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Résumé

Optimisation de formes, méthode des lignes de niveaux sur
maillages non structurés et évolution de maillages

Résumé

L’objectif principal de cette thèse est de concevoir une méthode d’optimisation de structures qui jouit
d’une description exacte (i.e. au moyen d’un maillage) de la forme à chaque itération du processus, tout
en bénéficiant des avantages de la méthode des lignes de niveaux lorsqu’il s’agit de suivre leur évolution.
Indépendamment, on étudie également deux problèmes de modélisation en optimisation structurale.

Dans une première partie bibliographique, on présente quelques notions classiques, ainsi qu’un état de
l’art sommaire autour des trois thématiques principales de la thèse - méthode des lignes de niveaux (Chapitre
1), optimisation de formes (Chapitre 2) et maillage (Chapitre 3).

La seconde partie de ce manuscrit traite de deux questions en optimisation de formes, celle de la répartition
optimale de plusieurs matériaux au sein d’une structure donnée (Chapitre 4), et celle de l’optimisation robuste
de fonctions dépendant du domaine lorsque des perturbations s’exercent sur le modèle (Chapitre 5).

Dans une troisième partie, on étudie la conception de schémas numériques en lien avec la méthode des
lignes de niveaux lorsque le maillage de calcul est simplicial (et potentiellement adapté). Le calcul de la
distance signée à un domaine est étudié dans le chapitre 6, et la résolution de l’équation de transport d’une
fonction ‘level set’ est détaillée dans le chapitre 7.

La quatrième partie (Chapitre 8) traite des aspects de la thèse liés à la modification locale de maillages
surfaciques et volumiques.

Enfin, la dernière partie (Chapitre 9) détaille la stratégie conçue pour l’évolution de maillage en optimi-
sation de formes, à partir des ingrédients des chapitres 6, 7 et 8.

Mots-clefs

Méthode des lignes de niveaux, optimisation de formes, maillage, fonction de distance signée, equation
d’advection, simulation numérique 3d.
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Shape optimization, level set methods on unstructured meshes
and mesh evolution

Abstract

The main purpose of this thesis is to propose a method for structural optimization which combines the
accuracy of featuring an exact description of shapes (i.e. with a mesh) at each iteration of the process with
the versatility of the level set method for tracking their evolution. Independently, we also study two problems
related to modeling in structural optimization.

In the first, bibliographical part, we present several classical notions, together with some recent develop-
ments about the three main issues of this thesis - namely level set methods (Chapter 1), shape optimization
(Chapter 2), and meshing (Chapter 3).

The second part of this manuscript deals with two issues in shape optimization, that of the optimal
repartition of several materials within a fixed structure (Chapter 4), and that of the robust optimization of
functions depending on the domain when perturbations are expected over the considered mechanical model.

In the third part, we study the design of numerical schemes for performing the level set method on
simplicial (and possibly adapted) computational meshes. The computation of the signed distance function
to a domain is investigated in Chapter 6, and the resolution of the level set advection equation is presented
in Chapter 7.

The fourth part (Chapter 8) is devoted to the meshing techniques introduced in this thesis.
Eventually, the last part (Chapter 9) describes the proposed strategy for mesh evolution in the context

of shape optimization, relying on the numerical ingredients introduced in Chapters 7, 8, 9.

Keywords

Level set methods, shape optimization, meshing, signed distance function, advection equation, three-
dimensional numerical simulation.
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Introduction

This thesis is devoted to a large extent to the design of a mesh evolution strategy in the context of
structural shape optimization; by extension, it also addresses the topics of level set methods on unstructured
computational meshes, meshing techniques, and, on a rather independent basis, it analyzes two specific
problems in structural shape optimization.

The manuscript is composed of nine chapters, grouped into five parts, which can be read independently
from one another, insofar as possible (to the cost of some redundancies between them). Each chapter con-
tains an introduction to the tackled topic and provides associated references. This introduction is however
more general, and contains neither technical details, nor references.

In an attempt to enlighten the structure of this document, it may be worthwhile to give an idea of the
prime motivations of the work at stake.

The main concern of this work is about shape optimization problems, which can, broadly speaking, be
formulated as the minimization of an objective function J(Ω) of the domain variable Ω. In this way, much
like in the case of more ‘classical’ optimization problems, the study of the derivative of J with respect to the
domain makes it possible to compute a descent direction for J from a given shape Ω, as a vector field VΩ

- see the introductory material in Chapter 2 for a more technical explanation, and related bibliographical
references. In other terms, trading Ω for Ω(t) := (I+tVΩ)(Ω) for sufficiently small t > 0 allows for a decrease
in the value of J .

At this point, difficulties arise, which are not specific features of shape optimization problems, but are
on the contrary encountered in the study of most free or moving boundary problems:

– The practical computation of the descent direction VΩ is not trivial; in the cases we shall be interested
in, it requires the resolution of one, or several PDE systems posed on Ω (typically linearized elasticity
systems). Numerical methods for solving such PDE systems are numerous (e.g. the finite element
method), yet most of them rely on Ω being equipped with a computational mesh.

– Advecting Ω along the velocity field VΩ (i.e. updating Ω to Ω(t)) is fairly straightforward in the
theoretical framework, and unfortunately much harder in numerical practice. In particular, it inherently
depends on how Ω is parametrized. For instance, if Ω is described by a mesh, the naive and very
tempting operation of just ‘translating’ the associated vertices in the direction of VΩ is very likely to
produce an ill-shaped (or even invalid) mesh for the new shape Ω(t) (see the example in Figure 1,
where the orientations of some displaced triangles have been inverted). In general, mesh evolution is a
difficult issue, especially in three space dimensions (see Chapter 3 for a discussion, and a presentation
of several techniques).

So as to reconcile the antagonist requirements of the computation of a descent direction for J and of the
description of the domain evolution, several authors proposed to combine the aforementioned techniques of
shape sensitivity analysis with the level set method (presented in Chapter 1). For now, let us just mention
its general idea, which consists in enclosing all the possible shapes in a fixed, large computational domain
D (e.g. a box), equipped with a fixed mesh (e.g. a Cartesian grid) - say T - and to describe any shape
Ω ⊂ D from an implicit point of view, via a scalar ‘level set’ function φ : D → R which fulfills the following
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Figure 1: (Left) A velocity field V , defined at the vertices of a mesh; (right) deformed, invalid mesh obtained
by translating its vertices along V .

properties (see Figure 2):

∀x ∈ D,





φ(x) < 0 if x ∈ Ω
φ(x) = 0 if x ∈ ∂Ω
φ(x) > 0 if x ∈ cΩ

.

The evolution of Ω(t) along the velocity field VΩ is reformulated in terms of an associated level set function
φ(t, .) as the following level set advection equation:

∂φ

∂t
+ VΩ · ∇φ = 0,

which can be solved on D, e.g. using its mesh T . This elegant change in perspectives allows to account for
dramatic evolutions of shapes (including topological changes).

The computation of VΩ is however not so easy in this context: we indeed evoked the fact that it requires
solving PDE systems posed on Ω - a mesh of which is not available. These systems must then be approxi-
mated as PDE systems posed on the whole domain D (in the context of linearized elasticity, this is generally
achieved by using the Ersatz material approach), and solved on the fixed mesh T . This operation may turn
out to be difficult in the study of mechanical models which require a high accuracy in the description of the
boundaries of shapes (we shall see an illustration of this fact in Chapter 4).

The work of this thesis starts with the observation that a slight modification in this methodology allows
us to retain its great versatility when it comes to tracking the evolution of shapes, while benefiting from an
exact description of any considered shape Ω ⊂ D.

Indeed, the use of a fixed mesh T of D in this procedure is essentially a commodity; each time a mesh
of a shape Ω is needed, one could imagine to modify T in such a way that an explicit discretization of Ω
appears in it (see Figure 2). Hence, the computation of the descent direction VΩ from Ω would become
straightforward, and would not involve any approximation of the considered mechanical problem. Carrying
out this idea inherently requires to be able to perform local mesh operations on T , hence to work with fully
unstructured meshes; in our case, we shall use simplicial meshes, that is, meshes consisting of triangles in
2d, or tetrahedra in 3d. Moreover, it implies the following ingredients:

– A numerical method for generating a level set function for a shape Ω ⊂ D at the vertices of a simplicial
mesh of D, from the datum of a mesh for Ω. This is the main goal of Chapter 6.



Introduction 13

– A numerical method for solving the level set advection equation on a simplicial computational mesh
of D. This is one of the purposes of the work in Chapter 7.

– A meshing technique for discretizing explicitly a shape Ω known via an associated level set function,
on a mesh of D. This is the aim of Chapter 8.

Ω

D

Figure 2: (Top-left) A domain Ω ⊂ D, (top-right) graph of an associated level set function φ, and (bottom)
triangular mesh of D enclosing a mesh of Ω (yellow elements).

Let us now turn to an informal description of the different parts of this work.

Part 1: Background and state of the art

The first part of this manuscript is purely bibliographical. The three main domains of the proposed work
- namely level set methods, shape optimization, and meshing - are presented in three separated chapters.

Chapter 1: Level set methods

This first chapter opens with a general discussion around the notion of domain evolution. We introduce
the famous level set ‘advection’ equation, which translates the motion of a domain Ω(t) ⊂ Rd according to a
velocity field V (t, x) into a partial differential equation for an associated level set function φ(t, x):

∂φ

∂t
+ V · ∇φ = 0. (1)
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This equation rewrites as the following Hamilton-Jacobi equation, when V = v ∇φ
|∇φ| is oriented along the

normal vector to Ω(t):
∂φ

∂t
+ v|∇φ|= 0. (2)

We also evoke the (difficult) mathematical framework for the study of equations such as (1) or (2), trying
to provide a physical intuition of the need for an adequate notion of solutions, appealing to the theory of
viscosity solutions. These concerns lie far beyond the scope of our work, and we then turn to the numerical
aspects of the level set method, two of which are discussed:

– First, we describe several numerical methods for solving equations (1)-(2). The techniques involved
prove rather different depending on whether the computational support is a finite difference grid (one
such numerical scheme will be used in Chapter 4), or a simplicial mesh (the work of chapter ?? is
strongly influenced by the presented methods).

– The second operation of interest is the initialization (or reinitialization) of a level set function associated
to a given domain Ω, which is usually achieved by computing the signed distance function dΩ to Ω,
defined by:

∀x ∈ Rd, dΩ(x) =





−d(x, ∂Ω) if x ∈ Ω
0 if x ∈ ∂Ω

d(x, ∂Ω) if x ∈ cΩ
,

where d(., ∂Ω) stands for the usual Euclidean distance function to ∂Ω. The most notorious methods
- the fast marching method, the fast sweeping method to name a few - are presented. Although none
of them shall be used in this thesis, they express deep features of the signed distance function and
Eikonal equations which inspired to a large extent the device of the algorithm of Chapter 6.

Chapter 2: Shape optimization

After proposing a biased and non-exhaustive glimpse of the numerous applications of shape optimization
techniques, we briefly describe the most commonly used methods for accounting for shapes (e.g. explicit
representations, representations as density functions, etc...) and the sensitivity of functions with respect to
shapes (e.g. the homogenization method, the SIMP method, Hadamard’s method, etc...), emphasizing on
their respective assets and drawbacks.

Pretty quickly, we focus on the framework of Hadamard’s method, whereby variations of a given shape
Ω of the form (I + θ)(Ω) are considered, for ‘small vector fields’ θ. We recall various related notions of
differentiation with respect to the shape, and notably introduce and illustrate the ideas of shape derivative of
a scalar function Ω 7→ J(Ω) ∈ R, and of material and Eulerian derivatives of an application Ω 7→ uΩ ∈ W(Ω)
taking its values in a functional space W(Ω) which itself depends on the shape.

Then, we narrow once again the scope of the presentation to the context of linear elastic shapes (which
is a particular case of the general theory of distributed systems in optimal control), at stake in a great part
of this manuscript. The shapes are now filled with a linear isotropic material, with Hooke’s law A, and the
considered objective functions J(Ω) depend on Ω via the displacement field uΩ : Ω → Rd, solution to the
linearized elasticity system:





−div(Ae(u)) = f on Ω
u = 0 on ΓD

Ae(u)n = g on ΓN
Ae(u)n = 0 on Γ

, where





f are body forces applied on shapes
g are surface loads applied on a subset ΓN ⊂ ∂Ω
ΓD ⊂ ∂Ω is a clamping region for shapes
Γ ⊂ ∂Ω is traction-free

.

The systematic (and extremely useful in practice) Céa’s method for differentiating such objective functions
J(Ω) is introduced, which prepares the ground for Chapters 4 and 5.

Eventually, one particular numerical method for optimizing linear elastic shapes is described - namely the
aforementioned level set method. We shall use this method as such for the numerical simulations of Chapters
4 and 5, and the mesh evolution method for shape optimization presented in Chapter 9 is heavily based on
it.
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Chapter 3: Mesh generation, modification and evolution

This last bibliographical chapter deals with meshing, and puts a particular emphasis on three-dimensional
issues. Basic definitions and notations which we shall use throughout the subsequent chapters are recalled
at first; moreover, the ubiquitous and application-dependent notion of mesh quality is discussed, as well as
the idea of metric-based mesh adaption (on which we shall rely in Chapters 6 and 7). In the remainder of
this chapter, three topics of utmost importance are discussed:

– The first one of them is mesh generation; most often, a mesh generation operation assumes the knowl-
edge of a surface triangulation of the boundary ∂Ω of the domain Ω to be meshed. Some of the most
popular methods working in this context are presented (Delaunay-based methods, advancing front
methods,...). Properly speaking, we shall not use any of them in this manuscript, but we believe that
an illustration of their difficulties should help in understanding why the mesh evolution method of
Chapter 9 strives to avoid any mesh generation step.
Closer to the work of this manuscript, we also present mesh generation techniques for implicitly-defined
domains (e.g. the marching cubes method); this topic will find an echo in Chapters 8 and 9.

– We then discuss surface and volume remeshing techniques. Several methods and aspects are described
in both cases; in particular, the local remeshing operators (edge split, edge collapse, edge swap and
vertex relocation) are presented, as the common ingredients shared by all local remeshing strategies.
We shall return to this description in Chapter 8, where they will be more extensively described, in the
context of our particular application.

– Eventually, we look into the topic of mesh deformation (or mesh evolution) with respect to a user-
defined displacement vector field, which is one of the main axis of this thesis; in this perspective, an
overview of several existing methods is proposed, which highlights their respective assets and draw-
backs.

Part 2: Two problems in shape optimization

This part is almost essentially concerned with the field of structural shape optimization, and its two
chapters address altogether independent problems.

Chapter 4: Multi-phase optimization via a level set method

This chapter investigates the optimal repartition of several materials within a fixed mechanical domain.
It is divided into two parts.

The first one is a long digression about the signed distance function dΩ to a domain Ω ⊂ Rd, and its
dependence on Ω. One of the main conclusions of this study concerns functionals of the domain of the form:

J(Ω) =
∫

D

j(dΩ) dx,

where D is a fixed working domain, enclosing all the shapes of interest, and j : R → R is a smooth enough
function. The shape derivative of such a function is proved to be given by the following convenient formula
(see Chapter 4, Cor. 4.2 for a precise statement):

J ′(Ω)(θ) = −
∫

∂Ω

j′(y)

(∫

p−1
∂Ω

(y)∩D

d−1∏

i=1

(1 + dΩ(s)κi(y))ds

)
θ(y).n(y)dy,

where the κi are the principal curvatures of ∂Ω, and p∂Ω : Rd → ∂Ω is the projection application.

The second part is the one which indeed studies the optimal repartition of two materials, with respective
Hooke’s law A0, A1, occupying respective subdomains Ω0,Ω1 of a fixed domain D.
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The natural ‘sharp-interface’ model for this situation assumes a discontinuous Hooke’s tensor AΩ0 :=
A0 + (1− χ0)(A1 − A0) over D, χi standing for the characteristic function of Ωi. The displacement uΩ0 of
D is then solution to:



−div(AΩ0e(u)) = f on D

u = 0 on ΓD
AΩ0e(u)n = g on ΓN

, where





f are body forces applied on shapes
g are surface loads applied on a subset ΓN ⊂ ∂D
ΓD ⊂ ∂D is a clamping region

.

The optimization of a functional J(Ω0) (e.g. the compliance of the total structure D) is considered, and
shape derivatives can be computed in this context. They involve in particular the jumps of the stress and
strain tensors of uΩ over the interface between Ω0 and Ω1, which are unfortunately inaccurately computed
in a numerical context where all the computations are performed on a fixed mesh of D (i.e. in which Ω0 is
not explicitly discretized). Several possibilities are discussed to overcome this difficulty.

Next, we turn to a different modeling of the initial mechanical problem: the interface between Ω0 and
Ω1 is ‘smeared’ into a thick band of uniform (small) thickness ε. The discontinuous Hooke’s tensor AΩ0 is
then approximated by the continuous one AΩ0,ε:

AΩ0,ε = A0 + hε(dΩ0)(A1 −A0),

where hε is a smooth approximation of the Heaviside function.
Using the study of the first part of this chapter allows to compute the shape derivative of the smeared

approximation Jε(Ω0) of J(Ω0), which lends itself to an easier numerical treatment in a fixed mesh setting
(see the result of Figure 3 for a three-phase plus void test case).

Eventually, the ‘smoothed-interface’ problem is proved to converge to the ‘sharp-interface problem’ as
the thickness ε of the transition zone between subdomains goes to 0, in the sense that the shape derivative
J ′
ε(Ω

0) converges to J ′(Ω0) for a fixed, arbitrary subdomain Ω0.

Chapter 5: A linearized approach to worst-case design in parametric and geo-
metric shape optimization

This chapter proposes a general framework for the optimization of linear elastic shapes in the worst-case
scenario when ‘small’ perturbations are expected (e.g. on the loads, on the material’s properties, etc...).

To set ideas, consider the following abstract situation: let H be a set of admissible designs characterized
by h ∈ H, and (P, ||.||P) be a Banach space enclosing the ‘small’ potential perturbations ||δ||P≤ m. The
state u(h, δ) of the shape is described by the following system:

A(h)u(h, δ) = b(δ),

where A(h) is a (design-dependent) invertible operator; without loss of generality, perturbations δ only
appear at the right-hand side of this system. The cost C(u(h, δ)) of the shape depends on its design h (and
perturbations δ) via the state u(h, δ), and the worst-case optimization problem reads:

min
h∈H
J (h), where J (h) := sup

δ∈P,

||δ||P ≤m

C(u(h, δ)).

As this problem is very difficult in general, we propose to take advantage of the smallness of the expected
perturbations to linearize the cost function with respect to δ. This leads to the approximated worst-case
optimization problem:

min
h∈H
J̃ (h), where J̃ (h) := sup

δ∈P,

||δ||P ≤m

(
C(u(h, 0)) +

dC
du

(u(h, 0))
∂u

∂δ
(h, 0)(δ)

)
.

Now, standard duality results in Banach space and techniques from optimal control theory allow to rewrite:

J̃ (h) = C(u(h, 0)) + ||p(h)||Q,
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•1

2

Figure 3: (Top) Boundary conditions of the Cantilever test-case, (bottom-left) initial distribution of materials
within D; here the black material is ‘strong’, and has Young’s modulus E = 1, the dark grey one has E = 0.7,
the light grey one has E = 0.5, and the white material mimicks void: E = 1.e−3, (bottom-right) optimal
distribution of the three materials and void within D.

where C(u(h, 0)) is the cost of the unperturbed design h, (Q, ||.||Q) is the pre-dual Banach space of P, and
p(h) is an adjoint state. Under this form, the minimization problem of J̃ can be tackled ‘almost’ like any
standard shape optimization problem.

This methodology is applied to the theoretical and numerical studies of two usual settings in shape
optimization - namely the parametric case (where H is typically a set of thickness functions of a plate with
fixed cross-section), and the geometric shape optimization case (where H is a set of open and bounded
domains in Rd). In the latter case, three main sources of perturbations are considered, in the context of
various cost functions, e.g. the compliance, least-square and stress-based criteria (see Figure 4):

– perturbations over the applied loads on the shapes
– perturbations over the properties of the elastic material filling the shapes
– perturbations over the geometry of the shape itself.

Part 3: Level set methods on unstructured meshes; connections
with mesh adaptation

This part is almost solely concerned with level set methods; its two chapters present algorithms for
initializing and advecting level set functions on a simplicial, potentially adapted computational mesh (which
less usual a framework than that of finite difference grids).
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Figure 4: Optimization of an L-Beam, clamped on its upper side, subject to vertical surface loads at the
middle of its right-hand side, with respect to the cost function C(Ω) =

∫
Ω
k(x)||σ(uΩ)||5 dx, under pertur-

bations over the geometry of the shape (see Chapter 5 for details). The same target volume is imposed on
each shape. (From left to right): optimal shape for m = 0, 0.01, 0.02.

Chapter 6: Computation of the signed distance function to a discrete contour
on adapted simplicial mesh

The purpose of this chapter is to devise and analyze a numerical method for generating the signed distance
function dΩ to a domain Ω ⊂ Rd at the vertices of a simplicial mesh T of a computational domain D, in two
and three space dimensions.

The proposed method starts with an easy step of generation of a ‘very irregular’ level set function φ0 for
Ω; φ0 is then ‘regularized’ into dΩ relying on the fact that dΩ is the steady state of the unsteady Eikonal
equation: {

∂φ
∂t

+ sgn(φ0) (|∇φ|−1) = 0 on [0,∞]× Rd

φ(t = 0, .) = φ0 on Rd
.

More accurately, ‘the’ solution to this equation admits an explicit expression, which can be given an iterative
form, an then be converted into a numerical scheme (see Figure 5 for an example).

In a second time, an adaptation process for the computational mesh T of D is formulated; it produces a
new mesh T̃ of D which guarantees an enhanced approximation of the signed distance function in two ways:

– the computed approximation dT̃ of dΩ on T̃ is ‘close’ to dΩ up to a user-defined tolerance,
– the piecewise affine reconstruction of Ω as the negative subdomain of dT̃ is ‘close’ to Ω up to a user-

defined tolerance.

Chapter 7: An accurate anisotropic adaptation method for solving the level set
advection equation

In this chapter, we study the numerical resolution of the transport equation for a scalar quantity φ,
according to a vector field V : Rd → Rd, over a time period [0, T ]:

{
∂φ
∂t

+ V · ∇φ = 0 on [0, T ]× Rd

φ(t = 0, .) = φ0 given on Rd
.

A particular emphasis is put on the case where φ is a level set function for an evolving domain Ω(t) along V .
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Figure 5: (From left to right): Isosurfaces −0.05,−0.02, 0, 0.03, 0.05 of the signed distance function to the
(nondimensionalized) Rodin’s ‘Thinker’ model.

We first present and analyze a numerical scheme based on the method of characteristics, and derive an
associated a priori error estimate.

Based upon this estimate, we then devise a mesh adaptation procedure which focuses on the quality of
the approximation of each intermediate domain Ω(tn) arising in the course of the iterative process; more
specifically, at each step tn of the evolution, the computational mesh T n is adapted in such a way that the
piecewise affine reconstruction of Ω(tn) as the negative subdomain of the computed approximation of the
level set function φ(tn, .) is no larger than a user-defined tolerance (see Figure 6 for an example).

Part 4 - Chapter 8: Three-dimensional surface and domain remesh-
ing

This chapter covers all the meshing aspects of the thesis, and mainly deals with three-dimensional issues.
Its contributions are threefold.

1. In a first part, the issue of (isotropic) local remeshing is addressed; the aim is to iteratively modify an
initial surface triangulation S, which may be ill-shaped, oversampled or undersampled, into a new, well-
shaped and well-sampled triangulation S̃ which retains the geometrical features of S. The proposed
algorithm relies on four ingredients:
– A continuous surface model Γ for S is created, as a set of rules for associating a local parameterization
σ : T → S of Γ to each triangle T ∈ S. This model serves as a safeguard when it comes to evaluating
whether a performed operation degrades the geometry expressed by S.

– The usual surface remeshing operators are described, with a special focus on the way they fit into
our particular setting.

– A size map h : S → R+ is defined on account of the geometrical features of S (notably of its
curvature), and is combined with a user-defined size prescription, if any.

– We eventually present a very heuristic strategy, yet essential in practice, to intertwine the three
previous tools.

2. Still in the context of surface remeshing, we adapt the previous framework to deal with anisotropic
surface remeshing: a size prescription is supplied by the user (or computed on account of the geometrical
features of S), and encoded as a Riemannian metric b over S.
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(a) (b)

(c) (d)

Figure 6: The time-reversed vortex flow example: a bubble is transported along a velocity field with high
vorticity, cooked in such a way that the initial and final steps are theoretically identical (the numerical
comparison between them allows to assess the accuracy of the method). Four steps of the evolution are
represented: (a) t = 0.8, (b) t = 4, (c) t = 5.6 and (d) t = 8, with the corresponding 0 isolines (in red).

Making the connection between this new setting and that of the previous point mainly requires to
generalize the easy handling of size maps (e.g. of the interpolation and transport operations) to the
case of metric tensors. To this end, we propose to rely on the notion of parallel transport which can
be conveniently approximated in numerical practice, owing to Schild’s ladder’s algorithm.

3. Last but not least, the issue of (isotropic) local domain remeshing is considered: a tetrahedral mesh
T , which may be ill-shaped, oversampled or undersampled is modified into a new, well-shaped and
well-sampled mesh T̃ , which is still a good representative of the geometry of T , as far as their surface
parts are concerned (see Figure 7 for an example). To achieve this, the very same strategy as in the
first point is carried out, except that each remeshing operator now exists under two different forms,
depending on whether it is applied on a surface configuration (in which case it is very similar to its
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counterpart in the context of surface remeshing) or on an internal one.
Up to a slight increment, this algorithm can be converted into an algorithm for generating a compu-
tational mesh for an implicit geometry (which is the one we shall be using in Chapter 9). Indeed, the
negative subdomain of a scalar function φ defined on a mesh of a computational domain D can be
easily provided with an ill-shaped simplicial mesh T , thanks to the use of a marching cubes or marching
tetrahedra algorithm; T can then be modified into a well-shaped mesh T̃ using our algorithm.

(a) (b)

(c) (d)

Figure 7: (a) Initial tetrahedral mesh of a domain, (b) well-shaped remeshed configuration; (c) a cut in the
initial mesh pq; (d) a cut in the final mesh.

Part 5 - Chapter 9: A level-set based mesh evolution method for
shape optimization

This last chapter is the one devoted to the main motivation of this thesis, which we already sketched in
the preamble. So to speak, it does not introduce any additional material to that of the previous chapters,
but only merges the concepts and numerical techniques of Chapters 2, 6, 7 and 8 into a general strategy for
mesh evolution in the context of structural shape optimization.

This method relies on two alternative descriptions of a shape Ω: on the one hand, it is equipped with a
computational mesh, a description which is very natural when mechanical analyses are considered; on the
other hand, it is described via a level set function φ defined on (a mesh of) a larger computational domain
D. As we have seen, this representation is very convenient when it comes to tracking the motion of Ω -
an operation which can be carried out numerically thanks to the scheme of Chapter 7 for the advection
equation.

The consistent switch between both descriptions is achieved by using the distancing algorithm of Chapter
6 for passing from a mesh description of Ω to a level set description, and the meshing algorithm of Chapter
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8 for the converse operation.
Eventually, several models in shape optimization are addressed using this method, in two and three space

dimensions (see Figure 8 for an illustration).
This method, together with the numerical ingredients it brings into play, have been developed in the

context of the RODIN project (FUI AAP 13), as parts of the geometric shape optimization component of a
general structural shape and topology optimization software platform.

(a) (b)

(c) (d)

Figure 8: Shape optimization of a bridge; (a) initial (with boundary conditions) (b) 20th and (c) final (70th)
steps of the algorithm; Only the implicit part of each boundary is represented. (d) A cut in the final mesh
of the bounding box; the interior part of the shape is composed of the yellow elements.
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The level set method
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Since the seminal work of Osher and Sethian [245], the level set method has been one method of choice for
the description of the motion of a domain (or an interface between subdomains). The main idea is to trade
the usual representation of a domain Ω ⊂ Rd for an implicit representation, as the negative subdomain of
an auxiliary scalar function φ defined on the whole space Rd (or a large computational domain in numerical
practice). The function φ is sometimes referred to as a level set function for Ω. More precisely, Ω is known
via a function φ : Rd → R defined so that the following holds (see figure 1.1):





φ(x) < 0 if x ∈ Ω
φ(x) = 0 if x ∈ ∂Ω
φ(x) > 0 if x ∈ cΩ

. (1.1)

Note that such a function always exists and can be constructed using techniques of partition of unity.
The main asset of this representation lies in that the motion of an evolving domain Ω(t) over a period

of time [0, T ] can be translated in terms of a partial differential equation for an associated time-dependent
level set function φ(t, .). This is a very convenient framework for conducting both theoretical and numerical
studies.
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Figure 1.1: (Left): A subdomain Ω of R2; (right): graph of an associated level set function on a computational
domain.

The level set method has given rise to particularly interesting developments in a wide variety of domains,
a non exhaustive list of which follows (see the monographs [242, 274] for more examples):

– The level set method appeared in Computational Fluid Dynamics with the study of the motion of two
compressible gases, separated by a sharp interface [233]. Soon after, it was used in [297] for describing
the interface between two immiscible incompressible fluids, driven by the Navier-Stokes equations.
Since these seminal works, it has become very popular for describing boundaries of domains filled with
fluids or interfaces between them, and many improvements and extensions of the original techniques
have come out (improvement of mass conservation in the incompressible case, management of more
than two phases, etc...); see [277] for a more complete discussion.

– Numerous other issues from computational physics and mechanics were addressed using the level set
method. For instance, a study of a solidification problem is proposed in [78], in which the interface
between the solid and liquid phases in described and tracked using the level set method. The level set
method was also a key ingredient in several studies around combustion [337], or geometrical optics [241];
last but not least, and closer to our concerns in this manuscript, since the seminal works [14, 278, 319],
it gave rise to a framework of choice in structural optimization (see Chapter 2, §2.3 for a description
of the level set method for shape optimization introduced in [14]).

– The level set method was also successfully applied to various issues in image processing. For instance,
a variant of the active contour model using the level set method was introduced to tackle the problem
of image segmentation in [213, 71]. In [270], the problem of image denoising using the Rudin-Osher-
Fatemi model was dealt with using the level set framework. Let us eventually mention the work [132],
which uses the level set method to tackle the stereo problem, that is the problem of reconstructing a
three-dimensional scene, from the data of several two-dimensional views.

– The level set method finds very interesting applications in Computational Geometry, and Computer-
Aided Design. In [193], the authors use related techniques to construct Voronoi diagrams on surfaces.
In [274] (chap. 15, 19), the author discusses a grid generation technique, and a shape construction from
simple primitives using the Level Set Method.

The outline of this chapter is as follows: in the first section, we discuss the derivation of the level set
advection equation, which translates the motion of an evolving-in-time domain into a partial differential
equation; some theoretical difficulties which naturally arise in this construction are briefly evoked. When
using the level set method for the numerical description of the motion of a domain, two operations are of
particular importance: the next section overviews several numerical methods for solving the partial differen-
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tial equation over the level set function which accounts for the motion of a domain. One of them appears as
a component of the level set method for shape optimization we shall rely on in Chapter 4. The other ones
will not be used in this manuscript; however, we deem interesting to provide an overview of some of them,
for they reflect many important properties of the level set evolution equations which underlie the study of
chapter 7. Eventually, the last section is devoted to a question of major importance in practice, namely:
how to generate a level set function associated to a given domain ? Several classical numerical methods to
answer this question are presented. Here again, strictly speaking, we shall not use them, but they are very
similar in spirit to the method proposed in Chapter 6.

1.1 Presentation of the level set method

1.1.1 Implicitly-defined domains and geometry

Although very different in appearance, the usual and implicit descriptions of a domain Ω are equivalent,
and local geometric quantities of Ω can be expressed in terms of an associated level set function (see [329]
for details).

Let Ω ⊂ Rd a domain which is at least of class C1, and let φ : Rd → R an associated level set function, in
the sense that (1.1) holds. For any point x ∈ ∂Ω at which ∇φ(x) 6= 0, the unit normal vector n(x) to ∂Ω,
pointing outward Ω, can be expressed as:

n(x) =
∇φ(x)
|∇φ(x)| . (1.2)

Furthermore, if Ω is of class C2, denote as IIx the second fundamental form (resp. κ(x) the mean curvature)
of ∂Ω at x, oriented in the sense it is positive definite (resp. positive) if ∂Ω is locally convex near x. One
has:

IIx = ∇
( ∇φ(x)
|∇φ(x)|

)
,whence κ(x) = div

( ∇φ(x)
|∇φ(x)|

)
. (1.3)

Other formulae exist in the same spirit for different geometric quantities (e.g. the Gaussian curvature of ∂Ω,
etc...), which we shall not require in the following.

1.1.2 Main notations and first examples

In this whole chapter, Ω(t) ⊂ Rd stands for an evolving domain over a period of time [0, T ], and φ :
[0, T ]× Rd ∋ (t, x) 7→ φ(t, x) ∈ R is an associated level set function. The evolution of Ω(t) is assumed to be
dictated by a velocity field V : [0, T ]× Rd → Rd, which is best rewritten as:

∀(t, x) ∈ [0, T ]× Rd, V (t, x) = f(t, x,Ω(t))

for a given function f , which quantifies the possible influence of the domain itself on the velocity field.
As far as f is concerned, several different behaviors may be of interest:
– f may be completely independent on the shape of the domain Ω(t). In this case, we will see that φ is

passively transported along the velocity field V .
– f may involve local features of Ω(t), that is, for all x ∈ ∂Ω(t), V (t, x) depends on t,x, and on local

quantities of Ω(t) at x, such as the outer normal vector n(t, x), to Ω(t) at x, the mean curvature κ(t, x)
of ∂Ω(t) at x, its Gaussian curvature, etc... A very important case is that of a vector field whose
direction is always normal to the moving boundary, that is:

V (t, x) = v(t, x) n(t, x), (1.4)

for some scalar function v(t, x). In what follows, we will rely on two illustrative examples as regards
such a form for V :
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– The flame propagation model:
V (t, x) = c n(t, x), (1.5)

where c is a constant. This models the behavior of a flame front, progressing at constant speed,
along the normal direction.

– The mean curvature flow:
V (t, x) = −κ(t, x) n(t, x), (1.6)

according to which the area of the boundary of the initial domain Ω(0) is extremalized.
– f may bring into play global features of Ω(t). For instance, if Ω(t) is to represent a domain filled

with an incompressible fluid, f(t, x,Ω(t)) is the velocity of the considered fluid at (t, x), solution to the
Navier-Stokes equations posed on Ω(t).

The first two kinds of velocity fields may seem very restrictive in comparison with the last one. Actually,
the last case is generally far too complex to study (as well in the theoretical field as in the numerical one),
and approximations have to be made to bring it back to the framework of the first two. To achieve this, the
most common approach consists in splitting the time interval [0, T ] into several (small) subintervals of the
form [tn, tn+1]. On each subinterval (tn, tn+1), f(t, x,Ω(t)) is frozen, i.e. is approximated by:

∀t ∈ (tn, tn+1), f(t, x,Ω(t)) ≈ f(tn, x,Ω(tn)).

In the particular case when f is directed along the normal vector to Ω(t), that is, when there exists a scalar
function g(t, x,Ω(t)) such that f(t, x,Ω(t)) = g(t, x,Ω(t)) n(t, x), f can also be approximated as:

∀t ∈ (tn, tn+1), f(t, x,Ω(t)) ≈ g(tn, x,Ω(tn)) n(t, x).

The forthcoming discussions will thus rest on the first two kinds of velocity fields.

1.1.3 From an explicit to an implicit description of the evolution

Let us now focus on the understanding of domain evolution problems in the level set framework. Actu-
ally, we are about to see that the intuitive notion of an evolving domain is rather hazy in most cases. In
this respect, note that we dutifully avoided any formal definition of this notion, and neglected regularity
assumptions in the previous discussions.

Let us first examine a case when everything unfolds according to intuition: let O ⊂ [0, T ]× Rd an open
region containing ∂Ω(t) for small t, where V is well-defined and smooth, and where φ is smooth enough.
Saying that Ω(t) smoothly evolves according to V in O should mean that, for all (t0, x0) ∈ O such that
x0 ∈ Γ(t0), there exists a curve x(t), defined on some interval (t0 − ε, t0 + ε), passing in x0 at t = t0, such
that (t, x(t)) ∈ O, and for all t, x(t) ∈ ∂Ω(t), with the speed vector of the curve being: x′(t) = V (t, x(t))
(see figure 1.2).

Since x(t) ∈ ∂Ω(t), one has:
∀t ∈ (t0 − ε, t0 + ε), φ(t, x(t)) = 0.

As this is true for any (t0, x0) ∈ O, a simple use of the chain-rule yields the so-called level set advection
equation:

∀(t, x) ∈ O, ∂φ

∂t
(t, x) + V (t, x).∇φ(t, x) = 0. (1.7)

As evoked in the previous section, the velocity field V often happens to be directed along the normal
direction to the interface (or, more accurately to the level sets of φ), that is V (t, x) = v(t, x) ∇φ(t,x)

|∇φ(t,x)| , for a
certain scalar field v(t, x). Equation (1.7) then rewrites as a Hamilton-Jacobi equation:

∀(t, x) ∈ O, ∂φ

∂t
(t, x) + v(t, x)|∇φ(t, x)|= 0. (1.8)
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•

•

x0

Ω(t0)

Ω(t)

x(t)

V (t0, x0)

V (t, x(t))

Figure 1.2: A domain Ω(t), evolving according to a velocity field V (t, x).

This analysis is rather straightforward. Unfortunately, it cannot be deemed to be representative of the
general case. Indeed, it has been shown that even domains evolving according to very simple vector fields
V may develop singularities in finite time. In other terms, even if Ω(0) is very smooth, and so is V (t, .) (or
v(t, .)), Ω(t) is bound not to stay smooth at all times. In terms of an associated level function, this means
that even if φ(0, .) is very smooth, and so is V (or v), there is no guarantee that φ(t, .) will stay smooth
enough so that (1.8) makes sense everywhere. This feature is particularly expressive in the case of the two
models mentioned in the previous section:

– As far as the flame propagation model is considered, in [274] (sec. 2.3) the author provides an example
of a bounded domain Ω(0) ⊂ R2 of class C∞, which is evolved in the normal direction with constant
unit speed (that is, V is of the form (1.5) with c = 1), and develops a singularity at a finite time
t = tc > 0. Suppose that ∂Ω(0) is locally described by the curve γ, defined as:

∀s ∈ [0, 1], γ(s) =
(

1− s, 1 + cos(2πs)
2

)
.

A simple computation gives an explicit formula for a parametrization of the corresponding boundary
curves on ∂Ω(t), as long as Ω(t) stays smooth. Several of these curve are drawn on figure 1.3, and one
can observe the development of a singularity in finite time. Actually, with the material of chapter 6, it
will be fairly easy to see that the conclusion would have been similar, should have we considered any
smooth non convex initial domain instead of this particular one.

– In the case of the mean curvature flow (1.6), suppose the evolution starts from the ‘dumbbell’-like
domain Ω(0), depicted on figure 1.4, left (see [90]). One can show that the domain evolves by shrinking,
until its two ends join, producing a singular domain.

What happens once singularities have appeared ? Obviously, the previous way to understand domain
evolution no longer holds, and several very different behaviors might be reckoned as admissible, depending
on the context. For instance, as pointed out by Sethian (see section 2.3 in [274]), in the case of the flame
propagation model, once the first singularity has appeared, the normal vector n(t, x) to ∂Ω(t) is no longer
everywhere defined. Then, (at least) both situations depicted on figure 1.5 could be considered as a potential
further evolution of the considered domain.
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•

Figure 1.3: Several positions Ω(t), for t = 0, 0.02, 0.04, and t = 0.055 (from bottom to top), in the flame
propagation model. Ω(0) (in grey) is of class C∞; however, a singularity (blue dot) develops at a finite time,
at approximately t = tc = 0.055.

•

Figure 1.4: Evolution of a three-dimensional dumbbell under the mean curvature flow. The central part of
the bar ends up pinching.

Figure 1.5: Two potential ways of pursuing evolution after the first singularity has appeared, in the example
of figure 1.3: (left) the domains Ω(t), for t > tc, obtained by pushing all the points of ∂Ω(tc) in which a
normal vector is well-defined along this normal show a ‘swallowtail’ pattern; (right) the obtained evolution
by imposing monotonicity on the evolution: Ω(t1) ⊂ Ω(t2) if t1 ≤ t2.
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In terms of the associated equation (1.8) over φ(t, x), this corresponds to the well-known fact that defin-
ing ‘generalized solutions’ of (1.7) (or (1.8)) by the fact that equality holds wherever it makes sense is not
satisfactory, for it leads to too many solutions.

Actually, the way to account for such singularities is non trivial and case-dependent. Most of the time,
equations (1.7,1.8) have to be understood in a weaker sense, which involves additional information about
the physics of the evolution process. The physics at play is generally incorporated by means of a process to
select ‘good solutions’ of such equations. It is then expected that under general enough assumptions, these
solutions exist and are unique. This is (one of) the great achievement of the theory of viscosity solutions
to equations of the form (1.7,1.8), initiated by P.-L. Lions and M.G. Crandall, whose definition is recalled
below:

Definition 1.1. Let U ⊂ Rd an open set and H : Rdx × Ru × Rdp × S(Rd) a continuous function. Consider
the following general second-order Hamilton-Jacobi equation posed on (0, T )× U :

∂u

∂t
(t, x) +H(x, u,∇u,Hu)(t, x) = 0. (1.9)

– A function u is a viscosity subsolution of equation (1.9) if it is upper semicontinuous on U , and, for
any function φ of class C2 on U such that u− φ reaches a local maximum at x,

∂u

∂t
(t, x) +H(x, u(x),∇φ(x),Hφ(x)) ≤ 0.

– A function u is a viscosity supersolution of (1.9) if it is lower semicontinuous on U , and, for any
function φ of class C2 on U such that u− φ reaches a local minimum at x,

∂u

∂t
(t, x) +H(x, u(x),∇φ(x),Hφ(x)) ≥ 0.

– u is a viscosity solution of (1.9) if it is both a viscosity subsolution and a viscosity supersolution.

The ‘physical meaning’ of such generalized solutions to Hamilton-Jacobi equations comes from that, in
some cases (see [100]), they can be seen as the limit of the ‘associated viscous equation’ to (1.9) (i.e. the
resulting equation when an artificial viscous term −ε∆u is added), when the viscosity term vanishes. This
standpoint was the original framework for showing existence of viscosity solutions to some Hamilton-Jacobi
equations, and the paradigm remained attached to the theory, whereas other techniques are now involved to
achieve such existence results.

According to [157], the motion of a domain according to a velocity field V is then defined as the negative
subdomain of the (hopefully unique) viscosity solution φ to the associated level set advection equation:

{
∂φ

∂t
(t, x) + V (t, x).∇φ(t, x) = 0 for (t, x) ∈ (0, T )× Rd

φ(0, x) = φ0(x) for x ∈ Rd
, (1.10)

where φ0 is a level set function associated to the initial domain.
For this approach indeed to make sense, we ought to mention the following theorem, which ensures among

other things that Ω(t) is actually only dependent on Ω(0) (and not on the choice of a particular associated
level set function φ(0, .)):

Theorem 1.1. Assume that either V is independent of Ω, and V ∈ BUC
(
[0, T ]× Rd

)d
, or is of the form

(1.4), with v ∈ BUC
(
[0, T ]× Rd

)
. Let φ0 ∈ BUC

(
Rd
)
. Then, equation (1.10) admits a unique viscosity

solution in BUC
(
[0, T ]× Rd

)
.
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Furthermore, let φ, ψ : [0, T ] × Rd two viscosity solutions of (1.10), which are bounded and uniformly
continuous over [0, T ]× Rd, and whose associated initial negative subdomain match, that is:





{
x ∈ Rd, φ(0, x) < 0

}
=

{
x ∈ Rd, ψ(0, x) < 0

}
{
x ∈ Rd, φ(0, x) = 0

}
=

{
x ∈ Rd, ψ(0, x) = 0

}
{
x ∈ Rd, φ(0, x) > 0

}
=

{
x ∈ Rd, ψ(0, x) > 0

} .

Assume moreover that:
lim

|x|→∞
|φ(0, x)| > 0 , lim

|x|→∞
|ψ(0, x)| > 0.

Then the associated negative subdomains of φ and ψ match at each time, i.e:

∀t ∈ [0, T )





{
x ∈ Rd, φ(t, x) < 0

}
=

{
x ∈ Rd, ψ(t, x) < 0

}
{
x ∈ Rd, φ(t, x) = 0

}
=

{
x ∈ Rd, ψ(t, x) = 0

}
{
x ∈ Rd, φ(t, x) > 0

}
=

{
x ∈ Rd, ψ(t, x) > 0

} .

The proof of this theorem can be found in [34, 36]. Note that the exact statement goes far beyond the
sole case presented here. It holds in the general context of Hamilton-Jacobi equations such as (1.9), provided
the Hamiltonian function H satisfies some technical assumptions to guarantee existence and uniqueness of
bounded and uniformly continuous viscosity solutions, as well as a geometric assumption, which implies that,
roughly speaking, the level sets of φ evolve independently from one another.

As a conclusion to this section, let us try out the ‘physical behavior’ of viscosity solutions to the level set
advection equation on our two favorite examples:

– In the case of the flame propagation model (1.5), studied theoretically in [34], it is shown that if
Ω(0) ⊂ Rd is an initial ‘burnt’ domain, and φ0 is an associated continuous level set function, then there
exists a unique viscosity solution φ to the system:

{
∂φ

∂t
+ c |∇φ| = 0 on [0,∞)× Rd

φ(0, .) = φ0 on Rd
.

The associated evolving domain Ω(t) :=
{
x ∈ Rd, φ(t, x) < 0

}
happens to fulfill a so-called entropy

(or monotonicity) criterion, meaning that ‘a burnt point at some time stays burnt forever’ (i.e. for any
t, s ≥ 0, Ω(t) ⊂ Ω(t+ s)). The evolution of Ω(t) looks like that depicted on figure 1.5, right.

– As for the Mean Curvature Flow equation, a specific notion of viscosity solutions has to be introduced
(for the Hamiltonian is not even defined at the critical points of φ). This work is carried out in [128],
and the authors show existence and uniqueness of a solution φ, starting from any continuous level
set function φ0 as initial data. Furthermore, the associated evolving domain Ω(t) happens to be well-
defined, in the sense that the conclusion of theorem 1.1 holds in that case too. This paper also proposes
several simple examples - e.g. when Ω(0) is a sphere - which testify of the nice behavior of this notion
of evolution in cases where intuition can be brought into play.

1.1.4 Domain evolution as a boundary value problem: Eikonal equations

An interesting particular case of the previous considerations arises when Ω(t) is assumed to expand
according to a normal velocity function, i.e. V (t, x) is of the form:

V (t, x) = c(x)n(t, x),

with c(x) > 0. The problem is then equivalently described by a stationary function, the time function
T : Rd \ Ω(0)→ R, defined as:

T (x) = inf {t ≥ 0, x ∈ Ω(t)} ,
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that is, for any x ∈ Rd \ Ω(0), T (x) is the smallest time t at which Ω(t) reaches x. The derivation of a
boundary value problem for T follows the same trail as that of the level set advection equation: in a first
step, it is rigorously established in regions of the space where all the quantities involved are smooth enough.
Next, T is understood as the solution to this partial differential equation in an adequately generalized sense
to impose a physical behavior on T at those regions where it is not smooth enough.

Let x0 ∈ Rd, and assume that, in a vicinity U of x0 in Rd, all the data at hand (T , etc...) are smooth.
Using again the intuitive notion of an evolving domain, let x(t), t ∈ (t0 − ε, t0 + ε) a curve defined such that
x(t0) = x0, and, at any time, x(t) ∈ ∂Ω(t). By definition, one has:

∀t ∈ (t0 − ε, t0 + ε), x′(t) = c(x(t))n(t, x(t)).

On the other hand, it follows from the very definition of T that a level set function associated to Ω(t) is

∀(t, x) ∈ [0, T ]× Rd, φ(t, x) := T (x)− t,

whence n(t, x) = ∇T (x)
|∇T (x)| . Differentiating with respect to t in the relation T (x(t)) = t and incorporating the

Dirichlet boundary condition T (x) = 0, for all x ∈ ∂Ω(0), we eventually end up with the Eikonal equation:

{
c|∇T |= 1 in Rd \ Ω(0)
T = 0 on ∂Ω(0)

. (1.11)

Actually, in the sequel, we will also get interested in the very similar case when Ω(t) shrinks according
to a normal velocity c (or Rd \ Ω(t) expands with velocity c):

V (t, x) = −c(x) n(t, x),

with c(x) > 0. A similar argument shows that the associated time function T : Ω(0)→ R is solution to the
Eikonal equation: {

c|∇T |= 1 in Ω(0)
T = 0 on ∂Ω(0)

. (1.12)

So as to select unambiguously a ‘physical’ behavior for T , solutions to (1.11) or (1.12) have to be taken
into account in a generalized setting, which once again happens to be that of viscosity solutions. The result
of interest is now the following (see [31]).

Theorem 1.2. Assume Ω ⊂ Rd is a bounded domain, and the normal velocity function c is positive and
uniformly continuous on Ω. Then, there exists a unique viscosity solution to the Dirichlet problem (1.12).

At this point, it is worth mentioning the very interesting discussion in [261], chap. 2, about the steady
Eikonal equation, and the meaning of the ‘good’ viscosity solution.

Example 1.1. Let us briefly look into the interesting particular case in equation (1.12) when a unit normal
velocity field, c ≡ 1 is considered. It then turns out that the unique viscosity solution to (1.12) is the
Euclidean distance function d(., ∂Ω) to ∂Ω, defined as:

∀x ∈ Ω, d(x, ∂Ω) = inf
y∈∂Ω

|x− y|.

This fact translates the regular spacing out of the level sets of distance functions, as can be seen on figure
1.6. We will discuss this very important property once again in section 1.3.
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Ω

Figure 1.6: A domain Ω, together with several isolines of the distance function to ∂Ω.

1.2 Numerical algorithms for the level set method

In this section, we discuss the numerical discretization of the level set advection equation, especially in
the case it can be put under Hamilton-Jacobi form (which will be the case at stake in applications in shape
optimization), namely: {

∂φ

∂t
+ v|∇φ|= 0 on (0, T )× Rd

φ(0, .) = φ0 on Rd
(1.13)

for given normal velocity field v, and initial function φ0 which are both assumed to be bounded and uniformly
continuous. Actually, the theory of numerical schemes for (1.13) is part of a more general theory associated
to the numerical schemes for first order Hamilton-Jacobi equations of the form:

{
∂φ

∂t
+H(x,∇φ) = 0 on (0, T )× Rd

φ(0, .) = φ0 on Rd
(1.14)

and arises as the particular case when H(x, p) = v(x)|p|.
For the sake of clarity, the whole forthcoming discussion holds in the two-dimensional case (d = 2),

without loss of generality.

1.2.1 Solving the Level Set Hamilton-Jacobi equation on Cartesian grids

Notations: Let N ∈ N, and ∆t = T
N

a time step for the discretization of the time interval (0, T ), into
subintervals (tn, tn+1), n = 0, ..., N−1, with tn = n∆t. The plane R2 is endowed with a Cartesian grid, with
step ∆x in the x-direction, and ∆y in the y-direction. For a numerical quantity φ defined at the vertices of
the grid, and for any i, j ∈ Z, denote as φij the value assigned to the node xij := (i∆x, j∆y).

As we shall see, similarly to what happens in the case of systems of conservation laws, upwind quantities
play a key role in the device of numerical schemes for Hamilton-Jacobi equations. Denote the upwind
difference quantities:

D+x
ij φ =

φi+1j − φij
∆x

; D−x
ij φ =

φij − φi−1j

∆x
,

and likewise for D+y
ij φ and D−y

ij φ.
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Our aim is to compute an approximation to the viscosity solution φ of (1.13) as a sequence φn =
(
φnij
)
i,j∈Z

,
with the meaning that φnij is an approximation of φ(tn, (i∆x, j∆y)). A general explicit, first-order numerical
scheme which fulfills this role can be written under the form:

{ ∀i, j ∈ Z, φ0
ij = φ0(i∆x, j∆y)

∀n ∈ N, i, j ∈ Z, φn+1
ij = φnij −∆tH

(
xij , D

−x
ij φ

n, D+x
ij φ

n, D−y
ij φ

n, D+y
ij φ

n
) , (1.15)

where the numerical Hamiltonian

H
(
xij , D

−x
ij φ

n, D+x
ij φ

n, D−y
ij φ

n, D+y
ij φ

n
)

is intended as an approximation of H(xij ,∇φ(xij)).

It turns out that, in the design of ‘nice’ numerical schemes for (1.14), two properties are desirable as far
as H is concerned:

Definition 1.2. An explicit, first-order scheme for (1.14) of the form (1.15) is said:
– consistent if, for any x ∈ R2, p ∈ R2, H(x, px, px, py, py) = H(x, p). In other words, the difference

terms stand for the corresponding first-order derivatives where they should.
– monotone if, for any x ∈ R2, the function H(x, ., ., ., .) is increasing in the first and third arguments

(i.e. those involving upwind finite differences), and decreasing in the second and fourth arguments (i.e.
those involving downwind finite differences).

It can indeed be proved that, under ‘reasonable’ assumptions over the theoretical Hamiltonian H and
the initial data φ0, consistent and monotone first order schemes are convergent to the viscosity solution of
(1.14), see e.g. [98, 291].

As regards the particular Cauchy problem (1.13), the most simple approximation consists in the following
explicit first-order finite difference scheme:

{
∀n ∈ N, i, j ∈ Z, φn+1

ij = φnij −∆t
(
max(vij , 0)∇+

ijφ
n + min(vij , 0)∇−

ijφ
n
)

∀i, j ∈ Z, φ0
ij = φ0(i∆x, j∆y)

, (1.16)

where the respectively upwind and downwind discretizations ∇+
ijφ and ∇−

ijφ of |∇φ| are defined as:

∇+
ijφ =

(
max(max(D−x

ij φ, 0),−min(D+x
ij φ, 0))2

+ max(max(D−y
ij φ, 0),−min(D+y

ij φ, 0))2

) 1
2

(1.17)

and

∇−
ijφ =

(
max(max(D+x

ij φ, 0),−min(D−x
ij φ, 0))2

+ max(max(D+y
ij φ, 0),−min(D−y

ij φ, 0))2

) 1
2

(1.18)

The discretization of the (exact) Hamiltonian H(x, p) = v(x)||p|| by means of the numerical Hamiltonian

∀n ∈ N, i, j ∈ Z, H(xij ,∇φ(xij)) ≈ Hij({φnkl}k,l∈Z
) := max(vij , 0)∇+

ijφ
n + min(vij , 0)∇−

ijφ
n

can be deemed upwind in the sense that, for given i, j, n, the update φnij → φn+1
ij is only carried out using

information
– coming from smaller values than φnij if vij is positive,
– coming from larger values than φnij if it is negative.

Once again, this is actually the key feature in the device of convergent schemes for Hamilton-Jacobi equations,
which generally require consistency of the numerical approximation of the Hamiltonian with the continuous
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one (to be understood in some particular sense), as well as a monotonicity assumption, which is here conveyed
by the use of upwind finite differences.

To amend this, there is actually a CFL-like relation between ∆t and ∆x,∆y, which must be satisfied for
this monotonicity assumption to hold. It reads:

(
sup
i,j

vij

)
∆t

min(∆x,∆y)
≤ 1. (1.19)

Grossly speaking, this means that the information should not travel farther than one space step within one
time step. Under this CFL condition, this scheme turns out to be convergent. Moreover, an explicit error
estimate with respect to the exact viscosity solution can be derived, with a residual in O

(√
max(∆x,∆y)

)
.

See [98, 291] for further details regarding this very technical matter.

Unfortunately, this scheme turns out to be very diffusive, hence the need for higher order schemes.
Mimicking conservation laws, high order, adaptive-stencil schemes, known as (weighted) essentially non
oscillatory schemes (abridged as (w)ENO schemes) can be devised for solving (1.13,1.14). See [170, 246] for
further details.

1.2.2 Solving the Level Set Hamilton-Jacobi equation on triangular meshes

The theory we just skimmed through in the previous subsection, about the device of convergent numerical
schemes to the viscosity solutions of Hamilton-Jacobi equations of the form (1.14) can be extended to the
context of triangular meshes. In [1], a convenient framework is established in this context, which notably
relies on an adequate generalization of the notions of consistency and monotonicity (see definition 1.2). This
allows to build convergent schemes on triangular meshes, a glimpse of which is now provided.

Notations: The plane R2 is endowed with a conforming triangular mesh T . The vertices of T are denoted
as {pi}i∈I . For any piecewise affine function φ on T , denote as φi the value assigned to the node pi.

The time interval (0, T ) is still split into subintervals (tn, tn+1), n = 0, ..., N − 1, tn = n∆t. At each time
tn, an approximation of the viscosity solution φ(tn, .) to (1.14) is sought as a piecewise affine function φn on
mesh T . A general explicit, first-order numerical scheme for (1.14) on mesh T can be written as:

∀i ∈ I, φn+1
i = φni −∆tH (pi, φn) , (1.20)

where H(pi, φ) is the numerical Hamiltonian. This notation may seem a bit odd at first glance, since the
theoretical Hamiltonian H only depends on φ through its gradient, and one could expect the same behavior
from H (pi, φ). Actually, H (pi, φ) will depend only on ∇φ, but is better expressed in terms of φ.

As for the construction of a numerical Hamiltonian H(pi, φ), one may use the following procedure, which
is very reminiscent of Lax-Friedrichs numerical schemes: if h > 0 is smaller than the smallest edge of T , and
ε = C(H)

2π , where C(H) is one Lipschitz constant for H,

∀i ∈ I, H(pi, φn) = H(pi,Φi)−
ε

h

∫

Ch(pi)

(φ(x)− φ(pi)) dℓ,

where Ch(pi) is the circle of center pi and radius h, and Φi is the mean value of ∇φ over the disk Dh(pi) of
center pi and radius h (see figure 1.7):

Φi =
1
πh2

∫

Dh(pi)

∇φ dx.
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•
pi

Ch(pi)

Dh(pi)

Figure 1.7: The numerical scheme of Abgrall: setting and notations.

One can show that the sequence {φn}n=0,...,N obtained using (1.20) converges (in an appropriate sense)
to the viscosity solution of (1.14), provided the following CFL condition holds:

∆t ≤ h

2πε
. (1.21)

1.2.3 Semi-Lagrangian schemes

Contrary to the aforementioned approaches, semi-Lagrangian techniques attempt to solve (1.13) or (1.14)
by incorporating the explicit knowledge of the flow of information expressed by the equation into the device
of a numerical scheme: subdividing the time interval (0, T ) into subintervals of the form (tn, tn+1), the value
φ(tn+1, x) of the solution φ at time tn+1 and at a (grid) point x ∈ Rd is computed by tracking the point
y ∈ Rd such that φ(tn+1, x) ‘comes from’ φ(tn, y).

Let us illustrate this idea with a short and formal description of the semi-Lagrangian scheme of Strain [292]
devoted to the level set Hamilton-Jacobi equation (1.13). This presentation is independent of the particular
choice of a computational support (Cartesian grid, simplicial mesh, etc...), as are generally semi-Lagrangian
methods in their broad lines.

Recall that equation (1.13) stems (at least in a formal way) from the level set advection equation:

{
∂φ
∂t

+ V (t, x).∇φ = 0 on (0, T )× Rd

φ(0, .) = φ0 on Rd
, (1.22)

where the velocity field V : (t, x) 7→ V (t, x) ∈ Rd depends itself on φ as:

V (t, x) = v(t, x)
∇φ(t, x)
|∇φ(t, x)| .

The nonlinear equation (1.22) is approximated on each subinterval (tn, tn+1) by the linear advection equation
obtained by freezing the value of V (t, .) over (tn, tn+1), i.e. by setting:

∀t ∈ (tn, tn+1),∀x ∈ Rd, V (t, x) = V (tn, x) =: V n(x).

Now assuming that an approximation φn of φ(tn, .) has already been computed, φ(t, .) is approximated on
(tn, tn+1) by the solution ψ : (tn, tn+1)× Rd → R to:

{
∂ψ
∂t

+ V n(x).∇ψ = 0 on (0, T )× Rd

ψ(tn, .) = φn on Rd
,
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which is well-posed provided V n is Lipschitz, and whose exact solution can be computed owing to the method
of characteristics:

∀x ∈ Rd, ψ(tn+1, x) = ψ(tn, X(tn, tn+1, x)) = φn(X(tn, tn+1, x)), (1.23)

where (tn, tn+1) ∋ t 7→ X(t, tn+1, x) is the characteristic curve of V n, reaching x at time tn+1, defined as:
{
X ′(t, tn+1, x) = V n(X(t, tn+1, x)) for t ∈ (tn, tn+1)

X(tn+1, tn+1, x) = x
(1.24)

With this guidance in hand, the following procedure for approximating the solution φ to (1.13) is derived:
– Initialization:

Start with an approximation φ0 of φ(0, .) on the considered computational support (e.g. at the nodes
of a Cartesian grid, or as a piecewise linear function on a simplicial mesh).

– Loop (for n = 1, ..., N − 1):
Loop (for each degree of freedom x of the computational support):

1. Solve the ODE (1.24) and search for the ‘foot’ y := X(tn, tn+1, x) of the char-
acteristic curve reaching x at time tn+1 (for instance, using a Runge-Kutta 4
approximation).

2. Mimicking formula (1.23), the value of φn at y is computed (using interpolation
on the computational support) to produce φn+1(x).

The benefits of this approach are numerous: among others, it is easily parallelized since the nodes of the
mesh are consistently processed independently from one another. What’s more, the stability of the method
does not depend on a CFL condition over the time step ∆t such as (1.19,1.21). Of course, this technique
also retains some drawbacks, such as the lack of accuracy in regions where the exact solution φ is not smooth.

This particular example brings into play the three typical stages of any general semi-Lagrangian method.
An approximation φn+1(x) of φ(tn+1, x) is computed using:

1. A space-time integration step, which amounts to searching for the point y ∈ Rd such that ‘φ(tn+1, x)
can be computed from φ(tn, y)’ (here y is the foot X(tn, tn+1, x) of the characteristic curve (1.24)).

2. A spatial interpolation step, during which φn(y) is interpolated from the values of φn at the grid nodes.
3. An update step, during which φn+1(x) is computed from φn(y) (in the presented case, this step is

trivial, thanks to formula (1.23)).
This idea can be extended to more general Hamilton-Jacobi equations of the form (1.14). To this end,

one needs a means to complete the first and third stages of the previous program. This is generally achieved
thanks to representation formulae for the exact solutions to (1.14), which generalize the method of charac-
teristics in the case of more general Hamiltonian functions H (e.g. the Hopf-Lax formula when H is convex
and does not depend on the x variable). See [130] for more details.

1.3 Initializing level set functions

Plenty many level set functions can be associated to a domain Ω ⊂ Rd, and the theoretical framework
developed hitherto is independent of which particular function φ is chosen. Unfortunately, things happen
to be very different in numerical practice. Since the early hours of the Level Set Method [89], it has been
acknowledged that too steep or too loose variations of φ near ∂Ω may cause instabilities in locating accurately
∂Ω, or difficulties in the computation of the normal vector or curvatures of ∂Ω by means of formulae such
as (1.2,1.3). This advocates for initializing a level set function for Ω as the distance function - and more
precisely (for sign purposes) as the signed distance function dΩ to Ω, which is defined as:

∀x ∈ Rd, dΩ(x) =





−d(x, ∂Ω) if x ∈ Ω
0 if x ∈ ∂Ω

d(x, ∂Ω) if x ∈ cΩ
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Anticipating a bit on the material of chapter 6, this signed distance function has furthermore the good
taste of being smooth near ∂Ω, provided ∂Ω is a smooth boundary.

In this section, we describe several ‘classical’ algorithms for generating - or restoring - the (signed)
distance function to a domain Ω on a computational support. A more complete overview of the different
possible methods - with a particular emphasis on the case of simplicial computational meshes - can be found
in chapter 6.

1.3.1 The fast marching method

Most numerical methods for generating the signed distance function to a domain Ω allow more generally
to solve Eikonal equations of the form (1.11) or (1.12). The fast marching method, originally introduced in
[275], is no exception in this regard.

1.3.1.1 The fast marching method on Cartesian grids

Let us briefly present the fast marching method for generating the distance function to a bounded domain
Ω ⊂ R2, at those nodes of a Cartesian grid of the plane lying outside Ω (i.e. we solve (1.11). Extensions of
this discussion to the nodes lying inside Ω and to the three-dimensional setting are rather straightforward.

Reusing the notations of section 1.2.1, the fast marching method is an iterative process which produces
at each step n ∈ N a scalar numerical quantity T := (Tnij)i,j∈Z intended as an increasingly accurate approxi-
mation of d(., ∂Ω).

It relies first on an update strategy, according to which the values of T are computed in a one-by-one,
upwind fashion, mimicking the propagation of a front starting from ∂Ω. More accurately, the nodes xij of
the Cartesian grid are parted into three categories:

– The accepted nodes: those are the nodes xij ‘where the front has already passed’, i.e. at which the
current value Tij is assumed converged. Once a value has become accepted, it is no longer updated.

– The active nodes: those are the nodes xij ‘on the front’. One of their four neighbors xi−1j , xi+1j , xij−1

or xij+1 is an accepted node, and a first approximation (trial value) Tij to the desired solution has
been computed, but may still be subject to updates.

– The far nodes: those are the nodes ‘still far from the front’, whose values have not even been approx-
imated (and are set to ∞).

At each iteration, the algorithms accepts one node, to be selected among the set of active nodes. The set
of active nodes is then redefined, and their values are updated according to this new information about the
front.

The update procedure of the value Tnij of Tn at an active node xij is the second key feature of the

algorithm. A trial value T̃nij is computed as the solution to the following equation, which relies on the
upwind discretization of the Eikonal equation proposed in [269]:

√√√√√√√√

max
(

max
(
T̃n

ij
−Tn

i−1j

∆x , 0
)
,−min

(
Tn

i+1j−T̃n
ij

∆x , 0
))2

+ max
(

max
(
T̃n

ij
−Tn

ij−1

∆y , 0
)
,−min

(
Tn

ij+1−T̃n
ij

∆y , 0
))2 =

1
cij
. (1.25)

Note that this rule is intrinsically upwind, since the derived value T̃nij is only influenced by the values of Tn

at the four neighbors of xij that are smaller than T̃nij : this is a means to impose a causality principle which is
inherent to Hamilton-Jacobi equations. Only the accepted values among the set

{
Tni−1j , T

n
i+1j , T

n
ij−1, T

n
ij+1

}

are used in the second order polynomial equation (1.25), and it must be checked that the obtained solution
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T̃nij is larger than those values. In the end, Tn+1
ij is obtained as:

Tn+1
ij = min

(
T̃nij , T

n
ij

)
.

•

•

•

•

•

• •

••

•

•

•

•

∂Ω

• accepted nodes

active nodes

far nodes
•

Ω

Figure 1.8: The Fast Marching Method

To sum up, the algorithm proceeds along the lines of the following sketch:
– Initialization:

1. Compute the exact distance function at the nodes of the cells which intersect ∂Ω, and classify
them as accepted.

2. Use the local update procedure (1.25) to compute a trial value at the neighbor points to the
accepted points which have not been yet accepted, and classify them as active.

3. Classify all the remaining nodes as far, and assign them value ∞.

– Loop (while the set of active nodes is non empty):

1. Travel the set of active nodes, and identify the one with minimum trial value. This node becomes
accepted.

2. Identify the new set of active nodes, and compute a new trial value for each one of them, using
the local update solver (1.25) for the Eikonal equation.

This algorithm produces a sequence (Tnij) which converges towards the unique viscosity solution to (1.11);
see [101] for a precise statement of this fact and a proof.

Furthermore, it can easily be seen that, if in practice, the computation is restrained to a large bounding
domain (e.g. a box), equipped with a Cartesian mesh consisting of N vertices, the Fast Marching procedure
converges within O(N log(N)) operations.

1.3.1.2 Extension of the Fast Marching Method to triangular meshes

Let us now give a hint of how the Fast Marching Method can be adapted to the context of a triangular
mesh of R2, using the notations introduced in section 1.2.2, and following the work [194].
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The general outline of the previous algorithm is unchanged: the vertices of the mesh are still tagged as
either accepted, active, or far. At each iteration, the active vertex whose value is minimal becomes accepted
once and for all. The set of active vertices is then adequately redefined, and the active values are updated.

This update procedure is actually the only very different feature between both versions of the Fast
Marching algorithm. Here, it occurs in a situation where two values of T , say Ti ≤ Tj are known at two
vertices pi, pj of a triangle K = pipjpk ∈ T , and a trial value T̃k is sought at pk.

To this end, T is approximated by its piecewise linear interpolate πKT on T from the values Ti, Tj and
T̃k at pi, pj , pk respectively. Let c be an approximation of c over K (e.g. c can be taken as the mean value
of c over K). T̃k should be such that:

|∇ (πKT )|2 = c2.

T̃k is then searched as a solution to this quadratic equation which is larger than Ti and Tj , and satisfies some
additional properties (related to the causality inherent to equation 1.11 discussed above), which are omitted
here. If such a solution T̃k exists, the value Tk is then updated as Tk = min(Tk, T̃k).

Let us eventually mention a potential difficulty in this approach. Depending on the shape of the trian-
gulation T , it may very well happen that, for a certain active point pk, no triangle of the ball has the other
two values accepted, which makes it impossible to rely on the previous local procedure to compute a new
trial value T̃k at pk. This is especially likely to happen when the angles of triangles at pk are obtuse. A
special procedure is required in this case to come back to the previous case.

The exact same construction can be used to generate the distance function to a subset on a triangulated
surface of R3 (this is actually the original setting of the work [194]). Yet, this procedure seems more difficult
to extend to the case of a tetrahedral computational mesh of R3.

1.3.2 The fast sweeping method

The fast sweeping method can be thought of as a speedup of the fast marching method. If R2 is equipped
with a Cartesian grid (and notations from section 1.2.1 are reused), the local update procedures for the com-
putation of new ‘trial’ values T̃ij are identical in both methods. Nevertheless, in the fast sweeping method,
the choice of a particular order for enumerating the points of the grid makes it possible to enhance the
computational efficiency of the method.

The fast sweeping method rests upon the following heuristics: equations (1.11, 1.12) express a transfer
of information from the boundary ∂Ω of the considered domain to the outer (or inner) medium. This in-
formation is conveyed along the characteristic curves of the equations, originating at points of ∂Ω. Hence,
sweeping the plane in the directions of these characteristic curves should be enough to compute the values
of T .

Let us first try out this formal idea when c ≡ 1. In this central case, the characteristic curves of (1.11)
are straight lines, which can be distributed among four groups, depending on whether they are oriented
up-left, up-right, down-left, or down-right (see figure 1.9). Then, all the values Tij at nodes xij lying on
characteristic curves of the up-left kind can be computed within one single iteration, by sweeping the xij in
the order of decreasing i, and increasing j. A similar argument holds for the three other possible orientations.
As a result, traveling successively the list of grid nodes in four different orders should allow to compute an
accurate approximation of d(., ∂Ω).
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0

Ω

Figure 1.9: Some level sets of the distance function to a domain Ω, and characteristic lines (dotted) of
equation (1.11). These lines can be grouped depending on the quarter of the plane corresponding to their
directions.

The procedure reads as follows, when performed on a set of nodes {xij} −I≤i≤I

−J≤j≤J

of a Cartesian grid of R2:

– Initialization:

1. Compute the exact distance function at the nodes of the cells which intersect ∂Ω.

2. The values Tij at the remaining nodes are all set to ∞.

– 2d successive loops: Travel the set {xij} −I≤i≤I

−J≤j≤J

as:

1. For i = −I, ...I, for j = −J, ..., J (up-right sweep),

2. For i = −I, ...I, for j = J, ...,−J (down-right sweep),

3. For i = I, ...− I, for j = J, ...,−J (up-left sweep),

4. For i = I, ...− I, for j = J, ...,−J (down-left sweep),

and, for each loop, update Tij as Tij = min
(
Tij , T̃ij

)
, where T̃ij is computed owing to the local

procedure (1.25).
Note that this idea is readily generalized to the case of d space dimensions, except that 2d sweeps of the

set of processed grid points are necessary.
In terms of computational cost, the fast sweeping method involves a fixed number of travels of the set of

processed grid points, and it is easy to see that the fast sweeping algorithm requires about O(N) operations,
where N is the total number of processed grid points.

Of course, when an eikonal equation of the form (1.11,1.12) is considered, with any positive function c,
things are not so simple. The characteristic curves of the equation are no longer straight lines, and more
than 2d sweeps may be needed to achieve the convergence of the method (see figure 1.10).
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•xij

Figure 1.10: Computing an accurate approximation of the distance function to all the grid points lying on
the depicted characteristic curve cannot be achieved by sweeping only once in the up-left, up-right, down-left,
down-right directions: if the value Tij is initialized to d(xij , ∂Ω), the values of T at the grid points lying on
the red part of the curve are computed within a sweep of the plane in the up-left direction. Then, those on
the blue part are computed using a sweep in the up-right direction. Finally, another sweep in the up-left
direction is needed to compute the values of T lying on the yellow part.

However, theoretical and numerical evidence suggest that the fast sweeping method behaves well in a
large number of cases of great importance in practice.

Let us eventually mention that this method has been adapted to the case of simplicial computational
meshes, in two and three space dimensions, at the cost of higher programming effort (see [262]).

1.3.3 Re-initializing level set functions

We already pinpointed the importance in numerical practice of handling level set functions that are as
close to signed distance functions as possible. Unfortunately, even if φ(0, .) is the signed distance function
to Ω(0), the solution φ(t, .) to the level set advection equation (1.13) is likely to develop very sharp or loose
variations in the vicinity of ∂Ω(t) as t > 0 increases. This may jeopardize the stability of the whole numerical
resolution of (1.13).

In numerical applications, it turns out crucial to periodically restore φ(t, .) as the signed distance function
to Ω(t): this is the purpose of level set redistancing (or re-initialization).

Let Ω ⊂ Rd a bounded domain, φ0 an associated level set function. Our aim is to generate the signed
distance function dΩ to Ω. The most straightforward idea in this direction consists of course in using one of
the aforementioned algorithms for the computation of the (signed) distance function to a domain. Yet, the
situation here is slightly different, insofar as a level set function is already available for Ω; in this context,
Osher, Sussman and Smereka proposed in [297] to ‘regularize’ the (possibly very ‘irregular’) level set function
φ0 into a new one, which is close to dΩ (at least near ∂Ω). To this end, φ0 is used as the initialization of the
redistancing equation:

{
∂ψ
∂t

(t, x) + sgn(φ0(x)) (|∇ψ|−1) = 0 for (t, x) ∈ [0,∞]× Rd

ψ(0, x) = φ0(x) for x ∈ Rd
. (1.26)

The underlying intuition is that, as the stationary state of (1.26) is obtained, the property |∇ψ|= 1 is re-
stored (which is formally obtained in the above equation by cancelling the time derivative). The presence of
the sign function accounts for the fact that a signed distance function is sought. Of course, this very formal
explanation is supported by theoretical properties which will be mentioned in chapter 6.
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In practice, the redistancing equation (1.26) is solved using adequate numerical schemes, in the spirit of
those presented in section 1.2, relying on a smoothing of the discontinuous function sgn(φ0).

It is eventually worth mentioning that, regardless of the method used to re-initialize φ(t, .) as dΩ(t),
this redistancing process is bound to cause a slight perturbation of the interface ∂Ω(t) handled numerically,
unless ∂Ω(t) is explicitly discretized in the computational mesh.

Remark 1.1. Hitherto, all the operations we have been considering around the level set method have been
carried out on a grid (or mesh) of a large computational box. This is quite a pity since, most often, one is
only interested in tracking accurately the behavior of the 0 level set of φ, without paying much attention to
what happens to the other ones. A dramatic increase in efficiency can actually be achieved by using so-called
narrow band methods, according to which computations using the above numerical schemes are restricted to
a neighborhood of the evolving interface ∂Ω(t) (see [274], chap. 7 for details)
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In utter generality, shape optimization is about the search for the ‘optimal’ shape Ω among a set of
admissible shapes Uad, with respect to a prescribed criterion, assessed by means of the minimization of a
cost, or objective function J(Ω):

min
Ω∈Uad

J(Ω).

The first examples of such problems came up a very long time ago. Among others, let us quote the famous
isoperimetric problem of Dido, founder and first queen of Carthage (followed several centuries later by the
very similar problem of Horatius Cocles). The Aeneid reports that, around 814 BC, Dido landed on the
shores of north Africa, and asked a local Berber king, Larbas, a small portion of land to erect a city. King
Larbas replied that he would grant her as much land as she could encompass with an oxhide. Dido then slit
the oxhide into very thin strips, which she glued together, then used to delimit a region of maximum area,
comprising a portion of the seashore, the length of the strip being fixed. Her strip of oxhide reached the
shape of an arc of circle meeting the sea, which was to become the boundary of the territory of Byrsa.

Much later, in 1685, Sir Isaac Newton got interested in finding the shape of a body opposing the slightest
possible resistance to the motion when immersed in a fluid. Making several drastic reductions in the problem
(e.g. supposing the shapes of interest are axisymmetric), he obtained the results depicted in figure 2.1. See
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[62], chap. 1, sec. 3 for a more rigorous introduction to this problem, and the website of Mark A. Peletier
[251] for recent developments.

Figure 2.1: Optimal shapes of the nose of the body immersed in a fluid obtained by Newton, corresponding
to two different maximal heights (reprinted from [251]).

Let us eventually evoke Lagrange’s optimal column problem. In 1773, Lagrange formulated the problem
of finding the shape of an axisymmetric column of prescribed volume, which guarantees maximal resistance
against buckling when submitted to axial compression efforts. Using mathematical tools from the calculus
of variations, he ended up with the conclusion that the cylinder was the optimal shape he was searching
for. Unfortunately, he committed several mistakes in his computations, and further developments - notably
those of T. Clausen - evidenced that better shapes can be achieved. See [97] for more details about this story.

Since those historical examples, shape optimization has been enjoying numerous developments, both in
terms of theoretical and numerical techniques. Yet, a huge amount of issues stay unsolved (see [173]).

Altogether different problems coming from physics, mechanics, biology, etc... can be cast into the frame-
work of shape optimization, and addressed using related techniques. To name a few,

– In [20], the problem of optimal swimming of microorganisms at low Reynolds number is considered:
more specifically, the authors are in search for the shape of such microorganism that allows to reach
a prescribed displacement while undergoing minimal stress from the surrounding fluid. The shape of
the microorganisms is parametrized by means of a few physical parameters, and the sensitivity of the
stress exerted by the fluid on the microorganisms with respect to perturbations on these parameters
is computed.

– in [67], a system of N electrons with interdependent behaviors is studied. As a precious information
on the chemical structure of the system, the authors are in search for the shape Ω which maximizes
the criterion:

Jν(Ω) = pν(Ω)− pind
ν (Ω),

where ν is a given integer in [|0, N |], pν(Ω) is the probability that ν electrons lie in Ω, and pind
ν (Ω) is

the probability that ν electrons would lie in Ω if their behaviors were independent from one another.
Their work makes use of the level set method for shape optimization described in section 2.3.

– The papers [189, 71], (and a lot of subsequent ones) tackle the burning topic of image segmentation:
from a grey levels image supplied as the unorganized datum of a set of pixels, each pixel being endowed
with a light intensity value, one aims at identifying regions corresponding to ‘physical shapes’ (e.g.
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faces, objects, etc...). To achieve this, the authors put the problem under the form of the minimization
of an energy functional of the separating curves between different regions.

– In the article [68], an interesting application of shape optimization in the field of electromagnetism
is proposed: the repartition of a series of electric wires is sought so that the induced electromagnetic
field endows a nearby fluid with a target shape. This study notably relies on previous theoretical
investigations around topological sensitivity analyses of Maxwell’s equations [218].

– Closer to the topic of this manuscript, shape optimization techniques have been widely used to study
the optimal design of bodies immersed in fluids. A famous example of such problems - which is crucial
in aeronautic industry - is that of finding the shape of a wing which induces minimal drag, i.e. minimal
reaction from the surrounding fluid. See [232] for many other applications of shape optimization
concepts in fluid mechanics.

– Last but not least, in this manuscript we shall be mainly concerned with structural optimization. This
part of computational mechanics which has soared over the last decades is devoted to finding the ‘op-
timal’ shape of a mechanical part, with respect to a given mechanical criterion - such as, for instance,
the work of external loads, or the internal stress. These problems strongly depend on the physics at
play (elasticity, thermoelasticity,...), and on the constraints that should be fulfilled by the shapes.

This chapter is organized as follows: to begin with, section 2.1 presents the high stakes of shape opti-
mization - at least from a computational standpoint - as well as some inherent difficulties to such problems.
A particular emphasis is put on the delicate issue of shape description and deformation. Section 2.2 focuses
on a more technical description of one particular method - namely Hadamard’s method - for evaluating the
sensitivity of a function with respect to the domain - which implies a notion of differentiation with respect to
the shape. The particular case of functions depending on the domain Ω through solutions to the linearized
elasticity system posed on Ω is considered. Eventually, section 2.3 discusses a particular numerical frame-
work, that of the level set method, which is suitable for an implementation of shape optimization algorithms,
and shall be used repeatedly in this manuscript.

2.1 A quick overview of shape optimization and applications

2.1.1 An overview of the main methods

Since the early 60’s, when shape optimization techniques were introduced in computational mechanics,
many ways of handling structural optimization problems have been introduced, depending on the sought
application. These methods mainly differ in the involved ways to represent shapes, and to compute the
sensitivity of the objective criterion with respect to the design.

Describing shapes is a thorny problem, for a means of doing so should try and conciliate two antagonist
requirements. On the one hand, as we shall see below, shape optimization techniques require to be able to
perform mechanical computations on the considered shapes, e.g. by means of finite differences, finite element
or finite volume methods, and not all kind of representations lend themselves to such computations. On the
other hand, the representation adopted must be versatile enough to allow for a robust account of shapes’
deformations.

Among the multiple possible descriptions of shapes, let us mention the following ones:
– The most straightforward (and historically the first) descriptions of shapes that have been used in

the context of shape optimization are completely explicit. A surface S ⊂ R3 may be supplied with a
parametrization, that is, a covering set of local patches {(σi, Ui)}i∈I , such that S =

⋃
i∈I

Ui, and each

application σi maps a portion of R2 to a portion of S. For instance, the σi may be polynomial or rational
applications, in which case one talks about Bézier or NURBS patches. In a similar fashion, shapes
may be described by a set of physically relevant parameters (e.g. characteristic lengths, thicknesses),
or by the datum of a mesh. In all these cases, shapes are explicitely accounted for by a set of degrees of
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freedom (e.g. the control points of Bézier patches, the physical parameters, or the nodes of the mesh,
depending on the case). See for instance [60, 338] around these issues, or the review article [169], and
monograph [255].

– With the development of efficient methods for interface-tracking in various fields such as Computational
Fluids Dynamics, implicit methods became very popular in shape optimization - the most famous of
them being the Level Set Method and the Phase Field Method. When using an implicit representation
of shapes, a precise description of the boundary is kept under the form of an auxiliary function defined
on a large computational domain, but the shape itself is not explicitly represented.

– Eventually, a rather dramatic change in perspectives in structural optimization is embodied by the
class of density methods in shape optimization. In a broad sense, the starting point of these methods is
the works of F. Murat and L. Tartar around the homogenization method, and the optimal design of the
microstructure of a material filling a fixed working domain [306], which were followed and completed by
(at least) the articles [196, 212] (see also the reference textbooks [8, 41]). These theoretical contributions
found an echo in [39]; influenced by these ideas, the authors devised a practical method for topology
optimization by changing the very conceptual definition of a shape as an explicit black-and-white design
for a ‘relaxed’ one (in a sense specified in section 2.1.2), as the datum of (at least) a density function
θ : D → [0, 1] defined over a computational domain D: where θ is close to 0, there is almost only void
(or a very ‘soft’ material, mimicking void), and where θ is close to 1, there is almost only the shape. The
problem of finding the ‘best’ shape is transformed into that of the optimal distribution of a mixture
of material and void in a large computational domain. Therefore, the shape optimization problem
ends rephrased as a parametric optimization problem. This led to the inception of the so-called SIMP
method (see [40], and references therein).

The problem of how to perform perturbations of the considered shapes, and thus of how to compute the
sensitivity of the objective function J with respect to the shape, is closely related to this problem of shapes’
description. To name a few, the following design-sensitivity analysis methods have been extensively consid-
ered in the literature:

– One possibility is to perform a sensitivity analysis of the objective criterion J with respect to perturba-
tions of the boundary of shapes. The Hadamard’s and speed methods described in section 2.2.1 belong
to this category.

– A completely different alternative consists in performing topological sensitivity analyses, according to
which the sensitivity of J with respect to the nucleation of infinitesimally small holes inside shapes is
evaluated (see for instance [147, 289]). Similar techniques are also widely used in the fields of imaging
or inverse problems.

– When shapes are represented as density functions over a computational domain D, J depends on the
shape through the values of an associated density function at the nodes of a mesh of D, and a ‘classical’
parameter sensitivity analysis can be performed.

These methods feature altogether different assets and drawbacks: in a nutshell, the more accurate the
description of the shapes, the more accurate the computation of shape sensitivities of the given criterion,
but the more acute the problem of representing and deforming them numerically.

Different methods may be coupled, to take the most from each one of them. Thus, in [16, 65], the
authors proposed to combine Hadamard’s method with information from topological sensitivity analysis:
at each iteration, when the current shape, say Ωn, is updated to the next one Ωn+1, the boundary of Ωn

is deformed to produce that of Ωn+1, according to the shape gradient produced by Hadamard’s method,
but without any extra ingredient, the topology of shapes are not allowed to change. Hence, from times to
times, a topological sensitivity analysis is held, and small holes are nucleated in adequate regions, which are
then deformed with the subsequent use of Hadamard’s method. In [249], a subsequent preprocessing stage is
added, in which the homogenization method is used to deliver a clever initial guess to the shape optimization
process.
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2.1.2 Numerical difficulties in shape optimization: non existence of optimal
shapes

In the previous subsection, we discussed the possibly most obvious difficulties in shape optimization,
namely the difficulty of parametrizing the problem and accounting for variations of shapes in a way that
yields a satisfying notion of shape sensitivity. Another major difficulty exists on the theoretical side, which
underpins many numerical difficulties in shape optimization problems, can greatly influence the choice of a
particular shape representation method, and urge to resort to some numerical techniques that are not essen-
tial from a theoretical point of view, such as the regularization of shape derivatives which will be discussed
hereafter. This problem is that of the non existence of an optimal shape, which is due to a homogenization
phenomenon.

Let us start the discussion with an example, excerpted from [62] (chap. 4). Let D ⊂ Rd a bounded
Lipschitz domain. Our goal is to optimize the distribution of two materials within D, one of them being
thermally conductive, and the other being thermally insensitive, in such a way that the temperature in D
is as close as possible to a constant c when D is heated. Rigorously speaking, one searches for the shape
Ω ⊂ D (standing for the phase filled with the conductive material) which minimizes the following functional:

J(Ω) =
∫

D

|uΩ − c|2 dx,

where c is a constant, and uΩ is the unique solution in H1
0 (Ω) to the system:

{
−∆u = 1 in Ω
u = 0 on ∂Ω

Note that, for the sake of simplicity, both the thermal conductivity of the material in Ω, and the power of
the heat source have been set to 1.

The non existence result is the following.

Theorem 2.1. For c > 0 small enough, no Lipschitz domain Ω ⊂ D can be a global minimum point of J
over Uad.

Proof. (sketch of the proof) First, it is easily proven that, provided c is small enough the whole domain D
is not a global minimum point of the problem (for J(∅) = c2 is then smaller than J(D)).

Now, assume that a global minimum point Ω of J exists which is Lipschitz; as Ω ( D, there exists a
point x0 ∈ D \Ω lying outside Ω, and let ε > 0 such that d(x0,Ω) > ε (see figure 2.2). Finally, consider the
new phase Ω̃ = Ω ∪B(x0, ε) for the conductive material, which is nothing but the previous one, augmented
with a small disconnected bubble of material. An explicit expression for u

Ω̃
can be computed explicitly:

∀x ∈ Ω̃, u
Ω̃

(x) =





uΩ(x) if x ∈ Ω
ε2−|x−x0|2

2d if x ∈ B(x0, ε)
0 if x ∈ D \ Ω̃

.

Another computation shows then that J(Ω̃) < J(Ω) for c > 0 small enough, in contradiction with Ω being
a minimum point for J .
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D

Ω

•
x0

Figure 2.2: An example of non existence of an optimal shape.

How can we understand this result ? Roughly speaking, the adiabatic heating of a small amount of con-
ductive material produces a small positive temperature, and the larger the region, the larger the resulting
maximal temperature developed in the thermally conductive phase. Hence, reaching a small temperature
c requires that the shape of the conductive phase has a large contact surface with the outer medium, and
a small area; the ‘optimal shape’ for Ω would be an infinite collection of infinitesimally small inclusions of
conductive material (which is not a Lipschitz domain).

Another interesting example of a shape optimization problem where the optimal shape tends to feature
infinitely many holes (with the significant difference that holes carry homogeneous Neumann boundary con-
ditions in this case) is discussed in [9], §6.2.1.

Generally speaking, for a wide class of shape optimization problems (even very simple ones), fractal, or
porous structures are preferred over ‘plain’ structures: the sought optimal shape is not in the investigated
class. This fact is not merely theoretical, and has severe practical implications. In particular, it explains why
most shape optimization problems are generally very sensitive to the initialization - several local minima
exist - or to the mesh size - the finer the computational mesh, the closer to the ‘porous’ optimal shape the
optimization process is allowed to go.

Two main categories of techniques may help in circumventing this difficulty.
– Relaxation of the original problem: since the main obstruction to the existence of optimal shapes seems

to be that they tend to be ‘porous’, one idea is to extend the set of admissible shapes so that it encloses
such designs. This viewpoint can be mathematically justified owing to the homogenization theory (see
[8, 306]), and urges to think over the problem of finding the optimal shape as that of finding the optimal
distribution (and organization at the infinitesimal scale) of a mixture of material and void within a
computational domain. This idea is at the root of density-based methods in structural optimization.

– Restriction of the original problem: the converse idea consists in imposing additional constraints on
the set of admissible shapes, so as to prevent them from developing too many holes or connected
components. Among the possible techniques to achieve this, let us mention the following (see [9, 62, 172]
for more details):
– Adding a constraint on the perimeter of shapes: the optimal shape is ‘porous’ or ‘fractal’ when the

problem at stake urges shapes to maximize the area of their boundary (as in the previous example);
hence, imposing an upper bound to the perimeter P (Ω) of any shape Ω should prevent this behavior.
A result in this direction can be found in [21], where a model problem is considered in the thermal
conductivity setting sketched above; the authors prove that trading the objective function J(Ω)
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for the very close function J(Ω) + τP (Ω), where τ > 0 is a fixed penalization parameter, leads to
existence of optimal shapes in the considered class.

– Adding a constraint on the regularity of shapes: for instance, asking the admissible shapes in Uad to
fulfill a uniform cone condition, or equivalently to be uniformly Lipschitz domains lead to well-posed
optimization problems for a wide class of considered objective functions [79].

– Adding topological constraints on shapes: the homogenization effect can eventually be prevented by
acting directly on the topology of shapes. In this way, it was proved (by Šverak [302] in the context of
the diffusion equation, and Chambolle [74] in the linear elasticity setting) proved that, in two space
dimensions, imposing an upper bound on the number of connected components of the complementary
D \Ω of any shape Ω in a large computational box D can lead to a well-posed optimization problem.

2.2 Shape sensitivity analysis using Hadamard’s boundary varia-
tion method

Here, we detail one particular method for describing variations of a shape, namely Hadamard’s boundary
variation method, as well as the inferred notions of differentiation with respect to the domain.

The plan of this section is the following: to begin with, in subsection 2.2.1, we introduce the basic ideas
of Hadamard’s method and set some notations, that we shall use in the rest of this chapter. Then, subsection
2.2.2 presents the derived notions of differentiation with respect to a domain: the notion of shape derivative
of a scalar function of the domain, or of a function which is itself defined on the domain is introduced. The
end of the subsection puts the stress on a specific context - that of optimization of linear elastic shapes.
Eventually, subsection 2.2.3 outlines the generic shape optimization algorithm derived from these concepts.

2.2.1 Hadamard’s boundary variation method

The central idea of Hadamard’s boundary variation method dates back to the seminal paper [168] (see
also [290]), issued at the beginning of the 20th century. It was then exploited in depth in [234]. Let θ be
a displacement field of ‘small’ amplitude; we consider variations of a given reference shape Ω of the form
(I + θ)(Ω) (see figure 2.3). Thus, all the considered transformations (I + θ) are homeomorphisms ‘close’ to
the identity; in particular, all the variations of Ω achieved in this way share the same topology.

Ω

(I + θ)(Ω)

θ(x)

x
•

Figure 2.3: Variation (I + θ)(Ω) of a reference shape Ω.

Let us make things slightly more rigorous. As far as the deformation vector fields are concerned, the
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set of interest is the Banach space W 1,∞(Rd,Rd) ⊂ L∞(Rd)d of bounded functions θ : Rd → Rd, whose
distributional derivative ∇θ belongs to L∞(Rd)d×d, endowed with the natural norm:

∀θ ∈W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd):= ||θ||L∞(Rd)d+||∇θ||L∞(Rd)d×d .

Equivalently (see section 4.2.3, th. V in [127]), it can be shown that W 1,∞(Rd,Rd) is the space of bounded
and Lipschitz functions θ : Rd → Rd, equipped with the norm:

∀θ ∈W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd):= ||θ||L∞(Rd)d+ sup
x,y∈Rd

x6=y

|θ(x)− θ(y)|
|x− y| ,

where |.| stands for the usual Euclidean norm over Rd.

As for the sequel, we will need the following consequence of Picard’s fixed point theorem (see lemma 6.13
in [9] for a proof):

Proposition 2.1. For every deformation field θ ∈W 1,∞(Rd,Rd) such that ||θ||W 1,∞(Rd,Rd)< 1, the applica-
tion (I + θ) : Rd → Rd is a Lipschitz homeomorphism with Lispchitz inverse.

More regularity over the considered deformation fields θ could be of interest; for this reason, for k ≥ 1,
we will sometimes consider the vector space Ck,∞(Rd,Rd) = Ck(Rd,Rd) ∩ W 1,∞(Rd,Rd), which is also a
Banach space when equipped with the norm:

∀θ ∈ Ck,∞(Rd,Rd), ||θ||Ck,∞(Rd,Rd):=
k∑

l=0

sup
α∈Nd

|α|=l

∣∣∣∣
∣∣∣∣
∂θ

∂xα

∣∣∣∣
∣∣∣∣
L∞(Rd)d

.

Note that the exact equivalent of proposition 2.1 holds in the context of Ck,∞(Rd,Rd) spaces, with (I + θ)
being a Ck-diffeomorphism instead of a Lipschitz homeomorphism whenever ||θ||Ck,∞(Rd,Rd)< 1 .

Notations: till the end of this chapter, Ω ⊂ Rd stands for a fixed domain, which enjoys at least Lispchitz
regularity. For any θ ∈ W 1,∞(Rd,Rd), so small that ||θ||W 1,∞(Rd,Rd)< 1, we denote as Ωθ := (I + θ)(Ω) the
deformed shape with respect to θ.

Hence, variations of a given shape Ω end up parametrized by means of an open subset of a Banach space.
As we shall see in the next section, this allows among other things to introduce a notion a differentiability with
respect to the shape by rewriting any operation performed on shapes close to Ω in terms of the underlying
deformation field θ.

Remark 2.1. Very close in essence to Hadamard’s method lies the so-called speed method, described in
[290]. This method considers variations of a given domain Ω ⊂ Rd by means of flows of vector fields, instead
of vector fields themselves. More precisely, let V ∈ C([0, τ ],W 1,∞(Rd,Rd)) (as previously, V may enjoy
additional regularity); for τ > 0 small enough, Tt(V ) ∈W 1,∞(Rd,Rd), is defined as, for all t ∈ [0, τ ], x ∈ Rd,
Tt(V )(x) = X(0, t, x), where t 7→ X(0, t, x) is the solution to the first-order differential equation:

{
X ′(0, t, x) = V (t,X(0, t, x)), t ∈ [0, τ ]
X(0, 0, x) = x

.

Then, variations of Ω of the form Tt(V )(Ω) are considered. If we are to infringe a little bit on the forthcoming
section, it is not difficult to show that both methods give rise to the same notion of differentiation of a function
depending on the domain, in the direction of a given vector field. This is no longer true when it comes to
higher order derivatives. However, both points of view are equivalent and formulae allow to switch from
one to the other; see [106] for an interesting discussion over this topic. Note also that, in the framework
of Hadamard’s method, the variations Ωθ of Ω only depend on the values taken by θ on ∂Ω, whereas the
variations Tt(V )(Ω) involved in the speed method depend on values of V lying outside ∂Ω.
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2.2.2 Shape differentiability and computation of shape derivatives in linear elas-
ticity

2.2.2.1 Definitions and first shape derivatives

Let us start with some classical definition and results about differentiation with respect to the domain of
functionals of the domain Ω 7→ F (Ω) ∈ R.

Definition 2.1. Let F (Ω) a functional of the domain. F is shape differentiable at Ω if the underlying
function

W 1,∞(Rd,Rd) −→ R
θ 7−→ F ((I + θ)(Ω))

is Fréchet differentiable at θ = 0. The associated Fréchet differential - denoted as F ′(Ω) is called the shape
derivative of F at Ω. Then, the following asymptotic expansion holds in the vicinity of 0 in W 1,∞(Rd,Rd):

F (Ωθ) = F (Ω) + F ′(Ω)(θ) + o(θ), where
o(θ)

||θ||W 1,∞(Rd,Rd)

θ→0−→ 0. (2.1)

Remarks 2.2.
– In the case of a functional F which also depends on other variables than Ω, the partial Fréchet differ-

ential with respect to the domain is denoted as ∂F
∂Ω .

– Actually, we will often require that the vector fields θ describing the variations of the shapes enjoy
more regularity than that granted by the space W 1,∞(Rd,Rd) (e.g. C1,∞(Rd,Rd)-regularity). Anyway,
in the following, with some small abuse in terminology, all the corresponding notions of differentiability
shall carry the same name.

Note that the above definition is only one possible way for defining the notion of differentiation with
respect to the domain: there are actually at least as many as notions of differentiability in a Banach space.
In definition 2.1, Fréchet differentiability of the mapping θ 7→ F ((I + θ)(Ω)) is required, for it turns out to
be the natural setting for several functionals of the domain of interest. Although, Gâteaux differentiability,
directional differentiability (to name a few) of this mapping could be considered. We shall see such examples
of functionals where the latter notions are more natural ones in the following.

Theorem 2.2. (Th. 5.2.2. and 5.4.17 in [172]) Let Ω ⊂ Rd be a bounded Lispchitz domain.

1. For any function f ∈ W 1,1(Rd,Rd), the functional F (Ω) =
∫

Ω
f(x) dx is shape differentiable, and its

derivative reads:

∀θ ∈W 1,∞(Rd,Rd), F ′(Ω)(θ) =
∫

∂Ω

f(x) θ(x).n(x) ds.

2. Assume that Ω is moreover of class C2, and let g ∈W 2,1(Rd,Rd). Consider the functional G(Ω) defined
as G(Ω) =

∫
Γ
g ds. Then G is shape differentiable over C1,∞(Rd,Rd), and its shape derivative reads:

∀θ ∈ C1,∞(Rd,Rd), G′(Ω)(θ) =
∫

Γ

(
∂g

∂n
(x) + κ(x)g(x)

)
θ(x).n(x) ds.

Remark 2.3. An extension of this theorem provides a mathematical version of the so-called Transport
theorem (or Liouville’s theorem) in mechanics, for the differentiation of integrals of scalar quantities over
evolving-in-time volumes, which is at the root of conservation laws. Indeed, if f : [0, τ ] ∋ t 7→ f(t) ∈ L1(Rd)
is differentiable at t = 0, θ ∈ W 1,∞(Rd,Rd), and f(0) ∈ W 1,1(Rd), then I(t) :=

∫
Ωtθ

f(t) dx is derivable at
t = 0, and (see [172], th. 5.2.2):

I ′(0) =
∫

Ω

f ′(0) dx+
∫

∂Ω

f(0) θ · n ds.
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More involved examples are the so-called state-constrained systems, or distributed systems, which involve
quantities depending on Ω through the solutions of PDE posed on Ω. Before getting into specifics, let us
mention the remarkable Structure Theorem, which gives, in utter generality, precise information about the
form of shape derivatives (see [172], prop. 5.9.1, or [105], Th 9.3.6).

Theorem 2.3. Let k ≥ 1, and Ω ⊂ Rd an open, (possibly unbounded) measurable set, with topological
boundary Γ. Let

F :
{

Ω ⊂ Rd open and measurable
}
−→ R

a functional of the domain such that the underlying mapping Ck,∞(Rd,Rd) ∋ θ 7→ F ((I + θ)(Ω)) is Fréchet
differentiable at 0, with shape derivative F ′(Ω). Then,

1. The restriction of F ′(Ω) to D(Rd,Rd) is a (vector-valued) distribution of order at most −k over Rd,
whose support is included in Γ.

2. If Ω is an open domain with C1 boundary, with outer unit normal vector field n, then for any θ ∈
Ck,∞(Rd,Rd) such that θ.n = 0 on Γ, one has:

F ′(Ω)(θ) = 0.

This result accounts for two very intuitive and important facts: point (1) states that the functional F is
insensitive to perturbations of the domain that do not affect its boundary. Point (2) is a bit more subtle,
meaning that if the data enjoy enough smoothness, and if θ is a deformation field which only acts on Γ by
convection, then at first order, the domain (and any ‘reasonable’ function of it) stays unchanged.

2.2.2.2 Material and Eulerian derivatives

We are now interested in the differentiation with respect to the domain of functions of the domain
u : Ω 7→ u(Ω) ∈ W(Ω) which are themselves defined on the domain - W(Ω) being a Banach space depending
on Ω. So to set ideas, we follow here the presentation in [290], where the considered domains Ω are bounded
domains of class Ck, k ≥ 1, deformations θ belong to Ck,∞(Rd,Rd), and W(Ω) is one of the Sobolev spaces
Wm,p(Ω) (m ∈ [0, k[, p ∈ [1,∞]). As in the previous section, the forthcoming notions of material and
Eulerian derivatives may be defined in several slightly different frameworks (e.g. that of functions u(Ω)
belonging to Ck(Ω), or a space which does not depend on Ω). When the context is clear, we shall however
give to all these notions the same name.

Let then u be an application which, to any domain Ω of class Ck associates a function u(Ω) ∈Wm,p(Ω).
So as to give a precise meaning to the ‘derivative of u with respect to Ω’, the natural idea is to fix x ∈ Ω,
and look at the derivative of Ω 7→ uΩ(x) ∈ R in the sense of definition 2.1. This makes sense if x ∈ Ω,
for then, for θ ∈ Ck,∞(Rd,Rd) small enough, x ∈ Ωθ. Yet, we may need to take the derivative of the
behavior of u(Ω) at the boundary ∂Ω, and the previous argument no longer holds for a point x ∈ ∂Ω. The
mathematically convenient point of view consists in transporting all functions u(Ωθ) back to the reference
domain Ω, considering u(Ωθ) ◦ (I + θ) ∈ Wm,p(Ω), then derivating with respect to θ. Only then will the
notion of ‘pointwise derivative’ be inferred.

Definition 2.2. Function u : Ω 7→ u(Ω) admits a material (or Lagrangian) derivative u̇(Ω) at a given
domain Ω provided the transported function

Ck,∞(Rd,Rd) ∋ θ 7−→ u(Ωθ) ◦ (I + θ) ∈Wm,p(Ω),

which is defined in the neighborhood of 0 ∈ Ck,∞(Rd,Rd), is differentiable at θ = 0.

The derivative u′(Ω)(θ)(x) of u with respect to the domain, at a fixed point x ∈ Ω, is now defined as
what we would expect from it, using formally the chain-rule:

d
dθ

(u(Ωθ)(x+ θ(x)))
∣∣
θ=0

= d
dθ

(u(Ωθ)(x))
∣∣
θ=0

+ d
dθ

(u(Ω)(x+ θ(x)))
∣∣
θ=0

u̇(Ω)(θ)(x) = u′(Ω)(θ)(x) +∇u(Ω)(x).θ(x)
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Definition 2.3. Function u : Ω 7→ u(Ω) admits a Eulerian derivative u′(Ω)(θ) at a given domain Ω in the
direction θ ∈ Ck,∞(Rd,Rd) if it admits a material derivative u̇(Ω)(θ) at Ω in direction θ, and ∇u(Ω).θ ∈
Wm,p(Ω). One defines then:

u′(Ω)(θ) = u̇(Ω)(θ)−∇u(Ω).θ ∈Wm,p(Ω). (2.2)

These notions naturally extend to the case of functions u which, to any (part of the) boundary Γ of a
domain of class Ck, associate a function u(Γ) ∈Wm,p(Γ) (m ∈ [0, k[, p ∈ [1,∞]):

Definition 2.4. Let u : Γ 7→ u(Γ) ∈Wm,p(Γ) a function,
– u admits a material (or Lagrangian) derivative u̇(Γ) at Γ if the transported function

Ck,∞(Rd,Rd) ∋ θ 7−→ u(Ωθ) ◦ (I + θ) ∈Wm,p(Γ)

is differentiable at θ = 0
– If u admits a material derivative u̇(Γ) at Γ, and ∇Γu(Γ).θ ∈ Wm,p(Γ), then u admits a Eulerian

derivative u′(Γ)(θ) in direction θ ∈ Ck,∞(Rd,Rd), defined as:

u′(Γ)(θ) = u̇(Γ)(θ)−∇Γu(Γ).θ ∈Wm,p(Ω) (2.3)

Note that definition (2.3) of the Eulerian derivative in this last case only differs from (2.2) in that the
tangential gradient appears in the second definition - which is fortunate since u(Γ)(x) does not make sense
for points x outside Γ. To emphasize the connection between both formulae, let Γ0 the boundary of a domain
Ω0 of class Ck (k ≥ 2), V a fixed open neighborhood of Γ0 in Rd, and define a function Ω 7→ ũ(Ω) ∈Wm,p(V )
as the unique extension of u(∂Ω) to V which is constant along the normal direction to ∂Ω, i.e. ∇ũ(Ω) ·n = 0
on V . It can then be shown that the Eulerian derivative of u(Γ) at Γ0 (in the sense of definition 2.4) coincides
with the Eulerian derivative of ũ(Ω) at Ω0 (in the sense of definition 2.3).

Let us illustrate these notions with an example - taken from [234] - that will come in handy in the sequel.

Example 2.1. Material and Eulerian derivatives of the unit normal vector field. For any bounded domain
Ω of class C1, let nΩ : ∂Ω→ S1 be the unit normal vector field, pointing outwards Ω. We consider variations
θ ∈ C1,∞(Rd,Rd). As expected, strictly speaking, the Eulerian derivative of nΩ has no precise meaning since
it is only defined on the (varying) boundary ∂Ω. However, its Lagrangian derivative does. Indeed, for θ
small enough, the transported normal vector reads:

∀y ∈ ∂Ω, nΩθ
((I + θ)(y)) =

com (I +∇θ(y)) · nΩ(y)
|com (I +∇θ(y)) · nΩ(y)| ,

where, for any d×d matrix M ∈Md(R), com(M) stands for the matrix of cofactors of M . Using the matrix
identity

t(I +∇θ(y)) com (I +∇θ(y)) = det (I +∇θ(y)) I,

differentiating at θ = 0 (which makes sense because all the terms are polynomials in θ), we get:

d

dθ
(com(I +∇θ(y))|θ=0

= div(θ)(y) I − t∇θ(y).

Eventually, the function Ω 7→ n∂Ω ∈ C(∂Ω) admits a Lagrangian derivative ˙n∂Ω whose expression reads, for
all θ ∈ C1,∞(Rd,Rd), y ∈ ∂Ω:

ṅΩ(θ)(y) = div(θ)(y) nΩ(y)− t∇θ(y)nΩ(y)− (div(θ)(y)− (t∇θ(y)nΩ(y)).nΩ(y))nΩ(y).
= (t∇θ(y)nΩ(y)).nΩ(y))nΩ(y)− t∇θ(y)nΩ(y).

Thus, the Eulerian derivative n′
Ω ∈ C(∂Ω) of nΩ at y ∈ ∂Ω is defined as:

n′
Ω(θ)(y) = (t∇θ(y)nΩ(y)).nΩ(y))nΩ(y)− t∇θ(y)nΩ(y)−∇∂ΩnΩ(y).θ(y)

= −∇∂Ω(θ.nΩ)(y)

We now turn to shape optimization in the context of a particular mechanical system, that of linearized
elasticity.
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2.2.2.3 Linear elasticity in a nutschell

Let Ω ⊂ Rd be a bounded domain filled with a homogeneous, isotropic, elastic material. This assumption
means that deformations of Ω as a result of an external stress are instantaneous, and that Ω instantaneously
returns to its equilibrium state as soon as the stress ceases.

The motion of such a domain Ω is described in terms of the deformation function ϕ : Ω → Rd, with
the meaning that each point x ∈ Ω is moved to the position ϕ(x). Equivalently, one may consider the
corresponding displacement function u = ϕ− I.

So as to measure the induced internal distortion (or strain) within Ω, the Cauchy-Green strain tensor
C(ϕ) and the Green-Saint-Venant strain tensor E(ϕ) of the motion are respectively defined as:

C(ϕ) = t∇ϕ.∇ϕ = I + t∇u+∇u+ t∇u.∇u , E(ϕ) =
1
2

(C(ϕ)− I).

Grossly speaking, C(ϕ) is a measure of the deformation of a curve drawn on Ω entailed by ϕ, while E(ϕ)
quantifies how far ϕ is from being a rigid-body motion.

The theory of linear elasticity rests upon on the following two fundamental approximations:
– Small deformation approximation: the Green-Saint-Venant strain tensor can be approximated by the

linearized strain tensor e(u) :=
t∇u+∇u

2 , that is: E(ϕ) ≈ e(u).
– Linearity of the material’s behavior: the material’s constitutive law is generally defined as the rule

which connects the Cauchy stress tensor σ to the strain. Under reasonable assumptions, it is of the
following form (see [92], sections 3.6, 3.7):

σ = 2µE + λtr(E) + o(E),

where λ, µ are the Lamé coefficients of the material. In linear elasticity, it is assumed that the higher
order term o(E) can be dropped in the above expression.

All in all, in the linear elasticity approximation, the internal stress σ = σ(u) within Ω is related to the
displacement field by the so-called Hooke’s law:

σ(u) = Ae(u) = 2µe(u) + λtr(e(u))I.

Of course, these considerations do not hold for a general motion of Ω, and should be reserved to the descrip-
tion of the regime of ‘small displacements’.

In this context, if Ω is clamped on a part ΓD of its boundary ∂Ω, submitted to body forces f , and traction
loads g are applied on a part ΓN := ∂Ω \ ΓD, the static equilibrium equations for u read:




−div(σ(u)) = f in Ω

u = 0 on ΓD
σ(u)n = g on ΓN

(2.4)

Let us now outline the classical mathematical setting of the study of the linear elasticity system. The
considered domain Ω is assumed to be bounded and Lipschitz. As regards ΓD, we shall assume that it is
of positive (d − 1) Hausdorff measure (unless an equilibrium relation is imposed between the body forces
and the traction loads). The body forces f are assumed to belong to H−1(Ω)d, and g ∈ H− 1

2 (∂Ω)d. One
can then prove, using Korn’s inequality in combination with the usual Lax-Milgram’s lemma, that these
equations admit a unique solution u ∈ H1

ΓD
(Ω)d, where:

H1
ΓD

(Ω) :=
{
v ∈ H1(Ω) , v = 0 on ΓD

}
.
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As is generally the case with elliptic equations, higher regularity results hold in the context of linear
elasticity; yet, they are much harder to prove. As an illustration, one has the following regularity theorem
in the setting of pure displacement in R3 (see [92], Th. 6.3.6).

Theorem 2.4. Assume that ΓD = ∂Ω. Let m ∈ N∗, p ∈]1,∞[, p ≥ 6
5+2m ; assume the boundary ∂Ω

enjoys Cm+2 regularity, and f ∈ Wm,p(Ω)3. Then, the solution u ∈ H1
ΓD

(Ω)3 to (2.4) actually belongs to
Wm+2,p(Ω)3, and there exists a constant C > 0 which only depends on Ω such that:

||u||Wm+2,p(Ω)3≤ C||f ||Wm,p(Ω)3 .

A similar regularity result holds in the case of pure traction, that is when ΓN = ∂Ω, and the usual
equilibrium relation between f and g is satisfied so that there exists a unique solution u to (2.4) (upon
higher regularity assumptions on g). However, as in the case of the Laplace operator , these results fail in
the case when mixed boundary conditions are imposed, that is when ΓD and ΓN or both non empty: troubles
are likely to appear in the vicinity of points x lying at the change of boundary conditions x ∈ Γ̃D ∩ Γ̃N . Far
and apart from these regions (if any), the regularity of u is as high as can be expected.

2.2.2.4 PDE constrained shape optimization

We are now interested in performing shape optimization with respect to objective functionals J(Ω) which
depend on the domain Ω via solutions to the linear elasticity system. Let us sketch the context: we consider
shapes, that is bounded Lipschitz domains Ω ⊂ Rd, which are clamped on a subset ΓD ⊂ ∂Ω of positive
(d − 1)-Hausdorff measure, submitted to body forces f ∈ H1(Rd)d, and traction loads g ∈ H2(Rd)d, to
be applied on another part of their boundary ΓN ⊂ ∂Ω. Neither ΓD, nor ΓN but only the free boundary
Γ := ∂Ω \ (ΓD ∪ ΓN ) is subject to optimization. The displacement field uΩ of Ω is the unique solution in
H1

ΓD
(Ω)d to the system: 




−div(σ(u)) = f in Ω
u = 0 on ΓD

σ(u)n = g on ΓN
σ(u)n = 0 on Γ

. (2.5)

According to the previous requirements, the considered set Uad of admissible shapes is defined as:

Uad = {Ω bounded and Lipschitz, ΓD ∪ ΓN ⊂ ∂Ω} , (2.6)

so that the set Θad of admissible variations is:

Θad =
{
θ ∈W 1,∞(Rd,Rd), θ = 0 on ΓD ∪ ΓN

}
.

The first example that comes to mind as an objective function is the compliance

C(Ω) =
∫

Ω

Ae(uΩ) : e(uΩ) dx =
∫

Ω

f · uΩ dx+
∫

ΓN

g · uΩ ds, (2.7)

which can be equivalently interpreted as the work of external forces applied on Ω, or as the mechanical
power spread by Ω in its motion. Another example - used in the device of MEMS (micro electromechanical
systems) - is the following: if u0 ∈ H1

ΓD
(Ω)d is a target displacement for uΩ, α ≥ 2, and k ∈ L∞(Rd) is a

weight function, we shall consider the least-square criterion

D(Ω) =
(∫

Ω

k |uΩ − u0|αdx
) 1

α

. (2.8)

Let us eventually mention a major challenge in structural optimization, that of the device of structures in
which the elastic stress is controlled. In this scope, we will encounter functionals of the form

S(Ω) =
∫

Ω

k||σ(uΩ)||p dx, (2.9)
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where k ∈ L∞(Rd) is a weight function, p ≥ 2, and ||.|| denotes the Frobenius norm over d×d matrices. This
short list is by no means exhaustive; for instance, a wide literature in structural optimization is devoted to
criteria involving eigenfrequencies, etc... (see chap. 2 in [40] for numerous interesting optimization problems).

The rigorous computation of the shape derivative of functionals of the domain such as (2.7-2.9) is not
an easy task. In practice, we rely on a formal method - much easier to carry out - to obtain the expressions
of these shape derivatives, namely Céa’s fast derivation method, introduced in [72]. It is formal in the sense
that all the data at hand - objective functions, domains, deformations - are assumed smooth enough, and
above all that the state system uΩ is differentiable with respect to the shape.

Consequently, unless otherwise specified, we shall thenceforth assume that all the considered shapes
Ω ∈ Uad are smooth enough (i.e. of class Ck, for k ≥ 1 large enough), and similarly for the deformation fields
θ ∈ Θad, and displacement functions uΩ.

Let us now illustrate the kind of results and techniques we shall meet repeatedly in this manuscript with
a representative example, quoted from [14]. Let j, k : Rdx×Rdu → R two smooth functions, fulfilling adequate
growth conditions. Define an objective function J(Ω) as:

∀Ω ∈ Uad, J(Ω) =
∫

Ω

j(x, uΩ(x)) dx+
∫

Γ∪ΓN

k(x, uΩ(x)) ds. (2.10)

Theorem 2.5. Functional J(Ω) defined as (2.10) is shape differentiable at any Ω ∈ Uad, and its shape
derivative J ′(Ω) reads:

∀θ ∈ Θad, J
′(Ω)(θ) =

∫

Γ

(
j(x, uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ +

∂(k(x, uΩ))
∂n

+ κk(x, uΩ)
)
θ · n ds, (2.11)

where n is the unit normal vector field to Ω, κ is the mean curvature of ∂Ω (oriented so that κ(x) is positive
when Ω is locally convex near x), and pΩ ∈ H1

ΓD
(Ω)d is the adjoint state, defined as the unique solution to:




−div(Ae(p)) = −j′(uΩ) in Ω

p = 0 on ΓD
σ(p)n = −k′(uΩ) on Γ ∪ ΓN

. (2.12)

Outline of proof. A rigorous proof of such a result is generally achieved within two steps.

1. First, one needs to prove the Fréchet differentiability of θ 7→ J(Ωθ), which requires a change of variables
in the integrals defining J to bring them back to Ω or (a subset of) ∂Ω, with only the integrands
depending on θ (see [172], prop. 5.4.3). Doing so yields:

J(Ωθ) =
∫

Ω

j(x+ θ(x), uΩθ
(x+ θ(x))) det(I +∇θ) dx

+
∫

Γ∪ΓN

k(x+ θ(x), uΩθ
(x+ θ(x))) |com(I +∇θ) · n| ds

(2.13)

This expression naturally features the transported functions uΩθ
◦ (I + θ).

2. The most natural way for computing the derivative J ′(Ω) is then to differentiate directly with respect
to θ in (2.13), which brings into play the material derivative u̇Ω of Ω 7→ uΩ. Hence, one needs first to
study the existence of u̇Ω, and - if possible - to reach an expression for it. This stage consists in a use of
the implicit function theorem in the variational formulation for uΩ, and supplies a variational problem
for u̇Ω (see [172], §5.3.3). Using this variational problem and that of the adjoint state pΩ allows for a
simplification in the expression of J ′(Ω).

However perfectly rigorous, this method is not completely satisfactory as far as intuition is concerned.
Indeed, the involvement of the adjoint state appears a bit miraculously in this context, and its expression
is difficult to guess beforehand, whereas it is a key ingredient when it comes to making the expression of
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J ′(Ω)(θ) completely explicit in θ (which is crucial in numerical practice).

Another method consists in considering the Lagrangian function L : Uad × H1
ΓD

(Rd)d × H1
ΓD

(Rd)d ∋
(Ω, v, q) 7→ L(Ω, v, q) ∈ R, which incorporates the state equation for uΩ as a constraint, using a Lagrange
multiplier q:

L(Ω, v, q) =
∫

Ω

j(v) dx+
∫

Γ∪ΓN

k(v) ds+
∫

Ω

Ae(v) : e(q) dx−
∫

Ω

f.q dx−
∫

ΓN

g.q ds

Then, J(Ω) can be expressed in terms of L(Ω, ., .) as:

∀q ∈ H1
ΓD

(Rd)d, J(Ω) = L(Ω, uΩ, q). (2.14)

Now, we compute the partial differentials of L(Ω, ., .) at a given point (u, p) ∈ H1
ΓD

(Rd)d ×H1
ΓD

(Rd)d:
– The partial differential of L(Ω, ., .) with respect to the q variable reads:

∀q ∈ H1
ΓD

(Rd)d,
∂L
∂q

(Ω, u, p)(q) =
∫

Ω

Ae(u) : e(q) dx−
∫

Ω

f · q dx−
∫

ΓN

g · q ds.

Canceling this derivative at (u, p) yields the variational formulation associated to the state system
(2.5), and is then equivalent to u = uΩ.

– Similarly, the partial differential of L(Ω, ., .) with respect to the v variable reads:

∀v ∈ H1
ΓD

(Rd)d,
∂L
∂v

(Ω, u, p)(v) =
∫

Ω

j′(u) · v dx+
∫

Γ∪ΓN

k′(u) · v ds+
∫

Ω

Ae(v) : e(p) dx;

canceling this derivative is equivalent to the fact that p = pΩ, the unique solution to system (2.12).
To conclude, differentiating with respect to the domain in (2.14) for a fixed, arbitrary function p ∈ H1

ΓD
(Rd)d

produces:

∀θ ∈ Θad, J
′(Ω)(θ) =

∂L
∂Ω

(Ω, uΩ, p)(θ) +
∂L
∂v

(Ω, uΩ, p)(u̇Ω(θ)), (2.15)

because ∂L
∂q

(Ω, uΩ, p) = 0. Now evaluating (2.15) at p = pΩ allows to cancel the unpleasant last term in the
right-hand side, and yields:

∀θ ∈ Θad, J
′(Ω)(θ) =

∂L
∂Ω

(Ω, uΩ, pΩ)(θ). (2.16)

Eventually, the last partial differential is computed using theorem 2.2 for the differentiation with respect to
the domain Ω of integrals of fixed functions over Ω, or Γ, and leads to the desired formula.

Remark 2.4. As a matter of fact, Céa’s method can be rigorously justified in some cases (see [105], chap.
10, §5). Indeed, it is easily seen that J(Ω) can be expressed as a min-max value of the Lagrangian functional
L(Ω, ., .):

J(Ω) = min
v∈H1

ΓD
(Rd)d

max
q∈H1

ΓD
(Rd)d

L(Ω, v, q).

Under certain hypotheses on the objective function J(Ω), it turns out that, for any Ω ∈ Uad, this min-max
value is actually a saddle point. Using a theorem for the differentiation of a saddle point with respect to a
parameter (see [105], chap. 10, th. 5.1) yields the same conclusion (2.16) as above.

Expression (2.11) lends itself to a physical interpretation. Grossly speaking, the terms j(x, uΩ) and(
∂(k(x,uΩ))

∂n
+ κk(x, uΩ)

)
correspond to static force fields. The adjoint state defined by (2.12) is a displace-

ment driven by forces pointing towards a decrease in the values of functions j and k. The term Ae(uΩ) : e(pΩ)
is the opposite of the power spread by the virtual displacement p, obtained when submitted to body force
j′. Consequently, (2.11) indicates that the increase in performance of a given shape Ω with respect to J is
governed by the following trends:
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– Ω should ‘flee’ from where the criteria j and k are high,
– Ω should ‘expand’ (resp. ‘retract’) where the power received in a virtual move which improves its

performance is positive (resp. negative).

Remarks 2.5.
– The shape derivative of the compliance C(Ω) has a remarkably simple expression, in the particular

case when no body force is applied (i.e f = 0). Indeed, it is easy to see that the problem is self-adjoint,
i.e. pΩ = −uΩ, and:

∀θ ∈ Θad, C
′(Ω)(θ) = −

∫

Γ

Ae(uΩ) : e(uΩ) θ · n ds.

Note that Ae(uΩ) : e(uΩ) is everywhere non negative, which accounts for the intuitive face that, for
the compliance of a shape to be reduced, it should be reinforced everywhere, and first and foremost in
the areas where the dissipated elastic energy is high.

– Analogous results hold for other objective functions, e.g. objective functions of the form (2.9).

2.2.3 Shape optimization using Hadamard’s method

Let Ω0 an initial (smooth enough) shape, to be optimized with respect to a given criterion J(Ω), over a
set Uad of admissible shapes, which accounts for constraints.

2.2.3.1 The shape optimization problem

Up to this point, the only constraint we have been imposing on a shape Ω is that ΓD ∪ ΓN should be
part of ∂Ω. This constraint is especially easy to enforce, for if a shape Ω is such that ΓD ∪ ΓN ⊂ ∂Ω, and
||θ||W 1,∞(Rd,Rd)< 1 is a deformation field such that θ = 0 on ΓD∪ΓN , then ΓD∪ΓN ⊂ ∂Ωθ. However, a lot of
different constraints may have to be taken into account when dealing with realistic problems. Unfortunately,
their very mathematical formulation (let alone incorporation into a shape optimization algorithm) may prove
very tedious. To name a few, the following constraints are of tremendous importance in shape optimization
of elastic structures:

– One could require the volume V (Ω) :=
∫

Ω
dx or the perimeter P (Ω) :=

∫
∂Ω
ds of an admissible shape

Ω, to be equal, or lower or equal, to a prescribed upper bound.
– A whole class of particularly demanding constraints (yet crucial in the industrial context) is that of

manufacturing constraints. Examples of such are constraints over the curvature of shapes, over the
minimum authorized thickness for their members (to ensure the robustness of the associated mold), or
the maximum authorized thickness (so that the cooling process is not hindered). These constraints often
arise as pointwise contraints, and are numerically very sensitive. See [228] for detailed explanations.

– A huge litterature has been devoted to stress-based constraints, such as the famous Von Mises criterion.
These constraints also often arise as pointwise contraints.

Admittedly, the conceptual difference between the cost and constraint functionals lies almost solely in the
formulation of the optimization problem. For example, searching for a shape of minimal compliance under
a volume constraint, and searching for a shape of minimal volume under a constraint on the compliance are
two different optimization problems of equal relevance in practical applications.

In the remainder of this manuscript, we shall limit ourselves with constraints on the volume and perimeter
of shapes. They shall be enforced owing to the simplest possible approach: the optimization problem is
brought back to that of the constraint-free minimization of a (Lagrangian-like) weighted sum L(Ω) of J(Ω),
and V (Ω) (or P (Ω)), the latter being penalized with a fixed Lagrange multiplier ℓ:

min
Ω∈Uad

L(Ω), L(Ω) = J(Ω) + ℓV (Ω), (2.17)

where Uad stays defined by (2.6). This simple formulation may seem very crude. Yet, more sophisticated
algorithms for handling constraints rely on such a formulation, in combination with an update strategy



2.2. Shape sensitivity analysis using Hadamard’s boundary variation method 63

for the value of the Lagrange multiplier, so that the constraint is fulfilled in the end (e.g. the quadratic
penalty method, the augmented lagrangian method, or the log-barrier method, see [237], chap. 17). More
sophisticated (and efficient) algorithms exist, such as the Method of Moving Asymptotes (MMA), described in
[300], or the Method of Feasible Directions (MFD) [312], but we shall not deal with them in this manuscript.

2.2.3.2 A generic shape optimization algorithm

We are now in position to introduce a shape gradient algorithm for the considered problem (2.17). As
suggested by the name, it relies on the knowledge of the first-order shape derivative L′(Ω) to produce a descent
direction θ ∈ Θad for L. Higher order algorithms, relying for instance on the (exact or approximate) shape
Hessian of L could improve considerably the efficiency of this algorithm. Unfortunately, they generally are
much more tedious to devise, on both theoretical and numerical sides. Nevertheless, it is worth mentioning
the interesting work [177] in this direction.

The Structure Theorem 2.3 states that only the normal component of the deformations undergone by Ω
play a role in the shape derivative of ‘reasonable’ objective functions. Actually, the shape derivatives of all
the functionals we shall get interested in enjoy a slightly more precise structure (see theorems 2.2 and 9.1).
They are actually of the form,

Θad ∋ θ 7→
∫

Γ

v (θ.n) ds,

for a certain scalar field v defined over Γ, which makes the computation of a descent direction for L(Ω) very
easy: letting

θ = −v n
in the asymptotic expansion (5.44) yields, for t > 0 small enough:

L(Ωtθ) = L(Ω)− t
∫

Γ

v2 ds+ o(t) < L(Ω),

that is, θ is a descent direction for L at Ω.

A generic algorithm for shape optimization using shape sensitivity analysis is then derived from these
considerations as follows:

Starting with an initial guess Ω0, for n = 0, ... till convergence,

1. Compute the solution uΩn to the linear elasticity system (2.5) on Ωn, and (if need be) the adjoint state
pΩn ,

2. Infer a descent direction θn ∈ Θad for the objective functional at stake, along the lines of section 2.2.2.4,

3. Choose a descent step τn > 0 small enough so that J(Ωnτnθn) < J(Ωn).

4. The new shape is obtained as Ωn+1 = Ωnτnθn .

2.2.3.3 A look at velocity extension and regularization

The above shape optimization algorithm uses a descent direction under the form of a vector field defined
on the free boundary Γ of the current shape Ω. Although it is the only needed piece of information to
carry out the theoretical algorithm, we shall see soon that it will be very convenient to work with a velocity
field which is consistently extended to the whole space Rd (or at least a neighborhood of Γ). What’s more,
this descent direction may prove very irregular (i.e. present sharp variations). On the practical side, this
may cause uncontrolled oscillations on the boundary of the considered shapes, and jeopardize the numerical
stability of a shape optimization algorithm (see [232], chap. 6).

These are classical issues in gradient-based optimization algorithms. The usual solution to both problems
consists in changing scalar products when identifying a descent direction θ from the formula for the shape
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derivative (2.2.3.2) [64, 162]. For instance, let us give a hint of how to extend and regularize the scalar field
v into another scalar field ṽ (note that one could also chose to extend and regularize directly the velocity
field θ = −vn). Let V be a Hilbert space which is composed of functions enjoying the desired regularity for
ṽ, a a coercive bilinear on V form which is close to I (so that ṽ is hopefully close to v). Usual choices in our
context are V = H1(Rd), and:

∀φ, ψ ∈ V, a(φ, ψ) = α2

∫

Rd

∇φ.∇ψ dx+
∫

Rd

φψ dx,

for a small α > 0, which can be interpreted as a regularization lengthscale. Then ṽ is searched as the unique
solution in V to the variational problem:

∀φ ∈ V, a(ṽ, φ) =
∫

Γ

vφ ds.

See [162] for a discussion over the importance of this procedure in the context of shape optimization.

At this point, some numerical issues still need to be solved, the most serious of which being the question
of how to couple this theoretical framework with a numerical method for representing and deforming shapes.

2.3 Shape optimization using the level set method

In this section, we dwell on the description of the level set method for shape optimization, as originally
proposed by G. Allaire, F. Jouve and A.-M. Toader in 2004 [14], following previous works of J. Sethian and
A. Wiegmann [278] and S. Osher and F. Santosa [243] (see also [319]). The reason for doing so is twofold:
first, we shall use this method as such in chapters 4 and 5; what’s more, the mesh evolution method for
shape optimization proposed in chapter 9 is closely modeled on it.

Let D a fixed computational domain, in which all the shapes Ω0, ...Ωn, ... produced during the shape
optimization process are to be included. D is meshed once and for all, e.g. using a Cartesian mesh (which
allows for the use of finite difference schemes for operations related to the Level Set Method). Each shape
Ωn is represented as the negative subdomain of a level set function φn (numerically discretized at the nodes
of the Cartesian mesh of D).

The main problem is that, as the mesh of D is fixed, no mesh of the shape Ωn is available to perform
the mechanical analyses needed when it comes to computing the shape gradient J ′(Ω). This difficulty is
overcome by approximating the state problem, posed on Ωn, with another problem in linear elasticity, posed
on the whole domain D. The Ersatz material approach consists in filling the complementary part D \ Ω of
a shape Ω ⊂ D with a very soft material of Hooke’s tensor εA, ε≪ 1. The resulting approximated problem
on D reads then: 



−div(AΩe(u)) = f in D

u = 0 on ΓD
AΩe(u)n = g on ΓN

, (2.18)

where the total Hooke’s tensor AΩ is defined as:

∀x ∈ D, AΩ(x) =
{

A if x ∈ Ω
εA if x ∈ D \ Ω

.

Consistency of this approach can be shown (see [8]).

The shape optimization using the level set method can now be summed up as follows:
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Starting with an initial guess Ω0, for n = 0, ... till convergence,

1. Compute the solution uΩn to the linear elasticity system (2.18) on D, and (if need be) the adjoint state
pΩn , using the Ersatz material approximation.

2. Infer a descent direction θn ∈ Θad for the objective functional at stake, along the lines of section 2.2.2.4
(which is consistently extended to D), and extend it to a neighborhood of ∂Ωn, as evoked in section
2.2.3.3.

3. Choose a descent step τn > 0, and solve the Hamilton-Jacobi equation:
{

∂φ
∂t

+ θn.∇φ = 0 on [0, τn]×D
φ(t = 0, .) = φn on D

e.g. using one of the numerical schemes described in chapter 1.

4. The new shape Ωn+1 is defined as Ωn+1 := {x ∈ D,φ(τn, x) < 0}.

We end this section by giving some examples, obtained using the level set method, which illustrate each
one of the above functionals of the domain (2.7, 2.8, 2.9). The first two are excerpted from [14], whereas the
last one stems from [13]. We shall reproduce these examples in different contexts in the next chapters.

Example 2.2. Let us start with the most famous example in structural optimization, namely the benchmark
Cantilever test case. A cantilever, included in a computational box D of dimensions 2 × 1, equipped with
a Cartesian mesh of 160× 80 elements, is clamped at its left side, and a unit vertical load is exerted at the
centre of its right side (no body force is applied). The compliance (2.7) of the structure is minimized, under
a volume constraint enforced using a fixed Lagrange multiplier ℓ = 150. 150 iterations of the optimization
process are performed, and the results are reported on figure 2.4.

ΓD1

2

ΓD

Figure 2.4: (Left) Boundary conditions, (middle) initialization, and (right) resulting shape in the cantilever
test case (reprinted from [14]).

Example 2.3. We search for the optimal shape of a gripping mechanism: the problem consists in getting
a maximal displacement of the jaws of a grip, as a response to prescribed traction loads. Details on the test
case and results are reported on figure 2.5. This test case is especially interesting for at least two reasons: on
the mathematical side, the minimization problem of a least-square functional such as (2.8) is not self-adjoint,
as is the one of the compliance (2.7) - see remark 2.5. On the numerical side, this test case happens to be
very sensitive, notably due to the very thin features which have to develop so as to bestow enough flexibility
to the shape.

Example 2.4. Stress reduction has long been a topic of major interest in structural optimization. The last
proposed test case consists in minimizing the stress-based criterion (2.9) in the situation depicted on figure
2.6 (left). The localizing weight k is taken equal to 1, except in a small region around the load point and
the fixation wall, and several values for the exponent p are considered. Notice that, for large values of p, the
reentrant corner - which is the area of highest stress concentration - is rounded up.

Remark 2.6. In section 2.2.1, we hinted at the fact that all the produced shapes by means of the generic
algorithm of section 2.2.3.2 should be homeomorphic to one another. The conclusions of examples 2.2 and
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5

40.21.4

Figure 2.5: (Left) Boundary conditions, (middle) initialization, and (right) resulting shape in the gripping
mechanism test case (reprinted from [14]).

ΓD

1 0.6

1

• 0.4

Figure 2.6: (Left) Boundary conditions, (middle-right) respective final shapes in the L-Beam test case, for
values of the exponent p = 2, 10 (reprinted from [13]).

2.3 may then seem weird in this regard, since the number of holes of the shapes have changed from the
initial to the final stages. This is actually a numerical hack of Hadamard’s method: at some iteration n,
the descent step τn in step (3) of the previous algorithm has not been chosen so small that (I + τnθn) is a
Lipschitz diffeomorphism (yet, decreasing of the objective function is assessed).



Chapter 3

Mesh generation, modification and
evolution

Contents
3.1 Generalities around meshes: definitions, notations, and useful concepts . . . 68

3.1.1 Definitions and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.2 Appraising the quality of a mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.3 The Riemannian paradigm for size and orientation specifications in meshing . . . . 71

3.2 Mesh generation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.1 Two and three-dimensional ‘volume’ mesh generation . . . . . . . . . . . . . . . . . 73

3.2.1.1 Delaunay-based mesh generation . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.1.1.1 Definition and properties of the Delaunay triangulation of a set

of points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.1.1.2 Step 1: generation of the Delaunay triangulation of a set of points 75

3.2.1.1.3 Step 2: enforcement of the entities of Σ in the resulting mesh . . 78

3.2.1.1.4 Some post-processing issues . . . . . . . . . . . . . . . . . . . . . 79

3.2.1.2 Advancing front methods for mesh generation . . . . . . . . . . . . . . . 80

3.2.1.3 Meshing implicit domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.2 Surface mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.2.1 Direct methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.2.2 Mesh generation using the parameter space . . . . . . . . . . . . . . . . . 85

3.2.2.3 Extension to more complex surfaces . . . . . . . . . . . . . . . . . . . . . 86

3.3 Local remeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.1 Volume remeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.1.1 Mesh enrichment operators . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3.1.2 Mesh decimation operators . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.1.3 Connectivity changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.1.4 Vertex relocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.2 Surface remeshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.2.1 Remeshing through parametrization of the surface . . . . . . . . . . . . . 90

3.3.2.2 Direct remeshing of the surface . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4 Mesh evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4.1 Purely Lagrangian methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4.1.1 Lagrangian deformation of a surface triangulation . . . . . . . . . . . . . 93

3.4.1.1.1 Connections with remeshing . . . . . . . . . . . . . . . . . . . . 93



68 Chapter 3. Mesh generation, modification and evolution

3.4.1.1.2 Modifying the input velocity field . . . . . . . . . . . . . . . . . 94

3.4.1.1.3 Resolving intersections . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.1.2 Deforming a volume mesh together with its surface mesh . . . . . . . . . 95

3.4.2 Hybrid methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Meshing issues lie at the upstream of most numerical considerations: indeed, meshes are commonly used
as a means for representing or deforming shapes in computer graphics; on a different note, in the field of
numerical simulation of mechanical or physical phenomena, the bulk of techniques (e.g. finite element or
finite volume methods) rely on a mesh as a computational support.

This (admittedly verbose) chapter is aimed at providing a non exhaustive overview of the stakes and
salient features of three major topics around meshing, namely:

– Mesh generation: building a mesh out of a set of numerical data (e.g. a CAD representation) regarding
a mechanical part is generally the first step in simulating related phenomena.

– Mesh deformation: a mesh accounting for an evolving domain may have to be deformed while tracking
the underlying physical process.

– Mesh modification: not all meshes are equally suitable as supports of numerical simulations, and
‘ill-shaped’ meshes may have to be ‘improved’ in this perspective.

Here we only deal with simplicial meshes (i.e. meshes whose elements are triangles in two dimensions,
tetrahedra in three dimensions), mostly from the standpoint of numerical simulation. Besides, we are espe-
cially interested in the three-dimensional context, in which meshing features often do not arise as straightfor-
ward generalizations of the two-dimensional ones. The material presented below is therefore systematically
discussed with the three-dimensional case in mind. We shall however give a hint of some simplifications
available in two dimensions, when there are.

In truth, many meshing techniques are application-specific. In this chapter, we limit ourselves to outlining
the main facets of the discussed topics. In chapter 8, we shall be focusing extensively on one implementation
of a (re)meshing algorithm. Hence, whenever possible, the general idea of a technique will be given in this
chapter, referring then to chapter 8 for an illustration in the situation of a particular application.

This chapter is organized as follows: in section 3.1, several definitions and notations are introduced,
as well as two important concepts, those of element quality, and Riemannian metric associated to a size
prescription, which we shall encounter throughout a substantial part of this manuscript (chapters 6 7, and
8). Then, in section 3.2, we present the main techniques for generating a tetrahedral mesh, or a surface mesh,
depending on the form under which the domain (or surface) to mesh is supplied to the algorithm. Although
this manuscript is not concerned so much about mesh generation issues, we indeed saw fit to give a clue
of the main methods for they have a lot in common with further topics discussed hereafter. What’s more,
the difficulties inherent to these methods may explain several biases in the device of the mesh evolution
strategy presented in chapter 9. Section 3.3 deals with modification (or optimization) of tetrahedral or
(three-dimensional) surface meshes: in particular, the most common operations are detailed. Eventually,
section 3.4 is devoted to the topic of mesh evolution; the main goals and difficulties are overviewed, and
several particular methods, useful in different contexts, are presented.

3.1 Generalities around meshes: definitions, notations, and useful
concepts

3.1.1 Definitions and notations

Credit where credit is due, let us start by defining the objects at stake in this chapter:
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Definition 3.1. Let Ω ⊂ Rd (d = 2, 3) a bounded, open, polygonal domain. A simplicial mesh T (trian-
gulation in two dimensions, tetrahedralization in three dimensions) of Ω is a finite collection (Ki)i=1,...,NT

of closed d-simplices (triangles in two dimensions, tetrahedra in three dimensions), such that the following
conditions hold :

1. The elements of T form a covering of Ω in the sense that : Ω =
⋃NT

i=1 Ki.

2. Each simplex of Ki ∈ T has non empty interior:
◦
Ki 6= ∅.

3. Every two distinct simplices Ki,Kj ∈ T , i 6= j have disjoint interiors :
◦
Ki ∩

◦
Kj = ∅.

These requirements are often supplemented with the following condition:
4. For every two distinct simplices Ki,Kj ∈ T , i 6= j, the intersection Ki ∩Kj is

– either a point, or a common edge to Ki and Kj in two dimensions,
– either a point, or a common edge or a common (triangular) face to Ki and Kj in three dimensions.

The vertices of the simplices Ki ∈ T are called the vertices of T ; likewise, the edges of those simplices are
called the edges of T , etc...

Condition (2) above bans from the definition of a mesh those sets of simplices containing flat elements,
whereas condition (3) prevents the considered meshes from containing overlapping elements. In the sequel,
such sets of simplices will sometimes be referred to as invalid meshes. The last condition (4) is called the
conformity assumption, and is sometimes not required in the definition of a mesh. It roughly states the
two-dimensional (resp. three-dimensional) meshes we are interested in have triangles (resp. tetrahedra)
matching in an edge-to-edge (resp. face-to-face) fashion. See figure 3.1 for illustrations.

Ki

K1

K2

(a) (b) (c)

Figure 3.1: (a) Invalid mesh: triangle Ki (in red) overlaps several other triangles; (b) non conforming mesh:
triangles Ki and Kj have an intersection which is neither a vertex, nor an common edge; (c) a conforming
mesh, in the sense of definition 3.1.

Most often, we will speak of a mesh in Rd without mentioning the associated polygonal domain. We will
also improperly refer to a mesh of a polyhedron ‘close’ to a non polyhedral domain Ω as a mesh of Ω.

Definition 3.2. Let T a mesh in Rd, x ∈ T a vertex, pq ∈ T an edge.
– The ball of point x is the (closed) set B(x) of simplices K ∈ T such that x is a vertex of K.
– The shell of edge pq is the (closed) set Sh(pq) of simplices K ∈ T such that pq is an edge of K.

In this manuscript, we will naturally be led to consider meshes that are included in a larger mesh in a
conforming fashion:

Definition 3.3. Let T a simplicial, conforming mesh in Rd. A submesh of T is a finite collection T ′ of
closed d-simplices (Kj)j=1,...,NT ′

such that, for any j = 1, ..., NT ′, Kj is an element of T .

Besides, we will also consider meshes of entities of codimension 1, that is curves in R2, and especially
surfaces in R3. The forthcoming definitions are dedicated to the last case, but are easily adapted to meshes
of the boundary of two-dimensional domains.
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Definition 3.4. Let Γ ⊂ R3 a compact polyhedral surface, with or without boundary. A surface mesh or
triangulation S of Γ is a collection (Ti)i=1,...,NS

of closed (two-dimensional) triangles Ti ⊂ R3 enjoying the
following properties:

1. The elements of S form a covering of Γ in the sense that : Γ =
⋃NS

i=1 Ti.

2. Each triangle of Ti ∈ S has non zero two-dimensional Hausdorff measure (i.e. is not ‘degenerated to
an edge or a point’).

3. The intersection Ti ∩ Tj of every two distinct triangles Ti, Tj ∈ S, i 6= j is included in the set of edges
of triangles of S.

and occasionnally the following conformity property:

4. For every two distinct triangles Ti, Tj ∈ S, i 6= j, the intersection Ti∩Tj is either a point, or a common
edge of Ti and Tj.

Once again, the vertices of the triangles Ti ∈ T form the vertices of S, etc...

Like in the case of domains, we shall actually speak of meshes of non polyhedral surfaces.

The notions of ball of a point, and shell of an edge defined previously in the case of simplicial meshes
of domains extend straightforwardly to the case of surface triangulations. However, when dealing with such
objects, some specific features may be considered:

Definition 3.5. Let S be a surface mesh in R3.
– One says that S is manifold, provided the associated polygonal surface Γ is a compact submanifold of

R3, with or without boundary.
– If Γ ⊂ R3 is a smooth compact surface, with or without boundary, one says that S interpolates Γ if

every vertex x ∈ S belongs to Γ.

To each simplicial mesh T in R3, a natural surface mesh ST is associated, collecting the external (tri-
angular) faces of the tetrahedra of T . The surface mesh constructed in this way accounts for a compact
polygonal surface of R3 without boundary.

Definition 3.6. Let T be a mesh in R3, ST the associated surface mesh, and let x ∈ T be a surface vertex,
i.e. x ∈ ST . The surface ball BS(x) of x is the set of surface triangles T ∈ ST sharing x as a vertex.

This surface mesh ST plays a central role when considering T , insofar as it concentrates all the information
about the geometric approximation of the underlying continuous geometry.

3.1.2 Appraising the quality of a mesh

Independently of how well a mesh T approximates the continuous geometry Ω it is intended for - we will
come back to this problem of geometric approximation of a continuous domain in chapter 8 - the ‘numerical
performances’ of T are also greatly impacted by the shape of its elements K ∈ T . Indeed,

– Many classical a priori estimates for the finite element method involve the quality of the computational
mesh T through the aspect ratio σK of its elements, defined as [91]:

σK =
ρK
hK

, (3.1)

where ρK is the inradius of a simplex K - the radius of its inscribed sphere - and hK is the diameter
of K i.e. the length of its longest edge. This measure only depends on the shape of the considered
simplex and not on its size. From a practical point of view, this implies that the accuracy of a finite
element computation performed on T is of course influenced by the size of its elements, but also by
their being ‘well-shaped’.
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– The accuracy of the P1 Lagrange interpolation of a given smooth function f : Rd → R on a mesh T in
Rd is also greatly influenced by the shape of its elements; see the discussion in [282].

– The accuracy of the approximation of geometric quantities (normal vectors, curvatures estimates, etc...)
attached to a surface Γ by means of numerical schemes performed on an associated surface mesh S is
also highly dependent on the shape of its elements and its connectivities [227].

Consequently, any mesh operation (generation, modification, deformation) should be performed keeping in
mind the concern of imposing, restoring or maintaining high-quality elements in mind.

Actually, many definitions for the quality of a simplex K ⊂ Rd could be adopted, all of them being
equivalent from the theoretical point of view as long as they allow to discriminate ‘ill-shaped’, nearly de-
generate (flat) elements from ‘well-shaped’, almost equilateral ones. For instance, in addition to the aspect
ratio (3.1), some authors think it better to assess the quality of a d-dimensional simplex K based on the
minimum dihedral angle between two of its faces, or on the following ratio:

Q(K) =
Vol(K)

(
∑na
i=1 ℓ(ei)

2)
d
2

, (3.2)

where na = d(d + 1)/2 is the number of edges of a d-dimensional simplex, ei are the edges of K, and ℓ(ei)
stands for the length of ei. A huge literature is devoted to the topic of quality functions for simplices: see
for instance [145] §18.2, or [3, 204] for other examples and comparisons.

From the numerical standpoint, one should be very careful to select a quality function which is neither
too severe in evaluating a simplex as a ‘bad’ one (i.e. evaluating an element as ‘bad’ as soon as it slightly
deviates from the ideal shape of an element), for it would prevent almost any operation to be held on meshes,
nor too indulgent, for it would allow for meshes with too many ‘second-rate’ elements.

3.1.3 The Riemannian paradigm for size and orientation specifications in mesh-
ing

In various applications, an appreciated increase in accuracy or computational efficiency can be achieved if
the computational mesh complies with some user-specified size or orientation information (see the examples
of figure 3.2).

Following the lead of the pioneering work [311], a very convenient and elegant way to encode both size and
orientation requirements makes use of a Riemannian framework. In particular, it allows for a straightforward
(in theory) generalization to the anisotropic case of most of the concepts of this chapter (mostly presented
in the isotropic setting), up to an adequate change in the definitions of distance and volume.

Definition 3.7. Let M be a Riemannian metric over Rd (i.e. at each point x ∈ Rd, M(x) is a symmetric,
positive definite d× d matrix); then,

– the length ℓM (γ) of a differentiable curve γ : [0, 1]→ Rd with respect to M is defined as:

ℓM (γ) =
∫ 1

0

√
〈M(γ(t))γ′(t), γ′(t)〉dt.

– The volume VM (K) of a simplex K (with respect to M) is:

VM (K) =
∫

K

√
det(M(x))dx.

– The distance dM (x, y) between two points x, y ∈ Rd in the Riemannian space
(
Rd,M

)
is defined as:

dM (x, y) = inf
γ∈C1([0,1],Rd)
γ(0)=x,γ(1)=y

ℓM (γ).
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Figure 3.2: (Left) A physical phenomenon showing sharp variations near the reentrant corner of a L-shaped
domain can be accurately captured using a mesh whose vertex density is concentrated in this region; (right)
the geometry of a cylinder is optimally described using stretched elements, oriented along its principal axis.

Assume now that a Riemannian metric M is given on Rd. An adapted mesh T in Rd with respect to M
is a unit (or, in a more realistic way, quasi-unit) mesh with respect to M , that is, all its simplices have edges
lengths equal to 1 (resp. lying in

[
1/
√

2,
√

2
]
), in the sense of definition 3.7 (note that in practice, M(x) is

defined only at the nodes of T - or any background structure - and interpolated from these values [145]).

In the particular case that M is a multiple of the identity matrix, that is, for any x ∈ Rd, M(x) = h(x)I,
with h(x) > 0, the associated size prescription is said to be isotropic, and h is the associated size function.

So as to better understand the connection between this notion of adapted mesh to a Riemannian metric
M and a size and orientation prescription, consider the following idealized situation: let T a unit mesh with
respect to M , and x0 a a vertex of T such that M(x) ≡ M is almost constant around x0. Then, every
simplex K of T lying in the ball B(x0) of x0 is inscribed in the ellipsoid ΦM (x0), defined as:

ΦM (x0) =
{
x ∈ Rd, dM (x, x0) = 1

}
=

{
x =

d∑

i=1

xi ei ∈ Rd, λ1x
2
1 + ...+ λdx

2
d = 1

}
,

where the eigenvectors e1, ..., ed of M account for the directions of the principal axis of this ellipsoid, while the
associated eigenvalues λ1, ..., λd are linked to the principal radii (or prescribed lengths) h1, ..., hd in direction
e1, ..., ed by : hi = 1√

λi
, i = 1, ..., d (see figure 3.3). If the size prescription is isotropic (i.e. all the hi are

equal), M is a scalar multiple of the identity matrix: M = αId, α > 0, and only the size function α may be
considered.

Eventually, note that, especially when the prescribed size feature is anisotropic, very stretched elements
may be desired (see again figure 3.3), which do not fulfill the standard quality requirements, hinted at in the
previous section. These quality functions must be traded for their anisotropic counterparts, obtained e.g.
by using the very same expressions (3.1,3.2), except that the distance an volume notions are those supplied
by M .
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•

e1

e2

e3

x0

ΦM (x0)

h2

K

Figure 3.3: The unit ellipsoid ΦM (x0) associated to a (constant) Riemannian metric M , with principal axis
e1, e2, e3, and associated principal radii h1, h2, h3. In blue, a unit simplex K with respect to M , sharing x0

as a vertex, is depicted.

Remark 3.1. The metaphor at the place of honor in this section has been carried further in the work [7],
which points out at a duality between a Riemannian structure M over Rd and a unit mesh of a given domain
Ω with respect to M . This notably allows for a particularly elegant understanding of the dependence on the
mesh of the interpolation error of a smooth function.

Representative examples of construction (and use) of a size map or a Riemannian metric in the perspective
of mesh adaptation will be provided in chapters 6, 7 and 8, and we shall address additional related issues
(such as that of mesh gradation) in chapter 8.

3.2 Mesh generation techniques

This section is intended as a superficial glimpse of the two intimately linked topics of volume and surface
mesh generation. Few theoretical results are available to assess that a particular method will always succeed
- at least with satisfying computational efficiency. For this reason, a great deal of the efficiency of any
mesh generation method lies in the resort to some heuristics as well as on the attention paid to numerical
implementation (see [145] for further details). In this view, the forthcoming descriptions are mere prototypical
outlines, which are hopefully representative of the main features of each method.

3.2.1 Two and three-dimensional ‘volume’ mesh generation

Constructing a simplicial mesh T of a polyhedral domain Ω ⊂ Rd (d = 2 or 3) in an automatic and robust
fashion is possibly the most crucial problem related to meshing in numerical applications. A conceptual gap
in difficulty lies between the two- and three-dimensional instances of this issue, which is highlighted by the
following theoretical facts:

– In two dimensions, any polygonal domain Ω with non self-intersecting (i.e. manifold) boundary can be
endowed with a triangulation whose vertices are exactly those of the boundary polygon. The proof of
this fact (see [151], §3.3.3) is moreover constructive. In practice, various and very robust algorithms
exist in two-dimensions, which are guaranteed to succeed; see for instance [80], chap. 2, for a more
detailed presentation.

– In three dimensions, even very simple polyhedra Ω cannot be meshed without introducing internal
points (see figure 3.4). Actually, the problem of deciding whether a given (non convex) polyhedron can
be meshed without introducing additional points has been proved to be NP-complete in [272]. In the
same vain, for any k ∈ N, the problem of deciding whether a polyhedron can be meshed by introducing
less than k additional vertices (either on the surface, or in the interior) is NP-hard. Conversely, it
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has been proved in [76] that a three-dimensional polyhedron with n vertices can always be meshed,
provided a (provably optimal) number O(n2) of additional vertices is added.

Figure 3.4: (Left): In two dimensions, any polygonal domain can be triangulated using only the vertices of
its boundary; (right) in three dimensions, Schönardt’s polyhedron is a non-convex polyhedron obtained by
twisting a certain partition of a regular prism. It cannot be meshed without introducing any internal point.

In most applications, the domain Ω to be meshed is described via its boundary ∂Ω, which is in turn often
supplied as an associated surface mesh (the question of how to construct such a surface mesh is overviewed
in section 3.2.2). The two most famous mesh generation methods, presented in sections 3.2.1.1 and 3.2.1.2,
assume input data of this kind. However, in section 3.2.1.3, we shall examine a rather different context.

3.2.1.1 Delaunay-based mesh generation

Delaunay-based mesh generation algorithms take as an entry point a surface triangulation S (a boundary
mesh in 2d), with the goal to mesh the interior polygonal domain Ω. Actually, this problem can be posed
in the more general setting of triangulation of piecewise linear complexes (i.e. sets of entities such as edges,
faces that do not necessarily form a closed surface) [280], but we will not need so much generality in the
short forthcoming overview.

Delaunay-based methods are probably among the most popular mesh generation methods, owing to their
great robustness and versatility: we will encounter a great part of the numerical tools it involves (and notably
the vertex insertion procedure) in other fields related to meshing.

3.2.1.1.1 Definition and properties of the Delaunay triangulation of a set of points The mesh
generation method under scrutiny in this section is named after a particular partitioning of the space asso-
ciated to a given set of vertices, namely its Delaunay triangulation.

Definition 3.8. Let P = {pi}i=1,...,N a finite set of points in Rd.
– A triangulation 1 of P is a simplicial mesh T of the (polygonal) convex hull conv(P) of P.
– A Delaunay triangulation of P is a simplicial mesh T of conv(P) which satisfies the empty sphere

criterion: for every simplex K ∈ T , the open circumscribed sphere to K contains no point of P.

Each set of points P enjoys at least one Delaunay triangulation, which is moreover ‘essentially unique’ -
it is actually unique when no d+ 2 points of P lie on a common d-dimensional sphere; if the converse holds,
simple transformations allow to pass from one Delaunay triangulation of P to another [151]. Thus, commit-
ting a small abuse in terminology, we will sometimes talk about the Delaunay triangulation of a set of points.

The Delaunay triangulation of a set of points P is especially interesting since it can be considered as the
‘best’ triangulation of P from various standpoints, as examplified by the following proposition.

1. In the literature, the terminology ‘triangulation’ is widely used in this context, irregardless of the space dimension. Other
denominations can be found, e.g. that of tetrahedralization (in three dimensions), or simplicial decomposition.
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Proposition 3.1. Let P = {pi}i=1,...,N a finite set of points in Rd.

1. (In the particular case when d = 2) For any triangulation T of P, denote as a(T ) the minimum angle
of a triangle of T . Then, among all the triangulations of P, there is a Delaunay triangulation that
maximizes a(T ).

2. (In the particular case when d = 2) For any vector F = (f1, ..., fN ) ∈ RN , and any triangulation T of
P, denote as πT (F ) the P1 Lagrange finite element interpolate of F over T , that is the unique such
function which fulfills:

∀n = 1, ..., N, πT (F )(pn) = fn.

Then, for any F , any Delaunay triangulation of P minimizes the roughness criterion, defined as:

r(T , F ) = |πT (F )|H1(conv(P)),

where |·|H1(conv(P)) stands for the H1 Sobolev semi-norm.

3. For any d ≥ 1, let f : Rd → R be any quadratic function. For any integer 1 ≤ p ≤ ∞, the Lp

interpolation error ep(T ) of f over a triangulation T of P,

ep(T ) = ||f − πT (f)||Lp(conv(P)),

where πT (f) is the P1 Lagrange finite element interpolate of f over T , reaches a minimal value over
the set of all the triangulations of P at a Delaunay triangulation of P.

4. For any d ≥ 1, any real c > 0, let C2,c(Rd,R) the set of C2 scalar functions over Rd, whose Hessian
matrix’s spectral radius is uniformly bounded by c. Define the worst-case interpolation error of a
triangulation T of P as:

wce(T ) = max
f∈C2,c(Rd,R)

||f − πT (f)||L∞(conv(P)).

Function wce(.) reaches a minimal value over the set of all the triangulations of P at a Delaunay
triangulation of P.

As for proofs, see [280] for points (1) and (4). Property (2) can be found in [266], and (3) was originally
announced and proved in two dimensions in [267], then extended to the general case in [225] (with a com-
pletely different proof).

Properties (1) and (2) are probably the most relevant, as far as the optimality of a Delaunay triangulation
of P is concerned. While the first one speaks for itself, the second one accounts for the fact that, if we are in
search of a triangulation T of P to interpolate linearly any data vector F ∈ RN attached to P, a Delaunay
triangulation of P conducts to the ‘smoothest’ possible graph. Unfortunately, both properties fail in three
dimensions, which is an expression of the fact that the Delaunay triangulation is not as ‘good’ in three
dimensions as it is in two dimensions. It is actually likely to contain particularly ill-shaped elements of a
particular type, that of the so-called slivers (see figure 3.5).

Delaunay-based mesh generation methods classically proceed within two main steps.

3.2.1.1.2 Step 1: generation of the Delaunay triangulation of a set of points This first step is
aimed at producing the Delaunay triangulation of the set P = {pn}n=1,...,N of vertices of the input surface
triangulation S. We mainly focus on Bowyer-Watson’s incremental approach (sometimes referred to as
the Delaunay kernel), according to which the points of P are iteratively inserted, so that a sequence Tn,
n = 1, ..., N of Delaunay triangulations is produced, with the property that each triangulation Tn contains
p1, ..., pn

A usual trick consists in generating actually the Delaunay triangulation of the augmented set of vertices
P̃ = P ∪C, where C is the set of vertices of a large cube D (for simplicity), which encloses all the points of P.
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Figure 3.5: A sliver (in bold) is an almost flat tetrahedron, whose edges are all of acceptable lengths, and
whose circumradius is not excessively large with respect to its dimensions.

The main benefit of this operation is that, starting from a Delaunay triangulation T0 of D (which is easily
produced), inserting each point pn, n = 1, ..., N , in the mesh is eased by the fact that pn always belongs to
one of the simplices of the previous triangulation Tn−1.

More accurately, the algorithm operates as follows (see figure 3.6):

– Initialization: the mesh T0 of D is a Delaunay triangulation composed of five tetrahedra.
– For n = 1, ..., N ,

1. Find a simplex K ∈ Tn−1 which contains pn. Existence of such an element is guaranteed since
pn ∈ conv({p1, ..., pn−1}) = D.

2. From K, travel Tn−1 by adjacency and build the cavity Cpn
of pn, defined as the set of simplices of

Tn−1 whose open circumsphere contains pn. It can be shown that Cpn
is a star-shaped polyhedron

with respect to pn.

3. Delete all the elements of Cpn
in Tn−1, and add the elements of the ball Bpn

, defined as the simplices
formed by joining pn to the external faces of the cavity Cpn

. It can be shown that the resulting
triangulation is Delaunay.

This procedure is often summed up with the schematic equation:

Tn = Tn−1 − Cpn
+ Bpn

.

At this point, it is worth mentioning a numerical difficulty attached to the construction of the cavity
Cpn

of the points pn ∈ P (step (2) in the previous algorithm). Whereas a theoretical result guarantees that
Cpn

is star-shaped, it may not not necessarily be the case in practice, due to round-off errors. Hence, a
correction procedure for the cavity has to be implemented, to assess that it is indeed star-shaped, and repair
it if need be; see [151], chap. §2.6.3 for details. We shall come back later to this issue, in a context where
the Bowyer-Watson’s incremental procedure is used to insert vertices in a mesh which does not comply with
the Delaunay requirements (and the cavity is not necessarily star-shaped with respect to the point).

For the sake of completeness, let us eventually mention the other two classical approaches to create the
Delaunay triangulation of points:

– Lawson’s algorithm (also known as the flipping algorithm), illustrated on figure 3.7, is a very elegant
means for generating the Delaunay triangulation of a set of vertices, which is unfortunately restrained
to the two-dimensional case (however a partial extension holds to the three-dimensional case [184]).
It relies on the fact that, in two dimensions, any triangulation of conv(P) can be transformed into a
Delaunay triangulation using only edge swaps, on account of the two following facts:
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Figure 3.6: Insertion of a point p in a Delaunay triangulation using Bowyer-Watson’s procedure; (a): iden-
tification of the polygonal cavity Cp of point p in the current triangulation Tn; (b): removal of Cp, and (c):
reconnection of p with the vertices of Cp: the ball Bp of p is introduced.

– The Delaunay lemma states that the (global) Delaunay property of a triangulation of P can be
checked locally: a triangulation T of P fulfills the Delaunay criterion if and only if, for any edge ab
of T shared by two simplices K1 = abc and K2 = abd, the open circumsphere to K1 does not contain
the fourth vertex d of the configuration. This property actually holds in any dimension.

– The following alternative is only available in two dimensions: for any edge e = ab shared by two
simplices K1 = abc and K2 = abd, either the local Delaunay criterion is satisfied, or the configuration
can be swapped: edge e and the two triangles K1 and K2 are destroyed, and they are replaced by
the alternate configuration, consisting in the diagonal edge ẽ = cd, shared by triangles K̃1 = acd
and K̃2 = bcd, the latter configuration satisfying the local Delaunay criterion.

Figure 3.7 shows an example of Lawson’s algorithm in motion.

a

b

c

d

K1

K2

�K2
�K1

a

b
c

d

(a) (b) (c)

Figure 3.7: Lawson’s algorithm in progress; (a) the two triangles sharing the red edge do not satisfy the
local Delaunay criterion (the circumcircle of T1 appears in dotted line), and the edge must be swapped;
(b) the resulting two triangles from the previous swap now satisfy the local Delaunay criterion, but the
configurations near the red edges still do not; (c) resulting mesh: all the edges satisfy the local Delaunay
criterion, and the global mesh fulfills the Delaunay property.

– The weird parabolic lifting algorithm exploits the connection between Delaunay triangulations and
convex hulls: roughly speaking, the Delaunay triangulation of a set of vertices P = {pn}n∈N

⊂ Rd

can be seen as the projection onto Rd of the (d + 1)-dimensional lower convex hull of the ‘lifted set’
P+ = {p+

n }n∈N
⊂ Rd, obtained by projecting the points pn onto a parabola:

∀n = 1, ..., N, p+
n = (pn, |pn|2).
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Although this point of view is very appealing - and of great use in theoretical studies, few concrete
algorithms based on this property, devoted to generating the Delaunay triangulation of a set of vertices
are known (see however [48]).

3.2.1.1.3 Step 2: enforcement of the entities of Σ in the resulting mesh The first step ends with
a mesh T̃ of D, whose vertices are exactly those of S (plus the corners of D). Unfortunately, unless Ω is
convex, this does not imply that the higher order entities (edges, or faces) of S appear in T̃ , and no mesh of
Ω can thus be obtained.

Some special treatment has then to be applied to T̃ , to modify it into a new mesh T of D, in which all
the entities of S explicitly appear, so that a mesh of Ω exists as a submesh of T , in the sense of definition
3.3. All the usual methods to achieve this purpose rely on the notion of Steiner point:

Definition 3.9. In the context of Delaunay-based mesh generation, a Steiner point is a vertex that has been
inserted in the resulting mesh T of D, which is not a vertex of Σ (neither of D), and has been inserted in
order to help the enforcement process of the entities of S into T .

Henceforth, the problem of enforcing the entities of S into T̃ can take various context-dependent forms:
– One could require the entities of S to appear exactly in the final mesh T , i.e. the edges of S are

edges of T , and similarly for faces. In the literature, this issue is referred to as the boundary integrity
constraint. It is a crucial feature in cases when, for instance, the domain to mesh Ω is a subdomain of
a larger domain, and its boundary S is shared by other subdomains.

– On the other hand, one could only ask the entities of S to appear weakly in T , i.e. as a union of entities
of T (e.g. an edge of S exists as a union of edges of T ). This constraint is of course more permissive
than the former one.

Whatever the retained acceptation, as for the boundary enforcement constraint, several different strategies
can be followed to tackle the problem of enforcing the entities of S into T :

– A first class of methods - see for instance [235] for a three-dimensional work - cling to getting a Delaunay
triangulation T of D, come what may. The entities of S are enforced in T by wisely adding Steiner
points to the set of inserted points, in such a way that any Delaunay triangulation of this new set of
points contains the entities of S (either exactly or weakly). The resulting mesh T sometimes bears
the name of conforming Delaunay triangulation of Ω in the literature. The process of augmenting P
with adequate Steiner points can be thought of a priori: in [250], an algorithm is presented which
refines S into a surface triangulation S̃ which is Delaunay admissible, in the sense that any Delaunay
triangulation of the set of vertices of S̃ contains exactly the entities of S̃. Unfortunately, the refined
surface S̃ may prove very ill-shaped, due to excessive refinement.
Generally speaking, aiming at getting a conforming Delaunay triangulation of Ω is a strong requirement,
for a lot of Steiner points may have to be inserted to this end. In [47], examples are provided of two-
dimensional boundaries S, enjoying m vertices and n edges whose conforming Delaunay triangulations
must have at least O(mn) vertices.

– Following the lead of [85], several authors have proposed to enforce the entities of S into T̃ in the
sense of constrained Delaunay triangulations. Grossly speaking, a constrained Delaunay triangulation
behaves ‘almost-everywhere’ like a Delaunay triangulation, except for some particular constrained
entities, that are precisely those we need to enforce. Constrained Delaunay triangulations (which
are not Delaunay triangulations, properly speaking) retain most of the good properties of Delaunay
triangulations (see [280] for an overview). Three-dimensional algorithms exist to produce a constrained
Delaunay triangulation, which contains the entities of S under weak form. Although no theoretical
guarantee assesses that building such constrained Delaunay triangulations requires much fewer Steiner
points than their conforming Delaunay triangulations counterparts, this is reported true in numerical
practice [281]. This method is used for instance in the work [284], and is complemented by a heuristic
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procedure to remove the Steiner points introduced on the entities of S in the case when these entities
are expected to exist exactly in T .

– Eventually, some authors propose to completely drop the Delaunay criterion, and enforce the entities of
the boundary S in T̃ using local topological mesh operators, namely edge swaps (in combination with a
procedure for adding Steiner points to the mesh). In [154], the authors prove that, in two dimensions,
all the boundary edges of S can be exactly enforced in T̃ without adding any Steiner point, and an
associated numerical procedure based on edge swaps is described (see figure 3.8).

• •p q • •p q • •p q

• •p q • •p q • •p q

Figure 3.8: Enforcement of the missing edge pq in a mesh, using only edge swaps.

The corresponding three-dimensional procedure is more involved. In [154], a robust algorithm is
described for enforcing exactly the entities of S into T̃ . This methods relies heavily on edge swaps
(see section 3.3.1 for a presentation of this operator), the use of which is enabled by the insertion of
several Steiner points. This study is complemented by the work [153], which proposes another method,
allowing the insertion of Steiner points on the entities of S, provided their removal in the end of the
process is possible. This last method makes it possible to tackle the few cases in which the former fails
because of round-off errors, making it impossible to add Steiner points.

Remark 3.2. Because the enforced surface S is assumed to be the boundary of a polyhedral domain, it
is implicitly assumed to be a manifold surface, in particular, it is not self-intersecting (and must be so, for
enforcing S in T̃ would prove impossible, should the converse hold). Interestingly enough, these methods
allow to detect whether a given surface triangulation is self-intersecting, which is far from a trivial problem.

3.2.1.1.4 Some post-processing issues The boundary enforcement procedure of section 3.2.1.1.3 ends
with a mesh T of D (whether be it a Delaunay triangulation or not), in which the surface mesh S has been
enforced (in whichever sense). Two additional operations are classically performed:

– Strictly speaking, the obtained mesh at this point is not yet a mesh of Ω, but rather a mesh of the
larger box D, a submesh of which is a mesh of Ω. To recover a ‘true’ mesh of Ω, one resorts to a
coloring algorithm to remove all the ‘exterior’ tetrahedra of D \ Ω from T : in a nutshell, it consists
in starting from one well-identified exterior element K ∈ T (e.g. one containing a corner of D as a
vertex), then traveling T from K by adjacency, passing from on element to the other through the
triangular faces that are not faces of S. The obtained component is the exterior component D \ Ω
and should be removed (see [145] §7.3.4 for further technical details, especially in the case that several
connected components of Ω are interlocked) . The underlying idea to this technique is adapted into an
algorithm for signing the unsigned distance function to a contour in chapter 6, section 6.4.2.

– The resulting mesh of Ω - still denoted as T - is bound to enjoy very few internal vertices, those being
the Steiner points which have been inserted only with the aim to ease the meshing process, regardless
of any element quality criterion. For this reason at least, a Delaunay meshing algorithm is always
supplemented with a phase during which internal vertices are inserted, with the ambition to improve
the (probably very low) quality of the mesh (see [54] or [145] §7.3.5). As this step is only a component
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of the more general issue of mesh optimization, which is discussed in section 3.3, we shall not go any
further on this topic for the moment.

Remark 3.3. This whole procedure can be extended almost mutatis mutandis (in theory at least) to
an anisotropic mesh generation method. Indeed, using the framework of size and orientation prescription
through Riemannian metrics sketched in section 3.1.3, only the notions relative to distance should be adapted
in the previous construction (which actually confines to adapting the Delaunay criterion of definition 3.8).
See [54, 152] for more details.

3.2.1.2 Advancing front methods for mesh generation

Since their early inception [138, 148], advancing front methods have been the most intuitive ones in mesh
generation: from a surface triangulation S of its boundary, the domain to mesh Ω is filled with tetrahedra
which are constructed one following the other.

Concretely, a typical advancing front algorithm maintains a front F , that is, a list of triangular faces
separating the already meshed region from the one yet to be filled. At each stage of the process, a single face
of the front is considered, based on which the construction of a new tetrahedron is considered. The process
unfolds as follows (see figure 3.9):

– Initialization: the mesh T of Ω does not contain any tetrahedron and the front F is created as the set
of faces of S.

– While F is non empty,

1. Select a triangular face T = abc ∈ F ,

2. search for an ‘optimal’ position for the fourth vertex p̃ of a tetrahedron K = abcp̃ based on T , either
as an already existing point in T , or as a new point to be added.

3. Assess the validity of the resulting mesh from the addition of p̃ (if need be) and K to T . In particular,
it should be checked that K does not overlap other tetrahedra of the mesh. Doing so may require
one or several travels back and forth to step (2), until an admissible proposal p as for the fourth
vertex of a new tetrahedron is reached.

4. Update T , and the front F : T is removed, and the faces of K which do not already belong to
another tetrahedron of the mesh are added.

Such a strategy raises several issues, that are tackled in different ways from one implementation to the
other (see [145], chap. 6 for a far more exhaustive description):

– Each iteration of the algorithm begins with the choice of a face T ∈ F , from which a new tetrahedron
is built. The device of an efficient selection strategy of the faces of the front that should be processed in
priority proves crucial in practice, since it greatly influences the ‘nice behavior’ of the front evolution,
and the convergence of the whole method. Several choices are available in this regard: the most common
one [252] consists in systematically choosing the smallest face (with respect to some measure), so that
too large elements do not hinder prematurely the creation of smaller ones; other authors advocate to
deal in priority with regions that are particularly pinched. More advanced strategies exist to ease the
convergence of the method, which involve several criteria, and notably considerations about the quality
of the elements to be created [264]. A structure of priority queue is often used for describing F .

– Assuming that a face T = abc ∈ F has been chosen, what is the criterion for computing an optimal
point p̃ for forming the new tetrahedron K = abcp̃ ? Once again, each implementation comes along with
its own strategy, but common features can be outlined. While some variants of the method [138, 264]
propose to create all the internal vertices in a first stage, then to find the optimal connections using
the advancing front strategy, most of the implementations attempt to create new vertices, then to
connect them on the fly: a size map is provided (defined on a background control space, which is often
defined as a Cartesian grid, but may be more ‘exotic’ - e.g. a Delaunay triangulation in [155]), and a
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Figure 3.9: Mesh generation using an advancing front algorithm in two dimensions. (a) Initialization: T
is empty, and F contains the edges of Σ; (b) at an intermediate step, the front is composed of the colored
edges, and the blue edge ab is selected for the next triangle creation; (c) an optimal position for a new point
p is proposed, and the associated triangle K = abp is created; (d) final result of the algorithm.

provisional optimal position p̃ is computed, which takes into account the local size feature, as well as
the quality of the element to be created). This position is then compared to that of ‘close points’ from
p̃: if a point q ∈ T is ‘close enough’ to p̃, this position is changed to be q (to avoid very acute ‘nest’).

– Eventually, the validity of the addition of K has to be tested. K is required not to overlap an already
existing element; hence, intersections between K and these elements must be tested in an efficient
way. This generally involves the definition of a neighborhood space, e.g. a background Cartesian
grid (which may differ from the one used for storing the size map), which allows to speed up the
tetrahedron to tetrahedron intersection tests, allowing for coarse and very fast rejection tests. An
efficient implementation of these two last points is substantially eased by the use of efficient data
structures that are detailed in [207].

Advancing front methods enjoy very different assets from Delaunay-based methods:
– The quality of elements lying close to the boundary S is very high, since as long as two independent

parts of the front do not meet (which generally occurs ‘far’ from the boundary), almost nothing can
impede the creation of new elements in an optimal way.

– In the same vein, advancing front techniques prove especially convenient when it comes to generating
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Figure 3.10: (Left) p̃ is the computed optimal position for the third vertex of the triangle built from edge
ab, but q is preferred, since creating abp̃ would cause difficulties in generating good quality triangles in the
next steps; (right) the proposed point p̃ overlaps another triangle of the mesh.

anisotropic meshes, or boundary layer meshes. These concerns were at stake in the early stages of the
techniques (see the work [252] for instance).

– The integrity of the surface mesh S, which is desirable in several applications, and is the difficult
feature to preserve in Delaunay based methods is automatic.

Unfortunately, advancing front methods are undermined by severe drawbacks, the most critical being:
– they are prone to lack efficiency if not properly implemented (see the previous discussion about the

search and intersection tests).
– Even more bothersome is the absence of any theoretical guarantee that the process will successfully

converge, especially when it comes to merging colliding parts of the front. To achieve convergence,
advancing front algorithms have no option but to rely on heuristics - for instance, a strategy for
destroying configurations that are deemed to hamper convergence, which keeps a historical record of
the operations held is described in [264] (elaborating on works referenced therein).

Remark 3.4. Delaunay based and advancing front methods enjoy very different features, and several mixed
approaches have been thought of, which benefit from their respective assets. In this spirit, in [144], the
authors propose to construct the constrained Delaunay triangulation of S, with the smallest number of
internal points possible, then to define a front, on account of a quality criterion (the ill-shaped elements,
to be removed are part of the front), infer optimal positions for new points, to be connected to faces of
the front, then insert the points using the Delaunay procedure described above. In [220], an advancing
front strategy is presented, in which points are incrementally inserted in the mesh, using a variation in the
Delaunay procedure.

We eventually turn to a rather different problem, that of mesh generation for implicitly-defined domains.

3.2.1.3 Meshing implicit domains

Over the last decades, handling surfaces or domains in an implicit way has become increasingly popular.
In biomedical engineering, surfaces or domains of interest (tissues, bones, etc...) are indeed often charac-
terized as regions where one or several measurable quantities are equal to, or lower or equal than a known
physiological threshold. For instance, Computed Tomography (CT) techniques measure a relaxation number
of the intensity of X-rays spread into the human body; since air, bone, water have different behaviors with
respect to this number, these entities can be separately observed by looking at the level sets of the relaxation.
A similar philosophy presides over MRI and PECT techniques. Rather differently, we have seen in chapter
1 that a more and more convenient framework for addressing free and moving boundary problems is that of
the level set method, which features implicitly-defined domains. Hence, obtaining a mesh of the resulting
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domain of such an evolution process naturally involves a mesh generation process for implicit geometries
(see for instance section 3.4.2, and Chapter 8).

The most intuitive way to get a mesh of an implicitly-defined domain is possibly the famous Marching
Cubes algorithm [208] (or one of its numerous variants), which we briefly describe now. Let D ⊂ R3 a com-
putational box, equipped with a uniform grid of nx×ny×nz nodes, denoted as {xijk}1≤i≤nx, 1≤j≤ny 1≤k≤nz

(see [49, 283] for space adaptive versions of the algorithm).
Let φ be a scalar quantity, known as the discrete set {φijk}1≤i≤nx, 1≤j≤ny 1≤k≤nz

of its values at the
nodes of the grid. This set will also be referred to as φ for the sake of simplicity. We aim at meshing the
negative subdomain Ω, and 0 isosurface Γ = ∂Ω of φ (in the language of Chapter 1, φ is a level set function
associated to Ω). To achieve this, each grid cell Q where the sign of φ changes is processed independently
from the others. The intersections of Γ with the edges of Q are computed by assuming e.g. a linear variation
of φ along them. The algorithm then relies on templates for inferring the corresponding piece of triangulated
surface Γ∩Q from those data. A smart use of the symmetries between the 28 = 256 possible configurations
as regards the signs of φ at the vertices of Q allows to bring their number down to 15; see figure 3.11 for
examples.
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Figure 3.11: (a-b) Two patterns for the marching cube algorithm. The red (resp. blue) nodes are associated
to positive (resp. negative) values of φ, and the reconstructed isosurface is greyed; (c-d) two possible
patterns associated to the same configuration for the sign of φ, leading to an ambiguity in the marching
cubes algorithm.

Unfortunately, this alone is not enough to guarantee a ‘fine’ construction of Γ. Indeed, the shape of the
portion Σ ∩ Q of Γ enclosed in Q is not uniquely determined by the intersections of Γ with the edges of Q
(see figure 3.11, (c,d)). If no particular attention is paid, the reconstructed surface Γ may show ‘cracks’, or
‘holes’. Several strategies exist in the literature to alleviate these ambiguities:

– A first approach consists in inventing a smooth piece of surface inside Q from the values of φ at its
vertices (or approximated higher-order information), which could be deemed as representative of the
behavior of Γ, then in deciding accordingly as for the ‘correct’ topology for Γ ∩Q. A very simple and
efficient approach relying on this philosophy is presented in [219]: Γ∩Q is approximated as the 0 level
set of the Q1 Lagrange finite element interpolate πQ(φ) of φ over Q, that is, the unique Q1 function
πQ(φ) such that πQ(φ)(x) = φ(x) for each vertex x of Q. A close study of some elementary properties
of such surfaces allows then to decide in a rigorous way as for the ‘good’ topology to retain for Γ ∩Q.

– Many authors [49, 141] propose on the contrary to capture the ‘correct’ behavior of Γ inside a grid cell
Q by subdividing Q into twelve tetrahedra. This calls for the definition of a new, artificial vertex x0 at
the centre of Q, and of a consistent value for φ at x0 (this can be done e.g. by using Q1 interpolation
inside Q). Then, for each thus obtained tetrahedron K, the portion of surface Γ ∩K is approximated
by using a P1 linear approximation of φ inside K, without any possible ambiguity.

This last point certainly deserves further comments. The variant of the marching cubes algorithm un-
folding on a tetrahedral computational support - which is sometimes referred to as the marching tetrahedra
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algorithm [117] - turns out more convenient than its Cartesian counterpart, given that it lends itself to a
natural and unambiguous reconstruction of Γ. On a different note, the use of a simplicial computational
support allows to use mesh adaptivity. In this respect, see the interesting work [197] for a (possibly adaptive)
marching tetrahedra algorithm with provable bounds on the quality of the final mesh.

Note that, in the first place, the method described above is rather devoted to an implicitly-defined surface
Γ than to a domain Ω - this is actually the context of its original introduction. However, an easy modification
of the templates for reconstructing the piece of surface lying in a grid cell Q from its intersection with the
edges of Q enables the construction of a tetrahedral mesh of the implicit domain Ω [141].

Before putting an end to this section, we should mention the mesh generation method for implicitly-
defined domains introduced by Persson in [253, 254], as an interesting alternative to the marching cubes
algorithm. Keeping the notations of the previous paragraphs, this method requires the function φ to be
the signed distance function to the domain Ω ⊂ Rd, which may be supplied analytically, or defined on
a background grid. The method proceeds along the lines of the following scheme (see figure 3.12 for an
illustration obtained using the Matlab code available on P.-O. Persson’s webpage 2:

1. At first, a set P of points is spread within Ω, with a density related to a prescribed size function h
(also defined on a background grid). Note that whether a point x ∈ Rd belongs to Ω or cΩ can be
easily tested by merely looking at the sign of φ(x).

2. The Delaunay triangulation of conv(P) is generated, and each simplex whose circumcenter lies outside
Ω is removed from the mesh. This phase produces an intermediate simplicial mesh T̃ , whose vertices
are exactly the elements of P.

3. The vertices of T̃ are relocated with the purpose to improve the mesh quality. To this end, an analogy
between edges of a mesh and bars of a truss is used. Besides, the vertices of the boundary of T̃ are
projected to the exact boundary ∂Ω, by making good use of the analytical expression of the projection
operator p∂Ω : Rd → ∂Ω in terms of the signed distance function to Ω (see Chapter 4).

Note that stages (2), (3) may have to be repeated several times until a fine mesh T of Ω is eventually reached.

Figure 3.12: Illustration of Persson’s method; (left) initial set of points P, (middle) Delaunay triangulation
of conv(P), and (right) final mesh after node relocations.

Remark 3.5. This brief and biased summary of some of the most famous methods for volume mesh gen-
eration should definitely not be considered as exhaustive. For example, we did not even made mention to
the class of quadtree (or octree in three space dimensions) methods [279], which propose to generate a mesh
of a domain supplied by means of a description of its surface, relying on a philosophy which shares a lot of
features with the marching cubes method.

2. http://persson.berkeley.edu/
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3.2.2 Surface mesh generation

Surface meshing is quite a peculiar topic; while having a lot in common with two-dimensional volume
meshing (the elements considered being mere triangles), it also inherently exhibits tenuous and specific
connections with differential geometry of surfaces.

Let Γ ⊂ R3 be a surface; a surface mesh S of Γ should fulfill two independent functions:

1. S should consist of well-shaped triangles, whose sizes are adapted to a user-defined prescription.

2. S should be a ‘close geometric approximation’ of the original surface Γ.

Point (2) is obviously the original requirement to the setting of surface meshing, and it could be given several
different meanings, depending on the considered application; for instance, S could be expected to be close to
Γ in terms of Hausdorff distance, or in terms of their first-order geometric behaviors, i.e their normal vector
fields could be asked to be close from one another, so that the surface mesh does not show parasitic ‘folds’.
See [143] for a more exhaustive discussion around this topic, which we will come back to in Chapter 8.

The methods available for meshing a surface Γ also strongly depend on the structure under which the
related information is known. In this section, we limit ourselves to the prevailing case in numerical appli-
cations, namely that of parametrized surfaces - we already mentioned in section 3.2.1.3 how to deal with
another very important class of implicit surfaces.

In sections 3.2.2.1 and 3.2.2.2 below, Γ is assumed to be a single parametric patch, i.e. it is described
through the datum of an open domain U ⊂ R2, and of a smooth, one-to-one and onto mapping σ : U → Γ (see
figure 3.13, left). In Computer-Aided Design (CAD), U is generally a very simple domain, e.g. a rectangle,
and σ is a bivariate polynomial application. Section 3.2.2.3 will eventually explain how this simplified setting
can be used to address the general problem of surface meshing.

Surface mesh generation methods fall into two categories:

3.2.2.1 Direct methods

Direct methods are so named because they act rather at the level of the surface Γ itself than at the one of
the parametric space U . They generally imitate two-dimensional volume mesh generation methods, taking
into account the fact that the object to mesh has now a non trivial geometry.

For instance, [206] proposes an extension of the advancing front method to surface mesh generation, in
a slightly different context than that of this section however; the overall strategy of the advancing front
method presented in section 3.2.1.2 is retained, except that new points are proposed directly on the surface.
Several additional ingredients are added to overcome specific issues such as the fact that the meeting of two
parts of the front is now a purely three-dimensional situation.

Delaunay based methods have also been extended to the context of surface mesh generation: in [86], an
algorithm is proposed, which starts from a very coarse mesh of Γ, e.g. one connecting straightly the points
of its boundary curve, then to insert iteratively vertices on the surface, using an adapted Delaunay kernel.

3.2.2.2 Mesh generation using the parameter space

Recall that, for now, Γ is a single parametric patch, described by a smooth mapping σ : R2 ⊃ U → Γ.
The converse idea to that of section 3.2.2.1 consists in constructing first a mesh T ′ of the parameter space

U (which is nothing but generating a mesh of a two-dimensional domain), then using the application σ to
send this planar triangulation back to Γ: the vertices x of T ′ are relocated to their corresponding positions
σ(x) ∈ Γ without any other alteration of T ′.

This approach suffers from one main drawback: the application σ accounts for a (possibly severe) dis-
tortion, inherent to the fact that it maps a portion of the plane to a (possibly very) curved surface Γ.
Consequently, even a very well-shaped mesh T ′ of U is likely to transform into a dramatically twisted - and
possibly self-intersecting - mesh S of Γ during the final stage of the algorithm.
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Of course, this problem can be alleviated if a sufficiently small mesh size is chosen as for T ′, but this size
should be selected wisely, so that the resulting surface triangulation S does not enjoy too many elements,
and is well-shaped.

The solution, as proposed in [55] (see also [145] §15.3.3 for details), converts the problem of generating a
(even isotropic) mesh of Γ into that of generating an anisotropic mesh of the parameter space. More precisely,
it consists in using an interpolation error estimate for the mapping σ to devise a Riemannian metric M (or
a size map h if an isotropic mesh of U is preferred) on U , so that a quasi-unit mesh of U with respect to
M is mapped to a well-shaped mesh of Γ. This Riemannian metric inherently encodes information about
the second-order behavior of Γ, which is, as evoked above, the key feature in measuring the distortion of the
mapping σ.

3.2.2.3 Extension to more complex surfaces

Assuming the considered surface Γ can be described with a single, smooth parametric patch σ : U → Γ -
as we have been doing so far - seems unrealistic with respect to concrete applications:

– Even very simple surfaces - e.g. spheres (and actually all the compact submanifolds of R3) ! - cannot
be described using a single parametric patch, for obvious topological reasons.

– Many surfaces - especially those accounting for mechanical parts - present sharp features (e.g. ridge
edges, corners, etc...), as exemplified in figure 3.13, right. Describing such surfaces by means of a single
smooth mapping σ seems then hopeless.

Actually, in concrete applications (notably those involving CAD modeling), a surface Γ is provided as
a set {(Ui, σi)}i=1,...,n of patches similar to those described above, such that the images Vi = σi(Ui) are
disjoint open subsets of Γ and covering Γ: Γ =

⋃n
i=1 Vi (see figure 3.13, right). The intersections between

the subsets Vi describe a web of curves {Σj}j=1,...,m, wherein the sharp features of Γ lie.
Now, generating a mesh for Γ requires first to mesh the curves Σj , then to get a mesh Si of each one of

the patches Ui, along the lines of section 3.2.2.2, respecting the discretization of ∂Ui imposed by that of the
intersecting curves Σj so that the final mesh S =

⋃n
i=1 Si of Γ is conforming. See [151], §11.3 for technical

details.

σ

U

Γ

Figure 3.13: (Left) A smooth parametric patch; (right) decomposition of a surface into several smooth
parametric patches along its sharp features.
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3.3 Local remeshing

For various reasons, it is very usual that, in a context of numerical simulation, a mesh is not perfectly
amenable for computations. For instance, we already hinted at the fact that meshes that directly result from
a mesh generation procedure are likely to suffer from poor quality elements. From another angle, it may be
desirable to adapt the size of the elements of a mesh T to a user-specified prescription, e.g. linked to an a
posteriori error analysis of a previous computation held on T .

These concerns express the need for mesh optimization, or remeshing 3 methods: let T a valid mesh (resp.
valid surface mesh) of a domain Ω ⊂ Rd (resp. a surface Γ ⊂ Rd) in the sense of section 3.1.1 - we do not
address here the case of invalid meshes, which appeals for mesh repairing techniques, see [58], chap. 8 -
which is possibly ill-shaped, and not adapted to a given size prescription. The aim is to modify T (resp. S)
into a new mesh T̃ (resp. S̃) of the same domain Ω (resp. the same surface Γ), which is well-shaped and
adapted to the prescribed size. Note that optimizing (or remeshing) a mesh is generally achieved as a series
of local operations, i.e. which affect a configuration of few elements: indeed, modifying large parts of the
mesh at one fell swoop would somehow boil down to a true mesh generation problem.

As in mesh generation, volume remeshing procedures, aimed at remeshing a three-dimensional tetrahedral
mesh (or a two-dimensional triangular mesh), and boundary remeshing procedures, for remeshing a three-
dimensional surface triangulation (or a two-dimensional mesh of a curve), should be considered separately for
they enjoy very different stakes. Indeed, whereas a typical volume remeshing procedure of a volume mesh T
involves more combinatorial analysis since the situations considered then are ‘genuinely’ three-dimensional,
the concerns of enforcing, or preserving, a fine description of the surface accounted for by the initial mesh
should be at the core of any surface remeshing method.

Once again, the issue of local volume remeshing being much more intricate in three dimensions as in two
dimensions, we focus the contents of this section on the former case.

3.3.1 Volume remeshing

In all this section, let T be a tetrahedral mesh, whose elements’ average quality may be to improve, or
whose size ought to be made conform to a given size prescription (supplied e.g. under the form of a size
function h, or a Riemannian metric M).

Most of the remeshing strategies discussed in the literature rely on a combination of four elementary
operations. For the sake of simplicity, all the meshes obtained throughout the iterative remeshing process
are still denoted as T . Here is a very sketchy description of the mesh operators; we shall present their use
in a particular implementation with more details in Chapter 8 (see also [145] for more details).

3.3.1.1 Mesh enrichment operators

Mesh T may have to be enriched either because some of its regions are undersampled (i.e. the number
of vertices is insufficient with respect to the local feature size), or with the aim to improve the quality
of the affected elements. Generally speaking, T is enriched by adding vertices one by one, and numerous
possibilities exist as for the insertion of a new vertex into T :

– the simplest (and most robust) way consists in introducing a new point m on a edge pq of T : pq is split
into two new edges pm and mq, and each tetrahedron K of the shell Sh(pq) of pq is divided into two
tetrahedra (see figure 3.14, left). This procedure is likely to cause very ill-shaped elements to appear in
the mesh - especially in three dimensions, where tetrahedra are much more prone to degeneracy than
two-dimensional triangles - if it is not controlled properly. Some strategies exist to do so: bisection

3. In the literature, depending on authors, remeshing may either refer to as the collection of methods for (iteratively)
improving an input mesh, or on the contrary indicate that the input mesh is downright abandoned, and a new mesh of the
corresponding domain is generated.
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algorithms have been constructed, which iteratively insert the midpoint of a judiciously chosen set of
simplices in the mesh (until a desired size is reached), and can be proved to produce meshes with good
quality (see [205, 268]). Anyway, this operator comes in handy as an enrichment operator in a general
remeshing strategy involving several operators (see the other sections, and Chapter 8).

– So as to mitigate the quick degeneracy of elements entailed by edge splitting procedures, some authors
advocate to insert new points in T using the Delaunay kernel discussed in section 3.2.1.1.2, even if
T is not a Delaunay triangulation [115, 152]. The reason to do so is that the Delaunay kernel alters
a whole local configuration, and - except the possible appearance of slivers - leads to better-shaped
elements. Of course, as the considered mesh T is not a Delaunay triangulation at each stage of the
process, there is no theoretical guarantee that the cavity of each inserted point should be star-shaped,
and this property ought to be enforced (see section 3.2.1.1.2).

– Eventually, some authors propose to initialize and maintain T as a constrained Delaunay triangulation
of the associated domain of interest; see the survey in [280], chap. 6, 7, about Delaunay refinement
algorithms. The mesh T is iteratively refined by inserting (using the Delaunay kernel) the centre of the
circumsphere of the simplices whose ratio circumradius-to-shortest edge is larger than a given threshold,
which depends e.g. on a size prescription (see figure 3.14, right). The maximum circumradius-to-
shortest edge ratio of a triangle in the mesh is automatically decreased by doing so; this procedure lends
itself to provably good mesh refinement algorithms in two dimensions [87, 273]. In three dimensions,
slivers are likely to appear, and have to be taken care of.

T1

T2p

q

p

qm
•

T
•p

p

Figure 3.14: In two dimensions, (left) Splitting an edge pq leads to the formation of four triangles, (right)
illustration of the Delaunay refinement procedure: the centre p of the circumcircle of T is inserted in T ,
using the Delaunay kernel.

3.3.1.2 Mesh decimation operators

Mesh decimation is the exact converse operation to mesh enrichment, and allows to remove vertices from
T that are deemed ‘unnecessary’ - for instance because the desired mesh size for (some region of) T is larger
than the initial one. Edge collapse is the chief operator to decimate T : let pq be a ‘too short’ edge of T
to be collapsed, for instance in the sense that p is collapsed onto q. The edge collapse operator consists in
deleting all the elements of the shell Sh(pq) of pq, then to update the other simplices of the ball B(p) of p
by trading their vertex p with q (see figure 3.15). A practical use of this operator raises several numerical
issues - for instance, several validity checks must be performed - detailed in [145], that we shall discuss with
more details in Chapter 8.

As suggested by their names, both enrichment and decimation operations are aimed at reaching a fine
‘sampling’ in the mesh, and generally do not allow by themselves to reach very good quality meshes. This
becomes the purpose of the two forthcoming operations.

3.3.1.3 Connectivity changes

A first way to improve the quality of T consists in acting on its connectivities: the positions of the
vertices of T is held constant, and only the binds (edges or elements) between them are changed. To serve
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pq
T1
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q•• •

Figure 3.15: Point p is collapsed onto q; the shell Sh(pq) vanishes in the process (in red), and the other
triangles of B(p) are updated.

this purpose, the already introduced swap operator is used in two dimensions. Unfortunately, this operator
does not lend itself to an easy generalization in three dimensions, and two operators are generally used,
which are considered as key ingredients in building good quality meshes, for their ability to get rid of nasty
configurations (including slivers). Their are more extensively described in [139, 150, 114], and in Chapter 8.

– the face swap operator (figure 3.16, left) applies to a configuration of two tetrahedra pabc and qabc
sharing a common face abc. This common face is erased and the opposite edge pq is created in the
mesh, so that the initial configuration is replaced by one featuring three new tetrahedra, namely pqab,
pqbc and pqac (see figure 3.16, left). Of course, several validity checks are in order, so that the resulting
mesh stays valid.

– The edge swap acts as the converse of the previous one, to some extent: let pq be an edge in T , whose
shell is denoted as Sh(pq) = {Ki = pqaiai+1}i=1,...,N (indices are taken modulo N). The vertices
ai form a pseudo two-dimensional polygon P, which can be triangulated (in a non unique way) as
P = {Tj}j=1,...,M without introducing any additional point (see section 3.2.1). Deleting edge pq, then
introducing the tetrahedra formed by basis Tj , and fourth vertex p or q yields a swapped configuration
(see figure 3.16, right). Of course, here again, checks ought to be performed, so that the resulting mesh
remains valid.
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Figure 3.16: (Left) Swap of the common face abc to the two tetrahedra abcp, abcq; (right) swap of edge pq,
associated to one of the possible triangulations of the pseudo-polygon delimited by the ai.

3.3.1.4 Vertex relocation

Last but not least, at the core of almost any mesh optimization strategy stands the vertex relocation
operator, which simply consists in changing the actual position of a particular vertex p of T for an optimal
position p∗ without altering the connectivities of the mesh (provided the motion is admissible). Only the
simplices of the ball B(p) of p are thus affected by the operation.

Several choices are available as for the optimal position p∗. The most celebrated one leads to the so-called
Laplacian smoothing algorithm [134]: denoting as a1, ..., aN the vertices of T which are connected to p, one
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may propose the following formula, which is very reminiscent of a numerical scheme for the Laplace equation
on a Cartesian grid:

p∗ =
1
N

N∑

n=1

an.

Several improvements have been devised for this numerical scheme. To name a few (see [317]), each point
an in the previous formula may be assigned a weight wn > 0, so that the optimal position p∗ reads:

p∗ =
∑N
n=1 wn an∑N
n=1 wn

.

These weights may be related to the volumes of the simplices sharing edge pan, to their qualities, etc...
Furthermore, one could consider relaxing the optimal position p∗: p is not relocated to the optimal position
p∗, but rather to an intermediate position (1 − α)p + αp∗ (for some α ∈ (0, 1)) between its actual position
p and p∗. In the context that each point of the mesh is processed several times in the course of a vertex
relocation stage, relaxing the optimal positions proposed by the Laplacian smoothing procedure generally
turns out to produce better quality meshes.

However very simple, these Laplacian smoothing procedures remain heuristic, and may not improve the
mesh quality, depending on the criterion of interest. This is especially the case in three dimensions, where
Laplacian smoothing - which aims at relocating p so that all the edges pan have similar lengths - may pro-
duce slivers. More sophisticated procedures exists for proposing a ‘good’ optimal position p∗; for instance,
in [139], the worst quality in the elements of the ball of p is expressed as a (minimum, thus nonsmooth)
function of the position of p. Techniques from nonsmooth optimization are then used to find an optimal
position which explicitly increases the worst quality. The same philosophy motivates the work in [3] which
relies on the particular shape of the objective function to find geometrically an optimal position. See [22]
for other examples.

So far, we have been focusing on the physical part of the remeshing process - i.e. the description of the
local operators involved. Actually, a great deal of the efficiency of remeshing algorithms lies in the device
of a successful strategy, that is a way to steer and intertwine the operators (see for instance the discussion
in Chapter 8). As examples of such, let us mention the work [179], which casts a problem of surface mesh
optimization as that of minimizing a quadratic energy aggregating two terms, one of them assessing the
quality of the mesh, the other one assessing the fidelity of the remeshed model to the initial triangulated
surface. On a completely different note, [195] presents a strategy oriented to getting rid of the worst elements
within a tetrahedral mesh.

3.3.2 Surface remeshing

Surface remeshing algorithms are expected to modify an input triangulation S of a surface Γ ⊂ R3 into
a new one, say S̃, which is at the same time well-shaped, and a satisfactory geometric approximation of Γ,
with all the implied shades of difference between the possible acceptations of this notion (see section 3.2.2).

Additional duties for a surface remeshing algorithm could be dreamt up, among other things denoising,
or reconstruction of sharp features on S... see [18] for an overview of these topics.

A surface remeshing algorithm could take two different paths:

3.3.2.1 Remeshing through parametrization of the surface

Inspired by the mesh generation method of section 3.2.2.2, a first idea consists in performing the remesh-
ing of S from a parameter space U ⊂ R2, then map back the obtained two-dimensional mesh to the ambient
three-dimensional space. The immediate problem of this approach is that the supplied surface is assumed to
be fully discrete - i.e. no parametrization, such as one stemming from CAD modeling, is readily available.
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Nevertheless, recent advances in the domain of surface parametrization make it possible to compute
numerically such a parametrization, using for instance the theories on harmonic mappings [121], conformal
mappings [200] - see [136] for a more exhaustive overview of the available techniques. They allow then to
get a (e.g. piecewise linear) mapping τ : S → U , where U is a simple domain in R2 (see figure 3.17). See
[265, 215] for important technical details, limitations and solutions for these techniques.

τ

σ

US

Figure 3.17: Computation of a parametrization σ : U → S of a triangulated surface S using discrete harmonic
mappings (reprinted from [265]).

Once such a parametrization τ , and meshed parametric domain U are computed, the discussion of section
3.2.2.2 is easily put into the context of remeshing to yield a surface remeshing algorithm.

3.3.2.2 Direct remeshing of the surface

The converse approach consists in remeshing S by local manipulations of the discrete triangulation T
[140, 295]. The operators involved are exactly those described in section 3.3.1 (in the two dimensional
setting). Nevertheless, they are more drastically monitored, so that the remeshing operations, performed
either for reaching a fine sampling, or for elements’ quality related reasons do not jeopardize with the
geometric approximation of Γ. We shall linger over these questions about discrete surface remeshing in
Chapter 8; let us however provide haphazardly some clues about the control of the local operators in surface
remeshing:

– Inserting a new vertex p into S poses no particular difficulty. Because the Delaunay kernel is not easily
generalized to surface triangulations, most of the authors propose to insert p into S by splitting one
of its edges. p is generally positioned by computing a local model for a continuous surface from the
discrete data around the split edge [142].

– The edge collapse operator is probably the most delicate to control. If no attention is paid, it can
severely degrade the geometric approximation of Γ, or provoke folds on S. The work [52] proposes
a strategy of mesh decimation based on an upper bound on the gap in terms of Hausdorff distance
(computed by geometric considerations), and on the normal deviation of triangles entailed by an edge
collapse.

– The swap operator should similarly be strictly controlled, e.g. in terms of the deviation of the normal
vectors to the triangles of the resulting configuration with respect to those at their nodes [318, 38].
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– Eventually, the vertex relocation operator can cause a progressive deviation of the remeshed surface S
from the initial model; in [38], the optimal position for relocating a point p is computed in its tangent
plane, then, a (costly) stage of projection to the real surface is performed. In [140], the computation of
optimal position p∗ for a point p relies on the definition of a local quadratic model as for the behavior
of Γ near p, and p is prudently moved to p∗. Quite the same approach is retained in [295], where the
local reconstruction of Γ is performed in a more global fashion, and a whole strategy is based on a
maintenance of a system of overlapping local patches.

Remarks 3.6.
– This short presentation is by no means exhaustive, and many remeshing strategies are based upon com-

pletely different principles. For instance, the work [327] exploits the structure of Centroidal Voronoi
Tessellation, and Lloyd’s relaxation algorithm for their construction, to remesh an input surface trian-
gulation into a high-quality mesh.

– Of course, both volume and surface remeshing techniques can be worked out in concert, as complimen-
tary parts of a domain remeshing algorithm, that is, an algorithm for remeshing at the same time the
internal and surface parts of a tetrahedral mesh. Such a remeshing method is the cornerstone of the
mesh deformation method described in [323], and is precisely what we shall be trying to carry out in
Chapter 8.

3.4 Mesh evolution

This last section is dedicated to the topic of mesh evolution, which naturally comes up in the investigation
of evolving domains (e.g. when it comes to modeling a transient physical phenomenon). Certainly, numerous
celebrated Eulerian techniques make it possible to describe the motion of an evolving domain without relying
on a meshed description (for instance, the level set method, or the volume of fluid method). However, in
the study of numerically sensitive models (e.g. multiphase flows, or multiphase linear elasticity, see also
the discussion in Chapter 4, §4.3.2) may take advantage of an explicit representation of the domain(s) or
interface(s) involved.

The generic mesh evolution problem can be informally formulated as follows. To save notations, in this
section, we do not distinguish the continuous and discrete settings; let Ω ⊂ Rd be a domain (resp. Γ ⊂ Rd

a surface), equipped with a simplicial mesh T (resp. a surface triangulation S), and let u : Rd → Rd a
displacement field, numerically discretized on T (or S) or on a background grid, transforming Ω into Ω̃
(resp. Γ into Γ̃). From this knowledge, how can we build a mesh T̃ for Ω̃ (resp. S̃ for Γ̃) ?

This acute problem has been addressed by (at least) two communities whose needs and requirements
differ utterly, namely computer graphics, and computational mechanics or physics.

3.4.1 Purely Lagrangian methods

Purely Lagrangian mesh deformation methods stick to the intuitive idea of an evolving domain: each
vertex x of T (or S) is relocated to its deformed position x + u(x), the connectivities of the mesh being
unaltered as far as possible (see figure 3.18, left). In the context of purely Lagrangian mesh evolution
methods, we shall refer to this operation as advecting T (or S) along u.

The problem of whether only a surface mesh, or a whole volume mesh (together with its surface mesh)
should be deformed is not that simple. Paradoxically, it does not depend so much on whether the problem
involves only an interface or a domain, as on the precise numerical context of the study. It is generally
dictated by the context. For instance, in [309, 158], only a mesh of an interface Γ between two (or several)
domains filled with different fluids is maintained, whereas its velocity is governed by fluid equations posed
on whole domains. This is because these equations are actually solved on a background Cartesian grid
using high-order finite difference schemes; the mesh of the interface is used to obtain a fine approximation
of the interface conditions (e.g. the surface tension in [309]). On the contrary, there are purely surface
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models (e.g. the mean curvature flow, evoked in chapter 1) that are dealt with by embedding the surface
S in a volume mesh T - in the sense that the faces of S exist as faces of simplices of T - and all the mesh
T is deformed (reasons motivating this approach are explained hereafter) [231]. Surface and volume mesh
Lagrangian deformation exhibit different characteristics, which are summed up below.

S

•

x

x+ u(x)

S

Figure 3.18: In two dimensions, (left): advection of the nodes of a volume mesh T ; (right): an interface S
(red segments) is embedded in a volume mesh T . The trend of S to develop self-intersections in the course
of its advection along a velocity field u (in blue) can be detected by the inversion of the red element.

3.4.1.1 Lagrangian deformation of a surface triangulation

At first glance, deforming a triangulated surface S according to a vector field u (e.g. defined at its nodes)
may seem reasonably easier than deforming a volume mesh T . Unfortunately, quite the opposite is true:
relocating each vertex x of S to its deformed position x+u(x), leaving the connectivities of S unchanged may
lead to a severely distorted surface mesh S̃. Indeed, even if S is well-shaped, with uniform size distribution,
the deformation imposed by u may trigger high or low concentration of vertices on some regions of S̃ (see
figure 3.19, left). Even worse, not even broaching the (common) case that u may express a change of topology
from Γ to Γ̃, even very ‘smooth’ vector fields u may entail self-intersections of S̃ depending on the initial
distribution of vertices on S (figure 3.19, right).

Note that the sole detection of whether a triangulation surface presents self-intersections is not an easy
task, and can be computationally expensive if no particular care is paid to the implementation. Actually, it
is very similar to the front-checking operation in advancing-front mesh generation methods, and like then,
authors generally rely on a background Cartesian grid to make the process computationally affordable [309].

Several solutions have been thought up to address all these critical issues, which we now briefly outline.

3.4.1.1.1 Connections with remeshing Almost all the works around mesh deformation incorporate
at some point a (local) remeshing stage; the reasons are twofold:

– first, as evoked above, advecting a (surface) mesh S along a deformation field u dramatically jeopardizes
the quality of the resulting mesh S̃ (let alone the fact that it may develop self-intersections), which
may undermine the accuracy of numerical operation performed on it (see section 3.1.2).

– Second, the fact that S present a fine quality of elements may, if not prevent, at least postpone the
appearance of ‘folds’ or self-intersections in the resulting surface S̃, and thus facilitate an iterative
process in which the whole deformation account for by u is performed within several substeps of
incomplete yet safe mesh deformation.
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Figure 3.19: In two dimensions, a ‘reasonable’ deformation field u transforms a uniformly meshed contour S
into (left) a new contour S̃ presenting a very high concentration of vertices; (right) a self-intersecting contour
S̃.

However, the ‘amount’ of remeshing that should be performed within a mesh deformation process is quite
unclear, and possibly application-dependent. For instance, the works [324, 330] in the field of computer
graphics intertwine mesh advection stages and remeshing stages, and use the whole kit of local operators
described in section 3.3 to maintain a surface mesh composed of high quality triangles, amenable for accurate
numerical computations. On the contrary, the works [309] to a lesser extent, and [158] are devoted to a high-
accuracy simulation of multiphase flows, and highlight that remeshing the evolving triangulated surface
requires to interpolate the attached state values. Hence, they advocate not to remesh this surface to often,
lest that is should cause excessive numerical diffusion.

3.4.1.1.2 Modifying the input velocity field Let us now look into how the considered evolving surface
could be prevented from developing self-intersections. A first possible method consists in anticipating self-
intersections on the advected mesh S̃, and modifying the values of the displacement field u into new values
ũ, in such a way that advecting S along ũ yields a topologically valid surface mesh.

As an example, in [183], a procedure is presented which strives to mimic the ‘causality principle’ attached
to surface evolution discussed in chapter 1: in a first stage, the initial surface mesh S is advected according
to the velocity field u, to produce a possibly invalid surface triangulation S ′. In a second stage, for each
vertex x ∈ S, the images of the triangles of the ball of x in S ′ are analyzed, and a new deformed position
x + ũ(x) for x is found as the intersection (in the least squares sense) to the supporting planes of these
triangles. This new position is possibly modified using a curvature analysis of the resulting surface, and a
tangential motion term may be added to redistribute the vertices on the deformed surface S̃ (as a substitute
to a remeshing procedure).

A slightly different method is proposed in [61], where a continuous collision detection algorithm makes
it possible to detect colliding elements in the course of the advection from S to S̃. The deformation field u
around the vertices of the colliding triangles are modified by deleting their component along the ‘collision
direction’.

3.4.1.1.3 Resolving intersections The converse viewpoint consists in acknowledging whether -and
where - the advected surface S̃ is self-intersecting, and trying to remedy this problem. This work can be
done prior (i.e. by an analysis of S and u) or after (i.e. by an analysis of S̃) the intersection did occur. Once
two close regions on S (leading to a self-intersection on S̃), or two intersecting regions of S̃ are identified,
the following procedures can be used:

– in [61], a method is proposed, which applies to a configuration of two ‘close’ edges on the initial surface
S, say e and e′, whose vicinities have self-intersecting images on S̃. The two regions are merged on S
by replacing the configurations of the four surface triangles sharing e or e′ as edges with a new one,
where the four triangles are removed, and the boundaries of the resulting holes are joined by a ‘pipe’
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made of eight triangles, provided this new configuration yields a topologically valid surface.
– in [330], two intersecting areas are identified in the advected surface mesh S̃ (using a background

Cartesian grid to speed up the detection). The (polygonal) intersection line Σ ⊂ S̃ between those
regions is explicitly discretized in this mesh by refining accordingly the intersecting triangles, leading
to a new surface mesh S̃ ′. Eventually, a simple analysis of the surface properties allows to decide
which of the two parts of the resulting non manifold, yet conforming, surface triangulation S̃ ′ should
be removed to provide a final manifold surface mesh.

– in [324], S is once again embedded in a Cartesian grid of a computational box, and self-intersections on
S̃ (or possibly very close parts that may want to merge, or very thin parts that may want to separate
on S) are looked for, inside each grid cell. In whichever case, a pattern is used, in the spirit of the
marching cubes method, to propose a new discretization of the part of the surface inside the grid cell,
which is topologically manifold.

All these methods prove highly combinatorial, and difficult to implement. As we have just noticed, the
main difficulty in tracking an evolving surface S is the difficulty in identifying close parts on S. For this
reason, it is generally acknowledged that equipping S with a volumetric structure may prove significantly
helpful in assessing (or preventing) that S is on the verge of becoming - or has already become - invalid. In
this spirit, a deformation method is presented in [334] in which an evolving surface is connected to a graph
structure whose inversions betray self-intersections on S.

3.4.1.2 Deforming a volume mesh together with its surface mesh

The Lagrangian deformation of a tetrahedral mesh T undoubtedly brings about more constraints than
that of a sole surface mesh S. Conversely, these additional constraints can be seen as subsequent controls over
the ongoing mesh advection procedure; indeed, detecting whether a tetrahedron K ∈ T ends up degenerated
(or worse, inverted) at some point is far easier than detecting self-intersections of a surface mesh (it only
requires comparing the orientation of K ∈ T with that of its advected counterpart K̃ ∈ T̃ ); see figure 3.18,
right.

For this reason, even when only the deformation of a surface triangulation S is investigated, some authors
[115, 231] deem fit to embed S into a larger tetrahedral mesh T - in the sense that the faces of S arise as
faces of tetrahedra of T - then to proceed to the whole deformation of T .

In the remainder of this section, let T be a tetrahedral mesh, whose evolution along a displacement field
u is of interest, and ST the associated surface mesh. The forthcoming descriptions can be straightforwardly
adapted to the setting of an evolving surface triangulation embedded in a tetrahedral mesh hinted at above.

A first important point is that u may be defined only at the vertices x ∈ ST , and not at the internal ones
- shape optimization (see Chapters 2 and 9) is only one example of such setting among many. One could
of course try and deform T by the sole displacement of the vertices of the boundary mesh [231]. However,
following [115, 29], extending consistently the displacement field u to the internal vertices of the mesh may
ease the process dramatically. The work [29] proposes to generate a displacement field ũ on the whole mesh
T of the considered domain Ω as the solution to a linear elasticity system posed on Ω, with imposed Dirichlet
boundary conditions u on ∂Ω (i.e. at the vertices of ST .

Once a displacement value has been assigned to each vertex x ∈ T (even if it implies that u(x) = 0 at
the internal vertices x ∈ T ), the advection of T along u can be carried out. Of course, doing so is very
likely to cause overlappings of the resulting mesh T̃ . This situation can be easily detected by comparing the
orientations of the elements of T̃ with those of T .

Now, to get past this difficulty, the works [29, 115, 231] propose to rely on a smart intertwining of
incomplete advection stages of the evolving mesh and remeshing stages, which is illustrated in figure 3.20,
and about which we now provide a coarse, schematic description. If by any chance T̃ happens to be valid
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(i.e. non overlapping), the procedure stops. Otherwise, T is advected as long as it stays valid, meaning
that a real number α ∈ (0, 1) is found (e.g. by dichotomy) such that the advected mesh T ′ along α u is
valid, but ‘on the verge of becoming invalid’ (e.g. one or several elements are nearly degenerate). Then,
the nearly degenerate configurations of T ′ are improved by triggering a remeshing procedure of T ′ (edge
swaps prove especially useful in getting rid of nearly flat elements). A new, hopefully well-shaped, partially
advected mesh T̃ ′ is obtained, and the algorithm starts back with the advection of T̃ ′ along the remaining
displacement (1− α)u.

(a) (b) (c)

(d) (e)

Figure 3.20: An example of mesh deformation procedure; (a) Initial mesh T , (b) the invalid, advected mesh
T̃ (the element in red has been inverted), (c) the partially advected mesh T ′; the greyed element is on the
cusp of inversion, (d) the remeshed, partially advected configuration T̃ ′; en edge swap has made it possible
to resolve the nearly degenerate configuration (in blue); (e) the final configuration T̃ .

Note that, in the course of its deformation, an evolving domain T may of course develop self-intersections.
This typically happens when two independent parts of ST tend to merge, and cannot be prevented by other
methods than those evoked in section 3.4.1.1. The fundamental difficulty is that, once again, no ‘volume
structure’ exists to prevent such collisions. For this reason, in [231], the authors to embed any evolving
triangulated surface S or domain T into a mesh of a larger computational box D. In the last case, the fact
that D \ T is also meshed enables an easy detection of any kind of self-intersection of T , at the expense of
more constraints on the deformation.

Remark 3.7. Several strategies, referred to as Arbitrary Lagrangian-Eulerian methods (see the introductory
material [118, 181]), have been devised in the field of numerical simulation in which the displacement of the
vertices of the mesh may be decoupled from the movement of the considered domain, so that the movement
is always possible and the quality of the mesh is never too much degraded. A correspondance between the
actual mesh, referred to as the reference mesh - which may not exactly account for the domain - and the
real domain itself, must be kept, and the underlying equations of the simulation involved must be written
in terms of the reference coordinates.

3.4.2 Hybrid methods

The difficulties in carrying out mesh evolution methods in a purely Lagrangian way, especially when
it comes to describing motions during which numerous topological changes occur, urged many authors to
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free themselves from tracking deformations explicitly. A non exhaustive and biased selection of alternative
methods is now provided:

– The method proposed in [33] features an explicit discretization S of an evolving surface Γ (we do not
make explicit the dependance of Γ with respect to time for simplicity) at each time step of the evolution,
but describes its deformation in a purely Eulerian way: a background (adaptive) Cartesian grid of a
computational box D is maintained, and the interface Γ is described from the standpoint of the level
set method. The surface evolution between any two iterations of the process is performed using the
level set method (see chapter 1, section 1.2.3 for a description of Strain’s numerical scheme, which is
the one used here), and at each iteration, a contouring step extracts a piecewise affine representation
of Γ at the current state, using a variant of the marching cubes method. The resulting mesh of the
interface is very ill-shaped, but the mesh is only extracted for visualization purposes, a case in which
it does not pose any problem. Note that this technique also allows for an easy transfer of physical
properties of the surface from one iteration to the other (in this particular case, the color).
A similar approach is used in [221]: a polygonal contour is deformed under the motion of its vertices,
and at each time, the (possibly invalid) contour is resampled from a intersecion with a background
grid, and a marching cubes reconstruction analysis.

– The method for mesh evolution proposed by Persson in [254], §5.3 shares many characteristics with
the one proposed in chapter 9: it is interested in a shape optimization problem, namely the Cantilever
test case (see Chapter 2, §2.3, where computing the displacement field u for the evolving domain Ω
requires solving a linear elasticity equation on Ω. To this end, Ω is tracked by relying on the level set
method (performed on a Cartesian grid), and at each time step, Persson’s method for generating a
mesh associated to an implicitly-defined domain (see section 3.2.1.3) to get a mesh of the actual shape
Ω, which makes it possible to compute the new displacement field for Ω.

– Eventually, the method proposed in [260] is of an altogether different type. It proposes to embed a
mesh T of an evolving domain Ω into a mesh of a larger box D. At each iteration, the mesh T is
advected in a purely Lagrangian way, and becomes potentially invalid. Yet, it allows to get an ‘print’
of the advected domain Ω̃ (e.g. by removing the inverted elements). Besides, its also provides a (non
connected) set of vertices P̃ for building a mesh T̃ of Ω̃. This operation is achieved by taking the
restricted Delaunay triangulation of P̃ (in D) to the available ‘print’ of Ω̃.
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which omits certain technical details around the signed distance function, presented here in section 4.2,
as well as the proofs of most of the presented theoretical results (notably the convergence proof in section
4.8).

4.1 Introduction

As exemplified by the recent enthusiasm encountered by the study of composite materials, the general
problem of finding the optimal distribution of several materials in a fixed working domain, in order to
minimize a criterion related to the overall mechanical behavior or cost of the phases mixture, is of great
relevance in material science and industry.

A crucial issue in the modeling of this problem is the parametrization of the phases mixture. While the
exact formulation require the material properties, or the global Hooke’s tensor, to be discontinuous at the
interfaces between two materials, it is often convenient, for numerical purposes, to devise an appropriate
material interpolation scheme to smoothen the coefficients or equivalently to replace sharp interfaces by
diffuse ones. This diffuse or smeared interface approach has its own interest when one is interested in the
optimization of functionally graded materials [66], [203], [296], [308], [314].

There is already a vast literature about multiphase optimization and various methods have been proposed
to address the problem. The Hadamard method of geometric shape optimization, as described in [105], [172],
[234] (see also the brief reminder in chapter 2), was used, for example, in [171] for optimal composite design.
The homogenization method [8], [82], [305] was the main tool in the multiphase problem studied in [11] for the
optimal reloading of nuclear reactors (sequential laminates were shown to be optimal composite materials).
In the framework of the SIMP (Solid Isotropic Material with Penalization) method, several interpolation
schemes have been proposed for the mathematical formulation of the Hooke’s tensor of the mixture [39],
[303], [328]. In general, material interpolation schemes can be quite involved [328] and one may design
such a model in order to favor certain phases [303]. Applications range from the design of materials with
extreme or unusual thermal expansion behavior [287] to multi-material actuators [285], through conductivity
optimization for multi-phase microstructural materials [336]. In the framework of the phase-field method, a
generalized Cahn-Hilliard model of multiphase transition was implemented in [335] to perform multi-material
structural optimization.
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The first publications on multi-phase optimization, using the level set method, are [223] and [321] (see
also [224], [320], [322]). Following an idea of Vese and Chan [315], the authors in [223], [321] used m level
set functions to represent up to n = 2m materials: we shall adhere to this setting (see section 4.5). The level
set functions are advected through eikonal Hamilton-Jacobi equations in which the normal velocity is given
by the shape derivative of the objective function. Unfortunately, the shape derivatives, derived in [223] and
[321], are not correct in full mathematical rigor as we explain in section 4.6. Fortunately, they are however
approximations of the correct formula upon various assumptions. A first goal of the present chapter is to
clarify the issue of shape differentiability of a multi-phase optimization problem. In section 4.3 we give the
correct shape derivative in the setting of a sharp interface between phases (see Proposition 4.10). It was
first obtained in [15] for a problem of damage and fracture propagation but, in a scalar setting, previous
contributions can be found in [175], [46], [248]. Because the phase properties are discontinuous through
the interfaces, the transmission conditions imply that only the elastic displacement and the normal stress
are continuous at the interfaces, leaving the tangential stress and the normal strain discontinuous. These
discontinuities yield obvious difficulties which must be handled carefully. The exact or continuous shape
derivative turns out to be somehow inadequate for numerical purposes since it involves jumps of strains and
stresses through the interfaces, quantities which are notably hard to evaluate with continuous finite elements.
Therefore, Proposition 4.11 gives a discrete variant of this shape derivative which does not involve any jumps
and is similar to the result of [223] and [321]. The idea is to consider a finite element approximation of the
elasticity system, the solution of which has no derivative jumps through the interface, implying that the
shape derivative is much easier to compute.

Another delicate issue in multiphase optimization using the level set method is that the interface is
inevitably diffused and its thickness may increase, thus deterioring the peformance of the analysis and
eventually of the optimization. Note that, for most objective functions, it is always advantageous to introduce
intermediate values of the material properties, so that the interface spreading is produced by the optimization
process itself and not merely by the numerical diffusion. In [223] the authors introduced a penalization term
to control the width of the interpolation zone between the materials. In [321] the level set functions are
re-initialized to become signed distance functions, which permits a more explicit control of the interpolation
width.

A second goal of the present chapter is to propose a smoothed-interface setting which guarantees a fixed
thickness of the interface without any increase in its width (as it is already the case in the standard single
material level set method for shape and topology optimization). This setting relies on the notion of signed
distance function to a domain, whose related features have already been extensively used in image processing
[329], or shape optimization [108]. In the course of a long digression in section 4.2, we are interested in the
behavior of the signed distance function with respect to variations of the considered domain, as well as in
other related properties of independent interest. In section 4.4 we describe a regularization of the interface
which relies on the signed distance function to the interface. Note that the signed distance function has
nothing to do with the level set function which is used in numerical simulations. Indeed, the solution of
the advection Hamilton-Jacobi equation (with a velocity given by the shape derivative) is usually not the
signed distance function (which explains why reinitialization is often used in practice). In such a smoothed
interface setting our main result is Theorem 4.8 which gives the shape derivative of the objective function. It
requires several intermediate technical results, notably finding the shape derivative of the distance function
(first obtained in [108]) and using a coarea formula to reduce a volume integral to a product integral on
the interface and along normal rays. Once again, we show in section 4.4.3 that, when the regularization
parameter (or the thickness of the diffuse interface) is vanishingly small, the exact shape derivative can be
approximated by the formula already obtained in Proposition 4.11 which corresponds to the result of [223]
and [321] too.

Section 4.4.4 and the appendix in section 4.8 explain how the smoothed interface model converges to
the sharp interface problem as the regularization parameter goes to zero. Since, for simplicity, all the
previous theoretical results were stated in the case of a single interface between two phases, we explain how
to generalize our smoothed interface setting to more materials in section 4.5. Section 4.6 is devoted to a
comparison with [223] and [321]. Finally, in section 4.7 we show several 2-d results and make comparisons
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between the different settings and formulas for the shape derivatives. Some optimal designs obtained by
our approach are compared to those previously computed in [321] and [322]: ours are more symmetric and
sometimes slightly different. We believe it is due to our use of a correct shape derivative instead of an
approximate one.

4.2 Around the shape differentiability of the signed distance func-
tion

4.2.1 Some facts around the signed distance function

The main purpose of this section is to study the signed distance function to a domain.

Definition 4.1.
– Let A ⊂ Rd be a closed set. The Euclidean distance function to A, denoted as d(., A), is defined as:

∀x ∈ Rd, d(x,A) = min
a∈A
|x− a|. (4.1)

– Let Ω ⊂ Rd be a Lipschitz domain. The signed distance function dΩ to Ω is defined as:

∀x ∈ Rd, dΩ(x) =





−d(x, ∂Ω) if x ∈ Ω
0 if x ∈ ∂Ω

d(x, ∂Ω) if x ∈ cΩ
. (4.2)

Throughout section 4.2, Ω stands for a bounded open set in Rd which is only assumed to be Lipschitz for
the moment. Note that some of the hereafter presented concepts and results would hold in a more general
settings, but we shall not require so much generality.

Let us start by collecting some definitions related to the signed distance function to Ω (see Figure 4.1 for
a geometric illustration).

Definition 4.2. Let Ω ⊂ Rd be a Lipschitz bounded open set.
– For any x ∈ Rd, Π∂Ω(x) := {y0 ∈ ∂Ω such that |x− y0| = infy∈∂Ω |x− y|} is the set of projections of
x on ∂Ω. It is a closed subset of ∂Ω. When Π∂Ω(x) reduces to a single point, this point is denoted as
p∂Ω(x), and is called the projection of x onto ∂Ω.

– Σ :=
{
x ∈ Rd such that (dΩ)2 is not differentiable at x

}
is the skeleton of ∂Ω (or sometimes Ω by a

small abuse in terminology).
– For any x ∈ ∂Ω, ray∂Ω(x) := {y ∈ Rd such that dΩ is differentiable at y and p∂Ω(y) = x} is the ray

emerging from x. Equivalently, ray∂Ω(x) = p−1
∂Ω(x).

Note that these definitions are easily generalized to the case of an arbitrary closed set A ⊂ Rd. For in-
stance, one may define the set of projections of x ∈ Rd ontoA as: ΠA(x) := {y0 ∈ A such that |x− y0| = infy∈A |x− y|}.

We now recall some classical results (see [105], chapter 7, theorems 3.1, 3.3 and [172], prop. 5.4.14 for
proofs).

Proposition 4.1.

1. Let x ∈ Rd \ ∂Ω and y ∈ Π∂Ω(x). If ∂Ω enjoys C1 regularity in a neighbourhood of y, then:

x− y
dΩ(x)

= n(y),

where n(y) is the unit normal vector to Ω at y, pointing outward.
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2. A point x /∈ ∂Ω has a unique projection p∂Ω(x) onto ∂Ω if and only if x /∈ Σ. In such a case, it satisfies
d (x, ∂Ω) = |p∂Ω(x)− x| and the gradient of dΩ at x reads

∇dΩ (x) = n (p∂Ω(x)) =
x− p∂Ω(x)
dΩ (x)

.

3. As a consequence of Rademacher’s theorem ([126], section 3.1.2), Σ has zero Lebesgue measure in Rd.
Furthermore, when Ω is C2, Σ has zero Lebesgue measure too [214].

4. For any x ∈ Rd, p ∈ Π∂Ω(x), α ∈ [0, 1], denoting xα := p + α(x − p) the points of the ray∂Ω(x) lying
between p and x, we have dΩ(xα) = αdΩ(x) and Π∂Ω(xα) ⊂ Π∂Ω(x).

5. If Ω is of class Ck, for k ≥ 2, then dΩ is Ck too in a tubular neighborhood of ∂Ω. In that case, dΩ is
differentiable at every point x ∈ ∂Ω, and at such a point: ∇dΩ(x) = n(x).

Ω

Σ

x
•

• p∂Ω(x)

n(p∂Ω(x))

ray∂Ω(x) |dΩ(x)|

•
•• y
z1 ∈ Π∂Ω(y)Π∂Ω(y) � z2

Figure 4.1: Unique projection point p∂Ω(x) and line segment ray∂Ω(x) of a point x lying outside the skeleton
Σ of Ω. For a point y ∈ Σ, at least two points z1, z2 belong to the set of projections Π∂Ω(y).

When the boundary ∂Ω of the considered domain enjoys additional regularity, sharper results become
available. Suppose now that Ω is a bounded domain of class C2. For x ∈ ∂Ω, denote κi(x), i = 1, ..., d − 1
the principal curvatures of the smooth submanifold ∂Ω, and ei(x) the associated principal directions. These
curvatures are oriented with the convention that κi(x) ≥ 0 if ∂Ω is locally convex near x, in the normal
section defined by ei(x) (see figure 4.2).

The following proposition is proved in [69].

Proposition 4.2. For every x ∈ Rd, and every y ∈ Π∂Ω(x), one has

∀i = 1, ..., d− 1, −κi(y)dΩ(x) ≤ 1.

Furthermore, denote Γ the set of points x /∈ Σ such that the above equality holds for some i. Then we have:

Σ = Σ ∪ Γ.

If x /∈ Σ, then dΩ is twice differentiable at x and

−κi(p∂Ω(x))dΩ(x) < 1 ; HdΩ(x) =
d−1∑

i=1

κi(p∂Ω(x))
1 + κi(p∂Ω(x))dΩ(x)

ei(p∂Ω(x))⊗ ei(p∂Ω(x))
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•
x

n(x)

ei(x)

∂Ω

Figure 4.2: Case of a negative curvature : ∂Ω is locally concave near x, in the normal section associated to
ei(x).

Remark 4.1. From this result, a standard bootstrap argument allows to conclude that dΩ is actually ‘as
regular as the boundary’, outside Σ. The projection application p∂Ω is indeed related to dΩ and ∇dΩ by:

∀x ∈ Rd \ Σ, p∂Ω(x) = x− dΩ(x)∇dΩ(x).

Let us end this section with a result around the behavior of the skeleton of a series of domains which
‘smoothly’ converge to a given domain Ω. To this end, we need the following definition:

Definition 4.3. (Ck topology on the space of domains) Let Ek the set of all bounded domains in Rd with Ck
boundary. The Ck topology on Ek is the topology spanned by the sets

Uε,Ω0
:=
{

Ω ∈ Ek: there exists a surjective embedding φ : Ω0 → Ω, ||φ− id||Ck(Ω0) < ε
}
,

where ||.||Ck(Ω0) is the usual norm on the set of class Ck mappings.

The following proposition, is proved only in two space dimensions in [69]; yet, the proof extends mutatis
mutandis to the d-dimensional case.

Proposition 4.3. Let Ωn a sequence of bounded connected domains of Rd with C2 boundary, and for any
n ∈ N, denote Σn the corresponding skeleton. If Ωn converges to a domain Ω in the sense of the C2 topology,
then Σn converges to Σ in the sense of the Hausdorff distance between compacts subsets of Rd.

4.2.2 Shape derivative of the signed distance function

Let Ω be a bounded domain with Lipschitz boundary. So as to account for variations of Ω, we rely on
Hadamard’s boundary variation method: we look for variations of Ω of the form

Ωθ := (I + θ)(Ω), θ ∈W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd) ≤ 1.

In the following, we will be led to impose higher regularity over Ω and the allowed deformations θ, which
will be specified when the time comes.

Let us start our study of the dependence of the signed distance function on the domain with the following
elementary result:

Lemma 4.1.

1. Let A,B two closed subsets of Rd, and x ∈ Rd. The Euclidean distance function fulfills the following
Lipschitz-like inequality:

|d(x,A)− d(x,B)|≤ dH(A,B),

where dH(A,B) := max (ρ(A,B), ρ(B,A)) is the Hausdorff distance between A an B, introducing the
notation ρ(A,B) := max

x∈A
d(x,B).
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2. Let x ∈ Rd be a fixed point. The Euclidean distance functions θ 7→ d(x, ∂Ωθ), θ 7→ d(x,Ωθ) and
θ 7→ d(x, cΩθ), from B(0, 1) ⊂W 1,∞(Rd,Rd) into R are 1-Lipschitz.

3. Let x ∈ Rd be given. The signed distance function θ 7→ dΩθ
(x) to x is 1-Lipschitz as a function from

B(0, 1) ⊂W 1,∞(Rd,Rd) into R.

Proof. 1. Without loss of generality, assume dA(x) ≥ dB(x). Then, there exists b ∈ B such that, for all
a ∈ A, one has :

|d(x,A)− d(x,B)| = d(x,A)− d(x,B) ≤ d(x, a)− d(x, b) ≤ d(a, b).

Since this is true for every a ∈ A, it comes from the definitions that:

|d(x,A)− d(x,B)| ≤ d(b, A) ≤ max
b∈B

d(b, A) = ρ(B,A),

whence the result.

2. Let us prove the result for B(0, 1) ∋ θ 7→ d(x, ∂Ωθ). The other points will follow in the same way. For
θ1, θ2 small enough so that (I + θ1), (I + θ2) are Lipschitz diffeomorphisms of Rd, using point (1), we
have :

|d(x, ∂Ωθ1
)− d(x, ∂Ωθ2

)| ≤ dH(∂Ωθ1
, ∂Ωθ2

).

Now, any point y ∈ ∂Ωθ1
can be written under the form y = z + θ1(z), for some z ∈ ∂Ω. Thus,

ρ(∂Ωθ1
, ∂Ωθ2

) = sup
z∈∂Ω

d(z + θ1(z), ∂Ωθ2
) ≤ sup

z∈∂Ω
|z + θ1(z)− (z + θ2(z))| ≤ ||θ1 − θ2||W 1,∞(Rd,Rd).

Estimating ρ(∂Ωθ2
, ∂Ωθ1

) the same way, point (2) is proved.

3. First, note that, as a direct consequence of point (2), and of the fact that dΩ(x) = d(x,Ω) − d(x, cΩ)
for any open domain Ω, the application θ 7→ dΩθ

(x) is 2-Lipschitz (hence continuous). Let θ1, θ2 be
two elements in B(0, 1) ⊂W 1,∞(Rd,Rd). Two cases arise:
– If dΩθ1

(x) and dΩθ2
(x) have same sign, one simply has:

|dΩθ1
(x)− dΩθ2

(x)|= |d(x, ∂Ωθ1
)− d(x, ∂Ωθ2

)|,

and the result follows from point (2).
– On the contrary, if dΩθ1

(x) and dΩθ2
(x) have different signs, there exists t0 ∈ [0, 1] such that

dΩθ1+t(θ2−θ1)
(x) = 0. Then,

|dΩθ1
(x)− dΩθ2

(x)| = dΩθ1
(x) + dΩθ2

(x)

=
(
dΩθ1

(x)− dΩθ1+t0(θ2−θ1)
(x)
)

+
(
dΩθ2

(x)− dΩθ1+t0(θ2−θ1)
(x)
)

≤ t0||θ2 − θ1||W 1,∞(Rd,Rd)+(1− t0)||θ2 − θ1||W 1,∞(Rd,Rd)

,

where the last inequality follows from point (2). This ends the proof.

Recall the following result over the differentiation through a minimum [105] (Chap 10, th. 2.1):

Theorem 4.1. Let X be an arbitrary set, τ > 0 and G : [0, τ ] × X → R a functional. Denote, for every
t ∈ [0, τ ], g(t) := infX G(t, .). Assume that the four conditions below are fulfilled :

1. For every t ∈ [0, τ ], the set X(t) := {x ∈ X , G(t, x) = infX G(t, .)} is nonempty.

2. G is differentiable with respect to t at every (t, x) ∈ [0, τ ]×X.

3. for every x ∈ X(0), the map t 7→ ∂G
∂t

(t, x) is upper semicontinuous at t = 0.
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4. (sequential semi-continuity for the set-valued function) There exists a topology {Ui}i∈I over X such
that, for any sequence {tn} ⊂ [0, τ ], tn → 0, there exists x0 ∈ X(0), a subsequence {tnk

} of {tn}, and
elements xnk

∈ X(tnk
) such that :

– xnk
→ x0 for the {Ui}i∈I - topology over X.

– lim inf
k→∞

t↓0

∂G

∂t
(t, xnk

) ≥ ∂G

∂t
(0, x0)

then there exists x0 ∈ X(0) such that

dg

dt
(0+) = inf

x∈X

∂G

∂t
(0, x) =

∂G

∂t
(0, x0).

The shape differentiability of the signed distance function is now assessed by the following proposition.

Proposition 4.4. Assume Ω is Lipschitz, and let θ ∈ W 1,∞(Rd,Rd) a deformation direction. Fix a point
x ∈ Rd. Then the function R+ ∋ t 7→ dΩtθ

(x) is right-differentiable at t = 0, and, if x ∈ Ω,

d

dt
(dΩtθ

(x))

∣∣∣∣
t=0+

= sup
y∈Π∂Ω(x)

((
y − x
dΩ(x)

)
· θ(y)

)
. (4.3)

whereas, if x ∈ Rd \ Ω,
d

dt
(dΩtθ

(x))

∣∣∣∣
t=0+

= inf
y∈Π∂Ω(x)

((
y − x
dΩ(x)

)
· θ(y)

)
. (4.4)

Proof. We first prove the right-differentiability of the square signed distance function t 7→ dΩtθ
(x)2. To this

end, define a functional G : [0, τ ]× ∂Ω→ R as :

∀t ∈ [0, τ ] , y ∈ ∂Ω, G(t, y) = |x− (I + tθ)(y)|2 .

It is clear that dΩtθ
(x)2 = infy∈∂Ω G(t, y); we will apply theorem 4.1 to G, and must check that hypotheses

(1− 4) are fulfilled:
– Condition (1) is immediate since ∂Ω is bounded.
– Condition (2) is also easy, and we have, for every (t, y) ∈ [0, τ ]× ∂Ω:

∂G

∂t
(t, y) = −2 (x− (y + tθ(y))) .θ(y), (4.5)

where · stands for the usual scalar product over Rd.
– Condition (3) holds because of expression (4.5).
– Endow ∂Ω with the topology induced by that of Rd, and let {tn} be a sequence of real numbers de-

creasing to 0. For each n, let yn ∈ ∂Ω be any element yn ∈ X(tn). As ∂Ω is compact, one can extract
a subsequence {tnk

}, with ynk
→ y0 ∈ ∂Ω.

Now assume y0 /∈ X(0) = Π∂Ω(x), and let z0 ∈ X(0). Then, there exists α > 0 such that:

inf
y∈∂Ω

|x− y| = |x− z0| ≤ |x− y0| − 2α

By continuity, for t > 0 small enough:

inf
y∈∂Ω

|x− (I + tθ)(y)| ≤ |x− (I + tθ)(z0)| ≤ |x− (I + tθ)(y0)| − α. (4.6)

On the other hand, for k large enough, and by definition of ynk
,

|x− (I + tnk
θ)(y0)| ≤ |x− (I + tnk

θ)(ynk
)|+ |ynk

− y0|+ tnk
|θ(ynk

)− θ(y0)|
≤ infy∈∂Ω |x− (I + tnk

θ)(y)|+
(
1 + tnk

||θ||W 1,∞(Rd,Rd))

)
|ynk
− y0|
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and since the last term in the right hand side goes to 0 as k →∞, this is in contradiction with (4.6).
Thus, y0 ∈ X(0).

It remains to show that lim inf
k→∞

t↓0

∂G

∂t
(t, ynk

) ≥ ∂G

∂t
(0, y0), which in our case amounts to:

lim inf
k→∞
t→0

−2 (x− (ynk
+ tθ(ynk

))) · θ(ynk
) ≥ −2(x− y0) · θ(y0).

and this is a direct consequence of the fact that ynk
→ y0, and of the continuity of θ.

Thus, Theorem 4.1 allows to conclude that:

d

dt

(
d2

Ωtθ
(x)
)∣∣∣∣
t=0+

= 2 inf
y∈Π∂Ω(x)

(y − x) · θ(y).

The other expressions follow easily.

In case Ω enjoys at least C1 regularity, this result can be given a more convenient form, using Proposition
4.1, (1):

Corollary 4.1. Assume that Ω is of class C1. For any x ∈ Rd, the function t 7→ dΩtθ
(x) is right-differentiable

at t = 0, and,
– if x ∈ Ω, d

dt
(dΩtθ

(x))
∣∣
t=0+ = − inf

y∈Π∂Ω(x)
θ(y) · n(y).

– if x ∈ cΩ, d
dt

(dΩtθ
(x))

∣∣
t=0+ = − sup

y∈Π∂Ω(x)

θ(y) · n(y).

If furthermore x /∈ Σ, then θ 7→ dΩθ
(x) is Gâteaux-differentiable at θ = 0, and its derivative d′

Ω(θ)(x) reads:

∀θ ∈W 1,∞(Rd,Rd), d′
Ω(θ)(x) = −θ(p∂Ω(x)) · n(p∂Ω(x)).

Remarks 4.2.
– These results were already observed in [107] and used (in a completely different situation than that of

this chapter) in [108], without complete proof (although they are admittedly not very involved).
– The signed distance function can also be seen as a solution of the following Hamilton-Jacobi equation

{
|∇dΩ (x) | = 1 in D,
dΩ (x) = 0 on ∂Ω.

The behavior of the variations of dΩ with respect to the domain can be retrieved by a formal compu-
tation. Indeed, assuming that dΩ is shape differentiable, taking (formally) the derivative in the above
system yields that the directional shape derivative d′

Ω(θ) satisfies
{
∇dΩ(x) · d′

Ω(θ)(x) = 0 in D,
d′

Ω(θ)(x) = −θ(x) · n(x) on ∂Ω.

– In proposition 4.4 and corollary 4.1, we did not consider the case x ∈ ∂Ω. Actually, it seems unclear
what happens then. The proof of proposition 4.4 does not extend as is, and the situation seems more
complicated (it is for instance difficult to assess whether x belongs to Ωtθ or not). Anyway, we will not
need this in the sequel.

– Let us catch a glimpse of the case that ∂Ω is not smooth near a projection point y ∈ Π∂Ω(x). Suppose
for instance that y is a ‘reentrant corner’, which defines a fan as regards its influence over the signed
distance function (see figure 4.3). Formulae (4.3,4.4) express that the derivative of the signed distance
function at x depends on θ(y) not through its normal component at y (which has no meaning), but
rather through its component along the segment [xy].
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Ω

•
•

• x1

x2
y

Figure 4.3: The reentrant corner y creates a ‘fan’ of influence (in grey) over the signed distance function.

We now turn to the differentiability with respect to the domain of some functionals that depend on Ω
through the associated signed distance function dΩ. To this end, we consider a large (bounded) ‘computa-
tional’ domain D which contains Ω and all its variations. We have the following result:

Proposition 4.5. Assume Ω is a bounded domain of class C1, and j : Rdx ×Rs → R a function of class C1.
Define the functional J(Ω) as:

J(Ω) =
∫

D

j(x, dΩ(x)) dx. (4.7)

The application θ 7→ J ((I + θ)(Ω)), from W 1,∞(Rd,Rd) into R, is Gâteaux-differentiable at θ = 0 and its
derivative at Ω reads:

J ′(Ω)(θ) = −
∫

D

∂j

∂s
(x, dΩ(x)) θ(p∂Ω(x)).n(p∂Ω(x))dx (4.8)

Proof. This is merely a use of Lebesgue’s dominated convergence theorem. Note that because the skeleton
Σ of Ω is of null Lebesgue measure, p∂Ω is well-defined at almost every point of D and the above expression
does make sense.

To prove the result, since formula (4.8) accounts for a continuous linear form on W 1,∞(Rd,Rd), we only
have to prove that, for every sequence of positive real numbers tn → 0, the ratio J(Ωtnθ)−J(Ω)

tn
converges to

(4.8). From the previous analysis, it is clear that, for almost any point x ∈ D (actually, for x ∈ D \ Σ), one
has:

j(x, dΩtnθ
(x))− j(x, dΩ(x))

tn
−→ −∂j

∂s
(x, dΩ(x))θ(p∂Ω(x)) · n(p∂Ω(x)).

Moreover, the domination hypothesis is fulfilled since, for any x ∈ D:
∣∣∣∣
j(x, dΩtnθ

(x))− j(x, dΩ(x))
tn

∣∣∣∣ ≤ C

∣∣dΩtnθ
(x)− dΩ(x)

∣∣
tn

≤ 2C||θ||W 1,∞(Rd,Rd)

,

where the constant C appearing in the first line is a Lipschitz constant for j over the (bounded) set{
(x, dΩtθ(x)) ∈ D × R, t small enough

}
, and the second line is a consequence of lemma 4.1, (3).

Hence, Lebesgue’s dominated convergence theorem can be applied, and the desired result follows.
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Remark 4.3. The very same proof shows that the signed distance function is Gâteaux-differentiable with
respect to the domain when seen as a Lploc(R

d)-valued function, with 1 ≤ p < +∞. More precisely, for such
p, and for a fixed bounded domain D, and a fixed θ ∈ W 1,∞(Rd,Rd), the function θ 7→ dΩθ

∈ Lp(D) is
Gâteaux-differentiable at 0. As we shall see soon, this happens to be wrong in the critical case p =∞.

Using the same recipe as in the proof of proposition 4.4, one can differentiate other geometric functionals
with respect to the domain, e.g. the diameter functional:

Proposition 4.6. Suppose Ω ⊂ Rd is a bounded domain with (only) Lipschitz boundary. Denote

diam(Ω) := sup
x,y∈Ω

|x− y| = sup
x,y∈∂Ω

|x− y|

the diameter of Ω. The function W 1,∞(Rd,Rd) ∋ θ 7→ diam(Ωθ) is directionally differentiable at θ = 0, and
its directional derivative reads for any and θ ∈W 1,∞(Rd,Rd) :

d

dt
(diam(Ωtθ))

∣∣∣∣
t=0+

= sup
(y,z)∈∂Ω2

||y−z||=diam(Ω)

(θ(y) · n(y) + θ(z) · n(z)).

4.2.3 Another expression for these derivatives

The purpose of this section is to present another expression of the shape derivatives produced by proposi-
tion 4.5, which will come in handy later on, in section 4.4.2, in the search for descent directions for functionals
which depend on the domain through the signed distance function. In this section, we are especially interested
in integrals of the form: ∫

D

ϕ(x) dx,

where D ⊂ Rd is a large (bounded) domain enclosing the (still bounded and Lipschitz) domain Ω under
consideration, and ϕ presents ‘simple’ variations along the rays ray∂Ω(y), y ∈ ∂Ω (compare formula (4.8)
with proposition 4.1).

Let us start with the following definition:

Definition 4.4. Let m ≥ n, and f : Rm → Rn a differentiable function at a point x ∈ Rm. The Jacobian
Jac(f)(x) of f at x is defined as

Jac(f)(x) :=
√
det(∇f(x)∇f(x))T

Note that Jac(f)(x) > 0 if an only if ∇f(x) is of maximum rank, that is n, i.e. if and only if the differential
of f at x is a surjective map from Rm to Rn.

The key ingredient in the present discussion is a coarea formula (see [75]):

Theorem 4.2. Let X,Y be two smooth Riemannian manifolds of respective dimensions m ≥ n, and f :
X → Y a surjective map of class C1, whose differential dxf : TxX → Tf(x)Y is surjective for almost every
x ∈ X. Let ϕ an integrable function over X. Then:

∫

X

ϕ(x)dx =
∫

Y

(∫

z∈f−1(y)

ϕ(z)
1

Jac(f)(z)
dz

)
dy

Remark 4.4. From Sard’s theorem, almost every y ∈ Y is a regular value of f , and f−1(y) is a submanifold
of X, so that the right-hand side of the above expression is well-defined.
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We intend to apply this formula in our context to X = Ω, Y = ∂Ω and f = p∂Ω. To do so, we need p∂Ω

to be smooth enough. This is the purpose of the following lemma.

Lemma 4.2. Assume that Ω enjoys C2 regularity, and let x ∈ Rd\Σ. The projection map p∂Ω is differentiable
at x and, in the orthonormal basis {e1, ..., ed−1, n} (p∂Ω(x)) of Rd (see Figure 4.4), its gradient is the d× d
diagonal matrix

∇p∂Ω(x) =




1− dΩ(x)κ1(p∂Ω(x))
1+dΩ(x)κ1(p∂Ω(x)) 0 ... 0

0
. . .

. . .
...

...
. . . 1− dΩ(x)κd−1(p∂Ω(x))

1+dΩ(x)κd−1(p∂Ω(x)) 0
0 ... 0 0



. (4.9)

Proof. The proof starts from the characterization of the projection map when x ∈ D \ Σ (see Lemma 4.1)

p∂Ω(x) = x− dΩ(x)∇dΩ(x).

This last equality can then be differentiated once more for x ∈ D \ Σ, leading to:

∇p∂Ω(x) = I −∇dΩ(x)∇dΩ(x)T − dΩ(x)HdΩ(x). (4.10)

Since ∇dΩ(x) = n(p∂Ω(x)), a simple calculation ends the proof.

•

•x

y = p∂Ω(x)

n(y)

e1(y)

e2(y)

∂Ω

Ty∂Ω

Figure 4.4: Principal directions, normal vector at the projection point y = p∂Ω(x) of x ∈ Rd.

We are now in position to get to the main result of this section.

Corollary 4.2. Let Ω ⊂ D be a C2 bounded domain, and let ϕ an integrable function over D. Then,

∫

D

ϕ(x)dx =
∫

∂Ω

(∫

ray
∂Ω(y)∩D

ϕ(z)
d−1∏

i=1

(1 + dΩ(z)κi(y))dz

)
dy, (4.11)

where z denotes a point in the ray emerging from y ∈ ∂Ω and dz is the line integration along that ray.

Proof. Since Σ is of null Lebesgue measure, we have
∫

D

ϕ(x)dx =
∫

D\Σ

ϕ(x)dx.
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Applying Lemmas 4.2 and 4.2, p∂Ω is a surjective and differentiable map from D \Σ into ∂Ω, with a positive
finite Jacobian for any x ∈ D \ Σ

Jac (p∂Ω) (x) =
1

d−1∏

i=1

(
1 + dΩ(x)κi(p∂Ω(x))

) .

Proposition 4.2 then yields the desired result.

Remark 4.5. The result of corollary 4.2 echoes to other very similar formulae in the literature (see for
instance [133]), but does not restrict to tubular neighborhoods of ∂Ω as for the domain of integration D.
Actually, in this chapter (and manuscript), we shall only use corollary 4.2 in this restricted context. See
nevertheless [228] for a more advanced use.

This point marks the end of the material about the signed distance function which we shall need from
section 4.4, and the remainder of section 4.2 is devoted to several brief topics that may find an interest in
themselves, and which are used - for one part - in [228].

4.2.4 More differentiability results for the signed distance function

Proposition 4.5, together with the subsequent remark, claims that the signed distance function is Gâteaux-
differentiable as a Lploc-valued function of the domain (1 ≤ p < ∞), namely, Ω being a Lipschitz bounded
domain, for any fixed relatively compact open set D ⊂⊂ Rd, the application

W 1,∞ (Rd,Rd
)
−→ Lp(D)

θ 7−→ dΩθ

is Gâteaux-differentiable at 0. This naturally raises the question of whether this result stands in higher
regularity spaces than Lploc, p <∞. in this section, we are going to see that, in utter generality, the answer
is negative.

4.2.4.1 The signed distance function is not differentiable as a L∞
loc-valued function of the

domain

Consider the following counterexample: Ω = B(0, 1) ⊂ R2 is the unit open ball in the plane, whose
skeleton is simply Σ = {0}. As for deformation field θ, define

∀z = (x, y) ∈ R2, θ(z) = (0, 1).

Choose eventually any computational domain D ⊂⊂ R2 that encloses Σ. For t > 0 sufficiently small, the
signed distance function dΩtθ

to Ωtθ can be computed explicitly:

∀z = (x, y) ∈ R2, dΩtθ
(z) =

√
x2 + (y − t)2 − 1.

For any point z /∈ Σ, we know from proposition 4.4 that t 7→ dΩtθ
(z) ∈ R is differentiable at 0 and:

d

dt
(dΩtθ

(z))

∣∣∣∣
t=0+

= −θ(p∂Ω(z)) · n(p∂Ω(z)).

Then t 7→ dΩtθ
∈ R is not right-differentiable as a L∞(D)-valued function, for if it was, the quotient

r(t, z) :=
dΩtθ

(z)− dΩ(z) + t θ(p∂Ω(z)) · n(p∂Ω(z))
t
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would converge to 0 uniformly on D as t→ 0, which is not the case, as we are going to see now.

For z /∈ Σ, as simple computation yields:

r(t, z) =
√
x2+(y−t)2−

√
x2+y2

t
+ θ(p∂Ω(z)).n(p∂Ω(z))

=
√
x2+(y−t)2−

√
x2+y2

t
+ y√

x2+y2

Intuitively, the lack of uniform convergence near 0 is due to the fact that, for any t > 0 - however small -
there are some points z ∈ D which do not lie ‘on the same side’ of the skeletons of Ω and Ωtθ, and then
whose projection p∂Ωtθ

(z) change suddenly. As there are ‘few’ such points, they are unseen by the Lp norms,
for p <∞, but impede the uniform norm of r(t, .) to converge to 0 as t→ 0.

Concretely, consider the sequence of points zn := (0, tn2 ) (see figure 4.5). One has, for any n ∈ N:

||r(tn, .)||L∞(D) ≥ |r(tn, zn)|

=

√
(−tn)2

4 −
√

t2
n
4

tn
+ 1

= 1

•

Ω

Σ

θ
Ωtnθ

•

• zn

Figure 4.5: Non-differentiability of the signed distance function as a L∞
loc-valued function

Actually, we will see that, upon some regularity assumptions on the considered domain Ω and allowed
deformations θ, this phenomenon of ‘crossing of the skeleton’ is the only obstruction to the derivation of the
signed distance function in more regular functional spaces.

4.2.4.2 Shape differentiability of the projection application p∂Ω

Let us now study the shape differentiability of the projection application Ω 7→ p∂Ω(x), for a fixed point
x ∈ Rd \ Σ. The main result of this paragraph is the following:

Proposition 4.7. Let Ω ⊂ Rd a bounded domain of class C2, and consider a smooth variation of Ω,
θ ∈ C2,∞ (Rd,Rd

)
:= C2

(
Rd,Rd

)
∩W 2,∞ (Rd,Rd

)
. Let x ∈ Rd \ Σ, where Σ denotes the skeleton of Ω.
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Then there exists α > 0 such that the function t 7→ p∂Ωtθ
(x) is well-defined and C1-differentiable over

(0, α). Besides,

d

dt
(p∂Ωtθ

(x))

∣∣∣∣
t=0

= (θ(z) · n(z))n(z) + dΩ(x) (I + dΩ(x)HdΩ(z))−1∇∂Ω(θ.n)(z),

where z := p∂Ω(x), and ∇∂Ω stands for the tangential gradient on ∂Ω.

Remark 4.6. Thanks to proposition 4.2, we know that for x /∈ Σ, −κi(p∂Ω(x))dΩ(x) < 1, i = 1, ..., d.
Hence, because the Hessian matrix of dΩ at any point of the boundary matches with the matrix of the
second fundamental form of ∂Ω, the matrix (I + dΩ(x)HdΩ(z)) is invertible and the above expression makes
sense.

Proof. The point x ∈ Rd \ Σ, and θ ∈ C2,∞ (Rd,Rd
)

being fixed, denote as z = p∂Ω(x). Moreover, to keep
expressions as simple as possible in this proof, we take the shortcuts dt := dΩtθ

, pt = p∂Ωtθ
and nt = nΩtθ

,
the unit normal vector field to Ωtθ, pointing outward.

Recall that, because Ω is of class C2, proposition 4.1 claims that there exists a tubular neighborhood W of
∂Ω, such that ∇dΩ is a well-defined, unitary vector field of class C1 on W , such that ∀y ∈ ∂Ω, ∇dΩ(y) = n(y)
(a similar operation holds for Ωtθ). In the following, this unit extension of the normal vector field is still
denoted as n : W → S1.

Owing to proposition 4.1, we may restrict t (say |t| < α) so that, for any such t, ∂Ωtθ ⊂W .

Eventually, recall that, if y ∈ ∂Ω, because of the regularity assumptions made on Ω and θ, the normal
vector field nt at (I + tθ)(y) reads (see [234], sec. 4.3.3) :

nt((I + tθ)(y)) =
com (I + t∇θ(y))n(y)
|com (I + t∇θ(y))n(y)| (4.12)

• First step : existence and differentiability of t 7→ pt(x), for t small enough.

Consider the function F :]− α, α[×W → Rd defined as :

F (t, y) = y + dt(x)nt(y)− x.

Because of the regularity assumptions we have made on the data at hand, F is a function of class C1 (even
if it means decreasing α > 0). Indeed, because of proposition 4.3, for t close to 0, x does not belong to
the skeleton of Ωtθ, the function t 7→ dt(x) is continuously differentiable in a vicinity of 0, and t 7→ pt(x) is
well-defined (i.e. Π∂Ωtθ

is a singleton).

Our purpose is to characterize pt(x) as the unique zero of F (t, .) over W , then to apply the implicit func-
tion theorem to get the desired differentiability result. Proposition 4.1 (1) guarantees that, if y ∈ ΠΩtθ

(x),
then F (t, y) = 0. However, the converse may not hold, since F (t, y) = 0 does not necessarily imply that
y ∈ ∂Ωtθ.

For now, let us apply the implicit function theorem to F at point (0, p∂Ω(x)). The Jacobian matrix of
the partial application y 7→ F (0, y) at p∂Ω(x) reads :

∇yF (0, p∂Ω(x)) = I + dΩ(x)HdΩ(p∂Ω(x)).

Since x ∈ Rd \ Σ, this matrix is invertible (see remark 4.6). As a consequence, there exists a neighborhood
V ⊂ Rd of p∂Ω(x), a real α > 0 (maybe smaller than the previous one), as well as a C1 function g : (−α, α)→
V such that :

∀t ∈]− α, α[, y ∈ V, F (t, y) = 0⇔ y = g(t).
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Of course, g(0) = p∂Ω(x). Now, we need to identify g(t) with pt(x). To this end, we make use of the following
elementary lemma:

Lemma 4.3. Let Ω a bounded domain, Σ its skeleton. Let x ∈ Rd \ Σ, p∂Ω(x) its projection point. Let
θ ∈W 1,∞(Rd,Rd). Then, for any open neighborhood V of p∂Ω(x), there exists α > 0 such that

∀|t| < α, Π∂Ωtθ
(x) ⊂ V.

Proof. This is a direct consequence of the continuity with respect to the domain of the signed distance
function (whose minimum is achieved by projection points). Suppose the contrary holds, that is, there exists
a sequence tn → 0, and pn ∈ Π∂Ωtnθ

(x), pn /∈ V . Up to a subsequence (still denoted tn), pn converges
towards a point q ∈ ∂Ω, q /∈ V . Moreover,

d2
tn

(x) = |x− pn|2.

As d2
tn

(x)→ d2
Ω(x), and |x− pn|2→ |x− q|2, we conclude that q is a projection point of x onto ∂Ω, which is

impossible because the unique such point belongs to V .

Remark 4.7. Lemma 4.3 actually is a manifestation of a more general phenomenon (which is proved using
exactly the above argument), namely the fact that the set of minimum pointsM(t) := {y0, G(t, y0) = infy G(t, y)}
of a continuous function G(t, y) is upper semi-continuous as a set-valued function.

Thus, decreasing α if need be, we may assume that for |t| < α, Π∂Ωtθ
(x) ⊂ V , but we have seen that, for

any |t|< α, there is exactly one point y ∈ V such that F (t, y) = 0, which we called g(t), so that pt(x) = g(t).
As a consequence, for |t| < α, the mapping t 7→ pt(x) is of class C1.

• Second step : computation of d
dt

(pt(x)).

We know that, for t small enough : F (t, pt(x)) = 0. As F and t 7→ pt(x) are regular enough, differen-
tiating at t = 0 yields :

∂tF (0, z) +∇yF (0, z) · d
dt

(pt(x))

∣∣∣∣
t=0

= 0.

Now, for a point y ∈ ∂Ω, we compute ∂tF (0, y) :

∂tF (0, y) = d
dt

(dt(x))
∣∣
t=0

n(y) + dΩ(x) d
dt

(nt(y))
∣∣
t=0

= − (θ(z).n(z))n(y) + dΩ(x) d
dt

(nt(y))
∣∣
t=0

.

Now, the term d
dt

(nt(y))
∣∣
t=0

is a bit tedious to deal with. It corresponds to the Eulerian derivative of the
(extended) normal vector field. It is more convenient to deal first with its Lagrangian derivative (remember
the discussion in chapter 2, §2.2.2.2). More precisely, for t sufficiently small:

nt((I + tθ)(y)) =
com (I + t∇θ(y))n(y)
|com (I + t∇θ(y))n(y)| . (4.13)

Using the matrix identity

(I + t∇θ(y))T · com (I + t∇θ(y)) = det (I + t∇θ(y)) I,

differentiating at t = 0 (which makes sense because all the terms are polynomials in t), we get:

d

dt
(com(I + t∇θ(y))

∣∣∣∣
t=0

= div(θ)(y) I −∇θ(y)T .
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After some computation, the following expression for the Lagrangian derivative of the normal vector field at
y follows:

d

dt
(nt((I + tθ)(y)))

∣∣∣∣
t=0

= (∇θ(y)T n(y)) · n(y)) n(y)−∇θ(y)T n(y)

Thus, the Eulerian derivative of the normal at y reads, using the chain rule:

d

dt
(nt(y))

∣∣∣∣
t=0

= (∇θ(y)T n(y)) · n(y))n(y)−∇θ(y)T n(y)−∇n(y) · θ(y),

where the gradient ∇n(y) has to be understood as that of the smooth extension of the normal to a tubular
neighborhood of ∂Ω. Recall eventually that, by definition of the tangential gradient:

∇∂Ω(θ · n)(y) = ∇(θ · n)(y)− (∇(θ · n)(y) · n(y))n(y)
= ∇θ(y)T .n(y) +∇n(y)T · θ(y)−

(
(∇θ(y)T .n(y)) · n(y) + (∇n(y)T .θ(y)) · n(y)

)
n(y)

= ∇θ(y)T .n(y) +∇n(y)T · θ(y)−
(
(∇θ(y)T · n(y)) · n(y)

)
n(y),

(4.14)
because we chose an extension of the normal vector that has a symmetric gradient with ∇n(y).n(y) = 0. We
then end up with:

d

dt
(nt(y))

∣∣∣∣
t=0

= −∇∂Ω(θ · n)(y), (4.15)

and:
∂tF (0, y) = − (θ(z) · n(z))n(y)− dΩ(x)∇∂Ω(θ · n)(y).

Finally, the derivative of the projection point reads:
d
dt

(pt(x))
∣∣
t=0

= − (∇yF (0, z))−1 (∂tF (0, z))
= (I + dΩ(x)HdΩ(z))−1 [(θ · n) (z)n(z) + dΩ(x)∇∂Ω(θ · n)(z)]
= (θ · n) (z) n(z) + dΩ(x) (I + dΩ(x)HdΩ(z))−1∇∂Ω(θ · n)(z).

(4.16)

4.2.4.3 Application to shape differentiability results for the signed distance function in higher
regularity spaces

As a first application of proposition 4.7, we can compute the shape derivative of the gradient of the signed
distance function.

Corollary 4.3. Still under the assumption that Ω ⊂ Rd is a bounded domain of class C2, let θ ∈ C2,∞ (Rd,Rd
)
.

Let also x ∈ Rd \ Σ. Then, function t 7→ ∇dΩtθ
(x) enjoys C1 regularity over some interval (−α, α), and its

derivative at t = 0 reads, introducing z = p∂Ω(x):

d

dt
(∇dΩtθ

(x))

∣∣∣∣
t=0

=
[
−I + dΩ(x)HdΩ(z) (I + dΩ(x)HdΩ(z))−1

]
∇∂Ω(θ · n)(z). (4.17)

Proof. Here again, we use the abbreviations of the proof of proposition 4.7: z = p∂Ω(x), dt := dΩtθ
, pt = p∂Ωtθ

and nt = nΩtθ
. Owing to proposition 4.7, the projection application t 7→ pt(x) is well-defined over some

interval (−α, α). Then, so is t 7→ ∇ut(x) (see proposition 4.1). We know also that, for such values of t:

∇ut(x) = nt(pt(x));

using formulae (4.15) and (4.16), it comes:
d
dt

(∇ut(x))
∣∣
t=0

= d
dt

(nt(z))
∣∣
t=0

+∇n(z) · d
dt

(pt(x))
∣∣
t=0

= −∇∂Ω(θ · n)(z) + dΩ(x)∇n(z) (I + dΩ(x)HdΩ(z))−1∇∂Ω(θ.n)(z)

=
[
−I + dΩ(x)HdΩ(z) (I + dΩ(x)HdΩ(z))−1

]
∇∂Ω(θ · n)(z).
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Remark 4.8. Actually, we could get a little bit more regularity at this point. Indeed, putting x /∈ Σ as a
parameter in the application of the implicit function theorem, in the proof of proposition 4.7, we could get
that (t, y) 7→ ∇ut(y) is actually differentiable in a vicinity of (0, x).

From the last corollary, a higher differentiability result for dΩ can be obtained. To this end, we will need
the following lemma, which is a nothing but ‘Schwartz property’ for the derivatives of dt, with respect to t
and the space variable x /∈ Σ:

Lemma 4.4. Under the hypothesis of corollary 4.3, if x ∈ Rd \ Σ, function Rd ∋ x 7→ d
dt

(ut(x))
∣∣
t=0

is
differentiable at x and its gradient reads :

∇
(
d

dt
(ut(x))

∣∣∣∣
t=0

)
=

d

dt
(∇ut(x))

∣∣∣∣
t=0

.

Proof. One last time, we use here the abbreviations of the proof of proposition 4.7. Proposition 4.4 asserts
that, for y ∈ Rd close to x, function Rd ∋ y 7→ d

dt
(ut(y))

∣∣
t=0

is well-defined and that the following expression
holds:

d

dt
(ut(y))

∣∣∣∣
t=0

= −θ(p∂Ω(y)).n(p∂Ω(y));

thus, in order to prove the desired result, we have to differentiate this expression at x, and compare it with
(4.17). We get :

∇
(
d
dt

(ut(x))
∣∣
t=0

)
= −∇(θ(p∂Ω(x)))T · n(z)−∇(n(p∂Ω(x)))T · θ(z)
= −∇p∂Ω(x)T (∇θ(z) n(z) +∇n(z).θ(z))
= −∇p∂Ω(x)T

(
∇∂Ω(θ.n)(z) +

(
(∇θ(z)T n(z)) · n(z)

)
n(z)

)
,

where we used formula (4.14) for the tangential gradient. Recall now the expression for the gradient of the
projection application (4.10), from which we get easily that ∇p∂Ω(x)T · n(z) = 0 so that the second term
in the above expression vanishes. Using also that ∇∂Ω(θ.n)(z) · n(z) = 0, and the fact that expression (4.9)
reads, in compact form:

∇p∂Ω(x) =
[
−I + dΩ(x)HdΩ(z) (I + dΩ(x)HdΩ(z))−1

]
,

we get eventually:

∇
(
d

dt
(ut(x))

∣∣∣∣
t=0

)
=
[
−I + dΩ(x)HdΩ(z) (I + dΩ(x)HdΩ(z))−1

]
∇∂Ω(θ.n)(z),

which is the sought expression.

We now end up with the result of interest:

Proposition 4.8. Let Ω ⊂ Rd a bounded domain of class C2, with skeleton Σ, and θ ∈ C2,∞ (Rd,Rd
)
. For

any computational domain D ⊂⊂ Rd \ Σ, and any 1 ≤ p < ∞, the signed distance function θ 7→ dΩθ
, from

C2,∞(Rd,Rd) into W 1,p(D) is differentiable at θ = 0.

Proof. In view of proposition 4.4 and the subsequent remarks, the only thing there is to prove is that, for a
fixed θ ∈ C2,∞(Rd,Rd):

1
t

∣∣∣∣
∣∣∣∣∇dΩtθ

−∇dΩ − t∇
(
d

dt
dΩtθ

∣∣∣∣
t=0

)∣∣∣∣
∣∣∣∣
Lp(D)

t→0−→ 0.

Using lemma 4.4, one has:

1
t

∣∣∣∣
∣∣∣∣∇dΩtθ

−∇dΩ − t∇
(
d

dt
dΩtθ

∣∣∣∣
t=0

)∣∣∣∣
∣∣∣∣
Lp(D)

=

∣∣∣∣
∣∣∣∣
∇dΩtθ

−∇dΩ

t
− d

dt
(∇dΩtθ

(x))

∣∣∣∣
t=0

∣∣∣∣
∣∣∣∣
Lp(D)

.
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As hinted at in remark 4.8, function (t, x) 7→ ∇dΩtθ
(x) is of class C1 in (−α, α)×D. Hence, the mean value

theorem ensures the existence of a constant M such that for t small enough,

∀x ∈ D,
∣∣∣∣
∇dΩtθ

(x)−∇dΩ(x)
t

∣∣∣∣ ≤M.

This guarantees that the domination hypothesis in Lebesgue’s dominated convergence theorem is satisfied,
and allows to conclude.

4.2.4.4 The conclusion of proposition 4.8 does not extend when D intersects Σ

At this point, one could wonder what happens when the integration domain D does intersect the closure
Σ of the skeleton of Ω. In this case, because of the counter-example at the beginning of this section, and
owing to Sobolev’s embeddings, one cannot hope that θ 7→ dΩθ

could be differentiable as a W 1,p(D)-valued
function for any p ≥ d, which leaves the case p < d open for discussion.

Actually, the counterexample of section 4.2.4.1 as for the lack of shape differentiability of dΩ as a L∞-
valued function does not allow to conclude in this case. Consider the situation depicted in figure 4.6 below
(which is presented with a non-bounded open set Ω, but could easily be brought down to this case).

Ω

Σ

0−1 1

θ

D

Figure 4.6: Non-differentiability of the signed distance function as a W 1,p
loc -valued function when the domain

of integration meets the skeleton.

Take Ω :=
{
z = (x, y) ∈ R2, −1 < x < 1

}
, so that Σ =

{
z = (x, y) ∈ R2, x = 0

}
, and take for instance

D =
{
z = (x, y) ∈ R2, − 1

2 < x < 1
2 , −1 < y < 1

}
, with a displacement field θ such that θ(z) = (0, 0) if

x = −1 and θ(z) = (1, 0) if x = 1. Intuitively speaking, the skeleton of Ωθ is translated to the right together
with the right part of the boundary.

Elementary computations show that, for t ≥ 0 and z ∈ D:

dΩtθ
(z) =

{
x− 1− t if x ≥ t

2
−1− x if x < t

2

; ∇dΩtθ
(z) =





(
1
0

)
if x > t

2(
−1
0

)
if x < t

2
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Thus, for z /∈ Σ, d
dt

(∇dΩtθ
(z))

∣∣
t=0

= 0, whereas:

∇dΩtθ
(z)−∇dΩ(z)

t
=





0 if x > t
2 or x < 0(

− 2
t

0

)
if 0 < x < t

2

Hence, ∣∣∣∣
∣∣∣∣
∇dΩtθ

−∇dΩ

t
− d

dt
(∇dΩtθ

)

∣∣∣∣
t=0

∣∣∣∣
∣∣∣∣
Lp(D)

=
∫ 1

−1

(∫ t
2

0

2p

tp
dx

)
dy

=
2p

tp−1
,

and this quantity does not converge to 0 as t→ 0+, for p ≥ 1.

Remark 4.9. This last, negative result indicates that, in ‘most cases’, functionals Ω 7→
∫
D
j(nΩ) dx depend-

ing on the domain Ω through the extension of the normal vector field nΩ given by ∇dΩ are not differentiable
with respect to Ω if the domain D of integration goes as far as Σ (even if this extension makes sense almost
everywhere in D).

4.2.5 Some words around the notion of minimum thickness of a domain

This subsection is essentially independent from the rest of section 4.2, and studies domains Ω ⊂ Rd that
are ‘not too thin’ or whose different parts are ‘not too close’ from one another. Such requirements around
shapes appear naturally in industrial applications of structural optimization; indeed, mechanical structures
exhibiting very thin parts may prove very hard and costly to manufacture. See [228] for further motivations
and explanations.

To investigate further on this topic, the key notion is that of the reach of a set, which we briefly recall
now.

4.2.5.1 The reach of a set

Let A an arbitrary closed subset of Rd. If h > 0, denote Ah :=
{
x ∈ Rd , d(x,A) < h

}
. The following

definition stems from [133].

Definition 4.5. Let h > 0. A closed set A ⊂ Rd is said to have reach ≥ h provided every point x ∈ Ah has
a unique projection point on A (i.e. the infimum in (4.1) is achieved at a unique point). The supremum of
such h is called the reach of A, and denoted as reach(A).

Grossly speaking, the reach of a set A is the largest value such that each Ah is homeomorphic to A for
all 0 ≤ h < reach(A). This concept of reach is actually closely related to the so-called uniform exterior ball
condition.

Definition 4.6. Let h > 0. A set A ⊂ Rd is said to comply with the exterior ball condition of radius h at
point x ∈ ∂A if there exists a unit vector ξ ∈ Rd such that B (x+ hξ, h) ∩ A = ∅. It is said to comply with
the uniform exterior ball condition of radius h if the exterior ball condition of radius h is satisfied at each
x ∈ ∂A. Symmetrically, A is said to comply with the interior ball condition of radius h at x ∈ ∂A (resp.
uniform interior ball condition of radius h) if Rd \A complies with the exterior ball condition of radius h at
x (resp. uniform exterior ball condition of radius h) .

We easily infer the following property:

Proposition 4.9. Let A ⊂ Rd a closed set, with reach(A) = h > 0. Then A satisfies the uniform exterior
ball condition with radius h.
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Proof. This proof is a rephrasing of the arguments stated in [94] (section 2 and corollary 4.15).
For some given r > 0, x ∈ ∂A, a simple computation shows that a unit vector ξ ∈ Rd is such that
B (x+ rξ, r) ∩A = ∅ if and only if it satisfies the so-called proximal normal inequality:

∀y ∈ A, ξ · (y − x) ≤ 1
2r
|y − x|2. (4.18)

Now, consider a sequence ui of points in Rd \ A converging to x, at which d(., A) is differentiable (this
is possible because d(., A) is differentiable almost everywhere). Then, for each i, ΠA(ui) = {xi} for some
xi ∈ ∂A, and of course xi → x. Because reach(A) = h, th. 6.2, (iv) of chap. 6 in [105] (which also follows
from a simple computation, reasoning by contradiction) implies that, for every y ∈ A, we have:

(ui − xi) · (y − xi) ≤
|ui − xi||y − xi|2

2h
. (4.19)

Because ui /∈ A, up to extraction, one may assume that xi → x, ui → x and ui−xi

|ui−xi| → ξ, for some unit vector
ξ (this argument is the one for the existence of a so-called proximal normal at each point of the boundary,
in the finite-dimensional context). Then, taking the limit in (4.19), we end up with :

∀y ∈ A, ξ · (y − x) ≤ 1
2h
|y − x|2,

which is exactly saying B (x+ hξ, h) ∩A = ∅.

Actually, a far deeper result states that some converse happens to be true in the case when the set A is
compact and epi-lipschitz (see below), in the more general context of ϕ-convexity [238]. However, we will
not need it for our purposes.

4.2.5.2 Sets with minimum thickness

Thanks to this concept, we can now define the intuitive notions of minimum thickness and minimum
distance between members of a domain Ω (see figure 4.7).

Definition 4.7. Let Ω ⊂ Rd a bounded domain with Lipschitz boundary.
– We call minimum thickness of Ω, and denote e(Ω) the reach of the complementary of Ω, that is

e(Ω) = reach(cΩ).

– We call minimum distance between members of Ω, and denote md(Ω) the reach of the closure of Ω,

md(Ω) = reach(Ω).

We are now interested in domains which answer constraints of minimum thickness and minimum distance
between members. To this end, for h > 0, define

Eh = {Ω open , Ω ⊂ D , e(Ω) ≥ h , md(Ω) ≥ h} .

We are going to see those sets are compact, in a far stronger way than the sets of domains with uniformly
bounded perimeter.

Recall first the following definitions from [172]:

Definition 4.8. – For x ∈ Rd, ξ ∈ Sd−1 and ε > 0, the (open) cone C(x, ξ, ε) of apex x, direction ξ and
width ε is defined as

C(x, ξ, ε) :=
{
y ∈ Rd , ξ · (y − x) > cos(ε)|y − x| , |y − x| < ε

}
.
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Ω

Σe(Ω) = reach(cΩ)

md(Ω) = reach(Ω)

Figure 4.7: Definition of the minimum thickness and distance between members functions

– An open set Ω ⊂ Rd is said to enjoy the uniform ε-cone property provided for each x0 ∈ ∂Ω, there
exists a unitary vector ξx0

∈ Rd such that, for every x ∈ Ω ∩B(x0, ε), C(x, ξx0
, ε) ⊂ Ω.

– An open set Ω ⊂ Rd is said to be epi-lipschitz with constants (r, a, L) if, for every x0 ∈ ∂Ω, there exists
a local orthonormal frame {e1, ..., ed} with origin x0, and a Lipschitz function ϕ : Bd−1(x0, r)→ (−a, a)
(where Bd−1(x0, r) is the ball of radius r in span {e1, ..., ed} around x0) with ϕ(0) = 0 and Lipschitz
constant ≤ L, such that, denoting K(r, a) = Bd−1(x0, r)× (−a, a),

∂Ω ∩K(r, a) =
{

(x′, xd) ∈ Rd−1 × R , xd = ϕ(x′)
}
,

Ω ∩K(r, a) =
{

(x′, xd) ∈ Rd−1 × R , xd > ϕ(x′)
}
.

Actually, these two notions are equivalent. This is the meaning of the following result (see [172], th.
2.4.7 and the subsequent remark), which quantifies the correspondence between the values of the different
constants appearing in the definitions above.

Theorem 4.3. Let Ω ⊂ Rd a bounded domain. Then Ω enjoys the ε-cone property for some ε > 0 if and
only if Ω is epi-lipschitz with some constants (r, a, L). Moreover,

– if Ω enjoys the ε-cone property, then r, a, L can be chosen equal to, respectively ν tan(ν), ν, 1
tan(ν) for

any ν < ε
2 , tan2(ν) ≤ 1.

– conversely, if Ω is epi-lipschitz with constants (r, a, L), the constant ε in the corresponding ε-cone
condition can be chosen as ε = min( r2 ,

a
2 , arctan( 1

L
)).

Consider now a large (yet bounded) computational domain D, and denote:

Oε = {Ω open , Ω ⊂ D , Ω enjoys the ε-cone property} .

These sets of domains are well known to enjoy many crucial compactness properties (in the sense of the
Hausdorff metric, of γ-convergence,...) [172].
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The following theorem expresses the compactness which is brought by the notion of reach (see [105], sec.
6, th. 6.6). Note that, in the following, we will only need the fact that the set of domains with uniformly
positive reach is closed for the Hausdorff distance, which is actually the difficult part in the demonstration
of theorem 4.4.

Theorem 4.4. Let h > 0. The set
{
A ⊂ Rd closed , ∅ 6= A ⊂ D , reach(A) ≥ h

}
is compact for the topology

induced by the Hausdorff distance between compact subsets of Rd.

To achieve compactness of the sets Eh, it is then enough to include them in some Oε. Actually, ‘well-
known’ results assess that domains enjoying both a uniform and an exterior ball criterion (with some positive
radius) are of class C1,1. However, we need to control the uniform cone constant of such an Ω ∈ Eh by the
constant h, independently from Ω. Reading along the lines of the proof of [30] (th. 5.1.13), the following
quantitative result is proved.

Theorem 4.5. If Ω ⊂ Rd is a bounded domain which satisfies both the uniform exterior and interior ball
conditions with radius h > 0, then Ω is a domain of class C1,1. In particular, Ω is epi-lipschitz, and the
constants r, a, L that appear in definition 4.8 can be chosen as:

r = λh, a = h, L =

√((
(
√

2− λ)2 − 1
)−2

− 1
)

for some absolute constant λ > 0, that depends neither on r, nor on Ω.

Recall that if Ω1,Ω2 ⊂ D are open sets, one defines the (complementary) Hausdorff distance between Ω1

and Ω2 as
dH(Ω1,Ω2) := dH(D \ Ω1, D \ Ω2),

where dH(K1,K2) stands for the usual Hausdorff distance between the compact sets K1,K2 (see [172], chap.
2 for properties of this metric).

The following result is now a consequence of theorems 4.3, 4.4, and 4.5.

Theorem 4.6. For every h > 0, there exists ε > 0 such that Eh is a closed subset of Oε, for the topology
induced by the Hausdorff distance over open subsets of D.

Proof. First, let us prove the inclusion Eh ⊂ Oε, for a certain ε > 0. Let Ω ∈ Eh ; as reach(Ω) ≥ h, and
reach(cΩ) ≥ h, proposition 4.9 implies that Ω satisfies both a uniform interior and exterior ball conditions,
with radius h. Consequently, theorem 4.5 implies that Ω is an epi-Lipschitz domain with constants r, a, L
only depending on h (through explicit formulae). Thus, because of theorem 4.3, Ω belongs to Oε, for some
constant ε depending on h through explicit formulae.

Now, let us turn to the closedness of Eh for the topology induced by the Hausdorff metric over open
subsets of D. Let Ωn ∈ Eh be a sequence of domains converging to a domain Ω ⊂ Rd in the sense of the
complementary Hausdorff distance. As each element of the sequence Ωn lies in Oε, using theorem 2.4.10 in
[172], one can extract a subsequence Ωnk

such that Ωnk
converges to Ω for the Hausdorff distance between

open subsets of D, and Ωnk
and ∂Ωnk

converge respectively to Ω and ∂Ω for the Hausdorff distance between
compact sets. Because reach(Ωnk

) ≥ h, theorem 4.4 implies that reach(Ω) ≥ h. On the other hand, the very
definition of Hausdorff convergence for open subsets of D means that D \ Ωnk

converges to D \ Ω. Choose
a big ball B (or any other bounded convex set) such that D ⊂⊂ B. The properties of Hausdorff distance
entail that for any open sets Ω1,Ω2 ⊂ D, dH(D \ Ω1, D \ Ω2) = dH(B \ Ω1, B \ Ω2). Hence, B \ Ωnk

also
converges to B \Ω. What’s more, as Ωnk

⊂⊂ B for any k, one gets ∂
(
B \ Ωnk

)
= ∂B ∪ ∂Ωnk

, and B being
convex,

reach(B \ Ωnk
) = reach(cΩnk

).

Using theorem 4.4, one finally finds that reach(B \ Ω) = reach(cΩ) is greater than h, hence the desired
result.



124 Chapter 4. Multi-phase optimization via a level set method

As an illustration to how such a result allows to obtain existence results of optimal shapes under con-
straints of minimum thickness and minimum distance between members, we use here the framework of [172].

Let D ⊂ Rd a bounded computational domain, and f ∈ L2(D) a source term. For any domain Ω ⊂ D
with Lipschitz boundary, denote as uΩ ∈ H1

0 (Ω) the unique solution to the Dirichlet problem:

Find u ∈ H1
0 (Ω) s.t.

{
−∆u = f in Ω
u = 0 on ∂Ω

(4.20)

Then, the following result (see [172], th. 4.3.1) holds:

Theorem 4.7. Let j : D × R × Rd → R a measurable function such that the partial application j(x, ., .) :
R× Rd → R is continuous for almost every x ∈ D, and that there exists a constant C > 0 with

∀x ∈ D, r ∈ R, p ∈ Rd, |j(x, r, p)| ≤ C(1 + r2 + ||p||2).

For any domain Ω ⊂ D, define the functional

J(Ω) =
∫

Ω

j (x, uΩ(x),∇uΩ(x)) dx.

If O is any subset of Oε, for some ε > 0, which is closed for the topology of Hausdorff distance between open
subsets of D, then J has a global minimizer over O.

As a consequence of this theorem and of the results of this section, for any h > 0, J admits a minimizer
over Eh.

4.3 Sharp-interface formulation in a fixed mesh framework

After the fairly long aside of section 4.2 around the signed distance function to a domain, we now turn
to the main topic of this chapter, to wit the modeling of multi-phase shape optimization problems.

To simplify the exposition in the first sections we limit ourselves to the case of two materials. Of course,
the proposed approach extends to more phases and the corresponding details are given in section 4.5.

4.3.1 Description of the problem

The general purpose of this chapter is to optimize the position of the interface Γ between two linear
elastic materials, hereafter labeled as 0 and 1, with respective Hooke’s law A0, A1. These materials fill two
respective subdomains Ω0,Ω1 of a (bounded) working domain D of Rd, (d = 2 or 3) which accounts for the
resulting structure of the optimal distribution of materials, i.e. D = Ω0 ∪ Γ ∪ Ω1. To avoid mathematical
technicalities, we assume that Γ is a smooth surface without boundary and strictly included in D, that is,
Γ∩∂D = ∅. We refer to Ω1 as the exterior subdomain, so that ∂Ω0 = Γ (see Figure 4.8). Thus, the shape of
the interface Γ is altogether conditionned by that of Ω0, and conversely. In the sequel, the variable of shape
optimization is denoted either by Γ or Ω0, without distinction.

The structure D is clamped on a part ΓD ⊂ ∂D of its boundary, and is submitted to body forces and
surface loads, to be applied on a part ΓN ⊂ ∂D, which are given as two vector-valued functions defined on
D, respectively f ∈ L2(D)d, and g ∈ H1(D)d.

Perhaps the most natural and physical way to model such a distribution of two materials among a fixed
working domain is the so-called sharp-interface formulation. More specifically, the total Hooke’s law on D
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D

Ω0

Ω1

Γ

Figure 4.8: Fixed working domain D occupied by two distinct materials Ω0 and Ω1 separated by a smooth
interface Γ.

is defined as Aχ := A0χ0 + A1χ1, where χi stands for the characteristic function of the phase Ωi. In this
context, the displacement field u is the unique solution in H1(D)d to the linearized elasticity system




−div (Aχ e(u)) = f in D

u = 0 on ΓD
(A1 e(u))n = g on ΓN ,

(4.21)

where e(u) = ∇uT +∇u
2 is the strain tensor, and n stands for the outer unit normal vector to ∂D.

Our purpose is to minimize an objective function of the interface Γ, which is rather expressed as a function
J(Ω0) of the interior subdomain,

J(Ω0) =
∫

D

j(x, u) dx+
∫

ΓN

k(x, u) ds, (4.22)

where j(x, u) and k(x, u) are smooth functions satisfying adequate growth conditions. A typical example is
the compliance of the structure D (the work done by the loads), which reads

J(Ω0) =
∫

D

f · u dx+
∫

ΓN

g · u ds =
∫

D

Aχ(x)e(u) : e(u)dx. (4.23)

Of course, the minimization of (4.22) or (4.23) is complemented by a volume constraint on the phase A0. In
particular, it is often a requirement in order to avoid obvious designs made of only one phase.

We do not discuss the well-posedness of this optimal design problem. Let us simply recall that the mini-
mization of (4.22) or (4.23) usually does not admit a solution in the class of open subsets Ω0 ⊂ D. Existence
of an optimal shape is rather obtained with some additional smoothness or geometrical or topological con-
straints (for example, imposing a uniform bound on the perimeter of Ω0, i.e., on the measure of the interface
Γ); see for instance the discussion in chapter 2, §2.1.2.

4.3.2 Shape-sensitivity analysis of the sharp-interface problem

There exists a vast literature on the Hadamard method for computing derivatives with respect to the
exterior boundary (see e.g. [9], [105], [172], [234] and references therein) but relatively few works on the
derivation with respect to an interface between two regions. In the conductivity context (i.e. replacing (4.21)
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by a scalar equation), derivatives with respect to an interface have been obtained in [175], [46], [248]. These
results were extended to the elasticity setting in [15]. Let us also mention the works [188], [239] where similar
results are obtained for a stratified media (where the interfaces are flat and parametrized by a single scalar
parameter).

In the present context, we go on relying on Hadamard’s method for describing variations of Γ (or equiv-
alently Ω0). For a smooth open subset Ω0 ⊂ D, we consider variations of the type

(
Id+ θ

)
(Ω0) :=

{
x+ θ(x) for x ∈ Ω0

}
,

with θ ∈W 1,∞(D;Rd) such that θ is tangential on ∂D (this last condition ensures that D = (Id+ θ)D). It
is well known that, for sufficiently small θ, (Id+ θ) is a diffeomorphism in D.

The notion of derivation with respect to the domain of interest is now the following:

Definition 4.9. The shape derivative of a function J(Ω0) is defined as the Fréchet derivative in W 1,∞(D;Rd)
at 0 of the application θ → J

((
Id+ θ

)
Ω0
)
, i.e.

J
((
Id+ θ

)
Ω0
)

= J(Ω0) + J ′(Ω0)(θ) + o(θ) with lim
θ→0

|o(θ)|
‖θ‖W 1,∞

= 0 ,

where J ′(Ω0) is a continuous linear form on W 1,∞(D;Rd).

As noticed in [15] and [248], the essential ingredients that must be considered in the calculation of the
shape derivative of a problem such as (4.21) are the transmission conditions and the differentiability of the
solution u with respect to the interface Γ. Furthermore, when a numerical implementation is sought, an
additional element must be taken into account: the way in which the transmission conditions (continuity of
the displacement and continuity of the normal stress across the interface) are interpreted by finite element
methods in a fixed mesh framework. In general these methods either partially preserve the transmission
conditions (e.g. classical Lagrange finite elements method) or exactly preserve the transmission conditions
(e.g. extended finite elements XFEM [293], adapted interface meshing, which is one of the main topics of
this manuscript).

It is known [15], [248] that the solution u ∈ H1(D) of (4.21) is not shape differentiable with respect
to the interface Γ. The reason is that some spatial derivatives of u are discontinuous across the interface
because of the jump of the material elastic properties. Note however that the transported (or pull-back)
function uθ := u◦(Id+θ) is indeed differentiable with respect to θ (this is the difference between the material
derivative in the latter case and the shape derivative in the former case, see [9], [172]). It is not necessary to
use the concept of material derivative for computing the shape derivative of the objective function. One can
stay in a Eulerian framework and use Céa’s formal Lagrangian method [72] to find the correct formula for
the shape derivative J ′(Ω0)(θ). In order to circumvent the non-differentiability of u, the idea is to introduce
the restrictions of u on Ω0 and Ω1, denoted by u0 := u|Ω0 and u1 := u|Ω1 .

We recall the result of [15] for the shape derivation of the objective function (4.22). We need to introduce
some notations about jumps through the interface Γ. For any quantity s which is discontinuous across Γ,
taking values s0 (resp. s1) on Ω0 (resp. Ω1), denote as [s] = s1 − s0 the jump of s. We also introduce
at each point of Γ the local basis obtained by gathering the unit normal vector n (pointing outward Ω0)
and a collection of of unit tangential vectors, denoted by τ , such that (τ, n) is an orthonormal frame. For a
symmetric d× d matrix M, written in this basis, we introduce the notation

M =
(
Mττ Mτn

Mnτ Mnn

)

where Mττ stands for the (d− 1)× (d− 1) minor of M, Mτn is the vector of the (n− 1) first components
of the n-th column of M, Mnτ is the row vector of the (n− 1) first components of the n-th row of M, and
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Mnn the (n, n) entry of M. Finally, we define the adjoint problem



−div (Aχ e(p)) = −j′(x, u) in D,

p = 0 on ΓD,
(A1 e(p))n = −k′(x, u) on ΓN ,

(4.24)

where the symbol ′ denotes differentation with respect to u.

Proposition 4.10. The shape derivative of the cost function J , defined in (4.22), reads

J ′(Ω0)(θ) = −
∫

Γ

D(u, p) θ · nds,

D(u, p) = −σ(p)nn : [e(u)nn]− 2σ(u)nτ : [e(p)nτ ] + [σ(u)ττ ] : e(p)ττ . (4.25)

where [·] = ·1 − ·0 denotes the jump through Γ, n = n0 = −n1 and σ(v) = Aχ e(v).

Remark 4.10. To better appreciate the expression (4.25) where some terms have jumps and others not,
we recall that the tangential strain tensors e(u)ττ and e(p)ττ are continuous through the interface Γ while
the normal components e(u)nn, e(u)nτ , e(p)nn and e(p)nτ are discontinuous. On the contrary, the normal
components of the stress tensors σ(u)nn, σ(u)nτ , σ(p)nn and σ(p)nτ are continuous through Γ while their
tangential parts σ(u)ττ and σ(p)ττ are discontinuous.

Proof. We merely sketch the proof that can be found in [15]. In order to apply Céa’s Lagrangian method
[72] (see the sketch of the method in chapter 2, §2.2.2.4), we first introduce the restrictions of u on Ω0 and
Ω1, denoted by u0 := u|Ω0 and u1 := u|Ω1 , which satisfy the transmission problem:





−div
(
A1 e(u1)

)
= f in Ω1

u1 = 0 on ΓD ∩ ∂Ω1
(
A1 e(u1)

)
n = g on ΓN ∩ ∂Ω1

u1 = u0 on Γ
(A0e(u0))n0 + (A1e(u1))n1 = 0 on Γ,

(4.26)

and 



−div
(
A0 e(u0)

)
= f in Ω0

u1 = u0 on Γ
(A0e(u0))n0 + (A1e(u1))n1 = 0 on Γ.

(4.27)

Of course, (4.21) and (4.26)-(4.27) are equivalent. Note that, by standard regularity theory [222], u is smooth
on each subdomain, namely u0 ∈ H2(Ω0) and u1 ∈ H2(Ω1). Then, we define the Lagrangian

L(θ, v1, v0, q1, q0) =
∑

i=0,1

(∫

(Id+θ)Ωi

j(x, vi)dx+
∫

ΓN

k(x, vi)ds

)
(4.28)

+
∑

i=0,1

(∫

(Id+θ)Ωi

Aie(vi) : e(qi)dx−
∫

(Id+θ)Ωi

f · qidx−
∫

ΓN

g · qids
)

+
1
2

∫

(Id+θ)Γ

(σ1(v1) + σ0(v0))n · (q1 − q0)ds

+
1
2

∫

(Id+θ)Γ

(σ1(q1) + σ0(q0))n · (v1 − v0)ds,

where the last two surface integrals account for the transmission conditions. Differentiating L with respect to
q1, q0 yields the state equations (4.26)-(4.27), while differentiating with respect to v1, v0 leads to the adjoint
equation (4.24). Then a standard, albeit nasty, computation (see [15] for full details) shows that

J ′(Ω0)(θ) =
∂L
∂θ

(0, u1, u0, p1, p0)(θ),

which yields the result.
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Remark 4.11. Proposition 4.10 can be extended in several ways. For example, if the integrand j depend
on χ, namely if the objective function is

J(Ω0) =
∫

D

jχ(x, u)dx+
∫

ΓN

k(x, u)ds :=
∑

i=0,1

∫

Ωi

ji(x, u)dx+
∫

ΓN

k(x, u)dx,

we obtain a shape derivative which is

J ′(Ω0)(θ) = −
∫

Γ

(
[jχ(x, u)] +D(u, p)

)
θ · nds,

with the same expression (4.25) for D(u, p).

Although formula (4.25) for the shape derivative makes perfect sense in a continuous setting, its numerical
discretization is not obvious. Indeed, (4.25) involves jumps through the interface which are difficult to
evaluate from a numerical point of view if the interface is not exactly meshed. Let us explain the difficulty
by making some specific discretization choices, keeping in mind that any other numerical method will feature
similar drawbacks. Suppose D is equipped with a conforming simplicial mesh Dh =

⋃N
i=1 Ki with N elements

Ki of maximal size h. Let Π1(Dh) and Π0(Dh) be the finite-dimensional spaces of Lagrange P1, respectively
P0, finite element functions. Define uh, ph ∈ Π1(Dh) the internal approximations of u and p respectively,
i.e., ∫

D

Aχe(uh) : e(vh) dx =
∫

D

f · vh dx+
∫

ΓN

g · vh ds, ∀vh ∈ Π1(Dh), (4.29)

and
∫

D

Aχe(ph) : e(vh) dx = −
∫

D

j′(x, uh) · vh dx−
∫

ΓN

k′(x, uh) · vh ds, ∀vh ∈ Π1(Dh). (4.30)

Since the discrete strain tensors e(vh) are constant in each cell Ki, we can replace Aχ in the above internal
approximate variational formulation by its P0 interpolate A∗ defined by

A∗|K = ρA0 + (1− ρ)A1, with ρ =
∫

K

χ dx.

Within this discretized framework the naive evaluation of the jumps in (4.25) has no meaning. Indeed,
consider the generic case of an element K cut in its interior by the interface Γ (see Figure 4.9). For P1

Lagrange finite elements the strain tensors e(vh), for vh = uh, ph, are constant in K, thus yielding a zero
jump. Similarly, if the stress tensors are evaluated as σh = A∗e(vh), they are constant in K and their jump
is again zero, leading to a vanishing shape derivative if formula (4.25) is used with these values ! There is
an alternative formula for the stress tensor which is σh = Aχe(vh): it yields a non-vanishing jump [A]e(vh)
and the discretization of (4.25) would be

(D(u, p))h = ([A]e(u))ττ : e(p)ττ , (4.31)

which is different from the discrete formula (4.33) by lack of any normal components. On the same token,
note that the theoretical continuity of the normal stress through Γ does not hold when this approximation
is used, for σh = Aχe(vh) with vh = uh, ph since

[σh · n] = ([A]e(vh)) · n 6= 0.

Henceforth some special care is required for the numerical approximation of (4.25). A complicated process
was proposed in [15] for computing the jump of a discontinuous quantity sh, based on the diffuse interface
approximation

[sh] ≈
(

(1− χ)sh − χsh
)
. (4.32)
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Γ

A∗ = ρA0 + (1− ρ)A1

u0

h
= u1

h

(σ0(u0

h
))n 6= (σ1(u1

h
))n

(σ∗(u0

h
))n = (σ∗(u1

h
))n

A1

A0

Figure 4.9: Transmission condition in a fixed mesh framework.

Notwithstanding this approximation seems to work well when the contrast between the two elastic phases
is very large (as is the case in damage or fracture models, see [15]), more general numerical experiments for
comparable elastic moduli indicate a much worse behavior of this approximation, up to the point that (4.25)
does not any longer provide a proper descent direction to minimize (4.22) (see section 4.7.2).

This difficulty in the numerical evaluation of the shape derivative (4.25) is just another example of the
well-known paradigm ‘should we differentiate first and then discretize or vice versa ?’ as already studied in
[240]. In order to get around this issue it is tempting, and we do so now, to investigate the case when we
first discretize and then differentiate. In other words we consider the objective function

Jh(Ω0) =
∫

D

j(x, uh) dx+
∫

ΓN

k(x, uh) ds,

where uh ∈ Π1(Dh) is the discrete solution of (4.29).

Proposition 4.11. Assume that the interface Γ generically cut the mesh Dh, namely that it is never aligned
with part of a face of any cell Ki. Then, the solution uh of (4.29) is shape differentiable and the shape
derivative of the cost function Jh is given by

J ′
h(Ω0)(θ) = −

∫

Γ

[Aχ]e(uh) : e(ph) θ · nds, (4.33)

where [·] denotes the jump through Γ and ph is the solution of (4.30).

Remark 4.12. Note that Proposition 4.11 holds true for most finite elements discretization and not merely
P1 Lagrange finite elements. The assumption on the interface Γ is necessary in the sense that, if a face of
an element K of the mesh is embedded in Γ, then neither uh nor Jh are shape differentiable (in the most
favorable case, there would be two directional derivatives corresponding to Γ moving on one side or on the
other of this face of K). However, if instead of Lagrange finite elements, we use Hermite finite elements which
ensure that e(uh) is continuous on D, then the results of Proposition 4.11 hold true without any assumption
on Γ.

Proof. Let us denote by φi(x) the basis functions of the finite element space Π1(Dh). The solution uh ∈
Π1(Dh) is decomposed as

uh(x) =
∑

i

Uhi φi(x),
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and the vector Uh of components Uhi is the solution of the linear system

KhUh = Fh,

where the stiffness matrix Kh and the right hand side Fh are defined as

Kh
i,j =

∫

D

Aχe(φi) : e(φj) dx, and Fhi =
∫

D

f · φi dx+
∫

ΓN

g · φi ds.

The basis functions φi are independent of Γ so the shape differentiability of the function uh reduces to that
of the vector Uh and thus of the stiffness matrix Kh. Since the quantity e(φi) : e(φj) is piecewise constant
on each element K, we need our assumption that Γ does not overlap any face of K. In such a case we obtain

(
Kh
ij

)′
(Γ)(θ) =

∫

Γ

[Aχ]e(φi) : e(φj) θ · nds

and thus, the shape differentiability of Uh is a simple consequence of the implicit function theorem. We end
up with:

u′
h(Γ)(θ) =

∑

i

(
Uhi
)′

(Γ)(θ)φi, where
(
Uh
)′

(Γ)(θ) = −(Kh)−1
(
Kh
)′

(Γ)(θ)Uh.

Once uh is shape differentiable, it is not necessary anymore to consider a complicated Lagrangian like (4.28),
taking into account the transmission conditions through Γ (which, by the way, do not hold true for uh).
Therefore we define a discrete Lagrangian as

Lh(θ, vh, qh) =
∫

D

j(x, vh) dx+
∫

ΓN

k(x, vh) ds+
∫

D

A(Id+θ)χe(vh) : e(qh) dx−
∫

D

f · qh dx−
∫

ΓN

g · qh ds,

to which it is easy to apply Céa’s method. Note that the adjoint problem obtained by differentiating Lh with
respect to vh is exactly (4.30) which was a discretization of the continuous adjoint. Therefore we deduce

J ′
h(Ω0)(θ) =

∂Lh
∂θ

(0, uh, ph)(θ),

which yields the desired result.

There is a clear difference between the discrete derivative (4.33) and the continuous one (4.25). Even
if the continuous derivative is further discretized as suggested in (4.31), there is still a difference between
(4.33) and (4.31) which is that the last one is restricted to the tangential components of the stress and strain
tensors.

There is however one case where both formulas coincide which is when one of the phases is void. Indeed,
assume (formally) that A0 = 0 (and similarly that f = 0 and j = 0 in Ω0 so that no loads are applied to the
void region). Then, in the domain Ω0 we have

σ(p)nn = 0, σ(p)nτ = 0, σ(u)nn = 0 and σ(u)nτ = 0.

Thus, the continuous derivative (4.25) becomes

J ′(Ω0)(θ) = −
∫

Γ

σ(u1)ττ : e(p1)ττ θ · nds,

which, upon discretization, coincides with the discrete derivative (4.33)

J ′
h(Ω0)(θ) = −

∫

Γ

A1e(uh) : e(ph) θ · nds,
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since σ(u1)nn = σ(u1)nτ = 0 on Γ.
The above study shows that the numerical discretization of the sharp-interface problem should be handled

carefully when a standard finite element method is used for solving the state and adjoint systems (4.21) and
(4.24) in a fixed mesh setting. The main reason of this difficulty lies in the difference of regularity of the
exact and approximated solutions through the interface. The discrete derivative (4.33) proves very efficient
in numerical practice. Many examples are given in [110] in the context of optimal design of laminated
composite panels.

4.4 Shape derivative in the smoothed-interface context

4.4.1 Description of the problem

We now present an alternative approach to that of section 4.3 which can be coined as smoothed or diffuse
interface approach. It can be seen as a mathematically convenient approximation of the sharp-interface prob-
lem but, as explained in the introduction, it has its own merits for some problems in material science which
feature physically thick transition zones [66], [296], [308], [314]. More precisely, either for a mathematical
approximation or for physical reasons, it may be desirable to model the interface Γ between Ω0 and Ω1 as a
thin layer of (small) width 2ε > 0 rather than as a sharp interface. In this context, we rely on the notion of
signed distance function, described in section 4.2.

The material properties in D are defined as a smooth interpolation between A0 and A1 in the layer of
width 2ε around Γ, so that the resulting Hooke tensor AΩ0,ε reads

AΩ0,ε(x) = A0 + hε(dΩ0(x))(A1 −A0), ∀x ∈ D, (4.34)

where hε : R→ R is a smooth approximation of the Heaviside function, that is, a smooth monotone function
enjoying the properties : hε(t) = 0 for t < −ǫ, hε(t) = 1 for t > ǫ. In the sequel, we chose the C2 function

∀ t ∈ R, hε(t) =





0 if t < −ε
1
2

(
1 + t

ε
+ 1

π
sin(πt

ε
)
)

if − ε ≤ t ≤ ε
1 if t > ε

(4.35)

Remark 4.13. Formula (4.35) expresses a simple choice for the interpolation of the material properties
between the two materials, and of course, one could think of different interpolation rules. Moreover, the
interpolation function could also contain parameters that are themselves subject to optimization (e.g. the
layer width ε) and both a geometric and parametric optimization could be combined using a method of
alternating directions.

We modify (4.21) so that the elastic displacement now solves



−div

(
AΩ0,ε e(u)

)
= f in D

u = 0 on ΓD
(A1 e(u))n = g on ΓN .

(4.36)

The objective function does not change and we still minimize (4.22) which depends on dΩ0 through (4.34).
In order to compute its shape derivative, we shall use the preliminary material of section 4.2.

4.4.2 Shape derivative of the compliance in the multi-materials setting

With the results of section 4.2, we have all the necessary ingredients to differentiate the cost function
(4.22) with respect to the domain. We keep the geometrical assumptions of section 4.3, namely for a given
bounded open set D ⊂ Rd which is partitioned in two subdomains Ω0,Ω1 ⊂ D, Ω0 is a strict subset of D in
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the sense that its boundary Γ, as well as its thick approximation, does not touch ∂D (see figure 4.8) and Γ
is smooth.

We define the adjoint problem



−div

(
AΩ0,ε e(p)

)
= −j′(x, u) in D,

p = 0 on ΓD,
(A1 e(p))n = −k′(x, u) on ΓN ,

(4.37)

where the symbol ′ denotes differentation with respect to u.
Our main result is the following.

Theorem 4.8. The objective function (4.22) is shape differentiable in the sense of Gâteaux, namely θ 7→
J((Id+ θ)Ω0) admits a Gâteaux derivative at θ = 0, which is

J ′(Ω0)(θ) = −
∫

Γ

θ(x) · n(x)
(
f0(x) + f1(x)

)
dx, ∀ θ ∈W 1,∞(D,Rd), (4.38)

where n is the outer unit normal to Ω0 and f0, f1 are scalar functions defined by

f0(x) =
∫

rayΓ(x)∩Ω0

h′
ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)

d−1∏

i=1

(1 + dΩ0(z)κi(x))dz,

f1(x) =
∫

rayΓ(x)∩Ω1

h′
ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)

d−1∏

i=1

(1 + dΩ0(z)κi(x))dz,

where z denotes a point in the ray emerging from x ∈ Γ.

Proof. The rigorous proof of existence of the shape derivative stems from classical arguments (typically the
implicit function theorem) similar to those invoked in [234] or chapter 5 in [172]. We rather focus on the
actual computation of the shape derivative and use once again the formal Lagrangian method of Céa [72].
As the computation unfolds very similarly to that in the proof of Theorem 3.6 in [14], we limit ourselves to
the main arguments.

Define first the functional space V := {v ∈ H1(D)d such that v = 0 on ΓD}, in which are sought the
solution of the state equation (4.36) and of the adjoint equation (4.37). We introduce the Lagrangian
L : W 1,∞ (D,Rd

)
× V × V → R, defined by

L(θ, v, q) =
∫

D

j(x, v) dx+
∫

ΓN

k(x, v) ds+
∫

D

A(Id+θ)Ω0,εe(v) : e(q) dx−
∫

D

f · q dx−
∫

ΓN

g · q ds. (4.39)

Here, q is intended as the Lagrange multiplier associated to the enforcement of the state equation. As usual,
stationarity of the Lagrangian provides the optimality conditions for the minimization problem. At θ = 0,
cancelling the partial derivative of L with respect to q yields the variational formulation of the state u. In
the same way, the nullity of the partial derivative of L with respect to v leads to the variational formulation
of the adjoint p.

Eventually, the shape derivative of the objective function is the partial derivative of L with respect to θ,
evaluated at u and p

J ′(Ω0)(θ) =
∂L
∂θ

(0, u, p)(θ).

Some elementary algebra yields, using proposition 4.5:

J ′(Ω0)(θ) =
∫

D

(
A(Id+θ)Ω0,ε

)′
(θ) e(u) : e(p) dx

= −
∫

D

h′
ε(dΩ0(x)) (θ(pΓ(x)) · n(pΓ(x))) (A1 −A0)e(u) : e(p) dx,

(4.40)
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where
(
A(Id+θ)Ω0,ε

)′
(θ) is the directional shape derivative of A(Id+θ)Ω0,ε while h′

ε is the standard derivative
of the real function hε. It remains to transform this expression by the coarea formula in order to deduce a
boundary integral. Using formula (4.11) for (4.40), we get:

J ′(Ω0)(θ) = −
∫

Γ

θ(x) · n(x)

(∫

rayΓ(x)∩D
h′
ε(dΩ0(z))(A1 −A0)e(u)(z) : e(p)(z)

d−1∏

i=1

(1 + dΩ0(z)κi(x))dz

)
dx.

Now decomposing the above integral over Ω0 and Ω1 readily yields the desired result.

Remark 4.14. Theorem 4.8 provides a simple way of choosing a descent direction for a shape gradient
based algorithm. Indeed it is enough to perturb the interface Γ by choosing the vector field

θ(x) =
(
f0(x) + f1(x)

)
n(x),

which ensures that the directional derivative (4.38) is negative and thus yields a decrease of the objective
function (4.23). This is in sharp contrast with Proposition 4.5 which provided formula (4.8) for the shape
derivative. However it was impossible to extract directly from (4.8) an explicit value of θ which was a
guaranteed descent direction.

Remark 4.15. In the case of compliance minimization, namely for the objective function (4.23), we have
j′ = f , k′ = g and thus p = −u. If we assume that material 1 is stronger than material 0, in the sense that
A1 ≥ A0 as positive definite tensors, we deduce from the formulas of Theorem 4.8 that both f0 and f1 are
non-positive because 1 + κi(x)dΩ0(z) ≥ 0 by virtue of Lemma 4.2. Thus, a descent direction is obtained by
choosing θ such that θ(x) · n(x) < 0 on Γ, namely we expand Ω1. This is in accordance with the mechanical
intuition that a more robust mixture of the two materials is achieved when A1 prevails over A0. Of course,
for the problem to be reasonable, a volume constraint is imposed on the phases.

4.4.3 Approximate formulas for the shape derivative

Although formula (4.38) is satisfying from a mathematical point of view, its numerical evaluation is not
completely straightforward. There are two delicate issues. First, one has to compute the principal curvatures
κi(x) for any point x ∈ Γ on the interface. Second, one has to perform a 1-d integration along the rays of
the energy-like quantity [A]e(u) : e(p). This is a classical task in the level-set framework [274] but, still, it is
of interest to devise a simpler approximate formula for the shape derivative.

A first approximate formula is to assume that the interface is roughly plane, namely to assume that the
principal curvatures κi vanish. In such a case we obtain a ‘Jacobian-free’ approximate shape derivative

J ′(Ω0)(θ) = −
∫

Γ

θ(x) · n(x)
(
f0(x) + f1(x)

)
dx

fi(x) =
∫

rayΓ(x)∩Ωi

h′
ε (dΩ0(z)) (A1 −A0)e(u)(z) : e(p)(z)dz.

(4.41)

A second approximate formula is obtained when the smoothing parameter ε is small. Note that, since the
support of the function h′

ε is of size 2ε, the integral in formula (4.38) is confined to a tubular neighborhood
of Γ of width 2ε. Therefore, if ε is small, one may assume that the functions depending on z are constant
along each ray, equal to their value at x ∈ Γ. In other words, for small ε we assume

e(u)(z) ≈ e(u)(x), e(p)(z) ≈ e(p)(x) and dΩ0(z) ≈ dΩ0(x) = 0,

which yields the approximate formulas, for x ∈ Γ,

f0(x) ≈ (A1 −A0)e(u)(x) : e(p)(x)
∫

rayΓ(x)∩Ω0

h′
ε (dΩ0(z)) dz,
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f1(x) ≈ (A1 −A0)e(u)(x) : e(p)(x)
∫

rayΓ(x)∩Ω1

h′
ε (dΩ0(z)) dz.

Furthermore, most rays have a length larger than 2ε so that
∫

rayΓ(x)∩Ω0

h′
ε (dΩ0(z)) dz +

∫

rayΓ(x)∩Ω1

h′
ε (dΩ0(z)) dz = hε(ε)− hε(−ε) = 1.

In turn we obtain the following approximate formula for (4.38)

J ′(Ω0)(θ) ≈ −
∫

Γ

(A1 −A0)e(u) : e(p) θ · ndx, (4.42)

which is nothing but the discrete shape derivative (4.33) that we obtained in the sharp-interface case. This
computation seems a bit miraculous but makes sense as a kind of commutation property between interface
regularization and optimization.

Our numerical results show that the latter simplification (4.42), which we shall refer to as the approximate
shape derivative, works very well in practice for problems of compliance minimization. Formula (4.42) is also
used by other authors in their numerical simulations [321].

4.4.4 Convergence of the smoothed-interface shape optimization problem to
the sharp-interface problem

When the smoothed-interface setting is used as an approximation of the sharp-interface case, it is a
natural task to prove that this approximation is mathematically consistent. In this section, we present a
result in this direction, and outline the main ideas of the proof, referring to the appendix (section 4.8) for
all the technical details.

More specifically, for a given regular interface Γ, we prove that the shape gradient obtained in Theorem
4.8 for a smoothed transition layer of width 2ε converges, as ε goes to 0, to the corresponding shape gradient
in the sharp-interface context, recalled in Proposition 4.10.

To set ideas, let us limit ourselves to the case of compliance minimization, the case of a general objective
function such as (4.22) being no different in principle. In order to make explicit the dependence on the
half-thickness ε of the smoothed transmission area, the solution of the state system (4.36) is denoted uε in
this section. Similarly the stress tensor is σ(uε) = AΩ0,ε e(uε) and the compliance is

Jε(Ω0) =
∫

D

σ(uε) : e(uε) dx.

The solution of the state system (4.21) in the sharp-interface case is still denoted as u, and the associated
compliance as J(Ω0).

To find the limit of J ′
ε(Ω0), as ε → 0, requires some knowledge of the asymptotic behavior of e(uε) and

σ(uε) in the vicinity of the interface Γ. Unfortunately, one cannot expect all the components of e(uε) and
σ(uε) to converge toward their counterpart in e(u) and σ(u) in any space of smooth enough functions. Indeed,
for fixed ε, e(uε) is smooth over D (because so is the associated Hooke’s tensor), whereas we recalled in
Remark 4.10 that e(u)τn and e(u)nn are discontinuous across Γ, as imposed by the transmission conditions.
However, some of the components of e(uε) and σ(uε) do behave well as ε → 0. This is the purpose of the
following proposition, which is a consequence of rather classical results in elliptic regularity theory.

Proposition 4.12. Assuming Γ is a C2 interface, there exists a tubular neighborhood V ⊂⊂ D of Γ such
that one can define a smooth extension in V of the normal n and of a set of tangentials and orthonormal
vectors τ . Then, the following strong convergences hold true

e(uε)ττ
ε→0−→ e(u)ττ in H1(V )(d−1)2

strong,

σ(uε)τn
ε→0−→ σ(u)τn in H1(V )d strong,

σ(uε)nn
ε→0−→ σ(u)nn in H1(V ) strong.

.



4.4. Shape derivative in the smoothed-interface context 135

Remark 4.16. The components of the strain and stress tensors which converge in Proposition 4.15 are
exactly those which are continuous through the interface Γ as explained in Remark 4.10.

We are now in a position to state the main result of the present section which implies that the shape
derivative of the smoothed-interface objective function is a consistent approximation of the corresponding
shape derivative in the sharp-interface case.

Theorem 4.9. Under the above assumptions, we have

lim
ε→0

J ′
ε(Ω

0)(θ) = J ′(Ω0)(θ) ∀ θ ∈W 1,∞(D,Rd).

Sketch of the proof. We limit ourselves with an outline of the main steps, referring to section 4.8 for details.
The goal is to pass to the limit ε → 0 in formula (4.38), for a fixed θ ∈ W 1,∞(D,Rd). To achieve this,
the rays rayΓ(x) ∩Ω0 and rayΓ(x) ∩Ω1 are expressed as integrals over the segment (0, 1). Therefore, (4.38)
becomes

J ′
ε(Ω

0)(θ) = −
∫

Γ

θ(x) · n(x)
(
fε0 (x) + fε1 (x)

)
dx,

where fε0 , f
ε
1 ∈ L1(Γ) are defined as

fε0 (x) =
∫ 0

−1

h′
ε(sε)(A1 −A0)e(uε)(x+ sεn(x)) : e(uε)(x+ sεn(x)) kε(x, s) ds, (4.43)

fε1 (x) =
∫ 1

0

h′
ε(sε)(A1 −A0)e(uε)(x+ sεn(x)) : e(uε)(x+ sεn(x)) kε(x, s) ds, (4.44)

with

kε(x, s) =
d−1∏

i=1

(1 + sεκi(x)) .

Since h′
ε(sε) does not depend on ε, to pass to the limit in (4.43) and (4.82) requires merely the following

simple technical convergence result:

∫ 1

0

v(s) fε(x+ sεn(x))gε(x+ sεn(x)) ds ε→0−→
(∫ 1

0

v(s) ds
)
f(x)g(x) in L1(Γ) (4.45)

for a smooth function v(s) and any sequences fε, gε ∈ H1(D), which converge strongly in H1(D) to f, g
respectively. In order to apply (4.45) we rewrite expressions (4.43) and (4.82) in terms of the components
e(uε)ττ and σ(uε)τn, σ(uε)nn of the strain and stress tensors, which have a fine behavior at the limit ε→ 0 as
guaranteed by Proposition 4.15. After some algebra, we obtain the following rearrangement for the integrand
in fε0 and fε1 :

(A1 −A0)e(uε) : e(uε)(x+ sεn(x)) = µ′(s) (e(uε)ττ : e(uε)ττ ) (x+ sεn(x))

+
µ′(s)
µ(s)2

(σε(uε)τn · σε(uε)τn) (x+ sεn(x))

+
4µ2(s)λ′(s) + 2µ′(s)λ2(s)

(2µ(s) + λ(s))2
tr(e(uε)ττ )2(x+ sεn(x))

+
2µ′(s) + λ′(s)

(2µ(s) + λ(s))2
σε(uε)2

nn(x+ sεn(x))

+
4µ(s)λ′(s)− 4µ′(s)λ(s)

(2µ(s) + λ(s))2
(σε(uε)nn tr(e(uε)ττ )) (x+ sεn(x))

,

with
λ(s) = λ0 + hε(sε)(λ1 − λ0), µ(s) = µ0 + hε(sε)(µ1 − µ0),
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D

O0

cO0

D

O1

cO1

D

Ω0

Ω1

Ω2

Ω3

Figure 4.10: Two subdomains of D (top) and the four phase domains derived by combining them together
(down).

where λ0, µ0 and λ1, µ1 are the Lamé coefficients of materials 0, 1 respectively. Note that all the functions
of s involving λ(s) and µ(s) appearing in the above expression arise as exact derivatives of functions of λ(s)
and µ(s). Passing to the limit in the above expression using (4.45) leads to

(fε0 + fε1 )→ D(u, u) in L1(Γ),

where D(u, u) is defined as

D(u, u)(x) = 2 [µ] e(u)ττ (x) : e(u)ττ (x)−
[

1
µ

]
σ(u)τn(x) · σ(u)τn(x)

+
[

2λµ
(2µ+λ)

]
tr(e(u)ττ (x))2 −

[
1

2µ+λ

]
σ(u)(x)2

nn

+
[

2λ
2µ+λ

]
σ(u)nn(x) tr(e(u)ττ (x))

,

which after some algebra rewrites as (4.25). This completes the proof.

4.5 Extension to more than 2 materials

The methods presented in sections 4.3 and 4.4 for two phases can be extended to the case of several
materials to be optimally placed in the domain D, following a classical idea in the level-set framework [315],
[321].

Hitherto, we considered a single subdomain Ω0 ⊂ D, which allows to account for two separate phases
within D, occupying respectively the domains Ω0 and Ω1 := cΩ0 (where c denotes the complementary part
in D). To consider more phases, we introduce m subdomains O0, ...,Om−1 ⊂ D which are not subject to any
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geometrical constraints (they can intesect, or not, and they don’t need to cover D). These m subdomains
allow us to treat up to 2m distinct phases, filling respectively the phase domains Ω0, ...,Ω2m−1 ⊂ D, defined
as (see Figure 4.5) 




Ω0 = O0 ∩ O1 ∩ ... ∩ Om−1,

Ω1 = cO0 ∩ O1 ∩ ... ∩ Om−1,
...

Ω2m−1 = cO0 ∩ cO1 ∩ ... ∩ cOm−1.

(4.46)

Note that Ω0, ...,Ω2m−1 is a partition of D. To simplify the exposition, from now on we take m = 2, meaning
that we consider four different materials, with respective Hooke’s law A0, A1, A2, A3. Two subdomainsO0,O1

of D are then introduced, and each material Ai fills an area Ωi ⊂ D, defined through formula (4.46).
For the sharp-interface problem, the definition of the mixture Hooke’s tensor Aχ is standard. Introducing

χ0 and χ1 the characteristic functions of O0 and O1, respectively, we define

Aχ(x) := χ0(x)χ1(x)A0 + (1− χ0(x))χ1(x)A1 + χ0(x) (1− χ1(x))A2 + (1− χ0(x)) (1− χ1(x))A3. (4.47)

For the smoothed-interface problem, we propose a formula inspired from (4.47)

AO0,O1,ε(x) = (1− hε(dO0(x)))(1− hε(dO1(x)))A0 + hε(dO0(x))(1− hε(dO1(x)))A1

+ (1− hε(dO0(x)))hε(dO1(x))A2 + hε(dO0(x))hε(dO1(x))A3,
(4.48)

where hε is the smooth approximation (4.35) of the Heaviside function and dO0 , dO1 are the signed distance
functions to O0 and O1 respectively. Of course, there are other interpolation formulas and any alternative
choice which, as (4.48), satisfies the following consistency

AO0,O1,ε(x) =





A0 if dO0(x) < −ε and dO1(x) < −ε,
A1 if dO0(x) > +ε and dO1(x) < −ε,
A2 if dO0(x) < −ε and dO1(x) > +ε,
A3 if dO0(x) > +ε and dO1(x) > +ε,
a smooth interpolation between A0, A1, A2, A3 otherwise,

(4.49)

will do. In particular, for applications in material science where the thick interface has a clear physical
interpretation, one could choose a physically relevant choice of the interpolant Hooke’s law for the mixture
of A0, A1, A2, A3 in the intermediate areas, like a sequential laminate or another microstructure achieving
Hashin and Shtrikman bounds [229]. On the other hand, if the smoothed-interface problem is merely a
mathematical approximation of the sharp-interface case, then it is a consistent approximation since, as the
regularizing parameter ε goes to 0, the smooth tensor AO0,O1,ε converges to the discontinuous one Aχ.

In the multiphase case, the definition of the objective function (4.22) does not change

J(O0,O1) =
∫

D

j(x, u) dx+
∫

ΓN

k(x, u) ds, (4.50)

and the state or adjoint equations are the same, up to changing the previous Hooke’s tensor by AO0,O1,ε.
There are now two variable subdomains, O0,O1, as design variables for the optimization problem. Ac-
cordingly, we introduce two separate vector fields θ0, θ1 ∈ W 1,∞ (D,Rd

)
in order to vary the subdomains

O0,O1.
According to Theorem 4.8, the partial shape derivative of the objective function (4.50) with respect to

O0 and O1, which we shall denote as ∂J
∂O0 and ∂J

∂O1 respectively, in the direction of θ0 and θ1, respectively,
are

∂J

∂O0
(O0,O1)(θ0) =

∫

D

θ0(p∂O0(x)) · n0(p∂O0(x))
∂A

∂dO0

(dO0 , dO1)e(u) : e(p) dx, (4.51)

∂J

∂O1
(O0,O1)(θ1) =

∫

D

θ1(p∂O1(x)) · n1(p∂O1(x))
∂A

∂dO1

(dO0 , dO1)e(u) : e(p) dx, (4.52)
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where A(dO0 , dO1) = AO0,O1,ε, defined in (4.49). Of course, one can apply Theorem 4.8 to simplify (4.51)
and (4.52) and transform them in surface integrals on ∂O0 and ∂O1.

Remark 4.17. In the sharp interface context one could compute shape derivatives of the objective function
J with respect to O0 and O1 too, thus recovering formulas similar to (4.51) and (4.52). However, it is possible
only if we assume that the boundary of O0 and O1 do not superpose. Indeed if, for example, ∂O0 = ∂O1,
then moving O0 inside O1, or vice versa, implies that one phase or another one appears. This means that
a topology change is occuring which cannot be handled by Hadamard’s method. At most, one can expect
to compute two different directional derivatives (inward and outward) which clearly shows that there is no
differentiability in this case. Note that there is no such difficulty in the smoothed interface setting: formulas
(4.51) and (4.52) hold true for any geometrical situation of O0 and O1 since AO0,O1,ε is a smooth function
of x in D.

4.6 Discussion and comparison with previous formulae in the lit-
erature

To our knowledge, the first works on multi-phase optimization using a level-set method are [223] and
[321]. Further references include [224], [320], [322]. In all these works the computation of the shape derivative
is not mathematically rigorous and the obtained formulas are not strictly correct. Indeed, either the shape
differentiation is performed in the sharp-interface case and then the non-differentiable character of the
solution of (4.21) is ignored (as explained in section 4.3.2), or the shape derivative is evaluated in the
smoothed-interface case and then the derivative of the signed distance function is not taken into account.
Fortunately, the shape derivative formulas in [223] and [321] coincide with what we called our approximate
shape derivatives obtained in Proposition 4.11 for a discretization of the sharp-interface case and in (4.42)
for a very thin smoothed interface. A third possibility for interpreting these works is to consider that the
regularization of the interface is made with the help of the level set function ψ (used in numerical practice for
representing and advecting the shape, see section 4.7 below) rather than with the signed distance function
dΩ. Then the differentiation is performed with respect to ψ rather than with respect to the shape Ω. It
alleviates all the technical details of section 4.4 but it has one major flaw that we now describe.

Figure 4.11: Intermediate zone for regularization with the signed distance function (left) or with an arbitrary
level set function (right).

Indeed, in the context of section 4.4 on the smoothed interface approach, one could be tempted to replace
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the regularization formula (4.34) by a similar one

AΩ0,ε(x) = A0 + hε(ψ(x))(A1 −A0), ∀x ∈ D, (4.53)

where the signed distance function dΩ has simply been replaced by the level set function ψ. Then, as is
done in [223] and [224], one may differentiate the objective function with respect to ψ. A serious problem
that rises directly from this choice, is that the interpolation zone, where AΩ0,ε takes intermediate values
between A0 and A1, can thicken during the optimization process, especially if the level set function ψ is not
frequently reinitialized towards the signed distance function to the boundary (see Figure 4.11). The reason is
that the interpolation zone corresponds to some kind of homogenized material made of A0 and A1, which is
known to be more advantageous than pure phases in most problems [9]. The optimization process therefore
does not only move the interface location but also flatten the level set function ψ so that the interpolation
zone gets thicker. Even when the level set function is reinitialized, there remains a difficulty in the sense
that the value of the objective function may change before and after reinitialization. A partial remedy to
this inconvenient, as suggested in [223], is to add to the objective function a penalization term to control the
enlargement.

The computation of the shape derivative is slightly different in [321]: the authors carry out the derivation
with the level set function ψ but in the resulting formula they assume that ψ coincides with the signed distance
function to the interface dΩ. More precisely, following the notations of Proposition 4.5, they consider a
functional

J(Ω) =
∫

D

m(x, ψ(x)) dx, (4.54)

where ψ is a solution of the Hamilton-Jacobi equation

∂ψ

∂t
+ θ · n |∇ψ| = 0.

Then, the authors claim that the shape derivative is

J ′(Ω)(θ) = −
∫

D

∂m

∂ψ
(x, ψ(x)) θ(x) · n(x) dx. (4.55)

Note the difference with our formula (4.8), which involves the projection pΓ(x) of x on the boundary Γ = ∂Ω,
and that we recall as

J ′(Ω)(θ) = −
∫

D

∂m

∂ψ
(x, dΩ(x)) θ(pΓ(x)) · n(pΓ(x)) dx.

Unfortunately, there is no a priori guarantee that the transported signed distance function to the boundary
∂Ω remains the signed distance function to the transported boundary (Id + θ)∂Ω. Therefore, the shape
derivative d′

Ω(θ)(x) cannot be replaced by the expression ∂ψ
∂t

= −θ ·n |∇ψ| coming from the Hamilton-Jacobi
equation, as it is done in [223] and [321], without making any further assumptions. For example, in [160]
it is shown that the transported level set function remains the signed distance function (at least for a small
time) if the advection velocity remains constant along the normal, namely (θ · n)(x) = (θ · n)(pΓ(x)).

A difficulty with (4.55) is that it does not satisfy the Hadamard structure theorem (see e.g. [9], [105],
[172], [234] and references therein) since it does not depend solely on the normal trace θ · n on the interface
Γ = ∂Ω. In fact, assuming that the support of ∂m

∂ψ
is concentrated around Γ, formula (4.55) would be similar

to what we called earlier ‘approximate shape derivative’, obtained in Proposition 4.11 for a discretization of
the sharp-interface case and in (4.42) for the smoothed-interface case when the regularization parameter ε
is small. In any case, (4.55) does not guarantee a descent direction in general, unless ∂m

∂ψ
keeps a constant

sign along the normal, at least for the width of the intermediate zone.
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4.7 Numerical results

4.7.1 Level-set representation

Following the lead of [14], [15], we represent the moving and optimizable interfaces by level set functions
[245] defined on a fixed mesh in an Eulerian framework. According to Section 4.5, using m level set functions
we can represent up to 2m separate phases.

When there are only two phases to optimize, it suffices to use one level set function to represent the
interface Γ between two complementary sub-domains Ω0 and Ω1 of the working domain D. The level set
function ψ (see figure 4.26) complies with the properties:





ψ(x) = 0 for x ∈ Γ = ∂Ω0,
ψ(x) < 0 for x ∈ Ω0,
ψ(x) > 0 for x ∈ Ω1.

D

Ω0

Ω1

Γ
ψ < 0

ψ > 0

ψ = 0

Figure 4.12: Level-set representation of the domains Ω0 and Ω1.

During the optimization process the shape is advected with a scalar velocity field V (x) in the direction
of the outer normal vector field n(x) to Ω0 (V = θ · n). For instance, in the smoothed-interface setting of
section 4.4, the value of this scalar field is derived from the shape sensitivity analysis of Theorem 4.8. More
precisely, the choice

V (x) = f0(x) + f1(x),

where f0, f1 are defined by (4.38), clearly gives a descent direction for θ = V n. The functions f0 and f1

are defined for all points x ∈ Γ as integrals along rays in the normal direction. Since the interface Γ is
not explicitly discretized, f0 and f1 are evaluated at the nodes of the elements that are crossed by the zero
level-set. The normal vector is computed for each of these nodes, which defines the direction of the rays and
a simple quadrature formula is used for the numerical approximation of f0 and f1. This computation is done
only in a band of thickness 2ε around the interface, where h′

ε is non-zero, and as long as the skeleton of Γ
(see Definition 4.2) is not detected (recall that the rays end up at the skeleton). When integrating along a
ray the skeleton is identified as the region where the signed-distance function loses its monotonicity.

The advection is described in the level set framework by introducing a pseudo time t ∈ R+ and solving
the Hamilton-Jacobi equation over D

∂ψ

∂t
+ V |∇ψ| = 0, (4.56)

using an explicit upwind scheme [274] (see also chapter 1, §1.2.1). However, the scalar field V is a priori
defined only on the boundary of the shape and therefore it is necessary to extend it to the whole domain
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in order to be able to perform multiple iterations of the transport equation (4.56) for each finite element
analysis. Moreover, it is numerically advantageous to regularize the advection velocity in order to assure
some smoothness required by sensitivity analysis [162] (see chapter 1, §2.2.3.3). One way to extend and
regularize at the same time V is to solve the variational formulation for Q ∈ H1(D)

∫

D

(
α2∇Q · ∇V +QV

)
dx = J ′(Ω)(V n) for any V ∈ H1(D), (4.57)

where α > 0 is a positive parameter that controls the regularization width (typically α is of the order of the
mesh size). Then, choosing V = −Q, we find

J ′(Ω)(−Qn) = −
∫

D

(
α2|∇Q|2 +Q2

)
dx,

which guarantees again that −Q n is a descent direction for J .
In order to describe up to four distinct phases, two level-set functions ψ0 and ψ1 are defined such that





ψ0(x) = 0 for x ∈ ∂O0,
ψ0(x) < 0 for x ∈ O0,

ψ0(x) > 0 for x ∈ cO0,
and





ψ1(x) = 0 for x ∈ ∂O1,
ψ1(x) < 0 for x ∈ O1,

ψ1(x) > 0 for x ∈ cO1,

following the notations of Figure 4.5. Then, each level set function ψi, i = 0, 1, is transported independently
solving (4.56), where Vi, i = 0, 1 results from the formulas (4.51) and (4.52).

•1

2

Figure 4.13: Boundary conditions for the long cantilever.

4.7.2 Two materials in the sharp interface context

We work in the context of Section 4.3, namely in a sharp interface framework. We compare the two
shape derivatives: the continuous formula furnished by Proposition 4.10 and the discrete formula given
in Proposition 4.11. The numerical implementation of the continuous formula of the shape derivative in
Proposition 4.10 is achieved according to the scheme proposed in [15] for computing the jump approximation
(4.32). We consider a long cantilever of dimensions 2×1, discretized by 100×50 P1 elements, clamped at its
left side and submitted to a unit vertical load at the middle of its right side (see Figure 4.13). The domain
is filled by two isotropic materials 0 and 1, with different Young’s moduli, respectively E0 = 0.5 and E1 = 1
(material 1 is stiffer than material 0) but with the same Poisson ratio ν = 0.3. We minimize the compliance
(4.23) with a constraint of fixed volume for the two phases. The computations are done with the FreeFem++
package [259].

For all the numerical examples in this chapter, an augmented Lagrangian method is applied to handle
the constraints. Following the approach in [237], supposing that our problem contains m equality constraints
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of the type ci(Ω0) = 0 (i = 1, ...,m), an augmented Lagrangian function is constructed as

L(Ω0, ℓ, µ) = J(Ω0)−
m∑

i=1

ℓici(Ω0) +
m∑

i=1

µi
2
c2
i (Ω

0),

where ℓ = (ℓi)i=1,...,m and µ = (µi)i=1,...,m are Lagrange multipliers and penalty parameters for the con-
straints. The Lagrange multipliers are updated at each iteration n according to the optimality condition
ℓn+1
i = ℓni −µici(Ω0

n). The penalty parameters are augmented every 5 iterations. With such an algorithm the
constraints are enforced only at convergence (see for example Figure 4.15). Of course, other (and possibly
more efficient) optimization algorithms could be used instead.

The results are displayed on Figure 4.14. As usual the strong phase 1 is black and the weak phase 0
is white. The design obtained with the discrete formula is quite similar to the one exposed in Figure 4.16
(c). However the continuous formula gives a different optimal shape which is worse in terms of the objective
function than the one obtained with the discrete formula (see Figure 4.15).

Figure 4.14: Optimal shapes for the long cantilever using the discrete shape gradient (left) and the continuous
formula (right).

Figure 4.15: Convergence history of the compliance (left) and the volume (right) for the sharp interface
results displayed on Figure 4.14.

4.7.3 Two materials in the smoothed-interface context

We now switch to the smoothed-interface setting as described in Section 4.4. We perform the same test
case, with the same parameter values, as in Section 4.7.2. All computations are performed in Scilab. A first
goal is to compare the smoothed-interface approach to the sharp-interface one. A second goal is to compare
the various formulas for the shape derivative obtained in Section 4.4.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Long cantilever using two phases with VT = 0.7|D| and a small smoothing parameter ε = 2∆x;
(a) initialization, (b) optimized shape using the ‘true’ formula, (c) optimized shape using the ‘Jacobian-
free’ formula, (d) optimized shape using the ‘approximate’ formula, (e) convergence of the compliance, (f)
convergence of the volume.

We minimize again the compliance (4.23) with a constraint of fixed volume for the two phases which is
written ∫

D

hε(dΩ0(x))dx = VT ,

where VT is the target volume of the strong phase occupying Ω1.
We test three different formulas for the shape gradient. The first one is the ‘true’ formula given by (4.38)

(see also (4.51) and (4.52) in the case of more than two phases). The second one, called ‘Jacobian-free’,
is (4.41) which is obtained from (4.38) by neglecting the Jacobian term. The reason for this choice is that
the curvature is not precisely calculated using a fixed mesh and therefore we may introduce a significant
approximation error. In any case, it amounts to neglecting a positive factor, thus it remains a descent
direction. The third one is the ‘approximate’ formula (4.42) obtained for a very thin smoothing zone around
the interface.

First, we consider the case of a ‘thin’ interface. The interpolation width is chosen as ε = 2∆x, where ∆x
is the uniform mesh size. The results for VT = 0.7|D| are shown in Figure 4.16. We plot the Young modulus



144 Chapter 4. Multi-phase optimization via a level set method

distribution (black being the strong material A1 and white the weak material A0). The convergence histories
are almost identical for the ‘true’ and ‘Jacobian-free’ formulas of the shape derivative. It is slightly more
oscillating for the ‘approximate’ formula although it converges to almost the same value of the objective
function. The resulting optimal designs are very similar.

For a larger interpolation width ε = 8∆x (‘thick’ interface), the results are shown in Figure 4.17. We
clearly see a difference for the optimal shape obtained using the "true" formula of the shape derivative: in
this case, the algorithm produces a very long and oscillating interface in such a way that the overall structure
is almost like a composite structure. This is due to the fact that the intermediate zone inside the interface
is very favorable compared to the pure phases. Nevertheless, despite the differences in the final shapes, the
values of the compliance are almost the same for the ‘true’ and ‘Jacobian-free’ formulas, slightly worse for
the "approximate" formula of the shape gradient.

(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Long cantilever using two phases with VT = 0.7|D| and a large smoothing parameter ε = 8∆x;
(a) initialization, (b) optimized shape using the ‘true’ formula, (c) optimized shape using the ‘Jacobian-
free’ formula, (d) optimized shape using the ‘approximate’ formula, (e) convergence of the compliance, (f)
convergence of the volume.
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4.7.4 Four phases in the smoothed interface context

We consider now the case of using up to four phases and consequently two level set functions. A smoothed
approximation of the characteristic function of each phase can be constructed using combinations of the
functions hε, defined in equation (4.35), as follows





χ0 = (1− hε(dO0))(1− hε(dO1)),
χ1 = hε(dO0)(1− hε(dO1)),
χ2 = (1− hε(dO0))hε(dO1),
χ3 = hε(dO0)hε(dO1),

(4.58)

and the global Hooke’s tensor in given by (4.48). The optimization problem now reads

min
O0,O1∈Uad

J(O0,O1) =
∫

D

AO0,O1,ε(x)e(u) : e(u) dx

s.t.
∫

D

χi dx = V iT , i = 0, ..., 3 ,
(4.59)

where V iT is the target volume for the phase i (they sum up to the volume of D). As previously, an augmented
Lagrangian algorithm is applied to enforce the constraints. In this section we work with a ‘thin’ interface,
namely ε = 2∆x. For all test cases, we checked numerically that the three formulas of the shape gradient
give very similar optimal shapes, as expected. The results presented in the sequel have been obtained using
the ‘Jacobian-free’ formula.

We test our method with several benchmark examples presented in [321] and [322]. Since the initial
design are different, as well as the numerical methods, it is hard to make a quantitative comparison and we
satisfy ourselves with a qualitative comparison.

4.7.4.1 Short cantilever using two materials and void

In this paragraph we consider only three phases, made of two materials and void. The first structure to be
optimized is a two-dimensional short cantilever, of dimensions 1× 2, discretized using 80× 160 Q1 elements.
The left part of the structure is clamped and a unitary vertical force is applied at the mid point of its right
part (see Figure 4.18). The Young moduli of the four phases are defined as E0 = 0.5, E1 = 10−3, E2 = 1
and E3 = 10−3, where both phases 1 and 3 represent void. The target volumes for phases 0 and 2 are set to
V 0
T = 0.2|D| and V 2

T = 0.1|D|. Remark that phases 1 and 3 are the same, corresponding to void. The fact
that the void zone is represented by two different characteristic functions has no influence on the numerical
results (at least in all our numerical experiments). The initial and the optimal shape (obtained after 200
iterations) are shown in Figure 4.19 (a) and (b). We plot the Young modulus with a grey scale: dark stands
for the stronger phase, white for void and grey for the intermediate phase.

This test case was previously studied in [321] (see figures 7 and 8 therein for two different initializations).
Our results are roughly similar to those in [321] and even slightly better since the design of Figure 4.19 (b)
is symmetric (as expected), contrary to the results in [321].

4.7.4.2 Short cantilever using three materials and void

The same example as in the previous paragraph is considered here with an additional phase: half of the
volume of material 0 is replaced by a weaker material 1. More precisely, the Young moduli of the four phases
are defined as E0 = 0.5, E1 = 0.25, E2 = 1 and E3 = 10−3, while the target volumes for the three materials
0, 1 and 2 are set to V 0

T = V 1
T = V 2

T = 0.1|D|. The initial and optimal shapes (after 200 iterations) are
displayed on Figure 4.19 (c) and (d).
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•

1

2

Figure 4.18: Boundary conditions and initialization for the short cantilever.

(a) (b)

(c) (d)

Figure 4.19: Short cantilever using two or three phases and void; (a) initialization for two phases and void,
(b) optimal shape for two phases and void, (c) initialization for three phases and void, (d) optimal shape for
three phases and void.

This test case was also studied in [321] (see figures 11 and 12 therein for two different initializations).
Our result differs notably from these previous ones. Indeed, in [321] the strong material 2 always forms a
two-bar truss which is further reinforced by the other materials. On the contrary, in our Figure 4.19 (d) the
strong phase is disconnected and the intermediate material 0 plays a more active role in the transfer of the
load to the fixed wall.
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4.7.4.3 3-force bridge using two materials and void

A bridge-type structure of dimensions 2× 1 is discretized by 160× 80 Q1 elements. Both the horizontal
and vertical displacement are fixed at the lower left part as well as the vertical displacement of the lower
right part. Three equally spaced forces are applied at the lower part (see Figure 4.20). The value of F is set
to 1. The Young moduli of the four phases are set to E0 = 0.5, E1 = 10−3, E2 = 1 and E3 = 10−3 and the
target volumes for phases 0 and 2 are set to V 0

T = 0.2|D| and V 2
T = 0.1|D|. The initial and optimal designs

(after 250 iterations) are shown in Figure 4.21 (a) and (b).
Once again this test case was performed in [321] (see figure 13 therein). Our result is quite different.

First, our design in Figure 4.21 (b) is symmetric, as it should be. Second, a major difference occurs in the
use of the strong phase. In our design, the strong material is used in the lower part of the ‘radial’ bars
whereas it was absent in figure 13 of [321] (and rather used in the upper ‘arch’).

•

1

2

• •

F F2F

Figure 4.20: Boundary conditions for the 3-force bridge.

(a) (b)

(c) (d)

Figure 4.21: 3-force bridge using two or three phases and void; (a) initialization for two phases and void,
(b) optimal shape for two phases and void, (c) initialization for three phases and void, (d) optimal shape for
three phases and void.
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4.7.4.4 3-force bridge using three materials and void

The same example as in the previous paragraph is considered here with an additional phase: half of the
volume of material 0 is replaced by a weaker material 1. The Young moduli of the four phases are defined
as E0 = 0.5, E1 = 0.25, E2 = 1 and E3 = 10−3, while the target volumes for phases 0, 1 and 2 are set to
V 0
T = V 1

T = V 2
T = 0.1|D|. The initial and optimal designs (after 250 iterations) are displayed on Figure 4.19

(c) and (d).
This test case can be found in [321] (figure 14) too, and again our result is quite different.

4.7.4.5 Medium cantilever using three materials and void

The next structure is a medium cantilever of dimensions 3.2× 2, discretized using 120× 75 Q1 elements.
The left part of the structure is clamped and a unitary vertical force is applied at the bottom of its right
part (see Figure 4.22). The Young moduli of the four phases are again set to E0 = 0.5, E1 = 0.25, E2 = 1
and E3 = 10−3, while the target volumes for phases 0, 1 and 2 are V 0

T = V 1
T = V 2

T = 0.1|D|. The initial and
optimal shapes (after 250 iterations) are shown in Figure 4.23.

This test case was also performed in [322] (see figure 7 therein). Our optimal design has a more complex
topology and a different layout of the three materials. However, the final volumes of the three materials in
[322] are not the same as ours and thus a comparison is not easy to establish.

•

2

3.2

Figure 4.22: Boundary conditions and initialization for the medium cantilever.

(a) (b)

Figure 4.23: Medium cantilever using three materials and void; (a) initialization, (b) optimal shape.
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4.7.4.6 Long cantilever using two materials and void

The goal of this last paragraph is twofold. First, we consider again the 2× 1 long cantilever, as in Figure
4.13, but with four phases, defined by their Young moduli E0 = 0.5, E1 = 10−3, E2 = 1 and E3 = 10−3.
Second, we switch to an unconstrained optimization algorithm. We do not impose equality constraints for the
volume of each phase. Rather, we fix Lagrange multipliers and we minimize an objective function J(O0,O1),
which reads

J(O0,O1) =
∫

D

A(dO0 , dO1)e(u) : e(u)dx+
3∑

i=0

ℓi
∫

D

χi(x)dx. (4.60)

We then carry out a standard constraint-free steepest descent algorithm in order to minimize J .

Iterations

O
b

je
ct

iv
e 

fu
n

ct
io

n

10 20 30 405 15 25 35
200

300

250

Figure 4.24: Initialization with two materials (top left), optimal shape (top right) and convergence history
of the objective function (bottom).

A small tolerance parameter tol > 0 (in the example below, we used tol = 0.02) over acceptance of the
produced shapes is introduced so as to ease the occurrence of topological changes and is then turned off
after some iterations. More accurately, in the course of the optimization process, a step O0

n → O0
n+1 and

O1
n → O1

n+1 is accepted provided:

J(O0
n+1,O1

n+1) < (1 + tol)J(O0
n,O1

n).

For the results shown in Figure 4.24, the Lagrange multipliers in (4.60) are set to ℓ0 = 100, ℓ1 = 0, ℓ2 =
200, ℓ3 = 0. As can be expected the strong material is distributed at the areas of high stress, while the weak
material completes the shape of the optimal cantilever.

It is interesting to see the optimal subdomains O0 and O1 (defined in Section 4.5) in Figure 4.25. Recall
that it is the intersections of these two subdomains and their complementaries which give rise to the phase
domains in the optimal design of Figure 4.24. Nevertheless, O0 and O1 are important from a numerical
point since, rather than the phase domains, they are advected by the shape gradients and represented by
the level set functions.
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Figure 4.25: Final subdomains O0 (left) and O1 (right).

4.8 Appendix: convergence of the smoothed-interface shape opti-
mization problem to its sharp-interface equivalent

In this appendix, we focus on the demonstration of the convergence result of section 4.4.4. As a first step,
in section 4.8.1, we investigate into the case of a simplified model in thermal conductivity, before turning, in
section 4.8.2, to the case of the linearized elasticity system, which is very similar in our considerations, yet
involving more tedious algebra.

The results and proofs concentrated in this section do not seem to exist as is in the literature, however
very reminiscent of previous works they are. They rely (in a probably non optimal way) of classical methods
in the theory of elliptic equations.

4.8.1 A model problem in the context of thermal conductivity

Consider the situation depicted in figure 4.26: Γ is a C2 compact submanifold of Rd, delimiting two
complementary subdomains Ω0 and Ω1 in a larger (bounded) computational domain D. We assume that
Ω0 ⊂⊂ D, so that ∂Ω0 ∩ ∂D = ∅.

Ω0

Ω1

D

Γ

Figure 4.26: The considered situation: two distinct phases are separated by an interface Γ.

For small enough ε > 0, one defines uε ∈ H1
0 (D) as the solution to the smoothed-interface problem:

{
−div(Aε∇uε) = f in D

uε = 0 on ∂D
, (4.61)
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and u ∈ H1
0 (D) as the solution to the sharp-interface problem:

{
−div(A∇u) = f in D

u = 0 on ∂D
, (4.62)

where the source term f belongs to L∞(D), the conductivity matrix A ∈ L∞(D)d
2

is discontinuous across
the interface Γ, say A = A0χ0 + A1χ1 -χi standing for the characteristic function of the phase Ωi-, and Aε
is a smooth interpolation between A0 and A1 in the layer of (small) width 2ε around Γ:

Aε(x) = A0 + hε(dΩ0(x))(A1 −A0). (4.63)

where hε : R → R is the smooth approximation of the Heaviside function defined by (4.35). Remark
that notations have been slightly altered with respect to those of the previous sections; in particular, the
dependence of A and Aε on Ω0 has been dropped since variations of Γ are not considered in this section.

Remark 4.18. At first glance, the setting of the problem could seem a bit restrictive because of the choice of
Dirichlet’s homogeneous boundary conditions on ∂D. Actually, imposing other kinds of boundary conditions
would not change a word in the forthcoming analysis, since we are solely interested in what happens in the
neighborhood of Γ, which lies ‘far’ from ∂D, and all the regularity results of interest (e.g. Meyer’s theorem
4.10) are local.

Consider now the compliance of the resulting structure D from the distribution of materials accounted
for by the partition of D into Ω0 and Ω1, in the smoothed-interface context:

Jε(Ω0) =
∫

D

f uε dx.

The conclusions of this section would hold in the case of any ‘reasonable’ objective function of the domain,
up to some additional regularity assumptions on the data at hand, but, for the sake of simplicity, we will
only focus on this case.

In section 4.4.2, we computed the sensitivity of Jε with respect to the shape of this partitioning of D
(in truth, we performed the equivalent computation in the linear elasticity setting); it is described by the
following shape gradient:

∀θ ∈W 1,∞(Rd,Rd), J ′
ε(Ω

0)(θ) =
∫

Γ

[fε0 (x) + fε1 (x)] (θ(x).n(x)) ds(x), (4.64)

where for all x ∈ Γ, n(x) stands for the unit normal vector to Γ (pointing outward Ω0), and:

fε0 (x) =
∫

p−1
Γ

(x)∩Ω0

h′
ε (dΩ0(y))

d−1∏

i=1

(1 + dΩ0(y)κi(x)) (A1 −A0)∇uε(y).∇uε(y) dy,

fε1 (x) =
∫

p−1
Γ

(x)∩Ω1

h′
ε (dΩ0(y))

d−1∏

i=1

(1 + dΩ0(y)κi(x)) (A1 −A0)∇uε(y).∇uε(y) dy.

The purpose of this appendix is to study the convergence of J ′
ε(Ω

0)(θ), for fixed Ω0 and θ, as the thickness
ε of the smooth interpolation layer between the two different conductivities goes to 0.

4.8.1.1 Study of the asymptotic behavior of uε as ε→ 0.

Let us first recall the following regularity results arounf uε and u, under the above hypotheses :
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– Since the conductivity matrix Aε is smooth (and uniformly coercive) over D, for any ε > 0, the solution
uε to (4.61) belongs to H2(D) (and even to W 2,p(D) for 1 ≤ p < ∞). This stems from the ‘classical’
elliptic regularity theory [57].

– The solution u to (4.62) is less regular : actually, one can show [222] that u|Ω0∈W 2,p(Ω0), and similarly,
that u|Ω1∈W 2,p(Ω1), for any 1 ≤ p <∞.

The first thing to study is in which extent uε converges to u, when ε→ 0. To this end, we will use repeatedly
Meyer’s theorem (see [41], chap. 1, sec. 4):

Theorem 4.10. Let Ω ⊂ Rd a bounded open domain of class C2. Let 0 < α < β two real numbers, and
A ∈ L∞(Ω)d×d a matrix-valued application on Ω, such that

∀x ∈ Ω,∀ξ ∈ Rd, α|ξ|2≤ A(x)(ξ, ξ) ≤ β|ξ|2.

For f ∈ H−1(Ω), let u be the unique solution in H1
0 (Ω) of :

{
−div(A∇u) = f in Ω

u = 0 on ∂Ω
,

There exists a number p > 2 and a constant C > 0 which both depend only on α, β and Ω, such that, if f
belongs to W−1,p(Ω), then u belongs to W 1,p

0 (Ω) and satisfies:

||u||W 1,p
0 (Ω)≤ C||f ||W−1,p(Ω).

Introducing ellipticity α > 0 and continuity β > 0 constants available for A0 and A1, we denote thence-
forth as p > 2 various exponents depending only on D (and possibly on fixed subdomains of D), α, β,
supplied by repeated uses of Meyer’s theorem. Now we can prove:

Lemma 4.5. The solution uε to (4.61) converges towards the solution u to (4.62) in H1
0 (D).

Proof. First note that, as a consequence of Lebesgue’s dominated convergence theorem, one has:

∀p <∞, Aǫ ε→0−→ A in Lp(D)d
2

, (4.65)

which obviously fails to happen in L∞(D), since A is not even continuous. Now, for any function v ∈ H1
0 (D),

∫

D

Aε(x)∇uε(x) · ∇v(x)dx =
∫

D

f(x) v(x)dx ;
∫

D

A(x)∇u(x) · ∇v(x) dx =
∫

D

f(x) v(x)dx.

Consequently, we get:
∫

D

Aε(x)∇(uε − u)(x) · ∇v(x)dx =
∫

D

(A−Aε)(x)∇u(x) · ∇v(x)dx. (4.66)

Putting v = u− uε in (4.66) and using Hölder’s inequality yields:

α||u− uε||2H1
0 (D)≤ ||A−Aε||Lr(D) ||u||W 1,p

0 (D) ||u− uε||H1
0 (D),

for some r > 0 such that 1
r

+ 1
p

+ 1
2 = 1 (which is possible since p > 2). Hence, there exists a constant C > 0

such that:
α||u− uε||H1

0 (D)≤ C ||A−Aε||Lr(D) ||f ||W−1,p(D),

and the result follows.

Actually, the situation is a bit better than that, owing to the following lemma:

Lemma 4.6. Let Ω ⊂ Rd any open domain, uε a sequence of functions of some Lp(Ω), for p > 2, u ∈ Lp(Ω),
and suppose:



4.8. Appendix: convergence of the smoothed-interface shape optimization problem to its
sharp-interface equivalent 153

– uε converges to u strongly in L2(Ω).
– there exists C > 0 such that ||uε||Lp(Ω)≤ C for every ε.

Then uε converges to u strongly in Lq(Ω), for any 2 ≤ q < p.

Proof. Define θ ∈ (0, 1) such that q = 2θ + p(1− θ). Then one has :
∫

Ω

|u− uε|qdx =
∫

Ω

(
|u− uε|2

)θ
(|u− uε|p)1−θ

dx.

Now, using Hölder’s inequality between
(
|u− uε|2

)θ ∈ L 1
θ (Ω) and (|u− uε|p)1−θ ∈ L 1

1−θ (Ω), we get :

∫

Ω

|u− uε|qdx ≤
(∫

Ω

|u− uε|2dx
) 1

θ
(∫

Ω

|u− uε|pdx
) 1

1−θ

,

whence
||u− uε||Lq(Ω)≤ ||u− uε||

2
qθ

L2(Ω) ||u− uε||
p

q(1−θ)

Lp(Ω) .

Eventually, ||u−uε||
2

qθ

L2(Ω) goes to 0 as ε→ 0, while ||u−uε||
p

q(1−θ)

Lp(Ω) is bounded, owing to the second hypothesis,
which ends the proof.

Putting together lemmas 4.5 and 4.6, and another use of Meyer’s theorem 4.10 shows that actually, uε
goes to u in every W 1,q

0 (D), for 2 ≤ q < p.

Now, we investigate convergence of the higher-order derivatives of uε. Actually, we are only interested
in what happens very close to Γ. Since Γ is of class C2, let us introduce a tubular neighborhood Γ ⊂ V ⊂ D
as in proposition 4.1, (5). As we have seen, one can then introduce an extension of the normal vector field
n ∈ C1(Γ) to V , still denoted n, as:

∀x ∈ V, n(x) = ∇dΩ0(x),

and similarly, one can construct an extension (still denoted as τ) of any vector field τ ∈ TΓ on Γ to V by
considering τ(p∂Ω(x)).

The result of interest is the following:

Proposition 4.13. Let τ ∈ TΓ be any C1 vector field on Γ. The following strong convergence results hold
true:

∂uε

∂τ

ε→0−→ ∂u
∂τ

in H1(V ) strong,

(Aε∇uε) · n ε→0−→ (A∇u) · n in H1(V ) strong
.

Proof. The proof unfolds exactly as that of theorem 9.25 in [57], except that there is no need to use the
method of difference quotients to perform integration by parts (since we already know that the handled
functions enjoy enough regularity), and that a priori estimates resulting from Meyer’s theorem 4.10 are used
to get the desired convergence result.

Before passing to the proof of proposition 4.13 itself, let us operate several simplifications in the problem,
owing to a standard argument of partitions of unity. Let Q = [−1, 1]d ⊂ Rd, and denote:

Q+ = {x = (x1, ..., xd) ∈ Q, xd > 0} ,
Q− = {x = (x1, ..., xd) ∈ Q, xd < 0} ,
Q0 = {x = (x1, ..., xd) ∈ Q, xd = 0}

.

As Γ is compact, it can be covered by finitely many open sets Wj ⊂ D, j = 1, ..., J , such that, for each index
j, there exists a C2 diffeomorphism φj : Q→Wj with the properties:

φj(Q−) = Wj ∩ Ω0, φj(Q+) = Wj ∩ Ω1, φj(Q0) = Wj ∩ Γ.
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Considering a partition of unity {αj}j=1,...,J associated to this covering, that is, for every j, αj is a C2

function with compact support included in Wj , and one has:
∑
j αj = 1 on D. It is then enough to prove

proposition 4.13 with χuε and χu instead of uε and u respectively, where χ stands for any of the αj above,
associated to W = Wj (see figure 4.27).

Now, we restrict (the variational formulations of) equations (4.61-4.62) by expressing the problems solved

Γ

W

Ω0

Ω1

Q+

Q−

0 φ

Figure 4.27: Reduction in the proof of proposition 4.13.

by vε := χuε, and v := χu. We find, after some computation, that, for all test functions ϕ ∈ H1
0 (W ):

∫

V

Aε∇vε · ∇ϕ dx =
∫

V

gεϕ dx+
∫

V

hε · ∇ϕ dx, (4.67)

∫

V

A∇v · ∇ϕ dx =
∫

V

gϕ dx+
∫

V

h · ∇ϕ dx, (4.68)

where we have defined:
{
gε = χf −Aε∇uε · ∇χ
g = χf −A∇u · ∇χ ,

{
hε = uεAε∇χ
h = uA∇χ .

We then pull equations (4.67-4.68) back to Q, using a change of variables. Again, after some computations,
we find that ṽε := vε ◦ φ and ṽ := v ◦ φ are respectively solution to: for any ψ ∈ H1

0 (Q),
∫

Q

Ãε∇ṽε · ∇ψ dx =
∫

Q

g̃εψ dx+
∫

Q

h̃ε · ∇ψ dx, (4.69)

∫

Q

Ã∇ṽ · ∇ψ dx =
∫

Q

g̃ψ dx+
∫

Q

h̃ · ∇ψ dx, (4.70)

where
g̃ε := |det (∇φ)| gε ◦ φ, g̃ := |det (∇φ)| g ◦ φ,
h̃ε := |det (∇φ)|hε ◦ φ, h̃ := |det (∇φ)|h ◦ φ,

and:
Ãε := |det (∇φ)| ∇φ−1 (Aε ◦ φ)∇φ−T , Ã := |det (∇φ)| ∇φ−1 (A ◦ φ)∇φ−T .
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With this done, we have, as far as the quantity (ṽε − ṽ) is concerned, for any ψ ∈ H1
0 (Q):

∫

Q

Ãε∇ (ṽε − ṽ) · ∇ψ dx =
∫

Q

(g̃ε − g̃)ψ dx+
∫

Q

(
h̃ε − h̃

)
· ∇ψ dx+

∫

Q

(
Ã− Ãε

)
∇ṽ · ∇ψ dx. (4.71)

• We are now in position to prove the first point of proposition 4.13. Note that, because of the linearity of
τ 7→ ∂uε

∂τ
, it is enough to prove that the result holds for any of the vector fields τi (i = 1, ..., d − 1) on V

defined as:
∀y ∈ V, τi(y) := ∇φ(φ−1(y))ei,

where e1, ..., ed are the vectors of the canonical basis of Rd.

Because ∂ṽε

∂xi
= ∂vε

∂τi
(and similarly with ṽ and v instead of ṽε and vε), we show that

∀i = 1, ..., d− 1,
∂ṽε
∂xi
−→ ∂ṽ

∂xi
strongly in H1

0 (Q).

Let ψ ∈ C∞
c (Q); applying (4.71) with ∂ψ

∂xi
as a test function, then integrating by parts leads to:

∫

Q

Ãε∇
(
∂ṽε
∂xi
− ∂ṽ

∂xi

)
· ∇ψ dx = −

∫

Q

[
∂ |det (∇φ)|

∂xi
∇φ−1 (Aε ◦ φ)∇φ−T

]
∇ (ṽε − ṽ) · ∇ψ dx

−
∫

Q

[
∂∇φ−1

∂xi
(Aε ◦ φ)∇φ−T

]
∇ (ṽε − ṽ) · ∇ψ dx

−
∫

Q

[
∇φ−1 (Aε ◦ φ)

∂∇φ−T

∂xi

]
∇ (ṽε − ṽ) · ∇ψ dx

−
∫

Q

(g̃ε − g̃)
∂ψ

∂xi
dx+

∫

Q

(
∂h̃ε
∂xi
− ∂h̃

∂xi

)
· ∇ψ dx

+
∫

Q

(
Ã− Ãε

)
∇
(
∂ṽ

∂xi

)
· ∇ψ dx

, (4.72)

where we used the facts that ṽε ∈ H2(Q), ṽ ∈ H2(Q+) ∩ H2(Q−), and that ∂Ãε

∂xi
= ∂Ã

∂xi
= 0. Note also

that, because uε → u in some W 1,p(D), this equality also holds for ψ ∈ H1
0 (Q) owing to a standard density

argument. Eventually, letting ψ =
(
∂ṽε

∂xi
− ∂ṽ

∂xi

)
in (4.72) and applying Hölder’s inequality as above leads to:

α

∣∣∣∣
∣∣∣∣
∂ṽε
∂xi
− ∂ṽ

∂xi

∣∣∣∣
∣∣∣∣
H1

0 (Q)

≤ C
(
||ṽε − ṽ||W 1,p

0 (Q) + ||g̃ε − g̃||L2(Q) +
∣∣∣
∣∣∣h̃ε − h̃

∣∣∣
∣∣∣
L2(Q)d

+
∣∣∣
∣∣∣Ãε − Ã

∣∣∣
∣∣∣
Lr(Q)d2

)
,

for some r > 0 large enough, and some constant C which does not depend on ε. Applying once again Hölder’s
inequality to deal with the terms ||g̃ε − g̃||L2(Q) and

∣∣∣
∣∣∣h̃ε − h̃

∣∣∣
∣∣∣
L2(Q)d

eventually yields the result. Note that,

owing to Meyer’s theorem, this last conclusion even holds in some space W 1,p
0 (Q), for some p > 2

• We now prove that (Aε∇uε) · n → (A∇u) · n strongly in H1(V ), which boils down to showing that(
Ãε∇ṽε

)
· ed →

(
Ã∇ṽ

)
· ed strongly in H1

0 (Q). Still in the spirit of [57], the previous point already made
it clear that, for i = 1, ..., d− 1,

∂

∂xi

((
Ãε∇ṽε

)
· ed
)
→ ∂

∂xi

((
Ã∇ṽ

)
· ed
)

strongly in L2(Q),

so that we are left with proving:

∂

∂xd

((
Ãε∇ṽε

)
· ed
)
→ ∂

∂xd

((
Ã∇ṽ

)
· ed
)

strongly in L2(Q).
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To achieve this, we return to the original variational formulations (4.69,4.70) for ṽε and ṽ, and make appear
the term of interest; for any ψ ∈ H1

0 (Q), one has:

∫

Q

(
Ãε∇ṽε − Ã∇ṽ

)
.ed

∂ψ

∂xd
dx = −

d−1∑

i=1

∫

Q

(
Ãε∇ṽε − Ã∇ṽ

)
.ei

∂ψ

∂xi
dx+

∫

Q

(g̃ε − g̃)ψ dx+
∫

Q

(
h̃ε − h̃

)
· ∇ψ dx.

We can now conclude as for the first point: performing integration by parts an using the conclusions of the
first point leads to, for any ψ ∈ H1

0 (Q),

∫

Q

∂

∂xd

((
Ãε∇ṽε − Ã∇ṽ

)
.ed

)
ψ dx = −

d−1∑

i=1

∫

Q

∂

∂xi

((
Ãε∇ṽε − Ã∇ṽ

)
.ei

)
ψ dx−

∫

Q

(g̃ε − g̃)ψ dx

+
∫

Q

div
(
h̃ε − h̃

)
ψ dx

,

and using the a priori estimates at our disposal in the same way as before leads to the desired conclusion,
which ends the proof.

4.8.1.2 Convergence of the shape gradient associated to the smoothed-interface problem as
ε→ 0.

Our purpose is now to pass to the limit ε→ 0 in expression (4.64). To achieve this, we can first assume
that ε is so small that every point x ∈ D with |dΩ0(x)| < ε has a unique projection over Γ (with the language
of section 4.2.5, ε < reach(Γ)). Then,

∀x ∈ Γ, fε1 (x) =
∫ ε

0

h′
ε(s) kε(x, s) (A1 −A0)∇uε(x+ sn(x)) · ∇uε(x+ sn(x)) ds,

where we have introduced kε(x, s) =
∏d−1
i=1 (1 + sκi(x)), and a similar expression holds for fε0 .

Now, the idea consists in using the convergence results of section 4.8.1.1 for ∂uε

∂τ
and (Aε∇uε).n. It

requires decomposing the gradient ∇uε into its tangential and normal components, bringing into play the
components that behave ‘nicely’ in the limit ε→ 0, in light of proposition 4.13.

For the sake of simplicity, we will dwell on the case when these tensors are isotropic, that is

A = αI2, α(x) = αi if x ∈ Ωi, for αi > 0 fixed,

although the whole argument would hold in the general case, but yield to more complex expressions as far
as the limit of J ′

ε(Ω
0)(θ) is concerned. Accordingly, we shall also denote Aε = αεI, with obvious signification.

We need a small technical result to perform our study:

Proposition 4.14. Let Ω ⊂ Rd a bounded open domain of class C2, n the corresponding unit outer normal
vector field, and ε < ε0 < reach(∂Ω), so that for any x ∈ ∂Ω, and any 0 < s < ε, x − sn(x) ∈ Ω. Let
v : [0, 1]→ R a continuous function, and fε, gε ∈ H1(Ω) two sequences of functions such that:

fε
ε→0−→ f, gε

ε→0−→ g strongly in H1(Ω).

Then, the sequence Iε ∈ L1(∂Ω), defined as

∀x ∈ ∂Ω, Iε(x) =
∫ 1

0

v(s) fε(x− sεn(x))gε(x− sεn(x)) ds,

converges in L1(∂Ω) to I(x) :=
(∫ 1

0
v(s)ds

)
f(x)g(x).
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Proof. First, because of the trace theorem, fε → f and gε → g in L2(∂Ω). It is then enough to prove that:

Iε −
(∫ 1

0

v(s)ds
)
fεgε −→ 0 in L1(∂Ω).

This arises in turn as a consequence of the following lemma, whose proof is postponed:

Lemma 4.7. Under the assumptions of proposition 4.14, for any continuous function v : [0, 1] → R, and
any functions f, g ∈ H1(Ω), define Jε : ∂Ω→ R as:

∀x ∈ ∂Ω, Jε(x) =
(∫ 1

0

v(s) f(x− sεn(x))g(x− sεn(x))ds
)
−
(∫ 1

0

v(s)ds
)
f(x)g(x).

Then, there exists a constant C > 0, which depends only on ∂Ω, v and ε0, such that, for any two functions
f, g ∈ H1(Ω), and any ε < ε0, one has :

||Jε||L1(∂Ω)≤ C
(
||f ||2H1(∂Ωε)+||g||2H1(∂Ωε)

)
,

where ∂Ωε = {x ∈ Ω, d(x, ∂Ω) < ε}.
Lemma 4.7 implies the existence of a constant C such that:
∣∣∣
∣∣∣Iε −

(∫ 1

0
v(s)ds

)
fεgε

∣∣∣
∣∣∣
L1(∂Ω)

≤ C
(
||fε||2H1(∂Ωε)+||gε||2H1(∂Ωε)

)

≤ C
(
||f − fε||2H1(Ω)+||f ||2H1(∂Ωε)+||g − gε||2H1(Ω)+||g||2H1(∂Ωε)

)
,

and eventually, the right-hand side goes to 0 as ε→ 0, because of the assumptions on fε, gε and f, g,

We can now state and prove the main convergence result of this section:

Theorem 4.11. Under the above assumptions, the following convergence result holds:

lim
ε→0

J ′
ε(Ω

0)(θ) = (α1 − α0)
∫

Γ

∇Γu · ∇Γu (θ · n) ds− (α−1
1 − α−1

0 )
∫

Γ

(
α
∂u

∂n

)(
α
∂u

∂n

)
(θ · n) ds. (4.73)

Proof. First of all, recall that, denoting as ui ∈ H1(Ωi) the restriction of u to Ωi, the transmission conditions
on Γ read:

∇Γu
0(x) = ∇Γu

1(x) ,
(
α0
∂u0

∂n

)
(x) =

(
α1
∂u1

∂n

)
(x), a.e. x ∈ Γ,

so that the quantities ∇Γu and
(
α ∂u
∂n

)
are well-defined on Γ.

From a simple change of variables and the definition of h, we get:

∀x ∈ Γ, fε1 (x) =
∫ 1

0

kε(x, s)m′(s)∇uε(x+ sεn(x)) · ∇uε(x+ sεn(x)) ds,

where m is the function defined as :

m(s) = Aε(x+ sεn(x)) = α0 +
1
2

(
1 + s+

1
π

sin(πs)
)

(α1 − α0).

This is actually the expression in which we have to pass to the limit. To achieve this, we rely on proposition
4.14, separating the tangential and normal components of ∇Γuε appearing in the dot product.

∀x ∈ Γ, fε1 (x) =
∫ 1

0

kε(x, s)m′(s)∇Γuε(x+ sεn(x)) · ∇Γuε(x+ sεn(x)) ds

+
∫ 1

0

kε(x, s)
m′(s)
m2(s)

(
α
∂uε
∂n

)
(x+ sεn(x))

(
α
∂uε
∂n

)
(x+ sεn(x)) ds
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Finally, we end up with fε1 → f1 in L1(Γ), where f1 is defined as :

∀x ∈ Γ, f1(x) =
(∫ 1

0

m′(s) ds
)
∇Γu(x) · ∇Γu(x) +

(∫ 1

0

m′(s)
m2(s)

ds

)(
α
∂u

∂n

)
(x)
(
α
∂u

∂n

)
(x),

and after some easy computation:

∀x ∈ Γ, f1(x) =
(
α1 −

α0 + α1

2

)
∇Γu(x) · ∇Γu(x)−

(
1
α1
− 2
α0 + α1

)(
α
∂u

∂n

)
(x)
(
α
∂u

∂n

)
(x).

Similarly, one shows that fε0 → f0 in L1(Γ), where f0 is defined as:

∀x ∈ Γ, f0(x) =
(
α0 + α1

2
− α0

)
∇Γu(x) · ∇Γu(x)−

(
2

α0 + α1
− 1
α0

)(
α
∂u

∂n

)
(x)
(
α
∂u

∂n

)
(x).

Eventually, combining the two latter expressions results in the desired formula.

Remark 4.19. Fortunately, expression (4.73) is exactly the formula obtained in [248] for the shape gradient
of the objective function for the sharp interface problem.

We end this short note with the proof of the missing link in proposition 4.14.

proof of lemma 4.7. By a standard density argument, it is enough to tackle the particular case when f and
g are smooth functions, namely f, g ∈ C∞(Ω). In this setting, for any x ∈ ∂Ω, one has:

Jε(x) =
1
ε

∫ ε

0

v
(s
ε

)
f(x− sn(x)) (g(x− sn(x)− g(x)) ds+

1
ε

∫ ε

0

v
(s
ε

)
(f(x− sn(x))− f(x)) g(x) ds

= −1
ε

∫ ε

0

v
(s
ε

)
f(x− sn(x))

(∫ s

0

∇g(x− tn(x)).n(x)dt
)
ds

−1
ε

∫ ε

0

v
(s
ε

)(∫ s

0

∇f(x− tn(x)).n(x)dt
)
g(x)ds

,

whence,

||Jε||L1(∂Ω) ≤ ||v||L∞(0,1)

ε

∫

∂Ω

(∫ ε

0

|f(x− sn(x))| ds
)(∫ ε

0

|∇g(x− tn(x))|dt
)
dx

+
||v||L∞(0,1)

ε

∫

∂Ω

∫ ε

0

(∫ ε

0

| ∇f(x− tn(x))|dt
)
|g(x)|ds dx

≤ ||v||L∞(0,1)

2ε

(∫

∂Ω

(∫ ε

0

|f(x− sn(x))|ds
)2

dx+
∫

∂Ω

(∫ ε

0

|∇g(x− sn(x))|ds
)2

dx

)

+
||v||L∞(0,1)

2ε

(∫

∂Ω

(∫ ε

0

|g(x)| ds
)2

dx+
∫

∂Ω

(∫ ε

0

|∇f(x− sn(x))|ds
)2

dx

)

≤ ||v||L∞(0,1)

2

(∫

∂Ω

∫ ε

0

|f(x− sn(x))|2dsdx+
∫

∂Ω

∫ ε

0

|∇f(x− sn(x))|2dsdx
)

+
||v||L∞(0,1)

2

(∫

∂Ω

∫ ε

0

|g(x)|2 ds dx+
∫

∂Ω

∫ ε

0

|∇g(x− sn(x))|2dsdx
)

.

Now, using back the coarea formula (see theorem 4.2) yields the existence of a constant C > 0, which only
depends on ∂Ω (through its principal curvatures), v and ε0 such that :

||Jε||L1(∂Ω)≤ C
(
||f ||2H1(∂Ωε)+||g||2H1(∂Ωε)

)
,

which is the expected estimate.
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4.8.2 Extension to the context of linearized elasticity

This section is devoted to extending the results of the previous section to the isotropic linearized elasticity
setting. Let us first set some notations.

We are still interested in a situation like that depicted in figure 4.26. For ε > 0 sufficiently small, define
u ∈ H1(D)d as the solution to the sharp-interface problem:




−div(Ae(u)) = f in D

u = 0 on ΓD
Ae(u)n = g on ΓN

. (4.74)

Here, A is a discontinuous Hooke’s tensors across the interface Γ = ∂Ω0 : A = A0χ0 + A1χ1, where A0, A1

are isotropic Hooke’s tensors, with respective Lamé coefficients λ0, µ0 and λ1, µ1, i.e.

∀ξ ∈ Sd(R), Aiξ = 2µiξ + λitr(ξ)I.

Once again, as an approximation to (4.74), we consider the smoothed-interface problem with parameter ε > 0,
bringing into play the displacement uε ∈ H1(D)d as the solution to




−div(Aεe(uε)) = f in D

uε = 0 on ΓD
Aεe(uε)n = g on ΓN

, (4.75)

with the following expression for Aε:

Aε(x) = A0 + hε(dΩ0(x))(A1 −A0). (4.76)

In the smoothed-interface setting, the compliance Jε(Ω0) of the total structure D, subdivided as D =
Ω0 ∪ Γ ∪ Ω1 reads

Jε(Ω0) =
∫

D

f · uε dx+
∫

ΓN

g · uε ds,

and we have proved with theorem 4.8 that, for any ε > 0 small enough, the shape derivative of Jε reads:

∀θ ∈W 1,∞(R2,R2), Jε′(Ω0)(θ) =
∫

Γ

[fε0 (x) + fε1 (x)] (θ(x).n(x)) ds(x), (4.77)

where ∀x ∈ Γ, we have, denoting κ1(x), ..., κd−1(x) the principal curvatures of Γ at x:

fε0 (x) =
∫

p−1
Γ

(x)∩Ω0

d−1∏

i=1

(1 + dΩ0(y)κi(x))h′
ε (dΩ0(y)) (A1 −A0)e(uε)(y) : e(uε(y)) dy, (4.78)

fε1 (x) =
∫

p−1
Γ

(x)∩Ω1

d−1∏

i=1

(1 + dΩ0(y)κi(x))h′
ε (dΩ0(y)) (A1 −A0)e(uε)(y) : e(uε(y)) dy. (4.79)

On the other hand, as mentioned in section 4.3, the shape derivative of the compliance J(Ω0) associated to
the sharp-interface problem reads as:

∀θ ∈W 1,∞(Rd,Rd), J ′(Ω0)(θ) =
∫

Γ

D(u, u)(θ.n) ds, (4.80)

where D(u, u) is defined by formula (4.10), or equivalently by the following formula which will turn out more
convenient in our context (see [15]):

∀x ∈ Γ, D(u, u)(x) = 2 [µ] e(u(x))τ,τ : e(u(x))τ,τ −
[

1
µ

]
σ(u(x))n,τ · σ(u(x))n,τ

+
[

2λµ
(2µ+λ)

]
tr(e(u(x))τ,τ )2 −

[
1

2µ+λ

]
σ(u(x))2

n,n

+
[

2λ
2µ+λ

]
σ(u(x))n,n tr(e(u(x))τ,τ )

, (4.81)
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where [α] = α1 − α0 still denotes the jump of a discontinuous quantity α across the interface Γ.

Our purpose is to show that formula (4.77) for the shape derivative of the compliance in the smoothed-
interface context converges towards its equivalent (4.80) in the sharp-interface context in the limit ε→ 0.

The proof of this fact unfolds almost exactly as its counterpart in the scalar conductivity setting: us-
ing information about the derivatives of uε which behave ‘well’ in the neighborhood as ε → 0, expressions
(4.78,4.79) are decomposed so that they feature uε only through these derivatives. Eventually, the con-
vergence result of Proposition 4.14 is used. According to this sketch, we have to start with the following
proposition, whose proof arises exactly as that of Proposition 4.13 (with the tedious algebra of linear elas-
ticity, see for instance the convergence results in [222]):

Proposition 4.15. Assuming Γ is a C2 interface, there exists a tubular neighborhood V ⊂⊂ D of Γ such
that one can define a smooth extension in V of the normal n and of a set of tangentials and orthonormal
vectors τ . Then, the following strong convergences hold true

e(uε)ττ
ε→0−→ e(u)ττ in H1(V )(d−1)2

strong,

σ(uε)τn
ε→0−→ σ(u)τn in H1(V )d strong,

σ(uε)nn
ε→0−→ σ(u)nn in H1(V ) strong.

.

We can now state and prove the result of interest:

Theorem 4.12. Under the above assumptions, we have:

lim
ε→0

J ′
ε(Ω

0)(θ) = J ′(Ω0)(θ) ∀ θ ∈W 1,∞(D,Rd).

Proof. Here again, assume that ε is so small that ε < reach(Γ). We are interested in the asymptotic behavior
of fε1 as ε→ 0 (the case of fε0 being identical). One can write:

∀x ∈ Γ, fε1 (x) =
∫ ε

0

d−1∏

i=1

(1 + sκi(x))h′
ε(s)(A1 −A0)e(uε(x+ sn(x))) : e(uε(x+ sn(x))) ds.

A straightforward change of variables provides:

∀x ∈ Γ, fε1 (x) =
∫ 1

0

kε(x, s) (εh′
ε(sε)(A1 −A0)e(uε(x+ sεn(x)))) : e(uε(x+ sεn(x))) ds. (4.82)

For any s ∈ (0, 1), and any symmetric matrix ξ ∈ Sd(R), note that:

εh′
ε(sε)(A1 −A0)ξ = 2µ′(s)ξ + λ′(s)tr(ξ) =: M ′(s)ξ,

where we have introduced: M(s) = A0 + hε(sε)(A1 − A0) the isotropic linear elasticity tensor with Lamé
coefficients

{
λ(s) = λ0 + hε(sε)(λ1 − λ0) = λ0 + 1

2

(
1 + y

ǫ
+ 1

π
sin(πy

ǫ
)
)

(λ1 − λ0)
µ(s) = µ0 + hε(sε)(µ1 − µ0) = µ0 + 1

2

(
1 + y

ǫ
+ 1

π
sin(πy

ǫ
)
)

(µ1 − µ0)

Let us now simplify a bit notations. In the forthcoming (algebraic) computations, let xε(s) = x + sεn(x),
eε(s) = e(uε(xε(s)) and σε(s) = σ(uε(xε(s)). We also denote kε(s) instead of kε(x, s). What’s more, for
any x ∈ Γ, introduce an orthonormal basis {τi}i=1,...,d−1 of vectors of the tangent plane to Γ, collectively
denoted as τ , and let n the unit normal vector to Γ, pointing outward Ω0, in such a way that (τ, n) is an
orthonormal basis of Rd.
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We have to modify expression (4.82), so that it involves only those quantities that enjoy a ‘nice’ behavior
near Γ as ε → 0, as expressed by Proposition 4.14. To this end, the following relationship will come in
handy:





σε(s)n,n = 2µ(s)eε(s)n,n + λ(s)
(
tr(eετ,τ (s)) + eε(s)n,n

)

σε(s)n,τi
= 2µ(s)eε(s)n,τi

, ∀i = 1, ..., d− 1
σε(s)τi,τj

= 2µ(s)eε(s)τi,τj
+ λ(s)

(
tr(eετ,τ (s)) + eε(s)n,n

)
δi,j ∀i, j = 1, ..., d− 1

, (4.83)

where δi,j stands for the Kronecker symbol, and we have denoted tr(eετ,τ (s)) =
∑d−1
i=1 e

ε(s)τi,τi
. These

relations can be inverted to produce the following formulae, where the right-hand sides only depend on
quantities whose passing to the limit ε→ 0 ‘unfolds well’ near Γ:





eε(s)n,n = 1
2µ(s)+λ(s)

(
σε(s)n,n − λ(s)tr(eετ,τ (s))

)

eε(s)n,τi
= 1

2µ(s)σ
ε(s)n,τ

σε(s)τi,τj
= 2µ(s)eε(s)τi,τj

+
(

2µ(s)λ(s)
2µ(s)+λ(s) tr(eετ,τ (s)) + λ(s)

2µ(s)+λ(s)σ
ε(s)n,n

)
δi,j

. (4.84)

Now, expression (4.82) for fε1 (x) rewrites, in condensed form:

fε1 (x) =
∫ 1

0

kε(s)M ′(s)eε(s) : eε(s) ds.

Expanding the symmetric tensor M ′(s)eε(s) yields:

M ′(s)eε(s) = 2µ′(s)eε(s) + λ′(s)tr(eε(s))I,

whence:

M ′(s)eε(s)eε(s) = 2µ′(s)eε(s) : eε(s) + λ′(s)tr(eε(s))tr(eε(s)),
= 2µ′(s) (eε(s)τ,τ : eε(s)τ,τ + 2eε(s)n,τ · eε(s)n,τ + eε(s)n,n eε(s)n,n)

+λ′(s)
(
tr(eετ,τ (s)) + eε(s)n,n

)2

= 2µ′(s)eε(s)τ,τ : eε(s)τ,τ + 4µ′(s)
4µ(s)2σ

ε(s)n,τ · σε(s)n,τ
+ 2µ′(s)

(2µ(s)+λ(s))2

(
σε(s)n,n − λ(s)tr(eετ,τ (s))

)2

+λ′(s)
(

tr(eετ,τ (s)) + 1
2µ(s)+λ(s)

(
σε(s)n,n − λ(s)tr(eετ,τ (s))

))2

where we have been using relations (4.84). Now, rearranging things a bit, we obtain:

M ′(s)eε(s)eε(s) = 2µ′(s)eε(s)τ,τ : eε(s)τ,τ + µ′(s)
µ(s)2σ

ε(s)n,τ · σε(s)n,τ
+ 2µ′(s)+λ′(s)

(2µ(s)+λ(s))2

(
σε(s)n,n − λ(s)tr(eετ,τ (s))

)2
+ λ′(s)

(
tr(eετ,τ (s))

)2

+ 2λ′(s)
2µ(s)+λ(s) tr(eετ,τ (s))

(
σε(s)n,n − λ(s)tr(eετ,τ (s))

)
,

and, after some computation:

M ′(s)eε(s)eε(s) = 2µ′(s)eε(s)τ,τ : eε(s)τ,τ + µ′(s)
µ(s)2σ

ε(s)n,τ · σε(s)n,τ
+ 4µ2(s)λ′(s)+2µ′(s)λ2(s)

(2µ(s)+λ(s))2 tr(eετ,τ )2 + 2µ′(s)+λ′(s)
(2µ(s)+λ(s))2σ

ε(s)2
n,n

+4µ(s)λ′(s)−µ′(s)λ(s)
(2µ(s)+λ(s))2 σε(s)n,n tr(eετ,τ )

.

We are now in position to apply proposition 4.14, noticing that:




2µ′(s) = (2µ(s))′

µ′(s)
µ(s)2 =

(
− 1
µ(s)

)′

4µ2(s)λ′(s)+2µ′(s)λ2(s)
(2µ(s)+λ(s))2 =

(
2λ(s)µ(s)

(2µ(s)+λ(s))

)′

2µ′(s)+λ′(s)
(2µ(s)+λ(s))2 =

(
− 1

2µ(s)+λ(s)

)′

4µ(s)λ′(s)−µ′(s)λ(s)
(2µ(s)+λ(s))2 =

(
2λ(s)

2µ(s)+λ(s)

)′
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We then have that fε1 → f1 in L1(Γ), where f1 is defined as:

∀x ∈ Γ, f1(x) = [2µ(s)]10 e(u(x))τ,τ : e(u(x))τ,τ −
[

1
µ(s)

]1

0
σ(u(x))n,τ · σ(u(x))n,τ

+
[

2λ(s)µ(s)
(2µ(s)+λ(s))

]1

0
tr(e(u(x))τ,τ )2 −

[
1

2µ(s)+λ(s)

]1

0
σ(u(x))2

n,n

+
[

2λ(s)
2µ(s)+λ(s)

]1

0
σ(u(x))n,n tr(e(u(x))τ,τ )

.

Doing the exact same job for the convergence of fε0 as ε→ 0 eventually shows that the limit of the integrand
[fε0 + fε1 ] in formula (4.64) reads, for all x ∈ Γ:

f0(x) + f1(x) = 2 [µ] e(u(x))τ,τ : e(u(x))τ,τ −
[

1
µ

]
σ(u(x))n,τ · σ(u(x))n,τ

+
[

2λµ
(2µ+λ)

]
tr(e(u(x))τ,τ )2 −

[
1

2µ+λ

]
σ(u(x))2

n,n

+
[

2λ
2µ+λ

]
σ(u(x))n,n tr(e(u(x))τ,τ )

,

which is exactly formula (4.81) for the integrand in the formula for the shape derivative of the sharp-interface
problem.
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The purpose of this chapter is to propose a deterministic method for optimizing a structure when a ‘small’
uncertainty exists over some of its features, with respect to its worst possible behavior. The main idea of
the method is to linearize all the dependences of the considered cost function with respect to the uncertain
parameters, then to consider the supremum function of the obtained linear approximation, which can be
rewritten as a more ‘classical’ function of the design, owing to classical adjoint techniques from optimal
control theory. This formal approach can be legitimated in some particular cases, and is very general. In
particular, it allows to address several problems of considerable importance in both parametric and shape
optimization of elastic structures, in a unified framework.

This chapter is a joint work with Grégoire Allaire.

5.1 Introduction

As idealized visions of reality, most optimization frameworks assume a complete knowledge of the pa-
rameters of the experiments they represent. Unfortunately, for a lot of reasons, physical parameters involved
in realistic applications are hardly ever known with such exactness, and the feasibility and optimality of the
solution to an optimization problem can be tremendously jeopardized by slight variations in the attached
parameters. In this spirit, an example of the less compliant microstructure for an elastic composite material
submitted to a particular set of traction loads is given in [83], which is infinitely compliant when submitted to
any load with a different orientation (see also [42] for a discussion about the sensitivity of linear programming
problems with uncertain parameters).

In the more specific context of shape optimization of elastic structures, which is at stake in this paper,
optimization problems may be plagued by (at least) three very different types of uncertainties:

– Uncertainties about the location, magnitude and orientation of the body forces or surface loads exerted
on shapes: not to mention the fact that they are generally known through error-prone measurements,
these external stresses are affected by the outer medium, which may itself undergo unknown perturba-
tions.

– Uncertainties about the elastic material’s properties: changes in the conditions in the considered
medium (temperature, humidity, etc...) may alter the material’s stiffness. On a different note, the
material’s properties could also be perturbed during its manufacturing process, in which small inclu-
sions of ‘parasitic’ bodies may accidentally occur.

– Uncertainties about the geometry of the shape itself: due to wear, or in the course of the manufacturing
process, the geometry of the shape may cease to be (or may not be from the beginning) completely in
keeping with the initially forecast design.

Robust design has been paid much attention in shape and topology optimization (and in optimization in
general). Depending on the available information regarding the uncertainties, the question has been studied
from two distinct perspectives.

On the one hand, many authors assume the knowledge of a probabilistic distribution (which is often
obtained via statistical studies) as for the behavior of perturbations around an unperturbed state; see for
instance [137, 190] and references therein. Then, the mean value of the considered objective criterion [95, 186],
or a weighted sum of its mean value and standard deviation are minimized to guarantee a fine performance,
which is relatively independent of the perturbations. Likewise, reliability-based approaches (see the overview
in [88]) put the emphasis on guaranteeing that constraints stay satisfied even in the perturbed configurations,
and add for instance upper bound constraints on failure probabilities. Regardless of the particular considered
model, such probabilistic methods generally prove very costly, since they imply repeated evaluations of the
mean value or standard deviation of the objective function, or probabilities of violation of constraint functions.
This is generally achieved by (expensive) sampling methods (e.g. Monte-Carlo methods).

On the other hand, when no information is available on the expected perturbations but for bounds on
their magnitude, so-called worst-case designs approaches are preferred. The problem can then be rephrased
either as that of minimizing the worst value of the objective function among all the perturbed designs [163],
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or guaranteeing that constraints are fulfilled by every such design [165] (the latter approach being called
confidence optimization). Such problems are generally formulated as bilevel ‘min-max’ problems [166]: a first
problem consists in finding the worst-case perturbation for a given design, then a second one is about finding
the optimal design with respect to this supremum criterion. Of course, worst-case design problems are very
difficult and computationally expensive in utter generality (see for instance [263] for a reduced-basis method
adapted to a worst-case design problem). They cannot be solved without resorting to approximations, except
in a few very specific cases; see the very interesting works [84, 163] about finding the less compliant shape
under uncertainties on the body forces. On the theoretical side, worst-case functionals have recently been
studied, for instance in [174], where conditions are given for such min-max problems to admit at least one
solution. In [178], it is shown that the concept of topological derivative is robust when the linear elasticity
system at play undergoes ‘small’ perturbations.

The aim of this chapter is to propose a unified framework for the worst-case design of elastic structures,
with respect to ‘small’ perturbations on the applied body forces and surface loads, on the material’s prop-
erties and on the geometries of the structures. More precisely, a formal and rather inexpensive approach is
presented for the minimization of the maximum value of a given criterion under the assumption of ‘small
amplitude’ perturbations. Note that we do not attempt to tackle the so-called ‘confidence worst-case design’
approach, which would ask constraints to be satisfied for all the perturbed designs, but claim that the same
philosophy would allow to deal with them. The starting ingredient of our approach is to take advantage
of the smallness of the perturbations and thus to linearize the cost function with respect to perturbations
around the unperturbed configuration. The maximum value of the resulting linear functional among all pos-
sible perturbations can be explicitly computed, and is then optimized. This idea is quite natural and it has
already been used in some specific cases (for example, [165] considers the case of compliance minimization
under geometric uncertainties). Our approach is however systematic and very general. It is formal, for there
is absolutely no guarantee that the supremum of the linearized cost function should be close to the real worst
value of the criterion. Yet, we shall see that, in some cases, it can be legitimated and admits a physical
interpretation. Besides, in general, it should provide valuable help in discerning ‘trends’ towards robustness
with respect to perturbations of various kinds.

This chapter is organized as follows: Section 5.2 opens the discussion with a presentation of the general
philosophy of the proposed method in a formal, abstract framework. This method is then carried out
in Section 5.3, in the simpler situation of (parametric) optimization of the thickness of an elastic plate,
which already features almost all the salient features of the approach; then, it is used in shape optimization
in Section 5.4. Then, some numerical examples and discussions are proposed in Section 5.5 to appraise
the efficiency of the proposed method, and some technical details are supplied concerning the proposed
implementation.

5.2 General setting and main notations

This very informal section presents the generic worst-case optimization problem addressed in this chapter,
and exposes the main ideas of the proposed approach to deal with it. In the meantime, some notations are
introduced, which are used throughout this chapter.

LetH be a set of admissible designs among which the ‘best’ element is sought, with respect to a prescribed
criterion or cost function C(u(h)), depending on h ∈ H via the solution (or state) u(h) to a system where h
acts as a parameter, say:

A(h)u(h) = b. (5.1)

In the applications ahead, H will stand for either the space L∞(Ω) of thickness functions for an elastic plate
with fixed cross-section Ω (Section 5.3), or a space of linear elastic structures (section 5.4).

The system (5.1) may undergo perturbations that affect the state u(h), thus spoiling the performance of
the corresponding design h ∈ H. The set P of such perturbations is assumed to be a Banach space, with
norm ||.||P , and we only assume that the expected perturbations have ‘small’ maximum norm m > 0.
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To keep things simple, let us assume that these perturbations only affect the right-hand side of (5.1), i.e.
b = b(δ), δ ∈ P. As we shall see, this is the case when the optimal thickness (resp. shape) of an elastic plate
(resp. structure) is sought under uncertainties over the applied external body forces or traction loads. The
state u = u(h, δ) is now solution to:

A(h)u(h, δ) = b(δ). (5.2)

By convention, the case δ = 0 accounts for the unperturbed situation, and we shall indifferently denote by
u(h, 0) or u(h) the corresponding state when the context is clear. The associated worst-case optimization
problem consists in minimizing the functional J : H → R, defined as the maximum value reached by the
cost function C(u(h, δ)) for all the potential perturbations δ ∈ P, i.e.

∀h ∈ H, J (h) = sup
δ∈P

||δ||P ≤m

C(u(h, δ)).

Taking advantage of the assumption that the amplitude m of the exerted perturbations is small, and since we
claimed that this problem is difficult to solve as such in general, we propose to trade it for that of minimizing
another functional J̃ , obtained from J by linearizing the dependence of C(u(h, δ)) on δ before evaluating
the supremum:

∀h ∈ H, J̃ (h) = sup
δ∈P

||δ||P ≤m

(
C(u(h)) +

dC
du

(u(h))
∂u

∂δ
(h, 0)(δ)

)
, (5.3)

where dC
du

stands for the (total) differential of C with respect to u, and ∂u
∂δ

is the (partial) differential of u with
respect to δ. Note that the application δ 7→

(
C(u(h)) + dC

du
(u(h))∂u

∂δ
(h, 0)(δ)

)
is linear by construction, since

it only involves differentials of functions. Now, the supremum in formula (5.3) can be computed explicitly.
Indeed, assuming that P arises as the dual of another Banach space, say Q, it comes, using lemma 5.6:

∀h ∈ H, J̃ (h) = C(u(h)) +m

∣∣∣∣
∣∣∣∣
dC
du

(u(h))
∂u

∂δ
(h, 0)

∣∣∣∣
∣∣∣∣
Q
.

The resulting expression is still not explicit in terms of h, for it involves the sensitivity ∂u
∂δ

(h, 0) of the solution
to the state equation with respect to perturbations. However, classical techniques in optimal control theory
allow to make it explicit, up to the introduction of an adjoint state p(h), which arises as the solution to an
adjoint system very similar to (5.1):

A(h)p(h) = C′(u(h)),

where the notation C′ stands for the identification of the differential application dC
du

with respect to some
dual pairing between Banach spaces (here, we implicitly assumed that A(h) is a linear, self-adjoint operator).
Anyhow, J̃ rewrites as:

J̃ (h) = C(u(h)) +m||p(h)||Q. (5.4)

This last expression can be interpreted as follows: the approximate cost function J̃ (h) is an aggregated sum
of the unperturbed cost function C(u(h)) and a penalization of the perturbations ||p(h)||Q, the penalization
parameter m being precisely the expected magnitude of perturbations.

Of course, the above argument is very formal, since the involved expressions mix blithely the spaces
associated to perturbations, state variables, etc... As we shall see, a significant part of the work consists in
giving a precise meaning to this rough sketch.

Remark 5.1. It is no surprise that formula (5.4) for functional J̃ features the adjoint state p(h); it is indeed
well-known that the adjoint measures the sensitivity of the cost function C with respect to perturbations on
the state equation (5.1) (see e.g. [9], rem. 4.14 and 5.21).

The previous analysis leaves us with a more classical state-constrained optimization problem, save that
the functional to be minimized itself brings an adjoint state into play. The computation of the derivative of
J̃ can however be carried out as follows:
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– Derivating the part C(u(h)) in (5.4) does not pose any further difficulty: it is merely the unperturbed
cost function of the considered problem. It involves the already introduced adjoint state p(h), which
accounts for the sensitivity of C with respect to its argument.

– Derivating the second part ||p(h)||Q is a little bit more tricky, and brings into play two further adjoint
states q(h) and z(h). The first one q(h) has nothing to do with p(h) and expresses the sensitivity of the
new ‘objective function’ ||.||Q with respect to its argument. As we shall see, even when the unperturbed
optimization problem is self-adjoint (i.e. p(h) = ±u(h)), q(h) differs from ±u(h). The second one z(h)
describes the sensitivity of p(h) - that is, in some way, of C′ - and typically involves second order
derivatives of C with respect to its argument. When the unperturbed problem is self-adjoint, z(h)
happens to be equal to ±q(h).

Remark 5.2. For simplicity of the exposition, we did not evoke the possibility that the problem of mini-
mizing J (or J̃ ) may be constrained. Actually, in the remainder of this chapter, we will only be considering
constraints on the volumes of structures, which is especially easy to enforce in our context (see Section 5.5).
In this regard, one could wonder over the possibility to tackle worst-case design problems with confidence
constraints, i.e. problems of the form:

min
h∈H

max
δ∈P
C(u(h, δ)) s.t. max

δ∈P
ci(u(h, δ)) ≤ 0, ∀i = 1, ..., N,

where ci are scalar-valued functions of the state u.
Note that, all things considered, the proposed method is nothing but a formal and approximate way

to differentiate supremal functionals of the form H ∋ h 7→ max
δ∈P
C(u(h, δ)). Hence, since most algorithms

for constrained optimization rely at some point on a linearization of the cost and constraint functions (the
Method of Moving Asymptotes [300], or the Method of Feasible Directions [312] to name a few), we believe
that the methods and computations of this chapter can be used in this context.

Notations. Throughout this chapter, we consistently denote as C the various cost functions under consider-
ation. Note that, contrary to the basic setting presented above, such cost functions may themselves depend
on the perturbations (which is not subsequently problematic). We will denote as J the associated worst-case
design functional, and as J̃ the approximate worst-case design functional, obtained by the aforementioned
linearization of the cost function.

5.3 Worst-case design in parametric optimization

5.3.1 Description of the model problem

Throughout Section 5.3, we consider a thin linear elastic plate in plane stress situation, with Lipschitz
cross-section Ω ⊂ Rd (d = 2 in concrete applications) and positive thickness h ∈ L∞(Ω) (see figure 5.1).

From the plane stress assumption, the equilibrium equation of the plate can be written as a d-dimensional
system posed on Ω. More specifically, assume the plate is clamped on a part of its boundary, associated to
the subset ΓD of ∂Ω. Surface loads are applied on the complementary part of the plate, which are equivalent
to transversal loads g ∈ L2(ΓN )d, where ΓN := ∂Ω \ ΓD. Denote also as f ∈ L2(Ω)d the d-dimensional
equivalent body force to the whole body force exerted on the plate.

The transversal displacement function u belongs to the space H1
ΓD

(Ω)d, where we have defined:

H1(Ω) ⊃ H1
ΓD

(Ω) :=
{
u ∈ H1(Ω), u = 0 on ΓD

}
.

It arises as the unique solution to the d-dimensional linear elasticity system on Ω:



−div(hAe(u)) = f in Ω

u = 0 on ΓD
hAe(u)n = g on ΓN

, (5.5)
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Ω
x •

h(x)•

ΓD
ΓN

g

Figure 5.1: Thin plate with cross section Ω and thickness h, clamped on a part of its boundary corresponding
to ΓD ⊂ ∂Ω, and submitted to transversal loads, applied on a part associated to ΓN ⊂ ∂Ω.

where e(u) := ∇uT +∇u
2 is the strain tensor, A is the material Hooke’s law, with Lamé coefficients λ, µ, i.e.

∀e ∈ S(Rd), Ae = 2µe+ λtr(e)I,

where S(Rd) is the set of d × d symmetric matrices with real coefficients, and n : ∂Ω → Sd−1 is the unit
outer normal vector field to Ω.

Our general purpose is to optimize the thickness h of the considered plate among a set Uad ⊂ L∞(Ω) of
admissible thickness functions, with respect to a criterion yet to be specified . Throughout Section 5.3, we
shall simply work with:

Uad = {h ∈ L∞(Ω), s.t. a.e. x ∈ Ω, hmin ≤ h(x) ≤ hmax} , (5.6)

where 0 < hmin < hmax are prescribed lower and upper bounds for thickness functions.

Notations:
– If J : Uad → R is any (Fréchet differentiable) functional of the thickness, J ′(h) stands for the Fréchet

derivative of J with respect to h.
– In the following subsections, we shall be considering various (smooth enough) integrand functions j of

the form: j : Rdf ×Rdu×Rdp → R, where f stands for the perturbation variable, u stands for the solution
to a ‘state’ linear elasticity system of the form (5.5), and p stands for the solution to an ‘adjoint’ linear
elasticity system (see below). These functions may generally depend also on the space variable x ∈ Rd,
but, to keep notations as light as possible, this dependence will be systematically omitted (and does
not change anything in any of the forthcoming formulae). The partial gradients of j with respect to
the f, u, p variables are denoted respectively as: ∇f j,∇uj,∇pj ∈ Rd.

The remainder of Section 5.3 is now dedicated to illustrating the general guideline of Section 5.2 on a
series of model problems, which hopefully better embody the difficulties that may arise when carrying it out
than the diversity of situations it may allow to tackle.

5.3.2 Worst-case design of an elastic plate under perturbations on the body
forces

Let us start our study with the optimization of the thickness of the considered plate in the worst-case
scenario when the applied body forces f are perturbed as f + ξ, for small ξ ∈ L2(Ω)d.
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Let j : Rdf × Rdu → R be a function of class C2, which complies with the following growth conditions:

∀f ∈ Rd, u ∈ Rd,





|j(f, u)|≤ C(|f |2+|u|2)
|∇f j(f, u)|≤ C(|f |+|u|), |∇uj(f, u)|≤ C(|f |+|u|)
|∇2

f j(f, u)|≤ C, |∇f∇uj(f, u)|≤ C, |∇2
uj(f, u)|≤ C

, (5.7)

for a large enough constant C > 0. Note that ∇uj(f, u) and ∇f j(f, u) are vectors in Rd, and ∇2
f j(f, u),

∇f∇uj(f, u) = ∇2
uj(f, u) are d× d matrices.

For any admissible thickness function h ∈ Uad, any body force term f ∈ L2(Ω)d, and any traction loads
g ∈ L2(ΓN )d, denote as uh,f ∈ H1

ΓD
(Ω)d the unique solution to problem (5.5) using these parameters.

The cost of such a plate is then defined as:

C(h, f) =
∫

Ω

j(f, uh,f ) dx. (5.8)

To set ideas, we have only assumed this cost to depend on uh,f - and not on its gradient-, as an integral
expression on Ω - not on its boundary -, but it would be easy to generalize the discussion ahead to such
cases (see sections 5.3.3 and 5.4.4 for instance).

Let us now fix f ∈ L2(Ω)d and g ∈ L2(ΓN )d. As in Section 5.2, when no confusion is possible, we will
denote indifferently uh = uh,f the solution to the unperturbed problem. The worst-case design problem in
our situation reads:

min
h∈Uad

J (h), where J (h) = sup
ξ∈L2(Ω)d

||ξ||
L2(Ω)d ≤m

C(h, f + ξ). (5.9)

Following the general guideline of Section 5.2, we propose to trade problem (5.9) for a new one where C(h, f)
has been linearized with respect to f , namely:

min
h∈Uad

J̃ (h), where J̃ (h) = sup
ξ∈L2(Ω)d

||ξ||
L2(Ω)d ≤m

(
C(h, f) +

∂C
∂f

(h, f)(ξ)
)
. (5.10)

We now aim at devising a gradient algorithm for problem (5.10), which requires to compute the gradient of
functional J̃ with respect to the thickness h ∈ L∞(Ω).

The result of interest is the following:

Theorem 5.1. The functional J̃ , defined as (5.10) rewrites as:

∀h ∈ Uad, J̃ (h) =
∫

Ω

j(f, uh) dx+m ||∇f j(f, uh)− ph||L2(Ω)d ,

where ph ∈ H1
ΓD

(Ω)d is the first adjoint state, defined as the unique solution to



−div(hAe(p)) = −∇uj(f, uh) in Ω

p = 0 on ΓD
hAe(p)n = 0 on ΓN

. (5.11)

Let h ∈ Uad such that ∇f j(f, uh) − ph 6= 0 in L2(Ω)d. Then J̃ is Fréchet differentiable at h, and its
derivative reads:

∀s ∈ L∞(Ω), J̃ ′(h)(s) =
∫

Ω

v(uh, ph, qh, zh) s dx, (5.12)

where:

v(uh, ph, qh, zh) :=

(
Ae(uh) : e(ph) +

m

2 ||∇f j(f, uh)− ph||L2(Ω)d

(Ae(uh) : e(zh) +Ae(ph) : e(qh))

)
.
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In the last formula, the second, and third adjoint states qh, zh ∈ H1
ΓD

(Ω)d are defined as the unique solutions
to, respectively: 



−div(hAe(q)) = −2 (ph −∇f j(f, uh)) in Ω

q = 0 on ΓD
hAe(q)n = 0 on ΓN

(5.13)




−div(hAe(z)) = −2∇f∇uj(f, uh)T (∇f j(f, uh)− ph)−∇2

uj(f, uh)qh in Ω
z = 0 on ΓD

hAe(z)n = 0 on ΓN
(5.14)

Proof. First and foremost, note that we have been a little sloppy in writing expression (5.12) for the derivative
of J̃ at any point h ∈ Uad, whereas, rigorously speaking, it only makes sense at h ∈ Ůad. Actually, J̃ can
be evaluated over a larger set of designs than the sole Uad (see the definition (5.6)), and its differentiation
over the whole set Uad is not a difficulty. We shall repeatedly commit this minor abuse in notations in the
following.

The differentiability issues raised by theorem 5.1 being postponed to lemma 5.1, we proceed within two
steps.

• Expression of J̃ as a function of h using an adjoint state.

As evoked in Section 5.2, this first step consists in encoding the dependence of j on the body force term
into an associated adjoint state. We start from the very definition of J̃ :

J̃ (h) =
∫

Ω

j(f, uh)dx+ sup
ξ∈L2(Ω)d

||ξ||
L2(Ω)d ≤m

(∫

Ω

∇f j(f, uh) · ξ dx+
∫

Ω

∇uj(f, uh) · ∂uh,f
∂f

(ξ) dx
)
. (5.15)

Dealing with the first term in the supremum in (5.15) does not pose any problem. As for the second, let us
use the variational formula for the derivative ∂uh,f

∂f
(ξ) obtained by differentiating that of uh,f with respect

to f (which is possible since we already know that f 7→ uh,f is differentiable). We get:

∀v ∈ H1
ΓD

(Ω)d,
∫

Ω

hAe(uh,f ) : e(v) dx =
∫

Ω

f · v dx+
∫

ΓN

g · v ds,

whence:

∀ξ ∈ L2(Ω)d,∀v ∈ H1
ΓD

(Ω)d,
∫

Ω

hAe

(
∂uh,f
∂f

(ξ)
)

: e(v) dx =
∫

Ω

ξ · v dx.

Now introduce the first adjoint state ph ∈ H1
ΓD

(Ω)d as the unique solution to the system (5.11). It comes
from the associated variational formulation that:

∫

Ω

−∇uj(f, uh,) ·
∂uh,f
∂f

(ξ) dx =
∫

Ω

hAe(ph) : e
(
∂uh,f
∂f

(ξ)
)
dx =

∫

Ω

ph · ξ dx.

In this view, (5.15) becomes:

J̃ (h) =
∫

Ω

j(f, uh) dx+ sup
ξ∈L2(Ω)d

||ξ||
L2(Ω)d ≤m

(∫

Ω

∇f j(f, uh) · ξdx−
∫

Ω

ph · ξ dx
)

=
∫

Ω

j(f, uh) dx+m ||∇f j(f, uh)− ph||L2(Ω)d

, (5.16)

where lemma 5.6 has been used from the first line to the second.
Note that a similar approach to the one used in the proof of lemma 5.2 (using Céa’s method) could

have been used here, instead of directly differentiating with respect to f in the defining problem for uh,f .
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Céa’s method offers a more systematic and understandable derivation of the adjoint equation, and is well-
suited when the dependence on f (the variable with respect to which sensitivity is evaluated in general) of the
state equation is complex. Both (formal) viewpoints are of course equivalent (see the discussion in chapter 1).

• Differentiation of J̃ with respect to the thickness h.

At this point, we are brought back to the more classical problem of minimizing a functional J̃ with
respect to h, and the whole problem of worst-case design with respect to an uncertainty on the body forces
has been concealed in the adjoint state ph.

As expected, the first term
∫

Ω
j(f, uh) dx in equation (5.16) is the unperturbed cost function; its differ-

entiation is a classical result recalled in lemma 5.2 below and we obtain:

∀s ∈ L∞(Ω),
∂

∂h

(∫

Ω

j(f, uh) dx
)

(s) =
∫

Ω

sAe(uh) : e(ph) dx. (5.17)

Remark that the same adjoint state ph is used here to express a sensitivity with respect to a perturbation
on the body force term f , while it is used in the first step to express a perturbation on the thickness h.
This is indeed natural since ph actually describes the way j depends on its argument (which is the quantity
depending on h and f).

As for differentiating the second term

||∇f j(f, uh)− ph||L2(Ω)d =

√∫

Ω

|∇f j(f, uh)− ph|2 dx,

we have to assume that h is such that ∇f j(f, uh) − ph 6= 0 in L2(Ω)d. This is a reasonable hypothesis,
meaning that the considered plate with thickness h is not indifferent to a small perturbation on the applied
body forces. Excluding such a case, and using again Lemma 5.2 with function ℓ : Rd × Rd ∋ (u, p) 7→
ℓ(u, p) = |∇f j(f, u)− p|2, an elementary calculation yields:

∂

∂h

(
||∇f j(f, uh)− ph||L2(Ω)d

)
(s) =

1
2 ||∇f j(f, uh)− ph||L2(Ω)d

∫

Ω

s(Ae(uh) : e(zh) +Ae(ph) : e(qh)) dx,

(5.18)
where qh and zh are defined in (5.13) and (5.14).

Eventually, combining expressions (5.17) and (5.18) delivers the desired formula.

In the course of the proof, we made use of the following lemma around the regularity of the dependency
of the solution uh,f to (5.5) with respect to the source term f . This is a classical result in optimal control
theory (see e.g. [9], or [172], chap. 5 in a harder case), which results from a use of the implicit function
theorem. In the remaining of this chapter, we shall not dwell too much on these issues (nor on the necessary
regularity assumptions that should be put on Ω and f so that u is smooth enough with respect to h and f)
and generally content ourselves with formal computations.

Lemma 5.1. Still denoting as uh,f ∈ H1
ΓD

(Ω)d the solution to (5.5) with parameters h, f , the mapping
f 7→ uh,f , from L2(Rd)d into H1

ΓD
(Ω)d, is of class C∞.

We also made use of the following general lemma for differentiating functionals depending on h via uh
and the adjoint state ph, solution to (5.11):

Lemma 5.2. For h ∈ Uad, denote as uh ∈ H1
ΓD

(Ω)d the unique solution to problem (5.5).

(i) Let j : Rd → R be a function of class C1, which fulfills the corresponding growth conditions in (5.7).
Consider the functional:

K(h) =
∫

Ω

j(uh) dx.
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Then K is Fréchet differentiable at any h ∈ Uad and its derivative reads:

∀s ∈ L∞(Ω), K ′(h)(s) =
∫

Ω

sAe(uh) : e(ph) dx.

where the adjoint state ph ∈ H1
ΓD

(Ω)d is the unique solution to:




−div(hAe(p)) = −∇uj(uh) in Ω

p = 0 on ΓD
hAe(p)n = 0 on ΓN

, (5.19)

(ii) Suppose moreover that j is of class C2, let ℓ : Rdu×Rdp → R a function of class C1 (both of them comply
with the relevant growth conditions in (5.7)), and consider the functional:

L(h) =
∫

Ω

ℓ(uh, ph) dx,

where ph is defined by (5.19). Then L is Fréchet differentiable at any h ∈ Uad and its derivative reads:

∀s ∈ L∞(Ω), L′(h)(s) =
∫

Ω

s (Ae(uh) : e(zh) +Ae(ph) : e(qh)) dx.

where qh ∈ H1
ΓD

(Ω)d is the unique solution to:




−div(hAe(q)) = −∇pℓ(uh, ph) in Ω

q = 0 on ΓD
hAe(q)n = 0 on ΓN

, (5.20)

and zh ∈ H1
ΓD

(Ω)d is the unique solution to:




−div(hAe(z)) = −∇uℓ(uh, ph)−∇2

uj(uh)qh in Ω
z = 0 on ΓD

hAe(z)n = 0 on ΓN
, (5.21)

Proof. (i): This is a classical result in optimal control theory. For the sake of completeness, we briefly recall
its derivation using Cea’s method [72] (see also chapter 2, §2.2.2.4 in the context of shape optimization).
Note that, since we already know that h 7→ uh is differentiable (by an analogous result to lemma 5.1), the
forthcoming argument is not only formal, as in most cases where Céa’s method generally comes in handy.
Introduce the Lagrangian L : Uad ×H1

ΓD
(Ω)d ×H1

ΓD
(Ω)d → R, defined as:

L(s, û, p̂) =
∫

Ω

j(û) dx+
∫

Ω

sAe(û) : e(p̂) dx−
∫

Ω

f · p̂ dx−
∫

ΓN

g · p̂ ds, (5.22)

and let us search for the points (u, p) where the partial derivatives of L(h, ., .) cancel, for a given h ∈ Uad.

First, the cancellation of the derivative of L at (h, u, p) ∈ Uad ×H1
ΓD

(Ω)d ×H1
ΓD

(Ω)d with respect to p̂
reads:

∀p̂ ∈ H1
ΓD

(Ω)d,
∂L
∂p̂

(h, u, p)(p̂) =
∫

Ω

hAe(u) : e(p̂) dx−
∫

Ω

f · p̂ dx−
∫

ΓN

g · p̂ ds = 0, (5.23)

which is just the variational formulation for problem (5.5); hence u = uh, solution to (5.5).



5.3. Worst-case design in parametric optimization 173

Next, cancelling the derivative of L with respect to û leads to the variational formulation for the adjoint
state:

∀û ∈ H1
ΓD

(Ω)d,
∂L
∂û

(h, u, p)(û) =
∫

Ω

∇uj(u) · û dx+
∫

Ω

hAe(û) : e(p) dx = 0, (5.24)

which readily gives that p = ph defined by (5.19).

By definition of uh, we now have:

∀s ∈ L∞(Ω), ∀p̂ ∈ H1
ΓD

(Ω)d, K(s) = L(s, us, p̂).

Thus, differentiating this last expression with respect to s, evaluating it at point h yields:

∀p̂ ∈ H1
ΓD

(Ω)d K ′(h)(s) =
∂L
∂s

(h, uh, p̂)(s) +
∂L
∂û

(h, uh, p̂)(
∂uh
∂h

(s)).

Now taking p̂ = ph in the previous expression and using (5.24) lead to:

K ′(h)(s) =
∂L
∂s

(h, uh, ph)(s).

Eventually, differentiating (5.22) with respect to s leads to the desired formula:

∀s ∈ L∞(Ω), K ′(h)(s) =
∫

Ω

sAe(uh) : e(ph) dx.

(ii): Similarly, note that in this case, the application h 7→ ph is differentiable (see again Lemma 5.1). Let us
introduce the (different) Lagrangian L : Uad ×H1

ΓD
(Ω)d ×H1

ΓD
(Ω)d → R, defined as:

L(s, p̂, q̂) =
∫

Ω

ℓ(us, p̂) dx+
∫

Ω

sAe(p̂) : e(q̂) dx+
∫

Ω

∇uj(us) · q̂ dx.

Searching for a point (p, q) ∈ H1
ΓD

(Ω)d × H1
ΓD

(Ω)d at which the derivative of L(h, ., .) with respect to q̂
vanishes yields:

∀q̂ ∈ H1
ΓD

(Ω)d,
∂L
∂q̂

(h, p, q)(q̂) =
∫

Ω

hAe(p) : e(q̂) dx+
∫

Ω

∇uj(uh) · q̂ dx = 0, (5.25)

and we find p = ph, the solution to (5.19).

Now cancelling the derivative of L with respect to p̂ one finds:

∀p̂ ∈ H1
ΓD

(Ω)d,
∂L
∂p̂

(h, p, q)(p̂) =
∫

Ω

∇pℓ(uh, p) · p̂ dx+
∫

Ω

hAe(p̂) : e(q) dx = 0, (5.26)

and since p = ph, we identify q = qh the unique solution to (5.20).

Consequently, we have, for any s ∈ Uad, and any q̂ ∈ H1
ΓD

(Ω)d: L(s) = L(s, ps, q̂). As in the previous
point, differentiating this expression with respect to s, evaluating it at a particular point h ∈ Uad, then
taking q̂ = qh, we end up with:

L′(h)(s) =
∂L
∂s

(h, ph, qh)(s).

Now, we are left with computing this partial derivative. Since L depends on s ∈ Uad via us, we use point
(i): for a fixed h ∈ L∞(Ω), define the C1 function m : R→ R as:

∀u ∈ R, m(u) = ℓ(u, ph) +∇uj(u) · qh.
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Note that m actually also depends on the space variable x ∈ Rd, and this dependence is omitted. Applying
the first point to function m as an integrand, and introducing zh ∈ H1

ΓD
(Ω)d as the unique solution to (5.21),

we end up with:

L′(h)(s) =
∂

∂s

(∫

Ω

ℓ(us, ph) dx−
∫

Ω

−∇uj(us).qh dx
)∣∣∣∣

h

(s) +
∫

Ω

sAe(ph) : e(qh) dx

=
∫

Ω

sAe(uh) : e(zh) dx+
∫

Ω

sAe(ph) : e(qh) dx
,

which ends the proof.

Remark 5.3. The differentiation of J̃ in the second step, using Cea’s formal method, is by no means the
easiest way to proceed in this particular case. Indeed, expressing the variational problems satisfied by the
different derivatives with respect to the thickness h, then introducing the associated adjoint states from the
according variational formulation is rather straightforward in this case (see for instance the first step of the
proof of Theorem 5.1). Yet, such an easy expression of these derivatives no longer holds when it comes to
shape optimization. To put the stress on the similarities between both settings, we thought it better to prove
Lemma 5.2 using Cea’s method, which will be the convenient tool in Section 5.4.

Example 5.1. For the sake of simplicity, suppose that no surface loads are applied - g = 0 (however, the
argument would adapt mutatis mutandis to the general case)-, and that we are interest in the compliance as
a cost function, i.e. j(f, u) = f · u in (5.8). The various derivatives of j are:

∇uj(f, u) = f, ∇f j(f, u) = u, ∇2
uj(u) = 0, ∇f∇uj(f, u) = I.

For any h ∈ Uad, ph ∈ H1
ΓD

(Ω)d is the unique solution to problem (5.11), and in this case ph = −uh the

unperturbed problem is self-adjoint, as is well-known in this case). Then, J̃ has the following expression:

∀h ∈ Uad, J̃ (h) =
∫

Ω

f · uh dx+ 2m ||uh||L2(Ω)d . (5.27)

Furthermore, qh ∈ H1
ΓD

(Ω)d is the unique solution to the problem:



−div(hAe(q)) = 4uh in Ω

q = 0 on ΓD
hAe(q)n = 0 on ΓN

,

and from (5.14), one acknowledges that zh = −qh, which gives the straightforward expression for the gradient
of J̃ (h), for any h ∈ Uad such that uh 6= 0:

∀s ∈ L∞(Ω), J̃ ′(h)(s) = −
∫

Ω

s

(
Ae(uh) : e(uh) +

m

2 ||uh||L2(Ω)d

Ae(uh) : e(qh)

)
dx.

Remarks 5.4.
– Interestingly enough, formula (5.27) expresses the fact the - at first order - optimizing the worst-case

scenario compliance when uncertainties around body forces are expected translates into a penalization
(with fixed weight m equal to the magnitude of the anticipated perturbations) of the unperturbed
compliance by the norm of the displacement uh of the structure.

– As we already mentioned in the introduction, in this particular case where the cost function C is the
compliance, the study of the exact worst-case functional J defined in (5.9) can be addressed without
linearization of C, resorting to more involved techniques [84, 163].
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Adapting in a straightforward way the proofs of Theorem 5.1 and Lemma 5.2 allows to derive analogous
results around very close models to that of Example 5.1.

Example 5.2 (Localization of perturbations). Still assuming that g = 0, let χ ∈ L∞(Ω) be a fixed function
on Ω, meant to localize the area where perturbations on the body forces are exerted (for example, χ may
be the characteristic function of a subdomain of Ω); i.e. only perturbed configurations associated to body
forces of the form (f + χξ), ξ ∈ L2(Ω)d, ||ξ||L2(Ω)d≤ m are considered.

Consider once again the compliance as an objective function, meaning that the cost of a plate of thickness
h ∈ Uad and submitted to body forces f ∈ L2(Ω)d is C(h, f) =

∫
Ω
f · uh dx. The worst-case functional of

interest is in this case:
∀h ∈ Uad, J̃ (h) = sup

ξ∈L2(Ω)d

||ξ||
L2(Ω)d ≤m

C(h, f + χξ). (5.28)

A mere rephrasing of the proofs of lemma 5.2 and theorem 5.1 allows to derive the following result:

Theorem 5.2. Consider the functional J̃ : Uad ∋ h 7→ J̃ (h) = sup
ξ∈L2(Ω)d

||ξ||
L2(Ω)d ≤m

(
C(h, f) + ∂C

∂f
(h, f)(χξ)

)
,

obtained by replacing C by its linear approximation at (h, f) in (5.28). Then J̃ rewrites:

J̃ (h) =
∫

Ω

f.uh dx+ 2m ||χuh||L2(Ω)d .

Let h ∈ Uad such that χuh 6= 0 in L2(Ω)d. Then J̃ is Fréchet differentiable at h, and its differential reads:

∀s ∈ L∞(Ω), J̃ ′(h)(s) = −
∫

Ω

s

(
Ae(uh) : e(uh) +

m

2 ||χuh||L2(Ω)d

Ae(uh) : e(qh)

)
dx.

where the adjoint state qh ∈ H1
ΓD

(Ω)d is the unique solution to:




−div(hAe(q)) = 4χuh in Ω

q = 0 on ΓD
hAe(q)n = 0 on ΓN

Example 5.3 (Localization and restriction of the direction of perturbations). Eventually, still assuming
that g = 0, let η ∈ L∞(Ω)d be a fixed vector field on Ω; the most important case we have in mind is when η
is 0 everywhere except on a small portion of Ω, where it is a constant unit direction. The underlying idea is
to investigate perturbed body forces of the kind (f + ξη), ξ ∈ L2(Ω), ||ξ||L2(Ω)≤ m.

Still considering the compliance as an objective function, the worst-case functional J of interest is in this
case:

∀h ∈ Uad, J (h) = sup
ξ∈L2(Ω)

||ξ||
L2(Ω)

≤m

C(h, f + ξη), (5.29)

where C is still defined as (5.8). We then have:

Theorem 5.3. Consider the functional J̃ : Uad ∋ h 7−→ J̃ (h) = sup
ξ∈L2(Ω)

||ξ||
L2(Ω)

≤m

(
C(h, f) + ∂C

∂f
(h, f)(ξη)

)
. Then

J̃ rewrites:

J̃ (h) =
∫

Ω

f · uh dx+ 2m ||η · uh||L2(Ω) . (5.30)
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Let h ∈ Uad such that η · uh 6= 0 in L2(Ω). Then J̃ is Fréchet-differentiable at h, and its differential reads:

∀s ∈ L∞(Ω), J̃ ′(h)(s) = −
∫

Ω

s

(
Ae(uh) : e(uh) +

m

2 ||η · uh||L2(Ω)

Ae(uh) : e(qh)

)
dx.

where the adjoint state qh ∈ H1
ΓD

(Ω)d is the unique solution to:




−div(hAe(q)) = 4(η · uh)η in Ω

q = 0 on ΓD
hAe(q)n = 0 on ΓN

5.3.3 Extension to a worst-case optimization problem, with respect to a per-
turbation on surface loads

The analysis of section 5.3.2 adapts in a straightforward way to the case of perturbations concerning the
traction loads exerted on the boundary ΓN of the plate. For any thickness function h ∈ Uad, body forces
f ∈ L2(Ω)d, and any surface loads term g ∈ L2(ΓN )d, denote by uh,g ∈ H1

ΓD
(Ω)d the unique solution to

problem (5.5) using these parameters.
Let j : Rd → R and k : Rd ×Rd → R be two functions of class C2, and define the cost of the design with

thickness h, when submitted to surface loads g:

C(h, g) =
∫

Ω

j(uh,g) dx+
∫

ΓN

k(g, uh,g) ds. (5.31)

Now, consider fixed body forces f ∈ L2(Ω)d and surface loads g ∈ L2(ΓN )d; we are interested in perturbations
on the surface loads of the form (g + ξ), ξ ∈ L2(ΓN )d, ||ξ||L2(ΓN )d≤ m, for some parameter m > 0. As in
the previous section, we shall denote by uh = uh,g0

, the solution to the unperturbed problem.
The worst-case scenario optimization problem for the cost (5.31) reads:

min
h∈Uad

J (h), where J (h) = sup
ξ∈L2(∂Ω)d

||ξ||
L2(∂Ω)d ≤m

C(h, g + ξ),

which is, as in section 5.3.1 traded for the approximate problem:

min
h∈Uad

J̃ (h), where J̃ (h) = sup
ξ∈L2(∂Ω)d

||ξ||
L2(∂Ω)d ≤m

(
C(h, g) +

∂C
∂g

(h, g)(ξ)
)
. (5.32)

This last problem lends itself to an easier analysis, owing to the following result, whose proof is an easy
rephrasing of that of Theorem 5.1 and Lemma 5.2, and is then omitted.

Theorem 5.4. The functional J̃ : Uad → R, defined in (5.32) rewrites:

∀h ∈ Uad, J̃ (h) =
∫

Ω

j(uh,g) dx+
∫

ΓN

k(g, uh,g) ds+m ||∇gk(g, uh)− ph||L2(ΓN )d ,

where ph ∈ H1
ΓD

(Ω)d is the first adjoint state, defined as the unique solution to




−div(hAe(p)) = −∇uj(uh) in Ω

p = 0 on ΓD
hAe(p)n = −∇uk(g, uh) on ΓN

.



5.3. Worst-case design in parametric optimization 177

Let h ∈ Ůad such that ∇gk(g, uh) − ph 6= 0 in L2(ΓN )d. Then J̃ is Fréchet differentiable at h, and its
differential reads:

∀s ∈ L∞(Ω), J̃ ′(h)(s) =
∫

Ω

s v(uh, ph, qh, zh) dx,

where

v(uh, ph, qh, zh) = Ae(uh) : e(ph) +
m

2 ||∇gk(g, uh)− ph||L2(ΓN )d

(Ae(uh) : e(zh) +Ae(ph) : e(qh)) ,

and the second and third adjoint states qh, zh ∈ H1
ΓD

(Ω)d are defined as the unique solutions to, respectively:




−div(hAe(q)) = 0 in Ω

q = 0 on ΓD
hAe(q)n = −2 (ph −∇gk(g, uh)) on ΓN




−div(hAe(z)) = −∇2

uj(uh)qh in Ω
z = 0 on ΓD

hAe(z)n = −2∇g∇uk(g0, uh)T (∇gk(g, uh)− ph) on ΓN

5.3.4 Parametric optimization of a worst-case scenario problem under geomet-
ric uncertainty

We now investigate perturbations of a different nature, searching for the optimal thickness h ∈ L∞(Ω)
of the considered plate when robustness is expected with respect to uncertainties over the thickness of the
plate itself. As we have already mentioned in the introduction, such a problem typically occurs in the case of
mechanical parts which are likely to undergo high stress during their use, thus to wear out, or of mechanical
parts whose manufacturing process is especially error-prone.

More accurately, let f ∈ L2(Ω)d, and g ∈ L2(ΓN )d be body forces and surface loads terms, and let
j, k : Rd → R be two functions of class C2; for any h ∈ Uad, denote as uh the solution to problem (5.5) when
h is the considered thickness function.

Introduce the cost of the design with thickness h:

C(h) :=
∫

Ω

j(uh) dx+
∫

ΓN

k(uh) ds.

Modeling uncertainties over the geometry (i.e. thickness) of the plate itself demands first to address an
important issue around the perturbed designs: if h ∈ Uad and s ∈ L∞(Ω) is a ‘small’ perturbation over
h, the thickness (h + s) of the corresponding perturbed design may not belong to Uad (although it is still
uniformly bounded away from 0 and ∞). However, we believe this is part of the modeling, for designs
generally end up perturbed in an accidental way, and there is no particular reason that a perturbed design
should still fulfill any imposed constraint. Furthermore, not enforcing that (h + s) should belong to Uad
allows for an easier mathematical study.

Let m < hmin the maximum expected amplitude of the uncertainty over the thickness h. We consider
the optimization problem:

min
h∈Uad

J (h), where J (h) = sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

C(h+ s). (5.33)

As alluded to in section 5.3.1, this problem is very difficult to tackle in such form. However, in the particular
situation where the cost C(h) is the compliance of the structure, it turns out almost trivial, meaning that
the worst case in (5.33) can be found analytically:
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Proposition 5.1. Suppose that the cost function C(h) is the compliance, that is:

∀h ∈ Uad, C(h) =
∫

Ω

hAe(uh) : e(uh) dx =
∫

Ω

f · uh dx+
∫

ΓN

g · uh ds.

Then, the exact worst-case functional J equals:

J (h) = sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

C(h+ s) = C(h−m).

Simply put, the worst case with respect to the compliance, when there is an uncertainty of maximum amplitude
m over h, is the corresponding structure with thickness (h −m), which is the less rigid (thinner) perturbed
structure.

Proof. This is a simple consequence of the elastic energy minimization principle. One has:

C(h) = −2 inf
u∈H1

ΓD
(Ω)d

(
1
2

∫

Ω

hAe(u) : e(u) dx−
∫

Ω

f.u dx−
∫

ΓN

g.u ds

)
.

Hence,

J (h) = sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

sup
u∈H1

ΓD
(Ω)d

(
2
∫

Ω

f.u dx+ 2
∫

ΓN

g.u ds−
∫

Ω

(h+ s)Ae(u) : e(u) dx
)

= sup
u∈H1

ΓD
(Ω)d

sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

(
2
∫

Ω

f.u dx+ 2
∫

ΓN

g.u ds−
∫

Ω

(h+ s)Ae(u) : e(u) dx
)

= sup
u∈H1

ΓD
(Ω)d

(
2
∫

Ω

f.u dx+ 2
∫

ΓN

g.u ds−
∫

Ω

(h−m)Ae(u) : e(u) dx
)

,

which allows to conclude.

Remark 5.5. The situation is more complex (and cannot be dealt with analytically) if a constraint on the
volume of the perturbed shapes is incorporated into the modeling, e.g. if we are to assume that

∫
Ω
s dx = 0

for any potential perturbation s ∈ L∞(Ω) over the thickness of shapes.

In the general, non trivial setting (i.e. when C(h) is not the compliance), we propose to reformulate our
optimization problem according to the general principle of Section 5.2:

min
h∈Ůad

J̃ (h), where J̃ (h) = sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

(
C(h) +

∂C
∂h

(h)(s)
)
, (5.34)

and the following result makes it possible to build a gradient-based algorithm for this simplified minimization
problem.

Theorem 5.5. The functional J̃ , defined as (5.34) rewrites:

∀h ∈ Uad, J̃ (j) =
∫

Ω

j(uh) dx+
∫

ΓN

k(uh) ds+m ||Ae(uh) : e(ph)||L1(Ω) ,

where ph ∈ H1
ΓD

(Ω)d is the first adjoint state, defined as the unique solution to



−div(hAe(p)) = −∇uj(uh) in Ω

p = 0 on ΓD
hAe(p)n = −∇uk(uh) on ΓN

. (5.35)
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Moreover, J̃ is differentiable at any h ∈ Uad such that the set

Eh := {x ∈ Ω, Ae(uh) : e(ph) = 0} (5.36)

has zero Lebesgue measure, and its differential at such a point reads:

∀s ∈ L∞(Ω), J̃ ′(h)(s) =
∫

Ω

s (Ae(uh) : e(ph) +m (Ae(ph) : e(qh) +Ae(uh) : e(zh))) dx,

the second and third adjoint states qh, zh ∈ H1
ΓD

(Ω)d being respectively defined as the unique solutions to:




−div(hAe(q)) = div(λAe(uh)) in Ω

q = 0 on ΓD
hAe(q)n = −λAe(uh)n on ΓN

, (5.37)




−div(hAe(z)) = −∇2

uj(uh)qh + div(λAe(ph)) in Ω
z = 0 on ΓD

hAe(z)n = −λAe(ph)n−∇2
uk(uh)qh on ΓN

, (5.38)

and λ ∈ L∞(Ω) is defined as λ = sgn (Ae(uh) : e(ph)).

Proof. The derivation of this result is close in essence to that of Theorem 5.1, and we illustrate another way
to get the desired expressions, without relying on Céa’s method (see Remark 5.3). Knowing that h 7→ uh
and h 7→ ph are differentiable as functions from Uad into H1

ΓD
(Ω)d (see lemma 5.1), we achieve a variational

formulation for their derivatives by differentiating the ones of (5.5) and (5.35), then introducing the adjoint
states ph, qh and zh with simple algebraic manipulations (in the parametric setting).

• Expression of J̃ as a function of h using an adjoint state.

From the very definition of the cost C, we get, for any h ∈ Ůad:

J̃ (h) =
∫

Ω

j(uh) dx+
∫

ΓN

k(uh) ds+ sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

(∫

Ω

∇uj(uh) ·
(
∂uh
∂h

(s)
)
dx+

∫

ΓN

∇uk(uh) ·
(
∂uh
∂h

(s)
)
ds

)
.

Then, using the variational formula for the adjoint state ph, defined as the solution to (5.35), it comes:

∀v ∈ H1
ΓD

(Ω)d,
∫

Ω

hAe(ph) : e(v) dx = −
∫

Ω

∇uj(uh).v dx−
∫

ΓN

∇uk(uh).v dx,

and this yields:

J̃ (h) =
∫

Ω

j(uh) dx+
∫

ΓN

k(uh) ds+ sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

(
−
∫

Ω

hAe(ph) : e
(
∂uh
∂h

(s)
)
ds

)
.

On the other hand, differentiating in the variational formulation of (5.5), one has:

∀s ∈ L∞(Ω), ∀v ∈ H1
ΓD

(Ω)d
∫

Ω

sAe(uh) : e(v) dx = −
∫

Ω

hAe

(
∂uh
∂h

(s)
)

: e(v) dx.

Eventually,

J̃ (h) =
∫

Ω

j(uh) dx+
∫

ΓN

k(uh) ds+ sup
s∈L∞(Ω)

||s||L∞(Ω)≤m

(∫

Ω

sAe(uh) : e(ph)) ds
)
.
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This, used in combination with Lemma 5.6 and Theorem 5.11 delivers the desired expression for J̃ .

• Computation of the Fréchet derivative of J̃ .

Assume now that the set Eh defined by (5.36) has zero Lebesgue measure, and introduce λ := sgn (Ae(uh) : e(ph)) ∈
L∞(Ω). We then have, for all s ∈ L∞(Ω),

J̃ ′(h)(s) =
∂

∂h

(∫

Ω

j(uh) dx+
∫

ΓN

k(uh) ds
)∣∣∣∣

h

(s)

+m
(∫

Ω

λ Ae

(
∂uh
∂h

(s)
)

: e(ph) dx+
∫

Ω

λ Ae(uh) : e
(
∂ph
∂h

(s)
)
dx

)
,

where we used Lemma 5.7. As usual, the first term actually rewrites, from the definition of ph by (5.35),

∂

∂h

(∫

Ω

j(uh) dx+
∫

ΓN

k(uh) ds
)∣∣∣∣

h

(s) =
∫

Ω

sAe(uh) : e(ph) dx.

As for the second term, differentiating with respect to h directly in the variational formulation satisfied by
ph, we get, for all s ∈ L∞(Ω), and any v ∈ H1

ΓD
(Ω)d,

∫

Ω

hAe

(
∂ph
∂h

(s)
)

: e(v) dx = −
∫

Ω

sAe(ph) : e(v) dx−
∫

Ω

(
∇2
uj(uh)

∂uh
∂h

(s)
)
· v dx

−
∫

ΓN

(
∇2
uk(uh)

∂uh
∂h

(s)
)
· v ds

.

Thus, introducing qh ∈ H1
ΓD

(Ω)d as the unique solution to (5.37), we get:
∫

Ω

λ Ae(uh) : e
(
∂ph
∂h

(s)
)
dx = −

∫

Ω

h Ae(qh) : e
(
∂ph
∂h

(s)
)
dx

=
∫

Ω

sAe(ph) : e(qh) dx+
∫

Ω

(
∇2
uj(uh)

∂uh
∂h

(s)
)
· qh dx

+
∫

ΓN

(
∇2
uk(uh)

∂uh
∂h

(s)
)
· qh ds

.

Now introduce one last adjoint state zh ∈ H1
ΓD

(Ω)d as the unique solution to (5.38). This yields, for all
s ∈ L∞(Ω):

∫

Ω

λ Ae

(
∂uh
∂h

(s)
)

: e(ph) dx

+
∫

Ω

(
∇2
uj(uh)

∂uh
∂h

(s)
)
· qh dx+

∫

ΓN

(
∇2
uk(uh)

∂uh
∂h

(s)
)
· qh ds = −

∫

Ω

hAe(zh) : e
(
∂uh
∂h

(s)
)
dx

=
∫

Ω

sAe(zh) : e(uh) dx

,

thus ending the proof.

Example 5.4. Consider once again the model case of the minimization of the compliance, assuming g = 0
(for simplicity). Then, j(u) = f.u, k(u) = 0, and one has:

∇uj(u) = f , ∇2
uj(u) = 0.

Since ph ∈ H1
ΓD

(Ω)d is the unique solution to (5.35), one easily finds that ph = −uh. Then, the approximate

worst-case functional J̃ rewrites:

∀h ∈ Ůad, J̃ (h) =
∫

Ω

f · uh dx+m ||Ae(uh) : e(uh)||L1(Ω) .
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Consider a value of the thickness h ∈ Uad such that the elastic energy density function Ae(uh) : e(uh) does
not vanish on Ω except possibly on a subset of null Lebesgue measure. One has:

λ = sgn (−Ae(uh) : e(uh)) = −1.

In this view, it is then easy to show that the second and third adjoint states actually amount to:

qh = uh , zh = −uh.

Eventually, the differential of J̃ reads:

∀s ∈ L∞(Ω), J̃ ′(h)(s) = −(1 + 2m)
∫

Ω

sAe(uh) : e(uh) dx.

Remark 5.6. This expression can be given a mathematical legitimacy when compared to Proposition 5.1,
which claims that, in the setting of Example 5.4, the exact worst-case functional J reads:

∀h ∈ Uad, J (h) = C(h−m),

whence, for a function h ∈ Ůad,

∀s ∈ L∞(Ω), J ′(h)(s) =
∂C
∂h

(h−m)(s) = −
∫

Ω

sAe(uh−m) : e(uh−m) dx.

Then, it is easy to check that, (still formally) linearizing the above expression with respect to m as in the
proofs of Theorems 5.1 and 5.5, the following asymptotic expansion holds, for a given h ∈ Uad:

∀s ∈ L∞(Ω), J ′(h)(s) = J̃ ′(h)(s) +O(m2).

5.3.5 Worst-case design with uncertainties over the elastic material’s properties

We eventually investigate one last potential source of uncertainties, namely perturbations on the me-
chanical behavior of the constituent material of the plate. Suppose the plate is submitted to body forces
f ∈ L2(Ω)d, and traction loads g ∈ L2(ΓN )d, and that the mechanical properties of the constituent material
is subject to variations.

Dealing with this case requires slight changes in the previous notations. For functions λ, µ ∈ L∞(Ω) such
that:

λ(x), µ(x) ≥ γ > 0, a.e x ∈ Ω,

denote by Aλ,µe = 2µe + λtr(e), the Hooke’s tensor with (possibly inhomogeneous) Lamé coefficients λ, µ,
and as uh,λ,µ ∈ H1

ΓD
(Ω)d the unique solution to the linear elasticity system (5.5) when h is the thickness of

the plate and the Lamé moduli of the constituent material are λ, µ.
Let j : Rd → R and k : Rd → R be two functions of class C2. The cost of the associated plate is defined

by:

C(h, λ, µ) =
∫

Ω

j(uh,λ,µ) dx+
∫

ΓN

k(uh,λ,µ) ds.

We investigate perturbations (λ+ α, µ+ β) over the Lamé coefficients of the material of magnitude (i.e.
of L∞-norm) m < γ, around a reference state (λ, µ), which is thenceforward assumed to be fixed. These
coefficients are confessedly not the physically relevant properties of the material over which perturbations
should be considered: for instance, the impact of an increase in temperature on the material’s properties is
certainly better transcribed in terms of the Young’s modulus and Poisson ratio. Nevertheless, we will focus
on perturbations on the Lamé coefficients, so to keep expressions as light as possible; Young’s modulus and
Poisson ratio being analytical functions of the Lamé coefficients of the material, this last case would be no
more difficult.
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In the following, we shall denote as uh := uh,λ,µ, and A := Aλ,µ, when no ambiguity is possible.

The considered objective function is, in this context:

∀h ∈ Uad, J (h) = sup
α,β∈L∞(Ω)

||α||L∞(Ω)≤m

||β||L∞(Ω)≤m

C(h, λ+ α, µ+ β).

Note that, an analogous result to proposition 5.1 holds in this case: if the chosen cost function C is the
compliance of the plate, the worst-case functional J can be computed exactly as:

∀h ∈ Uad, J (h) = C(h, λ−m,µ−m). (5.39)

In the general case, of course, no such expression holds, and functional J is as usual replaced by the
approximated worst-case functional:

J̃ (h) = C(h, λ, µ) + sup
α,β∈L∞(Ω)

||α||L∞(Ω)≤m

||β||L∞(Ω)≤m

(
∂C
∂λ

(h, λ, µ)(α) +
∂C
∂µ

(h, λ, µ)(β)
)
. (5.40)

We have the following theorem:

Theorem 5.6. The functional J̃ defined by (5.40) reduces to:

J̃ (h) =
∫

Ω

j(uh) dx+
∫

ΓN

k(uh) ds+ 2m||he(uh) : e(uh)||L1(Ω)+m||hdiv(uh)div(ph)||L1(Ω), (5.41)

where ph ∈ H1
ΓD

(Ω)d is the first adjoint state, defined as the unique solution to:



−div(hAe(p)) = −∇uj(uh) in Ω

p = 0 on ΓD
hAe(p)n = −∇uk(uh) on ΓN

. (5.42)

Moreover, J̃ is differentiable at any h ∈ Ůad such that the set

Eh := {x ∈ Ω, Ae(uh) : e(ph) = 0 or div(uh)div(ph) = 0}

is of null Lebesgue measure, and its differential at such a point reads:

∀s ∈ L∞(Ω), J̃ ′(h)(s) =
∫

Ω

s v(uh, ph, qh, zh) dx,

where

v(uh, ph, qh, zh) = Ae(uh) : e(ph)+m (2κee(uh) : e(ph) + κddiv(uh)div(ph) +Ae(ph) : e(qh) +Ae(uh) : e(zh)) ,

the second and third adjoint states qh, zh ∈ H1
ΓD

(Ω)d being respectively defined as the unique solutions to
some boundary value problems which are best formulated in terms of the associated variational equations:

∀v ∈ H1
ΓD

(Ω)d,
∫

Ω

hAe(qh) : e(v) dx = −
∫

Ω

(2hκee(uh) : e(v) + hκddiv(uh)div(v)) dx,

∀v ∈ H1
ΓD

(Ω)d,
∫

Ω

hAe(zh) : e(v) dx = −
∫

Ω

(
2hκee(ph) : e(v) + hκddiv(ph)div(v) +

(
∇2
uj(uh)qh

)
· v
)
dx

−
∫

ΓN

(
∇2
uk(uh)qh

)
· v ds

,

and κe, κd ∈ L∞(Ω) are respectively defined as κe = sgn (e(uh) : e(ph)), κd = sgn (div(uh)div(ph)).
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Proof. The proof is in essence identical to that of theorem 5.3, and the derivation of formula (5.41) makes
use of the general lemma 5.5.

Example 5.5. As an example, let us specify Theorem 5.6 in the case that the plate is only submitted to
body forces (i.e. g = 0), and the considered functional is the compliance of the structure, that is: j(u) = f.u,
k(u) = 0, and:

∇uj(u) = f , ∇2
uj(u) = 0.

Since ph ∈ H1
ΓD

(Ω)d is the unique solution to (5.42), one easily finds that ph = −uh, so that J̃ can be
rewritten:

∀h ∈ Uad, J̃ (h) =
∫

Ω

f · uh dx+ 2m||he(uh) : e(uh)||L1(Ω)+m||hdiv(uh)2||L1(Ω).

Now, assuming that e(uh) and div(uh) do not vanish, except possibly on a subset of Ω of null Lebesgue
measure, one has: κe = κd = −1. qh ∈ H1

ΓD
(Ω)d is then defined as the unique solution to the following

variational problem:

∀v ∈ H1
ΓD

(Ω)d,
∫

Ω

hAe(qh) : e(v) dx =
∫

Ω

(2he(uh) : e(v) + hdiv(uh)div(v)) dx,

zh = −qh, and easy computations yield:

∀s ∈ L∞(Ω), J̃ ′(h)(s) =
∫

Ω

s (−Ae(uh) : e(uh) +m (2e(uh) : e(uh) + div(uh)div(uh)− 2Ae(uh) : e(qh))) dx.

This expression can be drawn closer to the exact expression (5.39) for J in this case. After some computa-
tions, we find, as in Remark 5.6, that for any h ∈ Uad:

∀s ∈ L∞(Ω), J ′(h)(s) = J̃ ′(h)(s) +O(m2).

Of course, the whole argument still holds (involving more computations) when g 6= 0 and k(u) = g · u.

5.4 Worst-case design in shape optimization

5.4.1 Description of the model problem

We now get interested in shapes, that is bounded domains Ω ⊂ Rd, with at least Lipschitz regularity.
Every considered shape Ω is submitted to body forces f ∈ H1(Rd)d. It is moreover clamped on a part
ΓD ⊂ ∂Ω of its boundary, and subject to traction loads g ∈ H2(R)d, applied on another part ΓN ⊂ ∂Ω.
Neither of these parts is subject to optimization, and in this view, contrary to the previous setting of section
5.3, we introduce the free boundary Γ := ∂Ω \ (ΓD ∪ ΓN ), which is the only optimizable part of ∂Ω.

The displacement of this shape arises then as the unique solution in H1
ΓD

(Ω)d to the linear elasticity
system posed on Ω: 




−div(Ae(u)) = f in Ω
u = 0 on ΓD

Ae(u)n = g on ΓN
Ae(u)n = 0 on Γ

, (5.43)

where A is the material’s Hooke’s law. In accordance with this setting, the set Uad of admissible domains is:

Uad =
{

Ω ⊂ Rd is open, Lipschitz and bounded, ΓD ∪ ΓN ⊂ ∂Ω
}
.

As for representing variations of shapes, we rely once more on Hadamard’s boundary variation method (see
the outline in Chapter 2): for a shape Ω ⊂ Rd, we consider variations of the form:

Ωθ := (I + θ)(Ω), θ ∈W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd)< 1.

This leads to the following notion of differentiation with respect to the domain:
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Definition 5.1. A functional J(Ω) of the domain is shape differentiable at Ω if the underlying function
θ 7→ J((I + θ)(Ω)), from W 1,∞(Rd,Rd) into R is Fréchet differentiable at θ = 0. The shape derivative J ′(Ω)
of J at Ω is then the corresponding Fréchet differential, so that the following asymptotic expansion holds in
the vicinity of 0 ∈W 1,∞(Rd,Rd):

J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(Rd,Rd)

θ→0−→ 0. (5.44)

To guarantee that all the considered variations of shapes belong to Uad, the set of deformations of shapes
is restricted from W 1,∞(Rd,Rd) to Θad ⊂W 1,∞(Rd,Rd), where:

Θad =
{
θ ∈W 1,∞(Rd,Rd) s.t. θ(x) = 0 a.e. x ∈ ΓD ∪ ΓN

}
.

Notation: As in Section 5.3, we will be considering several functions as integrands of our objective functions.
The possible dependences of these functions on the space variable x are consistently omitted. If j : Rdf ×
Rdu × Rdp → R is any smooth enough function, its partial gradients with respect to the f, u, p variables are
still denoted respectively: ∇f j,∇uj,∇pj ∈ Rd.

5.4.2 Worst-case design in shape optimization under uncertainties over the ap-
plied body forces

In this section, we aim at optimizing the shape of a structure Ω with respect to the greatest value reached
by a given objective function of the domain when small perturbations are expected on the body force term.
This problem is the simplest of all the ones we are going to investigate in the shape optimization setting. To
keep things simple, we only limit the forthcoming presentation to the simplest case as regards the form of the
cost function, which is easily generalized to more complex situations (as well as to ones where perturbations
are also expected over the surface loads term).

Let j : Rdf ×Rdu → R be a function of class C2. For any admissible domain Ω ∈ Uad, any body force term
f ∈ H1(Rd)d and any surface loads g ∈ H2(Rd), let uΩ,f be the corresponding displacement of Ω, solution
to problem (5.43) when it is submitted to this set of forces.

The cost associated to this configuration is:

C(Ω, f) =
∫

Ω

j(f, uΩ,f ) dx.

We now fix a particular body force term f ∈ H1(Rd)d, and introduce the worst-case optimization problem
at stake in the section:

min
Ω∈Uad

J (Ω), where J (Ω) = sup
ξ∈L2(Rd)d

||ξ||
L2(Rd)d ≤m

C(Ω, f + ξ). (5.45)

As proposed in Section 5.2, the following linearized version of problem (5.45) lends itself to a far easier
analysis:

min
Ω∈Uad

J̃ (Ω), where J̃ (Ω) = sup
ξ∈L2(Rd)d

||ξ||
L2(Rd)d ≤m

(
C(Ω, f) +

∂C
∂f

(Ω, f)(ξ)
)
. (5.46)

We now intend to compute the shape gradient of J̃ . To achieve this, we follow the steps of Section 5.3, and
start with the following lemma (which is an equivalent for Lemma 5.2 in the shape optimization context):

Lemma 5.3. For any Ω ∈ Uad, denote by uΩ ∈ H1
ΓD

(Ω)d the unique solution to (5.43).
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(i) Let j, k : Rd → R be two functions of class C1, and define a functional K of the domain Ω as:

∀Ω ∈ Uad, K(Ω) =
∫

Ω

j(uΩ) dx+
∫

Γ∪ΓN

k(uΩ) dx.

Then K is shape differentiable at any Ω ∈ Uad, and its derivative reads

∀θ ∈ Θad, K
′(Ω)(θ) =

∫

Γ

(
j(uΩ) +Ae(uΩ) : e(pΩ)− pΩ.f +

∂(k(uΩ))
∂n

+ κ (k(uΩ))
)

(θ · n) ds,

where κ is the mean curvature of ∂Ω (oriented so that it is positive when Ω is locally convex around
x), and the adjoint state pΩ ∈ H1

ΓD
(Ω)d is the unique solution to:




−div(Ae(p)) = −∇uj(uΩ) in Ω

p = 0 on ΓD
Ae(p)n = −∇uk(uΩ) on Γ ∪ ΓN

. (5.47)

(ii) Let b, c : Rd → Rd and ℓ : Rdu × Rdp → R be three functions of class C1. Note that ∇ub and ∇uc are
d× d matrices, and that ∇uℓ and ∇pℓ are vectors in Rd. Introduce the functional L, defined as:

∀Ω ∈ Uad, L(Ω) =
∫

Ω

ℓ(uΩ, pΩ) dx,

where pΩ ∈ H1
ΓD

(Ω)d is defined as the unique solution to




−div(Ae(p)) = −b(uΩ) in Ω

p = 0 on ΓD
Ae(p)n = −c(uΩ) on Γ ∪ ΓN

. (5.48)

L is then shape differentiable at any Ω ∈ Uad, and its shape derivative reads

∀θ ∈ Θad, L
′(Ω)(θ) =

∫

Γ

(ℓ(uΩ, pΩ) + b(uΩ).qΩ +Ae(uΩ) : e(zΩ) +Ae(pΩ) : e(qΩ)− zΩ.f) (θ · n) ds

+
∫

Γ

(
∂(c(uΩ) · qΩ)

∂n
+ κ (c(uΩ) · qΩ)

)
(θ · n) ds

,

where qΩ, zΩ ∈ H1
ΓD

(Ω)d are respectively defined as the unique solutions to the systems:




−div(Ae(q)) = −∇pℓ(uΩ, pΩ) in Ω

q = 0 on ΓD
Ae(q)n = 0 on Γ ∪ ΓN

, (5.49)




−div(Ae(z)) = −∇ub(uΩ)qΩ −∇uℓ(uΩ, pΩ) in Ω

z = 0 on ΓD
Ae(z)n = −∇uc(uΩ)qΩ on Γ ∪ ΓN

. (5.50)

Proof. (i): this is a particular case of (the proof of) theorem 3.6 in [14].

(ii): Let us once again rely on Céa’s method. Introduce the Lagrangian L : Uad×H1
ΓD

(Rd)d×H1
ΓD

(Rd)d → R,
defined as:

L(Ω, p̂, q̂) =
∫

Ω

ℓ(uΩ, p̂) dx+
∫

Ω

Ae(p̂) : e(q̂) dx+
∫

Ω

b(uΩ) · q̂ dx+
∫

Γ∪ΓN

c(uΩ) · q̂ ds,
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and let us search for the points (p, q) ∈ H1
ΓD

(Rd)d × H1
ΓD

(Rd)d where the partial derivatives of L(Ω, ., .)
vanish, for a given, arbitrary shape Ω ∈ Uad.

• The partial derivative of L with respect to q̂ at (Ω, p, q) reads:

∀q̂ ∈ H1
ΓD

(Rd)d,
∂L
∂q̂

(Ω, p, q)(q̂) =
∫

Ω

Ae(p) : e(q̂) dx+
∫

Ω

b(uΩ) · q̂ dx+
∫

Γ∪ΓN

c(uΩ) · q̂ ds.

Canceling this expression against test functions with compact support in Ω, say q̂ ∈ C∞
c (Ω), implies that p

is a solution to: −div(Ae(p)) = −b(uΩ) in Ω. Then, using test functions q̂ with null trace on ΓD yields the
boundary condition: Ae(p)n = −c(uΩ) on Γ ∪ ΓN . Eventually, since by essence p ∈ H1

ΓD
(Rd), we readily

obtain that p = pΩ, the ‘adjoint’ state defined by (5.48).

• The derivative of L with respect to p̂ evaluated at (Ω, p, q) reads:

∀p̂ ∈ H1
ΓD

(Rd)d,
∂L
∂p̂

(Ω, p, q)(p̂) =
∫

Ω

∇pℓ(uΩ, p) · p̂ dx+
∫

Ω

Ae(p̂) : e(q) dx.

Canceling this expression against test functions with compact support in Ω, p̂ ∈ C∞
c (Ω), we get that q is a

solution to: −div(Ae(q)) = −∇pℓ(uΩ, pΩ) in Ω. As above, using test functions p̂ with null trace on ΓD yield
the boundary condition: Ae(q)n = 0 on Γ ∪ ΓN , and the last condition q = 0 on ΓD is naturally recovered
from the definition q ∈ H1

ΓD
(Rd). Eventually, q = qΩ, defined by (5.49).

• Eventually, one has, for any Ω ∈ Uad, and for any q̂ ∈ H1
ΓD

(Rd), L(Ω) = L(Ω, pΩ, q̂). As usual, dif-
ferentiating this relation with respect to Ω, then taking q̂ = qΩ in the resulting expression yields:

∀θ ∈ Θad, L
′(Ω)(θ) =

∂L
∂Ω

(Ω, pΩ, qΩ)(θ).

This last (partial) shape derivative can now be computed using point (i), since it depends on Ω only via uΩ,
the solution to (5.43). Introducing the third adjoint state zΩ ∈ H1

ΓD
(Ω)d as the unique solution to (5.50),

one has:

∀θ ∈ Θad, L
′(Ω)(θ) =

∫

Γ

(ℓ(uΩ, pΩ) + b(uΩ) · qΩ +Ae(uΩ) : e(zΩ) +Ae(pΩ) : e(qΩ)− zΩ · f) (θ · n) ds

+
∫

Γ

(
∂(c(uΩ) · qΩ)

∂n
+ κ (c(uΩ) · qΩ)

)
(θ · n) ds

,

which is the desired formula.

We are now in position to carry out the shape sensitivity analysis of functional (5.46):

Theorem 5.7. The functional J̃ defined in (5.46) rewrites:

∀Ω ∈ Uad, J̃ (Ω) =
∫

Ω

j(f, uΩ) dx+m||∇f j(f, uΩ)− pΩ||L2(Ω)d , (5.51)

where pΩ ∈ H1
ΓD

(Ω)d is the first adjoint state, defined as the unique solution to




−div(Ae(p)) = −∇uj(f, uΩ) in Ω

p = 0 on ΓD
Ae(p)n = 0 on Γ ∪ ΓN

. (5.52)
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Moreover, J̃ is differentiable at any Ω ∈ Uad such that ∇f j(f, uΩ)− pΩ 6= 0 in L2(Ω)d and its derivative at
such a point reads:

∀θ ∈ Θad,

J̃ ′(Ω)(θ) =
∫

Γ

(j(f, uΩ) +Ae(uΩ) : e(pΩ)− pΩ · f) (θ · n) ds

+ m
2||∇f j(f,uΩ)−pΩ||

L2(Ω)d

(∫

Γ

(
|∇f j(f, uΩ)− pΩ|2+∇uj(f, uΩ).qΩ − zΩ.f

)
(θ · n) ds

)

+ m
2||∇f j(f,uΩ)−pΩ||

L2(Ω)d

(∫

Γ

(Ae(uΩ) : e(zΩ) +Ae(pΩ) : e(qΩ)) (θ · n) ds
)
.

where the second and third adjoint states qΩ, zΩ ∈ H1
ΓD

(Ω)d are respectively defined as the unique solutions
to the following systems:




−div(Ae(q)) = −2 (pΩ −∇f j(f, uΩ)) in Ω

q = 0 on ΓD
Ae(q)n = 0 on ΓN

. (5.53)




−div(Ae(z)) = −∇2

uj(f, uΩ)qΩ − 2∇f∇uj(f, uΩ)T (∇f j(f, uΩ)− pΩ) in Ω
z = 0 on ΓD

Ae(z)n = 0 on ΓN
. (5.54)

Proof. Once again, the (formal) proof follows the general outline sketched above, and is divided into two
steps.

• Rearrangement of the expression of J̃ as a function of Ω.

To achieve an explicit expression of J̃ in terms of Ω, we introduce an adjoint state, whose expression
may be found by differentiating the variational formula for (5.43) with respect to f . Let us start with:

∀ξ ∈ L2(Ω)d;
∂C
∂f

(Ω, f)(ξ) =
∫

Ω

(
∇f j(f, uΩ).ξ +∇uj(f, uΩ) ·

(
∂uΩ,f

∂f
(ξ)
))

dx.

As usual, the first part ∇f j(f, uΩ).ξ of the integrand does not pose any problem since it leads to an explicit
expression with respect to Ω. As for the second one, the variational formulation associated to uΩ,f reads,
for any source term f ∈ L2(Ω)d:

∀v ∈ H1
ΓD

(Ω)d,
∫

Ω

Ae(uΩ,f ) : e(v) dx =
∫

Ω

f · v dx+
∫

ΓN

g · v ds,

whence

∀ξ ∈ L2(Ω)d, ∀v ∈ H1
ΓD

(Ω)d,
∫

Ω

Ae

(
∂uΩ,f

∂f
(ξ)
)

: e(v) dx =
∫

Ω

f · ξ dx.

On the other hand, from the defining system (5.52) for pΩ ∈ H1
ΓD

(Ω)d, one gets:

∀v ∈ H1
ΓD

(Ω)d,
∫

Ω

Ae(pΩ) : e(v) dx = −
∫

Ω

∇uj(f, uΩ) · v dx.

Combining those two relations produces:

∀ξ ∈ L2(Ω)d,
∫

Ω

∇uj(f, uΩ) ·
(
∂uΩ,f

∂f
(ξ)
)
dx = −

∫

Ω

Ae(pΩ) : e
(
∂uΩ,f

∂f
(ξ)
)
dx = −

∫

Ω

f · pΩ dx.

Hence, using one more time lemma 5.6 delivers the sought expression for J̃ (Ω).
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• Shape sensitivity analysis of J̃ .

Differentiating the first term in (5.56) with respect to the domain is a straightforward application of
lemma (5.3), (i). Its shape derivative reads:

∀θ ∈ Θad,
d

dΩ

(∫

Ω

j(f, uΩ) dx
)

(θ) =
∫

Γ

(j(f, uΩ) +Ae(uΩ) : e(pΩ)− pΩ · f) (θ · n) ds.

As for the second term, we use lemma (5.3), (ii), with ℓ(u, p) = |∇f j(f, u)− p|2, so that

ℓ′(u, p) = 2∇f∇uj(u)T · (∇f j(f, u)− p) , ∇pℓ(u, p) = 2(p−∇f j(f, u)).

Doing so entails, for all θ ∈ Θad:

d

dΩ

(∫

Ω

|∇f j(f, uΩ)− pΩ|2 dx
)

(θ) =
∫

Γ

(
|∇f j(f, uΩ)− pΩ|2+∇uj(f, uΩ) · qΩ − zΩ · f

)
(θ · n) ds

+
∫

Γ

(Ae(uΩ) : e(zΩ) +Ae(pΩ) : e(qΩ)) (θ · n) ds

where qΩ, zΩ ∈ H1
ΓD

(Ω)d are defined by (5.53) and (5.54). These two identities lead to the desired formula

for J̃ ′(Ω)(θ).

Example 5.6. As an illustration of Theorem 5.7, assume that g = 0 and consider the case of the compliance
as a cost function. We have: j(f, u) = f · u, therefore:

∇f j(f, u) = u , ∇uj(f, u) = f , ∇f∇uj(f, u) = I , ∇2
uj(f, u) = 0.

In this context, it is easy to see that pΩ = −uΩ. Thus, J̃ admits the following expression:

∀Ω ∈ Uad, J̃ (Ω) =
∫

Ω

f.uΩ dx+ 2m||uΩ||L2(Ω)d .

Furthermore, if uΩ 6= 0 in L2(Ω)d, J̃ is shape differentiable at Ω. Easy computations allow then to deduce
that the adjoint state qΩ ∈ H1

ΓD
(Ω)d is the unique solution to the system:




−div(Ae(q)) = 4uΩ in Ω

q = 0 on ΓD
Ae(q)n = 0 on Γ ∪ ΓN

,

and that zΩ = −qΩ. The shape derivative of J̃ at Ω then takes the form:

∀θ ∈ Θad, J̃ ′(Ω)(θ) =
∫

Γ

(2uΩ.f −Ae(uΩ) : e(uΩ)) (θ · n) ds

+ m
4||uΩ||

L2(Ω)d

∫

Γ

(
4|uΩ|2+2qΩ.f − 2Ae(uΩ) : e(qΩ)

)
(θ · n) ds.

5.4.3 Worst-case design in shape optimization under uncertainties on the Lamé
moduli of the material

This section is intended as the mirror image of Section 5.3.5 in the context of shape optimization, namely,
we investigate into the worst-case design of an objective functional of the domain with respect to perturba-
tions on the Lamé coefficients of the elastic material filling Ω.
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Let us first recollect some notations. As in Section 5.3.5, for functions λ, µ ∈ L∞(Rd) such that

∃γ > 0, ∀x ∈ Rd, λ(x) > γ, µ(x) > γ, (5.55)

denote by Aλ,µe = 2µe + λtr(e), e ∈ S(Rd) the linear elasticity tensor with Lamé coefficients λ, µ, and as
uΩ,λ,µ ∈ H1

ΓD
(Ω)d the solution to problem (5.43) posed on a shape Ω filled with such a material.

Let j : Rd → R and k : Rd → R be two functions of class C2. For any functions λ, µ ∈ L∞(Rd) satisfying
(5.55), the cost of the structure Ω filled with a material with such Lamé coefficients is defined as:

C(Ω, λ, µ) =
∫

Ω

j(uΩ,λ,µ) dx+
∫

Γ∪ΓN

k(uΩ,λ,µ) ds.

Let us now fix Lamé coefficients λ, µ. For the sake of simplicity, when the context is clear, we still denote
uΩ = uΩ,λ,µ and A = Aλ,µ. Considering perturbations of magnitude m < γ over λ, µ, the corresponding
worst-case objective function J is then:

∀Ω ∈ Uad, J (Ω) = sup
α,β∈L∞(Rd)

||α||
L∞(Rd)

≤m

||β||
L∞(Rd)

≤m

C(Ω, λ+ α, µ+ β),

and the considered approximated objective function J̃ then reads:

∀Ω ∈ Uad, J̃ (Ω) = C(Ω, λ, µ) + sup
α,β∈L∞(Rd)

||α||
L∞(Rd)

≤m

||β||
L∞(Rd)

≤m

(
∂C
∂λ

(Ω, λ, µ)(α) +
∂C
∂µ

(Ω, λ, µ)(β)
)
.

We have the following result, whose proof is omitted:

Theorem 5.8. The considered functional J̃ rewrites, for any Ω ∈ Uad:

J̃ (Ω) =
∫

Ω

j(uΩ) dx+
∫

Γ∪ΓN

k(uΩ) dx+ 2m||e(uΩ) : e(pΩ)||L1(Ω)+m||div(uΩ)div(pΩ)||L1(Ω), (5.56)

where pΩ ∈ H1
ΓD

(Ω)d is the first adjoint state, defined as the unique solution to




−div(Ae(p)) = −∇uj(uΩ) in Ω

p = 0 on ΓD
Ae(p)n = −∇uk(uΩ) on Γ ∪ ΓN

. (5.57)

Moreover, J̃ is differentiable at any shape Ω ∈ Uad such that the set

EΩ := {x ∈ Ω, (e(uΩ) : e(pΩ))(x) = 0 or (div(uΩ)div(pΩ))(x) = 0}

is of null of null Lebesgue measure, and its shape derivative at such a point is:

∀θ ∈ Θad, J̃ ′(Ω)(θ) =
∫

Γ

v(uh, ph, qh, zh) (θ · n) ds,

where:

v(uh, ph, qh, zh) = j(uΩ) +Ae(uΩ) : e(pΩ)− pΩ · f
+m (2|e(uΩ) : e(pΩ)|+|div(uΩ)div(pΩ)|+∇uj(uΩ).qΩ +Ae(pΩ) : e(qΩ) +Ae(uΩ) : e(zΩ))

+∂(k(uΩ))
∂n

+ κ (k(uΩ)) +m
(
∂(∇uk(uΩ)·qΩ)

∂n
+ κ (∇uk(uΩ) · qΩ)

)
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where the second and third adjoint states qΩ, zΩ ∈ H1
ΓD

(Ω)d are respectively defined as the unique solutions
to the variational equations:

∀v ∈ H1
ΓD

(Ω)d,
∫

Ω

Ae(qΩ) : e(v) dx = −
∫

Ω

(2κee(uΩ) : e(v) + κddiv(uΩ)div(v)) dx,

∀v ∈ H1
ΓD

(Ω)d,
∫

Ω

Ae(zΩ) : e(v) dx = −
∫

Ω

(
2κee(pΩ) : e(v) + κddiv(pΩ)div(v) +

(
∇2
uj(uΩ)qΩ

)
· v
)
dx

−
∫

Γ∪ΓN

(
∇2
uk(uΩ)qΩ

)
· v ds

,

and κe, κd ∈ L∞(Ω) are respectively defined as: κe = sgn (e(uΩ) : e(pΩ)), and κd = sgn (div(uΩ)div(pΩ)).

Remark 5.7. The observation of Remark 5.5 can be extended from the parametric to the shape optimization
setting (up to some extra computations): when the cost function C is the compliance, i.e. j(u) = f · u and
k(u) = g · u, the exact worst-case functional J reads:

∀Ω ∈ Uad, J (Ω) = C(Ω, λ−m,µ−m),

and the following asymptotic expansion holds at any Ω ∈ Uad:

∀θ ∈ Θad, J ′(Ω)(θ) = J̃ ′(Ω)(θ) +O(m2).

5.4.4 Worst-case design in shape optimization under geometric uncertainties

The purpose of this section is to compute a shape derivative for a given functional of the domain J(Ω)
which is robust with respect to uncertainties on the boundaries of shapes themselves.

Let us first specify what we intend by shape optimization under geometric uncertainty. We assume that
perturbations only affect the free boundary Γ of Ω; more precisely, let χ : Rd → R be a cutoff function, and
O1 ( O2 be two open neighborhoods of ΓD ∪ ΓN in Rd, enjoying the following properties:

χ is smooth and nonnegative over Rd,





χ(x) = 0 for x ∈ O1,
χ(x) ∈ (0, 1] for x ∈ O2 \ O1

χ(x) = 1 for x ∈ O2

(5.58)

If m > 0 is the expected magnitude of perturbations over the geometry, we are interested in perturbations
of Ω ∈ Uad of the form (see Figure 5.2):

(I + χV )(Ω), V ∈W 1,∞(Rd,Rd), ||V ||L∞(Rd)d≤ m. (5.59)

Note that an other way to describe this problem consists in assuming perturbations of Ω of the form:

(I + χvn)(Ω), v ∈W 1,∞(Rd), ||v||L∞(Rd)≤ m, (5.60)

where n = nΩ denotes (an extension to Rd of) the normal vector field to ∂Ω (the Ω - index is meant to
emphasize its dependence on Ω and will be omitted when the situation is clear).

As we shall observe, both descriptions are equivalent as far as we are concerned. However, the former one
(5.59), which is the one retained in the following, proves more convenient from a mathematical viewpoint,
since it features independent sets for admissible shapes and admissible perturbations of them; on a different
note, perturbed shapes in the sense of (5.60) are ‘less regular’ than the unperturbed one.

Remark 5.8. The chosen description for perturbations over the geometry slightly differs from that adopted
in other contributions on the topic, for instance:
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Ω

V (I + V )(Ω)

Figure 5.2: Perturbation (I + χV )(Ω) of a domain Ω

– in [286], the only retained possibility is that Ω may suffer from a (small) uniform ‘shrinking’ or ‘thick-
ening’, i.e. perturbations of shapes are of the form (5.60), with constant v; a filtering approach is used
to incorporate this uncertainty into the objective function.

– Closer to the present work, in [77], the authors also perturbations of the form (5.60) with a scalar
field v varying in a random fashion over the boundary of the shape, following a Gaussian probability
distribution with 0 mean value.

– Eventually, in [165], perturbations of a shape Ω are of the form (5.60), with v being bounded in
L2(Rd)-norm, and ‘small’ in the sense that the discrepancy between the volumes of the perturbed and
unperturbed shapes is ‘small’.

We believe that the above setting is well-suited to simulate ‘realistic’ uncertainties over manufacturing
constraints, but the approaches considered in [165, 286] could be tackled owing to similar computations to
those presented in this section.

Actually, the proposed approach in this chapter almost requires to differentiate J twice with respect to
the domain. Hence, the formulae derived below could also be used in the context of a second-order algorithm
for shape optimization.

Let us start with a fairly informal discussion to emphasize the connection between both topics. For any
Ω ∈ Uad, denote as uΩ ∈ H1

ΓD
(Ω)d the unique solution to problem (5.43). Let J(Ω) be a functional of the

domain (e.g. one of those we have been considering hitherto) whose minimization is under scrutiny. Under
reasonable regularity assumptions on the data, it is well-known (and we have seen several such examples)
that the shape derivative of J can be put under the generic form:

∀θ ∈ Θad, J ′(Ω)(θ) =
∫

Γ

j(x, uΩ, e(uΩ)) (θ · nΩ) ds, (5.61)

for some function j.
On the other hand, the proposed approach in this note deals with functionals J̃ of the domain cooked

by linearizing the functional J under consideration around each shape with respect to the expected per-
turbations, then taking the supremum of the resulting linear function over all possible perturbations of
prescribed maximum amplitude m. Consequently, when perturbations over the geometry of the shape itself
are expected, the method described in section 5.2 naturally brings about functionals of the form:

J̃ (Ω) =
∫

Γ

k(x, uΩ, e(uΩ)) ds, (5.62)
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for some function k, closely related to j. Devising a numerical algorithm for minimizing J̃ naturally demands
to differentiate in (5.62). Actually, doing so almost boils down to differentiating expressions such as (5.61),
that is to differentiating J twice with respect to the domain. Indeed, the general forms of (5.61) and (5.62)
only differ from one another because of the factor (θ · nΩ). Yet, provided Ω is smooth enough, the Eulerian
derivative of the normal vector field nΩ reads (see [234], or the computation in chapter 4, §4.2.4):

∀x ∈ ∂Ω,
d

dt

(
n(I+tθ)(Ω)(x)

)∣∣∣
t=0

= −∇∂Ω(θ · nΩ)(x).

Thus, applying (formally) the chain rule entails, for all θ, ξ ∈ Θad:

J ′′(Ω)(θ, ξ) := (J ′(Ω)(θ))′ (ξ)

=
d

dΩ

(∫

Γ

j(x, uΩ, e(uΩ))v ds
)∣∣∣∣

v=θ·nΩ

(ξ)−
∫

Γ

j(x, uΩ, e(uΩ)) (θ · ∇∂Ω(ξ · nΩ)) ds .

Now, if we constrain θ to be a normal vector field, that is θ = (θ · n)n (at least in a neighborhood of Γ) -
which is very natural because of the structure theorem for shape derivatives - see [105], Th. 9.3.6 or Theorem
2.3 in Chapter 2 of this manuscript -, the second term vanishes, and the computation of J ′′(Ω) amounts to
differentiating in an expression of the form (5.62). Hence, both problems of computing the shape Hessian
of J , and analyzing the worst-case design of J with respect to geometric uncertainties are very much akin,
and some ideas in the remainder of this section could be prove useful in the device of a second order shape
optimization algorithm (see [109] for further remarks around second-order shape derivatives).

Let us now get into the heart of the matter. Let C(Ω) be a cost functional; the associated worst-case
scenario functional is:

J (Ω) = sup
V ∈W 1,∞(Rd,Rd)
||V ||

L∞(Rd)d ≤m

C((I + χV )(Ω)),

where χ is the cutoff function defined by (5.58).
In what follows, we will focus on several particular cases as regards the form of C(Ω); the presented

techniques could easily be generalized to different problems. The first investigated example will be that of
the compliance C(Ω) of a shape Ω:

C(Ω) =
∫

Ω

Ae(uΩ) : e(uΩ) dx =
∫

Ω

f · uΩ dx+
∫

ΓN

g · uΩ ds; (5.63)

then we will turn to a functional J(Ω), which depends only on uΩ (not on e(uΩ)) by means of a smooth
enough function j : Rd → R (we have in mind the least-square discrepancy criterion, with respect to a target
displacement):

J(Ω) =
∫

Ω

j(uΩ) dx. (5.64)

Finally, we will consider the case of a functional S(Ω), which depends only on the stress tensor σ(uΩ) :=
Ae(uΩ), through a smooth function j : S(Rd)→ R (we have in mind a Lp-norm of the stress, as studied in
[13]):

S(Ω) =
∫

Ω

j(σ(uΩ)) dx, (5.65)

where σ(uΩ) := Ae(uΩ) is the stress tensor associated to the displacement uΩ.

As in the corresponding context of parametric optimization (see section 5.3.4), the case of the compliance
as a cost function is especially simple, as confirmed by the following proposition, whose proof unrolls along
the lines of Proposition 5.1.
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Proposition 5.2. Assume that no body forces are applied to the structures under optimization: f = 0, and
that the cost function C(Ω) is the compliance, that is:

C(Ω) = C(Ω) =
∫

Ω

Ae(uΩ) : e(uΩ) dx =
∫

ΓN

g.uΩ ds.

Then, for any shape Ω ∈ Uad, the exact worst-case functional J reads:

J (Ω) = sup
V ∈W 1,∞(Rd,Rd)
||V ||

L∞(Rd)d ≤m

C((I + χV )(Ω)) = C((I −mχnΩ)(Ω)).

Simply put, the most compliant shape among all the perturbed designs of a shape Ω according to (5.59) is
the thinnest of all.

However, for a general objective function, the worst-case functional J (Ω) is not explicit and we approx-
imate it by J̃ (Ω), defined as:

∀Ω ∈ Uad, J̃ (Ω) = sup
V ∈W 1,∞(Rd,Rd)
||V ||

L∞(Rd)d ≤m

(C(Ω) + C′(Ω)(χV )).

From now on, we assume that the data f, g are smooth enough, and that the sets Uad of admissible shapes
and Θad of admissible variations of shapes incorporate enough smoothness in their definitions, so that all
the state and adjoint functions uΩ, pΩ, qΩ and zΩ appearing in the forthcoming formulae are also smooth
enough.

Before stating the results of interest, let us set some more notations. If Ω ∈ Uad is any shape, we denote
as τ a local basis of tangent vectors to Γ, so that (τ, n) is a local orthonormal frame of Rd. Any matrix
M∈ S(Rd) can be decomposed into this basis as:

M =
(
Mττ Mτn

Mnτ Mnn

)

where Mττ stands for the (d − 1) × (d − 1) tangential minor of M, Mτn is the vector of the (n − 1) first
tangential components of the normal column Mn, Mnτ is the row vector of the (n − 1) first tangential
components of the normal row nTM, and Mnn = Mn · n. We eventually denote as divΓ the tangential
divergence operator defined on Γ.

We start with a technical lemma concerning our example (5.64) of a cost function.

Lemma 5.4. 1. For any Ω ∈ Uad, the shape derivative of the functional J(Ω), defined by (5.64), reads:

∀θ ∈ Θad, J
′(Ω)(θ) =

∫

Γ

(j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ) (θ · n) ds,

where the adjoint state pΩ ∈ H1
ΓD

(Ω)d is defined as the unique solution to:



−div(Ae(p)) = −∇uj(uΩ) in Ω

p = 0 on ΓD
Ae(p)n = 0 on Γ ∪ ΓN

. (5.66)

2. Let ℓ : Rdu×Rdp×Re → R be any smooth enough function which vanishes in a neighborhood of ΓD∪ΓN ,
and define the functional L(Ω) as:

L(Ω) =
∫

Γ

ℓ(uΩ, pΩ, Ae(uΩ) : e(pΩ)) ds, (5.67)
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where pΩ is defined by system (5.66). Then L is shape differentiable, and its shape derivative reads:

∀θ ∈ Θad, L
′(Ω)(θ) =

∫

Γ

w(uΩ, pΩ, qΩ, zΩ) (θ · n) ds, (5.68)

where we defined:

w(uΩ, pΩ, qΩ, zΩ) =
(
∂

∂n
+ κ

)
(ℓ(uΩ, (σ(uΩ)ττ ) : (e(pΩ)ττ )))+Ae(pΩ) : e(qΩ)+Ae(uΩ) : e(zΩ)−f ·zΩ,

(5.69)
and the second an third adjoint states qΩ, zΩ ∈ H1

ΓD
(Ω)d are respectively defined as the unique solutions

to:




−div(Ae(q)) = 0 in Ω
q = 0 on ΓD

Ae(q)n = 0 on ΓN
Ae(q)n = −∇pℓ(uΩ, pΩ, Ae(uΩ) : e(pΩ)) + divΓ

(
∂ℓ
∂e

(uΩ, pΩ, Ae(uΩ) : e(pΩ))(σ(uΩ))ττ
)

on Γ

,

(5.70)
and:




−div(Ae(z)) = −∇2
uj(uΩ)qΩ in Ω

z = 0 on ΓD
Ae(z)n = 0 on ΓN
Ae(z)n = −∇uℓ(uΩ, pΩ, Ae(uΩ) : e(pΩ)) + divΓ

(
∂ℓ
∂e

(uΩ, pΩ, Ae(uΩ) : e(pΩ))(σ(pΩ))ττ
)

on Γ

.

(5.71)

Proof. (1): This is a very classical result in shape optimization (see e.g. [14]).

(2): Here, we need to assume that uΩ and pΩ enjoy more regularity than the sole ‘natural’ H1(Ω)d regularity,
e.g uΩ ∈ H2(Ω)d ∩H1

ΓD
(Ω)d and pΩ ∈ H2(Ω)d ∩H1

ΓD
(Ω)d, so that the very definition of L(Ω) makes sense.

This is typically the case when the data Ω, f, g are assumed smooth enough (see the above assumptions).

As we are about to see, the problem of differentiating L(Ω) is not that simple. Indeed, if we attempt to
carry out Cea’s formal method as usual, we will get stuck by a problem of loss of regularity in the derived
variational formulations for the adjoint states qΩ and zΩ, which feature traces on Γ of first order derivatives
of test functions (which should enjoy only H1(Ω)d regularity).

We introduce the Lagrangian L : Uad ×
(
H2(Rd)d ∩H1

ΓD
(Rd)d

)4 → R, defined by:

L(Ω, û, ẑ, p̂, q̂) =
∫

Γ

ℓ(û, p̂, Ae(û) : e(p̂)) ds+
∫

Ω

Ae(û) : e(ẑ) dx−
∫

Ω

f · ẑ dx−
∫

ΓN

g · ẑ ds

+
∫

Ω

Ae(p̂) : e(q̂) dx−
∫

Ω

−∇uj(û) · q̂ dx
.

As usual, we look for the points (u, z, p, q) ∈
(
H2(Rd)d ∩H1

ΓD
(Rd)d

)4
where the partial derivatives of L(Ω, ., .)

vanish, for a particular shape Ω ∈ Uad.

• As before, canceling the partial derivative of L with respect to z at (Ω, u, z, p, q) imposes that u should
satisfy:

∀ẑ ∈ H2(Rd)d ∩H1
ΓD

(Rd)d,
∫

Ω

Ae(u) : e(ẑ) dx =
∫

Ω

f · ẑ dx+
∫

ΓN

g · ẑ ds.

As H2(Rd) is dense in H1(Rd), this is equivalent to the fact that u = uΩ, the unique solution to (5.43).
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• Similarly, canceling the derivative of L with respect to q at (Ω, u, z, p, q) imposes that p should satisfy:

∀q̂ ∈ H2(Rd)d ∩H1
ΓD

(Rd)d,
∫

Ω

Ae(p) : e(q̂) dx = −
∫

Ω

∇uj(uΩ) · q̂ dx.

For the same reason, this implies that p = pΩ, the unique solution to (5.66).

• Let us now study the partial derivative of L with respect to p at (Ω, u, z, p, q). It reads, for all p̂ ∈
H2(Rd)d ∩H1

ΓD
(Rd)d:

∂L
∂p

(Ω, u, z, p, q)(p̂) =
∫

Γ

(
∇pℓ(u, p,Ae(u) : e(p)) · p̂+

∂ℓ

∂e
(u, p,Ae(u) : e(p))Ae(u) : e(p̂)

)
ds

+
∫

Ω

Ae(p̂) : e(q) dx
. (5.72)

Under this form, this last expression does not lend itself to an unambiguous definition of q by means of a
variational formulation over the space H1

ΓD
(Rd)d, because the term

p̂ 7→
∫

Γ

(
∂ℓ

∂e
(u, p,Ae(u) : e(p))Ae(u) : e(p̂)

)
ds

is not a continuous linear form over H1
ΓD

(Rd)d. The trick consists in noticing that we already identified u
as uΩ. In particular, u complies with Neumann homogeneous boundary conditions Ae(u)n = 0 over Γ. This
allows for a convenient simplification of the nasty term in (5.72):

∀p̂ ∈ H2(Rd)d ∩H1
ΓD

(Rd)d, Ae(u) : e(p̂) = (Ae(u))ττ : e(p̂)ττ a.e. on Γ.

Using this information in (5.72) together with an integration by parts on Γ yields, for all p̂ ∈ H2(Rd)d ∩
H1

ΓD
(Rd)d:

∂L
∂p

(Ω, u, z, p, q)(p̂) =
∫

Γ

(
∇pℓ(u, p,Ae(u) : e(pΩ)) · p̂− divΓ

(
∂ℓ

∂e
(u, p,Ae(u) : e(p))(Ae(u))ττ

)
· p̂
)
ds

+
∫

Ω

Ae(p̂) : e(q) dx
.

Under the previous assumption that u = uΩ is smooth enough, canceling this last expression yields a well-
defined variational problem for q, which admits as unique solution in H2(Rd)d ∩ H1

ΓD
(Rd)d (owing to the

regularity theory for linear elasticity, see [92]) q = qΩ, defined by (5.70).

• The study of the partial derivative of L with respect to u at (Ω, u, z, p, q) unrolls in the same way. It
reads, for all û ∈ H2(Rd)d ∩H1

ΓD
(Rd)d:

∂L
∂u

(Ω, u, z, p, q)(û) =
∫

Γ

(
∇uℓ(u, p,Ae(u) : e(p)) · û+

∂ℓ

∂e
(u, p,Ae(u) : e(p))(Ae(p))ττ : e(û)ττ

)
ds

+
∫

Ω

Ae(û) : e(z) dx+
∫

Ω

(
∇2
uj(u)q

)
· û dx

=
∫

Γ

(
∇uℓ(u, p,Ae(u) : e(p)) · û− divΓ

(
∂ℓ

∂e
(u, p,Ae(u) : e(p))(Ae(p))ττ

)
· û
)
ds

+
∫

Ω

Ae(û) : e(z) dx+
∫

Ω

(
∇2
uj(u)q

)
· û dx

,

where the third line stems again from integration by parts on Γ, with ℓ ≡ 0 on ∂Γ. Under the previous
assumption that u = uΩ is smooth enough, canceling this last expression yields a well-defined variational
problem for z, which admits z = zΩ as unique solution in H2(Rd)d ∩H1

ΓD
(Rd)d, defined by (5.71).
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Eventually, for any domain Ω ∈ Uad, and any fixed functions q̂, ẑ ∈ H2(Rd)d ∩H1
ΓD

(Rd)d, one has:

L(Ω) = L(Ω, uΩ, ẑ, pΩ, q̂),

whence, differentiating this expression with respect to Ω, and evaluating at q̂ = qΩ and ẑ = zΩ,

∀θ ∈ Θad, L
′(Ω)(θ) =

∂L
∂Ω

(Ω, uΩ, zΩ, pΩ, qΩ)(θ),

and the desired formula (5.68) follows.

Using this technical result, we are now in position to prove the following theorem:

Theorem 5.9. Consider the worst-case design functional J̃ (Ω), defined as:

∀Ω ∈ Uad, J̃ (Ω) = J(Ω) + sup
V ∈W 1,∞(Rd,Rd)
||V ||

L∞(Rd)d ≤m

J ′(Ω)(χV ).

Then J̃ rewrites:

J̃ (Ω) =
∫

Ω

j(uΩ) dx+m

∫

Γ

χ |j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ| ds, (5.73)

where the adjoint state pΩ ∈ H1
ΓD

(Ω)d is defined as the unique solution to:



−div(Ae(p)) = −∇uj(uΩ) in Ω

p = 0 on ΓD
Ae(p)n = 0 on Γ ∪ ΓN

. (5.74)

Furthermore, J̃ is shape differentiable at any Ω ∈ Uad such that the set

EΩ := {x ∈ Γ, (j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ) (x) = 0}

is of null (surface) Lebesgue measure. At such a point, its shape derivative reads:

∀θ ∈ Θad, J̃ ′(Ω)(θ) =
∫

Γ

χ (j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ) (θ · n) ds

+m
∫

Γ

((
∂

∂n
+ κ

)
(χ |j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ|)

)
(θ · n) ds

+m
∫

Γ

(Ae(pΩ) : e(qΩ) +Ae(uΩ) : e(zΩ)− f · zΩ) (θ · n) ds

, (5.75)

where the second and third adjoint states qΩ, zΩ are respectively defined as the unique solutions in H1
ΓD

(Ω)d

to the systems: 



−div(Ae(q)) = 0 in Ω
q = 0 on ΓD

Ae(q)n = 0 on ΓN
Ae(q)n = εχ f + divΓ (εχ (σ(uΩ))ττ ) on Γ

, (5.76)

and: 



−div(Ae(z)) = −∇2
uj(uΩ)qΩ in Ω

z = 0 on ΓD
Ae(z)n = 0 on ΓN
Ae(z)n = −εχ∇uj(uΩ) + divΓ (εχ (σ(pΩ))ττ ) on Γ

, (5.77)

where ε := sgn (j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ).
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Proof. First, using lemma (5.4) (i), we know that J is shape differentiable at any Ω ∈ Uad, with shape
derivative:

∀θ ∈ Θad, J
′(Ω)(θ) =

∫

Γ

(j(uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ) (θ · n) ds.

Using this expression together with theorem 5.11 readily gives rise to formula (5.73).
Then, using Lemma 5.4, (3), with ℓ(u, p, e) = χ |j(u) + e− f · p| produces formula (5.75).

We conclude this tour with the study of the stress-based cost function S(Ω) defined by (5.65). The
following result is proved in the exact same way as Theorem 5.9, and the proof is omitted:

Theorem 5.10. Let J̃ (Ω) the worst-case design functional defined as:

∀Ω ∈ Uad, J̃ (Ω) = S(Ω) + sup
V ∈W 1,∞(Rd,Rd)
||V ||

L∞(Rd)d ≤m

S′(Ω)(χV ).

Then J̃ rewrites:

J̃ (Ω) =
∫

Ω

j(σ(uΩ)) ds+m

∫

Γ

χ |j(σ(uΩ)) +Ae(uΩ) : e(pΩ)− f · pΩ| ds, (5.78)

where the adjoint state pΩ ∈ H1
ΓD

(Ω)d is defined as the unique solution to:




−div(Ae(p)) = div(A ∂j

∂σ
(σ(uΩ))) in Ω

p = 0 on ΓD
Ae(p)n = −A ∂j

∂σ
(σ(uΩ))n on Γ ∪ ΓN

. (5.79)

Besides, J̃ is shape differentiable at any Ω ∈ Uad such that the set

EΩ := {x ∈ Γ, (j(σ(uΩ)) +Ae(uΩ) : e(pΩ)− f.pΩ) (x) = 0}

is of zero (surface) Lebesgue measure. At such a point, its shape derivative reads, for all θ ∈ Θad:

∀θ ∈ Θad, J̃ ′(Ω)(θ) =
∫

Γ

χ (j(σ(uΩ)) +Ae(uΩ) : e(pΩ)− f · pΩ) (θ · n) ds

+m
∫

Γ

((
∂

∂n
+ κ

)
(χ |j(σ(uΩ)) +Ae(uΩ) : e(pΩ)− f · pΩ|)

)
(θ · n) ds

+m
∫

Γ

(Ae(pΩ) : e(qΩ) +Ae(uΩ) : e(zΩ)− f · zΩ) (θ · n) ds

,

(5.80)
where the second and third adjoint states qΩ, zΩ are respectively defined as the unique solutions in H1

ΓD
(Ω)d

to the following variational problems:

∀v ∈ H1
ΓD

(Ω)d,
∫

Ω

Ae(q) : e(v) dx = −
∫

Γ

εχ ((σ(uΩ))ττ : e(v)ττ − f · v) ds, (5.81)

and:

∀v ∈ H1
ΓD

(Ω)d,
∫

Ω

Ae(z) : e(v) dx = −
∫

Γ

εχ

(((
A
∂j

∂σ
(σ(uΩ))

)

ττ

)
: e(v)ττ + (σ(pΩ))ττ : e(v)ττ

)
ds,

−
∫

Ω

(
∂2j

∂σ2
(σ(uΩ))Ae(qΩ)

)
: Ae(v) dx

(5.82)
where ε := sgn (j(σ(uΩ)) +Ae(uΩ) : e(pΩ)− f · pΩ).
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5.5 Numerical results

5.5.1 Worst-case optimization problems in parametric structural optimization

Let us start with the parametric structural optimization setting, and test the derivatives computed in
Section 5.3. We reuse the notations introduced then: in every case, a cost functional C of the thickness
(and of perturbation parameters) is considered, and the corresponding approximate worst-case functional J̃
is minimized using either a steepest-descent algorithm, or an augmented Lagrangian algorithm (see [237],
§17.4 or chapter 4 sec. 4.7 for a short description).

In both examples below, the imposed bounds over admissible thickness functions are hmin = 0.1 and
hmax = 1, and the initial design of the plate is described by a uniform thickness h = 0.5. The elastic
material filling the plate is characterized by its (normalized) Young’s modulus and Poisson ration ν given
by:

E = 1, ν = 0.3. (5.83)

Both examples are performed within the FreeFem++ environment [259].

5.5.1.1 Uncertainties around the applied body forces in parametric optimization

This first example illustrates the results of Section 5.3.2, and more accurately those of Example 5.3. The
situation is as depicted in Figure 5.3: the plate is clamped on its bottom-left and bottom-right sides, and
its cost, when its thickness is h and when submitted to body forces f is its compliance:

C(h, f) =
∫

Ω

f · uh,f dx,

(no surface loads are applied). The plate is equipped with a triangular computational mesh, which is
worth 10128 vertices (thus, twice as many triangles). The unperturbed state is associated to the following
distribution of forces: f = (0,−1) near the centre of the bottom side of the plate (red spot on Figure 5.3,
top), and f = (0, 0) elsewhere. Vertical perturbations (0, ξ) ∈ L2(Ω)2 of maximum amplitude ||ξ||L2(Ω)2≤ m
are expected, which are located on the bottom side on the plate, between the regions where it is clamped,
and that where body forces are applied on the unperturbed shape (grey areas on Figure 5.3, top).

The approximate worst-case functional J̃ defined by (5.30) is considered for minimization, and so that
the problem is not trivial, a volume constraint is added, using a fixed Lagrange multiplier ℓ = 5.10−4. The
considered minimization problem thus becomes:

min
h∈Uad

(
J̃ (h) + ℓ

∫

Ω

h dx

)
.

For increasing values of m, 100 iterations of a gradient-based steepest descent algorithm are performed and
the resulting shapes and convergence histories are reported in Figures 5.3 and 5.4.

Predictably, this simple setting does not really allow to compare the obtained shapes with one another:
since the Lagrange multiplier used to enforce a volume constraint is always the same regardless of the value
of m (which actually acts as a penalization parameter as we have discussed), it does not always expresses
the same volume constraint, and shapes show a trend towards thickening as the amplitude of perturbation
grows.

Nevertheless, the results show interesting changes in behaviors as m increases. To better capture this
phenomenon, we turn to a more ‘realistic’ context, where a volume constraint

Vol(h) :=
∫

Ω

h dx = VT ,

is enforced owing to an augmented Lagrangian method in the course of minimizing J̃ . The same test case is
run with a target volume VT = 0.7; 150 iterations prove necessary to achieve convergence of the algorithm,
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1

2

0.1

0.2

Figure 5.3: Minimization of the compliance with uncertainties over the body forces; from left to right, top
to bottom, m = 0 (with boundary conditions), 0.05, 0.1, 0.2, 0.35, 0.5, 1, 1.5, 2, 5.

and each computation takes about 6 − 7 minutes (except for the one associated to the value m = 0, which
does not involve any computation of an adjoint state). Results and convergence histories are reported on
Figures 5.5 and 5.6.

5.5.1.2 Geometric uncertainties in parametric optimization

We now illustrate the proposed model for dealing with geometric uncertainty in parametric optimization
of section 5.3.4. Recall that, in this context, the case of the compliance as a cost function is almost trivial,
as assessed by Proposition 5.1.

Hence, let us consider another example, depicted in Figure 5.7: the considered plate is fixed on a part
ΓD ⊂ ∂Ω, and submitted to surface loads g ∈ L2(ΓN )2 on another part ΓN ⊂ ∂Ω. g equals (0,−1) on the
upper part of ΓN , and (0, 1) on its lower part. The plate is endowed with a triangular mesh of 12382 vertices.

In this case, we chose as cost function C(h) a least-square discrepancy criterion between the solution uh
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Figure 5.4: Convergence histories for the problem of compliance minimization under uncertainties over the
body forces, using the same Lagrange multiplier for all examples.

to (5.5), and a target displacement u0, that is:

∀h ∈ Uad, C(h) =
∫

ΓT

|uh − u0|2 ds,

where ΓT is another non optimizable subset of ∂Ω, disjoint from ΓD and ΓN . We chose u0 = (0,−1) on the
upper part of ΓT , and u0 = (0, 1) on its lower part.

To help the optimization algorithm of the associated approximate worst-case functional J̃ to reach a
connected optimal shape, a very small volume constraint is imposed by using a fixed Lagrange multiplier
ℓ = 0.0003, which is a mere numerical token (the cost criterion does not vary monotonically with the volume
of the structure in this case).

For increasing values of m, 100 iterations of a steepest-descent algorithm based on the conclusions of
Theorem 5.5 are performed, and the results are depicted in Figures 5.7 and 5.8; each computation takes
about 10 minutes (except for the one associated to m = 0, which only involves the computation of one
adjoint state at each iteration of the process, whereas the others involve three). As in the previous test-case,
one observes that the performances of the obtained shapes in their unperturbed states worsen as m grows
(which is coherent, since the larger the value of m, the lower the importance of this unperturbed problem in
the balance expressed by J̃ between perturbed and unperturbed states). An interesting ‘topological’ change
in trends among the optimal shapes is also to be noted at m ≈ 0.0365.

5.5.2 Examples of shape optimization problems under uncertainties

5.5.2.1 Details around the numerical implementation

As far as numerical simulations are concerned, shape optimization of elastic structures differs from its
parametric counterpart mainly regarding the difficulty to account for the evolutions of shapes during the
process. To deal with this issue, we rely on the level set method, as was originally suggested in [14, 319] (see
chapter 1 for a description), which roughly speaking consists in describing every shape Ω ⊂ Rd by means of
a scalar function φ : Rd → R enjoying the properties:

∀x ∈ Rd,





φ(x) < 0 if x ∈ Ω
φ(x) = 0 if x ∈ ∂Ω
φ(x) > 0 if x ∈ cΩ

.
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Figure 5.5: Minimization of the compliance with uncertainties over the body forces, with an imposed volume
VT = 0.7; from left to right, top to bottom, m = 0, 0.05, 0.1, 0.2, 0.35, 0.5, 1, 1.5, 2, 5, with a target volume
VT = 0.7.
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Figure 5.6: Convergence histories for the approximate worst-case compliance (left) and for the volume (right)
of the plate when uncertainties over body forces are considered.
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Figure 5.7: Parametric optimization of a plate under uncertainties over its thickness. From left to right, top to
bottom, details of the test case, and obtained shapes for m = 0, 0.01, 0.02, 0.03, 0.036, 0.0365, 0.038, 0.04, 0.05.
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Figure 5.8: Convergence histories for the parametric optimization example under uncertainties over the
thickness.

The main asset of this change in perspectives lies in that the motion of a domain Ω(t), t ∈ [0, T ] evolving
in time, driven by a normal velocity field V (t, x) nΩ(t)(x) is translated in terms of a corresponding level set
function φ(t, .) into the following Hamilton-Jacobi equation:

∂φ

∂t
+ V |∇φ|= 0 on [0, T ]× Rd. (5.84)

In the situation of Section 5.4 (whose notations are reused here), the minimization of a functional J̃ (Ω) of
the domain is considered, whose shape derivative is of the form:

∀θ ∈ Θad, J̃ ′(Ω)(θ) =
∫

Γ

v(uΩ, pΩ, qΩ, zΩ) (θ · n) ds,

for some algebraic combination v(uΩ, pΩ, qΩ, zΩ) of solutions to (state and adjoints) elasticity systems posed
on Ω. V is then set to 0 on ΓD ∪ ΓN and to −v(uΩ, pΩ, qΩ, zΩ) on the free boundary Γ.

In numerical practice, the whole space Rd is reduced to a large working domain D ⊂ Rd, which encloses
all the considered shapes, and comes equipped with a fixed simplicial mesh T . The (state or adjoints) linear
elasticity systems posed on a given shape Ω, involved in the expressions of V , cannot be computed exactly
since Ω is only known by means of an associated level set function (i.e. no mesh of Ω is available). The
Ersatz material approach [14] is then used to transfer a linear elasticity system posed on Ω to one posed
on D by filling the voidD\Ω with a very soft material with Hooke’s law εA, ε≪ 1 (ε = 1e−3 in our examples).

All the numerical operations in the sequel are performed using the FreeFem++ package [259], except for
the routines for solving (5.84) and redistancing φ, which come from the works described in chapters 6 and
7. For the sake of completeness, the computational times of two representative computations are provided,
in Sections 5.5.2.2 (whose model involves one adjoint state) and 5.5.2.4 (whose model involves three adjoint
states).

5.5.2.2 Shape optimization under uncertainties about the applied loads

Let us start by illustrating the conclusions of Section 5.4.2, and more accurately of Example 5.6. The
cost C(Ω, f) of a shape Ω ⊂ Rd, when submitted to body forces f ∈ L2(Ω)d and traction loads g ∈ L2(ΓN )d

is its compliance:

C(Ω, f) =
∫

Ω

f · uΩ,f dx+
∫

ΓN

g · uΩ,f ds.
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We first consider the situation depicted in Figure 5.9: a mast is clamped on a part ΓD of its boundary
and traction loads g = (0,−1) are applied on ΓN , near the bottom-left and bottom-right parts of its arms.
In the unperturbed state, no body forces are applied (f = 0). Perturbations are expected as vertical body
forces (0, ξ), of amplitude ||ξ||L2(Rd)≤ m, which are located on near the bottom of the arms of the mast (blue
areas in Figure 5.9).

We first minimize the corresponding worst-case scenario functional J̃ with respect to the shape for dif-
ferent values of parameter m, using a fixed Lagrange multiplier ℓ = 1 to impose a volume constraint. 200
iterations of a gradient algorithm are used, and results are displayed on Figure 5.9.

One observes that, once again, the shapes tend to thicken as m grows, but also notices interesting changes
in trends in the layout of the structure. Once again, to better appraise this feature, we run the very same
example, using an augmented Lagrangian method to enforce a volume constraint Vol(Ω) = VT , where VT is
a target volume (in this example, VT = 2000). Each computation (except for the one associated to m = 0)
takes about 25 minutes, for a computational mesh composed of 11257 vertices. The results are reported on
Figure 5.10, and confirm our initial guess (see also Figure 5.11 for convergence histories).

The exact same sequence of operations is applied on another model, namely the benchmark optimal bridge
test case, as described in Figure 5.12 (top): a bridge is clamped on two sides of its boundary, and vertical
body forces f = (0,−10) are applied at the middle of the bottom of the structure (yellow box). Vertical
perturbations of amplitude lower than m are expected to occur on the blue areas. First, a minimization
procedure is carried out, using a fixed Lagrange multiplier ℓ = 0.2 for the volume constraint, for several
values of m, and results are to be seen on Figure 5.12. The results of the subsequent step, to get optimal
shapes with the same target volume VT = 0.75 are displayed on Figure 5.13

Remark 5.9. Some of the ‘optimal’ shapes displayed turn out to be non symmetric, whereas the setting
of the corresponding test case is. This is mainly because no particular attention has been paid about this
feature; in particular, the meshes of the (symmetric) bounding boxes are triangular, and not symmetric.
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Figure 5.9: (From left to right, top to bottom): Setting of the test case, and optimal shapes of a mast for com-
pliance minimization, with uncertainties on the body forces of amplitude m = 0, 0.1, 0.25, 0.4, 0.6, 1, 2, 3, 5.
The same Lagrange multiplier for the volume constraint is used in all cases.
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Figure 5.10: (From left to right, top to bottom): optimal shapes of a mast for compliance minimization,
under uncertainties on the body forces of amplitude m = 0, 0.1, 0.25, 0.4, 0.6, 1, 2, 3, 5; all the shapes have
the some volume VT = 2000.
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Figure 5.11: Convergence history for the approximate worst-case compliance (left) and for the volume (right)
in the (worst-case) optimal mast test case.
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Figure 5.12: (From left to right, top to bottom): Optimal shape of a bridge under perturbations over the
body forces of amplitude m = 0, 0.1, 0.2, 0.5, 0.7, 1, 1.2, 1.5, 2. The same Lagrange multiplier for the volume
constraint is used in all cases.
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Figure 5.13: (From left to right, top to bottom): optimal shape for the worst-case optimal bridge example,
for m = 0, 0.2, 0.5, 1, 1.5, 2. The same volume constraint V = VT = 0.75 is imposed in all six cases.

5.5.2.3 Shape optimization under uncertainties on the material’s properties

The proposed approach is evaluated in the context of Section 5.4.3; we seek the optimal design of a force
inverter: the considered shapes are clamped on the upper and lower parts of their left-hand side, a surface
load g = (−0.1, 0) is applied at the centre of this left-hand side, and should exhibit a prescribed displacement
u0 = (1, 0) in a (non optimizable) area located at the centre of their right-hand side (see the details on Figure
5.14).

In this context, the cost of a shape Ω ∈ Uad, when filled with a material with Lamé coefficients λ, µ is:

C(Ω, λ, µ) =
∫

Ω

k(x)|uΩ,λ,µ − u0|2 dx,

where k is the characteristic function of the area where the target displacement should be reached.
We are in search of a shape Ω ∈ Uad which minimizes this cost, when perturbations |α|≤ m, |β|≤ m are

expected over the ‘reference’ Lamé coefficients λ, µ associated to (5.83), and this leads us to consider the
functional J̃ of formula (5.56).

As was the case in the example of section 5.5.1.2, the performance of a shape has nothing to do with
its weight. Nevertheless, for purely numerical purposes, we add a very small penalization, with respective
parameters ℓv = 5.e−3 and ℓc = 0.02 on the volume and compliance of the shapes to the expression of J̃ . The
first additional term helps in removing the small ‘islands’ (i.e. disconnected parts obtained after topological
changes occurred), while the second one makes it easier to obtained a connected structure (which is difficult,
since shapes tend to develop very small parts in the course of the process in order to gain flexibility).

Figure 5.14 shows the shapes obtained after 400 iterations of a gradient algorithm, for several values
of m, and Figure 5.15 displays the corresponding displaced shapes. The convergence histories for these
computations are reported on Figure 5.16.
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Figure 5.14: (From left to right, top to bottom): details of the test-case, optimal shape for the worst case
force inverter test case, with perturbations over the Lamé coefficients of the material of magnitude m =
0, 0.001, 0.002, 0.003, 0.0045, 0.0075, 0.01, 0.02, 0.1.
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Figure 5.15: (From left to right, top to bottom): deformed configurations of the optimal shapes of Figure
5.14, with m = 0, 0.001, 0.002, 0.003, 0.0045, 0.0075, 0.01, 0.02, 0.1. The bounding box of the optimal shapes
is displayed in red.
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Figure 5.16: Convergence histories for the (worst-case) force inverter test case.
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5.5.2.4 Shape optimization under geometric uncertainties

We eventually look into the setting of Section 5.4.4, where geometric uncertainties are considered, first
in the context of the device of a gripping mechanism, as illustrated in Figure 5.17: the shapes of interest
are clamped on the top and bottom parts of their left-hand side, and a small horizontal force g = (0.1, 0)
is applied at the centre of this side, with the hope that the jaws (corresponding to the blue area in Figure
5.17) will comply with a target displacement u0, equalling (0,−0.2) on the upper part, and (0, 0.2) on the
lower part. The cost C(Ω) of a shape Ω reads:

∀Ω ∈ Uad, C(Ω) =
∫

Ω

k(x)|uΩ − u0|2 dx,

where k is the characteristic function of the area near the jaws.
As perturbations of magnitude m on the geometry of shapes are expected, we aim at optimizing the

approximate worst-case functional J̃ associated to this problem, defined by formula (5.73). Small constraints
over the volume and compliance of shapes are incorporated using fixed Lagrange multipliers ℓv = 0.003, and
ℓc = 1, serving the same purposes as in the force inverter test case, and 200 iterations of the usual gradient-
based algorithm are performed.

Several results are displayed on Figure 5.17, corresponding to different values of m. Each computation
takes about 35 minutes, except for the one associated to m = 0. The corresponding displacements are shown
on Figure 5.18, and it is easily seen that, as expected, the performances of the unperturbed shapes are less
and less efficient as m increases.

The proposed approach for addressing geometric uncertainties is eventually applied to a case where the
stress of structures is at stakes. Our shapes are now L-shaped beams, clamped on their upper part, and
submitted to traction loads g = (0,−1) on a portion of their right-hand side (see the details on Figure 5.19).
The cost C(Ω) of a shape Ω is now related to the stress σ(uΩ) induced by its displacement as:

∀Ω ∈ Uad, C(Ω) =
∫

Ω

k(x)||σ(uΩ)||p dx, (5.85)

where p ≥ 2, k is a characteristic function which equals 1 everywhere on the working domain except near
the area ΓN where loads are applied, and ||.|| is the Frobenius norm for matrices.

The worst-case design associated to this cost function is investigated, when uncertainties over the geom-
etry of the shape of maximum amplitude m are expected. The approximate worst-case function J̃ defined
by (5.78) is minimized, using parameter p = 2.

At first, a volume constraint is enforced by means of a fixed Lagrange multiplier ℓ = 3, and several
examples are shown in figure 5.19, associated to various values of m. An augmented Lagrangian method is
then used to impose a target volume VT = 0.8 on shapes and confirm the changes in trends caused by uncer-
tainties over the geometry: see the results on Figure 5.20, the stress distribution in the resulting structures
in Figure 5.22, and the convergence histories in Figure 5.21.

Eventually, the same procedure is applied for the value p = 5 (and still increasing values for m). As
expected, the resulting optimal shapes are more ‘rounded’ in the vicinity of the reentrant corner, where a
stress singularity develops. See Figure 5.23 for results, Figure 5.24 for the stress distribution in the shapes,
and Figure 5.25 for convergence histories.
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Figure 5.17: (From left to right, top to bottom): details of the test-case, optimal shape for the worst-case
gripping mechanism test case, with m = 0, 0.001, 0.002, 0.004, 0.005, 0.007, 0.009, 0.01, 0.02.
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Figure 5.18: (From left to right, top to bottom): deformed configurations of the optimal shapes for the
worst-case gripping mechanism test case, with m = 0, 0.001, 0.002, 0.004, 0.005, 0.007, 0.009, 0.01, 0.02 (the
bounding box of the optimal shapes is displayed in red).
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Figure 5.19: (From left to right, top to bottom): details of the test-case, optimal shape in the (worst-case)
L-Beam test case, for geometric perturbations of amplitude m = 0, 0.005, 0.01, 0.015, 0.02, 0.05.
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Figure 5.20: (From left to right, top to bottom): details of the test-case, optimal shape for m =
0, 0.005, 0.01, 0.015, 0.02, 0.05, for the (worst-case) L-Beam example, using p = 2.
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Figure 5.21: Convergence history for (left): the stress
∫

Ω
k||σ(uΩ)||p dx and (right): the volume, in the

(worst-case) L-Beam example, using p = 2.
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Figure 5.22: (From left to right, top to bottom): stress distribution (||σ||2) for m =
0, 0.005, 0.01, 0.015, 0.02, 0.05 in the optimal L-Beams displayed on Figure 5.20, using p = 2.

Figure 5.23: (From left to right): optimal shape for m = 0, 0.01, 0.02, for the L-Beam example, using p = 5.
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Figure 5.24: (From left to right): stress distribution (||σ||2) for m = 0, 0.01, 0.02 for the L-Beam example,
using p = 5.
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Figure 5.25: Convergence history for the volume for the L-Beam example, using p = 5.
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Appendix: some useful technical tools

5.5.3 General tools

For the reader’s convenience, this section reproduces several well-known results from the general theory
of linear and Banach spaces that are repeatedly used throughout this chapter. First of all, the following
basic fact allows for the identification of the dual norm of a product of vector spaces:

Lemma 5.5. Let E,F two vector spaces. Then the application φ : (E × F )∗ → E∗ × F ∗ defined as:

∀ℓ ∈ (E × F )∗, φ(ℓ) = (ℓ(., 0), ℓ(0, .))

is a linear isomorphism, which is an isometry when E∗ × F ∗ is equipped with the norm ||.||1, defined as:

∀(ℓE , ℓF ) ∈ E∗ × F ∗, ||(ℓE , ℓF )||1= ||ℓE ||E∗+||ℓF ||F∗ .

Recall the following corollary of Hahn-Banach theorem:

Lemma 5.6. Let (E, ||.||) any normed vector space, and E∗ its topological dual. Then, for all x ∈ E, one
has:

||x||= sup
ϕ∈E∗

||ϕ||E∗ ≤1

< ϕ, x >E∗,E = max
ϕ∈E∗

||ϕ||E∗ ≤1

< ϕ, x >E∗,E .

The following theorem can be found in [57]:

Theorem 5.11. Let Ω ⊂ Rd any open set, ϕ ∈ L1(Ω)∗. Then, there exists a unique function u ∈ L∞(Ω)
such that:

∀f ∈ L1(Ω), 〈ϕ, f〉L1(Ω)∗,L1(Ω) =
∫

Ω

uf dx.

What’s more, one has: ||u||L∞(Ω)= ||ϕ||L1(Ω)∗ .

We shall also need the following easy result:

Lemma 5.7. Let Ω ⊂ Rd an open, bounded domain, and denote as f : L1(Ω)→ R the L1 norm function:

∀u ∈ L1(Ω), f(u) =
∫

Ω

|u(x)| dx.

f is then convex, and its subgradient ∂f(u) ⊂ L∞(Ω) at any point u ∈ L1(Ω) reads:

λ ∈ ∂f(u) ⇔





λ(x) = 1 if u(x) > 0
λ(x) = −1 if u(x) < 0

λ(x) ∈ [−1, 1] if u(x) = 0
.

As a consequence, if u ∈ L1(Ω) is such that {x ∈ Ω, u(x) = 0} is of null Lebesgue measure, f is Fréchet-
differentiable at u, and its differential df(u) reads:

∀v ∈ L1(Ω), df(u)(v) =
∫

Ω

sgn(u(x))v(x) dx.
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5.5.4 Several Green’s formulae

Notations: Let Γ ⊂ Rd a compact, oriented C2 submanifold of dimension d− 1, and V ∈ C1(Γ,Rd) a vector
field on Γ. The tangential divergence divΓ(V ) ∈ C0(Γ) of V is defined as:

divΓ(V ) = div(Ṽ )−∇Ṽ n · n,

where Ṽ stands for any C1 extension of V to a tubular neighborhood of Γ. One can actually see [172] that
this definition is independent on the choice of such an extension, and that, denoting as DΓV the d×d matrix
whose i-th line equals ∇ΓVi,

divΓ(V ) = tr (DΓV ) .

There is another equivalent point of view as regards the tangential divergence of a vector field, which is
completely intrinsic to the submanifold Γ. Γ may be viewed as a Riemannian manifold, when equipped with
the Euclidean metric on Rd. Let ∇ be the associated Levi-Civita connection on Γ. Then, if V is a vector
field on Γ (i.e. for this definition, we need that, for all x ∈ Γ, V (x) ∈ TxΓ), for any x ∈ Γ divΓ(V )(x) may
be defined as the trace of the linear operator

TxΓ ∋ ξ 7−→ ∇ξV (x) ∈ TxΓ.

Now, let σ ∈ C0(Γ,S(Rd)) be a continuous symmetric matrix-valued function. The tangential part σττ of
σ is the symmetric bilinear form over TΓ (or equivalently the associated symmetric matrix-valued function)
defined as:

∀x ∈ Γ,∀v, w ∈ TxΓ, σττ (x)(v, w) = σ(x)(v, w).

Roughly speaking, σττ (x) is the restriction of σ(x) to the tangent plane TxΓ - i.e. σ reads:

σ =
(
σττ στn
σnτ σnn

)

in an orthonormal basis of Rd obtained by gathering (d− 1) tangent vectors of Γ (collectively denoted as τ).
Similarly, if σ ∈ C1(Γ,S(Rd)), one defines its tangential divergence divΓ : Γ→ Rd as:

∀i = 1, ..., d, divΓ(σ)i = [divΓ ((σi,j)j=1,...,d)]Γ,

where [.]Γ denotes the projection of a vector field onto TΓ.

Let us start with the following Green’s formula on a submanifold of Rd:

Proposition 5.3. Let Γ ⊂ Rd a compact, oriented C2 submanifold of dimension d−1, with (possibly empty)
boundary Σ. Let nΣ : Σ → Sd−1 the outer unit normal vector to Σ in Γ. For any C1 function u : Rd → R,
and any C1 vector field τ ∈ TΓ, one has:

∫

Γ

∂u

∂τ
ds =

∫

Σ

uτ.nΣ dℓ−
∫

Γ

divΓ(τ)u ds, (5.86)

where ds and dℓ stand for the volume forms on Γ and Σ respectively.

Proof. First, note that, owing to a standard argument involving partitions of unity, it is enough to show that
formula (5.86) holds locally, i.e. with U and U ∩Σ instead of Γ and Σ respectively, where U is an arbitrarily
small open subset of Γ.

Now, we can assume that Γ amounts to a single local chart, and introduce local coordinates x :=
(x1, ..., xd−1) : Γ → W ⊂ Rd−1 on Γ, that is, x is a C2 diffeomorphism. Let ( ∂

∂x1
, ..., ∂

∂xd−1
) the associated

basis of the tangent bundle TΓ, and (dx1, ..., dxd−1) the dual basis of TΓ∗. The decomposition of τ into this
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local basis of the tangent bundle then reads τ =
∑d−1
i=1 τi

∂
∂xi

, and the expression of the volume form ds in
terms of these local coordinates reads:

ds =
√

det(g) dx1 ∧ ... ∧ dxd−1,

where g is the (d− 1)× (d− 1) matrix

∀p ∈ Γ,∀i, j = 1, ..., d− 1, gi,j(p) = 〈 ∂
∂xi

(p),
∂

∂xj
(p)〉p.

One computes:

∫

Γ

∂u

∂τ
ds =

d−1∑

i=1

∫

Γ

∂u

∂xi
τi ds

=
d−1∑

i=1

∫

Γ

∂u

∂xi
τi
√

det(g) dx1 ∧ ... ∧ dxd−1

=
d−1∑

i=1

∫

Γ

∂

∂xi

(
uτi
√

det(g)
)
dx1 ∧ ... ∧ dxd−1 −

d−1∑

i=1

∫

Γ

∂

∂xi

(
τi
√

det(g)
)
udx1 ∧ ... ∧ dxd−1

Now, using the expression of the tangential divergence in terms of local coordinates:

divΓ(τ) =
1√

det(g)

d−1∑

i=1

∂

∂xi

(√
det(g)τi

)
,

the second term amounts to:

d−1∑

i=1

∫

Γ

∂

∂xi

(
τi
√

det(g)
)
udx1 ∧ ... ∧ dxd−1 =

∫

Γ

divΓ(τ)u ds.

As for the first term, using Stokes’ theorem (Th. XII.2.1 in [198]), it rewrites:

d−1∑

i=1

∫

Σ

(−1)i−1τi u
√

det(g) dx1 ∧ ... ∧ dxi−1 ∧ dxi+1 ∧ ... ∧ dxd−1.

Hence, the only remaining thing to prove is that:

∀i = 1, ..., d− 1, (−1)i−1
√

det(g) dx1 ∧ ... ∧ dxi−1 ∧ dxi+1 ∧ ... ∧ dxd−1 = (nΣ)idℓ.

To see this, note that because dℓ is a volume form on Σ, there exists a function α ∈ C∞(Γ) such that
(−1)i−1

√
det(g)dx1 ∧ ... ∧ dxi−1 ∧ dxi+1 ∧ ... ∧ dxd−1 = αdℓ. We are left with the problem of identifying α;

this can be carried out in a pointwise fashion. Thus, let p ∈ Σ, and (e1, ..., ed−2) a direct orthonormal basis
of TpΣ (that is, ordered so that (nΣ, e1, ..., ed−2) is a direct orthonormal basis of TpΓ |Σ ). By definition, one
has:

dℓ(e1, ..., ed−2) = 1.

On the other hand,

dx1 ∧ ... ∧ dxi−1 ∧ dxi+1 ∧ ... ∧ dxd−1(e1, ..., ed−2) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dx1(e1) ... dx1(ed−2)
...

...
...

dxi−1(e1) ... dxi−1(ed−2)
dxi+1(e1) ... dxi+1(ed−2)

...
...

...
dxd−1(e1) ... dxd−1(ed−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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This last expression arises as the (i, 1) minor of det(M), where M is the (d− 1)× (d− 1) matrix defined as:

M =




dx1(nΣ) dx1(e1) ... dx1(ed−2)
...

...
...

...
dxi(nΣ) dxi(e1) ... dxi(ed−2)

...
...

...
...

dxd−2(nΣ) dxd−1(e1) ... dxd−1(ed−2)



.

Note that M is the passing matrix between the two bases (nΣ, e1, ..., ed−2) (which is orthonormal) and
( ∂
∂x1

, ..., ∂
∂xd−1

) of TpΓ. Hence,

(−1)i−1dx1 ∧ ... ∧ dxi−1 ∧ dxi+1 ∧ ... ∧ dxd−1(e1, ..., ed−2) =
1

det(M)

(
tM−1

)
i,1
.

Now, it is not difficult to see that det(M) =
√

det(g) (see e.g. [198], prop. XV.1.1). What’s more,(
tM−1

)
i,1

is the coefficient of ∂
∂xi

along nΣ in the orthonormal basis (nΣ, e1, ..., ed−2), that is nΣi, which
ends the proof.

We shall have use of this result under the following form:

Proposition 5.4. Let Γ ⊂ Rd a compact, oriented submanifold of class C2, with (possibly empty) boundary
Σ. For any function u ∈ C1(Rd)d, and any symmetric matrix-valued function σ ∈ C1(S(Rd)), one has:

∫

Γ

σττ : e(u)ττ ds =
∫

Σ

[u]Γ.(σττ .nΣ) dℓ−
∫

Γ

[u]Γ.divΓ(σ) ds.

Proof. This formula is a consequence of the following identity:

divΓ(σττ .[u]Γ) = σττ : e(u)ττ + [u]Γ.divΓ(σ). (5.87)

Indeed, if this equality holds, then using proposition (5.3) with τ = σττ .[u]Γ, u = 1 leads to the desired
result.

As for proving (5.87), consider any fixed point p ∈ Γ, and chose local normal coordinates (x1, ..., xd−1)
on Γ at p. In particular, (see [116], chap. 3, ex. 14), one has:

– The basis ( ∂
∂x1

(p), ..., ∂
∂xd−1

(p)) of TpΓ is orthonormal.
– The Christoffel symbols associated to this basis of TΓ vanish at p, that is:

∀i, j = 1, ..., d− 1, ∇ ∂
∂xi

∂
∂xj

(p) = 0, (5.88)

where ∇ stands for the Levi-Civita connection on Γ when equipped with the metric induced by the
Euclidean scalar product of Rd.

– For any vector field X on Γ, whose coordinates in system (x1, ..., xd−1) read: X =
∑d−1
i=1 Xi

∂
∂xi

, one
has:

divΓ(X)(p) =
d−1∑

i=1

∂Xi

∂xi
(p). (5.89)

Now writing σττ .[u]Γ in coordinates (x1, ..., xd−1), and using formulae (5.88 - 5.89) yields the desired result.

Remark 5.10. Propositions 5.3 and 5.4 were stated and proved in the context of a smooth function u ∈
C1(Rd). Obviously, the results extend owing to the standard density argument to the case of functions
u ∈ H2(Rd).
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In this chapter, we present a numerical method for computing the signed distance function to a discrete
domain, at the vertices of an arbitrary simplicial computational mesh (i.e. composed of triangles in two
dimensions, and tetrahedra in three dimensions). It mainly relies on the use of some theoretical properties
of the unsteady Eikonal equation. Then we propose a way to adapt the mesh on which computations are
held to enhance at the same time the accuracy of the approximation of the signed distance function and the
approximation of the initial discrete contour by the piecewise affine reconstruction as the 0 level set set of
its signed distance function, which is crucial when using this signed distance function in a context of level
set methods. Several two- and three-dimensional examples are presented to appraise our analyses.

This chapter is a joint work with Pascal Frey. Its contents have been published under the reference:

C. Dapogny and P. Frey, Computation of the signed distance function to a discrete contour on adapted
triangulation, Calcolo, Vol. 49, Issue 3, (2012), pp. 193-219.
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6.1 Introduction

The knowledge of the signed distance function to a domain Ω ⊂ Rd (d = 2, 3 in our applications) has
proved to be a valuable information in various fields such as collision detection [146], shape reconstruction
from an unorganized cloud of points [333],[93], and of course in the setting of the level set methods of Sethian
and Osher [245] (see also [274] or [242], and chapter 1 for a presentation and an overview of the main features
of the method), where ensuring the property of unitary gradient of the level set function is especially relevant.

In this chapter, we intend to devise a numerical algorithm that computates the signed distance function to
a polyhedral domain Ω, supplied with minimal information. We only rely on the knowledge of a triangulation
S of its boundary ∂Ω, which we suppose to be orientable (so that Ω is well-defined on the sole basis of its
boundary). With this assumption, we imply that we do not rely on any knowledge of the outer normal to
the considered surface, nor do we suppose the mesh S to be conforming. For the moment, we do not want to
make any particular assumption on the simplicial background mesh T on which computations are performed
either, even if, of course, the quality of the solution may depend on it, as will be seen.

Regarding the computation of the signed distance function, there exist mainly two types of approaches
(see also the overview in chapter 1), both of them being based on an approximation of the solution of
the Eikonal equation (6.1). The first one advocates to treat this equation as a stationary boundary value
problem, and to start from the knowledge of the distance in the elements of the computational mesh which
are close to the interface ∂Ω, then to propagate the information throughout the whole domain. The most
notorious methods - such as the Fast Marching Method [275], [276], [194] or the Fast Sweeping Method
[332], [262] - belong to this category, and rely on a local solver for the Eikonal equation, and on a marching
method, meant to enforce the natural causality embedded in the equation. Another way of addressing the
problem is to consider it as an unsteady problem and then to devise a propagation method for extending
the signed distance field from the boundary of Ω - see [292] [81] [298]. This is the point of view retained in
this chapter. It leads to an efficient, easy to implement, and easy to parallelize method for computing the
signed distance function to Ω. This method is presented in dimensions 2 and 3, but naturally extends to the
general case.

Furthermore, in a context where the signed distance function is used as an implicit function defining the
domain Ω, the quality of the approximation of ∂Ω by its piecewise affine reconstruction as the 0 level set of the
computed signed distance function is a crucial point. Unfortunately, the discrete interface thus obtained can
prove quite different from the true interface ∂Ω (this is especially likely to happen if the computational mesh
is too coarse). Following the work presented in [119], we investigate into an adaptation scheme, based on the
signed distance function, to produce a background mesh adapted to the boundary ∂Ω so as to improve in the
meantime the computation of the signed distance function to Ω - at least in the areas of the computational
domain where it is relevant - and the associated numerical reconstruction of Ω.

The remainder of this chapter is organized as follows. In section 6.2, we collect the general properties of
the signed distance function which are useful in this work, and among other things recall how it can be seen as
the stationnary state of the solution of the unsteady Eikonal equation. This urges us to study the dynamics
of this equation in section 6.3. From this study, we infer a numerical scheme for approximating the signed
distance function in section 6.4. We then show in section 6.5.1 how the background computational mesh
can be adapted so that both the approximation of the signed distance function and the discrete isosurface
resulting from the process can be controlled and improved. We briefly discuss two interesting extensions of
this work, to the problem of reinitialization of a level set function in section 6.6, and to the computation
of the signed distance function to a domain in a Riemannian space in section 6.7. Numerical examples are
eventually provided in section 6.8 to emphasize the main features of the presented approach.

6.2 Some preliminaries about the signed distance function

For the sake of clarity, let us start this work by recalling the facts around the signed distance function
to a domain that we shall need in our study.
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Definition 6.1. Let Ω ⊂ Rd a bounded domain. The signed distance function to Ω is the function Rd ∋
x 7→ dΩ(x) defined by:

dΩ(x) =





−d(x, ∂Ω) if x ∈ Ω
0 if x ∈ ∂Ω
d(x, ∂Ω) if x ∈ cΩ

,

where d(., ∂Ω) denotes the usual Euclidean distance function to the set ∂Ω.

When studying the distance to such a bounded domain Ω, the notion of skeleton plays a major role:

Definition 6.2. The skeleton Σ of ∂Ω is the set of points x ∈ Rd such that the minimum in

d(x, ∂Ω) = min
y∈∂Ω

|x− y|

is achieved for at least two distinct points of ∂Ω.

Being 1-lipschitz, and owing to Rademacher’s theorem [126], the function dΩ is almost everywhere differen-
tiable. Actually, the following interesting proposition delivers a geometric characterization of the regularity
of dΩ [105].

Theorem 6.1. Let Ω ⊂ Rd be a C2 bounded domain; then there exists a tubular neighborhood V of ∂Ω such
that dΩ is of class C2 on V . Moreover, for any point x ∈ Rd,

– either x ∈ ∂Ω, and then dΩ is differentiable at x, with

∇dΩ(x) = n(x), the outer unit normal vector to ∂Ω at x,

– or x ∈ Rd \ ∂Ω, then for any projection point px of x onto ∂Ω (i.e. for any point px ∈ ∂Ω such that
d(x, ∂Ω) = |x− px|), one has:

x− px
dΩ(x)

= n(px).

Furthermore, dΩ is differentiable at x if and only if x belongs to the complementary Rd \ Σ of the
skeleton of ∂Ω. In such a case, there exists a unique projection point of x onto ∂Ω - denoted as p∂Ω(x)
- and the gradient ∇dΩ(x) reads:

∇dΩ(x) =
x− p∂Ω(x)
dΩ(x)

.

In particular, dΩ satisfies the Eikonal equation at every point at which it is differentiable:
{
|∇dΩ(x)|= 1 a.e. x ∈ Rd

dΩ(x) = 0 for x ∈ ∂Ω
. (6.1)

Unfortunately, theory happens to be scarce as for functions being solutions of a PDE almost everywhere.
For this reason - and many others - it is much more convenient from a theoretical point of view to see dΩ as
a viscosity solution of the Eikonal equation (see [126] again, and chapter 1).

Proposition 6.1. dΩ is the unique solution to the Eikonal equation (6.1) in the sense of viscosity.

Another way of thinking of dΩ consists in seeing it as the result of a propagation by means of an evolution
equation: suppose Ω is implicitly known as

Ω =
{
x ∈ Rd, d0(x) < 0

}
and ∂Ω =

{
x ∈ Rd, d0(x) = 0

}
, (6.2)
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where d0 is a continuous function. Note that, in the theoretical framework, such a function u0 exists and is
quite easy to construct by means of partitions of unity techniques. Then the function dΩ can be considered
as the steady state of the so-called redistancing equation or unsteady Eikonal equation

{
∂d

∂t
+ sgn(d0)(||∇d|| − 1) = 0 ∀t > 0, x ∈ Rd

d(t = 0, x) = d0(x) ∀x ∈ Rd
(6.3)

Formally speaking, this equation starts with an arbitrary (continuous) function d0 implicitly defining the
domain Ω and straightens it into the ‘best’ function which suits that purpose - dΩ. For this reason, this
equation was first introduced in [299] for redistancing a very stretched level set function arising in the course
of a computation. The following important theorem makes these statements more precise (a proof can be
found in [26] and [182]):

Theorem 6.2. Let Ω a bounded domain of Rd implicitly defined by a continuous function d0 - i.e. (6.2)
holds. Define function d, for any x ∈ Rd and t ∈ R+ by the following formula:

d(t, x) =

{
sgn(d0(x)) inf

||y||≤t
(sgn(d0(x))d0(x+ y) + t) if t ≤ d(x, ∂Ω)

sgn(d0(x)) d(x, ∂Ω) if t > d(x, ∂Ω)
(6.4)

Let T ∈ R+. Then d is the unique uniformly continuous viscosity solution of (6.3) such that, for all 0 ≤ t ≤ T ,
d(t, x) = 0 on ∂Ω.

Note that the exact formula (6.4) expresses the idea of a propagation of information from the boundary
with constant unit speed. This feature will later be exploited in the device of our numerical algorithm for
computing the signed distance function to Ω.

6.3 A short study of some properties of the solution to the un-
steady Eikonal equation

So as to build a resolution scheme for the unsteady Eikonal equation (6.3), let us take a closer look to
its dynamics in view of the previous section.

The main idea is to start with a function d0 which implicitly defines domain Ω in the sense that (6.2)
holds and that we suppose continuous over Rd, then to regularize it thanks to equation (6.3), considering
the exact solution d, provided by formula (6.4), for the resulting Cauchy problem. For the sequel, it will
prove convenient to assume moreover that the initial function d0 is an overestimation of the signed distance
function dΩ to Ω, except on a tubular neighbourhood V of ∂Ω, where it is exactly dΩ, that is:

∀x ∈ V, d0(x) = dΩ(x) ; ∀x ∈ Rd \ V , |d0(x)| ≥ |dΩ(x)| (6.5)

We then have the following small result:

Lemma 6.1. Assume Ω is a bounded open set, with boundary ∂Ω of class C2. For any small enough time
step dt > 0, denote tn = ndt, n ∈ N. Suppose the initial function d0 satisfies (6.5) and denote d the solution
of equation (6.3) provided by theorem 6.2. Then

∀x ∈ Rd \ Ω d(tn+1, x) = inf
|z|≤dt

(d(tn, x+ z) + dt)

∀x ∈ Ω d(tn+1, x) = sup
|z|≤dt

(d(tn, x+ z)− dt) (6.6)
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Proof. First, thanks to the exact formula (6.4), it is easily checked that assumption (6.5) on d0 implies that
for all t > 0 and x ∈ Rd

|d(t, x)| ≥ |dΩ(x)|. (6.7)

By symmetry, we restrict ourselves to showing the lemma in the case of a point x ∈ Rd \ Ω.

The result is proved by induction on n ∈ N. Since it is clear for n = 0, assume the conclusion holds for
some n ∈ N. Two situations must then be distinguished:

• Assume first that tn+1 < d(x, ∂Ω). Then,

d(tn+1, x) = inf
|y|≤tn+1

(
d0(x+ y) + tn+1

)

= inf
|y|≤tn

inf
|z|≤dt

(d0(x+ y + z) + tn + dt)

= inf
|z|≤dt

(d(tn, x+ z) + dt).

the last equality holding because d(x, ∂Ω) > tn+1 implies that for all |z| ≤ dt, d(x+ z, ∂Ω) > tn.

• Suppose now that tn+1 ≥ d(x, ∂Ω), and suppose dt is smaller than the width of the tubular neighbor-
hood V of ∂Ω (on which dΩ may be assumed smooth owing to theorem 6.1). We then have:

inf
|z|≤dt

(d(tn, x+ z) + dt) ≥ inf
|z|≤dt

(dΩ(x+ z) + dt)

= dΩ(x)
= d(tn+1, x).

,

where the first line holds because of (6.7), and the last one because tn+1 ≥ d(x, ∂Ω).
We are now left with the converse inequality. Because dt is smaller than the thickness of V , there exists

|z0|≤ dt such that:
d(x+ z0, ∂Ω) = d(x, ∂Ω)− dt,

(take for instance z0 = −dt n(p), where p is a projection point of x over ∂Ω). Then, tn+1 ≥ d(x, ∂Ω) implies
that d(x+ z0, ∂Ω) ≤ tn. Hence:

inf
|z|≤dt

(d(tn, x+ z) + dt) ≤ d(tn, x+ z0) + dt

= d(x+ z0, ∂Ω) + dt
= d(x, ∂Ω)− dt+ dt
= dΩ(x)

,

which concludes the proof.

Suppose our computation is restricted to a bounded domain D enclosing Ω. We aim at computing
function d(tN , .) over D for N large enough so that tN ≥ supx∈D |dΩ(x)|. To this end, we use the iterative
formulae supplied by the previous lemma, rearranging them a bit so as to make the decreasing property
explicit, using the overestimation inequality (6.7): introduce, for n = 0, 1, ..., the sequence d̃n of continuous
functions over D, iteratively defined by d̃0 = d0, and

∀x ∈ D \ Ω , d̃n+1(x) = inf
(
d(tn+1, x), d̃n(x)

)
(6.8)

∀x ∈ Ω , d̃n+1(x) = sup
(
d(tn+1, x), d̃n(x)

)
(6.9)

From the above arguments, it follows that d̃n is a sequence of continuous functions over D which converges
pointwise to dΩ. Furthermore, from its definition, it is clear that for x ∈ D \ Ω, d̃n(x) decreases from d0(x)
to dΩ(x) and that for x ∈ Ω, d̃n(x) increases from d0(x) to dΩ(x). This sequence of functions - computed
thanks to the iterative process expressed in lemma 6.1 - is the one we will try and approximate in the next
section so as to end up with the desired signed distance function.
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6.4 A numerical scheme for the signed distance function approx-
imation

In this section, we propose a numerical method for computing the signed distance function to a polyhedral
domain. The algorithm consists of two steps; the first one is purely geometric and amounts to identifying
the simplices of the background mesh which intersect contour ∂Ω, and the second one is purely analytical
and is based on an explicit numerical scheme for solving the unsteady Eikonal equation (6.3).

6.4.1 Extending the signed distance function from the boundary

Given a polyhedral domain Ω, supplied by means of a simplicial mesh S of its boundary ∂Ω, we intend
to compute the signed distance function to Ω at every node x of a simplicial mesh T of a bounding box D.

More accurately, call K := {K ∈ T ,K ∩ ∂Ω 6= ∅} the set of the simplices of T which intersect the bound-
ary ∂Ω. We suppose that the signed distance function is initialized to its exact value in the nodes of those
simplices K ∈ K, and to a large value in the other nodes so that the initialization of the algorithm satisfies
(6.5), at least in a discrete way; the implementation of this initialization is described in the next section
6.4.2. We then expect to devise an iterative numerical scheme on basis of formulae (6.6) to extend this signed
distance function to the whole bounding domain.

To achieve this, we propose to approximate dΩ by means of a P1 finite element function on mesh T . Let
dt be a time-step, tn = ndt (n = 0, ...) and dn be a P1 function intended as an approximation of the unique
viscosity solution d to equation (6.3) at time tn. We then iteratively compute dn thanks to algorithm (1).

Algorithm 1 Extending the signed distance function field
1: Initialize the signed distance function d0 with:

{
d0(x) = exact signed distance function to Ω if x belongs to a simplex of K
d0(x) = dMAX otherwise

2: for n = 1, ... until convergence do
3: dn(x) = dn−1(x) for each node x of T
4: for each simplex T of T do
5: for each node x of T which does not belong to a simplex in K do
6: if x /∈ Ω then
7:

dn(x) = min
(
dn(x), dn−1

(
x− ∇(dn−1|T )
|∇(dn−1|T )|dt

))
+ dt (6.10)

8: else
9:

dn(x) = max
(
dn(x), dn−1

(
x+

∇(dn−1|T )
|∇(dn−1|T )|dt

))
− dt (6.11)

10: end if
11: end for
12: end for
13: end for
14: return dn

This algorithm needs some clarifying comments: for each step tn → tn+1, we intend to mimic formulae
(6.6), except that the infimum and supremum appearing there are difficult to compute in a discrete way.
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Assuming time step dt to be small enough, given for example a node x of T , x ∈ D \ Ω and n ≥ 0 the
simplest approximation of inf

|z|≤dt
(dn(x+ z) + dt) is achieved considering the gradient of dn at x. However,

this gradient is a constant-per-simplex vector, and is obviously discontinuous at the interface between two
adjacent simplices of T . In particular, it is irrelevant to talk about its value at a node x of T . The most
natural way to discretize formula (6.6) is then, taking into account the numerical discretization of the handled
quantities:

inf
|z|≤dt

(dn(x+ z) + dt) ≈ inf
T∈ B(x)

dn
(
x− ∇(dn−1|T )
|∇(dn−1|T )|dt

)
+ dt, (6.12)

where B(x) is the set of simplices of mesh T containing x as vertex.

The rest of algorithm (1) is merely a discrete version of formulae (6.8) and (6.9). See figure 6.1 for a
visual intuition of the process.

∂Ω

x

dt

y0
• ∂Ω

y0
•

• x
dt

(a) (b)

Figure 6.1: At a given iteration n, the proposed numerical scheme amounts to ‘straighten up’ the value of
dn at point x from its value at point y0 in such a way that dn(y0) = infy∈B(x,dt) d

n(y) with the property of
unitary gradient, (a) e.g. for a point x at distance dt from ∂Ω, d1(x) = d0(y0) + dt = dt = d(x, ∂Ω). (b)
The property of unit gradient ’propagates’ from the boundary ∂Ω, near which values of dn are ‘regularized’
at an early stage.

Remark 6.1. Actually, a formal study of the characteristic curves of equations (6.1) and (6.3) would have
brought more or less the same numerical scheme. In that scope, the points x ∈ D where dΩ fails to be
smooth can be interpreted as the crossing points of different characteristic curves of Eikonal equation (6.1);
see figure (6.2). At nodes x of mesh T close to such kinks of the signed distance function, the discretization
(6.12) expresses the idea that each one of these crossing characteristic curve is backtracked.

6.4.2 Initialization of the signed distance function near ∂Ω

Before extending the signed distance function from the boundary ∂Ω of the input polyhedral domain,
we need first to detect those simplices K ∈ T intersecting ∂Ω. This is achieved by scanning each surface
triangle T ∈ S in three dimensions (segment in two dimensions), storing a background mesh simplex K ∈ T
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(a) (b)

Figure 6.2: (a) Continuity of the gradient in the areas where the signed distance function is regular; (b)
discontinuity of the gradient at a node close to the skeleton.

containing one of the three nodes of T , then travelling the background mesh from K by adjacency, advancing
only through faces which intersect T . Figure 6.3 illustrates this step. A computationally efficient algorithm
for the three-dimensional triangle-triangle overlap test, relying only on algebraic predicates, developed in
[164] is used to this end.

p

q
r

K

T

p

q
r

K

T

p

q
r

K

T

(a) (b) (c)

Figure 6.3: Identification of the background simplices intersecting a triangle T = (pqr) ∈ S: (a) one starts
with a simplex K of T containing one of the points p, q or r then (b) marches through the faces of K which
intersect T and (c) goes on, stopping when there is no more simplex of K to add.

Then, at each node of K which belongs to such an intersecting simplex, we initialize the (still unsigned)
distance function to its exact value. See [185] for an efficient algorithm computing a point-triangle distance
in three dimensions. This can be done at a relatively cheap cost since a node x of K lies ‘close’ to ∂Ω and only
very few triangles of S have to be processed to identify the one with respect to which d(x, ∂Ω) is reached.
In all the other nodes of T , we assign an arbitrary large value (e.g. larger than the domain size).

This leaves us with initializing the sign. Surprisingly enough, this stage happens to be the most tedious
one of the initialization process, all the more so as it is barely considered in the literature (see nevertheless
[292] for another approach, based on an octree grid refinement). We propose here a purely logical algorithm
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(2) based on a progression by ‘layers’, which relies on two piles Layer and Boundary, and an integer Sign.
It is very similar to the classical coloring techniques used to recover the connected components of a configu-
ration in a Delaunay meshing context [145]; see figure 6.4.

Algorithm 2 Signing the unsigned initial distance field
1: Initialize the pile Layer with a simplex K ∈ T which is in the ‘most external’ connected component of

the configuration (for instance a simplex in the corner of the bounding box).
Initialize Sign to +1.

2: while an element K in pile Layer as not been inspected do
3: Consider every neighbour K ′ of K: if K ′ has not yet been inspected, and does not belong to K, put

K ′ in Layer ; if K ′ belongs to K, put it into pile Boundary.
4: end while
5: while an element K in Boundary has not yet been inspected do
6: Consider every neighbour K ′ of K: if K ′ has not yet been inspected, and belongs to K, put K ′ in pile

Boundary (this step ensures pile Boundary contains all the boundary elements corresponding to the
ongoing layer).

7: end while
8: Attribute the current sign of Sign in each vertex of each element of pile Stratum.
9: Sign← −Sign.

10: Clean pile Layer.
11: for K is in pile Boundary do
12: Consider every neighbour K ′ of K: if K ′ has not yet been inspected, put it into pile Layer : then we

get all the new starting points of the new layer (possibly associated to different connected components
of Ω.

13: end for
14: Clean pile Boundary.
15: Go back to step 2.

So as to enhance the numerical efficiency of the proposed method, several improvements may be proposed.
First, note that the propagating scheme of Algorithm 1 is inherently parallel: at a given step, the operations
carried out in a background simplex K are independant from those carried out in another such simplex.
Furthermore, the time step dt must be chosen small enough at the beginning of the process, so that going
back along the characteristic lines does not lead to crossing the interface ∂Ω and picking irrelevant values.
But after a certain amount of iterations, we can obviously increase this time step. Eventually, note that
Theorem 6.2 expresses the fact that the information propagates from ∂Ω to the whole space with a unit
velocity - and that, on the theoretical framework, at a given point x ∈ Rd, d(s, x) = dΩ(x) at any time
s > d(x, ∂Ω). According to this observation, we decided to consider the values computed at a node x fixed
when these values are smaller than the current total time of the propagation (with a security margin).

6.5 Mesh adaptation for a sharper approximation of the signed
distance function

The proposed numerical method in section 6.4 approximates the signed distance function to Ω by means
of a P1 finite elements function; therefore it seems only natural to attempt to decrease the interpolation error
of this function on the background mesh T . Moreover, if we intend to use the signed distance function to Ω
as an implicit function defining Ω in a context inscribed in an evolution process described using the level set
method, we may want the 0 level set of the approximate signed distance function (which is intended to be
close to the P1 interpolant of this function) to match the true boundary ∂Ω in the best possible way. Thus
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∂Ω

D

(a) (b)

(c) (d)

Figure 6.4: Signing the unsigned initial distance field; (a) a contour ∂Ω, (b) start from a triangle of the
computational mesh T that is known to be in the exterior to the domain Ω, travel T by adjacency and
recover the first (outer) layer (in red), and the simplices of T intersecting the part of ∂Ω connected to this
first layer (in blue) (c) Get all the triangles of T (in pale blue) that are the different starting points for the
new (now interior) layer, (d) travel again by adjacency to get this new layer (in orange), as well as the new
simplices of T intersecting the part of ∂Ω connected to this layer (in blue).

it can be interesting to couple the computation of the signed distance function with a process of adaptation
of the background mesh T . Actually, we will see that adapting T in the same way leads to an improvement
as regards both problems.

6.5.1 Anisotropic mesh adaptation

Mesh adaptation basically lies on the fact that the most efficient way to refine a mesh so as to increase
the efficiency of computations is to adjust the directions and sizes of its elements in agreement with the
variations of the functions under consideration. Thus, significant improvements can be achieved in accuracy,
while the cost of the computations (which is in close relation with the total number of elements of the mesh)
is kept minimal, and conversely.
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Numerous methods exist as regards the very popular topic of mesh adaptation, some of them relying on
the concepts of Riemannian metric [311]: the local desired size, shape and orientation related information at
a node x of mesh T is stored in a metric tensor field M(x), prescribed by an error indicator or an error esti-
mate which can arise from various possible preoccupations: a posteriori geometric error estimates, analytic
error estimates, etc... (see for instance [6], [25], [180]). For the sake of convenience, we now briefly recall the
useful features of this paradigm in the rest of this chapter.

Given a metric tensor field M(x) defined at each point x ∈ Rd, (notice that in practice, M(x) is defined only
at the nodes of T and then interpolated from these values [145]) we consider respectively the length ℓM (γ)
of a curve γ : [0, 1]→ Rd and the volume VM (K) of a simplex K in the Riemannian space

(
Rd,M

)
:

ℓM (γ) =
∫ 1

0

√
〈M(γ(t))γ′(t), γ′(t)〉dt , VM (K) =

∫

K

√
det(M(x))dx

and aim at modifying the mesh T so as to make it quasi-unit with respect to the metric M(x), that is to

say all its simplices K have edges lengths lying in
[

1√
2
,
√

2
]

and an anisotropic quality measure:

QM (K) := αd
VM (K)2

(∑na

i=1
ℓM (ei)2

)d

close to 1 (where na = d(d+ 1)/2 is the number of edges of a d-dimensional simplex, ei are the edges of K
and αd is a normalization factor). For instance, in the particular case when M(x) is constant over Rd, it can
be characterized by the ellipsoid:

ΦM (1) =
{
v ∈ Rd, ℓM (v) = 1

}

of unit vectors with respect to M , and a simplex K with unit edges is simply a simplex which can be inscribed
in this ellipsoid.

Several techniques have been devised for generating anisotropic meshes according to a metric tensor field,
that can be roughly classified into two categories. On the one hand, global methods, such as Delaunay-based
methods and advancing-front methods, perform the same kind of operations as in the classical case with
adapted notions of length and volume. On the other hand, local mesh modification methods [115] start from
an existing non-adapted mesh and adapt it so that it fits at best the above conditions (see the outline of
some of the main methods for mesh generation in chapter 3). The approach used in this paper falls into the
second category.

6.5.2 Computation of a metric tensor associated to the minimization of the P1

interpolation error

Let us recall the following general result (whose proof lies in [103] [24]) about the L∞ interpolation error
of a smooth function φ on a simplicial mesh by means of a P1 Lagrange finite element function.

Theorem 6.3. Let T be a simplicial mesh of large computational mesh D ⊂ Rd (d = 2 or 3) and φ a
C2 function on D. Let C(D) the set of continuous functions over D, VT ⊂ C(D) the space of continuous
functions on D whose restriction to every simplex of T is a P1 function, and denote by πT : C(D)→ VT the
usual P1 finite element interpolation operator. Then for every simplex K ∈ T ,

||φ− πT φ||L∞(K) ≤
1
2

(
d

d+ 1

)2

max
x∈K

max
y,z∈K

〈|H(φ)|(x)yz, yz〉,
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where 〈., .〉 stands for the usual scalar product on Rd, and, for a symmetric matrix S ∈ Sd(R), which admits

the following diagonal shape in orthonormal basis S = P




λ1 0 · · · 0
...

...
. . .

...
0 · · · 0 λd


PT , we denote

|S| := P



|λ1| 0 · · · 0

...
...

. . .
...

0 · · · 0 |λd|


PT .

Relying on this theorem, we can build a metric tensor field M(x) on D that allows for an accurate
control of the L∞ interpolation error of any smooth enough function φ (recall that the main feature of this
interpolation error is that it is an upper bound for the approximation error of φ by means of a finite elements
calculus with the space VT , at least in the case of elliptic problems [91]): so as to get

∀K ∈ T , ||φ− πT φ||L∞(K) ≤ ε
for a prescribed margin ε > 0, we urge the shape of an element K of T to behave in such a way that:

max
y,z∈K

〈H̃yz, yz〉 ≤ cε

where c is a constant which only depends on the dimension, stemming from theorem (6.3) and H̃ is the mean
value (or an approximation) of the metric tensor |H(φ)| over element K. This leads to defining the desired
metric tensor M(x) at each node x of T by (see [5] [6]):

M(x) = P (x)




λ̃1 0 0
0 λ̃2 0
0 0 λ̃3


P (x)T (6.13)

where

λ̃i = min(max(
c|λi|
ε

,
1

hmax
2 ),

1

hmin
2 ), |̃H(φ)|(x) = P (x)



|λ1| 0 0
0 |λ2| 0
0 0 |λ3|


 tP (x)

being an approximation of the Hessian of u around node x, written here in diagonal form in an orthonormal
basis, hmin (resp. hmax) being the smallest (resp. largest) size allowed for an element in any direction, and
c being the above constant.

This principle can be applied to the signed distance function φ = dΩ, at least in a formal way (we saw
during chapter 4 that dΩ is smooth except at the skeleton of Ω). This produces a mesh adaptation procedure
thanks to which the interpolation error of dΩ is decreased, and hopefully the numerical scheme presented in
section 6.4 leads to a closer approximation of dΩ.

6.5.3 Mesh adaptation for a geometric reconstruction of the 0 level set of a
function

In this section, we consider a bounded domain Ω ⊂ Rd, implicitly defined by a function φ : Rd → R
(which does not necessarily match with dΩ for the moment), that is:

Ω =
{
x ∈ Rd, φ(x) < 0

}
; ∂Ω =

{
x ∈ Rd, φ(x) = 0

}
; cΩ =

{
x ∈ Rd, φ(x) > 0

}
, (6.14)

and we want to adapt the background mesh T so that the 0 level set of the function πT φ obtained from u
by P1 finite elements interpolation, say ∂ΩT , is as close as possible to the 0 level set of the true function φ,
in terms of the Hausdorff distance (for a review of the various methods for discretizing an implicit surface,
see [161]). Then we will apply these results to the particular case when u is the signed distance function to
Ω. Throughout this section, we follow the work [119].
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Definition 6.3. Let K1, K2 two compact subsets of Rd. For all x ∈ Rd, denote d(x,K1) = inf
y∈K1

d(x, y) the

Euclidean distance from x to K1. We define:

ρ(K1,K2) := sup
x∈K1

d(x,K2)

and the Hausdorff distance between K1 and K2 , denoted by dH(K1,K2), is the quantity:

dH(K1,K2) := max(ρ(K1,K2), ρ(K2,K1)) .

The following lemma proves useful when it comes to measuring the distance to Ω relying on any implicitly-
defining function φ in the sense that (6.14) holds:

Lemma 6.2. Let φ a C1 function on Rd. Assume there exists a tubular neighborhood V =
{
x ∈ Rd, |φ(x)|< α

}

for some α > 0, such that φ does not exhibit any critical point in V . Then, ∂Ω is a submanifold of Rd, and
Ω is a bounded subdomain of Rd with C1 boundary. For any point x ∈ V we have the estimate:

d(x, ∂Ω) ≤
sup
z∈V
|∇φ(z)|

inf
z∈V
|∇φ(z)|2 |φ(x)| (6.15)

Proof. Without loss of generality, we may limit ourselves to considering any point x ∈ V ∩ cΩ.
The proof consists in ‘going backwards’ following the velocity field ∇φ until going against ∂Ω, then in

estimating the distance between x and the contact point with ∂Ω. To achieve this, introduce the integral
curve γ associated of ∇φ emerging from x, defined as a solution to the ODE:

{
γ(0) = x

γ′(s) = −∇φ(γ(s))
(6.16)

It is easily seen that the curve s 7→ γ(s) is defined (at least) over a period of the form [0, s1), for some
s1 > 0.and there exists a real number 0 < s0 < s1, such that y := γ(s0) belongs to ∂Ω. We then have:

φ(x) = φ(x)− φ(y)

=
∫ 0

s0

〈∇φ(γ(s)), γ′(s)ds〉

=
∫ 0

s0

|∇φ(γ(s))|2ds

and thus obtain
|s0| inf

z∈V
|∇φ(z)|2 ≤ |φ(x)| (6.17)

On the other hand, we also get

x− y = −
∫ 0

s0

∇φ(γ(s))ds

and
|x− y| ≤ |s0| sup

z∈V
|∇φ(z)|. (6.18)

Eventually, with (6.17) and (6.18), we conclude that:

d(x, ∂Ω) ≤ |x− y| ≤
sup
z∈V
|∇φ(z)|

inf
z∈V
|∇φ(z)|2 |φ(x)|.
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Note that formula (6.16) expresses the idea that the closer φ is to the signed distance function to Ω (or
a fixed multiple of it), the more reliable the evaluation of φ as an estimate of the Euclidean distance to the
boundary ∂Ω.

We are now ready to derive a formal estimate of the Hausdorff distance between ∂Ω and ∂ΩT . Take a
point x ∈ ∂ΩT , which belongs to a simplex K of the background mesh T . Using lemma 7.2 formally, we
have:

d(x, ∂Ω) ≤
sup
y∈Rd

|∇φ(y)|

inf
y∈Rd

|∇φ(y)|2 |φ(x)|

=

sup
y∈Rd

|∇φ(y)|

inf
y∈Rd

|∇φ(y)|2 |φ(x)− πT φ(x)|

and it yields, thanks to theorem 6.3

d(x, ∂Ω) ≤ c
sup
y∈Rd

|∇φ(y)|

inf
y∈Rd

|∇φ(y)|2 max
x∈K

max
y,z∈K

〈|H(φ)|(x)yz, yz〉

where c is a scalar constant which only depends on d. Thus, we find

ρ(∂ΩT , ∂Ω) ≤ c
sup
y∈Rd

|∇φ(y)|

inf
y∈Rd

|∇φ(y)|2 max
K∈T

max
x∈K

max
y,z∈K

〈|H(φ)|(x)yz, yz〉.

By the same token, formally applied to a point x ∈ ∂Ω, since ∂ΩT =
{
x ∈ Rd, πT φ(x) = 0

}
, we have

ρ(∂Ω, ∂ΩT ) ≤ c
sup
K∈T

|∇(πT φ)|K |

inf
K∈T

|∇(πT φ)|K |2
max
K∈T

max
x∈K

max
y,z∈K

〈|H(φ)|(x)yz, yz〉.

Eventually, neglecting the discrepancy between |∇φ| and |∇πT φ| yields:

dH(∂Ω, ∂ΩT ) ≤ c
sup
y∈Rd

|∇φ(y)|

inf
y∈Rd

|∇φ(y)|2 max
K∈T

max
x∈K

max
y,z∈K

〈|H(φ)|(x)yz, yz〉.

We observe that this estimate is very similar to the result given by theorem 6.3, and especially that it in-
volves the Hessian matrix of φ; thus, with the same metric tensor field (7.21) as the one associated to the
control of the P1-interpolation error of dΩ on T , we achieve control of the Hausdorff distance between the
exact boundary ∂Ω and its piecewise affine reconstruction ∂ΩT as the 0 level set of the interpolate dΩ. Of
course, depending on where we need the accuracy, we can restrict ourselves to prescribing metric (7.21) only
in certain areas of Rd (e.g. in a level set context, in a narrow band near the boundary, or in the vicinity of
a particular level set of φ).

This result admits a rather interesting geometric interpretation in the case when φ = dΩ, i.e. when φ is
the signed distance function to Ω. In that case, it is well-known [43] the second fundamental form (oriented
in the sense that it is positive definite at a point x ∈ ∂Ω near which ∂Ω is locally convex) reads, for any
point x ∈ ∂Ω:

∀ξ ∈ Tx∂Ω, IIx(ξ, ξ) = 〈HdΩ(x)ξ, ξ〉
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where 〈., .〉 denotes the usual Euclidean scalar product of Rd. Hence, the eigenvalues of HdΩ(x) are the two
principal curvatures of the surface ∂Ω, associated with the two principal directions at point x. In such case,
the above estimates mean that, understandably enough, so as to get the best reconstruction of ∂Ω, we have
to align the circumscribed ellipsoids of the simplices of the background mesh T with the curvature of this
surface (see Figure (6.5)).

∂Ω

∂ΩT

∂Ω

∂ΩT

(a) (b)

Figure 6.5: Piecewise affine reconstruction ∂ΩT of ∂Ω with (a) a regular background mesh T and (b) an
adapted anisotropic background mesh T .

6.6 A remark about level-set redistancing

When tracking the evolution of an interface by means of the level set method - e.g. when dealing with
multi-phase flow systems - a crucial issue is to initialize and maintain the level set function under consid-
eration φn = φ(tn, .) (tn = ndt, where dt is the time step of the process) as close as possible to the signed
distance function to the zero level set ∂Ωn so defined, while it tends to get very far from it within very few
iterations (see e.g. [217] about the relevance of this feature in the context of multi-phase flows). To achieve
this, a so-called redistancing step must be carried out [89]. Unfortunately, it is worth emphasizing this
problem is ill-posed since it is impossible to ‘regularize’ function φn to make it close to a distance function
φ̃n - i.e. |∇φ̃n| ≈ 1 - without altering the zero level-set which then becomes ∂̃Ωn :=

{
x ∈ Rd; φ̃n(x) = 0

}
.

Several approaches exist to address this issue, depending on the applications they are suited for and thus on
the features of the interface ∂Ωn which must be retained (see e.g. [236] [299] [298] [242]).

Given an iteration n when this process is carried out, most of the existing approaches consist in solving
the unsteady Eikonal equation (6.3), with initial data φn and over a short time period, so that the obtained
solution enjoys the desired unit gradient property, at least in a neighborhood of the tracked interface. To
this end, in [244] [298] [81], an approximation of the sign function appearing in equation (6.3) by a smooth,
steep function is introduced. The overall process is very fast, since the only performed operations are a
few iterations of an often explicit scheme for equation (6.3). In particular, this trick of approximating the
sign function enables not to regenerate an exact distance function near the boundary similarly to what we
explained in section 6.4.2, which can be costly if the computational mesh is large (see section 6.8). The
drawback is that the shift in the considered interface is not controlled.

Hence, we limit ourselves to the case of an adaptation process, where at each step, the background
mesh T is adapted to the zero level-set of function φn, by prescribing the metric tensor field (7.21) at least
in a narrow band near the interface (see [63] for an example). Here, implementing the redistancing step
φn → φ̃n by taking for φ̃n the signed distance function to Ωn, computed by means of the algorithm devised
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in section (6.4), provides a true signed distance function φ̃n, while ensuring the shift of the interface is
controlled by:

dH(∂Ωn, ∂̃Ωn) ≤ ε.
Of course, this process is slower than the one discussed above, but we believe it can be of interest when an
close control of the change in interfaces ∂Ωn → ∂̃Ωn is sought.

6.7 Extension to the computation of the signed distance function
in a Riemannian space

The proposed method admits a straightforward extension in the case we want to compute the signed
distance function dMΩ from a subdomain Ω of Rd, Rd being endowed with a Riemannian metric M , that is,

dMΩ (x) =





−dM (x, ∂Ω) if x ∈ Ω
0 if x ∈ ∂Ω
dM (x, ∂Ω) if x ∈c Ω

,

where
dM (x, y) = inf

{
ℓM (γ), γ : [0, 1]→ Rd piecewise differentiable , γ(0) = x ; γ(1) = y

}

is the distance from x to y in the space (Rd,M) and dM (x, ∂Ω) = inf
y∈∂Ω

dM (x, y) is the (unsigned) distance

function from x to ∂Ω. For another approach, based on the Fast Marching Method, see [226] [194].

Indeed, the function dMΩ is a solution to the Eikonal equation in the Riemannian space (Rd,M) in the
sense of viscosity [214]: √

〈M−1(x)∇d(x),∇d(x)〉 = 1

Considering a continuous function d0 which implicitly defines Ω in the sense that (6.2) holds, we have the
corresponding unsteady equation:





∂d

∂t
(t, x) + sgn(d0(x))(

√
〈M−1(x)∇d(t, x),∇d(t, x)〉 − 1) = 0

d(t = 0, x) = d0(x)

and the same study as in section (6.3) yields the following approximation formulae for computing the solution
d to this equation; for t > 0, a small time step dt, and x ∈ cΩ:

d(t+ dt, x) ≈ d
(
t, x− dt M−1(x)∇d(t, x)√

〈M−1(x)∇d(t, x),∇d(t, x)〉

)
+ dt

and, by symmetry, for x ∈ Ω:

d(t+ dt, x) ≈ d
(
t, x+ dt

M−1(x)∇d(t, x)√
〈M−1(x)∇d(t, x),∇d(t, x)〉

)
− dt

which raises a numerical scheme similar to the scheme presented in section 6.4 (see Figure 6.9 for an example).

6.8 Numerical Examples

We now present several examples to assess the main theoretical issues presented in the previous sections.
All the following computations are held on contours embedded in a bounding box which is a unit square in
two dimensions, or a unit cube in three dimensions, and are scaled if need be.
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Example 1

We give a two-dimensional example of the computation of the signed distance function to the contour
represented in Figure 6.6, and carry out two numerical experiments.

We first hold computations on unstructured, yet non-adapted simplicial computational meshes T of
bounding box D, of increasing sizes, so as to assess both convergence and scaling of the method. For all
these examples, a time step dt = 0.001 (according to the smallest mesh size among the presented meshes)
is used for the steps 1 ≤ n ≤ 80, and the computation is finished with a time step dt = 0.004. Table 6.8
displays several features of the computation (number of vertices of the mesh, CPU time) as well as errors
measured in several norms, and an inferred approximate order for the scheme. To evaluate these errors, the
exact signed distance function (or more accurately its P1-interpolate on the mesh at stake) is computed by a
brute force approach - i.e. by computing the minimum distance to a segment of the mesh of the contour at
every node of the background mesh T - and is then compared with the numerical approximation obtained
using our scheme. All our computations are held on an OPTERON 6100, 2Ghz. Figure 6.6 displays the
result of the computation held on the finest grid - identification of the connected components, initialization
of the sign and computation of the signed distance function.

(a) (b)

(c) (d)

Figure 6.6: A two-dimensional example on a regular mesh; (a) the considered contour, (b) the connected
components of the contour, (c) signs of these components: red for positive, blue for negative, green for the
boundary, (d) some isolines of the signed distance function.

Let us make some comments at this point. We solve the time-dependent Eikonal equation, so that at first
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Number of ||e||L∞ Order ||e||L1 Order ||e||L2 Order CPU Time(s)
Vertices

2601 0.013723 − 0.000924 − 0.002474 − 0.167
10201 0.008922 0.63 0.000644 0.53 0.001687 0.56 0.462
40401 0.004971 0.74 0.000340 0.73 0.000932 0.71 1.362
74310 0.001731 1.23 0.000204 0.90 0.000476 0.98 2.974
296740 0.001790 0.86 0.000095 0.96 0.000232 0.99 10.293

Table 6.1: Computation of the signed distance function to the contour 6.6 (a) on non-adapted, unstructured
meshes

glance, it could be relevant to investigate both time and spatial accuracy of the proposed numerical scheme.
Actually, it turns out that the spatial accuracy of the scheme is by far the most critical issue as regards
convergence inasmuch as, provided time step dt is small enough (and in all the test-cases we implemented,
taking dt of the order of the mesh size proved sufficient), the quality of the final result only depends on the
closeness of spatial approximation.

As far as the spatial convergence of this scheme is concerned, one observes that, understandably enough,
it happens to be at most first-order. Is seems to behave comparably to the algorithm presented in [236] or to
the simplicial version of the Fast Marching algorithm proposed in [194] or of the Fast Sweeping algorithm,
described in [262]. Note however that the two latter schemes are probably a bit faster as regards compu-
tational time, given they achieve convergence within a fixed (or very limited) number of iterations that are
linear in the number of vertices of the mesh. However, we believe that differences in the architectures of the
computers used to run the proposed examples are tremendous and do not allow for a meaningful comparison
between the execution times of the proposed algorithms. This scheme is also bound to be slower than the
ones devised in the case of cartesian computational grids [276, 292, 298, 332], which enjoy immediate stan-
dard operation algorithms (e.g. search of the element to which a given point belongs, etc...). What is more,
higher-order distancing or redistancing numerical schemes are available in this Cartesian frame [81], whereas,
to our knowledge, it is not this case in the unstructured case, which we believe to be of independent relevance.

Now, we adapt the background mesh T to the computation of the signed distance function to the same
contour, relying on the principles enonciated in section 6.5.1, in the vicinity of the boundary ∂Ω of the
considered domain. Therefore, we are only interested in getting a close approximation of this signed distance
function near the boundary. We use parameters ε = 0.001 and hmin = 0.001. This yields the results of figure
6.7, whose features (on one CPU) are reported in table 6.8.

Number of Number of Number of CPU Time
Iterations Nodes Elements (Seconds)

236 8, 030 16, 006 0.42

Table 6.2: Computation of the signed distance function to the contour 6.6 (a) on an adapted mesh.

Example 2

We now turn to the three-dimensional case. Some details about the mesh sizes and CPU times are to be
found in table 6.3. We tested our algorithm with the same procedure as before as regards the choice of the
time step, and with a parallel implementation on 10 CPU, with a shared memory architecture. Note that only
the stage corresponding to the propagation of the distance throughout the domain has been parallelized, and
that the initialization step - which could also be easily parallelized - actually takes most of the computation
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: A two-dimensional example on an adapted mesh; (a) the associated adapted mesh, (b) some iso-
lines of the signed distance function on this mesh, (c) a detail in the background mesh, (d) the corresponding
detail among the isolines, (e) the piecewise affine reconstructed contour, and (f) a zoom on a corner of the
reconstructed contour.

time (Table 6.3 provides the number of faces of each initial contour so as to emphasize this feature). However,
we thought it better to report in table 6.3 the total computation time. First, we considered a mechanical part
called cimplex. Figure 6.8 shows the original boundary, its reconstruction as the 0 level set of the computed
approximation of the signed distance function to this contour, a level set of the computed function, and some
cut in the adapted mesh. Note that the anisotropic feature of the background mesh T allows for a good
approximation of the ridges of the contour, even though we did not apply any special process to achieve so.
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Actually, it is worth mentioning that some post-treatment could be implemented so as to recover exactly
those sharp features in the reconstruction of the interface ∂Ω [247], but we believe this goes beyond the
scope of this paper.

(a)

(b)

Figure 6.8: Computation of the signed distance function to the ‘cimplex’; (a) left -the initial domain, center
- the reconstructed domain, right - isovalue 0.01 of the computed signed distance function, (b) a cut in the
adapted mesh.

The next example, hereafter named wheel (Figure 6.10), emphasizes another difficulty that may arise,
especially when it comes to mechanical devices, exhibiting very fine structures (or more generally, very fine
details). They are very difficult to track accurately when the background mesh T is regular, the reason
being the suitable size of a regular mesh for this purpose would be tremendous. Independantly, note that
the surface mesh of the 0 level set of the computed signed distance function reconstructed by means of
intersections with the background mesh T may be very irregular and contain two much surface elements to
allow any further calculation on it. To this end, it is often necessary to proceed to a surface remeshing step
in order to generate a suitable computational mesh (see [145]). An example is provided in figure 6.10.

Then, Figure 6.11 gives another example, that of the computation of the signed distance function to
the Stanford Happy Buddha, and of the approximation of this contour as the 0 level set of the computed
function.

Eventually, in several cases, for very detailed contours, we thought necessary to perform an isotropic
adaptation of the background mesh, and to make an intermediate computation of the signed distance function
on it before indulging in an anisotropic adaptation of the background mesh, so as to make sure to capture any
close detail of the contour. See the Aphrodite 1 example on Figure 6.12; see also Table 6.3 for a comparison

1. Free model from http://artist-3d.com/free_3d_models.
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between both meshes.

Number of Number of Number of Number of CPU Time
faces iterations nodes elements (seconds)

Cimplex 4, 160 227 39, 593 208, 676 4.13
Wheel 19, 972 194 367, 236 2, 065, 767 46.641

Happy Buddha 1, 085, 477 160 549, 818 3, 218, 519 1, 294
Aphrodite (isotropic) 63, 940 212 2, 265, 359 13, 482, 983 225

Aphrodite (anisotropic) 63, 940 238 120, 404 670, 746 605

Table 6.3: Computation of the signed distance function to several subdomains of R3.

Example 3

So as to illustrate the idea hinted at in section 6.7, our last example concerns the computation of the
signed distance function to a domain Ω ⊂ R2, R2 being endowed with the hyperbolic metric of the Poincaré
half-plane: let Ω be a union a 3 disks, embedded in the half-plane H :=

{
(x, y) ∈ R2, y > 0

}
endowed with

the so-called Lobatchevski metric defined by

∀(x, y) ∈ H, M(x, y) :=
1
y2
I

where I stands for the unitary matrix of dimension 2. Figure 6.9 then show some level sets of the signed
distance function to Ω with respect to metric M .

(a) (b)

Figure 6.9: (a) Level sets of the signed distance function to a domain composed of three disks embedded in
the Poincaré half-plane. (b) three-dimensional graph of the function.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: Piecewise affine reconstruction of the wheel. (a) The original wheel (b) its reconstruction (c) a
cut in the original wheel (d) a cut in the reconstruction (e) surface triangulation before remeshing (f) and
after remeshing.
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(a) (b) (c)

(d) (e)

Figure 6.11: Computation of the signed distance function to the Stanford ‘Happy Buddha’ [102]; (a) The
initial Buddha (b) isovalue 0.001 of the computed signed distance function (c) isovalue 0.01 (d) -(e) Two
cuts in the adapted mesh.
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(a) (b) (c)

(d) (e) (f)

Figure 6.12: Reconstruction of the ‘Aphrodite’: (a) The original Aphrodite, (b) Its reconstruction with
isotropic mesh adaptation (3093941 surface triangles), (c) its reconstruction with anisotropic mesh adaptation
(300968 surface triangles), (d) zoom on the original Aphrodite, (e) zoom on its reconstruction with isotropic
mesh adaptation, (f) zoom on its reconstruction with anisotropic mesh adaptation.
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In the present chapter, a mesh adaptation process for solving the advection equation is presented, with
a particular emphasis on the case it implicitly describes an evolving surface. The proposed method mainly
relies on a numerical scheme based on the method of characteristics. This low-order scheme is thoroughly
analyzed on the theoretical side. An anisotropic error estimate is derived and interpreted in terms of the
Hausdorff distance between the exact and approximated surfaces. The computational mesh is then adapted
according to the metric supplied by this estimate. The whole process enjoys a good accuracy as far as the
interface resolution is concerned. Some numerical features are discussed and several classical examples are
presented and commented in two and three space dimensions.
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This chapter is a joint work with Cuc Bui and Pascal Frey. Its contents have been published under the
reference:

C. Bui, C. Dapogny and P. Frey, An accurate anisotropic adaptation method for solving the level
set advection equation, Int. J. Numer. Meth. Fluids, Volume 70, Issue 7, (2012), pp. 899–922.

7.1 Introduction
Since the seminal work [245], level set methods, which advocate implicit descriptions of surfaces or

interfaces between different domains have become increasingly popular. Roughly speaking, the general idea
consists in considering a surface in Rd as the zero level set of a scalar function defined on the whole ambient
space. The motion of such a surface driven by a given velocity field turns out to be described by an advection
equation for the associated scalar ‘level set’ function: see [274] or [242] for various topics around the level set
method, or applications to physical problems (see also the brief summary in chapter 1). On the other hand,
numerous methods are available when it comes to solving the advection equation: see [129] for a review on
the topic, or [156] for numerical comparisons between several existing methods for the advection equation
in the context of level set methods.

In the present chapter, we intend to solve the standard advection equation associated to a given velocity
field V :

∂φ

∂t
+ V.∇φ = 0.

in the particular case where the transported scalar quantity φ(t, x) is a level set function associated to an
evolving domain Ω(t), that is, for all t > 0, x ∈ Rd (d = 2, 3 in our examples):





φ(t, x) < 0 if x ∈ Ω(t)
φ(t, x) = 0 if x ∈ ∂Ω(t)
φ(t, x) > 0 if x ∈ cΩ(t)

. (7.1)

Celebrated methods are available in the setting where computations are held on a Cartesian grid (see
e.g. [124, 230]). On the contrary, the whole work of this chapter unfolds in the context of fully unstructured
background mesh, for we believe it is of independent relevance. For instance, it can be used for tracking an
interface which evolves in a computational domain with a complex geometry (as is often the case in industrial
computations) which is more easily and accurately described by an unstructured mesh. Furthermore, in
several applications, the velocity driving the evolution of the interface stems from mechanical computations
(flow solvers in computational fluid dynamics, shape-sensitivity analysis in shape optimization,...) which
demand a mesh of the implicitly-defined domain Ω at each step of the process. It may thus be desirable
that the computational mesh used for advection also encloses a discretization of this domain as a submesh,
and such a feature is solely available for fully unstructured meshes. Actually, the process described in this
chapter has already been used in such cases in the previous work [63], and will be a component of the mesh
evolution strategy set up in chapter 9.

We aim at getting a sharp approximation of the evolving domain Ω(t) (or equivalently of the evolving
boundary ∂Ω(t), hence the choice of conforming finite elements for the discretization of φ - from which a
conforming piecewise affine reconstruction of the 0 isosurface of φ is easily produced - although discontinuous
Galerkin methods generally prove very efficient in solving the advection equation (see [216] for instance).
Furthermore, the surface under evolution may or may not be related to a physical problem (e.g. in fluid
mechanics); for this purpose, we undertook not to address mass conservation enforcement, however crucial
this aspect might prove in several applications. Of course, it is possible to couple the proposed method with
a mass conservation, or mass restoration scheme.

Our main goal in this chapter is to suggest a mesh adaptation process so as to control the accuracy of
the computation. To achieve this, we rely on the classical method of characteristics (see [96] for the seminal
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paper around this topic in connection with the advection equation, and [256] for an exhaustive review of its
use in many fluid problems) to solve the advection equation. Although it is admittedly low-order as well
as very diffusive, it is simple to implement numerically, and we will see it is amenable to an error analysis
which yields straightforwardly an anisotropic error estimate for the Hausdorff distance between the evolving
interface and its computed approximation. Then, using anisotropic mesh adaptation on the computational
mesh according to the obtained estimate brings a close approximation of the advected quantity where it is
needed.

The outline of this chapter is as follows: in section 7.2, we briefly recall some basic theoretical facts
around the advection equation that will be extensively used. Section 7.3 is devoted to deriving a numerical
method for the considered advection equation: this method is presented in subsection 7.3.1, then analyzed in
both subsection 7.3.2, where an a priori error estimate is proved, and subsection 7.3.3, where this estimate is
specialized to the case of interest, that is when the advected scalar function is a level set function associated
to an evolving interface. Section 7.4 tackles the issue of deducing a mesh adaptation process from the
previous error estimate. After recalling some useful classical material about metric-based mesh adaptation
in subsection 7.4.1, an appropriate adaptation method is detailed in subsection 7.4.2. In section 7.5, we
emphasize on two crucial numerical aspects of the proposed technique: the need for a mesh gradation control
in the way the computational mesh is adapted, and the role played by redistancing in our computations.
Eventually, in section 7.6, several numerical examples in two and three space dimensions are developed to
assess the proposed method.

7.2 Some theoretical facts around the advection equation

Given an initial function φin : Rd → R and a velocity field V : Rd → Rd defined on the whole space, we
consider the Cauchy problem for the advection equation: find φ ∈ C1([0, T ]× Rd) such that

{
∂φ

∂t
(t, x) + V (t, x).∇φ(t, x) = 0 (t, x) ∈ (0, T )× Rd

φ(0, x) = φin(x) x ∈ Rd
. (7.2)

Throughout this chapter, unless stated otherwise, we will make (at least) the following assumptions on the
velocity field V : [0, T ]× Rd → Rd:

V is of class C1 on (0, T )× Rd (i.e. V and ∇V are continuous over [0, T ]× Rd). (7.3)

There exists κ > 0 such that |V (t, x)| ≤ κ (1 + |x|) for all (t, x) ∈ [0, T ]× Rd. (7.4)

We then recall the following classical result ([159]) related to the advection equation.

Theorem 7.1. Suppose (7.3) and (7.4) hold, and let φin ∈ C1
(
Rd
)
. For all 0 ≤ t ≤ T and x ∈ Rd, denote

s 7→ X(s, t, x) the characteristic curve emerging from point x at time t, solution to the ODE

{
dX

ds
(s, t, x) = V (s,X(s, t, x))

X(t, t, x) = x
, (7.5)

then
– For every point x ∈ Rd and every time t ∈ [0, T ], the curve s 7→ X(s, t, x) is well-defined over [0, T ].

Furthermore, for every s, t ∈ [0, T ], the application Rd ∋ x 7→ X(s, t, x) ∈ Rd is a C1, orientation-
preserving diffeomorphism.

– Cauchy problem (7.2) has a unique solution φ ∈ C1([0, T ]× Rd), given by the formula:

φ(t, x) = φin(X(0, t, x)). (7.6)
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Note that the above result holds for the advection equation over the whole space Rd, and for an evolution
driven by a (smooth) velocity field which does not ‘blow-up’ at infinity. In numerical practice, we restrict
ourselves to a (large) bounded computational domain, so that this property will always prove ‘numerically
true’. However, in this work, we will still solve the advection equation as if it were considered over Rd, so
that formula (7.6) stands, the reason being that we are mainly interested in the motion of a surface evolving
‘far’ from the boundary of the computational domain, so that the values of the corresponding advected level
set function which are of interest do not ‘see the boundary’. Actually, Cauchy problem (7.2) is ill-posed on
a bounded domain, and its analysis is far more difficult: one has to introduce boundary conditions in the
so-called reentrant boundary where the velocity field V requires information from outside the domain. See
[32] for a complete study of this general problem.

In particular, Theorem 7.1 has the following interesting consequence in case the scalar quantity at stake
stands for a level-set function associated to a smooth surface:

Corollary 7.1. Under the hypothesis of theorem 7.1, suppose φin is a smooth level set function associated
to a regular domain Ωin ⊂ Rd in the sense that (7.1) hold and such that for all x ∈ ∂Ωin, ∇φin(x) 6= 0.
Then for all t ∈ [0, T ], Ω(t) :=

{
x ∈ Rd, φ(t, x) < 0

}
is a regular domain with regular boundary ∂Ω(t) :={

x ∈ Rd, φ(t, x) = 0
}

, and is diffeomorphic to Ωin through the mapping X(0, t, .).

7.3 The proposed numerical method, and its error analysis

7.3.1 A numerical method for the advection equation based on the method of
characteristics

Suppose the whole space Rd is endowed with a mesh T , and consider an associated Lagrange finite
element space VT (e.g. P1 or P2 finite elements). Given a (physical) time step ∆t, a time interval

[
Tn, Tn+1

]
,

Tn+1 = Tn+∆t (see remark below for a discussion around time-stepping), and an initial state φ(Tn, .) which
fulfills the hypothesis of Theorem 7.1, we intend to approximate the function φ(Tn+1, .), where φ(t, .) is the
unique solution to the Cauchy problem:

{
∂φ

∂t
(t, x) + V (t, x).∇φ(t, x) = 0, (t, x) ∈ (Tn, Tn+1)× Rd

φ(Tn, x) = φin ∀x ∈ Rd
. .

To this end, we only have an approximation Ṽ of vector field V , as well as a piecewise affine approximation
φT

n ∈ VT of φ(Tn, .) = φin, and we also look for an approximation of φ(Tn+1, .) as a function φT
n+1 ∈ VT ,

that is to say we only need to compute the desired approximation φT
n+1

(x) for every degree of freedom x
of the function space VT . In order to mimic the exact formula (7.6), as is well-known with the method of
characteristics, we proceed within two steps:

– In a first step of time discretization, we compute an approximation Ỹ (Tn, Tn+1, x) of the solution
Y (Tn, Tn+1, x) to the approximate characteristic curve at time Tn:

{
dY

ds
(s, Tn+1, x) = Ṽ (s, Y (s, Tn+1, x))

Y (Tn+1, Tn+1, x) = x
,

in which the exact velocity field V has been traded for its numerical approximation Ṽ . To achieve
this, any classical method for solving ordinary differential equations can be used (Euler’s method, or a
more accurate Runge-Kutta method, see [111]). For instance, introducing a subintegration time step
δt ≪ ∆t and subdividing ]Tn, Tn+1[= ∪Ll=0]tl, tl+1[, with tl := Tn + lδt, l = 0, ..., L, Euler’s method
writes: {

Ỹ (Tn+1, Tn+1, x) = x

Ỹ (tl, Tn+1, x) = Ỹ (tl+1, Tn+1, x)− δtṼ (Ỹ (tl+1, Tn+1, x)) for l = 0, ..., L− 1
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– Then, a spatial approximation step is performed; in other words, if K is a simplex of T such that
Ỹ (Tn, Tn+1, x) ∈ K, we have

φin(X(Tn, Tn+1, x)) ≈ φin
(
Ỹ (Tn, Tn+1, x)

)

≈ φT
n
(
Ỹ (Tn, Tn+1, x)

) ,

the last expression being evaluated on basis of the discrete set of values of φn at the degrees of freedom
belonging to simplex K.

Remarks 7.1.

1. About time-stepping. The above method uses two different time steps. The first one, ∆t = Tn+1−Tn,
is a ‘large’ time step, mainly related to physics: in most interesting problems, the velocity field V used
for advection over

[
Tn, Tn+1

]
stems from a mechanical computation at time Tn. Time step ∆t is then

the period of time for which we assume this velocity physically reliable. The second one, δt ≪ ∆t is
a sub-integration time step; it is fictitious and merely involved for the integration of the characteristic
curves. It is the only one really involved by the method of characteristics. In the sequel, we will often
focus on a generic period of time [0, T ], standing for any

[
Tn, Tn+1

]
.

2. About numerical discretization. The above method amounts to solving an ordinary differential equa-
tion at each degree of freedom of the computational mesh, and involves neither matrix inversion, nor
quadrature formulas for approximating integrals. Consequently, it is computationally efficient in prac-
tice, and as accurate as can be a spatial first-order scheme. However, as is, it is not readily extended to
more general problems, such as convection-diffusion-reaction problems. Moreover, it has been observed
(see [257]) that simple first-order characteristic-based numerical scheme for treating a convection term
are generally very diffusive, which could be unacceptable for several applications (such as fluid dynam-
ics). For these reasons, characteristic-Galerkin numerical schemes are often used in combination with
higher-order finite elements. See [44, 45] for an exhaustive presentation of several aspects of general
characteristic-Galerkin finite element methods. In this chapter, we will overcome this drawback of
being low-order by resorting to a mesh adaptation procedure.

7.3.2 A priori error analysis of the proposed method

The goal of this section is to develop an a priori error estimate for the numerical scheme presented in
section 7.3.1. As already mentioned, neither the idea of using the method of characteristics for advection,
nor its error analysis is new: see e.g. [256] [258] for considerations in a far more general context. However,
to our knowledge, the following a priori error estimate, on which relies our adaptation scheme, is not so
classical under this form (even if it is actually a variation of existing ones).

In the following, we still consider equation (7.2) for a generic period of time [0, T ] and over the whole
space Rd, which is endowed with two distinct simplicial meshes T (which carries the approximations of
functions φ(t, x)) and Tv, on which we have an approximation Ṽ of a continuous vector field V . Such
a situation frequently arises in numerical practice, where the velocity field V stems from mechanical or
physical computations held on a support different from the one used to advect the level set function of
interest. We denote VT (resp. VTv

) the space of continuous functions over Rd, whose restriction to every
simplex K ∈ T (resp. K ∈ Tv) is a P1 finite element function. For every continuous function f over Rd, we
denote πT (f) (resp. πTv

(f)) the P1-interpolate of f over T (resp. Tv), i.e. the unique function in VT (resp.
VTv

) which coincides with f at every node of T (resp. Tv).
Theorem 7.2. Assume moreover that V is a stationary, uniformly Lipschitz continuous vector field over
Rd, with constant k, and φin is a C2, uniformly Lipschitz continuous function over Rd with constant
k′ (so that (7.3) and (7.4) are satisfied). Assume as well the approximation Ṽ of V is such that both
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supx∈Rd |V (x)− Ṽ (x)| and supK∈Tv , x∈K |∇V (x)−∇Ṽ |T | are bounded.
Let δt be a time step, and consider the sequence of times tn = nδt, 0 = t0 < t1 < ... < tN = T . Denote
φN ∈ VT the sought approximation of φ(T, .) defined as

For each node x of T , φN (x) = πT (φin)(Ỹ (0, T, x)), (7.7)

where Ỹ (0, T, x) is the approximation of the solution Y (0, T, x) to the ODE

{
dY

ds
(s, T, x) = Ṽ (Y (s, T, x))

Y (T, T, x) = x
, (7.8)

at time s = 0 by means of Euler method with time step δt. Then there exists a constant C which only depends
on V , such that

||φ(T, .)− φN ||L∞(Rd) ≤ ||φ(T, .)− πT φ(T, .)||L∞(Rd) + ||φin − πT φ
in||L∞(Rd)

+
k′

k
(ekT − 1)||V − Ṽ ||L∞(Rd) +

k′

k
CTeCδtδt

(7.9)

Proof. The proof is divided into two steps.

Step 1: time approximation of the integral curves of vector field V . Given x ∈ Rd, the aim is to esti-
mate the approximation of X(0, T, x) by Ỹ (0, T, x). Here, X stands for the exact integral curve associated
to vector field V , solution of (7.5), and Y is the exact integral curve associated to the approximate vector
field Ṽ (solution of (7.8)), which is itself to be numerically approximated by Ỹ (0, T, x), obtained with a
first-order Euler scheme. First, the use of Lemma 7.1 below allows to quantify the gap between Y (0, T, x)
and Ỹ (0, T, x):

|Y (0, T, x)− Ỹ (0, T, x)| ≤ CTeCδtδt

for a constant C which only depends on Ṽ , or alternatively on V , owing to the assumptions made over the
approximation of V by Ṽ . Then, thanks to a variation of Gronwall’s lemma recalled in appendix (see Lemma
7.3) for the approximation of X(0, T, x) by Y (0, T, x), we get

|X(0, T, x)− Ỹ (0, T, x)| ≤ |X(0, T, x)− Y (0, T, x)|+ CTeCδtδt

= (ekT −1)
k
||V − πTv

V ||L∞(Rd) + CTeCδtδt
. (7.10)

Step 2: spatial approximation on mesh T . We now turn to the error entailed by the definition of the
approximation φN of function φ(T, .), for a given vertex x of mesh T :

|φ(T, x)− φN (x)| =
∣∣∣φin (X(0, T, x)))− πT φ

in
(
Ỹ (0, T, x)

)∣∣∣

≤
∣∣∣φin (X(0, T, x)))− φin

(
Ỹ (0, T, x)

)∣∣∣

+
∣∣∣φin

(
Ỹ (0, T, x)

)
− πT φ

in
(
Ỹ (0, T, x)

)∣∣∣

≤ k′
∣∣∣X(0, T, x)− Ỹ (0, T, x)

∣∣∣+ |φin − πT φ
in||L∞(Rd)

≤ k′

k
(ekT − 1)||V − πTv

V ||L∞(Rd) +
k′

k
CTeCδtδt+ ||φin − πT φ

in||L∞(Rd).

Eventually, consider any point x ∈ Rd, and let K ∈ T any simplex containing x. Denote a0, ..., ad its vertices,
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and λ0, ..., λd the associated barycentric coordinate functions. It stems from the definition of φN that

φ(T, x)− φN (x) = φ(T, x)−
d∑

i=0

λi(x)φN (ai)

= φ(T, x)− πT φ(T, x) +
d∑

i=0

λi(x)
(
φ(T, ai)− φN (ai)

)
.

Finally, we get the following estimate

||φ(T, .)− φN ||L∞(Rd) ≤ ||φ(T, .)− πT φ(T, .)||L∞(Rd) +
k′

k
(ekT − 1)||V − Ṽ ||L∞(Rd)

+
k′

k
CTeCδtδt+ ||φin − πT φ

in||L∞(Rd).

In the first step of the above proof, we made use of the following lemma which is a version of the well-
known estimate for Euler’s method for an ODE, in case the velocity field is only continuous and piecewise
differentiable; its proof is a mere variation of the arguments in [111] for instance.

Lemma 7.1. Let x ∈ Rd, and V ∈ (VTv
)d a continuous and piecewise affine vector field over Rd, such that

C1 := sup
K∈Tv

|∇V |K | < +∞ ; C2 := sup
x∈Rd

|V (x)| < +∞. (7.11)

Denote by y the exact solution to the ODE:
{
y′(s) = V (y(s))
y(T ) = x

, (7.12)

and y0 its approximation at time t0 = 0 obtained by using a simple Euler method over the interval [0, T ],
with time step δt. Then,

|y(0)− y0| ≤ 2C1C2 Te
C1δtδt (7.13)

Proof. As the vector field V is continuous and uniformly Lipschitz over Rd because of assumption (7.11),
the exact solution y to the ODE (7.12) exists over [0, T ], is unique, and differentiable on this interval.

Introduce the sequence y0, ..., yN = x of approximated values for y at times t0, ..., tN obtained by Euler’s
method with time step δt. For any n = 0, ..., N − 1, this means

yn = yn+1 − δtV (yn+1) (7.14)

Next, subdivide the time interval
[
tn, tn+1

]
as tn = r0 < r1 < ... < rp = tn+1 for a certain p ∈ N in such

a way that for all j = 0, ..., p − 1, y
([
rj , rj+1

])
is included in a single simplex Kj of T ′. Then, y being

differentiable on each subinterval
[
rj , rj+1

]
,

y(tn) = y(tn+1) +
p−1∑

j=0

(
y(rj)− y(rj+1)

)

= y(tn+1) +
p−1∑

j=0

(
V (y(rj+1))(rj − rj+1) +

∫ 1

0

(1− s)f ′′
j (s)ds

) , (7.15)
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where we introduced fj(s) = y
(
rj+1 + s(rj − rj+1)

)
. Substracting (7.14) to (7.15) yields

y(tn)− yn = y(tn+1)− yn+1 +
p−1∑

j=0

((
V (y(rj+1))− V (yn+1)

)
(rj − rj+1) +

∫ 1

0

(1− s)f ′′
j (s)ds

)

= y(tn+1)− yn+1 +
p−1∑

j=0

((
V (y(rj+1))− V (y(tn+1))

)
(rj − rj+1) +

∫ 1

0

(1− s)f ′′
j (s)ds

)

+
p−1∑

j=0

(
V (y(tn+1))− V (yn+1)

)
(rj − rj+1)

.

Subdividing segment
[
y(tn+1), yn+1

]
into smaller subsegments, each one being included into a single element

K ∈ T ′, the last sum is such that
∣∣∣∣∣∣

p−1∑

j=0

(
V (y(tn+1))− V (yn+1)

)
(rj − rj+1)

∣∣∣∣∣∣
≤ C1δt|y(tn+1)− yn+1| (7.16)

Furthermore, using the same argument of decomposition over smaller subsegments of each interval
[
rj , tn+1

]
,

j = 0, ..., p− 1, we have, thanks to the hypothesis involving constants C1, C2,
∣∣∣∣∣∣

p−1∑

j=0

(
V (y(rj+1))− V (y(tn+1))

)
(rj − rj+1)

∣∣∣∣∣∣
≤ C1C2δt

2 (7.17)

Eventually, from the definition of fj , we infer f ′′
j (s) = (rj − rj+1)2∇V |Tj

.V
(
y
(
rj+1 + s(rj − rj+1

))
. Thus,

gathering (7.16), (7.17) and the last expression, it comes

|y(tn)− yn| ≤ (1 + C1δt)|y(tn+1)− yn+1|+ 2C1C2δt
2.

From the discrete Gronwall lemma (see [111] for instance), we conclude that

|y(0)− y0| ≤ eC1T |y(T )− yN |+ 2C1C2

N−1∑

j=0

eC1δtδt2

≤ 2C1C2Te
C1δtδt

, (7.18)

which is the expected estimate.

Remarks 7.2.

– This estimate is low-order. As pointed out by Pironneau [256] [257], the presented method can be
greatly improved by the choice of higher order methods in time, or spatial approximation. Thus,
approximating the integral curves of vector field V with a 4th order Runge-Kutta scheme, or the
functions at stake by means of Lagrange P2-finite elements tremendously improves the quality of the
obtained results. Unfortunately, there is no rigorous proof of these assertions (note that the previous
proof cannot be generalized to those cases), however relevant they are in numerical practice.

– Many variations over this result are available: the vector field V could be analytically prescribed (as will
be the case in the examples of section 7.6), and the same estimate holds, except that, understandably
enough, the term ||V − Ṽ ||L∞(Rd) vanishes; it could also arise from a finite elements analysis (e.g.

solution of Stokes’ problem) on mesh T ′, in which case ||V − Ṽ ||L∞(Rd) should be controlled by the
interpolation error ||V −πTv

V ||L∞(Rd) (generally, it is the case in other norms, thanks to Céa’s lemma).
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– Theorem 7.2 holds for a generic period of time [0, T ], subdivided into smaller intervals of length δt.
Going back to the general case of section 7.3.1, we have to apply it successively on each interval[
Tn, Tn+1

]
; the errors in the right-hand side of (7.9) will then sum up, and it is not difficult to see

that the accumulation of spatial errors will become dominant: understandably enough, the intervals
on which we backtrack the characteristic curves should be as large as possible, and follow the time step
∆t prescribed by the physics of the studied problems.

7.3.3 A priori error estimate in terms of Hausdorff distance in the case of level-
set functions

As already pointed out, we are especially interested in the case where the transported scalar function -
which we denoted φ(t, .) in the previous section - is a level set function associated to an evolving (regular)
domain Ω(t). The control conveyed by Theorem 7.2 results in that case - at least formally speaking -
in an estimate of the Hausdorff distance (whose definition is recalled below for convenience) between the
continuous evolving interface ∂Ω(t) and its approximation as the 0 level set of the numerically computed
level set function.

Definition 7.1. Let K1, K2 be two compact subsets of Rd. For any x ∈ Rd, denote d(x,K1) = inf
y∈K1

d(x, y)

the Euclidean distance from x to K1 and:

ρ(K1,K2) := sup
x∈K1

d(x,K2).

The Hausdorff distance between K1 and K2 , is the quantity dH(K1,K2) defined by:

dH(K1,K2) := max(ρ(K1,K2), ρ(K2,K1)) .

Using the notations of the previous section, and under the hypothesis of theorem 7.2, suppose moreover
that φin is a level set function associated to a regular bounded domain Ωin ⊂ Rd in the sense that (7.1) holds,
and that φin does not admit any critical point in a vicinity of ∂Ωin. According to the material presented
in section 7.2, it follows that for all t ∈ [0, T ], Ω(t) :=

{
x ∈ Rd, φ(t, x) < 0

}
is a bounded regular domain,

with smooth boundary ∂Ω(t) :=
{
x ∈ Rd, φ(t, x) = 0

}
, and φ(t, .) does not admit any critical point within

a vicinity of ∂Ω(t). We also consider, for n = 0, ..., N , Ωn and ∂Ωn the piecewise affine reconstructions of
Ω(tn) and ∂Ω(tn) obtained as

Ωn :=
{
x ∈ Rd, φn(x) < 0

}
; ∂Ωn :=

{
x ∈ Rd, φn(x) = 0

}
,

where φn is the sequence of P1 finite element functions produced by our numerical scheme. Recall the
previous result from chapter 6:

Lemma 7.2. Let φ ∈ C1(Rd), which does not present any critical point within a certain tubular neighbourhood
W :=

{
x ∈ Rd, |φ(x)|< α

}
of ∂Ω (for some α > 0), so that ∂Ω is a submanifold of Rd, and Ω is a bounded

subdomain of Rd with C1 boundary, and for any point x ∈W we have the estimate:

d(x, ∂Ω) ≤
sup
z∈W
|∇φ(z)|

inf
z∈W
|∇φ(z)|2 |φ(x)| (7.19)
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A formal use of this lemma yields:

ρ
(
∂Ω(T ), ∂ΩN

)
≤ sup

x∈∂Ω(T )

sup
K∈T

|∇φN |K |

inf
K∈T

|∇φN |K |2
|φN (x)|

= sup
x∈∂Ω(T )

sup
K∈T

|∇φN |K |

inf
K∈T

|∇φN |K |2
|φN (x)− φ(T, x)|

≤
sup
K∈T

|∇φN |K |

inf
K∈T

|∇φN |K(z)|2 ||φ
N − φ(T, .)||L∞(Rd)

And now, symmetrically:

dH
(
∂Ω(T ), ∂ΩN

)
≤ sup




sup
z∈Rd

|∇φ(T, z)|

inf
z∈Rd

|∇φ(T, z)|2 ,
sup
K∈T

|∇φN |K |

inf
K∈T

|∇φN |K |2


 ||φN − φ(T, .)||L∞(Rd). (7.20)

Therefore, the estimate provided by Theorem 7.2 allows for a control over the discrepancy, measured in
terms of Hausdorff distance, between the interface of interest ∂Ω(T ), and its piecewise affine approximation
∂ΩN , which is the actually handled quantity.

7.4 Mesh adaptation for the advection equation

7.4.1 Metric-based mesh adaptation

As we have already been discussing in chapters 3 and 6, the main goal of mesh adaptation is to alter an
initial mesh T in such a way its elements’ size and orientation allow to perform the computation of interest
with optimal efficiency -i.e. fewer elements, and an enhanced accuracy. Since [311], the idea of metric-based
mesh adaptation has been increasingly popular: the local desired size, shape and orientation related infor-
mation at a node x of mesh T are stored in a Riemannian metric tensor field M(x), which may arise from
various possible preoccupations: a posteriori geometric error estimates, analytic error estimates, etc... (see
for instance [6, 25, 180]).

Given a metric tensor field M(x), defined at each point x ∈ Rd, (recall that in practice, M(x) is defined only
at the nodes of T and then interpolated from these values [145]) we consider respectively the length ℓM (γ)
of a curve γ : [0, 1]→ Rd, the volume VM (K) of a simplex K, and the distance dM (x, y) between two points
x, y ∈ Rd in the Riemannian space

(
Rd,M

)
:

ℓM (γ) =
∫ 1

0

√
〈M(γ(t))γ′(t), γ′(t)〉dt , VM (K) =

∫

K

√
det(M(x))dx,

dM (x, y) = inf
γ∈C([0,1],Rd)
γ(0)=x,γ(1)=y

ℓM (γ).

We aim at modifying mesh T so as to make it quasi-unit with respect to the metric M(x), that is to say

all its simplices K have edges lengths lying in
[

1√
2
,
√

2
]
. What is more, we expect the anisotropic quality

measure:

QM (K) := αd
VM (K)2

(∑na

i=1
ℓM (ei)2

)d
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of all elements of the mesh (where na = d(d+ 1)/2 is the number of edges of a d-dimensional simplex, ei are
the edges of K and αd is a normalization factor) to be as close to 1 as possible. The underlying geometrical
interpretation is that for any given node x0 of a quasi-unit mesh T with respect to M(x), every element
K ∈ T which shares x0 as a vertex fits ’at best’ in the unit pseudo-ellipsoid

ΦM (x0) =
{
x ∈ Rd, dM (x, x0) = 1

}
,

which reduces to a true ellipsoid when M is constant over Rd. In this latter case, the eigenvectors e1, ..., ed
of M give the directions of the principal axis of this ellipsoid, while the associated eigenvalues λ1, ..., λd
are linked to the principal radii (or characteristic lengths) h1, ..., hd in the respective directions e1, ..., ed by:
hi = 1√

λi
, i = 1, ..., d.

In several applications (see the next sections), it turns out to be desirable to adapt a mesh at the same
time to several a priori independent information, supplied by two (or more) metric tensor fields M1,M2. This
is classically achieved resorting to a so-called metric intersection procedure: operating on the simultaneous
reductions of M1(x) and M2(x) at any point x ∈ Rd,

M1(x) = tP (x)




λ1(x) · · · 0
...

. . .
...

0 · · · λd(x)


P (x),M2 = tP (x)




µ1(x) · · · 0
...

. . .
...

0 · · · µd(x)


P (x),

where P is an invertible matrix, λ1, ..., λd, µ1, ..., µd > 0, the intersected metric

M1 ∩M2(x) := tP (x)




sup (λ1(x), µ1(x)) · · · 0
...

. . .
...

0 · · · sup (λd(x), µd(x))


P (x)

carries both information in the sense that its unit pseudo-ellipsoid ΦM1∩M2(x) is a maximal pseudo-ellipsoid
enclosed in both ΦM1(x) and ΦM2(x), at least if M1 and M2 are constant over Rd (see [145] for details).

Let us eventually recall that several techniques have been thought up for generating anisotropic meshes
according to a metric tensor field, which can be roughly classified into two categories. On the one hand,
global methods, such as Delaunay-based methods and advancing-front methods (see chapter 3), perform the
same kind of operations as in the classical case with adapted notions of length and volume. On the other
hand, local mesh modification methods [115] - to which belongs the approach followed in this chapter - start
from an existing non-adapted mesh and adapt it so that it fulfills at best the above conditions.

7.4.2 The proposed adaptation method

In this section, we go on in the framework of sections 7.3.2 and 7.3.3 and rely on the previous error
estimates (7.9) and (7.20) to infer a mesh adaptation method which allows to obtain a good discrete approx-
imation ∂ΩT of ∂Ω(T ). For the sake of clarity we shall now denote φT the approximation of φ(T, .) obtained
by the algorithm of section 7.3.1 and

ΩT =
{
x ∈ Rd, φT (x) < 0

}
, ∂ΩT =

{
x ∈ Rd, φT (x) = 0

}

the associated polyhedral domain and surface. From formula (7.9), the control we get over ||φ(T, .) −
φT ||L∞(Rd) -or indifferently dH (∂Ω(T ), ∂ΩT ) - consists of three independent contributions:

1. The first one (
||φ(T, .)− πT φ(T, .)||L∞(Rd) + ||φin − πT φ

in||L∞(Rd)

)

is only related to the way mesh T is adapted to the interpolation of functions φ(T, .) and φin. The
proposed adaptation method focuses on dampening this part of the error.
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2. The second one,
k′

k
CTeCδtδt

is solely related to the time discretization of interval [0, T ] with the substep δt, and for this contribution
to be decreased, substep δt has to be decreased.

3. The last part,
k′

k
(ekT − 1)||V − Ṽ ||L∞(Rd)

is connected to the quality of the approximation of velocity field V . If this vector field is to be obtained
by means of a finite element computation on a mesh Tv, this has to do with the quality of Tv as regards
this computation, and we do not intend to discuss these aspects. As said previously, in all our numerical
examples, we only considered analytically prescribed velocity fields, and this contribution actually does
not appear.

This leaves us with the objective of adapting mesh T in such a way both interpolation errors ||φ(T, .)−
πT φ(T, .)||L∞(Rd) and ||φin − πT φin||L∞(Rd) are made small. In other words, in view of the estimates in
section 7.3.3, this means that mesh T allows for a suitable approximation of the 0 level sets of both φin and
φ(T, .) by the 0 level set of their respective P1-interpolate πT φin, πT φ(T, .). This is actually very intuitive:
neglecting the errors on the knowledge of the velocity field, the accuracy of the process is controlled by how
well mesh T allows for a good knowledge of the initial surface, and how well it fits a description of the final one.

To achieve such a mesh, we recall the classical L∞ error estimate for the Lagrange finite element P1-
interpolation error of a function u of class C2 [103]:

Theorem 7.3. Let T a simplicial mesh of Rd (or a polyhedral subset of it) and φ a C2 function on Rd.
Then for every simplex K ∈ T ,

||φ− πT φ||L∞(K) ≤
1
2

(
d

d+ 1

)2

max
x∈K

max
y,z∈K

〈|H(φ)|(x)yz, yz〉

where H(φ) is the Hessian matrix of u and, for a symmetric matrix S ∈ Sd(R) which admits the following
diagonal shape in orthonormal basis S = P diag({λi}1≤i≤d) P

T , we denote |S| := P diag({|λi|}1≤i≤d) P
T .

According to [6], this theorem expresses the idea that a mesh T suitable for the P1-Lagrange interpolation
of a smooth function φ -i.e. such that ||φ − πT φ||L∞(K) ≤ ε for a given tolerance ε > 0 and every simplex
K ∈ T - can be roughly obtained as a quasi-unit mesh for the metric Mφ defined at each vertex x of T by:

Mφ(x) = P (x)




λ̃1 0 · · · 0
...

...
. . .

...
0 · · · 0 λ̃d


P (x)T (7.21)

where

λ̃i = min
(

max
(
c|λi|
ε

,
1

hmax
2

)
,

1

hmin
2

)
, |̃H(φ)|(x) = P (x)



|λ1| 0 · · · 0

...
...

. . .
...

0 · · · 0 |λd|


P (x)T

being an approximation of the Hessian of φ around node x, written here in diagonal form in an orthonormal
basis, hmin (resp. hmax) being the smallest (resp. largest) size allowed for an element in any direction, and
c being the above constant.
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Remark 7.3. Actually, we do not need to adapt the whole mesh T with respect to metric Mφ: as we
are mostly interested in an accurate approximation of the zero level sets of the considered functions by the
piecewise affine zero level sets of their P1-Lagrange interpolates, we only need to reach a quasi-unit mesh T
according to Mφ in a vicinity of the 0 level set of φ. See section 7.5.1 for a further discussion on this point.

In our applications, we are interested in modifying mesh T so that it becomes adapted to both Lagrange
P1 interpolation of functions φin and φ(T, .). Such a mesh is built as a quasi-unit mesh according to the
intersection Mφin ∩Mφ(T,.) of metrics Mφin and Mφ(T,.), respectively adapted to φin and φ(T, .) (see figure
7.1 for an example).

(a) (b)

(c) (d)

Figure 7.1: Rotation of Zalesak’s slotted disk of angle π
4 : (a) adapted mesh at time t = π, (b) adapted mesh

at time 5π
8 , (c) mesh adapted to both interfaces ∂Ωin and ∂Ω(T ) (displayed in red), (d) zoom on the mesh.

In practice, our adaptation procedure is iterative: it starts with an initial function φin, on an adapted
mesh T in, adapted to metric Mφin , and in order to compute an approximation φT of φ(T, .), the advection
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equation is solved up to m times over the period [0, T ]: the first m − 1 times are ’virtual’, and aimed at

getting an increasingly accurate approximation φ̃kT (k = 0, ...m−1) of φ(T, .), as well as an increasingly well-
adapted mesh T k to the intersected metric Mφin ∩Mφ(T,.). Eventually, the m-th resolution of the advection

equation is carried out on a well-adapted mesh T m−1 and yields a close approximation φT = φ̃mT of φ(T, .)
on a well-adapted mesh T m to Mφin ∩Mφ(T,.). Such an iterative procedure is absolutely crucial, because
the time period [0, T ] can be very large. Thus, the sought ∂Ω(T ) is likely to be located very far from ∂Ωin,
i.e. in an area where the initial mesh is very coarse.

All things considered, the proposed adaptation method for advection equation is summed up in algorithm
(3), stille written for a generic time interval [0, T ]. Of course, in the general case, when several such time
periods

[
Tn, Tn+1

]
follow one another, this process has to be applied successively to each one of them.

Algorithm 3 Adaptation method for advection equation over [0, T ].

1: Start with an approximation φ0 (e.g. P1-interpolate) of function φin on mesh T .
2: for k = 0, ...,m− 1 do
3: if k = 0 then
4: Set T̃ 0 = T and φ̃in,0 = φ0.
5: end if
6: Solve the advection equation with velocity field V and initial state

φ̃in,k, over [0, T ], on T̃ k . φ̃kT
7: Compute the intersected metric Mk := M

φ̃k
0

∩M
φ̃k

T

8: Adapt T̃ k with respect to Mk. T̃ k+1

9: if k + 1 < m then

10: Project φ0 on mesh T̃ k+1. φ̃in,k+1

11: else
12: Project φ̃kT on T̃ k+1. (T̃ m, φ̃mT )
13: Adapt T̃ m with respect to φ̃mT , and project this function on the final mesh. (TT , φT )
14: end if
15: end for
16: return (TT , φT )

7.5 Additional numerical features

7.5.1 The need for mesh gradation control

Considering a function φ, we are mainly interested in its 0 level set. Thus, we only need to adapt our
computational mesh T with respect to the metric Mφ defined in the previous section on a neighborhood of
the interface of interest ∂Ω :=

{
x ∈ Rd, φ(x) = 0

}
. As is classical in mesh adaptation, we could be tempted

to ask T to show very large, isotropic elements ‘far’ from this interface, in such a way T consists of very
few elements, with optimal size and orientation. However, doing so, variations in the size and orientation
prescriptions are bound to be very sharp, resulting in a shock of features which can yield severe instabilities
during the mesh adaptation process (see figure 7.5 for an example). To get past this difficulty, we impose a
control over mesh gradation near the interface [53]. One possible way to do so consists in, roughly speaking,
bounding the allowed ratio between lengths ℓM (e1) and ℓM (e2) of any two edges e1, e2 belonging to a
common simplex K by a constant value r (in the examples of section 7.6, we used r = 4), i.e.

1
r
≤ ℓM (e1)
ℓM (e2)

≤ r.
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7.5.2 Importance of redistancing

In the context of level set methods, it has been observed that too steep or too loose variations in the level
sets of the function φ(t, .) under evolution may jeopardize the accuracy of the computation. To overcome
this feature, since [89], a great attention has been paid to maintaining or restoring φ(t, .) as the signed
distance function to its 0 level set ∂Ω(t) at least near ∂Ω(t) (so that |∇φ(t, .)| = 1 in a vicinity of ∂Ω(t)),
even though, doing so, the handled interface may inevitably end up perturbed: see for instance [27, 298] for
mass-preserving approaches, or [37] for a smoothing redistancing process. Here we apply the previous study
of chapter 6, merely replacing the computed approximation φT of φ(T, .) with the signed distance function
dT to ΩT . Given a small time step dt, dT is computed as the steady state of the sequence of P1-finite element
functions dn defined in algorithm 4, which is based on the properties of the unsteady Eikonal equation.

Algorithm 4 Redistancing of the level set function
1: Initialize function d0 with:





d0(x) = approximation of the signed distance function to ΩT if x
belongs to a simplex of T intersecting ∂ΩT

d0(x) = ±dMAX otherwise

2: for n = 1, ... until convergence do
3: dn(x) = dn−1(x) for each node x of T
4: for each node x of T which does not belong to a simplex intersecting ∂ΩT do
5: if x /∈ Ω then

6: dn(x) = min
(
dn−1(x), min

K∈T s.t. x is a node of K
dn−1

(
x− ∇(dn−1|K)

|∇(dn−1|K)|dt
)

+ dt

)
,

7: else

8: dn(x) = max
(
dn−1(x), max

K∈T s.t. x is a node of K
dn−1

(
x+ ∇(dn−1|K)

|∇(dn−1|K)|dt
)
− dt

)
.

9: end if
10: end for
11: end for
12: return dn

As discussed in chapter 6, the time step dt must be chosen small enough so that the update of dn(x)
with the formulae of algorithm 4 does not require values of dn−1 lying ’too far’ on the other side of the
boundary. For this reason, dt should be taken of the order of the local mesh size near the interface ∂ΩT .
However, this time step can be steadily increased, as values of the sequence dn converge near the inter-
face. What is more, we actually need dT to enjoy the distance property only in a neighborhood of ∂ΩT .
For this reason, in practice, we limit ourselves to performing a fixed number of the iterations of this algorithm.

The study carried out in chapter 6 showed that doing so yields formally an error in terms of Hausdorff
distance between ∂ΩT and the new interface ∂̃ΩT :

dH
(
∂ΩT , ∂̃ΩT

)
≤ sup




sup
K∈T

|∇dT |K |

inf
K∈T

|∇dT |K |2
,

sup
K∈T

|∇d̃T |K |

inf
K∈T

|∇d̃T |K |2


max
K∈T

max
y,z∈K

〈|H(d̃T )|yz, yz〉. (7.22)

Consequently, given mesh T is adapted to |H(dT )| ≈ |H(d̃T )| in the sense of section 7.4.2, this error is
actually very small, controlled by the fixed precision parameter ε for the quality of the approximation of
∂Ω(T ) by means of ∂ΩT .
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Note that in the proposed context, the redistancing process is twice as important as in the case of level
set methods performed on a fixed mesh Indeed, the narrow band on which we impose our mesh to be
adapted with respect to a metric Mφ as in section 7.4.2 is numerically identified according to the values of φ.
Hence, very stretched level sets of φ would also cause mesh adaptation to be performed on an ill-identified
narrow band around ∂Ω.

7.6 Numerical examples

In this section, we present several numerical examples in two or three dimensions in order to assess the
validity of the proposed adaptation method for the level set advection equation.

As presented in the analysis of section 7.3.2, all functions are approximated by P1 Lagrange finite element
functions, and we discretized the ODE (7.5) with a 4-th order Runge-Kutta method. As hinted at previ-
ously, the use of higher order spatial approximation (e.g. resorting to Pk Lagrange finite element functions
) would improve the method. It is also worth mentionning that we used the aforementioned redistancing
procedure at each step, even for the cases (e.g. rigid-body motions) that do not theoretically bring about
any distortion of the level sets of the evolving function.

Each one of the presented examples consists in letting evolve an initial interface ∂Ωin submitted to a
more or less deforming velocity field V from time 0 to a final time T , cooked up in such a way the final
(theoretical) surface ∂Ω(T ) coincides with ∂Ωin. Hence, analyzing the gap between the initial interface ∂Ωin

and the one ∂ΩT resulting from the process allows to gauge the quality of our numerical method. The
accuracy of the computation is evaluated in terms of the Hausdorff distance between the numerical initial
interface associated to ∂Ωin and the computed final interface ∂ΩT , which is computed with a brute-force
approach (in 2d only). We believe this is the relevant way to measure the error entailed by the method,
inasmuch as it is the quantity we mean to control with our mesh adaptation procedure, through estimate
(7.20). We are however well aware this is not so classical an error measure, and propose also more standard
error measures. Although no particular attention has been paid to mass conservation during this work, we
also display the loss of mass between initial and final step for the sake of completeness.

All our 2d examples were run on a MacBook Pro, 2.66 Ghz, (4 Go), and our 3d examples on an OPTERON
2.1 Ghz.

7.6.1 Rotation of Zalesak’s slotted disk

As initially proposed in [331], consider a unit square as a computational domain, in which lies a disk
of radius 0.15 centered at (0.5, 0.75), with a slot of length 0.25, submitted to a uniform rotation of center
(0.5, 0.5), corresponding to an evolution under the velocity field:

V (t, x, y) =
(
−(y − 0.5)
(x− 0.5)

)
.

between 0 ≤ t ≤ T = 2π, so that the final interface should theoretically overlay the initial one. This test-case
classically allows for an assessment of the well-preservation of the sharp features of an interface through an
evolution process. We subdivide the time interval into 8 time periods on which algorithm 3 is successively
applied. We perform two computations with different parameters as regards the mesh size prescription so as
to test the scaling of the method. Figure 7.2 displays a comparison between both interfaces. In table 7.1, we
provide the associated parameters (precision parameter ε, minimum size parameter hmin), along with their
translation in terms of mesh size: maximum number np of points of a mesh adapted to a single interface (the
number of points of a mesh adapted to both interfaces being approximately equal to twice this number),
as well as the error estimates of interest: we compute the Hausdorff distance between the initial interface,
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as well as two error measures that are more classical in the literature [2, 73, 192, 230]: the measure of the
symmetric difference between the initial and final domains Ωin and ΩT , (or sometimes referred to as L1-error
measure)

Esd(Ωin,ΩT ) := | (Ωin ∪ ΩT ) \ (Ωin ∩ ΩT ) |
and the L∞-error measure between both numerically obtained corresponding level-set functions uin and uT :

E∞(uin, uT ) := sup
K∈K

||uin − uT ||L∞(K),

K ⊂ T being the set of simplices crossed by the 0-level set of either uin or uT . The whole computation of
the first test takes roughly 5 minutes, while it takes about 8 minutes for the second.
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Figure 7.2: (left) Superposition of the slotted disk after one complete revolution (blue line) over the initial
one (red line), and zoom on the surfaces (middle and right).

ε hmin np Volume loss dH(∂Ωin, ∂ΩT ) Esd(Ωin, ΩT ) E∞(uin, uT )
(% initial vol.)

Test (1) 1e−3 1e−3 5699 −0.889 2.08e−3 3.36e−3 2.60e−3

Test (2) 1e−4 1e−4 14477 −0.299 8.61e−4 2.18e−3 1.34e−3

Table 7.1: Details on the two-dimensional test of Zalesak’s slotted disk.

We notice that a very nice accuracy can be obtained with a very small number of points. The sharp features
of the slotted disk are well preserved, and the final interface presents no oscillation whatsoever. However, it
seems difficult to say much more than that, especially when it comes to comparison with other methods, or
order computation of the process: we use a numerical scheme for the advection equation that is admittedly
low-order, and the accuracy of the process stems from the mesh adaptation process. The number of points
(or triangles) of the meshes at hand can vary considerably from one iteration to the other depending on the
‘wildness’ of the interface to be captured; they also depend in an unclear way of the precision parameters ε
and hmin.

7.6.2 Time-reversed vortex flow

The second test-case, proposed in [199], is a very good opportunity to investigate the behaviour of our
method when dealing with velocity fields entailing serious deformations of the initial shape. In a unit square
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domain, consider a disk of radius 0.15, centered at (0.5, 0.75), evolving according to the velocity field

V (t, x, y) =
(
−sin2(πx) sin(2πy) cos(πt

T
)

sin2(πy) sin(2πx) cos(πt
T

)

)
.

for 0 ≤ t ≤ T = 8. Because of the vorticity of the velocity field, some parts of the initial disk are compressed,
while some others become very stretched. What is more, the shape tends to become a more and more thin
filament, and very small (or, in our case, very elongated) elements have to be put so that mesh resolution
allows for a description of these parts. Because of the modulation in time, the shape reaches its most dis-
torted state at time t = T/2, and has returned to its initial state at time T . We performed 20 intermediate
time steps on this test-case, and the whole computation takes about 40 minutes. Figure 7.3 shows four steps
of the computation. Comparison between the initial and final state is reported in figure 7.4, and subsequent
details and error measures on this test-case can be found in table 7.2.

In order to emphasize the importance of mesh gradation, as discussed in section 7.5, we report in figure
7.5 the comparison between the first step of the presented computation, and the first step of the same
computation, performed with the same parameters, but without any mesh gradation. Note that the 0 level
set of the evolving function has not been represented in the latter case for it has been utterly ’lost’ ! This
shows that, even with a correct minimum size allowed, and with relevant precision parameters, the mesh
adaptation process needs such a gradation in the mesh, for the sake of robustness: indeed, at the beginning
of each iteration, the 0-level set of the evolving function is advected towards an area where the computational
mesh is likely to be coarse, then refined with the m internal iterations, as expressed in algorithm 3. If no
gradation in the mesh is enforced, this first ‘virtual’ advection may be too rough for capturing small details,
that will be missed by the subsequent iterations.

ε hmin np Volume loss dH(∂Ωin, ∂ΩT ) Esd(Ωin, ΩT ) E∞(uin, uT )
(% initial vol.)

1e−4 3e−4 34862 −0.380 1.81e−3 8.56e−4 1.83e−3

Table 7.2: Details on the two-dimensional time-reversed vortex flow test-case.

Remark 7.4. We hinted at the fact that, during a single iteration of the process, the 0 level set of the
considered scalar function may be advected from an area where the mesh is suitably refined, towards an
area where it is dramatically under-sampled (this is particularly likely to happen if the physical time step
∆t is chosen very large). One could wonder whether it could prove beneficial to make a first refinement
of the ‘landing area’, which could be achieved by applying the numerical scheme for advection to the size
prescription (which is computationally inexpensive), before turning to the first internal iteration, just so as
to get a well-sampled landing area. This merely amounts to roughly adding some degrees of freedom where
we know the next 0 level set of interest will be located. Actually, this process is rather easy to implement
numerically, at least when it comes to transporting the sole size prescription; things grow more tedious if we
are to advect both size and orientation prescriptions. However, this yields disappointing numerical results:
almost no improvement on the method has been observed when using to this technique.

7.6.3 Deformation test flow

An even more serious test case when it comes to shape distortion has been proposed by [288]. In a unit
square domain, a disk of radius 0.15, centered at (0.5, 0.75) is evolved according to the following velocity
field:

V (t, x, y) =
(

sin(4π(x+ 1
2 )) sin(4π(y + 1

2 )) cos(πt
T

)
cos(4π(x+ 1

2 )) cos(4π(y + 1
2 )) cos(πt

T
)

)
.

for 0 ≤ t ≤ T = 3. Periodicity of the domain with respect to the top and bottom sides is enforced. Roughly
speaking, this velocity field makes the domain composed of 16 vortices, and several parts of the disk are
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(a) (b)

(c) (d)

Figure 7.3: Four steps of the computation for the time-reversed vortex flow, (a) t = 0.8, (b) t = 4, (c) t = 5.6
and (d) t = 8, together with the corresponding 0-isovalues.

dragged by different ones, literally tearing the shape into pieces. See figure 7.6 for some illustrations of this
test case, and figure 7.7 for a comparison between the initial and final interfaces. The whole computation
takes around 70 minutes, and details as well as error measures regarding this test-case are to be found in
table 7.3.

ε hmin np Volume loss dH(∂Ωin, ∂ΩT ) Esd(Ωin, ΩT ) E∞(uin, uT )
(% initial vol.)

1e−3 5e−5 56536 −0.097 4.81e−3 6.77e−3 4.09e−3

Table 7.3: Details on the two-dimensional deformation flow test-case.
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Figure 7.4: (Left) Superposition of the final disk (blue line) over the initial one (red line), and (right) zoom
on the comparison.

Figure 7.5: Evolving surface at time t = 0.4 with (left) and without (right) mesh gradation control.

7.6.4 Rotation of Zalesak’s sphere

Very similarly to the first two-dimensional example comes the rotation of Zalesak’s slotted sphere in
3 dimensions. In a unit cube, a sphere of radius 0.15 with a slot of width 0.15 is initially centered at
(0.5, 0.5, 0.25), and undergoes a uniform rotation with respect to the x-axis, corresponding to a velocity
field:

V (t, x, y, z) =




0
−(z − 0.5)
(y − 0.5)


 .

over 0 ≤ t ≤ 2π. This sphere shows both ridges and triple points, that are naturally the most difficult
features to preserve throughout the advection process.
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(a) (b)

(c) (d)

Figure 7.6: (a) Maximum elongation step (t = T/2), (b) corresponding 0-level set, (c) intersected mesh,
adapted to both steps t = 0.9 and t = 1.2, (d) zoom on the intersected mesh (the surface associated to
t = 1.2 is displayed in red).

We split the time interval into 8 subperiods, and work with parameters ε = 0.005, hmin = 0.005, in such a
way each computational mesh has about 200, 000 points (≈ 1, 200, 000 tetrahedra).The sequence of obtained
surfaces is displayed on figure 7.8, while a zoom on both initial and final states is to be found on figure 7.9,
and several cuts into an ‘intersected mesh’ are to be found on figure 7.10. The whole computation process
takes about 100 minutes. Comparison of the initial and final interfaces demonstrate a good accuracy of the
method, even though, of course, the ridges and triple points of the surface have been a little smeared.
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Figure 7.7: (Left) Superposition of the final disk (blue line) over the initial one (red line), and (right) zoom
on the comparison.

7.6.5 Three-dimensional deformation test case

Eventually, we turn to yet another test case proposed in [199]. In a unit cube, a sphere of radius 0.15,
centered at (0.35, 0.35, 0.35) is made evolved according to the following velocity field:

V (t, x, y, z) =




2sin2(πx) sin(2πy) sin(2πz) cos(πt
T

)
−sin(2πx) sin2(πy) sin(2πz) cos(πt

T
)

−sin(2πx) sin(2πy) sin2(πz) cos(πt
T

)


 .

for 0 ≤ t ≤ T = 3. We split the time interval into 10 subperiods, and the results are reported in figure
7.11. Figure 7.12 displays two cuts in the most stretched interface of the evolution (the one at time t = 1.5),
while figure 7.13 displays two cuts in two different adapted meshes (one is anisotropic, the other is isotropic)
to the latter interface. The results presented in figure 7.11, which are the best obtained among different
tests carried out with different parameters, are those corresponding to a computation held with isotropic
adaptation with a minimum size parameter hmin = 0.002 (which amounts to anisotropic adaptation with
very small precision parameters). The largest mesh of the computation is worth 3, 763, 497 vertices, and the
whole computation took about 21 hours.

Taking a close look at the displayed sequence, one realizes that the final interface is not exactly as smooth
as the initial one, notably near its horizontal diameter; actually, this area corresponds to the most stretched
zone at the maximum elongation time t = T/2, and is the most difficult to track accurately (see the results
in e.g. [192] or [27] for similar behavior); of course, this effect vanishes with enhanced resolution.

The proposed method for solving the level set advection equation brings into play various tools, and it
is interesting to wonder which parts exactly take most of the computational expense. For each example, we
reported in table 7.4, the details of the longest iteration of the process, that is, the total time ∆tit of the
iteration, and the percentage of it which has been spent in each main step of the process (note that the
interpolation steps have been neglected). We notice that, understandably enough, the remeshing procedure
is by far the most costly in every case, which is quite understandable since it is the point in where lies the
main complexity of the method.
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Figure 7.8: Rotation of Zalesak’s sphere: sequence of computed surfaces.
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Figure 7.9: Zoom on initial Zalesak’s sphere (left) and on Zalesak’s sphere after a whole rotation (right).

Figure 7.10: Cut on a mesh adapted with respect to both surfaces at t = T/2 and t = 5T/8, following a
plane x = cste (left) and following a plane y = cste (right).

∆tit cost of advection cost of remeshing cost of redistancing cost of metric
(s) (%∆tit) (%∆tit) (%∆tit) computations (%∆tit)

Zalesak’s disk (Test 2) 62.1 4.0 90.6 3.1 2.3
2d time-reversed vortex flow 142.6 5.4 83.0 9.0 2.6

2d deformation flow 253.1 4.7 87.4 7.9 3.0
Zalesak’s sphere 1416 9.8 71.2 4.2 14.8
3d deformation 12417 16.9 51.2 26.1 5.8

Table 7.4: Costs of the steps of the proposed algorithm.
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Figure 7.11: 3d deformation test case: sequence of computed surfaces.

Figure 7.12: A cut in the most stretched interface, at time t = 1.5 (left); a zoom on the cut (right).
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Figure 7.13: (left) A cut in an mesh adapted to the evolving interface at time t = 1.5 using isotropic mesh
adaptation (≈ 1, 500, 000 points) and (right) anisotropic mesh adaptation (≈ 700, 000 points).

Appendix

Here is a variation of classical Gronwall’s lemma for the estimation of the discrepancy between the
solutions of two ODEs associated to different vector fields (see [313] for proof).

Lemma 7.3. Let V1, V2 : Rd+1 → Rd two vector fields, V1 being Lipschitz continuous in the second variable
with constant k, and such that there exists ε > 0 with, for all x ∈ Rd, |V1(x)−V2(x)| ≤ ε. Let x1, x2 : R+ →
Rd some respective solutions to:

{
x′

1(t) = V1(t, x1(t))
x1(0) = u1

,

{
x′

2(t) = V2(t, x2(t))
x2(0) = u2

Then the following estimate holds

∀t ∈ R+ , |x1(t)− x2(t)| ≤ |u1 − u2|ekt +
ε

k
(ekt − 1).
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In this chapter, we investigate two problems of discrete three-dimensional surface, and domain remeshing.
By discrete surface remeshing, we mean that a discrete triangulation S is supplied, which accounts for an

unknown continuous geometry, and may be arbitrarily under-sampled, over-sampled or of poor mesh quality,
in senses that will be made precise later. The aim is then to carry out mesh modifications to transform S
into a new, hopefully well-shaped, triangulation S̃ which accounts for the same underlying geometry.
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Very similarly, discrete domain remeshing starts with a tetrahedral mesh T , whose topological boundary
is a surface triangulation ST . Both T and ST may be of arbitrarily poor quality, and ST may be under-
sampled, over-sampled,... The objective is then to transform T into a ‘nice-quality’ mesh T̃ , which is a good
approximation of the underlying continuous domain.

Both problems have a very broad range of applications; they are perhaps as ubiquitous as mesh generation
techniques themselves in numerical simulation, since the initially supplied discretization of a surface, or a
domain of interest is very often a (simplicial) mesh of very poor quality; this feature indeed jeopardizes the
accuracy of most numerical techniques (finite element methods, finite volume methods to name a few). For
instance, most of the triangulated surfaces arising from Computer Aided-Design (CAD) modeling are supplied
under the so-called STL (STereoLithography) format, whose sole purpose is rendering: such triangulated
surfaces are very good descriptors of the continuous geometries they are intended for, but are minimal in
terms of number of elements, and may contain very stretched elements (see [38, 318] for further discussions
on the issue of remeshing such surfaces). On a different note, many surface models of real-life structures (e.g.
statues, monuments) are obtained by scanning processes [102, 310], and many biomedical data are produced
owing to the Marching Cubes algorithm (see [208], or the short presentation of this method in Chapter 3,
§3.2.1.3), which typically produce valid, yet over-sampled and very ill-shaped surface triangulations, and
must be modified (e.g. decimated, enhanced in terms of quality, etc...) before any numerical treatment is
possible. As far as ‘volume’ meshes are concerned, we have seen in Chapter 3 that most mesh generation
algorithms (e.g. Delaunay-based algorithms, or advancing front methods) are mainly focused on constructing
a mesh of a domain Ω ⊂ Rd from the datum of a surface triangulation, and do not focus too much on the
qualities of its elements. They should therefore by supplemented with a remeshing stage.

Admittedly, although each one of these two problems has its own specificities, they are closely connected,
and we aim at dealingl with them in a common framework insofar as possible.

This aim influences many choices as far as the adopted remeshing strategy is concerned: the topic of
discrete surface remeshing has been largely tackled (see e.g. the overviews in [18, 145], or that proposed
in Chapter 3 §3.3.2) and several fundamentally different approaches are available, which can be roughly
divided into two categories: global remeshing approaches use the provided triangulation only to infer a
global (e.g. parametric) description of the continuous surface it is meant to account for, then generate a
whole new mesh of this surface (see for instance [19, 265]). On the contrary, local remeshing algorithms
only perform local operations on the supplied triangulation to transform it into a ‘better’ one through an
iterative process [140, 294]. Although both approaches prove robust and efficient, they do not equivalently
lend themselves to generalization to the context of domain remeshing. In the latter case, if each operation
does not simultaneously affect both the surface and volume parts of the mesh, a whole new tetrahedral
mesh has to be generated from the modified surface triangulation, and this may prove difficult, as we have
discussed in Chapter 3. Our main concern in this chapter is to devise a robust approach. Indeed, we have in
mind to rely on this algorithm as a component of a mesh evolution process; in this view, we though it better
to rely only on a local remeshing approach, which iteratively transforms an always existing input mesh in
the best possible way, and never has to generate a three-dimensional mesh of a domain from the sole datum
of a surface triangulation.

The remainder of this chapter is organized as follows. Section 8.1 deals with discrete surface remeshing.
It is intended to define as rigorously as possible its main purposes, then describes a possible strategy: the
effective modifying operators acting on a surface mesh are detailed, as well as the way they are driven,
which requires to rely on a metric size map, accordingly defined. Several numerical examples, emphasizing
the different features of the proposed method are eventually presented. We then extend this strategy to
the context of anisotropic mesh adaptation in section 8.2. After recalling supplementary material from Rie-
mannian geometry, we describe a slightly different approach from the existing ones, which strengthens even
more the paradigm of a Riemannian structure based anisotropic meshing initiated in [311], and has been
extensively used since then. Last but not least, we describe how the previous approach for surface remeshing
can be generalized to the problems of domain remeshing, and implicit domain meshing. A final appendix
gathers some considerations about the well-known validity checks on local remeshing operators, which are
most probably far anterior to this manuscript, but which we did not find exactly under this form in the
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literature.

This chapter is a joint work with Cécile Dobrzynski and Pascal Frey. Parts of its contents have been
submitted to publication as the journal article:

C. Dapogny, C. Dobrzynski and P. Frey, Three-dimensional adaptive domain remeshing, implicit
domain meshing, and applications to free and moving boundary problems, submitted (2013).

8.1 Remeshing of surface triangulations

In this section, we consider a discrete surface Γ embedded in R3, which is only known via a triangulation,
i.e. a mesh S = (Ti)i=1,...,NS

. In the sequel, we constantly identify S with the associated piecewise linear
surface. We also make the following assumptions:

– the triangulation S is conforming, that is, the intersection between any two triangles Ti, Tj , i 6= j
amounts to either the empty set, a common vertex, or a common edge.

– the resulting surface is a compact orientable manifold, with or without boundary.
(8.1)

The discrete surface S is intended as an interpolating - potentially under-sampled, over-sampled, or ill-shaped
- piecewise linear approximation of an unknown ideal surface Γ. We aim at performing local modifications
on the original defining triangulation S, thus producing a sequence S1, ...,Sn of triangulations (which will
all be denoted by S in the following, to save notations) getting closer and closer to a final approximation S̃
of Γ, which is:

– well-shaped, that is, composed of high-quality elements. As we have seen in Chapter 3, the choice of
a quality function for evaluating elements is very important in numerical practice, and the retained
criterion should be neither too ‘strict’, nor too ‘lenient’ in tagging elements as ‘bad’ elements. After
several trials, we made up our minds to appraise the shape of a surface triangle T in terms of the
quantity Q(T ) defined by:

Q(T ) =
4 Vol(T )√
e2

1 + e2
2 + e2

3

, (8.2)

where e1, e2, e3 are the edges of T .
– close to Γ, in the sense that the Hausdorff distance dH(S̃,Γ) between S̃ and Γ is no larger than a

user-defined tolerance ε (see Figure 8.1).
As hinted at above, the ideal surface Γ is unknown, and so as to guide the local modifications of the

surface mesh, we need to ‘guess’ it (actually, we should say ‘invent it’) from the data at hand, i.e. the
triangulation S. One could think of mainly two ways for doing so:

– The first one consists in constructing a whole underlying surface Γ to the discrete surface S as a pre-
processing stage for remeshing. This surface Γ is then kept in memory, for instance under the form
of a parametrization σ : U → Γ (this is the point of view retained in [19]). The parameter space U
can be an open subdomain of R2 [122, 265], the surface S itself [294], etc... This parametrization is
stored, and at each stage of the remeshing procedure, the current triangulation S is compared to Γ in
order to assess the geometric approximation. Such an approach is well-posed on the theoretical side:
all the produced triangulations are compared to one single continuous surface; however the storage
and numerous comparisons involved generally prove quite costly. See [136] for a review of surface
parametrization techniques.

– On the other side, we could limit ourselves to constructing local models for Γ: at any stage of the
process, when an operation around a node x of the current triangulation S is performed, a local
parametrization σU : U → V ⊂ Γ from an open set U ⊂ R2 to a neighborhood V of x in Γ is computed
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Figure 8.1: Poor geometric approximation (left) of a smooth surface (right).

from local features of S around x. This approach is undoubtedly more efficient from the computational
point of view, but it raises a fundamental difficulty: the triangulation S supporting the information
from which these local parameterizations are generated inescapably changes from one stage to another,
which challenges the very idea of considering one continuous model Γ for S.

In what follows, we rely on the second approach, referring with some abuse in terminology to the ideal
surface Γ associated to the various surface meshes at hand during the process, neglecting the fundamental
dependance of this ideal surface on the triangulation used to compute it. We will however see that some
heuristics can guarantee that this generated geometric support is not ‘too much’ altered along the steps of
the process.

We are thus led to set rules to infer a piece of the underlying surface Γ from the datum of a piece of
the current discrete geometry S at the investigated stage. We already mentioned the fact that we want to
assume minimal input information around the considered surface, i.e. we only have at our disposal a set
of triangles, without further structure. This is the case, for instance, when the input surface mesh stems
from a mesh evolution procedure such as the one we will describe in Chapter 9. Hence, as a pre-processing
stage, we need to extract additional geometrical features about the surface Γ from S (normal vectors, ridge
edges,...). This is the purpose of the next section.

8.1.1 Reconstruction of the geometry

Let S = (Ti)i=1,...,NS
be a surface mesh, about which no more information than the sole lists of the

constituting triangles and vertices are supplied. The first step in associating to S a relevant continuous
geometry Γ consists in identifying different kinds of points, edges,... corresponding to significant geometrical
features of S (and thus Γ) which will constrain the admissible operations carried out during remeshing. In
this view, we operate a distinction between (see Figure 8.2 1 for an illustration):

1. required edges: any user-specified edge which should not be affected by the process.

2. open edges: the ideal surface Γ associated to the input triangulation S may be a compact manifold
with boundary. Then, the open edges of the mesh are the edges of the topological boundary ∂S of S.

1. On the right: free model from http://artist-3d.com/free_3d_models.
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3. geometric edges, or ridges: edges delimiting two portions of surface which intersect with a sharp angle.
Ridges can be identified from the input triangulation by relying on a threshold value on the dihedral
angle between pairs of adjacent triangles.

4. reference edges: different regions, supporting different labels, may exist on the input triangulation,
corresponding for instance to different material properties. The reference edges of mesh S are defined
as the edges at the interface between two triangles Ti 6= Tj carrying different labels.

5. ordinary edges.
A fairly close classification holds for the vertices of S: one then talks about ridge points (points lying on a
ridge edge), open points, reference points,... and singular points, which are points that arise as endpoints
of at least three special edges, and thus cannot be considered as ‘normal vertices’, lying on a ridge curve,
reference curve, ...

Figure 8.2: (Left): Ordinary edges (in black), reference edges (in yellow) and ridges (in red) on a trian-
gulation. Different colors on triangles account for different labels. The points belonging to at least three
reference, ridge or required edges are singular points (in green); (right): open curve on a triangulation (in
red).

Once such a classification of vertices and edges of S is operated, S is endowed with an orientation (which
is possible because of our initial assumptions (8.1)). Roughly speaking, this consists in locally opposing two
sides separated by S in a globally consistent fashion. For instance, if S is the topological boundary of a
three-dimensional polyhedral domain Ω, the choice of an orientation for S boils down to deciding if either Ω
or R3 \ Ω is the interior domain associated to S. In concrete terms, the orientation procedure for a surface
triangulation S consists in reordering the three vertices of each triangle T ∈ S so that the direct normal
vectors to all the triangles of S consistently point towards one side of S. This is classically achieved by using
a hashing procedure [145].

Next, from the features of S, we compute approximations of some geometrical data attached to Γ, at the
vertices of S. Depending on the nature of the considered vertex of S, different quantities prove relevant (see
for instance [145], §19.2.1); see Figure 8.3:

1. No further information is attached to singular points, or required entities, for they are by essence bound
not to be affected by remeshing.
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2. In the neighborhood of a regular vertex x, the surface Γ is smooth (at least of class C1). It will prove
useful to compute an approximation of n(x), the unit normal vector to Γ at x. This is achieved from
the discrete surface S by using a weighted sum of the normal vectors to the triangles of BS(x) of the
form:

n(x) ≈
∑
T∈B(x) αT nT∣∣∣

∑
T∈B(x) αT nT

∣∣∣
,

where αT are coefficients in [0, 1] such that
∑
T∈B(x) αT = 1, and nT is the unit normal to a triangle

T . Note that such a formula can only make sense if S has already been oriented. Several choices are
possible as for the values of αT . Some authors are used to taking them all equal to one another, others
take each αT proportional to the area of T , etc... As far as we are concerned, all these reconstruction
formulae worked more or less equivalently well, and we retained the former one.

3. According to the above terminology, non singular ridge vertices x of S are vertices belonging to a
ridge curve of Γ, that is a curve delimiting two portions of surfaces which intersect at a sharp dihedral
angle. Such points enjoy two normal vectors (one for each piece of surface), say n1(x), n2(x) , which
are reconstructed in the discrete context in the same way as for regular vertices, and a tangent vector
τ(x) (the tangent vector to the ridge curve), which is uniquely determined by its belonging to two
distinct ‘tangent’ planes.

4. At a reference vertex x of S, which is neither singular, nor ridge at the same time, two geometrical
features are of interest, namely the unit normal vector n(x) to Γ at x (which is approximated as
previously), and the unit tangent vector τ(x) to the reference curve going through x and delimiting
two regions carrying different labels. Once again, several formulae exist in the literature for the
approximation of τ(x) [145]. Here, we use:

τ(x) ≈ x0x1

|x0x1|
,

where x0x and xx1 are the two reference edges of S sharing x as an endpoint.

These supplementary pieces of information about the ideal surface Γ, approximated from the discrete geom-
etry, allow us to define a local surface model for Γ; this is the purpose of the next section.

n(x)

•
x

Ti

nTi •x

τ(x)
n1(x)

n2(x)

Figure 8.3: Approximation of the normal vector to Γ at x as a (weighted) average of the normals nTi
to the

triangles of the ball of x, in the case of a regular vertex x (left); two normal vectors and a tangent vector
associated to a ridge vertex x (right).
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8.1.2 Local reconstruction of the ideal surface from the discrete geometry

The purpose of this section is to described the rules for inferring the local geometry of the ideal surface
Γ around a triangle T of S from the entities attached to T and its three vertices, introduced in the previous
section. This surface model is broadly based on the one introduced in [316].

In the following, we make the assumption that each triangle T = a0a1a2 ∈ S accounts for a smooth
portion of Γ, whose boundaries may still be ridge curves, reference curves, etc... The portion of Γ associated
to T is modeled as a cubic piece of surface σ(T̂ ), where

T̂ :=
{

(u, v) ∈ R2, u ≥ 0, v ≥ 0, w := 1− u− v ≥ 0
}

is the reference triangle in the plane, and each component of σ : T̂ → R3 is a polynomial of total degree 3
in the two variables u, v ∈ T̂ . Equivalently, one could parametrize the same piece of surface directly from
the triangle T (i.e. without bringing the reference element in the plane into play), using another mapping
φ : T → R3; of course then, σ = φ ◦AT , where AT : T̂ → R3 is the unique affine mapping which transforms
T̂ into T . It will turn out convenient to write σ under the form of a Bézier cubic polynomial (see [131] for
exhaustive details around the assets of such a representation):

∀(u, v) ∈ T̂ , σ(u, v) =
∑

i,j,k∈{0,1,2,3}
i+j+k=3

3!
i!j!k!

wiujvk bi,j,k, (8.3)

where the bi,j,k ∈ R3 are control points, yet to be specified. See Figure 8.4 for an illustration.

�T
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b1,2,0

b0,3,0

b0,0,3
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•

•

••
• •

•

•
• •

Γ
T

Figure 8.4: A piece of parametric Bézier cubic surface, associated to a triangle T ∈ S, with control points
bi,j,k.

The boundary curves γ0, γ1, γ2 of the portion of surface σ(T̂ ) are respectively:

∀t ∈ [0, 1], γ0(t) = σ(1− t, t), γ1(t) = σ(0, t), γ2(t) = σ(t, 0).

The choice of the control points bi,j,k is - at least partially - dictated by the geometrical features of Γ we
approximated in the first step, or by other requirements we may want our local geometry to meet.

8.1.2.1 Choice of the three ‘vertex’ control points

We already mentioned that the triangulated surface S interpolates the ideal surface Γ, i.e. its vertices
lie on Γ. This prompts the natural choice of the three vertices of T as the three extremities of σ(T̂ ). As the
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vertices a cubic Bézier polynomial (see formula (8.3)) are b3,0,0, b0,3,0, and b0,0,3, we impose:

b3,0,0 = a0, b0,3,0 = a1, and b0,0,3 = a2. (8.4)

8.1.2.2 Choice of the six ‘curve’ control points

We imposed that σ(T̂ ) should be a smooth piece of surface. In particular, σ(T̂ ) has a tangent plane
Tai

Γ at each vertex ai. Thanks to the reconstructed information of the previous section, it is rather easy to
approximate each tangent plane Tai

Γ - and equivalently the normal vector to Γ at ai, with respect to the
considered piece of surface, say ni: for instance, if ai is a regular vertex of S, take the reconstructed normal
at ai; in case it is a ridge vertex, take the ‘most consistent’ of the two reconstructed normals at ai, etc...

On the other hand, the whole geometry of Bézier curves and surfaces can be expressed in terms of their
control points. More specifically, a mere derivation in (8.3) shows that, for instance, the tangent vector at
a0 to the boundary curve γ2 is 3(b2,1,0 − b3,0,0), and that to γ1 is 3(b2,0,1 − b3,0,0).

Hence, the tangent plane to σ(T̂ ) at a0 is the expected tangent plane Ta0
Γ provided b2,1,0 and b2,0,1 are

chosen in such a way that (b2,1,0− a0) and (b2,0,1− a0) are non colinear, and both orthogonal to n0. Similar
relations hold when it comes to a1, a2 and the control points b0,2,1, b1,2,0, b1,0,2 and b0,1,2.

This still allows some latitude as for the choice of these coefficients. In [316], the authors propose to take,
for instance, b2,1,0 as the orthogonal projection over Ta0

Γ of the point (a0 + (a1− a0)/3). Instead of this, we
propose to incorporate the requirement that we want our local surface reconstruction by means of σ to be as
independent as possible from the support triangle T used for its computation (even if, of course, complete
independence is out of reach, as discussed in the introduction), in order to devise some heuristics as for the
choice of these control points.

Loosely speaking, this requirement means that we would like the three boundary curves γ0, γ1, γ2 to be
independent from the choice of the points on these curves used to generate them. Because on any Riemannian
manifold two ‘close enough’ points are connected by a unique geodesic curve (see section 8.2.1), a way to
enforce this independency would be to choose their control points so that γ0, γ1, γ2 are geodesics of σ(T̂ ),
that is, curves with constant speed. This property can in turn only be enforced in some kind of ‘weak
sense’: for instance, in the case of γ0 (similar conditions hold for γ1, γ2), we imposed that γ′

0(0) should be
colinear to the orthogonal projection of (a2− a1) over Ta1

Γ, and have a fixed norm |γ′
0(0)|= |a2− a1|/3, and

symmetrically for γ′
0(1). Doing so uniquely determines the six coefficients attached to the boundary curves.

8.1.2.3 Choice of the central coefficient

We simply take:

b1,1,1 = m+
m− v

2
, v :=

a0 + a1 + a2

3
; m :=

b2,1,0 + b2,0,1 + b1,2,0 + b0,2,1 + b1,0,2 + b0,1,2

6
,

which guarantees that, if there exists a quadratic polynomial parametrization σ̃ : T̂ → R3 whose boundary
curves t 7→ σ̃(1 − t, t), σ̃(t, 0) and σ̃(0, t) coincide with γ0, γ1 and γ2 respectively, then σ = σ̃ over T̂ [131].
Note that the choice of the central coefficient b1,1,1 does not affect the geometry of γ0, γ1, γ2.

Remark 8.1. The above rules for computing the four control points along each boundary curve γi only
involve geometric data attached to this curve (or to its endpoints). This fact has a very important practical
consequence. It implies that our rules for generating a piece of Γ are consistent from one triangle to its
neighbor, that is, if Ti, Tj ∈ S share a common edge pq, the underlying boundary curve associated to pq
via the local parametrization generated from Ti is the same as from Tj . Actually, the proposed rules for
generating portions of Γ from triangles of S are also rules for generating curves drawn on Γ from edges of S.

Putting parametrization σ under the form (8.3) allows for a close and fast evaluation of the Hausdorff
distance between the considered triangle T ∈ S and the corresponding piece of ideal surface σ(T̂ ) ⊂ Γ.
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Indeed, σ(T̂ ) is comprised in the convex hull of the control points bi,j,k, because for all (u, v) ∈ T̂ , σ(u, v)
is a convex combination of the bi,j,k. As a consequence, one easily sees that

dH(T, σ(T̂ )) ≤ max
l=0,1,2,

i+j+k=3

d(al, bi,j,k), (8.5)

where dH(., .) stands for the Hausdorff distance between compact subsets of R3. A similar estimate holds
when it comes to controlling the Hausdorff distance between each edge a1a2, a0a2, or a0a1 of T and the
corresponding boundary curve γ0, γ1, or γ2 of σ(T̂ ).

At this point, we are able to measure (at least to control) how far each triangle T of the considered
triangulation S lies from the ideal surface Γ. This is a precious guide when it comes to deciding whether an
operation performed on S (see the next section 8.1.3) enhances, or does not degrade too much the geometric
approximation of Γ by means of S.

8.1.3 Description of the local remeshing operators

This section is devoted to the description of the operations we intend to carry out on surface triangula-
tions. The four presented operators are local, i.e. they affect only a small neighborhood of the considered
entities. Note that they are widely used in the literature (see e.g. [56, 145]); the forthcoming descriptions
are essentially meant to specify how exactly they fit in our particular setting.

8.1.3.1 Edge split

This is the main tool when it comes to enriching an undersampled triangulation (with respect to whatever
criterion). Splitting an edge pq of a triangulation S consists in introducing a new vertexm in S, then replacing
pq by the two edges pm and mq (the local geometry of S being updated accordingly). In our context, the
new point m ∈ Γ is inserted directly on the ideal surface Γ, and an appropriate location is achieved by
computing the curve [0, 1] ∋ t 7→ γ(t) ∈ Γ associated to pq, then taking m = γ( 1

2 ).
Now, there are several ways to split edges within a triangulation S: the simplest one consists is to travel

all the edges in S, and as soon as an edge complying with the splitting criterion is met, perform the splitting
operation. However, we noticed that repeatedly splitting elements along only one edge tends to produce very
ill-shaped elements in the long run.

For this reason, we favored another approach, which consists in identifying in a first step all the edges
of S that should be split, then to proceed to splitting, resorting to patterns on each triangle T (possibly
reiterating the process if some edges need to be split several times); see Figure 8.5 for an example of splitting
of a triangle along one or three edges.

a0

a1

a2

Γ

•

T T

a0

a1

a2

Γ

•
•

•

Figure 8.5: Splitting of (left) one or (right) three edges of triangle T , positioning the three new points on
the ideal surface Γ (dotted).
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Under the (formal) assumption that the local parameterizations σ described in section 8.1.2 represent
pieces of the invariant surface Γ, splitting a triangle T ∈ S always enhances the approximation of Γ.

8.1.3.2 Edge collapse

This is the key ingredient in decimating an oversampled triangulation. Collapsing an edge pq of S consists
in merging pq into a single point, say q itself for simplicity. One or two triangles end up deleted during the
process, those of the shell Sh(pq) of pq, i.e. the triangles sharing pq as an edge, and the other triangles of
S which shared p as a vertex then enjoy q instead (see figure 8.6).

•
•
p

q
•

q

Figure 8.6: Collapse of point p over q. Both triangles in the shell of pq (in grey) disappear.

This operator ought to be driven with much caution:
– Obviously, not all edges of S are subject to collapse, and some coherence with geometrical data has to

be respected. For instance, singular points must not be collapsed, ridge points must not be collapsed
onto regular points, etc...

– Collapsing a point p ∈ S onto a point q may lead to an invalid configuration, because some triangles
in the ball B(p) may end up inverted (see figure 8.7 for a two-dimensional example). It is therefore
mandatory to perform checks on the triangles of B(p), anticipating the resulting configuration before
triggering the effective collapse operation.

– Even if the resulting configuration is valid, it may turn out to be ‘folded’, with respect to the initial
one, i.e. the collapse operation may have entailed too large a deviation between the normal vectors to
the updated triangles. Such cases must be prevented, for instance by enforcing a maximal tolerance
(with an arbitrary threshold value) as for the authorized deviation between normal vectors to adjacent
triangles.

– The resulting triangulation from this operation is in general rougher than the initial one as a geometric
approximation of Γ. One must check, thanks to the tests expressed in formula (8.5), that S stays
within the prescribed range of Γ in terms of Hausdorff distance.

These two operators are mainly sampling operators in the sense they allow to transform an arbitrary
initial triangulation S of an ideal surface Γ into a new triangulation which enjoys a correct node density with
respect to the prescribed criterions (desired edge length, tolerance over the geometric approximation of Γ,...).
On the contrary, the next two ones are essentially meant to enhance the quality of a surface triangulation
(and, to a lesser extant, the accuracy of the approximation of the associated underlying surface Γ).

8.1.3.3 Edge swap

As we shall see in section 8.3, this operator is the only one which is fundamentally different between
the cases of surface triangulations and three-dimensional ‘volume meshes’. It plays a key role in improving
the overall mesh quality, and acts only on the connectivities of a mesh S, leaving its vertices unchanged.
Swapping a common edge pq to two adjacent triangles T1 = pqa, T2 = pbq ∈ S consists in replacing pq by
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•

pq
•

q

Figure 8.7: Impossible collapse of p onto q in 2d: (left) before and (right) after the operation: the two grey
elements are inverted.

the alternate edge ab; the two triangles T1 and T2 become respectively T̃1 = abq and T̃2 = apb during the
process (see figure 8.8).

This operator as well should be handled with caution:
– So as not to violate the geometry of the ideal surface Γ, only regular edges, that is edges that are

neither singular, nor ridge, nor reference edges should be held eligible for swap.
– Swapping a common edge pq to two surface triangles T1, T2 ∈ S may very well invalidate a configuration

(for instance, in the case of a two-dimensional volume mesh, this happens when the union of both
triangles T1 ∪ T2 is not convex), or result in a ‘folded’ triangulation. For this reason, checks must be
performed over the expected configuration before proceeding indeed to the operation.

– Such an edge swap may also deteriorate (or improve) the geometric approximation of Γ by means of
S. Checks on the resulting configuration, applying the control (8.5) to the expected triangles T̃1, T̃2

must be performed.

p

q

a bT1 T2

nT2

nT1

p

q

a b

n�T1

n�T2

�T2

�T1

Figure 8.8: Swap of edge pq: triangles T1, T2 are updated to T̃1, T̃2, a configuration more consistent with the
geometric data.

Pre-empting our study of 3d domain remeshing (see Section 8.3), it is convenient to notice that swapping
a common edge pq to two triangles T1 = paq and T2 = pbq is equivalent to splitting pq at its midpoint m,
then collapsing either of the newly created edges ma or mb (see Figure 8.9). Actually, one may prove that in
the 2d, or 3d ‘volume’ remeshing context, the swapped configuration is valid if and only if, for any position
of m in the segment pq, the collapse of m onto a and onto b yields a valid configuration.
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•
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Figure 8.9: (Left) swap of edge pq by combining an edge split and an edge collapse: (middle) pq is split by
introducing its midpoint m, then (right) m is collapsed onto a (or b) to deliver the swapped configuration.

8.1.3.4 Vertex relocation

This last operator mainly serves the purpose of improving the overall mesh quality. It consists in moving
a vertex p of S, while all the other positions of the vertices of S are fixed, as well as its connectivities.
This is achieved by using a simple procedure (see Figure 8.10): suppose for instance p is a regular vertex (a
similar, simpler procedure holds in the other cases), and consider its ball B(p) = (Ti)1,...,Np

. Consider the
orthogonal projections Ti of the Ti onto the tangent plane TpΓ of Γ at p. From then, a new position q ∈ TpΓ
is computed for p in the tangent plane TpΓ: one may for instance follow the direction of the gradient of the
quality function of the triangle with the worst quality among the Ti with respect to the position of p ∈ Γ
(this gradient naturally belongs to TpΓ, or resort to more heuristic procedures, such as taking p as a weighted
sum of the endpoints of triangles Ti: this is the well-known Laplacian smoothing procedure [134]. Note that
a wide literature exists as for the choice of this position q (see for instance the very interesting procedure
proposed by [139], based on non smooth optimization, or the overview in [145]). Actually, we tested several
of these procedures and observed they yield similar results in terms of the resulting mesh quality, in the
context of our surface remeshing algorithm. We thus retained the simplest - and most heuristic - among
them, which consists in taking q as the centroid of the union of the triangles Ti.

Then, q belongs to one of the Ti, say Ti0 , and is projected first to q ∈ Ti0 , then onto Γ by taking φ(q),
where φ : Ti0 → Γ is the local parametrization of Γ corresponding to Ti0 (see Section 8.1.2).

•
p

TpS
Ti0

• q

Ti0

•
p

• q

•

S

φ(q)

φ

Figure 8.10: Relocation of vertex p: (left) B(p) is projected onto TpS, and an optimal position q is sought
on TpS. (Right) the associated point q ∈ Ti0 is projected onto Γ.

As in the case of edge collapse and edge swap, this operation may invalidate S, or degrade the associ-
ated geometric approximation of Γ. Hence the need to check the validity of the resulting configuration, its
proximity with Γ, and its quality - the chosen criterion fro computing the relocation position for p being
heuristic, there is no strong guarantee that the quality of S will end up increased in the process.

We now have at hand several operators for modifying an initial triangulation S, intended as a compu-
tational approximation of an underlying surface Γ into a new triangulation S̃, which retains the geometric
features of Γ, and stays close from Γ (in terms of Hausdorff distance) within a prescribed range.
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Unfortunately, that is not enough to ensure the resulting triangulation will be well-shaped. Indeed, these
operators can only analyze very local configurations, then proceed to the respective operation provided it
does not degrade the geometric approximation of Γ beyond a certain tolerance. So to speak, the hitherto
devised strategy for remeshing lacks a global vision of where to add points in priority, where they should be
removed in priority, etc... Since [311], a very convenient tool to add such intelligence to the process has been
that of metric tensor field.

8.1.4 Definition of a size map adapted to the geometric approximation of a
surface

We turn to the definition of a size map adapted to the control of the geometric approximation of Γ by S
in terms of the Hausdorff distance dH(S,Γ) between both surfaces.

8.1.4.1 Meshes and metric size maps

In this short and very elementary subsection, we introduce several definitions and notations around the
concept of an (isotropically) adapted surface mesh to a given size specification, which will come in handy in
the following.

Let S be a triangulation in R3 agreeing with hypotheses (8.1), and let Γ be the underlying ideal surface.
A size map h on Γ is nothing more than a positive scalar function h : Γ→ R, which loosely speaking encodes
the ‘local feature size’ in the neighborhood of each point of Γ, in a way to be specified in Subsection 8.1.4.4.

Definition 8.1. Let Γ be a smooth surface, I = [a, b] a closed interval of R. Let also γ : I → R be a
piecewise differentiable curve on Γ, i.e. a continuous curve such that there exist a = t0 < t1 < ... < tk = b
with each restriction γ|[ti,ti+1] being differentiable. The length ℓh(γ) of γ with respect to h is:

ℓh(γ) =
∫ b

a

|γ′(t)|
h(γ(t))

dt. (8.6)

Hence, a size map h : Γ→ R allows to measure lengths of edges of S: indeed, if pq is such an edge, and
γ is the associated curve on the ideal surface Γ (see remark 8.1), with a small abuse in terminology, we will
call the quantity ℓh(γ) the length of pq with respect to h, and denote it ℓh(pq).

Remark 8.2. Without explicit reference to any size map on Γ, we denote as ℓ(γ) (resp. ℓ(pq)) the Euclidean
length of a curve γ (resp. of the underlying edge pq), that is the one associated to the constant size map
h ≡ 1 over Γ.

Once such a size map h is defined on Γ, we aim at modifying S into a new triangulation S̃ of Γ whose
edges pq have unit length with respect to h. The motivation for doing so comes from the following fact:
imposing that the edges pq of the resulting triangulation S̃ of Γ which are associated to a portion of surface
U ⊂ Γ have constant (Euclidean) length ℓ0 is equivalent to imposing that these edges have unit length ℓh(pq)
if the size map h is defined by: h(x) = ℓ0, x ∈ U . Hence, defining a (non constant) size map h over Γ is a
way to generalize this idea of size feature to local prescriptions.

In numerical practice, the size map h cannot be directly defined on Γ, and must be supported by the
triangulation S itself, in a discrete way. In our case, it is stored at the vertices of S (which belong to Γ),
then interpolated whenever it is required elsewhere; for instance, let pq an edge of S, γ : [0, ℓ(γ)] → Γ the
associated curve on Γ parametrized by its arc length (γ(0) = p, γ(ℓ(γ)) = q). Then h(γ(t)) is approximated
by the formula:

∀t ∈ [0, ℓ(γ)], h(γ(t)) ≈ (1− t

ℓ(γ)
)h(p) +

t

ℓ(γ)
h(q), (8.7)
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which accounts for a linear interpolation of the size prescriptions with respect to the (intrinsic) parametriza-
tion of γ. Of course, as S is modified during the remeshing process, the numerical approximation of h carried
by S changes accordingly. Nevertheless, the choice of the approximation rules for Γ (see section 8.1.2) should
ensure that it does not change ‘too much’ from its original definition, in the course of the remeshing process.

At this point, defining a Riemannian structure over Γ in order to encode the local size prescription may
seem a bit artificial. However, we will consider in section 8.2 the more general case where there are several
size prescriptions (depending on directions) are imposed at a given point x ∈ Γ. Then, the real benefit of
this formalism will appear more clearly.

8.1.4.2 A general L∞ error estimate

We now recall a very elementary, yet very powerful L∞ error estimate for the interpolation error of a
smooth enough function over a simplex in Rd, d = 2, 3; see [24] for a proof, or [135] for variants around the
affine approximation of (smooth) curves, or (smooth) vector-valued functions on a simplex in Rd. Note that
we have already encountered this result in Chapters 6 and 7.

Theorem 8.1. Let K ⊂ Rd (d = 2 or 3) a (closed) simplex, and f a function of class C2 on K. Denote as
πKf the affine interpolate of f on K, that is,

∀x ∈ K, πKf(x) =
d∑

i=0

f(ai)λi(x),

where ai are the vertices of K and λi the barycentric coordinate functions in K. Then,

||f − πKf ||L∞(K) ≤
1
2

(
d

d+ 1

)2

max
x∈K

max
y,z∈K

|H(f)(x)|(yz, yz)

where, for a symmetric matrix S ∈ Sd(R), which admits the following diagonal shape in orthonormal basis

S = P



λ1 0

. . .0 λd


PT , we denote |S| = P



|λ1| 0

. . .0 |λd|


PT .

8.1.4.3 A control over the Hausdorff distance between a smooth surface and an interpolating
triangulation

Using theorem 8.1 allows to derive a small result around the geometric approximation of a surface by
means of an associated surface triangulation, in a particular case. In this section, we shall rely on the
material around the signed distance function to a domain in Rd recalled in Chapter 4, §4.2.

The purpose of this section is by no means to prove a powerful result, under optimal assumptions, but
only to present an easy and comprehensive result which we shall use as a guideline in defining a size map (and,
later, a metric tensor field) associated to the geometric approximation of a surface. From this standpoint,
only the result expressed in Theorem 8.2 will be useful in the sequel, and the proofs, which are only given
for the sake of completeness, may be skipped.

Let us consider a surface Γ ⊂ Rd which arises as the boundary of a bounded domain Ω ⊂ Rd (we are only
interest in the case d = 3 in this chapter, but the forthcoming considerations hold in the general case without
additional difficulty). Let also S be a surface triangulation of Γ. We make the following assumptions:
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1. Ω ⊂ Rd is a connected bounded domain of class C2.

2. The surface mesh S is a valid triangulation (in the sense given in Chapter 3 §3.1.1).

3. S is an interpolating triangulation of ∂Ω, i.e. all the vertices of S lie on ∂Ω.

4. The surface S is a compact submanifold of Rd.

5. The whole triangulation S is comprised in some neighborhood ∂Ωh ={
x ∈ Rd, d(x, ∂Ω) < h

}
, for some h < reach(∂Ω).

6. For any point x ∈ ∂Ω, the ray ray∂Ω(x) of ∂Ω emerging from x intersects S at most once.
Recall from Chapter 4, §4.2 that ray∂Ω(x) is defined by:

ray∂Ω(x) := {y ∈ Rd such that dΩ is differentiable at y and p∂Ω(y) = x},

where dΩ is the signed distance function to Ω, and p∂Ω is the almost everywhere defined
projection application onto ∂Ω.

(8.8)

We then have:

Theorem 8.2. Let Ω ⊂ Rd a domain, and S a surface triangulation of ∂Ω, both of them satisfying (8.8).
Denoting by dΩ the signed distance function to Ω, one has:

dH(∂Ω,S) ≤ 1
2

(
d− 1
d

)2

max
T∈S

max
x∈T

max
y,z∈T

|H(dΩ)(x)|(yz, yz). (8.9)

Proof. From the very definition of the Hausdorff distance, we have to show that both ρ(∂Ω,S) := supx∈∂Ω d(x,S)
and ρ(S, ∂Ω) := supx∈S d(x, ∂Ω) are controlled by the right-hand side of (8.9).
First step: control over ρ(S, ∂Ω). Let T ∈ S, and x ∈ T . Then,

d(x, ∂Ω) = |dΩ(x)|
= |dΩ(x)− πT dΩ(x)|,

because the three vertices of T belong to ∂Ω, which implies T ⊂ ker(πT dΩ). What’s more, because T ⊂ ∂Ωh
and h < reach(∂Ω), dΩ is of class C2 in a neighborhood of T (see Chapter 4 §4.2). Using theorem 8.1 on T ,
which is a simplex of dimension d− 1, and taking the supremum over all x ∈ T , and all T ∈ S produces:

ρ(S, ∂Ω) = sup
x∈S

d(x, ∂Ω) ≤ 1
2

(
d− 1
d

)2

max
T∈S

max
x∈T

max
y,z∈T

|H(dΩ)(x)|(yz, yz).

Second step: control over ρ(∂Ω,S). We need the following useful lemma, whose proof is postponed to the
end of this section:

Lemma 8.1. Under the hypotheses (8.8), the application qS : ∂Ω→ S, defined as

∀x ∈ ∂Ω, qS(x) = the unique point y ∈ S in segment ]x− hn(x), x+ hn(x)[

is well-defined. It is a homeomorphism, whose inverse mapping is the restriction p∂Ω|S of the projection
application onto ∂Ω to S.

Now, let x ∈ ∂Ω; we have

d(x,S) ≤ d(x, qS(x)) = d(qS(x), ∂Ω) ≤ ρ(S, ∂Ω),

where the equality d(x, qS(x)) = d(qS(x), ∂Ω) holds owing to the material recalled at Chapter 4 §4.2. Using
the first step ends the proof.
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Remark 8.3.
– Point (5) in conditions (8.8) imposes that S must remain ‘close’ to the boundary ∂Ω, i.e. it must not

cross its skeleton (see Chapter 4 4.2 for definitions). It is a necessary condition for Theorem 8.2 to
apply, as is shown in Figure 8.11, left.

– Point (6) in conditions (8.8) is also a necessary condition for Theorem 8.2, and it is not a consequence
of the five other points, as is shown in Figure 8.11, right. Actually, we believe that this point could
arise as a consequence to some hypothesis on the approximation of the normal vector field to ∂Ω by
that of S (which often turns out to be a desirable hypothesis, as far as theoretical studies are concerned
[176]) - which is obviously terrible in the example of Figure 8.11, right.

∂Ω

Σ

S

ρ(∂Ω,S)

∂Ω
•
Σ

S
x
•

ray∂Ω(x)

Figure 8.11: In two space dimensions, (left) example of a triangulation S of ∂Ω violating the condition (5)
of hypothesis (8.8): ρ(S, ∂Ω) can be very small, with very high ρ(∂Ω,S), (right) example of a triangulation
S of ∂Ω which violates condition (6) of hypothesis (8.8).

Eventually, we turn to the proof of lemma 8.1, which owes much to arguments present in [23]:

proof of lemma 8.1. Judging from the properties of the projection application p∂Ω (see again Chapter 4 §4.2),
the only thing we have to do is to prove that qS is well-defined and bijective.

First, it is easy to see that qS is injective, since if there exists x, y ∈ ∂Ω, and tx, ty ∈] − h, h[ such that
x+ tx n(x) = y + ty n(y), one has immediately:

x = p∂Ω(x+ tx n(x)) = p∂Ω(y + ty n(y)) = y.

Second, as p∂Ω is continuous from S ⊂ ∂Ωh into ∂Ω, and because S is compact, so is the image p∂Ω(S) ⊂
∂Ω. Moreover, p∂Ω : S → ∂Ω is actually a local homeomorphism; it is indeed easy to check in the vicinity of
any point x ∈ T̊ , where T is a triangle of S. In the case where x belongs to at least two triangles of S, it is
a consequence of the sixth point of hypotheses (8.8). Consequently, p∂Ω : S → ∂Ω is also an open mapping,
and p∂Ω(S) is a closed and open subset of ∂Ω.

Because ∂Ω is connected, this ends the proof.

8.1.4.4 Deduction of an isotropic size prescription

Theorem 8.2 lends itself to a heuristic for the definition of a suitable metric tensor field for the geometric
approximation of the considered ideal surface Γ: suppose Γ is a smooth, compact manifold without boundary,
which encloses a (smooth) bounded, connected domain Ω, so that Γ = ∂Ω. We consider an approximating
triangulation S of Γ that satisfies conditions (8.8), and demand it should be close to Γ up to a user-defined
tolerance ε, that is:

dH(S,Γ) ≤ ε.
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In view of theorem 8.2, it is enough to ask that, for each triangle T ∈ S, one has:

2
9

max
x∈T

max
y,z∈T

|H(dΩ)(x)|(yz, yz) ≤ ε.

Now, let T ∈ S be a triangle which is ‘very close’ to a point x ∈ Γ, so that we can assume |H(dΩ)| is nearly
constant around T . An approximation of the latter sufficient condition is then:

∀y, z ∈ T, 2
9
|H(dΩ)(x)|(yz, yz) ≤ ε.

Remember that, from the material presented in Chapter 4, introducing κi(x) (i = 1, 2) the two principal
curvatures of Γ at x (oriented in the sense that they are nonnegative at a point x around which Ω is locally
convex), and ei(x) the two associated principal directions, the matrix H(dΩ)(x) writes in the orthonormal
basis (e1(x), e2(x), n(x)) of Rd:

H(dΩ)(x) =




κ1(x) 0 0
0 κ2(x) 0
0 0 0


 .

Hence, formally speaking, provided any segment yz included in T has length |yz|≤
√

9ε
2 max(|κ1(x)|,|κ2(x)|) , i.e.

provided the edges of T themselves comply with this bound, the contribution of T to the error in geometric
approximation of S is no more than the desired tolerance ε.

From the heuristic considerations, in our attempt to remesh a triangulation S of Γ into a new triangulation
which is close to Γ up to ε in terms of Hausdorff distance, we are led to remesh S with respect to the metric
size map h : Γ→ R defined as:

∀x ∈ Γ, h(x) = min

(
hmax , max

(
hmin ,

√
9ε

2 max(|κ1(x)|, |κ2(x)|)

))
, (8.10)

where hmin and hmax are respectively lower and upper bounds on the authorized lengths of edges in S.

Remark 8.4. The size map h defined above only accounts for the local size feature associated to the
geometric approximation of surface Γ. Yet, one could also seek to adapt the local size feature to another
user-defined size map m : Γ → R, which could arise from an a posteriori error analysis associated to some
numerical resolution of a problem (see for instance [4]). In such a case, this additional information is taken
into account by trading h for a new size map h̃ defined as:

∀x ∈ Γ, h̃(x) = min(h(x),m(x)).

See section 8.1.6.3 for an example.

8.1.4.5 Gradation of the size map

Unfortunately, conforming to the size prescription discussed above is not sufficient in itself to guarantee
the resulting mesh will enjoy a nice mesh quality. Indeed, the computed size map h may vary very sharply
from one point to one of its neighbors, because the computation of h suffered from noise one the input data
S, or because the ideal surface Γ itself shows sharp variations of curvatures. This shock of size prescriptions
between close areas may urge the formation of undesired ill-shaped elements during the remeshing process
(see figure 8.12).

For this reason, it may be desirable to drive the remeshing operators in such a way that the resulting
triangulation S from the process shows smooth variations in edge lengths. More accurately, we expect the
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Figure 8.12: Sharp variations of the size map on a cylinder: planar areas may be prescribed an arbitrary
large size (displayed in red), while curved areas are more constrained (blue).

resulting mesh to be such that two edges ap and bp sharing a common vertex p have Euclidean lengths
satisfying:

1
r
≤ |b− p||a− p| ≤ r, (8.11)

where r is a user-defined bound (typically, we use r = 1.2 or 1.3).

To achieve this, the seminal work [53] proposed to enforce a gradation on the size map h. More precisely,
once the size map h has been computed (for instance - but not necessarily - on account of the size features
presented in section 8.1.4), it is truncated in such a way that:

∀x ∈ Γ, |∇Γh(x)|≤ hgrad, (8.12)

where ∇Γh stands for the tangential gradient of h on Γ, and hgrad is the bound to be enforced on the
variations of the size map. Equation (8.12) translates in the discrete framework in the following way:

∀ edge pq ∈ S, |h(p)− h(q)|
|p− q| ≤ hgrad. (8.13)

This criterion is imposed on the values of h stored at the vertices of S by traveling repeatedly the edges
pq ∈ S and decreasing the largest of the two values h(p) and h(q) so that (8.13) holds.

So as to gain insight as regards the connection between this technical parameter hgrad, and the physically
relevant one r, appearing in (8.11), let us look at the following idealized and formal situation, as in [201].
Consider a ‘long’ edge pq ∈ S with respect to h, associated to a curve γ on Γ, which is to be split within several
sub-edges a0a1,..., an−1an, with a0 = p and an = q, in such a way that ℓh(akak+1) = 1, for k = 0, ..., n− 1
(see figure 8.13).

Denote as ℓ(γ) the Euclidean length of curve γ, and take a normal parametrization [0, ℓ(γ)] ∋ s 7→ γ(s)
of γ, that is ∀s ∈ [0, ℓ(γ)], |γ′(s)|= 1. Denote sk the value of parameter s at which γ(sk) = ak, k = 0, ..., n.
By definition of the ak, and because h varies linearly along γ, we have

∀k = 0, ..., n, ℓh(pak) =
∫ sk

0

|γ′(s)|
h(γ(s))

ds =
∫ sk

0

ds

h(p) + s
ℓ(pq) (h(q)− h(p))

= k,

which brings, after some easy computation:

∀k = 0, ..., n, sk =
h(p)

h(q)− h(p)
(ek

|h(p)−h(q)|
ℓ(pq) − 1).
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Figure 8.13: Splitting of edge pq within several sub-edges of unit length with respect to h.

Now, the gap between the lengths of two adjacent edges ak−1ak and akak+1 (that is, those of the underlying
curves) reads:

∀k = 1, ..., n− 1,
sk+1 − sk
sk − sk−1

= e
|h(p)−h(q)|

ℓ(pq) .

Hence, so that (8.11) holds for some given value of r, the criterion (8.13) should be enforced with the value
hgrad = ln(r).

8.1.5 The complete strategy

We have now all the tools we need to devise a strategy for remeshing a given triangulation S into a new
one - that we should call S̃ - while retaining a control over the geometric approximation of their ideal surface Γ.

As an entry point, we are supplied with the initial triangulation S, together with four user-defined
parameters ε, hmin, hmax, and hgrad, the signification of which follows:

– As hinted at in Sections 8.1.2 and 8.1.4, parameter ε accounts for the accuracy of the geometric
approximation of Γ, up to the formal assumptions we have been relying on from the very beginning:
the resulting triangulation S̃ will stand at a Hausdorff distance dH(S̃,Γ) ≤ ε from Γ,

– hmin and hmax are respectively the minimum and maximum authorized lengths for an edge of the
resulting mesh. Note that imposing a minimum length for edges of S̃ may entail a violation of the
geometric approximation criterion. In this case, we chose to bypass the imposed minimum length
criterion,

– hgrad is the mesh gradation control parameter introduced in section 8.1.4.5.
We then divide the remeshing process into 5 steps:

step 1: Analysis of S. Additional information about Γ are inferred from S, along the lines of section 8.1.1:
special geometric entities of Γ (ridge edges, singular points, etc...) are identified on S, then normal
vectors are approximated on S at regular points, as well as tangent vectors at ridge points,...

step 2: Rough mesh modifications for a good ‘sampling’ of the surface. This first real stage of mesh modifi-
cations aims at producing a new triangulation S̃1 of Γ which is a nice geometric approximation, with
respect to the prescribed tolerance: dH(S̃1,Γ) ≤ ε. Starting with S,
– edges pq are split if either they are longer (in terms of the Euclidean distance) than hmax, or the

Hausdorff distance between them and the associated curves on Γ is higher than ε,
– edges pq are collapsed if they are shorter than hmin, provided the geometric approximation of Γ

within tolerance ε is retained, and the resulting configuration is valid,
– edges are swapped if they end up with a valid configuration closer to Γ in terms of Hausdorff

distance.



8.1. Remeshing of surface triangulations 297

More accurately, we proceed within several iterations of the form:
(1) Identify all the edges that should be split, then split them (relying on patterns).
(2) Travel all the edges of the mesh, and collapse all the ones that should, and can be collapsed.
(3) Travel all the edges of the mesh, and swap all the ones that should, and can be swapped.

step 3: Construction of the size map. Although it may still be of poor quality, the new triangulation S̃1

accounts for a suitable approximation of the geometry of Γ. It is then relevant to approximate
higher-order geometric entities of Γ (such as curvatures) using S̃1. A metric size map h : Γ→ R for
the geometric approximation of Γ within tolerance ε in terms of Hausdorff distance is then computed
as in section 8.1.4, and stored on S̃1. This size map is then graded, as detailed in section 8.1.4.5.

step 4: Rough mesh modifications with respect to the size map. In this step, we proceed almost exactly as in
step 2 so as to get another intermediate triangulation S̃2, except on two points: first, we rely now on
lengths measured with respect to h (see formula (8.6)). More specifically, aiming at getting a new
triangulation whose edges have length 1 with respect to h (which is, of course, impossible), we choose
rough bounds, outside which no edge length should lie: typically, we impose the triangulation S̃2

should have no edge with length lying outside [ℓr,min, ℓr,max], with ℓr,min = 0.3, ℓr,max = 2. Second,
we take much more caution about mesh quality as in step 2: edge collapses are presently prevented
when they degrade two much the overall quality of the triangulation, and edge swaps are now carried
out provided they help improving the quality of the mesh (and possibly rejected if they degrade two
much the geometric approximation of surface Γ).

step 5: Fine mesh modifications with respect to the size map. Triangulation S̃2 should now be ‘pretty good’
in terms of geometric approximation of Γ and of mesh quality, and in this last stage, we perform
delicately driven operations so as to get the final triangulation S̃. Lengths of edges are still evaluated
with respect to h, except we now impose S̃ have no edge with length lying outside a sharper interval
as before, of the form [ℓf,min, ℓf,max], with for instance ℓf,min = 0.7, ℓf,max = 1.3. We are also
much stricter as far as the authorized degradation in mesh quality entailed by our operators is
concerned. Another important improvement with respect to steps 2 and 4 is that we now add the
vertex relocation operator to our toolbox. The iterations performed during steps 2 and 4 evolve into:
(1) Travel all the edges of the mesh, and split (now in a one-by-one fashion) all the ones that should,

and can be split.
(2) Travel all the edges of the mesh, and collapse all the ones that should, and can be collapsed.
(3) Travel all the edges of the mesh, and swap all the ones that should, and can be swapped.
(4) Travel all the vertices of the mesh, and relocate all the ones that should, and can be relocated.

8.1.6 Numerical examples

We end up this section devoted to surface remeshing by showing several numerical applications so as to
emphasize the different features of the proposed method. For each of these examples, the following details
are reported in Table 8.1: the initial (resp. final) number of points in the mesh npi (resp. npf ), the total
CPU time (in seconds) of the computation, the initial (resp. final) mean quality Qi (resp. Qf ) of triangles
of the mesh, and the worst quality wqi (resp. wqf ) of an element of the initial (resp. final) triangulated
surface.

8.1.6.1 Curvature-dependent surface remeshing of smooth surfaces

Using the proposed strategy, a first idea that comes to mind is to remesh discrete triangulated surfaces
which account for a smooth underlying geometry, for instance surfaces arising from data scanning [102, 310].

Figure 8.14 2 shows an example of the impact of the control parameter ε over the geometric degradation
of the ideal surface Γ: an oversampled initial triangulation S - is remeshed into several new triangulations

2. Data courtesy of http://cyberware.com/.
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using the same values for parameters hmin, hmax and hgrad, but with different values of ε.

(a) (b)

(c) (d)

Figure 8.14: Remeshing of the igea model, enclosed in a bounding box of dimensions 0.06911 × 0.09908 ×
0.09934. Here we take hmin = 0.0001, hmax = 0.05, and hgrad = 1.2; (a) initial triangulation; (b) remeshed
triangulation, using ε = 0.005; (c) remeshed triangulation, using ε = 0.001 (d) remeshed triangulation, using
ε = 0.0002.

8.1.6.2 High-quality surface remeshing of mechanical parts

Let us now turn to a slightly different application of the proposed remeshing procedure, namely the
remeshing of mechanical parts. Such triangulated surfaces generally differ from those considered in subsection
8.1.6.2 insofar as they may present sharp features (ridges, corners,...) that must be identified before any
treatment is possible. These sharp features account for discontinuities of the geometric behavior of the surface
along some curves, and may also separate areas holding different references (corresponding to boundary
conditions, material properties, etc...). Last but not least, the meshes associated to such surfaces generally
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stem from a CAD modeler (i.e. they have been obtained from so-called STL files); as such, they account for
a close and minimalistic approximation of the underlying ideal surface, while undergoing a very poor quality
as far as finite element computations are concerned.

Figure 8.15 shows a remeshing example of such a triangulated surface. Note the strong impact of the
gradation imposed on the size map on the quality of the triangulation of the plane parts of the resulting
surface.

(a) (b)

Figure 8.15: Remeshing of the model02 model, enclosed in a bounding box of dimensions 0.2 × 0.2 × 0.12.
Here we take hmin = 0.001, hmax = 1, hgrad = 1.2 and ε = 0.001; (a) initial triangulation; (b) resulting
triangulation.

8.1.6.3 Remeshing of a surface with respect to an externally prescribed size map

We then turn to an example where a local size prescription m : Γ→ R is provided by the user. The size
map used for remeshing S is computed as mentioned in remark 8.4. As explained then, the case we have in
mind is when m arises from an a posteriori error analysis of a numerical method performed on S. However,
for the sake of simplicity, we limit ourselves to the case when m is associated to the interpolation error of a
smooth function, which is much simpler as regards the analysis, yet identical as far as the remeshing strategy
is concerned.

More precisely, let the ideal surface Γ be the ball of centre 0 and radius 4, and let f : Γ→ R be a function
of class C2, which presents ‘sharp variations’ on Γ. For instance,

∀p = (x, y, z) ∈ Γ, f(p) = tanh((x+ 1.3)20 (y − 0.3)10 z). (8.14)

We aim at modifying the initial triangulation S so that interpolating (linearly) f over the resulting mesh
entails an error (in L∞-norm) controlled by a parameter εm. To this end, we proceed as in section 8.1.4,
relying on theorem 8.1 to cook an associated size map m : Γ→ R to such a control.

Actually, such an adaptation procedure to some externally-given indicator should be performed several
times, before all the sharp variations of f could be captured: indeed, if the initial mesh is too coarse, the first
remeshing procedure is bound not to detect accurately all the areas concerned with these sharp variations.
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Figure 8.16 displays the resulting triangulation after 5 remeshing procedures for adapting a mesh of Γ to
the interpolation of f - starting from a rather coarse triangulation S, and using parameter εm = 0.01. The
parameters chosen for remeshing are (for each one of the 5 steps): hmin = 0.04, hmax = 0.5, hgrad = 1.2,
and ε = 0.04. The whole computation took 22.9s, and the final mesh enjoys 28310 vertices, for an average
quality of 0.970.

Figure 8.16: (left) Initial triangulation S, with the isolines of the linear interpolate of f over S; (middle)
resulting triangulation after 5 remeshing procedures; (right) isolines of the linear interpolate of f over the
resulting triangulation.

8.1.6.4 Some miscellaneous surfaces remeshing

Figures 8.17 3 and 8.18 4 present other examples of remeshing of surface triangulations.

Test case npi npf CPU (s) Qi wqi Qf wqf

igea (b) 134345 1319 4.118 0.8261 0.027 0.9438 0.58
igea (c) 134345 4320 4.919 0.8261 0.027 0.9510 0.64
igea (d) 134345 16935 7.434 0.8261 0.027 0.9519 0.41
model02 1204 3244 0.683 0.0768 8e−6 0.94228 0.51
buddha 25003 65895 6.786 0.7313 0.033 0.9648 0.16
drwL 1039 18938 2.261 0.52054 0.010 0.92484 0.015
wheel 9966 17989 2.369 0.3328 2e−6 0.9285 0.196

Pegasus 125002 21703 7.799 0.758 0.003 0.950 0.194

Table 8.1: Details on the examples of section 8.1.6.

3. Data courtesy of http://www.archive3d.net and http://www-roc.inria.fr/gamma/download/download.php.

4. Data courtesy of https://grabcad.com and http://www-roc.inria.fr/gamma/download/download.php.
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(a) (b)

(c) (d)

Figure 8.17: (a-b) Remeshing of the buddha model, enclosed in a bounding box of dimensions 99.3304 ×
141.9974× 93.2093. Here we take hmin = 0.5, hmax = 10, hgrad = 1.2, and ε = 0.2; (a) initial triangulation;
(b) remeshed triangulation. (c-d) Remeshing of the drwL model, enclosed in a bounding box of dimensions
141.9963×27.0421×74.2486, with hmin = 0.1, hmax = 5, hgrad = 1.2, and ε = 0.05; (c) initial triangulation;
(d) remeshed triangulation.
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(a) (b)

(c) (d)

Figure 8.18: (a-b) Remeshing of the wheel model, enclosed in a bounding box of dimensions 381.882 ×
182.4686× 381.882. Here we take hmin = 0.5, hmax = 100, hgrad = 1.2, and ε = 2; (a) initial triangulation;
(b) remeshed triangulation. (c-d) Remeshing of the Pegasus model, enclosed in a bounding box of dimensions
875.392 × 482.3467 × 372.698. Here we take hmin = 1, hmax = 100, hgrad = 1.2, and ε = 2; (c) initial
triangulation; (d) remeshed triangulation.
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8.2 Discrete surface remeshing in the anisotropic context

Up to this point, the metric tensor field defined at subsection 8.1.4.4 has been merely an artificial tool
to drive the local operators described in section 8.1.3. We propose in this section to expand the metaphor
of meshing with respect to a metric tensor field to devise a method for anisotropic surface remeshing.

More specifically, instead of generating a scalar local size prescription based on the geometry of the ideal
surface Γ, anisotropic remeshing relies on the definition of a bilinear symmetric positive definite form over
each tangent plane TpΓ, p ∈ Γ, which encompasses the various desired size in the tangent directions to Γ,
which are the only intrinsic directions when looking at this surface (the other ones depending on the choice
of an embedding of Γ into some Euclidean space). The problem of anisotropic surface remeshing can thus
be cast into the framework of Riemannian geometry.

As we shall see soon, the framework of Section 8.1 about isotropic surface remeshing can be used to a large
extent in the device of an anisotropic surface remeshing algorithm. Hence, in this section, we mainly put
the stress on the descriptions of the specific ingredients to the anisotropic case. This work about anisotropic
surface remeshing is organized as follows: after recalling several notions from Riemannian geometry in
the next section 8.2.1, we present in Section 8.2.2 a general construction on a Riemannian manifold for
approximating parallel transport. Both sections are mostly theoretical, and find an echo in the numerical
practice in Sections 8.2.3, 8.2.4, and 8.2.5. Eventually, some examples are presented in Section 8.2.6.

8.2.1 A wee bit of Riemannian geometry

The purpose of this section is to collect some classical definitions and notations about Riemannian
manifolds that will play a key role in the sequel. Of course, this short reminder is not at all meant to be
exhaustive, nor absolutely rigorous, and full details can be found in [75, 116, 198].

For the sake of simplicity, this presentation is restricted to the smooth context: all the considered
manifolds, curves or sections of vector bundles at hand will enjoy C∞ regularity, unless otherwise stated.

8.2.1.1 Notations

Let M be a smooth differentiable manifold.
– For any vector bundle E over M , we denote as Γ(E) the set of smooth sections of E.
– We denote as TM the tangent bundle to M . For any point x ∈M , we denote as TxM the fiber of TM

at x, in other words the tangent space to M at x.
– For k ∈ N, we denote as

⊗k(TM∗) the vector bundle of k-linear forms over TM , as Λk(TM∗) the
vector bundle of the (alternating) differential k-forms over TM , and as Sym2(TM∗) the vector bundle
of symmetric bilinear forms over TM .

A Riemannian metric (or Riemannian structure) onM is the choice of a scalar product gx : TxM×TxM →
R over each tangent plane TxM, x ∈M , that varies smoothly with respect to x (i.e. whose coefficients when
pulled-back in a local trivialization of the tangent bundle TM vary smoothly). For any x ∈M , g induces a
natural norm ||.||x on the vector space TxM .

Throughout this preliminary section 8.2.1, we consider a smooth oriented Riemannian manifold (M, g)
of dimension n. As the only Riemannian structure we will be considering over M is the one associated to
the metric g, we will not mention explicitly the dependance on g of the forthcoming concepts.

8.2.1.2 Riemannian distance and volume

The following definition provides a natural way of measuring distances on M :
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Definition 8.2. – Let I = [a, b] a closed interval of R, and I ∋ t 7→ γ(t) ∈M a piecewise differentiable
curve on M .The length ℓ(γ) of γ is:

ℓ(γ) =
∫ b

a

√
gγ(t)(γ′(t), γ′(t))dt. (8.15)

– Let x, y ∈M . The distance d(x, y) between x and y is:

d(x, y) = inf {ℓ(γ)| γ : [a, b]→M piecewise differentiable , γ(a) = x ; γ(b) = y} . (8.16)

We shall also need a means of measuring volumes on M , which leads us to the notion of volume form
associated to an oriented Riemannian manifold of dimension n:

Proposition and Definition 8.3. There exists a unique differential n-form ω ∈ Γ(Λn(TM∗)) over M such
that for any point x ∈M , and any oriented orthonormal basis of tangent vectors (X1(x), ..., Xn(x)) of TxM ,
one has:

ωx(X1(x), ..., Xn(x)) = 1.

This form is called the volume form of (M, g).
If ϕ : U ⊂ Rn → ϕ(U) is any local oriented chart around a point x0 ∈M , ω reads in this chart:

∀x ∈ U, ϕ∗(ω)x =
√

det(gi,j(x))dx1 ∧ ... ∧ dxn, gi,j(x) = gϕ(x)(dϕx(ei), dϕx(ej)), (8.17)

where (ei)i=1,...,n is the canonical basis of Rn and dx1 ∧ ...∧ dxn is the volume form of Rn associated to the
Euclidean metric.

Now, the volume of any compact subset K of M is defined as:

vol(K) =
∫

K

ω. (8.18)

8.2.1.3 Connections and parallel transport of vector fields on a Riemannian manifold

In the following sections, we will be especially interested in the evolution of quantities (e.g. functions,
vector fields) along curves, and in this context, an intrinsic notion of derivation with respect to a vector field
of such quantities would be appreciated: this is the concept of connection, which we now recall.

Let X ∈ Γ(TM) a vector field on M , f : M → R a smooth function. The derivative ∂Xf(x) of f in the
direction of X at x ∈M is classically defined as:

∂Xf(x) = dfx(X(x)) = lim
t→0

f(γ(t))− f(x)
t

, (8.19)

for any differentiable curve γ : [−ε, ε]→M , with γ(0) = x, γ′(0) = X(x).
Similarly, given X,Y ∈ Γ(TM) two vector fields, one would like to define a notion of derivative of Y in

the direction of X at x ∈M mimicking formula (8.19), say:

‘ lim
t→0

Y (γ(t))− Y (x)
t

’, (8.20)

for any differentiable curve γ : [−ε, ε]→M , with γ(0) = x, γ′(0) = X(x). Unfortunately, this does not make
sense, for at least two reasons. First, the subtraction in formula (8.20) has no precise meaning inasmuch as
Y (γ(t)) and Y (x) do not belong to a common vector space. Second, even if they did - for instance, if M
is embedded in Rd, and all the tangent planes to M are identified to subspaces of Rd - there would be no
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reason for the limit in (8.20) to belong to TxM , which is what we would expect of an intrinsic derivation
rule over M - that is, a rule which does not depend on any embedding of M into a larger space.

A rigorous definition of such a notion consists in devising a rule for identifying any two tangent planes
TpM , TqM , p, q ∈ M , then rely on formula (8.20) after identifying Y (γ(t)) as an element of TxM . As an
analogy with the case when M is a submanifold of Rd, such an identification rule generally takes the name
of parallel transport.

The classical (and mathematically more convenient) point of view is the exact converse to this intuitive
idea: starting from a derivation rule over M which satisfies the expected properties, one then deduces an
associated parallel transport rule over M .

Definition 8.4. A connection over M is a mapping ∇ : Γ(TM)× Γ(TM)→ Γ(TM) such that:

(i) for all λ, µ ∈ R, and X,Y, Z ∈ Γ(TM), ∇X(λY + µZ) = λ∇XY + µ∇XZ.

(ii) for any smooth function f : M → R, and X,Y ∈ Γ(TM), ∇X(fY ) = (∂Xf)Y + f∇XY .

(iii) for all smooth functions f, g : M → R, and X,Y, Z ∈ Γ(TM), ∇(fX+gY )Z = f∇XZ + g∇Y Z.

A connection ∇ on M naturally induces a notion of derivative of a vector field along a curve.

Proposition and Definition 8.5. Suppose M is equipped with a connection ∇, and let γ : I → M a
differentiable curve. There exists a unique operator D

dt
which associates to any vector field V defined along

γ another vector field DV
dt

along γ in such a way as:

1. For any two vector fields V,W along γ, one has D
dt

(V +W ) = DV
dt

+ DW
dt

.

2. For any vector field V along γ, and any differentiable function f : I → R, one has D
dt

(fV ) = df
dt
V +f DV

dt
.

3. If a vector field V along γ is the restriction of X ∈ Γ(TM), i.e. ∀t ∈ I, V (t) = X(γ(t)), then:
DV
dt

= ∇γ′(t)X.

Definition 8.6. Let M a differentiable manifold, equipped with a connection ∇. A vector field V along a
differentiable curve γ : I →M is called parallel if DV

dt
= 0 on I.

The link between the notion of connection, and that of parallel transport is achieved thanks to the
following definition.

Proposition and Definition 8.7. Suppose M is equipped with a connection ∇, and γ : I → M a
differentiable curve in M .

– Let t0 ∈ I, and V0 ∈ Tγ(t0)M . There exists a unique parallel vector field along γ such that V (t0) = V0,
which is called the parallel transport of V0 along γ.

– Let t0, t1 ∈ I, and V0 ∈ Tγ(t0)M . One defines the parallel transport T (γ)t1t0(V0) of V0 from Tγ(t0)M to
Tγ(t1)M along γ as T (γ)t1t0(V0) = V (t1), where V is the unique parallel vector field along γ such that
V (t0) = V0. T (γ)t1t0 : Tγ(t0)M → Tγ(t1)M defines a linear isomorphism, with inverse T (γ)t0t1 .

– Let V a vector field along γ. For any t0 ∈ I, one has

DV

dt
(t0) = lim

t→t0

T (γ)t0t (V (t))− V (t0)
t− t0

. (8.21)

Note that this concept of parallel transport along a differentiable curve γ : I → M is easily generalized
to the case of curves that are only piecewise differentiable. This will come in handy in section 8.2.1.5.

Some remarks are in order. First and foremost, let us notice that a lot of connections may exist on
a given manifold M , each one accounting for its own rule of parallel transport - that is, its own means
of identifying different tangent planes. One would like to select a derivation rule which enjoys intuitive
geometric properties in terms of the associated parallel transport. Second, up to this point, we have never
used the Riemannian structure of M : a nice way to define an intuitive derivation rule would be, for instance,
to make the associated parallel transport rule compatible with lengths measurements. This is the purpose
of the following definition.
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Definition 8.8.
– A connection ∇ on M is said to be compatible with metric g if:

∀X,Y, Z ∈ Γ(TM), ∂X(g(Y, Z)) = g(∇XY,Z) + g(Y,∇XZ). (8.22)

– A connection ∇ on M is said torsion-free provided:

∀X,Y ∈ Γ(TM), ∇XY −∇YX = [X,Y ], (8.23)

where [X,Y ] denotes the Lie bracket between vector fields X,Y .

Remark 8.5. The compatibility between a connection ∇ and the metric g implies in particular (and actually
turns out to be equivalent to) the fact that, for any differentiable curve γ : I →M , and any two parallel vector
fields V,W along γ, the scalar product g(V,W ) is constant as a function on I. Thus, the metric compatibility
condition of a connection actually means the associated parallel transport rule preserves lengths of tangent
vectors, and angles between them.

The torsion-free property is slightly more subtle. Recall that [X,Y ] ∈ Γ(TM) is an indicator of the lack
of commutation of the flows associated to X and Y (see Figure 8.19): more precisely, let t > 0 a small time,
and denote as φt (resp ψt, ξt) the flow operator associated to X (resp. Y , [X,Y ]). Then one has:

ψ−t ◦ φ−t ◦ ψt ◦ φt = ξt2 + o(t2). (8.24)

Note that this quantity is utterly intrinsic to the geometry of M . On the other hand, ∇XY − ∇YX is a
measure of the lack of commutation of the notion of parallel transport induced by ∇ depending on whether Y
is transported in the direction of X or the converse. It is then quite natural to ask this lack of commutation
may be caused only by the inherent lack of commutation of X and Y due to the geometry of M , and that
∇ induces no extra ‘torsion’ in the respective displacement of vector fields.

x• φt(x)
•

X(x)

ψt ◦ φt(x)
•φ−t ◦ ψt ◦ φt(x)

•

ψ−t ◦ φ−t ◦ ψt ◦ φt(x)
•

Y (x)

Figure 8.19: Lack of commutation of the flows associated to X and Y , starting from x ∈M .

Using these two suitable properties for a connection allows to define a notion of ‘natural’ connection on
(M, g):

Theorem 8.3. There exists a unique connection ∇ on M which is at the same time compatible with g and
torsion-free. It is called the Levi-Civita connection on M .

8.2.1.4 Connections and parallel transport of higher-dimensional objects on M

Hitherto, we have only been investigating parallel transport of tangent vectors along vector fields. How-
ever, it may be relevant to compare other kinds of objects defined at different points of M and, to this end, to
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transport such quantities along curves. In this section, we focus on describing parallel transport of bilinear
forms over the tangent planes to M .

Let ∇ be a connection on M . Recall from proposition 8.5 that ∇ induces a notion of derivative along
curves drawn on M .

Definition 8.9. Let γ : I → M be a parametrized curve, b a field of bilinear forms defined along γ - that
is, for all t ∈ I, bt : Tγ(t)M × Tγ(t)M → R is a bilinear form. The derivative Db

dt
of b along γ is the field of

bilinear forms along γ defined as, for every vector fields V,W along γ,

∀t ∈ I, Dbt
dt

(V (t),W (t)) =
d

dt
(bt(V (t),W (t)))− bt

(
DV

dt
(t),W (t)

)
− bt

(
V (t),

DW

dt
(t)
)
. (8.25)

Besides, b is said parallel along γ if Db
dt

= 0 on I.

Remarks 8.6.
– Definition 8.9 has been cooked in such a way as, for any two parallel vector fields V,W , any parallel

field of bilinear forms b along γ, the quantity bt(V (t),W (t)) is constant on I.
– In view of definition 8.9, if ∇ is compatible with metric g, then g is a parallel along any curve on M .
– This notion of derivative of fields of bilinear forms along curves is actually rigorously expressed in-

troducing a notion of connection over the vector bundle of bilinear forms: this requires the larger
framework of Koszul connections, in which connections, parallel transport, are defined for sections of
an arbitrary given vector bundle. As we will not require so much generality in the sequel, we limit
ourselves with this sole definition.

– This development gives rise to a notion of parallel transport for fields of bilinear forms exactly as in
the case of vector fields. In the context of definition 8.9, if t0 ∈ I, and b is a bilinear form over Tγ(t0)M ,
one defines the parallel transport T (γ)tt0(b)of b along γ at time t ∈ I as bt, where bt stands for the
unique parallel field of bilinear forms along γ such that bt0 = b.

8.2.1.5 Geodesics and the exponential map

One of the more crucial concepts in Riemannian geometry - as well from the theoretical point of view as
for applications (e.g. in geography, general relativity) - is that of shortest path between two points p, q ∈M ,
i.e. minimizers of the Riemannian distance (8.16). Unfortunately, this notion is very difficult to study for it
involves the global geometry of M . A more convenient point of view turns out to be that of local minimizers
of the Riemannian distance, namely geodesic curves.

Roughly speaking, geodesic curves are defined as curves along which no acceleration is felt, i.e. the
velocity vector bends as little as possible along the trajectory. This notion is naturally dependent on the
choice of a parallel transport rule on M , and in all this section, M will be endowed with its Levi-Civita
connection ∇.

Definition 8.10. A smooth parametrized curve γ : I 7→M is a geodesic if

∀t ∈ I, D

dt
(γ′(t)) = 0. (8.26)

If [a, b] ⊂ I and γ : I 7→M is a geodesic, the restriction γ|[a,b] is called a geodesic segment.

Remarks 8.7. – The meaning of (8.26) is that γ shows no acceleration along the tangent planes to M .
In other words, the motion is completely dictated by the bending of M itself.

– As an immediate consequence of the definition and the compatibility with the metric (8.22) of ∇, a
geodesic curve γ : I →M enjoys constant speed:

∀t ∈ I, d

dt

(
gγ(t)(γ

′(t), γ′(t))
)

= 0. (8.27)
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The following fundamental result assesses that geodesic curves locally exist, and are actually characterized
by their starting point and their initial velocity vector. Furthermore, the dependence of a geodesic curve on
these data is uniform.

Theorem 8.4. Let p ∈M ,
– For any v ∈ TpM , there exists δ > 0, and a geodesic curve γ : (−δ, δ) → M such that γ(0) = p and
γ′(0) = v. Moreover, such a geodesic is unique in the following sense: if γ1 : I1 →M and γ2 : I2 →M
are two geodesic curves, defined over intervals I1, I2 ⊂ R containing 0, such that γ1(0) = γ2(0) = p,
and γ′

1(0) = γ′
2(0) = v, then γ1(t) = γ2(t) for all t ∈ I1 ∩ I2. This allows to define, for v ∈ TpM the

maximal geodesic γ(., p, v) : I →M enjoying this property.
– There exists a neighborhood V of p in M , and ε > 0, such that the mapping (−2, 2)× U ∋ (t, x, v) 7→
γ(t, x, v) ∈ M , where U = {(x, v) ∈ TM ; x ∈ V, v ∈ TxM s. t. ||v||x < ε} is well-defined and has C∞

regularity.

This theorem in particular allows to define the exponential map of a Riemannian manifold, which is
grossly speaking a very convenient way to ‘unfold’ a tangent plane to M into a ‘spray of geodesics’.

Proposition and Definition 8.11. Let p ∈M .
– The exponential application expp : Bε(0) ⊂ TpM → M is defined as, for v ∈ TpM , ||v||p < ε,
expp(v) = γ(1, p, v), where ε and γ arise as in theorem 8.4.

– Up to restricting ε, there exists a neighborhood V of p in M such that expp : Bε(0) ⊂ TpM → M
is a smooth diffeomorphism. V = expp (Bε(0)) is called the geodesic ball of center p and radius ε,
and is denoted as Bε(p) when no confusion is possible with its Euclidean equivalent. The inverse map
logp : V → Bε(0) is the logarithm application.

Relying on these tools, one can define a generalization of the notion of convexity to the case of a general
Riemannian manifold.

Definition 8.12. A subset S ⊂ M is said strongly convex if for any two points p, q ∈ S, there exists a
unique geodesic γ : I → R connecting p to q in such a way as γ(I) \ {p, q} is contained in S.

Theorem 8.5. For any point p ∈M , there exists r > 0 such that the geodesic ball of center p and radius r
is strongly convex.

It is now high time to relate geodesic curves with shortest paths on M . The first observation is that
minimizers of the Riemannian distance actually turn out to be geodesic segments.

Theorem 8.6. Let p, q ∈ M , and γ : [a, b] → M a piecewise differentiable curve whose parametrization is
proportional to arc length. If, for any piecewise differentiable curve c : [a, b]→M such that c(a) = γ(a) and
c(b) = γ(b) one has ℓ(γ) ≤ ℓ(c), then γ is smooth and is a geodesic on M .

The converse is obviously false. For instance, let M = S2 ⊂ R3 be the two-dimensional sphere, endowed
with the metric induced by the Euclidean metric of R3, p = (0, 0, 1) ∈ S2, and consider the great circle
γ : R ∋ t 7→ (sin(t), 0, cos(t)) ∈ S2. A straightforward computation shows that γ is a geodesic curve of S2

with γ(0) = p. However, as soon as t0 > π, the geodesic segment γ([0, t0]) is no longer a minimizer of the
distance between p and γ(t0) (see figure 8.20).

However, as made rigorous by the following result, geodesic curves arise as local minimizers of the
Riemannian distance.

Theorem 8.7. Let p ∈M ; there exists ε > 0 such that every geodesic segment γ from [0, 1] into the geodesic
ball Bε(p) and starting with γ(0) = p is a minimizer of the Riemannian distance (8.16) between p and its
endpoint γ(1), that is: for any piecewise differentiable curve c : [0, 1] → Bε(p) with c(0) = γ(0) = p and
c(1) = γ(1), one has: ℓ(γ) ≤ ℓ(c), and equality holds if an only if γ([0, 1]) = c([0, 1]).
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•

•

0

p

γ(t0)
•

S2

Figure 8.20: The geodesic segment γ : [0, t0]→ S2 (in red) is a minimizer of the Riemannian distance between
p and γ(t0) if and only if t0 ≤ π (otherwise, the parametrized curve represented in blue is).

8.2.1.6 Expressions in local coordinates

By definition, any smooth n-dimensional manifold locally ‘looks like’ an open subset of Rn. This allows
to define local coordinates on M , in which the concepts of geodesic curves or parallel transport can be
translated.

Definition 8.13. Let p ∈ M , a local set of coordinates around p is a smooth diffeomorphism (x1, ..., xn) :
U → V from a open neighborhood U of p in M to a subset V ⊂ Rn.

The datum of local coordinates x = (x1, ..., xn) on an open subset U ⊂ M allows to define a natural
set of local trivializing sections of the dual bundle TM∗ as (dx1, ..., dxn). In other words, for any x ∈ U ,
(dx1(x), ..., dxn(x)) is a basis of the vector space TxM∗, and the dependence of this basis on x is smooth.

What’s more, one can also define a corresponding set of local trivializing sections ( ∂
∂x1 , ...,

∂
∂xn ) of TM :

∂
∂x1 , ..., and ∂

∂xn are vector fields on U such that, for any x ∈ U , ( ∂
∂x1 (x), ..., ∂

∂xn (x)) is a basis of TxM , whose
dual basis of TxM∗ with respect to metric gx is (dx1(x), ..., dxn(x)).

The following proposition expresses some of the above-defined concepts in terms of local coordinates, and
will be of great use when it comes to performing practical calculations on manifolds.

Proposition 8.1. Let M be equipped with a connection ∇, U ⊂ M an open subset, and (x1, ..., xn) local
coordinates on U . Define the Christoffel symbols of ∇ in coordinates (x1, ..., xn) as:

∀x ∈ U, ∀i, j, k = 1, ..., n, Γij,k(x) = i-th component of ∇ ∂

∂xj

∂
∂xk (x). (8.28)

Then,

1. If Z(t) =
∑
j z

j(t) ∂
∂xj

(γ(t)) is a parallel vector field along a given curve γ : I → U , one has:

∀t ∈ I, ∀i = 1, ..., n, zi′(t) +
∑

j,k

Γij,k(γ(t))γj′(t)zk(t) = 0, (8.29)

2. If γ : I 7→ U is a geodesic curve, the geodesic equation (8.26) reads, in coordinates:

∀t ∈ I, ∀i = 1, ..., n, γi′′(t) +
∑

j,k

Γij,k(γ(t))γj′(t)γk′(t) = 0, (8.30)



310 Chapter 8. Discrete three-dimensional surface and domain remeshing

8.2.2 Numerical approximation of parallel transport on a submanifold of Rd

8.2.2.1 Schild’s ladder algorithm for approximating the parallel transport of a tangent vector
on a Riemannian manifold

In this subsection, we present a general construction on a Riemannian manifold - the Schild’s ladder’s
procedure 5, originally introduced in [123] - which is especially used in the theory of general relativity for
approximating the parallel transport of a tangent vector along a curve. This idea was later applied in various
contexts, such as that of computational anatomy. For instance, in [209], the authors register and compare
the anatomies of the brains of individual subjects under the form of diffeomorphisms with a fixed ‘template’
brain; the (vector) quantities attached to the brain of a subject are transported to the reference configuration
using Schild’s ladder’s procedure (see also [271] in the more general context of shape deformation).

Let (M, g) be a Riemannian manifold. For any point x ∈ M , denote as ||.||x the norm induced by gx
on TxM , and denote as d the Riemannian distance over M . M is endowed with its Levi-Civita connexion
∇ (actually, the only important feature of ∇ in the device of this algorithm is its torsion-free character).
Schild’s ladder’s algorithm consists of two steps.

First step: parallel transport of a tangent vector between two ‘close points’. Let p ∈ M , and v ∈ TpM
a tangent vector at p, whose parallel transport is investigated. There exists a small radius r > 0 such that
the geodesic ball Br(p) is strongly convex. Let q ∈ Br(p), and take any curve γ : [0, τ ]→ Br(p), parametrized
by arc length, connecting p to q, that is γ(0) = p, γ(τ) = q, and denote u = γ′(0) ∈ TpM . The goal of this
step is to devise a consistent approximation of the parallel transport of v from TpM to TqM along γ. To
this end, introducing a small parameter σ > 0, the following procedure is carried out (see also figure 8.21):

1. Let γ1 be the unique geodesic on M , starting from p with initial velocity vector v, i.e. γ1(0) = p, and
γ′

1(0) = v. A point p1 is found on M as p1 = γ1(σ) = expp(σv).

2. Let γ2 be the unique geodesic on M connecting p1 to q. A new point m is taken as the midpoint of
γ2, that is: m = expp1

(
1
2 logp1

(q)
)
.

3. Let γ3 be the unique geodesic on M connecting p to m. A new point p2 is obtained by expanding γ3

past m for the same amount of arc length as that from p to m. In other words: p2 = expp
(
2 logp(m)

)
.

4. Let γ4 be the unique geodesic on M from q to p2, and parametrize γ4 in such a way as γ4 has the
same (constant) speed as γ1. Then an approximation T̃ v of T (γ)τ0(v) is obtained as the initial velocity
vector of γ4 (with the above chosen parametrization), i.e. T̃ v = 1

σ
logq(p2).

•

•

p

q

•

•

p1

p2
m

γ1

γ2
γ3

γ4

Figure 8.21: Illustration of the Schild’s ladder’s algorithm for the parallel transport of v ∈ TpM from p to q
along γ, when p and q are ‘close enough’.

This construction is legitimated by the following result:

5. It is amusing that this very elegant idea influenced the science-fiction novelist Greg Egan, who wrote a short story -
Schild’s ladder - based upon this principle.
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Proposition 8.2. Provided σ and τ are chosen small enough, the above construction is valid. Moreover,
the error induced by the process can be estimated as:

||T (γ)τ0(v)− T̃ v||q = O
(

(τ + σ)3

σ

)
, (8.31)

where the O
(

(τ+σ)3

σ

)
residual only depends on the norm of v and local characteristics of M .

Proof. This proof mostly reproduces the estimates in [191].
First, provided τ and σ are small enough with respect to r, the whole construction is concentrated in

Br(p): points p1,m, p2 belong to Br(p). The existence of the geodesic curves γ1, γ2, γ3, γ4 is then guaranteed
and the above construction is valid.

Let us now turn to proving (8.31). Take a set of local coordinates (x1, ..., xn) on Br(p) (e.g. but non
necessarily geodesic coordinates). Denote as (dx1, ..., dxn) (resp. ( ∂

∂x1
, ... ∂

∂xn
)) the associated trivializing

sections of the dual bundle TM∗ (resp. of the tangent bundle TM). If x ∈ Br(p), we denote with the i
exponent the i-th coordinate of x in this set of coordinates, and if w ∈ TxM , wi is the i-th coordinate of w in
basis ( ∂

∂x1
(x), ... ∂

∂xn
(x)). We eventually denote as Γij,k the Christoffel symbols of ∇ in this set of coordinates.

Consider any component i = 1, ..., n; we search for a first order estimate of T̃ v
i − vi (i.e. with a residual

O((τ + σ)2)). We will repeatedly use the convergence of T̃ v
i

to vi, under the form:

(T̃ v
i − vi) = O(τ + σ). (8.32)

Such a convergence result is a fairly easy consequence of the exact expression of T̃ v provided along steps
(1− 4) above. We use the decomposition:

(pi2 − qi)− (pi1 − pi) = (pi2 −mi) + (mi − qi)− (pi1 −mi)− (mi − pi). (8.33)

From the definition of γ1, γ4, we have, using a second order Taylor expansion on the coordinate functions:

(pi2 − qi) = σT̃ v
i − 1

2
σ2
∑

j,k

Γij,kT̃ v
j
T̃ v

k
+O(σ3), (8.34)

(pi1 − pi) = σvi − 1
2
σ2
∑

j,k

Γij,kv
jvk +O(σ3), (8.35)

where the O(σ3) only depends on the third order derivatives of the components of γ1, γ4, and thus only on
its first order derivatives (which are uniformly bounded) as well as some intrinsic characteristics of M since
they are geodesic curves. Notice that the dependance of the Christoffel symbols on the point where it is
computed has been dropped for considering its variations only breeds higher-order terms in the calculation:
we will therefore proceed in the computation as if they were constant.

Similarly, introducing λ = 1
2d(p1, q), ρ = d(p,m), as well as the tangent vectors z = γ′

2(0), w = γ′
3(0),

and their parallel transports z|| = T (γ2)λ0 (z), w|| = T (γ3)ρ0(w) ∈ TmM , one finds:

(pi2 −mi) = ρwi|| −
1
2
ρ2
∑

j,k

Γij,kw
j

||w
k
|| +O(ρ3), (8.36)

(mi − qi) = −λzi|| −
1
2
λ2
∑

j,k

Γij,kz
j

||z
k
|| +O(λ3), (8.37)

(pi1 −mi) = −λzi − 1
2
λ2
∑

j,k

Γij,kz
jzk +O(λ3), (8.38)
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(mi − pi) = ρwi − 1
2
ρ2
∑

j,k

Γij,kw
jwk +O(ρ3) (8.39)

Putting equations (8.34-8.39) into (8.33) and using the fact that λ and ρ are of order O(τ + σ) yields:

σ(T̃ v
i − vi)− 1

2σ
2
∑
j,k Γij,k(T̃ v

j
T̃ v

k − vjvk) = ρ(wi|| − wi)− λ(zi|| − zi)− 1
2ρ

2
∑
j,k Γij,k(wj||w

k
|| − wjwk)

+ 1
2λ

2
∑
j,k Γij,k(zj||z

k
|| − zjzk) +O((τ + σ)3).

(8.40)
On the other hand, we can exploit the parallel transport equation (8.29) to obtain a (rather easy) 0-th order
estimate of the discrepancies (wi|| − wi) and (zi|| − zi) as:

(wi|| − wi) = O(τ + σ) ; (zi|| − zi) = O(τ + σ), (8.41)

then the more interesting first order expansions:

(wi|| − wi) = −
∑

j,k

Γij,kw
j(mk − pk) +O((τ + σ)2), (8.42)

(zi|| − zi) = −
∑

j,k

Γij,kz
j(mk − pk1) +O((τ + σ)2). (8.43)

Moreover, we also have:
(mi − pi) = 1

2 (pi2 − pi) +O((τ + σ)2)
= 1

2 (τui + σvi) +O((τ + σ)2)
, (8.44)

and in the same way

(mi − pi1) =
1
2

(τui − σvi) +O((τ + σ)2). (8.45)

Pulling (8.40 - 8.45) together, we end up with:

σ(T̃ v
i − vi) = λ

2

∑
j,k Γij,kz

j(τuk − σvk)− ρ
2

∑
j,k Γij,kw

j(τuk + σvk) +O((τ + σ)3)
= τ

2

∑
j,k Γij,k(λzj − ρwj)uk − σ

2

∑
j,k Γij,k(λzj + ρwj)vk +O((τ + σ)3)

. (8.46)

Now using the expansions:
(λzi + ρwi) = τui +O((τ + σ)2), (8.47)

(ρwi − λzi) = σvi +O((τ + σ)2), (8.48)

we eventually get:

σ(T̃ v
i − vi) = − τσ2

∑
j,k Γij,k

(
vjuk + ujvk

)
+O((τ + σ)3)

= −τσ∑j,k Γij,ku
jvk +O((τ + σ)3)

, (8.49)

where the last equality holds because the Levi-Civita connection is torsion-free (which implies the symmetry
of the Christoffel symbols Γij,k = Γik,j). Thus,

(T̃ v
i − vi) = −τ

∑

j,k

Γij,ku
jvk +O

(
(τ + σ)3

σ

)
. (8.50)

Using one last time the parallel transport equation (8.29) to express the very definition of T (γ)τ0(v), one
obtains the estimate:

[T (γ)τ0(v)]i − vi = −τ
∑

j,k

Γij,ku
jvk +O(τ2), (8.51)
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and comparing this to (8.52) eventually yields:

([T (γ)τ0(v)]i − T̃ vi) = O
(

(τ + σ)3

σ

)
, (8.52)

which is the desired result.

Second step: parallel transport of a tangent vector between any two points. Let p, q ∈ M , v ∈ TpM , and
γ : [0, τ ]→M a curve connecting p to q, parametrized by arc length. As q may stand far from p, the above
construction no longer holds, for geodesics γ2, γ3, γ4 may fail to exist. The solution is then to apply the first
step repeatedly on small portions of γ, where it is possible; this leads to a diagram such as that of figure
8.22, after which the algorithm is named.

•

•

p

qp1
•

•
•p2

· · ·

γ pN−1

v

�TNv�T 1v
�T 2v

Figure 8.22: Repeated application of the local procedure for an approximation of the parallel transport of v
from p to q along γ.

More precisely, since γ([0, τ ]) is compact, there exists r > 0 such that, γ([0, τ ]) can be covered by finitely
many geodesic balls Bri

(pi), i = 1, ..., N , where pi = γ(ti), for some ti ∈ [0, τ ] (by convention, we set t0 = 0,
tN = τ), in which the local procedure described in the first step can be applied. This procedure is then

performed between each pair of points pi, pi+1, and this produces a sequence T̃ 1v, ..., T̃Nv of approximate

parallel transports of v at points p1, ..., pN , and one can eventually take T̃Nv as an approximation of T (γ)τ0(v).
This construction is legitimated by the following result:

Proposition 8.3. The convergence error for the Schild’s ladder procedure is controlled as:

||T (γ)τ0(v)− T̃Nv||q= O(σ), (8.53)

where σ is the maximum length of a portion of curve γ([ti, ti+1]), and the O(σ) only depends on the norm
of v and characteristics of the surface in a neighborhood of γ.

Proof. One has:

||T (γ)τ0(v)− T̃Nv||q ≤ ||T (γ)τ0(v)− T (γ)t
N

tN−1(T̃N−1v)||q + ||T (γ)t
N

tN−1(T̃N−1v)− T̃Nv||q
= ||T (γ)t

N−1

0 (v)− T̃N−1v||pN−1
+ ||T (γ)t

N

tN−1(T̃N−1v)− T̃Nv||q
= ||T (γ)t

N−1

0 (v)− T̃N−1v||pN−1
+O(σ2)

, (8.54)

where we used the fact that the parallel transport operator T (γ)t
N

tN−1 : TpN−1
M → TpN

M is an isometry,
and proposition 8.2 to control the second term. Applying this procedure N times yields the result, because
the O(σ2) which appears depends only on local characteristics of M .

Remark 8.8. Infringing a little bit on the forthcoming applications, let us note that translating Schild’s
ladder’s algorithm into the numerical contest without introducing any subsequent approximation is not an
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easy task, for it involves the computation of geodesic curves on M . Depending on the way M is represented
and on the desired accuracy, several ways allow to approximate these geodesic curves. In the context of
interest in this chapter, M = Γ is a surface embedded in R3, which is locally parametrized from an associated
surface triangulation S: from a given triangle T → S, a local parameterization σ : T → Γ is available. Then,
for instance, the geodesic curve emerging from a point p ∈ σ(T ), with initial velocity v ∈ TpΓ is approximated
by the curve γ defined by (see Figure 8.23):

γ : t 7→ σ(t dσ−1
p (v)).

T

•

•

p

σ
−1(p)

σ

v

dσ−1
p (v)

γ

Figure 8.23: Approximation of the geodesic on Γ emerging from p, with velocity v ∈ TpΓ.

8.2.2.2 Parallel transport of a bilinear form over a Riemannian manifold

Let (M, g) be a Riemannian manifold of dimension n, and ∇ the associated Levi-Civita connexion. Given
two points p, q ∈ M connected by a smooth curve γ, and a symmetric bilinear form bp : TpM × TpM → R
over TpM , we shall need to account for the parallel transport of bp from p to q via γ. A simple way to do
this, using the Schild’s ladder’s algorithm is enabled by the following proposition:

Proposition 8.4. Let p, q ∈ M , and γ : I → M a differentiable curve, t0 ∈ I, and denote p = γ(0). Let
b ∈ Sym2(TM∗) a symmetric bilinear tensor field which is parallel along γ, in the sense of definition 8.9.
Denote as λ1, ..., λn the eigenvalues of bp, and (e1, ..., en) an associated orthonormal basis of eigenvectors (for
the scalar product gp). Then for any t ∈ I, bγ(t) has eigenvalues λ1, ..., λn, and an associated orthonormal
basis of eigenvectors of Tγ(t)M is (T (γ)tt0(e1), ..., T (γ)tt0(en)).

Proof. It is enough to prove that, for every t ∈ I,

∀i = 1, ..., n, ∀v ∈ Tγ(t)M, bγ(t)

(
T (γ)tt0(ei), v

)
= λigγ(t)

(
T (γ)tt0(ei), v

)
. (8.55)

Indeed, this will prove that, for any i = 1, ..., n, T (γ)tt0(ei) is an eigenvector of bγ(t) associated to the
eigenvalue λi. Thus, as (T (γ)tt0(e1), ..., T (γ)tt0(en)) is an orthonormal basis of Tγ(t)M , owing to the properties
of the Levi-Civita connection, the result will follow.

Now, since T (γ)tt0 : Tγ(t0)M → Tγ(t)M is a linear isomorphism, (8.55) is equivalent to:

∀i = 1, ..., n, ∀v ∈ Tγ(t0)M, bγ(t)

(
T (γ)tt0(ei), T (γ)tt0(v)

)
= λigγ(t)

(
T (γ)tt0(ei), T (γ)tt0(v)

)
. (8.56)

Eventually, because for any v ∈ Tγ(t0)M , T (γ)tt0(v) is a parallel vector field, and b and g are parallel along
γ, the quantity

bγ(t)

(
T (γ)tt0(ei), T (γ)tt0(v)

)
− λigγ(t)

(
T (γ)tt0(ei), T (γ)tt0(v)

)

is constant on I. As it amounts to 0 at t = t0, this ends the proof.
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This small result turns out to be very convenient when it comes to describing the parallel transport of a
symmetric bilinear form b : TpM × TpM → R from p ∈ M to q ∈ M along a segment of curve γ. Indeed, it
basically states that, to achieve this, one only need transport n vectors, the vectors of an orthonormal basis
of TpM composed of eigenvectors of b (and actually it is enough to transport n− 1 of these vectors, for the
n-th being orthogonal to the others).

8.2.3 Definition of a suitable Riemannian structure for anisotropic surface remesh-
ing

From this section on, we will be considering the issue of anisotropic remeshing of a triangulation S of
a surface Γ embedded in R3. Such a surface is endowed with the Riemannian structure inherited from the
canonical scalar product of R3, which we shall denote as g, and refer to as the natural Riemannian structure
of Γ. However, we will also be investigating other structures over Γ, induced by different metric tensor fields
b ∈ Sym2(TΓ∗), which account for the desired size prescriptions for remeshing. In the sequel, we will denote
with a b superscript all the features (length, volume form, Levi-Civita connection, etc...) attached to the
Riemannian structure of Γ induced by b, and without any superscript the corresponding features attached
to its natural structure.

As in the beginning of section 8.1, we consider a smooth oriented surface Γ ⊂ R3, together with an
interpolating triangulation S satisfying hypotheses (8.1) of which is given. We aim at modifying S into a
nicely-shaped - potentially anisotropic - triangulation S̃ which is a close geometric approximation of Γ in
the sense that dH(S̃,Γ) ≤ ε, for a prescribed tolerance ε > 0.

By analogy with the isotropic context developed in section 8.1.4, the information about the expected
behavior of the sought triangulation S̃ is encoded in a Riemannian structure b ∈ Sym2(TΓ∗) over the ideal
surface Γ. The problem of modifying S with respect to the prescribed anisotropic information thus boils
down to producing a mesh S̃ whose edges pq have unit length ℓb(pq), that is, such that the underlying curves
γ on Γ have unit length ℓb(γ).

8.2.3.1 Definition of a Riemannian structure adapted to the geometric approximation of a
surface

The sought anisotropic behavior of the resulting mesh may stem from external concerns (e.g. error esti-
mates associated to mechanical analyses held on S), or from the intrinsic anisotropic geometry of Γ itself.
This section is intended as the anisotropic twin of section 8.1.4, and explains how a metric tensor field
adapted to the geometric approximation of Γ may be constructed.

To this end, we rely once again on a heuristic based upon theorem 8.2. Suppose Γ is a smooth, compact
manifold without boundary, delimiting a bounded and connected domain Ω ⊂ R3: Γ = ∂Ω. Let S an
approximating triangulation of Γ matching conditions (8.8). We demand that S satisfy:

dH(S,Γ) ≤ ε. (8.57)

For this to hold, a sufficient condition is expressed in terms of the signed distance function dΩ to Ω; for all
triangles T ∈ S one should have:

2
9

max
x∈T

max
y,z∈T

|H(dΩ)(x)|(yz, yz) ≤ ε. (8.58)

Now, if T ∈ S is ‘very close’ to some point x ∈ Γ, one may ‘assume’ that |H(dΩ)| stays constant over T ,
with value |H(dΩ)(x)|. The sufficient condition (8.58) for triangle T then becomes:

∀y, z ∈ T, 2
9
|H(dΩ)(x)|(yz, yz) ≤ ε. (8.59)
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Let n(x) the unit normal to Γ at x, pointing outside Ω, κi(x) (i = 1, 2) the two principal curvatures of Γ at
x, and ei(x) the associated principal directions, so that in basis (e1(x), e2(x), n(x)), H(dΩ)(x) reads:

H(dΩ)(x) =




κ1(x) 0 0
0 κ2(x) 0
0 0 0


 .

Suppose now that the normal vector field to S (which is defined almost everywhere) is ‘close’ to that of Γ.
This means that, roughly speaking, if T ∈ S is very close from x ∈ Γ, T should be enclosed in the tangent
plane TxΓ.

Define b ∈ Sym2(TΓ∗) as follows: for any x ∈ Γ, bx is the bilinear form on TxΓ whose matrix in basis
(e1(x), e2(x)) is:

(
λ1 0
0 λ2

)
, λi = max

(
1

h2
max

,min
(

1
h2
min

,
2|κi(x)|

9ε

))
, (8.60)

where hmin and hmax are the same parameters as those introduced in section 8.1.4, representing respectively
lower and upper bounds on the authorized (Euclidean) size of the edges of the sought mesh.

From equation (8.59), a sufficient condition for (8.57) to hold is that, for any T ∈ S ‘close’ to a point
x ∈ Γ, each one of the three edges of T has length less or equal to 1 when measured with respect to bx.

These informal calculations lead us to look for a triangulation S̃ whose edges pq have length ℓb(pq) as
close to 1 as possible, where b ∈ Sym2(TΓ∗) is the metric tensor field defined by formula (8.60).

This formal analysis tacitly implies that the considered ideal surface Γ is smooth. However, in many
cases, reality is bleaker than that: as mentioned in section 8.1.1, we are often interested in surfaces which
do not enjoy so much regularity: for instance, mechanical parts often present ridge angles, or singularities
(see for instance figures 8.15, and 8.17 (c-d)). In this context, we should rely on different descriptions of the
local desired size features, depending on the regularity of the considered region:

– At a singular point x ∈ Γ, several different pieces of smooth surface meet. An isotropic local size
feature is associated to each one of them by means of the analysis held in section 8.1.4. The metric at
x is then defined by means of a single, isotropic, local size feature (i.e. the minimum size prescription
among those dictated by the pieces of surface meeting at x).

– At a ridge point x ∈ Γ which is not singular, two different pieces of smooth surface intersect, say Γ1,Γ2.
The local geometry is then defined by means of the two associated normal vectors n1(x) and n2(x)
at x, and the tangent vector τ(x) to the intersecting ridge curve. At such a point, we keep in mind
three local size features: one in the direction of τ(x), two in the directions of n1(x) ∧ τ(x) ∈ TxΓ1,
n2(x)∧ τ(x) ∈ TxΓ2. Each time point x is considered, only the relevant information is kept, depending
on whether x is considered as belonging to Γ1 or Γ2.

– At an open point x, the description is identical, except that only one portion of surface lands at x.
– At a reference point x ∈ Γ which is not a ridge point, recall that x belongs to a smooth part of Γ, and

at the same time to a smooth curve γ drawn on Γ. The local size prescription is then described in the
standard way - that is by means of a bilinear form over TxΓ, except that the geometric error based
metric tensor field (8.60) has to be intersected with another very similar tensor field associated to the
geometric error of the approximation of γ.

– Eventually, at a regular point x ∈ Γ (which is the case of ‘most of the points’ of Γ), the bilinear form
over TxΓ given by (8.60) is used for describing the local size features.

Remark 8.9. In numerical practice, the accuracy of the proposed method in capturing the anisotropic
behavior of the considered ideal surface Γ generally depends a lot on the shape of the input triangulation S,
mainly because of the strong dependence of the algorithms to approximate the curvature tensor of the ideal
surface associated to a discrete triangulation on the shape of the triangulation.
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8.2.3.2 Gradation of an anisotropic metric tensor field

Throughout this section, g stands for the Riemannian structure on Γ inherited from the Euclidean scalar
product of R3, and all the geometric features on Γ - Levi-Civita connection, geodesic curves, etc... - are
assumed to be related to this natural Riemannian structure. Let also b ∈ Sym2(TΓ∗) the metric tensor field
associated to the geometric approximation of Γ, as discussed in the previous section.

As in the case of isotropic surface remeshing, relying on this raw metric tensor field to drive our operators
may cause the production of poor quality elements. However, this problem is more difficult to formulate and
assess in the present anisotropic context.

In the isotropic context of section 8.1.4.5, a gradation was imposed on the size map h : Γ→ R so that a
unit triangulation with respect to h would consist of well-shaped triangles, or more accurately of triangles
whose edges have ‘similar’ lengths. Such a prescription would not make any sense in the anisotropic context,
since anisotropic elements are by essence distorted. Likewise, one could think of demanding that grading of
the metric tensor field b would help in getting a mesh, whose elements have high qualities, but this would be
a bit awkward since, as we shall see in section 8.2.5.1, the very concept of mesh quality relies (and should
rely) on b itself. Hence, we found no more satisfactory way to carry out the gradation of b than to follow our
intuition of what should be a ‘good anisotropic mesh’, that is, a mesh whose triangles may be distorted, but
whose general orientation and sizes in the characteristic directions of this orientation should show smooth
variations.

Let us now describe a heuristic way of translating this idea into our mathematical framework which
turned out to meet our expectations. Let p ∈ Γ any point, u ∈ TpΓ a unit tangent vector (with respect to
gp). From our definition of b, and notably relation (8.60) between b and the desired size prescriptions, the
characteristic size at p in direction u, hp(u), is defined as:

hp(u) =
1√

bp(u, u)
.

As we have seen in Section 8.1.4.5, the gradation procedure considers an edge pq ∈ S of the surface trian-
gulation, and updates the size prescriptions at either p or q so that a certain condition - yet to be defined
in the anisotropic setting - is fulfilled. Let γ : [0, ℓ(pq)]→ Γ the corresponding curve on Γ, parametrized by
arc length. If u ∈ TpΓ is a unit tangent vector at p, the characteristic size in direction u along γ is defined
as hγ(t) (T (γ)t0u). Following the heuristic considerations of section 8.1.4.5, our aim then becomes to enforce
that:

∀u ∈ TpΓ s.t ||u||p= 1, ∀t ∈ (0, ℓ(pq)),
∣∣∣ d
dt

(
hγ(t)

(
T (γ)t0u

)) ∣∣∣≤ hgrad,

where hgrad denotes the desired bound on the size prescriptions. Note that, T (γ)ℓ(pq)
0 : TpΓ → TqΓ being

an isometric isomorphism, this condition is actually symmetric in p and q. In numerical practice, this is
discretized as:

∀u ∈ TpΓ s.t ||u||p= 1,

∣∣∣∣∣∣

hq

(
T (γ)ℓ(pq)

0 (u)
)
− hp(u)

ℓ(pq)

∣∣∣∣∣∣
≤ hgrad. (8.61)

At this point, several possible strategies emerge as for the anisotropic gradation procedure: imposing that
it should hold for any tangent direction u ∈ TpΓ amounts to controlling the variations of b itself - as a
symmetric bilinear form - along γ. This can be rigorously expressed in terms of the Levi-Civita connection
on Γ, but then becomes tedious to implement numerically. We chose instead to stay as simple (and heuristic)
as possible, and to enforce (8.61) in only one direction, namely u = γ′(0), the direction of the associated
curve to the processed edge pq. Similarly, many operations are possible when it comes to modifying bq (or bp)
in enforcing (8.61): one could think of altering the principal directions of these bilinear forms, or finding the
optimal way to modify the two corresponding eigenvalues. For the sake of simplicity, we thought it better to
perform only an homothetic transformation on bq or bp, so that the shape of the corresponding unit ellipsoid
in the tangent plane is retained. All in all, the proposed procedure reads as follows: let pq ∈ S and edge,
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1. compute the unit vector u := γ′(0) to the normal curve γ associated to pq on Γ.

2. Compute the length ℓ(pq) of γ, as well as an approximation to the parallel transported vector Tu :=
T (γ)t0(u) (see section 8.2.2.1).

3. If hq(Tu) > hp(u) + hgrad ℓ(pq), replace bq by αbq, where α ∈ (0, 1) is the unique real value which
satisfies:

1√
a
hq(Tu)− hp(u) = hgrad ℓ(pq).

Else, go back to the first step, looking at pq with the reversed orientation (i.e. as qp): in this case, bp
will be updated.

In addition to this procedure, whenever a gradation on the Riemannian structure b on Γ is performed,
we thought it better to impose beforehand that the metric bp at ridge points p ∈ Γ should be converted into
an isotropic one. The reason is that, generally speaking, ridge curves stand for boundaries between pieces
of surface enjoying utterly independent features. In this view, specific orientation data attached to different
pieces of surface should not be allowed to interfere with one another. See the examples of section 8.2.6 for
an illustration of this point.

8.2.4 Metric tensor fields on triangulated surfaces in numerical practice

The purpose of this section is to detail several issues related to the numerical treatment of symmetric
bilinear forms defined over a surface in R3.

Let b ∈ Sym2(TΓ∗) to be stored in a discrete fashion over S. We intend to proceed exactly as in the
scalar case described in section 8.1.4, keeping the information related to b at each vertex p of S, so that the
bilinear form bx is interpolated from the known data when the considered point x ∈ Γ is not a vertex of S.

8.2.4.1 A word about the numerical storage of fields of symmetric bilinear forms

Let b ∈ Sym2(TΓ∗), i.e. for each point p ∈ Γ, bp is a symmetric bilinear form over the two-dimensional
space TpΓ: bp inherently corresponds to a symmetric 2 × 2 matrix, once a basis of TpS has been set.
Unfortunately, it is well-known that the tangent bundle TΓ is generally not trivial, i.e. there does not
exist globally defined, smooth vector fields X,Y ∈ Γ(TΓ) such that, for any point p ∈ Γ, (X(p), Y (p)) is a
basis of TpΓ. Consequently, if we are to store bp as a 2×2 matrix, we have to store as well the corresponding
basis of TpΓ in which bp is expressed.

We chose a rather different point of view: taking advantage of the natural embedding TpΓ ⊂ R3, bp can
be naturally extended to a symmetric bilinear form R3 × R3 → R, still denoted as bp, such that, for all
v ∈ R3, bp(v, n(p)) = 0, where n(p) is the unit normal to Γ at p (with respect to the specified orientation).
Doing so, if (e1(p), e2(p)) is any orthonormal basis of TpΓ, in which bp has matrix M ∈ M2(R), the matrix
of the (extended) form bp in the direct orthonormal basis (e1(p), e2(p), n(p)) of R3 reads:




0

M 0

0 0 0


 (8.62)

Hence, we will store bp as a 3 × 3 symmetric matrix expressed in the canonical basis of R3, whose kernel
contains n(p). From this datum, the matrix of bp in any orthonormal basis of TpΓ can be recovered using a
mere change of basis.

8.2.4.2 Intersection of two fields of symmetric bilinear forms over Γ

We have hitherto only been assuming that the triangulation S of Γ should be adapted to a Riemannian
metric b for the geometric approximation of Γ, computed on account of the analysis of Section 8.2.3. Yet, it
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is also interesting to consider adapting S with respect to any user-defined Riemannian metric m on Γ, which
could, once again, arise from an a posteriori error analysis of a numerical simulation performed on S.

In this case, so as to take into account both size prescriptions, an intersection of the metrics b and m is
performed (see e.g. [145]). Let us briefly describe this operation.

Let p ∈ Γ be a vertex of S, and Bp ∈ S2(R) (resp. Mp ∈ S2(R)) the symmetric positive definite matrix
associated to bp (resp. mp) in a given basis of TpΓ. An efficient way to perform the intersection of bp and mp

involves their simultaneous reduction [6]: there exists a matrix P ∈ GLd(R) such that both bilinear forms
are diagonal in the basis of Rd accounted for by P , i.e.

Bp = P diag(λi) PT ; Mp = P diag(µi)PT . (8.63)

As hinted at in section 8.2.3, the bilinear forms we are interested in account for local size prescriptions in
that, for any point x ∈ Γ, and any direction v ∈ TxΓ with gx(v, v) = 1, one has bx(v, v) = 1

h2
x(v) , where

hx(v) is the prescribed local size by b at x in direction v (and similarly for m). Consequently, the intersected
bilinear form b̃p over TpΓ, whose matrix B̃p in the considered basis of TpΓ is defined by:

B̃p = P diag(max(λi, µi)) PT

retains only the smallest local size features of bp and mp (see [6] for a geometric interpretation in terms of
unit ellipsoids).

8.2.4.3 Interpolation of two symmetric bilinear forms along a curve

Now, let x ∈ Γ a point which is not a vertex of S, at which bx : TxΓ × TxΓ → R is to be approximated
from the values of b at the vertices of S. In the following, we will only require the case where x is located
on a given curve γ connecting two vertices p and q of S, at which bp and bq are known. Hence, we focus on
this particular situation, which is readily extended to more general ones.

First, consider the simpler problem when all the data belong to a common vector space Rd (d = 2, 3),
that is, p, q are two points in Rd, and b is a field of symmetric bilinear forms over Rd, to be interpolated
along the segment [0, 1] ∋ t 7→ γ(t) = (1 − t)p + tq from its values bp, bq at p, and q respectively. Denote
as Mp (resp. Mq) the d × d symmetric positive definite matrix associated to bp (resp. bq) in the canonical
basis of Rd. Performing the interpolation of Mp and Mq along γ involves the simultaneous reduction of Mp

and Mq, as in Section 8.2.4.2: there exists a matrix P ∈ GLd(R) such that both bilinear forms bp and bq are
diagonal in the basis of Rd accounted for by P , i.e.

Mp = P diag(λi) PT ; Mq = P diag(µi) PT . (8.64)

From the interpretation of the λi, µi in terms of local size specifications, the simplest interpolation scheme
of bp and bq along γ, accounting for a linear interpolation of the local size features in the directions of the
columns of P reads in terms of the associated matrices:

∀t ∈ [0, 1], Mγ(t) = P diag(δi(t))tP, δi(t) =
λiµi(

(1− t)√µi + t
√
λi
)2 . (8.65)

In the case we are interested in, bp and bq are defined over TpΓ and TqΓ respectively, and are to be
interpolated at a point γ(t) of a segment of curve γ : [0, 1]→ Γ connecting p to q (γ is parametrized by [0, 1]
for the sake of convenience). The easiest extension of the above procedure consists in identifying bp and bq
as symmetric, positive definite bilinear forms over the same tangent plane Tγ(t)Γ, then to resort to the above
interpolation procedure. The most natural way to identify bp (resp. bq) as a bilinear form over Tγ(t)Γ is to
consider its parallel transport from p (resp. q) to γ(t) along γ.

In view of Proposition 8.4, this leads to the following procedure (see figure 8.24 for an illustration):
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step 1: Diagonalize bp in a frame (e1(p), e2(p)) which is orthonormal for the natural Riemannian structure
gp of TpΓ. Let λ1, λ2 the associated eigenvalues.

step 2: Approximate the parallel transport T (γ)t0(e1(p)) of e1(p) from p to γ(t) along γ using Schild’s ladder’s

procedure (see Remark 8.8). A vector ẽ1(p) is then obtained.

step 3: Let ẽ2(p) ∈ Tγ(t)Γ such that (ẽ1(p), ẽ2(p), n(γ(t)) is a direct orthonormal frame of R3, and define
b̃p as the symmetric positive definite bilinear form over Tγ(t)Γ whose eigenvalues are λ1, λ2, with

associated eigenvectors ẽ1(p), ẽ2(p).

step 4: Apply the same procedure to get an approximation b̃q of the parallel transport T (γ)t1(bq).

step 5: Interpolate b̃p and b̃q in the tangent plane Tγ(t)Γ using the aforementioned procedure in the Euclidean
case.

•

•

•

p

q

γ(t)

Γ

TpΓ

TqΓ

Tγ(t)Γ

v

Figure 8.24: Interpolation of two symmetric bilinear forms bp, bq (represented by their unit ellipsoids, in blue
and yellow) defined over two different tangent planes TpΓ and TqΓ. An eigenvector v of bp is represented (in
red), as well as its parallel transport thanks to Schild’s ladder’s procedure.

8.2.5 Geometric anisotropic surface remeshing of a discrete surface

Thanks to these new ingredients, we are now in position to roll out the proposed anisotropic remeshing
procedure. Obviously, this strategy is very similar to the isotropic one, detailed in section 8.1.5, except
perhaps on two points, which we now describe.

8.2.5.1 Anisotropic mesh quality

As explained in section 8.1.5, the suggested remeshing procedure relies on a quality function such as
(8.2) for evaluating the shape of the triangles of an approximating mesh S to a surface Γ: among other
things, it is a very convenient way to discriminate which operation should or should not be carried out on a
mesh, depending on whether it degrades or enhances the shapes of its elements (e.g. whether it produces or
eliminates very stretched triangles).
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However, in our attempt to obtain an anisotropic mesh, adapted to a Riemannian metric b ∈ Sym2(TΓ∗),
we have to modify the evaluation of the quality of triangles to take into account the anisotropy in the size
prescriptions: a triangle which is very stretched, but whose stretching is aligned with the anisotropy in the
local size features must be considered well-shaped, whereas an equilateral triangle for the Euclidean metric,
located in an area where the size prescription is highly anisotropic must not be judged satisfactory (see [50]
for a discussion over this topic).

Unfortunately, to the best of our knowledge, there is no general theory around mesh quality evaluation
in the anisotropic context. In our remeshing process, we used the following quality function Qb, which is the
most natural extension of (8.2) to the anisotropic context: for any triangle T ∈ S, with edges e1, e2, e3,

Qb(T ) =
Volb(T )√

(ℓb(e1))2 + (ℓb(e2))2 + (ℓb(e3))2
. (8.66)

Contrary to the isotropic case, there is no longer any guarantee that the equilateral triangles in metric b
should reach the maximum value of (8.66) (hence, there is no point in normalizing Qb). One can only notice
that such a function Qb tends to qualify as badly-shaped those elements which are flat, or stretched with
respect to the anisotropy in the local values of b.

8.2.5.2 Vertex relocation in the anisotropic remeshing context

In section 8.1.3.4, the vertex relocation operator was presented as an operator aimed at improving the
overall quality of a mesh and was based on the following heuristic: in order to make the triangles of the ball
B(p) of a vertex p ∈ S equilateral, one can try and move it in the direction of the centroid of B(p). Recall
that, so as to ensure that the new position of p stays on Γ, the new position was computed on the tangent
plane TpΓ, then sent back to Γ using its local parametrization (see section 8.1.2).

Here, the same heuristic is translated in the anisotropic context but proves slightly more tedious, since
the very notion of ‘centre of mass’ should be cast into the Riemannian context. This is the purpose of the
following result, excerpted from [187].

Theorem and Definition 8.14. Let (M, g) be a Riemannian manifold; denote as d(., .) the Riemannian
distance, and as ω the volume form on M . Let p ∈ M , and r > 0 small enough so that, in particular, the
geodesic ball of center p and radius r is strongly convex (see [187] for an estimate of the admissible values of
r, depending on the sectional curvatures of M near p). Let also U ⊂ Br(p) an open set. Define a functional
J on Br(p) as:

∀x ∈ Br(p), J(x) =
1
2

∫

U

d(x, y)2ω(y). (8.67)

Then J has a unique minimum point over Br(p), called the Riemannian center of mass of U .
Moreover, J is differentiable over Br(p), and its differential reads:

∀x ∈ Br(p), ∀v ∈ TxM, dJx(v) = −
∫

U

gx(logx(y), v)ω(y). (8.68)

Back to our setting, suppose a Riemannian metric b ∈ Sym2(TΓ∗) has been defined over Γ, which accounts
for instance (but not necessarily) to a local size prescription over Γ. Denote with a b superscript all the
geometric features of Γ (Riemannian distance, exponential map) associated to this particular Riemannian
structure.

Let p ∈ S a vertex to be relocated, B(p) its ball of surface triangles. Let π : R3 → TpΓ the orthogonal
projection onto TpΓ, and φ : π (B(p))→ Γ the local parametrization of Γ from TpΓ (see again section 8.1.2).
Contrary to what happened in the isotropic context of section 8.1.3.4, the relocation position for p can no
longer be computed explicitly. Thus, we shall steadily move p in the direction of the gradient of function J
defined by (8.67), for an adequate choice of set U . Let us indeed consider the Riemannian centre of mass
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of the open set U := expbp(π (B(p))) ⊂ Γ, assuming it is small enough to be included in a geodesic ball
Bbr(p) filling the hypotheses of theorem 8.14. Of course, many other subsets U ⊂ Γ could be used instead
of this particular one. However, as we shall see below, this one brings convenient formulae for numerical
approximation.

Using theorem 8.14, we search for a new position for p that decreases the value of the objective function
Jb defined over Bbr(p) as:

∀x ∈ Bbr(p), Jb(x) =
1
2

∫

U

db(x, y)2ωb(y), (8.69)

and to this end, we can rely on the fact that:

∀v ∈ TpΓ, dJbp(v) = −bp(V, v), where V =
∫

U

logbp(y) ωb(y) ∈ TpΓ. (8.70)

Hence, relocating p at position φ(0 + εV ) (for a small parameter ε > 0) should decrease the value of our
objective function (8.69). This leaves us with putting V under a form suitable for numerical computations.
To this end, introducing a basis (e1, e2) of TpΓ, we pull the integral expression of (8.70) back to TpΓ:

V =
∫

π(B(p))

x
√

det(bi,j(x))dx, with ∀ i, j = 1, 2, bi,j(x) = bexpb
p(x)

(
d(expbp)x(ei), d(expbp)x(ej)

)
. (8.71)

The latter formula is then decomposed over the (projected) triangles of π (B(p)), and evaluated using quadra-
ture formulae. Note that, once again, for the sake of simplicity, we chose to approximate the exponential
map expbp by the parametrization φ of Γ itself, whose analytical expression is known and can be differentiated
at will.

8.2.5.3 The complete anisotropic remeshing strategy

Let us sum up the suggested strategy for anisotropic surface remeshing. As it is almost identical with
the proposed strategy for isotropic surface remeshing exposed in section 8.1.5, we mostly limit ourselves to
pinpoint the differences between both cases when they arise. Starting from an input triangulation S of an
ideal surface Γ, and given the four parameters ε, hmin, hmax and hgrad whose meanings are the same as in
section 8.1.5, we still proceed within five main steps:

step 1: Analysis of S. Exactly as in the isotropic case, additional geometric information about Γ are recovered
from the datum of S, and special geometric entities (ridge edges, etc...) are identified.

step 2: Rough mesh modifications for a good ‘sampling’ of the surface. This stage as well unfolds exactly as
in the isotropic framework: a new triangulation S̃1 of Γ is produced, which satisfies the geometric
control criterion dH(S̃1,Γ) ≤ ε, without any other size prescription as the fact that the edges of S̃1

should be neither longer than hmax, nor shorter than hmin.
Note that an initial, user-defined size prescription m ∈ Sym2(TΓ∗) may be defined over Γ and stored
at the vertices of the initial triangulation S (as discussed in section 8.2.4.1), with respect to which
S should be eventually adapted. As in the isotropic case, this second step does not rely on the
information encoded in m. However, each time a new vertex is introduced (during the edge split
operation), a consistent value for m at the new vertex has to be inferred. This is achieved with the
interpolation procedure described in section 8.2.4.3.

step 3: Construction of the metric tensor field. A bilinear symmetric map b ∈ Sym2(TΓ∗) for the geometric
approximation of Γ in terms of Hausdorff distance within tolerance ε is then computed as in section
8.2.3, and stored on S̃1. If another Riemannian metric m was supplied by the user, intersect m with
b following Section 8.2.4.2. This metric tensor field is then graded, as detailed in Section 8.2.3.2.
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step 4: Rough mesh modifications with respect to the metric tensor field. This step is once again very similar
to its isotropic counterpart. So as to get a next triangulation S̃2 of Γ, we proceed as in step 2, except
that, henceforth lengths are measured by means of function ℓb (see formula (8.15)). Aiming at getting
a new triangulation whose edges have length 1, we choose rough bounds, outside which no edge
length should lie. Moreover, we take much more caution about mesh anisotropic quality (see formula
(8.66)): edge collapses are presently prevented when they degrade two much the overall quality of the
triangulation, and edge swaps are carried out provided they help improving the anisotropic quality
of the mesh (and possibly rejected if they degrade too much the geometric approximation of Γ).

step 5: Fine mesh modifications with respect to the metric tensor field. From the ‘pretty good’ triangulation
S̃2, we perform delicately driven operations so as to get the final triangulation S̃. Lengths of edges
are still evaluated by means of ℓb, except we now impose S̃ should have no edge with length lying
outside a sharper interval as before. We are also much stricter as far as the authorized degradation
in mesh anisotropic quality entailed by our operators is concerned. We eventually use the anisotropic
vertex relocation operator described in section 8.2.5.2 to help improving the overall (anisotropic)
quality of the mesh.

8.2.6 Numerical examples

As a conclusion to this discussion over anisotropic remeshing of discrete surfaces, let us give several
illustrations of the topics described above. For each example, details such as the total number npi (resp
npf ) of points, the average (anisotropic) quality Qi (resp. Qf ) and the worst (anisotropic) quality wqi (resp.
wqf ) of an element of the input (resp. output) mesh, as well as the total CPU time of the computation are
to be found in table 8.2.

8.2.6.1 Anisotropic remeshing of triangulated surfaces presenting anisotropic features

We start by giving several examples of the anisotropic remeshing of a discrete surface triangulation S
whose geometry presents anisotropic features (e.g. cylindrical parts, etc...) into a new triangulation S̃ which
is a close geometric approximation of the underlying ideal surface Γ, and is adapted to the geometry-based
Riemannian structure on Γ defined at Section 8.2.3. The first example concerns the same surface as in
Section 8.1.6, namely, the model02 surface. Figure 8.25 shows several illustrations of anisotropic remeshing
of this triangulated surface, where different values of the parameters hmin, hmax, hgrad, ε have been used.
Note that, in this figure, the result of (c) has been obtained using the same parameters as the one of (b),
except that the gradation procedure has been activated in the latter case. This shows the great impact of
this procedure, which admittedly curbs the anisotropic behavior of the elements in the mesh, for the sake of
‘smoothness’ in the progression of the size prescriptions.

Figure 8.26 shows two other examples of anisotropic remeshing of discrete surfaces 6. Note that we
carried out three consecutive anisotropic remeshing procedures to obtain the second result, for the initial
triangulation makes it very difficult to capture at once the anisotropic behavior of the associated surface
(actually, the problem mainly comes from the ‘long’ edges connecting two different ridge curves on the
boundary, which make it difficult to properly evaluate the curvature of the ideal surface).

8.2.6.2 Anisotropic adaptation of a surface triangulation to a user-defined metric tensor field

We eventually turn to an example where the proposed strategy for anisotropic surface remeshing is used to
adapt an initial triangulation to a user-defined metric tensor field. Let S a surface triangulation of the sphere
Γ ⊂ R3 of center 0 and radius 4, and consider the three-dimensional metric tensor field m : R3 → S3(R)

6. Data courtesy of http://www.scorec.rpi.edu/ and http://www-roc.inria.fr/gamma/download/download.php.
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(a) (b)

(c) (d)

Figure 8.25: Remeshing of the model02 model, displayed in (a), enclosed in a bounding box of dimensions
0.199×0.199×0.12. (b) Anisotropic remeshing using parameters hmin = 1e−4, hmax = 0.1, ε = 5e−4 without
gradation; (c) anisotropic remeshing using parameters hmin = 1e−4, hmax = 0.1, ε = 5e−4 and hgrad = 1.6;
(d) anisotropic remeshing using parameters hmin = 1e−4, hmax = 0.1, ε = 2e−4 and hgrad = 1.6.

Test case npi npf CPU (s) Qi wqi Qf wqf

model02 (b) 1204 997 0.991 0.0768 8e−6 0.61 0.02
model02 (c) 1204 2161 2.008 0.0768 8e−6 0.87 0.31
model02 (d) 1204 3937 3.136 0.0768 8e−6 0.84 0.23

pda06 6768 4652 3.969 0.78 0.019 0.88 0.033
gehaeuse 876 1814 5.04 0.41 5.6e−3 0.85 0.11

Table 8.2: Details of the examples of section 8.2.6.

defined as:

∀x ∈ R3, m(x) =
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(a) (b)

(c) (d)

Figure 8.26: (a-b) Anisotropic remeshing of the pda06 model, enclosed in a bounding box of dimensions
1.65 × 0.86 × 2.15. Here we take hmin = 3e−4, hmax = 1, hgrad = 1.6, and ε = 3e−4. (c-d) Anisotropic
remeshing of the gehaeuse model, enclosed in a bounding box of dimensions 0.1 × 0.037 × 0.029, with
hmin = 1e−4, hmax = 1, hgrad = 1.6, and ε = 2e−4.

where

µ =
{

x3−y2+2
3x if x 6= 0
1 otherwise

, θ = atan(
−2y

3(x2 − µ)
) , h =

(
(x− 1)2 + y2 + 0.01

)−2
,

{
h1 =

(
min(0.2µ3 + 0.005, 1)

)−2
, h2 =

(
min(0.2µ3 + 0.2, 1)

)−2
if µ ≥ 1

h1 =
(
min(0.2µ2 + 0.01, 1)

)−2
, h2 =

(
min(0.2µ2 + 0.2, 1)

)−2
otherwise

.



326 Chapter 8. Discrete three-dimensional surface and domain remeshing

Of course, the concrete -and interesting !- applications bring into play a metric tensor field which is not at
all analyical, but for instance arises from an error analysis performed on S. Yet, as far as the remeshing
procedure only is concerned, things are just completely equivalent (the only important point being that a
metric tensor field is supplied at the vertices of S), which is why we dwell on that case. As suggested in
section 8.1.6.3, the procedure is iterated five times, with the parameters: hmin = 0.03, hmax = 1, ε = 0.05,
hgrad = 1.1 for the first two iterations, then hgrad = 1.2. The whole computation takes 74s, for a final mesh
consisting of 7556 vertices, with an average anisotropic quality of 0.89. (see Figure 8.27).

(a) (b)

(c) (d)

Figure 8.27: Anisotropic remeshing of a surface triangulation of a sphere with respect to a user-specified
metric tensor field; (a) initial triangulation, (b) resulting triangulation after 1 iteration, (c) resulting trian-
gulation after 3 iterations, and (d) final triangulation.
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8.3 Discrete three-dimensional domain remeshing

Elaborating on the strategy for discrete surface remeshing described throughout Section 8.1, we now ad-
dress the problem of isotropic three-dimensional domain remeshing. Consider a three-dimensional simplicial
mesh T , intended as an approximation of an unknown bounded ideal domain Ω ⊂ R3, in the sense that:

– the associated boundary triangulation ST to T is an interpolating surface mesh of ∂Ω,
– the tetrahedral volume mesh T is a conforming simplicial mesh.

T may be inappropriate as an approximation of Ω for at least two reasons:
– The surface triangulation ST may be a bad approximation of ∂Ω in the sense considered in Section

8.1: it may be bad as a geometric approximation of ∂Ω, or ill-shaped.
– T may be under-sampled or over-sampled with respect to a desired size feature (dictated for instance by

an error estimate associated to a mechanical computation), or of poor mesh quality. As for evaluating
the quality of a tetrahedron K ⊂ R3, we retained the following function among all the possible ones:

Q(K) = α
Vol(K)

(
6∑
i=1

ℓ(ei)2

) 3
2

, α = 144
√

3,

where ei, i = 1, ..., 6 are the edges of K.
Note that, understandably enough, the geometric approximation of Ω by means of T merely amounts to the
geometric approximation of ∂Ω by means of the associated surface mesh ST . The only constraint on the
volume part of T concerns its quality, and possibly its matching a prescribed size feature (see Figure 8.28).

As we shall see, there is actually no further theory from surface to domain remeshing, and almost all
this section is devoted to describing either the three-dimensional ‘volume’ equivalent local mesh operators to
those presented in Section 8.1.3, or the way these surface remeshing operators can be applied to situations
involving the surface mesh ST , where some tetrahedra of T are ‘attached’ to the surface configuration.

∂Ω ST

T

Ω

Figure 8.28: Mesh T (in black) associated to a domain Ω ⊂ R3, together with the corresponding surface
mesh ST (red lines), as an approximation of ∂Ω (in blue).

Our aim is then to devise a strategy for remeshing T into a mesh T̃ which is a nice approximation of
Ω in the sense defined above. In practical terms, we will guide local remeshing operators into producing a
sequence of meshes T1, ...Tn which are increasingly closer to a convenient approximation of Ω.

As in the case of surface remeshing, the ideal domain Ω is unknown, and must be approximated from
the data at hand. More precisely, we only need to describe the boundary ∂Ω, from the knowledge of the
surface mesh ST associated to T . To achieve this, we retain the same approach - and the same biases -
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as for surface remeshing. A preprocessing stage is aimed at identifying additional geometric features of ∂Ω
from the rough datum of T : singular points, ridge edges, etc... as well as geometric information associated
to ∂Ω: normal vectors at regular vertices x ∈ ST are approximated, tangent vectors at ridge vertices, etc...
This step unfolds literally as described in section 8.1.1.

Then, as described in section 8.1.2, we suppose that each surface triangle T ∈ ST stands for a smooth
portion of ∂Ω: from the datum of T and the attached geometric entities, rules are set to generate a local
parametrization σ : T → ∂Ω, under the form of a Bezier patch. This enables in particular to decide whether
a triangle of ST lies ‘too far’ from its corresponding portion of ∂Ω (and then must be split), or ‘close enough’
(and thus may be subject to collapse), in a nutshell to drive all the local remeshing operations.

Remark 8.10. Remember that this local generation of pieces of ∂Ω from triangles of ST inherently relies
on the abuse that we neglect the dependence of the generated local parameterizations of ∂Ω on the support
triangulation - that is, the fact that during the remeshing process, meshes T1, ..., Tn are produced, and the
inferred descriptions of ∂Ω from ST1

, ...,STn
may differ. Such an abuse makes it possible to talk about the

ideal domain Ω associated to all the produced meshes T1, ..., Tn.

8.3.1 Description of the local remeshing operators

In this section, we describe the local operators used in the remeshing process of T . All these - once
again rather classical [145] - operators enjoy two forms, depending on whether they are applied to a surface
configuration (i.e. to a configuration ‘close’ to surface triangles of ST ), or to a purely internal one. The
former case is very similar to the one described in section 8.1.3, and one must only ensure that the performed
operations are also compatible with the volume part of T , in the sense that no tetrahedron of T results
invalidated from the process. The latter case proves in general easier to check (see the discussion in the
Appendix).

8.3.1.1 Edge split

As explained in section 8.1.3.1, splitting an edge pq ∈ T consists in introducing a new point m in the
mesh, then replacing pq by the two edges pm and mq, and updating the connectivities of T accordingly. In
the context of domain remeshing, two cases arise:

– if the processed edge pq is a surface edge, i.e. pq ∈ ST , let γ : [0, 1] → ∂Ω the associated curve to pq
(see section 8.1.2). The new point m is then taken as m = γ( 1

2 ).
– if pq is an internal edge, m is simply inserted as the midpoint of p and q.

As in the case of surface remeshing, we proceed to edge split relying on patterns: first, all the edges that
should be split are identified, and all the points to be inserted are created. Then, patterns are used on each
tetrahedron of T so as to split all such edges of T at the same time, inserting the created points.

This step slightly differs from its counterpart in section 8.1.3.1 insofar as now, in very degenerate con-
figurations, inserting a new point m while splitting a boundary edge pq of T may invalidate some of the
elements K ∈ T of the shell of pq (see for instance the very exaggerated situation of figure 8.29)). Hence,
all the elements created during this step must be checked before being created, and some edge splits may
possibly be prevented.

8.3.1.2 Edge collapse

Remember that collapsing an edge pq ∈ T consists in merging its two endpoints into a single one: say
p is collapsed onto q for simplicity. The elements of the shell Sh(pq) disappear in the process, and all the
other tetrahedra K ∈ T which had p as a vertex (i.e. K ∈ B(p)), now have q instead (see Figure 8.30).

As evoked in section 8.1.3.2, the edge collapse operator ought to be driven carefully, and several checks
are in order, depending on the nature of the processed edge:

– Some collapses are strictly forbidden, e.g. a point p should not be collapsed onto another point q (along
edge pq) if p belongs to the associated surface mesh to T (i.e. p ∈ ST ) and q does not, or if q does and
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Figure 8.29: Split of boundary edge pq: point m is inserted. Tetrahedron abpq is split into the two valid
tetrahedra abpm and abqm, and acqp is split into the two invalid (flipped) tetrahedra acmp and acqm.

•
• p

q q••

Figure 8.30: Collapse of an internal edge pq ∈ T : elements of the shell Sh(pq) disappear, while vertex p is
replaced by q in the other tetrahedra K ∈ B(p) (not all the elements of B(p) have been represented); (left)
configuration before collapse, (right) configuration after collapse.

the edge pq is not a surface edge (i.e. pq /∈ ST ). See also the discussion in section 8.1.3.2 as to how
the collapse operator must behave with respect to geometric entities of ST .

– If pq ∈ ST , the same checks as in the case of surface meshes have to be performed, to avoid invali-
dating or ‘folding’ ST in the process. Besides, additional checks have to be performed on the support
tetrahedra K ∈ T to the concerned surface triangles T ∈ ST , so that they do not result invalidated in
the process.

– If pq is an internal edge, one only needs to check that the modified elements K ∈ T during the operation
(which are those of B(p) \ Sh(pq)) are not invalidated (i.e. inverted) in the process.

8.3.1.3 Edge swap

Like the edge split and edge collapse operators, edge swap should behave rather differently depending on
whether it is applied to a surface edge or an internal one.

– If the processed edge pq lies on ST , introducing T1 = pqa, T2 = pqb ⊂ ST the two surface triangles
sharing pq, the situation is very similar to the one described in section 8.1.3.3: there is only one
possibility for swapping pq, namely replacing it by ab and updating the connectivities of T accordingly
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(see again figure 8.8). The same checks as in the surface case must be performed, so that the operation
is not inconsistent with the geometry of ∂Ω, and does not yield a ‘folded’ configuration. What’s more,
the validity of the affected tetrahedra of T has to be checked.

– Swapping an internal edge pq is more combinatorial [114, 149, 150]. In this case, the enumeration of
the vertices of the elements K ∈ Sh(pq) which are neither p, nor q defines an oriented pseudo-polygon
a1...an (see figure 8.31).

p

q

•
• • •

•
•

• •

a1
an a2

•

•

•

•

p

q

•
• • •

•
•

• •

a1
an a2

Figure 8.31: Swap of an internal edge pq. (left) The pseudo-polygon associated to the shell Sh(pq) is
enumerated (in light blue), and must be triangulated before being reconnected to p and q right): one of the
many possibilities.

This pseudo-polygon is then triangulated, and each resulting triangulated face is connected to p and
q to provide a new tetrahedralization of the area once occupied by Sh(pq). Of course, the resulting
configuration must be checked (i.e. simulated) before being created, so that no element is made invalid
during the process. Unfortunately, there are many ways for triangulating a1...an, and the number
of configurations grows dramatically with the number n of vertices of the pseudo-polygon. More
accurately, one can show the number of such triangulations is the Catalan number of order n, Cn,
defined as:

Cn =
(

2n
n

)
−
(

2n
n+ 1

)
.

Of course, all these triangulations may not correspond to a valid remeshing of Sh(pq), but in view of
this strategy, swapping pq would require to investigate all these configurations (and in particular to
implement them all), until a valid one is reached, which is extremely tedious in terms of programming
effort (see [114]).
For this reason, we adopted a somewhat different approach, less general yet much easier to implement.
The swap of edge pq is achieved within two steps (see figure 8.32):

step 1: pq is split at its midpoint m, using the split operator of section 8.3.1.1. All the connections mai,
i = 1, ..., n are created in the process.

step 2: The introduced point m is collapsed onto one of the ai with the operator described in section
8.3.1.2: each one of the collapses of edges ma1, ...,man is tested in turn, and the first valid
operation is carried out.

The latter procedure is less general than the former insofar as only n configurations associated to
different triangulations of the pseudo-polygon can be reached; yet it is by far easier to implement, and
we found it sufficient to meet our needs.
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Figure 8.32: Swap of pq, introducing its midpoint m in the mesh, then collapsing it on one of the vertices of
the pseudo-polygon associated to Sh(pq).

8.3.1.4 Node relocation

This last operator is the straightforward generalization of the one presented in section 8.1.3.4 in the case
of surface triangulations: a given vertex p ∈ T is moved to a new position p̃ in order to increase the quality
of the local configuration. Computing the position of p̃ follows a different heuristic depending on whether p
is a surface vertex, or an internal one:

– If p ∈ ST , p̃ is computed as in section 8.1.3.4: the surface ball BS(p) of p is enumerated and projected
to the tangent plane Tp∂Ω. The center of mass of this projected ball is computed, and p̃ is eventually
taken as the corresponding point on ∂Ω.

– If p is not a surface point, the ball B(p) of p is enumerated, and p̃ is taken as its center of mass.
In both cases, the resulting configuration of the vertex relocation procedure has to be checked, so that no
element ends up invalidated in the process, and that the quality of the mesh is indeed enhanced (we already
alluded to the fact that more involved strategies could be thought of as for the choice of a relocation position
p̃ for p, but this simple one proves sufficient in our strategy).

8.3.2 Construction of a size map adapted to the geometric approximation of
the ideal domain

We have now at our disposal all the tools we need to modify an input simplicial mesh T into a new mesh
T̃ , as well as the conditions under which each operation ought to be either carried out or prevented. Yet,
we still lack a global indicator on where we should split edges, collapse edges,... in a nutshell, on the local
density T̃ should enjoy so that

dH(ST̃ , ∂Ω) ≤ ε,
holds for a given tolerance parameter ε.

As explained in section 8.1.4, such an intelligence is encoded in a size map associated to the geometric
approximation of ∂Ω. More precisely, a scalar size function h : Ω → R is defined, with the meaning that,
for any point x ∈ Ω, h(x) is intended as the desired size of the elements of T ‘close’ to x. This func-
tion is cooked using four parameters, namely the tolerance parameter ε over the geometric approximation
of ∂Ω, the minimum (resp. maximum) authorized size hmin (resp. hmax), and the gradation parameter hgrad.
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In numerical practice, the information about h is defined and stored at the vertices of T , then interpolated
from these data whenever needed elsewhere. It is defined as follows:

– at a surface vertex x ∈ ST , the local size feature is completely dictated by the geometric approximation
of ∂Ω. The same approach as in section 8.1.4 is used, and h(x) is defined as:

h(x) = min

(
hmax , max

(
hmin ,

√
9ε

2 max(|κ1(x)|, |κ2(x)|)

))
,

where κ1(x) and κ2(x) are (approximations of) the two principal curvatures of ∂Ω at x.
– at an internal point x, no particular size feature seems legitimate out of the maximal authorized size
h(x) = hmax for an edge of the resulting mesh T̃ , for there is no constraint from the geometry of Ω on
such an area.

Remark 8.11. As in the case of discrete surface remeshing, we may very well devise a size map h̃ on Ω
which at the same time takes into account the size prescription stemming from the geometric approximation
of Ω (encoded in the size map h : Ω→ R defined above) and a user-defined size prescription (e.g. arising from
an a posteriori error analysis associated to a numerical method performed on the initial mesh T ), encoded
as another size map m : Ω→ R. To this end, it is enough to define:

∀x ∈ Ω, h̃(x) = min(h(x),m(x)).

Eventually, a gradation of the obtained size map h has to be performed, so that the corresponding local
size feature varies ‘smoothly’ from one vertex of the mesh to the surrounding ones. Recall from section 8.1.4.5
that this step is crucial for ensuring that a mesh agreeing with size map h in the sense that ℓh(pq) ≈ 1 for
each edge pq ∈ T will be well-shaped.

From the datum of T , and the size map h : Ω → R, stored at the vertices of T , the gradation of h
is carried out exactly as in section 8.1.4.5: starting from its lowest values, h is modified in such a way as,
eventually, it should observe:

∀ edge pq ∈ T , |h(q)− h(p)|
|q − p| ≤ hgrad.

8.3.3 The complete remeshing strategy

Now that we have described how the operations and controls introduced in the case of discrete surfaces are
extended to the case of discrete domains, we are in position to detail how the general remeshing strategy we
used then is extended to the present case. Before doing so, here are several general comments or observations
based on what we experienced trying to devise this algorithm:

– First and foremost, it turned out that tetrahedra are generally much more prone to degenerating as
(surface) triangles, meaning that within very few operations, a well-shaped tetrahedron may end up
nearly flat, unless the quality degeneracy of elements is explicitly controlled and prevented in the course
of each operation. For this reason, the operators presented in the previous section are more severely
constrained in terms of the degradation in quality they should be authorized to provoke as their surface
counterparts of section 8.1.3.

– As a consequence, the whole process is far more constrained in the case of domain remeshing as in the
case of surface remeshing, meaning that operations are more often prevented. Actually, talking about
the hereafter presented domain remeshing strategy as a mere extension of the surface remeshing one is
a bit unfair: the first strategy we devised in the case of surface remeshing was very different from the
one presented in section 8.1.5, but its extension to domain remeshing brought terrible results in terms
of elements’ qualities. Hence, it was when we succeeded in finding a convenient strategy in terms of
combination of operators, which seemed to deliver good enough quality meshes, that we modified the
surface remeshing strategy so that both of them are as similar as possible.
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– It appeared that the edge swap operation has a significantly different impact between the surface and
domain cases: when dealing with surface remeshing, it helped noticeably to increase the overall quality
of the elements of the mesh, but well-shaped meshes can still be obtained without using edge swap; on
the contrary, in the case of domain remeshing, we never obtained any good-quality mesh without the
(massive) use of edge swap (for surface as for internal edges); see the example in Section 8.3.4.

– On a different note, we thought it better to proceed both the surface and internal parts of T at the
same time. This was motivated by the observation that a dramatically ill-shaped mesh T associated
to an ideal domain ∂Ω may present a very well-shaped surface part ST .

Now, starting from an initial simplicial mesh T , with associated surface triangulation ST , associated to an
ideal domain Ω, and given the four parameters ε, hmin, hmax and hgrad, with the same meaning as in section
8.3.2, the proposed remeshing algorithm reads as follows:

step 1: Analysis of T . Exactly as in section 8.1.5, additional geometric information about ∂Ω are extracted
from ST , and special geometric entities (ridge edges, etc...) are identified on ST .

step 2: Rough mesh modifications for a good ‘sampling’ of the surface. This stage as well unfolds as in the
one described in section 8.1.5: a new mesh T̃1 of Ω is produced, which satisfies the sought control
dH(ST̃1

, ∂Ω) ≤ ε, without any other size prescription as the fact that the edges of T̃1 should be
neither longer than hmax, nor shorter than hmin. More specifically, from T , we proceed within
several iterations of the form:
– Identify all the edges which belong to the surface part of the mesh, and that should be split, then

split them (relying on patterns).
– Identify all the internal edges of the mesh that should be split, then split them (still relying on

patterns).
– Travel all the edges of the mesh, and collapse all the ones that should, and can be collapsed

(remember that the checks in order are not the same depending on whether the processed edge is
a surface edge or not).

– Travel all the edges of the mesh, and swap all the ones that should, and can be swapped (same
remark as above).

Note that the splitting operation has been divided into two steps: the first one processes surface
edges, while the second one only concerns internal ones. This is actually nothing but a technicality
aimed at limiting the number of splitting patterns (thus the programming effort), and it does not
challenge the commitment to treat the surface and internal parts of the mesh at the same time.

step 3: Construction of the metric size map. As in section 8.1.5, a size map h : Ω → R dedicated to the
geometric approximation of Ω within tolerance ε in terms of Hausdorff distance is computed, along
the lines of section 8.3.2.

step 4: Rough mesh modifications with respect to the metric size map. This step is once again very similar
to its counterpart in section 8.1.5. So as to get a next triangulation T̃2 of S, we proceed as in step
2, except that, henceforth, we rely on length measurements with respect to the size map h. Aiming
at getting a new triangulation whose edges have length 1, we impose that all the edges of the mesh
should lie between rough bounds around the target size 1. As explained above, we pay close attention
to the mesh quality: edge collapses are presently prevented when they degrade two much the overall
quality of the triangulation, and edge swaps are now carried out provided they help improving the
anisotropic quality of the mesh.

step 5: Fine mesh modifications with respect to the metric size map. From the ‘pretty good’ triangulation
T̃2, we perform delicately driven operations so as to get the final triangulation T̃ . Lengths of edges
are still evaluated with respect to h, except we now impose T̃ should have no edge with length lying
outside a sharper interval as before around 1. We are also even stricter as far as the authorized
degradation in mesh quality entailed by our operators is concerned. We eventually use the vertex
relocation operator described in section 8.1.3.4 to help improving the quality of the mesh.
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8.3.4 Numerical examples

As a support to the previous developments, we end this section showing some numerical illustrations of
discrete domain remeshing. Details about the proposed examples - that is, the number npi (resp npf ) of
points, the average quality Qi (resp. Qf ) and the worst quality wqi (resp. wqf ) of an element of the input
(resp. output) mesh, and the total CPU time of the computation -are reported in table 8.3.

8.3.4.1 High-quality remeshing of smooth domains or mechanical parts

Figures 8.33, 8.34 7 and 8.35 8, give a first view of the behavior of the proposed strategy for discrete
domain remeshing. In each of these examples, a very ill-shaped three-dimensional mesh is obtained from
an initial surface triangulation, using the Delaunay meshing algorithm Ghs3d [154] in such a way as the
resulting meshes have almost no interior point. Each on of the obtained meshes is then remeshed into a
well-shaped mesh resorting to the proposed approach.

In order to emphasize the huge impact of the edge swap operator in our remeshing process, we performed
exactly the same test as that depicted in Figure 8.33, without using the edge swap operator. In this case, the
proposed algorithm turns out unable to produce a well-shaped mesh (mainly because the collapse operator
is too much constrained by very ill-shaped configurations): after a computation which lasts 100.65s, the final
mesh has 46, 222 vertices. Its average quality is only 0.07, and the worst quality of an element of the mesh
is 2.e−6

8.3.4.2 Remeshing of a domain with respect to a user-defined size map

We present here an example which is the three-dimensional counterpart of the one presented in section
8.1.6.3, and investigate the datum of a user-specified size map m : Ω→ R on the considered domain Ω. More
specifically, once again, we dwell on the case where m is associated to the interpolation error of a smooth
function.

Let f : Ω→ R a function of class C2, which presents ‘sharp variations’ on Ω. For instance,

∀p = (x, y, z) ∈ Ω, f(p) = tanh(y3) tanh((z − 2)3). (8.72)

We aim at modifying the initial mesh T so that interpolating (linearly) f over the resulting mesh T̃ entails
an L∞-error controlled by a parameter εm, and rely once again on theorem 8.1 to cook an associated size
map m : Ω→ R to such a control.

Figure 8.36 displays the resulting mesh after 4 remeshing procedures for adaptation to the interpolation
of f - starting from a rather coarse triangulation T of the domain Ω depicted on the figure, with parameter
εm = 0.01. The parameters chosen for remeshing are (for each one of the 4 steps): hmin = 0.2, hmax = 3,
hgrad = 1.4, and ε = 0.3. The whole computation took 2 minutes and 46s, and the final mesh enjoys 73701
vertices, for an average quality of 0.77.

Test case npi npf CPU (s) Qi wqi Qf wqf

model02 1254 8424 9.403 0.0479 1e−6 0.7737 0.19
cog 3426 11665 14.716 0.228 1.7e−5 0.7388 0.01

pbscu 25393 64905 154 0.1154 1.5e−5 0.776 0.02

Table 8.3: Details on the examples of section 8.3.4.

7. Data courtesy of the INRIA mesh repository http://www-roc.inria.fr/gamma/download/download.php.

8. Data courtesy of http://www.archive3d.net.



8.3. Discrete three-dimensional domain remeshing 335

(a) (b)

(c) (d)

Figure 8.33: Remeshing of the model02 model, enclosed in a box of dimensions 0.199 × 0.199 × 0.12. The
parameters used for the computation are: hmin = 0.001, hmax = 0.1, hgrad = 1.2 and ε = 0.001. (a)-(c)
Initial mesh T ; (b)-(d) final result T̃ .
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(a) (b)

(c) (d)

Figure 8.34: Remeshing of the cog model, enclosed in a box of dimensions 0.1×0.064×0.028. The parameters
used for the computation are: hmin = 0.0003, hmax = 0.1, hgrad = 1.2 and ε = 0.0003. (a)-(c) Initial mesh
T ; (b)-(d) final result T̃ .
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(a) (b)

(c) (d)

Figure 8.35: Remeshing of the pbscu model, enclosed in a box of dimensions 304×574×190. The parameters
used for the computation are: hmin = 1, hmax = 50, hgrad = 1.2 and ε = 1. (a)-(c) Initial mesh T ; (b)-(d)
final result T̃ .
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(a) (b)

(c) (d)

Figure 8.36: Remeshing with respect to a size map devised for the control of the interpolation error of
function f defined by (8.72). (a) The initial mesh T , together with the isolines of f , (c) a cut in the mesh;
(b) the resulting mesh T̃ , with the isolines of f , (d) a cut in T̃ .
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8.4 Implicit domain meshing and applications

In this section, we go on with our investigation on discrete domain remeshing, from a somewhat differ-
ent perspective. In section 8.3, we focused on remeshing domains Ω ⊂ R3 supplied by means of an initial
simplicial mesh. Here we look into the case when an ideal domain is described as the negative subdomain of
a scalar function defined over the whole space.

To set ideas, consider a bounded ‘ideal’ domain Ω ⊂ R3, supposed to be at least of class C2. Suppose Ω
is known via an associated implicit function φ : R3 → R, i.e. the following relations hold (see Figure 8.37 for
an illustration):

∀x ∈ R3,





φ(x) < 0 if x ∈ Ω
φ(x) = 0 if x ∈ ∂Ω
φ(x) > 0 if x ∈c Ω

.

Furthermore, let us assume that φ is at least of class C2, with the property that:

∀x ∈ ∂Ω, ∇φ(x) 6= 0.

In numerical practice, we are given a simplicial mesh T of a ‘large’ computational domain D ⊂ R3 (e.g.
a box), which is the support of a numerical approximation φT of φ. For the sake of simplicity, in this note
we will only consider the case when φT is a P1 Lagrange finite element function over T , i.e. for any K ∈ T ,
the restriction φT |K is affine. Of course, many other choices are relevant as regards the approximation space
for functions, without any dramatic change in the forthcoming developments.

Figure 8.37: Isosurfaces of a function φT defined as a piecewise affine function on a mesh T of a box D.

Our problem is now to obtain from T and φT a well-shaped mesh of Ω (actually of D ∩Ω; we will come
back to this point later on), which is a good geometric approximation of Ω (of D∩Ω). The method proposed
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to achieve this goal is actually a rather straightforward extension of the remeshing algorithm described in
section 8.3, up to the addition of one - possibly two - new ingredients. Indeed, it proceeds within two main
steps (see the two-dimensional figure 8.38 for an example):

1. The 0 level set of φT - say SφT
:= {x ∈ D, φT (x) = 0} - is explicitly discretized in T . A new mesh T̃1

of D is obtained, which contains a mesh T̃1

′
of D ∩ Ω as a submesh. As we shall see, doing so, a new

type of entity in the classification of section 8.1.1 may appear.

2. The resulting mesh T̃1 is modified, using the algorithm proposed in section 8.3 so that a new, closely
approximating, well-shaped mesh T̃ of D is obtained, which contains a closely approximating, well-
shaped mesh T̃ ′ of D ∩ Ω as a submesh.

Figure 8.38: (Left) Level sets of a P1 function φT on a two-dimension mesh T of a box D; (middle) the
ill-shaped mesh T̃1, obtained by the explicit discretization of the 0 level set of φT into T ; (right) the final,
well-shaped mesh T̃ , containing a mesh of Ω (in yellow) as a submesh.

Hence, this method produces a bit more than a sole mesh of D ∩ Ω, namely a new mesh T̃ of the whole
computational domain D, a submesh T̃ ′ of which is a mesh of D ∩ Ω.

8.4.1 Explicit discretization of the 0 level set of φT into T
As explained above, the first step in obtaining a suitable mesh of D∩Ω boils down to enforcing an explicit

discretization of D ∩ Ω into the mesh T of D. To achieve this, we rely on the approximation of D ∩ Ω as
the negative subdomain of φT , and use the following marching tetrahedra procedure [117, 141] (see also the
brief description in Chapter 3):

1. Identify the set K of elements K ∈ T intersecting SφT
: a tetrahedron K = a0a1a2a3 belongs to K if

and only if there exists i 6= j in {0, 1, 2, 3} with φT (ai) ≥ 0, and φT (aj) ≤ 0.

2. For an element K = a0a1a2a3 ∈ K, the intersection of SφT
with K is a plane portion of surface (see

figure 8.37). Identify the edges aiaj of K which intersect SφT
(i.e. such that φT (ai) and φT (aj) have

different signs), and compute the coordinates of the associated intersection points mai,aj
: as φT |K is

affine, one simply has:

mai,aj
= (1− λ)ai + λaj , λ =

φT (ai)
φT (ai)− φT (aj)

.

3. Travel all the elements K ∈ K, and split them, introducing the pre-computed points mai,aj
, then using

patterns (see figure 8.39). Up to permutations, there are four possible configurations, depending on
the relative signs of the φT (ai).
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Figure 8.39: (Left) One of the possible situations when SφT
(in light red) crosses an element K ∈ T ; (right)

splitting pattern for a tetrahedron K ∈ T which is crossed by SφT
in such a way as three of its vertices share

the same sign (the blue ones).

This procedure yields a new mesh T̃1 of D, which is most likely very ill-shaped, for the intersections of
the elements of T with SφT

are utterly arbitrary. However, T̃1 enjoys the two most important characteristics
for our purposes:

– It is conforming; this fact is not absolutely evident since it was produced using a pattern-based splitting
procedure, but it naturally stems from the fact the operations performed on adjacent elements of T
are consistent with one another (the trace of SφT

on a face shared by two tetrahedra is the same when
computed from either element).

– It encloses a (ill-shaped) mesh T̃1

′
of D ∩ Ω as a submesh.

As a consequence, so as to obtain a new, well-shaped mesh of D ∩Ω, it is enough to retain only the part T̃1

′

of T̃1, and use it as an input for the algorithm described in section 8.3.
However, for several applications, it may be relevant to keep trace of an approximation of D \ Ω, that

is, to remesh the whole mesh T̃1 into a new, well-shaped, mesh of D, which contains a mesh of D ∩ Ω as
a submesh (see Chapter 9). Bringing this problem back to the framework of section 8.3 actually demands
only marginal adaptations, which we describe now.

8.4.2 From discrete domain remeshing to discrete domain and subdomains
remeshing

We now have at our disposal a mesh T̃1 of D, a submesh T̃1

′
of which accounts for D ∩Ω. Let us denote

as ST̃1
the associated total surface mesh, that is,

ST̃1
= ET̃1

∪ IT̃1
,

where ET̃1
stands for the collection of all the (triangular) external faces to the elements of T̃1, and IT̃1

is the

set of the external faces of the elements of T̃1

′
which do not already belong to ET̃1

. In other terms, ET̃1
is a

surface mesh associated to ∂D, and IT̃1
is a surface mesh associated to ∂(D ∩ Ω) \ ∂D. The latter set only

contains triangular faces which belong to two distinct elements of T̃1 (see figure 8.40).

Our purpose is to remesh T̃1 into a new, well-shaped mesh T̃ of D, a submesh T̃ ′ of which accounts for
D∩Ω, and such that the associated total surface mesh ST̃ is a close approximation of ∂D∪∂(D∩Ω), within
a prescribed range ε in terms of Hausdorff distance.
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Figure 8.40: Two examples of (well-shaped) meshes of a box D, enclosing a mesh of a subdomain D ∩ Ω
as a submesh. In both case, the triangular faces of ET̃ appear in blue, and those of IT̃ in red. Only the
tetrahedra of D ∩ Ω have been displayed (in yellow). On the left-side example, D and D ∩ Ω are disjoint,
whereas they are not on the right-side one (the yellow edges are those edges which belong to both ET̃ and
IT̃ ).

Actually, this problem happens to be very close to the one presented in section 8.3. Suppose for now that
the two surfaces ∂D and ∂Ω at stake are disjoint - or equivalently that for all x ∈ ∂D, φ(x) 6= 0 (case on
Figure 8.40, left). Then, the procedure described in section 8.3 extends straightforwardly to remesh T̃1 as
suits our purpose. Indeed, the faces of ET̃1

and IT̃1
can be processed independently, and exactly in the same

way as described previously. Admittedly, the entities belonging to IT̃1
are a priori more severely constrained

compared to those of ET̃1
, since they are connected to more elements of T̃1, and the several checks to be

performed before applying our local remeshing operators to ensure the validity of the resulting mesh are
more likely to fail. Yet, those checks read just the same in both cases (and are physically the same in the
written code).

The only real change arises when ∂D and ∂Ω do intersect one another, which in numerical practice
translates as: ET̃1

∩ IT̃1
6= ∅. In this case, the intersection between these two surface meshes is a collection

of curves (see the right-hand side on Figure 8.40).

In this situation, both surface meshes ET̃1
, IT̃1

considered separately are orientable, since they arise as
(parts of) the boundary to a compact domain. Yet, their reunion is not, because of those curves making
up ET̃1

∩ IT̃1
. To deal with this particular configuration, a new category of edges and vertices has to be

added to the classification introduced in section 8.1.1, namely that of non manifold edges, or vertices: a non
manifold edge of T̃1 is an edge which belongs to at least one triangle of ET̃1

, and to another triangle of IT̃1
.

The description adopted for non manifold edges / vertices is very similar to that of ridge edges / vertices:
a non singular, non manifold point x (i.e. a non manifold point which belongs to a non manifold curve) is
only equipped with a tangent vector τ(x) to this curve, and a different normal vector is used, depending on
whether the point is processed as belonging to ET̃1

or to IT̃1
.

Apart from this minor refinement, such configurations raise no further difficulty, and can be tackled in
the very same way as in the case when ∂D ∩ ∂(D ∩ Ω) = ∅.
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8.4.3 Numerical examples and applications

8.4.3.1 Meshing of the negative subdomains associated to some level set functions

The above method for implicit surface (or domain) meshing is appraised on two examples.
First of all, let D a unit cube, equipped with a refined mesh T of 648944 vertices. A numerical approx-

imation φ of the signed distance function to some mechanical device is generated as a P1 Lagrange finite
element function on T , using the algorithm of Chapter 6. A new mesh T̃ of D, enclosing a mesh K of
the negative subdomain of u as a submesh is then obtained, using parameters hmin = 0.001, hmax = 0.1,
hgrad = 1.2, and ε = 0.005. The whole computation takes 3 min 22 s, for a resulting mesh T̃ enjoying 62219
vertices, and an average quality of 0.78 (see figure 8.41).

Figure 8.41: (Left): Isosurfaces of the implicit function u on the initial mesh T , (middle) result of the
computation (only the surface mesh IT̃ is represented), (right) a cut in the final mesh T̃ .

In a second time, let D a box of dimensions 2.4 × 5 × 3, equipped with a mesh T composed of 18024
vertices. A P1 Lagrange finite element function φ is considered on T , which arises as an intermediate step
of a structural optimization process (see the next chapter 9 for details). The negative subdomain of φ is
meshed, using parameters hmin = 0.05, hmax = 0.3, hgrad = 1.2, and ε = 0.03. The total procedure takes
14.7 s, and the final mesh T̃ enjoys 13719 vertices, for an average quality of 0.77 (see figure 8.42).

Figure 8.42: (Left): Isosurfaces of the implicit function u on the initial mesh T , (middle) result of the
computation (only the surface mesh IT̃ is represented), (right) a cut in the final mesh T̃ .
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8.4.3.2 Application to mesh generation from a possibly invalid surface triangulation

In this paragraph, we present a promising application of the previous implicit domain meshing algorithm
in combination to three-dimensional mesh generation.

Let S = (Ti)i=1,...,NS
a surface triangulation of the boundary ∂Ω of an open bounded domain Ω ⊂ R3.

The classical problem of three-dimensional mesh generation consists in constructing a tetrahedral mesh of Ω,
whose associated surface mesh is exactly S. This problem is very hard in general, and very few algorithms
exist that are sufficiently polyvalent and robust to deal with general enough triangulations S; one such
algorithm is INRIA’s software Ghs3d [154], which is based on the constrained Delaunay algorithm (see [145],
or Chapter 3 for details).

Here, we propose a different approach, which inherently requires to drop the constraint that the initial
boundary triangulation S should be retained through the process.

As a first stage, the initial surface triangulation S is embedded in a big computational domain D,
equipped with a simplicial mesh K. Choosing an arbitrary tolerance parameter ε > 0, the method described
in Chapter 6 (which makes use of the 3d anisotropic volume remeshing algorithm mmg3d, version 4 [115]) for
computing the signed distance function to a triangulated contour and adapting the computational mesh to
this function can be used to produce simultaneously:

– a new (anisotropic) mesh K̃1 of D,
– an approximation of the signed distance function dΩ to Ω as a P1 Lagrange finite element function φ

on K̃1, which enjoys the following property: the Hausdorff distance dH(Sφ, ∂Ω) between ∂Ω and the
piecewise affine reconstructed surface Sφ := {x ∈ D, φ(x) = 0} is no higher than ε.

Note that the choice of an anisotropic mesh K̃1 as a support of an approximation of dΩ stems from the
concern to guarantee an accurate representation of ∂Ω, using a mesh whose size is moderate.

In a second stage, the negative subdomain of φ is meshed, using the method presented in this section,
with the mesh K̃1 of D: a new mesh K̃ of D is produced, which encloses a mesh T of Ω as a submesh.

This procedure is applied to the famous Aphrodite 9 model displayed on figure 8.43. The total remeshing
time, from the datum of the mesh K̃1 of a unit box D and the approximation φ to dΩ is 10 min and 9 s, and
the parameters of the computation are: hmin = 0.001, hmax = 0.1, hgrad = 1.2, ε = 0.001, for a final mesh
K̃ enjoying an average quality of 0.77.

Remark 8.12. Looking carefully at the result displayed on figure 8.43, the obtained mesh K̃′ appears far
from being completely satisfactory in terms of the accuracy of the approximation of ∂Ω by means of the
associated surface mesh SK̃′ . Actually, such inaccuracies are concentrated in those regions of ∂Ω where ridge
edges, or singular points are present; the main reason is that, in those areas, the signed distance function
uΩ is inaccurately computed, whatever the size of the computational mesh K̃1, because the corresponding
ridge edges (or singular points) do not explicitly appear in K̃1. A way to deal with this problem would be to
discretize those edges, or points into K̃1, before computing an approximation φ to dΩ on it. Thus, u would
amount to 0 on those edges (or points), and they would appear (up to a geometric equivalent) into K̃′. This
latter part is an ongoing work.

9. Free model from http://artist-3d.com/free_3d_models.
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(a) (b) (c)

(d) (e) (f)

Figure 8.43: Meshing of the Venus model: (a) the initial surface triangulation S, (b-c) the final three-
dimensional mesh T , (d) the support mesh K̃1 of the approximation φ of dΩ (around 410000 vertices), (e)
some isosurfaces of φ, (f) a cut in the final mesh K̃ of D, which encloses T as a submesh, in yellow (around
375000 vertices).
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Appendix: validity of remeshing operations

As we have seen in the course of this chapter, most of the local operators available for locally modifying
meshes may invalidate them if no particular attention is paid, meaning that one of the axioms of the notion of
mesh in effect in this manuscript (see Definition 3.1 in Chapter 3) may end up violated. The purpose of this
section is to provide a convenient framework for controlling these operators in some particular cases. Indeed,
we are about to see that the situations are very different between the operations performed on surface mesh
configurations (i.e. in the case of a surface triangulation or, in the context of domain remeshing, in the case
of a surface configuration), and those performed on a completely ‘internal’ configuration (in the context of
domain remeshing).

Let us start by considering the case of fully volumetric configurations. We shall rely on the following
definition and proposition.

Definition 8.15. Let Ω ⊂ Rd a Lipschitz (open) bounded domain. The set Ω∗ of points x ∈ Ω such that Ω
is star-shaped with respect to x, that is, equivalently,

– for all y ∈ Ω, the segment {(1− t)x+ ty, t ∈ [0, 1]} lies in Ω,
– for all y ∈ ∂Ω, the half-open segment {(1− t)x+ ty, t ∈ [0, 1)} lies in Ω,

is called the visibility kernel of Ω.

Proposition 8.5.

1. Let Ω ⊂ Rd a bounded domain of class C1, n the (continuous) outer unit normal vector field on ∂Ω.
Then,

{x ∈ Ω, ∀y ∈ ∂Ω, (x− y) · n(y) < 0} ⊂ Ω∗ ⊂ {x ∈ Ω, ∀y ∈ ∂Ω, (x− y) · n(y) ≤ 0} .

2. Let Ω ⊂ Rd a polyhedral bounded domain, i.e. a Lipschitz domain whose boundary is a finite union of
flat polygons: ∂Ω =

⋃N
i=1 Pi. For each i = 1, ..., N , denote as nPi

the unit normal vector to Pi pointing
outwards Ω. Then,

{x ∈ Ω, ∀i = 1, ..., N,∀y ∈ Pi, (x− y) · nPi
< 0} ⊂ Ω∗ ⊂ {x ∈ Ω, ∀i = 1, ..., N,∀y ∈ Pi, (x− y) · nPi

≤ 0} .

Proof. We limit ourselves with the proof of the first point, that of the second one being identical. Denote
as K1 := {x ∈ Ω, ∀y ∈ ∂Ω, (x− y) · n(y) < 0}, and K2 := {x ∈ Ω, ∀y ∈ ∂Ω, (x− y) · n(y) ≤ 0}. Using a
standard argument of partition of unity, it is easy to see that the bounded domain Ω can be described
implicitly, i.e. that there exists a C1 function φ : Rd → R such that:

∀x ∈ Rd,





φ(x) < 0 if x ∈ Ω
φ(x) = 0 if x ∈ ∂Ω
φ(x) > 0 if x ∈c Ω

.

What’s more, we have already seen that the normal vector n can be expressed in terms of φ as:

∀y ∈ ∂Ω, n(y) =
∇φ(y)
|∇φ(y)| . (8.73)

Now, let x ∈ Ω∗. By definition, for all y ∈ ∂Ω, and any t ∈ [0, 1], one has: φ(y + t(x − y)) ≤ 0. This
implies

∀t ∈ (0, 1],
φ(y + t(x− y))− φ(y)

t
≤ 0.

Letting t go to 0 and using (8.73) yields the inclusion Ω∗ ⊂ K2.
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Conversely, if x ∈ K1, suppose there exists y ∈ ∂Ω such that not all the set {(1− t)x+ ty, t ∈ [0, 1)} is
comprised in Ω, i.e. φ((1− t)x+ ty) > 0 for a certain t ∈ (0, 1). By continuity of φ, there exists t0 ∈ (0, 1],
and a sequence (rn) such that φ(x+ t0(y−x)) = 0, and rn is an increasing sequence towards t0, which never
takes value t0, such that ∀n ∈ N, φ((1− rn)x+ rny) ≥ 0. This implies

∀n ∈ N,
φ((1− rn)x+ rny)− φ((1− t0)x+ t0y)

t0 − rn
≥ 0.

Letting n→∞ yields the sought contradiction. Consequently, K1 ⊂ Ω∗.

Let us now put in the context of application of the remeshing operators presented in the course of this
chapter, in a purely ‘internal’ configuration.

For the sake of simplicity, consider the model situation of a two-dimensional mesh T ⊂ R2, and let p be an
internal vertex of T . Suppose p is to be relocated to a new position p̃ ∈ R2, while the connectivities of T are
preserved; obviously, if no specific assumption is made on p̃, the mesh T̃ resulting from the process may end
up violating either the non empty interior condition (2) for an element of T̃ or the non overlapping condition
(3) for elements in T̃ in definition 3.1 of Chapter 3 (which are by essence the only possible infringements on
the definition of mesh which may be entailed by this operation).

Let Ω :=
◦
B(p) the open ball of p and denote as ei = ai−1ai, i = 1, ..., n the edges of this polygonal domain,

where ai, i = 0, ..., n− 1 are its vertices, and we use the convention an = a0. Obviously, T̃ stays valid if and
only if p̃ ∈ Ω∗ (see figure 8.44 (left)). From proposition 8.5, a necessary condition for this to hold is:

∀i = 1, ..., n, det(ai−1ai, ai−1p̃) det(ai−1ai, ai−1p) ≥ 0.

As det(ai−1ai, ai−1p) 6= 0, the only way for T̃ to satisfy the non overlapping condition and to violate the
non empty interior condition is that

det(ai−1ai, ai−1p̃) = 0

should hold for a certain i. Thus, T̃ remains valid in the terms of definition 3.1 in Chapter 3 if and only if:

∀i = 1, ..., n, det(ai−1ai, ai−1p̃) det(ai−1ai, ai−1p) > 0,

a mere orientation predicate over the triangles of B(p), which is very easy to check numerically. This short
analysis straightforwardly extends to the three-dimensional case, and also legitimates the fact that a simple
check on the preservation of orientations of the triangles of the balls of the affected points allow for a rigorous
control of operations such as internal edge collapses, internal edge swaps, etc...

Unfortunately, things are downright different when considering vertices or edges on the boundary of T ;
those criteria relying on orientation predicates happen not to be sufficient to guarantee the resulting mesh
validity, and one has to resort to some heuristics. For instance, there is no simple criterion such as the fact
that p̃ should belong to the visibility kernel of its associated open ball to ensure T̃ stays valid after relocating
a boundary point p to p̃; see figure 8.44 (right).
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Figure 8.44: (Left): Visibility kernel associated to the open ball of point p (greyed area), (right) invalid
relocation for a point p lying on the boundary of T (displayed as bold lines).

To put things in a nutshell, operations performed on a configuration which is completely ‘surrounded by
volume’ are easy to control rigorously, whereas such a control in the context of a boundary configuration (or
in the case of a surface mesh in R3) can be at most ensured by heuristic checks.
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Shape optimization with a level set
based mesh evolution method
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In this chapter, we discuss an approach for structural optimization which benefits from an accurate
description of shapes at each stage of the iterative process - by means of a mesh amenable for mechanical
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analyses - while retaining the whole versatility of the level set method when it comes to accounting for their
evolution. The key ingredient of this method is a set of operators for switching from a meshed representation
of a domain to an implicit one, and conversely; this notably brings into play an algorithm for generating the
signed distance function to an arbitrary discrete domain, and a mesh generation algorithm for implicitly-
defined geometries.

This chapter is a joint work with Grégoire Allaire and Pascal Frey; parts of its contents have been pub-
lished in the following two brief notes:

G. Allaire, C. Dapogny and P. Frey, Topology and Geometry Optimization of Elastic Structures
by Exact Deformation of Simplicial Mesh, C. R. Acad. Sci. Paris, Ser. I, vol. 349, no. 17, pp. 999-1003
(2011),

G. Allaire, C. Dapogny and P. Frey, A mesh evolution algorithm based on the level set method for
geometry and topology optimization, accepted in Struct. Multidisc. Optim. (2013), DOI 10.1007/s00158-
013-0929-2,

and in the following two conference proceedings:

G. Allaire, C. Dapogny and P. Frey, Shape optimization of elastic structures using a level-set based
mesh evolution method, Fifth International Conference on Advanced COmputational Methods in ENgineer-
ing (ACOMEN), Liège, Belgium, 2011,

G. Allaire, C. Dapogny and P. Frey, A mesh evolution algorithm based on the level set method for
geometry and topology optimization, 10th World Congress on Structural and Multidisciplinary Optimization
(2013), Orlando, Florida, USA.

9.1 Introduction

In the simulation of a free or moving boundary problem driven by a physical motion, one usually has
to strike a balance between numerical accuracy and robustness: the more faithful the representation of the
tracked boundary, the more accurate the computation of the characteristics of the motion, and unfortunately,
the more tedious the numerical implementation. This issue is especially critical in shape optimization which
features problems where the changes in geometry and topology of shapes in the course of the evolution often
turn out to be dramatic.

In a very summary way, to focus only on the field of shape and topology optimization, three main classes
of techniques can be distinguished, depending on the representation of shapes they involve:

– Density-based methods, such as the SIMP method [40], or the homogenization method [10, 39], trans-
form the problem of finding the optimal shape Ω ⊂ Rd with respect to a mechanical criterion J(Ω)
into that of finding the optimal density function ρ : D → [0, 1] of a mixture of material and void
inside a fixed working domain D. The shape optimization problem has to be converted into this new
framework, which sometimes proves difficult.

– Eulerian methods, such as the phase field method [59], or the level set method [14, 243, 278, 319]
account for shapes in an implicit way; for instance, in the latter case, a large, fixed working domain
D, meshed once and for all is introduced, and a shape Ω ⊂ D is described in terms of a scalar function
φ : D → R whose negative subdomain matches with Ω. Finite element analyses cannot be performed
directly on Ω since it is not meshed exactly, and approximations have to be made to trade mechanical
problems posed on Ω for problems posed on D. The most notorious of them is the Ersatz material
approach, which consists in filling the ‘void’ D \Ω with a very soft material to avoid degeneracy in the
stiffness matrix (however, alternatives exist, which are based on e.g. the immersed boundary method
[278], or the XFEM method [120, 202]).
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– Lagrangian methods are perhaps the most natural ones and date back to the early hours of computa-
tional structural optimization [338]; shapes are represented by means of a computational mesh (or a
CAD model [60]), which enables accurate mechanical analyses, but this mesh has to be updated in the
course of the optimization process, which is notoriously difficult, especially in 3d. Note that there is
still ongoing research in this direction [17, 231].

Of course, this rough classification ignores the numerous particular instances of each category of methods
and combinations between them (see the recent review papers [104], or [112] for a stronger emphasis on
level-set based structural optimization).

In this chapter, we ambition to devise a shape optimization method which benefits from the flexibility of
level-set based shape optimization methods for tracking evolution of shapes, while enjoying an exact, meshed
description of shapes.

Admittedly, this idea of combining an implicit domain evolution method with an explicit type of shape
representation is not new: in the two-dimensional work [326], the evolution of shapes is tracked on a triangular
mesh T of a working domain D owing to the level set method, and at each iteration of the process, an exact
mesh of the current shape Ω is obtained by relocating vertices of T onto ∂Ω. In [325], a similar strategy
is applied for dealing with the motion of shapes; a computational mesh for any shape Ω arising during the
process is moreover constructed by first identifying the intersection points of the implicitly-defined boundary
∂Ω with the edges of the mesh T of D, then using them as an input for a Delaunay-based mesh generation
algorithm. Last but not least, let us mention the work in [254] (chap. 5), taken over in [167], in which
the evolution of shapes occurs on a finite difference grid of the working domain D, and an original meshing
algorithm for implicit geometries is used to get an exact representation of shapes. The precisely calculated
shape gradient must then be projected back to the Cartesian grid of D to close the loop.

The method detailed in this chapter has something in common with this last one. A computational
domain D is defined, and is equipped with an unstructured mesh which is modified from one iteration of
the algorithm to the next, in such a way that any shape Ω arising in the course of the process is explicitly
discretized in this mesh - i.e. the vertices, edges, faces (and tetrahedra in 3d) of a mesh of Ω also exist as
elements of the mesh of D. In such a configuration, we shall also say that (a mesh of) Ω exists as a submesh
of that of D. This kind of representation allows for accurate finite element analyses, held on a well-defined,
high-quality mesh of Ω (which is possibly adapted to an error estimate for the mechanical problem at stake),
and lends itself to the use of the level set method in an unstructured mesh framework, to account for large
shape deformations (including potential topological changes). It relies crucially on efficient algorithms for
moving back and forth, from a situation where a shape Ω is known as a submesh of the computational mesh
of D to a level set description on a mesh of D.

This strategy presents several attractive assets; first, no projection between different meshes is needed
between the computation of a descent direction for the considered objective function of the domain (which
occurs when the shape is in a meshed description), and the further deformation of the shape (which is carried
out using the level set method). Most importantly, the proposed method does not pose any theoretical
obstruction to the extension from the two-dimensional case to the three-dimensional one (even if it is then
considerably more tedious to implement). This is an important and non trivial feature insofar as meshing
algorithms are involved, and meshing issues (e.g. Delaunay-based mesh generation) are well-known to be
by far more difficult to deal with in 3d than in 2d. The only mesh generation operation involved in our
strategy is a purely logical (thus very robust) one, and most of the difficulty of the problem is transferred to
a remeshing 1 problem, which always starts from an existing - possibly very ill-shaped mesh - and proceeds
‘in the best possible way’.

In this chapter, we are mostly interested in the three-dimensional setting; consequently, most of the
descriptions will be held with this case in mind (especially as far as meshing issues are concerned), except
when the 2d and 3d settings are completely equivalent.

1. Depending on the authors, this term may either refer to the operation of creating a whole new mesh, or to that of
modifying an existing one by means of local mesh operations. In this chapter, as in the previous one, the latter meaning is
retained.
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This chapter is organized as follows. The next section presents the model linear elasticity problem, and
the basic material from shape-sensitivity analysis using Hadamard’s method involved in the forthcoming
study; section 9.3 then describes the two different representations of shapes used in our method - namely the
level set representation, and the meshed representation - as well as the algorithms for switching from one
of these representations to the other. Then, section 9.4 describes how the velocity field driving the motion
of shapes is computed, and how the level set method is used to account for this motion. The global mesh
evolution strategy is summed up in section 9.5, and several numerical examples are discussed in section 9.6.
Eventually, we draw several conclusions around the present study in section 9.7, and outline some natural
directions for future work.

9.2 A model problem in shape optimization of elastic structures

In this chapter, we consider shapes, that is, bounded open sets Ω ⊂ Rd (d = 2, 3 in our applications) with
at least Lipschitz regularity, filled with a linear isotropic elastic material with Hooke’s law A:

∀ξ ∈ S(Rd), Aξ = 2µξ + λtr(ξ),

where S(Rd) is the set of real d×d symmetric matrices, and λ and µ are the Lamé coefficients of the material.
These shapes are clamped on a part ΓD ⊂ ∂Ω of their boundaries, and they are submitted to body forces
f , as well as to traction loads g, applied on a part ΓN ⊂ ∂Ω disjoint from ΓD. The remaining, traction-free
region Γ := ∂Ω \ (ΓD ∪ ΓN ) is called the free boundary of Ω.

Provided f ∈ L2(Ω)d, g ∈ H1(Ω)d, and that ΓD 6= ∅ (unless an equilibrium condition between f and g is
fulfilled), the displacement of a shape Ω is the unique solution uΩ ∈ H1(Ω)d to the linear elasticity system:





−div(Ae(u)) = f in Ω
u = 0 on ΓD

Ae(u)n = g on ΓN
Ae(u)n = 0 on Γ

, (9.1)

where e(u) :=
(
∇uT +∇u

)
/2 is the linearized strain tensor, and n is the unit normal vector to ∂Ω (pointing

outward Ω).

Our purpose is to minimize a given functional J(Ω) of the domain. This classically demands some
knowledge about the derivatives of J , hence the need to account for variations of shapes.

In this perspective, we follow the lead of [234] (see also [172, 290], and Chapter 2), and rely on Hadamard’s
method: variations of a smooth shape Ω ⊂ Rd of the form Ωθ := (I + θ)(Ω) are considered, for θ ∈
W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd)< 1. It is indeed well-known [9] that under such conditions, (I + θ) is a
Lipschitz diffeomorphism of Rd. The induced notion of shape differentiation is then the following:

Definition 9.1. A real-valued function J(Ω) of the domain is shape differentiable at a shape Ω if the
underlying function θ 7→ J((I + θ)(Ω)) from W 1,∞(Rd,Rd) into R is Fréchet differentiable at θ = 0. The
associated derivative J ′(Ω) is called the shape derivative of J at Ω, and the following asymptotic expansion
holds in the neighborhood of 0 ∈W 1,∞(Rd,Rd):

J(Ωθ) = J(Ω) + J ′(Ω)(θ) + o(θ), where
o(θ)

||θ||W 1,∞(Rd,Rd)

θ→0−→ 0. (9.2)

Let us now precise the setting of the forthcoming study. The parts ΓD and ΓN of the boundaries of
shapes where they are respectively clamped and submitted to traction loads are given a priori, and are not
subject to optimization. The minimization of J(Ω) is thus investigated over the set Uad of admissible shapes
defined as:

Uad =
{

Ω ⊂ Rd is an open, Lipschitz bounded set, ΓD ∪ ΓN ⊂ ∂Ω
}
.
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The corresponding set for admissible variations of shapes is:

Θad =
{
θ ∈W 1,∞(Rd,Rd), θ = 0 on ΓD ∪ ΓN

}
.

Throughout this chapter, we shall consider integral functionals J(Ω), which bring into play the solution
uΩ to the linear elasticity system (9.1). A rigorous study of such functions is not an easy task; fortunately,
Céa’s method [72] (see also the presentation in chapter 2) allows for an easy, albeit formal, computation of
their shape derivatives.

To set ideas, let us recall a classical result, devoted to functionals of the form (see e.g. [14] for details):

∀Ω ∈ Uad, J(Ω) =
∫

Ω

j(x, uΩ(x)) dx+
∫

Γ∪ΓN

k(x, uΩ(x)) ds, (9.3)

where j, k : Rdx × Rdu → R are two smooth functions satisfying adequate growth conditions (we shall meet
several different instances of objective functions in section 9.6).

Theorem 9.1. Provided f and g are smooth enough, the function J(Ω) defined by (9.3) is shape differentiable
at any Ω ∈ Uad, and its shape derivative reads:

∀θ ∈ Θad, J
′(Ω)(θ) =

∫

Γ

(
j(x, uΩ) +Ae(uΩ) : e(pΩ)− f · pΩ +

∂

∂n
(k(x, uΩ)) + κk(x, uΩ)

)
θ · n ds, (9.4)

where κ is the mean curvature of ∂Ω (oriented in the sense that κ(x) is positive when Ω is locally convex
near x), and pΩ ∈ H1(Ω)d is the adjoint state, unique solution to:




−div(Ae(p)) = −j′(x, uΩ) in Ω

p = 0 on ΓD
Ae(p)n = −k′(x, uΩ) on Γ ∪ ΓN

. (9.5)

More specifically, in good agreement with the structure theorem (see [105], Th 9.3.6), the shape derivatives
of all the handled functionals J(Ω) in this chapter will turn out to be of the form:

∀θ ∈ Θad, J
′(Ω)(θ) =

∫

Γ

vΩ (θ · n) ds, (9.6)

for a certain scalar field vΩ on Γ. A descent direction θ for J is then easily revealed as −vΩn, since letting

θ = −t vΩn (9.7)

in (9.2) yields, for small t > 0:

J(Ωtθ) = J(Ω)− t
∫

Γ

v2
Ω ds+ o(t) < J(Ω).

Actually, for both theoretical and numerical reasons, one cannot take directly (9.7) as a descent direction,
but we shall come back to this issue in section 9.4.3.

Remark 9.1. We have hitherto been discussing the unconstrained minimization of a function J(Ω) over
Uad. For the sake of simplicity, in this chapter, we shall only impose a volume constraint on shapes, to be
enforced by trading J(Ω) for a weighted sum L(Ω) of J(Ω) and the volume of shapes Vol(Ω), so that the
problem boils down to the following constraint-free problem:

min
Ω∈Uad

L(Ω), L(Ω) := J(Ω) + ℓVol(Ω), (9.8)

where ℓ is a fixed Lagrange multiplier.
Note that this very rough understanding of constraints already contains some degree of generality, since

many efficient optimization algorithms (e.g. the augmented Lagrangian method) impose constraints by using
formulations of the form (9.8) in combination with an update strategy for the Lagrange multiplier ℓ.
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Figure 9.1: (Left) graph of a level set function φ associated to a shape Ω; (right) a corresponding meshed
description: the whole computational box D is equipped with a mesh TΩ (composed of the yellow and green
elements), and the submesh T ′

Ω is composed of the yellow triangles.

9.3 Two complementary ways for representing shapes

From on now, let D be a fixed, large computational domain that encloses all the considered shapes. The
central point of the proposed method consists in juggling with two different ways for describing a shape
Ω ⊂ D during the optimization process (see Figure 9.1), using alternatively one or the other depending on
the nature of the ongoing operation:

– The level set description: Ω is implicitly defined by the datum of a scalar function φ : D → R, in the
sense that the following holds:

∀x ∈ D,





φ(x) < 0 if x ∈ Ω
φ(x) = 0 if x ∈ ∂Ω
φ(x) > 0 if x ∈ cΩ

. (9.9)

From the numerical standpoint, φ is discretized as a P1 Lagrange finite element function on a (simplicial)
mesh of D. As we shall recall in section 9.4, this way of representating shapes is particularly well-suited
when its comes to tracking their evolutions.

– The meshed description: the whole computational domain D is equipped with a simplicial (conforming)
mesh, denoted TΩ, which encloses a mesh T ′

Ω of Ω as a submesh, i.e. the elements (points, edges, faces,
and tetrahedra in 3d) of T ′

Ω also exist as elements of the larger mesh TΩ.
This description of Ω is convenient when it comes to performing mechanical computations on it (e.g.
using the finite element method): the ‘exterior’ part TΩ \ T ′

Ω of TΩ, i.e. that corresponding to D \ Ω,
is ‘forgotten’, and only the computational mesh T ′

Ω of Ω is retained.
At this point, one may question over the decision to systematically mesh a shape Ω together with its
complementary part D \ Ω, but the need to do so will become apparent in the next sections.

Let us now describe the two operators for switching from one representation to the other as we see fit.

9.3.1 Generating the signed distance function to a discrete domain

The first operation under scrutiny consists in generating a level set function for a domain Ω ⊂ Rd, at the
vertices of a mesh TΩ of D in which Ω is explicitly discretized.
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To achieve this, we compute the signed distance function dΩ to Ω, defined by:

∀x ∈ Rd, dΩ(x) =





−d(x, ∂Ω) if x ∈ Ω
0 if x ∈ ∂Ω

d(x, ∂Ω) if x ∈ cΩ
,

where d(., ∂Ω) is the Euclidean distance function to ∂Ω. Indeed, since [89], the signed distance function has
been known to enjoy several important properties - the most crucial of them being that its gradient is of unit
norm wherever it is defined, i.e. |∇dΩ|= 1 a.e. on Rd - which tremendously increase the numerical accuracy
and stability of computations performed in a process making use of the level set method.

We use the numerical scheme of chapter 6, which relies on the property that dΩ is the stationary state
of the unsteady Eikonal equation:

{
∂φ
∂t

(t, x) + sgn(φ0) (|∇φ|−1) = 0 for (t, x) ∈ (0,∞)× Rd

φ(t = 0, x) = φ0(x) for x ∈ Rd
, (9.10)

where φ0 is any level set function associated to Ω. Note that such a function is easily generated in practice,
e.g. by defining φ0(x) with the exact signed distance function to Ω at ‘close’ vertices x ∈ TΩ to ∂Ω (which
is then inexpensive), and with an arbitrarily great value at the remaining points of TΩ.

Taking advantage of the fact that ‘the’ solution to (9.10) is known through an explicit formula [26],
an iterative scheme is obtained which ‘straightens up’ an initial level set function φ0 for Ω into a new one
enjoying a unit gradient, starting from areas near ∂Ω to farther ones.

Remark 9.2. The above hypothesis that Ω should be explicitly discretized in the computational mesh of
D is not mandatory for this operation: Ω could well be supplied via any mesh, independently from that of
D; see chapter 6 for details.

9.3.2 Meshing the negative subdomain of a scalar function

The second operation of interest considers a simplicial mesh T of D, and a level set function φ, discretized
at the vertices of T , associated to a domain Ω ⊂ D. The aim is to modify T into a new mesh TΩ of D in
which Ω is explicitly discretized.

We shall also impose two additional features as regards TΩ:
– The mesh TΩ should be well-shaped, in terms of the qualities of its elements, i.e. the simplices K ∈ TΩ

should have equal length edges, insofar as possible. This is a natural requirement since we plan on
performing mechanical analyses on TΩ, in particular using the finite element method, whose accuracy
is well-known to be directly impacted by the quality of the computational support.

– The submesh T ′
Ω of TΩ should be adapted to the geometrical features of Ω, in particular show smaller

elements around the regions of ∂Ω where curvature is high. This requirement might seem a bit loose
at first glance, since in our framework, φ and Ω are only known in discrete way - and are respectively
a piecewise linear function and a polyhedral domain (thus, strictly speaking, there is no such thing as
curvature as far as Ω is concerned). Actually, for a number of reasons, it proves convenient to create
a continuous geometric model for Ω, from the datum of a mesh of Ω and additional reconstructed
information (e.g. the normal vectors at vertices of this mesh). In more practical terms, rules are
established to infer a local portion of continuous surface Γ from any given discrete surface triangle T of
∂Ω. In our setting, as suggested in [316], this piece of surface is parametrized as a cubic Bézier patch
σ : T → Γ, which interpolates the three vertices and three normal vectors of T . This local model serves
then as a guide when it comes to introducing new points on ∂Ω, and results in simple predicates over
the vertices and normal vectors of the surface mesh when it comes to measuring whether such or such
operation degrades too much the geometrical features of Ω. See chapter 8 for further details.

Modifying T into such a mesh TΩ is achieved within two steps, which we now outline: at first, a mesh
Ttemp of D is obtained, in which Ω is explicitly discretized, but which may be very ill-shaped, or may be a
poor representative of the geometry of Ω. In a second step, this intermediate mesh Ttemp is remeshed into a
high-quality mesh TΩ, which is a fine representative of Ω.
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Figure 9.2: A pattern for splitting a simplex K so that the 0 level set (red face) of a linear function φ in K
explicitly appears in the resulting decomposition. The function φ takes a positive value at the red vertex of
K, and negative ones at the blue vertices.

9.3.2.1 Step 1: discretization of the 0 level set of a scalar function into a simplicial mesh

If no particular attention is paid to the qualities of its elements, obtaining a mesh Ttemp of D in which
Ω is explicitly discretized is a fairly easy matter: we use a marching tetrahedra approach [141] - a variant of
the well-known marching cubes algorithm in the context of a Cartesian computational support [208].

The simplices of T intersecting ∂Ω = {x ∈ D, φ(x) = 0} are exactly those bearing at least two vertices
where φ takes different signs. For any such simplex K ∈ T , as φ|K is linear, ∂Ω ∩K is a portion of plane
passing through the points mi of the edges of K where φ vanishes. Once the positions of these points have
been computed, depending on the relative signs of φ at the vertices of K, a pattern is chosen for splitting K
into several simplices in such a way that a triangulation of ∂Ω ∩K explicitly appears (see Figure 9.2).

This step is unfortunately very likely to produce a severely ill-shaped mesh Ttemp, with very small or
nearly degenerate elements, since the intersections of the simplices K ∈ T with ∂Ω are arbitrary (for instance,
in the configuration of Figure 9.2, if the portion of plane ∂Ω ∩K lies very close to the vertex a3, the new
tetrahedron a3m0m1m2 will be far too small and a0m0m1m2 will be almost flat).

Nevertheless, let us note that this purely logical step is the only mesh generation operation involved
in the mesh evolution method at stake in this chapter, which is very robust in delivering valid simplicial
meshes. The remaining meshing ingredients, whose descriptions follow, only consider, modify and deliver
valid meshes, doing their utmost in increasing their qualities. This is the main reason for the robustness of
the proposed approach.

9.3.2.2 Step 2: local modifications of a simplicial mesh for quality and geometric approxima-
tion improvements

We are now left with the problem of remeshing a possibly ill-shaped mesh Ttemp of D, enclosing an
explicit discretization of Ω (which may be poor as a geometric approximation of the continuous underlying
model).

To achieve this, we rely on the four usual local mesh modification operators (see [145], or chapter 8 for
more details around the actual implementation), which are briefly described hereafter. Note that, in our
application, each one of them exists under two different forms depending on whether it affects the surface
triangulation of ∂Ω, or it is applied to a completely internal configuration.

– Edge split: an edge pq of Ttemp which is ‘too long’ is split by introducing a new vertex m in the mesh,
and replacing pq by pm and qm, updating the connectivities of the mesh accordingly. An edge may be
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deemed ‘too long’ if it is too long with respect to a user-defined size prescription, or if it entails too
large a gap between ∂Ω and the underlying continuous surface Γ. The new vertex m is inserted either
on Γ if pq is an edge of ∂Ω, or as the midpoint of pq if it is an internal one.

– Edge collapse: the two endpoints of a ‘too short’ edge pq of Ttemp are merged. This operator should be
cautiously monitored: not only is it likely to degrade the quality of the representation of the geometrical
features of Ω, but it may also invalidate elements of the mesh (i.e. cause overlappings), or provoke
topologically invalid (e.g. non manifold) surface configurations.

– Edge swap: An edge is removed in Ttemp, and the connectivities of the mesh are updated accordingly.
This operator is easy to apprehend in 2d, or as its action on a surface configuration: in this case, a
configuration of two triangles T1 = apq and T2 = bpq sharing common edge pq is simply replaced by
the alternate configuration of triangles T̃1 = pab and T̃2 = qab, sharing edge ab (see Figure 9.3, (c));
however, it becomes much more combinatorial and tedious in 3d, as regards the necessary reconnections
in Ttemp (see [114, 150], or chapter 8 for further details). In both cases, this operator too may invalidate
Ttemp, or degrade the geometric features of ∂Ω, and should be carefully controlled.

– Vertex relocation: A vertex p ∈ Ttemp is relocated to an improving position p̃, keeping the connectivities
of T unchanged. The choice as for the improving position p̃ depends on whether p belongs to ∂Ω or
it is an internal vertex. In the former case, p̃ should lie on the continuous model associated to ∂Ω,
whereas in the latter case, it is simply chosen as the centroid of the simplices sharing p as a vertex (see
however [145, 139] for other possibilities as for the relocation position).

•

•

•

a0

a1

a2

Γ

•

•

T

m1

m2

a

b
•

•

•
•

q
p

(a) (b)

p

q

a

b

•

•

••

n(a)

n(b)

n(p)

n(q)

T1

T2

p

�p
•

•

(c) (d)

Figure 9.3: The four local remeshing operators, applied on a boundary configuration. In all four pictures,
the previous configuration is shown in black, and the resulting one in red: (a) split of two edges a0a1, a0a2

of a surface triangle T , (b) collapse along a boundary edge pq; (c) swap of a boundary edge pq; (d) relocation
of a vertex p to an improving position p̃.
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These operators serve different purposes: while the first two are mainly ‘sampling operators’, insofar as
they make it possible to reach a desired element density in terms of a user-defined size prescription, or of
geometric approximation concerns, the last two are essentially quality improvement operators.

The way to combine them - however completely heuristic an issue - turns out to be at least as important
as their individual performances in a remeshing algorithm. Without delving into details, here is the outline
of the global strategy which showed the best efficiency in our study:

1. In a first stage, operations are focused on modifying Ttemp into a ‘geometric mesh’ T̃temp of D, with

respect to Ω: T̃temp may still be very ill-shaped, but it encloses a discretization of a close approximation
to the continuous geometric model for Ω. This stage mostly involves edge split and collapse operations.

2. A size map h : D → R is computed (it is actually stored at the vertices of T̃temp), which describes
the local desired size features for remeshing, based on curvature estimates at the vertices of ∂Ω, and
taking into account user-defined bounds for the minimal and maximal authorized edge lengths.

3. The intermediate mesh T̃temp is modified into the high-quality mesh TΩ: edge splits and collapses are
performed to reach the size feature expressed by the size map h; at first, only the configurations which
are ‘very much’ deviant from the size prescription are considered, then the criteria become increasingly
strict. These operations are intertwined with massive uses of edge swaps and vertex relocations,
whenever they help in improving the overall quality of the mesh.

Remark 9.3. This remeshing algorithm can serve two additional purposes, illustrations of which are pro-
vided in section 9.6:

– It makes it possible to obtain a mesh of the optimal shape resulting from a shape and topology
optimization procedure performed using the ‘classical’ level set method of [14, 319] on a fixed mesh
of D; one could also imagine to carry on the shape optimization procedure from this point using the
method presented in this chapter for a computation which hopefully enjoys an enhanced accuracy.

– It could also be used to produce a high-quality mesh of the final shape of the presented shape opti-
mization process, as a first step towards its post-processing (e.g. in reverse engineering).

9.4 Accounting for shape evolution

9.4.1 A brief reminder of the level set method

The evolution of shapes is numerically tracked while they are under implicit representation, by using the
level set method [245], originally introduced in the context of shape optimization in [14, 319].

Grossly speaking (see also [274], or to a lesser extent, chapter 1 for more details), let Ω(t) ⊂ Rd be a
domain, whose motion over a time period [0, T ] is driven by a velocity field V : [0, T ] × Rd → Rd. At any
time t ∈ [0, T ], let also φ(t, .) be a level set function associated to Ω(t). Using a formal argument, (implying
notably that V and φ are smooth over (0, T )× Rd), the motion of Ω(t) is translated in terms of φ into the
following level set advection equation (see Chapter 1):

∂φ

∂t
(t, x) + V (t, x) · ∇φ(t, x) = 0 on (0, T )× Rd. (9.11)

If in addition V is consistently oriented along the normal to Ω(t), say V (t, x) = v(t, x)nΩ(t)(x), for a certain

scalar field v, where nΩ(t) = ∇φ(t,.)
|∇φ(t,.)| denotes (an extension of) the outer unit normal vector to ∂Ω(t), (9.11)

is best rewritten as a Hamilton-Jacobi equation:

∂φ

∂t
(t, x) + v(t, x)|∇φ(t, x)|= 0 on (0, T )× Rd. (9.12)

Unfortunately, in the present context (9.11) or (9.12) are impossible to solve as such, since at every time t,
V (t, .) (or equivalently v(t, .)) is a descent direction for a given functional of the domain J , and depends on
global features of the evolving domain Ω(t) (hence of the level set function φ) in a highly non trivial way.
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However, like in most applications, the time interval (0, T ) stands for a ‘small’ generic time period between
two stages of an iterative process. Freezing V , i.e. assuming that V (t, x) ≈ V (0, x) =: V0(x) over [0, T ] allows
to transform (9.11) into a passive transport equation:

∂φ

∂t
(t, x) + V0(x) · ∇φ(t, x) = 0 on (0, T )× Rd.

When V (t, x) = v(t, x) nΩ(t)(x) is oriented along the normal to Ω(t), another possibility consists in freezing
only the scalar field v over [0, T ], i.e. assuming v(t, x) ≈ v(0, x) =: v0(x). Thus (9.12) becomes a passive
(still non linear) Hamilton-Jacobi:

∂φ

∂t
(t, x) + v0(x)|∇φ(t, x)|= 0 on (0, T )× Rd,

a structure which preserves the information that the velocity has a normal direction to ∂Ω(t) at any time.

9.4.2 Resolution of the level set advection equation on an unstructured mesh

Let us now consider the following passive transport equation of a scalar quantity φ:
{

∂φ
∂t

(t, x) + V (x) · ∇φ(t, x) = 0 for (t, x) ∈ (0, T )× Rd

φ(t = 0, x) = φ0(x) for x ∈ Rd
, (9.13)

over a generic period of time (0, T ), where V : Rd → Rd is the (autonomous) velocity field, and φ0 : Rd → R
is the initial state for φ.

As in [292] and chapter 7, we propose to rely on the method of characteristics to solve (9.13) (see [256] for
additional details): under adequate regularity and growth hypotheses on V (and φ0), the unique C1 solution
φ to (9.13) can be proved to be:

φ(t, x) = φ0 (X(0, t, x)) , (9.14)

where s 7→ X(s, t, x) is the characteristic curve of V passing at x at time t, defined as the solution to the
ODE: {

X̊(s, t, x) = V (X(s, t, x)) for s ∈ R
X(t, t, x) = x

, (9.15)

which describes the trajectory of a particle driven be the velocity field V standing at x at time t.
In the numerical setting of this chapter, V and φ0 are discretized as P1 finite element functions on a

(simplicial) mesh T of the computational domain D, and an approximation φT of the solution φ to (9.13)
at time t = T is sought under the same form. To this end, we simply mimic formula (9.14): φT is computed
at the vertices of T , using the following formula:

∀ vertex x ∈ T , φT (x) = φ0(X̃(0, t, x)),

where X̃(0, t, x) is a numerical approximation to X(0, t, x), provided by a numerical integration of the ODE
(9.15), e.g. using a first-order Euler’s method, or a more accurate Runge-Kutta procedure.

9.4.3 Computation of a descent direction

From a given shape Ω ∈ Uad, a descent direction V ∈ Θad for the considered objective function J(Ω) is
computed on a whole mesh TΩ of D which encloses an explicit discretization of Ω.

The generic expression (9.6) for the shape derivative of J suggests the immediate choice:

∀x ∈ ∂Ω, V (x) = −vΩ(x) n(x). (9.16)

As we have seen, vΩ depends on the solution to one or several systems of the form (9.1) posed on Ω, which
can be accurately solved on the submesh T ′

Ω of D, using the finite element method. Unfortunately, the choice
(9.6) for a descent direction turns out to be hazardous for two independent reasons:
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– Formula (9.6) makes sense only on ∂Ω, whereas we are in search for a velocity field V which is defined
at least in a vicinity of ∂Ω, as well to comply with the requirement V ∈ Θad as to use V in the context
of the level set method.

– Anyway, as exemplified in Theorem 9.1, the scalar field vΩ generally depends on (traces of) derivatives
of the solution uΩ to (9.1) (and possibly on those of the adjoint state pΩ), which may be quite irregular
- in the theoretical framework as well as when it comes to their numerical approximation. This may
endanger the numerical stability of the process.

As advocated by [64, 162] (see also Chapter 2, §2.2.3.3), an efficient way to address both problems at the
same time consists in using as a descent direction the gradient of J associated to a different scalar product
from the canonical one of L2(Γ).

More accurately, α > 0 being a small ‘extension - regularization’ parameter, let us consider the functional
space

H1
ΓD∪ΓN

(D) =
{
w ∈ H1(D), w = 0 on ΓD ∪ ΓN

}
,

and let ṽ ∈ H1
ΓD∪ΓN

(D) be the unique solution to the variational problem (see [64] for alternative choices):

∀w ∈ H1
ΓD∪ΓN

(D),
∫

D

(ṽw + α∇ṽ · ∇w) dx =
∫

Γ

vΩw ds = J ′(Ω)(wn). (9.17)

Consider now the choice:
∀x ∈ D, Ṽ (x) = ṽ(x) n(x),

where n is an extension to D of the normal vector field to ∂Ω. Combining (9.17) with the asymptotic
expansion (9.2) shows that Ṽ is still a descent direction for J . However, Ṽ intrinsically enjoys more regularity
than vΩ owing to the classical regularity theory for elliptic equations, and is inherently defined on the whole
domain D.

In the numerical setting, ṽ is easily computed by solving (9.17) with the classical finite element method
carried out on mesh TΩ, after computing vΩ (the discretization of the right-hand side being straightforward
since the computational mesh TΩ encloses an explicit discretization of ∂Ω). The (vector) velocity field Ṽ is
eventually derived once Ω has been given an associated level set function φ, by using the usual extension to
the normal vector field n = ∇φ

|∇φ| .

9.5 The global algorithm

Gathering the material introduced in the previous sections, we are now in position to outline the pro-
posed general strategy for handling mesh evolution in the context of shape optimization (see Figure 9.4 for
an illustration).

Start with an initial shape Ω0, and a simplicial mesh TΩ0 of D in which Ω0 is explicitly discretized.

For n = 0, ... till convergence, the current shape Ωn is known via a mesh TΩn of D, a submesh T ′
Ωn

of which is a mesh of Ωn.

1. Compute the value of the scalar field vΩn appearing in the shape derivative of the considered functional
(9.6). This may involve one, or several finite element analyses for solving the state (9.1) and (possibly)
adjoint systems, to be held on the part T ′

Ωn of the mesh TΩn corresponding to Ωn. The quantity vΩn

is defined only on ∂Ωn, i.e. in the numerically setting, on the discretization of ∂Ωn which explicitly
appears in both TΩn and T ′

Ωn .

2. Generate the signed distance function dΩn to Ωn on the whole mesh TΩn of D.

3. Extend vΩn to a vector field V n defined on the whole mesh TΩn of D, along the lines of Section 9.4.3.
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4. Choose a descent step τn > 0, and solve the following level set advection equation on TΩn :
{

∂φ
∂t

(t, x) + V n(x) · ∇φ(t, x) for (t, x) ∈ (0, τn)×D
φ(t = 0, x) = dΩn(x) for x ∈ D .

This produces a new level set function φn+1 := φ(τn, .) associated to the new shape Ωn+1.

5. Obtain the meshed representation of Ωn+1 by using the algorithm of section 9.3.2 from the set of data
(TΩn , φn+1). A new mesh TΩn+1 of D is produced, which encloses a mesh T ′

Ωn+1 of Ωn+1.

6. Evaluate J(Ωn+1). If J(Ωn+1) < J(Ωn), Ωn+1 is retained as the new shape; else Ωn+1 = Ωn. Then,
go back to stage (5), decreasing the chosen value as for the time step.

Remarks 9.4.
– Of course, the previous description is merely a synthetic, computationally non efficient sketch of the

proposed method; depending on the forms of the considered functional J and its derivative, several
quantities (such as the solution uΩn to the state equation (9.1)) may be computed only when evaluating
J(Ωn) at step (6), then stored for further use in the computation of the velocity field V n during the
subsequent step (1).

– This strategy could be (and already has been [304]) applied to different physical models involving free
or moving boundaries.

9.6 Numerical examples

In this section, we present and discuss several numerical models, in two and three space dimensions, to
assess the interest of the proposed mesh evolution method for shape optimization and illustrate some of its
features. All the discussed computations were performed on a laptop computer (MacBook Pro, 2.66 GHz),
and, unless stated otherwise, the coefficients for the elastic material are set to E = 1, ν = 0.3.

9.6.1 Minimization of the compliance

For the sake of simplicity, in all this section, we assume that no body forces are applied, i.e. f = 0.

9.6.1.1 Two-dimensional examples

Unsurprisingly enough, our first examples are concerned with the design of elastic structures with maximal
rigidity. The objective function J(Ω) under consideration is the compliance:

J(Ω) =
∫

Ω

Ae(uΩ) : e(uΩ) dx =
∫

ΓN

g · uΩ ds, (9.18)

where uΩ is the solution to (9.1). This objective function is of the general form (9.3) with j = 0, k(x, u) = g ·u
on ΓN , and k(x, u) = 0 on Γ. It is well-known that, in this case, the problem of minimizing J is self-adjoint,
i.e. the function pΩ involved in the expression (9.4) for J ′(Ω), solution to (9.5), boils down to pΩ = −uΩ.
So that the problem is not trivial, a volume constraint is incorporated under the form of a penalization by
a fixed Lagrange multiplier ℓ, as explained in remark 9.1.

We start with the benchmark Cantilever test case: in a working domain D of dimensions 2× 1, a beam
is clamped near its top and bottom left corners, and surface loads g = (0,−1) are applied on a small area
located at the centre of its right-hand side (see the details on Figure 9.5). The Lagrange multiplier associated
to the volume constraint is set to ℓ = 3, and 200 iterations of the algorithm of Section 9.5 are performed.
Each mesh TΩn of D arising in the course of the process has approximately 1500 vertices (and twice as many
triangles), and the whole computation takes about 3 minutes. Several intermediate shapes are displayed on
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(a) (b)

(c) (d)

(e)

Figure 9.4: (a) The mesh TΩn of D accounting for a shape Ωn; (b) the graph of the corresponding level
set function φn; (c) advection of φn according to the velocity field V n on TΩn ; the 0 isoline of the level set
function φn+1 for the new shape Ωn+1 is shown in red and is not yet discretized in the computational mesh;
(d) explicit discretization of this 0 level set; the obtained mesh Ttemp is very ill-shaped; (e) high-quality mesh
TΩn+1 in which the new shape Ωn+1 is discretized.
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Figure 9.5, and the convergence history for the aggregated objective functional L(Ω) := J(Ω) + ℓ Vol(Ω) is
reported on Figure 9.7, left.

Figure 9.5: (From top to bottom) Initial (with boundary conditions), 30th, 72th and final iterations of the
2d cantilever test case. The ‘inner’ domains Ωn are displayed in yellow, and the ‘outer’ ones D \Ωn in green.
Note the ongoing topological change at the 72th iteration.

We observe that the shape has been able to change topology without much trouble, while it is exactly
meshed at each iteration of the process.

The very same strategy is applied to another benchmark example in structural optimization, namely
that of the optimal mast: in a T-shaped working domain D, of height 120, width 80 at the top and 40 at
the bottom, a mast is clamped around its bottom-left and bottom-right corners, and submitted to surface
loads g = (0,−1) around the corners on its arms (see Figure 9.6). Here, the Lagrange multiplier associated
to the volume constraint is set to ℓ = 1, and 100 iterations of the proposed algorithm are performed. Each
intermediate mesh has about 8000 vertices, and the whole computation takes about 5 minutes. Results are
shown on Figure 9.6, and the convergence history for the weighted sum of the compliance and the volume
of shapes is reported on Figure 9.7, right.
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Figure 9.6: (From left to right) Initial (together with boundary conditions), 30th and final iterations of the
optimal mast test case.
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Figure 9.7: (Left) convergence history for the 2d cantilever test case, (right) convergence history for the 2d
mast test case.

9.6.1.2 A two-dimensional example using the topological derivative

Hadamard’s boundary variation method allows to describe the evolution of shapes via deformations of
their boundaries. Theoretically speaking, the various shapes obtained in the course of such an evolution
process are all diffeomorphic to one another; in particular, they share the same topology. In numerical
practice, a small abuse in this setting allows holes to merge (in 2d), or walls to collide into handles (in 3d),
but holes can never be nucleated in the bulk parts of shapes; this results in a strong dependency of the final
design on the topology of the initial one, especially in 2d. To circumvent this difficulty, the works [16, 65],
based on results of [125, 147, 289], proposed to incorporate an altogether different information to the process,
that of the sensitivity of a shape with respect to the nucleation of a small hole, which we briefly outline now.

Definition 9.2. Let Ω be a shape, x ∈ Ω a fixed point. For ρ > 0 small enough, denote Ωρ := Ω \ (x+ ρω),
where ω stands for the unit ball in Rd. A real-valued function J of the domain admits a topological derivative
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DTJ(Ω)(x) at x if there exists a continuous function f : R → R, with f(0) = 0 such that the following
expansion holds in the neighborhood of ρ = 0:

J(Ωρ) = J(Ω) +DTJ(Ω)(x) f(ρ) + o (f(ρ)) , with
o(f(ρ))
f(p)

ρ→0−→ 0.

The following result, proved in [147], gives the topological derivative of the compliance:

Theorem 9.2. For any shape Ω, the compliance functional J(Ω) defined by (9.18) admits a topological
derivative at any point x ∈ Ω, given by the following formula:

DTJ(Ω)(x) =
π(λ+ 2µ)
2µ(λ+ µ)

(4µAe(uΩ) : e(uΩ) + (λ− µ)tr (Ae(uΩ)) tr (e(uΩ))) (x)

By definition, nucleating an infinitesimally small hole in a shape Ω at a point x where DTJ(Ω)(x) is
negative decreases the value of J . As initially proposed in [16], we then consider coupling the shape op-
timization method of section 9.5 with a periodic use of this topological sensitivity information: every ntop
iterations, the topological derivative DTJ(Ωn) of the actual shape Ωn is evaluated, and a small percentage
(typically, we took the value of 2%) of the elements where it is most negative are removed from Ωn.

As an example, consider the optimal bridge test case of Figure 9.8: a bridge, enclosed in a rectangle D
of dimensions 2× 1.2 is clamped near its bottom-left and bottom-right corners, and is submitted to surface
loads g = (0,−1), applied on a small region around the middle of its bottom side. The Lagrange multiplier
for the volume constraint is set to ℓ = 0.1, and 500 iterations of the aforementioned coupling strategy are
performed, with a stage of topological sensitivity analysis replacing the sensitivity analysis using Hadamard’s
method every ntop = 10 iterations. Each mesh of D has about 2500 vertices, and the computation takes less
than 10 minutes. Results are displayed on Figure 9.8, and the convergence history is that of Figure 9.9.

Figure 9.8: (From left to right) Initial (together with boundary conditions), 60th and final iterations of the
2d optimal bridge test case, using information from the topological derivative.

Conspicuously, several holes have been nucleated in the course of evolution. Note also that the initial
symmetry in the shape has been lost. We shall repeatedly witness this phenomenon in the following (in a
less spectacular way however).
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Figure 9.9: Convergence history for the 2d optimal bridge test case, using the coupling strategy between
shape and topological sensitivity analyses.

9.6.1.3 3d examples

We now turn to three-dimensional test cases, still in the context of compliance minimization under a
volume constraint.

Our first example is a cantilever; the computational domain D is a rectangle of dimensions 2.4×5×3, and
the considered shapes are clamped at their right-hand side, while being subject to surface loads, applied on
a small area near the centre of their left-hand side (see Figure 9.10). The Lagrange multiplier for the volume
constraint is ℓ = 0.05 and 80 iterations of the strategy presented in Section 9.5 are performed. Each mesh
has about 16000 vertices (thus approximately six times more tetrahedra), and the whole computation takes
about an hour. Results are displayed on Figure 9.10, and the associated convergence history is represented at
Figure 9.13, left. Note that some intermediate shapes may show dramatic stretching, and that the resulting
shape is nevertheless very regular.

Let us now consider the bridge model, depicted in Figure 9.11: in a working domain D of dimensions
40× 200× 50, the considered shapes are clamped on two symmetric parts of their bottom side, and surface
loads are applied all over their superior part; the Lagrange multiplier for the volume constraint is ℓ = 100
and 70 iterations of our algorithm are performed. The average number of vertices for shapes is 9000, an the
computation takes about 45 minutes. See Figure 9.13, right for the convergence history.

Figure 9.12 exemplifies Remark 9.3, that the remeshing algorithm outlined in Section 9.3.2.2 can be used
to produce a high-resolution mesh of the optimal shape: in this particular case, the final shape (or more
accurately, the last mesh of D) is enriched into a now one enjoying about 70000 vertices.
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Figure 9.10: (From top to bottom) Initial (with boundary conditions), 30th and final (80th) iterations of the
3d Cantilever test case. Only the boundary ∂Ωn of each shape Ωn is displayed in the left column, and only
the interior part of each mesh TΩn is displayed in the right column.
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Figure 9.11: (From top to bottom) Initial (with boundary conditions), 30th and final (70th) iterations of the
3d optimal bridge test case.

Figure 9.12: (Left) High-resolution mesh of the final shape obtained in the 3d optimal bridge example, (right)
zoom on the surface mesh.
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Figure 9.13: (Left) convergence history for the 3d Cantilever test-case, (right) convergence history for the 3d
Optimal Bridge test-case.

9.6.2 Multi-loads compliance minimization

This section stays framed within the context of compliance minimization, except that we are now leaving
room for the possibility that several independent load cases may exert on the considered shapes.

More specifically, to put things into the general context of section 9.2, let fi ∈ L2(Rd)d, i = 1, ..., N be N
body forces, and gi ∈ H1(Rd)d be N surface loads, all of them being applied on the same non-optimizable
subset ΓN of the boundary of shapes in Uad (of course, each gi may vanish on a different subset of ΓN ). For
any Ω ∈ Uad, denote by uΩ,i ∈ H1(Ω)d the unique solution to:





−div(Ae(u)) = fi in Ω
u = 0 on ΓD

Ae(u)n = gi on ΓN
Ae(u)n = 0 on Γ

.

As in [12], the problem of finding the most rigid shape with respect to the N load cases is expressed as that
of minimizing the sum of the individual compliances associated to each load case; the considered objective
function is thus:

J(Ω) =
N∑

i=1

∫

Ω

Ae(uΩ,i) : e(uΩ,i) dx =
N∑

i=1

(∫

Ω

fi · uΩ,i dx

∫

ΓN

gi · uΩ,i ds

)
. (9.19)

As an example, we consider the optimal chair test case, as represented in Figure 9.14: shapes are
embedded in a box of dimensions 0.7 × 0.5 × 1, and submitted to two independent load case: the first one
g1 = (0,−1) is applied on the seat of the chair, and the second one g2 = (−1, 0) is applied on the back
(in both cases, no body forces are applied). Function (9.19) is minimized after a volume constraint has
been incorporated under the form of a fixed Lagrange multiplier ℓ = 200: 100 iterations of our algorithm are
performed, for a computational time of approximately 90 minutes (each mesh enjoying about 11000 vertices).
Results are displayed on Figure 9.14 (see also Figure 9.15 for the convergence history).
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Figure 9.14: (From left to right) Initial (with boundary conditions), 50th and final (100th) iterations of
the 3d optimal chair test case. To help visualization, the whole boundaries of shapes (and not only that
corresponding to the 0 level set of the evolving implicit function) are displayed on the lower row.
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Figure 9.15: Convergence history for the optimal chair test case.

9.6.3 Chaining topological and geometric optimization

In this section, we elaborate on the first point of Remark 9.3 about the possibility and benefits of
combining the mesh evolution method for shape optimization of this chapter with the ‘classical’ level-set
based structural optimization method on a fixed mesh, as in [14, 319] (see also the description in Chapter 1,
§2.3).

More precisely, we examine the following two-stage strategy for minimizing a function J(Ω):

1. Optimization of the shape using the ‘classical’ level set method: the working domain D is endowed
with a fixed mesh T (which may be simplicial, Cartesian, etc...), and shapes Ω ⊂ D are consistently
described by a corresponding level set function φ (discretized on T ). The main source of approximation
of this class of shape gradient algorithms (which is also its fundamental difference with the method of
this chapter) is that no mesh of a shape Ω ⊂ D is available when it comes to performing the necessary
computation of the solution uΩ to (9.1) (or the adjoint state pΩ) for the derivation of a descent direction
for J . Hence, the Ersatz material approach is used, whereby the void part D \ Ω is filled with a ‘very
soft’ material of Hooke’s law εA, ε ≪ 1, so that the problem (9.1) is approximated by the following
one, posed on D: 



−div (AΩe(u)) = f in D

u = 0 on ΓD
AΩe(u)n = g on ΓN

,

where the total Hooke’s tensor AΩ is defined over D as:

∀x ∈ D, AΩ(x) =
{

A if x ∈ Ω
εA if x ∈ D \ Ω

.

This step ends with an ‘optimal’ shape Ω̃, known as a level set function φ̃, defined on mesh T .

2. Optimization of the shape using the mesh evolution method: The resulting shape Ω̃ from the first step
is explicitly discretized in the computational mesh T , which produces a new mesh T

Ω̃
of D in which

Ω̃ is enclosed as a submesh. From this point, the algorithm of section 9.5 is applied, retaining exactly
the same parameters (loads, Lagrange multipliers, etc...) as in the first stage (except of course for the
coefficient ε which no longer serves any purpose), and produces a new ‘optimal’ shape, say Ω∗.

To appraise this procedure, we limit ourselves to the case of the aggregated sum L(Ω) of the compliance
(9.18) and the volume Vol(Ω) as an objective function of the domain, and first consider the two-dimensional
cantilever example of section 9.6.1.1, using the same parameters as those introduced then.

The first stage is performed on a fixed triangular mesh T of the working domain D containing 6518
vertices. The coefficient for the weak material is ε = 1.e−3, and 200 iterations of the FreeFem++ implemen-
tation of the fixed mesh level set method described in Chapter 5, §5.5.2.1 are performed to produce the
intermediate ‘optimal’ shape Ω̃.
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Figure 9.16: (Top) Initial and final iterations of the 2d Cantilever test case, using the level set method
for shape optimization on a fixed unstructured mesh. The 0 level set accounting for the shape of interest
is displayed in red. (Bottom-left) The 0 level set of obtained during the first stage is discretized into the
computational mesh; (Bottom-right) final result of the combination of both methods.

L(Ω̃) with the Ersatz L(Ω̃) without the Ersatz L(Ω∗)
material approximation material approximation

2d Cantilever 1.41182 1.632306 1.090604
3d Cantilever, ℓ = 100 188.5576 191.876896 162.661392
3d Cantilever, ℓ = 200 259.2133 258.723087 221.106033

Table 9.1: Values of the objective functions at different stages of the chaining strategy of the ‘classical’ level
set method and the mesh evolution method for structural optimization.

As for stage (2), we apply the algorithm of section 9.5 for another 200 iterations, using the exact same
parameters as in the first stage. All the meshes of this second sequence have more or less 3500 vertices.
Results are displayed on Figure 9.16 (see Figure 9.18 for the convergence histories). Note that the respective
shapes Ω̃ and Ω∗ obtained at the end of stage (1) and (2) are qualitatively different, and that the final Ω∗ is a
noticeable improvement of the first ‘optimal shape’ Ω̃. Note also the non negligible gap between the values of
L(Ω̃) depending on whether it is computed by using the Ersatz material approximation or not (see Table 9.1).

The same strategy is applied to the 3d Cantilever test case. Here, the setting of the problem is slightly
different from that of Section 9.6.1.3: the working domain D is now a 2× 1× 1 box; shapes are clamped at
their left-hand side and a point load is applied at the centre of the right-hand side.

During stage (1), D is equipped with a Cartesian mesh of size 40 × 20 × 20 (18081 vertices), and the
resulting optimal shapes are courtesy of G. Michailidis [228]. Two examples are presented, associated to
different Lagrange multipliers ℓ = 100 and ℓ = 200 for the volume constraint. Results are displayed on
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Figure 9.17. In both cases, stage (2) converges within only ten iterations (hence, only the final values of
the objective functions are recorded in Table 9.1), and the intermediate ‘optimal’ shapes Ω̃ are significantly
improved (even by topological changes !) by the respective final ‘optimal’ shapes Ω∗. In the case ℓ = 100
(resp. ℓ = 200), the average number of vertices of the meshes arising during stage (2) is 15000 (resp.12000).

Figure 9.17: (From top to bottom): 0 level set of the implicit function for Ω̃, associated discretization in the
mesh of D, and final shape Ω∗, using a Lagrange multiplier (left column) ℓ = 100, (right column) ℓ = 200.
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Figure 9.18: Convergence histories for the shape optimization procedure performed on (left) a fixed compu-
tational mesh, and (right) using the proposed mesh evolution procedure

9.6.4 Multi-materials compliance minimization

In this section, we discuss a model which does not exactly fit into the general framework of section 9.2,
namely that of multi-phase shape optimization.

Let D be a fixed working domain composed of two materials, referred to as 0 and 1, with different
properties reflected by their respective Hooke’s tensor A0 and A1. Ω0 and Ω1 occupy the respective (smooth)
subsets Ω0 ⊂ D and Ω1 = D \ Ω0; for the sake of simplicity we assume that Ω0 lies ‘far’ from ∂D, i.e.
∂Ω0 ∩ ∂D = ∅.

D is clamped on a region ΓD of its boundary ∂D, and surface loads g ∈ H1(Rd)d are applied on another
subset ΓN ⊂ ∂D, disjoint from ΓD. Body forces f ∈ L2(Rd)d are also exerted, and the displacement
uΩ0 ∈ H1(D)d of D induced by those stresses is the unique solution to:




−div (AΩ0e(u)) = f in D

u = 0 on ΓD
AΩ0e(u)n = g on ΓN

,

where the total Hooke’s tensor AΩ0 is defined over D as:

∀x ∈ D, AΩ0(x) =
{
A0 if x ∈ Ω0

A1 if x ∈ Ω1 . (9.20)

We consider the total compliance J(Ω0) of the structure as an objective function of the subdomain Ω0:

J(Ω0) =
∫

D

AΩ0e(uΩ0) : e(uΩ0) dx =
∫

D

f · uΩ0 dx+
∫

ΓN

g · uΩ0 ds. (9.21)

The following result, proved in [15], accounts for the shape derivative of J :

Theorem 9.3. The shape derivative of the cost function J defined by (9.21) reads

J ′(Ω0)(θ) =
∫

Γ

D(uΩ0 , uΩ0) θ · nds,

D(u, u) = −σ(u)nn : [e(u)nn]− 2σ(u)nτ : [e(u)nτ ] + [σ(u)ττ ] : e(u)ττ . (9.22)

whereMnn, Mnτ andMττ are the minors of a tensor fieldM =
(
Mττ Mτn

Mnτ Mnn

)
expressed in an orthonor-

mal basis of Rd obtained by assembling an orthonormal basis of tangent vectors τ to ∂Ω0 with its normal
vector n = nΩ0 , [·] = ·1 − ·0 denotes the jump through ∂Ω0, and σ(u) = AΩ0 e(u).
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As explained in Chapter 4, §4.3.2, this problem is very difficult to handle in a fixed mesh framework (at
least without any change in the formulation), mainly because formula (9.22) brings into play the transmission
conditions at the interface ∂Ω0, which cannot be accurately approximated using Lagrange finite element
methods for solving (9.6.4) unless a mesh of D is used which features an explicit discretization of ∂Ω0. This
is consequently a good opportunity to test the method at stake in this chapter.

Consider a box of dimensions 40× 200× 60 as D, and assume it is clamped near its four bottom corners,
and submitted to surface loads on a region near the center of its upper side. The working domain D is filled
with two materials: material 0 is the one we have been using hitherto, i.e. its Young modulus and Poisson
ratio are respectively E0 = 1, and ν0 = 0.3; material 1 is weaker, and has a Young modulus E1 = 0.3, and
Poisson ratio: ν1 = ν0 = 0.3. The compliance (9.21) of the total structure D is minimized, and a constraint
over the volume Vol(Ω0) of the stronger phase is imposed by means of a fixed Lagrange multiplier ℓ = 0.02;
100 iterations of our algorithm are performed, and the results are displayed on Figure 9.20 (see also Figure
9.19 for the convergence history). As expected, the stronger material connects the regions where the shape
is clamped to the one where loads are applied. A portion of the stronger material at the bottom of the beam
allows it to better withstand bending.
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Figure 9.19: Convergence history for the multi-material 3d Beam test case.
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Figure 9.20: (From top to bottom) Initial (with boundary conditions), 50th and final (100th) iterations of the
multiphase beam test case. The stronger material is the one displayed in yellow in the right-hand column.
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9.6.5 Minimization of least-square criteria

9.6.5.1 A gripping mechanism

We now touch on the optimal design of a compliant mechanism, that is, a mechanism which is intentionally
flexible, so that its displacement under a given external stress complies with a prescribed behavior.

This problem falls into the general framework of Section 9.2, and is modeled as that of minimizing the
following least-square criterion over the displacement uΩ of shapes (see e.g. [40]):

J(Ω) =
∫

Ω

k(x)|uΩ − u0|2 dx, (9.23)

where k ∈ L∞(Ω) is a (non negative) localization factor, and u0 ∈ H1(Rd)d is a target displacement.
This objective function is of the general form (9.3), with j(x, u) = k(x)|u − u0|, and k(x, u) = 0. As

far as the mathematical setting is concerned, the only difference between this case and those in the previ-
ous sections lies in that the optimization problem is no longer self-adjoint, i.e. formula (9.4) for the shape
derivative J ′(Ω) brings in an adjoint state pΩ different from ±uΩ.

We apply this example to the optimal design of a gripping mechanism, as described on Figure 9.21: the
working domain D has dimensions 5× 4, and the considered shapes are clamped on two small rivets, while
being submitted to surface loads g = ±(0, 0.02) on small regions near the upper-right and bottom-right
corners of D (no body force is applied). The target displacement u0 for shapes is set to ±0.5 so that their
jaws will hopefully close, and the localization factor k is set to 1 in a small area near the jaws, and 0 else-
where. As usual, a very small volume constraint is incorporated into the objective function under the form
of a fixed Lagrange multiplier ℓ = 0.001, and 100 iterations or our algorithm are performed; each mesh has
about 5000 vertices, and the whole computation takes about 6 minutes. Results are displayed on Figure 9.21.

Admittedly, this test case proves very difficult; as evidenced by the convergence history in Figure 9.22,
the algorithm finds itself stuck at several points, those at which the chosen descent step τn is chosen ‘too
large’ in the sense that the shape ends disconnected around the two very thin areas. This is a real problem
in the context of optimal design of compliant mechanisms, since those thin areas are precisely those which
endow the sought flexibility to shapes, and will thus inevitably appear during the optimization process.
Actually, the optimal pattern for this kind of behavior would be to create pointwise junctions between
members of the shape, which is of course impossible in our context where shapes are ‘massive’. Note that the
‘classical’ level set method only suffers from this drawback to a lesser extent: indeed, in this case, if the shape
ends disconnected at some point, the presence of soft material between members still allows for the desired
flexibility; it is our experience that, in this setting, shapes tend to consistently disconnect, then reconnect,
which is impossible in our context. This explains why our algorithm seems to capture the correct trend in
shapes (as the resulting displacement confirms), but produce a somewhat ‘unconverged’ shape, inasmuch as
it seems still too ‘massive’.

We believe that the problem could be better formulated by imposing a minimum thickness to the desired
shapes, so that this trend to disconnect would be prevented (see [228] for extensive explanations about this
issue). For the moment, we limit ourselves to the observation that imposing those regions where the thick-
ness of shapes is already very small are no longer subject to optimization, and carrying on the optimization
procedure in this way (which is by no means as efficient as performing the same optimization problem under
a constraint over the minimum thickness of shapes) gives promising results in this direction (see Figure 9.23).

A similar test case is investigated in 3d, whose details are reported on Figure 9.24. Here, the working
domain is a box of dimensions 1 × 1 × 2; the considered shapes are clamped on small regions of the upper
and lower sides, and a force g = (0.4, 0) is applied on a region around the centre of the right hand side of
their boundaries. The localization function k equals 1 in two small areas near the jaws, 0 elsewhere, and
the target displacement is u0 = ±(0, 0, 0.1). A small Lagrange multiplier ℓ = 0.02 is added for the volume
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Figure 9.21: (a): details of the two-dimensional gripping mechanism test case, (b): initial shape, (c) final
shape, and (d) deformed configuration.
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Figure 9.22: Convergence history for the two-dimensional gripping mechanism example.
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Figure 9.23: Final shape of the two-dimensional gripping mechanism test case obtained after 400 additional
iterations of our algorithm, while imposing that very thin parts are no longer subject to optimization.

constraint, and 100 iterations of our algorithm are performed. Each mesh is worth about 12000 vertices,
and the whole computation takes about 90 minutes. Results are displayed on Figures 9.24 and 9.25, and the
prevailing observation is the same as in the 2d case, namely that the process could have gone further.

9.6.5.2 A three-dimensional example of worst-case design in shape optimization

The problem at stake in this section stems from a very different concern from that of the previous
subsection; yet, their mathematical formulations and treatments happen to be quite similar. Our purpose
is to apply the framework introduced in Chapter 5 for dealing with optimization of the worst-case scenario
under ‘small’ perturbations to a simple problem of compliance minimization in three space dimensions.

Still in the context of section 9.2, we now foresee that unknown perturbations of ‘small’ amplitude m
may alter the body force term f , which then ends up of the form (f + χξe), where:

– χ ∈ L∞(Rd) is the (known) characteristic function of the area where perturbations are expected,
– ξ ∈ L2(Rd) is the amplitude of perturbations, whose sole known feature is an upper bound m:
||ξ||L2(Rd)≤ m.

– ê ∈ Rd is a unit vector (fixed for simplicity), indicating the direction of the expected perturbations.
For any perturbation term ξ ∈ L2(Rd), ||ξ||L2(Rd)≤ m, denote as u

Ω,f+χξê
the solution to the perturbed

linear elasticity system: 



−div(Ae(u)) = f + χξê in Ω
u = 0 on ΓD

Ae(u)n = g on ΓN
Ae(u)n = 0 on Γ

.

In our search of the shape whose worst behavior when such perturbations are expected show maximal rigidity,
the ‘worst-case’ functional J (Ω) of interest is:

J (Ω) = sup
ξ∈L2(Rd)

||ξ||
L2(Rd)

≤m

(∫

Ω

(f + χξê) · u
Ω,f+χξê

dx+
∫

ΓN

g · u
Ω,f+χξê

ds

)
. (9.24)

To get a fair approximation of functional J (Ω), we have shown in Chapter 5 that linearizing the compliance

term ξ 7→
(∫

Ω
(f + χξê) · u

Ω,f+χξê
dx+

∫
ΓN

g · u
Ω,f+χξê

ds
)

, then taking the supremum of the linearized

quantity over ||ξ||L2(Rd)≤ m produces the following approximate worst-case functional, hereafter denotes as
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u0

(a) (b)

(c) (d) (e)

Figure 9.24: (a) details of the three-dimensional gripping mechanism test case, (b) initial shape, (c) 20th

iteration, (d) final shape (100th iteration) and (e) deformed configuration of the final shape. The whole
boundary of shapes is displayed.
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Figure 9.25: Convergence history for the three-dimensional gripping mechanism example.

J(Ω), defined by:

J(Ω) =
∫

Ω

f · uΩ dx+
∫

ΓN

g · uΩ ds+ 2m||χuΩ · ê||L2(Rd),

where uΩ := uΩ,f stands for the solution to the unperturbed system. This formula is very reminiscent of the
objective function (9.23) studied in the previous section, and is easily put under the general form (9.3).

Note that, as discussed in Chapter 5, this problem has already been adressed in [84, 163] by a completely
different method, which allows to work directly at the level of the exact worst-case function J (Ω) given by
(9.24), (and is thus certainly more accurate than the presented approximation), but is restricted to the case
of the compliance as an objective function.

As an illustration, consider the model represented in Figure 9.26, which is a variation of the well-known
optimal mast test case: a mast, enclosed in a T-shaped box of dimensions 40 × 80 × 126 is clamped on its
bottom side, and submitted to surface loads g = (0, 0,−1) on two areas at the extremities of its arms. Body
forces developed in the unperturbed state are set to f = 0, and vertical perturbations (i.e. ê = (0, 0,−1))
are expected on the two yellow regions on the arms.

We perform 100 iterations of the proposed algorithm for three different values of m, namely m = 0, 5, 10,
using, for the sake of simplicity, the same Lagrange multiplier ℓ = 5 in the three cases, which is then associated
to different volume constraints. Each mesh produced in the course of the process is approximately worth
12000 vertices, and the total computational time is about 90 minutes for m = 5, 10, and less than an hour
for m = 0 (since no adjoint state is involved then). Results are reported in Figure 9.27, and convergence
histories lie in Figure 9.28.

9.6.6 Stress criterion minimization

Our last example concerns the design of structures withstanding stress; the objective function at stake is
then:

J(Ω) =
∫

Ω

k(x)||σ(uΩ)||2 dx,

where k ∈ L∞(Rd) is a localization factor, σ(u) := Ae(u) is the stress tensor associated to a displacement u,
and ||.|| stands for the Frobenius matrix norm. Strictly speaking, this objective function is not of the form
(9.3), since it depends on the displacement uΩ of shapes via their gradient. However, its shape derivative
has been computed in [13]: it notably features an adjoint state pΩ, which differs from that involved in the
test cases of section 9.6.5.
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Figure 9.26: (Left) initial shape in the perturbed optimal mast test-case, together with boundary conditions
for the test-case; (right) a cut in the corresponding 3d mesh.

As for an example, let us consider the L-Beam test case, as depicted on Figure 9.29: shapes enclosed in
a L-shaped box of dimensions 2× 1× 2 are clamped on their upper side, and submitted to a pointwise unit
load, applied at the centre of their front side (once again, no body forces are applied). A volume constraint is
enforced by means of a fixed Lagrange multiplier ℓ = 200, and 100 iterations of our algorithm are performed.
Each mesh arising in the optimization sequence has about 17000 vertices, and the whole computation takes
about 100 minutes. Results are depicted in Figure 9.29 (see Figure 9.30 for the convergence history).

9.7 Conclusions and perspectives

This chapter has shown some applications of the proposed method for dealing with mesh evolution in
shape optimization, which leads to the following general comments:

– The proposed method is able to handle dramatic changes in shapes (even topological changes), while
keeping an explicit mesh of them at each iteration of the evolution process. Some intermediate shapes
may show very stretched features (especially when a topological change occurs), which ineluctably are
meshed with stretched elements. This could cause difficulties in the case of a mechanical equation
which suffers greater numerical sensibility than the linearized elasticity system.

– The proposed method in this chapter seems to show greater numerical sensitivity than the ‘classical’
level set method, mainly owing to the fact that the mesh of the working domain is utterly changed
from one iteration to the next; for instance, at some point, it may be difficult to evaluate to what
extent any measured improvement in the values of the objective function results from the change in
computational meshes.

– It also features a greater accuracy; this is especially true in the case of models where an explicit dis-
cretization of the boundaries of shapes is needed (e.g. when it comes to computing the stress developed
in shapes; see also the example of section 9.6.4 where we hinted at the fact that a discretization of the
interface is mandatory to obtain an acceptable approximation of the transmission conditions between
two phases), but even in when the ‘simple’ cantilever example is considered, Section 9.6.3 demonstrated
that the mesh evolution method manages to hone results produced by the fixed mesh level set method.
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Figure 9.27: (Upper range) optimal shapes in the perturbed optimal mast test case for perturbations of
amplitude m = 0, 5, 10; (lower range) cuts in the corresponding 3d meshes.
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Figure 9.28: Convergence histories for the robust mast test case.

Figure 9.29: (From top to bottom) Initial (with boundary conditions), 50th and final iterations of the 3d
L-Beam test case.
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Figure 9.30: Convergence history for the 3d L-Beam test-case.

– On the other hand, the presence of an Ersatz material instead of void in the exterior of shapes allows
for a flexibility and ‘tolerance’ which allow to deal with models where shapes tend to exhibit very thin
parts, (and in the numerical process, to consistently disconnect, then reconnect) - see the discussion
in Section 9.6.5.1.

– The proposed method does not allow to retain the symmetry of shapes, as can be observed on several
of the above examples (however, it sometimes happens that the evolution is non symmetric, and the
final result miraculously is !). It seems very difficult to enforce any symmetry in shapes with our fully
unstructured method unless all the computations are held only on a representative domain, which is
replicated by symmetry to get the corresponding shape.

From now on, we believe that at least the following topics would be worth considering as for future work:
– As we have hinted at above, shapes can become quite noisy at some iterations of the process, and

a process for ‘smoothing out’ shapes could prove to be of interest. As far as this issue is concerned,
at first sight, it seems easier to carry out denoising directly at the level of the level set function (i.e.
before performing the meshing step for the associated negative subdomain).

– It is very tempting to use the proposed method in combination with a mesh adaptation process.
Actually, two different types of mesh adaptation could be considered; at first, a ‘geometrical’ mesh
adaptation method could be devised so that, during the step of evolution of the level set function, an
increased resolution of the capture of the new shape is possible (see the work of Chapters 6 and 7 in
this direction). A different mesh adaptation method, based e.g. on a posteriori error estimates for
finite element methods [4], could be aimed at getting a sharper resolution of the linearized elasticity
system involved in the computation of a descent direction for the given objective functional.

– It is also very natural to apply this method to other models which could take advantage of an explicit
discretization of the boundary of shapes (geometrical constraints - e.g. minimum and maximum thick-
ness constraints - are of this nature). Many other mechanical models would also be worth considering
with this method, e.g. in fluid mechanics.

– Eventually, it could be worth considering a ‘true’, less costly, mesh deformation method in the spirit
of [29, 115, 231] for the last iterations of the optimization procedure, where shapes evolve very little
(in particular, their topology is fixed).
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