been introduced in 1983 (?),

www.genome.gov/sequencingcosts
www.genome.gov/sequencingcosts
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Figure 1.6: Technical process for the determination of a sequence of nu-

cleotides. To decipher the sequence of a read, complementary sequences of dif-

ferent length of the target are created. Their length and last base composition are then

obtained by chromatography and fluorescence.

became the largely preferred method in the 90’s with the establishment of Affymetrix and

Illumina companies to address such questions.

Microarray approaches rely on the hybridization of the target fragmented single-

stranded RNA to sequences of complementary DNA of known composition, often called

probes, previously attached to a glass-slide. The sequence of target RNA and its abun-

dance can then be inferred using laser fluorescence to assess the extent of hybridization to

the probes. Probes are designed in such a way that quantities such as transcript amount,

chromosome copy number or allele specificity can be assessed. The resolution of microarray

methods is then determined by considering both the probe size (i.e. the length of the frag-

ment of DNA attached to the glass-slide) and the genomic distance between the probes. In

the last decade, most arrays had a resolution of about 5 thousand nucleotides.

Up until early in the last decade, it seemed like the sequencing technology would follow

a growth rate equal to that of Moore’s law: progress could be made on the chromatogram

and chemistry materials but the techniques remained limited by the amount of space and
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human expertise needed. In 2005 however, a technique to optimize the Sanger protocol

was developed, and by 2008 all industries turned to what was called ’second-generation

sequencing’ technology. This technology can be used to sequence DNA, with the possible

aims of creating reference genomes or assessing chromosomal aberrations (for instance extra

copies of a chromosome), and RNA, with the aim of determining gene expression in par-

ticular cells. In the first case, we talk of DNA-Seq experiments, in the second, of RNA-Seq

experiments. The next paragraph details a particular sequencing process, from the ’fire’

technology, which was used for the benchmark dataset of this thesis. The protocol concerns

RNA sequencing, but in the case of DNA-Seq, it would be identical except from the first

step which would be skipped.

The sequencing process, summarized in Figure (1.7), can be described in five steps:

1. Mature RNA is extracted and reverse-transcribed. This is usually done using en-

zymes which target the poly-A tail by, for instance, hybridizing oligo-(dT ) cellulose

(long sequences of T s) to the tail. Extracted (and further purified) RNA is then

reverse-transcribed into (a single-stranded) complementary DNA. To perform this

step, nucleotides and enzymes are added to the RNA medium. The enzymes will

run through the RNA from the 5′ to the 3′ end creating a first strand of DNA by

completion: a T for an A, an A for a U , a C for a G and a G for a C. Once this first

strand of cDNA is created, the procedure is repeated, this time producing the second

DNA strand from the first. The original RNA is then removed and we are left with

double-stranded DNA molecules.

2. Double-stranded DNA is amplified and sheared into 200-300 base-pair-long fragments.

At this point, one DNA version of each initial molecule (be it RNA in RNA-Seq

experiments, or the actual initial DNA molecule in DNA-Seq experiments) is present

in the medium. Even the most recent version of NGS technologies cannot sequence

fragments longer than 1000 bases (and most often will not exceed 200bp), therefore

to obtain the sequence of a whole RNA molecule, it needs to be sheared into pieces.

Because in the shearing process, and later on in the sequencing step, information on

nucleotides is likely to be lost, the size of the library (set of pieces of DNA which will
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Figure 1.7: Steps of a sequencing technology. Steps from RNA extraction to

alignment to a reference genome. Red boxes represent the ’reads’, while purple and

blue boxes indicate tags added to identify the strand from which those reads were

extracted. Details are given in the text.

be sequenced) is usually not large enough to ensure uniform and sufficient coverage of

the target. Most sequencing technologies therefore use an amplification step such as

PCR prior to sequencing. After amplification, the DNA is sheared randomly (using

enzymes) into fragments of size varying between 200 and 300 bases.
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3. Sequencing step. The first 36 bases of the 5′ end of both strands of each fragments

is then sequenced. In the first-generation sequencing technologies, the protocol to

perform this step was Sanger’s (see Figure 1.6). The huge improvement of second-

generation sequencing comes from the ability to read fragment-length and fluorescence

at the same time. This is done by fixing the target fragments to a surface and moving

a laser with extreme precision. The laser reads the fluorescence of the last base of

the created fragment, and its position informs of the length of the fragment. A new

enzyme is introduced in the medium which cleaves the terminator from the new piece

of cDNA once the fluorescence is read. Instead of freeing the sequence in the medium

and starting over, the polymerase enzyme resumes its task where it left it. This

not only implies using less chemical materials, but also less time and space. It is

also during this step that in strand-specific protocols (protocols which can identify

the strand from which reads were sequenced) such as that used in the benchmark

dataset, a strand-specific tag is added to each fragment prior to sequencing. This is

represented by the blue and purple boxes in steps 3 to 5.

4. Reads extraction. Once all fragments are sequenced, the reads (red boxes in Fig-

ure 1.7) are extracted and only those of length 36 are kept.

5. Alignment. If no reference genome is available, or in the case of de novo assem-

bly, specific software assemble reads together so as to form contigs, i.e. contiguous

sequences of nucleotides representing fragments of the genome. When a reference

genome is available, reads are aligned using developed software which compare the

read sequences to the genome, allowing for a user-defined number of mismatches

between the sequences. In our analysis, we used Bowtie (Langmead et al., 2008)

allowing for two mismatches in each read, and kept only those that uniquely aligned.

In strand-specific protocols, comparing the tags and directions in which the reads

align provides information on their origin.

The protocols vary slightly depending on sequencing companies. The main difference

is the length of the reads, 36 bases being among the shortest at the time of writing. Us-

ing longer read-length gives more information and facilitates the construction of reference
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genome, at the price of decreased sequencing quality (more errors are observed in the out-

put) and, in the case of RNA-sequencing, missing the smallest transcripts.

In studies examining the abundance of transcript, that the resolution is of the order

of the base is a major improvement compared to the microarrays technologies, for which

information on regions of at least thousands of nucleotides where summarized into a single

number. This necessarily results in longer signals, but the resolution shall never be in-

creased, and developing statistical methods efficient enough for the analysis of such signals

will remain a crucial issue in the upcoming years.

1.1.3 Benchmark dataset

The benchmark dataset that will be used to illustrate the contributions all along this

manuscript comes from a study performed by the Sherlock lab in Standford. Published by

Risso et al. (2011), it is publicly available in the Sequence Read Archive (SRA) repository,

http://www.ncbi.nlm.nih.gov/sra, with the accession number SRA048710.

The study aimed at comparing different yeast species grown in different media both

in terms of gene expression (study not presented here) and UTR length. Out of the four

studied species (S. cerevisiae, S. mikatae, S. paradoxus and S. bayanus), only S. cerevisiae

has entirely been sequenced, and only contigs are available for the other species. These

contigs are sufficient for the assessment of gene expression, but they usually are not long

enough to allow the wider exploration of the genome which is needed for re-annotation. For

this reason, this manuscript is only illustrated with examples from S. cerevisiae (from now

on referred to as yeast).

The yeast strains were grown for the same amount of time in three different media: ypd,

delft and glycerol. Ypd is a rich medium made of YP glucose which is the standard growing

condition of yeast, and delft is a similar but poorer medium. In both conditions, yeast cells

ferment. In glycerol however, yeast respires, and we thus expect to observe more differences

in gene expression and UTR sizes between this medium and any other than between ypd

and delft. Details on the biological experiments are available in Risso et al. (2011).

http://www.ncbi.nlm.nih.gov/sra
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Samples of the strains were then sequenced using two different (but similar) protocols,

Fire and Snyder, both of them being strand-specific. Their output, sequences of nucleotides

of length 36, are similar, but the bias introduced in the sequencing step might differ. 8

samples, called lanes, were sequenced for ypd (2 Snyder and 8 Fire), 3 for delft (all Fire) and

3 for glycerol (1 Snyder and 2 Fire). Figure 1.8 represents barplot of the quantities related

to the number of reads obtained for each lane: the total number of reads, the number

that were mapped using Bowtie, and the percentage of mapped reads. On top, lanes were

colored by growth condition, on bottom, by sequencing technology.

In most studies where a genome of reference or contigs are available, the output of

RNA-Seq experiments is summarized in terms of number of reads per gene. Moreover, in

studies comparing gene expression between conditions or species, normalization procedures

are necessary to correct for library size or technology effects. As had been the case for

microarrays, a vast literature of available methods has been proposed in the last decade.

In the context of genome re-annotation, the question of interest is the location of tran-

scripts on the genome. The library size must be large enough for all expressed transcripts

to be sequenced, but normalization procedure should not be required as they will not influ-

ence the delimitation of regions with signal. Rather than summarizing the signal in terms

of number of reads per gene, we will use read counts per position, i.e. the number of reads

which first (or last) nucleotide corresponds to position t of the genome. The higher the

amount of reads, the easier the delimitations between coding and non-coding sequences will

be to assess. For this reason, read counts for lanes corresponding to the same medium were

summed.

The presence of the poly-A tail in mature RNA leads to a number of reads terminating

in a long sequence of As (or T s depending on the strand of complementary DNA from

which they were issued). Since the poly-A tail is not present on the initial DNA, those

reads will fail to align to the genome of reference, despite their useful information on UTR

boundaries. In our benchmark dataset, after performing a first run of Bowtie, we sorted the

unaligned reads ending with sequences of As (respectively Ts) longer than 3, trimmed the
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Figure 1.8: Overview of the benchmark dataset. Total amount of reads per lanes

colored by growth condition (Top) or by sequencing technology (Bottom) before map-

ping (Left), after mapping (Middle) and percentage of mapped reads (Right). Figures

created with the collaboration of Davide Risso.

As (resp Ts) and realigned these shorter semi-artificial reads with a second run of Bowtie.

This added over 9000 reads to the alignment. Our final output signal was then, at each

position t of the yeast genome, the number of reads whose last base (3′ end) aligned to

position t. Figure 1.9 illustrates the data for the positive strand of chromosome 1 of yeast

grown in ypd, using different scales.
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Figure 1.9: Data overview. Number of reads ending at each position of the genome.

Regions with signal should correspond to coding regions of the genome. On the second

graph, the data are plotted using a square-root scale for more visibility.
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1.2 Negative binomial distribution and change-point

analysis

1.2.1 Negative binomial distribution

The negative binomial distribution (NB) is a two-parameter discrete probability dis-

tribution widely used to model dispersed count data, especially in biological literature,

due to its many possible interpretations. Throughout this manuscript, the parametrization

NB(p, φ) will be used, with 0 ≤ p ≤ 1, and φ > 0.

Definition and interpretation: When φ is an integer, the negative binomial distribu-

tion is that of the number of successes Y in a sequence of Bernoulli trials of parameter p

before φ failures occur. This corresponds to defining the negative binomial as the distri-

bution of the sum of φ random variables of geometric distribution with parameter p. The

probability mass function is then, for any positive integer y,

P (Y = y) =
(
y + φ− 1

y

)
pφ(1− p)y.

This definition is then easily extended to the case where φ is a positive real using the

Gamma function Γ, in which case the probability mass function becomes

P (Y = y) = Γ(y + φ)
Γ(φ)y! p

φ(1− p)y.

The negative binomial distribution is often referred to as the overdispersed Poisson

distribution, as its variance is greater than its mean. This dispersion is introduced in the

Poisson distribution by considering its mean parameter λ as a random variable with gamma

distribution, resulting in a Gamma-Poisson mixture corresponding exactly to the negative

binomial distribution. Specifically, let

λ ∼ Gam
(
φ,

1− p
p

)
Y ∼ P(λ)
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Then

P (Y = y) =
∫ +∞

0

e−λλy

y! λφ−1 e−λ
p

1−p

((1− p)/p)φΓ(φ)dλ

=
( p

1−p)φ

Γ(φ)y! (1− p)
y+φΓ(y + φ)

= Γ(y + φ)
Γ(φ)y! (1− p)ypφ.

In fact, the negative binomial distribution converges to the Poisson distribution as the

parameter φ tends to infinity: choosing p such that φ1−p
p

= λ remains constant,

fNB(φ 1−p
p
,φ)(y)→ fP(λ)(y).

Properties: Many properties and computations on the negative binomial distribution

are recalled in Johnson et al. (2005); we do however detail a few of them here which will

be useful in all further analysis:

• the mean and variance of a random variable Y with distribution NB(p, φ) can be

expressed as

E(Y ) = φ
1− p
p

and V ar(Y ) = φ
1− p
p2 .

This corresponds to the definition of the overdispersion as

V ar(Y ) = E(Y ) + φ−1E(Y )2.

• the sum of two independent negative binomial distribution with same probability

parameter p is a negative binomial distribution with parameters p and the sum of

their dispersion parameters, in other words

NB(p, φ1) +NB(p, φ2) = NB(p, φ1 + φ2).

• the transformation

Ỹ =
√
φ sinh−1

√
Y

φ

approximately normalizes and variance-stabilizes the data, so that Ỹ is approximately

standard-normal distributed.



38 Negative binomial distribution and change-point analysis

Estimation of the parameters: Given the value of φ, it is easy to estimate the prob-

ability parameter p from the observation {y1, . . . yn} of a sequence of independent random

variables {Y1, . . . Yn} identically distributed with distribution NB(p, φ). Let us denote

ȳ = 1
n

∑n
t=1 yt and S2

n = 1
n−1

∑n
t=1(yt − ȳ)2. Then the moment and maximum likelihood

estimators of this parameter coincide and have the explicit expression

p̂ = φ

φ+ ȳ
.

On the other hand, the maximum likelihood estimator of φ is obtained by solving

equation
n∑
i=1

ψ(yi + φ)− nψ(φ) + n ln
(

φ

φ+ ȳ

)
= 0,

where ψ is the digamma function. Since there is no explicit solution to this equation, φ̂

is typically obtained by using iterative algorithm such as Newton Raphson’s. Its moment

estimator however, can be computed explicitly as

φ̂ = ȳ2

S2
n − ȳ

.

Note that all those estimators are biased. An explicit expression for the minimum

variance unbiased estimator of p is given by

po = nφ− 1
n(φ+ ȳ)− 1 ,

however no explicit expression of an unbiased estimator for φ is available.

In the context of I datasets sharing their dispersion parameter, Johnson et al. (2005)

propose an estimator of the latter based on a weighted average of each individual moment

estimator of φ. Specifically, they obtain

φ̂ =
I∑
`=1

w`φ̂`

/
I∑
`=1

w` ,

where φ̂` is the moment estimator of φ on profile ` and w` are weights given by

w` = n`
S2
n`,`
− ȳ`

S2
n`,`

.

Inspired by this result, we will consider in our framework an estimator of φ for a single

dataset based on sliding windows of length h. Our procedure is the following:
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1. set h = 15;

2. For each sliding window L of size h, compute Φ̂L the moment estimator of ΦL;

3. Φ̂ = median{Φ̂L} ;

4. while Φ̂ < 0 set h = 2.h and go back to 2.

While this estimator does not have theoretical guarantees, it allows to deal with varia-

tions in the intensity of the signal in a profile which is assumed to have constant overdis-

persion. Perspectives on improving the quality of this estimator should include allowing

windows of different sizes to deal with large bands of zeros, and the inclusion of weights

as in Johnson, Kotz and Kemp’s estimator which we would define so as to robustify the

estimator.

1.2.2 Change-point analysis

Definition of segmentation

Change-point analysis is an area of statistics that relates to the analysis of time series in

order to identify instants, called change-points or break-points, where statistical properties

before and after these instants are different. Typically, the distribution of the data is

supposed to be piece-wise constant, with abrupt changes at locations τ1, τ2, etc.

We define the change-point analysis of a signal of length n as the union of a partition

m of {1, . . . , n} and a set of distributions which are segment specific.

Let us denote

• K the number of segments of m,

• τk the kth change-point, with 0 ≤ k ≤ K and conventions τ0 = 1, τK = n+ 1,

• m = (τ1, . . . , τK−1) and

• fk the distribution in the kth segment [[τk−1, τk[[.

Then we are interested in the set

{m, {fk}1≤k≤K} .
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One simple example is the change-point analysis of a piece-wise constant signal S tak-

ing values 0 if 1 ≤ t < t1, 1 if t1 ≤ t < t2 and 0 if t2 ≤ t ≤ n + 1 (cf. Figure 1.10).

Then a possible summary of S is {(t1, t2), {δ0, δ1, δ0}}. In this example, we can see that the

distribution δ0 is used twice. This introduces the need to distinguish between approaches

that will suppose that some distributions can be used in more than one segment from those

that will assume one distribution per segment. In the first case, the inference is typically

performed using Hidden Markov Models (HMM). The second, on which we will focus in

this Thesis, is an area of statistics which we will refer to as segmentation. Very often in

the literature and in what follows, the vocabulary of HMMs is borrowed in change-point

analysis, and for instance an observation which is the realization of a random variable with

distribution fk will be said to belong to state k.

Figure 1.10: Example of change-point analysis of a signal. Three segments are

considered.

By definition, change-point methods aim at proposing partitions of signal which verify

some statistical properties. They consist in the combination of three issues:

(i) a modeling issue: defining the family of distributions used to describe the signal in a

relevant manner,

(ii) an inference issue: estimating the parameters of the distribution, the change-points

location, the number of segments, etc.,

(iii) and a computational issue: developing algorithms to perform the inference in an

efficient manner.
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Overview of change-point approaches

There is a plethora of change-point methods, and any attempt at classifying them reveals

more than one duality in their approaches. This paragraph tries to clarify intrinsic differ-

ences between them. The tree presented in Figure 1.11 illustrates a possible stratification

in the objectives and approaches of change-point methods.

Figure 1.11: Classification of change-point approaches. Classification and ex-

ample of change-point methods based on their objectives. Numbers refer to an example

of change-point method detailed in the manuscript.

Probably, as suggested before, the most essential difference lies in the possibility of revis-

iting states compared to assuming one state per segment. In the first class of methods, the

number r of distributions is less than the number K of segments, and this number might, or

not, belong to the set of parameters to estimate. Those methods are very useful when each

state is associated with a particular event, as for instance in un-supervised classification.
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One simple example is the segmentation of a signal measuring rainfall abundance over a

period of time long enough to overlap both sunny and rainy periods. In this case, each

of the sunny and rainy states can be modeled with its specific distribution and the signal

is expected to be divided in segments according to the weather. This is of course easily

generalized to more than two-state signals. The second class of methods, the segmentation

methods, is more adapted to signals where changes are related to irreversible events, for

example the occurrence of successive renewal or breakdown in measuring devices affecting

the signals.

The most famous approaches of the first class of methods rely on hidden Markov models

where latent variables, assumed to follow a Markov chain, are introduced to describe the

membership of each observation. The second class of methods generally rely on the explo-

ration of the (whole or partial) segmentation space, i.e. the set of all possible partitions

combined with the set of distributions considered in the modeling issue (i).

For each of those classes, we can then differentiate between parametric and non-

parametric approaches. In the first case, the distribution of each segment is generally

assumed to come from the same family, of which some or all parameters, θ, change abruptly

at each change-point. This drastically simplifies the inference issue since classic inference

techniques (such as maximum likelihood) can be used once the partition is identified. How-

ever, parametric approaches sometimes fail at capturing specific shapes in the distribution,

and non-parametric methods can improve the estimation issue.

Bayesian and frequentist approaches are another form of duality in segmentation frame-

works. In the parametric case, Bayesian and frequentist differ only in the traditional op-

position of ’true value of the parameter’ versus parameter as a random variable. In the

non-parametric case however the difference is more subtle. The frequentist approach as-

sumes almost no constraint on the shape of the distribution except for its belonging to a

certain set of functions (typically Holder classes, translation distribution, etc.). On the

other hand, the Bayesian approach assumes that the distribution is an infinite mixture of

parametric distributions (for example Gaussian) and uses a prior (for example Dirichlet
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process) on the parameters of the latter such that the inference on this infinite mixture is

made possible.

Finally, a last discrimination between methods is their ability to exactly optimize the

statistical criterion defined in the inference issue (ii). The approximation of inexact meth-

ods might come from two levels: the intractability of the inference for the criterion (issue

(ii)) or the complexity of the computational issue (iii). The first case usually results in

the definition of alternative target criterion (for instance optimization of composite likeli-

hood, convexification of the likelihood, etc.), or the use of iterative algorithm (Expectation-

Maximization (EM), Monte Carlo Markov Chain (MCMC), etc.) which one hopes to stop

when convergence to the optimal solution is reached. The second case results in computa-

tional tricks (for instance reduction of the dimension of the segmentation space explored).

For each leaf of our tree, we give one example of segmentation approach, even though

there are plenty to be found in the literature.

1. ? propose a statistical framework for the analysis of autoregressive series subject to

changes in their regime. The change-point model relies on a Bayesian HMM where

the inference is obtained by Monte Carlo sampling.

2. ? propose to use an HMM with six pre-defined states which emission distributions

are mixtures of uniforms, normal and Dirac laws. This method is applied to the

classification of regions of the genome depending on allelic proportion and number of

copies.

3. ? use a non-parametric Bayesian HMM for the change-point identification of mul-

tivariate inhomogeneous space-time Poisson process. The non-parametric approach

allows to assume no knowledge on the number of components in the mixture emis-

sion distribution of the Poisson process intensities. Their model is applied to the

localization and intensity of crime occurrence in American cities.

4. ? propose the use of a non-parametric HMM where the emission distributions are

estimated using wavelets transforms. They apply their method to the analysis of

electrocardiograms for the identification of the heart state of patients.
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5. ? propose a Bayesian segmentation model where the change-points are estimated one

at a time as new datapoints are considered in the profile, thus reducing the dimension

of the segmentation space. Their model is applied with normal distributions for the

identification of chromosome copy-number variations in populations.

6. Rigaill et al. (2012) propose an exact Bayesian segmentation framework using con-

jugate priors for exact computations, and exploring the entire segmentation space.

They apply their method with the normal distribution for the segmentation of copy-

number profiles.

7. ? propose to use the Dynamic Programming algorithm for the exact segmentation of

profiles. Their method is illustrated for the least-square criterion on the detection of

changes in the hydrophobic index imputed to changes in the structure of proteins.

8. Olshen et al. (2004) use an optimized version of binary segmentation which is based

on the reduction of the complexity of the segmentation space which is explored. They

apply their method to the identification of changes in chromosome copy-number.

9. ? use a wavelet-based approach for the segmentation of a signal issued from a piece-

wise smooth regression function in a white Gaussian noise. Their method is illustrated

on the analysis of yearly temperature series in Prague.

1.2.3 Segmentation issues in this framework

In this thesis we focus on exact (i.e. not relying on iterative algorithms or computational

tricks) parametric methods. This paragraph aims at precisely identifying the difficulties

associated with each of the change-point issues (i) to (iii).

Modeling issues

This issue is the combination of the choice of segmentation approaches versus change-

point methods which allow to re-visit states, and the choice of the distribution to use to fit

the data.
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In our context, the change-point models are introduced for the labelization of segments

depending on their biological status, which differentiate coding regions of the genome which

are transcribed in the cell at the time of the experiment from either non-coding or non-

expressed regions. In an ideal situation where the technologies do not induce bias in the

profiles, and if the DNA was transcribed at a global rate into RNA, that is independently

of the localization of the coding regions, a model with only two possible segment labels

(coding or non-coding) corresponding to only two intensity values could fit the data and

address our biological goal. However, since for instance different cells will not express the

same genes in equal proportions, we have reason to expect that each gene will have its

own intensity and a change-point framework based on the ability to re-visit states will not

be appropriate. Therefore, to circumvent this problem, we will consider throughout this

Thesis segmentation models as introduced in Section 1.2.2.

To tackle the choice of the distribution, let us recall that our data are the read counts

yt associated to each position t of a portion of the genome of length n. In our parametric

setting, we will assume that the yt are the realization of random variables Yt which are

independent and follow a negative binomial distribution with known dispersion φ.

Our intuition is that the probability parameter p will be constant over each region

(exon, intron, non-coding sequence, etc.) of the genome. For ease of interpretation, let

us use the Poisson-Gamma mixture view for the negative binomial distribution. Then the

mean parameter λ of the Poisson distribution represents the expected number of reads that

will be aligned at a nucleotide of a region. Neighboring positions are likely to share the

same expected value, but the latter is assumed to vary from region to region (for instance

since different genes are not expressed at the same level). Now the λ parameter is Gamma

distributed with shape parameter φ, which is common to all regions, and scale parameter

(1− p)/p which will model the variability between regions.

This model corresponds exactly to a segmentation in the parameter p of the negative

binomial distribution, and can be written as
{
m, {NB(pk, φ)}1≤k≤K(m)

}
, where K(m) is

the number of segments of the partition m. We will often use an equivalent writing of this
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model under the form

∀J ∈ m, ∀t ∈ J, Yt ∼ NB(pJ , φ),

where J denotes a segment of m.

However, at some points in this Thesis we will be interested in comparing our approach

to two other distributions for modeling the data. The first is the Poisson distribution,

commonly used to model count data, for which we will assume that the mean parameter λ

is segment-specific. The other is the normal homoscedastic distribution which will require

transforming the data, and for which we will also assume that the mean parameter µ is

segment-specific. Still, which-ever the choice of distribution, it will always be possible to

summarize the segmentation as the union of the partition m and the set of parameters

θ1, . . . , θK(m). In most cases, the estimation of those parameters will be easily performed

by maximum likelihood inference, and in this case the terms segmentation and partition

will often be taken one for the other, so that a partition m will be considered as a model.

Inference issues

In our context, the inference issue is itself the combination of three items:

• the choice of the number of segments {K},

• the choice of the partition m into K segments,

• and the estimation of the parameters θ corresponding to partition m.

There are different possible criteria to choose the best model and perform the inference

of the parameters (mean square, likelihood, etc). The criterion adopted in this Thesis is

the maximum likelihood, with the two associated difficulties:

• The adequacy to the data always increases with the number of segments. To choose a

more parsimonious, and thus more meaningful segmentation, an appropriate penalty

term on K has to be defined.

• The change-point are discrete parameters, so that the likelihood function is not

smooth and cannot be optimized directly. This therefore implies that the whole

segmentation space has to be explored.
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As stated above, in practice the difficulty is the choice of K and the estimation of the

τk. Depending on segmentation methods, these two estimations are performed together or

separately.

Major approaches for choosing the number of segments: null

There are three main model-selection approaches encountered in the change-point liter-

ature. Note that although cross-validation methods have been proposed in the context of

segmentation (Arlot and Celisse, 2011), the interpretation of cross-validation is prob-

lematic due to the spatial structure and hence dependence of the data. For this reason and

because this approach is typically time-consuming, we only consider the approaches that

we classify as follows:

Asymptotic considerations, that is the use of a model selection criterion developed

so as to verify asymptotic properties. These include for instance the BIC criterion (Yao,

1988) and its derivatives such as the modified BIC (mBIC, Zhang and Siegmund, 2007)

proposed in order to avoid un-proper assumptions made by the former. In the segmentation

context however these criteria are known to over-estimate the number of segments.

Birgé-Massart approaches, which are based on non-asymptotic properties of the risk

of the models. In our segmentation context, this area of model selection can be explained

as follows. Simplifying the set of models to the set of all partitions m as we have explained

before, and with our choice of likelihood as the criterion to optimize (which gives us for each

model m the best estimator ŝm), it is natural to want to choose among these ŝm that which

will minimize the Kullback-Leibler risk to the true distribution s. But of course, obtaining

this estimator ŝm(s) requires the knowledge of s, which is why we call it the oracle. Since

in practice it cannot be reached, the goal is to try to do almost as well, i.e. to choose one

estimator ŝm̂ satisfying an oracle inequality of the form

R(s, ŝm̂) ≤ CR(s, ŝm(s))

where R(s, u) is the Kullback-Leibler risk between s and u, and C is a constant that we

hope as close as possible to 1. To this effect, m̂ is chosen so as to minimize the likelihood
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penalized by a function pen depending on the model dimension, and which needs to be well

defined. Now writing, for all m,

KL(s, ŝm̂) ≤ KL(s, s̄m) + γ̄(s̄m)− γ̄(ŝm̂)− pen(m̂) + pen(m).

(where KL is the Kullback-Leibler divergence, s̄m is the projection of s on partition m and

γ̄ is the centered likelihood γ−E(γ)), we can see that the penalty needs to be chosen large

enough for pen(m̂) to compensate the fluctuations of γ̄(s̄m)− γ̄(ŝm̂), but not too large for

pen(m) not to penalize the difference between KL(s, s̄m) and KL(s, ŝm̂).

Note that the distinction between asymptotic and non-asymptotic approaches is made

unusual here since n car be very large. Yet, unlike most asymptotic settings where the size

of the models does not depend on the number of observations, in the segmentation area

the size of each model as well as the size of the list of models will increase with n. These

kinds of approaches are becoming more and more popular with the enthusiasm in ’Big

Data’ related problems. In particular, various papers were proposed to analyze Gaussian

datasets or mixtures (??), categorical variables (Akakpo, 2011) and Poisson processes

(Reynaud-Bouret, 2003; Birgé, 2007; Baraud and Birgé, 2009).

Classification-based approaches, such as the Integrated Complete Likelihood (ICL,

Biernacki et al., 2000) which are inspired from the missing data framework. The original

expression of the ICL was given by

logP(y, S|MK)|S=Ŝ

whereMK is the set of all possible models with K labels, y are the observations and Ŝ is

the estimator of S, the corresponding (unknown) clustering membership. ? then proposed

to replace Ŝ by its conditional expectation given the observations, so that the definition of

the ICL which is currently widely used can be written as

ICL(K) = E [logP(y, S|MK)|y]

= logP(y|MK) + E [logP(S|y,MK)|y]

The most-right term, or more precisely its opposite, is called the negative entropy of the

classification and is commonly denoted as H(MK). This expression reveals the classifica-

tion purpose of the ICL, since it is equivalent to using the integrated likelihood criterion
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penalized by a term which measures the uncertainty of the classification. Indeed, the en-

tropy will be highest when all models fromMK will be equiprobable given the data, which,

in the mixture framework, is equivalent to saying that the components of the mixture are

poorly separated. On the contrary, a value of K for which one model outperforms all others

will yield an entropy close to zero. In the segmentation framework, Rigaill et al. (2012)

propose an exact computation of the ICL which they use as an effective method for the

choice of the number of segments K. Their idea is to consider a partition m as the set of

clustering membership S. Indeed, the aim of segmentation is exactly the labeling of each

observation into segment numbers. From this observation, and using the usual shortcut K

forMK , the ICL criterion becomes

ICL(K) = − logP(y,K)−
∑

m∈MK

P(m|y,K) logP(m|y,K).

Confidence in the change-point location: null

A few techniques have been proposed in the literature to evaluate the uncertainty in

the change-point location, such as the derivation of asymptotic properties of the estimators

(Feder, 1975) and of likelihood-ratio tests (Muggeo, 2003). Other approaches imply

using Bootstrap techniques (Hušková and Kirch, 2008). In a non-asymptotic frame-

work, the constrained HMM approach of Luong et al. (2013) which we will introduce in

Section 1.2.3 computes, for a given number of segments K, the posterior distribution of

change-point locations conditional on the set of parameters ΘK . A more complete approach

has been proposed by Rigaill et al. (2012) in a Bayesian framework to derive the poste-

rior distributions of various quantities of interest – including change-point locations – in

the context of exponential family distributions with conjugate prior. Applying their model

to the negative binomial distribution results in considering the model ∀J ∈ m, pJ ∼ Beta(a, b)

∀J ∈ m, ∀t ∈ J, Yt ∼ NB(pJ , φ)

Implementing their algorithm however leads to a quadratic complexity and restricts its use

to small dataset (see Section 1.2.3).
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As for the comparison of change-point location in different profiles, we know of no

method having ever addressed this question. Indeed, in the literature, two approaches

can typically be considered for the analysis of multiple profiles. The first consists in the

simultaneous segmentation of all series, looking for changes that are common to all of

them. This approach amounts to the segmentation of one single multivariate series but

might permit the detection of break-points in series with too low a signal to allow their

independent analysis. The second approach consists in the joint segmentation of all the

series, each having its specific number and location of changes. This allows to account for

dependence between the series without imposing that the changes occur simultaneously.

Still, none of these techniques can deal with the statistical problem of comparing the change-

point locations in series that have been segmented separately.

Computational issues

Although the effectiveness of the algorithm is not directly involved in the resulting

segmentation quality, it can be a limiting factor for the analysis of large signals. Indeed, the

inference issue (ii) requires that for a given number of segments K, the whole segmentation

space in K segments be explored, so that there are
(
n−1
K−1

)
possibilities. This exploration

can therefore not be performed in a naive manner. Most segmentation algorithms proceed

in two steps:

(a) the identification of the optimal segmentation in each given number of segments k from

1 to a user-defined Kmax, followed by

(b) the choice of the optimal K among those explored based on some criterion defined in

the inference issue.

Typically, the computational difficulty results from the (a) step, and we can therefore

assume that the choice of K is not an issue (for instance we can consider that K = Kmax).

Up-until 2010, there was really only one algorithm addressing step (a) in an exact manner:

dynamic programming (DP). DP was introduced by ? but was first used in the context of

segmentation by ? more than 25 years later, under the form of the segment neighborhood

algorithm, which is still widely used today.
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This algorithm reduces the complexity of the exhaustive exploration from O(nK) to

O(Kn2). To do so, the algorithm relies on the segment additivity property. Indeed, the

best partition of {1, . . . n} in k segments can be obtained as a minimizer amongst only n−k

possibilities indexed by k− 1 < t ≤ n which are the union of the best partition of {1, . . . t}

into k − 1 segments and the last segment [[t, n + 1[[. Specifically, denoting Ck,t the cost of

the optimal segmentation of {1, . . . , t} in k segments it suffices at step k to obtain

Ck,n = min
{k−1<t≤n}

{
Ck−1,t + min

µ
{c([[yt+1, yn+1[[, µ)}

}

where c is the segment cost function associated to the loss function γ (typically γ is the

log-likelihood and c its sum over each point in the segment) and µ is its parameter. At each

step k, a first minimization on µ is performed for all t, and it is followed by a minimization

on t. Implemented in the R package changepoint for the Gaussian distribution, the DP

algorithm still cannot be used for values of n as large as those that we will want to consider

in our analysis.

Very recently, two faster and still exact algorithms were proposed: the pruned DP al-

gorithm (Rigaill, 2010), and the pruned exact linear time (PELT) algorithm (Killick

et al., 2012). As the DP algorithm, the former recovers each optimal segmentation in 1 to

Kmax segments, but at each step a pruning process discards most suboptimal segmentations

hence decreases the number of comparisons to be made, and results in an empirical com-

plexity faster than O(Kn log(n)). Implemented in the R package cghseg for the Gaussian

distribution, the PDPA remains valid as soon as the following conditions are verified:

• the cost function c is point-additive (i.e. c([[y1, y2[[, µ) = ∑
yt∈[[y1,y2[[ γ(yt, µ))

• γ is a one-parameter loss function (i.e. µ ∈ R)

• γ is convex with respect to its parameter µ.

Indeed, while the DP relies on segment-additivity, the pruned DP algorithm is based on

point-additivity. Specifically, if it computes the same quantity Ck,n, it exchanges the order

on which the minimization are performed, so that

Ck,n = min
{k−1<t≤n}

{
Ck−1,t + min

µ

{
n+1∑
i=t

γ(yi, µ)
}}
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becomes

Ck,n = min
µ

{
min

{k−1<t≤n}

{
Ck−1,t +

n+1∑
i=t

γ(yi, µ)
}}

.

Now at each step k, a first minimization on t is performed for each value of µ. Each t

being a candidate for the last change-point of the segmentation in k segments up to point

n, if we store, for each of them the values of µ for which it is optimal, we can discard t

when the set of µs becomes empty. Then when adding new datapoints (remember that, for

instance, performing step k + 1 requires that each Ck,i has been computed for k ≤ i ≤ n),

the number of those candidates has been reduced, resulting in an empirical almost linear

complexity in most applications. Note that PDPA and the original DP algorithm give the

same results. Part of our contribution is its implementation for the Poisson and negative

binomial distributions in the package Segmentor3IsBack (see Section 2.1).

The second algorithm, PELT, is an exact algorithm for the optimization of a penalized

version of the likelihood which results in the simultaneous choice of segments number K

and optimal segmentation in this K segments (i.e. steps (a) and (b) are performed si-

multaneously). This, under some specific assumptions, drastically reduces the size of the

exploration space and leads to a O(Kn) complexity.

Specifically, PELT optimizes the cost function

∑
J∈m

∑
t∈J
− log g(yt; θJ , φ) + β|m|

over all possible partitions m, where g is some parametric probability density function

with parameters θJ which is segment-specific and φ which is global, and β is a constant

to be chosen independently of segment number and location. Even though the authors

propose a generalization to concave penalty function (at the price of higher complexity),

this algorithm is dedicated to penalties which are proportional to the number of segments,

such as BIC.

Similarly to the PDPA, PELT relies on the pruning of candidates for the last change-

point location based on the principle that once this candidate has been beaten by another
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location, it can never become optimal again as more datapoints are considered. Under

some specific conditions, the authors prove that the time complexity of the algorithm is

O(n) (the space complexity being linear too). If most of those conditions are verified for

the log-likelihood criterion, one of them is most restrictive which requires that the expected

number of segments increases linearly with n, as might indeed be expected in domains such

as economy. In practice, this algorithm is extremely fast, but in some contexts it suffers

from the inability to choose the number of segments K. It is implemented in the R package

changepoint for a set of parametric distributions including Gaussian and Poisson, but not

the negative binomial.

A completely different approach is that of postCP (Luong et al., 2013). Let us denote

S a segmentation in K segments (instead of defining the segmentation m as the sequence of

change-points, its equivalent definition in terms of sequence of segment labels is used here

and denoted S, so that Si ∈ {1, . . . , K} is the index of the segment at position i), gθSi (·) a

parametric distribution with parameter θSi , and ΘK = (θ1, . . . , θK) the global parameter.

The idea is to notice that for a segmentation S in K segments, the likelihood of the

data is

P(y|S; ΘK) =
n∏
i=1

gθSi (yi) =
K∏
k=1

∏
i:Si=k

gθk (yi) ,

and that this formulation is equivalent to that obtained when assuming that S is a het-

erogeneous Markov chain over {1, 2, . . . , K,K + 1} with constraints imposed so that states

cannot be revisited. This is particularly pleasant since the posterior distribution P(S|y,K)

can be computed efficiently using classical algorithms such as Forward-Backward. The

authors therefore impose that S verifies

P(S1 = 1) = 1

∀2 6 i 6 n, ∀1 6 k 6 K,

 P(Si = k|Si−1 = k) = 1− η

P(Si = k + 1|Si−1 = k) = η,

P(Si = K + 1|Si−1 = K + 1) = 1,

and η is a constant with values between 0 and 1.
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Now for a given K, due to the sparse transition matrix induced by the constraints, the

complexity of the Forward-Backward algorithm is O(Kn) in time and O(n) in space. This

fast algorithm, implemented in the R package postCP for parametric distributions including

Poisson and Gaussian, allows the computation of quantities such as posterior distribution

of the change-points, conditional on the parameters ΘK . Part of our contribution consisted

in its extension to the negative binomial distribution.

Note that if this approach is HMM-based, contrary to most change-point methods based

on HMMs such as those cited in the Introduction (see 1.2.2), this model corresponds to a

segmentation approach, resulting in one state per segment being specified. Moreover, since

no iterative algorithm is required, this approach is still considered exact.

As illustrated before, some approaches choose to reduce their complexity by using tricks

such as exploration of a subset of models, or modification of the criterion to optimize. This

is the case of the CART algorithm (Breiman et al., 1984), a heuristic procedure based on

binary segmentation (BS, Scott and Knott, 1974) to approach the best segmentations in

1 to Kmax segments. It is implemented in the R package changepoint for a few parametric

distributions including Poisson and Gaussian, but not the negative binomial.

The idea of binary segmentation is to split a segment into two segments at each step

by minimizing a criterion (for instance the log-likelihood in our context), and to keep the

best partition for the next step. Specifically, it runs the following way: one has an interval,

say I, to be split into k pieces but the splits are computed and decided one by one. At the

first step one choses the best way to split I in two parts, I1
1 and I2

2 such that I1
1 t I1

2 = I.

At the second step one has to compute the best splitting of I1
1 and I1

2 and keep the best of

them. Thus one splits one of the two intervals I1
1 and I1

2 and obtains I2
1 , I

2
2 and I2

3 and so

on... The algorithm is typically stopped when a fixed number Kmax of segments is reached.

This drastically reduces the number of partitions to explore, and with it the complexity of

the algorithm. Indeed, if implemented using a heap, the complexity of CART is no worse

than O(n log n) in time, and empirically in O(n log(Kmax)), and O(n) in space.
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This complexity can be refined by computing the number of operations which are re-

quired: at each new step, in order to find the best division of a segment of length l into 2

pieces, CART requires 7l− 3 elementary operations. Thus the worst number of elementary

operations is bounded by Kmax(7n − 3) + ∑Kmax
1 log2(k). (The term log2(k) is related to

the comparisons to perform and comes from the use of the heap.) If the splits are quite

regularly distributed, one obtains (7n− 3) log2(Kmax) +∑Kmax
1 log2(k), and may therefore

expect a n log2(Kmax) time complexity.

Note, for comparison, that PDPA needs at each step to find the roots and minimum

of cost functions for each candidate, for which it requires 13 elementary operations. In-

tersecting two intervals requires 2 more elementary operations. If the pruning is perfect,

i.e. if only one candidate is left at each step, then PDPA will require 15Kmaxn elementary

operations. Therefore the best configuration for PDPA is still worse than the worst config-

uration for CART.

Finally, at the price of larger space and time complexity, some algorithms are able to

generate additional relevant information, such as exact confidence intervals for the param-

eters. This is the case of the Bayesian segmentation algorithm proposed in Rigaill et al.

(2012), which is valid for models where the distribution is from the exponential family and

which verify the factorability assumption, that is,

P (Y,m) = C
∏
J∈m

aJP (YJ |J),

where P (YJ |J) =
∫
P (YJ |θJ)P (θJ)dθJ .

The model is specified in Figure 1.12 and is the following:

• the number of segments K is drawn from the prior distribution P (K);

• m is drawn conditional on K in P (m|K);

• the parameters θJ for each segment J are supposed to be independent and are drawn

from the same distribution P (θJ);

• finally, the observed data Y = (Yt) are independent conditional on m and (θJ) and
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have a distribution which depends on the segment:

(Yt|m, J ∈ m, θJ , t ∈ J) ∼ G(θJ , φ).

where φ is a global parameter that is supposed to be known, and G is a parametric

distribution which possesses a conjugate prior on θ.

Figure 1.12: Graphical model of the exact Bayesian Segmentation approach.

Hierarchical model of the exact Bayesian segmentation approach proposed in Rigaill

et al. (2012).

Part of our contribution was to implement this algorithm in an R package, EBS, which we

fully describe in Section 3.3. The key element in this algorithm is the triangular probability

matrix A defined by ∀1 ≤ i < j ≤ n+1, [A]i,j = aJP (Y[[i,j[[|[[i, j[[) (and 0 elsewhere). Indeed,

the authors show that all quantities of interest can be computed by simple operations on

the lines and columns of this matrix, so that the resulting complexity of the algorithm is

O(Kn2) both in time and space.

The generic element [A]i,j/aJ of this matrix are given under the form of the product of

three terms in Table 1.1 for the distributions included in the package:

• the Poisson distribution with conjugate prior Gam(α, β),

• the Gaussian homoscedastic distribution with known variance σ2 and with conjugate

prior N (µ0, σ
2/σ2

0) on the mean,
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• the negative binomial distribution with known dispersion φ and with conjugate prior

Beta(α, β) on p, and

• the Gaussian heteroscedastic with conjugate priors IG(ν/2, s/2) on σ2
0 and

N (µ0, σ
2
0/n0) on µ|σ2

0.

distribution term 1 term 2 term 3

Poisson ∏j−1
t=i

1
Yt!

βα

Γ(α)
Γ(α+YJ )

(β+nJ )α+YJ

Gaussian
(2πσ2)−nJ/2

√
σ2

0 exp
[
− (σ2

0+nJ )(∑j−1
t=i Y

2
t +σ2

0µ
2
0)−(YJ+σ2

0µ0)2

2σ2(σ2
0+nJ )

]
(nJ + σ2

0)− 1
2

homoscedastic

Negative ∏j−1
t=i

Γ(φ+Yt)
Γ(φ)Yt!

1
β(α,β) β(α + YJ , nJφ+ β)

binomial

Gaussian
π−

nJ
2

√
n0sν0

Γ(ν/2)

(nJ+n0)
ν+nJ−1

2 Γ(nJ+n0
2 )

[(nJ+n0)[∑j−1
t=i Y

2
t −ȲJ+s]+nJn0(ȲJ−µ0)2]

ν+nJ
2heteroscedastic

Table 1.1: Element of matrix A. The generic term [A]i,j is the product of 4 components:

the factor aJ which is induced by the prior on the distribution, and 3 terms which we

discuss in Section 3.3.

null
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1.3 Contribution

1.3.1 Introduction

Our work is primarily dedicated to segmentation methods for the general biological

framework of genome annotation, using transcriptome sequencing (RNA-Seq) data. We

have developed three different algorithms with different complexities in order to go from a

comprehensive analysis of the genome to progressively more local scales for which we obtain

more precise statistical results. Our manuscript is naturally organized around this scale,

and we present the successive constructions and the links between each proposed method.

As suggested in the previous sections, two issues are characteristic of RNA-Seq data:

their discrete nature, since they are directly related to the number of reads associated to each

nucleotide, and their size, due to the base-resolution and the length of some chromosomes.

Discrete nature of the data. This first point could be circumvented by applying trans-

formation techniques as it has always been done for the analysis of microarray data. Indeed,

multiple existing segmentation algorithms are dedicated to data modeled by the normal dis-

tribution, and many normalization and transformation methods for NGS data have been

proposed, such as that which has resulted in the publication of our benchmark dataset

(Risso et al., 2011). A comparison of the main methods can for example be found in ?.

However, applying normalization methods was justified in the context of microarray analy-

sis since they were always based on the comparison of the profile from the target individual

to that of a reference. Our framework is different because we want to identify significant

regions on the sole basis of the profile of interest. Even when it will come to comparing

the transcripts locations for different profiles in the last section of this manuscript, each of

them will be segmented independently thus normalization will not be required. We there-

fore wanted to keep the raw data and model them using discrete distributions. A later study

(partly presented in Section 3.1) comparing our model and its equivalent for the same data

but transformed and modeled by the normal distribution proved us right. Indeed, even
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though in most cases the results are similar, we were able to highlight situations in which

our model was able to identify regions undetected by the transformed approach.

The natural question is then the choice of the distribution to use to model these data.

The simplest model, which corresponds to the Poisson distribution, fails to take into ac-

count the large and intrinsic dispersion in the data, and that is what we will observe

throughout the comparisons performed between methods using this distribution and our

approaches (for example in Chapters 2.2 and 3.1). Two more flexible other laws require

only one additional parameter : the Zero-Inflated Poisson, which is a mixture between a

Dirac distribution at zero and a Poisson distribution, and the negative binomial, which we

described in the introduction, and which can be interpreted as the over-dispersed Poisson

distribution. Although none of them belongs to the exponential family, the second does

on the condition that the dispersion parameter φ is fixed. Moreover, data in segments

corresponding to highly expressed genes show large dispersion but their distribution does

not always present a large peak in zero. For this reason and because the negative binomial

distribution has become the consensus in most Seq-data modeling (especially in differential

expression analysis (Robinson et al., 2010; Risso et al., 2011)), we will therefore use it

all along our contribution.

This lead us to choose for the modeling issue (i) the negative binomial with probability

parameter pJ which is segment-specific, and with global dispersion parameter φ.

It is then necessary to estimate the dispersion parameter φ in the data so as to use

its estimate as a known parameter in our segmentation models. This cannot be done in a

naive manner as by definition we expect the signal to be fragmented into segments with

different distributions, but with common dispersion. Ideally we would wish to use a robust

estimator based on sliding windows, as the Median Average Deviation estimator (MAD,

Hampel, 1974; Donoho, 1995) or that of Hall et al. (1990) which have been proposed

for estimating the variance. However, the complicated expression of the bias of classical

estimators (such as the maximum likelihood or the moment estimators), and the discrete

nature of the data did not allow us to propose a satisfactory estimator. We therefore chose

to use a simple moment estimator on sliding windows of which we keep the median, as was
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described in Section 1.2.1. Although we can show that its impact is minimal on the quality

of our results, it remains the weak point of our contribution. If, however, a better estimator

were to be proposed, it would be very easy to integrate it to our entire contribution which

would remain unchanged.

Length of the data. This second point is more challenging than the first because it will

greatly limit the range of possible algorithms. Indeed, since the resolution of the data is

that of the nucleotide, we have series whose length can be as large as that of chromosomes,

that is, up to n of the order of 108. In such a case, algorithms able to handle the profile

need linear time complexity, provided both that the space complexity is not too large (we

will discuss these concepts later), and secondly that the multiplicative constants are not

prohibitive.

As in many areas of statistics, the question that arises is ’what information can we get

from our algorithms, and at what price?’ For example, we want to get the optimal change-

points in the series, but we would also wish to assess the quality of these breaks, that

is, the uncertainty that is associated with their location. However, we know of no linear

time algorithm that can both deal with the parameter uncertainty and that related to the

location of change-points. When the goal is the precise gene annotation for which the series

are much shorter, this might not be a restriction. Our contribution is the development of

various methods to address the segmentation issues described in Section 1.2.3, in two bio-

logical complementary framework : whole-genome analysis, and precise gene re-annotation.

Table 1.2 is an overview of the structure and content of our contribution.

1.3.2 Whole genome analysis

This study is the subject of Chapter 2 of our manuscript. We are here typically in a

context where the length of the series is a limiting factor. Note though that in the case of

our reference data, we are at worst only in the order of the million, whereas in the general

case the length can be up to 108.
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modeling (i) inference (ii) computational (iii)

Whole-genome analysis 2.2 ; 2.3 2.1

Gene annotation 3.1 3.2 3.2 ;3.3

Table 1.2: Overview of the segmentation issues addressed in this Thesis. Our

contribution is organized by biological scale: whole-genome analysis or local, gene scale.

For each of them, we recall which segmentation issue is addressed in which chapters of our

manuscript.

Even though all methods developed in this Chapter hold for various distributions, we will

suppose the modeling issue (i) resolved by the choice of the negative binomial distribution

with global dispersion parameter. Indeed, the same approaches performed with the Poisson

distribution resulted in an oversegmentation of the data due to the inability to capture the

dispersion, while the use of the Gaussian distribution performed almost as well only when

the data was transformed using the sinh−1 transformation. The latter implies the estimation

of the dispersion φ, sole real drawback in the use of the negative binomial.

An algorithm for the segmentation of long RNA-Seq profiles. Performing the

inference requires the estimation of the number of segments K and the exploration of the

segmentation spaceMK . Supposing that K is known, there are
(
n−1
K−1

)
distinct partitions of

{1, . . . , n} in K segments, and here we have a very large n. The computational issue (iii) is

therefore crucial, as using an exploration approach that is naive will result in a complexity

in O
(
nK
)
, intractable in our context. It is in this spirit that the dynamic programming

algorithm (DP, ?) presented in Section 1.2.3 was developed; unfortunately, it remains of

quadratic time complexity, thus it is inappropriate for our context.

We propose to adapt the pruned dynamic programming algorithm (PDPA) proposed by

Rigaill (2010) to the negative binomial distribution. This choice is motivated both by

the algorithmic aspect, since its time complexity, at worst in O(Kn2), is empirically less,

and by the assumptions necessary for its implementation. Indeed, the requirement of the

PELT algorithm (Killick et al., 2012) that the expected number of segments increases
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linearly with n does not seem appropriate in our context, as explained in Section 2.1, and

its inability to choose the number of segments is very restrictive. In this latter section,

we describe the PDPA algorithm and its performance, detailing the conditions required for

it to be valid and how the negative binomial needed to be parametrized to satisfy those

requirements. Although PDPA’s time complexity depends on the signal, we show that it

is almost linear (in O(Kn)) with reasonable constant in our RNA-Seq data. With space

complexity in O(Kn), this algorithm can thus widely be used in our context. Its C++

implementation, in collaboration with Michel Koskas, from AgroParisTech, and Guillem

Rigaill, from the university of Evry, has represented a topic of this thesis, as well as its

distribution as an R package, Segmentor3IsBack, for several distributions including the

negative binomial.

However, the algorithm has two major limitations, the first of which being its inability

to assess the quality of the proposed segmentation. Indeed, we obtain the best segmentation

in K segments, but it does not tell us about the second best. Is it radically different, or

otherwise very close? We propose a first answer to this question by calculating, for each

change-point, the cost of the best segmentation depending on its position. In cases where

the resulting curves (examples are given in Figure 2.1) each have a clear minimum, we

can have confidence in the optimal segmentation. Otherwise it means that the location of

the breaks is uncertain. This is thus a rapid descriptive criterion for change-point quality

assessment, but we aimed at developing statistical criteria to quantify this uncertainty.

The second limitation is that it does not propose to choose the number of segments

K; on the contrary, it obtains for each value of k between 1 and a user-specified Kmax the

optimal segmentation in k segments. This issue is a recurrent difficulty in segmentation

frameworks.

Criteria for choosing the number of segments. In this context, the development of a

model selection procedure, directly related to the inference issue (ii), that would complete

the algorithm was a natural problem for which we propose two solutions in the following

chapters. Indeed, the two families of approaches described in Section 1.2.3, the Birgé-
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Massart approaches, based on non-asymptotic considerations on the risk associated to the

likelihood criterion, and the classification-based approaches, seemed equally interesting in

our context.

Thus in Chapter 2.2 we develop a penalized likelihood approach inspired by the Birgé

and Massart literature (Birgé and Massart, 1997; Barron et al., 1999; Birgé and

Massart, 2001, 2007) in which we seek to determine the form of the penalty in order to

obtain an oracle inequality for our estimator of the distribution.

Our framework differs from previous approaches in that we are dealing with data that

is both discrete and unbounded. Thus, traditional concentration inequalities cannot be

applied directly and finer decomposition as well as large deviations results are required. In

collaboration with Emilie Lebarbier, we showed that a penalty of the form

pen(m) = β|m|

1 + 4

√√√√1.1 + log
(
n

|m|

)2

satisfies our problem, and we discuss this result in Section 2.2. This approach (whose

application is of complexity O(K)) combined with the previous algorithm can thus provide

a complete procedure (with final empirically linear complexity) to segment RNA-Seq data

corresponding to whole chromosomes.

In Chapter 2.3 however, we are interested in the Integrated Completed Likelihood (ICL

Biernacki et al., 2000) as a criterion for the choice of K.

Our work draws on two major works in the field of segmentation which we detailed in

Section 1.2.3. The first is the Bayesian segmentation model, published in Rigaill et al.

(2012) in which an exact computation of the ICL is proposed in quadratic time. The second

is the constrained HMM approach proposed by Luong et al. (2013). Our contribution

consisted in implementing, in collaboration with The Minh Luong and Gregory Nuel, from

the University of Paris Descartes and Guillem Rigaill, from the University of Evry, this

second algorithm for the negative binomial distribution, and propose a computation of

the ICL criterion conditional on the model parameters. Using it to choose K requires its

calculation for all values of k between 1 and a (user-defined) Kmax and results in making

the global process complexity in O(K2n), thus limited to profiles of intermediate size.
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However, the segmentation approach by constrained HMM provides more information than

the dynamic programming algorithm as we can for example obtain confidence intervals for

the location of change-points, still conditional on the parameter values. In our context of

genome annotation, examples of such intermediate size series can be obtained by dividing

a chromosome into two pieces at the centromere. Indeed, this region is known for not

including coding regions, so that we don’t expect any change-point to be located there.

Now if we were to divide n and K by two, we would gain a factor 8 and 4 respectively in

time and space.

We conclude these chapters with an illustration of the PDPA algorithm on our bench-

mark dataset in Chapter 2.4.

1.3.3 Gene annotation

In Chapter 3, our ultimate goal is the comparison of the location of transcribed regions

of the genome of a species which has been grown in different environments. In the seg-

mentation context, this problem is equivalent to comparing the change-point locations of

independent profiles.

An algorithm for the computation of change-point location uncertainty. We are

here typically in a framework where the complexity of the computational issue (iii) is less

crucial than before, for instance the approaches presented in the previous sections, namely

the exact Bayesian segmentation and the constrained HMM, can be applied. Indeed, here

n is the order of 103 as we consider genes, and K is of the order of at most ten, since we

want to separate the coding regions (i.e. exons) from non-coding regions (i.e. introns)

within a same gene. However, dealing with change-point comparison requires the ability

to compute quantities such as the uncertainty of their location. To this effect, we have

proved that the negative binomial distribution verifies the requirements of the approach of

Rigaill et al. (2012) and have implemented it, as well as for diverse other distributions,

in an R package called EBS (for Exact Bayesian Segmentation). We describe in Chapter

3.3 how this package operates, as well as the computational tricks we used.
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Assessing the quality of the models. Because the goal is the comparison of indepen-

dent segmentations, it seemed natural to check the relevance of our modeling (i) contribu-

tions beginning with a state of the art on segmentation methods that can take into account

both the discrete nature of our data and the absence of a reference profile. We show (in

Chapter 3.1), in collaboration with Sandrine Dudoit and Stéphane Robin, that algorithms

are more effective when K is known, an assumption that is not absurd in contexts where

we already have an approximate genome annotation that we seek to refine. The PDPA and

EBS algorithms then have optimal performances, while the constrained HMM approach is

faster than EBS but has slightly worse results and therefore does not represent a gain in

this context of ’small data’. The other considered algorithms, which were only implemented

for the Poisson distribution, failed to match any of our three approaches.

Methods for the comparison of change-point location. We have subsequently re-

tained the exact Bayesian segmentation model to perform our location comparison (associ-

ated with the inference issue (ii)), and proposed, in collaboration with Stéphane Robin, two

approaches which are presented in Chapter 3.2, the first one dedicated to the comparison

of two profiles, while the other applies regardless of the number of profiles considered.

In the case of two profiles, the posterior distribution of the shift in locations can be

computed by simple convolution as

δk1,k2(d;K1, K2) =
∑
t

pk1(t;Y 1;K1)pk2(t− d;Y 2;K2).

where pk`(t, Y `, K`) is the posterior distribution of change-point τk` from the segmentation

in K` segments of profile Y `.

This does not hold as soon as we have more than two series. It is then natural to

compute the posterior probability of the event E0 = {τ 1
k1 = · · · = τ IkI} to decide on the

equality of the change-points. This lead us to introduce an additional layer in the graphical

model as illustrated in Figure 1.13.

This new model allows to set the prior p0 of event E0 according to our expertise, and we
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Figure 1.13: Original and modified graphical models for the comparison of

change-point location. We add an additional layer in the hierarchical model of

Rigaill et al. (2012) for the comparison of the change-points location in independent

profiles. E is the random variable which corresponds to the event ’change-points are

identical’.

can then exactly compute the posterior probability of this event. Both frameworks provide

natural decision rules for the equality of change-points in the profiles.

We return to our benchmark dataset in Chapter 3.4 in which we apply these rules to a

subset of yeast genes with two exons. We illustrate the expected result which is that the

boundaries of introns are not dependent on growth condition, while the beginning and end

of transcription are subject to changes according to their environment.

Conclusion. We have developed in this thesis several segmentation methods for the

general framework of genome annotation which we have illustrated on the same dataset

throughout the manuscript. This has allowed us to highlight their richness when studying

biological phenomena such as differential splicing. Table 1.3 summarizes the majority of our

contribution. Depending on the depth of the analysis performed (from whole-genome to sin-

gle gene), each of our three methods, namely the pruned Dynamic Programming algorithm

with the non-asymptotic penalty, the constrained HMM with the ICL penalty, and the

exact Bayesian approach, can be applied to determine the localization of the change-points
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and assess their credibility. Moreover, they all meet the following three requirements:

• they are suitable for modeling count data, especially with the negative binomial, but

can however be extended to many other distributions,

• they solve the criterion they seek to optimize in an exact manner, and

• they are implemented in R packages and freely available to the public.

In the next two chapters, the sections correspond to papers submitted during the PhD

completed by some discussion. Depending on the papers, those discussions are either small

remarks or illustrations (as in Section 3.1), or more global extensions of the work (as in

Section 2.2).
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ontribution
Biological framework Max values Computational (iii) Inference (ii) uncertaintyand examples and complexity package

Whole genome n: 108 O(Kn) pruned Dynamic optimal segmentation qualitative
e.g. expressed genes K: 103 Programming oracle inequality
e.g. new transcripts Segmentor3IsBack

n: 105 O(K2n) constrained HMM ICL conditional
K: 102 postCP

Genes n: 104 O(Kn2) Exact Bayesian optimal segmentation exact
e.g. confident annotation K: 101 Segmentation ICL
e.g. profile comparison EBS decision rules

Table 1.3: Overview of Thesis contribution. Our contribution is organized by scale of the profiles (from whole genomes to
single genes) for which we give potential biological applications and the tools developed for their analysis. For each of them,
we recall their complexity and the maximum values of the parameters n (length of the data) and K (number of segments) and
some examples of information provided by the methods.
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In this chapter we are interested in the segmentation of series corresponding to whole

chromosomes. This question is usually introduced with one of two possible purposes: the

discovery of new transcripts, which may arise when a region is labeled as transcribed while

it had not previously been annotated as a gene, and the identification of genes specifically

expressed in the target cells. In this context, we will address the modeling issue (i) by using

the negative binomial distribution with segment-specific probability parameter p to fit the

data. Still, the length of the data-set is expected to be very large (typically from 106 to 108

datapoints), so that the other two aspects, inference (ii) and computational (iii), remain

difficult issues which are the at the heart of the contribution of this section.
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2.1 An efficient algorithm for the segmentation of

RNA-Seq data

Up to this contribution, no segmentation algorithm optimizing the likelihood criterion

could allow modeling the data using the negative binomial distribution, and very few actu-

ally proposed to deal with count data-sets. In this section, we propose to adapt the pruned

Dynamic Programming algorithm to our framework, assuming that the choice of K is not

an issue.

Our procedure and proof that the negative binomial distribution fulfills the required

conditions are described in a paper which is given (in its submitted version available at

http://arxiv.org/abs/1204.5564) in the next paragraph.

One question remains open is that of this algorithm’s complexity. In his initial paper,

Rigaill shows that it is at worse equivalent to that of the DP (O(Kn2)) and obtains, in a

simulation study a complexity close to O(Kn log n). In practice, our analysis on RNA-Seq

data indicated a complexity faster than n3/2 and slightly slower than linear in the size of

our profiles. This is for instance illustrated in Figure 2.19 in the last section of this chapter,

where we present the output of our whole procedure on each chromosome of the yeast

species.

http://arxiv.org/abs/1204.5564
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Segmentor3IsBack: an R package for the fast and exact segmentation of

Seq-data

Alice Cleynen, Michel Koskas, Emilie Lebarbier, Guillem Rigaill, Stéphane Robin

abstract

Background: Genome annotation is an important issue in biology which has long

been addressed with gene prediction methods and manual experiments requiring biological

expertise. The expanding Next Generation Sequencing technologies and their enhanced

precision allow a new approach to the domain: the segmentation of RNA-Seq data to

determine gene boundaries.

Results: Because of its almost linear complexity, we propose to use the Pruned Dy-

namic Programming Algorithm, which performances had been acknowledged for CGH ar-

rays, for Seq-experiment outputs. This requires the adaptation of the algorithm to the

negative binomial distribution with which we model the data. We show that if the disper-

sion in the signal is known, the PDP algorithm can be used and we provide an estimator

for this dispersion. We then propose to estimate the number of segments, which can be

associated to coding or non-coding regions of the genome, using an oracle penalty.

Conclusions: We illustrate the results of our approach on a real data-set and show its

good performance. Our algorithm is available as an R package on the CRAN repository.

Keywords

segmentation algorithm; exact; fast; RNA-Seq data; count data
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2.1.1 Background

Change-point detection methods have long been used in the analysis of genetic data, for

instance they proved a useful tool in the study of DNA sequences with various purposes.

Braun and Muller (1998); Durot et al. (2009) have developed segmentation methods

for categorical variables with the aim of identifying patterns for gene predictions, while

Bockhorst and Jojic (2012) uses the sequence segmentation for the detection of SNPs.

In the last two decades, with the large spread of micro-arrays, change-point methods have

been widely used for the analysis of DNA copy number variations and the identification

of amplification or deletion of genomic regions in pathologies such as cancers (Shen and

Zhang, 2012; Erdman and Emerson, 2008; Olshen et al., 2004; Picard et al., 2005,

2011).

The recent development of Next-Generation Sequencing technologies gives rise to new

applications along with new difficulties: (a) the increased size of profiles (up to 108 data-

points when micro-arrays signals were closer to 105), and (b) the discrete nature of the

output (number of reads starting at each position of the genome). Yet applying segmen-

tation methods to DNA-Seq data and its greater resolution should lead to the analysis of

copy-number variation with a much improved precision than CGH arrays. Moreover, in the

case of poly-(A) RNA-Seq data on lower organisms, since coding regions of the genome are

well separated from non-coding regions with lower activity, segmentation methods should

allow the identification of transcribed genes as well as address the issue of new transcript

discovery. Our objective is therefore to develop a segmentation method to tackle both (a)

and (b) with some specific requirements: the amount of reads falling in a segment should be

representative of the biological information associated (relative copy-number of the region,

relative level of expression of the gene) and comparison to neighboring regions should be

sufficient to label the segment (for instance normal or deleted region of the chromosome

in DNA-Seq data, exon or non-coding region in RNA-Seq), so that no comparison profile

should be needed. This also suppresses the need for normalization, and thus we wish to

analyze the raw count-profile.
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So far, most methods addressing the analysis of these datasets require some normal-

ization process to allow the use of algorithms relying on Gaussian-distributed data or pre-

viously developed for micro-arrays (Chiang et al., 2008; Xie and Tammi, 2009; Yoon

et al., 2009; Boeva et al., 2011). Indeed, methods adapted to count data-sets are not

many, and highly focused on Poisson distribution. Shen and Zhang (2012) proposes a

method based on the comparison of Poisson processes associated with the read counts of a

case and a control sample, allowing for the detection of alteration of genomic sequences but

not for expressed genes in a normal condition. Rivera and Walther (2012) developed a

likelihood ratio statistic for the localization of a shift in the intensity of a Poisson process

while Franke et al. (2012) developed a test statistic for the existence of a change-point

in the Poisson autoregression of order 1. Those two latter methods do not require a com-

parison profile but they only allow for the detection of a single change-point and have too

high a time-complexity to be applied to RNA-Seq profiles. Binary Segmentation, a fast

heuristic (Olshen et al., 2004) and Pruned Exact Linear Time (PELT), (Killick et al.,

2012) an exact algorithm for optimal segmentation with respect to the likelihood, are both

implemented for the Poisson distribution in package changepoint. Even though both are

extremely fast, do not require a comparison profile and analyse count-data, the Poisson

distribution is ill-adapted to our kind of data-sets.

A recent study of Hocking et al. (2013) has compared 13 segmentation methods for the

analysis of chromosomal copy number profiles and has shown the excellent performances

of the Pruned Dynamic Programming (PDP) algorithm proposed by Rigaill (2010) in

its initial implementation for the analysis of Gaussian data in the R package cghseg. We

propose to use the PDP algorithm which we have implemented for the Poisson and negative

binomial distributions.

In the next section we recall the general segmentation framework and the definition

and requirements of the PDP algorithm. Our contributions are given in the third section

where we define the negative binomial model and show that it satisfies the PDP algorithm

requirements. We also give a model selection criterion with theoretical guarantees, which

makes the whole approach complete. We conclude with a simulation study, which illustrates
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the performances of the proposed method.

2.1.2 Segmentation model and algorithm

General segmentation model

The general segmentation problem consists in partitioning a signal of n data-points

{yt}t∈[[1,n]] into K pieces or segments. The model can be written as follows: the observed

data {yt}t=1,...,n are supposed to be a realization of an independent random process Y =

{Yt}t=1,...,n. This process is drawn from a probability distribution G which depends on a

set of parameters among which one parameter θ is assumed to be affected by K− 1 abrupt

changes, called change-points, so that

Yt ∼ G(θr, φ) if t ∈ r and r ∈ m

where m is a partition of [[1, n]] into segments r, θr stands for the parameter of segment r

and φ is constant. The objective is to estimate the change-points or the positions of the

segments and the parameters θr both resulting from the segmentation. More precisely, we

defineMk,t the set of all possible partitions in k > 0 regions of the sequence up to point t.

We recall that the number of possible partitions is

card(MK,t) =
(
t− 1
K − 1

)
.

We aim at choosing the partition inMK,n of minimal loss γ, where the loss is usually taken

as the negative log-likelihood of the model. We define the loss of a segment with given

parameter θ as c(r, θ) = ∑
i ∈ r γ(yi, θ), so its optimal cost is c(r) = minθ {c(r, θ)}. This

allows us to define the cost of a segmentation m as ∑r ∈ m c(r) and our goal is to recover

the optimal segmentation MK,n and its cost CK,n where :

Mk,t = arg min{m ∈ Mk,t}

{ ∑
r ∈ m

c(r)
}

and Ck,t = min{m ∈ Mk,t}

{ ∑
r ∈ m

c(r)
}
.
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Quick overview of the pruned DPA

The pruned DPA relies on the function Hk,t(θ) which is the cost of the best partition in

k regions up to t, the parameter of the last segment being θ:

Hk,t(θ) = min
k−1≤τ≤t

{ Ck−1,τ + c([τ + 1, t], θ) },

and from there gets Ck,t as minθ{Hk,t(θ)}. More precisely, for each total number of re-

gions, k, from 2 to K, the pruned DPA works on a list of last change-point candidates:

ListCandidatek. For each of these candidate change-points, τ , the algorithm stores a cost

function and a set of optimal-cost intervals. To be more specific, we define:

• Hτ
k,t(θ) = Ck,τ +∑t

j=τ+1 γ(yj, θ): the optimal cost if the last change is τ ;

• Sτk,t = {θ | Hτ
k,t(θ) ≤ Hk,t(θ) }: the set of θ such that τ is optimal;

• Iτk,t = {θ | Hτ
k,n(θ) ≤ H t

k,n(θ) }: the set of θ such that τ is better than t in terms of

cost, with τ < t.

We have Hk,t(θ) = minτ≤t{Hτ
k,t(θ)}.

The PDP algorithm rely on four basic properties of these quantities:

(i) if all ∑t+1
j=τ+1 γ(yj, θ) are unimodal in θ then Iτk,t are intervals;

(ii) Hτ
k,t+1(θ) is obtained from Hτ

k,t(θ) using:

Hτ
k,t+1(θ) = Hτ

k,t(θ) + γ(yt+1, θ);

(iii) it is easy to update Sτk,t+1 using:

Sτk,t+1 = Sτk,t ∩ Iτk,t+1

Stk,t = {R(∪τ∈[[k−1,t−1]]I
τ
k,t);

(iv) once it has been determined that Sτk,t is empty, the region-border τ can be discarded

from the list of candidates ListCandidatek:

Sτk,t = ∅ ⇒ ∀ t′ ≥ t Sτk,t′ = ∅.
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Requirements of the pruned dynamic programming algorithm.

Proposition 2.1.1. Properties (i) to (iv) are satisfied as soon as the following conditions

on the loss c(r, θ) are met:

(a) it is point additive,

(b) it is convex with respect to its parameter θ,

(c) it can be stored and updated efficiently.

It is possible to include an additional penalty term in the loss function. For example,

in the case of RNA-seq data one could add a lasso (λ|θ|) or ridge penalty (λθ2) to encode

that a priori the coverage in most regions should be close to 0. Our C++ implementation

of the pruned DPA includes the possibility to add such a penalty term, however we do not

provide an R interface to this functionality in our R package. One of the reason for this

choice is that choosing an appropriate value for λ is not a simple problem.

2.1.3 Contribution

Pruned dynamic programming algorithm for count data

We now show that the PDP algorithm can be applied to the segmentation of RNA-Seq

data using a negative binomial model, and propose a criterion for the choice of K. Though

not discussed here, our results also hold for the Poisson segmentation model.

Negative binomial model. We consider that in each segment r all yt are the realiza-

tion of random variables Yt which are independent and follow the same negative binomial

distribution. Assuming the dispersion parameter φ to be known, we will use the natural

parametrization from the exponential family (also classically used in R) so that parameter

θr will be the probability of success. In this framework, θr is specific to segment r whereas

φ is common to all segments.
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We have E(Yt) = φ(1 − θ)/θ and V ar(Yt) = φ(1 − θ)/θ2. We choose the loss as the

negative log-likelihood associated to data-point t belonging to segment r : −φ log(θr) −

yt log(1− θr) + A(φ, yt), or more simply γ(yt, θr) = −φ log(θr)− yt log(1− θr) since A is a

function that does not depend on θr.

Validity of the pruned dynamic programming algorithm for the negative binomial model

Proposition 2.1.2. Assuming parameter φ to be known, the negative binomial model sat-

isfies (a), (b) and (c):

(a) As we assume that Yt are independent we indeed have that the loss is point additive :

c(r, θ) = ∑
t ∈ r γ(yt, θ).

(b) As γ(yt, θ) = −φ log(θ)− yt log(1− θ) is convex with respect to θ, c(r, θ) is also convex

as the sum of convex functions.

(c) Finally, we have c(r, θ) = −nrφ log(θ)+∑t ∈ r yt log(1−θ). This function can be stored

and updated using only two doubles: one for −nrφ, and the other for ∑t ∈ r yt.

Estimation of the overdispersion parameter. We propose to estimate φ using a modified

version of the estimator proposed by Johnson et al. (2005): compute the moment estimator

of φ on each sliding window of size h using the formulae φ = E(Y )2/(V ar(Y )− E(Y )) and

keep the median φ̂.

C++ implementation of the pruned DPA

We implemented the pruned DPA in C++ with in mind the possibility of adding new

loss functions in potential future applications. The difficulties we had to come through

were the versatility of the program to design and the design of the objects it could work

on. Indeed, the use of full templates implied that we used stable sets of objects for the

operations that were to be performed on.

Namely:
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• The sets were to be chosen in a tribe. This means that they all belong to a set S of sets

such that any set s ∈ S can be conveniently handled and stored into the computer.

A set of sets S is said acceptable if it satisfies:

1. if s belongs to s, R \ s ∈ S

2. if s1, s2 ∈ S, s1 ∩ s2 ∈ S

3. if s1, s2 ∈ S, s1 ∪ s2 ∈ S

• The cost functions were chosen in a set F such that

1. each function may be conveniently handled and stored by the software

2. for any f ∈ F , f(x) = 0 can be easily solved and the set of solutions belongs to

an acceptable set of sets

3. for any f ∈ F and any constant c, f(x) ≤ c can be easily solved and the set of

solutions belongs to an acceptable set of sets

4. for any f, g ∈ F , f + g ∈ F .

Thus we defined two collections for the sets of sets, intervals and parallelepipeds, and

implemented the loss functions corresponding to negative binomial, Poisson or normal dis-

tributions. The program is thus designed in a way that any user can add his own cost

function or acceptable set of probability function and use it without rewriting a line in the

code.

Model Selection

The last issue concerns the estimate of the number of segments K. This model se-

lection issue can be solved using penalized log-likelihood criterion where the choice of a

good penalty function is crucial. This kind of procedure requires the visit of the optimal

segmentations in k = 1, . . . , Kmax segments where Kmax is generally chosen smaller than

n. The most popular criteria (AIC, Akaike (1973) and BIC, Yao (1988)) failed in the

segmentation context due to the discrete nature of the segmentation parameter. In a non-

asymptotic point of view and for the negative binomial model, Cleynen and Lebarbier
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(2013) proposed to choose the number of segments as follows: denoting m̂K the optimal

segmentation of the data in K segments,

K̂ = arg min
K∈1:Kmax

{ ∑
r∈m̂K

∑
t∈r

[
−φ log

φ

φ+ ȳr
− Yt log(1−

φ

φ+ ȳr
)
]

+ βK

(
1 + 4

√
1.1 + log

(
n

K

))2}
, (2.1)

where ȳr =
∑
t∈r yt
n̂r

and n̂r is the size of segment r. The first term corresponds to the

cost of the optimal segmentation while the second is a penalty term which depends on

the dimension K and of a constant β that has to be tuned according to the data (see the

next section). With this choice of penalty, so-called oracle penalty, the resulting estimator

satisfies an oracle-type inequality. A more complete performance study is done in Cleynen

and Lebarbier (2013) and showed that the proposed criterion outperforms the existing

ones.

R package

The Pruned Dynamic Programming algorithm is available in the function Segmentor

of the R package Segmentor3IsBack. The user can choose the distribution with the slot

model (1 for Poisson, 2 for Gaussian homoscedastic, 3 for negative binomial and 4 for

segmentation of the variance). It returns an S4 object of class Segmentor which can later be

processed for other purposes. The function SelectModel provides four criteria for choosing

the optimal number of segments: AIC (Akaike, 1973), BIC (Yao, 1988), the modified

BIC (Zhang and Siegmund, 2007) (available for Gaussian and Poisson distribution) and

oracle penalties (available for the Gaussian distribution (Lebarbier, 2005) and for the

Poisson and negative binomial (Cleynen and Lebarbier, 2013) as described previously).

This latter kind of penalties require tuning a constant according to the data, which is done

using the slope heuristic (Arlot and Massart, 2009).

Figure 2.4 (which is detailed in the Results and discussion section) was obtained with

the following 4 lines of code (assuming the data was contained in vector x):

Seg<-Segmentor(x,model=3,Kmax=200)
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Figure 2.1: Cost of optimal segmentation in 4 and 3 segments. Cost of opti-

mal segmentation depending on the location of the jth change-point when the number

of segments is 4 (right) and 3 (left) and the signal was simulated with 3 segments.

Illustration of the output of function BestSegmentation.

Kchoose<-SelectModel(Seg, penalty="oracle")

plot(sqrt(x),col=’dark red’)

abline(v=getBreaks(Seg)[Kchoose, 1:Kchoose],col=’blue’)

The function BestSegmentation allows, for a given K, to find the optimal segmenta-

tion with a change-point at location t (slot $bestSeg). It also provides, through the slot

$bestCost, the cost of the optimal segmentation with t for jth change-point. The right side

of Figure 2.1 illustrates this result for the optimal segmentations in 4 segments of a signal

simulated with only 3 segments. We can see for instance that any choice of first change-

point location between 1 and 2000 yields almost the same cost (the minimum is obtained

for t = 1481), thus the optimal segmentation is not clearly better than the second or third.

On the contrary, the same function with 3 segments shows that the optimal segmentation

outperforms all other segmentations in 3 segments (left side of Figure 2.1).
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2.1.4 Results and discussion

Performance study

We designed a simulation study on the negative binomial distribution to assess the

performance of the PDP algorithm in terms of computational efficiency, while studying

the impact of the overdispersion parameter φ by comparing the results for two different

values of this parameter. After running different estimators (median on sliding windows

of maximum, quasi-maximum likelihood and moment estimators) on several real RNA-Seq

data (whole chromosome and genes of various sizes) we fixed φ1 = 0.3 as a typical value for

highly dispersed data as observed in real RNA-Seq data, and chose φ2 = 2.3 for comparison

with a reasonably dispersed data-set. For each value, we simulated data-sets of size n with

various densities of number of segments K, and only two possible values for the parameter

pJ : 0.8 on even segments (corresponding to low signal) and 0.2 on odd segments for a higher

signal. We had n vary on a logarithmic scale between 103 and 106 and K between
√
n/6

and
√
n/3. For each configuration, we segmented the signal up to Kmax =

√
n twice: once

with the known value of φ and once with our estimator φ̂ as described above. We started

with a window width h = 15. When the estimate was negative, we doubled h and repeated

the experience until the median is positive.

Each configuration was simulated 100 times.

For our analysis we checked the run-time on a standard laptop, and assessed the quality

of the segmentation using the Rand Index I. Specifically, let Ct be the true index of the

segment to which base t belongs and let Ĉt be the index estimated by the method, then

I =
2∑t>s

[
1Ct=Cs1Ĉt=Ĉs + 1Ct 6=Cs1Ĉt 6=Ĉs

]
(n− 1)(n− 2) .

Figure 2.2 shows, for the particular case of K =
√
n/3, the almost linear complexity of

the algorithm in the size n of the signal. As the maximal number of segments Kmax con-

sidered increased with n, we normalized the run-time to allow comparison. This underlines

an empirical complexity smaller than O(Kmaxn log n), and independent on the value of φ
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or its knowledge. Moreover, the algorithm, and therefore the pruning, is faster when the

overdispersion is high, phenomenon already encountered with the L2 loss when the distri-

bution of the errors is Cauchy. However, the knowledge of φ does not affect the run-time of

the algorithm. Figure 2.3 illustrates through the Rand Index the quality of the proposed

segmentation for a few values of n. Even though the indexes are slightly lower for φ1 than

for φ2 (see left panel), they range between 0.94 and 1 showing a great quality in the re-

sults. Moreover, the knowledge of φ does not increase the quality (see right panel), which

validates the use of our estimator.

Yeast RNAseq experiment

We applied our algorithm to the segmentation of chromosome 1 of the S. Cerevisiae

(yeast) using RNA-Seq data from the Sherlock Laboratory at Stanford University (Risso

et al., 2011) and publicly available from the NCBI’s Sequence Read Archive (SRA, http:

//www.ncbi.nlm.nih.gov/sra, accession number SRA048710). We selected the number of

segments using our oracle penalty described in the previous section. An existing annotation

is available on the Saccharomyces Genome Database (SGD) at http://www.yeastgenome.

org, which allows us to validate our results.

With a run-time of 25 minutes (for a signal length of 230218), we selected 103 segments

with the negative binomial distribution, most of which (all but 3) were found to surround

known genes from the SGD. Figure 2.4 illustrates the result.

Conclusion

Segmentation has been a useful tool for the analysis of biological data-sets for a few

decades. We propose to extend its application with the use of the Pruned Dynamic Pro-

gramming algorithm for count data-sets such as outputs of sequencing experiments. We

show that the negative binomial distribution can be used to model such data-sets on the

http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/sra
http://www.yeastgenome.org
http://www.yeastgenome.org
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Figure 2.2: Run-time analysis for segmentation with negative binomial dis-

tribution. This figure displays the normalized (by Kmax) run-time in seconds of the

Segmentor3IsBack package for the segmentation of signals with increasing length n, for

two values of the dispersion φ, and with separate analysis when its value is known or

estimated. While the algorithm is faster for more over-dispersed data, the estimation

of the parameter does not slow the processing.

condition that the overdispersion parameter is known, and proposed an estimator of this

parameter that performs well in our segmentation framework.

We propose to choose the number of segments using our oracle penalty criterion, which

makes the package fully operational. This package also allows the use of other criteria

such as AIC or BIC. Similarly, the algorithm is not restricted to the negative binomial

distribution but also allows the use of Poisson and Gaussian losses for instance, and could
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Figure 2.3: Rand Index for the quality of the segmentation. This figure displays

the boxplot of the Rand Index computed for each of the hundred simulations performed

in the following situations: comparing the values with φ1 and φ2 when estimated (left

figure), and comparing the impact of estimating φ1 (right figure). While the estimation

does not decrease the quality of the segmentation, the value of the dispersion affects

the recovery of the true change-points.

easily be adapted to other convex one-parameter losses.

With its empirical complexity of O(Kmaxn log n), it can be applied to large signals such

as read-alignment of whole chromosomes, and we illustrated its result on a real-data sets

from the yeast genomes. Moreover, this algorithm can be used as a base for further analysis.

For example, Luong et al. (2013) use it to initialize their Hidden Markov Model to compute

change-point location probabilities.
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Figure 2.4: Segmentation of the yeast chromosome 1 using the negative bino-

mial loss. The model selection procedure chooses K = 103 segments, most of which

surround genes given by the SGD annotation.

Availability and requirements

– Project name: Segmentor3IsBack

– Project home page: nullnullnullnull http://cran.r-project.org/web/packages/

Segmentor3IsBack/index.html

– Operating systems: Platform independent

– Programming language: C++ code embedded in R package

– License: GNU GPL

– Any restrictions to use by non-academics: none

List of abbreviations used

– PELT: Pruned Exact Linear Time

– PDP: Pruned Dynamic Programming

http://cran.r-project.org/web/packages/Segmentor3IsBack/index.html
http://cran.r-project.org/web/packages/Segmentor3IsBack/index.html
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– AIC: Akaike Information Criterion

– BIC: Bayesian Information Criterion

– NCBI: National Center for Biotechnology Information

– SGD: Saccharomyces Genome Database
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2.2 Model selection

We are now interested in the choice of the best number of segments K. This model

selection problem is one of the most difficult issue of all segmentation approaches, and

there are multiple likelihood-based methods to address it, most of which are adapted to

one specific context or dataset type. However, up to this contribution, no proposition had

yet been made for the analysis of count (and possibly unbounded) data.

In the next paragraph, we propose, in a joint work with Emilie Lebarbier, a first ap-

proach based on the Birgé and Massart literature (see Section 1.2.3). This paragraph dif-

fers slightly from the submitted paper (available at http://arxiv.org/abs/1301.2534)

in that we corrected two errors which we identified while working on a generalization of

this approach, itself presented in Section 2.2.7.

http://arxiv.org/abs/1301.2534


2.2.1 - Introduction 91

Segmentation of the Poisson and negative binomial rate models:

a penalized estimator

Alice Cleynen and Emilie Lebarbier

abstract

We consider the segmentation problem of Poisson and negative binomial (i.e. overdis-

persed Poisson) rate distributions. In segmentation, an important issue remains the choice

of the number of segments. To this end, we propose a penalized log-likelihood estimator

where the penalty function is constructed in a non-asymptotic context following the works

of L. Birgé and P. Massart. The resulting estimator is proved to satisfy an oracle inequal-

ity. The performances of our criterion is assessed using simulated and real datasets in the

RNA-seq data analysis context.

Keywords

Distribution estimation; Change-points detection; Count data (RNA-seq); Poisson and

negative binomial distributions; Model selection.

2.2.1 Introduction

We consider a multiple change-point detection setting for count datasets, which can

be written as follows: we observe a finite sequence {yt}t∈{1,...,n} realisation of independent

variables Yt. These variables are supposed to be drawn from a probability distribution G

which depends on a set of parameters. Here two types of parameters are distinguished:

Yt ∼ G(θt, φ) = s(t), 1 ≤ t ≤ n,

where φ is a constant parameter while the θs are point-specific. In many contexts, we

might want to consider that the θs are piece-wise constant and so subject to an unknown
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number K − 1 of abrupt changes (for instance with climatic or financial data). Thus, we

want to assume the existence of partition of {1, . . . , n} into K segments within which the

observations follow the same distribution and between which observations have different

distributions, i.e. θ is constant within a segment and differ from a segment to another.

A motivating example is sequencing data analysis. For instance, the output of RNA-seq

experiments is the number of reads (i.e. short portions of the genome) which first position

maps to each location of a genome of reference. Supposing that we dispose of such a se-

quence, we expect to observe a stationarity in the amount of reads falling in different areas

of the genome: expressed genes, intronic regions, etc. We wish to localize those regions

that are biologically significant. In our context, we consider for G the Poisson and negative

binomial distributions, adapted to RNA-seq experiment analysis (Risso et al., 2011).

Change-point detection problems are not new and many methods have been proposed in

the literature. For count data-sets, Braun and Muller (1998) provide a detailed bib-

liography of methods in the particular case of the segmentation of the DNA sequences

that includes Bayesian approaches, scan statistics, likelihood-ratio tests, binary segmenta-

tion and numerous other methods such as penalized contrast estimation procedures. In a

Bayesian framework, Biernacki et al. (2000) proposes to use an exact "ICL" criterion for

the choice of K, while its approximation is computed in the constrained HMM approach

of Luong et al. (2013). In this paper, we consider a penalized contrast estimation method

which consists first, for every fixed K, in finding the best segmentation in K segments

by minimizing the contrast over all the partitions with K segments, and then in selecting

a convenient number of segments K by penalizing the contrast. Choosing the number of

segments, i.e. choosing a "good" penalty, is a crucial issue and not so easy. The most

basic examples of penalty are the Akaike Information Criterion (AIC, Akaike, 1973) and

the Bayes Information Criterion (BIC, Yao, 1988) but these criteria are not well adapted

in the segmentation context and tend to overestimate the number of change-points (see

Birgé and Massart (2007); Zhang and Siegmund (2007) for theoretical explanations).

In this particular context, some modified versions of these criteria have been proposed.

For instance, Zhang and Siegmund (2007); Braun et al. (2000) have proposed modified

versions of the BIC criterion (shown to be consistent) in the segmentation of Gaussian pro-
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cesses and DNA sequences respectively. However, these criteria are based on asymptotic

considerations. In the last years there has been an extensive literature influenced by Birgé

and Massart (1997); Barron et al. (1999) introducing non-asymptotic model selection

procedures, in the sense that the size of the models as well as the size of the list of models

are allowed to be large when n is large. This penalized contrast procedure consists in select-

ing a model amongst a collection such that its performance is as close as possible to that of

the best but unreachable model in terms of risk. This approach has been now considered in

various function estimation contexts. In particular, Akakpo (2011) proposed a penalty for

estimating the density of independent categorical variables in a least-squares framework,

while Reynaud-Bouret (2003); Birgé (2007), or Baraud and Birgé (2009), focused

on the estimation of the density of a Poisson process.

When the number of models is large, as in the case of an exhaustive search in segmentation

problem, it can be shown that penalties which only depend on the number of parameters of

each model, as for the classical criteria, are theoretically (and also practically) not adapted.

This was suggested by Lebarbier (2005) and Birgé and Massart (2007) who show that

the penalty term needs to be well defined, and in particular needs to depend on the com-

plexity of the list of models, i.e. the number of models having the same dimension. For

this reason, following the work of Birgé and Massart (1997) and in particular Castel-

lan (1999) in the density estimation framework, we consider a penalized log-likelihood

procedure to estimate the true distribution s of a Poisson or negative binomial-distributed

sequence y. We prove that, up to a log n factor, the resulting estimator satisfies an oracle

inequality.

The paper is organized as follows. The general framework is described in Section 2.2.2.

More precisely, we present our proposed penalized maximum-likelihood estimator, the form

of the penalty and give some non-asymptotic risk bounds for the resulting estimator. The

studies of the two considered models (Poisson and negative binomial) are done in parallel

along the paper. Some exponential bounds are derived in Section 2.2.3. A simulation

study is performed to compare our proposed criterion with others and an application to

the segmentation of RNA-seq data illustrates the procedure in Section 2.2.4. The proof of

the main result is given in Section 2.2.5 for which the proofs of some intermediate results
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are given in the Appendix 2.2.6.

2.2.2 Model Selection Procedure

Penalized maximum-likelihood estimator

Let us denote by m a partition of [[1, n]], m = {[[1, τ1[[, [[τ1, τ2[[, . . . , [[τk, n]]} and byMn a

set of partitions of [[1, n]]. In our framework we want to estimate the distribution s defined

by s(t) = G(θt, φ), 1 ≤ t ≤ n, and we consider the two following models:

G(θt, φ) = P(λt) (P)

G(θt, φ) = NB(pt, φ) (NB)

In the (NB) case, we suppose that the over-dispersion parameter φ is known. We define

the collection of models :

Definition 2.2.1. The collection of models associated to partition m is Sm the set of

distribution of sequences of length n such that for each element sm of Sm, for each segment

J of m, and for each t in J , sm(t) = G(θJ , φ):

Sm = {sm | ∀J ∈ m, ∀t ∈ J, sm(t) = G(θJ , φ)} .

We shall denote by |m| the number of segments in partition m, and by |J | the length

of segment J .

We consider the log-likelihood contrast γ(u) = ∑n
t=1− log Pu(Yt), namely respectively

for u(t) = P(µt) and u(t) = NB(qt, φ),

γ(u) = ∑n
t=1 µt − Yt log(µt) + log(Yt!), (P)

γ(u) = ∑n
t=1−φ log qt − Yt log(1− qt)− log

(
Γ(φ+Yt)
Γ(φ)Yt!

)
. (NB)

Then the minimal contrast estimator ŝm of s on the collection Sm is

ŝm = arg min
u∈Sm

γ(u), (2.1)
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so that, noting ȲJ =
∑
t∈J Yt
|J |

, for all J ∈ m and t ∈ J

ŝm(t) = P(ȲJ) for (P) and ŝm(t) = NB
(

φ

φ+ ȲJ
, φ

)
for (NB). (2.2)

Therefore, for each partition m of Mn we can obtain the best estimator ŝm as in

equation (2.2), and thus define a collection of estimators {(ŝm)m∈Mn}. Ideally, we would

wish to select the estimator ŝm(s) amongst this collection with the minimum given risk.

In the log-likelihood framework, it is natural to consider the Kullback-Leibler risk, with

K(s, u) = E [γ(u)− γ(s)]. In the following we note E and P the expectation and the

probability under the true distribution s respectively (otherwise the underlying distribution

is mentioned). In our models, the Kullback-Leibler between distributions s and u can be

developed into

K(s, u) = ∑n
t=1

(
µt − λt − λt log µt

λt

)
, (P)

K(s, u) = φ
∑n
t=1 log

(
pt
qt

)
+ 1− pt

pt
log

(
1− pt
1− qt

)
. (NB)

Unfortunately, minimizing this risk requires the knowledge of the true distribution s,

and is unreachable. We will therefore want to consider the estimator ŝm̂ where m̂ minimizes

γ(ŝm) + pen(m) for a well-chosen function pen (depending on the data). By doing so, we

hope to select an estimator ŝm̂ whose risk is as close as possible to the risk of ŝm(s) =

arg minm∈Mn Es[K(s, ŝm)] in the sense that

E[K(s, ŝm̂)] ≤ C E[K(s, ŝm(s))],

where C is a nonnegative constant hopefully close to 1. We therefore introduce the follow-

ing definition:

Definition 2.2.2. LetMn be a collection of partitions of [[1, n]] constructed on a partition

mf (i.e. mf is a refinement of every m in Mn). Given a nonnegative, increasing in the

size of m penalty function pen: Mn → R+, and choosing

m̂ = arg min
m∈Mn

{γ(ŝm) + pen(m)},

we define the penalized maximum-likelihood estimator as ŝm̂.
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In the following paragraph we provide a choice of penalty function, and show that the

resulting estimator satisfies an oracle inequality.

Choice of the penalty function

null Main result

The following result shows that for an appropriate choice of the penalty function, we

have a non-asymptotic risk bound for the penalized maximum-likelihood estimator.

Theorem 2.2.3. Let Mn be a collection of partitions constructed on a partition mf such

that there exist absolute positive constants ρmin, ρmax and Γ satisfying:

– ∀t, ρmin ≤ θt ≤ ρmax and

– ∀J ∈ mf , |J | ≥ Γ(log(n))2.

Let (Lm)m∈Mn be some family of positive weights satisfying

Σ =
∑

m∈Mn

exp(−Lm|m|) < +∞. (2.3)

Let β > 1/2 in the Poisson case, β > 1/2ρmin in the negative binomial case. If for every

m ∈Mn

pen(m) ≥ β|m|
(

1 + 4
√
Lm

)2
, (2.4)

then

E
[
h2(s, ŝm̂)

]
≤ Cβ inf

m∈Mn

{K(s, s̄m) + pen(m)}+ C(φ,Γ, ρmin, ρmax, β,Σ),

with Cβ = (16β)1/3

(2β)1/3 − 1 in model (P) and Cβ = (2ρminβ)1/3

(2ρminβ)1/3 − 1 in model (NB).

We note h2(s, u) the squared Hellinger distance between distribution s and u and s̄m is

the projection of s onto the collection Sm according to the Kullback-Leibler distance. The

proof of this Theorem is given in Section 2.2.5.
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Denoting s̄m = arg minu∈Sm K(s, u), we have for J ∈ m and t ∈ J ,

s̄m(t) = P(λ̄J) where λ̄J =
∑
t∈J λt
|J |

(P)

s̄m(t) = NB(pJ , φ) where pJ = |J |∑
t∈J 1/pt

. (NB)
(2.5)

We remark that the risk of the penalized estimator ŝm̂ is treated in terms of Hellinger

distance instead of the Kullback-Leibler information. This is due to the fact that the

Kullback-Leibler is possibly infinite, and so difficult to control. It is possible to obtain a

risk bound in term of Kullback-Leibler if we have a uniform control of || log(s/s̄m)||∞ (see

Massart, 2007, for more explanation).

Choice of the weights {Lm,m ∈Mn}.

The penalty function depends on the familyMn through the choice of the weights Lm
which satisfy (2.3). We consider forMn the set of all possible partitions of [[1, n]] constructed

on a partition mf which satisfies, for all segment J in mf , |J | ≥ Γ(log n)2. Classically (see

Birgé and Massart, 2001) the weights are chosen as a function of the dimension of the

model s, which is here |m|. The number of partitions of Mn having dimension D being

bounded by
(
n
D

)
, we have

Σ =
∑

m∈Mn

eLm|m| =
n∑

D=1
e−LDDCard{m ∈Mn, |m| = D}

≤
n∑

D=1

(
n

D

)
e−LDD ≤

n∑
D=1

(
en

D

)D
e−LDD

≤
n∑

D=1
e
−D
(
LD−1−log

( n
D

))
.

So with the choice LD = 1+κ+log
(
n

D

)
with κ > 0, condition (2.3) is satisfied. Choosing,

say κ = 0.1, the penalty function can be chosen of the form

pen(m) = β|m|

1 + 4

√√√√1.1 + log
(
n

|m|

)2

, (2.6)

where β is a constant to be calibrated.
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Integrating this penalty in Theorem 2.2.3 leads to the following control:

E
[
h2(s, ŝm̂)

]
≤ C1 inf

m∈Mn

K(s, s̄m) + β|m|

1 + 4

√√√√1.1 + log
(
n

|m|

)2
+C(φ,Γ, ρmin, ρmax, β,Σ). (2.7)

The following proposition gives a bound on the Kullback-Leibler risk associated to ŝm:

Proposition 2.2.4. Let m be a partition ofMn, ŝm be the minimum contrast estimator and

s̄m be the projection of s given by equations (2.2) and (2.5) respectively. Assume that there

exists some positive absolute constants ρmin, ρmax and Γ such that ∀t, ρmin ≤ θt ≤ ρmax

and |J | ≥ Γ(log n)2. Then ∀ε > 0,∀a > 2

K(s, s̄m)− C1(φ,Γ, ρmin, ρmax, ε, a)
na/2−α

+ C2(ε)|m| ≤ E[K(s, ŝm)],

where α < 1 is a constant that can be expressed according to n, C2(ε) = 1
2

1− ε
(1 + ε)2 in the

Poisson model (P) and C2(ε) = ρ2
min

(1− ε)2

(1 + ε)4 in the negative binomial model (NB).

The proof is given in appendix 2.2.6.

Combining proposition 2.2.4 and equation (2.7), we obtain the following oracle-type

inequality:

Corollary 2.2.5. LetMn be a collection of partitions constructed on a partition mf such

that there exist absolute positive constants ρmin, ρmax and Γ verifying:

– ∀t, ρmin ≤ θt ≤ ρmax and

– ∀J ∈ mf , |J | ≥ Γ(log n)2.

There exists some constant C such that

E
[
h2(s, ŝm̂)

]
≤ C log(n) inf

m∈Mn

{E[K(s, ŝm)]}+ C(φ,Γ, ρmin, ρmax, β,Σ).
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2.2.3 Exponential bounds

In order to prove Theorem 2.2.3, the general procedure in this model selection framework

(see for example Birgé and Massart, 2001) is the following: by definitions of m̂ and ŝm
(see definition 2.2.2 and equation (2.1)), we have, ∀m ∈Mn

γ(ŝm̂) + pen(m̂) ≤ γ(ŝm) + pen(m) ≤ γ(s̄m) + pen(m).

Then, with γ̄(u) = γ(u)− E[γ(u)],

K(s, ŝm̂) ≤ K(s, s̄m) + γ̄(s̄m)− γ̄(ŝm̂)− pen(m̂) + pen(m).

The idea is therefore to control γ̄(s̄m) − γ̄(ŝm′) uniformly over m′ ∈ Mn. This is more

complicated when dealing with different models m and m′. Thus, following the work of

Castellan (1999) (see proof of Theorem 3.2, also recalled in Massart, 2007), we propose

the following decomposition

γ̄(s̄m)− γ̄(ŝm′) = (γ̄(s̄m′)− γ̄(ŝm′)) + (γ̄(s)− γ̄(s̄m′)) + (γ̄(s̄m)− γ̄(s)) , (2.8)

and control each term separately. The first term is the most delicate to handle, and requires

the introduction and the control of a chi-square statistic. The main difficulty here is the

non-bounded characteristic of the objects we are dealing with. Indeed, in the classic density

estimation context such as that of Castellan (1999), the objects are probabilities which

are bounded and so facilitate the direct use of concentration inequalities.

In our case, the chi-square statistic we introduce is denoted χ2
m and defined by

χ2
m = χ2(s̄m, ŝm) =

∑
J∈m
|J |(ȲJ − ĒJ)2

ĒJ
, (2.9)

where we recall that ȲJ =
∑
t∈J Yt
|J |

and use the notation ĒJ = EJ
|J | with EJ = ∑

t∈J Et.

Respectively for (P) and (NB), we have Et = λt and Et = φ1−pt
pt

. The purpose is thus to

control χ2
m uniformly overMn. To this effect, we need to obtain an exponential bound of

YJ = ∑
t∈J Yt around its expectation. In the next paragraph, we recall a result of Baraud

and Birgé (2009) that we use to derive an exponential bound for χ2
m.
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Control of YJ

First we recall a large deviation results established by Baraud and Birgé (2009)

(lemma 3) that we apply in the Poisson and negative binomial frameworks.

Lemma 2.2.6. Let Y1, . . . , Yn be n independent centered random variables.

If log(E[ezYi ]) ≤ κ
z2θi

2(1− zτ) for all z ∈ [0, 1/τ [, and 1 ≤ i ≤ n, then

P

 n∑
i=1

Yi ≥
(

2κx
n∑
i=1

θi

)1/2

+ τx

 ≤ e−x for all x > 0.

If for 1 ≤ i ≤ n and all z > 0 log(E[e−zYi ]) ≤ κz2θi/2, then

P

 n∑
i=1

Yi ≤ −
(

2κx
n∑
i=1

θi

)1/2
 ≤ e−x for all x > 0.

To apply this lemma we therefore need a majoration of log E
[
ez(Yt−Et)

]
and

log E
[
e−z(Yt−Et)

]
for z > 0.

Poisson case. With Et = λt, we have:

log E
[
ez(Yt−λt)

]
= −zλt + log E

[
ezYJ

]
= −zλt + log e(λt(ez−1)) = λt(ez − z − 1).

Using ez − z − 1 ≤ z2

2(1−z) for 0 < z < 1 and ez − z − 1 ≤ z2

2 for z < 0, we have

log E
[
ez(Yt−Et)

]
≤ Et

z2

2(1− z) and log E
[
e−z(Yt−Et)

]
≤ Et

z2

2

Negative binomial case. In this case Et = φ1−pt
pt

and we have

log E
(
e
z

(
Yt−φ 1−pt

pt

))
= z2

2
∑
k≥0

2κk+2

(k + 2)!z
k for z ≤ − log(1− pt)

≤ Et
z2

2
2
pt

∑
k≥0

(
z

pt

)k

where the κk are the cumulants of the negative binomial distribution.
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Then

log E
(
e
z

(
Yt−φ 1−pt

pt

))
≤ Et

z2

2
2

ρmin

1
1− z

ρmin

for z ≤ ρmin

≤ Et
z2

2
2

ρmin
for − 1 ≤ 0 ≤ z

Finally, with κ = 1 in the Poisson case and κ = 2/ρmin in the negative binomial case,

we get

P
[
YJ − EJ ≥

√
2κxEJ + κx

]
≤ e−x,

leading to

P [YJ − EJ ≥ x] ≤ e
− x2

2κ(EJ+x) and P [|YJ − EJ | ≥ x] ≤ 2e−
x2

2κ(EJ+x) (2.10)

Exponential bound for χ2
m

We first introduce the following set Ωm defined by:

Ωm(ε) =
⋂
J∈m

{∣∣∣∣ YJEJ − 1
∣∣∣∣ ≤ ε

}
, (2.11)

for all ε ∈]0, 1[ and all segmentations m such that each segment J verifies |J | ≥ Γ(log(n))2.

This set has a large probability since we obtain

P(Ωm(ε)C) ≤
∑
J∈m

P (|YJ − EJ | > εEJ) ≤ 2
∑
J∈m

e−
ε2EJ

2κ(1+ε)

≤ 2
∑
J∈m

e−|J |ε
′f(φ,ρmin) ≤ 2|m| exp(−ε′Γf(φ, ρmin)(log(n))2)

by applying equation (2.10) with x = εEJ and where ε′ = ε2/(2(1 + ε)) and f(φ, ρmin) > 0.

Thus

P(Ωm(ε)C) ≤ C(φ,Γ, ρmin, ε, a)
na

, (2.12)

with a > 2.

The reason for introducing this set is double: in addition to enable the control of χ2
m given
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by equation (2.9) on this restricted set, it allows us to link K(ŝm, s̄m) to V 2
m (see (2.18) for

the control of the first term in the decomposition) and so to χ2
m, relation that we use to

evaluate the risk of one model (see (2.20)).

Let mf be a partition ofMn such that ∀J ∈ mf , |J | ≥ Γ(log(n))2 and assume that all

considered partitions in Mn are constructed on this grid mf . The following proposition

gives an exponential bound for χ2
m on the restricted event Ωmf (ε).

Proposition 2.2.7. Let Y1, . . . , Yn be independent random variables with distribution G

(Poisson or negative binomial distribution). Let m be a partition ofMn with |m| segments

and χ2
m the statistic given by (2.9). For any positive x, we have

P
[
χ2
m1Ωmf (ε) ≥ C(ρmin)

(
|m|+ 8(1 + ε)

√
x|m|+ 4(1 + ε)x

)]
≤ e−x.

with C(ρmin) = 1 in the Poisson case and 2/ρmin in the negative binomial case.

Proof. As in the density estimation framework, this quantity can be controlled using the

Bernstein inequality. In our context, noting χ2
m = ∑

J∈m ZJ where

ZJ = (YJ − EJ)2

EJ
,

we need

• the calculation (or bounds) of the expectation of χ2
m:

Poisson case YJ is distributed according to a Poisson distribution with parameter

λJ so that

E
[
χ2
m

]
= |m|. (2.13)

Negative binomial case We have

E
[
χ2
m

]
=
∑
J∈m

1
|J |

∑
t∈J V ar(Yt)
φ1−pJ

pJ

=
∑
J∈m

1
|J |

∑
t∈J φ

1−pt
p2
t

φ1−pJ
pJ

,

and thus

|m| ≤ E
[
χ2
m

]
≤ 1
ρmin
|m|. (2.14)
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• an upper bound of ∑J∈m E[Zp
J ]. For every p ≥ 2 we have,

E
[
Zp
J1Ωmf (ε)

]
= 1

Ep
J

∫ +∞

0
2p x2p−1P

[
{|YJ − EJ | ≥ x} ∩ Ωmf (ε)

]
dx

≤ 1
Ep
J

∫ εEJ

0
2p x2p−1P [|YJ − EJ | ≥ x] dx.

Using equation (2.10) and since x ≤ εEJ , we obtain the exponential bound

P [|YJ − EJ | ≥ x] ≤ 2e−
x2

2κEJ (1+ε) .

Therefore

E
[
Zp
J1Ωmf (ε)

]
≤ 1

Ep
J

∫ εEJ

0
4p x2p−1e

− x2
2κEJ (1+ε)dx

≤ 4pκp (1 + ε)p
∫ +∞

0
u2p−1e−

u2
2 du

≤ 4pκp (1 + ε)p
∫ +∞

0
(2t)p−1 e−tdt

≤ 2p+1pκp (1 + ε)p p!,

and

∑
J∈m

E
[
Zp
J1Ωmf (ε)

]
≤ 2p+1pκp (1 + ε)p p!|m|.

Since p ≤ 2p−1,

∑
J∈m

E
[
Zp
J1Ωmf (ε)

]
≤ p!

2 ×
[
25 (κ(1 + ε))2 |m|

]
× [4 (κ(1 + ε))]p−2 .

We conclude by taking v = 25 (κ(1 + ε))2 |m| and c = 4 (κ(1 + ε)) (see proposition 2.9

of Massart (2007) for the definition of the Bernstein’s inequality).

2.2.4 Simulations and application

In the context of RNA-seq experiments, an important question is the (re)-annotation of

the genome, that is, the precise localisation of the transcribed regions on the chromosomes.
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In an ideal situation, when considering the number of reads starting at each position, one

would expect to observe a uniform coverage over each gene (proportional to its expression

level), separated by regions of null signal (corresponding to non-transcribed regions of the

genome). In practice however, those experiments tend to return very noisy signals that are

best modelled by the negative binomial distribution.

In this Section, we first study the performance of the proposed penalized criterion

by comparing it with others model selection criteria on a resampling dataset and then

we provide an application on real data. Since the penalty depends on the partition only

through its size, the segmentation procedure is two-steps: first we estimate, for all number of

segments K between 1 and Kmax, the optimal partition with K segments (i.e. construct the

collection of estimators {ŝK}1≤K≤Kmax where ŝK = arg minŝm,m∈MK
{γ(ŝm)}). The optimal

solution is obtained using a fast segmentation algorithm such as the Pruned Dynamic

Programming Algorithm (PDPA, Rigaill, 2010) implemented for the Poisson and negative

binomial losses or contrasts in the R package Segmentor3IsBack (Cleynen et al., under

review). Then, we choose K using our penalty function which requires the calibration of

the constant β that can be tuned according to the data by using the slope heuristic (see

Birgé and Massart (2007); Arlot and Massart (2009)). Using the negative binomial

distribution requires the knowledge of parameter φ. We propose to estimate it using a

modified version of the Johnson and Kotz’s estimator (Johnson et al., 2005).

Simulation study

We have assessed the performances of the proposed method (called Penalized PDPA) on

a simulation scenario by comparing to five other procedures both its choice in the number

of segments and the quality of the obtained segmentation using the Rand Index I. This

index is defined as follows: let Ct be the true index of the segment to which base t belongs

and let Ĉt be the corresponding estimated index, then

I =
2∑t>s

[
1Ct=Cs1Ĉt=Ĉs + 1Ct 6=Cs1Ĉt 6=Ĉs

]
(n− 1)(n− 2) .
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The characteristics of the different algorithms are described in Table 2.1.

Algorithm Dist Complexity Inference Pen Exact Reference

Penalized PDPA NB n logn frequentist external exact Cleynen et al. (under review)
PDPA with BIC NB n logn frequentist external exact Cleynen et al. (under review)
Penalized PDPA P n logn frequentist external exact Cleynen et al. (under review)
PDPA with BIC P n logn frequentist external exact Cleynen et al. (under review)
PELT with BIC P n frequentist internal exact Killick and Eckley (2011)
CART with BIC P n logn frequentist external heuristic Breiman et al. (1984)
postCP with ICL NB n frequentist external exact Luong et al. (2013)
EBS with ICL NB n2 Bayesian external exact Rigaill et al. (2012)

Table 2.1: Properties of segmentation algorithms. The first column indicates the

name of the algorithm and the criterion used for the choice of K. In the second column,

NB stands for the negative binomial distribution and P for Poisson. The time of each

algorithm is given (column "Complexity") and column "Exact" states if the exact solution

is reached.

The data we considered comes from a resampling procedure using real RNA-seq

data. The original data, from a study by the Sherlock Genomics laboratory at Stan-

ford University, is publicly available on the NCBIs Sequence Read Archive (SRA, url:

http://www.ncbi.nlm.nih.gov/sra) with the accession number SRA048710. We created an

artificial gene, inspired from the Drosophila inr-a gene, resulting in a 14-segment signal

with irregular intensities mimicking a differentially transcribed gene. 100 datasets are thus

created. Results are presented using boxplots in Figure 2.5. Because PELT’s estimate of

K averaged around 427 segments, we did not show its corresponding boxplot.

We can see that with the negative binomial distribution, not only do we perfectly

recover the true number of segments, but our procedure outperforms all other approaches.

Moreover, the impressive results in terms of Rand Index prove that our choice of number

of segments also leads to the almost perfect recovery of the true segmentation. However,

the use of the Poisson loss leads to a constant underestimation of the number of segments,

which is reflected on the Rand Index values. This is due to the inappropriate choice of
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Figure 2.5: Estimation of K on resampled datasets. Left: boxplot of the estimation

of K on data-sets simulated by resampling on artificial gene Inr-a. PELT’s estimates

average at 427 segments and are not shown. The pink horizontal line indicates the true

value of K. Right: boxplot of the Rand Index values for the proposed estimators.

distribution (confirmed by the other algorithms implemented for the Poisson loss which

perform worse than the others). It however underlines the need for the development of

methods for the negative binomial distribution. Moreover, in terms of computational time,

the fast algorithm is in O(n log n) (Cleynen et al., under review), allowing its use on long

signals (such as a whole-genome analysis), even though it is not as fast as CART or PELT.

Segmentation of RNA-Seq data

We apply our proposed procedure for segmenting chromosome 1 of the S. Cere-

visiae (yeast) using RNA-Seq data from the Sherlock Laboratory at Stanford Uni-

versity (Risso et al., 2011) and publicly available from the NCBI’s Sequence Read

Archive (SRA, url:http://www.ncbi.nlm.nih.gov/sra, accession number SRA048710). An
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existing annotation is available on the Saccharomyces Genome Database (SGD) at

url:http://www.yeastgenome.org, which allows us to validate our results. The two dis-

tributions (Poisson and negative binomial) are considered here to show the difference.

In the Poisson distribution case, we select 106 segments of which only 19 are related to

the SGD annotation. Indeed, as illustrated by Figure 2.6, 36 of the segments have a length

smaller than 10: the Poisson loss is note adapted to this kind of data with high variability

and it tends to select outliers as segment. On the contrary, we select 103 segments in the

negative binomial case most of which (all but 3) surround known genes from the SGD.

Figure 2.7 illustrates the result. However, almost none of those change-points correspond

exactly to annotated boundaries. Discussion with biologists has increased our belief in the

need for genome (re-)annotation using RNA-seq data, and in the validity of our approach.

2.2.5 Proof of Theorem 2.2.3

Recall that we want to control the three terms in the decomposition given by (2.8). All

the proofs of the different propositions are given in Section 2.2.6.

• The control of the term γ̄(ŝm′) − γ̄(s̄m′) is obtained with the following proposition

where the set Ω1(ξ) is defined by

Ω1(ξ) =
⋂

m′∈Mn

{
χ2
m′1Ωmf

(ε) ≤ C(ρmin)
[
|m′|+ 8(1 + ε)

√
(Lm′ |m′|+ ξ)|m′|+ 4(1 + ε)(Lm′ |m′|+ ξ)

]}
.

Proposition 2.2.8. Let m′ be a partition ofMn. Then

(γ̄(ŝm′)− γ̄(s̄m′)) 1Ωmf (ε)∩Ω1(ξ) ≤ C(ε)
[
|m′|+ 8(1 + ε)

√
(Lm′ |m′|+ ξ)|m′|

+ 4(1 + ε)(Lm′ |m′|+ ξ)] + 1
1 + ε

K(s̄m′ , ŝm′),

with C(ε) = 1
2

(
1+ε
1−ε

)
in the Poisson case and C(ε) = 1+ε

2ρmin in the negative binomial

case.
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Figure 2.6: Segmentation of the yeast chromosome 1 using Poisson loss. Read-

count are represented on a root-squared scale. The model selection procedure chooses

K = 106 segments.

• The control of the term γ̄(s̄m) − γ̄(s), or more precisely its expectation, is given by

the following proposition:

Proposition 2.2.9.

|E[(γ̄(s̄m)− γ̄(s))1Ωmf (ε)]| ≤
C(φ,Γ, ρmin, ρmax, ε, a)

n(a−1)/2 . (2.15)

• To control γ̄(s)− γ̄(s̄m′), we use the following proposition which gives an exponential

bound for γ̄(s)− γ̄(u).

Proposition 2.2.10. Let s and u be two distributions of a sequence Y . Let γ be the

log-likelihood contrast, γ̄(u) = γ(u)−E[γ(u)], and K(s, u) and h2(s, u) be respectively

the Kullback-Leibler and the squared Hellinger distances between distributions s and
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Figure 2.7: Segmentation of the yeast chromosome 1 using the negative bino-

mial loss. The model selection procedure chooses K = 103 segments, most of which

surround genes given by the SGD annotation.

u. Then ∀x > 0,

P
[
γ̄(s)− γ̄(u) ≥ K(s, u)− 2h2(s, u) + 2x

]
≤ e−x.

Applying it to u = s̄m′ yields:

P
[
γ̄(s)− γ̄(s̄m′) ≥ K(s, s̄m′)− 2h2(s, s̄m′) + 2x

]
≤ e−x. (2.16)

We then define

Ω2(ξ) =
⋂

m′∈Mn

{
γ̄(s)− γ̄(s̄m′) ≤ K(s, s̄m′)− 2h2(s, s̄m′) + 2(Lm′ |m′|+ ξ)

}
.

Let Ω(ε, ξ) = Ωmf (ε)∩Ω1(ξ)∩Ω2(ξ). Then, combining equation (2.16) and proposition

2.2.8, we get for m′ = m̂,
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(γ̄(s̄m)− γ̄(ŝm̂))1Ω(ε,ξ) = (γ̄(s)− γ̄(s̄m̂))1Ω(ε,ξ) + (γ̄(s̄m)− γ̄(s))1Ω(ε,ξ) + (γ̄(s̄m̂)− γ̄(ŝm̂))1Ω(ε,ξ)

≤
[
K(s, s̄m̂)− 2h2(s, s̄m̂)

]
1Ω(ε,ξ) +R1Ω(ε,ξ) + 1

1 + ε
K(s̄m̂, ŝm̂)1Ω(ε,ξ)

+C(ε)
[
|m̂|+ 8(1 + ε)

√
(Lm̂|m̂|+ ξ)|m̂|+ 4(1 + ε)(Lm̂|m̂|+ ξ)

]
+2Lm̂|m̂|+ 2ξ,

with R = γ̄(s̄m)− γ̄(s). So that

K(s, ŝm̂)1Ω(ε,ξ) ≤
[
K(s, s̄m̂)− 2h2(s, s̄m̂)

]
1Ω(ε,ξ) + 1

1 + ε
K(s̄m̂, ŝm̂)1Ω(ε,ξ)

+C(ε)
[
|m̂|+ 8(1 + ε)

√
(Lm̂|m̂|+ ξ)|m̂|+ 4(1 + ε)(Lm̂|m̂|+ ξ)

]
+K(s, s̄m)1Ω(ε,ξ) + 2Lm̂|m̂|+ 2ξ +R1Ω(ε,ξ) − pen(m̂) + pen(m).

And since

• K(s, ŝm̂) = K(s, s̄m̂) +K(s̄m̂, ŝm̂) (see equation (2.17)),

• K(s, u) ≥ 2h2(s, u) (see lemma 7.23 in Massart, 2007),

• h2(s, ŝm̂) ≤ 2 (h2(s, s̄m̂) + h2(s̄m̂, ŝm̂)) (using inequality 2ab ≤ κa2+κ−1b2 with κ = 1),

ε

1 + ε
h2(s, ŝm̂)1Ω(ε,ξ) ≤ K(s, s̄m)1Ω(ε,ξ) +R1Ω(ε,ξ) − pen(m̂) + pen(m)

+|m̂|C(ε)
[
1 + (1 + ε)

(
8
√
Lm̂ + ε+ 4Lm̂

)]
+ 2Lm̂|m̂|

+2ξ
[
1 + C(ε)

(
8(1 + ε)2

ε
+ 4(1 + ε)

)]
.

But

C(ε)
[
1 + (1 + ε)

(
8
√
Lm̂ + ε+ 4Lm̂

)]
+ 2Lm̂ ≤ C(ε)

[
1 + (1 + ε)

(
ε+ 8

√
Lm̂ + 8Lm̂

)]
≤ C2(ε)

[
1 + 8

√
Lm̂ + 8Lm̂

]
.

with C2(ε) = 1
2

(1 + ε

1− ε

)3
for (P) and C2(ε) = 1

2ρmin
(1 + ε)3 for (NB). So we have

ε

1 + ε
h2(s, ŝm̂)1Ω(ε,ξ) ≤ K(s, s̄m)1Ω(ε,ξ) +R1Ω(ε,ξ) − pen(m̂) + pen(m)

+|m̂|C2(ε)
(

1 + 4
√
Lm̂

)2
+ 2ξ

[
1 + (1 + ε)C(ε)

(8
ε

+ 2
)]
.
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By assumption, pen(m̂) ≥ β|m̂|
(
1 + 4

√
Lm̂

)2
. Choosing β = C2(ε) yields

h2(s, ŝm̂)1Ω(ε,ξ) ≤ Cβ
[
K(s, s̄m)1Ω(ε,ξ) +R1Ω(ε,ξ) + pen(m)

]
+ ξC(β).

Then, using propositions 2.2.9 and 2.2.8, we have P
(
Ω1(ξ)C

)
≤ ∑m′∈Mn

e−Lm′ |m
′|+ξ and

P
(
Ω2(ξ)C

)
≤ ∑m′∈Mn

e−Lm′ |m
′|+ξ. So that using hypothesis (2.3),

P
(
Ω1(ξ)C ∪ Ω2(ξ)C

)
≤ 2

∑
m′∈Mn

e−Lm′ |m
′|+ξ ≤ 2Σe−ξ,

and thus P (Ω1(ξ) ∩ Ω2(ξ)) ≥ 1 − 2Σe−ξ. We now integrate over ξ, and using equation

(2.15), we get with a probability larger than 1− 2Σe−ξ

E
[
h2(s, ŝm̂)1Ωmf (ε)

]
≤ Cβ

[
K(s, s̄m) + C(φ,Γ, ρmin, ρmax, β, a)

n(a−1)/2 + pen(m)
]

+ ΣC(β).

And since E
[
h2(s, ŝm̂)1Ωmf (ε)C

]
≤ C(φ,Γ, ρmin, ρmax, β, a)

na−1 , we have

E
[
h2(s, ŝm̂)

]
≤ Cβ [K(s, s̄m) + pen(m)] + C ′(φ,Γ, ρmin, ρmax, β,Σ).

Finally, by minimizing over m ∈Mn, we get

E
[
h2(s, ŝm̂)

]
≤ Cβ inf

m∈Mn

{K(s, s̄m) + pen(m)}+ C ′(φ,Γ, ρmin, ρmax, β,Σ).

2.2.6 Appendices

Proof of proposition 2.2.4

Using Pythagorean-type identity, we obtain the following decomposition (see for exam-

ple Castellan, 1999):

K(s, ŝm) = K(s, s̄m) +K(s̄m, ŝm). (2.17)

The objective is then to obtain a lower bound of E[K(s̄m, ŝm)] in the two considered dis-

tribution cases.
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Poisson case We have

K(s̄m, ŝm) =
∑
J∈m
|J |

(
ȲJ − λ̄J − λ̄J log ȲJ

λ̄J

)
=
∑
J∈m
|J |λ̄JΦ

(
log ȲJ

λ̄J

)
.

where Φ(x) = ex− 1−x. Since 1
2x

2(1∧ ex) ≤ Φ(x) ≤ 1
2x

2(1∨ ex), then on Ωmf (ε), we have

1
2 log2 ȲJ

λ̄J

(
1 ∧ ȲJ

λ̄J

)
≤ Φ

(
log ȲJ

λ̄J

)
≤ 1

2 log2 ȲJ

λ̄J

(
1 ∨ ȲJ

λ̄J

)
,

1− ε
2 log2 ȲJ

λ̄J
≤ Φ

(
log ȲJ

λ̄J

)
≤ 1 + ε

2 log2 ȲJ

λ̄J
.

So

1− ε
2 V 2

m ≤ K(s̄m, ŝm) ≤ 1 + ε

2 V 2
m, (2.18)

where

V 2
m = V 2(s̄m, ŝm) =

∑
J∈m
|J |λ̄J log2 ȲJ

λ̄J
=
∑
J∈m
|J |(ȲJ − λ̄J)2

λ̄J

 log ȲJ
λ̄J

ȲJ
λ̄J
− 1

2

. (2.19)

And using, for x > 0, 1
1 ∨ x ≤

log x
x− 1 ≤

1
1 ∧ x , we get, on Ωmf (ε)

1
(1 + ε)2 χ

2
m ≤ V 2

m ≤
1

(1− ε)2 χ
2
m. (2.20)

So

1− ε
2(1 + ε)2 χ

2
m1Ωmf (ε) ≤ K(s̄m, ŝm)1Ωmf (ε) ≤

1 + ε

2(1− ε)2 χ
2
m1Ωmf (ε).

On one hand, E [χ2
m] = |m|, and

1− ε
2(1 + ε)2 |m| − E

[
χ2
m1Ωmf (ε)C

]
≤ E

[
K(s̄m, ŝm)1Ωmf (ε)

]
≤ 1 + ε

2(1− ε)2 |m|.

Since χ2
m ≤ 1

Γ(log (n))2ρmin

∑
J∈m(YJ−λJ)2 ≤ 1

Γ(log (n))2ρmin
(∑t Yt −

∑
t λt)2, using Cauchy-

Schwarz Inequality, we get
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E
[
χ2
m1Ωmf (ε)C

]
≤ 1

Γ(log (n))2ρmin

3
(∑

t

λt

)2

+
∑
t

λt

1/2

P (Ωmf (ε)C)1/2

≤ C(Γ, ρmin, ρmax)
n

(log (n))2P (Ωmf (ε)C)1/2

≤ C(Γ, ρmin, ρmax)nαP (Ωmf (ε)C)1/2

≤ C(φ,Γ, ρmin, ρmax, ε, a)
na/2−α

,

where α = 1− 2 log (log (n))
log (n) , n ≥ 2. For example, α = 0.62 for n = 106.

On the other hand, using log 1/x ≥ 1 − x for all x > 0, E
[
K(s̄m, ŝm)1Ωmf (ε)C

]
≥ 0.

Finally, we have

K(s, s̄m) + 1− ε
2(1 + ε)2 |m| −

C1(Γ, ρmin, ρmax, ε, a)
na/2−α

≤ E[K(s, ŝm)],
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Negative binomial case

We have

• K(s̄m, ŝm) = φ
∑
J∈m
|J |
pJ
h φ

φ+ȲJ
(pJ) , and

• ∀0 < a < 1, ha(x) ≥ 1− x
1− a log2

(1− x
1− a

)
.

Then on Ωmf (ε)

K(s̄m, ŝm) ≥ φ
∑
J∈m

|J |
pJ

1− pJ
ȲJ

φ+ȲJ

log2

 ȲJ
φ+ȲJ

1− pJ

 .
Introducing

V 2
m =

∑
J∈m

φ|J |1− pJ
pJ

log2

 ȲJ
φ+ȲJ

1− pJ

 , (2.21)

we get

K(s̄m, ŝm) ≥ V 2
m, (2.22)

and since ȲJ − φ1−pJ
pJ

= φ+ȲJ
pJ

(
ȲJ

φ+ȲJ
− (1− pJ)

)
, we have

V 2
m =

∑
J∈m
|J |

(
φ

φ+ ȲJ

)2
(
ȲJ − φ1−pJ

pJ

)2

φ1−pJ
pJ


log

 ȲJ
φ+ȲJ

1− pJ


ȲJ

φ+ȲJ
1− pJ

− 1



2

.

And finally,

K(s̄m, ŝm)1Ωmf (ε) ≥ ρ2
min

(1− ε)2

(1 + ε)4 χ
2
m1Ωmf (ε).

Moreover, on one hand we have |m| ≤ E [χ2
m] ≤ 1

ρmin
|m|. On the other hand, since

χ2
m ≤ 1

Γ(log (n))2φ(1−ρmax) (∑t Yt −
∑
tEt)2, using Cauchy-Schwarz Inequality, we get

E
[
χ2
m1Ωmf (ε)C

]
≤

[∑
t E (Yt − Et)4 + 6φ2∑

(t,l),l 6=t
1−pt
p2
t

1−pl
p2
l

]1/2

Γ(log (n))2φ(1− ρmax)
P (Ωmf (ε)C)1/2,

≤ C(Γ, ρmin, ρmax)nαP (Ωmf (ε)C)1/2,

≤ C(φ,Γ, ρmin, ρmax, ε, a)
na/2−α

,
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where α = 1− 2 log (log (n))
log (n) , n ≥ 2. Finally, we have

K(s, s̄m) + ρ2
min

(1− ε)2

(1 + ε)4 |m| −
C(φ,Γ, ρmin, ρmax, ε, a)

na/2−α
≤ E[K(s, ŝm)].

Proof of proposition 2.2.8

Poisson case

The term to be controlled is γ̄(s̄m′)− γ̄(ŝm′) = ∑
J∈m′ |J |

(
ȲJ − λ̄J

)
log ȲJ

λ̄J
.

Using Cauchy-Schwarz inequality, we have

γ̄(s̄m′)− γ̄(ŝm′) ≤
√
χ2
m′

√
V 2
m′ ,

with χ2
m′ and V 2

m′ defined as in equations (2.9) and (2.19). Then, using equation (2.18)

(γ̄(s̄m′)− γ̄(ŝm′)) 1Ωmf (ε) ≤
√
χ2
m′

√
2

1− εK(s̄m′ , ŝm′),

and using 2ab ≤ κa2 + κ−1b2 for all κ > 0, we get

(γ̄(s̄m′)− γ̄(ŝm′)) 1Ωmf (ε) ≤
κ

2χ
2
m′ +

κ−1

1− εK(s̄m′ , ŝm′). (2.23)

And with proposition 2.2.7, we get, for κ = 1 + ε

1− ε = 2C(ε),

(γ̄(s̄m′)− γ̄(ŝm′)) 1Ωmf (ε)∩Ω1(ξ)

≤ 1 + ε

2(1− ε)

[
|m′|+ 8(1 + ε)

√
(Lm′ |m′|+ ξ)|m′|+ 4(1 + ε)(Lm′|m′|+ ξ)

]
+ 1

1 + ε
K(s̄m′ , ŝm′).

Negative binomial case

In this case we can write γ̄(s̄m′)−γ̄(ŝm′) = ∑
J∈m′ |J |

(
ȲJ − ĒJ

)
log

ȲJ
φ+ȲJ

1− pJ
. Again, using

Cauchy-Schwarz inequality, and with χ2
m and V 2

m defined by equations (2.9) and (2.21), we
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get

γ̄(s̄m′)− γ̄(ŝm′) ≤
√
χ2
m′

√
V 2
m′ ,

so that with equation (2.22) and 2ab ≤ κa2 + κ−1b2 for all κ > 0

(γ̄(s̄m′)− γ̄(ŝm′)) 1Ωmf (ε) ≤
κ

2χ
2
m′ +

κ−1

2 K(s̄m′ , ŝm′). (2.24)

Finally, with proposition 2.2.7 and κ = 1 + ε

2 = 2C(ε),

(γ̄(s̄m′)− γ̄(ŝm′)) 1Ωmf (ε)∩Ω1(ξ)

≤ C(ρmin)1 + ε

4

[
|m′|+ 8(1 + ε)

√
(Lm′|m′|+ ξ)|m′|+ 4(1 + ε)(Lm′|m′|+ ξ)

]
+ 1

1 + ε
K(s̄m′ , ŝm′).

Proof of proposition 2.2.9

Poisson case

Noting that E[(γ̄(s̄m)− γ̄(s))1Ωmf (ε)] = −E[(γ̄(s̄m)− γ̄(s))1Ωmf (ε)C ],

we have

|E[(γ̄(s̄m)− γ̄(s))1Ωmf (ε)]|

≤ |E[(γ̄(s̄m)− γ̄(s))1Ωmf (ε)C ]| ≤ E[|(γ̄(s̄m)− γ̄(s))|1Ωmf (ε)C ]

≤ E
[∣∣∣∣∣
(∑

J

∑
t

(Yt − Et) log (ρmax/ρmin)
)∣∣∣∣∣1Ωmf (ε)C

]

≤ log (ρmax/ρmin)× E
[∣∣∣∣∣∑

t

(Yt − Et)
∣∣∣∣∣1Ωmf (ε)C

]

≤ log (ρmax/ρmin)×


E

(∑
t

(Yt − Et)
)2
1/2

×
(
P (Ωmf (ε)C

)1/2


≤ (nρmax)1/2 × log (ρmax/ρmin)× (P (Ωmf (ε)C)1/2,

which concludes the proof.
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Negative binomial case.

Once again, E[(γ̄(s̄m)− γ̄(s))1Ωmf (ε)] = −E[(γ̄(s̄m)− γ̄(s))1Ωmf (ε)C ], and

|E[(γ̄(s̄m)− γ̄(s))1Ωmf (ε)]|

≤ |E[(γ̄(s̄m)− γ̄(s))1Ωmf (ε)C ]| ≤ E[|(γ̄(s̄m)− γ̄(s))|1Ωmf (ε)C ]

≤ E
[∣∣∣∣∣
(∑

J

∑
t

(
Yt − φ

1− pt
pt

)
log (1/(1− ρmin))

)∣∣∣∣∣1Ωmf (ε)C

]

≤ log (1/(1− ρmin))× E
[∣∣∣∣∣∑

t

(Yt − Et)
∣∣∣∣∣1Ωmf (ε)C

]

≤
(
nφ

1
ρ2
min

)1/2

× log 1
1− ρmin

× (P (Ωmf (ε)C)1/2

which concludes the proof.

Proof of proposition 2.2.10

Using the Markov inequality P [γ̄(s)− γ̄(u) ≥ b] ≤ infa
[
e−abE

(
ea(γ̄(s)−γ̄(u))

)]
with

a = 1
2 , we get

P [γ̄(s)− γ̄(u) ≥ b] ≤

≤ exp
[
− b2 + log E

[
exp

(1
2 (γ(s)− γ(u)) + 1

2E [γ(u)− γ(s)]
)]]

≤ exp
[
− b2 + 1

2K(s, u) + log E
[
exp

(
−1

2
∑
t

log Ps(Xt = Yt) + log Pu(Xt = Yt)
)]]

≤ exp
[
− b2 + 1

2K(s, u) +
∑
t

log E
√

Pu(Xt = Yt)
Ps(Xt = Yt)

]

≤ exp
[
− b2 + 1

2K(s, u) +
∑
t

E
√

Pu(Xt = Yt)
Ps(Xt = Yt)

− n
]

≤ exp
[
− b2 + 1

2K(s, u)− h2(s, u)
]

where Ps = P denote the probability under the distribution s. Thus

P
[
γ̄(s)− γ̄(u) ≥ K(s, u)− 2h2(s, u) + 2x

]
≤ e−x.
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2.2.7 Discussion and perspectives

Our work shows that a penalty of the form

pen(m) = βK

(
1 + 4

√
1.1 + log

(
n

K

))2

,

gives the following oracle inequality:

E
[
h2(s, ŝm̂)

]
≤ C1 log(n) inf

m∈Mn

{E[K(s, ŝm)]}+ C2.

This calls for a few remarks.

• First, the penalty term can be interpreted as the sum of two terms. The first is a term

proportional to K which is common to all penalized likelihood approach. The second

however, is a term in K log n
K
, which is specific to and recurrently encountered in non-

asymptotic approaches. This term is induced by the size of the collection of models

to explore and was identified in Birgé and Massart (2001) as a minimizer of the

minimax risk in the case of Gaussian-distributed data. Its appearance in the penalty

function is therefore reassuring: indeed, it was shown (see for instance Lebarbier

(2005); Birgé and Massart (2007)) that the penalty term needs to depend on the

number of models having the same dimension to provide adequate results.

• Second, the oracle inequality is one on the Hellinger distance and not on the Kullback-

Leibler divergence as we would ideally wish to obtain. This is because in our frame-

work we have no warranty that the quantities s and s̄m will remain bounded unless

we further specify constraints on the true distribution s. Controlling the Hellinger

distance is a common trick to avoid such unpleasant restrictions (Castellan, 1999;

Massart, 2007), and it is easily related to the Kullback divergence when the later is

finite.

• Third, the exact same penalty shape and oracle inequalities are obtained for Poisson

and negative binomial distributed random variables. This result allows us to think
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that it could be generalized to the larger exponential family of distributions. We

describe here the essential steps towards such generalization for one-parameter dis-

tributions from the exponential family which sufficient statistic is the identity, and

underline the aspects which still require some refinement. The left column of Table

2.2 gives a list of distributions which fit in our generalization.

In this context, the true distribution s is of the form

s(t) = h(Yt) exp [θtYt − A(θt)] ,

and the loss is

γ(s) =
n∑
t=1
−θtYt + A(θt).

The optimal estimator and the projection on a partition m are respectively, for t ∈ J ,

ŝm(t) = h(Yt) exp
[
A′−1(ȲJ)Yt − A

[
A′−1(ȲJ)

]]
, and

s̄m(t) = h(Yt) exp
[
A′−1(ĒJ)Yt − A

[
A′−1(ĒJ)

]]
where Et = A′(θt), EJ = ∑

t∈J Et and ĒJ = EJ/|J |.

Exactly as in the Poisson and negative binomial cases, the following assumptions are

made:

• ∀t, θmin ≤ θt ≤ θmax, and

• ∀J ∈ mf , |J | ≥ Γ(log(n))2

Note that imposing a constraint on θt naturally implies that the expectation and vari-

ance of the variables are bounded. Indeed, A′ is a non-decreasing function and A
′′ is

continuous, so that A′(θmin) ≤ Et ≤ A′(θmax) and V ar(Yt) = A
′′(θt) is bounded on one side

by A′′(θmin) and on the other side by A′′(θmax).

Applying the same technique as for the negative binomial and Poisson distributions, we

would have to control

1. K(s̄m, ŝm),

2. γ̄(s̄m′)− γ̄(ŝm′), and
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3. γ̄(s̄m)− γ̄(s),

(since the last term γ̄(s) − γ̄(s̄m′) is controlled independently of the choice of distribution

for s). However, as in the previous case, an essential tool should be an exponential bound

of YJ around its expectation. If we want to apply the Baraud and Birgé Lemma (Baraud

and Birgé, 2009) as in our paper, we need to control the Laplace transform of Y . By

definition of the cumulant-generating function of Yt, we have :

log E
(
ez(Yt−Et)

)
= −zEt +

∑
n≥1

κn
n! z

n

= z2

2
∑
n≥0

2κn+2

(n+ 2)!z
n.

Provided that the sequence 2κn/n!A′(θt), n ≥ 2 is bounded by a universal constant κmax ≥

1 for all θmin ≤ θt ≤ θmax, we get, on −1 ≤ z < 1,

log E
(
ez(Yt−Et)

)
≤ Et

z2

2
κmax
1− z .

We finally obtain the controls required for the Baraud and Birgé Lemma, namely

log E
(
ez(Yt−Et)

)
≤

 Et
z2

2(1−z)κmax if 1 > z ≥ 0

Et
z2

2 κmax if −1 < z ≤ 0
.

Note that constraint κn/n!A′(θt) ≤ κmax can seem quite strong and could probably be

refined. In practice, some classic distributions lack this property, such as the geometric

for which κr < r! (1−p)
pr

, and some constraints on the range of possible z have to be added

(we consider for instance z < p for the geometric and negative binomial distributions).

This is not an issue as long as one can define a set −c < z < c with c > 0 for which the

bounds required by the Baraud and Birgé lemma are verified. We give in the last column of

Table 2.2 the values of c and κmax obtained for the classical distributions of the exponential

family.

We can now apply the Baraud and Birgé Lemma to obtain

P
[
YJ − EJ ≥

√
2xκmaxEJ + κmaxx

]
≤ e−x, and
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P [|YJ − EJ | ≥ x] ≤ 2e−
x2

2κmax(EJ+x) .

From there we can define Ωmf (ε) =
⋂

J∈mf

{∣∣∣∣ YJEJ − 1
∣∣∣∣ ≤ ε

}
which is of large probability.

We now consider the three entities which we want to control:

1. The ultimate goal is to obtain a lower bound on the risk of one model E [K(s, ŝm)].

For this purpose, we use the classical decomposition K(s, s̄m) + K(s̄m, ŝm), and by

using Taylor’s decomposition we can write

K(s̄m, ŝm) =
∑
J

|J |
[
ĒJ

(
A′−1(ĒJ)− A′−1(ȲJ)

)
+ A

(
A′−1(ȲJ)

)
− A

(
A′−1(ĒJ)

)]

=
∑
J

|J |ĒJ
[(
A′−1(ĒJ)− A′−1(ȲJ)

)2 A
′′(z)

2ĒJ

]

where z is a real number between A′−1(ĒJ) and A′−1(ȲJ).

Now because A′ is non-decreasing, A′′ is continuous, and considering the set Ωmf (ε),

it naturally comes

A
′′(τmin(ε))

2 A′(θmax)
V 2
m1Ωmf (ε) ≤ K(s̄m, ŝm)1Ωmf (ε) ≤

A
′′(τmax(ε))

2 A′(θmin) V 2
m1Ωmf (ε),

where we denote

• V 2
m = ∑

J |J |ĒJ
[
A′−1(ĒJ)− A′−1(ȲJ)

]2
,

• τmin(ε) = arg min{A′′(A′−1[(1− ε)A′(θmin)]), A′′(A′−1[(1 + ε)A′(θmax)])}, and

• τmax(ε) = arg max{A′′(A′−1[(1− ε)A′(θmin)]), A′′(A′−1[(1 + ε)A′(θmax)])}.

The goal is then to link K(s̄m, ŝm) to the χ2
m term, which is defined as in the Poisson

case by χ2
m = ∑

J∈m |J |
(
ȲJ − ĒJ

)2
/ĒJ .

Applying Taylor’s decomposition to A′−1, we get

K(s̄m, ŝm) =
∑
J∈m
|J |

(
ȲJ − ĒJ

)2

ĒJ

[[
(A′−1)′(c)

]2
ĒJA

′′(z)/2
]

for a real number c between ȲJ and ĒJ . Considering once more the set Ωmf (ε) yields

A′(θmin)
2

A
′′(τmin(ε))

A′′(τmax(ε))2χ
2
m1Ωmf (ε) ≤ K(s̄m, ŝm)1Ωmf (ε) ≤

A′(θmax)
2

A
′′(τmax(ε))

A′′(τmin(ε))2χ
2
m1Ωmf (ε).
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Now we have

|m|A
′′(τmin(0))
A′(θmax)

≤ E[χ2
m] ≤ |m|A

′′(τmax(0))
A′(θmin) , and thus

A′(θmin)
A′(θmax)

A
′′(τmin(ε))A′′(τmin(0))

2A′′(τmax(ε))2 |m| − E
[
χ2
m1Ωmf (ε)C

]
≤ E

[
K(s̄m, ŝm)1Ωmf (ε)

]
.

It then remains to control E
[
χ2
m1Ωmf (ε)C

]
. Since χ2

m ≤
[∑t

(Yt−Et)]2
Γ(logn)2A′(θmin) , using Cauchy-

Schwarz inequality we get

E
[
χ2
m1Ωmf (ε)C

]
≤

[∑
t E [Yt − Et]4 + 6∑(t,l),l 6=t E [Yt − Et]2 E [Yl − El]2

]1/2
Γ(log n)2A′(θmin) P (Ωmf (ε)C)1/2

≤

[∑
t(κ4,t + 3V ar(Yt)2) + 6∑(t,l),l 6=t V ar(Yt)V ar(Yl)

]1/2
Γ(log n)2A′(θmin) P (Ωmf (ε)C)1/2

≤

[
12nκmaxA′(θmax) + 6n2A

′′(τmax(0))2
]1/2

Γ(log n)2A′(θmin) P (Ωmf (ε)C)1/2

≤ C(Γ, θmin, θmax, κmax, ε, a)
na/2−α

with 0 < α < 1. Finally, since E
[
K(s̄m, ŝm)1Ωmf (ε)C

]
≥ 0, we can conclude that

K(s, s̄m) + A′(θmin)
A′(θmax)

A
′′(τmin(ε))A′′(τmin(0))

2A′′(τmax(ε))2 |m| − C(Γ, θmin, θmax, κmax, ε, a)
na/2−α

≤ E [K(s̄m, ŝm)] .

2. We have γ̄(s̄m′) − γ̄(ŝm′) = ∑
J∈m′ |J |(EJ − YJ)(A′−1(ĒJ) − A′−1(ȲJ)) which can be

bounded by
√
χ2
m′

√
V 2
m′ . By the above, we get, for any positive κ,

γ̄(s̄m′)− γ̄(ŝm′) ≤
κ

2χ
2
m′ +

κ−1 A′(θmax)
A′′(τmin(ε)) K(s̄m′ , ŝm′).

We can control the χ2 term using Bernstein’s inequality combined with the exponen-

tial bound on YJ , to obtain:

P
[
χ2
m1Ωmf (ε) ≥ |m|

A
′′(τmax(0))
A′(θmin) + 8κmax (1 + ε)

√
x|m|+ 4κmax (1 + ε)x

]
≤ e−x.

3. Finally, the term γ̄(s̄m) − γ̄(s) = ∑
J∈m

∑
t∈J (Yt − Et)

(
θt − A′−1(ĒJ)

)
can be con-

trolled using Cauchy-Schwarz inequality as in the paper, yielding

|E[(γ̄(s̄m)− γ̄(s))1Ωmf (ε)]| ≤
(
nA

′′(τmax(0))
)1/2

.(θmax − θmin).(P (Ωmf (ε)C)1/2.
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Now integrating each term together in the inequality

K(s, ŝm′) ≤ K(s, s̄m)− pen(m′) + pen(m)

+ (γ̄(s̄m′)− γ̄(ŝm′)) + (γ̄(s)− γ̄(s̄m′)) + (γ̄(s̄m)− γ̄(s))

gives, for m′ = m̂,

ε

1 + ε
h2(s, ŝm̂)1Ω(ε,ξ) ≤ K(s, s̄m)1Ω(ε,ξ) +R1Ω(ε,ξ) − pen(m′) + pen(m)

+|m̂|Ca(1 + ε)
[
1 + A′(θmin)κmax

A′′(τmax(0)) (1 + ε)
(

8
√
Lm̂ + ε+ 4Lm̂

)]
+ 2Lm̂|m̂|

+2ξ
[
1 + Ca(1 + ε)A

′(θmin)κmax
A′′(τmax(0)) (1 + ε)

(
82
ε

+ 4
)]
,

with Ca = 1
2
A
′′ (τmax(0))

A′′ (τmin(ε))
A′(θmax)
A′(θmin) .

Then by some simple bounding we get

Ca(1 + ε)
[
1 + A′(θmin)κmax

A′′(τmax(0)) (1 + ε)
(

8
√
Lm̂ + ε+ 4Lm̂

)]
+ 2Lm̂ ≤ β

(
1 + 4

√
Lm̂

)2

and conclude taking pen(m) ≥ β
(
1 + 4

√
Lm̂

)2
. As always in such approaches, the penalty

function depends on the familyMn through the choice of the weights Lm. In the segmen-

tation context where we conduct an exhaustive search of the possible models, choosing the

the classical LK = 1 + κ+ log
(
n

K

)
for all partition m in K segments results in obtaining

the exact same penalty shape as in the Poisson and negative binomial cases, namely

pen(m) = βK

(
1 + 4

√
1.1 + log

(
n

K

))2

.

The end of the argument follows as in the negative binomial and Poisson cases, and we

obtain successively

E
[
h2(s, ŝm̂)

]
≤ C1

β inf
m∈Mn

{K(s, s̄m) + pen(m)}+ C2(Γ, θmin, θmax, κmax, β,Σ), and

E
[
h2(s, ŝm̂)

]
≤ Cβ log(n) inf

m∈Mn

{E[K(s, ŝm)]}+ C(Γ, θmin, θmax, κmax, β,Σ).
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Note that in this context the constant β depends on the constraints imposed on the

distribution s, such as θmin, θmax, κmax, etc. In practice this is not a major drawback since β

is tuned according to the data using the slope heuristic, so that these constraints are taken

into account. Moreover the constants Ca and A′(θmin)
A′′(τmax(0)) can be computed explicitly

when the distribution is specified. However in some cases performing the computations

directly might give more precise results. For instance in the Poisson case, one will obtain

E[χ2
m] = |m| directly instead of using the bounds λmin

λmax
|m| ≤ E[χ2

m] = λmax
λmin
|m|. For this

reason in Table 2.2 we give examples of distributions which fit in our framework as well as

the constraint κmax defined earlier, but not the values of the other constant obtained.

distribution
fixed

θ c κmax
parameter

N (µ, σ2) σ2 µ/σ2 1 σ2/µmin

E(λ) −λ
1 1∗

λmin λ−1
min

P(λ) log(λ) 1 1

B(p) log
(

p
1−p

)
1 1

B(m, p) m log
(

p
1−p

)
1 1

G(p) log(1− p) pmin 2/pmin
NB(p, φ) φ log (1− p) pmin 2/pmin

Gam(α, β) α −β
1 1∗

βmin β−1
min

Table 2.2: Distributions from the exponential family and characteristics. For the

exponential and gamma distribution, we distinguish the cases where λmin (resp. βmin) is

larger than 1 (denoted by ∗) from the general case.

null
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2.3 Constrained HMM approach

We now propose a second method for the selection of the number of segments which

is based on classification-based approaches (see Section 1.2.3). Indeed, as stated in this

Section, an Integrated Completed Likelihood (ICL) criterion has been proposed by Rigaill

et al. (2012) in a Bayesian segmentation context to select the number of segments. The

goal of this work, in collaboration with Dr Rigaill, Dr Luong and Pr Nuel, was to propose

an approximation of the ICL criterion, which we call the conditional ICL, which could be

computed in linear time.

Details of these computations are given in the paper (available at http://arxiv.org/

abs/1211.3210) presented below.

http://arxiv.org/abs/1211.3210
http://arxiv.org/abs/1211.3210
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Fast estimation of the Integrated Completed Likelihood criterion

for change-point detection problems with applications

to Next-Generation Sequencing data

Alice Cleynen, The Minh Luong, Guillem Rigaill and Gregory Nuel

abstract

In this paper, we consider the Integrated Completed Likelihood (ICL) as a useful crite-

rion for estimating the number of changes in the underlying distribution of data, specifically

in problems where detecting the precise location of these changes is the main goal. The

exact computation of the ICL requires O(Kn2) operations (with K the number of segments

and n the number of data-points) which is prohibitive in many practical situations with

large sequences of data. We describe a framework to estimate the ICL with O(Kn) com-

plexity. Our approach is general in the sense that it can accommodate any given model

distribution. We checked the run-time and validity of our approach on simulated data

and demonstrate its good performance when analyzing real Next-Generation Sequencing

(NGS) data using a negative binomial model. Our method is implemented in the R package

postCP and available on the CRAN repository.

Keywords

Hidden Markov Model; Integrated Completed Likelihood; Model Selection; Negative

Binomial; Segmentation

2.3.1 Introduction

The estimation of the number of segments is a central aspect in change-point methodol-

ogy. For instance, in the context of CGH-array or Next-Generation Sequencing experiments,

identifying the number and corresponding location of segments is crucial as the segments



2.3.1 - Introduction 129

may relate to a biological event of interest. This theoretically complex problem can be han-

dled in the more general context of model selection, leading to the use of ad hoc procedures

in practical situations.

Among the procedures are the use of classical criteria based on penalized likelihoods

such as the Akaike Information Criterion (AIC) and the Bayes Information Criterion (BIC

or SIC, Yao, 1988). However, when choosing the number of segments, the BIC crite-

rion uses a Laplace approximation requiring differentiability conditions not satisfied by the

model, which thus may not be appropriate when the number of observations in each seg-

ment are unequal and unknown. These criteria also tend to overestimate the number of

segments as the clustering within segments tends to be ignored, as shown by Zhang and

Siegmund (2007) who proposed a modified BIC criterion using a Brownian motion model

with changing drift for the specific case of normal data.

For this reason, there has been an extensive literature influenced by Birgé and Mas-

sart (2001) which proposes new penalty shapes and constants in order to select a lower

number of segments in the profile. The idea is to choose the model that, within a set of

models, performs closest to the true value by deriving a tight upper bound on the variance

term. This leads to penalties that generally depend only on the number of segments K,

and whose constants can be chosen adaptively to the data (Lavielle, 2005; Lebarbier,

2005). However, a large proportion of those methods focused on normal data, and are not

applicable to count datasets modeled by the Poisson or the negative binomial distributions.

Other approaches for model selection appearing in the literature include sequential

likelihood ratio tests (Haccou and Meelis, 1988) and Bayesian approaches through es-

timating model posterior probabilities by various MCMC methods (Green, 1995; Chib,

1998; Andrieu et al., 2001; Fearnhead, 2005). However, the Bayesian approaches are

often computationally intensive as they require re-sampling.

In the context of incomplete data models (e.g. mixture model for clustering)

Biernacki et al. (2000) proposed a model selection criterion accounting for both ob-

served and unobserved variables based on the Integrated Completed Likelihood (ICL):∑
S P(S|X) logP(S|X) where X are the observations and S are the corresponding (un-
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known) clustering membership.

Rigaill et al. (2012) proposed the use of the ICL criterion in the multiple change-point

detection context. Hence, the segmentation S can be considered as a set of unobserved

variables in the sense that the segment-labels of each datapoint are not known. In this

context, we can select the number of segments as:

K̂ = arg min
K

ICL(K) where ICL(K) = − logP(X,K) +H(K), (2.1)

with H(K) = −∑S∈MK
P(S|X,K) logP(S|X,K), andMK representing the set of all seg-

mentations of the signal in K segments.

The entropy term H(K) can be viewed as an intrinsic penalty to quantify the reliability

of a given model with K segments by characterizing the separation of the observations

in different segments. In other words, for fixed K segments, the entropy H(K) thus will

be lower when the best segmentation provides a much better fit compared to other seg-

mentations with the same number of segments, hence favoring models which provide the

most evidence of similarity within the detected segments. While other penalized likelihood

approaches are designed to select the most likely number of segments by relying on approx-

imation of posterior probabilities or oracle inequalities, the ICL criterion aims at selecting

the number of segments with the lowest uncertainty.

In the context of Hidden Markov Models (HMMs), it is well known that the posterior

distribution P(S|X,K,ΘK) can be efficiently computed using standard forward-backward

recursions with O(K2n) complexity (Martin and Aston, 2012). However, the HMM

requires that emission parameters take their values in a limited set of levels which are

recurrently visited by the underlying hidden process.

In the segmentation context, where each segment has its own specific level, an exact

algorithm with O(Kn2) complexity computes the ICL in a Bayesian framework. In a sim-

ulation study, Rigaill et al. (2012) showed that the ICL performed better than standard

model selection criteria such as BIC or Deviance Information Criterion (DIC). However

the quadratic complexity and numerical precision restrict the use of this Bayesian ICL to

relatively small profiles.
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In this paper we suggest a computation of the ICL conditionally on the segment param-

eters and we propose a fast two-step procedure to compute this conditional ICL criterion

with linear complexity in order to select the number of segments within a set of change-

point data. First, we specify a range of possible K number of change-points, from one to

a user-defined Kmax. We estimate the parameters of the segmentation in K segments, and

given these estimates, we compute the ICL for each value of K in the range. Second, we

select the K which minimizes the ICL criterion. In essence, our conditional ICL explores

only one aspect of the segmentation uncertainty, the position of the change-points, and

ignores the uncertainty due to the segment parameters.

Section 2.3.2 describes the ICL estimation procedure, through the use of a constrained

hidden Markov model and Section 2.3.3 validates the approach by presenting the results

of different simulations for detecting the correct number of change-points. Finally, Section

2.3.4 is a discussion of our method supported by a comparison with a few segmentation

algorithms on data-sets simulated by re-sampling real RNA-Seq data, and an illustration

on the original dataset from an experiment on a chromosome from the yeast species from

the same study.

2.3.2 Integrated Completed Likelihood criterion estimation using

a constrained HMM

In this paper we use the following segment-based model for the distribution of X given

a segmentation S ∈MK :

P(X|S; ΘK) =
n∏
i=1

gθSi (Xi) =
K∏
k=1

∏
i:Si=k

gθk (Xi) (2.2)

where gθSi (·) is the parametric distribution (ex: normal, Poisson, negative binomial, etc.)

with parameter θSi , ΘK = (θ1, . . . , θK) is the global parameter, Si ∈ {1, . . . , K} is the index

of the segment at position i (ex: S1:5 = 11222 corresponds to a segmentation of n = 5 points

into K = 2 segments with a change-point occurring between positions 2 and 3), andMK

is the set of all possible partitions of S1, . . . , Sn with a fixed K number of segments, such

that S1 = 1 and Sn = K, and Si − Si−1 ∈ {0, 1} for all i = 2, . . . , n.
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One should note that although this model has the same emission probabilities as its

HMM counterpart, the constraints on the sequence S correspond exactly to the segmenta-

tion model where each segment has its own level, and not to any HMM where levels take

their value in a recurring set.

Fast estimation of posterior quantities in ICL criterion

Our goal is to compute the conditional ICL given by the following equation :

K̂ = arg min
K

ICL(K|ΘK)

where ICL(K|ΘK) = − logP(X,K|ΘK) +H(K|ΘK). (2.3)

The objective of this conditional ICL is to reproduce the performance of the non-

conditional ICL (in Equation 2.1). The conditional ICL criterion is well defined given

a prior distribution on the segmentations: P(S,K). We will only consider priors that can

be decomposed as: P(S,K) = P(S|K)P(K); this choice is discussed in a later section. In

both the conditional and non-conditional ICL, the first term, logP(X,K) (and respectively

logP(X,K|ΘK)), depends on both P(S|K) and P(K), however, the entropy term only de-

pends on P(S|K).

To estimate this entropy term, we consider a specific hidden Markov model with con-

straints chosen specifically to correspond to a segmentation model (Luong et al., 2013)

where the change-points separate segments consisting of contiguous observations with the

same distribution. Introducing a prior distribution P(S,K) on any S ∈ MK , yields the

posterior distribution of the segmentation:

P(S,K|X; ΘK) = P(X|S,K; ΘK)P(S,K)∑
R P(X|R,K; ΘK)P(R,K) . (2.4)

Considering the prior P(S,K) = P(S|K)P(K) and fixing the value of K, let us assume

that S is a heterogeneous Markov chain over {1, 2, . . . , K,K + 1}. We only allow for
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transitions of 0 or +1 by constraining the chain with:

P(S1 = 1) = 1

∀2 6 i 6 n, ∀1 6 k 6 K,

 P(Si = k|Si−1 = k) = 1− ηk(i)

P(Si = k + 1|Si−1 = k) = ηk(i),

where ηk(i) is the transition probability from the kth segment to k + 1 for observation i.

In the general case where K is not fixed, the choice of prior on S is known to be a critical

point. However previous methods include the use of non-informative priors (Zhang and

Siegmund, 2007) when K is fixed. For that reason, we focus on the uniform prior by

setting ηk(i) = η for all k and i. Note that this particular case corresponds to the uniform

prior P(S|K) = 1/
(
n−1
K−1

)
= 1/|MK | which is used in Rigaill et al. (2012).

To estimate the properties of the Kth state we introduce a ‘junk’ state K + 1, and for

consistency we choose P(Si = K + 1|Si−1 = K + 1) = 1. We then estimate the emission

distribution by using the maximum likelihood estimate gθ̂k(xi), or alternatively the E-M

algorithm.

We define the forward and backward quantities as follows for observation i and state k:

For 1 6 i 6 n− 1:

Fi(k) = P(X1:i = x1:i, Si = k|Θ̂k)

Bi(k) = P(Xi+1:n = xi+1:n, Sn = k|Si = k, Θ̂k).

We may use the following recursions to estimate the forward and backward quantities:

F1(k) =

 gθ̂1(x1) if k = 1

0 else
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Fi+1(k) = [Fi(k)(1− ηk(i+ 1)) + 1k>1Fi(k − 1)ηk(i+ 1)] gθ̂k(xi+1)

Bn−1(k) =


ηK(n)gθ̂k(xn) if k = K − 1

(1− ηK(n))gθ̂k(xn) if k = K

0 else

Bi−1(k) = (1− ηk(i))gθ̂k(xi)Bi(k) + 1k<Kηk+1(i)gθ̂k+1
(xi)Bi(k + 1)

These quantities can then be used to obtain the marginal distributions µi and the

transition πi, being terms needed for the calculation of the entropy H(K|Θ̂K) with:

µi(k) = Fi(k)Bi(k)
F1(1)B1(1) (2.5)

πi(k, k′) =
P(Si = k′|Si−1 = k)gθ̂k(xi)Bi(k′)

Bi−1(k) . (2.6)

where

P(Si = k′|Si−1 = k) =


1− η if k′ = k

η if k′ = k + 1

0 else

.

Calculation of logP(X,K|ΘK)

The non-conditional term P(X,K) can be written as ∑
S∈MK

P(S,K,X) =∑
S∈MK

P(X|S,K)P(S|K)P(K). In our constrained HMM approach we will therefore com-

pute, for a given parameter Θ̂K for which the choice will be discussed later on, P(X,K|Θ̂K)

as∑S∈MK
P(X|S,K, Θ̂K)P(S|K)P(K), using the classic priors P(K) = α and the previously

discussed uniform prior P(S|K) = 1/
(
n−1
K−1

)
. The remaining term ∑

S∈MK
P(X|S,K, Θ̂K) is

then obtained directly using forward-backward recursions. Specifically, we obtain:

∑
S∈MK

P(X,S ∈MK |K, Θ̂K) = F1(1)B1(1) and

P(S ∈MK |K, Θ̂K) = F 0
1 (1)B0

1(1)

where Fi(k) and Bi(k) are the HMM forward and backward recursions as described, and
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F 0
i (k) and B0

i (k) are forward and backward terms obtained with the usual recursions where

each emission probability is replaced by 1.

The likelihood term is finally obtained as

P(X,K|Θ̂K) = P(K)(
n−1
K−1

) F1(1)B1(1)
F 0

1 (1)B0
1(1) . (2.7)

Estimation of H(K)

The ICL can be expressed, with the entropy term H(K) estimated by H(K|Θ̂K) =

−∑S P(S|X,K, Θ̂K) logP(S|X,K, Θ̂K), as (Biernacki et al., 2000):

ICL(K|Θ̂K) = P(X,K|Θ̂K) +H(K|Θ̂K), (2.8)

with K being the number of segments.

For a fixedK, the constrained HMM is an efficient way to estimate the posterior segmen-

tation distribution P(S|X,K, Θ̂K) for a given set of parameters Θ̂K . This model consists of

a heterogeneous Markov chain (HMC) with marginal distribution µi(Si) = P(Si|X,K, Θ̂K)

and heterogeneous transition πi(Si−1, Si) = P(Si|Si−1, X,K, Θ̂K). Those quantities can be

computed with the recursive formulas as described above.

It is hence easy (Hernando et al., 2005) to derive the following expression for the

entropy term:

H(K|Θ̂K) = −
∑
S1

µ1(S1) log µ1(S1) +
n∑
i=2

∑
Si−1,Si

µi−1(Si−1)πi(Si−1, Si) log πi(Si−1, Si)
(2.9)

Note that information theory ensures that we have 0 6 H(K|Θ̂K) 6 log
(
n−1
K−1

)
.

The original entropy term, H(K) has an expression including posterior probabilities,

thus requiring the estimation of the posterior distribution of S as detailed in Section 2.3.2.

While it can be computed with quadratic complexity O(Kn2) (Rigaill et al., 2012) and

intensive operations on probability matrices, its exact computation is usually intractable for

large datasets of tens of thousands points or more. The forward-backward recursions of the
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HMM and Equation (2.9) allow its estimation with linear complexity O(Kn). One should

note that the key point for fast computation lies in the fact that we work conditionally on

Θ̂K rather than considering the whole parameter space.

Model selection procedure using ICL

For any givenK, using our constrained HMMmethod requires a set of initial parameters

ΘK = {θ̂k}1≤k≤K . Because the quality of the results depends on the choice of those initial

values, we propose the use an effective segmentation algorithm to obtain a set of K − 1

change-points, which can in turn be used to estimate the parameters Θk through maximum

likelihood estimation.

We considered several options for the initialization algorithm: for normally distributed

data we considered a K-means algorithm (Hartigan and Wong, 1979; Comte and

Rozenholc, 2004), which is a greedy method that minimizes the least-squares criterion,

as well as binary segmentation (Scott and Knott, 1974), a fast heuristic to optimize

the log-likelihood criterion. We also used the pruned dynamic programming algorithm

(Rigaill, 2010), a fast algorithm to compute the optimal segmentation according to loss

functions including Poisson, negative binomial or normal losses. We then use the Viterbi

algorithm (Viterbi, 1967) to obtain the a posteriori most probable set of change-points.

To estimate the ICL of a change-point model withK segments, we compute the posterior

probabilities of interest through the forward-backward algorithm as previously described,

which is implemented in the postCP package (available on the CRAN : http://cran.

r-project.org/web/packages/postCP).

This procedure is repeated for a range of possible values of K: Krange = {1, . . . , Kmax}.

We finally choose the number of segments by minimizing the ICL criterion upon all values

of K in Krange, i.e.

K̂ICL = arg min
K∈Krange

ICL(K|Θ̂K). (2.10)

http://cran.r-project.org/web/packages/postCP
http://cran.r-project.org/web/packages/postCP
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2.3.3 Validation

To validate the quality of our approach we first evaluated the impact of the initialization

parameters. We implemented the Baum-Welch algorithm (Baum et al., 1970) for use as

a reference, and computed the Rand Index between the segmentation resulting from the

Baum-Welch approach to those resulting from our algorithm with different other initializa-

tion methods. The Rand Index compares the adequacy between different segmentations by

computing the proportion of concordant pairs of data-points, including the proportion of

pairs that either belong to the same segment in the two competitive segmentations, or that

are in different segments in both segmentations. In a second step, we evaluated the results

of our algorithm in terms of model selection on two sets of simulations.

Impact of initialization parameters

Because of the long run-time of the Baum-Welch (BW) algorithm, we consid-

ered a small simulation study where the data of size n = 1, 000 is simulated from

the Poisson distribution with parameter λ subject to 9 change-points (at locations

100, 130, 200, 475, 500, 600, 630, 800 and 975) and taking the successive values 1, 4.3, 1.15, 6

and 4.2 repeated twice. On each of the 1, 000 replications, we ran our constrained HMM

segmentation approach considering the number of segments to be known, but with differ-

ent initialization parameters: those obtained by the Baum-Welch algorithm, those obtained

by the pruned dynamic programming algorithm (PDPA), those obtained with a k-means

approach and those obtained by running the Binary Segmentation (BinSeg) (Scott and

Knott, 1974) for the Poisson distribution.

The results are illustrated in Figure 2.8. As expected, the Rand Index between the

estimation by the Baum-Welch algorithm and the PDPA algorithm is very close to 1, and

it decreases with other initialization methods that are not exact. Moreover, on average

the Baum-Welch algorithm required 15.2 iterations when itself initialized with the PDPA

output, while the run-time for the initialization by PDPA requires 0.24 seconds and an

iteration of BW, 0.04 seconds. This finding suggests that the combination of PDPA and
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postCP is advantageous in terms of run-time with a negligible difference in results, especially

since the number of iterations of BW grows as n and the number of segments increase (not

shown here).
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Figure 2.8: Rand Index for the comparison of initialization methods. Boxplot

of the Rand Index comparing the segmentation proposed by the method depending

on their initialization compared to the full HMM model with Baum-Welch algorithm.

As expected, the difference observed between BW and initialization with the PDPA

algorithm is very small.

Validation of the ICL approach

Our first simulation study consisted of relatively small signals (n = 500 points) where

we compared our approach to the quadratic non-conditional algorithm. In our second

simulation study, with larger signals (n = 50, 000), we only ran our fast ICL criterion due

to computing limitations.

The simulation designs were as follows:
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Small design. We used a similar simulation design suggested by Rigaill et al.

(2012): we simulated a sequence of 500 observations from a Poisson model (requiring the

choice of only one parameter) affected by six change-points at the following positions:

22, 65, 108, 219, 252 and 435. Odd segments had a mean of 1, while even segments had a

mean of 1 + λ, with λ varying from 0 to 9. Thus, the true number of change-points were

more easily identified with higher values of λ. For each configuration, we simulated 1,000

sequences.

Large design. We repeated the preceding procedure for large-scale datasets. We gen-

erated a sequence of 50, 000 observations with K = 40 segments by randomly selecting 39

change-points whose locations were drawn from a uniform distribution (without replace-

ment), with each segment needing to be at least of length 25. For this sample size, we focus

on the results from our approximated ICL as the non-conditional ICL implementation is

not fast enough to be practical in this situation. For each configuration, we simulated 100

sequences.

We compared the performances of three different criteria:

• The conditional ICL greedy (C-ICL-g) criterion where initial parameters are obtained

by the greedy algorithm using least-squares, and using the criterion described in the

previous section and given by Equation (2.10) .

• The conditional ICL exact (C-ICL-e) criterion which corresponds to an initialization

of the parameters using the pruned dynamic programming algorithm with Poisson

loss.

• The non-conditional ICL (NC-ICL) criterion as described in Rigaill et al. (2012).

The hyper-parameters used for the prior on the data-distribution were set to 1. This

choice is discussed in the previous paper. In this simple scenario, the results were

robust to changes in the hyper-parameters (result not shown).

Figure 2.9 summarizes the results of the simulation study for simulations of length

500. While the non-conditional ICL criterion had the highest amount of correct estimates

of number of segments K̂, the faster ICL with pruned PDPA performed almost as well.
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Of note, the average run-times of the methods were 4.2 seconds for the non-conditional

approach, 0.001 and 0.12 seconds respectively for the initialization of postCP with the

k-means and PDPA algorithms, and 0.46 seconds for the postCP algorithm.
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Figure 2.9: Performance of our method on small datasets. Out of a thousand

simulations on datasets of length n = 500, percentage of times where each criterion,

non-conditional ICL, conditional ICL with greedy initialization and conditional ICL

with exact initialization, selected the appropriate number of segments, K = 7, as the

segment-level ratio increases.

Figure 2.10 summarizes the results of the simulation study for simulations of length

50, 000. For these larger sequences, the conditional ICL criteria performed much better

when the initial change-point set was detected by PDPA than with the greedy algorithm. As

the segmentation problem becomes more difficult with more segments, the greedy algorithm

is less successful in providing accurate initial change-point location estimates. As a result,
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less accurate values of Θ̂K are used and the conditional ICL is not as effective in predicting

the number of segments as in the smaller sample size example.
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Figure 2.10: Performance of our method on large datasets. Out of a hundred

simulations on datasets of length n = 50, 000, number of times the conditional ICL

criteria (with greedy and with exact initialization) selected the appropriate number of

segments, K = 40, as the segment-level ratio increases.

On the other hand, the conditional ICL combined with PDPA detected the correct

number of segments more than 80% of the time with larger inter-segmental differences of

λ > 2. The average run-time for the initialization was 1.32 seconds for k-means and 142

seconds for PDPA, while the model selection procedure required on average 1, 240 seconds

(≈ 20 minutes). Despite the longer run-time, it is advised to use the PDPA for model

selection in very long sequences as it provides a more accurate set of change-points than

greedy methods.
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2.3.4 Discussion

Choice of Kmax

Our strategy to compute the estimate of the ICL proceeds in two steps. First, we

recover all the best segmentations in 1 to Kmax segments. Then, using the parameters from

all these Kmax segmentations as an initialization, we run a forward-backward algorithm.

The initialization step takes on average an O(Kmaxn log n) complexity using the PDPA

(see Rigaill, 2010). The complexity of the second step is in O(Kmaxn). Depending on the

applications, it might be desirable or not to consider Kmax of the order of n, (see Killick

et al., 2012, for a discussion). In the second case, our strategy is efficient. On the other

hand, in the first case the initialization step is on average in O(n2 log n) and at worst in

O(n3), while the second step is in O(n2). The first step is thus the limiting factor.

When the goal is to initialize the HMM by recovering all the best segmentations of 1 to

n segments, which we showed to be desirable for the quality of the procedure, there exists to

our knowledge no faster algorithms to obtain an exact solution to this problem. Moreover,

in any case, enumerating the ∑n
k=1 k change-points of these n segmentations is already

quadratic in n. An alternative is to use the binary segmentation heuristic (Venkatraman

and Olshen, 2007) which is on average in O(log(Kmaxn)). In that case the limiting factor

is the second step which still is quadratic in n.

Thus, we believe our strategy is most suited for the second case, when Kmax is much

smaller than n. In the first case, when Kmax is of the order of n, our strategy is at least

quadratic in n and its application is limited to medium size profiles.

Re-sampling of yeast RNA-Seq data

To assess the quality of our criteria, we performed the following simulation study to

compare two previously published packages on CRAN, segclust (Picard et al., 2007),

which uses adaptive penalized likelihoods and DNA copy, an implementation of binary
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segmentation for multiple change-points (Venkatraman and Olshen, 2007), with our

model selection method with the conditional ICL criterion. We performed the following

re-sampling procedure using real RNA-seq data. The original data, from a study by the

Sherlock Genomics laboratory at Stanford University, is publicly available on the NCBI’s

Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra) with the accession

number SRA048710. We clustered the observed signal into the following classes: intronic

region, low expressed, medium expressed and highly expressed genes that we will refer to

as levels 1, 2, 3 and 4. We then designed four simulation studies, each repeated 100 times,

by varying the number and level of segments as well as the signal and segment sizes, as

described in the left Figures 2.11 through 2.14. On each segment, the data was obtained

by re-sampling (with replacement) the observations in the classified clusters.

To assess the performance of our fast ICL approach in segmentation, we used three

different distributions as the emission distribution gθ(·) a normal distribution (postCP-N),

a Poisson distribution (postCP-P) and negative binomial (postCP-NB) and used PDPA to

obtain the initial set of parameters. In all cases, we used homogeneous Markov chains with

uniform priors; it is of note that the results of the constrained HMM methods may improve

with informative priors (Fearnhead, 2005), for example those taken from a posteriori

estimates. For segclust, DNAcopy, and postCP-N, which assume a normal distribution, we

applied the methods to the data after the widely used log(x+ 1) transformation. In all our

simulation studies, postCP-P grossly overestimated the number of segments, so the results

are not displayed here.

In the simplest case, the left part of Figure 2.11 illustrates the resampling scheme for

n = 1, 000 and K = 10 evenly spaced segments, displaying the levels used for each segment

and the change-point locations. The right part of the figure displays a boxplot of the

number of segments found by each approach. In this quite unrealistic scenario, postCP-BN

estimated the correct number of segments in 63 of 100 replicates. The next best algorithms

were postCP-N and DNAcopy, respectively, which both slightly underestimated the number

of segments. The segclust procedure provided a consistent underestimate of the number of

http://www.ncbi.nlm.nih.gov/sra
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Figure 2.11: Algorithm comparison on short and regular dataset. n = 1, 000

datapoints and K = 10 equal segments. (Left) Re-sampling schema displaying levels

and lengths of segments. (Right) Boxplot of estimated number of segments K̂ for four

different segmentation procedures for 100 simulations.

segments.

Figure 2.12 illustrates the re-sampling schemes and boxplots for a slightly different and

more realistic scenario of n = 1, 000 and K = 10, with unevenly spaced segments this time.

The results are comparable to the previous except that the methods performed slightly

worse; the median postCP-NB estimate was still correct but missed 1 or 2 segments in 43

replicates. This suggests that postCP has more difficulties in detecting small segments.

We then replicated the methods for larger data sets and unevenly spaced segments.

Figure 2.13 displays the methods and results for a n = 5, 000 and K = 10 scenario. In

this case, DNAcopy performs best, with the median number of estimated segments being

correct. The postCP-NB method gave similar results but missed two change-points in 66 of

the replicates. The segclust algorithm, once again, found consistent but overly conservative

estimates of the number of segments, while postCP-N grossly overestimated the segments

as the log-transformation was not adequate in this design.
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Figure 2.12: Algorithm comparison on short but irregular dataset. n = 1, 000

datapoints and K = 10 uneven segments. (Left) Re-sampling schema displaying levels

and lengths of segments. (Right) Boxplot of estimated number of segments K̂ for 4

different segmentation procedures for 100 simulations.
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Figure 2.13: Algorithm comparison on medium length and irregular dataset.

n = 5, 000 datapoints and K = 10 uneven segments. (Left) Re-sampling schema dis-

playing levels and lengths of segments. (Right) Boxplot of estimated number of segments

K̂ for 4 different segmentation procedures for 100 simulations.
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Figure 2.14: Algorithm comparison on long and irregular dataset. n = 10, 000

datapoints and K = 20 uneven segments. (Left) Re-sampling schema displaying levels

and lengths of segments. (Right) Boxplot of estimated number of segments K̂ for 4

different segmentation procedures for 100 simulations.

To understand the results, we ran the PDPA on the simulated datasets to obtain the

optimal segmentations w.r.t. to negative binomial likelihood imposing K = 10 segments.

We found that in 48 replicates out of 100, this segmentation did not include the second

true segment but rather sheared other segments into more pieces. This finding suggests

that, at least in these 48 replicates, precisely finding the position of the first two changes

might be prohibitively difficult. Thus by selecting K = 8 change-points rather than 10,

postCP-NB is coherent with the goal of the ICL (i.e. selecting a set of segments such that

we are confident in the position of these changes).

In a n = 10, 000 and K = 20 scenario with uneven segments (Figure 2.14), DNAcopy

was again best, with postCP-N and postCP-NB almost as effective, the former method

slightly underestimating the number of segments and the latter approach slightly overesti-

mating them.
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In the investigated scenarios, we found postCP, when the correct negative binomial

distribution was specified, provided accurate and precise results when segments were evenly

spaced, but provided slightly less accurate results in more realistic scenarios where segment

lengths were uneven. The results with postCP-N and postCP-P suggest that the postCP

approach may be susceptible to misspecification of the emission distribution when there are

very small segments present (Figure 2.13). Given the goal of the ICL this is to be expected.

Indeed, it is reasonable to have high uncertainty in the identification of small segments

when the emission distribution is misspecified.

On the other hand, DNAcopy tended to underestimate segments in easier scenarios,

where segments where even, but obtained more accurate results with more realistic un-

even segments. The hybrid segmentation and clustering approach, segclust, generally was

consistent but underestimated the number of segments.

Application to a real data-set

We finally illustrate the procedure on the real data-set from the Sherlock study de-

scribed above, whose underlying characteristics are unknown. The signal corresponds to

the positive strand of chromosome 1 from the yeast genome and has a length of 230, 218.

We used a negative binomial model with global overdispersion parameters and initialized

our procedure using the pruned dynamic programming algorithm (for a runtime of 25

minutes). The postCP algorithm then required 4 hours to analyze the profile, resulting in

a choice of 79 segments.

We also compared these results to those proposed by the previously cited methods.

However, we were not able to run the segclust algorithm on this long profile due to lack

of memory capacity. With a similar runtime, the postCP algorithm with the normal dis-

tribution applied to the log-transformed data resulted in a choice of 80 segments, while

DNAcopy analyzed the signal in 47 seconds for a final choice of 465 segments. Figure 2.15

illustrates the segmentation proposed by each method. For clarity, we focus on a region of

length 50, 000 datapoints, and plotted the signal in a square-root scale. Even though the
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constrained HMM approach chooses almost the same number of segments with different

emission distributions, their corresponding resulting segmentations differ.

Figure 2.15: Segmentation of yeast dataset. The profile corresponding to the

positive strand of chromosome 1 from the yeast genome is of length 230218 and was

segmented by three different methods. This figure illustrates the result on a region of

the signal for our method with the negative binomial as emission distribution (Top),

with Gaussian as emission (Middle) and for the DNAcopy algorithm.

Conclusion

We describe a fast procedure for estimating the ICL criterion in the context of model se-

lection for segmentation. While simulations showed that the performance of the conditional
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ICL approach was almost as good as that of the non-conditional approach, several features

allow for its use in a wide range of applications. The described ICL algorithm is versatile as

it can be applied to data of any model distribution when provided with an initialization for

the HMM, through either maximum likelihood estimation or the expectation-maximization

(E-M) algorithm. While there exists some model selection criteria that could be adapted

to our problem such as the BIC or the MDL (Davis et al., 2006) which provide a balance

between data fitting and model complexity, the ICL also takes into account the entropy

of the segmentation space. Given the very large collection of possible segmentations, we

believe that the ICL is an interesting alternative to more standard model selection criteria.

Furthermore, our procedure can be applied to long signals due to its fast run-time. With

its effective results in finding the number of segments, specifically those where the precise

location of the change-points can be estimated, this paper shows the practicality of the

conditional ICL procedure in a wide variety of segmentation problems.
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2.4 Results on the yeast data-set

In this last chapter, we propose to illustrate the pruned Dynamic Programming algo-

rithm and its associated model selection criteria (see Chapters 2.1 and 2.2) on our bench-

mark dataset. We segmented all 16 chromosomes from the yeast genome, considering the

positive and negative strands separately, so that 32 independent profiles are processed.

The annotation available on the SGD website (http://yeastgenome.org) allows to

obtain an approximate idea of the expected number and location of segments for each

chromosome simply by summing all known coding regions. Of course not all genes from

the chromosome are expressed at the time of the experiments, and ’new’ transcripts are not

taken into account, so that this number remains approximate. There are multiple goals:

• identify expressed genes,

• identify new transcripts,

• obtain information on the length of the UTRs.

For this last objective, it might be useful to recall that the SGD annotation indicates

the boundaries of translated regions (and therefore not that of the UTRs) while RNA-Seq

data gives information on the mature transcribed regions. Comparing the boundaries of

both quantities thus provides the UTR length.

In Table 2.3 are indicated, among other information detailed later, the expected number

of segments (Kex), and the number K̂ estimated by the PDPA, for each strand of each

chromosome (indicated in column #).

It is interesting to note that in all cases where n ≤ 106 and Kex ≤ 600 we obtain a K̂

larger than the expected numbers, while it is the contrary in other cases. This is easily

explained by the use of the slope heuristic (Arlot and Massart, 2009) to choose the

penalty constant β. Indeed, it implies exploring values of K much larger than the expected

to estimate βmin. It is very likely that in these cases, our choice of Kmax influences the

resulting estimator.

A closer look at the resulting segmentation shows that most of the difference between

http://yeastgenome.org
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# length Positive strand Negative strand
Kex K̂ K̂f rt Kex K̂ K̂f rt

1 230, 218 137 201 142 85 123 198 148 83
2 813, 184 497 530 426 433 551 584 476 491
3 316, 620 191 302 220 132 223 288 202 146
4 1, 531, 933 919 713 604 1070 961 710 614 1087
5 576, 874 361 480 350 316 365 449 338 299
6 270, 161 163 219 160 103 167 269 196 106
7 1, 090, 940 671 645 542 678 637 627 502 677
8 562, 643 385 458 346 292 353 423 334 287
9 439, 888 273 345 262 195 283 365 278 208
10 745, 751 467 531 416 389 419 518 400 405
11 666, 816 405 493 384 368 355 468 362 361
12 1, 078, 177 637 608 478 669 671 631 510 668
13 924, 431 589 604 506 541 567 593 478 545
14 784, 333 519 580 472 436 451 529 426 440
15 1, 091, 291 667 613 508 652 621 626 530 681
16 948, 066 609 637 510 555 559 572 458 545

Table 2.3: Output of the pruned dynamic algorithm. Expected number of segments
(Kex), number proposed by the algorithm (K̂), final number after grouping regions (K̂f )
and runtime (rt, in minutes).

Kex and K̂ is induced by extra change-points inside segments corresponding to expressed

regions. This is for instance illustrated in Figure 2.16 which corresponds to a subset of the

negative strand of chromosome 3. The first two genes of this region are not expressed at the

time of the experiment, while others appear to have approximate official boundaries, and

some are divided in sub-pieces by the algorithm. This last observation can be explained

either by the technology biases introduced in the data which results in some regions being

sequenced with deeper coverage than others, or by alternative splicing phenomena, i.e.

subregions of genes not expressed in equal proportions in the cell. Columns K̂f of Table 2.3

gives the final number of detected transcripts, i.e. after grouping over-segmented regions

based on the value of the estimated parameter of each segments. We were then able to

identify over a dozen regions of the genomes which had not been annotated as coding and

for which the signal intensity gives support to their corresponding to new transcripts.

To address the question of UTR length, we used a paper from Nagalakshmi et al.

(2008) from which we extracted Figure 2.17 giving the empirical distribution of both the
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Figure 2.16: Subset of the segmentation of chromosome 3 (negative strand).

Pink regions correspond to the official SGD gene-annotation, while blue vertical lines

are change-points found by the PDPA.

3 prime and 5 prime UTR lengths. Using this information, we defined the maximum

acceptable distance between a change-point and the annotation as 250 bases for the 3′

UTR and 500 bases for the 5′ UTR. Figure 2.18 illustrates the distribution obtained using

the PDPA algorithm, and the median lengths associated with it.

We were excited to find that the medians are very similar, as well as the shape of the

distributions, apart from a higher peak around zero for the 3′ UTR. As for the intron

boundaries, we found a median of 3-base difference between the SGD annotation and our

change-points corresponding to expressed genes, suggesting that the annotation of tran-

scribed regions might be quite precise.

We conclude this illustration by analyzing the runtime required by the PDPA algorithm

on a standard laptop (indicated in the rt columns of Table 2.3) on these datasets of various

length, each processed using the same Kmax value. Since the positive and negative strands
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Figure 2.17: Distribution of UTR lengths. From [Nagalakshmi et al. (2008)].

Reprinted with permission from AAAS. In their paper, the authors come up with

the distribution of the UTR lengths (3′ UTR on the left, 5′ UTR on the right) using

empirical methods to detect the shift in the signal from an RNA-Seq experiment.
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Figure 2.18: Distribution of UTR lengths using the PDPA algorithm. Empirical

distribution of the 3′ (left) and 5′ UTR lengths obtained applying the PDPA algorithm

to all 32 series, and limiting the distance between a change-point and the annotation to

250 bases for the 3′ and 500 bases for the 5′ UTR.
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of the chromosome have the same length, we computed the average run-time of both to

plot Figure 2.19. This confirmed that the empirical time complexity of the PDPA is almost

linear in the size of the profiles.
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Figure 2.19: Run time of PDPA on bench-mark dataset. Observed run-time of

the pruned DP algorithm on our benchmark dataset: the x-axis represents the length of

the chromosome, the y-axis the runtime (in minutes). Each chromosome was segmented

in 1 to 1000 segments.

One question that has not be addressed and which would deserve attention in some

future work is that of the coverage needed to perform such analysis. The first difficulty

comes from the definition of coverage in the context of RNA-Seq experiment. Indeed, in

the case of DNA-Seq, the coverage is simply the average number of times each position is

covered by a read. This is equivalent to defining the coverage as

Cv =
∑
re Lre
nc
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where nc is the size of the genome, re are reads of the experiment and Lre their length.

However, by definition, RNA-Seq experiments aim at measuring the transcriptome ac-

tivity, which is expected to differ between genes. It is precisely the difference in coverage

observed in each gene that tells us about their expression. It has been proposed to re-

place the length nc of the genome by the length of the transcriptome (subset of the genome

which corresponds to coding regions) in the definition of the coverage. Though a little more

precise, this does not really tell us about coverage since no distinction is made between ex-

pressed and unexpressed genes. One quantity which appears more appropriate to us is the

number of transcripts detected with at least an X coverage (and in this case the coverage

of a transcript is defined by the previous formula with n replaced by the transcript’s size).

With this definition, our question becomes ’what should X value for the algorithm to

detect a transcript?’ One first natural approach is to compute the power of the Wald

test associated with the equality of successive probability parameters p1 and p2. More

specifically, we test φ1−p1
p1

= φ1−p2
p2

with the statistic

TW =
y1 − y2 −

(
φ1−p1

p1
− φ1−p2

p2

)
√
V ar(y1 − y2)

so that the power of the test, assuming n1 = n2 = n depends on a term in
√
nφ

|p2 − p1|√
p2

2 + p2
1 + p1p2

2 + p2p2
1

.

Now because in non-coding regions the signal is expected to be null, we can approximate

this expression by taking p1 = 1, and the previous formulae becomes
√
nφ

1− p2√
2p2

2 + p2 + 1
.

Figure 2.20 illustrates the power of the test for a typical value of φ = 0.2 and two values of

n: 100 for small transcripts, and 1450 which corresponds to the median size of yeast genes.

In the case of our experiment, we investigated the effect of the total number of reads

by multiplying the data by a constant λ and rounding the value to conserve their count
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Figure 2.20: Power curve of the Wald test. φ has a classical value of 0.2 while we

consider two values for n: 100 for small transcripts, and 1450 corresponding to the median

gene-size in yeast.

characteristic. For each value of λ in (0.1, 0.2, 0.5, 1, 1.5, 2, 3, 5, 7, 10), we estimated K and

computed the value of the parameter of the least expressed detected segment.

Figure 2.21 shows that the estimated number of segments increases smoothly with

lambda, and that the parameter of the least expressed detected segment appears to re-

main stable. However, we observed that the increased number of segments did not result

from identifying more transcribed regions, but from fragmenting some regions into pieces

separated by segments of length smaller than 10 with no signal. Because the reads have a

length of 36 bases, we can ascertain that those non-expressed regions should be classified

as false negatives. In fact, multiplying the signal by a constant λ only affects positions

with non-zero counts, and it is not surprising that even small zero-regions should stand out

between highly expressed regions.

Our conclusion is the following. We can hope that increasing the volume of RNA

introduced in the NGS process will not be equivalent to multiplying the signal by a constant

but will have a more homogeneous impact. In this case, it is likely that our algotithm will
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Figure 2.21: pruned DP algorithm and coverage. Estimated number of segments

and parameter value of least expressed detected region when multiplying true signal by

a constant lambda.

be able to identify more transcribed regions if any were missed. If however the technology

biases should not allow some homogeneous increase, we would not recommend too large a

library size.
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In the previous chapters we have proposed methods to segment long subsets of the

genome. In those cases, whether the goal is to determine which genes are expressed or to

identify new transcripts, the major questions to address are the selection of the number

of segments in the profile, and the identification of their locations. While it is important

to measure the uncertainty associated with the number of segments K, interpreting any

information on the uncertainty in the location of change-points would be very challenging,

especially in contexts where K is in the order of 102 or even larger.

In the framework we consider now, the annotation of individual genes for which the

ultimate goal is the comparison of transcription boundaries between different growth envi-

ronments, we find ourselves in the opposite situation. Indeed, in most cases it will be very

reasonable to assume that the number of segments is known, as it is strongly related to

the number of exons of the gene, while on the contrary, as change-points are associated to

transcript boundaries, it will be crucial to measure the uncertainty associated with their

location.

This section is dedicated to the segmentation issues in the analysis of smaller datasets

for which we request more precise information.
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3.1 Method comparison

In this section we propose a comparison of segmentation methods which can be applied

to RNA-Seq data corresponding to a region containing a gene. Their requirements are two-

fold: the ability to model count datasets, and their non-dependence on reference profiles (it

may be recalled that we are not, as was the case for microarrays, comparing a mutant profile

to a wild-type profile). The paper presented here compares the 5 algorithms presented in

Section 1.2.3, and is joint work with Sandrine Dudoit and Stéphane Robin.
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Comparing segmentation methods for genome annotation

based on RNA-Seq data

Alice Cleynen, Sandrine Dudoit and Stéphane Robin

abstract

Transcriptome sequencing (RNA-Seq) yields massive datasets, containing a wealth of

information on the expression of a genome. While numerous methods have been developed

for the analysis of differential gene expression, little has been attempted for the localization

of transcribed regions, that is, segments of DNA that are transcribed and processed to

result in a mature messenger RNA. Our understanding of genomes, mostly annotated from

biological experiments or computational gene prediction methods, could benefit greatly

from re-annotation using the high precision of RNA-Seq.

We consider five classes of genome segmentation methods to delineate transcribed re-

gions based on RNA-Seq data. The methods provide different functionality and include both

exact and heuristic approaches, using diverse models, such as hidden Markov or Bayesian

models, and diverse algorithms, such as dynamic programming or the forward-backward

algorithm. We evaluate the methods in a simulation study where RNA-Seq read counts

are generated from parametric models as well as by resampling of actual yeast RNA-Seq

data. The methods are compared in terms of criteria that include global and local fit to

a reference segmentation, Receiver Operator Characteristic (ROC) curves, and coverage of

credibility intervals based on posterior change-point distributions. All compared algorithms

are implemented in packages available on the Comprehensive R Archive Network (CRAN,

http://cran.r-project.org). The dataset used in the simulation study is publicly avail-

able from the Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra).

While the different methods each have pros and cons, our results suggest that the EBS

Bayesian approach of Rigaill et al. (2012) performs well in a re-annotation context, as

illustrated in the simulation study and in the application to actual yeast RNA-Seq data.

http://cran.r-project.org
http://www.ncbi.nlm.nih.gov/sra
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3.1.1 Introduction

Many genomes have been annotated, using approaches ranging from in vitro biological

experiments to in silico gene prediction. Today, with the low cost and high precision of

high-throughput sequencing, the question of re-annotation arises. In this context, an inter-

esting problem is the following: given base-level read counts from transcriptome sequencing

(RNA-Seq) and approximate knowledge of a gene’s location from prior heuristic annotation,

is it possible to precisely localize a transcribed region, that is, the set of nucleotides leading

to a mature messenger RNA (mRNA), i.e., a mature transcript. This involves identifying

the set of nucleotides defining the 5′ and 3′ untranslated regions (UTR), i.e., the start and

end of transcription, as well as the boundaries between exons and introns. In this paper,

we use as lax and inclusive definition for a gene, the set of all genomic regions that are

transcribed to eventually form a mature transcript (including all exons and introns and the

5′ and 3′ UTRs) and that can be represented as a discrete interval. Additional motivation

for genome re-annotation based on RNA-Seq data is the ability to localize UTRs: while

available annotation typically only provides the location of translated regions (correspond-

ing to a protein), we consider the annotation of transcribed regions, which are usually larger

than and include translated regions.

A segmentation of a discrete interval {1, . . . , n} of size n (e.g., set of n consecutive nu-

cleotides) is a partition of this interval into disjoint intervals, or segments, whose union is

the original interval. The segmentation is usually summarized by a set of change-points, i.e.,

boundaries between segments. In a statistical inference context, a segmentation is based on

random variables indexed by the elements of the interval to be segmented (e.g., RNA-Seq
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base-level read counts). The random variables have segment-specific distributions and the

change-points correspond to changes in distribution (e.g., in mean parameter). Segmenta-

tion methods are particularly adapted to transcript localization using RNA-Seq data: the

exons expressed in a given transcript are separated by intronic and non-expressed exonic

regions expected to have low read counts (reflecting low transcriptional activity), thus al-

lowing the variation in read counts to be exploited to define the transcript. Because of the

discrete nature of RNA-Seq data (number of sequenced reads beginning at each position of

the genome), segmentation is based on discrete distributions, such as the Poisson or nega-

tive binomial distributions. Figure 3.8 of the Supplementary Materials displays RNA-Seq

base-level read counts for a few representative genes in Saccharomyces cerevisiae.

This paper is dedicated to the comparison of segmentation methods for the annotation

of genomes based on RNA-Seq data. Each segmentation method involves a combination of

three choices: (i) a model for the segment-specific read count distributions (e.g., Poisson,

negative binomial); (ii) criteria for inferring parameters of the segment-specific distribu-

tions (e.g., log-likelihood) and for selecting the number of segments (e.g., penalized log-

likelihood); (iii) optimization methods for the criteria in (ii). For ease of implementation,

we have limited our comparison to segmentation methods available in R or Bioconductor

packages.

We distinguish between two main classes of segmentation methods: those that return

a segmentation into a fixed number of segments and those that return a probability for

the existence of a change-point at each location. Note that, in some cases, the number

of segments might be known (e.g., in the context of re-annotation) and in others it might

be part of the statistical inference problem (e.g., in the context of de novo annotation or

transcript discovery).

The first class includes algorithms that are usually fast enough to deal with long se-

quences (105 to 109 base-pairs) and that can be applied to recover an entire set of expressed

transcripts or to localize novel transcripts. The Dynamic Programming Algorithm (DPA)
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is an exact algorithm that returns the optimal segmentation into K segments, according to

the log-likelihood criterion, for each K ranging from 1 up to a user-supplied Kmax (Guth-

ery, 1974). Its fast (but still exact) version, the Pruned Dynamic Programming Algorithm

(PDPA), is implemented in the R package Segmentor3IsBack for the negative binomial

and Poisson distributions (Cleynen et al., under review). Segmentation by binary classi-

fication with CART (Scott and Knott, 1974; Breiman et al., 1984) is an efficient and

extremely fast heuristic algorithm that returns a non-optimal segmentation into K seg-

ments, for each K ranging from 1 up to a user-supplied Kmax, by drastically reducing the

number of segmentations explored, but still yielding good results when the signal is not too

noisy. When the number of segments is unknown, these algorithms have to be combined

with a model selection strategy. Finally, Pruned Exact Linear Time (PELT) is an exact

algorithm that returns the optimal segmentation according to a penalized log-likelihood

criterion and where the number of segments is estimated within the algorithm. These last

two algorithms are implemented for the Poisson distribution in the R package changepoint

(Killick and Eckley, 2011).

The second class of segmentation approaches includes algorithms with a longer run-

time, but that provide credibility intervals (a.k.a., Bayesian confidence intervals) for the

location of change-points. They usually deal with shorter sequences (103 to 104 base-pairs),

but can be applied for precise re-annotation of the genome with high confidence. The

constrained hidden Markov model (HMM) approach implemented in the package postCP

(Luong et al., 2013) uses the PDPA for its parameter initialization. The exact Bayesian

approach proposed by Rigaill et al. (2012) is implemented in the R package EBS (which is

available on the CRAN). Both methods are applicable to the Poisson and negative binomial

distributions.

Note that all segmentation methods mentioned thus far are also available for the Gaus-

sian distribution, which is widely-used, for instance, for the identification of copy-number

variation based on Comparative Genomic Hybridization (CGH) microarray data.

Numerous other segmentation approaches exist, such as, to only mention a few, least

squares regression (Bai and Perron, 2003), Bayesian inference based on product partition



168 Method comparison

models and Markov sampling (Barry and Hartigan, 1993), adaptive weights smoothing

(Hupé et al., 2004), or wavelets (Hsu et al., 2005). Since they are not adapted to count

data, we do not consider them in our comparison study. Though FREEC (Boeva et al., 2011)

was developed for discrete sequencing data, it applies a Gaussian segmentation method to

transformed read counts and is thus not considered here.

The paper is organized as follows. In the next section, we describe our segmentation

framework, the methods to be evaluated, and our simulation study design. Then, we present

results of the comparison of segmentation methods for different types of biological questions

and examine the effect of a classical log-transformation of the data. Finally, we discuss the

results and consider extensions to other problems such as copy-number variation.

3.1.2 Methods

Segmentation framework

In the context of re-annotation, the segmentation framework can be formulated as fol-

lows. Suppose we have RNA-Seq base-level read counts for a region of the genome rep-

resented by nucleotide positions t ∈ {1, . . . , n} and which contains, for simplicity, only

one transcript (i.e., we do not consider alternative splicing). For a transcript with Ke ex-

ons, the segmentation for the sequence has K = 2 × Ke + 1 segments, where each even

(odd) segment corresponds to an exon (intron). Let τk, k = 0, . . . , K, denote the kth

change-point, with the convention that τ0 = 1 and τK = n + 1. Then, the kth segment is

defined as the interval [[τk−1, τk[[ and the corresponding segmentation can be summarized

by τ = {τk : k = 0, . . . , K}. Finally, the set of all possible segmentations into K segments

is denoted byMK .

Let Yt and yt denote, respectively, the random variable and its realization for the number

of aligned reads with first base at position t and let Y = {Yt : t = 1, . . . , n} and y = {yt : t =

1, . . . , n} denote the signal over the entire region to be segmented. Note that strand-specific
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reads are mapped and counted separately for each strand and that distinct segmentations

are performed on each strand. When comparing segmentation results for actual RNA-Seq

data to existing annotation, read length is taken into account by extending the change-point

locations τk accordingly (this is unnecessary for simulated datasets). We assume that the

Yt are independent random variables with distributions affected by K − 1 abrupt changes

in their parameters at each of the change-points τk. Specifically, the model can be written

as

Yt ∼ G(θk, φ), ∀t ∈ [[τk−1; τk[[, k = 1, . . . , K,

where G is a parametric distribution (e.g., Poisson or negative binomial), θk are segment-

specific parameters (such as, but not limited to the mean µk), and φ is a global parameter

(e.g., dispersion).

Three statistical inference questions are therefore pertinent in the context of segmenta-

tion: (i) the estimation of the number of segments K; (ii) the estimation of the parameters

θ = {θk : k = 1, . . . , K} and φ of the distribution G; (iii) the estimation of the location

τ = {τk : k = 0, . . . , K} of the change-points. Our main concern is the localization of

exon/intron boundaries and hence the estimation of {τk}. While it can be hard in general

to estimate K, this parameter is often known in the context of re-annotation. Additionally,

although the parameters {θk} are typically not of interest, they can often be estimated

trivially by maximum likelihood given estimates of K and {τk}.

Because of the discrete nature of RNA-Seq data, we consider methods that model read

counts using a Poisson (P) or negative binomial (NB) distribution, that is, assume that

P : G(θk, φ) = P(θk)

NB : G(θk, φ) = NB(θk, φ).

Note that, for the Poisson distribution, θk coincides with the mean parameter µk. For the

negative binomial distribution, θk denotes the probability parameter (0 ≤ θk ≤ 1) and φ > 0

the dispersion parameter, so that the mean signal on the kth segment is µk = φ(1− θk)/θk
and the variance µk(1 + µk/φ) ≥ µk. Because RNA-Seq read counts typically exhibit

over-dispersion, the negative binomial model is most appropriate (Robinson et al., 2010;
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Risso et al., 2011). When φ→ +∞, with θk such that the ratio µk = φ(1− θk)/θk remains

constant, one recovers the Poisson distribution with parameter µk. Our model requires that

the dispersion parameter be constant over all segments.

Since the numbers of reads Yt are assumed to be independent at each position, the

log-likelihood can be decomposed into the sum of the log-likelihoods for each segment, i.e.,

log p(y|K, τ, θ, φ) =
K−1∑
k=0

τk+1−1∑
t=τk

log (g(yt; θk, φ)) ,

where g(·; θk, φ) is the probability density function (PDF) of distribution G. In order to

work in a Bayesian framework, one further needs to specify prior distributions p(K), p(τ |K),

and p(θ|K, τ). Their choice is discussed in Rigaill et al. (2012).

Segmentation methods

Most segmentation methods comprise two steps. The first combines inference questions

(ii) and (iii) by estimating, for a given number of segments K, the location of the change-

points {τk} and the parameters {θk} and φ using, for example, maximum likelihood. The

second step is then to estimate the number of segments K, resolving inference question

(i). Note that some methods such as PELT combine the two steps into one, estimating the

parameters of G, the change-point locations, and the number of segments directly, using,

for example, a penalized version of the likelihood.

Estimating K can be viewed as a model selection problem, for which natural approaches

include cross-validation and penalized likelihood criteria. Although cross-validation meth-

ods have been proposed in the context of segmentation (Arlot and Celisse, 2011), the

interpretation of cross-validation is problematic due to the spatial structure and hence

dependence of the data. Furthermore, the approach is time-consuming and no software

implementation is currently available. We therefore focus on likelihood-based goodness-of-

fit criteria, where the estimator K̂ of the number of segments K maximizes some function

crit(K; y) of the data y with respect to K (for simplicity, we adopt the shorter notation
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c(K)). We consider specifically the following three criteria, corresponding to three different

penalties for the likelihood.

• The natural approach in a Bayesian framework is to maximize the posterior probabil-

ity of K given the data, i.e., select the K̂ maximizing c(K) = log p(K|y), which in the

case of EBS can be computed exactly. A crude approximation leads to a penalized

version of the likelihood, c(K) = log p(y|K, τ, θ, φ)−K log(n). In the sequel, we refer

to both criteria as the Bayesian Information Criterion (BIC), BIC(K).

• The penalized likelihood criterion of Cleynen and Lebarbier (2013), proposed

in a non-asymptotic framework that takes into account the complexity of the visited

segmentation, is defined as PL(K) = log p(y|K, τ, θ, φ)−βK
(

1 + 4
√

1.1 + log
(
n
K

))2
,

where β is a constant tuned according to the data.

• The Integrated Completed Likelihood (ICL) criterion is defined in a Bayesian

framework as ICL(K) = log p(K|y) + H(K), where the left term H(K) =

−∑m∈MK
p(τ |y,K) log p(τ |y,K) is the posterior entropy. Indeed, the segmentation τ

can be viewed as an unobserved variable, in the sense that the segment labels of each

data point yt are unknown. Rigaill et al. (2012) introduced this criterion in the con-

text of change-point detection and showed that it performs better than other criteria

such as the BIC or DIC (Deviance Information Criterion, i.e., the expected deviance

of the model). In a frequentist framework, the ICL criterion can be approximated by

ICL(K) = BIC(K)−∑m∈MK
p(τ |y,K, θ, φ) log p(τ |y,K, θ, φ).

If one is not concerned with obtaining an estimate for the number of segments K or if

one does not trust the estimation of K, the following two Bayesian approaches are avail-

able. The first applies the BIC directly to the segmentation, so that BIC(τ) = log p(τ |y),

and chooses the τ̂ that maximizes this criterion. In our study, results using BIC(τ) and

ICL(K) were very similar and only the later will be discussed. The second approach is

to integrate posterior probabilities of interest (as those mentioned next) over the possible

values of K rather than choose an optimal one (e.g., method EBS-a discussed below). Such

model averaging presupposes the ability to compute posterior distributions for K and τ .
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Finally, to allow precise and confident re-annotation, it is useful to obtain credibility in-

tervals. The posterior distribution of the jth change-point of a segmentation into k segments

is

pτj ,y,k(t) = P{τj = t|Y =y,K=k}, ∀t ∈ [[1, n[[, (3.1)

from which we can derive, by model averaging, the probability of, say, the first change-point

occurring at position t,

P{τ1 = t|Y =y}=
∑
k

pτ1,y,k(t)P{K=k|Y =y}, (3.2)

where P{A} is the probability of event A. One can then define 95% credibility intervals

by, for instance, selecting values of highest posterior probability until 95% coverage.

In our comparison of segmentation algorithms, we are therefore interested in the follow-

ing functionality: (i) the ability to model RNA-Seq read counts using a discrete distribution,

such as the Poisson or negative binomial; (ii) the ability to estimate the number of seg-

ments K according to criteria such as those mentioned above; (iii) the possibility to obtain

credibility intervals. The left part of Table 3.1 summarizes the available functionality for

the algorithms introduced in Section 3.1.1.

Simulation study design

Datasets

The simulation study was conceived to mimic typical RNA-Seq data. We used as

benchmark strand-specific, poly(A)-selected S. cerevisiae RNA-Seq data from the Sher-

lock Laboratory at Stanford University (Risso et al., 2011) and publicly available from

the NCBI’s Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra, accession

number SRA048710). Reads were mapped to the reference genome using Bowtie (Lang-

mead et al., 2008) and strand-specificity and read-length information was taken into ac-

count in our analysis. We selected a set of five genes (YAL038W, YAL035W, YAL030W,

YAL019W, and YAR008W) that were previously annotated by Nagalakshmi et al. (2008)

http://www.ncbi.nlm.nih.gov/sra
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Functionality Comparison criteria

Distribution Model selection Model Global Local ROC Credibility Run-

Algorithm P NB BIC(K) BIC(τ) PL(K) ICL averaging fit fit curves intervals time

CART ⊗ ⊗ × × ×

PELT ⊗ ⊗ × × ×

PDPA × ⊗ × ⊗ × × ×

postCP × ⊗ × ⊗ × × × × ×

EBS × ⊗ × × ⊗ ⊗ × × × × ×

Table 3.1: Properties of segmentation algorithms. Left: × indicate available func-

tionality in terms of distribution and model selection; ⊗ indicate methods retained for the

simulation study (see RESULTS AND DISCUSSION section). Right: × indicate compari-

son criteria that can be computed for each method.

and that span representative scenarios for yeast RNA-Seq data, in terms of gene length,

number of exons, and read counts. Figure 3.8 of the Supplementary Materials shows the

original unnormalized base-level read counts for these five genes.

In order to choose realistic values for the parameters of the distributions used to simulate

read counts, we considered the true, known segmentations of the five genes. For each gene,

we first fit a negative binomial distribution NB(θk, φ) to each segment k and estimated θk
using the method of moments and φ using a modified version of the Jonhson and Kotz’s

estimator (Johnson et al., 2005). Specifically, for each sliding window of size h equal to

twice the size of the longest zero band, we computed the method of moments estimator of φ,

using the formula φ = E2(X)/(V(X)−E(X)), and retained the median over all windows.

We also computed the maximal value of the read counts over the entire region. The results

are given in Table 3.2.

Following Lai et al. (2005), we created an artificial four-exon gene, with K = 9 seg-

ments defined by m = (1, 101, 121, 221, 271, 371, 471, 571, 1071, 1171). An odd segment

corresponds to an intronic region (average size 100 bases), while an even segment corre-

sponds to an exon (length varying from 20 to 500 bases).
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Gene Length Dispersion, φ̂ Empirical mean, µ̂k max yt

YAL038W 2003 0.3121 (0.2928, 325, 0.2738) 6216

YAL035W 3509 0.2523 (0.2174, 7.81, 0.1232) 690

YAL030W 967 0.2966 (0.0044, 1.55, 0.08, 3.62, 0.103) 167

YAL019W 3896 0.2721 (0, 1.196, 0.0266) 25

YAR008W 1328 0.2758 (0, 1.325, 0.0466) 34

Table 3.2: Estimates of model parameters for each of the five yeast genes. For

each segment, parameters correspond to a negative binomial distribution with mean µk =

φ(1− θk)/θk and dispersion φ.

We considered three simulation scenarios, corresponding to two parametric distributions

and one resampling-based distribution.

• For the Negative Binomial (NB) scenario, with G(θk, φ) = NB(θk, φ), we used the

artificial four-exon gene segmentation and set the dispersion parameter φ to 0.27 for

all segments. For odd segments (i.e., introns), we chose θ2k+1 = 0.9, and for even

segments (i.e., exons), we allowed θ2k to vary smoothly between 0.2 and 0.001. For

each value of θ2k, we simulated 100 datasets.

• For the Mixture of discrete Uniforms (MU) scenario, with G(θk, φ) = 1
2U([[0, θk/2]]) +

1
2U([[0, θk]]), we again used the artificial four-exon gene segmentation and set θ2k+1 = 4

and allowed θ2k to vary smoothly between 24 and 6, 250. For each value of θ2k, we

simulated 100 datasets.

• For the Resampling (RS) framework, we considered the true segmentation of each of

the five yeast genes (Nagalakshmi et al., 2008) and resampled the counts of each

segment at random, with replacement, i.e., G(θk, φ) = sample([[yτk ; yτk+1 [[). For each

gene, we repeated this procedure 100 times.
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In the remainder of the paper, we let µ represent the mean signal intensity over even

segments (i.e., exons), so that µ2k is equal to φ(1 − θ2k)/θ2k in the NB simulations and

3θ2k/8 in the MU simulations and refers to the qualitative level of expression of the genes

in the RS simulations. With parameters chosen as above in the NB and MU simulations,

the different θ2k yield comparable signal intensities µ2k. Note that we have associated µ

with the level of expression of a gene, but that it can also relate to the sequencing coverage

of an experiment. While we will only refer to the former in the manuscript, low-expressed

genes from experiments with higher coverage might present the same characteristics as

highly-expressed genes from experiments with lower coverage.

Comparison criteria

In the simulation study, the segmentation methods are compared according to the fol-

lowing criteria.

• The global fit index gf assesses the global quality of a proposed segmentation, in

the sense that it reflects the agreement between the true segmentation τ and the

estimated segmentation τ̂ over all pairs of bases in the region. Specifically, let Ct
be the true index of the segment to which base t belongs and let Ĉt be the index

estimated by the method, then

gf = 2
(n− 1)(n− 2)

n∑
s=1

n∑
t=s+1

[
1Ct=Cs1Ĉt=Ĉs + 1Ct 6=Cs1Ĉt 6=Ĉs

]
.

• The local fit index lf assesses the ability to recover a particular change-point c and

is defined by

lf(c) = δc/Pk(τ̂),

where δc is equal to 1 if the method finds a change-point at most three bases away

from c and 0 otherwise, k(τ̂) is the number of segments of the segmentation τ̂ , and Pk
is the probability that a segmentation into k segments has a change-point at c, i.e.,

Pk = k−1
n−1 . Note that while the choice of a three-base tolerance threshold is somewhat

subjective and allows change-points to be detected more easily, the ranking of the

methods is robust to the value of the threshold (results not shown).

• Receiver Operator Characteristic (ROC) curves for methods yielding change-point
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probabilities as in Equations (3.1) and (3.2).

• For the Resampling Simulation scenario and methods yielding change-point probabil-

ities, the percentage of true change-points covered by 95% credibility intervals defined

by starting from the mode of the distributions in Equation (3.1) or (3.2) and adding

the next most probable location until 95% (or slightly more because of the discrete

nature of the distribution) of the mass has been reached. This leads to intervals that

may not be contiguous, but have the smallest possible length.

• The average run-time.

The right part of Table 3.1 indicates which criteria are applicable for each of the algorithms

to be evaluated.

3.1.3 Results and discussion

Preliminary remarks

We first compared all algorithms with every available distribution. Our results show

(see Figure 3.9 of Supplementary Materials) that when an algorithm was implemented

for both the Poisson and negative binomial distributions (PDPA, postCP, and EBS), the

latter always performed better. This is to be expected, as read counts typically exhibit

over-dispersion. For this reason, as well as to simplify the reporting of results and figures,

we only retained PDPA, postCP, and EBS with the negative binomial distribution and

CART and PELT with the Poisson distribution, as indicated by ⊗ symbols in the left part

of Table 3.1. Although this may appear to bias the results in favor of PDPA, postCP,

and EBS, the comparison is still fair, as the restriction of CART and PELT to the Poisson

distribution and their inability to accommodate over-dispersion is a clear limitation of these

methods. Furthermore, the Poisson distribution is included as special case of the negative

binomial implementation of PDPA, postCP, and EBS.

Method postCP failed to return a segmentation for a number of simulations (221 times

for the mixture of uniforms scenario, 111 times for the negative binomial scenario and, for
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the RS scenario, 21 times for gene YAL030W, 20 times for gene YAL035W, and 5 times

for gene YAR008W). The results presented in this section exclude these cases for postCP.

Figure 3.1 displays the segmentations obtained with each of five methods for gene

YAL030W. In this particular example, postCP, EBS, and PDPA recover the true seg-

mentation, while PELT largely over-estimates the number of exons and CART misses the

3′ boundary of the first exon and erroneously splits the second exon into three.

Quality, precision, and confidence in the change-point localization

For both the negative binomial and mixture of uniforms simulation scenarios, meth-

ods implemented with the negative binomial distribution performed better than others

according to the global fit criterion. As expected, we observed a general trend of slight

improvement as the signal intensity µ increased. The left side of Figure 3.2 illustrates the

performance of each method according to the global fit index for a particular value of µ

corresponding to a moderate level of expression.

On the datasets simulated by resampling, however, we noticed that the effect of length

was significant (right side of Figure 3.2). For instance, for the long gene YAL035W, meth-

ods PDPA and PELT drastically worsened. EBS and postCP consistently showed satisfying

results and CART and PELT remained the least accurate methods.

Figure 3.3 displays the performance of each method in terms of local fit averaged over

the first and last change-points, which are of particular interest in context of UTR annota-

tion. We observe that local fit improves for all methods as the expression level µ increases,

although the methods tend to overestimate the number of segments when µ is high (see

Figure 3.14 of Supplementary Materials).

Methods EBS and postCP yield posterior change-point probabilities for any given ge-

nomic location (see Equation (3.1)). An example is given in Figure 3.10 of the Supplemen-
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Figure 3.1: Segmentation of gene YAL030W. For each of five methods, segmenta-

tion based on actual RNA-Seq read counts. Vertical lines indicate a change-point found

by the method. Note that no true segmentation is available, but four change-points are

proposed by all methods. PELT and CART propose additional change-points, probably

due to their use of the Poisson distribution which fails to account for over-dispersion of

the read counts.

tary Materials. This can be used to evaluate false positive and false negative rates for, say,

the first change-point τ1. Specifically, for a given simulation and threshold s, a position t

is declared as first change-point if P{τ1 = t|y,K} ≥ s. Averaging the resulting proportions

of false positives and false negatives over simulations and varying s leads to the ROC-like
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Figure 3.2: Global fit. (Left) Boxplots of the global fit index by segmentation method

for datasets simulated with the NB (left) and MU (right) models, for moderate expres-

sion levels of µ = 2.2. (Right) Boxplots of the global fit index by segmentation method

for datasets simulated by resampling for three different genes: YAR008W (left), which

is short and lowly-expressed, YAL035W (middle), which is very long and more highly-

expressed, and YAL038W (right), which is of average size but of very high expression

level. See Supplementary Materials for more detail on the three genes. Methods imple-

mented with the negative binomial distribution (EBS, PDPA, and postCP) outperform

those based on the Poisson distribution (CART and PELT).
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Figure 3.3: Local fit. Average of the proportions of simulations for which a method

finds a change-point within three bases of the first and last change-points, respectively

(i.e., lf(τ1) > 0 and lf(τK−1) > 0) vs. expression level µ. Left: Negative binomial.

Middle: Mixture of uniforms. Right: Resampled data for the five yeast genes (ordered

by increasing µ). Increasing the level of expression improves the ability to identify

change-points. Once again, methods implemented with the negative binomial distri-

bution (EBS, PDPA, and postCP) outperform those based on the Poisson distribution

(CART and PELT).

curves of Figure 3.4.
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Figure 3.4: ROC curves. ROC curves for comparing the performance of EBS and

postCP under different simulation scenarios (averaged over 100 simulations): postCP

( ), EBS ( ), and EBS-a ( ). Left: Negative binomial (µ = 4.2). Center: Mixture

of uniforms (µ = 4.2). Right: Resampling for gene YAL038W.

postCP’s performance is acceptable when the data are simulated according to its nega-

tive binomial model, but very poor for the mixture of uniforms. Furthermore, performance

deteriorates with increasing expression level µ (results not shown). A possible explanation

is the very sharp aspect of the posterior distribution for the change-point location, which

leads to false positives as soon as the mode is not equal to the true change-point. For

the Resampling scenario, postCP’s performance is good, but again worsens as the level of

expression increases (see Figure 3.11 of the Supplementary Materials). Method EBS has

good overall performance, with nearly perfect ROC for each model. Averaging over the

number of segments K (EBS-a), as in Equation (3.2), doesn’t seem to improve the results.

Both postCP and EBS also provide posterior credibility intervals. Table 3.3 presents

the average width and the percentage of nominal 95% credibility intervals covering the true

change-point τ1 (over 100 simulations). We display the results for the first change-point

τ1 for ease of comparison with the Bayesian aggregation method EBS-a (indeed, studying

the kth change-point would require a segmentation into at least k + 1 segments and thus
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Interval length Coverage

Gene postCP EBS EBS-a postCP EBS EBS-a

YAL019W 18 20 393 0.35 0.95 1

YAR008W 16 17 354 0.2 0.98 1

YAL030W 10 37 398 0.12 0.99 1

YAL035W 8 10 322 0.1 0.97 1

YAL038W 4 7 198 0.1 0.99 1

Table 3.3: Credibility intervals. Median length of the 95% credibility intervals and

percentage of simulations for which the intervals covered the true change-point (out of

100).

the modification of the prior used for K), but results are similar for other change-points.

The empirical coverage of EBS is close to the nominal credibility of 95%, with reasonably

narrow intervals. The empirical coverage of EBS-a is 100%, at the price of huge credibility

intervals, precluding its use in practice. This observation and the ROC curves of Figure 3.4

suggest that EBS-a yields a well-located posterior mode, but too large a posterior variance.

postCP showed very poor coverage (fewer than 40% of the simulations had a 95% credibility

interval covering the true location), due to its small credibility intervals that do not account

for uncertainty in the estimation of the parameters θk and φ. Results of the comparison

are similar across expression levels µ.

Number of change-points

All results presented up to now are based on methods that involve estimating the number

of segments K. The accuracy of the resulting segmentation could therefore be affected by a

poor choice ofK. Figures 3.12 to 3.16 of the Supplementary Materials show the distribution
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of estimates of K. In the context of genome re-annotation, where it is reasonable to

assume that the number of segments is known (for instance, a gene with Ke exons will have

K = 2 × Ke + 1 segments), it is of interest to compare segmentations based on the true

and estimated K. Note that PELT cannot take advantage of the knowledge of K, as the

estimation of K is embedded in the algorithm.

The boxplots in Figure 3.5 illustrate the advantage of providing the true K to a seg-

mentation method: for methods postCP, EBS, and CART, the global fit index gf is less

variable and higher with the true K (right) than with estimated K (left). This trend is

mostly observed on datasets simulated with the negative binomial model. As expected, as

the expression level µ increases and the segmentation becomes more obvious, the impact of

the choice of K for methods postCP and EBS lessens, as the ICL criterion becomes more

accurate. In the case of PDPA, the model selection criterion already provides the true

value of K in more than 90% of the simulations, thus the knowledge of K does not yield a

noticeable gain.

The ROC curves in Figure 3.6 illustrate the impact of the estimation of K for methods

EBS and postCP in terms of false positive and false negative rates. The gain from using

the true K lessens as the level of expression increases, regardless of the performance of the

methods; while performance improves for method EBS, postCP worsens with expression

level.

Extension to more complex organisms

A natural question is how the methods would compare for an organism with a more

complex gene structure than S. cerevisiae. We have therefore considered the artificial

scenario in which two of the isoforms of the Drosophila melanogaster gene Inr-a, Inr-a-RB

(six exons) and Inr-a-RC (two exons), are expressed at different levels (Figure 3.17 of the

Supplementary Materials illustrates the gene and its isoforms).

In our simulation, we used the annotation of the Inr-a gene from FlyBase (http://

http://www.flybase.org
http://www.flybase.org
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Figure 3.5: Global fit and estimation of K. Boxplots of the global fit index by

segmentation method, for estimated (left) and true (right, suffix ’-f’ added to method

name) number of segments K. Datasets simulated from negative binomial model with

K = 9 and µ = 1.1. Knowing the number of segments improves the ability to recover

the optimal segmentation. PELT cannot benefit from this advantage.

www.flybase.org) to define the true segmentation. To simulate read counts, we pooled

the observed counts from several yeast genes to create three classes of expression: intronic,

low, and medium. Then, on each segment, the read counts were obtained by re-sampling

at random, with replacement from the three groups. Specifically, we used the intronic class

for segments corresponding to intronic regions of the two isoforms, the medium expression

class for exons of Inr-a-RB, and the low expression class for exons of Inr-a-RC. Thus, for

exons shared by the two isoforms, read counts are sums of counts from the low and medium

classes. This created a synthetic signal for a gene of length 5, 000 nucleotides with 14

http://www.flybase.org
http://www.flybase.org
http://www.flybase.org
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Figure 3.6: ROC curves and estimation of K. ROC curves for comparing the

performance of EBS and postCP with known and estimated number of segments K:

postCP with estimation of K ( ), postCP with known K ( ), EBS with estimation

of K ( ), and EBS with known K ( ). Data simulated from negative binomial model

with µ = 1.1 and µ = 2.2. Once again, the knowledge of K improves the performance

of the algorithms.
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segments.

The right side of Figure 3.18 of the Supplementary Materials shows that all methods

but PDPA fail to recover the right number of segments. This leads to poor results in terms

of local and global fit. However, the prior information on K allows method EBS to yield

almost perfect ROC curves (see the left side of Figure 3.18 of Supplementary Materials),

while methods PELT and CART still fail to retrieve an acceptable number of true change-

points.

The segmentation methods considered in this article can be applied to organisms of a

large range of complexity (in the number of exons, isoforms, etc.), provided that the exons

of different genes of interest do not overlap, in which case it would not be possible to assign

a segment to a specific gene. Fast methods such as CART, PELT or PDPA can be applied

regardless of gene length. However, the EBS algorithm is restricted to sequences no longer

than 104 bases.

Transformation of the data

One might be interested in transforming the discrete RNA-Seq read counts to allow

the use of a wider range of methods, for instance, continuous data segmentation methods

developed for microarrays. Because of encouraging results with EBS, we compared its

performance on the resampled datasets, with the negative binomial distribution, as above,

and with the Gaussian distribution applied to log-transformed counts (ỹt = log(yt + 1)).

We also applied the variance-stabilization transformation corresponding to the negative

binomial distribution (which involves the arsinh function), but the results were similar to

the widely-used and dispersion-independent log-transformation and thus are not presented

here.

We observed that on the RS simulations, the two approaches yield very similar results.

However, as illustrated by the ROC curves in Figure 3.19 of the Supplementary Materi-

als, the negative binomial distribution is better for more complex scenarios, where some

segments can be very small, as is the case with D. melanogaster introns.
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3.1.4 Conclusion

This simulation study showed that each method is adapted to a different type of prob-

lem. CART and PELT perform worse in all situations for distinct reasons: CART is a

heuristic that is most appropriate when the signal is long and segments are well-delimited

(for example, large changes in the mean), while PELT fails because of its inability to

choose an appropriate number of segments. Indeed, PELT was designed to segment profiles

in which the number of segments increases with the length of the signal, which is not the

case in our framework.

PDPA showed excellent results in proposing a segmentation close to the true one, espe-

cially when the signal was not both very long and high. The criterion used for the choice

of the number of segments yielded good performance even when other methods failed. Its

use is promising in a range of biological settings, such as transcript discovery or assessment

of which genes are expressed.

Finally, postCP and EBS demonstrated the ability to both propose a segmentation that

is very close to the true one and return distributions for the location of change-points,

thereby allowing precise and confident re-annotation. Both methods showed equivalent

results for their optimal segmentation, but EBS had better results in terms of ROC curves

on the true datasets and showed a clear improvement when the number of segments was

known. Figure 3.7 illustrates the results of method EBS on actual RNA-Seq data for the

five yeast genes of interest.

Segmentation methods are of interest in related contexts such as whole-genome (re-

)annotation or copy-number estimation using DNA-Seq data. However, in practice, few

methods are fast enough to be applied in those frameworks. Indeed, in our simulation

study, performed on a standard computer (Intel-Core2 Duo CPU P8400, 2.26 GHz x 2 with

3 Gio of RAM), the average run-times were very different among the methods. PELT and

CART were almost instantaneous, while PDPA (respectively postCP) needed a few seconds

per simulation (about 4s (resp. 10s) on model-simulated datasets, up to 20s (resp. 50s)

on the longer genes). EBS was by far the slowest, needing about 15 seconds for model-
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Figure 3.7: EBS segmentation of five yeast genes. Segmentation based on actual

RNA-Seq read counts. Read counts were squared on the y-axis for more visibility.

simulated datasets and up to 6.5 minutes on the longer genes. While we would recommend

using method EBS (with prior information on K when available) for targeted transcript

re-annotation, its run-time prohibits its use for larger segmentation problems. A possible

strategy would consist in first applying PDPA to large regions in order to delimit smaller

regions of interest and then using EBS to obtain confidence intervals on the change-point

locations within the smaller regions.

Availability of supporting data The dataset supporting the results of this article is

available in the Sequence Read Archive repository, http://www.ncbi.nlm.nih.gov/sra,

with the accession number SRA048710.

Additional Files *Additional file 1 — Supplementary figures Additional figures referred

to in the main article as Figures in Supplementary Materials.

http://www.ncbi.nlm.nih.gov/sra
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Supplementary Materials
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Figure 3.8: Yeast dataset. Original unnormalized base-level read counts for five

Saccharomyces cerevisiae transcripts (Risso et al., 2011). Vertical blue lines correspond

to the annotation given by Nagalakshmi et al. (2008). Note the different scales for

the abscissa and ordinate: transcripts differ in length, number of exons, and expression

level.
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Figure 3.9: Global fit for NB and MU simulations. Boxplots of the global fit

index for algorithms implemented with different distributions and model selection ap-

proaches. One can notice that when both the Poisson (P) and Negative Binomial (NB)

distributions are available, the latter performs better.
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Figure 3.10: Posterior probabilities of change-point location. Posterior distribu-

tion of the location of each of the four change-points for the segmentation of transcript

YAL030W, according to Equation (1) of the main manuscript, for methods postCP

(top) and EBS (bottom). Left ordinate corresponds to read counts and right ordinate

to probabilities. EBS yields wider credibility intervals and thus lower probabilities at

each location.
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Figure 3.11: ROC curves for RS simulation. Average over 100 simulations of the

ROC-like curves for methods postCP ( ), EBS with ICL criterion ( ), and EBS

with averaging ( ), applied to resampled datasets, with transcripts ordered by level of

expression µ.
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Figure 3.12: Estimation of K for NB simulation. Boxplots of estimates of the num-

ber of segmentsK for datasets simulated based on the Negative Binomial model, ordered

by increasing values of the expression level µ (as described in the main manuscript).

The horizontal pink line indicates the true number of segments K = 9. Note the dif-

ference in scale for method PELT. Methods EBS and postCP improve with µ, PDPA

consistantly performs best, CART constantly underestimates the number of segments,

and PELT not only highly overestimates K, but worsens as µ increases.
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Figure 3.13: Estimation of K for MU simulation. Boxplots of estimates of

the number of segments K for datasets simulated based on the Mixture of Uniforms

model, ordered by increasing values of the expression level µ (as described in the main

manuscript). The horizontal pink line indicates the true number of segments K = 9.

Once again, note the difference in scale for method PELT. Methods EBS, postCP, and

PDPA consistently estimate the rightK, CART consistently underestimates the number

of segments, and once more PELT worsen as µ increases.
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Figure 3.14: Estimation of K for RS simulation. Boxplots of estimates of the

number of segments K for datasets simulated by resampling read counts for four of the

five reference transcripts ordered by level of expression µ. For readability, transcript

YAL030W, which has two exons, is treated separately in Figure 8. The horizontal pink

line indicates the true number of segments K = 3. Methods EBS, postCP, and PDPA

provide a good estimate of K especially when the expression is low, CART overestimate

the number of segments and PELT worsens as µ increases.
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Figure 3.15: Estimation of K for RS simulation, transcript YAL030W. Boxplots

of estimates of the number of segments K for datasets simulated by resampling read

counts for transcript YAL030W which has two exon (thus K = 5, indicated by the

horizontal pink line). Methods postCP and EBS provide satisfying estimates of K,

while CART and PDPA slightly overestimates and PELT grossly overestimates the

number of segments.
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Figure 3.16: BIC and ICL criterion for postCP and EBS. Posterior ICL criterion

and BIC, averaged over the resampling simulations for transcript YAL030W, for meth-

ods EBS and postCP. The estimate of K is the value which minimizes each criterion;

the true value of K is 5. Note that here the ordinate is irrelevant and only the shape

of the curve matters. Indeed, the different criteria are on different scales, as likelihood

functions are computed up to an unknown constant.
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Figure 3.17: D. melanogaster’s Inr-a gene. This figure, extracted from the http:

//www.flybase.org website, represents the four isoforms of the D. melanogaster Inr-

a gene. In the study presented in the main manuscript, only isoforms Inr-a-RB and

Inr-a-RC are considered.

http://www.flybase.org
http://www.flybase.org
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Figure 3.18: Estimation of K and ROC curves for Drosophila-like simulations.

Top: Boxplots of estimates of K for methods postCP, EBS, PDPA, and CART, for

one hundred simulations based on the Inr-a D. melanogaster gene. Bottom: ROC-like

curves for method EBS with the Negative Binomial distribution, with estimation of K

( ) and with known K ( )..
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Figure 3.19: ROC curves for EBS with Negative Binomial and Gaussian dis-

tributions. ROC curves for method EBS applied with the Gaussian distribution on

log-transformed counts ( ) and the Negative Binomial distribution on untransformed

counts ( ). Datasets simulated by resampling pooled read counts from yeast genes for

segments defined by the D. melanogaster Inr-a gene annotation.
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3.1.5 Choice of the priors

In the paper we have not discussed the choice of the priors even though as in any

Bayesian analysis this question should deserve further study. In the case of EBS, we can

distinguish two types of priors: that used on the segmentation m, and the values of the

hyperparameters from the conjugate priors.

Concerning the segmentation, the possibilities for the priors are restricted by the re-

quirement that the model verifies the factorability assumption. Then the difference between

two choices of priors will be observed in the constant C as well as in the factors aJ .

As for the hyperparameters, their influence is directly related to the terms in matrix A.

More precisely, in the decomposition of [A]i,j as in Table 1.1, we can see that term 2 depends

only on their value, and theKth power of this term is needed in the computation of P (Y,K).

While they also appear in the first term, typically when the data are informative enough,

its dependency on their value is very small. It is therefore mostly term 2 which drives the

dependency, and indicates that if not chosen carefully, the hyperparameters can constitute

a penalization on the number of segments.

Note that the prior Beta(1/2, 1/2) which was used in the paper for the negative binomial

distribution corresponds to Jeffreys’ prior (Jeffreys, 1946) which main properties is the

non-dependency to the parametrization of the distribution. However, these hyperparame-

ters lead to a penalization in the number of segments K with the order of B(1/2, 1/2)−K .

Hyperparameters 1, 1 would thus be recommended if no penalization was wanted.

We illustrate some of these remarks in the particular case where the question is the

choice of the number of segments, since as explained above it is in this context that the

choice of the hyperparameters should be most crucial. We thus computed the ICL and

BIC criteria on the segmentation of a profile corresponding to the ypd data of a given

yeast gene. On the right of Figure 3.20 are displayed the values obtained for Jeffrey’s prior

Beta(1/2, 1/2) (in full lines) and the non-informative prior Beta(1, 1) (in dashed lines) when

the prior on the segmentation m is the uniform conditional on K. On the left are displayed

the values of the ICL criterion for 5 ≤K≤ 10 for both priors, but comparing the uniform on
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Figure 3.20: Impact of the priors on the ICL and BIC values. ICL and BIC

values for each K in 1 to 10 for the ypd profile. On the left, the dependence on the

hyperparameters value (full lines is Jeffreys prior, dashed lines is uninformative prior)

is negligible. On the right the comparison of hyper-parameter choice (dashed/full) and

segmentation prior choice (blue/light blue) for 5 ≤ K ≤ 10 shows little difference for the

ICL.

m to the prior which favors the segmentation with segments of equal length (i.e. aJ = n−1
J ).

While there is a difference between ICL, which presents a minimum in K = 7 and BIC

which is non-increasing, the impact of the choice of hyperparameters is negligible.
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3.2 Profile comparison

We have shown in the previous chapter that the Bayesian model of Rigaill et al.

(2012) has almost optimal performance in the context of gene re-annotation, providing

tools to measure the uncertainty associated with the change-point localization. We have

subsequently retained this model to perform our further analysis on the comparison of

change-point location between independent profiles.

Our motivation is the following: in frameworks where we have data corresponding to

the same genome subset but for biologically different (and independent) subjects, can we

identify phenomena such as differential splicing which would result in different change-point

location? Situations abound in which this question is relevant. For instance, chromosomal

aberrations are common in patients with cancer, and some of them are recurrently observed

in subclasses of a particular disease. Identifying these aberrations and their location is cru-

cial since they might result in fusion genes responsible for some aspect of the disease. Thus

the comparison of their locations, typically assessed by segmentation methods, between

different patients can tell us a lot on the importance and the role of those fusion genes.

Another example is inspired by our benchmark dataset. It may be recalled that it mea-

sures the transciptional activity of a yeast species that has been grown into three different

conditions, one of which results in cells respiring instead of fermenting. One biological

intuition to explain this difference is differential splicing: some transcript boundaries are

expected to differ in those conditions. As an example, Figure 3.21 corresponds to a subset

of our benchmark dataset limited to a region surrounding gene EFB1. Its two exons can

clearly be identified, but are their boundaries the same in the three growth conditions?

The paper presented here, submitted in collaboration with Stéphane Robin and avail-

able at http://arxiv.org/abs/1307.3146, proposes two methods to address this question

which are based on the Bayesian model described before. They are implemented in the R

package EBS as detailed in the next section.

http://arxiv.org/abs/1307.3146
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Figure 3.21: RNA-Seq data for a two-exon gene in three growth conditions.

null
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Comparing change-point locations of independent profiles

with application to gene annotation

Alice Cleynen and Stéphane Robin

abstract

We are interested in the comparison of transcript boundaries from cells which origi-

nated in different environments. The goal is to assess whether this phenomenon, called

alternative splicing, is used to modify the transcription of the genome in response to stress

factors. We address this question by comparing the change-points locations in the indi-

vidual segmentation of each profile, which correspond to the RNA-Seq data for a gene in

one growth condition. This requires the ability to evaluate the uncertainty of the change-

point positions, and the work of Rigaill et al. (2012) provides an appropriate framework

in such case. Building on their approach, we propose two methods for the comparison of

change-points, and illustrate our results on a dataset from the yeast specie. We show that

the UTR boundaries are subject to alternative splicing, while the intron boundaries are

conserved in all profiles. Our approach is implemented in an R package called EBS which

is available on the CRAN.

Keywords

segmentation; change-point comparison; Bayesian inference; negative binomial; differ-

ential splicing

3.2.1 Introduction

Segmentation problems arise in a large range of domains such as economics, biology

or meteorology, to name a few. Many methods have been developed and proposed in the

literature in the last decades to detect change-points in the distribution of the signal along
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one single series. Yet, more and more applications require the analysis of several series

at a time to better understand a complex underlying phenomenon. Such situations refer

for example to the analysis of the genomic profiles of a cohort of patients (Picard et al.,

2011), of meteorological series observed in different locations (Ehsanzadeh et al., 2011)

or of sets astronomical series of photons abundance (Dobigeon et al., 2007).

When dealing with multiple series, two approaches can be typically considered. The first

consists in the simultaneous segmentation of all series, looking for changes that are common

to all of them. This approach amounts to the segmentation of one single multivariate series

but might permit the detection of change-points in series with too low a signal to allow

their analysis independently. The second approach consists in the joint segmentation of all

the series, each having its specific number and location of changes. This allows to account

for dependence between the series without imposing that the changes occur simultaneously.

We are interested here in a third kind of statistical problem, which is the comparison

of change-point locations in several series that have been segmented separately. To our

knowledge, this problem has not yet been fully addressed.

Indeed, comparing change-point is connected to the evaluation of the uncertainty of the

change-point positions. An important point is that the standard likelihood-based inference

is very intricate, since the required regularity conditions for the change-point parameters

are not satisfied (Feder, 1975). Most methods to obtain change-point confidence intervals

are based on their limit distribution estimators (Feder, 1975; Bai and Perron, 2003) or

the asymptotic use of a likelihood-ratio statistic (Muggeo, 2003). Bootstrap techniques

have also been proposed (see Hušková and Kirch (2008) and references therein). Com-

parison studies of some of these methods can be found in Reeves et al. (2007) for climate

applications or in Toms and Lesperance (2003) for ecology. Recently, Rigaill et al.

(2012) proposed a Bayesian framework to derive the posterior distributions of various quan-

tities of interest – including change-point locations – in the context of exponential family

distributions with conjugate prior.

As for the comparison of change-points, the most common approaches rely on classifi-
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cation comparison techniques such as the Rand Index (Rand, 1971); and aim at assessing

the performances of segmentation methods on single datasets, by comparing their outputs

between themselves or using the truth as reference. The notion of change-point location

difference as a quantity of interest has, to our knowledge, never been considered.

Our work is a generalization of Rigaill et al. (2012) to the comparison of change point

location. It is motivated by a biological problem detailed in the next paragraph.

Differential splicing in yeast

Differential splicing is one of the mechanism that living cells use to modify the tran-

scription of their genome in response to some change in their environment, such as a stress.

More precisely, differential splicing refers to the ability for the cell to choose between ver-

sions (called isoforms) of a given gene by changing the boundaries of the regions to be

transcribed.

New sequencing technologies, including RNA-Seq experiments, give access to a measure

of the transcription at the nucleotide resolution. The signal provided by RNA-Seq consists

in a count (corresponding to a number of reads) associated to each nucleotide along the

genome. This count is proportional to the transcription level of the nucleotide. This

technology therefore allows to locate precisely the boundaries of the transcribed regions, to

possibly revise the known annotation of the genomes and to study the variation of these

boundaries across conditions.

We are interested here in an RNA-Seq experiment made on a given specie, yeast, grown

under several conditions. The biological question to be addressed is ’Does yeast use differ-

ential splicing of a given gene as a response to a change in its environment?’.

Contribution

In this paper we develop a Bayesian approach to compare the change-point location of

independent series corresponding to the same gene under several conditions. We suppose



3.2.2 - Model for one series 211

that we have information on the structure of this gene (such as the number of introns) so

that the number of segments of each segmentation is assumed to be known. In Section

3.2.2, we recall the Bayesian segmentation model introduced in Rigaill et al. (2012) and

its adaptation to our framework. In Section 3.2.3 we derive the posterior distribution of

the shift between the change-point locations in two independent profiles, while in Section

3.2.4 we introduce the calculation of the posterior probability for change-points to share

the same location in different series. The performances are assessed in Section 3.2.5 via

a simulation study designed to mimic real RNA-Seq data. We finally apply the proposed

methodology to study the existence of differential splicing in yeast in Section 3.2.6. Our

approach is implemented in an R package EBS which is available on the CRAN repository.

All the results we provide are given conditional on the number of segments in each

profiles. Indeed comparing the location of, say, the second change-points in each series

implicitly refers to a total number of change-points in each of them. Yet, most of the

results we provide can be marginalized over the number of segments.

3.2.2 Model for one series

In this section we introduce the general Bayesian framework for the segmentation of one

series and recall preceding results on the posterior distribution of change-points.

Bayesian framework for one series

The general segmentation problem consists in partitioning a signal of n data-points

{yt}t∈[[1,n]] into K segments. The model is defined as follows: the observed data {yt}t=1,...,n

are supposed to be a realization of an independent random process Y = {Yt}t=1,...,n. This

process is drawn from a probability distribution G which depends on a set of parameters

among which one parameter θ is assumed to be affected by K − 1 abrupt changes, called

change-points and denoted τk (1 ≤ k ≤ K−1). A partition m is defined as a set of change-

points: m = (τ0, τ1, . . . , τK) with conventions τ0 = 1 and τK = n + 1 and a segment J is

said to belong to m if J = [[τk−1; τk[[ for some k.
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The Bayesian model is fully specified with the following distributions:

• the prior distribution of the number of segments P (K);

• the conditional distribution of partition m given K: P (m|K);

• the parameters θJ for each segment J are supposed to be independent with same

distribution P (θJ);

• the observed data Y = (Yt) data are independent conditional on m and (θJ) with

distribution depending on the segment:

(Yt|m, J ∈ m, θJ , t ∈ J) ∼ G(θJ , φ)

where φ is some parameter that is constant across the segments that will be supposed

to be known.

Exact calculation of posterior distributions

Rigaill et al. (2012) show that if distribution G possesses conjugate priors for θJ , and

if the model satisfies the factorability assumption, that is, if

P (Y,m) = C
∏
J∈m

aJP (YJ |J),

where P (YJ |J) =
∫
P (YJ |θJ)P (θJ)dθJ , (3.1)

quantities such that P (Y,K), posterior change-point location distributions or the poste-

rior entropy can be computed exactly and in a quadratic time. Examples of satisfying

distributions are

• the Gaussian heteroscedastic:

G(θJ , φ) = N (µJ , σ2
J) with θJ = (µJ , σ2

J), φ = ∅,

• the Gaussian homoscedastic with known variance σ2:

G(θJ , φ) = N (µJ , σ2) with θJ = µJ , φ = σ2,

• the Poisson:

G(θJ , φ) = P(λJ) with θJ = λJ , φ = ∅,
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• or the negative binomial homoscedastic with known dispersion φ:

G(θJ , φ) = NB(pJ , φ) with θJ = pJ , φ = φ.

Note that the Gaussian homoscedastic does not satisfy the factorability assumption if σ is

unknown, and that the negative binomial heteroscedastic does not belong to the exponential

family and does not have a conjugate prior on φ.

The factorability assumption (3.1) also induces some constraint on the distribution of the

segmentation P (m|K). In this paper, we will limit ourselves to the uniform prior:

P (m|K) = U
(
M1,n+1

K

)

where M1,n+1
K stands for the set of all possible partitions of [[1, n + 1[[ into K non-empty

segments.

3.2.3 Posterior distribution of the shift

The framework described above allows to compute a set of quantities of interest in an

exact manner. In this paper, we are mostly interested in the location of change-points. We

first remind how posterior distributions can be computed and then propose a first exact

comparison strategy.

Posterior distribution of the change-points

The key ingredient for most of the calculations is the (n + 1) × (n + 1) matrix A that

contains the probabilities of all segments:

[A]i,j =

 P (Y[[i,j[[|[[i, j[[) ∀1 ≤ i < j ≤ n+ 1

0 else
(3.2)

where P (YJ |J) is given in (3.1).

The posterior distribution of change-points can be deduced from this matrix in a

quadratic time with the following proposition:
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Proposition 1. Denoting pk(t;Y ;K) = P (τk = t|Y,K) the posterior distribution of the

kth change-point, we have

pk(t;Y ;K) =

[
(A)k

]
1,t

[
(A)K−k

]
t,n+1

[(A)K ]1,n+1
.

Proof. We have

pk(t;Y ;K) =
∑
m∈BK,k(t) p(Y |m)p(m|K)

P (Y |K)
where BK,k(t) is the set of partitions of {1, . . . , n} in K segments with kth change-point at

location t. Note that BK,k(t) = M1,t
k ⊗M

t,n+1
K−k (i.e. all m ∈ BK,k(t) can be decomposed

uniquely as m = m1 ∪m2 with m1 ∈M1,t
k and m2 ∈Mt,n+1

K−k and reciprocally). Then using

the factorability assumption, we can write

pk(t;Y ;K) =
∑
m1∈M1,t

k
p(Y |m1)∑m2∈Mt,n+1

K−k
p(Y |m2) p(m|K)∑

m∈M1,n+1
K

p(Y |m) p(m|K)

�

Comparison of two series

We now propose a first procedure to compare the location of two change-points in two

independent series. Consider two independent series Y 1 and Y 2 with same length n and

respective number of segments K1 and K2. The aim is to compare the locations of the

k1th change-point from series Y 1 (denoted τ 1
k1) with the k2th change-point of series Y 2

(denoted τ 2
k2). The posterior distribution of the difference between the location of the two

change-points can be derived with the following Proposition.

Proposition 2. Denoting δk1,k2(d;K1, K2) = P (∆ = d|Y 1, Y 2, K1, K2) the posterior dis-

tribution of the difference ∆ = τ 1
k1 − τ

2
k2, we have

δk1,k2(d;K1, K2) =
∑
t

pk1(t;Y 1;K1)pk2(t− d;Y 2;K2).

Proof. This simply results from the convolution between the two posterior distributions pk1

and pk2 . �
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The posterior distribution of the shift can therefore be computed exactly and in a

quadratic time. The non-difference between the two change-point locations τ 1
k1 and τ 2

k2 can

then be assessed, looking at the position of 0 with respect to the posterior distribution δ.

3.2.4 Comparison of change point locations

We now consider the comparison of change-point locations between more than 2 series.

In this case, the convolution methods described above does not apply anymore so we propose

a comparison based on the exact computation of the posterior probability for the change-

points under study to have the same location.

Model for I series

We now consider I independent series Y ` (with 1 ≤ ` ≤ I) with same length n. We

denote m`, their respective partitions and K` their respective number of segments. We

further denote τ `k the kth change-point in Y ` so m` = (τ `0 , τ `1 , . . . , τ `K`). Similarly, θ`J denotes

the parameter for the series ` within segment J provided that J ∈ m` and φ` the constant

parameter of series `. In the following, the set of profiles will be referred to as Y and

respectively for the vector of segment numbers (K), the set of all partitions (m) and the

set of all parameters (θ).

In the perspective of change-point comparison, where one is interested in the klth

change-point of series l, for 1 ≤ l ≤ I, we introduce the following event:

E0 = {τ 1
k1 = · · · = τ IkI}.

We further denote E1 its complement and define the binary random variable

E = I{E1} = 1− I{E0}.

The complete hierarchical model is displayed in Figure 3.22 and is defined as follows:

• The random variable E is drawn conditionally on K as a Bernoulli B(1−p0(K)) where

p0(K) = P (E0|K);
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• The parameters θ are drawn independently according to P (θ|K);

• The partitions are drawn conditionally on E according to P (m|K,E);

• The observations are generated according to the conditional distribution P (Y|m,θ).

More specifically, denoting M1,n+1
K = ⊗

`M1,n+1
K` , the partitions are assumed to be uni-

formly distributed, conditional on E, that is

P (m|K, E0) = U(M1,n+1
K ∩ E0), P (m|K, E1) = U(M1,n+1

K ∩ E1).

Figure 3.22: Graphical model. Hierarchical model for the comparison of I series.

Posterior probability for the existence of a common change-point

We propose to assess the existence of a common change-point location between the I

profiles based on the posterior probability of this event, namely P (E0|Y,K).

Proposition 3. The posterior probability of E0 can be computed in O(Kn2) as

P (E0|Y,K) = p0(K)
q0(K)Q(Y, E0|K) .[
1− p0(K)
1− q0(K)Q(Y|K) + p0(K)− q0(K)

q0(K)[1− q0(K)]Q(Y, E0|K)
]−1

where

Q(Y|K) =
∏
`

[
(A`)K`

]
1,n+1

,

Q(Y, E0|K) =
∑
t

∏
`

[
(A`)k`

]
1,t

[
(A`)K`−k`

]
t+1,n+1

,

and q0(K) = Q(E0|K) =
∑
t

∏
`

(
t− 2
k` − 1

)(
n− t

K` − k` − 1

)/(
n− 1
K` − 1

)
.
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and A` stands for the matrix A as defined in (3.2), corresponding to series `.

Proof. We consider the surrogate model where the partition m is drawn uniformly and in-

dependently from E, namely Q(m|K) = U(M1,n+1
K ) (note that this corresponds to choosing

p0(K) = q0(K)). All probability distributions under this model are denoted by Q along the

proof. The formulas for probabilities Q(Y|K) and Q(Y, E0|K) derive from Rigaill et al.

(2012). It then suffices to apply the probability change as

P (Y, E0|K) = p0(K)
q0(K)Q(Y, E0|K), P (Y, E1|K) = 1− p0(K)

1− q0(K)Q(Y, E1|K).

The result then follows from the decomposition of P (Y|K) as P (Y, E0|K) + P (Y, E1|K)

and the same for Q(Y|K). �

The Bayes factor is sometimes preferred for model comparison; it can be computed

exactly in a similar way:

Corollary 4. The Bayes factor can be computed in O(Kn2) as

P (Y|E0,K)
P (Y|E1,K) = 1− q0(K)

q0(K)
Q(Y, E0|K)

Q(Y|K)−Q(Y, E0|K)

using the same notations as in Proposition 3.

Proof. The proof follows that of Proposition 3. �

3.2.5 Simulation study

Simulation design

We designed a simulation study to identify the influence of various parameters on the

performances of our approach. The design is illustrated in Figure 3.23: we compared

3 independent profiles with 7 segments, with all odd (respectively even) segments shar-

ing the same distribution. The first two profiles have identical segmentation m given by
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m = (1, 101, 201, 301, 401, 501, 601, 701) and the change-point locations of the third one

are progressively shifted apart as τ 3
k = τ 1

k + 2k−1, for each 1 ≤ k ≤ 6. We shall denote

dk = τ 3
k − τ 1

k and drop the index k when there is no ambiguity on it.

Figure 3.23: Simulation design.

Our purpose is to mimic data obtained by RNA-Seq experiments, so that the parame-

ters for the negative binomial distribution were chosen to fit typical real-data. Considering

the model where odd segments are sampled with distribution NB(p0, φ), and even with

NB(p1, φ), we chose two different values of p0, 0.8 and 0.5, and for each of them, we made

p1 vary so that the odd-ratio s := p1/(1− p1)/[p0/(1− p0)] is 4, 8 and 16. Finally, we used

different values of φ as detailed in Table 3.4 in order to explore a wide range of possible

dispersions while keeping a signal/noise ratio not too high. Note that the higher φ, the less

overdispersed the signal. From our experience, the configuration of parameter combinations

with p0 = 0.5 is the more typical of observed values for RNA-Seq data.

Provided that the ratio λ = φ(1− p)/p remains constant, the negative binomial distri-

bution with dispersion parameter φ going to infinity converges to the Poisson distribution

P(λ). We propose an identical simulation study based on the Poisson distribution for the

comparison with non-dispersed datasets. Specifically, we used for λ0 the values 1.25 and
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p0 = 0.8 p0 = 0.5

p1 φ p1 φ

0.5 5 0.2 0.081/8

0.33
√

5 0.1 0.081/4

0.2 0.8 0.05 0.081/2

0.64 0.08

Table 3.4: Values of parameters used in the simulation study

0.73 so that the odd-ratios s = 4; 8; 16 corresponded to the respective values λ1 = 5; 10; 20

and 2.92; 5.83; 11.7

In practice there is little chance that the overdispersion is known. We propose to esti-

mate this parameter from the data and use the obtained value in the analysis. The results

presented here used the estimator inspired from Johnson et al. (2005): starting from slid-

ing window of size 15, we compute the method of moments estimator of φ, using the formula

φ = E2(X)/(V (X) − E(X)), and retain the median over all windows. When this median

is negative (which is likely to happen in datasets with many zeros), we double the size of

the window. In practice however, results are very similar when using maximum likelihood

or quasi-maximum likelihood estimators on sliding windows.

Results

We compute the posterior probability P (E0|Y,K) for each simulation and each value of

d. Figures 3.27 to 3.29 in Appendix 3.2.7 represent the boxplots of this probability for each

configuration. For sake of visibility, the outliers were not drawn in those figures. Note that

in each figure, the first boxplot corresponds to d = 0 and thus to model E0, while d 6= 0 for

left boxplots so that the true model is E1. These plots can be understood as abacus for the

detection power of the proposed approach. For example, the perfect scenario corresponds
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Figure 3.24: Impact of estimating the dispersion parameter. Boxplot of the

posterior probability of E0 for s = 16 and d = 16 when estimating the value of φ

(left boxplot of each subdivision) or when using the known value (right boxplot of each

subdivision).

to s = 16 in the Poisson case of Figure 3.27.

As expected, these results show that the lower the value of φ (the Poisson distribution

is interpreted here as φ = +∞), the most difficult the decision becomes. The trend is

identical for decreasing values of the odd-ratio s and decreasing values of d. In the most

difficult scenario of very high dispersion compared to signal value, the method fails to pro-

vide satisfying decisions whatever the level of odd-ratio or distance between change-points.

However, in most configurations, the method is adequate as soon as d ≥ 16.

An important question is the impact of the estimation of the dispersion parameter.

Interestingly, in the simulation study with p0 = 0.8, our estimator tended to under-estimate

φ (and thus over-estimate the dispersion) while it was the contrary in the simulation study
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with p0 = 0.5. This affects the performance of the decision rule, which behaves better when

φ is higher. For instance, Figure 3.24 shows, for s = 16 and d = 16, that knowing the true

value of φ improves the results when p0 = 0.8 but worsens them when p0 = 0.5.

3.2.6 Comparison of transcribed regions in yeast

Experimental design.

We now go back to our first motivation and consider a study from the Sherlock lab in

Stanford (Risso et al., 2011). In their experiment, they grew a yeast strain, Saccharomyce

Cerevisiae, in three different environments: ypd, which is the traditional (rich) media for

yeast, delft, a similar but poorer media, and glycerol. In the last decade many studies

(see for instance Proudfoot et al., 2002; Tian et al., 2005) have showed that a large

proportion of genes have more than one polyadenylation sites, thus can express multiple

transcripts with different 3′ UTR sizes. Similarly, the 5′ capping process is dependent on

environment conditions (Mandal et al., 2004), and the 5′ UTR size may vary according

to stress factors. We may therefore expect that the yeast cells grown in different conditions

(they ferment in the first two media, while they respire in glycerol) will produce transcripts

of unequal sizes. On the contrary, the intron-exon boundaries are not expected to differ

between conditions.

Change-point location.

We applied our procedure to gene YAL013W which has two exons. The RNA-Seq series

were segmented into 5 segments to allow one segment per transcribed region separated by

segments of non-coding regions. Figure 3.25 illustrates the posterior distribution of each

change-point in each profile.
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Figure 3.25: Posterior distribution of change-point location. Segmentation in

5 segments of gene YAL013W in three different media: ypd (top), delft (middle) and

glycerol (bottom). Black dots represent the number of reads starting at each position

of the genome (left scale) while blue curves are the posterior distribution of the change-

point location (right scale).

Credibility intervals on the shift.

For each of the first to the fourth change-point, we computed the posterior distribution of

the difference between change-point locations for each pairs of conditions. For the biological

reasons stated above, we expect to observe more differences for the first and last change-

points than for the other two, which can be used as a verification of the decision rule.
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Figure 3.26 provides the posterior distribution of these differences, as well as the 95%

credibility intervals.

Posterior probability of common change-point.

We then computed the probability that the change-point is the same across several

series, taking p0 = 1/2. Table 3.5 provides, for the simultaneous comparison of the three

conditions and for each pair of conditions, the value of the posterior probability of E0 at

each change-point (τ `1 is associated with the 5′ UTR, τ `2 to the 5′ intron boundary, τ `3 to

the 3′ intron boundary and τ `4 to the 3′ UTR). Reassuringly, in most cases the change-

point location is identical when corresponding to intron boundaries. On the contrary, UTR

boundaries seem to differ from one condition to another.

3.2.7 Conclusion

We have proposed two exact approaches for the comparison of change-point location.

The first is based on the posterior distribution of the shift in two profiles, while the second

is adapted to the comparison of multiple profiles and studies the posterior probability of

having a common change-point. These procedures, when applied to RNA-Seq datasets,

confirm the expectation that transcription starting and ending sites may vary between

growth conditions while the localization of introns remains the same.

While we have illustrated these procedures with count datasets, they can be adapted

to all distributions from the exponential family verifying the factorability assumption as

described in Section 3.2.2. They are in fact implemented in an R package EBS for the

negative binomial, Poisson, Gaussian heteroscedastic and Gaussian homoscedastic with

known variance parameter. This package is available on the CRAN repository at http:

//cran.r-project.org/web/packages/EBS/index.html.

http://cran.r-project.org/web/packages/EBS/index.html
http://cran.r-project.org/web/packages/EBS/index.html
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Figure 3.26: Distribution of change-point location and 95% credibility inter-

vals. For each of the two by two comparison (top: ypd-delft; middle: ypd-glycerol;

bottom delft-glycerol), posterior distribution of the change-point difference for each of

the first to the fourth change-point.
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comparison
change-point

τ1 τ2 τ3 τ4

all media 10−3 0.99 0.99 6 10−3

ypd-delft 0.32 0.30 0.99 10−5

ypd-glycerol 4 10−4 0.99 0.99 6 10−3

delft-glycerol 5 10−2 0.60 0.99 0.99

Table 3.5: Posterior probability of a common change point across conditions for gene

YAL013W
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Figure 3.27: Boxplot of posterior probabilities of E0 for Poisson. Plotted as d

increases in simulation studies for the Poisson distribution with λ0 = 0.73 (Top) and

λ0 = 2.92 (Bottom) and for each value of s (in columns).
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Figure 3.28: Boxplot of posterior probabilities of E0 for negative Binomial,

with p0 = 0.8. Plotted as d increases in simulation studies for the negative binomial

distribution with p0 = 0.8 and for each value of s (in columns) and each value of φ

(in rows) as detailed in the left side of Table 3.4. The overdispersion is estimated as

detailed in Section 3.2.5.
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Figure 3.29: Boxplot of posterior probabilities of E0 for negative Binomial,

with p0 = 0.5. Plotted as d increases in simulation studies for the negative binomial

distribution with p0 = 0.5 and for each value of s (in columns) and each value of φ

(in rows) as detailed in the right side of Table 3.4. The overdispersion is estimated as

detailed in Section 3.2.5.
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3.3 EBS: R package for Exact Bayesian Segmentation

The framework described in Rigaill et al. (2012) and all further developments pre-

sented in the previous sections are implemented in the R package EBS. This package relies

on the construction and manipulation of two S4 classes of objects: an EBS class for the

segmentation and analysis of a single profile, and an EBSProfiles class, built on the for-

mer one, for the analysis of independent profiles. To illustrate the implementation of the

package, we will use the EFB1 gene of the yeast genome as a continuing example. We will

suppose that the data for this gene is contained in the three vectors yypd, ydel and ygly

for the respective conditions ypd, delft and glycerol.

3.3.1 EBS class and associated methods

An object of the EBS class is constructed using the method EBSegmentation, and is used

to store the fundamental probability matrix A as well as the first row (generically noted

L1) and last column (generically noted Cn+1) of its kth powers. This method takes as input

the dataset as well as various options such as the model to use among 4 possibilities, the

maximum number of segments to be considered, the hyperparameters to use for the model,

the value to use for an eventual global parameters and the prior on the segmentation to

use. Specifically, the method is used in the following way:

> out<- EBSegmentation(y, model, Kmax, hyper, theta, var, unif)

• y is the vector of data;

• model takes as input an integer between 1 and 4: 1 corresponds to the Poisson model,

2 to the Gaussian model with global and known variance parameter, 3 to the negative

binomial model with global and known dispersion parameter, and 4 to the Gaussian

heteroscedastic model;

• Kmax is an integer for the maximum number of segments to consider;

• hyper are the hyperparameters to use for the conjugate distributions of the models.

The conjugate distributions for models 1 to 4 are given in Section 1.2.3.



3.3.1 - EBS class and associated methods 231

Default values can be used: (1, 1) for model 1, (0, 1) for model 2, (1/2, 1/2) for model

3 and (0, 2β, α, β) for model 4 where α and β are obtained by fitting an inverse

gamma distribution on the MAD (Hampel, 1974; Donoho, 1995) estimation for the

variance;

• theta is the value of the dispersion parameter φ used in the negative binomial model.

Default value is the estimator proposed in Section 1.2.1;

• var is the value of the variance σ2 used in the Gaussian homoscedastic model. Default

value is the estimator proposed by Hall et al. (1990), and finally

• unif is a boolean stating whether the prior on m is a uniform conditional on K

(unif=TRUE) or a prior which favors segments of equal length. Default value is TRUE.

With those options specified, we can compute the probability matrix A. As stated in

Table 1.1, the generic element (up to factor aJ) of this matrix is made of three components

which have different roles.

• Term 1 depends only on the data and will appear in each possible segmentation,

whichever its number of segments. This means that this component needs not be

computed and stored in matrix A as it will not intervene in the comparisons of

interest to be made, be it at the segmentation (M) or at the number of segments (K)

levels.

• As stated in Section 3.1.5, term 2 depends only on the value of the hyperparameters,

and will intervene multiplicatively as many times as the number of segments. It thus

needs not be computed in matrix A but stored to perform comparisons at level (K).

• Finally, term 3 is altogether data, segment and hyperparameter dependent. It there-

fore constitutes the true value to be computed and stored in A.

Note that in practice, this does not require to compute the powers of the whole matrix.

Indeed, Lk1 and Ck
n+1 can be obtained by recursion as respectively Lk−1

1 ×A and A×Ck−1
n+1.

Moreover, to avoid numerical issues, the logarithm of the generic A terms are stored, and

the technique log(el1 + el2) = max(l1, l2) + log(exp(min(l1, l2)−max(l1, l2))) is used for the

computation of the product of matrices to ensure that the terms do not go to infinity.

Therefore, the command
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> Eypd<- EBSegmentation(yypd, 3, 10)

computes the A matrix for the ypd profile modeled with the negative binomial distri-

bution, as well as the first line and last column of its 10 first powers.

From EBS class objects, the quantities of interest presented in the previous sections can

easily be computed. For instance, the commands

> ICL <- EBSICL(out, prior)

> BIC <- EBSBIC(out, prior)

compute respectively the ICL and BIC criterion of the data, given some prior on the num-

ber of segments. By default, the uniform prior on 1, . . . , Kmax is used, with the Kmax value

used when creating the out object. Both those commands return the value of the criterion

for each 1 ≤ k ≤ Kmax and their optimal K. Note that the BIC is computed up to a

constant, so that it is proportional to the posterior probability of the number of segments.

Its true value can be obtained with the method EBSPostK(out, prior) if they are needed,

for instance for model averaging.

Finally, information on the posterior change-point distributions can be obtained with

the commands

> EBSDistrib(out, k, Kk)

> EBSPlotProba(out, K, data)

The former computes the posterior distribution of the kth change-point of a segmentation

in Kk segments (returned under the form of a vector of length n + 1), while the second

plots the posterior distribution of all K−1 change-points of a segmentation in K segments,

on top of the data if data is true (value by default is false). Figure 3.30 is the output of

the command

> EBSPlotProba(Eypd, EBSICL(Eypd)$NbICL, data=TRUE)
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Figure 3.30: Posterior distribution of change-points location. Output of the

command EBSPlotProba for the ypd profile with K chosen with the ICL criterion.

3.3.2 EBSProfiles class and change-point comparison

The class EBSProfiles is dedicated to the analysis of multiple and independent profiles,

and is based on the structure of objects of class EBS. The construction of such an object is

performed with the command

> EBSProfiles(data, model, K, hyper, theta, var, homoscedastic, unif)

• data is the ` × n matrix of data, (with ` the number of profiles and n the length of

each profile);

• model takes as input an integer between 1 and 4 as for EBS class objects,

• K is a vector of integer for the maximum number of segments to consider for each

profile (thus not requiring all profiles to have the same Kmax);

• hyper are the hyperparameters to use for the conjugate distributions of the models.

This entry requires a vector of size 2× ` for models 1, 2 and 3, and 4× ` for model 4.
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• theta is the vector of values of the dispersion parameter φ used in the negative

binomial model;

• var is the vector value of the variance σ2 used in the Gaussian homoscedastic model,

• homoscedastic is a boolean stating whether or not the global parameters should be

shared by each profile, if appropriate (default value being set to false), and finally,

• unif is a boolean stating whether the prior on m is a uniform conditional on K.

Note that the same default values are included as in the EBS objects if needed.

While stored slightly differently, an object of class EBSProfiles is the set of ` objects

of class EBS, which can be extracted through the command

> GetCondition(x, Condition)

where x is the EBSProfiles object and Condition is the index of the profile to be extracted.

It is then possible to apply all methods of Section 3.3.1 to the output of GetCondition,

even though some analysis can be performed in parallel for all profiles. It is for instance

the case for the computation of the ICL criterion, with the method EBSICLProfiles, or for

the plotting of the posterior distribution of the change-point location of each profile, with

the method EBSPlotProbaProfiles. Figure 3.31 illustrate the output of the commands

> Eall <- EBSProfiles(rbind(yypd, ydel, ygly), 3, 10)

> K<-c(5,5,5)

> EBSPlotProbaProfiles(Eall, K, data=TRUE)

The two main tools for the comparison of profiles described in Section 3.2 are then

implemented in the methods:

> CompCredibility(x, Conditions, Tau, K)

> EBSStatistic(x, Conditions, Tau, K, p0)

Both take as input an object of class EBSProfiles, the index of the conditions to

compare, the index of the change-points of interest, and the number of segments of each
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Figure 3.31: Posterior distribution of change-points location of three profiles.

Output of the command EBSPlotProba for all profiles segmented into 5 segments.

condition. The former is limited to the comparison of 2 profiles and thus Conditions

must be a vector of integer of length 2. It returns the posterior distribution of the change-

point difference, as well as the level of both the smallest credibility interval containing zero

and before reaching zero. A plot of this distribution and associated α credibility interval

can be obtained with method plot.Credibility(x,level) where x is an output of the

CompCredibility method and α is given by level, as illustrated in Figure 3.32 which com-

pares the first change-point of profiles corresponding to the ypd and delft growth conditions

segmented into 5 segments. The latter, EBSStatistic is dedicated to the comparison of

as many profiles as wanted. It computes, given its prior probability p0, the posterior prob-
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ability of event E0 introduced in Section 3.2 . A default value of 1/2 is used in case the

user does not have an informative prior. For instance, the posterior probability that the

second change-point of each profile segmented into 5 segments (cf Figure 3.31) are located

at the same position is computed with command EBSStatistic(Eall, 1:3, c(2,2,2),

c(5,5,5), 1/2) and is equal to 0.9923283.
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Figure 3.32: Credibility interval of difference in change-point location. Poste-

rior distribution of the first change-point location difference between profiles ypd and

delft segmented into 5 segments, and associated 0.95 credibility interval.

The examples provided in this section were obtained in June 2013 with version 2.7 of

the EBS package.
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3.4 Results on the yeast dataset

We have already illustrated throughout the presentation of the R package (Chapter 3.3),

and the development of our comparison methods (Chapter 3.2) how this Bayesian frame-

work applies to the analysis of a profile corresponding to a gene.

We have applied those methods to a set of 50 genes from the yeast genome which all have

2 exons, and which were expressed at the time of the experiment. Figure 3.33 illustrates

the distribution of the posterior probability of E0 (event that all change-points have same

location) for each of the four change-points of those genes, when using p0 = 1/2 as a prior

value. As expected, the change-point corresponding to the intron boundaries have very

high posterior probability, while almost half of the other have a posterior probability lower

than 1/2.
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Figure 3.33: Posterior probability of E0. Distribution of the P (E0|Y,K) obtained

for each change-point when using p0 = 1/2 for each of the 50 genes.

In fact, when looking at the 5 genes for which the posterior probability of E0 suggests

that at least one of the intron boundaries should be classified as differing between conditions,

we found that all of them had one of their two exons which was not expressed in the Glycerol

medium (see for instance Figure 3.34).
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Figure 3.34: Example of alternative isoform. Example of the YBL018C gene from

the yeast genome which second exon is not expressed in the glycerol condition.

While methods dedicated to the identification of isoforms and their respective expression

proportions would probably have identified these cases, one might note that all traditional

differential expression approaches would not have noticed this. Indeed, the first step of

such methods consists in summing over all nucleotides of a given gene their associated read

counts in order to obtain one number per gene per condition, independent of the number

of expressed exons. While it is probable that such analysis would have resulted in classify-

ing these 5 genes as under-expressed in glycerol, the alternative splicing would have gone

unnoticed.
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Moreover, some further discussion with Dr Sherlock suggested that about 10% of the

genes should be liable to differential splicing. We therefore performed the analysis over

again removing the 5 previously identified outliers and setting p0 = 0.9 for the change-

points corresponding to UTR boundaries and p0 = 0.99 for the intron boundaries. These

new results are illustrated in Figure 3.35. For these new prior values, we observe that 9

genes have a 3′ UTR length which varies, and 16 for the 5′ UTR.
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Figure 3.35: Posterior probability of E0 with informative priors. Distribution of

the P (E0|Y,K) obtained for each change-point when using p0 = 0.9 for UTR boundaries

and p0 = 0.99 for intron boundaries.

We can conclude from this analysis that yeast cells have differential UTR lengths when

grown in different media and that this phenomenon might be responsible for differences

observed in the phenotype, such as switching between respiration and fermentation. But

this differential splicing process is not limited to UTRs, it appears that it actually extends

to whole exons, despite the small amount of yeast genes which possess more than one.

Moreover, as expected, intron boundaries are conserved between conditions.
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