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Abstract

This document presents a synthesis of the research results conducted in the
field of model-driven engineering (MDE) by the author. MDE is becoming one
of the dominant software engineering paradigms in the industry. Similar to
any other engineering discipline, MDE advocates for the rigorous use of (soft-
ware) models (expressed as typed graphs) as the main artifacts in all software
engineering activities: forward engineering, reverse engineering, software evo-
lution, systems interoperability and so on. Adoption of MDE brings several
benefits to software engineering, including improvements in the productivity
and maintainability of the system. Unfortunately, industrial adoption of MDE
faces some hurdles (e.g. in terms of scalability and quality of MDE solutions,
integration with legacy systems, usability, ...) that must be overcomed before
MDE becomes mainstream and the whole software community can benefit from
it.

This report describes some of my current research work on MDE. Among
the different research lines we will focus on the model verification contribution.
The change of perspective in MDE implies that correctness of models (and
model manipulation operations) becomes a key factor in the quality of the final
software product which is now (semi)automatically generated from them. In
general, the problem of ensuring software correctness is still considered to be a
Grand Challenge for the software engineering community. At the model-level,
research results for the quality evaluation of models are still preliminary. We
will detail our pragmatic but formal model verification approach to overcome
the limitations of the other works in the area. We refer to our techniques as
pragmatic because they pursue the best trade-off between the completeness and
the usability of the verification process.

Beyond this research line, the report also includes a blueprint for a research
program in MDE to answer this verification grand challenge and the other MDE
challenges believed to become key aspects in the next years in order to success-
fully integrate MDE in the daily practice of all software professionals and effec-
tively change the way software development (and evolution, maintenance,...) is
performed.
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Chapter 1

Model-Driven Engineering

Model Driven Engineering (MDE) is becoming one of the most popular software
engineering paradigms nowadays. Similar to any other engineering discipline,
MDE advocates for the rigorous use of (software) models (expressed as typed
graphs) as the main artifacts in all software engineering activities: forward en-
gineering, reverse engineering, software evolution, systems interoperability and
so on. Adoption of MDE has the potential to bring many benefits to software
engineering, including improvements in the productivity and maintainability of
the system, as reported by several studies (e.g. [81]). Initially promoted by
the OMG (Object Management Group; one of the most important non-profit
computer industry consortiums) as a model-driven development process under
the name MDA ! (Model Driven Architecture) [82], MDE has now considerably
broadened its scope. The (scientific) community is now investigating the use
of MDE on most software engineering activities involved in the construction,
operation or maintenance of software-intensive systems.

Companies need to have a regular and homogeneous organization where
different facets of a software system may be easily separated or combined (e.g.
depending on the role of each team member at the stage of the development
process). The basic assumption of MDE is that models and not the classical
programming code is the right representation level for managing all these facets.
When needed, code can be automatically generated from the models.

Thereofere, in MDE, models are considered as the unifying concept. The
MDE community distinguishes three levels of models: (terminal) model, meta-
model, and metametamodel. A terminal model is a (partial) representation of
a system/domain that captures some of its characteristics (different models can
provide different knowledge views on the domain and be combined later on to
provide a global view). In MDE, we are interested in terminal models expressed

MDA defines as a two-step model-driven development process. First platform-independent
aspects of the system are modeled. After, these platform-independent models are adapted
and refined taking into account the technical limitations of the final implementation platform,
producing as a result a set of platform-specific models. From these models, code can be
automatically generated.
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in precise modeling languages. The abstract syntax of a language, when ex-
pressed itself as a model, is called a metamodel. A complete language definition
is given by an abstract syntax (a metamodel), one or more concrete syntaxes
(the graphical or textual syntaxes that designers use to express models in that
language) plus one or more definitions of its semantics. The relation between
a model expressed in a language and the metamodel of that language is called
conformsTo 2. Metamodels are in turn expressed in a specific modeling language
called metamodeling language. Similar to the model/metamodel relationship,
the abstract syntax of a metamodeling language is called a metametamodel,
and metamodels defined using a given metamodeling language must conform
to its metametamodel 3. Terminal models, metamodels, and metametamodel
form a three-level architecture with levels respectively named M1, M2, and M3.
A more formal definition of these concepts is provided in [18,66]. These MDE
principles may be implemented in several standards. For example, OMG pro-
poses a standard metametamodel called Meta Object Facility (MOF) while the
most popular example of metamodel in the context of OMG standards is the
Unified Modeling Language (UML) metamodel [84].

The other key element in MDE is the concept of model manipulation, usually
implemented by means of model transformation operations that, taking one or
more models as input, generate one or more models as output (where input and
output models not necessarily conform to the same metamodel). More specif-
ically, a model transformation Mt defines the production of a model Mb from
a model Ma. When the source and target metamodels are identical (MMa =
MMb), we say that the transformation is endogenous. When this is not the
case (MMa # MMb), we say that the transformation is exogenous. An ex-
ample of an endogenous transformation is a UML refactoring that transforms
public class attributes into private attributes, while adding accessor methods
for each transformed attribute. Many other operations may be considered as
transformations as well. For example, verifications or measurements on a model
can be expressed as transformations. One can see then why large libraries of
reusable modeling artifacts (mainly metamodels and transformations) will be
needed. Another important idea is the fact that a model transformation is itself
a model [15]. This means that the transformation program Mt can be expressed
as a model, and as such conforms to a metamodel MM¢t. This allows a homo-
geneous treatment of all kinds of terminal models, including transformations.
Mt can then be manipulated using the same existing MDE techniques already
developed for other kinds of models. For instance, it is possible to apply a
model transformation Mt’ to manipulate Mt models. In that case, we say that
Mt is a higher order transformation (HOT) [102], i.e. a transformation tak-
ing other transformations (expressed as transformation models) as input or/and
producing other transformations as output.

2This relationship is equivalent to the program - grammar relationship in the programming
community. Like models, programs written in one language must conform to the grammar
rules (i.e. the metamodel) of that language.

3A metametamodel defines the possible characteristics of a family of modeling languages
in the same way as EBNF or BNF can be used to represent certain types of grammars.
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As MDE developed, it became apparent that this was a branch of lan-
guage engineering. In particular, MDE offers an improved way to develop DSLs
(Domain-Specific Languages). DSLs are programming or modeling languages
that are tailored to solve specific kinds of problems, in contrast with General
Purpose Languages (GPLs) that aim to handle any kind of problem. Java is an
example of a programming GPL and UML an example of a modeling GPL. DSLs
are already widely used for certain kinds of programming; probably the best-
known example is SQL, a language specifically designed for the manipulation of
relational data in databases. The main benefit of DSLs is that they allow every-
body to write programs/models using the concepts that actually make sense to
their domain or to the problem they are trying to solve (for instance Matlab has
matrices and lets the user express operations on them, Excel has cells, relations
between cells, formulas and allows the user to express simple computations in
a visual declarative style, etc.). As well as making domain code programmers
more productive, DSLs also tend to offer greater optimization opportunities.
Programs written with these DSLs may be independent of the specific hardware
they will eventually run on. Similar benefits are obtained when using modeling
DSLs. In MDE, new DSLs can be easily specified by using the metamodel con-
cept to define their abstract syntax. Models specified with those DSLs can then
be manipulated by means of model transformations.

MDE has reached a maturity level where core tools and techniques for defin-
ing and manipulating all kinds of models are widely available. Nevertheless, the
widespread use of MDE is raising new challenges that may impair the increasing
adoption of MDE in practice, limiting the benefits that MDE can bring to soft-
ware engineering. More research is needed to guarantee that MDE continues its
progression both at the scientific and industrial level. Next chapter briefly sum-
marize my research results in MDE achieved so far, distinguishing those part of
my thesis work from those belonging to separate research lines (for full details
please check the curriculum vitae attached to this document). Then, chapter
3 singles out one of these lines (model verification, a key issue to make MDE
mainstream) and describes it in detail, listing all the papers published, their
summary and the relationship between them. Finally, last chapter presents the
major challenges that MDE will face in the next years and sketches the research
program that we plan to pursue in the future in order to address them.



Chapter 2

My main contributions to
MDE

We describe herein the main MDE research lines that I have been working
on during my career. For each line we provide a short description and the
most important publications. The initial work focused on modeling was mainly
developed during my period as PhD student and, afterwards, lecturer at the
Technical University of Catalonia and Open University of Catalonia in Spain.
The Social MDE line was developed during my postdoc stay at the University
of Toronto while most of my work on model management, transformations and
verification started once I joined the Ecole des Mines de Nantes. For a full list of
research lines and publications see http://jordicabot.com/research.html or the
attached curriculum vitae.

2.1 PhD Thesis - Incremental evaluation of OCL
constraints

Integrity constraints play a fundamental role in the definition of conceptual
schemas (CSs) of information systems. An integrity constraint defines a con-
dition that must be satisfied in each state of the information base (IB), e.g.
a relational database, a NoSQL repository,.... Hence, the information system
must guarantee that the state of the IB is always consistent with respect to
the integrity constraints of the CS. This process is known as integrity checking.
Unfortunately, current methods and tools do not provide adequate integrity
checking mechanisms since most of them only admit some predefined types of
constraints. Moreover, the few ones supporting a full expressivity in the con-
straint definition language present a lack of efficiency regarding the verification
of the IB.

In the thesis, we proposed a new method to deal with the incremental eval-
uation of the integrity constraints defined in UML/OCL CS. We say that our
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method is incremental since it adapts some of the ideas of the well-known meth-
ods developed for incremental integrity checking in deductive and relational
databases. The main goal of these incremental methods is to consider as few
entities of the IB as possible during the evaluation of an integrity constraint.
This is achieved in general by reasoning from the structural events that modify
the contents of the IB. Our method is fully automatic and ensures an incre-
mental evaluation of the integrity constraints regardless their concrete syntactic
definition. The main feature of our method is that it works at the conceptual
level. That is, the result of our method is a standard CS. Thus, the method is
not technology-dependent and, in contrast with previous approaches, our results
can be used regardless the final technology platform selected to implement the
CS. In fact, any code-generation method or tool able to generate code from a
CS could be enhanced with our method to automatically generate incremental
constraints, with only minor adaptations. Moreover, the efficiency of the gen-
erated constraints is comparable to the efficiency obtained by existing methods
for relational and deductive databases.
A summary of the results of the thesis can be read here [35].

2.2 Definition of new modelling abstractions

A key element in the success of a modeling language is to provide modeling
abstractions that allow modelers to represent in an easy and precise way the
reality of the domain.

One example is the proposal of a new modeling pattern for the role concept.
Roles are meant to capture dynamic and temporal aspects of real-world objects.
The role concept has been used with many semantic meanings: dynamic class,
aspect, perspective, interface or mode. In this paper [33] we identified common
semantics of different role models found in the literature and presented a set of
conceptual modelling patterns for the role concept that include both the static
and dynamic aspects of roles. In particular, we proposed the Role as Entity
Types conceptual modelling pattern to deal with the full role semantics.

A second relevant example is the representation of temporal information.
The UML is a non-temporal conceptual modeling language. Conceptual schemas
in the UML assume that the information base contains the current instances
of entity and relationship types. For many information systems, the above
assumption is acceptable. However, there are some information systems for
which that assumption is a severe limitation. This happens when the functions
of the information system require the knowledge of past states of the information
base. In this paper [31] we extended the UML to define a set of temporal features
of entity and relationship types, and to provide notational devices to refer to
any past state of the information base. Using this extension, a designer may
use the UML/OCL as if it were a temporal conceptual modeling language. We
also presented a method for the transformation of a conceptual schema in this
extended language into a conventional one.
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2.3 Code-generation techniques

Despite what many model-driven tools advertise, we are still far away from being
able to completely generate the full implementation of a software application
from complex software models. By complex we mean models including business
rules and business processes for instance or stating the requirement of the system
using a declarative style (the preferred alternative [111]).

Relevant examples of my work in the area are:

e An initial (and automatic) generation of the dynamic aspects of the speci-
fied software application. Given an initial class diagram, our method auto-
matically generates the OCL contracts of a set of operations that describe
how users can modify and evolve the data managed by the application.
This set is complete (all data can be modified through the operations) and
executable. See [2,3] for details

e A heuristic-based transformation to translate declarative operation spec-
ifications (i.e. operations specified by means of a set of OCL pre and
postconditions) into equivalent imperative specifications (i.e. operations
where the set of actions or structural events that will be issued when ex-
ecuting the operation are explicitly defined). The main problem we must
face when performing this transformation is the ambiguity of declarative
specifications. The same declarative specification can be translated into
many different imperative ones. The heuristics help us to determine which
alternative is the one that, most probably, the designer prefers. See [25]
for details.

e In [21], a method to integrate business processes and structural aspects of
the same domain is provided. Thanks to this integration, existing code-
generation techniques for static models can automatically generate soft-
ware systems that satisfy the process constraints.

2.4 Social aspects of MDE

Beyond the purely technical aspects, introduction of MDE in any company
disrupts the development team (new roles are required, new skills, new depen-
dencies between members,...). As with any other technology we have to make
sure that adoption of MDE is done in the right way.

Together with Eric Yu (University of Toronto) have proposed the application
of social modelling techniques to define the structure of a development team and
study how this structure maps the requirements of a model-driven development
process. The idea is to see the socio-technical congruence of the team wrt to the
new technology and identify its main shortcomings. We have generalized the
results to use social modeling as a useful way to understand the requirements
of any development process (or parts of it) before integrating it into the daily
practice of a software company, e.g.see [48,49].
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2.5 Model Management and Transformation

Since my integration in the AtlanMod team® I have collaborated in several new
improvements for the ATL model-to-model transformation language [64]. For
instance, we have improved the support for Higher-order transformations [101]
(i.e. transformations that take as input and/or output another model transfor-
mation), improved the support for refinement /refactoring transformations (i.e.
transformations that perform only small changes on the source model and that
can benefit from an in-place execution strategy) and we are working towards
the definition of complete ATL compilers able to execute tranformations in an
incremental mode (changes on the source model do not trigger the full trans-
formation execution but only those parts that are relevant for the subset of
model changed) or in a lazy mode [103] (transformation is executed on-demand
to produce only those parts of the target model the user wants to read).

I have also participated in the current team work on model management.
The achievements on model transformation helped to identify quite early the
necessity of providing additional model representation and manipulation tech-
niques that could be grouped in a toolbox for MDE. That was the beginning
of the AmmA toolbox (AmmA stands for AtlanMod Model Management Ar-
chitecture). As part of the toolbox we can find a model weaving component
(that allows defining relationships between models at a high abstraction level)
and the megamodeling concept among others. A megamodel is a specific kind
of terminal model whose elements represent models themselves as well as the
existing relationships between these models. Therefore, designers can create a
megamodel to store useful references to all modeling artifacts of the development
project, including all the metadata required to understand the relationships be-
tween them. Recently, we have added the possibility of writing modeling scripts
(MoScript [67]) that can be executed in batch mode to automate the manipu-
lation of all components in a megamodel.

Some of these topics are still work in progress and as such also mentioned
in the research program at the end.

2.6 Model verification

Development of new algorithms that perform model verification on UML/OCL
class diagrams by translating the diagram into a Constraint Satisfaction Prob-
lem (CSP) such that iff the CSP has a solution the input model is correct. This
approach has been adapted for the verification of several correctness properties
for model transformations. Full details of this research line are developed in the
next chapter.

Lwww.emn.fr /x-info/atlanmod



Chapter 3

Model Verification
Research Line

This chapter elaborates on, in our opinion, the main challenge among the re-
search lines introduced in the previous one. We motivate the problem, describe
the research results achieved (and how they relate to each other in a coherent
evolution) and explain them in some detail in order to give the reader a com-
prehensible view of this area. The interested reader can refer to the original
publications listed herein for full details of our approach.

3.1 Overview

As we have said before, model-driven engineering (MDE) is becoming one of the
dominant software engineering paradigms in the industry. MDE advocates for
the use of software models and model transformations (to perform manipulations
on models) as the main artifacts in all software engineering activities. This
higher-level view of the software system (thanks to the emphasis on the use of
models to describe the system) brings many benefits, including improvements
in its productivity and maintainability, as reported by several studies.

This change of perspective implies that correctness of models (and model
transformations, that can be, in fact, regarded as special kind of models [16])
becomes a key factor in the quality of the final software product. For instance,
in MDE, code is no longer written from scratch but synthesized from models
(semi-)automatically. Therefore, any defect in the model will propagate into
defects in the code.

Although the problem of ensuring software quality has attracted much at-
tention and research, it is still considered to be a Grand Challenge [63] for the
software engineering community. This initiative considers that the degree of
maturity achieved in software development, formal methods and verification is
sufficient to achieve substantial contributions in the near future. We believe that
this challenge must be adapted and extended to cover the verification of model-

10
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ing notations commonly used in MDE approaches, like UML [84] and OCL [83]
(textual language to annotate UML models with constraints, derivation rules
and pre/postcondition contract expressions). It is essential to provide a set of
tools and methods that help in the detection of defects at the model-level and
smoothly integrates in existing MDE-based tool-chains without an excessive
overhead.

Such method and tools do not exist yet. The best proof is the fact that
so far no commercial modeling tool integrates any correctness analysis beyond
purely syntactic checks to make sure the model is a valid instance of its meta-
model. Characteristics of existing research approaches, like the lack of automa-
tion (methods based on theorem proving might require user assistance during
proofs, e.g. HOL-OCL [23]), restrictions on the input notation (e.g. some meth-
ods work on a restricted subset of OCL (e.g. [91]) and some others do not support
OCL at all (e.g. [11])), low efficiency (e.g. reasoning on UML class diagrams
is EXP-complete [13] and thus, current tools do not scale-up well which makes
efficiency a concern for most non-trivial models) and poor usability (verification
tools are often disappointing from the point of view of a designer, one of the main
reasons being that tools do not directly manipulate the input model but first
translate it into a formal language (Alloy [4], CP [29], HOL [23], DL [107]) where
the verification process takes place; therefore, in many cases a good knowledge
of this underlying language may be required to operate effectively, e.g. while
selecting adequate parameters, tuning the model for the analysis or interacting
with the tool) have seriously impaired their usability in practice.

Learning from these previous attempts, we believe that in order to succeed
in an MDE context any method for model verification should fulfill the following
list of requirements:

e Understand the input notation used by the designer (e.g. UML/OCL),
not a formal notation nor a subset of that notation. If an internal formal
notation is used, it should be transparent to the designer.

e Analyze the designer’s model as is, without requiring any type of manual
annotation.

e Perform the analysis automatically and without requiring user interaction.
e Provide results in a format meaningful to the designer.
e Be efficient and scale up to support large real-life examples.

e Provide a tool implementation satisfying all the above requirements and
that integrates seamlessly into the designer tool chain.

Unfortunately, model verification is a hard problem, undecidable in general.
Therefore, to tackle this problem while at the same time fulfilling the previuos
requirements to make sure our approach is usable in practice, we propose the
notion of pragmatic formal model verificaton. Our formal verification approach
tries to find a good trade-off between the completeness of the evaluation and the
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usability (termination, efficiency, automation,...) of the verification process. As
we will see, many of our works in this area follow a bounded verification strat-
egy built on top of the constraint programming paradigm. In our approach,
the model and the correctness property to verify are expressed as a constraint
satisfaction problem (CSP) such that the CSP has a solution iff the model sat-
isfies the property. In this case, the search space to evaluate when determining
the correctness of the model is finite and therefore termination problems are
avoided. The size of the search space will determine the efficiency of the process
but at the same time may affect its completeness.

In the rest of this chapter, we introduce four of our main representative
works in this area. First, our CSP-based approach is introduced as a solution to
the problem of checking the correctness of UML class diagrams' annotated with
OCL constraints. Among others, we focus on a fundamental semantic correct-
ness notion in static models: model satisfiability. (Strong) Satisfiability consists
in deciding whether it is possible to create a non-empty and finite instantiation
of the model in such a way that all integrity constraints are satisfied. Clearly, an
unsatisfiable model is useless since every time users try to create a new object,
e.g. instantiating one class of the model, at least one of the integrity constraints
will become violated. The importance of satisfiability comes from the ability to
define many other correctness properties, such as liveliness, constraint redun-
dancy, subsumption and so forth, in terms of the satisfiability problem. For
example, a designer can check if an integrity constraint C' is redundant by for-
mulating a satisfiability problem where —C replaces C' in the model. If that
model is satisfiable, it means it is possible to satisfy the remaining integrity
constraints while violating C', so C is not a redundant constraint.

Later this CSP-based approach is extended to cover the verification of dy-
namic properties (like applicability, executability and determinism) for behavioural
models expressed as a set of operations defined by means of UML/OCL pre/postcondition
contracts.

Finally, we show how these core ideas can be applied also to the verifica-
tion of other key component in MDE: model transformations. We first address
the correctness of declarative model-to-model transformations (by analysing the
implicit invariants stated by the transformation) and then the problem of cor-
rectness of graph transformations (largely used to express dynamic aspects of
Domain-Specific Languags) by translating different rule semantics to OCL and
then analyzing the resulting OCL expressions using the previous techniques.
As you can see, there is a clear correspondence between the UML/OCL static
properties analysis and the declarative model transformations and between the
dynamic UML/OCL analysis and the more imperative graph-based transforma-
tions. In both cases, the latter is an adaptation and evolution of the former.

Other components of our pragmatic model verification approach (like the
use of incremental evaluation techniques to optimize the reevaluation of existing
models after changes, the idea of normalizing models prior to its verification to

IEven if we focus on UML, the same approach could be applied to the verification of
Domain-Specific Languages; we focus on UML since it is by far the most used modeling
language in both industry and academia
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simplify manipulation operations on them or complementing verification with
validation and testing approaches) are mentioned in the list of publications (next
section) and/or in the future research lines (last chapter).

3.2 Published Research Results

Before entering into the technical details of this research line we present in this
section the list of publications on this topic to give an idea of the results achieved
so far. Publications are grouped according to the main topics described in the
previous overview. Only publications related to the research work presented in
this document are mentioned. Papers in an ERA (formerly CORE) conference
with rank A and JCR-indexed journal publications are highlighted. When a
journal publication on a specific topic has been published, preliminary confer-
ence papers on that same topic are omitted (again, see the CV for a complete
list of papers). Next to each publication we indicate a very short summary of
its contribution.

Note that next sections focus on a subset of these publications, in particular
those based on the use of constraint programming as a verification tool since
this is the core of our contribution in this area. Other papers exploring com-
plementary approaches are mentioned in the list but not detailed in the rest of
the chapter.

3.2.1 Verification of UML/OCL models

Initial focus of our reserach in the model verification area. After examining the
different formalisms available, we choose constraint programming as a paradigm
to use for the formal verification of UML/OCL models due to its bounded search
characteristic that helps us to ensure termination of the verification process
(even if this implies sacrifying the completeness of the results). Main papers on
this line

e Jordi Cabot, Robert Clariso, Daniel Riera: Verifying UML/OCL Opera-
tion Contracts. 7th International Conference on Integrated Formal Meth-
ods (IFM 2009), LNCS 5423, pp. 40-55. Application of our CSP-based
approach for the verification of dynamic aspects of UML/OCL models,
more specifically focusing on the problem of verifying declarative opera-
tion specifications (expressed as OCL pre/postcondition contracts).

e Jordi Cabot, Robert Clariso: UML/OCL Verification in practice. 1st Int.
Workshop on Challenges in Model-Driven Software Engineering (MoD-
ELS’08). Position paper summarizing the main challenges in the area.

e Jordi Cabot, Robert Clariso, Daniel Riera: Verification of UML/OCL
Class Diagrams Using Constraint Programming. MoDeVVA 2008 (Model
Driven Engineering, Verification, and Validation: Integrating Verification
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and Validation in MDE). Introduction to our CSP-based bounded verifi-
cation method for the correctness evaluation of UML class diagrams with
OCL constraints.

e Jordi Cabot, Robert Clariso, Daniel Riera: UMLtoCSP: a Tool for the
Formal Verification of UML/OCL Models using Constraint Programming.
ASE 2007, pp. 547-548. Presentation of our CSP-based tool for the veri-
fication of UML/OCL models.

With the popularity of Executable UML approaches (Executable UML de-
fines a subset of UML that can be directly executable including a kind of pseu-
docode language that allows defining precise method behavioural specifications
in an imperative manner), there is a growing need to be able to provide some
verification techniques for Executable UML specifications. Following our goal
of providing simple and efficient verification methods we have also proposed a
dependency-analysis method to quicly evaluate basic correctness properties of
these kinds of models. In this case we do not base our approach on constraint
programming due to the imperative nature of these specifications.

e Elena Planas, Jordi Cabot, Cristina Gmez: Verifying Action Se-
mantics Specifications in UML Behavioral Models. The 21st In-
ternational Conference on Advanced Information Systems (CAiSE
2009), LNCS 5565, pp. 125-140. Lightweight verification approach
to check the executability of imperative operation specifications based on
a static analysis of the dependencies between the different atomic actions
included in each operation.

3.2.2 Validation of UML/OCL models

To complement the verification research line we also did some relevant work on
the validation aspect of the same kind of models. In contrast with verification
(that tries to guarantee that a model is right), validation makes sure that what
we are building is the right model. Only the client can assert this so validation
techniques involve the client in the process, in this case by means of natural
language techniques:

e Jordi Cabot, Raquel Pau, Ruth Raventos: From UML/OCL to
SBVR Specifications: a Challenging Transformation. Informa-
tion Systems Elsevier Journal 35(4): 417-440 (2010). In this work,
the models specified by the designer are reexpressed in natural language
(using an intermediate SBVR representation) to allow stakeholders val-
idate that the understanding of their requirements by the designers is
correct.

3.2.3 Verification of model transformations

Extension of previous approaches for UML/OCL models to deal with the ver-
ification of model transformations. In fact, the last two papers correspond to
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extensions of the papers in the first subsection. The first paper deals with a
complementary challenge. Instead of focusing on the quality of models, it fo-
cuses on the quality of the instances (i.e. the data) of those models and makes
sure that the system never evolves into an inconsistent state and does so by
preventing the execution of the operations/rules that may induce this violation
(instead of rolling back the system once we detect that a violation has been
produced, clearly more inefficient).

e Jordi Cabot, Robert Clariso, Esther Guerra, Juan de Lara: Synthesis of
OCL Pre-Conditions for Graph Transformation Rules, ICMT2010 - Intl.
Conference on Model Transformation, LNCS 6142, pp. 45-60. Transfor-
mation engines must include a repair/rollback component to avoid incon-
sistent output models. Our work avoids the need for this component by
adding preconditions that the input model must comply with to ensure
that an inconsistent output model is never produced.

e Jordi Cabot, Robert Clariso, Esther Guerra, Juan de Lara: A
UML/OCL Framework for the Analsysis of Graph Transforma-
tion Rules. Software and Systems Modeling, vol 9, issue 3, pp.
335-357. Analysis of refinement transformation rules by analyzing the
pre/postconditions implicitly stated by the rule (OCL is used to make
explicit these contracts deduced from the rules).

e Jordi Cabot, Robert Clariso, Esther Guerra, Juan de Lara: Ver-
ification and Validation of Declarative Model-to-Model Trans-
formations Through Invariants. Journal of Systems and Soft-
ware 83(2): 283-302 . Verification of declarative model-to-model tran-
sormations by analyzing the invariants between the input and output
(meta)models implicitly stated by the transformation.

3.2.4 Incremental evaluation

e Jordi Cabot, Ernest Teniente: Incremental Integrity Checking
of UML/OCL Conceptual Schemas. Journal of Systems and
Software, vol 82, issue 9, pp. 1459-1478.. Techniques to avoid
a complete recomputation of a model after a set of changes on it (very
frequent scenario in any iterative development process). These techniques
are key to achieve an efficient model reevaluation, e.g. when checking if a
previously correct model is still correct after updating some parts of it.

3.2.5 Model normalization

e Jordi Cabot, Ernest Teniente: Transformation Techniques for
OCL Constraints. Science of Computer Programming Journal,
vol. 68/3, pp. 152-168. Equivalence rules among OCL expressions to
reduce OCL expressions to a kind of normal form. These simplifications
facilitate the development of algorithms in charge of manipulating OCL
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expressions thanks to reducing the number of expression combinations
that must be considered.

3.3 Basic concepts of Constraint Programming

Some notions of constraint programming are needed in order to follow the tech-
nical content of next sections. This section gives a very short introduction of
constraint programming.

Constraint Programming [5,77] is a problem solving paradigm where the
programming process is limited to the definition of the set of requirements (con-
straints). A constraint solver is in charge of finding a solution that satisfies the
requirements.

Problems addressed by Constraint Programming are called constraint satis-
faction problems (CSPs). A CSP is represented by the tuple CSP = (V, D, C)
where V' denotes the finite set of variables of the CSP, D the set of domains,
one for each variable, and C' the set of constraints over the variables. Typ-
ically, most constraints can be defined as equalities (=), disequalities (#) or
inequalities (<, >, <,>) of arithmetic expressions over variables, or a boolean
combination of such constraints, e.g. (z = y) V (222 > 0). A solution to a CSP
is an assignment of values to variables that satisfies all constraints, with each
value within the domain of the corresponding variable. A CSP that does not
have solutions is called unfeasible.

The most traditional technique for finding solutions to a CSP is backtrack-
ing. A possible backtracking implementation called labeling orders variables
according to some heuristic and attempts to assign values to variables in that
order. If any constraint is violated by a partial solution, the solver reconsid-
ers the last assignment, trying a new value in the domain and backtracking to
previous variables if there are no more values available. This systematic search
continues until a solution is found or all possible assignments have been consid-
ered. To ensure termination, the search space must be finite, thus, all variable
domains must be finite.

The efficiency of the search process is largely improved by constraint propa-
gation techniques: using information about the structure of constraints and the
decisions taken so far in the search process, the unfeasible values in the domains
of unassigned variables can be identified and avoided, pruning the search tree
in this way. These techniques are an effective mechanism to reduce the search
space and are implemented by default in most constraint solvers.

As an example, consider the simple CSP of Fig. 3.1. The CSP consists of
two variables X and Y whose domain ranges from —100 to +100. There are
three constraints: X > 20, Y < 15 and X = Y. For this example, constraint
propagation techniques suffice to directly prove the unfeasibility of the CSP
with neither instantiations nor backtracks required. First, the lower and upper
bounds for the domains can be tightened by leaving only feasible values inside
the domain. Furthermore, in the last step, the fact that the domains for X and
Y are disjoint can be used to deduce that (X = Y') is impossible: the set of
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Vv = {X, Y}
D = {domain(X)=[-100,+100],
domain(Y') = [—100,+100] }
C = {X>20,Y<15 X=Y)}
J Propagating constraint (X > 20)
D' = {domain(X) = [21,+100],

domain(Y') = [-100,+100] }
|} Propagating constraint (Y < 15)
D" = {domain(X) = [21,+100],
domain(Y’) = [-100, 15] }
J} Propagating constraint (X =7Y)
{ domain(X) = 0,
domain(Y) =0}

D///

Figure 3.1: Constraint propagation example

feasible values in the domain becomes empty (f}), so we conclude that the CSP
is unfeasible. Typically, constraint propagation is not that successful, but it is
an effective mechanism to reduce the search space. Some types of arithmetic
constraints, e.g. linear inequalities, have specialised numerical solvers to perform
complex propagations among variables.

Without loss of generality, in this chapter we will describe CSPs using the
syntax provided by the ECL'PS® Constraint Programming System [5,100]. In
ECL'PS®, constraints are expressed as predicates in a logic Prolog-based lan-
guage while variables may be either simple, structured (tuples) or lists. The en-
vironment provides several solvers and it is capable of reasoning about boolean,
interval, linear and arithmetic constraints among others.

The proposed approach can easily be codified in any other Constraint Pro-
gramming language, as all of them provide support for suspensions, lists and
finite domain solvers. Some examples of alternative solvers would be GNU-
Prolog [51], Oz [86], CHIP V5 [38], ILOG CP [59], JaCoP [62], Comet [39]
or Cream [40]. The translation of UML/OCL diagrams into other families of
restricted constraint problems, such as SAT or SAT Modulo Theories (SMT),
requires completely different encoding strategies which are out of the scope of
this chapter. These strategies depend on the specific formalism being used, e.g.
see [97] for a translation of UML/OCL into SAT.
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Researcher

-name : String
-isStudent : Boolean context Researcher inv NoSelfReviews:
self.submission—>excludes(self. manuscript)

3 treferee 1.2 +author context Paper inv PaperLength:
h self.wordCount < 10000
Reviews Writes context Paper inv AuthorsOfStudentPaper:
self.studentPaper = self.author—>exists(x | x.isStudent )
1 +submission 1 +manuscript  context Paper inv NoStudentReviewers:
self.referee—>forAll(r | not r.isStudent)
Paper
- - P context Paper inv LimitsOnStudentPapers:
-title : String

wordCount - int Paper::alllnstances() —>exists(p | p.studentPaper) and
_studentPaper : Boolean Paper::alllnstances() —>select(p | p.studentPaper)—>size() < 5

Figure 3.2: Running example: a UML class diagram with OCL constraints.

3.4 From UML/OCL to Constraint Program-
ming: static aspects

Errors can be inadvertently introduced even in very small UML/OCL models.
As an example, consider the simple class diagram of Fig. 3.2 that will be used as
a running example. The diagram models the relationship between researchers
and the papers they write (association Writes) or review (association Reviews).

This class diagram is complemented with a set of OCL expressions that
specify additional constraints for the model. For instance, NoStudentReviewers
states that the referees of a paper cannot be students. In this constraint, the
self variable represents an arbitrary instance of the context type chosen to
define the constraint, in this case Paper, and the constraint must be true for
all possible values of self; the expression self.referee retrieves the Set of all the
researcher objects linked to the paper self through the association Reviews and
the forAll quantification evaluates the not isStudent condition on the collection
of researchers retrieved by that expression and returns true if all of them satisfy
it.

Notice that several expressions in these OCL invariants, such as self.referee,
are computing collections of objects and operating with them. Some examples
of these operations are checking if an object is not included in a Set (operation
excludes in invariant NoSelfReviews), computing the number of elements in the
Set (operation size in invariant LimitsOnStudentPapers), computing the subset
of elements satisfying a property (select in invariant LimitsOnStudentPapers)
or checking existential or universal properties on elements of the Set (forAll and
exists quantifiers). As it is shown in this example, OCL collections allow the
concise definition of complex properties and they are an important notion in
the OCL notation.

Even if perhaps it is not easy to see at first sight, this model is wrong because
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it does not satisfy a basic correctness property: strong satisfiability. A model
is strongly satisfiable if it is possible to create at least a valid and non-empty
instantiation of the model, i.e. if a user can possibly create a finite set of new
objects and links over the classes and associations of the model so that no
constraint is violated. Therefore, non-satisfiable models are completely useless
since users will never be able to populate them at run-time in a way that all
constraints evaluate to true. In particular, this example is unsatisfiable due to
two different reasons:

1. The multiplicities of association Reviews require exactly three distinct re-
searchers per paper, as indicated by the number three next to the referee
role that the Research class plays in the association Reviews. If we de-
note by |X| the number of objects of a given class, this multiplicity means
that |Researcher| = 3 - |Paper|. Meanwhile, the multiplicities of Writes
requires one or two researchers per paper (multiplicity “1..2” next to the
author role), and therefore |Paper| < |Researcher| < 2 - |Paper|. Only
an infinite or empty instantiation may satisfy both constraints simultane-
ously.

2. Students cannot be referees according to constraint NoStudentReviewers.
However, all researchers must be authors (due to the minimum 1 multiplic-
ity in Writes), all authors must review papers (minimum 1 multiplicity
in Reviews) and there must be at least one student paper (constraint
LimitsOnStudentPapers) with an student author (constraint AuthorsOfS-
tudentPaper).

We have shown that this simple example does not satisfy a property which
is assumed by default by any model designer: that it is possible to build a
finite and non-empty instantiation of the model without violating the visual and
textual constraints it contains. In addition to this notion of strong satisfiability,
another reasonable assumption is that the model does not contain subsumed
constraints, i.e. a constraint which can be removed without changing the set of
legal instances. A subsumed constraint may be a symptom of an unexpected
interaction among constraints or the incorrect definition of some constraints.
If we do not fix these type of errors in the modeling phase at design-time,
developers will waste their time implementing this model in the final technology
platform before realizing, when testing the system at run-time, that it contains
fundamental errors.

In this sense, the main goal of this section is to present a method for the fully
automatic, decidable and expressive verification of UML/OCL class diagrams.
Decidability is achieved by defining a finite solution space, i.e. establishing finite
bounds for the number of instances and finite domains for attribute values to
be considered during the verification process. This way, the constraint solver
is able to perform a complete search within the solution space. We will argue
that considering a finite solution space is a reasonable trade-off regarding the
features offered by other existing verification methods.
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Our method uses the Constraint Programming paradigm [77] as an underly-
ing formalism. We have developed a systematic procedure for the transformation
of a UML class diagram annotated with OCL constraints into a Constraint Sat-
isfaction Problem (CSP). A predefined set of correctness properties about the
original UML/OCL diagram, such as satisfiability of the model, liveliness of a
class, redundancy of a constraint and so forth, can then be checked on the result-
ing CSP. Our choice of using UML/OCL models as input is based on the wide
adoption of the UML within the software community and its high-level model-
ing constructs, not tied to any particular implementation technology. However,
we believe that many of the concepts introduced can be useful for verifying
correctness of models specified with other modeling languages as well, such as
Domain-Specific Modeling Languages.

Moreover, in order to improve the usability of our verification method, we
have developed a graphical front-end tool called UMLtoCSP [106] which hides
the underlying analysis process. The input of the tool is a UML class diagram
encoded in an XMI or Ecore file formats plus (optionally) a text file with the
OCL constraints. Meanwhile, the output of the tool is a UML object diagram
that proves the property (if it holds). Users of the tool do not need to be
familiar with Prolog or CSPs to use the tool: the input and output notations
are amenable to UML designers and the entire verification process is completely
automated and hidden from the user. In this sense, we follow the paradigm of
hidden formal methods [14] to improve the usability of the tool and its results.

3.4.1 Overview of the approach

To determine the correctness of a model, our method follows the procedure
depicted in Figure 5.1. First, the designer provides an input UML/OCL model,
created using an existing UML CASE tool. Then, the designer selects the
correctness property to evaluate on the model. These correctness properties
study the feasibility of creating legal instances of classes and associations in the
model (satisfiability properties) and the interactions among different integrity
constraints (subsumption and redundancy properties). Next, the model plus the
correctness property is translated into a CSP such that the CSP has a solution
if and only if the model satisfies the property. The translation process uses
our own specialized CSP library encoding the semantics of the UML and OCL
constructs in order to simplify the transformation.

The actual evaluation of the CSP is made with a state-of-the-art constraint
solver. The results reported by the solver are interpreted and passed back to
the user as an object diagram that proves the property (if there is a solution to
the CSP) or as a text message informing that the property is not satisfied.

Intuitively, the generated CSP describes the possible set of valid instantia-
tions of the model by using (list) variables that encode the objects and links in
the instantiation, the values of the attributes of those objects, etc. The domain
of the variables maps the structure and types of the elements in the model.
Integrity constraints in the model such as multiplicity constraints or OCL in-
variants are translated into constraints in the CSP that restrict the legal values
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Feedback ([Yes + Object Diagram | No])

N

L)
model - CsP
Our verification Method I
H {UMLtoCSP tool) ﬁ Constraint So
Designer

Select Property

Figure 3.3: Schema of our method.

for these variables. The correctness properties are represented as additional
constraints in the CSP. For instance, satisfiability (non-emptiness of the instan-
tiation) can be imposed as a new constraint: a lower bound on the number of
objects and links, i.e. a constraint on the minimum size of the corresponding
lists. To find a solution, the constraint solver tries to assign a value to all vari-
ables without violating any constraint. If no legal assignment is possible, the
model fails to satisfy the property. The next Section provides more information
about the search in a CSP.

As an example, the CSP for the running example about Papers and Re-
searchers would roughly consist of four list variables that represent the pop-
ulation of the Paper and Researcher classes and of the Writes and Reviews
associations. The structure of the elements of each list mirrors the structure
of the corresponding model elements. Several constraints restrict the possible
number and values of elements in the lists. For instance, constraints will ensure
that each paper in the Papers list appears at least once in the Writes list (all
papers must be written by at least a Researcher according to the constraints
in the model) and that its wordCount value is lower than 10000 (as forced by
the PaperLength constraint). On top of this initial CSP, we need to add the
constraints to ensure that the model satisfies the correctness property we are in-
terested in. As an example, when checking for strong satisfiability our method
would add a new constraint into the CSP stating that none of the four list
variables can be empty.

The analysis of this CSP by the solver would conclude that it is not possible
to find a solution since the solver will be unable to create and assign elements
to the lists in such a way that (1) all previous constraints are fulfilled and (2) at
the same time, the lists are not left empty (forbidden by the constraint imposed
by the satisfiability property we are trying to determine). Therefore, we may
conclude that this model is not strongly satisfiable.

3.4.2 Translation of UML/OCL Class Diagrams

This section describes the transformation of a UML/OCL class diagram into
a Constraint Satisfaction Problem. A class diagram CD is defined as CD =
(Cl, As, AC, G, IC), where Cl is the set of classes, As is the set of associations,
AC the set of association classes, G the set of generalisation sets and IC' the
set of constraints (either graphical or textual) included in CD.
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Each element is translated into a set of variables, domains and constraints in
the CSP system. As stated before, domains must be finite. These finite domains
can be ensured in several ways: first of all, arbitrary bounds for the domains
can be chosen or provided by the designer during the translation process. On
the other hand, the analysis of the constraints in IC' may reveal a finite set
of relevant values in the domain. From the point of view of efficiency, we are
interested in the smallest domains that suffice to identify inconsistencies in the
model, but the automatic computation of these domains from the constraints
in IC' is a complex problem which will not be addressed here. Instead, we will
assume in this section that these values are provided as inputs (parameters) of
our translation procedure.

In the following we present the transformation of the elements of a class
diagram into the CSP. Note that some of the constraints generated by our
method in the CSP are implicit in the semantics of UML but must be made
explicit in the CSP. For example, we need to state explicitly that all instances
of a class are also instances of its superclasses. In [54] a translation of all these
graphical constraints into an OCL representation is proposed.

Section 3.4.2 describes the translation of the UML elements in the model
while section 3.4.2 focuses on the translation of the OCL integrity constraints.
Both parts rely on our UML/OCL CSP library, introduced in Section 3.4.3. The
library extends predicates available in the Prolog dialect used by ECL'PS® with
a new set of predicates that map the semantics of the predefined OCL opera-
tions. Rather than hard-coding these OCL operations in the method translation
procedure, we have decided to group them in a separate library to simplify the
translation.

Transformation of UML constructs

To illustrate the translation of UML constructs, we will refer to the example
in Figure 3.4 throughout this section. Figure 3.4(a) shows a class diagram and
Figures 3.4(b) and (c) show the translation of this diagram into variables and
constraints of a CSP, plus a potentially legal instantiation.

Transformation of classes

The set of variables and domains to be defined for each class ¢ € C1 is:

e A variable Instances. of type list>. Each element in the list represents
an instance of ¢. Therefore, the domain of these elements is represented
by the structure struct(c) = (oid, f1,..., fn), where: oid represents the
explicit object identifier for each object, and each f; corresponds to an
attribute at € c.ownedAttribute3.

The domain of the oid field is the set of positive integers. The domain of
an f; field is defined as a finite subset of the domain of the corresponding
at attribute in c. Boolean and enumerated types are already finite. Finite

2Sets of instances are defined as Prolog lists with additional constraints to avoid duplicates.
3 ownedAttribute is the UML metamodel navigation expression that returns the set of at-
tributes of a class.
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Adi'int mplete -t - -
| —
(a)
A B C D E F G H Z
(oidg,m) (oidy) | (oid.) | (oidg) | (0ide) | (oidy) | (0idg) (oidp, t,d, g) (f,9)
{(1,10),(2,14),(3,14), | {M)} | {(2), | {(4), | {@)} | {@)} | {Q), | {1, true,4,1), | {(2,1),
(4,20), (5,90), (6,20), 3} | 6)} (2)} | (2, false,5,2)} | (2,2)}
(7710)}
(b)

Constraints on association Z
Existence of referenced objects {Z.f} C {oids},{Z.g} C {oid,}
Bounds on cardinalities (Size, < Sizey - Sizey), (2- Sizey < Size, < 7- Sizey)
Multiplicities of role “g” Ve e{oids}:2<{#leZ:l.f =z} <7

Constraints on association class H
Existence of referenced objects {H.d} C {oida},{H.g} C {oid,}

Bounds on cardinalities (Sizep, < Sizeq - Sizey), (Sizey < Sizey)| (Sizeq < Sizey, < Sizey)
Multiplicities of role “g” Ve € {oidg} : 1 <{#lec H:ld==x} <1
Multiplicities of role “d” Vy € {oidg} : 1 <{#le€ H:l.g=rx}
Constraints on generalisation set A-B-C-D
Number of instances (Size, > Sizey), (Size, > Size.), (Size,|> Sizeq)
Existence of oids in supertype  {oidy} C {oid,},{0id.} C {oid,}, {oids} |C {oid,}
Disjointness (cardinalities) Size, > Sizey + Size. + Sizeq
Disjointness (oids) {oidp} N{oid.} = {oidp} N {oidy} = {oid.} N{oids} =0
Completeness (cardinalities) Size, < Sizey + Size. + Sizeg
Completeness (oids) {oid,} = {oidp} U {0id.} U {oids}

Constraints on generalisation set C-E-F
Number of instances (Size. > Size.), (Size. > Sizey),
Existence of oids in supertype  {oid.} C {oid.},{oids} C {oid.}

()

Figure 3.4: Example of the translation of UML class diagram constructs: (a)
class diagram, (b) corresponding variables in the CSP with a possible legal
instantiation and (c) a selection of corresponding constraints in the CSP.
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domains for integer types requires at least a lower and upper bound for
the attribute. For real types we need also a maximum decimal precision.
For string types, the possible “alphabet” and the maximum string length
should be defined.

To increase the efficiency of the generated CSP, during the translation we
discard all attributes that do not participate in any of the constraints in
IC. A correct instantiation may contain any value in those attributes.

e A variable Size. of type integer, encoding the number of instances of class
c. Its domain is domain(Size.) = [0, PMaxSize.], where PMaxSize. is
a parameter that indicates the maximum number of instances of class ¢
that must be considered when looking for a solution to the CSP.

Additionally, the following constraints are added to the CSP:
o Number of instances: Size. = length(Instances.)
e Distinct oids: Vx,y € Instances. : x # y — x.oid # y.oid

For example, figure 3.4(b) illustrates the structure of the Instances variable
for classes A to G, where the constraints on the number of instances and the
uniqueness of oids within a class are omitted for brevity. Notice how even
in classes without attributes, it is still necessary to keep track of the oid, for
example, to keep track of inheritance relations or the participation of each object
in associations.

Transformation of associations

For each association as € As between classes C; ...C,, the following vari-
ables and domains must be created in the CSP:

e A variable Instances,s of type list. Every member of the list represents
an instance of the association (i.e. a link), each being of type struct(as) =
(p1,--.,DPn), Wwhere p; ...p, are the role names of the participant classes.
The domain of each p; is that of positive integers, that is, each link records
the collection of oids of the participant objects, not the objects themselves.

e A variable Size,s encoding the number of instances of the association. Its
domain is domain(Sizeys) = [0, PMaxSize,s|. As before, PMaxSize,s
is the parameter indicating the maximum number of links of as to be
considered when looking for valid solutions of the CSP.

Let n be the number of roles in the association as, and given a role i, let
T(i) be its type and [m;, M;] be its multiplicity. Then, the following constraints
must also be added to the CSP:

e Number of links: Size,s = length(Instancesgs)

o Emistence of referenced objects: VI € Instances,s : Vi € [1,n] : Jx €
Instancest(;y : z.0id = l.p;
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+roleA +roleB ; ; 1
Class X Assoc as Class ¥ Sizeqs < Sizex - Sizey

mA..MA mB..MB Mg - Sizey < Sizeqs < M, - Sizey

my - Sizex < Sizeqs < My - Sizex

Figure 3.5: Implicit cardinality constraints due to the association multiplicities
[36]

e Uniqueness of links: Va,y € Instances,s : © =y — (i € [1,n] : z.p; #
y.p;) unless the property isUnique [84] of the association is set to false.

e Bounds on cardinalities: The multiplicities of an association impose con-
straints on the number of instances of the participant classes and the
association. The explicit representation of these constraints in the CSP is
presented in Fig. 3.5.

o Multiplicities of the association: Multiplicity constraints must also be sat-
isfied by each individual object of the participant classes. For n-ary associ-
ations, several multiplicity constraints among participant objects may be
defined [84]. In particular, for binary constraints the following constraint
must hold:

(Va € Instancespy : ma < {#1:1 € Instancesqs : l.py = x} < M) A
(Vy € Instancespy : my < {#l:1 € Instancesys : L.ps =y} < My).

Figure 3.4(b) illustrates the Instances variables for a binary association Z: it
keeps track of the oids of the participating objects from classes F and G. Then,
Figure 3.4(c) shows relevant constraints added to the CSP for this association.
The notation {Z.f} C {oids} is a shorthand denoting that all oids referenced
from role f in Instances, should correspond to one of the oids in Instancesy.
Regarding the rest of constraints, it should be noted that there is a role with
multiplicity “0..*”, i.e. any number of participating objects. This multiplicity
does not generate any constraint for this role in the CSP.

Associations that are not referenced (i.e. navigated) in any constraint and
that do not state any multiplicity constraint (all participants have a “0..*”
multiplicity) can be discarded during the translation process. The population
of those associations does not affect the existence of solutions to the CSP.

Compositions and aggregations are just two special kinds of associations and
thus are translated following the procedure explained in this section comple-
mented with the translation of the OCL constraints needed to enforce their spe-
cific containment or whole-part semantics. These constraints are taken from [54]
and added to the pool of OCL constraints of the model translated as explained
in the next Section.

Transformation of association classes

An association class ac € Ac is, at the same time, a class and an association.
Therefore, transformation of association classes can be regarded as the union of
the translation process for classes plus the translation process for associations.
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More specifically, variables for association classes are Instances,. and Sizeg.
where the structure of elements in Instances,. includes all fields corresponding
to the transformation of the class facet of ac plus the fields corresponding to
the transformation of the association facet of ac. Likewise, constraints for ac
are the combination of constraints for classes and for associations. Therefore,
this transformation considers the special semantics of association classes [54,84]
stating that each instance of the association class should correspond to a link
in the underlying association.

For example, Figures 3.4(b) and (c) illustrate the variables and constraints
for the associative class H from our example. Notice that the structure of the
Instances variable includes oids and attributes like objects, and also role names
like associations.

Transformation of generalisation sets

Generalisation sets do not imply the definition of new variables but the
addition of new constraints among the classes involved in the generalisation.

Let class sub € Cl be a subclass of a class super € Cl. The following
constraints should be added:

o Lxistence of oids in supertype: VY € Instancessyy, : Iy € Instancessyper :
z.0id = y.0id

o Number of instances: Sizesyp < Sizesyp

e Disjointness: For a disjoint generalization set among a supertype S and
subtypes S7..5p:

— Sizeg > ), Sizeg;

—Vi,j € [1,n] : Yo € Instancesg;,Yos € Instancess; : o01.0id =
09.00d = i =j

o (Completeness: For a complete generalization set among a supertype S
and subtypes S7..5,:

— Sizeg < ), Sizeg;

— Yo; € Instancesg : 3i € [1,n] : Jog € Instancesg; : 01.0id = 09.0id

For example, Figure 3.4(c) describes the set of constraints involved in two
different generalization sets: the subclasses of A and the subclasses of C. Also,
Figure 3.4(b) shows an instantiation of these classes which helps to illustrate the
role of oids through inheritance: an object preserves the same oid in the sub-
class and the superclass. Even though this approach does not support multiple
inheritance, it is able to describe complex inheritance scenarios. For example,
it supports overlapping inheritance, i.e. the same oid is used in two or more
subclasses of the same superclass, and also complete inheritance, i.e. all oids
from the superclass must be used in at least one of the subclasses.

Transformation of the running example

Before describing the translation of OCL constraints, we retake our running
example from Figure 3.2 and illustrate the translation process described so far.
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% Unconstrained attributes are not im the CSP
:-local struct researcher(oid,isStudent).

:-local struct paper(oid,wordCount,studentPaper).
:-local struct reviews(submission,referee).
:-local struct writes(manuscript,author).

Figure 3.6: Structs for the translation of classes and associations of the running
example.

This time we introduce the syntax of the ECL'PS® code for the CSP, which will
be used extensively in the following Section.

Figure 3.6 illustrates the Instances variables for the classes and associa-
tions in the running example. Notice that some attributes such as name from
class Researcher or title from class Paper do not appear in the Instances
variables to improve the efficiency of the solver. Regarding the constraints
for the UML constructs in this diagram, they primarily involve the multiplici-
ties of associations Writes and Reviews. The ECL'PS® representation for these
constraints is provided in the Appendix. Some example predicates would be
differentOids, which checks that all oids of a single class are different, or
linksConstraintMultiplicities, which ensures that the oids of participants
in a binary association preserve the multiplicities of each role.

Translation of OCL constraints

Integrity constraints in OCL [83] are represented as invariants defined in the
context of a specific type, named the context type of the constraint. Its body, the
boolean condition to be checked, must be satisfied by all instances of the context
type. In our approach, each OCL constraint is translated into an equivalent
constraint in the CSP. Fig. 3.7 shows an example of the translation process
presented in this Section. This example has been simplified to improve the
legibility and understandability of the constraints. The interested reader can
find the original output in the Appendix.

An OCL constraint can be viewed as an instance of the OCL metamodel
with a tree shape, with a close resemblance to the abstract syntax tree of the
textual constraint that would be constructed by an OCL parser. For instance,
the simplified tree representation for PaperLength constraint is illustrated in
Fig. 3.7. Leaf nodes of the tree correspond to the constants (e.g. 2, true, “John”)
and variables (e.g. self, ) of the constraint. Each internal node corresponds
to one atomic operation of the constraint, e.g. logical or arithmetic operation,
access to an attribute, operation calls, iterator, etc. The root of the tree is
the most external operation of the constraint. Packages like the Dresden OCL
toolkit [44] can parse textual OCL constraints and build the corresponding trees.

As a preliminary step and to homogenize the translation procedure, we ex-
press all constraints in terms of the alllnstances* operation using the following

4alllnstances is a predefined OCL operation that returns the set of instances of the type.
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context Paper inv PaperLength:
Paper::alllnstances—>
forAll(x|x.wordCount < 10000)

(a)

IteratorExp
forAll (x)

% Position of class Paper =

o
OperationCallExp OperationCallExp
<

% within the list Of allinstances
instances (Paper) ///*\\
index("Paper", 1). , P S
AttributeCallExp IntegerLiteralExpr
wordCount 10000
% Position of attribute L
wordCount ‘ Varia:leExp
% within the list of x
attridbutes b
attIndex ("Paper", (b)
"wordCount", 2).
nodeConstant(_, _, Result):-
Result = 10000.
nodeVariable(_, Vars, Result ):- % © = var of the innermost iterator

nthi(1, Vars, Result). % Result = Vars[1] = value of =

nodeAttrib(Instances, Vars, Result):-
nodeVariable(Instances, Vars, Object),
attIndex("Paper", "wordCount", N),
arg(N, Object, Result).

value

% An object of class Paper
% N = Index of field wordCount
% Result = Object[N] = wordCount

nodeAllInstances(Instances, Vars, Result) :-
index ("Paper", N), % N = Position of class Paper
nth1(N, Instances, Result). % Result = Instances[N] = Inst of
Paper

nodelLessThan(Instances, Vars, Result) :-
nodeAttrib(Instances, Vars, Valuel),
nodeConstant (Instances, Vars, Value2),
#<(Valuel, Value2, Result).

% 1st subezpression
% 2nd subexpression
% Result = (Valuel < Value2)?

nodeForAll (Instances, Vars, Result) :-
nodeAllInstances(Instances, Vars, L), % L = Result of alllnstances
( foreach(Elem, L), foreach(Eval, Out), param(Instances,Vars) do
% Eval = Result of evaluating nodeLessThan on an element of L

nodelLessThan(Instances, [Elem|Vars], Eval) ),

% Out = List of truth values.
length(L, N),
#=(N, sum(Out), Result).

% Translation of the constraint PaperLength

paperLength(Instances) :-
nodeForAll (Instances, [],Result),

Result #= 1.

Out[i]= Result of nodeLessThan(L[%])

% N = length(L)
% Result = (N = X0ut[1])?

% Evaluate the root node

% Result should be true

()

Figure 3.7: Translation of OCL constraints: (a) Class invariant after preprocess-
ing, (b) OCL metamodel tree, (c) Constraint represented by means of Prolog
rules in the CSP.
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expansion rule:
context T inv: B = context T inv: T:alllnstances()—>forAll(v|B’)

where B’ is obtained by replacing all occurrences of self in B with v.

Then, the translation procedure is defined as a post-order traversal of the
corresponding OCL metamodel tree that translates all the children (subexpres-
sions) of a node before translating the node (expression) itself. Each node of the
tree is translated into an ECL'PS® Prolog compound term with an unique functor
name that identifies the subexpression and three arguments, e.g. nodeX(Instances,
Vars, Result), with the following meaning:

1. Instances is a list with the set of all instances for each class and association.
The i-th position of this list holds all the instances of class/association 4,
i.e. it holds the contents of the corresponding Instances; variable defined
in Section 3.4.2. The order within this list is defined in auxiliary Prolog
rules generated during the translation. This argument is required, for
instance, to implement the OCL operation alllnstances and navigation in
associations.

2. Vars contains the list of the quantified variables available in the subex-
pression. The first position of this list holds the value of the quantified
variable defined in the innermost iterator (e.g. forAll or exists). The
second position holds the following variable in the next innermost iter-
ator and so on. This argument will be used when evaluating attribute,
operation or navigation expressions over variables defined in an iterator.

3. Result holds the result of the subexpression. The type of the result de-
pends on the kind of operation applied in the node.

The behaviour of each node is formalised by means of a Prolog rule. This
rule evaluates the subexpressions of the node and computes the result of the
node (according to the semantics of the OCL operation represented by the
node) in terms of the results of its subexpressions. Basic types (e.g. boolean,
integer or real) and basic OCL operations (e.g. logical and arithmetic) have
a direct counterpart implementation in the ECL'PS® constraint libraries. For
more complex operations, such as iterators or operations on Collections, we
have developed a new ECLIPS® library (see the next section) that implements
the operations defined in the OCL Standard Library [83]. Nevertheless, for the
sake of simplicity, in Fig. 3.7 we have directly added to each node the required
computation without relying in our external library.

As a final step, once the translation for the body expression has been com-
pleted, we add to the CSP a new constraint representing the original OCL
invariant. This constraint is defined as: nameConstraint (Instances):-

rootNode (Instances, [],Result), Result#=1, that is, the constraint is
true when the rootNode evaluates to true. For example, see the paperLength
constraint in Fig. 3.7(c).
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3.4.3 UML/OCL Prolog Library

OCL provides a rich set of predefined types (e.g. collections: sequences, sets,
bags,...), operations (arithmetic, logic, set,...) and iterator expressions (for all,
exists, iterate,...) for the definition of complex constraints as part of the OCL
standard library. In order to analyze OCL constraints, it is necessary to provide
a translation for those operations in terms of the Prolog-based language used by
the ECL'PS® solver. Rather than hard-coding these operations in the tool trans-
lation procedure, we have decided to group them in a separate library. When
translating the OCL constraints, we will call the appropriate library predicate
to implement the specific semantics of each constraint node. For example, the li-
brary predicate ocl_int_equals will be reused every time a constraint includes
an integer equality comparison between two subexpressions. This separation
provides additional flexibility as changes in the implementation of the OCL op-
erators can be performed without modifying the translation method and thus,
without changing the source code of UMLtoCSP®.

The Prolog dialect used by ECL'PS® is an extension of pure Prolog. A full de-
scription of this notation is available in [5]. We will simply mention those exten-
sions required for the comprehension of the implementation of our UML/OCL
library:

e Support for higher-order predicates, i.e. the ability to pass predicate
names as arguments.

e Syntactic flavor to facilitate the definition of constraints, e.g. iterator
constructs like for or foreach. These constructs are specially useful to
operate with Prolog lists, so they are used in collection operations, OCL
iterators and navigations.

e Support for the definition of suspended constraints, i.e. delaying the exe-
cution of a predicate whose arguments have not been assigned yet.

The first extension, higher-order predicates, is provided by a library called
apply. With this library, it is possible to pass predicate names as arguments of
other predicates, and invoke those predicates later with a list of arguments
that is constructed at run-time. Intuitively, it is possible to build generic
predicates like “evaluate this predicate in each element of a collection”, i.e.
the “collect” function of collections. This function is computed by a predi-
cate with the following signature: ocl_set_collect(Instances, Vars, Set,
Predicate, Result), where Set is the collection where the operation must be
applied, Predicate is the name of the predicate to be applied and Result is
the result of the operation. It is possible to implement iterators like “exists” or
“forAll” in a similar way.

In the following sections, we will describe some design decision and imple-
mentation details of the UML/OCL Prolog library (available at [106] as a part
of the download of the tool UMLtoCSP). We will discuss separately the imple-
mentation of basic types (Subsection 3.4.3), issues with suspensions (Subsection

5In fact, it is not even necessary to recompile the tool, as Prolog is an interpreted language.
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3.4.3), the implementation of OCL collections (Subsection 3.4.3) and the OCL
iterator expressions (Subsection 3.4.3).

OCL Basic Types

ECL'PS® provides several solver libraries, each one targeting a different type
of constraints, e.g. linear constraints, graph constraints, ...In UMLtoCSP, we
use the finite domain/real number interval constraint solver library (ic), which
analyses constraints by considering the domain of each variable as one or more
finite intervals of values. This library provides support for integers, floats and
boolean® variables, and defines all the usual arithmetic (+, *, /, %), relational (=
, #,<,>,<,> min, max) and boolean (A, V,—) operators. Furthermore, those
operators which are not provided by the library itself, e.g. xor, can be simply
defined using the Prolog language. Thanks to these predefined operators we can
easily implement the support for OCL basic types in our library.

For example, let us consider the implementation of the relational operator
“greater-than” for comparing two integers. This operator takes as parameters
two predicate names and stores the result of the comparison in a variable called
Result. The ECL'PS® code for this operation is the following:

ocl_int_greater_than(Instances, Vars, Predl, Pred2, Result) :-
apply(Predl, [Instances, Vars, X]), % X is the result of evaluating Predl
apply(Pred2, [Instances, Vars, Y]), % Y is the result of evaluating Pred2
Result::0..1, % Result is a boolean value
#>(X, Y, Result). % Result is true iff X > Y

This predicate uses the predefined operator #> which is provided by the
predefined ic library to define the integral “greater-than” constraint. All integer
operators in the library have the “#” prefix while floating point operators have
the “$”. Whenever there is a potential ambiguity, e.g. between the default
Prolog language operator and the operator redefined by the library, the name
of the library is prepended to the operator. For example, the logical “and”
operator from the ic library is invoked as ic:and to distinguish it from the
default Prolog “and”.

Note that in this predicate we are not forcing X to be greater than Y, we are
just evaluating whether this is true and storing the result in the Result variable.
This way of using boolean constraints is known as reified constraints.

A disadvantage of using the ic library is the lack of support for constraints
on strings. In fact, there is no ECL'PS® library which provides efficient support
for the type of string constraints that can be written in OCL, e.g. substrings or
concatenations. In models with attributes of type string that are only compared
among them with no substrings and concatenations, strings can be encoded as
an integer or enumerated attribute. However, our current implementation does
not provide support for other string operations in OCL constraints.

6Boolean values are represented as integers whose value is either zero (false) or one (true).
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Suspensions

The result of an operation cannot be evaluated until the values of its arguments
are known. In the constraint programming paradigm, the constraints of the CSP
are defined in the beginning, and then we try to assign values to variables in
such a way that all constraints are satisfied. It should be noted that constraints
are defined before the values of variables are available, so we need the concept
of suspended constraint, a constraint which has been defined (e.g. a = b) but
cannot be evaluated until the values of variables are available (e.g. until we
have tried to assign a or b).

A possible solution is delaying the evaluation of a constraint until all the
complete assignment is available. However, this conservative approach is very
inefficient. Instead, it might be possible to detect that an assignment violates
a constraint without assigning values to all variables. For example, if we have
variables a to z and a constraint a = b, the constraint can be evaluated as soon
as a and b are assigned. Waiting for the other variables to become assigned
means evaluating the constraint for all possible combinations of variables ¢ to
z, a number which grows exponentially with the number of variables involved.

To avoid inefficiencies due to the late evaluation of constraints, ECL'PS® pro-
vides a mechanism to suspend constraints when they are defined and wake them
whenever one of its arguments is assigned. There is a reason why constraints are
awakened when one argument is assigned and not all. The constraint propaga-
tion built in ECL'PS® can sometimes infer information about the result without
knowing all the arguments of an operation. For example, if an argument of a
product is 0, the result is automatically zero regardless of the other argument.
The same type of early evaluation can be applied to boolean operations. Some-
times it is also possible to use the domain of an argument to infer information
about the domain of other arguments. For example, in a = b if we assign a the
value 7, two situations can happen: if the value 7 is within the domain of b,
then we know that the equality holds and b = 7; otherwise, we know that the
equality does not hold.

In our library, we use two types of suspensions, that of the predefined pred-
icates and that of the new rules that we define:

e In the predefined constraints of ECLIPS® libraries, like $>, or ic:and,
suspension is already built in. This means that we can write Valuel $>
Value2 and ECL'PS® handles the suspension transparently.

e In the new rules that we define, it is necessary to specify conditions that
restrict when it cannot be evaluated and must become suspended. This
is achieved using the declarative suspension clause delay-if before the
definition of a rule. For example, the clause delay ocl_col_size(X) if
var (X) delays the execution of the rule ocl_col_size until its arguments
ceases being an unassigned variable. The constraint will be automatically
woken and evaluated by the ECL'PS® solver when variable X is given a
value.
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In this second group, it is very important to wake constraints as soon as
possible: if the current solution is unfeasible, discovering it early will avoid
unnecessary backtracking and greatly reduce the execution time. However, it
is possible to define suspensions which are too conservative, for example, in
collection operators. An operation like nonEmpty() can be evaluated as soon
as we know that the list has no elements or more than one, it is not necessary
to wait until the specific value of the elements of the collection is available.
Selecting the right degree of suspension for each operation has been an important
task in the design of the library.

OCL Collection Types

Like many Prolog dialects, lists are a key concept of the ECL'PS® notation.
Prolog lists are represented as a sequence of elements separated by commas
and enclosed between brackets, e.g. [1 or [2, 7, 25]. These lists admit the
repetition of elements and the order among elements matters. Formally, a list
is defined recursively using the empty list ([1) and the constructor | which
appends one element (head) to the beginning of an existing list (tail), e.g. [head
| tail]. For example, the previous notation for lists is a shorthand of:

(2 [71[25[[]]]

Lists will be used as the backbone for the representation of OCL collections:
all the elements of an OCL collection will be stored in a Prolog list. The Prolog
semantics of lists matches that of OCL sequences, so the implementation of
sequence operations will be straightforward. For example, the implementation
of operation “size()” of collections, which returns the number of elements in a
collection, relies on the “length” operation in Prolog lists:

ocl_col_size(Col, Size) :- length(Col, Size)

Similarly, other operations rely on Prolog operations on lists.

However, we needed to code additional predicates/constraints to manage
other OCL collection types, i.e. to correctly represent their semantics when
stored as Prolog lists, e.g. to enforce the uniqueness of elements in a set collec-
tion type. These additional predicates/constraints are the following:

Sets: Additional checks are required to ensure that the set contains no dupli-
cates after the insertion of new elements (OCL operation “including”) and
the union of two sets or a set and a bag (union). To improve the efficiency
of this representation, the elements in the Prolog list are kept ordered at
all times.

Bags: As lists allow duplicate elements, bags can be represented directly as
lists much like sequences. However, the performance of several operations
like intersection or the equality check, can be improved in the elements
of the bags are ordered. Rather than keeping the elements ordered at all
times, the elements are ordered on demand when the equality check or
intersection operations are invoked.



CHAPTER 3. MODEL VERIFICATION RESEARCH LINE 34

Ordered sets: The operations on ordered sets are equivalent to those of a se-
quence, except for the check to avoid duplicate elements. In this collection,
elements cannot be stored in an ordered list as the insertion order must
be preserved.

Operations on collections can be classified into two categories according to
the degree of suspension that they require. In the first category, there are
operations on collections which can be evaluated when the number of elements
of the collections is known, even if the specific value of the elements in the
collection is unknown, e.g. size(), isEmpty() and most operations on empty
collections. Such operations must be delayed until the size of the collection
is known. In a second category, other operations need that the values of the
elements in the collection are known a priori, e.g. includes() in a non-empty list.
In this case, it is not possible to evaluate the operation until all the elements of
the collection have been given a value.

Iterators

OCL provides a set of iterator expressions over collections, e.g. existential (ex-
ists) and universal (forAll) quantification. As OCL collections are encoded in
Prolog lists, the iterators must be translated in terms of lists.

The core operation of iterators is the ability to evaluate an OCL expression
in each element of a collection. Talking in Prolog terms, this translates to the
ability to apply a predicate (encoding the OCL expression) to each element of
a list (encoding the OCL collection). Using the library apply it is possible to
obtain a generic implementation of this operation by passing the predicate name
to be evaluated as a parameter.

For example, let us consider the following existential quantification:

Col —>exists(xz|Expr(z))

It is possible to evaluate this quantifier in the following way: evaluate Expr
in each element z of the collection Col and then count the number of Expr(x)
that evaluate to true. The quantifier evaluates to true if and only if that num-
ber is greater than zero. This implementation in terms of a CSP requires the
following variables and constraints:

e Variables:
— Result, a boolean variable which stores the result of the existential

quantification.

— An auxiliary variable N, which is an integer ranging from 0 to the
number of elements in the collection.

— A variable Expr(z) in the CSP for each element x in the collection,
i.e. a boolean variable which stores the result of evaluating the ex-
pression on .

e Constraints:
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— The necessary constraints to define the value of each Expr(x).
— A new constraint: N =3 ., Expr(z).
— A new constraint: Result = (N > 0).

Figure 3.8 illustrates the Prolog code required to compute the existential
quantification. The auxiliary predicate property_sat_count is also used in the
implementation of other operators such as forAll (universal quantification) or
one (checking if a property holds in just one element of the collection). This
code reuse is shown in Fig. 3.9. Notice how it is only necessary to change the
number of elements which should evaluate to true: in “one” we need only one
element, in “forAll” we need all the elements of the collection (we compute the
number of elements of the collection using the predicate ocl_col_size from the
collections).

Using these functions in our translation results in a more compact translation
into Prolog. For example, the translation of the node nodeForAll in Fig. 3.7
would become the following:

nodeForAll (Instances, Vars, Result) :-
nodeAllInstances(Instances, Vars, L),
ocl_col_forAll(Instances, Vars, L, nodelLessThan, Result).

Finally, it should be noted that it is not necessary to manually add opti-
mizations like “the result of existential quantifier is false when the collection is
empty” as they are already considered by the constraint propagation process.
If the collection is empty, N will be 0, so N > 0 will be false, i.e. the result of
the iterator will be false.

3.4.4 Quality criteria for UML/OCL class diagrams

In addition to the elements of the model (classes, associations, constraints, ... ),
it is necessary to encode in the CSP an additional element: the goal of our
analysis, i.e. the type of instance of the model that the solver should try to
construct. Depending on the selected goal, it is possible to verify or validate
different characteristics of our model. In the remainder of this section, we
introduce several goals for the analysis of UML/OCL models.

Correctness properties for verification

A model is expected to satisfy several reasonable assumptions. For instance, it
should be possible to instantiate the model in some way that does not violate
any integrity constraint. Moreover, it may be desirable to avoid unnecessary
constraints in the model. Failing to satisfy these criteria may be a symptom of
an incomplete, over-constrained or incorrect model.

In our approach, correctness properties are represented as additional con-
straints in the CSP. If the CSP still has a solution once the new constraint is
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ocl_col_exists(Instances, Vars, Collection, Predicate, Result ) :-
% N = # of elements where Predicate evaluates to true
property_sat_count (Instances, Vars, Collection, Predicate, N),
#>(N, 0, Result). % Result = (N > 0)

% Count the number of Predicates that evaluate to true in the Collection
property_sat_count (Instances, Vars, Collection, Predicate, Result ) :-

% Apply Predicate to all elements of Collection

% Store the results in the list TruthValues

property_apply(Instances, Vars, Collection, Predicate, TruthValues),

Result #= sum(TruthValues). % Result is the sum of all the truth values

% Apply Predicate to each Element of Collection, store all outputs in the list Result
property_apply(Instances, Vars, Collection, Predicate, Result) :-

( foreach(Elem, Collection), % One Value per Elem in the Collection
foreach(Value, Result), % Result is a list of those Values
param(Predicate, Instances, Vars)
do

% Apply Predicate to Elem (Elem is added to the list
% of visible variables within Predicate)
apply(Predicate, [Instances, [Elem|Vars], Value]) ).

Figure 3.8: Code for the implementation of the existential quantification (code
related to suspensions has been removed for clarity).

ocl_col_one(Instances, Vars, Collection, Predicate, Result ) :-
property_sat_count (Instances, Vars, Collection, Predicate, N),
#=(N, 1, Result). % Result = ( N =1 )

ocl_col_forAll(Instances, Vars, Collection, Predicate, Result ) :-
property_sat_count(Instances, Vars, Collection, Predicate, N),
ocl_col_size(Collection, S), % S = Number of elements in the collection
#=(N, S, Result). % All elements should evaluate to true (N = S)

Figure 3.9: Code for the implementation of other existential quantifications
(code related to suspensions has been removed for clarity).
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added, we may conclude that the model satisfies the property. The set of cor-
rectness properties currently under consideration (and the additional constraint
they impose on the CSP) is the following:

Strong satisfiability: The model must have a finite instantiation where the
population of all classes and associations is at least one.
Formally: Va € {ClU As} : Size, > 0.

Weak satisfiability: The model must have a finite instantiation where the
population of at least one class is at least one.
Formally: ., Size, >0

Liveliness of a class ¢: The model must have a finite instantiation where the
population of ¢ is non-empty.
Formally: Size. >0

Lack of constraint subsumptions: Given two integrity constraints C; and
C5, the model must have a finite instantiation where C'; is satisfied and
(5 is not. Otherwise, we say that C; subsumes Cy. Cs could be removed.
Formally: Cy A =Cy

Lack of constraint redundancies: Given two integrity constraints C; and
Cs, the model must have a finite instantiation where only one constraint
is satisfied. Otherwise, constraints C; and Cy are called redundant, e.g.
both have always the same truth value. One of them should be removed.
Formally: (C; A —=C3) V (Cy A =C)

Notice that there is a relationship among some of these correctness proper-
ties, e.g. strong satisfiability implies weak satisfiability and the lack of constraint
subsumption among two constraints implies that none of them is redundant.
Checking properties with different degrees of granularity improves the feedback
provided to designers. For example, we are able to detect that two constraints
are equivalent or that one is stronger than another one: both pieces of informa-
tion can help designers in the revision of the constraints of the model.

Regarding the satisfiability properties, similar notions have been defined in
the literature. The difference among each notion depends on whether (a) it refers
to a specific class or all classes in a diagram, (b) it accepts empty instances
and (c) it accepts infinite instances. For example, in [7] weak satisfiability
is called diagram satisfiability, liveliness of a class is called satisfiability of a
specific class and strong satisfiability is called full satisfiability. Other works
such as [76] define the notions of consistency and finite satisfiability. A class
diagram is called consistent if and only if it has a legal non-empty instance
(possibly infinite), and it is called finite satisfiable if one of its legal instances is
also finite. Notice that strong satisfiability as defined here and finite satisfiability
are completely equivalent.

From a broader point of view, these correctness notions consider the intra-
model semantic consistency of UML class diagrams, according to the classi-
fication of the surveys [73,78]. This approach is not addressing inter-model
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consistencies, i.e. the relationship among the different diagrams modeling the
same system. We are also not considering other quality notions such as the
completeness of the class diagram with respect to the domain or its comprehen-
sibility, among others [78]. Furthermore, this section does not consider dynamic
properties that may appear in the definition of OCL operation pre-conditions
and post-conditions, such as the executability of operations or the reachability
of a specific system state, e.g. [30,61,93].

Model Validation

Apart from verifying that the model satisfies the previous correctness proper-
ties, designers may be also interested in checking these properties over specific
(partially defined) instantiations, e.g. checking satisfiability when a class ¢ has
an instance with a value v in an attribute a, to validate the behaviour of the
model in those situations. The declarative nature of our approach allows the
definition of additional constraints that characterise these desired states. For
example, in our running example, a designer may want to check whether it
is possible to find an instantiation where there is one paper with two student
authors. An invariant describing this property is the following:

context Paper inv PaperByTwoStudents:

Paper::alllnstances—>exists( p | p.authors—>size() = 2 and p.authors
—>forAll(r | r.isStudent) )

After adding this invariant to the list of integrity constraints of the model, all
instances generated by the solver will fulfill this partial specification. Therefore,
this method can also be used to perform validation of specific scenarios for the
model.

3.4.5 Generating the final CSP

The final CSP is obtained as a combination of the translation excerpts gener-
ated using the rules of section 3.4.2 (for the transformation of the UML/OCL
diagram) and section 3.4.4 (for the definition of the quality properties to be
verified). Remember that this generated CSP has a solution if and only if we
can determine that the model satisfies the selected quality properties.

For efficiency reasons the CSP is organized in two subproblems:

1. The Structural subproblem. In this first subproblem we define the cardi-
nality variables for the number of instances of each class and association
(the Size, variables), their domains and all constraints restricting them
plus the constraints corresponding to the correctness properties we want
to check. In this phase, the goal is to find a legal assignment of values
to these Size, variables. Each legal assignment represents the size di-
mensions (i.e. number of instances of each class and association) of a
possible correct instantiation of the model. This subproblem helps to fil-
ter incorrect cardinality assignments that would always result in invalid
instantiations, no matter the actual values given to the association and
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attribute variables. Therefore, if no assignment is possible at this phase
(e.g. due to design errors in the definition of multiplicity constraints),
the CSP is directly unfeasible. Instead, if this first subproblem is indeed
satisfiable we cannot yet guarantee the correctness of the model, it could
happen that we find impossible to construct a possible legal instantiation
of that size due to inconsistencies in the OCL constraints of the model.
The definition of this subproblem is similar to the previous work from [36].

2. The Global subproblem. In this second subproblem, the valid values as-
signed to the Size, variables are used to instantiate the corresponding
Instances, variables. Now the goal is to find legal values for properties
(either attributes or roles) of all elements in the Instances, lists, i.e. the
goal is trying to construct a valid instantiation with exactly Size; elements
for each element 4. Intuitively, the procedure tries to find a valid solution
for this second subproblem for each assignment satisfying the first one. If
there is no such solution, the CSP is determined as unfeasible.

Both phases follow the typical Constraint Programming outline: define the
variables and their domains, define the constraints on the variables, and finally,
find a legal assignment to these variables. In the Structural phase, we work on
cardinality variables (Size,), while in the Global subproblem we are interested
in the set of instances (Instances,) of classes and associations.

As an example, Fig. 3.10 depicts the CSP corresponding to a satisfiable ver-
sion of our running example”. The colored areas highlight the two subproblems
of the CSP. On the left of the figure, the organisation of several code excerpts
(some of them taken from previous figures) is described. On the right, a possible
search tree is depicted, where a dotted line shows the direction of the search.
In this tree, after an initial attempt, a solution to the Structural subproblem is
found, e.g. one paper, three researchers, one “writes” link and three “reviews”
links. However, it is not possible to complete the Global subproblem using those
values as cardinalities for the Imstances, variables. Therefore, it is necessary
to find another solution to the first subproblem, which can then be completed
to find a valid solution to the CSP, e.g. the same solution with two “writes”
links instead of one. The full definition of the CSP for the running example is
available in the Appendix.

Although this two-step search strategy might penalise the overall efficiency
of the process in certain cases (see Section 3.9), it has been chosen because of two
reasons. First, some CSPs, as the one corresponding to our running example,
can be immediately determined as unfeasible when considering the Structural
subproblem. Second, in the Global subproblem we limit the search to cardinal-
ity values satisfying the first one, avoiding irrelevant verifications. This means
that we can avoid instantiating classes and associations for scenarios in which
we know for sure that the cardinality constraints do not hold. However, a dis-
advantage of this approach is that some constraints in the Global subproblem

"Fig.3.2 becomes satisfiable if the multiplicities of manuscript and submission are changed
to 0..1. This version of the model is used to illustrate a successful search. There is more
information about this example in Section 3.8.
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Figure 3.10: Definition of the CSP for the running example showing the two sub-
problems, the Structural subproblem (upper part) and the Global subproblem
(bottom part)
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may affect the cardinality of the classes and associations. For example, let us
consider an OCL constraint of the form “T::alllnstances()—>size() = 77, stating
that there are 7 objects of type T. This constraint would appear in the second
subproblem, even though it should be constraining the appropriate Sizer vari-
able. Other constraints on the size of classes and associations are not so trivial,
like “T"::alllnstances()—>exists( ...)”, which requires there must be at least one
object of type T'. In these scenarios, the search will have unnecessary backtracks,
as the solution provided by the Structural phase will always be unfeasible when
it reaches the second phase. A way to avoid these redundant backtracks and
therefore improve the search is to reveal these implicit size constraints appearing
in OCL expressions using static analysis [113], e.g. Sizer = 7 and Sizer > 1 in
the previous examples. These additional size constraints could be added to the
first CSP to avoid getting unfeasible solutions caused by the OCL expressions.

3.5 From UML/OCL to Constraint Program-
ming: dynamic aspects

Once we have checked that the static aspects of the UML/OCL model satisfy a
minimum correctness level using the method presented in the previous section,
we can focus on the verification of its dynamic aspects.

In particular, this section extends the previous method with support for the
verification of the behavioural aspects of software models defined using the de-
sign by contract approach [112], where each operation is defined by means of a
contract consisting of a precondition (set of conditions on the operation input)
and a postcondition (conditions to be satisfied at the end of the operation).
In conceptual modeling, this is also known as the declarative specification of
an operation, in contrast to imperative specifications where the set of updates
produced by the operation on the system state is explicitly defined (see our
paper [89] for a lightweight method for the verification of imperative specifi-
cations). Our goal will be detecting defects in the definition of the operation
(e.g. potential inconsistent interactions with integrity constraints) rather than
checking whether an implementation fulfills the pre/postconditions. To do so,
we present a set of “reasonable” correctness criteria that any operation should
fulfill. For example, we will try to check if a precondition is so strong that it
cannot be satisfied by any state that fulfills the integrity constraints (e.g. a
precondition “a > 5” when the model includes the constraint “a < 3” is clearly
unsatisfiable). Designers can select their preferred set of criteria among the
predefined set of properties we propose.

As before, the verification will be driven by the discovery of examples/counterexamples.
First, the designer selects the criteria to be checked. The model, the integrity
constraints, the correctness criteria and the pre/postconditions will be trans-
formed into a Constraint Satisfaction Problem (CSP) [5,77] that can be solved
by current Constraint Programming solvers. The solution of the CSP, if there
is one, will be an example or counterexample that proves the criteria being an-
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alyzed. The example is given to the designer as a valuable feedback in the form
of an object diagram (so that he/she can understand it).

3.5.1 Declarative Operations in OCL: Basic Concepts

OCL is a formal high-level language used to describe properties on UML models.
It admits several powerful constructs like quantified iterators (forAll, exists) and
operations over collections of objects (union, select, includes, ...). The pattern
for specifying a declarative operation op in OCL is the following:

context TypeName::op(pl: Typel, ..., pN: TypeN): ResultType
pre Boolean expression (the precondition)
post Boolean expression (the postcondition)

Operations are always defined in the context of a specific type of the model.
The pre and post clauses are used to express the preconditions and postcon-
ditions of the operation contract. In the boolean expressions, the implicit pa-
rameter self refers to the instance of the TypeName on which the operation is
applied. Another predefined parameter, result, denotes the return value of the
operation if there is one. The dot notation is used to access the attributes of
an object or to navigate from that object to the associated objects in a related
type. The value of an accessed attribute or role in a postcondition is the value
upon completion of the operation. To refer to the value of that property at the
start of the operation, one has to postfix the property name with the keyword
@pre.

As an example consider the diagram of Fig. 3.11 aimed at representing a
set of web portals for selling the products of a company to a group of registered
customers, some of them classified as gold customers. The model includes two
textual integrity constraints and three operations. The invariant minStock en-
sures that all products have a stock of at least five units, while salesAmount
imposes that gold customers must have paid a minimum amount of 100000 eu-
ros in sales. Regarding the operations, newCustomer and addSaleLine create a
new customer and a new sale line in a sale, respectively. In OCL, the creation
of an object is indicated with the operation ocllsNew. Operation addSaleLine
also updates the stock of the product and the total amount of the sale. The
operator @pre in p.stock=p.stock@pre - quantity indicates that the stock of the
product has been decreased by quantity units with respect to the previous value.
RemoveGoldCustomer converts a gold customer with no sales into a plain one.

3.5.2 List of Correctness Properties for Dynamic models

Pre and postconditions of declarative operations must be defined accurately,
taking into account the possible interactions with the integrity constraints. For
instance, preconditions which are too strong may prohibit the execution of an
operation altogether (since none of the valid states of the system can satisfy the
precondition). This section presents a list of properties to determine whether
pre and postconditions are correctly defined.
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context Product inv minStock: self.stock > 5

context GoldCustomer inv salesAmount:
self.sale —>select(s | s.paid).cost —>sum() > 100000

context Customer::newCustomer(name:String, p: Portal): Customer
post result.oclIsNew() and result.name=name and result.portal=p

context Sale::addSaleLine(p: Product, quantity: Integer): SaleLine

pre p.stock > 0

post result.ocllsNew() and result.sale=self and result.product=p and
result.quantity=quantity and p.stock=p.stock@pre-quantity and
self.amount=self.amount@pre + quantity*p.price

context Portal::removeGoldCategory(c: Customer)
pre c.ocllsTypeOf(GoldCustomer) and c.sale—>isEmpty()
post not c.ocllsTypeOf(GoldCustomer)

Figure 3.11: Running example: class diagram, OCL constraints and operations.

In the definition of the correctness properties, we will use the following no-
tation. Given a model M, let S denote a snapshot of M, i.e. a possible instan-
tiation of the types defined in M. A snapshot S will be called legal, denoted
as Inv[S], if it satisfies all integrity constraints of M, including all textual OCL
constraints.

Given a declarative operation op, Pre,,[o0, P, S] denotes that the precondition
of op holds when it is invoked over an object o of an snapshot S using the values
in P as argument values for the list of parameters of op. For the sake of clarity,
we will assume that o is passed as an additional parameter in P, e.g. the first
one, expressing then the preconditions simply as: Pre,,[P,S]. S and P will be
referred collectively as the input of the operation.

To evaluate the postcondition, we also need to consider the return value and
the snapshot after executing the operation (considering new/deleted objects and
links, updated attribute values, etc.). The final snapshot and the return value
will be referred as the output of the operation. Then, Post,,[P, S > S, R] will
denote that the postcondition of operation op holds when S is the snapshot
before executing the operation, S’ is the snapshot after executing it, P is the
list of parameters and R is the return value.

According to this notation, the list of properties is defined as follows:
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e Applicability: An operation op is applicable if the precondition is satis-
fiable, i.e. if there is an input where the precondition evaluates to true.

3S : 3P : Inv[S] A Prey,[P,S]

e Redundant precondition: The precondition of an operation op is re-
dundant if it is true for any legal input.

(3S :Inv[S]) A (VS :VP:Inv[S] — Prey,[P,S))

e Weak executability: An operation op is weakly executable if the post-
condition is satisfiable, that is, if there is a legal input satisfying the pre-
condition for which we can find a legal output satisfying the postcondition.

35,58 : 3P : 3R : Inv[S] A Inv[S’] A Prey[P,S] A Post,,[P,S> S, R]

e Strong executability: An operation op is strongly executable if, for every
legal input satisfying the precondition, there is a legal output that satisfies
the postcondition.

VS : VP :38": AR : (Inv[S] A Pregy [P, S]) — (Inv[S'] A Post,, [P, SoS', R))

e Correctness preserving: An operation op is correctness preserving if,
given a legal input, each possible output satisfying the postcondition is
also legal.

VS, S : VP : VR : (Inv[S] A Prey, [P, S]) — (Postey|P, S>S’, R] — Inv[S'])

e Immutability: An operation op is immutable if, for some input, it is
possible to execute the operation without modifying the initial snapshot.

35 :3P: 3R : Inv[S] A Pre,,[P,S] A Post,,[P, S S, R

e Determinism: An operation op is non-deterministic if there is a legal
input that can produce two different legal outputs, e.g. different result
values or different final snapshots.

38,51,85 : 3P : 3Ry, Ry Inv[S] A Inv[S]] A Inv[S5] A Pre,,[P,S] A
Post,, [P, S > S1, R1] A Post,,[P, S >S5, Ra] A
((51#S85) V (B1# Ra) )

Studying these properties in the running example, we have, for instance,
that the precondition of addSaleLine is redundant since it is subsumed by the
integrity constraint minStock. Also, addSaleLine is weakly executable but not
strongly executable: for those states where p.stock-quantity<5 the final state
will violate the invariant minStock. The precondition of removeGoldCategory
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is not applicable since constraint salesAmount forces all gold customers to be
related to at least a sale. Finally, newCustomer is strongly executable but not
correctness preserving as it might create a gold customer (instead of a plain
one) with no sales, violating salesAmount.

It is important to remark that, in general, designers define underspecified
postconditions [112]. This means that, given an operation contract, there are
usually several final states that satisfy its postcondition. Therefore, most oper-
ation contracts will be flagged by our analysis as non-deterministic. To improve
the accuracy of the results, designers may want to provide postconditions which
are precise enough to characterize the exact set of desired final states. For basic
postcondition expressions, an educated guess of the designer’s intention can be
inferred by analyzing the initial ambiguous postcondition [19,26], and thus, it
would be possible to automatically generate a set of additional conditions to
define more precisely the desired final state. This is left as further work.

3.5.3 Verifying Operations with Constraint Programming

This subsection presents a systematic and automatic procedure to verify cor-
rectness properties of operation contracts using the constraint programming
paradigm.

As before, the key idea of our approach is to translate the model, together
with its integrity constraints, the desired correctness property and the opera-
tion to verify, into a CSP such that by checking whether the generated CSP
has a solution we can determine if the operation satisfies the property. Both
the translation procedure and the search of a solution for the CSP (performed
using existing CSP solvers) are completely automatic and, therefore, all the
verification process is transparent to the designer.

In short, with our translation procedure, the set of variables in the generated
CSP characterize a possible snapshot of the model, i.e. the variable values
represent the objects of the snapshot, their attributes values, their relations, etc.
Its constraints ensure that the variable values (i.e. the snapshot) are consistent
with the implicit structural UML constraints (e.g. all objects in a subtype must
be also instance of its supertype), graphical constraints (e.g. multiplicities) and
textual OCL constraints. Pre and postconditions of operations and correctness
properties are translated as additional constraints.

Given this set of variables, domains and constraints, the final CSP is orga-
nized as a sequence of subproblems to be solved by the constraint solver in order
to find a solution for the CSP, and thus, prove the desired correctness property.
The exact combination of these subproblems in the CSP depends on the chosen
property. For properties regarding the operation precondition, the resolution
of the CSP first searches for a legal snapshot which satisfies the operation pre-
condition (this, for instance, proves the applicability of the operation). If no
solution is found, the solver concludes that the property is not satisfied. For
properties involving postconditions, once we have a legal instance that satisfies
the precondition, the solver must search for a second legal snapshot that satis-
fies the postcondition (see Figure 3.12). As we will see, for some properties we
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Figure 3.12: Analysis of the weak executabiliy property.

invariantMinStock(Snapshot) : —

/% Get the list of Objects in Snapshot of type Product
J P yp
getObjects(Snapshot, °‘Product’’, Objects),

( foreach(Object, Objects) do 7 Iterate over all objects
/% Evaluate the invariant expression using this object as ‘‘self’’
evalRootMinStock(Snapshot, [Object], Result),
% The invariant must evaluate to true
Result #=1).

evalRootMinStock( Snapshot, Vars, Result ) :-
attribStock( Snapshot, Vars, X ), 4 X = attridb value

const5( Snapshot, Vars, Y ), % Y = constant
#>=(X, Y, Result). /% Result = X >=Y
const5( _, _, Result ):- Result #= 5.

Figure 3.13: Translation of the invariant minStock (top) and some subexpres-
sions (bottom).
will search for solutions that falsify the pre/postcondition expressions instead.
The encoding of the UML class diagram and the OCL constraints in the
CSP is performed as shown in the previous section. Here we show how to
encode as well the operations’ pre and postconditions in the CSP and how they
are combined, depending on the selected correctness property, to generate the
final CSP that will be used to prove the property.

Translation of OCL operation contracts

Operations introduce new challenges in this translation: the list of parameters
of the operation, the result value, and the complexity of studying two snapshots
at once when analyzing postconditions.

Translation of preconditions

The boolean OCL expression of a precondition is basically translated follow-
ing the same procedure explained above for the translation of invariant bodies.
However, there are two differences regarding how and when the precondition
expression is evaluated: the parameters and the quantification.

In the analysis of a precondition, it is necessary to consider the possible
value of the operation parameters. For parameters of a basic type (integer,
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float, boolean, string) designers must define their possible finite domain, for in-
stance defining a lower and upper bound. Parameters whose type is one of the
classes of the model (as the self parameter) can only refer to an object existing
in the snapshot, so their value is already constrained by the valid instances of
the snapshot where the operation is invoked. When evaluating a precondition,
parameters become additional variables of the CSP, and their values are discov-
ered by the solver as a part of the search for a solution to the CSP. For instance,
when checking the applicability of an operation, the solver will automatically try
several possible combinations of parameter values until it finds a combination
(if any) that satisfies the Prolog rule generated for the precondition.

Contrary to invariants, properties on preconditions only require to find a
single combination of a valid state and a possible assignment for the opera-
tion parameters that satisfy the precondition. Therefore, preconditions will be
translated into a rule which simply evaluates the precondition body, invoking
the rule for the topmost operator. To ensure that the rules for the precondition
body have access to all parameter values during the rule evaluation, the list of
visible variables for these rules (second argument of the Prolog rule) is initialized
with the list of parameter values. In this way, accessing a parameter within the
expression is equivalent to accessing any other variable: the rule only needs to
be aware of the position of each parameter in the variables list. As an example,
the precondition rule for addSaleLine will be defined as follows:

preconditionAddSaleLine(Snapshot, Parameters, Result) : —

/% Result = truth value of evaluating the precondition

evalRootExpr(Snapshot, Parameters, Result).

where evalRootEzpr represents the rule for the root node of the precondition
expression. The output Result value, reporting whether the given input (i.e. the
self object plus the other parameters) satisfies the precondition, will be used
later on to determine the satisfaction of correctness properties for the operation.

Translation of postconditions

Two new factors in the translation of postconditions are the return value
and the relationship between the two snapshots representing the initial and
final states.

In our translation, the return value will simply become another variable
in the list of visible variables, just like self or the other parameters in the
precondition.

Relationships between the initial and the final state are expressed by means
of the ocllsNew and, specially, the @pre OCL operators. OcllsNew highlights
that an object should exist in the final state but not in the initial one; and
@pre is used to retrieve the value of a subexpression in the initial state. Thus,
the Prolog implementation of these two operators needs to receive an additional
argument: the snapshot for the initial state. To avoid changing the general
rule pattern due to this extra argument, this initial state is stored in the global
variable initialstate. This variable will be conveniently accessed within the
subrules for these two operators. Translation of all other OCL operators in the
postcondition expression is not changed from previous translations steps. They
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:— local reference(initialstate).
postconditionAddSaleLine(InitialState, FinalState,
Parameters, RetValue, Result) : —
7% Add the return value and parameters to the list of visible vars
append([RetValue], Parameters, Variables),
/% Store the initial state, needed in oclIsNew and @pre nodes
setval(initialstate, InitialState),

/% Result = truth value of evaluating the postcondition

evalRootExpr(FinalState, Variables, Result).

Figure 3.14: Translation of the OCL postcondition of operation addSaleLine.

ocl_isNew(FinalState, 0id, TypeName, Result) :-
/% Recover the initial state from the global variable
getval(initialstate, InitState),
% Get the list of objects before and after the operation
getObjects(InitState, TypeName, ObjectsBefore),
getObjects(FinalState, TypeName, ObjectsAfter),
% Check if 0id ezists before/after the operation
existsObjectWith0id(ObjectsBefore, 0id, ExistsBefore),
existsObjectWith0id(ObjectsAfter, 0id, ExistsAfter),
/% Result = ExistsAfter and not EzistsBefore

and( ExistsAfter, neg ExistsBefore, Result).

Figure 3.15: Translation of the OCL operator ocllsNew.
are just evaluated on the particular snapshot given as argument to their Prolog
rule, it does not matter if it represents the initial or the final state.

To sum up, the definition of the rule for the postcondition of the operation
addSaleLine is shown in Figure 3.14. The initialstate variable will then be used
in the rules evaluating ocllsNew and @pre nodes appearing in postcondition
expressions. We provide the rule for ocllsNew as an example in Figure 3.15. It
determines if the object with the Oid value given as an argument is an object
that did not exist before executing the operation.

Translation of correctness properties

As a last step, each correctness property (or its negation) is translated as a new
CSP constraint restricting the result values returned by the pre and postcon-
dition rules such that finding a solution to the CSP with this new constraint
suffices to prove the property.

Whether to use the property or its negation depends on the quantification
used in the property formalization, ezxistential or universal (see Section 3.5.2).
Existentially quantified properties can be proved by finding an example, i.e. a
case where the property is satisfied. For example, applicability can be proved
by finding a legal input that satisfies the precondition. Universally quantified
properties can be disproved by finding a counterezample. For instance, redun-
dancy can be disproved by finding a legal snapshot that does not satisfy the
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weakExecutabilityAddSaleLine (Example) :-
Example = [InitState, FinalState, Parameters, RetValue],
findInitialState(InitState, Parameters),
findFinalState(InitState, FinalState, Parameters, RetValue).
findInitialState(InitState, Parameters) :-
% Definition of wvariables, domains, graphical integrity constraints
/% Textual integrity constraints
invariantMinStock(InitState), invariantSalesAmount(InitState),
7 Precondition
preconditionAddSaleLine(InitState, Parameters, ResultOfPre),
ResultOfPre #= 1, / Weak executability
% Now find a solution satisfying all these constraints
labeling([InitState, Parameters]).
findFinalState(InitState, FinalState, Parameters, RetValue) :-
% Definition of wvariables, domains, graphical integrity constraints
/% Textual integrity constraints
invariantMinStock(FinalState), invariantSalesAmount(FinalState),
7% Postcondition
postconditionAddSaleLine(InitState, FinalState, Parameters,
RetValue, ResultOfPost),
ResultOfPost #= 1, / Weak ezecutability
7% Now find a solution satisfying all these constraints

labeling([FinalState, RetValuel).

Figure 3.16: CSP generated for checking weak satisfiability of addSaleLine. The
labeling operator is a possible backtracking implementation offered by the con-
straint solver that attempts to assign values to the given list of input variables.
If the assignment does not satisfy all the stated CSP constraints preceding the
labeling, a new assignment is tried until the solver finds a solution or determines
that no solution exists.

precondition Similarly, the lack of (counter)examples can be used to (dis)prove
the property.

The selected property also influences how the final CSP is organized as
a combination of the rule excerpts generated during the previuos translation
steps. For properties on preconditions, postcondition rules are not included.
For properties on postconditions, the CSP is split up into two subproblems (see
Figure 3.12). The first one (findInitialState) tries to find a legal snapshot that
satisfies the precondition rule. This initial snapshot is then given as an argument
to the second subproblem (findFinalState), in charge of finding a second legal
snapshot satisfying (or not) the postcondition to prove the property. As an
example, Figure 3.16 sketches the final CSP to determine whether addSaleLine is
weakly executable. Other properties imply adding new constraints/subproblems
to the CSP. For instance, immutability requires a new constraint imposing the
equality between the initial and final states.
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3.6 Verification and Validation of Declarative
Model-to-Model Transformations Through
Invariants

The same principles developed for the verification of UML/OCL models can be
adapted to the verification of model transformations, the other key elemenet in
any MDE approach.

There are two main approaches to M2M transformation: operational and
declarative. The former is based on rules or instructions that explicitly state how
and when creating the elements of the target model from elements of the source
one. Instead, in declarative approaches, some kind of visual or textual patterns
describing the relations between the source and target models are provided,
from which operational mechanisms are derived e.g. to perform forward and
backward transformations. These declarative patterns are complemented with
additional information to express relations between attributes in source and
target elements, as well as to constrain when a certain relation should hold.
The Object Constraint Language (OCL) standard [83] is frequently used for
this purpose [85].

The increasing complexity of modelling languages, models and transforma-
tions makes urgent the development of techniques and tools that help designers
to assure transformation correctness. Whereas several notations have been pro-
posed for specifying M2M transformations in a declarative way [1, 65, 85, 96],
there is a lack of methods for analysing their correctness in an integral way,
taking into account the relations expressed by the transformation, as well as the
meta-models and their well-formedness rules.

In this section we propose verification and validation techniques for M2M
transformations based on the analysis of a set of OCL invariants automati-
cally derived from the declarative description of the transformations. These
invariants state the conditions that must hold between a source and a target
model in order to satisfy the transformation definition, i.e. in order to repre-
sent a valid mapping. We call these invariants, together with the source and
target meta-models, a transformation model [17]. To show the wide applicabil-
ity of the technique, we have studied how to create this transformation model
from two prominent M2M transformation languages: Triple Graph Grammars
(TGGs) [96] and QVT [85]. In this section we will limit the description to the
TGG case. See [28] for details on the QVT part.

Once the transformation model is synthesized, we can determine several cor-
rectness properties of the transformation by analysing the generated transforma-
tion model with any available tool for the verification of static UML/OCL class
diagrams (see [4,23,91,99]) though, obviously, we will use our own UMLtoCSP
approach for that. In particular, we have predefined a number of verification
properties in terms of the extracted invariants, which provide increasing confi-
dence on the transformation correctness. For example, we can check whether a
relation or the whole transformation is applicable in the forward direction (i.e.,
whether there is a source model enabling a relation), forward weak executable
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(if we can find a pair of source and target models satisfying the relation and
the meta-model constraints), forward strong executable (if a relation is satis-
fied whenever it is enabled), or total (whether all valid source models can be
transformed).

The transformation model can also be used for validation purposes. Given
the transformation model, tools like UMLtoCSP can be used to automatically
generate valid pairs of source and target models, or a valid target model for a
given or partially specified source model. These generated pairs help designers in
deciding whether the defined transformation reflects their intention, thus helping
to uncover transformation defects. Additionally, we have devised heuristics to
partially automate the validation process by means of generating potentially
relevant scenarios (representing corner cases of the transformation) that the
designer may be specially interested in reviewing. Refer to [28] for details on
our validation strategies.

3.6.1 Triple Graph Grammars

Triple Graph Grammars (TGGs) [96] were proposed by A. Schiirr as a formal
means to specify transformations between two languages in a declarative way.
TGGs are founded on the notion of graph grammar [95]. A graph grammar
is made of rules having graphs in their left and right hand sides (LHS and
RHS), plus the initial graph to be transformed. Applying a rule to a graph
is only possible if an occurrence of the LHS (a match) is found in it. Once
such occurrence is found, it is replaced by the RHS graph. This is called direct
derivation. It may be possible to find several matches for a rule, and then one
is chosen at random. The execution of a grammar is also non-deterministic: at
each step, one rule is randomly chosen and its application is tried. The execution
ends when no rule can be applied.

Even though graph grammar rules rely on pre- and post-conditions, and on
pattern matching, when used for model-to-model transformation, they have an
operational, unidirectional style, as the rules specify how to build the target
model assuming the source already exists. On the contrary TGGs are declara-
tive and bidirectional since, starting from a unique TGG specifying the synchro-
nized evolution of two graphs, it is possible to generate forward and backward
transformations as well as operational mechanisms for other scenarios [69].

TGGs are made of rules working on triple graphs. These are made of
two graphs called source and target, related through a correspondence graph.
Any kind of graph can be used for these three components, from standard
unattributed graphs (V;E;s,t: E — V) to more complex attributed graphs
(e.g., E-graphs [47]). The nodes in the correspondence graph (the mappings)
have morphisms® to the nodes in the source and target graphs. Triple mor-
phisms are defined as three graph morphisms that preserve the correspondence
functions. They are used to relate the LHS and RHS of a TGG rule, to identify
a match of the LHS in a graph, and to type a triple graph.

8 A morphism corresponds to the mathematical notion of total function between two sets,
or in general between two structures (graphs, triple graphs, etc.)
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Figure 3.17: A triple graph example

Definition 1 (Triple Graph and Morphism) A triple graph TrG = (Gs,
G.,Giyes: Vg, = Vg, ct: Vg, — Vg,) is made of two graphs G4 and Gy called
source and target, related through the nodes of the correspondence graph G..

A triple graph morphism f = (fs, fe, ft) : TrG' — TrG? is made of three
graph morphisms f.: GL — G2 (with x = {s, c,t}) such that the correspondence
functions are preserved.

In the previous definition, Vi, is the set of nodes of graph G,. Morphisms
cs and ct relate two nodes x and y in the source and target graphs iff In € Vi,
with ¢s(n) = = and ct(n) = y. We often depict a triple graph by (G, G., Gy),
and use TrG, (for x = {s,¢,t}) to refer to the  component of TrG. In this
way, (Gs,Ge, Gt)s = Gs.

Fig. 3.17 shows a triple graph, taken from the class-to-relational transfor-
mation [85], which we use as a running example. The source graph is a class
diagram with a package and a class, the target one is a relational schema model
with one schema node, and the correspondence includes a mapping between the
package and the schema. Note that “source” and “target” are relative terms,
as we could also use source for the relational schema and target for the class
diagram.

A triple graph is typed by a meta-model triple [56] or TGG schema, which
contains the source and target meta-models and declares allowed mappings be-
tween both. Fig. 3.18 shows the meta-model triple for our running example.
The correspondence meta-model declares five classes: P2S maps packages and
schemas, A2Co maps attributes and columns, and CT and its specializations C2T
and C2TCh relate classes and tables. In particular C2TCh is used to relate a
children class with the table associated to its parent class. The dotted arrows
specify the allowed morphisms from the correspondence to the source and target
models, and can be treated as normal associations with cardinality 1 on the side
of the source/target class. The meta-model includes OCL constraints ensuring
uniqueness of attribute names for each class and table, as well as same persis-
tence for a class and its children. As an example, the triple graph in Fig. 3.17
conforms to the meta-model in Fig. 3.18.

A typed triple graph is formally represented as (TrG, type: TrG — MM),
where the first element is a triple graph and the second a morphism to the meta-
model triple. Morphisms between typed triple graphs must respect the typing
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Figure 3.18: Example meta-model triple

morphism and can take inheritance into account, as in [56]. For simplicity of
presentation, we omit the typing in the following definitions.

Besides a meta-model triple, a M2M transformation by TGGs consists of a
set of declarative rules that describe the synchronized evolution of two models.
Rules have triple graphs in their LHS and RHS and may include OCL attribute
conditions. This contrasts with the usual approach of using attribute computa-
tions in the rules instead of conditions [47]. We use the latter as it poses some
benefits that will be shown later on when operationalising the rules. Declarative
rules are non-deleting because they describe how models are created, hence they
are defined by an injective triple morphism.

Definition 2 (Declarative TGG Rule) A declarative TGG rulep = (r: L —
R, ATTconp) is made of two triple graphs, L = (L, L., L) and R = (R, R., Ry),
an injective triple morphism r between L and R, and a set ATTconp of OCL
constraints over R, expressing attribute conditions.

Fig. 3.19 shows four example TGG declarative rules using a compact nota-
tion that presents together L and R. The elements created by the rules (R-L)
are marked as {new}, and the preserved elements are untagged. As an exam-
ple, rule Class-Table is shown in the upper row first in extended and then in
compact notation.

Rule Package-Schema declares that every time a package is created, a schema
with the same name is created simultaneously, and vice versa. Rule Class-Table
specifies that creating a persistent class in a package already related to a schema
should create a table with the same name in that schema, and vice versa. In
this case the attribute condition demands the class to have no parent. Note that
we do not demand the LHS/RHS of rules to satisfy the integrity constraints of
the meta-model. For example the RHS of the rule Class-Table is not a valid
model because, according to the meta-model in Fig. 3.18, each table should
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Class-Table (extended notation) Class-Table (compact notation)
R R | p:Package |- | m1:P2S ‘ -1 s:Schema|

L L L |;;Package |< l ncﬂ:PZS ] >{;:Schema‘

[c:cwass}q [ m2:.C2T ‘ 4@ |

{new} {new}

{new} {new} {new}
‘ c:Class }4 (”e‘”)| m2:C2T ‘("EWW&bIe ‘

‘;Paokage}- [ ;17PZS ‘ —|s:Schema‘ >

ATTRIBUTE CONDITION: c.name=t.name

: ATTRIBUTE CONDITION: c.name=t.name
and c.is_persistent and c.parent->isEmpty()

and c.is_persistent and c.parent->isEmpty()

ChClass-Table
Attribute-Column
‘ ¢:Class }- | m1:.CT } ><t:Table|
ndw} |c:CIass|< | m1:.CT } -(I‘Table‘ Package-Schema
= LA [fnew) cliCols | fnew
parent {new} (nowh {new} (newd {new}
{new} new} {new} . new) . new, .
p:Package m:P2S s:Schema
e new (new} |a:A(mbute )4 (”ew)|m2:A2Co}<"ew) -{ co:Column ‘ | }‘ ! | >| |
NeWll m2:c2TCh ATTRIBUTE CONDITION
- ATTRIBUTE CONDITION: a.name=co.name p.name=s.name

Figure 3.19: Some declarative TGG rules for the class-to-relational transforma-
tion.

be connected to at least one column. When executing a transformation it is
acceptable to go through some intermediate models that are inconsistent with
respect to the meta-model’s constraints. What is important is that the final
models are consistent.

For non top-level classes, the rule ChClass-Table is used instead of rule
Class-Table. This rule specifies that creating a child class of a class al-
ready related to a table should map the child class to the same table. Finally,
Attribute-Column synchronously creates attributes and columns for classes re-
lated to tables.

A TGG is bidirectional as rules do not specify any direction, but syn-
chronously create and relate source and target elements. A TGG defines the
language of all triple graphs that satisfy the meta-model constraints and that
can be derived using zero or more applications of the grammar rules. Please
note that some derived graphs may not conform to the meta-model, and hence
are not part of the language.

In practice, one does not use declarative TGG rules to create source and tar-
get models at the same time, as it would require a synchronous coupling of both
models. Instead, so-called operational rules are derived for different tasks, e.g.
to perform forward (source-to-target) and backward (target-to-source) trans-
formations. A forward transformation creates a set of target elements that
correspond to a given set of initial source model elements, and conversely with
a backward transformation. The algorithm to derive such rules was proposed
in [96] (see also [69] for the description of operational rules for other purposes).
Next we present an extension of the algorithm that handles OCL attribute con-
ditions. We will use this definition in order to derive the OCL invariants in the
next section.

Definition 3 (Operational TGG Rule) Given the declarative TGG rulep =
(r: (Ls,Ley L) — (Rs, Re, Ry, ATTconD), the following operational rules can
be derived:
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declarative TGG rule: operational TGG forward rule:
LHS (L) RHS
| p:Package }1 | m1:P2S ‘ -{S:Schema |
. ‘Q:Package }4 ‘ m1:P2S | %S:Schema‘ ‘Q:Package}- ! m1:P2S } —(s:sohema|
(new) {new) | compile
) (fwd)
new o | o o .

‘cCIass |_{new)| m2 CZT ‘ new)_{ e ‘ ‘C.C\ass|< | m2:C2T } >| t:Table |
ATTRIBUTE CONDITION: c.name=t.name and ATTRIBUTE CONDITION: ATTRIBUTE CONDITION:

c.is_persistent and c.parent->isEmpty() c.is_persistent and c.parent->isEmpty() t.name=c.name

| p1: Package {m1 P28|-| s1: Schema ‘ ‘ p1: Package |m1 st}n‘ s1: Schema |
[name= Company [name=*Company" | [name= Company name= “Company”

cl: Class ol: C\ass o [m2cot] o[ tTable |
name= “Person” name= “Person” name= “Person”
is_persistent= true is_persistent= true

Figure 3.20: Derivation by operational TGG forward rule

o Forward: ? = (r": (Rs, L, Lt) — <RS,RC,Rt>,ATi LHS, ATT RHS)-
o Backward: p = (': (Lg, Lo, Ry) = (R, Re, Ry), ATT rs, ATT rps).

evv
where ATT 1 1s (resp. ATTrps) contains the part of the ATTconp OCL
expression concerning elements of the LHS of the forward (resp. backwards) op-

erational rule only. ATT rus (resp. ATT grus) contains the part of ATTconD
not included in ATT s (resp. ATTLus).

The operational rules enforce the pattern given by the declarative rule, thus
their RHS is equal to the RHS of the declarative rule. In the forward case, the
LHS assumes that the source graph already exists, whereas in the backward
case the existence of the target graph is assumed. In the rest of the section, we
use Ly and Lp to refer to the LHS of the forward and backward rules. The
conditions in ATTconp are split in those to be checked on the LHS before
rule application (ATTys and WLHS) and those to be checked after rule
application (ATT rys and ATT rys).

As an example, the upper row of Fig. 3.20 shows the operational forward
rule derived from the declarative rule Class-Table. The forward rule assumes
that the package p has a class ¢ and is related to a schema s, and then creates a
new table. The figure shows the application of the rule to the graph of Fig. 3.17
resulting in a triple graph H that contains a newly created table in its target.
Note that this resulting target graph does not satisfy the meta-model constraints
because each table needs to have at least one column. Thus, one can infer
that the transformation is not total, as classes without attributes cannot be
transformed into a valid model. This simple example shows the necessity of
providing automatic means to check properties of rules and transformations.

Our definition of declarative rule does not use attribute computations as
usual in the literature [47], but declarative attribute conditions ATTconp.
The advantage is that no algebraic manipulation is needed when generating
the operational rules, but just to split the original conditions in those to be
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checked in the LHS (ATT 15, ATT srs) and the RHS (ATT rirs, ATT rirs).
When this is implemented in practice, we can use a constraint solver to resolve
attribute values. Previous approaches perform algebraic manipulation so that
the attribute values for the created objects could be calculated from the ones
in the LHS. For instance, in the presented example, we would have had to
assign the name of the class to the name of the newly created table. Although
in this case it is just an assignment, in general such algebraic manipulations
present practical problems because they are difficult to automate. Note however
that relying purely on constraint solving at the operational level may present
computational efficiency problems in some cases. Of course, there are several
tools and approaches that allow embedding OCL in normal graph grammar rules
(i.e., not in TGG rules), like VMTS [72] and Fujaba [98], to express attribute
conditions and computations.

Next section shows how we avoid algebraic manipulation of attribute ex-
pressions by compiling the declarative TGG rules into OCL invariants (instead
of into operational rules) and using a constraint solver to actually perform and
analyse the transformation. For this purpose, rules are interpreted as constraints
(similar to [42]) or invariants that a pair of models should satisfy.

3.6.2 Extracting OCL Invariants from Declarative TGG
Rules

Our verification approach for M2M declarative transformations is based on the
analysis of the transformation model [17] derived from the transformation spec-
ification. The transformation model is made of the source and target meta-
models (that can be easily expressed as UML class diagrams) plus the set of
invariants that must hold between the source and target models in order to
satisfy the transformation definition. These invariants must guarantee that the
target model is a valid transformation of the source according to the set of TGG
rules, and similar for the target.

In this section we present a procedure that creates invariants capturing the
semantics of the TGG rules. This procedure can be regarded as a M2M trans-
formation itself between the TGG and UML/OCL metamodels.

The invariants must ensure that each rule p is satisfied in the model. Hence,
we introduce two concepts: rule enabledness and rule satisfaction. Intuitively,
a declarative rule is source-enabled (resp. target-enabled) in a given graph if
there exists some match of the LHS of its associated forward operational rule
(resp. backward rule) in the graph.

Definition 4 (Enabledness of Rule) Given the declarative TGG rule p =
(r: (Ls,Ley L) = (Rs, Rey Re), ATTconp) and a triple graph G:

e p is source-enabled if Im: Lr — G, and m(LFp) satisfies Xﬁws as-
suming the identification of objects and links induced by m and using G
as context. Given a morphism m, we write G Fp, p D if m enables p
source-to-target in G.
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e p is target-enabled if Im: L — G, and m(Lpg) satisfies mLHS as-
suming the identification of objects and links induced by m and using G
as context. Given a morphism m, we write G b, p p if m enables p
target-to-source in G.

As an example, the declarative rule Class-Table in Fig. 3.20 is source-
enabled in triple graph G because there is an occurrence of the LHS of its
operational forward rule in G. On the contrary, the rule is not target-enabled
because the LHS of the operational backward rule would have needed a table
in the target graph to be matched. Hence we have G t-,, p Class-Table and
G ¥, Class-Table. However the rule is source- and target-enabled in H.

Satisfaction of a rule involves checking both forward and backward satisfac-
tion and is useful to ensure that two models are actually synchronized according
to the rule. Intuitively, forward (resp. backward) satisfaction requires that the
target (source) model satisfies the RHS of the rule for each match where the
rule is source- (target-) enabled. We will use the notion of satisfaction in our
algorithm to generate invariants.

Definition 5 (Satisfaction of Rule) Given the declarative TGG rule p =
(r: (Ls,Ley L) = (Rs, Rey Re), ATTconp) and a triple graph G:

o p is forward-satisfied in G, written G = p, if Vm: Lp — G s.t. Gl p
p, then Am': R — G with m = m/ or s.t. m/'(G) satisfies ATTconD
assuming the identification of objects and links induced by m and using G
as context.

o p is backward-satisfied in G, written G =g p, if Vm: Lp — G s.t. G, B
p, then Im': R — G with m = m/ or s.t. m/(G) satisfies ATTconD
assuming the identification of objects and links induced by m and using G
as context.

e p is satisfied in G, written G =p, if G Erp pANG EBp

Thus, a rule is forward-satisfied, if for each morphism where the rule is
source-enabled, there is an occurrence m’ of the RHS which preserves the iden-
tification of objects and links (m = m' o r) and satisfies the OCL constraints
in ATTconp- As an example, rule Class-Table in Fig. 3.20 is not forward-
satisfied in G, but it is in H. The rule is backward-satisfied in both G and
H, in the first case trivially because the rule is not target-enabled. As we
have that H = Class-Table and H |=p Class-Table then we have H |=
Class-Table, or in other words, H contains two synchronized models accord-
ing to Class-Table.

In terms of the previous definitions, the invariants to be extracted for each
rule p are responsible for:

a) Locating each occurrence where p is source-enabled (see Definition 4).

b) Locating each occurrence where p is target-enabled (see Definition 4).



CHAPTER 3. MODEL VERIFICATION RESEARCH LINE 58

¢) Ensuring that the elements of each occurrence found in a) and b) are
connected to mapping objects according to the RHS of p.

d) Ensuring that the mapping objects connect elements that satisfy p (see
Definition 5).

Next we describe our extraction procedure and the structure of the gener-
ated invariants. Our procedure makes two assumptions: (i) all rules create at
least one element in the correspondence graph and (ii) each type of mapping
is created by at most one rule. Given a rule, the first two steps in the proce-
dure (see next definition) add invariants to every node n in the source or target
graphs of the RHS that is connected to a newly created correspondence node
m. This corresponds to the items a), b) and ¢) in the previous list. Step 3 in
the procedure adds the invariant to every correspondence node m created by
the rule (item d)).

Definition 6 (Invariant Extraction) Given a declarative TGG rule p =
(7’: <L57 LC7 Lt> — <R57 Rm Rt>7 ATTCOND):

1. Vn € Vg, s.t. Im € Vg, —r(Vy,) with cs(m) = n, add an invariant named
p to type(n).

2. ¥n € Vg, s.t. Im € Vg, —r(VL.) with ct(m) = n, add an invariant named
p to type(n).

3. Vm € Vg, —r(VL,), add an invariant named p to type(m).

Invariant p in the source checks that for each occurrence where the rule is
source-enabled, the rule is satisfied. According to Definition 4, the rule is source-
enabled it there exists an occurrence of the LHS of the forward rule L satisfying
the terms in Xﬁ rus- This is actually checked by a helper query operation
named p-enabled(...). If such query operation returns true, then the invariant
p ensures that this occurrence is connected to all required objects needed to
satisfy the rule. This is performed by a helper operation p-mapping(...) placed
in the created correspondence node. This operation checks the object graph
satisfies the structure of the RHS and the OCL constraints in ATTconp, Similar
to Definition 5. Symmetrically, the invariant in the target ensures that each
occurrence where p is target-enabled satisfies the rule. As both invariants are
similar, we only show the structure of p for the source elements.

Definition 7 (Invariant for Source Elements) Given a declarative TGG rule
p = (r: (Ls,L¢, Ly) — (Rs,Re, Ry, ATTconD), then Vn € Vg, s.t. Im €
Ve, —r(Vi.) with cs(m) = n, the following invariant is generated:
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context type(n) inv p:

type(n;) == allInstances()—> for All(n;]|

type(n;) :: allInstances()—> for All(n,]...
if self.p-enabled(n;,n;,... ) then
type(ny,) :: allInstances()— > exists(n,|
type(ny) = alllnstances()— > exists(ny...

type(m) :: allInstances()— > exists(m]...
M.p-mapping (N, nj, ..., Ny, Ny, ...) endif...))...))

}vnk eV, —{n}

}Vnw eVip — T(VLF)

context type(n)::p-enabled(n; : type(n;), n;: type(n;),...)
body n;.role;—>includes(n;)
and

and ATi LHS

where Ep,,. is the set of edges in L, role; is the role in the meta-model that
allows navigating from n; to n;. If some edge has n as source or target we use
the reserved word self to refer to n in the expression.

}VeGELF s.t. ni@eﬁnj

Note that the query operation p-enabled receives as parameters the objects
in Ly, and then checks that they are connected according to Ly and that they
satisfy ATT' 1 ps. If association end role; has cardinality 1, then we do not
use n;.role;—>includes(n;) but simply n,.role; = n;. The invariant for the
target elements is generated in the same way, but considering nodes n € Vg,
and then traversing the graph Lp. For nodes created in the correspondence
graph, invariants are generated as follows.

Definition 8 (Invariant for Mappings) Givenp = (r: (Ls, L., Lt) — (Rs, Re, R), ATTconD),
then ¥n € Vg, — r(Vy,) the following invariant is generated:

context type(n) inv p:
type(n;) :: allInstances()—>exists(n,|

type(n;) :: allInstances()—>exists(n,]... }Vnk € Vi —{n}

n;.role;—>includes(n;) and... }Veer(BEL) st ny&e 5 n;
...and sel f.p-mapping(n;,n;, ...)...)...)
context type(n)::p-mapping(n; : type(n;), n;: type(n;),...)
body n;.role;—>includes(n;)

and...
...and ATTCOND

Ve € Er —r(EL) s.t. n; & e N n;

Note that the main body of the invariant checks the existence of the node
in the RHS and the edges in the LHS. Then, the query operation checks the
existence of the remaining edges in the RHS and the conditions in ATTconD-

Let us consider the example rules in Fig. 3.19. From rule Class-Table we
generate invariants for the class, the table and the C2T mapping, because the
latter is created and connected to the class and the table. Source-enabledness is
checked by the class’s Class-Table-enabled operation, whereas actual satisfac-
tion is checked by the Class-Table-mapping operation in the correspondence
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node. A similar invariant for the table ensures that whenever the rule is target-
enabled, it is actually satisfied.

context Class inv Class-Table:

Package :: allInstances()—> for All(p|
P2S :: allInstances()—> for All(m1]

Schema :: allInstances()—> for All(s|

if self.Class-Table-enabled(p,ml,s) then
Table :: allInstances()—>exists(t|
C2T :: allInstances()—>exists(m?2]
m2.Class-Table-mapping(p,ml, s, self,t))) endif)))

context Class::Class-Table-enabled(p:Package, m1:P2S, s:Schema)
body sel f.package = p and ml.package = p and ml.schema = s
and self.is_persistent and sel f.parent—>isEmpty()

context C2T inv Class-Table:
Package :: allInstances()—>exists(p|
P2S :: allInstances()—>exists(ml|
Schema :: allInstances()—>exists(s|
Table :: allInstances()—>exists(t|
Class :: allInstances()—>exists(c|
ml.package = p and ml.schema = s
and sel f.Class-Table-mapping(p,ml,s,c,t))))))

context C2T::Class-Table-mapping(p:Package, m1:P2S, s:Schema,
c:Class, t:Table)
body c.name = t.name and t.schema = s and c.package = p and sel f.class =
c
and sel f.table =t and c.is_persistent and c.parent—>isEmpty()

context Table inv Class-Table:

Package :: allInstances()—> for All(p|
P2S :: allInstances()—> for All(m1]

Schema :: allInstances()—> for All(s|

if self.Class-Table-enabled(p,ml,s) then
Class :: allInstances()—>exists(c|
C2T :: allInstances()—>exists(m2]
m2.Class-Table-mapping(p,ml, s, c, self))) endif)))

context Table::Class-Table-enabled(p:Package, m1:P2S, s:Schema)
body self.schema = s and m1l.package = p and ml.schema = s

The generated invariant in the Class checks that if there is an occurrence
of L, then there must exist a table such that the rule conditions are satisfied.
The occurrence of L is sought by the three first nested forAll, which iterate to
look for a package p, a schema s and a correspondence node m1. These elements
should be connected according to L, and satisfy the constraints in m LHS,
what is checked by the operation Class-Table-enabled. If such operation returns
true, the invariant looks for a table t and a mapping m2 connected as specified
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by the RHS of the rule and satisfying ATTconp, what is checked by operation
Class-Table-mapping in the mapping class C2T. Symmetrically, the invariant in
the Table checks that if there is an occurrence of Lp, there is a class satisfy-
ing the rule. The invariants extracted from the other rules are shown in the
Appendix.

Note that, using invariants, it is difficult to express the fact that a new table
has to be created for each occurrence of L. Instead, we just say that a table
should exist, and rely on the mapping cardinalities to ensure that indeed one is
created for each class. Should we have assigned a wrong cardinality * (instead of
0..1) between C2T and Table, the generated invariants would allow two classes
with the same name to be related to the same table. However this is not what
rule Class-Table expresses, which demands two different tables. By defining
the right cardinality 0..1 we implement a correct translation, as each table is
related to at most one C2T mapping, and this to exactly one class, thus ensuring
that each class is related to at most one table.

We would like to remark that, both, the number of extracted invariants and
the internal complexity of each invariant, are linear with respect to the number
of TGG rules. Therefore, the extraction process can deal with TGGs of any
size.

3.6.3 Verification of Model-to-Model Transformations

The verification of transformations answers the question “is the transformation
right?”, i.e. are there any defects in the transformation? This verification
problem can be expressed in terms of the transformation model because, like
any other model, it is expected to satisfy several reasonable assumptions. For
instance, it should be possible to instantiate the model in some way that does
not violate any integrity constraint, including the OCL invariants of the meta-
models and the transformation rules. Failing to satisfy these criteria may be
a symptom of an incomplete, over-constrained or incorrect model, reflecting
potential defects in the original M2M transformation.

In this section we formalize some properties that can be used to study quality
notions of M2M transformations. These quality notions capture static proper-
ties of the M2M transformation, that is, they consider the application of the
transformation to specific source and target models rather than studying the
evolution of the model (e.g. incremental transformation or model synchroniza-
tion). We introduce a particular notation in order to keep the formalization
independent of the language employed for the transformation specification and
the approach used for analysis. However, the predicates that we will define have
a direct correspondence with the invariants extracted for TGGs and QVT.

All these properties can be encoded as UML/OCL consistency problems on
the transformation model and verified using our UML/OCL to CSP approach
introduced before. For example, executability of the transformation is directly
equivalent to the consistency problem, i.e. a transformation is executable iff its
transformation model is satisfiable (i.e. if there is a pair of source and target
models satisfying the transformation model). Other verification properties have
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to be decomposed into two or more consistency problems affecting either only
the source model, only the target model, or the entire transformation model.
For example, we can prove that a transformation is not total if we find a coun-
terexample, i.e. a legal instance of the source model with no corresponding
instance in the target model. To find the counterexample, first we generate
a legal instance = of the source model. Then, we check if the entire transfor-
mation model is consistent when an additional invariant is added: the source
model must be instantiated to x. If it is inconsistent, we have found our coun-
terexample, otherwise, we keep generating new instances for x until we find our
counterexample or we conclude no counterexample exists. A similar procedure
can be used to check the other properties.
The notation used in the formalization is the following:

e S and T denote a source and a target model respectively.
e (S,T) is used for a pair of related source and target models.

e 7 denotes a rule or relation?, where we write PRE,FWd7 PRE,BWd to denote its
forward and backward pre-conditions, and POST, its post-conditions. In
our transformation model, PREF"4 and PREE" correspond to the gener-
ated OCL queries p-enabled presented in previous definitions for TGGs
and QVT respectively, whereas POST, corresponds to the complete gen-
erated invariant.

e T'S denotes a M2M specification made of a set of rules or relations.

We also use the auxiliary function OCC(_, _) that returns all occurrences of
the first argument (a pair of related models with a set of constraints) into the
second (a pair of related models). The following predicates will be used to define
verification properties, where graphs G and H used as examples can be found
in Fig. 3.21:

e Inv[S] holds if S is conformant to its meta-model. Similarly, Inv[T] holds
if T' is conformant to its meta-model.

o Inv[(S, 7] “ 1nv[S] A Inv[T].
e (S,T) C (S',T) holds if (S,T) is a submodel of {S",T").

o (S, T)=(S',T') holds if (S,T) is isomorphic to (S’,T"), i.e. both models
are equal up to equality of object identifiers.

o ENPI[(S, T)] = OCC(PREF™ (S,T)) # 0, i.e. 7 is source-enabled if
there is some occurrence of its forward pre-condition. For TGG rules, this
predicate corresponds to Definition 4. For example, ENELS. 1. .[G] holds

. Fwd .
because there is one occurrence of PRE¢ . 1, in G.

91In the following, we use rule and relation interchangeably.



CHAPTER 3. MODEL VERIFICATION RESEARCH LINE 63

G J
:Class _‘ Package}- E Schema :Package
name= “B” name— name A
is_persistent= true
:Class
H name= “B”

Package}« E W

is_persistent= true

name= “A" name= “A”

parem‘

Class  |[-cot] » :Table | :Class

:Class <|:C2TCh‘ | :Column ‘

name= "B" name= “B” name="B"
is_persistent= true is_persistent= true

name= "B2" name= "C"
is. persns(enp true

| Attnbute“ Atmbute|< W

|name “c" Hname “c"

Figure 3.21: Example triple graphs for the verification of rule properties: (1)
G is an example of forward applicability for rule Class-Table; (2) H is an
example of forward weak executability for rule Class-Table; (3) I is an exam-
ple of executability for rule Class-Table; (4) J is a counterexample of strong
executability for rule Attribute-Column

o SAT*[(S,T)] =

o SAT*15[(S,T)]

L d ENFWdKS, T>] d;f OCC(PRE?Wd ) <Sa T>) # (Z) FOI' examplea ENgggs—Table[G]

does not hold because there is no occurrence of PREEYS L in G, but
EN?IV;SS—TabIe[H} holds.
I (w(8', Ty € OCC(PREF™ (S, T))UOCC(PREB™ | (S, T)) :
(S”, T") € OCC(POST, ,(S,T)) : (S, T") C (S”,T")). This predicate
holds when a pair of models satisfies the post-conditions of a rule in all
occurrences of its pre-conditions, which may be zero (trivial satisfaction).
In such a case we say that the models satisfy the rule, which corresponds
to Definition 5 for TGG rules. For example SAT* Class—Table[H] holds be-
cause the only occurrences of PRECHSS Table and PRE?}';’SS_TEMS are satisfied
(i.e. included in an occurrence of POST ¢jass—Table). For QVT it is similar,
but in addition the when and where clauses may imply the satisfaction of
other relations.

I (vr € TS : SAT*[(S,T)]). This predicate holds if

(S, T) satisfies (even trivially) all rules in the specification T'S.

o SAT.[(S,T)] " SAT*,[(S, T)]A(ENT*[(S, T)] VENB*[(S, T)]). This pred-

icate holds when a pair of models satisfies r’s post-conditions, but not triv-

ially (i.e. at least one occurrence exists). For example, SAT class—Table[H]
holds.

o SATTs[(S,T)] & (vr € TS : SAT,[(S,T)).

Once established the notation and necessary predicates, we are ready to

define the list of quality properties of M2M transformations at two levels: con-
sidering the role of individual rules within a transformation, or considering the
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transformation model as a whole. In addition, some properties can be studied at
both levels. We start with properties applicable to the level of rules. We assume
the forward direction, but it should be clear that the same properties can be
easily defined for the backward direction. Each property contains a description,
its formula in terms of the previous notation, and an example. The graphs used
as examples can be found in Fig. 3.21 (for QVT the examples would be similar
but assuming an empty correspondence graph).

Applicable: r is forward applicable if there is a pair of models where r is
source-enabled and the source model satisfies its meta-model constraints.
We do not ask the target model to satisfy its meta-model constraints, as
they may be violated during the transformation (e.g. lower cardinality
constraints in associations).

Formula: 3(S,T) : Inv[S] A ENFY[(S, T)].

Ezample. Rule Class-Table is forward applicable in G because there is
one occurrence of PRE'(::\IA;csiszable and the source graph is a valid model.

Weak Executable: r is forward weak executable if there exists a pair of models
that satisfy r, and the source is a valid model.

Formula: 3(S,T) : Inv[S] A SAT,[(S,T)].

Ezample. Rule Class-Table is forward weak executable because H con-
tains one occurrence of POST ¢jass—Table- Please note that the target graph
of H is not a valid model, as tables need at least one column. However
this condition is not demanded by the property.

Executable: r is executable if there exists a valid pair of models that satisfy
it. Note that this property is independent of the direction.

Formula: 3(S,T) : Inv[(S,T)] A SAT,[(S,T)].

Erample. Rule Class-Table is executable because graph I contains one
occurrence of POST ¢jass_Table and its source and target graphs are valid
models.

Strong Executable: ris forward strong executable if the target of every source
model where r is source-enabled can be completed to satisfy r.

Formula: Y(S,T) : Inv[(S,T)] A ENF™[(S,T)] = IT" : (SAT.[(S,T)]V
(Inv[{S, T")] ASAT,[(S, T A (S, T) C (5,T"))).

Ezxample. Rule Attribute-Column is not forward strong executable be-
cause, as the counterexample triple graph J shows, a class diagram where
two classes related through inheritance define two attributes with same
name cannot be translated into a valid target model. On the other hand
Package-Schema is strong executable.

Remark. These three forms of executability demand increasing levels of
satisfiability for a given rule. While for weak executability and executabil-
ity r has to be existentially satisfied (in the latter by some valid target
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model), in the strong version it must be universally satisfied in all cases
where it can be source-enabled. Note that a rule is executable if and only
if it is weak executable both forwards and backwards.

Total: r is total if it is not trivially satisfiable in every valid source model. This
is equivalent to ask r to be forward weak executable in each valid source
model.

Formula: VS : Inv[S] = 3T : SAT,[(S,T)].

Ezample. Rule Package-Schema is not total, because the empty model
satisfies the source meta-model constraints, but there is no target model
that together with it satisfies the rule. The rule would be total should we
add to the meta-model a constraint asking each model to have at least
one package.

Deterministic: r is deterministic if each valid source model can be correctly
transformed in a unique way using r.
Formula: ¥S, T,T" : Inv[S] = (ENF*[(S, T)] A ENT*I[(S, T")]A

SAT*1s[(S,T)] A SAT*1s[(S, T")] =
T=T).

Example. All rules in our example are deterministic. In general, this
property can be used to detect under-constrained transformation models.
For example, should we change the cardinality of the mapping between
C2T and Table from 0..1 to *, then rule Class-Table would be non-
deterministic because two classes with the same name could be mapped
to the same table or to two tables with the same name. A rule could also
fail to be deterministic due to attribute computation (e.g. if an attribute
value is set to be the square root of another), or because the target model
contains elements not mentioned in the transformation. For instance, if
the relational schema meta-model had e.g. foreign key nodes, as these are
not considered by any rule, there could be target models with and without
foreign keys associated to a unique source model.

Finally note that the formula demands (S,T) and (S,T") to satisfy (even
trivially) the whole transformation specification T'S. Otherwise no rule
in our example would be deterministic. See for example H and I which
satisfy Package-Schema and have the same source model.

Functional: r is functional if it is total and deterministic.
Formula: Total(r) A Deterministic(r).
Example. No rule in our example is functional. Rule Package-Schema

would be functional if we demand at least one package in each UML model.

Exhaustive: r is exhaustive if it is satisfiable in each target model. This prop-
erty is the dual of property total, and is equivalent to ask r to be weak
executable in each valid target model.

Formula: YT : Inv[T] = 35 : SAT,[(S,T)].
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Figure 3.22: Example triple graphs for the verification of transformation prop-
erties: our TGG is executable but non-injective (we find two source models for
the same target model)

Ezxample: No rule in the example is exhaustive. Rule Package-Schema
is not exhaustive because there is no source model that together with
an empty target model satisfies the rule. The rule would be exhaustive
should we add a constraint to the target meta-model asking for at least
one schema in each RDBMS model.

Injective: 7 is injective if each valid target model is a correct transformation
of a unique source model. This property is the dual of deterministic for
the source model.

Formula: YT, S, 8" : Inv[T] = (ENF*[(S, T)] A ENT*[(S", T)]A
SAT*T5[<S, T>] N SAT*TsKS/, T>] =
S=9).
Ezample: Rule Class-Table is not injective. We can find the counterex-
ample graphs K and L shown in Fig. 3.22 which have the same target,
and one is produced from a class with two attributes, and the other from

two classes related through inheritance with one attribute each. On the
contrary, rule Package-Schema is injective.

Bijective: r is bijective if it is exhaustive and injective.
Formula: Exhaustive(r) A Injective(r).
Example. No rule in the example is bijective. Rule Package-Schema would
be bijective should we forbid empty source and target models.
Redundant: r is redundant in a specification TS if the set of pairs of models
satisfying T'S is exactly the same as those satisfying T'S \ {r}.
Formula: ¥(S,T) : Inv[(S,T)] = (SAT*1s\(n (S, T')] & SAT*1s[(S, T)]).
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Example. None of the rules in the example specification are redundant.
An example of redundant rule would be one like Attribute-Column, but
applicable only to persistent classes.

Enabledness Subsumption: Given two rules r; and ro, r1 forward subsumes
ro, written ry <g ro, if whenever ry is source-enabled so is r1. That is,
the forward pre-conditions of r; are weaker than those of 7.

Formula: (S, T) : Inv[S] A ENG'[(S, T)] = ENG[(S, T)].

Ezample. We have that Package-Schema <p Class-Table, as whenever
the latter is source-enabled, so is the former. Note that if a QVT relation
r calls relations rq, ..., 7, in the where clause, we should have r <g r{A...A
r <p rp if the relation is to be enforced in the forward direction. Similarly,
if relation r calls relations rq, ...,7, in the when clause, we should have
r1 <p r A..Ar, <p r if the relation is to be enforced in the forward
direction. Note that if the relation is meant to be bi-directional, we would
have backward subsumption too.

Next, we generalize some of the presented properties to the level of trans-
formation. In this case all properties are independent of the direction.

Executable: TS is executable if there is a valid pair of models satisfying it.
Formula: 3(S,T) : Inv[(S,T)] A SAT*1s[(S, T)].
Example. Our example TGG transformation is executable because, e.g.
graphs K and L satisfy (trivially or not) all rules. Note that we use the

SAT*1s]...] predicate instead of SATts|...] because otherwise we would
be requiring at least one explicit occurrence of each rule.

Total: TS is total if for each valid source model there is a valid target model
satisfying it.
Formula: VS : Inv[S] = 3T : SAT*1s[(S, T)] A Inv[T].

Example. Our TGG is not total as e.g. there is no valid target model such
that together with the source model of graph G satisfies the specification
(tables without columns are not allowed).

Deterministic: T'S is deterministic if each valid source model can be correctly
transformed in a unique way.

Formula: ¥S,T,T" : Inv[S] = (SAT*1s[(S, T)] A SAT*1s[{S, T")]A
Inv[T| A Inv[T']| =T =T").

Ezample. Our TGG is deterministic because its rules are deterministic.

Functional: T'S is functional if it is total and deterministic.
Formula: Total(T'S) A Deterministic(TS).

Example. Our specification is not functional because it is not total.
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Exhaustive: T'S is ezhaustive if each target model can be produced from some
source model. This property is the reciprocal of property total.

Formula: VT : Inv[T] = 35 : SAT*1s[(S, T)] A Inv[S].

Ezample: Our TGG is exhaustive as each valid relational schema can be
generated from some class diagram.

Injective: T'S is injective if each target model satisfies T'S together with just
one single source model. This property is the reciprocal of deterministic.

Formula: VT, 5,8 : Inv[T] = (SAT*1s[(S,T)] A SAT*1s[(S", T)]
Inv[S] A Inv[S"] = S = 5").

Ezxample: Our TGG is not injective as graphs K and L show.

Bijective: T'S is bijective if it is exhaustive and injective.
Formula: Exhaustive(TS) A Injective(TS).

Ezxample. Our specification is not bijective because it is not injective.

3.7 A UML/OCL Framework for the Analysis
of Graph Transformation Rules

Graph Transformation [47,95] is a rule-based technique for expressing model
transformations. It has been used for specifying in-place transformations like
animations, simulations, optimizations and redesigns. It is now gaining increas-
ing popularity due to its visual form (making rules intuitive) and formal nature
(making rules and grammars amenable to analysis). For example, it has been
used to describe the operational semantics of Domain Specific Visual Languages
(DSVLs) [43], taking the advantage that it is possible to use the concrete syntax
of the DSVL in the rules, which then become more intuitive to the designer.
As models and meta-models can be expressed as graphs (with typed, attributed
nodes and edges), graph transformation can be used for model manipulation in
the MDD approach.

Clearly, the important role of (graph) transformations in MDD needs to be
supported by analysis techniques that help designers in determining the quality
of such transformations. So far, the main formalization of graph transformation
is the so called algebraic approach [47], which uses category theory in order
to express the rewriting. Prominent examples of this approach are the dou-
ble [47] and the single [95] pushout (DPO and SPO), which have developed
interesting analysis techniques, e.g. to check independence between pairs of
derivations [47,95], or to calculate critical pairs (minimal context of pairs of
conflicting rules) [57]. However, graph grammar analysis techniques work with
simplified meta-models (so called type graphs), which lack OCL-like constraints
for expressing the well-formedness rules of the meta-model. By not consider-
ing the meta-model constraints, one could design incorrect rules violating such
well-formedness rules. We believe that integrating OCL constraints and graph
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transformation is crucial for the applicability of the latter in real software MDD
projects.

In this section, we show how to integrate OCL and graph transformation,
and provide more advanced analysis techniques for graph transformations by
using OCL as an intermediate representation to express the semantics of graph
transformation rules. Then, this OCL representation is used to automatically
verify the analysis properties of interest using our UMLtoCSP approach. Note
that the nature of graph transformation rules is more operational than the
declarative M2M languages seen in the previous section. That’s why, while for
the previous transformation languages we were using UML/OCL static models
as intermediate representation for the verification process, in this case we will
use dynamic UML/OCL models (i.e. models with operation contracts) for that.

Representing rules with OCL, concepts like attribute computation and at-
tribute conditions in rules can be seamlessly integrated with the meta-model
and its OCL constraints during the rule analysis. Moreover, it makes avail-
able a plethora of tools able to analyze this kind of specifications. A secondary
benefit of our approach is that graph transformation is made available to the
increasing number of MDA tools that the community is building and vice-versa.
For example, by using such MDA tools, it could be possible to (partially) gener-
ate code for the transformations, or apply metrics and redesigns to the rules. In
addition, the OCL specification derived from graph transformation rules could
be used as a way to add behaviour to meta-models, and contracts for methods.
Finally, an intermediate OCL representation serves as a neutral language for
the integration of different transformation languages, approaches and tools.

More in detail, we use OCL to represent fully expressive DPO and SPO
rules with negative application conditions and attribute conditions. In addition,
we have represented a number of analysis properties with OCL, taking into
account both the rule structure and the rule and meta-model constraints. These
properties include rule applicability (whether there is a model satisfying the rule
and the meta-model constraints), weak executability (whether the rule’s post-
condition and the meta-model constraints are satisfiable by some model) and
strong executability (if a rule applied to a legal model — which conforms to the
meta-model and its well-formedness constraints — always yields a legal model)
among others.

3.7.1 Introduction to graph transformations

In this section we give an intuition on graph transformation by presenting some
rules that belong to a simulator of a DSVL for production systems. Fig. 3.23
shows the DSVL meta-model.

The meta-model defines different kinds of machines (concrete subclasses of
Machine), which can be connected through conveyors. These can be intercon-
nected and contain pieces (the number of pieces they actually hold is stored in
attribute nelems), up to its maximum capacity (attribute capacity). The OCL
invariants on class Conveyor guarantee that the number of elements of a con-
veyor is equal to the number of pieces connected to it and never exceeds its
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Figure 3.23: Meta-model of a DSVL for production systems

Figure 3.24: Example production system model

capacity. Human operators are needed to operate the machines, which consume
and produce different types of pieces from/to conveyors.

Fig. 3.24 shows a production model example conformant to the previous
meta-model, expressed using abstract syntax on top, and a visual concrete syn-
tax at the bottom. It contains six machines (one of each type), two operators,
six conveyors and five pieces. In concrete syntax, machines are represented as
decorated boxes, except generators, which are depicted as semi-circles with an
icon representing the kind of piece they generate. Operators are shown as cir-
cles, conveyors as lattice boxes, and each kind of piece has its own shape. In
the model, the two operators are currently operating an assembler and a pack-
age machine respectively. Even though all associations in the meta-model are
bidirectional, we have assigned arrows in the concrete syntax, but this does not
affect navigability. For the case of the Input and Output associations, the arrow
in the concrete syntax helps identifying the input and output machines.

We use graph transformation [47] for the specification of the DSVL opera-
tional semantics. A graph grammar is made of a set of rules and an initial graph
(host graph) to which the rules are applied. Each rule is made of a left and a
right hand side (LHS and RHS) graph. The LHS expresses pre-conditions for
the rule to be applied, whereas the RHS contains the rule’s post-conditions. In
order to apply a rule to the host graph, a morphism (an occurrence or match)
of the LHS has to be found in it. If several are found, one is selected randomly.
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Figure 3.25: Rule in concrete (up) and abstract syntax (down)

Then, the rule is applied by substituting the match by the RHS. This process is
called direct derivation. The grammar execution proceeds by applying the rules
in non-deterministic order, until none is applicable.

Next, we show some of the rules describing the DSVL operational semantics.
Rule “assemble” specifies the behaviour of an assembler machine, which converts
one cylinder and a bar into an assembled piece. The rule is shown in concrete
syntax in the upper part of Fig. 3.25, and in abstract syntax to the bottom.
Fig. 3.26 shows its application to a model G (a sub-model of the one in Fig. 3.24)
yielding a model H. First, an occurrence of the LHS is found in the model
(dashed area). Then the elements in the LHS that do not appear in the RHS
are deleted, whereas the elements in the RHS that do not appear in the LHS are
created. Our rules may include attribute conditions, which must be satisfied by
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Figure 3.26: A direct derivation

the match, and attribute computations, both expressed in OCL. In Fig. 3.26, the
match of conveyor co2 makes the rule’s attribute condition co2.nelems + 1 <=
co2.capacity become 1 + 1 < 5, and since it is true, the rule is applicable at
that match. Attributes referenced to the right of an assignment in an attribute
computation refer to the value of the attribute before the rule application. In the
figure, the attribute nelems of the conveyors matched by the rule are updated.

There are two main formalizations of algebraic graph transformation [47]:
DPO and SPO. From a practical point of view, their difference is that deletion
has no side effects in DPO. That is, when a node in the host graph is deleted by
a rule, the node can only be connected through those edges explicitly deleted
by the rule. When applying the rule in Fig. 3.26, if piece “b” in model G would
be connected to more than one conveyor (should that be allowed by the meta-
model), then the rule could not be applied as those additional edges would
become dangling in the host graph G after removing “b”. This condition is
called dangling edge condition. Instead, in SPO dangling edges are removed by
the rewriting step.

A second difference is related to the injectivity of matches. A match can be
non-injective, which means for example that two nodes with compatible type in
the rule may be matched to a single node in the host graph. If the rule specifies
that one of them should be deleted and the other one preserved, DPO forbids
applying the rule at such a match, while SPO allows its application and deletes
both nodes. In DPO, this is called the identification condition.

Fig. 3.27 shows further rules for the DSVL. Rule “move” describes the move-
ment of pieces through conveyors. The rule has a Negative Application Condi-
tion (NAC) that forbids moving the piece if the source conveyor is the input to
any kind of machine having an operator. Following [47], we take the match of
the NAC as injective for both DPO and SPO. Rule “move” uses abstract nodes:

[13))

piece “p” and machine “m” are abstract, and are visually represented with as-
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Figure 3.27: Additional rules for the DSVL simulator

terisks. Abstract nodes in a rule can get instantiated to nodes of any concrete
subtype [41]. In this way, rules become much more compact. Rule “move” in
the example is equivalent to 24 concrete rules, resulting from the substitution
of piece and machine by their children concrete classes.

Rule “change” models an operator changing to a machine “m1” if the ma-
chine has some piece waiting to be processed and it is unattended. Rule “rest”
models the break pause of an operator, by deleting its connection to a ma-
chine. Finally, rule “work” connects an idle operator (checked by NAC2) to an
unattended machine (checked by NACI).

3.7.2 From Graph Transformation to OCL

This section presents a procedure to translate graph transformation rules into
an OCL-based representation. The procedure takes as input a graph trans-
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formation system made of a set of rules, together with the MOF-compliant
meta-model used as a context for the rules. As output, the method generates a
set of semantically-equivalent declarative operations (one for each rule) specified
in OCL. Declarative operations are specified by means of a contract consisting
of a set of pre- and post-conditions. Roughly speaking, pre-conditions will de-
fine a set of conditions on the source model that will hold iff the rule can be
applied, namely if the model has a match for the LHS pattern and no match for
any NAC, while post-conditions will describe the new state of the model after
executing the operation as stated by the difference between the rule’s RHS and
LHS.

More precisely, the input of the procedure is a tuple (M M, ruleStyle, injMatch, GT S =
{rj}jes), where MM is a meta-model possibly restricted by OCL well-formedness
rules, ruleStyle and injMatch are two flags indicating DPO or SPO semantics
and injectivity of matches respectively, and GT'S is a set of graph transformation
rules. We represent DPO and SPO rulesasr = (LHS, RHS, ATTconp, ATTcomp,
{NAC*, ATT¢onp tier), where LHS, RHS and NAC® are models that use
the types in M M. Note that they do not necessarily have to satisfy all well-
formedness rules in the meta-model (e.g. lower cardinality constraints), as these
are patterns, not meant to be complete models. For rules expressing operational
semantics, what is important is that the model to which the rules are applied
remains consistent. Instances are identified across the models in the rule by
their object identifiers, e.g. the elements preserved by the rule have the same
object identifiers in LHS and RHS. ATTconD, ATTéOND and ATTcomp
are sets of OCL expressions. The first two contain attribute conditions for the
LHS and the i-th NAC, the latter contains attribute computations to state the
new values for the attributes in the RHS.

The next subsections use this formalization to translate the GT'S into a
set of OCL operations. The name of the operations will be the name of the
corresponding rule. All operations will be attached to an artificial class System,
typically used in the analysis phase of a development process to contain the
operations with the behaviour of the system [71]. Alternatively, each operation
could be assigned to one of the existing classes. The GRASP patterns (General
Responsibility Assignment Software Patterns [71]) can be used to choose the
most appropriate class to hold each operation.

Translating the left-hand side

A rule r can be applied on a host graph (i.e. a model) if there is a match, that
is, if it is possible to assign objects of the host graph to nodes in the LHS such
that (a) the type in the host graph is compatible with the type in the LHS, (b)
all edges in LHS can be mapped to links in the host graph and (c) the attribute
conditions evaluate to ¢rue when symbols are replaced by the concrete attribute
values in the model.

When defining the translation for condition (a) we must explicitly encode the
set of quantifiers implicit in the semantics of graph transformation rules: when
checking if the host graph contains a match for LHS we have to try assigning



CHAPTER 3. MODEL VERIFICATION RESEARCH LINE 75

each possible combination of objects from compatible types in the model to
the set of nodes in the LHS pattern. Thus, we need one quantifier for each
node in LHS. In terms of OCL, these quantifiers will be expressed as a sequence
of embedded exists operators over the population of each node type (retrieved
using the predefined alllnstances operation).

Once we have a possible assignment of objects to the nodes in LHS we must
check if the objects satisfy the (b) and (c) conditions. To do so, we define an
auxiliary query operation matchL HSr, which returns true if a given set of objects
complies with the pattern structure defined in LHS and satisfies its ATTconD
conditions. In particular, for each edge e linking two objects o1 (of type ¢1)
and oq (of type to) in LHS, matchLHST must define a 01.naviy—> includes(oz)
condition stating that oo must be included in the set of objects retrieved when
navigating from o7 to the related objects of type to; the right association end
to use in the navigation nav is extracted from MM according to the type of e
and the type of the two participant objects. The ATTconp conditions, already
expressed using an OCL-like syntax in r, are directly mapped as a conjunction
of conditions at the end of matchLHST.

Let L ={Ly,..., Ly} denote the set of nodes in LHS and E = {(L;, L;)|L;, L; €
L, and L; connected to L;} the set of edges. Then, according to the previous
guidelines, the LHS pattern of r will be translated into the following equivalent
pre-condition:

context System::r()
pre  Lj.type::alllnstances() —>exists(Ly |

L., .type::alllnstances() —>exists(L,, |
matchLHSr(Ly, ..., Ly) )...)

context System::matchLHSr( L : Ly.type, ...,
L, : L,.type ) : Boolean
body L1.navis.iype—>includes(Lsy) and
... and
L; navrj.type—>includes(L;) and ATTconp

where L;.type returns the type of the node L;. Node identifiers are used to
name the variable in the quantifier. Note that L;.type::alllnstances() returns all
direct and indirect instances of L;.type (i.e. it returns also the instances of its
subtypes) and thus abstract objects can be used in the definition of r. When E
and ATTconp are empty, the body of matchL HSr just returns true.

As an example, the pre-condition for the “rest” rule is the following:
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context System::rest()
pre  Operator::alllnstances() —>exists(op |
Machine::alllnstances() —>exists(m |
matchLHSrest(op, m)))

context System::matchL.HSrest( op: Operator,
m: Machine ) : Boolean

body op.machine—>includes(m)

where matchLHSrest is called for every possible combination of operators and
machines in the given model (because of the two nested exists iterators). If
one of such combinations satisfies matchL HSrest the pre-condition evaluates to
true, meaning that the “rest” rule can be applied on the model.

Many graph transformation tools allow restricting the match to be injective,
and this can be enforced in our translation procedure by setting the injMatch
flag to true. We can emulate injective matches by adding extra constraints in the
pre-condition of the operation stating that every two objects with compatible
type should be different. That is, the condition L; <> L; is added for L;, L; €
L, if L;.type = L;.type or if one is a subclass of the other. This technique is also
used to ensure injectivity of NACs and to handle the identification condition.

Translating the negative application conditions

In presence of NACs, the pre-condition of r must also check that the set of
objects of the host graph satisfying the LHS do not match any of the NACs.

The translation of a NAC pattern is similar to the translation of the LHS:
an existential quantifier must be introduced for each new node in the NAC
(i.e. each node not appearing also in the LHS pattern) and an auxiliary query
operation matchlN ACr will be created to determine if a given set of objects
satisfy the NAC. Such matchN ACr operation is specified following the same
procedure used to define matchLHSr. In addition, matches in the NAC must
always be injective. Therefore, as part of the translation we must explicitly add
conditions ensuring that two nodes of compatible types are not mapped to the
same object in the host graph. These have the form N; <> L; (or N; <> Nj)
for each node NV; in the NAC that is type-compatible with a node L; in LHS
(or another node N; in the same NAC).

Within the pre-condition, the translation of the NACs is added as a negated
condition immediately after the translation of the LHS pattern.

Let N = {Ny,..., N} denote the set of nodes in a NAC that do not appear
in LHS. The extended pre-condition for » (LHS + NAC) is defined as:
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7

context System::r()
pre Ly .type::alllnstances() —>exists(Ly |

L., .type::alllnstances()—>exists(L,, |
matchLHSr(Lq, ..., Ly)
and not (Nj.type::alllnstances()—>exists(N; |

N, type::alllnstances() —>exists(Ny, |
matchNACr(Ly, ..., Ly, N1, ..., Np)
and N; <> L;... and N; <> N;)...))...)

If r contains several NACs we just need to repeat the process for each NAC,

creating the corresponding matchN AC*r operation each time.

As an example, the translation for the LHS and NAC patterns of the “work”

rule is:

context System::work()

pre  Machine::alllnstances() —>exists(im]|
Operator::alllnstances()—>exists(op|
matchLHSwork (m,op)
and not Operator::alllnstances()—>exists(op1]
matchNAClwork(m,op,opl) and opl <> op )
and not Machine::alllnstances() —>exists(m1]|
matchNAC2work(m,op,m1) and ml <> m ))

context System::matchL.LHSwork( m:Machine,
op:Operator ): Boolean
body true

context System::matchNAClwork(m:Machine,
op: Operator, opl: Operator ) : Boolean
body m.operator—>includes(op1)

context System::matchNAC2work(m:Machine,
op: Operator, m1:Machine ) : Boolean
body m1l.operator—>includes(op)

For this rule matchL HSwork simply returns true since as long as a machine
object and an operator exist in the host graph (ensured by the existential quan-
tifiers in the pre-condition), the LHS is satisfied. The additional conditions
imposed by the NACs state that no other operator (opl in the NAC1) can be
working on that machine, and that the operator in the LHS cannot be working

on a different machine (m1 in the NAC2).
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Translating the right-hand side

The effect of rule r on the host graph is the following: (1) the deletion of the ob-
jects and links appearing in LHS and not in RHS, (2) the creation of the objects
and links appearing in RHS but not in LHS, and (3) the update of attribute
values of objects in the match according to the ATTcon p computations.

Clearly, when defining the OCL post-condition for r we need to consider not
only the RHS pattern (the new state) but also the LHS and NAC patterns (the
old state) in order to compute the differences between them and determine how
the objects evolve from the old to the new state. In OCL, references to the
old state must include the @pre keyword. For instance, a post-condition like
o.atry = o.atr1@pre + 1 states that the value of atr; for object o is increased
upon completion of the operation.

Therefore, the translation of the RHS pattern requires, as a first step, to se-
lect a set of objects of the host graph that are a match for the rule. Then, this
initial set of objects will be updated according to the rule definition. Unsurpris-
ingly, this initial condition is expressed with exactly the same OCL expression
used to define the pre-condition!'® (where the goal was the same: to determine a
match for 7). The only difference is that in the post-condition, all references to
attributes, navigations and predefined properties will include the @Qpre keyword.
Note that when executing the rule it may happen that the set of objects used
to satisfy the pre-condition differs from the one used in the match for the post-
condition, when there are several possible matches for the rule in the graph.
The goal of the pre-condition is just to check that at least one match exists.
The post-condition selects one of these matches and changes it. This does not
affect the correctness of our approach since graph transformation semantics are
non-deterministic. If there are several possible matches, the rule will be applied
again on these other matches afterwards. When evaluating the rules (see next
section), our checking procedure will try all possible matches to determine their
correctness.

Table 3.1: OCL expressions for changeRHSr

Element Jin LHS? |3 in RHS? | Update | OCL Expression
Object o of type t No Yes Insert o | 0.ocllsNew() and o.oclIsTypeOf(t)
Object o of type t Yes No Delete o | t::alllnstances()—>excludes(o)
Link ! between (01, 02) No Yes Insert | | 01.naviy—>includes(os)

and not 01.nav@pre—>includes(oz)!*
Link ! between (01, 02) Yes No Delete 1 | 01.naviy—>excludes(o2)

Once a set of objects has been selected, it is passed to an auxiliary operation
changeRHST in charge of performing the changes defined by the rule. This op-
eration is defined as a conjunction of conditions, one for each difference between
the RHS and LHS patterns. Table 3.1 shows the OCL expressions that must be

10Though looking for a match twice is inefficient, OCL does not offer any mechanism to
pass information about variable values from the pre-condition to the post-condition.
1 This second part of the condition is only required when neither o; nor oo are new objects.
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added to changeRHST depending on the actions specified by r. Moreover, the
ATTeonmp expression is added at the end of the procedure, with all references
to previous attribute values extended with the @pre keyword. As usual, we as-
sume in the definition of the post-condition for r that all elements not explicitly
modified in the post-condition remain unchanged (frame problem).

Let L = {Ly,...,L,} and E = {(L;,L;)|L;,L; € L, and L; connected to
L;} be the set of nodes and edges in LHS, DN = {DNy, ...,DNy,} C L and
DE = {(Lg, L)} C E the nodes and edges in LHS but not in RHS, and NN =
{NNy,...,NN,} and NE = {(NE,, NE,)|NE,,NE, € NNU(L—DN), and
NE, connected to NE,} the set of nodes and edges in RHS but not in LHS.
Then, according to the previous guidelines, the RHS of 7 is translated into the
following post-condition:

context System::r()
post  Ly.type::alllnstancesQpre()—>exists(Lq |

L,, type::alllnstances@pre() —>exists(Ly, |
matchLHSr’(Lq, ..., L,) and
changeRHSr(Ly, ..., Ly))...)

context System::matchLHSr’( Ly : Ly.type, ...,
L, : L,.type ) : Boolean
body L1.navrs.iype@pre—>includes(Ls) ...and
L;.navy; type@pre—>includes(L,)
and ATTconp@Qpre

context System::changeRHSr( L; : Lq.type, ...,
L, : Ly.type ) : Boolean
body — — creation of NN nodes
NNj.oclIsNew() and
N Nj.oclIsTypeO f(N Nj.type) .. .and
NN,.oclIsNew() and
NN,.oclIsTypeO f(NNp.type) and
— —removal of DN nodes
DN .type::alllnstances() —>excludes(DN7) . . . and
DN, type::alllnstances() —>excludes(DN,) and
— — creation of NE links
NEy .navn g, type—>includes(N Ez) and not
NE\ . navn g, type Qpre—>includes(NE») . .. and
NE,.navNg, .type—>includes(N E,) and not
NE,.navng, .type@pre—>includes(N E,) and
— —removal of DE links
Li.navy, ype—>excludes(Ly) . .. and
Ly.navr, type—>excludes(L;)
— — attribute computation
and ATTCOMP
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The previous translation pattern assumes a rule without NACs. If it has
NACs, we should add OCL code for testing their satisfaction, as described in
Section 3.7.2. Next we show the generated operations for “rest”, the translation
of the other rules is in the appendix.

context System::rest()

pre  Operator::alllnstances()—>exists(op|
Machine::alllnstances() —>exists(m|
matchLHSrest(op,m) ))

post  Operator::alllnstances@pre()—>exists(op|
Machine::allInstances@pre() — >exists(m)|
matchLHSrest’(op,m) and changeRHSrest(op,m) ))

context System::matchLHSrest( op: Operator,
m: Machine ): Boolean
body op.machine—>includes(m)

context System::matchL.HSrest’( op: Operator,
m: Machine ): Boolean
body op.machine@pre—>includes(m)

context System::changeRHSrest( op: Operator,
m: Machine ): Boolean
body op.machine—>excludes(m)

Taking into account DPO and SPO semantics

The behaviour of the rules is slightly different depending on whether DPO
or SPO semantics are assumed. The two differences we must consider in our
translation are the dangling edge and the identification conditions. See [27] for
details.

Optimizing the resulting constraints

These general translation patterns can be slightly simplified, yielding optimized
OCL constraints, depending on the specific structure of each rule. In what
follows we comment some possible simplifications.

e LHS nodes with no edges and no attribute conditions do not need to be
passed as parameters for the matchL HSr operation. For those objects it is
just enough to check their existence in the main pre-condition expression.
E.g. in rule “work” we do not need to pass op and m as parameters for
matchLHSwork.

e Similarly, LHS nodes not referenced in a NAC pattern do not need to be
passed as parameters for the matchNACr operation.
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e matchLHST and matchNACr operations with an empty body (i.e. a body
with just the true literal expression) can be skipped.

e For a rule r not including any matchLHSr or matchNACr operations, we
do not need to nest the exists iterators in its pre-condition but just use a
conjunction of separated quantifiers, improving the efficiency of its match
finding process. For instance, assuming a hypothetical “assign” rule that
given a piece and a conveyor puts the piece in the conveyor, the generated
pre-condition for “assign” is the following:

context System::assign()
pre Piece:alllnstances()—>exists(p| true)
and Conveyor::alllnstances() —>exists(c| true)

e The auxiliary matchLHST, matchNACr and changeRHSr operations can
be reused across different (or the same) rules sharing common patterns. As
an example, the NAC1 and NAC2 patterns for the rule “work” and the
NAC for the “change” rule (once their irrelevant parameters have been
removed using the previous optimizations) can be merged into a single
match operation that will be invoked (with different arguments) in the
pre-conditions.

e Some conditions in the patterns may be subsumed by the meta-model
constraints and thus can be removed from the operations. As an example,
consider the condition c.conveyor—> excluding(col) —> isEmpty() (in
matchLHS for “assemble” under DPO semantics) saying that the piece
¢ cannot be related to other conveyors except for col. This condition is
already implied by the maximum multiplicity constraint between Piece
and Conveyor in the meta-model, which forces pieces to be related to at
most one conveyor.

4

As an example, once we apply these optimizations to the “work” rule, (part
of) its simplified translation is shown in the next table. First, matchLHSwork
can be eliminated, then the parameters of matchNAC1work and matchNA C2work
can be reduced. Finally, both operations for the NACs can be merged as they
share the same pattern and parameters.
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context System::work()

pre  Machine::alllnstances() —>exists(im]|
Operator::alllnstances()—>exists(op|
not Operator::alllnstances()—>exists(opl|
matchNAC12work(m,opl) and opl <> op )
and not Machine::alllnstances()—>exists(m1]
matchNAC12work(m1,op) and m1 <> m ))

context System::matchNAC12work(m:Machine,
op: Operator ) : Boolean
body m.operator—>includes(op)

3.7.3 Verification of Rule Properties with OCL

Translating a graph grammar into a set of operations with OCL pre/post-
conditions enables the analysis of relevant correctness properties of the rules
using our verification method for dynamic UML/OCL methods described in the
previous sections 2

In what follows we describe the correctness properties we propose. The
properties take into account the meta-model invariants that restrict the possible
set of legal instantiations of the meta-model, as well as the pre- and post-
conditions derived from the rules.

The following notation will be used to express these concepts: I denotes an
instantiation of the meta-model, while I’ represents the modified instantiation
after invoking an operation. An instantiation I is called legal, noted as Inv[I], if it
satisfies all the invariants of the meta-model, i.e. both the graphical restrictions
such as multiplicity of roles in associations and the explicit OCL well-formedness
rules. By PRE,[I] we denote that an instantiation I satisfies the pre-condition
of an operation r. Regarding post-conditions, we write POST,II’ to express
that an instantiation I’ satisfies the post-condition of an operation r given that
I was the instantiation before executing the operation. As usual, to avoid the
frame problem when interpreting POST,II’, we assume that only the objects
referenced in the post-condition can change their state during the operation
execution.

Two families of properties will be studied. First, it is desirable to verify that
for each rule there exists at least one valid model where it can be applied, as
otherwise the rule is useless. Second, it is interesting to check whether different
rules may interfere among them, making the order of application matter. Within
each family of properties, several notions will be presented, each with a trade-
off between the precision and the complexity of its analysis. The list is the

12The transformation of graph grammars into OCL can also be used for validation. While
verification attempts to check that the graph transformation rules satisfy some required cor-
rectness properties (“is the transformation right?”), validation tries to ensure that the graph
transformation rules match the intentions of the designer (“is this the right transformation?”).
See [27] for details
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following:

e Applicability (AP): Rule r is applicable if there is at least one legal
instantiation of the meta-model where it can be applied.

37 : Inv[I] A PRE,[]]

e Weak executability (WE): r is weakly executable if the post-condition
is satisfiable in some legal instantiation.

31,1’ : Inv[I] A PRE,[T] A Inv[I'] A POST,[I, 1]

e Strong executability (SE): r is strongly executable if, for any legal
instantiation that satisfies the pre-condition, there is another legal instan-
tiation that satisfies the post-condition.

VI : (Inv[I] A PRE,[I]) = 31" : (Inv[I'] A POST,[I, I'])

e Overlapping rules (OR): Two rules r and s overlap if there is at least
one legal instantiation where both rules are applicable.

37 : Inv[I] A PRE,[I] A PRE,[I]

e Conflict (CN): Two rules r and s are in conflict if firing one rule can dis-
able the other, i.e. iff there is one legal instantiation where both rules are
enabled, and after applying one of the rules, the other becomes disabled.

A1, I . Inv[I] Alnv[I’] A PRE,[I] A PRES[I]A
POST,II' A =PRE[I’]

e Independence (IN): Two rules r and s are independent iff in any legal
instantiation where both can be applied, any application order produces
the same result. Four instantiations of the model will be considered to
characterize this property: before applying the rules (I), after applying
both rules (I"), after applying only rule r (I.) and after applying only
rule s (I.).

I —7 1 VI:(nv[I] APRE[I] A PRE[I]) -

3, I, 1"
ls ls (Inv[I’] A POST,[I, '] A PREJ[I.] A
. Inv[I] A POSTS[I, I.] A PRE[IZ] A
I, —— 1" Inv[I”] A POST,[I,I""] A POST[I., "))

e Causal Dependence (CD): Two rules r and s are causally dependent
iff there is some legal instantiation where one is applicable and the other
not, but applying the former makes the latter applicable.
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Figure 3.28: Overlapping of rules “move” and “change”

31,I': Inv[I] A PRE,[I] A —PRE,[T]A
POST,II’ A PRE[I’]

As an example of applicability, Fig. 3.28 shows a model in which rules “move”
and “change” are applicable, since the model (I in the property definition)
satisfies the invariants and both rules’ pre-conditions. The matches of both
rules are enclosed in different dotted polygons. The rules are applicable because
the model contains occurrences of both LHSs, but not of the NACs. In fact,
the model is also an example of overlapping between the rules. They overlap
because they are applicable on the same model. Notice that in this match
of the “move” rule, the source and destination conveyors are mapped to the
same conveyor object, as there is no constraint forbidding this choice. It is
worth noting that this instantiation helps to detect a problem in the system
definition: non-injective matches are inadequate for rule “move”, which in this
case may be solved by adding an additional invariant to the meta-model stating
that a conveyor cannot be next to itself, or by restricting the match of the LHS
to be injective. This situation was detected when validating the system.

The difference between weak and strong executability is that the former re-
quires the existence of just one legal model over which the rule can be success-
fully executed, while the strong version of the property asks for the executability
of the rule in any situation in which its pre-condition is satisfied. If a rule does
not satisfy strong executability, it may mean that it is underspecified regarding
the OCL meta-model invariants. The needed extra constraints in rules can be
either NACs or attribute conditions.

For instance, consider the situation in Fig. 3.29. The picture shows a rule



CHAPTER 3. MODEL VERIFICATION RESEARCH LINE 85

lighten

/NAC‘I: o LHS: col 'RHS: col)
* « «
mi | » / %
co2 m1 co2
NAC2:
co3
* ATTRIBUTE CONDITION:
mi > co1.nelems=co1.capacity
! _co2.nelems=0 |
. - %

€

4

-

* "~ capacity =2 ||ghten)
quality nelems =2
capacity = 2 capacity =
\_ nelems =0 Y, nelems =0

Figure 3.29: Non strongly executable rule

“lighten” that dynamically reconfigures the production plant by adding a new
connection from a machine of any type to an empty conveyor, if the machine is
already connected to a full conveyor and does not have further outputs. This
rule is not strongly executable since there are models satisfying the LHS but
where the rule cannot be applied. As an example, below the rule there is a
model that satisfies the LHS by mapping the machine in the rule to a quality
machine. The rule cannot be executed on this model, as an OCL constraint
in the meta-model restricts quality machines to have at most one output. To
make the rule strongly executable, one can add an additional NAC with just one
machine of type quality mapped to m1. This NAC would ensure that the rule
is not applied to quality machines. On the contrary, the rule is already weak
executable because it can be applied as it is to any machine of type different
from quality. For the same reason, the NACs of rules “change” and “work” in
Fig. 3.27 are needed to ensure strong executability.

Some other times we need extra attribute conditions in the rules to ensure
strong executability. For example, the attribute conditions in rules “assemble”
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and “move” in Figs. 3.25 and 3.27 are necessary to ensure that both rules satisfy
strong executability.

The conflict and independence properties are related to the concept of critical
pairs. The term critical pairis used in graph transformation to denote two direct
derivations in conflict (i.e. applying one disables the other), where the starting
model is minimal [47,57]. The set of critical pairs gives all potential conflicts,
and if empty, it means that the transformation is confluent (i.e. a unique result is
obtained from its application). For technical reasons, the algebraic approach to
graph transformation usually models any attribute computation as a rewriting
of edges [47]. This means that any two rules changing the same attribute of
a node will be reported as conflicting. In general, this does not imply that
one rule disables the other, but however ensures confluence. For example, two
rules, one multiplying an attribute x by 2, and the other adding 1 to the same
attribute, would be reported as a conflict; but no rule disables the other. On
the contrary, our conflict condition is more precise about attribute computations
and considers the OCL invariants, but by itself does not ensure confluence. In
the previous example, if the rule multiplying by 2 is applied first, the attribute
x becomes 2 x x + 1. However, if the rule adding 1 is applied first, we obtain
(z + 1) x 2. Hence the transformation would not be confluent. The advantage
of our approach is that fewer conflicts will be reported by the conflict property,
but confluence has to be checked with the independence property.

The independence property allows applying two rules in any order, obtaining
the same result. This is a strong version of the local Church-Rosser theorem
in DPO [47], where we require rule independence for every valid model I, and
ensures confluence (i.e. same result). In the same way as the technique of
critical pairs in graph transformation, we do not have to check each possible
model in which rules overlap, but only the minimal ones.

The causal dependence property detects whether two rules have some de-
pendency, in such a way that executing one enables the other. In this way, one
rule may add one element that the other needs (produce-use dependency), or
delete some element that is part of the NAC of the other rule (delete-forbid
dependency). For example, consider rules “work” and “rest”. The former asso-
ciates an operator to a machine, while the latter deletes such connection. There
is a produce-use dependency between the rules because “rest” needs an edge
which “work” produces. These rules have also a produce-use dependency, be-
cause “rest” deletes a connection which is in the NAC of “work”. Fig. 3.30
shows two host graphs, together with two derivations that illustrate these two
dependencies.

Finally, note that studying whether all these properties hold in some specific
host graph is possible, by replacing the 31 with some specific model I; and then
checking if the formula holds for that I;.
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Figure 3.30: Causal dependencies

3.8 Tool Implementation

The core of our method has been implemented. Our prototype tool UML-
toCSP [106] to translate UML models into a ¢SP is implemented as a set of
ECL'PS® constraint libraries (2000 LoC) and Java classes (11500 LoC) imple-
menting the GUI, the UML/OCL to CSP translation and glue code. The tool
also uses several external libraries and tools: the OCL parser from the Dresden
OCL toolkit [44], the MDR library for importing XMI files, the EMF (Eclipse
Modeling Framework) libraries for importing ECore files, the ECL'PS® [100] con-
straint programming system for solving the CSPs and the GraphViz [55] graph
visualization package for presenting the results graphically. Figure 3.31 presents
the architecture of the tool.

As shown in the Figure 3.31, as a first step, the tool permits to import both
the UML model and the OCL constraints from an XMI/ECore file and a text
file, respectively. More specifically, the UML class diagram can be imported
from an XMI (XML Metadata Interchange) file, such as those generated by
CASE tools like ArgoUML, or in the ECore format from the Eclipse Modeling
Framework!®. The text file containing the OCL expressions is parsed using
the Dresden OCL toolkit. Next, users can choose to generate the CSP from
the UML/OCL model. As part of the translation process, users must indicate
the correctness property they want to check on the model and (optionally) the

3EMF refers to the Eclipse IDE (http://www.eclipse.org.) not the ECLIPS® constraint
solver.
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Figure 3.31: Architecture of UMLtoCSP.

ranges for the domains to be used for the variables in the CSP (otherwise default
values are used). Finally, the tool generates the CSP with the support of our
UML/OCL CSP library (included with the tool). The resulting CSP is executed
using the ECL'PS® constraint solver API to try to find one solution for it, and
thus, to determine the correctness of the original UML/OCL model. When such
a solution exists, it is shown to the user graphically as an object diagram. If no
solution exists, the tool prompts a message explaining this fact and suggesting
a revision or the model or a change in the size of the search state space.

Figure 3.32 illustrates the graphical user interface used in this verification
flow. Figure 3.32(a) shows the initial screen once the input models have been
parsed. The classes and associations in the diagram are displayed in a tree
view, and the textual OCL constraints appear in a separate frame. Also in
this window, designers may optionally parametrize the search space by defining
the domain of each attribute, the number of objects of a class or the number
of links in an association. If the user does not feel the need to customize the
search space, the tool automatically uses the suggested default domains based
on the type of the attribute, e.g. 0 or 1 for boolean attributes and a finite range
for integer attributes. For example, Figure 3.32 (a) shows how the user assigns
the domain of the boolean attribute isStudent, which is 0..1 by default.

Then, using the menu from Fig. 3.32 (b), designers can select the properties
of interest for the analysis. For properties like liveliness or constraint redun-
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dancy which affect a specific class or constraint, a drop-down list provides the
list of candidates from the model. After this step, verification is fully auto-
mated: the tool translates the UML class diagram, OCL constraints and the
correctness properties into a CSP, which is passed to the ECL'PS® constraint
solver API to find a solution to the CSP, and thus, to determine the correctness
of the original UML/OCL model. When such a solution exists, it is shown to
the user graphically as an object diagram. Fig. 3.32 (c) shows an example of
a result depicted by UMLtoCSP. In particular, it considers a modified version
of the running example from Figure 3.2 where the multiplicities of the roles
submission and manuscript have been changed to 0..1, i.e. there can be authors
that do not review papers and reviewers that do not write papers. This mod-
ified version is strongly satisfiable, as shown by the object diagram displayed
by the tool which satisfies all the constraints of the model: papers have one or
two authors and three referees, no author reviews his own paper, the maximum
paper length is not exceeded, student papers have at least one student author,
students do not act as reviewers and there are between 1 and 5 student papers.

An advantage of this architecture is that the translation and verification are
completely hidden from the designer. Therefore, users of UMLtoCSP do not
need any kind of knowledge of constraint programming to analyze a model and
interpret the results, since the results provided by the CSP solver are reinter-
preted in terms of the original UML/OCL models and returned to the user as a
UML object diagram that the user can directly understand. Furthermore, they
can provide the input to the tool directly as a UML class diagram in the format
being used by their CASE tool.

As future work, we are exploring the full integration of UMLtoCSP as a plug-
in of the Eclipse IDE, in order to further improve its usability and facilitate its
use by the Eclipse community. Some extensions of the tool to accomodate a
more direct verification of model transformations is also under development.
For instance, for graph transformations, we have bn able to hide the analysis
process behind a graphical front-end tool called AToM?3. This meta-modelling
tool generates customized modelling environments for DSVLs, and allows defin-
ing model manipulations by graph transformation. In order to analyse the graph
transformation rules, an OCL generator provides the input to UMLtoCSP for
analyzing the rules’ properties. The results are then shown back in AToM?
using the concrete syntax of the DSVL. In this way, the analysis mechanism is
kept transparent to the rule designer. This approach follows the line of hidden
formal methods [14], which advocate an intuitive presentation of the verification
results, probably in terms of the input language.

3.9 Problem Complexity and Efficiency Issues

This section discusses the complexity of the problem we are dealing with and
the strategies we have followed to improve the efficiency of our method. For the
sake of simplicity, we focus on the UML/OCL static models scenario.
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3.9.1 Problem Size and Complexity

Reasoning on UML class diagrams is EXPTIME-complete [13] and, when gen-
eral OCL constraints are allowed, it becomes undecidable. Therefore, if this
problem is addressed as a search problem, i.e. locating a correct or incorrect
instance within the space of all possible instances, a careful analysis of this
search space is required. The goal of this preliminary analysis is extracting use-
ful heuristics that can guide the search in order to make it more efficient and
ensure its termination.

The search space can be organized as a search tree, where each leaf cor-
responds to a solution (either feasible or unfeasible) and each internal node
represents a decision in the search process (assigning a value to a variable from
the domain of eligible values). A measure of the complexity of a problem is
the size of this search tree, measured as the number of leaves. In general, the
size is determined as the product of all the cardinalities of the domains for each
variable in the problem. In order to calculate it, for the specific problem we are
working in, variables and domains introduced in Section 3.4.2 are used.

e For the classes: we consider the number of possible objects per class ¢
(ldomain(size.)|) and, for each class, the number of possible values of
each attribute f; (|[domain(f;)|).

H |domain(size,)] H size, - (size. - H |domain(f;)|) (3.1)

ceCl ceCl fief

e For the associations: we consider the number of links in each association
as (|domain(size,s)|) and, in each association, the number of objects in
each participating class p; (|domain(p;)]).

H |domain(size,s)| H Sizeqs - H |domain(p;)| (3.2)

as€As as€As pi€PCas

The total number of leaves can be found multiplying Eq.’s 3.1 and 3.2. It
is easy to see that, even for small models, it is not possible to visit the whole
tree in order to get the solution. Several parameters of the input model will
affect the size of this search tree: the number of classes and attributes of the
model, the number of attributes per class, the domain of each attribute and
the number of allowed objects/links per class/association. In order to provide
a rough idea of the magnitude of this size and the effect of these parameters,
Fig. 3.33 illustrates some sample data. The graphic has been build fixing, for
each parameter line, the rest of parameters to three. This is an average value
and permits to analyse the evolution of the tree search size increasing a single
parameter. It is easy to notice that a unitary increase in any of these parameters
implies an exponential growth in the size of the search tree.
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Figure 3.33: Search tree leaves depending on the size of the input model (loga-
rithmic scale).

3.9.2 Search Strategy

Efficiency improvements can be implemented at run-time level (i.e. parametris-
ing the CSP solver by selecting the traversal algorithm, controlling the search,...)
or at design-level (choosing the right set of variables, constraints and domains
for the CSP in order to optimize the search).

Back-tracking, Search Tree Pruning and Search Control

In Constraint Programming (CP) the search space defined by variables and their
domains is visited by a depth-first search algorithm. Each step of the traversal
process assigns a value to a variable, extending the current partial solution until
a complete solution is found in a leaf. Although many other approaches have
been explored, e.g. backjumping, it is backtracking the most commonly used
for this traversal.

One of the drawbacks of backtracking is the late detection of inconsisten-
cies, i.e. the failure of the search algorithm to find out that the branch being
currently explored takes to an unfeasible solution until it reaches the end and
evaluates its feasibility. In order to avoid this, constraints among variables are
used by CP to obviate visiting non feasible solutions. This is achieved by prop-
agation (see Section 3.5.3). Thus, with the help of forward checking [105] and
other consistency techniques (e.g. node-consistency, arc-consistency, etc. [105]),
constraints help the search engine to explore only feasible solutions, removing
the rest in advance.

Thanks to these techniques, it is possible to detect that a partial solution
cannot possibly be extended into a feasible solution. In this way, backtracks
can be performed without having to compute each complete unfeasible solution.
Thus, these techniques partially avoid the main disadvantage of backtracking
mentioned before: the search engine backtracks when a decision just taken
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implies no further feasible solutions and hence no need to go on that branch of
the tree. These optimizations may greatly reduce the number of visited leaves
in the search tree.

However, the benefits of constraint propagation cannot be quantified in gen-
eral, since they are completely problem-dependent. The ECL'PS®solver already
uses both backtracking and constraint propagation techniques by default.

Besides this, and differently from other paradigms, CP allows to control the
search phase, in order to speed it up. This means that selecting the most efficient
structure and traversal of the search is fundamental, and these are determined
by (1) the order in which variables are assigned a value and (2) the order in
which potential values are selected. Several heuristics come usually, by default,
within CP languages, e.g. assign first the variable with the most constraints or
assign first the smallest value within a domain. However, users can program
other heuristics useful for their specific problems. There are neither better nor
worse heuristics: their adequacy is dependent on the problem so it is important
to check all the combinations and analyse the reasons making one better than
others. This analysis can help the designer to find out certain problem properties
which might guide in the improvement of search. During the tool construction,
all the possible combinations of the heuristics offered by the ECL'PS® solver for
variable ordering and value selection have been evaluated and prioritized. Thus,
the election of these heuristics becomes totally transparent to the final user.

Further Search Improvements Apart from deciding the way the search
tree is visited, some specific features of a problem could lead the programmer
to make additional decisions. Typical improvements can raise from the splitting
of the set of variables into independent subsets (or like in our case, into directly
dependent groups), the removal of both non interesting variables and structural
search tree symmetries, etc. These improvements are left for further work.

Search Design

In what follows, we present the optimization strategies we follow during the
generation of the CSP.

UML/OCL Search: dependent variable subsets Given the CSP trans-
lated from a model, it is easy to detect two kinds of directly dependent variables:
on the one hand, those indicating the number of instances of a class or associa-
tion (i.e. the objects and the links) and, on the other hand, those representing
everything contained by the objects and links themselves (i.e. oids, attributes,
etc.). It is clear that the latter depend directly on the instantiation of the former
ones. Thus, the objects of a class cannot be created until the number of objects
of that class is already known'*. This approach creates two dependent subsets
of variables: when a variable in the first subset is bound, its corresponding

14T here are alternative ways to model this scenario.
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set of variables in the second one can be created and instantiated. Surpris-
ingly enough, the first subset corresponds to those variables modeling the UML
schema, while the second models the OCL constraints.

This peculiarity takes us to divide the search into two steps we call UML and
OCL steps — or structural constraints and global constraints problems (see Fig.
3.10). In a first stage, variables related to the UML class diagram are bound,
and after finding a complete instantiation for this first subproblem, objects and
associations are created. From this point, a second search is performed for the
second subproblem. The two main reasons for doing this are:

e The dependence between both variables subsets complicates the manage-
ment of the corresponding variables. The splitting of the search simplifies
this complexity.

e Often, the problem to solve does not contain OCL constraints and hence
only the first part of the tree is generated and after the creation of ob-
jects and associations, these are automatically instantiated — with no
backtracking at all.

The following two sections analyse the design of these two stages.
UML Search: Structural Subproblem The first CSP — the structural
subproblem — is defined by:

1. Variables for the number of objects of each class, Size,.

2. Variables for the number of links of each association, Sizegs.

3. Constraints related to the cardinalities of associations (see Section 3.4.2):
bounds on cardinalities and number of links.

4. Constraints removing symmetries (see below).

The size of the tree search for this subproblem is given by Eq.3.3.

H |domain(size.)| - H |domain(sizegs)| (3.3)
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Fig. 3.34 shows the evolution of the size of the search tree for this subproblem
when changing input parameters. Although this is a small problem compared
with the complete one, it is still EXPTIME-complete.

For this problem, the solver (with the heuristics chosen in the previous sec-
tion) is able to reach a solution in a backtrack-free search'®. This makes it
possible to get an instant response either if there is a solution or not.

15 A search is told to be backtrack-free when no backtracks are necessary to reach the so-
lution. This usually means the model is so good it is able to guide the search avoiding all
non-feasible solutions.
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Figure 3.34: UML search tree size for different problem sizes

OCL Search: Global Constraints The second CSP — the global con-
straints subproblem — is defined by:

1. Variables for the objects of each class, Instances..
2. Variables for the links of each association, Instances,s.

3. Constraints related to the OCL rules of the model: number of instances,
distinct oids, uniqueness of links, etc.

4. Constraints removing symmetries (see below).

The size of the tree search for this subproblem is given by Eq. 3.4. Notice
that all but two parameters (Instances. and Instances,s) have been bound
to an integer value in the previous stage. Furthermore, it is important to take
into account that there is one of these search trees for every leaf of the previous
stage, i.e. the solution found for the structural subproblem.

H size. - (size. - H |domain(f;)]) - H Sizeqs - H |domain(p;)| (3.4)
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Fig. 3.35 shows the evolution of the size of the search tree for this subproblem
when changing input parameters.

To improve the efficiency of this second problem, we have implemented the
next two strategies.

Symmetry removal The encoding used to map a problem as a CSP should
try to avoid potential symmetries, i.e. the fact that several assignments to vari-
ables of the CSP are equivalent because they correspond to a single solution of
the original problem. Symmetries are undesirable because they cause additional
overhead to the solver: it has to waste time checking the same solution several
times, once for every symmetric assignment.
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Figure 3.36: Example of symmetries in UML/OCL diagrams.

Symmetry removal is the process of ensuring that the solver considers only
one assignment for each family of symmetric solutions. There are several tech-
niques for removing symmetries from a CSP encoding. One of the most effective
techniques is the inclusion of additional constraints in the CSP which forbid al-
ternative symmetric assignments. For instance, a typical symmetry removal
constraint is requiring part of the assignment to be sorted according to some
ordering criteria. This can be done, for instance, when the order among differ-
ent solutions does not matter: the solver will only consider the smallest solution
according to the ordering, discarding the rest.

The choice of these additional constraints depends on the specific CSP en-
coding used for the problem. Notice however that symmetry removal constraints
also cause an overhead to the solver, as they need to be evaluated during the
search. For practical reasons, symmetry removal constraints should not be
overly expensive to evaluate: the solver should execute faster with these sym-
metry removal constraints than without them. Therefore, symmetries which are
very complex to detect will not be removed.

In the context of UML/OCL diagrams, there are several degrees of symmetry.
First, each instance of the diagram can be abstracted as a labeled graph, where
objects are the vertices, associations are the edges and each object is labeled with
its type and attribute values. Intuitively, if among two instances there is a graph
isomorphism that preserves labels, it means that both instances are equivalent.
However, detecting graph isomorphism is computationally complex and thus
trying to avoid this symmetry would be counterproductive. Instead, we will
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focus on another type of symmetries caused by our encoding of instances into
variables: the ordering of instances of a class or association. In our encoding,
variables are assigned sequentially and therefore there is an implicit ordering
among them. However, from the point of view of the instance, the ordering of
objects and links is irrelevant. For instance, if there are two objects of the same
class, there will be two possible assignments to their attributes which will be
symmetric. That is, they all can be swapped between these two objects without
changing the solution. Figure 3.36 illustrates this example for a class diagram
with a single class (CPU) and two attributes (frequency and cacheSize). The
two instances in the top are symmetric among them, while they are distinct
from the one in the bottom. This symmetry can be removed by a adding a
constraint enforcing the attributes of the objects of class CPU to be ordered
lexicographically according to the pair (frequency, cacheSize). In this way, the
instance on the top right would be discarded by the solver because the constraint
(3000,4096) < (2000,8192) does not hold. Similarly, it is possible to remove
symmetries among links of an association by imposing a lexicographic ordering
among links.

Ruling out irrelevant attribute and associations Reducing the number
of variables and/or simplifying its structure in the CSP has also a clear impact
in its complexity. Therefore, during the translation process we avoid translating
those model elements that do not affect the verification process. In particular:

e We discard all attributes that do not participate in any of the constraints
in the model. A correct instantiation may contain any value in those
attributes.

e We discard associations that are not referenced (i.e. navigated) in any
constraint and that do not state any multiplicity constraint (all partic-
ipants have a “0..*” multiplicity). The population of those associations
does not affect the correctness of a solution of the CSP.

The next section describes the efficiency level achieved by our tool once all
the optimizations described herein have been integrated.

3.9.3 Experimental Results and Efficiency Assessment

In order to evaluate the efficiency of the tool, we have considered three scenarios
based on the class diagrams in Figs. 3.37 and 3.38. These are artificial examples,
where a “ring” of n classes are connected by mn binary associations. These
scenarios are designed in order to make it scalable for arbitrary values of n, and
thus, to provide information on the scalability of the tool.

In the first scenario (Fig. 3.37), the goal is the analysis of the tool in the
structural subproblem. Therefore, we consider that there are no integrity con-
straints and we focus on the multiplicities of association ends. This class diagram
would be strongly satisfiable if all those multiplicities were 1..1, e.g. by creating
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Figure 3.37: Example without OCL constraints.

a single object of each class and connecting them through the corresponding as-
sociations to the two neighbour objects. However, if one of the cardinalities were
2..2, the class diagram would become unsatisfiable. In this way, it is possible
to evaluate the behavior of our tool both with a satisfiable and an unsatisfiable
versions of the class diagram.

In the second and third scenarios (Fig. 3.38) we are interested in considering
a model with OCL constraints. Hence, we consider that all association ends have
a multiplicity of 1..1, making the structural subproblem satisfiable. For the OCL
subproblem, we define n constraints, each defining a relationship between the
value of an attribute in class i to the value of the corresponding object in class
i+ 1. Depending on the relationship operator that we choose (> or >), the class
diagram may be strongly satisfiable or not.

The difference among the second and third scenarios is the location of the
inconsistency. The second scenario (Fig. 3.38 left) assumes that the inconsis-
tency arise due to the incompatibility of two constraints involving Class! and
Class2. In this sense, the incompatibility is localized in a fragment of the class
diagram. In contrast, the third scenario considers a case where the incompati-
bility arises from the interaction of all constraints in the model, which establish
a cyclic dependence on the values of the attributes of all classes. Precisely, the
unsatisfiable version of this third scenario has been designed as the worst-case
scenario for our approach, as all variables of a potential solution have to be
assigned in order to detect that the solution is unfeasible.

These examples have been tested for models of different sizes, consisting of
2, 5, 10, 100 and 1000 classes on a Xeon 5050 3Ghz with 4Gb of RAM. All
these examples have been measured with the following domains: the number of
objects per class can be between 0 and 5, there are three possible values for each
attribute and the number links in each association is between 0 and 10. The
reported execution times consider only the verification of the model, excluding
the time required to parse the input XMI and OCL files. Table 3.2 depicts the
experimental results for these examples. Every cell of the table contains the
search time spent to reach the final answer in the two subproblems, structural
(i.e. only the UML part) and global (the full UML/OCL model), separately.

These results show that our approach very easily detects satisfiable prob-
lems (usually, not even backtracking is needed, i.e. propagation is powerful
enough to guide search without failures) even when the model includes OCL
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context Classl inv: self.at op self.class2.at
context Class2 inv: self.at op self.class3.at

context ClassN-1 inv: self.at op self.classN.at
context Classl inv: self.class2.at op self.at

Figure 3.38: Examples with OCL constraints: local inconsistency (left) and

Class1

11

Class2

-at : int

11 ClassN

-at : int

-at : int

1

context Classl inv: self.at op self.class2.at
context Class2 inv: self.at op self.class3.at

context ClassN-1 inv: self.at op self.classN.at
context ClassN inv: self.at op self.classl.at

Strongly satisfiable if op
is >
Not strongly satisfiable if
op is >

global inconsistency (right)

No OCL constraints

Local OCL inconsistency Global OCL inconsistency

n Sat Non Sat Sat Non sat Sat Non sat
2 0.00s 0.00s 0.00s 3.67s 0.00s 1.56s
5 0.01s 0.00s 0.01s 3.78s 0.01s 1.84s
10 0.01s 0.00s 0.01s 3.78s 0.01s 5146.70s
100 | 0.14s 0.05s 0.17s 4.50s 0.17s —
1000 | 3.58s 2.07s 3.81s 31.55s 4.97s —

Table 3.2: Execution time for n = 2,5,10, 100 and 1000 classes
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Sat structural subproblem

Unsat structural subproblem

Sat global subproblem

MEDIUM

EASY (backtrack-free)

Unsat global subproblem

DIFFICULT

EASY (backtrack-free)

Without OCL constraints

EASY (backtrack-free)

EASY (backtrack-free)

Table 3.3: Analysis of the problems depending on the final and intermediate
responses to search trees

constraints (Local and Global OCL inconsistency results). As a matter of fact,
for the structural problem, being satisfiable or not, the solution is always found
backtrack-free. This shows a search time which is almost independent from the
number of classes of the structural problem.

From this analysis we conclude that most of the search difficulties are found
in the second stage of the search, being this more complex when there is no fea-
sible solution (i.e. when the OCL constraints make the model not satisfiable).
This was expected because the absence of a positive answer is translated into
the full search tree generation. Normally, early evaluation of constraints allows
the detection of an unfeasible solution before assigning all of its variables, thus
pruning the search tree. For example, this is what happens in the second sce-
nario, the local OCL inconsistency, where even for large models the tool reach
a conclusion in a small amount of time. However, this is not the case in the
third scenario. Recall that this third scenario (global OCL inconsistency) is
the worst possible case for our approach: the constraints have been carefully
designed so that the inconsistency cannot be discovered until all variables have
been assigned, and thus constraint propagation is not successful in prunning the
tree. In this worst-case scenario, which is not expected in real-world models,
efficiency is only acceptable in small input models.

To sum up, the execution time is not overly dependent on the number of
classes and associations or the model, nor the number of constraints in the
model. Instead, it is dependent on the characteristics of the specific problem
instance received as input and the interaction among its constraints. Some
problem instances, such as the worst-case example described in this section,
have a prohibitive execution time for medium and large models. Meanwhile, the
expected average case (where there are no inconsistencies or the inconsistencies
involve a fragment of the model and not the model as a whole) show a reasonable
execution time.

Table 3.3 presents an analysis of the different kinds of problems to solve
— classified by their feasibility and kinds of constraints forming them. The
conclusion is that, like model-checkers or SAT solvers, UMLtoCSP may be most
efficient when the underlying problem is satisfiable. Long execution times are
indicative of the existence of inconsistencies in the input model. Therefore,
and even if this could not be used as a conclusive response, the inclusion of a
timeout mechanism in the tool could help in providing an early response in those
situations that are most likely representing an inconsistent global subproblem.
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Table 3.4: Comparison of several methods for the verification of UML/OCL

class diagrams.

Tool Formalism Translation  Verification Limitations

8,13,107] Description Logics Automatic Automatic No OCL support

36, 75] CSP Manual Automatic No OCL support,
bounded verification

[76] Linear Programming Automatic Automatic No OCL support

Alloy [61] Relational Logics Manual or [4] Automatic Bounded verification,
limited arithmetic support

197] SAT Automatic Automatic Bounded verification,
limited arithmetic support

[109] Syntax patterns Automatic Automatic Incomplete, limited to
specific constraint patterns

HOL-OCL [22] Higher-Order Logics Automatic User-assisted ~ Undecidability

PVS [70] Higher-Order Logics Automatic User-assisted ~ Undecidability

CQC [91,92] Deductive DB queries Automatic Automatic Limited arithmetic support

USE [52] ASSL Manual Automatic Validation only

UMLtoCSP CSP Automatic Automatic Bounded verification

3.10 Related work

In this section, we will compare our approach with the related work in the area
of static consistency analysis of class diagrams. We will not discuss extensions
of this work to deal with dynamic properties, e.g. model checking or analysis of
operations contracts e.g. [12,30,61,93]. Furthermore, we will restrict ourselves
to the application of consistency analysis to model verification and validation.
Even though the examples and counter-examples computed by these tools can
also be applied to test-case generation [45,110], research on model-based testing
focuses on a more abstract problem, the definition of suitable testing criteria,
while the generation of tests cases for a given testing criterion is solved using
the tools described in this section.

Typically, approaches devoted to the verification of UML/OCL class dia-
grams (as our own approach) transform the diagram into a formalism where
efficient solvers or theorem provers are available. However, there are complexity
and decidability issues to be considered. As it was mentioned before, reasoning
on UML class diagrams is EXPTIME-complete without OCL constraints and
undecidable when general OCL constraints are allowed. By choosing a par-
ticular formalism, each method commits to a different trade-off regarding the
verification of correctness properties of UML/OCL diagrams. Table 3.4 briefly
compares the tool described in this section, UMLtoCSP, to other related tools.
For each approach, the following information is listed: the underlying formal-
ism, the translation procedure from UML/OCL to the formalism (manual or
automated), the degree of automation in the verification (user-assisted or auto-
mated) and other limitations of the method. UMLtoCSP offers both automated
translation and verification procedures and supports general OCL constraints.
Additionally, our tool is able to provide valid instantiations for satisfiable mod-
els.
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Several previous works focus on the verification of UML class diagrams with-
out OCL constraints (or just with some specific types of basic constraints), i.e.
the decidable version of the problem. Some approaches in this category are
based, among others, on Description Logics [8,13,107] or Constraint or Lin-
ear Programming [36,75,76]. Recent results [46] have extended the description
logics formalism (in short, a decidable subset of first-order logic) to define and
reason on operation contracts. However, these approaches need to restrict the
constructs that may appear in the model to keep the reasoning decidable. Thus,
most OCL operations cannot be translated into this formalism.

It is also possible to achieve an efficient'® analysis if only specific patterns
of OCL constraints are allowed. Some examples of these constraint patterns are
the uniqueness of an identifier or the lack of cyclic dependencies among objects.
In such cases, it is possible to derive a priori the consistency lemmas required
for the constraint pattern to hold. These lemmas can be checked efficiently by
finding syntactical patterns in the OCL constraints [109]. An advantage of this
approach is its efficiency, as it is polynomial in the size of the model contrary
to the rest of methods dealing with OCL, which have an exponential worst-
case behavior. On the other hand, the method is restricted to the analysis of
a specific set of constraint patterns and therefore it does not support general
OCL constraints. Furthermore, the method is incomplete as the analysis of
syntactical patterns may be insufficient to prove the consistency lemmas, even
if they hold.

Another related approach is the USE tool [52]. However, USE is more fo-
cused on validation than in verification, that is, it permits to construct finite
snapshots of a UML model that satisfy a set of OCL constraints but the gener-
ation of snapshots is not supposed to be exhaustive: USE does not attempt to
automatically explore a whole range of values to determine the correctness of
the model. Rather, the generation process is user-driven. Users define a list of
desired characteristics for the instances to be created and their number. Then,
the tool generates and tests the validity of such instance set. In contrast, our
approach is fully automatic and decidable. To the best of our knowledge, the
approach presented here is the first method addressing the verification of UML
class diagrams with OCL constraints based on Constraint Programming.

Regarding verification of UML class diagrams with general OCL constraints,
some examples of formalisms used in this problem are Relational Logics (Al-
loy [61]), Higher-Order Logics (HOL-OCL [22,23,70]) and deductive database
queries (CQC [91,92]). However not all these formalisms are as expressive as the
UMLtoCSP method. Some approaches support only a subset of UML or OCL
constructs, e.g. Alloy cannot directly manipulate operations involving integers
and CQC supports only OCL expressions that compute a boolean value. Un-
decidability also imposes several limitations on these approaches, e.g. requiring
user-interaction to complete proofs as in HOL-OCL and PVS. In some cases, it
is possible to detect that the analysis of a model will be decidable and improve

16Though it is difficult to discuss efficiency of UML verification methods since many ap-
proaches either have not publish efficiency results achieved with them
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the efficiency of the verification for that particular model [92].

Among all these approaches, the most similar in terms of features are UML2Alloy
[4] and [97]. In both approaches, the underlying reasoning engine is a SAT
solver: the problem and the correctness property are translated into a boolean
formula whose satisfiability needs to be determined. In the case of UML2Alloy,
there is an intermediate step, the transformation of the UML/OCL model into
the Alloy notation, which the Alloy Analyzer internally translates into a SAT
instance. Meanwhile, [97] proceeds by directly generating the SAT instance and
passing it to the SAT solver MiniSAT. UMLtoCSP offers an advantage with
respect to these two bounded verification approaches. In SAT-based methods,
constraints involving numbers must also be expressed in terms of boolean vari-
ables, meaning that (1) users must specify the number of bits being used to
encode each value and (2) operations on numbers (e.g. addition, difference,
multiplication, less-than, ...) must be encoded as boolean formulas operating
at the bit-level. All these factors lead to a combinatorial explosion in the size of
the formula when the bit-width of integers increases. In a CSP, increasing the
range of a numeric value also increases the search space, but encoding complex
arithmetic expressions on integers or floats is straightforward. As an example
of this problem, let us consider the running example from Fig. 3.2. When this
model is written in the Alloy notation, we realize that one of the constraints
(PaperLength) contains the integer constant 10000. Encoding this constant at
the boolean level requires 15 bits per integer which requires a large amount of
CPU time just to generate the SAT instance (the generation of the SAT instance
did not finish after 1 hour of CPU time in an Intel Core Duo T2400 1.83Ghz
with 1 Gb RAM), while UMLtoCSP computes the result in less than one sec-
ond. Therefore, any model where it is not possible to use “small” constants
and avoid floating point values would be a good candidate to be analyzed with
UMLtoCSP.

Another benefit of UMLtoCSP with respect to Alloy is an advantage in terms
of usability. UML2Alloy and Alloy are separate tools, meaning that a user has to
launch UML2Alloy, load the model and translate it, then launch Alloy, load the
translation and verify it. Meanwhile, UMLtoCSP offers an integrated environ-
ment for verification which also supports the Ecore format, and therefore, the
range of Eclipse EMF tools. On the other hand, it should be noted that Alloy
is a mature tool, with a consolidated implementation. For example, some inter-
esting features of Alloy which are not supported by UMLtoCSP are bounded
model checking capabilities and the computation of unsatisfiable cores [104], i.e.
minimal sets of conflicting constraints within the model.

Unlike other approaches, our approach does not impose theoretical limita-
tions that restrict any UML or OCL constructs besides those explicitly men-
tioned early on. On the other hand, like all bounded verification methods our
approach is decidable but not complete: results are only conclusive if a solution
to the CSP is found. In that sense, our method only guarantees that if a solu-
tion to the CSP exists within the parameters provided by the user, it will be
discovered. Nevertheless, the absence of solutions within a finite search space
cannot be used as a proof: a solution may still exist outside the search space
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defined by the parameters. An observation which alleviates this limitation is
the “small scope hypothesis”, i.e. it is possible to identify a large percentage of
errors in system by considering all possible instances within small domain. This
limitation is shared by Alloy, while HOL-COL and the CQC method provide
complete proof procedures.

Nonetheless, an efficient decidable procedure may provide more useful infor-
mation than a semidecidable procedure, even if the answer is not conclusive.
For example, when checking for satisfiability, the maximum population value
for classes and associations can be always kept low. In practice, it may be as
problematic to have a non-satisfiable model as to have a model that to be sat-
isfiable requires populating the classes with too many instances, e.g. a model
that requires creating more than fifty instances of each class to be satisfiable
may be unusable in practice and may deserve further inspection anyway.

Our approach can be complemented with other verification approaches ad-
dressing other kinds of behavioural UML diagrams (as state machines) in order
to provide more global results.

A similar scenario applies to the verification of model transformations, There
are two main sources of related work in the analysis of graph transformation
rules: those analysing rules using DPO and SPO theory, and those that translate
rules to other domains for analysis. In the former direction, graph transforma-
tion has developed a number of analysis techniques [47,57,95], but they usually
work with simple type graphs (i.e. without OCL constraints).

Regarding the transformation of graph rules into other domains, their trans-
lation into OCL pre- and post-conditions has been also proposed in [53]. Here
we give a more complete OCL-based characterization of rules that considers
DPO and SPO semantics, NACs, and that encodes the LHS’s matching algo-
rithm as additional pre-conditions. In [53] the match is passed as parameter
to the OCL expressions, assuming a predefined existing external mechanism.
In addition, we exploit the resulting OCL expressions in order to enable the
tool-assisted analysis of different rule properties. In [10], rules are translated
into Alloy in order to study the applicability of sequences of rules and the reach-
ability of models. Even though Alloy is equipped with a SAT solver (so that
similar properties to the ones we verify could be analysed), the properties in [10]
are only related to reachability. Moreover, the integration with meta-model in-
tegrity constraints is not discussed. In our case, an encoding of reachability
properties like the one proposed by the authors is also possible, but left for
future work.

In this line of work, other approaches like [108] rely on model-checking tech-
niques to analyse reachability and invariants. In particular, in [108], rules,
models and meta-models are transformed into Promela for model-checking with
SPIN. Finally, in [94] a transformation of rules into the rewriting logic system
Maude is proposed, where reachability analysis and LTL model checking is per-
formed, using the Maude model checker. These approaches do not take into
account meta-models with integrity constraints or OCL constraints in rules.
However, there are several efforts for supporting OCL in Maude, and integrat-
ing OCL in the approach of [94] is feasible. Our use of OCL as intermediate
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representation has the benefit that it is a tool independent, standard language,
and moreover we can easily integrate attribute conditions and meta-model con-
straints. Finally, the kind of properties we analyse is also different. While these
approaches focus on reachability and model checking, our use of UMLtoCSP
— and the fact that it formulates the UML/OCL model as a CSP — makes it
possible to analyse properties like applicability, overlapping and executability
of rules, based on model finding capabilities, in contrast with space-state gen-
eration and exploration techniques.

3.11 Summary

We have presented a fully automatic, decidable and expressive method for the
formal verification of UML/OCL class diagrams (and its application to the
verification of model transfomraitons). Our method is based on the translation
of the class diagram into a CSP. This approach has been implemented in a
prototype tool [106].

As a trade-off the verification procedure is not complete: the user must pro-
vide a set of parameters to limit the search space. Our procedure guarantees
that this search space will be explored exhaustively. We believe this is a reason-
able trade-off given the advantages of our method with respect to alternative
approaches. However, if desired, it is also possible to use the transformation of
UML/OCL models into CSPs on infinite domains: constraint solvers also allow
an incomplete search [5] although termination is not guaranteed and depends
on heuristics to guide the search process. In that way, our method would be-
come semidecidable but complete (for properties that can be satisfied by finite
instances). Moreover, the instance generation nature of this approach (i.e. the
fact that properties are proven by creating legal instances of the model), makes
it amenable for model validation or test generation purposes.

We believe our approach is a promising starting point to face the verification
grand challenge described in the further work chapter.



Chapter 4

Future Research Directions

Building on the results on Model-driven engineering achieved so far I believe
we can conclude that MDE has reached a maturity level where core tools and
techniques for defining and manipulating models (like the ones described at the
beginning of the document) are already available.

Nevertheless, the widespread use of MDE is raising new challenges that may
impair the increasing adoption of MDE in practice (affecting the benefits this
would bring to software engineers):

1. MDE scalability. Current MDE techniques do not scale and thus fail to
work satisfactorily once we go beyond toy examples. This is making some
companies to rethink their MDE strategy and even consider going back to
programming as a way to solve their efficiency issues.

2. Model quality. Despite the key importance of the model concept in
MDE, research on model quality is still very preliminary. As an example,
no popular modeling tool includes any kind of quality checks for models
beyond the simple conformance relationship (i.e. making sure that a model
is a correct instantiation of its metamodel). This is a fundamental concern,
e.g. code is derived from the models so wrong models will generate flawed
software implementations. We have previously described our approach
for model verification. We believe this approach can used as the core
component of a new approch for model quality analysis.

3. Integration with legacy systems. Most software implementations do
not start from scratch but are reengineered/wrapped versions of existing
legacy code. Thus, we really need to better understand these legacy sys-
tems in order to be able to successfully integrate them in MDE (software
modernization) processes.

4. Collaborative Development. All development process encourage an
active participation of the end-users in the development process. Never-
theless, the specification process of modeling artefacts as important as the

106
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(domain-specific) languages those users will employ to model their systems
do not yet take the users into account.

I believe research in MDE should focus on addressing these challenges in the
next years. In this sense, I would like to finish this HdR scientific report by
sketching my (and my team) research program for the next years based on four
different axis, each one corresponding to one of the challenges mentioned above.
These axes offer a good combination of core vs application-oriented and of mid-
term vs long-term research problems. This research will be done following our
team objectives of maintaining scientific excellence at the international level
through publication in top level journals and conferences, continuing the pro-
duction of high quality open source software and conducting technology transfer
activities, always in collaboration with our research and industrial partners.

4.1 Very Large Models

As in other disciplines !, manipulation of large artifacts poses specific problems
that must be properly addressed in order to be able to use the technology in real
industrial scenarios. We predict the same situation will be an important issue
in MDE. In fact, our industrial partners have already experienced problems in
this sense, especially when dealing with the huge models typically resulting from
reverse engineering processes.

Therefore, as part of our research program, we plan to open a new research
area focused on the development of scalable techniques for model manipulation,
inspired whenever possible in how other technical spaces have faced similar
problems. Some of the research lines we believe promising in this area are:

e Incremental, lazy and infinite execution modes for model transformations.
Keeping as much as possible the syntax of existing languages (so that users
do not need to learn new ones) we plan to provide new execution modes
that can be used when manipulating huge models. Incremental model
transformation refers to the ability of modifying only the possibly affected
subset of the target model when changing the source model (instead of re-
executing the whole transformation). A lazy model transformation only
computes a subset of the target model on-demand, i.e. when the user
wants to access that part (avoiding an initial costly computation of the
full target model). In the infinite execution mode, the transformation
cannot wait for the source model to be completely available (e.g. the
source model can be a data stream) and must be able to output pieces of
the target model as soon as a subset of the source becomes available. All
of them will be implemented in our ATL transformation language.

e Modeling as a Service (MaaS). We believe it is worth researching the use of
cloud infrastructures for the execution of scalable modeling services. This

IFor instance, in the database community, the Very Large DataBases Conference is one of
the top three in the area and is celebrating now its 37th edition.
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possibility has not yet been explored. We are confident that the technical
challenges to make MaaS a reality can be overcome by learning from how
SaaS has developed. Two key issues here would be the development of
parallel model manipulation algorithms (to maximize the benefits of the
cloud), and the definition of modeling service description (and choreogra-
phy) languages.

e Query languages and scripts for batch processing of models and model
repositories. More and more, software processes generate huge and het-
erogeneous modeling artifacts that get stored in model repositories. We
need to be able to automatically retrieve and process (including as part of
complex transformation chains) all these artifacts. Existing model search
approaches (like [20], [74]) are more focused on searching by model con-
tent than by model structure and inter/intra-model relationships, and offer
limited model processing capabilities for the retrieved results.

e A virtualization mechanism for models. A virtual model is presented to the
user as a normal model but it is internally designed as a set of references
to the model elements in the base model/s. This mechanism is especially
useful as part of model composition scenarios, where instead of creating
the composed model we can immediately create a virtual representation
of such composed model (regardless the composition and merge strategy
employed [50, 58,68,90]) that will forward all the read/write requests on
it to the contributing models. This model virtualization approach will be
contributed to the new EMF Facet 2 Eclipse project in which AtlanMod
is participating with industrial partners.

4.2 Pragmatic formal model verification

The verification techniques described in the previous section have shown promis-
ing results. Nevertheless, there are still several open issues to be improved be-
fore model verification is widely adopted by practitioners as one of the usual
development practices in their daily work.

As a first step we envision the development of a quality framework in charge
of automatically selecting the most appropriate analysis technique for an input
model depending on the characteristics of the model (e.g. complexity, expres-
siveness and so on) and the target quality property. Each available technique
presents a different trade-off regarding the verification process employed. De-
pending on the model one approach may be more suited than others. For in-
stance, for UML models without integrity constraints (a decidable problem) it
may be better to use complete approaches (as those based on Description Log-
ics) instead of approaches based on bounded verification as the ones highlighted
in this document. Again, we cannot assume the designer has enough expertise
on formal methods to decide himself which family of approaches works better

2http://www.eclipse.org/modeling/emft /facet/
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for the particular modeling scenario he is interested in. Therefore, a framework
able to reason on the characteristics of the input problem to decide the best
problem solving strategy is required.

A second set of improvements is related to the scalability of the verifica-
tion methods. When following our pragmatic formal verification approach we
can tame the exponential complexity of the verification problem but still, all
available techniques need to be improved to cope with real industrial scenarios.
Some of the possible research lines we believe promising in this area are:

e Model partition to improve performance. In most cases, the ver-
ification of a model m can be defined in terms of the verification of the
submodels my,...,m,. Techniques for slicing the model in a subset of
independent submodels (with the subsets to be computed depending on
the property to be verified) will definitely help in improving the efficiency
of the process due to its exponential nature.

e Search space reduction for bounded methods. Bounded methods
require a finite search space. A smaller search space improves the efficiency
but impairs the completeness of the verification. A preliminary analysis
of the model could provide some insight on the best bounds of the search
space as a trade-off between the two properties.

e Apply SAT Modulo Theories to model satisfiability. SAT Modulo
Theories (SMT) is a promising technique for checking the satisfiability
of a complex formula which combines recent improvements in SAT tools
with the power of a custom solver specialised in a given logic [80]. In
the case of model satisfiability, the challenge is identifying a subset of
the modeling language which is sufficiently expressive yet allows efficient
decision procedures.

e Incremental verification. The specification of a model is an iterative
process where the model is continuously refined by means of adding, chang-
ing or deleting some of its elements. Clearly, once a first version has been
verified, we should be able to prove the correctness of new model versions
without verifying the whole model again. Instead, only the “updated”
parts should be considered. This would make a significant impact in the
verification process since it would be fast to reverify models as part of the
normal model evolution process in new development iterations.

e Model normalization. Normalizing a model, i.e. rewriting complex
modeling constructs in terms of more basic ones, prior to the verification
process helps to reduce the complexity of the verification algorithms that
now do not need to consider the full language expressiveness. For instance,
see [34] for some rules for normalizing OCL constraints.

Another very important area that has not yet been addressed by current
methods is the problem of the quality of the feedback received by the user when
the verification process detects that a model is not correct. Tools should not
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only be able to answer whether the model is correct. If the answer is no, the
tool should be able to explain where, why and how it can be corrected. This
information has to be provided in terms of the original model (i.e. in a way that
the designer can understand, not in terms of the internal verification language
used by the tool). This will help designers to “easily” improve defective models.
A promising approach in this direction is the use of explanation-based constraint
solvers [37], i.e. constraint solvers which are capable of identifying the subset of
constraints causing the inconsistency of a CSP. This subset of constraints could
then be traced back to the subset of the model that generated them to provide
valuable feedback to the designer.

Finally, a general problem of the area is the lack of standard and public
community benchmarks that facilitate the comparison among different tools and
approaches. This is necessary since benchmarks provide an excellent resource
to measure the progress and significance of a given contribution. The existence
of widely accepted benchmarks for model analysis can foster progress and allow
also other existing approaches to mature and exchange ideas.

4.3 Modernization of legacy systems.

Legacy systems embrace a large number of technologies, making the develop-
ment of tools to cope with legacy systems evolution a tedious and time con-
suming task. As modernization projects have to address different combinations
of legacy technologies and various modernization scenarios, model-driven ap-
proaches and tools offer the required abstraction level to build up mature and
flexible modernization solutions.

Our work in this area started with the MoDisco Eclipse project®. MoDisco
[24] provides an extensible framework to develop model-driven reverse engineer-
ing tools to support use-cases of existing software modernization. Modernizing
an existing software system implies describing the information extracted out of
the artifacts of this system, understanding the extracted information in order
to take the good modernization decisions and transforming this information to
new artifacts facilitating the modernization (metrics, document, transformed
code, etc).

MoDisco aims at supporting the reverse engineering process by providing
metamodels to describe existing systems (i.e. our Java metamodel allows a
complete representation of all Java code in the system, including not only the
structure of the classes but also the complete modeling of the methods behavior),
discoverers to automatically create models of existing systems and generic tools
to transform complex models created out of those systems. So far, model-
driven reverse engineering approaches have targeted specific technologies (e.g.
COBOL [9]) or focused on specific activities (like software data analysis [6] using
the Moose re-enginering platform) while Modisco pretends to provide a more
generic framework where specific discoverers for concrete technologies and new
use cases can be easily integrated.

3http:/ /www.eclipse.org/MoDisco/
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Nevertheless, MoDisco and in general all reverse engineering tools have a
very important limitation, they do not help engineers to really understand the
legacy system, they just re-express it using a different (abstract and concrete)
syntax. Software engineers are still in charge of processing and querying the
model in order to extract the relevant information they need to understand
the semantics of the system. For instance, they would need to reverse-engineer
design patterns used in the implementation to get a more conceptual/domain-
oriented view, deduce the business rules enforced by the code from the low-
level program behavior and so on. We believe it is necessary to provide a new
generation of (model driven) reverse engineering methods that close the gap
between the software implementation and the conceptual representation of the
system expected by the end-user. The three main research topics we plan to
develop in this area are:

e Reverse engineering of business rules. So far, MoDisco provides a model-
based representation of the code. This is not enough to directly discover
and understand the business rules embedded in it. We envision a more
complete model-driven business reengineering process in which the low-
level models can be analyzed using a pattern-based approach to extract the
hidden rules implemented in the code. These rules then can be expressed
using a business rule language, like the OMG standard SBVR specification
readable by the business people (e.g. a similar approach but starting from
UML/OCL models instead of from code would be [32]). Big companies
with large code bases have expressed their interest in following the results
of this work.

e Reverse Engineering of the (enterprise) architecture of the system. Right
now, reverse engineering focuses on single system components, e.g. we can
do reverse engineering of a set of Java classes, a relational database and
a set of JSP pages but what we cannot do at the moment is to reverse
engineer the system as a whole, where elements in one component model
are automatically linked to the elements in the others according to their
semantic relationship. The final goal is to be able to reverse engineer
the full enterprise architecture embedded in the information system, and
represent it using a standard for enterprise architectures specification like
TOGAF. This global view of the system will remarkably facilitate the
software modernizations that stakeholders must take.

e Automatic creation of metamodels and model discoverers from the source
code [60], required to start the reverse engineering process. This should
include not only the programs but also the (external) APIs used by the
running applications.

These results will be contributed to the MoDisco Eclipse project. Similarly
to what we have done with ATL, we have developed a partnership with MIA-
Software (Sodifrance group) for the industrialization of MoDisco. This agree-
ment will provide resources to ensure the long-term availability of the project.
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IBM is funding a PhD student to collaborate on the first item in the list. This
research line is closely related to the very large models axe, since reengineering
usually creates huge models that push the limits of existing modeling platforms.

4.4 Collaborative Development of Languages

It’s well known that domain-specific languages can improve the productivity
of end-users in focused domains. Nevertheless, to guarantee that the language
fits the users’ needs, it’s important that end-users (which, in the end, are the
domain experts) have a direct and continuous participation in the creation and
evolution of the language. This includes recording the proposals, comments,
alternative solutions and, in general, all the argumentation that takes place
during the language creation so that at any time is possible to trace back to the
reasons that motivated a given design decision. It’s also important to monitor
how users employ the language in order to automatically detect (and suggest
for validation) irrelevant language constructs, missing ones, etc.

Collaboration should be done not only at the abstract syntax level (i.e. when
discussing the concepts that must be included in the language) but also at the
concrete syntax level (i.e. when deciding which particular graphical or textual
elements should be use as a notation to represent the domain concepts).



Chapter 5

Dissemination and
Industrialization strategy

AtlanMod strong focus on the dissemination and industrialization of its research
results is one of the main assets of the team. To conclude this document, in what
follows, we detail the team’s strategy regarding the open source communities,
the industrialization of our research prototypes and the standardization bodies.
We will emphasize even more this strategy in the next research period.

5.1 Open source community and Eclipse

All the software components developed in the context of AtlanMod are released
as open source. This fundamental choice has been made several years ago with
the objective of allowing a worldwide public dissemination of both the imple-
mented tools and the underlying research ideas. Quite naturally, Eclipse has
been selected as the base open source community and platform for our exper-
imentations, benefiting from the Eclipse Public License (EPL) as an efficient
way to largely facilitate the collaboration with industrial partners (cf. next
subsection).

In the past years, this has led us to the creation, development and dissem-
ination of several official Eclipse projects. The most remarkable one until now
is the M2M-ATL project providing the AtlanMod Transformation Language as
well as the corresponding integrated tooling and resources. This project has
been actually used as an important support for communication of our various
research results on model transformation (and related topics like model weav-
ing, with the integration of the AtlanMod Model Weaver, AMW, inside the
ATL project). Later, we created the MDT-MoDisco project with the goal of
offering a generic and extensible framework for the elaboration of model-driven
reverse-engineering solutions. Following an approach similar to the ATL project,
MoDisco has been used as a very interesting (and relevant) playground for our
research around the application of MDE core principles and techniques to the
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reverse-engineering field. The project also includes the use of global model man-
agement techniques, as developed in the AtlanMod MegaModel Management
(AM3) prototype which is now part of MoDisco. In both cases, the Eclipse
projects have exponentially increased the visibility of the team in the corre-
sponding fields and opened the door to several collaborations.

Another kind of dissemination we recently experimented on, still within the
Eclipse community, concerns the creation of Eclipse Lab (Eclipse-tagged Google
Lab) for some of our more immature prototypes. For instance, we have recently
created the Portolan Eclipse lab as a quick and efficient way to make available
to the community the result of our collaboration with BNP Paribas around the
topic of model driven cartography.

Generally, one of the main goals of AtlanMod is to capitalize on these suc-
cessful experiences in order to continue progressing on the open dissemination
of our research results. An example is the recently created EMFT-EMF Facet
project, as a spin-off of MoDisco, which is providing a generic framework for
dynamic model extension. Such a project offers us a good public visibility and
very interesting possibilities in terms of research experimentations for the fu-
ture. Moreover, for the same reasons, we are working on the creation of another
official Eclipse project called EMF Quality as an initiative to support the new
research line on the general problem of model quality evaluation. Obviously,
even if largely involved in the Eclipse community, we still continue to be recep-
tive to possibly interesting ideas and progresses made in the context of other
different worldwide communities such as notably Google or Microsoft MSDN.

5.2 Industrialization strategy

Historically, AtlanMod has always had fruitful collaborations with companies
or groups of different sizes and domains of activity. Although the name and
type of the companies we are working with may differ according to the context
and topic, the general principles we try to systematically apply remain the
same. Based on our experience, we have extracted an industrialization triangle
business model which we have already successfully applied several times.

We believe this model is a viable solution to one of the main problems of
any research group. Research groups develop plenty of tools aimed at solving
real industrial problems. Unfortunately, most of these tools remain as simple
proof-of-concept tools that companies consider too risky to use due to their
lack of proper user interface, documentation, completeness, usability, support,
etc. Therefore, most of the tools are only used to convince reviewers to accept
a research paper and then are completely forgotten due to lack of resources
to invest in tool development (funding for non-core research activities is very
difficult to get/justify). This is very bad for research groups that risk missing
the opportunity of having a large user base for their tools along with the benefits
that this brings to the table (e.g. empirical validation of their research, feedback,
visibility, collaboration opportunities and so on).

The solution we have adopted in the AtlanMod team is to pursue the indus-
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Figure 5.1: Our industrialization strategy.

trialization of our research tools by developing a partnership with a technology
provider that ensures the existence of an open source but commercial-quality
version of the tool. As part of the agreement, the technology provider commits
resources on the non-core aspects of the tool and takes over traditional soft-
ware development and maintenance tasks (including performance and usability
improvements, bug fixing and user support) in exchange for visibility and the
possibility of offering specialized services around it (e.g. trainings or customiza-
tions to specific clients). In our experience, this is a sustainable business model
for the technology provider and very beneficial for the research group.

Obviously, in order to make sense for the technology provider to invest on the
tool, the tool has to be valuable to a big community of users (or big companies).
That’s why in fact our strategy involves three different actors with different
characteristics:

First, the big company or large user group proposes concrete use cases that
they would like to have a solution for. According to the formulated request, the
research lab checks if we are in front of a challenging research problem and, if
S0, it provides its scientific knowledge and vision in order to elaborate solutions
for it. Finally, the technology provider brings the technical expertise required
for the developed prototypes to be implemented as high-quality industrialized
solutions directly deployable into the real environments. This is an application-
driven approach which is obviously supported by an iterative process implying
frequent exchanges at each of its steps. Even if not strictly required, the use of
open source as a base largely facilitates both the communication between the
different involved partners and the progressive dissemination of the research and
industrialization results.

Actually, the fundamental property of this business model is that it is a
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win-win approach. The big companies can benefit from a real expertise, both
scientifically and technically. The technology providers can make significant
returns on investment by working for these big groups on innovative techniques
while knowing from the beginning that there’s indeed a need for that product
and that the solution is feasible (as proved by the research lab). Research labs
can have a priority access to research challenges practically relevant from the
industrial perspective and benefit from the availability of high-quality tools (as
built by the technology provider) to disseminate their research results.

AtlanMod has already applied concretely this approach, via the partner-
ship with Obeo, on various topics related to the use of model transformation
with ATL. A similar process has also been performed, focusing on the reverse
engineering domain, via the partnership with Mia-Software on MoDisco. Our
objective is to apply again this same approach on other relevant topics and
possibly different contexts.

5.3 Standardization

Using and contributing to industry standards (de jure or de facto) is also an
important activity for research teams. AtlanMod has supported different stan-
dardization initiatives such as notably the Object Management Group (OMG)
Model Driven Architecture (MDA) ones. In fact, the ATL model transformation
tool was historically relying on the Meta Object Facility (MOF) specification for
(meta)model representation. The ATL language in itself is QVT-like, respect-
ing the main recommendations from the Query/View/Transformation (QVT)
specification (for which it was one of the influences) such as the use of the Ob-
ject Constraint Language (OCL) for model navigation. Following the general
evolution of Model Driven Engineering (MDE) and the emergence of the Eclipse
platform, our tools progressively switched to the use of the Eclipse Modeling
Framework (EMF) which is nowadays considered as the de facto standard by the
IT community. Thus, for evident integration and interoperability reasons, all
our prototypes and tools are today based on EMF for the model manipulation
part. As explained above, AtlanMod is very active in the Eclipse community,
proposing and leading several Eclipse projects that have become standards in
it.

More recently, within the specific context of MoDisco, we started a closer
collaboration with a particular group from the OMG: the Architecture Driven
Modernization (ADM) Task Force. This has resulted in the official recognition of
MoDisco by the OMG ADM initiative that has chosen MoDisco as the reference
implementations for several ADM standards inside MoDisco: the Knowledge
Discovery Metamodel (KDM), the Abstract Syntax Tree Metamodel (ASTM)
and the Software Metrics Metamodel (SMM).

The OMG is still the main actor concerning the standardization of the MDE
domain, and we are looking forward to other possibly relevant collaborations
or applications in the future. However, we continue to keep an eye on the
other major standardization organisms such as the World Wide Web Consor-
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tium (W3C), the Organization for the Advancement of Structured Information
Standards (OASIS), etc.



Bibliography

[1]

[4]

D. H. Akehurst, S. Kent, and O. Patrascoiu. A relational approach to
defining and implementing transformations between metamodels. Soft.
and Syst. Mod., 2(4):215-239, 2003.

M. Albert, J. Cabot, C. Gémez, and V. Pelechano. Automatic generation
of basic behavior schemas from uml class diagrams. Software and System
Modeling, 9(1):47-67, 2010.

M. Albert, J. Cabot, C. Gémez, and V. Pelechano. Generating operation
specifications from uml class diagrams: A model transformation approach.
Data Knowl. Eng., 70(4):365-389, 2011.

K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: A chal-
lenging model transformation. In ACM/IEEE 10th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS
2007), volume 4735 of Lecture Notes in Computer Science, pages 436-450,
2007.

K. R. Apt and M. G. Wallace. Constraint Logic Programming using
ECLIPS®. Cambridge University Press, Cambridge, UK, 2007.

G. Arévalo, S. Ducasse, S. E. Gordillo, and O. Nierstrasz. Generating a
catalog of unanticipated schemas in class hierarchies using formal concept
analysis. Information € Software Technology, 52(11):1167-1187, 2010.

A. Artale, D. Calvanese, and A. Ibanez-Garcia. Full satisfiability of UML
class diagrams. In J. Parsons, M. Saeki, P. Shoval, C. Woo, and Y. Wand,
editors, Proc. of Conceptual Modeling (ER’2010), volume 6412 of Lecture
Notes in Computer Science, pages 317-331. Springer Berlin / Heidelberg,
2010. 10.1007/978-3-642-16373-9-23.

M. Balaban and A. Maraee. A UML-based method for deciding finite sat-
isfiability in Description Logics. In Proc. of the 21st International Work-
shop on Description Logics (DL’2008), volume 353 of CEUR Workshop
Proceedings. CEUR-WS.org, 2008.

118



BIBLIOGRAPHY 119

[9]

[21]

F. Barbier, S. Eveillard, K. Youbi, O. Guitton, A. Perrier, and E. Cariou.
Model-Driven Reverse Engineering of COBOL-Based Applications, pages
283-299. Morgan Kaufmann, 2010.

L. Baresi and P. Spoletini. On the use of alloy to analyze graph transfor-
mation systems. In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and
G. Rozenberg, editors, ICGT, volume 4178 of Lecture Notes in Computer
Science, pages 306—-320. Springer, 2006.

A. Baruzzo and M. Comini. Static verification of UML model consistency.
In D. Hearnden, J. S, N. Rapin, and B. Baudry, editors, 3rd Workshop on
Model Design and Validation (MoDeV2a), pages 111-126, 2006.

B. Beckert, R. Hahnle, and P. H. Schmitt, editors. Verification of Object-
Oriented Software: The KeY Approach, volume 4334 of Lecture Notes in
Computer Science. Springer-Verlag, 2007.

D. Berardi, D. Calvanese, and G. D. Giacomo. Reasoning on UML class
diagrams. Artificial Intelligence, 168:70-118, 2005.

D. Berry. Formal methods: the very idea. Some thoughts about why they
work when they work. Science of Computer Programming, 42(1):11-27,
2002.

J. Bézivin, F. Biittner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lindow.
Model transformations? transformation models! In Nierstrasz et al. [79],
pages 440-453.

J. Bézivin, F. Biittner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lindow.
Model transformations? transformation models! In Nierstrasz et al. [79],
pages 440-453.

J. Bézivin, F. Biittner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lindow.
Model transformations? Transformation models! volume 4199 of LNCS,
pages 440-453. Springer, 2006.

J. Bézivin and O. Gerbé. Towards a precise definition of the omg/mda
framework. In ASE, pages 273-280. IEEE Computer Society, 2001.

A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in pro-
cedure specifications. IEEE Trans. Software Eng., 21(10):785-798, 1995.

A. Bozzon, M. Brambilla, and P. Fraternali. Searching repositories of web
application models. In B. Benatallah, F. Casati, G. Kappel, and G. Rossi,
editors, ICWE, volume 6189 of Lecture Notes in Computer Science, pages
1-15. Springer, 2010.

M. Brambilla, J. Cabot, and S. Comai. Extending conceptual schemas
with business process information. Adv. Software Engineering, 2010, 2010.



BIBLIOGRAPHY 120

[22]

[28]

[29]

A. Brucker and B. Wolff. Semantics, calculi, and analysis for
object-oriented specifications.  Acta Informatica, 46:255-284, 2009.
10.1007/s00236-009-0093-8.

A. D. Brucker and B. Wolff. The HOL-OCL book. Technical Report 525,
ETH Zurich, 2006.

H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot. Modisco: a
generic and extensible framework for model driven reverse engineering.
In C. Pecheur, J. Andrews, and E. D. Nitto, editors, ASE, pages 173-174.
ACM, 2010.

J. Cabot. From declarative to imperative uml/ocl operation specifications.
In Parent et al. [88], pages 198-213.

J. Cabot. From declarative to imperative UML/OCL operation specifica-
tions. In Parent et al. [88], pages 198-213.

J. Cabot, R. Clarisé, E. Guerra, and J. de Lara. A uml/ocl framework for
the analysis of graph transformation rules. Software and System Modeling,
9(3):335-357, 2010.

J. Cabot, R. Clarisé, E. Guerra, and J. de Lara. Verification and validation
of declarative model-to-model transformations through invariants. Journal
of Systems and Software, 83(2):283-302, 2010.

J. Cabot, R. Clarisé, and D. Riera. Verification of UML/OCL class di-
agrams using constraint programming. In MoDeVVa 2008. ICST Work-
shop, page available online: http://gres.uoc.edu/pubs/MODEVVAO08.pdf,
2008.

J. Cabot, R. Clarisé, and D. Riera. Verifying UML/OCL operation con-
tracts. In Proc. 7th Int. Conf. on Integrated Formal Methods (IFM’2009),
volume 5423 of Lecture Notes in Computer Science, pages 40-55. Springer-
Verlag, 2009.

J. Cabot, A. Olivé, and E. Teniente. Representing temporal information
in uml. In P. Stevens, J. Whittle, and G. Booch, editors, UML, volume
2863 of Lecture Notes in Computer Science, pages 44-59. Springer, 2003.

J. Cabot, R. Pau, and R. Raventés. From uml/ocl to sbvr specifications:
A challenging transformation. Inf. Syst., 35(4):417-440, 2010.

J. Cabot and R. Raventés. Conceptual modelling patterns for roles. pages
158-184, 2006.

J. Cabot and E. Teniente. Transformation techniques for OCL constraints.
Science of Computer Programming., 68(3):179-195, 2007.

J. Cabot and E. Teniente. Incremental integrity checking of uml/ocl con-
ceptual schemas. Journal of Systems and Software, 82(9):1459-1478, 2009.



BIBLIOGRAPHY 121

[36]

=)

[42]

[43]

M. Cadoli, D. Calvanese, G. D. Giacomo, and T. Mancini. Finite satisfia-
bility of UML class diagrams by Constraint Programming. In Proc. of the
2004 International Workshop on Description Logics (DL’2004), volume
104 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

H. Cambazard and N. Jussien. Identifying and exploiting problem
structures using explanation-based constraint programming. Constraints,
11(4):295-313, 2006.

CHIP V5. http://www.cosytec.com/production\_scheduling/chip/
optimization\_product\_chip.htm.

Comet. http://dynadec.com/.
Cream. http://bach.istc.kobe-u.ac.jp/crean/.

J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer.
Attributed graph transformation with node type inheritance. Theor. Com-
put. Sei., 376(3):139-163, 2007.

J. de Lara and E. Guerra. Pattern-based model-to-model transformation.
volume 5214 of LNCS, pages 426—441. Springer, 2008.

J. de Lara and H. Vangheluwe. Defining visual notations and their manip-
ulation through meta-modelling and graph transformation. J. Vis. Lang.
Comput., 15(3-4):309-330, 2004.

B. Demuth. The Dresden OCL toolkit and its role in Information Systems
development. In Proc. of the 13th International Conference on Informa-
tion Systems Development (ISD’2004), Vilnius, Lithuania, 2004.

T. T. Dinh-Trong, S. Ghosh, and R. B. France. A systematic approach
to generate inputs to test uml design models. In 17th International Sym-
posium on Software Reliability Engineering (ISSRE’2006), pages 95-104.
IEEE Computer Society, 2006.

C. Drescher and M. Thielscher. Integrating action calculi and description
logics. In J. Hertzberg, M. Beetz, and R. Englert, editors, KI, volume
4667 of Lecture Notes in Computer Science, pages 68-83. Springer, 2007.

H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Alge-
braic Graph Transformation. Springer, 2006.

H. C. Esfahani, J. Cabot, and E. S. K. Yu. Adopting agile methods: Can
goal-oriented social modeling help? In P. Loucopoulos and J.-L. Cavarero,
editors, RCIS, pages 223-234. IEEE, 2010.

H. C. Esfahani, E. S. K. Yu, and J. Cabot. Situational evaluation of
method fragments: An evidence-based goal-oriented approach. In B. Per-
nici, editor, CAiSE, volume 6051 of Lecture Notes in Computer Science,
pages 424-438. Springer, 2010.



BIBLIOGRAPHY 122

[50]

[54]

[58]

[59]

[60]

F. Fleurey, B. Baudry, R. B. France, and S. Ghosh. A generic approach for
automatic model composition. In H. Giese, editor, MoDELS Workshops,
volume 5002 of Lecture Notes in Computer Science, pages 7—15. Springer,
2007.

GNU-Prolog. http://www.gprolog.org/.

M. Gogolla, J. Bohling, and M. Richters. Validating UML and OCL
models in USE by automatic snapshot generation. Journal on Software
and System Modeling, 4(4):386-398, 2005.

M. Gogolla, F. Biittner, and D.-H. Dang. From graph transformation
to ocl using use. In A. Schiirr, M. Nagl, and A. Ziindorf, editors, AG-
TIVE, volume 5088 of Lecture Notes in Computer Science, pages 585—586.
Springer, 2007.

M. Gogolla and M. Richters. Expressing UML class diagrams properties
with OCL. In A. Clark and J. Warmer, editors, Object Modeling with
the OCL, The Rationale behind the Object Constraint Language, pages
85-114, London, UK, 2002. Springer-Verlag.

Graphviz. Graph visualization software. http://www.graphviz.org.

E. Guerra and J. de Lara. Event-driven grammars: Relating abstract and
concrete levels of visual languages. Soft. and Syst. Mod., special section
on ICGT’04, pages 317-347, 2007.

R. Heckel, J. M. Kiister, and G. Taentzer. Confluence of typed attributed
graph transformation systems. In A. Corradini, H. Ehrig, H.-J. Kreowski,
and G. Rozenberg, editors, ICGT, volume 2505 of Lecture Notes in Com-
puter Science, pages 161-176. Springer, 2002.

C. Herrmann, H. Krahn, B. Rumpe, M. Schindler, and S. Volkel. An
algebraic view on the semantics of model composition. In D. H. Akehurst,
R. Vogel, and R. F. Paige, editors, ECMDA-FA, volume 4530 of Lecture
Notes in Computer Science, pages 99-113. Springer, 2007.

ILOG CP. http://www-01.ibm.com/software/integration/
optimization/cplex-cp-optimizer/.

J. L. C. Izquierdo and J. G. Molina. A domain specific language for
extracting models in software modernization. In Paige et al. [87], pages
82-97.

D. Jackson. Software Abstraction: Logic, Language and Analysis. MIT
University Press, Cambridge (MA), USA, 2006.

JaCoP. http://jacop.osolpro.com/.

C. Jones, P. O’'Hearn, and T. J. Woodcock. Verified software: A grand
challenge. IEEE Computer, 39(4):93-95, 2006.



BIBLIOGRAPHY 123

[64]

[65]

[66]

[67]

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. Atl: A model transfor-
mation tool. Sci. Comput. Program., 72(1-2):31-39, 2008.

F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. ATL: a
QVT-like transformation language. In OOPSLA Companion, pages 719
720. ACM, 2006.

F. Jouault and J. Bézivin. Km3: A dsl for metamodel specification. In
R. Gorrieri and H. Wehrheim, editors, FMOODS, volume 4037 of Lecture
Notes in Computer Science, pages 171-185. Springer, 2006.

W. Kling, F. Jouault, D. Wagelaar, M. Brambilla, and J. Cabot. MoScript:
A DSL for querying and manipulating model repositories. In Software
Language Engineering (SLE2011), Braga, Portugal, Oct. 2011.

D. S. Kolovos, R. F. Paige, and F. Polack. Merging models with the
epsilon merging language (eml). In Nierstrasz et al. [79], pages 215-229.

A. Koénigs and A. Schiirr. Tool integration with triple graph grammars -
a survey. ENTCS, 148(1):113-150, 2006.

M. Kyas, H. Fecher, F. S. de Boer, J. Jacob, J. Hooman, M. van der Zwaag,
T. Arons, and H. Kugler. Formalizing UML models and OCL constraints
in PVS. Electron. Notes Theor. Comput. Sci., 115:39-47, January 2005.

C. Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design. Prentice Hall, 2004. .

L. Lengyel, T. Levendovszky, and H. Charaf. Constraint validation in
model compilers. Journal of Object Technology, 5(4):107-127, 2006.

F. J. Lucas, F. Molina, and A. Toval. A systematic review of UML
model consistency management. Information and Software Technology,
51(12):1631 — 1645, 20009.

D. Lucrédio, R. P. de Mattos Fortes, and J. Whittle. Moogle: A model
search engine. In K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and
M. Vélter, editors, MoDELS, volume 5301 of Lecture Notes in Computer
Science, pages 296-310. Springer, 2008.

H. Malgouyres and G. Motet. A UML model consistency verification
approach based on meta-modeling formalization. In Proc. of the 2006
ACM symposium on Applied Computing (SAC’2006), pages 1804-1809,
New York, NY, USA, 2006. ACM Press.

A. Maraee and M. Balaban. Efficient reasoning about finite satisfiability of
UML class diagrams with constrained generalization sets. In Proc. of the
3rd Model Driven Architecture- Foundations and Applications (ECMDA-
FA’2007), volume 4530 of Lecture Notes in Computer Science, pages 17—
31. Springer-Verlag, 2007.



BIBLIOGRAPHY 124

[77]

(78]

K. Marriott and P. J. Stuckey. Programming with Constraints: An Intro-
duction. MIT Press, Cambridge, Massachussetts, 1998.

P. Mohagheghi, V. Dehlen, and T. Neple. Definitions and approaches to
model quality in model-based software development - a review of liter-
ature. Information and Software Technology, 51(12):1646 — 1669, 2009.
Quality of UML Models.

O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors. Model Driven
Engineering Languages and Systems, 9th International Conference, MoD-
ELS 2006, Genova, Italy, October 1-6, 2006, Proceedings, volume 4199 of
Lecture Notes in Computer Science. Springer, 2006.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT an SAT Modulo
Theories: from an Abstract Davis-Putnam-Logemann-Loveland procedure
to DPLL(T). Journal of the ACM, 53(6):937-977, Nov. 2006.

A. Nugroho and M. R. V. Chaudron. Evaluating the impact of uml mod-
eling on software quality: An industrial case study. In A. Schiirr and
B. Selic, editors, MoDELS, volume 5795 of Lecture Notes in Computer
Science, pages 181-195. Springer, 2009.

Object Management Group. MDA Guide V1.0.1, 2003.

Object Management Group. UML 2.0 OCL Specification, 2003.

Object Management Group. UML 2.0 Superstructure Specification, 2004.
OMG. MOF 2.0 Query/View/Transformation specification, 2007.

Oz. http://www.mozart-oz.org/.

R. F. Paige, A. Hartman, and A. Rensink, editors. Model Driven Architec-
ture - Foundations and Applications, 5th European Conference, ECMDA-
FA 2009, Enschede, The Netherlands, June 23-26, 2009. Proceedings, vol-
ume 5562 of Lecture Notes in Computer Science. Springer, 2009.

C. Parent, K.-D. Schewe, V. C. Storey, and B. Thalheim, editors. Con-
ceptual Modeling - ER 2007, 26th International Conference on Conceptual
Modeling, Auckland, New Zealand, November 5-9, 2007, Proceedings, vol-
ume 4801 of Lecture Notes in Computer Science. Springer, 2007.

E. Planas, J. Cabot, and C. Gémez. Verifying Action Semantics Speci-
fications in UML Behavioral Models. In CA:SE, volume 5565 of LNCS,
pages 125-140. Springer, 2009.

R. Pottinger and P. A. Bernstein. Merging models based on given corre-
spondences. In VLDB, pages 826-873, 2003.



BIBLIOGRAPHY 125

[91]

[92]

[100]

[101]

[102]

A. Queralt and E. Teniente. Reasoning on UML class diagrams with OCL
constraints. In D. W. Embley, A. Olivé, and S. Ram, editors, ER, vol-
ume 4215 of Lecture Notes in Computer Science, pages 497-512. Springer-
Verlag, 2006.

A. Queralt and E. Teniente. Decidable reasoning in UML schemas with
constraints. In Z. Bellahsene and M. Léonard, editors, Proc. of the 20th
Int. Conf. on Advanced Information Systems Engineering, (CAiSE’2008),
volume 5074 of Lecture Notes in Computer Science, pages 281-295.
Springer-Verlag, 2008.

A. Queralt and E. Teniente. Reasoning on UML conceptual schemas with
operations. In Proc. of the 21st Int. Conf. on Advanced Information Sys-
tems Engineering (CAiSE’2009), volume 5565 of Lecture Notes in Com-
puter Science, pages 47—62. Springer-Verlag, 2009.

J. E. Rivera, E. Guerra, J. de Lara, and A. Vallecillo. Analyzing rule-
based behavioral semantics of visual modeling languages with maude. In
D. Gasevic, R. Lammel, and E. V. Wyk, editors, SLE, volume 5452 of
Lecture Notes in Computer Science, pages 54—73. Springer, 2008.

G. Rozenberg. Handbook of Graph Grammars and Computing by Graph
Transformations. World Scientific, 1987.

A. Schiirr. Specification of graph translators with triple graph grammars.
In WG’94, volume 903 of LNCS, pages 151-163. Springer, 1994.

M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler. Veri-
fying uml/ocl models using boolean satisfiability. In Design, Automation
and Test in Europe (DATE’2010), pages 1341-1344. IEEE, 2010.

M. Stolzel, S. Zschaler, and L. Geiger. Integrating ocl and model trans-
formations in fujaba. FCEASST, 5, 2006.

R. V. D. Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using descrip-
tion logic to maintain consistency between UML models. volume 2863 of
LNCS, pages 326-340. Springer, 2003.

The ECLIPS® Constraint Programming System. http://www.
eclipse-clp.org, mar 2007. version 5.10.

M. Tisi, J. Cabot, and F. Jouault. Improving higher-order transformations
support in atl. In L. Tratt and M. Gogolla, editors, ICMT, volume 6142
of Lecture Notes in Computer Science, pages 215—-229. Springer, 2010.

M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the use of
higher-order model transformations. In Paige et al. [87], pages 18-33.



BIBLIOGRAPHY 126

[103]

[104]

[105]
[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

M. Tisi, S. M. Perez, F. Jouault, and J. Cabot. Lazy execution of model-
to-model transformations. In J. Whittle, T. Clark, and T. Kiihne, editors,
MoDELS, volume 6981 of Lecture Notes in Computer Science, pages 32—
46. Springer, 2011.

E. Torlak, F. S.-H. Chang, and D. Jackson. Finding minimal unsat-
isfiable cores of declarative specifications. In Formal Methods 2008,
(FM’2008), volume 5014 of Lecture Notes in Computer Science, pages
326-341. Springer-Verlag, 2008.

E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

UMLtoCSP. A tool for the formal verification of UML/OCL models based
on Constraint Programming. http://gres.uoc.edu/UMLtoCSP.

R. van der Straeten, T. Mens, J. Simmonds, and V. Jonckers. Using de-
scription logic to maintain consistency between UML models. In Proceed-
ings of 6th International Conference UML 2003 - The Unified Modeling
Language, pages 326-340, Oct. 2003.

D. Varr6. Automated formal verification of visual modeling languages by
model checking. Software and System Modeling, 3(2):85-113, 2004.

M. Wahler, D. Basin, A. D. Brucker, and J. Koehler. Efficient analysis of
pattern-based constraint specifications. Software and Systems Modeling,
2010. To appear.

S. WeiBlleder and B.-H. Schlingloff. Quality of automatically generated test
cases based on ocl expressions. In International Conference on Software
Testing, Verification, and Validation (ICST’2008), pages 517-520. IEEE
Computer Society, 2008.

R. Wieringa. A survey of structured and object-oriented software spec-
ification methods and techniques. ACM Comput. Surv., 30(4):459-527,
1998.

R. Wieringa. A survey of structured and object-oriented software spec-
ification methods and techniques. ACM Comput. Surv., 30(4):459-527,
1998.

F. Yu, T. Bultan, and E. Peterson. Automated size analysis for OCL.
In Proc. of the 6th Joint Meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of
software engineering (ESEC-FSE ’07), pages 331-340. ACM, 2007.



