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Abstract: 

The mobility of free charges and its localization mechanism has considerable effect on the dielectric 

properties of the materials. Therefore single crystal of Fe doped BaTiO3 and KTiOPO4 (KTP) which 

have predominantly electronic and ionic conductivity respectively were studied under external 

stresses like electric and magnetic field.  The application of external magnetic field affects the 

hopping of electrons which lead to tuning of polaron losses in BaTiO3 whereas in case of KTP 

localization of K+ ions give rise to splitting of piezoelectric resonance and it can be tuned by external 

electric field. In the second part new phosphates of formula BaFeTi(PO4)3 and BiFe2(PO4)3 were 

synthesized to look for polarization property. However Bi3+ ions are not localized on their inversion 

symmetry site which is promising. Finally spinel Co3O4 was investigated under dielectric and Electron 

Paramagnetic Resonance spectroscopy which reveal an induction of polar state under external 

magnetic field. 

 

Résumé: 
La présence de charges libres a des conséquences considérables sur les propriétés diélectriques des 

matériaux. Pour mettre en évidence ces contributions, nous avons étudié l’influence de contraintes 

électriques et magnétiques sur des monocristaux de BaTiO3 dopé Fer et de KTiOPO4 (KTP). Dans 

BaTiO3, l’application d’un champ magnétique perturbe le mécanisme de pertes diélectriques 

résultant de mécanismes polaroniques. Dans le KTP c’est la localisation des ions K+ qui est perturbée 

par un champ électrique comme nous l’avons démontré en étudiant la séparation des raies de 

résonances piézoélectriques. Dans une deuxième partie, nous avons synthétisé et étudié la 

polarisation de phosphates de composition BaFeTi(PO4)3 and BiFe2(PO4)3. Cependant, l’ion Bi3+ n’est 

jamais positionné sur son site d’inversion, ce qui est prometteur. Enfin, nous avons étudié la spinelle 

Co3O4 par spectroscopie diélectrique et RPE et nous avons montré l’induction d’un état polaire sous 

l’effet d’un champ magnétique. 
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General Introduction: 
In recent years coupling between electrical and magnetic properties in a material is sought after 

very rigorously. Related to this, terms such as multiferroic, magnetocapacitance and magneto 

dielectrics came into existence where there is a coupling between dielectric (ferroelectric) and 

magnetic (ferromagnetic) property. Contributions for such a coupling could be both intrinsic and 

extrinsic. From the view point of ferroelectrics the intrinsic contribution is due to the lattice related 

electronic and ionic local displacement whereas the extrinsic contributions arises due to long range 

motion of free charges, for example creation of space charge. Similarly, extrinsic contribution to the 

coupling between electrical and magnetic property can also be due to the motion of free charge, a 

case in point is the magnetocapacitance due to the presence of magnetoresistive artifact as 

explained by Catalan [1]. Other extrinsic factors are strain, composite etc. 

This thesis is thus focused on distinguishing the intrinsic and extrinsic coupling in dielectric and 

ferroelectric materials.  In particular we will focus on the motion of free charges and its response to 

the external stresses like electric and magnetic field and how it can alter the dielectric properties of 

the material. Other extrinsic factors leading to coupling between electric and magnetic property will 

not be discussed since it is out of scope of the present thesis. We performed experiments on 4 cases, 

first two cases belong to well-known ferroelectric materials and the last two cases have not been 

investigated for their polarization properties until now. In the first two cases, everyday ferroelectrics 

like BaTiO3 and KTiOPO4 (KTP) were considered. To avoid unwanted interface contribution to the 

dielectric properties these materials were taken in the form of single crystals with well controlled 

stoichiometry and extended defect density. In BaTiO3 unavoidable point defects such as oxygen 

vacancies or intentionally substituted defects like iron usually increase conductivity. Recently 

Maglione has shown that this electronic conductivity due to free charges at high temperatures can 

localize at interfaces such as domain walls which eventually lead to artificial magnetocapacitance 

(AMC) under magnetic field at the domain wall relaxation temperature [2]. Here we probe for AMC 

at low temperatures (≈ 30 K) where the polaron relaxation occurs. We will show here that the 

polaron relaxation leading to dielectric losses can be tuned by dc magnetic field without change in 

the capacitance proving that no interface is involved. It will be shown further that dc magnetic field 

affects the way the electrons are hopping between different centers with the help of ESR 

spectroscopy and this is observed close to the relaxation maximum where the temperature and 

frequency are favorable. This tuning is not observed in the nominally pure ferroelectric single crystals 

like BaTiO3, SrTiO3 and KTaO3. The charge carrier concentration in nominally pure crystals is less in 
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comparison to intentionally substituted single crystal like Fe doped BaTiO3 which forbade them from 

being coupled to dc magnetic field.  

Next we focused on the ionic conductivity in KTP due to the long range motion of potassium ions 

through the channels. The ionic conductivity in KTP slows down below 200 K and becomes insulator. 

This transition from superionic to insulator influences the piezoelectric property of KTP which splits 

the piezo resonance. It will be shown that accumulation of mobile ions leading to space charge is the 

major factor influencing the piezo resonance. This space charge can then be tuned by external 

stresses like electric field which in turn tune the piezoelectric resonance. µ-Second Harmonic 

Generation (SHG) microscope was used to visualize and map the space charge distribution. This 

powerful technique has shown that the mobile charges accumulate not only at the surface of the 

sample but also at other interfaces like domain walls. Therefore this coupling of ionic conductivity to 

piezoelectric resonance is intrinsic to KTP and can be anticipated to exist in other ferroelectrics 

showing polarization as well as ionic conductivity. To our knowledge this is the first time a link 

between polarization and ionic conductivity is found.  

The next family of compounds synthesized and studied was phosphates of Nasicon (Sodium 

superionic conductor) structure.  Some of the known phosphates like KTP and potassium dihydrogen 

phosphate (KDP) are good ferroelectrics however they are not magnetic. The Nasicon type 

phosphates allow for the incorporation of various transition metal and alkali cations which might 

lead to interesting electrical and magnetic property. At the same time Nasicon phosphates are 

known for their high ionic conductivity which might screen the polarization, in addition no known 

ferroelectrics exist in the phosphates of this structure. Therefore phosphates with barium and 

bismuth at A site were synthesized and they are BaFeTi(PO4)3 and BiFe2(PO4)3. The choice of barium 

and bismuth is due to their ionic radius which is quite large that might limit their mobility and 

therefore their ionic conductivity. The compound BaFeTi(PO4)3 was already synthesized by Masse in 

70’s [3]. In this compound titanium sits in the octahedra environment (TiO6) similar to BaTiO3 which 

might induce polarization. However the space group of this compound is centrosymmetric and thus 

cannot lead to ferroelectric behavior. Nonetheless as expected barium compound behaves as a good 

dielectric with a low loss. At low temperatures a canted antiferromagnetic order sets in leading to 

interesting magnetic behavior. Unfortunately no coupling between dielectric and magnetic order is 

observed.  The bismuth compound BiFe2(PO4)3 is synthesized for the first time. Bismuth in A site is 

very interesting because of the polarizability of its lone pair. While macroscopic magnetic and 

dielectric properties show more or less the same trends as the Ba compound, the local symmetry at 

Bi site is promising. Indeed, we could successfully grow single crystals of BiFe2(PO4)3 allowing for 

complete structural determination. It appears that Bi is not sitting at the inversion symmetry site 
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being off centered along the (001) direction due to the active lone pair. This uniaxial displacement is 

randomly distributed and this lack of correlation does not allow for long range ferroelectric order. 

The last compound which was studied during this PhD is Co3O4, a spinel which is well known in 

the fields of magnetism and ionic conductors. This simple compound belongs to the broad family in 

which electronic ferroelectricity is actively investigated nowadays like CoCr2O4, FeCr2O4, MnCr2O4 

etc [4] [5] [6]. We show that, at the magnetic transition of about 30K, a distinct dielectric and 

polarization anomaly can be induced by a magnetic field. We again made our best to remove all 

spurious conductivity contributions to this result, which would be an evidence for a new type 2 

multiferroics. A strong support for this comes from EPR investigation which showed a canting of 

antiferromagnetic moments on cooling the ceramics under a magnetic field which eventually lead to 

polarization according to spin current model proposed by Katsura et al. 

1. Chapter 1 will be dedicated to bibliography work done during this thesis 

2. Chapter 2 will give the experimental details of this thesis 

3. Chapter 3 will discuss the tuning of polaron losses under dc magnetic field in Fe doped 

BaTiO3 single crystals 

4. Chapter 4 will investigate coupling between ionic conductivity and piezoelectric resonance in 

KTP 

5. Chapter 5 will give the synthesis and characterization of Nasicon type phosphates 

6. Chapter 6 will study the intrinsic magnetoelectric coupling in Co3O4. 
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I. Dielectrics, ferroelectrics and multiferroics: 

I.1. Dielectrics: 
 Dielectrics are insulators through which no steady conduction current can flow and when it is 

subjected to external electric field electric charges in the material shift from its equilibrium position 

causing polarization [1]. 

I.1.1. Dipole Moment and Polarization: 
A pair of equal and opposite charges situated close enough compared with the distance to an 

observer is called an electric dipole (Figure I-1). Its dipole moment is given by  

 𝜇 = 𝑞 ∗ 𝑑 Eq 1 

Here μ is the electric dipole moment in C m, q is electric charge in coulomb and d is the distance 

between the two equally opposite charges. 

 

Figure I-1: Two equal and opposite charges separated by a distance d creates a dipole 

Now, the polarization P is given by 

 𝑃�⃗ = ∑
𝜇
𝑉

=< 𝜇 >.𝑁𝑉  
 
Eq 2 

Where < μ > is the average vector dipole moment; NV is the density of dipoles (per m3) and 

polarization has the unit of C.m-2 (Coulomb per Square meter) i.e Polarization has the dimension of 

an area charge which is evident from the following  

Let us consider a simple parallel plate capacitor with homogenously polarized material inside the 

plates (Figure I-2). Assuming all dipoles have the same direction then the charge density inside a 

small probing volume is zero because there are as many positive charge as negative charges. But at 

the surface there are still uncompensated charges which are separated by the thickness of the 

dielectric slab. Hence we have surface polarization charge which is given by 
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𝑃�⃗ =

∑𝑉 𝜇
𝑉

=
∑𝑆 𝜇
𝑉𝑆

=  
𝑑.∑𝑆 𝑞
𝑑.𝐴

=  
∑𝑆 𝑞
𝐴

 
 
Eq 3 

 

Figure I-2: Creation of surface charge due to polarization of the material. Note in the bulk there is no net 
charge since there is equal number of positive and negative charge. 

I.1.2.  Dielectric Displacement and Polarization: 
The charge per unit area that would be generated at the surface of a layer of dielectric when 

placed in an electric field E is called dielectric displacement. It is given by 

 𝐷��⃗ = 𝜀𝑟 . 𝜀0.𝐸�⃗  Eq 4 

Where 𝜀𝑟  is the relative dielectric permittvity and 𝜀0 the one of vacuum. This can also be 

represented as  

 𝐷��⃗ = 𝐷��⃗ 0 + 𝑃�⃗ = 𝜀0.𝐸�⃗ + 𝑃�⃗  Eq 5 

Where D0 is dielectric displacement in vacuum, P is the polarization of the material. But from 

empirical law we have  

 𝑃�⃗ = 𝜀0.𝜒.𝐸�⃗  Eq 6 
 

Here χ is the dielectric susceptibility and by substituting Eq 6 in Eq 5 and comparing with Eq 4 we get 

 𝜀𝑟 = 1 + 𝜒 Eq 7 

The above relation is valid only when 𝑃�⃗  is parallel to 𝐸�⃗  which is only possible in isotropic material. For 

anisotropic material 𝑃�⃗  is not parallel to 𝐸�⃗  then the quantities εr and χ are tensors. 

I.1.3.  Mechanism of Polarization: 
The presence of permanent dipoles or creation of induced dipoles due to the displacement of 

positive and negative charge by the application of external electric field give rise to polarization. In 

general polarizability of the material arises due to number of mechanisms. If α represents the total 

polarizability of the material then it can be expressed as the sum of four terms. 

No Charge 
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 𝛼 = 𝛼𝑒 + 𝛼𝐼 + 𝛼𝑂 + 𝛼𝑆  Eq 8 

where αe, αI, αO and αS are electronic, ionic, orientational and space charge polarization 

respectively. We will see each of them in the following. 

 Electronic Polarization:  This kind of polarization exists in all dielectrics. It arises due to the 

electronic polarization associated with the displacement of the electron cloud versus the 

nucleus. It is shown clearly in Figure I-3. Then the polarizability is approximately proportional 

to the volume of the electron shell. Therefore it is temperature independent and large atoms 

have a large electronic polarizability.  

 

         

Figure I-3: Electron cloud surrounding the nucleus. When there is no external field the center of 
positive charge coincides with the center of negative charge. After the application of external field the 
positive and negative charge are no more at the center and a dipole is created due to electronic 
polarization. 

 Ionic Polarization:  This kind of polarization mainly occurs in ionic crystals and it is due to 

the displacement of positive and negative sublattices under an applied electric field. For 

example consider a simple ionic crystal NaCl. Each of Na+ - Cl- is a natural dipole but the net 

polarization is zero because for every dipole there is an equal dipole in opposite direction. 

Now if an external field is applied then the ions feel the force in opposite direction and a 

dipole is induced. This is shown schematically in Figure I-4 

          

                  

Figure I-4: (Left figure) Lattice of NaCl, there is charge neutrality in the material due to the existence of 
equal and opposite dipole, indicated by black arrows. (Right figure) With the application of external 
electric field, charge neutrality is broken and polarization is induced. Notice the dipole length 
indicated by black arrows. 
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 Orientation Polarization:  In some materials there are built –in dipoles, for example water 

molecule. This is because positively charged H atoms have charge center different from 

negatively charged oxygen atom. But these dipoles are statistically distributed since they can 

rotate freely and the net dipole moment is zero as shown in the figure I-5 a. In the presence 

of applied field these permanent dipoles experience torque and consequently they orient 

along the direction of the field. This is shown schematically in figure I-5 b.  

 

Figure I-5: (a) Statistical distribution of permanent dipoles leading to no polarization, (b) Orientation of 
dipoles along the direction of applied field which induces polarization. 

 Space Charge Polarization:  This kind of polarization arises due to the presence of charges 

which are not locally bound to the lattice. These charges then migrate and cause spatial 

inhomogeneity of charge carrier density. They may accumulate on grain boundaries, 

electrode and dielectric interfaces giving rise to interfacial polarizability [2] [3]. In a low 

frequency of a.c. field they behave as a macroscopic dipole. 

As we can see from figure I-6 different kind of polarization takes place at different frequency range. 

At very low frequency all the above polarization may take place and the value of polarizability is 

same as that in static field. As the frequency is increased only certain polarization mechanisms are 

favored. It is important to note that both orientation and space charge polarization lead to relaxation 

phenomenon which manifest at low frequencies whereas electronic and ionic polarization lead to 

resonance phenomenon which exhibits at high frequencies. Major difference between the resonance 

and the relaxation is the nature of forces acting on the dipoles. In case of resonance, force is elastic 

(restoring) whereas for relaxation it is of inelastic (friction).  Hence relaxation involves loss of energy 

by dissipation which we will see at section I.1.5 in detail.  
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Figure I-6: Different types of polarization and their contribution to the complex dielectric permittivity (see next 
part) due to the application of a.c field. Adapted from ref [1] 

I.1.4. Complex Permittivity: 
When a dielectric material is introduced in an alternating electric field there will be a phase lag 

between the applied field and the response of the system. This is mainly because real dielectrics are 

always slightly conducting or polar and therefore their capacitance is no longer perfect i.e. current is 

not exactly 90° out of phase with the applied voltage.  Conductivity arises from the motion of charges 

and if these charges are free then the conductivity is independent of the frequency of the applied 

voltage and the complex permittivity for this case is given by 

 𝜀∗ = 𝜀 − 𝑖
𝜎
𝜔

 
Eq 9 

Where εis the permittivity of the dielectric material, σ is the frequency independent conductivity 

and ω is the frequency of the applied field. 

If the conductivity is due to bound charges as in oscillating dipoles then the conductivity itself is 

frequency dependent and it is a complex quantity and the real part of the permittivity ε*is not 

exactly ε. Hence the complex permittivity is given by  

 𝜀∗ = 𝜀′ − 𝑖𝜀′′ Eq 10 
 

Where ε’ and ε’’ are real and imaginary part of the permittivity and they are frequency dependent. 

Then the loss factor is given by  

 
𝑡𝑎𝑛 𝛿 =

𝜀′′
𝜀′

 
 
Eq 11 
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I.1.5. Dielectric Relaxation: 
Relaxation may be defined as the time lag in the response of a system to a change in the physical 

force to which it is subjected [4]. It depends on chemical surrounding of the dipole and the 

temperature. Let us consider number of identical dipoles at temperature T in a constant, uniform 

applied field. Now if the field is abruptly cut off, torque experienced by the dipole due to the 

presence of external field diminishes instantly and the dipoles will slowly reorient themselves by 

means of multiple collisions leading to disappearance of statistical orientation. This reorientation of 

dipole is not instantaneous and it takes characteristic time. This time is called relaxation time τ. 

Hence there will be a smooth change over from polarization with field to zero within the relaxation 

time τ as shown below. 

 

Figure I-7: Characteristic decay of polarization with a time constant τ after switching of the electric field. 

Now the dielectric displacement due to dipole orientation in an alternating field is given by 

 𝐷(𝜔) = 𝜀∗(𝜔).𝐸(𝜔) Eq 12 

 
and the frequency dependent permittivity is given by 

 𝜀∗ = 𝜀∞ +
𝜀𝑆 − 𝜀∞
1 + 𝑖𝜔𝜏

 
Eq 13 

 

Where εS- static low frequency permittivity, ε∞ - high frequency permittivity, ω – angular frequency 

and τ-relaxation time. This is called Debye relaxation [5]. A schematic representation of such 

relaxation is shown below. 
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Figure I-8: Debye relaxation 

Note that there is a peak in the imaginary part of the permittivity when there is a transition from low 

frequency permittivity to high frequency permittivity. This peak is called loss peak since its 

represents loss (conducting) mechanism in the material.  

Then the real and imaginary parts of ε* is given by 

 𝜀′(𝜔) = 𝜀∞ +
𝜀𝑆 − 𝜀∞

1 + 𝜔2𝜏2
 

Eq 14 

 𝜀′′ = (𝜀𝑆 − 𝜀∞)
𝜔𝜏

1 + 𝜔2𝜏2
 

Eq 15 
 

According to the equation above, the complex plane plot of є’’ versus є’ then gives semicircle as 

shown below in figure I-9. This is called the Cole-Cole plot. In the case of single relaxation process 

with a single relaxation time like Debye relaxation we will have a semicircle with its center on the real 

axis.  

 

Figure I-9: Complex plane plot of є’’ versus є’. Adapted from ref [6] 

ε* is now represented by the semi-circle of radius (εs - ε∞)/2 and the top of the semicircle 

corresponds to ωτ=1 
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I.1.5.1. Distribution of relaxation time:  

In the previous section we have seen the Debye relaxation and how we obtain semicircle when it 

was represented by complex plane plot. Debye relaxation is mostly valid for non-interacting dipoles 

or for a set of dipoles which have the loss of energy proportional to frequency leading to 

spontaneous relaxation. This is seen only in some ferroelectrics [7]. More often in real materials this 

is not the case since several parallel relaxation process occur leading to distribution of relaxation 

time. Figure I-10 gives the real and imaginary part of dielectric constant plotted against frequency for 

the case of the ideal Debye relaxation and distributed relaxation seen in real materials. Debye 

relaxation follows from Eq. (13) whereas the experimental data follows distribution of relaxation 

time in real materials.  

 

Figure I-10: Real and Imaginary part of dielectric constant plotted against frequency. Solid lines represent 
Debye relaxation, the dashed lines shows experimentally found behavior. 

We can see from the plot that experimental behavior in real materials is different from the ideal 

Debye relaxation. For the experimental curve, frequency range of dispersion is broader and the 

maximum of absorption is smaller compared to the ideal Debye relaxation. Significance of this 

departure from true Debye behavior is well appreciated in the form of Argand diagram or complex 

plane plot. Cole-Cole in their historical paper in 1941 considered large set of data in polar liquids and 

solids and found that for all these materials the complex plane plot of the dielectric constant has its 

center below the real axis i.e. the semicircle is inclined compared to the true Debye response which 

has the center on the real axis. Hence the depressed semicircle can be expressed in the form of angle 

suspended between the arc and the real axis which is απ/2 since this angle is independent of the 

frequency. They arrived at the expression which very well represents the dispersion of the relaxation 

from the true Debye response [8]. This is given by: 

 𝜀 = 𝜀∞ +
𝜀𝑆 − 𝜀∞

1 + (𝑖𝜔𝜏)1−𝛼
 

 
Eq 16 
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The above equation represents the effect of distribution of relaxation times and the parameter α 

gives a measure of the breath of the distribution. For α=0 the equation reduces to simple Debye 

expression. For materials which deviate from the Debye behavior α can a take value between 0 and 

1. This is clearly seen in the figure I-11 given below which is a complex plane plot of dielectric 

constant for polar liquids and solids. 

 

Figure I-11: Complex dielectric constant of (a) liquid, (b) solid. Note the depression of the semicircle indicated 
by the angle from the true Debye response. Adapted from ref [8] 

It is evident from the above figure that the constant α clearly represents the departure from true 

Debye behavior by means of providing us with the angle suspended between the arc and the real 

axis, more the value of α more is the deviation from Debye response. The fact that many dissimilar 

dielectrics display similar dispersion characteristic suggests that a more general fundamental 

mechanism is at play. But Cole-Cole did not describe the physical nature of this general mechanism. 

Though distribution of relaxation time gives us a quantitative value about the deviation from the 

normal Debye behavior, it does not give any physical proof why the distribution takes place. More 

over low temperature behavior of dielectrics are incompatible with thermally activated response and 

distribution of relaxation time follows thermal activation. Hence many approaches were developed 

to explain the deviation from the ideal Debye Model. The principal approaches were: (a) distribution 

of hopping probabilities, (b) correlation function approaches, (c) local field theories, (d) diffusive 

boundary condition (Warburg impedance), (e) interfacial phenomena effects (Maxwell-Wagner) and 

(f) transport limitation at boundaries. A comparison of all these approaches and their short comings 

are given by Jonscher [9]. Based on the broad similarity of the dielectric response of the many 

materials Jonscher arrived at the “Universal law” of the dielectric with the help of many body 

interactions [7]. A complete description of the “Universal law” is out of scope of the present thesis.  

Instead we will see in the following section how the conductivity and the charge carrier localization 

affect the dielectric relaxation and also the real and imaginary part of the permittivity. This is of at 

most importance in any dielectrics where the conductivity in them cannot be neglected for practical 

application.  
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I.2. Contribution of free charges to dielectric permittivity: 

I.2.1. Influence of dc conductivity on relaxation: 
Contribution of the conductivity σ due to free charges to the permittivity ε* is given by (-i σ/ω) as 

we have seen in section I.1.4. A conducting dielectric can be described as a non-conducting dielectric 

with resistance in parallel, and then the equation of complex permittivity is given by 

 𝜀∗(𝜔) = 𝜀∞ +
𝜀𝑆 − 𝜀∞
1 + 𝑖𝜔𝜏

− 𝑖
𝜎
𝜔

 
 
Eq 17 

The influence of the last term from the above equation can be seen in Figure I-12. Larger the 

conductivity further the diagram departs from the semicircle. 

 

Figure I-12: Influence of the d.c. conductivity on the Argand diagram. Adapted from ref [1] 

There are different types of conductivity, they are ionic, electronic and polaronic conductivity. 

Influence of each of these conductivities on the dielectric permittivity will be discussed in detail by 

the following section. 

I.2.2. Conductivity contribution to the permittivity: 
Having seen that the relaxations of most materials are far from the ideal Debye behavior, the 

focus of the current chapter is to deduce the effect of the free and mobile charges on these 

relaxations. That is, how the conductivity in the material whether it is electronic or ionic contributes 

to a change in the real or imaginary part of the permittivity. It is important to make a clear distinction 

between dipolar response and charge carrier response in a dielectric material. The dipolar response 

which is due to the dipoles in the material gives rise to a single loss peak. The charge carrier response 

gives rise to pure dc conductivity. Effect of d.c conductivity on the imaginary part of the permittivity 

is to incorporate a divergence at zero frequency. This is mostly true in case of free electrons like in 

metals or in crystalline semiconductors. In solids of dielectrics interest the conductivity is mostly due 

to hopping motion of charges. These charges hop between localized sites which can be determined 

by the defects in the solids or may be due to the very presence of the charge itself as in the case of 
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polarons. If the charges are confined to two centers then the situation is very much similar to a 

dipole. As the charges hop between the centers there will be a reorientation of these dipoles which 

will lead to a loss peak. Then the ac conductivity can be expressed as the sum of d.c and a.c 

component of the conductivity [10] 

 𝜎(𝜔) = 𝜎0 + 𝜔𝜀"(𝜔) Eq 18 

It is obvious from the above equation that the true a.c component of the conductivity is directly 

related to dielectric loss. This is very useful in distinguishing between d.c and a.c conductivity at low 

frequencies.  Below is the plot of log conductivity versus log frequency for range of materials whose 

mechanism of conduction is electronic, ionic and also dipolar [11].  

 

Figure I-13: Log conductivity versus log frequency for a range of materials which have electronic and ionic as 
well as conductivity contributions from dipolar mechanisms. Note the agreement between the high frequency 
slopes indicating the a.c conductivity Adapted from ref [11]. 

Above figure clearly shows that there is a good agreement between all mechanisms of conduction in 

different materials at high frequency i.e. a.c conductivity for all the above material falls within a 

narrow range irrespective of their mechanism of conduction and it follows the same power law 

frequency dependence of 

 𝜀" ∝ 𝜔𝑛−1       where 0.6 < n < 1 Eq 19 

While at low frequency there is a frequency independent conductivity which represents d.c. 

conductivity. But it can be noticed that saturation at low frequency is not fully complete, a certain 

slope can still be witnessed. In many instances it is considered to be a.c conductivity. Thus one way of 

distinguishing the d.c and a.c conductivity at such frequencies is that former almost never affect the 

real part of the permittivity whereas the latter affects the real part by means of strong dispersion. 

Figure I-14 gives the dielectric loss as a function of frequency for hollandite type ionic conductor [12]. 
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For the present discussion, only the data at high temperatures will be considered whereas the data 

at low temperatures will be discussed later. It is apparent from the figure that at high temperatures 

there is a strong dispersion of dielectric loss compared to low temperature. If this dispersion of 

dielectric loss is accompanied by corresponding dispersion of real part of permittivity then the 

observed effect is due to a.c conductivity. The trend was also observed for many materials given in 

figure I-13 which has a weak frequency dependent conductivity at low frequencies.  This behavior is 

perceived in most dielectrics at sufficiently high temperature and low frequency provided the density 

of charge carriers is high [13]. 

 

Figure I-14: Frequency dependence of the dielectric loss of an ionic conductor of Hollandite structure type 
K1.8Mg0.9Ti7.1O16.  Note the strong dispersion at high temperature with small value of exponent ‘n’. Adapted 
from ref [12] 

We have seen that the conductivity can contribute to the real and imaginary part of the permittivity 

depending on whether its d.c or a.c conduction.  But from here on we will only deal with a.c 

conductivity and its effect on the permittivity will be described based on examples of colossal 

dielectric constant, polarons and ionic conducting materials. 

I.2.2.1. Case of Colossal Dielectric Constant Materials: 

Colossal dielectric constant (CDC) materials show abnormally large values of dielectric constant 

over a broad temperature range. In ferroelectrics high value of dielectric constant is expected close 

to the vicinity of transition temperature TC. Away from TC the value of dielectric constant diminishes 

Figure I-15 gives the frequency dependent dielectric response of the equivalent circuit given as an 

inset to (a). The circuit consists of a leaky capacitor connected in series to bulk capacitor and it 

represents all doped and dirty semiconductors. The sum of d.c and a.c conductivity gives the intrinsic 
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bulk response where universal dielectric response (UDR) is used for representing a.c conductivity due 

to hopping charges. Then the complex conductivity is given by 

 𝜎𝑖𝑛𝑠𝑡𝑟𝑖𝑛𝑖𝑐∗ =  𝜎𝑖′ + 𝑖𝜎𝑖" Eq 20 

Where the real part of the conductivity is given by equation 18 which is the sum of d.c and a.c 

contribution and the imaginary conductivity stems from the intrinsic capacitance ε∞C0, C0 being the 

equivalent vacuum capacitance  

 

Figure I-15: Frequency dependent dielectric response of the circuit shown in inset of (a). Dashed lines 
correspond to intrinsic bulk response whereas solid lines correspond to total response. Adapted from ref [14] 

The leaky capacitor in series (Cc-Gc) arises due to the formation of Schottky barrier at the electrode-

sample interface owing to work function difference between the metal and the semiconducting 

sample. The solid lines describe the total response of the sample and the dashed lines give the 

intrinsic response of the bulk. It is apparent from the figure that conductivity falls drastically at low 

frequencies due to the dominating effect of contact resistance. The high frequency response gives 

the intrinsic response and it follows UDR. The step in the conductivity translates in to a peak in 

imaginary part of permittivity by the relation ε”=σ’/ω similar to dipolar relaxation yet it’s a purely 

conduction mechanism. This is accompanied by a large step-like increase of the ε’ at low frequencies 

due to contact capacitance which is to be added to the intrinsic capacitance. Hence the colossal value 

of capacitance in such system is primarily due to Maxwell-Wagner effect i.e. due to depletion layer 

capacitance arising at the electrode-sample interface by means of Schottky barrier. 
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To further differentiate such extrinsic effect from the true bulk behavior is to perform experiments 

under bias to change the depletion layer or to have an intermediate layer at the interface to avoid 

formation of Schottky barrier so that the intrinsic bulk contribution can be observed at ease. 

A.S.Shcheulin et al have measured single crystals of CdF2 doped with indium in the radio frequency 

range [15].  

 

Figure I-16: Real and imaginary part of the permittivity as a function of frequency for single crystal CdF2 doped 
with indium. Note the value of permittivity for sample with a thin layer of mica between electrode and the 
sample. The solid lines are fit to the equivalent circuit given in figure I-15. 

Figure I-16 gives the frequency response of the real and imaginary part of dielectric constant. At low 

frequency, there is a large increase of є’ up to 2000 which are accompanied by well pronounced peak 

in ε”. This can be interpreted with help of equivalent circuit described in figure I-15.  

At low frequency due to the difference in the conductivity of the sample and the electrode, Schottky 

barrier forms at the interface. This leads to colossal value of dielectric constant owing to the thin 

layer capacitor in series to the bulk. Only at high frequency the intrinsic dielectric constant is 

revealed (𝜀∞= 10) which is far from being colossal. They have also ruled out the possibility of dipole 

relaxation by illuminating the sample. In case of dipole relaxation, the relaxation time is independent 

of the intensity of light. Here the relaxation time was proportional to the intensity and hence 

provides key evidence for the presence of high charge carrier density. Ritus et al measured the same 

except here the electrode and the sample are separated by a thin layer of mica. This ensures that the 

Schottky barrier is not formed. It is obvious from figure I-16 that sample with mica layer has the same 

step like increase of the dielectric constant but the absolute value remains below 100. This 
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demonstrates that the measured high value of the permittivity without intermediate mica layer in 

the previous case is mainly due to the contact effect. 

Many cases of CDC behavior reported in literature on wide variety of materials are mostly due to 

such extrinsic effects described above. Even LaMnO3 the parent compound of CDC material show 

CDC which was attributed to contact dominated effect [16]. The colossal dielectric constant behavior 

of CaCu3Ti4O12 (CCTO) was first reported by Subramanian et al [17]. Since then there are many 

articles dealing with the apparent origin of CDC behavior have appeared. Most of the authors 

attribute the effect to some kind of extrinsic contribution [18] [19] [20] [21]. In the case of single 

crystals, interface at the sample and the electrode is the major extrinsic contributor whereas in the 

case of ceramics grain boundary effects along with the surface effect had to be included. For the 

latter case it can be modeled with the help of equivalent circuit shown below.  

 

Figure I-17: Equivalent circuit of CCTO ceramic sample showing grain, grain boundary and electrode 
contribution. 

Where Rb, Rgb, Re are bulk, grain boundary and electrode resistance and Cb, Cgb, Ce are bulk, grain 

boundary and electrode capacitance.  Then the complex impedance is given by 

 𝑍∗ =
1

𝑅𝑏−1 + 𝑖𝜔𝐶𝑏
+

1
𝑅𝑔𝑏−1 + 𝑖𝜔𝐶𝑔𝑏

+
1

𝑅𝑒−1 + 𝑖𝜔𝐶𝑒
= 𝑍′ − 𝑖𝑍′′ 

 
Eq 21 
 

Where 

 𝑍′ =
𝑅𝑏

1 + (𝜔𝑅𝑏𝐶𝑏)2
+

𝑅𝑔𝑏
1 + (𝜔𝑅𝑔𝑏𝐶𝑔𝑏)2

+
𝑅𝑒

1 + (𝜔𝑅𝑒𝐶𝑒)2
 

 
Eq 22 
 

and 

 𝑍′′ = 𝑅𝑏 �
𝜔𝑅𝑏𝐶𝑏

1 + (𝜔𝑅𝑏𝐶𝑏)2
� + 𝑅𝑔𝑏 �

𝜔𝑅𝑔𝑏𝐶𝑔𝑏
1 + (𝜔𝑅𝑔𝑏𝐶𝑔𝑏)2�

+ 𝑅𝑒 �
𝜔𝑅𝑒𝐶𝑒

1 + (𝜔𝑅𝑒𝐶𝑒)2
� 

 
Eq 23 
 

 

and the corresponding permittivity is given by 

 𝜀∗ = 𝜀′ − 𝑖𝜀′′ =
1

𝑖𝜔𝐶0𝑍∗
 

Eq 24 
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It is apparent from the above equation that the resistance (or conductivity) of the grains, grain 

boundary and electrode influence the permittivity of the sample to a great extent. Depending on the 

absolute value of the respective resistance the permittivity or capacitance can be changed. Li et al 

have done simulation by varying the resistance. They have considered 3 different scenarios Type 1 

Rgb >> Re and Rb, Type 2 where Rgb = Re >> Rb and Type 3 where Re >> Rgb = Rb. The frequency 

response of capacitance for these 3 cases is given in Figure I-18 (a). 

  
Figure I-18: (a) Simulation of frequency response of capacitance for 3 different cases with different grain 
boundary resistance. (b) Frequency response of real part of permittivity for Gd0.6Y0.4BaCo2O5.5. Note the two 
plateaus at low and high frequencies.  

 

The above plot is similar to figure I-16 without the grain boundary contribution. For single crystals we 

have only the electrode capacitance contribution whereas for ceramics there is an internal barrier 

layer capacitance (IBLC) which also contributes to the total capacitance of the sample. IBLC is due to 

the difference in the Fermi level of the conducting grain and insulating grain boundary and its 

contribution is clearly visible as a plateau at higher frequency than the plateau due to contact 

electrode. This behavior was clearly demonstrated by Bobnar et al on perovskite derived cobaltite 

[22]. Figure I-18 (b) gives the real part of permittivity as a function of frequency for polycrystalline 

Gd0.6Y0.4BaCo2O5.5. Two plateaus are seen one at low frequency with є’ of 8000 ascribed to the 

electrode sample surface capacitance and the other at high frequency with є’ of 6000 ascribed to the 

grain - grain boundary IBLC. The intrinsic capacitance from the grain can be noticed only at very high 

frequency.  

(a) 

(b) 
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I.2.2.2. Case of Polaron and Space Charge Relaxation: 

We have discussed in the beginning of this part that free electrons contribute to d.c conductivity 

whereas hopping of electrons between localized site contribute also to the a.c conductivity. Latter is 

the case for polarons which are hopping of electrons between the localized sites and deforming the 

lattice around the localizing sites. It can be visualized as shown in the figure I-19 (a) below. A slow 

moving electron in the lattice repels electron and attracts positive ions there by deforming the 

lattice.  

 
 

Figure I-19: (a) Schematic of polaron. An electron moving in the lattice is repelled by another electron and 
attracted by positive ions and there by deforming the lattice. (b) Reorientation of dipoles due to hopping of 
electrons between two oxidation states of iron in an octahedra environment. 
 

When the hopping of electron is between two given sites then the situation is very much similar to 

dipole reorientation and leads to a loss peak. This is shown schematically in figure I-19 (b) for the 

case of different oxidation states of iron in an octahedral environment of the lattice. This behavior is 

observed in many ferroelectrics both pure and doped. Iguchi et al measured dielectric behavior of n-

type barium titanate doped with La2O3 and Gd2O3 at low temperatures [23]. They found a loss 

maximum below 100K which moves to high frequency with increase in temperature indicating 

relaxation behavior. They have ascribed this relaxation to polaron relaxation and found that the 

activation energy of this relaxation is 0.068eV. This is similar to the 0.070eV obtained by plotting 

σT3/2 versus 1/T indicating the relaxation at low temperatures is due to hopping of polarons. 

O.Bidault et al in their pioneering paper has shown that polarons are the important contributors to 

the dielectric relaxation observed in many ferroelectrics ceramics or single crystals [24]. Figure I – 20 

(a) gives the imaginary part of permittivity as a function of temperature for different KTa1-XNbXO3 at 

4 kHz. Two things should be noticed importantly. The maximum of є2 occurs at the same 

temperature for all doping concentration and the height of the maximum increases with increase in 

doping concentration. It was shown in an earlier paper that the relaxation strength could be altered 

(a) (b) 
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by reoxidizing the KTaO3: Fe sample, demonstrating that oxygen vacancies play a major role in such a 

relaxation [25]. 

  
Figure I-20: (a) the imaginary part of permittivity as a function of temperature for different KTa1-XNbXO3 at 4 
KHz. (b) Temperature dependence of imaginary part of permittivity for KTa0.985Nb0.015O3 at several frequencies. 
Taken from ref [24] 
 

 Figure I-20 (b) shows the temperature dependence of imaginary part of permittivity for 

KTa0.985Nb0.015O3 at several frequencies. It is evident from the figure that the relaxation maximum 

moves with frequency and temperature a typical sign for relaxation. Similar behavior was observed in 

many other oxides like rutile TiO2, Sm2O3, WO3 and P2O5 glass where dielectric relaxation due to 

hopping motions of polarons was confirmed. So it can be said without any ambiguity that very low 

activation energy (in the range of meV) and dependency of the relaxation maximum with charge 

carrier density is the signature of polaron relaxation in the material. The fact that it is found in many 

materials in different systems signifies that it is owing to a common origin which is unarguably 

oxygen vacancies which cannot be avoided and also due to the presence of ubiquitous heterovalent 

impurities like iron. 

Polaron relaxations which are due to the hopping of electrons usually are microscopic where the 

dipoles are in the order of one lattice unit cell. It is usually observed at low temperatures and 

therefore requires low activation energy. However at high temperatures when the electron gets 

sufficient energy then they can travel to great lengths in the material and eventually localize at 

interface between the electrode and the sample. Such huge motion of electrons will contribute to 

the d.c conduction of the material. Symmetry of the charge carriers at the surface can be broken by 

applying an external electric field which leads to creation of a macroscopic dipole that undergoes 

Debye relaxation. Many such relaxations were evidenced in perovskite both in single crystals as well 

as in ceramics at high temperatures and it was ascribed to relaxation of space charge by Maglione et 

(b) 
(a) 
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al [26] [27]. Figure I-21 (a) gives the real part of permittivity as a function of frequency for several 

temperatures above TC for BaTiO3 single crystals. Two things can be noticed here, a step like 

dispersion at intermediate frequency and a monotonous increase at low frequency. With increase in 

temperature the step like dispersion moves to higher frequency exhibiting relaxation.  According to 

space charge model given by Coelho the relaxation time is proportional to conductivity relaxation 

time [1]. 

 𝜏∗ = 𝜎/𝜀 Eq 25 
 

Where σ is the conductivity and є is the dielectric constant. Then the relaxation time for the 

macroscopic dipole due to space charge is give by 

 𝜏 = 𝑑�𝜏∗/𝐷  
Eq 26 
 

Where d is the sample thickness perpendicular to electrodes and D the free charges diffusion 

coefficient.  It is evident from the above equation that the space charge relaxation has a definite 

relation with the conductivity of the sample. It is clearly demonstrated in the figure I-21 (b) which 

gives the Arrhenius plot of the high temperature relaxation rate and the conductivity. The similarity 

with the two curves is striking and the relaxation time and conductivity are thermally activated.  

  
Figure I-21: (a) gives the real part of permittivity as a function of frequency at several temperatures for BaTiO3 
single crystals. (b) Arrhenius plot of high temperature relaxation rate and conductivity. Note the similarity 
between the two curves. Taken from ref [28] 
 

The fact that the space charge relaxation of above kind is observed in many other perovskite 

irrespective of their texture (ceramics and crystals) and lattice properties, calls for a common origin. 

Bidault et al have shown that oxygen vacancies play a major role in the relaxation and are the 

necessary ingredients for space charge observed in many materials [27]. They have demonstrated 

that the relaxation strength of BaTiO3 (BTO) single crystal can be changed by annealing the sample in 

different oxygen atmosphere. Reduced BTO crystal exhibited stronger amplitude of relaxation which 

(a) (b) 
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clearly displays the role of oxygen vacancy in relaxation.  To conclude at high temperatures due to 

high conductivity macroscopic dipoles are formed which leads to space charge relaxation whereas at 

low temperatures energy is not sufficient enough to promote long range motion of charge carriers 

and hence short range hopping motion of electrons in the form of polaron takes place which lead to 

polaron relaxation.  

I.2.2.3. Case of Ionic Conducting Materials: 

Materials which conduct predominantly due to the motion of ions are called ionic conductors. 

Conduction in an ionic conductor is due to anions like oxygen ions in zirconia stabilized yttria or by 

cations like potassium ions in KTiOPO4. Fast ionic conductors on the other hand have sufficient 

amount of vacancy preexisting in the structure hence can conduct at much lower activation energy 

than ionic conductors. Ionic conductors depend on temperature for their conduction and so they are 

most often thermally activated. At sufficiently high temperatures conduction is fairly easy and they 

lead to d.c conductivity while at low temperatures relaxation of conductivity takes place which can 

be evidenced with dielectric spectroscopy. Complex impedance plot is the most common way for 

distinguishing the contribution from grains, grain boundary and electrodes in ionic conductors.  

Figure I- 22(a) gives the complex impedance plot for ZrO2-Y2O3 in both ceramics and crystal [29]. 

Three semicircles are seen they are attributed to grain, grain boundary and contact relaxation for the 

ceramic sample whereas only one semicircle corresponding to bulk is seen for the crystal. The 

frequency dependent conductivity and dielectric permittivity for the ceramic sample are given in 

figure I-22 (b). At lowest temperature permittivity is independent on frequency. As the temperature 

increases a dispersion is seen in є’ and a corresponding relaxation in conductivity can be noticed 

which is marked by arrows. This dispersion shifts to higher frequency with increase in temperature 

and it can be attributed to grain boundary relaxation. At the highest temperature an additional 

increase of є’ is seen and can be assigned to space charges which localize at the electrode due to the 

long range motion of oxygen ions.  

For samples which are more insulating like in CeO2 doped Scandia, frequency explicit plot has its own 

advantage over complex impedance plots in deducing the property of the material as demonstrated 

by Gerhardt [30]. Due to the conducting nature of ceria doped Scandia, semicircle is not seen in 

complex impedance plot at room temperature. But a dielectric loss peak is obtained when tan δ is 

plotted as a function of frequency and corresponding relaxation is seen in the real part of the 

dielectric constant (Figure I-22 (c) and (d)). This is mainly because for the same physical process peak 

in є’’ will show up at lower frequency whereas peak in electric modulus (M*=1/ε∗) will show up at 

highest frequency and it is due to the difference in the relaxation time for each function. How much 

farther apart the peaks will be is defined by their relaxation ratio (r=εs/ε∞). If the relaxation ratio is 
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too high then the peaks will be much farther apart and if it is small then they will be close. It is clear 

from the above discussion whether it is long range conduction or localized conduction it eventually 

leads to some kind of dielectric relaxation and whether it can be observed within our frequency 

window depends on the relaxation strength.  

 

  

  
Figure I-22: (a) Complex impedance plot of ZrO2 doped Y2O3 ceramic and single crystal. (b) Frequency 
dependent conductivity and dielectric permittivity for several temperatures of ZrO2 doped Y2O3 ceramic. From 
ref [29]. Small step seen due to conductivity relaxation transforms into a step like dispersion in permittivity 
which moves with frequency. (c) Loss factor as a function of frequency for ceria doped scandia and (d) real part 
of permittivity as a function of frequency. Note the small relaxation step in K’ due to defect relaxation and the 
corresponding peak in losses. Adapted from ref [30]. 
 

To summarize whatever the nature of conduction process in material whether it is electronic or ionic 

in nature if the temperature and activation energy are favorable then long range conduction takes 

place which eventually leads to grain boundary relaxation or space charge relaxation. At low 

(a) (b) 

(c) (d) 
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temperatures where the energy is not high enough to promote long range conduction then the 

hopping of charge carriers between the localized sites dominates subsequently to polaron relaxation. 

I.3. Ferroelectrics: 

I.3.1. Definition and Historical Background: 
The application of electric field to the dielectric materials causes polarization but they are so 

small to cause any noticeable change in the structure and the elastic properties. On the other hand 

there are materials which exhibit polarization of greater magnitude even in the absence of electric 

field. When such spontaneous polarization can be reversed by electric field then the materials are 

called ferroelectrics [31]. The term ferroelectricity is used in analogy with ferromagnetism. Just as 

ferromagnetic materials exhibits spontaneous magnetic moment and hysteresis effect in relation 

with magnetization and magnetic field, ferroelectric materials display spontaneous polarization and 

hysteresis effect in relation with dielectric displacement and electric field [32]. Hence the prefix 

“ferro” was used to describe this property despite the fact that many ferroelectrics do not contain 

iron in their unit cell. Ferroelectricity depends on the symmetry of the crystal structure, of the 32 

crystallographic point groups only 11 are centrosymmetric and 21 are non centrosymmetric without 

an inversion center. Out of the 21 non centrosymmetric point groups all but one are piezoelectric.  

There are 10 polar groups among the 20 non centrosymmetric point groups without an inversion 

center. Among the 10 groups, some materials can display ferroelectricity when the polarization can 

be reversed on the application of an electric field. 
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Table 1: A chronological list of ferroelectric materials and properties [33] 

Ferroelectricity was first discovered by Valasek in Rochelle salt [34], but it was not considered for 

application until the discovery of BaTiO3 by Von Hippel [35]. A list of chronological development in 

ferroelectric materials is given in table I along with their structure and remnant polarization [33]. 

Since then the field of ferroelectrics has received lot of interest and found much technological 

application.  

Ferroelectric materials undergo structural phase transition from a paraelectric state to a ferroelectric 

state upon cooling through the Curie temperature TC. The structural symmetry of the material 

changes from centrosymmetric to non centrosymmetric when it is cooled below TC. Although in 

some materials there is more than one structural transition in that case Curie temperature is the first 

temperature in which a material becomes ferroelectric.  

I.3.2. Ferroelectrics of Perovskite Structure:  
Most of the technologically important ferroelectrics have perovskite structure. The structure is 

named after the mineral CaTiO3 which has a general formula of type ABO3. It has a simple cubic 

structure which consists of corner sharing BO6 octahedra where B could be a cation of charge 4 or 5 

(Ti4+, Zr4+, Sn4+, Nb5+, Ta5+ etc.) which sits in the center of the octahedra and A, a cation of charge 1 or 

2 (Na+, K+, Ca2+, Ba2+, Pb2+, etc.) is located in between the octahedra Figure I-23 (a).  The structure 

is very tolerant to substitution both in A and B sites hence more complex ferroelectric materials are 

possible as in Pb[ZrX Ti1-X]O3 with interesting properties.  There are several perovskite ferroelectrics 

like BaTiO3, KNbO3 and BiFeO3 to name but a few. Here we will consider BaTiO3 in detail.  

BaTiO3 (BTO) at temperature above 393 K has a simple cubic structure with a space group Pm3m and 

it is in a paraelectric state. When it is cooled below this temperature it undergoes structural phase 

transition into tetragonal structure of space group P4mm which is in a ferroelectric state. When the 

structure changes from cubic to tetragonal, titanium displaces from its central position and moves 

close to one of the oxygen in octahedra thereby disturbing the uniform charge distribution (see 

Figure I-23). This leads to creation of dipole. Long range order of these dipoles leads to macroscopic 

ferroelectricity. Hence the ferroelectricity in BTO is of displacive type [36]. In ferroelectrics of KH2PO4 

family the transition is predominantly of order disorder type [37] where the dipoles which are 

oriented in random direction at high temperatures align in one direction within a domain going 

through the transition. 
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Figure I-23: BaTiO3 cell is shown here with the barium atoms on the corners, the oxygen atoms on the face 
center and the titanium atoms in the center of the unit cell. (a) Paraelectric state, (b) Ferroelectric state. Note 
the change in lattice parameter in the ferroelectric state. 

There are many other ferroelectrics whose structure is not perovskite and they are mostly based on 

oxides, phosphates, sulphates and borates. A comprehensive list of ferroelectrics and 

antiferroelectrics is given by Lines and Glass [31].  

I.3.3. Phase Transition and Curie Weiss Behavior in Ferroelectrics: 
The temperature at which a material becomes ferroelectric is called Curie temperature TC. At T > 

TC, there is no polarization and the material does not exhibit ferroelectricity while for T<TC, 

spontaneous polarization appears in the material it becomes ferroelectric [31] [32]. Generally there 

may exist more than one Curie temperature in a material although there is only one Curie point. For 

example BaTiO3 undergoes three phase transition as shown in figure I -24 from cubic to tetragonal, 

orthorhombic and rhombohedral at 393 K, 278 K and 183 K respectively but the Curie point here is 

the first transition at which it becomes ferroelectric i.e. 393 K. Some ferroelectric materials do not 

exhibit a Curie point because the material decomposes before the Curie temperature is reached as in 

the case of gunanidine aluminium sulphate hexahydrate C(NH2)3Al(SO4)2.6H2O.  

As BaTiO3 undergoes phase transition from paraelectric to ferroelectric state there is a discontinuity 

in lattice constant, polarization and dielectric constant as shown in Figure I – 25 [38]. The 

discontinuity observed is due to the nature of transition in BaTiO3 which is of first order and it is 

made apparent by a small hysteresis of transition. The temperature dependence of dielectric 

constant above Curie point (T >Tc) in most ferroelectric crystals is governed by Curie-Weiss law [38].  
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Tetragonal (393 K) 

 

Cubic (T > 393 K) 

 
                                                                     

Orthogonal (278 K) 

 

Rhombohedral (183 K) 

 
Figure I-24: Unit cells of the four phases of BaTiO3: a) Cubic, stable above 393 K (TC), b) Tetragonal, stable 
between 393 K and 278 K, c) Orthorhombic, stable between 278 K and 183 K, (monoclinic as drawn) d) 
Rhombohedral, stable below 183 K. The dotted lines in (b), (c), and (d) delineate the original cubic cell. Arrows 
indicate the direction of the spontaneous polarization, Ps, in each phase [32]. 
 

 𝜒 =  
𝐶

𝑇 − 𝑇0
 

 
Eq 27 

Where χ is the permittivity of the material, , C is the Curie constant and T0 is the Curie-Weiss 

temperature. In general the Curie-Weiss temperature T0 is different from Curie point TC.   

For first order transition T0 is less than TC (T0 < TC) whereas for the second order transition 

T0 is same as TC (T0 = TC) [39]. The order of phase transition is defined by the discontinuity in 

the partial derivatives of the Gibbs free energy of the ferroelectric at the phase transition 

temperature. Thus the spontaneous polarization and strain change continuously  at the 

phase transition for a ferroelectric of second order phase transition and are discontinuous at 

the phase transition temperature for first order ferroelectrics [40].   

(a) (b) 

(c) (d) 
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Figure I-25: Various properties of barium titanate as a function of temperature. Anisotropic properties are 
shown with respect to the lattice direction. (a) Lattice constants, (b) spontaneous polarization Ps and (c) 
relative permittivity εr  [41]. 

 
Figure I-26 gives the temperature dependence of first order and second order phase 

transition along with relaxor ferroelectric which have diffuse phase transition with broad 

maximum in dielectric permittivity and strong frequency dispersion below the maximum of 

permittivity. It can be seen immediately that the reciprocal permittivity given in dotted lines 

is very helpful in distinguishing the order of phase transition according the relation between 

T0 and TC for the two types of phase transition discussed above. 
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Figure I-26: Schematic temperature dependence of the dielectric permittivity ε and spontaneous polarization 
PS for (a) a first- and (b) a second-order ferroelectric and (c) for a relaxor ferroelectric. Permittivity data in (c) is 
measured on a Pb(Mg1/3 Nb2/3)O3 ceramic [40]. 

I.3.4. Ferroelectric Domains and Hysteresis: 
The regions with uniform spontaneous polarization in a ferroelectric crystal are called domains. 

In general polarization is not uniformly aligned in one direction throughout the crystal. For the case 

of perovskite ferroelectrics like BaTiO3 the spontaneous polarization lies along c –axis when the 

crystal  

 

 

 
Figure I-27: (a) Six different spontaneous polarization direction in BaTiO3 when cooling from paraelectric to 
ferroelectric state [42], (b) Schematic representation of 90° and 180° domain walls, arrows show the direction 
of spontaneous polarization, (c) Typical hysteresis loop observed in ferroelectrics. 

 

undergoes transition from cubic to tetragonal (figure I-24). There are six equivalent directions in the 

cubic phase of the crystal and the spontaneous polarization may arise with equal probability along 

any of them when the crystal is cooled through the phase transition figure I-27 (a). Ferroelectric 

(a) 

(b) 

(c) 
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domains form to minimize the depolarizing fields and elastic energy which develops in the 

ferroelectric phase [31] [43]. The appearance of spontaneous polarization during the phase transition 

leads to formation of surface charge. This surface charge produces an electric field called 

depolarizing field, which is oriented opposite to polarization. Hence the formation of single-domain 

state is inhibited due to presence of depolarizing field which makes the single-domain state 

energetically unfavorable. This energy can be minimized by a) splitting of ferroelectric into domains 

of oppositely oriented polarization or b) compensating depolarizing field by electrical conduction 

through the crystal, c) charges from the material surroundings like the charges from external circuit 

[40].  Mechanical stress also leads to splitting of ferroelectric domains. The boundary between two 

domains is called domain wall. These walls differ from perfect crystal hence they carry an energy 

called domain wall energy Wdw along with the elastic energy We. Domain wall energy is considered in 

detail in the book by Lines and Glass [31]. The type of domain walls that are formed depends on the 

symmetry of both the non-ferroelectric and ferroelectric phase of the crystal [44]. To minimize the 

electrostatic energy the neighboring domains should have orientation such that div P ∼ 0 at the 

domain boundary. This is condition is satisfied for 90° and 180° domain walls in perovskites [31]. A 

schematic of 90° and 180° domain walls are shown in figure I-27 (b).  Domains can be observed by 

various methods like optical birefringence, optical rotation, second-harmonic rotation, transmission 

electron microscopy, chemical etching and powder X-ray Diffraction to name but a few. Each of these 

methods has its own advantages and disadvantages and they are dealt with in detail by Lines and 

Glass [31] 

When an electric field is applied in direction opposite to the polarization, the polarization can be 

reoriented in the direction of the electric field [45]. This is because it is much easier for the domain to 

remain in the direction of electric field since it is energetically favorable. This process of reversal of 

polarization along the direction of the electric field is called polarization switching. The net 

polarization of the spontaneous polarized ferroelectric material is small. At low electric field the 

polarization starts to increase linearly, upon removal of field polarization will revert back to its initial 

state. However if the electric field is increased beyond the linear regime then the domains with 

opposite orientation to the electric field will start to switch in the direction parallel to the applied 

field. The switching continues until all the domains are aligned with the electric field and then 

polarization of the material reaches saturation.  Now if the electric field returns to zero all the 

domains wont switch back to their initial position and there will be remnant polarization Pr  at zero 

field. This remnant polarization can be brought to zero by applying electric field in the opposite 

direction. Then strength of electric field needed to bring the remnant polarization to zero is called 
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coercive field EC. A complete cycle of the plot of polarization versus electric field then displays a 

hysteresis loop as shown in figure I-27 (c).  

I.3.5. Piezoelectricity: 
Piezoelectricity is called ability of certain material to develop an electric charge proportional to 

applied stress [39]. This is called direct piezoelectric effect.  It was discovered by Pierre and Jacques 

Curie in 1880 while studying crystals such as tourmaline, quartz etc [46].  Generally all ferroelectrics 

are piezoelectric but vice versa are not true. ZnO and quartz are good piezoelectric materials but 

they are not ferroelectrics. These materials also show a converse effect where a geometrical strain is 

produced when a voltage is applied. The direct and converse effect are expressed as 

 𝑃𝑖 = 𝑑𝑖𝑗𝑘𝜎𝑗𝑘  (direct piezoelectric effect) 

𝑋𝑖𝑗 = 𝑑𝑘𝑖𝑗𝐸𝑘 (converse piezoelectric effect) 

Eq 28 
 
Eq 29 

Where Pi is the polarization generated along i-axis in response to the applied stress σ jk  and dijk (= dkij) 

is the piezoelectric coefficient. Xij is the strain generated in particular orientation in response to the 

application of electric field Ek along the k-axis. The piezoelectric coefficients are third rank tensors 

and hence the piezoelectric response is anisotropic. The number of non-zero coefficients is governed 

by crystal symmetry [47]. Piezoelectric response of a ferroelectric material increases as the transition 

temperature is approached due to the high polarizability of the lattice close to the transition [48]. 

Hence piezoelectric coefficient is a strong function of temperature. It also depends on the domain 

state of the material for example 90° degree domain walls are both ferroelectric and ferroelastic in 

nature, frequency, excitation field, time and domain wall motion [49]. 

I.4. Magnetoelectrics and Multiferroics: 

I.4.1. Definition and Historical background: 
The mutual control of electrical polarization and magnetization is sought after in materials due to 

its potential applications and also because of the rich underlying physics associated with it. Ever since 

the prediction of intrinsic magnetoelectric effect by Curie in 1894 much progress has been made in 

this field [50]. Magnetoelectric effect (ME) in general is the induction of magnetization by an electric 

field or of polarization by a magnetic field. Landau and Lifshitz suggested that ME effect is only 

allowed in time asymmetric media [51] . In 1960’s it was shown theoretically that Cr2O3 violates 

time-reversal symmetry [52] followed by experimental observation of electric field induced 

magnetization [53] and magnetic field induced polarization in Cr2O3 [54].  Although the effect 

observed was very small in magnitude to be useful for any practical application. Within a decade 
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many compounds exhibiting ME effect sprung up and they can be found in reference [55]. After a 

period of inactivity there is recent surge in this field partly owing to the better understanding of the 

microscopic behavior of such materials which is made possible by advancements in the theory and 

experimental techniques [56].  On the other hand ‘multiferroics’ are materials which have two or 

more primary ferroic order (ferroelectricity, ferromagnetism and ferroelasticity) coexisting in the 

same phase [56]. The notion is extended nowadays to include antiferroelectric and 

antiferromagnetism. This title is fairly new and these materials were initially called 

ferroelectromagnets by Smolenskii et al [57].  

A schematic representation of coupling between order parameters is given in figure I-28 (a) where P 

is the polarization, M is the magnetization and ε is the strain which is the order parameter for 

ferroelectricity, ferromagnetic and ferroelasticity respectively [58]. Unlike multiferroics, ME effect 

may exist whatever the nature of magnetic and electrical order parameters and can for example 

occur in paramagnetic ferroelectrics. The relation between multiferroic and magnetoelectric 

materials is shown in figure I-28 (b) [59]. Of these order parameters, ferroelasticity is often 

overlooked and a fourth order parameter called ferrotoroidic is considered. 

Requirements for the all the three order parameter (third one being ferrotoroidic) to coexist puts 

stringent constraint on the symmetry of the materials. Ferroelectricity needs breaking of spatial 

inversion symmetry while ferromagnetism needs breaking of time reversal symmetry. About 13 point 

groups satisfy these requirements and only 9 point groups satisfy requirements for all three order 

parameter. A detailed account of symmetry requirements is given by Schmid in his pioneering review 

[60]. Moreover obtaining multiferroic materials is made even more difficult by the condition that 

ferroelectricity requires ions with d0 configuration whereas magnetism needs ions with partially filled 

‘d’ orbitals making ferroelectricity and ferromagnetism mutually exclusive [61]. Nevertheless several 

materials exhibiting multiferroic properties have been reported in recent literature. Most of those 

reports focus on coupling between spontaneous polarization and magnetization.  We will see some 

examples of multiferroic materials in the section I.4.4.  Before that we will consider ME effect in 

terms of free energy as this will give us the expression for linear and non-linear ME effect and also 

the limitations of ME effect.  
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Figure I-28: (a) Schematic representation of coupling between order parameters in multiferroics [58], (b) 
Relation between mutliferroic and magnetoelectric materials [59]. 
  

I.4.2. Linear and non-linear magnetoelectric effect: 
As we have discussed above linear magnetoelectric is different from multiferroics since they don’t 

have spontaneous polarization (magnetization).  However magnetization can be induced by applying 

electric field or vice versa. Since the electric field E and magnetic field H are vectors, the coupling 

parameters will be tensors. Then the contribution to the ME effect can be appropriately obtained 

from the expansion of free energy F.  

 −𝐹(𝐸,𝐻) =  
1
2
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Eq 30 
 

Here ε0 and µ0 are permittivity and permeability of free space. The relative permittivity ε ij is a 

second rank tensor and the magnetic equivalent is µ ij, the relative permeability. The third term in the 

above equation describes the linear ME coupling denoted by α ij. The fourth and fifth term represents 

the higher order (bilinear) ME coefficients. The last term which is bilinear in both E and H is of 

particular importance and will be considered in section I.4.3.  The derivative of free energy with 

respect to E gives polarization and magnetization with respect to H. It was further shown that linear 

ME coupling has a theoretical limit [62] which is given by 

 𝛼𝑖𝑗2 ≤ 𝜀0𝜇0𝜀𝑖𝑖𝜇𝑗𝑗 Eq 31 
 

It follows from the above equation that multiferroics (which is both ferroelectric and ferromagnetic 

possess large permittivity and permeability respectively), display large linear ME effects. If the 

coupling becomes too strong it might result in phase transition to a more stable state and so the 

magnetoelectric coefficient will take on a new value [63].  

 

 

(b) (a) 
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Not all materials have large permittivity and permeability values and hence their linear ME 

coefficient is small. In those materials high order term denoted by the coefficients β ijk, γ ijk and δ ijkl 

dominates the linear term. Eerenstein et al. suggested that materials with reduced dimensionality 

may give magnetoelectric coupling at room temperature through higher order terms and this 

situation was observed in BaMnF4 at low temperatures [64].  

I.4.3. Magnetodielectric Coupling: 
Severe symmetry requirements for magnetoelectric and multiferroics has forced researchers to 

look for coupling which could be observed regardless of the symmetry of the underlying lattice. Such 

a coupling is indeed possible and can be visualized through the last term in equation 30. This term is 

bilinear in both electric and magnetic field and hence it is a scalar and can give rise to 

magnetodielectric (MD) coupling [65]. It describes some kind of coupling between dielectric 

properties and magnetization in materials which possess neither spontaneous polarization nor 

symmetry requirements. This coupling can be realized in any insulating magnets and thereby 

increase the flexibility in designing materials with improved properties. Equation 30 is sufficient to 

describe MD coupling in ferromagnetic system where there is a non-zero magnetization in the 

ordered phase.  But for anitferromangets where the magnetization remains zero, equation 30 is 

insufficient. Lawes et al proposed a model to describe the MD coupling in antiferromagnetic system 

[66]. Their model takes into account spin-phonon coupling and spin-spin correlation to determine the 

MD coupling. A schematic of MD coupling due to spin-phonon coupling for anitferromagnet is shown 

in figure I-29 (a). Here q is the wave vector; <MqM-q> is the spin-spin correlation and the g (q) is the 

MD coupling constant.  MD effect will be large if the product of g (q) and <MqM-q> is large. It is 

apparent from the figure that antiferromagnet has the largest product since the peak in both 

functions overlap at the maximum whereas for ferromagnet there is no overlap.  
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Figure I-29: (a) Schematic curves illustrating the magnetodielectric coupling constant g(q) (solid line), computed 
assuming spin-phonon coupling, together with the spin-spin correlation functions for ferromagnetic order 
(dotted line) and antiferromagnetic order (dashed line). (b) Temperature dependence of the dielectric constant 
of SeCuO3 (solid symbols) and TeCuO3 (open symbols) at different fixed magnetic fields. Adapted from ref [65]. 
 

Figure I-29 (b) gives the dielectric constant as a function of temperature for SeCuO3 and TeCuO3. 

SeCuO3 is a ferromagnet with a transition temperature TC = 25 K and TeCuO3 is an antiferromagnet 

with a transition temperature TN = 9 K. Both of these oxides are insulating and they exhibit MD 

coupling [66].  Above TC SeCuO3 is a paraelectric and therefore no MD effect is observed. Below TC 

spontaneous magnetization appears and the overlap between the MD coupling constant with the 

ferromagnetic spin-spin correlation goes to zero as described in figure I-29 (a). This leads to a drop in 

the dielectric constant to its intrinsic value.  On the other hand for TeCuO3 due to its 

antiferromagnetic transition there is a large overlap between MD coupling and the spin-spin 

correlation leading to maximum in dielectric constant in contrast to the ferromagnetic system.  It can 

also be seen that intrinsic MD coupling is strong close to the magnetic transition temperature which 

limits its application. The materials which display MD coupling other than the one discussed above 

are EuTiO3 [67], TmFeO3 [68], Mn3O4 [69], Tb3Fe5O15 [70] etc. 

I.4.4. Classification of Multiferroics: 
Although multiferroics refers to all three ferroic order parameters, nowadays the term mostly 

signifies magnetoelectric multiferroics which are ferroelectric and magnetic and not always 

ferromagnetic. Multiferroics are classified differently by different groups. Van den Brink et al. have 

classified multiferroics in to two types [71]. In type-I multiferroics ferroelectricity and magnetism 

have different origins and are often due to different active subsystem of a material. In type-II 

multiferroics ferroelectricity occurs only in the magnetically ordered state. In this thesis we will 

classify multiferroics in to two broad classes as intrinsic and extrinsic. The term intrinsic signifies all 

 
(b) (a) 
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the single phase multiferroics. They are further subdivided into four based on the mechanism of 

ferroelectricity. The extrinsic effects which give rise to multiferroism are (i) mechanical coupling at 

the interface in composite materials and (ii) heterogeneous conductivity at the interface.  We will see 

both intrinsic and extrinsic multiferroics types in detail in the following.  

I.4.4.1. Intrinsic Multiferroics: 

Despite vast research in the field of multiferroics over several decades only few materials are 

promising from the application point of view. Even those are mostly antiferromagnetic ferroelectrics 

and the combination of ferromagnetism with ferroelectricity can be obtained only as weak coupling. 

Although the number of point groups which allow the coexistence of ferromagnetism and 

ferroelectricity are less they alone cannot explain the difficulty in obtaining multiferroics because 

even in the compound which permit the coexistence, multiferroicity is often not found. Then the 

natural question which arises is why there are still few multiferroics? Spaldin et al have investigated 

this very problem and pointed out that in perovskite compounds two kinds of Jahn-Teller distortion 

can be triggered by transition metal ion [72] [73]. A first-order distortion which retains the center of 

symmetry and a second-order distortion which breaks the centrosymmetry by off centering of 

transition metal ion. The latter requires empty 3d orbitals and can only lead to ferroelectricity in a 

material. For the magnetic order to appear one requires partially filled 3d orbitals which then 

becomes mutually exclusive with ferroelectricity.  Hence efforts have been directed towards finding 

novel mechanism for ferroelectricity in magnetic materials. Four mechanism were identified which 

will give rise to spontaneous polarization without the need for cation with empty 3d orbitals and they 

are (a) lone pair multiferroics, (b) improper geometric multiferroics, (c) charge ordering multiferroics 

and (d) magnetically driven multiferroics. Accordingly intrinsic multiferroics which are predominantly 

in single phase system are divided based on these mechanism and they will be described below with 

an example for each case.  

I.4.4.1.1.  Lone Pair Multiferroics:  

In this kind of multiferroics ferroelectricity and (anti)ferromagnetism have different origins. A 

lone s2 pair of electron may hybridize with an empty p orbital to cause a structural distortion and 

induce ferroelectricity. The compounds which show multiferroism due to this mechanism are BiFeO3 

[74], BiMnO3 [75], BiCrO3 [61], Bi2FeCrO6  [76] , PbVO3  etc. Here we will discuss only BiFeO3 (BFO). 

BFO is arguably the most widely studied mutliferroic and also one of the few materials to show 

ferroelectric and magnetic order above room temperature. It exhibits ferroelectric order below 1100 

K and antiferromagnetic ordering at 640 K. The crystal structure of BFO is rhombohedrally distorted 

perovskite with space group R3C [77].  The ferroelectric order in BiFeO3 is due to the active Bi 6s2 

lone pair electrons. It exhibits a G-type anitferromagnetic order where the Fe magnetic moments are 
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aligned ferromagnetically whitin the (111) planes and antiferromagnetically between the adjacent 

(111) planes. Bulk BFO shows a spiral spin structure with a long wavelength (> 60 nm) spin cycloid 

propagating along the [1 1 0] direction which cancels out the small ferromagnetic moment due to 

spin canting. It is schematically shown in figure I-30 [74], [78].  Earlier the value of polarization in bulk 

BFO was considered to be small with spontaneous polarization on the order of few µC/Cm2 [79]. 

However BFO gained great attention after Wang et al. have shown large ferroelectric polarization of 

60 µC/Cm2 along with saturation magnetization reaching 150 emu.cm-3 in epitaxial thin films [80]. 

They have found that under the compressive stress in thin films, BFO crystallizes in monoclinic 

structure and this has enhanced the polarization and magnetization values.  

 

Figure I-30: Schematic representation of the spin cycloid. The canted antiferromagnetic spins (blue and green 
arrows) give rise to a net magnetic moment (purple arrows) that is spatially averaged out to zero due to the 
cycloidal rotation. The spins are contained within the plane defined by the polarization vector (red) and the 
cycloidal propagation vector (black) [78] [74]. 

However recent studies on high quality BFO single crystal have demonstrated a polarization value of 

100 µC/ cm2 and this shows that large polarization in BFO is intrinsic and it is not due to the strain as 

previously shown by Wang et al [81]. On the other hand enhanced magnetic property in BFO was 

supposed to come from iron oxide based impurity.  

Incorporation of BFO films to application faces many challenges of which large leakage is the major 

factor which degrades the electrical properties of BFO. The large leakage current in BFO films is 

mostly due to the presence of oxygen vacancies which change the oxidation state of Fe ion in order 

to compensate for the charge imbalance.  The mixed valence of Fe ions ( Fe2+ and Fe3+) promote 

charge hopping which leads to conduction and eventually undermines the ferroelectric property of 

BFO films [82].  It was proposed that substituting some Fe3+ ions with Ti4+ ions enhances the 

ferroelectric property of BFO films by decreasing the leakage current [83]. Reduced leakage current is 

mostly due to the filling of oxygen vacancies by the doping of Ti4+ ions and the same effect was found 

for other dopants like Cr, Mn, Nb. Wang et al. have found improved magnetic properties of BFO by 

doping it with Ba [84].  Ba doped BFO exhibited spontaneous magnetization and polarization at room 

temperature. It was stated that magnetization could arise from change in bond angle between Fe –O 



48 
 

– Fe due to the distortion of structure by Ba (large ionic radius) or by the creation mixed valence 

state of Fe ions (Fe3+ and Fe4+).  

I.4.4.1.2. Improper Geometric Multiferroics:   

 The prototype of this type multiferroics is hexagonal rare earth manganite RMnO3. Before 2004 

two distinct mechanisms of ferroelectricity was known both of them are based on the second order 

Jahn-teller effect.  The first is the ligand field hybridization of surrounding anions and it is the origin 

of off center displacement of transition metal cation like in BaTiO3 and PbTiO3 making them 

ferroelectric [85]. The second is related to the presence of ions with lone pair electrons as we have 

seen in the case for BiFeO3. Van Aken et al. in their paper reported a new mechanism of 

ferroelectricity in hexagonal rare earth manganite YMnO3 [86].  

 

Figure I-31: (Left) High temperature paraelectric and (right) low temperature ferroelectric structure of YMnO3.  
Note the buckling of MnO5 polyhedra and the displacement of rare earth Y ion along C-axis in the ferroelectric 
phase. 

 They have demonstrated that ferroelectricity in YMnO3 is due to buckling of MnO5 bi-pyramids and 

displacement of rare earth ion along c- axis by the collective rotation of MnO5 polyhedra.  It is 

schematically shown in Figure I-31.  This mechanism does not need any hybridization with 

neighboring orbitals for the ferroelectricity to appear. YMnO3 crystallizes in P63cm hexagonal space 

group and it is a ferroelectric below 914 K and undergoes antiferromagnetic transition at 80 K. The 

fundamental interest in this compound was first due to the bulk room temperature ferroelectricity 

and later on it was greatly considered for electronic application because of the coupling between 

electric and magnetic orders [87].  One of the advantages of YMnO3 is that polarization can persist to 

a thickness of only two unit cells even in the absence of screening from metal electrodes [88]. 

Multiferroic behavior of YMnO3 films were investigated by many researchers. Interestingly Dho et al. 

demonstrated competing nature of electrical and magnetic orders in YMnO3 [89]. They have shown 
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that the ferroelectric and magnetic property of YMnO3 depends greatly on the growth direction of 

the films. Film grown with (0001) orientation was found to be good for ferroelectricity because of 

their small coercivity and zero exchange bias whereas film grown in (11-21) direction displays large 

coercivity and exchange bias. Such a dependence on growth direction was attributed to their intrinsic 

magnetic property due to Mn-Mn spin coupling.  

The crystals structure of RMnO3 depends on the ionic radii of the R3+ rare earth cations [90] and so 

does their ferroelectric properties. For R = Ho, Er, Tm, Yb Lu, Sc and Y which have small ionic radii the 

compound crystallizes in hexagonal P63cm space group and for R = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb and 

Dy the crystal structure is orthorhombic with Pbnm space group. For the former ferroelectric Curie 

temperature is well above room temperature and it is far away from magnetic transition 

temperature and for the latter ferroelectric Curie temperature is below the magnetic transition 

temperature [33]. 

I.4.4.1.3. Charge Ordering Multiferroics: 

The idea of charge ordering (CO) leading to ferroelectricity was first put forward by Effermov et 

al. in their pioneering article [91]. The mechanism by which charge ordering leads to ferroelectricity 

is given explicitly as a schematic in figure I-32 [71]. Figure I-32(a) shows the homogeneous crystal 

with equal charge on each site or zero charge. Upon CO the site becomes un-equivalent as shown in 

figure I-32 (b) and dipoles which appear are indicated by black arrows. This does not lead to any net 

dipole moment since special inversion symmetry is not broken.  Figure I-32 (c) gives the bond 

centered CO, this is due to the dimerization of the lattice. Here the site remains equivalent but the 

bonds are not, as the strong and weak bonds alternate. Like site centered CO, bond centered CO 

does not give rise to any dipole moment. Now if we combine site centered and bond centered CO as  

 

Figure I-32: (A) neutral chain with (B) site-centered charge ordering, (C) bond-centered charge ordering, and 
(D) combination of B and C leading to ferroelectricity. The red arrows indicate the direction of polarization. [71] 
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shown in figure I-32 (d), then the situation is totally different and this arrangement breaks spatial 

inversion symmetry and gives rise to ferroelectricity. Mostly CO is observed in systems with mixed 

valence cations.  Typical examples of compounds that show coupling between electrical and 

magnetic order due to CO are Pr1-XCaXMnO3 [92], Fe3O4 [93], LuFe2O4 (LFO) [94] etc.  All of these 

compounds have mixed valence in their transition metal cation. LFO has a double layer structure with 

triangular iron lattice within each layer. Here Fe cations are in 2+ and 3+ valence states like in Fe3O4. 

Ferroelectricity in LFO is mainly owing to CO where the charge redistribution of Fe cations between 

the layers creates a net dipole moment at the CO temperature of 330 K.  LFO orders ferrimagnetically 

at 250 K below which it displays multiferroics behavior [94] . 

I.4.4.1.4. Magnetically Driven Multiferroics: 

So far we have seen multiferroics whose ferroelectric Curie temperature is different from the 

magnetic transition temperature. Here we will discuss some systems which give rise to 

ferroelectricity at the magnetic transition temperature. Therefore the coupling between electrical 

and magnetic orders is very strong in this class of materials. Such a strong coupling is found in 

systems of RMnO3 where R = Tb, Gd [95]; RMn2O5 where R = Tb,Dy,Y, Ho, Bi etc. [96]; Ni3V2O8 [97] 

and hexaferrite [98]. Especially ferroelectricity appears in these systems in a certain magnetically 

ordered phase i.e. in the spiral ordered phase. In TbMnO3 antiferromagnetic order sets in at TN = 41 

K with the sinusoid magnetic structure and electrical polarization doesn’t appear in this phase. But 

below 30 K, the magnetic structure of TbMnO3 changes from sinusoidal to helicoidal magnetic 

structure (or incommensurate to commensurate structure) and a finite polarization appears. 

Magnetization, dielectric constant and polarization as a function of temperature are shown in figure 

I-33. It is evident from the figure that dielectric anomaly (middle) and polarization (bottom) appears 

at magnetic transition indicated by Tlock (top) which is nothing but a change in magnetic structure 

from sinusoidal to helicoidal.  
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Figure I-33: Magnetization (top), dielectric Constant (middle) and polarization (bottom) as a function of 
temperature in TbMnO3 single crystal along three crystallographic axis [95]. Notice the change in dielectric 
constant and appearance of finite polarization at the magnetic transition indicated by Tlock.  

This polarization can be switched with the external magnetic field. It was further shown by Mostovoy 

that not all spiral magnetic structure can lead to appearance of ferroelectricity [99]. He stated that if 

the spin rotation axis ‘e’ does not coincide with the wave vector of a spiral ‘Q’ then ferroelectricity 

can appear. Then we can imagine many multiferroic systems if the above condition is met or even in 

systems where the wave vector ‘Q’ coincides with the spin rotation axis ‘e’ multiferroism can be 

expected if the external magnetic field can change the direction of the spin [100].  The value of 

polarization is usually smaller than the classical ferroelectrics like BaTiO3. Nevertheless their coupling 

between orders parameters are very strong which make them interesting for many applications.    

I.4.4.2. Extrinsic Multiferroics: 

Although intrinsic single phase multiferroics show interesting properties they are often not 

suitable for practical application because it is often observed at very low temperature and their 

magnetoelectric coupling is small. To circumvent this problem research was focused on developing 

extrinsic multiferroics which might possibly show large magnetoelectric coupling at room 

temperature. In this respect composite materials made by combining piezoelectric and magnetic 

substances have attracted lot of attention. In recent years this kind of approach has gained further 

encouragement due to the progress made in growth of crystallized complex oxide films and 

heterostructures and in the fabrication of nanostructures [101]. On the other hand recently it was 

demonstrated in single phase material that magnetocapacitance (i.e. change of capacitance by 
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magnetic field) can be achieved even without actual magnetoelectric coupling [1]. We will discuss in 

detail these two approaches in the following section. 

I.4.4.2.1. Mechanical Coupling at the Interface: 

The property of composite materials is determined by the properties of their constituent phases 

and their interaction between them. The final composite property can be average or enhancement of 

the effect of the primary constituents. These composites may also show novel properties which are 

usually absent in the primary phase. Composite multiferroics are obtained by combining 

magnetostrictive and piezoelectric compounds. A magnetic field applied to the composite will induce 

strain in the magnetostrictive phase which is then transferred to the piezoelectric phase and that 

induces polarization [103].  It is described vaguely by 

 𝑀𝐸 𝑒𝑓𝑓𝑒𝑐𝑡 =  
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙
𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙

 ×  
𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙
𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

 Eq 32 
 

The first composite multiferroic using the mechanical coupling at the interface was developed by van 

Suchtelen and van Boomgard et al [104] [105]. They successfully grew a composite containing 

ferroelectric piezoelectric BaTiO3 and ferromagnetic piezomagnetic CoFe2O4. The magnetoelectric 

effect displayed by these compounds was much larger than the single phase multiferroic one. But 

their synthesis was complex and cost intensive and hence Harshe et al. developed a particulate 

ceramic composite of ferrites and BaTiO3 or PbTiO3 by conventional sintering process [106]. This was 

simple and a very cost effective method. A breakthrough in this field was achieved when a giant 

magnetostrictive rare earth iron alloy Tb1-XDyXFe2 was developed [107]. This compound along with 

PZT (PbZr0.52Ti0.48O3) which is a good piezoelectric in a composite exhibits a giant magnetoelectric 

coupling.  Generally these bulk composites are usually employed in three connectivity schemes. They 

are particulate composite, laminate composite and fiber or rod composite and it is shown in figure I-

34. Detailed description of the magnetoelectric behavior of these composites is out of scope of the 

present thesis and can be found in the review by Nan et al. [108]. Apart from strain mediated 

mechanism discussed here there are other mechanisms which give rise to artificial multiferroic 

effect. They are (i) charge mediated composite multiferroics, (ii) exchange bias mediated composite 

heterostructures, (iii) electron transport based multiferroic heterostructures and these are 

considered in detail in an excellent review by Ramesh et al. [101].  
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Figure I-34: Schematic illustration of three bulk composites with the three common connectivity schemes: (a) 
particulate composite, (b) laminate composite, and (c) fiber/rod composite [108]. 

I.4.4.2.2. Heterogeneous Conductivity at the Interface: 

Another possible way of obtaining extrinsic magnetoelectric coupling is by having magneto-

resistance (MR) artifacts. This model was first proposed by Catalan [1].  In a capacitor structure with 

parallel plate electrodes on a dielectric, the response to an electric field contains a capacitive term 

and a leakage term measured as resistance.  At the interface between the electrode and dielectric 

band bending may occur due to charge injection from the electrode to dielectric or dielectric to 

electrode (charge depletion). Therefore the density of charge carrier close to the surface layer is 

different from the bulk of the sample and so is the resistance. This will lead to apparent high 

dielectric constant based on Maxwell -Wagner effect as seen in section I.2.2.1. Then the equivalent 

circuit for this process has two leaky capacitor connected in series one representing the bulk and the 

other one for the interface at the electrode and dielectric. The impedance of this circuit is a complex 

quantity and it given by the equation 21-24.  It is obvious from the equation that if the resistance of 

any of the layers is changed by magnetic field so does the measured permittivity yielding 

magnetocapacitance (MC). It is given by 

 𝑀𝐶 =  
𝜀′(𝐻) −  𝜀′(0)

𝜀′(𝐻)
 × 100 Eq 33 

 

Catalan calculated the contribution of MR to the dielectric permittivity and losses under magnetic 

field. The results of the calculation are shown in fig I-35. It is easily discernible from the figure that 

the MR can lead to giant magnetocapacitance even in materials which are not magnetoelectric. A 

noteworthy feature of this result is that not only capacitance is affected by magnetic field but also 

the losses. This is the main factor by which one can distinguish the intrinsic MC from the extrinsic 

one. Additionally MC will be strongly frequency dependent which correlates with the magneto loss. 

Also the sign of MR changes depending on whether it is due to the core or the interface. Moreover it 

was further found that MC is more pronounced at the conductivity relaxation time.  
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Figure I-35: Calculated magnetocapacitance (full circles) and magnetolosses (empty circles) of a 
magnetoresistive material with depleted boundary layers when the MR is core-based (e.g., double-exchange 
mechanism) andinterface-based (e.g., tunneling magnetoresistance) [1]. 

Parish et al. have proposed magnetic field dependent dielectric constant in an inhomogeneous media 

even without intrinsic magnetoresistance [109]. They have found theoretically a strong dielectric 

resonance as a function of frequency and the position of dissipation peak depends on the magnetic 

field in a composite media of dielectric with pure capacitance sandwiched between electrodes of 

pure resistance. For such a system they have argued that a large magnetic field can induce dielectric 

resonance and it is determined by the Hall resistivity. This is achieved inspite of the fact that there is 

no magnetoresistance. Here the main contributor for the MC is the Hall effect at the metal dielectric 

interface. Recently Pirc et al. have proposed a model which gives magnetoelectric effect in a single 

phase or composite media which have both relaxor ferroelectric and relaxor ferromagnetic 

properties [110]. They point out that magnetostriction plus electrostriction can produce dielectric 

anomalies when a magnetic field is applied. In relaxor no long range order is possible and hence 

linear magnetoelectric effect is prohibited therefore higher order magnetoelectric coupling 

dominates similar to the one we have seen in section I.4.2 and I.4.3. In addition they also showed 

that sign of the magnetoelectric interaction indicated whether a ferroelectric stated is induced or 

quenched by magnetic field. Although later two models discuss the possibility of extrinsic 

magnetoelectric effect we will give examples only for the model proposed by Catalan since it has a 

direct relation to the present thesis.  

Maglione has demonstrated magnetocapacitance in wide range of materials following the Catalan 

model [2]. He has shown that one cent diodes can give a large MC in applied magnetic field. In a 

typical p-n junction diode a space charge layer is formed at the interface. The application of magnetic 
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field alters the free charge trajectories through the Hall effect and favors the recombination thereby 

reducing the space charge localization and consequently dynamical capacitance. In CaCu3Ti4O12 

(CCTO) a giant permittivity material, MC was found right at the relaxation temperature (100 K) and it 

is shown in figure I-36(a). It is apparent from the figure that away from dielectric relaxation at 300 K 

no MC was found and a maximum of 15 % MC was obtained at 100 K, the temperature where CCTO 

undergoes relaxation. Dielectric relaxation in CCTO is due to the grain boundary layer acting as a 

dielectric barrier between the conducting grains. Similar to the p-n junction diode free charges are 

responsible for the observed MC. However Catalan model alone cannot explain why the MC was 

found only close to dielectric relaxation. Maglione has proposed a model based on the space charge 

model by Coelho. According to this model the relaxation time τ is given by  

 
𝜏 = 𝑑�

𝜎
𝜀𝐷

 
Eq 34 
 

Where d is the thickness, ε the dielectric permittivity, σ is the conductivity and D the diffusion 

coefficient of the free charges which localizes at the interface. As we have seen before applied 

magnetic field interacts with the free charges therefore tunes the σ and D and eventually alters the 

relaxation time. 

 
 

Figure I-36:  (a) Relative variation of capacitance under magnetic field of 90 kOe in CCTO [2]. (b) Magnetic field 
dependence of magnetoresistance and magnetocapacitance measured at 100 KHz for EuNbO2N [112]. 
 

The next example is that of polycrystalline EuNbO2N. Jorge et al. have synthesized EuNbO2N 

polycrystalline sample and found that it undergoes ferromagnetic transition below 5.1 K [112]. They 

have also found a large change of resistance at the same temperature. The application of magnetic 

field above TC gives a giant magnetoresistance and it becomes colossal in value below TC 

(b) 
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correspondingly MC switches from negative to positive respectively and reaches a maximum value of 

20 % at 2 K. These results are shown in figure I-36(b) and note the similarity of the curves as 

predicted by Catalan.  The bulk conductivity related to the grain boundaries increases when a 

magnetic field is applied gives an additional contribution to the polarization without an intrinsic 

multiferroic coupling. This is possibly the likely origin of the MC in EuNbO2N and it is purely extrinsic 

in nature. MC was also found in nanoparticles of La2CoMnO6. Venimadhav et al. have shown that MC 

in La2CoMnO6 arises from both intrinsic and extrinsic factors [113]. Intrinsic factor is due to the 

coupling of magnetic to the dielectric orders and the magnetoresistance combined with Maxwell-

Wagner gives the extrinsic contribution.  

Our last example concerns with the thin films of PZT/LSMO bilayers. Dussan et al. have carried out 

polarization hysteresis measurement with and without magnetic field on PZT/LSMO films with 

thickness of 1.4 µm and 550 nm PZT on 200 nm LSMO [114]. They found that film with larger 

thickness shows no hysteresis dependence on magnetic field except for the slight enhancement of 

the coercive field. On the other hand film with 550 nm PZT shows remarkable effect on the 

application of magnetic field. The hysteresis voltage width increases with magnetic field up to H 

=0.33 T and then vanishes completely at H = 0.34 T (figure I-37(a)).  

  

Figure I-37: Ferroelectric hysteresis P(V) in PZT films with LSMO electrodes on LAO substrates at different 
applied magnetic fields for PZT film thickness 0.55 μm. (a) Increasing magnetic field and (b) decreasing 
magnetic field. A significant magnetic field dependence is observed in the hysteretic loss near a critical field of 
H = 0.34 T, which is shown more clearly in the inset. This value of H = 0.34 T corresponds closely to the field at 
which the negative magnetoresistance in LSMO saturates. [114]  

Note that hysteresis loop does not switch it but merely reduces to zero above H = 0.34 T. Upon 

removal of the magnetic field the hysteresis loop is recovered showing reproducibility (figure I-

37(b)). They have interpreted this based on the magnetoresistance of the LSMO layer.  As the 

magnetic field increases the LSMO layer becomes more conducting and consequently PZT is 

subjected to higher net voltage which leads to increases in dielectric losses and therefore widens the 

hysteresis loop. AT H= 0.34 T the system is shorted and the loop vanishes which is consistent with the 
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results of Hwang et al. who found that LSMO shows a strong negative magnetoresistance at low 

fields and becomes flat above H = 0.33 T [115]. They have argued that albeit magnetoresistance plays 

a major role that alone is not sufficient for the explanation and the striction model by Pric et al. must 

be taken into account [110].  

To summarize we can ascertain two things from the above discussion (1) extrinsic effects may play a 

major role in realizing multiferroic or magnetodielectric behavior of materials hence utmost care 

must be taken where intrinsic multiferroic effects are reported. One way to do that is to also probe 

the dielectric loss along with the capacitance since extrinsic contributions due to magnetoresistance 

invariably have a consequence on the dielectric loss of the material. (2) Extrinsic effects provide an 

easy way to realize multiferroic materials which are otherwise more difficult to obtain. Furthermore 

whatever the morphology of the material extrinsic magnetoelectric or multiferroic can still be 

achieved as is evident from the above examples.  

I.5. Motivation of the Present Thesis: 
Application of magnetic field to dielectric or ferroelectric material may give rise to plethora of 

interesting phenomenon like multiferroicity, magnetoelectricity or magnetodielectric behavior as 

seen above. One of the major challenge is to identify whether these behavior are due to intrinsic 

nature of the sample or due to the extrinsic factors. Extrinsic contribution predominantly arises from 

the conductivity dependence of magnetic field or in other words free charge behavior under applied 

field. The origin of free charges could be the ubiquitous presence of heterogeneous impurities, 

oxygen vacancies or intentional as in the case of doped materials. As we have seen above the 

physical barriers to the motion of free charges affects the capacitance of the materials and these 

physical barriers could be grain boundaries, electrode – bulk interface etc. Whatever may be the 

origin of free charges and type of interface the application of external stress like electric field and 

magnetic field will result in change of dielectric properties extrinsically. So, one of the main 

objectives of this thesis is to understand the free charges contribution to the dielectric permittivity of 

materials. We will also study piezoelectric materials and effect of conductivity on the piezo 

resonance.  Finally we turn towards synthesizing and exploring new multiferroic materials since not 

many good multiferroics are known at the moment. The major questions we will try to answer in this 

thesis are 

 Is it possible to have different interfaces other than grain boundaries and electrode-sample 

interface? 
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 What is the influence of external stresses like temperature, electric and magnetic field on 

this interface and to the dielectric property? 

 In the absence of interface how the free charges can influence the dielectric property under 

magnetic field? 

 How the sample conductivity can affect the piezoelectric resonance and why? 

 Exploring new magnetically driven ferroelectric materials and how it works? 
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II. Experimental Techniques: 

In this chapter all the experimental techniques used during the course of this thesis are described 

in detail. Solid state synthesis and co precipitation methods were adopted to obtain ceramic 

powders. These ceramics were then analyzed with X- ray diffraction to determine the structure and 

phase purity. For characterization most widely used experiments are capacitance, piezoelectric and 

pyroelectric measurements. For certain cases these measurements were carried out under magnetic 

field in Physical Property Measurement Systems to deduce the material behavior under magnetic 

field. Additional measurements like magnetization measurements, second harmonic generation 

mapping were performed as well.  

II.1. Sample Preparation: 
In this thesis many ceramics with different structures like NASICON type phosphates, spinels and 

novel phases were obtained by solid state reactions. The principle of the solid state reaction is that 

the chemical phase that minimizes the free energy is most favorable to nucleate and grow. In general 

solid state method requires high temperatures and controlled atmosphere for preparation. Figure II 

– 1 describes the process involved in solid state reaction in the form of flow chart. Firstly the entire 

precursor were thoroughly mixed in stoichiometric ratio and ground well in an agate mortar. To 

achieve good mixing and grinding, ethanol is added to the precursor and further mixed in a planetary 

mill. Proper grinding is very important to reduce the particle size to facilitate the diffusion process 

and to increase the rate of the reaction. Precursors are then dried overnight in an oven at 100° C to 

remove ethanol.  The dried precursors are then pressed into pellets and placed in a platinum boat 

which is then put in an alumina crucible. In some cases instead of pellets powders are directly placed 

in the crucible. The crucible is then introduced into the tube furnace and it is heated under air or 

controlled atmosphere depending on the final phase required. At every step the powders are 

analyzed by X – ray diffraction to follow the phase formation and purity of the sample. Intermediate 

grinding and pelletizing were carried out several times to get pure phase. For the final sintering step 

the calcined powders are pressed again into pellets and heated to a temperature sufficiently above 

the phase formation temperature. If binders are used to make pellets then the sample was made to 

dwell at a temperature where all the traces of binders were removed and then heated to the final 

sintering temperature. During the sintering process the most of the pores close and grains grow 

larger in size and the final ceramics are highly dense. It is important to have high dense ceramic for 

ferroelectricity since it is a long range phenomenon any discontinuity in the sample will affects its 

property.  
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Figure II-1: Schematic representation of typical solid state reaction process 

Apart from solid state reactions, coprecipitation was employed for the preparation of some NASICON 

type phosphates. One of the main advantages of liquid phase synthesis is that they have high 

reaction rate and also reactions can take place at considerably lower temperature compared to solid 

state reactions.  In this method all the stoichiometric amount of precursors are dissolved in a solvent. 

Solvent could be either water or some strong acids. All the dissolved precursors are mixed together 

in a beaker and then it was slowly heated in a sand bath over night to remove the solvent. The 

precipitate which was obtained after the removal of solvent was given thermal treatment with 

intermittent mixing and grinding to attain the final phase.  

II.2. Structural Characterization: 
X – Ray diffraction is one of the most important techniques to determine the phase and the 

atomic structures of the material and also it is a non-destructive method to characterize the material. 

With the discovery of X – rays by Röntgen, enabled scientist to investigate the crystalline structure at 

the atomic level since X – rays are basically electromagnetic radiation of wavelength about 1 A°. X – 

ray powder pattern is unique for every crystalline solids which can be used as a fingerprint for its 

identification. In addition it is also possible to find out about the lattice parameter, atomic structural 

arrangement etc. Diffraction of X – rays in crystalline solids happens if the wavelength λ, interplanar 

distance d and scattering angle θ satisfies the Bragg law, which is given by 

 𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃 Eq 35 

This leads to constructive interference of the incident rays and the diffracted rays and it appears as 

peaks in the X – ray pattern. Typically in powdered sampled small crystallites are oriented in every 

direction and by scanning the sample through a range of 2θ all possible diffractions lines can be 

obtained. The Full Width at Half Maximum (FWHM) and shape of the diffracted peaks has 

contribution from both the measurement parameters and the sample properties. Measurement 

Mixing and grinding 

Phase Formation 

Pelletizing 

Sintering 
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parameters are beam divergence, focus, resolution, grid width etc and the sample properties are 

area, size, structure and dispersion of grains. As mentioned earlier that X – rays are electromagnetic 

radiation they interact strongly with electrons of the atom. More electrons an atom or ion has 

stronger are the reflection. The influence of the magnetic structure of the sample on the laboratory X 

– rays is very low and can be neglected. The samples with heavy atoms like bismuth or lead give rise 

to very strong intense peaks compared to light elements like hydrogen or oxygen and therefore they 

are difficult to see in the pattern.  

In this work X-ray diffraction (XRD) patterns were collected on a PANalitycalX'pert MPD Bragg-

Brentano θ-θ geometry diffractometer equipped with a secondary monochromator over an angular 

range of 2θ = 8-80°. Each acquisition lasted for 34 minutes. The Cu-Kα radiation was generated at 40 

KV and 40 mA (λ = 0.15418 nm). The samples were put on sample holders made of aluminum alloy 

and flattened with a piece of glass. 

II.2.1. The Rietveld Refinement Method: 
In this method the refinement of powder diffraction pattern is done by the mathematical model 

developed by H.M.Rietveld  [1] [2]. According to his method a crystallographic model is refined by 

minimizing the difference of the points of the measured diffraction pattern and the calculated 

pattern using least squares.  

 
𝜒2 =  �

�𝑂𝑏𝑠𝑖2 − 𝐶𝑎𝑙𝑐𝑖2�
𝑂𝑏𝑠𝑖2𝑖

  
Eq 36 
 

First a model has to be chosen in the beginning and then the theoretical values for several angles θ i  

is computed based on the above model. Then the measured and calculated intensities on each angle 

θ i is compared and the quality of fit χ2 is deduced. On the basis of this value the assumed model can 

be optimized by varying the structural parameters like size and symmetry of the unit cell as well as 

reflection multiplicities and peak shape functions.  

 



68 
 

Figure II-2: Set up of X- ray diffractometer equipped with monochromator. 

 

In this work X-ray diffraction (XRD) patterns were collected on a PANalitycalX'pert MPD Bragg-

Brentano θ-θ geometry diffractometer equipped with a germanium monochromator ( which ensures 

perfect monochromatic radiation) and a spinner over an angular range of 2θ = 10-130°. The Cu-Kα 

radiation was generated at 40 KV and 40 mA (λ = 0.15418 nm). The setup is shown in the figure II -2 

II.3. Bulk Characterization: 

II.3.1. Capacitance Measurement: 
To study the ferroelectric and dielectric property of the material it is necessary to investigate 

their electrical polarization and permittivity. Moreover one of the focuses of this thesis is to 

understand the coupling between electrical polarization and magnetization.  It can be done by 

probing the electrical polarization during the application of magnetic field or alternatively to study 

the permittivity at the magnetic ordering temperature. The relative permittivity of the material is a 

complex quantity and it is given by εr
*

 = εr’− iεr’’. It is related to the absolute permittivity of the 

material by the expression ε=ε0εr where ε0 is the permittivity of the free space and it is a constant 

(8.854 X 10-12 F.m-1).  In general ε depends on temperature, frequency and to a lesser extent, 

pressure.  But the real and imaginary part of permittivity cannot vary independently since they are 

related to each other by Kramers-Krönig relation. The ratio of imaginary part to the real part of 

permittivity (ε''/ε') is called dielectric loss.  

Throughout this thesis capacitance and dielectric losses are measured in parallel plate capacitor 

geometry which is shown in figure II.3. Then the capacitance is given by   

 
𝐶 =  𝜀𝑟𝜀𝑜

𝐴
𝑑

 
Eq 37 

where εr is the relative permittivity of the sample, εo permittivity of free space, A the area of the 

electrode overlap on both sides and d the thickness of the sample. Using the above formula real part 

of permittivity can be deduced from the measured capacitance and the imaginary part from the 

dielectric loss. 

 

 

 

A 

Electrodes 

d 

Dielectric 
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Figure II-3: Schematic of parallel plate capacitor with electrodes on both sides of the dielectric. 

II.3.1.1.  Capacitance Measurement in PPMS: 

The capacitance measurement at low temperature and under magnetic field was carried out 

using Physical Property Measurement System (PPMS) by Quantum Design Model 6000. PPMS can 

perform temperature scans from 1.8 K to 400 K and 0 to 9 Tesla in magnetic field. The set up consists 

of a flange with four BNC connectors which are then connected to the steel coaxial wires. The Steel 

wires are then attached to the sample holder which is at the bottom of the probe. The sample holder 

can be rotated which is useful to perform parallel and perpendicular magnetic measurements. A 

picture of the probe and the sample holder is shown in figure II – 4. The samples were gold sputtered 

to make electrodes on the largest surface and thin silver wires glued with silver paste to the center of 

the electrodes were used for electrical contact and then mounted on the sample holder. The probe 

was then connected to the HP 4194 A impedance/ gain phase analyzer in the range of 100 Hz – 10 

MHz for the frequency dependent capacitance measurements. The measurement was done 

assuming a parallel RC circuit since there is always some dielectric loss in the sample. 

  
Figure II-4: (a) PPMS dielectric measurement probe with sample holder; (b) sample holder with horizontal 
rotator 

II.3.2. Piezoelectric Measurement:  
In this work the piezoelectric characterization was done using the resonance frequency method. 

A body of solid has a characteristic frequency at which mechanical resonance occurs. Piezoelectric 

materials have the specific feature to be driven to their mechanical resonance through an electrical 

excitation. The sample will resonate freely with greater amplitude than at other frequency when 

excited at the resonant frequency fr. There is an anti-resonance frequency fa where the impedance 

of the sample is at maximum and the oscillation amplitude minimum. These characteristic 

frequencies provide the means to evaluate the piezoelectric and the elastic property of the material.  

(a) (b) Flange with BNC 

connector 

Sample holder 
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At the resonance, a piezoelectric material can be modelled by the equivalent circuit shown in figure 

II -5 [3]. It consists of a capacitor in parallel to the series combination of  

 

Figure II-5: Equivalent for the resonating piezoelectric material 

resistor, capacitor and inductor. In general a piezoelectric material can vibrate in several modes 

depending on the geometry of the material. Some of the common vibration modes for different 

geometries are given in figure II -6. It is very important to have well defined geometry of the material 

in order to avoid mode mixing. In this thesis converse piezoelectric effect is used to probe the sample 

i.e. application of electric field to the material creates stress. Typical oscillating voltage of 1 V is used.  

 

Figure II-6: Common piezoelectric vibrating modes in different geometries and electric field.  

The resonance frequency was identified by scanning the frequency in steps throughout the available 

frequency range. In general length mode of the sample appears at much lower frequency (in the 

range of few hundred kilo hertz) than the thickness mode which occurs above 1 MHz. Only these two 

modes were measured in light of the present thesis. The obtained resonance frequency was assigned 

as length or thickness mode by comparing with the obtained theoretical value according to the 

formula  

 
𝑓𝑟 =

1
2𝑙�𝜌𝑆𝑖𝑗

 
Eq 38 
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Where l is the length or thickness of the sample, ρ is the density of the material and Sij is the elastic 

compliance of the sample material.  If there is no reliable estimate of the compliance available then 

the length mode was identified by decreasing the length of the sample which led to an expected 

increase in the resonance frequency. While measuring the piezo resonance the sample should not be 

constrained in any way or else the resonance will be damped. Hence all the measurements were 

done by suspending the sample between the contact wires. For measurements under controlled 

temperature and atmosphere a homemade piezoelectric cell was used. It consists of a four BNC 

connectors connected to two thick copper wires which act as electrodes on which the sample was 

suspended. The suspended sample was then encapsulated inside a cell which maintains temperature 

and atmosphere (figure II – 7). 

 

Figure II-7: Set up of piezoelectric cell. 

II.3.3. Pyroelectric Measurement: 
Appearance of electric charges due to a change in temperature of the material is called 

pyroelectric effect. For the pyroelectric effect to be present in a material, it has to possess polar 

point symmetry. Therefore all ferroelectrics exhibit pyroelectric effect. Under equilibrium condition 

the depolarization field due to polarization discontinuity at the surface is compensated by free 

charges. But when the material temperature changes spontaneous polarization also changes due to 

which an excess of free charges flow in the material and external circuit. The sense of current 

depends on the direction of the polarization change. For the pyroelectric measurement of the 

material it has to be supported in a manner where it can expand freely. In a typical pyroelectric 

current measurement involves poling of the sample while cooling under an applied electric field 

through the transition to align the dipoles parallel to the poling direction. It is shown schematically in 

figure II – 8. The random orientation of dipoles is not sufficient to give rise to pyroelectric current.  

 

   V = 0 V = n 

(a) 
(b) 
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Figure II-8: (a) Before poling, (b) after poling. 

After the sample reaches the desirable low temperature, electric field is removed and the 

pyroelectric current is measured on heating at a constant rate. At the ferroelectric transition a 

maximum in the pyroelectric current is usually observed which is then integrated in time to give the 

electrical polarization. Polarization is given by charge on the surface divided by the surface area 

 
𝑃 =  

𝑄
𝐴

 
Eq 39 

Where p is the polarization, Q is the charge on the surface and A the area of the sample electrode 

surface. Now we know 

 
𝑖 =

𝜕𝑄
𝜕𝑡

 
Eq 40 

Substituting Eq 5 in Eq 6 we have 

 
𝑖 = 𝐴 ∗

𝜕𝑃
𝜕𝑡

 
Eq 41 

Then polarization is obtained by integrating the pyroelectric current 

 
𝑃 =

1
𝐴
� 𝑖 ∗  𝜕𝑡 

Eq 42 

Some of our investigated samples display linear coupling between electric and magnetic field. For 

those samples it is necessary to investigate pyroelectric current under magnetic field since the 

application of magnetic field will affect the polarization. Here the sample was heated above the 

magnetic ordering temperature and then both the electric field for poling and magnetic field applied 

simultaneously. Then the sample was cooled to a temperature much below the transition 

temperature (in our case the sample was cooled down to 5K) and then the electric field was removed 

leaving the magnetic field intact. This procedure is called magnetoelectric (ME) cooling. Before the 

electrodes were shorted in order to remove surface charges.  The pyroelectric current was measured 

while warming at a constant rate with the magnetic field on. If the sample is magnetoelectric then a 

maximum of pyroelectric current should be observed at the magnetic ordering temperature under 

magnetic field and above the transition the polarization should vanish. A Stanford Research Systems 

PS 350 high voltage DC power supply was used to pole the sample and a Keithley 6517B electrometer 

was used to measure the pyroelectric current.  
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II.3.4. Magnetic Measurements:  
Investigation of magnetic properties is essential to understand the multiferroic materials. The 

macroscopic magnetization in general depends on the magnetic field H and the temperature. It is 

given by 

 𝑀 =  𝜒𝑚𝐻 Eq 43 

Where M is the magnetization, H is the magnetic field and the proportionality constant χm is the 

susceptibility of the material. This is equation holds for diamagnetic and paramagnetic materials but 

not for ferromagnetics since they have hysteresis.  According to Curie law the susceptibility of the 

pure paramagnetic material is given by  

 
𝜒 =  

𝐶
𝑇

 
Eq 44 

But if the material is antiferromagnetic or ferromagnetic, then the susceptibility at the paramagnetic 

temperature range is better described by Curie – Weiss law 

 
𝜒 =  

𝐶
𝑇 − 𝜃

 
Eq 45 

Here θ is the Weiss constant and for ferromagnetic material it is replaced by TC.  

The temperature dependence of the susceptibility and the inverse susceptibility for paramagnetic, 

antiferromagnetic and ferromagnetic materials is shown in figure II – 9.  

  

Figure II-9:  (a) Susceptibility and (b) inverse susceptibility as a function of temperature for paramagnetic, 
antiferromagnetic and ferromagnetic materials 

For paramagnetic material there is no transition down to zero Kelvin on the other hand for 

ferromagnetic and antiferromagnetic materials have characteristic temperature called Curie 

temperature (TC) and Neel temperature (TN) at which there is a transition.  The inverse susceptibility 
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of the paramagnetic material has an intercept with temperature axis at the origin whereas the 

ferromagnetic and antiferromagnetic materials have positive and negative intercept with 

temperature respectively. 

The Magnetic properties were measured using a Magnetic Property Measurement System (MPMS) 

by Quantum Design. This apparatus is a highly sensitive magnetometer because it has a Super 

Conducting Quantum Interface Device (SQUID) to measure changes in the magnetic flux as the 

sample moves through the detection coil. The set up can reach upto 5 Tesla in magnetic field and has 

a temperature range of 1.8 K to 400 K.  The same set up can be used to measure hysteresis loops. 

Although this equipment can perform AC magnetic measurements most of the measurement is done 

in DC mode during my thesis.  The samples are generally powders or pellets inserted in the gelatin 

capsule which are then mounted to the transparent plastic straw. The gelatin and the straw have a 

small diamagnetic contribution. Most of the measurements were performed in Zero-Field cooling 

(ZFC) mode where the sample is cooled through the magnetic ordering temperature without the 

application of external field and then the required magnetic field is switched on at the lowest 

temperature and the magnetization was measured during warming. The subsequent measurement 

of magnetization while cooling under magnetic field is called Field – Cooled (FC) mode.  

II.3.5. Magnetoelectric Characterization: 

II.3.5.1. Calibration of PPMS for Magnetoelectric Experiment: 

Characterization of magnetoelectric effect with the application of electric and magnetic field to 

dielectric or semiconducting materials needs caution. Hence a detailed calibration of the experiment 

under magnetic field and electric field is necessary so as to identify the spurious effect arising from 

the sample holder and the set up at the same time to have a reference value. Here we calibrate our 

experimental set up in open circuit and short circuit condition under electric and magnetic field.  
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II.3.5.1.1.  Open Circuit Calibration: 

For the open circuit calibration of PPMS, a Teflon disk sputtered with gold on both sides was 

used as a sample. Teflon is a very low loss material and therefore the circuit can be considered to be 

open. Figure II -10 (a) & (b) gives the capacitance and dielectric losses as a function of temperature 

for the  

 

heating and cooling cycles at 590 kHz.  It is evident from the plot that there is no difference in 

capacitance and losses between heating and cooling. In the capacitance plot there is an anomaly 

close to 150 K but the difference between the maximum at 150 K and minimum of capacitance is 

0.004 pico farad which is much below all capacitances measured in this work (always higher than 

1pF) and moreover this anomaly is not accompanied by a change in the dielectric losses. In addition 

the dielectric losses stay well below 1 percent. At all temperatures both the capacitance and 

dielectric losses of Teflon were independent of the magnetic field up to 90kOe. Therefore we can 

consider that the Teflon sample is highly insulating and hence the measurement on Teflon gives a 

good estimate on the open circuit calibration of PPMS.  

II.3.5.1.2. Short Circuit Calibration: 

To calibrate PPMS in short circuit, the sample was removed and the two contact wires were 

glued together with the silver paste finally to the impedance analyzer. Resistance and reactance was 

measured as a function of frequency with (45 kOe) and without magnetic field from 300 – 10 K. 

Figure II – 11 (a) & (b) shows the plot of resistance and reactance as a function of frequency 

  
Figure II-10 : (a) & (b) capacitance and dielectric loss as a function of temperature for a Teflon sample at 590 
kHz. 

(a) (b) 
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respectively at 10 K. Without magnetic field resistance and reactance is almost flat below 1 MHz 

frequency.  

 

Figure II-11:  (a) & (b) Resistance and reactance as a function of frequency respectively at 10 K in short circuit 
mode with and without magnetic field. 

The increase in the resistance and reactance above 1 MHz is due to the contribution of inductance.  

With magnetic field both the resistance and reactance are highly disturbed below 10 kHz.  Magnetic 

field increases the resistance whereas it causes resonance in the reactance.  This is observed in all 

the temperature range. It is very important in the light of this thesis because most of the time 

semiconducting and conducting samples are probed for dielectric properties under magnetic field.  

For example we measured sodium cobaltite which is a high conducting sample under magnetic field 

for resistance and reactance. We found the same kind of magnetic field induced effect. Without this 

calibration one could misinterpret that the effect is originating from the sample. Henceforth if there 

is an effect of magnetic field only at low frequency in conducting samples it has to be analyzed 

keeping in mind that the sample holder and contact wires are also contributing. 

II.3.6. Equivalent Circuits: 
An ideal capacitor has only the capacitance associated with it but in reality capacitors always 

have a conducting element which is represented as a resistance in the equivalent circuit. This 

conducting element can be presence of free charges due to defects or impurities in the material. 

Under the application of electric field these conducting elements start to flow leading to dielectric 

loss. In the parallel plate capacitors we have a parallel arrangement of capacitor and the resistance. 

Now if we apply external stresses like electric field and magnetic field to this circuit then depending 

on the response of the material we can classify them as pure magnetodielectric, magnetocapacitance 

or multiferroics.  Figure II – 12 describes these effects in the form of equivalent circuit. 

(a) (b) 

R 



77 
 

  

 

 

 

 

Figure II-12: Equivalent circuit for (a) normal capacitor, (b) pure magneto dielectric, (c) interface effect leading 
to magnetocapacitance and (d) magnetolosses. Here R is the resistance and C is the capacitance.  
 

Figure II – 12 (a) is for a real dielectric with a capacitor and a resistance in parallel, now if we apply 

magnetic field to such a system and the response of material is such that there is a change in 

capacitance due to magnetic field without the induction of ferroelectricity and also there is no 

considerable change in the dielectric loss then the effect can be considered as magnetodielectric. 

This effect is represented as the changeable capacitance under magnetic field in figure II -12 (b).  If 

there are several interfaces in dielectric like electrode-sample interface, grain boundary – grain 

interface etc then the dielectric behavior can be represented by the series combination of two 

parallel RC circuits as shown  in figure II -12 (c). Now if the conducting element of one of the circuit is 

responsive to external magnetic field then a change in the capacitance can be induced according to 

equation 24 of chapter 1. This is mostly due to interface effect and it is called magneto capacitance 

though not intrinsic to the sample material. If only the conducting element is affected by magnetic 

field then it can only lead to change in the dielectric loss without change in the permittivity or 

capacitance of the material. It is shown schematically in figure II-12 (d). 

C 

(a) (b) 

(c) 
(d) 
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III. Chapter 3: Localization of free charges 

and its influence on the dielectric properties of 

Fe doped BaTiO3 single crystals. 

III.1. Introduction: 
Pure barium titanate has a band gap of 3 eV and so it is an insulator with a room temperature 

resistivity of more than 1010 Ω cm [1]. This is very good for capacitor application but because of the 

ferroelectric transition temperature (Tc = 130°C) the temperature stability of BaTiO3 properties does 

not meet the devices requirements. To reach temperature independent dielectric properties TC must 

be shifted away from ambient temperature or the dielectric peak should be strongly depressed. This 

is achieved mostly by doping isovalent cations (Pb, Zr, Ca, Sr, Sn etc) [39]. These isovalent impurities 

influence only the ferroelectric behavior but they do not significantly affect the electrical conductivity 

of the material.  On the other hand off valent impurities affect both the ferroelectric transition as 

well as the electrical conductivity of BaTiO3 [3]. These off valent impurities are Fe, Mn, Mg, Sb, Nb, 

Cu, La etc. Conductivity in BaTiO3 (BTO) can also be altered by specific annealing procedure. For 

example reduced BTO ceramic usually show n- type conductivity due to partially reduced Ti4+ and it 

can be written according to the Kroger – Vink notation [4] 

 𝑇𝑖4+ + 𝑒− →  𝑇𝑖3+ Eq III-1 

Reduction of titanium occurs mostly due to the creation of oxygen vacancies by the loss of oxygen 

during the reduction process.  

 2𝑂2− →  𝑂2 +  4𝑒− Eq III-2 

 𝑂𝑂𝑥 →  1
2
𝑂2 +  𝑉𝑜∙∙ +  2𝑒− Eq III-3 

Where 𝑉0∙∙ is the vacant oxygen site which carries a double positive charge. 

Depending on the doping site of the heterovalent impurities, ionic or electronic compensation takes 

place. In La doped BTO major charge compensation mechanism is the creation of the barium 

vacancies [5] and these vacancies are immobile whereas in the Fe doped BTO, Fe is incorporated at 

the Ti sites [6] and the charge compensation is through the above mentioned creation of oxygen 

vacancy. Since the valence of Fe (3+) is smaller than Ti (4+) these kinds of doping are acceptors on 

the other hand doping with Nb (5+) is called donor due to the high valence of the doped cation on 
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the Ti sites. The creation of oxygen vacancy due to the doping of trivalent 3d transition metal cation 

at the Ti4+ site can be written as [7] 

 𝐴2𝑂3
(2𝑇𝑖𝑂2)
�⎯⎯⎯�  2𝐴𝑇𝑖′ + 3𝑂0 + 𝑉0∙∙ 

Eq III-4 

The acceptor oxide (A = Mn, Fe, Co etc) replaces the host oxide shown in parentheses above the 

arrow. It is well known from ESR measurements of Fe doped SrTiO3, Mn doped SrTiO3 and Mn doped 

BaTiO3 that the transition metal dopants are associated with charged oxygen vacancies [8] [9]. 

Furthermore Hagemann [10] calculated the concentration of oxygen vacancy V0 quantitatively based 

on the model proposed by Daniels et al [5] for Fe and Mn doped BTO. The results of the calculation 

are shown in figure III – 1. 

 

Figure III-1: Oxygen vacancy dependence on the doping percentage of Fe and Mn in BTO as calculated by 
Hagemann [10] under different annealing conditions. Solid lines – oxidizing conditions, broken lines – reducing 
conditions. 

It is evident from the above plot that oxygen vacancy increases with increase in acceptor type 

impurities like Fe and Mn. Depending on the annealing conditions whether it is reducing or oxidizing 

number of oxygen vacancy varies in Mn doped BTO. Under reducing conditions there is a lack of 

oxygen availability which leads to creation of more oxygen vacancies.  The doping of Fe in BTO leads 

to creation of free charges following the same principle as for doped semiconductors [11]  [7]. In 

some cases these free charges are due creation of oxygen vacancies. The localization of these free 

charges can happen at the unit cell scale which lead to creation of polarons or at the macroscopic 

scale at the electrode-sample interface or domain walls. Whatever the type of localization they 
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eventually affect the dielectric property of Fe doped BTO. This will be studied under the application 

of magnetic field. Before we begin describing the results let’s look at how domain walls and polarons 

can affect the dielectric property of the ferroelectric material.  

III.1.1. Domain wall contribution to the dielectric property of ferroelectrics: 
Domains and domain walls play a major role in determining the dielectric property of the 

ferroelectrics. The well-known hysteresis effect of the ferroelectrics is due to the nucleation and 

growth of domains during the reversal of polarization at large electric fields. This involves 

considerable motion of domain walls. One of the earliest studies on domains in BaTiO3 single crystals 

is done by Merz where he studied the domain formation and domain wall motion [12]. Since then 

vast number of articles appeared in the literature on the nature of domains and domain walls in BTO 

in the form of single crystals, ceramics and thin films. Several studies have been devoted to 

understand the effect of domain walls on the dielectric permittivity and the losses at small and large 

electric fields.  At the same time frequency dependent measurement are very useful as well. There 

are several contributions to the complex permittivity of ferroelectric crystal below the Curie point 

and it is given by [13] 

 𝜀 =  𝜀∞ + 𝜀𝑖 +  ∆𝜀𝑤 Eq III-5 

Where 𝜀∞ is the optical permittivity, 𝜀𝑖 is the contribution of the ionic polarization to the permittivity 

and ∆𝜀𝑤 the contribution of the displacements of the domain walls. It is obvious from Equation 5 

that domain walls have significant influence on the complex permittivity.  

 

Figure III-2: Scanning electron microscopy image of the domains in BaTiO3 ceramics sintered at 1250°C. 
Adapted from ref [14]. 

Indeed at very high fields polarization reversal occurs and the contribution of domain walls at these 

fields are very high. Hagemann has measured permittivity and the loss factor of BaTiO3 ceramic as a 

function of electric field and doping concentration [10]. An example of domains in BaTiO3 ceramics is 
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shown in fig III – 2 for reference [14]. He found that permittivity and loss factor has a threshold field 

E0 above which both parameters start to increase as a function of field. Below the threshold field E0 

the parameters are independent of the external electric field. Moreover with increase in Fe doping 

concentration threshold field also increases. This shows that doping of Fe in BaTiO3 induces a pinning 

effect on the motion of domain walls and stabilizes it. The stabilization of domains may be due to 

three different mechanisms [15]  [16] [17] (i) Orientation of anisotropic defects by the local electrical 

moments which favors existing direction of spontaneous polarization PS within each domain (bulk 

effect); (ii) lattice defects like oxygen vacancy diffuse to the regions near domain walls and reduce its 

mobility (wall effect); (iii) Diffusion of charged defects towards  grain boundary and fix the overall 

domain structure (grain boundary effect). In general there are two kinds of contribution to the 

permittivity and losses by domain walls. When the electric field is below the threshold field then the 

contribution is dominated by reversible or oscillating domain walls. Above the threshold field E0 

irreversible (hysteretic) domain switching effects dominate the dielectric response. Generally these 

two contributions can be distinguished by plotting real part of permittivity 𝜀𝑟′  as a function of 

imaginary part of permittivity 𝜀𝑟′′ at different field amplitudes (Arlt, 1993) (D.A. Hall, 1998). It is 

shown in the figure III – 3. 

 

Figure III-3: Plot of real part of permittivity 𝛆𝐫′  as a function of imaginary part of permittivity 𝛆𝐫′′ at different field 
amplitudes for Co doped BTO. Note the two linear components in the plot. Adapted from ref.  [18] 

Two linear portions can be distinguished, at lower values the linear part corresponds to the 

reversible domain wall effect and at higher values it is due to the irreversible domain wall 

contribution. Throughout this thesis only small electric field of about 10 V. Cm-1 is applied therefore 

only the contribution of reversible or oscillating domain walls is important and it is discussed in detail 

below. The effect of irreversible domain switching which involves long range motion of domain walls 

can be ignored. 
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To understand the influence of the domain wall motion on the dielectric properties combined 

measurements by mechanical spectroscopy and dielectric spectroscopy are useful. From mechanical 

spectroscopy we can obtain mechanical loss factor Q-1. In any ferroelectric, the presence of 

mechanical loss can indicate the motion of domain walls since they can move under the applied 

stress.  In general the applied stress is small hence no deformation of the sample occurs. And then 

with the help of dielectric spectroscopy at high frequencies one can make correlation between the 

domain walls and the observed changes in the dielectric property of the ferroelectric. B.L. Cheng et al 

have studied undoped coarse grained ceramic using flexural mode of vibration [19].  They found that 

each phase transition in BTO gives rise to peak in mechanical loss Q-1 (P) and a corresponding sharp 

anomaly in the elastic modulus (A). In addition to this, an extra mechanical loss peak was observed in 

each of the ferroelectric crystalline phase (R). This R peak was thought to originate from domain 

walls similar to the one observed in Sr doped lead zirconate titanate (PZT) [20], potassium 

dihydrogen phosphate (KDP) [21], triglycine sulphate (TGS) [22]. Several models were proposed 

regarding how domain walls can give rise to the loss peak.  Postnikov et al. [20] have said that loss 

peak may be due to the interaction of the immobile 90° domain wall with the charged point defect. 

Getner et al. also proposed model based on interaction of point defects and the 90° domain wall 

where the energy level arrangement of point defects is controlled by order parameters which vary 

continuously within the walls.  There are other models proposed by Arlt et al. [23] and Snead et al 

[24] although the model by Huang et al [25]and B.L. Cheng et al [26] has been widely accepted.   

According to B.L. Cheng et al R peaks are due to the interaction of domain walls and the diffusion of 

oxygen vacancies in each crystalline ferroelectric phase. They have done mechanical and dielectric 

measurements on coarse grain and fine grain BTO ceramics [27]. Apart from the sharp anomalies in 

shear modulus and mechanical loss related to phase transition they also found broad anomalies at 

each ferroelectric phase due to relaxation (R peaks). They found that only coarse grain samples 

clearly show relaxation peaks (R peak) in each of the ferroelectric phase. This shows microstructure is 

of prime importance for the appearance of the relaxation peak. Moreover this relaxation can be 

fitted by Arrhenius equation. Similarly in dielectric spectroscopy, dielectric losses peaks were found 

only with large grain samples in each of the ferroelectric phase. These peak shift to higher 

temperature with increase in frequency and are therefore considered to be relaxation peaks. The 

relaxation peaks and sharp anomalies by mechanical and dielectric measurements are shown in 

Figure III – 4 (a) & (b) respectively.  The activation energy of the relaxation peak found by mechanical 

and dielectric spectroscopy fall on the same slope indicating that the basic mechanism is the same. 

Furthermore the activation energy of mechanical and dielectric loss peak are very similar to the 

activation energy for the diffusion of oxygen vacancies. The strength of the mechanical loss peak was 
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also found to depend on oxidizing or reducing atmosphere.  These facts indicate that interaction 

between domain walls and oxygen vacancy is at the origin of these relaxation peaks and the same 

relaxation process exists at different ferroelectric phases. The disappearance of relaxation peak in 

fine grained sample is due to the pinning effect of grain boundaries on the motion of domain walls. 

The samples used in thesis are all single crystals therefore we should be able to observe the 

relaxation due to domain walls. To conclude motion of domain walls and its interaction with oxygen 

vacancy lead to relaxation in all ferroelectric phase. 

 

Figure III-4: (a) Temperature dependence of shear modulus G and mechanical loss Q-1 at low frequencies in 
large grain BTO ceramic, (b) temperature dependence of permittivity and loss for the same BTO sample. The 
peak indicated as R shifts to higher temperature in both mechanical and dielectric measurements. [27] 

III.1.2. Polaron contribution to dielectric response of ferroelectrics: 
Polarons and its influence on dielectric properties were discussed in great detail in Chapter 1. 

Here I will briefly summarize some of the important points concerning polaron contribution to 

dielectric response in light of the following results. Polarons have been gaining attention due to their 

relevance in the field of giant magnetoresistance [28] [29] and high temperature superconductors 

[30]. Typically in these kinds of materials the polaron density is very high in the range of 1023 cm-3. 

But in our material of interest especially in Fe doped BaTiO3 the polaron density is appreciably low of 

about 1017 cm-3 [31]. The usual way of probing polarons is by local spectroscopies such as EPR and 
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optical spectroscopy as well as by macroscopic measurement such as conductivity measurements, 

thermocurrents and Hall experiments. Recently dielectric measurements were used to identify 

polarons in the materials. Salce et al. found the evidence for extremely low dielectric losses in very 

high purity KTaO3 single crystals [25]. These losses cannot be fitted to usual dielectric relaxation 

equation but their activation energy obtained by Arrhenius plotting of loss maximum is about 100 

meV. This was followed by Bidault et al. who showed such loss peak was not only limited to KTaO3 

single crystals but they were found in many other perovskite samples of different composition, 

impurity level, morphology and lattice properties [24]. All these materials had the same activation 

energy in the range of 100 meV and it is shown in figure III – 5 [26]. 

 

Figure III-5: Arrhenius plot of several pure and doped ferroelectric perovskite shown on the left. Case of pure 
and doped SrTiO3 is on the right. Note the saturation for SrTiO3 showing quantum behavior [26] 

This activation energy is similar to the one found by resistivity and Hall measurements in BaTiO3 

single crystals [35] [36]. This show that the observed dielectric relaxation at low temperature in 

several perovskite is related to the polarons especially the reorientation of dipoles when the free 

charges hop through the lattice.  The favorable sites for the free charges to hop in the lattice are 

defect centers such as unwanted iron impurity or oxygen vacancies. The case of quantum polarons is 

typical for SrTiO3 which has low activation energy and tendency for saturation at low temperatures. 

In the present chapter we focus on the following studies on Fe doped BaTiO3 single crystals for 

possible magnetocapacitance effect. Accordingly i) domain wall relaxation discussed above at high 
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temperature will be probed under magnetic field, ii) the polaron relaxation at low temperatures will 

also be probed under magnetic field, iii) preliminary studies on SrTiO3 will be described  as well.  

III.2. Experimental Techniques: 
Single crystals of BaTiO3 with two different concentrations of iron (0.075 at. % , 0.135 at % and 0.3 at. 

%) were investigated and also preliminary studies on SrTiO3 (STO) single crystals have been 

conducted. Typical sample dimensions were 4 x 4 x 2 mm3 for BTO and 2 X 2 X 1 mm3 for STO. Gold 

was sputtered on the major faces to make electrodes and silver wires glued to the center of the 

electrode with silver paste were used for electrical contact. The samples were then put in a Quantum 

Design Physical Properties Measurement System (PPMS) connected to four coaxial cables linked to 

an HP4194 impedance analyzer through BNC connectors. Capacitance and dielectric losses were 

measured as a function of temperature from room temperature down to 10 K in the frequency range 

of 100 Hz-10 MHz. For measurements under magnetic field, the field was raised at a rate of 200 Oe.s-

1 from 0 to 90 kOe; this field was then fixed throughout the temperature cycle. ESR measurements 

were performed using an X-band Bruker spectrometer operating at 9.4 GHz. An Oxford Instruments 

ESR 9 He cryostat operating in the temperature range 4 – 300 K was used for temperature 

dependence studies of ESR spectra intensities. 

III.3. Results and Discussion: 
Fe doped BaTiO3 single crystals have been investigated with dielectric spectroscopy under 

magnetic field for extrinsic multiferroic effects. Recently Maglione has reported magnetocapacitance 

in one cent diodes as well as in CaCu3Ti4O12 so called giant permittivity material [2].  

Magnetocapacitance in diode stems from interaction of external magnetic field with free charges 

accumulated at the p-n interface. In case of CaCu3Ti4O12 free charges arise from incomplete 

compensation of Cu related defects and the interfaces are grain boundaries which under magnetic 

field generates magneto capacitance. In BaTiO3, it was also shown that ferroelectric domain walls 

can be the necessary interfaces where to locate free charges. In this present thesis we go one step 

further to study in detail the domain walls contribution to the magnetocapacitance in three different 

Fe doping concentrations in barium titanate at the same time to probe for polaron relaxation. 

III.3.1. Magnetic field influence on the domain wall relaxation in Fe doped 

BaTiO3 single crystals: 
In the following Fe doped BaTiO3 single crystals are probed for artificial magnetocapacitance 

(AMC). Magnetocapacitance is the change in capacitance under magnetic field. Figure III-6 (a) & (b) 
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shows capacitance and dielectric losses as a function of frequency in the temperature range of 140 to 

180 K for BTO doped with 0.135 at % Fe.  It is evident from the plot that both the capacitance 

relaxation and dielectric losses (tan δ) peak shift to higher frequency with increase in temperature. 

The relaxation of capacitance is reflected as a large maximum in the dielectric losses. This is a typical 

signature of Debye type relaxation. The activation energy obtained from the Arrhenius plotting of the 

loss peak maximum gives a value of 0.22 eV. This value is similar to the one obtained by B.L. Cheng et 

al. and they attributed it due to the domain wall relaxation [27]. We will now look for possible 

magnetic field effect on this relaxation. 

  

Figure III-6: Frequency dependence of (a) capacitance, (b) dielectric losses at different temperatures for BTO 
doped with 0.135 at% Fe. 

 

Reliable measurement of AMC needs caution so as to avoid spurious results since even a small 

amount of magnetic impurities will give AMC which may not have its origin in the sample. As a 

necessary precaution care should be taken to ensure that external factors (sample holders, 

connections etc.) do not contribute to the observed relaxation especially at low temperatures. Since 

our single crystals of BTO and STO have very low loss, it is required to calibrate our experiment with a 

low loss sample for dielectric anomaly in the temperature range of interest. Hence a piece of Teflon 

was chosen for our measurement due to its very low dielectric loss and the capacitance and losses 

are described in chapter 2. No relaxation or other dielectric anomaly was found and no effect of a 

magnetic field up to 90 kOe was observed. Since Teflon is a very low permittivity sample it is also 

necessary to perform calibration using samples with permittivity and losses similar to BaTiO3 single 

crystals. For this purpose we chose KTaO3 single crystals.  On figure III-7, in agreement with former 
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reports, we find a continuous increase of the capacitance on cooling and a slight increase of losses at 

about 50 K [25]. On this figure, the errors bars denote the long term isothermal evolution of the 

capacitance and losses when the magnetic field was swept from 0 to 90 kOe. This fixes the detection 

threshold of the dielectric parameters under magnetic field to 3 %.  

 

Figure III-7: Temperature dependence of capacitance and dielectric losses (tan δ) for pure KTaO3 single crystal. 
The long term isothermal evolution of capacitance and losses when the magnetic field was swept from 0 to 60 
kOe is denoted by the error bars. 

Figure III-8 (a-c) shows dielectric losses as a function of temperature for BTO doped with 0.075 at%, 

0.135 at% and 0.3 at% Fe at a spot frequency of 10 kHz with 0 and 90 kOe magnetic fields 

respectively. Figure III -8 (d) shows capacitance under the same condition as above for BTO doped 

with 0.135 at% Fe.  
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Figure III-8: (a-c) Dielectric loss as a function of temperature for BTO doped with 0.075 at%, 0.135 at% and 0.3 
at% Fe respectively with and without magnetic field at a single spot frequency of 10 kHz; (d)  Temperature 
dependence of capacitance for BTO doped with 0.135 at% Fe at the same frequency and magnetic field. Notice 
the effect of magnetic field on both capacitance and dielectric losses.  

The sharp anomalies at 281 K and 198 K are phase transition from tetragonal to orthorhombic and 

orthorhombic to rhombohedral respectively. The transition temperatures are not the same as pure 

BTO due to effect of doping Fe [38]. Now it is clear that the broad maximum noticed close to 155 K is 

due to domain wall relaxation whereas the maximum seen around 30 K can be ascribed to polaronic 

relaxation arising from the presence of Fe2+ and Fe3+ ions. Low temperature polaron relaxation will be 

discussed in detailed later; here we will focus on magnetic field on high temperature relaxation. It is 
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evident from the fig III-8 (a) that for BTO with 0.075 at% Fe application of magnetic field has 

enhanced the amplitude of relaxation maximum whereas for BTO with0.135 at % and 0.3 at% Fe 

magnetic field has depressed the amplitude of relaxation (fig III-8 (b & c)). In addition not only 

dielectric losses which are affected by magnetic field even the capacitance are equally affected which 

is clearly seen in fig III-8 (d).  From these observations we can say that there is no systematic link 

between the Fe content and the effect of magnetic field. This confirms that the domain walls which 

are highly sensitive to thermal cycling are major contributors to the observed effect on this 

temperature range. 

 

Figure III-9: Log frequency as a function of inverse temperature for domain wall relaxation in BTO with 0.3 at% 
Fe under 0 and 90 kOe magnetic field. 

 Furthermore temperature dependence of relaxation was plotted as conventional log fr versus 103/T 

which could be fitted with Arrhenius law and activation energy of 0.21 eV was found for both 0 and 

90 kOe indicating no influence of magnetic field on the barrier energy ( see Figure III-9). Another 

interesting thing to note here is that the magnetic field effect is more pronounced at the relaxation 

maximum, away from the maximum there is no effect of magnetic field on the dielectric losses.  

III.3.2. Magnetic field effect on the polaron relaxation in Fe doped BaTiO3 

single crystals: 
Now let’s look at the low temperature relaxation due to polarons. Before going in detail we 

would like to stress again that it is important to confirm the observed relaxation indeed stems from 
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the sample. Teflon experiment which we have described earlier assures that sample holder or other 

external factors do not contribute to the relaxation at low temperatures and it stems only from the 

sample. If the relaxation comes from external factors which respond to magnetic field then it will give 

a false AMC. 

  
Figure III-10: (a) Dielectric loss as a function of temperature at several frequencies for BTO doped with 0.3 at% 
Fe. (b) log frequency as a function of reciprocal temperature for BTO doped with 0.075 at% Fe.  
 

Fig III – 10 (a) gives the temperature dependence of dielectric losses for BTO doped with 0.3 at% Fe 

between 0 to 80 K at several frequencies. A clear maximum is seen around 30 K at 1 kHz. This 

maximum shifts with frequency and temperature showing relaxation. The Arrhenius plot obtained by 

plotting the log frequency and reciprocal temperature of the loss maximum gives an activation 

energy of 47 meV for BTO doped with 0.075 at% Fe (fig III – 10(b)) under 0 kOe. We find the same for 

BTO doped with 0.3 at% Fe. The temperature range and the activation energy have led us to infer the 

observed relaxation as polaron relaxation [24]  
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Figure III-11: Temperature dependence of dielectric 
losses for BTO doped with different concentration of 
Fe  (a) 0.075 at%, (b) 0.135 at% and (c) 0.3 at%. The 
relaxation temperature and loss value are similar to 
the crystal doped with 0.075 and 0.3 at% Fe whereas 
for the crystal with 0.135 at % Fe it is very different.  
 

Fig III- 11 (a - c) gives dielectric losses as a function of temperature for BTO doped with 0.075 at%, 

0.135 at% and 0.3 at% Fe at a spot frequency of 10 kHz under 0 and 90 kOe magnetic field. The 

maximum of relaxation is around 30 K for 0.075 at % and 0.3 at % Fe doped crystals and it is around 

50 K for 0.135 at% Fe doped crystal. This indicates that BTO with 0.135 at % Fe is not the same as the 

other two crystals. Furthermore the losses are very high in 0.135 at% Fe doped BTO around 6 % 

compared to the other two crystals where the losses are close to 2 to 3 %. Under the application of 

magnetic field of 90 kOe, amplitude of the relaxation is enhanced for BTO with 0.075% Fe and 

depressed for BTO with 0.3 at% Fe whereas for crystal with 0.135 at% Fe no magnetic field effect is 

seen. In all the cases, the temperature of the dielectric losses maximum was not shifted under 
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magnetic field (see fig III – 10(b)). This shows that the activation energy of 47 meV obtained from 

crystals with 0.075 at% and 0.3 at% Fe is not altered by the magnetic field.  

  

 

 

 

 

Figure III-12: Dielectric losses as a function of frequency 
for BTO doped with 0.3 at% Fe at three different spot 
temperatures with and without magnetic field: (a) 20 K, 
(b) 30 k and (c) 70 K. Close to the relaxation maximum 
at 20 K the effect of magnetic field is maximum, away 
from the relaxation maximum at 70 K there is no effect 
of magnetic field.  
 

The activation energy of the crystal with 0.135 at% Fe is unexpectedly very high (in the range of eV) 

which does not correspond to activation energy of polaron relaxation. Therefore only the results 

from crystals with 0.075 at% and 0.3 at% Fe will be considered. In these two crystals only the 

magnitude of dielectric losses is affected. It can be seen from fig III – 8(d) that capacitance is not 

affected by magnetic field at temperatures below 80 K. To appreciate the amplitude variation by 

magnetic field on the relaxation, dielectric losses was plotted as a function of frequency for BTO with 

0.3 at% Fe at three different spot temperatures (20, 30 and 70 K) with and without magnetic field as 

shown in fig III-12 (a)-(c). It appears from fig III-12 (a) & (b) that the effect of magnetic field is more 

pronounced at 20 and 30 K respectively; it reaches 21% at a frequency of 10 kHz for 20 K where the 
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maximum of polaronic relaxation occurs. At higher temperatures (70 K) sufficiently away from the 

relaxation maximum, the magnetic tuning of dielectric losses disappears (fig III-12 (c)). 

 

 

 

 

 

 

 

Figure III-13: (a) Dielectric losses as a function of 
temperature for pure SrTiO3 single crystals at several 
frequencies (100 kHz – 1 MHz); (b) log frequency as a 
function of inverse temperature for the dielectric 
relaxation peaks in figure (a); (c) temperature 
dependence of dielectric losses with and without 
magnetic field at a spot frequency of 472 kHz 
 

Similar to BTO single crystals, SrTiO3 single crystals have a relaxation at very low temperature with 

very small activation energy prompting to look for AMC. Fig III-13 (a) presents dielectric loss as a 

function of temperature for pure strontium titanate single crystal at several spot frequencies in the 

range of 100 kHz to 1 MHz. Maximum in the dielectric loss was observed below 20 K and within the 

measured frequency range the observed maximum shifts in temperature from 13 K to 16 K with 

increase in frequency, indicating relaxation phenomenon.  Activation energy of 14 meV (Fig III – 13 

(b)) for this relaxation agrees very well with earlier reported one for strontium titanate [24]. It is also 

interesting to note that dielectric losses are less than 1% confirming purity of the crystal. Fig III-13 (c) 

100 kHz 

1 MHz 

(a) (b) 

(c) 
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shows the dielectric loss as a function of temperature for pure STO at an attempt frequency of 472 

KHz with and without magnetic field (90 kOe). It is evident from the figure that magnetic field has no 

influence on the maximum of the relaxation. 

III.3.3. Magnetic field effect on piezoresonance in Fe doped BaTiO3 single 

crystals: 
Finally we describe here the piezoresonance of BaTiO3 with 0.135 at% Fe under magnetic field of 

90 kOe. The method for identifying the piezo resonance frequency is described in detail under 

section II.3.2 of chapter 2. In Fig III-14 (a) & (b) dielectric loss is plotted versus frequency under 

isothermal condition at 10 K with and without magnetic field. The two zero field resonances 

represent measurements taken before (red peak) and after (green peak) the application of magnetic 

field and the blue peak gives the piezo resonance under magnetic field of 90 kOe. In Fig III-14 (a) 

where thick silver wire (Φ  - 0.12 mm) was used for contacts, piezo resonance shows a shift of 3 KHz 

from 3.76 105 Hz under zero field to 3.79 105 Hz with 90 kOe magnetic field. Recovery of zero field 

piezo resonance (green peak) upon removal of the magnetic field is to be noted importantly. Fig III-

14 (b) is plotted for the same sample measured with thin silver wire (Φ - 0.05 mm) for contacts. No 

shift of piezo resonance like the one obtained upon using thick wire under magnetic field was found. 

 

Figure III-14: Dielectric loss as a function of frequency with and without magnetic field at 10 K for BTO doped 
with 0.135 at% Fe: (a) thick silver wire, (b) thin silver wire. Red peak and green peak represents piezo 
resonance for 0 kOe before and after the application of magnetic field respectively. A shift of 3 kHz in piezo 
resonance obtained when thick silver wire was used for contacts. 

III.3.4. Microscopic investigation of the magnetic field effect on relaxation: 
 According to Catalan model, the interface between electrode and dielectric has a resistance 

different from the core of the dielectric due to the difference in charge carrier density that give rise 
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to Maxwell - Wagner effect and eventually to magnetodielectric effect caused by change of 

resistance at the interface under magnetic field [1]. The essential ingredient in obtaining AMC is 

interfaces and free charges. Following his model, Maglione has observed magnetocapacitance in one 

cent diodes and as well as in CaCu3Ti4O12 so called giant permittivity material [2].  

Magnetocapacitance in diode stems from interaction of external magnetic field with free charges 

accumulated at the p-n interface. In case of CaCu3Ti4O12 free charges arise from incomplete 

compensation of Cu related defects and the interfaces are grain boundaries which under magnetic 

field generates magneto capacitance.  He also showed that this kind of tuning of dielectric properties 

by magnetic field is not only observed in ceramics but also in single crystals of BaTiO3 doped with Fe. 

The doping of Fe3+ in site of Ti4+ creates charged oxygen vacancies and these vacancies act as the 

source of free charges in the crystal. Localization of free charges at such interfaces was held 

responsible for the tuning of macroscopic impedance versus the magnetic field. Furthermore it was 

also shown that such tuning under magnetic field is more pronounced at the relaxation frequency 

f=1/(2πτ) according to  

 
𝜏 = 𝑑�

𝜎
𝜀𝐷

 
 
Eq III-6 
 

where d is the thickness, 𝜎 is the conductivity, 𝜀 is the dielectric permittivity and D the diffusion 

coefficient of the free charges which localize at the interface. Having found AMC in Fe doped BTO, in 

this work we looked for dependency of AMC on doping concentration i.e. concentration of free 

charges. It is clear from fig III-8 that artificial magneto capacitance observed shows no consistent 

trend with the doping concentration. Surprisingly the effect tends to vary between two different 

experiments of the same sample indicating non-reproducibility. This can be interpreted by means of 

kinetics of domain walls with temperature. The number of domain walls changes (i.e. interfaces) 

when the sample is subjected to several temperature cycles as it goes through phase transition many 

times. Since artificial magneto capacitance depends on both interfaces and charged defects, 

changing one of them would consequently change the magneto capacitance. We have no way of 

controlling the number of domain walls since it depends on the temperature, which makes the 

magnitude of this magneto capacitance effect highly irreproducible.  

The low temperature dielectric relaxation is a more reliable way of achieving artificial magneto 

capacitance because this relaxation does not stem from domain wall dynamics. As mentioned earlier 

in this chapter that the same kind of dielectric losses anomaly arising from polarons was reported in 

many perovskites around 40 K due to different valence states of dopants. In BaTiO3 doped with Fe 

we found a relaxation at low temperatures in the temperature range of 20 to 50 K which is ascribed 
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to polarons that appears due to existence of Fe2+ and Fe3+ in the crystal [40]. Our polaron model was 

further supported by the activation energy of 47 meV obtained for the relaxation which very well 

agrees with the previous results [24]. In fig III-11 (a) for BTO doped with 0.075 at% the magnetic field 

enhances the relaxation amplitude while it depresses for BTO doped with 0.3 at% Fe (fig III-11 (c)), 

showing contradiction. To understand the effect of magnetic field on the amplitude of this relaxation 

it is necessary to look deeply into the microscopic process happening in the crystal at low 

temperatures. The relaxation under discussion is due to hopping of free charges and it can happen in 

number of ways (i) by purely lattice related defects where there is a charge transfer between Ti4+ and 

Ti3+ centers or oxygen vacancy related centers; (ii) by extrinsic charged defects, in our case it is the 

hopping of free charges between different oxidation states of iron owing to doping of Fe. Such 

hopping process leads to dipoles reorientation which could then undergo relaxation. Importantly 

hopping of free charges induces a change in lattice elastic energy and the application of magnetic 

field does not affect this energy; this is confirmed by our finding of same activation energy for low 

temperature relaxation with 0 and 90kOe magnetic field (Fig III-9). In contrast, magnetic field could 

affect the way these electrons are hopping provided the temperature and frequencies are favorable. 

This could explain why the magnetic field influences the amplitude of relaxation. It is immediately 

seen in Fig III-12 (a) & (b) where the magnetic field effect on the maximum of the dielectric losses is 

strongly marked at 20 K and 30 K along with high losses which points out the transfer of electron 

between different oxidation states of iron ions. On the other hand, at 70 K both no magnetic field 

effect and low dielectric losses were observed showing that the frequency and temperature are not 

favorable for hopping or polaron relaxation (fig III-12 (c)). Interestingly low temperature relaxation 

was found even in undoped BaTiO3 but no magnetocapacitance was noticed (not shown) and the 

same holds for pure KTaO3. It is known that iron is ubiquitous which could lead to relaxation at low 

temperatures following the same process described earlier but the concentration of free charges are 

very low which precluded us from obtaining magnetocapacitance in pure BaTiO3 and KTaO3 crystals. 

Our interest in probing pure SrTiO3 under magnetic field was inspired from the low temperature 

relaxation seen in un-doped BaTiO3. SrTiO3 is an incipient ferroelectric and there is a strong increase 

of capacitance below 50 K accompanied by dielectric loss anomaly around 15K in the form of 

relaxation (fig III-13 (a)). The origin of this relaxation peak is thought to arise from domain dynamics 

at low temperatures although it is still speculative (K.A. Muller, 1991). Observation of internal friction 

below 40 K in SrTiO3 by O.M. Nes et al supports domain dynamics scenario [41]. In spite of these 

observations an important thing to be noted here is that the activation energy of 14 meV (fig III-13 

(b)) for low temperature relaxation agrees very well with the literature [42], yet it is very small and 

close to our observation of low temperature relaxation in BaTiO3 (40meV).  Fischer et al. have 
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studied local disorder in pure SrTiO3 at low temperature and found a strong maximum in oxygen 

Debye Waller factor at 31 K which they attributed to unwanted impurities [43]. Chen Ang et al. 

investigated dielectric relaxation in Fe doped SrTiO3 at low temperatures and stated that dielectric 

relaxation behavior is due to trap controlled ac conduction [44]. Polaronic nature of dielectric 

relaxation in SrTiO3 was pointed out by Bidault et al. [24]. Based on the previous arguments and 

proximity of the dielectric relaxation in SrTiO3 to BaTiO3 with very small activation energy lead us to 

infer that the relaxation stems from localized dipoles that arise from unwanted impurities. 

Consequently application of magnetic field to this relaxation should give us magneto capacitance yet 

no such effect was noticed (fig III-13(c)). This is because free charges which are responsible for the 

tuning of dielectric losses under magnetic field are very small in concentration which forbade us in 

realizing any magnetic field induced effect on the dielectric property of SrTiO3 reflecting the same 

situation as in the case of pure BaTiO3.  

To find microscopic evidences of free charge hopping between Fe ions in BaTiO3 doped with Fe, we 

performed ESR studies in the nominally pure and the Fe-substituted BaTiO3 single crystals. We point 

out that the crystals that were used for ESR studies are the same as the ones used for the dielectric 

experiments reported just above. Figure III-15 (a) gives the ESR spectra as a function of magnetic field 

for pure and 0.075 at% Fe doped BTO at 4 K. For both the crystals there is an intense resonance 

located at g = 2.0005 (3350 Oe) due to the central ±1/2 transition of Fe3+.  

  



100 
 

  
Figure III-15: (a) ESR spectra for pure and 0.075 at% Fe doped BaTiO3 single crystals. Note the line intensity of 
Fe doped BTO is divided by the factor of 10 for plotting; (b) Zoom of ESR spectra for pure BTO shown in figure 
(a). Notice the two symmetric resonance located at 3350 Oe (g =2.0005) and 1580 Oe (g = 4.28); (c) 
temperature dependence of the integrated intensity for the line at 1580 Oe; (d) temperature dependence of 
the integrated intensity of the line at 3350 Oe. (solid lines are guide to eyes)  
 

It can also be noticed that the resonance of Fe doped BTO is at least 15 times more intense than the 

pure BTO crystal even after dividing the intensity of Fe doped BTO ESR spectra by factor of 10 

indicates that the line’s intensity is proportional to iron concentration.  Because of the very low 

detection limit of ESR and the unavoidable presence of iron in the nominally pure BaTiO3, the ESR 

spectra recorded at 4 K look the same in all crystals. The full analysis of these spectra including the 

rotation plots is out of the scope of the present thesis and the Fe doped BTO crystals show many 

overlapping resonance in their ESR spectrum therefore for the sake of clarity only ESR spectra on the 

pure BTO crystals will be described. Here we only underline the Fe3+ related lines and their behavior 

as a function of temperature. Figure III- 15 (b) shows the zoom of ESR spectra of pure BTO showed in 

fig III-15 (a) and in agreement with previous reports, the line located at g=2.0005 (3350 Oe) is 

ascribed to Fe3+ (3d5 ion, with electron spin S=5/2) in the six-fold environment of oxygen. In the same 

way, the line at g=4.28 (1580 Oe), smaller in intensity, stems from Fe3+ centers linked to 2 oxygen 

vacancies with random relative position. Because of their symmetry, these centers do not entail any 

change in the spectra on rotating the crystals versus the magnetic field (not shown). For both these 

lines, the intensity displays very distinct anomaly at ca 40 K. The VO-Fe3+-VO line intensity decreases 

from 4 K and fully vanishes above 40 K ( fig III-15 (c)) and in contrast the six-fold oxygen coordination 

of Fe3+ line grows from 20 K up to a large maximum at ca 40 K (fig III-15 (d)). Both these features can 

be ascribed to electron exchanges between Fe2+ and Fe3+ centers. Keeping in mind that Fe2+ ion (3d6 



101 
 

ion, S=0)  is not ESR active, then the decrease of the VO-Fe3+-VO intensity above 40 K can result from 

the electron delocalization from this charged Fe3+ center. This was also confirmed by magnetic 

measurement as a function of temperature in which the magnetization goes to zero above 30 K in 

both zero field cooled and field cooled condition (fig III-16). Above 30 K the signal is very noisy 

because the magnetization is below the detection limit of the standard SQUID magnetometer.  

 

Figure III-16: Susceptibility as a function of temperature under Zero field cooled condition. We find the same in 
field cooled conditions well. Inset shows the zoom of the same plot from 0 to 40 K.  

The disappearance of this charged Fe3+ center follows an Arrhenius law with activation energy of 0.13 

eV which is in agreement with a shallow trap located close to the bottom of the conduction band. On 

the other hand, we ascribe the 40 K maximum of the octahedral Fe3+ center to the optimal electron 

exchanges among Fe2+/Fe3+ sites which reflects in the thermally activated losses. In such a case, the 

ESR maximum is signing the high electron hopping rate in this temperature range. More precisely, it 

is in this temperature range that the electron trapping on Fe centers is counter-balanced by the 

thermal activation of long range electronic motion.  This also led to an optimal interaction of these 

hopping electrons with the applied magnetic field. Our temperature dependent ESR results are thus a 

strong support for the magnetic field induced losses without magneto-capacitance modulation. 

We have seen possible artificial magnetocapacitance effect at the domain wall relaxation and tuning 

of losses at the low temperature. Interestingly there is yet another well-known means of obtaining 

magnetoelectric coupling that is by strain which could be internal (lattice mismatch, 
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magnetostriction etc) or external (clamping of the sample) [103] [46].  Composites of BaTiO3-

CoFe2O4 display huge magnetoelectric coupling which is several times larger than single phase 

magnetoelectrics. In this composites application of electric field causes the sample to develop strain 

which is then passed on to the magnetic layer then eventually magnetic property of the composite is 

changed due to magnetostriction [18].  In our sample BTO doped with 0.135 at% Fe, applying 

external strain lead to a shift of piezoresonance by 3 KHz although the applied strain was 

unintentional (Figure III-14 (a)). When thick silver wire was used for electrical contacts there was a 

buildup of residual strain in the sample during the application of magnetic field due to restricted 

motion of the sample which eventually induces shift in the piezoresonance. After the removal of the 

field concomitantly strain decreases and the normal position of the sample is recovered along with 

piezoresonance. In contrast when thin silver wire was used, the sample is free to move under 

magnetic field and no shift in piezoresonance was obtained (fig III-14 (b)). Albeit the application of 

strain was uncontrolled and unintentional it presents us with a reliable way for inducing artificial 

magnetoelectric coupling even in single phase materials if the sample is put as a cantilever under 

magnetic field. 

III.3.5. Conclusions: 
Artificial coupling of a magnetic field with dielectric parameters of ferroelectric single crystals can 

happen in several ways. Close to the ferroelectric domain wall relaxation range, in agreement with 

the Catalan model, a large artificial magneto capacitance effect has been confirmed in Fe doped 

BaTiO3 crystals. However, due to the lack of control of the domain wall density, such effect is 

unreliable. In the low temperature range T<50 K, the magnetic field has no effect on the capacitance 

but it can tune the dielectric losses. This tuning can be more than 15% under 90 kOe in Fe-doped 

BaTiO3 while it stays below the detection threshold in pure BaTiO3 and SrTiO3 single crystals. We 

suggest that such efficient tuning of losses results from the interaction between the magnetic field 

and hopping polarons that affect the dielectric losses. When the density of such polarons is small like 

in pure crystals, no macroscopic effect can be measured. Unlike domain walls relaxation, this 

polaronic contribution does not need interfaces to happen which in turns explain why no magneto 

capacitance could be observed. Finally in our observation of shift in the piezoresonance due to 

unintentional strain in BTO doped with Fe under magnetic field show the importance of strain in 

achieving AMC.  Strain engineering may provide us with controlled application of strain to materials 

which are on their own either ferroelectric or ferromagnetic and transform them into multiferroics. 

At this juncture it is important to focus on magnetic field dependent conductivity and strain 

engineering to achieve artificial coupling between dielectric parameters and external magnetic field 

as a possible way for circumventing the intrinsic multiferroics in single phase materials. 
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IV. Chapter 4: Influence of Ionic conductivity 

on the piezoelectric resonance of KTiOPO4 

single crystals: 

IV.1. Introduction: 
In the previous chapter we have seen how electronic conductivity in the material can lead to 

some interesting phenomenon on the dielectric properties due to localization. Here we will consider 

ionic conductivity and its effect on the ferroelectric properties. For that purpose ideal test material 

would be potassium titanyl phosphate. Potassium titanyl phosphate (KTiOPO4 (KTP)) is one of the 

major non linear optical materials for visible and infrared generation. The conversion efficiency 

reaches 50 – 70 % for KTP crystals 3-5 mm long in other words a KTP crystal of 3mm long can replace 

KH2PO4 (KDP) crystal which is 40 cm long. Zumsteg et al. were the first to discover the excellent non 

linear properties of KTP crystals [1]. KTP is a very interesting material particularly because it has 

combination of ferroelectric and superionic conduction properties in which the phenomenon of 

electrical ordering is combined with an anomalously high mobility of cations [2]. In the following we 

will see in detail the structure, conductivity, dielectric and nonlinear optical properties of KTP.  

IV.1.1. Crystal Structure of KTiOPO4: 
The properties displayed by any crystalline material are undoubtedly related to their underlying 

structure. Therefore it is imperative to study the structure of KTP in detail in order to understand its 

properties. Tordjman et al. determined the crystal structure of KTP and they found that the KTP 

crystals belong to mm2 class of orthorhombic systems with non centrosymmetric space group Pna21 

[3]. The lattice parameters are a = 12.814 A° (6), b = 6.404 A° (2) and c = 10.616 A° (5). The KTP 

structure has a 3D rigid framework of vertex sharing titanium – oxygen octahedra TiO6 and 

phosphorus – oxygen tetrahedral PO4 and it shown in figure IV – 1(a). The neighboring octahedra of 

titanium are linked by PO4 tetrahedra to form infinite chains in the structure. The structure is 

characterized by wide helical channels that extend along the c crystal axis and are occupied by large 

monovalent potassium cations. These helical channels provide the means for the mobility of 

potassium cations in the crystal.  Another important structural feature of KTP is that there are long 

and short Ti – O bonds. There are two independent crystallographic position for titanium cations Ti(1) 

and Ti(2) due to displacement of titanium from the center of octahedra such that long  (2.00-2.10 A°) 

and short (1.72-1.74 A°) Ti – O bonds alternate in the - O(9) – Ti(1) – O(10) – Ti(2) – O(9)- chains 
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(Figure IV – 1(b)) [4]. These chains of TiO6 octahedra a rigidly held together by undistorted PO4 

tetrahedral groups. It was shown that these chains are responsible for the non linear optical 

properties observed in KTP crystals [1]. 

 

Figure IV-1: (a) KTP crystal structure along [0 1 0] direction; the octahedra represents TiO6 anions and 

tetrahedral represents PO4 anionic group and the potassium ions sitting in the cavities are represented by 

spheres. (b) Alternating long and shot Ti – O bonds forming chains in KTP structure. 

The potassium cations occupy crystallographically two independent positions at room temperature 

with respect to the coordination with oxygen. These positions are K(1) and K(2) with nine and eight 

oxygen atoms surrounding them respectively. The high mobility of potassium ions observed in KTP is 

not only due to the presence of helical channels in the structure but also due to the creation of 

potassium vacancies during the growth of crystals at high temperatures. It was found that when the 

KTP crystals were grown at temperatures higher than 900°C then it is usually accompanied by the 

formation of vacancies at the potassium positions [5] [6]. The creation of vacancy at high 

temperatures can be written as 

 𝐾𝑇𝑖𝑂𝑃𝑂4 → 𝐾1−𝑥𝑇𝑖𝑂𝑃𝑂4−𝑥/2 + �
𝑥
2
�𝐾2𝑂 Eq IV-1 

Where x is the vacancy concentration in the potassium sublattice. The Curie temperature of the 

crystal increases with an increase in the K/P ratio in the melt particularly at low KTP concentration 

[6].  

(a) (b) 
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IV.1.2. Conduction Mechanism of KTiOPO4: 
From the crystal structure of KTP discussed above it can be seen that mobility of potassium ions 

is preferably along C axis.  For this reason KTP is known as a quasi one dimensional superionic 

conductor of K+ ions [7] [8]. The migration of the potassium ions requires the presence of potassium 

vacancies which are formed during the high temperature crystal growth. The room temperature ionic 

conductivity of KTP is around 10-4 – 10-8 S/cm [9] [10]. Furusawa et al. under took a detailed study 

regarding the conductivity of KTP crystals in the temperature range of 300 – 1200 K at different 

frequencies [11]. They explained the highly anisotropic conductivity of KTP along c axis based on the 

crystal structure.  They found that conductivity along c axis is at least four orders of magnitude higher 

than the other two directions and also frequency independent above 1000 K.  The conduction 

mechanism in KTP is through hopping of mobile K+ ions to the neighboring vacant site along the 

conduction paths. These conduction paths have bottlenecks which the mobile ions have to pass 

through for hopping. In other words there is an energy barrier which must be overcome in order for 

the conduction to take place. Furusawa et al. defined four kind of conduction paths <A>, <B>, <C> 

and <D> from the crystal structure. The schematic of these conduction paths are shown in figure IV-

2. The efficiency of these conduction paths for the K+ ions to pass through them is defined by the 

ratio of size of the bottleneck and the ionic radius of mobile K+ ions. They found that the ratio for the 

conduction path <A> and <B> is higher than the other two paths. This means the conduction along 

<A> and <B> is easier than the  

 

Figure IV-2: The schematic of the chains of conduction paths for K+ ions in KTP projected along b direction. 
Note the chains of easy conduction path <A> and <B> along c axis.  

other two paths. From figure IV-2 it can be seen that c axis contains only the highly conducting paths 

leading to one dimensional conduction in KTP. The other parts contain at least one of the difficult 

paths. Through put the whole temperature range the conductivity in KTP is a thermally activated 
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process and can be described by Arrhenius equation with a 1/T term in the pre-factor which is usual 

in ionic conductors 

 
𝜎 = �

𝜎0
𝑇
� exp (−

𝐸
𝑘𝑇

) 
Eq IV-2 

Where E is the activation energy of the charge carriers but there are two temperature regions. For 

high temperature region activation energy is relatively high at about 0.21 – 0.36 eV [9] [10] whereas 

at low temperature activation energy is 2 – 3 times lower at about 0.16 eV [12]. 

IV.1.3. Ferroelectric and dielectric properties of KTiOPO4: 
The ferroelectric phase transition in KTP is identified by means of anomaly in the permittivity or 

in the second harmonic generation signal. Both these parameters undergo a specific change at the 

ferroelectric phase transition. The phase transition of KTP is around 1207 K but Angert et al. stated 

that the Curie temperature of KTP is very sensitive to potassium non stoichiometry i.e. K/P ratio 

during the growth [6]. They found that the change in the ratio of K/P can significantly change the 

Curie temperature of about 100 K wide temperature range. It is shown in figure IV – 3.  

 

Figure IV-3: The Curie temperature dependence on KTP concentration for different self fluxes with varying K/P 
ratio (R). Notice that with increase in potassium in the flux (high R value) there is an increase in Curie 
temperature and also at low KTP concentration in the flux the Curie temperature is higher. Adapted from ref. 
[6] 

Moreover the permittivity anomaly observed at the transition were not observed when the 

permittivity measurements is done along x and y axes. This shows that KTP crystal is a uniaxial 

ferroelectric with a change in symmetry from paraelectric Pnan to ferroelectric Pna21 space group 

[13] [14]. The substitution of thallium in place of potassium in KTP reduces the Curie temperature to 

854 K.  This decrease in Curie temperature made it possible for the researcher to study the dynamics 

of ferroelectric phase transition in detail. Harrison et al. have shown using TlTiOPO4 (TTP) crystals 

that the displacement of alkali cations along the c axis plays a major role on the spontaneous 
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polarization of crystals in KTP family [15] [16]. It was also shown in TlSbOGeO4 compound that the 

displacement of thallium is about 0.8 A° during the phase transition at 272 K and it occupies 

crystallographically two independent positions in the structure [17]. The displacement of other 

atoms is about one or two orders of magnitude smaller. These facts confirm that potassium cations 

are responsible for the ferroelectric nature of KTP. In fact potassium cations have large spatial 

distribution in the paraelectric state and in ferroelectric state they are displaced from their regular 

position which gives rise to noncentrosymmetry and spontaneous polarization (see figure IV – 4) 

[18].  

 

Figure IV-4: structure of KTP in (a) paraelectric state (b) in ferroelectric state. Notice is the difference in spatial 
distribution of K+ ions in the paraelectric and ferroelectric state. The pink arrows represent the helical channels 
for the mobility of K+ ions. The solid and dashed line in (a) and (b) denotes the corresponding unit cell. Adapted 
from ref [18]. 

The displacement of K+ ions decreases with increase in temperature and at TC it goes to zero 

indicating displacive nature of ferroelectric – paraelectric phase transition. At the same time the 

evolution of average K+ ions displacement and spontaneous polarization with temperature follows 

the power law (1- T/TC)1/2 which is the characteristics of second order ferroelectric phase transition.  

IV.1.3.1. Dielectric Studies on KTiOPO4: 

The dielectric studies on KTP are usually combined with conductivity measurements to ascertain 

the nature of conductivity in KTP at low temperatures. There are several reports on temperature and 

frequency dependence of permittivity and losses available in the literature. All these reports indicate 

on the possible superionic transition at low temperature the exact range of temperature is still 

debated. The dielectric studies on KTP were first carried out by Kalesinkas et al. [9]. They suspected 

that at 280 K there is a superionic phase transition in KTP due to the presence of low broad dielectric 

loss peak at this temperature range. This was followed by Rosenman et al. who found that at room 

temperature dielectric permittivity is characterized by strong dispersion. This dispersion disappears 
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at around 170 K. The same was observed for dielectric loss peak. This indicates that the high value of 

permittivity observed at high temperature and low frequency are mainly due to the contribution 

from conductivity of KTP. Urenski et al. measured dielectric, dc and ac conductivity of several families 

of MM’OXO4 (where M = Rb, K; M’ = Ti; X = P, As) crystals [12].  They found that plotting of dc and ac 

conductivity as a function of inverse temperature show two straight lines for all the studied family 

crystals which indicate two quite different temperature regions (see figure IV – 5). The deflection 

point Td separates these regions. At the same deflection point dispersion in the permittivity and 

dissipation factor disappears. The dissipation factor is at least 2 orders of magnitude lower than the 

high temperature value. For KTP the deflection point is around 200 K. J.H. park et al. observed same 

kind of dielectric behavior around 190 K [19]. Both the permittivity and dissipation factor are very 

low below 190 K. Furthermore Jiang et el. found that at 180 K an increasing thermal absorption and 

an abnormal change in thermal expansion in a wide temperature range in the vicinity of 180 K.  

Shaldin et al. reported that pyroelectric effect suddenly reduces at around 200 K. These facts clearly 

indicate that KTP does show superionic phase transition around 200 K.  

 

Figure IV-5: Log conductivity as a function of inverse temperature (a) dc conductivity, (b) ac conductivity (f= 20 
KHz). Note the change in slope for both RbTiOPO4 and KTP crystals at about 305 K and 200 K respectively. 
Adapted from ref [12] 

The dissimilarity in the results available in the literature indicates that the superionic phase transition 

takes place over a broad temperature range. This is the typical characteristics of second order phase 

transition and it is very much within the consideration of theory of superionic conductors. At room 

temperature K+ ions are highly mobile, as the temperature is lowered the mobility of K+ ions 

drastically decreases and potassium ions start to localize at the lattice site. This happens at around 

180 – 200 K leading to superionic to insulator phase transition. Note that this phase transition is not 

accompanied by any structural transition but only that above the transition K+ ions gains sufficient 

energy and become mobile.  
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IV.1.4. Domains in KTiOPO4: 
The KTP crystals are the preferable material of choice for nonlinear optical convertors because of 

their large optical nonlinearity, high optical damage resistance and broad optical transparency [20]. 

Domain structures in KTP are important due to their influence on the nonlinear optical conversion 

efficiency. For better efficiency a quasi phase matched (QPM) condition is necessary which involves 

spatial variation of the sign of the nonlinear optical coefficient which is linked to the direction of the 

spontaneous polarization PS [21]. QPM condition is needed for the compensation of the natural 

optical dispersion in the crystal [22].  

The KTP crystals are collinear ferroelectrics possessing only 180° ferroelectric domain structure [23]. 

Mostly periodically poled KTP (PPKTP) is used for practical application which has alternating 180° 

domains of opposite sign placed in regular interval. The domain width can be in the range of tens of 

micrometer [24]. Recently Canalias et al. demonstrated a submicron periodically poled domains in 

flux grown KTP using electron beam lithography [25]. Stolzenberger et al. [26]proposed that during 

the domain inversion process K+ ions shift in the -c direction, i.e., the nine coordinated cations 

becomes eight coordinated and vice versa. Due to this TiO6/PO4 framework is forced to adjust then 

the short Ti – O bonds become long and the long ones short while the PO4 tetrahedra and TiO6 

undergo only a slight rotation with respect to each other [27]. Rejmankova et al. investigated PPKTP 

using optical interferometry and Bragg-Fresnel imaging to understand the structure of domain walls 

in KTP crystals. They proposed a domain structure based on their results and calculations and said 

that the P(1) atom is the linking or pivot atom for connecting the inversion domains across the wall. 

The schematic view of domain wall in PPKTP is given in figure IV – 6. The continuity of major 

structural chains of P(1)O4 – Ti(2)O6 polyhedra along [100] is maintained across domain walls.  

Their findings are consistent with Urenski et al. [23] who found that domains in KTP are highly 

anisotropic. They argued that domain growth in KTP should occur in the direction of the crystalline b 

axis where the nucleation step is minimal. The lattice constant of KTP is smaller for b parameter and 

therefore domains prefer to grow in this direction. They observed that even when the switching 

electrode strips are oriented along x axis, the domains continue to grow along y axis. 

Even though there are several articles discussing the physical property of KTP crystals there are only 

few articles discussing the piezoelectric properties of KTP [28] [29] [30]. In fact we find that there are 

no reports on the temperature dependent studies on piezoelectric resonance in KTP as far as we 

know. In this thesis we made a sincere attempt to study the piezoelectric resonance as a function of 

external stresses like temperature and electric field. We believe that a coupling between ionic 

conductivity and piezoelectric resonance in KTP can be anticipated due to the fact that potassium 
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ions are at the origin of these two properties. In what follows we describe the results on piezoelectric 

resonance of KTP and second harmonic generation mapping to visualize the domains as a function of 

temperature. 

 

 

Figure IV-6: Schematic view of domain wall in PPKTP. Note the P(1) atom which is the link between the inverted 
domains. Also note the position of potassium atoms in the cavities between the two domains. In the domain on 
the left, the two potassium ions are slightly shifted downwards compared to the right domain where the 
potassium ions are shifted upwards. It is clear from this picture that domain walls in KTP are perpendicular to a 
axis and parallel to c axis.  

IV.2. Experimental methods: 
Several bars and plates of KTP single crystals with electrodes coated on (100), (010) and (001) 

faces were used for the measurements described below. The dimensions were 4 x 4 x 1 mm3, 0.5 x 2 

x 2 mm3and 1 x 4 x 4 mm3 for the plates; 4 x 1 x 1 mm3, 7.89 x 2.79 x 1.02 mm3 and 5.09 x 1.22 x 1.78 

mm3 for the bars. Gold was sputtered to make electrodes, and thin silver wires were glued with silver 

paste to the center of the electrode were used for electrical contact.  

The ac resistivity of KTP was measured from room temperature to 120K using a HP 4194 A 

Impedance/ Gain Phase Analyzer in the range 100 Hz - 1 MHz. The samples were left for 10 min at 

each temperature in order to reach the thermal equilibrium. 

Piezo resonances were obtained by measuring the conductance G and susceptance B as a function of 

frequency with an Impedance/ Gain Phase Analyzer. The measurement of G and B were carried out 

with a 1V sinusoidal voltage. Small frequency steps were applied in order to find the piezo resonance 

frequencies; then the selected length and thickness modes of each sample were measured between 
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room temperature and 120 K. The methods for identification of the length and thickness modes can 

be found in the reference [31]. All measurements were done under helium atmosphere. Bias electric 

fields upto 400 V. cm-1 were applied in both positive and negative directions to study the influence of 

bias on KTP single crystals. 

IV.3. Results and discussion: 

IV.3.1. Resistance Measurements: 
Fig IV – 7 (a - e) gives the plot of  reactance X versus resistance R over the frequency range 100 

Hz - 1 MHz measured in a KTP crystal with electrodes perpendicular to [001] direction at several 

temperatures. The ionic conductivity of KTP is strongly anisotropic hence it could be measured only 

along [001] [11]. At 298 K the trace of the semicircle is seen at high frequency (left side) followed by 

a large linear increase at low frequency (right side). The intercept of the semicircle to the x axis then 

gives the resistance. As the temperature is decreased, resistance increases exponentially and below 

200 K resistance can no longer be measured within the range of our impedance bridge. Additionally, 

the temperature dependence of resistivity was plotted as conventional log R versus 103/ T that can 

be fitted with Arrhenius law, which is shown as an inset in Fig IV – 7 (a) and the activation energy was 

found out to be 0.45 eV.  
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Figure IV-7: (a – e) Reactance (–X) as a function of Resistance (R) at several temperatures measured along [001] 
direction of a KTP. The trace of semicircle can be seen at room temperature.  Inset to figure (a) gives log 
resistance as a function of inverse temperature. Figure (f) shows dielectric loss Vs inverse temperature 
measured along [001] direction at 200 kHz of KTP.  The Presence of a steep slope from room temperature to 
200 K indicates the drastic decrease in ionic conductivity. 

The difference between the previously reported activation energy of 0.2eV [19] and the one we 

measured 0.45 eV lies in the different temperature ranges that were investigated. The literature data 

dealt with high temperature ionic conductivity (T>300K) while we focused on low temperatures 

(T<300K). While a purely Arrhenius behavior with low activation energy was evidenced in the former 

case, the proximity to superionic transition temperature may artificially increase the activation 

energy in our experiments. The increase in resistance at low temperatures is apparent in the plot of 

log dielectric loss as a function of inverse temperature at 200 KHz (see Fig IV – 7 (f)). When the 

temperature decreases, the dielectric loss decreases drastically from room temperature, which can 

be evidenced from the steep slope until 200K followed by a plateau at low temperature. A sudden 
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change of slope indicates a superionic transition around 200 K since dielectric losses are proportional 

to conductivity. 

IV.3.2. Pyroelectric Measurements: 
Pyroelectric measurements were done on KTP single crystals with electrodes perpendicular to 

[001]. At high temperature the ionic conductivity of KTP is very high which prevents the observation 

of pyrocurrent at high temperature. Hence at low temperature when the ionic conductivity becomes 

negligible, pyrocurrent can be measured. Integration of pyrocurrent with temperature then gives the 

polarization. Since the polarization of KTP is along [001], only crystals with electrodes on (001) were 

used. Fig IV - 8 gives the polarization as a function of temperature for both heating and cooling cycle 

and it is the same for all temperature rates, confirming that the pyroelectric currents indeed stem 

from the polarization appearance. Temperature rates of 2, 4 and 6 K min-1 were used and pyrocurrent 

increased respectively.  

 

Figure IV-8: Polarization as a function of temperature on KTP along [ 0 0 1] direction for both heating and 
cooling cycles.  

Furthermore direction of the current changed during heating and cooling cycles confirming what we 

were observing was indeed pyrocurrent. An important feature to be noted here is that above 200 K 

polarization is negligible, only below 200K polarization starts to appear indicating that polarization 

occurs at this temperature. This is not to say that KTP is ferroelectric only below 200K, it simply means 

that potassium ions which are responsible for ionic conduction starts to localize leading to reduction 

in screening of polarization by ionic conductivity. Hence the temperature of deflection Td is around 

200 K. All the samples reach maximum pyrocoeffcient of 2.3 nC cm-2 K-1 which is in agreement with 

the literature [32]. 
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IV.3.3. Piezoelectric Measurements: 
Fig IV – 9 (a - e  gives the plots of conductance G at room temperature and 200 K as a function of 

frequency for a KTP bar sample with the electrode coated on (001) face.  We interpret the observed 

peak of conductance as a transverse piezoelectric resonance for which the ultrasound vibrations 

occur along [100] while the generating electric field is applied along [001]. The corresponding 

resonance frequency fr, can be expressed as  

 𝑓𝑟 =
1

2𝑙�𝜌𝑆11
 

Eq IV-3 

where l is the bar length, ρ the crystal density and s11 the inverse elastic compliance along [100] . 

The lack of reliable estimate of s11 precluded a quantitative computation of the fr. However, we 

checked this mode assignment by decreasing the bar length, which lead to an expected behavior of 

increase of the resonance frequency fr. A single piezo resonance peak was observed at room 

temperature around 896 KHz. It is very clear from Fig IV – 9 that the peak shifts to higher frequency 

at low temperature, close to 210 K a second peak appeared and a full splitting being observed at 200 

K. But no splitting was observed in thickness mode, i.e. along [001] recorded at 2.9 MHz. By plotting 

the resonance frequency before and after the splitting as a function of temperature makes the 

splitting to be seen more readily. AVANTAGE software developed by Thermo Fisher Scientific was 

used to fit the splitting and to deconvolute the peaks. The frequency of splitting was then taken from 

these deconvoluted peaks. The peak at room temperature is named Resonance Fr 1 and the new 

peak that appears is Resonance Fr 2. From fig IV – 10 it can be seen that at higher temperature, there 

is only one resonance frequency, while the splitting happens around 210 K. 
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Figure IV-9 (a – e): Conductance G as a function of 
Frequency in transverse mode along [100] from 298 k 
to 200 K for KTP bar samples. When decreasing the 
temperature the base of conductance is shifted 
towards low value and at 210 K a small shoulder is 
visible, moving with temperature and developing into 
clear splitting of the piezo resonance at 200 K. 
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The overall decrease of frequencies by increasing the temperature is expected since it results from 

the thermal expansion of the crystals.  It can be also noted from Fig 3 that Resonance Fr 1 disappears 

below 160 K. 

 

Figure IV-10: Resonance frequency before (Fr 1) and after splitting (Fr 2) as a function of temperature. With 
decrease in temperature, the resonances move to high frequency and Fr 1 disappears below 160 K. 

Similarly, the conductance G of a KTP plate with electrode coated onto the (100) faces was measured 

as a function of frequency.  Fig IV – 11 (a) and (b) give the corresponding plots at 298 K and 170 K in 

transverse mode along b and c respectively. Here the peak at room temperature splits at 170 K 

exhibiting similar behavior as KTP bar sample. It is difficult to assign this piezo resonance to one 

particular direction i.e. b or c, since the contribution for resonance comes from both [010] and [001] 

directions, the dimensions being the same in these directions. A splitting was observed for this 

sample in thickness mode along [100], which is given in Fig IV – 11 (a) and (b).  

The results obtained for all the measured samples are summarized in Table 1.  The theoretical 

resonance frequency was calculated with the help of elastic compliance data taken from reference 

[29]. It appears that the splitting occurs in all directions and there is no anisotropy in the splitting of 

piezo resonance peak. For samples 2 and 3 the length mode cannot be calculated since it involves 

two directions in length mode. Note that in KTP, the ionic conductivity decreases drastically due to 

the localization of the potassium ions and pyroelectric current starts to appear around 200 K [33] 

[11] [19]. As a consequence, we can assume that the potassium ions are at the origin of these 

splitting through their conductivity. This could be understood with the space charge model as 

described by Coelho [1]. For this purpose, the effect of dc bias on the splitting of the piezoelectric 

resonance was probed which lead to the results that are described hereafter.  
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Figure IV-11: (a – b) Conductance G versus frequency for KTP plate sample in transverse mode along [0 1 0] and 
[0 0 1] at 298 K and 170 K. (c – d) Splitting of thickness mode along [1 0 0] at 298 K and 200 K on the same 
sample. 
 

Fig IV – 12(a)-(d) gives the conductance as a function of frequency for the KTP bar sample with 

electrodes perpendicular to [001]. Both positive and negative electric fields upto 400 V.cm-1 were 

applied by step. Fig IV – 12(a) shows that there is no effect of the bias on the splitting at 180 K under 

isothermal conditions. Thus when the bias is applied after achieving splitting, we conclude that the 

potassium ions become rigid in their local position so that it cannot have any effect on splitting. 

Hence, the bias was applied before achieving splitting while cooling. Fig IV – 12 (b) shows the 

splitting for two piezo resonances:  one without bias (0 V.cm-1 fields) at 180 K and the other after 

applying a field of 400 V.cm-1during cooling at the same temperature. It is evident from the plot that 

there is an effect of the bias on the splitting which is irreversible. Fig IV – 12 (c) show the same kind 

of plot at 150 K indicating that the bias has considerable influence on the splitting, which is more 
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pronounced than that at 180 K. As expected at higher temperature (240 K), the splitting disappears 

and there is no discernible difference before and after the application of the bias, as shown in fig IV – 

12 (d). According to these measurements we can deduce the three following features: there is no 

effect of the bias on the splitting under isothermal condition; a field cooling has an effect on the 

splitting with an enhancement at lower temperature, the bias has no influence on the piezo 

resonance at higher temperature when the splitting vanishes.  

Table IV-1: Piezo measurements on several KTP samples with different orientation and dimensions. 
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Figure IV-12(a – d): Conductance G vs Frequency in a KTP bar sample in transverse mode along [100] at 180 K, 
150 K and 240 K under 400 V.cm-1 and without bias. (a) The bias was applied after splitting at 180 K under 
isothermal conditions and no effect was observed; (b) noticeable influence of the bias observed when it is 
applied during cooling before the actual splitting, (c) Enhanced bias effect at 150 K under field cooling; (d) at 
240 K, far away from the temperature where the actual splitting start to appear, the bias has no influence on 
the piezo resonance. 
 

Our observation of a large decrease of the dc conductivity and of a strong cusp in the ac dielectric 

losses, both at about 200 K, is consistent with previous reports on the superionic transition of KTP at 

200 K. Actually the ionic conductivity of KTP decreases with temperature, and Jiang et al. reported 

that KTP undergoes a superionic transition at 180 K [35]. They also showed that thermal absorption 

takes place at the same temperature which indicates a phase transition. Noda et al. and J-H. Park et 

al. observed dielectric dispersion at 223 K and 193 K respectively [36] [19]. Shaldin et al. reported that 

pyroelectric current in KTP appears at 200 K and that a possible superionic phase transition can occur 
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at the same temperature [37]. In addition, Rosenman et al. found that KTP becomes a superionic 

conductor at 170 K according to the Seebeck effect that gradually undergoes a transition from ionic 

conductivity to electronic conductivity below 200 K as reported by V.D. Antsigin et al. [38] [39]. Non 

uniformity in these results for defining the superionic phase transition is not surprising since two 

different types of phase transitions generally occur in superionic conductors: In the first type, the 

transition happens sharply at a given temperature while transition occurs over a range of 

temperatures in the second type [40]. From these reports we can conclude that the transition in KTP 

is of second order, the mobile potassium gradually becomes immobile over a wide range of 

temperatures. Interestingly, Angert et al. have found that the Curie temperature seems to vary over a 

range of 100 K depending on the potassium concentration [6]. Potassium stoichiometry then affects 

the superionic phase transition, since the ionic conductivity of KTP is by vacancy mechanism involving 

potassium sites. As a first step for establishing a link between the ionic conductivity and lattice related 

properties, we thus confirmed that all of the KTP single crystals we used have a standard ionic 

conductivity along the c-axis. The first consequence of such ionic conductivity disappearance below 

200 K is the increase of the pyroelectric current which can be integrated to lead to the polarization 

[37]. Note that it does not mean that the KTP ferroelectric transition takes place at 200K, but only that 

the ferroelectric polarization is screened by the ionic conductivity at high temperatures. This confirms 

the previous observations of ferroelectric hysteresis loop on reducing the conductivity [37] and on the 

birefringence onset below 200 K [41]. 

The original point we put in emphasis here is that the elastic parameters are affected by the 

conductivity suppression at 200K. Indeed, the mechanical resonance frequency of any solid material 

involves the sample dimension that is resonating, as well as the density and the elastic compliance Sij 

as indicated by equation 1. It is important to note that such a mechanical resonance can be excited 

through a small ac electric field, i.e. less than 10V/cm in the case of KTP. Following equation 1, the 

splitting of the KTP piezoelectric resonance at 200 K can only result from a splitting of elastic 

parameters since the sample dimensions and density have no specific evolution at 200 K. Our 

investigation of several sample geometries and domain states (table 1) confirmed that there is no 

correlation between the crystal polarization state and the resonance splitting. This is also seen on 

figure IV – 10 that the splitting is just superimposed to the continuous increase of the resonance 

frequency on cooling which stems from the thermal dilatation. We thus can conclude that the 

inverse elastic compliance which is single at high temperatures becomes split at T<200 K. This 

feature seems to indicate that the crystal behaves like 2 slabs in the low temperature state. It is 

important to note that the superposition of many ferroelectric domains will not result in a resonance 

splitting but rather lead to a broadening of the resonance peak. We thus assume that a space charge 
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bi-layer is built in KTP upon decreasing the temperature below 200 K (figure IV-13). . Within a single 

ferroelectric domain and for temperatures higher than 200 K, K+ ions are homogeneously distributed 

in all directions, in particular along the thickness that is parallel to the c-axis and below 200 K, K+ ions 

localize in a way that is schematically shown in the figure IV – 13. This heterogeneous localization 

results from the electrical continuity at the electrode/crystal interfaces and from the built in 

potential resulting from the polarization orientation. The extension of such space charge along the c-

direction is not known; however, since the polarization of KTP is directly resulting from the K+ ions 

localization, the sample maybe considered as a superposition of 2 slabs having the same elastic 

properties in the ab plane but not along c. This may explain the splitting of piezoelectric resonances 

below 200K. 

 

Figure IV-13: Schematic view of the space charge distribution above and below the superionic transition 
temperature (200 K) in KTP within a single ferroelectric domain. 

So this space charge model thus provides a link between the ionic conductivity and the lattice elastic 

properties [1]. This is further confirmed by the poling experiments reported on figure IV – 12 where 

using a slight electric field of 400V/cm during the sample cooling through the 200K temperature 

range; we were able to tune the amplitude of the split resonances. When the samples were cooled 

without this dc electric field (ZFC), a subsequent isothermal poling is not efficient for changing the 

resonance splitting. Translating this in terms of the space charge model, we thus state that the dc 

electric field can alter the building of space charge only when its application starts before full 

localization and trapping of the mobile K ions. Conversely, once the splitting has been altered under 

field cooled conditions, the only way to recover the original resonance shape is to rejuvenate the 

sample under heating in the temperature range where ionic conductivity is efficient. The way to 

cancel the dc field effect on the space charge is to remove the potassium gradients by thermally 

activating the hopping of individual ions. Additionally, splitting happens at different temperatures for 

the same sample depending on the sample thermal history which corroborates the presence of 

space charge. In figure IV – 9 this splitting occurs at 200 K when the sample was cooled by steps of 20 

K where the sample was left at each step for several minutes until it reached a thermal equilibrium, 

and for the same sample splitting appears at 180 K (figure IV – 12) when it was cooled continuously 
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without any steps.  Furthermore, dependence of space charge with temperature also affects the dc 

field influence on the splitting. Fig IV – 12(b) shows that the dc field enhances the amplitude of the 

split resonance at 180 K whereas it suppresses the resonance amplitude at 150 K. These facts 

emphasize the space charge effect which was created during the localization of K+ ions at low 

temperature on the ferroelectric properties of KTP. The space charge is only an assumption up to this 

point and it needs further probing. 

IV.3.4. Second Harmonic Generation Mapping: 
In this section we probe the space charge with the help of second harmonic mapping technique. 

In second harmonic generation (SHG) the frequency ω of the incident light is doubled (2ω) or 

in other words the specific wavelength of the light is converted into half its original i.e. λ1  

1/2 λ1.The optical response of a linear material is expressed in terms of the induced polarization P. 

For a linear material the relationship between the polarization and the electric field E of the incident 

radiation is linear. With high power source the induced polarization due to the large optical fields can 

be written as Taylor expansion. 

 𝑃𝑖 =  𝜒𝑖𝑗𝐸𝑗 + 𝜒𝑖𝑗𝑘𝐸𝑗𝐸𝐾 + 𝜒𝑖𝑗𝑘𝑙𝐸𝑗𝐸𝐾𝐸𝑙+.. Eq IV-4 

Where 𝜒𝑖𝑗 is the linear susceptibility, 𝜒𝑖𝑗𝑘 is the second order nonlinear susceptibility and 𝜒𝑖𝑗𝑘𝑙 is 

the third order nonlinear susceptibility. An important point to note here is that, for 𝜒𝑖𝑗𝑘to be non 

zero the crystal structure should be non centrosymmetric whereas the odd linear 𝜒𝑖𝑗and nonlinear 

𝜒𝑖𝑗𝑘𝑙 contributions are always active whatever the symmetry of the material. Note that for the 

specific case of a space charge in a material, the combination of the static electric field EDC resulting 

from the space charge and the third-order nonlinearity 𝜒𝑖𝑗𝑘𝑙 gives an effective second-order 

nonlinear contribution and this is given by the equation below 

 𝑃2𝜔 =  𝜒𝑒𝑓𝑓2 (−2𝜔;𝜔,𝜔) ∙ 𝐸2(𝜔) = [𝜒3(−2𝜔;𝜔,𝜔, 0) ∙ 𝐸𝐷𝑐] ∙ 𝐸2(𝜔) Eq IV-5 

This contribution is currently called Electric Field Induced Second Harmonic (EFISH) and corresponds 

to an electro-optic Kerr effect (four waves mixing). Hence, for polar materials with 𝜒𝑖𝑗𝑘 it is possible 

to visualize 180° domains in a noncontact and non-destructive way, which has been considered 

unfeasible before the works of Uesu and co-workers on SHG microscope for ferroelectric domain 

observation [42] [43] [44]. The 180° domains which are optically equivalent were previously studied 

by acid etching which uses the difference in etching rates for domain characterization. However this 

destroys the quality of the sample making it inefficient for quasi phase matching applications. Below 
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we describe the µ-SHG microscope set up used to study the domains and domain walls and in this 

particular case for KTP we also use it to study the space charges. 

IV.3.4.1. Second harmonic generation imaging set up: 

In this nonlinear microscopy technique, an intense laser field induces a nonlinear polarization of 

the medium, confined to the focal center of the beam waist (depth of focus: DOF), resulting in the 

production of a wave at exactly twice the incident frequency. The interaction of collimated beams 

onto interfaces radiates coherent SHG in well-defined transmission and reflection directions. If we 

now intend to provide microscopic SHG images, the incident laser beam must be focused to a small 

spot size and the driving fields can no longer be considered as simple plane waves. The structure of 

the radiating SHG becomes critically dependent on the distribution of the input fields near the focal 

center. Thus, in focused beam the phases of the input fields play a crucial role: there is an axial phase 

shift of the focal field which is known as the Gouy phase shift. Since the phase of the excitation beam 

is phase-delayed by the Gouy shift close to the focal point, the axial effective incident wave vector is 

diminished and the phase-matching condition for SHG can be revised. Conservation of the transfer 

moment along the axial direction drives a coherent SHG signal within two well-defined off axis lobes 

with an angle θ peak that depends on many parameters [45] [46]. Since forward SHG is most intense 

than backward SHG because of the coherent nature of the process, SHG is most currently detected in 

the forward direction for imaging purposes using mirror scanning see eg. Chapter 5 of reference [47]. 

A main advantage of SHG microscopy is its unique capability to provide 3D images of the materials 

with micrometer resolution. 

The micro-SHG setup we used for this study is based on a modified micro-Raman spectrometer 

(Horiba HR800) allowing the analysis of backscattered light. This original setup gives the opportunity 

to perform µ-Raman and µ-SHG to get a direct link between physical properties and local structure 

[48] [49] [50].  
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Figure IV-14: Orientation conventions for the backscattered parallel (//) and perpendicular (^) polarized light 

intensity I2ω with respect to the incident light intensity Iω. Note here that the depth of focus (DOF) corresponds 

to the axial resolution estimated to 2-3 µm using an 100X objective with NA=0.50 

The source is a diode-pumped picosecond laser (EKSPLA PL2200: pulse duration 65 ps, repetition rate 

2kHz) operating at λ=1064 nm focused at the surface of the sample with a NIR objective 100X 

(NA=0.50). The energy per pulse is adjusted by a power unit composed of a rotating half-wave plate 

in front of a GLAN Taylor prism and it can be tuned (from 10 µJ to less than 10 nJ) notably at low 

energy to avoid eventual sample photodegradation. The incident pulse power is monitored by a fast 

InGaAs photodiode for quantitative power calibration purposes. The measurement of the SHG 

intensity I2 ω can be realized using two different light polarization configurations, namely the dubbed 

parallel (//) and perpendicular (⊥) configurations, corresponding to incident and scattered lights with 

collinear or orthogonal polarizations respectively (Figure IV-14). Since the polarization of KTP is 

predominantly along z direction we used the // polarization configuration. The µ-SHG signal at high 

NA (NA > 0.50), i.e. the present experiment and that of Uesu et al will not give any phase information 

but only the magnitude of the polarization. Here, the lateral spatial resolution is estimated to be 0.5 

µm from the far field resolution limit. The depth of focus was estimated to be ca. 2-3 µm. If the 

probed thickness is defined by the depth of focus (DOF) of the focused beam which is lower than the 

coherence length (Lc  ∼ 4-5µm for KTP along c axis) of the material (thin layer approximation where 

no oscillatory behavior is expected), the SHG intensity (I2ω) is related to the NLO susceptibility deff as 

follows. 

 (𝐼2𝜔) ∝ 𝐷𝑂𝐹2 ∗ (𝑑𝑒𝑓𝑓)2 ∗ (𝐼𝜔)2 Eq IV-6 
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IV.3.4.2. SHG mapping results on KTP: 

It is important to have a reference sample without ionic conductivity to compare with KTP. For 

that purpose reduced BaTiO3 (BTO) single crystals was chosen. Generally BaTiO3 does not have any 

ionic conductivity however reduced BTO have electronic conductivity. Now it will be interesting to 

probe Fe doped BTO for any space charge and then compare it with KTP. Figure VI -15 (b & c) gives 

the 2D SHG map of the cross section shown in figure (a) at room temperature for BTO single crystals. 

The dark lines seen in fig (a) is due to domain walls. It can be seen from xz cross-sectional SHG image 

(surface map) that domain walls appear dark (figure IV – 15 (b)). This is because the domain walls 

cancel the polarization component from each domain and therefore no SHG signal is generated at 

the domain walls. Within the domains there is considerable SHG intensity due to the polarization of 

the domains. The xy cross-sectional SHG image (depth map) obtained after rotating the sample to 

45° clearly show that there are no space charge layer at the surface since the SHG intensity at y =0 

µm (top surface of the material) is very low compared to the two bright spots at y = 70 µm (see 

figure IV – 15 (c)). It can be safely assumed that the two bright spots are due to the polarization of 

the domains which are parallel to the polarization of the incident light. Since both the surface (xz) 

and depth (xy) maps are available it is possible to construct domain wall orientation within the bulk 

and it is shown as a schematic in figure IV – 15 (d). Here the red double headed arrow represents the 

laser light polarization direction; blue arrows show the domains with polarization perpendicular to 

the initial laser polarization. They do not give any SHG signal however the domains which have 

polarization parallel to the laser’s represented as circles display strong SHG signal seen as two bright 

spots. However the sign of polarization cannot be determined here since this SHG signal does not 

contain any phase information. 
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Figure IV-15: (b) & (c) gives the xz and xy SHG map for the cross section shown in (a) for BaTiO3 single crystals. 
(d) Gives the schematic of the domain wall orientation within the bulk interpreted from (b) & (c). Red arrow 
here represents the incident laser polarization direction. Circles represent domain with polarization parallel to 
the incident laser. 

Similarly KTP single crystals were probed with µ-SHG to identify the space charge. The orientation of 

the single crystal is shown in fig IV – 16(a). Here the laser is passed along y-direction and then 

scanned to obtain xy (depth) or xz (surface) map. Fig IV – 16 (b – e) gives the xz cross-sectional SHG 

map of KTP single crystals 10 µm below the surface (z = 0) at different temperatures. The excitation 

and response fields are oriented along z since we aim to probe the ionic conductivity (space charge). 

It can be seen from the figures that with decrease in temperature SHG intensity decreases and at 170 

K the SHG intensity is low. This is in agreement with previous results that conductivity decreases 

drastically and below 200 K, KTP behaves as an insulator as seen from resistance measurements. 

When the conductivity is higher, the potassium ions are mobile and they tend to localize at the 

surface which gives rise to high SHG signal at the surface. It is also important to perform in depth 

SHG map to see the space charge layer if any due to localization of potassium close to the surface. 

Figure IV – 17 (a – d) shows the xy (depth map) cross-sectional SHG image for the same KTP single 

crystal and at the same spot. Remarkably at room temperature the SHG intensity is very high close to 

the surface and below y = 40 µm there is no SHG signal indicating that the bulk SHG intensity is much 

lower than the one at the surface of the sample. This is in contrast to BTO single crystals which did 

not show any space charge layer at the surface (see fig IV – 15 (c)). The very low SHG signal within 

the bulk indicates that the structural second-order response (bulk response) is at least two order of 

magnitude lower than the effective EFISH response which is the product of the third order non 

linearity (χ3), expected to be high in that material, and the embedded electric field due to the space 

charges. Since the third order non linearity (as the 2nd- order one) is expected to be homogeneous in 

the crystal, the SHG maps reveal the distribution of the square of the amplitude of the electric field 

where we can see hot points notably at room temperature, indicating large inhomogeneity of the 

distribution of K+ in the crystal.  
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Figure IV-16: (b – e) gives the xz cross sectional 
image of KTP single crystals probed with µ-SHG 
microscope at 273 K, 233 K, 200 K and 170 K 
respectively for the orientation given in (a). The 
double head arrow in (a) indicates the incident 
laser (Eω) and SHG (E2ω) polarization direction 
Also note that the SHG signal decreases with 
decrease in temperature due to drastic decrease 
in conductivity. 

The space charge layer in KTP is about 20 to 30 µm at the surface. It is difficult to interpret the effect 

of temperature on the intensity of SHG from the images. Nevertheless it can be seen immediately by 

plotting the corresponding profile of SHG for all the temperatures close to the surface. Figure IV – 18 

shows the profile of average SHG intensity along y direction (depth) obtained from the xy cross-

sectional images shown in figure IV – 17. The SHG intensity at the surface i.e. y = 0 µm is high for all 

temperatures and width of the peak gives the thickness of the space charge layer. At room 

temperature the SHG intensity is high and at 233 K it reaches a minimum. This minimum coincides 

Eω, E2ω 

Eω, E2ω 
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exactly with the decrease in conductivity which starts to happen at this temperature range. At 200 K 

and 170 K the SHG intensity increases again, this can be explained on the basis of intrinsic 

polarization of KTP which becomes more pronounced at low temperatures as seen from the 

pyroelectric measurements. . Here it is worth noting that at those optical frequencies of the 

fundamental and harmonic waves 1064-532 nm, SHG is sensible to electronic fluctuations (in the 

range of fs to ps) mostly due to the Ti-O bonds (fs range) in KTP. These electronic fluctuations relate 

not only the instantaneous electronic polarization but also fluctuations of nucleus motions (ps range) 

that induce also electronic fluctuations as it happens in Raman scattering for example. Then, the 

overall high EFISH intensity at the surface is a consequence of the static inhomogeneous distribution 

of potassium ions (static space charge) but also of their dynamical hopping (dynamical contribution 

not solved at optical frequencies) which give rise to electron density fluctuation. This kind of static 

space charge layer due to migration of ions has been observed even in glasses [48]. 

  

  
Figure IV-17: xy (depth map) cross-sectional SHG image for the same KTP single crystals used in fig IV – 16 at 
different temperatures. Note the high SHG intensity at the surface i.e. y = 0 µm indicating space charge layer.  

 

 

Eω, E2ω 
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Figure IV-18: The profile of average SHG intensity along y direction (depth) obtained from the xy cross-sectional 
images shown in fig IV – 17.  

Similar experiment was done on periodically poled KTP (PPKTP). In PPKTP the domains are arranged 

in regular and alternative fashion. All the domains are oriented parallel to z direction since it is the 

principal polarization direction. It is also interesting for nonlinear optics as PPKTP are often used for 

quasi phase matching. The orientation of the PPKTP for µ-SHG mapping is the same as fig IV – 16 (a). 

Fig IV – 19 (a – d) gives the xz cross-sectional SHG image of PPKTP at several temperatures. Images 

reveal regular domains and domain walls. In PPKTP domains are reversed alternatively but it appears 

same in the images because backscattered SHG signal does not contain phase information. Domain 

walls appear dark due to the local cancellation of polarization. Fig IV – 19 (e) shows the profile of 

average SHG intensity along x direction obtained from fig (a – e). The regular drop in SHG intensity 

represents domain walls and the distance between them gives the width of the domain and it is 

about 17 µm. At 333 K the SHG intensity is very low showing apparent contradiction to the 

expectation. This drop down of effective SHG at high temperature may be triggered by a loss of 

spatial extent of the static/dynamic space charge. However further experiments and detailed 

investigation is needed to clarify our hypothesis.  
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Figure IV-19: (a – d) xz cross-sectional SHG image of PPKTP at different temperatures with the orientation of 
the crystal same as fig IV – 17 (a). Fig (e) gives the profile of average SHG intensity along x direction obtained 
from images (a – d).  The sharp drop in intensity represents domain walls and the distance between them gives 
the width of the domains. 

Below 333 K the trend similar to the one observed in normal KTP (i.e. with decrease in temperature 

SHG intensity decreases and it reaches a minimum after which it increases again) was observed in 

Eω, E2ω 
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PPKTP. However the temperature of the minimum in normal KTP (233 K) is different from PPKTP (200 

K). Infact it was found that the minimum temperature changes with thermal cycling of the sample 

indicating that the SHG intensity at the surface is due to space charge layer at the surface of the 

sample.  

 

  

  
Figure IV-20: (a – d) presents the xy (depth) cross-sectional SHG image for PPKTP at different temperatures. 
Both the domains and domain walls are clearly seen along with the space charge layer at the surface. 

The space charge layer is formed due to the localization of potassium ions at the electrode-sample 

interface. In PPKTP we have domain walls which can also act as an interface. To probe whether there 

is any localization of potassium ions at the domain walls, in depth µ-SHG mapping has been done. Fig 

IV – 20 (a – d) shows the xy (depth map) cross-sectional SHG image of PPKTP at different 

temperatures. Resembling normal KTP, PPKTP also display space charge layer at the surface y = 0 µm. 

In addition both domain and domain walls can be clearly seen. The SHG intensity inside the domains 

is maximum whereas at the domain walls it is minimum for reasons explained previously. Remarkably 

it can also be seen that there is some SHG intensity within the bulk at the domain walls seen as blue 

Eω, E2ω 
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lines in the images in contrast to normal KTP where the SHG intensity within the bulk is very low. This 

can be immediately seen by plotting the profile of the SHG intensity along a line parallel to y 

direction at the domain walls for all temperatures (figure IV – 21 (a)). There is a large SHG intensity 

close to the surface and within in the bulk the intensity is low however small peaks are visible at 40 

and 120 µm inside the bulk (i.e. along y direction). These peaks may be due to the strong fluctuations 

or inhomogeneities at the domain. The profile obtained by plotting SHG intensity along a line passing 

through the center of the domains shows that the SHG intensity within the domain is much larger in 

comparison to the domain walls (see figure IV – 21 (b)). Furthermore no peaks within the bulk are 

visible since there are no interfaces inside the domain for the potassium to localize. The SGH 

intensity at the surface is higher at room temperature and decreases with temperature. This is in 

agreement with the previous results in normal KTP. 

 

Figure IV-21: (a) The profile of SHG intensity along y direction at the domain walls and (b) the profile of SHG 
intensity along y direction for a line passing at the center of domains. Both the profiles are drawn for the SHG 
images shown in fig IV – 20.  

IV.3.5. Conclusion: 
We have shown that the mechanical resonances of KTP single crystals undergo a well-defined 

splitting at about 200 K, which corresponds to the temperature where the ionic conductivity ends 

and pyroelectric currents as well as birefringence start to increase. This splitting of the piezoelectric 

resonance occurs for many crystal orientations and resonance modes whatever the ferroelectric 

domain state is. In most of the cases, it is observed when the probing ac voltage is applied parallel to 

the c-axis, which is the main path for the ionic conductivity. We ascribed the splitting to the building 

up of ionic space charges in the single crystal. We thus suggest that the piezoelectric resonance is 

relevant parameter in order to track the space charge as a function of several external stresses using 
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a very small applied voltage which is not perturbing the spontaneous balance between the 

ferroelectric polarization and the ionic conductivity in KTP, which is maybe true in other ferroelectric 

ionic conductors. The space charge creation was then probed with the help of µ-SHG microscope in 

reflection mode on normal and periodically poled KTP. This clearly revealed the localization of 

potassium ions at the surface and creates space charge. This was compared with the BTO single 

crystals were no such space charge was evidenced. We thus conclude that the ionic mobility of 

potassium is the major factor behind the development of space charge in KTP confirming the results 

by piezoelectric measurements. We also demonstrated that domain walls can also act as an interface 

for the potassium ions to localize in PPKTP. From µ-SHG images other useful information such as 

width of the domains and domain walls can be obtained. Therefore this technique is a powerful to 

probe space charges as well domain characterization. 
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V. Synthesis, Structure determination and 

characterization of new phosphates  

V.1. Introduction: 
In the previous chapter we have established a clear link between the ionic conductivity and 

polarization of KTiOPO4. Furthermore some phosphates like LiCOPO4, LiNiPO4 have been found to 

show interesting multiferroic behaviour [1] [2] [3].  Motivated by this we chose to investigate 

Nasicon (Sodium (Na) Super (S) Ionic (I) Conductor (Con)) type phosphates since they can 

accommodate vast number of cations into their structure and also show interesting magnetic 

property. However no spontaneous polarization has been found in this type of phosphates yet. Our 

goal is to synthesize new phosphates of Nasicon type structure looking for ferroelectricity along with 

interesting magnetic property. 

To this aim we have decided to synthesize phosphates of formula BaFeTi(PO4)3 and BiFe2(PO4)3 

which is derived from well-known Nasicon type phosphate Na3Fe2(PO4)3. The reason for substitution 

of barium and bismuth in place of sodium is twofold. First, bismuth due to its lone pair (6S
2) electrons 

may induce ferroelectricity similar to BiFeO3. Second, ionic radius of barium is big compared to 

sodium therefore conductivity of barium substituted compound is anticipated to be much lower than 

NFP which otherwise may screen the polarization if there is any.  

The general formula of Nasicon composition can be written as AM1M2P3O12 where the site ‘A’ can be 

occupied by alkali ions (Li+, Na+, K+, Rb+ and Cs+), alkali earth ions (Mg2+, Ca2+, Sr2+ and Ba2+), Cu+, Ag+, 

Pb2+, Cd2+, Mn2+, CO2+, Ni2+, Zn2+, Al3+, Ln3+ (Ln = rare earth), Ge4+, Zr4+, Hf4+ or it can also be vacant. 

The M1 and M2 sites can be occupied by divalent cations (Zn2+, Cd2+, Ni2+, Mn2+, Co2+), trivalent 

cations(Fe3+, Sc3+, Ti3+, V3+, Cr3+, Al3+, In3+, Ga3+, Y3+, Lu3+), tetra valent cations (Ti4+, Zr4+, Hf4+, Sn4+,Si4+, 

Ge4+) and penta valent cations (V5+, Nb5+, Ta5+, Sb5+, As5+) [4]. This shows that Nasicon framework is 

highly flexible and can accommodate different cations in different atomic sites. The Nasicon 

structure was first described by Hagman et al for the phosphate NaZr2(PO4)3 (NZP) which has a 

trigonal symmetry belonging to the space group R3�c [5]. Alamo et al. have studied NZP structure in 

detail and proposed a model concerning the accommodation of different valence cation in to the 

structure [6]. According to them the skeleton is made up of PO4 tetrahedra and ZrO6 octahedra that 

share vertices so the bonds are strong and stable. These bonds while inserting a cation can bend and 

therefore the polyhedral shows small rotations without breaking the structure. When the phosphate 
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group rotates the chains along c-axis move closer and so the structure contracts in a direction and 

the zirconium octahedra rotate alternatively as shown in Fig V -1. Hong et al found that by 

substituting Si4+ for P5+ in NZP, the structure exhibits super ionic  conductivity [7]. They also showed 

that how structure can suffer a monoclinic distortion without breaking any bonds. For the present 

thesis however we are concerned only with Na3Fe2(PO4)3 since it is directly related to the phosphate 

of our interest. Understanding of its structure and property will make the understanding of 

BaFeTi(PO4)3 and BiFe2(PO4)3 easier.  

 

Figure V-1: (a) & (b) Rotation of PO4 tetrahedra and ZrO6 octahedra in NZP. This rotations lead to change in 
lattice parameters. Adapted from ref [6] 

Na3Fe2(PO4)3 (NFP) was first synthesized by Pintard –Scrépel et al as well as Delmas and coworkers 

[8] [9]. It has been shown by different methods that with increasing temperature there are two 

structural phase transition in NFP [10] [11]. The α phase corresponds to monoclinic distortion of the 

rhombohedral structure with space group C2/c and lattice parameters a = 15.13 Å, b = 8.72 Å, c = 

8.80 Å and β = 125.16° [12]  

 𝜶
𝟑𝟔𝟖 𝑲
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𝟒𝟏𝟖 𝑲
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The γ phase corresponds to hexagonal axes in rhombohedral symmetry with space group R3�c and 

lattice parameters a = 8.73 Å, c = 21.79 Å [10]. The monoclinic distortion in the α phase is due to the 

direct consequenc of PO4 tetrahedra distortions caused by regular but asymmetrical distribution of 

sodium ions on the sites surrounding  the tetrahedral.  

The distribution of ions and vacancies in the sodium sublattice has a long range order in the 

monoclinic phase. In fact the monoclinic phase can be described in the pseudo-hexagonal cell with 

lattice parameters a’ = 8.73 Å, c’ = 21.57 Å, β’ = 90.14°, γ’ = 120.07°. Fig V – 2 (a –b) shows the 

monoclinic and rhombohedral structure of NFP. The structure of NFP consists of the basic Fe2(PO4)3 

repeating unit called as ‘lantern’ which is made of three PO4 tetrahedra connected to two FeO6 
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octahedra. Each of these lanterns is connected to six other lanterns which generate a large interstitial 

space that accommodates sodium ions. The sodium ions sits in two distinct sites named Na1 and 

Na2. Na1 sits in an octahedral coordination forming infinite ribbons of O3FeO3 – Na1 – O3FeO3 

parallel to c-axis and connected by PO4 tetrahedra. The Na2 is situated between the ribbons and it is 

8 coordinated [13]. The occupation factor for Na1 and Na2 sites are 1 and 2/3 respectively.  

 

Figure V-2: (a) α monoclinic phase and (b) γ rhombohedral phase of Na3Fe2(PO4)3 along [0 0 1] direction. 
Adapted from reference [14] [12]. 

The partial occupation of Na2 site is the major factor determining the Na+ mobility [15]. The transfer 

of Na+ ions in the Na1 site to Na2 sites through the bottleneck is aided by the partial occupation at 

the Na2 site. At low temperatures distributions of Na+ ions is ordered which lead to low conductivity. 

As the temperature is increased the allotropic transformations lead to disorder in the structure and 

the conductivity increases [13]. The magnetic susceptibility measurements on NFP have been done 

by several researchers which show a para to antiferromagnetic transition at a Neel temperature (TN) 

of 47 K with a weak ferromagnetic moment due to spin canting [16] [17] [18] [19]. The magnetic 

structure obtained from the neutron diffraction on the monoclinic cell indicated that the spins lying 

on the ab plane at 29° from the ‘a’ axis direction with a magnetic moment of 2.9 µB [18] but the 

study by Greaves et al assuming rhombohedral symmetry indicates antiferromagnetic arrangement 

of Fe moments aligns at 42° to the hexagonal c-axis with the moment of 4.5 µB [19]. A recent study of 

NFP gave an effective moment of 5.95 µB [20] which is close to the already reported 5.84 µB in ref 

[17]. This value of effective magnetic moment agrees with the theoretical calculated value of 5.91 µB.  

In the following we will describe the synthesis, structural and physical properties characterization of 

BaFeTi(PO4)3 and BiFe2(PO4)3.  

V.2. Experimental: 

(b) 
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V.2.1. Synthesis of BaFeTi(PO4)3 and BiFe2(PO4)3: 
Solid state reaction was adopted to perform synthesis of the desired phosphate. Stoichiometric 

ratio of BaCO3 (Cerac, 99.9 %), TiO2 (Cerac, 99.9 %), Fe2O3 and (NH4)2HPO4 (Sigma Aldrich, > 99.0%) 

were taken and mixed thoroughly in the agate mortar for BaFeTi(PO4)3 (BFTP).  Fe2O3 was prepared 

by heating iron nitrate at 450°C for 5 hrs to remove nitrogen and water. The XRD pattern of the 

resulting powder was identical to pure Fe2O3. A 2% excess of (NH4)2HPO4 was added to the starting 

mixture due to the unavoidable presence of water in (NH4)2HPO4. The mix was then put in a 3D 

planetary mill along with ethanol to form uniform slurry. The slurry was then placed in an oven and 

maintained at a temperature of 110°C for 12 hrs to remove ethanol and water. The resulting mixture 

was progressively heated under air to 400°C, 600°C and 1000°C for 15 hrs with intermediate grinding.  

The synthesis conditions were same as the Nasicon Na3Fe2(PO4)3 [21]. The reaction mechanism is 

given in the following 

 𝐁𝐚𝐂𝐎𝟑 + �𝟏
𝟐
� 𝐅𝐞𝟐𝐎𝟑 +  𝐓𝐢𝐎𝟐 +  𝟑(𝐍𝐇𝟒)𝟐𝐇𝐏𝐎𝟒  →  𝐁𝐚𝐅𝐞𝐓𝐢(𝐏𝐎𝟒)𝟑 +  𝐂𝐎𝟐 ⇑ +𝟔𝐍𝐇𝟑 ⇑ + �𝟗

𝟐
�𝐇𝟐𝐎 ⇑  

 

The first two steps ensure the removal of water, ammonium and carbon dioxide and the phase forms 

at 1000°C. The final powder is white in color. It was then pelletized and then fired again at 1050°C for 

sintering. The sintered pellet was slightly pale due to oxidation. These sintered pellets were used for 

dielectric measurements. 

For BiFe2(PO4)3 (BiFP) stoichiometric ratio of Bi2O3 (Cerac, 99.999%), Fe2O3 and (NH4)2HPO4 (Sigma 

Aldrich, >99.0%) were taken. The mixing procedure same as that of BFTP was followed and then the 

resulting mixture was progressively heated under air to 400°C, 600°C and 975°C for 15 hrs with 

intermediate grinding. The reaction which takes place during the heat treatment is shown below.  

 (
𝟏
𝟐

)𝐁𝐢𝟐𝐎𝟑 +  𝐅𝐞𝟐𝐎𝟑 +  𝟑(𝐍𝐇𝟒)
𝟐
𝐇𝐏𝐎𝟒  →  𝐁𝐢𝐅𝐞𝟐(𝐏𝐎𝟒)

𝟑
+ 𝟔𝐍𝐇𝟑 ⇑ +(

𝟗
𝟐

)𝐇𝟐𝐎 ⇑ 

 

For all the temperature steps the heating rate was 2°C min-1. After the final heat treatment the 

sample was quenched in air to room temperature. The final powder was pale white in color. It was 

then pelletized by uniaxial pressing and then fired at 1000°C for sintering. The sintered pellet was red 

in color.  

V.2.2. X-ray powder diffraction measurements: 
X-ray powder diffraction patterns were measured with a Philips Xpert diffractometer using 

Bragg-Brentano geometry with CuKα1 and CuKα1-α2 radiations. The X-ray data were collected in the 

2θ range from 10° to 120° with a step of 0.02°. The X-ray diffraction data were refined by a Le Bail 
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Profile analysis [22] using the FULLPROF program package [23]. The background was estimated by a 

Legendre polynom and the peak shapes were described by a Pseudo-Voigt function varying five 

profiles coefficients. For Rietveld refinement, X-ray powder diffraction patterns were measured with 

PANalitycalX'pert MPD Bragg-Brentano θ-θ geometry diffractometer equipped with a germanium 

monochromator which ensures a perfect monochromatic radiation and a spinner over an angular 

range of 2θ = 10-130°. The generated Cu Kα radiation had a wavelength of λ = 0.15418 nm. 

V.2.3. Physical property measurements: 
The sintered pellets were gold sputtered to make electrodes and thin silver wires were glued to 

the electrodes with the help of silver paste to make electrical contacts. The sample was put in the 

sample holder of Physical Property Measurement System (PPMS) Quantum Design which was then 

connected to the Wayne Kerr 6500B impedance/gain phase analyzer operating in the range of 100 Hz 

to 10 MHz for frequency dependent measurement. PPMS can regulate temperature from 2 K to 380 

K and magnetic field upto 90 kOe or 9 Tesla. Magnetic measurements on the samples were done 

using Magnetic Property Measurement System (MPMS) Quantum Design. This instrument can reach 

upto 50 kOe (or 5 Tesla) in magnetic field and temperature in the range of 1.8 K to 400 K. The same 

set up can be used to perform hysteresis and ac magnetic measurements as well. Heat capacity 

measurements were performed by a relaxation method with the PPMS and using two tau model 

analysis. Data were taken in the temperature range 2 – 90 K. For these measurements samples were 

a plate obtained from compressing the powder samples.  

V.3. Results and discussion: 

V.3.1. Crystal structure determination of BaFeTi(PO4)3 using powder 

diffraction: 
The first step in determining the crystal structure of a new phase is to identify space group and 

for that we used TREOR software which gave us a solution without any extinction conditions on hkl 

indices. The profile matching was performed with this space group. Since the suggested space group 

is very general without any reflection conditions all the peaks could be indexed. Therefore it is 

necessary to check for other space groups by studying the observed peaks and the extinction 

conditions. Careful examination of the hkl indices shows that the Bravais lattice is rhombohedral. It is 

also noted that the conditions on h-h0l; l=2n. Then the possible space group is R3�c which is the usual 

space group for NASICON structure. The compound BaFeTi(PO4)3 was first synthesized by Masse in 

1972 and indexed the XRD pattern in the rhombohedral space group R3�c [3]. He gave the XRD 

pattern only from 0 - 58° 2θ. Figure V-3 gives the profile matching of the XRD pattern with the space 
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group R3�c with initial lattice parameter taken from [3]. Most of the peaks match the pattern given by 

Masse but there are two additional peaks observed at 19.5° and 22.7° in the 2θ region which does 

not match with the pattern given by Masse. But these peaks were profile matched within the same 

space group (see inset to figure V-3). 

 

Figure V-3: Experimental XRD pattern of BaFeTi(PO4)3. For the sake of clarity only data until 80° 2θ are shown 
here. The observed, calculated (profile matching), difference profiles and Bragg positions as red, black, blue 
and green lines respectively. The inset focuses on two additional peaks observed at 19.5° and 22.7° 2θ region 
to highlight the indexation and profile matching with space group 𝐑𝟑�𝐜.  

The fact that these peaks were not observed earlier may be due to the low resolution of X-ray 

diffraction instrument. In addition no impurities could be found for those peaks therefore we 

concluded that those peaks belong to the compound under investigation. At 39.3° 2θ region there is 

a small peak which could not be indexed by the space group R3�c (see figure V- 4 (a)). No impurities 

correspond to this peak. Furthermore we investigated the chemical composition of the compound 

using Electron Probe Micro Analyzer (EPMA) coupled with Wavelength Dispersive spectroscopy and 

Scanning Electron Microscopy (SEM). The result on the qualitative and quantitative analysis of the 

sample is given in figure V -5. The overall cation composition determined by EPMA was Ba 0.83, Fe 

0.87(5), Ti 0.85(6) and P 3.00(1); note that oxygen is not determined accurately by this method and 

was assumed on the basis of cation stoichiometry. The results indicate off stoichiometry in the 
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compound but there is no sign of any impurity phase in the sample. This suggests that the actual 

space group might be different from R3�c. In fact this peak can be indexed with the same unit cell 

parameters but without the condition h-h0l; l=2n. Note that the indexation of this peak is (3 0 3) 

which satisfies the general reflection condition of rhombohedral symmetry. Therefore the possible 

space group is R3�m but the exact determination of the space group might need high intensity 

sources like synchrotron or neutron. Nevertheless for the present purpose the space group R3�c is 

enough to describe the average structure. Hence for Rietveld refinement on BFTP only R3�c was 

considered and the results will be presented below.  

 

Figure V-4: Experimentally observed (red circles) and calculated profile (black lines) of XRD pattern on 
BaFeTi(PO4)3, (a) profile matching with 𝐑𝟑�𝐜 space group, (b) profile matching with general rhombohedral 
symmetry. Notice the peak at 39.3° 2θ in both the figures indicated by (*). This peak is not taken into account 
by 𝐑𝟑�𝐜 space group.  

   

  

 
 
Figure V-5:  EPMA-WDS cartography of 
BaFeTi(Po4)3 : (a) Ba element, (b) Fe 
element, (c) Ti element, (d) P element and 
(e) back scattered image. No evidence of 
secondary or impurity phase is visible in 
these images. 
 

(a) (b) (c) 

(d) (e) 
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The atomic coordinates of Ba0.5FeNb(PO4)3 in space group R3�c were used as starting model for 

Rietveld refinement [25]. Barium was introduced statistically with full occupancy whereas Iron and 

Titanium occupy Fe and Nb position with a total occupancy factor of 1. The crystallographic data, 

profile and structure refinement parameters obtained by Rietveld refinement using FullProf software 

is given in Table V-1 and the list of fractional coordinates is given in Table V-2.  

Table V-1: Crystallographic data, profile and structure refinement parameters for BaFeTi(Po4)3: 

Formula BaFeTi(PO4)3 Formula BaFeTi(PO4)3 

Temperature 

Radiation 

Data collection range 

2θ(°) 

2θ Step 

Scan speed 

Analytical function for 

profile shape 

Space group 

Lattice Parameters 

a (Å) 

c (Å) 

Z 

Volume/Z  (Å 3) 

Density  (g/cm3) 

 

Room temperature 

CuKα (λ = 0.154056 nm) 

 

10 – 130° 

0.008 

0.00066°/sec 

Pseudo Voigt (PV) 

 

R3�c  

 

8.2905(3) 

23.4419(1) 

6 

232.558(1) 

3.79  

 

Background noise 

Zero 

Profile Functions 

U 

V 

W 

Profile Parameters 

η 

Asymmetry  

P1 

P2 

Reliability factors 

RP 

RWp 

RB 

χ2 

 

0.0025(1) 

 

0.05995(7) 

-0.02026(7) 

0.00539(4) 

 

0.627(4) 

 

0.043(1) 

0.011(1) 

 

5.28% 

6.88% 

4.50% 

2.01 

 

The occupation of all the elements was kept constant in order to improve the refinement. The 

refinement converged rapidly to a satisfactory agreement factors as it is evident from the table V-1. 

The isotropic temperature factor of barium is unusually high (Table V-2) and the same was observed 

in Ba0.5FeNb(PO4)3 [25]. This might be due to the presence of disorder at the barium site or the true 

space group of the structure is different from R3�c. It is necessary to have single crystal to confirm 

disorder in the structure. It is also interesting to note that the occupation factor of Ti is slightly higher 

than Fe leading to an off stoichiometric composition. 
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Table V-2: Atomic coordinates of BaFeTi(PO4)3 

Atoms Wyck. Pos x y z Beq (Å 2) Occ 
Ba 6b 0 0 0 2.075(5) 1.020(2) 

Fe 12c 0 0 0.1520(2) 0.040(1) 0.47(2) 

Ti 12c 0 0 0.1520(2) 0.034(1) 0.56(3) 

P 18e 0.2852(1) 0 0.25 0.636(6) 0.5 

O1 36f 0.1561(4) 0.9438(4) 0.1976(12) 1.567(101) 1 

O2 36f 0.1850(3) 0.1609(3) 0.0974(12) 2.815(103) 1 
 

The overall cation composition obtained by Rietveld refinement is Ba 1.020, Fe 0.93, and Ti 1.12. The 

composition of phosphorous and oxygen cannot be determined by the Rietveld refinement using 

routine X-ray techniques 

Table V-3: Selected Interatomic distances in BaFeTi(PO4)3 
 

Cation Anion Distance (Å) 

Ba O2 x 6 2.702(2) 

Fe(Ti) O1 x 3 1.899(3) 

 
O2 x 3 1.925(1) 

P O1 x 2 1.548(1) 

 
O2 x 2 1.578(1) 

Cation Cation Distance (Å) 

Ba Fe(Ti) 3.563(4) 

 
P 3.565(1) 

Fe(Ti) P 3.298(1) 
 

The average structure can be described in the space group R3�c using 5 independent atomic positions 

of the NASICON structure The structure of BaFeTi(PO4)3 consists of three dimensional framework of 

PO4 tetrahedra and Fe(Ti)O6 octahedra sharing common corners(FigureV-6). The barium ions are 

surrounded by 6 oxygen and forms octahedra. This octahedra is elongated along c axis and shares a 

common face with Fe(Ti) octahedra. The presence of large barium ion is the main reason for high c 

value of the structure. The barium ion in a six fold coordination is rather unusual but was earlier 

found in similar phosphates Ba0.5FeNb(PO4)3, BaTi2(PO4)3 [25] [26] [6]. Furthermore the barium-

oxygen distance of 2.702 Å (see Table V-3) found in our refinement is close to 2.713 Å and 2.724 Å 

found in Ba0.5FeNb(PO4)3 and BaTi2(PO4)3  [25] [26]. From table V-3 it can be said that the local 

symmetries around Fe(Ti) and P are 3 and 2 respectively with Fe(Ti)-O and P-O bond lengths 

characteristics of Fe3+ and P5+ in octahedral and tetrahedral coordination and they are close to the 

similar phosphates found in the literature [25] [27]. 



150 
 

 

 

                
Figure V-6: (a) Structure of BaFeTi(PO4)3 evidencing the rhombohedral unit cell, (b) Representative structure 
along [1 1 0] direction. Barium octahedra share faces with Fe(Ti) octahedra. Along c axis there are  
 

V.3.2. Crystal structure determination of BiFe2(PO4)3: 
Figure V – 7(a) & (b) gives profile matching of two different powder X-ray pattern obtained on 

BiFe2(PO4)3.(BiFP) They are named pattern 1 and pattern 2 respectively. The space group and lattice 

parameters used for profile matching will be discussed later. The chemical composition of the 

pattern 1 sample after sintering was investigated using EPMA coupled with WDS and they did not 

show any impurities in the sample. The results are shown in figure V – 8 and the overall cation 

stoichiometry determined by EPMA method is Bi 0.96(3), Fe 1.96(5) and P 3. The standard peak 

search using TREOR suggests a hexagonal symmetry with unit cell parameters a = 14.2882 Å, c = 

7.4101 Å. But pattern 2 displays three additional peaks at 26.4°, 29.3° and 36.6° 2θ region compared 

to pattern 1. Almost all the time pattern 2 was observed but sometimes pattern 1 was also observed 

under the same synthesis conditions as pattern 2. These three additional peaks are shown in the 

inset marked by stars in fig V – 7(b) and can be clearly distinguished by comparing with pattern 1 in 

inset to fig V – 7(a). No impurities or parasitic phases are found to correspond to those 3 peaks. As it 

will be shown later in the structure determination, these three peaks can be indexed by doubling the 

‘a’ parameter. We would like to highlight that the current structure is new since compounds with 

similar global composition have parameters different from BiFe2(PO4)3 . 

(a) (b) 

 

 



151 
 

  

 

Figure V-7: The observed (red circles) and calculated (black lines) pattern of Powder X – ray diffraction in 
BiFe2(PO4)3; (a) pattern 1, (b) pattern 2. The inset to (b) shows 3 additional peaks (marked by *) observed in 
pattern 2 (black lines) in comparison with pattern 1. (red circles).  
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Figure V-8:  EPMA-WDS cartography of BiFe2(Po4)3: (a) Bi element, (b) Fe 
element, (c) P element and (d) O element. No evidence of secondary or 
impurity phase is visible in these images. 
 

 

 

 

V.3.2.1. Single crystal growth and unit cell parameters: 

V.3.2.1.1. Condition of single crystal growth: 

The single crystals of BiFe2(PO4)3 were grown by slowly cooling the furnace to ensure the growth 

of big crystals. First the stoichiometric composition of BiFP was synthesized in the form of powder. 

The XRD on the obtained powder did not show any impurity. This powder was then placed in a 

platinum crucible and heated to complete melting at 1125°C under air for 6 h at a rate of 2° C/min. 

Then the melt was slowly cooled to 1000°C at a rate of 1.8° C/hr. The sample was then cooled to 

room temperature in 24 hrs. The crystals grown were mostly less than millimeter size and were in 

the shape of needles. Figure V – 9 shows the image of the grown needle. The structural 

characterization of the crystals was done in collaboration with J. Darriet and they are described in the 

following section. 

(a) (b) (c) 

(d) 
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Figure V-9: Single Crystal of BiFe2(PO4)3 in the form of needle. 

V.3.2.1.2. Unit cell parameters: 

Transparent crystals in the form of thin needles were extracted from solidified material and 

these single crystals of BiFe2(PO4)3 were glued on a glass fiber and mounted on a Bruker Enraf – 

Nonius Kappa CCD four circle diffractometer using MoKα radiation (λ= 0.7101 Å) with graphite 

monochromator.  

Several single crystals were tested and their quality assessed on the size and sharpness of diffraction 

spots. Using the Jana2006 version the search of the unit cell confirm the hexagonal symmetry with 

doubling of the a-parameter (a = 28.4000 Å, c = 7.4005 Å). The reconstructed reciprocal (hk0), (h0l) 

and (hk1) planes clearly show that the strongest peaks can be indexed using the sub cell with a 

=b=14.2373(1) Å, c =7.4005(2) Å (Fig V -10). It is also noticed that the intensity of the additional spots 

change from crystal to crystal. As it is shown in the figure V – 10 (d) diffusion streaks are observed 

indicating some disordered in the structure. This observation will be checked for all the studied single 

crystals. Therefore as a first step we solve the structure using the sub cell. 

  

a* 

b* 

(a) (b) 

1 mm 
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Figure V-10: Reconstructed reciprocal space images of BiFe2(PO4)3 (a) (h k 0) plane, (b) (h 0 l) plane, (c) (h k 1) 
plane and (d) diffusion streaks. In image (a) only even number planes were observed whereas in image (b) & 
(c) odd number (hkl) planes marked by * were also observed. Observation of diffusion streaks in (d) indicates 
disorder in the structure.  
 

V.3.2.2. Crystal structure of the sub cell (a=b= 14.237 Å, c = 7.4005 Å ): 

Data were corrected for Lorentz and polarization effects with the Eval–CCD package [28]. The 

structure refinement was done using Jana2006 program package. The P63/m or P63 were found to be 

the possible space group. Gaussian correction, based on the shape of the crystal determined via the 

video camera of the Kappa CCD, was applied. The crystal data for BiFe2(PO4)3 are given in Table V-4.  

The structure was resolved using the centrosymmetric space group P63/m.The atomic positions of 

the bismuth atoms were determined using the superflip algorithm included in Jana2006 program. 

The bismuth atoms occupy three independent positions, one 4e position (0 0 z with z ≈0.04) and two 

4f positions (1/3 2/3 z with z ≈±0.05).These positions are half occupied in order to respect the Bi 

composition of the phase (Z = 6). The atomic positions of the other atoms were determined by 

successive difference Fourier synthesis. All these positions are fully occupied.With isotropic atomic 

displacement parameter (ADP), the residual factors converged to R(F) ≈ 0.12 and wR(F2) ≈ 0.24 for 46 

refined parameters. The use of anisotropic displacement parameter for all positions lowered them to 

R(F)=0.0686 and wR(F2)= 0.1351 for 101 refined parameters. However the difference Fourier 

synthesis shows clearly electron residue around the Bi1 position (≈ 5e-/ Å 3) with x ≈ -0.01, y ≈ 0.01 

and z ≈ 0.04.  

 

 

 

(c) (d) 
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Table V-4: Crystallographic data and structure refinement for BiFe2(PO4)3: 

Formula BiFe2(PO4)3 

Crystal color  transparent 

Crystal size (mm) needle 0.15x0.036x0.036 

M(gmol-1) 605.6 

Crystal system hexagonal 

Space group P63/m 

Parameters a = 14.2373 (0.007)Ǻ 
 c = 7.4005(0.0004)Ǻ 

V(Ǻ)3 1299.11(9) 

Z 6 

Density calc. (gcm-3) 4.64 

F(000) 1656 

Temperature (K) 293 

Diffractometer Enraf-nonius 

Monochromator Oriented graphite 

Radiation MoKα (λ = 0.71069 Å) 

Scan mode CCD scan 

h k l range ±25, ±25, ±13 

θminθmax 5°, 40° 

Linear absorption coeff.(mm-1) 25.587 

Absorption correction Gaussian 

Tmin/Tmax 0.180/0.616 

Rint 0.186 

No. of reflections 24642 

No. of independent reflections  2868 

Reflections used [I> 3s(I)] 1678 

Refinement F2 

No. of refined parameters 107 

R factors R(F)/wR(F2) 0.0600/0.1293 

g.o.f. 1.73 

Weighting scheme w = 1/(s2(I)+0.0009I2) 

Diff. Fourier residues (e-Å-3) -1.87, + 2.09 
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Table V-5: Atomic position and equivalent isotropic displacement parameters for BiFe2(PO4)3 (S.G P63/m) 

Atom Wyckoff 
Position Occupancy x/a y/b z/c U [Å2] 

Bi1 12i 1/6 0.984(2) -0.001(3) 0.0376(2) 0.012(2) 

Bi2 4f 1/2 1/3 2/3 -0.0531(2) 0.0143(2) 

Bi3 4fi 1/2 1/3 2/3 0.0509(2) 0.0140(2) 

Fe1 12i 1 0.31503(7) 0.96841(7) 0.04818(12) 0.0081(3) 

P1 6h 1 0.5619(2) 0.7914(2) 3/4 0.0061(6) 

P2 6h 1 0.4887(2) 0.9076(2) 1/4 0.0054(6) 

P3 6h 1 0.0790(2) 0.8498(2) 1/4 0.0061(6) 

O1 12i 1 0.5667(4) 0.7348(4) 0.9202(6) 0.013(2) 

O2 6h 1 0.1994(4) 0.8819(4) 1/4 0.006(2) 

O3 12i 1 0.5548(4) 0.9489(4) 0.4205(6) 0.016(2) 

O4 6h 1 0.4483(5) 0.7818(5) 1/4 0.013(2) 

O5 12i 1 0.0207(4) 0.7879(4) 0.4200(6) 0.017(2) 

O6 6h 1 0.4344(5) 0.7831(5) 1/4 0.015(2) 

O7 6h 1 0.3977(5) 0.9364(5) 1/4 0.008(2) 

O8 6h 1 0.3500(4) 0.0874(4 1/4 0.007(2) 

O9 6h 1 0.0432(5) 0.1212(5) 1/4 0.023(3) 
 

Table V-6: Anisotropic displacement parameter (Å2) for BiFe2(PO4)3 

Atom U11 U22 U33 U12 U13 U23 

Bi1 0.01839(1) 0.01839(1) 0.00664(7) 0.00919(5) 0 0 

Bi2 0.02006(0) 0.02006(0) 0.00544(8) 0.01003(0) 0 0 

Bi3 0.04931(4) 0.04931(4) 0.00401(9) 0.02465(7) 0.00000 0.00000 

Fe1 0.00977(1) 0.00946(0) 0.00506(2) 0.00416(4) 0.00024(7) -0.00028(9) 

P1 0.00638(8) 0.00544(9) 0.00637(0) 0.00279(4) 0 0 

P2 0.00686(7) 0.00439(0) 0.00609(3) 0.00292(2) 0 0 

P3 0.00550(9) 0.00738(3) 0.00889(1) 0.00418(9) 0 0 

O1 0.01353(7) 0.01611(2) 0.00920(9) 0.00652(9) 0.00413(6) 0.00759(9) 

O2 0.00729(4) 0.00900(2) 0.00549(2) 0.00503(0) 0 0 

O3 0.013(2) 0.01550(8) 0.02246(7) 0.01164(7) 0.01001(5) 0.00783(1) 

O4 0.01007(3) 0.01193(2) 0.00781(6) 0.01009(0) 0 0 

O5 0.01318(6) 0.02841(8) 0.00969(9) 0.00851(5) -0.00366(0) -0.00768(1) 

O6 0.00506(4) 0.01468(2) 0.02051(1) 0.00550(9) 0 0 

O7 0.00902(8) 0.00865(3) 0.00521(2) 0.00347(3) 0 0 

O8 0.01055(9) 0.01079(5) 0.02391(7) 0.00556(1) 0 0 

O9 0.01390(0) 0.01040(2) 0.05199(2) 0.01043(7) 0 0 
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Table V-7: Interatomic distances (Å) and bond valence for BiFe2(PO4)3 

Cation  Anion Distance [Å] 
BVS 
(a.u) 

Bi1 O9 2.18(3)   

  O9 2.067(10)   

  O9 2.33(3) 3.15(8) 

  O9 2.64(3)   

  O9 2.723(9)   

  O9 2.50(2)   

        

Bi2 O4 x 3 2.192(7) 2.83(2) 

  O6 x 3 2.732(5)   

        

Bi3 O6 x 3 2.146(7) 3.10(2) 

  O4 x 3 2.764(5)   

        

Fe O1 1.949(7)   

  O2 2.105(3)   

  O3 1.879(5)   

  O5 1.923(8) 3.14(2) 

  O7 2.088(6)   

  O8 2.122(4)   

        

        

P1 O1 x 2 1.515(5)   

  O4 1.554(8) 5.04(4) 

  O8 1.545(5)   

        

P2 O3 x 2 1.506(5)   

  O6 1.539(7) 5.15(4) 

  O7 1.542(9)   

        

        

P3 O5 x 2 1.522(4)   

  O2 1.537(6) 5.09(4) 

  O9 1.531(9)   

        
 

Using this new 12i position for Bi1, the R factors decrease to R(F)≈ 0.0600 and wR(F2)≈ 0.1293 for 107 

refined parameters and 1678 observed reflections with non –significant difference Fourier residues 

(see Table V -4). The resulting atomic positions and anisotropic displacement parameters are given in 

Tables V – 5 and V – 6. Tables V – 7 gives the interatomic distances and bond valence sum of BiFP. 
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The structure of BiFe2(PO4)3 is shown in figure V – 11 (a & b). The Bi1 atom is close to the center of 

BiO6 octahedron and these octahedra share faces forming chains parallel to the c – axis (Figure V – 

11 (b). Within in the Bi1O6 octahedron there is three Bi-O distances close to 2.2 Å and three longer 

distances ≈ 2.7 Å (Table V – 7). Therefore, the coordination number of Bi1 is CN = 3 which is 

characteristic of Bi3+ where the lone pair 6s2 is active. Considering the lone pair, the environment of 

Bi1 is a tetrahedron constituted by three oxygen plus the lone pair along the c – axis. The 

environment of Bi2 and Bi3 is BiO6 trigonal prism where the bismuth is delocalized from the center 

of the prism along the c – axis. This trigonal prism share faces and form chains parallel to the c – axis 

(figure V – 11(b)).The Bi2 and Bi3 atoms are in fact bonded to three oxygen atoms with short 

distance (Bi-O ≈ 2.2 Å) and to other three oxygen atoms with long distance (Bi-O ≈ 2.7 Å) like in the 

case of Bi1 position (Table V – 7).One can also notice the activity of the 6s2 lone pair for Bi2 and Bi3 

atoms. The stereoactivity of the 6s2 lone pair is usual in bismuth compounds like Bi2O3, Bi2Sr2CaCu2O8 

with nearest Bi – O distances of 2.14 to 2.29 Å [29] [30]. This value is closer to the observed value of 

2.2 Å for BiFe2(PO4)3 structure. 

 

 
Figure V-11: Projection of hexagonal unit cell of BiFe2(PO4)3 ab plane, note two different environment of 
bismuth in octahedra (extreme right) and trigonal prism and the iron (blue) are located in the octahedral holes. 
(b) View of the structure along c - axis. The face sharing octahedra and prism of bismuth form columns along c 
axis. The face sharing octahedra of iron also forms columns along c axis. After every two octahedra there is a 
void space  
 

The framework of the structure of BiFP is very similar to that of nasicon (compare figure V – 4(a) and 

fig V -11 (a)). The similarity is obvious regarding the connection of the chains by the PO4 tetrahedra. 

The difference is only on the nature of the chains formed by Ba-Fe-Ti in BFTP and Bi-Fe in BiFP (figure 

V -4(b) and figure V – 11 (b)). It results in a relationship between the lattice parameters of these two 

phases. 

 
(a) (b) 
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𝑎1 =  
𝑎2
√3

 

𝑐1 =  𝑐2 ∗ 3 

where a1, c1 and a2, c2 are lattice parameters of BaFeTi(PO4)3 and BiFe2(PO4)3 respectively. One can 

expect that the precise determination of structure considering the doubling of a and b parameter will 

imply a perfect ordering of the bismuth in the [BiO6] chains. Therefore it is necessary to select a 

single crystal where many additional spots are obvious and well defined. This work is currently in 

progress. 

V.3.3. Magnetic Property of BaFeTi(PO4)3 and BiFe(PO4)3: 

V.3.3.1. Temperature dependence of magnetic susceptibility in BaFeTi(PO4)3: 

The reciprocal magnetic susceptibility (1/χ) as a function of temperature between 5 and 300 K 

with a step of 5K is shown in figure V -12. The reciprocal susceptibility show a deviation of the Curie – 

Weiss law indicating a magnetic order phenomenon. However the chosen temperature step (5 K) is 

not enough to clearly identify the nature of transition. The linear behavior of the curve above 60 K 

can be fitted by the modified Curie-Weiss law.  

 𝜒(𝑇) = 𝜒0 +
𝐶

𝑇 − 𝜃𝑊
 

Eq V-1 

Where χ0 is the temperature independent susceptibility, C is the Curie constant and θ is the 

paramagnetic Curie – Weiss temperature. The fit for χ(T) curve using Eq (V – 1) over the temperature 

range above 60 K yields θW = -32 K±2, χ0 = 1.2 X 10-4 emu/(mol –Oe) and C = 4.39±0.4 K emu/(mol 

Fe3+).  
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Figure V-12: Reciprocal susceptibility as a function of temperature for BaFeTi(PO4)3 at a field of 1000 Oe. 
Between 10 to 15 K a step in the reciprocal susceptibility is seen indicating magnetic order. (b) Shows ZFC and 
FC mode on the same sample. A very sharp transition is seen at 13 K in ZFC mode whereas FC mode shows 
bifurcation.  

The effective magnetic moment per mol Fe (µeff) is calculated by using the formula  

 𝐶 = 𝑁𝜇𝑒𝑓𝑓2 /3𝑘𝐵 Eq V-2 

where N is the number density of Fe3+ ions pr mol and kB is the Boltzmann constant. We obtain 

µeff=5.92(2) µB where µB is the Bohr magneton which is close to the value obtained on similar 

phosphates like Na3Fe2(PO4)3 and Li3Fe2(PO4)3 [20]. This indicates that the valency of titanium and 

iron are Ti4+ and Fe3+ and the magnetic property of BFTP is only due to Fe3+ ions. 

To study the nature of magnetic transition in detail the magnetic susceptibility was measured 

between 5 to 40 K with a step of 0.25 K. The figure V – 12 (b) show magnetic susceptibility versus 

temperature under zero field cooled (ZFC) and field cooled (FC) mode. For the zero field cooled case, 

the sample was cooled from 40 to 5 K and then a magnetic field of H = 100 Oe was applied and 

magnetic measurements were done after ensuring stabilization at each temperature. Upon reaching 

40 K, the data were similarly collected with decreasing temperature (FC mode) keeping the same 

applied field.  

Figure V-13: Magnetization as a function of applied field for BFTP at 5, 13 and 40 K. At 5 and 13 K the curve 
deviates from linearity and a clear opening is seen at 5 K. Inset gives the zoom of the 5 K curve showing the 
opening.(Lines are drawn to guide the eyes) 

The susceptibility exhibits a very sharp peak at TS=13 K under ZFC with FWHM of about 1.3 K whereas 

in FC mode a clear bifurcation from ZFC behavior is seen exactly at the transition temperature 
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showing irreversibility. The behavior under ZFC mode is antiferromagnetic but under FC mode it is 

more like ferromagnetic or ferrimagnetic. These two set of data coincide above 13 K. It is also 

possible that the irreversibility in the ZFC and FC may be due to spin glass behavior.  

The magnetization versus applied field curve for BFTP is shown in figure V – 13. Above the TS at 40 K 

M versus H curve is linear exhibiting paramagnetic behavior. At TS deviation from linearity is seen and 

at 5 K a clear opening is visible in the curve. This opening is clearly seen in the inset and gives a 

coercive field of HC = 400 Oe. Therefore BFTP shows complex magnetic behavior related to canted 

antiferromagnetic, clusters or spin glass behavior. The complexity in the magnetic behavior can be 

easily understood by studying the structure in detail. From figure V – 6(a & b) it can be seen that 

every metal octahedra is linked to each other via PO4 tetrahedra.  Furthermore the octahedra form 

chains along c- axis. This leads to complex exchange path mediated by the oxygens in PO4 tetrahedra. 

Therefore as a first step we probed the spin glass behavior by frequency dependent susceptibility 

measurements and they are described in the following section. 

V.3.3.2. Frequency dependence of susceptibility: 

To examine the presence of spin glass behaviour temperature dependent ac susceptibility 

measurements were carried out between 5 and 20 K as frequencies from 0.33 to 1 KHz. The applied 

ac driving field was 2 Oe and the external dc field was 5 Oe. 

  

Figure V-14: The real part of ac susceptibility as a function of temperature between 5 and 20 K at several 
frequencies from 0.33 Hz to 1.12 KHz. Inset focuses on the zoom of the same plot. The peak temperature is not 
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affected by the frequencies but the magnitude of ac susceptibility shows strong frequency dependence. (Lines 
are drawn to guide the eyes) 

Results in figure V – 14 show temperature dependence of real part of the ac susceptibility (χ’) under 

ZFC mode for several frequencies and a sharp peak is seen at TS=13 K similar to dc magnetic 

measurement. It seems the peak temperature does not depend on the frequency of the ac field 

which is clearly shown in the inset. This clearly indicates the presence of long range 

antiferromagnetic order. However the magnitude of ac susceptibility is frequency dependent below 

TS, being higher at lowest frequency than at higher frequencies. The frequency dependence 

disappears above and below the peak temperature where all the curves merge. The same behaviour 

is observed on the imaginary part of ac susceptibility (not shown). 

V.3.3.3. Field dependence of susceptibility: 

The dc susceptibility was probed under different fields between 1000 to 5000 Oe to study the 

effect of applied field on the magnetic transition at 13 K. Figure V – 15 show the susceptibility as a 

function of temperature for different applied fields under ZFC condition. Both the peak temperature 

and the magnitude of the peak decrease with increase in field.  

 

Figure V-15: Temperature dependence of dc susceptibility under ZFC condition at different fields. Inset shows 
the dependence of peak temperature obtained from ZFC curves as a function of applied field. (Solid lines are 
guide to eyes) 

The sharp peak seen at low field becomes much broader and low in magnitude with high field. Above 

the peak temperature there is a sharp drop of susceptibility for all H and moreover all the curves 



163 
 

tend to merge below about 8.5 K (marked by the arrow) for all the values of H marked by the arrow. 

Inset to the figure V – 15 shows the field dependence of the peak temperature. It can be seen that 

there is sharp decrease in the peak temperature with field’s upto 2000 Oe, above this field the peak 

temperature does not change much as evident from the beginning of the plateau. 

Figure V – 16 gives the susceptibility as a function of temperature under field cooled (FC) and field 

cooled warming (FCW) condition. On comparing this figure with the previous one a strong 

irreversibility between ZFC and FC curves is visible. In the FC curve no peak is seen instead it rises 

monotonously below 13.5 K which is close to TS. Upon increase in the field the magnitude of the 

curve decreases furthermore between 4000 and 5000 Oe the decrease is much less indicating 

saturation. In addition thermal hysteresis is seen between FC and FCW curves. The curve opening 

decreases with increase in the field and totally merges at 5000 Oe. Above 13.5 K the curves for all H 

values merges 

 

Figure V-16: Susceptibility as a function of temperature under field cooled (FC) and field cooled warming (FCW) 
mode. Notice the monotonous increase of susceptibility below 13.5 K. There is also a thermal hysteresis 
between FC and FCW curves as seen from the opening between them.  

V.3.3.4. Nature of magnetic transition in BaFeTi(PO4)3: 

The strong irreversibility observed below TS between ZFC and FC is due to complex magnetic 

behavior as discussed above. Considering the results above it is apparent that there must be 

different short range and long range order. The peak in dc and ac susceptibility along with frequency 

independence indicates long range magnetic order. However the field dependence of dc 
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susceptibility shown in fig V – 15 is a signature of spin glass type behavior. It is also corroborated by 

the observation of a strong monotonous increase seen in fig V – 12(b) which is similar to spin glass 

LiMn2O4 [31]. This shows the presence of several competing exchange interactions in the structure 

and it may be due to complex exchange paths and the actual distribution of FeO6 and TiO6 

octahedra which is not known. Giot et al have demonstrated similar type of behaviour in 

Bi0.67Ca0.33MnO3 [32]. They found a very small frequency dependence of the real part of the 

susceptibility along with a weak depression of the peak with frequency. More importantly they found 

collapse of dissipation peak for moderate applied field. This is exactly the situation for BFTP however 

the collapse was found in dc susceptibility and also the susceptibility is frequency independent. The 

frequency dependence of the magnitude of susceptibility peak seen in BFTP was also found in 

LiMn2O4 and was interpreted as spin glass by Y-I. Jang [31]. These fact shows that there is a presence 

of magnetic order and magnetic disorder at the same temperature similar to the case of 

Bi0.67Ca0.33MnO3 [32]. To be able to comment more on the nature of transition further magnetic 

measurements along with neutron diffraction is needed.  

V.3.3.5. Temperature dependence of magnetic susceptibility in BiFe2(PO4)3: 

 

Figure V-17: Magnetization versus field at 5 K. The curve is mostly linear except for a small deviation around 2 

kOe.  

The variation of the magnetization versus the applied field at T = 5 K is given in Fig V – 17. The 

magnetization is almost linear with the applied field except a small deviation observed around H = 2 
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kOe (Fig V – 17). The magnetic susceptibility of a polycrystalline BiFP sample was measured in ZFC 

and FC mode with H = 100 Oe at temperatures from 300 K to 5 K. Figure V – 18 shows temperature 

dependence of reciprocal susceptibility χ-1 under ZFC and FC conditions. With decrease in 

temperature χ-1 decreases monotonically and at about 25 K shows a broad minimum indicating a 

possible magnetic order transition. The solid straight line indicates the fit to equation 1 and 

extrapolates to negative temperature. The parameters extracted from the fit gives Curie – Weiss 

temperature θW = - 54 K (2), χ0 = 1 X 10-4(emu/mol) and C = 4.42 ± 0.2 (emu K/ Fe3+). The effective 

magnetic moment deduced from equation 2 is 5.94(2) µB which is close to the theoretically expected 

spin only value of 5.91 µBper Fe3+.  

 

 

Figure V-18: Reciprocal susceptibility χ−1 as a function of temperature under ZFC and FC mode. The solid line 
indicates the fit using Curie – Weiss law. Inset (a) shows the derivative of susceptibility as a function of 
temperature with a peak at 22 K indicating TN. Inset (b) gives the χ as function of temperature under ZFC and 
FC conditions.  

The specific heat measurements at low temperatures between 2 K to 90 K show clearly a 

typical lamba peak characteristic of an ordering temperature. Therefore BiFP is antiferromagnetic 

with a Neel temperature TN = 22 K (figure V – 19). The Neel temperature is very close to the 

maximum of the susceptibility observed at T = 25 K. An exact determination of the Neel temperature 

from the susceptibility measurement can be done by plotting dχ/dT versus T (inset to figure V -18). 
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The maximum of the slope is observed at T = 22 K which corresponds exactly with the Neel 

temperature obtained by specific heat measurements. 

As it was shown before, the crystal structure of the BiFP shows clearly that the iron 

constitute isolate dimers with an intra Fe – Fe distance of 2.99 Å (fig V – 11(b)) which is longer than 

the facing sharing octahedra observed in Fe2O3 (2.896 Å) [33].  The inter – dimer Fe – Fe distance in 

BiFP along the c – axis is 4.41 Å and the inter-chain distance is 4.78 Å. Therefore, in first 

approximation one could expect that at high temperature the magnetic behaviour of BiFP should be 

antiferromagnetic from isolated dimers. This is characterized by a large maximum in the 

susceptibility, the temperature of which depends on the strength of exchange interactions. However 

the magnetic behaviour of BiFP is characteristics of three dimensional antiferromagnetic systems. No 

anomaly in the susceptibility is observed above the Neel temperature which indicates that the inter-

dimer exchange interaction along the chains and between the chains are significant compared to the 

intra-dimer exchange interaction. This is another example where the strength of the Fe – Fe 

exchange interactions is not only governed by the metal – metal distance but also by the orientation 

of the atomic orbitals in the super – superexchange interaction. 

 
Figure V-19: Low temperature data of specific heat for BiFe2(PO4)3 

 

V.3.4. Dielectric properties of BiFe2(PO4)3: 
The compound BaFeTi(PO4)3 could not be sintered into high density pellets therefore no 

dielectric property measurements were carried out on this compound. We will discuss only the 

dielectric property of BiFe2(PO4)3 from here on. To make high density pellets of BiFP, the sample 

powder was uniaxially pressed in to a circular disc pellet. The pressed pellet was then fired at 1050°C 
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for 15 hrs. After sintering, the pellet was red in color subsequent X – ray diffraction did not show any 

impurities and was similar to the powder X –ray pattern. The obtained density was 4.29 g cm-3 which 

is 93% of theoretical X – ray density.  Figure V – 20 (a) & (b) gives the capacitance and dielectric 

losses of BiFP sintered ceramic respectively as a function of temperature during heating and cooling 

at three different frequencies. It can be seen from the plots that there is no thermal hysteresis during 

heating and cooling cycles. The capacitance decreases monotonically from room temperature to 10 

K. With increase in frequency, capacitance decreases at high temperatures and at low temperatures 

this decrease is less pronounced. The dielectric constant deduced from equation 2 in chapter 2 is 

about 35 at room temperature. In the range from 100 to 200 K a broad shoulder is visible. It looks 

like this shoulder moves to higher frequency with increase in temperature. In general dielectric 

losses stay lower than 5% in all frequency range. A broad peak is observed in the range 100 – 200 K 

which corresponds to the shoulder observed in the capacitance. This broad peak shifts in frequency 

with increasing temperature which is a sign of relaxation process in the material. 

  
Figure V-20: Dielectric property of BiFe2(PO4)3. Temperature dependence of (a) capacitance, (b) dielectric losses 
at different frequencies during heating and cooling cycles. No particular anomaly is found in capacitance expect 
for a very broad shoulder in the range of 100 to 200 K. At the same temperature range dielectric losses display 
a broad peak. 
 

The activation energy determined by plotting log frequency as a function of inverse temperature of 

the peak maximum is about 0.13 eV (see figure V – 21). Below the broad peak about 130 K dielectric 

losses drops rapidly until the lowest temperature and it is much less than 1% at 10 K indicating that 

the material behaves as an insulator at low temperatures. Measurement under magnetic field of 90 

kOe did not show any effect of magnetic field on both capacitance and dielectric losses (not shown).  
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Figure V-21: Log frequency as a function of reciprocal temperature for BiFe2(PO4)3. The temperature and 
frequency are taken from the maximum in the dielectric losses. The solid line is the fit to Arrhenius law.  

The absence of ferroelectricity in BiFP can be explained on the basis of their structure. BiFP 

crystallizes in centrosymmetric space group P 63/m. In the structure bismuth sits in three 

independent positions, octahedra and two prisms. Bismuth in prism coordination is shifted along c – 

axis this gives rise to a dipole moment. This shift can be positive or negative with respect to c – axis 

however the distribution of this shift is not known at the moment. Nevertheless it could be possible 

to induce long range order by forcing the bismuth to shift in a cooperative manner by suitable 

substitution.  

V.4. Conclusion: 
New phosphates of formula BaFeTi(PO4)3 and BiFe2(PO4)3 have been successfully synthesized 

using solid state reaction. The lattice parameters, atomic coordinates, interatomic distances and 

occupancy factors have been determined for both phosphates using Rietveld refinement. BFTP 

crystallizes in approximate space group of R3�c and for the exact determination of space group 

requires single crystal. On the other hand single crystals of BiFP were grown successfully by slow 

cooling method which resulted in millimeter size needle shape crystals. The x – ray diffraction on 

these single crystals gave a space group of P63/m with hexagonal symmetry. Magnetic measurement 

of BFTP exhibits an antiferromagnetic type peak at 13 K in ZFC whereas FC curve shows strong 

irreversibility. Nature of magnetic transition is still ambiguous which calls for further detailed 

experiments whereas BiFP shows typical antiferromagentic type behavior below 22 K in both ZFC and 

FC which is taken as the transition temperature. Dielectric measurement of BiFP on ceramics did not 

show any ferroelectric type anomaly but they undergo relaxation and the origin of which is still not 



169 
 

clear. X –ray diffraction versus temperature in the range of occurrence of dielectric relaxation could 

be used to link this relaxation to the Bi dynamics. By making suitable substitution in BiFP it might be 

possible to induce long range order which may invoke ferroelectricity. To summarize these new 

phosphates holds some promise in the light of their interesting magnetic and dielectric properties. 
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VI. Magnetic field induced polar state at the 

antiferromagnetic transition in Co3O4: 

VI.1. Introduction: 
Geometrically frustrated magnets are gaining a lot of attention due to their display of interesting 

array of phenomenon like spin glass, spin liquids, spin ice and cooperative paramagnets to name a 

few [1] [2]. Apart from the above mentioned phenomenon many geometrically frustrated magnets 

have been found to show multiferroic behavior which has coexistence of more than one order 

parameter (ferroelectricity, ferromagnetic and ferroelasticity) in a single phase [3] [4]. Frustration is 

usually found in lattice with triangular or tetrahedral arrangement but not restricted to only these 

two. Typical lattice which display geometric frustration are delafossite, pyrochlore, kagome and 

spinels. Accordingly many delafossites like CuFeO2 [5], CuFe1-XAlXO2 [6], ACrO2 (A= Cu, Ag) and rocksalt 

structure ACrO2 (A=Li, Na) [7] show spin driven ferroelectricity and antiferroelectricity respectively 

due to the frustration in the triangular lattice. Recently many spinels like ACr2O4 (A=Fe, Co, Mn), 

CdCr2S4and CdV2O4 were shown to possess ferroelectricity in the magnetically ordered state [4], [9], 

[10]. Thus spinels are a good candidate for finding novel multiferroics in contrast to the earlier belief 

that spinels scarce display ferroelectricity [11]. However the ferroelectricity here is not an 

independent phenomenon (occurs concomitantly with magnetic ordering) therefore its strength is 

several orders smaller than the conventional ferroelectrics like BaTiO3 or PZT. Nevertheless the 

magnetoelectric coupling in spinels is very strong which is unlike BiFeO3 which show weak 

magnetoelectric effect since the ferroelectricity and magnetic order appears at different 

temperature. 

First we will see how geometric frustration can arise in a real crystalline material followed by the 

description for the specific case of spinels. Later on we will discuss the mechanism for the induction 

of polarization by the magnetic order. Magnetic frustration appears when a large fraction of 

magnetic sites in a lattice is subject to competing or contradictory constraints [12]. If the frustration 

is essentially due to the geometry or topology of the lattice then it is called geometric frustration 

[13]. This usually occurs in lattice based on triangles geometry [1]. Figure 1 gives some of the lattice 

arrangement which lead to geometric frustration. If the magnetic ions are arranged in a triangular 

manner in the lattice (fig 1 (a)) they order antiferromagentically due to the minimum in energy. If the 

first two spins align antiparallely then the third spin is frustrated because it has two possible 

orientations with the same energy. This type of frustration is also seen in tetrahedral arrangement of 
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magnetic ions (fig 1(b)). Here only two of the four equivalent nearest neighbour (n.n) interactions are 

satisfied leading to frustration. If only n.n interactions are considered in square planar plaquette (fig 

1(c)) then there is no frustration as all the spins are antiparallel to each other. In three dimensions 

corner and edge shared triangular and the corner and edge sharing tetrahedral lattices are typical 

examplesof frustrated lattices. The former is called Kagome lattice and the corner shared tetrahedra 

lattice occurs in pyrochlore and spinel structures.  

 

Figure VI-1: Frustrated geometries (a) triangular, (b) tetrahedral, (c) square planar. Adapted from ref [14]. 

From here on only the spinel compounds will be discussed: The ones which have the chemical 

formula AB2X4 (X = O, S, Se). The spinel oxide structure consists of two structural units, AO4 

tetrahedra and BO6octahedra as shown in fig VI -2(a). The A site ions form a diamond lattice which 

can be viewed as two interpenetrating face centred cubic (fcc) sublattices shifted by one quarter 

along the space diagonal which is shown in fig VI -2(b). The B site ions form three dimensional 

networks of corner sharing tetrahedra as shown in fig VI -2(c) and it is known as pyrochlore lattice. 

The base of these tetrahedral forms Kagome lattice (fig VI -2(d)). The antiferromagnetically coupled 

spins placed on the pyrochlore lattice give rise to very strong frustration because of the triangle 

based tetrahedral geometry. Furthermore diamond sublattice formed by A site ions can also give rise 

to appreciable frustration. This is because here the next nearest neighbour coupling becomes 

important because the magnetic coupling between A ions are mediated by complex exchange path 

including O-B-O links. Some examples of A site frustrated spinel compounds are MAl2O4 where A = 

CO, Fe, Mn [15] 

  

 
(a) (b) (c) 

(a) 
(b) 
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Figure VI-2: (a) Framework of spinel structure with AO4tetrehedra and BO6octahedra, (b) Diamond lattice as 
sublattice of A ions, (c) Pyrochlore lattice as B sublattice, (d) Kagome lattice as part of B sublattice when viewed 
in <111> direction. Adapted from reference [2]. 

Several types of spin arrangement can bring about induction of ferroelectricity and they are shown in 

fig VI – 3 (a-f) [16]. The collinear magnetic order (fig VI – 3(a)) observed in up-up-down-down spin 

arrangement along the atomically alternating A-B lattice can break inverse symmetry and induce 

polarization due to exchange striction. In non collinear magnetic order, polarization is induced 

following the spin current or inverse Dzyaloshinskii – Moriya (DM) model (fig VI – 3(b)) [17] [18]. 

 

Figure VI-3: Different spin arrangement which give rise to polarization (a) Collinear, (b) non collinear, (c) proper 
screw type (d) cycloidal, (e) longitudinal conical and (f) transverse conical. The spin arrangements from c to f 
are part of spiral magnetic structures. The blue arrows give the direction of induced polarization. Adapted from 
reference [16]. 

According to spin current model the overlap of electron wave function between the two atomic sites 

with canted spins generates electronic polarization via the spin –orbit interaction. Analogous to 

charge current producing the magnetic field spin current produces an electric field or electric 

(c) (d) 
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polarization. Therefore a spontaneous spin current flows between the mutually canted spin sites. The 

direction of polarization is given by  

 𝑃 = 𝑎 � 𝑒𝑖𝑗
<𝑖𝑗>

x (𝑆𝑖x 𝑆𝑗)  EqVI-1 

Here eij is the unit vector connecting the neighbouring spins Si and Sj and the proportional constant 

‘a’ is determined by the spin – orbit and spin – exchange interactions as well as the possible spin – 

lattice coupling term. The sign of P depends on the clockwise or counter clockwise rotation of spin 

along the spin propagation axis. Inverse DM interaction is based on the conventional DM interaction 

according to that non centrosymmetric bond causes canting of interacting spins. In contrast to this in 

inverse DM model states that canted spins may displace the intervening ions connecting the 

magnetic ions leading to generation of polarization. The spiral magnetic structures shown in fig VI – 3 

(c –f) like proper screw type, cycloidal and conical can give rise to electrical polarization based on 

these models. There are also other spin arrangements which do not follow these models yet give rise 

to polarization. A complete discussion of all these mechanism is out of scope of this present thesis.  

With respect to the present chapter we will see an example of magnetically induced ferroelectricity 

in CoCr2O4. The structure of CoCr2O4 is cubic with space group Fd-3m. Co2+ ions are tetrahedrally 

coordinated by oxygen ions at A (8a) site and Co3+ ions are octahedrally coordinated by oxygen ions 

at B (16d) site [19]. The frustration factor defined by θCW/TN is about 7 and therefore frustration 

becomes important here [20]. This spinel undergoes a ferromagnetic transition at TC = 93 K; upon 

further lowering temperature a transition to transverse conical spin state with an incommensurate 

propagation vector of [q q 0] (q = 0.63) takes place at 26 K. With further decrease in temperature a 

lock –in transition occurs without much change to the q value.Yamasaki et al found spontanoues 

polarization (P) along with spontaneous magnetization (M) in CoCr2O4 [4]. Here the spontaneous 

magnetization directs along [0 0 1] while the spontaneous polarization was expected to be along [1-1 

0] which is perpendicular to the spontaneous magnetization direction. After ME cooling procedure P 

arises below 26 k i.e. in transverse conical spin state [4]. The direction of P was seen to reverse along 

with the cooling electric field therefore the observed P was confirmed to be spontaneous 

polarization. However the obtained P is about 2 µc/cm2 which is much smaller than the conventional 

ferroelectrics like BaTiO3. Nevertheless CoCr2O4 exhibit some interesting property .i.e. the direction 

of polarization was reversed with reversal of magnetic field. Furthermore they showed that both 

ferromagnetic and ferroelectric domain wall were clamped. Such a strong coupling between 

magnetization and polarization is indeed very interesting for practical application. Similar spinels 

with A site ion with Fe and Ni were shown to be magnetoelectric as well by Maignan et al [6].  
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So far, most of the spinels reported to show magnetoelectric (ME) coupling are attributed to the 

contributions from the magnetic B-site ion; therefore we made an attempt to study Co3O4 in which 

the magnetism has its origin in the A-site Co2+ ions since Co3+ in octahedral site is diamagnetic. 

Furthermore presence of ME and magneto dielectric coupling in Fe3O4 [22] [23] and Mn3O4 [69] 

respectively has prompted us to investigate Co3O4 in detail for ME coupling. 

VI.2. Experimental Methods: 

VI.2.1. Sample preparation and structural characterization: 
Co3O4 powder was synthesized by heating Cobalt carbonate (CoCO3) up to 600°c for 12 hrs. The 

powder was then pressed into pellets and then sintered for 15 hrs at 800°C. Two different pellets 

CO1 and CO2 were prepared. The sintering temperature is same for both pellets but the sample CO1 

was furnace cooled and the sample CO2 was quenched. This is to study the effect of oxygen 

vacancies or conductivity on the sample dielectric behavior. Figure VI – 4 gives the profile matching 

of the regular X-ray pattern in space group 𝐹𝑑3�𝑚 for sample CO1.  All the peaks correspond to cubic 

phase of Co3O4 with space group 𝐹𝑑3�𝑚. The lattice constant is given by a = 8.09 ± 0.02 Å. Sample 

CO2 is the same as sample CO1.  
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Figure VI-4: The observed and calculated pattern of the regular X – ray diffraction for sample CO1.  

VI.2.2. Scanning electron microscopy (SEM): 
SEM was done to study the microstructure and particle size of Co3O4. Fig VI – 5 gives some SEM 

images of Co3O4 sintered pellet. It can be seen that agglomerates have started to form. These 

agglomerates were typically in the spherical shape with an average diameter of 20 – 30 µm. However 

the individual particle size is much smaller with distribution in the range of 150 – 600 nm. The back 

scattered image did not reveal any impurity in the sample (not shown). 

  

  

Figure VI-5: SEM images of Co3O4 ceramics. Some agglomerates are in the spherical shape with average 
diameter of 20-30 µm; particles size distribution within the sample is in the range of 150-600 nm.  

VI.2.3. Bulk Characterization: 
The sintered pellets were gold sputtered to make electrodes and thin silver wires were glued on each 

electrode with the help of silver paste to make electrical contacts. For dielectric measurements 

under cryogenic temperatures the sample was put in the sample holder of Physical Property 

Measurement System (PPMS) Quantum Design which was then connected to the Wayne Kerr 6500B 

impedance/gain phase analyzer which can scan frequency in the range of 100 Hz to 10 MHz. PPMS 

can regulate temperature from 2 K to 380 K and magnetic field up to 90 kOe or 9 Tesla. A Stanford 

Research Systems PS 350 high voltage DC power supply was used to pole the sample and a Keithley 
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6517B electrometer was used to measure the pyroelectric current. Magnetic measurements on the 

samples were done using Magnetic Property Measurement System (MPMS) Quantum Design. This 

instrument can reach upto 50 kOe (or 5 Tesla) in magnetic field and temperature in the range of 1.8 K 

to 400 K. The same set up can be used to perform hysteresis and ac magnetic measurements as well. 

Heat capacity measurements were performed by a relaxation method with the PPMS and using two 

tau model analysis. Data were taken in the temperature range 2 – 60 K. For these measurements 

samples were a plate obtained from compressing the powder samples. ESR measurements were 

performed using an X-band Bruker spectrometer operating at 9.4 GHz. An Oxford Instruments ESR 9 

He cryostat operating in the temperature range 4 – 300 K was used for temperature dependence 

studies of ESR spectra intensities. 

VI.3. Results and discussion: 

VI.3.1. Magnetic susceptibility and magnetization: 
The magnetic susceptibility of a polycrystalline Co3O4 sample was measured in zero field cooled 

(ZFC) and field cooled (FC) conditions with an applied field of H = 100 Oe between 300 to 5 K. Fig VI – 

6 shows the temperature dependence of susceptibility and inverse susceptibility for Co3O4 in ZFC 

mode. With decrease in temperature susceptibility increases monotonically and at about 40 K shows 

a broad maximum after which it decreases. At the same temperature inverse susceptibility shows a 

broad minimum. Inset to the figure shows the slope of the susceptibility (dχ/dT) as a function of 

temperature. A sharp maximum at about 30 K is apparent indicating the antiferromagnetic transition 

temperature TN. Above 100 K the inverse susceptibility is linear and can be represented by the Curie 

– Weiss paramagnetic behavior which is given by 

 𝜒(𝑇) = 𝜒0 +
𝐶

𝑇 − 𝜃𝑊
 

EqVI-2 

Where χ0 is the temperature independent susceptibility, C is the Curie-Weiss constant and θ is the 

paramagnetic Curie temperature. The fit for χ(T) curve using Eq (VI – 2) over the temperature range 

100 to 300 K yields θW = -121 K ± 2, χ0 = 1.0 X 10-4 emu/(mol –Oe) and C = 2.79±0.5 K emu/(mol Co2+). 

The effective magnetic moment per mol Co (µeff) is calculated by using the formula  

 𝐶 = 𝑁𝜇𝑒𝑓𝑓2 /3𝑘𝐵 EqVI-3 

where N is the density of Co2+ ions per mole and kB is the Boltzmann constant. We obtain µeff=4.72(2) 

µB where µB is the Bohr magneton, which is greater than the spin only value for free Co2+ ions (3.87 

µB), indicating spin – orbit coupling of Co2+ions contribution as described by Roth [25]. The obtained 

value of µeff and θW is consistent with the literature [26] [27]. The Co3+ions in 16d position are in 
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octahedral crystal field which split up the 3d orbitals in to higher eg and lower t2g levels. Due to the 

large gap between these levels in octahedral symmetry, the six d electrons of Co3+ (3d6) cation fill up 

the three lower energy t2g levels and therefore Co3+ has zero magnetic moment in Co3O4. Only Co2+ 

ions in tetrahedral (8a) position is contributing to the magnetic behavior of Co3O4 [25]. Accordingly 

the estimated µeff is about 4.72 µB. 

  
Figure VI-6: (a) Susceptibility and inverse susceptibility as a function of temperature for Co3O4 in ZFC mode. 
Inset shows the slope of susceptibility (dχ/dT) as a function of T. (b) magnetization as a function of applied field 
for Co3O4 at 15 and 30 K. 
 

Magnetization curve as a function of applied field is shown in figure VI – 6 (b). At 30 K magnetization 

displays a linear relationship with the applied field and at lower temperature magnetization slightly 

deviates from linearity as seen at 15 K.  

VI.3.2. Conductivity Measurements: 
The behavior of conductivity as a function of temperature was studied with the impedance/gain 

phase analyzer between 300 and 5 K in PPMS. Figure VI -7 (a – d) shows the reactance as a function 

of resistance over the frequency range 100 Hz to 1 MHz measured on slowly cooled CO1 sample. At 

300 K (fig Vi – 7 (a)) traces of three semicircles is seen which could be attributed to bulk, grain 

boundary and electrode interface from high frequency(far left) to low frequency (far right) 

respectively [28]. A detailed analysis of these different contributions is not needed for the present 

thesis; we give only the qualitative picture. At room temperature the resistance is quite low in the 

range of few hundreds of ohms. As the temperature is decreased, resistance of the bulk increases 

dramatically at 100 K as shown in fig VI – 7 (b). With further decrease in temperature at about 30 K 

bulk resistance becomes very large that only portion of the semicircle can be seen in the available 

(a) (b) 
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frequency window as shown in fig VI – 7(c). Below 30 K resistance can no longer be measured and 

sample becomes very insulating fig VI – 7(d). It is important to notice here that the transition from 

semiconducting to insulating behavior happens after the long range antiferromagnetic order sets in 

at 30 K. Similarly dc resistivity could not be measured below 60 K due to very high resistance at low 

temperatures (not shown).  

  

  
Figure VI-7: Reactance as a function of resistance at several temperatures for CO1 sample. (a) 300 K, (b) 100 K, 
(c) 30 k and (d) 20 K. Notice that below 30 K resistance cannot be measured.  

VI.3.3. Dielectric behavior of Co3O4 under magnetic field: 
The conductivity measurement described above indicated an insulting behavior at low 

temperature and therefore dielectric properties were studied at low temperatures under magnetic 

field. The high temperature dielectric properties of Co3O4 were dominated by its high conductivity 

and they will not be discussed here. Prior to dielectric measurements the PPMS was calibrated as 
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described in chapter 2 to ensure that no external factors like electrode, sample holders etc. 

contributes to the sample dielectric behavior under magnetic field. 

Figure VI – 8 (a) gives the temperature dependence of dielectric constant for sample CO1 with (45 

kOe and 90 kOe) and without magnetic field at 11 kHz. Dielectric constant increases slowly till TN and 

above that there is a steep rise which relates to the conductivity in the high temperature range. 

Under zero magnetic field (red curve) no particular anomaly was found at TN but when the magnetic 

field of 45 kOe was applied a small sharp peak was visible at the magnetic transition and at 90 kOe 

the sharp anomaly is more pronounced. Furthermore below TN the magnitude of the dielectric 

constant is enhanced by magnetic field down to the lowest temperature measured and above TN 

dielectric constant with and without magnetic field merge showing that the observed effect is due to 

the appearance of long range magnetic order in Co3O4. The corresponding imaginary part of 

permittivity (ε’’) remains almost constant and very low till 22 K above which it shows dramatic 

increase due to increase in conductivity ( See fig VI – 8 (b)).  

 

Figure VI-8: (a)Dielectric constant as a function of temperature for CO1 sample with (45 and 90 kOe) and 
without magnetic field at 11 kHz. (b) Corresponding imaginary part of permittivity as a function of temperature 
for the magnetic field and frequency given in figure (a). A sharp peak is induced in dielectric constant by the 
magnetic field at the magnetic transition temperature.  

This increase in conductivity is associated with antiferromagnetic transition at 30 K as shown by 

conductivity measurements. Magnetic field did not give rise to any sharp anomalies in imaginary part 

of permittivity which is seen in the real part of permittivity. However magnetic field affect the 

magnitude of ε’’ below TN and it can be seen from fig VI – 8 (b) that magnetic field has slightly 

suppressed ε’’ below 30 K compared to 0 kOe curve. The dielectric losses (tan δ = ε’’/ε’) stay below 5 

% at the magnetic transition (30 K) and below 2 % at 5 K. The observed peak in the real part 
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resembles that of ferroelectric peak in many ferroelectrics. One of the main features of the 

ferroelectric peak is that it is frequency independent. Such frequency independence of the observed 

peak in real part of permittivity is demonstrated in figure VI – 9 (a).  

 

Figure VI-9: Temperature dependence of (a) real part and (b) imaginary part of permittivity for CO1 sample at 
several frequencies under magnetic field (90 kOe). Dielectric anomaly in real part shows frequency 
independence similar to ferroelectric type peaks. Below 22 K imaginary part remains constant for all 
frequencies. 

 

Figure VI-10: Dielectric constant as a function of temperature with and without magnetic field for CO2 sample 
at 11 kHz.  

As the conductivity contribution to the dielectric constant decreases with increase in frequency the 

ferroelectric type peak is clearly seen. The drastic increase of dielectric constant above TN is due to 

the conductivity. The temperature dependence of the imaginary part of permittivity at several 



184 
 

frequency shows that all the curve merge below 22 K and it stays constant till 5 K (figure VI – 9 (b)). 

To confirm the reproducibility of the results dielectric measurements were performed on CO2 

sample.  Figure VI – 10 gives the dielectric constant as a function of temperature with and without 

magnetic field for CO2 sample. A dielectric peak under magnetic field is observed at 30 K similar to 

CO1 sample. Furthermore the dielectric constant before and after the application of magnetic field 

did not show any peak and were the same corroborating that the results were reproducible. The 

dielectric peak also showed frequency independence (not shown). Furthermore isothermal dielectric 

measurements (not shown) reveal that neither the real part nor losses show a relaxation versus time 

with and without magnetic field unlike the previous report by Iliev et al. [29]. 

VI.3.3.1. Critical field for the induction of polar state in Co3O4: 

The application of large magnetic field of 45 and 90 kOe induced a ferroelectric type anomaly in 

the dielectric constant of Co3O4. However low field measurement of dielectric properties should be 

performed to deduce the critical field at which the polar state in Co3O4 is induced. Figure VI – 11 

gives the dielectric constant as a function of temperature at different magnetic fields for Co3O4.It can 

be seen that a magnetic field of 20 kOe has induced a sharp peak in the capacitance. However the 

magnitude of the peak is not strong and it is close to the low field dielectric constant at 10 kOe which 

does not display any peak in the capacitance. The dielectric peak due to 40 kOe magnetic field is 

larger in magnitude and above the background capacitance compared to peaks by lower magnetic 

fields. Therefore critical field can be taken as 40 kOe for the induction of polar state in Co3O4. 

 

Figure VI-11: Capacitance as a function of temperature under different magnetic fields in Co3O4at 1.2 MHz. 
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VI.3.4. Pyroelectric Measurements: 
For pyroelectric measurements a poling static field of ±641 kV/m was applied at 60 K during 

cooling which is the standard poling procedure for pyroelectric experiments in ferroelectric 

materials. At 5 K the poling electric field was removed and pyrocurrent as a function of temperature 

was measured during warming at 5 K/min. The effect of magnetic field on polarization was deduced 

by cooling the sample from 60 K under 90 kOe magnetic field as well as 641 kV/m electric field 

applied simultaneously. The polarization was measured during warming after removing electric field 

leaving the magnetic field intact. This procedure is called magnetoelectric (ME) cooling. 

 

Figure VI-12: (a) Pyrocurrent as a function of temperature with 0 and 90 kOe magnetic field. A maximum is 
seen in both curves close to 26 K, in addition a sharp maximum is seen under 90 kOe magnetic field which is 
superimposed on the broad maximum. (b) Polarization versus temperature under 90 kOe magnetic field. Inset 
to (b) gives the zoom of polarization curve close to TN and green arrows indicate contribution of magnetic field 
to the polarization seen as a small shoulder.  

Figure VI – 12 (a) gives the pyrocurrent as a function of temperature for the sample CO1 with 0 and 

90 kOe magnetic field. Maximum of the pyro current with and without magnetic field is around 26 K 

along with an additional sharp peak close to 32 K under 90 kOe magnetic field indicated by green 

circle. We ascribe the broad maximum to the change in conductivity happening in this temperature 

range and which is not altered by the magnetic field. On the other hand, we state that the sharp peak 

at 30K is associated with the polar or ferroelectric transition under magnetic field. Both the broad 

and sharp 30K anomalies can be reversed on reversing the sign of the poling electric field. The 

polarization under 90 kOe magnetic field computed from the pyro current is plotted as a function of 

temperature and shown in figure VI – 12 (b). A maximum polarization value of 350µC m-2 was 

obtained resulting from the integration of the broad pyroelectric anomaly, i.e. related to conductivity 

processes. On top of this contribution, the effect of magnetic field was superimposed which is clearly 
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demonstrated in the inset to the VI – 12 (b). A small shoulder marked by green arrows at TN shows 

the contribution of 90 kOe magnetic field to the pyrocurrent. The polarization induced by magnetic 

field is about 40 µC m-2which is comparable to the most of the known spinels which are found to 

show multiferroic effect (See table VI – 1). To better understand the microscopic origin of both the 

broad anomaly and the sharp magnetic field anomaly, we undertook ESR experiments. 

Table VI-1: List of spinels with coupling between electrical and magnetic order. 

Spinel 
Compound 

Space 
Group TS (K) TN / TC 

(K) Magnetic order TF (K) 
Polarization 

(µC/m2) 
Reference 

CoCr2O4 Fd-3m -- 93 
(ferri) 

CL and 
transverse spiral 

at 26 K 
26  2 [8] 

FeCr2O4 Fd-3m 140 
(C-T) 

80 
(ferri) 

CL and conical 
at 35 K -- 35 [21] [30] 

NiCr2O4 I41/amd  74 
(ferri) 

CL and CL AFM 
at 31 K -- 33 [21] [30] 

MnCr2O4 Fd-3m -- 51 
(ferri) 

CL and conical 
at 16 K -- MD [30] 

CdV2O4 Fd-3m 95 
(C - T) 

33 
(AFM) CL same as 

TN 5 [10] 

LiCuVO4 Imma -- 2.5 
(AFM) Helical same as 

TN 
30 [31] 

Mn3O4 I41/amd  42 
(ferri)   MD [24] 

ZnCr2Se4 Fd3m -- 21.2 
(AFM) 

Proper Screw 
type 

same as 
TN 

15 
(underrotating 

H) 
[32] 

Co3O4 Fd-3m -- 30 
(AFM) CL same as 

TN 
40 Current thesis 

Definitions of symbols: TS = structural transition, TN = Neel temperature, TC = ferro or ferrimagentic 

transition temperature, TF = Ferroelectric transition temperature, AFM – antiferromagnetic, CL – 

collinear magnet, MD – Magnetodielectric. 

VI.3.5. Electron Paramagnetic Resonance (EPR): 
EPR spectra recorded at several temperatures in the zero field cooled (ZFC) regime are shown 

in fig VI - 13. Spectra of powder sample were similar to ceramics ones and are not shown. As 

expected in the case of anisotropic antiferromagnets, no EPR line was observed in the AFM phase of 

Co3O4 for both powder and ceramics samples.  

Single line of Lorentzian shape at g=2.235 is observed for both samples at T ≥ 28 K indicating 

phase transition from AFM to PM state. The observed difference in the TN in comparison to reported 

in literature (40-30 K) is due to the particle size contribution: the size of grains in the ceramics sample 

is 100-600 nm (see SEM images in fig VI- 5). The resonance at g = 2.235 is originating from Co2+ ions 
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(3d7), in tetrahedral site of Co3O4. In such an environment Co2+ is in high spin state S=3/2 with fully 

filled low lying eg orbitals and the 3 remaining electrons in t2g orbitals. Magnetic moment of Co3O4 is 

arising mainly from Co2+ spins and spin-orbit coupling. The intensity of the resonance is high and very 

similar in ceramics and powder samples which suggest equivalent concentration of centers in both 

samples. 

 
Figure VI-13: First derivative of standard (sample was cooled down to 4 K and after magnetic field was applied 
to record spectra) EPR spectra at several temperatures recorded for the ceramics sample. 

As changes in dielectric and magnetic properties of Co3O4were observed in FC regime, we 

also performed EPR experiments in FC regime: at room temperature magnetic field of 6000 or 9000 

G was applied and samples were cooled down to 4 K prior to each EPR measurements. Some spectra 

recorded below and above TN in ZFC and FC regimes are presented in figure VI – 14 (a & b). Figure VI 

– 14 (c) shows the spectra in FC regime for a magnetic field strength of 6000 and 9000 G. Inset to fig 

VI – 14 (c) highlights a significant change in the intensity of the low magnetic field resonance (at 

g=5.072) marked as Co2+(II); central resonance at g=2.235 is slightly decreased in peak-to-peak 

intensity.  
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Figure VI-14: EPR spectra recorded for ceramics 
sample after ZFC and FC regime:  at 27 K (a) and50 K 
(b); (c) EPR spectra in FC regime at magnetic field of 
6000 G (black line) and 9000 G (red line) for T = 28 K.  

This reflects redistribution of an amount of defects contributing to the EPR. The increase of 

the resonance intensity with the magnitude of the applied magnetic field is in agreement with an 

intermediate strength of the exchange interaction. Magnetic field induced similar effects on both 

powder and ceramics samples: (i) below TN a new broad resonance is observed in low magnetic field 

region (0 - 3000 G); (ii) above TN new resonance is detected on the left hand wing of the main 

resonance at g=5.072. 

From EPR results we can conclude: (i)  valence states of both Co2+ and Co3+ ions are not 

changing under externally applied magnetic field, e.g. no direct charge localization at cobalt ions 

around TN; (ii) a broad resonance observed in the AFM phase and in FC regime is a signature of 

magnetic field influenced spin disordering in the material due to which total magnetic moments are 

not fully compensated and EPR is possible; (iii) new resonance appeared in FC regime and above TN is 

most probable due to the p-d hybridization between cobalt and oxygen ion’s orbitals leading to the 

d8L state (where L denotes a hole at the oxygen 2p orbitals). In this case cobalt spins (or magnetic 

moment) are pointed toward oxygen ions and this orientation is kept in the AFM phase, so called 

canted spins which are generating electronic polarization via the spin-orbit interaction, and hence 

influences the materials dielectric and magnetic properties. 

(a) (b) 

(c) 



189 
 

VI.3.6. The origin of dielectric anomaly under magnetic field in Co3O4: 
The dielectric measurement shown in fig VI -8 indicates that a ferroelectric like anomaly in real 

part of permittivity is induced only under magnetic field. A critical field of 40 kOe is required to 

induce such an anomaly as seen from fig VI – 11. This anomaly becomes stronger with field up to the 

maximum of 90 kOe. Furthermore the anomaly is frequency independent and reproducible as shown 

in fig VI – (9 & 10). This calls for the anomaly to be identified as ferroelectric phase transition. 

However lack of evidence from piezoelectric and hysteresis measurements forbade us from assigning 

this anomaly to be ferroelectric, instead we will call this as polar anomaly.  In addition the observed 

anomaly happens exactly at the temperature where Co3O4 undergoes magnetic transition from 

paramagnetic to antiferromagnetic state (∼30 K). Hence there is a coupling between magnetic and 

electrical property in Co3O4 under field cooled condition. This coupling is further evidenced by 

polarization measurement which shows a broad peak due to the decrease in conductivity and a sharp 

peak at 32 K observed only under field cooling (see fig VI -12 (a)). The induced polarization under 

magnetic field is comparable to other spinel multiferroics as shown from table VI -1. Furthermore the 

critical field for the induction of polar state in Co3O4 is about 40 kOe reflecting the same 

phenomenon as CuFeO2 where the threshold field is 65 kOe [5].   

 The coupling between electrical and magnetic property could be extrinsic or intrinsic. From the 

dielectric measurements it can be seen that the imaginary part of permittivity and dielectric losses (< 

5%) are low in the temperature range where the polar anomaly appears (see fig VI -8 & 9). In the 

same temperature range polarization starts to appear which reaches a maximum at 26 K. This lead us 

to infer that the increase in polarization is mostly due to the charge localization with decrease in 

temperature and under the application of electric field a space charge is created shown as a black 

curve in fig VI -15. This space charge is disturbed when a magnetic field of high magnitude is applied 

which lead to the shift in the space charge layer shown as a red curve in fig VI -15.  This in turn is 

transferred into an anomaly in the dielectric constant. Therefore the Catalan model based on the 

magenetoresistive artifact must be invoked similar to the tuning of polaron losses and artificial 

magnetocapacitance in Fe doped BaTiO3 seen in Chapter 3 [1] [2].  

 

 

 

 

Co2+ relative density 

P 
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Figure VI-15: Space charge distribution in Co3O4 under electric field only (black curve) and shift of space charge 
seen as red curve due to simultaneously application of electric and magnetic field.  

The above explanation based on charge localization is valid from the view point of dielectric and 

polarization measurement only which is more macroscopic. However this model is not entirely 

supported by our results from EPR. Let us consider that in case of electron localization of Co3+ →  

Co2+ significant increase in the EPR lines intensity has to be observed below 30 K which is not the case 

and also electron localization at Co2+ is not possible as it will give an unusual valence state of cobalt. 

Furthermore in Co3O4 electronic conductivity is dominant and therefore hole conductivity can be 

ignored. These results from EPR point towards a more intrinsic coupling between electrical and 

magnetic property in Co3O4. Then the obvious question is how does an intrinsic polar state is created 

under magnetic field, as the space group of Co3O4 is centrosymmetric.  

From fig VI -14 (b) it can be seen that above Neel temperature a strong resonance at g = 2.235 

attributed to paramagnetic Co2+ ions in tetrahedral environment is seen. A weak resonance is seen at 

g = 5.072 and it is superimposed on the strong resonance. This scenario is same as the pyro current 

where a sharp peak due to ME cooling is super imposed on broad maximum. This weak resonance is 

observed as a broad resonance at 27 K under FC regime (see fig VI – 14 (a)).  Generally no EPR line 

should be observed at this temperature as the Co3O4 is in antiferromagnetic state. Then the presence 

of broad resonance suggests that there are uncompensated spins due to canting of 

antiferromagnetic moments under magnetic field cooling. The polarization can then appear based on 

the mechanism explained in spin current and inverse Dzyaloshinskii – Moriya (DM) model described 

by Katsura et al and Sergienko et al respectively [17] [18]. The fact that the weak resonance at g = 

5.072 is seen above Neel temperature (where the spin orientation is expected to be random) is due 

to pinning of spins owing to the p-d hybridization between oxygen and cobalt ions. 

VI.3.7. Conclusion: 
Co3O4 ceramics were investigated for multiferroic property using dielectric and pyroelectric 

measurements. The dielectric constant displays a ferroelectric type anomaly under magnetic field at 

30 K where the Co3O4 undergoes antiferromagnetic transition. It also shows that the observed effect 

is reproducible. In addition pyroelectric current shows a broad maximum at 26 K due to decrease in 

conductivity and an additional sharp maximum observed only under ME cooling is superimposed on 

the broad maximum. To our knowledge such a distinct peak in pyroelectric current due to ME cooling 

is observed for the first time in any multiferroic materials. This shows that there is a coupling 

between electrical and magnetic property in Co3O4 which could be extrinsic or intrinsic. However the 

evidence from the EPR results shows that canting of antiferromagentic moments under magnetic 

field cooling induces polarization based on spin current model. Therefore the observed effect is more 
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intrinsic to Co3O4. These results are very interesting as it is observed on simple oxides which have 

been investigated for several decades. This is a motivation for the scientific community to research 

for such exotic properties in already known simple oxides. 
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General Conclusion and Perspective: 
Throughout this thesis we studied the mobility and localization of charges and their effect on 

dielectric and ferroelectric properties of material. In some cases magnetic properties are studied as 

well.  Under the application of external stresses like electric and magnetic field either the mobility or 

localization of charges are disturbed leading to interesting property in the material. These charges 

could be electronic or ionic. As seen in chapter 1 this mobility can be long range motion of charges or 

local hopping of charges like polarons. Long range motion of charges occurs when the conductivity of 

the investigated sample is high. Generally this happens at high temperatures where the mobility of 

ions or electrons is thermally activated. On the other hand short range motion of charges occurs at 

quite low temperatures where the motion is in the range of unit cell.  

Following this, three different Fe doped BaTiO3 single crystals were studied with dielectric 

spectroscopy under external magnetic field. Out of these three crystals only 0.75 at% and 0.3 at% Fe 

doped crystals were considered as the crystal quality and doping percentage was not sure for crystal 

with 0.135 at% Fe. The dielectric spectroscopy on these crystals revealed two relaxations one at high 

temperature assigned as domain wall relaxation and other at low temperature (≈ 30 K) due to 

polaron relaxation. The application of external magnetic field on domain wall relaxation show 

considerable effect on both capacitance and losses. This is due to the fact that the magnetic field 

affects the localization of free charges (which are created during Fe doping) on domain walls. In 

particular the effect is more pronounced close to the relaxation maximum as previously shown by 

Maglione [2]. However we found that this tuning under magnetic field is not reproducible due to the 

kinetics of interface with temperature i.e. number domain walls varies with each thermal cycling of 

the sample. On the other hand application of external magnetic field on low temperature relaxation 

affects only the losses but not the capacitance since here there is no interface for the charge to 

localize. According to Catalan model we need both free charges and interfaces to affect the 

capacitance extrinsically [1]. Furthermore we found that losses are affected by magnetic field 

because the external field affects the way the charges are hopping between centers. This is 

supported by our results from ESR. It would be also interesting to investigate heterovalent doping in 

other ferroelectric single crystals for example La doped BaTiO3, La doped PbTiO3, Fe doped SrTiO3 etc. 

This is planned as future work. 

Next we investigated KTiOPO4 (KTP) which has both ferroelectric and conductivity property. The 

conductivity in KTP is due to the mobility of K+ ions through the channels which are predominantly 

along c – axis. The impedance measurement shows that KTP undergoes superionic transition at 200 K 
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below which it becomes insulator in accordance with previous reports. Also the pyroelectric current 

appears only below 200 K showing that polarization is screened by conductivity of KTP at high 

temperatures. Interestingly at the same temperature the piezoelectric resonance undergoes 

splitting. This shows that there is coupling between conductivity and polarization properties in KTP. 

This is not surprising since both the ferroelectric property and conductivity in KTP has common origin 

which is K+ ions. We would like to point out that such a coupling is observed for the first time as far as 

we know. It was found that domains cannot cause such splitting as splitting of domains will only 

cause broadening. It was assumed that the splitting is the direct consequence of creation of space 

charge due to localization of K+ ions at the electrode - sample interface which splits the elastic 

compliance. This in turn affects the resonance frequency to split. The bias electric field experiment 

points towards the presence of space charge in the sample. To confirm its presence µ-Second 

Harmonic Generation (SHG) mapping was done on both normal and periodically poled KTP (PPKTP) 

single crystals. A clear presence of space charge at the interface was seen. Furthermore it was found 

that a considerable amount of charges are also localized on domain walls in PPKTP. This result was 

compared to well-known ferroelectric like BaTiO3 single crystals which did not show any such space 

charge layer. Though µ-SHG map reveals space charge currently it is not possible to understand some 

of the behavior of the sample for example we don’t know why the SHG intensity is decreasing at high 

temperatures. Therefore more detailed experiments are warranted along with Raman spectroscopy 

which could shed light on the behavior of KTP with temperature. 

As a next step in my thesis we synthesized and characterized new Nasicon type phosphates for 

potential mutliferroic behavior while they are most of the time investigated for their ionic 

conductivity. The Nasicon phosphates of formula BaFeTi(PO4)3 (BFTP) and BiFe2(PO4)3  (BiFP) was 

successfully synthesized by solid state reactions. The compound BFTP crystallizes in centrosymmetric 

R3�c space group which is the usual space group of Nasicon type phosphates. However an extra peak 

was not taken into account by this space group therefore actual space group might be different. This 

requires good quality single crystals to determine the space group and it is planned for later. On the 

other hand millimeter size single crystals of BiFP were grown successfully and space group 

determined by X – ray diffraction indicates P63/m with hexagonal symmetry. Full refinement showed 

that Bi3+ cation are statistically displaced away from the symmetrical site along the c axis. This could 

give rise to polarization at least at the local level. Magnetic measurement of BFTP exhibits an 

antiferromagnetic type peak at 13 K in ZFC whereas FC curve shows strong irreversibility. Nature of 

magnetic transition is still ambiguous which calls for further detailed experiments whereas BiFP 

shows typical antiferromagentic type behavior below 22 K in both ZFC and FC which is taken as the 

transition temperature. Magnetization as a function of applied field for BiFP points towards a 
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possible spin flop transition. Dielectric measurement of BiFP on ceramics did not show any 

ferroelectric type anomaly but they undergo relaxation and the origin of which is still not clear. X –

ray diffraction versus temperature in the range of occurrence of dielectric relaxation could be used to 

link this relaxation to the Bi dynamics. By making suitable substitution in BiFP it might be possible to 

induce long range order which may invoke ferroelectricity.  

Finally we studied Co3O4 for potential intrinsic multiferroic behavior. We found that dielectric 

constant displays a ferroelectric type anomaly exactly at the temperature where Co3O4 undergoes 

magnetic transition. This anomaly was found only under magnetic cooling. Though the anomaly 

displays frequency independence, lack of evidence from piezoelectric and hysteresis measurements 

forbade us from assigning this anomaly as ferroelectric instead we call it as polar anomaly. The 

pyroelectric current shows a broad maximum at 26 K due to decrease in conductivity and a sharp 

maximum at ≈32 K which was observed only under magnetic field. This shows that there is a strong 

coupling between electrical and magnetic property in Co3O4. From the dielectric and pyroelectric 

measurements the effect of magnetic field on the space charge seemed to the origin of polar 

anomaly. However EPR results show a more intrinsic effect due to the canting of antiferromagnetic 

moments which creates polarization according to spin current model. Growing single crystals of 

Co3O4 is now necessary to thoroughly understand the process leading to induction of ferroelectricity 

under magnetic field. Single crystal would allow detailed experiments like Neutron, Synchrotron and 

Raman spectroscopy. Following this it will be worth to reinvestigate simple oxides for novel 

properties.  
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