
HAL Id: tel-00915043
https://theses.hal.science/tel-00915043v1

Submitted on 6 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-criteria Scheduling on Clouds
Yacine Kessaci

To cite this version:
Yacine Kessaci. Multi-criteria Scheduling on Clouds. Operations Research [math.OC]. Université des
Sciences et Technologie de Lille - Lille I, 2013. English. �NNT : 41245�. �tel-00915043�

https://theses.hal.science/tel-00915043v1
https://hal.archives-ouvertes.fr

Ecole Doctorale Sciences Pour l’Ingénieur Université Lille 1 Nord-de-France
Laboratoire d’Informatique Fondamentale de Lille (UMR CNRS 8022)

Centre de Recherche Inria Lille Nord Europe

Thèse présentée pour obtenir le grade de docteur

Discipline : Informatique

N◦ d’ordre : 41245

Ordonnancement multi-critère sur Clouds

Par : Yacine Kessaci

Soutenue le : 28 novembre 2013

Membres du jury :

Président : Lionel Seinturier - Professeur des Universités, Lille 1
Rapporteurs : Pascal Bouvry - Professeur des Universités, Luxembourg

Jean-Marc Pierson - Professeur des Universités, Toulouse 3
Examinateur : Laurent Lefèvre - Chargé de recherche HDR, ENS Lyon/LIP/Inria
Directeurs de thèse : Nouredine Melab - Professeur des Universités, Lille 1

El-Ghazali Talbi - Professeur des Universités, Lille 1

Remerciements

Cette belle aventure qu’est le doctorat m’a appris beaucoup de choses aussi
bien sur le plan scientifique que humain. Il va sans dire que ces trois dernières
années de réflexion et de travail ont renforcé mes connaissances en plus de m’en
faire découvrir de nombreuses nouvelles. Cependant une partie non négligeable de
cet apprentissage ne concerne pas la recherche en elle même. En effet, la thèse de
doctorat est un projet que j’ai vécu avant tout comme une aventure humaine à
travers de belles rencontres qui ont contribué de près ou de loin à l’aboutissement
de ce long périple. Il est normal donc de leur adresser mes remerciements.

Je tiens tout d’abord à exprimer l’expression de mon respect et de ma profonde
reconnaissance à mes deux directeurs de thèse : les professeurs Nouredine Melab et
El-Ghazali Talbi. La pertinence de leurs conseils ainsi que leur lucidité scientifique
ont été précieux dans la réalisation et l’aboutissement de ce travail de recherche.

Mes remerciements vont également à tous les membres du jury qui m’ont fait
l’honneur d’évaluer mon travail pour leur disponibilité, les conseils et remarques
constructives émis dans leur rapport. Je pense ici à Lionel Seinturier, Pascal
Bouvry, Jean-Marc Pierson et Laurent Lefèvre.

Ces remerciements seraient incomplets si je n’en adressais pas à l’ensemble des
membres de l’équipe DOLPHIN pour leur accueil ainsi que pour la très bonne
ambiance que j’ai trouvée au centre durant ces trois années de thèse. Un merci
en particulier à Ahcène, Aline, Benjamin, Ekatarina, François, Julie H, Julie
J, Karima, Khedidja, Marie-Eléonore, Martin, Mathieu, Mostepha, Moustapha,
Nadia, Sophie, Thé Van et Tuan. Sans oublier les permanents de l’équipe : Arnaud,
Bilel, Clarisse, Clive, Dimo, François, Laetitia et Luce. Ni les anciens membres de
l’équipe : Mohand Mezmaz, Lekhdar Loukil et Malika Mehdi.

Je voudrais aussi adresser mes remerciements à mes amis d’ici ou d’Algérie.

Et enfin, le plus important, mes chaleureux remerciements vont à ma famille,
avec une pensée particulièrement affectueuse pour mes parents et mon frère Wanis
pour leur confiance et leur soutien indéfectible. Qu’ils sachent que dans mon cœur
ce travail est autant mien que le leur.

Contents

Introduction 1

1 Metaheuristics for Cloud Scheduling 5
1.1 Introduction . 5
1.2 Background on Cloud Computing . 6

1.2.1 Cloud computing paradigm 6
1.2.2 OpenNebula Cloud manager 10

1.3 Background on Multi-objective Metaheuristics 12
1.3.1 Multi-objective combinatorial optimization 12
1.3.2 Metaheuristics . 16

1.4 (Meta)heuristics for Cloud Scheduling 21
1.4.1 Cloud scheduling: problem formulation and models 21
1.4.2 Related Works . 25

1.5 Conclusion . 32

2 Service-level Scheduling on a Cloud Federation 33
2.1 Introduction . 34
2.2 Service-level Scheduling Model . 35

2.2.1 Cloud model . 35
2.2.2 Energy and profit models . 37
2.2.3 Meta-scheduling problem modeling 38

2.3 The Meta-scheduling Proposed Approach (MSCF) 40
2.3.1 Steps of the MSCF algorithm 41
2.3.2 Service-level scheduling encoding 41
2.3.3 Population initialization . 42
2.3.4 MO-GA variation operators 43
2.3.5 Pareto genetic algorithm MO-GA 45
2.3.6 Provider’s policy selection 45

2.4 Experimental Evaluation . 47
2.4.1 Experimental settings . 48
2.4.2 MSCF algorithm parameters 49
2.4.3 Maximum applications consolidation-based scheduling heuris-

tic and random approach . 50
2.4.4 Performance evaluation . 51

2.5 Conclusion . 61

3 Task-level Scheduling in a Cloud Brokering Environment 63
3.1 Introduction . 64
3.2 Task-level Scheduling Model . 65

3.2.1 Brokering model . 65

iv Contents

3.2.2 Satisfaction and profit models 66

3.2.3 Broker-based task-level scheduling modeling 67

3.3 The Proposed Multi-objective Genetic Algorithm for Task-level
Scheduling . 68

3.3.1 MOGA-CB scheduler steps 68

3.3.2 Task-level scheduling encoding 68

3.3.3 Population initialization . 70

3.3.4 Multi-objective genetic algorithm MOGA-CB 70

3.3.5 Satisfaction-based selection mechanism 71

3.4 Experimental Study . 74

3.4.1 Experimental settings . 74

3.4.2 MOGA-CB scheduler parameters 75

3.4.3 Performance evaluation . 77

3.5 Conclusion . 83

4 VM-level Scheduling on top of a Cloud Manager 85

4.1 Introduction . 86

4.2 VM-level Scheduling Model . 87

4.2.1 Cloud managed model . 87

4.2.2 Energy consumption model 88

4.2.3 VM performance model . 91

4.2.4 Cloud manager based VM-level scheduling problem modeling 91

4.3 The Proposed Multi-start Local Search Algorithm for VM-level
Scheduling . 93

4.3.1 OpenNebula scheduler heuristic 93

4.3.2 Bin packing FFD-based scheduling heuristics 94

4.3.3 Single objective EMLS-ONC and Pareto-based EMLS-ONC-
MO steps . 94

4.3.4 VM-level scheduling encoding 95

4.3.5 Solution initialization . 96

4.3.6 EMLS-ONC/EMLS-ONC-MO algorithm 97

4.4 Experimental Study . 99

4.4.1 Experimental settings . 99

4.4.2 Parameter settings for EMLS-ONC/EMLS-ONC-MO and in-
stance types . 101

4.4.3 Performance evaluation . 103

4.5 Conclusion . 123

Conclusion and Perspectives 125

A Open Source Cloud Managers 129

Contents v

B Preliminary Work for a Transition from the System-level Schedul-
ing to the Cloud VM-level Scheduling 131
B.1 Introduction . 131
B.2 Problem modeling . 133

B.2.1 Cloud computing model . 133
B.2.2 Application model . 134
B.2.3 Energy model . 135
B.2.4 Scheduling model . 136

B.3 Related work . 137
B.3.1 Scheduling in HCSs . 137
B.3.2 Scheduling with energy consciousness 137
B.3.3 Energy-conscious scheduling heuristic 138

B.4 A parallel hybrid approach . 139
B.4.1 Genetic algorithms . 139
B.4.2 Hybrid approach . 140
B.4.3 Insular approach . 142
B.4.4 Multi-start approach . 142

B.5 Experiments and results . 143
B.5.1 Experimental settings . 143
B.5.2 Hybrid approach . 145
B.5.3 Insular approach . 147
B.5.4 Multi-start approach . 149

B.6 Conclusions . 150

Bibliography 155

Introduction

During the last decade, the cloud computing paradigm has carved out a significant
share of the IT field. It appears nowadays to be increasingly adopted in many areas
by proposing several services. Thus, the effective access to, and the use of those
services raises several issues, and scheduling is one of the major of them. Even
if the problem has largely been addressed in the literature, it should be revisited
within the context of cloud computing. Indeed, the flexibility and the dynamicity
offered by the cloud and some major challenges such as energy reduction increase
the scheduling complexity and make difficult to find efficient solutions to those
issues in a reasonable time. Therefore, applying exact optimization methods turns
out to be illusory because of the computation time. As a solution, multi-objective
metaheuristics constitute a good alternative. However, these metaheuristics as well
as the modeling of the problem need to be rethought to take into account both the
specifications and the constraints of the problem of scheduling on clouds.

The model of cloud computing is a factorization of the resources for sim-
plification purposes. It offers an easy access to those resources anywhere at
any time. The cloud computing is based on both IT and economic concepts
[Armbrust 2009, Buyya 2008]. The IT concept concerns the infrastructure used
for providing the resources, it is derived mainly from the grid computing model
enhanced by a flexibility offered by different software frameworks. On the other
hand, the economic concept is in charge of the business interaction of the cloud
paradigm with the clients. One can see then through this brief description how
the cloud computing inherits from the issues related to both grid and economic
concepts. Indeed, the economic concept adds totally new constraints and objectives
affecting the scheduling over a new distributed architecture such as cloud. Moreover
the flexibility associated to the size variability of a cloud brings scheduling issues
mainly related to the different levels at which one can consider the cloud scheduling:
service-level scheduling, task-level scheduling and VM-level scheduling.

Therefore, if one considers the highest level of the cloud where the scheduling
concerns an abstract distributed infrastructure dealing with coarse grained services
[Campbell 2009], one deals with the market-oriented service-level scheduling.
At this level, the scheduling problem has its proper constraints and objectives
directly related to its context. Indeed, scheduling at this level in addition to
consider objectives such as, increasing the profit of the provider or reducing the
energy consumption of such huge infrastructures, needs above all a calibration of
the optimization techniques by finding the proper efficient drivers to this level
of scheduling. The works in [Garg 2010] and in [Wu 2013] deal with this level
of scheduling. However, several questions are still open, such as the way how
one can better benefit from the characteristic of the infrastructures by using for

Introduction

instance more detailed models, or how addressing the different conflicting objectives
simultaneously can represent an interesting challenge to enhance the obtained
results of the faced objectives.

The market-oriented characteristic of the cloud leads naturally to put the
satisfaction of the clients as a main optimization target. However, the satisfac-
tion is related to the accuracy of the provided service and depends on several
criteria according to the type of cloud dealt with. Therefore, an evolution of the
service-level scheduling model with more precise services designed to better fit the
clients’ needs is required. This level is called the task-level scheduling. Lowering
that way the scheduling level adds precisions in the requested services leading
generally to host tasks over detailed resources configurations such as in [Ama 2012b]
and in [Wu 2013]. Task-level scheduling brings also its proper specifications and
constraints that have to be considered in the scheduling model. At such a level
with detailed requests, some other new challenges emerge and still need to be
addressed such as the tradeoff between the price and the performance regarding
the client’s satisfaction. Besides, all the aforementioned levels are tightly related
to the lowest level from which one can see the cloud computing. Thus, despite the
market-orientation of the cloud, the latter remains based on IT concepts inherited
from the general grid concepts. This level as the other ones raises challenges and
requires an optimization process. The optimization is mainly related to scheduling
the smallest cloud entities (Virtual Machines) over the hardware infrastructure
such as in [Verma 2008, Xu 2010, Laszewski 2009]. Thus, the main challenge of
the VM-level scheduling is to offer the best policy that optimizes the use of the
hardware infrastructure regarding some criteria to be as much as possible at the
service of the upper market scheduling levels.

Through what has been previously said, the different existing scheduling
approaches related to the levels of views that one can have of the cloud show
several defects. One can summarize them as, a weakness in the proposed schedulers
based generally only on simple heuristics, a lack in the adaptivity of the approaches
according to the cloud levels, to the best of our knowledge almost no Pareto
multi-objective solving algorithms exist and finally very few realistic experiments
facing the real cloud constraints.

Therefore, dealing with those lacks and facing them requires highlighting and
addressing both scientific and technical challenges in order to rethink the scheduling
optimization over the cloud computing paradigm. In that purpose, the contribution
of this thesis faces all those challenges and provides solutions at all the scheduling
levels using different metaheuristic algorithms. This thesis offers the bridge between
the metaheuristics and the cloud scheduling by proposing an appropriate solution
depending on the level of scheduling and/or the business trend of each cloud (see.
Figure 1). Therefore, in this document we propose specific metaheuristic-based
schedulers that fit the related constraints and the characteristics of each scheduling

2

Introduction

level in the cloud. We also propose new and updated optimization models regarding
each addressed criterion over all the different cloud levels. Moreover, due to the
conflicting objectives related to all the different levels of the cloud, we propose a
Pareto approach for each level to tackle simultaneously all the criteria and find the
best tradeoff. Finally, because of the Pareto nature of the proposed solutions, we
develop a selection mechanism related to both the needs and the features of each
scheduling level to propose each time the solution among the proposed Pareto front
that best suits the cloud situation. In addition, all the proposed works have been
subject to thorough experiments including both artificial and real scenarios. Hence,
in order to validate all the different solutions for each cloud scheduling level, we used
data centers workload archives [Feitelson 2009], Amazon’s data pricing [Ama 2012a]
and conducted real cloud deployment over up to 200 machines from the GRID’5000
infrastructure [GRI 2013].

Market-oriented clouds

Not-market-oriented clouds

Task-level scheduling

VM-level scheduling

Service-level scheduling

Cloud computing paradigm Metaheuristics

Population-based metaheuristics

Single-based metaheuristics

Hardware

layer

Figure 1: A General overview of the cloud computing scheduling levels and their
associated solving metaheurstics.

Document Organization

The first chapter presents all the background and prerequisites needed to the
general comprehension of the manuscript, including the cloud computing concepts
and its related optimization techniques. In this purpose, we first introduce the cloud
computing paradigm in the context of scheduling in addition to a classification of
the different types of clouds and a survey of the cloud managers. Furthermore, a
background on both multi-objective combinatorial optimization and the different
families of metaheuristics is described. Thereafter, a general formulation of the
cloud scheduling problem and the different scheduling levels related to the cloud
computing architecture are presented. Finally, we propose a related work and a
classification of the different cloud scheduling approaches of the literature.

In the second chapter, we tackle the issues related to service-level scheduling. In
that purpose, we consider the relationship between energy, green house gas emissions
and profit and pay attention on how each of those criteria can affect the others. We
use for that a multi-objective evolutionary algorithm as a meta-scheduler that allows
obtaining a Pareto set of solutions and showing the trade-off between all the tackled
criteria. Finally, a bunch of realistic experiments are performed on a long period of

3

Introduction

real workloads for the comparison of our meta-scheduler to two different approaches.

The third chapter contributes to propose a more accurate model that enhances
the quality of the service by tackling the main parameters that affect task-level
scheduling on a cloud brokering environment. The two parameters are the prices
of the Virtual Machines (VM) instances and their response time when hosting the
client’s tasks. In that purpose, we propose a multi-objective genetic algorithm for
cloud brokering that aims to dynamically minimize both the parameters in order to
provide the best quality of service (QoS) to the clients while offering an interesting
profit for the cloud broker. A Pareto set gives the best assignments of the client’s
tasks over the combination of VM instances. The experimental validation of our
contribution is based on real information provided by the infrastructure service
provider (e.g. Amazon) to retrieve the prices of the instances and their different
performances.

In Chapter four, we address the issues related to the lowest and core level
of the cloud infrastructure by proposing efficient optimization algorithms for the
VM-level scheduling. The main issues related to such an infrastructure are both
its energy consumption and provided performance. Thus, the first scheduler that
we propose (EMLS-ONC) is based on a multi-start local search metaheuristic that
provides a near-optimal or optimal scheduling by dispatching the incoming VMs
according to the minimum energy consumption. As a second part, we tackle the
VMs performance issues within a cloud infrastructure using a Pareto bi-objective
version of the first scheduler (EMLS-ONC-MO) that addresses simultaneously
both the energy consumption criterion and the performance of the VMs. To be as
realistic as possible, the experiments that we present to validate our algorithms are
done on both artificial and real cloud infrastructures deployed with the OpenNebula
cloud manager.

In the last part, the conclusion, the perspectives and the appendices of this thesis
are presented.

4

Chapter 1

Metaheuristics for Cloud

Scheduling

Main publications related to this chapter

• Y. Kessaci, M. Mezmaz, N. Melab, E-G. Talbi, D. Tuyttens. Parallel
Evolutionary Algorithms for Energy Aware Scheduling. Intelligent Decision

Systems in Large-Scale Distributed Environments Series: Studies in Compu-

tational Intelligence, Springer Berlin Heidelberg, 2011, Vol. 362 Bouvry et al.
(Eds.).(Chapter4), pp. 75-100.

• M. Mezmaz, N. Melab, Y. Kessaci, Y. Lee, E-G. Talbi, A. Zomaya, D. Tuyt-
tens. A parallel bi-objective hybrid metaheuristic for energy-aware scheduling
for cloud computing systems. Journal of Parallel and Distributed Computing,
2011.

Contents

1.1 Introduction . 5

1.2 Background on Cloud Computing 6

1.2.1 Cloud computing paradigm 6

1.2.2 OpenNebula Cloud manager 10

1.3 Background on Multi-objective Metaheuristics 12

1.3.1 Multi-objective combinatorial optimization 12

1.3.2 Metaheuristics . 16

1.4 (Meta)heuristics for Cloud Scheduling 21

1.4.1 Cloud scheduling: problem formulation and models 21

1.4.2 Related Works . 25

1.5 Conclusion . 32

1.1 Introduction

The cloud computing paradigm is depicting more and more the field of IT. The
model of the cloud computing is derived from the grid computing model, extended
with economic concepts [Foster 2008]. Therefore, cloud computing inherits from
well known issues of both aforementioned disciplines. Among these issues, one

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

can consider the scheduling as being a major one. This problem is combinatorial
and has been proven to be NP-hard [Garey 1979]. It is also often multi-objective
since several criteria brought from economics for instance may be considered. Using
combinatorial optimization techniques such as metaheuristics appears to be a good
alternative to deal with scheduling.

Therefore, this first chapter presents all the background and prerequisites, re-
lated to the cloud computing and its associated scheduling issues, needed to the
general comprehension of the manuscript.

First, we describe the cloud computing paradigm in the context of optimiza-
tion. In addition, we present a classification of the different types of clouds and a
general survey of the existing cloud managers. Thereafter, a background on com-
binatorial optimization, an overview of the principles and the different families of
metaheuristics and a presentation of the ParadisEO framework used to tackle and
implement our contributions are introduced. Finally, a general formulation of the
cloud scheduling problem and a literature-review of the different cloud scheduling
approaches are proposed.

1.2 Background on Cloud Computing

Cloud computing is an emerging paradigm hardly describable by a unique definition.
It introduces simplicity and flexibility and also helps to provide different services in
a ubiquitous way. However, these features are highly dependent on the quality of
the cloud scheduler.

In this section, we present the different taxonomies and classifications related to
the topic we address, cloud computing. First, we introduce the cloud terminology
and its definition. In the second part we present the related taxonomy of cloud
computing according to the provided services. In a third part we classify the different
types of scheduling in the cloud computing, and finally we elaborate a survey for
the different cloud managers with a focus on OpenNebula.

1.2.1 Cloud computing paradigm

1.2.1.1 Terminology

For a better understanding of the manuscript, we present in the following the com-
mon terminology of the cloud scheduling.

• Virtual Machine (VM): is a software based machine emulation technique
that provides a desirable and on demand computing environment to users.

• Virtualization: it is the VMs related concept. Virtualization consists to
run on a single computer multiple operating systems as if they are running
on separate computers or merging several physical computers to form a single
virtual one.

6

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

• Consolidation: the task consolidation is an effective method to increase
resource utilization and to reduce energy consumption. The task consolidation
problem is the process of assigning a set N of n tasks (service requests or simply
services) to a set R of r resources without violating time constraints.

• Hypervisor: also called virtual machine monitor (VMM) is a piece of com-
puter software that manages a hardware infrastructure in order to create and
run seamlessly several virtual machines on top of it.

• Data center: is another way to define a private cloud dedicated to private
use (see Section 1.2.1.3).

• Host: represents the hardware entities that compose a data center.

• Provider: in its general sense it represents an entity charged to offer the
clients their requested services in exchange or not of a remuneration. When
the owner of the cloud is not unique we talk about multi-providers. This can
happen for instance with a federation of clouds called a multi-cloud.

• Broker: it is a third-party with the role of finding in exchange of remuneration
the provider that provides the service that best fits the user’s needs. The action
done by the broker is called the brokering.

• Client: the client asks the provider or the broker for services in order to satisfy
his/her needs. When the service is not charged we can simply call him/her a
user.

• Service: it represents a commodity which consists of the provision of a tech-
nical support varying from a cloud to another (see Section 1.2.1.3) to satisfy
the client’s needs. The service can be charged or not.

• Task: also called application, the task represents a software entity sent by the
user to achieve his/her objectives. It has some requirements that have to be
satisfied by the provider to meet the Quality of the Service (QoS) (see Section
1.2.1.2).

1.2.1.2 Cloud computing definition

Nowadays, the naive concept of cloud computing refers to the Internet. It consists in
the migration of the personnel computers and utilities on the network, more precisely
on the Internet. This definition is made of the observation that the common people
have in mind of the cloud computing. However, different definitions have been
formulated in the literature.

Armbrust et al. [Armbrust 2009] note that "Cloud computing refers to both the

applications delivered as services over the Internet and the hardware and system

software in the data centers that provide those services". This definition concerns

7

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

the last evolution of clouds. Indeed, moving the hardware infrastructure in this def-
inition from private computers includes also the movement of the software services
to data centers accessed via Internet. Another definition of the cloud is proposed
by Buyya et al. in [Buyya 2008], it presents the cloud as "a type of parallel and dis-

tributed system consisting of a collection of interconnected and virtualized computers

that are dynamically provisioned and presented as one or more unified computing re-

sources based on service-level agreements". This definition introduces the Service
Level Agreements (SLAs) in the cloud. This adds to this new paradigm a market-
oriented side and highlights its economic nature. The definition that we introduce
is a mixed definition that fits the different types of cloud that we dealt with through
all the works done in this thesis. We define the cloud as "An evolution of parallel

and distributed systems, including dynamicity, transparency and flexibility, inter-

connecting virtualized computers offering market-oriented or non-market-oriented

services".
The main aspects that emerge from all the above definitions is that the cloud

allows to provide services, from the basic one with a simple infrastructure to the
complex one with a complete software package. It is also an evolution of the previous
parallel and distributed infrastructures like grids and can offer the previously cited
services with or without a market-oriented policy. In the case of a market-oriented
cloud, the service consumption follows pay-as-you-go basis.

In our definition we introduced the word evolution, this refers to the upgrades
offered by the cloud computing compared to its infrastructure ancestors. Thus, the
previous parallel and distributed infrastructures targeted narrow objectives for either
the class of users or the type of provided utilities. Cloud computing allows to cover a
much wider audience helping to democratize the remote access to the resources. The
services the cloud provides stretch from an end-user who wants to store a personal
document or use a remote web application, to a huge company outsourcing its whole
IT infrastructure to third-party data centers provider. These evolutions were made
possible by technical and economical transformations. The technical ones concern
the capacity of the cloud to take advantage from the improvements brought by
the virtualization technology [Vir 2013, Barham 2003]. Those advantages such as
flexibility, transparency and reliability helped to open new horizons.

For instance, scheduling makes easier the way to tackle different IT issues like
energy-efficiency while holding a satisfactory level of service. The satisfactory level of
service gave birth to a marketization of the cloud with as mentioned before concepts
like SLAs which define the Quality of Service (QoS) set between the clients and
the cloud providers. The SLA represents a contract between the costumer and the
provider. It specifies the details of the agreement about the service based on metrics,
and establish penalties in case of contract violating. The SLA allows one to reassure
the customers in their idea to move their business to the cloud by providing a
warranty. As said previously, moving to the cloud has benefited both the companies
and end-users. The former, saves extra resources and maintenance by getting the
exact needed resources at each time. Similarly, the latter in addition to get a
continuous access to their data, they can use software on demand without buying

8

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

it. Lately, the development of the different types of services and providers has
complicated the user’s choice. Thereby, a new third-party, the broker, emerged
between the client and the provider.

1.2.1.3 Cloud computing classification

Cloud computing can be classified hierarchically following two branches. The first
branch is related to the architecture of the cloud, while the second is more related
to the type of service provided by the latter.

All cloud infrastructures offer the same characteristic no matter the service type
that they propose. They give the possibility to the user to obtain and dispose of
the resources on demand and the ability to get access to them from anywhere in
the world. This provides transparency that is reflected to the user by a single gate
as an access point whatever the amount of proposed resources behind this gate
is. However, depending on how those resources are managed, clouds fall into three
categories [Rimal 2009]:

• Private Cloud: in this type of clouds, all the components are owned and
managed by the organization. The cloud is not subject to any restriction or
bounding. The data and the processes running on the cloud are not bounded
regarding any resources or exposed to any security of legal requirements.

• Public Cloud: this most common type represents the cloud in its general mar-
ket sense, where the resources are provided over the Internet in a transparent
way, dynamically and on-demand according to the users’ needs. Because of
the shared aspect of the infrastructure between different users, the provided
services are exposed to more restrictions. These are whether physical depend-
ing on the availability of the resources according to the customer request, or
legal regarding the security and the confidentiality of the exchanged or hosted
data and information.

• Hybrid Cloud: this last type combines both previously presented types. It is
composed of multiple internal and/or external providers with different man-
agement policies. This type of cloud can typically be used by a company
that has its private cloud, but because of higher needs, subscribes to another
provider for extra needs. Therefore, the processes hosted on its private cloud
will not be exposed to the same rules as the ones hosted in the subscribed
cloud.

Depending on the addressed problem, in the following chapters we deal whether
with a public cloud or a private one.

In each of the cloud types presented above, one can find different categories of
proposed services (Table 1.1 [Buyya 2009]). The general notation representing those
categories is XaaS where X is a service such as software, platform, infrastructure
etc. In the following, we discuss the most important provided services in the cloud
infrastructures.

9

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

• Software as a Service (SaaS): the Software as a Service cloud is based on the
concept of flatshare. A single software is shared by several costumers. The
provider relies on a duplication of the software by proposing for each user an
instance of the code and of the database layer. This allows the provider to
satisfy several requests simultaneously. The provider proposes applications as
services, SaaS can be therefore affiliated to the Application Service Provider
(ASP) model. The development of the software sharing over the SaaS clouds
is conducting the software companies to release more often their software on
this type of architecture. An example of the leading SaaS clouds is presented
in Table 1.1.

• Platform as a Service (PaaS): this type of cloud is more oriented to serve
the development companies. It offers preconfigured environments, to facili-
tate and minimize the development effort. Indeed, compared to conventional
application development, using the PaaS offers a huge scalability, adaptivity
and flexibility that slash the preconfiguring development time. The leader
providers of those types of clouds are Google AppEngine, Microsoft Azure,
etc.

• Hardware as a Service (HaaS): this model of cloud is dedicated more to the
business users helping the startup companies or the ones that do not want to
invest in data centers to fit their hardware needs. According to Nicolas Carr
says, it is 1 "the idea of buying IT hardware -or even an entire data center- as

a pay-as-you-go subscription service that scales up or down to meet your needs.

But as a result of rapid advances in hardware virtualization, IT automation,

and usage metering and pricing, I think the concept of hardware-as-a-service

-let’s call it HaaS- may at last be ready for prime time".

• Infrastructure as a Service (IaaS): IaaS is the basis of the other cloud models.
The major advantage is that thanks to the offered flexibility, the companies
fit to their growth easily in terms of infrastructures, benefiting from the on-
demand payment process. The other major advantage is the use of up-to-date
hardware with the latest technology. As a result, the customers benefit by
saving time and money. There is almost no difference between the HaaS
and IaaS models. However, we can say that the IaaS model is the market
formalization of the HaaS concept. The leading providers of IaaS in the world
are Amazon EC2, GoGrid, Rackspace, etc.

Note that all the proposed works in this manuscript deal with the IaaS cloud.

1.2.2 OpenNebula Cloud manager

Lately, a significant evolution in the field of the parallel and distributed comput-
ing led to a massive utilization of clouds. Therefore, virtualization and consolida-
tion techniques have been integrated in this new model through middlewares called

1http://www.roughtype.com/

10

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

Table 1.1: Cloud architecture types

Category Characteristics Product Type Vendors & Products

SaaS Customers are provided

with applications that

are accessible anytime

and from anywhere

Web applications and

services (Web 2.0)

SalesForce.com (CRM);

Clarizen.com (Project

Management); Google

Documents; Google

Mail (Automation)

PaaS Customers are provided

with a platform for

developing applications

hosted in the Cloud

Programming APIs and

frameworks; Deploy-

ment system

Google AppEngine; Mi-

crosoft Azure; Manjra-

soft Aneka

IaaS/HaaS Customers are provided

with virtualized hard-

ware and storage on top

of which they can build

their infrastructure

Virtual machines man-

agement infrastructure,

Storage management

Amazon EC2 and S3;

GoGrid; Nirvanix

cloud managers. We can cite as cloud managers: Openstack [Ope 2012], OpenNeb-
ula [Milojicic 2011], Eucalyptus [Nurmi 2009], Nimbus [Keahey 2007], etc. Those
middlewares using a hypervisor, help to exploit the data center in a seamless and
transparent way by running Virtual Machines (VM). We will discuss in the following
the major open source cloud managers with a focus on OpenNebula to know more
about how it operates and the different components that compose it. The same
analysis can be done over the market-oriented cloud managers like Amazon EC2
[Ama 2012b], GoGrid [GoG 2013], etc. The only difference is that for the latter the
source code is not open and follows each provider specifications. The OpenNebula
cloud manager features are presented in the following:

• Computing Architecture: it is a cluster into an IaaS cloud, focused on the
efficient, dynamic and scalable management of VMs within a private cloud
involving a large amount of virtual and physical servers.

• Virtualization Management: it uses Xen, KVM and on demand access to
Amazon EC2.

• Service: infrastructure as a Service IaaS.

• Load balancing: it is based on Nginx Server configured as a load balancer,
based on round-robin or weighted selection mechanism.

• Fault tolerance: the deamon can be restarted and all the running VMs re-
covered, it includes also a persistent database backend to store host and VM
information.

• Interoperability: as managing private clouds, it offers interoperability between
intra cloud services.

11

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

• Storage: regarding the database, it is a persistent storage for ONE data struc-
tures with a SQLite3 backend as a core component of the the internal data
structures.

• Security: a firewall and a Virtual Private Network Tunnel.

• Programming Framework: using Java, Ruby and C++.

Table A.1 proposed in [Rimal 2009] and presented in the Appendix A summarizes
the different open source based cloud managers, their different components and
characteristics.

1.3 Background on Multi-objective Metaheuristics

Through all previously described cloud scheduling issues and the different lacks of
the current used algorithms for tackling those issues. We propose in this manuscript
multi-objective metaheuristics to address all the aforementioned misses. To better
understand the metaheuristic concepts, this defines the concept of multi-objective
optimization and metaheuristics with a focus on their different features.

1.3.1 Multi-objective combinatorial optimization

An optimization problem consists in an optimization (minimization or maximiza-
tion) of a unique cost function in case of a mono-objective optimization or a vector of
cost functions when dealing with a multi-objective optimization. The cost function
is formally called objective function (see Section 1.3.2.1).

A multi-objective optimization problem is defined as:

(MOP) =

{

Min F (x) = (f1(x), ..., fnbobj (x))

s.t. x ∈ S
(1.1)

where nbobj (nbobj ≥ 2) is the number of objectives and S represents the set of
feasible solutions associated with equality and inequality constraints and explicit
bounds.

A multi-objective optimization problem (MOP) consists generally in optimizing
a vector of nbobj objective functions F (x) = (f1(x), ..., fnbobj (x)), where x is a d-
dimensional decision vector x = (x1, ..., xd) from some universe called decision space.
The space the objective vector belongs to is called the objective space. F can
be defined as a cost function from the decision space to the objective space that
evaluates the quality of each solution (x1, ..., xd) by assigning it an objective vector
(y1, ..., ynbobj) called the fitness (see Figure 1.1). While single-objective optimization
problems have a unique optimal solution, a MOP may have a set of solutions known
as the Pareto optimal set. The image of this set in the objective space is denoted
as the Pareto front [Pareto 1896].

12

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

The definition of a mono-objective optimization problem is equivalent to the
definition of a multi-objective one, where the number of objective functions equals
1 and the decision space is uni-dimensional.

Decision space Objective space

(x1, ..., xd) (y1, ..., ynbobj)F

y1

y2

y3

x1

x2

S

Figure 1.1: Decision space and objective space in a MOP.

As shown in Figure 1.2, the resolution methods of a problem are various and
numerous. Using one or another depends mainly on the complexity of the addressed
problem. Those methods belong to two main families: exact methods and heuristics.
Exact methods (e.g. branch-and-x, dynamic programming or constraints program-
ming) allow to find the best solutions and guarantee their optimality. However, they
are time consuming and become quickly impractical for large problems. Conversely,
heuristics produce near optimal (sometimes optimal) solutions in a reasonable time.
They are quite practical for large-size problem instances. The heuristics family
splits into two types. The first type of heuristics is specific to the problem and
usually designed exclusively to solve a particular problem and/or instance. The
second type is more generic and allows one to address different problems. In this
case, they are called metaheuristics. These latter are based on the iterative im-
provement of either a single solution (e.g. hill climbing, simulated annealing or tabu
search) or a population of solutions (e.g. evolutionary algorithms or ant colonies)
of a given optimization problem. In this document, the focus will be exclusively on
metaheuristics.

1.3.1.1 Concepts and definitions

For minimization problems, the Pareto concepts of MOPs are defined as follows (for
maximization problems the definitions are similar):

{

∀i ∈ [1..nbobj], y1i ≤ y2i
∃j ∈ [1..nbobj], y1j < y2j .

• Pareto dominance: an objective vector y1 dominates another objective vector
y2 if no component of y2 is smaller than the corresponding component of y1,

13

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

Dynamic

programming

Branch

and X
Constraint

programming

Tabu

search

Exact Algorithms

MetaheuristicsSpecific heuristics

Population-based

...

Solution-based

Heuristics

Ant

colonies
Evolutionnary

algorithms
...

Simulated

annealing
Hill

climbing

Figure 1.2: Taxonomy of different resolution approaches for optimization problems.

and at least one component of y2 is greater than its correspondent in y1. The
generally used concept is Pareto optimality. Pareto optimality definition comes
directly from the dominance concept. The concept was proposed initially by
F.Y. Edgeworth in 1881 [Edgeworth 1881] and extended by V. Pareto in 1896
[Pareto 1896]. A Pareto optimal solution denotes that it is not possible to find
a solution that improves the performances on a criterion without decreasing
the quality of at least another criterion.

• Pareto optimality : a solution x of the decision space is Pareto optimal if
there is no solution x′ in the decision space for which F (x′) dominates F (x).
Graphically, a solution x is Pareto optimal if there is no other solution x′ such
that the point F (x′) is in the dominance cone of F (x). This dominance cone
is the box defined by F (x), its projections on the axes and the origin (see
Figure 1.3).

• Pareto optimal set : for a MOP (F, S), the Pareto optimal set is the set of
Pareto optimal solutions. It is defined as P ∗ = x ∈ S/∄ x′ ∈ S,F (x′) ≺ F (x).

• Pareto front : for a MOP, the Pareto front is the image of the Pareto optimal
set in the objective space. It is defined as PF ∗ = F (x), x ∈ P ∗.

1.3.1.2 Multi-objective resolution approaches

Scheduling in cloud infrastructures can be mono-objective or multi-objective.
The mono-objective approaches, such as [Garg 2008, Burge 2007, Zhuo 2008,
Feller 2012], aim to optimize only one criterion under some constraints. While multi-
objective ones deal with several conflicting criteria. The goal of a multi-objective
optimization method is to find a good compromise between these objectives.

As shown in Figure 1.4, it is possible to identify three main categories according
to the selected multi-objective approach: Aggregation, lexicographic and Pareto
approaches.

14

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

Figure 1.3: Non-dominated solutions in the objective space.

LexicographicAggregation Pareto

Multi-objective optimization

Figure 1.4: Classification according to the optimization approaches.

Aggregation approach The aggregation (or weighted) method is one of the first
and most used methods for modeling a multi-objective problem. It consists in
using an aggregation function to transform a multi-objective problem into a mono-
objective problem by combining the various objective functions into a single objec-
tive function generally in a linear way. The obtained results in the resolution of the
problem depend strongly on the parameters chosen for the weight vector.

As an example, the work [Lee 2009], address the task scheduling problem on het-
erogeneous computing systems (HCSs) and propose an energy-conscious scheduling
heuristic (ECS) that takes into account the completion time and energy consump-
tion. It balances these two performance goals using a novel objective function called
relative superiority (RS).

Another example is in Equation (3.1), where the satisfaction parameter is an
aggregation of two primary objectives the service response time and its cost.

Lexicographic approach In this traditional approach, the search is carried out
according to a given preference order of the objectives. This order defines the
significance level of the objectives. Therefrom, a set of mono-objective problems are
solved in a sequential manner. If the problem associated with the most significant
objective function has a unique solution, the search provides the optimal solution
and stops. Otherwise, the problem associated with the second most significant
objective function is solved. The same stopping criteria and process are iterated

15

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

until the treatment of the last function.
As an example of lexicographic approach we can find the works in [Rizvandi 2010,

Garg 2010]. In [Rizvandi 2010] the authors investigate the task scheduling problem
using a heuristic based on two stages called Maximum Minimum Frequency DVFS
(MMF-DVFS). The goal of the first stage is to find a schedule of tasks that minimizes
the makespan. The second stage tries to find the right setting of the processor
to minimize energy consumption without changing the makespan of the schedule
provided by the first stage. In [Garg 2010] different heuristics are proposed. The
difference between them is the order of prioritization between the objectives.

Pareto approach The Pareto approach uses the concept of dominance in the fit-
ness assignment, contrary to the other approaches that use a scalarization function
or treat the various objectives separately. The main advantage of the Pareto ap-
proach is it does not need the transformation of the multi-objective problem into a
mono-objective problem. In a single run, it is able to generate a diverse set of Pareto
solutions in the concave portions of the convex hull of feasible objective space.

For example, [Xu 2010] and [Khan 2009] are examples of methods that use a
Pareto approach. In [Xu 2010], the authors propose a multi-objective fuzzy genetic
algorithm to simultaneously minimize the total resource wastage, the power con-
sumption and the thermal dissipation cost. In this algorithm, the best solution is
the one that belongs the most to each fuzzy set of each objective. In [Khan 2009], a
cooperative game model based on the concept of Nash Bargaining Solution (NBS)
is proposed. NBS allows guaranteeing the Pareto optimality of the approach. The
aim of this work is to simultaneously minimize the energy consumption and the
makespan subject to the constraints of deadlines and tasks’ architectural require-
ments.

1.3.2 Metaheuristics

Unlike exact methods, metaheuristics allow to tackle large-size problem instances
by delivering satisfactory solutions in a reasonable time [Talbi 2009]. There is no
guarantee to find global optimal solutions or even bounded solutions. Metaheuris-
tics have received more and more popularity in the 20 past years. Their use in many
applications shows their efficiency and effectiveness to solve large and complex prob-
lems. Application of metaheuristics falls into two main branches. The first branch
includes the single-solution based metaheuristics (S-metaheuristics) and the second
the population-based metaheuristics (P-metaheuristics).

Those two families of metaheuristics share several principles but are complemen-
tary in their behaviors. Indeed, while the S-metaheuristics have more a local search
based on iterations that help to transform and improve one solution by intensifying
the research around its neighborhood, the P-metaheuristics explore a bigger search
space by involving the whole set of individuals (population). The individuals evolve
together for more diversification in the search space toward better solutions. In the
next chapters of this document, we will use methods from both families.

16

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

1.3.2.1 Modeling

Solution representation Designing any metaheuristic needs an encoding (repre-
sentation) of a solution2. It is a fundamental design question in the development of
metaheuristics. The encoding plays a major role in the efficiency and effectiveness
of any metaheuristic. In addition, the encoding must be suitable and relevant to
the tackled optimization problem. Moreover, the efficiency of a representation is
also related to the search operators applied on this representation (neighborhood,
recombination, etc.). One can classify the combinatorial optimization encodings
according to the tackled problem into four representations (see Figure 1.5): vector
of real values (continuous optimization, parameter identification, etc.), binary en-
coding (knapsack problem, SAT problem, etc.), permutation encoding (sequencing
problems, traveling salesman problem, scheduling problems, etc.) and finally, vec-
tor of discrete values (location problem, assignment problem, etc). The vector of
discrete values is also commonly used to model scheduling on cloud architectures.

0.2 | 1.3 | 4.5 | 6.9 | 5.7 | 4.8 0 | 1 | 0 | 0 | 1 | 1

Encoding types

0 | 2 | 3 | 1 | 4 | 6 | 5 0 | 2 | 2 | 1 | 4 | 6 | 4

Vector of discrete

values
Binary

encoding
Permutation Vector of real

values

Figure 1.5: Main encodings for optimization problems.

Objective function The objective function f : S −→ R formulates the goal to
be achieved. It associates to each solution of the search space S an absolute value
that gives the quality or the fitness of the solution allowing a complete ordering
of all solutions of this search space. The objective function is an essential element
in designing a metaheuristic as it guides the search toward "good" solutions of the
search space. If the objective function is improperly defined, it can lead to non-
acceptable solutions whatever is the used metaheuristic.

1.3.2.2 Solution methods

S-Metaheuristics Single-based metaheuristics (S-metaheuristics) are iterative
methods commonly used in the optimization field. They proved their efficiency
in solving real complex problems. As said in [Crainic 2003], they can be viewed as
"walks" through neighborhoods or search trajectories through the search space of

2In the evolutionary computation community, the genotype defines the representation of a

solution. A solution is defined as the phenotype.

17

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

the problem at hand. The walks (or trajectories) are performed by iterative proce-
dures that move from the current solution to another one in the search space. The
principle of a S-metaheuristic is given in Algorithm 1. The algorithm starts by an
initial solution that is usually randomly generated. This initial solution represents
the first current solution. At each iteration of the algorithm, the current solution is
replaced by another solution from its neighborhood. One or several evaluation func-
tion(s) assign(s) to each solution a value called the fitness. This fitness gives to the
algorithm the ability to identify the interesting solution for selecting it as a current
solution of the next iteration. The selection policy differs from an algorithm to an-
other (e.g. best improvement, first improvement, random selection, etc.). Besides,
there are several techniques to generate the neighborhood from a current solution.
One uses for that a neighborhood operator. According to the desired neighborhood,
neighborhood operators can use the exchange process, the insertion process, the
swap process, etc.

In this document we use a type of S-metaheuristics called hill climbing (see
Algorithm 2). The hill climbing algorithm inherits from the major aforementioned
concepts. It starts with a randomly generated initial solution. At each iteration,
the heuristic replaces the current solution by a neighbor that improves the objective
function. The algorithm stops when no more solution in the neighbor of the current
solution is better than the current solution itself. This means that the algorithm
reached the local optimum.

Algorithm 1 The general template of a S-metaheuristic algorithm

1: Initial Solution (s0)

2: t := 0;
3: repeat
4: s′(t):= ApplyMove(neighborhood_operator, s(t));
5: AddToNeighbor(s′(t),n(s));
6: SelectSolution(s(t + 1), n(s));
7: t:=t+ 1;
8: until Terminaison_criterion

Algorithm 2 The general template of a hill climbing algorithm

1: Initial Solution (s0)

2: t := 0;
3: repeat
4: s′(t):= ApplyMove(neighborhood_operator, s(t));
5: AddNeighbor(s′(t), n(s));
6: SelectBestSolution(s(t + 1), n(s));
7: t:=t+ 1;
8: until Local_optimum_reached

Other types of S-meheuristics exist like simulated annealing, iterative local search

18

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

and variable neighborhood search. More details about those approaches are pre-
sented as a survey and a state-of-the-art on S-metaheuristics in [Talbi 2009].

P-Metaheuristics Population-based metaheuristic algorithms (P-metaheurstics)
share a lot of concepts together. They also proved to perform very well when ad-
dressing complex problems for academic or industry purposes. The principle of
P-metaheuristics relies on the evolution of an initial population of solutions through
iterations in order to generate a new population that will replace the previous one.
The generation of the new population from the current population uses operators.
The selection of the individuals of the population that will generate the future in-
dividuals follows different policies. The algorithm iterates that way until reaching
the stopping criterion (see Algorithm 3). Among the best known P-metaheuristic
algorithms are evolutionary algorithms (EAs), scatter search (SS), estimation of dis-
tribution algorithms (EDAs), particle swarm optimization (PSO), bee colony (BC),
etc. More details about this class of metaheuristics or about the cited algorithms
can be found in [Talbi 2009]. In this manuscript we deal mainly with evolutionary
algorithms (see Algorithm 4), more specifically genetic algorithms. Those types of
algorithms are stochastic, that means that they use operators for evolution that
conduct to different results from a run to another. The population contains a num-
ber of encoded individuals, where each one represents a potential solution. The first
population (initial population) is usually generated randomly. Each iteration of the
algorithm is called a generation. During a generation a set of solutions is selected.
Those selected solutions are recombined using the evolution operators to provide
new solutions. The new solutions replace following a certain policy the worst solu-
tions of the previous population. The algorithm relies on the fitness of the solutions
to carry out this operation. The fitness is computed with an evaluation function.
This operation is repeated until reaching the termination criterion.

Algorithm 3 The general template of a P-metaheuristic algorithm

1: Initial Population (P0)

2: t := 0;
3: repeat
4: P ′(t):= Generate(P (t));
5: P (t+ 1):= Replace(P (t), P ′(t));
6: t:=t+ 1;
7: until Termination_criterion

1.3.2.3 ParadisEO Framework

The ParadisEO framework 3 [Cahon 2004] is an evolution of the EO4 (evolving ob-
jects) [Keijzer 2002]. ParadisEO is presented as white-box object-oriented software

3http://paradiseo.gforge.inria.fr
4http://eodev.sourceforge.net

19

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

Algorithm 4 The general template of a evolutionary algorithm

1: Initial population (P0)

2: t := 0;
3: repeat
4: P ′(t):= Selection(P (t));
5: P ′(t):= ApplyEvolutionOperators(P ′(t));
6: P (t+ 1):= Replace(P (t), P ′(t));
7: t:=t+ 1;
8: until Termination_criterion

framework dedicated to the flexible design of metaheuristics for optimization prob-
lems. This framework is based on the C++ library and designed to be portable
across different operating systems.

SMP and PEO

EO

metaheuristics for

multi-objective optimizationMOEO

population-based

metaheuristics

MO

hybrid, parallel and distributed

 metaheuristics

single solution-based

metaheuristics

Figure 1.6: Different modules that compose ParadisEO.

As shown in Figure 1.6, the framework is composed of four modules. The idea of
this framework is to be as seamless as possible by separating each dedicated meta-
heuristics module from the problems they are intended to solve. Such a separation
provides a maximum code and design reuse to the user.

• ParadisEO-EO (Evolving Object) provides the main classes for the devel-
opment of single-objective P-metaheuristics, including evolutionary algorithms
and particle swarm optimization techniques.

• ParadisEO-MO (Moving Object) [Humeau 2013] contains the necessary
tools for S-metaheuristics such as hill climbing, simulated annealing or tabu
search.

• ParadisEO-MOEO (Multi-Objective EO) [Liefooghe 2009] is dedi-
cated to the design of multi-objective metaheuristics mainly for the P-

20

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

metaheuristics. It provides the most-common Pareto-based multi-objective
tools to use famous multi-objective algorithms such as (IBEA, NSGA, NS-
GAII, SPEA, SPEA2, ...) or to design its own multi-objective algorithm. It
proposes for that a wide range of features such as non-dominated solutions
storage, elitism and performance metrics. To do so, one has to instantiate or
to override the associated ParadisEO components to achieve his/her purposes.

• ParadisEO-PEO (Parallel EO) [Cahon 2004] contains a powerful set of
classes for the design of parallel and distributed metaheuristics. It is mainly
used to speed up the previously cited modules by providing for instance par-
allel evaluation of solutions, parallel evaluation of the objective function and
parallel cooperative algorithms.

All the proposed approaches in this thesis except the work in Chapter 4 have
been implemented using mainly the MOEO module of the ParadisEO framework.

1.4 (Meta)heuristics for Cloud Scheduling

1.4.1 Cloud scheduling: problem formulation and models

1.4.1.1 Problem formulation

The scheduling problem is a famous problem in the literature [Rajpathak 2001].
However, its formulation in the field of cloud computing is not obvious. There are
different entities in the cloud scheduling model depending on the scheduling level of
the approach (see Section 1.4.1.2). Thus, when dealing with the service-level schedul-
ing, two types of entities are considered: the client service requests and the cloud
providers. For the task-level scheduling, one considers a set of client applications
and a set of VMs instance types. And for the last type, the VM-level scheduling,
the actors of the assignment process are respectively a set of VMs and the set of
the hosts that compose the cloud (see Figure 1.7). One can notice that the objec-
tive for all the scheduling levels is the same, allocating the first set (client service
requests, client applications, VMs) of J items on the second set (cloud providers,
VMs instance types, hosts of the cloud) of N items. We can then formally define
the scheduling problem on the cloud with its constraints and objective functions as
shown in the Equations (1.2), (1.3), (1.4).

Optimized criterion = (
N
∑

i

J
∑

j

Metricij × xij)× T ime (1.2)

Constraint criterion = ((
N
∑

i

J
∑

j

Metricij × xij)× T ime) ≤ Constraint value

(1.3)

21

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

J
∑

j

xij = 1 for each i, 1 ≤ i ≤ N (1.4)

Where Metricij represents the metric value of the optimized criterion where a
member i of the set N is assigned to a member j of J . The T ime value represents the
time duration of the assignment and the Constraint value value the bounded limit
of the optimized criterion (e.g. deadline). xij represents the placement constraints,
where each member j of the set J can be assigned to one and only one member i of
the set N .

Figure 1.7: Different cloud scheduling levels depending on the couples (scheduled
entities, type of IAAS cloud).

1.4.1.2 Scheduling models

Cloud computing as a parallel and/or distributed architecture is necessarily faced
to scheduling. This scheduling can affect the performance of the cloud in a right or
a wrong way. Therefore, it is critical for a cloud to include an efficient scheduler
for optimizing different criteria depending on the providers needs. The scheduling
process can be done at different levels depending on the nature of the proposed
service. Therefore, according to whether the service of the cloud is market-oriented
or not-market-oriented, the addressed criteria and the hierarchical level of schedul-
ing will not be the same. We identified three levels of scheduling. As shown in
Figure 1.8, two of them are market-oriented (Service-level scheduling and Task-level
scheduling), and one is not-market-oriented (VM-level scheduling). We present the
characteristics of each level of scheduling in clouds in the following.

• Service-level scheduling: this level of scheduling is static and concerns a part
of the resource management layer. The aim of this type of scheduling is to
allocate coarse-grained requests which represent services.

22

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

Public/Hybrid Cloud (market-oriented)Private Cloud (non-market-oriented)

Task-level schedulingVM-level scheduling Service-level scheduling

Type of Cloud

Figure 1.8: Different scheduling levels according to the type of clouds.

In this high level scheduling type, the cloud architecture is composed of sev-
eral geographically distributed clouds. The scheduler has to be aware of the
general architecture configuration. A global view is needed to let the sched-
uler assigning the workflows over the different clouds. Such scheduler is called
meta-scheduler and proceeds in three steps. The first step is not mandatory
depending on the number of requested services. Based on functional parame-
ters, it is responsible to find the collection of clouds that best fits the requested
service in the cloud market. If no cloud proposing that service is found, the
user can be asked to upload his/her own environment for running his/her ser-
vice. The second step is related to the granularity of the QoS requested by
the customers.

Indeed, depending on the fine- or coarse-grained QoS, the meta-scheduler could
need to deduce non-functional parameter (time, cost, ...) from functional set
of parameters. Once the step two done if necessary, the last step is introduced
to allocate the requested service using the fined-grained QoS by making the
reservation on the appropriate cloud. The meta-scheduler can estimate at that
point the obtained values for the users’ requirements according to the chosen
assignment. The contract between the user and the provider is signed and
represented by the service level agreement (SLA).

Moreover as said previously, this assignment is static. Thus, it is necessary to
propose local schedulers within each data center (cloud) to be able to adapt to
the system evolution such as resource volatility and resource overload. There-
fore, a dynamic scheduling has to be provided, this is offered by the task-level

scheduling.

• Task-level scheduling: the task-level scheduling addresses a lower resource
management layer than the service-level scheduling. This type of schedul-
ing is dynamic and adapts itself to the cloud changes. Its aim is to optimize
the task-to-VM assignment according to the QoS constraints of each task of
each customer, while minimizing the overall running price and time costs. Un-
like the meta-scheduler, the task-level scheduler is dedicated to a single data

23

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

center (cloud), it is unable to manage the resources of other clouds of other
providers. The matching process between the task and the VM is done by a
third-party called broker.

Moreover, as the service-level scheduler, the task-level scheduler has three
deferent steps in its process. At the first step, the scheduler aims to calibrate
the task QoS constraints. Indeed, for instance, when a workload is scheduled
at the service-level, all the tasks are sent together to the cloud which is selected
by the meta-scheduler. However, these tasks will not be handled at the same
time by the task-level scheduler. Therefore, new constraint values have to
be given to the task according to the real time when they are going to be
processed effectively. The second step consists in the optimization of the
matching process between the task and the virtual machines (VMs). This is
done dynamically according to the resources needs, to the SLA, to the price
and the availability of the VMs.

The VMs are created on demand by booking them to the provider to suit
the previously cited needs. The problem can even be more dynamic and
complicated when the price of the same VM instances can change during
the time, we call that VM spots. That leads the scheduler to change the
assignment of each task continuously depending on the VM price and the
general load to optimize the QoS. In general, the tackled objectives for the QoS
in this type of scheduling are both the overall response time and cost related
to the task processing. The aim is to reduce them both while providing an
interesting profit to the broker. The last step, consists in the implementation
of the optimal or near-optimal scheduling over the architecture after being
computed by the step two. Note that both service-level scheduling and task-
level scheduling can be complementary and belong to the market-oriented
cloud.

• VM-level scheduling: the VM-level scheduling is the lowest scheduling level,
used to provide the VMs that are requested by the task in the task-level
scheduling. This scheduling manages the VMs of a cloud running under a cloud
manager (see Section 1.2.2) by using the virtualization possibilities offered by
the hypervisor.

The aim is to find the best VM scheduling over the hosts that compose the
data center (cloud). This is done according to the VM features in terms of
resources to respect the constraints of feasibility, while optimizing the cloud
provider objectives. This type of scheduling is inherited from the grid infras-
tructure replacing the VMs by jobs. Thus, unlike the service-level scheduling
and the task-level scheduling, the VM-level scheduling is not market-oriented
approach. In other words, there is no reference to profit at this level of schedul-
ing.

The objectives are exclusively oriented towards the performance improvement
of both the data center energy consumption and the VMs response time. The

24

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

scheduling process is performed in three steps. At the first step of the VM-
level scheduling, the scheduler retrieves the VM characteristics according to
the specified needs (e.g. a task that needs a VM with a certain amount of
CPU and memory) and using the hypervisor to retrieve the hosts features of
the cloud.

Once this done, it filters both the list of VMs and hosts keeping only the
available hosts and the deployable VMs. The second step consists in assigning
the pool of deployable VMs to the available hosts. This assignment is done
with respect to the VM constraints and the hosts’ capacities. In addition, as
said previously the assignment has to be optimal or near-optimal regarding
the objectives. At the last step, the best scheduling is validated and the
VM deployed on the infrastructure. The hosts’ capacities are updated by the
hypervisor waiting for other VMs. Note that the problem evolves in the time.

Indeed, each time a VM finishes its processing new assignment possibilities
can emerge. Moreover, it is possible to make the problem fully dynamic by
moving the VM from hosts to hosts while still processing. This is called live
migration. However, this technique faces some issues related to the flexibility
of the applications running on the VM (interruptibility, user rights, workspace,
...), the data transfer cost and the CPU time complexity of the VMs. It also
causes none negligible scheduling overhead that has to be taken into account.

1.4.2 Related Works

1.4.2.1 Scheduling on market-oriented clouds

Service-level scheduling The ancestor of the market-oriented cloud comput-
ing can be found in a concept called utility computing. The works such as
[Chun 2002, Irwin 2004] are among the firsts that gave birth to utility comput-
ing model in the field of computer science. Thus, the common criterion of all
the approaches that results from this model treats about economics. The work
in [Lee 2010a], where two algorithms based on a pricing model are proposed, clearly
illustrates this point. Both algorithms use processor sharing in order to balance be-
tween conflicting objectives: profit and response time. In [Burge 2007], Burge et al.

describe a method for heterogeneous machines that maximizes the profit by assign-
ing the requests to the machines according to their energy cost. Other approaches
based on genetic algorithms and dealing with profit are presented in [Yu 2006] and
[Garg 2008]. In [Garg 2008], a linear programming driven genetic algorithm is pro-
posed. This work aims to give the best meta-scheduling in a utility grid based on
the idea of minimizing the combined costs of all users in a coordinated way. Yu

and Buyya in [Yu 2006] present a genetic algorithm approach to address scheduling
optimization problems in workflow applications with two QoS constraints (deadline
and budget). All the previously cited works refer to the strict utility computing
model or to a cloud computing model resulting straightly from it. In this type of
model, the interaction is done directly between the client and the provider. That

25

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

forms a bi-polar model with two tiers i.e. the client and the provider.
However, the marketing of cloud computing paradigm is being more and more

complex and raises a number of issues. Indeed, when one mentions the performance
or the QoS, one necessary implies expensiveness, mainly when dealing with cloud
models where the provider has a full pricing control. To deal with such an issue, an
evolution of the model has been introduced. In the latter, a third tier appears and
plays the role of an intermediate to find the tradeoff between customers’ needs and
the providers’ profits. A set of works have been conducted over this new model. The
work in [Chaisiri 2009], proposes an optimal virtual machine placement algorithm.
The objective is to minimize the costs while assigning VMs in a multiple cloud
provider environment. For that, they use a strategy that avoids the two extreme
(over and under) assignments. The approach fits the correct resources needs by
adjusting the pricing according to the load arrival of VMs.

Other works like [Tordsson 2012] and [Lucas-Simarro 2012] give a good illustra-
tion of the cloud broking applied to the service-level scheduling. In [Tordsson 2012],
the authors present a study where they compare the VM placement mechanisms over
a multi-provider and multi-site cloud. They prove that a multi-cloud deployment
using a broker affects beneficially the performances and lowers the costs of the de-
ployed services. The same goes for [Lucas-Simarro 2012] where the work focuses on
different scheduling strategies for an optimal deployment of virtual services across
multiple clouds addressing (e.g. budget, performance, instance types, placement,
etc.) in an aggregate way. They study different optimization criteria, constraints
and environmental conditions.

In [Elmroth 2009], the authors outline usage scenarios and a set of requirements
for a federation of cloud infrastructures based on RESERVOIR. They also propose
an accounting and billing architecture between resource consumers and infrastruc-
ture providers to be used within RESERVOIR. The objective is to cope with the
migration of virtual machines by managing postpaid and prepaid payment schemes
according to the users’ needs.

All of the last presented approaches take into account the profit and/or other
objectives in their study but they do not consider the relationship between the dealt
with criteria. They also do not pay attention on the energy consumption of their
architecture. The work presented by Garg et al. in [Garg 2010] deals with those
points, by proposing a new energy model for service-level scheduling that includes
gas emissions and pricing. Several heuristics are proposed to find a good tradeoff
between the objectives. However, this approach is a prioritization of objectives i.e.
it can only optimize one objective at a time.

We notice through all the presented work over the service-level scheduling two
major issues. The first is the lack of energy consideration in many works, despite the
crucial importance that may have the energy over such huge distributed architecture.
The second point is about the multi-objective approach used in those works. It is
always a pseudo multi-objective approach, i.e. the objectives are aggregated or
ranked in a decreasing order from the most to the less important. However, this
order is subjective and changes according to the needs. In addition, switching the

26

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

objective order can totally change the results and complicate the results analysis.
In the work that we propose, both a Pareto multi-objective approach and an energy
model are considered to deal with the service-level scheduling.

Task-level scheduling As said earlier, the second part of the market-oriented
cloud computing in addition to the service-level scheduling is the task-level schedul-
ing. Unlike the service-level scheduling, the aim of the task-level scheduling is to
address the task assignment within each cloud. The work presented by Chen et

al. in [Chen 2011] proposes an utility theory based on economics to develop a new
model that integrates the client satisfaction over a cloud. Two scheduling algo-
rithms are proposed to find a good tradeoff between the client satisfaction and the
provider profit during the task assignment. However, this approach is an aggrega-
tion of objectives (i.e. it combines several objectives to create a new one). The
work in [Wu 2013] proposes a market-oriented package for a hierarchical scheduling
in a distributed cloud. The approach deals hierarchically with both the service-level
scheduling and the task-level scheduling where individual workflow instances are
mapped to cloud services in a multi-provider cloud. The objectives of this approach
consist in minimizing the makespan, cost and CPU time. It uses for that a ran-
dom algorithm for the service-level scheduling and three metaheuristics (Genetic
Algorithm, Ant Colony Optimization and a Particle Swarm Optimization) for the
task-level scheduling.

All the above surveyed works, present different brokering approaches to deal
with a task-level scheduling. However, none of those works consider the relationship
between the charged price and the provided performance. As for the service-level
scheduling, they also do not pay attention on how each of those criteria can affect the
others, and no one of them tackles them simultaneously. This issue is also addressed
through a new Pareto economic model for task-level scheduling in this thesis.

1.4.2.2 Scheduling on non-market-oriented clouds

After a race to performance and profit, utility and cloud computing paradigms
are facing an energy problem. To reduce energy consumption, various issues such
as resource management in both software and hardware layers must be addressed.
Software approaches are mainly based on virtualization or task consolidation. The
consolidation technique aims to maximize resource utilization by minimizing energy
consumption. Indeed, a resource allocation strategy that takes into account resource
utilization should lead to better energy efficiency. Hardware approaches use the
opportunity offered by manufacturers in modern processors to adjust the voltage
and frequency. This adjustment can vary the processor performance and thus its
energy consumption.

Therefore, several works have been proposed in the field of the energy-aware
computing. Those approaches are based either on software or hardware layer of the
system (i.e. system-level) (see Figure 1.9).

27

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

Figure 1.9: Classification of system-level energy reduction techniques.

Before the generalization of the virtualization, most of the energy-aware ap-
proaches related to the system-level were not generic, tackling this issue only by
referring and focusing on scheduling dedicated applications (tasks) over specific ar-
chitecture. Those methods belong to the hardware branch of the system-level tree.
In [Lee 2009, Rizvandi 2010] for example a hardware technique (DVFS) is proposed.
It consists in dynamically varying the CPU frequency in order to minimize the en-
ergy consumption. Moreover, in [Guzek 2012], the authors investigate the influence
of the DVFS using the multi-objective evolutionary algorithms (NSGAII) for bi-
objective scheduling (makespan and energy consumption) of a Directed Acyclic task
Graph (DAG) on heterogeneous multi-processor platform. The drawback of this
type of methods is the assumption about the existence of a tight coupling between
the tasks and the resources.

To tackle this issue, other methods using consolidation appears in the system-
level. In [Lee 2010b], the authors present two energy-conscious task consolidation
heuristics ECTC and MaxUtil. These two heuristics aim to maximize resource
utilization. They explicitly take into account both computation and idle energy
consumption. The proposed heuristics assign each task to the resource on which
the required energy consumption for executing the task is explicitly or implicitly
minimized without a performance degradation of that task. However, consolidation
suffers also from issues. The paper [Srikantaiah 2008] exposes some of these issues
mainly regarding the power optimization purposes and proposes some research di-
rections to address the involved challenges. Moreover, another way to reduce cloud
computing energy footprints is proposed in [Tesauro 2007]. The author presents a
reinforcement learning approach to deal with the optimization of two main criteria,
performance and power consumption.

However, because of the evolution of the architectures due to the generalization
of the virtualization concept, the service-level scheduling is becoming exclusively
a VM-level one. Since inheriting from the system-level, the VM-level scheduling
follows the same tree as drawn in Figure 1.9. In this case, the hardware branch
becomes less close to the hardware. Thus, it applies techniques such as DVFS
for scheduling VMs instead of dedicated applications. In addition, in the VM-level
scheduling, some of the previous methods like consolidation evolved from scheduling
tasks to scheduling VMs.

In [Mezmaz 2011], we proposed a preliminary work for the transition step from

28

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

the system-level scheduling to the scheduling on cloud infrastructure (VM-level). In
this work, we investigate the problem of scheduling precedence-constrained paral-
lel applications on heterogeneous computing systems (HCSs) like cloud computing
infrastructures. This kind of application was studied and used in many research
works. We propose a new parallel bi-objective hybrid genetic algorithm that takes
into account, not only makespan, but also energy consumption. We particularly
focus on the island parallel model and the multistart parallel model to improve
the existing results. Our new method showed the potential of the dynamic voltage
scaling (DVS) to minimize energy consumption. More details about this work are
presented in Appendix B.

VM-level scheduling One of the most striking evolution between the VM-level
and the system-level can be found in the work proposed in [Laszewski 2009]. Thus,
in this work, the VM scheduling algorithm is based on the DVFS technique to
reduce the energy consumption of a single OpenNebula virtualized cluster. The
idea behind this work is to reduce the clock frequency of the cluster as low as
possible to fit exactly the VMs requests. The major lack of the approach proposed in
[Laszewski 2009] is that it deals only with one cluster and not with a large number
of machines that compose in general a cloud. In addition, this work makes an
assumption on the hardware configuration of the machines that composes the cloud,
assuming that they are equipped with DVFS.

In the work presented in [Andreolini 2010], the proposed algorithm aims to real-
locate virtual machines in a large scale cloud. The approach consists in identifying
only the critical instances using the load trend behavior instead of the thresholds
to take decisions in order to load balance the clouds. The contribution of this work
is an improvement in the selectivity and the robustness of the migration process.
However, no interest is given to the energy criterion.

Some other works model the scheduling problem of VMs as a bin packing where
the VMs are the objects to pack and the machines the boxes. [Verma 2008] pro-
poses an architecture called pMapper that helps to assign applications taking into
account both the power and performance cost. The algorithm is based on a First
Fit Decreasing (FFD) algorithm. Moreover, the work in [Borgetto 2012b] presents
an approach using VM migration and reconfiguration, and physical machine power
management for energy reduction purposes while offering a correct SLA. It is based
on an autonomic management loop using different heuristics including FFD based
one.

The FFD and its variants have been proved in a comparing study [Mills 2011]
to perform well among the other heuristics for VM assignment. However, the major
issue with this type of algorithms is the lack of diversity. Indeed, they find the
global optimum (best solution) only for landscapes with a single local optimum.
Nevertheless, the scheduling problem changes through the different VMs arrival,
and the solution landscape changes as well creating different local optima. It is
then necessary to explore other local optima using metaheuristics such as those we

29

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

propose in this thesis.
Another work dealing with both power consumption and job performance is

proposed in [Borgetto 2012a]. The objective of this paper is to find the best allo-
cation of job services over infrastructures using three different formalizations to the
problem using for each formalization heuristics to find the best tradeoff between
the objectives. The main issue with such a formalization is that the problem is not
Pareto multi-objective anymore. It becomes either a lexicographic or an aggregation
problem.

Another method consists to propose a native energy-aware cloud manager.
Snooze [Feller 2012] for example is the first cloud manager that includes an en-
ergy criterion. The virtual machines that compose the cloud have the ability to
switch off when they are idle. This technique is the evolution of the work proposed
in [Orgerie 2008]. The author deals in the latter with energy consumption reduc-
tion in large-scale computational grids like Grid’5000 by switching off idle nodes in
a clever way. One can see the impact of the virtualization on the concept replacing
the nodes by the VMs. The major drawback of such techniques is the energy con-
sumption extra cost caused in the case of poor anticipation while switching off the
machines/VMs.

Moreover, it is rare to find multi-objective approaches addressing the VM
scheduling like the work [Xu 2010]. Indeed, this work proposes a VM placement
policy using a genetic algorithm relying on a fuzzy multi-objective evaluation to
simultaneously minimize the total resource wastage, the power consumption and
the thermal dissipation cost. The major drawback is that, unlike a real Pareto set
approach that offers diversity in the resulting solutions by proposing a wide choice
of non-dominated solutions, using the proposed fuzzy multi-objective technique pro-
vides a unique final solution.

To deal with all the misses mentioned before such as, the lack of diversity of
the heuristics approaches, the hardware assumptions like DVFS in the models and
the negligence of the impact of the energy reduction over the VMs performance,
we propose a work in this thesis, where all the aforementioned issues are addressed
with a Pareto VM-level scheduler embedded into a cloud manager (OpenNebula).
Embedding the scheduler offers the portability related to OpenNebula and the im-
plicit management of the cloud constraints (e.g. scheduling time limit, assignment
correctness, etc.) since it uses the Grid5000 platform as an IAAS infrastructure.

30

C
h
a
p
t
e
r

1:
F
r
o
m

C
o
m

b
in

a
t
o
r
ia

l
O

p
t
im

iz
a
t
io

n
t
o

C
l
o
u
d

S
c
h
e
d
u
l
in

g

Table 1.2: Classification of the related work.

Service- Task- VM- Market- Cloud Energy- Performance- Metaheuristics Pareto

Approach level level level oriented manager aware aware algorithm optimization

scheduling scheduling scheduling cloud embbeded model model

Xu and Fortes no no yes no no yes no yes yes

[Xu 2010]

Feller et al. no no yes no yes yes no no no

[Feller 2012]

Verma et al. no no yes no no yes yes no no

[Verma 2008]

Andreolini et al. no no yes no no no yes no no

[Andreolini 2010]

Von Laszewski et al. no no yes no yes yes no no no

[Laszewski 2009]

Rizvandi et al. no no yes no no yes yes no no

[Rizvandi 2010]

Lee and Zomaya no no yes no no yes no no no

[Lee 2010b]

Wu et al. yes yes no yes yes no yes yes no

[Wu 2013]

Chen et al. no yes no yes no no yes no no

[Chen 2011]

Elmroth et al. yes no no yes yes no no no no

[Elmroth 2009]

Lucas-Simarro et al. yes no no yes no no yes no no

[Lucas-Simarro 2012]

Tordsson et al. yes no no yes no no yes no no

[Tordsson 2012]

Lee et al. yes no no yes no no yes no no

[Lee 2010a]

Burge et al. yes no no yes no no no no no

[Burge 2007]

Yu and Buyya yes no no yes no no yes yes no

[Yu 2006]

Garg et al. yes no no yes no no no yes no

[Garg 2008]

Garg et al. yes no no yes no yes no no no

[Garg 2010]

Our work yes yes yes yes yes yes yes yes yes

31

Chapter 1: From Combinatorial Optimization to Cloud Scheduling

1.5 Conclusion

In this chapter, we have presented all the concepts and prerequisites needed to the
general comprehension of our contributions. Thus, we have emphasized the differ-
ent level of scheduling related to the cloud computing architecture and proposed
a general formulation for cloud scheduling purposes. We also have described the
metaheuristics techniques within the optimization context with a special focus on
the multi-objective Pareto metaheuristics. Last but not the least, we have high-
lighted the challenges of this thesis by depicting the major lacks of the different
works of the literature, regarding both the used optimization technique and/or the
cloud orientation policy. We summarize them in the following:

• Pareto-based: despite the multi-objective nature of scheduling over a cloud
computing architecture, the major works presented in the literature are even
mono-objective or based on an aggregation of objectives. Moreover, we have
shown the significance of the energy in this type of architectures and the
relative lack of consideration regarding this criterion. Thus, we have addressed
all those misses in this document by proposing each time Pareto approaches
dealing with conflicting objectives.

• Multi-level scheduling due to the complexity of the cloud computing concept,
we have shown that the scheduling process is different according to three major
levels. This classification depends on the granularity of the user’s service
requests and/or the market-orientation policy of the cloud. Therefore, we
have proposed in this manuscript an approach for each aforementioned case
to address all the possible needs.

• Feasibility: all the different works on the cloud computing topic are mainly
based on artificial models and experimentations. However, the ultimate goal is
to propose a ready to use approach. In addition, the challenge of dealing with
an optimized scheduling in cloud computing involves necessary the validation
of the approach by facing it to the real world constraints. This can be done
only by deploying the algorithm over a real and physical infrastructure. This is
what we have done in this manuscript by integrating a Pareto multi-objective
scheduler within the OpenNebula cloud manager and validating its design by
deploying it over a cloud composed of several physical machines.

32

Chapter 2

Service-level Scheduling on a

Cloud Federation

Main publications related to this chapter

• Y. Kessaci, N. Melab and E-G. Talbi, A Pareto-based Metaheuristic for
Scheduling HPC Applications on a Geographically Distributed Cloud Federa-
tion, Cluster Computing Journal, 2012.

• Y. Kessaci, N. Melab, E-G. Talbi. A Pareto-based GA for Scheduling HPC
Applications on Distributed Cloud Infrastructures. International Conference

on High Performance Computing and Simulation (HPCS), Istanbul, Turkey,
2011.

Contents

2.1 Introduction . 34

2.2 Service-level Scheduling Model 35

2.2.1 Cloud model . 35

2.2.2 Energy and profit models . 37

2.2.3 Meta-scheduling problem modeling 38

2.3 The Meta-scheduling Proposed Approach (MSCF) 40

2.3.1 Steps of the MSCF algorithm 41

2.3.2 Service-level scheduling encoding 41

2.3.3 Population initialization . 42

2.3.4 MO-GA variation operators 43

2.3.5 Pareto genetic algorithm MO-GA 45

2.3.6 Provider’s policy selection 45

2.4 Experimental Evaluation . 47

2.4.1 Experimental settings . 48

2.4.2 MSCF algorithm parameters 49

2.4.3 Maximum applications consolidation-based scheduling heuris-

tic and random approach . 50

2.4.4 Performance evaluation . 51

2.5 Conclusion . 61

Chapter 2: Service-level Scheduling on a Cloud Federation

2.1 Introduction

As said before, cloud computing appears nowadays to be increasingly adopted in
many areas by proposing several services. The field of high performance computing
(HPC) where HPC infrastructures are proposed as a service, considered here as a
case study, does not derogate to this rule. In Section 1.4.2.1 we have observed that
for the service-level scheduling the main optimized criterion is the profit. However,
the type of the proposed computers in this case consumes a significant and grow-
ing portion of energy. Therefore, energy-aware scheduling is crucial for large-scale
systems that consume considerable amount of energy.

A recent study [Koomey 2008] shows that in 2005, the power used by servers
represents about 0.6% of total U.S. electricity consumption. That proportion grows
to 1.2% when cooling and auxiliary infrastructures are included. In the same year,
the aggregate electricity bill for operating those servers and associated infrastructure
was about $2.7 billions and $7.2 billions for the U.S. and the world, respectively.
The total electricity consumed by servers doubled over the period 2000 to 2005
in worldwide and this increase was further confirmed in the last 5 years (2005-
2010)[Eff 2011].

On the other hand, green house gas emission is reaching a critical limit. A recent
work [Gartner 2007] estimates that the global Information and Communications
Technology (ICT) industry accounts for approximately 2% of global carbon dioxide
emissions. This is equivalent to the amount emitted by the aviation. To face this
phenomenon different governments are fixing limits to (ICT) industries.

Energy consumption has another impact affecting the profit of the providers.
Indeed, according to Amazon’s estimate [Hamilton 2009], the energy-related costs
amount represents 42% of the total data center budget, and includes both direct
power consumption for 19% and cooling infrastructure for 23%, these values are
normalized with a 15 years amortization. It clearly appears that all the issues cited
before are somehow related and thus have to be dealt with simultaneously.

Many drawbacks have been mentioned in Section 1.4.2.1. The proposed work
in this chapter differs from the previous studies in plenty aspects. First, it tackles
the energy issue for this level of scheduling (service-level) and deals with both com-
puting and cooling energy consumptions in the proposed energy model. Moreover,
it considers the relationship between energy, green house gas emissions and profit
and pays attention on how each one of those criteria can affect the others. In this
purpose, it uses a multi-objective evolutionary algorithm in the meta-scheduler in
order to do not favor any of the objectives. This allows one to obtain a Pareto set
of solutions and to find the trade-off between all the considered criteria. Finally, the
experiments in our work are realistic and performed on a long period of workloads
composed of heterogeneous HPC applications in order to avoid the tightly coupled
applications issue.

The remainder of this chapter is organized as follows. In Section 2.2 we present
the application, system and energy models used in our problem modeling. Our
approach is presented in Section 2.3. The results of our experimental study are

34

Chapter 2: Service-level Scheduling on a Cloud Federation

reported and discussed in Section 2.4. The conclusion is drawn in Section 2.5.

2.2 Service-level Scheduling Model

2.2.1 Cloud model

The type of cloud considered in this chapter is a public IAAS federation cloud.
More precisely, we deal with a two-tier market-oriented HPC service cloud. In the
first tier we find the provider and on the other tier, the clients. The model of
our architecture is a cloud federation which is geographically distributed over the
world and inspired from the Open Cirrus project [Campbell 2009]. The clients have
access to the cloud by requesting resources to the provider (see Figure 2.1). The
service proposed by the cloud provider in our approach offers infrastructures to the
clients in order to run HPC applications. As dealing with service-level scheduling
over a cloud federation, the scheduler needs to have an overall view (meta-view)
of the cloud federation. Thus, the originality of this approach consists in a meta-
scheduling algorithm that uses a multi-objective genetic algorithm in order to find
the best meta-scheduling to the requests over the time. Three objectives are con-
sidered: energy, carbon emissions and profit. The client’s QoS constraints include
the execution time, the number of CPUs and the respect of the applications’ dead-
lines. To meet those constraints, the meta-scheduler has to ask each cloud of the
federation about information concerning the CPU’s states and their availability. In
addition to optimizing the previously cited three objectives and thus helping the
provider to maximize his/her profit, the meta-scheduler algorithm aims also to give
the best Quality of Service (QoS) to the client by meeting the maximum applications
deadlines and respecting the model’s constraints.

The optimization of the objectives can be achieved through the exploitation
of the characteristics offered by the geographical distribution of the clouds (Cloud
Federation). Indeed, the profit is related to the difference between the electricity
prices over the distributed clouds and the gas emissions, both due to the used policies
in those places to produce the electricity power. This will generate different amounts
of green house gas emissions from an area to another. The role of each tier of our
model is detailed in the following:

• Client side: as a case study the requests submitted by the distributed cloud’s
clients are HPC applications. This means that the service is computation-
intensive. Hence, we do not pay attention in our work to data transfers.
Therefore, our model can deal with plenty of types of services other than HPC
as long as they are not communication intensive.

In our approach, the clients submit HPC requests by informing the meta-
scheduler about the time duration of the application execution and the num-
ber of needed processors. The information about the time duration of the
application can be deductable following two methods. The first method con-
siders the duration time of the execution as the reservation time. Hence, for

35

Chapter 2: Service-level Scheduling on a Cloud Federation

his/her interest the client has to reserve enough time for his/her application,
otherwise it is aborted. Therefore, the user has sometimes to overestimate the
execution time of his/her request and pays for longer than the real execution
time of his/her application. The second method is prediction [Iverson 1999].
Indeed, nowadays predicting an execution time of an application is starting to
be possible by using benchmarks and historical data for instance. This last
technique is the one that we use in our work. Concerning the deadlines, they
are specified by the client and are represented as a strong constraint in our
model. In other words, if the meta-scheduler is not capable to find a time
slot to satisfy the request by respecting the deadline, the reservation for the
application will fail. Each HPC application has to be hosted in one and only
one cloud. This constraint helps to respect the configuration of our cloud fed-
eration which is a loosely coupled cloud (i.e. no possibility of communication
between the clouds). All the requests have the same priority (i.e. there is
no preemption in our model). The only priority is the order of the request’s
arrival. Another reason of not dealing with the distribution of the applications
is that in our work we focus on high level scheduling and thus, the distribution
of the application’s tasks is let to a lower level like in Chapter 3.

• Provider side: in our approach, the provider is the owner of all the clouds of
the cloud federation. For instance Amazon [Ama 2012b], one of the world
leader cloud providers, has clusters deployed in three different continents:
North America (USA: California and Virginia), Europe (Ireland) and Asia
(Singapore). In our model, after each request the meta-scheduler asks each
local cloud to get its state in order to choose the best possible scheduling. The
information provided by the clouds is the number of processors available dur-
ing the requested time (i.e. the users’ request is compared with the available
slots of each cloud). Each slot is a period of time that satisfies the request for
one processor. The cloud has to provide a set of slots equal to the specified
number of processors needed by the client. Each time a cloud satisfies this
condition and other characteristics, it will be chosen by the meta-scheduler
and its state will be updated. These other characteristics are specific to each
cloud, they are given by the local scheduler of each cloud to the meta-scheduler
helping it to find the best meta-scheduling. Each cloud’s local scheduler has
access to the local information such as the execution price (cost), the carbon
emission rate, the Coefficient of Performance (COP), the electricity price, the
CPU power, the CPU frequency and the number of CPUs. All the proces-
sors within a cloud are homogeneous, this can be justified by using virtual-
ization techniques such as VMware Fusion, Xen and Linux KVM. The gas
emission rates are provided by multiple agencies such as ADEME (Agence de
l’Environnement et de la Maîtrise de l’Énergie) in France and EIA (Energy
Information Administration) in the USA.

36

Chapter 2: Service-level Scheduling on a Cloud Federation

Figure 2.1: A representation of our two-tier cloud federation model.

2.2.2 Energy and profit models

As shown in the work presented in [Kliazovich 2012], the energy consumption of a
cloud results from IT equipments (network, storage and computing) and auxiliary
equipments (lighting, cooling, ...). The infrastructure that we deal with is dedicated
to HPC computing. Thus, we do not consider lighting consumption among the
auxiliary equipment since its impact is negligible. However, for the same HPC
reasons we deal only with computing energy consumption. Indeed, this represents
the largest amount of consumed energy by the infrastructure. In our energy model,
we also do not pay attention to how the energy is optimized within each cloud, our
focus is made over the whole cloud federation.

Our energy model is derived from the power consumption model in Complemen-
tary Metal-Oxide Semiconductor (CMOS) logic circuits [Burd 1995, Pillai 2001].
The power consumption of a CMOS-based microprocessor is defined as the summa-
tion of capacitive, short-circuit and leakage power. The capacitive power (dynamic
power dissipation) is the most significant factor of the power consumption. The
power dissipation P is defined as:

P = ACV 2f + IleakV + Pshort (2.1)

where A is the number of switches per clock cycle, C is the total capacitance load, V
is the supply voltage, f is the frequency, Ileak is the leakage current and Pshort is the
power dissipation resulting from switching between a voltage to another. The power
dissipation is not influent in our study since we do not use the Dynamic Voltage
Scaling (DVS) method to perform voltage switching. Notice that A and C are con-
stant values, let α be their product. The second part of the equation represents the

37

Chapter 2: Service-level Scheduling on a Cloud Federation

static consumption, this value is also constant, let it be β. In CMOS processors the
voltage can be expressed as a linear function of frequency [Chen 2005b, Wang 2008],
V 2f is replaced by f3. The new equation becomes:

P = αf3 + β (2.2)

In addition, another source of energy consumption needs to be taken into ac-
count. In fact, the energy used for cooling each cloud of the federation is consequent
and has to be integrated in our energy model. Energy dedicated to cooling is tightly
related to the geographical area where the cloud is situated since the temperature
changes from an area to another. To compute cooling energy amount, each cloud has
a coefficient called COP which represents the ratio between the energy dedicated
to the execution of the request and the energy used for cooling the system. The
meta-scheduler is informed about the COP value by each cloud’s local scheduler
while submitting the first request or if COP value changes over time. By using
COP the meta-scheduler is able to deduce the energy consumed by each cloud for
cooling their devices. This is given by Equation (2.3).

Eh = Ec/COP (2.3)

where Eh represents the total energy consumed for cooling the cloud and Ec

represents the energy used by the CPUs.
The pricing model is directly related to the energy model, since the less energy

the provider consumes the more important his/her profits will be. However, another
parameter affects the result of the profit: electricity price. Indeed, the electricity
price changes from a geographical location to another. The profit is then the dif-
ference between the fixed price that the client pays and the price that the provider
has to pay for his/her electricity consumption (Equation (2.4)).

Profit = pru − pre (2.4)

where pru is the price that the user pays for the service and pre is the electricity
price that the provider pays to provide the service.

2.2.3 Meta-scheduling problem modeling

As previously said in this chapter, we deal with a high level scheduling called
meta-scheduling. The objective is to schedule services, in our case HPC services,
over a geographically distributed cloud infrastructure. In this sense, the interactions
in our model concerns two-tier. The first tier is the cloud provider which has N

clouds geographically distributed over different areas in the world. The second
tier represents clients with J HPC applications that have to be executed on the
clouds. The problem consists of scheduling J applications on N clouds. We saw
in the Section 1.1 that the scheduling problem is in general NP-hard [Garey 1979].
Therefore, our large size multi-objective meta-scheduling problem is NP-hard as
well. Thus, a metaheuristic algorithm appears to be the most appropriate approach

38

Chapter 2: Service-level Scheduling on a Cloud Federation

to tackle this problem.
To be as realistic as possible, the provider has to pay an expenditure for the used
cloud i in our model. This expenditure is the result of the electricity consumption
during the computation of the hosted HPC service and is noted pei ($/kW h). As
for all the market-oriented clouds, the client has also to pay for the requested
service. The provider fixes the clients’ price according to pei price. We designate
the fixed client price per hour by pc ($/CPU/hour). The CO2 amount of each
cloud i is calculated from a ratio noted rCO2

i . This ratio is an average value
that varies according to the origin of the electricity used to power each cloud (i.e.
type of energy used for the electric power generation: fuel, water, nuclear, wind, ...).

During the scheduling process, the client submits a request for an HPC service
j. A request is defined by a triplet (ej , nj , dj), all the triplet’s information are given
by the client during the reservation, except the starting time of the application tj
which is deduced from the submission time. The elements of the triplet (ej , nj, dj)

represent respectively the execution time (reservation time) of the HPC application
(ej), the number of processors needed by the client for his/her application (nj) and
finally the deadline after what the application will be considered as failed (dj). Our
triplet is inspired from Amazon EC2 [Ama 2012b] except for the duration time of
the client’s application. As said previously in Section 2.2.1, this parameter depends
on the client itself, he/she has sometimes to pay for a longer reservation period to
ensure the completion of his/her application, even if the application finishes earlier.
In the following, we present the mathematical formulation of our problem and the
used functions for computing the fitness of each candidate solution (scheduling).

• Energy consumption of the CPUs is given by:

Ec
ij = (αi(f

3
ij) + βi)× njej (2.5)

• From Equation (2.5) and the Coefficient of Performance (COP), the total
consumed energy is deduced as:

Eij =
COPi + 1

COPi

× Ec
ij (2.6)

• The total carbon emission is given by:

(CO2E)ij = rCO2
i × Eij (2.7)

• The profit is given by:

(Profit)ij = njejp
c − Ce

ij (2.8)

where the client’s bill for the execution of an application j is the product between
the fixed price unit pc, the number nj of used processors by the application j and

39

Chapter 2: Service-level Scheduling on a Cloud Federation

the execution time ej of the application j. Ce
ij is the expenses that the provider has

to pay for the used resources in the cloud i for executing the application j.
Equation (2.6) uses COP in order to add the cooling energy to the CPU energy.

Indeed, (COP +1/COP)×Ec equals Eh+Ec can be proven easily in the following:

From Equation (2.3)

E = Ec +Eh = Ec + Ec

COP

= Ec × (1 + 1
COP

) = COP+1
COP

×Ec

(2.9)

The objective functions of our approach are formulated as follows:

Minimizing the energy consumption =

N
∑

i

J
∑

j

(E)ij (2.10)

Minimizing Carbon Emission =

N
∑

i

J
∑

j

(CO2E)ij (2.11)

Maximizing Profit =

N
∑

i

J
∑

j

(Profit)ij (2.12)

with the following constraints:

• The application j has to finish before dj , otherwise the scheduling is invali-
dated,

• Each application j can be assigned to one and only one cloud j.

The objective functions aim respectively to minimize the energy consumed by
the entire distributed cloud for Equation (2.10), to reduce the distributed cloud’s
carbon emissions for Equation (2.11) and to maximize provider’s profit for Equation
(2.12). Equation (2.11) could be wrongly considered similar to Equation (2.10),
but they are different and contradictory. Indeed, the carbon ratio rCO2

i has no
relationship with the energy consumption and thus a cloud with a good energy
awareness is not necessary good for the CO2 emissions. To prove the truthfulness
of the aforementioned assumption, we have performed a correlation test between
those two objectives. The correlation coefficient between those two objectives on a
sample of 1000 solutions is 0.57.

2.3 The Meta-scheduling Proposed Approach (MSCF)

In this section, we describe in details the steps of our Meta-Scheduler for Cloud Fed-
eration (MSCF) including the multi-objective genetic algorithm (MO-GA) proposed
in this chapter.

40

Chapter 2: Service-level Scheduling on a Cloud Federation

2.3.1 Steps of the MSCF algorithm

Before each scheduling, the meta-scheduler (MSCF) waits a fixed period of time
called scheduling cycle. This period helps to gather a pool of applications in order
to get a larger choice and thus, optimize the scheduling. Once this phase done, the
pool is managed by MO-GA to find the best possible assignments over the different
clouds which compose the federation. The result of the execution is stored as a
Pareto archive. Once the set of Pareto solutions (assignments) is proposed, the
algorithm chooses one scheduling according to the provider’s decision. The chosen
solution from the Pareto set is used as the new state of the cloud federation. This
state will be a basis from which the next iteration of the algorithm will make another
processing on a new pool of applications. The algorithm keeps iterating and proposes
assignments for each new pool of applications (see Figure 2.2).

Figure 2.2: A flowchart representing the meta-scheduling (MSCF) algorithm’s steps.

2.3.2 Service-level scheduling encoding

In order to formulate our problem without overriding the previous constraints (i.e.
finishing the application before its deadline and scheduling each application on one
and only one cloud), we propose an encoding for the MO-GA individuals (see Fig-
ure 2.3).

Figure 2.3 represents one possible scheduling among plenty that proposes the
genetic algorithm. This scheduling is the result of processing a pool of HPC requests
arrived during the last waiting time period presented later and called scheduling

cycle. In the proposed example, we identify two major information: the indexes of
the table depict the HPC applications that are scheduled and the number in each

41

Chapter 2: Service-level Scheduling on a Cloud Federation

Figure 2.3: A representation of a solution in the meta-scheduling problem (individual
in MO-GA’s population).

table cell identifies the cloud to which the application is assigned. In other words,
the first cell represents the first application of the pool that is currently handled by
the MO-GA, in this case this application is allocated to the cloud 5. The second
application is allocated to the cloud 0, and so on. This encoding informs about
the number of applications contained by the pool, which is 10 in our example, and
helps one to deal with the constraints of our problem. Indeed, it allows to schedule
all the applications of the pool by assigning each one to only one cloud. But a
cloud is able to handle more than one application. Note that not all the clouds are
necessarily used in each solution. The last constraint of our model which cannot
be handled by the proposed encoding is the deadline constraint. We deal with this
constraint in the algorithm by rejecting (invalidating) the assignment that does not
respect the deadline of the application. Therefore, at each processing cycle, all the
assignments that compose each individual of the MO-GA do not violate any of the
model constraint in the current state of the federation cloud (i.e. it exists at least
one cloud in the federation, at the current time, which can handle the application
in terms of number of processors and respect of the deadline).

2.3.3 Population initialization

The initialization of the population in a genetic algorithm is an important phase.
In fact, this step affects the quality of the future results. The initialization of the
population in our algorithm is done according to a combination of two methods.
The first method relies on a greedy algorithm and the second follows a random
initialization policy. The initialization is decomposed into two steps as follows:

• The first step initializes either one or two element(s) of the population by the
result of the greedy method.

• The second step initializes the rest of the population with a random method.

The greedy method reads the applications that arrive during the scheduling cycle
and allocates them to the clouds. The allocation follows the order of the applications
arrival with as only constraint, meeting the deadline of each application. Each
application that cannot be assigned by the greedy method is considered as failed
and will not be a part of any of the future scheduling pools of applications. This first
step of the initialization process helps to avoid the whole failure of the scheduling

42

Chapter 2: Service-level Scheduling on a Cloud Federation

due to the missing of the deadline of only one application. In other words, this step
makes sure that there is at least one feasible solution (scheduling) in the population.
It prevents the genetic algorithm from rejecting a big number of applications among
the entire pool only because of one unmet application’s deadline. As a second step,
the rest of the population is initialized randomly. The ratio between the individuals
initialized by the greedy algorithm and those initialized by the random method is
fixed to 1/15 (i.e. 14 random for each 1 greedy). Coupling with such a ratio both
the greedy method and the random method helps to add diversity to the initial
population avoiding a bias in the search space of MO-GA. The size of the pool of
applications is equal to the total number of applications arrived during the scheduling

cycle minus the ones eliminated in the initialization phase.

2.3.4 MO-GA variation operators

The variation operators allow one to explore the search space. Their principle is
stochastic and MO-GA uses two of them: in one hand, the mutation operator which
is conventional. Indeed, the operator chooses randomly two integers i and j such that
1 ≤ i < j ≤ n. Then, the operator swaps the two applications i and j as illustrated
in Figure 2.5. On the other hand, the crossover operator uses two solutions s1 and
s2 to generate two new solutions s1′ and s2′. The operator picks also two integers
from each solution to make the crossover. The full mechanism is explained bellow
and illustrated in Figure 2.4. However, these operations are done only if the number
of the scheduled applications is greater than 2 for the mutation and than 3 for the
crossover. Indeed, in some cases, only one request is received during the scheduling
cycle, thus, no operator can be applied (i.e. only one application to schedule). The
diversity is obtained in this case from the number of the individuals of the population
resulting from the initialization.

To generate s1′, the crossover operator:

• considers s1 as the first parent and s2 as the second parent.

• randomly selects two integers i and j such that 1 ≤ i < j ≤ N .

• copies in s1′ all tasks of s1 located before i or after j. These tasks are copied
according to their positions (s1′k = s1k if k < i or k > j).

• copies in a solution s all tasks of s2 that are not yet in s1′. Thus, the new
solution s contains (j − i + 1) tasks. The first task is at position 1 and the
last task at the position (j − i+ 1).

• and finally, copies all the tasks of s to the positions of s1′ located between i

and j (s1′k = sk−i+1 for all i ≤ k ≤ j).

The solution s2′ is generated using the same method by considering s2 as the first
parent and s1 as the second parent.

43

Chapter 2: Service-level Scheduling on a Cloud Federation

Figure 2.4: The crossover operator mechanism used in MO-GA between two parent
solutions s1 and s2 to generate two offspring solutions s1′ and s2′.

Figure 2.5: The mutation operator mechanism used in MO-GA to reassign two
applications by swapping two clouds.

44

Chapter 2: Service-level Scheduling on a Cloud Federation

2.3.5 Pareto genetic algorithm MO-GA

MO-GA starts by initializing the population as indicated in Section 2.3.3. This
population is used to generate offsprings using the mutation and crossover opera-
tors. Each time a modification is performed by those operators on each individual,
an evaluation function is called to evaluate the fitness of the offsprings. This fit-
ness is deduced in MO-GA from the energy consumption, CO2 emissions and the
generated profit of each scheduling (solution) (see Section 2.2.3). Because of the
multi-objective context, the used method in the MO-GA to rank the individuals
of the population is the dominance depth fitness assignment. Hence, only the in-
dividuals (solutions) with the best rank are stored in the Pareto archive. This
archive contains the different non-dominated solutions generated through the gen-
erations. The next step of MO-GA is the selection process. It is based on two
major mechanisms: elitism and crowding. They allow respectively the convergence
of the evolution process to the best Pareto front and maintaining some diversity of
the potential solutions. In other words, the Pareto archive is updated at each gen-
eration and used by the selection process. The individuals on whom the variation
operators are applied, are in the first step, selected according to their elitist rank
using the non-dominance concept, either from the Pareto archive, from the popula-
tion or from both of them. In the second step, the crowding process gets involved
to maintain diversity in the solutions by ranking again the individuals according to
the crowding distance. This is done on the basis of the similarity degree of each
individual compared to the others. The similarity (diversity) in crowding is defined
as the circumference of the rectangle defined by its left and right neighbors, and
infinity if there is no neighbor. These mechanisms are the same as the ones used in
the NSGAII algorithm [Deb 2002]. More details about these techniques are given
in [Talbi 2009].

When new solutions (offsprings) are generated a replacement of the old solutions
is necessary in order to keep constant the number of individuals in the population.
The selection operator in the replacement process is based on a tournament strategy.
Tournament selection consists in randomly selecting k individuals, where k is the
size of the tournament group. The replacement of the old solutions follows an elitist
strategy where the worst individuals of the population are replaced by the new
ones (offsprings). The algorithm stops when no improvement on the best solutions
is performed after a fixed number of generations. Once this number of iterations
reached, the external Pareto archive of the MSCF is updated by the last Pareto
archive of the MO-GA. The pseudo code of the MO-GA algorithm is presented in
Algorithm 5.

2.3.6 Provider’s policy selection

Marketing is known to be dynamic, changing according to the trends and the perma-
nent evolution of the client’s needs. Therefore, one must have several propositions
of solutions to fit all these needs. This is the main reason that leads us to propose

45

Chapter 2: Service-level Scheduling on a Cloud Federation

Algorithm 5 Pareto MO-GA algorithm.

1: Input: An updated set of cloud and a set of arrived HPC application
2: InitPopulation(Clouds, HPC application, pop);
3: Fitness(pop);
4: DominanceRanking(pop);
5: Calculate the crowding distance;
6: Selection(pop, parent1, parent2) ;
7: Crossover(parent1, parent2, offspring1, offspring2) and/or Mutation(parent1);
8: if Check deadline meeting then
9: Replace(offspring1, offspring2, pop);

10: Output: A set of Pareto non-dominated solutions (assignments)

Figure 2.6: The vector meta-selection mechanism applied to a bi-objective Pareto
set in order to choose a particular solution.

both the Pareto approach with several non-dominated solutions and its adequate
mechanism for the provider to fit at best the SLA. In addition, the stored results
obtained using MO-GA in the Pareto archive do not give the possibility for the
algorithm to start a new process of scheduling because of several equivalent poten-
tial solutions in the Pareto set. Therefore, in our meta-scheduling algorithm there
is a meta-selection step which comes right after the end of the MO-GA. This step
aims to pick up a solution among the external Pareto archive in order to set the
federation cloud state. This state will be the starting point from which the next
execution of MO-GA will schedule a new pool of applications. The idea behind
choosing a Pareto approach in our work is to propose to the provider as many com-
promise solutions as possible. Each one of these solutions is better than the other
regarding a certain objective. The mechanism of meta-selection of the solution can
be seen in different ways. The first and trivial mechanism is a manual choice done
at each step by the provider according to his/her choices. The second one is a deci-
sion making algorithm that makes the adequate choice favoring the objective(s) to
promote. And the last one, our solution, that uses a vector as an input parameter
in order to automate the progression of the experimentations. Our vector parame-

46

Chapter 2: Service-level Scheduling on a Cloud Federation

ter is a three dimensional vector. Indeed, since we deal with three objectives each
dimension represents a weighting for a particular objective. In the meta-selection
state step, the vector has a direction which it points to. This direction is set by the
provider. The solution that is the nearest to the vector’s direction is the one which
is chosen among the others in the Pareto set. In Figure 2.6, we give an example with
three two-dimensional vectors. In Figure 2.7, we give an example of transition from
an old state to a new one. The example concerns a four processors cloud within a
cloud federation where the applications are represented by Ai and the processors by
Pj.

Figure 2.7: The cloud state transition within a federation cloud after the end of the
MO-GA execution.

2.4 Experimental Evaluation

This section presents the results obtained from our comparative experimental study
of the proposed Meta-Scheduler of the Cloud Federation (MSCF). The experiments
aim to demonstrate and evaluate the performance of the multi-objective evolution-
ary algorithm using different meta-selection policies. It also aims to compare the
obtained results of MSCF algorithm to a maximum application consolidation-based
scheduling heuristic and to a random approach.

47

Chapter 2: Service-level Scheduling on a Cloud Federation

2.4.1 Experimental settings

As for the modeling section, the experimental settings concern both side of our
model, client side with its HPC applications and provider side with the hardware
configuration of the cloud federation.

• Application settings: Since our approach deals with HPC applications,
we use realistic workloads traces from Feitelson’s Parallel Workload Archive
(PWA) [Feitelson 2009]. The workload traces stretch over a period of five
months of applications (January 2007 to June 2007) for the first instance which
uses the traces of the Lawrence Livermore National Laboratory (LLNL) from
the Thunder cluster, and for a duration of two months (June 2010 to August
2010) for the RICC (RIKEN Integrated Cluster of Clusters) instance. We used
those two traces because of their high rate of resources utilization 87.6% for
the first and 87.2% for the second. This helps to simulate a heavy workload
scenario. Furthermore, the reason why we choose the period between June
2010 and August 2010 in the RICC instance is the high utilization rates and
the pick of load that offers this period. The information that we extract from
both instances are the submission time, the execution time and the number
of required processors. The traces have no information about the applications
deadlines. We used the method presented in [Venugopal 2008] to generate
synthetically the deadlines for the needs of our experiments. The applications
are classified into two classes named High Urgency (HU) and Low Urgency
(LU). The generation of the deadlines of each class is performed according
to a normal distribution. In order to get a distribution in both HU and LU
classes we used a bimodal distribution in which, 80% of the generated values
belong to LU and 20% to HU. The obtained results from this generation
represent the ratio between deadlinej/runtimej of an application j. The
application’s deadline is deduced from both such ratio and the execution time
of the application. The used parameters for the bimodal distribution have
in both classes a variance of 2, and a mean value of 12 for the class LU and
4 for the class HU. In other words, a HU application has three times less
time on average to finish its execution than LU application. The HU and
LU applications are distributed randomly in the sequence of the applications
arrival.

• Cloud federation settings: In our approach, we use 8 clouds geographically
distributed with the same characteristics as in [Garg 2010] (see Table 2.1). The
COP value of each cloud is given by a uniform distribution between [0.6, 3.5]
as indicated in [Greenberg 2006]. The electricity prices and carbon emission
rates are taken from respectively US Energy Information Administration (EIA)
report [EIA 2007] and US Department of Energy (DOE) [DOE 2007]. Since we
are dealing with a meta-scheduler, we do not use energy reduction techniques
within the clouds. Hence, the optimal frequencies of the processors in the
clouds are not used.

48

Chapter 2: Service-level Scheduling on a Cloud Federation

Table 2.1: Characteristics of the clouds which compose the cloud federation.

COP CO2 Electricity CPU: CPU: Max Optimum Number

Location rate rate price α β frequency frequency of

(kg/kW h) ($/kW h) CPUs

New York, USA 3.052 0.389 0.15 65 7.5 1.8 1.630324 2050

Pennsylvania, USA 1.691 0.574 0.09 75 5 1.8 1.8 2600

California, USA 2.196 0.275 0.13 60 60 2.4 0.793701 650

Ohio, USA 1.270 0.817 0.09 75 5.2 2.4 1.93201 540

North Carolina, USA 1.843 0.563 0.07 90 4.5 3.0 2.154435 600

Texas, USA 1.608 0.664 0.1 105 6.5 3.0 2.00639 350

France 0.915 0.083 0.17 90 4.0 3.2 2.240702 200

Australia 3.099 0.924 0.11 105 4.4 3.2 2.285084 250

2.4.2 MSCF algorithm parameters

In our experiments, we use some parameters such as the meta-selection state vec-
tor, the arrival rate of applications, the client execution price and the scheduling

cycle. The meta-selection state vector presented in Section 2.3.6 is used in order
to make the suitable choice while picking a solution in the external Pareto set and
let the experiments continue from a pool of applications to another. We performed
experiments with four different vectors. The first vector does not favor any of the
three objectives, the second advantages the energy criterion, the third is more for
the CO2 criterion and the last one gives the maximum favor to the profit criterion.
Regarding the arrival rate variation, we vary the original workload by changing in
each arrival rate the submission time of the HPC applications. We used four arrival
rates in our experiments (Low, Medium, High and Very high). Each move from
an arrival rate to another represents ten times more applications arrival during the
same period of time. In other words, each time one switches from an arrival rate to
another one divides the submission time by 10. Thus, by shortening the submission
time of the applications we increase the workload. The client price is fixed as the
twice of the average electricity cost of the clouds in the federation. Scheduling cycle
in our algorithm is set to 50s. Table 2.2 summarizes the parameters used in our
experiments.

Table 2.2: Experimental parameters.

Parameter Value

Total number of applications 119849 + 115855

State selection vector
(

√

2
2
,
√

2
2
,
√

2
2

)

(1,0,0) (0,1,0) (0,0,1)

Arrival rate Low, Medium

High, Very high

Client execution price $0.40/CPU/h

Scheduling cycle 50s

49

Chapter 2: Service-level Scheduling on a Cloud Federation

2.4.2.1 MO-GA algorithm parameters

As previously mentioned, MSCF algorithm is based on a multi-objective genetic
algorithm MO-GA to find the assignments of the services over the cloud federation.
Table 2.3 summarizes the different configuration parameters of MO-GA.

Table 2.3: MO-GA parameters.

Parameter Value

Population size 30

Number of generations 2000

Crossover rate 1

Mutation rate 0.35

Tournament group size 2

2.4.3 Maximum applications consolidation-based scheduling
heuristic and random approach

To the best of our knowledge, there are no approaches dealing with the problematic
of a Pareto multi-objective meta-scheduling on a geographically distributed cloud
infrastructure. Therefore, we present briefly a heuristic and a random approach that
we have used to compare our evolutionary approach to. The heuristic aims to assign
the applications according to their arrival rate (First fit) [Johnson 1973]. After the
scheduling cycle and the arrival of a new pool, the heuristic aims to maximize
the QoS of the client (the number of correctly assigned applications). To do so, it
chooses randomly a cloud among the federation and fills it by the maximum number
of requests by consolidating the applications. When the cloud cannot support the
application requirements the heuristic chooses another cloud and so on until it finds
a cloud which satisfies the requirements and respects all the constrains. If no cloud
is found to handle the client request, the request is rejected. The objective of this
heuristic is to avoid both rejecting requests and introducing free slots inside each
cloud. Indeed, reducing the number of slots and maximizing the usage of each
cloud minimize the total energy consumption by saving the cooling energy of all the
unused clouds.

The random approach is based as its name indicates on a random assignment
of the HPC applications to the clouds that compose the federation according to the
arrival rates. The obtained assignments after each scheduling cycle are evaluated in
a multi-objective way, according to both the number of successfully scheduled appli-
cations and the value that these assignments obtain regarding the three addressed
objectives. The final result for each instance over the whole workload is the sum of
the fitness of each objective of the obtained results during each scheduling cycle.

50

Chapter 2: Service-level Scheduling on a Cloud Federation

2.4.4 Performance evaluation

This section depicts a bench of experiments with different parameters in order to vali-
date the proposed MSCF algorithm. As said previously, in addition to optimizing the
three objectives, the aim of MSCF is first to satisfy the maximum number of clients
QoS. In other words, the MSCF has to successfully assign the maximum number of
HPC applications. A comparison between our approach, a maximum applications
scheduling consolidation-based heuristic (Heuristic) and a random assignment-based
approach (Random), both presented in Section 2.4.3, seems to be the best choice to
evaluate our work.

In order to switch from a cloud state to another we used 4 different vectors
(see Table 2.2). These vectors help through their coordinates to choose the type
of the solution (scheduling) that will be used for the cloud transition state. The
vectors can help also to extract the most suitable solution among the Pareto set for
a given objective and to compare our Pareto approach to a non-Pareto approach.
The results are presented in Tables 2.4 to 2.11.

The results for each instance (LLNL and RICC), for each arrival rate and for
each meta-selection vector configuration of the MO-GA have been deducted from
30 independent runs. Besides, both the random approach and the heuristic have a
part of randomness in their implementation. Therefore, the related results of both
aforementioned algorithms are deduced also respectively from 80 and 30 independent
runs. Note that, the random part of the heuristic concerns only the cloud selection
phase. In addition, the depicted values in the presented results are the medians of
the samples results. Indeed, because of the non-normality of the distributions of all
the results through the different runs, and in order to be able to properly compare
those values, we had to use the medians instead of the statistical averages. The
detailed improvement rates of each objective in the comparison done between our
approach and the maximum applications scheduling consolidation-based heuristic
are presented in the Tables 2.14 and 2.15.

First, the experiments show that MO-GA has different behaviors according to
the vector settings. Indeed, when set to Average, the meta-selection vector helps
to have a constant progression in the results according to the different arrival rates
in both instances (LLNL and RICC) and offers a broad interval of values on all
the objectives (see Table 2.10 and Table 2.11). We deduce that this vector setting
helps the provider to control the progression of the results over the different arrival
rates. Besides, we also notice that the more the application rate is high less efficient
are the results and the higher the number of failed applications is. Moreover, since
this vector policy does not favor any objective, we obtain less sharp results when
compared to ones obtained by other vector orientations. On the other hand, the
vector orientations that favor a specific objective allow one to obtain a significant
improvement on this specific objective. In other words, compared to the other meta-
selection policies (vectors), the improvement of the objective which is concerned by
the policy is significant compared to the other policies with a different orientation.
Moreover, this improvement of solution quality concerns more the Low and Medium

51

Chapter 2: Service-level Scheduling on a Cloud Federation

Table 2.4: Experimental comparison for the LLNL Thunder instance, between the
MSCF algorithm the heuristic and a random approach using an energy oriented
selection vector according to the different application arrival rates.

MO-GA vector setting: Energy

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1835115 743149.5 4728480 1094 69054.5

Medium 1955660 871205.5 4705445 1563 18001

High 2622765 1262030 4636565 2406.5 1641

Very high 3076485 1380045 4582340 4157.5 149.5

Used method: Heuristic

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3382620 1530595 4592730 1221.5 151

Medium 3168185 1431930 4588880 1937.5 18.5

High 3206045 1461450 4561565 3130 10

Very high 3298050 1431400 4545470 3493.5 10.5

Used method: Random

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1329660 593546.5 1380050 32303 76

Medium 371989 166044 388355 103123.5 12

High 3591.8 1737.1 3111.1 119828 2

Very high 0 0 0 119849 1

arrival rates than the High and Very high arrival rates. For the other heavier arrival
rates (High and Very high) the obtained results are good but they are not always the
best values when favoring a given objective. The best value for a given objective for
those kind of arrival rates is obtained with other orientation vector. This can be ex-
plained by the local optima phenomenon. Hence, when the provider keeps favoring
the same objective during the arrival of a huge number of requests, all the clouds
which can satisfy those requests by advantaging the considered objective become
saturated and busy at the same time. This will conduct the future incoming appli-
cations to be assigned on clouds with worse characteristics regarding the considered
objective, which leads to uninteresting results on the objective itself. One can see an
illustration of this observation in the instance LLNL for the energy-oriented vector
table Table 2.4. We obtain in that table for a Very high arrival rate better CO2

emissions than in Table 2.8 where the vector is favoring the CO2 criterion.

We notice this behavior more often in the experiments using the RICC instance.

52

Chapter 2: Service-level Scheduling on a Cloud Federation

Table 2.5: Experimental comparison for the RICC instance, between the MSCF
algorithm, the heuristic and a random approach using an energy oriented selection
vector according to the different application arrival rates.

MO-GA vector setting: Energy

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1623135 791343 3699395 66.5 16448.5

Medium 1683800 839701 3695270 97.5 8166.5

High 2349935 1257490 3649005 178 1989.5

Very high 3184630 1641285 3557795 866.5 454

Used method: Heuristic

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3760020 1774590 3484305 66.5 14

Medium 3431830 1575755 3502690 142.5 6

High 4208395 1941405 3417255 324.5 4

Very high 3567975 1701620 3464445 538.5 4

Used method: Random

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1801615 816405 1485300 24833.5 10

Medium 676372 306027 555748 91594 3

High 19265.7 8523.02 14659.7 115375 1

Very high 0 0 0 115855 1

This is caused by a higher utilization rate proposed by the interval of the RICC
instance on which we conduct our experiments. Indeed, both RICC and LLNL
instances have about the same number of applications while the time interval of the
LLNL instance is longer (6 months) than the one of the RICC instance (2 months).
Therefore, in Table 2.7 which favors the profit, the CO2 emissions are lower than in
Table 2.9 which favors CO2, always regarding the very high arrival rates. The same
behavior is noticed in Table 2.7 which is profit-oriented, where the earned profit is
lower for the Very high arrival rates than in Table 2.9 which favors CO2. This is
due as previously explained for the LLNL instance, to the fact that changing the
orientation of the vector helps the algorithm to escape from a local optima when
the clouds are saturated for a specific objective. It has the same effect as a kick
move in a single based meta-heuristic like ILS (Iterative Local Search). We can
conclude that the ideal provider’s behavior is to keep the vector orientation that
favors the most wanted objective to be optimized only for the Low and Medium

53

Chapter 2: Service-level Scheduling on a Cloud Federation

Table 2.6: Experimental comparison for the LLNL Thunder instance, between the
MSCF algorithm, the heuristic and a random approach using a profit oriented se-
lection vector according to the different application arrival rates.

MO-GA vector setting: Profit

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 2081360 1184045 4805700 1110 70790

Medium 2151975 1207345 4765145 1630 20638.5

High 2795550 1411590 4639730 2817.5 1158

Very high 3099570 1457270 4579790 4437.5 170.5

Used method: Heuristic

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3382620 1530595 4592730 1221.5 151

Medium 3168185 1431930 4588880 1937.5 18.5

High 3206045 1461450 4561565 3130 10

Very high 3298050 1431400 4545470 3493.5 10.5

Used method: Random

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1329660 593546.5 1380050 32303 76

Medium 371989 166044 388355 103123.5 12

High 3591.8 1737.1 3111.1 119828 2

Very high 0 0 0 119849 1

arrival rates. However, a more flexible orientation vector is suitable for the High

and Very high arrival rates, by changing the orientation according to the real time
algorithm behavior and to the targeted objective to maximize the QoS of the clients.

To be as fair as possible and do not favor any of the criteria, the comparison
of the heuristic with MSCF was done with an Average orientation vector policy.
The obtained results over the different arrival rates on the LLNL instance show an
improvement of 26% for the energy objective, 25.9% for the CO2 objective and 1.8%

for the profit while scheduling 2.2% more requests. For the second instance RICC,
the results show an improvement of 29.4% for the energy consumption, 26.3% for
the CO2 emissions and 3.6% for the profit while scheduling 3% less applications. We
notice that the improvement is more significant for RICC instance than for LLNL,
this is due to the density proposed by the short interval of the RICC instance
compared to LLNL interval (3 times shorter). This density highlights more the
advantage of MO-GA compared to the heuristic, than on a longer well-balanced

54

Chapter 2: Service-level Scheduling on a Cloud Federation

Table 2.7: Experimental comparison for the RICC instance, between the MSCF
algorithm, the heuristic and a random approach using a profit oriented selection
vector according to the different application arrival rates.

MO-GA vector setting: Profit

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1749095 985186.5 3729270 109 16784

Medium 1854975 1040910 3714575 131.5 7792.5

High 2630490 1456940 3625195 567 1643

Very high 3248800 1648355 3544185 695 486.5

Used method: Heuristic

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3760020 1774590 3484305 66.5 14

Medium 3431830 1575755 3502690 142.5 6

High 4208395 1941405 3417255 324.5 4

Very high 3567975 1701620 3464445 538.5 4

Used method: Random

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1801615 816405 1485300 24833.5 10

Medium 676372 306027 555748 91594 3

High 19265.7 8523.02 14659.7 115375 1

Very high 0 0 0 115855 1

instance like LLNL. The details of the comparison study between our algorithm and
the heuristic for each instance and for each arrival rate are presented in Table 2.14
and Table 2.15. Indeed, the values in Table 2.14 for the LLNL Thunder instance
show an improvement of the results obtained by MSCF compared to the maximum
applications scheduling heuristic for all the arrival rates. However, the improvement
decreases according to the increase of the arrival rate. The best improvement of 51%
concerns the CO2 emission reduction for the Low arrival rate. Regarding the RICC
instance results in Table 2.15, the improvement concerns all the arrival rates except
the Very high arrival rate. Indeed, this deterioration in the results is explained by
the local optima phenomenon. When a high rate of application arrives, the MO-GA
tends to optimize the criteria for only the current arrival of applications regardless
of the next possible arrivals. In fact, because of the real time arrival, MSCF ignores
the existence of other application arrivals. On the other side, the heuristic which
does not saturate the interesting resources, because of a less optimal solution, can

55

Chapter 2: Service-level Scheduling on a Cloud Federation

Table 2.8: Experimental comparison for the LLNL Thunder instance, between the
MSCF algorithm, the heuristic and a random approach using a CO2 oriented selec-
tion vector according to the different application arrival rates.

MO-GA vector setting: CO2

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 2367775 710355.5 4632040 1093.5 64589.5

Medium 2261425 860452.5 4657870 1617 17150

High 2832295 1287525 4604370 2764 1497

Very high 3205265 1483115 4580650 4225.5 153.5

Used method: Heuristic

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3382620 1530595 4592730 1221.5 151

Medium 3168185 1431930 4588880 1937.5 18.5

High 3206045 1461450 4561565 3130 10

Very high 3298050 1431400 4545470 3493.5 10.5

Used method: Random

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1329660 593546.5 1380050 32303 76

Medium 371989 166044 388355 103123.5 12

High 3591.8 1737.1 3111.1 119828 2

Very high 0 0 0 119849 1

benefit from those resources later during the next arrivals of applications. It obtains
therefore, better final results. The same explanation accounts for the increase in the
failed application rate for the heavy arrival rates in the MO-GA. Moreover, the best
improvement rate for the RICC instance obtained by MO-GA, concerns the energy
reduction, by up to 55% compared to the heuristic for the Low arrival rate.

Regarding the time consumption of MO-GA, the results show that the heuristic
gives results faster than MO-GA. However, this difference in the computation time
does not impact the algorithm during a real meta-scheduling. Indeed, between each
processing, there is a waiting time scheduling cycle, where the algorithm waits for
gathering a new pool of requests. The longest time taken by MSCF to treat 6 months
of application requests for the LLNL instance, without counting the waiting time
at each scheduling cycle (50 seconds), is roughly 19 hours and 40 minutes. While
scheduling the 2 months requests of the RICC instance is done in less than 4 hours
42 minutes. One can deduce then computing 6 months of applications in less than

56

Chapter 2: Service-level Scheduling on a Cloud Federation

Table 2.9: Experimental comparison for the RICC instance, between the MSCF
algorithm, the heuristic and a random approach using a CO2 oriented selection
vector according to the different application arrival rates.

MO-GA vector setting: CO2

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 2617685 766625.5 3527960 65.5 15575

Medium 2343105 799365.5 3587090 105 7462.5

High 2723655 1291920 3582755 387.5 2147.5

Very high 3303150 1806400 3551275 544 203

Used method: Heuristic

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3760020 1774590 3484305 66.5 14

Medium 3431830 1575755 3502690 142.5 6

High 4208395 1941405 3417255 324.5 4

Very high 3567975 1701620 3464445 538.5 4

Used method: Random

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1801615 816405 1485300 24833.5 10

Medium 676372 306027 555748 91594 3

High 19265.7 8523.02 14659.7 115375 1

Very high 0 0 0 115855 1

a day means that the MO-GA’s processing time at each application arrival is easily
covered by the scheduling cycle time. In other words, each pool of applications is
scheduled in less than 50 seconds.

Finally, the experiments of the random algorithm offer for both instances (LLNL
and RICC) poor results. This approach does not optimize the client’s QoS and
cannot handle the constraints. Therefore, it rejects a lot of feasible requests because
of their random assignment on the clouds. For the Very high arrival rates it does
not even give any results, and rejects all the requests, for the instance LLNL as well
as for RICC (see random part in Table 2.4 and Table 2.5).

57

Chapter 2: Service-level Scheduling on a Cloud Federation

Table 2.10: Experimental comparison for the LLNL Thunder instance, between the
MSCF algorithm, the heuristic and a random approach using an average orientation
of the selection vector according to the different application arrival rates.

MO-GA vector setting: Average

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1839645 744802.5 4728630 1094 66760

Medium 1975060 868983.5 4704360 1620.5 17234

High 2661580 1269990 4623960 2405.5 1347.5

Very high 3175135 1450690 4566185 4441.5 168

Used method: Heuristic

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3382620 1530595 4592730 1221.5 151

Medium 3168185 1431930 4588880 1937.5 18.5

High 3206045 1461450 4561565 3130 10

Very high 3298050 1431400 4545470 3493.5 10.5

Used method: Random

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1329660 593546.5 1380050 32303 76

Medium 371989 166044 388355 103123.5 12

High 3591.8 1737.1 3111.1 119828 2

Very high 0 0 0 119849 1

58

Chapter 2: Service-level Scheduling on a Cloud Federation

Table 2.11: Experimental comparison for the RICC instance, between the MSCF
algorithm, the heuristic and a random approach using an average orientation of the
selection vector according to the different application arrival rates.

MO-GA vector setting: Average

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1685740 823813.5 3700325 68.5 15692

Medium 1786950 888938 3691820 96.5 7871

High 2734555 1402205 3589570 330 1715.5

Very high 4349655 2033630 3393760 610.5 380

Used method: Heuristic

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 3760020 1774590 3484305 66.5 14

Medium 3431830 1575755 3502690 142.5 6

High 4208395 1941405 3417255 324.5 4

Very high 3567975 1701620 3464445 538.5 4

Used method: Random

Value for each criterion

Energy CO2 Profit Failed Time

Arrival rate (kW h) (Kg) ($) applications (sec)

Low 1801615 816405 1485300 24833.5 10

Medium 676372 306027 555748 91594 3

High 19265.7 8523.02 14659.7 115375 1

Very high 0 0 0 115855 1

Table 2.12: Comparison of the number of failed applications on the LLNL Thunder
instance between the MSCF algorithm (four different settings of the selection vec-
tor), the heuristic and the random approach according to the different application
arrival rates.

MO-GA vector settings Used method

Energy Profit CO2 Average Heuristic Random

Arrival rate

Low 1094 1110 1093.5 1094 1221.5 32303

Medium 1563 1630 1617 1620.5 1937.5 103123.5

High 1641 2817.5 2764 2405.5 3130 119828

Very high 4157.5 4437.5 4225.5 4441.5 3493.5 119849

Nb applications 119849

59

Chapter 2: Service-level Scheduling on a Cloud Federation

Table 2.13: Comparison of the number of failed applications on the RICC instance
between the MSCF algorithm (four different settings of the selection vector), the
heuristic and the random approach according to the different application arrival
rates.

MO-GA vector settings Used method

Energy Profit CO2 Average Heuristic Random

Arrival rate

Low 66.5 109 65.5 68.5 66.5 24833.5

Medium 97.5 131.5 105 96.5 142.5 91594

High 178 567 387.5 330 324.5 115375

Very high 866.5 695 544 610.5 538.5 115855

Nb applications 115855

Table 2.14: Percentage change between the MSCF algorithm using an average ori-
entation vector and the heuristic on the LLNL Thunder instance, according to the
different application arrival rates.

Comparison according to criterion (MSCF algorithm vs heuristic)

Energy CO2 Profit Failed applications

Arrival rate (Minimization) (Minimization) (Maximization) (Minimization)

Low -45% -51% +2.9% -10%

Medium -37% -39% +2.5% -16%

High -16% -13% +1.3% -23%

Very high -3% +1% +0.4% +27%

Table 2.15: Percentage change between the MSCF algorithm using an average ori-
entation vector and the heuristic on the RICC instance, according to the different
application arrival rates.

Comparison according to criterion (MSCF algorithm vs heuristic)

Energy CO2 Profit Failed applications

Arrival rate (Minimization) (Minimization) (Maximization) (Minimization)

Low -55% -53% +6% +3%

Medium -48% -43% +5% -32%

High -35% -27% +5% +1%

Very high +22% +19% -2% +13%

60

Chapter 2: Service-level Scheduling on a Cloud Federation

2.5 Conclusion

In this chapter, we presented an efficient meta-scheduler (MSCF) using a multi-
objective genetic algorithm (MO-GA) designed for service-level scheduling (HPC
service). The challenges in this work were to minimize the energy consumption, the
gas emission and maximize the profit of a geographically distributed cloud federation
while respecting the SLA with the client. The main contributions of this chapter
are the following:

• Meta-scheduler: we showed that high-level scheduling (service-level) has in-
teresting impacts dealing with important issues such as energy consumption,
profit or QoS. Indeed, a meta-scheduler deals with large geographical infras-
tructures, usually deployed over several sites. This geographical distribution
offers the meta-scheduler a high heterogeneity regarding different features over
the infrastructure, which opens a lot of optimization possibilities mainly using
scheduling.

• Multi-objective approach: the federation cloud raises several issues formulated
as conflicting criteria. Therefore, since each criterion impacts the others, we
proposed a multi-objective genetic algorithm (MO-GA) that considers all the
criteria at once to have a Pareto optimization that does not neglect any of
them. As a metaheuristic, MO-GA successfully raised this challenge by pro-
viding a wide range of solutions proven as efficient.

• Meta-selection vector: one knows that the market-oriented model in the
service-level scheduling requires compromises. Therefore, the Pareto set of
solutions proposed by the MO-GA in the MSCF gives the advantage to offer
plenty of equivalent solutions regarding different criteria. However, to bene-
fit from this diversity, a selection mechanism is needed. In this purpose, we
proposed such mechanism as a vector form, called meta-selection, to help the
provider to achieve at any time the QoS of the client by acting directly over
his/her criteria according to the needs.

61

Chapter 3

Task-level Scheduling in a Cloud

Brokering Environment

Main publications related to this chapter

• Y. Kessaci, N. Melab and E-G. Talbi, A Pareto-based Genetic Algorithm for
Optimized assignment of VM Requests on a Cloud Brokering Environment,
Internationnal IEEE Congress on Evolutionary Computation, June 20-23
Cancun, Mexico 2013.

Contents

3.1 Introduction . 64

3.2 Task-level Scheduling Model 65

3.2.1 Brokering model . 65

3.2.2 Satisfaction and profit models 66

3.2.3 Broker-based task-level scheduling modeling 67

3.3 The Proposed Multi-objective Genetic Algorithm for Task-

level Scheduling . 68

3.3.1 MOGA-CB scheduler steps 68

3.3.2 Task-level scheduling encoding 68

3.3.3 Population initialization . 70

3.3.4 Multi-objective genetic algorithm MOGA-CB 70

3.3.5 Satisfaction-based selection mechanism 71

3.4 Experimental Study . 74

3.4.1 Experimental settings . 74

3.4.2 MOGA-CB scheduler parameters 75

3.4.3 Performance evaluation . 77

3.5 Conclusion . 83

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

3.1 Introduction

Dealing with cloud computing issues from a high level point of view by applying
service-level scheduling offers advantages. However, these advantages reach their
limit and need a complementary level of scheduling once dealing with the proper
scheduling inside each cloud of the federation. Indeed, this granularity does not allow
to address all the needs of the market-oriented cloud paradigm, mainly the finer
needs of the client like defining the tradeoff between the price and the performance
of his/her task.

Therefore, the assignments resulting from a service-level scheduling often do not
fit the exact needs of the client. In that case, the client faces the issue of the high
variability and diversity of QoS proposed by the cloud to which his/her service is
assigned. This diversity is due to the difference in the features of the instances
proposed by the provider. The client faced to such large possibilities, gets unable to
know or to choose the good instances at the right moment for his/her task. Hence,
one can see the interest of having a lower level of scheduling (task-level scheduling)
to complete the service-level scheduling. In this case, a new tier (broker) is required
between the provider and the client, to dynamically find a tradeoff between the two
parts. The broker has to follow a utility model to match the provided resources to
the clients’ requirements.

Many issues from the survey presented in Section 1.4.2.1 arise for task-level cloud
scheduling. To address all those issues, the contribution of this chapter differs from
the previous studies in plenty aspects. We use the concept of utility computing
and present a new approach that depicts and focuses on the two main criteria that
affect task-level scheduling: the price of the Virtual Machines (VM) instances and
their response time when executing the client’s tasks. The aim is to dynamically
minimize both the criteria in order to give the best quality of service (QoS) to the
clients while providing an interesting profit for the cloud broker. In that purpose,
we propose a multi-objective genetic algorithm for cloud brokering (MOGA-CB). It
provides a set of Pareto optimal assignments by dispatching the client’s tasks over
the best combination of VM instances with the minimum cost and response time.
The experimental validation of MOGA-CB uses real information provided by the
infrastructure service provider (e.g. Amazon) to retrieve the prices of the instances
and their different performances.

The remainder of this chapter is organized as follows. Section 3.2 presents the
system, satisfaction and profit models used in our problem modeling. The proposed
algorithm is presented in Section 3.3. The results of our experimental study are
discussed in Section 3.4. Finally, the conclusion is drawn in Section 3.5.

64

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

3.2 Task-level Scheduling Model

3.2.1 Brokering model

In this chapter, the focus is made on the scheduling within a single cloud to find the
best task assignment on a set of proposed VM instances. This is carried out by an
intermediate called the broker. Moreover, an IAAS cloud type is considered in this
work. Therefore, due to the aforementioned additional tier, the model evolves to a
three-tier architecture where the tiers represent the clients, the cloud provider and
the cloud broker (see Figure 3.1). As said previously, the role of the broker is to find
the best configuration among the resources proposed by the provider to fit the client
tasks needs. Besides, since dealing with a market-oriented cloud, the broker charges
the client for the provided service which is in this case a lower level service. Thus,
unlike the infrastructure service studied in Chapter 2, which is directly related to
the provider of the cloud federation, the service addressed in this chapter is the one
provided by the broker. Note that to distinguish between the service of the broker
and the service of the provider, we name the former the business service while we
call the latter the infrastructure service.

Figure 3.1: A representation of our three-tier cloud model.

The market changes impact the prices of the instances according to offers and
demands. The VM instances are proposed for rental by the infrastructure service
provider. The broker reserves those instances according to the demands of the
clients. Depending on the offers over the VM instances the prices may change. The
variation of the prices of the VM instances is bounded by a time duration called
scheduling round after which the instance’s price does not change. As for the major
market-oriented cloud models the reservation time of the resources is divided into
slots. Hence, the user has to pay for the whole time of the reserved slot even if
his/her effective time usage of the resources is less than the time slot. This is
inspired from the Amazon EC2 Spot [Ama 2013].

Each client’s task request is a quadruplet (size, Srate, α, β), where size represents
the size of the task in terms of CPU computation time and Srate is the satisfaction

65

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

level of the client. In other words, it represents the roughness of the client (i.e. a
high value means a demanding client while a small value is for a non demanding
one). This value is a rate over the best solution provided by the broker. Finally, α
and β designate the preference that the client has for respectively the service price
and the response time.

The originality of this approach is to propose a Pareto scheduling approach using
a multi-objective genetic algorithm in order to allow the broker to dynamically find
the best choices of VM instances among the ones proposed by the infrastructure
service provider. The objectives considered in our algorithm are the price and
response time of the VM instances while executing the tasks of the clients. Those
two objectives are the main criteria for expressing the client’s satisfaction and to
deduce the broker’s profit. In other words, our algorithm aims to provide the best
Quality of Service (QoS) by satisfying as much as possible the client, while allowing
the broker to maximize its profit. The optimization of the objectives is based on
the diversity of the tasks characteristics of the clients and both the fluctuations of
the prices and the difference in the performance of the VM instances.

3.2.2 Satisfaction and profit models

In Section 1.4.2.1, we have shown that several state-of-the-art works deal with QoS
focusing only on one criterion such as the response time or the amount of satis-
fied requests. The work in [Chen 2011] based on the utility theory in economics
[Mankiw 2008], proposes a client’s satisfaction modeling. As defined in Equation
(3.1), this client satisfaction is based on the service price p and the response time t.

Satisfaction(p, t) = Smax − αp− βt (3.1)

where Smax is the maximum satisfaction value that the broker can deliver to
the client. The α and β parameters are used to give more significance to one of
the criteria (the price or the response time) without changing the client satisfaction.
The ratio α/β or β/α is known as marginal rate of substitution in economics. Since
our work is based on a Pareto approach, the (α, β) parameters allow one only to
make a choice of the optimal solution (i.e. that fits better the client’s needs). We will
also prove latter that using the Pareto approach we can simplify Equation (3.1) by
removing the α and β values from the client’s request parameters without changing
the client’s satisfaction.

In addition, Equation (3.2) is deduced from Equation (3.1) in order to compute
the broker’s profit. Indeed, with the parameter Srate presented previously we can
deduce the satisfaction needed by the client. Therefore, knowing the response time
of the chosen VM instance, the (α, β) parameters and the maximum satisfaction
Smax proposed by the broker one can deduce the profit generated by the broker
while providing its business service to the client.

profit = (Smax − Satisfaction× Srate − βt)/α (3.2)

66

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

3.2.3 Broker-based task-level scheduling modeling

In the task-level scheduling model, the role of the broker is to find the best
assignment of the tasks by choosing the right combination of the proposed VM
instances based on their current price, their performance index PI and the load in
terms of client’s needs. The performance index PI is a normalization value that
helps to compare the performances of the different VM instances when computing
the same task. The different values of PI of the used instances in this work are
presented in Section 3.4. The problem consists then to schedule J client tasks
on N VM instance types. Moreover, we know that the task scheduling problem
is generally NP-hard [Garey 1979]. Therefore, as for the service-level scheduling
the task-level scheduling on a brokering environment is NP-hard as well. Besides,
unlike the static service-level scheduling, to better meet the clients’ needs, the
task-level scheduling is dynamic. Thus, addressing this problem justifies the use of
metaheuristics such as the proposed MOGA-CB genetic algorithm.

In our model, the client submits requests to execute his/her tasks with QoS
requirements. Those requests are defined by two types of parameters. The first
ones are fixed by the client himself/herself at the submission of the request, while
the others are used by the algorithm and deduced a posteriori. The requirements of
the user as said previously, are the request size, the satisfaction rate and the α, β
values designated for a task j by the tuple (sizej , Srate,j , α, β). The other types of
parameters defined during the scheduling process, serve to inform about the state of
the task during the process. The first variable costji represents the cost of the task
j when assigned to the VM instance i with its current price during the scheduling
round duration (i.e. no price fluctuation during each scheduling round). The other
variable rptj represents the remaining processing time of the task j on a standard
instance. The initial value of this variable is the parameter sizej . The rptj value
over a specific instance i noted rptji is given by Equation (3.3), where PIi is the
performance index of the instance i. This value is updated only in case where the
task is moved and assigned to another instance before the end of its execution.

rptji = rptj/PIi (3.3)

The objective functions of our approach aim to minimize the total task cost
designated by MinCost and the response time of the tasks designated by MinRT

in order to provide the best client satisfaction and broker profit. It is formulated as
follows:

MinCost =

J
∑

j

N
∑

i

costj + rptji × pricei =

J
∑

j

N
∑

i

costji (3.4)

where, costj is the previous cumulated cost of the task j, rptji is the remaining
processing time of the task j if processed on the instance i, and pricei is the instance
price during the current scheduling round of the instance i.

67

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

MinRT =

J
∑

j

N
∑

i

currentT ime− arrivalT imej + rptji (3.5)

where, currentT ime is the current time, arrivalT imej is the arrival time of the
task j and rptji, as in Equation (3.4), is the remaining processing time of the task
j on the instance i, if not concerned by a reassignment.

3.3 The Proposed Multi-objective Genetic Algorithm

for Task-level Scheduling

In this section, we describe in details the steps of our scheduler together with the
multi-objective genetic algorithm for cloud brokering. Note that in the following we
designate by MOGA-CB scheduler or MOGA-CB the whole steps of the scheduling
process (i.e. the scheduler), while the notation MOGA-CB algorithm represents only
one step of the MOGA-CB scheduler which is the Pareto multi-objective genetic
algorithm step.

3.3.1 MOGA-CB scheduler steps

The MOGA-CB approach is a metaheuristic based scheduler. The aim of this algo-
rithm is to be used by the broker to reach its objectives. Before each scheduling,
the MOGA-CB scheduler waits as previously said for a fixed period of time called
scheduling round. This period allows one to gather a pool of tasks in order to have
a larger choice in the assignment and thus to optimize the future scheduling. In
addition, the scheduling round duration is used by the algorithm to retrieve the
current instances’ prices.

Once this phase passed, the pool of tasks is managed by the MOGA-CB algo-
rithm to find the best possible assignments over the different VM instances. The
result of the execution is stored in a Pareto archive. Once the set of Pareto solu-
tions (assignments) is proposed, the algorithm chooses one scheduling among this
set according to the client’s settings to fit at best his/her satisfaction. The selected
solution from the Pareto set is also used as a state to update the algorithm param-
eters and to inject back the not yet finished tasks to follow their execution during
the next scheduling round. This last step helps to get a basis from which the next
iteration will start to handle the next pool of tasks. The algorithm will perform an-
other round including in its scheduling both the pool of not finished tasks and the
pool of newly arrived tasks. The scheduler keeps iterating until no more tasks arrive
and no more tasks are still being processed. All the scheduling steps are drawn in
Figure 3.2.

3.3.2 Task-level scheduling encoding

As presented in Section 1.3.2.1, the solution representation is a very important
step in the design of a metaheuristic. We propose as encoding for the MOGA-CB

68

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

Figure 3.2: The Flowchart of the MOGA-CB scheduler.

solutions the vector illustrated in Figure 3.3.

The encoding is close to the one presented for addressing the service-level
scheduling problem. However, some differences remain regarding the meaning of
the values. Figure 3.3 represents one possible scheduling among plenty provided by
the MOGA-CB algorithm. In the proposed example we identify two major informa-
tion. The indexes of the vector depict the tasks that are scheduled and the number
in each cell identifies the VM instance to which the task is allocated. In other words,
the first cell represents the first task of the pool that is currently handled by MOGA-
CB algorithm. In this case, this task is allocated to the VM instance 2. The second
task is allocated to the VM instance 0, and so on. This encoding informs about the
number of tasks currently addressed and that have rpt value different from 0 (i.e.
not finished yet tasks), which is 10 in our example. This encoding allows one also to
deal with the characteristics of our problem. Indeed, it enables one to schedule all
the tasks of the pool by assigning each of them to only one VM instance at a time.
Nevertheless, a VM instance can be chosen for more than one task. Note that not
all the VM instances are necessarily used in each solution and that a task can move
from a VM instance to another before it is finished. We also assume that the broker
can always ask the infrastructure provider for new available VM instances. This is
realistic since our approach can be used for a hybrid cloud with several providers.
We can afford then to do not deal with the availability of the VM instances.

69

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

Figure 3.3: Task-level problem encoding.

3.3.3 Population initialization

This step affects directly the quality of the future results of a metaheuristic. Thus,
as dealing with a genetic algorithm, taking care of this phase is really important for
the quality of the future results. In our approach, the initialization of the population
is done in two steps as follows:

• The first step initializes each individual by the not yet finished tasks.

• The second step initializes the rest of the solution using a random method.

Therefore, at the first step the algorithm checks the number of not yet finished
tasks from the previous scheduling round. After that, it adds them to the initial
solution by assigning them to their previous instances to let them resume their pro-
cessing. The second step starts only when the first step is finished or when the first
step is not necessary. This can happen for example during the first iteration of the
algorithm where no request from the previous scheduling round is being processed.
The role of the second step consists of initializing the rest of the chromosome (solu-
tion) by assigning the other new arrived tasks randomly to the VM instances. Note
that not all the individuals of the population are assigned following both steps. In-
deed, to add diversity, the initialization of some individuals is done following only
the random method even regarding the assignment of not yet finished tasks of the
previous scheduling round.

3.3.4 Multi-objective genetic algorithm MOGA-CB

In order to find the best assignments and to schedule all the arriving tasks, the
MOGA-CB algorithm performs at each scheduling round as follows: It starts by
using the initialized population (as presented in Section 3.3.3) to generate new
assignments (offsprings) with the mutation and crossover operators. Each modifica-
tion, caused by the variation operators, consists to explore a new assignment for the
different tasks of the scheduled pool. Each modified individual (solution) is subject
to the application of an evaluation operator (fitness) that evaluates the resulting
offsprings. This fitness is deduced from both the total price of the tasks and their
total response time for each scheduling (solution). The next step of the MOGA-CB

70

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

Algorithm 6 Pareto MOGA-CB algorithm.

1: Input: An updated set of VM instances and a set of new and old tasks
2: InitPopulation(VM instances, Tasks, pop);
3: Fitness(pop);
4: DominanceRanking(pop);
5: Calculate the crowding distance;
6: Selection(pop, parent1, parent2) ;
7: Crossover(parent1, parent2, offspring1, offspring2) and/or Mutation(parent1);
8: Replace(offspring1, offspring2, pop);
9: Output: A set of Pareto non-dominated solutions (assignments)

algorithm is first, the selection of the best solutions among the population, then the
replacement of other solutions according to a replacement strategy. In this purpose,
the number of individuals in the population is kept constant. The selection operator
of our genetic algorithm is based on a tournament strategy. Performing that way
leads the MOGA-CB algorithm to explore a wide range of possible assignments and
keeping the best ones through the different rounds. The algorithm stops when no
improvement on the best solution is observed after a fixed number of generations.
We note also that both mutation and crossover, help the MOGA-CB algorithm at
each new scheduling round to dynamically modify the assignment of previous not
yet finished tasks to explore more possibilities. Indeed, the change brought by the
new arriving tasks at each scheduling round changes the solutions’ landscape. The
pseudo-code of MOGA-CB algorithm is presented in Algorithm 6. Its evolutionary
core is based on the NSGAII [Deb 2002] multi-objective genetic algorithm. Thus,
the method used to rank the individuals of the population, because of the multi-
objective context, is the dominance depth fitness assignment. This archive contains
the different non-dominated solutions progressively generated. Besides, the selec-
tion process of our genetic algorithm is based on two major mechanisms: elitism
and crowding. They allow one respectively the convergence of the evolution process
to the best Pareto front and maintaining some diversity of the potential solutions.
More details about these techniques are provided in [Talbi 2009]. The principle of
our mutation and crossover operators are the same as presented in Section 2.3.4.

3.3.5 Satisfaction-based selection mechanism

By using the standard economic formula given by Equation (3.1), the obtained
satisfaction results can be drawn as parallel lines (see Figure 3.4). In other words,
each line represents a given satisfaction Si. Sliding toward each axis in Figure 3.4
according to both α and β parameters gives more importance to one of the objective
holding the same satisfaction. A closer point to the response time axis gives better
response time values while a closer point to the price axis gives better pricing results.
To increase the client’s satisfaction, the sliding has to be done for both objectives
at the same time toward the origin of both axis (i.e. price=0 and response time=0).

71

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

Moreover, it is obvious that the client seeks for this type of improvement at first to
increase his/her satisfaction. However, the method offers to the client the ability to
make only a choice within the same satisfaction, giving each time more importance
to one of the objectives then both objectives at once. Therefore, a Pareto approach
appears to be the best choice to provide the best satisfaction at each time regardless
the parameters. Indeed, a Pareto approach natively provides the set of solutions
that is the closest to the origin point of the axis by giving non-dominated solutions
(see Figure 3.5). In other words, this method returns the best satisfactions and the
ability to move between Pareto equivalent satisfaction solutions using both the α and
β parameters only to choose a solution. In this purpose, we propose a mechanism
that deals with the set of Pareto solutions obtained by the MOGA-CB algorithm
to provide at each time the best satisfaction to the client. Moreover, our method
helps also the task scheduler to switch from processing a pool of tasks to a new
one by selecting a single solution among all the proposed solutions. This selection
step comes right after the end of the processing of the genetic algorithm for each
scheduling round. It aims to pick up a solution among the Pareto set according to
the client needs, in order to update the variables of the remaining processing tasks
from the last scheduling round. This state will be the starting point from which
the next execution of the MOGA-CB scheduler will assign a new pool of tasks. The
idea behind choosing a Pareto approach in our work is to propose to the broker
as more non-dominated solutions as possible. Each one of these solutions is better
than the others regarding a given objective. Unlike using Equation (3.1) to find
the assignments, the satisfaction-based selection mechanism uses only this equation
to select a solution according the user’s preference. A solution in our algorithm is
defined by its price p and response time t. All the solutions that are chosen from the
Pareto set are always the ones that give the best satisfaction value. However, based
on α and β parameters for the same satisfaction, the user can choose a solution
according to his/her needs.

Furthermore, the MOGA-CB scheduler proposes a higher level parameter to
promote either the broker’s profit or the client’s satisfaction. Indeed, with that
additional parameter, the algorithm can even satisfy the broker requirements by
providing him/her for example a certain benefit rate based on the Pareto optimum
solution cost, or increases the client satisfaction by providing him/her the requested
satisfaction rate. The default setting of this parameter always satisfies the clients
and provides good solutions in terms of broker’s profit. The only interest of disabling
the default setting parameter lies for instance in the case where the broker is in
deficit. The profit option should be temporarily chosen despite the unsatisfied client
to recover a correct budget level. This parameter allows to give an orientation to
the Pareto front. It can use the profit and response time either, to draw by default
a client oriented Pareto front with as optimized value the satisfaction, or to draw a
Pareto front with the aim to increase the profit of the broker.

72

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

Figure 3.4: An example of different levels of satisfaction using an aggregation
method.

Figure 3.5: A set of non-dominated satisfactions using a Pareto method.

73

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

3.4 Experimental Study

This section presents the results obtained from our experimental study. The ex-
periments aim to demonstrate and evaluate the contribution of the multi-objective
evolutionary approach over the α, β tradeoff and the different behaviors that can
have the MOGA-CB scheduler according to the variations of the input parameters,
the performance indexes and the prices of the instances.

3.4.1 Experimental settings

The experimental settings concern both the client and the infrastructure provider
sides of our three-tier model: the client side with the tasks and the provider side
with the VM instances.

• Tasks’ settings: regarding the inputs of the broker’s scheduler, we generated
tasks arrivals according to a Poisson process. Each task arrives at a given slot
of the scheduling round to which it belongs. The scheduling round slot equals
1/10 of the scheduling round. A task’s starting time equals to its arrival time
(i.e. it is the time value in the scheduling round to which it belongs) plus
the waited slots in this scheduling round (see Figure 3.6). Moreover, the task
information in our experiments vary according to four parameters. Indeed,
as said in Section 3.2.3 with the tuple (sizej , Srate,j , α, β), the tasks differ by
their size (execution time), their client satisfaction rate and finally the (α, β)

parameters. Therefore, we generated the elements of this quadruplet, where
the execution time sizej is a value from [2, 50] which represents the duration
of the request in terms of number of scheduling rounds. The client satisfaction
rate Srate,j varies in the interval [0.1, 1] where on the one hand, the value 0.1
represents the less demanding client (10% of the best obtained satisfaction is
enough to gratify him/her) and on the other hand the value 1 is the most
demanding client (he/she needs 100% of the best obtained solution). The α

parameter varies in the set {9, 3, 2, 1} and β in {8, 4, 2, 1}.

Scheduling round n Scheduling round n+1 Scheduling round n+2

Task1 arrival time Task1 starting time

Task1 waiting time

Time

Task1 processing time

Figure 3.6: The task starting processing time vs the task arrival time in the schedul-
ing round.

• VM Instances settings: for the provided infrastructure service instances,
we used the instances proposed by Amazon EC2 [Ama 2013]. We used three
types of instances: the small one, the large one and extra large one. We de-
duced the performance PI indexes of these instances from the work proposed

74

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

in [Chen 2011]. All the parameters’ values are reported in Table 3.1. Regard-
ing the fluctuation of the prices of instances, we downloaded them from the
Amazon pricing history [Ama 2012a]. The price fluctuations of all the previ-
ously cited types of instances extend over a period of one month on the US
California site. They are drawn in Figures 3.7, 3.8 and 3.9.

Figure 3.7: The price fluctuation of an Amazon’s small instance over a period of
one month.

Figure 3.8: The price fluctuation of an Amazon’s large instance over a period of one
month.

3.4.2 MOGA-CB scheduler parameters

In our experiments, we used some parameters such as the satisfaction/profit se-
lection parameter, the arrival rate of the tasks and the task execution time. The
satisfaction/profit selection parameter is used in order to promote at a certain time

75

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

Figure 3.9: The price fluctuation of an Amazon’s extra large instance over a period
of one month.

the profit of the broker in case of budget difficulties. Once this option activated, an-
other parameter is added to the algorithm to inform it about the profit rate needed
by the broker. We performed experiments with both state options (enabled and
disabled). Regarding the variation of the task arrival rate we used a Poisson process
with a λ rate of 15 per scheduling round. The number of tasks is 10000. In ad-
dition, because of the stochastic nature of the MOGA-CB approach we performed
30 runs for each configuration. Table 3.1 summarizes the parameters used in our
experiments.

Table 3.1: Experimental parameters.

Parameter Value

Number of runs per configuration 30

Number of tasks 10000

Request submission time 0.1 to 1 of the scheduling round

Request arrival rate λ 15 per scheduling round

Request execution time 2 to 50 scheduling rounds

Satisfaction rate 0.1 to 1 of the best solution value

Profit rate 0.1 to 1 of the best solution cost

α/β 9, 3, 2, 1, 1/2, 1/4, 1/8, random

Instance types small, large, extra large

Instance performance indexes (PI) 1, 3.98, 7.12

Instance prices Amazon EC2 pricing history

3.4.2.1 Pareto MOGA-CB algorithm parameters

The core of the MOGA-CB scheduler is based on a multi-objective genetic algorithm
MOGA-CB. Table 3.2 depicts the different parameters of this MOGA-CB algorithm.

76

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

Table 3.2: MOGA-CB algorithm parameters.

Parameter Value

Population size 30

Number of generations 2000

Crossover rate 1

Mutation rate 0.35

Tournament group size 2

3.4.3 Performance evaluation

We have quoted in Section 1.4.2.1 that, to the best of our knowledge, none of
the presented works tackles the task-level scheduling problem on a brokering cloud
environment using a Pareto approach. Therefore, we have performed a series of
experiments with different parameters and configurations to validate the approach
that we propose in this chapter. In addition to optimizing the prices and the response
times of the tasks using the MOGA-CB, our proposed approach has to return among
the proposed Pareto set of solutions the solution that meets at the best the client’s
satisfaction. To evaluate our contribution we conducted different experiments to
study the behavior of our approach according to different parameters. We conducted
experiments in average over all the scheduling rounds to study the general algorithm
behavior. Moreover, we also did a real time analysis of the results according to the
evolution of the criteria. We carried out our experiments on 5 different configurations
of tasks. The obtained results were very nearly equivalent. Thus, we discuss only
the most relevant one in the following.

The results for each configuration of tasks with its 10000 tasks, for each α, β

combination and for each profit/satisfaction orientation of the MOGA-CB have been
obtained using 30 independent runs. Therefore, the reported results are averaged
over these runs. The detailed analysis of our approach is presented in Figure 3.10
to Figure 3.15.

The analysis of our approach will be depicted in four parts. The first part dis-
cusses the average result of the objectives at the end of the processing time. The
second and third parts show the evolution of the addressed objectives respectively
with both disabled and enabled profit parameter. The fourth and last part, deals
with the scheduling duration of MOGA-CB. Note that in all the figures that we
present below the value representing the satisfaction of the client is in fact his/her
disappointment. Therefore, a high disappointment value represents a weak satis-
faction and vice versa. The objective is to reduce the client’s disappointment to
increase his/her satisfaction.

• MOGA-CB average behavior: Figure 3.10 shows that the obtained results
over the parameters (profit and disappointment) do not vary when using our
Pareto approach. In other words, the algorithm gives roughly the same results
over all the (α, β) settings thanks to the Pareto approach. Thus, since the

77

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

results are Pareto optimal, the (α, β) parameters cannot alter the final results
which are equivalent regarding both satisfaction and profit. The only param-
eter that varies a little bit is the computation time of MOGA-CB because of
the different complexities which may result from a different solution selection
in the Pareto set. In addition, Figure 3.11 shows that the cost (price) and the
time response objectives complement each other according to the client choice
trough the α and β parameters. Indeed, when the priority goes to the cost
(α higher than β) the cost is more minimized but leads the time response to
suffer from that. The same goes for a high time response priority (α smaller
than β) with opposite behavior. Moreover, we notice that the average results
for a random (α, β) configuration gives the same results as for the α = β = 1

configuration. This is due to the fact that selecting a solution in a Pareto
set by promoting randomly each time an objective during several scheduling
rounds leads to select a solution equivalent to the one obtained with a policy
that does not favor any of the objectives. We can deduce then from the invari-
ability of the satisfaction and the profit results and the similarity of the cost
and response time values for the random (α, β) and α = β = 1 configurations
that our Pareto MOGA-CB helps to dispense the client from providing those
parameters. Using the Pareto MOGA-CB gives birth to a new satisfaction
model leading to the best satisfaction without using the (α, β) parameters
presented in Equation (3.6).

MaxSatisfaction(p, t) = Min
√

p2 + t2 (3.6)

Besides, in the experiments for an enabled profit broker option, the clients’
satisfaction is highly affected and the disappointment increases along with the
increase of the margin of the broker. This proves that there is no interest
to use this option except in emergency cases, especially because of the good
obtained profit results when disabling this option. A deeper analysis of this
case where the profit option is enabled is proposed in the following.

• Default MOGA-CB real time behavior: in Figure 3.12b, we observe the
interest of using a Pareto approach to tackle the brokering problem. Indeed,
we notice in this figure that MOGA-CB compensates the increase of instances
(spots) cost by a reduction in the instances’ response time. The two graphics
corresponding to both objectives are complementary, thus the increase of the
first leads to the decrease of the second and vice versa. In addition, as expected
the broker’s profit is inversely proportional to the instance price. Therefore,
to preserve the satisfaction of the clients, the broker’s profit decreases when
the instances cost increases (less profit margin). Figure 3.13 presents three
different values using a logarithmic scale to show the relationship between the
number of pending tasks, the average instance spot cost and the average in-
stance response time during the different scheduling rounds. Therefore, the
depicted graph shows that there is a tight relation between the number of un-

78

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

Figure 3.10: The none impact of the α,β parameters on the results of the Pareto
based MOGA-CB algorithm.

Figure 3.11: The tradeoff relationship between the cost and the response time ob-
jectives according to the α, β parameters.

79

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

(a) (b)

Figure 3.12: A disabled broker profit option study over the scheduling rounds of the
relationship between the average instances (spots) cost, their average response time
and (a): the real time client’s disappointment (satisfaction). (b): the broker profit.

finished tasks and the instance response time. Indeed, the less pending tasks
they are the faster is the response time of the instances. Conversely, the num-
ber of unfinished tasks is inversely proportional to the instances cost. This
can be explained by the fact that increasing the price of the instances means
in general better instance performances and thus, a better response time and
less waiting tasks. In Figure 3.12a, the graphic indicates that the client’s
disappointment and therefore his/her satisfaction is much more impacted by
the response time of the instances than by their prices. This is explained by
the fact that the variation of the instances’ response time is more significant
than that of their cost. Indeed, the cost (price) value of the instances (e.g.
see Figure 3.8) are not high, thus, the variation of those costs is less impor-
tant as well. However, this slight variation in the instance’s cost when due
to an upgrade in the type of selected instance causes a strong performance
improvement which impacts highly the response time of the instance. In addi-
tion, unlike the instance’s price, the amplitude of the response time criterion
is wide. It depends on both the type of instance selected by the algorithm
and the current tasks load. One can see then that a response time faster by
few seconds is much more important for the client’s satisfaction than a price
cheaper by few cents.

• MOGA-CB profit-oriented real time behavior: Figure 3.14b, where the
profit option is enabled, shows as expected a direct link between the instance
(spot) cost values and the broker’s profit. Thus, unlike for the default MOGA-
CB settings, the profit increases strongly with the increase in the spot cost.
The rate of this increase depends on the percentage of profit required by the
broker. Moreover, in this case, we note that the instance’s response time cri-

80

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

Figure 3.13: The relationship between the number of unfinished tasks, the average
instances (spots) response time and the average instances (spots) cost over the
scheduling rounds.

terion has no impact on the broker’s profit. Moreover, in Figure 3.14a the
activation of the profit parameter has negative impact on the client’s satis-
faction. Indeed, each slight increase of the instance’s price, skyrockets the
disappointment of the client. This is due to the margin that the broker takes
when activating this option in MOGA-CB that affects directly the charged
costs of the tasks. Furthermore, we notice that unlike for the satisfaction-
oriented settings of MOGA-CB (default settings), the disappointment or the
satisfaction of the clients does not depend anymore on the instance’s response
time but on the price of the instance. This latter becomes the predominating
criterion in the client’s satisfaction because of the effect that has the profit of
the broker over the charged price of the client.

It also should be noted the general decrease in all the curves of the presented
graphics during the course of the interval times. This is mainly due to the
decrease in the number of unfinished tasks as the algorithm proceeds.

• MOGA-CB computation time: in this last part illustrated in Figure 3.15,
we prove that MOGA-CB never exceeds 30 seconds in its computation time of
the solution whatever is the load in terms of requests over all the scheduling
rounds. This result is interesting since we know that the schedulers waiting
time called scheduling cycle or scheduling round is about 30 seconds. Hence,
the computation time of our algorithm never exceeds this threshold, in
addition to be covered by the latter. We note also different variations in
MOGA-CB processing time such as around the 149 scheduling round. This
is due to the irregularity in the arrivals of tasks since following a Poisson
distribution.

81

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

(a) (b)

Figure 3.14: An enabled broker profit option study over the scheduling rounds of
the relationship between the average instances (spots) cost, their average response
time and (a): the real time client’s disappointment (dissatisfaction). (b): the broker
profit.

Figure 3.15: The computation time duration of the MOGA-CB algorithm over each
scheduling round.

82

Chapter 3: Task-level Scheduling on a Cloud Brokering

Environment

3.5 Conclusion

In this chapter, we presented a new approach for the second level of scheduling in
cloud computing, the task-level scheduling. This contribution has been applied to
a cloud brokering environment using a multi-objective genetic algorithm MOGA-
CB. The main challenge at this level of scheduling is the minimization of both the
response time and cost (price) of the tasks at the same time. In that purpose,
optimizing those two criteria using a Pareto approach, leads to address both the
client’s satisfaction and the broker profit. This was made possible by exploiting the
instances’ (spots) cost fluctuation and their performances’ heterogeneity. The main
contributions of this chapter are the following:

• Pareto MOGA-CB: we proposed for a cloud broker a multi-objective genetic
algorithm for task-level scheduling. The idea is, unlike other approaches in
the literature, to tackle the common variation criteria of both the client’ satis-
faction and the broker’s profit instead of dealing with them directly. Thus, we
dealt simultaneously with the response time and the cost of the VM instances
criteria to address the satisfaction and profit issues. We also designed MOGA-
CB to fit the scheduling constraints such as processing time by respecting the
scheduling round duration.

• Criteria relationship analysis: we performed a deep analysis on the different
behaviors of MOGA-CB and the obtained results through different configura-
tions. We highlighted the relationship between the satisfaction/profit results
and the impact on them of the cost and response time of the VM instances. We
proved that enabling the broker profit parameter in our algorithm decreases
significantly the client’s satisfaction. We also showed that the satisfaction is
more related to the instances’ response time than to the instances’ cost using
MOGA-CB with default parameter settings.

• New selection model: we improved through the Pareto multi-objective ge-
netic approach the usage of the utility theory in economics [Mankiw 2008]
for the client’s satisfaction modeling. Indeed, the results showed that our
Pareto-based approach helps to dispose from the client’s requested α and β

parameters. To do so, it provides a Pareto optimal or near optimal solution
allowing a tradeoff between the response time of the VM instances and their
cost by selecting from the Pareto set the nearest solution to the origin of the
axis.

83

Chapter 4

VM-level Scheduling on top of a

Cloud Manager

Main publications related to this chapter

• Y. Kessaci, N. Melab, E-G Talbi, A Multi-start Local Search Heuristic for an
Energy Efficient VMs Assignment on top of the OpenNebula Cloud Manager,
Future Generation Computer Systems Journal, 2013.

• Y. Kessaci, N. Melab, E-G. Talbi. An Energy-aware Multi-start Local
Search Heuristic for Scheduling VMs on the OpenNebula Cloud Distribution.
International Conference on High Performance Computing and Simulation

(HPCS), Spain, Madrid, 2012.

Contents

4.1 Introduction . 86

4.2 VM-level Scheduling Model 87

4.2.1 Cloud managed model . 87

4.2.2 Energy consumption model 88

4.2.3 VM performance model . 91

4.2.4 Cloud manager based VM-level scheduling problem modeling 91

4.3 The Proposed Multi-start Local Search Algorithm for VM-

level Scheduling . 93

4.3.1 OpenNebula scheduler heuristic 93

4.3.2 Bin packing FFD-based scheduling heuristics 94

4.3.3 Single objective EMLS-ONC and Pareto-based EMLS-ONC-

MO steps . 94

4.3.4 VM-level scheduling encoding 95

4.3.5 Solution initialization . 96

4.3.6 EMLS-ONC/EMLS-ONC-MO algorithm 97

4.4 Experimental Study . 99

4.4.1 Experimental settings . 99

4.4.2 Parameter settings for EMLS-ONC/EMLS-ONC-MO and in-

stance types . 101

4.4.3 Performance evaluation . 103

4.5 Conclusion . 123

Chapter 4: VM-level Scheduling on top of a Cloud Manager

4.1 Introduction

The cloud computing paradigm has been designed around the client’s service, it
is therefore natively market-oriented. Thus, as presented in Section 1.4.1.2, two
main optimization levels related to the market-oriented cloud have been raised and
addressed in Chapter 2 and Chapter 3. However, the optimization related to both
the service-level and the task-level optimization is not sufficient and is tightly related
to a lower-level optimization. Indeed, the obtained results of both the market-
oriented techniques face the issues related to the hardware configuration and the
management policy of the used infrastructure.

Cloud managers are the tools in charge of these issues mainly using scheduling as
an optimization tool. However, the scheduling approaches proposed in many cloud
managers are limited regarding the criteria taken into account. Indeed, despite the
increasing impact of the energy on many applications [Koomey 2008], cloud man-
agers are still rarely designed with the objective to optimize the energy consumption
reduction. Moreover, dealing with energy criterion is not easy. Thus, reducing en-
ergy is generally made at the expense of performance which goes against the principle
of cloud computing. Therefore, addressing these tricky issues is mandatory in order
to satisfy the upper scheduling levels and at the end the client. Thus, a low level
VM-level scheduling is necessary to optimize the assignment of the Virtual Machines
(VM) to the physical resources of the infrastructure.

In this purpose, we present new approaches that tackle both the energy con-
sumption and the VMs performance issues within a realistic cloud infrastructure.
The first scheduler that we propose (EMLS-ONC) is based on a multi-start local
search metaheuristic that provides a near-optimal or optimal scheduling by mapping
the incoming VMs according to the minimum energy consumption. We also present
a Pareto bi-objective version of this scheduler (EMLS-ONC-MO) that addresses si-
multaneously both the energy consumption criterion and the performance of the
VMs in terms of response time to maintain the performance level of the infrastruc-
ture. Note that both EMLS-ONC and EMLS-ONC-MO aim to achieve the previous
cited objectives always by assigning the maximum number of VMs. To be as thor-
ough as possible and to fit the reality we embed both our schedulers within a real
cloud manager. We choose as a case study the popular OpenNebula cloud manager
as our software management solution. In addition, the experiments that we present
to validate our algorithms are done on both artificial and real cloud infrastructures
with different VM workloads.

The remainder of the chapter is organized as follows. In Section 4.2 we present
the application, system, energy and performance models investigated in our prob-
lem modeling. Our approaches are presented in Section 4.3. The results of our
experimental study are discussed in Section 4.4. The conclusion is drawn in Section
4.5.

86

Chapter 4: VM-level Scheduling on top of a Cloud Manager

4.2 VM-level Scheduling Model

4.2.1 Cloud managed model

Following the previous IAAS model presented in Section 2.2.1 and Section 3.2.1, the
model in this chapter is based on the same model but focuses on its lowest level.
Indeed, we tackle the scheduling problem at the level of the provided VM instances
(spots) cited in Chapter 3. The aim is to assign those VMs to the physical machines
of an infrastructure managed by the OpenNebula 1 cloud manager. The features
of OpenNebula are presented in Table A.1. The cloud considered in our model can
vary from a set of few installed hosts to a multi-cluster distributed cloud.

We model this problem as a two-tier architecture composed of a cloud infrastruc-
ture provider and users. The users have access to the cloud resources by requesting
them from the provider. The service proposed by the cloud provider in our ap-
proach offers those resources as VMs to the users. The role of our approach is to
help the provider to optimize the scheduling of those VMs on the physical resources
by addressing two criteria (energy, VM performance) in his/her cloud management
policy. We use for this a multi-start local search metaheuristic. The location of
the default OpenNebula’s scheduler and its replacement by our EMLS-ONC (or
EMLS-ONC-MO) scheduler is shown in Figure 4.1.

The optimization of the criteria is based on the diversity offered by the het-
erogeneity of the hosts that compose the cloud. The heterogeneity means different
CPUs, memories and storage capacities. It means also different CPU frequencies
and different CPU usages on each host. This offers multiple assignment possibilities
which contribute to a reduction in energy and a gain in performance.

Figure 4.1: Overall architecture of OpenNebula including the EMLS-ONC (or
EMLS-ONC-MO) scheduler location.

1http://www.opennebula.org/

87

Chapter 4: VM-level Scheduling on top of a Cloud Manager

4.2.2 Energy consumption model

The energy model of a federation cloud such as presented in Section 2.2.2 is di-
rectly deduced from the consumption of the hosts that compose each cloud of the
federation. Therefore, the energy model of a single cloud results also from both IT
and auxiliary equipments. Our approach is computation-oriented, hence the most
of the energy consumption is due to the computation. Therefore, this energy is the
one considered in our model. That leads to consider also the impact of the cooling
energy consumption. Indeed, cooling energy is significant and directly related to the
energy consumption of computation. Moreover, we do not use DVFS in our model to
save energy. In other words, our approach does not pay attention on how the energy
is optimized within the processor itself. Our scheduler is designed to be as seamless
as possible to fit the entire processor infrastructure with and without the DVFS fea-
ture. Our scheduler aims to prove the contribution of the hardware heterogeneity
(frequency, CPU usage, etc) offered by the cloud to the energy reduction.

The processor energy model is derived as for the contribution of Chapter 2
from the power consumption model in Complementary Metal-Oxide Semiconductor
(CMOS) [Burd 1995, Pillai 2001]. After expressing the voltage value in a linear form
with the CPU frequency such as done in [Chen 2005b, Wang 2008], we obtain the
Equation (4.1).

P = αf3 + β (4.1)

Regarding the cooling energy consumption, it is based on the following proved
assumption. This assumption is based on the observation showing that the higher
the CPU usage is (see Figure 4.2), the higher the CPU’s temperature is (see Fig-
ure 4.3) and faster the cooling fan turns (see Figure 4.4). In all the figures, the blue
and the red lines designate the information related to the devices usage and temper-
ature respectively with and without using the cool’n’quiet technology [AMD 2004].
As a result of the observation from the figures, we deduce that the CPU usage is a
major parameter mainly regarding its impact on the cooling devices. It also learns
a lot about the system energy behavior. Since our model can handle up to 100 VMs
in each scheduling cycle (see Section 4.3.3), this can quickly become CPU intensive
for the hosts that compose the cloud. Indeed, a loaded host means a higher CPU
usage, which changes the temperature of the host’s devices and in that way the
cooling system behavior. Therefore, the energy needed for the VMs computation
is only a part of the total energy consumption. In this chapter, we only consider
the CPU related energy to make decisions about the VM assignments. As a con-
sequence, we should have more significant energy savings if we take the auxiliary
energy consumption into account. However, the objective of this contribution is
not to raise the energy saving improvement. Instead of that, the aim is to propose
a thorough energy model by combining both the frequency and the CPU usage of
the hosts in the objective function of the EMLS-ONC algorithm to benefit from the
heterogeneity offered by the hosts. The scheduler retrieves the processor frequency
and the current CPU usage of each host by requesting the hypervisor. The used

88

Chapter 4: VM-level Scheduling on top of a Cloud Manager

hypervisor in our model is KVM and the objective function of the energy criterion
is defined in Equation (4.2).

Figure 4.2: CPU usage during a stress period (x-axis).

Figure 4.3: CPU temperature during a stress period (x-axis).

(E)ij = (αif
3
i + βi)× ej × nj × (

CPU_usagei
const_value

+ 1) (4.2)

Where fi is the frequency of the host i, ej is the time reservation of the VM, nj

is the number of processors required for this VM and CPU_usagei is the current
CPU usage of the host i. The energy consumption is related to both the host and
the VM. Indeed, according to the current CPU usage of the host the consumed
energy may vary. The const_value represents the level of this variation, it is a
constant value that gives the coefficient of the energy increase according to the
CPU usage increase. In other words, const_value represents the ratio between the

89

Chapter 4: VM-level Scheduling on top of a Cloud Manager

Figure 4.4: FAN rpm during a stress period (x-axis).

CPU usage increase from the idle point to the max usage point and its effect on the
energy consumption. We conducted an experiment (see Figure 4.5) to calibrate the
value of const_value. We used a wattmeter on Dell precision T7400 with an Intel
Xeon X5410 2.33 GHz four processor cores. We used the Intel Xeon architecture
because of both its common use in data centers and its design for CPU intensive
usage. We stressed the processor 5 times during 2 minutes and we found out that
the extra power needed compared to the idle state, varies between 30% and 40% of
the total energy consumption. We thus decided that in our objective function the
const_value equals 3, which represents 33% of extra power between the idle and
the maximum processor usage.

0 20 40 60 80 100 120

60
70

80
90

10
0

11
0

12
0

13
0

P
ow

er
 (

W
at

t)

Time (Sec)

0
20

40
60

80
10

0
12

0

C
P

U
 U

sa
ge

 (
%

)

Power
CPU Usage

Figure 4.5: CPU usage vs energy consumption.

90

Chapter 4: VM-level Scheduling on top of a Cloud Manager

4.2.3 VM performance model

Reducing the energy consumption in a cloud infrastructure is a challenging issue.
However, if naively addressed this could conduct to some drawbacks in terms of
performance. Indeed, the virtualization tool offered by the cloud allows different
VMs to share the same physical host. A trivial way to deal with energy consumption
reduction is to gather the VMs into the same physical host. However, to take benefit
from those VMs and from their potential, a total isolation between the different VMs
has to be provided by the hypervisor within the same host.
The CPU resources do not cause problems and usually respond well to the isolation.
However, the cache memory issue is tricker to handle. Indeed, sharing a physical
resource means sharing CPU cache memory as well. The problem is that there is not
as much cores as caches to keep a total isolation between the VMs. This problem is
not significant for the VMs with low memory needs. However, when the VMs needs
exceed the capacity of the L2 cache, the VMs are not isolated anymore [Verma 2008].
In [Verma 2008], the experiments on the VM isolation show that for the VMs with
high memory needs, the response time (delays) of the VMs increases due to the cache
misses. We noticed that this VM response time doubles between none back ground
utilization with 0% value (lonely VM) and a fully back ground utilization with 100%
value (full physical host). We notice also that the increase of the response time is
linear following the memory increase. From this behavior, we deduce Equation
(4.3) to link the VM response time (VM performance) Response_timeij to the VM
memory needs and the memory usage of the host.

Response_timeij = Memoryj +Memoryj ×Mem_usagei (4.3)

Where, Memoryj is the amount of memory needed by the VM j and
Mem_usagei is the current memory usage of the host i.

4.2.4 Cloud manager based VM-level scheduling problem model-
ing

As illustrated in Figure 4.6, the focus in this chapter is made on a two-tier of
our VM-level scheduling model. The first tier is a cloud provider which has N

heterogeneous hosts (data centers). The second tier is a set of users with J VM
requests for running their applications. The problem consists of scheduling J

VMs on N data centers. As for all the different scheduling levels presented in
the previous chapters, since the scheduling problem is NP-hard [Garey 1979] the
VM-level scheduling problem is NP-hard as well. Thus, a metaheuristic algorithm
appears to be the most appropriate approach to adopt to deal with the problem.
The metaheuristic that we used is a multi-start local search. This metaheuristic is
composed of two parts. First, the multi-start part that brings diversification in the
problem offering a bigger exploration. The second part consists of each local search
that adds accuracy in the solution processing using the intensification. Hence,
our approach provides both diversification and intensification of an evolutionary

91

Chapter 4: VM-level Scheduling on top of a Cloud Manager

approach while fitting the cloud manager constraints. In addition, EMLS-ONC
(or EMLS-ONC-MO) always returns the assignment within the time limit of the
scheduling cycle (see Section 4.3.3).

With OpenNebula, the user submits VM requests with requirements. Those VM
requirements are the number of CPU, memory size, storage capacity, the type of
the operating system, etc. In our problem, we added a time requirement in the
definition of the VM to know the duration of the VM execution in order to get an
estimation of the energy consumption.

During the scheduling process, the user submits a request for a VM j. A VM in
our model is defined by a triplet (ej , nj,mj), all the triplet information are given
by the user during the submission, except the starting time of the VM (tj) which
is deduced from the submission time. The elements of the triplet represent the
duration of the reservation time of the VM (ej), the number of processors needed
by the user for his/her VM (nj) and finally the memory size (mj). All those
information except the reservation time parameter, are mandatory to build even a
most basic VM. Regarding the reservation time parameter, as aforementioned, it
is useful in our model to compute the energy consumption. The time unit of the
reservation time is one hour. Thus, the user has sometimes to reserve his/her VM
for a time longer than needed to ensure the completion of the application running
on it.

The objective function to be minimized in our approach deals with, the energy
consumption of the entire infrastructure when hosting the VMs (EMLS-ONC). A
second objective function is used in addition to the previous one to maximize the
performance of the VMs in EMLS-ONC-MO. The two objectives are formulated in
Equation (4.4) and Equation (4.5):

Minimizing the energy consumption =

N
∑

i

J
∑

j

(E)ij (4.4)

Where (E)ij is the power consumption of the host i while executing the VM j. This
is always done by respecting the following constraints:

• Each VM j has to find at least one host with the correct requirements to be
assigned on it, otherwise the VM is rejected.

• Each VM j can be assigned to one and only one host i.

Maximizing the V Ms performance = Minimizing(
N
∑

i

J
∑

j

Response_timeij)

(4.5)

92

Chapter 4: VM-level Scheduling on top of a Cloud Manager

Where Response_timeij is the response time of the VM j while assigned to the
host i including the delays. Note that, the VM performance is inversely proportional
to the response time of the VM.

The two objectives in the multi-objective version (EMLS-ONC-MO) are tackled
following a Pareto approach, while assigning the maximum number of VMs is a
priority. In other words, the best found solution has first to be the one that assigns
the highest number of VMs. After that, a Pareto ranking is done to classify the
solutions. The final best solution is the assignment that maximizes the number of
VMs with the best energy consumption for EMLS-ONC or the best Pareto value for
EMLS-ONC-MO.

Figure 4.6: Two-tiers cloud model representing the user tier, the provider tier
(Cloud), and the relationship between both OpenNebula and EMLS-ONC (or
EMLS-ONC-MO) scheduler.

4.3 The Proposed Multi-start Local Search Algorithm

for VM-level Scheduling

Before describing our EMLS-ONC and EMLS-ONC-MO approaches, we describe
briefly in the following sections both algorithms that we compared with our ap-
proach: the default OpenNebula scheduler and two bin packing FFD-based algo-
rithms.

4.3.1 OpenNebula scheduler heuristic

To make the assignment of the arriving VM requests, the OpenNebula scheduler
iterates over the set of arrived VM requests. For each VM request it checks the
set of hosts where it could be assigned. The first host that satisfies the VM’s
requirements is chosen to run the VM. The scheduler stops when no more pending
VM requests remain. This approach behaves like the consolidation technique which
is used for energy reduction purposes.

93

Chapter 4: VM-level Scheduling on top of a Cloud Manager

4.3.2 Bin packing FFD-based scheduling heuristics

The FFD-based scheduler as its name suggests is based on the First Fit Decease
heuristic (FFD) such as the work [Verma 2008]. As said in Section 1.4.2.2, the
algorithms that are based on FFD bin packing have been proven to perform the
best for energy reduction purposes [Mills 2011]. The idea is to sort the pool of VMs
to be assigned in a decreasing order (i.e. from the one with the most requirements
to the one with the least) and to assign those VMs each time to the server with
the lowest energy consumption according to Equation (4.1). This algorithm is the
energy-aware version that has been compared to EMLS-ONC. A memory-aware
version of the bin packing FFD scheduler has also been implemented. This version
assigns the sorted VMs to the servers with the most important memory capacities.
This helps to avoid a memory overload which will lead to cache misses and therefore
to a decrease in the VMs performance. The Pareto-based EMLS-ONC-MO has been
compared to both energy- and memory-aware bin packing FFD algorithms.

4.3.3 Single objective EMLS-ONC and Pareto-based EMLS-ONC-
MO steps

Both EMLS-ONC and EMLS-ONC-MO approaches are metaheuristics-based sched-
ulers. EMLS-ONC is a multi-start method that launches a set of local searches in
order to find the best energy-aware VM assignment over the cloud. The Pareto
multi-objective version EMLS-ONC-MO adds the VM performance optimization to
its addressed objectives. Before each scheduling, EMLS-ONC or EMLS-ONC-MO
waits for a fixed period of time called scheduling cycle. This period allows one to
gather a pool of VMs in order to get a larger choice in the assignment and thus to
optimize the future assignments. Once this phase done, the pool of hosts is filtered
out to keep only the hosts with the correct requirements.

The multi-start phase as said before launches each local search (LS) algorithm
separately. The number of launched LS is equal to the minimum value between the
number of hosts composing the distributed cloud and 20. This parameter choice is
based on the relationship between the complexity of the problem and the number
of hosts. Indeed, a small number of hosts makes easier the assignment since it
reduces the possibilities of VMs assignments. Therefore, few LSs are sufficient to
get a good solution. However, the drawback of relating the number of launched
LSs to the number of hosts lies in the processing time. A tradeoff has been found
through experiments to bound their number to 20. After the end of all LSs, all
the best solutions they provide are compared. Only the best of them is kept and
used, at the last step by OpenNebula to assign the VMs. Thereafter, the states of
the hosts are updated and a new scheduling cycle is started. Figure 4.7 draws the
different steps of both the EMLS-ONC and EMLS-ONC-MO. However, there are
differences in the meaning of each step between the two approaches in the flowchart.
The local searches in the EMLS-ONC-MO are obviously multi-objective, while in
the EMLS-ONC they are not. Therefore, in EMLS-ONC-MO each LS obtains after

94

Chapter 4: VM-level Scheduling on top of a Cloud Manager

its process a set of Pareto non-dominated solutions that are sorted in a private
archive (see Algorithm 7). After the end of all the processes of all the LSs, each
LS updates a common (global) archive with the elements of its private archive to
get the final global archive of non-dominated solutions using the same Algorithm7.
The penultimate step of the flowchart (Best scheduling step) consists in the Pareto
version of our approach to pick up randomly in the common archive a solution that
will be the selected assignment. This is made possible by the equivalence of the
solutions (non-dominated). In the single objective version EMLS-ONC, this same
step represents the best energy efficient solution among the solutions of each LS.

Figure 4.7: The Flowchart of the EMLS-ONC scheduler.

4.3.4 VM-level scheduling encoding

In order to formulate our problem without overriding the previous constraints (i.e.
each VM has to find a host with its requirements and can be scheduled only on one
host), we propose an encoding for both EMLS-ONC and EMLS-ONC-MO solutions
in Figure 4.8.

Figure 4.8 represents one possible assignment among plenty proposed by the
multi-start local search algorithm. In the proposed example we identify two major
information: the first row of the table (map keys) contains the VMs that are assigned

95

Chapter 4: VM-level Scheduling on top of a Cloud Manager

Algorithm 7 Local Search Pareto archive ranking.

1: Input: LocalSearch(n) with InitialSolution
2: for each newSolution do
3: if newSolution is not dominated by any solution of the archive then
4: add newSolution to archive;
5: for each solution in archive do
6: if solution is dominated by newSolution then
7: delete solution from archive;
8: Output: A set of Pareto non-dominated solutions

Figure 4.8: VM-level problem encoding.

and the second row identifies the hosts to which the VMs are allocated. In other
words, the first column represents the first VM of the pool that is currently being
treated by EMLS-ONC (or EMLS-ONC-MO). The VM is identified with the ID 1
and assigned to the host 5. The second VM with the ID 3 is assigned to the host
0, and so on. This encoding includes the number of VMs contained in the pool
(10 VMs in our example). It also helps one to deal with the characteristics of our
problem. Indeed, it allows the processing of all the VMs of the pool. Each VM
will be assigned to one and only one host (no duplication of mapping keys). A host
can handle more than one VM and not all the hosts are necessarily used in each
solution. This encoding may be wrongly considered as similar to the one presented
in both Section 2.3.2 and Section 3.3.2 for respectively the service-level scheduling
and the task-level scheduling. Therefore, the reason for choosing a map instead of
a simple vector is to fit the encoding of the pretreatment of the OpenNebula cloud
manager. Indeed, as shown in Section 4.3.3, the latter filters the hosts and assigns
to each VM a list of potential hosts in a vector. Moreover, the VM’s IDs are not in
a sequential order. Therefore, to be able to retrieve both the information and the
list of hosts of each VM we need to store the IDs as map keys.

4.3.5 Solution initialization

The initial solution in a local search algorithm may affect the whole exploration of
the landscape. In fact, this step is quite important and affects the quality of the
future results. In our proposed approach, since we deal with a multi-start method,

96

Chapter 4: VM-level Scheduling on top of a Cloud Manager

each local search execution has its own initialization method and then its proper
initial solution. The initialization process follows 3 different methods. Just after
the common phase of the hosts filtering (removing the unusable hosts with bad
requirements), each VM obtains a set of hosts on which it can be assigned. The first
method assigns the VM to the first available host from its set of hosts. The second
method assigns the VM to the best energy efficient host available in its set of hosts.
The last method assigns the VM to a random host in its set of hosts. The first two
methods are respectively for the first two local searches of the multi-start. The last
one is for the rest of the local searches to add diversity. For each host selection, a
checking mechanism is applied to verify if the constraints and the availability of the
host are satisfied. Indeed, during the initialization some a priori available host can
become unavailable in case where previous VMs in the current initialization already
used the resources. If no hosts are available for the VM, the VM is removed from
the current scheduled pool and will be considered as failed.

4.3.6 EMLS-ONC/EMLS-ONC-MO algorithm

In Section 1.3.2.2, we have presented the general concepts of the single-based solution
metaheuristics. The local search algorithm is one of the best known S-metaheuristic.
Its role is to generate a number of candidate solutions from the initial solution
using neighborhood operators in order to find the best assignment according to the
specified objective(s). The multi-start parallel method allows launching several LSs
to add diversity and robustness, since each LS provides intensification. LS starts by
generating the initial solution according to the process explained in Section 4.3.5.
This initial solution is used to generate a neighborhood based on two neighborhood
operators. The use of one or the other depends on the size of the cloud and the
number of VMs. Both operators are based on an exchange mechanism. The first
operator is dedicated to generate neighborhoods for small cloud configuration or
small number of VMs, while the second is dedicated to large neighborhoods with
large clouds and numbers of VMs. A cloud is considered as small when it contains
less than 50 hosts while a number of VMs is small when it arrives less than 5 VMs
per scheduling cycle.

The first operator (see Figure 4.9) switches the value of the host of each VM
of the initial solution with each value of the VM’s hosts set exhaustively. In other
words, the neighborhood operator checks all the VM’s available hosts to find the
one where the VM consumes less energy for the EMLS-ONC or has the best Pareto
solution for EMLS-ONC-MO. In the second operator, the number of both hosts and
VMs is bigger. Therefore, the algorithm cannot afford to enumerate all the potential
solutions in a reasonable time. Thus, it switches the selected host with not all the
VM’s hosts set but only with a randomly selected range of hosts among this set.
Therefore, one iteration of each LS (i.e. one enumeration of one VM hosts set)
generates one neighborhood. LS ends when all the hosts of the hosts set of all the
VMs are enumerated with the first operator, or all the hosts of a selected range in the
hosts set of each VM are enumerated with the second operator. Each solution of the

97

Chapter 4: VM-level Scheduling on top of a Cloud Manager

Algorithm 8 Single-objective Local Search algorithm.

1: Input: A set of Hosts and VMs
2: InitSolution(Hosts, VMs, initialSolution);
3: for all VMs of currentSolution do
4: if #Hosts < 50 or #VMs < 5 then
5: apply neighborhood operator 1;
6: else
7: apply neighborhood operator 2;
8: if currentSolution is feasible and currentSolution < bestSolution then
9: currentSolution:= bestSolution

10: Output: The best solution (scheduling)

Algorithm 9 Pareto Local Search algorithm.

1: Input: A set of Hosts and VMs
2: InitSolution(Hosts, VMs, initialSolution);
3: currentSolution:= initialSolution
4: for all VMs of currentSolution do
5: if #Hosts < 50 or #VMs < 5 then
6: apply neighborhood operator 1;
7: else
8: apply neighborhood operator 2;
9: if currentSolution is feasible then

10: call Pareto archive ranking;
11: currentSolution:= select randomly solution in Pareto archive
12: Output: A set of Pareto non-dominated solutions (scheduling)

generated neighborhood is checked for its feasibility. A fitness value is also assigned
to this solution. Moreover, in order to speed up the computation of the proposed
EMLS-ONC and EMLS-ONC-MO algorithms and to respect the scheduling cycle
time constraint of the OpenNebula cloud manager, each new evaluation of the fitness
of a modified solution relies on a delta evaluation. A delta evaluation helps to
evaluate only the assignment of the concerned VM in the new generated solution.
That way, it avoids an extra time due to the evaluation of the already known fitness
values of the other unmodified VMs.

The best found solution from the neighborhood is kept to build another neigh-
borhood during the next iteration using the previous operators. The algorithm stops
when the number of iterations in each LS reaches the number of VMs. As for the
number of LSs in the multi-start approach, the choice of this parameter is due to
the complexity of the problem. Indeed, the more VMs they are the more iterations
are needed to find a good solution. The pseudo-code of each LS of both EMLS-ONC
and EMLS-ONC-MO is respectively presented in Algorithm 8 and Algorithm 9.

98

Chapter 4: VM-level Scheduling on top of a Cloud Manager

Figure 4.9: The Mechanism for generating the neighborhood from an initial solution
(neighborhood operator) of one of the local search algorithm that composes the
EMLS-ONC/EMLS-ONC-MO scheduler.

4.4 Experimental Study

This section presents the results obtained from our comparative experimental study.
The experiments aim to demonstrate and evaluate the performance of the EMLS-
ONC and EMLS-ONC-MO algorithms. The comparison is done on the different
addressed criteria with energy- and memory-aware schedulers and with the default
OpenNebula scheduler.

4.4.1 Experimental settings

The experiments have been conducted using two types of settings. The artificial
sittings using different generated VMs and hosts and the real settings using real
VMs and cloud infrastructures.

4.4.1.1 Artificial hardware settings

• VMs’ settings: regarding the inputs of the scheduler, we have generated
VMs in an XML format. Thus, the OpenNebula parser reads their associated
parameters in a realistic way. These latter vary in our experiments according to
three parameters. Indeed, as said in Section 4.2.4 with the triplet (e, n,m), the
VMs parameters are the execution time, the number of processors and finally
the memory needs. In order to fit the algorithm parameters, we have generated
randomly this triplet where the execution time e is an integer value from {1, 2,
..., 10} hours, the processor requirement n varies in the set {k/2; 1 ≤ k ≤ 18}
CPUs and the memory needs m is an integer value in {1, 2, ..., 8} GBs for the
CPU-intensive VMs and {1, 2, ..., 15} GBs for the memory-intensive VMs.

• Distributed cloud settings: as for the VMs the hosts features are provided
in XML format to the OpenNebula parser. Hence, we generated different

99

Chapter 4: VM-level Scheduling on top of a Cloud Manager

types of hosts by changing each time their features. Each host is specified by
its number of cores randomly generated between 1 and 24 cores, its memory
capacity from [2, 24] GB and its CPU frequency from [1, 3] Ghz. During
the generation of the different features of a host, we ensure the validity of
the information about the amount of CPU and memory used resources of
each host, those values have to never exceed the initial capacity of the host
for both CPU and memory. The value of the free resources for each device
(CPU, memory) is deduced from the initial host capacity minus the amount
of the current used resource. The subdivision unit of all the hosts’ parameters
intervals is 1. In other words, all the intervals are composed of integer values.

The ranges of VM parameters presented above are deduced from the type of
VMs proposed by the cloud providers like EC2 for Amazon [Ama 2012b]. Indeed,
as previously said, the VM instances that are scheduled in this chapter are the ones
proposed to the clients to run their tasks in Chapter 3. The VM instances proposed
in EC2 [Ama 2013] vary from small ones (1 CPU, 1.7 GBs memory) to extra large
ones (8 CPUs, 15 GBs memory). Note that the existence of floating values as 0.5
for the parameter n of the VM’s CPU needs are due to virtualization that allows
affecting less than a whole physical core to a VM (e.g. tiny VMs). The execution
time values range between 1 and 10 hour(s). Those values are the common ones in
terms of reservation. They oscillate between a short and a long reservation.

Regarding the interval values of the hosts they range between a personal com-
puter (1 core, 2 GB memory, 1 Ghz clock frequency) and a cluster (24 cores, 24 GB
memory, 3 Ghz clock frequency). This is done to encompass all types of machines
that could compose a cloud. Note that the CPU and the memory values are related.
In other words, a machine with a high number of CPUs will have high memory
capacity and vice versa.

4.4.1.2 Real hardware settings

For the real experiments we generated real VM templates for deployment, as a real
user has to do when he/she fills the VM template. The VMs parameters (execution
time, number of CPUs and memory) were generated following a Poisson distribu-
tion with respectively the λ parameters (1, 2, 4). Each VM distribution sample is
composed of 12000 values. The used values for each distribution are taken in the
intervals [1, 10] for the execution time, [1, 9] for the CPU and [1, 8] for the memory.
The total number of generated VMs is 2000.

Regarding the hosts, we used machines from Grid’5000 [GRI 2013]. We used the
site of Nancy equipped with clusters allowing the virtualization to deploy the Open-
Nebula cloud manager with and without our proposed algorithms. The hardware
configurations of the hosts that compose our cloud are summarized in Table 4.1.

100

Chapter 4: VM-level Scheduling on top of a Cloud Manager

Table 4.1: Hardware specifications of the hosts.

Device Configuration Value

Max Number of hosts 200

Frontend hosts 1

Number of clusters 2

Clock frequency 2.5 Ghz, 2.53 Ghz

Memory capacity 8192 Mo, 16384 Mo

Number of cores 8, 4

CPU type Intel Xeon E5420, Intel Xeon X3440

4.4.2 Parameter settings for EMLS-ONC/EMLS-ONC-MO and
instance types

The EMLS-ONC and EMLS-ONC-MO schedulers are proposed to be integrated in
a cloud manager such as OpenNebula. Therefore, they have to be flexible and fit
different cloud configurations. In this context, we conducted our experiments on
both algorithms during a fixed number of scheduling cycles for each instance. We
define an instance as a fixed number of VMs that arrive per scheduling cycle on
a given number of hosts. In these experiments, we compare the EMLS-ONC with
an energy-aware algorithm (Energy_FFD), while the multi-objective EMLS-ONC-
MO is compared to both energy-aware (Energy_FFD) and VM performance-aware
(Memory_FFD) algorithms. Note that comparison of both proposed algorithms is
also done with the default OpenNebula scheduler (OpenNebula). We measure in
these experiments the ability of the algorithms to handle a flow of VM requests ar-
riving at the same time (one scheduling cycle) by a cross comparison of the obtained
results for each scheduling cycle. We also discuss the results of each algorithm over
several scheduling cycles in row. The comparison study of the single objective algo-
rithm EMLS-ONC concerns the number of assigned VMs, the energy consumption
and the processing time duration criteria. Regarding the Pareto EMLS-ONC-MO
scheduler, the study concerns the VM performance criterion in addition to the pre-
viously cited criteria. The constraint for both schedulers is to provide the results
before the end of the scheduling cycle time, and thus, the arrival of a new pool of
VMs. Moreover, all the experiments presented below, deal only with the schedul-
ing process part of the algorithm, they do not give interest to the physical VMs
dispatching phase. The VM dispatching phase is handled by OpenNebula.

4.4.2.1 Artificial experimentation parameters

In our artificial experiments, we used some parameters: the scheduling cycle du-
ration, the number of scheduling cycles in row, the number of VMs per arrival in
each scheduling cycle, and the number of hosts composing the cloud. We performed
experiments with 4 different cloud configurations, ranging from a small local cloud
with 5 hosts to a wide distributed cloud with 320 machines. For the variation of

101

Chapter 4: VM-level Scheduling on top of a Cloud Manager

the VMs arrival rates we use 5 different loads from a single VM to a massive arrival
of 100 VMs at each scheduling cycle. Each instance is defined to be the couple (#
VMs, # hosts) during 20 cycles of 30 seconds. This represents for the highest work-
load (100 VMs/scheduling cycle) which equals 2000 VMs for the biggest instance
of each cloud configuration. The time duration of the scheduling cycle is deduced
from OpenNebula. Indeed, this value is the default waiting time period between
two scheduling phases. Note that this is fixed by default to 30 seconds but it can be
changed according to the needs. Moreover, the number of scheduling cycles in row
has been determined empirically. We noticed that 20 scheduling cycles in row was
the number of cycles needed to saturate the biggest cloud configuration (320 hosts)
with the highest VMs arrival per scheduling cycle (100 VMs). The experiments
parameters are summarized in Table 4.2.

Table 4.2: Artificial experimental parameters.

Parameter Value

Scheduling cycle 30s

Number of scheduling cycles in row 20

Number of VM per arrival 1, 5, 20, 60, 100

Number of hosts 5, 20, 80, 320

4.4.2.2 Real experimentation parameters

In the real experiments we used 2 types of clouds: a medium one (50 hosts) and
a big one (200 hosts). The clouds have been deployed on the Grid5000 platform
[GRI 2013]. The VMs arrival workloads during each scheduling cycle are 5, 50
and 100 VMs. The objective of this experiment is to prove the feasibility of the
deployment of our algorithm over physical machines, while handling their constraints
(lags, communications, ...). The behavior of EMLS-ONC and its performance are
compared to default OpenNebula scheduler. We considered all configurations to
observe the different algorithm behaviors. We expressed the couples (# VMs, #
hosts) as ratios. A ratio is the relationship between the number of VMs to be
assigned and the number of hosts that compose the cloud. It is obtained by dividing
the number of VMs by the number of hosts. Thus, we dealt with a small ratio (5
VMs, 50 hosts), a big ratio (100 VMs, 50 hosts) and a medium ratio (100 VMs, 200
hosts). The scheduling cycle and the number of scheduling cycles in row have been
fixed for the same reason as mentioned in Section 4.4.2.1. We used 30 seconds for
the scheduling cycle in all the instances except in the (200 hosts, 100 VMs) instance.
We used 60 seconds in this latter because of the communication delays due to a large
cloud (200 hosts) which increases the processing time of EMLS-ONC. Besides, the
number of scheduling cycles in row was fixed to 10 for the same reason as mentioned
in the artificial experimental parameter. Indeed, a value of 10 scheduling cycles in
row was sufficient to saturate the 200 hosts cloud. The experiments parameters are
summarized in Table 4.3.

102

Chapter 4: VM-level Scheduling on top of a Cloud Manager

Table 4.3: Real experimental parameters.

Parameter Value

Scheduling cycle 30s, 60s

Number of scheduling cycles in row 10

Number of VM per arrival 5, 50, 100

Number of hosts 50, 200

4.4.3 Performance evaluation

In the following, we discuss the experimental study of the two proposed scheduling
metaheuristics, integrating both the energy consumption and the VM performances
criteria on the top of OpenNebula cloud manager. We have performed a set of
experiments with different parameters cited before in both Section 4.4.2.1 and Sec-
tion 4.4.2.2 respectively for the artificial and the real experiments.

The first single objective approach EMLS-ONC is compared to two algorithms.
The first comparison is done with an energy-aware FFD based algorithm. The FFD
algorithm, as said previously, is proved to perform very well in energy savings. The
second comparison is done obviously with the default OpenNebula scheduler to know
the impact of our approach on the OpenNebula cloud manager. The default sched-
uler of OpenNebula is based on a type of consolidation technique. This technique
provides energy consumption reduction. In addition, we validated through experi-
ments on a real cloud infrastructure (GRID5000) the behavior and the performance
of the EMLS-ONC over the default OpenNebula scheduler when deployed on real
machines.

The second approach, the Pareto EMLS-ONC-MO, is compared to three algo-
rithms. Indeed, dealing with two objectives, we compare EMLS-ONC-MO to two
heuristics tackling each one an objective among the two. In addition, we compare
EMLS-ONC-MO with the default OpenNebula scheduler as well. The two heuristics
mentioned earlier are both based on FFD assignment. As presented in Section 4.3.2,
the first one is energy-aware and sorts the hosts and the VMs according to this crite-
rion, while the second one is memory-aware in order to save the VMs performance.
Thus, it sorts the hosts and the VMs according to this other criterion.

Due to the stochastic nature of both EMLS-ONC and EMLS-ONC-MO, we run
each experiment for each instance 30 times. The reported results for each instance of
both EMLS-ONC and EMLS-ONC-MO algorithms are the average value of all the
30 executions. Note that, the average values rows in the tables of results represent
the average value of each column over all the instances. In addition, the notation
VMs on the type of instance column represents the number of VMs that arrive per
scheduling cycle. Moreover, the RPC acronym designates the Relative Percentage

Change. It represents the difference between the obtained values of our algorithm
and the values of the algorithm compared with, expressed in percentage. In our
case, since dealing with minimization, negative values mean the improvements of
our algorithm while positive values mean worst results. Conversely, since dealing

103

Chapter 4: VM-level Scheduling on top of a Cloud Manager

with maximization regarding the # of Additionnal Assigned VMS row, negative
values mean worst results while positive ones express the improvement.

In the reported results, we also used two terms: cumulative and normalized.
Those terms are due to the difference in the number of assigned VMs between the
compared algorithms. Indeed, it is not sufficient to compare the obtained values for
each criterion at each scheduling cycle. First, we used the cumulative sum to link
the results of all scheduling cycles in order to get the evolution of the addressed
criterion through the different VMs arrival waves. Second, the normalization uses
the cumulative sum of the criterion and the cumulative number of assigned VMs to
give at each moment the value of the addressed criterion regarding the number of
assigned VMs.

The results will be discussed in four sections depending on the number of ob-
jectives or the type of experiments (artificial or real). The first section deals with
single objective approaches dealing with the energy issue. The second one deals with
the Pareto bi-objective EMLS-ONC-MO approach compared with the energy-aware
algorithm. The third section focuses on the same Pareto bi-objective EMLS-ONC-
MO approach but compared with the VMs performance-aware algorithm. Finally,
the fourth section presents the feedbacks obtained from the experiments on a real
infrastructure.

Figure 4.10 to Figure 4.19b show the results of 3 most specific instances in order
to cover all scenarios. The first for small cloud and small number of VMs (20 hosts, 5
VMs), the second for a medium cloud with a big number of VMs (80 hosts, 100VMs)
and the last for big cloud with big number of VMs (320 hosts, 100 VMs).

4.4.3.1 Comparison study between the single objective EMLS-ONC, the
energy-aware FFD approach and the OpenNebula scheduler

In this section, we report and discuss the results of EMLS-ONC, the energy-aware
FFD approach and the OpenNebula scheduler.

• Number of Scheduled VMs: Table 4.4 shows that EMLS-ONC assigns more
VMs than the energy-aware FFD approach in average. This trend is also con-
firmed on the instances individually. However, despite a policy that maximizes
the number of assigned VMs in the EMLS-ONC, the OpenNebula scheduler
still assigns slightly more VMs. This is due to the consolidation process applied
by OpenNebula which keeps more space during the successive scheduling cy-
cles for the next VMs arrivals. Indeed, the first scheduling cycles EMLS-ONC
manages to keep up on the number of assigned VMs with the OpenNebula
scheduler but it collapses at the end. This phenomenon is more significant
with higher VMs arrivals when assigned over a proportionally small cloud.
This behavior is caused by the previous assignments which ultimately govern
the next ones.

• Processing time during each scheduling cycle: here, we compare the compu-
tation times of the approaches. Table 4.5 shows that the processing time of

104

Chapter 4: VM-level Scheduling on top of a Cloud Manager

both the energy-aware FFD algorithm and the default OpenNebula scheduler
are significantly smaller than the scheduling cycle time. This is due to the low
complexity of the algorithms. We present in this same table the maximum,
minimum and the average processing time values. The results show that de-
spite the complexity of EMLS-ONC the processing time value never exceeds
the default scheduling cycle duration (Max value) and it is really fast for small
instances (Min value).

• Energy consumption savings: in Figure 4.10 and Figure 4.11 we notice that
the EMLS-ONC energy histogram is always lower than the ones of both Open-
Nebula and the energy-aware FFD algorithm, which means better energy re-
duction during the whole scheduling cycles. Nevertheless, in Figure 4.13 we
notice that after a good starting, EMLS-ONC becomes slightly less efficient
than the energy-aware FFD algorithm between the scheduling cycles 7 and
12. It becomes better again until the end of the scheduling cycles. This is
due to the difference in the assignment policies of the two approaches. Indeed,
EMLS-ONC assigns more VMs in that period of time (see Figure 4.12) which
leads to an energy consumption increase. However, the additional assigned
VMs through the next scheduling cycles is done efficiently which brings down
again the energy consumption of the EMLS-ONC. Note that, the energy con-
sumption drawn in the figures and mentioned earlier is a normalized value. It
gives the energy consumption per VM through the different scheduling cycles
by taking into account both the number of assigned VMs and the total energy
consumption. This metric helps to observe the real energy efficiency of each
approach.

In addition, one can observe in all the previous figures that EMLS-ONC has
an increasing evolution. It changes according to the load and clearly shows its
superiority over the first few cycles when the VM assignment remains subject
to choice. In contrast, the other approaches have a downward evolution mainly
OpenNebula (consolidation). It has a bad energy assignment at the beginning
and starts to stabilize its energy consumption only on the last cycles when
the load is at its highest level. One can also note that the Energy-aware FFD
approach is better on average than the OpenNebula scheduler on non-dense
instances and a little bit worse on the instances with high loads as shown in
the last cycles of Figure 4.11.

Table 4.4 reports none normalized values. Therefore, we note that with the
two instances (320 hosts, 60 VMs) and (320 hosts, 100 VMs), EMLS-ONC has
worse results than energy-aware FFD. This is not relevant because EMLS-
ONC has a significantly higher number of assigned VMs. We can see then the
interest of using the normalized values in the figures.

105

Chapter 4: VM-level Scheduling on top of a Cloud Manager

Table 4.4: Comparison between the results obtained by the EMLS-ONC, the energy-
aware FFD algorithm and the OpenNebula scheduler.

Type EMLS-ONC vs Energy-FFD EMLS-ONC vs OpenNebula

of Instance # of Additional Energy Consumption # of Additional Energy Consumption

Hosts # VMs Assigned VMs RPC Assigned VMs RPC

5 1 0 0% 0 0%

5 5 0 -25.40% -4 -13.98%

5 20 1 -38.67% -2 -0.83%

5 60 2 -11.75% 0 -18.25%

5 100 2 -6.28% -1 -24.99%

20 1 0 -69.31% 0 -61.10%

20 5 -1 -13.51% -1 -11.00%

20 20 -2 -27.89% -4 -26.14%

20 60 1 -16.96% -8 -1.55%

20 100 5 -39.99% -5 -9.84%

80 1 0 -73.50% 0 -87.17%

80 5 0 -23.57% 0 -29.25%

80 20 7 -5.97% -3 -8.52%

80 60 17 -8.52% -11 -9.57%

80 100 10 -4.25% -8 -11.48%

320 1 0 -77.92% 0 -88.14%

320 5 0 -57.59% 0 -77.90%

320 20 0 -2.84% 0 -29.84%

320 60 13 1.23% -17 -4.23%

320 100 40 3.67% -13 -3.23%

Average values 4.75 -25% -3.85 -26%

Table 4.5: Comparison between the processing time during 20 scheduling cycle in a
row of the EMLS-ONC, the energy-aware FFD and the OpenNebula scheduler.

Computation EMLS-ONC Energy-FFD OpenNebula

time (sec) Scheduler Scheduler Scheduler

Max value 24.5178 0.541404 0.0264464

Min value 0.00219981 0.00189716 0.00184849

Average value 1.18063915 0.03622298 0.004775

4.4.3.2 Comparison study between the Pareto EMLS-ONC-MO, the
energy-aware FFD approach and the OpenNebula scheduler

In this section, we compare the performance of EMLS-ONC-MO, the energy-aware
FFD approach and the OpenNebula scheduler.

• Number of Scheduled VMs: Table 4.6 shows that EMLS-ONC-MO assigns
more VMs than the energy-aware FFD approach in average. This trend is also
confirmed on the instances individually. However, EMLS-ONC-MO is worse
than OpenNebula for some individual instances but still better in average.
This is due again to the consolidation mechanism of OpenNebula which keeps
more space during the successive scheduling cycles for the next VMs arrivals.
We notice also that EMLS-ONC-MO assigns significantly more VMs than the

106

Chapter 4: VM-level Scheduling on top of a Cloud Manager

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

0
50

00
00

10
00

00
0

15
00

00
0

EMLS−ONC
Energy_FFD
OpenNebula

Figure 4.10: Comparison of the results of the normalized energy consumption dur-
ing 20 scheduling cycles in row between EMLS-ONC scheduler, energy-aware FFD
scheduler and OpenNebula scheduler for a configuration of 5 VMs and 20 hosts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

0
50

00
00

10
00

00
0

15
00

00
0

EMLS−ONC
Energy_FFD
OpenNebula

Figure 4.11: Comparison of the results of the normalized energy consumption dur-
ing 20 scheduling cycles in row between EMLS-ONC scheduler, energy-aware FFD
scheduler and OpenNebula scheduler for a configuration of 100 VMs and 80 hosts.

other algorithms mainly on instances with a large infrastructure compared
to the number of VMs (# hosts >> # VMs) like for instances (20 hosts, 5

107

Chapter 4: VM-level Scheduling on top of a Cloud Manager

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

N
um

be
r

of
 a

ss
ig

ne
d

V
M

s

0
20

0
40

0
60

0
80

0
10

00

EMLS−ONC
Energy_FFD
OpenNebula

Figure 4.12: Comparison of the number of scheduled VMs during 20 scheduling cy-
cles in row between EMLS-ONC scheduler, energy-aware FFD scheduler and Open-
Nebula scheduler for a configuration of 100 VMs and 320 hosts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

EMLS−ONC
Energy_FFD
OpenNebula

Figure 4.13: Comparison of the results of the normalized energy consumption dur-
ing 20 scheduling cycles in row between EMLS-ONC scheduler, energy-aware FFD
scheduler and OpenNebula scheduler for a configuration of 100 VMs and 320 hosts.

VMs),(320 hosts, 60 VMs) and (320 hosts, 100 VMs).

108

Chapter 4: VM-level Scheduling on top of a Cloud Manager

• Processing time during each scheduling cycle: we compare here the three
scheduling approaches in terms of execution time. Table 4.7 shows that
the processing time of both the energy-aware FFD algorithm and the de-
fault OpenNebula scheduler are significantly smaller than the scheduling cycle
time. This is due to the low complexity of the algorithms. We report in this
table the maximum, minimum and the average processing time values. The
results show that despite the complexity of EMLS-ONC-MO the processing
time value never exceeds the default scheduling cycle duration (Max value)
and the algorithm is fast for small instances (Min value).

• Energy consumption and VMs performance savings: we define the VMs’ per-
formance by their response time, which is itself related to the memory usage.
Therefrom, the VM response time is inversely related to the VM performance.
In other words, reducing the response time of a VM means a good VM per-
formance. In Figure 4.14a and Figure 4.16a for the energy criterion and,
Figure 4.14b and Figure 4.16b for the VM performance criterion, one can
notice that when there are different assignment choices (i.e. during the first
scheduling cycles) in the instance types (# hosts >> # VMs) such as (20
hosts, 5 VMs) and (320 hosts, 100 VMs), EMLS-ONC-MO suffers a bit from
the diversity of the Pareto space. It struggles during the first scheduling cy-
cles but ends up having better results in both VM response time and energy
consumption. Moreover, it gives better results on both criteria during all the
scheduling cycles on the high loaded instances such as (80 hosts, 100 VMs)
(see Figure 4.15a and Figure 4.15b).

Table 4.6 shows that EMLS-ONC-MO is never Pareto dominated for any type
of instance. One can also notice that when the solutions proposed by EMLS-
ONC-MO do not dominate the solutions proposed by the other approaches
they still have an advantage. Indeed, as shown in the comparison of the
average values of both EMLS-ONC-MO and the energy-aware FFD (-19 %,
1 %) respectively for energy savings and VMs performance, when the EMLS-
ONC-MO and the energy-aware FFD solutions do not dominate each others,
the advantage that the solutions of EMLS-ONC-MO have in one objective
(e.g. Energy) is more significant than the disadvantage that they may have in
the other objective (e.g. VM performance).

We also note that EMLS-ONC-MO has a tendency to improve more signifi-
cantly the energy consumption than the VMs performances. This is mainly
due to the fact that an energy-aware assignment can be determined from the
beginning of the scheduling while a more focused VMs performance assignment
needs to wait for the last scheduling cycles where the VMs performance start
to decrease because of the load. As a consequence, a shorter optimization
time with less assignment possibilities is dedicated to the VM performance
criterion.

As for EMLS-ONC, Table 4.6 shows that with the two instances (320 hosts,

109

Chapter 4: VM-level Scheduling on top of a Cloud Manager

60 VMs) and (320 hosts, 100 VMs), EMLS-ONC-MO has worse results than
energy-aware FFD in both objectives. However, this is not relevant because
Table 4.6 reports none normalized values. Those values do not take into
account the number of assigned VMs which is significantly higher for EMLS-
ONC-MO. The normalized values drawn in Figure 4.16a and Figure 4.16b
prove it.

Table 4.6: Comparison between the results obtained by the EMLS-ONC-MO, the
energy-aware FFD algorithm and the OpenNebula scheduler.

Type EMLS-ONC-MO vs Energy-FFD EMLS-ONC-MO vs OpenNebula

of instance # of Energy VMs Response # of Energy VMs Response
Additional Consumption Time RPC Additional Consumption Time RPC

Hosts # VMs Assigned VMs RPC Assigned VMs RPC

5 1 0 0% 0% 0 0% 0%

5 5 0 -0.59% -1.39% 0 -0.78% -19.98%

5 20 2 -9.61% -1.03% 1 -6.06% -9.45%

5 60 2.25 -55.90% 1.50% -3.75 -39.51% 0.28%

5 100 1 -56.22% 1.75% -4 -43.29% -2.41%

20 1 0 0% 0% 0 0% 0%

20 5 2 -6.59% 5.80% 3 -14.81% -19.62%

20 20 2 -11.61% 0.54% 1 -18.79% 10.69%

20 60 -1 -40.06% 1.19% -9 -19.11% -7.00%

20 100 3 -5.42% -0.83% -6 -10.94% -10.97%

80 1 0 -62.30% -6.51% 0 -82.50% 0%

80 5 0 -6.64% 0.51% 0 -29.02% -27.86%

80 20 2 -10.59% 0.90% -1 -17.99% -31.67%

80 60 10 -0.57% 4.57% -7 -13.24% -17.48%

80 100 5 -7.69% 0.26% -5 -18.17% -29.90%

320 1 0 -71.41% 0% 0 -86.65% 0%

320 5 0 -19.78% 0.45% 0 -55.59% 2.44%

320 20 0 -32.35% 3.73% 0 -17.96% 8.36%

320 60 35.75 4.45% 3.17% 36.75 -2.62% -17.32%

320 100 34 3.44% 4.91% 19 -3.39% -3.54%

Average values 4.9 -19% 1% 1.25 -24% -9%

Table 4.7: Comparison between the processing time during 20 scheduling cycle in a
row of the EMLS-ONC-MO, the energy-aware FFD and the OpenNebula scheduler.

Computation EMLS-ONC-MO Energy-FFD OpenNebula

Time (sec) Scheduler Scheduler Scheduler

Max value 15.430325 0.57012 0.103329

Min value 0.00221455 0.00189864 0.00181377

Average value 0.73919431 0.04525467 0.00500326

110

Chapter 4: VM-level Scheduling on top of a Cloud Manager

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

EMLS−ONC−MO
Energy_FFD
OpenNebula

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 r
es

po
ns

e
tim

e

0.
0e

+
00

2.
0e

+
06

4.
0e

+
06

6.
0e

+
06

8.
0e

+
06

1.
0e

+
07

1.
2e

+
07 EMLS−ONC−MO

Energy_FFD
OpenNebula

(b)

Figure 4.14: Comparison of the results of (a): the normalized energy consumption.
(b): the normalized response time of a VM, during 20 scheduling cycles in row
between EMLS-ONC-MO scheduler, energy-aware FFD scheduler and OpenNebula
scheduler for a configuration of 5 VMs and 20 hosts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

EMLS−ONC−MO
Energy_FFD
OpenNebula

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 r
es

po
ns

e
tim

e

0e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06
1e

+
07

EMLS−ONC−MO
Energy_FFD
OpenNebula

(b)

Figure 4.15: Comparison of the results of (a): the normalized energy consumption.
(b): the normalized response time of a VM, during 20 scheduling cycles in row
between EMLS-ONC-MO scheduler, energy-aware FFD scheduler and OpenNebula
scheduler for a configuration of 100 VMs and 80 hosts.

111

Chapter 4: VM-level Scheduling on top of a Cloud Manager

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

25
00

00
0

EMLS−ONC−MO
Energy_FFD
OpenNebula

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 r
es

po
ns

e
tim

e

0e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06
1e

+
07 EMLS−ONC−MO

Energy_FFD
OpenNebula

(b)

Figure 4.16: Comparison of the results of (a): the normalized energy consumption.
(b): the normalized response time of a VM, during 20 scheduling cycles in row
between EMLS-ONC-MO scheduler, energy-aware FFD scheduler and OpenNebula
scheduler for a configuration of 100 VMs and 320 hosts.

4.4.3.3 Comparison study between the Pareto EMLS-ONC-MO, the
memory-aware FFD approach and the OpenNebula scheduler

In this section, we discuss the results of EMLS-ONC-MO, the memory-aware FFD
approach and the OpenNebula scheduler.

• Number of Scheduled VMs: Table 4.8 shows that EMLS-ONC-MO assigns
more VMs than the memory-aware FFD approach in average. This trend is
also confirmed on the instances individually. We note also that the improve-
ment of EMLS-ONC-MO in the VM assignments is more significant against
memory-aware FFD than against energy-aware FFD. However, EMLS-ONC-
MO gives in average almost the same results as OpenNebula. This is due
as said previously to the consolidation mechanism of the OpenNebula which
keeps more space during the successive scheduling cycles for the next VMs
arrivals. In addition, we notice that EMLS-ONC-MO outperforms memory-
aware FFD on the instances where the infrastructure is relatively large (> 20
hosts) especially for high load (> 60VMs per cycle) like in instances (20 hosts,
100 VMs),(80 hosts, 60 VMs) and (320 hosts, 100 VMs). Thus, we deduce that
the memory assignment policy misuses the available space of the resources.

• Processing time during each scheduling cycle: we compare here the three
scheduling approaches in terms of execution time. Table 4.9 shows that the
processing time of both the memory-aware FFD algorithm and the default

112

Chapter 4: VM-level Scheduling on top of a Cloud Manager

OpenNebula scheduler is significantly smaller than the scheduling cycle time.
This is due as said before to the low complexity of the algorithms. We re-
ported in this table the maximum, minimum and the average processing time
values. The results show that despite the complexity of EMLS-ONC-MO the
processing time value never exceeds the default scheduling cycle duration (Max
value)and the algorithm is fast for small instances (Min value).

• Energy consumption and VMs performance savings: as previously said, the
VMs performance is related to the memory usage. Therefore, memory-aware
FFD addresses the VMs performance issue.

We note that memory-aware FFD is very efficient in terms of the performance
of VMs (Figure 4.17b and Figure 4.19b). However, this efficiency has a draw-
back over the other criterion (i.e. the energy consumption) (see Figure 4.17a
and Figure 4.19a). Memory-aware FFD reaches this high efficiency in the VMs
performance on the instances where the cloud size is proportionally greater
than the number of arriving VMs. This is due to the possibility in that type
of instances of assigning VMs without overloading the hosts. Always for the
same type of instances, we note that EMLS-ONC-MO performs very well for
energy reduction and is quite close to memory-aware FFD on the VMs perfor-
mance criterion. Nevertheless, we observe that the more the energy reduction
is significant (see Figure 4.17a) the less efficient EMLS-ONC-MO is regarding
the VMs performances (see Figure 4.17b).

Moreover, we notice that for instances with high VMs load such as in Fig-
ure 4.18a, the first assignment (1st scheduling cycle) of EMLS-ONC-MO gives
the best result compared to the other approaches, but it leads to less energy
efficient results during the next scheduling cycles. However, EMLS-ONC-MO
finds the tradeoff and makes up with the improvement of the VM performances
until being better than the memory-aware FFD (see Figure 4.18b). One can
see here the advantage of a Pareto EMLS-ONC-MO approach.

Table 4.8 shows that EMLS-ONC-MO is never Pareto dominated for any type
of instance and is in average better than both memory-aware FFD (-14%,
2%) and OpenNebula scheduler (-25%, -10%). The only situations where
the solutions proposed by EMLS-ONC-MO are dominated by the solutions
of one of the other algorithms, are when EMLS-ONC-MO assigns more VMs
than these algorithms. The normalized values drawn in the figures prove the
Pareto superiority of EMLS-ONC-MO over memory-aware FFD and Open-
Nebula scheduler when including the number of assigned VMs. We note also
that the advantage of EMLS-ONC-MO over memory-aware FFD is less signif-
icant than the one obtained over energy-aware FFD. Indeed, memory-aware
FFD is more comprehensive. It performs well on the VM performances crite-
rion, in addition to improving is some cases the energy consumption. This is
due to the relationship between the memory and the CPU capacity. In other
words, a host with a high memory capacity has also a big number of CPUs

113

Chapter 4: VM-level Scheduling on top of a Cloud Manager

with a high frequency. Therefore, sorting the hosts by memory is equivalent
to sorting them from the one with the best CPU capacity to the one with the
worst. We deduce then that VM assignment using this technique consolidates
the VMs in the hosts from the biggest to the smallest one. This consolidation
is the reason why memory-aware FFD provides also good results in terms of
energy.

Table 4.8: Comparison between the results obtained by the EMLS-ONC-MO, the
memory-aware FFD algorithm and the OpenNebula scheduler.

Type EMLS-ONC-MO vs Memory-FFD EMLS-ONC-MO vs OpenNebula

of instance # of Energy VMs Response # of Energy VMs Response
Additional Consumption Time RPC Additional Consumption Time RPC

Hosts # VMs Assigned VMs RPC Assigned VMs RPC

5 1 0 0% 0% 0 0% 0%

5 5 0 -22.64% 0% 0 -10.62% 0%

5 20 0 17.28% -30.77% -1 2.34% -1.82%

5 60 0 -26.99% 0% -5 -65.22% 3.18%

5 100 3 -30.73% 0% -4 -35.32% -0.61%

20 1 0 -48.92% -0.89% 0 -63.77% -47.08%

20 5 0 -17.84% 18.24% 0 -3.66% 15.56%

20 20 1 -5.90% 2.68% -1 -15.49% 9.14%

20 60 11 3.22% -0.32% -1 -16.69% -5.84%

20 100 22 47.37% -2.51% -4 0.90% -13.53%

80 1 0 -64.77% 0% 0 -79.65% 0%

80 5 5 -9.69% 14.62% -2 -14.56% -7.44%

80 20 3 -7.09% 7.97% -3 -29.79% -36.98%

80 60 23 -0.56% 4.15% -5 -8.65% -22.43%

80 100 4.5 4.71% 1.71% -2.5 -10.98% -17.48%

320 1 0 -84.69% 0% 0 -90.43% 0%

320 5 0 -38.12% 0.68% 0 -38.48% 0.68%

320 20 5 -1.37% 11.78% -6 -9.24% -25.22%

320 60 12 0.89% 9.77% 17 -9.85% -21.67%

320 100 17.5 1.50% 9.39% 8.5 1.38% -26.37%

Average values 5.35 -14% 2% -0.45 -25% -10%

Table 4.9: Comparison between the processing time during 20 scheduling cycle in a
row of the EMLS-ONC-MO, the memory-aware FFD and the OpenNebula scheduler.

Computation EMLS-ONC-MO Memory-FFD OpenNebula

Time (sec) Scheduler Scheduler Scheduler

Max value 16.5711 0.530779 0.0211479

Min value 0.00224968 0.00188564 0.00178865

Average value 0.70908986 0.04163962 0.00480393

114

Chapter 4: VM-level Scheduling on top of a Cloud Manager

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

0
50

00
00

10
00

00
0

15
00

00
0

EMLS−ONC−MO
Memory_FFD
OpenNebula

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 r
es

po
ns

e
tim

e

0e
+

00
2e

+
06

4e
+

06
6e

+
06

EMLS−ONC−MO
Memory_FFD
OpenNebula

(b)

Figure 4.17: Comparison of the results of (a): the normalized energy consumption.
(b): the normalized response time of a VM, during 20 scheduling cycles in row be-
tween EMLS-ONC-MO scheduler, memory-aware FFD scheduler and OpenNebula
scheduler for a configuration of 5 VMs and 20 hosts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0

EMLS−ONC−MO
Memory_FFD
OpenNebula

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 r
es

po
ns

e
tim

e

0e
+

00
2e

+
06

4e
+

06
6e

+
06

8e
+

06

EMLS−ONC−MO
Memory_FFD
OpenNebula

(b)

Figure 4.18: Comparison of the results of (a): the normalized energy consumption.
(b): the normalized response time of a VM, during 20 scheduling cycles in row be-
tween EMLS-ONC-MO scheduler, memory-aware FFD scheduler and OpenNebula
scheduler for a configuration of 100 VMs and 80 hosts.

115

Chapter 4: VM-level Scheduling on top of a Cloud Manager

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

0
50

00
00

10
00

00
0

15
00

00
0

20
00

00
0 EMLS−ONC−MO

Memory_FFD
OpenNebula

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Scheduling cycle

V
M

 n
or

m
al

iz
ed

 r
es

po
ns

e
tim

e

0.
0e

+
00

2.
0e

+
06

4.
0e

+
06

6.
0e

+
06

8.
0e

+
06

1.
0e

+
07

1.
2e

+
07

EMLS−ONC−MO
Memory_FFD
OpenNebula

(b)

Figure 4.19: Comparison of the results of (a): the normalized energy consumption.
(b): the normalized response time of a VM, during 20 scheduling cycles in row be-
tween EMLS-ONC-MO scheduler, memory-aware FFD scheduler and OpenNebula
scheduler for a configuration of 100 VMs and 320 hosts.

4.4.3.4 Comparison study between the EMLS-ONC and the OpenNeb-
ula scheduler through a real deployment on GRID5000 infras-
tructure

In this section, we discuss the comparison between the results of both algorithms
EMLS-ONC and the OpenNebula default scheduler over the GRID5000 infrastruc-
ture. The results are presented in Table 4.10 to Table 4.15. For each type of instance
we present two tables, one for the raw results and the other for the normalized re-
sults.

• Number of Scheduled VMs: the results show that when EMLS-ONC is de-
ployed on a real infrastructure, it assigns more VMs than the default sched-
uler of OpenNebula. We do not observe a difference in the number of assigned
VMs for the small ratio instances (20 hosts, 5 VMs) because of the small
number of arriving VMs compared to the size of the cloud. All the VMs could
be assigned in both approaches (see Table 4.10). However, for medium and
high ratio instances, EMLS-ONC is better in the number of assigned VMs as
presented in Table 4.12 and Table 4.14.

• Computation time during each scheduling cycle: the results show that EMLS-
ONC never exceeds the scheduling cycle limit for any of the instances. For the
instances where the scheduling time is set to 30 sec (i.e. (50 hosts, 5 VMs)
and (50 hosts, 100 VMs)), the longest processing time registered is of 24.25sec

116

Chapter 4: VM-level Scheduling on top of a Cloud Manager

(see Table 4.12). Regarding the last instance, the scheduling cycle time is set
to 60 seconds because of the big number of VMs combined to the size of the
cloud (200 hosts, 100 VMs). This increases the time duration of the hosts
filtering step in the EMLS-ONC algorithm and adds latency to retrieve the
hosts’ features. The obtained results show that EMLS-ONC spends for the
longest processing time 53.68sec (see Table 4.14).

• Energy consumption savings: we can notice three different behaviors from
the energy-based analysis of the experiment results according to the type of
the instance. The first analysis is the one regarding the small ratio instance
(20 hosts, 5 VMs). This instance contains many assignment possibilities, we
observe that EMLS-ONC improves the obtained results at each scheduling
cycle with an average value of −7.81% compared to the default OpenNebula
scheduler (see Table 4.10 and Table 4.11).

The second analysis concerns the experiments on a big ratio instance (50 hosts,
100 VMs). We note for this type of instance an improvement during the first
scheduling cycles which gradually leaves room to a decrease in the improve-
ment. The accumulation of the VMs as the scheduling cycles occur, limits
the opportunities for improving the assignment (see Table 4.12). However,
because of a higher number of assigned VMs, EMLS-ONC has better nor-
malized energy values than the OpenNebula default scheduler (see Table 4.13).

The third and last analysis is the one of the medium ratio instance (200 hosts,
100 VMs). We observe for this type of instance that there is an improvement
during the first scheduling cycles as for the previously analyzed instances.
However, the improvement decreases gradually until reaching a point where
EMLS-ONC gives worse results than the OpenNebula scheduler (see Table 4.14
and Table 4.15). Even if EMLS-ONC assigns more VMs than the OpenNebula
scheduler, this is not the cause of the performance decreasing.

In the following, we will explain the cause of this performance drop on the
instances with a medium and a high ratio. As shown in Figure 4.20, the policy
of EMLS-ONC is to assign from the beginning the VMs in an energy-efficient
way. Conversely, the default scheduler of OpenNebula fills each host to its
maximum capacity and relies on the time to benefit from its assignment. One
can have at a given moment as shown in Figure 4.20, two different assignments.
The first at the right of Figure 4.20 (EMLS-ONC), which minimizes at each
moment the energy consumption, and the second at the left which consolidates
(OpenNebula). The problem comes from the energy evaluation function in
Equation (4.2). Indeed, to be as precise as possible, our energy function
evolves according to the previous CPU usage value of the host. Therefore,
Equation (4.2) does not give the same results for a same VM j assigned to
the host i if this host i is free or if it is used at 60%. It is obvious then

117

Chapter 4: VM-level Scheduling on top of a Cloud Manager

to see that, while the OpenNebula default scheduler and other consolidation
approaches will start by over loading the first host before switching to another
one, EMLS-ONC assigns with the aim not to reach a critical usage of the hosts
by having a balanced assignment.

With these two policies one can see that during the last scheduling cycles,
the EMLS-ONC has no alternative to find free hosts. It becomes mandatory
for it to assign the VMs with a high CPU_usagei value having an exponen-
tial increase while calculating the energy consumption. On the other hand,
the OpenNebula scheduler keeps some hosts free and benefits from this situ-
ation to avoid the additional energy cost given by CPU_usagei. This does
not show realistic energy consumption for the OpenNebula scheduler. In-
deed, the hosts’ usage features are updated only between the scheduling cycles.
One can see that because of a progressive filling, EMLS-ONC is affected by
the CPU_usagei parameter. Conversely, the default OpenNebula scheduler
avoids to suffer from the CPU_usagei parameter since each scheduling cycle
brings a big number of VMs assigned using a consolidation policy, fully filling
the host at once. To avoid this phenomenon, and to be more realistic about
the energy consumption, the solution would be to update the hosts’ parame-
ters after each VM assignment and not after the whole scheduling cycle. That
way, one can be able to see the real evolution of the energy consumption in a
fair way regardless the specifications of the used policy.

In addition, another reason for the energy-aware performance drop of EMLS-
ONC is the weak heterogeneity of the infrastructure that we used for the
real experiments. The latter is composed of just two different types of ma-
chines (2 clusters). In contrast, this problem is less noticeable in the artificial
experiments where the heterogeneity is more significant. This is due to the
high advantage that EMLS-ONC takes from this heterogeneity during the first
scheduling cycles. Therefore, the previously cited phenomenon caused by the
high loaded instances (e.g. 100 VMs per scheduling cycle) is compensated by
the energetic gains from the beginning.

118

Chapter 4: VM-level Scheduling on top of a Cloud Manager

Figure 4.20: The difference between the assignment policies of EMLS-ONC and
a consolidation based algorithm (OpenNebula scheduler) on a low heterogeneity
architecture.

119

C
h
a
p
t
e
r

4:
V

M
-
l
e
v
e
l

S
c
h
e
d
u
l
in

g
o
n

t
o
p

o
f

a
C

l
o
u
d

M
a
n
a
g
e
r

Table 4.10: Comparison raw results (EMLS-ONC vs OpenNebula scheduler) for 5 VMs/cycle on 50 GRID5000 machines.

Type EMLS-ONC OpenNebula EMLS-ONC vs OpenNebula
of instance # of Energy Time # of Energy Time Energy

Assigned VMs Consumption Processing Assigned VMs Consumption Processing Consumption RPC

Hosts # VMs per Cycle per Cycle per Cycle per Cycle per Cycle per Cycle per Cycle

5 5 618750 0.247646 5 644340 0.115171 -3.97%
5 5 506250 0.206066 5 566238 0.112818 -10.59%
5 5 618750 0.222904 5 673628 0.142955 -8.15%
5 5 450000 0.235296 5 478374 0.10662 -5.93%

50 5 5 562500 0.231712 5 615052 0.154184 -8.54%
5 5 902326 0.208596 5 990916 0.17752 -8.94%
5 5 675000 0.218978 5 766374 0.158824 -11.92%
5 5 677326 0.242968 5 746848 0.119851 -9.31%
5 5 675000 0.249436 5 722899 0.125968 -6.63%
5 5 630382 0.190761 5 646875 0.150096 -2.55%

Sum/Average 50 50 631628.4 0.2254363 50 685154.4 0.1364007 -7.81%

Table 4.11: Comparison cumulative results (EMLS-ONC vs OpenNebula scheduler) for 5 VMs/cycle on 50 GRID5000 machines.

Type Cumulative Energy Cumulative # Normalized Energy EMLS-ONC vs OpenNebula

of instance Consumption VMs Assigned Consumption Normalized Energy

Hosts # VMs EMLS-ONC OpenNebula EMLS-ONC OpenNebula EMLS-ONC OpenNebula Consumption RPC

5 618750 644340 5 5 123750 128868 -3.97%
5 1125000 1210578 10 10 112500 121057.8 -7.07%
5 1743750 1884206 15 15 116250 125613.733 -7.45%
5 2193750 2362580 20 20 109687.5 118129 -7.15%

50 5 2756250 2977632 25 25 110250 119105.28 -7.43%
5 3658576 3968548 30 30 121952.533 132284.933 -7.81%
5 4333576 4734922 35 35 123816.457 135283.486 -8.48%
5 5010902 5481770 40 40 125272.55 137044.25 -8.59%
5 5685902 6204669 45 45 126353.378 137881.533 -8.36%
5 6316284 6851544 50 50 126325.68 137030.88 -7.81%

120

C
h
a
p
t
e
r

4:
V

M
-
l
e
v
e
l

S
c
h
e
d
u
l
in

g
o
n

t
o
p

o
f

a
C

l
o
u
d

M
a
n
a
g
e
r

Table 4.12: Comparison raw results (EMLS-ONC vs OpenNebula scheduler) for 100 VMs/cycle on 50 GRID5000 machines.

Type EMLS-ONC OpenNebula EMLS-ONC vs OpenNebula
of instance # of Energy Time # of Energy Time Energy

Assigned VMs Consumption Processing Assigned VMs Consumption Processing Consumption RPC

Hosts # VMs per Cycle per Cycle per Cycle per Cycle per Cycle per Cycle per Cycle

100 100 1.32E+07 24.2551 100 1.35E+07 7.669 -2.57%
100 96 1.21E+07 15.5146 96 1.17E+07 4.77494 3.93%
100 1 135938 0.0149516 0 0 2.20E-05 /
100 0 0 0.00013059 0 0 6.42E-05 /

50 100 0 0 0.00012998 0 0 8.33E-05 /
100 5 437630 0.203641 0 0 8.35E-05 /
100 0 0 0.0003989 0 0 0.00015213 /
100 0 0 0.0004072 0 0 0.00015589 /
100 0 0 0.249436 0 0 0.00022373 /
100 0 0 0.190761 0 0 0.00021441 /

Sum/Average 1000 202 25871468 4.04295563 196 25185100 1.24449391 2.73%

Table 4.13: Comparison cumulative results (EMLS-ONC vs OpenNebula scheduler) for 100 VMs/cycle on 50 GRID5000 machines.

Type Cumulative Energy Cumulative # Normalized Energy EMLS-ONC vs OpenNebula

of instance Consumption VMs Assigned Consumption Normalized Energy

Hosts # VMs EMLS-ONC OpenNebula EMLS-ONC OpenNebula EMLS-ONC OpenNebula Consumption RPC

100 13162500 13509100 100 100 131625 135091 -2.57%
100 25297900 25185100 196 196 129070.918 128495.408 0.45%
100 25433838 25185100 197 196 129105.777 128495.408 0.48%
100 25433838 25185100 197 196 129105.777 128495.408 0.48%

50 100 25433838 25185100 197 196 129105.777 128495.408 0.48%
100 25871468 25185100 202 196 128076.574 128495.408 -0.33%
100 25871468 25185100 202 196 128076.574 128495.408 -0.33%
100 25871468 25185100 202 196 128076.574 128495.408 -0.33%
100 25871468 25185100 202 196 128076.574 128495.408 -0.33%
100 25871468 25185100 202 196 128076.574 128495.408 -0.33%

121

C
h
a
p
t
e
r

4:
V

M
-
l
e
v
e
l

S
c
h
e
d
u
l
in

g
o
n

t
o
p

o
f

a
C

l
o
u
d

M
a
n
a
g
e
r

Table 4.14: Comparison of raw results (EMLS-ONC vs OpenNebula scheduler) for 100 VMs/cycle on 200 GRID5000 machines.

Type EMLS-ONC OpenNebula EMLS-ONC vs OpenNebula
of instance # of Energy Time # of Energy Time Energy

Assigned VMs Consumption Processing Assigned VMs Consumption Processing Consumption RPC

Hosts # VMs per Cycle per Cycle per Cycle per Cycle per Cycle per Cycle per Cycle

100 100 1.32E+07 51.97 100 1.37E+07 7.65 -3.65%
100 100 1.22E+07 53.68 100 1.25E+07 5.35 -2.40%
100 100 1.54E+07 47.97 100 1.53E+07 5.58 0.53%
100 100 1.47E+07 28.03 100 1.45E+07 4.71 1.38%

200 100 100 1.38E+07 17.65 100 1.35E+07 5.30 2.40%
100 100 1.48E+07 28.30 100 1.42E+07 5.77 3.88%
100 100 1.32E+07 20.57 100 1.21E+07 5.72 9.00%
100 37 5.93E+06 5.15 36 4.96E+06 1.91 19.56%
100 0 0 0.24 0 0 0.00022 /
100 0 0 0.19 0 0 0.00021 /

Sum/Average 1000 737 103253980 25.3803807 736 100836570 4.20241951 2.40%

Table 4.15: Comparison cumulative results (EMLS-ONC vs OpenNebula scheduler) for 100VMs/cycle on 200 GRID5000 machines.

Type Cumulative Energy Cumulative # Normalized Energy EMLS-ONC vs OpenNebula

of instance Consumption VMs Assigned Consumption Normalized Energy

Hosts # VMs EMLS-ONC OpenNebula EMLS-ONC OpenNebula EMLS-ONC OpenNebula Consumption RPC

100 13200000 13700000 100 100 132000 137000 -3.65%
100 25400000 26200000 200 200 127000 131000 -3.05%
100 40800000 41519380 300 300 136000 138397.933 -1.73%
100 55500000 56019380 400 400 138750 140048.45 -0.93%

200 100 69323980 69519380 500 500 138647.96 139038.76 -0.28%
100 84123980 83766010 600 600 140206.633 139610.017 0.43%
100 97323980 95876570 700 700 139034.257 136966.529 1.51%
100 103253980 100836570 737 736 140100.38 137006.209 2.26%
100 103253980 100836570 737 736 140100.38 137006.209 2.26%
100 103253980 100836570 737 736 140100.38 137006.209 2.26%

122

Chapter 4: VM-level Scheduling on top of a Cloud Manager

4.5 Conclusion

In this chapter, we have presented a new approach for the VM-level scheduling,
the third and lowest level of scheduling in the cloud. This contribution has been
integrated in a real cloud manager named OpenNebula using a multi-start local
search metaheuristic. Two variants of this metaheuristic have been proposed, a
single-objective one called EMLS-ONC and a Pareto multi-objective one named
EMLS-ONC-MO. The main challenge at this level of scheduling is the minimization
of the energy consumption of the managed infrastructure. However, addressing only
the energy issue raises a new challenge of the VMs performance. In this purpose,
optimizing only the energy criterion showed the advantage offered by EMLS-ONC,
while minimizing both criteria using the Pareto EMLS-ONC-MO, led to find the
tradeoff between both the energy consumption and the offered VMs performance.
This is made possible by exploiting the heterogeneity offered by the different types
of machines that compose the cloud infrastructures. The main contributions of this
chapter are the following:

• Cloud manager embedded scheduler: we have shown that the lowest level of
scheduling has an important impact on the results of both the service- and
task-level scheduling if not optimized in terms of energy and performance.
Therefore, the proposed scheduling techniques in this chapter have been em-
bedded in a cloud manager to respect the real constraints related to a cloud
infrastructure and to be as seamless as possible to be used by different upper
configuration of the market-oriented clouds. We have chosen as a case study
for managing our cloud the well known OpenNebula cloud manager.

• New energy and performance models: we have improved the models of the
energy consumption of a host by relating the CPU usage to the increase of the
energy consumption. Indeed, we have highlighted the relationship between the
energy consumption of a host and its CPU usage value and gave the level of
variation value that relates that CPU usage to the energy increase. Moreover,
we have shown that the performance of the VMs is related to the memory
usage of the host. In this purpose, we have proposed a VMs performance
evaluation function based on the memory usage parameter.

• Pareto EMLS-ONC-MO: in addition to a single-objective energy-aware sched-
uler (EMLS-ONC), we have proposed a Pareto multi-objective scheduler that
tackles also the VM performance objective. The idea was unlike other litera-
ture approaches, to relate both well known antagonist criteria of the schedul-
ing on clouds by addressing them simultaneously. Indeed, each criterion taken
separately impacts the other. Thus, the race to performance leads to a huge
increase in the energy consumption and conversely, the reduction in the energy
consumption decreases the cloud performance.

• Real infrastructure deployment: to fit the reality and demonstrate the feasibil-
ity of our contribution, we have proposed in addition to artificial experiments

123

Chapter 4: VM-level Scheduling on top of a Cloud Manager

over virtual clouds, a full analysis of real successful deployments of EMLS-
ONC over up to 200 physical machines of the GRID’5000 grid infrastructure.

124

Conclusion and Perspectives

The cloud computing paradigm is being more and more frequent in the daily users’
life as an evolution of the IT. This concept helps the users through proposed services
to satisfy their requests easily by suiting more precisely their needs. However,
this generalization of cloud computing usage added different categories of users
(clients) which led to different service levels. Indeed, depending on the accuracy
of the needs or the business orientation of the service, different levels should be
distinguished. Each cloud level brings its own specifications with its own issues.
Thus, in this work we identified three different levels of clouds according to the
service granularity: service-level, task-level and VM-level. For each cloud level we
proposed a different metaheuristic-based algorithm to optimize the scheduling at
this level. Two algorithms have been designed for a market-oriented cloud: MO-GA
for the service-level scheduling addressing a wide computation-intensive service and
MOGA-CB for the task-level scheduling dealing with a more accurate service in a
brokering environment. The third algorithm is not market-oriented and concerns
the common prerequisite of any cloud: the infrastructure management. It relies on
a VM-level scheduling which addresses the efficiency related to the infrastructure
as a service.

Several contributions related to each scheduling level have been presented in
this thesis. For the service-level, we showed that high-level scheduling (meta-
scheduling) has significant impact for addressing some issues such as energy
consumption, profit and QoS. This is due to the geographical distribution nature of
the meta-scheduled infrastructure. Indeed, the infrastructure that we deal with in
the service level-scheduling is a cloud federation. The resulting high heterogeneity
of such an infrastructure opens a lot of optimization possibilities using scheduling.
Moreover, because of the number of criteria and their conflicting nature, we have
proposed a multi-objective genetic algorithm (MO-GA) that faces all the issues
at once to get a Pareto optimization that does not neglect any of them. As a
metaheuristic, MO-GA successfully rose to this challenge by providing a wide range
of solutions proven as efficient. Besides, the Pareto set of solutions permits to offer
plenty of equivalent solutions regarding different criteria. However, to benefit from
this diversity, we have proposed a selection mechanism based on a vector called
meta-selection. It helps the provider to satisfy at any time the QoS of the client by
acting directly over his/her criteria according to the current needs.

Regarding the task-level scheduling, the idea is conversely to the other ap-
proaches in the literature, to address the common impacting criteria of both the
client’s satisfaction and the broker’s profit objectives instead of dealing directly
with those objectives. Thus, we dealt simultaneously with the response time and
the cost of the VM instances to address the satisfaction and profit issues. In

Conclusion and Perspectives

that way, we designed a dynamic Pareto evolutionary algorithm (MOGA-CB) to
find the tradeoff between those criteria and to fit the scheduling constraints such
as the respect of the scheduling round duration. Using our algorithm conducted
to improve the usage of the utility theory in economics for modeling the client’s
satisfaction. The reported results showed that our Pareto-based approach helps to
dispose from the client’s requested preference parameters. That was made possible
by providing a Pareto optimal or near-optimal solution giving a native tradeoff
between the addressed criteria and selecting from the Pareto set the nearest solution
to the origin of the axis.

Finally, the VM-level scheduling, as the common scheduling level to all the other
scheduling levels of the cloud, plays a key role in the results of both the service- and
task-level scheduling. Therefore, we embedded our proposed VM-level scheduler in
the OpenNebula cloud manager to respect the real constraints related to a cloud
infrastructure and to be as seamless as possible regarding the upper configuration
of the market-oriented clouds. Moreover, we improved the energy consumption
computation model of the hosts by relating the CPU usage value to the energy
consumption. Also, we showed that the performance of the VMs was related to the
memory usage of the host and proposed a new VMs performance evaluation function
based on that observation. In addition, we considered together both energy and
performance, the two best known antagonist criteria of a cloud infrastructure, by
addressing them simultaneously using a Pareto multi-start local search algorithm.
Finally, we conducted a full analysis of real successful cloud deployments of our VM-
level scheduler over up to 200 physical machines of the Grid’5000 grid infrastructure.

This thesis opens a lot of perspectives related, on the one hand, to both the
used models and the proposed approaches in our contributions and, on the other
hand, to the combination of whole these contributions. The main model perspective
in the first contribution, with the meta-scheduler for the service level-scheduling,
is to determine a way to minimize more significantly the energy consumption by
using DVS within each individual cloud of the federation, and to allow delays in the
services’ deadlines by introducing a new pricing model with penalties to enlarge the
possible assignments. The major perspective of the second contribution lies in the
usage of a simplified economic model dispossessed from the preference parameters
(α, β) to minimize with more impact both the response time and the price of
the tasks. For the VM-level scheduling, the idea is to enhance the energy model
by including other energy consumption sources like memory and/or hard drives
to minimize with more impact the energy consumption. Moreover, a model that
introduces a real time updating of the host parameter values is also interesting to
have a more precise energy estimate.

Regarding the algorithm improvement perspectives, one can imagine a dynamic
meta-scheduler in the service-level cloud federation which reassigns services during
a new scheduling cycle on different clouds to improve the optimization of the

126

Conclusion and Perspectives

criteria. However, this is hard to implement in the real-cloud and strongly
depends on the providers’ policies. Indeed, the market competition forces the
provider to adopt different frameworks to have exclusivity over their services
and prevents the migration of their clients elsewhere. In the same way, based
on the live migration process offered by the cloud managers (e.g. OpenNebula),
a dynamic version of the EMLS-ONC/EMLS-ONC-MO scheduler for VM-level
scheduling might be able to reassign the VMs during their running phase on
different hosts for better optimization results. However, as for the service-level
scheduling, this is hard to implement and depends on several issues related
to the migrated VMs such as their flexibility (i.e the migration permissiveness
of the running applications), their data transfer cost and their CPU time complexity.

Furthermore and as previously said, a more general perspective related to the
whole contributions of this thesis can be proposed. It consists in the combination
of all the different levels of scheduling as parts of the same scheduling workflow as
shown in Figure 4.21. The result will be a general scheduling approach regardless
the granularity of the service. One can see that a client can send a request to the
cloud. Depending on the accuracy of the needs the request will either start by
finding the convenient cloud among the federation using the meta-scheduler at the
first level or directly be transmitted to the brokering scheduler at the second level.
The next step at the second level will be the assignment of the client request to the
judicious combination of the VM instances by the brokering scheduler. At the last
level, the VM-level, the cloud manager scheduler will be in charge of finding for each
VM proposed by the task-level, the best physical machine where it could be hosted
efficiently.

127

Conclusion and Perspectives

Figure 4.21: A General overview of the metaheurstics-based multi-level cloud sched-
uler. (Red arrows represent the information exchanges between the different levels
of scheduling and black ones represent the communications at each level)

128

Appendix A

Open Source Cloud Managers

Table A.1: Open source based cloud managers characteristics

Feature Eucalyptus OpenNebula Nimbus

Computing

Architecture

-Ability to configure

multiple clusters, each

with private internal

network addresses, into

a single Cloud. - Private

Cloud

-Cluster into an IaaS

cloud- Focused on the

efficient, dynamic and

scalable management of

VMs within datacenters

(private clouds) involv-

ing a large amount of vir-

tual and physical servers

-Science Cloud -Client-

side cloud computing

interface to Globus-

enabled TeraPort cluster

-Nimbus Context Bro-

ker that combines

several deployed vir-

tual machines into

"turnkey" virtual clus-

ters -Heterogeneous clus-

ters of auto-configuring

VMs with one command

Virtualization

Management

-Xen hypervisor -Xen, KVM and on-

demande access to Ama-

zon EC2

-Xen Virtualization

Service IaaS IaaS IaaS

Load balanc-

ing

-Simple load-balancing

cloud controller

-Nginx Server configured

as load balancer, used

round-robin or weighted

selection mechanism

-Launches self-

configuring virtual

clusters i.e. the context

broker

Fault toler-

ance

-Separate cluster within

the Eucalyptus cloud re-

duce the chance of corre-

lated failure

-The deamon can be

restarted and all the

running VMs recovered

-Persistent database

backend to store host

and VM information

-Checking worker nodes

periodically and recovery

Interoperability -Multiple cloud comput-

ing interfaces using the

same "back end" infras-

tructure

-Interoperable between

intra cloud services

-Standards: "rough

consensus and working

code"

Storage -Walrus (the front end

for the storage subsys-

tem)

-Database, persistent

storage for ONE data

structures -SQLite3

backend is the core

component of the Open-

Nebula internal data

structures

GridFTP and SCP

Security WS-security for au-

thentication, Cloud

controller generates the

public/private key

-Firewall, Virtual Pri-

vate Network Tunnel

PKI credential required -

Works with Grid proxies

VOMS, Shibboleth (via

GridShib), custom PDPs

Programming

Framework

-Hibernate, Axis2 and

Axis2c, Java

-Java, Ruby, C++ Python, Java

Appendix B

Preliminary Work for a Transition

from the System-level Scheduling

to the Cloud VM-level Scheduling

B.1 Introduction

Precedence-constrained parallel applications are one of the most typical application
model used in scientific and engineering fields. Such applications can be deployed on
homogeneous or heterogeneous systems (HCSs) like cloud computing infrastructures.

Cloud computing is a simple concept that has emerged from heterogeneous dis-
tributed computing, grid computing, utility computing, and autonomic computing.
In cloud computing, end-users do not own any part of the infrastructure. The end-
users simply use the services available through the cloud computing paradigm and
pay for the used services. The cloud computing paradigm can offer any conceivable
form of services, such as computational resources for high performance computing
applications, web services, social networking, and telecommunications services. Sev-
eral criteria determine the quality of the provided service, the production cost of
this service, and therefore the price paid by the end-user. The duration of this ser-
vice (makespan) and the consumed energy are among of these criteria. The idea is
to provide end-users a more flexible service that takes into account the duration of
the service and the consumed energy. End-users could then find the right compro-
mise between these two conflicting objectives to solve their precedence-constrained
parallel applications.

The problem of finding the right compromise between the resolution time and the
energy consumed of a precedence-constrained parallel application is a bi-objective
optimization problem. The solution to this problem is a set of Pareto points. Pareto
solutions are those for which improvement in one objective can only occur with the
worsening of at least one other objective. Thus, instead of a unique solution to the
problem, the solution to a bi-objective problem is a (possibly infinite) set of Pareto
points. To the best of our knowledge, there is no research published in the literature
to solve the above problem with a Pareto approach.

However, many works have focused on precedence-constrained parallel applica-
tions (e.g., [Darbha 1998], [Zomaya 1999], [Topcuouglu 2002] and [Lee 2008]). Most
of these works propose algorithms to minimize the makespan. Only recently that
some works are interested in minimizing the energy consumption (e.g., [Kim 2007a],
[Bunde 2006], [Zhu 2003], [Zhu 2004], [Ge 2005] and [Rountree 2007]).

Appendix B

Using green IT techniques can significantly reduce an organization’s and ulti-
mately a country’s carbon footprint. The UN bought 461 tons of carbon offsets
to ensure that the September 2009 Summit on Climate Change in New York was
carbon neutral. According to [Cameron 2010], if green IT techniques were imple-
mented that reduced the energy use of 10,000 computers in West Virginia by 50%,
the deployment would produce 33 times less carbon in one year than that produced
by the summit. A recent study on power consumption by servers [Koomey 2008]
shows that, in 2005, the power used by servers represented about 0.6% of total U.S.
electricity consumption. That number grows to 1.2% when cooling and auxiliary
infrastructures are included. In the same year, the aggregate electricity bill for op-
erating those servers and associated infrastructure was about $2.7 billions and $7.2
billions for the U.S. and the world, respectively. The total electricity use for servers
doubled over the period 2000 to 2005 in worldwide. The number of transistors
integrated into today’s Intel Itanium 2 processor reaches nearly 1 billion. If this
rate continues, the heat (per square centimeter) produced by future Intel processors
would exceed that of the surface of the sun [Koch 2005]. This implies the possibility
of worsening system reliability, eventually resulting in poor system performance.

Due to the importance of energy consumption, various techniques including dy-
namic voltage scaling (DVS), resource hibernation, and memory optimizations have
been investigated and developed [Venkatachalam 2005]. DVS among these has been
proven to be a very promising technique with its demonstrated capability for energy
savings (e.g., [Bunde 2006], [Zhu 2003] and [Ge 2005]). For this reason, we adopt
this technique and it is of particular interest to this study. DVS enables processors
to dynamically adjust voltage supply levels (VSLs) aiming to reduce power con-
sumption. However, this reduction is achieved at the expense of sacrificing clock
frequencies.

In this paper, we investigate the energy issue in task scheduling particularly on
HCSs like cloud computing systems. We propose a new parallel bi-objective hybrid
genetic algorithm that takes into account, not only makespan, but also energy con-
sumption. Our new approach is a hybrid between a multi-objective parallel genetic
algorithm and energy-conscious scheduling heuristic (ECS) [Lee 2009]. The results
clearly demonstrate the superior performance of ECS over the other algorithms like
DBUS [Bozdag 2006] and HEFT [Topcuouglu 2002]. Genetic algorithms make it
possible to explore a great range of potential solutions to a problem. The explo-
ration capability of the genetic algorithm and the intensification power of ECS are
complementary. A skillful combination of a metaheuristic with concepts originating
from other types of algorithms lead to more efficient behavior.

Our algorithm is effective as it profits from the exploration power of the genetic
algorithm, the intensification capability of ECS, the cooperative approach of the
island model, and the parallelism of the multi-start model. The island model and
the hybridization improve the quality of the obtained results. The multi-start model
reduces the running time of a resolution. Furthermore, one of the major interests
of our approach is to give the end-user a set of Pareto solutions to choose according
to the desired quality of service, in particular the completion time, and the cost

132

Appendix B

of the service in terms of energy and consequently in terms of price willing to pay.
The proposed method can easily be applied to loosely coupled HCSs (e.g., cloud
computing systems) using advance reservation and various sets of frequency-voltage
pairs.

Our new approach is evaluated with the Fast Fourier Transformation task graph
which is a real-world application. Experiments show that (1) the hybridization
improves on average the best known results obtained in the literature (by 47.5%
for the energy consumption and 12% for the completion time), (2) the island model
significantly improves the results obtained using only the hybridization, and (3) the
multi-start model accelerates our approach with an average speedup of 13 using 21
cores.

The remainder of the paper is organized as follows. Section B.2 presents the
application, system, energy and scheduling models used in this paper. Section B.3
describes the related work. Our algorithm is presented in Section B.4. The results
of our comparative experimental study are discussed in Section B.5. The conclusion
is drawn in Section B.6. The paper ends with an appendix which describes our
approaches using pseudo-code.

B.2 Problem modeling

In this section, we describe the system, application, energy and scheduling models
used in our study.

B.2.1 Cloud computing model

A cloud computing system is a set of resources designed to be allocated ad hoc to
run applications. In our model, the cloud is assumed to be hosted in a data center
which is composed by heterogeneous machines. This data center provides a set of
services hosted on thousands of high-end computing servers. The need in terms of
services of an application can be modeled by a task graph. In this graph, an edge
between two tasks represents an inter-service communication.

The cloud computing system used in this work consists of a set P of p het-
erogeneous processors/machines. Each processor pj ∈ P is DVS-enabled; in other
words, it can operate with different VSLs (i.e., different clock frequencies). For each
processor pj ∈ P , a set Vj of v VSLs is random and uniformly distributed among
three different sets of VSLs (Table B.1). Since clock frequency transition overheads
take a negligible amount of time (e.g., 10µs- 150µs [Intel 2004], [Min 2000]), these
overheads are not considered in our study. The inter-processor communications are
assumed to perform with the same speed on all links without contentions. It is also
assumed that a message can be transmitted from one processor to another while a
task is being executed on the recipient processor which is possible in many systems.

133

Appendix B

Table B.1: Voltage-relative speed pairs

Pair 1 Pair 2 Pair 3
Level Voltage Relative Voltage Relative Voltage Relative

(vk) speed (vk) speed (vk) speed
(%) (%) (%)

0 1.5 100 2.2 100 1.75 100
1 1.4 90 1.9 85 1.4 80
2 1.3 80 1.6 65 1.2 60
3 1.2 70 1.3 50 0.9 40
4 1.1 60 1.0 35
5 1.0 50
6 0.9 40

B.2.2 Application model

Parallel programs can be generally represented by a directed acyclic graph (DAG).
A DAG, G = (N,E), consists of a set N of n nodes and a set E of e edges. A DAG
is also called a task graph or macro-dataflow graph. In general, the nodes represent
tasks partitioned from an application; the edges represent precedence constraints.
An edge (i, j) ∈ E between task ni and task nj also represents inter-task commu-
nication. A task with no predecessors is called an entry task, nentry, whereas an
exit task, nexit, is one that does not have any successors. Among the predecessors
of a task ni, the predecessor which completes the communication at the latest time
is called the most influential parent (MIP) of the task denoted as MIP (ni). The
longest path of a task graph is the critical path.

The weight on a task ni denoted as wi represents the computation cost of the
task. In addition, the computation cost of the task on a processor pj, is denoted as
wi,j and its average computation cost is denoted as w̄i.

The weight on an edge, denoted as ci,j represents the communication cost be-
tween two tasks, ni and nj. However, a communication cost is only required when
two tasks are assigned to different processors. In other words, the communication
cost when tasks are assigned to the same processor is zero and thus can be ignored.

The earliest start time of, and the earliest finish time of, a task ni on a processor
pj is defined as

EST (ni, pj) =
{

0 ifni = nentry

EFT (MIP (ni), pk) + cMIP (ni),i
otherwise

EFT (ni, pj) = EST (ni, pj) + wi,j

Note that the actual start and finish times of a task ni on a processor pj, denoted as
AST (ni, pj) and AFT (ni, pj) can be different from its earliest start and finish times,
EST (ni, pj) and EFT (ni, pj), if the actual finish time of another task scheduled on
the same processor is later than EST (ni, pj).

134

Appendix B

Figure B.1: A simple task graph

In the case of adopting task insertion the task can be scheduled in the idle time
slot between two consecutive tasks already assigned to the processor as long as no
violation of precedence constraints is made. This insertion scheme would contribute
in particular to increasing processor utilization for a communication intensive task
graph with fine-grain tasks.

A simple task graph is shown in Figure B.1 with its details in Table B.2 and
Table B.3. The values presented in Table B.3 are computed using two frequently
used task prioritization methods, t-level and b-level. Note that, both computation
and communication costs are averaged over all nodes and links. The t-level of a task
is defined as the summation of the computation and communication costs along the
longest path of the node from the entry task in the task graph. The task itself is
excluded from the computation. In contrast, the b-level of a task is computed by
adding the computation and communication costs along the longest path of the task
from the exit task in the task graph (including the task). The b-level is used in this
study.

The communication to computation ratio (CCR) is a measure that indicates
whether a task graph is communication intensive, computation intensive or mod-
erate. For a given task graph, it is computed by the average communication cost
divided by the average computation cost on a target system.

B.2.3 Energy model

Our energy model is derived from the power consumption model in complementary
metal-oxide semiconductor (CMOS) logic circuits. The power consumption of a
CMOS-based microprocessor is defined to be the summation of capacitive, short-
circuit and leakage power. The capacitive power (dynamic power dissipation) is
the most significant factor of the power consumption. The capacitive power (Pc) is
defined as

Pc = ACV 2f, (B.1)

where A is the number of switches per clock cycle, C is the total capacitance load, V
is the supply voltage, and f is the frequency. Equation (B.1) clearly indicates that
the supply voltage is the dominant factor; therefore, its reduction would be most

135

Appendix B

Table B.2: Computation cost with VSL 0

Task p0 p1 p2
0 11 13 9
1 10 15 11
2 9 12 14
3 11 16 10
4 15 11 19
5 12 9 5
6 10 14 13
7 11 15 10

Table B.3: Task Priorities

Task b-level t-level
0 101.33 0.00
1 66.67 22.00
2 63.33 28.00
3 73.00 25.00
4 79.33 22.00
5 41.67 56.33
6 37.33 64.00
7 12.00 89.33

influential to lower power consumption. The energy consumption of the execution
of a precedence-constrained parallel application used in this study is defined as

E =

n
∑

i=0

ACV 2
i f.w

∗

i =

n
∑

i=0

αV 2
i w

∗

i ,

where Vi is the supply voltage of the processor on which task ni is executed, and
w∗

i is the computation cost of task ni (the amount of time taken for ni’s execution)
on the scheduled processor.

B.2.4 Scheduling model

The task scheduling problem in this study is the process of allocating a set N of
n tasks to a set P of p processors (without violating precedence constraints) that
minimizes makespan with energy consumption as low as possible. The makespan is
defined as M = max{AFT (nexit)} after the scheduling of n tasks in a task graph
G is completed. Although the minimization of makespan is crucial, tasks of a DAG
in our study are not associated with deadlines as in real-time systems.

136

Appendix B

B.3 Related work

In this section, we present some noteworthy works in task scheduling, particularly
for HCSs, and then scheduling algorithms with power/energy consciousness.

B.3.1 Scheduling in HCSs

Due to the NP-hard nature of the task scheduling problem in general cases
[Garey 1979], heuristics, in particular meta-heuristics, are the most popularly
adopted scheduling approaches. List scheduling heuristics are the dominant heuristic
technique. This is because empirically, list scheduling algorithms tend to produce
competitive solutions with lower time complexity compared to algorithms in the
other categories [Kwok 1998].

The HEFT algorithm [Topcuouglu 2002] is highly competitive in that it gener-
ates a schedule length comparable to other scheduling algorithms, with a low time
complexity (O(nlogn + (e+ n)p)). It is a list-scheduling heuristic consisting of the
two typical phases of list scheduling (i.e., task prioritization and processor selection)
with task insertion.

The DBUS algorithm [Bozdag 2006] is a duplication-based scheduling heuristic
that first performs a critical path based listing for tasks and schedules them with
both task duplication and insertion. The experimental results in [Bozdag 2006] show
its attractive performance, especially for communication-intensive task graphs. The
time complexity of DBUS is in the order of O(n2p2).

B.3.2 Scheduling with energy consciousness

Most of previous studies on scheduling with the consideration of energy consump-
tion are conducted on homogeneous computing systems [Kim 2007a], [Zhu 2003],
[Zhu 2004], [Ge 2005], [Rountree 2007], [Chen 2005a] or single-processor systems
[Zhong 2007]. In addition to system homogeneity, tasks are generally homogeneous
and independent. Slack management/reclamation is a frequently adopted technique
with DVS.

In [Zhu 2003], several different scheduling algorithms using the concept of slack
sharing among DVS-enabled processors were proposed. The rationale behind the
algorithms is to utilize idle (slack) time slots of processors lowering supply voltage
(frequency/speed). This technique is known as slack reclamation. These slack time
slots occur, due to earlier completion (than worst case execution time) and/or de-
pendencies of tasks. The work in [Zhu 2003] has been extended in [Zhu 2004] with
AND/OR model applications. Since the target system for both works is shared-
memory multiprocessor systems, communication between dependent tasks is not
considered unlike our approach.

In [Ge 2005], two voltage scaling algorithms for periodic, sporadic, aperiodic
tasks on a dynamic priority single-processor system are proposed. They are more
practical compared with many existing DVS algorithms in that a priori information

137

Appendix B

on incoming tasks is not assumed to be available until the tasks are actually released.
This assumption does not correspond to our task model as explained.

Rountree et al. in [Rountree 2007] developed a system based on linear pro-
gramming that exploits slack using DVS (i.e., slack reclamation). Their linear pro-
gramming system aims to deliver near-optimal schedules that tightly bound optimal
solutions. It incorporated allowable time delays, communication slack, and memory
pressure into its scheduling. The linear programming system mainly deals with en-
ergy reduction for a given pre-generated schedule with a makespan constraint as in
most existing algorithms. In our apprche, the makespan is not a constraint but an
objective to optimize.

Another two scheduling algorithms for bag-of-tasks applications on clusters are
proposed in [Kim 2007a]. Tasks in a bag-of-tasks application are typically in-
dependent and homogeneous, yet run with different input parameters/files. In
[Kim 2007a], deadline constraints are associated with tasks for the purpose of qual-
ity control. The two algorithms differ in terms of whether processors in a given
computer cluster are time-shared or space-shared. Computer clusters in this paper
are composed of homogeneous DVS-enabled processors unlike our approach where
processors are heterogeneous.

In [Wang 2010], the authors propose a formulation of energy aware scheduling
algorithm and a detailed discussion of slack time computation. This scheduling
algorithm also concerns reducing voltages during the communication phases between
parallel jobs. In [Khan 2009], the authors study the energy-aware task allocation
problem for assigning a set of tasks onto the machines of a computational grid each
equipped with DVS feature. The goal is to optimize the energy consumption and
response time in computational grids. Unlike our approach, [Khan 2009] suppose
that tasks are independent and are not subject to precedence constraints.

To the best of our knowledge, none of previous scheduling approaches explicitly
addresses the energy issue with a multi-objective approach when tackling the prob-
lem of scheduling precedence-constrained parallel applications on HCSs. Therefore,
the scheduling algorithms with energy consciousness presented in this section are
the most closely related works to our study.

B.3.3 Energy-conscious scheduling heuristic

The consideration of energy consumption in task scheduling adds another layer of
complexity to an already intricate problem. Unlike real-time systems, applications
in our study are not deadline-constrained. Therefore, the evaluation of the quality of
schedules should be measured explicitly considering both makespan and energy con-
sumption. For this reason, energy-conscious scheduling heuristic (ECS) [Lee 2009]
is devised with relative superiority (RS) as a novel objective function, which takes
into account these two performance criteria.

For a given ready task, its RS value on each processor is computed using the
current best combination of processor and VSL (p’ and v’ are, respectively, the se-
lected processor and its voltage supply level) for that task, and then the processor

138

Appendix B

from which the maximum RS value is obtained is selected. Since each scheduling
decision that ECS makes tends to be confined into a local optimum, another en-
ergy reduction technique (MCER) is incorporated into the energy reduction phase
of ECS without sacrificing time complexity. It is an effective technique in lowering
energy consumption, although the technique may not help schedules escape from
local optima. MCER is makespan conservative in that changes it makes (to the
schedule generated in the scheduling phase) are only validated if they do not in-
crease the makespan of the schedule. For each task in a DAG, MCER considers
all of the other combinations of task, host and VSL to check whether any of these
combinations reduces the energy consumption of the task without increasing the
current makespan.

The results clearly demonstrate the superior performance of ECS over DBUS
and HEFT. Note that, in many previous studies [Kim 2007b], [Lee 2005], HEFT
has been proven to perform very competitively, and it has been frequently adopted
and extended.

However, ECS returns one solution as a result, and precedence-constrained ap-
plications problem is bi-objective in nature. Section B.4 presents our new parallel
bi-objective approach based on hybridization between a genetic algorithm and ECS.
This approach provides a set of solutions to this problem. The experiments pre-
sented in Section B.5 show that our approach often gives solutions which are better
than those found by ECS.

B.4 A parallel hybrid approach

This section starts with a brief overview on multi-objective combinatorial optimiza-
tion and genetic algorithms. Then, our new parallel bi-objective hybrid approach is
presented.

B.4.1 Genetic algorithms

Genetic Algorithms (GAs) are meta-heuristics based on the iterative application
of stochastic operators on a population of candidate solutions. At each iteration,
solutions are selected from the population. The selected solutions are recombined
in order to generate new ones. The new solutions replace other solutions selected
either randomly or according to a selection strategy.

In the Pareto-oriented multi-objective context [Deb 2001], the structure of the
GA remains almost the same as in the mono-objective context. However, some
adaptations are required mainly for the evaluation and selection operators.

The selection process is often based on two major mechanisms: elitism and shar-

ing. They allow respectively the convergence of the evolution process to the best
Pareto front and to maintain some diversity of the potential solutions. The elitism
mechanism makes use of a second population called a Pareto archive that stores
the different non-dominated solutions generated through the generations. Such an
archive is updated at each generation and used by the selection process. Indeed,

139

Appendix B

the individuals on which the variation operators are applied are selected either from
the Pareto archive, from the population or from both of them. The sharing opera-
tor maintains the diversity on the basis of the similarity degree of each individual
compared to the others. The similarity is often defined as the Euclidean distance in
the objective space.

B.4.2 Hybrid approach

In our approach illustrated in Figure B.2, a solution (chromosome) is composed of
a sequence of N genes. The ith gene of a solution s is denoted sj. Each gene is
defined by a task, a processor and a voltage. These three parts of sj are denoted
respectively t(sj), p(sj) and v(sj). This means that the task t(sj) is assigned to the
processor p(sj) with the voltage v(sj).

Figure B.2: Our hybrid GA (GA and ECS)

The new approach we propose is based on ECS [Lee 2009] which is not a
population-based heuristic. ECS tries to construct in a greedy way one solution
using three components.

• The first component to build the task parts of each gene of the solution.

• The second component to build the processor and voltage parts of these genes.

• And the third component to calculate the fitness of a solution in terms of
energy consumption and makespan.

Unlike ECS, our approach provides a set of Pareto solutions. This approach is a
hybrid between a multi-objective GA and the second component of ECS. The role
of the GA is to provide good task scheduling. In other words, the GA builds task

140

Appendix B

parts t(s1), t(s2), ..., t(sn) of a solution s. Therefore, the mutation and crossover
operators of the GA affect only the task part of the genes of each solution.

The second component of ECS is called whenever a solution is modified by these
two operators. The first role of this component is to correct the task order to take
into account the precedence constraints in the task graph. Then the component
completes the processor and voltage parts of the genes of the partial solutions pro-
vided by these operators. In other words, ECS builds the remaining parts p(s1),
p(s2), ..., p(sn) and v(s1), v(s2), ..., v(sn) of the partial solutions provided by the
mutation and crossover operators of the GA.

The evaluation (fitness) operator of the GA is called once the task, processor
and voltage parts of each gene of the solution are known. The role of this operator
is to calculate the energy consumption and the makespan of each solution.

The mutation operator is based on the first component of ECS. This first com-
ponent returns all tasks scheduled according to their b-level values. The princi-
ple of our mutation operator is also based on the scheduling of tasks according to
their b-level values. The b-level concept is explained in Section B.2. It should be
noted that one can choose the t-level values instead of those of b-level. First, the
operator chooses randomly two integers i and j such that 1 ≤ i < j ≤ n and
b− level(t(si)) < b− level(t(sj)). Then, the operator swaps the two tasks t(si) and
t(sj) (see Figure B.3).

Figure B.3: The mutation operator

As illustrated in Figure B.4, the crossover operator uses two solutions s1 and s2

to generate two new solutions s′1 and s′2. To generate s′1, the operator:

• considers s1 as the first parent and s2 as the second parent.

• randomly selects two integers i and j such that 1 ≤ i < j ≤ n.

• copies in s′1 all tasks of s1 located before i or after j. These tasks are copied
according to their positions (s′1k = s1k if k < i or k > j).

• copies in a solution s all tasks of s2 that are not yet in s′1. Thus, the new
solution s contains (j − i + 1) tasks. The first task is at position 1 and the
last task at the position (j − i+ 1).

141

Appendix B

• and finally, copies all the tasks of s to the positions of s′1 located between i

and j (s′1k = sk−i+1 for all i ≤ k ≤ j).

The solution s′2 is generated with the same method by considering s2 as the first
parent and s1 as the second parent.

Figure B.4: The crossover operator

The other elements of the GA in the new approach are conventional. Indeed,
our GA randomly generates the initial population. Its selection operator is based
on a tournament strategy. The algorithm stops when no new best solution is found
after a fixed number of generations.

B.4.3 Insular approach

The island model [Cohoon 1987] is inspired by behaviors observed in the ecologi-
cal niches. In this model, several evolutionary algorithms are deployed to evolve
simultaneously various populations of solutions, often called islands. As shown in
Figure B.5, the GAs of our hybrid approach asynchronously exchange solutions.
This exchange aims at delaying the convergence of the evolutionary process and to
explore more zones in the solution space. For each island, a migration operator
intervenes at the end of each generation. Its role consists to decide the appropri-
ateness of operating a migration, to select the population sender of immigrants or
the receiver of emigrants, to choose the emigrating solutions, and to integrate the
immigrant ones.

B.4.4 Multi-start approach

Compared to the GA, ECS is more costly in CPU time. The different evaluations of
ECS are independent of each other. Therefore, their parallel execution can make the
approach faster. The objective of the hybrid approach is to improve the quality of
solutions. The island approach also aims to obtain solutions of better quality. The

142

Appendix B

Figure B.5: The cooperative island approach

goal of the parallel multi-start approach is to reduce the execution time. As shown
in Figure B.6, our parallelization is based on the deployment of the approach using
the farmer-worker paradigm. The GA processes are farmers and ECS processes are
workers.

Figure B.6: Illustration of the multi-start approach

B.5 Experiments and results

This section presents the results obtained from our comparative experimental study.
The experiments aim to demonstrate and evaluate the contribution of the hybridiza-
tion, the insular approach and the multi-start approach respectively compared to
ECS, the hybrid approach and the insular approach.

B.5.1 Experimental settings

The performance of our approach was thoroughly evaluated with the Fast Fourier
Transformation [Cormen 1990] task graph which is a real-world application. A large
number of variations were made on this task graph for more comprehensive exper-
iments. Various different characteristics of processors were also applied. Table B.4
summarizes the parameters used in our experiments.

143

Appendix B

Table B.4: Experimental parameters

Parameter Value
The number of tasks ∼20 ∼40 ∼60 ∼80 ∼120

The number of processors 02 04 08 16 32 64
Processor heterogeneity 100 200 random

CCR 0.1 0.2 1.0 5.0 10.0

The new approach is experimented on 9,000 instances distributed equitably ac-
cording to the number of tasks, the number of processors, the processor heterogeneity
and the CCR (1/5 of instances have a number of tasks equal to ∼20, 1/5 of instances
have a number of tasks equal to ∼40,..., 1/6 of instances have a number of proces-
sors equal to 2, etc.). In other words, 20 instances are used for each combination of
parameters.

Our approach has been implemented using ParadisEO [Cahon 2004]. This soft-
ware platform provides tools for the design of parallel meta-heuristics for multi-
objective optimization. [Talbi 2009] explains how to implement a multi-objective ge-
netic algorithm, an insular approach, and a multi-start using ParadisEO. Table B.5
shows the parameters used by ParadisEO for the hybrid, insular and multi-start
approaches during our experiments.

Table B.5: The parameters used by ParadisEO for each approach

Parameters Hybrid Insular Multi-start
Population size 20 20 20

Number of generations 1000 100 100
Crossover rate 1 1 1
Mutation rate 0.35 0.35 0.35

Migration topology Ring
Migration rate Every 20 generations

Number of migrants 5

Experiments have been performed on a grid of three clusters. The first cluster
contains 8 Opteron 244 nodes (dual-processor clocked at 1.8 GHz, 2 GB of RAM).
The second contains 10 Xeon L5420 nodes (bi-quad-core processors clocked at 2.5
GHz, 16 GB of RAM). The third cluster contains 106 cores AMD opteron 248, 40
cores AMD opteron 252, 104 cores AMD opteron 285, et 368 cores Intel Xeon E5440
QC. A total of 714 cores are used. The first two clusters are located at the University
of Mons in Belgium, while the third cluster is at Université de Lille1 in France.

144

Appendix B

B.5.2 Hybrid approach

The hybrid approach is experimented on all instances of Table B.4. Each instance
is solved twice. The first resolution is done with ECS, and the second resolution
with the new approach. These experiments are launched by a script on one of the
cores of our grid according to their availability.

 3150

 3200

 3250

 3300

 3350

 3400

 3450

 3500

 3550

 660 680 700 720 740 760 780 800 820 840

E
ne

rg
y

Makespan

ECS
Hybrid approach

Figure B.7: An example of the obtained results with the hybrid approach and ECS
for the same instance

Figure B.7 gives an example of a Pareto front obtained with the hybrid approach
and the solution obtained by ECS for the same instance which is the tenth instance
generated with the number of tasks equal to ∼20, number of processors equal to 02,
processor heterogeneity equal to 100, and CCR equal to 0.1. Experiments show that
ECS finds the solution of an instance after ∼ 1 second on average, while our hybrid
approach requires about ∼ 25 minutes on average to find the Pareto solutions of an
instance. As previously mentioned, ECS is a heuristic that builds one and only one
solution using a greedy strategy, and our hybrid approach is based on the hybridiza-
tion between a GA and ECS. Therefore, the hybrid approach handles a population
of solutions that evolves over several generations, and the second component of ECS
is called and used during the construction of each solution. So it was expected that
the hybrid approach uses more computing power than ECS. Our goal is not to have
an approach faster than ECS but an approach that gives Pareto solutions which
improve the solution of ECS. Our approach is useful, for example, for large scientific
applications requiring high computing power, and for small applications which are
executed many times.

Table B.6 compares the Pareto solutions of the hybrid approach with the solu-
tion of ECS. The comparison is made according to the number of tasks, the number
of processors, the processor heterogeneity and the CCR. The third column shows
the average number of obtained Pareto solutions. The last column gives the per-
centage of Pareto solutions that improves the ECS solution on the two objectives

145

Appendix B

simultaneously. As indicated in the last line of the table, the hybrid approach pro-
vided 19.77 solutions on average, and 83.04% of the Pareto solutions found by this
hybrid approach improve the ECS solution on the two objectives simultaneously. In
addition, Table B.6 shows that the more tasks there are, the more Pareto solutions
are found, and the more the percentage of Pareto solutions dominating the ECS
solution increases.

Table B.6: Comparison of Pareto hybrid approach solutions and ECS solution

Average Pareto solutions
number of dominating ECS

Pareto solutions solution (%)
∼20 14.78 78.24

Number ∼40 19.57 80.70
of tasks ∼60 21.36 83.62

∼80 21.45 83.12
∼120 21.67 89.51
02 18.51 73.21
04 19.42 71.01

Number 08 22.17 75.83
of processors 16 23.32 86.12

32 19.98 94.73
64 15.18 97.36
100 20.12 80.82

Heterogeneity 200 21.67 74.47
random 17.52 93.83

0.1 19.60 88.44
0.2 19.47 88.83

CCR 1.0 17.53 89.09
5.0 19.26 78.80

Average 19.77 83.04

To determine the contribution of the new approach, in terms of the values of
makespan and energy consumption, we compare the solution provided by ECS to
only one solution of the Pareto set provided by the new approach. The solution
chosen in the Pareto set is used only to compare the new approach with ECS.
Nevertheless the decision maker, using the new approach, will have a set of Pareto
solutions instead of one solution.

For each instance,

• a first resolution is done using ECS to provide one solution s.

• a second resolution is done using the new approach to obtain a set E of Pareto
solutions.

146

Appendix B

• only one Pareto solution s′ is selected from the set E. This solution is the
closest to s in the sense of Euclidean distance.

• finally, a comparison will be done between the solutions s and s′.

Figure B.8, Figure B.9, Figure B.10 and Table B.7 allow to compare in a detailed
way the two approaches. They respectively show the improvement brought by the
new approach according to the number of tasks, the number of processors, the CCR,
and the processor heterogeneity. Experiments show that our approach improves on
average the results obtained by ECS. Indeed, as shown in Table B.7, the energy
consumption is reduced by 47.49% and the makespan reduced by of 12.05%. In
addition, Figure B.9 shows clearly that the more processors there are, the more the
new approach improves the results of ECS.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 20 40 60 80 100 120

Im
pr

ov
em

en
t(

%
)

The number of tasks

Energy(%)
Makespan(%)

Figure B.8: Improvement according to the number of tasks

Table B.7: Improvement according to the processor heterogeneity

Processor heterogeneity Energy (%) Makespan (%)
100 44.74 9.10
200 43.49 7.07

random 54.26 19.99
Average 47.49 12.05

B.5.3 Insular approach

The objective of the following experiments is to show that our island approach im-
proves the quality of the solutions provided by the hybrid approach. This insular

147

Appendix B

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25

Im
pr

ov
em

en
t(

%
)

The number of processors

Energy(%)
Makespan(%)

Figure B.9: Improvement according to the number of processors

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10

Im
pr

ov
em

en
t(

%
)

CCR

Energy(%)
Makespan(%)

Figure B.10: Improvement according to the CCR

148

Appendix B

approach is useful when solving large instances. Therefore, the experiments, pre-
sented in this section, focus only on the large instances of Table B.4. The instances
used are those with the number of tasks is 120, the number of processors is 64, the
value of CCR is 10, and the heterogeneity of processors is 200 (20 instances). Each
instance is solved using 1, 5, 10, 30 or 50 islands. An insular approach with 1 island
is equivalent to the hybrid approach.

Figure B.11 illustrates the S-metric average values obtained with different num-
bers of islands. These values are normalized with the average value obtained by the
experiments using 1 island. The S-metric measures the hyper-volume defined by a
reference point and a Pareto front. It allows to evaluate the quality of a Pareto front
provided by an algorithm.

Experiments show that whatever the number of used islands the insular ap-
proach improves the Pareto front obtained with the hybrid approach. As shown in
Figure B.11, the use of 50 islands, instead of 1 island (i.e. the hybrid approach),
improves the S-metric of the obtained Pareto front by 26%. In Figure B.11, the
more the number of islands is used, the better the results will be.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 5 10 15 20 25 30 35 40 45 50

S-
m

et
ri

c

No. of islands

S-metric

Figure B.11: S-metric value according to the number of islands

B.5.4 Multi-start approach

This section presents the experiments done to assess the quality of our multi-start
approach. The parameters of the instances used in our experiments are: the CCR
is 0.1, 0.5, 1.0, 5.0 or 10.0, the number of processors is 8, 32, or 64, and the het-
erogeneity of processors is 100, 200 or random. The population of the GA contains
20 chromosomes. Therefore, 21 computing cores are used to solve each instance (20
cores to run the ECSs and 1 core to run the GA). In our case, an experiment can
not have a speedup greater than 21.

Table B.8, Figure B.12, Figure B.13 show respectively the evolution of the
speedup according to the processor heterogeneity, the CCR, and the number of

149

Appendix B

processors. The average speedup obtained is 13.06.
As shown in Figure B.13, the speedup increases proportionally to the number of

processors on which the precedence-constrained parallel application is run. Table B.8
and Figure B.13 that show the CCR and the heterogeneity of processors do not
impact significantly the quality of the acceleration of our approach.

Table B.8: Speedup according to the processor heterogeneity

Processor heterogeneity Speedup
100 13.74
200 12.73

random 12.73
Average speedup 13.06

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

Sp
ee

du
p

CCR

Real speedup
Theoretical maximum speedup

Figure B.12: Speedup according to the CCR

B.6 Conclusions

In this paper, we have investigated the precedence-constrained parallel applications
particularly on high-performance computing systems like cloud computing infras-
tructures. Precedence-constrained parallel applications are designed mostly with
the sole goal of minimizing completion time without paying much attention to en-
ergy consumption.

We presented a new parallel bi-objective hybrid genetic algorithm to solve this
problem. The algorithm minimizes energy consumption and makespan. The energy
saving of our approach exploits the dynamic voltage scaling (DVS) technique a
recent advance in processor design.

150

Appendix B

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60

Sp
ee

du
p

The number of processors

Real speedup
Theoretical maximum speedup

Figure B.13: Speedup according to the number of processors

Our new approach has been evaluated with the Fast Fourier Transformation
task graph which is a real-world application. Experiments show that our bi-
objective meta-heuristic improves on average the results obtained in the literature
(see [Topcuouglu 2002], [Bozdag 2006] and [Garey 1979]) particularly in energy sav-
ing. Indeed, the energy consumption is reduced by 47.5% and the completion time
by 12%. The experiments of the insular approach also show that the more the num-
ber of islands is used, the better the results will be. The use of 50 islands, instead
of 1 island (i.e. the hybrid approach), improves the S-metric of the obtained Pareto
front by 26%. Furthermore, the multi-start approach is on average 13 times faster
than the island approach using 21 cores.

However, we observed that the hybrid approach consumes more resources than
ECS, and the insular approach consumes more resources than the hybrid approach.
In the insular approach, experiments show that the more the number of islands is
used, the more the resources are needed. A resource can be a processor, a net-
work bandwidth, etc. The energy consumed by an approach increases when the
used resources increase. We think that the multi-start approach does not increase
significantly the energy consumed by the insular approach.

Therefore, one of the main perspectives of the work presented in this paper is
to determine the solving approach to choose among ECS, the hybrid approach, and
the insular approach, according to the precedence-constrained parallel application
at hand. If the insular approach is chosen, the major issue is to determine the best
number of islands to be used. This future work aims to minimize the total amount of
consumed energy by the chosen solving approach and by the precedence-constrained
parallel application to be solved. It is clear, for example, that the insular approach
is interesting for the large and resource consuming precedence-constrained parallel
applications and the applications intended to be executed several times.

151

Appendix B

Appendix

Algorithm 10 The main parameters of our approaches

1: INSULAR←TRUE
2: MULTISTART←TRUE
3:

4: GENERATION_MAXIMUM←200
5: POPULATION_SIZE←20
6: CROSSOVER_RATE←1
7: MUTATION_RATE←0.35
8: N←size(solution)
9:

10: MIGRATION_TOPOLOGY←RING
11: MIGRATION_RATE←20
12: MIGRANTS_SIZE←5

Algorithm 11 The main algorithm of our approaches
hybrid_insular_multistart_approches()

1: initialize(population,POPULATION_SIZE)
2: evaluate(population)
3: GENERATION←1
4: while GENERATION ≤ GENERATION_MAXIMUM do
5: parents←select(population)
6: children←crossover(parents)
7: mutation(children)
8: evaluate(children)
9: replace(population,children)

10: update(archive,children)
11: migrate(population,GENERATION)
12: GENERATION←GENERATION+1

152

Appendix B

Algorithm 12 Fitness operator
evaluate(population)

1: if MULTISTART then
2: evaluate_parallel(population)
3: else
4: evaluate_sequential(population)

evaluate_parallel(population)

1: for all solution ∈ population do
2: launch_parallel(ECS_component2,solution)
3: for all solution ∈ population do
4: cost(solution)←read_cost(solution)

evaluate_sequential(population)

1: for all solution ∈ population do
2: cost(solution)←ECS_component2(solution)

Algorithm 13 Mutation operator
mutation(children)

1: for all solution ∈ children do
2: if random([0,1]) ≤ MUTATION_RATE then
3: mutation(solution)

mutation(solution)

1: (i,j)=random(1≤i<j≤N ∧ check_level(solution,i,j))
2: swap(task(solutioni),task(solutionj))

check_level(solution,i,j)

1: OUTPUT: b-level(task(solutioni))<b-level(task(solutionj))

153

Appendix B

Algorithm 14 Crossover operator
crossover(parents)

1: children← ∅
2: for all i ∈ (1...POPULATION_SIZE) do
3: if random([0,1]) ≤ CROSSOVER_RATE then
4: (parent1,parent2)←select(parents)
5: (child1,child2)←crossover2(parent1,parent2)
6: add(children,child1)
7: add(children,child2)
8: OUTPUT: children

crossover2(parent1,parent2)

1: child1←crossover1(parent1,parent2)
2: child2←crossover1(parent2,parent1)
3: OUTPUT: (child1,child2)

crossover1(parent1,parent2)

1: (i,j)=random(1≤i<j≤N)
2: for all k ∈ (1,...,i-1,j+1,...,N) do
3: task(childk)←task(parent1k)
4: m←0
5: for all [k ∈ (1,..,N)] ∧ [task(parent2k) /∈ tasks(child)] do
6: task(solution_bufferm)←task(parent2k)
7: m←m+1
8: for all k ∈ (i,...,j) do
9: task(childk)←task(solution_bufferk−i+1)

10: OUTPUT: child

Algorithm 15 Migration operator
migrate(population,GENERATION)

1: if NOT INSULAR then
2: stop
3: if GENERATION mod(MIGRATION_RATE) 6=0 then
4: stop
5: migrants←select(population,MIGRANTS_SIZE)
6: DESTINATION←destination(topology)
7: send(DESTINATION,migrants)
8: SOURCE←source(topology)
9: migrants←receive(SOURCE)

10: insert(population,migrants)

154

Bibliography

[Ama 2012a] Amazon EC2 Pricing. http://aws.amazon.com/fr/ec2/pricing/, 2012.
(Cited on pages 3 and 75.)

[Ama 2012b] Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/fr/ec2/, 2012. (Cited on pages 2, 11, 36, 39
and 100.)

[Ama 2013] Amazon Elastic Compute Cloud (Amazon EC2) Instance type.
http://aws.amazon.com/en/ec2/instance-types/, 2013. (Cited on pages 65,
74 and 100.)

[AMD 2004] AMD. Cool’n’Quiet Real world numbers.
http://icrontic.com/article/socket_940_vs_939, 2004. (Cited on page 88.)

[Andreolini 2010] M. Andreolini, S. Casolari, M. Colajanni and M. Messori. Dy-

namic Load Management of Virtual Machines in Cloud Architectures. In
R.D. Avresky, M. Diaz, A. Bode, B. Ciciani and E. Dekel, editeurs, Cloud
Computing, volume 34 of LNICST, pages 201–214. Springer Berlin Heidel-
berg, 2010. (Cited on pages 29 and 31.)

[Armbrust 2009] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Kon-
winski, G. Lee, D.A. Patterson, A. Rabkin and M. Zaharia. Above the Clouds:

A Berkeley View of Cloud Computing. Rapport technique, 2009. (Cited on
pages 1 and 7.)

[Barham 2003] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt and A. Warfield. Xen and the art of virtualization.
In SOSP, pages 164–177, 2003. (Cited on page 8.)

[Borgetto 2012a] D. Borgetto, H. Casanova, G. Da Costa and J.M Pierson. Energy-

aware service allocation. Future Gener. Comput. Syst., vol. 28, no. 5, pages
769–779, May 2012. (Cited on page 30.)

[Borgetto 2012b] D. Borgetto, M. Maurer, G. Da-Costa, J.M Pierson and I. Brandic.
Energy-efficient and SLA-aware management of IaaS clouds. In Proceedings
of the 3rd International Conference on Future Energy Systems: Where En-
ergy, Computing and Communication Meet, e-Energy ’12, pages 25:1–25:10,
New York, NY, USA, 2012. ACM. (Cited on page 29.)

[Bozdag 2006] D. Bozdag, U. Catalyurek and F. Ozguner. A task duplication based

bottom-up scheduling algorithm for heterogeneous environments. In Parallel
and Distributed Processing 20th International Symposium (IPDPS), April
2006. (Cited on pages 132, 137 and 151.)

Bibliography

[Bunde 2006] D.P. Bunde. Power-aware scheduling for makespan and flow. In Proc.
the eighteenth annual ACM symposium on Parallelism in algorithms and
architectures, July 2006. (Cited on pages 131 and 132.)

[Burd 1995] T.D. Burd and R.W. Brodersen. Energy efficient CMOS microprocessor

design. In System Sciences. Proceedings of the 28th Hawaii International
Conference on, pages 288–297 vol.1, 1995. (Cited on pages 37 and 88.)

[Burge 2007] J. Burge, P. Ranganathan and J.L. Wiener. Cost-aware scheduling

for heterogeneous enterprise machines (CASH EM). In Cluster Computing,
IEEE International Conference on, pages 481–487, 2007. (Cited on pages 14,
25 and 31.)

[Buyya 2008] R. Buyya, Chee Shin Yeo and S. Venugopal. Market-Oriented Cloud

Computing: Vision, Hype, and Reality for Delivering IT Services as Comput-

ing Utilities. In High Performance Computing and Communications (HPCC)
10th IEEE International Conference on, pages 5–13, 2008. (Cited on pages 1
and 8.)

[Buyya 2009] R. Buyya, S. Pandey and C. Vecchiola. Cloudbus Toolkit for Market-

Oriented Cloud Computing. In Martin.Gilje Jaatun, Gansen Zhao and Chun-
ming Rong, editeurs, Cloud Computing, volume 5931 of Lecture Notes in

Computer Science, pages 24–44. Springer Berlin Heidelberg, 2009. (Cited on
page 9.)

[Cahon 2004] S. Cahon, N. Melab and E-G. Talbi. ParadisEO: A Framework for

the Reusable Design of Parallel and Distributed meta-heuristics. Journal of
Heuristics, vol. 10, no. 3, pages 357–380, May 2004. (Cited on pages 19, 21
and 144.)

[Cameron 2010] K.W. Cameron. Trading in green IT. Computer, vol. 43, no. 3,
pages 83–85, March 2010. (Cited on page 132.)

[Campbell 2009] R. Campbell, I. Gupta, M. Heath, S.Y. Ko, M. Kozuch, M. Kunze,
T. Kwan, K. Lai, H.Y. Lee, M. Lyons, D. Milojicic, D. O’Hallaron and Y.C.
Soh. Open Cirrus cloud computing testbed: federated data centers for open

source systems and services research. In Proceedings of the conference on Hot
topics in cloud computing (HotCloud), Berkeley, CA, USA, 2009. USENIX
Association. (Cited on pages 1 and 35.)

[Chaisiri 2009] S. Chaisiri, Bu-Sung Lee and D. Niyato. Optimal virtual machine

placement across multiple cloud providers. In Services Computing Confer-
ence, IEEE Asia-Pacific (APSCC), pages 103–110, dec. 2009. (Cited on
page 26.)

[Chen 2005a] J. J. Chen and T. W. Kuo. Multiprocessor Energy-Efficient Scheduling

for Real-Time Tasks with Different Power Characteristics. In International

156

Bibliography

Conference on Parallel Processing (ICPP), pages 13–20, 2005. (Cited on
page 137.)

[Chen 2005b] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang and N. Gau-
tam. Managing server energy and operational costs in hosting centers. SIG-
METRICS Perform. Eval. Rev., vol. 33, no. 1, pages 303–314, June 2005.
(Cited on pages 38 and 88.)

[Chen 2011] J. Chen, C. Wang, B.B. Zhou, L. Sun, Y.C. Lee and A.Y. Zomaya.
Tradeoffs Between Profit and Customer Satisfaction for Service Provisioning

in the Cloud. In HPDC, ACM, pages 229–238, New York, NY, USA, 2011.
(Cited on pages 27, 31, 66 and 75.)

[Chun 2002] B.N. Chun and D.E. Culler. User-Centric Performance Analysis of

Market-Based Cluster Batch Schedulers. In Cluster Computing and the Grid,
2nd IEEE/ACM International Symposium on, page 30, may 2002. (Cited on
page 25.)

[Cohoon 1987] J.P. Cohoon, S.U. Hedge, W.N. Martin and D. Richards. Punc-

tuated equilibria : A parallel genetic algorithm. In J.J. Grefenstette and
Lawrence Erlbaum Associates, editeurs, Proceedings of the Second Inter-
national Conference on Genetic Algorithms, page 148, 1987. (Cited on
page 142.)

[Cormen 1990] T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introduction to Al-

gorithms. In MIT Press, 1990. (Cited on page 143.)

[Crainic 2003] T.G. Crainic and M. Toulouse. Parallel Strategies for Meta-

Heuristics. In Fred Glover and Gary.A. Kochenberger, editeurs, Handbook of
Metaheuristics, volume 57 of International Series in Operations Research &

Management Science, pages 475–513. Springer US, 2003. (Cited on page 17.)

[Darbha 1998] S. Darbha and D. P. Agrawal. Optimal scheduling algorithm for

distributed-memory machines. IEEE Trans. Parallel Dist. Systems, vol. 9,
no. 1, pages 87–95, 1998. (Cited on page 131.)

[Deb 2001] K. Deb. Multi-objective optimization using evolutionary algorithms.
Wiley, 2001. (Cited on page 139.)

[Deb 2002] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan. A fast and elitist mul-

tiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE
Transactions on, vol. 6, no. 2, pages 182–197, 2002. (Cited on pages 45
and 71.)

[DOE 2007] US Department of Energy, Voluntary re-

porting of greenhouse gases: Appendix F.

http://www.eia.doe.gov/oiaf/1605/pdf/Appendix20F_r071023.pdf, 2007.
(Cited on page 48.)

157

Bibliography

[Edgeworth 1881] F. Y. Edgeworth. C. Kegan Paul and Co: An Essay on the Ap-

plication of Mathematics to the Moral Sciences. Mathematical Psychics,
London, 1881. (Cited on page 14.)

[Eff 2011] Efficap energie. http://www.efficap-energie.com, 2011. (Cited on
page 34.)

[EIA 2007] US Energy Information Administration (EIA) report.
http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_a.html, 2007.
(Cited on page 48.)

[Elmroth 2009] E. Elmroth, F.G. Marquez, D. Henriksson and D.P. Ferrera. Ac-

counting and Billing for Federated Cloud Infrastructures. In Grid and Coop-
erative Computing (GCC), 8th International Conference on, pages 268 –275,
aug. 2009. (Cited on pages 26 and 31.)

[Feitelson 2009] D. Feitelson. Parallel workloads archive.
http://www.cs.huji.ac.il/labs/parallel/workload, Aug 2009. (Cited on
pages 3 and 48.)

[Feller 2012] E. Feller, L. Rilling and C. Morin. Snooze: A Scalable and Autonomic

Virtual Machine Management Framework for Private Clouds. In Proceedings
of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pages 482–489, Washington, DC, USA, 2012. (Cited
on pages 14, 30 and 31.)

[Foster 2008] I. Foster, Yong Zhao, I. Raicu and Shiyong Lu. Cloud Computing and

Grid Computing 360-Degree Compared. In Grid Computing Environments
Workshop., pages 1–10, 2008. (Cited on page 5.)

[Garey 1979] M.R. Garey and D.S. Johnson. Computers and intractability: A guide
to the theory of np-completeness. W. H. Freeman & Co., New York, NY,
USA, 1979. (Cited on pages 6, 38, 67, 91, 137 and 151.)

[Garg 2008] S. Garg, P. Konugurthi and R. Buyya. A Linear Programming Driven

Genetic Algorithm for Meta-Scheduling on Utility Grids. In Advanced Com-
puting and Communications. ADCOM. 16th International Conference on,
pages 19–26, 2008. (Cited on pages 14, 25 and 31.)

[Garg 2010] S.K. Garg, C.S. Yeo, A. Anandasivam and R. Buyya. Environment-

conscious scheduling of HPC applications on distributed Cloud-oriented data

centers. Journal of Parallel and Distributed Computing, vol. In Press, Cor-
rected Proof, pages –, 2010. (Cited on pages 1, 16, 26, 31 and 48.)

[Gartner 2007] Gartner. Gartner Estimates ICT Industry Accounts for 2 Percent

of Global CO2 Emissions. http://www.gartner.com/it/page.jsp?id=503867,
2007. (Cited on page 34.)

158

Bibliography

[Ge 2005] R. Ge, X. Feng and K.W. Cameron. Performance-constrained Distributed

DVS Scheduling for Scientific Applications on Power-aware Clusters. In
Proc. the ACM/IEEE Conference on Supercomputing, pages 34–44, Novem-
ber 2005. (Cited on pages 131, 132 and 137.)

[GoG 2013] GoGrid Cloud Hosting. http://www.gogrid.com/, 2013. (Cited on
page 11.)

[Greenberg 2006] S. Greenberg, E. Mills, B. Tschudi, P. Rumsey and B. Myatt.
Best practices for data centers: results from benchmarking 22 data centers. In
Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings,
Pacific Grove, USA, 2006. (Cited on page 48.)

[GRI 2013] GRID5000. https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home,
2013. (Cited on pages 3, 100 and 102.)

[Guzek 2012] M. Guzek, C. Diaz, J. Pecero, P. Bouvry and A.Y. Zomaya. Impact

of Voltage Levels Number for Energy-Aware Bi-objective DAG Scheduling for

Multi-processors Systems. In Borworn Papasratorn, Nipon Charoenkitkarn,
Kittichai Lavangnananda, Wichian Chutimaskul and Vajirasak Vanijja, edi-
teurs, Advances in Information Technology, volume 344 of Communications

in Computer and Information Science, pages 70–80. Springer Berlin Heidel-
berg, 2012. (Cited on page 28.)

[Hamilton 2009] J. Hamilton. Cooperative Expendable Micro-Slice Servers (CEMS):

Low Cost, Low Power Servers for Internet-Scale Services. In Proceedings
of 4th Biennial Conference on Innovative Date Systems Research (CIDR),
Asilomar, California, USA, January, 2009. (Cited on page 34.)

[Humeau 2013] Jérémie Humeau, Arnaud Liefooghe, El-Ghazali Talbi and Sébastien
Verel. ParadisEO-MO: From Fitness Landscape Analysis to Efficient Local

Search Algorithms. Journal of Heuristics, page (to appear), 2013. (Cited on
page 20.)

[Intel 2004] Intel. Intel Pentium M Processor datasheet, 2004. (Cited on page 133.)

[Irwin 2004] D.E. Irwin, L.E. Grit and J.S. Chase. Balancing risk and reward in

a market-based task service. In High performance Distributed Computing
proceedings, 13th IEEE International Symposium on, pages 160–169, june
2004. (Cited on page 25.)

[Iverson 1999] M.A. Iverson, F. Özgüner and L.C. Potter. Statistical Prediction

of Task Execution Times Through Analytic Benchmarking for Scheduling in

a Heterogeneous Environment. IEEE Transactions on Computers, vol. 48,
pages 1374–1379, 1999. (Cited on page 36.)

[Johnson 1973] D.S. Johnson. Near-optimal bin packing algorithms. PhD thesis,
Massachusetts Institute of Technology, 1973. (Cited on page 50.)

159

Bibliography

[Keahey 2007] K. Keahey, T. Freeman, J. Lauret and D. Olson. Virtual workspaces

for scientific applications. J. Phys.: Conf. Ser., vol. 78, no. 1, pages –, 2007.
(Cited on page 11.)

[Keijzer 2002] M. Keijzer, J.J. Merelo, G. Romero and Marc Schoenauer. Evolving

Objects: A General Purpose Evolutionary Computation Library. In Pierre
Collet, Cyril Fonlupt, Jin-Kao Hao, Evelyne Lutton and Marc Schoenauer,
editeurs, Artificial Evolution, volume 2310 of Lecture Notes in Computer

Science, pages 231–242. Springer Berlin Heidelberg, 2002. (Cited on page 19.)

[Khan 2009] S.U. Khan and I. Ahmad. A Cooperative Game Theoretical Technique

for Joint Optimization of Energy Consumption and Response Time in Com-

putational Grids. IEEE Transactions on Parallel and Distributed Systems,
vol. 20, no. 3, pages 346–360, 2009. (Cited on pages 16 and 138.)

[Kim 2007a] K. H. Kim, R. Buyya and J. Kim. Power Aware Scheduling of Bag-of-

Tasks Applications with Deadline Constraints on DVS-enabled Clusters. In
Proc. the Seventh IEEE Int Symp. Cluster Computing and the Grid, May
2007. (Cited on pages 131, 137 and 138.)

[Kim 2007b] S. C. Kim, S. Lee and J. Hahm. Push-Pull: Deterministic Search-Based

DAG Scheduling for Heterogeneous Cluster Systems. IEEE Trans. Parallel
Dist. Systems, vol. 18, no. 11, pages 1489–1502, 2007. (Cited on page 139.)

[Kliazovich 2012] D. Kliazovich, P. Bouvry and S.U. Khan. Simulating commu-

nication processes in energy-efficient cloud computing systems. In Cloud
Networking (CLOUDNET), pages 215–217, 2012. (Cited on page 37.)

[Koch 2005] G. Koch. Discovering multi-core: Extending the benefits of Moore’s

law. In Technology@Intel Magazine, July 2005. (Cited on page 132.)

[Koomey 2008] J. G. Koomey. Estimating total power consumption by servers in

the U.S. and the world, 2008. (Cited on pages 34, 86 and 132.)

[Kwok 1998] Y. K. Kwok and I. Ahmad. Benchmarking the Task Graph Schedul-

ing Algorithms. In Proc. First Merged Int Parallel Symposium on Parallel
and Distributed Processing (IPPS/SPDP), pages 531–537, 1998. (Cited on
page 137.)

[Laszewski 2009] G. Von Laszewski, Lizhe Wang, Andrew J. Younge and Xi He.
Power-Aware Scheduling of Virtual Machines in DVFS-enabled Clusters. In
Cluster Computing and Workshops (CLUSTER), IEEE International Con-
ference on, pages 1–10, New Orleans, LA, 2009. (Cited on pages 2, 29 and 31.)

[Lee 2005] Y.C. Lee and A.Y. Zomaya. A Productive Duplication-Based Scheduling

Algorithm for Heterogeneous Computing Systems. In Proceedings of the First
international conference on High Performance Computing and Communica-
tions (HPCC), pages 203–212, 2005. (Cited on page 139.)

160

Bibliography

[Lee 2008] Y.C. Lee and A.Y. Zomaya. A Novel State Transition Method for meta-

heuristic-Based Scheduling in Heterogeneous Computing Systems. vol. 19,
no. 9, pages 1215–1223, September 2008. (Cited on page 131.)

[Lee 2009] Y.C Lee and A.Y Zomaya. Minimizing Energy Consumption for

Precedence-Constrained Applications Using Dynamic Voltage Scaling. In Pro-
ceedings of the 9th IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGRID), pages 92–99, Washington, DC, USA, 2009.
IEEE Computer Society. (Cited on pages 15, 28, 132, 138 and 140.)

[Lee 2010a] Y.C. Lee, C. Wang, A.Y. Zomaya and B.B. Zhou. Profit-Driven Service

Request Scheduling in Clouds. In Cluster, Cloud and Grid Computing (CC-
GRID), 10th IEEE/ACM International Conference on, pages 15 –24, May
2010. (Cited on pages 25 and 31.)

[Lee 2010b] Y.C Lee and A.Y Zomaya. Energy efficient utilization of resources in

cloud computing systems. The Journal of Supercomputing, pages 1–13, 2010.
10.1007/s11227-010-0421-3. (Cited on pages 28 and 31.)

[Liefooghe 2009] Arnaud Liefooghe, Laetitia Jourdan and El-Ghazali Talbi. A Uni-

fied Model for Evolutionary Multiobjective Optimization and its Implementa-

tion in a General Purpose Software Framework: ParadisEO-MOEO. Rapport
de recherche RR-6906, INRIA, 2009. (Cited on page 20.)

[Lucas-Simarro 2012] J. Luis Lucas-Simarro, R. Moreno-Vozmediano, R.S. Montero
and I.M. Llorente. Scheduling strategies for optimal service deployment across

multiple clouds. Future Generation Computer Systems, no. 0, pages –, 2012.
(Cited on pages 26 and 31.)

[Mankiw 2008] G. Mankiw. Principles of economics. Sourth-Western Pub, 2008.
(Cited on pages 66 and 83.)

[Mezmaz 2011] M. Mezmaz, N. Melab, Y. Kessaci, Y.C. Lee, E.-G. Talbi, A.Y.
Zomaya and D. Tuyttens. A parallel bi-objective hybrid metaheuristic for

energy-aware scheduling for cloud computing systems. Journal of Parallel
and Distributed Computing, vol. In Press, Corrected Proof, pages –, 2011.
(Cited on page 28.)

[Mills 2011] K. Mills, J. Filliben and C. Dabrowski. Comparing VM-Placement

Algorithms for On-Demand Clouds. In Proceedings of the IEEE Third Inter-
national Conference on Cloud Computing Technology and Science (CLOUD-
COM), pages 91–98, Washington, DC, USA, 2011. IEEE Computer Society.
(Cited on pages 29 and 94.)

[Milojicic 2011] D. Milojicic, I.M. Llorente and R.S. Montero. OpenNebula: A Cloud

Management Tool. Internet Computing, IEEE, vol. 15, no. 2, pages 11–14,
2011. (Cited on page 11.)

161

Bibliography

[Min 2000] R. Min, T. Furrer and A. Chandrakasan. Dynamic Voltage Scaling Tech-

niques for Distributed Microsensor Networks. In Proc. IEEE Workshop on
VLSI, pages 43–46, April 2000. (Cited on page 133.)

[Nurmi 2009] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff and D. Zagorodnov. The Eucalyptus Open-Source Cloud-

Computing System. In Proceedings of the 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID), pages 124–131,
Washington, DC, USA, 2009. IEEE Computer Society. (Cited on page 11.)

[Ope 2012] Openstack: open source cloud computing software.
http://www.openstack.org/, 2012. (Cited on page 11.)

[Orgerie 2008] A-C. Orgerie, L. Lefevre and J.-P. Gelas. Save Watts in Your Grid:

Green Strategies for Energy-Aware Framework in Large Scale Distributed

Systems. In 14th IEEE International Conference on Parallel and Distributed
Systems (ICPADS), pages 171–178, 2008. (Cited on page 30.)

[Pareto 1896] V. Pareto. Cours d’économie politique. Rouge, Lausanne, Switzer-
land., vol. 1-2, 1896. (Cited on pages 12 and 14.)

[Pillai 2001] P. Pillai and K.G. Shin. Real-time dynamic voltage scaling for low-

power embedded operating systems. In Proceedings of the eighteenth ACM
symposium on Operating systems principles (SOSP), pages 89–102, New
York, NY, USA, 2001. (Cited on pages 37 and 88.)

[Rajpathak 2001] D.G. Rajpathak. Knowledge Media Institute Intelligent scheduling

- A Literature Review. 2001. (Cited on page 21.)

[Rimal 2009] B.P. Rimal, Eunmi Choi and I. Lumb. A Taxonomy and Survey of

Cloud Computing Systems. In INC, IMS and IDC. NCM. 5th International
Joint Conference on, pages 44–51, 2009. (Cited on pages 9 and 12.)

[Rizvandi 2010] N.B. Rizvandi, J. Taheri, A.Y. Zomaya and Y.C. Lee. Linear

Combinations of DVFS-Enabled Processor Frequencies to Modify the Energy-

Aware Scheduling Algorithms. Cluster Computing and the Grid, IEEE In-
ternational Symposium on, vol. 0, pages 388–397, 2010. (Cited on pages 16,
28 and 31.)

[Rountree 2007] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R.
de Supinski and M. Schulz. Bounding energy consumption in large-scale

MPI programs. In Proc. the ACM/IEEE conference on Supercomputing,
November 2007. (Cited on pages 131, 137 and 138.)

[Srikantaiah 2008] S. Srikantaiah, A. Kansal and F. Zhao. Energy Aware Consoli-

dation for Cloud Computing. In Proceedings of Workshop on Power Aware
Computing and Systems (HotPower). USENIX, December 2008. (Cited on
page 28.)

162

Bibliography

[Talbi 2009] E-G. Talbi. Metaheuristics : from design to implementation. The Sci-
ences Po series in international relations and political economy. John Wiley
& Sons, 2009. (Cited on pages 16, 19, 45, 71 and 144.)

[Tesauro 2007] G. Tesauro, R. Das, H. Chan, J.O. Kephart, D. Levine, F.L. Raw-
son III and C. Lefurgy. Managing Power Consumption and Performance of

Computing Systems Using Reinforcement Learning. In NIPS, 2007. (Cited
on page 28.)

[Topcuouglu 2002] H. Topcuouglu, S. Hariri and M.Y. Wu. Performance-Effective

and Low-Complexity Task Scheduling for Heterogeneous Computing. IEEE
Trans. Parallel Dist. Systems, vol. 13, no. 3, pages 260–274, 2002. (Cited on
pages 131, 132, 137 and 151.)

[Tordsson 2012] J. Tordsson, R.S. Montero, R. Moreno-Vozmediano and I.M.
Llorente. Cloud brokering mechanisms for optimized placement of virtual

machines across multiple providers. Future Generation Computer Systems,
vol. 28, no. 2, pages 358–367, 2012. (Cited on pages 26 and 31.)

[Venkatachalam 2005] V. Venkatachalam and M. Franz. Power reduction techniques

for microprocessor systems. ACM Computing Survey, vol. 37, no. 3, pages
195–237, September 2005. (Cited on page 132.)

[Venugopal 2008] S. Venugopal, Xingchen Chu and R. Buyya. A Negotiation Mecha-

nism for Advance Resource Reservations Using the Alternate Offers Protocol.
In Quality of Service (IWQoS), 16th International Workshop on, pages 40
–49, June 2008. (Cited on page 48.)

[Verma 2008] A. Verma, P. Ahuja and A. Neogi. pMapper: Power and Migration

Cost Aware Application Placement in Virtualized Systems. In Valérie Issarny
and Richard Schantz, editeurs, Middleware 2008, volume 5346 of Lecture

Notes in Computer Science, pages 243–264. Springer Berlin Heidelberg, 2008.
(Cited on pages 2, 29, 31, 91 and 94.)

[Vir 2013] VMWare: Migrate Virtual machines with Zero Downtime.

http://www.vmware.com/, 2013. (Cited on page 8.)

[Wang 2008] L. Wang and Y. Lu. Efficient Power Management of Heterogeneous

Soft Real-Time Clusters. In Real-Time Systems Symposium, pages 323–332,
2008. (Cited on pages 38 and 88.)

[Wang 2010] L. Wang, G. von Laszewski and J. Dayal. Towards Energy Aware

Scheduling for Precedence Constrained Parallel Tasks in a Cluster with

DVFS. pages 17–20, May 2010. (Cited on page 138.)

[Wu 2013] Z. Wu, X. Liu, Z. Ni, D. Yuan and Y. Yang. A market-oriented hi-

erarchical scheduling strategy in cloud workflow systems. The Journal of

163

Bibliography

Supercomputing, vol. 63, no. 1, pages 256–293, 2013. (Cited on pages 1, 2,
27 and 31.)

[Xu 2010] J. Xu and J.A.B Fortes. Multi-Objective Virtual Machine Placement in

Virtualized Data Center Environments. In IEEE/ACM Int Conference Green
Computing and Communications (GreenCom) & Int Conference on Cyber,
Physical and Social Computing (CPSCom), pages 179–188, 2010. (Cited on
pages 2, 16, 30 and 31.)

[Yu 2006] J. Yu and R. Buyya. Scheduling scientific workflow applications with dead-

line and budget constraints using genetic algorithms. Scientific Programming,
vol. 14, no. 3-4, pages 217–230, 2006. (Cited on pages 25 and 31.)

[Zhong 2007] X. Zhong and C.-Z. Xu. Energy-aware modeling and scheduling for

dynamic voltage scaling with statistical real-time guarantee. IEEE Trans.
Computers, vol. 56, no. 3, pages 358–372, 2007. (Cited on page 137.)

[Zhu 2003] D. Zhu, R. Melhem, and B. R. Childers. Scheduling with dynamic volt-

age/speed adjustment using slack reclamation in multiprocessor real-time sys-

tems. IEEE Trans. Parallel Dist. Systems, vol. 14, no. 7, pages 686–700, 2003.
(Cited on pages 131, 132 and 137.)

[Zhu 2004] D. Zhu, D. Mosse and R. Melhem. Power-aware scheduling for AND/OR

graphs in real-time systems. IEEE Trans. Parallel Dist. Systems, vol. 15,
no. 9, pages 849–864, 2004. (Cited on pages 131 and 137.)

[Zhuo 2008] J. Zhuo and C. Chakrabarti. Energy-efficient dynamic task scheduling

algorithms for DVS systems. ACM Trans. Embed. Comput. Syst., vol. 7,
pages 17:1–17:25, January 2008. (Cited on page 14.)

[Zomaya 1999] A.Y. Zomaya, C. Ward, and B.S. Macey. Genetic Scheduling for

Parallel Processor Systems: Comparative Studies and Performance Issues.
IEEE Trans. Parallel Dist. Systems, vol. 10, no. 8, pages 795–812, 1999.
(Cited on page 131.)

164

Abstract: Cloud computing has emerged during the last decade to be widely
adopted nowadays in several IT areas. It consists to propose market or not market-
oriented resources as services that can be consumed in a ubiquitous, flexible and
transparent way. In this PhD thesis, we deal with scheduling, one of the major cloud
computing issue. According to the targeted cloud configuration, we have identified
three levels of scheduling: service-level, task-level and Virtual Machine-level. We
revisit the problem modeling, the design and the implementation of multi-objective
metaheuristics for each scheduling level of the cloud. The proposed metaheuristics-
based schedulers address different criteria including energy consumption, greenhouse
gas emissions, profit and QoS (cost and response time). We prove their adaptability
to the cloud constraints by integrating them as a part of the OpenNebula cloud
manager. Moreover, our schedulers have been extensively experimented using real-
istic cloud configurations on Grid’5000, considered as an infrastructure as a service
(IAAS), and concrete scenarios based on Amazon EC2 instances and prices. The
reported results show that our proposed methods outperform existing scheduling
approaches in terms of all previously cited criteria.
Keywords: resource scheduling, cloud computing, evolutionary algorithms , local
search, multi-objective optimization, metaheuristics

Résumé: Le cloud computing a émergé au cours de la dernière décennie pour être
largement adopté aujourd’hui dans plusieurs domaines de l’informatique. Il consiste
à proposer des ressources axées, ou non, sur le marché sous forme de services qui
peuvent être consommés de manière souple et transparente. Dans cette thèse, nous
traitons le problème d’ordonnancement, un des enjeux majeurs du cloud. Selon la
configuration de cloud ciblée, nous avons identifié trois niveaux d’ordonnancement :
niveau service, niveau tâche et niveau machine virtuelle. Nous revisitons la modéli-
sation du problème, la conception et l’implémentation des métaheuristiques multi-
objectives pour chaque niveau d’ordonnancement du cloud. Les ordonnanceurs à
base de métaheuristiques que nous proposons portent sur différents critères notam-
ment la consommation d’énergie, les émissions de gaz à effet de serre, le profit
et la qualité du service (coût et temps de réponse). Nous prouvons leur capacité
d’adaptation aux contraintes du cloud en les intégrant au sein du gestionnaire de
cloud OpenNebula. De plus, nos ordonnanceurs ont été largement expérimentés util-
isant des configurations réalistes de cloud sur Grid’5000, en tant qu’infrastructure
en tant que service (IAAS), et des scénarios concrets basés sur les instances et les
tarifications d’Amazon EC2. Les résultats présentés montrent que les méthodes que
nous proposons surpassent les approches d’ordonnancement existantes sur tous les
critères cités précédemment.
Mots clés: ordonnancement de ressources, cloud computing, algorithmes évolu-
tionnaires, recherche locale, optimisation multi-objectif, métaheuristiques

