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Résumé

Ce mémoire d’habilitation a pour objet diverses contributions à l’estimation et à l’ap-
prentissage statistique dans les modeles en grande dimension, sous différentes hypothèses de
parcimonie. Dans une première partie, on introduit la problématique de la statistique en grande
dimension dans un modèle générique de régression linéaire. Après avoir passé en revue les dif-
férentes méthodes d’estimation populaires dans ce modèle, on présente de nouveaux résultats
tirés de l’article [A5] pour des estimateurs agrégés. La seconde partie a essentiellement pour
objet d’étendre les résultats de la première partie à l’estimation de divers modèles de séries
temporelles [A6, A8, A19, A19]. Enfin, la troisième partie présente plusieurs extensions à des
modèles non paramétriques ou à des applications plus spécifiques comme la statistique quan-
tique [A11, A10, A12, A13, A16, A4]. Dans chaque section, des estimateurs sont proposés, et,
aussi souvent que possible, des inégalités oracles optimales sont établies.

Mots-clefs : Théorie de l’apprentissage statistique, estimateurs agrégés, inégalités PAC-
Bayésiennes, statistique en grande dimension, parcimonie, estimateur LASSO, estimateurs pé-
nalisés, dépendance faible, statistique quantique, régression matricielle, méthodes de Monte-
Carlo.

Contributions to Statistical Learning in Sparse Models

Abstract

The aim of this habilitation thesis is to give an overview of my works on high-dimensional
statistics and statistical learning, under various sparsity assumptions. In a first part, I will
describe the major challenges of high-dimensional statistics in the context of the generic linear
regression model. After a brief review of existing results, I will present the theoretical study
of aggregated estimators that was done in [A5]. The second part essentially aims at providing
extensions of the various theories presented in the first part to the estimation of time series
models [A6, A8, A19, A19]. Finally, the third part presents various extensions to nonparametric
models, or to specific applications such as quantum statistics [A11, A10, A12, A13, A16, A4].
In each section, we provide explicitely the estimators used and, as much as possible, optimal
oracle inequalities satisfied by these estimators.

Keywords : Statistical learning theory, aggregated estimators, PAC-Bayesian inequalities,
high-dimensional statistics, sparsity, LASSO estimator, penalized estimators, weak dependence,
quantum statistics, reduced-rank regression, Monte-Carlo statistical methods.
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Introduction

Most of my work is about what is usually refered as model selection and variable
selection in statistical learning theory. In this introduction we first provide a general
introduction to learning theory and then, an example of variable selection problem.

A - short - introduction to statistical learning theory

Let us assume that a scientist wants to attribute labels to objects. Let X denote
the set of possible objects and Y the set of labels. The objective is to build a function
f : X → Y such that y = f(x) is a satisfactory label for the object x (we will give
precise statements of what we mean by satisfactory below). For example :

1. the object x is an image and the corresponding label y is binary : y = 0 if this
image contains no human face, y = 1 if the image contains at least one human
face.

2. we consider a given disease and a possible cure, x is the medical record of an
patient suffering from the disease and y = 1 if the cure is efficient for this patient,
y = 0 otherwise.

3. x contains information about a chemical reaction : quantity of reactants, pressure
and temperature, while y ∈ R+ is the quantity of a product of interest produced
by this reaction.

When Y is finite, this problem is refered as a classification problem. Any function f :
X → Y is called a classification function. When Y is R or an interval of real numbers,
it is called a regression problem. A function f : X → Y is a regression function.

In order to quantify the quality of the prediction made by a function f , one usually
introduce a loss function ℓ : Y×Y → R+. The idea is that ℓ(y, y′) measures the distance
between two objects y and y′, howevever, we do not generally assume that ℓ satisfies the
axioms of a metric on Y . When given an object x, and a function f : X → Y , we can use
f to predict the associated label by f(x). If the actual label is y, the error encountered
when using f on the pair (x, y) is given by ℓ(f(x), y). In binary classification, the most
famous example of loss function is given by ℓ(y, y′) = 1(y 6= y′). However, as it leads
to computational difficulties, it is often replaced by loss functions that lead to convex
minimization programs, such as ℓ(y, y′) = exp(−yy′), see Zhang [232] and the references
therein on this topic. In regression, the most studied example is the quadratic loss
ℓ(y, y′) = (y − y′)2.

In order to build the function f , any information can be used - e.g. we can use know-
ledge coming from theoretical physics, economics, biology... that can help to understand
how objects and labels are related. Sometimes, however, such an information is not
available. Even when it is available, it is often hard to use in practice, and sometimes
even not completely reliable. On the other hand, based on past observations, on survey
pools or on a series of experiments designed for the occasion, a set of examples of pairs
object-label (X1, Y1), . . . , (Xn, Yn) might be available. The objective is therefore to learn
or to infer the function f based on these examples.

Different type of assumptions on the examples are possible. In statistical learning
theory, it is usually assumed that the set of examples Dn = ((X1, Y1), . . . , (Xn, Yn)) is a
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random vector with some probability distribution P (in most cases, it is assumed that
the pairs (Xi, Yi) are independent from each other under P, however, this assumtion is
not always realistic, e.g. when dealing with time series as in Part II).

An example of variable selection problem

We now consider the following example : Y = R, X = R
p for some p > 0. We propose

to attribute labels to object according to linear functions : for any (θ, x) ∈ R
p, we define

fθ(x) = θ.x. We would like to identify, in some sense, the “best” parameter θ on the
basis of the examples Dn only : we will use estimators, namely, functions

θ̂ : (Rp × R)n → R
p

such that θ̂(Dn) is as close as possible to the “best” θ (it is usual to write θ̂ instead of
θ̂(Dn), thus making the dependence on the sample Dn implicit). However, depending on
the situations, what is meant by “best” and “close to the best” differ :

Prevision objective : in this case, the scientist primary objective is to be able to
predict labels of new objects. We can model the situation as follows : nature
draws a pair (X, Y ) from a probability distribution P , the statistician is given X
and must guess Y . In this case, the objective is to minimize

R(θ) := E(X,Y )∼P [ℓ(fθ(X), Y )].

This is called the prevision risk of the parameter θ (or simply risk). In this case,
the “best” θ is not necessarily unique, it is the set of minimizers of R

arg min
θ∈Rp

R(θ),

we will use the notation θ for a member of this set. We are satisfied with an
estimator θ̂ when R(θ̂) − R(θ) is small, in expectation or with large probability.
The usual assumptions in this settint is that P is unknown, but that under P, the
examples (X1, Y1), . . . , (Xn, Yn) are i.i.d. with common distribution P .

Transduction : close to the previous objective is the so-called transduction objective
defended by Vapnik [213]. In this case, we assume that in addition to the sample
Dn = ((X1, Y1), . . . , (Xn, Yn)), nature draws m pairs (X ′

1, Y
′
1), . . . , (X

′
m, Y

′
m) and

the scientist is given Dn together with X ′
1, . . . , X

′
m. The objective is to minimize

R′(θ) :=
1

m

m
∑

i=1

ℓ(fθ(X
′
i), Y

′
i ).

So we don’t expect to be able to attribute a label to any object, but only to
X ′

1, . . . , X
′
m. Here again, the objective is to make R′(θ̂) − infRp R′ as small as

possible.

Reconstruction objective in situations where the Xi are deterministic, the prevision
risk is often replaced with a reconstruction risk :

Rn(θ) := E((X′

1,Y
′

1),...,(X
′

n,Y
′

n))∼P

[

1

n

n
∑

i=1

ℓ(fθ(X
′
i), Y

′
i )

]

.
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While it makes sense to consider that the Xi are deterministic when they cor-
respond to an experimental design chosen by the scientist, this criterion is less
pertinent than the previous ones for prevision purposes.

Parameter estimation here, we assume that the objects are actually related to the
labels by a linear relation :

E(Yi|Xi) = θ0 ·Xi.

The scientist is only interested in the estimation of θ0 and not in prediction, so θ̂
must be such that d(θ̂, θ0) is small for some distance d. For example, d(θ̂, θ0) =
‖θ̂ − θ0‖.

Variable selection : under the same setting, let us assume that only a few coordinates
in Xi are relevant to predict Yi. In other words, we assume that most coordinates
in θ0 are equal to 0. To identify these coordinates might be an objective in itself
to the scientist. For any θ ∈ R

p, let supp(θ) be the set I ⊂ {1, . . . , p} such that
θi 6= 0 ⇔ i ∈ I. Let ∆ denote the symmetric difference for sets. Then in this case
we look for an estimator θ̂ such that

R∆(θ̂) = card
(

supp(θ̂)∆supp(θ0)
)

is small - if possible, R∆(θ̂) = 0 with large probability.

Quite surprinsingly, these different objectives are sometimes not compatible. For
example, Yang [226] proved in a quite general setting that an estimator that is consistent
for the selection criterion (in the sense that P(R∆(θ̂) = 0) → 1 when the sample size
n → ∞) is suboptimal for the parameter estimation and the prevision criterion. For
results more specific to the linear case, see the nice results by Leeb and Pötscher [139],
and Zhao and Yu [236] for the LASSO estimator (introduced in Part I below). In most of
my work I focused on prevision and transduction objectives. For the sake of simplicity,
in this thesis, I will present most of my results for the prevision objective only. Howe-
ver, I will present some results for the reconstruction objective when the corresponding
results for the prevision objective are not available.

In order to quantify how additional assumption (such as “θ has only a few nonzero
coordinates”) can help to improve the prediction criterion, we will establish so-called
oracle inequalities, following Donoho and Johstone’s terminology [78], see page 13 below.

Remark 0.1. One might ask the following question : why did we only consider linear
functions in this introduction ? For example it makes sense to define, for any measurable
f : Rp → R, a prevision risk

R(f) = E(X,Y )∼P [ℓ(f(X), Y )].

However, the quest of an estimator f̂ that would make the quantity R(f̂) − inff R(f)
as small as possible for any distribution P is in some way hopeless, as shown by the
so-called no free-lunch theorem : Theorem 7.2 page 114 in the monograph by Devroye,
Györfi and Lugosi [77], we refer the reader to the whole Chapter 7 in [77] for more
details on this topic. Their are two ways to circumvent this difficulty : first, to impose
some assumptions on P . However, it is often hard to know whether these assumptions
are satisfied in practice. Alternatively, instead of competing against the best function f ,
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we can compete agains the best function in a restricted class F . An example of such a
class is the set of linear functions {fθ, θ ∈ R

p}. Other classes F are possible, Part III
of this thesis provides a wide range of examples. The choice of the class is motivated
by theoretical and practical reasons. First, precise assumptions on the complexity of
the class F exists to ensure the convergence of R(f̂) − inff∈F R(f) to 0, with a given
rate, uniformly on the probability distribution P . This major breakthrough is due to
Vapnik and Chervonenkis, see [214], or [213] for an English translation and a more
comprehensive introduction. Then, we must also keep in mind that the estimator must
be calculable in practice. This remark was one of the major ideas in Valiant’s PAC theory
[210].

Outline of this thesis

In Part I, we focus on regression in large dimension under the classical assumption
that the examples are independent. In Section 1 we introduce the notations and some
classical estimators that satisfy oracle inequalities. However, for computational reasons,
these estimators cannot be used when the dimension p is large. This led to the intro-
duction of ℓ1-penalized methods : Tibshirani’s LASSO [205], Chen and Donoho’s basis
pursuit [59] or Candès and Tao’s Dantzig selector [48]. These methods lead to compu-
tationally feasible estimators. On the other hand, stringent assumptions are required
on the examples to ensure that these estimators enjoy good statistical properties. We
finally present in Section 3 PAC-Bayesian aggregation methods, that lead to a good
compromise between both situations [A5].

In Part II, we relax the assumption that the examples are independent in order to
deal with time series. Technical definitions on time series are given in Section 4. In
Section 5 we present the results of our paper [A6] : we extend the oracle inequalities
known for the LASSO to the case of time series. In Section 6 we present the results of
our papers [A8, A15, A19] : we extend PAC-Bayesian inequalities for time series.

In Part III, we consider more general models, where the idea of model or variable
selection is still relevant : single-index models [A11] in Section 7, additive models [A10]
in Section 8, quantum tomography [A13, A12] in Section 9, reduced-rank regression and
matrix completion [A16] in Section 10 and finally we give a general result from [A4] in
Section 11.
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12 Setting of the problem and first oracle inequalities

In this first part, we focus on estimation in high dimensional linear models.

We assume that we observe, on a probability space (Ω,A,P), n random pairs
(X1, Y1), . . . , (Xn, Yn) that are independent under P, with Xi ∈ R

p and Yi ∈ R. We
assume that

Yi = f(Xi) +Wi

for some measurable function f and some random variables Wi with E(Wi|Xi) = 0 and
E(W 2

i |Xi) ≤ σ2 for some constant σ2. We define, for any θ ∈ R
p, and any x ∈ R

p,
fθ(x) = θ · x. We define the empirical risk

r(θ) :=
1

n

n
∑

i=1

(Yi − fθ(Xi))
2

and the risk
R(θ) := E [r(θ)] .

Note that when the (Xi, Yi) are actually i.i.d. with common distribution P under P, this
is actually equal to the prevision risk

R(θ) = E
[

(Y − fθ(X))2
]

where (X, Y ) is another pair also distributed according to P . On the other hand, when
the Xi’s are deterministic, this is equal to the reconstruction criterion defined in the
introduction. Let us chose a θ in the set of minimizers of R : R(θ) = infθ∈Rp R(θ). When
the Xi’s are deterministic, Pythagorean theorem leads to

R(θ)− R(θ) =
1

n

n
∑

i=1

[

(θ − θ) ·Xi

]2
=: ‖θ − θ‖2n

for short (this norm, ‖ · ‖n, is often refered as the empirical norm). In this case, we let
M denote the design matrix M = (X1| . . . |Xn), and it is convenient to assume that
the variables are renormalized in such a way that the diagonal coefficients of MTM/n
are equal to 1. The most classical estimator in this setting is the so-called least square
estimator θ̂LSE , it is actually any value that minimizes the empirical risk r. For any θ ∈
R

p we remind that supp(θ) = {i ∈ {1, . . . , p}, θi 6= 0} and define ‖θ‖0 := card(supp(θ)).

Sections 1 and 2 are short reviews of the literature, we introduce ℓ0 and ℓ1-penalized
estimators. In Section 3 we present our results on aggregated estimators.

1 Setting of the problem and first oracle inequalities

In Sections 1 and 2, we assume that the Xi’s are deterministic and that the Wi’s are
Gaussian random variables, Wi ∼ N (0, σ2). It is quite straightforward to prove that

E

(

‖θ̂LSE − θ‖2n
)

=
σ2rank(M)

n
.

So, when p≪ n, we have

E

(

‖θ̂LSE − θ‖2n
)

≤ σ2p

n
≪ 1.

On the other hand, when p is large, this result is not satisfying.



13

Remark 1.1. In contrast with the deterministic case, when the pairs (Xi, Yi) are i.i.d.,
one have to impose strong assumptions on their probability distribution in order to prove
such a bound. For example, we have to assume that the Xi’s are bounded, see various
bounds in the paper by Birgé and Massart [35], in Section 5 in Catoni’s monograph [54]
or Sections 10, 11 and 12 in Györfi, Kohler, Krzyzak and Walk’s book [107]. At the price
of substituting a complicated estimator to θ̂LSE, Audibert and Catoni [13] considerably
improved on this condition, but some assumptions are still required. A discussion on the
different results available for regression with random design can be found in Subsection
4.2 p. 2749 of the paper by Maillard and Munos [151].

As mentioned in the introduction, in some situations, it makes sense to assume that
a large portion of the coordinates in Xi are not actually related to Yi. In other words,
we expect that most coordinates in θ are zero (or non significantly different from zero).
Let us fix a set I ⊂ {1, . . . , p}. We put

θI ∈ arg min
supp(θ)⊂I

R(θ) and θ̂LSEI ∈ arg min
supp(θ)⊂I

r(θ).

We have

E

(

‖θ̂LSEI − θ‖2n
)

≤ ‖θI − θ‖2n +
σ2card(I)

n
.

For example, the assumption that only the coordinates in Xi corresponding to a given
set I are related to Yi can be expressed as θI = θ. This leads to

E

(

‖θ̂LSEI − θ‖2n
)

≤ σ2card(I)

n

and it is a considerable improvement on the rate σ2p/n when card(I) ≪ p. Even better,
we can consider the set I∗ given by

I∗ = arg min
I⊂{1,...,p}

E

(

‖θ̂LSEI − θ‖2n
)

.

The corresponding θ̂LSEI∗ satisfies obviously

E

(

‖θ̂LSEI∗ − θ‖2n
)

≤ inf
I⊂{1,...,p}

{

‖θI − θ‖2n +
σ2card(I)

n

}

. (1)

This set I∗ is unfortunately unknown in practice as it depends on the unknown θ. For
this reason, θ̂LSEI∗ is not an estimator, it is often refered as an oracle. The question is
now : is it possible to build an estimator θ̂ for which inequality (1) would hold ? It
is actually possible to build an estimator satisfying an inequality close to (1). Such
a result is usually refered as an oracle inequality, this terminology is due to Donoho
and Johnstone [78], the first examples of oracle inequalities (in different contexts) can
be found in papers by Donoho, Johstone, Kerkyacharian and Picard [79, 80]. Let us
introduce a first example of estimator that satisfies an oracle inequality.

Definition 1.2 (ℓ0-penalized estimator). For a nondecreasing function g : R+ → R+

we define
θ̂0g = argmin

θ∈Rp
{r(θ) + g(‖θ‖0)} .
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When g(‖θ‖0) = λ‖θ‖0 for some constant λ > 0, depending on the value of λ,
this estimator can actually be seen as Akaike’s AIC [5] or Schwarz’ BIC [191] (see also
Mallows [152]). Theoretical properties of penalization by ‖ · ‖0 were studied in a wide
variety of settings by different authors, see Barron, Birgé and Massart [21], Massart [154],
Bunea, Tsybakov and Wegkamp [43], Golubev [101] among others.

Theorem 1.3 (Theorem 3.1 page 1679 in Bunea, Tsybakov and Wegkamp [43]). Under
the assumption that ‖f‖∞ ≤ L and that almost surely, ‖Xi‖∞ ≤ L for some constant
L > 0, for any a > 0, there is a known function g (that does not depend on L but
depends on a) and a constant Ca such that

E

(

‖θ̂0g − θ‖2n
)

≤ (1 + a) inf
I⊂{1,...,p}







‖θI − θ‖2n +
10σ2card(I)

[

log
(

p
max(card(I),1)

)

+ Ca

]

n







.

When compared to the upper bound on the oracle (1), we remark that we lose
constants and a logarithmic term log(p/card(I)). This term is in some way the price to
pay for the estimation of a set I. Theorem 5.1 page 1684 in [43] states that no estimator
can satisfy an oracle inequality without this term uniformly over all possible θ.

So, from a theoretical perspective, the estimator θ̂0g is optimal. The trouble is that,
in practice, the minimization program in Definition 1.2 is not tractable when p is large :
the best known method consists essentially in computing the constrained least square
estimator θ̂LSEI for any I ⊂ {1, . . . , p}. As there is 2p such possible subsets, this is not
feasible as soon as p is large, say p > 50. Actually, Theorem 1 p. 228 in Natarajan [167]
states that this problem is NP-hard.

2 Convex relaxation

To this regard, a major breakthrough was the idea of a convex relaxation of the
program in Definition 1.2 : this led to Tibshirani’s LASSO estimator [205] and simul-
taneously to Chen and Donoho’s basis pursuit [59, 58] (related estimators appeared
earlier, such as Frank and Friedman’s bridge regression [90] and Breiman non-negative
garrote [39] but it seems that the full power of this idea was not identified at that time).
We provide the definition of the LASSO estimator.

Definition 2.1 (ℓ1-penalized estimator a.k.a. LASSO [205]). For a constant λ > 0 we
put

θ̂1λ = arg min
θ∈Rp

{r(θ) + λ‖θ‖1} .

The “LASSO” acronym stands for Least Angle Selection and Shrinkage Operator.
This estimator became highly popular since its introduction. One of the main reason is
that on the contrary to the ℓ0-penalized estimator, there exists efficient algorithms to
compute θ̂1λ. We mention, among others, the popular LARS algorithm by Efron, Hastie,
Johnstone and Tibshirani [87] and the coordinate descent algorithm studied by Fried-
man, Hastie, Höfling and Tisbshirani [91]. But a natural question arises : does an oracle
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inequality hold for the LASSO? That question was studied by many authors : Candès
and Tao provided inequalities for an estimator that they called Dantzig selector [48]
that is closely related to the LASSO, Bunea, Tsybakov and Wegkamp [44] proved oracle
inequalities for the LASSO, and Bickel, Ritov and Tsybakov [33] established stronger
results, they also proved a kind of equivalence between the LASSO and Dantzig esti-
mators. Koltchinskii [129, 130] proved oracle inequalities for the LASSO in the random
design case. Hebiri and Lederer [113] analyzed the effect of the design matrix M on the
quality of the prediction when using the LASSO. Zhao and Yu [236] and Lounici [150]
provided conditions for the variable selection consistency of the LASSO. The conclusion
of all these works is that it is necessary to introduce some assumption on the matrix
M = (X1| . . . |Xn) in order to prove some oracle inequality for ℓ1-penalized estimators.
These conditions are studied and compared in the paper by Bühlmann and van de
Geer [40]. We refer the reader to Part III page 121 in [A18] and to the monograph by
Bühlmann and van de Geer [41] for a general introduction.

For the sake of completeness, we state Bickel, Ritov and Tsybakov’s oracle inequality.

Definition 2.2. We say that the matrix M satisfies the Restricted Eigenvalue Property
REP(s, c) for s ∈ {1, . . . , p} and c > 0 if κ(s) > 0 where

κ(s) = inf

{

v′MTMv

n
∑

j∈J v
2
j

∣

∣

∣

∣

v ∈ R
p, J ⊂ {1, . . . , p}, |J | < s

∑

j /∈J |vj| ≤ c
∑

j∈J |vj|

}

.

Theorem 2.3 (Theorem 6.1 page 1716 in Bickel, Ritov and Tsybakov [33]). Assume
that REC(s, 3 + 4/a) holds for some s ∈ {1, . . . , p} and a > 0. Fix ε > 0 and put
λ = 2σ

√

2 log(p/ε)/n. Then

P

(

‖θ̂1λ − θ‖2n ≤ (1 + a) inf
card(I)≤s

{

‖θI − θ‖2n +
8Caσ

2

κ2
(

s, 3 + 4
a

)

card(I) log
(

p
ε

)

n

})

≥ 1− ε

for some constant Ca > 0.

In practice, we encounter several difficulties :
– Assumption REP(‖θ‖0, 3+4/a) might not hold on the matrix M . It is impossible

to check this assumption on the data. Even to check REC(s, 3 + 4/a) for some
known s is computationally demanding.

– The choice λ = 2σ
√

2 log(p/ε)/n dependend on σ that is usually not known to the
statistician. Some variants that would not depend on σ were proposed by Belloni
and Chernozhukov [27] and Huet and Verzelen [100]. In simulations, however,
even when σ is known, λ = 2σ

√

2 log(p/ε)/n does not perform well in practice.
Some propositions of λ based on resampling procedures can be found in papers by
Bach [16] under the name BOLASSO and Meinshausen and Bühlmann [160] and
Shah and Samworth [194] under the name “stability selection”.

– Finally, the LASSO performs poorly in many practical situations, it is rather
unstable and highly biased. Some variants of the ℓ1-penalty were proposed that
led to notable improvements in practice : Fan and Li’s SCAD [88], Zou and Hastie’s
elastic net [240], Zou’s adaptive LASSO [239]. One of the simplest way to attenuate
the bias of the LASSO is to use the least square estimator constrained to a set of
variables selected by the LASSO. This procedure is very popular in practice and
its statistical properties were studied by Belloni and Chernozhukov [26]. All these
procedures require an assumption on M , like REC(s, c) or more stringent ones.
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Remark 2.4. Due to its nice algorithmic properties, the LASSO was extended to a lot
of different situations. In the case where the parameter θ is sparse and smooth, Hebiri
and van de Geer proposed the smooth LASSO [114]. In the case where it is sparse by
blocs, Yuan and Lin introduced the group LASSO [230]. Tibshirani, Saunders, Rosser,
Zhu and Knight proposed the fused LASSO [206] when the parameter is sparse and
constant by blocs, a situation that makes sense in genomics. Econometric models with
instrumental variables were considered Belloni, Chen, Chernozhukov and Hansen [25]
and Gautier and Tsybakov [93]. We proposed a transductive version of the LASSO with
Hebiri [A7, A9]. In order not to loose the guideline of this thesis we won’t describe all
these variants here.

Remark 2.5. Other ideas of efficient algorithms for variable selection were proposed.
Screening methods aim at removing irrelevant variables based on a correlation crite-
rion : see Fan and Lv’s SIS method [89], our papers on Iterative Feature Selection
[A1, A3, A14], Mougeot, Picard and Tribouley’s LOL [166], see also Comminges and
Dalalyan [63], Kolar and Liu [128]. These methods rely on REC type assummption,
or stronger assumptions like coherence assumption or even orthogonality of the design.
Greedy algorithms are another alternative, see Barron, Cohen, Dahmen and DeVore [22],
Zhang [234, 235]. Huang, Cheang and Barron [121] established a link between greedy al-
gorithms and ℓ1-penalization. Finally, when the design matrix M is diagonal, the LASSO
is equivalent to the soft-thresholding procedure studied by Donoho and Johstone [78, 79],
with Kerkyacharian and Picard [80], see also the monograph by Härdle, Kerkyacharian,
Picard and Tsybakov [110].

3 Agregated estimators and PAC-Bayesian bounds

In [70], Dalalyan and Tsybakov studied an aggregated estimator that they called
EWA (Exponentially Weighted Aggregation). This estimator enjoys nice theoretical pro-
perties : an oracle inequality withouth any REC-type assumption. On the other hand,
Monte Carlo methods allow to compute this estimator for reasonably large values of p.
Note, however, that the theoretical results were given in the fixed design setting only,
and required ‖θ‖1 to be bounded. In our joint paper with Lounici [A5] we improved
on [70] in two directions :

– We proposed an estimator that enjoys the same properties as the one in [70]
without the boundedness assumption.

– We proposed another estimator which satisfies an oracle inequality for the prevision
risk (allowing random design).

We now introduce both estimators. We put Pn({1, . . . , p}) the set of all subsets I of
{1, . . . , p} with card(I) ≤ n. We put Θ = R

p, for I ⊂ {1, . . . , p} we put ΘI = {θ ∈ R
p :

supp(θ) = I}. We also put Θ(K) = {θ ∈ R, ‖θ‖1 ≤ K} and ΘI(K) = ΘI ∩ Θ(K). We
fix real number α,K > 0 and put

πI =
αcard(I)

(

p
card(I)

)
∑n

j=0 α
j
.

We also define uI as the uniform probability measure on ΘI(K +1) and the probability
measure π by

π(dθ) =
∑

I∈Pn({1,...,p})

πIui(dθ).
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Definition 3.1. For any λ > 0 we put

θ̂λ =

∑

I∈Pn({1,...,p})
πI exp

[

−λ
(

r(θ̂LSEI ) + 2σ2card(I)
n

)]

θ̂LSEI

∑

I∈Pn({1,...,p})
πI exp

[

−λ
(

r(θ̂LSEI ) + 2σ2card(I)
n

)] .

Definition 3.2. For any λ > 0 we define the probability distribution ρ̃λ by

dρ̃λ
dπ

(θ) =
exp(−λr(θ))

∫

ΘK
exp(−λr(θ′))π(dθ′) and θ̃λ =

∫

ΘK

θρ̃λ(dθ).

Theorem 3.3 (Theorem 2.1 page 132 in [A5]). As in Sections 1 and 2, let us assume
that the Xi’s are deterministic. Assume that the Wi are N (0, σ2). Put λ = 1/(4σ2), then

E

(

‖θ̂λ − θ‖2n
)

≤ inf
I∈Pn({1,...,p})

{

‖θI − θ‖2n +
σ2card(I)

n

(

4 log

(

pe

αcard(I)

)

+ 1

)

+
4σ2 log

(

1
1−α

)

n

}

.

Definition 3.4. We remind that the random variable W1 is said to be sub-exponential
with parameters (σ, ξ) ∈ (R∗

+)
2 if E(W 2

1 ) ≤ σ2 and for any k ≥ 3, E(|W1|k) ≤ σ2k!ξk−2.

Examples of sub-exponential random variables are bounded random variables : then
ξ = σ = ‖W1‖∞, or Gaussian random variables N (0, s2), then σ = ξ = s. We insist
on the fact that the following theorem is valid both when the Xi’s are deterministic or
random with the pairs (Xi, Yi) being i.i.d.

Theorem 3.5 (Theorem 3.1 page 133 in [A5]). We assume that the Wi are sub-
exponentials with parameters (σ, ξ). We assume that ‖f‖∞ < L for some L > 0. We
assume that a.s., ‖Xi‖∞ ≤ L′ for some L′ > 0. Finally, assume that ‖θ‖1 ≤ K. For
some (known) constant C that depends on σ, ξ, K, L, L′, put λ = n/C, we have for any
ε > 0,

P

{

R(θ̃λ)−R(θ) ≤ C
n

[

card(I) log

(

enp(K + 1)

αcard(I)

)

+ log

(

2

ε(1− α)

)

+
3L′2

n

]}

≥ 1− ε.

Basically, these two results ensure that the estimators θ̂λ and θ̃λ enjoys the same
theoretical property as the LASSO, without any stringent assumption on the design like
REP. On the other hand, when compared to the ℓ0 penalized estimator, it is possible
to compute θ̂λ and θ̃λ for reasonably large p thanks to some Monte Carlo algorithm, see
the simulation study below.

Remark 3.6. The probability measure π can be seen as a prior probability distribution
and it is possible to interpretate ρ̃λ as a posterior distribution in a Bayesian framework.
There is a huge Bayesian litterature on the variable selection problem, various type of
priors were considered (including some related to π above). We refer the reader to the
surveys by George and McCulloch [95], George [94], and more recently to the papers by
West [220], Cui and George [65], Liang, Paulo, Molina, Clyde and Berger [147], Scott
and Berger [190] among others for the linear regression case and Nott and Leonte [169],
Jiang [123] for more general models.
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The technique used to prove Theorem 3.5 relies on so-called PAC-Bayesian inequali-
ties. As these inequalities will be heavily used in Parts II and III too, we now give more
details on these.

PAC-Bayesian inequalities were initially introduced McAllester [155, 156, 157] based
on earlier remarks by Shawe-Taylor and Williamson [195] ; more PAC-Bayesian bounds
are proved by Langford, Seeger and Mediggo [133], Herbrich and Graepel [115] and
Meir and Zhang [162] among others. In all these papers, the objective was to produce
“PAC” type bounds for Bayesian estimators. “PAC” is an acronym meaning Probably
Approximately Correct, it was introduced by Valiant [210] to refer to any bound valid
with large probability (as the one in Theorem 3.5) together with the constraint that the
estimator must be calculable in polynomial time w.r.t. n and 1/ε, however, most authors
refer now to PAC inequalities for any bound on the risk valid with large probability.

McAllester’s type PAC-Bayesian inequalities are empirical bounds, in the sense that
the upper bound on the risk depends on the observations, and not on unknown quantities
such as P or θ. Catoni [54, 55] extended PAC-Bayesian bounds to prove oracle-type
inequalities for aggregated estimators, see also earlier works on aggregation and oracle
inequalities : Chapters 5 (page 183) and 6 (page 207) in Nemirovksi [168], papers by
Juditsky and Nemirovki [125], Vert [216], Catoni [52], Yang [224, 225], and the lower
bounds by Tsybakov [208]. In Catoni’s works on PAC-Bayesian bounds, the aggregated
estimators are refered as “Gibbs estimators”. Catoni’s technique relies on two main
ingredients :

– First, a deviation inequality is used to upper bound the distance between r(θ)
and R(θ) for a fixed θ ∈ Θ, for example, the so called Hoeffding’s or Hoeffding-
Azuma’s inequality [117, 14], Bernstein’s inequality [31] or Bennett’s one [28].
We refer the reader to the paper by Bercu, Gassiat and Rio [30], Chapter 14
page 481 in Buhlmann and van de Geer’s book [41] or to Chapter 2 page 18 in
the comprehensive monograph by Boucheron, Lugosi and Massart [38] for more
details on these inequalities.

– The second step is to make this bound valid for any θ ∈ Θ simultaneously. In the
study of penalized empirical risk minimizers, this step is done thanks to concentra-
tion of measure inequalities, see e.g. Ledoux and Talagrand [138] or the aforemen-
tioned book [38] for concentration inequalities, and Massart [154] for the study
of these estimators. In PAC-Bayesian theory, the approach is sligthly different.
Instead of all possible parameters θ, Catoni considers the set of all probability
distributions on Θ equiped with some suitable σ-algebra, and make the devia-
tion inequality uniform on this set thanks to Donsker and Varadhan’s variational
inequality [81].

This last step requires to fix a reference distribution m on the space Θ (in Theorem 3.5
above, m = π). By analogy with Bayesian statistics, this distribution is called a prior.
However, it is used to control the complexity of the parameter space rather than to
include some prior belief. Catoni [52, 54] also makes links with information theory and
Rissanen’s MDL principle [179] (minimum description length, see also Barron, Rissanen
and Yu [23]). This is explored further by Zhang [233] who adapted the method to prove
lower bounds too. Audibert and Bousquet [12] studied the link with generic chaining.
Fore more recent advances on PAC-Bayesian theory see also Jiang and Tanner [124],
Audibert [11], Audibert and Catoni [13].
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Following a method initiated by Leung and Barron [145], Dalalyan and Tsybakov [70]
replaced the first step (deviation inequality) by Stein’s formula [197]. As a pro, this makes
life easier when dealing with unbounded parameter spaces, so we also used this technique
to prove Theorem 3.3. On the other hand, this produces results valid in expectation only.
This paper was further investigated and improved in a series of papers, Dalalyan and
Tsybakov [71, 72], Dalalyan and Salmon [69]. See Rigollet and Tsybakov [176], Dai,
Rigollet, Xia and Zhang [67, 66], Lecué and Rigollet [137] for more recent advances on
aggregation. Gerchinovitz [97] extended the technique of [70] to the online case (i.e.
where data is given sequentially). Also, recently, Arias-Castro and Lounici [8] studied
the variable selection abilities of a thresholded version of θ̃λ. Percival [172] studied
aggregated estimators under priors inducing group sparsity.

Remark 3.7. We also want to mention that PAC-Bayesian and related aggregation
methods were extended to other problems than regression and classification, such as
density estimation (Catoni [52, 54]) and variants like taylored density estimation (Higgs
and Shawe-Taylor [116]), clustering (Seldin and Tishby [193]), ranking (Li, Jiang and
Tanner [146] and Robbiano [181]), multiple testing (Blanchard and Fleuret [36]). Salmon
and Le Pennec also interpretated the popular NL-means image denoising technique in
this framework [187].

A short simulation study

We implemented a Monte Carlo algorithm to compare the performances of θ̂λ and
θ̃λ to the ones of Tibshirani’s LASSO θ̂1λ [205]. Namely, we used different versions of the
popular Metropolis-Hastings algorithm (see the monograph by Robert and Casella [182]
for an introduction to Monte Carlo methods) :

– For θ̂λ, we just have to approximate a mean of a finite (but huge) numbers of
estimators θ̂LSEI for I ∈ Pn, so we used a standard version of Metropolis-Hastings
on the finite set I ∈ Pn.

– The situation is a bit more intricate for θ̃I , we used Green’s version of Metropolis-
Hastings [102] called Reversible Jump Monte Carlo Markov Chain (RJMCMC).
This strategy turned out to be successful in many Bayesian model selection pro-
blems, see the examples in [102] and in Green and Richardson [103].

The complete description of the algorithm can be found in a preliminary version of [A5] :

http://arxiv.org/pdf/1009.2707v1.pdf

For the sake of completeness, we provide here some simulation results.

Description of the experiments : we consider variants of the toy example in Tib-
shirani’s paper [205] :

∀i ∈ {1, . . . , n}, Yi = θ ·Xi +Wi

with Xi ∈ X = R
p, θ ∈ R

p and the Wi are i.i.d. N (0, σ2), n = 20. The Xi’s are i.i.d.
(and independent from the Wi) and drawn from the gaussian distribution with zero
mean and Toeplitz variance matrix :

Σ(ρ) =
(

ρ|i−j|
)

(i,j)∈{1,...,p}2
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Table 1 – Results for θ = 5× (e−1, e−2, ..., e−p).

σ2 p θ̂1λ θ̂λ θ̃λ

1 8 median 0.138 0.089 0.121
mean 0.178 0.137 0.137
s.d. 0.145 0.121 0.116

3 8 median 0.397 0.437 0.364
mean 0.434 0.430 0.400
s.d. 0.178 0.271 0.282

1 30 median 0.262 0.203 0.205
mean 0.277 0.247 0.240
s.d. 0.147 0.149 0.149

3 30 median 0.593 0.519 0.423
mean 0.630 0.665 0.534
s.d. 0.409 0.684 0.383

1 100 median 0.276 0.256 0.261
mean 0.375 0.353 0.342
s.d. 0.256 0.200 0.199

3 100 median 1.045 0.687 0.680
mean 1.023 0.809 0.760
s.d. 0.364 0.476 0.464

1 1000 median 0.486 0.390 0.407
mean 0.464 0.373 0.386
s.d. 0.207 0.108 0.103

3 1000 median 1.549 1.199 1.288
mean 1.483 1.268 1.245
s.d. 0.460 0.702 0.692

for some ρ ∈ [0, 1). Note that Tibshirani’s toy example is set with p = 8 whereas we will
consider here p ∈ {8, 30, 100, 1000}. We use two regression vectors :

θ = (5e−1, 5e−2, 5e−3, 5e−4, ...)

and then θ = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, ...)

respectively an approximately sparse parameter, and a sparse parameter. We will take
σ2 respectively equal to 1, low noise situation, and 3, noisy case ; the value of ρ is fixed
to 0.5. We fix α = 1/10.

The LASSO parameters are optimized on a grid Λ, as well as the λ parameter for
our aggregates θ̂λ and θ̃λ. We report the compare the oracle results here, in practice,
one would optimize these parameters through cross validation or a related method. For
example, for θ̂λ we report minλ∈Λ ‖θ̂λ − θ‖2n.

We perform each experiment 20 times and report the mean, median and standard
deviation of the results for the sparse situation in Table 1 and for the approximately
sparse situation in Table 2.

We can see on these experiments that the aggregated estimators outperforms the
LASSO in the low noise case σ = 1. When σ grows, the performances of our estimators
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Table 2 – Numerical results for the estimation of θ = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, ...).

σ2 p θ̂1λ θ̂λ θ̃λ

1 8 median 0.302 0.176 0.172
mean 0.291 0.215 0.209
s.d. 0.211 0.190 0.185

3 8 median 0.437 0.533 0.370
mean 0.535 0.612 0.527
s.d. 0.398 0.420 0.395

1 30 median 0.355 0.157 0.143
mean 0.360 0.217 0.209
s.d. 0.189 0.151 0.150

3 30 median 1.459 1.511 1.267
mean 1.431 1.809 1.333
s.d. 0.702 1.143 0.607

1 100 median 0.399 0.244 0.204
mean 0.471 0.248 0.212
s.d. 0.222 0.162 0.130

3 100 median 1.378 1.674 1.409
mean 1.396 1.800 1.365
s.d. 0.687 0.653 0.562

are still better, but the difference is less significative ; moreover, θ̂λ seems to become less
stable (in particular Table 2, p = 30 and σ2 = 3).

This simulation study clearly shows the advantage to use the exponential weights
estimators, in particular θ̃λ, especially in the situation of approximate sparsity. As we
mentioned in the introduction, the main advantage of the LASSO and of related methods
is the computational efficiency. When p becomes larger (p > 1000), the RJMCMC
algorithm takes much time to converge and the computation time becomes prohibitive.
The strength of ℓ1-penalized estimators is that they can be computed say for p ≃ 107 in
a reasonable amount of time.
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In this part, we focus on time series. The assumption that the observations are
independent does not make sense any more : in practice, times series always exhibit
some kind of temporal dependence.

First, in Section 4, we introduce various weak dependence and mixing assumptions
required to prove oracle inequalities. As a first step, we prove some results on the LASSO
in Section 5. However, this covers only a special case (namely, when the design is deter-
ministic and only the noise exhibit some dependence). In Section 6, we extend full parts
of the PAC-Bayesian theory to the time series setting.

4 Mixing, weak dependence and examples

In order to study the theoretical properties of statistical procedures for time series,
several measures of the dependence of random variables were introduced - the idea
being that when the dependence is not strong, we should obtain results close to the
ones known in the independent setting. The first example example of such a measure
was Rosenblatt’s α-mixing coefficient [184]. Other mixing coefficients were introduced :
β-mixing and ϕ-mixing. As we will use ϕ-mixing coefficients later in this part, we give
their definition.

Definition 4.1 (Ibragimov ϕ-mixing coefficient [122]). Let (Wi)i∈Z be a sequence of
random variables. We put

ϕW (r) = sup
{

|P(B|A)− P(B)| , A ∈ σ(Wk,Wk−1,Wk−2, . . . ), B ∈ σ(Wk+r), k ∈ Z

}

.

Finally, we say that (Wi)i∈Z satisfies Assumption PhiMix(C) for C ∈ R+ if

1 +

∞
∑

j=1

√

ϕW (j) ≤ C.

Intuitively, when Wk+r is “almost independent” of Wk,Wk−1,Wk−2, . . . then ϕW (r)
must be very small. Conditions on various mixing coefficients, like convergence to 0 when
r → ∞ or summability, allow to prove law of large numbers and central limit theorem
for the process (Wi). We refer the reader to the monographs by Doukhan [82] and more
recently Rio [177] for more details.

The trouble with mixing coefficients is that they provide a very restrictive notion of
dependence. For example, let us consider the following definition.

Definition 4.2 (Causal Bernoulli shifts with bounded innovations). Let k ∈ N. Let
(ξi)i∈Z be a sequence of i.i.d. bounded R

k-valued random variables : a.s., ‖ξi‖ ≤ cξ. Let
H : (Rk)N → R

k be a measurable function, and a = (ai)i∈N be a sequence of non-negative
numbers such that

‖H(v)−H(v′)‖ ≤
∞
∑

j=0

aj‖vj − v′j‖

and
∞
∑

j=0

aj < +∞.
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In this case, the process Wi = H(ξi, ξi−1, ξi−2 . . . ) exists, is stationary and is said to be a
CBS (causal Bernoulli shift) with bounded innovations. For short we will say that (Wi)
satisfies Assumption CBS(cξ, a).

Intuitively, when the coefficients aj decay to 0 fast enough, Wk+r is “almost indepen-
dent” of Wk,Wk−1,Wk−2, . . . However, there are known examples where the aj decay
exponentially fast, but α, β and ϕ-mixing coefficients are all (non zero) constant. See,
for example, the third remark page 325 in Doukhan and Louhichi [83]. Remark that the
class of CBS with bounded innovations is large, it includes among others all ARMA(p, q)
time series with bounded innovations. More generally, it includes a wide set of chains
with infinite memory Wt = F (Wt−1,Wt−2, . . . ; ξt) (the conditions on the function F can
be found in the paper by Doukhan and Wintenberger [85]).

For this reason (among others), another type of dependence conditions was develo-
ped : weak dependence. There are a lot of various type of weak dependence coefficients,
we won’t mention them all here. We refer the reader to Chapter 2 in the monograph by
Dedecker, Doukhan, Lang, Léon, Louhichi and Prieur [73] for a comprehensive survey.
We give here the following θ-dependence coefficient that we will use later in this part.

Definition 4.3 (Dedecker, Doukhan, Lang, Léon, Louhichi and Prieur [73]). For k ∈ N,
let (Wi)i∈Z be a sequence of Rk-valued random variables. For any q ∈ N, for any R

k-
valued random variable Z1, . . . , Zq defined on (Ω,A,P), we define

θ∞(S, (Z1, . . . , Zq)) = sup
f∈Λq

1

∥

∥

∥
E [f(Z1, . . . , Zq)|S]− E [f(Z1, . . . , Zq)]

∥

∥

∥

∞

where

Λq
1 =

{

f : (Rp)q → R,
|f(z1, . . . , zq)− f(z′1, . . . , z

′
q)|

∑q
j=1 ‖zj − z′j‖

≤ 1

}

,

and

θW∞,h(1) := sup {θ∞(σ(Wt, t ≤ p), (Wj1, . . . ,Wjℓ)), p < j1 < . . . < jℓ, 1 ≤ ℓ ≤ h} .

Finally, we say that Assumption ThetaDep(C) is satisfied for C ∈ R+ if, for any h,
θW∞,h(1) ≤ C.

We relate the previous definitions of dependence in the following proposition.

Proposition 4.4. Let k ≥ 1 and (Wi)i∈Z be a sequence of Rk-valued random variables.
Then :

1. PhiMix(C) and ‖Wi‖ ≤ cW a.s. for any i ⇒ ThetaDep(cWC).
2. CBS(cξ, a) and

∑∞
j=0 jaj <∞ ⇒ ThetaDep(2cξ

∑∞
j=0 jaj).

So θ-dependence is a quite general notion of dependence. The proof of the first point
is actually a byproduct of the proof of Corollaire 1 page 907 in a paper by Rio [178]
that will be discussed below. The second point is Proposition 4.2 page 891 in our joint
paper with Wintenberger [A8].

As we mentioned in Part I, the main tool we use to control the risk of various esti-
mation procedures is a deviation inequality like Bernstein and Hoeffding’s inequalities
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in the i.i.d. case. Since the 80’s, such inequalities were proved under various mixing
and weak dependence assumptions, see Statuljavichus and Yackimavicius [196], Dou-
khan and Louhichi [83], Rio [178], Samson [188], Dedecker and Prieur [74], Doukhan
and Neumann [84], Merlevede, Peligrad and Rio [163, 164] and Wintenberger [221] and
in the aforementioned monographs [82, 177, 73]. Deviation inequalities were also proved
for more specific type of time series, like dynamical systems, by Collet, Martinez and
Schmitt [62] or Markov Chains, by Clémençon [61], Catoni [53], Adamczak [2], Bertail
and Clémençon [32].

5 LASSO in the dependent setting

In this section, we consider the same model as in Part I Sections 1 and 2 : we assume
that there are n random variablesWi on a probability space (Ω,A,P) and n deterministic
numbers Xi ∈ R

p and
Yi = f(Xi) +Wi

for 1 ≤ i ≤ n for some measurable function f , that E(Wi|Xi) = 0 and E(W 2
i |Xi) ≤ σ2.

We keep the same notations fθ(x) = θ · x, r(θ) := 1
n

∑n
i=1 (Yi − fθ(Xi))

2, R(θ) :=

E [r(θ)], θ ∈ argminθ∈Rp R(θ), ‖θ − θ‖2n = R(θ) − R(θ) and M is the design matrix
M = (X1| . . . |Xn). We still assume that the Xi’s are normalized in such a way that
MTM/n has only 1 on its diagonal. We put

cX = sup
1≤i≤n

‖Xi‖∞.

But this time, we do not assume any longer that the Wi are independent.

We have the following result on the LASSO estimator (we remind that the Definition
is given in Definition 2.1 page 14).

Theorem 5.1 (Theorem 2.1 page 755 in Alquier and Doukhan [A6]). We assume that
M satisfies REC(‖θ‖, 3) (Definition 2.2 page 15). We assume that there is a constant
α ∈ [0, 1/2] and a decreasing continuous function ψ such that for any j ∈ {1, . . . , p},
for any t > 0,

P

(∣

∣

∣

∣

∣

cX
n

n
∑

i=1

Wi

∣

∣

∣

∣

∣

≥ nα− 1
2 t

)

≤ ψ(t). (2)

Let us choose ε > 0 and put λ ≥ λ∗ := 4nα− 1
2ψ−1(ε/p). Then

P

(

‖θ̂1λ − θ‖2n ≤ 4λ2‖θ‖0
κ(‖θ‖0)

)

≥ 1− ε.

Remember that the definition of κ(·) is given in Definition 2.2 page 15. Note that,
in particular, we have

P






‖θ̂1λ∗ − θ‖2n ≤

64‖θ‖0
[

ψ−1
(

ε
p

)]2

κ(‖θ‖0)n1− 2
α






≥ 1− ε.
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Also, note that our paper [A6] also contains results on the estimation of the density based
on a dependent sample using a LASSO type estimator, studied under the name SPADES
(SPArse Density EStimator) in the i.i.d. setting by Bunea, Tsybakov and Wegkamp [45].

The proof follows the main steps of the one of Theorem 6.1 in Bickel, Ritov and
Tsybakov [33]. Actually, if we assume that the Wi are Gaussian or bounded, we can
use a Hoeffding type inequality to check that (2) is satisfied with α = 0 and ψ(t) in
exp(−t2), and we obtain a result close to the one in [33]. In the case were the Wi are
not independent, we have to use a deviation inequality suited for dependent random
variables in order to check that (2) is satisfied.

In [A6], we gave some weak-dependence conditions under which such a deviation
inequality is satisfied : one of them is base on a version of Bernstein’s inequality by Dou-
khan and Neumann [84] and the other one on Doukhan and Louhichi’s Marcinkiewicz-
Zygmund type inequality [83]. Here, we provide a slightly different (and simpler) bound
based on Rio’s version of Hoeffding’s inequality [178].

Theorem 5.2 (Variant of Corollary 4.3 page 462 in Alquier and Doukhan [A6]). We
assume that M satisfies REC(‖θ‖, 3) and that the Wi satisfy assumption ThetaDep(C)
and that |Wi| < cW a.s. for any i, then for λ = 4cX(cW + C)

√

2 log(2p/ε)/n we have

P

{

‖θ̂2λ − θ‖2n ≤ 128c2X(cW + C)2
κ(‖θ‖0)

‖θ‖0 log
(

2p
ε

)

n

}

≥ 1− ε.

Note that, if the Wi are actually independent, then we can take C = 0 and in this
case, we obtain exactly what we would have obtained with the original Hoeffding’s
inequality [117], this is due to the fact that the constants are tight in Rio’s inequality.

Yoon, Park and Lee [227] also studied the LASSO under the same setting (deter-
ministic design, dependent noise). Instead of weak dependence assumptions, they use
a parametric assumption on the noise : the noise is autoregressive. They don’t provide
non asymptotic results such as Theorem 5.1, but on the other hand, they provide the
exact asymptotic distribution of the LASSO in this setting.

6 PAC-Bayesian bounds for stationary time series

In many applications, the assumption that the Xi’s are deterministic is too restric-
tive. In order to predict time series using autoregressive type models, we need to relax
this assumption. The LASSO was used to select variables in VAR (vectorial autoregres-
sive) models by Hsu, Hung and Chang [120], without theoretical justification. Wang,
Li and Tsai [217] proved asymptotic results for the LASSO in the AR (autoregressive)
case. However, to the best of our knowledge, there is no non-asymptotic theory for the
LASSO in this context.

Other estimation methods were studied in the context of time series. While there
is a long history of nonparametric statistics for time series (we refer the reader to the
aforementioned books [82, 73] and the references therein and a recent different approach
by Delattre and Gaïffas [75]), there were only a few attempts to generalize the statistical
learning approach to this context. We already mentioned in Part I Massart’s approach
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for penalized estimators based on concentration inequalities [154], Baraud, Comte and
Viennet [18] extended this approach for regression and autoregression with β-mixing
time series. However, the risk function they used does not exactly correspond to a
prevision risk, it is actually the empirical norm. In order to study risks more suited to
prediction, several authors established Vapnik’s type bound (see [213]) under various
mixing assumtions : Modha and Masry [165], Meir [161], Xu and Chen [223], Zou,
Li and Xu [238], Steinward and Christmann [198], Steinwart, Hush and Scovel [199],
Hang and Steinwart [108]. Up to our knowledge, none of these authors considered weak
dependence assumptions. We also want to mention another approach used to establish
bounds on the prevision risk for time series : to use bounds coming from the theory of
individual sequences prediction, see Cesa-Bianchi and Lugosi [57] or Stoltz [200] for an
introduction to this theory. With this approach, the observations are usually considered
as deterministic, but it is possible to obtain bounds for previsions of random variables
thanks to a trick very well described, for example, in the introduction of the Ph.D.
thesis of Gerchinovitz [96] in the i.i.d. case. This approach was used by Duchi, Agarwal,
Johansson and Jordan [86, 3] to predict ϕ-mixing time series.

In our papers with Li and Wintenberger [A8, A15, A19], as an alternative, we ex-
tended PAC-Bayesian inequalities to the context of weakly dependent time series fore-
casting. We introduce these results in this section.

Let (Xt)t∈Z be a R
p-valued, stationary, bounded time series : ‖Xt‖ ≤ cX almost

surely. In a first time, we will consider a rather general family of predictors : we fix
an integer k and a set of predictors

{

fθ : (R
p)k → R

p, θ ∈ Θ
}

: for any θ and any t, fθ
applied to the last past values (Xt−1, . . . , Xt−k) is a possible prediction of Xt. For short
we put, for any t ∈ Z and any θ ∈ Θ,

X̂θ
t := fθ(Xt−1, . . . , Xt−k).

However, due to the fact that some weak dependence properties are only hereditary
through Lipshitz functions, we have to assume some structure on (fθ). Namely, there is
an L > 0 such that for any θ ∈ Θ, there are coefficients aj (θ) for 1 ≤ j ≤ k satisfying,
for any x1, ..., xk and y1, ..., yk in R

p,

‖fθ (x1, . . . , xk)− fθ (y1, . . . , yk)‖ ≤
k
∑

j=1

aj (θ) ‖xj − yj‖ , with
k
∑

j=1

aj (θ) ≤ L. (3)

Example 6.1 (Linear Auto-Regressive (AR) predictors). When p = 1 (real valued time
series) we put θ = (θ0, θ1, . . . , θk) ∈ Θ = {θ ∈ R

k+1 : |θ1|+ · · ·+ |θk| ≤ L} and

fθ(Xt−1, . . . , Xt−k) = θ0 +
k
∑

j=1

θjXt−j .

We also fix a loss function ℓ is given by : ℓ(x, x′) = g(x−x′) for some convex function
g with : g ≥ 0, g(0) = 0 and g is K-Lipschitz.

Definition 6.2 (Risk function). We put, for any θ ∈ Θ, R (θ) = E

[

ℓ
(

X̂θ
t , Xt

)]

, and

as usual we fix θ a minimizer of R.

Note that because of the stationarity, R(θ) does not depend on t.
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Definition 6.3 (Empirical risk). For any θ ∈ Θ, r(θ) = 1
n−k

∑n
i=k+1 ℓ

(

X̂θ
i , Xi

)

.

As in Section 3, we fix a suitable σ-algebra (say T ) on Θ. Let M1
+(Θ) be the set of all

probability distributions on (Θ, T ). We fix a prior probability distribution π ∈ M1
+(Θ).

Definition 6.4 (Gibbs estimator). We put, for any λ > 0,

θ̃λ =

∫

Θ

θρ̃λ(dθ), where ρ̃λ(dθ) =
e−λr(θ)π(dθ)
∫

e−λr(θ′)π(dθ′)
.

The first PAC-Bayesian bound in this context is in our paper with Wintenberger [A8],
we state here a slightly more general version that can be found in our more recent papers
with Li [A15] and Wintenberger and Li [A19].

Theorem 6.5 (Theorem 1 page 26 in [A15]). Assume that the time series (Xt) satisfies
assumption ThetaDep(C). Let us put κ = κ(K,L, cX , C) := K(1+L)(cX+C)/

√
2. Then,

for any λ > 0, for any ε > 0,

P

(

R
(

θ̃λ

)

≤ inf
ρ∈M1

+(Θ)

[

∫

R(θ)ρ(dθ) +
2λκ2

n
(

1− k
n

)2 +
2K(ρ, π) + 2 log

(

2
ε

)

λ

])

≥ 1− ε

where K stands for the Kullback divergence.

We remind that K is given by K(ρ, π) =
∫

log [dρ/dπ(θ)] ρ(dθ) if ρ ≪ π and +∞
otherwise. The proof of this theorem follows the general guidelines described in Section 3,
however, we replace Hoeffding’s inequality by its extention for dependent observations
by Rio [178].

Depending on the parameter set Θ, we can use different priors. For example, when
Θ is finite, we have the following corollary.

Corollary 6.6 (Theorem 1 page 8 in [A19]). Assume that card(Θ) <∞ and that all the
assumptions of Theorem 6.5 are satisfied. Let π be the uniform probability distribution
on Θ. Then for any λ > 0, ε > 0,

P

(

R
(

θ̃λ

)

≤ R(θ) +
2λκ2

n
(

1− k
n

)2 +
2 log

(

2M
ε

)

λ

)

≥ 1− ε.

Note that if we take λ =
√

n log(M)(1− k/n)/κ, we obtain

R
(

θ̃λ

)

≤ R(θ) +
4κ

(

1− k
n

)

√

log (M)

n
+

2κ log
(

2
ε

)

(

1− k
n

)√

n log(M)
.

When ℓ is the absolute loss, the rate
√

log(M)/n is known to be optimal in the i.i.d.
case : Theorem 8.3 page 1618 in the paper by Audibert [11]. So this bound cannot
be improved. In practice, however, this value of λ is not known to the statistician : it
depends on κ = κ(K,L, cX , C) and the weak dependence constant C is not observable.
We overcome this difficulty in the most recent version of this work, where we prove
that the ERM estimator (Empirical Risk Minimizer) satisfies the same result than θ̃λ
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and does not depend on C, we refer the reader to Theorem 2 page 9 in [A19], where a
procedure to estimate L is also described. We also want to mention that in this result,
k (the number of delays in the predictors) is fixed but a procedure to chose k on the
basis of the observations is described in [A8].

As shown on this example, Theorem 6.5 cannot lead to better rates in n than 1/
√
n.

So, when we apply this result to an autoregressive linear model with a quadratic loss,
it will lead to rates that are generally suboptimal - these bounds are however provided
in [A15, A19]. Optimal rates of convergence in this case are obtained at the price of more
restrictive assumptions on the time series. We provide here the analogous of Theorem 3.5
page 17 for time series. From now, ℓ is the quadratic loss ℓ(x, x′) = (x − x′)2, p = 1
(real-valued time series), we fix a dictionary of Rk → R functions (φj)

h
j=1. For θ ∈ R

h,

fθ(Xt−1, . . . , Xt−k) =
h
∑

j=1

θjφj(Xt−1, . . . , Xt−k)

and as in Section 3 we put Θ = R
h, for I ⊂ {1, . . . , h} we put ΘI = {θ ∈ R

h : supp(θ) =
I}. We also put Θ(L) = {θ ∈ R

h, ‖θ‖1 ≤ L} and ΘI(L) = ΘI ∩Θ(L). We assume that
the φj satisfy a Lipshitz condition so that for any θ ∈ Θ(L), the function fθ satisfies the
condition given by (3) page 28. For the sake of shorteness we don’t describe explicitely
the prior π here, it is exactly similar to the one used in Section 3. Finally we fix θI as a
minimizer of R over ΘI(L) for each I ⊂ {1, . . . , h}.

Theorem 6.7 (Corollary 1 page 16 in [A19]). Assume that the time series (Xt) satisfies
assumption PhiMix(C). Let us assume that θ, the minimizer of R over Θ, actually belongs
to Θ(L). Then there is a known constant C′ = C′(C, L, cX) such that, for λ = C′/n, for
any ε > 0,

P



R(θ̃λ)−R(θ) ≤ 4 inf
J







R(θJ)− R(θ) + C′
card(J) log

(

(n−k)h
card(J)

)

+ log
(

2
ε

)

n− k











≥ 1− ε.

The proof rely on Samson’s version of Bernstein inequality for ϕ-mixing time se-
ries [188]. Note that Assumption PhiMix(C) only requires the summability of the
[ϕX(s)]1/2 while the assumptions in the aforementioned paper [3] require that ϕX(s)
is exponentially decreasing in s, that is a stronger assumption.

Since this work, Seldin, Laviolette, Cesa-Bianchi, Shawe-Taylor and Auer [192] also
extended the PAC-Bayesian approach to the study of martingales. Moreover, we want to
mention Wintenberger’s recent work [222] that aims to generalize Samson’s inequality
for a wider class of time series using weak transportation inequalities. This opens the
path for interesting generalizations of Theorem 6.7.
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In this part, the objective is to provide oracle inequalities in the spirit of Theorem 3.5
(page 17) for models that go beyond the linear model. In Sections 7 and 8, we extend
Theorem 3.5 to non-parametric models : the single-index model and the additive non-
parametric model, thanks to PAC-Bayesian bounds. We then turn to rather different
models. In Section 9, we prove an oracle inequality in a matrix estimation problem
motivated by quantum physics. We use penalized estimators in this case. We focus on
matrix estimation in a general setting in Section 10 and establish the first PAC-Bayesian
bound in this context. Finally, in Section 11 we provide a PAC-Bayesian bound in a
general model selection problem.

7 Sparse single-index

In many applications, linear predictors as studied in Part I do not lead to good pre-
dictions, and non-parametric families of predictors are prefered. However, if we consi-
der as a set of predictors all functions R

p → R with a given regularity s, the rate of
convergence for the quadratic loss is usually given by n−2s/(2s+p). When p is large, the
convergence is very slow, this phenomenon is usually refered as the curse of dimensiona-
lity. This motiated the introduction of the so-called single index model in econometrics.
This corresponds to predictors under the form fθ(x) = f(g,β)(x) = g(β ·x) where β ∈ R

p

and g : R → R. In this case, the rate for the estimation of an s-smooth function g is
n−2s/(2s+1), the estimation of β is meant to be “easier” and we avoid the curse of dimen-
sionality. We refer the reader to the monographs by McCullagh and Nedler [158] and
Horowitz [119] and the paper by Härdle, Hall and Ichimura [109] for an introduction.
See also the papers by Delecroix, Hristache and Patilea [76], Dalalyan, Judistki and Spo-
koiny [68] or Lopez [149] for more recent advances. Gaiffas and Lecué [92] also studied
the single-index model through PAC-Bayesian methods.

The motivation of this section is the following : when p is very large (say p > n), the
estimation of β itself is a problem. In this case, it does not make sense to assume that
the estimation of β is easier than the estimation of g - nor that the leading term in the
rate of convergence is the one corresponding to the estimation of g. As argued in Part I,
we cannot estimate β properly without any additional assumption, such as sparsity or
approximate sparsity. So we introduceded with Biau in [A11] the sparse single-index
model.

We assume that we observe n pairs (Xi, Yi) on some space (Ω,A,P). Under P, the
pairs are i.i.d. with common distribution P , Xi ∈ [−1, 1]p,

Yi = g(β ·Xi) +Wi

with E(Wi|Xi) = 0, g is a measurable bounded function R → [−C,C] for some C ≥ 1
and β ∈ R

p. Note that the model is not identifiable. While this is not a major problem
for prediction purpose, it is more convenient to deal with identifiable models in order to
define a prior on the parameters in this context. So we impose the following restriction :
β ∈ Sp

1,+ = {β ∈ R
p, ‖β‖1 = 1 and the first nonzero coordinate in β is positive}. Let us

also define, for any I ⊂ {1, . . . , p}, Sp
1,+(I) = {β ∈ Sp

1,+, supp(β) = I}.

We put θ = (g, β) and for any θ = (g, β) where g is some measurable function R → R

and β ∈ Sp
1,+ we put R(θ) = R(g, β) = E(X,Y )∼P [(Y − g(β ·X))2] and r(θ) = r(g, β) =
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(1/n)
∑n

i=1[Yi − g(β ·Xi)]
2.

The definition of our estimator θ̌λ is quite cumbersome. The reader may want to skip
in a first time the details of the construction and proceed directly to Theorem 7.5. We
define a prior ν(dg) for the function g, a prior µ(dβ) for the parameter β and finally
define the prior on the pair θ = (g, β) as π(dθ) = π(d(f, β)) = ν(dg)µ(dβ).

Definition 7.1. Let (φj) be the non-normalized Fourier basis φ2j(t) = cos(πjt) and
φ2j+1(t) = sin(πjt). For any M ∈ N and Λ > 0 let BM(Λ) be the set

BM(Λ) =

{

(β1, . . . , βM) ∈ R
M :

M
∑

j=1

j|βj| ≤ Λ and βM 6= 0

}

.

Let FM(Λ) be a set of functions defined as the image of BM(Λ) through the map

ΦM : (β1, . . . , βM) 7→
M
∑

j=1

βjϕj.

Finally, we define νM(dg) on the set FM(C +1) as the image of the uniform probability
measure on BM(C + 1) induced by the map ΦM , and take

ν(dg) =

n
∑

M=1

10−MνM(dg)

1− ( 1
10
)n

.

Note that the idea beyond the prior ν is that Sobolev spaces are well approximated
by FM(Λ) as M grows.

Definition 7.2. We put

µ(dβ) =

p
∑

i=1

10−i

(

p

i

)−1
∑

I⊂{1,...,p},card(I)=i

µI(dβ)

1− ( 1
10
)p

,

where µI is the uniform probability measure on the set Sp
1,+(I).

Note the similarity with the sparsity inducing prior in Section 3.

Definition 7.3. We put π(dθ) = π(d(f, β)) = ν(dg)µ(dβ), and we define as previously,
for any λ > 0, the probability distribution ρ̃λ(dθ) ∝ π(dθ) exp[−λr(θ)]. This time, the
estimator θ̌λ is simply drawn randomly from ρ̂λ.

Actually, it would be possible to define an aggregated predictor in this case :

f̂λ(x) =

∫

g(β.x)ρ̂λ(d(g, β))

but note that it would not generally hold that f̂λ(x) = ĝ(β̂ · x) for some estimators ĝ
and β̂. The predictor f̂λ would satisfy a result exactly to Theorem 7.5 below but, for
the sake of simplicity, we only state this result for the randomized estimator θ̌λ.
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Definition 7.4. We put, for any I ⊂ {1, . . . , p} and M ∈ {1, . . . , n},

θI,M = arg min
θ∈FM (C)×Sp

1,+(I)
R(θ).

Theorem 7.5 (Theorem 2 page 249 in [A11]). Let us assume that the Wi are
sub-exponentials with parameters (σ, ξ) (Definition 3.4 page 17). Set w = 8(2C +
1)max[ξ, 2C + 1] and λ = n/{w + 2 [(2C + 1)2 + 4σ2]}. Then, for all ε > 0,

P

{

R(θ̌λ)−R(θ) ≤ Ξ inf
I⊂{1,...,p}

inf
1≤M≤n

{

R(θI,M)−R(θ)

+
M log(Cn) + card(I) log(pn) + log

(

2
ε

)

n

}}

≥ 1− ε,

where Ξ = Ξ(ξ, C, σ) > 0.

Note that in this theorem, the result holds with large probability on the drawing of
the sample ((Xi, Yi))

n
i=1 and on the drawing of the estimator θ̌λ ∼ ρ̃λ. We explicit the

consequences of this oracle inequality when g actually belongs so a Sobolev ellipsoid.

Definition 7.6 (Sobolev ellipsoid). For s > 0 and D > 0,

W (s,D) =

{

f ∈ L2([−1, 1]) : f =

∞
∑

j=1

βjϕj and
∞
∑

j=1

j2sβ2
j ≤ D

}

.

Theorem 7.7 (Corollary 4 page 250 in [A11]). Under the assumptions of Theorem 7.5,
and under the following additional assumptions :

1. the random variable θ.X1 has a probability density on [−1, 1] bounded above by a
positive constant B,

2. g ∈ W
(

s, 6C
2

π2

)

for some s ≥ 2, for some unknown s,

we have, for any ε > 0,

P

(

R(θ̌λ)− R(θ) ≤ Ξ′

{

(

log(Cn)

n

) 2s
2s+1

+
‖β‖0 log(pn)

n
+

log
(

2
ε

)

n

})

≥ 1− ε

where Ξ′ = Ξ′(σ, ξ, C,B, s) > 0.

The first term in the right-hand side is the, up to a log(n) term, the minimax rate
of estimation in W (s, 6C2/π2) (we refer the reader to the monograph by Tsybakov [209]
and the references therein for the lower bounds). Note that this result is adaptive in s
in the sense that the estimator (including the parameter λ) does not depend on s. The
second term is, here again up to a log(n) term, the optimal rate of estimation of β. So,
in general this upper bound is optimal. See [A11] for a more detailed discussion.

Also, in this paper, we proposed a Monte-Carlo method to draw θ̌λ from ρ̃λ. Here
again, our algorithm is based on Green’s RJMCMC algorithm [102]. We refer the reader
to the paper for an extensive simulation study as well as tests on real data. A related
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algorithm was used by Wang [218] to select variables in the single-index model (without
theoretical study).

Since the publication of this work, Lepski and Serdyukova [144] proposed an alter-
native method for adaptation in the single-index model, they reach the minimax rate
n2s/(2s+1) (without the log(n) term). However, their method is not designed for sparse
β, it means that they pay the price p/n instead of ‖β‖0 log(pn)/n for the estimation
of β. Finally, Wang, Xu and Zhu [219] and Zhang, Wang, Yu and Gai [231] proposed
alternative methods for sparse single-index model based on penalization.

8 Additive model

Another popular model useful to avoid the curse of dimensionality is the additive
non-parametric model. Here, for x ∈ R

p, the predictor is given by f1(x1) + · · ·+ fp(xp).
So, we only have to estimate p functions R → R. Classical references on additive models
are the paper by Stone [201] and Hastie and Tibshirani [111] and the monograph by the
same authors [112].

Here again, for relatively small p, it is easier to estimate p functions R → R than
one function R

p → R. However, when p is too large, both tasks become impossible.
In this case, it makes sense to impose sparsity on the model : namely, most of the
functions fi are (close to) zero. A natural approach is the following : fix a dictionary
of functions (φj)j∈S, e.g. splines, Fourier basis, wavelets... and expand each of the fi in
this dictionary. This leads to a predictor

p
∑

i=1

∑

j∈S

θi,jφj(xi)

that is linear in θ = (θi,j)i∈{1,...,p},j∈S. So, it makes sense to consider the penalties men-
tioned in Part I. For example, Yuan and Lin’s group LASSO penalty [230] enforces some
groups of coordinates (θi,j)j∈S for fixed i to be null, it means that we estimate some of
the functions fi by 0. Bach [17] provided hypothesis under which this approach leads
to a consistent estimation. Later, oracle inequalities were established by Meier, van de
Geer and Bühlmann [159], Ravikumar, Lafferty, Liu and Wasserman [173], Koltchinskii
and Yuan [132], Suzuki and Sugiyama [203]. However, an assumption on the design (like
REP, Definition 2.2 page 15 for the LASSO) is required to prove these inequalities.

Following the ideas introduced in Section 3, PAC-Bayesian methods seems to be a
nice alternative to establish oracle inequalities in this context without any REP type
assumption. This idea was used simultaneously in two papers : one by Suzuki [202], the
other being our joint work with Guedj [A10]. Suzuki’s result applies in the fixed design
case while our result is valid in the random design case and hence holds on the prevision
risk R. On the other hand, Suzuki considers unbounded spaces of functions, while our
method requires the set of predictors to be bounded. Suzuki considered a Gaussian prior
on a reproducing kernel Hilbert space (RKHS) and used results from van der Vaart and
van Zanten [212] to control the Kullback-Leibler divergence between the posterior and
the prior. We used an approach closer to the one developped in Section 7 with the
Fourier basis.
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We assume that we observe n pairs (Xi, Yi) on some space (Ω,A,P). Under P, the
pairs are i.i.d. with common distribution P , Xi ∈ [−1, 1]p,

Yi = ψ(Xi) +Wi

with E(Wi|Xi) = 0, ψ is a measurable function R
p → [−C,C] for some C ≥ 1. We let

(φj) denote the Fourier basis (Definition 7.1 page 34). For any m = (m1, . . . , mp) ∈ N
p,

and D > 0, we define B1
m(0,D) as

B1
m(0,D) =

{

θ = (θj,k)j∈supp(m),k∈{1,...,mj}
with, for any j,

mj
∑

k=1

|θj,k| ≤ D
}

and put, for any x ∈ R
p, m and θ ∈ B1

m(0,D),

fθ(x) =
∑

j∈supp(m)

mj
∑

k=1

θj,kφk(xj).

Finally, as usual, R(θ) = E(X,Y )∼P [(Y − fθ(X))2] and r(θ) = (1/n)
∑n

i=1[Yi − fθ(Xi)]
2,

and θ is a minimizer of R over the reunion of all B1
m(0,D) for m ∈ N

p and D > 0. We
considered the following prior.

Definition 8.1 (Priors). We put, for any α ∈ (0, 1/2),

ηα(m) =
1− α

1−α

1−
(

α
1−α

)p+1

α
∑p

j=1 mj

(

p
S(m)

) .

We fix α once and for all, and define πm as the uniform measure on B1
m(0, C). Finally,

we put

π(dθ) =
∑

m∈Np

ηα(m)πm(dθ).

Then, as in the previous section, we define ρ̃λ(dθ) ∝ π(dθ) exp(−λr(θ)) and the
estimator θ̌λ drawn from ρ̃λ. Note that an aggregated version θ̃λ is also studied in [A10]
but, for the sake of simplicity, we only report the results for the randomized estimator.

Theorem 8.2 (Theorem 2.1 page 269 in [A10]). Let us assume that the Wi are sub-
exponentials with parameters (σ, ξ). Set w = 8Cmax(ξ, C) and λ = n/[2w+4(σ2+C2)].
Then, for all ε > 0,

P

{

R(θ̌λ)−R(θ) ≤ Ξ inf
m∈Np

inf
θ∈B1

m(0,C)

[

R(θ)−R(θ)

+
‖m‖0 log

(

p
‖m‖0

)

n
+

log(n)

n

∑

j∈supp(m)

mj +
log
(

2
ε

)

n

]}

≥ 1− ε,

where Ξ = Ξ(σ, ξ, C, α > 0).



38 Statistical models in quantum physics

Theorem 8.3 (Theorem 2.2 page 271 in [A10]). Assume that the assumptions of Theo-
rem 8.2 are satisfied. Assume that the regression function ψ actually satisfies

ψ(x) =
∑

j∈S∗

ψj(xj)

for some S∗ ⊂ {1, . . . , p} and that for each j, ψj ∈ W(sj , Dj). Finally, assume that
when (X, Y ) ∼ P , P has a density with respect to the Lebesgue measure bounded from
above by B > 0. Then,

P

{

R(θ̌λ)− R(θ) ≤ Ξ′

[

∑

j∈S∗

D
1

2sj+1

j

(

log(n)

2nsj

)

2sj
2sj+1

+
card(S∗) log

(

p
card(S∗)

)

n
+

log
(

2
ε

)

n

]}

≥ 1− ε

for some Ξ′ = Ξ′(σ, ξ, C, α, B) > 0.

We still obtain the minimax rate of convergence (up to a log(n) term). In [A10],
we also present a Monte-Carlo algorithm to draw θ̌λ, based on Carlin and Chib [50]
algorithm. We also provide a detailed simulation study.

Finally, we want to mention a very recent preprint by Abramovich and Lahav [1]
in which the authors study the theoretical properties of a Bayesian MAP estimator
(Maximum A Posteriori) in the additive nonparametric model with fixed design. The
MAP achieves the minimax rate in this setting.

9 Statistical models in quantum physics

Quantum physics recently provided a wide range of new statistical estimation pro-
blems. It is not the purpose of this thesis to provide a complete introduction to the field
of quantum physics or quantum statistics, we rever the reader to Holevo’s monograph for
the probabilistic and statistical aspects of quantum physics [118] or to the more recent
introductory paper on quantum statistics by Barndorff-Nielsen, Gill and Jupp [19]. In
quantum physics, the state of a system is represented by a (complex) matrix ρ with

– ρ∗ = ρ (ρ is Hermitian),
– tr(ρ) = 1 (the trace of the matrix is one),
– for any column vector v, v∗ρv ≥ 0 (ρ is non-negative).

This matrix ρ is called the density matrix of the state. In many problems of quantum
statistics, the objective is to estimate the density matrix ρ of a system on the basis
experimental observations.

Depending on the system, the dimension of ρ can be finite or infinite, and can satisfy
various additional assumptions. We studied two cases of interest for physicists. First, in
a joint paper with Meziani and Peyré [A12] we studied a model of quantum homodyne
tomography. In this case ρ is an infinite matrix with a regularity assumption : the
coefficients ρi,j of ρ decay exponentially fast in i + j. A review on quantum homodyne
tomography can be found in the paper by Artiles, Gill and Guţă [9]. Some rates of



39

convergence were provided in a paper by Aubry, Butucea and Meziani [10], but the
corresponding estimators depended on the rate of decay of the coefficients ρi,j. In [A12],
we obtained the same rate of convergence for an adaptive estimator based on a soft-
thresholding procedure (see Remark 2.5 page 16 above).

In quantum computing, the system of interest is called a n-qubit and the corres-
ponding density matrix ρ is a 2n × 2n matrix. Moreover, physicists are interested in
generating systems in pure states, corresponding to ρ with rank(ρ) = 1. In our joint
work with Butucea, Hebiri, Meziani and Morimae [A13], we developped a penalized es-
timator for this problem. In this section, we present the results of this paper. First, we
introduce the basic notations.

On a n-qubit system, there are 3n possible experimental measurements and each
possible returns a vector in {−1, 1}n (this number, 3n, might seem a bit arbitrary, but
it comes from quantum theory, we refer the reader to [A13] and the references therein).
The probability to obtain a given vector v ∈ {−1,+1}n as an outcome is a function
of the measurement and of the density matrix ρ of the system. We use the notation
M = (Mi,v)i∈{1,...,3n},v∈{−1,+1}n , Mi,v is the probability to obtain the outcome v when we
perform experiment i. Quantum theory provides a linear function F such thatM = F (ρ).

Note that, one of the striking facts in quantum theory is that every measurement
changes the state of the observed system. So, once a measurement is performed on a
system in state ρ, the system is no longer in state ρ after the measurement. As the
physicists want to test the ability of a device to produce systems in a given state of
interest ρ0, they proceed as follow. For each measurement type i ∈ {1, . . . , 3n}, they
repeat a given number of times (say m) :

1. use the device to produce a system of n-qubit,

2. perform measurement i it on the system.

From these observations, we can build a natural estimator of M , M̂ , where each probabi-
lity Mi,v is estimated by the corresponding empirical frequency M̂i,v (note that, once the
device exists, it is usually possible to repeat a large number of experiments, m ≥ 1000 is
possible ; moreover, we can assume that the different repetitions of the experiment are
independent). In order to make things more clear, we provide a toy example.

Example 9.1. In this example, n = 2, so there are 9 possible measurement on the
system. Each measurement is performed m = 1000 times. We stick to the following
notation : ρ0 is the state of interest, ρ is the actual state produced by the device. So, in
theory :

probability of outcome
measurement (−1,−1) (−1,+1) (+1,−1) (+1,+1)

1 0.00 0.43 0.43 0.14
...

...
...

...
...

9 0.50 0.12 0.22 0.16

⇒ F (ρ) =M =







0.00 0.43 0.43 0.14
...

...
...

...
0.50 0.12 0.22 0.16






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but ρ, and as a consequence M , is unknow. However, we observe

number of outcomes observed
measurement (−1,−1) (−1,+1) (+1,−1) (+1,+1)

1 0 437 440 123
...

...
...

...
...

9 584 125 227 164

⇒ M̂ =







0.000 0.437 0.440 0.123
...

...
...

...
0.584 0.125 0.227 0.164






.

A way to test whether ρ = ρ0 would be to compare F (ρ0) with M̂ . However, physicists
are not interested in the matrix M , the object that makes sense in physics is ρ, not M .
In particular, we already mentioned that physicists are also interested in the question :
do we have rank(ρ) = 1 ?

Guţă, Kypraios and Dryden [106] wrote the likelihood of ρ in this context and pro-
posed as an estimator a maximizer of a version of the likelihood penalized by the rank
of ρ. While this works in theory, the maximization is computationally intensive, so we
proposed in our paper [A13] an alternative penalized moment method. Our estimator
ρ̂t is given by

ρ̂t = argmin
p

{

‖M̂ − F (p)‖2F + t.rank(p)
}

for some parameter t > 0, where ‖ · ‖F is the Frobenius norm on matrices given by
‖A‖2F = tr(A∗A).

Theorem 9.2 (Corollary 4.3 page 8 in [A13]). There is some constant C > 0 such that,
when t ≥ C(4/3)n(n− log ε)/m,

P

(

‖ρ̂t − ρ‖2F ≤ Ctrank(ρ)
)

≥ 1− ε.

So, the smaller the rank of ρ is, the easier the estimation task. Moreover, under
additional assumptions on the eigenvalues of ρ, it is possible to prove that the probability
that rank(ρ̂t) = rank(ρ) is large too (Corollary 4.4 page 8 in [A13]). This is coherent with
the results by Gross, Liu, Flammia, Becker and Eisert [105] who proved that, when we
actually know than rank(ρ) = s < 2n, it is not necessary to go through all the 3n possible
type of measurements. In [A13] we also provide an explicit procedure to compute ρ̂t as
well as some simulations and we test our procedure on the experimental data coming
from the paper by Barreiro, Müller, Schindler, Nigg, Monz, Chwalla, Hennrich, Roos,
Zoller and Blatt [20]. Note that this is the first nonasymptotic bound proved for any
estimator in this context, it gives an idea of how many measurements m are necessary
in order to ensure an accurate recovery of ρ. However, we don’t know yet whether this
rate is optimal, the lower bounds will be the object of a future work.

The proof of Theorem 9.2 relies essentially on Corollary 6 page 1290 in Bunea, She
and Wegkamp [42], who proposed a general procedure for the estimation of low-rank
matrices in a general context. However, in order to prove that the assumptions of this
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corollary are satisfied, a deviation inequality for random matrices is required. Such
inequalities are usually refered as non-commutative deviation inequalities. A first gene-
ralization of Bernstein’s inequality for random matrices was proved by Ahlswede and
Winter [4], improvements can be found in Oliveira [170], Gross [104], Recht [174]. An
Hoeffding’s inequality for matrices was first proved by Christofides and Markström [60].
We also refer the reader to the very nice and comprehensive survey papers (that also
contain new results) by Tropp [207] and Vershynin [215] and to Section 3.2 page 252 in
Tao’s monograph [204]. Here, we actually used the version of non-commutative Hoeff-
ding’s inequality of [207].

10 Bayesian low-rank matrix estimation

Several statistical problems involve the estimation of large but potentially low-rank
matrices. Beyond the classical PCA, there was a recent interest in matrix completion
and in the the reduced-rank regression model. Penalized estimators appeared as a com-
putationally efficient ways to perform optimal matrix completion, we refer the reader
to the striking papers by by Candès and Tao [48], Candés and Plan [46], Candés and
Recht [47] and Gross [104]. Regarding reduced-rank regression, we refer the reader to the
monograph by Reinsel and Velu [175] for an introduction and to the paper by Bunea,
She and Wegkamp [42] for recent results based on penalized estimators. More recently,
the so-called trace regression model was introduced as a general model that would in-
clude linear regression, reduced-rank regression and matrix completion as special cases.
Penalized estimators for this general model are studied in Koltchinskii [130], Rohde and
Tsybakov [183], Klopp [127], Koltchinskii, Lounici and Tsybakov [131].

However, little has been done on Bayesian estimators in this context. Special cases
of reduced-rank regression are used in econometrics and have been estimated by Baye-
sian estimators, we mention the nice survey by Geweke [98] and the references therein.
Bayesian model selection in order to estimate the rank of the involved matrix was done
by Kleibergen and Paap [126], Corander and Villani [64] proved the model selection
consistency of these procedures. However, the recent applications of matrix completion
imposed the additional constraint of computational efficiency : for example, the Netflix
challenge proposed a database containing 100,480,507 ratings that 480,189 users gave to
17,770 movies, the objective being to reconstruct a matrix with 8,532,958,530 entries, see
Bennett and Lanning [29] for a more complete description. A few Bayesian methods ta-
king this constraint into account were proposed : Yu, Tresp and Schwaighofer [229], Lim
and Teh [148], Salakhutdinov and Mnih [185, 186], Lawrence and Urtasun [134], Yu, Laf-
ferty, Zhu and Gong [228], Zhou, Wang, Chen, Paisley and Carin [237], Babacan, Luessi,
Molina and Katsaggelos [15]. In all these papers, the authors used Monte-Carlo methods
or Variational Bayes (VB) methods to compute their estimators (see e.g. Beal [24] for
an introduction to VB). A reasonable computational efficiency was reached : in some
of these papers, the authors obtained good performances on well known large datasets
such as Netflix and MovieLens. Finally, we mention that Aoyagi and Watanabe provided
general conditions for consistency of low-rank matrix estimation [6, 7]. However, their
method is only valid for priors on bounded spaces, while in all the papers mentioned
previously, computational efficiency is reached thanks to Gaussian priors.

One of my current research projects is to investigate the properties of Bayesian es-
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timators for the estimation of low-rank matrices in these various problems. As a first
step, in my paper [A16], I proved that the prior in [15] lead to an estimator that sa-
tisfies an oracle inequality with the optimal rate of convergence, up to log terms, in
the reduced-rank regression model with fixed design (note that the priors in the other
papers mentioned above are very similar).

We assume that the latent probability space is (Ω,A,P) and that we observe an
ℓ×m random matrix Y and an ℓ× p deterministic matrix X with

Y = XB + E

where B is some unknown p × m deterministic matrix and E is some unknown ℓ × p
random matrix. We will make one of the following assumptions on the noise :

– Assumption (A1) : the entries Ei,j of the matrix E are i.i.d. Gaussian N (0, σ2),
and we know an upper bound s2 for σ2.

– Assumption (A2) : the entries of E are i.i.d. according to any distribution sup-
ported by the compact interval [−ζ, ζ ] with a density f w.r.t. the Lebesgue measure
and f(x) ≥ fmin > 0, and we know an upper bound s2 ≥ E(|E1,1|)/(2fmin).

Note that (A1) and (A2) are special case of Assumption A used by Dalalyan and
Tsybakov (page 99 in in [70]), our result would actually hold under this more general
condition.

We now describe the prior. First, we replace the matrix parameter B by two matrices
M and N , with B = MNT . Here k ≤ min(p,m) is a fixed integer, M is p × k, N is
m× k, and then

π(d(M,N)|Γ) ∝ exp

[

−1

2

(

Tr(MTΓ−1M) + Tr(NTΓ−1N)
)

]

d(M,N)

where d(M,N) stands for the product of the Lebesgue measure on each component of
M and N , and Γ is some random matrix

Γ =







γ1 . . . 0
...

. . .
...

0 . . . γk






,

the γj being i.i.d. and 1/γj ∼ Gamma(a, b). So we have :

π(d(M,N)) =

∫

Γ

π(d(M,N)|Γ)πΓ(dΓ)

where

πΓ(dΓ) =
bka

Γ(a)k

k
∏

j=1

{

γ−a−1
j exp

(

− b

γj

)}

dγ1 . . .dγk.

We define the Gibbs estimator by

B̃λ =

∫

MNT ρ̃λ(d(M,N))

where ρ̃λ is the probability distribution given by

ρ̃λ(d(M,N)) ∝ exp
(

−λ‖Y −XMNT ‖2F
)

π(d(M,N)).
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For J ⊂ {1, . . . , k} let MJ denote the set of p × k matrices M such that every
column Mj of M corresponding to an index j /∈ J is null. Similarly, NJ is the set of
m× k matrices N such that every column Nj is null when j /∈ J .

Theorem 10.1 (Theorem 1 page 304 in [A16]). Assume that either (A1) or (A2) is
satisfied. Let us put a = 1 and b = s2

2ℓpk2(m2+p2)
in the prior πΓ. For λ = 1/(4s2),

E

(

‖XB̃λ −XB‖2F
)

≤ inf
J⊂{1,...,k}

inf
M∈MJ

inf
N∈NJ

{

‖X(MNT −B)‖2F

+ 6s2(m+ p)|J | log
(

1.34ℓp

s2

)

+ 8s2k log

(

22.17ℓpk2(m2 + p2)

s2

)

+
2s2‖X‖2F

ℓp

{

‖N‖2F + ‖M‖2F +
2s2

ℓp
+ 16s2

}

+ 8s2
(

‖N‖2F + ‖M‖2F + log(2)
)

}

.

Assume that all the entries ofX satisfy |Xi,j| ≤ C for some C > 0, then ‖X‖2F/(ℓp) ≤
C2. Also assume that rank(B) = k0 and that B = MNT with Mk0+1 = · · · = Mk = 0
and Nk0+1 = · · · = Nk = 0 and |Ni,j|, |Mi,j| ≤ c. We get

E

(

‖XB̃λ −XB‖2F
)

≤ 50s2(m+ p)k0

{

log(ℓmax(p,m))

+ log

[

max

(

1

s2
, 1

)]

+ 1 + C2(1 + c2 + s2)

}

.

When rank(X) = p, we recover the same upper bound as in Bunea, She and Weg-
kamp [42], up to a log(ℓmax(p,m)) term. This rate (without the log) is known to be
optimal, see remark (ii) page 1293 in [42] and Rohde and Tsybakov [183]. However, the
terms ‖M‖2F and ‖N‖2F can lead to suboptimal rates in less classical asymptotics where
‖B‖F would grow with the sample size ℓ. But, up to our knowledge, these terms cannot
be avoided when using a Gaussian prior.

In the conclusion of this thesis, we will present some of our works in project in
order to get rif of these terms. To find a prior that would lead simultaneously to a
computationally feasible estimator and to an oracle inequality without the terms ‖M‖2F
and ‖N‖2F is one of my obectives.

11 Models with controled complexity

This last section describes the results of the paper [A4], in which a very general
model selection procedure for regression is proposed. This procedure is largely inspired
by the procedure proposed in Subsection 2.2 page 68 in Catoni’s monograph [55]. It
relies on two steps :

1. Gibbs estimators are defined in each submodel,
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2. one of them is selected through a selection procedure in the spirit of the celebrated
Lepki’s method, see Lepski [141, 142, 143] and Birgé [34].

The strength of this method is that it is simultaneously adaptive with respect to the
dimension of the models and to the parameter in the so-called margin assumption in-
troduced by Mammen and Tsbakov [153]. On the other hand, this method suffers the
same drawback as ℓ0-penalized methods introduced in Part I : it is not computationally
feasible when the number of models is too large.

On a space (Ω,A,P), we observe n i.i.d. pairs (X1, Y1), . . . , (Xn, Yn) with (Xi, Yi) ∼
P , where Xi belongs to a set X , Yi to a set Y . We consider as in the other sections a
family of prediction functions {fθ : X → Y , θ ∈ Θ} and a loss function ℓ : Y2 → R+.
As mentioned in the introduction, ℓ can be the 0-1 loss if Y is a finite set, or a convex
loss function such as the least square loss. For the sake of simplicity, we assume that
P(ℓ(fθ(X), Y ) ≤ C) = 1 for some C > 0. For more general situations, a risk truncation
procedure was proposed in [A4], at the cost of a loss in the rates of convergence. This
procedure was recently improved by Audibert and Catoni [13, 56], we will give more
comments on this below. We assume that we have a partition of Θ : (Θi)i∈I where I is
finite. We fix a prior πi on each submodel Θi (equiped with a suitable σ-algebra) and
weights µi > 0 such that

∑

i∈I µi = 1. As in the previous sections, we put

R(θ) = E(X,Y )∼P [ℓ(fθ(X), Y )], θ ∈ argmin
θ∈Θ

R(θ) and r(θ) =
1

n

n
∑

i=1

ℓ(fθ(Xi), Yi).

Similarly, we define θi as a minimizer of R over Θi. We define, for any λ > 0, the measure
ρ̃i,λ by

ρ̃i,λ(dθ) ∝ exp(−λr(θ))πi(dθ)

for θ ∈ Θi. Let us put Λ = {20, 21, . . . , 2⌊
log(n)
log(2) ⌋}. The estimation procedure is as follows :

for each (i, λ) ∈ I × Λ, we draw
θ̌i,λ ∼ ρ̃i,λ.

The next step is to choose a pair (̂i, λ̂). This choice relies on two main facts (for a fixed
confidence level ε > 0) :

– the existence of empirical bounds B̃ε((i, λ), (i
′, λ′)), i.e. bounds that depend on the

observations through empirical risk r, and not on the unknown P , such that

P

(

∀((i, λ), (i′, λ′)) ∈ (I × Λ)2, R(θ̌i,λ)− R(θ̌i′,λ′) ≤ B̃ε((i, λ), (i
′, λ′))

)

≥ 1− ε

with a sub-additivity structure :

B̃ε((i, λ), (i
′, λ′)) ≤ B̃ε((i, λ), (i

′′, λ′′)) + B̃ε((i
′′, λ′′), (i′, λ′))

(the existence of these bounds is given by Theorem 2.5 page 288 and Definition
3.2 page 289 in [A4]),

– the existence of an empirical complexity measure Cε((i, λ)) (Definition 3.1 page
289 in [A4]).

The definition of these quantities will be provided below for the sake of completeness.
We then follow the idea of Lepski’s procedure [141, 142, 143]. We arrange the pairs
(i, λ) ∈ I × Λ by increasing complexity, i.e. we define M = card(I)card(Λ), and objects



45

ti for i ∈ {1, . . . ,M} such that {ti, i ∈ {1, . . . ,M}} = I ×Λ and Cε(t1) ≤ Cε(t2) ≤ · · · ≤
Cε(tM). For any k ∈ {1, . . . ,M} we put

s(k) = inf{j ∈ {1, . . . ,M}, B̃ε(tk, tj) > 0},
by convention s(k) = 0 if for any j, B̃ε(tk, tj) ≤ 0. We then put

k̂ = min(argmax s)

and choose (̂i, λ̂) as the pair such that (̂i, λ̂) = tk̂, our estimator is finally given by

θ̌ = θ̌î,λ̂.

We now state the oracle inequality satisfied by θ̌ under two assumptions : Catoni’s
complexity assumption [55] and Mammen and Tsybakov’s margin assumption [153].

Definition 11.1 (Margin assumption [153]). Let us put, for any (θ, θ′) ∈ Θ2,

V (θ, θ′) = E(X,Y )∼P

{

[ℓ(fθ(X), Y )− ℓ(fθ′(X), Y )]2
}

.

We say that Mammen and Tsybakov’s margin assumption is satisfied with constants
(κ, c) ∈ [1,+∞[×R

∗
+ if, for any θ ∈ Θ,

V (θ, θ) ≤ c
[

R(θ)− R(θ)
]κ
.

In the case of the 0-1 loss, this assumption can be geometrically interpreted as the
existence of a margin between classes, however, it is also meaningfull in other contexts,
see the discussions in the paper by Lecué [135] among others.

Definition 11.2 (Complexity assumption [48]). We say that Catoni’s complexity as-
sumption is satisfied for the partition (Θi)i∈I with positive complexities (di)i∈I if, for any
i ∈ I,

sup
ξ∈R

{

ξ

[
∫

Θi

R(θ)πi
exp(−ξR)(dθ)− R

(

θi
)

]}

≤ di

where πi
exp(−ξR) is the probability distribution defined by

πi
exp(−ξR)(dθ) ∝ exp[−ξR(θ)]πi(dθ)

for θ ∈ Θi.

This assumption is discussed in [55] and in our Ph.D. thesis [A17]. It is shown that,
in many cases, when the Θi’s are compact sets in finite dimensional space with respective
dimension dim(Θi), then we can take di = Cdim(Θi) for some constant C.

Theorem 11.3 (Theorem 3.2 page 290 in [A4]). Let us assume the assumptions given
by Definitions 11.1 and 11.2 are satisfied. Then there is a constant C = C(κ, c, C) such
that

P

{

R(θ̌)− R(θ)

≤ inf
i∈I

[

R
(

θi
)

−R(θ) + Cmax

{(

[

R
(

θi
)

− R
(

θ
)]

1
κ

(

di + log 1+log2(n)
εµi

)

n

)
1
2

,

(

di + log 1+log2(n)
εµ(i)

n

)

κ
2κ−1

}]}

≥ 1− ε.
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This rate of convergence is known to be optimal (up to the log log2(n) term !), we
refer the reader to Theorem 3.1 and 3.2 page 44 in Lecué’s Ph.D. thesis [136], see also
his paper [135].

For the sake of completeness and aesthetic considerations, we provide explicit formu-
las for B̃ε((i, λ), (i

′, λ′)) and Cε((i, λ)). First, we define a natural estimator of V (θ, θ′) :

v(θ, θ′) =
1

n

n
∑

i=1

[ℓ(fθ(Xi), Yi)− ℓ(fθ′(Xi), Yi)]
2 .

Fix some parameter ζ > 0. We can now give the definition of the complexity measure

Cε(i, λ) = inf
γ∈[ζλ,∞[

{

1

1− λ
γ

log

∫

Θi

exp

[

λγ

2n
v(θ̌i,λ, θ)

]

ρ̃λ,i(dθ)

+

(

1 +
1

ζ − 1
+

λ

γ − λ

)

log

(

3

εµicard(Λ)2

)

}

.

We define, for any parameter α > 0,

Φα(t) =
log(1− αt)

α
, (4)

note that this function is invertible and that for any u ∈ R,

Φ−1
α (u) =

1− exp(−αu)
α

.

Actually, we will only use Φ−1
α , but the role of the function Φα is important in the

unbounded case, see [A4]. Then we put :

Bε((i, λ), (i
′, λ′)) = inf

ξ>0
inf
γ>λ

inf
γ′>λ′

Φ−1
ξ

n

{

r(θ̌i,λ)− r(θ̌i′,λ′) +
ξ

2n
v(θ̌i,λ, θ̌i′,λ′)

+
1

ξ

[

1

1− λ
γ

log

∫

Θi

exp

[

λγ

2n
v(θ̌i,λ, θ)

]

ρ̃λ,i(dθ)

+
1

1− λ′

γ′

log

∫

Θi′

exp

[

λγ

2n
v(θ̌i′,λ′, θ)

]

ρ̃λ′,i′(dθ)

+

(

1 +
λ

γ − λ
+

λ′

γ′ − λ′

)

log

(

3

εµiµi′card(Λ)4

)

]}

.

It is possible to prove that this quantity satisfies almost all the required properties
(Theorem 2.5 page 288 in [A4]), the only trouble being that it is not subadditive. This
is why we define :

B̃ε((i, λ), (i
′, λ′)) = inf

{

h
∑

k=1

Bε((ik−1, λk−1), (ik, λk)),

h ≥ 1, (i0, . . . , ih) ∈ Ih+1, (λ0, . . . , λh) ∈ Λh+1

}

.
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Conclusion and future works

We hope that the reader found these explanations useful and that he/she is convinced
1. that PAC-Bayesian bounds are useful tools to prove powerful oracle inequalities and
2. that aggregated or Bayesian-type estimators are a valuable alternative to penalized
estimators, depending on the context and on the objective of the statistician.

I will conclude this thesis by an overview of a few open issues.

1. Regardind Part II, it would be nice to see to what extent statistical learning can
be extended to a wider set of time series. A recent preprint by Wintenberger [222]
extends Samson’s version of Bernstein inequality [188] to a more general context
thanks to weak transportation inequalities. Moreover, in some situations, the rates
obtained are different to the ones in the i.i.d. case, so it seems necessary to study
lower bounds in this case too.

2. From the algorithmic perspective, to implement the Gibbs estimator through
Green’s RJMCMC method [102] revealed a successful strategy for reasonably large
dimension p, but there is room for improvement for larger p. Carlin and Chib’s
algorithm [50] used in [A10] was an improvement, it would be interesting to see
if more sophisticated Monte-Carlo algorithms could help, e.g. Pandolfi, Bartolucci
and Friel’s [171] version of the multiple choice Metropolis-Hastings algorithm could
help. In order to deal with very large datasets, such as NetFlix or MovieLens, com-
putational efficiency is a crucial issue. The ℓ1-penalized methods studied by Candès
and different coauthors in the aforementioned papers [49, 46, 47] lead to very ef-
ficient algorithms. In order to challenge these methods, it is likely that a naive
Monte-Carlo method is not enough. Another interesting alternative to compute
Bayesian estimators is the family of Variational Bayes methods (e.g. [24]). I’m
currently working on different variant of these methods to be able to process very
large datasets. Also, it would be necessary to understand the rate of convergence
of these Monte-Carlo algorithms, and probably to include the computational cost
in the model selection procedures. To this regard, I would like to point out the
very interesting recent preprint by Sanchez-Perez [189].

3. Still regarding matrices estimation, Theorem 10.1 page 43 shows that Bayesian
estimators are (almost) optimal in the reduced-rank regression model, but the
case of matrix completion is still an open issue. The situation is actually the
following : both models are special cases of the trace regression model. But in order
to prove results for matrix completion, one must study the trace regression model
with random design, while we were only able to prove results with a fixed design
until now. In order to use PAC-Bayesian bounds in the random design context,
almost all known techniques require bounded parameter space, while - up to our
knowledge - the only way to produce computationally feasible estimators is to use
Gaussian priors. Finally, in order to get rid of the terms ‖M‖2F and ‖N‖2F is the
bound, we probably have to use a heavy-tailed prior as in Dalalyan and Tsybakov’s
papers [70, 71, 72], but this would lead to serious computational and theoretical
problems ! Audibert and Catoni [13, 56] proposed an interesting method to deal
with unbounded parameter sets in PAC-Bayesian bounds with random design (it
relies on many ideas, one of them is an improvement of the change of variables
Φα(·) given by (4) page 46). But this does not solve the computational issue. All
of this is to be investigated in depth.



4. PAC-Bayesian bounds study Bayesian estimators from a non asymptotic perspec-
tive. An alternative is to study them from an asymptotic perspective. In the para-
metric case, this is explained in details in van der Vaart’s monograph [211] : one
can prove consistency, and then exhibit rates of convergence thanks to Bernstein-
von Mises theorem. Ghosal, Ghosh and van der Vaart [99] established general
conditions for such a result to hold in the non-parametric case. More recently, we
refer the reader to Boucheron and Gassiat [37], Rivoirard and Rousseau [180], Cas-
tillo and Nickl [51] for Bernstein-von Mises theorems in various contexts. When
using these tools, boundedness of the parameter space is not an issue. So, to
study connections between PAC-Bayes approach and Bernstein-von Mises theo-
rems might lead to other ways of solving this problem, and would be of high
interest in itself anyway.
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