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1

Introduction

This dissertation discusses the graphical modeling of causal relationships. As everyone has

her/his own intuitive feel of what a causal relationship is, we will start this chapter by

explaining the notion of causality as conceived in this dissertation. After that we will discuss

our modeling requirements by means of an example and briefly introduce the techniques

that will be presented in this dissertation. Next, we present our research proposition and

an overview of the contributions. We end the chapter with a concise list of contents of the

following chapters.

1.1 Preliminaries

In this section, we introduce our notion of causality and discuss the use of graphical models.

1.1.1 Causality

Everybody has her/his own intuitive idea about causality and when performing most of

our actions we use the notion of causality because we are interested in the effects of those

actions. Philosophers have spent centuries attempting to explain the notion of causality and

even now many of them are still working on the subject, like Spirtes et al. (2000b), Pearl

(2000), Salmon (1998), Russo and Williamson (2007) and many others.

One of the most common notions about causality is that a cause should precede its effect

in time. Many theories of causation invoke an explicit requirement that a cause precedes

it effect in time Pearl (2000). Yet temporal information alone cannot distinguish between

genuine causation and spurious associations caused by unknown factors. For instance, the

barometer drops before the rain falls, but it does not cause the rain. Furthermore, effects

can appear at different time steps after the occurence of their cause. For instance, it can take

several months after being stung by a mosquito that you develop malaria symptoms while

switching the light switch causes the light to turn on almost instantly. In this dissertation we
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2 1.1. Preliminaries

do not take into account an explicit notion of time. We assume that a causal connection is

structural in the sense that it is an actual mechanism from nature. I.e. we do not distinguish

between the two causal relations discussed before, but look at them as an ever present causal

mechanism.

In this dissertation we use probability theory to characterize the relationship between a

cause and its effect. There are several reasons for this approach, which we will demonstrate

by means of some examples.

If we would consider only deterministic relations to be causal, then claims like ”turning

on the light switch causes the light to turn on”, ”being stung by an infected mosquito causes

malaria” and ”smoking causes cancer” do not hold. For instance, smoking only increases the

chance of developing cancer. In order to be able to model these probabilistic relationships,

we need to have a mathematical language that can accommodate them.

Another reason for using probabilities is that any causal expression in natural language

is subject to exceptions. Consider for instance this example from Pearl (2000): Given these

two plausible premises:

1. My neighbor’s roof gets wet whenever mine does.

2. If I hose my roof it will get wet.

Taken literally, these two premises lead to the wrong conclusion, which is that my neighbor’s

roof would get wet whenever I hose mine. In order to resolve this, we would have to add all

possible exceptions:

1. My neighbor’s roof gets wet whenever mine does, except when I hose my roof, or it is

covered with plastic, or . . .

Probability theory allows us to focus on main issues of causality by incorporating all the

exceptions into the probability distribution of the event.

1.1.2 Graphical Models

Graphical models denote a framework of modeling techniques that combine probability the-

ory and graph theory, examples include Bayesian networks Pearl (1988), possibilistic networks

Dubois (2006),hidden Markov models Rabiner (1989), etc.

Graphical models are specifically suited for handling complex problems that deal with

uncertainty. Complexity is solved by organizing knowledge in a modular way while uncer-

tainty is handled by making use of probability theory.

Furthermore, the graphical component of such models constitutes an intuitive model for

researchers and a data structure that is suited for the development of efficient algorithms.

Towards an Integral Approach for Modeling Causality
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Since our goal is to model causality, we want to be able to denote cause and effect re-

lationships. This can only be done in graphical models which contain directed edges. For

instance, a Markov Random Field Kindermann and Snell (1980) is an undirected structure

and therefore is not of interest to us.

1.2 Model Requirements

The goal of this dissertation is to give an integral view on modeling causal knowledge. We

will use an example to illustrate the requirements which a good probabilistic causal model

must fulfill.

Assume that we want to model a tsunami detection system. Tsunamis are caused by

undersea earthquakes and can cause an enormous amount of damage, so early detection

can potentially save many lives.

An undersea earthquake can be detected by seismic measuring equipment and if it causes

a tsunami, then tide-sea-level instruments and tsunami detection buoys will measure a high

fluctuation in their measurements. This information can then be forwarded to the tsunami

warning centers1. This system is depicted graphically in Figure 1.1.

Undersea

Earthquake


Seismic measurement

Tide-sea-level

measurement


Tsunami Detection

Buoys measurements


Tsunami Warning


Figure 1.1. Graphical representation of tsunami detection system.

Depending on the strength and the origin of the earthquake, seismic activity detection

equipment does not always register it. Furthermore, the tide-sea-level measuring instru-

1 http://www.tsunami.noaa.gov/warning system works.html
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ments and the measurements of the tsunami detection buoys can be influenced by weather

conditions, passing boats, malfunctions, etc. This means that, as discussed previously, we

need probabilities to model our detection system.

The main use of a tsunami detection system is to issue a warning when a tsunami is about

to strike. However, when too many warnings are given for relatively harmless tsunamis,

people in the surrounding areas lose confidence in the system.

The type of question we want to answer with the model is given a combination of the

measurements what is the chance of issuing a tsunami warning. For instance, assume we

measure seismic activity but no respective change in measurements for the tide-sea-level

measurements and tsunami detection buoys. Solving these types of questions is called per-

forming probabilistic inference, e.g. determining the probability of some event (tsunami

warning) given that we have some observational knowledge (seismic activity).

Another interesting type of question explores what would happen if one of the mea-

suring devices broke down. For instance if the measuring instruments inside the tsunami

detection buoys stopped working, would warnings still be issued? Solving these questions

is called performing causal inference, e.g. what is the probability of some event (tsunami

warning) when there is an external intervention on the system (system failure of tsunami

detection buoys). I.e. a system failure of the tsunami detection buoys corresponds to the

tsunami detection buoys measurements having a certain value, but that value is indepen-

dent of the presence of an earthquake.

One final question that arises is how such models are constructed. Often experts create a

model based on their expertise on the subject. However, for a lot of systems there is no prior

knowledge on the causal relationships that hold between the variables. For instance, in bio-

informatics, an interesting task is to know which genes interact with each other and cause

the over/under expression of other genes Bower and Bolouri (2001). To retrieve a causal

model from data (either observational or experimental) is called learning. As discussed be-

fore we never take time into account explicitly, so we wish to retrieve causal knowledge

from certain statistical patterns in the data, patterns that, in fact, can be given meaningful

interpretation only in terms of causal directionality.

A good probabilistic causal model needs to be able to (a) model the system, (b) answer both

probabilistic and causal inference questions, and (c) be learned from data.

1.3 Causal Bayesian Networks

Causal relationships have been modeled in many different ways like structural equation mod-

eling (Haavelmo, 1995), propensity scores (Rosenbaum and Rubin, 1983) and graphical models

Towards an Integral Approach for Modeling Causality
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(Pearl, 2000), (Spirtes et al., 2000a). We work on the latter as this is a very powerful and also

popular and intuitive representation. For now, we make the assumption that all variables

that are of importance to the system are measured and observed and that all data is present

at a central site.

Bayesian networks (BNs) are the cornerstones of all causal models used in this disser-

tation. Though they were originally introduced to concisely represent a joint probability

distribution, they have been extended to model causal relationships (Pearl, 2000).

BNs consist of a graphical structure G in the form of a directed acyclic graph (DAG), and

a set of parameters θ corresponding to conditional probability distributions of each variable

Xi given its parents in the graph G.

Causal Bayesian networks (CBNs) are Bayesian networks with the added property that the

edges connecting variables represent a direct cause-effect relationship. More specifically, a

directed edge C → E in a causal Bayesian network indicates that there exists at least one

intervention on C that would alter the distribution of the values of E given that all other

variables are kept at certain constant values.

An example causal Bayesian network, representing the tsunami detection system, is

given in Figure 1.2. There are 5 variables in the network: Undersea Earthquake (U),

Seismic Measurement (S), Tide−sea−level Measurement (L), Tsunami Detection Buoys

Measurement (D) and Tsunami Warning (W ).

The network structure corresponds to the causal links in the tsunami detection system

and the (conditional) probabilities are the parameters of the network.

A CBN can only represent systems in which there are no feedback-loops since its un-

derlying structure is a DAG. It is possible to extend CBN to incorporate feedback loops by

explicitly modeling time. For instance we can model the following situation:

• I have fever thus I take aspirin.

• Aspirin diminishes the fever.

by using a so called dynamic causal Bayesian network where we differentiate between two

types of dependencies and causal relationships. The first is within 1 time step t: from the

moment I feel fever I take aspirin: fever(t) → aspirin(t). The second is between two time

steps t and t + 1: Taking the aspirin diminishes the fever: aspirin(t) → fever(t + 1). This

can be graphically modeled as shown in Figure 1.3. In all models we use in this dissertation

we do not model time explicitly, so we only take into account relationships that hold within

one time step.

Towards an Integral Approach for Modeling Causality
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Figure 1.2. Causal Bayesian Network representing a tsunami detection system.
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Figure 1.3. Dynamic causal Bayesian network modeling feedback loop between taking aspirin and fever.

1.3.1 Probabilistic inference

We can use a CBN to answer several types of queries. For instance, using the network given

in Figure 1.2, what is the probability that there will be a tsunami warning given that there is

seismic activity measured but there was no change in measurements in the tsunami detec-

tion buoys, P (W = true|S = true, D = false).

Towards an Integral Approach for Modeling Causality
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1.3.2 Causal Inference

As mentioned before we can also use CBNs to answer causal queries. We denote causal

queries by using the do() operator (cf. Section 3.2.1), for instance, if we want to know the

probability that there will be a tsunami warning given that the tsunami detection buoys are

defect and always issue a high measurement (D = true):

P (W = true|do(D = true))

1.3.3 Learning

Now that we have introduced the models that we will use throughout this dissertation, we

want to discuss how these models can actually be learned. Learning causal models means

determining the structure of the causal network and the parameters from data. It is in the

task of structure learning that most of our contributions lie.

In order to learn the parameters of a CBN, it is assumed that the structure is known.

Hence, the task at hand is to recover the probabilistic dependences between a variable and

its parents in the graph. Methods for learning the parameters of a CBN are given in Section

2.5.1.

Structure learning amounts to finding the correct cause-effect relationships between the

variables of the system that is studied. There are two main approaches on learning the struc-

ture of a CBN. One is based on the probabilistic dependences that hold among the variables

and the other is based on how good the structure explains the available data on the system.

Different learning techniques and algorithms are discussed in Section 2.5.2.

1.4 More Expressive Models

The previous sections allow us to fullfil our tasks in a centralized environment where all

variables that are of importance to the system are known. These restrictions put limits on the

representational power of our models. In this section, we introduce richer models. First, we

remove the requirement that all variables that influence the system are known, this means

that we allow latent variables. Then, we look at settings in which the data and the system are

dispersed across multiple sites.

1.4.1 Latent Variable Modeling

Consider again our tsunami detection system given in Figure 1.1. In this model it is as-

sumed that there are no external influences that can alter the system. This is of course a

Towards an Integral Approach for Modeling Causality



8 1.4. More Expressive Models

naive assumption; in actuality there can be many other actors that influence the behavior of

the components of the tsunami detection system. For instance in Figure 1.4 we show how

V olcanic Eruption (V ) or extreme Weather Conditions (C) can influence the system.

Undersea

Earthquake


Seismic measurement

Tide-sea-level

measurement


Tsunami Detection

Buoys measurements


Tsunami Warning


Weather

Conditions


Volcanic

Eruption


Figure 1.4. Tsunami detection system with explicit modeling of unmeasured influences.

However, these two variables are not measured; variables that influence the system

but are never measured are called latent variables. When we use causal Bayesian networks

(CBNs), we have to explicitly add V and C to the model and have to provide CPDs for vari-

ables depending on them. Since they are never measured, this system can not be modeled

by CBNs.

The graph with all latent variables explicitly modeled is called the underlying DAG.

There are two major paradigms used to model causal relationships in the presence

of latent variables, namely ancestral graphs (AG) (Richardson and Spirtes, 2002) and semi-

Markovian causal models (SMCM) (Pearl, 2000), which both implicitly model the latent vari-

ables. We call both AG and SMCM causal latent models.

In a SMCM, each directed edge represents an immediate autonomous causal relation be-

tween the corresponding variables, just as was the case for causal Bayesian networks. A bi-

directed edge between two variables represents a latent variable that is a common cause of

these two variables. There exist algorithms to perform causal inference in SMCMs, however

there was no algorithm to learn the structure. One of the contributions of this dissertation is

to propose such an algorithm.

Towards an Integral Approach for Modeling Causality
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In AGs a directed edge represents an ancestral relation in the underlying DAG. I.e. an

edge from variable C to E represents that in the underlying causal DAG with latent vari-

ables, there is a directed path between C and E. Bi-directed edges represent a latent common

cause between the variables. However, if there is a latent common cause between two vari-

ables C and E, and there is also a directed path between C and E in the underlying DAG,

then in the AG the ancestral relation takes precedence and a directed edge will be found

between the variables. Algorithms to learn the structure of an AG from observational data

have been proposed by (Spirtes et al., 2000a).

A problem with this representation is that these semantics of edges make some causal

inferences in AGs impossible in general. In this dissertation we show how to transform an

AG into a SMCM so that inference can be performed after the transformation.

In Figure 1.5 we show an example of an underlying DAG, and the corresponding AG

and SMCM.

U


S
 L


D


W


C
V

U


S
 L


D


W


U


S
 L


D


W


(a)
 (b)
 (c)


Figure 1.5. Model of tsunami detection system with unmeasured influences. (a) The underlying DAG. (b) A

maximal ancestral graph representation of (a). (c) A semi-Markovian causal model representation of (a).

AGs and SMCMs are introduced in Sections 5.1 and 5.2. Inference in these models are

discussed in Section 5.3 and learning in Section 5.4.

1.4.2 Multi-Agent Causal Models

Depending on the magnitude of the earthquake, a tsunami can spread over more than 100

miles. This means that several detection systems in different parts of the world may be acti-

vated. This also means that some data gathered on the possibility of a tsunami is dispersed

over different centra in the world.

Hence, the tsunami detection system is part of a much bigger network consisting of sev-

eral local detection systems that interact, see Figure 1.6 for an example with two local sys-

tems.

A multi-agent causal model (MACM) is a technique that is able to model these type of

systems. It is assumed that there is no longer one central controller having access to all the

Towards an Integral Approach for Modeling Causality
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Figure 1.6. Two tsunami detection systems forming a bigger network, allowing to issue a global warning.

observable variables, but instead a collection of agents each having access to non-disjoint

subsets of all the variables.

In this dissertation we will discuss how a multi-agent causal model can be learned from

data. This is part of joint work with Sam Maes and has previously been discussed in his dis-

sertation (Maes, 2005). We will also propose a new causal inference algorithm that allows to

calculate the effect of an intervention on all other variables in the system by communicating

local distributions.

MACMs are introduced in Section 7.1, inference in MACM in Section 7.2, and learning in

Section 8.2.

1.5 Research Proposition

We have shown in the previous discussion that modeling causality amounts to solving a

number of tasks:

1. Identify the modeling technique, which defines the complexity of the systems we can

model.

2. Identify the queries we wish to answer with our models.

Towards an Integral Approach for Modeling Causality
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3. Provide algorithms to solve the queries.

4. Provide algorithms to learn the models from data.

The goal of this dissertation is to integrate all these tasks and our research proposition

can be described as:

Proposition 1.1. To provide an integral approach to modeling causal relationships, from learning to

inference.

1.5.1 Overview and Contributions

The build-up of this dissertation is as follows.

In Chapter 2 we start with a concise introduction on probability theory and Bayesian

networks.

The rest of the dissertation consists every time of a chapter introducing the modeling

technique and discussing its respective state-of-the-art followed by a chapter with our con-

tributions on these models.

We introduce our simplest causal model, namely a causal Bayesian network, in Chapter

3. We demonstrate how it can be learned and used as an inference tool.

Next we propose our contributions for CBN in Chapter 4:

• We introduce a structure learning algorithm, MyCaDo, that attempts to minimize the

overall cost of learning the structure of CBNs. This is done by using a decision theoretic

approach, generic for any decision criteria (Meganck et al., 2006a).

• We describe an algorithm for learning the structure of a CBN which does not make the

assumption that the data corresponds exactly to the underlying system, called UnCaDo.

We introduce an adapted independence test proposed for this goal (Meganck et al.,

2008b).

In Chapter 5 we introduce the two main techniques for latent causal modeling, namely

semi-Markovian causal models and ancestral graphs and identify the limitations of these

techniques.

Chapter 6 contains our contributions on latent variable modeling:

• We introduce an algorithm, MyCaDo++, to learn the structure of a semi-Markovian

causal model from a mixture of observational and experimental data (Meganck et al.,

2006b),(Maes et al., 2007a).

• We propose a transformation that maps a semi-Markovian causal model to a directed

acyclic graph in which it is possible to learn the parameters and perform probabilistic

inference (Maes et al., 2007a), (Meganck et al., 2007).

Towards an Integral Approach for Modeling Causality



12 1.5. Research Proposition

We introduce the framework of multi-agent causal models and discuss its properties in

Chapter 7. We present joined work with Sam Maes for performing causal inference in this

setting (Maes et al., 2004),(Maes et al., 2005a),(Maes et al., 2005b),(Maes et al., 2007b).

Chapter 8 discusses our additions to the framework:

• We extend the MACM approach to allow agents to be coupled in a complex network and

propose a new causal inference algorithm for this more complex setting (Meganck et al.,

2008a).

• We introduce an algorithm called M − ACaDo to learn the structure of a MACM from

distributed data while trying to minimize the communication between agents (Meganck

et al., 2005a),(Meganck et al., 2005b).

Towards an Integral Approach for Modeling Causality
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Bayesian Networks

In this chapter we will introduce the concept of Bayesian Networks (BNs). They will be

the basis for all our graphical causal models in the remaining chapters. BNs, just as other

types of probabilistic graphical models are, as the name suggests, a marriage between two

theories: probability theory and graph theory. Henceforth, we will commence with a concise

introduction on both theories and then define BNs. The remaining sections of this chapter

will focus on the different ways BNs can be used. We end with an overview of the discussed

topics in this chapter.

2.1 Probability Theory

In this work uppercase letters Xi, Xj , . . . are used to represent discrete random variables

and bold uppercase letters V,W, . . . are sets of variables. Corresponding lowercase letters

are used to represent their instantiations, e.g. xi, xj , . . . and v, w, . . .. P (Xi = xi) is used to

denote the probability that a variable Xi has value xi and likewise P (V = v) the probability

that a set of variables V has the corresponding instantiation v. Usually, P (xi) and P (v) are

used as abbreviations of P (Xi = xi) and P (V = v) respectively.

2.1.1 Probability Distributions

The joint probability distribution (JPD) P (V)=P (X1, . . . , Xn) specifies probabilities to all pos-

sible joint instantiations of the variables in V.

A conditional probability distribution (CPD) P (Xi|Xj) is the probability of event Xi given

that we know that Xj has occurred.

Using conditional probabilities the JPD P (X1, . . . , Xn) can be rewritten as follows:

P (X1, . . . , Xn) = P (Xn|Xn−1, . . . , X1)P (Xn−1, . . . , X1)

When we iteratively repeat this process by substituting the marginal probability in the right

hand side we get:

13



14 2.1. Probability Theory

P (X1, . . . , Xn) = P (Xn|Xn−1, . . . , X1)P (Xn−1|Xn−2, . . . , X1) . . . P (X2|X1)P (X1)

=
n

∏

i=1

P (Xi|Xi−1, . . . , X1) (2.1)

The repeated application of this process is called the chain rule.

2.1.2 Independence

Two random variables Xi and Xj are independent if:

P (Xi, Xj) = P (Xi)P (Xj).

Such an independence is denoted as:

(Xi⊥⊥Xj)

and it means that the state of Xi is irrelevant to the state of Xj and vice versa.

Similarly, two variables Xi and Xj are conditionally independent given some other set of

variables S ⊂ (V\{Xi, Xj}), if:

P (Xi, Xj |S) = P (Xi|S)P (Xj |S)

given that P (s) > 0 for all s ∈ DS, where DS is the domain of S. This is equivalent to

P (Xi|Xj , S) = P (Xi|S) or P (Xj |Xi, S) = P (Xj |S). This means that if the joint state of the

variables in set S is known, Xi has no extra information on Xj and vice versa. Such a condi-

tional independence is denoted as:

(Xi⊥⊥Xj |S)

If two variables are not independent then they are said to be dependent. Again, one can

distinguish between a marginal dependence of two variables Xi and Xj , denoted as:

(Xi 2Xj)

and a dependence conditional on a set S denoted as:

(Xi 2Xj |S)

Concise Representation of JPD

Assume that the following conditional independence holds:

(Xi⊥⊥Si|Xi−1) with Si = {Xi−2, . . . , X1}

Towards an Integral Approach for Modeling Causality
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or Xi is independent of Si conditional on Xi−1. Following the definition of conditional in-

dependence this implies:

P (Xi|Xi−1, Xi−2, . . . , X1) = P (Xi|Xi−1).

Now we can replace the factor P (Xi|Xi−1, Xi−2, . . . , X1) in Equation (2.1) by P (Xi|Xi−1).

This leads to a much smaller representation of the JPD. Even in the case of binary variables

this representation already needs to store 2i−2 times less numbers than the original JPD.

We can generalize, assuming that there is a set of variables Ti that makes another set Si

independent of Xi with Ti ∪ Si = {X1, . . . , Xi−1} and Ti ∩ Si = ∅, we have:

(Xi⊥⊥Si|Ti)

This implies

P (Xi|Xi−1, . . . , X1) = P (Xi|Ti).

and hence we can rewrite the chain rule in Equation (2.1) as:

P (V) =
n

∏

i=1

P (Xi|Ti).

2.2 Graph Theory

A graph consists of a set of nodes V = {X1, . . . , Xn} and a set of edges E ∈ V ∗ V between

these nodes. Edges can be undirected −, directed←,→ or bi-directed↔.

To refer to elements in a graph we use the terms of kinship. For instance in Figure 2.1 the

following relationships hold:

• X1 and X2 are parents of X3

• X3 is the child of X1 and X2

• X1, X2 and X3 are ancestors of X4 and X5

• X4 is a descendant of X1, X2 and X3

We denote Πi (or Pa(Xi)), Ch(Xi), Anc(Xi) and Desc(Xi) as the parents, children, an-

cestors and descendants of Xi respectively.

A path between Xi and Xj is a sequence of edges connecting Xi and Xj irrespective of

their orientations. A directed path from Xi to Xj is a sequence of edges Xi → Xp1 → . . . →

Xpk
→ Xj such that in the graph there is an edge Xpi

→ Xpi+1 for all i = 1, . . . , k − 1. A

directed acyclic graph (DAG) is a graph containing only directed edges in which directed

cycles, i.e. a directed path which begins and ends at the same variable, are not allowed.

Towards an Integral Approach for Modeling Causality
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Figure 2.1. A simple graph to indicate the different kinship relationships.

Graphs can be used to represent many types of systems depending on the semantic inter-

pretation that is given to the nodes and the edges. For instance, we can consider each node

to be a city and each edge to depict a highway connecting two cities. In the next section we

will give an interpretation for a graph that allows it to be used as an independence model of

a JPD.

2.3 Bayesian Networks

In this section we introduce Bayesian networks1, which are the cornerstones of our causal

graphical models.

A BN consists of two components, a DAG and a set of parameters θ representing condi-

tional probability distribution (CPDs). Together they model a JPD over a set of variables in a

concise way. Furthermore they allow to efficiently calculate probabilistic queries of the form

P (Xi|Xj).

2.3.1 Definition

In (Pearl, 1988), (Russell and Norvig, 1995) BNs are defined as follows:

Definition 2.1. A Bayesian network is a triple 〈V, G, P (Xi|Πi)〉, with:

• V = {X1, . . . , Xn}, a set of observable discrete random variables

• a directed acyclic graph (DAG) G, where each node represents a variable from V

• parameters: conditional probability distributions (CPD) P (Xi|Πi) of each variable Xi from V

conditional on its parents Πi in the graph G.

1 Other names found in the literature are (Bayesian) belief networks, probabilistic networks, graphical models,

. . . , sometimes they are even wrongfully referred to as a causal graphs
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An example BN is given in Figure 1.2 where the CPDs are indicated next to the nodes2.

We will now introduce some properties that we assume to hold when working with BNs.

2.3.2 Causal Sufficiency

The assumption of Causal Sufficiency is satisfied if we have measured all the common causes

of the measured variables that we include in our model. This means there are no unmea-

sured variables influencing more than one observed variable, i.e. there are no latent vari-

ables.

2.3.3 Markov Condition

Intuitively, the Markov condition says that the state of a variable depends only on the state

taken by variables in its vicinity. This is an assumption that is made in many areas of research

that are otherwise intractable. For example, in the area of reinforcement learning or in the

analysis of time series, it is often assumed that only the current state of the world has an

influence on future steps of the world, independent of previous states of the world.

In (Spirtes et al., 2000a) the Markov Condition is defined as follows:

Definition 2.2. A DAG G over variables V and a probability distribution P (V) satisfy the Markov

condition if and only if for every variable Xi ∈ V, Xi is independent of any of its non-descendants

given its immediate parents in the graph, or

Xi⊥⊥V\(Desc(Xi) ∪Πi)|Πi. (2.2)

In other words, the parents of a variable Xi, screen Xi off from all other variables, except

for the descendants of Xi.

d-separation

The d-separation criterion is a simple graphical criterion that allows to retrieve all the in-

dependences entailed by the Markov condition in a graph. In (Pearl, 2000) it is defined as

follows:

Definition 2.3. A path p is said to be d-separated by a set of node Z if and only if:

• p contains a chain Xi → Xm → Xj or a fork Xi ← Xm → Xj such that the middle node Xm is

in Z, or

• p contains an inverted fork Xi → Xm ← Xj such that the middle node Xm is not in Z and no

descendant of Xm is in Z.

2 This example is also a causal Bayesian network, see Chapter 3 and later.
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A set Z is said to d-separate a set W1 from W2 if and only if Z blocks every path from a node in W1

to a node in W2.

The connection between d-separation and conditional independence is established through

the following theorem (Pearl, 2000):

Theorem 2.1. If sets W1 and W2 are d-separated by Z in a DAG G that satisfied the Markov condi-

tion, then W1 is independent of W2 conditional on Z.

If two sets of variables W1 and W2 are d-separated given some set Z we denote this as

W1⊥W2|Z.

We define the notion of an I −map or independence map.

Definition 2.4. A DAG G is an I−Map of a distribution P if all independences implied by applying

the Markov property to G are satisfied by P. I.e. W1⊥W2|Z⇒W1⊥⊥W2|Z for all W1, W2, Z in G.

2.3.4 Faithfulness

The Markov condition entails independence relations that hold among the variables in the

graph. In general, it is possible that a distribution on a graph G that satisfies the Markov

condition may include other independence relations not entailed by the Markov condi-

tion. For instance, consider the DAG of Figure 2.2. The d-separation criterion implies that

(Xi⊥⊥Xl|{Xj , Xk}), but in this JPD Xi is also marginally independent from Xl, or, (Xi⊥⊥Xl).

We can see that this holds as P (Xi, Xl) = {0.23, 0.24, 0.26, 0.27}, P (Xi) = {0.47, 0.53}, and

P (Xl) = {0.49, 0.51}, then we can check that P (Xi, Xl) = P (Xi)P (Xl). So what we have

here is that the relations between two variables along two different directed paths exactly

cancel each other out.

When something like this occurs, we say that the distribution is unfaithful to the DAG.

This leads us to the following definition (Spirtes et al., 2000a):

Definition 2.5. A joint probability distribution P and a DAG G with variables V are faithful to

one another if all and only the conditional independence relations true in P are entailed by the

d-separation criterion applied to G. Formally, for any disjoint subset W1, W2 and Z of V

W1⊥⊥W2|Z⇔W1⊥W2|Z. (2.3)

Moreover, a distribution is faithful provided there is some DAG to which it is faithful.

We assume that the distributions we model are faithful, as those distributions that are

not faithful to a DAG, cannot be reliably modeled with the current techniques.

Note that in an unfaithful distribution there are dependences between some variables,

but that nature ”conspires” to make these variables look independent to an observer. This is

due to different dependences between these variables exactly canceling each other out.
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Figure 2.2. A Bayesian network representing a distribution which contains other independences then those

entailed by the d-separation criterion.

2.3.5 Factorization of the JPD

The Markov condition implies that the CPDs of a BN represent a factorization of the joint

probability distribution as a product of conditional probability distributions of each variable

given its parents in the graph:

P (V) =
∏

Xi∈V

P (Xi|Πi) (2.4)

If we compare this factorization to that of equation (2.1), we see that the JPD can be

represented by a much smaller amount of parameters than the full JPD or via the chain rule

(Equation 2.1). It is by replacing P (Xi|Xi−1, . . . , X1) by P (Xi|Πi) in the factorization via

the chain rule that we obtain a significant advantage, when the amount of parents of each

variable is small, or #Πi << i− 1.

Furthermore, as in such a case each CPD typically involves only a small number of vari-

ables, the parameters of a BN can be estimated from data with increased reliability.

2.3.6 Markov Equivalence

We saw above that a DAG specifies a unique set of probability distributions that must exhibit

those conditional independences found via the d-separation criterion. The opposite is not
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true, the conditional independences and dependences implied by a probability distribution

do not necessarily determine a unique DAG.

For example, the DAGs G1, G2 and G3 in Figure 2.3 all exhibit the same d-separations, i.e.

Xi⊥Xj |Xm and Xi 0Xj . This means they represent the same set of probability distributions.

We can also see this when we write down the factorization of the JPD as in equation (2.4) for

each of these DAGs.

P (Xi, Xj , Xm) =

P (Xi|Xm)P (Xm|Xj)P (Xj)
G1

= P (Xi|Xm)P (Xm)P (Xj |Xm)
G2

= P (Xm|Xi)P (Xj |Xm)P (Xi)
G3

The DAG G4 contains the same edges as the other DAGs, but it represents other indepen-

dences and dependences. More specifically, there is a v-structure at Xm (Xi → Xm ← Xj),

and thus the d-separations are Xi⊥Xj and Xi 0Xj |Xm.
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Figure 2.3. The DAGs G1, G2 and G3 belong to the same equivalence class, whereas G4 does not.

Property 2.1. The d-separation criterion defines a reflexive, symmetric and transitive relation

on the set of DAGs called the Markov equivalence relation. It partititions the space of DAGs

into equivalence classes, whose members exhibit the same d-separation properties.

Practically, two DAGs are equivalent if they have the same skeleton (i.e. the undirected

graph obtained by dropping the orientation of all edges in a DAG) and the same v-structures

(Verma and Pearl, 1990).

There is a graphical model that represents the class of Markov equivalent graphs:

Definition 2.6. A completed partially directed acyclic graph (CPDAG) is a representative of all the

graphs that belong to the same Markov equivalence class. A CPDAG has the same skeleton as all the

graphs in the equivalence class. It consists of directed and undirected edges. An edge is directed in a

CPDAG if it is directed the same way in all graphs in the Markov equivalence class and undirected

if some graphs in the equivalence class differ on the direction of the edge.

For example, in Figure 2.4(a,b,c) we show three equivalent graphs and their representa-

tive in Figure 2.4(d) which is the respective CPDAG.
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Figure 2.4. Example of three equivalent networks and the respective representative of the Markov equivalence

class.

An important consequence of the existence of equivalence classes is that in general when

learning the graphical component of a BN from a probability distribution alone, it is not a

DAG that is obtained, but rather an equivalence class. In general, when a DAG is needed,

a member of the equivalence class is chosen arbitrarily. It is only if additional knowledge is

provided, such as the orientation of some edges, or if experiments are conducted, that we

can differ between members in the same equivalence class and that a complete DAG can be

learned.

2.4 Probabilistic Inference

The basic task for any probabilistic inference system is to compute the posterior probability

distribution for a set of query variables, given some observed event. For instance, using the

BN in Figure 1.2, what is the probability that there is an undersea earthquake U given that

the detection buoys made an alarming measurement P (U = true|D = true).

In this section we will discuss some algorithms for performing this task using BNs.

2.4.1 λ − π Message Passing

In (Pearl, 1988), Pearl introduced the λ − π propagation algorithm for BNs with a polytree

as a graph. A polytree is a DAG where undirected cycles are not allowed, or, in other words

that there is only one path between any two nodes in the graph.

When evidence for some variable is received in the form of knowledge concerning its

value, messages are calculated at the node representing that variable in the graph. For every

child of the node there is a π message and for every parent a λ message. The only information
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that is used to obtain the messages is local to that variable Xi, i.e. the CPD of Xi given its

parents in the graph, or P (xi|πi), combined with the evidence that was received.

Then the messages are sent to the respective neighbors (parents and children) of variable

Xi. When these nodes have received the messages from all their parents (or all their chil-

dren), they in their turn calculate messages for their children (or their parents) and so on.

Note that root nodes and leaf nodes respectively cannot receive π and λ messages, and thus

they start to propagate immediately.

Finally, when a variable Xi has received the messages from all its neighbors, it can com-

bine all these messages to calculate its updated belief. See Figure 2.5 for a sketch of what

happens in variable V .
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Figure 2.5. Sketch of the λ− π propagation algorithm for polytrees.

The propagation converges in time proportional to the diameter of the graph and the

work done in a node is proportional to the size of the CPD present at that node. Hence the

belief propagation algorithm is linear in the number of network parameters.

2.4.2 Junction Tree Algorithm

As opposed to the belief propagation from above, this technique can handle inference in

BNs whose graph contains undirected cycles (Jensen, 1996). It essentially consists of merging

highly-interconnected subsets of nodes into supernodes or cliques.

The transformation of a BN into a junction tree consists of three phases: moralization,

triangulation and clique building. In the first phase the DAG is transformed into an undi-

rected graph adding edges between the parents nodes in each v-structure and then dropping
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the directionality of the edges. Triangulation aims at removing cycles of length > 3 with no

chord (i.e. an edge between two non-adjacent nodes in such a cycle), by adding a chord.

Then, build the clique graph by first identifying cliques (i.e. maximal complete sub-

graphs) in the moralized and triangulated graph. The clique graph consists of nodes that

each represents a clique. These nodes are connected with an edge if the set of variables con-

tained in two cliques intersect. See Figure 2.6 for an example of these steps.
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Figure 2.6. Image showing (a) original graph, (b) moralization, (c) triangulation, and (d) identifying the cliques.
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Finally, the junction tree is a subgraph of the clique that is: (a) a tree, (b) contains all

the variables of the clique graph and (c) has the junction tree property. This property states

that for any two cliques in the junction tree that are connected by a path, the intersection

between these two cliques must be contained in each clique on the path. In Figure 2.7 we see

a junction tree of the graph in Figure 2.6.
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Figure 2.7. A junction tree of the graph in Figure 2.6.

In the junction tree, inference can be done with an algorithm that closely resembles the

one introduced above for polytrees. The time complexity of junction tree construction is

exponential in the size of the maximal clique. See (Jensen, 1996) for a complete specification

of the algorithm.

2.5 Learning Bayesian Networks

A BN consists of a DAG structure and parameters and both can be learned from data. In this

section we will show some of the most common techniques.

2.5.1 Learning the Parameters

When learning the parameters of a BN it is generally assumed that the structure of the BN

is known. Hence, the task of parameter learning comes down to finding the values:

P (Xi|Πi) (2.5)

for each variable Xi in the network. The set of all parameters P (Xi|Πi) is often noted as θ.

We will describe two of the most used approaches in literature. More information can be
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found in, for instance, (Neapolitan, 2003).

Maximum Likelihood

The simplest method is called maximum likelihood (ML) estimation. This is a statistical

method that estimates the probability of an event P (xi|πi) by the frequency of this event

in the data. This gives us:

P̂ (Xi = xk|Πi = xj) =
Ni,j,k

∑

k

Ni,j,k

where Ni,j,k is the number of times that the data contains event that Xi = xk and Πi = xj .

We denote the set of parameters found by using this method as θML.

Bayesian estimation

Bayesian estimation consists of finding the most likely parameters P (Xi|Πi) given that the

data was observed using priors over the parameters, e.g. maximum a posteriori (MAP) esti-

mation. If we assume that each P (Xi|Πi) follows a multinomial distribution, the joint dis-

tribution of all P (Xi|Πi) follows a Dirichlet distribution. This allows us to approximate the

parameters as:

P̂ (Xi = xk|Πi = xj) =
Ni,j,k + αi,j,k − 1

∑

k

(Ni,j,k + αi,j,k − 1)

where αi,j,k are the parameters of the Dirichlet distribution associated with the prior P (Xi =

xk|Πi = xj).

We denote the set of parameters found by using this method as θMAP .

2.5.2 Learning the Structure

There are two big groups of structure learning algorithms, namely score-based (Heckerman,

1995) and constraint-based (Spirtes et al., 2000a), (Pearl, 2000). Both have the limitation that

without extra assumptions about the underlying distribution, they can only learn the BN up

until its Markov equivalence class.

Score-based Learning

Score-based algorithms assign a score to each possible network based on how well the net-

work represents the data and how complex the network is. Then, it is necessary to search

through the space of graphs for the network that maximizes this score. In practice, it is im-

possible to perform an exhaustive search over the space of graphs because the number of

possible graphs grows super exponentionally with the number of nodes (Robinson, 1977).
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Algorithm 1 GES Algorithm (Chickering, 2002b).

Require: A set of samples from a probability distribution faithful to a CBN P (V ).

Ensure: BN.

1. FES: Forward equivalence search

a) Start with an empty graph.

b) Consider all graphs obtained by single arc additions.

c) Group Markov equivalent graphs together and represent them as a CPDAG.

d) Choose among these the CPDAG with the highest score.

e) Repeat steps (b) and (c) until the score can not be improved.

2. BES: Backward equivalence search

a) Start with the CPDAG resulting from FES.

b) Consider all graphs obtained by single arc deletions.

c) Group Markov equivalent graphs together and represent them as a CPDAG.

d) Choose among these the CPDAG with the highest score.

e) Repeat steps (b) and (c) until the score can not be improved.

Different heuristics have been proposed for this problem resulting in several algorithms like

K2 (Cooper and Herskovits, 1992) and Greedy-Search (GS) (Chickering, 2002b).

Typically, a scoring metric consists of a measure of how well the samples D from a dis-

tribution can be modeled by the network G and a penalty factor diminishing the score of

complex networks (cf. Occam’s razor). Some commonly used scores are the Bayesian infor-

mation criterion (Schwartz, 1978):

ScoreBIC(G, D) = logL(D|θML, G)−
1

2
Dim(G)logN

and minimum description length (Lam and Bacchus, 1994):

ScoreMDL(G, D) = logL(D|θML, G)− |AG|logN − c.Dim(G)

where N is the number of samples, c the number of bits necessary to stock every unique

parameter, |AG| the number of arcs and Dim(G) is the number of free parameters in the

graph in the graph G and θML the set of parameters P (Xi|Πi) found by ML estimation (cf.

Section 2.5.1).

An attribute of these scoring metrics is that they assign the same score to Markov equiv-

alent graphs.

Taking into account the fact that several networks encode the same (in)dependence re-

lationships (Markov equivalence), we can shrink the search space. We can search in the

space of Markov equivalent representatives for the one that corresponds to the correct

BN, this is done for instance in Greedy Equivalence Search (GES) (Chickering, 2002b). The
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size of the space of DAGs and the space of CPDAGs is asymptotically close (ratio of 2.7),

but the DAG space has some drawbacks. For instance, iterative algorithms that work by

adding/removing or inversing arcs can get stuck in local minima because of the large num-

ber of equivalent DAGs having the same score.

We will discuss the GES algorithm in more detail as it is one of the most used and dis-

cussed in literature. After a first initialization, GES, as described in Algorithm 1, works in

two phases. The different steps of the algorithm are shown on an example in Figures 2.8 and

2.9.
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Figure 2.8. Forward equivalence search

Towards an Integral Approach for Modeling Causality



28 2.5. Learning Bayesian Networks

Backward operators example
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Figure 2.9. Backward equivalence search

GES starts by initializing the current state of the search to be the equivalence class cor-

responding to the unique DAG with no edges. That is the first state of the search space

corresponds to all possible marginal and conditional independence constraints.

In the first phase of the algorithm, we repeatedly replace the current CPDAG ǫ by a

member of its neighborhood Ne+(ǫ) containing all CPDAGs modeling all DAGs formed by

adding an edge to any of the DAGs in the equivalence class modeled by the current CPDAG

that has the highest score ǫ+ until no such replacement increases the score.

The second phase consists of repeatedly replacing the current CPDAG ǫ with the member

of its neighborhood Ne−(ǫ), which in this case contains all CPDAGs modeling all DAGs

formed by removing an edge of any of the DAGs in the equivalence class modeled by the
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current CPDAG that has the highest score ǫ−. Once the algorithm reaches a local maximum

in the second phase, it terminates and returns the current CPDAG.

GES has been proved to be asymptotically correct by Chickering (2002b). I.e. if enough

data is provided so that the empirical distribution provided by the data converges to the

correct theoretical distribution, then GES using the BIC score will converge to the correct

CPDAG representing the theoretical distribution.

Chickering (2002b) provided a set of operators allowing to generate the neighborhoods

Ne+() and Ne−() of a CPDAG without having to go to the space of DAGs. However, to

calculate the score of a CPDAG it is still necessary to choose an instantiation of the CPDAG,

i.e. a DAG in the equivalence class modeled by the CPDAG and calculate its score.

Constraint-based Learning

Constraint-based learning algorithms look for (in)dependencies in the data and try to model

that information directly into the graphical structure. The structure of these algorithms is as

follows:

• Initialization: Start with a complete undirected network

• Skeleton discovery: Remove edges when independences are found to hold between the

variables.

• Edge orientation, v-structures: Search for triples for which certain properties hold and

orient these triples accordingly.

• Edge orientation, edge propagation: Based on the already oriented edges, apply some

orientation rules until no more edges can be oriented.

Examples include PC (Spirtes et al., 2000a), IC (Pearl, 2000) and BN-PC (Cheng et al., 1997).

We will discuss the PC-algorithm in detail, since we adjust PC for learning CBN with

latent variables later in this work. The complete PC-algorithm is given in Algorithm 2. PC

is proved to be correct asymptotically, which means that if the amount of available data

becomes large enough so that all independence tests give the correct result, then the PC

algorithm will return the CPDAG modeling the Markov equivalent class of the correct graph

modeling the distribution.

Several heuristics exist to make PC faster since the number of independence tests that

need to be performed becomes very large.

Example

As an example assume that the correct graph is given in Figure 2.10(a). We start by initializ-

ing our complete DAG in Figure 2.10(b).
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Algorithm 2 PC algorithm (Spirtes et al., 2000a).

Require: A set of samples from a probability distribution faithful to a CBN P (V ).

Ensure: CPDAG.

1. Initialization:

G is complete undirected graph on the vertex set V .

2. Skeleton discovery:

n=0;

repeat

repeat

select an ordered pair of variables Xi and Xj that are adjacent in G such

that Ne(Xi)\Xj has cardinality ≥ n, and a subset S

of Ne(Xi)\Xj of cardinality n, and if Xi and Xj are independent given S

delete edge Xi −Xj from G and record S in Sepset(Xi, Xj) and

Sepset(Xj , Xi);

until all ordered pairs of adjacent variables Xi and Xj such that Ne(Xi)\Xj

has cardinality ≥ n and all subsets S of Ne(Xi)\Xj of

cardinality n have been tested for independence;

n=n+1;

until for each ordered pair of adjacent vertices Xi, Xj , Ne(Xi)\Xj is of cardinality < n.

3. Edge orientation: v-structure discovery

For each triple of vertices Xi, Xj , Xk such that the pair Xi, Xj and the pair Xj , Xk are each adjacent in G

but the pair Xi, Xk are not adjacent in G, orient Xi −Xj −Xk as Xi → Xj ← Xk if and only if Xj is not

in Sepset(Xi, Xk).

4. Edge orientation: inferred edges

Repeat

PC-Rules to come here

until no more edges can be oriented.

Now we start the skeleton discovery phase by performing conditional independence

tests. When a conditional independence between two variables is found that means the

corresponding edge can be removed (Because we assume faithful distributions, hence

W1⊥⊥W2|Z ⇔ W1⊥W2|Z). Assuming that we test independences concerning X1 first, we

find that X1⊥⊥X2 and so the edge X1 − X2 is removed (Figure 2.10(c)). After performing

(conditional) independence tests for each pair of variables, we end up with the structure

given in Figure 2.10(d), as you can see this matches the skeleton of the correct graph.

The next step is edge orientation, in which we first try to find the v-structures. We can

orient the triple X2 − X4 − X3 as X2 → X4 ← X3, giving us Figure 2.10(e). Now the final

orientation step, the application of the rules to infer the direction of edges, can be applied

given us Figure 2.10(f). The edge X0 − X2 remains undirected, as we have no information

on how to direct this edge. However, we can instantiate this edge as long as we do not
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create new v-structures or cycles to become the BN that correctly models the underlying

(in)dependences (cf. Markov equivalence, see Section 2.3.3).
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Figure 2.10. Example run of PC.

Markov Blanket Discovery

Recently, a lot of research has been done on learning the structure of BNs by learning the

individual Markov blankets of each variable and then joining this information to construct

the complete graph. A Markov blanket of a variable Xi is the minimal set of variables Mi

that when conditioned upon renders Xi independent of all other variables V\(Mi ∪ {Xi}).

This set consists of Πi, Ch(Xi) and Pa(Ch(Xi))\{Xi}, meaning the parents, children and

other parents of the children of Xi.

Some relevant publications for these algorithms are (J-P. Pellet, 2008) and (Pena et al.,

2007).

2.6 Overview of the Chapter

In this chapter we introduced the basic building blocks of our causal models, namely

Bayesian networks. These graphical models can be used to concisely represent a JPD by

modeling the independences in a graphical structure and keeping a set of CPDs.
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We showed how both the CPDs and the graph can be learned from observational data

and briefly introduced some of the most common learning techniques. Furthermore, we

introduced several ways to perform probabilistic inference, which is the calculation of the

effect of observing the state of a certain variable on the probability of other variables in the

system.

In the next chapter we will show how BNs can be extended to model causal information.
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Causal Bayesian Networks

In this chapter we will introduce Causal Bayesian Networks (CBNs). A CBN is an extension of

a probabilistic BN, as introduced in the previous chapter, that is capable of modeling causal

information. The main difference with probabilistic BNs is the semantics of the edges, where

they are viewed as carries of dependence relationships in BNs they are representatives of

causal relations in CBNs. If we reflect on the requirements of a good causal model (Section

1.2), we have to describe what exactly can be represented by a CBN (Section 3.1), which

queries we can resolve with a CBN (Section 3.2), and how it can be learned from observa-

tional or experimental data (Section 3.3).

3.1 Definition

A causal Bayesian network is a Bayesian network with an added assumption. A CBN is

defined as follows (Pearl, 2000):

Definition 3.1. A causal Bayesian network (CBN) is defined as a triple 〈V, G, P (Xi|Πi)〉 with:

• a set of observable discrete random variables V = {X1, . . . , Xn}

• a directed acyclic graph (DAG) G, where each node is associated with a variable from V

• conditional probability distributions (CPD) P (Xi|Πi) of each variable from V conditional on its

immediate parents in the graph G

Furthermore, the directed edges represent an autonomous causal relation between the cor-

responding variables.

The difference between a CBN and a classical BN is that the edges of a CBN are viewed

as representing autonomous causal relations among the corresponding variables, while in a

BN the arrows only represent a probabilistic dependency, and not necessarily a causal one.

A directed edge C → E in a CBN indicates that there exists at least one intervention on C
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that would alter the distribution of the values of E given that all other variables are kept at

certain constant values.

This means that in a CBN, each CPD P (Xi|Πi) represents a stochastic assignment process

by which the values of Xi are chosen in response to the values of Πi in the underlying

domain. This is an approximation of how events are physically related with their effects in

the domain that is being modeled. For such an assignment process to be autonomous means

that it must stay invariant under variations in the processes governing other variables (Pearl,

2000). For example, a change in P (Xi|Πi) should not alter the distribution of P (Xj |Πj),∀j 6=

i.

So we assume that the causal Bayesian network is the one that generates the JPD. In Figure

3.1 we see a conceptual sketch: the box represents the real world where a causal Bayesian

network generates the data in the form of a joint probability distribution. Below we see the

BNs that represent all the independence relations present in the JPD (Markov equivalent

structures). Only one of them is the causal Bayesian network, in this case the rightmost.

REAL WORLD


CAUSAL BAYESIAN NETWORK

with autonomous data-generation processes

from causes to effects


BLACK BOX


DATA =
  JPD


HYPOTHESES


BN2
BN1
 BN3


Figure 3.1. Conceptual sketch of how a CBN generates a JPD, that in its turn can be represented by several

probabilistic BNs of which one is a CBN.

In the next section we show the main use of CBNs, namely causal inference.
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3.2 Causal Inference

We start by explaining the difference between observing and intervening, then treat an im-

portant theorem that specifies how to incorporate the effect of an intervention in a CBN.

After that, the problem of calculating causal effects or identification is explained.

3.2.1 Observation vs. Intervention

An important issue in graphical models is to distinguish between different types of belief

revision, each of which modify a given probability distribution in response to information

obtained. There exist many types of belief revision such as different types of imaging (Lewis,

1981), (Crestani and Rijsbergen, 1994) and traditional probabilistic conditioning. However,

an elaborate discussion on them falls outside the scope of this thesis.

We consider only two types of conditioning: probabilistic conditioning (conditioning by

observation) and conditioning by intervention, which will be discussed below.

Definition 3.2. Conditioning by observation refers to the way in which a probability distribution

of Xj should be modified when a modeler passively observes the information Xi = xi.

They are presented by conditional probabilities that are defined as follows:

P (Xj = xj |Xi = xi) = P (xj |xi) =
P (Xj = xj , Xi = xi)

P (Xi = xi)
. (3.1)

It is important to realize that this is typically not the way the distribution of Xj should

be modified if we intervene externally and force the value of Xi to be equal to xi.

Definition 3.3. Conditioning by intervention1 refers to the way the distribution Xj should be

modified if we intervene externally and force the value of Xi to be equal to xi.

To make the distinction clear, Pearl has introduced the do-operator (Pearl, 2000)2:

P (Xj = xj |do(Xi = xi)) (3.2)

The interventions we are treating here are surgical in the sense that they only directly

change the variable of interest (Xi in the case of do(Xi = xi)). We sometimes write do(xi) as

a shorthand for do(Xi = xi).

Generally, the two quantities will be different:

1 Throughout this text the terms intervention and manipulation are used interchangeably.
2 In the literature other notations such as P (Xj = xj ||Xi = xi), PXi=xi

(Xj = xj), or P (Xj = xj |Xi = x̂i) are

abundant.
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P (Xj = xj |do(Xi = xi)) 6= P (Xj = xj |Xi = xi) (3.3)

and the quantity on the left-hand side cannot be calculated from the joint probability

distribution P (V) alone, without additional assumptions imposed on the graph, i.e. that the

directed edges represent an autonomous causal relation as in CBNs.

Consider the simple CBNs of Figure 3.2: in the left graph

P (xj |do(xi)) = P (xj |xi)

as Xi is the only immediate cause of Xj , but

P (xi|do(xj)) = P (xi) 6= P (xi|xj)

as there is no direct or indirect causal relation going from Xj to Xi. The equalities above are

reversed in the graph to the right, i.e. there it holds that P (xj |do(xi)) = P (xj) 6= P (xj |xi)

and P (xi|do(xj)) = P (xi|xj).

X
i
 X
i
 X
i
 X
i


Figure 3.2. Two simple causal Bayesian networks.

Before showing a more challenging example of the difference between conditioning by

observation and intervention, we introduce a theorem that specifies how an intervention

modifies the JPD associated with a CBN.

3.2.2 Manipulation Theorem

Performing an external intervention in a domain that is modeled by a CBN, modifies that

domain and the JPD that is used to model it.

We only study the simplest form of interventions in this work, i.e. fixing a set of variables

M to some constants do(M = m). In principle more general types of intervention are possi-

ble, such as fixing the value of variables M in a way that depends on previously observed

variables. Furthermore, we only take into account interventions on observable variables.

For reasons of clarity, we repeat the factorization of the JPD:

P (V) =
∏

Xi∈V

P (Xi|Πi)
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To obtain the post-intervention distribution after fixing a set of variables M ⊂ V to fixed

values M = m, the factors with the variables in M conditional on their parents in the graph

(i.e. their causes in the pre-intervention distribution), have to be removed from the JPD.

Formally these are : P (Mi|Pa(Mi)) for all variables Mi ∈ M. This is because after the

external intervention, it is this intervention rather than the parent variables in the graph

that cause the values of the variables in M. Furthermore the remaining occurrences of M in

the JPD have to be instantiated to M = m.

An intervention of this type only has a local influence in the sense that only the incoming

links of a manipulated variable have to be removed from the model, no factors representing

other links have to be modified, except for instantiating the occurrences of the manipulated

variables M to m. This is a consequence of the assumption of CBNs that the factors of the JPD

represent assignment processes that must stay invariant under variations in the processes

governing other variables. Formally, we get (Spirtes et al., 2000a):

Theorem 3.1. Given a CBN with variables V = X1, . . . , Xn and we perform the intervention

do(M = m) for a subset of variables M ⊂ V, the post-intervention distribution becomes:

P (V|do(m)) =
∏

Xi∈V\M

P (Xi|Πi)

∣

∣

∣

∣

∣

∣

M=m

(3.4)

Where |M=m stands for instantiating all the occurrences of the variables M to values m in

the equation that precedes it.

Assume we have the CBN representing the Tsunami warning system example given in

the introduction and repeated here in Figure 3.3. Imagine we want to disable the tsunami

detection buoys D (e.g. to save electricity) by performing the appropriate intervention

do(D=false). Such an intervention changes the way in which the value of D is being pro-

duced in the real world. Originally, the value of D was being decided by its immediate cause:

Undersea Earthquake U . After performing the intervention, namely disabling the buoys, the

presence or absence of an undersea earthquake no longer influences the value of D. Instead

the new cause of the value of D is the intervention itself.

In Figure 3.4 the graph of the post-intervention CBN is shown. There we can see that

the link between the original cause of D has been severed and that the value of D has been

instantiated to false.

The full factorization of the JPD representing our tsunami warning system before the

intervention, using notation wise: seismic measurement S, Tide-sea-level measurement L,

tsunami warning W , is:
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Undersea

Earthquake


Seismic measurement

Tide-sea-level

measurement


Tsunami Detection

Buoys measurements


Tsunami Warning


Figure 3.3. CBN representation of tsunami warning system.

Undersea

Earthquake


Seismic measurement

Tide-sea-level

measurement


Tsunami Detection

Buoys measurements


=false


Tsunami Warning


Figure 3.4. The CBN of the tsunami warning system of after disabling the detection buoys via an external inter-

vention: do(D=false).

P (v) =P (u).

P (s|u).

P (l|u).

P (d|u).

P (w|s, d, l)
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When we apply the manipulation theorem of Equation (3.4) to incorporate the effect of

disabling the detection buoys we obtain the post-intervention distribution:

P (v|do(D = false)) =P (u).

P (s|u).

P (l|u).

P (w|s, D = false, l)

As a comparison, the post-observation distribution after merely observing that the detec-

tion buoys do not detect a tsunami is as follows:

P (v|D = false) =P (u).

P (s|u).

P (l|u).

P (D = false|u).

P (w|s, D = false, l)

The only difference with the post-intervention distribution is the presence of the factor

P (D = false|u).

Remark that the post-observation distribution can be obtained using the definition of a

conditional probability (using the first letters of the variable names):

P (u, s, l, w|d) =
P (u, s, l, w, d)

∑

u,s,l,w

P (u, s, l, w, d)

This equation implies that to obtain the post-observation distribution, the JPD contains

sufficient information and the structure of the BN is not needed. In contrast, to obtain the

post-intervention distribution we explicitly need information contained in the structure, i.e.

the parents of the variables of the manipulated variables.

3.3 Structure Learning

In this section we discuss learning CBNs from data and/or experiments. We focus on learn-

ing the structure since we are now interested in finding causal relationships among variables

and not just in finding probabilistic dependencies. We start by showing the intrinsic difficul-

ties of this task and how in the light of our assumptions we can perform it. Then we give an

overview of the properties of different learning algorithms and give an overview of the state

of the art. In the next chapter we will introduce our contributions on learning the structure

of CBNs. Parameter learning can be done as for probabilistic BNs, see Section 2.5.1.
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3.3.1 Learning from Observational Data

The biggest problem when learning causal relationships from observational data is that we

simply do not observe causal relationships. What we actually observe is the cause, the effect

and the fact that they occur in a fixed pattern. This correlation of variables implies some

form of causal relationship. The goal of learning causal structure from observational data is

to find exactly which causal relationship is depicted.

In the causal interpretation, a correlation implies an unresolved causal structure, which

means that if two variables Xi and Xj are correlated they have one of the following under-

lying causal structures (Shipley, 2000):

• Xi is a cause of Xj

• Xj is a cause of Xi

• There is a common cause Xc of Xi and Xj

These three possibilities are depicted graphically in Figure 3.5.

X
i
 X
j
 X
i
 X
j
 X
i
 X
j


X
c


Figure 3.5. When there is a correlation between Xi and Xj , one of these three causal structures hold.

The third possibility occurs if not all variables that influence the system are known. We

call Xc a latent variable, we will discuss models with latent variables in the Chapter 5.

If we only have data on two variables it is impossible to distinguish between Xi →

Xj and Xi ← Xj . However when there are three variables that have a specific set of

(in)dependence relationships it is possible to identify (under the assumption of causal suffi-

ciency (Section 2.3.2)) which variables are causes of another one. This dependence relation-

ships can be graphically represented by what is known as a v-structure shown in Figure 3.6.

The (in)dependence relationships that hold in this case are:

• Xi is independent of Xj

• Xi is dependent of Xm

• Xj is dependent of Xm

• Xi is dependent of Xj given Xm

Intuitively you can imagine that Xi and Xj are two diseases with a similar symptom Xm

(feaver). We assume that the occurence of both diseases is independent of each other. When

we know that someone has feaver, then adding the knowledge that she/he does not have

disease Xi increases our belief in disease Xj .
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X
i
 X
j


X
m


Figure 3.6. A v-structure.

It is clear that it is not always possible to find the causal relationship between any two

variables based on observational data. The PC algorithm introduced in Section 2.5.2 is an

algorithm, that searches explicitly for v-structures and its result is a CPDAG in which all

directed arrows are causal (assuming all independence tests are correct).

Learning using Algebraic Constraints

Recent work by (Shpitser and Pearl, 2008) focuses not only on finding dependence relation-

ships in the observational data but also algebraic constraints. They study one type of al-

gebraic constraints called dormant independences, which are conditional independences that

hold in interventional distributions. They give a complete algorithm for determining if a

dormant independence between two sets of variables resides in an interventional distribu-

tion that can be predicted without resorting to the actual interventions. They further show

the usefulness of dormant independences in model testing and induction. The details can be

found in Shpitser and Pearl (2008). In this dissertation we do not take into account dormant

independence.

3.3.2 Learning from Experimental Data

Many researchers use either randomised or controlled experiments to discover causal rela-

tionships (Shipley, 2000). Assuming that there are no latent variables and that we know that

there is a correlation between two variables Xi and Xj we can perform an experiment on

either variable to discover the underlying causal relationship. For instance when we manip-

ulate Xi we can see whether this exerts a change in the distribution of Xj . If this is the case

then we know that Xi is the cause of Xj and otherwise we know that Xj is a cause of Xi.

A structural experiment on a variable Xi, removes the influence of other variables in the

system on Xi and cuts the connection between Xi and its parents in the graph. The experi-

ment forces a distribution on Xi, and thereby changes the joint distribution of all variables

in the system that depend directly or indirectly on Xi but does not change the conditional
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distribution of other variables given values of Xi. After the intervention, the associations of

the remaining variables with Xi provide information about which variables Xi influences.

However not all experiments are structural, it is possible that an experiment only changes

the conditional distribution of the variable given its causes. These type of interventions are

called parametric interventions. It is even possible that the targets of an intervention are un-

known and might even be more than a single variable (fat hand). Such interventions are

known as uncertain interventions.

There are two main approaches to perform experiments, the controlled and the random-

ized experiment.

Controlled Experiment

The controlled experiment consists of proposing a hypothetical structure of cause-effect re-

lationships, deducing what would happen if particular variables are controlled or ”fixed” in

a particular state, and then comparing the observed result with the predicted outcome.

Randomized Experiment

The randomized experiment consists of creating identically experimental units on which we

use a certain treatment (intervention). Remember that if we find a correlation between two

variables Xi and Xj , there are three possible causal explanations: Xi → Xj , Xi ← Xj and

Xi ← Xc → Xj with Xc a common cause. Randomization serves two purposes in retrieving

causal relationships. First, it ensures that there is no causal effect coming from the experi-

mental units to the treatment variable or from a common cause to both. Second, it helps to

reduce the likelihood in the sample of a chance correlation between the treatment variable

and some other cause of treatment. By randomising the treatment variable we generate a

sampling distribution that allows us to calculate the probability of observing a given result

by chance if, in reality, there is no effect of the treatment.

3.4 Overview of State-of-the-art

In this section we give an overview of the state-of-the art algorithms for learning the com-

plete structure of a CBN. We start by identifying the most common properties and assump-

tions of the algorithms and then discuss them in more detail. We divide the algorithms into

two sections depending on the type of experiments that are used.

3.4.1 Properties of Learning Algorithms

We give a list of a set of properties and assumptions of most structure learning algorithms.
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Constraint vs. Score-based:

As we have seen in Section 2.5.2, there are two main groups of structure learning algorithms:

constraint-based and score-based. Both techniques have been used to learn CBNs as well.

Experimental vs. Observational and Experimental Data:

When learning CBNs it is often necessary to perform experiments since we can only learn

a graph from observational data up to its Markov equivalence class, see Section 3.3. Some

algorithms are based solely on experiments while others use the observational data as a

starting point.

Perfect vs. Imperfect Data:

Sometimes it is assumed that an infinite amount of observational or experimental data is

present (we call this perfect data), which means that the independence relations in the data

exactly model the d-separation relations as shown by Pearl (2000). However for real world

problems this is often not the case, which is a cause for possible errors during learning.

(no) causal sufficiency:

Most studies assume causal sufficiency (cf. Section 2.3.2), that is there are no latent variables,

cause this complicates the learning process. In Chapters 5 and 6 we discuss algorithms that

take into account latent variables.

Structural vs. Alternative Interventions:

Since experiments are needed to learn the completely oriented CBN, we have to perform in-

terventions on the system. Several types of interventions can be used, for instance structural

and parametric, see Section 3.3.2.

3.4.2 CBN Structure Learning with Structural Interventions

We will discuss several studies that have been performed to learn a CBN from observational

and experimental data and will indicate which of the previously mentioned properties they

have.
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Theoretical Study

Eberhardt et al. (2005a) have done a theoretical study on the lower bound of the number

of structural experiments needed in the worst case scenario. They study a constraint-based

method in which observational data is used to learn the dependencies in the data. Causal

sufficiency and perfect data are assumed.

It is shown that when combining structural interventions with search procedures for

graphical causal models N − 1 experiments suffice to determine the causal relations among

N > 2 variables when each experiment randomizes at most one variable. They also show

that no adaptive procedure can do better than the N − 1 lower bound on the number of

experiments required to identify the structure in the worst case.

Eberhardt et al. (2005b) extended this result by allowing multiple structural experiments

to be performed simultaneously, in which case the lower bound becomes log2(N) + 1. For

all K, 0 < K < 1
2N they provide an upper bound on the number of experiments needed

when each experiment simultaneously randomizes K variables. For K < N
2 they show that

(

N
K
− 1

)

| N
2K

log(K)experiments are sufficient and in the worst case necessary.

Active Learning

Tong and Koller (2001) and Murphy (2001) proposed score-based active learning techniques

to learn the structure of causal networks without latent variables from perfect experimental

data gathered by structural experiments.

Both techniques proposed to perform experiments based on (a) the current belief about

the structure, (b) the causal information that will be gained by an experiment. The belief is

modeled by P (G|Di), a probability distribution over the set of DAGs given the data seen so

far. They update this belief after each experiment and then reiterate the process. Since the

space of DAGs is super exponential in the number of nodes, an approximation is needed for

P (G|Di).

Tong and Koller (2001) assumed that there are a number of query variables that can be ex-

perimented on and then the influence on all other variables is measured. In order to choose

the optimal experiment they introduce a utility function, the loss-function, based on the

uncertainty of the direction of an edge, to help indicate which experiment gives the most

information. Using the results of their experiments they update the distribution over the

possible networks and network parameters. Since it is impossible to do this for the entire

set of DAGs they use an approximation based on the ordering of the variables proposed by

Friedman and Koller (2000).

Murphy (2001) proposed a technique which resembles the one of Tong and Koller (2001)

but different approximations are used to overcome working in the space of DAGs. Murphy
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(2001) used MCMC to approximate the belief state P (G|Di) and importance sampling to

calculate the expected utility.

Learning from Mixture of Observational and Experimental Data

Cooper and Yoo (1999) described another score-based method which can learn the structure

from an arbitrary mixture of imperfect observational and experimental data. It is assumed

that the performed experiments are structural. A closed-form Bayesian scoring metric was

derived that can be used in this context: the metric takes into account whether the data is

from observations or from experiments and adapts the score likewise. The new scoring met-

ric is an adaptation of the one proposed by Cooper and Herskovits (1992) and Heckerman

et al. (1995) for observational data alone.

3.4.3 Alternative Interventions

In most studies it is assumed that an intervention involves randomly assigning values to a

single variable and measuring some other possible response variables. Recently researchers

have studied different types of interventions. We will discuss two of these approaches that

were introduced by Eberhardt and Scheines (2006) and Eaton and Murphy (2007) respec-

tively.

Parametric Interventions

Eberhardt and Scheines (2006) argued that Fisher’s theory on randomized trial is far from

complete when there is no a priori designation of causes and effects. First of all, there is no

guaranteed way to find the optimal sequence of experiments. Secondly there are statistical

problems when combining results of experiments on different sets of variables and finally

there are many more types of interventions besides randomized assignments.

Performing a structural intervention, i.e. randomizing a variable Xi, makes the variable

independent of its original causes. This is represented by adding an exogenous variable I

which has two states (on/off) indicating that an intervention took place or not respectively.

When I has value on, I makes Xi independent of its causes (parents) and determines the

distribution of Xi. So the CPD P (Xi|Πi) is replaced by P (Xi|I = on).

Another type of interventions are parametric (soft) interventions which do not remove

the influence of the original causes but modify the CPD. This can again be modeled by

an exogenous variable Isoft with two stated (on/off). When Isoft has value on, the CPD

P (Xi|Πi) is replaced by P (Xi|Πi), Isoft = on).

The main result about parametric interventions by Eberhardt and Scheines (2006) is the

following theorem:
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Theorem 3.2. One experiment is sufficient to discover the causal relations among a causally suffi-

cient set of N variables if multiple variables can be simultaneously and independently subjected to a

parametric intervention per experiment.

As is discussed by Eberhardt and Scheines (2006) these results do not imply that para-

metric interventions are always better than structural interventions. First, more samples are

needed because parametric interventions require more conditional independence tests with

larger condition sets. Secondly, the theorem only holds for causally sufficient sets, however

previous results by Eberhardt et al. (2005a) and Eberhardt et al. (2005b) on structural inter-

ventions also depend on causal sufficiency.

Uncertain Interventions

Eaton and Murphy (2007) further relax the requirements for interventions and study the

setting in which the targets of the intervention are a priori unknown, these type of inter-

ventions are called uncertain. One exogenous intervention node Iunc may have multiple

regular children (fat hand). It is shown that the dynamic programming algorithm proposed

by Koivisto and Sood (20004) and Koivisto (2006) can be extended to the case where data is

obtained from these types of experiments.

When there are no interventions, the marginal likelihood for a node and its parents is

given by:

P (x1:N
i |π1:N

i ) =

∫

[

N
∏

n=1

P (xn
i |π

n
i , θi)

]

P (θi)dθi (3.5)

where N is the number of data points.

The marginal likelihood in the case of uncertain interventions becomes:

P (x1:N
i |π1:N

i ) =
∏

l

∫





∏

n:Iunc,i=l

P (xn
i |π

n
i , θl

i)



 p(θl
i)dθl

i (3.6)

where Iunc,i are the intervention parents of Xi and θl
i depicts the parameters for node Xi

given that its parents have state l.

A Bayesian approach to learning the structure is used, however it is well known that

computing the full posterior is intractable. Therefore sampling methods are used, the details

thereof are outside the scope of this article, more information can be found in the papers of

(Eaton and Murphy, 2007) and (Koivisto, 2006).

The main result in this article is that the extension of the algorithm of Koivisto and Sood

(20004) has a time complexity of O(d2dX + dk+1C(N)) where dX is the number of regular

nodes, d the number of total nodes (regular + intervention) and C(N) is the cost of comput-

ing each local marginal likelihood term.
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3.5 Overview of the Chapter

In this chapter we showed how probabilistic Bayesian networks can be extended to repre-

sent causal relationships between variables in a system.

Furthermore we showed that this new semantic interpretation of the arcs in a CBN al-

lows to perform causal inference, which is the calculation of the effect of performing an

intervention on the system.

The causal interpretation of the edges has as a consequence that learning the structure

of a CBN no longer amounts to finding A member of the equivalence class but finding THE

data generating network. We gave an overview of state-of-the art algorithms for handling

this task.

In the next chapter we will introduce our algorithms for learning the complete structure

of a CBN under certain assumptions.
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Contributions on Causal Modeling

In this chapter we will introduce our contributions for Causal Bayesian Networks (CBNs).

We propose two algorithms to learn the structure of CBNs using (a) available observational

data and (b) data gathered from specific experiments. The key to both these contributions is

our observation that available data is seldom sufficient to learn the complete causal struc-

ture. As mentioned in the previous chapters, a distribution can be modeled by different

networks with different structures (Markov equivalence). Furthermore, sometimes just a

limited amount of data is available which renders automatic learning techniques less reli-

able.

In the next two sections we introduce two algorithms MyCaDo (MY CAusal DiscOvery)

and UnCaDo (UNsure CAusal DiscOvery). MyCaDo still assumes that the available obser-

vational data is sufficient (perfect data) to recover the representative of the correct Markov

equivalence class of probabilistic networks modeling the data. The innovation of MyCaDo is

that it tries to recover the complete causal structure using a minimal amount of experiments

or with a minimal cost. The UnCaDo algorithm no longer expects that the observational

data comprises all dependence information exactly. In this case we allow to explicitly model

edges, representing probabilistic/causal dependencies, of which we are unsure. The goal is

then to remove these unsure edges in a first phase and then complete the structure as for

4.1 Our Greedy Approach for Perfect Observational and Experimental Data

In this section we introduce our approach on learning a CBN from perfect observational and

experimental data. We start with a general description of the algorithm and then discuss

each part in more detail.

4.1.1 General Description

The general overview of the algorithm is given in Figure 4.1.

49
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Figure 4.1. Main description of the MyCaDo approach.

We assume that we are given a dataset of perfect observational data from a system under

study that can be modeled by a CBN. In the first phase we learn the CPDAG from this

dataset using traditional structure learning techniques such as the ones proposed in Section

2.5.2.

The second phase is the main application of our approach, the MyCaDo (My Causal

DiscOvery) algorithm, proposed by Meganck et al. (2006a), which consists of three parts.

In the first part (Section 4.1.2) we have to decide which experiment we will perform and

hence also which variables we will alter and measure. Secondly, we have to do the actual

experiment (Section 4.1.4), and finally we have to analyze the results of our experiment

(Section 4.1.5). The results of our experiments will allow us to direct a number of edges in

the partially directed structure. If there are still some edges that are undirected we re-iterate

over the second phase. When all edges are directed we have the correct CBN modeling the

original data.

We have to note however that if some experiments are impossible to perform (too expen-

sive / unethical) it is possible that the result of MyCaDo is not a completely directed graph

cause the direction of some edges can not be resolved.

4.1.2 Choice of Experiment

We use elements from decision theory to decide which experiment we will perform at each

step. In general a decision problem consists of three parts: values (symptoms, observables),

actions and possible consequences. It is assumed that these are given in advance. It is possi-

ble to order the consequences by preference by using a utility function. Hence we can choose
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the action that will lead to our preferred result based on some decision criteria such as least

risk or optimistic estimation. We can also maximize the expected utility of each action by

defining a probability distribution on the expected results of this action.

Utility Function

In general, our utility function U(.) will be a function of three variables: gain(exp), cost(exp),

cost(meas), respectively the gained information, the cost of performing an experiment and

the cost of measuring other variables. The only restriction that is placed on the utility func-

tion is that it is proportional to gain(exp) and inversely proportional to the sum of cost(exp)

and cost(meas).

If we denote performing an action (=experiment) at Xi by AXi
, and measuring the neigh-

boring variables by MXi
then the utility function we use is:

U(AXi
) =

αgain(AXi
)

βcost(AXi
) + γcost(MXi

)

where α, β and γ are measures of importance for every term. We will assume α = β = γ

unless stated otherwise, to simplify the notation.

Gain of an Experiment

Let’s assume that we perform an experiment on Xi and that we can measure all neighboring

variables Ne(Xi). In this case we can direct all edges connecting Xi and Ne(Xi) as a result of

the experiment. So in this case the gain, gain(AXi
), with AXi

an experiment on Xi, is based

entirely on the number of variables NeU (Xi) that are connected to Xi by an undirected edge,

which will be directed according to the result of the experiment.

However, it is possible that directing one edge can infer direction of other edges, see the

final phase of the PC-algorithm in Algorithm 2. We can take into account the possibility of

inferred edges in gain(AXi
).

Note that the amount of edges of which the direction can be inferred after performing

an experiment is entirely based on the instantiation of the undirected edges connected to

the one being experimented on. Instantiating an undirected edge is assigning a direction

to it, so for instance if we have an edge Xi − Xj , then Xi → Xj and Xi ← Xj are the

two possible instantiations of that edge. We denote inst(AXi
) as the set of instantiation of

the undirected edges connected to Xi. The number of inferred edges based on inst(AXi
) is

noted as #inferred(inst(AXi
)).

Note that two undirected substructures, which are subgraphs consisting of nodes con-

nected by undirected edges, that are not linked in any way by undirected edges can not
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be influenced by performing an experiment in the other substructure when the CPDAG is

correct. Since we assume in this context that all discovered edges are correct no existing

edges can change based on inference by experiments, and hence no new information can be

inferred through a set of already directed edges. So the calculation of the utility of an exper-

iment is only based on that part of the graph that is connected to the variable by undirected

links.

The problem can hence be separated in sub-problems, each concerning a part of the graph

connected by undirected edges. In the following we will introduce solutions for a single

substructure that is entirely constituted of undirected links. This result can then be mimicked

for the other undirected substructures.

Cost of Experiment and Measurement

The cost of an experiment can be the time needed, the amount of space it takes or simply

the amount of money it costs to perform an experiment. It is dependent on the situation in

which every experiment takes place and will typically be given by experts.

It is important to note that there are certain experiments that can not be performed, either

because of ethical reasons (for example infecting people with HIV) or simply because it is

impossible to do so (for example changing the season). These types of experiments will be

assigned a cost value of infinity (∞) and thus the gain of performing such an experiment

will be 0, therefore it will not add any new information.

In order to gain anything from an experiment, we have to perform measurements on

the variables of interest. It is however important to note that measuring itself can be costly

and can diminish the usefulness of an experiment although it does not directly concern the

variable that is being altered. For instance, injecting someone with a certain medical fluid

might not cost that much, but when the only way to check for changes is performing a CT-

scan, measuring the results might add a huge cost factor.

4.1.3 Decision Criteria

In this section we will discuss a number of decision criteria for our learning problem. Our

approach allows the possibility to maximize any of these criteria for the choice of the opti-

mal experiment at each stage. Depending on the type of situation in which to perform the

experiments it might be advantageous to choose a specific criterion.

Maximax

The maximax decision criterion is an optimistic one, which means that we choose the action

that could give the best result, that is the one that might direct the most arrows. In our case
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this means that we perform an experiment on Xbest with:

Xbest = argmax
Xi







#NeU (Xi) + max
inst(AXi

)
(#inferred(inst(AXi

)))

cost(AXi
) + cost(MXi

)







This is the sum of the number of undirected edges connected to Xi and the maximum num-

ber of inferred edges by any of the instantiations of the directions of the undirected edges

connected to Xi, divided by the cost.

Maximin

The maximin decision criterion is a pessimistic one, which means that we assume that for

each experiment at a variable Xi the least number of possible inferred edges can be found.

This means that the minimum amount of edges is oriented by any instantiation of all edges

connected to Xi. With this criterion, we perform an experiment on Xbest with:

Xbest = argmax
Xi







#NeU (Xi) + min
inst(AXi

)
(#inferred(inst(AXi

)))

cost(AXi
) + cost(MXi

)







The instantiation of edges that would induce the least inferred edges in general would be

the one where all arrows are pointing at Xi, but this might create new v-structures and thus

is not always possible. So if two neighbors of Xi are not directly connected, one of the links

has to be out of Xi and hence possibly leads to inferred edges. If Xi is part of a clique then

or is the sole neighbor of another node then having a link out of Xi might also not trigger

inferring new edges.

Expected utility

The expected utility is based on a distribution of the directions of the edges, which can be

used to calculate the probability, based on the members in the equivalence of the graph

under study, of any instantiation of directions that might occur.

Instead of just assuming a uniform distribution of the edges we can look at all possible

DAGs in the equivalence class of the discovered CPDAG and count for each pair Xi − Xj ,

the number of times Xi → Xj and Xi ← Xj appears and hence we can assume that:

Peq(Xi → Xj) =
#(Xi → Xj)

#members of eq. class

Peq(Xi ← Xj) =
#(Xi ← Xj)

#members of eq. class
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Note that in next steps of this learning phase we no longer have a CPDAG, because some

new edges are directed at each iteration. We should then take into account all members of

the original equivalence class that share the exact same directed edges, for convenience we

will still refer to this set of DAGs as the members of the equivalence class of the current PDAG.

Using this approach it would mean that we perform the experiment on the variable Xbest

with:

Xbest = argmax
Xi







#NeU (Xi) +
∑

inst(AXi
)

#inferred(inst(AXi
))Peq(inst(AXi

))

cost(AXi
) + cost(MXi

)






(4.1)

where Peq(inst(AXi
)) is the number of times a certain instantiation is present in the equiva-

lence class divided by the number of members in that class.

The problem with this approach is that we need to know the exact number of elements

in the equivalence class. As far as we know there is no exact way of calculating the num-

ber of elements in the equivalence class of a certain DAG, except for enumerating them. We

assume that any realistic problem for which our technique can be used requires a limited

number of experiments otherwise the cost would be too high. Secondly, since we can work

on undirected substructures separately, we do not need the all members of the equivalence

class of the complete DAG but just the equivalence classes of the substructures. We assume

that either number of DAGs in the equivalence class is practically calculatable by enumerat-

ing all members.

4.1.4 Performing Structural Experiments

When performing an experiment on Xi (cf. Section 3.3.2) we will force it to take on random

values, hence removing all influence from any other variable in the system. Given that we

know the correct CPDAG we know that the only variables that can be directly influenced by

Xi are variables that are connected to Xi in the CPDAG by an undirected edge. So instead of

measuring all variables in the system we will only measure the NeU (Xi). NeU (Xi) contains

the union of the parents and children of Xi, since the connection between the parents of Xi

and Xi is cut by the randomization, the value of Xi will have no influence on the value of

the parents of Xi.

4.1.5 Result Analysis

After performing the experiment we have experimental data about all the variables in

NeU (Xi). This gives us the conditional distribution P (Xj |do(xi)) for all Xj in NeU (Xi), with

do(xi) being the experiment on Xi where it takes on the value xi.
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Figure 4.2. Toy CBN (left) and the corresponding CPDAG (right) used in the example.

If Xi has no influence on Xj in the mechanism under study then P (Xj |do(xi)) = P (Xj)

for all values xi. If Xi does influence Xj then at least for one value xi the distributions P (Xj)

and P (Xj |do(xi)) will differ.

To check whether P (Xj) = P (Xj |do(xi)) we need to perform a statistical test like χ2 to

compare two sets of samples. One sample consists of the values of Xj in the original obser-

vational data and the other is the set of samples from the experiment.

Remember that any undirected edge Xi−Xj in the partially directed structure represents

either Xi → Xj or Xi ← Xj because we work in a causally sufficient setting (no latent

variables). So if the test shows that Xi has an influence on Xj then we will direct the edge

Xi → Xj and when no change is found Xi ← Xj .

4.1.6 Detailed Learning Algorithm

All the different phases discussed above combine to form an adaptive algorithm, described

in Algorithm 1, in which it is assumed that experiments are performed during learning.

After an experiment is performed we gain information on the direction of certain edges,

this may remove the need to perform certain other experiments. Remember that parts of

the graph that are not connected by undirected links can be treated separately, so multiple

instances of the algorithm can be applied in parallel to the substructures.

4.1.7 Toy Example

We will show by example the working mechanism of the different criteria.

Reference Model and Hypotheses

Assume the CBN modeling the system is given on the left in Figure 4.2, then the correct

CPDAG, which is given as input to our algorithm is shown on the right in Figure 4.2.

To simplify the calculations in this example we will assume the following cost assign-

ments:
Cost(AXi

) = 1,∀i

Cost(MXi
) = #NeU (Xi)
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Algorithm 3 Adaptive learning of CBN from observational and experimental data.

Require: Observational dataset DO .

Ensure: A CBN.

1. Apply a BN learning structure on DO to obtain CPDAG G.

2. Compute U(AXi
) for each node Xi and find Xbest = argmax(U(AXi

))

3. Perform an experiment on variable Xbest.

4. Instantiate the orientation of all the undirected edges connected to Xbest

For all Xj ∈ NeU (Xbest)

If distribution of Xj changed because of experiment,

then orient Xbest −Xj as Xbest → Xj

else orient Xbest −Xj as Xbest ← Xj

end

5. Infer edges (Orientation rules of PC, see Algorithm 2)

Repeat

If Xi → Xj and Xj and Xk are adjacent, Xk and Xi are not and there

is no arrow into Xk then orient Xj −Xk as Xj → Xk.

If there is a directed path from Xi to Xj and an edge between Xi

and Xj then orient Xi −Xj as Xi → Xj .

until no more edges can be oriented.

6. Return to Step (2) until all links are directed.

7. Return CBN G.

Comparison of General Decision Criteria

We will assume that we want to perform an action on X1. In Figure 4.3 we give an overview

of all possible instantiations of the edges X1 −NeU (X1) and the edges that can be inferred.

With this information we will be able to calculate the utility for this action for each decision

criteria.

The cost is equal for all decision criteria, namely Cost(AX1) + cost(MX1) = 1 + 2 = 3.

The complexity of the calculation of the utilities for each decision criteria is dependent

on two phases. First, we need to search among all instantiations of Xi − NeU (Xi) for the

set of possible instantiations in the particular PDAG. Second, we need to check which edge

directions can be inferred based on this instantiation. Both these phases are simple searches

for patterns in a graph and can be performed efficiently. All decision criteria operate in the

same way and hence have the same type of complexity.

Maximax

The maximum number of inferred edges is 4, so the utility for Maximax is given by:
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Figure 4.3. All possible instantiations for Xi−NeU (Xi), the possible structures compatible with this instantia-

tion and the result of inferring edges.
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U(X1) =





#NeU (X1) + max
inst(AX1

)
(#inferred(inst(AX1)))

cost(AX1) + cost(MX1)



 =
2 + 4

1 + 2
=

6

3
= 2

Maximin

The worst number of edges inferred is 0, so the utility for Maximin is given by:

U(X1) =





#NeU (X1) + min
inst(AX1

)
(#inferred(inst(AX1)))

cost(AX1) + cost(MX1)



 =
2 + 0

1 + 2
=

2

3

Expected utility

To use the Expected utility criterion, given in Equation 4.1, we need to calculate the number

of graphs in the equivalence class of the PDAGs we encounter.

As shown in Figure 4.3, there are 11 DAGs in the equivalence class of our example (all

the possible structures that can be inferred for all the instantiations). So the Expected utility

for X1 is given by:

U(X1) =







#NeU (X1) +
∑

inst(AX1
)

#inferred(inst(AX1))Peq(inst(AX1))

cost(AX1) + cost(MX1)







=
2 + 3 2

11 + 4 1
11 + 4 1

11 + 0. 7
11

1 + 2

=
26

33

4.1.8 Experiments and Results

In this section we show our experimental results. We implemented our algorithm in Mat-

lab, using some existing features from the BNT toolbox1 from K. Murphy and the Structure

Learning toolbox2 from P. Leray and O. Francois.

Random Problem (CPDAG) Generation

In order to test our algorithm on a large set of CBNs we implemented a random CBN gen-

erator PMMixed, proposed by Ide et al. (2004). This generator ensures a uniform distribu-

tion on the Bayes net structure and allows to add restrictions on maximum degree, induced

width, etc.

1 http://www.cs.ubc.ca/˜murphyk/Software/BNT/bnt.html
2 http://banquiseasi.insa-rouen.fr/projects/bnt-slp/
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Figure 4.4. CPDAG generation, with an ”oracle” providing the exact CPDAG from a known CBN.

Since we are mainly interested in testing our MyCaDo algorithm (Algorithm 3), we first

constructed the CPDAG using the dag to cpdag algorithm from (Chickering, 2002a) that is

implemented in BNT as an oracle, see Figure 4.4.

System Intervention

As we are working with random models, we do not have a corresponding system to inter-

vene upon, so we have to simulate this experimentation directly in the previously generated

CBN.

To perform the experiment determined in step 3 of our algorithm, we have to cut all in-

fluence of other variables on Xi or in other words we have to perform a surgical intervention

on Xi. This is done by removing all incoming arrows into Xi from our original structure GO

giving us a post-intervention structure GE . All parameters besides the one for the variable

experimented on, P (Xi|Πi), remain the same. We force Xi to take on random values and

then sample the post-intervention distribution PE for the variables in NeU (Xi) using GE to

get our experimental data set DE , see Figure 4.5.

Results

For all our results, we randomly created 50 DAGs for a given number of nodes 10, 12, . . . ,

50 variables with different densities. We assigned random costs to each experiment and
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Figure 4.5. Experimental data generation from a known CBN.

measurement, uniformly distributed over 1 (cheap), 5 (normal), 100 (expensive). Our al-

gorithm returns the completely directed CBN and we count the number of experiments

needed, undirected substructures and undirected edges in the corresponding CPDAG and

we calculate the total cost in order to evaluate our algorithm.

It is clear from our results that the theoretical upper bound of N − 1 experiments (when

only manipulating one variable) derived by Eberhardt et al. (2005a) is much higher than the

amount of experiments needed in the general case. Nonetheless we want to emphasize that

in the worst case scenario, that is a clique graph, the upper bound will be attained.

The amount of experiments needed is very dependent on the situation, and not solely

on the number of variables in the graph. We have to keep in mind that each individual

undirected substructure requires at least one experiment to be completely oriented. So total

amount of experiments needed is dependent on the number of undirected substructures and

the individual complexity of each substructure.

We should note that the number of experiments is not the value we want to minimize

directly. We hope to minimize it indirectly by maximizing the number of edges that will

be directed by each experiment and minimizing the total cost of the experiments (which is

related to the number of experiments).

For an arbitrary problem, we define the complexity by the maximal undirected clique in

all the substructures. If we have a maximal undirected clique of M variables then we need

M − 1 experiments in the worst case to solve this substructure. All other substructures will
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Figure 4.6. Plots of the number of experiments given the number of nodes in the graph, for relatively small

graphs (#nodes ≤ 30) on the left, and bigger graphs (30 ≤ #nodes ≤ 50) on the right.
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Figure 4.7. Plots of the number of experiments given the maximum number of parents for any node, for rela-

tively small graphs (#nodes ≤ 30) on the left, and bigger graphs (30 ≤ #nodes ≤ 50) on the right.

alg. \#nodes 10 12 14 16 18 20 22 24 26 28 30 35 40 45 50

maximax 24 30 24 25 23 27 16 16 26 19 19 23 22 22 17

maximin 22 26 19 16 24 20 21 22 17 16 18 20 20 17 18

expected 38 34 34 45 34 40 30 39 35 30 41 36 28 32 30

random 34 32 25 27 34 26 31 29 25 27 22 21 27 22 23

Table 4.1. Table presenting the exact results of our experiments comparing the different criteria based on the

number of nodes in the graph. The values indicate the number of times that particular criteria needed the least

amount of experiments to completely orient the graph. The total amount of graphs for each number of nodes is

50. Sometimes different criteria result in the same amount of experiments so the total does not add up to 50.

be solved using less experiments and can be handled in parallel. So the overall number of

experiments is bounded by #(undirected substructures) ∗ (M − 1).

In Figure 4.6 we plotted the average number of experiments needed to completely orient

a dag with a given amount of nodes. The numerical results are given in Table 4.1. In Figure

4.7 we plotted the average number of experiments compared to the maximum number of
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parents a node can have in the dag. The numerical results for this are given in Table 4.2. In

both tables we indicated the best result in bold, and as can be seen this is always accom-

plished by the expected utility.

alg. \max. fan in 3 4 5 6 7

maximax 37 54 55 61 42

maximin 40 54 39 50 38

expected 83 78 84 74 81

random 54 74 58 70 56

Table 4.2. Table presenting the exact results of our experiments comparing the different criteria based on the

maximum number of parents a node can have in the graph. The values indicate the number of times that par-

ticular criteria needed the least amount of experiments to completely orient the graph. The total amount of

graphs for each maximum number of parents is 100. Sometimes different criteria result in the same amount of

experiments so the total does not add up to 100.

It is clear that the Maximax and Maximin criterion perform quite poorly, we believe that

the reason the use of these criteria performs less is that it is biased to choose particular

parts of the graph. We even see that random experiments perform as well as those chosen

by Maximax or Maximin. Expected utility tries to find an optimal solution that takes into

account the probability of each instantiation and clearly outperforms the other algorithms.

We performed experiments with different cost assignments, but the results of all these

experiments were similar to those shown in this dissertation.

4.1.9 Critical Discussion of MyCaDo

In this section, we proposed the MyCaDo algorithm, which is a greedy constraint based

approach. It can use standard score-based or constraint-based learning methods to learn an

initial CPAG and then use experiments to completely learn the structure of a CBN.

We use a mixture of experimental and observational data, which is assumed to perfectly

reflect the (in)dependence relationships in the distribution. Furthermore we work under the

assumption of causal sufficiency.

In the following section we discuss an algorithm that removes the requirement of perfect

observational data. In the following chapters we will discuss setting without causal suffi-

ciency.

4.2 Constraint-based Method for Imperfect Observational Data

Existing structure learning methods, including MyCaDo, are based on the assumption of

perfect data. In this section we discuss a new algorithm, called UnCaDo (Unsure Causal Dis-
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covery) which is a structural experiment strategy for settings in which the available observa-

tional data does not provide enough information to learn the correct CPDAG. We propose

a constraint-based technique and assume causal sufficiency. Constraint-based methods are

based on statistical tests which are linked to a notion of uncertainty about their results (i.e.

p-value). Instead of using a fixed cut-off for the result of a statistical test we use this uncer-

tainty explicitly. It is not immediately clear how these results can be extended to score-based

algorithms but it is an interesting perspective to study this possibility.

4.2.1 General Description

The strategy consists of three phases. First an undirected dependence structure is learned

using the observational data, possibly given rise to some unsure relations between nodes.

Secondly all these unsure relations are removed from the graph. In the final phase, possible

remaining undirected edges are oriented.

The general overview of the algorithm is given in Figure 4.8.

Observational

data


Skeleton discovery

with adapted 


independence test


System


Unsure skeleton


?


?


Perform

experiments


Experimental

data


Analyze

results


PDAG


MyCaDo
Edge orientation of

PC algorithm


Figure 4.8. General overview of the UnCaDo algorithm.
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4.2.2 Unsure Independence Test

The learning techniques we use are based on conditional (in)dependence tests. These tests

need a certain amount of data in order to be reliable. If, for instance, not enough data was

available then we can not draw a conclusion on the (in)dependence of two variables and

thus are unsure whether an edge should be removed or added to the current graph. How-

ever most implementations of independence tests provide a standard answer in case there

is not enough data. We propose an adapted independence test which in case there is not

enough data or not enough evidence (this can be user dependent) for (in)dependence re-

turns unsure as a result.

There are several ways to adapt existing independence tests, for instance:

• Using χ2, the number of data points has to be more than 10 ∗ (degree of freedom), other-

wise the test can not be performed reliably as mentioned by Spirtes et al. (2000a). In most

implementations ”no conditional independence” is returned as default, while in our case

unsure would be returned.

• There can be an interval for the significance level used to return unsure. Traditionally

tests are done using α = 0.05 significance level. We allow to set two parameters α1 and

α2 with α1 > α2. We return independence if the test is significant for significance level α2

and unsure if it is significant for α1 and not for α2. For example unsure could be returned

where the test is significant with α1 = 0.05, but no longer insignificant for α2 = 0.02.

We will use experiments to resolve these unsure relationships. If the current data we

have does not obtain enough information to reliably perform the statistical tests we use

experiments to gather more data hoping to resolve this uncertainty.

There is a parallel here with sequential hypothesis testing Wald (1945), where it is as-

sumed that the observations arrive sequentially rather than all at once. Data is evaluated as

it is collected, and further sampling is stopped in accordance with a pre-defined stopping

rule as soon as significant results are observed. At each point during sequential hypothesis

testing we need to determine whether a certain model is valid or that more data are required.

As long as the provided data is not sufficient to either accept or decline a hypothesis we get

more data prior to deciding.

4.2.3 Initial Phase: Unsure Observational Learning

We use the adapted independence test and modify the skeleton discovery phase of the PC

algorithm, Steps 1 and 2 in Algorithm 2 in order to form an unsure skeleton. This conforms to

Steps 1, 2 and 3 in Algorithm 4.
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Definition 4.1. An unsure skeleton is an undirected graph in which the nodes can have three graph-

ical relations, based on the results of our adapted independence test:

no edge: Xi and Xj are found to be independent conditional on some subset (possibly the empty set).

edge Xio−oXj : Xi and Xj are dependent conditional on all subset of variables and all conditional

independence tests returned false. This corresponds to the traditional undirected edge Xi −Xj

and hence means either Xi ← Xj or Xi → Xj .

unsure edge Xio−?−oXj : we can not determine whether Xi and Xj are (in)dependent, i.e. there exists

at least one subset of variables for which the independence test returned unsure and none that

return independent. This means that either Xi Xj , Xi → Xj or Xi ← Xj .

The semantics of the edges in an unsure skeleton allows us to replace the independence

test used in PC with our adapted independence tests. The classic independence test returns

either true or false, using our adaptation there is a third possible response unsure. When

independence is found the edge between the two nodes is removed as usual, however when

the relation between the two variables is unsure, we include a new type of edge o−?−o. In

order to find sets to test for conditional independence, arrows of type o−?−o are regarded as

normal undirected edges. denoted as o−o.

Note that as the number of data points N →∞ the unsure edges will disappear, since we

will work with perfect data. In general however when there are unsure edges more data is

needed to distinguish between independence and dependence, therefore we are in need of

experiments.

4.2.4 Experimentation Phase: Resolving Unsure Edges

In this section we show how we can resolve unsure edges using experiments. We denote

performing an experiment at variable Xi by exp(Xi).

In general if a variable Xi is experimented on and the distribution of another variable Xj

is affected by this experiment, we say that Xj varies with exp(Xi), denoted by exp(Xi) Xj .

If there is no variation in the distribution of Xj we note exp(Xi) 6 Xj .

If we find when comparing the observational with the experimental data that exp(Xi) 

Xj when we condition the test on the value of another variable Z, we denote this as

(exp(Xi)  Xj)|Z, if conditioning on Z cuts the influence of the experiment we denote

it as (exp(Xi) 6 Xj)|Z.

We introduce additional notation to indicate that two nodes Xi and Xj are either not

connected or connected by an arc into Xj , we denote this by Xi−?−oXj , where ”|” indicates

that there can be no arrow into Xi.
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If we take a look at the simplest example, a graph existing of only two variables Xi and

Xj for which our initial learning phase gives Xio−?−oXj . After performing an experiment on

Xi and studying the data we can conclude one of three things:

1. Xio−?−oXj

2. exp(Xi) Xj ⇒ Xi → Xj

3. exp(Xi) 6 Xj ⇒ Xio−?−Xj

The first case happens if the added experiments still do not provide us with enough data to

perform an independence test reliably. We can repeat the experiment until sufficient data is

available (χ2) or the test can be performed at our desired significance level (i.e. α = 0.02). If

no sufficient experiments can be performed the link remains Xio−?−oXj , this possibility is a

part of future work. The second possibility is the ideal one, in which we immediately find

an answer for our problem.

In the third case the only conclusion we can make is that Xi is not a cause of Xj and hence

there is no arrow > into Xj . To solve this structure completely we still need to perform an

experiment on Xj . So in this case the results of performing an experiment at Xj are:

4. exp(Xj) Xi⇒ Xi ← Xj

5. exp(Xj) 6 Xi + (3)⇒ Xi Xj

In a general graph there can be more than one path between two nodes, and we need to

take them into account in order to draw conclusions based on the results of the experiments.

This means that we have to generalize rules 2 to 5 presented above.

Therefore we introduce the following definition:

Definition 4.2. A potentially directed path (p.d. path) in an unsure PDAG is a path made of

edges of types o−?−o,→ and −?−o, with all arrowheads in the same direction. A p.d. path from Xi to

Xj is denoted as Xi 99K Xj .

If in a general unsure PDAG there is an edge Xio−?−oXj , the results of performing an

experiment at Xi are:

6. exp(Xi) Xj ⇒ Xi 99K Xj , but since we want to find direct effects we need to block all

p.d. paths of length ≥ 2 by a blocking set Z (Generalization of (2)).

• (exp(Xi) Xj)|Z⇒ Xi → Xj

• (exp(Xi) 6 Xj)|Z⇒ Xi Xj

7. exp(Xi) 6 Xj ⇒ Xio−?−Xj (Generalization of (3)).

In the case that exp(Xi) 6 Xj we have to perform an experiment at Xj too. The results of

this experiment are:
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8. exp(Xj) Xi⇒ Xi L99 Xj , but since we want to find direct effects we need to block all

p.d. paths of length ≥ 2 by a blocking set Z (Generalization of (4)).

• (exp(Xj) Xi)|Z⇒ Xi ← Xj

• (exp(Xj) 6 Xi)|Z⇒ Xi Xj

9. exp(Xj) 6 Xi + (7)⇒ Xi Xj (Generalization of (5)).

After these experiments all unsure edges Xio−?−oXj are transformed into either directed

edges or are removed from the graph.

It has to be noted that, like in the simplest example, the experiments only provide us with

more data and that this still might not be enough to give a reliable answer for our statistical

test (χ2). In this case the result of an experiment would leave the unsure edge and more

experiments are needed until the test can be performed reliably.

4.2.5 Completion Phase

At this point there are only the original undirected edges o−o and directed edges→ found

by resolving unsure edges, we can hence use Steps 3 and 4 of Algorithm 2 to orient as many

edges in the current PDAG, this conforms to Step 6 in Algorithm 4. If not all arcs are directed

after this we need to perform another set of experiments. In order to complete this we use

the MyCaDo algorithm discussed in Section 4.1, this conforms to Step 7 in Algorithm 4.

4.2.6 Complete Learning Algorithm

All the actions described above combine to form the Unsure Causal Discovery algorithm

(UnCaDo). The complete algorithm is given in Algorithm 4. We define a couple of notions

to simplify the notation. In an unsure graph, Ne(Xi) are all variables connected to Xi either

by a directed, undirected or unsure edge. Test of independence are performed using the

unsure independence test introduced in Section 4.2.2, in Algorithm 4 this test is referred to

as the test of independence.

4.2.7 Toy Example

We demonstrate the different steps of the UnCaDo algorithm on a simple example. If the

unsure independence test returns ”unsure” for a test between Xi and Xj conditioned on

some set Z we note this as (Xi⊥?⊥Xj |Z). Assume the correct CBN is given in Figure 4.9(a).

The algorithm starts with a complete undirected graph shown in Figure 4.9(b). Assuming

that the first ordered pair of variables that will be checked is (X1, X3) and that we find the

following (in)dependence information:
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Figure 4.9. Simple example demonstrating the different steps in the UnCaDo algorithm.

• (X1 2X3)

• (X1⊥?⊥X3|X2)

This means that the edge X1o−oX3 will be replaced by X1o−?−oX3, cf. Figure 4.9(c). To check

for (in)dependence between the other sets of variables (X1, X2) and (X2, X3) we regard the

unsure edge X1o−?−oX3 as being a normal undirected edge. This means that we need to check

for both the marginal as the conditional independence of these pairs. If the edge would be

considered absent this might lead to missing necessary independence tests. Assume that we

find the following independence information for (X1, X2) and X2, X3:

• (X1 2X2)

• (X1 2X2|X3)

• (X2 2X3)

• (X2 2X3|X1)

So at the end of our non-experimental phase we end up with the structure given in Figure

4.9(c).

We now need to perform experiments in order to remove the unsure edge X1o−?−oX3.

Assume we choose to perform an experiment on X1 and gather all data Dexp. There is a p.d.

path X1o−oX2o−oX3 so we have to compare all conditional distributions to see whether there

was an influence of exp(X1) at X3. Hence we find that:

• (exp(X1) 6 X3|X2)

and thus we can replace the edge X1o−?−oX3 by X1o−?−X3 as shown in Figure 4.9(d). Now

we need to perform an experiment on X3, taking into account the p.d. path X3o−oX2o−oX1.

We find that:

• (exp(X3) 6 X1|X2)
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and we can remove the edge X1o−?−X3, leaving us the graph shown in Figure 4.9(e). Now

that all unsure edges are resolved we can use the orientation rules of the PC-algorithm (Al-

gorithm 2), including the search for v-structures which in some cases will immediately find

the correct structure if enough data is available or we need to run the MyCaDo algorithm to

complete the structure.

4.2.8 Critical Discussion of UnCaDo

Although the algorithm allows the use of imperfect observational data, it is assumed that

the experiments we perform will quickly give us a definite answer about the edges in the

graph. It is possible that certain experiments are hard or even impossible to perform and

that we can not resolve all unsure edges.

A part of future work is to go further and allow unsure edges in the CPDAG and in the

eventual DAG structure. We can test which conclusions about the structure can still be made

reliably when we allow unsure edges.

Furthermore we would like to extend this approach to a setting in which latent variables

are allowed. These causal latent models, as described in Section 1.4.1, can represent a much

wider set of problems.

4.3 Overview of the Chapter

In this chapter, we discussed learning the structure of a CBN. In general, the structure can

not be retrieved from observational data alone and hence experiments are needed. We gave

an overview of state-of-the-art existing algorithms and their assumptions and properties.

We proposed the MyCaDo algorithm, which is a greedy constraint based approach, to

learn causal Bayesian networks from a mixture of perfect experimental and observational

data. We used the information of observational data to learn a complete partially directed

graph and tried to discover the directions of the remaining edges by means of experiment.

We used elements from decision theory to find the optimal experiment, at each step of the

learning process. Our method supports the assignment of costs to experiments and mea-

surements.

We extended the existing methods to include the possibilities of imperfect data, this is

the case when observational data insufficient to learn the correct skeleton of the network.

Therefore we proposed an adapted (in)dependence test which can return unsure if the

(in)dependence can not be detected reliably. We suggested to change the skeleton discov-

ery phase of the PC algorithm in order to be able to include the adapted (in)dependence

test. We proposed a new graph, an unsure graph, which can represent the results of the new
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discovery phase by means of unsure edges. We then showed how these unsure connections

can be replaced either by a cause-effect relation or removed completely from the graph dur-

ing an experimentation phase. Our UnCaDo strategy indicates which interventions need to

be performed to transform the unsure DAG into a PDAG in which all directed links present

direct causal influence. Using a combination of the orientation rules of (Meek, 1995) and, if

necessary, some experiments, this PDAG can then be turned into the correct CBN.
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Algorithm 4 Adaptive learning of CBN for imperfect observational data and experiments.

Require: A set of samples from a probability distribution faithful to a CBN P (V ).

Ensure: A CBN.

1. Initialization:

G is complete undirected graph on the vertex set V .

2. Unsure skeleton discovery:

n=0

repeat

repeat

select an ordered pair of variables Xi and Xj that are adjacent in G such that

Ne(Xi)\Xj has cardinality greater than or equal to n, and a subset S of

Ne(Xi)\Xj of cardinality n. If Xi and Xj are independent given S delete

edge Xi −Xj from G and record S in Sepset(Xi, Xj) and Sepset(Xj , Xi);

If the independence test returned unsure, record the tuple (Xi, Xj) into

PossibleUnsureEdges.

until all ordered pairs of adjacent variables Xi and Xj such that Ne(Xi)\Xj

has cardinality greater than or equal to n and all subsets S of Ne(Xi)\Xj of

cardinality n have been tested for independence;

n=n+1;

until for each ordered pair of adjacent vertices Xi, Xj , Ne(Xi)\Xj is of cardinality less than n.

3. For each tuple (Xi, Xj) in PossibleUnsureEdges, if the edge Xi − Xj is still present in G replace that

edge by Xio−?−oXj .

4. Resolving unsure edges and edge orientation from experiments:

For each unsure edge Xio−?−oXj ,

Perform experiment at Xi,

If exp(Xi) Xj ,

Find a (possibly empty) set of variables Z that blocks all p.d. paths between

Xi and Xj .

If (exp(Xi) Xj)|Z then orient Xio−?−oXj as Xi → Xj , else remove the

edge.

else replace Xio−?−oXj by Xio−?−Xj .

5. For each edge Xio−?−Xj ,

Perform experiment at Xj ,

If exp(Xj) Xi,

Find a (possibly empty) set of variables Z that blocks all p.d. paths between

Xj and Xi.

If (exp(Xj) Xi)|Z ⇒ then orient Xio−?−Xj as Xi ← Xj , else remove the

edge.

else remove the edge.

6. Edge orientation: inferred edges using the Sepset from Step 2.

Apply Steps 3, 4 of Algorithm 2.

7. Complete PDAG to get CBN:

Apply Steps 2 to 7 of Algorithm 3.
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Causal Latent Networks

In this chapter we discuss causal networks with latent variables which are unmeasured

variables that influence the system under study. In order to represent the presence of latent

variables, we need a richer formalism than DAGs. There are two major paradigms used

to model these systems, ancestral graphs (AG) (Richardson and Spirtes, 2002) and semi-

Markovian causal models (SMCM) (Tian and Pearl, 2002c). We will discuss both techniques

extensively and then show how they can be learned and used. If we again reflect on the

requirements of a good causal model (Section 1.2), we have to describe what exactly can

be represented by an AG and a SMCM (Section 5.1 and 5.2), which queries we can resolve

within these frameworks (Section 5.3), and how they can be learned from observational or

experimental data (Section 5.4).

5.1 Ancestral Graphs

Ancestral graphs (AGs) are an approach to modeling which can represent latent variables

and unmeasured selection variables developed by (Richardson and Spirtes, 2002). Selection

variables are variables that are conditioned upon but not measured in the study when mod-

eling the system. This can lead to dependences between variables in the study, although

they are actually marginally independent. For example given a v-structure Xi → Xm ← Xj

in which Xm is unmeasured but conditioned upon, Xi will seem marginall dependent on

Xj although this is not the case, this is called selection bias. In this dissertation we do not

take into account selection bias, as is commonly done in literature, but only latent variables.

5.1.1 Definitions

An AG is defined in (Zhang and Spirtes, 2005b), (Tian, 2005), and (Ali et al., 2005) as follows:
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74 5.1. Ancestral Graphs

Definition 5.1. An ancestral graph without conditioning is a graph with no directed cycle contain-

ing directed→ and bi-directed↔ edges, such that there is no bi-directed edge between two variables

that are connected by a directed path.

Ancestral graphs encode conditional independence relationships by graphical criterion

called m-separation that generalize the d-separation criterion.

Definition 5.2. In an ancestral graph, a path p between two nodes Xi and Xj is m-connecting rela-

tive to a set of vertices Z (Xi,Xj /∈ Z) if

• every non-collider on p is not a member of Z

• every collider on p is an ancestor of some member of Z

Xi and Xj are said to be m-separated by Z if there is no active path between Xi and Xj relative to Z.

Let W1, W2 and Z be three disjoint sets of vertices. W1 and W2 are said to be m-separated by Z if Z

m-separates every member of W1 from every member of W2.

Definition 5.3. An ancestral graph is said to be a maximal ancestral graph if, for every pair of

non-adjacent nodes Xi, Xj there exists a set Z such that Xi and Xj are m-separated given Z.

Maximality corresponds to the pairwise Markov property which says that every missing

edge corresponds to a conditional independence relation. A non-maximal AG can be trans-

formed into a unique MAG by adding some bi-directed edges (indicating confounding) to

the model. See Figure 5.1(c) for an example MAG representing the same model as the un-

derlying DAG in (a).

5.1.2 Semantics

In this setting a directed edge represents an ancestral relation in the underlying DAG with

latent variables. I.e. an edge from variable Xi to Xj represents that in the underlying causal

DAG with latent variables, there is a directed path between Xi and Xj .

Bi-directed edges represent a latent common cause between the variables. However, if

there is a latent common cause between two variables Xi and Xj , and there is also a directed

path between Xi and Xj in the underlying DAG, then in the MAG the ancestral relation

takes precedence and a directed edge will be found between the variables. X2 → X6 in

Figure 5.1(c) is an example of such an edge.

Furthermore, as MAGs are maximal, there will also be edges between variables that have

no immediate connection in the underlying DAG, but that are connected via an inducing

path. The edge X1 → X6 in Figure 5.1(c) is an example of such an edge.

Definition 5.4. An inducing path is a path in a graph such that each observable non-endpoint node

is a collider, and an ancestor of at least one of the endpoints.
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Inducing paths have the property that their endpoints can not be separated by conditioning

on any subset of the observable variables. For instance, in Figure 5.1(a), the path X1 → X2 ←

L1 → X6 is inducing.

5.1.3 Advantages/Disadvantages of AG

The semantics of the edges in a MAG make some causal inferences in MAGs impossible. As

we have discussed before the manipulation theorem (cf. Section 3.2.2) states that in order to

calculate the causal effect of a variable C on another variable E, the immediate parents (i.e.

the old causes) of C have to be removed from the model. In MAGs however, an edge does

not necessarily represent an immediate causal relationship, but rather an ancestral relation-

ship and hence in general the modeler does not know which are the real immediate causes

of a manipulated variable.

An additional problem for finding the original causes of a variable in MAGs is that when

there is an ancestral relation and a latent common cause between variables, that the ancestral

relation takes precedence and that the confounding is absorbed in the ancestral relation.

The benefit of MAGs is that the structure of a MAG can be learned up to Markov equiv-

alence from data, see Section 5.4.2.

5.2 Semi-Markovian Causal Models

The other central graphical modeling representation that we use are semi-Markovian causal

models. They were first used by Pearl (2000), and Tian and Pearl (2002b) have developed

causal inference algorithms for them.

5.2.1 Definitions

A SMCM is defined as follows:

Definition 5.5. A semi-Markovian causal model (SMCM) is an acyclic causal graph G with

both directed and bi-directed edges. The nodes in the graph represent observable variables V =

{X1, . . . , Xn} and the bi-directed edges implicitly represent latent variables L = {L1, . . . , Ln′}.

See Figure 5.1(b) for an example SMCM representing the underlying DAG in (a).

The fact that a bi-directed edge represents a latent variable, implies that the only latent

variables that can be modeled by a SMCM can not have any parents (i.e. is a root node)

and has exactly two children that are both observed. This seems very restrictive, however it

has been shown that models with arbitrary latent variables can be converted into SMCMs,

while preserving the same independence relations between the observable variables (Tian

and Pearl, 2002c).
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Figure 5.1. (a) A problem domain represented by a causal DAG model with observable and latent variables. (b)

A semi-Markovian causal model representation of (a). (c) A maximal ancestral graph representation of (a).

5.2.2 Semantics

In a SMCM, each directed edge represents an immediate autonomous causal relation be-

tween the corresponding variables, just as was the case for causal Bayesian networks.

In a SMCM, a bi-directed edge between two variables represents a latent variable that is

a common cause of these two variables.

The semantics of both directed and bi-directed edges imply that SMCMs are not maximal,

meaning that not all dependencies between variables are represented by an edge between

the corresponding variables. This is because in a SMCM an edge either represents an imme-

diate causal relation or a latent common cause, and therefore dependencies due to inducing

paths, will not be represented by an edge.

5.2.3 Advantages/Disadvantages of SMCM

Unlike in MAGs it is possible to perform causal inference in SMCMs. Tian and Pearl (2002b)

provide a complete causal inference algorithm, which is the current state of the art. We will

discuss this algorithm in Section 5.3.

However, prior to our work no algorithm to learn the structure of a SMCM existed. We

constructed an algorithm that uses the learning algorithms for MAGs and experiments to

recover the structure of a SMCM. The algorithm is introduced in Section 6.1.1.

Towards an Integral Approach for Modeling Causality



5. Causal Latent Networks 77

5.3 Causal Inference

In AGs no complete causal inference algorithm exists due to the semantics of the edges.

Causal inference is only possible in parts of the AG that are shared for all Markov equivalent

AGs, see Section 5.4.2. Therefore we will only demonstrate causal inference for SMCMs.

The algorithm that we will discuss here, was first introduced by Tian and Pearl (2002b)

and it represents the state-of-the-art in causal inference in SMCMs (and hence causal latent

networks) at this moment. It is based on a new factorization of the JPD of an SMCM into

so-called c-factors. Before going into the details of the algorithm we introduce some new

concepts.

5.3.1 C-components and C-factors

We say that a path entirely composed of bi-directed edges is called a bi-directed path.

Definition 5.6. In a semi-Markovian causal model, the set of observable variables can be partitioned

into disjoint groups by assigning two variables to the same group iff they are connected by a bi-

directed path. We call such a group a c-component (from ”confounded component”) (Tian and Pearl,

2002b).

Variables that are not connected to any bi-directed edge are a c-component by themselves.

All c-components of a SMCM are disjoint and constitute a partition.

Furthermore, when we say that unobservable variables belong to the same group if and

only if they are part of bi-directed paths connecting two variables belonging to the same

c-component, this also induces a partition on the unobserved variables.

Consider for example the SMCM of Figure 5.2, it is partitioned into 5 c-components:

{{X, X4, X6}, {X1}, {X2, X5}, {X3}, {Y }}. (5.1)

The associated partition of the unobserved variables U1, U2, U3 is as follows:

{{U1, U2}, ∅, {U3}, ∅, ∅}. (5.2)

Now assume that V is partitioned into its k c-components S1, . . . , Sk and denote by Nl the

set of unobservable variables that are parents of variables in Sl. As stated above, N1, . . . , Nk

also form a partition of U.

Definition 5.7. In a SMCM with observable variables V and unobservable variables U, a c-factor

Q[S] of a set of observable variables S ⊂ V is the contribution of the variables in S and the associated
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Figure 5.2. A SMCM with 5 c-components.

unobserved variables N ⊂ U (those that are connected to variables in S), to the mixture of products

representing the JPD over V:

Q[S] =
∑

{uk|Uk∈N}

∏

Xi∈S

P (xi|Πi, UPa(xi))
∏

Uj∈N

P (uj) (5.3)

If we apply this definition to the c-components S1, . . . , Sk of an SMCM, then the disjoint-

ness of these c-components and their associated unobservable variables N1, . . . , Nk implies

that the mixture of products for P (V) can be decomposed into a product of c-factors Q[Sl]

of the c-components:

P (v) =
∑

{um|Um∈U}

∏

Xi∈V

P (xi|πi, UPa(xi))
∏

Uj∈U

P (uj) (5.4)

=
∑

{uN1
|UN1

∈N1}

∏

Xi∈S1

P (xi|πi, UPa(xi))
∏

Uj∈N1

P (uj)

∑

{uN2
|UN2

∈N2}

∏

Xi∈S2

P (xi|πi, UPa(xi))
∏

Uj∈N2

P (uj)

...
∑

{uNk
|UNk

∈Nk}

∏

Xi∈Sk

P (xi|πi, UPa(xi))
∏

Uj∈Nk

P (uj)

=
k

∏

l=1

Q[Sl] (5.5)
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This result implies that the mixture of products can be transformed into a factorization.

That is useful as a factorization allows a calculation to be split up into a product of differ-

ent modular subcalculations, while when confronted with a mixture of products this is not

necessary possible.

Furthermore, as a consequence of the manipulation theorem for SMCMs, the c-factor of

a c-component Sl is also the post-intervention distribution of the variables in Sl, under an

intervention that sets all other observable variables V\Sl to constants (Tian and Pearl, 2002c),

or

Q[Sl] = P (sl|do(v\sl)) (5.6)

Finally, it follows from the definition that

P (V) = Q[V] (5.7)

As an illustration, in the SMCM of Figure 5.2 the c-factors are1:

Q[X, X4, X6] =
∑

{uk|Uk∈{U1,U2}}

P (x|u1)P (x4|x1, u1, u2)P (x6|x4, x5, u2). (5.8)

P (u1)P (u2)

Q[X1] = P (x1|x)

Q[X2, X5] =
∑

{u3|U3}

P (x2|x, x3, u3)P (x5|x2, x4, u3)P (u3)

Q[X3] = P (x3)

Q[Y ] = P (y|x5, x6)

5.3.2 Identification

Before demonstrating the causal inference algorithm we first discuss an identification algo-

rithm which identifies when a causal query can be answered in a given SMCM. The causal

identification algorithm that we discuss is based on three important lemmas proved by (Tian

and Pearl, 2002b) that will briefly be introduced as properties in this section. We will give

a more detailed description of the lemmas in the technical discussion of the identification

1 For notational convenience we will write Q[Xi, Xj , Xk] instead of Q[{Xi, Xj , Xk}]
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algorithm. See (Tian and Pearl, 2002b) for a complete specification of the lemmas and their

proofs.

We need to introduce some additional notation: given a SMCM with graph G and with

observable variables V and unobservable variables U, then if W ⊂ V, GW is the subgraph of

G restricted to observable variables W and to the unobservable variables H, whose elements

H1, . . . , Hk are connected with exactly two elements in W. See Figure 5.3 for an example

reduction of the graph in Figure 5.2 to the observed variables W = {X, X2, X4, X6, Y } and

the associated unobserved variables {U1, U2}.
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Figure 5.3. The SMCM of Figure 5.2 reduced to the observed variables W = {X, X2, X4, X6, Y } and the associ-

ated unobserved variables {U1, U2}. If the original graph was denoted by G, we denote this graph by GW.

We denote by Anc(Xi)G with Xi ∈ V the observable ancestors of Xi in the graph G.

Definition 5.8. In a SMCM with graph G, observable variables V and unobservable variables U. A

set of observable variables W ⊂ V is said to be ancestral if the observable ancestors of W is equal to

W itself, or formally: Anc(W)G = W.

We have seen before that the c-factor Q[Sl] of a c-component Sl is the post-intervention

distribution of the variables in Sl when intervening upon all the other observable variables

V\Sl (Equation (5.6)).

An important property of c-factors of c-components is that they are all identifiable, as

stated in the following property.

Property 5.1. The c-factor Q[S] of every c-component S in a SMCM with observable variables

V is identifiable from the JPD P (V).
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The next property provides a condition under which Q[A] can be computed from Q[B],

where A is a subset of B, namely when A is ancestral in B.

Property 5.2. In a SMCM with graph G over observable variables V, where A ⊂ B ⊂ V, if A

is an ancestral set in the graph GB (A = Anc(A)GB
), then Q[A] is identifiable from Q[B].

Finally, the following property is a generalization of Property 5.1 to proper subgraphs of

G.

Property 5.3. In a SMCM with graph G over observable variables V, where H ⊂ V and H is

partitioned in c-components H1, . . . , Hl in GH, then every Q[Hi] is identifiable from Q[H].

In the next section we will use these three properties to sketch the identification algo-

rithm.

5.3.3 Sketch of Algorithm

We will treat the problem of calculating the effect of manipulating Xi on T, P (t|do(xi)),

where Xi is a single variable and T is a set of variables, from a SMCM with observable

variables V and from the JPD over those variables, P (V). Extending the algorithm to the

case where more than one variable is being manipulated (i.e. where Xi is a set of variables)

creates some extra problems which will not be treated here. See (Tian and Pearl, 2002b) for

all the details.

Let the observable variables V of an SMCM be partitioned into c-components SX ,

S1, . . . , Sk, where X ∈ SX .

First of all, we will show why the set of variables Dx, defined as:

DX = Anc(T)GV\{X}
∩ SX (5.9)

are the crucial variables to check whether P (t|do(x)) is identifiable.

• Anc(T)GV\{X}
, or the ancestors of T in the graph without variable X , because the an-

cestor of T are the only variables that can causally influence T. Only the ancestors in the

graph without X , because due to the intervention, the old parents (i.e. the old immediate

causes) of X no longer influence T via X .

• SX , or the c-component of X , because it is the c-factor Q[SX ] that contains the CPD of

variable X conditional on its causes before the intervention: P (X|Π, UPa(X)). It is this

CPD that has to be removed from the JPD as stated by the manipulation theorem.

As an example, in Figure 5.4, we respectively see: (a) SX (b) Anc(T)GV\{X}
(c) DX depicted

as rectangles instead of circles, applied to the SMCM of Figure 5.2.
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Figure 5.4. In the SMCM of Figure 5.2 the subsets of variables (a) SX (b) Anc(T)GV\{X}
(c) DX = Anc(T)GV\{X}

∩

SX are respectively depicted by rectangles.

The original graph reduced to these variables DX and SX is sufficient to know whether

a causal effect P (t|do(x)) can be computed from the JPD over the observed variables V. To

actually compute P (t|do(x)), all observable variables V of the JPD are needed, but, as we

will see in the next section, for the variables V\DX , the calculations are trivial. Therefore, in

the rest of this subsection we will focus on the calculation of Q[DX ].

In Figure 5.5, a conceptual sketch of the identification algorithm is depicted. The rest of

this subsection will be devoted to explain its different steps.

• As SX is a c-component in the SMCM, Q[SX ] can be calculated from the JPD P (V) using

Property 5.1.

• The important variables are DX = Anc(Y )GV\{X}
∩ SX

• Next, we will try to calculate Q[DX ] from Q[SX ].

If DX is an ancestral set in GSX
, its c-factor Q[DX ] can be calculated from Q[SX ] by

applying Property 5.2.

As DX is not always an ancestral set in GSX
we have to find a more general way to

calculate Q[DX ] from Q[SX ]. Therefore, we will apply Property 5.3 to rewrite Q[DX ] as a

product of the c-factors of its l c-components DX,1, . . . , DX,l in the graph GDX
:

Q[DX ] =
l

∏

j=1

Q[DX,j ]

• Now if we can calculate each Q[DX,j ] our problem is solved.

• We first introduce a notation for the ancestors of DX,j in the graph GSX
: A = Anc(DX,j)GSX

.

Then, each of these DX,j is either:
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Lemma

5.1


Q[S

X

]


wanted:


given:


Lemma

5.2


Q[D
X,j
]


not

identifiable


Q[S

X

]


Lemma

5.2


Q[A
]


Lemma

5.3


Q[T’
]


For each D

X,j 


do:


Recursion with:


Lemma

5.3 
 


Figure 5.5. A conceptual sketch of the identification algorithm.

1. ancestral in GSX
, or A = DX,j .

2. its ancestral set is equal to SX itself, or A = SX .

3. its ancestral set is strictly in between itself and SX , or

DX,j ⊂ A ⊂ SX .

In the first case we can use Property 5.2 to obtain Q[DX,j ].

In the 2nd case, Q[DX,j ] is not identifiable in this SMCM and consequently, P (t|do(x)) is

not identifiable.

In the final case, we will initiate a recursive call of the above process. We start by calcu-

lating Q[A] from Q[SX ]. This can be done by applying Property 5.2, as Q[A] is ancestral

in GSX
by definition.
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• When all recursive calls are successful we can calculate P (t|do(x)).

• When we perform the recursive call we know that DX,j will always belong to a single

c-component HX in GA, the graph reduced to its ancestral set A. Furthermore GA can be

partitioned into c-components HX , H1, . . . , Hm. Now by applying Property 5.3 we get:

Q[A] = HX

m
∏

i=1

Hi

Property 5.3 also states that Q[HX ] can be obtained from Q[SX ]. When Q[HX ] is obtained

the process restarts, but now we want to calculate Q[DX,j ] from Q[HX ] instead of from

Q[SX ].

These steps have to be repeated until we reach one of the first 2 cases for each Q[DX,j ].

When all Q[DX,j ] are identifiable (i.e. each process ends in case 1), the desired quantity

P (t|do(x)) is identifiable. As soon as 1 of the Q[DX,j ] is not identifiable (i.e. the process

ends in step 2), P (t|do(x)) is not identifiable in the given SMCM.

Summary of the Algorithm

As a roundup we come back to the conceptual sketch of the identification algorithm of Fig-

ure 5.5. It consists of the following steps:

1. Calculate Q[SX ] via Property 5.1.

2. Calculate those Q[DX,j ] where DX,j is an ancestral set in GSX
via Property 5.2.

3. When A = SX , then Q[DX,j ] cannot be calculated.

4. When DX,j ⊂ A ⊂ SX , a recursive call tries to calculate Q[DX,j ] from Q[HX ] in the same

way, where HX is the c-component of DX,j in GA.

5.3.4 Technical introduction

In this section we will introduce the actual lemmas proposed as properties in the Section

5.3.2 and together with the properties of c-factors, they will be used to effectively develop

an equation for calculating the effect of performing an intervention on a variable X on some

others.

Lemma 5.1. The c-factor Q[S] of every c-component S in a SMCM with observable variables V is

identifiable from the JPD P (v).

Let X1 < . . . < Xn be a topological order over V, and let X(i) = {X1, . . . , Xi}, i = 1, . . . , n and

X(0) = ∅.
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Q[S] =
∏

Xi∈S

P (xi|(Ti ∪ Pa(Ti))\{Xi}) (5.10)

where Ti is the c-component of GX(i) that contains Xi.

This lemma implies that every c-factor Q[S], and thus the post-intervention distribution

of S after manipulating V\S, can always be calculated from the JPD P (v).

Consider for example the SMCM of Figure 5.2. As seen before it consists of 5 c-components.

Then, if we choose the topological order

X < X3 < X1 < X2 < X4 < X5 < X6 < Y

we get

Q[X, X4, X6] = P (x)P (x4|x, x1)P (x6|x, x1, x4, x5)

Q[X1] = P (x1|x)

Q[X2, X5] = P (x2|x, x3)P (x5|x, x3, x2, x4)

Q[X3] = P (x3)

Q[Y ] = P (y|x5, x6)

The next lemma provides a condition under which summing a c-factor Q[B] over some

variables is equivalent to removing the corresponding factors. It also provides a condition

under which we can compute Q[A] from Q[B], where A is a subset of B, by simply summing

Q[B] over the remaining variables B\A.

Lemma 5.2. In a SMCM with graph G over observable variables V, where A ⊂ B ⊂ V, if A is an

ancestral set in the graph GB (A = Anc(A)GB
), then Q[A] is identifiable from Q[B] as follows

Q[A] =
∑

{vi|Vi∈B\A}

Q[B] (5.11)

The lemma implies that when we have the c-factor Q[B] over some set B (e.g. via Lemma

5.1), and a subset A of B is ancestral in the graph reduced to variables B, then Q[A] can be

calculated from Q[B], and this simply by marginalizing over Q[B].

This is the case, because when A is an ancestral set in GB, this also means that in the

set B\A there are no parents of A (as all ancestors of A are in A itself). This implies that

the remaining variables B\A do not causally influence variables A, as they are necessarily

non-ancestors of A.

Furthermore, the influence of variables B\A can be removed from the equation of Q[B]

by marginalization, on one hand because in the contributions of variables A to the mixture
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of products that constitutes Q[B], there figure no variables from B\A, precisely because the

variables in this set are non-ancestors of A. Furthermore, the unconditional parts of contri-

butions of variables B\A to Q[B] are exactly the variables B\A, and thus by marginalizing

over them, we remove exactly the contributions of B\A and keep the contributions of A.

For example in Figure 5.6 we see the SMCM of Figure 5.2 reduced to SX , the c-component

of X . We can see that the set (X4, X6) is ancestral in this graph, as Anc(X4, X6)GSX
=

(X4, X6), and thus Lemma 5.2 implies that Q[X4, X6] can be calculated from Q[X, X4, X6]

via:

Q[X4, X6] =
∑

{x|X}

Q[X, X4, X6]

X


X
4


X
6


U

2


U

1


Figure 5.6. The SMCM of Figure 5.2 reduced to SX , the c-component of X . Lemma 5.2 implies that Q[X4, X6]

can be calculated from Q[X, X4, X6].

When we apply this to the c-factor of Q[X, X4, X6], as calculated previously (Equation

(5.8)), we get:

∑

{x|X}

Q[X, X4, X6] =
∑

{x|X}

∑

{uk|Uk∈{U1,U2}}

P (x|u1)P (x4|x1, u1, u2)P (x6|x4, x5, u2).

P (u1)P (u2)

=
∑

{uk|Uk∈{U1,U2}}

P (x4|x1, u1, u2)P (x6|x4, x5, u2)P (u1)P (u2)

= Q[X4, X6]

We see that the factor P (x|u1) can be marginalized away, because that is the only occur-

rence of X , and then we obtain exactly Q[X4, X6].
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On the other hand, when we try to calculate Q[X6] from Q[X, X4, X6] in such a way, we

get:

Q[X6] =
∑

{xi|Xi∈{X,X4}}

Q[X, X4, X6]

=
∑

{xi|Xi∈{X,X4}}

∑

{ui|Ui∈{U1,U2}}

P (x|u1)P (x4|x1, u1, u2)P (x6|x4, x5, u2).

P (u1)P (u2)

As X6 is no ancestral set in GSX
, X4 occurs in the conditional part of P (x6|x4, x5, u2), and

thus the factor P (x4|x1, u1, u2) cannot be marginalized away.

Finally, the following lemma is a generalization of the factorization of Equation 5.5 and

Lemma 5.1 to proper subgraphs of G.

Lemma 5.3. In a SMCM with graph G over observable variables V, where H ⊂ V and H is parti-

tioned in c-components H1, . . . , Hl in GH, then

Q[H] =
l

∏

i=1

Q[Hi] (5.12)

Furthermore, every Q[Hi] is identifiable from Q[H] as follows. Let #H = k and let Xh1 , . . . , Xhk

be a topological order of the variables in GH. Let H(i) = {Xh1 , . . . , Xhi
} be the set of variables in H

ordered before Xhi
including Xhi

, i = 1, . . . , k, and H(0) = ∅. Each Q[Hj ], j = 1, . . . , l, is given by

Q[Hj ] =
∏

{i|Xhi
∈Hj}

Q[H(i)]

Q[H(i−1)]
, (5.13)

where each Q[H(i)], i = 0, 1, . . . , k, is given by

Q[H(i)] =
∑

{xhi
|Xhi

∈(H\H(i))}

Q[H] (5.14)

This lemma resembles Lemma 5.1, but instead of treating c-components of entire graphs

it can be used to calculate the c-components of a subgraph GH. Remark that this lemma only

states that the Q[Hi] are computable from Q[H], implying that Q[H] has to be known for this

lemma to be applicable.

For example consider the SMCM of Figure 5.2 reduced to the variables H = {X, X1, X4, X6}.

GH can be seen in Figure 5.7.

By Lemma 5.3
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Figure 5.7. The SMCM of Figure 5.2 reduced to H = {X, X1, X4, X6}.

Q[H] = Q[X, X4, X6]Q[X1] (5.15)

The only topological order over GH is X < X1 < X4 < X6. Then

Q[X, X4, X6] = Q[X]
Q[X, X1, X4]

Q[X, X1]

Q[X, X1, X4, X6]

Q[X, X1, X4]
(5.16)

and

Q[X1] =
Q[X, X1]

Q[X]
. (5.17)

As Q[H] is given (assumption of Lemma 5.3), the remaining c-factors in the righthandside

of the equation can be obtained as follows

Q[X] =
∑

{xi|Xi∈(H\X)}

Q[H] (5.18)

=
∑

{xi|Xi∈{X1,X4,X6}}

Q[H], (5.19)

and

Q[X, X1] =
∑

{xi|Xi∈(H\{X,X1})}

Q[H] (5.20)

=
∑

{xi|Xi∈{X4,X6}}

Q[H]. (5.21)

And likewise for the other c-factors.

Identification Formula

In this subsection, we use the information discussed above to develop an equation for cal-

culating the effect of intervening on a variable X on some other variables.
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Let the observable variables V of an SMCM be partitioned into c-components SX ,

S1, . . . , Sk, where X ∈ SX , and let V′ = V\{X}. We are interested in calculating P (t|do(x)),

where X is a single variable and T is a set of variables.

As seen before (Equation (5.5)), the c-factors factorize the JPD P (v):

P (v) = Q[SX ]
k

∏

i=1

Q[Si] (5.22)

= Q[V ] (5.23)

By applying the manipulation theorem and the definition of c-factors we get

P (v′|do(x)) = Q[SX\{X}]
k

∏

i=1

Q[Si] (5.24)

= Q[V′] (5.25)

To obtain P (t|do(x)) with T ⊆ V′ we marginalize over V′\T:

P (t|do(x)) =
∑

{xi|Xi∈(V′\T)}

P (v′|do(x)) (5.26)

=
∑

{xi|Xi∈(V′\T)}

Q[V′] (5.27)

Now if we define D = Anc(T)GV′ (the ancestors of T in the graph without variable X),

we can rewrite Equation (5.27) as follows:

P (t|do(x)) =
∑

{xi|Xi∈(D\T)}

∑

{xj |Xj∈(V′\D)}

Q[V′] (5.28)

=
∑

{xi|Xi∈(D\T)}

Q[D] (5.29)

The step from equation 5.28 to 5.29 is made by using Lemma 5.2, as D is by definition an

ancestral set in GV ′ . Now, if we define DX = D ∩ SX , and Di = D ∩ Si for i = 1, . . . , k, then

from Equation (5.24) we can write Q[D] as

Q[D] = Q[DX ]
k

∏

i=1

Q[Di] (5.30)
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All Di are ancestral sets in GSi
by definition, and thus Lemma 5.2 can be applied:

Q[Di] =
∑

{xl|Xl∈(Si\Di)}

Q[Si], for i = 1, . . . , k. (5.31)

Although DX = Anc(T)GV′ ∩ SX is ancestral in SX\{X}, it may not be ancestral in SX ,

since X could be an ancestor of DX . Now, by combining Equations (5.29), (5.30) and (5.31),

we get

P (t|do(x)) =
∑

{xn|Xn∈(D\T)}

Q[DX ]
k

∏

i=1

∑

{xl|Xl∈(Si\Di)}

Q[Si] (5.32)

We know from Lemma 5.1 that the c-factors Q[Si] of all c-components Si are identifiable,

so at this point the remaining question is how to calculate Q[DX ].

Now we can say that the graph GDX
is partitioned into m c-components DX,1, . . . , DX,m.

Then, Lemma 5.3 implies that Q[DX ] =
m
∏

j=1
Q[DX,j ] and it follows that:

P (t|do(x)) =
∑

{xn|Xn∈(D\T)}

m
∏

j=1

Q[DX,j ]
k

∏

i=1

∑

{xl|Xl∈(Si\Di)}

Q[Si] (5.33)

After obtaining this equation we know that P (t|do(x)) is identifiable if all Q[DX,j ] are

identifiable. Now, the next question is whether these Q[DX,j ] are identifiable from Q[SX ].

If we denote the ancestors of a DX,j in the graph GSX
by A = Anc(DX,j)GSX

, there are 3

possibilities:

1. A = DX,j , meaning that DX,j is an ancestral set in GSX
, and thus by Lemma 5.2, Q[DX,j ]

is identifiable from Q[SX ] as follows:

Q[DX,j ] =
∑

{xi|Xi∈(SX\DX,j)}

SX (5.34)

2. A = SX , meaning that the ancestral set of DX,j in SX is SX itself. In this case there is

no way to calculate Q[DX,j ], consequently the desired P (t|do(x)) is not identifiable from

the SMCM.

3. DX,j ⊂ A ⊂ SX , in this case Q[A] is identifiable from Q[SX ] via Lemma 5.2, as A is

ancestral in GSX
by definition:

Q[A] =
∑

{xi|Xi∈(SX\A)}

Q[SX ] (5.35)
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Because DX,j is defined as a c-component in GDX
and DX,j ⊂ A, DX,j is still part of a

single c-component HX in GA.

Now, Lemma 5.3 states that Q[HX ] is identifiable from Q[A] and thus the problem is

reduced to whether Q[DX,j ] is identifiable from Q[HX ]. At this point, we again have the

same 3 possibilities as in this enumeration, but SX is replaced by the smaller set HX .

This process can be repeated until we reach one of the first 2 cases.

To conclude, P (t|do(x)) is identifiable in a SMCM, when in Equation (5.33),

P (t|do(x)) =
∑

{xn|Xn∈(D\T)}

m
∏

j=1

Q[DX,j ]
k

∏

i=1

∑

{xl|Xl∈(Si\Di)}

Q[Si]

all Q[DX,j ] are identifiable by repeatedly applying the procedure with the 3 possibilities as

explained above.

5.3.5 Algorithms

Finally, in this section we provide the identification algorithm and an auxiliary function.

We start with the function Identify(C, F, Q[F]) where C ⊂ F are sets of variables. The goal

of this function is to calculate Q[C] from Q[F] if possible. Identify can be seen in Function 5.

Function 5 Single agent Identify(C, F, Q[F])

Require: sets of variables C ⊂ F ⊂ V, Q = Q[F].

Ensure: Expression for Q[C] in terms of Q or fail to determine.

Let A = Anc(C)GF {= the ancestors of C in graph G restricted to variables F}.

1. IF A = C, return Q[C] =
∑

{xi|Xi∈(F\C)}

Q.

2. IF A = F, return FAIL.

3. IF C ⊂ A ⊂ F

a) Assume that in GA, C is contained in a c-component F′.

b) Compute Q[A] =
∑

{xi|Xi∈(F\A)}

Q by Lemma 5.2.

c) Compute Q[F′] from Q[A] using Lemma 5.3.

d) return Identify(C, F′, Q[F′]).

The actual identification algorithm can be seen in Algorithm 6. Given a SMCM and a

query P (t|do(x)), this algorithm will calculate that causal effect if possible. In the first steps

the graph is divided into c-components, their respective c-factors are calculated and the vari-

able set DX is determined. Then, the necessary calls of the Identify function are performed,

and finally, all calculations are combined in the final equation. Both the function and the

algorithm are adapted from (Tian and Pearl, 2002b).
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Algorithm 6 Single agent identification of P (t|do(x))

Require: a SMCM with variables V, graph G, JPD P (v), a variable X ∈ V, and a set T ⊂ V.

Ensure: the expression for P (t|do(x)) or fail to determine.

1. Find the c-component of G: SX , S1, . . . , Sk, where X ∈ SX .

2. Compute the c-factors Q[SX ], Q[S1], . . . , Q[Sk] by Lemma 5.1.

3. Let D = Anc(T)GV\{X}
, and DX = D ∩ SX

4. Let the c-components of GDX
be DX,j , j = 1, . . . , m.

For each set DX,j : Compute Q[DX,j ] from Q[SX ] by calling the function Identify(DX,j , SX , Q[SX ]) given in

Function 5. If the function returns FAIL, then stop and output FAIL. Otherwise output

P (t|do(x)) =
∑

{xn|Xn∈(D\T)}

m
∏

j=1

Q[DX,j ]

k
∏

i=1

∑

{xl|Xl∈(Si\Di)}

Q[Si]

5.4 Learning Causal Latent Networks

In this section we discuss learning the parameters of causal latent networks.

5.4.1 Learning the Parameters

Prior to this dissertation not too much focus has been put on learning the parameters of AGs

or SMCMs. We briefly discuss different options for both techniques.

Ancestral Graphs

It is possible to parametrize AGs but this is a very difficult task and not every distribution

can be used because of the bi-directed links that can be present in AGs. Not much research

has been done on this subject, but due to a transformation we propose in Chapter 6 we can

change an AG into a SMCM with the same properties and hence parametrize the AG this

way.

Semi-Markovian Causal Models

For SMCMs it is always assumed that the entire JPD is available and all calculations of all

queries are done using the JPD. In Chapter 8 we will introduce a more concise representation

of the JPD as a factorization of smaller CPDs and show that these CPD can be learned from

data.

5.4.2 Learning the Structure

In this section we discuss learning the structure of causal latent networks.
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Ancestral Graphs

There is a lot of recent research on learning the structure of MAGs from observational data.

The Fast Causal Inference (FCI) algorithm is a constraint based learning algorithm proposed

by (Spirtes et al., 1999). Together with the rules discussed in (Zhang and Spirtes, 2005a), the

result of the FCI algorithm is a representation of the Markov equivalence class of MAGs.

This representative is referred to as a complete partial ancestral graph (CPAG) and in (Zhang

and Spirtes, 2005a) it is defined as follows:

Definition 5.9. Let [G] be the Markov equivalence class for an arbitrary MAG G. The complete

partial ancestral graph (CPAG) for [G], PG, is a graph with possibly the following edges →,↔

, o−o, o→, such that

1. PG has the same adjacencies as G (and hence any member of [G]) does;

2. A mark of arrowhead (>) is in PG if and only if it is invariant in [G]; and

3. A mark of tail (−) is in PG if and only if it is invariant in [G].

4. A mark of (o) is in PG if not all members in [G] have the same mark.

We show the FCI algorithm in Algorithm 7, but first we must define some notions.

For a given CPAG G we define the following notions: SepSet, D − SEP , Possible − D −

SEP (Xi, Xj) and Xi ∗ − ∗Xm ∗ − ∗Xj .

Definition 5.10. A set of nodes Z is in SepSet(Xi, Xj) if (Xi⊥⊥Xj |Z).

Definition 5.11. A variable Xk is in D − SEP (Xi, Xj) if and only if Xk 6= Xi and there is an

undirected path between Xi and Xk on which every vertex except the endpoints is a collider and each

vertex is an ancestor of Xi or Xj .

If Xi 6= Xj , Xm is in Possible-D-SEP(Xi, Xj) in G if and only if:

• Xm 6= Xi

• There is an undirected path between Xi and Xm such that for every three nodes Xp1 , Xp2 , Xp3 on

a subpath either Xp2 is a collider on the subpath, or Xp2 is not a definite noncollider and on the

path Xp1 , Xp2 , Xp3 form a triangle.

Definition 5.12. A triple Xi−Xm−Xj is a notation indicating that there can be no collider at Xm.

Recent work in the area consists of characterising the equivalence class of CPAGs and

finding single-edge operators to create equivalent MAGs (Ali et al., 2005; Zhang and Spirtes,

2005a,b). One of the goals of these advances is to create methods that search in the space of

Markov equivalent models (CPAGs) instead of the space of all models (MAGs), mimicking

results in the case without latent variables (Chickering, 2002a).
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Algorithm 7 FCI algorithm (Spirtes et al., 2000a).

Require: A set of samples from a distribution P (V) faithful to some underlying DAG.

Ensure: CPAG representation of the underlying DAG.

1. Initialization:

G is complete undirected graph on the vertex set V.

2. Skeleton discovery:

n=0;

repeat

repeat

select an ordered pair of variables Xi and Xj that are adjacent in G such

that Ne(Xi)\Xj has cardinality greater than or equal to n, and a subset S

of Ne(Xi)\Xj of cardinality n, and if Xi and Xj are independent given S

delete edge Xi −Xj from G and record S in Sepset(Xi, Xj) and

Sepset(Xj , Xi);

until all ordered pairs of adjacent variables Xi and Xj such that Ne(Xi)\Xj

has cardinality greater than or equal to n and all subsets S of Ne(Xi)\Xj of

cardinality n have been tested for independence;

n=n+1;

until for each ordered pair of adjacent vertices Xi, Xj , Ne(Xi)\Xj is of cardinality less than n.

3. Let F be the undirected graph resulting from the previous step. Orient each edge as o−o. For each triple

of vertices Xi, Xj , Xk such that the pair Xi, Xj and the pair Xj , Xk are each adjacent in F but the pair

Xi, Xk are no adjacent in F , orient Xi ∗ − ∗Xj ∗ − ∗Xk as Xi∗ → Xj ← ∗Xk if and only if Xj is not in

Sepset(Xi, Xk).

4. For each pair of variables Xi and Xj adjacent in F , if Xi and Xj are independent given any subset S of

Possible−D − SEP (Xi, Xj)\{Xi, Xj} or any subset S of Possible−D − SEP (Xj , Xi)\{Xj , Xi} in F

remove the edge between Xi and Xj , and record S in Sepset(Xi, Xj) and in Sepset(Xj , Xi).

5. The algorithm then reorients an edge between any pair of variables Xi and Xj as Xio−oXj .

6. Let F ′ be the resulting graph of the previous step. For each triple of vertices Xi, Xj , Xk such that the

pair Xi, Xj and the pair Xj , Xk are each adjacent in F but the pair Xi, Xk are no adjacent in F , orient

Xi ∗ − ∗ Xj ∗ − ∗ Xk as Xi∗ → Xj ← ∗Xk if and only if Xj is not in Sepset(Xi, Xk), and orient

Xi ∗ − ∗Xj ∗ − ∗Xk as Xi ∗ −∗Xj∗ − ∗Xk if and only if Xj is in Sepset(Xi, Xk).

7. repeat

If there is a directed path from Xi to Xj , and an edge Xi ∗−∗Xj orient Xi ∗−∗Xj as Xi∗ → Xj , else

if Xj is a collider along the path Xi, Xj , Xk, Xj is adjacent to Xl, and Xl is in Sepset(Xi, Xk), the orient

Xj ∗ − ∗Xl as Xj ← Xl.

else if U is a definite discriminating path between Xi and Xj for Xk, and Xl and Xm are adjacent to

Xk on U , and Xl −Xk −Xm is a triangle, then

if Xk is in Sepset(Xi, Xj) then Xk is marked as a noncollider on subpath Xl ∗ −∗Xk∗ − ∗Xm

else Xl ∗ − ∗Xk ∗ − ∗Xm is oriented Xl∗ → Xk ← ∗Xm.

else if Xl∗ → Xk∗ − ∗Xm then orient as Xl∗ → Xk → Xm.

until no more edges can be oriented.
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As mentioned before for MAGs, in a CPAG the directed edges have to be interpreted as

representing ancestral relations instead of immediate causal relations. More precisely, this

means that there is a directed edge from Xi to Xj if Xi is an ancestor of Xj in the underlying

DAG and there is no subset of observable variables Z such that (Xi⊥⊥Xj |Z). This does not

necessarily mean that Xi has an immediate causal influence on Xj , it may also be a result of

an inducing path between Xi and Xj . For instance in Figure 5.1(c), the link between X1 and

X6 is present due to the inducing path X1, X2, L1, X6 shown in Figure 5.1(a).

Inducing paths may also introduce ↔, →, o→ or o−o between two variables, although

there is no immediate influence in the form of an immediate causal influence or latent com-

mon cause between the two variables. An example of such a link is X3o−oX4 in Figure 6.1(b).

Semi-Markovian Causal Models

In the literature no algorithm for learning the structure of an SMCM exists, in the next chap-

ter we introduce techniques to perform that task, given some simplifying assumptions, and

with the help of experiments.

5.5 Overview of the Chapter

In this chapter we introduced two commonly used paradigms for causal modeling with

latent variables, namely ancestral graphs and semi-Markovian causal models. We described

both their properties and their limitations. Both existing approaches only focuse on one or a

few of all the steps involved in a generic causal knowledge discovery approach.

We showed that AGs are specifically suited for structure learning in the presence of la-

tent variables from observational data. However, the techniques only learn up to Markov

equivalence and provide no clues on which additional experiments to perform in order to

obtain the fully oriented causal graph. Furthermore, as of yet no parametrisation for dis-

crete variables is provided for MAGs and no techniques for probabilistic inference have

been developed. There is some work on algorithms for causal inference, but it is restricted

to causal inference quantities that are the same for an entire Markov equivalence class of

MAGs (Spirtes et al., 2000a), (Zhang, 2006).

We showed that SMCMs are specifically suited for performing quantitative causal infer-

ence in the presence of latent variables. However, at this time no efficient parametrisation of

such models is provided and there are no techniques for performing efficient probabilistic

inference. Furthermore there are no techniques to learn these models from data issued from

observations, experiments or both.
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The goal of the following chapter is to investigate the integral process from learning these

models from observational and experimental data unto performing probabilistic or causal

inference with them.
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Contributions on Latent Variable Causal Modeling

In this chapter we introduce our contributions for causal latent networks. We propose an

algorithm to learn the structure of a causal latent network and propose an alternative rep-

resentation of an existing technique for modeling causal latent networks in order to allow

probabilistic and causal inference with this technique.

The motivation for these contributions stem from the gap that existed in current research

between the models being learned and the models being used. Once the causal latent net-

work is given, there are extensive applications and many papers are written on performing

causal inference in these models. However, when we made an overview of the available

algorithms for learning these models we observed that the learned result was never as ex-

pressive as the models used to demonstrate the inference power. Furthermore, no discussion

had been made on performing probabilistic inference in these models as such.

In the next sections we introduce an algorithm MyCaDo++ (MY CAusal DiscOvery ++)

for learning the complete structure of a causal latent network. It is assumed, as for MyCaDo

in Chapter 4, that there is perfect observational data available to learn the correct model

up to Markov equivalence. MyCaDo++ uses a set of experiments to completely identify the

causal latent model. Furthermore, we introduce the PR-representation of our causal latent

model which allows to perform probabilistic inference.

6.1 Learning Causal Latent Networks

In this section we discuss learning causal latent networks. We do this by using existing

techniques to learn the equivalence class of the AG that correctly represents the data and

then transform this into the correct SMCM representing the data.
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Figure 6.1. (a) A SMCM. (b) Result of FCI, with an i-false edge X3o−oX4.

6.1.1 Preliminaries

Learning a SMCM, as is normal for probabilistic graphical models, consists of two parts:

structure learning and parameter learning. Both can be done using data, expert knowledge

and/or experiments. In this section we discuss only structure learning.

As mentioned above for MAGs, in a CPAG the directed edges have to be interpreted

as being ancestral instead of causal. This means that there is a directed edge from Xi to

Xj if Xi is an ancestor of Xj in the underlying DAG and there is no subset of observable

variables D such that (Xi⊥⊥Xj |D). This does not necessarily mean that Xi has an immediate

causal influence on Xj : it may also be a result of an inducing path between Xi and Xj . For

instance, in Figure 5.1(c), the link between X1 and X6 is present due to the inducing path

X1, X2, L1, X6 shown in Figure 5.1(a).

Inducing paths may also introduce an edge of type o→ or o−o between two variables, indi-

cating either a directed or bi-directed edge, although there is no immediate influence in the

form of an immediate causal influence or latent common cause between the two variables.

An example of such a link is X3o−oX4 in Figure 6.1(b).

A consequence of these properties of MAGs and CPAGs is that they are not suited for

causal inference, since the immediate causal parents of each observable variable are not

available, as is necessary according to the manipulation theorem. As we want to learn models

that can perform causal inference, we will discuss how to transform a CPAG into a SMCM

in the next sections. Before we start, we have to mention that we assume that the CPAG

is correctly learned from data with the FCI algorithm, and the extended tail augmentation

rules, i.e. we assume perfect observational data.

6.1.2 General Overview of the Algorithm

Our goal is to give an algorithm, MyCaDo++ (MyCaDo with latent variables), to transform

a given CPAG in order to obtain a SMCM that corresponds to the corresponding DAG.

Remember that in general there are three types of edges in a CPAG:→, o→, o−o, in which o

means either a tail mark − or a directed mark >. So one of the tasks to obtain a valid SMCM
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is to disambiguate those edges with at least one o as an endpoint. A second task will be to

identify and remove the edges that are created due to an inducing path.

A general overview of the algorithm is given in Figure 6.2.

Observational

data


FCI
-
Algorithm +

Orientation rules


System


CPAG


Perform

experiments


Experimental

data


Analyze

results


SMCM


Figure 6.2. General overview of the MyCaDo++ algorithm.

In the next section we will first discuss exactly which information we obtain from per-

forming an experiment. Then, we will discuss the two possibilities o→ and o−o. Finally,

we will discuss how we can find edges that are created due to inducing paths and how to

remove these to obtain the correct SMCM.

6.1.3 Performing Experiments

The experiments discussed here play the role of the interventions that define a causal rela-

tion. An experiment on a variable Xi, i.e., a randomised controlled experiment, removes the

influence of other variables in the system on Xi. The experiment forces a distribution on Xi,

and thereby changes the joint distribution of all variables in the system that depend directly

or indirectly on Xi but does not change the conditional distribution of other variables given

values of Xi. After the randomisation, the associations of the remaining variables with Xi
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provide information about which variables are influenced by Xi (Neapolitan, 2003). When

we perform the experiment we cut all influence of other variables on Xi. Graphically this

corresponds to removing all incoming edges into Xi from the underlying DAG.

All parameters besides those for the variable experimented on, (i.e., P (Xi|Πi)), remain

the same. We then measure the influence of the intervention on variables of interest to get

the post-interventional distribution on these variables.

To analyse the results of the experiment we compare for each variable of interest Xj the

original distribution P and the post-interventional distribution PE , thus comparing P (Xj)

and PE(Xj) = P (Xj |do(Xi = xi)).

We denote performing an experiment at variable Xi or a set of variables W by exp(Xi)

or exp(W) respectively, and if we have to condition on some other set of variables Z while

performing the experiment, we denote it as exp(Xi)|Z and exp(W)|Z.

In general, if a variable Xi is experimented on and another variable Xj is affected by this

experiment, we say that Xj varies with exp(Xi), denoted by exp(Xi)  Xj . If there is no

variation in Xj we note exp(Xi) 6 Xj .

Although conditioning on a set of variables Z might cause some variables to become

probabilistically dependent, conditioning will not influence whether two variables vary

with each other when performing an experiment. I.e., suppose the following structure is

given Xi → Xm ← Xj , then conditioning on Xm will make Xi dependent on Xj , but when

we perform an experiment on Xi and check whether Xj varies with Xi then conditioning

on Xm will make no difference.

First we have to introduce the following definition:

Definition 6.1. A potentially directed path (p.d. path) in a CPAG is a path made only of edges of

types o→ and→, with all arrowheads in the same direction. A p.d. path from Xi to Xj is denoted as

Xi 99K Xj .

6.1.4 Solving o→

An overview of the different rules for solving o→ is given in Table 6.1

For any edge Xio→ Xj , there is no need to perform an experiment on Xj because we

know that there can be no immediate influence of Xj on Xi, so we will only perform an

experiment on Xi.

If exp(Xi) 6 Xj , then there is no influence of Xi on Xj , so we know that there can be no

directed edge between Xi and Xj and thus the only remaining possibility is Xi ↔ Xj (Type

1(a)).

If exp(Xi)  Xj , then we know for sure that there is an influence of Xi on Xj , we now

need to discover whether this influence is immediate or via some intermediate variables.
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Type 1(a)

Given Xio→ Xj

exp(Xi) 6 Xj

Action Xi ↔ Xj

Type 1(b)

Given Xio→ Xj

exp(Xi) Xj

6 ∃p.d. path (length ≥ 2)Xi 99K Xj

Action Xi → Xj

Type 1(c)

Given Xio→ Xj

exp(Xi) Xj

∃p.d. path (length ≥ 2)Xi 99K Xj

Action Block all p.d. paths by condi-

tioning on blocking set Z

(a) exp(Xi)|Z Xj : Xi → Xj

(b) exp(Xi)|Z 6 Xj : Xi ↔ Xj

Table 6.1. An overview of the different actions needed to complete edges of type o→.

Therefore we make a difference whether there is a potentially directed (p.d.) path between

Xi and Xj of length≥ 2, or not. If no such path exists, then the influence has to be immediate

and the edge is found Xi → Xj (Type 1(b)).

If at least one p.d. path Xi 99K Xj exists, we need to block the influence of those paths on

Xj while performing the experiment, so we try to find a blocking set Z for all these paths. If

exp(Xi)|Z Xj , then the influence has to be immediate, because all paths of length ≥ 2 are

blocked, so Xi → Xj . On the other hand if exp(Xi)|Z 6 Xj , there is no immediate influence

and the edge is Xi ↔ Xj (Type 1(c)).

6.1.5 Solving o−o

An overview of the different rules for solving o−o is given in Table 6.2.

For any edge Xio−oXj , we have no information at all, so we might need to perform

experiments on both variables.

If exp(Xi) 6 Xj , then there is no influence of Xi on Xj so we know that there can be

no directed edge between Xi and Xj and thus the edge is of the following form: Xi ←oXj ,

which then becomes a problem of Type 1.

If exp(Xi)  Xj , then we know for sure that there is an influence of Xi on Xj , and as

in the case of Type 1(b), we make a difference whether there is a potentially directed path

between Xi and Xj of length ≥ 2, or not. If no such path exists, then the influence has to be

immediate and the edge must be turned into Xi → Xj .
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Type 2(a)

Given Xio−oXj

exp(Xi) 6 Xj

Action Xi ←oXj(⇒Type 1)

Type 2(b)

Given Xio−oXj

exp(Xi) Xj

6 ∃p.d. path (length ≥ 2)Xi 99K Xj

Action Xi → Xj

Type 2(c)

Given Xio−oXj

exp(Xi) Xj

∃p.d. path (length ≥ 2)Xi 99K Xj

Action Block all p.d. paths by condi-

tioning on blocking set Z

(a) exp(Xi)|Z Xj : Xi → Xj

(b) exp(Xi)|Z 6 Xj : Xi ←oXj

(⇒Type 1)

Table 6.2. An overview of the different actions needed to complete edges of type o−o.

If at least one p.d. path Xi 99K Xj exists, we need to block the influence of those paths

on Xj while performing the experiment, so we find a blocking set Z like with Type 1(c). If

exp(Xi)|Z Xj , then the influence has to be immediate, because all paths of length ≥ 2 are

blocked, so Xi → Xj . On the other hand if exp(Xi)|Z 6 Xj , there is no immediate influence

and the edge is of type: Xi ←oXj , which again becomes a problem of Type 1.

6.1.6 Removing Inducing Path Edges

An inducing path between two variables Xi and Xj might create an edge between these

two variables during learning because the two are dependent conditional on any subset of

observable variables. As mentioned before, this type of edges is not present in SMCMs as

it does not represent an immediate causal influence or a latent variable in the underlying

DAG. We will call such an edge an i-false edge.

For instance, in Figure 5.1(a) the path X1, X2, L1, X6 is an inducing path, which causes

the FCI algorithm to find an i-false edge between X1 and X6, see Figure 5.1(c). Another

example is given in Figure 6.1 where the SMCM is given in (a) and the result of FCI in (b).

The edge between X3 and X4 in (b) is a consequence of the inducing path via the observable

variables X3, X1, X2, X4.

In order to be able to apply a causal inference algorithm we need to remove all i-false

edges from the learned structure. We need to identify the substructures that can indicate
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this type of edges. This is easily done by looking at any two variables that are connected by

an immediate connection, and when this edge is removed, they have at least one inducing

path between them. To check whether the immediate connection needs to be present we

have to block all inducing paths by performing one or more experiments on an inducing

path blocking set (i-blocking set) Zip and block all other paths by conditioning on a blocking

set Z. If Xi and Xj are dependent, i.e., Xi 2Xj under these circumstances the edge is correct

and otherwise it can be removed.

In the example of Figure 5.1(c), we can block the inducing path by performing an exper-

iment on X2, and hence can check that X1 and X6 do not covary with each other in these

circumstances, so the edge can be removed.

In Table 6.3 an overview of the actions to resolve i-false edges is given.

Given A pair of connected variables Xi, Xj

A set of inducing paths Xi, . . . , Xj

Action Block all inducing paths Xi, . . . , Xj

by conditioning on i-blocking set

Zip.

Block all other paths between Xi

and Xj by conditioning on blocking

set Z.

When performing all exp(Zip)|Z:

if Xi 2Xj : confounding is real

else remove edge between Xi, Xj

Table 6.3. Removing inducing path edges.

6.1.7 Example

We will demonstrate a number of steps to discover the completely oriented SMCM (Figure

5.1(b)) based on the result of the FCI algorithm applied on observational data generated

from the underlying DAG in Figure 5.1(a). The result of the FCI algorithm can be seen in

Figure 6.3(a). We will first resolve problems of Type 1 and 2, and then remove i-false edges.

The result of each step is indicated in Figure 6.3.

• exp(X5)

– X5o−oX4:

exp(X5) 6 X4 ⇒ X4o→ X5 (Type 2(a))

– X5o→ X6:

exp(X5) 6 X6 ⇒ X5 ↔ X6 (Type 1(a))
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Figure 6.3. (a) The result of FCI on data of the underlying DAG of Figure 5.1(a). (b) Result of an experiment on

X5. (c) After experiment on X4. (d) After experiment on X3. (e) After experiment on X2 while conditioning on

X3 during the statistical test. (f) After resolving all problems of Type 1 and 2.

• exp(X4)

– X4o−oX2:

exp(X4) 6 X2 ⇒ X2o→ X4 (Type 2(a))

– X4o−oX3:

exp(X4) 6 X3 ⇒ X3o→ X4 (Type 2(a))

– X4o→ X5:

exp(X4) X5 ⇒ X4 → X5 (Type 1(b))

– X4o→ X6:

exp(X4) X6 ⇒ X4 → X6 (Type 1(b))

• exp(X3)
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– X3o−oX2:

exp(X3) 6 X2 ⇒ X2o→ X3 (Type 2(a))

– X3o→ X4:

exp(X3) X4 ⇒ X3 → X4 (Type 1(b))

• exp(X2) and exp(X2)|X3, because two p.d. paths between X2 and X4

– X2o−oX1:

exp(X2) 6 X1 ⇒ X1o→ X2 (Type 2(a))

– X2o→ X3:

exp(X2) X3 ⇒ X2 → X3 (Type 1(b))

– X2o→ X4:

exp(X2)|X3  X4 ⇒ X2 → X4 (Type 1(c))

After resolving all problems of Type 1 and 2 we end up with the SMCM structure shown

in Figure 6.3(f). This representation is no longer consistent with the MAG representation

since there are bi-directed edges between two variables on a directed path, i.e., X2, X6. There

is a potentially i-false edge X1 ↔ X6 in the structure with inducing path X1, X2, X6, so we

need to perform an experiment on X2, blocking all other paths between X1 and X6 (this is

also done by exp(X2) in this case). Given that the original structure is as in Figure 5.1(a),

performing exp(X2) shows that X1 and X6 are independent, i.e., exp(X2) : (X1⊥⊥X6). Thus

the bi-directed edge between X1 and X6 is removed, giving us the SMCM of Figure 5.1(b).

6.1.8 Critical Discussion of MyCaDo++

If all experiments that need to be perform are possible then MyCaDo++ will return the cor-

rect SMCM corresponding with the system. However, there is no attempt as to minimizing

the cost of the experiments or the total number of experiments.

We want to research whether we can minimize the total cost of the experiments by using

the orientation rules introduced in Zhang and Spirtes (2005a). The idea is to use a similar

method as for MyCaDo (Section 4.1) where we intertwine the experiments and the orienta-

tion rules.

6.2 Parametrisation of SMCMs

As mentioned before in Section 5.3, Tian and Pearl provide an algorithm for performing

causal inference given knowledge of the structure of an SMCM and the joint probability

distribution (JPD) over the observable variables. However, they do not provide a parametri-

sation to efficiently store the JPD over the observables.
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Algorithm 8 PR-representation algorithm.

Require: A SMCM G and a topological ordering O over the variables V .

Ensure: PR-representation R.

1. The nodes in R are V, i.e., the observable variables of the SMCM.

2. The directed edges in R are the same as in the SMCM G.

3. The confounded edges in G are replaced by a number of directed edges in R as follows.

Add an edge from node Xi to node Xj iff:

a) Xi ∈ (Tj ∪ Pa(Tj)), where Tj is the c-component of G reduced to variables X(j) that contains Xj ,

b) and there was not already an edge between nodes Xi and Xj .

6.2.1 Factorising with Latent Variables

Here we first introduce an additional representation for SMCMs, then we show how it can

be parametrised and, finally we discuss how this new representation could be optimised.

PR-representation

Consider Xo1 < . . . < Xon to be a topological order O over the observable variables V, only

considering the directed edges of the SMCM, and let X(i) = Xo1 < . . . < Xoi
, i = 1, . . . , n,

and X(0) = ∅. We show how the parametrised (PR-) representation can be obtained from the

original SMCM structure in Algorithm 8.

This way each variable becomes a child of the variables it would condition on in the

calculation of the contribution of its c-component.

Figure 6.4(a) shows the PR-representation of the SMCM in Figure 5.1(a). The topological

order that was used here is X1 < X2 < X3 < X4 < X5 < X6 and the directed edges that

have been added are X1 → X5, X2 → X5, X1 → X6, X2 → X6, and, X5 → X6.

The resulting DAG is an I-map (Pearl, 1988), over the observable variables of the inde-

pendence model represented by the SMCM. This means that all the independences that can

be derived from the new graph must also be present in the JPD over the observable vari-

ables. This property can be more formally stated as the following theorem.

Theorem 6.1. The PR-representation PR derived from a SMCM S is an I-map of that SMCM.

Proof. Consider two variables Xi and Xj in PR that are not connected by an edge. This

means that they are not independent, since a necessary condition for two variables to be

conditionally independent in a stable DAG is that they are not connected by an edge. PR is

stable as we consider only stable problems.

Then, from the method for constructing PR we can conclude that S (i) contains no di-

rected edge between Xi and Xj , (ii) contains no bi-directed edge between Xi and Xj , (iii)
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Figure 6.4. (a) The PR-representation applied to the SMCM of Figure 5.1(b). (b) Junction tree representation of

the DAG in (a).

contains no inducing path between Xi and Xj . Property (iii) holds because the only induc-

ing paths that are possible in a SMCM are those between a member of a c-component and

the immediate parent of another variable of the c-component, and in these cases the method

for constructing PR adds an edge between those variables. Because of (i),(ii), and (iii) we

can conclude that Xi and Xj are independent in S.

Parametrisation

For this DAG we can use the same parametrisation as for classical BNs, i.e., learning

P (Xi|Πi) for each variable, where Πi denotes the parents in the new DAG. In this way the

JPD over the observable variables factorises as in a classical BN, i.e., P (V) =
∏

P (Xi|Πi),

and these conditional probabilities map to the ones we need to calculate the c-factors. This

follows immediately from the definition of a c-component and from the fact that each c-

factor Q[S] can be calculated as follows (Tian and Pearl, 2002b):

Let Xo1 < . . . < Xon be a topological order over V, and let X(i) = Xo1 < . . . < Xoi
,

i = 1, . . . , n, and X(0) = ∅.

Q[S] =
∏

Xi∈S

P (Xi|(Ti ∪ Pa(Ti))\{Xi}) (6.1)

where Ti is the c-component of the SMCM G reduced to variables V(i), that contains Vi. The

SMCM G reduced to a set of variables V′ ⊂ V is the graph obtained by removing from the

graph all variables V\V′ and the edges that are connected to them.
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Learning Parameters

As the PR-representation of SMCMs is a DAG as in the classical Bayesian network formal-

ism, the parameters that have to be learned are P (Xi|Πi). Therefore, techniques such as ML

and MAP estimation, see Section 2.5.1, can be applied to perform this task.

6.2.2 Probabilistic Inference

One of the most famous existing probabilistic inference algorithm for models without latent

variables is the junction tree algorithm (JT), see Section 2.4.2.

These techniques cannot immediately be applied to SMCMs for two reasons. First of all

until now no efficient parametrisation for this type of models was available, and secondly,

it is not clear how to handle the bi-directed edges that are present in SMCMs.

We have solved this problem by first transforming the SMCM into its PR-representation,

which allows us to apply the junction tree inference algorithm. This is a consequence of the

fact that, as previously mentioned, the PR-representation is an I-map over the observable

variables. And as the JT algorithm is based only on independences in the DAG, applying

it to an I-map of the problem gives correct results. See Figure 6.4(b) for the junction tree

obtained from the parametrised representation in Figure 6.4(a).

Note that any other classical probabilistic inference technique that only uses conditional

independences between variables could also be applied to the PR-representation.

6.2.3 Causal Inference

(Tian and Pearl, 2002b) developed an algorithm for performing causal inference, however

as mentioned before in Section 5.4.1 they have not provided an efficient parametrisation.

Richardson and Spirtes (2003) show causal inference in AGs on an example, but a detailed

approach is not provided and the problem of what to do when some of the parents of a

variable are latent is not solved.

By definition in the PR-representation, the parents of each variable are exactly those vari-

ables that have to be conditioned on in order to obtain the factor of that variable in the

calculation of the c-component, see Algorithm 8 and (Tian and Pearl, 2002b). Thus, the PR-

representation provides all the necessary quantitative information, while the original struc-

ture of the SMCM provides the necessary structural information, for the algorithm by Tian

and Pearl to be applied.

Critical Discussion of PR-representation

We have mentioned that the number of edges added during the creation of the PR-representation

depends on the topological order of the SMCM.
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As this order is not unique, choosing an order where variables with a lesser amount of

parents have precedence, will cause less edges to be added to the DAG. This is because most

of the added edges go from parents of c-component members to c-component members that

are topological descendants.

By choosing an optimal topological order, we can conserve more conditional indepen-

dence relations of the SMCM and thus make the graph more sparse, thus leading to a more

efficient parametrisation.

In Section 8.1 we show how we can not only learn the parameters but also store them

more efficiently by separating the SMCM into several smaller models.

6.3 Overview of the Chapter

We have discussed all classical steps in a modeling process such as learning the structure

from observational and experimental data, model parametrisation, probabilistic and causal

inference.

More precisely we showed that there is a big gap between the models that can be learned

from data alone and the models that are used in causal inference theory. We showed that it

is important to retrieve the fully oriented structure of a SMCM, and discussed how to obtain

this from a given CPAG by performing experiments.

As the experimental learning approach relies on randomized controlled experiments, in

general, it is not scalable to problems with a large number of variables, due to the associated

large number of experiments. Furthermore, it cannot be applied in application areas where

such experiments are not feasible due to practical or ethical reasons.

SMCMs have not been parametrised in another way than by the entire joint probabil-

ity distribution, we showed that using an alternative representation, we can parametrise

SMCMs in order to perform probabilistic as well as causal inference. Furthermore this new

representation allows to learn the parameters using classical methods.

For future work, we want to study how to optimize the PR-representation, since the size

of the CPDs is dependent on the topological order of the variables. We would like to see

whether we can discover an optimal topological ordering.

Furthermore, we want to extend our MyCaDo algorithm presented in Section 4.1 to this

setting with latent variables. Now we proposed an experimentation plan that shows all nec-

essary experiments. We want to research whether we can minimize the total cost of the ex-

periments or, maybe by using orientation rules during learning to minimize the total num-

ber of experiments.
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Multi-Agent Causal Models

In this chapter we introduce multi-agent causal models (MACM) which were first proposed

in (Maes et al., 2003). It is assumed that there is no longer one central controller having

access to all the observable variables, but instead a collection of agents each having access

to non-disjoint subsets VMi
of all the variables V.

If we again reflect on the requirements of a good causal model (Section 1.2), we have to

describe what exactly can be represented by a MACM (Section 7.1), which queries we can

resolve within these frameworks (Section 7.2), and how they can be learned from observa-

tional or experimental data. Learning the structure of a MACM is part of our contribution

an is discussed in the following chapter (Section 8.2).

7.1 Definition

We start by defining a multi-agent causal model:

Definition 7.1. A multi-agent causal model consists of n agents, each of which contains a semi-

Markovian causal model Mi:

Mi = 〈VMi
, GMi

, PMi
(VMi

), KMi
〉 for i ∈ {1, · · · , n}.

• VMi
is the subset of variables agent-i can access.

• GMi
is the causal graph over variables VMi

.

• PMi
(VMi

) is the joint probability distribution over VMi
.

• KMi
stores the intersections {VMi

∩ VMi
} with other agents j, denoted by VMi,Mj

. The variables

in KMi
are called the public variables of an agent-i.

The set of variables of an agent-i without all the intersections he shares with other agents, or

VMi
\KMi

, is called the set of private variables of that agent.

Furthermore, for an MACM to be valid the following properties must hold:

• No edges (either directed or bi-directed) are allowed between private variables of different agents i

and j.
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• The intersection between two agents is modeled in the same way by each agent, i.e. the structure

and distribution over the intersection should be the same.

• Combining the models of the individual agents does not introduce directed cycles.

Example 7.1. An example MACM adapted from Nadkarni and Shenoy (2001) is depicted

in Figure 7.1. In this case VM1 = {X, X1, . . . , X9} and VM2 = {X7, . . . , X11, Y }, while the

intersection V1,2 = {X7, X8, X9}. For each agent the graph GMi
is the part that is surrounded

by an ellipse in the figure.

With this model a company wants to assess the influence of its product pricing strategy on

product decision, this is whether a new product is launched or not. Furthermore, this company

consists of two internal divisions, one modeled by agent1, roughly responsible for external

issues such as the market situation or the competitive strategy, and one modeled by agent2

pertaining to internal issues such as research & development and the rate at which new

products are launched.
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Figure 7.1. Example of a multi-agent causal model of a product decision model.
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7.1.1 Additional Notations

The union of all the graphs GMi
of all agents in the MACM is noted as ∪G, and it is the

graph that would be associated with a single agent having access to the entire domain.

Likewise, the union of all variables VMi
is denoted by ∪V. For example, in Figure 7.1 ∪V

= {X, X1, . . . , X11, Y } and ∪G is the graph obtained when omitting the ellipses in that same

figure.

We also introduce a notation for the variables of an agent-i without the intersection he

shares with another agent-j: V
\Mj

Mi
= VMi

\VMi,Mj
. The private variables of an agent-i, i.e. the

set of variables without all the intersections he shares with other agents are noted as V
\
Mi

.

7.1.2 Properties of MACMs

In this section we will discuss the properties associated with the definition of multi-agent

causal models.

JPD for each Agent

In Chapter 5 we have seen that at this time for semi-Markovian models the entire JPD over

all observable variables is kept. In a MACM each agent-i stores the JPD over all variables

VMi
that belong to its model. This has the advantage over a centralized semi-Markovian

model, that we keep several JPDs over subsets of all the variables, instead of one JPD over

all the variables. Thus this approach forms a more concise representation of the domain.

For example in the MACM of Figure 7.1, agent1 would store P (X, X1, . . . , X9) and agent2

would store P (X7, . . . , X11, Y ), while in a single agent approach the JPD over all variables

X, X1, . . . , X11, Y would be stored.

If a more efficient representation for semi-Markovian causal models is developed, this

should also be incorporated in multi-agent causal models for them to keep the advantage of

conciseness.

No Edges Between Different Agent Models

One of the properties of a valid MACM is that both directed and bi-directed edges between

agent models are not allowed, except if both variables belong to the intersection. For exam-

ple in Figure 7.1, a directed edge from variable X6 to Y would not be allowed.

For a directed edge this simply means that no edge is allowed between private variables

of different agents.

As a bi-directed edge represents an unobserved common cause, the fact that no bi-

directed edges are allowed between private variables implies that unobserved variables
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must be the common cause of variables belonging to the same agent for the multi-agent

causal model to be valid. In domains where this is not the case, the intersection between

agents has to be extended with some of the variables that are a child of an unobserved vari-

ables.

Intersection between Agents

Another property of multi-agent causal models is that both agents that share an intersection

have to model those variables in the same way.

More specifically, this means that the structure and probabilities of the variables in the

intersection must be the same in the model of both involved agents. Formally, consider agent-

i and agent-j and the variables in the intersection are I = VMi,Mj
. Then GMi,I, or the graph

GMi
reduced to the variables in I, must be equal to GMj ,I, and PMi

(I), or the joint probability

distribution of agent-i over the variables in the intersection, must be equal to PMj
(I).

This is in accordance with the paradigm of cooperative multi-agent systems, where the

agents do not hold back information concerning variables they consider as being shared.

Acyclicity

A property of multi-agent causal models is that combining individidual agent models does

not introduce directed cycles. The assumption of acyclicity is not always trivial to check

in a distributed fashion as can be seen in Figure 7.2, where agent1, agent2 and agent2,

agent3 are pairwise acyclic, but if we combine all three agent models there is the cycle

X1, X3, X4, X2, X14, X11, X7, X10, X12, X1.

Individual Agent Models

The goal of a multi-agent causal model is to represent a complete domain correctly by sev-

eral agents. Consequently, the semi-Markovian causal models in individual agent models

Mi do not represent valid SMCMs over their local subdomain consisting of the variables

VMi
.

This is because in a multi-agent causal model each individual agent model Mi represents

on one hand the independences and dependencies between its variables VMi
determined

by subsets of these same variables (i.e. subsets of VMi
that make variables of VMi

indepen-

dent). On the other hand, Mi also takes into account the independences found using sets of

variables that are not subsets of VMi
, but some of which are modeled by other agents.

For example in the top model of Figure 7.3(a), the model of agent1 takes into account that

variables X1 and X2 are d-separated by private variables X3 or X4 in agent2. If agent1 would
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Figure 7.2. The agents in this MACM are pairwise acyclic, but the combination of all three agents introduces the

directed cycle X1, X3, X4, X2, X14, X11, X7, X10, X12, X1.

only model independences that are determined by variables in VM1 its correct model would

be the bottom one of Figure 7.3(a).
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Figure 7.3. (a) A directed path between X1 and X2 in agent2 is seen as a directed edge by agent1. (b) A path

between X1 and X2 with a common cause in agent2 is seen as a bi-directed edge by agent1. (c) A path between

X1 and X2 that contains converging edges, is not seen by agent1 as an edge of any type.

For an isolated individual agent model Mi of a MACM to constitute a valid semi-

Markovian causal model of its subdomain, the private variables that are modeled by other
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agents should be considered as unobserved variables to the agent model Mi for its local

SMCM to be valid.

We are not interested in having a correct SMCM over individual agents’ subdomain,

but rather in a correct multi-agent causal model over the entire domain. Therefore, when

learning a model it has to be taken into account that variables in one agent can be connected

by a path of private variables in another agent, as we do not want an agent to model the

private variables of another agent explicitly as unobserved variables.

Let the agent whose isolated model we are studying be agent1 and the other agent agent2,

the two connected variables are denoted by X1 and X2. Then in a valid multi-agent causal

model there are three possibilities for variables X1 and X2 to be connected via another agent:

• If the path between X1 and X2 in agent2 is directed, then an isolated agent1 would see a

directed edge between the variables. See Figure 7.3(a) for an example.

• If the path between X1 and X2 in agent2 contains at least one common cause of other

variables on the path and no converging edges, then agent1 would see a bi-directed edge

between the variables if in isolation. This is because the common cause is hidden to agent1

and thus it represents a confounding factor. See Figure 7.3(b) for an example. When there

are converging edges on the path, it is handled by the next case.

• The path between X1 and X2 in agent2 contains converging edges. In that case agent1 does

not see an edge between the variables, because X1 and X2 are marginally independent

via that path. It is only when we condition on the variable where the edges converge

that they become dependent, but as this variable is unobservable, conditioning on it is

impossible from agent1’s point of view. As we can see in Figure 7.3(c), here there is no

difference between the multi-agent case and the single agent case.

This property has important consequences for the learning of MACMs as will be dis-

cussed in Section 8.2.

Globally Correct Model

In the previous subsection we have seen that the model of an individual agent does not

constitute a valid SMCM of its subdomain. On the other hand if the models of all individ-

ual agents are merged into one centralized model, then that model does constitute a valid

SMCM of the complete domain.

For example, if in the top row MACMs of Figure 7.3, we omit the ellipses denoting the

agent division we obtain semi-Markovian causal models that represent the complete domain

correctly. We denote such models as globally correct.
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Definition 7.2. In a MACM with models Mi = 〈VMi
, GMi

, PMi
(VMi

), KMi
〉 for i ∈ {1, · · · , n},

the semi-Markovian model associated with a single agent having access to the entire domain is called

the globally correct model:

∪M = 〈∪V,∪G, P (∪V)〉 (7.1)

where

∪V = ∪
i∈{1,··· ,n}

VMi

P (∪V) = P ( ∪
i∈{1,··· ,n}

VMi
)

so that P (S) = PMi
(S) if S ⊆ P (VMi

).

Finally, ∪G denotes the graph obtained by merging all the individual local graphs GMi
.

d-separation

An important consequence of the previous property concerning individual agent models is

that the d-separation criterion cannot be used in individual agent models alone to derive the

independences implied by a model. In general, information from other agents is needed to

obtain all the independences implied by a model.

More specifically, for a multi-agent causal model consisting of two agents, agent-i with

model Mi and agent-j with model Mj , where

Mk =
〈

VMk
, GMk

, PMk
(VMk

), VMi
∩VMj

〉

for k ∈ {i, j} and VM = VMi
∪ VMj

, we have the same property as for a single agent semi-

Markovian causal model:

Property 7.1.

∀Xi, Xj ∈ VM and ∃S ⊂ VM\{Xi, Xj} :

Xi⊥Xj |S ⇔ (Xi⊥⊥Xj |S) (7.2)

Or in words, when two variables are d-separated by a set of variables in the union graph ∪G,

this has to be mirrored by an equivalent statistical independence in the JPD P (∪V). Just as

in the centralized case we work with faithful distributions, so the opposite relation should

hold as well, i.e. every independence found in the JPD should be mirrored by a d-separation

relationship in the graph.

The above property cannot be directly checked in multi-agent causal models, as it as-

sumes that all variables are visible to every agent and for private variables of another agent

in the MACM this is not the case. Note that even when all the variables in S are in the private

part of an agent-i, or S ⊂ V
\
Mi

, cooperation with another agent-j can be necessary to know

whether Xi⊥Xj |S.
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Intersections of two Agents

In a multi-agent causal model, each intersection between agents consists of exactly two

agents. In the case where more than two agents intersect at some point, this intersection

is considered as multiple intersection between pairs of agents.

7.1.3 MACM and Cooperative MAS

The paradigm of cooperative multi-agent systems alleviates some of the problems associ-

ated with centralized approaches to modeling. In this section we will discuss how multi-

agent causal models fulfill the properties we desire in a cooperative MAS.

Multi-Agent

MACMs are a multi-agent approach in the sense that the model of each individual agent

has only access to its own local variables and that each individual agent cannot perform the

task it is developed for, i.e. causal inference, without the help of other agents.

Autonomy

Although individual agent models do not constitute valid semi-Markovian causal models

over their subdomains, the valid SMCM can easily be obtained from its local data (it is

even obtained as an intermediate step in the learning process of MACM). In that sense each

individual agent model in a MACM is autonomous to a certain degree, because if communi-

cation with other agents in the MACM fails for some reason, the local agents can still model

their local subdomain without much extra effort.

Cooperative

Multi-agent causal models are considered as a cooperative approach, because the agents

do not hold back or provide wrong information concerning their public variables to other

agents. In general once a valid MACM is obtained, information on private variables is not

communicated to other agents, but in some cases, when the intersections between agents

are too small and when all agents agree, there can be exceptions.

Furthermore, when learning a MACM from data, some information concerning private

variables has to be disclosed, see Section 8.2 for more details.
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Quantitative Causal Inference

We have seen earlier in this chapter that a centralized union of all individual agent models

represents a valid semi-Markovian model of the complete domain and we have described an

algorithm for performing causal inference in SMCMs. In a MACM we do not have explicit

access to this SMCM of the complete domain, therefore in the following chapters we will

introduce algorithms to perform quantitative causal inference in MACMs without violating

the privacy of individual agents.

Unobserved Variables

As the agents use the paradigm of semi-Markovian causal models to model their local do-

main, unobserved variables can be taken into account in the modeling process.

7.2 Causal Inference in MACM

In this section, which describes joined work with Sam Maes presented in his dissertation

(Maes, 2005), we start by introducing some auxiliary lemmas and proceed to an algorithm

for calculating the causal effect P (y|do(x)) in a MACM consisting of 2 agents. We call this

the bi-agent causal model (M1, M2), where Mi = 〈VMi
, GMi

, P (VMi
), Ki〉 for i ∈ 1, 2, where

agent1 contains the intervention variable X and agent2 contains the variable to be studied

Y .

7.2.1 Calculating c-factors

In this subsection we define c-factors and introduce a lemma stating that within some as-

sumptions c-factors can be computed in a multi-agent manner, i.e. using only private infor-

mation from an agent and its intersection with other agents.

We have previously explained how a semi-Markovian model can be partitioned into c-

components. Assume that V is thus partitioned into k c-components S1, . . . Sk and denote

by Nj the set of unmeasured variables U that are parents of those variables in Sj . Then the

c-factor Q[Sj ] corresponding to a c-component Sj is defined as (Tian and Pearl, 2002b):

Q[Sj ] =
∑

nj

∏

{i|Xi∈Sj}

P (xi|πi, ui)P (nj) (7.3)

Due to the disjointness of S1, . . . , Sk and N1, . . . , Nk, P (v) can be decomposed into a

product of Q[Sj ]’s:
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P (v) =
k

∏

j=1

Q[Sj ] (7.4)

For interpretations of c-factors and methods for calculating them in single agent models

we refer the reader to (Tian and Pearl, 2002b) and the appendix. A method for computing

c-factors in bi-agent causal models is introduced in the following lemma.

Lemma 7.1. (Bi-agent c-factor calculation)

Consider a bi-agent causal model (M1, M2), where Mi = 〈VMi
, GMi

, P (VMi
), Ki〉 for i ∈ 1, 2. Let

a topological order over the union of the variables in both agents ∪V be X1 < · · · < Xn and let

X(i) = {X1, . . . , Xi}.

If a c-component Sj and its immediate parents are contained in exactly one agent, i.e. if Sj ∪

Pa(Sj) ⊂ VM1 , then the c-factor Q[Sj ] can be calculated using only information contained in that

particular agent as follows:

Q[Sj ] =
∏

{i|Xi∈Sj}

P (xi|pa(Ti)\{xi}) (7.5)

where Ti is the c-component of GX(i) that contains Xi.

Proof: Since Sj ∪ Pa(Sj) ⊂ VMi
, all the elements involved in Equation (7.5) belong solely to

agent-i and thus the calculation can be done by that agent alone. ⊓⊔

7.2.2 Recursive Domain Reduction

In the previous section, we proved that if the constituents of a c-component and its parents

belong to the same agent, its c-factor can always be computed. Our approach to the iden-

tification problem will be to calculate the specific query from c-factors over c-components

that are recursively becoming smaller, until the problem becomes trivially computable or

unsolvable.

Therefore, we first introduce a lemma that formulates a way to compute the c-factor Q[T′]

from Q[T], where T′ ⊂ T, and when some other assumptions hold.

Lemma 7.2. (Calculation of Q[T’])

Given sets of variables C ⊂ A ⊂ T, assume that T′ ⊂ T is the c-component of C in GA and that Ai,

i = 1, . . . , l are the other c-components of GA. Also assume that A = Anc(C)GT
. Furthermore, let

Ah1 < . . . < Ahk
be a topological order over the k variables of A and A(i) = {Ah1 , . . . , Ahi

}, the set

of variables ordered before Ahi
including Ahi

.

Then, Q[T′] is identifiable from Q[T] and given by
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Q[T′] =
Q[A]

∏

i

Q[Ai]
(7.6)

Where,

Q[A] =
∑

T\A

Q[T] and, (7.7)

Q[Ai] =
∏

{j|Ahj
∈Ai}

Q[A(j)]

Q[A(j−1)]
and, (7.8)

Q[A(j)] =
∑

A\A(j)

Q[A] (7.9)

Proof: We know from (Tian and Pearl, 2002b) that the c-factor Q[A] of a group of variables A

is the product of the c-factors of the c-components Ai of A,

Q[A] =
∏

i

Q[Ai] (7.10)

If one of the Ai is renamed to T′, Equation (7.6) can be derived trivially from the equality

above.

For Equation (7.7): we know from Lemma 4 in (Tian and Pearl, 2002b) that for any W ⊆ C,

Q[W] =
∑

C\W

Q[C], if W is an ancestral set in the subgraph GC (i.e., W = Anc(W)GC
). From

A = Anc(C)GT
follows that A is an ancestral set in T, i.e., A = Anc(A)GT

and thus Q[A] =
∑

T\A

Q[T].

Equation 7.8 is an application of Lemma 5 in (Tian and Pearl, 2002b) and finally, since

each A(j) is an ancestral set in A by definition, Lemma 4 of (Tian and Pearl, 2002b) can be

used to marginalize over the c-factor Q[A] to obtain Equation 7.9.

⊓⊔

Note that Lemma 7.2 uses no variables outside T, so if T is entirely contained in the model

of one agent, the calculation of Q[T′] from Q[T] in a setting as above, can happen without

knowledge external to that agent.

In Algorithm 9 we introduce a recursive algorithm Identify for calculating Q[C] from Q[T]

in general, if this is possible, by making use of Lemmas 7.1 and 7.2. If T is completely con-

tained in 1 agent (T ⊂ VM1 in this case), the algorithm respects the privacy of the two agents

in the sense that it only uses variables from VM1 in its computation.

In the first case C is an ancestral set in T, and thus Q[C] can be calculated from Q[T] with

the help of Lemma 7.1 as T ⊂ VM1 . In the second case, when the ancestral set of C in T is
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Algorithm 9 Bi-agent Identify(C, T, Q[T])

Require: sets of variables C ⊂ T ⊂ VM1
.

Ensure: Expression for Q[C] in terms of Q[T] using only variables VM1
.

Let A = Anc(C)GT {= the ancestors of C in graph G restricted to variables T}

1. IF A = C, output Q[C] =
∑

T\C

Q[T]

2. IF A = T, return #false

3. IF C ⊂ A ⊂ T

a) In GA, C is contained in a c-component T′.

b) Compute Q[T′] from Q[A] =
∑

T\A

Q[T] by Lemma 7.2

c) return Identify(C, T′, Q[T′])

equal to T itself, we know of no way to calculate Q[C] from Q[T] at this time 1. In the final

case, when the ancestral set A of C in T is a strict set in between C and T, we make use

of Lemma 7.2 to formulate a recursive call of Identify, where T is replaced by its subset T′,

which is the c-component of C in T. Specifically, Lemma 7.2 is used to calculate Q[T′] from

Q[T]. Identify will always terminate in one of the two first cases after a finite number of steps.

7.2.3 Computation of P (y|do(x))

Here we present an algorithm for computing P (y|do(x)) in a bi-agent causal model, based

on the lemmas and algorithms introduced earlier in this section.

Consider a bi-agent causal model (M1, M2), as before. As stated before, X belongs to

agent1 (X ∈ VM1) and Y belongs to agent2 (Y ∈ VM2). Then the underlying single agent

semi-Markovian model has variables ∪V = VM1 ∪ VM2 and as graph ∪G the union of the

graphs GM1 and GM2 . We assume that each of the c-components S1, . . . , Sk of ∪V and its

parents Pa(Si) are completely contained in either agent1 (VM1) or agent2 (VM2), or formally

∀Si : (Si ∪ Pa(Si) ⊂ VM1) ∨ (Si ∪ Pa(Si) ⊂ VM2). This assumption will allow Lemma 7.1 to

be applied.

Identification Algorithm

In Algorithm 10 we introduce a bi-agent algorithm for the identification of P (y|do(x)). In

step 1 both agents calculate the c-factors of their c-components using Lemma 7.1. Note that

for the variables in the intersection between the two agents, the c-factor is only calculated

by the agent that contains its parents.

In step 2 the agents communicate information concerning their intersection VM1 ∩ VM2

to obtain the ancestors of Y in agent1, and next the intersection DX with SX is obtained.

1 Do we know it can not be calculated in principle ?
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Next, in step 3 the resulting DX is divided into c-components in agent1 and for each

c-component DX
j Function 9 (Identify) is called.

Finally, the results of the Identify calls are combined to calculate P (y|do(x)). The part of

the equation on line (7.12) pertains only to variables of agent1 and the part on line (7.13)

only to variables of agent2. After their respective summations, distributions are obtained

that only consist of X∪K1 for agent1 and Y ∪K2 for agent2. Hence, the resulting distribution

of agent2 can be sent to agent1 without disclosing information except the intersection and

the variable Y that is being studied in this specific query. Agent1 multiplies this distribution

with its own result and performs the summation over D1∩ (D2\Y ) to obtain the final result.

Algorithm 10 Bi-agent identification of P (y|do(x))

Require: variables X and Y .

Ensure: P (y|do(x)) if it is identifiable, otherwise #false.

1. Calculate all c-factors Q[Si
k] separately in each agent-i i ∈ 1, 2 using Lemma 7.1. The c-factor of the c-

component that contains X is identified by Q[SX ] and is contained in agent1. The c-factors of the variables

in the intersection are calculated in the agent that contains their parents.

2. Find Di = Anc(Y )GVMi
\{X}

in each agent-i i ∈ 1, 2 and DX = D1 ∩ SX .

3. Let the c-components of GDX be DX
j , j = 1, . . . , l.

For each set DX
j :

Call Identify(DX , SX , Q[SX ]) given in Function 9 to calculate Q[DX
j ]. If the algorithm returns #false, then

stop and output #false.

Otherwise, output:

P (y|do(x)) =
∑

D1∩(D2\Y )

(7.11)

∑

D1\K1





∏

j

Q[DX
j ]

∏

k

∑

S1

k
\D1

Q[S1
k]



 (7.12)

∑

D2\(K2∪Y )





∏

k

∑

S2

k
\D2

Q[S2
k]



 (7.13)

Now we will prove equation (7.11,7.12,7.13).

Proof: This equation is based on Equation (106) in (Tian and Pearl, 2002b) for identification

in single agent models, see the same article for a proof of that formula.

Q[DX
j ] and Q[S1

k] consist only of elements in agent1 and D2\(K2 ∪ Y ), consists only of

elements in agent2, thus the summation over D2\(K2 ∪Y ) can be brought to the front. Like-

wise, Q[S2
k] is calculated solely from elements in agent2 and D1\K1 is part of agent1’s model.

Combining the summations over D1∩(D2\Y ), D1\K1, and D2\(K2∪Y ) yields a summation

over D\Y :
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P (y|do(x)) =
∑

D\Y

∏

j

Q[DX
j ]

∏

k

∑

Sk\D

Q[Sk] (7.14)

This is the single agent formula from Equation (106) in (Tian and Pearl, 2002b). ⊓⊔

So we have introduced an algorithm for the identification of P (y|do(x)) in a bi-agent

causal model, where each agent combines confidential information stored in its local model

with information concerning the intersection with the other agent and the variables being

studied (in this case X and Y ). In this algorithm no information concerning other variables

than the intersection and the variables X and Y is being disclosed.

7.2.4 Example

If we apply our algorithm to the product decision model in Figure 7.1, with X = prod-

uct pricing and Y = product decision we get SX = {X, X4, X8} and Q[SX ] = P (x|x1, x2)

P (x4|x, x1, x2) P (x8|x, x1, x2, x3, x4).

D1 = Anc(Y )GV\X
= {X2, X3, X4, X5, X6, X7, X8, X9} and DX = {X4, X8}, then in the

call Identify({X4, X8}, SX , Q[SX ]), A(= Anc({X4, X8})G
SX

= {X4, X8}) will be equal to C

and Q[X4, X8] =
∑

X

Q[SX ] will be returned.

Finally,

P (y|do(x)) =
∑

X7,X8,X9

∑

X2,...,X6





∑

X

Q[SX ]
∏

i

∑

S1
k\D1

Q[S1
k]



 (7.15)

∑

X10,X11





∏

i

∑

S2
k\D2

Q[S2
k]



 (7.16)

where the Q[SA
k ] can be calculated using Lemma 7.1 as follows. For agent1:

S1
1 = {X1}; S

1
2 = {X2}; S

1
3 = {X3}; S

1
4 = {X5}

S1
5 = {X6}; S

1
6 = {X7}; S

1
7 = {X9}
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Q[X1] = P (x1)

Q[X2] = P (x2)

Q[X3] = P (x3)

Q[X5] = P (x5|x2)

Q[X6] = P (x6|x4, x5)

Q[X7] = P (x7|x, x6)

Q[X9] = P (x9|x3)

For agent2:

S2
1 = {x10}; S

2
2 = {x11}; S

2
3 = {y}

Q[X10] = P (X10)

Q[X11] = P (X11|X9, X10)

Q[Y ] = P (Y |X7, X8)

7.3 Overview of the Chapter

In this chapter we introduced a new type of causal models that does not assume that all

knowledge about the studied system is localized in a central site but dispersed over mul-

tiple agents. Furthermore, we proposed a causal inference algorithm for this setting. The

algorithm assumes that the different agents are linked in a chain structure.

In the next section we will relax this final assumption by proposing a different causal

inference algorithm. We also will propose a structure learning algorithm for MACM.

Towards an Integral Approach for Modeling Causality





8

Contributions on MACM

In this chapter we propose our contributions for multi-agent causal models. We will intro-

duce an alternative causal inference algorithm and demonstrate beginning steps to learn the

structure of MACMs.

We start by showing how we can store the JPD corresponding to a SMCM more concisely

by separating it into a multiplication of CPDs. Then, we demonstrate how this helps to

divide a SMCM into a MACM in which each agent stores a c-component and the parents of

all variables in the c-component.

The motivation for an alternative causal inference algorithm stems from the fact that the

one proposed in the previous chapter is only applicable for agents that are linked in a tree

structure. The algorithm proposed in this chapter only allows the calculation of the effect of

an intervention on the entire set of variables that constitutes the MACM. It is viewed as a

starting point for a more general inference algorithm.

In the later sections we introduce the basis of a structure learning algorithm for MACM,

this is part of joined work with Sam Maes and had been discussed prior in his dissertation

(Maes, 2005).

8.1 Separation of MACM

In (Tian and Pearl, 2002b,a) a decomposition of the joint probability distribution for a SMCM

is proposed. We will introduce this decomposition here and will use it to explicitly factorize

the JPD.

8.1.1 Factorization of the JPD

Remember that the set of variables V of a SMCM can be partitioned into so called c-

components Sj by grouping variables that are connected by a bi-directed path. Denote by

127



128 8.1. Separation of MACM

Nj the set of U variables that are parents of variables in Sj . The sets Nj form a partition on

U. Define the c-factor Q[Sj ] of a c-component Sj as:

Q[Sj ] =
∑

nj

P
{i|Xi∈Sj}

(xi|πi, u
i)P (nj) (8.1)

Remember that the JPD P (v) can be written as (cf. Section 5.3.4):

P (v) =
∏

j

Q[Sj ] (8.2)

Furthermore each Q[Sj ] is computable from P (v). Let a topological order over V be X1 <

. . . < Xn, and let X(i) = X1, . . . , Xi and X0 = ∅, then:

Q[Sj ] = P
{i|Xi∈Sj}

(xi|x
(i−1)) (8.3)

It can be shown that Q[Sj ] is a function of Pa(Sj) with Pa(Sj) = Sj ∪ ( ∪
Xi∈Sj

Πi).

This factorization can be used to store the JPD more concise in a SMCM, while in (Tian

and Pearl, 2002a) JPD was assumed to be stored completely. The way this can be done is

by joining nodes in a c-component Sj and the parents of the node in Sj together (similar to

making a j-tree) and storing probability distributions over subsets of V.

We store P (Sj |Pa(Sj)\Sj) for each group Pa(Sj), basically dividing the original SMCM

into several smaller SMCMs that store the respective CPD over fewer variables. This can

diminish the size needed to store the JPD over all variables depending on the structural

properties of the original SMCM.

For instance in Figure 8.1 we would store the following probabilities:

• Q[X1] = P (X1)

• Q[{X3, X5}] = P (X5|X3, X1, X4)P (X3|X1) = P (X5|X1, X3, X4)P (X3|X1, X4)

= P (X3, X5|X1, X4)

• Q[{X2, X4}] = P (X2, X4)

• Q[X6] = P (X6|X4)

• Q[X7] = P (X7|X5, X6)

In Section 6.2 we have shown how to create a Bayesian network (BN) in which the pa-

rameters P (Xi|Πi) can be mapped to the c − factors of a given SMCM. The parameters of

the constructed BN can obviously be learned from data and therefore we are able to learn

the corresponding c-factors.

The factorization of the JPD and the division of the original SMCM allows us to extend

the framework of multi-agent causal models (MACM) proposed in (Maes et al., 2007b). In

this previous work we designed an algorithm for the identification of causal effects in a
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Figure 8.1. Example SMCM used to demonstrate decomposition into MACM.

multi-agent approach. The main advantages of the multi-agent solution is that the identi-

fication of causal effects can be assessed without disclosing sensitive information of a local

model to other agents. It allows to perform causal inference in situations where parts of

the model are kept confidential by their distributors. An algorithm was provided for tree-

structured MACM in (Maes et al., 2007b).

MACM were studied mostly from the view of a distributed problem domains. Here we

work in reverse and we decompose a centralized SMCM into several models using the fac-

torization discussed in the previous section. Furthermore, we introduce an alternative al-

gorithm to perform causal inference, which is the process of calculating the effect of an

intervention on a (set of) variable(s) on some other variables, in the corresponding MACM

by exchanging information between agents.

8.1.2 From SMCM to MACM

Based on the factorization and the discussion at the end of the previous section the division

is straightforward. Assume we are given a SMCM M . We will create an agent for each c-

component Sj in M . The model Mj of agent− j consists of:

• VMj
= Pa(Sj)

• UMj
= Nj
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• GVUMj
= GPa(Sj)

• PMj
(xi|πi, u

i), xi ∈ Sj

• PMj
(nj)

For any pair of agents agent− i and agent− j, the intersection of their variables is given by

Pa(Si) ∩ Pa(Sj).

The resulting agents models are exactly those substructures we identified in Section 8.1.1.

For instance in the SMCM shown in Figure 8.1, there are 5 c-components: {{X1}, {X3, X5},

{X2, X4}, {X6} {X7}}. The MACM division corresponding to the SMCM in Figure 8.1 is

shown in Figure 8.2.
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agent1


agent2


agent3
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agent5


Figure 8.2. The resulting separating MACM from the original SMCM given in Figure 8.1.

8.1.3 Alternative Causal Inference

In this section we show how to check whether a causal effect P (e|do(x)) is identifiable in a

MACM. We also show how to compute P (v|do(x)) if possible. We proposed a causal infer-

ence algorithm in Section 7.2 however that algorithm was limited to bi-agent or chain-multi

agent causal models. Here we present an algorithm that can perform causal inference where

the agents are linked in a more complex structure. Furthermore the previous algorithm re-

lied on communicating over shared variables while we now present an algorithm that works

by passing information on local JPDs.

In a SMCM the following theorem holds (Tian and Pearl, 2002c):
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Theorem 8.1. P (v|do(x)) is identifiable if and only if there is no bi-directed path connecting M to

any of its children. When P (v|do(x)) is identifiable, it is given by:

P (v|do(x)) = Qx[SX ]
∏

j

Q[Sj ] (8.4)

with SX the c-component to which X belongs and Qx[SX ] the c-factor Q[SX ] with the term

P (x|πx, ux) removed.

We assume that the agent that contains the c-component that contains X is the agent

asking for the calculation of P (v|do(x)), and hence the necessary information has to be com-

municated to this agent. Remember that the causal effect is given by Equation (8.4), and that

each Q[Sj ] can be calculated by Equation (8.3).

Remember we can rewrite the latter equation as given in Equation 6.1.

Each factor P (xi|(Ti ∪ Pa(Ti))\{Xi}) can be calculated using only variables in Sj since

each Ti ⊆ Sj . This means that each agent that does not contain the c-component SX can

calculate Q[Sj ] independently and hence communicate this information to its neighbors and

eventually to the agent containing X .

So all that rests is to calculate Qx[SX ] and multiply this result with
∏

j

Q[Sj ]. We can write

Qx[SX ] as:

Qx[SX ] =
∑

nX

∏

{i|Xi 6=X,Xi∈SX}

P (xi|πi, u
i)P (nX) (8.5)

Furthermore, since we assume that the causal effect is identifiable, there is no bi-directed

path between X and any of its children and we can write (Tian and Pearl, 2002b):

Qx[SX ] =
∑

x

Q[SX ] (8.6)

We know that Q[SX ] can be calculated by the agent containing SX and since it also con-

tains X itself we can calculate Qx[SX ]. Together with the received information from the other

agents we can now calculate P (v|do(x)) by using Equation 8.4.

8.1.4 Example

Assume that we are working in the MACM show in Figure 8.2 and that the query we want

to calculate is P (x2, x3, x4, x5, x6, x7|do(x1)). We assume that is the agent that contains X1

(agent1) which sends the request for the query and hence needs to receive all the necessary

information. For the example we’ll assume that the subresults Q[Sj ] can be transmitted to

X1 directly. If for instance communicating was only possible between neighbors then partial

Towards an Integral Approach for Modeling Causality



132 8.2. Learning MACMs

results should be forwarded and combined. Note that this is possible as each factor Q[Sj ]

can be calculated independently.

In a first step, agent1 forwards the instantiations x1, x2, x3, x4, x5, x6, x7 of all variables in

the query to the respective agents. As a second step, when an agent receives the instantiation

of all its variables it can calculate its proper Q[Sj ]. Let’s look at the necessary calculations

for agent2 and agent3, containing variables {X1, X3, X4, X5} and {X2, X4} respectively. We

need to calculate Q[{X3, X5}] (because this is the c-component used to create the model for

agent-2) and Q[{X2, X4}], which according to Equation (6.1) are equal to:

Q[{X3, X5}] = P (x3|x1)P (x5|x1, x3, x5) (8.7)

Q[{X2, X4}] = P (x4)P (x2|x4) = P (x2, x4) (8.8)

Similar calculations are performed in every agent and in a third step this result is then for-

warded to agent-1.

The final step that needs to be performed is calculating Qx1 [S
X1 ], which is trivial in this

case, and then multiplying this by all the received Q[Sj ] from the other agents.

8.1.5 Critical Discussion on Separation of MACM

The simple inference algorithm described here is not particularly effective since it only al-

lows the calculation of the effect of an intervention on the probability of a joined state of all

other variables P (v|do(x)). Also the information that is communicated between the agent

is sufficient to learn the distribution of the private variables of an agent by performing a

sufficient number of queries.

The technique described above can be used as a starting point for a causal inference

algorithm to answer each causal query for agents linked in an arbitrary manner. This is

however a whole research area in itself that falls outside the scope of this dissertation.

8.2 Learning MACMs

In this section we will discuss how a multi-agent causal model can be obtained. Just as in

the single agent case, models can be obtained from data, experts or a combination of both.

However, in this section we will only focus on learning MACM from data.

We will start by mentioning some related approaches in the literature and then move on

to discuss our setting for learning MACMs and the assumptions associated with it. Then we

will discuss the problems that are characteristic to the learning of MACM. Finally, we will

present some preliminary solutions to these problems.
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8.2.1 Related Approaches

Chen et al. (2003), and Chen et al. (2004) treat the distributed learning of Bayesian networks

from distributed heterogeneous data. It is assumed that there are no latent variables in the

global model and that it the given observational data is perfect (see Section 3.4.1).

In that setting there are different sites that each have data concerning subsets of all the

domain variables. An assumption of their work is that the data is strictly heterogeneous, i.e.

that there is no overlap between the variables at different sites.

Their approach consists of an agent associated to each site, that learns a local Bayesian

network at each site based on the local data. Then each agent identifies the observations that

are most likely to be evidence of coupling between variables local to that site and non-local

variables. After that the agent transmits a representative subset of these observations to a

central agent.

The central agent learns another BN using the data transmitted from the different local

sites. The local and central BNs are combined to obtain a collective BN, that models the

entire data.

For the central agent to learn a model based on correct data, it is necessary that each data

point that is sent to it has a key that links it to associated data points at other sites. Without

such a key, no correct data on the joint instantiation of variables from different sites would

be available and consequently no model on these models can be learned.

An important difference with our setting is that in this case there is no overlap between

the sets of variables associated with each site and that this approach learns a single collective

BN that represents the entire distributed domain.

Because the overlap of variable sets is a keystone of our approach and a MACM is a

distributed representation, we extend their approach to incorporate these properties in the

rest of this section.

8.2.2 Setting and Assumptions

In this subsection we will discuss the general setting in which we try to learn a multi-agent

causal model and the assumptions associated with it.

First of all, we only study a setting where there are only two different sites SMi
and SMj

each containing measurements from sets of variables VMi
and VMj

respectively. For exten-

sions to more than two agents, the principles of learning a MACM as introduced would

remain the same, only the exchange of private information between the agents would be-

come more intricate.

Furthermore we assume that in the global model there are no latent variables.
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The samples are taken from a distribution ∪P over a set of variables ∪V = VMi
∪ VMj

faithful to some CBN ∪G without unobserved variables. The intersection between the sets

of variables at both sites is non-empty, or VMi,Mj
= VMi

∩VMj
6= ∅.

There is an agent agent-i at each site which learns a model over its local variables, this can

be done using a combination of learning algorithms and expert knowledge.

We assume that all agents use the same constraint based learning technique such as PC

discussed earlier in Chapter 2 to learn the structure from the available local observational

data.We say that each such learned model Mk is locally correct with respect to the variables

VMk
local to that site.

Definition 8.1. We say that a model is locally correct with respect to VMi
, when it learns the model

that we expect when the VMi
are considered as observed variables and the private variables of other

agents agent-j, V
\
Mj

as unobserved variables.

For example, consider Figure 8.3. In (a) we the see the underlying correct semi-Markovian

causal model of the domain, where the circles indicate the division per site. With each site an

agent is associated that learns a locally correct model and in (b) we show such a model for

agent-i. Because that agent cannot observe variable X4, it concludes that there is a directed

edge from variables X3 to X2.

X
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X
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X
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agent-j


X

1


X
2


X
3


(a)
 (b)


Figure 8.3. (a) The underlying SMCM of the domain, with the division per site. (b) The locally correct model that

an agent-i would learn, based on VMi
= {X1, X2, X3} alone. It concludes that there is a directed edge between

variables X3 and X2.

However, as we have seen before in Section 7.1.2, in a MACM the individual agent mod-

els do not constitute locally correct models, but they have to take into account indepen-

dences induced by variables in other agents. Therefore, the agents have to cooperate to dis-

cover such independences.
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To recapitulate, our learning approach is based on the following assumptions:

1. We learn a MACM consisting of two agents agent-i and agent-j, with respective models

Mk = 〈VMk
, GMk

, PMk
(VMk

), KMk
〉 for k ∈ {i, j}. In this case KMk

= VMi,Mj
for both

agents.

2. The samples are taken from a distribution ∪P = P (VMi
∪ VMj

) faithful to a causal

Bayesian network, ∪G, without hidden variables.

3. There are no edges from variables of one site that are not in the intersection to variables

that are not in the intersection of the other site, or between V
\
Mi

and V
\
Mj

in ∪G.

4. At both sites, each sample is marked with a unique key (e.g. a time stamp) so the obser-

vations of the two sites can be linked together.

The second assumption is used because faithful distribution have some favorable char-

acteristics, such as the following property:

Property 8.1. If a distribution P over variables V is faithful to a CBN with DAG G, and

Xi, Xj ∈ V , then:

If Xi and Xj are d-separated by any subset of V\{Xi, Xj}, then they are d-separated either

by Πi or Πj (Spirtes et al., 2000a).

The third assumption gives us the possibility to identify variables whose neighbors are all

in the same agent, these variables will be the private variables in the MACM. A consequence

of this assumption is that all variables with neighbors in different agents are situated in the

intersection.

The last assumption is also present in the related approach that was discussed in the pre-

vious section. Just like there it is essential because some steps in the algorithm may require

to perform tests on variables from different agents, and thus it has to be possible to obtain

joint data on variables from different sites.

In this general setting the following properties hold:

Theorem 8.2. Dependencies in the underlying global distribution P (∪V) between private variables

V
\
Mi

of an agent-i can be correctly obtained using only variables in VMi
.

Proof:

Using Property 8.1 and the third assumption, it is clear that all parents of variables in V
\
Mi

are in VMi
, and so the correct dependencies can be found.

Theorem 8.3. The following dependencies in the underlying global distribution P (∪ V) can be ob-

tained correctly using all the variables in VMi
∪Ne(VMi,Mj

) in ∪G, where Ne(VMi,Mj
) stands for

the neighbors of VMi,Mj
in the underlying global graph ∪G.

Dependencies between:
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• variables in the intersection VMi,Mj
, and,

• variables in V
\
Mi

of an agent-i and the intersection VMi,Mj
.

Proof:

Again using Property 8.1 it is clear that VMi
∪ Ne(VMi,Mj

) must contain the variables that

d-separate the variables belonging to these sets.

However, the variables necessary in Theorem 8.3, VMi
∪Ne(VMi,Mj

) in ∪G, are not visible

by a single agent. So to check for independences concerning the variables mentioned in

Theorem 8.3, observations from variables of both sites and a way to link them together is

needed.

Note that we have not studied algorithms to combine samples from different sites to form

a minimal sufficient set, instead we assume that all samples concerning a variable will be

disclosed.

8.2.3 Problems

In this section we show by use of examples some of the problems that can arise when initi-

ating the task of learning the structure of MACMs based on conditional independence tests.

All discussed problems are a consequence of the fact that the individual agents learn

locally correct models. Instead in a MACM we want the individual agent models to take

into account that independences can be induced by private variables of other agents.

For the moment, the problems that we take into account here will not focus on the di-

rection of the edges or their causal interpretation, but rather on the presence or absence of

certain edges.

Definition 8.2. An edge is g-false (globally false) if it is present in the locally correct model but not

in the correct global one.

For example, in Figure 8.3(b), the edge between C and B is g-false.

In general, there are two main sorts of g-false edges:

• g-false edges in the intersection, i.e. between variables that are in the intersection, and,

• g-false edges outside the intersection, i.e. between variables that are not both in the inter-

section.

We will treat both types next.

g-false Edges in the Intersection

In this case there are two sorts of g-false edges that can emerge in the intersection:
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• only one agent locally creates the g-false edge, and,

• both agents locally create the g-false edge.

Below we give an example of both types.

In Figure 8.4 a situation is shown in which only agent2 would conclude that there is a link

between two variables X2 and X3 in the intersection. This is due to the path X2 ← X1 →

X3 in which X1 is unobservable for agent2.

X1


X2
 X3


X4


X1


X2
 X3


X2
 X3


X4


Agent1


Agent2


Figure 8.4. Example of the edges found when the global network (left) is divided into two agents (right). Agent2

detects a g-false edge between X2 and X3 using only local information in his independence tests.

In Figure 8.5 a situation is shown in which both agents would conclude that there is an

edge between two variables X4 and X5 in the intersection, due to the paths X4 ← X2 ←

X1→ X3→ X5 in agent1 and X4→ X6→ X5 in agent2.

Both in Figure 8.4 and Figure 8.5 the g-false edges are a direct consequence of a path

in the other agent that can not be blocked by the first agent. To solve this problem one of

the agents should disclose information about a set of private variables that would block all

paths inducing this g-false edge.

g-false Edges outside the Intersection

It might seem that under our assumptions there can only be g-false edges in the intersection,

however this is not the case. For example, in Figure 8.6 where the path X4 ← X3 ← X1 →

X2 induces the g-false edge X2−X4.

8.2.4 Multi-Agent Causal Learning Algorithm

In this section we will introduce a simple algorithm for learning the structure of MACMs.

Before going to the actual algorithm we introduce some crucial theorems.
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Figure 8.5. Both agents detect a g-false edge between X4 and X5 using only local information.
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Figure 8.6. Problem with g-false edges concerning one variable in the intersection X2 and one private variable

of agent2, X4.

Theorems

The first theorem states that locally correct models contain at least all the desired edges.

Theorem 8.4. When the individual agents learn locally correct models, then each of these models

contains at least all the edges that are desired for it to constitute a valid agent model of a MACM.

Proof:

Without loss of generality, we can consider an agent1 with variables VM1 , and an agent agent2

with variables VM2 .
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In Section 7.1.2 we have seen that when in a MACM we omit the division in agents, by

making the union of all individual agents models of a valid MACM, we obtain the semi-

Markovian causal model (SMCM) associated with the domain where a central single agent

would be able to observe all the variables of the domain ∪V = VM1 ∪VM2 .

From Definition 8.1, we know that an individual agent model is locally correct when

it learns based on the observed variables VM1 and considers all the other variables as un-

observed variables. Furthermore, constraint based learning techniques only add an edge

between two variables Xi, Xj ∈ VM1 , when no set of variables S is found that makes Xi

and Xj independent.

Consequently, when in the centralized SMCM associated with the valid MACM there is

an edge between Xi and Xj , then there is no set S ⊂ ∪V, that makes Xi and Xj independent.

From that it follows that in VM1 ⊂ ∪V we can also not find a set to make Xi and Xj inde-

pendent, and therefore there will also be an edge between Xi and Xj in the locally correct

model.

For example in Figure 8.6 we can see that all the edges in the valid MACM (on the left),

are present in the locally correct models (on the right).

The consequence of Theorem 8.4 for a multi-agent learning algorithm is that all edges

that are necessary in a MACM are present by learning locally correct models. This implies

that the only problem that can arise in our setting is that too many edges are present in the

locally correct models.

Therefore we introduce the second theorem, it states that when an agent does not find

an edge between two variables, then there also is no edge in the valid MACM, even if other

agents do find an edge between the same variables.

Theorem 8.5. When the individual agents learn locally correct models, and when one agent finds an

edge between variables in the intersection and another agents does not find it, then that edge is not

present in the desired MACM.

Proof:

Without loss of generality, we can consider two agents agent1 and agent2 with respective

variable sets VM1 and VM2 . The two agents share a non-empty intersection VM1,M2 = VM1 ∩

VM2 .

When agent1 finds no edge between two variables Xi, Xj ∈ VM1,M2 in its locally correct

model, this means that there is a set SM1 ⊂ VM1 that makes Xi and Xj independent.

If agent2 does find an edge between Xi and Xj in its locally correct model, this means

that there is no set SM2 ⊂ VM2 that makes Xi and Xj independent.

Now, as soon as an agent finds a set of variables SM1 to make Xi and Xj independent in

its locally correct model, this means that there is a way to make Xi and Xj independent in the
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domain. Therefore there can never be an edge between Xi and Xj in the SMCM associated

with the valid MACM with variable set ∪V = VM1 ∪VM2 .

The fact that agent2 does find an edge between the variables in its locally correct model,

merely means that it has no access to variables that can make both variables independent.

See Figure 8.7 for an example. In (a) we see the valid MACM, in (b) the locally correct

model of agent1 where no edge is found between X1 and X2, since conditioning on X3 makes

them independent. In (c) the locally correct model of agent2 can be seen, and there is an edge

between X1 and X2 since agent2 cannot condition on variable X3 of agent1 to make them

independent.
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Figure 8.7. (a) the valid multi-agent causal model, (b) the locally correct model of agent1, (c) the locally correct

model of agent2.

Now to recapitulate, Theorem 8.4 stated that there can be no missing edges, but only

edges too many. Theorem 8.2 states that the presence of edges between private variables can

be learned locally. For variables that are in the intersection, Theorem 8.5 determines what to

do if the locally correct models of both agents do not agree whether there should be an edge

between the variables.

Then there are still two cases left that are not handled by the above:

• both agents falsely see an edge between two variables in the intersection in their locally

correct models, and,

• an agent falsely sees an edge between a private variable and a variable in the intersection.

To solve these problems the agents will have to exchange private knowledge, i.e. each

agents’ neighbors of the intersection, or Ne(VMi,Mj
), as stated in Theorem 8.3.

Algorithm

The multi-agent causal discovery algorithm (M-A CaDo) consists of three phases, first each

agent learns a local model, then the agents exchange sample data, and finally local knowl-
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edge is combined with knowledge received from other agents. The complete algorithm is

given in Algorithm 11.

Algorithm 11 M-A CaDo

Require: A group of agents Ai each having access to an overlapping subset of variables Vi.

Ensure: A MACM.

Phase 1: Local learning Using Theorem 8.2 we know that in the locally learned model the dependencies are

correct for all variables in V
\
Mi

and possibly some independences between V
\
Mi

and VMi,Mj
are found as

well. Note that these are removed correctly, since no two variables can be dependent in the global model

if they are independent in the locally correct model.

Phase 2: Negotiation Each agent-i sends a message to the other demanding the samples from the private vari-

ables in Ne(VMi,Mj
). If the other agent is not willing to disclose this information the algorithm returns

FAIL, otherwise agent-i now has knowledge on all the necessary variables to compute the full dependence

structure of VMi
as stated by Theorem 8.3.

Alternate Phase 2: Communication with neutral agent Each agent-i sends the samples to a specific neutral

agent that will perform the statistical tests and communicate to each agent the partial result. This way no

private information is freed to an agent active in the domain and no direct communication is necessary,

however one needs to assure the existence of a trustworthy external agent.

Phase 3: Post-processing If in one agent an edge is found during the previous phases and in another it is not,

then this edge is removed, as stated by Theorem 8.5.

Example

Here we will discuss an example run of our multi-agent learning algorithm. Consider the

network in Figure 8.8. We assume that the samples from this network are stored at two

different sites S1 and S2, containing

VM1 = {X, X1, X2, X3, X4, X5, X6, X7}

and

VM2 = {X4, X5, X6, X7, X8, X9, Y }

respectively.

Applying M-A CaDo to this model gives:

Phase 1:

The locally correct models are given in Figure 8.9.

As you can see there are some edges that do not appear in the global model, X6 − X7

and X4−X8.
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Figure 8.8. Global model and its subdivision over the different sites.

Phase 2:

Agent1 demands the samples of the neighbors of VM1,M2 in agent2 and receives the samples

from X8 and X9. Using standard independence tests, agent1 finds (X6⊥⊥X7|X3, X9).

Agent2 asks for the neighbors of VM1,M2 in agent1 and receives the samples from X2 and

X3 and finds that (X6⊥⊥X7|X3, X9) and (X8⊥⊥X4|X5, X2).

Phase 3:

Remove the edges X6−X7 and X4−X8 in the substructures.

The algorithm retrieves the correct structure as shown in Figure 8.8.

8.2.5 Critical Discussion of M-A CaDo

In this section we have developed an approach for learning MACM from distributed data

of two sites, where only samples concerning the neighbors of the intersection have to be

disclosed to the other agent.

A possible extension would be to study the possibility of not disclosing all the neighbors

of the intersection, but only subsets of that.
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Figure 8.9. The correct local models from the global structure in Figure 8.8.

Furthermore, instead of disclosing all the samples, only a statistically sufficient set could

be disclosed to the other agent. Finally, extending this approach to more agents, would use

the same principle, but would only make the disclosure of information more intricate.

If experiments are allowed and can be performed perfectly by each agent, then we can

treat the variables in other agents as latent variables. This allows us to use MyCaDo++ to

learn the local parts of the global model. Assuming that there are no latent variables in the

global model we can then just paste the local models together while removing the bi-directed

edges found using MyCaDo++ taking into account the properties described earlier.

8.3 Validation of Assumptions

In this section we will introduce some procedures to check whether a given MACM is valid,

i.e. whether it exhibits all the properties mentioned in section 7.1.2. This is useful when a

MACM is not learned, but derived from experts.
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8.3.1 Intersection

First of all, the agents check whether they model the intersections they share in the same

way.

This is done by each agent sending the variables, structure and distribution of the inter-

section to the other agent. If the agents do not agree about the intersection, the model is not

a valid MACM and it cannot be used to perform inference.

8.3.2 Acyclicity

Secondly, a check is enforced, testing whether combining models from different agents does

not introduce cycles going through their intersection.

For this task we use an adaptation of Xiang’s algorithm for the distributed verification

of acyclicity (Xiang, 2002). It is based on the alternate removing of private roots and leaves

and public roots and leaves from the model. If at the end of such a process all the nodes are

marked, the model is acyclic, otherwise it is cyclic.

We will not give a full description of the algorithm here, instead we give an illustrative

example run. For the full details we refer to Chapter 9 in (Xiang, 2002).

In Figure 8.10(a), we see a MACM consisting of three agents of which we want to check

whether the underlying associated SMCM is acyclic.

In (b), each agent locally marks the private roots and leaves, they are depicted by sur-

rounding them with a dotted bold circle.

In (c), agent3 sends to agent2 that X10 has no unmarked children or parents in its model,

then together with its local knowledge agent2 can mark node X10 as it is a root node. After

that agent2 can also mark X12 as it has become a root node.

In (d), agent3 sends to agent2 that X11 has no unmarked children or parents in its model,

then together with its local knowledge agent2 can mark node X11 as it is a leaf node. As a

consequence agent2 can mark node X14, as is has become a leaf node.

In (e), agent2 sends to agent1 that X2 has no unmarked children or parents in its model,

then together with its local knowledge agent1 can mark node X2 as it is a leaf node. Due to

this node X4 becomes a leaf and can be marked, and finally this makes node X3 a leaf node

and it can be marked.

In (f), agent2 sends to agent1 that X1 has no unmarked children or parents in its model,

then together with its local knowledge agent1 can mark node X1 as it is a leaf node (and a

root node).
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Figure 8.10. (a) A MACM (b)-(f) Different steps in checking whether the MACM in (a) is acyclic.

8.4 Overview of the Chapter

In this chapter we presented our contributions for Multi-Agent Causal Models.

We introduced a generic way to split up a SMCM into its minimal subparts in order

to obtain a MACM. We provided an alternative inference algorithm to calculate the causal

effect P (v|do(xi)) in a MACM in which the agents are linked in a complex manner.

We introduced an algorithm for learning the structure of MACMs. In a first phase we

proved that if we are not concerned with the amount of information being communicated

or with privacy issues, it is possible to learn the structure of a MACM. We showed that there
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are a lot of non-trivial problems that need to be solved in order to learn a globally consistent

network and presented a few starting points to circumvent these.
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Conclusion

In this chapter we recapitulate the main results of the research and discuss several possible

applications of our results. We end with some directions for future research.

9.1 Results

In this dissertation we have made contributions on modeling causal relationships using

three types of models with differing strengths of representational power: causal Bayesian

networks (Chapter 4), causal latent models (Chapter 6) and multi-agent causal models

(Chapter 8).

9.1.1 Causal Bayesian Networks

Causal Bayesian networks (CBNs) are an extension of Bayesian networks in which directed

edges represent direct causal relationships. The semantics of the edges in the network allow

us to calculate the effect of interventions on some variables in the system being modeled.

However, these semantics also render learning the structure of a causal Bayesian network

more difficult than just learning the dependence structure as is done for Bayesian networks.

In this dissertation we focused on finding algorithms whose goal is to give an experi-

mentation plan that when executed (a) identifies the entire causal structure, (b) identifies it

with the least cost/number of experiments possible.

The motivation for using experiments stems from the fact that in general we can not

retrieve the entire causal structure from observational data alone. Causal discovery from

observations is limited to retrieving the Markov equivalence class of the underlying correct

causal graph.

We discussed two different settings in this dissertation. First, we studied the case where

the available observational data is informative enough to retrieve all conditional indepen-

dence information. In a second algorithm we remove this assumption and allow for uncer-

tain results of (in)dependence.
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Learning with perfect observational data

Assuming perfect observational data allows us to use traditional causal structure learning

techniques such as PC introduced by (Spirtes et al., 2000a). Since PC has been proved to be

asymptotically correct, we can use the correct CPDAG, representing the equivalence class

of the correct network, as a starting point. Experiments are then used in a second phase to

resolve the undirected substructures in the CPDAG. We presented the MyCaDo (Section 4.1)

algorithm which provides an experimentation plan to complete the network.

In this dissertation we used structural experiments to discover causal links. Structural

experiments cut off all information from the parents of the intervened variable. In the worst

case scenario, which occurs when there is a complete undirected substructure of N variables,

N − 1 experiments are needed to complete the structure. In the general case we try to min-

imize the total number of experiments because in practice experiments and measurements

have a cost (sometimes they are even impossible to perform).

We use elements from decision theory to create an experimentation plan that is (a) guar-

anteed to complete the structure if all experiments and measurements are possible and (b)

minimizes the total cost of the experiments based on some decision criteria.

Learning with imperfect observational data

When we do not have perfect observational data, it is not safe to assume that the PC al-

gorithm will output the correct CPDAG. Therefore, we allow for some type of uncertainty

during the initial learning phase. In order to accomplish this we have proposed an adapted

unsure independence test. This test has three possible results; true (independence), false

(independence) and unsure (not enough information available).

We proposed an algorithm called UnCaDo (Section 4.2) which in a first phase uses the

results found by the adapted independence test to construct an initial unsure skeleton.

The second phase of UnCaDo consists again of performing structural experiments. How-

ever this time we start by looking at all unsure edges in the unsure skeleton and use experi-

ments to obtain more data so we can identify the nature of the relationship. When all unsure

edges are resolved and hence oriented, we perform the normal orientation rules of the PC

algorithm while regarding the resolved unsure edges as undirected edges. After this step

we continue as if we were working with perfect data, since we are now guaranteed that the

given partially directed dag is correct.

9.1.2 Causal Latent Networks

Causal Bayesian networks lack the representational power to model settings in which there

are latent variables, which are unmeasured variables that influence the system. It is realistic
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to assume that in many studies not all possible influencing variables are included. Two major

causal graphical techniques have been proposed that model latent variables implicitly: semi-

Markovian causal models and ancestral graphs.

A complete causal inference algorithm has been constructed for semi-Markovian causal

models. However, no structure/parameter learning algorithm for this model had been pro-

posed. Interestingly, no inference algorithm had been proposed for ancestral graphs, but

algorithms exist to learn the structure of an ancestral graph up to its Markov equivalence

class. This motivated us to combine existing methods from both paradigms to construct an

integral modeling approach for causal relationships in a setting with latent variables.

Structure Learning of Causal Latent Networks

Learning the structure of a causal graph when there are latent variables has been mostly

confined to ancestral graphs. The FCI algorithm Spirtes et al. (2000a) together with the extra

orientation rules proposed in Zhang and Spirtes (2005b) are proved to give the correct CPAG

representing the equivalence class of the correct ancestral graph given perfect observational

data.

As is the case for CBN, in general, the structure will not be completely directed and ex-

periments are needed to completely orient the structure. However, the semantical interpre-

tation of edges in an ancestral graph, meaning a directed edge represents an ancestral not a

direct causal relationship makes this process more difficult. However, by using experiments

it is possible to identify which directed edges represent direct causes and which edges are a

result of so called inducing paths.

In a SMCM all directed edges represent direct causal relationships. This motivated us to

propose a transformation, which changes an ancestral graph into the SMCM representing

the same causal relationships. Furthermore, by using experiments we are able to completely

orient the causal latent network. We proposed an algorithm called MyCaDo++ (Section 6.1.2)

which identifies the set of experiments that need to be performed to gather the right data to

perform this transformation.

Inference in Causal Latent Networks

The state of the art causal inference algorithm for causal latent networks has been developed

by (Tian, 2002) and works on SMCMs. Causal inference is also possible in AGs but only in

those parts common to all graphs in the same Markov equivalence class. Given our transfor-

mation, it is possible to perform causal inference indirectly by using the respective SMCM

that corresponds to the given AG.
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Probabilistic inference in causal latent models has not been studied widely. We pro-

pose a different representation called the PR-representation (Section 6.2) of SMCMs that

allows for probabilistic inference. This PR-representation is formed by replacing confound-

ing (bi-directed) edges, representing latent variables, by a set of directed edges. The PR-

representation generated this way is an I-map of the underlying distribution and hence

probabilistic inference can be performed therein.

9.1.3 Multi-Agent Causal Models

Multi-Agent Causal Models were proposed to extend existing causal modeling techniques

in order to be able to model domains that become evermore complex. Instead of making a

centralized model containing all the variables of the system, there are several agents that

each model an overlapping part of the domain.

A causal inference algorithm has been proposed for this setting in case the agents are

connected in a tree structure. In this dissertation we proposed the first steps of a structure

learning algorithm and proposed a simpler, though less powerful, causal inference algo-

rithm, for which agents can be arbitrarily connected.

Multi-Agent Structure Learning

The goal of learning the structure of a MACM is twofold: (a) the individual agents must be

able to use the learned local model to resolve local queries, (b) the global model must be able

to answer global queries. It is however not so that the global model can just be obtained by

stitching the local models together. This is because the local models will contain false depen-

dencies between variables due to the fact that the variables that make them independent in

the global model are modeled in another agent.

In order to learn a correct global model, agents must communicate information on certain

variables with each other. More specifically some local variables have to be disclosed to other

agents.

In this dissertation we have developed an algorithm called M-A CaDo (Section 8.2) that

transforms the results of a single agent learning algorithm performed on each agents’ local

variables into a valid multi-agent causal model.

Multi-Agent Causal Inference

The basic algorithm for multi-agent causal inference has been proposed by Sam Maes in his

dissertation Maes (2005). Therein, he describes the complete inference task which consists

of three different phases: identifiability, negotiation and identification.
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A causal effect P (y|do(x)) is identifiable from a causal model if it can be calculated

from that model. The identifiability phase consists of checking two properties: (a) would

the causal effect be identifiable if the global model was modeled by a single agent, (b) is

the causal effect identifiable given the structural decomposition of the model into several

agents.

In the case that the causal effect is not identifiable because of the decomposition into

agents, a negotiation phase is needed in which agents exchange information with each other

in order to make the causal effect identifiable. The proposed negotiation algorithm is per-

formed in such a way that the agents try to find a fair trade-off for the amount of variables

that they have to disclose.

The actual calculation of the causal effect is called identification. A single agent causal in-

ference algorithm has been extended for calculating effects from a multi-agent causal model

when the local models of the agents are linked in a chain.

In this dissertation, see Section 8.1, we adapted and simplified the causal inference al-

gorithm in that it is only possible to calculate the effect of performing an experiment on all

other variables in the model. However, agents can be arbitrarily linked and they do not need

to disclose variables to each other.

The algorithm described in this dissertation is based on actually decomposing a semi-

Markovian causal model into its basic blocks, the c-components. Each agent will host the

variables of a c-component and the parents of these variables. This assures that calculations

for the identification of causal effects can be performed locally. Instead of exchanging vari-

ables, the agents disclose local joint probabilities for a given instantiation and for a given

experiment to each other.

9.2 Possible Applications

In this section we discuss some possible applications of the research proposed in this disser-

tation.

There are several applications for our techniques in bio-informatics. Gene regulatory net-

works are networks that show how the expression levels of genes are related to each other

Bower and Bolouri (2001). For instance, over expression of one gene can induce over expres-

sion of another gene or diminish the expression of again another gene. Learning the network

of interacting genes is a difficult task since typically there are many more genes than there

are samples. Furthermore, the expression level of genes is influenced by a number of un-

measured variables.
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The techniques proposed in this dissertation can help to (a) model these complex net-

works Yu et al. (2004), (b) learn them partially from observational data Spirtes et al. (2000b);

Badea (2003), (c) give directed targets to perform experiments on to complete the network

Didelez and Sheehan (2007), (d) incorporate unmeasured variables in the model and (e) pre-

dict the effect of some experiment without having to actually perform it.

Furthermore, if certain conditions are met, i.e. overlapping data sets and no unmeasured

confounders between two studies, then results from different research groups on subsets of

genes can be combined by using MACM.

In general, the techniques described in this dissertation are particularly useful for mod-

eling complex domains since they can incorporate unknown variables in the form of latent

causal modeling by SMCMs and can handle problem domains are separated into several

modular parts or that are inherently distributed. This versatility is the reason why causal

models are used in many domains such as physics, social sciences and biomedical sciences

Russo and Williamson (2007).

Causal inference can be useful as a component in a decision support system. A decision

support system is an automated system that assists humans in making complex decisions.

For instance, if a company wants to enforce a new policy, it is possible to model the influ-

enced variables into a causal network and then calculate the expected effect of this policy

without having to enforce it. This way a company can decide based on the model which

policy is the most interesting.

9.3 Directions for Future Research

In this section we discuss some possible pathways for future research.

Learning Causal Latent Networks with Minimal Cost

We have discussed learning the structure of a CBN with a minimal amount of experiments

and minimal overall cost (Section 4.1). We would like to extend this approach to causal la-

tent networks. The plan would be to use the orientation rules proposed in Zhang and Spirtes

(2005b) as an intermediate phase between experiments. This will possibly allow the discov-

ery of an additional set of directions and hence remove the need for some experiments.

Learning Causal Latent Networks from Imperfect Data

In settings with latent variables it is also realistic to assume that the provided data is not

perfect and that hence faults can infiltrate in the results of FCI. We would like to extend the
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approach used for CBN in this case (Section 4.2) to causal latent networks. This way we can

provide a practical useful experiment scheme to discover a SMCM.

Dynamic Models

As was discussed in the introduction of this dissertation, we did not take time into account

for any of our techniques. It is however an interesting research area to study the influence

of the explicit inclusion of time in some of our algorithms. For instance, we want to look

whether our results can be extended to dynamic Bayesian networks or to other continuous

time models.
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