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Undoubtedly, the successes in the investigation of the microworld in the begin-
ning of XX century have provoked a rapid development of the quantum theory.
Together with the works of Einstein on theory of relativity it has made a revolution
in the conception of theoretical physics. New theories, whose progress was bounded
just by the imagination of scientists, developed rapidly, often leaving the experi-
ment behind. This way, for example, Bose-Einstein condensation was predicted by
Einstein in 1925 [1]. Conditions for the formation of an atomic condensate were so
extreme, that technologies allowed its observation only 70 years after its theoretical
description[2].

One could say that the pioneer works on X-ray di�raction in di�erent crystal
structures performed by von Laue, Bragg and others in early 1910s [3, 4, 5, 6]
have initiated the modern solid-state physics (SSP). Since that time it has been
continuously evolving during the XXth century. Progress in growth technologies has
been allowing to create more and more complicated and perfect structures - starting
with simple transistors in 1940s up to high-quality nanostructures nowadays. Most
of them, based on the speci�cs of heterojunctions between di�erent materials, are
e�ciently driving forward micro- and nanoelectronics, optoelectronics, spintronics
etc.

In addition, it's important to say about one more aspect - information tech-
nologies (IT). A lot of theoretical problems have no analytical solution. Previously,
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scientists had to make numerous approximations to solve them and this limited the
applicability of solutions. The strong boom in the IT of the last 30 year has allowed
to solve very wide range of problems with high accuracy for a reasonable time. In the
solid-state physics numerical calculations are extremely important, so the progress
in computer technologies strongly assists the development of the solid-state theory.
Summarizing, it seems, that we live in the age where the development of science
becomes less and less limited by objective constraints.

Huge number of particles, which compose solids, gives rise to numerous collec-
tive excitation e�ects. They can be described in terms of quasiparticles (excitons,
phonons, etc), which behave like real particles having its own e�ective mass, charge,
spin etc, but which appear in media only. The solid medium strongly de�nes the
behavior of quasiparticles, so tuning the medium properties one could strongly vary
the properties of the quasiparticles under study. This is why nowadays there are
so many di�erent nanostructures. Solid-state physics provides a handy platform
to study and develop di�erent e�ects which could be hardly studied in other sys-
tems. So, for example, considering very light quasiparticles (whose mass is 108 times
smaller than atomic mass) one could raise the critical temperature of Bose-Einstein
condensation from microKelvins up to room temperature. Amazing properties of
semiconductor nanostructures have inspired me to dedicate this work to them. Of
course, modern solid-state physics is a huge scienti�c �eld, but I want to believe
that my studies will �nd their small but useful place inside.

This manuscript is divided into 5 chapters. The �rst chapter is an introduc-
tion, where I will describe the basics aspects of nanostructure physics which are
relevant to my work, such as basic facts about structures of di�erent types, idea of
Bose-Einstein condensation and basic mathematical tools for its description. Each
of the four others chapters will be dedicated to a separate topic. In the second
chapter I will discuss the interaction between exciton condensates and strong co-
herent acoustic �elds. I will show that at some conditions strong-coupling regime
could be obtained what gives rise to a new-type quasiparticles. Chapter 3 will be
dedicated to the lasing of quantum dots ensemble embedded into a cavity. The
e�ect of the lasing ampli�cation by ultrafast acoustic pulse will be described. In
chapter 4, the multistability e�ect in the system of cavity polaritons will be dis-
cussed. It will be shown that under strong resonant pumping of the ground state,
the high-populated excitonic reservoir could appear, which strongly modi�es the ef-
fective polariton-polariton interactions. And �nally, in chapter 5 I will speak about
polarization patterns in the condensates of indirect excitons. Also, I have added a
small Appendix, where I discuss some features of numerical methods I used in my
calculations.
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1.1 Excitons and Exciton-polaritons

1.1.1 The basics. Band structure.

The propagation of the free carriers (electrons and holes) in the periodic potential
of semiconductor lattice can be described by the Bloch-type wave-functions unk(r)
multiplied by plane wave [7]:

ψnk = eikrunk(r), (1.1)

where the function unk(r + R) = unk(r) has the same periodicity as crystal
structure. r is a radius-vector, k is called electron (hole) wave-vector and n is a band
number. Thus, the carriers in semiconductor could be considered as quasiparticles
with their own dispersion de�ned by the medium.

Figure 1.1: Band structure of GaAs for electrons with small wave-vector. Valence
band consists of three subbands (SO, LH and HH). Eg is the width of the energy
gap, ∆SO is a split-o� value

Hereinafter we will speak generally about semiconductors of zinc-blende type and
particularly about GaAs. In such crystals the highest valence band is formed by
p-shell electrons while the conduction band is formed by s-shell electrons. Electrons
in p-states have angular momentum L equal to 1 so its projection Lz on the chosen
axis (let's call it Z axis) could be either 0 or ±1. Electrons with Lz = 0 are split
in energy from the bottom of the valence band and they form the so-called split-o�
band (SO). Total angular momentum J of a carrier is de�ned by the sum of its
angular momentum L and its spin S. So, the split-o� band is double degenerate
when the spin is taken into account. The projection of J on chosen axis for the
states with Lz = ±1 could take for values (Jz = ±1

2 ,±
3
2). This gives rise to two
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double degenerate bands called light-hole band (LH) for Jz = ±1
2 and heavy-hole

(HH) band for Jz = ±3
2 which show the same energy when carrier has zero wave-

vector k = 0 [8]. In our work we will not consider the SO band and will discuss LH
and HH bands only.

The total angular momentum of s-type electrons which form the conduction band
is de�ned by the electron spin only. Thus, there is only one double degenerate con-
duction band. Band structure of GaAs for the carriers with small k is schematically
illustrated on �gure 1.1.

If a photon is propagating in a semiconductor and its energy is larger than
the gap energy Eg, it could be absorbed by the medium and a free electron and
a hole would appear. Physical laws require the conservation of the wave-vector
(kph = ke + kh) and of the angular momentum. Taking into account the fact that
photons have angular momentum equal to 1, the latter requirement provides certain
selection rules:

Jez + Jhz = ±1, 0. (1.2)

Selection rules for photon absorption are schematically shown in �gure 1.2[8].
Circularly polarized photons with Jphz = ±1 are shown by circle arrows, while
linearly polarized photons with Jphz = 0 are plotted by straight double arrows.

Figure 1.2: Selection rules for light absorption. Black numbers show the z-
projections of total angular momentum of carriers. Green arrows show the polariza-
tion of the absorbed light when green numbers state relative intensity of transitions.

Also, an electron and a hole could recombine emitting a photon. The selection
rules for emission are similar to ones for absorption. Thus by illuminating samples
by polarized light one can create certain spin states in the system and by analyzing
the polarization of emitted light, one can collect the information about spin states.
This is what lies in the principles of the light-based control of spin.

1.1.2 Excitons

An electron interacts with a hole by the Coulomb force. If their relative distance
re−h = |re − rh| is much larger than the size of a unit cell of the crystal, then the
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Schrodinger equation for the system could be written in a form:(
p̂2e
2me

+
p̂2h
2mh

− e2

εre−h

)
Ψ = EΨ. (1.3)

Here p̂e,h are momentum operators for electron and hole, me,h are their e�ective
masses, Ψ is a wave-function of the system and E is the energy. The semiconductor
medium is introduced in this equation by the dielectric constant ε. In such descrip-
tion, the electron-hole pair forms a hydrogen atom-like system and one can speak
about new quasi-particle - exciton [9]. The exciton energy spectrum is described by:

EXn (kX) = −RX
n2

+
~2k2X
2M

, (1.4)

RX = µe4

2~2ε2 is called exciton Rydberg, kX is an exciton wave-vector, M =

me + mh - its e�ective mass and µ =
(

1
me

+ 1
mh

)−1
is the reduced mass. Here,

the lowest energy of free electron and hole is taken as zero reference. Equation 1.4
describes the parabolic dispersion of excitons. Bohr radius of an exciton could be
written as:

aX =
~2ε
µe2

. (1.5)

Dielectric constant ε of GaAs is 13 which makes Bohr radius of an GaAs exciton
much larger than the size of its unit cell (aX = 112 Å). Thus our assumption
about relative position of the electron and the hole is correct, and e�ective mass
approximation (1.3) is legal. Such excitons with large Bohr radius are commonly
found in crystal semiconductors and are called Wannier-Mott excitons as opposed
to Frenkel excitons of small Bohr radius which could be found in molecular crystals.
In this work we shall be dealing only with Wannier-Mott excitons.

The main property of excitons is their ability to interact with light (theory was
developed �rst in [10, 11, 12]) An exciton could be created by light as well as it could
decay, emitting photon. Exciton-photon interaction is strongest at resonance. If we
introduce into the Hamiltonian the exciton-photon interaction term, the eigenstates
of the system at the wavevector where the dispersions cross each other would not
be pure exciton and photon states, but a mixing between them. In fact we could
speak about a new quasi-particle - exciton-polariton [7]. Thanks to light-matter
interaction, an anticrossing between the two dispersion curves appears. However,
in most bulk materials, exciton-photon interaction is weak, so the magnitude of the
anticrossing is smaller than broadening of exciton and photon lines. In these cases,
the eigenstates of system are almost completely excitonic or photonic and we can
still speak about two independent quasi-particles in medium.

Sum of the total angular momentum of hole and electron forming the exciton
is called for simplicity the exciton spin (SX). Its projection on the chosen axis can
take �ve values: SX

z = ±2,±1, 0. Selection rules and conservation laws here are
the same as for free electrons and holes, this is why excitons with SX

z = ±2 do not
interact with light and are called dark excitons.
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1.2 Nanostructures

Growth technologies have been advancing very much during the last decades. This
gave opportunity to fabricate di�erent semiconductor heterostructures with very
high quality interfaces. As a result, numerous nanoscale heterostructures appeared.
The main idea is to strongly modify motion of carriers by heterotransitions. For
example, placing a thin layer of one semiconductor with small band gap (for example
GaAs) between two layers of another crystal with large band gap (AlAs) one can
create a potential well for carriers in the growth direction (Z-axis). If the size of
potential well is small enough, the motion of carriers along Z becomes quantized.
Such structures are called Quantum wells or QWs. Particularly, if electrons and
holes are trapped in the same layer, such QWs (or, rather, the heterojunctions) are
said to be of the 1st type.

Electrons and holes in QWs form a quasi 2D system. Their motion in the plane is
free, while they are quantized in the growth direction. Nowadays, there are plenty
of di�erent types of heterostructures possessing di�erent e�ective dimensionality.
However, in this work we will discuss only few of them.

1.2.1 Quantum Wells

As it was said, quantum wells are thin layers of one semiconductor sandwiched
between thicker layers of another. The motion of the carriers becomes quantized
in the Z direction and a number of energy subbands appears. Because each state
trapped in QW has a �xed nonzero kz, the degeneracy between LH and HH bands
in Γ point is lifted and even with zero in-plane wave vector k|| there is a gap in
energy between the two bands. For an in�nite potential well one should expect the
following expression for the width of this gap [13]:

∆EΓ
lh−hh =

(πn~)2

2L2
QW

(
1

mlh
− 1

mhh

)
, (1.6)

where LQW is the width of the well and n is a number of state quantized in Z.
However, far from the Γ point, the eigenstates in the valence band are no longer

pure heavy-hole or pure light-hole states, but a mixture of them. This gives rise to
additional non-parabolicity of the valence band.

In quantum wells, electrons and holes could couple to excitons as well, but quan-
tum con�nement of their motion imposes certain changes on their energy structure.
Thus, in excitons formed by an electron and by a heavy hole, optically active states
(SX

z = ±1) are split from dark states (SX
z = ±2) by short-range electron-hole ex-

change interaction.
For spin dynamics of carriers in QWs one should consider two di�erent cases:

when carriers are free and when they are bound into excitons. The general mecha-
nism of spin relaxation for free carriers is a Dyakonov-Perel mechanism of spin-orbit
interaction. This gives rise to non-zero splitting between spin-states proportional to
k. In bulk there is only one type of spin-orbit interaction - the Dresselhaus or bulk
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inversion asymmetry (BIA)[14]. For electrons in a basis
(

1
2 −1

2

)T
one can read

a Hamiltonian term:

HD
e = β(σxkx(k

2
y − k2z) + σyky(k

2
z − k2x) + σzkz(k

2
x − k2y)), (1.7)

where β is a Dresselhaus coe�cient.
To obtain the corresponding term in Hamiltonian for electrons in QWs one should

take an averaging over kz. For [001] direction of growth axis one could get:

HD
2De = βe(σ+k

e
− + σ−k

e
+). (1.8)

Here (σ±, k±) = (σx, kx)± i(σy, ky).
Also in con�ned structures there is an additional energy splitting due to the

structural inversion asymmetry (SIA) in the presence of electric �elds also known
as Rashba spin-orbit interaction[15]:

HR
e = γ(σ+(k

e
y + ikex) + σ−(k

e
y − ikex)). (1.9)

Here γ is Rasba coe�cient.
For holes the situation is a bit more complicated. In bulk, the hole spin relaxes

very fast due to the mixing between heavy-hole and light-hole subbands [8, 16]. In
2D systems, because of the degeneracy lifting near the Γ-point this mechanism is
suppressed and holes are also a�ected by SOI. Several recent papers claim the cubic
by k dependence of splitting[17, 18]. However, to my knowledge it is the result of
the group delusion and the Dresselhaus term in the Hamiltonian for 2D holes is
linear by wave-vector k as it was stated in the paper of Rashba and Sherman [19].
The energy splitting between two subbands in the heavy-hole band reads as:

∆Ehh(k) = β
′
h

(
π

LQW

)2

k. (1.10)

Because of the HH-LH subband splittings in 2D-systems, the lowest in energy
exciton is formed from heavy-holes. The short-range exchange interaction between
holes and electrons bound into an exciton causes a splitting in energy between
bright and dark exciton states in quantum well for a value [13] (here and after we
will consider the in�nite barrier model):

∆0 ≈
9

16
∆3D

0

(
EB

E3D
B

)2 a3DB
LQW

. (1.11)

Here ∆3D
0 is the corresponding splitting in bulk, E3D

B ,EB are the exciton binding
energies in bulk and in QW, a3DB is a Bohr radius.

Also, thanks to the long-range electron-hole exchange interaction there is an
additional splitting in energy between the longitudinal and transverse exciton states,
which in 2D systems is linear with respect to the wave-vector of the exciton center
of mass kX [20]:
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∆LT =
3

16
∆3D
LT

(
EB

E3D
B

)2

|⟨χe,l|χh,l⟩|2a3DB kX , (1.12)

where χe,h,l are the single particle envelope functions describing the electron
and heavy-hole motion along the growth axis, and ∆3D

LT is a longitudinal-transverse
splitting for the bulk, which does not depend on kX .

1.2.2 Quantum Dots

Another very important type of semiconductor nanostructures, in which motion
of carriers is con�ned in all directions, are called quantum dots (QD). The his-
tory of QDs starts in 1981 with the work of Ekimov and Onushchenko [21], who
observed discrete lines in the absorption spectra of CuCl nanocrystals in a silicate
glass matrix. However, the energy structure of such objects was very sensitive to the
interfaces. Since that time, numerous methods of quantum dots growth appeared,
but most popular nowadays is Stranski-Krastanov method of self-assembled quan-
tum dots formation under molecular-beam epitaxy (MBE). This method is based on
the formation of semiconductor droplets under the forces of surface tension. Then
these droplets are covered by another wide-gap semiconductor. However, between
the QDs there still remains a thin layer of the same material which is called wetting
layer. Such growth method leads to the formation of a large ensemble of quantum
dots. However, studies of single quantum dots selected from such ensemble, are also
popular.

A scheme and a HRTEM image of quantum dots are presented on �g. 1.3.

Figure 1.3: a) Schematic representation of self-assembled quantum dots. 1, 4 -
bu�er layers of GaAs, 2 - InAs quantum dots, 3 - wetting layer, 5 - n-doped GaAs
substrate. b) HRTEM image of single InAs quantum dot. Pictures are taken from
[22, 23]

As it was said, in QDs the motion of carriers is con�ned in all directions which
results in the formation of a set of discrete states. Considering an approximation
of the in�nite potential well for carriers and considering a parallelepiped QD with
dimensions Lx,y,z, one can easily �nd the values for the energy of the quantized
states:
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EQDn =
~2π2

2me,h

(
n2x
L2
x

+
n2y
L2
y

+
n2z
L2
z

)
, (1.13)

where nx,y,z are the quantum numbers of the eigenstates. Thus, the ground
exciton state has the energy:

EQDX1 =
~2π2

2µ

(
1

L2
x

+
1

L2
y

+
1

L2
z

)
. (1.14)

Obviously it depends strongly on the size of the dot. The Stranski-Krastanov
method assumes self-assembling of the quantum dots which leads to a statistical
distribution of their sizes. As a result, there is a broadening of the QD spectra
up to tens meV which is called inhomogeneous broadening (�g. 1.4). Annealing
of the structure at high temperature provokes the di�usion of atoms and blurs the
interfaces of the quantum dots. This procedure leads to a smoothing of the dots
sizes and to a narrowing of their spectra. At the same time, the average ground
state energy is increased.

Figure 1.4: Spectra of InAs/GaAs QDs photoluminescence for di�erent values of
the annealing temperature.

The main method of study of QDs is based on the analysis of their photolumi-
nescence (PL). Investigation of the e�ects based on polarization properties of PL
takes a large part in the QD �eld, however, it is not the principal subject of this
thesis, so we will not discuss the features determined by the spin dynamics of the
carriers.

Nowadays, the quantum dots are considered as very promising objects. They
are already widely exploited in light-emitting devices: light-emitting diodes and
lasers. Recently, displays on quantum dots appeared. Also, they have been used as
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active media for solar cells, single electron transistors and even qubits for quantum
computation.

1.2.3 Microcavities. Cavity polaritons

Con�nement of light in resonators has been studied since a very long time, and
maybe the most well-known resonator is the Fabry-Perot resonator. The most used
method is the con�nement in optical microcavities (MC). Nowadays, the microcavi-
ties are usually composed of two Bragg mirrors situated parallel each to other with
some spacing between. Each Bragg mirror presents a periodical structure of two
semiconductors with di�erent dielectric constants (�g. 1.5)

Figure 1.5: Scheme of a microcavity. A number of quantum wells or quantum dots
are embedded at the antinodes of the light mode. Image is taken from [24]

Tuning the thickness of layers, one can obtain the situation when the incident
light is almost totally re�ected due to the interference inside the mirror. The spectral
width of the total re�ection band is called stop-band. However, for two parallel
mirrors, a dip may appear in the re�ection spectrum. This dip corresponds to the
resonant frequency of the light mode con�ned inside the resonator. Due to the fact
that cavity photons have �xed wave-vector along the growth axis, their dispersion is
parabolic for small in-plane wave-vectors. The main feature of microcavities is that
photons could live inside very long time (up to tens picoseconds) thanks to numerous
re�ections from the two Bragg mirrors. This requires the re�ection coe�cient to be
very high, and this is why the Bragg mirrors are preferred over metallic ones, for
example.

In general, the photonic dispersion law is linear versus its wave-vector and could
be written in a form:

Eϕ = ~kcϕ, (1.15)

where cϕ is a speed of light in the medium. However, in the microcavities, where
the motion of photons is con�ned in the Z direction, the value of kz is �xed and
one should express the total photon wave-vector as k =

√
k2z + k2||, where k|| is an

in-plane wave-vector. Thanks to this, the dispersion in a case of small k|| gets the
standard parabolic form:
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Figure 1.6: Re�ection spectra of the quantum wells in a microcavity measured for
di�erent values of detunings. The presence of a double dip is a signature of the
transition to strong coupling regime. The image is taken from [25]

Eϕ ∼
~2k2||
2mϕ

. (1.16)

The e�ective mass of cavity photon is given by mϕ = kz/2cϕ and it usually takes
values of the order of 10−5me.

Usually, the microcavities are used to study the light-matter interaction and the
number of quantum wells or quantum dots are embedded inside (�g. 1.5). They
are placed at the antinodes of the con�ned light mode to increase the strength of
the interaction. If the light-exciton interaction is strong enough, one can obtain the
strong coupling regime which is exhibited by anticrossing between the light and the
exciton mode. In microcavities the strong-coupling regime for the �rst time was
observed by Claude Weisbuch et al.[25]. They studied the dip in the re�ectivity
spectrum of the QWs embedded in MC and they found that at some conditions the
dip was split (�g. 1.6), which is a signature of the anticrossing of quantum levels
because of their interaction.

To describe light-matter interaction in microcavities mathematically we could
write the following Hamiltonian:

H =
∑
k

Eϕ (k)ϕ
†
kϕk +

∑
k

Eχ (k)χ
†
kχk + ~ΩR

∑
k

(
ϕ†kχk + χ†

kϕk

)
. (1.17)

It is a simple Hamiltonian for two interacting oscillators (exciton and photon).
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Here ϕ†k and ϕk (χ†
k and χk) are the creation and destruction operators for a photon

(exciton). Eϕ (k) = ~2k2/2mϕ + δ and Eχ (k) = ~2k2/2mχ describe the parabolic
dispersions of photons and excitons. The ground state energy of the photon could
be shifted with respect to the ground state energy of the exciton by a value of δ
which is called detuning. The strength of the exciton-photon interaction is described
by the so-called Rabi frequency ΩR.

In the two-component basis (pure exciton and pure photon states) the 1.17
Hamiltonian could be presented in a matrix form:

M =

(
Eϕ (k) ~ΩR
~ΩR Eχ (k)

)
. (1.18)

It can be easily diagonalized. As a result, one can write the in-plane dispersion
expressions for the two new eigenstates:

EL (k) =
1

2

(
Eϕ (k) + Eχ (k)−

√
[Eϕ (k)− Eχ (k)]

2 + 4~2Ω2
R

)
, (1.19)

EU (k) =
1

2

(
Eϕ (k) + Eχ (k) +

√
[Eϕ (k)− Eχ (k)]

2 + 4~2Ω2
R

)
. (1.20)

Figure 1.7: Polariton dispersion calculated for a) negative, b)zero and c) positive
detuning. Image is taken from [24]

As stated in 1.1.2, the new eigenstates can be treated as new quasiparticles which
are called in general exciton-polaritons or particularly cavity polaritons (because
they appear in a microcavity). Polariton dispersion for di�erent values of detuning
is presented on �g. 1.7.

The expression for the energy splitting between the lower and the upper polariton
branches for zero in-plane wave vector reads:

∆EUL(0) =
√
δ2 + ~2Ω2

R. (1.21)
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If the broadening of polariton lines is smaller than this splitting, then the double
dip in the re�ectivity spectrum could be observed. This is a practical criterion for
the strong-coupling regime.

The polariton dispersion at small in-plane wave-vectors is almost parabolic and
could be described by an e�ective mass whose value lies between mϕ and mχ. The
value of the mass strongly depends on the detuning. Thus, δ is a very important
parameter in polaritonics. In practice, microcavities are grown that way that Bragg
mirrors are not absolutely parallel, but slightly mutually inclined (because there is
a wedge in the cavity thickness due to a special growth procedure). This allows to
tune the energy of photonic ground state and the δ by studying di�erent points on
the cavity surface.

As it was said before, the long-range exchange interaction between electron and
hole coupled to an exciton gives rise to a so-called longitudinal-transverse (or TE-
TM) energy splitting between di�erently polarized exciton states. However, for
cavity polaritons there is an additional TE-TM splitting originating from the one of
cavity photons. Since now we should no longer consider the model of two coupled
oscillators (photons and excitons) but a model of four oscillators (TE- and TM-
polarized excitons and photons), each of them has its own e�ective mass and a bare
dispersion:

ETEϕ (k) =
~2k2

2mTE
ϕ

+ δ, ETEχ (k) =
~2k2

2mTE
χ

, (1.22)

ETMϕ (k) =
~2k2

2mTM
ϕ

+ δ, ETMχ (k) =
~2k2

2mTM
χ

. (1.23)

This leads to 4 polariton branches:

ETE
L =

ETEϕ + ETEχ

2
− 1

2

√(
ETEϕ − ETEχ

)2
+ 4~2Ω2

R, (1.24)

ETML =
ETMϕ + ETMχ

2
− 1

2

√(
ETMϕ − ETMχ

)2
+ 4~2Ω2

R, (1.25)

ETE
U =

ETEϕ + ETEχ

2
+

1

2

√(
ETEϕ − ETEχ

)2
+ 4~2Ω2

R, (1.26)

ETMU =
ETMϕ + ETMχ

2
+

1

2

√(
ETMϕ − ETMχ

)2
+ 4~2Ω2

R. (1.27)

For the lower polariton branch in a case of small wave-vectors, the additional
energy coming from the TE-TM splitting could be written in a basis of (1,−1)T :

∆ELT =

(
0 βLT (ky − ikx)

2

βLT (ky + ikx)
2 0

)
, (1.28)

where βLT is an e�ective constant of the TE-TM splitting.
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Physically, it means that at some certain k one can consider an e�ective in-
plane magnetic �eld which causes "Zeeman" splitting between di�erently polarized
polaritons (we describe the splitting between polarizations as being caused by an
e�ective �eld). The direction of this �eld changes as we change the direction of the
wave-vector.

1.3 Bose-Einstein condensates

1.3.1 Basics

The story has started in 1925 by the work of Einstein [1]. Basing on the theoretical
work of Bose [26], he predicted a new phase transition in a system of noniteracting
bosons. Let us consider a ν-dimensional bosonic gas. Its distribution function is:

fB (k, T, µ) =
1

exp
(
E(k)−µ
kBT

)
− 1

. (1.29)

Here E (k) is a dispersion of a boson, µ is a chemical potential, T is a temperature
and kB - the Boltzmann constant. It's necessary to notice that 1.29 requires µ to
be negative if E(0) = 0.

To obtain the total density of particles one should integrate 1.29 over all states
in the reciprocal space:

n (T, µ) =
1

(2π)ν

∫ +∞

0
fB (k, T, µ) dνk. (1.30)

Also we can extract the density of particles in the ground state from the integral:

n0 (T, µ) = lim
R→+∞

1

Rν
1

exp
(

−µ
kBT

)
− 1

. (1.31)

Where the size of the system R tends to in�nity.
So we have:

n (T, µ) = n0 +
1

(2π)ν

∫
fB (k, T, µ) dνk. (1.32)

So far as µ is negative and it grows with the number of particles in system, there
could be a �nite nc (T, 0) for which the chemical potential turns to zero and it seems
to be the maximum particle density in the system:

nc (T, 0) = lim
µ→0

1

(2π)ν

∫
fB (k, T ) dνk. (1.33)

For the 3D-case this integral converges and could be calculated analytically,
while for the cases of ν < 3 it diverges. For a parabolic dispersion of bosons, the
calculated integral gives:
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nc(T ) = ζ
(
3/2

)(mkBT
2π~2

)3/2
, (1.34)

where ζ
(
3/2

)
is a Riemann Zeta function. Also, for a �xed density of particles

there exists a �nite temperature Tc:

Tc =

(
n

ζ(3/2)

)2/3 h2

2πmkB
. (1.35)

But what happens in the system when we exceed the nc or when we cool our
system below the Tc? It was proposed that extra particles would go to the lowest
level which was not considered in 1.33. Indeed, when the chemical potential goes
to zero, there is a divergence in eq. 1.31, so we can say that density of particles
condensed in the ground state is:

n0(T ) = n(T )− nc(T ). (1.36)

This process was called Bose-Einstein condensation of particles. So far as it is
easier to manipulate the temperature of the gas than the number of particles, we
will discuss generally Tc. For example, for the gas of rubidium atoms the critical
temperature has the order of hundreds of nanoKelvins. The Bose-Einstein conden-
sation at such extremely low temperatures was observed for the �rst time in 1995 by
Eric Cornell and Carl Wieman at the University of Colorado at Boulder [2]. For this
work, Cornell, Wieman, and Wolfgang Ketterle received the Nobel Prize in Physics
in 2001.

For the systems with reduced dimensionality (2D, 1D, 0D) the integral 1.33
diverges and the logic described above is not valid anymore. However, real semi-
conductor nanostructures which provide 2(1,0)D systems have �nite sizes. It means
that in this case integral 1.33 converges as well, even for smaller dimensionalities,
and the quasi-condensation is possible.

Also, the possibility of the low-temperature phase transition to the super�uid
state of the 2D bosonic system was considered by Berezinskii, Kosterlitz and Thou-
less [27, 28] in the case of interacting bosons. The BKT transition was observed in
a 2D gas of Rubidium atoms in 2006 [29].

As it could be seen in 1.35, Tc is inversely proportional to the mass of particles.
The semiconductor systems provide numerous bosonic quasiparticles which are much
lighter than atoms, what could simplify their condensation conditions. For example,
the mass of an exciton is approximatively 105 times less than the mass of rubidium
atom. Moreover, cavity polaritons could be 109 times lighter than atoms, which
in theory leads to the room temperature values of Tc. Condensation of polaritons
was �rst demonstrated very recently - in 2006 in the work of Kasprzak et. al. [30].
Fig. 1.8 shows the angle distribution of the cavity emission and its dispersion for
di�erent values of non-resonant pumping density. When the number of polaritons
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exceeds the value of nc, the phase transition occurs which provides sharp peaks both
in angular distribution and in dispersion.

Also in 2012, the spontaneous coherence in a cold exciton gas was reported [31]
what could be the evidence of the exciton condensation.

(a)

(b)

Figure 1.8: The angle distribution of the emission intensity (upper panels) and the
dispersion of emission (lower panels) for di�erent values of the density of excitation.
Image is taken from [30]

1.3.2 Polariton scattering. Semiclassical Boltzmann equations

In classical statistics, the dynamics of the distribution function (the k-state popu-
lation nk) is typically described by the Boltzmann equations:

dnk
dt

=
∑
k′

Wk′→knk′ − nk
∑
k′

Wk→k′ , (1.37)

where the sums go over all other states di�erent from k and Wk′→k′′ is a total
scattering rate between k′ and k′′ states.

However, in our consideration the quantum properties of particles are very
important. Uhlenbeck and Gropper in 1932 proposed a new concept of kinetic
equations[32] which takes into account the quantum nature of particles. They are
called semi-classical Boltzmann equations and have a form for bosons:
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dnk
dt

= (1 + nk)
∑
k′

Wk′→knk′ − nk
∑
k′

Wk→k′(1 + nk), (1.38)

and for fermions:

dnk
dt

= (1− nk)
∑
k′

Wk′→knk′ − nk
∑
k′

Wk→k′(1− nk). (1.39)

Unlike the atoms, which could live almost in�nitely long (there is a certain escape
rate for atomic condensates as well, which is even used for their evaporative cooling)
and therefore could be easily thermalized at any temperature, excitons and exciton-
polaitons have �nite lifetime. This is why, to keep the number of particles in the
system constant one should have a permanent source of particles. In semiconductor
nanostructures it could be obtained by a non-resonant (coherent or not) pumping
of the high-energy states. Then, the quasiparticles could thermalize by scattering
on phonons, if their lifetime is much longer than the e�ective times of scattering
processes. We can introduce phenomenologically the pumping (Pk) and the lifetime
(Γk) to 1.38:

dnk
dt

= Pk − nkΓk + (1 + nk)
∑
k′

Wk′→knk′ − nk
∑
k′

Wk→k′(1 + nk). (1.40)

There are few main mechanisms of polariton scattering: scattering on the struc-
tural disorder, polariton-phonon scattering and polariton-polariton scattering. In
the processes of the �rst type, the propagating polaritons interact with the struc-
tural disorder of the system. However, this interaction can not change the absolute
value of the polariton wave-vector and the scattering occurs on an elastic circle
in reciprocal space. One could take this scattering into account by considering a
cylindrically symmetrical distribution of polaritons, which is the main result of such
scattering.

The second scattering mechanism - polariton-phonon scattering - consists of two
parts: interaction with 2D optical and 3D acoustic phonons. Optical phonons carry
relatively large energies, and they are responsible for the initial polariton relaxation.
However, when polaritons relax to the energies below 20 meV (the activation energy
of an LO phonon), this scattering process becomes ine�cient. After that, polaritons
could relax further by the interaction with acoustic phonons. This interaction is
mediated by the deformation potential and involves relatively small amounts of
energy.

Finally, polariton-polariton scattering can be very a e�cient process of polariton
thermalization, however, this process conserves the total energy of the polariton
system. Scattering rate here depends strongly on polariton density. This process
is responsible for an important non-linear optical e�ect called Optical Parametric
Oscillator (OPO) observed �rst for polaritons by P. Savvidis et. al. in 2000 [33] and
described theoretically by Ciuti et. al. in [34].
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Figure 1.9: Experimental observation of the bottleneck e�ect. The highest intensity
of emission is observed from the energies which correspond to the bottleneck region.
Image is taken from [37]

As it was said, in order to obtain the condensation of polaritons in the ground
state, polaritons should relax faster than they decay. However, due to the fact that
most scattering goes via the excitonic part of the polariton and that polaritonic
dispersion becomes very steep at small k-vectors, there is an e�ective deceleration
of relaxation processes at the region called "bottleneck" [35, 36, 37]. Experimentally
it can be observed by an enhanced intensity of cavity photoluminescence at certain
k (�g. 1.9). In order to overcome the bottleneck e�ect, high densities of pumping or
cavities with longer lifetimes and positive detuning between photonic and excitonic
fractions are used.

The general behavior of polaritonic system is schematically illustrated on �g.1.10.

1.3.3 Bogoliubov theory and Gross-Pitaevskii equations

The ideal BEC consists of non-interacting bosons. However, real bosons are weakly-
interacting. The Hamiltonian for the system of uniformely distributed weakly-
interacting bosons could be written in second quantization terms as:

Ĥ =
∑
k

~2k2

2m
â†kâk +

α

2L3

∑
k1,k2,q

â†k1+qâ
†
k2−qâk1 âk2 , (1.41)

where âk, â
†
k are annihilation and creation operators for a particle with k wave-

vector, α is an interaction constant and L is a size of a system.
We can separate the ground state and excited states in the Hamiltonian:
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Figure 1.10: Scheme of the pumping and scattering processes for cavity polaritons.
Image is taken from [38]

Ĥ =
α

2L3
â†0â

†
0â0â0+

∑
k

~2k2

2m
â†kâk+

α

2L3

∑
k ̸=0

(
4â†0â

†
kâ0âk + â†kâ

†
−kâ0â0 + â†0â

†
0âkâ−k

)
.

(1.42)
Assuming that the total number of particles N is conserved and large, we can

write the normalization relation N = â†0â0 +
∑

k ̸=0 â
†
kâk. Finally, we get:

Ĥ =
1

2
αnN +

∑
k

~2k2

2m
â†kâk +

1

2
αn
∑
k ̸=0

(
2â†kâk + â†kâ

†
−k + âkâ−k

)
. (1.43)

This Hamiltonian could be diagonalized by Bogoliubov linear
transformations[39]:

âk = uk b̂k + v−k b̂
†
−k,

â†k = uk b̂
†
k + v−k b̂−k.

(1.44)

Two parameters uk, v−k can be written as:

uk, v−k = ±

(
~2k2

/
2m+ αn

2ε(k)
± 1

2

)1/2

, (1.45)

where the dispersion of excitation spectrum is:

ε(k) = ±

[
αn

m
~2k2 +

(
~2k2

2m

)2
]1/2

. (1.46)

As one can see, there are two dispersion branches - with positive and negative
values of energy. The dispersion is plotted on �g. 1.11.
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Figure 1.11: Black line shows positive and negative branches of Bogoliubov disper-
sion, when red line is the dispersion for non-interacting particles.

In new basis the Hamiltonian 1.43 has a simple form:

Ĥ = E0 +
∑
k ̸=0

ε(k)b̂†k b̂k, (1.47)

which is a Hamiltonian for a system of non-interacting quasi-particles, so-called
bogolons, which could be considered as collective excitations. By this transforma-
tion, the ground state of bosons at zero temperature turned to a vacuum state for
bogolons. The energy of the ground state E0 in the lowest order calculations is equal
to 1

2αnN . Bogoliubov excitation spectrum �rstly was observed in 1999 in the work
[40] on atomic BEC.

The dispersion law 1.46 for bogolons with small wave-vectors is linear by k

(sound-like, �g.1.11). By this we can derive the e�ective sound velocity in the
condensate:

c =

√
αn

m
. (1.48)

In opposite case of large wave-vectors the dispersion becomes parabolic and has
a free-particle form.

Interaction constant α for excitons and cavity polaritons is coming mainly from
exciton-exciton exchange interaction. It is positive, which means repulsive interac-
tion between particles, and can be written in a form [41]:

α = 6EbX
2
Ca

2
B. (1.49)

Here Eb is an exciton binding energy, XC is the excitonic fraction of polariton
and aB is a Bohr radius.

As it was said, Bogoliubov theory considered an in�nite homogeneous Bose gas.
In 1961 Gross[42] and Pitaevskii[43] independently have extended the Bogoliubov
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theory to the case of nonuniform condensate. The main idea was to describe by a
classical �eld not only the ground state, but all other states in the system:

ψ(r, t) = ψ0(r)e
−iµt +

∑
k ̸=0

ψke
−i[k·r−(µ±ω)t]. (1.50)

Putting 1.50 to the Heisenberg equation of motion one will get:

i~
d

dt
ψ(r, t) =

[
− ~
2m

∇2 + α|ψ(r, t)|2
]
ψ(r, t). (1.51)

This equation is called Gross-Pitaevskii equation and it is widely used to describe
inhomogeneous coherent Bose gases. However, 1.53 does not take into account the
decoherence and spontaneous scattering between states.

Finally, since we consider quasiparticles with �nite lifetime τ , we can intro-
duce phenomenologically the corresponding term to 1.53. Also, often the pumping
term P is introduced into the equation which simulates the coherent quasi-resonant
pumping. The �nal Gross-Pitaevskii equation could be written as:

i~
d

dt
ψ(r, t) =

[
− ~
2m

∇2 + α|ψ(r, t)|2 − i~
2τ

]
ψ(r, t) + P. (1.52)

Polaritons are formed by excitons and photons which total angular momentum
projection on Z could take two values: ±1. The polariton-polariton interaction is
coming from their excitonic fractions and it was found to be spin-anisotropic[44, 45],
notably co-polarized excitons interact strongly, and their interaction is repulsive,
while polaritons with opposite spins are slightly mutually attracted. Because of
that, it is reasonable to consider a two-component spinor polariton condensate.
Let's designate σ± polarized states as the ψ± functions. We will discuss the nature
of exciton-exciton interaction later, however, we will introduce two interaction con-
stants: α1 for a triplet state and α2 for a singlet state. Taking into account TE-TM
splitting (eq. 1.28) we can rewrite the Gross-Pitaevskii equation in a spinor form:

i~
∂ψ±
∂t

= − ~2

2m∗∆ψ± + α1|ψ±|2ψ± + α2|ψ∓|2ψ± + βLT (∂y∓i∂x)2ψ∓ − i~
2τ
ψ± + P±.

(1.53)
This is the most general form of the Gross-Pitaevskii equation that will be used

throughout this thesis.
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The interactions between di�erent quasiparticles in solids often lead to interest-
ing e�ects and sometimes, in the case of strong interaction, could provide quasipar-
ticles of a new type. For example, exciton-polaritons or cavity polaritons appear in
the microcavities [1] as the elementary excitations formed by the coupling of excitons
and photons. However, in the solids there is another type of collective excitations
which is related to collective oscillations of the crystal lattice and which is usually
described in terms of quasiparticles called phonons. Phonons can interact both with
photons and with excitons.

The interaction between lattice oscillations and light has been studied for a
long time, and it would be fare to say, that history of its investigation has its
beginning in the works of Rayleigh[2, 3]. In spite of the fact, that in these works
Rayleigh considered the elastic scattering of light by disordered media (gas) and
not by a crystal, it was the �rst successful attempt to describe the scattering of
electromagnetic waves by atoms.
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Later, in the beginning of XX century the inelastic scattering was described
and observed in two independent works. First - done by Raman - was performed
in liquids[4]. The author has shown the appearance of additional spectral lines in
the scattered light, which come from the vibrational and rotational excitations of
molecules. At the same time, Landsberg and Mandelstam worked on the inelastic
scattering by solids. Predicted theoretically by Mandelstam and Brillouin[5], this
e�ect was �nally observed and described in the work[6]. However, the e�ect oc-
curred to be much stronger than it was expected. It has indicated the fundamental
di�erence between solids and liquids, and revealed the necessity of individual theory
of oscillations in solids.

If the frequency of the electro-magnetic wave, propagating in the crystal, is
close to the exciton frequency, it is necessary to speak about exciton-polariton and
consider the excitonic part as well. Carriers, composing the exciton, could e�ectively
interact with lattice oscillations. Moreover, polaritons demonstrate e�cient energy
relaxation because of their excitonic part.

Because the exciton-phonon interaction is weak relatively to exciton-photon in-
teraction, in general, it causes only Brillouin scattering. However, it was predicted
by A. L. Ivanov et al.[7], that in a case of strong electro-magnetic wave, some sort
of strong coupling between exciton-polaritons and phonons could occur, giving rise
to new quasi-particle - phonoriton. Several experimental works have shown indi-
rect evidence of this e�ect[8, 9], but because in the bulk both exciton-photon and
exciton-phonon interactions are not so strong, directly the e�ect still was not ob-
served.

The situation gets better with the reducing of the dimensionality. It was recently
shown[10] that 2D cavity polaritons could demonstrate a signi�cant reconstruction of
their dispersion when interacting with a strong 2D surface acoustic wave. The theory
of interaction between the 2D polaritons and a 2D acoustic wave was developed by
A. L. Ivanov[11]. The phonon �eld has been treated as an external classical �eld,
and its reduced dimensionality was obtained due to strong coherent external 2D
pumping. However, it could be reduced also by embedding an acoustic cavity or an
acoustic waveguide inside the optical cavity, like in [12]

In our work[13] we consider the interaction between a condensate of quantum
well excitons or cavity exciton-polaritons and a coherent phonon �eld, possessing
the same dimensionality. We develop a theory of interaction between phonons and
bogolons (elementary excitations of the condensate) and we show that at some condi-
tions the strong coupling regime could be obtained, resulting in a strong modi�cation
of the dispersion, and even in the appearance of a "roton instability" region.

This chapter will be organized as follows. In the �rst part I will describe the ba-
sics of phonons and of electron (exciton)-phonon interaction. Further, I will discuss
the recent theoretical and experimental works performed on the strong acousto-
polariton interaction in the systems with reduced dimensionality. And �nally, I will
explain the main idea of our work, introduce our theoretical model and describe the
results that we have obtained.
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2.1 Basics of exciton-phonon interaction

2.1.1 Phonons

Let us consider an in�nite 1D lattice of equal atoms mutually bound by elastic force
described by a coe�cient C. One can write the following equation to describe the
motion of n-th atom:

m
d2un

dt2
= −2Cun + C(un+1 + un−1), (2.1)

where un is the n-th atoms coordinate. This is a wave equation, so we can make
a transformation from real coordinates un, which describe the position of each atom,
to normal coordinates Uq, which describe di�erent waves with di�erent wavevectors:

un =
∑
q

Uqe
iqnd. (2.2)

Then, the wave equation will read:

m
d2 Uq
d t2

= 2C(cos qd− 1)Uq. (2.3)

The solutions of this equation can be easily found:

Uq = Aqe
iωqt, ωq =

√
2C

m
(1− cos qd). (2.4)

So, the normal coordinates describe di�erent vibrational modes, whose frequency
obeys its own dispersion law. By this approach, one can treat these oscillations as a
set of quasiparticles. This concept was �rst introduced by Igor Tamm in 1930 and
the quasiparticles were called phonons by Yakov Frenkel.

Now, if we consider that 1D lattice is composed by 2 di�erent types of atoms
with masses m1,2 with the spacing between two equal atoms a, we will obtain two
di�erent dispersion branches:

ω2
± = C

(
1

m1
+

1

m2

)
± C

√(
1

m1
+

1

m2

)2

− 4 sin2(qa/2)

m1m2
. (2.5)

For small values of wave-vector q we can write:

ω− =

√
C

2(m1 +m2)
qa, ω+ =

√
2C(m1 +m2)

m1m2
. (2.6)

The �rst dispersion branch is linear by q and the quasiparticles corresponding
to this branch are called acoustic phonons. The second curve is nonzero for q = 0

and is called the dispersion branch of optical phonons. The schematic image of the
two dispersion branches is shown at 2.1. Physically it means, that in the solids with
an elementary cell containing more than one atom, a new type of phonons appears.
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Figure 2.1: Optical and acoustic phonon dispersion branches. Image is taken from
[14]

Moreover, these phonons could carry signi�cant amounts of energy even with small
wave-vectors.

Mandelstam and Landsberg in their experiment expected to observe the scat-
tering of light by acoustic phonons, which should result in additional spectral lines
close to the general line. However, they surprisingly obtained satellite lines situated
quite far from the main one, which has been interpreted as an experimental evidence
of the interaction with the optical phonons.

2.1.2 Exciton-phonon scattering

The common life cycle of an exciton or an exciton-polariton starts with its optical
or electrical generation (electrons and holes are formed, and then they bind into
excitons) at high-energy states, followed by its energy relaxation and decay. If the
energy of hot excitons is high enough, the initial scattering process is mediated
mainly by optical phonons. In each scattering act, quite large amounts of energy
are exchanged - up to tens meV . The scattering is driven by so called Frohlich inter-
action, by the name of Herbert Frohlich - German-Brittish physicist, who described
theoretically[15] the interaction between electrons and optical phonons in solids.

In the approximation of long wavelength optical phonons, one can consider the
constant lattice oscillation frequency ωLO. By this the energy of interaction between
an electron and LO phonon with wave-vector q [15]:

Eq
e−LO ∼ 4πe2

a3k
√
2N

sin(ωLOt+ kr), (2.7)

where the sum goes over all possible phonon states, e is a charge of an electron,
a is a size of an unit cell and N is a number of unit cells in a crystal. The matrix
element for the scattering of an electron from k-state to k'-state reads:
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Mkk′q =
2πe2

a3q
√
2N

√
~([0, 1] + nq)

2µωLO
. (2.8)

Here nq is a number of q-phonons and µ = m+m−
m++m−

- the reduced mass of the
unit cell, composed of positive and negative ions with masses m+ and m−. [0, 1]

corresponds to the emission or the absorption of the phonon.
For a 2D exciton con�ned in a quantum well with S and L dimensions, the

corresponding matrix element would be:

MLO
kk′q =

−e
q

√
~ωLO([0, 1] + nq)

2SL

(
1

ε∞
− 1

εs

)
=

MLO
0

q
√
SL

. (2.9)

Here, ε∞,s are dielectric constants for high and low frequencies.
However, it was shown [16, 17], that in a QW one should consider also "slab" or

con�ned LO modes. The wave-vector of phonon becomes quantized in z-direction
and it takes values qνz = νπ/L where ν is an integer. However, the overlap integral
between phonon and exciton wave-function quickly vanishes with ν. Considering
only �rst con�ned mode for LO-phonon, one can write [17, 18]:

MLO
kk′q =

MLO
0√∣∣q||∣∣2 + (π/L)2

√
SL

. (2.10)

When the exciton relaxes to the lower energy states, its energy is not su�cient
any more to excite optical phonons and the scattering on long wavelength acoustic
phonons comes to the fore. Longitudinal acoustic oscillations of the crystal lattice
e�ectively modulate the size of its unit cells, what in its turn changes the energy
of electronic bands. The energy shift is linear by the phonon amplitude and is
called deformation potential. The matrix element of electron (hole)-acoustic phonon
interaction reads [18]:

MLA
kk′q = De,h

√
~q([0, 1] + nq)

2ρcsV
I(k, k′, q). (2.11)

Here De,h is a coe�cient of the deformation potential for the electrons (holes),
ρ is the density, cs is the speed of sound, V is the volume of crystal (normalization
volume) and I(k, k′, q) is the overlap integral between the wavefunctions of the
electrons (holes) and the phonons.

In a case of 2D carriers coupled to 3D phonon gas, the wave-vector conservation
law applies to in-plane wave-vectors only. The value of qz - z-component of emitted
or absorpted phonons wave-vector could take any value, while the in-plane q|| is
de�ned by initial and �nal states of the carrier, by the momentum conservation law.

Besides the interaction with LA-phonons in some materials there is an e�ective
mechanism of interaction with TA-phonons, mediated by piezoelectricity. The ma-
trix element of this interaction is proportional to q3/2. Piezoelectric phonons could
be considered as an induced electric �eld inside the semiconductor, they strongly



32

Chapter 2. Coherent interactions between phonons and exciton or

exciton-polariton condensates

a�ect the motion of charged carriers but they do not a�ect the width of the band
gap, and their in�uence on the excitonic behavior is not so strong. That is why in
my studies I was interested only in the LA-phonons.

2.1.3 Phonoritons

The �rst attempt to describe strong coupling regime between acoustic oscillations
and an electromagnetic wave propagating in solid was done by A. L. Ivanov and L.
V. Keldysh in 1982 [7, 19]. Authors considered a strong electromagnetic wave with
a frequency close to the exciton resonant frequency. If the number of polaritons
in the system is high enough, the scattering processes on phonons become much
faster than polariton decay. Because the phonon dispersion is linear, the interaction
couples the initial state k with two �nal states k',k� : anti-Stokes (k' = k+q) which
is followed by an absorption of a phonon and Stokes (k� = k + q'),followed by an
emission of a phonon. In the work [7], the authors have analyzed only the case of
anti-Stokes scattering. They have described the modi�cation of the dispersion in
the regions where the phonon and polariton dispersion curves cross each other (�g.
2.2).

Figure 2.2: Dashed lines - pure polaritonic and acoustic dispersions. Solid lines -
the renormalized phonoriton dispersion. Image is taken from [7]

In terms of second quantization operators ak, bk, ck for excitons, photons and
phonons respectively, the Hamiltonian reads:
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H =
∑
k

~
[
ωexk a

†
kak + ωkb

†
kbk + iΩc

2 (a†kbk − akb
†
k)
]

+
∑
q
~Ωqc†qcq +

∑
i,j,k,q

[
iM

′
i,j(k − q)a†kaq(ck−q + c†q−k) + c.c.

]
.

(2.12)

Here ωk is the energy of the photon: ωk = c|k|/~, and ωexk is the energy of the
exciton with momentum k:ωexk = ωex0 +~k2/2mex where mex is the e�ective mass of
exciton, Ωp is the phonon frequency. The interaction between oscillators is described
in the following terms: Ωc denotes the photon-exciton interaction and M(k − q) is
the matrix element of exciton-phonon interaction.

Now, if we write the exciton-photon part in the polariton basis, we can obtain
the standard polariton dispersion ω(k). Considering strong pumping close to the
exciton resonance at k0, we can take into account the scattering into two �nal states.
This renormalizes the polariton dispersion:

ω±
1,2(k) =

1
2 [ω(k)± Ωk0−k − ωk0 ]

+(−)12

√
[ω1,2(k)∓ Ωk0−k − ωk0 ]

2 ±Ψex(k)Q2,
(2.13)

Q =
√
V N0M(k − k0). (2.14)

Here ± states anti-Stokes (−) and Stokes (+) scattering processes, Ψex(k) - the
excitonic fraction of the polariton, V is the volume and N0 is the number of po-
laritons. Thanks to the exciton-phonon interaction, two new gaps appear. They
are proportional to the square root of the intensity of the pumping laser and to the
strength of the exiton-phonon interaction. However, because the interaction is quite
weak, the direct observation of the gaps in spectra seems to be very complicated.
However, there were reports on indirect observation of phonoritons [8, 9], obtained
by polariton-LO phonon anti-Stokes scattering. In the �rst work [8], the authors an-
alyzed the transmission spectra of CdS under strong external pumping. They found
strong increasing of the transmission spectra at the position where the phonoriton
gap should occur (�g.2.3). Also Brodin, Kadan, and Matskosov'[9] observed a dip
in photoluminescence spectra of HgI2.

Finally, the LA-phonoriton was observed in a Cu2O bulk crystal in the pres-
ence of a coherent orthoexcitonic polariton by stimulated two-photon emission
spectroscopy[20].

2.2 Exciton-phonon interaction in 2D

Lifetime of cavity polaritons is signi�cantly larger than that of bulk polaritons. This
fact allows to obtain large amount of polaritons even at moderate pump intensities,
which in its turn simpli�es, in theory, the production of strong coupling between
phonons and polaritons. However, 2D polaritons couple with a 3D phonon bath,
which produces nothing but incoherent scattering of polaritons. To obtain renormal-
ization of polaritonic dispersion, one should reduce the dimensionality of phonons as
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Figure 2.3: The transmission coe�cient K of CdS vs wavelength λ with (solid line)
and without (dashed line) strong external pumping. Image is taken from [8]

well. There are two ways for this: either con�ne acoustic oscillations in a 2D acous-
tic cavity or waveguide, or consider externally pumped strong surface acoustic wave
(SAW), which could be considered as a macroscopically occupied coherent phonon
state. This section is devoted to the discussion of di�erent works on the subject of
coupling between 2D excitons or cavity polaritons and 2D phonons.

2.2.1 SAW

Despite the fact that the surface waves in liquids and even in solids (seismic waves)
have been common throughout history, it was Rayleigh, who �rst described in 1885
the surface acoustic waves in elastic solids [21]. He developed the theory, describing
the oscillating motion of surface atoms. However, the massive experimental studies
of solid SAW have started in the 60s by the work of White and Voltmer [22], who
invented the thin-�lm interdigital transducer (IDT). IDT consists of two interlocking
comb-shaped metallic coatings applied to the surface of a piezoelectric material (�g.
2.4). Applying voltage to the thin �lm, one can create and manipulate the surface
acoustic wave, and vice versa - IDT could detect propagating SAW.

Such structure could be used for analogue electrical �lters, correlators, trans-
formers, etc. Presently, the SAWs are widely used in radio- and telecommunications,
and in microelectronics. Also, SAWs could be implemented in sensors of numerous
types.

And of course, surface acoustic waves are good objects to study the acousto-
optical interaction in semiconductor nanostructures, as far as they could provide
micrometer-scale periodical potential. For example, in 1997 Rocke et al. proposed
[24] to use the SAW to dissociate the photogenerated excitons and by this, to sep-
arate holes and electrons in space. They observed strong increasing of radiative
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Figure 2.4: Schematic representation of an IDT. Image is taken from [23]

lifetime of the system as well as spatial transportation of carriers.
With the rise of the interest to the optical con�nement, numerous works were

done on acoustically induced optical and polariton superlattices. It has begun with
the studies of the waveguided light di�raction on the surface acoustic waves [25,
26]. Later in 2005, M. M. de Lima et al. demonstrated a formation of an optical
superlattice driven by a surface acoustic wave [27] in optical microcavities. The SAW
periodically modulates the dielectric constant in the medium, which folds the optical
in-plane dispersion at the Bragg vector. The authors have shown the splitting of
the dip in the cavity re�ection spectra into two dips (�g. 2.5)

Figure 2.5: Normal incidence re�ectivity of the cavity in the absence of a SAW (thin
line) and under SAWs (green and dotted line). Image is taken from [27]

The theory of polaritons in the presence of a strong surface acoustic wave was
developed in works [11, 28] by A. Ivanov et al. The authors wrote the equations
for two coupled oscillators - electromagnetic E and polarization P (exciton) wave
propagating in plane of the structure:

[
∂2

∂x2
+ ∂2

∂z2
− εb(z)

c2
∂2

∂t2

]
E = 4π

c2
∂2

∂t2
P + Jext,[

∂2

∂t2
+ 2γx

∂
∂t + ω2

T − ~ωT
MX

∂2

∂x2
− 4mx

kωT cos(Ωack t− kx)
]
P = Ω2

x−γE.
(2.15)
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Here ~ωT and Mx are the energy and the in-plane mass of the exciton, Ωx−γ
is the matrix element of the exciton-photon interaction, 2γx is the rate of incoher-
ent exciton scattering, Jext - the external optical pumping and εb is the dielectric
constant. Acoustic wave propagating in x-direction is presented as an external pe-
riodic potential for the exciton part only and is characterized by the frequency Ωack ,
wave-vector k and exciton-phonon coupling coe�cient mx

k, which comes from the
deformation and the piezoelectric potentials.

The authors have predicted the formation of mini-Brillouin bands as well as the
reconstruction of re�ectivity spectra (�g. 2.6). It was predicted that the energy
gaps produced by the SAW in polariton spectra could reach the values of several
meV .

Figure 2.6: Left panel shows the initial (bold solid line) and renormalized by SAW
(thin lines) polariton dispersions. Right panel shows the re�ection spectra with
(thin lines) and without (bold lines) the SAW. The inset shows the re�ection dip
for n = 3 SAW-phonon transition. Image is taken from [28]

The idea of utilization of a SAW as a superlattice potential for cavity polaritons
was developed experimentally in the work [29], where authors observed the folding
of polariton dispersion. Also, the authors have followed the reduction of polariton
dimensionality from 2D to 1D, which manifested in the formation of the number of
polariton stripes. These stripes appeared to be weakly coupled, and the di�raction
experiments demonstrated coherency in their reemission under optical excitation.
In the work [30], the dimensionality of polaritons was reduced to 0D by two surface
acoustic waves propagating in orthogonal directions (�g. 2.7).

The works on coupling between coherent acoustic �eld and polariton condensates
appeared very recently [10, 30]. Authors considered condensation of polaritons in 1D
and 0D acoustically driven lattices. The coherency between condensates in neighbor
potential wells was studied. Also, it was shown, that localization of polaritons
results in two e�ects: 1) the reduction of the condensate formation threshold pump
intensity, 2) with the increasing of polariton density, the SAW potential could be
e�ectively screened by polariton-polariton repulsive interaction.
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Figure 2.7: (a),(b) SAW square lattice potential. (c),(e) Angular resolved PL spectra
maps the planar dispersion of the photon-like polaritons with (e) and without (c)
SAW. (d) Spatially resolved spectra below threshold. Image is taken from [30]

.

2.2.2 Acoustic cavities and waveguides

Since phonons are acoustic waves, it is natural to con�ne them in waveguides.
Waveguides usually consist of one central and two boundary layers with acoustic
refraction coe�cients n1 and n2 respectively. If we take the z-axis as the growth
axis and consider an acoustic wave propagating in x direction with an in-plane wave-
vector q|| inside a waveguide, we can write the following equations for its amplitude
inside the waveguide[31]:

ϕ = ϕ0 cos(κz), (2.16)

and in side layers:

ϕ = ϕ0 cos(κd)e
−γ(|z|−d). (2.17)

We consider a waveguide width 2d and we count z from the middle of the waveg-
uide. The parameters κ and γ are coupled via the following equations:

tanκd = γ
κ ,

γ2n21 =
(
n21 − n22

)
q2|| − n22κ

2.
(2.18)

Also, acoustic waves could be con�ned in acoustic microcavity instead of a waveg-
uide. Recently, the optical generation and detection of coherent acoustic phonons
was studied [12, 32]. In these works, the acoustic microcavity was embedded in an
optical microcavity, as shown at �g.2.8

The idea of acoustic cavity is the same as for light cavity. However, acoustic
wavelengths under study were smaller than optic ones, and it requires the acoustic
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Figure 2.8: Top: scheme of acoustic cavity embedded in the optical cavity. Lower
panel - spatial distribution of the light (red curve) and sound (black curve) wave
intensities. Image is taken from [12]

.

cavity to be embedded inside the optical. In their latest work [33], authors have
constructed a single cavity both for phonons and photons, so they had identical
stopbands for both types of excitations. In this work they reported observation of
the strong coupling regime between subterahertz phonons and near-infrared light.

2.3 Coherent interactions between phonons and exciton

or exciton-polariton condensates

In our work [13] we consider the interaction between a condensate of quantum
well excitons or cavity exciton polaritons and a coherent phonon �eld possessing
the same dimensionality [two (2D) or one dimension (1D)]. If the phonons are not
con�ned to the same dimensionality, they play the role of an incoherent reservoir
providing exciton or exciton-polariton relaxation, which is not the case we would
like to consider here in order to obtain strong coupling. In the phonon-photon
or phonon-exciton coherent interaction models developed previously [11, 28] the
phonon �eld has usually been treated as an external potential. This approach is
valid under strong external pumping, whereas the model we develop can be used
both for the external pumping case and for the case when phonons are created by
the excitons themselves.



2.3. Coherent interactions between phonons and exciton or

exciton-polariton condensates 39

2.3.1 Formalism

We treat our system as consisting of three interacting classical �elds: complex �elds
ψ± corresponding to right and left circular polarized excitons or exciton-polaritons
and a real vector �eld of the lattice displacements u corresponding to phonons.
The energy of polariton or exciton system is measured from the minimum of the
dispersion curve. The model Lagrangian of the system, that accounts for only
longitudinal acoustic waves (i.e. assuming shear modulus to be zero) reads:

L =
i~
2

∑
s=±

(ψs∂tψ
∗
s − ψ∗

s∂tψs)−
~2

2m

∑
s=±

(∇ψs) (∇ψ∗
s) + (2.19)

1

2

{
ρ (∂tu)

2 − Y
[
(∂xux)

2 + (∂yuy)
2
]}

−

−α1

2

∑
s=±

|ψs|4 − α2|ψ+|2|ψ−|2 − gdiv(u)
∑
s=±

|ψs|2.

The �rst line corresponds to free polaritons described by means of their macro-
scopic wavefunctions ψs and acoustic phonons described in terms of the lattice dis-
placement �eld u = (ux,uy). The second line to their mutual interactions: the term
with α1 describes the interactions of the polaritons of the same circular polarization,
term with α2- the interactions of the polaritons of the opposite circular polarization,
term with g- polariton-coherent phonon interaction. For the moment, we neglect the
wavevector dependence of this interaction and g should be considered as a constant
determined by the deformation potential. m is an e�ective mass of cavity polaritons
and ρ and Y are the density and the bulk elastic modulus, determining the velocity
cs =

√
Y/ρ of the longitudinal acoustic wave for zero shear modulus.

The equations of motion for the considered �elds are Lagrange equations (ψs
and ψ∗

s should be considered as independent functions):

∂

∂t

(
∂L

∂(∂tψs)

)
+
∑
i=x,y

∂

∂xi

(
∂L

∂(∂xiψs)

)
−
(
∂L
∂ψs

)
= 0, (2.20)

∂

∂t

(
∂L

∂(∂tui)

)
+
∑
i=x,y

∂

∂xi

(
∂L

∂(∂xiui)

)
−
(
∂L
∂ui

)
= 0. (2.21)

This gives:

i~
∂ψs
∂t

= − ~2

2m
∇2ψs +

(
α1|ψs|2 + α2|ψ−s|2

)
ψs + gdiv(u)ψs, (2.22)

ρ
∂2u

∂t2
= Y∇2u+ g∇

[∑
s=±

|ψs|2
]
. (2.23)

Taking the divergence of the second equation and introducing a scalar phonon
�eld
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ϕ = div(u), (2.24)

one gets

i~
∂ψs
∂t

= − ~2

2m
∇2ψs +

(
α1|ψs|2 + α2|ψ−s|2

)
ψs + gϕψs, (2.25)

ρ
∂2ϕ

∂t2
= ∇2

[
Y ϕ+ g

∑
s=±

|ψs|2
]
. (2.26)

These equations describe the motion and interaction of two �elds: polarization
and acoustic. However, both �eld could escape and could be introduced to the
system, so one have to introduce phenomenologically the terms corresponding to
the resonant pumping of the polariton and phonon modes (Pψ ans Pϕ respectively)
and the �nite lifetime of the polaritons and phonons described by terms containing
γψ and γϕ respectively. Finally we get:

i~
∂ψs
∂t

= − ~2

2m
∇2ψs +

(
α1|ψs|2 + α2|ψ−s|2

)
ψs + gϕψs − (2.27)

−iγψψs + Pψ(r, t),

ρ
∂2ϕ

∂t2
= ∇2

[
Y ϕ+ g

∑
s=±

|ψs|2
]
−
ργϕ
~
∂ϕ

∂t
+ Pph(r, t). (2.28)

2.3.2 Analytical solution

In this section we calculate analytically the dispersion of excitations of coupled
exciton or exciton-polariton and phonon modes with a k-independent interaction g.
For simplicity, we neglect here the spin of the polaritons, as our main goal here is
to investigate the e�ects of spin- independent polariton- phonon coherent coupling.
Then, one has the system of the equations for two coupled �elds:

i~
∂ψ

∂t
= −iγψ − ~2

2m
∇2ψ + α|ψ|2ψ + gϕψ + P (r, t), (2.29)

ρ
∂2ϕ

∂t2
= ∇2

[
Y ϕ+ g|ψ|2

]
−
ργϕ
~
∂ϕ

∂t
+ Pph(r, t). (2.30)

Terms gϕψ and g|ψ|2 describe the coupling and, therefore, the scattering between
two coherent �elds: exciton-polariton and acoustic. However, these equations could
not express the loss of coherency usually accompanied to the scattering processes.

Now, consider a spatially homogeneous resonant pump of the polaritonic �eld
under normal incidence, P = P0e

−iω0t, Pph = 0. Then, introducing ψ = Ψe−iω0t one
gets
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i~
∂Ψ

∂t
= −(~ω0 + iγψ)Ψ− ~2

2m
∇2Ψ+ α|Ψ|2Ψ+ gϕΨ+ P0, (2.31)

ρ
∂2ϕ

∂t2
= ∇2

[
Y ϕ+ g|Ψ|2

]
−
ργϕ
~
∂ϕ

∂t
. (2.32)

Looking for a spatially homogeneous stationary solution Ψ0, ϕ0 one gets

− (ω0 + iγψ)Ψ0 + α|Ψ0|2Ψ0 + gϕ0Ψ0 + P0 = 0, (2.33)

Y ϕ0 + g|Ψ0|2 = F. (2.34)

Equation 2.32 is an equation for a longitudinal acoustic wave and Y ϕ0 + g|Ψ0|2
is the stress tensor in the presence of polaritons. In case of stationary homogeneous
solution this stress tensor must be equal to the external hydrostatic pressure that
we denote by F . In this model F results only in constant shift of exciton energy,
that is chosen as reference point in the following calculations. Thus in what follows
we assume F to be zero.

ϕ0 = −g|Ψ0|2/Y, (2.35)

and for the determination of the polariton �eld one has:

− (ω0 + iγψ)Ψ0 +

(
α− g2

Y

)
|Ψ0|2Ψ0 + P0 = 0. (2.36)

This is the same equation as for the case with polariton-polariton interactions
but with a renormalized polariton-polariton interaction constant,

α̃ = α− g2

Y
. (2.37)

One sees, that since the correction to the interaction constant is negative,
polariton-polariton interactions mediated by acoustic phonons are attractive. This
is not surprising, as similar interactions for the electrons give the famous attractive
BCS potential.

Let us now calculate the dispersion of the weak elementary excitations. Following
a standard procedure, one represents the solutions in the following form

Ψ = Ψ0 +Aei(kr−ωt) +B∗e−i(kr−ω
∗t), (2.38)

ϕ = ϕ0 + Cei(kr−ωt) + C∗e−i(kr−ω
∗t), (2.39)

which should be then put into Eqs. 2.31,2.32. Considering deviations from
equilibrium being small, one should then carry out the procedure of linearization,
i.e. in the resulting equations keep only the terms linear in A,B,C.
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α|Ψ|2Ψ = α
(
Ψ0 +Aei(kr−ωt) +B∗e−i(kr−ω

∗t)
)2 (

Ψ∗
0 +A∗e−i(kr−ωt) +Bei(kr−ω

∗t)
)
≈

≈ α
{
|Ψ0|2Ψ0 +

(
2A|Ψ0|2 +BΨ2

0

)
ei(kr−ωt) +

(
2B∗|Ψ0|2 +A∗Ψ2

0

)
e−i(kr−ω

∗t)
}
,

gΨϕ ≈ g
{
Ψ0ϕ0 + (ϕ0A+Ψ0C) e

i(kr−ωt) + (ϕ0B
∗ +Ψ0C

∗) e−i(kr−ω
∗t)
}
,

g∇2|Ψ|2 = g∇2
(
Ψ0 +Aei(kr−ωt) +B∗e−i(kr−ω

∗t)
)(

Ψ∗
0 +A∗e−i(kr−ωt) +Bei(kr−ω

∗t)
)
≈

= −gk2
[
(Ψ∗

0A+Ψ0B) ei(kr−ωt) + (Ψ0A
∗ +Ψ∗

0B
∗) e−i(kr−ω

∗t)
]
.

The system of equations for determination of the small amplitudes A,B,C reads:

 −~ω − 2α|Ψ0|2 + θ + gϕ0 αΨ2
0 gΨ0

αΨ∗2
0 ~ω + 2α|Ψ0|2 + θ + gϕ0 gΨ∗

0

−gk2Ψ∗
0 −gk2Ψ0 ρω2 − Y k2 + i

ργϕ
~

 A

B

C

 = 0,

where θ = −(~ω0 + iγψ) +
~2k2
2m . And thus the dispersions of the elementary

excitations can be determined from the following equation:

∣∣∣∣∣∣∣∣
−~ω +

(
2α− g2

Y

)
|Ψ0|2 + θ αΨ2

0 gΨ0

αΨ∗2
0 ~ω +

(
2α− g2

Y

)
|Ψ0|2 + θ gΨ∗

0

−gk2Ψ∗
0 −gk2Ψ0 ρω2 − Y k2 + i

ργϕ
~

∣∣∣∣∣∣∣∣ = 0,

where we used the relation 2.35 between the amplitudes of the excitonic and
phonon �elds.

The consideration of the incoherent continous pump of the polariton system
accompanied by the onset of the polariton BEC should be made in a di�erent way.
In this case, one can assume that in a stationary regime the �nite lifetime of the
polaritons is compensated by the pump, and calculations can be done in the same
way as for particles with in�nite lifetime with no external coherent pumping (i.e.
one puts P = 0, γϕ = γψ = 0). Besides, the energy of the macroscopically occupied
mode is not pinned by the frequency of the resonant pump ω0 but is given by the
chemical potential of the system µ =

(
α− g2

Y

)
|Ψ0|2. In this case, the dispersions

of the elementary excitations read

∣∣∣∣∣∣∣
−~ω + αn+ ~2k2

2m αn g
√
n

αn ~ω + αn+ ~2k2
2m g

√
n

−gk2
√
n −gk2

√
n ρω2 − Y k2

∣∣∣∣∣∣∣ = 0, (2.40)
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Figure 2.9: Dispersion of the elementary excitations of an exciton condensate
strongly coupled with the phonon �eld. Dashed lines show the original excitations,
solid lines show the renormalized dispersions. Inset: same dispersions for the small
k-vectors

which gives a following equation for ω(k), the dispersion of the new quasiparticles
in the strongly-coupled system of bogolons (BEC elementary excitations)[34] and
phonons:

(
ρω2 − Y k2

) (
E0(k)

2 + 2αnE0(k)− (~ω)2
)
+ (2.41)

+2g2k2nE0(k) = 0,

or

− (~2ρ)ω4 +
[
ρE0(k) (E0(k) + 2αn) + Y ~2k2

]
ω2 + (2.42)

+k2E0(k)
[
2g2n− Y (E0(k) + 2αn)

]
= 0,

with E0(k) =
~2k2
2m . This equation gives rise to two solutions, close to the orig-

inal dispersions in the low-k limit and showing the typical anticrossing at higher
wavevectors. As expected, in the region of small k the dispersions are linear,

ω1,2 = v1,2k, (2.43)

where

v1,2 =

√√√√ 1

2ρ

[
ραn

m
+ Y ±

√(ραn
m

− Y
)2

+
4ρg2n

m

]
. (2.44)
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Figure 2.9 shows the dispersions calculated with the use of this equation (solid
lines) in comparison with the original dispersions at zero exciton-phonon coupling
g = 0. The inset demonstrates the linear character of the dispersions near zero.
Here and below we consider only exciton condensates, although the theory devel-
oped applies to both exciton and exciton-polaritons (the latter in the parabolic
approximation). The material parameters used are those of GaAs, as in [32, 35].
Since the dispersion of phonons is not steep at all compared to that of polaritons,
the anticrossing of the two dispersions takes place at relatively small wave vectors
(103 m−1). For excitons the situation is much more favorable, because their energy
grows slower with k than that of polaritons, and thus the anticrossing takes place
at much larger k (107 m−1). In order to demonstrate the e�ects linked with the
presence of the condensate we have to choose its density carefully, so that the speed
of sound in the condensate c =

√
α1n/m lies below that of phonons, otherwise the

branches will not anticross.

2.3.3 Wavevector dependence
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Figure 2.10: Dispersion of the excitations in the exciton condensate coupled with
waveguided phonon mode. The wavevector dependence of interactions is taken into
account. Solid lines correspond to the stable situation with an additional valley
appearing in the dispersion, whereas dashed lines show the unstable case with imag-
inary dispersion.

In order to obtain an analytical solution for the dispersions of excitations, we had
to assume that the interactions between excitons and phonons were independent on
the wavevector. However, in realistic systems this is not the case: g(k) �rst increases
with wavevector and then drops down to zero exponentially due to the overlap
integrals between the exciton wavefunction and the amplitude of the acoustic wave.
We will calculate this dependence for the structure placed in an acoustic waveguide.
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The matrix element of exciton-acoustic phonon interaction is[18]:

Mac(q⃗) =

√
~q

2ρcsSL
G(q⃗||, qz), (2.45)

where S, L - dimensions of the QW, q⃗ - acoustic wave vector. One can represent
the function G(q⃗||, qz) as:

G(q⃗||, qz) = DeI
||
e (q⃗||)I

⊥
e (qz) +DhI

||
h(q⃗||)I

⊥
h (qz). (2.46)

De, Dh - are the deformation coe�cients for electrons and holes and I⊥e (qz),
I⊥h (qz), I

⊥
e (q⃗||), I

⊥
h (q⃗||) are the overlap integrals between the phonon and exciton

mode.
In order to calculate these integrals, we have to obtain the distribution of the

amplitude of the guided phonon wave inside the waveguide. Taking into account
that QW thickness is much less than the thickness of waveguide, we can assume
that the amplitude of the acoustic �eld is constant over the QW in the z direction.
This value can be found from the waveguide equations 2.16 - 2.18:

ϕ0 =
1

2( sinκdκ + n1 cosκd√
[n2

1−n2
2]q

2
||−n

2
2κ

2
)
. (2.47)

Putting the value of ϕ0 into the overlap integrals, we can obtain the �nal value
of g(q||):

g(q||) = ϕ0(q||)

√
~q

2ρcsSL

De

1 +( meq||a
2D
b

2(me +mh)

)2
−3/2

+

+Dh

1 +( mhq||a
2D
b

2(me +mh)

)2
−3/2

 .

(2.48)

First, we have calculated the dispersion of the excitations numerically, in order
to compare the result with the analytical solution found above. The results of these
calculations are shown in �gure 2.10 (solid lines). One can see that if the maximum
of the q||-dependent exciton-phonon interactions coincides with the crossing of the
original branches, the interactions can lead to a much larger splitting and even to
the appearance of a valley on the dispersion, similar to the "roton minimum" [36, 37]
(but of course, with a completely di�erent origin). The wave-vector dependence of
the factor g is composed of two parts: one which is dominant at small values of wave-
vectors is increasing with q|| and other is decreasing with q|| at large values of q||.
Its maximum g obtains when the factor (q||a2Db ) becomes comparable to 1, and so in
order to obtain the maximum of g near the point of crossing of the original branches,
we considered quite large excitons. In our calculation we took a2Db = 100nm. The
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width of the acoustic waveguide d was taken equal to 5µm. Other parameters were
taken as table values for GaAs.

Modulating the strength of acousto-exciton interaction, for example, changing
the density of the condensate, we can tune the depth of the dip in the dispersion.
Moreover, it could be moved towards the zero values of the energy. Dashed lines in
the �gure 2.10 correspond to the extreme case, when the dispersion of the excitations
becomes imaginary and the system becomes unstable against any small perturbation
in this wave-vector region.

We have next studied the behavior of the system characterized by such interac-
tions between bogolons and phonons. An anticrossing between two quantum levels
can give rise to so-called Rabi oscillations, which take place if only one of the original
levels is excited initially. We demonstrate them in our system by solving numerically
the equations for the exciton condensate order parameter and for the displacement
�eld (2.32), assuming a homogeneous condensate and a propagating acoustic wave
in the x direction as the initial conditions. The system is homogeneous in the y
direction and thus the problem is reduced to 1D.

a) b)

Figure 2.11: Rabi oscillations between the excitations of the exciton condensate
(bogolons) and phonons: the amplitude of the propagating waves in each component
oscillates in time, as expected. Panel (a) shows the condensate density as a function
of coordinate and time, panel (b) shows the amplitude of the acoustic wave.

Figure 2.11 obtained this way demonstrates the Rabi oscillations between the
two types of propagating waves: the bogolons (panel a) and the phonons (panel b).
Initially, the exciton condensate is homogeneous (no bogolons), whereas the phonon
�eld contains a single monochromatic propagating wave. This situation corresponds
to an excited atom in an empty cavity in original Rabi oscillations. After 150 ps,
the amplitude of the oscillations of the acoustic wave drops to zero, whereas the
condensate density exhibits a running wave. This corresponds to the atom being
in the ground state and a photon in the cavity mode, if one continues the analogy
with Rabi oscillations. After about 300 ps, the acoustic wave becomes strong again
while the bogolons disappear completely, which corresponds to one period of Rabi
oscillations.

Finally, we have simulated the unstable situation corresponding to the dashed
lines in �gure 2.11. An excitation is created in the phonon �eld with its wavevector
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a) b)

Figure 2.12: Exponential growth of a weak excitation in the unstable case. Panel
(a) shows the evolution of the condensate density over time, panel (b) shows the
amplitude of the acoustic wave over time.

in the region with imaginary dispersion of excitations (�at real part). Figure 2.12
shows the results of our simulations: the small initial perturbation (a monochromatic
wave) grows over time, but does not propagate in space, as expected from the �at
real part and positive imaginary part of the dispersion (see 2.11). The perturbations
grow in both components (condensate and phonon �eld, panels (a) and (b)). This
interesting e�ect cannot be described with the previous models (such as ref.[11]),
because they do not allow to take into account the e�ect produced by excitons or
photons on the acoustic �eld itself. Of course such behavior is reasonable until the
perturbations amplitude on the condensate surface is small and our model is valid.
With the increasing of the amplitude, the system would undergo to the strong non-
linear regime. In order to describe further behavior of the system more complex
theory is needed.

2.3.4 Conclusions

In this chapter, we have studied the interaction of QW excitons and cavity exciton-
polaritons (condensed or uncondensed) with a coherent phonon �eld (guided acoustic
mode). We have found an analytical solution and studied the renormalized disper-
sion of excitations in di�erent situations. We have shown that it is possible to
obtain strong-coupling regime between the two types of excitation and the anti-
crossing between two branches could appear. We have shown that as it follows from
the strong-coupling one could obtain the Rabi oscillations between bogolons and
phonons. Moreover, in the case of the excitons with large Bohr radius, the strong-
coupling e�ect interfering with the wave-vector dependence of the acousto-exciton
interaction, could lead to the appearance of a valley in the dispersion at k ̸= 0.
If the lower dispersion branch touches 0, the system becomes unstable against any
small perturbation in the corresponding wave-vector range, the condensate becomes
strongly disturbed and the approximation of small perturbations is not more valid.
We have performed numerical simulations to demonstrate the Rabi oscillations be-
tween bogolons and phonons in the stable regime and the exponential growth of the
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perturbations in the unstable regime.
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The key e�ect that is exploited in the laser (light ampli�cation by stimulated
emission of radiation) technologies is the stimulated emission which was predicted
theoretically in the work of Albert Einstein[1] in 1916. It was experimentally proved
more than 10 years later in the work of R. Ladenburg and H. Kopfermann on "nega-
tive dispersion" of the electrically excited neon [2]. However, because it was di�cult
to ful�ll two requirements of the optical generation - the population inversion and
the positive feedback - the �rst laser appeared just in 1960.

Since that time, more than 50 years has passed and all this time laser technologies
were continuously developing. The main direction of the research was to decrease
the value of the threshold current and to increase working temperatures up to room
values.

In semiconductor structures it has been achieving by the consecutive reduction
of the dimensionality of carriers up to a total con�nement of carriers in quantum
dots. The procedure of con�nement gave good results and quantum dots now are the
most promising objects for the semiconductor lasers. However, because of their size
nonhomogeneity, only small fraction of the dots in the ensemble usually participates
in the lasing. Recently, a work has been published by C. Bruggemann et al. [3]
in which authors signi�cantly ampli�ed the emission of the quantum dots laser
"shaking" it by an acoustic pulse.

In this chapter I discuss the semiconductor lasers. In the �rst part I describe the
history of their investigation and their general properties. Then I will speak about
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quantum dot lasers and the work of Bruggemann. Finally, I present our work [4] in
which we have tried to develop a simple theoretical model describing the acoustic
modulation of the lasing in the system of quantum dots coupled to a microcavity.
By this model we simulate the experiment and explain its features. Also, we propose
to use the surface acoustic waves in order to obtain di�erent lasing patterns.

3.1 Lasers

3.1.1 History of the laser invention

As it was mentioned, the key equations for the laser physics were written by Albert
Einstein in 1916 [1] in his work performed on the statistical equilibrium between
molecules and thermal radiation with the spatial spectral energy density ρ(ω). He
considered two energy levels of the molecule E1 and E2 and the frequency of tran-
sition ω0 = (E2 − E1)/~. Then, the kinetics of the population N1,2 of states could
be described by formulas:

∂N2

∂t
= −∂N1

∂t
= B12ρ(ω0)N1 −B21ρ(ω0)N2 −A21N2. (3.1)

Here B12,21 are the Einstein coe�cients describing the probability of absorption
and stimulated emission processes and A21 shows the probability of the spontaneous
emission. The need of the constant B21 and of the stimulated emission process has
come from the combination of the Boltzmann distribution law and the Planck's for-
mula for the spectral density. The equation shows that probability for the molecule
to change its state followed by a photon emission is proportional to the intensity of
light already present at the corresponding frequency.

If we will consider the equilibrium case, then we could write the expression:

N2

N1
=

B12ρ(ω0)

B21ρ(ω0) +A21
. (3.2)

On the other hand, in the case of thermal equilibrium, this relation could be
described by Boltzmann formula:

N2

N1
= exp

[
−~ω0

kT

]
. (3.3)

Also the spectral density ρ(ω) of the electromagnetic wave obeys the Planck law:

ρ(ω0) =
ω2
0

π2c3
~ω0

e
~ω0
kT − 1

. (3.4)

By this one could derive the relations between Einstein coe�cients, notably:

B21=B12 =
π2c3

~ω3
0

·A21. (3.5)

Theory of the stimulated emission was developed further by P. Dirac in 1920s
in the framework of quantum mechanics. The �rst indirect experimental proof of
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the theory was done by R. Ladenburg and H. Kopfermann in 1928[2]. Authors
considered the dependence of the change of the refractive index of neon gas on the
magnitude of the electrical current inside the gas. The formulas give that for the
frequency of electromagnetic wave equal to the frequency of the transition between
states j and k the changes of the refractive index should be proportional to the
product:

fkjNj
gk
gj

(
1− Nk

Nj

gj
gk

)
, (3.6)

where Nk,j is the population of j and k states, gk,j are the degeneracy value
of these states and fkj is the oscillator strength of the transition. According to
this equation, the refractive index depends on the relation Nk/Nj which is almost
zero when the number of excited atoms is small. However, when this value is not
negligible it causes strong changes in the value 3.6.

Figure 3.1: The refractive index of the neon gas for di�erent transitions vs the
electrical current. Image was taken from [2]

In the work [2] authors observed the changes in the refractive index of the neon
gas changing the population of the excited atoms (�g. 3.1). They considered the
anomalous dispersions for di�erent transitions and found that for strong electric
current, the di�erences between these values for di�erent transitions changed with
the value of current. It has shown that the refractive index of the neon did depend
on the occupation numbers of excited states.

From the principles of quantum mechanics the electromagnetic wave, provided
by the fact that stimulated emission should be coherent with the initial electromag-
netic wave, the stimulated emission should amplify the wave. However, the real



56 Chapter 3. QD lasing

ampli�cation can occur only when the number of stimulated emission processes is
larger than the number of the absorption processes. As far as B12 = B21, it could
happen when the number of excited particles is larger than the number of particles
in the ground state N2 > N1. This case is called the population inversion and it is
the general criterion to obtain the ampli�cation properties of the medium.

Moreover, the lasers should not just amplify but also generate the electromag-
netic wave what gives the second key requirement for the laser construction - the
positive feedback of the system. In other words, each photon, appeared in the sys-
tem, should stimulate at least one additional emission process before it leaves the

system. Thus, there were two requirements, which one should satisfy in order to
obtain a laser, and it happened to be a di�cult task.

However, both problems were solved almost simultaneously in 1953-1955 by two
groups of radiospectroscopists who realized the concept of maser - microwave ampli-
�cation by stimulated emission of radiation. The problem of the population inversion
has been solved in two di�erent ways. First, the group of Ch. H. Townes by the
application of the inhomogeneous electric �eld spatially separated the beam of ex-
cited ammonia atoms from atoms in the ground state. The spatial region containing
mostly excited atoms had population inversion by de�nition, and could amplify the
microwaves. However, this scheme could provide not continuous but only pulsed
output[5].

Two years later, Soviet scientists A. Prokhorov and N. Basov proposed to con-
sider a three energy level system, where the ground state energy E0 and two exited
states energies E1,2 (E2 > E1) were under consideration [6]. In such scheme, the
optical pumping with the frequency ωp = (E2−E0)/~ provides the transitions from
0 to 2 state and then excited particles relax to the state 1. By this, it is possible
to obtain the population inversion either between two excited states (2 and 1) or
between excited and ground states (1 and 0). Depending on what process is con-
sidered, the electromagnetic wave with the frequency equal to (E2 − E1)/~ or to
(E1 − E0)/~ could be ampli�ed.

The positive feedback in the maser was realized by the volume resonator where
the microwave was con�ned. And this was one of the main reasons, why masers
were constructed before lasers - the size of resonator should be comparable to the
wavelength of the electromagnetic wave under consideration. Optical range of spec-
tra demands the resonator to be very small, what was technologically impossible in
the 1950s. On the other hand, the microwave resonators were quite common objects
in the radio physics.

In 1958 Prokhorov proposed to use a pair of plane parallel mirrors as a resonator
[7]. In such system, called an open resonator, the wavelength was much less than
the size of the resonator, but the conditions for the positive feedback were obtained.

Finally, in 1960 the �rst laser was reported by T. H. Maiman [8]. He considered
a 1cm ruby crystal coated on two parallel faces with silver. The energy scheme of
the processes is illustrated in �g. 3.2. When the crystal was irradiated by the 5500A
light, the chromium atoms were excited to 4F2 states and then quickly relaxed to 2E

states. This state spontaneously emitted a doublet of 6943A and 6929A. Under a
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very intense excitation, the population inversion between 2E and the ground states
has been reached what resulted in a strong reconstruction of the emitting spectrum
(�g. 3.2 (a),(b)).

Figure 3.2: Upper panel - the energy diagram of the ruby. Lower panel - the emission
spectra for (a) low excitation spectra, (b) high excitation spectra. Image was taken
from [8]

3.1.2 Semiconductor lasers

The appearance of the �rst lasers has revealed the enormously large potential of
this technology. The new types of the active medium have been intensively inves-
tigated. In 1959 Basov et al. have proposed to use semiconductors as the active
medium for the electromagnetic wave ampli�cation [9]. The idea was to use n-(p-)
doped semiconductors where the donors (acceptors) could be e�ectively ionized by
a strong electrical pulse and thus one could get the population inversion between
donor (acceptor) level and the bottom of the conduction (valence) band.

The idea was developed further by the same group and in 1961 they proposed
to use the p-n junction in order to obtain the negative temperature distribution of
carriers [10]. Application of the forward electrical bias to the p-n junction injects
holes and electrons from opposite sides of the p-n junction into the depletion region
where the population inversion between the conduction and the valence band occurs.
This work has led the beginning to the laser diode technology which is widely used
nowadays.

The �rst diode laser was created by Hall et al. in 1962 [11]. Authors have
constructed the GaAs p-n junction inside the cavity. They changed the applied
voltage and they observed abrupt decreasing of the spectral width of the diode
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luminescence after the current through the p-n junction has exceeded a threshold
value.

There are two key parameters, which de�ne the e�ciency of the laser - the value
of the threshold current and the maximum value of the temperature, at which laser
could work. Because of the broad thermal energy distribution of free carries, only a
small amount of them, namely electrons (holes) in the ground state of the conduction
(valence) band (resonant with the con�ned optical wave frequency) participate in the
lasing. Thus one need both small temperatures and high current in the structure
in order to maximize the quantity of carriers in the ground state and to obtain
the lasing regime. First semiconductor lasers required very high currents (Jth =

8500A/cm2), what limited laser operations to short pulses, and very low working
temperatures (T ≈ 70K).

Further evolution of the laser technologies was marked by the attempts to re-
duce the threshold current for room working temperatures. In 1963 two groups,
one of Zh. Alferov and another of H. Kroemer, independently proposed to use dou-
ble heterostructure (DHS) to realize the p-i-n junction laser [12, 13]. Because of
heterotransitions, the potential barriers for carriers are much higher than for the
same homostructures, what provides a better con�nement and much larger values
of density of carriers. In 1969 the group of Alferov reported the continuous room
temperature operation of the �rst laser based on GaAs/AlGaAs planar DHS[14].
The idea of DHS has been evolved to the production of quantum wells, where the
motion of carriers is strongly con�ned and quantized in one direction.

Semiconductor lasers were made for a long time in such a way, that the light was
con�ned between two parallel facets. Also the light emission had been e�ectuating
from the open edge of the structure. Thus the quality factor of such structures
was very low, the photon interacted with the active medium for a short time, so
the positive feedback was quite weak. The situation has signi�cantly changed when
the active medium was embedded into an optical microcavity, consisting of two
Bragg mirrors, and the so-called vertical-cavity surface-emitting laser or VCSEL
was invented. The �rst VCSEL was presented in 1979 by Soda et al. [15], however,
�rst device for CW operation at room temperature was reported just in 1988[16].
In such structures, the light is emitted normally to the structures surface, and the
quality factor of cavities could be extremely high (up to tens of thousands) what
signi�cantly increases the strength of the light-matter interaction inside.

3.1.3 Quantum dots lasers

The con�nement of carrier motion in just one direction in planar DHS has shown
the great enhancement of the laser properties. In 1982, Arakawa and Sakaki have
performed a work [17], considering the further carrier con�nement. They have writ-
ten simple expressions for the threshold currents for the case of 2D- and 0D-carriers
(cases of quantum wells and quantum dots respectively):
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J2D
th ≈ ed

η
mc

π~2Lz
p0B

2DkT ln
(

mvkT
p0π~2Lz

)
,

J0D
th = ed

η

(
a0DV
A0D + 1

V − p0

)
p0B

0D.
(3.7)

Here d is the active layer thickness, mc,v are the electron and hole e�ective mass,
B0,2D is the constant representing the probability of dipole transitions, Lz and V
are the dimensional constants of QW and QD, η is the quantum e�ciency and p0 is
the �xed hole concentration.

According to this expression, the temperature dependence of the threshold cur-
rent vanishes with the total con�nement of carriers. This prediction has stimulated
the intensive investigation of 0D systems, but �rst QD lasers showing the predicted
properties were produced more than ten years later [18, 19]. Since the carriers
in such structures could occupy only discrete energy levels, quantum dots indeed
demonstrated a better temperature dependence of their properties than quantum
well systems. However, because of their size inhomogeneity, the luminescence spec-
trum of the quantum dots ensemble is inhomogeneously broadened.

Theory of lasing in quantum dot system was developed in numerous works [20,
21, 22, 23], but most explicitly it was considered by Asryan and Suris [24, 25] and
Grundmann and Bimberg [26]. The energy dependence of the gain g0(E) reduced
to one QD may be written as:

g0(E) =
8

3

π2e2

~c
√
ε

P 2

V0E
(fe + fh − 1)

∑
Λ

δ (E − EΛ). (3.8)

Here P is the Kane's parameter, V0 is the quantum dot volume, fe,h are the
probabilities of occupation of the electron and hole level in the quantum dot, which
are described by the Fermi-Dirac distribution functions, and the summation goes
over all energy levels Λ in the dot.

In order to take into account the inhomogeneous distribution of quantum dots,
one should average this value over the ensemble. The probability of the dot to
have a size a with respect to their average size ā is usually taken by the normal
distribution:

w

(
a− ā

ā

)
=

1√
2πδ

exp

[
− 1

2δ2

(
a− ā

ā

)2
]
, (3.9)

where the parameter δ describes the width of the distribution.
In general, depending on the values of the two parameters - the temperature

and the width of the inhomogeneous distribution - there could be two regimes. In
the �rst, the time of the thermal escape for the carrier trapped in a dot is larger
than the time of radiative decay. In such systems, all quantum dots are populated
homogeneously and the gain is proportional to their size distribution. In other case,
when the time of the thermal escape is much shorter than the radiative lifetime, the
carrier migration between dots could be achieved and a quasi-equilibrium distribu-
tion is established. In this case, the dots with lower energies of ground states are
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Figure 3.3: Left panel - The diagram presenting di�erent cases of �lling of carrier
levels in QDs on temperature and QD size �uctuations. Right panel - the gain
spectra for (a) low temperatures or narrow QD distribution (regions A and C in the
left panel), (b) high temperatures and broad QD line (region B in the left panel).
Image was taken from [24]

more likely populated. This leads to strong renormalization of the gain spectra (�g
3.3)

Like the system of quantum wells, the quantum dot arrays have been recently
successfully embedded in optical microcavities in order to provide quantum dot VC-
SELs [27]. Because of the high Q-factor of microcavities, these cavities demonstrate
very narrow PL spectra, and thus only a small fraction of quantum dots is coupled
to the cavity mode.

3.2 Acoustic modulation of the lasing of QDs in MC

Recently, an attempt was made to involve into the lasing process all quantum dots
which lie away from the cavity resonance by a short acoustic pulse [3]. This led to
the ampli�cation of the emission intensity up to 50 times. However, some strange
behavior of the system was observed.

In this section, I will describe the experimental work [3] and our work [4] where
we apply the simple theoretical model which describes an ensemble of quantum
dots in the optical microcavity. We consider quantum dots as a number of two-
level systems, so the evolution of the QDs population can be described by the von
Neumann equation. For the electromagnetic �eld of the microcavity we can use a
resonant mode approximation [29, 30, 31], and get a system of two coupled equations
which gives us a behavior of the system.

In �rst part of the work we described in more details the model we use and its
possibilities and limitations. We have shown several results that could be obtained
with this model. And after that we introduced the acousto-optic interaction to our
system to describe theoretically the experimental results and to explain the strange
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behavior[3]. In the �nal part of the paper we discuss a proposal of implementation
of the surface acoustic waves to this system and describe the e�ects of dynamical
lasing pattern formation.

3.2.1 Shaking quantum dots by ultrafast acoustic pulses

In 2012, C. Bruggemann et al. have reported the work [3] where the lasing regime of
InGaAs/GaAs quantum dots array coupled to the microcavity was studied. Quan-
tum dots were pumped optically with the high-energy laser and both normal and
side photoluminescence were analyzed. Fig. 3.4 (a) shows the normalized photolu-
minescence spectra. The side view PL represents all quantum dots and the shape of
its spectra repeats the inhomogeneous normal distribution of quantum dots, when
the normal PL comes generally from the dots coupled to cavity, and thus, this spec-
tra is more or less equal to the narrow cavity spectra. It is clear, that the cavity
resonance is shifted with respect to the maximum of the quantum dots distribution.
However, one can tune the cavity resonance exciting di�erent locations of the cav-
ity. Fig. 3.4 (b) shows the transition between absorption-generation regimes which
occurs at some threshold values of the excitation densities P,Wth. These transitions
are followed by abrupt strong ampli�cation of the emission intensity.

Figure 3.4: (a) Photoluminescence spectra. Emission was collected either normal to
the cavity from its front (black curve) or parallel to the cavity from the side (red
curve). (b) Emission intensity vs excitation density for pulsed (black curve) and cw
(red curve) excitation. Image was taken from [3]

To the backside of the sample, the thin aluminium �lm was attached. This �lm
was heated by very short strong laser pulses and this introduced short strain pulses
into the substrate. The injected strain pulse (its temporal shape is plotted on �g.
3.5 (b)) has reached the QD layer after being distorted by the �rst Bragg mirror
(�g. 3.5 (c)) This pulse shook quantum dots and after passing the second Bragg
mirror it was re�ected from the samples surface and returned back (�g. 3.5 (d)).
Thus, the quantum dots have experienced two strain pulses - incident and re�ected.
The scheme of the experiment is illustrated at �g. 3.5 (a).

The main idea of the experiment was to involve in the lasing process those
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Figure 3.5: (a) Experimental set-up and the scheme of the experiment. (b)-(d)
Temporal evolution of strain pulses: initially injected from the aluminium �lm at
t0 (b), in the quantum-dot layer, arriving from the substrate at t = tts (c), and in
the quantum-dot layer after re�ection from the open surface of the microcavity (d).
Image was taken from [3]

quantum dots whose ground state energies lie not in resonance with the cavity
mode. The strain pulse arriving to the quantum dot array and shifting the lattice
constant, changes the energy values of the quantum dots. Roughly speaking, it is
shaking the whole quantum dot energy distribution along the energy axis. A lot of
quantum dots with population inversion, lying outside of the cavity resonance, are
moved to it and are involved in the generation process.

In order to observe the ampli�cation coming from the shaking, authors have
recorded the time resolved relation between two emission intensities - with and
without strain pulses (�g. 3.6). Two high peaks of ampli�cation were observed
coming respectively from the incident and the re�ected strain pulses. What was
surprising, is that ampli�cation coming from the re�ected pulse appeared to be
larger than from the incident one. But anyway, acoustic shaking of quantum dots
allowed to amplify the intensity of the emission up to 50 times.

3.2.2 Theoretical model

Quantum dots

We use the density matrix formalism in a scalar approximation[32, 33], where
each dot can be described by its own 2x2 density matrix ρ. The dynamics of the
system is given by von Neumannn equation:

i~ρ̇ = [Ĥρ]. (3.10)
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Figure 3.6: The time resolved normalized photoluminescence intensity. Two peaks
represent the ampli�cation of the emission intensity by the incident and the re�ected
strain pulses. Image was taken from [3]

Diagonal elements of ρ give the probabilities to �nd quantum dot in the ground
state or in the excited state and the non-diagonal ones describe the correlations
between the ground and excited states, that are responsible for the magnitude of the
quantum dot polarization. In fact, the Hamiltonian and the density matrix depend
on the in-plane dot position. However, for the electromagnetic wave propagating
in the z-direction (that is the subject of our study, see the beginning of the next
section for details) the �eld is homogeneous through x and y, and it is constant
over all the dots. Thus under this condition the quantum dot density matrix does
not depend on the dot position but just on the dot type. Since we neglect all the
interactions between the dots except the interaction with the electromagnetic �eld
the dynamics of each dot depends only on the local electromagnetic �eld and the
resonant dot transition energy. The inhomogeneous broadening of the dots over the
spectrum is accounted for by the spectral density function of the dots nx(Ej), with
the dot optical transition energy Ej .

Another approximation of the model is that we consider only two types of in-
teraction with the quantum dots: �rst, the interaction of quantum dot with the
resonant electromagnetic �eld of the cavity that is explicitly included in the Hamil-
tonian. The second is the external pumping and relaxation of quantum dots, that
is introduced as additional phenomenological terms in the equation for the density
matrix of j-th type of quantum dots:

i~ρ̇j = [Ĥjρj ] + P j . (3.11)

The Hamiltonian of the j-th type of quantum dot with its resonant energy Ej

can be written in the following form:

Ĥ =

(
0 (iE0dj)∗

iE0dj Ej

)
, (3.12)

where dj is the matrix element of the dipole moment between the ground and
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excited states of j-th quantum dot, E0 - the amplitude of the cavity electromagnetic
�eld on the quantum dot layer, Ej - the energy of the �rst exciton state in the QD.
The dipole matrix element of the dot can be expressed via the matrix element of

the interband currents of the dot dj = Jj
0

ωj
0

. Its value is de�ned only by the quantum

dot structure and we take it as a parameter in our model. Finally, ωj0 = Ej/~ is the
frequency of QD optical transition.

The last term in Eq.(3.11), responsible for external pumping and relaxation in
QDs reads:

P j =

(
−(ρst22 − ρj22)γ1 −ρj12γ2

−ρj21γ2 (ρst22 − ρj22)γ1

)
. (3.13)

The experiment [3] was performed at low temperatures (5K) and the quantum
dots were annealed. Thus, we can consider that there is no quasi-equilibrium distri-
bution of the carriers and all quantum dots are populated equally. Because of that,
we could write the phenomenological pump term independent of the dot size like
3.13.

If one neglects the interaction with the cavity mode, the nonresonant pumping
drives the system into the stationary state with ρj22 = ρst22 within the characteristic
relaxation time 1/γ1. As a �rst approximation, we assume that ρst22 is the same
for all types of quantum dots and the non-diagonal elements relax to zero with
characteristic time 1/γ2. All these values are taken as parameters of the model. In
order to describe the spontaneous emission in QDs ensemble we add a white noise
to the o�-diagonal elements of Hamiltonian (5.19).

Another important parameter describing the quantum dots is their inhomoge-
neous spectral density distribution nxE . We take it as a Gaussian distribution over
energy:

njxE = n0e
−

(Ej−EQD)2

∆E2
QD . (3.14)

Here EQD is the center of QD energetic distribution and ∆EQD is its width.
Equations for electromagnetic wave

Electromagnetic �eld dynamics in the microcavity with the optically pumped
QDs is a rather complicated problem. In this paper we study the modi�cation
of the lasing thresholds by the deformation pulse and are interested in not very
strong deviation of the pump intensity from the threshold one. Because of inevitable
inhomogeneity of the QD spatial distribution there are always the preferential spots
where the lasing starts �rst due to optimal gain conditions. These spots being of
�nite size, feed all the cavity modes but are most e�cient for the modes slowly
propagating along the cavity i.e. the modes with in-plane wave vector close to
zero[34]. Thus, in what follows we will treat only the normal cavity mode as the
one that starts �rst to emit the coherent light. It should be understood that this
assumption becomes invalid for the pump strongly above the threshold value.

The dynamics of the electromagnetic �eld E0 of the normal cavity mode acting
on the QDs can be found from the following oscillator-like equation:
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i~
d

dt
E0 = ~ωcE0 + βJJx. (3.15)

Here ~ωc = Re(~ωc) − iγc is the resonant photon energy of the microcavity for
zero inplane wavevector. The imaginary part of cavity resonance γc results from
the �nite cavity lifetime. The second term βJJx comes from the interaction with
the resonant polarization Jx induced in QDs layer and coherent with the cavity
electromagnetic �eld E0. This polarization can be written as

Jx =
∑
j

J j0n
j
xEρ

j
21. (3.16)

For monochromatic wave with frequency ω we can solve Eq.(3.11), �nd the ρj21
and substitute it into Eq.(3.16) to get:

Jx = E0
∑
j

(J j0)
2

ωj0
njxE

1− 2ρj22
~(ω − ωj0)− iγ2

. (3.17)

In case of zero (or small) broadening of the QDs ensemble (ωj0 = ω0 the same
for all quantum dots) this equation gives the standard polariton splitting equation
for homogeneous exciton line.

~(ω − ωc)~(ω − ω0 + iγ2) = βJ
∑
j

(J j0)
2(1− 2ρj22)

ω0
njxE . (3.18)

For the opposite case of the broad QDs energy spectra that is the subject of
our study we can calculate the modi�cation of the imaginary part of the cavity
resonance due to pumped QDs as

geffc = Im[(~ωc + βJ
∑
j

(J j0)
2
/
ω0
njxE

1− 2ρj22
~ωc −Hj

22 − iγ2
)]. (3.19)

If geffc = −γeffc < 0 then the amplitude of electromagnetic �eld will decay
with time ~/γeffc and the system is in the absorption regime. In the case, when
this parameter is positive, the amplitude of the �eld grows and it means that the
system is in the generation regime. Thus, analyzing γeffc we could analyze the
generation-absorption transitions. Fig. 3.7 shows the dependence of γeffc on the
detuning between cavity resonance and the center of quantum dot distribution for
three values of ρ22.

From this �gure it becomes clear that lasing threshold (pumping power for which
the imaginary part becomes positive) depends on the detuning.

Acousto-optical interaction

Acoustic vibrations locally modify the lattice structure of semiconductor, in-
creasing or decreasing the lattice constant. This fact could give rise to two e�ects:
1) changes in the energy of quantum dot states [35]. In this case energy of QD
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Figure 3.7: Absorption coe�cient dependence on detuning for di�erent values of
pumping.

transition is shifted by a value which in the �rst approximation is linear by the am-
plitude of deformation. The compression of the lattice decreases the lattice constant
increasing the energy of the band gap whereas the tension causes the redshift. 2)
The second impact of the acoustical deformation is the modi�cation of the micro-
cavity resonant energy [28] due to the deformation in the Bragg mirrors and in the
central cavity zone. However, the magnitude of this e�ect is negligible compared to
the �rst one and in what follows we consider that the acoustic wave is coupled with
excitons in QDs only. The resulting modi�cation of the quantum dot Hamiltonian
reads:

Hj
22(t) = Ej + Estrain(t). (3.20)

Here Estrain(t) is the energy shift of exciton levels caused by the strain. The
quations (3.11 - 3.20) describe the behavior and the interactions between all three
components: quantum dots, electromagnetic wave and acoustic vibrations.

3.2.3 Implementation of the model

Let us �rst consider the time evolution of our model system without any strain
pulse We take ρj22 = ρst22 = 0.7 at a starting point and we consider the detuning
δ = ~ωc − EQD = 12meV which corresponds to slightly above lasing threshold
regime. The results of the calculations are shown in Fig. 3.8. The black curve
shows the time evolution of the photoluminescence intensity, and the red dotted
curve shows ρ22 for quantum dots that are in the resonance with the microcavity.
One can see that both electric �eld and the occupation ρ22 oscillate in time with
the same frequency but shifted in a phase by π

4 . These oscillations show periodical
transitions of the system from lasing to absorption regime and vice versa. This
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e�ect comes from the assumption of system's homogeneity, while for a realistic non-
homogeneous case we should average in time the intensity coming from di�erent
lasing spots.
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Figure 3.8: Black curve - relation of photoluminescence intensity to its maximum
value versus time. Red dotted curve - time evolution of ρ22

The typical time dependencies of the electromagnetic �eld intensities for di�erent
detunings δ = ~ωc − EQD are shown on Fig. 3.9. The black curve shows the case
when the cavity resonance coincides with the QD distribution maximum. The red
and blue ones are for the detunings slightly above and slightly below lasing threshold
respectively. The electromagnetic radiation in the absorption regime is spontaneous
and it is a narrow-band noise with a small amplitude.

The application of the acoustic pulse changes drastically the dynamics of the
microcavity emission and absorption.

First, we took acoustic vibrations in a form of model harmonic oscillations. We
put the detuning δ = ~ωc − EQD = 12meV , that corresponds to slightly above
lasing threshold case. The amplitude of vibrations we took equal to 1meV and we
calculated several curves for di�erent frequencies of oscillations. The results for 100,
50 and 20GHz are shown on Fig. 3.10. From this picture, one can see that even
small vibrations can strongly amplify the signal from microcavity. This e�ect comes
from the fact that in the presence of vibrations in the system, more quantum dots
are involved in lasing process. The characteristic time of microcavity light coupling
to the resonant QDs is proportional to the dots density. The ampli�cation of the
cavity �eld depends on the vibration frequency. When these vibrations are too
frequent, the quantum dots just do not have time to respond to the external �eld.

In order to compare the results of our approach with the experimental work
[3], we took their strain pulses and put them into our model. The pro�le of the
strain pulse is shown in Fig. 3.11 (a). Incident strain pulse comes in the moment
of approximately 750ps. Its starts from compressive deformation that increases the
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Figure 3.9: Intensities of electromagnetic �elds calculated for di�erent values of
detunings.

gap and the energy of QDs excitons. At the moment of 2100ps the pulse re�ected
from the surface comes which starts with a decompression part. In the experimental
work [3], authors surprisingly observed that the ampli�cation of the luminescence
intensity from the re�ected pulse is much stronger that from the incident one. To
check whether it is possible to obtain this e�ect within our model, we put the real
strain pro�le in our code and calculate the time evolution of the electromagnetic
�eld amplitude. One can see it on �g. 3.11 (b). Indeed, the e�ect in question was
successfully reproduced.

We propose the following explanation of the physics of this e�ect. One can
notice that between two pulses there still remain small vibrations in the system.
Their amplitude is not larger than 1meV but as we have shown in the beginning of
this section, even such small oscillations could strongly modify the electromagnetic
�eld in the cavity. From Fig. 3.11 (b) it is clear that between pulses the amplitude
of the �eld is much larger than before the incident pulse. So, the initial conditions
are "better" for ampli�cation before the second pulse than before the �rst one when
the ampli�cation factor of the re�ected pulse could be less than of the incident.

To check our assumptions we cut the vibrations between two pulses and put the
new strain pro�le in our model. One can see it in Fig. 3.12 (a). In the �gure 3.12 (b)
we show the ratio between the intensity in the presence of acoustic pulses (Iac(t))
and the average intensity without them (I0) for two cases: with (black curve) and
without (red curve) the interpulse vibrations.

It is clear that the real ampli�cation from the re�ected strain pulse is less than
from the incident.
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of harmonic acoustic vibrations.

3.2.4 Modulation of the lasing by surface standing acoustic waves

In previous sections we considered interactions with an acoustic shock wave prop-
agating in the transverse (relative to the layer of QDs) direction. In this section
we want to discuss another case - the case of surface acoustic waves (SAW). SAW
are acoustic waves created piezoelectrically on the surfaces of the structures and
propagating in planar directions. Because of their long wavelengths, they produce
slowly changing in time (quasistationary for excitons in most planar systems) pe-
riodic potential. Recently SAW were used in the studies of polariton condensates
[36, 37, 38], and of the photoluminescence from quantum wells [39] etc. We propose
to implement SAW to obtain di�erent lasing patterns in the ensemble of quantum
dots coupled to a microcavity. If we consider two counterpropagating acoustic waves
in the XY-plane with the same amplitude, we could obtain a standing SAW (SSAW).
Furthermore, we can produce two-dimensional SSAW by the interference between
two orthogonaly propagating one-dimensional SSAW. The Estrain in this case will
be a function of planar coordinates and time and can be written in the form:

Estrain(x, y, t) = ASAW sin (kxx) sin (kyy) sin (ωSAW t). (3.21)

Here ASAW is the amplitude of exciton energy shift by SAW (several meV in
order), kx, ky - wave-vectors of x− and y−SAW, ωSAW - frequency of SAW.

It was shown that for the same pump intensity, the transition to the lasing regime
strongly depends on the relative position between the cavity resonance and quantum
dots distribution maximum. So, for a given pump power there is threshold value of
detuning δth such that when |δ| ≤ δth there is a gain in the system. And it is clear
that using strain provided by planar acoustic waves we can obtain some regions of
cavity where conditions of lasing would be satis�ed and in others would not. So we
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Figure 3.11: (a) Temporal pro�le of real strain. (b) Evolution of the electromagnetic
�elds amplitude in MC.

could observe patterns of bright spots. To derive the dependence of lasing intensity
on planar coordinates we have considered a simple model based on a pair of kinetic
equations:

dNph

dt
= wNx(2ρ22 − 1)Nph −

Nph

τc
, (3.22)

Nx
dρ22
dt

= P − wNx(2ρ22 − 1)Nph −
Nxρ22
τQD

. (3.23)

First equation describes the number of photons (Nph) in the system and the
second one - the number of excited quantum dots (Nxρ22). w - is a probability for
the photon to be captured by a free quantum dot, τc - the lifetime of the photon
in the MC, while τQD is a non-radiative lifetime of an excited quantum dot. P is
the term describing the pump and in general case it should be proportional to the
number of free quantum dots: P = pNx(1 − ρ22). Here we consider only quantum
dots which participate in lasing, in other words whose frequency of transition is
equal to the MC frequency:

Nx(x, y, t) ∼ n0exp(−
(Emc − EQD + Estrain(x, y, t))

2

∆E2
QD

). (3.24)
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Figure 3.12: (a) Temporal pro�le of real strain without interpulse vibrations. (b)
Ampli�cation of the PL intensities with (black curve) and without (red curve) vi-
brations.

In the regions which are in the absorption regime, we can take Nph = 0. In other
regions, we could derive Nph �nding stationary solutions of Eqs.(3.22-3.23):

Nph = τc
pτQD − 1

2τQD
Nx −

pτQD + 1

2wτQD
. (3.25)

From this equation, the conditions for lasing could be derived. First, the pump
should be strong enough so that the prefactor beforeNx needs to be positive: pτQD ≥
1. Second, even with strong pumping it is necessary to have enough quantum dots
to make Nph positive, so τc(

pτQD−1
2τQD

)Nx ≥ pτQD+1
2wτQD

.
On Fig. 3.13 we plotted the solutions of Eqs. (3.24-3.25) for di�erent moments of

time. We consider the pump corresponding to the threshold detuning δth = 10meV ,
and the detuning of the unstrained system we took to be slightly larger than that.
ASAW we took equal to 5meV .

Now let us consider weaker pumping to obtain threshold detuning δth smaller
than double strain amplitude. If we start with absolute value of detuning δ slightly
larger than δth then the strain could be so high that |δ| will cross the threshold value
twice. In this case one can obtain holes in bright spots of photoluminescence as it
is shown on �g. 3.14.

We have tried to show that surface acoustic waves are quite handy objects to
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Figure 3.13: Evolution of photoluminescence in time. Snapshots are taken for the
values of time 0.25, 0.52 and 0.75 of the SAW period TSAW

Figure 3.14: Snapshop of PL for δ ≈ δth = 2meV and ASAW = 5meV

form the radiation patterns in the system of quantum dots. Tuning the parameters
of the waves one can obtain on the same system very di�erent radiation structures:
standing spots, circles, running stripes or spots, etc. It seems that it is possible to
provide the optical lattices this way. For example, irradiating the on-chip atomic
Bose-Einstein condensates by such structures one could create the periodical poten-
tial. Unfortunately, the light coming from di�erent isolated spots is not coherent.
However, if the initial detuning δ is slightly less than δth one will obtain the set of
spots connected by little bridges at the corners and this could increase the coherency
across di�erent spots and hence this could decrease the spreading of the radiation
beams.
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3.2.5 Conclusion

We started this chapter with the discussion of the history of laser technology. We
have shown that there are two key parameters for the semiconductor lasers - the
threshold current and the working temperature. Then we discussed the quantum
dots lasers, its advantages and imperfections. Finally I described the work in which
we have developed a simple theoretical model of light-matter interaction in the
system of quantum dots coupled to microcavity in the presence of acoustic defor-
mations. We have described the e�ect of acoustically driven ampli�cation of the
lasing regime in the system. Moreover, we successfully reproduced experimental
e�ects obtained in [3]. In the �nal section of our work we proposed an application
of surface acoustic waves to modify lasing patterns of the system.
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Polariton multistability
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If the polarization of the medium has a non-linear response on the �eld of the
incident light, the non-linear optical (NLO) e�ects could occur. However, generally,
one needs high intensities of light to observe NLO e�ects, so they were discovered
only in 1960s with the developing of laser technologies. In 1961 Franken et. al.
performed a work [1], where they irradiated the crystalline quartz by a strong laser
beam and they observed the formation of second harmonics in the transmitted light.
This work has begun the intensive investigation of non-linear optical properties of
di�erent materials.

NLO e�ects could be qualitatively divided in two groups: parametric, where
the quantum state of the medium is not changed by the interaction with light, and
non-parametric, where the medium state is changed. The parametric processes are
instantaneous.
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Optical microcavities allow to obtain signi�cant values of the electric �eld inside,
and cavity polaritons mutual interactions via their excitonic fraction show a strong
non-linear behavior. All this simpli�es the observation of NLO e�ects. Also, a well-
de�ned relation between the polariton state and the angle of incident or emitted light
helps to manipulate, detect and analyse the non-linear processes. A lot of e�ects, like
parametric oscillations and ampli�cations [2, 3, 4] and optical bi-(multi-)stabilities
[5, 6] were observed. However, recent experiments on polariton multistability [6]
have shown the necessity to reconsider the polariton-polariton interaction schemes.

In this chapter, I will �rst present a general discussion of the non-linear optical
e�ects. Then I will discuss the bistability and multistability in the polaritonic
system. I will demonstrate the contradiction between the theoretical expectations
and the experimental data. And after all, I will describe our work [7], where we
consider the scattering of polaritons from ground to upper states. This process has
been always treated as negligible and has been ignored. In our work we have shown
that in some cases such scattering could lead to the formation of the respectively
dense excitonic reservoir, which could e�ectively renormalize the polariton-polariton
interactions.

4.1 NLO

4.1.1 Additional harmonics

In general, the polarization of the medium P could be expressed in terms of the
external electric �eld E in the following way:

Pi = χ
(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl + ... (4.1)

Here χ(n) is the n-th order tensor of susceptibility.
Let us consider the quadratic by E part of the polarization vector and let us

call it P(2). Then P(2) would be a linear function of the components of the 6 × 6

symmetric tensor EE. The symmetry of the medium imposes certain restrictions
on the coe�cients χ(2), which are, in fact, the same as for the piezoelectrical tensor.
Thus, there is no P(2) in isotropic materials or in materials containing a center of
inversion. However, for example, in crystalline quartz one could write the following
expressions for the components of P(2):

P
(2)
x = α(E2

x − E2
y) + βEyEz,

P
(2)
y = −βExEz − 2αExEy,

P
(2)
z = 0.

(4.2)

Here α and β are some coe�cients. So, if the incident electromagnetic wave
can be described by harmonic oscillations with frequency ω, it provokes the double
ω oscillations of the medium polarization. The polarization wave in its turn could
be considered as the generator of an electromagnetic wave, so new harmonics could
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appear in the spectrum of the crystal. This process is called second-harmonics
generation (SHG).

In 1961 Franken et. al. observed SHG in the crystal of quartz under strong laser
pumping [1]. The image of the photographic plate is shown on �g. 4.1.

Figure 4.1: The reproduction of the photographic plate from the Franken experiment

[1]. The wavelength scale is in the units of 100
◦
A. The spot at 6943

◦
A indicates the

incident light, while the arrow indicates the position of the second harmonics at

3472
◦
A. Unfortunately, the spot itself has disappeared during editorial process. The

story says that it was considered by the editor as a speck of dirt and was removed
from the publication [8].

Thanks to that SHG could be observed only in certain materials and to SHG
polarization anisotropy, nowadays it is widely used in biological and medical science
for high-resolution optical microscopy. Also the second-harmonic generation process
is used to obtain green lasers from the infrared source.

In general, the intensity In of the n-th harmonic is proportional to[9]:

In ∼ n

cn−1λn+1

∣∣∣χ(n)
∣∣∣2In1 , (4.3)

where c is the velocity of light in vacuum, λ and I1 are the wavelength and
power of incident light. Observation of higher harmonics becomes a very hard task.
However, the higher harmonics from third [10] up to �fteenth [9] were obtained
in di�erent materials. Moreover, when the light interacts with electron-nuclear
plasma, the expression 4.3 is not valid anymore and High Harmonic Generation
(HHG) could be obtained. The �rst HHG was observed in solids in 1977 [11] and in
1987 in gases [12]. The later work [13] has shown a surprising result: the intensities
of high harmonics stopped to decrease with the number n and formed a plateau.
The intensities of harmonics remained constant over hundreds of eV .

If two electromagnetic waves with di�erent frequencies ω1 and ω2 are propagating
in the non-linear medium, the additional harmonics could appear, whose frequency
ω3 would be the sum ω1+ω2. This process is called sum-frequency generation (SFG).
SFG occurs e�ciently, if the condition of phase-matching is satis�ed, notably, the
wave vector of the third wave should be the sum of the wave vectors of two initial
waves: k3 = k1 + k2. Obviously, the SHG is the special case of the SFG.



82 Chapter 4. Non-linear optical e�ects. Polariton multistability

4.1.2 Optical parametric ampli�cation

Besides the formation of new harmonics by the interaction between two photons, in
non-linear medium there could be an opposite process - parametric scattering of one
photon followed by the generation of two new photons, what gives rise to two new
additional harmonics, whose frequencies are lower than the frequency of pumping.
Such e�ects were predicted theoretically in the beginning of 60s in works of Louisell
et al.[14, 15, 16]. New harmonics are usually called signal (commonly the harmonic
of higher frequency) and idler or s and i for brevity. Once signal and idler photons
are produced, they could stimulate the scattering processes further. If the pump is
strong enough, the scattering becomes avalanche-like and and strong ampli�cation
of s and i amplitudes could be obtained.

The frequencies and the wave vectors of these harmonics are de�ned by the phase
matching conditions:

ωp = ωs + ωi,

kp = ks + ki.
(4.4)

The solution of these equations strongly depends on the medium properties
namely its dispersion. Thus, changing the conditions for the medium, one can
tune the frequencies of harmonics. The tunable optical parametric �uorescence was
�rst observed in works [17] where the temperature of the crystal was changed and
[18] where the crystal position was changed. The results are presented on �gure 4.2.

Figure 4.2: Left panel: dependence of the signal wavelength on the temperature
taken form [17]. Right panel: relation between the angle of the crystal orientation
and the wavelength of the signal taken from [18].

As it was shown, the authors have succeeded in the tuning of the signal wave-

length from 4000 to 16000
◦
A. The e�ect of optical parametric ampli�cation (OPA)
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has a great application in the technologies of tunable lasers, where the most famous
Ti:sapphire laser is completely based on the OPA.

4.1.3 Optical phase conjugation

As it was stated in previous chapter, the light propagating in the medium could scat-
ter by the Mandelstam-Brillouin mechanism, and the frequency of light is changed
most signi�cantly when the backscattering occurs. So three waves are coupled in the
medium: incident electromagnetic wave with frequency w0 and wave vector k0, scat-
tered electromagnetic wave ws, ks and acoustic wave wac = w0−ws, kac = k0−ks.
At moderate light intensities the probability of the scattering is not very high and
the medium remains almost transparent for the light. However, it was shown[19],
that after some threshold intensity, the stimulated scattering process takes place
and the intensities of both scattered light and acoustic wave increase signi�cantly.
Because of stimulated Brillouin scattering (SBS), the medium becomes opaque and
almost all light is re�ected backwards.

In 1972 Zel'dovich et al. performed an experience on SBS and they have dis-
covered an interesting e�ect [20]. They distorted the red laser pulse by the plate
of a frosted glass and then they turned it to the tube �lled by the methane gas.
Thanks to the stimulated Brillouin scattering, the light was re�ected backwards.
Surprisingly, when the re�ected beam passed the glass plate again it appeared to be
almost undistorted. One could write the following wave equation for the re�ected
wave Es(r⊥, z) = e−ikszεs(r⊥, z):

∂εs
∂z

+
i

2ks
∆⊥εs +

1

2
g (r⊥, z) εs = 0, (4.5)

where the gain g (r⊥, z) is de�ned by the local intensity of the incident light
g (r⊥, z) ∼ |E0 (r⊥, z)|2. This equation is conjugated to the wave equation describing
the incident electromagnetic wave:

∂ε0
∂z

− i

2k0
∆⊥ε0 = 0. (4.6)

Thanks to this, the re�ected wave �eld is complex conjugated to laser �eld:
Es (r⊥, z0) ∼ E∗

0 (r⊥, z0). One can consider, that scattering process reverses in time
the laser pulse and because of that, when it goes through the frosted glass plate
for the second time, it experiences the same changes but back in time. Finally, it
arrives to the source, almost undistorted. This e�ect was called the e�ect of phase
conjugation or wavefront reversal.

Phase conjugation e�ect could be obtained also by a four wave mixing (FWM)
technique [21, 22]. The semiconductor sample is illuminated by two pump and one
probe beams. If the j-th wave could be expressed as Ej(r, t) = 1

2Ej(r)e
i(ωjt−kjr) +

c.c., then the polarization term of the third order would be:

PNL = χ(3)(E1 + E2 + E3)
3; (4.7)
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this could give rise to di�erent additional harmonics of frequencies ω = ±ω1 ±
ω2 ±ω3. The same could be written for their wave-vectors. However, if we consider
that ω1 = ω2 = ω3 and k1 = −k2, then because of phase-matching conditions,
the new (signal) wave will e�ectively appear with a frequency ωs = ω1,2,3 and
the wave-vector ks = −k3. Thus, as opposed to normal mirrors, where only the
component of wave vector normal to the plane of the mirrors changes its sign, in
phase conjugating mirrors, all three components change their sign and the re�ected
beam becomes parallel to the incident one. However, the frequency does not change
its sign, and this makes the re�ected wave "reversed in time" with respect to the
incident.

4.2 NLO in optical microcavities

Con�ning the electromagnetic wave in the cavity allows to obtain signi�cant inten-
sities of the �eld inside, even with moderate pump intensities. By the coupling with
quantum well excitons, cavity photons form polaritons, which interact with each
other by their excitonic fraction. There is no center of inversion in GaAs, so the
non-linear e�ects coming from the second order of the �eld amplitude should exist.
However, all these e�ects usually couple the initial waves with waves twice higher or
twice smaller in frequency which are not in cavity resonance and they decay rapidly.
Thus, non-linearities for cavity polaritons are usually described by the third order of
the �eld amplitude, and the wave equations can be written in the form of nonlinear
Schroedinger equation.

4.2.1 Optical parametric oscillator

The key feature of cavity polaritons is the de�nite relation between the in-plane
wave-vector and the angle of emission. This fact simpli�es the creation and detection
of certain polariton states. In 2000, a seminal work on angle-resonant stimulated
polariton ampli�er[2] has been published. It was a pulsed pump-probe experiment,
where the pump pulse excited polaritons resonantly at some angle θp, and a probe
pulse was directed normally to the plane. The scheme of the process is illustrated
at the �g.4.3 (b).

In other words, two polariton states were populated: one at at some wave-vector
kp and one in the bottom of the dispersion curve, with zero wave vector. It was
shown, that when θp = 16.5◦ in the presence of the pump pulse, the intensity of the
normally re�ected light increases by two orders of magnitude with respect to the
case when the pumping is switched o�.

Authors claimed, that this experiment was the evidence of the stimulated scat-
tering process of two "pump" photons, one of which was scattered to the ground
probe state, and another to a state with ks = 2kp. This e�ect is similar to the
optical parametric ampli�cation e�ect in the bulk discussed in 4.1.2.

The same year there was another work done by R. M. Stevenson et al [3]. Authors
pumped continuously the microcavity containing three InGaAs quantum wells at
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Figure 4.3: (a) Cavity polariton dispersion. Closed (open) circles point the pumped
(probed) states. (b) Scheme of the sample and the geometry of the experiment.
Image was taken from [2].

some nonzero angle. When the excitation intensity exceeded some threshold value,
strong redistribution of polariton occupancies occurred, notably, a strong polariton
population at two speci�c wave vectors (0 and 3.9 × 104cm−1) was observed (�g.
4.4).

The mechanism of formation of signal and idler states in this work is similar to
the previous one. Two polaritons could be scattered by each other to two speci�c
states, de�ned by the momentum and energy conservation law and the obtained s-
and i-states could further stimulate the scattering. At some point, the stimulated
scattering process becomes faster than the polariton lifetime and the population of
two additional states increases abruptly.

Theory of the kinetics of three coupled states was developed by Ciuti et al. in the
work [4]. The main result was that the kinetics of the signal state with k wave-vector
is proportional to:

d

dt
Nk(t) ∼ Eint

k P 2
kpe

−i2ωpt
⟨
p†k(t)p

†
kidler

(t)
⟩
, (4.8)

where Eint
k is the energy of polariton-polariton interaction, Pkp is the pump-

induced polarization, ωp is the pump frequency,
⟨
p†k(t)p

†
kidler

(t)
⟩
is the anomalous

quantum correlation between signal (p†k(t) is the signal polariton creation operator)
and idler (p†kidler(t) is the idler polariton creation operator), whose kinetics in its
turn is proportional to:

d

dt

⟨
p†k(t)p

†
kidler

(t)
⟩
∼ Eint

k P ∗2
kp e

i2ωpt [1 +Nk(t) +Nkidler(t)] . (4.9)

These equations show, that besides spontaneous, there is a stimulated scattering
due to the signal and idler states. In works [2] - [4] the four polariton states were
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Figure 4.4: (a) Integrated PL intensities vs wave-vector for di�erent excitation in-
tensities. (b) Occupancy of the polariton states calculated taking into account the
photonic fraction of the polariton. Image was taken from [3].

coupled by the interactions (two of them are identical), so the e�ect was similar to
the four wave mixing in the bulk, considering two identical pump beams. However,
such stimulated polariton-polariton scattering is called usually the optical paramet-
ric oscillator (OPO). Nevertheless, the standard four wave mixing e�ect was also
observed for cavity polaritons [23, 24].

4.2.2 Bistability

In 2004, the optical bistability e�ect in microcavity was observed by Baas et al.
[5]. Authors considered the optical parametric oscillator and the energy of pumping
was detuned with respect to the resonance. The hysteresis in the dependence of the
signal emission intensity vs the excitation intensity was traced (�g. 4.5).

Mathematically, the bistability e�ect could be described by the solution of fol-
lowing coupled equations for three (pump, signal and idler) states:

dps
dt = −

[
γs + iELP (ks) + 2iαs|pp|2

]
ps + Eintp

∗
i p

2
p,

dpp
dt = −

[
γp + iELP (kp) + 2iαp|pp|2

]
pp − 2Eintp

∗
ppspi − Cp

√
2γaA

in
p ,

dpi
dt = −

[
γi + iELP (ki) + 2iαi|pp|2

]
pi + Eintp

∗
sp

2
p.

(4.10)
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Figure 4.5: Hysteresis loop in the dependence of the emission intensity of signal on
external pump intensity. Grey curve is the theoretical �tting. Image was taken from
[5].

Here γj is the linewidth of the j-th mode, ELP (k) is the bare lower branch of
polariton dispersion, αj is the nonlinear coupling constant between j-th mode with
the pump mode, Eint is the interaction energy. Term Cp

√
2γaA

in
p describes the

coherent resonant pumping in the p-state. In the stationary regime, the solution
gives the following dependence between the excitation intensity P inp and intensity
of the signal emission Ps:∣∣P̄ inp ∣∣2 = (1 +∆2)

∣∣P̄s∣∣4 + 2(1−∆p∆)
∣∣P̄s∣∣2 + 1 +∆2

p, (4.11)

where P̄ inp,s = P inp,s(1 + ∆2)−1/4, and ∆ and ∆p are the detunings of signal and
pump mode normalized to their half width at half maximum. The equation 4.11
gives the condition for the bistability existence: ∆p∆ > 1. In this case there is a
region where the Ps has three solutions with a single P inp and the curve Ps vs P inp
becomes hysteresis like, as it is shown by the grey curve in �g. 4.5.

The population of these states depends strongly on the detuning of the laser
- the far it is from the resonance, the less e�cient is the pumping. However, the
resonant frequencies of the states could be tuned because of the exciton-exciton
repulsive interaction - the stronger state is populated, the higher is its frequency.
When the pump intensity is strong enough, it could move the frequency of the state
close to the laser level, the population process will get the avalanche form and it
will increase abruptly. This is the physical meaning of the bistability e�ect.

The experiment on bistability considered the unpolarized polariton states, and it
has shown that the polariton-polariton interaction is generally repulsive. However,
polaritons are bosons with non-zero angular momentum, whose projection on the
chosen axis could be either plus either minus one. The strong spin anisotropy of the
polariton-polariton interaction gives rise to a set of multistability e�ects which have
been recently predicted [25, 26] and observed [6]. However, before the description
of these e�ects, we should discuss more thoroughly the nature of spin-anisotropic
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polariton-polariton interaction.

4.2.3 Polariton-polariton interaction

The major contribution to the interaction between unpolarized excitons comes from
the triplet state. The theory of co-polarized 2D exciton-exciton interaction was
developed in [27]. Authors considered the scattering of two excitons with wave-
vectors K and K' to new states with wave-vectors K + k and K − k. The matrix
element of the Coulomb interaction could be written as a sum of four contributions:

H
SfS

′
f

SS′ = ⟨S | Sf ⟩
⟨
S′
∣∣∣ S′

f

⟩
Hdir+

⟨
S
∣∣∣ S′

f

⟩ ⟨
S′ ∣∣ Sf⟩HX

exch+S
e
exchH

e
exch+S

h
exchH

h
exch,

(4.12)
where the �rst term describes the direct Coulomb interaction, second term de-

scribes the exchange of the exciton as a whole, and the two last terms describe
the electron and hole exchange. The authors have shown that Hdir = 0 when the
me = mh or when k = 0. In other words, the direct scattering is ine�cient in
the case of excitons with small wave-vectors. The matrix elements for the exciton
exchange interaction could be written as:

HX
exch(∆K, k, θ) = − 1

A

e2

ε
a2D

(
2

π

)2

Idir

[√
(∆K)2 + k2 − 2∆Kk cos(θ)

]
, (4.13)

where

Idir(q) =
4π3

qa2D

{[
4 + (µeqa2D)

2
]−3/2

−
[
4 + (µhqa2D)

2
]−3/2

}2

. (4.14)

∆K = |K −K ′|, θ is the angle between K −K ′ and k, a2D is the Bohr radius
of the exciton and A is the normalization coe�cient.

Idir(q) is zero for q = 0 and reaches its maximum value which is of order of 1 at
very high q

The matrix element for electron and hole exchange process would take this form:

He,h
exch(∆K, k, θ) = − 1

A

e2

ε
a2D

(
2

π

)2

Iexch(∆K, k, θ, µe,h). (4.15)

The value of Iexch could be found numerically and for the zero k it has the
value −15 when the maximum value of Idir(q) is of the order of 1. It means that
for small k the main mechanism of exciton-exciton interaction is coming from the
electron-electron or the hole-hole exchange.

The light interacts with bright excitons and could form two polariton states:
|±1 >, and thus there could be two di�erent situations of polariton-polariton inter-
action - when polaritons are co- or cross-polarized. In the �rst case the �nal state of
the exchange interaction is the same as the initial one, so electron or hole exchange
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interaction increases the energy of polaritons proportionally to the overlapping of
the wave-functions of their carriers, and the energy shift of the polaritons Udex reads:

Udex = πa2DnX
2 e

2

ε
, (4.16)

where X is the Hop�eld coe�cient (excitonic fraction of the polariton) and n is
the polariton density.

In the second case, when the polaritons are polarized oppositely, the exchange
interaction turns them into dark states. As opposed to quantum well excitons,
for which the dark states are close in energy to the bright states, in the strongly
coupled system of cavity polaritons there is a signi�cant energy gap between them
∆bd, therefore, the exchange interaction between the two cross-polarized polaritons
is relatively week.

Moreover, to consider the energy shift of two cross-polarized polaritons, we
should consider the interactions conserving their states. This could be achieved
by the consideration of the second-order processes involving the intermediate states
such as the quantum con�ned state which causes the Van-der-Waals interaction[28],
the dark states[29, 30] and the biexciton states[31].

The shift of the energy of particles obtained due to the second order scattering
process involving the energy levels split by the value ∆ reads [32]:

∆0 =
∆

2

(√
1− 4M2

∆2
− 1

)
, (4.17)

where M is the matrix element of the scattering. So for the three men-
tioned above processes (Van-der-Waals interaction, scattering via dark and biexciton
states) one could write three energy shift terms (UV dW , U iex and Ube respectively):

UV dW =
∆eo

2

√1− (e2LznX2)2

ε2∆2
eo

− 1

 , (4.18)

U iex =
∆bd

2

√1− (πe2a2DnX2)2

ε2∆2
bd

− 1

 , (4.19)

Ube ≈
∆be

2

√1−
(1−X2)(X~ΩRπa22Dn)

2

∆2
be

− 1

 . (4.20)

Here, Lz is the quantum well size, ΩR is the Rabi frequency and ∆eo, ∆bd and
∆be are the sizes of the energy gaps between initial and virtual states.

The Van-der-Waals interaction a�ects both co- and cross-polarized polaritons,
when the interaction via the dark and biexciton states shifts the energy only of
cross-polarized polaritons. As they come from the scattering processes of the sec-
ond order, all these interactions are attractive and cause the redshift of interacting
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particles. The polariton-polariton interactions could be embedded in the spinor
Gross-Pitaevskii equations to the interaction terms α1,2 this way:

α1n = UV dW + Udex,

α2n = UV dW + U iex + Ube.
(4.21)

From the above discussion, it follows that the co-polarized polaritons show re-
pulsive interactions, while cross-polarized polaritons attract each other, and usually
|α2| ≪ |α1|. The theory of polariton-polariton scattering was con�rmed by numer-
ous experimental works like [32, 33]. The spin anisotropy of polariton-polariton
interaction led to the prediction and observation of a wide variety of remark-
able phenomena, such as the inversion of the linear polarization during polariton-
polariton scattering processes [33], the spin-Meissner e�ect [34], the stability of
half-topological defects [35], and the polariton multistability [25, 26],

4.2.4 Multistability

The spin-anisotropy of the polariton-polariton interaction obviously should a�ect
the polariton bistability e�ect whose properties should depend strongly on the po-
larization of the external pumping. The �rst prediction and theoretical description
of the polariton multistability e�ect were made by N. A. Gippius et al. in [25]. The
authors have considered a continuous wave quasi-resonant optical pumping of the
polariton ground state. Coherent polariton state consists of two coupled components
(ψ+ and ψ−) which energy shifts depends on their population as:

∆E± = α1|ψ±|2 + α2|ψ∓|2. (4.22)

The authors have started with simple spinor Gross-Pitaevskii equations from
which they derive the relation between the pump properties (polarization ρp and
intensity I) and the number of polaritons N = |ψ+|2 + |ψ−|2 and their polarization
degree ρc = (|ψ+|2 − |ψ−|2)/N :

I/4τ = [Ω2 + τ−2 + (α1 − α2)(1− ρ2c)]ΩN,

ρpI/4τ = [Ω2 + τ−2 − (1/4)(α1 − α2)
2(1− ρ2c)N

2]ρcN,
(4.23)

where Ω = ω0+ω+α1N , ω is the frequency of the laser and ω0 is the frequency
of the polariton ground state, τ is the polariton lifetime.

Equations show that only when the external pumping is purely circularly po-
larized, the polarization degree of the transmitted beam coincides with it. In other
cases ρc di�ers from the ρp and, moreover, the polaritons could be almost circularly
polarized in the case of linearly polarized pumping. Also, if one considers the de-
pendence of the polariton quantity or of the polariton polarization degree on the
intensity of the excitation, which could be changed adiabatically, one could obtain
the hysteresis-like curves (�g. 4.6).

Physically, the process could be described as follows. Linearly polarized exci-
tation creates almost equal number of σ+- and σ−-polarized polaritons, and the
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Figure 4.6: (a) Dependences of the polariton populations for σ+- (red curve) and σ−-
(black curve) polarized components on the intensity of excitation. Solid (dashed)
lines show the case when I was adiabatically increased (decreased). (b) Degree
of polaritonic circular polarization for increasing (black curve) and decreasing (red
curve) of the pump intensity. Calculations were performed for almost linearly po-
larized excitation and for the case of α2 = −0.1α1.

blueshift of their energy is proportional to their quantity. Above some intensity
of the excitation, one of the components passes its threshold, and its population
increases abruptly. Because of the negative sign of α2, this decreases the energy of
the second component and moves it far from the frequency of the excitation laser.
This is why, the threshold intensity for the second component is quite larger than
for the �rst. When the excitation intensity is between these two thresholds, the
polarization of the transmitted beam is almost circular. The same situation occurs
on the way back, when the intesity of excitation is decreased. When one component
sharply goes down, other component remains highly populated, and moreover, it
moves upwards from the excitation level, which slightly reduces its population.

The multistability e�ect was studied in di�erent experiments done with contin-
uous wave [6, 36] and pulsed [37, 38] pumping schemes. Indeed, the multistability
of polariton population was observed, however, the e�ects di�ered from what was
expected. For example, let us consider the work done by Paraiso et al. [6]. The
authors studied the GaAs/AlAs quantum well embedded in the optical microcavity.
However, on top of the cavity spacer, the 6nm height and 3µm diameter mesas were
patterned, providing the e�ective potential well for polaritons. Thus the ground
polariton state corresponds to totally con�ned 0D-polaritons and it is split in the
energy from the 2D exciton level by the value of δ′ = 1.5meV .

The dependencies of the transmitted power and of the polarization degree of
transmitted light on the pump power and on the polarization degree of excitation
were measured for di�erent cases. Fig. 4.7 shows the hysteresis-like curves for the
quantity of polaritons vs the excitation power for di�erent polarizations of excita-
tions. On contrary to what was predicted theoretically, even at slightly elliptical
excitation, the population of two components jumps up simultaneously (Fig. 4.7
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Figure 4.7: Transmitted power vs power of excitation for di�erent values of the
pumping degree of circular polarization: (a)ρp = 1, (b)ρp = 0.4, (c)ρp = 0.2,
(d)ρp = 0. Blue (green) lines are for σ+- (σ−-) polarized light. Inset on (d) shows
the degree of polarization of the transmitted light. Image was taken from [6].

(c), (d)). This e�ect could be obtained if one will put positive α2 what contradicts
to the theory of polariton-polariton interaction.

Another strange e�ect occurs on the "way back", when the excitation inten-
sity was adiabatically decreased in the case of almost linearly polarized excitation,
namely, when the σ− component jumps down, the σ+ suddenly jumps up. Indeed it
could not be explained just by the positive α2 since in this case the lower threshold
should be also the same for both components.

Thus, this experiment has revealed that the theoretical conception of polariton-
polariton interaction was not complete.

4.3 Exciton reservoir

4.3.1 Idea of the reservoir

A set of experiments done on polariton multistability under pulsed excitation should
be also noted [37, 38]. In these works, the cavity containing 6 quantum wells was
excited by nanosecond pulses and the dynamics of the transmission intensity and
polarization was studied. The intensity of the transmitted signal followed very well
the intensity of the input signal and its polarization showed remarkable behavior,
namely, when the cavity was excited by linearly polarized light, if the excitation
intensity was strong enough, the transmitted light becomes elliptically polarized for
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some time. The degree of circular polarization of the transmitted light has reached
the values of 0.5. However, one more remarkable e�ect was observed - despite the
fact, that intensity of the transmitted light decreased very fast, with the decreasing
of the excitation intensity, the energy of emission showed a di�erent behavior. It
grew at the beginning of the pulse, what is natural, because the energy of polariton-
polariton interaction grew with the polariton density. However, when the intensity
of light diminished, and thus the number of polaritons strongly decreased, the energy
of the emission remained shifted (�g. 4.8).

Figure 4.8: Left panel: the time pro�le of the intensity of the excitation (grey
squares) and of the emission (black lines) for di�erent components. Right panel:
the energy of the transmitted light measured for di�erent excitation powers. Image
was taken from [37].

These measurements have shown, that a long-living component appears in the
system under strong excitation, whose characteristic lifetime is of the order of
nanoseconds. The authors have developed a phenomenological model that cou-
ples the system of polaritons with a noncoherent exciton reservoir system. Then,
the following �ve equations were written:

iĖ± = (ωc − iγc)E± + αF± + βP±,

iṖ± =
[
ωx + V1|P±|2 + V2|P∓|2 + V

′
1N/2− i(γx + γxr + Vr|P∓|2)

]
P± +AE±,

Ṅ = −γrN + 2γxr

(
|P+|2 + |P−|2

)
+ 4Vr|P+|2|P−|2.

(4.24)
Here F±, E±, P±, N describe respectively the external excitation, cavity electro-

magnetic �eld, polarization wave and the density of the exciton reservoir, γc,x,r are
the broadening of the cavity, exciton and reservoir lines, ωc,x are the eigenfrequen-
cies of the cavity photon and exciton, α, β, A are the coupling polariton constants.
V1,2 states the exciton-exciton interaction constants, γxr states the scattering of the
excitons to the reservoir linear by the exciton density, when Vr is the ratio of the
scattering process in which two oppositely polarized excitons are involved.

The reservoir is considered to be unpolarized and it shifts the energies of the
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σ+ and the σ− components equally. The constant V
′
1 is responsible for this. From

the equations 4.24, the authors have successfully described the measured behavior
of the system. Also, the exciton reservoir renormalizes e�ectively the constants of
polariton-polariton interaction what could lead to the e�ective repulsion between
cross-polarized components. Indeed, if the density of the reservoir is linear by the
density of the ground state N = θ(|P+|2 + |P−|2) then one could express the shift
of the energy of the ground state as:

U± = V1|P±|2 + V2|P∓|2 + V
′
1θ(|P+|2 + |P−|2) = (V1 + V

′
1θ)|P±|2 + (V2 + V

′
1θ)|P∓|2.

(4.25)
As one can see, in the cases, when (V2 + V

′
1θ) > 0 the e�ective interactions

between cross-polarized component of the polariton �eld mediated by the reservoir
are repulsive. By this one could describe the problem of the upper threshold in
the multistability experiment (that is, the one corresponding to increasing pumping
power), discussed in the previous section. The e�ective repulsive interaction be-
tween cross-polarized components will lead to the simultaneous increasing of their
populations. However, with the linear dependence of the reservoir density on the
polariton density its impossible to describe the problem of the lower threshold.

In order to describe the polariton-polariton interaction more completely, one
should consider the mechanism of the reservoir formation in details. One could
distinguish three possible types of the reservoir: the reservoirs of biexcitons and
of dark excitons formed by the scattering processes between two cross-polarized
polaritons. The rates of these processes should be proportional to the product
|P+|2|P−|2. The third type of the reservoir consists of simple excitons and it could
be formed by the thermal heating of the polariton system. This process should be
linear by the density of the ground state and thus it should be dominant in the case
of the low densities. In our work [7] we consider the formation of such reservoir.

In this work, we describe theoretically the thermal generation of an excitonic
reservoir from a resonantly pumped low energy polariton state. There is a wide
literature which has been devoted to the opposite process, namely when an excitonic
reservoir is generated from a non-resonant pump. In such a case, particles are
injected in long living states (reservoir state) and then dissipate their energy in order
to reach short living states, possessing a large photonic fraction. Here, we consider
the case when a short living state is populated by a cw laser, which generates
a distribution function characterized by T = 0. The interaction with the lattice
phonons warms up the exciton-polariton gas. To our knowledge, this e�ect has
never been studied, being always considered as negligible. As we are going to show
below, this is essentially incorrect in structures showing a small Rabi splitting at zero
or positive detunings, namely in the widely-studied GaAs-based cavities containing
a single QW. In such a case, excitonic states can be populated by a single scattering
event on an acoustic phonon. Because of the long life time of these states, excitons
can accumulate in the system forming a thermal distribution. The idea of the process
is schematically illustrated on �g. 4.9.
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Figure 4.9: The scheme of the process we considered. The circularly polarized
pumping is in the ground state. The interaction with phonons provides an exchange
of polaritons between the condensate and the reservoir.

The structure we consider is exactly the type of structure which has been used
so far in multistability experiments [36, 6]. In the beginning we will solve the semi-
classical Boltzmann equations with the ground state being continuously pumped by
a resonant, circularly polarized (σ+) laser as sketched on the �gure 4.9. This way of
using Boltzmann equations is extremely unusual for the �eld of exciton-polaritons,
since such equations are typically used in order to describe the non-resonant pumping
case and the relaxation of reservoir excitons toward the lower energy states [39]. We
show that in the above-mentioned type of structures, the resonant pumping results in
the formation of a thermal exciton reservoir of a moderate density, which we assume
to be unpolarized whatever the polarization of the pumping laser. This assumption
might not be fully correct, since the interactions with the strongly polarized pumped
state should split the circularly polarized reservoir state, which might slow down
the standard exciton spin relaxation mechanisms [40]. In the absence of any data
allowing to verify the presence of such e�ect, we assumed in our paper that the
exciton spin relaxation time is much shorter than the reservoir exciton lifetime,
leading to an unpolarised reservoir.

This reservoir can provoke a blue shift of both polariton spin components by
a fraction of meV , comparable with the energy shifts induced by the resonantly
pumped state occupation. This can result in an apparent positive α2, induced by
the reservoir. In the second part of the work we solve self-consistently the cou-
pled spinor Gross-Pitaevskii�Boltzmann equations, using the proper attractive α2

constant for polariton-polariton interaction. We show that the correct accounting
for the reservoir generation by acoustic phonons is su�cient to describe the most
important features of the experiment of Ref.[6].
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4.3.2 Analytical approximation

We begin with a simple analytical model allowing to estimate the importance of the
e�ect we would like to discuss, that is, the population of an exciton reservoir by
scattering with phonons up from the coherently pumped condensate. The spatially
homogeneous condensate and the reservoir are described by the occupation numbers.
In what follows we will use lowercase letters to describe the surface densities (e.g.
the condensate density n0 = N0/S) and uppercase ones for the occupancy of the
states.

In the most general case the semi-classical Boltzmann equation for the occupa-
tion number of the state with wave-vector k⃗ reads [41]:

dN
k⃗

dt
= P

k⃗
− Γ

k⃗
N
k⃗
−N

k⃗

∑
k⃗′

W
k⃗→k⃗′(1 +N

k⃗′) + (1 +N
k⃗
)
∑
k⃗′

W
k⃗′→k⃗

N
k⃗′ . (4.26)

Here the terms withW are the scattering rates between di�erent states, P is the
pumping and Γ are the decay rates of the corresponding states. The terms (1+N

k⃗
)

account for the bosonic nature of the particles involved, allowing to describe bosonic
stimulation towards strongly populated states.

This system of equations will be solved as a whole below, but �rst we will discuss
an approximated solution allowing analytical treatment. Indeed, if one assumes the
conditions when single-phonon assisted scattering is stronger than multi-scattering
channels, the reservoir states become only coupled with the ground state, and not
between each other. In QW-based structures, the exciton-phonon coupling arises
between 2D excitons and 3D phonons. The wave vector in the plane is therefore
conserved, which is not the case for the wave vector of phonons in the z direction (qz).
This speci�city allows to organize energy-conserving scattering processes even in the
very sharp polariton dispersion. This process is however limited by a wave vector
cuto� provided by qz,max ∼ 1/L, L being the well width. In practice this cuto�
limits the energy exchanged during a polariton-acoustic phonon scattering event to
2− 3meV . So qualitatively, one expects single-scattering processes to be dominant
if the energy di�erence between polariton ground state and the excitonic reservoir is
smaller than 3meV , and multi-scattering processes if this energy di�erence is larger
than 3meV .

In the framework of the above-mentioned assumptions, the equation of motion
for the reservoir state k⃗ writes:

dN
k⃗

dt
= −Γ

k⃗
N
k⃗
−N

k⃗
W
k⃗→0

(1 +N0) + (1 +N
k⃗
)W

0→k⃗
N0. (4.27)

Using the Fermi golden rule and assuming Lorentzian broadening of polariton
lines, one can calculate the scattering rate for polariton-acoustic phonon interaction:
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W phon

k⃗→k⃗′
=

2π

~
∑
q⃗z

|M(q⃗)|2(0, 1 +N q⃗=k⃗−k⃗′+q⃗z
ph )×

~γ
k⃗′/π

(E(k′)− E(k)± ~ωq⃗)2 + (~γk′)2
.

(4.28)
Here γk is the broadening of the polariton line corresponding to the decay rate

Γ
k⃗
in the Boltzmann equations, ωq - the phonon frequency, N q⃗=k⃗−k⃗′+q⃗z

ph - number
of phonons, M(q) - the matrix element of polariton-phonon interaction, taking into
account the excitonic fraction of each of the states involved. This exact formulation
will be used when a full numerical solution of the Boltzmann equations is obtained.
However, it is instructive to further simplify the problem in order to be able to �nd
an analytical solution. To do so, we simplify the above-mentioned scattering rates
by assuming that the only dependence of W phon

k⃗→k⃗′
between the ground state and the

reservoir state is via the number of phonons N k⃗
ph: W0→k⃗

= WN k⃗
ph and W

k⃗→0
=

W (N k⃗
ph + 1) where N k⃗

ph = 1/(exp(−∆Ek/kBT )− 1). We take the value of W as an
adjustable parameter, which is determined by comparison between the analytical
formula we will derive below and the result of the full numerical simulation. It will
be shown in section IV to possess a value of order 107s−1 using an exciton decay
rate Γk ≈ ~/400 ps. The main approximation performed in the analytical approach
is to neglect the above-mentioned wavevector cuto� together with the wavevector
dependence of the interaction with acoustic phonons, and the only dependence that
is kept is the exponential decrease of phonon occupation numbers for large energies
exchanged.

For this system of equations, one can analytically obtain the stationary values
of the occupation numbers:

N
k⃗
=

N k⃗
ph

N0 +N c
0

N0. (4.29)

from which the total reservoir density can be straightforwardly obtained. Here
N c

0 = N k⃗
ph + 1 + Γ

k⃗
/
W - critical value for N0, discussed below.

From the previous equation, one can see the existence of two distinct regimes.
If N0 is smaller than N c

0 , the reservoir density increases linearly with N0. It then
saturates when N0 ≫ N c

0 . In the latter regime, the reservoir density does not de-
pend on pumping anymore and is proportional to the phonon distribution function.
In this regime, the reservoir distribution function is therefore exactly Bose distribu-
tion function with chemical potential equal to the energy di�erence between the the
bottom of the bare excitonic branch (the zero energy) and the pumped polariton
state [42]. It is anyway always very well approximated by a Boltzmann distribu-
tion function, which is fully con�rmed by the numerical simulations, whatever the
conditions.

The value N c
0 in fact depends on the wave-vector of the �nal state and is slightly

di�erent for di�erent states, however for the scattering process from the ground
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polariton state to the exciton branch, its variation with k⃗ is not signi�cant. Never-
theless, this variation will be accounted further.

The results of the calculations are presented on the �gure 4.10. The dashed lines
show the reservoir density nr calculated with the procedure described above in the
saturated regime versus the exciton-photon detuning for 3 di�erent temperatures.
The Rabi splitting of the structure is 4meV , which corresponds to the case of a GaAs
cavity containing a single QW [36, 6]. Going towards positive detuning reduces the
energy splitting between the ground state and the reservoir, which increases the
number of phonons. One can also increase the number of phonons directly, by
simply increasing the temperature. In both cases, the reservoir density increases.
One should note that with the Rabi splitting of 4meV and a positive detuning of
3meV the polariton dispersion remains substantially di�erent from the bare exciton
dispersion. The photonic fraction is about 0.2 and the energy di�erence between
the polariton and bare exciton energy at k = 0 is 1meV .

Next, in order to check the validity range of our analytical approximation, we
have solved numerically the whole system of semi-classical Boltzmann equations
where all possible scattering paths are taken into account Eq.4.26. The pumping
term is di�erent from zero only for ground state P0 ̸= 0. The simulation is carried
out until the system reaches a steady-state distribution N

k⃗
, that takes about 2ns.

An essential aspect to get a reliable result, is to consider the proper reciprocal space
area for the pumped state which is given by 4π2/S where S is the system surface. We
will take S = (3µm)2, in order to be in agreement with the experimental conditions
of [6].

The results of the numerical simulations are presented on the �gure 4.10 with
solid curves. As expected, the analytical approach shows a good accuracy in the pos-
itive detuning range when the energy di�erence between the polariton ground state
and the excitonic reservoir is small. In that range, and at 20K, the densities found
are likely to destroy the strong coupling regime, and anyway to provoke strong blue
shift due to exciton-exciton interactions. By going to negative detuning, the gener-
ated reservoir density drops very rapidly, becoming completely negligible. This drop
is explained by the fast decay of the direct scattering processes and the ine�ciency
of the multiple scattering channels. One should also note that the accounting for
polariton-polariton scattering mechanisms brings no change to the present picture
as soon as only the polariton ground state is pumped.

The simulations using the complete system of Boltzmann equations have also
been performed for a GaAs microcavity showing a signi�cantly larger Rabi splitting
of 12meV . The results are presented on the Fig. 4.11. In that case, the reservoir
density generated by the resonant pumping is completely negligible, keeping below
to 108 cm−2 for the values of detuning considered, and the analytical approximation
of single-phonon scattering is not applicable.
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Figure 4.10: Densities of excitons versus detuning for di�erent values of temperature,
solid lines - numerically calculated, dashed lines - analytical approximation. Open
circles - density of condensate n0. Rabi splitting 4meV .

4.3.3 In�uence of the reservoir on energy shifting

Our next step is now to consider the impact of the excitonic reservoir, generated
under quasi-resonant pumping, on the energy of the two spin components of the
condensate. The interaction between excitons has been previously studied theoreti-
cally and experimentally, both in the scalar[27] and spinor cases[33, 32], taking the
account the fact that the excitons are composite bosons [30]. We assume that this
interaction is the same, whether the excitons concerned are both in the condensate,
or one of them is in the reservoir.

In the triplet con�guration the 2D interaction constant comes mostly from the
exchange Coulomb interaction. It can be calculated in the Born approximation
yielding the approximate formula α1 = 3Eba

2
B. In the singlet con�guration, the

exciton-exciton interaction is a second-order process passing either through the dark
exciton states possessing spin ±2 or trough bi-exciton states. These latter states
are usually several meV above the polariton states, which has two consequences:
the matrix element of interaction becomes reduced and obtains a negative sign, as
any second-order correction for the ground state. We should note, however, that
it is possible to have the biexciton state close to the polariton ground state, if the
Rabi splitting is small and the detuning is strongly positive[32]. In what follows, we
assume that the singlet interaction constant is α2 = −0.1α1.

The corrections of the energies of the two polarization components of the con-
densate take into account both interaction constants:

∆E+ = α1n+ + α2n−, (4.30)

∆E− = α1n+ − α2n+, (4.31)
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Figure 4.11: Densities of excitons versus detuning for di�erent values of tempera-
ture. Rabi splitting 12meV

where E+,− are the energy shifts of the σ+ and σ− polarized component, n+,−
are the exciton densities (including both the condensate and the reservoir) and α1,2,
the interaction constants. If we decompose the total exciton density into reservoir
density nr (the reservoir is not polarized) and condensate density n0 (the condensate
is polarized σ+, as the pump), we can write the energy shifts as follows:

∆E+ = α2
nr
2

+ α1

(nr
2

+ n0

)
, (4.32)

∆E− = α2

(nr
2

+ n0

)
+ α1

nr
2
. (4.33)

Using this formula, we plot on the �gure 4.12 the energy shifts of the two com-
ponents of the condensate as a function of the detuning, using the values of the
reservoir density obtained by solving the full Boltzmann equations. The results
presented on the �gure correspond to a Rabi splitting of 4meV and a temperature
5K.

We see that in the conditions of this simulation, namely, at relatively small Rabi
splittings and quasi-resonant cw pumping (as opposed to pulsed excitation), the
contribution of the reservoir can totally modify the observed energy shifts. Indeed,
at negative detuning the reservoir is not strongly populated, and a redshift of the
σ− component is observed, as one would naturally expect from the negative sign of
the α2 constant. However, at positive detuning the reservoir starts to play a role.
Since the reservoir is depolarized, it contains a large number of σ− excitons which
induce a blue shift for the σ− component of the condensate via the stronger repulsive
interactions, which dominate the weak redshift induced by the σ+ excitons.

Therefore, a measurement of the energy shift of the σ− component at positive
detunings, without including the �lling of long-lived reservoir states, can lead to
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Figure 4.12: Energy shift of σ+ (red circles) and σ− (black squares) components of
condensate . Rabi splitting 4meV , temperature 5K.

inexact conclusions concerning the wrong sign and the magnitude of the polariton-
polariton interaction constants.

4.3.4 Application of the model

One of the important e�ects based on the energy shifts of the polariton mode is the
bistability (or multistability in the spinor case) of the polariton mode under quasi-
resonant pumping. Indeed, if the system is pumped with a cw laser whose frequency
is above that of a bare polariton mode, blue shift of the macrooccupied mode will
bring it closer to the laser, increasing the e�ciency of the pumping. Therefore, at
some pumping intensity the mode becomes unstable and the population jumps up
abruptly. This e�ect has been predicted to occur also in the spinor case[25], but if
one takes into account the negative sign of α2, it is logical to expect that the jump
of one polarization component under elliptical pumping will prevent the jump of the
other component by moving it o�-resonance.

In the �rst experimental work on polariton multistability[6], the authors have, in
particular, observed an abrupt simultaneous increase of the amplitudes of both com-
ponents, when the polarization of the excitation light is almost linear, but slightly
elliptic (Fig 1(d,e) in Ref.[6]). This contradicts the expected behavior mentioned
above, and was explained by the authors by introducing a positive sign of α2, that
is, repulsive interactions for excitons with opposite spins.

In this section we show how the formation of an excitonic reservoir in this partic-
ular type of experiment in�uences the observed behavior of the polariton modes in
the multistable regime. In order to describe correctly the behavior of the macrooc-
cupied modes under quasi-resonant pumping, we write the coupled Gross-Pitaevskii
equations with pumping and decay for both polarization components Ψ±, taking
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into account the interactions with the reservoir.

i~
dΨ±
dt

=

[
−iγ

2
+
α1

S
|Ψ±|2 +

α2

S
|Ψ∓|2 +

(α1 + α2)

2
nr

]
Ψ± + P±e

i∆/~t. (4.34)

Here, γ de�nes the broadening of the polariton line, S the surface area of the
polariton spot, P±, the excitation density and nr, the density of excitons in the
reservoir. The detuning between the laser and the pumped polariton state ∆ =

0.5meV , as in the experiment. We do not account the spatial distribution of the
Ψ± as far as we want to consider quasi homogeneous (0D) case. The density of
the reservoir can be obtained analytically, following the approach introduced in the
beginning:

nr =
1

2π

∞∫
0

Nk
ph

(
|Ψ+|2 + |Ψ−|2

)
Nk
ph + 1 + |Ψ+|2 + |Ψ−|2 + Γk/Wk

kdk. (4.35)

Taking an average value for Γk
Wk

and considering parabolic exciton dispersion, we
can evaluate this integral analytically and obtain the solution for nr as a function
of
(
|Ψ+|2 + |Ψ−|2

)
:

nr =
1

4π

(
|Ψ+|2 + |Ψ−|2

) B
C

ln

∣∣∣∣1 + C

A

∣∣∣∣ , (4.36)

A =

[
|Ψ+|2 + |Ψ−|2 + 1 +

Γ

W

]
e

δ
′

kBT ,

B =
2mXkBT

~2
,

C = −
[
|Ψ+|2 + |Ψ−|2 +

Γ

W

]
.

By introducing the above expression in the eq. 4.34, we get a closed equation for
the amplitude of the pumped polariton mode. An essential parameter of the model is
the ratio Γ

W (which has to be assumed constant in order to obtain analytical results).
It can be estimated by calculating with the full system of semi-classical Boltzmann
equations the value of the reservoir density nr as a function of the condensate
density n0 = |Ψ+|2+|Ψ−|2

S . We have then �tted the results obtained numerically by
the analytical formula 4.36. The results of this �tting are presented on �g. 4.13.
The value obtained for the �tting parameter Γ

W was around 300.
By changing the pump density slowly in time from 0 to some value and back

again we can obtain the evolution of the populations of both circularly polarized
polariton components and of the excitonic reservoir. The results are presented on
the �g. 4.14. Indeed, a simultaneous jump of both circular components, and of the
reservoir is visible when increasing the pumping power. The strong rise of the σ+

polariton density associated with the passage of the bistable threshold leads to a
strong rise of the population of the unpolarized excitonic reservoir which provokes
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a blue shift of the polariton energy of the σ− component. This blue shift overcomes
by far the red shift induced by the attractive interaction between the opposite spin
components of the condensate. It leads to the passage of the bistable threshold for
the σ− component as well.

Another experimental e�ect is well reproduced when the system is on the upper
stability branch and the pumping power is decreased. The σ−-component has a
smaller population and therefore jumps down �rst. At the same time, the population
of the other component σ+ strongly increases. This e�ect is easy to understand as
well. When σ− jumps down, the energy of σ+ is still higher that the laser frequency.
The jump of σ− leads to a reduction of the total reservoir density nr, bringing
the frequency of the σ+ component closer to the laser frequency. This makes the
pumping more e�cient and increases the σ+ population. When this amplitude in
its turn abruptly decreases, the reservoir density jumps down once more, and this
causes a second jump down of the σ−-component. So, while the pumping power is
decreased, the amplitude of σ−-component undergoes two steps, as it was observed
in experiment.

4.3.5 Conclusion

In this chapter we have discussed the numerous non-linear optical e�ects in di�erent
systems. After the description of the general historical background, I have paid
attention to the NLO e�ects observed in optical microcavities and, particularly, to
the e�ects of multistabilities. It was shown, that recent experiments revealed the
problems in the understanding of polariton-polariton interactions. Finally, I have
presented our work, in which we proposed the mechanism of the exciton reservoir
formation.

In this work we present the microscopic mechanism for the build up of the exci-
tonic reservoir and predict strong dependence of the reservoir density on the detun-
ing and the temperature. We have studied the generation of an excitonic reservoir
in the case of quasi-resonant pumping of a polariton mode. Exciton-polaritons
from the condensate are scattered up with phonons. It was shown that in struc-
tures with small Rabi splitting and positive exciton-photon detuning, this process
provides a strongly populated reservoir which in�uences the behavior of the reso-
nantly pumped polariton modes. Because of the reservoir, it is possible to observe
a blueshift of the polariton condensate component polarized opposite to excitation,
while the exciton-exciton interaction constant for opposite spins remains negative
(attractive interaction). An analytical model allowed us to describe the multistable
behavior of the polariton system recently evidenced experimentally [36, 6].

The present calculations support the phenomenological theory [37, 38] for the
case of small detuning between the polaritons and the excitons. The successful
description of experimental data for both time-resolved and cw resonant pumping
shows the important role of the "reservoir" in these experiments. This concept
also allows to resolve several contradictions in the interpretation of data obtained
in cw and ps-range pulsed excitation experiments (see also detailed discussion in
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Ref.[38]). A coupling with the reservoir also had to be introduced to describe OPO
polarization dynamics in earlier experiments [43]

However, in the framework of this model, we have not yet been able to fully
describe the experimental behavior reported in [6] for large circular polarization
degree of the pump. We believe that the hypothesis of the fully unpolarized excitonic
reservoir might be no more valid in the case of quasi-circular pumping. Indeed, the
jump up of one circular component only induces an energy splitting between σ− and
σ+ excitons in the reservoir, which may substantially slow down the spin relaxation.
Thus, the reservoir may become spin polarized which would strongly a�ect the
behavior of the pumped modes. The proper analysis of these phenomena requires
a more complete description of the dynamics of the coupled condensate-reservoir
system and will be addressed in future works.

Also, the consideration of the homogeneous states is the approximation of our
model. Finite size of the pumping spot should result in the initial distribution of
polaritons over all states. Also, the propagation of polaritons should lead to the
e�ective decreasing of their life-time inside the spot. On the other side, reservoir
excitons are very slow comparing to the near ground state polaritons and anyway
could be considered as static objects.
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As it was mentioned in the �rst chapter, bosonic particles could form at low
temperatures the new state of matter - Bose-Einstein condensates. However, real
bosons, like atoms, are very massive, so the temperature of the transition is ex-
tremely low. Because quasi-particles in semiconductors are often much lighter than
atoms, they are considered as good candidates to obtain the BEC at reasonable
temperatures [1, 2]. On the other hand their �nite and often small lifetime compli-
cates the process of thermalization. Thus polaritons or excitons usually recombine
emitting light before they interact enough with phonons. The total density of par-
ticle usually is also low due to the short lifetime, what demands extremely small
critical temperatures for the condensation.

There are several ways to increase the lifetime of the quasi-particles. For exam-
ple in the case of polaritons, very high-quality cavities were constructed. In order to
increase the lifetime of excitons and to observe their condensation, the separation of
carriers was proposed either in reciprocal [3, 4, 5] or in the real space [6, 7, 8]. The
proposition has initiated the intensive investigation of such so-called indirect exci-

tons, and very recently the typical properties of condensates (such as spontaneous
coherence) were observed [9].

On the other hand, bosonic condensates show the quantum �uid properties, and
numerous stable topological defects could be observed, like quantized vortices [10],
solitons [11], skyrmions [12] etc.
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In this chapter I will discuss the condensation of the indirect excitons and the
polarization of their photoluminescence. First I will describe in more details the idea
of the indirect excitons condensation. Then I will show several works, reporting the
condensate properties in the system of indirect excitons. And then I will discuss the
polarization dynamics of indirect excitons and their spin patterns.

5.1 Condensation of the indirect excitons

5.1.1 The idea of the indirect excitons

First attempts to overcome the negative e�ects coming from the fast exciton re-
combination where done in the semiconductors with indirect bandgaps, like Cu2O
[3, 4, 5]. Separation of carriers in the reciprocal space indeed made the electron-hole
pairs live longer than it was necessary for the thermalization. However, excitons in
such systems would rather form the electron-hole plasma droplets than go to the
condensed state.

In 1975, Y. E. Lozovik and V. I. Yudson considered the possibility of super�uidity
of coupled electrons and holes [6]. In order to overcome the e�ects of the interband
transitions, which prevent the super�uidity in the excitonic liquid [13], the authors
have proposed to separate the carriers spatially. They proposed to consider two
mutually parallel conducting plates, separated by a dielectric. In such structure,
the carriers of di�erent types would be localized in di�erent plates. However, the
interaction between them would be strong enough to couple them into pairs. Also,
the authors have derived that such 2D indirect excitons would interact with each
other repulsively, according to the interacting potential:

V (r) =
2e2

ε

(
1

r
− 1√

r2 +D2

)
, (5.1)

where D is the width of the dielectric layer.
It was an important result, since such repulsive interaction prevents the forma-

tion of biexcitons, exciton droplets, etc. and ensures the stability of the exciton
gas.

The idea was developed in 1990 by Fukuzawa et al. who proposed to use a double
quantum well with applied voltage in order to obtain the condensation of indirect
excitons [8]. The matrix element of the electron-hole interaction is proportional to
the overlapping of their wave-functions which is small in such systems, which results
in the long radiative life-time of excitons. The scheme of the DQW as well as the
carrier wavefunctions are illustrated at �g. 5.1.

As long as the spatially separated electron-hole pairs (SEHP) were considered
�rst with respect to their super�uid properties, the theory of their condensation was
developed in the super�uidity formalism (BCS theory). Thus, the crucial parameter
in the system is the gap in the spectrum of the elementary excitations, which for
the SEHP could be expressed as:
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Figure 5.1: (a) The schematic representation of the double quantum well and the
electron and hole wave-functions. (b) Critical temperature of the condensation as a
function of the exciton density. (c) FWHM of the PL spectra from double quantum
well with di�erent voltage applied as a function of the temperature. (a),(b) were
taken from [8], (c) was taken from [14]

∆0 = vpα exp [−1/ζ] ,

ζ = 8α
(
pα
p0

)2
e2m
p20a0

.
(5.2)

Here α ∼ 1 is a numerical factor, p0 is the Fermi momentum and a0 is the mean
distance between particles. p0 and a0 are de�ned by the exciton density n in the
following way: p0 = ~k = ~

√
2πn, a0 = 2π/k. m is the exciton reduced mass and

pα = ~d, d is the spatial separation between the quantum wells and v is the sum of
electron hole velocities at the Fermi surface.

From this equation, one can �nd that the critical temperature of the Bose con-
densation is Tc = 2∆0/3.5kB. Tc calculated for di�erent values of the carrier density
and the spatial separation is plotted on �g. 5.1 (b).

The same year the same group has performed an experiment on the system
of double quantum wells, measuring the spectral width of the photoluminescence.
Authors observed that when the temperature of the sample has passed some critical
value Tc, the width of the PL peak has decreased abruptly almost twice 5.1 (c).
The authors have attributed this narrowing to a phase transition of the exciton
system into an ordered state. However, the conditions were unlikely for the BEC
formation and the results were not enough to say for sure about the origin of such
phase transition.

Since then, a large number of works were done on the investigation of the exciton
condensation in the system of coupled quantum wells [15, 16, 17]. The changes of
numerous properties of excitons were reported, like changes of PL spectra, large
increase of the exciton di�usivity and of radiative decay rate as well as stimulated
scattering to the low-energy states.
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5.1.2 Macroscopically ordered state in an exciton system

In 2002, the group of L. Butov studied the photoluminescence from the double
quantum well, whose spatial pro�le at low excitation densities just followed the
laser excitation [18]. However, at large pumping intensities two concentric rings in
the PL around the pumping spot were observed. First ring (inner ring) had a small
diameter comparable to the size of the excitation spot, while the diameter of the
second (outer) ring has been increasing dramatically with the excitation density (�g.
5.2). Also the external ring was fragmented into spots that formed a periodic array
over macroscopic lengths, up to around 1mm.

Moreover, between the inner and the outer ring, a lot of bright spots were ob-
served. Their position was �xed, so they were called localized bright spots (LBS).

Figure 5.2: Spatial structure of the photoluminescence measured at di�erent values
of the excitation density. Image was taken from [18]

The observation of such composite structure has put a lot of questions about
its origin and many of them have not been solved at the time of writing of this
thesis. The formation of the inner ring was described in the original paper as a
photoluminescence from the photoexcited excitons which propagated a bit in space
during their lifetime pushed by the exciton-exciton repulsive forces. Also, the au-
thors proposed a description of the outer ring formation. According to their version,
the excitons, which have not decayed in �rst few moments after their creation, could
obtain the kinetic energy large enough to get out from the light cone and the de-
coupling between light and excitons could occur. After that, they propagate for
signi�cant distances and relax in energy to the states inside the light cone. After
that they recombine emitting light and this forms the outer ring.

However, such scheme had to be reviewed in the works [19, 20]. Di�erent addi-
tional measurements have shown the inconsistence of the previous theory. Thus, for
example, in the case of two pumping spots, situated not far from each other, the two
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outer rings did not cross each other as it should be expected but merged together,
forming one halo around both pumping spots [19]. Also, the formation of the outer
rings was observed only when the excitation energy was above the AlGaAs barrier
band gap energy [20].

These observations led to the formation of the new theory of the outer ring
developed independently by two groups. Photoexcited carriers have two options -
either to drift towards the electrodes, or to be captured by the quantum wells. It was
assumed, that holes have larger probability to be captured than the electrons, which
creates a hole-rich region close to the pumping spot. However, far from the spot,
there is an electron-rich region, because of the modulation doping of the sample.
Outer ring appears at the interface between the two regions, where electrons from
outer region and holes from inner region couple to the excitons. This scheme could
be phenomenologically described by four kinetic equations for the populations of
the hot n, phot and cold n, pcold carriers:

∂nhot
∂t = De

hot∇2nhot − nhot
τecool

− nhot
τedrift

+Af(r),
∂phot
∂t = Dh

hot∇2phot − phot
τhcool

− phot
τhdrift

+Af(r),

∂ncold
∂t = De

cold∇2ncold +
nhot
τecool

− ncold−neq

τeleak
− ξncoldpcold,

∂pcold
∂t = Dh

cold∇2pcold +
phot
τhcool

− pcold
τeleak

− ξncoldpcold.

(5.3)

Here τ e,hcool, τ
e,h
drift, τ

e,h
leak describe the rates of the cooling, drifting of hot carriers and

leakage to or from the contacts of cold carriers, De,h
hot,cold are the di�usion coe�ecients,

Af(r) states the pumping and ξ is the electron-hole recombination rate. neq is the
electron equilibrium density in the absence of the external pumping.

Numerous models were proposed in order to describe the fragmentation of the
outer ring into the bright spots [21, 22, 23, 24]. Among the assumptions of the driv-
ing mechanism were such as the stimulated scattering of excitons [21], the formation
of the BEC [22], the exciton-electron-hole Coulomb interaction [24], etc. However,
still none of the proposed models gives the exhaustive answer on the nature of the
ordered array formation and it still remains an open question.

The origin of the LBS, so far as their position is constant, is usually referred to
the defects of the structure which locally increase the electron density. Thus, LBS
could be considered as point sources of the hot excitons.

5.2 BEC as a quantum �uid

Condensates, whose motion is well described by Gross-Pitaevskii equations, exhibit
the properties of quantum �uids, like, for example, super�uidity. The stable topo-
logical defects, like vortices, therefore are of a great interest in such systems. The
spinor degree of freedom leads to the possibility of the formation of new objects:
half-vortices and skyrmions. This section will be devoted to the discussion of the
topological defects in the Bose-Einstein condensates.
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5.2.1 Topological defects

Let us consider a simple 1D Gross-Pitaevskii equation:

i
∂

∂t
ψ(x, t) = − ~2

2m

∂2

∂2x
ψ(x, t) + α|ψ(x, t)|2ψ(x, t), (5.4)

where we can write a wave-function of the condensate as ψ(x, t) =√
n(x, t) exp [iθ(x, t)], n(x, t) is the local density of condensate and θ(x, t) is its

phase.
Let us now consider the repulsive interaction α > 0. Then, apart from the trivial

homogeneous solution and its weak excitations (bogolons), considered in the �rst
chapter, there is a stable solution of the Gross-Pitaevskii equation which is called
the soliton solution:

ψS(x, t) =
√
n∞

[√
1− v2s

c2
tanh

(
x− vst

ξ
√
2

√
1− v2s

c2

)
+ i

vs
c

]
. (5.5)

This solution describes a dip in the density of the condensate, propagating with
velocity vs = c

√
n(0)/n∞, where n(0) and n∞ are the values of the condensate

density in the center of soliton and far away from it (�g. 5.3 (a)). Also, the width
of the dip is given by the so-called healing length ξ = ~/

√
2mµ, modulated by a

Lorentz prefactor
√

1− v2s/c
2, where µ is a chemical potential of the condensate

and c is the speed of sound.
If the density in the soliton center is zero, then its velocity also turns to zero

and the soliton is not propagating. The equation 5.5 turns to just a tanh(x/
√
2ξ)

function. Such soliton is called a dark soliton. Its phase has a discontinuity in the
center, representing the Heaviside function (�g. 5.3 (b)).

Figure 5.3: The soliton solution for di�erent values of vs showing (a) the density of
the condensate and (b) its phase θ.

In 2D systems, the analogue of the solitons are the quantized vortices, which were
�rst predicted by Lars Onsager in 1947 in connection with super�uid helium[25], but
were considered even earlier in the seminal paper of Dirac in 1931 [26]. The idea is
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that any spatial variation of the condensate's phase θ around a closed path should
be proportional to 2π: ∮

∇θ(r, t) = 2lπ, (5.6)

where l is an integer. The cases when l ̸= 0 requires the phase to have a
singularity inside the closed path, what leads to a quantized topological defect -
quantized vortex.

The wavefunction describing the condensate would be in this case the product
of the radial function fl(r) and the phase prefactor exp [ilφ]:

ψv(r, φ) = fl(r)e
ilφ. (5.7)

The radial function fl(r) has to be evaluated variationally. For the case of l = 1

it reads:

f1(r) =
√
n∞

r/ξ√
(r/ξ)2 + 2

. (5.8)

In the center of the vortex, where is located the phase singularity, the density of
the condensate turns to zero as in the center of the dark soliton.

Vortices were observed both in atomic [10, 27] and polaritonic BECs [28].
For multicomponent condensates, like the spinor BECs, the situation gets a bit

more complicated. Depending on the strength and on the type of interaction be-
tween two components, di�erent type of topological defects could occur. In linearly
polarized condensates, in the case of spin-anisotropic interactions (which is the case
of polaritons and excitons) the perturbation in one component could occur while the
other remains almost undisturbed. In such cases the half-integer topological defects
[29] like half-solitons [30] or half-vortices [31] are provided.

In 1962 Tony Skyrme considered the possibility of the construction of a theory of
self-interacting meson �elds, which will admit states that have the phenomenological
properties of fermion particles [32]. He considered an extended nonlinear sigma
model and he found the family of classic stationary solutions to the equation of
motion derived from the Lagrangian, which could be written in a form:

US = exp {iτrF (r)} , (5.9)

where the phase factor F (r) should satisfy the boundary conditions:

F (r → ∞) = 0, F (r → 0) = Nπ, (5.10)

where N is the winding number.
This particle, corresponding to the solution was called skyrmion particle. So far

skyrmions are particles produced by meson �elds, showing the barion properties.
It was shown that in the circularly polarized Bose-Einstein condensates in the

case of the spin-isotropic interactions the coreless vortex [12, 34] could be observed.
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The solution which leads to such vortex is the same as for skyrmion particles, so
the vortices are also called skyrmions. Such defects are presented by a dip in the
density of the main component and the peak in the density of the other, so the total
density of condensate remains constant. In general skyrmions in condensate could
be considered as the projection of the Poincare sphere on a plane.

5.2.2 Optical Spin-Hall e�ect

In 1971, Dyakonov and Perel' have predicted the e�ect of the spin accumulation on
the lateral surfaces of a sample under applied electric current [35] in absence of an
external magnetic �eld. Under the forces of spin-orbit interaction, the scattering of
the �owing carriers becomes spin-dependent and an e�ective spin current appears
in the system. The e�ect was reconsidered by Hirsch in 1999 [36], who named it the
Spin-Hall e�ect (SHE) by the analogy with the Hall e�ect, where charge separation
under external magnetic �eld occurs. Experimentally, the SHE was observed in
semiconductors in 2004 [37, 38].

The idea was extended to the case of photonic-like particles, namely polaritons,
by A. Kavokin et al. who proposed so-called Optical Spin-Hall e�ect (OSHE) [39].
Cavity polaritons, propagating radially from the point of the source, feel the e�ective
in-plane magnetic �eld provided by the TE-TM splitting, whose direction depends
on the direction of polariton propagation and the polariton Hamiltonian could be
written as:

Ĥ =
~2k2

2m∗ + (σΩk) , (5.11)

where σ is the pseudospin Pauli matrix and Ωk is the in-plane vector describing
the e�ective magnetic �eld and its components depend on the wave-vector compo-
nents kx,y as:

Ωx =
Ω

k2
(
k2x − k2y

)
, , Ωx = 2

Ω

k2
(kxky) . (5.12)

By this, a polarized polariton would feel the e�ective in-plane magnetic �eld,
and its pseudospin s would precess according to the formula:

∂s

∂t
= s×Ωk + f(t)− s

τ
. (5.13)

Here, the �rst part describes the Larmor precession of the pseudospin, the second
part corresponds to the source of polarized polaritons and the �nal term takes into
account the polariton spin relaxation.

The OSHE was observed in 2007 by C. Leyder et al. in [40]. The authors in-
jected polaritons resonantly with a well-de�ned wave vector and then considered the
Rayleigh scattering of polaritons on the elastic ring. They observed the separation
of the polariton polarizations both in real and reciprocal space.

Later the works were done with the consideration of the normal non-resonant
excitation of the polariton system [41, 42, 43] in both linear and non-linear cases. In
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such schemes, the polaritons are initially settled on the elastic ring in the reciprocal
space with some polarization de�ned by the external excitation (�g. 5.4 (a),(b)).
The works have shown the spatial oscillations of the degree of the potoluminescence
polarization coming from the cavity , followed by the spatial domains of di�erent
polarizations (as in �g. 5.4 (c)).

Figure 5.4: (a) Scheme of a typical experiment. (b) 2D dispersions of TE (purple or
outer surface) and TM (blue or inner surface) polarized polaritons. The red disk is
the Fourier image of the pump laser (x polarized). (c) Degree of circular polariza-
tion of photoluminescence (d) The phase of σ+ component within one polarization
domain. Image was taken from [43]

Also it was mentioned in [43] that the polarization structure observed in OSHE
resembles the structure of skyrmions despite the fact that that OSHE could be
observed in the linear regime. Indeed, within one polarization domain the density
of one component goes to zero when the density of the other rises up. At the
same time, the total polariton density remains constant. The phase singularity of
the �rst component is presented by a fork-like dislocation in a phase (see �g. 5.4
(d)). Thus, in spite of the spin anisotropy of polariton-polariton interaction, the
skyrmions could be obtained in polariton condensates under the forces of TE-TM
splitting. Moreover, these topological defects could be obtained in the linear regime.

5.3 Polarization patterns of the exciton condensates

5.3.1 Spontaneous coherence in a cold exciton gas

In the recent paper of High et al., the spontaneous coherence in the indirect exciton
condensate was observed [9]. The authors considered the coherence of the light
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emitted by the exciton system and studied it by the shift interferometry. The light
was divided on two parts, each of them passed through one of two arms of a Mach-
Zehnder interferometer. The images were shifted with respect to each other by a
value δx to measure the coherence between spatially separated excitons. Authors
observed the extended spontaneous coherence in the vicinity of the bright spots
- both LBS and bright spots of outer ring (�g. 5.5). However, the interference
structure was blurred directly in the center of spots.

The authors have claimed that the spots are the sources of the cold excitons,
which propagate radially from each spot and cool down to the lattice temperature
forming a condensed state. As the state formed is coherent, this coherency is exhib-
ited in the emitted light.

The polarization of the light emitted from the bright spots is of a particular
interest (�g. 5.5 (d),(e),(i),(j)). It shows a well-de�ned structure and both its linear
and circular polarization degrees depend on the direction of exciton propagation. It
is a direct evidence that the exciton pseudospin behavior is wave-vector dependent.

The studies of the phase of the emitted light in the region of LBS have revealed
two phase singularities presented by forks in the interference pattern and located
symmetrically with respect to the center of the spot. The distance between them was
independent to the changing of the parameter δx, which means that the singularities
were not provided by a single quantized vortex in the center of the LBS.

Figure 5.5: Coherence of indirect excitons in the vicinity of LBS ((a)-(e)) and spots
on outer ring ((f)-(j)). (a),(f) PL intensity, (b),(g) The interference pattern, (c),(h)
The amplitude of the interference, (d),(i) Linear polarization degree, (e),(j) Circular
polarization degree. Image was taken from [9].

In our work [44] we discuss the spin dynamics of the propagating indirect exci-
tons. We develop the theory of the indirect exciton spin-orbit interaction discussed
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in [45, 46], which allows us to qualitatively reproduce the experimental features.
First, we take into account the internal structure of excitons and shows how the rel-
ative motion of electron and hole a�ects the SOI. Especially, the hole SOI is found
to become comparable to that of the electron. Second, we assume that a bright
indirect exciton condensate with a well de�ned spin state is locally formed at the
center of the LBS, as assumed in Ref.[9]. Then, unlike the approach of Ref.[9], we
consider the coherent expansion of the resonantly created exciton cloud by direct
numerical solution of the spinor Schroedinger equation, in the presence of the Dres-
selhaus SOI. The renormalization of the dispersion induces a radial �ow of excitons
outwards from the pump spot. The repulsive exciton-exciton interactions can also
contribute to this e�ect, but we neglect them in the present work. Since the typical
time scale of the scattering of indirect excitons on phonons is of about a few ns,
the ballistic propagation length is expected to be of the order of 10 − 20 microns.
Within this length scale, we reproduce both the polarization pattern, and the pres-
ence of phase singularities of the wave function components, which are associated
with the formation of Skyrmions. These topological defects appear thanks to the
interplay between the radial �ow and the SOI, as recently shown theoretically [43]
for cavity polaritons �owing in a TE-TM e�ective magnetic �eld. Inspired by the
experimental results, we propose a con�guration leading to the onset of circular
polarization domains, fully equivalent to the one observed in the optical spin-Hall
e�ect[39]. This happens despite the fact that the wavevector dependence of the
e�ective magnetic �eld of the Dresselhaus SOI is completely di�erent from the one
given by the TE-TM splitting in the microcavities.

5.3.2 The model

.
Indirect excitons are composite bosons formed from electrons and heavy holes

separated in space. The projection of the electron's spin (angular momentum of
heavy hole) on the growth axis can take two values ±1/2 (±3/2) respectively, so the
total angular momentum of exciton can take four values ±2 and ±1. The bright |±1⟩
states are coupled with σ±-polarized light, while the states |±2⟩ are dark. Their
radiative recombination is forbidden by selection rules.

In planar structures, these four states can be coupled via the inter-exciton inter-
actions, the application of an external magnetic �eld, or by spin-orbit interactions of
carriers originating from the violation of the inversion symmetry. The interactions of
the �rst type are density-dependent. There are two kinds of spin-orbit coupling for
carriers: Dresselhaus and Rashba SOIs. Both interactions act as e�ective in-plane
k-dependent magnetic �elds coupling di�erent carrier spin states. However, in the
sample used in the experiments of reference [9, 46], the Dresselhaus SOI has been
found to be much larger than the Rashba SOI, and thus the latter shall be neglected
in the following.

For a gas of free 2D electrons, Dresselhaus SOI is linear versus the electron wave-
vector and the corresponding term of the Hamiltonian in the basis (+1/2,−1/2)T
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takes the form:
HD
e = β̃e(σ+k

e
− + σ−k

e
+), (5.14)

where β̃e is a Dresselhaus interaction constant. Here and after we use the following
notations: kγ± = kγx ± ikγy , k

γ
x,y are x- and y-components of wave-vector kγ , and

γ =e, h or X for electrons, holes or excitons respectively. σ± = σx ± iσy when σx,y
are Pauli matrices.

As it was discussed in the Chapter 1, the SOI for the 2D free heavy-holes is
linear by the wave vector [47]. Usually the linear term is considered as dominant
and higher order terms are neglected. However, in our work we show, that the
terms with cubic dependence could be reduced to the linear by the averaging of the
hole motion inside the exciton. We start with the following cubic by k term in the
Hamiltonian for the free heavy-hole for Dresselhaus and Rashba type interactions
[48]:

HR
h = iα̃h(σ+k

3
− − σ−k

3
+), (5.15a)

HD
h = −β̃h(σ+k−k+k− + σ−k+k−k+). (5.15b)

Here α̃h and β̃h are interaction constants. To do the averaging, we decouple the
relative motion of electron and holes from the motion of the excitonic center of mass:

Ψ(kX , q) = Ψc.m.(k
X)Ψrel(q). (5.16)

Here q = ke − kh is relative wavevector of electron and hole in the exciton, that
is of the order of inverse exciton Bohr radius (1/aB), and kX is excitonic center
of mass wavevector that is much smaller for the cold excitons. Electron and hole
wave-vectors are expressed in these values as ke = νek

X+q/2 and kh = νhk
X−q/2,

where νe,h = me,h/(me +mh) is the ratio of the electron (hole) mass to the exciton
mass. The averaging of the Hamiltonian (5.15) over the internal exciton e-h-motion
in ground state gives rise to an additional term for holes which has the Dresselhauss
geometry and is linear in kX :

HD
h =

∫
|Ψrel(q)|2HD

h d
2q = βhνh(σ+k

X
− + σ−k

X
+ ), (5.17)

while the Rashba term under similar averaging remains cubic in kX and can be any-
way safely neglected. Here βh = −β̃h/2

⟨
q2
⟩
is the e�ective Dresselhaus constant

for holes. Note that
⟨
q2
⟩
∼ a−2

B ≫ (kX)2, where aB is the excitonic Bohr radius.
An analogous procedure for electrons does not change the form of (5.14) but renor-
malizes electron interaction constants. Finally, one may write a SOI term for both
electron and hole bound into exciton as:

HD
e,h = βe,hνe,h(σ+k

X
− + σ−k

X
+ ). (5.18)

Here βe,h are the e�ective Dresselhaus interaction constants of electrons and holes.
In addition to the SOIs, k-independent energy splitting between linearly polar-

ized states, e.g. parallel and perpendicular to crystallographic axis can occur, and
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can be described as k-independent constant e�ective magnetic �elds. Finally, we
can write the Hamiltonian for indirect excitons on the basis of the four spin states(
+2 +1 −1 −2

)T
as follows:

H =


E+2

(
kX
)

νeβek
X
+ νhβhk

X
− −δd

νeβek
X
− E+1

(
kX
)

−δb νhβhk
X
−

νhβhk
X
+ −δb E−1

(
kX
)

νeβek
X
+

−δd νhβhk
X
+ νeβek

X
− E−2

(
kX
)
 . (5.19)

Here E±1,±2(k) = E0(k) = ~2(kX)2/2mX are the parabolic dispersions of the
bare indirect exciton states, δb,d give the energy splittings between linearly polarized
bright (dark) states. We take the exciton energy at kX = 0 as the zero point.
Putting δb = δd = 0, the Hamiltonian diagonalization is straightforward and yields
the following set of isotropic eigenmodes:

EI
(
kX
)

EII
(
kX
)

EIII
(
kX
)

EIV
(
kX
)
 =


E0

(
kX
)
+ (νhβh + νeβe) k

X

E0

(
kX
)
+ (νhβh − νeβe) k

X

E0

(
kX
)
− (νhβh − νeβe) k

X

E0

(
kX
)
− (νhβh + νeβe) k

X

 , (5.20)

and the corresponding eigenstates:

ψI =


1

+e−iϕ

+e+iϕ

1

 , ψII =


−1

+e−iϕ

−e+iϕ
1



ψIII =


−1

−e−iϕ
+e+iϕ

1

 , ψIV =


1

−e−iϕ
−e+iϕ

1

 .

(5.21)

Here ϕ is the polar angle in reciprocal space. The combinations of Eqs.5.21
correspond to linear polarizations of the bright (rows 2 and 3) part given the usual
identities ψ± = ψX ± iψY . While dark components are isotropic, the bright com-
ponents have a linear polarization that is ϕ-dependent and the polarization changes
from X to Y when ϕ is changed by π/2. In other words, the bright spin component
exhibits a 2ϕ relative phase. This peculiarity is analogue to the exciton-polariton
case in the presence of the so-called TE-TM splitting that gives birth to the optical
spin-Hall e�ect (OSHE). One of the main di�erences between the two systems is
that the TE-TM splitting acts mostly on the photonic part of the exciton polaritons
while here, the e�ective magnetic �eld involving both the electron and hole spin, is
more complex from the point of view of the global system. We will demonstrate be-
low, that the OSHE polarization texture can be reproduced for the indirect exciton
under proper excitation of the bright states.

The isotropic dispersion branches given by the Eq.(5.20) are plotted on the
Fig.5.6 in the case δb = δd = 0. One can clearly see the energy splittings between
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the branches coming from the Dresselhaus SOI contribution. Experimentally, one
can detect only the emission coming from bright excitons with small wave-vectors
inside the light cone (2.6 × 107m−1). In this region the dispersion branches are
linear. Interestingly, the calculated ground state of excitons has a signi�cant wave
vector completely out of the light cone. Thus a condensate in the ground state, even
possessing some "bright" exciton component, is expected to be completely dark. It
is moreover degenerate, and may demonstrate rich phenomenology of topological
defects. The Liouville equation allows us to derive the reciprocal space dynamics of
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Figure 5.6: Isotropic dispersion branches of the indirect exciton eigen modes [see
Eqs.(5.20)].

the spinor �eld Ψ = (ψ+2, ψ+1, ψ−1, ψ−2)
T with Eq.(5.19) yielding:

i~
∂Ψ

∂t
= HΨ− i~

2τ
Ψ+P, (5.22)

where we have phenomenologically introduced the exciton decay with a lifetime τ
and a local source P(kX) = AP

(
kX
)
δ (ω − ωP ) with frequency ωP (in our cal-

culations we took ~ωP = 2µeV ) acting on each component, where AP (k
X) are

2D Gaussians. The formation of the condensate of indirect excitons coming from a
hot reservoir and the process of their relaxation towards ground state are complex
and need further investigations. Within this simpli�ed model we consider a narrow
pump spot (broad in reciprocal space) exciting laterally the dispersion branches and
assume a ballistic propagation of the exciton. As said above, the ballistic propaga-
tion time is of order of a few ns, during which the evolution of the created cloud is
expected to be coherent.

In the idealized case of a Dirac delta source in real space, the excitation of
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an eigenstate can be found analytically. For example, the dynamical equation for
ψI(k

X) reads:

i~
∂ψI

(
kX, t

)
∂t

=
~2

2m
(kX)2ψI

(
kX, t

)
+ i∆βkXψI

(
kX, t

)
+AP e

iωP t, (5.23)

and the stationary radial solutions are found writing ψI(k
X
r , t) =

ψI(k
X
r ) exp(iωP t) which yields:

~ωPψI
(
kXr
)
=

(
~2

2m
(kXr )2 + i∆βkX

)
ψI
(
kXr
)
+AP , (5.24)

the Green's function of the problem reads

GI
(
kX
)
= − AP

~2
2m(kXr )2 + i∆βkXr − ~ωP

, (5.25)

whose Fourier transform gives

GI (r) =
APκ1
κ2 − κ1

 log
(

2
κ1

)
J0(κ1r)

2 − π
2H0 (κ1r)

+0F1

(
1,−κ21r

2

4

)  , (5.26)

− APκ2
κ2 − κ1

 log
(

2
κ2

)
J0(κ2r)

2 − π
2H0 (κ2r)

+0F1

(
1,−κ22r

2

4

)  , (5.27)

which is nothing but ψI(r) for the delta source. κ1,2 are the poles of Eq.(5.25)
and Eqs.(5.26,5.27) require that κ1 > 0 and κ2 < 0 which means that ~ωP > 0. The
solutions for the other eigenstates are found with a similar procedure and one can
therefore construct any combination using the eigenstates (5.21).

For a numerical simulation, we �rst consider a linearly polarised (P±2 = 0, P±1 ̸=
0) bright exciton state as initial condition. The exact values of the Dresselhaus
constants are not known, so we took them to be comparable to what was observed in
recent experiment [9] (several µeV ). Taking di�erent but of the same order constants
for electrons and holes would not change qualitatively the �nal pictures, so for
simplicity we took them to be equal: βe,h = 6µeV ·µm. The masses areme = 0.07m0,
mh = 0.5m0, where m0 is the free electron mass.The �gure 5.7(a,b,c) shows the
stationary real space images of a linear, circular polarization degree and phase of
bright states. One can observe the formation of a Skyrmion lattice associated with
the formation of the spin domains. The situation is analogous with the polaritonic
optical spin Hall e�ect. This similarity is expectable, since the e�ective �eld acting
on the bright states is exactly equivalent to the case of exciton polaritons in the
presence of the so-called TE-TM splitting. Fig.5.7 (c) shows the density pro�le of
bright states along the diagonal line [white dashed line on Fig.5.7(b)]. Densities of
σ+ and σ− states are oscillating while the total density decays in space with r. Phase
structure of σ+-polarized bright state is plotted on Fig.5.7(d). However, the linear
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polarization pattern that we observe in this particular simulation (8 polarization
domains), di�ers from the one measured in [9] (4 domains).

Figure 5.7: Excitonic optical spin-Hall e�ect. (a) Degree of linear polarization
of bright states. (b) Degree of circular polarization of bright states. (c) Density
pro�le for σ+- (nb+, red dashed line),σ−- (nb−, blue dashed line) polarized bright
states and total density (ntotb , black solid line) of bright states along the diagonal
line y = −x (white dashed line in (b)). (d) Phase of σ+-polarized bright component.

In order to reproduce the experiment, we therefore consider a di�erent initial
spin state for the condensate (Fig. 3). We consider �rst a condensate of dark
states with a slight asymmetry between the dark components (P−2/P+2 = 0.9,
P+1 = P−1 = 0). Then, in order to mix the circularly polarized bright states,
we introduce an additional constant splitting between the linearly polarized bright
states along and perpendicular to the main crystallographic axis of the sample δb =
1µeV .

Fig. 5.8 (a,b) shows the spatial distribution of linear and circular polarization
degree, while Fig.5.8(d) shows the phase of the X-component. Both circular and
linear polarization structures present 4 domains and are stretched along the x axis
(because of δb) as it was observed in experiment[9]. Interestingly, we also observe
pairs of phase singularities (red crosses), situated symmetrically with respect to
the exciton source. This phase singularity is accompanied by a density dip only
in the Y component. This topological defect is therefore similar to a Skyrmion,
but in the linear polarization basis. Our approach shows that the appearance of
phase singularities is a general feature of radial �ows of particles in the presence of
coupling between the spin and motional degree of freedom.
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Figure 5.8: (a) Degree of linear polarization of bright states. (b)Degree of circular
polarization of bright states. (c) Total density of bright states. (d) Phase of x-
component of bright states. Red crosses mark the phase singularities in x-component

5.3.3 Conclusion

Thus we have shown that an expanding cloud of indirect excitons can form polar-
ization textures and phase singularities thanks to the interplay between the �ow
and spin-orbit interactions. Their structure strongly depends on the polarization
of initial state, so changing the excitation conditions one can strongly modify the
number of polarization domains and qualitatively reproduce experimental data. Ad-
ditionally, we were able to mimic the optical spin-Hall e�ect for bright excitons.
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Appendix I. Numerical methods.

During my thesis I used to make a lot of numerical simulations, so it would be fare
to discuss the methods and the features of my calculations. Almost all simulations
were done in MATLAB v7.11.0. The exception was the calculations based on the full
set of the semi-classical Boltzmann equations (Chapter 4) which were carried out
using a code written in C.

In most of the situations, the problems were described by the ordinary di�erential
equations in partial derivatives (Gross-Pitaevskii equations in Chapters 2, 4 and 5
and a set of Maxwell-Bloch equations in Chapter 3), which we were solving over
time. In order to carry out the time integration of the equations I used the built-in
MATLAB solver function ode45(), which is based on the explicit 4th order Runge-
Kutta method. It is a one-step solver, what means that in order to obtain the value
of the function on n-th step ψ(tn) only the value on the previous step ψ(tn−1) is
needed. The size of the time-step δt = tn−tn−1 is found automatically by the solver
on each step and for most of problems it was of order of 10−16s.

Figure A.1: The dispersion of free particle calculated by the (a) Fourier transform
method and (b) method of �nite di�erences. X,Y-axis corresponds to the wave-
vector, energy.

The problems discussed in Chapters 2 and 5 required 1D or 2D GPE simulations
and the spatial derivatives terms were included into ODE. Each spin component of
the wave-function at each moment of time was described by a nx × ny matrix of
double-precision complex numbers, where nx,y was the size of x, y vector. In the
1D case, ny = 1. Discretization of the spatial vectors x, y imposes restrictions on
possible the wave vectors of the wave-functions, whose value is limited by the spatial
resolution:

− π

hx,y
< kx,y <

π

hx,y
, (A.1)
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where hx,y is the spatial step along x or y direction.
Solving the problem described in Chapter 2, in order to express the second order

spatial derivative of the wave functions, I used the method of �nite di�erences.
Thus, the Laplacian of the function at the i-th position could be derived as:(

d2ψ

d(x, y)2

)
i

=
ψi+1 − 2ψi + ψi−1

h2x,y
. (A.2)

The boundary conditions were taken to be periodical, but one could also use
other types of boundary conditions, such as in�nitely high barriers or zero �ux
through the boundary. Unfortunately, this method of �nite di�erences reproduces
well the parabolic dispersion one expects from the Hamiltonian just in the vicinity
of zero. Near the boundaries of the zone, the dispersion is bent showing the negative
e�ective mass as it is shown on the �gure A.1 (b). It means that the useful range of
the wave-vectors is reduced by a factor of 3, requiring to decrease the spatial step.

In the later work, discussed in Chapter 5, I used another method. The spatial
derivatives were described by a Fourier transform F []method (or rather its numerical
implementation FFT), so the Laplacian could be written as:(

d2ψ

d(x, y)2

)
= F−1

[
k2x,yF [ψ]

]
, (A.3)

where kx,y are the x, y components of the wave-vector.
Such method gives a parabolic dispersion over the whole zone (�g. A.1 (a)).

The di�erence between two methods becomes more important, when we consider a
2 component wave-function in the presence of spin-orbit interactions, which strongly
renormalize the dispersion (�gure A.2).

Figure A.2: The dispersion of free particle with spin in the presence of spin-orbit
interactions, calculated by the (a) Fourier transform method and (b) method of
�nite di�erences. X,Y-axis corresponds to the wave-vector, energy.

The Fourier transform was realized by the MATLAB functions fft(),fft2() and
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ifft() which implement the fast Fourier transform algorithm and the inverse trans-
form. Most e�ciently these algorithms work in cases, when the matrix dimensions
nx, ny equal to the 2m, wherem is some integer. In my calculations I used nx,y = 256

or 512. The fast Fourier transform implements periodical boundary conditions auto-
matically. These functions are implemented in such way that they can be executed
in parallel, if supported by the hardware. This is very useful when one deals with
large matrices.

The semi-classical Boltzmann equations discussed in Chapter 4 were simulated
by a program written in C. The algorithm was based on the 4th order Runge-Kutta
method with a variable step.





Conclusions

In order to sum up all what was written in this manuscript, I can say that I tried to
show the evolution of di�erent subjects of semiconductor physics, like, Bose-Einstein
condensation of quasi-particles, non-linear optics, lasing, etc. through the XX and
the beginning of XXI century. I discussed the general speci�cs of the subjects and
attempted to show what are the actual main problems and goals in these �elds.
I tried to show that recent technological progress gives a reach �eld of activity to
work on, enabling to investigate the nanoworld more and more precisely and to
create new impressive technologies. Also, I have presented the works, in which I
took the participation, aimed at the solving of some of the problems of modern
solid-state physics.





Publications

1. Roman V. Cherbunin, Sergey Yu. Verbin, Thomas Auer, Dmitri R. Yakovlev,

Dirk Reuter, Andreas D. Wieck, Ilya Ya. Gerlovin, Ivan V. Ignatiev,

Dmitry V. Vishnevsky, and Manfred Bayer, Dynamics of the nuclear spin polariza-

tion by optically oriented electrons in a (In,Ga)As/GaAs quantum dot ensemble,

Phys. Rev. B, 80 035326 (2009).

2. R. V. Cherbunin, S. Yu. Verbin, K. Flisinski, I. Ya. Gerlovin, I. V. Ignatiev,

D. V. Vishnevsky, D. Reuter, A. D. Wieck, D. R. Yakovlev and M. Bayer, Time-

resolved Hanle e�ect in (In,Ga)As/GaAs quantum dots, J. Phys.: Conf. Ser., 245

012055 (2010).

3. D. V. Vishnevsky, D. D. Solnyshkov, G. Malpuech, N. A. Gippius, and I. A. Shelykh,

Coherent interactions between phonons and exciton or exciton-polariton condensates,

Phys. Rev. B, 84 035312 (2011).

4. D. V. Vishnevsky, D. D. Solnyshkov, N. A. Gippius, and G. Malpuech, Multistability

of cavity exciton polaritons a�ected by the thermally generated exciton reservoir,

Phys. Rev. B. 85, 155328 (2012).

5. D. V. Vishnevsky, N. A. Gippius, Acoustic control of the lasing threshold in QDs

ensemble coupled to an optical microcavity, arXiv:1210.3199 (Submitted to Phys.

Rev. B) (2012).

6. D. V. Vishnevsky, H. Flayac, A. V. Nalitov, D. D. Solnyshkov, N. A. Gippius, G.

Malpuech, Skyrmion Formation and Optical Spin-Hall E�ect in an Expanding Co-

herent Cloud of Indirect Excitons, Phys. Rev. Lett. 110, 246404 (2013).

7. H. S. Nguyen, D. V. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Gallopin,

A. Lemaitre, I. Sagnes, A. Amo , G. Malpuech, and J. Bloch, Polariton nonlinear

resonant tunneling diode, Phys. Rev. Lett. 110, 236601 (2013).

http://prb.aps.org/abstract/PRB/v80/i3/e035326
http://iopscience.iop.org/1742-6596/245/1/012055
http://iopscience.iop.org/1742-6596/245/1/012055
http://prb.aps.org/abstract/PRB/v84/i3/e035312
http://prb.aps.org/abstract/PRB/v85/i15/e155328
http://arxiv.org/abs/1210.3199
http://arxiv.org/abs/1210.3199
http://prl.aps.org/abstract/PRL/v110/i24/e246404
http://prl.aps.org/abstract/PRL/v110/i23/e236601




Conferences

Oral Contributions

1. The 17th Int. Symp. "Nanostructures: Physics and Technology", Minsk, Belarus,

June 22-26, 2009.

2. Meeting of Spin-Optronics project, Madrid, Spain, June 28-29, 2011.

3. 13th International Conference on Physics of Light-Matter Coupling in Nanostructure,

Hangzhou, China, June 19-23, 2012.

4. International Conference on Spin-Optronics, Toulouse, France, June 10-14, 2013.

Poster Contributions

1. International School of Nanophotonics and Photovoltaics, Maratea, Italy, September

17-24, 2011.

2. International Polatom School, Toledo, Spain, May 21-23, 2012.

3. International Summer School of ITN "SPINOPTRONICS" (ISSO-2012), Saint-

Petersburg, Russia, July 10-14, 2012.





Collective dynamics of excitons and exciton-polaritons in

nanoscale heterostructures

Abstract: In my thesis I will discuss some aspects of collective dynamics of
excitons and exciton-polaritons in nanoscale heterostructures. In the �rst Chapter
I will make a brief introduction to the modern semiconductor physics and will
describe the general elements and notions which will be used further. Other four
chapters would be devoted to four works in which I participated, notably, in Chapter
2 I will speak about the coherent interactions between phonons and exciton or
exciton-polariton condensates, in Chapter 3 I will discuss the quantum dots lasing
and its ampli�cation by an acoustic pulse. Chapter 4 and 5 will be devoted re-
spectively to the polariton multistability and to the condensates of indirect excitons.

Keywords: Excitons, indirect excitons, exciton-polaritons, nanostructures,
quantum wells, quantum dots, microcavities, acousto-optic interactions, lasers,
nonlinear optics, Bose-Einstein condensation, spin dynamics, topological defects.
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