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Résumé

Dans le cadre de la géométrie riemannienne globale sans hypothése de courbure en
lien avec la topologie, nous nous intéressons au volume maximal des boules de rayon fixé
dans les revétements universels des graphes et des surfaces.

Dans la premiére partie, nous prouvons que si ’aire d’une surface riemannienne fer-
mée M de genre g > 2 est suffisamment petite par rapport a son aire hyperbolique, alors
pour chaque rayon R > 0, le revétement universel de M contient une R-boule d’aire au
moins l'aire d’'une cR-boule dans le plan hyperbolique, ou ¢ € (0,1) est une constante
universelle. En particulier (quitte & prendre ’aire de la surface encore plus petite), nous
démontrons que pour chaque rayon R > 1, le revétement universel de M contient une R-
boule d’aire au moins l'aire d’'une R-boule dans le plan hyperbolique. Ce résultat répond
positivement pour les surfaces, & une question de L. Guth. Nous démontrons également
que si I' est un graphe connexe de premier nombre de Betti b > 2 et de longueur suffi-
samment petite par rapport a la longueur d’'un graphe trivalent [', de premier nombre
de Betti b dont la longueur de chaque aréte est 1, alors pour chaque rayon R > 0, le
revétement universel de I' contient une R-boule d’aire au moins c fois ’aire d’'une R-boule
dans le reveétement universel de I'y, ot ¢ € (%, 1).

Dans la deuxiéme partie, nous généralisons un théoréme de M. Gromov concernant
le nombre maximal de courts lacets homotopiquement indépendants basés en un méme
point. Plus précisément, nous prouvons que sur toute surface riemannienne fermée M de
genre g > 2 et d’aire normalisée a g, il existe au moins [log(2g) + 1] lacets homotopique-
ment indépendants basés en un méme point de longueur au plus C'log(g), ot C est une
constante positive indépendante du genre. Comme corollaire immédiat de ce théoréme,
nous redémontrons I’inégalité systolique asymptotique sur la systole séparante. Nous dé-
montrons également un théoréme analogue pour les graphes métriques. Plus précisément,
nous prouvons que sur chaque graphe métrique I' de premier nombre de Betti b > 2 et
de longueur b, il existe au moins |log(b)| lacets homologiquement indépendants basés
en un méme point de longueur au plus 48log(b). Ce résultat étend la borne en log(b)
sur la systole homologique dtie & Bollobas-Szemerédi-Thomason a au moins log(b) lacets
homologiquement indépendants basés en un méme point. En outre, nous donnons des
exemples de graphes ot notre résultat est optimal (& une constante multiplicative prés).

Mots clés :  Surface, graphe, revétement universel, entropie, aire des boules, systole,
lacets homotopiquement indépendants, inégalités géometriques.
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Abstract

This thesis deals with global Riemannian geometry without curvature assumptions
and its link to topology, we focus on the maximal volume of balls of fixed radius in the
universal covers of graphs and surfaces.

In the first part, we prove that if the area of a closed Riemannian surface M of
genus at least two is sufficiently small with respect to its hyperbolic area, then for every
radius R > 0 the universal cover of M contains an R-ball with area at least the area of
a cR-ball in the hyperbolic plane, where ¢ € (0,1) is a universal positive constant. In
particular (taking the area of M smaller if needed), we prove that for every radius R > 1,
the universal cover of M contains an R-ball with area at least the area of a ball with the
same radius in the hyperbolic plane. This result answers positively a question of L. Guth
for surfaces. We also prove an analog result for graphs. Specifically, we prove that if "
is a connected metric graph of first Betti number b > 2 and of length sufficiently small
with respect to the length of a connected trivalent graph I'y of the same Betti number
where the length of each edge is 1, then for every radius R > 0 the universal cover of I"
contains an R-ball with length at least ¢ times the length of an R-ball in the universal
cover of I'y, where ¢ € (%, 1) is a universal constant.

In the second part, we generalize a theorem of M. Gromov concerning the maximal
number of homotopically independentshort loops based at the same point . Specifically,
we prove that on every closed Riemannian surface M of genus g > 2 and area normalized
to g there exist at least [log(2¢g)+ 1] homotopically independent loops based at the same
point of length at most C'log(g), where C'is some positive constant independent from the
genus. As an immediate corollary of this theorem, we recapture the asymptotic systolic
inequality on the separating systole. We also prove a similar theorem for metric graphs.
Precisely, we prove that on every metric graph I' of first Betti number b > 2 and length b,
there exist at least |log(b)| homologically independent loops based at the same point of
length at most 48 log(b). That extends Bollobas-Szemerédi-Thomason’s log(b) bound on
the homological systole to at least log(b) homologically independent loops based at the
same point. Moreover, we give examples of graphs where our result is optimal (up to a
multiplicative constant).

Keywords : Surface, graph, universal cover, entropy, area of balls, systole, homolo-
gically independent loops, geometric inequalities.
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0.1. PRESENTATION GENERALE

Introduction et présentation des résultats

0.1 Présentation générale

La géométrie riemannienne sans hypothése de courbure et les liens avec la topologie
sont & la base de ce travail. Nous nous intéressons au volume maximal des boules de rayon
fixé dans les revétements universels des graphes et des surfaces. Cet invariant est lié a la
géométrie asymptotique des revétements universels et a celle des groupes fondamentaux
ainsi qu’a I’entropie du flot géodésique.

Le but principal de cette thése est de démontrer le résultat suivant. Pour tout
rayon R > 1, il existe dans le revétement universel d’une surface fermée de genre au
moins deux et d’aire relativement petite par rapport au genre, une boule de rayon R
d’aire au moins ’aire d’une boule de méme rayon dans I’espace hyperbolique. Nous dé-
montrons également un théoréme analogue pour les graphes. Dans une autre direction,
nous obtenons une estimée sur le nombre maximal de courts lacets basés en un méme
point homotopiquement indépendants dans une surface de genre au moins deux et d’aire
égale a ’aire hyperbolique.

Soit (M,q) le revétement universel d'une variété riemannienne fermée (M, g). On
définit la fonction
V(M@(R) := sup Vol B(Z, R),
TeM
représentant le plus grand volume d’une boule de rayon R dans (M ,g). Lorsque R tend
vers l'infini, cet invariant décrit la géométrie asymptotique du revétement universel de M.
Il est aussi lié & la géométrie du groupe fondamental de M et & U'entropie du flot géodé-
sique sur M.

Lorsque la courbure de (M, g) est majorée par une constante strictement négative,
Iinégalité de Bishop-Gromov-Gunther fournit un minorant de type exponentiel de la
fonction V(R). Dans ce travail, nous cherchons & minorer la fonction V(R) sans imposer
de contrdle sur la courbure ce qui est une hypothése locale forte. Nous remplagons ce
contrdle par une hypothése topologique et un contréle sur le volume de (M, g). Plus pré-
cisément, nous supposons que M est une variété de type hyperbolique (i.e., sur laquelle
il existe une métrique hyperbolique) et nous remplacons la majoration de l'invariant local
de courbure par une majoration de l'invariant global de volume.

A notre connaissance, seuls trois résultats existent dans cette direction. Le premier
résultat est da a M. Gromov.

Théoréme 0.1.1 ([14], page 37). Soit un entier n > 2. Il existe une constante c, telle
que si (M, h) une variété hyperbolique fermée de dimension n et g est une autre métrique
sur M avec Vol(M,g) < Vol(M,h) alors il existe un rang Ry (dépendant de g) tel que
pour tout rayon R > Ry on a

V(R) > Vin (en R),

ot H" est l’espace hyperbolique de dimension n.
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En fait, ce résultat est encore valable pour toute variété riemannienne fermée de vo-
lume simplicial non nul, si on remplace le volume hyperbolique Vol(M, h) par le volume
simplicial.

G. Besson, G. Courtois, S. Gallot ont demontré le résultat de Gromov avec une constante ¢,
optimale.

Théoréme 0.1.2 ([2]). Soit un entier n > 2. Si (M,h) est une variété hyperbolique
fermée de dimension n et g est une autre métriqgue sur M avec Vol(M,g) < Vol(M,h),
alors il existe un rang Ry (dépendant de g) tel que pour tout rayon R > Ry, on a

V(R) > Vi (R).

Dans [16], L. Guth a cherché les valeurs uniformes de R, c’est-a-dire ne dépendant pas
de la métrique, pour lesquels l'inégalité V(R) > Vign (R) du théoréme 0.1.2 reste valable.
I1 a démontré que si le volume de (M, g) est suffisamment petit par rapport au volume
hyperbolique alors l'inégalité est vraie pour R = 1. Spécifiquement, il a démontré le
résultat suivant.

Théoréme 0.1.3 ([16]). Soit un entier n > 2. Il existe une constante 6, € (0,1) telle
que que si (M, h) est une variété hyperbolique fermée de dimension n et g est une autre
métrique sur M avec Vol(M, g) < &, Vol(M, h) alors

V(Mg)(l) > VH"(l)'
Remarquons que dans le théoréme 0.1.3, nous avons Vol(M, g) < Vol(M, h). Donc par le
théoréme 0.1.2, il existe un rang Ry qui dépend de la métrique & partir duquel 'inégalite
V(M@(R) > Vin (R) est satisfaite. Cette observation a poussé L. Guth a se demander si
cette inégalité est encore verifiée pour R compris entre 1 et Ry. Plus précisément, il pose
la question suivante.

(Q1) : Eziste-t-il une constante 6, > 0 telle que si (M,h) est une variété hyperbolique
fermée de dimension n et g est une autre métrique sur M avec Vol(M, g) < o, Vol(M, h)
alors pour tout R > 1, on a

v

Nous nous sommes intéressés a la question de L. Guth dans cette thése et avons
obtenu plusieurs résultats dans cette direction.

Dans le premier chapitre de la thése, nous répondons positivement a la question (Q1)
dans le cas des surfaces. Nous démontrons aussi un théoréme analogue pour les graphes.

Commencons par énoncer nos résultats dans le cadre des surfaces.

4
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Théoréme A. I existe deuz constantes positives 0 et ¢ telles que si (M, h) est une surface
hyperbolique fermée et g est une autre métrique sur M avec aire(M, g) < §aire(M,h)
alors il existe un point x dans M tel que pour tout R > 0, on a

aire B(H@ (z,R) > Vg2 (cR).

En particulier

Visig)

(R) Z VHQ (CR)

En prenant l'aire de (M, g) suffisamment petite par rapport a l’aire hyperbolique dans
le théoréeme A, nous pouvons répondre positivement a la question (Q1) puisque dans ce
cas, et pour les valeurs R > 1, nous pouvons prendre ¢ = 1. Plus précisément, nous avons

Theorem A’. [l existe une constante positive § telle que si (M,h) est une surface hy-
perbolique fermée et g est une autre métrique sur M avec aire(M, g) < ¢ aire(M, h) alors
il existe un point x dans M tel que pour tout R> 1, on a
(z, R) > Vig2(R).

aire B (M.9)

En particulier

Viarg(

R) > Viz(R).
Notons que le théoréme A découle d’un résultat analogue pour les graphes. Avant de
I’énoncer, introduisons quelques définitions.

La fonction V(R) que nous avons définie dans le cadre des variétés riemanniennes
posséde un analogue pour les graphes métriques. Rappelons qu’un graphe métrique (T, h)
est un CW-complexe de dimension 1 muni d’une distance h telle que I' est un espace de
longueur (Pour plus de details sur les graphes, nous invitons le lecteur & consulter [8]).
Notons (I, 1) le revétement universel de (I, k). Nous définissons la fonction

V'(R) = sup longueur(B; (v, R)),
vel’

ou par “longueur” on désigne la mesure de Hausdorff 1-dimensionnelle associée a la mé-
trique h.

Un graphe k-régulier est un graphe ol tous les sommets ont la méme valence ou
degré k. Pour tout entier b > 2, on note par I'y un graphe connexe trivalent (3-régulier)
de premier nombre de Betti b et par hy la métrique sur I" telle que la longueur de chaque
aréte est égale a 1.

Pour notre probléme, les graphes I'y, sont les analogues des variétés hyperboliques.
En effet, ’analogue du théoréme 0.1.2 pour les graphes, établi par 1. Kapovich, et T.
Nagnibeda, s’énonce & ’aide des graphes I'y comme suit.
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Théoréme 0.1.4 ([19]). Soit (I', h) un graphe métrique conneze de premier nombre de
Betti b > 2, avec longueur(I', h) < longueur(I'y, hy). Alors il existe une valeur Ry tel que
pour tout R > Ry on a

! !
&0 2 Vi, 5, (8-

A la lumiére des théorémes 0.1.3 et 0.1.4, il est naturel de poser la question suivante,
analogue de la question (Q1) pour les graphes.

(Q2) : Eziste-t-il une constante 6 > 0 telle que si longueur(I',h) < ¢longueur(I'y, hp)

alors pour tout R > 0, on a

! !
Viewn ) 2 Vg, 7, (B)-

Nous faisons un premier pas vers une réponse a la question (Q2) avec le résultat
suivant.

Théoréme B. Soit § € ]O, %] Si (T, h) est un graphe mélrique conneze de premier
nombre de Betti b > 2 tel que longueur(I', h) < §longueur(I'y, hy) alors il existe un point
x dans T tel que pour tout R >0, on a

longueur B g 5 (z, R) = (1 — 35)‘/(%})%)(1%)'

En particulier
T > (1 — o .
V(F:h)(R) > (1 35)V(Fbyhb)(R)

En comparant les théorémes A et B, nous remarquons que sous des conditions ana-
logues, la constante ¢ = 1 — 30 dans la conclusion du théoréme B est multiplicative alors
que la constante ¢ dans celle du théoréme A intervient dans l’exponentielle du volume
des boules de H?. Nous en déduisons que Iinégalité du théoréme B est de nature plus
forte que celle du théoréme A.

Nous indiquons & présent dans les grandes lignes comment le théoréme A peut se
déduire du théoréme B. Fixons R > 0. Tout d’abord, nous montrons que nous pouvons
supposer que la systole homotopique de (M, g), notée sys(M,g) et définie comme la
longueur du plus court lacet non-contractile de M, est au moins max{2R, 1/2}. Nous
considérons ensuite un graphe connexe I' plongé dans M, capturant la topologie de M
(c’est-a-dire tel que I'inclusion de I" dans M induit un isomorphisme entre Hy(I',Z) et
H{(M.,Z)), de longueur minimale. En utilisant la minoration de la systole et la borne sur
laire de (M, g), nous montrons que la longueur de I' satisfait I'hypothese du théoréme

B, disons pour § = é. Par conséquent, il existe un point x dans I' tel que pour tout

rayon r € (0, R), la longueur de la boule Bx(r) centrée en z et de rayon r dans T croit

de maniére exponentielle. Plus précisément, elle est supérieure ou égale a %V(’f i )(R).
bslb

Puisque R < §sys(T, h), la longueur de la projection Br(r) de Bz(r) dans I' coincide
avec la longueur de By(r). Considérons maintenant la boule Bys(r) de rayon r dans M
concentrique & la boule Br(r). Pour tout r < R, la longueur de 0Bjs(r) est supérieure
ou égale a la longueur de l'intersection I' N By, (), autrement nous pourrions construire



0.1. PRESENTATION GENERALE

un autre graphe I'” capturant la topologie de M mais de longueur plus courte que I'. Ce
serait en contradiction avec la minimalité de I'. Comme I'N By (r) contient Br(r), nous
en déduisons que la longueur de 0B/ (r) est supérieure ou égale a celle de Bp(r). Par
la formule de la co-aire, nous concluons que 'aire de la boule Bps(R) croit de maniére
exponentielle. Pour terminer la preuve, notons que puisque le diamétre de Bjys(R) est
inférieur a la systole de M, on a V(M@(R) = Vi, (R).

Dans le reste de cette introduction, nous allons adopter une approche indirecte pour
minorer la fonction V(R). Spécifiquement, nous nous intéressons a la question suivante.

(Q3) : Etant donnée une surface M de genre au moins deus et d’aire égale a Uaire hy-
perbolique, quel est le nombre mazimal k de lacets homotopiquement indépendants basés
en un meme point de longueur au plus ~ log(aire(M, g)) ¢

Ici, k lacets de M basés en méme point sont dits homotopiquement indépendants si
leurs classes d’homotopie engendrent un sous-groupe libre de rang k dans le groupe
fondamental de M.

Avant d’aller plus loin, mentionnons quelques motivations derriére la question (Q3).

1. Une réponse a la question (Q3) permet (sous certaines conditions) de minorer la
fonction V(R) pour les grands rayons R. Cette idée est expliquée en détail a la fin
de l'introduction.

2. Une réponse méme partielle a la question (Q3) (spécifiquement montrant que k >
2), permet de redémontrer un théoréme de S. Sabourau sur la systole séparante,
i.e., la longueur du plus court lacet non-contractile trivial en homologie et de
raffiner sa preuve. Cette idée est expliquée plus loin dans l'introduction.

3. La question (Q3) et ses ramifications nous paraissent également intéressantes en
soi. Gromov s’est beaucoup intéressé a cette question dans [10] ou il a obtenu les
premiers résultats sur le sujet. Mentionnons aussi que Balacheff-Parlier-Sabourau
ont répondu a cette question dans [1] pour des lacets homologiquement indépen-
dants mais pas forcément basés en un méme point .

Dans le deuxiéme chapitre de cette thése nous traitons de la question (Q3) et d’une
question analogue pour les graphes. Commengons par énoncer un premier résultat dans
le cadre des surfaces.

Dans ce qui suit pour un nombre réel positif R, nous notons par [R] le plus petit entier
supérieur ou égal & R.

Théoréme C. Soit M une surface riemannienne fermée de genre g > 2 et d’aire norma-
lisée a g. Il existe au moins [log(2g)+1] lacets homotopiquement indépendants 1, . . - Vlog(2g)+1]
basés en un meme point dans M tels que

longueur(v;) < C'log(g),

7
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ot C est une constante positive universelle indépendante du genre et de la métrique.

Le théoréme C améliore considérablement la seule réponse existante (jusqu’a présent)
a la question (Q3). Cette réponse établie par M. Gromo prend la forme suivante.

Théoréme 0.1.5. ([10]) Soit M une surface riemannienne fermée de genre g > 2 et
d’aire normalisée 4 g. Pour chaque a < 1, il existe deux lacets 1 et yo homotopiquement
indépendants basés en un meme point de M, tels que

longueur(y;) < C, g' 2.
ot C,, est une constante positive qui ne dépend que de .

Sous les mémes hypothéses que le théoréeme 0.1.5, le théoréme C garantit I'existence
de [log(2g) + 1] (au lieu de 2) lacets homotopiquement indépendants basés en un méme
point de longeur au plus ~ log(g) (au lieu de g'=®).

D’autre part, le théoréme C permet de redémontrer le théoréme suivant de S. Sabou-
rau au moyen d’une preuve alternative.

Théoréme 0.1.6 (|25]). Il existe une constante positive C telle que toute surface rie-
mannienne fermée M de genre g > 2 et d’aire g satisfait

SySO(M) < ClOg(g),
ot sysy(M) est la systole séparante de M.

Soulignons que S. Sabourau commence sa preuve en supposant que sysg(M) >
4sys(M) puisque dans le cas contraire, le résultat découle de l'inégalite systolique de
Gromov. Le théoréme C fournit en fait une preuve uniforme de linégalite systolique
asymptotique sur la systole séparante n’utilisant pas l'inégalité systolique de Gromov.
Pour déduire le théoréme 0.1.6 du théoréme C, il suffit de considérer le commutateur de
n’importe quelle paire de lacets du théoréme C. Ce commutateur est homologiquement
mais non homotopiquement trivial et sa longueur est au plus 4C'log(g). On en déduit
immédiatement une borne sur la systole séparante.

Dans la deuxiéme partie du deuxiéme chapitre, nous répondons a une question ana-
logue & la question (QQ3) pour les graphes. Spécifiquement nous répondons a la question
suivante.

(Q4) : Etant donné un graphe métrique (I',h) de premier nombre de Belli b > 2 el de
longueur b, quel est le nombre mazximal de lacets homotopiquement indépendants basés
en un meme point de longueur au plus ~ log(b) ?

Nous démontrons le résultat suivant.

Théoréme D. Soit I' un graphe métrique connexe de premier nombre de Betti b > 2 et
de longueur b. Etant donné n € {1,...,b}, il existe au moins n lacets homologiquement
indépendants 1 ...,v, dans I' basés en un meme point tels que

longueur(v;) < 24(log(b) + n).



0.1. PRESENTATION GENERALE

En outre, nous montrons que le théoréme D est optimal (&4 une constante multiplicative
prés). Ainsi nous obtenons une réponse compléte a la question (Q4). Notons que la
seule réponse connue 3 la question (Q4) avant le théoréme D est le résultat suivant de
Bollobas-Szemerédi-Thomason sur la systole des graphes métriques.

Théoréme 0.1.7 ([3], [4]). Soit (T', h) un graphe métrique de premier nombre de Bettib >
2 et de longueur b. Il existe un lacet v homotopiquement non-trivial tel que

longueur(vy) < 4log(b+1).

Le théoréme D étend considérablement le théoréme 0.1.7. Sous les méme hypothéses que
le théoreme 0.1.7, le théoréme D garantit 'existence de [log(b)| (au lieu d’un seul) lacets
homologiquement indépendants dans I" basés en un méme point et de longueur au plus
~ log(b).

Nous terminons cette introduction en expliquant comment une réponse a la question
(Q3) en toute dimension peut éventuellement fournir un minorant de la fonction V' (R)
pour les grands rayons R.

Soit (M, g) une variété riemannienne fermée de type hyperbolique. Supposons qu’il existe
un systéme S de k lacets homotopiquement indépendants basés en un méme point m de
M. En outre, supposons que le volume de la boule de M centrée en m et de rayon s est
minorée par disons 1, ou s est la moiti¢ de la systole basée en m. Pour R assez grand,
considérons la boule B = Bg(m, R — s) dans le revétement universel M de M centrée en
m de rayon R — s. Le nombre L = maxgcg longueur(3) permet d’estimer la croissance
exponentielle de l'orbite de m par l'action du sous groupe libre < S > de rang k. Il
fournit un minorant du nombre de points de cette orbite contenues dans B. Les boules
de rayon s centrées en les points de l'orbite de m étant disjointes et de volume minoré,

nous en déduisons que le volume de la boule Bj(m, R) croit de maniére exponentielle au
. R L . . .
moins comme ~ ez k) Pour plus de détails sur cette idée nous invitons le lecteur a

consulter la section 2 du chapitre 2.

Bien que partageant un théme commun, les deux parties de la thése sont indépen-
dantes et peuvent étre lues comme telles.
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Chapitre 1

Volumes des boules dans les
revetements universels des graphes
et surfaces
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1.1. INTRODUCTION

Growth of balls in the universal cover of surfaces and graphs

Abstract

In this paper, we prove uniform lower bounds on the volume growth of balls in
the universal covers of Riemannian surfaces and graphs. More precisely, there exists a
constant 6 > 0 such that if (M, hyp) is a closed hyperbolic surface and h another metric
on M with Area(M,h) < § Area(M, hyp) then for every radius R > 1 the universal cover
of (M, h) contains an R-ball with area at least the area of an R-ball in the hyperbolic
plane. This positively answers a question of L. Guth for surfaces. We also prove an analog
theorem for graphs.

1.1 Introduction

Let (M ,h) be the universal cover of a closed Riemannian manifold (M, h). We consi-
der the function

V(M,E)(R) := sup Vol B;(Z, R).

zeM

The function V(R) is the largest volume of any ball of radius R in (M, k). Since it is
possible to construct examples of Riemannian manifolds where the volume of some balls
of radius R in the universal cover is arbitrary small, it is interesting to know whether
there is at least one ball of radius R in the universal cover with a large volume. If the
curvature of the metric h is bounded above by a negative constant then the Bishop-
Gunther-Gromov inequality gives us an exponential lower bound on the volume of all
balls in the universal cover M. So in particular we have an estimate of the function V.
In this paper, we are interested in finding curvature-free exponential lower bounds for V.
We replace the local assumption, namely a curvature bound, by a topological assumption
and a condition on the volume of (M, h). What is believed is that if the topology of M
is complicated then the function V is large (see [11] and [16] for more details).

Before going further, we would like to point out that the function V( is related

M.,R)
to the volume entropy of (M, h). The volume entropy of (M, h) is defined as

log(Vol(B- (%, R
Ent(M,h) = lim %(M;@,m_
—+00

Since M is compact, the limit exists and does not depend on the point Z (see [22]). The
volume entropy is a way of describing the asymptotic behavior of the volumes of balls in
the universal cover of a given Riemannian manifold.

An example of a manifold with "complicated topology" is a manifold of hyperbolic
type, i.e., a manifold which admits a hyperbolic Riemannian metric. Let (M"™, hyp) be
a closed hyperbolic manifold. The volume of a ball in the hyperbolic space H”, i.e., the
universal cover of (M", hyp), is independent of the center of the ball. Thus Vign(R) is
just the volume of any ball of radius R in the hyperbolic n-space, which can be explicitly

13



1.1. INTRODUCTION

calculated. In particular, when n = 2, for every R > 0 we have
Viz (R) = 27(cosh(R) — 1). (1.1.1)
So there exists a constant ¢ such that
Vigz(R) ~ cel?,

when R goes to infinity.

Now let h be another metric on M with Vol(M, h) < Vol(M, hyp). Does the balls in
(]Tj , E) also grow exponentially like in the hyperbolic case ? There exist two fundamental
theorems in this direction. The first theorem is due to G. Besson, G. Courtois, S. Gallot
[2] and also to A. Katok [18] for the dimension n = 2. The authors proved that if M
is a closed connected Riemannian manifold that carries a rank one locally symmetric
metric hg, then for every Riemannian metric h such that Vol(M,h) = Vol(M, hy), the
inequality Ent(M, h) > Ent(M, hg) holds. In our language their theorem can be expressed
as follows.

Theorem 1.1.1 (see [2], [18]). Let (M™, hyp) be a closed hyperbolic manifold, and let h
be another metric on M with Vol(M, h) < Vol(M, hyp). Then there is some constant Ry
(depending on the metric h) such that for every radius R > Ry, the following inequality
holds :

V(M,?L)(R) > Vin (R)

It would be interesting to know the value of Ry in Theorem 1.1.1 since we are looking
for a lower bound on the function V(M ) for every R > 0.
The second fundamental theorem can be seen as a first step toward estimating Rg but

with a stronger hypothesis.

Theorem 1.1.2 (Guth, [16]). For every dimension n, there is a mnumber

d(n) > 0 such that if (M™, hyp) is a closed hyperbolic n-manifold and h is another

metric on M with Vol(M, h) < §(n) Vol(M, hyp), then the following inequality holds
Virm(@) > Vi (1).

The method presented in [16] can be modified to give a similar estimate for balls
of radius R. For each R, there is a constant d(n,R) > 0 such that if Vol(M,g) <
d(n, R) Vol(M, hyp) then V(M’g)(R) > Vin (R). As R goes to infinity, the constant §(n, R)
falls off exponentially or faster so this method become less effective, whereas the methods
in [2| are only effective asymptotically for very large R. This led L. Guth to ask if we
can get a uniform estimate for R > 1. In other words, the question is : does there exist
a positive constant §(n) such that Vol(M,g) < 6(n) Vol(M, hyp) implies V7 o (R) >
Vin (R) for all R > 17

Here we positively answer Guth’s question for the dimension n = 2.

14
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Theorem I. There exists a positive constant 0 such that if (M, hyp) is a closed hyperbolic
surface and h is another metric on M with Area(M,h) < § Area(M, hyp), then for any
radius R > 1,

Vit (R) > Ve ().

Our Theorem I will be deduced from the following more general theorem.

Theorem II. There exists two small positive constants 6 and ¢ such that if (M, hyp) is a
closed hyperbolic surface and h is another metric on M with Area(M, h) < § Area(M, hyp),
then for any radius R > 0,

V(M,ﬁ)(R) > Viz(cR).

We can extend the notion of entropy from Riemannian manifolds to metric graphs.
Let (T, h) be a metric graph and denote by (I, h) its universal cover. Fix a point v of T’
and a lift ¥ of this point in I'. The volume entropy of (', d) is defined as

log(length(B; (3, R
Ent(I,h) = lim og(leng ](%h(v ),
—00

Since I' is compact, the limit exists and does not depend on the point ¥ (see [22]).

Definition 1.1.1. Let (I', h) be a metric graph and denote by (f,iNz) its universal cover.
We define the function
V'(R) := sup length(B;, (0, R)),
vel

where By (0, R) is a ball of radius R centered at the point v of r.

A regular graph is the analog of a Riemannian manifold carrying a locally symmetric
metric. For every positive integer b > 2, we denote by 'y a connected trivalent graph
of first Betti number b and by h; the metric on I', for which all the edges have length
1. In [19] (see also [20]), the authors proved a theorem for graphs analog to the G.
Besson, G. Courtois and S. Gallot theorem for manifolds. They showed that for every
integer b > 2 and every connected metric graph (I, h) of first Betti number b such that
length(I',h) = length(I'y, hy), we have Ent(I', h) > Ent(I'y, hy). In our language, their
theorem can be stated as follows.

Theorem 1.1.3 ([19],[20]). Let (T',h) be a connected metric graph of first Betti num-
ber b > 2 Such that length(I', h) < length(T'y, hy). Then there exists some constant R,
(depending on the metric h) such that for every radius R > Ry, the following inequality
holds

VeL-(R) >V

!
(T,h) = " (Tp,he) (B).

15



1.1. INTRODUCTION

In view of Theorems 1.1.2 and 1.1.3, one can ask the following question : does there
exist a universal constant ¢ > 0 such that if length(I',h) < clength(I'y, k), then for all
R>0

Ve

(fb;ﬁb)

We give a partial answer to this question.

Theorem I11. Fiz \ € ]0, %] Let (T', h) be a connected metric graph of first Betti number
b > 2 such that
length(T", h) < Alength(I'y, hyp).

Then there exists a vertez @ in I such that for any R > 0, we have

(i — Ve -
length B; (4, R) > (1 — 3)) (Fb,hb)(R)'
In particular, we have

\.

o (B) = (1= 3NV 5 ().

(Fb7hb)

We sketch an outline of the main idea of the proof of Theorem II. Fix R > 0 and
denote by g the genus of M. First, we show that we can suppose that the systole sys(M, h)
of (M,h) is at least max{2R,1/2}. This lower bound on the systole and the upper
bound on the area of the surface in terms of the genus permit us to show the existence
of an embedded minimal graph I' in M which captures the topology of the surface
(¢f. Definition 1.5.1 and Definition 1.5.3) and satisfies the hypothesis of Theorem TIII.
Therefore, there exists a vertex @ in I' such that for all radii r € (0, R), the length of the
ball Bx(r) in I centered at @ and of radius 7 is large. Since R < % sys(I', h), the length of
the projection Br(r) of Bx(r) in I is also large. Let Bys(r) be the ball of radius 7 in M
with the same center as Br(r). For all radii » < R, the boundary of By,(r) is at least as
long as the graph T' N Bys(r), for otherwise we could construct another graph I which
captures the topology of M and is shorter than I'. This would contradict the minimality
of I'. Since the graph I' N By (r) contains Br(r), we derive that the length of 9B/ (r) is
large. By the coarea formula, we conclude that the area of Bj/(R) is also large.

This paper is organized as follows. In Section 1.2, we recall the basic material of
graphs we need in this paper. In Section 1.3, we prove a special case of Theorem III. In
Section 1.4, we prove Theorem III in the general case. In Section 1.5, we show the exis-
tence of graphs that captures the topology of closed orientable Riemannian surfaces. In
Section 1.6, we extend the notion of the height function originally defined by Gromov for
surfaces, then we show a relation between the height and the area of balls. In Section 1.7,
we establish the existence of e-regular metrics. In Section 1.8, we define short minimal
graphs on surfaces that capture the topology and we study their properties. At the end
of this section, we show how to control their length in terms of the genus of the surface.
In Section 1.9, we give the proof of the main theorems I and II.
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1.2 Preliminaries

By a graph I" we mean a finite one-dimensional CW-complex (multiple edges and
loops are allowed). Tt is also useful to see ' as a pair of sets (V, E)) where V is a set
of vertices and E the set of edges, which are 2-element subsets of V. Two vertices of a
graph are called adjacent if there is an edge linking them. An edge and a vertex are called
incident if the vertex is an endpoint of the edge. The degree (also known as valence) of
a vertex v, denoted by deg(v), is the number of edges incident to it, where the loops are
counted twice. We say that a graph I' is k-regular if the degree of any vertex is k. In
particular, a 3-regular graph is called trivalent. The minimal degree of a graph I' is the
minimum of the degrees of the vertices. It will be denoted by Mindeg(I"). A graph I'' with
Mindeg(I") > 3 is called at least trivalent. For a graph I', we always denote by E(I") the
set of its edges and by V(I') the set of its vertices. The first Betti number of a graph I'
can be computed as follows :

bl)=e—v+n, (1.2.1)

where e, v and n are respectively the number of edges, vertices and connected components
of I.
The degree sum formula states that, given a graph I', we have that

> " deg(v) = 2e, (1.2.2)

where the summation is over all vertices v of T

For an at least trivalent connected graph I' with first Betti number b, we have that
2e > 3v by (2.2). Combined with (2.1), we get e < 3b — 3. That means that the number
of edges of ' is bounded in terms of its first Betti number b. Also it is not hard to see
from (2.1) and (2.2) that every connected graph of first Betti number b > 2 has at least
one vertex of degree at least 3.

Let T" be a connected graph, vg and v be two vertices of I'. A path P from vy to v;
is a sequence of directed edges that links vg to v1. The vertex vg is called the start point
of P and vy the endpoint. If vg = v; then P is said to be closed, otherwise P is open. A
simple path is a path with no self intersections. A simple closed path is often called a cycle.

A metric graph (T, h) is a graph endowed with a metric h such that (T', k) is a length
space. The length of a subgraph of I' is its one-dimensional Hausdorff measure. For more
details on graphs we refer the reader to [8].

Throughout this paper if R is a real number then [R] is the integral part of R.

For the connected trivalent metric graph (I'y, hp) of first Betti number b > 2 where
edges are of unit length, the following holds :
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- length(I'y, hy) = 3b — 3. (1.2.3)

— The universal cover fb is isometric to the trivalent infinite tree. In particular, fb
is independent of b. So for every b’ > 2 we have

/ 7
Vi, i) =V, 5 (B)-

— For every R > 0 and every vertex v of (fb,ﬁb), we have

[R]—1
length(B;, (3,R)) = 3 Y 2"+3(R—[R])21"

n=0
= 328 — 1) 4+ 3(R — [R])21
> sinh(R1n2). (1.2.4)

Therefore, V(/f : )(R) > sinh(R1n 2).

by/tb
In particular, one should notice that the volume of the ball Bﬁb (0, R) is independent
from the vertex v and from the first Betti number b. It only depends on R.

1.3 Baby theorem III

In this section, we prove Theorem III with an additional bound on the lengths of the
edges of I" and on the minimal degree of I" (¢f. Section 1.2).

Proposition 1.3.1. Let ¢ and C’ be two positive constants with ¢ < C'. Let (T, h) be a
connected, at least trivalent metric graph of first Bettt number b > 2 such that the edges
of I are of length at most c. Then there exists o vertex @ in I' such that for any R > 0,
we have

length B; (@, (C' + ¢)R) > C'V% + (R).

(Fb7ﬁb)
In particular, we have

! ! AVl

Proof. Let T be a connected trivalent infinite subgraph of I'. We will construct a connec-
ted trivalent infinite subgraph 7’ of T for which there exists an homeomorphism f :
I, — 7' that satisfies the following :

For every pair of vertices x,y of fb, we have

Cld(z,y) < d(f(2), f(y)) < (C"+c)d(z,y). (1.3.1)

For the sake of clarification, we will do this construction step by step.

Step 1 : Start by fixing a vertex vg in 7. Let eq,, be one of the three edges of 7 incident
to vg and denote by v; its second endpoint. Again let ej,, be one of the other two edges
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of T incident to v; and denote by vy its second endpoint. The path ejy,e1,, is simple
and open. We continue doing this by induction and we denote by v the first vertex
where the length of the path ejy,...€14, is at least C’. The graph T contains no nontrivial
cycles since it is a tree. That means that the path p; = ey,...€14, is simple and open.
Furthermore, the length of p; is between C” and C’ + ¢. Now take the second edge e,
of 7 incident to vy and restart the process of Step 1. This give us another simple open
path ps. Again, since 7 contains no nontrivial cycles the intersection p; Npo is the vertex
vg- Also restart the process with the third edge of T incident to vg to get the third path ps.

Step 2 : The tree X = p1 U ps U p3 has three leaves. For each leaf x; of X there are
two edges of T incident to it other than the edge that is already in X. So by restarting
the process of Step 1, we construct two paths of length at least C’ with start point ;.
By induction, we keep doing what we did before to finally get the subgraph 7. In what
follows each path p; of the subgraph 7’ will be seen as an edge of the same length of
p;. That means 7’ can be seen as a connected infinite trivalent subgraph of 7 where the
length of any edge of 7" is between C” and C’ + c. The graphs I, and 77 are two infinite
trivalent trees so there exists an homeomorphism f : I', — 7 that sends every edge of
I, to an edge of 7.

Now we prove that the map f satisfies (3.1). Without loss of generality, we will prove
our claim when x and y are the endpoints of the same edge e, in I'y, that is, d(z,y) = 1.
By construction of the map f, the length of the image of an edge of T, is between C’
and C’ + c. So clearly

C'd(z,y) < d(f(2), f(y)) < (C"+c)d(z,y).
Now let @ be a vertex of 7’ and denote by w its inverse image in Iy. By (3.1), we have

C'length By (w,R) < length(f(B; (w,R)))
length(B; (@, (C' + ¢)R)),

A

Hence the proposition. O

1.4 Proof of theorem 111

In this section, we prove Theorem III. As a preliminary, let us examine how the
function V'’ changes with scaling. Let (', h) be a metric graph and b’ = ph with g > 0
then

— length(T', 1’) = plength(T, h);

!/ _ !/

Vi (R = 1Vig ) ().

Definition 1.4.1. Let I be a connected metric graph of first Betti number at least
two. If v is a vertex of I' of degree two then by the sentence “ignore the vertex v” we
mean delete the two edges e1 and ex of I incident to v and replace them by an edge of
length length(e;) + length(es) that links the other two vertices of e; and es.
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Lemma 1.4.1. Let (', h) be a connected metric graph of first Betti number b > 2. There
exists a metric graph (I, h') with first Betti number b’ = b that satisfies the following.

— IV is at least trivalent ;

~ length(I”,n') < length(T',h) ;

- Forall R>0,

Vi

(F’,f;’) (R) <

< (If,'ﬁ)(R)'

Proof. First we remove every vertex of I" of degree one along with the edge incident to
it and denote by I'y the resulting connected graph. We apply the same process to I'y.
That means we remove every vertex of I'; of degree one along with the edge incident to
it and we denote by I's the resulting connected graph . By induction, let I'y be the last
connected graph where no vertex of degree one left. The graph I', is of first Betti number
b and of length less or equal to the length of I'. We keep denoting by h the restriction of
the metric h to I'y. The universal cover fk is isometrically embedded into T so

(R)>V

!
2 Vi, -

T

(I',h)
Second, we ignore every vertex of I'y of degree two (cf. Definiton 1.4.1). The resulting
graph ~F’ is connected of first Betti number b and of the same length as I'y. The universal
cover I agrees with Iy so

/ _y
V,(f‘/ﬁ) (R) - ‘/(Fk,h) (R)

O

In order to prove Theorem II1, it is convenient here to reformulate it. Given A € ]O, %} )

let ¢ and C”’ be two positive constants such that ¢ < C" and A\ = ?)(TC%) So a reformulated
version of Theorem III is the following.

Theorem 1.4.1. Let (', h) be a connected metric graph of first Betti number b > 2. Let
C" and ¢ be two positive constants with ¢ < C'. Suppose that

length(T', h) < length(T'y, hp).

__°
3(C"+¢)

Then there exists a vertez @ in I such that for any R > 0, we have

_ c
length B; (1, R) > o c‘/(fb]lb)(R).

In particular, we have

/
R)>C’

v - C'+ cv(l:bfflb)(R)'

!
o)

Proof. By scaling, we will prove the following. Suppose that

length(T', h) < = length(T'y, hy) = c(b —1).

wl o
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Then there exists a vertex @ in I such that for any R > 0, we have

length Bj (@, (C' + ¢)R) > C'V%

(Fb7ﬁb) (R)'

In particular, we have

! ! / !
V(l:ﬁ)((c +oR) = C (Tohy)

(R).
First notice that by Lemma 1.4.1, we can suppose that I' is at least trivalent. We
proceed by induction on the first Betti number of I". For b = 2, we have

max length(e) < length(I',h) < ¢(2—-1) =c.
By Proposition 1.3.1, the result follows in this case.
Suppose the result holds for b = n and let us show that it also for b = n + 1. Let (T, h)
be a connected metric graph of first Betti number b = n + 1. If I' contains no edge of
length greater than ¢ then the result follows from Proposition 1.3.1. Thus we suppose the
opposite here and remove an edge w of I' of length greater than c¢. There are two cases
to consider.

Case 1 : The edge w is non-separating in I'. In this case, the resulting graph I is
connected and of first Betti number ¥’ = n. Furthermore, we have

length(I") < length(T) — ¢ < ¢(b' — 1).

The universal cover I" is isometrically embedded into T. So for every vertex v in I’ and
every R > 0, we have
length(B

(0, R)) > length(B (0, R)).

(T, (T,h)
In particular, we have

/ /

On the other hand, by the hypothesis of the induction, we know that there exists a vertex
@ in IV such that

length(B s 7, (4, R)) > V% =~ (R)=V! (R).

(f/7ﬁ) (Fnyhn) (fn+1 yﬁn-ﬁ»l)

In particular, we have

ViR 2V o (R).

(TCrt1,hn+1)

This finishes the proof in this case.
Case 2 : The edge w is separating in I'. Thus, it splits the graph I' into two connec-

ted graphs IV and I'” of first Betti number &’ and b”. We claim that length(I') < ¢(b' —1)
or length(I'") < ¢(b” — 1). Indeed, suppose the opposite then

length(I"”) + length(T") > c¢(b — 2).
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1.5. CAPTURING THE TOPOLOGY OF SURFACES

On the other hand we have
length(I") + length(I'"”) + ¢ < length(T") < ¢(b — 1).

Hence a contradiction. So the claim is proved.

Without loss of generality, suppose that I satisfies length(I") < ¢(/ —1). Clearly b’ > 2,
otherwise the length of IV would vanish. By induction, we now there exists a vertex @ in
I’ such that

length(B(I:,ﬁ) (’L~L, R)) Z Vr(%b’ﬁb’)(R) = ‘/(%bjlb) (R)

In particular, we have
o >V -
V(F’7h)(R) - ‘/(Fbvhb)(R).
Recall that the universal cover I’ is isometrically embedded into T. So for every vertex
v in IV and every R > 0, we have

length(B 5 7 (7, R)) > length(B g, 7 (7, R)).

(T.h)

In particular, we have

(R) > V-, - (R).

!
(T',h) (IV,h)

This finishes the proof in this case too.

1.5 Capturing the topology of surfaces

In this section, we show that on every closed orientable Riemannian surface M there
exist an embedded graph that captures its topology.

Definition 1.5.1. Let (M, h) be a closed Riemannian surface of genus g. The image in
M of an abstract graph by an embedding will be refered to as a graph in M. The metric
h on M naturally induces a metric on a graph I in M. Despite the risk of confusion, we
will also denote by h such a metric on T'.

We say that a graph I' in M captures the topology of M if the map induced by the
inclusion iy : Hi(T',R) — Hy(M,R) is an epimorphism.

Lemma 1.5.1. Let (M, h) be a closed orientable Riemannian surface. Let I' be a connec-
ted graph in M that captures its topology and denote by v : I' — M the inclusion map.
Then there exists a connected subgraph I of I such that the map i, restricted to I' is an
isomorphism. In particular the first Betti number of T is 2g.

Proof. Let I be a connected subgraph of I' with minimal number of edges such that the
restriction of ¢ to I still induces an epimorphism in real homology. Let a be a cycle of
I representing a nontrivial element of the kernel of i,. Remove an edge e from «. The
resulting graph I'” has fewer edges than I”. Let 3 be a cycle of I". If e does not lie in
B then the cycle v = f8 lies in I'”. Otherwise, adding a suitable real multiple of a to 8
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yields a new cycle v lying in T'. In both cases, the cycle v of T is sent to the same
homology class as 3 by i.. Thus, the restriction of i to I'” still induces an epimorphism
in the real homology, which is absurd by definition of I". O

In what follows a graph I" in a Riemannian manifold (M, h) is automatically equipped
with the metric h induced by the metric of M. So the length of I' is its one-dimensional
Hausdorff measure associated to the metric h.

Definition 1.5.2. Let (M, h) be a closed orientable Riemannian surface. We define
L(M,h) = irllf length(T"),

where the infimum is taken over all graphs I' in M that capture its topology.

Lemma 1.5.2. Let (M, h) be a closed orientable Riemannian surface of genus g. Then
there exists a graph I' in M that captures its topology with

length(I") = L(M, h).

Proof. By Lemma 1.5.1, we only need to consider the set of graphs in M that captures its
topology with first Betti number 2g and such that i, is an isomorphism. Furthermore, we
only need to consider graphs that are at least trivalent. Indeed, delete every vertex of I" of
degree one along with the edge incident to it. Denote by I'y the resulting connected graph
and apply to I'y the same process. That means we delete every vertex of I'y of degree one
along with the edge incident to it and we denote by I'y the resulting connected graph .
By induction, let I'y, be the last connected graph with no vertex of degree one. We then
ignore all vertices of I'y, of degree two (cf. Definition 1.4.1). Replacing every edge of I'y,
by a minimal representative of its fixed-endpoint homotopy class gives rise to a geodesic
graph I". By construction the connected geodesic graph I" is at least trivalent and of
first Betti number 2g. Thus, its number of edges is bounded in terms of g, ¢f. Section 1.2.
Now the space of connected geodesic graphs of M capturing its topology with bounded
length and a bounded number of edges is compact. The result follows. O

Definition 1.5.3. Let (M, h) be a closed orientable Riemannian surface. If I' is a graph
that captures the topology of M with length(I') = L(M,h), then T is called a minimal
graph in M.

1.6 Height function and area of balls.

In this section, we first recall the definition of the height function on surfaces defined
by Gromov in [10] along with its relation to the area of balls. Then we extend this notion
to make it suit our problem.

Let M be a closed Riemannian manifold. The systole at a point  in M, denoted by

sys(M, x), is the length of the shortest non-contractible loop based at x. The systole of
M, denoted by sys(M), is the length of the shortest non-contractible loop in M.
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1.6. HEIGHT FUNCTION AND AREA OF BALLS.

Definition 1.6.1. Let (M, h) be a closed Riemannian surface and v be a non-contractible
loop in M. We define the tension of v as follows.

tens(y) = length(~y) — /ignf (length(5)),
~y

where the infimum is taken over all closed curves B freely homotopic to 7.
We also define the height function H' on M as follows

H/(Z') — jr’;f(tenS(V)),

where the infimum is taken over all non-contractible closed curves v passing through x.

Proposition 1.6.1 (Gromov, [10] Proposition 5.1.B). Let (M, h) be a complete Rieman-
nian surface and x € M. Then

AreaB(z,R) > = (2R — H'(z))?,

| =

for every R in the interval [1H'(z), 5 sys(M, z)).

Definition 1.6.2. Let (M, h) be a closed orientable Riemannian surface. For x € M, we
define
L(M,z) = ilpf length(T';),

where the infimum is taken over all graphs I'y, in M that capture its topology and pass
through x.
We also define the function H” on M as follows.

H"(z) := L(M,z) — L(M,h).
Finally we define the function H on M as

H(x) i= min(H'(z), H"(x)),
where H' is defined in Definition 1.6.1.

Definition 1.6.3. If B is a ball in some closed Riemannian surface M with some contrac-
tible boundary components, we fill in every such component of OB by an open 2-cell in
M and denote by BT the union of B with these cells.

Proposition 1.6.2. Let (M,h) be a closed Riemannian surface of genus g > 1 and
x € M with H(z) < §sys(M,z). Then the area of the ball B(z, R) satisfies the inequality

Area B(z,R) > —(R — H(z))?,

N |

for every R in the interval |H(z), 1 sys(M, z)|.
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Proof. We suppose that H(xz) = H”(z) here, since the other case follows from Proposition
1.6.1. Let r €]H (), 3 sys(M, z)[. Notice that since r < 3 sys(M, z) the ball B = B(z,r)
is contractible in M, and so the set BT = BT(z,r) is a topological disk. Let € be a
fixed small positive constant such that H”(z) + ¢ < r. Fix &’ € (0,¢). Let I';, be a graph
in M that captures its topology and passes through x of length at most L(M,x) + &’
Without loss of generality, we claim that we can always suppose that ', N BT (x,7) is a
tree such that x is the only possible vertex of degree one. Indeed, we delete an edge from
each loop of T';, N BT (z,r). This defines a new graph I'". Then we delete every vertex of
IV of degree one other than the vertex x along with the edge incident to it and we denote
by I'y the resulting connected graph. Restart the process. That means we delete every
vertex of I'; of degree one other than the vertex x along with the edge incident to it and
we denote by I's the resulting connected graph. By induction, let 'y, be the last connected
subgraph where the only possible vertex of degree one is x. Clearly I'y, passes through
x, captures the topology of M and is of length at most L(M, x)+¢’. So the claim is proved.

Now we claim that either x is of degree at least two or there is at least a vertex of
', N BT of degree at least three. Indeed, suppose that x is of degree one and all the other
vertices of I', N B are of degree two. Then I',, N B is just a piecewise curve that passes
through = and hits BT at one point, so its length is greater or equal to . Thus

length(I'y) > L(M,h) + .
In particular, we have
L(M,h)+r < L(M,z)+& < L(M,z) +e.

That means
r < H"(x)+e,

which is a contradiction.

In both cases above, the graph I', hits the boundary of BT in at least two points.
Let C be a minimal arc of BT that connects the points of I'; N dB™". Consider the
graph I defined as (T, \ ([, N BT)) U C. Tt is clear that I” is a connected graph in M
that captures its topology, since BT is contractible in M. Thus

length(T") > L(M,h).
On the other hand, the length of ', N B* is at least r. This means that
length(T';) > length(I") + r — length(C).

So
L(M,x)+¢ > L(M,h) +r — length(C).

We conclude that for every small positive constant &', we have

H"(z) > r — length(C) — €'
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Since the length of BT is at least the length of the arc C, we have
length(0B™") > r — H" (z).

By the coarea formula,

R

AreaB(z,R) > length(0B(z,r))dr

Y

length(OB™ (x,7))dr

(R~ H"(x))*.

1.7 Existence of e-regular metrics.

In this section, we define e-regular metrics and prove their existence. The existence
of e-regular metrics will play a crucial role in controlling the length of minimal graphs
on surfaces.

Definition 1.7.1. Let (M, h) be a closed Riemannian surface. The metric h is called
e-reqular if for all the points  in M, H(x) < e.

Lemma 1.7.1. Let (M), ho)ibe a closed Riemannian surface. Then for every e > 0, there
exists a Riemannian metric h on My conformal to hg such that

1. Area(My, h) < Area(Moy, ho);

2. his e-reqular ;
3. L(My,h) = L(Moy, ho) ;
4.

sys(Mo, h) = sys(Mo, ho).

Proof. Take a point xzg in My where H(zg) = Hp,(z0) > € and denote by M; the
space My/B™ obtained by collapsing BT = Bt (xg,¢) to xg. Let pg : My — M; be the
(non-expanding) canonical projection and hy be the metric induced by h on Mj. The
Riemannian surface (Mji, h;) clearly satisfies (1). If h; is not e-regular, we apply the
same process. By induction we construct a sequence of :

— balls B = B*(z;,¢) in M;, where x; is a point with Hy,(z;) > €.

— Riemannian surfaces (M;, h;) where M; = M;_1/B;_1 and h; is the metric induced

by h;—1 on M;.

— non-expanding canonical projections p; : M; — M1 1.

This process stops when we get an e-regular metric.

Now, we argue exactly as [24, Lemma 4.2] to prove that this process stops after
finitely many steps. Let Bl ... ,Bf\,i be a maximal system of disjoint balls of radius r/3

26



1.8. CONSTRUCTION OF SHORT MINIMAL GRAPHS ON SURFACES

in M;. Since p;_1 is non-expanding, the preimage p; ', (B},) of Bj, contains a ball of radius
r/3 in M;_,. Furthermore, the preimage p;_ll (x;) of x; contains a ball B;_; of radius r
in M;_1. Thus, two balls of radius r/3 lie in the preimage of x; under p;_;. It is then
possible to construct a system of N; + 1 disjoint disks of radius r/3 in M;_;. Thus,
N;—1 > N; + 1 where N; is the maximal number of disjoint balls of radius r/3 in M.
Therefore, the process stops after NV steps with N < Ny. Denote by Ay the metric where
this process stops. Clearly hy satisfies (1) and (2). To see that hy satisfies (3) and (4),
let I' be a minimal graph in My and « be a systolic loop in M. For every point x in
the e-neighborhood Np of T, we have H(z) < e. Indeed, let ¢ be a minimizing curve
from I' to . The graph I' U ¢ captures the topology of My and passes through x. So
H"(z) <length(I' Uc) — L(M, h) < e. That means that the balls we collapsed through
the whole process do not intersect I'. Therefore, the metric hy satisfies (3). A similar
argument holds for a. So the metric hy also satisfies (4).

O

1.8 Construction of short minimal graphs on sur-
faces

In this section, we combine Lemma 1.7.1 and the construction of [1, p. 46] to construct
a minimal graph with controlled length on a given Riemannian surface.

Proposition 1.8.1. Let (M, h) be a closed orientable Riemannian surface of genus g > 2.
Suppose that
— Area(M, h)
- sys(M,h) >
Then

l\.’J\)—ll/\

L(M,h) < =(2g — 1).

DN | =

Proof. Fix rg = 2% By Lemma 1.7.1 (choose ¢ small enough) and Proposition 1.6.2,
there exists a conformal Riemannian metric h on M that satisfies

1. The area of every disk of (M, h) of radius rq is at least 170%;
2. Area(M, h) < Area(M, h);

3. L(M,h) = L(M,h);

4. sys(M,h) = sys(M, h)

5. his e-regular.

So it is sufficient to prove that
- 1
LOM.B) < 2(29 - 1).

Let {B;}ier be a maximal system of disjoint balls of radius ro in (M, h). Since the area
of each ball B; is at least 73, then

1 _
Z\I]rg < Area(M, h),
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that is,
11| < 2'% Area(M, h). (1.8.1)

As this system is maximal, the balls 2B; of radius 2rg with the same centers p; as B;
cover M.
Let € be a small positive constant that satisfies

and denote by 2B; + ¢ the balls centered at p; with radius 2rg + €. We construct an
abstract graph I' as follows. Let {w;};er be a set of vertices corresponding to {p; }ier.
Two vertices w; and wy of I' are linked by an edge if and only if the balls 2B; + € and
2B + ¢ intersect each other. Define a metric on I' such that the length of each edge is i
and let ¢ : I' — M be the map that sends each edge of I' with endpoints w; and wy to
a minimizing geodesic joining p; and py. Since dist(p;, pyr) < 4rg + 2 < %, the map ¢ is
distance nonincreasing.

Claim. The map ¢, : m(I') = 71 (M) induced by ¢ between the fundamental groups is
an epimorphism. In particular, it induces an epimorphism in real homology.

We argue exactly as [1, Lemma 2.10]. Consider a geodesic loop ¢ of M. Divide the
loop o into segments o1, ...,0, of length at most €. Denote by z; and zp,; the end-
points of o3 with the convention x,+1 = x1. Recall that the balls 2B; cover the surface
M. So every point xj is at distance at most 2rg from a point vx among the centers p;.
Let i be the loop

ucC

o UCy Vgt 1,Vk U Cvk@’k?

k+1Vk+1

where Cy, denotes a minimizing geodesic joining a to b. We have that
length(By) < 2 (4rg + €) < sys(M, h).

That means that the loops ), are contractible. We conclude that the loop ¢ is homotopic
to a piecewise geodesic loop o/ = (vy,...,vp).

The distance between the centers vy = p;, and vgi1 = py, is less than or equal to
4rg +e. So the vertices w;, and w;,,, of I' corresponding to the vertices p;, and p;, ,, are
connected by an edge. The union of these edges forms a loop (wj,,...,w;,) in I" whose
image by the map ¢ is ¢’. Since ¢’ is homotopic to o, the claim is proved.

Now we consider a connected subgraph I of T' with a minimal number of edges such
that the restriction of ¢ to I still induces an epimorphism in real homology.

We claim that the epimorphism ¢, : Hi(I";R) — Hi(M;R) is an isomorphism.
Indeed, if ¢, is not an isomorphism then arguing as in Proposition 1.5.1 we can remove
at least one edge of IV such that ¢, is still an epimorphism, which is impossible by the
definition of T".

We denote by v, e, b and b’ respectively the number of vertices of I', the number of edges
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of T', the first Betti number of I" and the first Betti number of I, At least b — b’ edges
were removed from I' to obtain IV. As V) = 2g, we derive

length(I") < length(I') — (b—1?)

p—
el M

< (e—b+29)-

< (v—1429g)-. (1.8.2)

N

Recall that Area(M,h) < 515(29 — 1). So

Combining this with (6.2), we get

1

length(I'") < =(2g — 1).

O |

Since ¢ is distance non-increasing then
length(o(I")) < length(I).

The image by ¢ of two edges of I may intersect. If it is the case then the intersection
point should be considered as a vertex of the graph ¢(I"). Thus the set of vertices of
©(I") may be bigger than the set of vertices of T”.

Finally let j be the inclusion map j : ¢(I") < M. Clearly the map j. : H1(p(I");R) —
H;(M;R) is an epimorphism. So ¢(I") is a graph in M that captures its topology. Thus

L(M, ) <length(p(I")) < 5(2g — 1).

N

1.9 Proofs of Theorem I and Theorem 11.

In this section, we prove Theorem I and Theorem II. But before doing that we exa-
mine how the function V' changes with scaling. Let (M™, h) be a closed n-dimensional
Riemannian manifold and A’ = A?h with A > 0 then

— Vol(M, k') = X" Vol(M, hyp) ;

- Vi AR) = 3V ().

The expression (1.1) of Viz immediately leads to the following lemma.

Lemma 1.9.1. Let a be a positive constant. There exists a constant ¢ = c(a) such that
for all R > 0,
aVi2(R) > Vig2(Re).
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In light of Lemma 1.9.1, the proof of Theorem II amounts to proving the following
result.

Theorem 1.9.1. Let (M, hyp) be a closed hyperbolic surface of genus g and h be another
Riemannian metric on M with

1
Area(M, h) < Y Area(M, hyp).
Then, for any radius R > 0,

Viarm(B) 2 47 1n 2

Viz(R1n 2).
In particular, there exists a constant ¢ such that

v

(J,\;[/,TL)( e CQR,

~

R)

when R tends to infinity.

Proof. Let R > 0. First, we consider the special case when M is oriented and
sys(M,h) > max{2R,1/2}.

In this case,

V(M,h)(R) = V(]T/[',ﬁ) (R).
Let T’ be a minimal graph which captures the topology of (M, h) (c¢f. Definition 1.5.3).

Denote by b = 2¢g the first Betti number of I'. We have

1 1
Area(M, h) < Py Area(M, hyp) < ﬁ(Zg —1).

So by Proposition 2.4.1 and the relation (2.3), we have

1
length(I') < -(b—1) = élength(f’b,hb). (1.9.1)

N

Let v be any vertex of I'. Denote by B(v, R) the ball in (M, h) centered at v with radius
R. We claim that for all r € (0, R)

length(0B™ (v, 7)) > length(' N BT (v, 7)), (1.9.2)

where BT (v, r) is defined in Definition 1.6.3.

We argue as in Proposition 1.6.2. Suppose the opposite and replace I' N B*(v,r) by a
minimal arc of B (v, r) that links the points of 'NJB™ (v, r). Since BT (v,r) is contrac-
tible, the new graph captures the topology of M and is shorter than I' which contradicts
the definition of T
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Let B(pp)(v,7) be the ball centered at v of radius R in the metric graph (I, k). Since
the ball B(p (v, r) is contained in I' N B¥ (v, 7), we have

length(I' N B (v, 7)) > length(Br (v, 7)). (1.9.3)
Let @ be a lift of v in I Since sys(M, h) < sys(I', k), we have for r < L sys(M, h)

length(B(r p (v, 7)) = length(B(iﬁ) (0,7)). (1.9.4)

By Theorem III (take A = %) and the bound (9.1), there exists a vertex @ in T such that

Vi (r).

5 1
length(B(fﬁ)(u, r)) > 3 ViFay Tiay)

Denote by u the image of @ by the covering map. By (9.2), (9.3), (9.4) and (2.4), we
obtain

length(0B™ (u, 1))

Y

1 /
2Ty ) ")
1

3 sinh(rIn2).

A\

By the coarea formula,

R
Area(B(u, R)) > ;/ sinh(r In2)dr
0

1
= 21n2(cosh(Rln 2)—1).
1

Next, we consider the general case with no restriction on the systole and the orientabi-
lity of M. Since M admits a hyperbolic metric, the fundamental group of M is residually
finite (see [21]). Therefore, we can choose a finite cover (M, h) such that M is orientable
and

sys(M,h) > mar{2R,1/2}.

Let hyp be the pullback of the hyperbolic metric on M to M. B
Now, if the covering m : M — M has degree d, then Area(M,h) = d Area(M,h) and
Area(M, hyp) = d Area(M, hyp). So

o 1 o
Area(M,h) < 13 Area(M, hyp).

Finally, since the universal cover of (M, h) agrees with the universal cover of (M, h), we
can conclude by the first case. O

Now we prove Theorem I.
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Proof of Theorem I. Let (M, hyp) be a closed hyperbolic Riemannian surface of genus
g. Let § be a small positive constant and h another metric on M with Area(M,h) <
d Area(M, hyp). We will show that if we take § small enough (independently from the
metric h) then for any radius R > 1,

v

iy (B) = Vi (R).

Indeed, let b/ = A2h where )\ is a positive constant such that
1
Area(M,h') = GYEm Area(M, hyp).

By Theorem 1.9.1, we have that for any radius R > 0,

> .
= An 1n2VH2 (R In 2)

Recall that
Area(M, ') = \? Area(M, h) < A28 Area(M, hyp).

So )
2
> .
A2 21376
On the other hand, we have
2
V(M]L,)(/\R) =A V(fvf,?z) (R).
So )

Now we choose A large enough so that for all R > 1 we have

1

—_— In2) > .
471')\2 IH2VH2 ()\R n ) = V]HI2 (R)

To see that such a A exists notice that for R > 1 we have

1 1 Aln2 ARIn2
mVH2<)\R1n2) > m e 2 e 2 —2)

Aln
When A tends to infinity, the number me% tends to infinity and so

1 Aln2 ARIn2

— -2 Vi (R).
gremz @ ¢t T V)
Recall that to get A large enough it suffices to choose § small enough.

Finally, we would like to point out that when R tends to zero we cannot find a A such

that
1
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Courts lacets homotopiquement
indépendants sur les surfaces
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2.1. INTRODUCTION

Short homotopically independent loops on surfaces

Abstract

In this paper, we are interested in short homologically and homotopically independent
loops based at the same point on Riemannian surfaces and metric graphs.

First, we show that for every closed Riemannian surface of genus ¢ > 2 and area
normalized to g, there are at least [log(2g) 4+ 1] homotopically independent loops based
at the same point of length at most C'log(g), where C' is a universal constant. On the
one hand, this result substantially improves Theorem 5.4.A of M. Gromov in [10]. On
the other hand, it recaptures the result of S. Sabourau on the separating systole in [25]
and refines his proof.

Second, we show that for any two integers b > 2 with 1 < n < b, every connected
metric graph I' of first Betti number b and of length b contains at least n homologi-
cally independent loops based at the same point and of length at most 24(log(b) + n).
In particular, this result extends Bollobas-Szemerédi-Thomason’s log(b) bound on the
homological systole to at least log(b) homologically independent loops based at the same
point. Moreover, we give examples of graphs where this result is optimal.

2.1 Introduction

Short homotopically and homologically independent loops on surfaces have been of
a great interest. Gromov proved in [10] and [13] that both sys(M), the systole, i.e., the
shortest non-contractible loop, and sysy (M), the homological systole, i.e., the shortest
homologically nontrivial loop, of a closed Riemannian surface M of genus g > 2 with
area normalized to 47w(g — 1) are at most ~ log(g). In [1], F. Balacheff, S. Sabourau and
H. Parlier found the maximal number of homologically independent loops of length at
most ~ log(g). Their theorem goes as follows.

Theorem 2.1.1 ([1]). Let n: N — N be a function such that

)\::supM<1.
g

g

Then there exists a constant C)y such that for every closed Riemannian surface M of
genus g there are at least n(g) homologically independent loops v, . . ., auyyg) which satisfy

log(g + 1)
N

length(a;) < Cy Area(M),

Jor every i € {1,...,n(g9)}.
Moreover, they constructed some hyperbolic surfaces where their bound is optimal.

For the applications we have in mind (see Section 2.2), it would be nice if the loops
in Theorem 2.1.1 were based at the same point. Unfortunately, the following example

35



2.1. INTRODUCTION

shows that in general, we cannot even find two homologically independent loops based
at the same point satisfying a log(g) bound. Indeed, let M be a closed hyperbolic surface
of genus g. Consider a family of g + 1 loops in M dividing the surface into two spheres
with g + 1 boundary components. Pinching these loops enough, we force (by the collar
theorem) every loop of M homologically independent from this family to be arbitrary
long. Still, we obtain some result in this direction when the systole is bounded from
below, see Theorem 2.4.2.

This leads us to replace the notion of homologically independent loops by the notion
of homotopically independent loops defined below.

Definition 2.1.1. Let M be a closed Riemannian surface of genus at least one. A fa-
mily of loops (a1, ...ax) based at the same point v in M are said to be homotopically
independent if the subgroup of m1(M,v) generated by a, ..., is free of rank k.

Observe that k homologically independent loops based at the same point on a closed
surface M of genus g are homotopically independent for k < 2g, see Theorem 2.4.1.

Now we ask the following question : for how many homotopically independent loops
based at the same point does the log(g) bound hold ?

One might wonder or even doubt the benefit of finding short homotopically independent
loops based at the same point. We show the benefits of such a choice in Section 2.2. To
the author best knowledge, the only answer to the previous question is due to Gromov.

Theorem 2.1.2 ([10], 5.4.B). Let (M, h) be a closed Riemannian surface of genus g > 2
and of area normalized to g. For every a < 1, there exist two homotopically independent
loops v1 and 2 based at the same point in M such that

sup(length(71), length(y2)) < Ca g' 7%,

where Cy, 1s a positive constant that depends only on «.

Note that Theorem 2.1.2 does not hold for @ = 1. Indeed, P. Buser and P. Sarnak
constructed in [7] hyperbolic surfaces with injectivity radius ~ log(g) at every point. We
improve Theorem 2.1.2 by showing the following result.

Throughout this paper for a positive real number R, we denote by [R]| the smallest
integer greater or equal to R.

Theorem IV. Let M be a closed Riemannian surface of genus g > 2. There are at
least [log(2g) + 1] homotopically independent loops a1, ..., Qfiag(29)+1] based at the same
point in M, such that for every i € {1, ..., [log(2¢g) + 1]},

log(g)
length(a;) < C Area(M),
(ci) /o (M)
where C' is a universal constant independent from the genus.
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Theorem IV substantially improves Theorem 2.1.2. Under the same hypothesis as
Theorem 2.1.2, Theorem IV guarantees the existence of [log(2g) + 1] homotopically
independent loops based at the same point (instead of two) of length roughly bounded
by log(g) (instead of ¢g%). Note that, if the homotopical systole of the surface M in
Theorem IV is bounded away from zero, then the [log(2¢g) 4 1| loops can be even chosed
to be homologically independent (see Theorem 2.4.2). Also Theorem IV recaptures the
following result by S. Sabourau.

Theorem 2.1.3 (Sabourau, [25]|). There ezists a positive constant C such that every
closed Riemannian surface M of genus g > 2 and area normalized to g, satisfies

syso(M) < Clog(g),

where sysg(M) is denifed as the length of the shortest non-contractible loop in M which
is trivial in Hi(M,Z).

Note that Sabourau splits his proof into two cases. In the first case, he supposes
that sysy(M) < 4sys(M) and then he deduces the result from Gromov’s log(g) bound
on the systole. Meanwhile, Theorem IV provides a unified proof of this theorem without
refering to Gromov’s asymptotic systolic inequality.

Gromov’s log(g) bound on the systole has an analog for metric graphs. Note that
for a metric graph I', the homotopical systole coincides with the homological systole. We
will denote it by sys(I'). The best bound on the systole of a metric graph is due to B.
Bollobas, E. Szemerédi and B. Thomason [3], [4]. Specifically, they proved that the systole
of every connected metric graph of first Betti number b > 2, and length normalized to b
is at most 4log(b+ 1).

Exactly as for surfaces, given a metric graph of first Betti number b > 2 and of length
normalized to b, one might wonder about the number of homologically independent loops
based at the same point satisfying the B. Bollobas, E. Szemerédi and B. Thomason log(b)
bound. We answer this question here.

Theorem V. Let I' be a connected metric graph of first Betti number b > 2 and of length
normalized to b. Let n € {1,...,b}. There exist at least n homologically independent loops
in I based at the same point and of length at most 24(log(b) + n).

An interesting value of n is n = |log(b)], i.e., the integral part of log(b). In this case,
Theorem V asserts that for every connected metric graph I" of first Betti number b > 2
and of length b, there exist at least [log(b)] homologically independent loops based at
the same point of length at most 481og(b). This extends B. Bollobas, E. Szemerédi and
B. Thomason log(b) bound on the homological systole of T' to |log(b)| homologically
independent loops of I" based at the same point.

One might wonder how far from being optimal Theorem V is. We show that it cannot
be substantially improved. Indeed, let b and n be two integers such that b > 2and 1 <n <
b. There exists a connected metric graph of first Betti number b and length normalized
to b, such that there are at most |24(log(b)+n)|+1 homologically independent loops in I'
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BASED AT THE SAME POINT

based at the same point of length at most 24(log(b)+n) (¢f. Theorem 2.3.2). In particular,
this result shows that for n > [log(b)], there exists a connected metric graph T' of first
Betti number and length normalized to b, such that there are at most 52n homologically
independent loops in T" based at the same point of length at most 24(log(b) + n).

This paper is organised as follows. In Section 2.2, we show the benefits of short ho-
motopically independent loops based at the same point. In Section 2.3, we give the proof
of Theorem V. In Section 2.4, we show how to extend Theorem V to closed surfaces with
systole bounded away from zero. In Section 2.5, we show that on a given closed surface
the cut locus of a simple closed geodesic captures its topology. In Section 2.6, we prove
Theorem TV.

Acknowledgment. The author would like to thank his advisor, Stéphane Sabourau,
for many useful discussions and valuable comments. He also would like to thank Florent
Balacheff for reading and commenting this paper.

2.2 Benefits of short homotopically independent
loops based at the same point

In this section, we show two applications of homotopically independent loops based
at the same point of bounded length.

Let M be a closed Riemannian surface of genus g > 2. If a and 8 are two homotopi-
cally independent loops based at the same point in M, then

syso(M) < length(aBa~1571).

In particular, if sup(length(«),length(8)) < C'log(g), then
syso(M) < 4Clog(g).

Notice that the above observation allows us to recapture the result of Theorem 2.1.3 on
the separating systole by means of Theorem IV. Also we would like to point out that
Gromov’s upper bound C, ¢'~® on the length of two homotopically independent loops
based at the same point in Theorem 2.1.2 is not sufficient to prove that the length of the
separating systole of a closed Riemannian surface of genus g > 2 and area g is bounded
above by ~ log(g).

Another use of homotopically independent loops based at the same point v of a closed
Riemannian surface M, is to contribute to the area of balls centered at a lift v of v in the
universal cover M of M. Let us clarify this idea here. Consider a system S = {a1, ..., ax}
of pairwise non-homotopic loops based at v. Let

L = sup length(ay).
1<i<k
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Denote by s half the systole of M at the point v, i.e. half the length of the shortest
non contractible loop based at v. Let H] (resp N,) be the set of elements of H =
(S) (resp m1(M,v)) of length less than r, where the length of o € 71 (M, v) is defined
as length(a) = dist(v, @.v). It is the minimal length of a loop based at v representing «.
Let R > s+ L. Consider the ball B = By;(v,70), where 79 = R — s. Every element v;
of Ny, yields a point v; = ;v in B. The balls By;(v;, s) are disjoint and of the same
area. We have

Area By7(v, R) > card(Ny,) Area By (v, s), (2.2.1)

where card(N,,) is the cardinal of N,,.
Also notice that

card(Ny,) > card(H,,)). (2.2.2)

Thus, a lower bound on the cardinal card(H,,) of Hj., yields also a lower bound on card (N, ).
One way to bound card(H), ) from below is the following. We define a norm || || on H as
follows. For 8 in H, we define the word length || 8 || of 5 as the smallest integer n such
that 8 = 71 ...v, where 7; € S U S™!. Denote by HY the set of elements of H of word
length less than r. We have

card(N)) > card(H, ). (2.2.3)
Combining (3.1), (3.2) and (3.3) we got
Area By;(v, R) > card(H, ) Area By(v, s). (2.2.4)

Now let 7" > 1. Notice that H is maximal if H is free of rank k. That is guaranteed if the
loops a4, . .. a are homotopically independent in M. It is now clear how homotopically
independent loops based at the same point v contribute to the area to the balls centered
at points in the fiber over v in M whenever the radii R of these balls is longer than s+ L.
Moreover, since R must be at least s 4+ L, it is straightforward to see that the shorter
the L, the better the result. This means that the upper bound of the lengths of the «;’s
is also important.

2.3 Short homologically independent loops on graphs

In this section we prove Theorem V. Recall that this theorem extends the Bollobas-
Szemerédi-Thomason log(b) bound on the homological systole of graphs to [log(g)] ho-
mologically independent loops based at the same point.

First let us recall some definitions. By definition, a graph I' is a finite one-dimensional
CW-complex (multiple edges and loops are allowed). The first Betti number of a graph T’
can be computed as follows :

b(T)=e—v+mn,
where e, v and n are respectively the number of edges, vertices and connected components
of T'. A metric graph (T, h) is a graph endowed with a length space metric h. The length
of a subgraph of I is its one-dimensional Hausdorff measure. For more details on graphs
we refer the reader to [8].
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2.3. SHORT HOMOLOGICALLY INDEPENDENT LOOPS ON GRAPHS

Definition 2.3.1. Let I" be a connected graph of first Betti number b > 1. A family of
loops (aq,...ax) in I is said to be homologically independent if their homology classes
in Hi(I',R) are.

Note that this definition extends also to closed Riemannian manifolds.

Now we prove Theorem V.

Theorem 2.3.1. Let I' be a connected metric graph of first Betti number b > 2 and of
length normalized to b. Letn € {1,...,b}. There exist at least n homologically independent
loops in T based at the same point and of length at most 24(log(b) + n).

Proof. By definition of the first Betti number b, there exist b homologically independent
loops aq,...,qp in I'. Fix a point x of a1. For ¢ = 1,...,b, let C; be a minimizing curve
from x to a;. We have length(C;o;C; 1) < length(C;) + length(ay;) + length(C;) . Notice
that length(C;) + length(c;) < b. Thus, there exists b homologically independent loops
in I based at the same point of length at most 2b (< 24(log(b) + 3)). This yields the
desired result for n € {g, b}. Now we consider the case when n < %. In particular, we
suppose b > 3. By a short cycle of I" we mean a simple loop of length at most 121og(b).
Let X be a maximal set of homologically independent short cycles of I' and denote by N

its cardinal. We claim that
b
N > —.
-2

Indeed, we construct k = (%1 graphs I'y, € ... C I'y =TI and k simple loops as follows.
Remove an edge from a systolic loop 1 of I'y and denote by I's the resulting graph.
The graph I's is connected and of first Betti number by = b — 1. Now remove an edge
from a systolic loop 72 of 'y and denote by I's the resulting graph. By induction, we
keep doing this until we get I'y. From the inequality (1.1) and since k = [4] we have for
every it =1,...,k,

4log(l +b—i+1)
b—i+1
121og(b).

length(y;) length(T';)

IN

A

By construction, the k loops {7;}¥_, are homologically independent in T'. So the claim is
proved.

We divide the set X as follows. Take any element oy of X and denote by Y] the set {3 €
X | dist(8,a1) < 4n}. Let ag be an element of X \ Y7 and denote by Y5 the set {§ €
X | dist(B,a2) < 4n}. By induction we continue this process which eventually ends
since X is finite. Let a; € X be the last short cycle obtained from this process, i.e.,
let aj be an element of X \ Y; U ... U Y;_; such that YU...UY;1UY; = X.
Fori=1,...,7, we denote by T; the cardinal of Y;. We claim that there exists an ig such
that

> n.

20

Indeed, suppose the opposite. We have

5 SN = card(X) < D T < jn.
=1
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2.3. SHORT HOMOLOGICALLY INDEPENDENT LOOPS ON GRAPHS

So j > % > 1. For i # i, we have dist(c;, ;) > 4n. This means that the open
neighborhoods of radius 2n around the as are pairwise disjoint. Since I is connected, the
length of the neighborhood of radius 2n around each short cycle o is at least length(a;)+

2n. This implies that

length(I") > 2nj > b.

Hence a contradiction. So there is an ¢o such that 7;, > n.
Now fix a vertex a of a;, and let 5 be any element of Y;, \ {as,}. Let b and ¢ be two
vertices of «;, and f respectively such that dist(a;,,3) = dist(b,c). Also, let Cyp be a
minimizing curve from a to b and Cp. be a minimizing curve from b to c. The following
holds.

— length(Cup) < length(a,)/2

— length(Cp.) < 4n.
The loop ' = CupCheBCChy is homologuous to 8 and satisfies

length(3') < 241og(b) + 8n.

So the T;, short cycles of Y;, give rise to T;, homologically independent loops of I' based
at the same point a and of length at most 24(log(b) + n). O

Corollary 2.3.1. Let I" be a connected metric graph of first Betti number b > 2. Letn €
{1,...,b}. There exist at least n homologically independent loops in T based at the same

point of length at most 24(log(b) + n) %,

Before stating our next theorem, we construct a connected metric graph I'y that will be
useful to the rest of this section. Let m and p be two positive integers with m > p. Denote
by ¢ and r the quotient and the remainder in the division of m by p, that is, m = pqg+r
with 7 € {0,...,p—1}. Also let L and [ be two positive constants.

Fix a vertex v. We construct ¢ bouquets Xi,..., X, of p circles and a bouquet X1
of r circles. We define I', by joining the vertex of each bouquet X; to the vertex v by
an edge w;. See Figure 1. We define a metric A on I'y such that (I'y,h) is a length
metric space as follows. For i = 1,...,¢q, set length(w;) = L, and length(X;) = [. Also
set length(Xg41) + length(wg41) = r. It is straightforward to see that the graph T', is
connected, of first Betti number m and of length ¢(L +1) +r. We claim that there are at
most p+7 (< 2p—1) homologically independent loops based at the same point of length
at most 2L. Indeed, notice that there exist at most » homologically independent loops
based at v of length less than 2L. So let m be any point of I', other than the point v.
There exists a unique ¢ such that m € X; Uw;. Now notice that if we want to find more
than p + r homologically independent loops based at m, one of them must cross at least
two times one of the edges wj, with j € {1,...,¢} \ {¢}. Thus, the length of this loop
exceeds 2L.

41
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WITH HOMOTOPICAL SYSTOLE BOUNDED FROM BELOW.

FiGURE 2.1 — The graph I', for m =12, p=4, ¢g=3 and r = 2.

Our next theorem shows that one cannot substantially improve Theorem 2.3.1, thus
it is roughly optimal.

Theorem 2.3.2. Let b and n be two integers such that b> 2 and 1 <n <b. Let A > 0.
There exists a connected metric graph of first Betti number b, of length normalized to b,
such that there are at most | A(log(b) +n) |+ 1 homologically independent loops in I' based
at the same point of length at most A\(log(b) + n)

Proof. We only need to consider the case when b > | A(log(b) + n)| + 1 since the other
case is trivial. Denote by ¢ and r respectively the quotient and the remainder in the
division of b by |§(log(b) +n)] + 1. Let & > 0 be such that

o8 (8) +m)] +1 =3 (log(b) +m) +.

Consider the graph I'y given by the previous construction with
- m=»,

p
- L= 3(log(®) +n),
- l=e.
The graph TI'y is connected, of first Betti number b, of length b and has at
most |A(log(b) + n)| + 1 homologically independent loops based at the same point of
length at most A(log(b) + n). O

2.4 Short homologically independent loops on sur-
faces with homotopical systole bounded from
below.

In this section we combine ideas from [1] and |17] to extend Theorem 2.3.1 to closed
surfaces with systole bounded below.
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WITH HOMOTOPICAL SYSTOLE BOUNDED FROM BELOW.

Definition 2.4.1. Let (M, h) be a closed Riemannian surface of genus g. The image in M
of an abstract graph by an embedding will be referred to as a graph in M. The metric h
on M naturally induces a metric on a graph I' in M. Despite the risk of confusion, we
will also denote by h such a metric on T.

Proposition 2.4.1. Let (M, h) be a closed Riemannian surface of genus g > 1. Suppose
that the homotopical systole of M is at least £. Then, there exists a graph I' in M such
that

1. the inclusion map v : I' — M 1is distance non-increasing ;

2. the homomorphism i, : Hi(I',R) — Hy(M,R) induced by the inclusion is an iso-
morphism ;

29 Area(M, h) + g

<
length(I") < min{1, 0}

Proof. Without loss of generality, we suppose that ¢ < 1. This proposition is the same
as Proposition 6.1 in [17], where £ was taken to be 1 and the area is equal to 2—}1(29 -1)

instead of g. The proof of Proposition 6.1 in [17] starts by fixing 79 = 55, In our case we

1
25>
fix ro = 2% and reproduce the argument. O

Before stating out next theorem, let us recall the following theorem.

Theorem 2.4.1 ([15]). Let M be a closed Riemann surface of Euler characteristic x(M) <
0. Any subgroup of m1 (M) generated by k elements, where k < 2— x (M), is a free group.

Now we can prove the following result.

Theorem 2.4.2. Let M be a closed orientable Riemannian surface of genus g > 1 with

homotopical systole at least £ and area normalized to g. Let n € {1,...,2g} be an integer.
There exist at least n homologically independent loops Y1, ..., vn based at the same point
in M such that for every i =1,...,n, we have

length(y;) < 24Cy(log(2¢g) + n),

29
min{1,/}
Moreover, if n < 2g then (V1,...,n) is free of rank n.

where Cp =

Proof. Let T be a graph in M that satisfies (1), (2) and (3) of Proposition 2.4.1. The
first Betti number of I' is 2g. By Corollary 2.3.1, there are at least n homologically
independent loops in I" based at the same vertex of length at most 24Cy(log(2g) + n).
The images of these loops by the inclusion map ¢ yield the desired loops. The second
assumption follows from Theorem 2.4.1. ]
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Remark 2.4.1. A non-orientable version of Theorem 2.4.2 holds. Let M be a closed non-
orientable surface of genus g > 1 with homotopical systole at least £ and area normalized
tog. Letn € {1,...,g}. There are at least n loops y1, ...y, based at the same point v in M
whose homology classes in Hi(M,Zs) are independent such that for every i =1,...,n, we
have

length(7;) < 24C;(log(g) + n),

where C)) = m for some positive constant C. Moreover, if n < g then (y1,...,Yn) is
free of rank n.

2.5 Cut loci and capturing the topology

In this section we extend the notion of cut locus defined originally for points in a
Riemannian manifold to simple closed geodesics (this might be already defined but the
author didn’t find a reference in the literature) and we give some basic results for the
new notion.

Let M be a closed surface and p be a point in M. The cut point of p along a geode-
sic C) starting at p is the first point g € C, such that the arc of C, between p and any
point r on C), after ¢ is no longer minimizing. The set Cut(p) of all cut points along all
the geodesics issued from p is called the cut locus of p. We extend this notion to simple
closed geodesics as follows.

Let « : [0,1]] — M be a simple closed geodesic in M and § be another geodesic
that starts orthogonally from « at some point p. The cut point of « along S is the first
point ¢ € B such that, for any point r on 8 beyond ¢ the length of the arc of 8 between p
and 7 no longer agrees with the distance from r to . The set Cut(«) of all the cut points
of all the geodesics issued orthogonally from « is called the cut locus of a. An alternative
useful way to view Cut(«) is the following. Denote by Na the normal bundle to . Each
vector vy € Na gives rise to a geodesic Cy starting at «(t) such that Cy'(0) = v;. Denote
by ¢; the cut point of « along the geodesic Cy. The point ¢, is the image by the exponential
map of some vector v, parallel to v;. Let Ny be the set of the vectors v; and Ny be the
set of the vectors Avj, where A € [0,1). Then, Cut(a) = exp(Ny).

Lemma 2.5.1.
M = exp(N1) U exp(Na),

where the union is disjoint.

Proof. Let = be a point in M. There exists a minimizing geodesic o, ! from z to o
parametrized by arc length such that length(o, ~!) = dist(z, «). The geodesic o, 7! hits a
orthogonaly in a point a(t) (¢f. [9]). Since o, is minimizing, the point z is not after the
cut point of a along o,. That means that the vector dist(«(t),x)o’(0) € Ny U N,. Notice
that z = exp(dist(a(t),z)o’(0)). Thus, M = exp(N1) U exp(N3).

Now let us prove that the union is disjoint. Let y € exp(IN1)Nexp(N2). Since y € exp(Na),
there exists a minimizing geodesic oy : [0,/] — M from « to y, parametrized by arc
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length such that oy is still minimizing for some time after y i.e. there exists an ¢ > 0
such that o, : [0,¢ + €] is a minimizing geodesic from « to oy(¢ + €). On the other
hand, since y € exp(N1), there exists a minimizing geodesic d, from a to y parametrized
by arc length such that J, is no longer minimizing after y. Let ¢ be the curve defined
by ¢(t) = d,(t) if t € [0,4], and ¢(t) = oy (t) for t € [(,{ + ¢]. Let 0 < &’ < e. There
exists a minimizing geodesic from ¢(¢ — &’) to ¢(¢ + €’) which is of length strictly less
than the arc of ¢ between these two points since ¢ is not smooth at ¢(¢). We conclude
that dist(oy(¢+¢€’), @) is strictly less than the length of o, between o, (0) and o, (¢ +¢’).
Hence a contradiction. So the proof is finished. O

Lemma 2.5.2. The set Cut(«) is a deformation retract of M\{a}. We will say that Cut(«)
captures the topology of M \ {a}.

Proof. Let = be a point of M not in a or Cut(a). Denote by o, the unique minimizing
geodesic from z to a. Let 2’ be the cut point of a along the geodesic .. Clearly, 2/ €
Cut(a). Now we can shrink M \ {a} to Cut(a) by sliding each point x of M not in «
or Cut(a) to Cut(a) along the arc of the geodesic o, between x and ' O

Proposition 2.5.1. Let (M, g) be a closed real analytic Riemannian surface and o be a

simple closed geodesic in M. Then Cut(«) is a finite graph.

We omit the proof of Proposition 2.5.1 since it is essentially the same proof as in [23]
p-97.

2.6 Short Homotopically Independent loops on Rie-
mannian Surfaces

In this section we prove Theorem IV. Before doing that, let us give some definitions
and some independent propositions that will be useful to the rest of this section.

Lemma 2.6.1. Let F' = (a,b) be a free subgroup of rank 2 of the fundamental group of a

closed Riemannian manifold. For every integern > 1, the subgroup H = (b, a'ba™1, ..., a”_lba_(”_1)>
of F is free of rank n. Moreover, if length(a) = I, and length(b) = l,. Then,

sup length(a’ba™%) < 2(n — 1)l + Iy
0<i<n—1

Proof. Since the subgroup of a free group is free then H is free. Next, we claim that

the generator aPba™P is not an element of the free subgroup G generated by the ele-

ments a?ba”? for ¢ € {0,...,n — 1} \ {p}. Indeed, a reduced word in G starts with a?

with ¢ # p. So H is of rank n. The length inequality is immediate. O

Proposition 2.6.1. Let (M, g) be a compact Riemannian cylinder. Denote by « and [
the two boundary components of M. Suppose that

length(a) < 1 < length(p).

Then there exists a non-contractible simple loop v in M of length 1 such that the systole
of the cylinder R, bounded by B and v is equal to 1.
In particular, the loop «y is a systolic loop of R,.
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Proof. Let X = {0 simple non-contractible loop in M such that sys(R,) = 1}, where
by R, we mean the cylinder of boundary components 8 and . Clearly the set X is non
empty. Let £ = inf,c x length(o) and € be a small positive constant. By the definition
of the infimum, there exists a simple non-contractible loop og such that sys(R,,) = 1
with ¢ < length(og) < ¢+ €. The systolic loop v of R, is a simple non-contractible loop
in M. Moreover, we have R, C Ry,. Thus

1 =sys(Ry,) < sys(R,) < length(y) = 1.

So sys(R,) = 1. This finishes the proof. O

In the proof of Theorem 2.6.1 below, we will need the following definition.

Definition 2.6.1. Let M be a closed Riemann surface of genus g (with possibly one disk
removed). It is well known that such a surface can be obtained from a polygon P (with
possibly one disk removed) by pairwise identifications of its sides where all the vertices
of P get identified to a single point on x of M. Such a polygon, will be called a normal
representation of M. After identification, the edges of P give rise to 2g simple loops (in
case M is orientable) or to g simple loops (in case M is non-orientable) based at x and
intersecting each other only at x. Such set of loops is called a canonical system of loops.

Now we prove Theorem IV.

Theorem 2.6.1. Let M be a closed orientable Riemannian surface of genus g > 2. There
are at least n = [log(2g) + 1] homotopically independent loops a1, ..., oy based al the
same point such that for all i =1,...,n,

length(a;) < 220M Area(M).

V9

Proof. [Proof of Theorem 2.6.1] Since every smooth metric can be approximated by a real
analytic one, we can assume that M is a real analytic Riemannian surface. Multiplying
the metric by a constant if needed, we can suppose that the area of M is normalized to g.
We only need to consider the case where the homotopical systole of M is less than 1,
since the other case is settled down by Theorem 2.4.2. Consider a maximal set X of
simple closed geodesics o, ..., ap of length at most 1 which are pairwise disjoint in M
and non freely homotopic. Let k£ be the number of elements of X that are separating. Note
that k& < p. The main idea of the proof is to go back to the case where the homotopical
systole is at least 1.

Remark 2.6.1. At first, we were tempted to cut the surface M open along the loops «;
of X and to attach an hemisphere along each of the 2p boundary components. This yields
at least k + 1 new closed surfaces My, ..., Myy1, where k is the number of geodesics
in X that are separating. We hoped to find the desired loops or two short homotopically
independent loops based at the same point in one of the closed surfaces M;. Recall that
the homotopical systole of each M; is at least 1 so we can use Theorem 2.4.2. Afterwards
we wanted to show that these loops do not cross the hemispheres and so lie in the original
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surface M. It doesn’t take much time to realize that this idea is naive. One can run into
many problems. Let’s imagine the case where p = g and all of the geodesics o; are non-
separating like the surface in Figure 2. In this case, the surface obtained by cutting M
along the loops «; and attaching hemispheres is of genus 0 and so the proof collapses.
Instead we will cut M along each «;, chop off some “maximal” cylinders and then glue
the boundary components back together to obtain a new surface with systole bounded away
from zero.

Yy X2

FIGURE 2.2

Let e € {—,+}. We divide the proof into 5 steps.

Step 1. In this step we chop off cylinders corresponding to short separating loops. If k = 0,
we skip this step and start directly at the second step. By renumbering the a;’s if needed,
we can suppose that for ¢ = 1, ..., k, the simple closed geodesic «; is separating. Cut
the surface M open along a;. We obtain two compact surfaces M~ and M with signa-
ture (g—m, 1) and (m, 1), where m is some positive integer less than g. Denote by aj the
boundary of the surface M¢ and let S® be one of its canonical system of loops. Notice that
since the genus of M€ is at least 1, we have card(S¢) > 2. We can suppose that for every
pair of loops a and b in S¢, we have sup(length(a),length(b)) > 1. Otherwise the proof is
finished by Lemma 2.6.1 since a and b do not commute and so generate a free group of
rank 2. Cut the surface M*® open along the loops in S¢. This gives rise to a cylinder T°
with two boundary components o and 55 such that length(8§) > 1. So the cylinder T
satisfies the hypothesis of Proposition 2.6.1. Thus, there exists a non-contractible simple
loop 77 of length 1 which is a systolic loop of the cylinder R bounded by 37 and ~f is 1.
Cut T* along { and throw away the cylinder C] bounded by af and 7i. Now re-glue R}
by pairwise identifications of the edges of 7. This gives rise to a compact surface My
with one boundary component +5 of length 1. Glue the surfaces M; and M, along their
boundaries ;" and vf . The resulting surface M, satisfies the following.

— The surface M; has the same genus as the surface M ;

— Area(M;) < Area(M);

— A minimal representative in M7 of the free homotopy class of a1 is given by the

simple loop 71 of length 1 obtained by gluing v, and 'ﬁ together.

Repeat the above process with the k—1 remaining elements of X that are separating. This
gives rise to a closed surface M}, of the same genus as the surface M such that Area(Mj) <
Area(M). Moreover, any simple closed geodesic of Mj of length less than 1 is non-
separating. Perturbing the metric again, we can suppose again that it is a real analytic
one.
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Step 2. In this step, we chop off cylinders corresponding to short non-separating loops.
Cut the surface My, open along ag 1. This leads to a surface Ny, with genus g—1 and with
two boundary components «;_ ; and azﬂ. By Lemma 2.5.2, we know that the cut lo-
cus Cut(ag41) of agyq is a deformation retract of M\ {axy1}. So the fundamental group
of Cut(ayy1) is isomorphic to the fundamental group of Ni. Now cut the surface N
open along Cut(ag41). This gives rise to two cylinders. The cylinder T} ; with boundary
components (o |, B, ;) and the cylinder T,:Zrl with boundary components (oz;rJrl , ,Bktrl).
Arguing as in Step 1, we can suppose that length(BEH) > 1. So the cylinder T ; sa-
tisfies the hypothesis of Proposition 2.6.1. Thus there exists a non-contractible simple
loop 75, of length 1 which is a systolic loop of the cylinder Ry ; of boundary compo-
nents (8;,,,7i,1) s 1. Cut T, open along 77, and throw away the cylinder Cy_,
bounded by aj; and v;, ;. Now re-glue the cylinder Rj_; by re-identifying the sides
of fBj, . This gives rise to two compact surfaces M, ; and M ,j 1 with boundary compo-
nents that can be pairwise identified. Gluing these two surfaces together we get a closed
surface M1 that satisfies the following.

— The surface My41 has the same genus as the surface M.

— Area(Mp41) < Area(My).

— A minimal representative of the free homotopy class of ag41 in Mgy is given by
the simple loop 7j4+1 of length 1, obtained by gluing v, , and ’y,;_l together.
Repeat the above process with the p — k — 1 remaining elements of X . This gives rise to
a closed surface M, of the same genus as the surface M such that Area(M),) < Area(M).

Before proceeding to the next step, recall that the simple closed geodesics aq,...,aqp
in the original surface M correspond to the simple closed geodesics vi,...,7, in the
surface M,. Also recall that the cylinders C;” and C’f in M share the same boundary
component «;. We denote by C; the cylinder with boundary components (v, , V;F ), that
iS, CZ:C:'_UCZ_

Step 3. In this step, we show that we can suppose that two different cylinders C; and C/
in M are distant from each other. Specifically, we have dist(Cj, Cj) > 2'¥log(g). In
other words, we have

distar, (vj,7;7) > 2'%log(g). (2.6.1)

Indeed, suppose the opposite. Without loss of generality, suppose that the distance bet-
ween C; and Cj is equal to dist(yj_,'yj_,). Let 21 be a point on C; and z be a point
on Cj such that dist(z1, 22) = dist(v; ,7;/). Consider the loop p that starts at z1, travels
along a minimizing geodesic between z; and 29, makes a complete tour along Vg and then

comes back to z;. We have that length(u) < 2'%log(g) + 1. Notice also that p and o7
do not commute. In particular, they are homotopically independent. So by Lemma 2.6.1
(take a = 7;” and b = ), the proof of the theorem is finished.

Step 4. In this step, we show that we can suppose that
sys(Mp) > 1.

Indeed, by contradiction, suppose that there is a systolic loop p of M), of length less
than 1. We claim that the geodesic p transversally intersects at least one of the 4.s.
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Indeed, suppose the opposite, and denote by y’ the simple closed geodesic in the original
surface M that corresponds to p. Since p does not transversally intersects any of the /s,
the loop p’ is disjoint from all the cylinders C;. In particular, 4/ does not intersect any
of the loops ;. This contradicts the maximality of X, since length(u') < 1. Let j €
{1,...,n} be such that x transversally intersects ;. That means that in the surface M,
the loop i/ goes across the cylinder C;. Now we claim that p intersects only one ;. Indeed,
the length of 11/ is less than 1 and the distance between any pair of cylinders C;j and C} is
greater than 1. Therefore, u intersects only one 7;. Moreover, the two minimizing simple
loops p and 7y; do not commute.

Lemma 2.6.2. Let 8 be a loop in M, of length less than L that transversally intersects
only one geodesic v; and does not commute with it. Then there exist two loops a, b based at
the same point in the original surface M that do not commute and such that length,,(a) =
1 andlength,;(b) < 2L+1. In particular, the loops a and b are homotopically independent.

Proof. We give 3 and ~y; some orientation. Let x1,...,x, be the transversal intersection
points of B and v; counted with multiplicity and ordered in the sense that if we start
walking on 3, then z; is the i —th time § intersects ;. Suppose that ¢ > 2 (the case ¢ = 1
will be treated in the end of the proof). Let 3; ;41 be the simple loop based at x; defined as
the concatenation of the oriented arc of 8 between x; and ;41 and the oriented arc c;41;
of v; between z;11 and ;. The loop 3 is homotopic to the loop Bi2¢12 ... By g+1Cqq+1,
where by convention c¢; ;41 is the inverse of ¢;11;, and 441 = 1.

Notice from the above equality that at least one of the curves 3;;y1¢; ;41 does not
commute with v;, for otherwise we will have that 8 commute with ~;, which is a contra-
diction.

Now let Bk p+1¢k k1 be one of the curves 5 ;11¢;;4+1 that does not commute with ;.
The curve S, x4+1¢k k+1 is homotopic to B k1, so in particular S, x4+1 does not commute
with «y;. Recall that the surface M can be obtained from the surface M, by cutting
along the ~;’s and re-inserting the cylinders C;. Thus, the loop in M that corresponds
to B decomposes into a union of curves whose endpoints lie on one of the two boundary
components y; and ’y;f of the cylinder Cj. Denote by ), and xj_, the points in M
corresponding to the points xy and g1 of B x4+1 in M,. We have two cases.

Case 1. The points ), and x, 41 lie both the same boundary component, say '7;-'.
In this case, let 5’ be the simple loop in M that corresponds to Sy k41 (See Figure 3).

o X<
vy

FIGURE 2.3

Take a = ’y;-r and b = . These two loops are based at the same point and do not com-
mute. Moreover we have length(a) = 1 and length(b) < L + 1.
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Case 2. The points zj and zj_, do not lie both on v, or fyj.
In this case, let 3’ be the arc in M that corresponds to the arc of 8 between xp and zjy 1.

N
J ’y;r
FIGURE 2.4
Take a = 'y;-“ and b = B”y;-rﬂ“l. These two loops are based at the same point and do not

commute. Moreover we have length(a) = 1 and length(b) < 2L + 1.

7

Finally, if the number of intersections ¢ = 1, we argue exactly like in case 2 above,
supposing that zy,1 = z. That finishes the proof of the Lemma. O

Now, apply Lemma 2.6.2 with § = p and make use of Lemma 2.6.1 to finish the
proof.

Step 5. By Theorem 2.4.2, there are at least n = [log(2¢)+ 1] homotopically independent
geodesic loops p1 ..., u, based at the same point in M), with

length(y;) < 2" log(g).

If these loops are in the original surface M, i.e., they don’t transversally intersect any of
the loops 7; in M, then the proof is finished. So suppose the opposite. Let u be one the
loops g1 ..., iy that transversally intersects at least one of the 7;’s in M,,. From (6.1),
the loop p (transversally) intersects exactly one loop v; in M,. By Lemma 2.6.2, we
show that there exist two loops a,b in the original surface M based at the same point
with length(a) = 1 and length(b) < 2'%1og(g) + 1. The result follows from Lemma 2.6.1.

O

Remark 2.6.2. Theorem 2.6.1 extends to non-orientable surfaces with multiplicative

constant 2%2 instead of 2°° by passing to the double oriented cover.

Corollary 2.6.1. There exists a positive constant C' such that the separating systole of
every closed Riemannian surface M of genus g > 2 and area g satisfies

syso(M) < C'log(g)-

Proof. From Theorem 2.6.1, there exist two non-commuting loops a and b based at the
same point of length at most clog(g) for some positive constant c. The commutator [a, b]
of a and b, of length at most 4clog(g), yields a bound on the separating systole of M. [
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