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Résumé

Optimisation de formes, méthode des lignes de niveaux sur
maillages non structurés et évolution de maillages

Résumé

L’objectif principal de cette these est de concevoir une méthode d’optimisation de structures qui jouit
d’une description exacte (i.e. au moyen d’un maillage) de la forme a chaque itération du processus, tout
en bénéficiant des avantages de la méthode des lignes de niveaux lorsqu’il s’agit de suivre leur évolution.
Indépendamment, on étudie également deux problemes de modélisation en optimisation structurale.

Dans une premiere partie bibliographique, on présente quelques notions classiques, ainsi qu'un état de
Part sommaire autour des trois thématiques principales de la thése - méthode des lignes de niveaux (Chapitre
1), optimisation de formes (Chapitre 2) et maillage (Chapitre 3).

La seconde partie de ce manuscrit traite de deux questions en optimisation de formes, celle de la répartition
optimale de plusieurs matériaux au sein d’une structure donnée (Chapitre 4), et celle de 'optimisation robuste
de fonctions dépendant du domaine lorsque des perturbations s’exercent sur le modele (Chapitre 5).

Dans une troisieme partie, on étudie la conception de schémas numériques en lien avec la méthode des
lignes de niveaux lorsque le maillage de calcul est simplicial (et potentiellement adapté). Le calcul de la
distance signée a un domaine est étudié dans le chapitre 6, et la résolution de ’équation de transport d’une
fonction ‘level set’ est détaillée dans le chapitre 7.

La quatriéme partie (Chapitre 8) traite des aspects de la thése liés & la modification locale de maillages
surfaciques et volumiques.

Enfin, la derniére partie (Chapitre 9) détaille la stratégie congue pour I’évolution de maillage en optimi-
sation de formes, a partir des ingrédients des chapitres 6,7 et 8.

Mots-clefs

Méthode des lignes de niveaux, optimisation de formes, maillage, fonction de distance signée, equation
d’advection, simulation numérique 3d.



Shape optimization, level set methods on unstructured meshes
and mesh evolution

Abstract

The main purpose of this thesis is to propose a method for structural optimization which combines the
accuracy of featuring an exact description of shapes (i.e. with a mesh) at each iteration of the process with
the versatility of the level set method for tracking their evolution. Independently, we also study two problems
related to modeling in structural optimization.

In the first, bibliographical part, we present several classical notions, together with some recent develop-
ments about the three main issues of this thesis - namely level set methods (Chapter 1), shape optimization
(Chapter 2), and meshing (Chapter 3).

The second part of this manuscript deals with two issues in shape optimization, that of the optimal
repartition of several materials within a fixed structure (Chapter 4), and that of the robust optimization of
functions depending on the domain when perturbations are expected over the considered mechanical model.

In the third part, we study the design of numerical schemes for performing the level set method on
simplicial (and possibly adapted) computational meshes. The computation of the signed distance function
to a domain is investigated in Chapter 6, and the resolution of the level set advection equation is presented
in Chapter 7.

The fourth part (Chapter 8) is devoted to the meshing techniques introduced in this thesis.

Eventually, the last part (Chapter 9) describes the proposed strategy for mesh evolution in the context
of shape optimization, relying on the numerical ingredients introduced in Chapters 7,8, 9.

Keywords

Level set methods, shape optimization, meshing, signed distance function, advection equation, three-
dimensional numerical simulation.
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Introduction

This thesis is devoted to a large extent to the design of a mesh evolution strategy in the context of
structural shape optimization; by extension, it also addresses the topics of level set methods on unstructured
computational meshes, meshing techniques, and, on a rather independent basis, it analyzes two specific
problems in structural shape optimization.

The manuscript is composed of nine chapters, grouped into five parts, which can be read independently
from one another, insofar as possible (to the cost of some redundancies between them). Each chapter con-
tains an introduction to the tackled topic and provides associated references. This introduction is however
more general, and contains neither technical details, nor references.

In an attempt to enlighten the structure of this document, it may be worthwhile to give an idea of the
prime motivations of the work at stake.

The main concern of this work is about shape optimization problems, which can, broadly speaking, be
formulated as the minimization of an objective function J(2) of the domain variable Q. In this way, much
like in the case of more ‘classical’ optimization problems, the study of the derivative of J with respect to the
domain makes it possible to compute a descent direction for J from a given shape €2, as a vector field Vg
- see the introductory material in Chapter [2] for a more technical explanation, and related bibliographical
references. In other terms, trading € for Q(t) := (I +tVq)(2) for sufficiently small ¢ > 0 allows for a decrease
in the value of J.

At this point, difficulties arise, which are not specific features of shape optimization problems, but are
on the contrary encountered in the study of most free or moving boundary problems:

— The practical computation of the descent direction Vg is not trivial; in the cases we shall be interested
in, it requires the resolution of one, or several PDE systems posed on 2 (typically linearized elasticity
systems). Numerical methods for solving such PDE systems are numerous (e.g. the finite element
method), yet most of them rely on € being equipped with a computational mesh.

— Advecting 2 along the velocity field Vi (i.e. updating Q to Q(t)) is fairly straightforward in the
theoretical framework, and unfortunately much harder in numerical practice. In particular, it inherently
depends on how 2 is parametrized. For instance, if € is described by a mesh, the naive and very
tempting operation of just ‘translating’ the associated vertices in the direction of Vg is very likely to
produce an ill-shaped (or even invalid) mesh for the new shape (t) (see the example in Figure
where the orientations of some displaced triangles have been inverted). In general, mesh evolution is a
difficult issue, especially in three space dimensions (see Chapter |3| for a discussion, and a presentation
of several techniques).

So as to reconcile the antagonist requirements of the computation of a descent direction for J and of the
description of the domain evolution, several authors proposed to combine the aforementioned techniques of
shape sensitivity analysis with the level set method (presented in Chapter [1)). For now, let us just mention
its general idea, which consists in enclosing all the possible shapes in a fixed, large computational domain
D (e.g. a box), equipped with a fixed mesh (e.g. a Cartesian grid) - say 7 - and to describe any shape
Q C D from an implicit point of view, via a scalar ‘level set’ function ¢ : D — R which fulfills the following
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Figure 1: (Left) A velocity field V', defined at the vertices of a mesh; (right) deformed, invalid mesh obtained
by translating its vertices along V.

properties (see Figure :
ox) <0 ifze
Vx € D, dx)=0 ifxedQ
d(z) >0 ifxecQ

The evolution of €(t) along the velocity field Vq is reformulated in terms of an associated level set function
o(t,.) as the following level set advection equation:

% +Vao-Vo =0,
which can be solved on D, e.g. using its mesh 7. This elegant change in perspectives allows to account for
dramatic evolutions of shapes (including topological changes).

The computation of Vi, is however not so easy in this context: we indeed evoked the fact that it requires
solving PDE systems posed on €2 - a mesh of which is not available. These systems must then be approxi-
mated as PDE systems posed on the whole domain D (in the context of linearized elasticity, this is generally
achieved by using the Ersatz material approach), and solved on the fixed mesh 7. This operation may turn
out to be difficult in the study of mechanical models which require a high accuracy in the description of the
boundaries of shapes (we shall see an illustration of this fact in Chapter {4)).

The work of this thesis starts with the observation that a slight modification in this methodology allows
us to retain its great versatility when it comes to tracking the evolution of shapes, while benefiting from an
exact description of any considered shape 2 C D.

Indeed, the use of a fixed mesh 7 of D in this procedure is essentially a commodity; each time a mesh
of a shape Q is needed, one could imagine to modify 7 in such a way that an explicit discretization of €2
appears in it (see Figure . Hence, the computation of the descent direction Vi from €2 would become
straightforward, and would not involve any approximation of the considered mechanical problem. Carrying
out this idea inherently requires to be able to perform local mesh operations on 7, hence to work with fully
unstructured meshes; in our case, we shall use simplicial meshes, that is, meshes consisting of triangles in
2d, or tetrahedra in 3d. Moreover, it implies the following ingredients:

— A numerical method for generating a level set function for a shape Q C D at the vertices of a simplicial

mesh of D, from the datum of a mesh for . This is the main goal of Chapter [6]
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— A numerical method for solving the level set advection equation on a simplicial computational mesh
of D. This is one of the purposes of the work in Chapter [7]

— A meshing technique for discretizing explicitly a shape Q known via an associated level set function,
on a mesh of D. This is the aim of Chapter

-4 4853E-02 7 B936E-02

| L —
-1.0530E-01 1.5992E-02 1.3788E-01

Figure 2: (Top-left) A domain 2 C D, (top-right) graph of an associated level set function ¢, and (bottomn)
triangular mesh of D enclosing a mesh of Q (yellow elements).

Let us now turn to an informal description of the different parts of this work.

Part 1: Background and state of the art

The first part of this manuscript is purely bibliographical. The three main domains of the proposed work
- namely level set methods, shape optimization, and meshing - are presented in three separated chapters.

Chapter [1 Level set methods

This first chapter opens with a general discussion around the notion of domain evolution. We introduce
the famous level set ‘advection’ equation, which translates the motion of a domain Q(¢t) C R? according to a
velocity field V (¢, z) into a partial differential equation for an associated level set function ¢(¢,x):

9¢

o TV Ve=o. (1)
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This equation rewrites as the following Hamilton-Jacobi equation, when V = v% is oriented along the

normal vector to Q(t):

%+U|V¢|: 0. (2)
We also evoke the (difficult) mathematical framework for the study of equations such as or , trying
to provide a physical intuition of the need for an adequate notion of solutions, appealing to the theory of
viscosity solutions. These concerns lie far beyond the scope of our work, and we then turn to the numerical
aspects of the level set method, two of which are discussed:

— First, we describe several numerical methods for solving equations —. The techniques involved
prove rather different depending on whether the computational support is a finite difference grid (one
such numerical scheme will be used in Chapter |4, or a simplicial mesh (the work of chapter ?7? is
strongly influenced by the presented methods).

— The second operation of interest is the initialization (or reinitialization) of a level set function associated
to a given domain 2, which is usually achieved by computing the signed distance function dq to €,
defined by:

—d(z,0Q) ifzeQ
Vz e RY, do(z) = 0 if €00 |
d(z,00) ifzecqQ
where d(.,0€) stands for the usual Euclidean distance function to 0€2. The most notorious methods
- the fast marching method, the fast sweeping method to name a few - are presented. Although none
of them shall be used in this thesis, they express deep features of the signed distance function and
FEikonal equations which inspired to a large extent the device of the algorithm of Chapter [6]

Chapter [2 Shape optimization

After proposing a biased and non-exhaustive glimpse of the numerous applications of shape optimization
techniques, we briefly describe the most commonly used methods for accounting for shapes (e.g. explicit
representations, representations as density functions, etc...) and the sensitivity of functions with respect to
shapes (e.g. the homogenization method, the SIMP method, Hadamard’s method, etc...), emphasizing on
their respective assets and drawbacks.

Pretty quickly, we focus on the framework of Hadamard’s method, whereby variations of a given shape
Q of the form (I + 0)(2) are considered, for ‘small vector fields’ §. We recall various related notions of
differentiation with respect to the shape, and notably introduce and illustrate the ideas of shape derivative of
a scalar function Q — J(Q) € R, and of material and Eulerian derivatives of an application Q — ug € W(Q)
taking its values in a functional space W(f2) which itself depends on the shape.

Then, we narrow once again the scope of the presentation to the context of linear elastic shapes (which
is a particular case of the general theory of distributed systems in optimal control), at stake in a great part
of this manuscript. The shapes are now filled with a linear isotropic material, with Hooke’s law A, and the
considered objective functions J(£2) depend on Q via the displacement field ug : © — R?, solution to the
linearized elasticity system:

—div(4e(u)) = f on{ f are body forces applied on shapes
u = 0 onlp b g are surface loads applied on a subset I'y C 92
Ae(uyn = g onTy ~’ where I'p C 99 is a clamping region for shapes
Ae(uyp = 0  onT I' C 0N is traction-free

The systematic (and extremely useful in practice) Céa’s method for differentiating such objective functions
J(Q) is introduced, which prepares the ground for Chapters |4 and

Eventually, one particular numerical method for optimizing linear elastic shapes is described - namely the
aforementioned level set method. We shall use this method as such for the numerical simulations of Chapters
[ and [f] and the mesh evolution method for shape optimization presented in Chapter [J]is heavily based on
it.



INTRODUCTION 15

Chapter [B; Mesh generation, modification and evolution

This last bibliographical chapter deals with meshing, and puts a particular emphasis on three-dimensional
issues. Basic definitions and notations which we shall use throughout the subsequent chapters are recalled
at first; moreover, the ubiquitous and application-dependent notion of mesh quality is discussed, as well as
the idea of metric-based mesh adaption (on which we shall rely in Chapters |§| and . In the remainder of
this chapter, three topics of utmost importance are discussed:

— The first one of them is mesh generation; most often, a mesh generation operation assumes the knowl-
edge of a surface triangulation of the boundary 02 of the domain € to be meshed. Some of the most
popular methods working in this context are presented (Delaunay-based methods, advancing front
methods,...). Properly speaking, we shall not use any of them in this manuscript, but we believe that
an illustration of their difficulties should help in understanding why the mesh evolution method of
Chapter [J] strives to avoid any mesh generation step.

Closer to the work of this manuscript, we also present mesh generation techniques for implicitly-defined
domains (e.g. the marching cubes method); this topic will find an echo in Chapters |8 and @

— We then discuss surface and volume remeshing techniques. Several methods and aspects are described
in both cases; in particular, the local remeshing operators (edge split, edge collapse, edge swap and
vertex relocation) are presented, as the common ingredients shared by all local remeshing strategies.
We shall return to this description in Chapter [§ where they will be more extensively described, in the
context of our particular application.

— Eventually, we look into the topic of mesh deformation (or mesh evolution) with respect to a user-
defined displacement vector field, which is one of the main axis of this thesis; in this perspective, an
overview of several existing methods is proposed, which highlights their respective assets and draw-
backs.

Part 2: Two problems in shape optimization

This part is almost essentially concerned with the field of structural shape optimization, and its two
chapters address altogether independent problems.

Chapter 4 Multi-phase optimization via a level set method

This chapter investigates the optimal repartition of several materials within a fixed mechanical domain.
It is divided into two parts.

The first one is a long digression about the signed distance function dg to a domain Q C R?, and its
dependence on 2. One of the main conclusions of this study concerns functionals of the domain of the form:

J(Q) = /D i(da) dz,

where D is a fixed working domain, enclosing all the shapes of interest, and j : R — R is a smooth enough
function. The shape derivative of such a function is proved to be given by the following convenient formula
(see Chapter [4] Cor. for a precise statement):

d—1

J(Q)(0) = — /m 7' (y) (/( o H (1+ dQ(S)m(y))ds> 0(y).n(y)dy,

where the ; are the principal curvatures of 02, and pgq : RY — 9Q is the projection application.

The second part is the one which indeed studies the optimal repartition of two materials, with respective
Hooke’s law Ay, A1, occupying respective subdomains Q°, Q! of a fixed domain D.
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The natural ‘sharp-interface’ model for this situation assumes a discontinuous Hooke’s tensor Ago :=
Ao+ (1 — x0)(A1 — Ag) over D, x; standing for the characteristic function of Q. The displacement uqo of
D is then solution to:

—div(Aqoe(uw)) = f onD f are body forces applied on shapes
u = 0 onIp , where g are surface loads applied on a subset I'y C 0D
Agoe(u)n = g onTy I'p C 9D is a clamping region

The optimization of a functional J(Q°) (e.g. the compliance of the total structure D) is considered, and
shape derivatives can be computed in this context. They involve in particular the jumps of the stress and
strain tensors of ugq over the interface between Q° and Q', which are unfortunately inaccurately computed
in a numerical context where all the computations are performed on a fixed mesh of D (i.e. in which QY is
not explicitly discretized). Several possibilities are discussed to overcome this difficulty.

Next, we turn to a different modeling of the initial mechanical problem: the interface between Q° and
Q! is ‘smeared’ into a thick band of uniform (small) thickness e. The discontinuous Hooke’s tensor Aqgo is
then approximated by the continuous one Agqo .:

AQOyE =Ag + hs(dﬂo)(Al — Ao),

where h. is a smooth approximation of the Heaviside function.

Using the study of the first part of this chapter allows to compute the shape derivative of the smeared
approximation J.(Q°) of J(Q°), which lends itself to an easier numerical treatment in a fixed mesh setting
(see the result of Figure [3[ for a three-phase plus void test case).

Eventually, the ‘smoothed-interface’ problem is proved to converge to the ‘sharp-interface problem’ as
the thickness ¢ of the transition zone between subdomains goes to 0, in the sense that the shape derivative
JL(Q°) converges to J'(Q) for a fixed, arbitrary subdomain Q°.

Chapter A linearized approach to worst-case design in parametric and geo-
metric shape optimization

This chapter proposes a general framework for the optimization of linear elastic shapes in the worst-case
scenario when ‘small’ perturbations are expected (e.g. on the loads, on the material’s properties, etc...).

To set ideas, consider the following abstract situation: let 7 be a set of admissible designs characterized
by h € H, and (P,||.||r) be a Banach space enclosing the ‘small’ potential perturbations ||J||p< m. The
state u(h, ) of the shape is described by the following system:

A(h)u(h, ) = b(6),

where A(h) is a (design-dependent) invertible operator; without loss of generality, perturbations ¢ only
appear at the right-hand side of this system. The cost C(u(h,d)) of the shape depends on its design h (and
perturbations §) via the state u(h,d), and the worst-case optimization problem reads:

}L%iﬁ J(h), where J(h) := 527? C(u(h,9)).
[18]1p<m

As this problem is very difficult in general, we propose to take advantage of the smallness of the expected
perturbations to linearize the cost function with respect to 4. This leads to the approximated worst-case
optimization problem:
in 7 (h). where 7 (h) C(uh0) + 2 (u(h,0)) 22 (1. 0)(9)
min where = su U —(u — .
hen s T g T g

[18llp<m

Now, standard duality results in Banach space and techniques from optimal control theory allow to rewrite:

T (h) = C(u(h,0)) + [[p(h)|la,
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Figure 3: (Top) Boundary conditions of the Cantilever test-case, (bottom-left) initial distribution of materials
within D; here the black material is ‘strong’, and has Young’s modulus E = 1, the dark grey one has £ = 0.7,
the light grey one has E = 0.5, and the white material mimicks void: E = 1.e™3, (bottom-right) optimal
distribution of the three materials and void within D.

where C(u(h,0)) is the cost of the unperturbed design h, (Q,||.||o) is the pre-dual Banach space of P, and
p(h) is an adjoint state. Under this form, the minimization problem of J can be tackled ‘almost’ like any
standard shape optimization problem.

This methodology is applied to the theoretical and numerical studies of two usual settings in shape
optimization - namely the parametric case (where H is typically a set of thickness functions of a plate with
fixed cross-section), and the geometric shape optimization case (where H is a set of open and bounded
domains in R?). In the latter case, three main sources of perturbations are considered, in the context of
various cost functions, e.g. the compliance, least-square and stress-based criteria (see Figure [4)):

— perturbations over the applied loads on the shapes
— perturbations over the properties of the elastic material filling the shapes
— perturbations over the geometry of the shape itself.

Part 3: Level set methods on unstructured meshes; connections
with mesh adaptation

This part is almost solely concerned with level set methods; its two chapters present algorithms for
initializing and advecting level set functions on a simplicial, potentially adapted computational mesh (which
less usual a framework than that of finite difference grids).
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Figure 4: Optimization of an L-Beam, clamped on its upper side, subject to vertical surface loads at the
middle of its right-hand side, with respect to the cost function C(Q) = [, k(z)||o(uq)||® dz, under pertur-
bations over the geometry of the shape (see Chapter [5|for details). The same target volume is imposed on
each shape. (From left to right): optimal shape for m = 0,0.01,0.02.

Chapter [6f Computation of the signed distance function to a discrete contour
on adapted simplicial mesh

The purpose of this chapter is to devise and analyze a numerical method for generating the signed distance
function dg to a domain Q C R? at the vertices of a simplicial mesh T of a computational domain D, in two
and three space dimensions.

The proposed method starts with an easy step of generation of a ‘very irregular’ level set function ¢q for
Q; ¢g is then ‘regularized’ into dg relying on the fact that dg is the steady state of the unsteady FEikonal
equation:

{ 99+ sgn(¢o) (|[V|—1) =0 on [0,00] x RY
d(t=0,.)=d¢o on R4

More accurately, ‘the’ solution to this equation admits an explicit expression, which can be given an iterative
form, an then be converted into a numerical scheme (see Figure [5[ for an example).

In a second time, an adaptation process for the computational mesh 7 of D is formulated; it produces a
new mesh 7 of D which guarantees an enhanced approximation of the signed distance function in two ways:
— the computed approximation d= of dg on T is ‘close’ to dg up to a user-defined tolerance,
— the piecewise affine reconstruction of §2 as the negative subdomain of d7~_ is ‘close’ to  up to a user-
defined tolerance.

Chapter An accurate anisotropic adaptation method for solving the level set
advection equation

In this chapter, we study the numerical resolution of the transport equation for a scalar quantity ¢,
according to a vector field V : R? — R?, over a time period [0, 77:

2 41V.-Vo=0 on [0,T] x R?
#(t=0,.) = ¢o given  on R?

A particular emphasis is put on the case where ¢ is a level set function for an evolving domain (¢) along V.
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Figure 5: (From left to right): Isosurfaces —0.05,—0.02,0,0.03,0.05 of the signed distance function to the
(nondimensionalized) Rodin’s ‘Thinker’ model.

We first present and analyze a numerical scheme based on the method of characteristics, and derive an
associated a priori error estimate.

Based upon this estimate, we then devise a mesh adaptation procedure which focuses on the quality of
the approximation of each intermediate domain §2(¢t") arising in the course of the iterative process; more
specifically, at each step t"™ of the evolution, the computational mesh 7™ is adapted in such a way that the
piecewise affine reconstruction of Q(t") as the negative subdomain of the computed approximation of the
level set function ¢(¢",.) is no larger than a user-defined tolerance (see Figure [f] for an example).

Part 4 - Chapter [§: Three-dimensional surface and domain remesh-
ing

This chapter covers all the meshing aspects of the thesis, and mainly deals with three-dimensional issues.
Its contributions are threefold.

1. In a first part, the issue of (isotropic) local remeshing is addressed; the aim is to iteratively modify an
initial surface triangulation S, which may be ill-shaped, oversampled or undersampled, into a new, well-
shaped and well-sampled triangulation & which retains the geometrical features of S. The proposed
algorithm relies on four ingredients:

— A continuous surface model I" for S is created, as a set of rules for associating a local parameterization
o:T — S of T to each triangle T' € S. This model serves as a safeguard when it comes to evaluating
whether a performed operation degrades the geometry expressed by S.

— The usual surface remeshing operators are described, with a special focus on the way they fit into
our particular setting.

— A size map h : § — Ry is defined on account of the geometrical features of S (notably of its
curvature), and is combined with a user-defined size prescription, if any.

— We eventually present a very heuristic strategy, yet essential in practice, to intertwine the three
previous tools.

2. Still in the context of surface remeshing, we adapt the previous framework to deal with anisotropic
surface remeshing: a size prescription is supplied by the user (or computed on account of the geometrical
features of S), and encoded as a Riemannian metric b over S.
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Figure 6: The time-reversed vortex flow example: a bubble is transported along a velocity field with high
vorticity, cooked in such a way that the initial and final steps are theoretically identical (the numerical
comparison between them allows to assess the accuracy of the method). Four steps of the evolution are
represented: (a)t = 0.8, (b)t =4, (¢)t=5.6 and (d) t = 8, with the corresponding 0 isolines (in red).

Making the connection between this new setting and that of the previous point mainly requires to
generalize the easy handling of size maps (e.g. of the interpolation and transport operations) to the
case of metric tensors. To this end, we propose to rely on the notion of parallel transport which can
be conveniently approximated in numerical practice, owing to Schild’s ladder’s algorithm.

3. Last but not least, the issue of (isotropic) local domain remeshing is considered: a tetrahedral mesh
T, which may be ill-shaped, oversampled or undersampled is modified into a new, well-shaped and
well-sampled mesh 7T, which is still a good representative of the geometry of T, as far as their surface
parts are concerned (see Figure [7| for an example). To achieve this, the very same strategy as in the
first point is carried out, except that each remeshing operator now exists under two different forms,
depending on whether it is applied on a surface configuration (in which case it is very similar to its
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counterpart in the context of surface remeshing) or on an internal one.

Up to a slight increment, this algorithm can be converted into an algorithm for generating a compu-
tational mesh for an implicit geometry (which is the one we shall be using in Chapter @ Indeed, the
negative subdomain of a scalar function ¢ defined on a mesh of a computational domain D can be
easily provided with an ill-shaped simplicial mesh 7, thanks to the use of a marching cubes or marching
tetrahedra algorithm; 7 can then be modified into a well-shaped mesh 7 using our algorithm.

() (d)

Figure 7: (a) Initial tetrahedral mesh of a domain, (b) well-shaped remeshed configuration; (¢) a cut in the
initial mesh pgq; (d) a cut in the final mesh.

Part 5 - Chapter [9; A level-set based mesh evolution method for
shape optimization

This last chapter is the one devoted to the main motivation of this thesis, which we already sketched in
the preamble. So to speak, it does not introduce any additional material to that of the previous chapters,
but only merges the concepts and numerical techniques of Chapters 2] [6] [7] and [§] into a general strategy for
mesh evolution in the context of structural shape optimization.

This method relies on two alternative descriptions of a shape : on the one hand, it is equipped with a
computational mesh, a description which is very natural when mechanical analyses are considered; on the
other hand, it is described via a level set function ¢ defined on (a mesh of) a larger computational domain
D. As we have seen, this representation is very convenient when it comes to tracking the motion of € -
an operation which can be carried out numerically thanks to the scheme of Chapter [7] for the advection
equation.

The consistent switch between both descriptions is achieved by using the distancing algorithm of Chapter
[6] for passing from a mesh description of 2 to a level set description, and the meshing algorithm of Chapter
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for the converse operation.

Eventually, several models in shape optimization are addressed using this method, in two and three space
dimensions (see Figure |8 for an illustration).

This method, together with the numerical ingredients it brings into play, have been developed in the
context of the RODIN project (FUI AAP 13), as parts of the geometric shape optimization component of a
general structural shape and topology optimization software platform.

Figure 8: Shape optimization of a bridge; (a) initial (with boundary conditions) (b) 20th and (c) final (70th)
steps of the algorithm; Only the implicit part of each boundary is represented. (d) A cut in the final mesh
of the bounding box; the interior part of the shape is composed of the yellow elements.

The work of this thesis gave rise to four publications, which are listed below:

C. DAPOGNY AND P. FrREY, Computation of the signed distance function to a discrete contour on adapted
triangulation, Calcolo, Volume 49, Issue 3, pp. 193-219 (2012).

C. Bui, C. DapoceNY AND P. FREY, An accurate anisotropic adaptation method for solving the level
set advection equation, Int. J. Numer. Methods in Fluids, Volume 70, Issue 7, pp. 899-922 (2012).

G. ALLAIRE, C. DAPOGNY AND P. FREY, Topology and Geometry Optimization of Elastic Structures
by Exact Deformation of Simplicial Mesh, C. R. Acad. Sci. Paris, Ser. I, vol. 349, no. 17, pp. 999-1003
(2011).

G. ALLAIRE, C. DAPOGNY AND P. FREY, A mesh evolution algorithm based on the level set method for
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geometry and topology optimization, to appear in SMO (2013), DOI 10.1007/s00158-013-0929-2.
Two other articles have been submitted, whose titles follow:

C. DAroGNY, C. DOBRZYNSKI AND P. FREY, Three-dimensional adaptive domain remeshing, implicit
domain meshing, and applications to free and moving boundary problems, submitted (2013).

G. ALLAIRE, C. DAPOGNY, G. DELGADO AND G. MICHAILIDIS, Multi-phase optimization via a level
set method, submitted (2013).

Moreover, three preprints are in preparation, based upon the work in Chapter and [0}

G. ALLAIRE AND C. DAPOGNY, A linearized approach to worst-case design in parametric and geomet-
ric shape optimization, in preparation (2013).

C. DAPOGNY AND P. FREY, A rigorous setting for anisotropic surface remeshing, in preparation (2013).

G. ALLAIRE, C. DAPOGNY AND P. FREY, A level-set based mesh evolution method for shape optimiza-
tion, in preparation (2013).

Eventually, the following two conference proceedings were issued from these works:

G. ALLAIRE, C. DAPOGNY AND P. FREY, Shape optimization of elastic structures using a level-set based

mesh evolution method, Fifth International Conference on Advanced COmputational Methods in ENgineer-
ing (ACOMEN), Liege, Belgium, 2011,

G. ALLAIRE, C. DAPOGNY AND P. FREY, A mesh evolution algorithm based on the level set method for

geometry and topology optimization, 10th World Congress on Structural and Multidisciplinary Optimization
(2013), Orlando, Florida, USA.
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The level set method
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Since the seminal work of Osher and Sethian [245], the level set method has been one method of choice for
the description of the motion of a domain (or an interface between subdomains). The main idea is to trade
the usual representation of a domain Q C R? for an implicit representation, as the negative subdomain of
an auxiliary scalar function ¢ defined on the whole space R (or a large computational domain in numerical
practice). The function ¢ is sometimes referred to as a level set function for Q. More precisely, €2 is known
via a function ¢ : R? — R defined so that the following holds (see figure :

p(r) <0 if xe€f
p(z)=0 if ze€0Q . (1.1)
d(z) >0 if xe€°Q

Note that such a function always exists and can be constructed using techniques of partition of unity.

The main asset of this representation lies in that the motion of an evolving domain Q(¢) over a period
of time [0,7] can be translated in terms of a partial differential equation for an associated time-dependent
level set function ¢(t,.). This is a very convenient framework for conducting both theoretical and numerical
studies.
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Figure 1.1: (Left): A subdomain Q of R?; (right): graph of an associated level set function on a computational
domain.

The level set method has given rise to particularly interesting developments in a wide variety of domains,

a non exhaustive list of which follows (see the monographs [242] 274] for more examples):

— The level set method appeared in Computational Fluid Dynamics with the study of the motion of two

compressible gases, separated by a sharp interface [233]. Soon after, it was used in [297] for describing
the interface between two immiscible incompressible fluids, driven by the Navier-Stokes equations.
Since these seminal works, it has become very popular for describing boundaries of domains filled with
fluids or interfaces between them, and many improvements and extensions of the original techniques
have come out (improvement of mass conservation in the incompressible case, management of more
than two phases, etc...); see [277] for a more complete discussion.

Numerous other issues from computational physics and mechanics were addressed using the level set
method. For instance, a study of a solidification problem is proposed in [78], in which the interface
between the solid and liquid phases in described and tracked using the level set method. The level set
method was also a key ingredient in several studies around combustion [337], or geometrical optics [241];
last but not least, and closer to our concerns in this manuscript, since the seminal works [14], [278] 319],
it gave rise to a framework of choice in structural optimization (see Chapter for a description
of the level set method for shape optimization introduced in [14]).

The level set method was also successfully applied to various issues in image processing. For instance,
a variant of the active contour model using the level set method was introduced to tackle the problem
of image segmentation in [21I3] [71]. In [270], the problem of image denoising using the Rudin-Osher-
Fatemi model was dealt with using the level set framework. Let us eventually mention the work [132],
which uses the level set method to tackle the stereo problem, that is the problem of reconstructing a
three-dimensional scene, from the data of several two-dimensional views.

The level set method finds very interesting applications in Computational Geometry, and Computer-
Aided Design. In [193], the authors use related techniques to construct Voronoi diagrams on surfaces.
In [274] (chap. 15,19), the author discusses a grid generation technique, and a shape construction from
simple primitives using the Level Set Method.

The outline of this chapter is as follows: in the first section, we discuss the derivation of the level set

advection equation, which translates the motion of an evolving-in-time domain into a partial differential
equation; some theoretical difficulties which naturally arise in this construction are briefly evoked. When
using the level set method for the numerical description of the motion of a domain, two operations are of
particular importance: the next section overviews several numerical methods for solving the partial differen-
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tial equation over the level set function which accounts for the motion of a domain. One of them appears as
a component of the level set method for shape optimization we shall rely on in Chapter [d] The other ones
will not be used in this manuscript; however, we deem interesting to provide an overview of some of them,
for they reflect many important properties of the level set evolution equations which underlie the study of
chapter [7]] Eventually, the last section is devoted to a question of major importance in practice, namely:
how to generate a level set function associated to a given domain ? Several classical numerical methods to
answer this question are presented. Here again, strictly speaking, we shall not use them, but they are very
similar in spirit to the method proposed in Chapter [6]

1.1 Presentation of the level set method

1.1.1 Implicitly-defined domains and geometry

Although very different in appearance, the usual and implicit descriptions of a domain 2 are equivalent,
and local geometric quantities of € can be expressed in terms of an associated level set function (see [329]
for details).

Let © C R% a domain which is at least of class C', and let ¢ : R* — R an associated level set function, in
the sense that (1.1)) holds. For any point z € 9Q at which V¢(z) # 0, the unit normal vector n(z) to 9€,
pointing outward €2, can be expressed as:

Vo(z)
n(x) = ———=. (1.2)

V()]
Furthermore, if  is of class C2, denote as II, the second fundamental form (resp. x(x) the mean curvature)
of 9N at x, oriented in the sense it is positive definite (resp. positive) if 9Q is locally convex near z. One

o ,=v (%) ,whence x(z) = div (%) : (1.3)

Other formulae exist in the same spirit for different geometric quantities (e.g. the Gaussian curvature of 9,
etc...), which we shall not require in the following.

1.1.2 Main notations and first examples

In this whole chapter, Q(t) C R? stands for an evolving domain over a period of time [0, 7], and ¢ :
[0,T] x RY > (t, ) = ¢(t, ) € R is an associated level set function. The evolution of 2(¢) is assumed to be
dictated by a velocity field V : [0, 7] x R? — R9, which is best rewritten as:

V(t,z) €[0,T] x R, V(t,x) = f(t,z, Q1))

for a given function f, which quantifies the possible influence of the domain itself on the velocity field.

As far as f is concerned, several different behaviors may be of interest:

— f may be completely independent on the shape of the domain Q(¢). In this case, we will see that ¢ is
passively transported along the velocity field V.

— f may involve local features of (), that is, for all x € 9Q(t), V(t,x) depends on ¢z, and on local
quantities of (t) at z, such as the outer normal vector n(t,z), to Q(t) at x, the mean curvature x(¢, )
of 9Q(t) at z, its Gaussian curvature, etc... A very important case is that of a vector field whose
direction is always normal to the moving boundary, that is:

V(t,x) =v(t,z) n(t,x), (1.4)

for some scalar function v(t,z). In what follows, we will rely on two illustrative examples as regards
such a form for V:
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— The flame propagation model:
V(t,z) =cn(t,x), (1.5)

where ¢ is a constant. This models the behavior of a flame front, progressing at constant speed,
along the normal direction.
— The mean curvature flow:

V(t,z) = —k(t, z) n(t, z), (1.6)

according to which the area of the boundary of the initial domain €(0) is extremalized.

— f may bring into play global features of €(t). For instance, if (t) is to represent a domain filled
with an incompressible fluid, f (¢, x,Q(t)) is the velocity of the considered fluid at (¢, z), solution to the
Navier-Stokes equations posed on ().

The first two kinds of velocity fields may seem very restrictive in comparison with the last one. Actually,
the last case is generally far too complex to study (as well in the theoretical field as in the numerical one),
and approximations have to be made to bring it back to the framework of the first two. To achieve this, the
most common approach consists in splitting the time interval [0, 7] into several (small) subintervals of the
form [t",¢"*1]. On each subinterval (¢",t" 1), f(t,z,Q(t)) is frozen, i.e. is approximated by:

vte (", "), f(t2, Q) = f(t", 2, Q"))

In the particular case when f is directed along the normal vector to Q(t), that is, when there exists a scalar
function g(t, z, Q(t)) such that f(t,z,Q(¢t)) = g(t,z,Q(t)) n(¢, x), f can also be approximated as:

Yt e (t" "), f(t @, Q) & g(tt, @, Q™)) n(t, ).

The forthcoming discussions will thus rest on the first two kinds of velocity fields.

1.1.3 From an explicit to an implicit description of the evolution

Let us now focus on the understanding of domain evolution problems in the level set framework. Actu-
ally, we are about to see that the intuitive notion of an evolving domain is rather hazy in most cases. In
this respect, note that we dutifully avoided any formal definition of this notion, and neglected regularity
assumptions in the previous discussions.

Let us first examine a case when everything unfolds according to intuition: let © C [0,T] x R? an open
region containing 0€(t) for small ¢, where V is well-defined and smooth, and where ¢ is smooth enough.
Saying that Q(t) smoothly evolves according to V' in O should mean that, for all (t,z¢) € O such that
xo € T(tg), there exists a curve z(t), defined on some interval (to — €,tg + €), passing in z at t = tg, such
that (¢,2(t)) € O, and for all ¢, z(t) € 9Q(t), with the speed vector of the curve being: z'(t) = V (¢, x(t))
(see figure [1.2)).

Since z(t) € 98(t), one has:

Vt e (to —e,to+¢), o(t,x(t)) =0.

As this is true for any (tg,zg) € O, a simple use of the chain-rule yields the so-called level set advection
equation:

9]
Y(t,z) € O, a—f(t,x) +V(t,z).Vo(t,z) = 0. (1.7)
As evoked in the previous section, the velocity field V' often happens to be directed along the normal

direction to the interface (or, more accurately to the level sets of ¢), that is V(¢,z) = v(t,x) ;ig’g‘, for a

certain scalar field v(t, ). Equation (1.7]) then rewrites as a Hamilton-Jacobi equation:

V(t,z) € O, g—f(t,x) +u(t, ) |Ve(t, z)|= 0. (1.8)
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Q(to)

Figure 1.2: A domain €(t), evolving according to a velocity field V (¢, z).

This analysis is rather straightforward. Unfortunately, it cannot be deemed to be representative of the
general case. Indeed, it has been shown that even domains evolving according to very simple vector fields
V may develop singularities in finite time. In other terms, even if Q(0) is very smooth, and so is V'(¢,.) (or
v(t,.)), Q(t) is bound not to stay smooth at all times. In terms of an associated level function, this means
that even if ¢(0,.) is very smooth, and so is V' (or v), there is no guarantee that ¢(¢,.) will stay smooth
enough so that makes sense everywhere. This feature is particularly expressive in the case of the two
models mentioned in the previous section:

— As far as the flame propagation model is considered, in [274] (sec. 2.3) the author provides an example
of a bounded domain Q(0) C R? of class C*, which is evolved in the normal direction with constant
unit speed (that is, V' is of the form with ¢ = 1), and develops a singularity at a finite time
t =t. > 0. Suppose that 92(0) is locally described by the curve ~, defined as:

1+ cos(27rs)>
— )

Vs € [0,1], v(s) = <1 — s,

A simple computation gives an explicit formula for a parametrization of the corresponding boundary
curves on 0S)(t), as long as () stays smooth. Several of these curve are drawn on figure and one
can observe the development of a singularity in finite time. Actually, with the material of chapter [6] it
will be fairly easy to see that the conclusion would have been similar, should have we considered any
smooth non convex initial domain instead of this particular one.

— In the case of the mean curvature flow , suppose the evolution starts from the ‘dumbbell’-like
domain €(0), depicted on figure[1.4] left (see [90]). One can show that the domain evolves by shrinking,
until its two ends join, producing a singular domain.

What happens once singularities have appeared 7 Obviously, the previous way to understand domain
evolution no longer holds, and several very different behaviors might be reckoned as admissible, depending
on the context. For instance, as pointed out by Sethian (see section 2.3 in [274]), in the case of the flame
propagation model, once the first singularity has appeared, the normal vector n(t,z) to 9Q(t) is no longer
everywhere defined. Then, (at least) both situations depicted on figure could be considered as a potential
further evolution of the considered domain.
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Figure 1.3: Several positions (t), for ¢ = 0,0.02,0.04, and ¢ = 0.055 (from bottom to top), in the flame
propagation model. (0) (in grey) is of class C*°; however, a singularity (blue dot) develops at a finite time,
at approximately ¢t = t, = 0.055.

%

Figure 1.4: Evolution of a three-dimensional dumbbell under the mean curvature flow. The central part of
the bar ends up pinching.

<

Figure 1.5: Two potential ways of pursuing evolution after the first singularity has appeared, in the example
of figure (left) the domains €(t), for t > t., obtained by pushing all the points of 9€(t.) in which a
normal vector is well-defined along this normal show a ‘swallowtail’ pattern; (right) the obtained evolution
by imposing monotonicity on the evolution: Q(t1) C Q(t2) if 1 < ts.
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In terms of the associated equation (|1.8)) over ¢(¢,x), this corresponds to the well-known fact that defin-
ing ‘generalized solutions’ of (1.7)) (or (1.8))) by the fact that equality holds wherever it makes sense is not
satisfactory, for it leads to too many solutions.

Actually, the way to account for such singularities is non trivial and case-dependent. Most of the time,
equations have to be understood in a weaker sense, which involves additional information about
the physics of the evolution process. The physics at play is generally incorporated by means of a process to
select ‘good solutions’ of such equations. It is then expected that under general enough assumptions, these
solutions exist and are unique. This is (one of) the great achievement of the theory of wiscosity solutions
to equations of the form , initiated by P.-L. Lions and M.G. Crandall, whose definition is recalled
below:

Definition 1.1. Let U C R? an open set and H : RE x R, x ]RZ x S(RY) a continuous function. Consider
the following general second-order Hamilton-Jacobi equation posed on (0,T) x U:

du

T (t,z) + H(x,u, Vu, Hu)(t,z) = 0. (1.9)

— A function u is a viscosity subsolution of equation (@ if it is upper semicontinuous on U, and, for
any function ¢ of class C* on U such that u — ¢ reaches a local mazimum at x,

du

o7 (b@) + H(z,u(2), Vo(x), He(x)) < 0.

— A function u is a viscosity supersolution of @ if it is lower semicontinuous on U, and, for any
function ¢ of class C? on U such that u — ¢ reaches a local minimum at x,

1) + H(r, u(z), Vo(a), Ho(z) 2 0.

- w is a viscosity solution of if it is both a viscosity subsolution and a viscosity supersolution.

The ‘physical meaning’ of such generalized solutions to Hamilton-Jacobi equations comes from that, in
some cases (see [I00]), they can be seen as the limit of the ‘associated viscous equation’ to (i.e. the
resulting equation when an artificial viscous term —eAw is added), when the viscosity term vanishes. This
standpoint was the original framework for showing existence of viscosity solutions to some Hamilton-Jacobi
equations, and the paradigm remained attached to the theory, whereas other techniques are now involved to
achieve such existence results.

According to [I57], the motion of a domain according to a velocity field V' is then defined as the negative
subdomain of the (hopefully unique) viscosity solution ¢ to the associated level set advection equation:

¢
{ S ) + V(). V(6 2) =0 for (tw) € (0.T) xRT w0
#(0, ) = ¢o(x) for = € R

where ¢g is a level set function associated to the initial domain.

For this approach indeed to make sense, we ought to mention the following theorem, which ensures among
other things that Q(t) is actually only dependent on ©(0) (and not on the choice of a particular associated
level set function ¢(0,.)):

Theorem 1.1. Assume that either V is independent of 2, and V- € BUC ([0,T] x Rd)d, or is of the form
, with v € BUC ([07T] X Rd). Let ¢g € BUC (Rd). Then, equation admits a unique viscosity
solution in BUC ([0,T] x R?).
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Furthermore, let ¢,% : [0,T] x R% two viscosity solutions of , which are bounded and uniformly
continuous over [0,T] x RY, and whose associated initial negative subdomain match, that is:

{z eR? ¢(0,2) <0} = {zeR% ¢(0,2) <0}
{z eR% ¢(0,2) =0} = {zeR ¢(0,2)=0} .
{a: € R4, ¢(0,z) > 0} = {x € R4, ¥(0,z) > O}

Assume moreover that:
lim |¢(0,2)] >0, l‘im [(0,2)| > 0.
xT|—0o0

x| =00 \

Then the associated negative subdomains of ¢ and b match at each time, i.e:

r€RY p(t,x) <0} = {zeR Y(t,z)<0
vVt e [0,T) reRY (t,x) =0} = {xeRI (t,x) =0
{zeRY, ¢(t,z) >0} = {zeR P(t,z) >0}

The proof of this theorem can be found in [34] [36]. Note that the exact statement goes far beyond the
sole case presented here. It holds in the general context of Hamilton-Jacobi equations such as , provided
the Hamiltonian function H satisfies some technical assumptions to guarantee existence and uniqueness of
bounded and uniformly continuous viscosity solutions, as well as a geometric assumption, which implies that,
roughly speaking, the level sets of ¢ evolve independently from one another.

As a conclusion to this section, let us try out the ‘physical behavior’ of viscosity solutions to the level set
advection equation on our two favorite examples:

— In the case of the flame propagation model , studied theoretically in [34], it is shown that if

Q(0) C R? is an initial ‘burnt’ domain, and @ is an associated continuous level set function, then there
exists a unique viscosity solution ¢ to the system:

{ %+C|V¢| =0 on [0,00) x R?
¢(O7) :¢0 on Rd

The associated evolving domain Q(t) := {x eRY o(t,z) < 0} happens to fulfill a so-called entropy
(or monotonicity) criterion, meaning that ‘a burnt point at some time stays burnt forever’ (i.e. for any
t,s >0, Q(t) C Q(t + s)). The evolution of Q(t) looks like that depicted on figure right.

— As for the Mean Curvature Flow equation, a specific notion of viscosity solutions has to be introduced
(for the Hamiltonian is not even defined at the critical points of ¢). This work is carried out in [128],
and the authors show existence and uniqueness of a solution ¢, starting from any continuous level
set function ¢g as initial data. Furthermore, the associated evolving domain €(¢) happens to be well-
defined, in the sense that the conclusion of theorem .1 holds in that case too. This paper also proposes
several simple examples - e.g. when (0) is a sphere - which testify of the nice behavior of this notion
of evolution in cases where intuition can be brought into play.

1.1.4 Domain evolution as a boundary value problem: Eikonal equations

An interesting particular case of the previous considerations arises when (t) is assumed to expand
according to a normal velocity function, i.e. V(¢,z) is of the form:

V(tv ’JJ) = c(x)n(t, I‘),

with ¢(z) > 0. The problem is then equivalently described by a stationary function, the time function
T :R¥\ Q(0) — R, defined as:
T(x)=inf{t >0, 2 € Qt)},



1.1. PRESENTATION OF THE LEVEL SET METHOD 35

that is, for any = € R%\ Q(0), T(z) is the smallest time ¢ at which €(#) reaches x. The derivation of a
boundary value problem for T' follows the same trail as that of the level set advection equation: in a first
step, it is rigorously established in regions of the space where all the quantities involved are smooth enough.
Next, T is understood as the solution to this partial differential equation in an adequately generalized sense
to impose a physical behavior on T' at those regions where it is not smooth enough.

Let 2o € R?, and assume that, in a vicinity U of zo in R?, all the data at hand (T, etc...) are smooth.
Using again the intuitive notion of an evolving domain, let x(t),t € (tg — e, tp +£) a curve defined such that
x(to) = xo, and, at any time, z(t) € 9§(t). By definition, one has:

Vt € (tg — e, to + ), 2'(t) = c(x(t))n(t, z(t)).
On the other hand, it follows from the very definition of T' that a level set function associated to Q(¢) is

Y(t,z) € [0,T] xR, ¢(t,z) := T(x) —t,
whence n(t,z) = %. Differentiating with respect to t in the relation T'(z(¢)) = ¢ and incorporating the
Dirichlet boundary condition T'(z) = 0, for all z € 9(0), we eventually end up with the Eikonal equation:
VT|=1 in R4\ Q(0)
{ T=0 ondQ0) (1.11)
Actually, in the sequel, we will also get interested in the very similar case when Q(t) shrinks according
to a normal velocity ¢ (or R?\ Q(t) expands with velocity c):

V(t,z) = —c(z) n(t, x),

with ¢(x) > 0. A similar argument shows that the associated time function T': 2(0) — R is solution to the
Eikonal equation:

{ c|VT|=1 in Q(0) (1.12)

T=0 on 09Q0)

So as to select unambiguously a ‘physical’ behavior for T, solutions to (1.11]) or (1.12)) have to be taken
into account in a generalized setting, which once again happens to be that of viscosity solutions. The result
of interest is now the following (see [31]).

Theorem 1.2. Assume Q C R? is a bounded domain, and the normal velocity function c is positive and
uniformly continuous on Q. Then, there exists a unique viscosity solution to the Dirichlet problem .

At this point, it is worth mentioning the very interesting discussion in [261], chap. 2, about the steady
Eikonal equation, and the meaning of the ‘good’ viscosity solution.

Example 1.1. Let us briefly look into the interesting particular case in equation (1.12)) when a unit normal
velocity field, ¢ = 1 is considered. It then turns out that the unique viscosity solution to (1.12]) is the
FEuclidean distance function d(.,00) to 012, defined as:

Q Q) = inf |z —y|.
Vo e Q, d(z,00) yle%ﬂ‘x Yl

This fact translates the regular spacing out of the level sets of distance functions, as can be seen on figure
We will discuss this very important property once again in section [1.3
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Q

Figure 1.6: A domain (), together with several isolines of the distance function to 92.

1.2 Numerical algorithms for the level set method

In this section, we discuss the numerical discretization of the level set advection equation, especially in
the case it can be put under Hamilton-Jacobi form (which will be the case at stake in applications in shape
optimization), namely:

En ; (1.13)
(0,.) = ¢o on R
for given normal velocity field v, and initial function ¢ which are both assumed to be bounded and uniformly
continuous. Actually, the theory of numerical schemes for ([1.13]) is part of a more general theory associated
to the numerical schemes for first order Hamilton-Jacobi equations of the form:

{ 0¢ +v|Vé|=0 on (0,7) x R?

9
{ a;f + H(z,V¢) =0 on (0,T) x RY (1.14)

(b(ov ) = ¢0 on Rd

and arises as the particular case when H(x,p) = v(x)|p|.
For the sake of clarity, the whole forthcoming discussion holds in the two-dimensional case (d = 2),
without loss of generality.

1.2.1 Solving the Level Set Hamilton-Jacobi equation on Cartesian grids

Notations: Let N € N, and At = % a time step for the discretization of the time interval (0,7, into
subintervals (£, ¢"*1) n =0, ..., N — 1, with " = nAt. The plane R? is endowed with a Cartesian grid, with
step Az in the z-direction, and Ay in the y-direction. For a numerical quantity ¢ defined at the vertices of
the grid, and for any ¢,j € Z, denote as ¢;; the value assigned to the node x;; := (iAz, jAy).

As we shall see, similarly to what happens in the case of systems of conservation laws, upwind quantities
play a key role in the device of numerical schemes for Hamilton-Jacobi equations. Denote the upwind

difference quantities:

to,  Qiv1 — iy —z Gij — i1
Dijo=—"xg— ¢+ Di9 Ar

and likewise for D*Y¢ and DY ¢.
i ij
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n

ij)i, JEL’
with the meaning that ¢}, is an approximation of ¢(¢", (iAx, jAy)). A general explicit, first-order numerical
scheme which fulfills this role can be written under the form:

Vi, j € Z, = ¢o(iAz, jAy)
VneN,i,jez, ¢"+1 = ¢py — At H (wij, Di;°¢", Df*¢", D V6™, Do)

Our aim is to compute an approximation to the viscosity solution ¢ of lb as a sequence ¢" = (

(1.15)

where the numerical Hamiltonian
is intended as an approximation of H(x;;, Vo(xij;)).

It turns out that, in the design of ‘nice’ numerical schemes for ([1.14)), two properties are desirable as far
as H is concerned:

Definition 1.2. An explicit, first-order scheme for of the form is said:
~ consistent if, for any x € R%, p € R%, H(x, s, pas Py, Py) = H(x,p). In other words, the difference
terms stand for the corresponding first-order derivatives where they should.
— monotone if, for any x € R?, the function H(x,.,.,.,.) is increasing in the first and third arguments
(i.e. those involving upwind finite differences), and decreasing in the second and fourth arguments (i.e.
those involving downwind finite differences).

It can indeed be proved that, under ‘reasonable’ assumptions over the theoretical Hamiltonian H and
the initial data ¢g, consistent and monotone first order schemes are convergent to the viscosity solution of

(1.14)), see e.g. [98], 291].

As regards the particular Cauchy problem (|1.13)), the most simple approximation consists in the following
explicit first-order finite difference scheme:

{ vneN,i,jE€Z, ¢”+1 = — At (max (v, O)V:’jqi)" + min(vij,O)Vi_jgb") (1.16)
Vi, j € 7, = ¢o (ZA»T JAy) 7
where the respectively upwind and downwind discretizations V. ;¢ and V¢ of |[V¢| are defined as:
1
o= ( SomT e o, )
and 1
V56= (st B0y B0y ) 19

The discretization of the (exact) Hamiltonian H (z,p) = v(z)||p|| by means of the numerical Hamiltonian
vn e N,i,j € Z, H(l’ij, ng(x”)) ~ ’Hij({¢;€ll}k,lez) = max(vij, O)Vj; "4 min(vij7 O)V;gb"

can be deemed upwind in the sense that, for given i, j,n, the update ¢7; — (;5”“ is only carried out using
information

— coming from smaller values than ¢7; if v;; is positive,

— coming from larger values than ¢7; if it is negative.
Once again, this is actually the key feature in the device of convergent schemes for Hamilton-Jacobi equations,
which generally require consistency of the numerical approximation of the Hamiltonian with the continuous
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one (to be understood in some particular sense), as well as a monotonicity assumption, which is here conveyed
by the use of upwind finite differences.

To amend this, there is actually a CFL-like relation between At and Ax, Ay, which must be satisfied for
this monotonicity assumption to hold. It reads:

At
supv;j | ———— < 1. 1.19
(”p ”) min(Axz, Ay) — (1.19)
Grossly speaking, this means that the information should not travel farther than one space step within one
time step. Under this CFL condition, this scheme turns out to be convergent. Moreover, an explicit error

estimate with respect to the exact viscosity solution can be derived, with a residual in O ( max (A, Ay))

See [98], [297] for further details regarding this very technical matter.

Unfortunately, this scheme turns out to be very diffusive, hence the need for higher order schemes.
Mimicking conservation laws, high order, adaptive-stencil schemes, known as (weighted) essentially non
oscillatory schemes (abridged as (w)ENO schemes) can be devised for solving (1.13|[1.14]). See [I70, 246] for
further details.

1.2.2 Solving the Level Set Hamilton-Jacobi equation on triangular meshes

The theory we just skimmed through in the previous subsection, about the device of convergent numerical
schemes to the viscosity solutions of Hamilton-Jacobi equations of the form can be extended to the
context of triangular meshes. In [I], a convenient framework is established in this context, which notably
relies on an adequate generalization of the notions of consistency and monotonicity (see definition |1.2)). This
allows to build convergent schemes on triangular meshes, a glimpse of which is now provided.

Notations: The plane R? is endowed with a conforming triangular mesh 7. The vertices of 7 are denoted
as {pi};c;- For any piecewise affine function ¢ on 7, denote as ¢; the value assigned to the node p;.

The time interval (0, T) is still split into subintervals (¢*,t"*1), n =0,..., N — 1, t* = nAt. At each time
t", an approximation of the viscosity solution ¢(¢",.) to ([1.14)) is sought as a piecewise affine function ¢™ on
mesh 7. A general explicit, first-order numerical scheme for (1.14) on mesh 7 can be written as:

Viel, ¢!t = ¢ — AtH (pi, "), (1.20)

where H(p;, ¢) is the numerical Hamiltonian. This notation may seem a bit odd at first glance, since the
theoretical Hamiltonian H only depends on ¢ through its gradient, and one could expect the same behavior
from H (p;, ). Actually, H (p;, ¢) will depend only on V¢, but is better expressed in terms of ¢.

As for the construction of a numerical Hamiltonian #H(p;, ¢), one may use the following procedure, which
is very reminiscent of Lax-Friedrichs numerical schemes: if A > 0 is smaller than the smallest edge of T, and

Céf), where C'(H) is one Lipschitz constant for H,

E =

3

h Cn(pi)

where C,(p;) is the circle of center p; and radius h, and ®; is the mean value of V¢ over the disk Dy, (p;) of
center p; and radius h (see figure [L.7):

= 1

= — Vo dx.
¢ 7Th2 th(

Pi)
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Figure 1.7: The numerical scheme of Abgrall: setting and notations.

One can show that the sequence {¢"},_,  y obtained using 1) converges (in an appropriate sense)
to the viscosity solution of ([1.14)), provided the following CFL condition holds:

At < 2% (1.21)

1.2.3 Semi-Lagrangian schemes

Contrary to the aforementioned approaches, semi-Lagrangian techniques attempt to solve or
by incorporating the explicit knowledge of the flow of information expressed by the equation into the device
of a numerical scheme: subdividing the time interval (0,7') into subintervals of the form (¢",#"*1), the value
#(t"*1, ) of the solution ¢ at time ¢"*! and at a (grid) point x € R? is computed by tracking the point
y € R? such that ¢(t"*!,x) ‘comes from’ ¢(t",y).

Let us illustrate this idea with a short and formal description of the semi-Lagrangian scheme of Strain [292]
devoted to the level set Hamilton-Jacobi equation . This presentation is independent of the particular
choice of a computational support (Cartesian grid, simplicial mesh, etc...), as are generally semi-Lagrangian
methods in their broad lines.

Recall that equation stems (at least in a formal way) from the level set advection equation:

{ %2 1 V(t,x).Vé=0 on (0,T)x R?

6(0,) = ¢o  onRd : (122)

where the velocity field V : (t,2) + V(t,z) € R? depends itself on ¢ as:

Vo(t, )
IVo(t,z)|

The nonlinear equation (1.22)) is approximated on each subinterval (t",t"*1) by the linear advection equation
obtained by freezing the value of V(t,.) over (t",t"*1) i.e. by setting:

V(t,z) = v(t, )

vt e (t", "), Ve e RY, V(t,x) = V(" z) = V" (x).

Now assuming that an approximation ¢™ of ¢(t",.) has already been computed, ¢(¢,.) is approximated on
(t",t"*+1) by the solution 1 : (t",t"*1) x RY — R to:

{ 8 +V(x).Vyy =0 on (0,T) x R
P(",.) =" on R4 ’
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which is well-posed provided V™ is Lipschitz, and whose exact solution can be computed owing to the method
of characteristics:

Vo € RY, (" z) = (", X (", " 2)) = ¢"(X (t" 1", 1)), (1.23)
where (£, ¢"*1) 5t — X (t,t"1 x) is the characteristic curve of V™, reaching z at time ¢" ™1, defined as:

X'ttt ) = V(X (¢, t" T x)) for t € (1, ")
Xttt ) = o

With this guidance in hand, the following procedure for approximating the solution ¢ to is derived:
— Initialization:
Start with an approximation ¢° of ¢(0,.) on the considered computational support (e.g. at the nodes
of a Cartesian grid, or as a piecewise linear function on a simplicial mesh).
—~ Loop (for n=1,....,N —1):
Loop (for each degree of freedom z of the computational support):
1. Solve the ODE and search for the ‘foot” y := X (t",¢"T! x) of the char-
acteristic curve reaching z at time t"*! (for instance, using a Runge-Kutta 4
approximation).

2. Mimicking formula (1.23)), the value of ¢™ at y is computed (using interpolation
on the computational support) to produce ¢"+1(x).

(1.24)

The benefits of this approach are numerous: among others, it is easily parallelized since the nodes of the
mesh are consistently processed independently from one another. What’s more, the stability of the method
does not depend on a CFL condition over the time step At such as . Of course, this technique
also retains some drawbacks, such as the lack of accuracy in regions where the exact solution ¢ is not smooth.

This particular example brings into play the three typical stages of any general semi-Lagrangian method.
An approximation ¢"t1(x) of ¢(t" !, x) is computed using:

1. A space-time integration step, which amounts to searching for the point y € R? such that ‘Pt x)

can be computed from ¢(t",y)’ (here y is the foot X (t",¢" ™1 x) of the characteristic curve ((1.24])).

2. A spatial interpolation step, during which ¢™(y) is interpolated from the values of ¢™ at the grid nodes.

3. An update step, during which ¢"*1(x) is computed from ¢"(y) (in the presented case, this step is

trivial, thanks to formula (1.23)).

This idea can be extended to more general Hamilton-Jacobi equations of the form . To this end,
one needs a means to complete the first and third stages of the previous program. This is generally achieved
thanks to representation formulae for the exact solutions to , which generalize the method of charac-
teristics in the case of more general Hamiltonian functions H (e.g. the Hopf-Laz formula when H is convex
and does not depend on the x variable). See [I30] for more details.

1.3 Initializing level set functions

Plenty many level set functions can be associated to a domain Q C R?, and the theoretical framework
developed hitherto is independent of which particular function ¢ is chosen. Unfortunately, things happen
to be very different in numerical practice. Since the early hours of the Level Set Method [89], it has been
acknowledged that too steep or too loose variations of ¢ near 02 may cause instabilities in locating accurately
09, or difficulties in the computation of the normal vector or curvatures of 92 by means of formulae such
as (L.2ll1.3). This advocates for initializing a level set function for € as the distance function - and more
precisely (for sign purposes) as the signed distance function dg to €, which is defined as:

—d(z,0Q) ifzeQ
Vo € R do(x) = 0 if z € 00
d(z,0Q) ifzecQ
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Anticipating a bit on the material of chapter [6] this signed distance function has furthermore the good
taste of being smooth near 09X, provided 02 is a smooth boundary.

In this section, we describe several ‘classical’ algorithms for generating - or restoring - the (signed)
distance function to a domain £ on a computational support. A more complete overview of the different
possible methods - with a particular emphasis on the case of simplicial computational meshes - can be found
in chapter [0}

1.3.1 The fast marching method

Most numerical methods for generating the signed distance function to a domain €2 allow more generally
to solve Eikonal equations of the form (L.11)) or (1.12)). The fast marching method, originally introduced in
[275], is no exception in this regard.

1.3.1.1 The fast marching method on Cartesian grids

Let us briefly present the fast marching method for generating the distance function to a bounded domain
Q) C R?, at those nodes of a Cartesian grid of the plane lying outside §2 (i.e. we solve (1.11)). Extensions of
this discussion to the nodes lying inside €2 and to the three-dimensional setting are rather straightforward.

Reusing the notations of section the fast marching method is an iterative process which produces
at each step n € N a scalar numerical quantity 7' := (Tf;)z jez intended as an increasingly accurate approxi-
mation of d(.,90).

It relies first on an update strategy, according to which the values of T are computed in a one-by-one,
upwind fashion, mimicking the propagation of a front starting from 9€Q. More accurately, the nodes z;; of
the Cartesian grid are parted into three categories:

— The accepted nodes: those are the nodes x;; ‘where the front has already passed’, i.e. at which the

current value T;; is assumed converged. Once a value has become accepted, it is no longer updated.

— The active nodes: those are the nodes z;; ‘on the front’. One of their four neighbors x;_1;, i1, Tij—1

or z;;41 is an accepted node, and a first approximation (¢rial value) T;; to the desired solution has
been computed, but may still be subject to updates.

— The far nodes: those are the nodes ‘still far from the front’, whose values have not even been approx-

imated (and are set to co).
At each iteration, the algorithms accepts one node, to be selected among the set of active nodes. The set
of active nodes is then redefined, and their values are updated according to this new information about the
front.

The update procedure of the value T7; of T™ at an active node z;; is the second key feature of the

algorithm. A trial value Z’ZL is computed as the solution to the following equation, which relies on the
upwind discretization of the Eikonal equation proposed in [269]:

— — 2
max (max (W,O) , — min (T”X;T”,O)) 1
- (1.25)

—_— —~ 2 —_— .
Tn T} " —Tn Cij
ij ij—1 o . ij+1 ij J
+ max <max (Ay ,0) , —min (Ay 7O)>

Note that this rule is intrinsically upwind, since the derived value i’} is only influenced by the values of T

at the four neighbors of z;; that are smaller than i’/; this is a means to impose a causality principle which is

inherent to Hamilton-Jacobi equations. Only the accepted values among the set {Tin_lj7 i T 1, T +1}

are used in the second order polynomial equation (|1.25)), and it must be checked that the obtained solution
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ﬁ} is larger than those values. In the end, Tg"’l is obtained as:

n+1l __ . T )
Tij = min (T- T»j> .

17771

OO O ® accepted nodes
OOO O active nodes
OOO O far nodes

Figure 1.8: The Fast Marching Method

To sum up, the algorithm proceeds along the lines of the following sketch:
— Initialization:
1. Compute the exact distance function at the nodes of the cells which intersect 0f2, and classify
them as accepted.
2. Use the local update procedure (1.25) to compute a trial value at the neighbor points to the
accepted points which have not been yet accepted, and classify them as active.

3. Classify all the remaining nodes as far, and assign them value co.

— Loop (while the set of active nodes is non empty):

1. Travel the set of active nodes, and identify the one with minimum trial value. This node becomes
accepted.

2. Identify the new set of active nodes, and compute a new trial value for each one of them, using
the local update solver (|1.25) for the Eikonal equation.

This algorithm produces a sequence (T[]‘) which converges towards the unique viscosity solution to ;
see [101] for a precise statement of this fact and a proof.

Furthermore, it can easily be seen that, if in practice, the computation is restrained to a large bounding
domain (e.g. a box), equipped with a Cartesian mesh consisting of N vertices, the Fast Marching procedure
converges within O(N log(N)) operations.

1.3.1.2 Extension of the Fast Marching Method to triangular meshes

Let us now give a hint of how the Fast Marching Method can be adapted to the context of a triangular
mesh of R?, using the notations introduced in section and following the work [194].
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The general outline of the previous algorithm is unchanged: the vertices of the mesh are still tagged as
either accepted, active, or far. At each iteration, the active vertex whose value is minimal becomes accepted
once and for all. The set of active vertices is then adequately redefined, and the active values are updated.

This update procedure is actually the only very different feature between both versions of the Fast
Marching algorithm. Here, it occurs in a situation where two values of 7', say T; < T} are known at two
vertices p;, p; of a triangle K = p;p;pi € T, and a trial value ﬁ is sought at py.

To this end, T is approximated by its piecewise linear interpolate mxT" on T" from the values T3, T} and
T; at p;,pj, Di respectively. Let € be an approximation of ¢ over K (e.g. € can be taken as the mean value
of ¢ over K). Ty, should be such that:

IV (rxT)|> = .

T; is then searched as a solution to this quadratic equation which is larger than T; and T}, and satisfies some
additional properties (related to the causality inherent to equation discussed above), which are omitted
here. If such a solution T}, exists, the value T}, is then updated as Ty, = min(Ty, Tk).

Let us eventually mention a potential difficulty in this approach. Depending on the shape of the trian-
gulation 7, it may very well happen that, for a certain active point px, no triangle of the ball has the other
two values accepted, which makes it impossible to rely on the previous local procedure to compute a new
trial value T} at pg. This is especially likely to happen when the angles of triangles at p; are obtuse. A
special procedure is required in this case to come back to the previous case.

The exact same construction can be used to generate the distance function to a subset on a triangulated
surface of R? (this is actually the original setting of the work [194]). Yet, this procedure seems more difficult
to extend to the case of a tetrahedral computational mesh of R3.

1.3.2 The fast sweeping method

The fast sweeping method can be thought of as a speedup of the fast marching method. If R? is equipped
with a Cartesian grid (and notations from section are reused), the local update procedures for the com-
putation of new ‘trial’ values TZ are identical in both methods. Nevertheless, in the fast sweeping method,
the choice of a particular order for enumerating the points of the grid makes it possible to enhance the
computational efficiency of the method.

The fast sweeping method rests upon the following heuristics: equations (|1.11} [1.12)) express a transfer
of information from the boundary 0 of the considered domain to the outer (or inner) medium. This in-
formation is conveyed along the characteristic curves of the equations, originating at points of 92. Hence,

sweeping the plane in the directions of these characteristic curves should be enough to compute the values
of T.

Let us first try out this formal idea when ¢ = 1. In this central case, the characteristic curves of
are straight lines, which can be distributed among four groups, depending on whether they are oriented
up-left, up-right, down-left, or down-right (see figure . Then, all the values T;; at nodes x;; lying on
characteristic curves of the up-left kind can be computed within one single iteration, by sweeping the z;; in
the order of decreasing i, and increasing j. A similar argument holds for the three other possible orientations.
As a result, traveling successively the list of grid nodes in four different orders should allow to compute an
accurate approximation of d(., 092).
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Figure 1.9: Some level sets of the distance function to a domain €2, and characteristic lines (dotted) of
equation ([1.11). These lines can be grouped depending on the quarter of the plane corresponding to their
directions.

The procedure reads as follows, when performed on a set of nodes {x;;} Sigist of a Cartesian grid of R:
— Initialization:

1. Compute the exact distance function at the nodes of the cells which intersect 0f2.

2. The values T;; at the remaining nodes are all set to co.

— 24 successive loops: Travel the set {z;;} —1<i<: as:
Y

1. Fori=—1I,..1I, for j = —J,..., J (up-right sweep),
2. Fori=-1,...1, for j = J,...,—J (down-right sweep),
3. Fori=1,...—1I, for j = J,...,—J (up-left sweep),
4. Fori=1I,...— 1, for j = J,...,—J (down-left sweep),

and, for each loop, update Tj; as Tj; = min (Tij,Tm), where I’Z is computed owing to the local
procedure (|1.25)).

Note that this idea is readily generalized to the case of d space dimensions, except that 2¢ sweeps of the
set of processed grid points are necessary.

In terms of computational cost, the fast sweeping method involves a fixed number of travels of the set of
processed grid points, and it is easy to see that the fast sweeping algorithm requires about O(N) operations,
where N is the total number of processed grid points.

Of course, when an eikonal equation of the form (1.11}j1.12)) is considered, with any positive function c,
things are not so simple. The characteristic curves of the equation are no longer straight lines, and more
than 2¢ sweeps may be needed to achieve the convergence of the method (see figure [1.10)).
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Figure 1.10: Computing an accurate approximation of the distance function to all the grid points lying on
the depicted characteristic curve cannot be achieved by sweeping only once in the up-left, up-right, down-left,
down-right directions: if the value Tj; is initialized to d(x;;,02), the values of T' at the grid points lying on
the red part of the curve are computed within a sweep of the plane in the up-left direction. Then, those on
the blue part are computed using a sweep in the up-right direction. Finally, another sweep in the up-left
direction is needed to compute the values of T' lying on the yellow part.

However, theoretical and numerical evidence suggest that the fast sweeping method behaves well in a
large number of cases of great importance in practice.

Let us eventually mention that this method has been adapted to the case of simplicial computational
meshes, in two and three space dimensions, at the cost of higher programming effort (see [262]).

1.3.3 Re-initializing level set functions

We already pinpointed the importance in numerical practice of handling level set functions that are as
close to signed distance functions as possible. Unfortunately, even if ¢(0,.) is the signed distance function
to ©2(0), the solution ¢(¢,.) to the level set advection equation is likely to develop very sharp or loose
variations in the vicinity of 9§2(t) as ¢t > 0 increases. This may jeopardize the stability of the whole numerical
resolution of .

In numerical applications, it turns out crucial to periodically restore ¢(t, .) as the signed distance function
to Q(t): this is the purpose of level set redistancing (or re-initialization).

Let Q c R? a bounded domain, ¢y an associated level set function. Our aim is to generate the signed
distance function dg to €. The most straightforward idea in this direction consists of course in using one of
the aforementioned algorithms for the computation of the (signed) distance function to a domain. Yet, the
situation here is slightly different, insofar as a level set function is already available for €2; in this context,
Osher, Sussman and Smereka proposed in [297] to ‘regularize’ the (possibly very ‘irregular’) level set function
¢o into a new one, which is close to dg (at least near 992). To this end, ¢¢ is used as the initialization of the
redistancing equation:

{ %(t,x) + sgn(go(x)) (|V)|-1) =0 for (t,z) € [0,00] x RY (1.26)

¥(0,2) = ¢o(x) for z € R? ' ’
The underlying intuition is that, as the stationary state of is obtained, the property |Vi|= 1 is re-
stored (which is formally obtained in the above equation by cancelling the time derivative). The presence of

the sign function accounts for the fact that a signed distance function is sought. Of course, this very formal
explanation is supported by theoretical properties which will be mentioned in chapter [6]
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In practice, the redistancing equation (1.26)) is solved using adequate numerical schemes, in the spirit of
those presented in section relying on a smoothing of the discontinuous function sgn(¢yg).

It is eventually worth mentioning that, regardless of the method used to re-initialize ¢(t,.) as dqo(t),
this redistancing process is bound to cause a slight perturbation of the interface 9€2(¢) handled numerically,
unless 0Q(t) is explicitly discretized in the computational mesh.

Remark 1.1. Hitherto, all the operations we have been considering around the level set method have been
carried out on a grid (or mesh) of a large computational box. This is quite a pity since, most often, one is
only interested in tracking accurately the behavior of the 0 level set of ¢, without paying much attention to
what happens to the other ones. A dramatic increase in efficiency can actually be achieved by using so-called
narrow band methods, according to which computations using the above numerical schemes are restricted to
a neighborhood of the evolving interface 9§2(t) (see [274], chap. 7 for details)
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In utter generality, shape optimization is about the search for the ‘optimal’ shape 2 among a set of
admissible shapes Uyq, with respect to a prescribed criterion, assessed by means of the minimization of a
cost, or objective function J(§2):

min J(Q).

Q€EUqq
The first examples of such problems came up a very long time ago. Among others, let us quote the famous
isoperimetric problem of Dido, founder and first queen of Carthage (followed several centuries later by the
very similar problem of Horatius Cocles). The Aeneid reports that, around 814 BC, Dido landed on the
shores of north Africa, and asked a local Berber king, Larbas, a small portion of land to erect a city. King
Larbas replied that he would grant her as much land as she could encompass with an oxhide. Dido then slit
the oxhide into very thin strips, which she glued together, then used to delimit a region of maximum area,
comprising a portion of the seashore, the length of the strip being fixed. Her strip of oxhide reached the
shape of an arc of circle meeting the sea, which was to become the boundary of the territory of Byrsa.

Much later, in 1685, Sir Isaac Newton got interested in finding the shape of a body opposing the slightest
possible resistance to the motion when immersed in a fluid. Making several drastic reductions in the problem
(e.g. supposing the shapes of interest are axisymmetric), he obtained the results depicted in figure See
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[62], chap. 1, sec. 3 for a more rigorous introduction to this problem, and the website of Mark A. Peletier
[251] for recent developments.

Figure 2.1: Optimal shapes of the nose of the body immersed in a fluid obtained by Newton, corresponding
to two different maximal heights (reprinted from [251]).

Let us eventually evoke Lagrange’s optimal column problem. In 1773, Lagrange formulated the problem
of finding the shape of an axisymmetric column of prescribed volume, which guarantees maximal resistance
against buckling when submitted to axial compression efforts. Using mathematical tools from the calculus
of variations, he ended up with the conclusion that the cylinder was the optimal shape he was searching
for. Unfortunately, he committed several mistakes in his computations, and further developments - notably
those of T. Clausen - evidenced that better shapes can be achieved. See [97] for more details about this story.

Since those historical examples, shape optimization has been enjoying numerous developments, both in
terms of theoretical and numerical techniques. Yet, a huge amount of issues stay unsolved (see [173]).

Altogether different problems coming from physics, mechanics, biology, etc... can be cast into the frame-

work of shape optimization, and addressed using related techniques. To name a few,

— In [20], the problem of optimal swimming of microorganisms at low Reynolds number is considered:
more specifically, the authors are in search for the shape of such microorganism that allows to reach
a prescribed displacement while undergoing minimal stress from the surrounding fluid. The shape of
the microorganisms is parametrized by means of a few physical parameters, and the sensitivity of the
stress exerted by the fluid on the microorganisms with respect to perturbations on these parameters
is computed.

— in [67], a system of N electrons with interdependent behaviors is studied. As a precious information
on the chemical structure of the system, the authors are in search for the shape (2 which maximizes
the criterion: )

J(@) = p (@) - (@),
where v is a given integer in [|0, N|], p,(€2) is the probability that v electrons lie in 2, and p},nd(Q) is
the probability that v electrons would lie in € if their behaviors were independent from one another.
Their work makes use of the level set method for shape optimization described in section [2.3]

— The papers [I89, [71], (and a lot of subsequent ones) tackle the burning topic of image segmentation:
from a grey levels image supplied as the unorganized datum of a set of pixels, each pixel being endowed
with a light intensity value, one aims at identifying regions corresponding to ‘physical shapes’ (e.g.
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faces, objects, etc...). To achieve this, the authors put the problem under the form of the minimization
of an energy functional of the separating curves between different regions.

— In the article [68], an interesting application of shape optimization in the field of electromagnetism
is proposed: the repartition of a series of electric wires is sought so that the induced electromagnetic
field endows a nearby fluid with a target shape. This study notably relies on previous theoretical
investigations around topological sensitivity analyses of Maxwell’s equations [218].

— Closer to the topic of this manuscript, shape optimization techniques have been widely used to study
the optimal design of bodies immersed in fluids. A famous example of such problems - which is crucial
in aeronautic industry - is that of finding the shape of a wing which induces minimal drag, i.e. minimal
reaction from the surrounding fluid. See [232] for many other applications of shape optimization
concepts in fluid mechanics.

— Last but not least, in this manuscript we shall be mainly concerned with structural optimization. This
part of computational mechanics which has soared over the last decades is devoted to finding the ‘op-
timal’ shape of a mechanical part, with respect to a given mechanical criterion - such as, for instance,
the work of external loads, or the internal stress. These problems strongly depend on the physics at
play (elasticity, thermoelasticity,...), and on the constraints that should be fulfilled by the shapes.

This chapter is organized as follows: to begin with, section [2.1| presents the high stakes of shape opti-
mization - at least from a computational standpoint - as well as some inherent difficulties to such problems.
A particular emphasis is put on the delicate issue of shape description and deformation. Section [2.2] focuses
on a more technical description of one particular method - namely Hadamard’s method - for evaluating the
sensitivity of a function with respect to the domain - which implies a notion of differentiation with respect to
the shape. The particular case of functions depending on the domain §2 through solutions to the linearized
elasticity system posed on € is considered. Eventually, section discusses a particular numerical frame-
work, that of the level set method, which is suitable for an implementation of shape optimization algorithms,
and shall be used repeatedly in this manuscript.

2.1 A quick overview of shape optimization and applications

2.1.1 An overview of the main methods

Since the early 60’s, when shape optimization techniques were introduced in computational mechanics,
many ways of handling structural optimization problems have been introduced, depending on the sought
application. These methods mainly differ in the involved ways to represent shapes, and to compute the
sensitivity of the objective criterion with respect to the design.

Describing shapes is a thorny problem, for a means of doing so should try and conciliate two antagonist
requirements. On the one hand, as we shall see below, shape optimization techniques require to be able to
perform mechanical computations on the considered shapes, e.g. by means of finite differences, finite element
or finite volume methods, and not all kind of representations lend themselves to such computations. On the
other hand, the representation adopted must be versatile enough to allow for a robust account of shapes’
deformations.

Among the multiple possible descriptions of shapes, let us mention the following ones:

— The most straightforward (and historically the first) descriptions of shapes that have been used in
the context of shape optimization are completely explicit. A surface S C R3 may be supplied with a
parametrization, that is, a covering set of local patches {(os,U;)},.;, such that S = (J U;, and each

il
application o; maps a portion of R? to a portion of S. For instance, the o; may be polynomial or rational
applications, in which case one talks about Bézier or NURBS patches. In a similar fashion, shapes
may be described by a set of physically relevant parameters (e.g. characteristic lengths, thicknesses),
or by the datum of a mesh. In all these cases, shapes are explicitely accounted for by a set of degrees of
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freedom (e.g. the control points of Bézier patches, the physical parameters, or the nodes of the mesh,
depending on the case). See for instance [60} [338] around these issues, or the review article [169], and
monograph [255].

— With the development of efficient methods for interface-tracking in various fields such as Computational
Fluids Dynamics, implicit methods became very popular in shape optimization - the most famous of
them being the Level Set Method and the Phase Field Method. When using an implicit representation
of shapes, a precise description of the boundary is kept under the form of an auxiliary function defined
on a large computational domain, but the shape itself is not explicitly represented.

— Eventually, a rather dramatic change in perspectives in structural optimization is embodied by the
class of density methods in shape optimization. In a broad sense, the starting point of these methods is
the works of F. Murat and L. Tartar around the homogenization method, and the optimal design of the
microstructure of a material filling a fixed working domain [306], which were followed and completed by
(at least) the articles [196] 212] (see also the reference textbooks [841]). These theoretical contributions
found an echo in [39]; influenced by these ideas, the authors devised a practical method for topology
optimization by changing the very conceptual definition of a shape as an explicit black-and-white design
for a ‘relaxed’ one (in a sense specified in section [2.1.2), as the datum of (at least) a density function
6 : D — [0, 1] defined over a computational domain D: where 6 is close to 0, there is almost only void
(or a very ‘soft’ material, mimicking void), and where 6 is close to 1, there is almost only the shape. The
problem of finding the ‘best’ shape is transformed into that of the optimal distribution of a mixture
of material and void in a large computational domain. Therefore, the shape optimization problem
ends rephrased as a parametric optimization problem. This led to the inception of the so-called SIMP
method (see [40], and references therein).

The problem of how to perform perturbations of the considered shapes, and thus of how to compute the
sensitivity of the objective function J with respect to the shape, is closely related to this problem of shapes’
description. To name a few, the following design-sensitivity analysis methods have been extensively consid-
ered in the literature:

— One possibility is to perform a sensitivity analysis of the objective criterion J with respect to perturba-
tions of the boundary of shapes. The Hadamard’s and speed methods described in section [2.2.1] belong
to this category.

— A completely different alternative consists in performing topological sensitivity analyses, according to
which the sensitivity of J with respect to the nucleation of infinitesimally small holes inside shapes is
evaluated (see for instance [147, 289]). Similar techniques are also widely used in the fields of imaging
or inverse problems.

— When shapes are represented as density functions over a computational domain D, J depends on the
shape through the values of an associated density function at the nodes of a mesh of D, and a ‘classical’
parameter sensitivity analysis can be performed.

These methods feature altogether different assets and drawbacks: in a nutshell, the more accurate the
description of the shapes, the more accurate the computation of shape sensitivities of the given criterion,
but the more acute the problem of representing and deforming them numerically.

Different methods may be coupled, to take the most from each one of them. Thus, in [I6, [65], the
authors proposed to combine Hadamard’s method with information from topological sensitivity analysis:
at each iteration, when the current shape, say 7, is updated to the next one Q2"*! the boundary of Q"
is deformed to produce that of Q"*! according to the shape gradient produced by Hadamard’s method,
but without any extra ingredient, the topology of shapes are not allowed to change. Hence, from times to
times, a topological sensitivity analysis is held, and small holes are nucleated in adequate regions, which are
then deformed with the subsequent use of Hadamard’s method. In [249], a subsequent preprocessing stage is
added, in which the homogenization method is used to deliver a clever initial guess to the shape optimization
process.
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2.1.2 Numerical difficulties in shape optimization: non existence of optimal
shapes

In the previous subsection, we discussed the possibly most obvious difficulties in shape optimization,
namely the difficulty of parametrizing the problem and accounting for variations of shapes in a way that
yields a satisfying notion of shape sensitivity. Another major difficulty exists on the theoretical side, which
underpins many numerical difficulties in shape optimization problems, can greatly influence the choice of a
particular shape representation method, and urge to resort to some numerical techniques that are not essen-
tial from a theoretical point of view, such as the regularization of shape derivatives which will be discussed
hereafter. This problem is that of the non existence of an optimal shape, which is due to a homogenization
phenomenon.

Let us start the discussion with an example, excerpted from [62] (chap. 4). Let D C R? a bounded
Lipschitz domain. Our goal is to optimize the distribution of two materials within D, one of them being
thermally conductive, and the other being thermally insensitive, in such a way that the temperature in D
is as close as possible to a constant ¢ when D is heated. Rigorously speaking, one searches for the shape
) C D (standing for the phase filled with the conductive material) which minimizes the following functional:

J(Q) = / luq — c|? dr,
D

where c is a constant, and ug is the unique solution in H} () to the system:

—Au=1 1inQ
u=20 on 0f2

Note that, for the sake of simplicity, both the thermal conductivity of the material in €2, and the power of
the heat source have been set to 1.

The non existence result is the following.

Theorem 2.1. For ¢ > 0 small enough, no Lipschitz domain Q C D can be a global minimum point of J
over Uuq.

Proof. (sketch of the proof) First, it is easily proven that, provided ¢ is small enough the whole domain D
is not a global minimum point of the problem (for J(@) = ¢? is then smaller than J(D)).

Now, assume that a global minimum point Q of J exists which is Lipschitz; as Q C D, there exists a
point zg € D\ Q lying outside €, and let £ > 0 such that d(zg, Q) > ¢ (see figure . Finally, consider the
new phase Q=QUB (z9,€) for the conductive material, which is nothing but the previous one, augmented
with a small disconnected bubble of material. An explicit expression for u~ can be computed explicitly:

Q
uq(x) ifxeQ
~ 2 2
Vz € Q, ug(z) = w if € B(xo, )
0 ifzreD\Q

Another computation shows then that J(Q2) < J(2) for ¢ > 0 small enough, in contradiction with £ being
a minimum point for J.

O
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Figure 2.2: An example of non existence of an optimal shape.

How can we understand this result 7 Roughly speaking, the adiabatic heating of a small amount of con-
ductive material produces a small positive temperature, and the larger the region, the larger the resulting
maximal temperature developed in the thermally conductive phase. Hence, reaching a small temperature
¢ requires that the shape of the conductive phase has a large contact surface with the outer medium, and
a small area; the ‘optimal shape’ for € would be an infinite collection of infinitesimally small inclusions of
conductive material (which is not a Lipschitz domain).

Another interesting example of a shape optimization problem where the optimal shape tends to feature
infinitely many holes (with the significant difference that holes carry homogeneous Neumann boundary con-
ditions in this case) is discussed in [9], §6.2.1.

Generally speaking, for a wide class of shape optimization problems (even very simple ones), fractal, or
porous structures are preferred over ‘plain’ structures: the sought optimal shape is not in the investigated
class. This fact is not merely theoretical, and has severe practical implications. In particular, it explains why
most shape optimization problems are generally very sensitive to the initialization - several local minima
exist - or to the mesh size - the finer the computational mesh, the closer to the ‘porous’ optimal shape the
optimization process is allowed to go.

Two main categories of techniques may help in circumventing this difficulty.

— Relaxation of the original problem: since the main obstruction to the existence of optimal shapes seems
to be that they tend to be ‘porous’, one idea is to extend the set of admissible shapes so that it encloses
such designs. This viewpoint can be mathematically justified owing to the homogenization theory (see
[8,1306]), and urges to think over the problem of finding the optimal shape as that of finding the optimal
distribution (and organization at the infinitesimal scale) of a mixture of material and void within a
computational domain. This idea is at the root of density-based methods in structural optimization.

— Restriction of the original problem: the converse idea consists in imposing additional constraints on
the set of admissible shapes, so as to prevent them from developing too many holes or connected
components. Among the possible techniques to achieve this, let us mention the following (see [9} 62} [172]
for more details):

— Adding a constraint on the perimeter of shapes: the optimal shape is ‘porous’ or ‘fractal’ when the
problem at stake urges shapes to maximize the area of their boundary (as in the previous example);
hence, imposing an upper bound to the perimeter P(2) of any shape 2 should prevent this behavior.
A result in this direction can be found in [21], where a model problem is considered in the thermal
conductivity setting sketched above; the authors prove that trading the objective function J(f)
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for the very close function J(92) + 7P(f2), where 7 > 0 is a fixed penalization parameter, leads to
existence of optimal shapes in the considered class.

— Adding a constraint on the reqularity of shapes: for instance, asking the admissible shapes in U4 to
fulfill a uniform cone condition, or equivalently to be uniformly Lipschitz domains lead to well-posed
optimization problems for a wide class of considered objective functions [79].

— Adding topological constraints on shapes: the homogenization effect can eventually be prevented by
acting directly on the topology of shapes. In this way, it was proved (by Sverak [302] in the context of
the diffusion equation, and Chambolle [74] in the linear elasticity setting) proved that, in two space
dimensions, imposing an upper bound on the number of connected components of the complementary
D\ Q of any shape Q in a large computational box D can lead to a well-posed optimization problem.

2.2 Shape sensitivity analysis using Hadamard’s boundary varia-
tion method

Here, we detail one particular method for describing variations of a shape, namely Hadamard’s boundary
variation method, as well as the inferred notions of differentiation with respect to the domain.

The plan of this section is the following: to begin with, in subsection [2.2.1] we introduce the basic ideas
of Hadamard’s method and set some notations, that we shall use in the rest of this chapter. Then, subsection
[2:2:2] presents the derived notions of differentiation with respect to a domain: the notion of shape derivative
of a scalar function of the domain, or of a function which is itself defined on the domain is introduced. The
end of the subsection puts the stress on a specific context - that of optimization of linear elastic shapes.
Eventually, subsection [2.2.3] outlines the generic shape optimization algorithm derived from these concepts.

2.2.1 Hadamard’s boundary variation method

The central idea of Hadamard’s boundary variation method dates back to the seminal paper [168] (see
also [290]), issued at the beginning of the 20th century. It was then exploited in depth in [234]. Let 6 be
a displacement field of ‘small’ amplitude; we consider variations of a given reference shape € of the form
(I +6)(Q) (see figure 2.3). Thus, all the considered transformations (I + ) are homeomorphisms ‘close’ to
the identity; in particular, all the variations of €2 achieved in this way share the same topology.

Figure 2.3: Variation (I 4 0)(€2) of a reference shape €.

Let us make things slightly more rigorous. As far as the deformation vector fields are concerned, the
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set of interest is the Banach space W1 (R4 R?) ¢ L>*(R%)? of bounded functions 6 : R¢ — R?, whose
distributional derivative V@ belongs to L>(R?)?*¢ endowed with the natural norm:

V0 € WHe (R RY), 1[0]|w1. e ze):= |10]| Lo @aya+[VO]| Lo (rayaxa

Equivalently (see section 4.2.3, th. V in [I27]), it can be shown that W1 (R4 R9) is the space of bounded
and Lipschitz functions 6 : R* — R?, equipped with the norm:

W 0(x) — 0(y
ve € 1700(Rd7Rd>7 H9||W1v°°(Rd,]Rd):: H9||LOQ(Rd)d+ sup M’
z,y#Ele |IZ’ - y|
zFY

where |.| stands for the usual Euclidean norm over RY.

As for the sequel, we will need the following consequence of Picard’s fixed point theorem (see lemma 6.13
in [9] for a proof):
Proposition 2.1. For every deformation field 0 € W (R4, RY) such that 10][w1.00 (R ray< 1, the applica-
tion (I +6) : R? — R 4s a Lipschitz homeomorphism with Lispchitz inverse.

More regularity over the considered deformation fields 6 could be of interest; for this reason, for k£ > 1,
we will sometimes consider the vector space C*>°(R? RY) = CF(R? R?Y) N WH>(R? R?), which is also a
Banach space when equipped with the norm:

k
"0 €O, [Mlenm o=

d
-0 « EN

aff oo (Rd)d.
Note that the exact equivalent of proposition [2.1{ holds in the context of C**>°(R? R%) spaces, with (I + 6)
being a C*-diffeomorphism instead of a Lipschitz homeomorphism whenever 110]]ck o0 (R gy < 1 .

Notations: till the end of this chapter, Q C R stands for a fixed domain, which enjoys at least Lispchitz
regularity. For any 6 € W1 (R? R%), so small that [10]ly 1,00 (R, ray< 1, we denote as Qg := (I +6)(02) the
deformed shape with respect to 6.

Hence, variations of a given shape €2 end up parametrized by means of an open subset of a Banach space.
As we shall see in the next section, this allows among other things to introduce a notion a differentiability with
respect to the shape by rewriting any operation performed on shapes close to 2 in terms of the underlying
deformation field 6.

Remark 2.1. Very close in essence to Hadamard’s method lies the so-called speed method, described in
[290]. This method considers variations of a given domain 2 C R¢ by means of flows of vector fields, instead
of vector fields themselves. More precisely, let V € C([0, 7], W (R¢,R%)) (as previously, V may enjoy
additional regularity); for 7 > 0 small enough, T;(V) € W1 (R? R?), is defined as, for all t € [0, 7], 2 € RY,
T:(V)(x) = X(0,t,x), where t — X (0,¢,x) is the solution to the first-order differential equation:

{ X'(0,t,x) = V(t, X(0,t,x)), t€[0,7]
X(0,0,z) =

Then, variations of 2 of the form T3 (V) () are considered. If we are to infringe a little bit on the forthcoming
section, it is not difficult to show that both methods give rise to the same notion of differentiation of a function
depending on the domain, in the direction of a given vector field. This is no longer true when it comes to
higher order derivatives. However, both points of view are equivalent and formulae allow to switch from
one to the other; see [106] for an interesting discussion over this topic. Note also that, in the framework
of Hadamard’s method, the variations Qg of 2 only depend on the values taken by 6 on 0f2, whereas the
variations T3(V)(£2) involved in the speed method depend on values of V' lying outside 0.
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2.2.2 Shape differentiability and computation of shape derivatives in linear elas-
ticity
2.2.2.1 Definitions and first shape derivatives

Let us start with some classical definition and results about differentiation with respect to the domain of
functionals of the domain Q — F(Q) € R.

Definition 2.1. Let F(Q) a functional of the domain. F is shape differentiable at Q if the underlying
function
Whee (R RY)  — R
0 — F((I+6)(Q)

is Fréchet differentiable at @ = 0. The associated Fréchet differential - denoted as F'(QY) is called the shape
derivative of F at Q. Then, the following asymptotic expansion holds in the vicinity of 0 in W (R4, R9):

0(0) 0—0

F(Qg) = F(Q)+ F'(Q)(0) + 0(#), where — 0. (2.1)

101w, (Ra,Ra)

Remarks 2.2.

— In the case of a functional F' which also depends on other variables than 2, the partial Fréchet differ-
ential with respect to the domain is denoted as g—g.

— Actually, we will often require that the vector fields 6 describing the variations of the shapes enjoy
more regularity than that granted by the space W1 (R% R?) (e.g. C1>°(R? R?)-regularity). Anyway,
in the following, with some small abuse in terminology, all the corresponding notions of differentiability
shall carry the same name.

Note that the above definition is only one possible way for defining the notion of differentiation with
respect to the domain: there are actually at least as many as notions of differentiability in a Banach space.
In definition Fréchet differentiability of the mapping 6 — F((I + 6)(2)) is required, for it turns out to
be the natural setting for several functionals of the domain of interest. Although, Gateaux differentiability,
directional differentiability (to name a few) of this mapping could be considered. We shall see such examples
of functionals where the latter notions are more natural ones in the following.

Theorem 2.2. (Th. 5.2.2. and 5.4.17 in [172]) Let Q C RY be a bounded Lispchitz domain.
1. For any function f € WHH(RY,RY), the functional F(Q) = [, f(x) dx is shape differentiable, and its
derivative reads:
Vo € WHh(RERY), F'(Q)0) = [ flz)6(z).n(x)ds.
o0

2. Assume that ) is moreover of class C?, and let g € W>(R RY). Consider the functional G(SY) defined
as G(Q) = [.gds. Then G is shape differentiable over ChH>* (R4, RY), and its shape derivative reads:

Vo € V(R RY), G'(Q)(0) = /F <(;gl(x) + /i(m)g(x)) 0(z).n(x) ds.

Remark 2.3. An extension of this theorem provides a mathematical version of the so-called Transport
theorem (or Liouville’s theorem) in mechanics, for the differentiation of integrals of scalar quantities over
evolving-in-time volumes, which is at the root of conservation laws. Indeed, if f : [0,7] >t — f(t) € L*(R9)
is differentiable at t = 0, € WH>(R% R?), and f(0) € W"'(R?), then I(t) := [, = f(t) dz is derivable at
t =0, and (see [172], th. 5.2.2):

I’(O):/Qf/(O) dx + OQf(O)G-nds.
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More involved examples are the so-called state-constrained systems, or distributed systems, which involve
quantities depending on €2 through the solutions of PDE posed on 2. Before getting into specifics, let us
mention the remarkable Structure Theorem, which gives, in utter generality, precise information about the
form of shape derivatives (see [172], prop. 5.9.1, or [105], Th 9.3.6).

Theorem 2.3. Let k > 1, and Q C R? an open, (possibly unbounded) measurable set, with topological
boundary I'. Let
F: {Q c R? open and measumble} — R

a functional of the domain such that the underlying mapping C**° (R4 R?) 3 0 — F((I + 6)(Q)) is Fréchet
differentiable at 0, with shape derivative F'(Q). Then,

1. The restriction of F'(2) to D(RY,R?) is a (vector-valued) distribution of order at most —k over RY,
whose support is included in T'.

2. If Q is an open domain with C' boundary, with outer unit normal vector field n, then for any 6 €
Ck (R4, R?) such that §.n =0 on T, one has:

F(Q)(0) = 0.

This result accounts for two very intuitive and important facts: point (1) states that the functional F is
insensitive to perturbations of the domain that do not affect its boundary. Point (2) is a bit more subtle,
meaning that if the data enjoy enough smoothness, and if 8 is a deformation field which only acts on I' by
convection, then at first order, the domain (and any ‘reasonable’ function of it) stays unchanged.

2.2.2.2 Material and Eulerian derivatives

We are now interested in the differentiation with respect to the domain of functions of the domain
u: Q= u(Q) € W(Q) which are themselves defined on the domain - W(2) being a Banach space depending
on . So to set ideas, we follow here the presentation in [290], where the considered domains 2 are bounded
domains of class C¥, k > 1, deformations 6 belong to C*>°(R? R?), and W(f2) is one of the Sobolev spaces
WmP(Q) (m € [0,k[, p € [1,00]). As in the previous section, the forthcoming notions of material and
Eulerian derivatives may be defined in several slightly different frameworks (e.g. that of functions u(2)
belonging to C¥(Q), or a space which does not depend on ). When the context is clear, we shall however
give to all these notions the same name.

Let then u be an application which, to any domain € of class C¥ associates a function u(Q2) € W™P(Q).
So as to give a precise meaning to the ‘derivative of u with respect to €2’, the natural idea is to fix z € ,
and look at the derivative of  — uq(z) € R in the sense of definition This makes sense if x € €,
for then, for § € C*>°(R% R%) small enough, x € Qy. Yet, we may need to take the derivative of the
behavior of u(€2) at the boundary 92, and the previous argument no longer holds for a point € 9Q. The
mathematically convenient point of view consists in transporting all functions u(€2y) back to the reference
domain €2, considering u(y) o (I + 6) € W™P(Q), then derivating with respect to 6. Only then will the
notion of ‘pointwise derivative’ be inferred.

Definition 2.2. Function u : Q — u(Q) admits a material (or Lagrangian) derivative u(Q2) at a given
domain € provided the transported function

CH°(RY,RY) 30— u(Qp) o (I +6) € W™P(Q),
which is defined in the neighborhood of 0 € Ck>° (R4, RY), is differentiable at 6 = 0.

The derivative u/(£2)(6)(z) of u with respect to the domain, at a fixed point x € Q, is now defined as
what we would expect from it, using formally the chain-rule:

0 W Qo) (x +0(2)],y = &5 WQe)(@))|,_g + 45 W)(@+0(2)))],_,
w($2)(0)(x) = () (6)(x) + () (@)6()
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Definition 2.3. Function u : Q > u(Q)) admits a Eulerian derivative u’'(2)(0) at a given domain S in the
direction § € C*>° (R R?) if it admits a material derivative u(Q)(0) at Q in direction 0, and Vu(Q).0 €
W™P(Q). One defines then:

/' (Q)(0) = w(Q)(0) — Vu(Q).0 € W™P(Q). (2.2)

These notions naturally extend to the case of functions u which, to any (part of the) boundary I of a
domain of class C*, associate a function u(I') € W™P(T') (m € [0,k[, p € [1,00]):

Definition 2.4. Let u:T'+— u(I') € W™P(T') a function,
— u admits a material (or Lagrangian) derivative u(I') at T if the transported function

CH°(R%,R?) 3 0 — u(Qg) o (I +60) € W™P(I)

is differentiable at 0 = 0
— If w admits a material derivative 4(I') at T, and Vru(I').0 € W™P(T'), then u admits a Eulerian
derivative u'(T')(0) in direction § € C**° (R4 R?), defined as:

W/ (T)(0) = a(T)(0) — Vru(T).0 € W™P(Q) (2.3)

Note that definition of the Eulerian derivative in this last case only differs from in that the
tangential gradient appears in the second definition - which is fortunate since u(T")(x) does not make sense
for points x outside I'. To emphasize the connection between both formulae, let I'y the boundary of a domain
Q of class C* (k > 2), V a fixed open neighborhood of I'y in R%, and define a function  — @(2) € W™?(V)
as the unique extension of u(9€) to V which is constant along the normal direction to 99, i.e. Va(Q2)-n =0
on V. It can then be shown that the Eulerian derivative of u(T") at Ty (in the sense of definition coincides
with the Eulerian derivative of @(£2) at € (in the sense of definition [2.3).

Let us illustrate these notions with an example - taken from [234] - that will come in handy in the sequel.

Example 2.1. Material and Eulerian derivatives of the unit normal vector field. For any bounded domain
Q of class C1, let ng : 02 — S! be the unit normal vector field, pointing outwards 2. We consider variations
6 € CH>°(R? R?). As expected, strictly speaking, the Eulerian derivative of ng has no precise meaning since
it is only defined on the (varying) boundary 9. However, its Lagrangian derivative does. Indeed, for 6
small enough, the transported normal vector reads:

€00, na(1+0)0) = TR

where, for any d x d matrix M € My(R), com(M) stands for the matrix of cofactors of M. Using the matrix
identity
I+ Vo(y)) com (I +VO(y)) = det (I + VO(y)) I,
differentiating at 6 = 0 (which makes sense because all the terms are polynomials in ), we get:
d .
@(com(f +VO0(Y)),_, = div(0)(y) I —"V(y).
Eventually, the function Q — ngq € C(92) admits a Lagrangian derivative njq whose expression reads, for
all § € CH>° (R4, RY), y € O

na(0)(y) = div(0)(y) na(y) — "Vo(y)na(y) — (div(0)(y) — (‘VO(y)na(y)).na(y))na(y).
= ("VO(y)na(y))-na(y))na(y) — "VoO(y)na(y).
Thus, the Eulerian derivative ng, € C(0€) of ng at y € 0 is defined as:
ng(0)(y) = (VOy)na(y))na(y))naly) — 'VO(y)naly) — Vaana(y).0(y)
= —Vaq(0.n0)(y)

We now turn to shape optimization in the context of a particular mechanical system, that of linearized
elasticity.
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2.2.2.3 Linear elasticity in a nutschell

Let Q C R be a bounded domain filled with a homogeneous, isotropic, elastic material. This assumption
means that deformations of €2 as a result of an external stress are instantaneous, and that € instantaneously
returns to its equilibrium state as soon as the stress ceases.

The motion of such a domain (2 is described in terms of the deformation function ¢ : Q — R?, with
the meaning that each point z € 2 is moved to the position p(x). Equivalently, one may consider the
corresponding displacement function uw= ¢ — I.

So as to measure the induced internal distortion (or strain) within Q, the Cauchy-Green strain tensor
C(¢) and the Green-Saint-Venant strain tensor E(p) of the motion are respectively defined as:

Clp) ="Vo.Vo =I+'"Vu+Vu+'VuVu , E(p) ==(C(p) —I).

Grossly speaking, C(¢p) is a measure of the deformation of a curve drawn on 2 entailed by ¢, while E(p)
quantifies how far ¢ is from being a rigid-body motion.

The theory of linear elasticity rests upon on the following two fundamental approximations:

— Small deformation approximation: the Green-Saint-Venant strain tensor can be approximated by the
linearized strain tensor e(u) := tvu+w7 that is: E(p) = e(u).

— Linearity of the material’s behavior: the material’s constitutive law is generally defined as the rule
which connects the Cauchy stress tensor o to the strain. Under reasonable assumptions, it is of the
following form (see [92], sections 3.6, 3.7):

o =2uE + Mr(E) + o(E),

where A, p are the Lamé coefficients of the material. In linear elasticity, it is assumed that the higher
order term o(E) can be dropped in the above expression.
All in all, in the linear elasticity approximation, the internal stress o = o(u) within Q is related to the
displacement field by the so-called Hooke’s law:

o(u) = Ae(u) = 2ue(u) + Mr(e(u))1.

Of course, these considerations do not hold for a general motion of €2, and should be reserved to the descrip-
tion of the regime of ‘small displacements’.

In this context, if 2 is clamped on a part I'p of its boundary 9€2, submitted to body forces f, and traction
loads g are applied on a part 'y := 9Q \ T'p, the static equilibrium equations for u read:

—div(e(u)) = f inQ
u = 0 onlp (2.4)
oluyn = g onTy

Let us now outline the classical mathematical setting of the study of the linear elasticity system. The
considered domain (2 is assumed to be bounded and Lipschitz. As regards I'p, we shall assume that it is
of positive (d — 1) Hausdorff measure (unless an equilibrium relation is imposed between the body forces
and the traction loads). The body forces f are assumed to belong to H~'(Q)?, and g € H~2(9Q)%. One
can then prove, using Korn’s inequality in combination with the usual Lax-Milgram’s lemma, that these
equations admit a unique solution u € Hf (Q)?, where:

H%D(Q) = {v € H'Y(Q),v=0o0n FD}.
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As is generally the case with elliptic equations, higher regularity results hold in the context of linear
elasticity; yet, they are much harder to prove. As an illustration, one has the following regularity theorem
in the setting of pure displacement in R? (see [92], Th. 6.3.6).

Theorem 2.4. Assume that Tp = 0Q. Let m € N*, p €]l,00[, p > 5+L2m" assume the boundary 0N
enjoys C™*2 regqularity, and f € W™P(Q)3. Then, the solution u € H%D ()2 to actually belongs to

Wm+2P(Q)3, and there exists a constant C' > 0 which only depends on Q such that:

|[ullwm+zp @) < Cl| fllwmr @)

A similar regularity result holds in the case of pure traction, that is when I'y = 9, and the usual
equilibrium relation between f and ¢ is satisfied so that there exists a unique solution u to (upon
higher regularity assumptions on g). However, as in the case of the Laplace operator , these results fail in
the case when mized boundary conditions are imposed, that is when I'p and I'y or both non empty: tfl})ubles
are likely to appear in the vicinity of points z lying at the change of boundary conditions x € I'p NT'y. Far
and apart from these regions (if any), the regularity of u is as high as can be expected.

2.2.2.4 PDE constrained shape optimization

We are now interested in performing shape optimization with respect to objective functionals J(£2) which
depend on the domain 2 via solutions to the linear elasticity system. Let us sketch the context: we consider
shapes, that is bounded Lipschitz domains  C R?, which are clamped on a subset I'p C 99 of positive
(d — 1)-Hausdorff measure, submitted to body forces f € H'(R%)4, and traction loads g € H?(R%)4, to
be applied on another part of their boundary I'y C 9. Neither I'p, nor I'y but only the free boundary
I:=00Q\ (I'p UTy) is subject to optimization. The displacement field ug of €2 is the unique solution in
HE_(92)? to the system:

—div(o(uw)) = f inQ
a(u)z _ 2 SE Efx (2:5)
oluyn = 0 onl
According to the previous requirements, the considered set U,q of admissible shapes is defined as:
Una = {9 bounded and Lipschitz, T'p UT' x C 9}, (2.6)
so that the set ©,4 of admissible variations is:
Oaa = {0 € WH*(RY,RY), 0 =00onTp Uy} .
The first example that comes to mind as an objective function is the compliance
c) = / Ae(ugq) : e(uq) de = / fruqdx +/ g - ugq ds, (2.7)
Q Q I'n

which can be equivalently interpreted as the work of external forces applied on €2, or as the mechanical
power spread by € in its motion. Another example - used in the device of MEMS (micro electromechanical
systems) - is the following: if ug € HE ()% is a target displacement for ug, o > 2, and k € L>(R?) is a
weight function, we shall consider the least-square criterion

1

D(Q) = (/Qk lug uoo‘dz> o (2.8)

Let us eventually mention a major challenge in structural optimization, that of the device of structures in
which the elastic stress is controlled. In this scope, we will encounter functionals of the form

S(Q) = / Kllo(ua)|P da, (2.9)
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where k € L>®(R?) is a weight function, p > 2, and ||.|| denotes the Frobenius norm over d x d matrices. This
short list is by no means exhaustive; for instance, a wide literature in structural optimization is devoted to
criteria involving eigenfrequencies, etc... (see chap. 2 in [40] for numerous interesting optimization problems).

The rigorous computation of the shape derivative of functionals of the domain such as is not
an easy task. In practice, we rely on a formal method - much easier to carry out - to obtain the expressions
of these shape derivatives, namely Céa’s fast derivation method, introduced in [72]. It is formal in the sense
that all the data at hand - objective functions, domains, deformations - are assumed smooth enough, and
above all that the state system ug is differentiable with respect to the shape.

Consequently, unless otherwise specified, we shall thenceforth assume that all the considered shapes
Q) € U,q are smooth enough (i.e. of class C¥, for k > 1 large enough), and similarly for the deformation fields
0 € ©,4, and displacement functions ug.

Let us now illustrate the kind of results and techniques we shall meet repeatedly in this manuscript with
a representative example, quoted from [T4]. Let j, k : R¢ x RZ — R two smooth functions, fulfilling adequate
growth conditions. Define an objective function J(£2) as:

VQ € U, J(Q) = /Qj(:c,uQ(x)) der/FUF k(x,uq(x)) ds. (2.10)

Theorem 2.5. Functional J(Q) defined as is shape differentiable at any Q € Uyq, and its shape
derivative J'(Q) reads:

O(k(x, ug))

V0 € Ouq, J'(Q)(0) :/F (j(x,UQ) + Ae(uq) : e(pa) — f-pa + o

+ kk(x, uQ)) 0-nds, (2.11)

where n is the unit normal vector field to Q, k is the mean curvature of Q) (oriented so that k(x) is positive
when  is locally convex near ), and pg € H%D(Q)d is the adjoint state, defined as the unique solution to:

—div(4e(p)) = —j'(uq) inQ
p = 0 onT'p : (2.12)
olp)n = —k(ug) onTUTyN

Outline of proof. A rigorous proof of such a result is generally achieved within two steps.

1. First, one needs to prove the Fréchet differentiability of 8 — J(£2y), which requires a change of variables
in the integrals defining J to bring them back to © or (a subset of) 9, with only the integrands
depending on 6 (see [I72], prop. 5.4.3). Doing so yields:

J(Q) = / (24 0(), ey (z + 0(2))) det(I + V6) dz
Q (2.13)
+/I‘UF k(x4 0(x),uq, (z + 0(x))) |com(I + V) - n| ds

This expression naturally features the transported functions uq, o (I + 6).

2. The most natural way for computing the derivative J'(Q) is then to differentiate directly with respect
to 0 in , which brings into play the material derivative ug of 2 — ug. Hence, one needs first to
study the existence of uq, and - if possible - to reach an expression for it. This stage consists in a use of
the implicit function theorem in the variational formulation for ug, and supplies a variational problem
for ugq (see [172], §5.3.3). Using this variational problem and that of the adjoint state pqo allows for a
simplification in the expression of J'(f2).

However perfectly rigorous, this method is not completely satisfactory as far as intuition is concerned.
Indeed, the involvement of the adjoint state appears a bit miraculously in this context, and its expression
is difficult to guess beforehand, whereas it is a key ingredient when it comes to making the expression of
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J'(Q)(0) completely explicit in § (which is crucial in numerical practice).

Another method consists in considering the Lagrangian function £ : Uaq x Hf (RT)? x HE (RT)? 5
(Q,v,q) — L(Q,v,q) € R, which incorporates the state equation for ug as a constraint, using a Lagrange
multiplier g:

z(Q,v,q):/Qj(v) dz+/MN k(v) d5+/QAe(U):e(q) dx/Qf.qu/FN g.qds

Then, J(€2) can be expressed in terms of £(€2,.,.) as:
Vg € Hi (RN, J(Q) = L(Q, uq, q). (2.14)

Now, we compute the partial differentials of £(€2,.,.) at a given point (u,p) € Hf (R?)? x H} (R%)%:
— The partial differential of £(£2,.,.) with respect to the g variable reads:

WEWﬁWﬂEEMMM@:/

94 QAe(u):e(q)d:v/Qf~qd1:/FNg-qu.

Canceling this derivative at (u,p) yields the variational formulation associated to the state system
(2.5)), and is then equivalent to u = ug.
— Similarly, the partial differential of £(f,.,.) with respect to the v variable reads:

oL
voe i}, (R, G@upo) = [

j'(u)-vdﬂc+/

o E'(u)-vds+ /Q Ae(v) : e(p) dz;

canceling this derivative is equivalent to the fact that p = pq, the unique solution to system ([2.12).
To conclude, differentiating with respect to the domain in 1) for a fixed, arbitrary function p € H%D (R4)d
produces:

— 55 (@ p)6) + 5 (v ) 1al6)), (2.15)

because %(Q7 ug,p) = 0. Now evaluating |D at p = pq allows to cancel the unpleasant last term in the
right-hand side, and yields:

VO € Ou4, J'(Q)()

oL
VO € Ouq, J'(Q)(0) = 8—Q(Q,ug,pg)(9). (2.16)
Eventually, the last partial differential is computed using theorem [2.2] for the differentiation with respect to
the domain €2 of integrals of fixed functions over €2, or I', and leads to the desired formula. O

Remark 2.4. As a matter of fact, Céa’s method can be rigorously justified in some cases (see [105], chap.
10, §5). Indeed, it is easily seen that J(£2) can be expressed as a min-max value of the Lagrangian functional
L(9Q,.,.):
J(Q)= min max  L(Q,v,q).
UGH%,D (Rd)d qEHllD (Rd)d

Under certain hypotheses on the objective function J(£2), it turns out that, for any Q € Uy,q, this min-max
value is actually a saddle point. Using a theorem for the differentiation of a saddle point with respect to a
parameter (see [I05], chap. 10, th. 5.1) yields the same conclusion as above.

Expression lends itself to a physical interpretation. Grossly speaking, the terms j(z,ugq) and
(W + kk(z, UQ)) correspond to static force fields. The adjoint state defined by (2.12]) is a displace-
ment driven by forces pointing towards a decrease in the values of functions j and k. The term Ae(ug) : e(pq)
is the opposite of the power spread by the virtual displacement p, obtained when submitted to body force

j'. Consequently, (2.11]) indicates that the increase in performance of a given shape Q with respect to J is
governed by the following trends:
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— Q should ‘flee’ from where the criteria j and k are high,
— Q should ‘expand’ (resp. ‘retract’) where the power received in a virtual move which improves its
performance is positive (resp. negative).

Remarks 2.5.
— The shape derivative of the compliance C'(2) has a remarkably simple expression, in the particular
case when no body force is applied (i.e f = 0). Indeed, it is easy to see that the problem is self-adjoint,
i.e. po = —ugq, and:

VO € Ouq, C'(Q)(0) = 7/FA€(UQ) ce(ug) 0 - nds.

Note that Ae(ugq) : e(uq) is everywhere non negative, which accounts for the intuitive face that, for
the compliance of a shape to be reduced, it should be reinforced everywhere, and first and foremost in
the areas where the dissipated elastic energy is high.

— Analogous results hold for other objective functions, e.g. objective functions of the form .

2.2.3 Shape optimization using Hadamard’s method

Let Q0 an initial (smooth enough) shape, to be optimized with respect to a given criterion J(2), over a
set U,q of admissible shapes, which accounts for constraints.

2.2.3.1 The shape optimization problem

Up to this point, the only constraint we have been imposing on a shape € is that I'p U I'y should be
part of 9. This constraint is especially easy to enforce, for if a shape Q is such that I'p UT'x C 012, and
[[0]| w10 (ra ray< 1 is a deformation field such that § = 0 on I'p UT'x, then I'p UT'y C 9§2p. However, a lot of
different constraints may have to be taken into account when dealing with realistic problems. Unfortunately,
their very mathematical formulation (let alone incorporation into a shape optimization algorithm) may prove
very tedious. To name a few, the following constraints are of tremendous importance in shape optimization
of elastic structures:

— One could require the volume V() := [, dz or the perimeter P(2) := [, ds of an admissible shape

Q, to be equal, or lower or equal, to a prescribed upper bound.

— A whole class of particularly demanding constraints (yet crucial in the industrial context) is that of
manufacturing constraints. Examples of such are constraints over the curvature of shapes, over the
minimum authorized thickness for their members (to ensure the robustness of the associated mold), or
the maximum authorized thickness (so that the cooling process is not hindered). These constraints often
arise as pointwise contraints, and are numerically very sensitive. See [228] for detailed explanations.

— A huge litterature has been devoted to stress-based constraints, such as the famous Von Mises criterion.
These constraints also often arise as pointwise contraints.

Admittedly, the conceptual difference between the cost and constraint functionals lies almost solely in the
formulation of the optimization problem. For example, searching for a shape of minimal compliance under
a volume constraint, and searching for a shape of minimal volume under a constraint on the compliance are
two different optimization problems of equal relevance in practical applications.

In the remainder of this manuscript, we shall limit ourselves with constraints on the volume and perimeter
of shapes. They shall be enforced owing to the simplest possible approach: the optimization problem is
brought back to that of the constraint-free minimization of a (Lagrangian-like) weighted sum £(€2) of J(Q),
and V(Q) (or P(Q)), the latter being penalized with a fixed Lagrange multiplier ¢:

min L£(Q), L£(Q) = J(Q) + LV (Q), (2.17)
Q€Uqq

where U,q stays defined by (2.6). This simple formulation may seem very crude. Yet, more sophisticated
algorithms for handling constraints rely on such a formulation, in combination with an update strategy
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for the value of the Lagrange multiplier, so that the constraint is fulfilled in the end (e.g. the quadratic
penalty method, the augmented lagrangian method, or the log-barrier method, see [237], chap. 17). More
sophisticated (and efficient) algorithms exist, such as the Method of Moving Asymptotes (MMA), described in
[300], or the Method of Feasible Directions (MFD) [312], but we shall not deal with them in this manuscript.

2.2.3.2 A generic shape optimization algorithm

We are now in position to introduce a shape gradient algorithm for the considered problem . As
suggested by the name, it relies on the knowledge of the first-order shape derivative £'(£2) to produce a descent
direction 8 € ©,4 for L. Higher order algorithms, relying for instance on the (exact or approximate) shape
Hessian of £ could improve considerably the efficiency of this algorithm. Unfortunately, they generally are
much more tedious to devise, on both theoretical and numerical sides. Nevertheless, it is worth mentioning
the interesting work [I77] in this direction.

The Structure Theorem [2.3] states that only the normal component of the deformations undergone by
play a role in the shape derivative of ‘reasonable’ objective functions. Actually, the shape derivatives of all
the functionals we shall get interested in enjoy a slightly more precise structure (see theorems and .
They are actually of the form,

Oug D0~ / v (6.n) ds,
r

for a certain scalar field v defined over I', which makes the computation of a descent direction for £(2) very
easy: letting
0=—-vn

in the asymptotic expansion ([5.44)) yields, for ¢ > 0 small enough:
L(Q) = L(Q) —t /qﬂ ds + o(t) < L(Q),
r
that is, 6 is a descent direction for £ at Q.

A generic algorithm for shape optimization using shape sensitivity analysis is then derived from these
considerations as follows:

Starting with an initial guess QY, for n = 0, ... till convergence,
1. Compute the solution ugn~ to the linear elasticity system on Q" and (if need be) the adjoint state
pan,
2. Infer a descent direction 8™ € ©,,4 for the objective functional at stake, along the lines of section
3. Choose a descent step 7 > 0 small enough so that J(Q%.p.) < J(Q").

4. The new shape is obtained as Q"1 = Q" ...

2.2.3.3 A look at velocity extension and regularization

The above shape optimization algorithm uses a descent direction under the form of a vector field defined
on the free boundary I" of the current shape 2. Although it is the only needed piece of information to
carry out the theoretical algorithm, we shall see soon that it will be very convenient to work with a velocity
field which is consistently extended to the whole space R? (or at least a neighborhood of T'). What’s more,
this descent direction may prove very irregular (i.e. present sharp variations). On the practical side, this
may cause uncontrolled oscillations on the boundary of the considered shapes, and jeopardize the numerical
stability of a shape optimization algorithm (see [232], chap. 6).

These are classical issues in gradient-based optimization algorithms. The usual solution to both problems
consists in changing scalar products when identifying a descent direction 6 from the formula for the shape



64 CHAPTER 2. SHAPE OPTIMIZATION

derivative (2.2.3.2) [64] [162]. For instance, let us give a hint of how to extend and regularize the scalar field
v into another scalar field v (note that one could also chose to extend and regularize directly the velocity
field # = —vn). Let V be a Hilbert space which is composed of functions enjoying the desired regularity for
U, a a coercive bilinear on V form which is close to I (so that v is hopefully close to v). Usual choices in our
context are V = H!(R?), and:

Vo, €V, a(d,) = a? /R V.V dr + /R oo de,

for a small o > 0, which can be interpreted as a regularization lengthscale. Then v is searched as the unique
solution in V to the variational problem:

Vo eV, a(’ﬁ,gb)z/vqﬁds.

T

See [162] for a discussion over the importance of this procedure in the context of shape optimization.

At this point, some numerical issues still need to be solved, the most serious of which being the question
of how to couple this theoretical framework with a numerical method for representing and deforming shapes.

2.3 Shape optimization using the level set method

In this section, we dwell on the description of the level set method for shape optimization, as originally
proposed by G. Allaire, F. Jouve and A.-M. Toader in 2004 [14], following previous works of J. Sethian and
A. Wiegmann [278] and S. Osher and F. Santosa [243] (see also [319]). The reason for doing so is twofold:
first, we shall use this method as such in chapters [4] and [} what’s more, the mesh evolution method for
shape optimization proposed in chapter [J]is closely modeled on it.

Let D a fixed computational domain, in which all the shapes Q°,...Q0", ... produced during the shape
optimization process are to be included. D is meshed once and for all, e.g. using a Cartesian mesh (which
allows for the use of finite difference schemes for operations related to the Level Set Method). Each shape
O™ is represented as the negative subdomain of a level set function ¢™ (numerically discretized at the nodes
of the Cartesian mesh of D).

The main problem is that, as the mesh of D is fixed, no mesh of the shape Q2" is available to perform
the mechanical analyses needed when it comes to computing the shape gradient J'(2). This difficulty is
overcome by approximating the state problem, posed on ", with another problem in linear elasticity, posed
on the whole domain D. The Ersatz material approach consists in filling the complementary part D \ © of
a shape 2 C D with a very soft material of Hooke’s tensor €A, € < 1. The resulting approximated problem
on D reads then:

—div(Age(u))=f inD
u=0 onT'p | (2.18)
Age(u)yn =g on 'y

where the total Hooke’s tensor Aq is defined as:

A ifxe

Vo € D, AQ(fﬂ):{ eA ifz e D\Q

Consistency of this approach can be shown (see [g]).

The shape optimization using the level set method can now be summed up as follows:
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Starting with an initial guess QY for n = 0, ... till convergence,

1. Compute the solution ugn to the linear elasticity system (2.18]) on D, and (if need be) the adjoint state
pan, using the Ersatz material approximation.

2. Infer a descent direction 6™ € ©,4 for the objective functional at stake, along the lines of section
(which is consistently extended to D), and extend it to a neighborhood of 92", as evoked in section

2233

3. Choose a descent step 7™ > 0, and solve the Hamilton-Jacobi equation:

9 +6".V¢=0 on[0,7"] x D
p(t=0,.)=¢" onD

e.g. using one of the numerical schemes described in chapter
4. The new shape Q"*1 is defined as Q"1 := {z € D, (7", z) < 0}.

We end this section by giving some examples, obtained using the level set method, which illustrate each
one of the above functionals of the domain (2.7]2.8)2.9)). The first two are excerpted from [14], whereas the
last one stems from [I3]. We shall reproduce these examples in different contexts in the next chapters.

Example 2.2. Let us start with the most famous example in structural optimization, namely the benchmark
Cantilever test case. A cantilever, included in a computational box D of dimensions 2 X 1, equipped with
a Cartesian mesh of 160 x 80 elements, is clamped at its left side, and a unit vertical load is exerted at the
centre of its right side (no body force is applied). The compliance of the structure is minimized, under
a volume constraint enforced using a fixed Lagrange multiplier £ = 150. 150 iterations of the optimization
process are performed, and the results are reported on figure 2:4]

SRR 200

Figure 2.4: (Left) Boundary conditions, (middle) initialization, and (right) resulting shape in the cantilever
test case (reprinted from [I4]).
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Example 2.3. We search for the optimal shape of a gripping mechanism: the problem consists in getting
a maximal displacement of the jaws of a grip, as a response to prescribed traction loads. Details on the test
case and results are reported on figure This test case is especially interesting for at least two reasons: on
the mathematical side, the minimization problem of a least-square functional such as is not self-adjoint,
as is the one of the compliance - see remark On the numerical side, this test case happens to be
very sensitive, notably due to the very thin features which have to develop so as to bestow enough flexibility
to the shape.

Example 2.4. Stress reduction has long been a topic of major interest in structural optimization. The last
proposed test case consists in minimizing the stress-based criterion in the situation depicted on figure
(left). The localizing weight k is taken equal to 1, except in a small region around the load point and
the fixation wall, and several values for the exponent p are considered. Notice that, for large values of p, the
reentrant corner - which is the area of highest stress concentration - is rounded up.

Remark 2.6. In section [2.2.1] we hinted at the fact that all the produced shapes by means of the generic
algorithm of section [2.2.3.2 should be homeomorphic to one another. The conclusions of examples and
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Figure 2.5: (Left) Boundary conditions, (middle) initialization, and (right) resulting shape in the gripping
mechanism test case (reprinted from [I4]).
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Figure 2.6: (Left) Boundary conditions, (middle-right) respective final shapes in the L-Beam test case, for
values of the exponent p = 2,10 (reprinted from [13]).

[2:3] may then seem weird in this regard, since the number of holes of the shapes have changed from the
initial to the final stages. This is actually a numerical hack of Hadamard’s method: at some iteration n,
the descent step 7™ in step (3) of the previous algorithm has not been chosen so small that (I 4+ 70™) is a
Lipschitz diffeomorphism (yet, decreasing of the objective function is assessed).
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Meshing issues lie at the upstream of most numerical considerations: indeed, meshes are commonly used
as a means for representing or deforming shapes in computer graphics; on a different note, in the field of
numerical simulation of mechanical or physical phenomena, the bulk of techniques (e.g. finite element or
finite volume methods) rely on a mesh as a computational support.

This (admittedly verbose) chapter is aimed at providing a non exhaustive overview of the stakes and
salient features of three major topics around meshing, namely:

— Mesh generation: building a mesh out of a set of numerical data (e.g. a CAD representation) regarding

a mechanical part is generally the first step in simulating related phenomena.

— Mesh deformation: a mesh accounting for an evolving domain may have to be deformed while tracking

the underlying physical process.

— Mesh modification: not all meshes are equally suitable as supports of numerical simulations, and

‘ill-shaped’ meshes may have to be ‘improved’ in this perspective.

Here we only deal with simplicial meshes (i.e. meshes whose elements are triangles in two dimensions,
tetrahedra in three dimensions), mostly from the standpoint of numerical simulation. Besides, we are espe-
cially interested in the three-dimensional context, in which meshing features often do not arise as straightfor-
ward generalizations of the two-dimensional ones. The material presented below is therefore systematically
discussed with the three-dimensional case in mind. We shall however give a hint of some simplifications
available in two dimensions, when there are.

In truth, many meshing techniques are application-specific. In this chapter, we limit ourselves to outlining
the main facets of the discussed topics. In chapter 8 we shall be focusing extensively on one implementation
of a (re)meshing algorithm. Hence, whenever possible, the general idea of a technique will be given in this
chapter, referring then to chapter 8| for an illustration in the situation of a particular application.

This chapter is organized as follows: in section [3.1] several definitions and notations are introduced,
as well as two important concepts, those of element quality, and Riemannian metric associated to a size
prescription, which we shall encounter throughout a substantial part of this manuscript (chapters @m and
. Then, in section we present the main techniques for generating a tetrahedral mesh, or a surface mesh,
depending on the form under which the domain (or surface) to mesh is supplied to the algorithm. Although
this manuscript is not concerned so much about mesh generation issues, we indeed saw fit to give a clue
of the main methods for they have a lot in common with further topics discussed hereafter. What’s more,
the difficulties inherent to these methods may explain several biases in the device of the mesh evolution
strategy presented in chapter @ Section deals with modification (or optimization) of tetrahedral or
(three-dimensional) surface meshes: in particular, the most common operations are detailed. Eventually,
section [3:4] is devoted to the topic of mesh evolution; the main goals and difficulties are overviewed, and
several particular methods, useful in different contexts, are presented.

3.1 Generalities around meshes: definitions, notations, and useful
concepts

3.1.1 Definitions and notations

Credit where credit is due, let us start by defining the objects at stake in this chapter:
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Definition 3.1. Let Q C R? (d = 2,3) a bounded, open, polygonal domain. A simplicial mesh T (trian-
gulation in two dimensions, tetrahedralization in three dimensions) of Q is a finite collection (K;)i=1,.. Ny
of closed d-simplices (triangles in two dimensions, tetrahedra in three dimensions), such that the following
conditions hold :

1. The elements of T form a covering of ) in the sense that : Q = UZ]\Z K;.

2. Each simplex of K; € T has non empty interior: K; # ().

3. Every two distinct simplices K;, K; € T, i # j have disjoint interiors : K; N K; = ().
These requirements are often supplemented with the following condition:
4. For every two distinct simplices K;, K; € T, i # j, the intersection K; N K is
— either a point, or a common edge to K; and K; in two dimensions,
— either a point, or a common edge or a common (triangular) face to K; and K; in three dimensions.

The vertices of the simplices K; € T are called the vertices of T ; likewise, the edges of those simplices are
called the edges of T, etc...

Condition (2) above bans from the definition of a mesh those sets of simplices containing flat elements,
whereas condition (3) prevents the considered meshes from containing overlapping elements. In the sequel,
such sets of simplices will sometimes be referred to as invalid meshes. The last condition (4) is called the
conformity assumption, and is sometimes not required in the definition of a mesh. It roughly states the
two-dimensional (resp. three-dimensional) meshes we are interested in have triangles (resp. tetrahedra)
matching in an edge-to-edge (resp. face-to-face) fashion. See figure for illustrations.

(a) (b) (c)

Figure 3.1: (a) Invalid mesh: triangle K; (in red) overlaps several other triangles; (b) non conforming mesh:
triangles K; and K; have an intersection which is neither a vertex, nor an common edge; (¢) a conforming
mesh, in the sense of definition

Most often, we will speak of a mesh in R¢ without mentioning the associated polygonal domain. We will
also improperly refer to a mesh of a polyhedron ‘close’ to a non polyhedral domain {2 as a mesh of ).

Definition 3.2. Let T a mesh in R%, x € T a vertex, pg € T an edge.
— The ball of point x is the (closed) set B(x) of simplices K € T such that x is a vertex of K.
— The shell of edge pq is the (closed) set Sh(pq) of simplices K € T such that pq is an edge of K.

In this manuscript, we will naturally be led to consider meshes that are included in a larger mesh in a
conforming fashion:

Definition 3.3. Let T a simplicial, conforming mesh in R%. A submesh of T is a finite collection T! of
closed d-simplices (Kj)j=1,... Ny, such that, for any j =1,...,Nr,, K; is an element of T .

Besides, we will also consider meshes of entities of codimension 1, that is curves in R?, and especially
surfaces in R3. The forthcoming definitions are dedicated to the last case, but are easily adapted to meshes
of the boundary of two-dimensional domains.
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Definition 3.4. Let I' C R? a compact polyhedral surface, with or without boundary. A surface mesh or
triangulation S of T is a collection (T})i=1,.. Ns of closed (two-dimensional) triangles T; C R3 enjoying the
following properties:

1. The elements of S form a covering of I' in the sense that : ' = Uﬁsl T;.

2. Each triangle of T; € S has non zero two-dimensional Hausdorff measure (i.e. is not ‘degenerated to
an edge or a point’).

3. The intersection T; N'T; of every two distinct triangles T;,T; € S, i # j is included in the set of edges
of triangles of S.

and occasionnally the following conformity property:

4. For every two distinct triangles T;,T; € S, i # j, the intersection T;NT} is either a point, or a common
edge of T; and T;.

Once again, the vertices of the triangles T; € T form the vertices of S, etc...

Like in the case of domains, we shall actually speak of meshes of non polyhedral surfaces.

The notions of ball of a point, and shell of an edge defined previously in the case of simplicial meshes
of domains extend straightforwardly to the case of surface triangulations. However, when dealing with such
objects, some specific features may be considered:

Definition 3.5. Let S be a surface mesh in R3.
— One says that S is manifold, provided the associated polygonal surface ' is a compact submanifold of
R3, with or without boundary.
~ IfT' C R? is a smooth compact surface, with or without boundary, one says that S interpolates T if
every vertex x € S belongs to I.

To each simplicial mesh 7 in R3, a natural surface mesh S is associated, collecting the external (tri-
angular) faces of the tetrahedra of 7. The surface mesh constructed in this way accounts for a compact
polygonal surface of R? without boundary.

Definition 3.6. Let T be a mesh in R?, S the associated surface mesh, and let x € T be a surface vertez,
i.e. © € St. The surface ball Bs(xz) of x is the set of surface triangles T € S sharing x as a vertez.

This surface mesh S plays a central role when considering 7, insofar as it concentrates all the information
about the geometric approrimation of the underlying continuous geometry.

3.1.2 Appraising the quality of a mesh

Independently of how well a mesh 7 approximates the continuous geometry €2 it is intended for - we will
come back to this problem of geometric approximation of a continuous domain in chapter [8]- the ‘numerical
performances’ of T are also greatly impacted by the shape of its elements K € 7. Indeed,

— Many classical a priori estimates for the finite element method involve the quality of the computational

mesh 7 through the aspect ratio o of its elements, defined as [91]:

ox =K. (3.1)
hk
where pg is the inradius of a simplex K - the radius of its inscribed sphere - and hg is the diameter
of K i.e. the length of its longest edge. This measure only depends on the shape of the considered
simplex and not on its size. From a practical point of view, this implies that the accuracy of a finite
element computation performed on 7 is of course influenced by the size of its elements, but also by
their being ‘well-shaped’.
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— The accuracy of the P! Lagrange interpolation of a given smooth function f : R? — R on a mesh 7 in
R? is also greatly influenced by the shape of its elements; see the discussion in [282].
— The accuracy of the approximation of geometric quantities (normal vectors, curvatures estimates, etc...)
attached to a surface I' by means of numerical schemes performed on an associated surface mesh S is
also highly dependent on the shape of its elements and its connectivities [227].
Consequently, any mesh operation (generation, modification, deformation) should be performed keeping in
mind the concern of imposing, restoring or maintaining high-quality elements in mind.

Actually, many definitions for the quality of a simplex K C R? could be adopted, all of them being
equivalent from the theoretical point of view as long as they allow to discriminate ‘ill-shaped’, nearly de-
generate (flat) elements from ‘well-shaped’, almost equilateral ones. For instance, in addition to the aspect
ratio , some authors think it better to assess the quality of a d-dimensional simplex K based on the
minimum dihedral angle between two of its faces, or on the following ratio:

Vol(K)
OPHICHE
where na = d(d + 1)/2 is the number of edges of a d-dimensional simplex, e; are the edges of K, and £(e;)

stands for the length of e;. A huge literature is devoted to the topic of quality functions for simplices: see
for instance [145] §18.2, or [3], 204] for other examples and comparisons.

QK) = ; (3-2)

wla.

From the numerical standpoint, one should be very careful to select a quality function which is neither
too severe in evaluating a simplex as a ‘bad’ one (i.e. evaluating an element as ‘bad’ as soon as it slightly
deviates from the ideal shape of an element), for it would prevent almost any operation to be held on meshes,
nor too indulgent, for it would allow for meshes with too many ‘second-rate’ elements.

3.1.3 The Riemannian paradigm for size and orientation specifications in mesh-
ing

In various applications, an appreciated increase in accuracy or computational efficiency can be achieved if
the computational mesh complies with some user-specified size or orientation information (see the examples
of figure [3.2)).

Following the lead of the pioneering work [311], a very convenient and elegant way to encode both size and
orientation requirements makes use of a Riemannian framework. In particular, it allows for a straightforward
(in theory) generalization to the anisotropic case of most of the concepts of this chapter (mostly presented
in the isotropic setting), up to an adequate change in the definitions of distance and volume.

Definition 3.7. Let M be a Riemannian metric over R? (i.e. at each point x € RY, M(z) is a symmetric,
positive definite d X d matriz); then,
~ the length L3 () of a differentiable curve «y : [0,1] — R? with respect to M is defined as:

1
tarly) = / N ORI OR G

— The volume Vy (K) of a simplex K (with respect to M) is:
Vu (K) :/ Vdet(M(x))dx.
K

~ The distance dy(z,y) between two points x,y € R? in the Riemannian space (Rd, M) is defined as:

d]v[(x,y) = inf éM(’y).
yec! ([0,1],R?)
v(0)=z,v(1)=y
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3.5723E-02 1.0717E-01

| —— |
0.0000E+00 7.1447E-02 1.4289E-01

Figure 3.2: (Left) A physical phenomenon showing sharp variations near the reentrant corner of a L-shaped
domain can be accurately captured using a mesh whose vertex density is concentrated in this region; (right)
the geometry of a cylinder is optimally described using stretched elements, oriented along its principal axis.

Assume now that a Riemannian metric M is given on R?. An adapted mesh T in R? with respect to M
is a unit (or, in a more realistic way, quasi-unit) mesh with respect to M, that is, all its simplices have edges
lengths equal to 1 (resp. lying in [1/v/2,1/2]), in the sense of definition (note that in practice, M(x) is
defined only at the nodes of T - or any background structure - and interpolated from these values [145]).

In the particular case that M is a multiple of the identity matrix, that is, for any z € R?, M(x) = h(x)I,
with h(x) > 0, the associated size prescription is said to be isotropic, and h is the associated size function.

So as to better understand the connection between this notion of adapted mesh to a Riemannian metric
M and a size and orientation prescription, consider the following idealized situation: let 7 a unit mesh with
respect to M, and xg a a vertex of T such that M(z) = M is almost constant around xg. Then, every
simplex K of T lying in the ball B(xg) of z¢ is inscribed in the ellipsoid ®ps(xg), defined as:

d
Ppr(zg) = {z € RY, dy(z,20) = 1} = {x = in e; € R, N2 4 .. 4 Mga? = 1} ,

=1

where the eigenvectors ey, ..., eq of M account for the directions of the principal axis of this ellipsoid, while the
associated eigenvalues A1, ..., A\g are linked to the principal radii (or prescribed lengths) hy, ..., hq in direction
€1,...,eq by : h; = ﬁ, i=1,...,d (see figure . If the size prescription is isotropic (i.e. all the h; are
equal), M is a scalar multiple of the identity matrix: M = aly, o > 0, and only the size function o may be
considered.

Eventually, note that, especially when the prescribed size feature is anisotropic, very stretched elements
may be desired (see again ﬁgure, which do not fulfill the standard quality requirements, hinted at in the
previous section. These quality functions must be traded for their anisotropic counterparts, obtained e.g.
by using the very same expressions , except that the distance an volume notions are those supplied
by M.
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s (o)

Figure 3.3: The unit ellipsoid ®s(z0) associated to a (constant) Riemannian metric M, with principal axis
e1, €2, e3, and associated principal radii hq, ho, hs. In blue, a unit simplex K with respect to M, sharing xg
as a vertex, is depicted.

Remark 3.1. The metaphor at the place of honor in this section has been carried further in the work [7],
which points out at a duality between a Riemannian structure M over R? and a unit mesh of a given domain
Q with respect to M. This notably allows for a particularly elegant understanding of the dependence on the
mesh of the interpolation error of a smooth function.

Representative examples of construction (and use) of a size map or a Riemannian metric in the perspective
of mesh adaptation will be provided in chapters [6] [7] and [8] and we shall address additional related issues
(such as that of mesh gradation) in chapter

3.2 Mesh generation techniques

This section is intended as a superficial glimpse of the two intimately linked topics of volume and surface
mesh generation. Few theoretical results are available to assess that a particular method will always succeed
- at least with satisfying computational efficiency. For this reason, a great deal of the efficiency of any
mesh generation method lies in the resort to some heuristics as well as on the attention paid to numerical
implementation (see [145] for further details). In this view, the forthcoming descriptions are mere prototypical
outlines, which are hopefully representative of the main features of each method.

3.2.1 Two and three-dimensional ‘volume’ mesh generation

Constructing a simplicial mesh 7 of a polyhedral domain Q C R? (d = 2 or 3) in an automatic and robust
fashion is possibly the most crucial problem related to meshing in numerical applications. A conceptual gap
in difficulty lies between the two- and three-dimensional instances of this issue, which is highlighted by the
following theoretical facts:

— In two dimensions, any polygonal domain {2 with non self-intersecting (i.e. manifold) boundary can be
endowed with a triangulation whose vertices are exactly those of the boundary polygon. The proof of
this fact (see [I51], §3.3.3) is moreover constructive. In practice, various and very robust algorithms
exist in two-dimensions, which are guaranteed to succeed; see for instance [80], chap. 2, for a more
detailed presentation.

— In three dimensions, even very simple polyhedra {2 cannot be meshed without introducing internal
points (see figure . Actually, the problem of deciding whether a given (non convex) polyhedron can
be meshed without introducing additional points has been proved to be NP-complete in [272]. In the
same vain, for any k € N, the problem of deciding whether a polyhedron can be meshed by introducing
less than k additional vertices (either on the surface, or in the interior) is NP-hard. Conversely, it
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has been proved in [76] that a three-dimensional polyhedron with n vertices can always be meshed,
provided a (provably optimal) number O(n?) of additional vertices is added.

Figure 3.4: (Left): In two dimensions, any polygonal domain can be triangulated using only the vertices of
its boundary; (right) in three dimensions, Schénardt’s polyhedron is a non-convex polyhedron obtained by
twisting a certain partition of a regular prism. It cannot be meshed without introducing any internal point.

In most applications, the domain 2 to be meshed is described via its boundary 952, which is in turn often
supplied as an associated surface mesh (the question of how to construct such a surface mesh is overviewed
in section [3.2.2). The two most famous mesh generation methods, presented in sections [3.2.1.1fand [3.2.1.2]
assume input data of this kind. However, in section we shall examine a rather different context.

3.2.1.1 Delaunay-based mesh generation

Delaunay-based mesh generation algorithms take as an entry point a surface triangulation S (a boundary
mesh in 2d), with the goal to mesh the interior polygonal domain Q. Actually, this problem can be posed
in the more general setting of triangulation of piecewise linear complexes (i.e. sets of entities such as edges,
faces that do not necessarily form a closed surface) [280], but we will not need so much generality in the
short forthcoming overview.

Delaunay-based methods are probably among the most popular mesh generation methods, owing to their
great robustness and versatility: we will encounter a great part of the numerical tools it involves (and notably
the vertex insertion procedure) in other fields related to meshing.

3.2.1.1.1 Definition and properties of the Delaunay triangulation of a set of points The mesh
generation method under scrutiny in this section is named after a particular partitioning of the space asso-
ciated to a given set of vertices, namely its Delaunay triangulation.

Definition 3.8. Let P = {p;};,_;
— A triangulation® of P is a simplicial mesh T of the (polygonal) convex hull conv(P) of P.

— A Delaunay triangulation of P is a simplicial mesh T of conv(P) which satisfies the empty sphere
criterion: for every simplex K € T, the open circumscribed sphere to K contains no point of P.

N @ finite set of points in R4,

Each set of points P enjoys at least one Delaunay triangulation, which is moreover ‘essentially unique’ -
it is actually unique when no d + 2 points of P lie on a common d-dimensional sphere; if the converse holds,
simple transformations allow to pass from one Delaunay triangulation of P to another [I51]. Thus, commit-
ting a small abuse in terminology, we will sometimes talk about the Delaunay triangulation of a set of points.

The Delaunay triangulation of a set of points P is especially interesting since it can be considered as the
‘best’ triangulation of P from various standpoints, as examplified by the following proposition.

1. In the literature, the terminology ‘triangulation’ is widely used in this context, irregardless of the space dimension. Other
denominations can be found, e.g. that of tetrahedralization (in three dimensions), or simplicial decomposition.
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Proposition 3.1. Let P = {p;},_, y a finite set of points in R4,

1. (In the particular case when d = 2) For any triangulation T of P, denote as a(T) the minimum angle
of a triangle of T. Then, among all the triangulations of P, there is a Delaunay triangulation that
mazimizes a(T).

2. (In the particular case when d = 2) For any vector F = (f1, ..., fx) € RY, and any triangulation T of
P, denote as w7 (F) the P! Lagrange finite element interpolate of F over T, that is the unique such
function which fulfills:

Vn=1,...,N, 77 (F)(pn) = fn-

Then, for any F, any Delaunay triangulation of P minimizes the roughness criterion, defined as:

(T, F) = |77 (F)| 51 (convp))

where |-| g1 (convpy) stands for the H' Sobolev semi-norm.

3. For any d > 1, let f : R? = R be any quadratic function. For any integer 1 < p < oo, the LP
interpolation error e,(T) of f over a triangulation T of P,

ep(T) = |If = 77 (O)lleconvep))s

where w7 (f) is the P! Lagrange finite element interpolate of f over T, reaches a minimal value over
the set of all the triangulations of P at a Delaunay triangulation of P.

4. For any d > 1, any real ¢ > 0, let C**(R?,R) the set of C* scalar functions over R, whose Hessian
matriz’s spectral radius is uniformly bounded by c. Define the worst-case interpolation error of a
triangulation T of P as:

wee(T) =  max _r . .
(T) =, _nax, 11 = wr(F)llz=(eonuery
Function wece(.) reaches a minimal value over the set of all the triangulations of P at a Delaunay
triangulation of P.

As for proofs, see [280] for points (1) and (4). Property (2) can be found in [266], and (3) was originally
announced and proved in two dimensions in [267], then extended to the general case in [225] (with a com-
pletely different proof).

Properties (1) and (2) are probably the most relevant, as far as the optimality of a Delaunay triangulation
of P is concerned. While the first one speaks for itself, the second one accounts for the fact that, if we are in
search of a triangulation 7 of P to interpolate linearly any data vector F' € RV attached to P, a Delaunay
triangulation of P conducts to the ‘smoothest’ possible graph. Unfortunately, both properties fail in three
dimensions, which is an expression of the fact that the Delaunay triangulation is not as ‘good’ in three
dimensions as it is in two dimensions. It is actually likely to contain particularly ill-shaped elements of a
particular type, that of the so-called slivers (see figure .

Delaunay-based mesh generation methods classically proceed within two main steps.

3.2.1.1.2 Step 1: generation of the Delaunay triangulation of a set of points This first step is
aimed at producing the Delaunay triangulation of the set P = {p,},_, 5 of vertices of the input surface
triangulation S. We mainly focus on Bowyer-Watson’s incremental épf)roach (sometimes referred to as
the Delaunay kernel), according to which the points of P are iteratively inserted, so that a sequence Ty,
n = 1,..., N of Delaunay triangulations is produced, with the property that each triangulation 7, contains
P1y---sPn

A usual trick consists in generating actually the Delaunay triangulation of the augmented set of vertices
P =PUC, where C is the set of vertices of a large cube D (for simplicity), which encloses all the points of P.
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Figure 3.5: A sliver (in bold) is an almost flat tetrahedron, whose edges are all of acceptable lengths, and
whose circumradius is not excessively large with respect to its dimensions.

The main benefit of this operation is that, starting from a Delaunay triangulation 7o of D (which is easily
produced), inserting each point p,, n = 1,..., N, in the mesh is eased by the fact that p, always belongs to
one of the simplices of the previous triangulation 7, _.

More accurately, the algorithm operates as follows (see figure :

— Initialization: the mesh 7 of D is a Delaunay triangulation composed of five tetrahedra.
—Forn=1,...,N,
1. Find a simplex K € 7,_1 which contains p,. Existence of such an element is guaranteed since
Pn € conv({p1,...;Pn-1}) = D.
2. From K, travel 7,_; by adjacency and build the cavity C,, of p,, defined as the set of simplices of

Tn—1 whose open circumsphere contains p,. It can be shown that Cp,, is a star-shaped polyhedron
with respect to p,.

3. Delete all the elements of Cp,, in 7,,—1, and add the elements of the ball B, , defined as the simplices
formed by joining p, to the external faces of the cavity C,, . It can be shown that the resulting
triangulation is Delaunay.

This procedure is often summed up with the schematic equation:

Tn=Tn-1—Cp, +Bp,.

At this point, it is worth mentioning a numerical difficulty attached to the construction of the cavity
Cp,, of the points p, € P (step (2) in the previous algorithm). Whereas a theoretical result guarantees that
Cp,, is star-shaped, it may not not necessarily be the case in practice, due to round-off errors. Hence, a
correction procedure for the cavity has to be implemented, to assess that it is indeed star-shaped, and repair
it if need be; see [I51], chap. §2.6.3 for details. We shall come back later to this issue, in a context where
the Bowyer-Watson’s incremental procedure is used to insert vertices in a mesh which does not comply with
the Delaunay requirements (and the cavity is not necessarily star-shaped with respect to the point).

For the sake of completeness, let us eventually mention the other two classical approaches to create the
Delaunay triangulation of points:

— Lawson’s algorithm (also known as the flipping algorithm), illustrated on figure is a very elegant
means for generating the Delaunay triangulation of a set of vertices, which is unfortunately restrained
to the two-dimensional case (however a partial extension holds to the three-dimensional case [I84]).
It relies on the fact that, in two dimensions, any triangulation of conv(P) can be transformed into a
Delaunay triangulation using only edge swaps, on account of the two following facts:
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Figure 3.6: Insertion of a point p in a Delaunay triangulation using Bowyer-Watson’s procedure; (a): iden-
tification of the polygonal cavity C, of point p in the current triangulation 7,; (b): removal of C,, and (¢):
reconnection of p with the vertices of C,: the ball B, of p is introduced.

— The Delaunay lemma states that the (global) Delaunay property of a triangulation of P can be
checked locally: a triangulation 7 of P fulfills the Delaunay criterion if and only if, for any edge ab
of T shared by two simplices K1 = abc and Ky = abd, the open circumsphere to K; does not contain
the fourth vertex d of the configuration. This property actually holds in any dimension.

— The following alternative is only available in two dimensions: for any edge e = ab shared by two
simplices K1 = abc and Ko = abd, either the local Delaunay criterion is satisfied, or the configuration
can be swapped: edge e and the two triangles K; and K> are destroyed, and they are replaced by
the alternate configuration, consisting in the diagonal edge € = cd, shared by triangles K; = acd
and Ky = bed, the latter configuration satisfying the local Delaunay criterion.

Figure [3.7 shows an example of Lawson’s algorithm in motion.

Figure 3.7: Lawson’s algorithm in progress; (a) the two triangles sharing the red edge do not satisfy the
local Delaunay criterion (the circumcircle of 77 appears in dotted line), and the edge must be swapped;
(b) the resulting two triangles from the previous swap now satisfy the local Delaunay criterion, but the
configurations near the red edges still do not; (¢) resulting mesh: all the edges satisfy the local Delaunay
criterion, and the global mesh fulfills the Delaunay property.

— The weird parabolic lifting algorithm exploits the connection between Delaunay triangulations and
convex hulls: roughly speaking, the Delaunay triangulation of a set of vertices P = {pn}, oy C R4
can be seen as the projection onto R? of the (d + 1)-dimensional lower convex hull of the ‘lifted set’
Pt = {p;‘;}neN C R%, obtained by projecting the points p,, onto a parabola:

Vn=1,...,N, p: = (pm |pn|2)'
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Although this point of view is very appealing - and of great use in theoretical studies, few concrete
algorithms based on this property, devoted to generating the Delaunay triangulation of a set of vertices
are known (see however [48]).

3.2.1.1.3 Step 2: enforcement of the entities of ¥ in the resulting mesh The first step ends with
a mesh 7 of D, whose vertices are exactly those of & (plus the corners of D). Unfortunately, unless  is
convex, this does not imply that the higher order entities (edges, or faces) of S appear in ’f, and no mesh of
Q can thus be obtained.

Some special treatment has then to be applied to 7~', to modify it into a new mesh 7 of D, in which all
the entities of S explicitly appear, so that a mesh of {2 exists as a submesh of 7, in the sense of definition
All the usual methods to achieve this purpose rely on the notion of Steiner point:

Definition 3.9. In the context of Delaunay-based mesh generation, a Steiner point is a vertex that has been
inserted in the resulting mesh T of D, which is not a vertex of ¥ (neither of D), and has been inserted in
order to help the enforcement process of the entities of S into T .

Henceforth, the problem of enforcing the entities of S into T can take various context-dependent forms:

— One could require the entities of S to appear ezactly in the final mesh 7T, i.e. the edges of S are
edges of T, and similarly for faces. In the literature, this issue is referred to as the boundary integrity
constraint. It is a crucial feature in cases when, for instance, the domain to mesh  is a subdomain of
a larger domain, and its boundary S is shared by other subdomains.

— On the other hand, one could only ask the entities of S to appear weakly in 7T, i.e. as a union of entities
of T (e.g. an edge of S exists as a union of edges of 7). This constraint is of course more permissive
than the former one.

Whatever the retained acceptation, as for the boundary enforcement constraint, several different strategies

can be followed to tackle the problem of enforcing the entities of S into T

— A first class of methods - see for instance [235] for a three-dimensional work - cling to getting a Delaunay

triangulation T of D, come what may. The entities of S are enforced in 7 by wisely adding Steiner
points to the set of inserted points, in such a way that any Delaunay triangulation of this new set of
points contains the entities of S (either exactly or weakly). The resulting mesh 7 sometimes bears
the name of conforming Delaunay triangulation of € in the literature. The process of augmenting P
with adequate Steiner points can be thought of a priori: in [250], an algorithm is presented which
refines S into a surface triangulation ‘Si which is Delaunay admissible, in the sense that any Delaunay
triangulation of the set of vertices of S contains exactly the entities of S. Unfortunately, the refined
surface S may prove very ill-shaped, due to excessive refinement.
Generally speaking, aiming at getting a conforming Delaunay triangulation of € is a strong requirement,
for a lot of Steiner points may have to be inserted to this end. In [47], examples are provided of two-
dimensional boundaries S, enjoying m vertices and n edges whose conforming Delaunay triangulations
must have at least O(mn) vertices.

~ Following the lead of [85], several authors have proposed to enforce the entities of S into 7 in the
sense of constrained Delaunay triangulations. Grossly speaking, a constrained Delaunay triangulation
behaves ‘almost-everywhere’ like a Delaunay triangulation, except for some particular constrained
entities, that are precisely those we need to enforce. Constrained Delaunay triangulations (which
are not Delaunay triangulations, properly speaking) retain most of the good properties of Delaunay
triangulations (see [280] for an overview). Three-dimensional algorithms exist to produce a constrained
Delaunay triangulation, which contains the entities of S under weak form. Although no theoretical
guarantee assesses that building such constrained Delaunay triangulations requires much fewer Steiner
points than their conforming Delaunay triangulations counterparts, this is reported true in numerical
practice [281]. This method is used for instance in the work [284], and is complemented by a heuristic
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procedure to remove the Steiner points introduced on the entities of S in the case when these entities
are expected to exist exactly in 7.

Eventually, some authors propose to completely drop the Delaunay criterion, and enforce the entities of
the boundary § in T using local topological mesh operators, namely edge swaps (in combination with a
procedure for adding Steiner points to the mesh). In [I54], the authors prove that, in two dimensions,

all the boundary edges of S can be exactly enforced in 7 without adding any Steiner point, and an
associated numerical procedure based on edge swaps is described (see figure [3.8)).

Figure 3.8: Enforcement of the missing edge pq in a mesh, using only edge swaps.

The corresponding three-dimensional procedure is more involved. In [I54], a robust algorithm is
described for enforcing exactly the entities of S into 7. This methods relies heavily on edge swaps
(see section for a presentation of this operator), the use of which is enabled by the insertion of
several Steiner points. This study is complemented by the work [I53], which proposes another method,
allowing the insertion of Steiner points on the entities of S, provided their removal in the end of the
process is possible. This last method makes it possible to tackle the few cases in which the former fails
because of round-off errors, making it impossible to add Steiner points.

Remark 3.2. Because the enforced surface S is assumed to be the boundary of a polyhedral domain, it
is implicitly assumed to be a manifold surface, in particular, it is not self-intersecting (and must be so, for

enforcing S in T would prove impossible, should the converse hold). Interestingly enough, these methods
allow to detect whether a given surface triangulation is self-intersecting, which is far from a trivial problem.

3.2.1.1.4 Some post-processing issues The boundary enforcement procedure of section ends
with a mesh 7 of D (whether be it a Delaunay triangulation or not), in which the surface mesh S has been
enforced (in whichever sense). Two additional operations are classically performed:

— Strictly speaking, the obtained mesh at this point is not yet a mesh of €2, but rather a mesh of the

larger box D, a submesh of which is a mesh of €. To recover a ‘true’ mesh of §2, one resorts to a
coloring algorithm to remove all the ‘exterior’ tetrahedra of D\ Q from 7: in a nutshell, it consists
in starting from one well-identified exterior element K € T (e.g. one containing a corner of D as a
vertex), then traveling 7 from K by adjacency, passing from on element to the other through the
triangular faces that are not faces of S. The obtained component is the exterior component D \
and should be removed (see [145] §7.3.4 for further technical details, especially in the case that several
connected components of €2 are interlocked) . The underlying idea to this technique is adapted into an
algorithm for signing the unsigned distance function to a contour in chapter [6] section [6.4.2

The resulting mesh of Q - still denoted as T - is bound to enjoy very few internal vertices, those being
the Steiner points which have been inserted only with the aim to ease the meshing process, regardless
of any element quality criterion. For this reason at least, a Delaunay meshing algorithm is always
supplemented with a phase during which internal vertices are inserted, with the ambition to improve
the (probably very low) quality of the mesh (see [54] or [145] §7.3.5). As this step is only a component
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of the more general issue of mesh optimization, which is discussed in section 3.3} we shall not go any
further on this topic for the moment.

Remark 3.3. This whole procedure can be extended almost mutatis mutandis (in theory at least) to
an anisotropic mesh generation method. Indeed, using the framework of size and orientation prescription
through Riemannian metrics sketched in section only the notions relative to distance should be adapted
in the previous construction (which actually confines to adapting the Delaunay criterion of definition .
See [54], [152] for more details.

3.2.1.2 Advancing front methods for mesh generation

Since their early inception [I38] [148], advancing front methods have been the most intuitive ones in mesh
generation: from a surface triangulation S of its boundary, the domain to mesh €2 is filled with tetrahedra
which are constructed one following the other.

Concretely, a typical advancing front algorithm maintains a front F, that is, a list of triangular faces
separating the already meshed region from the one yet to be filled. At each stage of the process, a single face
of the front is considered, based on which the construction of a new tetrahedron is considered. The process
unfolds as follows (see figure [3.9):

— Initialization: the mesh T of Q does not contain any tetrahedron and the front F is created as the set
of faces of S.
— While F is non empty,

1. Select a triangular face T' = abc € F,

2. search for an ‘optimal’ position for the fourth vertex p of a tetrahedron K = abcp based on T, either
as an already existing point in 7, or as a new point to be added.

3. Assess the validity of the resulting mesh from the addition of p (if need be) and K to T. In particular,
it should be checked that K does not overlap other tetrahedra of the mesh. Doing so may require
one or several travels back and forth to step (2), until an admissible proposal p as for the fourth
vertex of a new tetrahedron is reached.

4. Update T, and the front F: T is removed, and the faces of K which do not already belong to
another tetrahedron of the mesh are added.

Such a strategy raises several issues, that are tackled in different ways from one implementation to the

other (see [I45], chap. 6 for a far more exhaustive description):

— Each iteration of the algorithm begins with the choice of a face T' € F, from which a new tetrahedron
is built. The device of an efficient selection strategy of the faces of the front that should be processed in
priority proves crucial in practice, since it greatly influences the ‘nice behavior’ of the front evolution,
and the convergence of the whole method. Several choices are available in this regard: the most common
one [252] consists in systematically choosing the smallest face (with respect to some measure), so that
too large elements do not hinder prematurely the creation of smaller ones; other authors advocate to
deal in priority with regions that are particularly pinched. More advanced strategies exist to ease the
convergence of the method, which involve several criteria, and notably considerations about the quality
of the elements to be created [264]. A structure of priority queue is often used for describing F.

— Assuming that a face T = abc € F has been chosen, what is the criterion for computing an optimal
point p for forming the new tetrahedron K = abecp 7 Once again, each implementation comes along with
its own strategy, but common features can be outlined. While some variants of the method [138], 264]
propose to create all the internal vertices in a first stage, then to find the optimal connections using
the advancing front strategy, most of the implementations attempt to create new vertices, then to
connect them on the fly: a size map is provided (defined on a background control space, which is often
defined as a Cartesian grid, but may be more ‘exotic’ - e.g. a Delaunay triangulation in [I55]), and a
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Figure 3.9: Mesh generation using an advancing front algorithm in two dimensions. (a) Initialization: T
is empty, and F contains the edges of ¥; (b) at an intermediate step, the front is composed of the colored
edges, and the blue edge ab is selected for the next triangle creation; (¢) an optimal position for a new point
p is proposed, and the associated triangle K = abp is created; (d) final result of the algorithm.

provisional optimal position p is computed, which takes into account the local size feature, as well as
the quality of the element to be created). This position is then compared to that of ‘close points’ from
p: if a point ¢ € T is ‘close enough’ to p, this position is changed to be ¢ (to avoid very acute ‘nest’).

— Eventually, the validity of the addition of K has to be tested. K is required not to overlap an already
existing element; hence, intersections between K and these elements must be tested in an efficient
way. This generally involves the definition of a meighborhood space, e.g. a background Cartesian
grid (which may differ from the one used for storing the size map), which allows to speed up the
tetrahedron to tetrahedron intersection tests, allowing for coarse and very fast rejection tests. An
efficient implementation of these two last points is substantially eased by the use of efficient data
structures that are detailed in [207].

Advancing front methods enjoy very different assets from Delaunay-based methods:

— The quality of elements lying close to the boundary S is very high, since as long as two independent
parts of the front do not meet (which generally occurs ‘far’ from the boundary), almost nothing can
impede the creation of new elements in an optimal way.

— In the same vein, advancing front techniques prove especially convenient when it comes to generating
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Figure 3.10: (Left) p is the computed optimal position for the third vertex of the triangle built from edge
ab, but ¢ is preferred, since creating abp would cause difficulties in generating good quality triangles in the
next steps; (right) the proposed point p overlaps another triangle of the mesh.

anisotropic meshes, or boundary layer meshes. These concerns were at stake in the early stages of the
techniques (see the work [252] for instance).

— The integrity of the surface mesh S, which is desirable in several applications, and is the difficult
feature to preserve in Delaunay based methods is automatic.

Unfortunately, advancing front methods are undermined by severe drawbacks, the most critical being:

— they are prone to lack efficiency if not properly implemented (see the previous discussion about the
search and intersection tests).

— Even more bothersome is the absence of any theoretical guarantee that the process will successfully
converge, especially when it comes to merging colliding parts of the front. To achieve convergence,
advancing front algorithms have no option but to rely on heuristics - for instance, a strategy for
destroying configurations that are deemed to hamper convergence, which keeps a historical record of
the operations held is described in [264] (elaborating on works referenced therein).

Remark 3.4. Delaunay based and advancing front methods enjoy very different features, and several mixed
approaches have been thought of, which benefit from their respective assets. In this spirit, in [I44], the
authors propose to construct the constrained Delaunay triangulation of S, with the smallest number of
internal points possible, then to define a front, on account of a quality criterion (the ill-shaped elements,
to be removed are part of the front), infer optimal positions for new points, to be connected to faces of
the front, then insert the points using the Delaunay procedure described above. In [220], an advancing
front strategy is presented, in which points are incrementally inserted in the mesh, using a variation in the
Delaunay procedure.

We eventually turn to a rather different problem, that of mesh generation for implicitly-defined domains.

3.2.1.3 Meshing implicit domains

Over the last decades, handling surfaces or domains in an implicit way has become increasingly popular.
In biomedical engineering, surfaces or domains of interest (tissues, bones, etc...) are indeed often charac-
terized as regions where one or several measurable quantities are equal to, or lower or equal than a known
physiological threshold. For instance, Computed Tomography (CT) techniques measure a relaxation number
of the intensity of X-rays spread into the human body; since air, bone, water have different behaviors with
respect to this number, these entities can be separately observed by looking at the level sets of the relaxation.
A similar philosophy presides over MRI and PECT techniques. Rather differently, we have seen in chapter
that a more and more convenient framework for addressing free and moving boundary problems is that of
the level set method, which features implicitly-defined domains. Hence, obtaining a mesh of the resulting
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domain of such an evolution process naturally involves a mesh generation process for implicit geometries

(see for instance section and Chapter [3).

The most intuitive way to get a mesh of an implicitly-defined domain is possibly the famous Marching
Cubes algorithm [208] (or one of its numerous variants), which we briefly describe now. Let D C R? a com-
putational box, equipped with a uniform grid of n, x n, x n, nodes, denoted as {ﬁijk}lgignm, 1<j<n, 1<k<n.
(see [49] 283] for space adaptive versions of the algorithm).

Let ¢ be a scalar quantity, known as the discrete set {¢ijk}1§i§nz, 1<j<n, 1<k<n. of its values at the
nodes of the grid. This set will also be referred to as ¢ for the sake of simplicity. We aim at meshing the
negative subdomain €2, and 0 isosurface I' = 9Q of ¢ (in the language of Chapter [} ¢ is a level set function
associated to 2). To achieve this, each grid cell @ where the sign of ¢ changes is processed independently
from the others. The intersections of I' with the edges of ) are computed by assuming e.g. a linear variation
of ¢ along them. The algorithm then relies on templates for inferring the corresponding piece of triangulated
surface I' N Q from those data. A smart use of the symmetries between the 2% = 256 possible configurations
as regards the signs of ¢ at the vertices of @ allows to bring their number down to 15; see figure for
examples.

(a) (b)

Figure 3.11: (a-b) Two patterns for the marching cube algorithm. The red (resp. blue) nodes are associated
to positive (resp. negative) values of ¢, and the reconstructed isosurface is greyed; (c-d) two possible
patterns associated to the same configuration for the sign of ¢, leading to an ambiguity in the marching
cubes algorithm.

Unfortunately, this alone is not enough to guarantee a ‘fine’ construction of I'. Indeed, the shape of the
portion 3 N Q of I' enclosed in @ is not uniquely determined by the intersections of I" with the edges of Q)
(see figure (c,d)). If no particular attention is paid, the reconstructed surface I' may show ‘cracks’, or
‘holes’. Several strategies exist in the literature to alleviate these ambiguities:

— A first approach consists in inventing a smooth piece of surface inside @ from the values of ¢ at its
vertices (or approximated higher-order information), which could be deemed as representative of the
behavior of T', then in deciding accordingly as for the ‘correct’ topology for I' N Q). A very simple and
efficient approach relying on this philosophy is presented in [219]: T'N @ is approximated as the 0 level
set of the Q! Lagrange finite element interpolate m¢(¢) of ¢ over Q, that is, the unique Q' function
7o (@) such that mo(¢)(x) = ¢(x) for each vertex x of Q. A close study of some elementary properties
of such surfaces allows then to decide in a rigorous way as for the ‘good’ topology to retain for I' N Q.

— Many authors [49] [I41] propose on the contrary to capture the ‘correct’ behavior of I" inside a grid cell
Q@ by subdividing @ into twelve tetrahedra. This calls for the definition of a new, artificial vertex xg at
the centre of (), and of a consistent value for ¢ at zy (this can be done e.g. by using Q' interpolation
inside Q). Then, for each thus obtained tetrahedron K, the portion of surface I' N K is approximated
by using a P! linear approximation of ¢ inside K, without any possible ambiguity.

This last point certainly deserves further comments. The variant of the marching cubes algorithm un-

folding on a tetrahedral computational support - which is sometimes referred to as the marching tetrahedra
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algorithm [I17] - turns out more convenient than its Cartesian counterpart, given that it lends itself to a
natural and unambiguous reconstruction of I'. On a different note, the use of a simplicial computational
support allows to use mesh adaptivity. In this respect, see the interesting work [197] for a (possibly adaptive)
marching tetrahedra algorithm with provable bounds on the quality of the final mesh.

Note that, in the first place, the method described above is rather devoted to an implicitly-defined surface
I" than to a domain 2 - this is actually the context of its original introduction. However, an easy modification
of the templates for reconstructing the piece of surface lying in a grid cell () from its intersection with the
edges of ) enables the construction of a tetrahedral mesh of the implicit domain Q [T41].

Before putting an end to this section, we should mention the mesh generation method for implicitly-
defined domains introduced by Persson in [253] [254], as an interesting alternative to the marching cubes
algorithm. Keeping the notations of the previous paragraphs, this method requires the function ¢ to be
the signed distance function to the domain ©Q C R? which may be supplied analytically, or defined on
a background grid. The method proceeds along the lines of the following scheme (see figure for an
illustration obtained using the Matlab code available on P.-O. Persson’s webpage 2:

1. At first, a set P of points is spread within €2, with a density related to a prescribed size function h
(also defined on a background grid). Note that whether a point 2 € R? belongs to £ or °Q can be
easily tested by merely looking at the sign of ¢(z).

2. The Delaunay triangulation of conv(P) is generated, and each simplex whose circumcenter lies outside
Q is removed from the mesh. This phase produces an intermediate simplicial mesh 7~', whose vertices
are exactly the elements of P.

3. The vertices of T are relocated with the purpose to improve the mesh quality. To this end, an analogy
between edges of a mesh and bars of a truss is used. Besides, the vertices of the boundary of 7 are
projected to the exact boundary 92, by making good use of the analytical expression of the projection
operator ppq : RY — 982 in terms of the signed distance function to € (see Chapter [4)).

Note that stages (2), (3) may have to be repeated several times until a fine mesh 7 of € is eventually reached.

Figure 3.12: Tllustration of Persson’s method; (left) initial set of points P, (middle) Delaunay triangulation
of conv(P), and (right) final mesh after node relocations.

Remark 3.5. This brief and biased summary of some of the most famous methods for volume mesh gen-
eration should definitely not be considered as exhaustive. For example, we did not even made mention to
the class of quadtree (or octree in three space dimensions) methods [279], which propose to generate a mesh
of a domain supplied by means of a description of its surface, relying on a philosophy which shares a lot of
features with the marching cubes method.

2. http://persson.berkeley.edu/
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3.2.2 Surface mesh generation

Surface meshing is quite a peculiar topic; while having a lot in common with two-dimensional volume
meshing (the elements considered being mere triangles), it also inherently exhibits tenuous and specific
connections with differential geometry of surfaces.

Let T' ¢ R? be a surface; a surface mesh S of T' should fulfill two independent functions:

1. S should consist of well-shaped triangles, whose sizes are adapted to a user-defined prescription.
2. § should be a ‘close geometric approximation’ of the original surface I'.

Point (2) is obviously the original requirement to the setting of surface meshing, and it could be given several
different meanings, depending on the considered application; for instance, S could be expected to be close to
T" in terms of Hausdorff distance, or in terms of their first-order geometric behaviors, i.e their normal vector
fields could be asked to be close from one another, so that the surface mesh does not show parasitic ‘folds’.
See [143] for a more exhaustive discussion around this topic, which we will come back to in Chapter

The methods available for meshing a surface I' also strongly depend on the structure under which the
related information is known. In this section, we limit ourselves to the prevailing case in numerical appli-
cations, namely that of parametrized surfaces - we already mentioned in section [3:2.1.3] how to deal with
another very important class of implicit surfaces.

In sections [3.2.2.1] and [3.2.2.2] below, I' is assumed to be a single parametric patch, i.e. it is described
through the datum of an open domain U C R?, and of a smooth, one-to-one and onto mapping o : U — I (see
figure left). In Computer-Aided Design (CAD), U is generally a very simple domain, e.g. a rectangle,
and o is a bivariate polynomial application. Section [3.2.2.3|will eventually explain how this simplified setting
can be used to address the general problem of surface meshing.

Surface mesh generation methods fall into two categories:

3.2.2.1 Direct methods

Direct methods are so named because they act rather at the level of the surface I itself than at the one of
the parametric space U. They generally imitate two-dimensional volume mesh generation methods, taking
into account the fact that the object to mesh has now a non trivial geometry.

For instance, [206] proposes an extension of the advancing front method to surface mesh generation, in
a slightly different context than that of this section however; the overall strategy of the advancing front
method presented in section [3.2.1.2]is retained, except that new points are proposed directly on the surface.
Several additional ingredients are added to overcome specific issues such as the fact that the meeting of two
parts of the front is now a purely three-dimensional situation.

Delaunay based methods have also been extended to the context of surface mesh generation: in [86], an
algorithm is proposed, which starts from a very coarse mesh of I', e.g. one connecting straightly the points
of its boundary curve, then to insert iteratively vertices on the surface, using an adapted Delaunay kernel.

3.2.2.2 Mesh generation using the parameter space

Recall that, for now, I' is a single parametric patch, described by a smooth mapping o : R2 > U — T

The converse idea to that of section consists in constructing first a mesh 7" of the parameter space
U (which is nothing but generating a mesh of a two-dimensional domain), then using the application o to
send this planar triangulation back to I': the vertices x of 7' are relocated to their corresponding positions
o(z) € I without any other alteration of 7.

This approach suffers from one main drawback: the application o accounts for a (possibly severe) dis-
tortion, inherent to the fact that it maps a portion of the plane to a (possibly very) curved surface T
Consequently, even a very well-shaped mesh 77 of U is likely to transform into a dramatically twisted - and
possibly self-intersecting - mesh S of I' during the final stage of the algorithm.
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Of course, this problem can be alleviated if a sufficiently small mesh size is chosen as for 7', but this size
should be selected wisely, so that the resulting surface triangulation S does not enjoy too many elements,
and is well-shaped.

The solution, as proposed in [55] (see also [145] §15.3.3 for details), converts the problem of generating a
(even isotropic) mesh of I' into that of generating an anisotropic mesh of the parameter space. More precisely,
it consists in using an interpolation error estimate for the mapping o to devise a Riemannian metric M (or
a size map h if an isotropic mesh of U is preferred) on U, so that a quasi-unit mesh of U with respect to
M is mapped to a well-shaped mesh of I'. This Riemannian metric inherently encodes information about
the second-order behavior of I', which is, as evoked above, the key feature in measuring the distortion of the
mapping o.

3.2.2.3 Extension to more complex surfaces

Assuming the considered surface I" can be described with a single, smooth parametric patch o : U — T -
as we have been doing so far - seems unrealistic with respect to concrete applications:

— Even very simple surfaces - e.g. spheres (and actually all the compact submanifolds of R?) ! - cannot

be described using a single parametric patch, for obvious topological reasons.

— Many surfaces - especially those accounting for mechanical parts - present sharp features (e.g. ridge
edges, corners, etc...), as exemplified in figure right. Describing such surfaces by means of a single
smooth mapping ¢ seems then hopeless.

Actually, in concrete applications (notably those involving CAD modeling), a surface T' is provided as

a set {(Ui,04)};—, ., of patches similar to those described above, such that the images V; = 0;(U;) are
disjoint open subsets of I' and covering I': T' = |JI_, V; (see figure right). The intersections between
the subsets V; describe a web of curves {¥; }jzl,...,m’ wherein the sharp features of I" lie.

Now, generating a mesh for I' requires first to mesh the curves X;, then to get a mesh S; of each one of
the patches U;, along the lines of section [3.2.2.2] respecting the discretization of OU; imposed by that of the
intersecting curves X; so that the final mesh S = |J!_; S; of T is conforming. See [I51], §11.3 for technical
details.

Figure 3.13: (Left) A smooth parametric patch; (right) decomposition of a surface into several smooth
parametric patches along its sharp features.
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3.3 Local remeshing

For various reasons, it is very usual that, in a context of numerical simulation, a mesh is not perfectly
amenable for computations. For instance, we already hinted at the fact that meshes that directly result from
a mesh generation procedure are likely to suffer from poor quality elements. From another angle, it may be
desirable to adapt the size of the elements of a mesh 7 to a user-specified prescription, e.g. linked to an a
posteriori error analysis of a previous computation held on 7.

These concerns express the need for mesh optimization, or remeshing® methods: let T a valid mesh (resp.
valid surface mesh) of a domain Q C R? (resp. a surface I' C R%) in the sense of section - we do not
address here the case of invalid meshes, which appeals for mesh repairing techniques, see [58], chap. 8 -
which is possibly ill-shaped, and not adapted to a given size prescription. The aim is to modify T (resp. S)
into a new mesh 7 (resp. S) of the same domain Q (resp. the same surface I'), which is well-shaped and
adapted to the prescribed size. Note that optimizing (or remeshing) a mesh is generally achieved as a series
of local operations, i.e. which affect a configuration of few elements: indeed, modifying large parts of the
mesh at one fell swoop would somehow boil down to a true mesh generation problem.

As in mesh generation, volume remeshing procedures, aimed at remeshing a three-dimensional tetrahedral
mesh (or a two-dimensional triangular mesh), and boundary remeshing procedures, for remeshing a three-
dimensional surface triangulation (or a two-dimensional mesh of a curve), should be considered separately for
they enjoy very different stakes. Indeed, whereas a typical volume remeshing procedure of a volume mesh T
involves more combinatorial analysis since the situations considered then are ‘genuinely’ three-dimensional,
the concerns of enforcing, or preserving, a fine description of the surface accounted for by the initial mesh
should be at the core of any surface remeshing method.

Once again, the issue of local volume remeshing being much more intricate in three dimensions as in two
dimensions, we focus the contents of this section on the former case.

3.3.1 Volume remeshing

In all this section, let 7 be a tetrahedral mesh, whose elements’ average quality may be to improve, or
whose size ought to be made conform to a given size prescription (supplied e.g. under the form of a size
function h, or a Riemannian metric M).

Most of the remeshing strategies discussed in the literature rely on a combination of four elementary
operations. For the sake of simplicity, all the meshes obtained throughout the iterative remeshing process
are still denoted as 7. Here is a very sketchy description of the mesh operators; we shall present their use
in a particular implementation with more details in Chapter 8] (see also [145] for more details).

3.3.1.1 Mesh enrichment operators

Mesh 7 may have to be enriched either because some of its regions are undersampled (i.e. the number
of vertices is insufficient with respect to the local feature size), or with the aim to improve the quality
of the affected elements. Generally speaking, T is enriched by adding vertices one by one, and numerous
possibilities exist as for the insertion of a new vertex into 7:

— the simplest (and most robust) way consists in introducing a new point m on a edge pq of T pgq is split
into two new edges pm and mg, and each tetrahedron K of the shell Sh(pq) of pq is divided into two
tetrahedra (see figure left). This procedure is likely to cause very ill-shaped elements to appear in
the mesh - especially in three dimensions, where tetrahedra are much more prone to degeneracy than
two-dimensional triangles - if it is not controlled properly. Some strategies exist to do so: bisection

3. In the literature, depending on authors, remeshing may either refer to as the collection of methods for (iteratively)
improving an input mesh, or on the contrary indicate that the input mesh is downright abandoned, and a new mesh of the
corresponding domain is generated.



88 CHAPTER 3. MESH GENERATION, MODIFICATION AND EVOLUTION

algorithms have been constructed, which iteratively insert the midpoint of a judiciously chosen set of
simplices in the mesh (until a desired size is reached), and can be proved to produce meshes with good
quality (see [205] [268]). Anyway, this operator comes in handy as an enrichment operator in a general
remeshing strategy involving several operators (see the other sections, and Chapter .

— So as to mitigate the quick degeneracy of elements entailed by edge splitting procedures, some authors
advocate to insert new points in 7 using the Delaunay kernel discussed in section [3.2.1.1.2] even if
T is not a Delaunay triangulation [I15, [I52]. The reason to do so is that the Delaunay kernel alters
a whole local configuration, and - except the possible appearance of slivers - leads to better-shaped
elements. Of course, as the considered mesh 7T is not a Delaunay triangulation at each stage of the
process, there is no theoretical guarantee that the cavity of each inserted point should be star-shaped,
and this property ought to be enforced (see section .

— Eventually, some authors propose to initialize and maintain T as a constrained Delaunay triangulation
of the associated domain of interest; see the survey in [280], chap. 6,7, about Delaunay refinement
algorithms. The mesh T is iteratively refined by inserting (using the Delaunay kernel) the centre of the
circumsphere of the simplices whose ratio circumradius-to-shortest edge is larger than a given threshold,
which depends e.g. on a size prescription (see figure right). The maximum circumradius-to-
shortest edge ratio of a triangle in the mesh is automatically decreased by doing so; this procedure lends
itself to provably good mesh refinement algorithms in two dimensions [87], 273]. In three dimensions,
slivers are likely to appear, and have to be taken care of.

S5 &

Figure 3.14: In two dimensions, (left) Splitting an edge pg leads to the formation of four triangles, (right)
illustration of the Delaunay refinement procedure: the centre p of the circumcircle of T is inserted in T,
using the Delaunay kernel.

3.3.1.2 Mesh decimation operators

Mesh decimation is the exact converse operation to mesh enrichment, and allows to remove vertices from
T that are deemed ‘unnecessary’ - for instance because the desired mesh size for (some region of) T is larger
than the initial one. Fdge collapse is the chief operator to decimate 7: let pq be a ‘too short’ edge of T
to be collapsed, for instance in the sense that p is collapsed onto gq. The edge collapse operator consists in
deleting all the elements of the shell Sh(pq) of pg, then to update the other simplices of the ball B(p) of p
by trading their vertex p with ¢ (see figure . A practical use of this operator raises several numerical
issues - for instance, several validity checks must be performed - detailed in [145], that we shall discuss with
more details in Chapter

As suggested by their names, both enrichment and decimation operations are aimed at reaching a fine
‘sampling’ in the mesh, and generally do not allow by themselves to reach very good quality meshes. This
becomes the purpose of the two forthcoming operations.

3.3.1.3 Connectivity changes

A first way to improve the quality of 7 consists in acting on its connectivities: the positions of the
vertices of 7T is held constant, and only the binds (edges or elements) between them are changed. To serve
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Figure 3.15: Point p is collapsed onto ¢; the shell Sh(pg) vanishes in the process (in red), and the other
triangles of B(p) are updated.

this purpose, the already introduced swap operator is used in two dimensions. Unfortunately, this operator
does not lend itself to an easy generalization in three dimensions, and two operators are generally used,
which are considered as key ingredients in building good quality meshes, for their ability to get rid of nasty
configurations (including slivers). Their are more extensively described in [139] 150} [1T14], and in Chapter
— the face swap operator (figure left) applies to a configuration of two tetrahedra pabc and gabe
sharing a common face abc. This common face is erased and the opposite edge pq is created in the
mesh, so that the initial configuration is replaced by one featuring three new tetrahedra, namely pqab,
pqbe and pqac (see figure left). Of course, several validity checks are in order, so that the resulting
mesh stays valid.
— The edge swap acts as the converse of the previous one, to some extent: let pg be an edge in 7, whose
shell is denoted as Sh(pq) = {K; = pqa;ai+1};, _y (indices are taken modulo N). The vertices
a; form a pseudo two-dimensional polygon P, which can be triangulated (in a non unique way) as
P =A{T; }jzl,...,M without introducing any additional point (see section . Deleting edge pq, then
introducing the tetrahedra formed by basis T}, and fourth vertex p or ¢ yields a swapped configuration
(see figure right). Of course, here again, checks ought to be performed, so that the resulting mesh
remains valid.

Figure 3.16: (Left) Swap of the common face abc to the two tetrahedra abep, abeg; (right) swap of edge pq,
associated to one of the possible triangulations of the pseudo-polygon delimited by the a;.

3.3.1.4 Vertex relocation

Last but not least, at the core of almost any mesh optimization strategy stands the vertex relocation
operator, which simply consists in changing the actual position of a particular vertex p of 7 for an optimal
position p* without altering the connectivities of the mesh (provided the motion is admissible). Only the
simplices of the ball B(p) of p are thus affected by the operation.

Several choices are available as for the optimal position p*. The most celebrated one leads to the so-called
Laplacian smoothing algorithm [I134]: denoting as aj, ...,an the vertices of T which are connected to p, one
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may propose the following formula, which is very reminiscent of a numerical scheme for the Laplace equation

on a Cartesian grid:
1N
p* = N Z Q-
n=1

Several improvements have been devised for this numerical scheme. To name a few (see [317]), each point
a, in the previous formula may be assigned a weight w,, > 0, so that the optimal position p* reads:

* Zg:l Wy, Gn
p = N -
Zn:l Wn
These weights may be related to the volumes of the simplices sharing edge pa,, to their qualities, etc...
Furthermore, one could consider relaxing the optimal position p*: p is not relocated to the optimal position
p*, but rather to an intermediate position (1 — a)p + ap* (for some « € (0,1)) between its actual position
p and p*. In the context that each point of the mesh is processed several times in the course of a vertex
relocation stage, relaxing the optimal positions proposed by the Laplacian smoothing procedure generally
turns out to produce better quality meshes.

However very simple, these Laplacian smoothing procedures remain heuristic, and may not improve the
mesh quality, depending on the criterion of interest. This is especially the case in three dimensions, where
Laplacian smoothing - which aims at relocating p so that all the edges pa,, have similar lengths - may pro-
duce slivers. More sophisticated procedures exists for proposing a ‘good’ optimal position p*; for instance,
in [I39], the worst quality in the elements of the ball of p is expressed as a (minimum, thus nonsmooth)
function of the position of p. Techniques from nonsmooth optimization are then used to find an optimal
position which explicitly increases the worst quality. The same philosophy motivates the work in [3] which
relies on the particular shape of the objective function to find geometrically an optimal position. See [22]
for other examples.

So far, we have been focusing on the physical part of the remeshing process - i.e. the description of the
local operators involved. Actually, a great deal of the efficiency of remeshing algorithms lies in the device
of a successful strategy, that is a way to steer and intertwine the operators (see for instance the discussion
in Chapter . As examples of such, let us mention the work [I79], which casts a problem of surface mesh
optimization as that of minimizing a quadratic energy aggregating two terms, one of them assessing the
quality of the mesh, the other one assessing the fidelity of the remeshed model to the initial triangulated
surface. On a completely different note, [I95] presents a strategy oriented to getting rid of the worst elements
within a tetrahedral mesh.

3.3.2 Surface remeshing

Surface remeshing algorithms are expected to modify an input triangulation S of a surface I' C R? into
a new one, say S, which is at the same time well-shaped, and a satisfactory geometric approximation of I,
with all the implied shades of difference between the possible acceptations of this notion (see section |3.2.2)).

Additional duties for a surface remeshing algorithm could be dreamt up, among other things denoising,
or reconstruction of sharp features on S... see [18] for an overview of these topics.

A surface remeshing algorithm could take two different paths:

3.3.2.1 Remeshing through parametrization of the surface

Inspired by the mesh generation method of section [3.2.:2.2] a first idea consists in performing the remesh-
ing of S from a parameter space U C R?, then map back the obtained two-dimensional mesh to the ambient
three-dimensional space. The immediate problem of this approach is that the supplied surface is assumed to
be fully discrete - i.e. no parametrization, such as one stemming from CAD modeling, is readily available.
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Nevertheless, recent advances in the domain of surface parametrization make it possible to compute
numerically such a parametrization, using for instance the theories on harmonic mappings [121]], conformal
mappings [200] - see [I36] for a more exhaustive overview of the available techniques. They allow then to
get a (e.g. piecewise linear) mapping 7 : S — U, where U is a simple domain in R? (see figure . See
[265], 215] for important technical details, limitations and solutions for these techniques.

Figure 3.17: Computation of a parametrization o : U — S of a triangulated surface S using discrete harmonic
mappings (reprinted from [265]).

Once such a parametrization 7, and meshed parametric domain U are computed, the discussion of section
[3:2:27)is easily put into the context of remeshing to yield a surface remeshing algorithm.

3.3.2.2 Direct remeshing of the surface

The converse approach consists in remeshing S by local manipulations of the discrete triangulation 7
[140, 295]. The operators involved are exactly those described in section m (in the two dimensional
setting). Nevertheless, they are more drastically monitored, so that the remeshing operations, performed
either for reaching a fine sampling, or for elements’ quality related reasons do not jeopardize with the
geometric approximation of I'. We shall linger over these questions about discrete surface remeshing in
Chapter 8} let us however provide haphazardly some clues about the control of the local operators in surface
remeshing:

— Inserting a new vertex p into S poses no particular difficulty. Because the Delaunay kernel is not easily
generalized to surface triangulations, most of the authors propose to insert p into S by splitting one
of its edges. p is generally positioned by computing a local model for a continuous surface from the
discrete data around the split edge [142].

— The edge collapse operator is probably the most delicate to control. If no attention is paid, it can
severely degrade the geometric approximation of I'; or provoke folds on §. The work [52] proposes
a strategy of mesh decimation based on an upper bound on the gap in terms of Hausdorff distance
(computed by geometric considerations), and on the normal deviation of triangles entailed by an edge
collapse.

— The swap operator should similarly be strictly controlled, e.g. in terms of the deviation of the normal
vectors to the triangles of the resulting configuration with respect to those at their nodes [318 [38].
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— Eventually, the vertex relocation operator can cause a progressive deviation of the remeshed surface S
from the initial model; in [38], the optimal position for relocating a point p is computed in its tangent
plane, then, a (costly) stage of projection to the real surface is performed. In [I40], the computation of
optimal position p* for a point p relies on the definition of a local quadratic model as for the behavior
of T near p, and p is prudently moved to p*. Quite the same approach is retained in [295], where the
local reconstruction of I' is performed in a more global fashion, and a whole strategy is based on a
maintenance of a system of overlapping local patches.

Remarks 3.6.

— This short presentation is by no means exhaustive, and many remeshing strategies are based upon com-
pletely different principles. For instance, the work [327] exploits the structure of Centroidal Voronoi
Tessellation, and Lloyd’s relaxation algorithm for their construction, to remesh an input surface trian-
gulation into a high-quality mesh.

— Of course, both volume and surface remeshing techniques can be worked out in concert, as complimen-
tary parts of a domain remeshing algorithm, that is, an algorithm for remeshing at the same time the
internal and surface parts of a tetrahedral mesh. Such a remeshing method is the cornerstone of the
mesh deformation method described in [323], and is precisely what we shall be trying to carry out in

Chapter

3.4 Mesh evolution

This last section is dedicated to the topic of mesh evolution, which naturally comes up in the investigation
of evolving domains (e.g. when it comes to modeling a transient physical phenomenon). Certainly, numerous
celebrated Fulerian techniques make it possible to describe the motion of an evolving domain without relying
on a meshed description (for instance, the level set method, or the volume of fluid method). However, in
the study of numerically sensitive models (e.g. multiphase flows, or multiphase linear elasticity, see also
the discussion in Chapter may take advantage of an explicit representation of the domain(s) or
interface(s) involved.

The generic mesh evolution problem can be informally formulated as follows. To save notations, in this
section, we do not distinguish the continuous and discrete settings; let 2 C R? be a domain (resp. I' C R?
a surface), equipped with a simplicial mesh 7 (resp. a surface triangulation S), and let u : R — R? a
displacement field, numerically discretized on 7 (or &) or on a background grid, transforming € into Q
(resp. T into I'). From this knowledge, how can we build a mesh 7 for Q (resp. S for I') ?

This acute problem has been addressed by (at least) two communities whose needs and requirements
differ utterly, namely computer graphics, and computational mechanics or physics.

3.4.1 Purely Lagrangian methods

Purely Lagrangian mesh deformation methods stick to the intuitive idea of an evolving domain: each
vertex x of T (or S) is relocated to its deformed position x + u(x), the connectivities of the mesh being
unaltered as far as possible (see figure left). In the context of purely Lagrangian mesh evolution
methods, we shall refer to this operation as advecting T (or S) along w.

The problem of whether only a surface mesh, or a whole volume mesh (together with its surface mesh)
should be deformed is not that simple. Paradoxically, it does not depend so much on whether the problem
involves only an interface or a domain, as on the precise numerical context of the study. It is generally
dictated by the context. For instance, in [309, [I58], only a mesh of an interface I" between two (or several)
domains filled with different fluids is maintained, whereas its velocity is governed by fluid equations posed
on whole domains. This is because these equations are actually solved on a background Cartesian grid
using high-order finite difference schemes; the mesh of the interface is used to obtain a fine approximation
of the interface conditions (e.g. the surface tension in [309]). On the contrary, there are purely surface
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models (e.g. the mean curvature flow, evoked in chapter [1)) that are dealt with by embedding the surface
S in a volume mesh 7 - in the sense that the faces of S exist as faces of simplices of 7 - and all the mesh
T is deformed (reasons motivating this approach are explained hereafter) [23I]. Surface and volume mesh
Lagrangian deformation exhibit different characteristics, which are summed up below.

7+ ule)

Figure 3.18: In two dimensions, (left): advection of the nodes of a volume mesh T (right): an interface S
(red segments) is embedded in a volume mesh 7. The trend of S to develop self-intersections in the course
of its advection along a velocity field w (in blue) can be detected by the inversion of the red element.

3.4.1.1 Lagrangian deformation of a surface triangulation

At first glance, deforming a triangulated surface S according to a vector field u (e.g. defined at its nodes)
may seem reasonably easier than deforming a volume mesh 7. Unfortunately, quite the opposite is true:
relocating each vertex x of S to its deformed position x+wu(z), leaving the connectivities of S unchanged may
lead to a severely distorted surface mesh S. Indeed, even if S is well-shaped, with uniform size distribution,
the deformation imposed by w may trigger high or low concentration of vertices on some regions of S (see
figure left). Even worse, not even broaching the (common) case that 4 may express a change of topology
from T' to f, even very ‘smooth’ vector fields u may entail self-intersections of S depending on the initial
distribution of vertices on S (figure right).

Note that the sole detection of whether a triangulation surface presents self-intersections is not an easy
task, and can be computationally expensive if no particular care is paid to the implementation. Actually, it
is very similar to the front-checking operation in advancing-front mesh generation methods, and like then,
authors generally rely on a background Cartesian grid to make the process computationally affordable [309].

Several solutions have been thought up to address all these critical issues, which we now briefly outline.

3.4.1.1.1 Connections with remeshing Almost all the works around mesh deformation incorporate
at some point a (local) remeshing stage; the reasons are twofold:

— first, as evoked above, advecting a (surface) mesh S along a deformation field u dramatically jeopardizes
the quality of the resulting mesh S (let alone the fact that it may develop self-intersections), which
may undermine the accuracy of numerical operation performed on it (see section .

— Second, the fact that S present a fine quality of elements may, if not prevent, at least postpone the
appearance of ‘folds’ or self-intersections in the resulting surface S, and thus facilitate an iterative
process in which the whole deformation account for by w is performed within several substeps of
incomplete yet safe mesh deformation.
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)

Figure 3.19: In two dimensions, a ‘reasonable’ deformation field u transforms a uniformly meshed contour &
into (left) a new contour S presenting a very high concentration of vertices; (right) a self-intersecting contour

S.

However, the ‘amount’ of remeshing that should be performed within a mesh deformation process is quite
unclear, and possibly application-dependent. For instance, the works [324] [330] in the field of computer
graphics intertwine mesh advection stages and remeshing stages, and use the whole kit of local operators
described in section [3.3] to maintain a surface mesh composed of high quality triangles, amenable for accurate
numerical computations. On the contrary, the works [309] to a lesser extent, and [I58] are devoted to a high-
accuracy simulation of multiphase flows, and highlight that remeshing the evolving triangulated surface
requires to interpolate the attached state values. Hence, they advocate not to remesh this surface to often,
lest that is should cause excessive numerical diffusion.

3.4.1.1.2 Modifying the input velocity field Let us now look into how the considered evolving surface
could be prevented from developing self-intersections. A first possible method consists in anticipating self-
intersections on the advected mesh S, and modifying the values of the displacement field v into new values
u, in such a way that advecting S along u yields a topologically valid surface mesh.

As an example, in [I83], a procedure is presented which strives to mimic the ‘causality principle’ attached
to surface evolution discussed in chapter [I} in a first stage, the initial surface mesh S is advected according
to the velocity field u, to produce a possibly invalid surface triangulation &’. In a second stage, for each
vertex x € S, the images of the triangles of the ball of x in &’ are analyzed, and a new deformed position
x + u(z) for x is found as the intersection (in the least squares sense) to the supporting planes of these
triangles. This new position is possibly modified using a curvature analysis of the resulting surface, and a
tangential motion term may be added to redistribute the vertices on the deformed surface S (as a substitute
to a remeshing procedure).

A slightly different method is proposed in [61], where a continuous collision detection algorithm makes
it possible to detect colliding elements in the course of the advection from S to S. The deformation field u
around the vertices of the colliding triangles are modified by deleting their component along the ‘collision
direction’.

3.4.1.1.3 Resolving intersections The converse viewpoint consists in acknowledging whether -and

where - the advected surface S is self-intersecting, and trying to remedy this problem. This work can be

done prior (i.e. by an analysis of S and u) or after (i.e. by an analysis of S) the intersection did occur. Once

two close regions on S (leading to a self-intersection on g’), or two intersecting regions of S are identified,
the following procedures can be used:

— in [61], a method is proposed, which applies to a configuration of two ‘close’ edges on the initial surface

S, say e and €', whose vicinities have self-intersecting images on S. The two regions are merged on S

by replacing the configurations of the four surface triangles sharing e or €’ as edges with a new one,

where the four triangles are removed, and the boundaries of the resulting holes are joined by a ‘pipe’
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made of eight triangles, provided this new configuration yields a topologically valid surface.

— in [330], two intersecting areas are identified in the advected surface mesh S (using a background
Cartesian grid to speed up the detection). The (polygonal) intersection line ¥ C & between those
regions is explicitly discretized in this mesh by refining accordingly the intersecting triangles, leading
to a new surface mesh S’. Eventually, a simple analysis of the surface properties allows to decide
which of the two parts of the resulting non manifold, yet conforming, surface triangulation S’ should
be removed to provide a final manifold surface mesh.

— in [324], S is once again embedded in a Cartesian grid of a computational box, and self-intersections on
S (or possibly very close parts that may want to merge, or very thin parts that may want to separate
on S) are looked for, inside each grid cell. In whichever case, a pattern is used, in the spirit of the
marching cubes method, to propose a new discretization of the part of the surface inside the grid cell,

which is topologically manifold.

All these methods prove highly combinatorial, and difficult to implement. As we have just noticed, the
main difficulty in tracking an evolving surface S is the difficulty in identifying close parts on §. For this
reason, it is generally acknowledged that equipping S with a volumetric structure may prove significantly
helpful in assessing (or preventing) that S is on the verge of becoming - or has already become - invalid. In
this spirit, a deformation method is presented in [334] in which an evolving surface is connected to a graph
structure whose inversions betray self-intersections on S.

3.4.1.2 Deforming a volume mesh together with its surface mesh

The Lagrangian deformation of a tetrahedral mesh 7 undoubtedly brings about more constraints than
that of a sole surface mesh S. Conversely, these additional constraints can be seen as subsequent controls over
the ongoing mesh advection procedure; indeed, detecting whether a tetrahedron K € T ends up degenerated
(or worse, inverted) at some point is far easier than detecting self-intersections of a surface mesh (it only
requires comparing the orientation of K € T with that of its advected counterpart K e %), see figure
right.

For this reason, even when only the deformation of a surface triangulation S is investigated, some authors
[115, 231] deem fit to embed S into a larger tetrahedral mesh T - in the sense that the faces of S arise as
faces of tetrahedra of T - then to proceed to the whole deformation of 7.

In the remainder of this section, let T be a tetrahedral mesh, whose evolution along a displacement field
u is of interest, and Sy the associated surface mesh. The forthcoming descriptions can be straightforwardly
adapted to the setting of an evolving surface triangulation embedded in a tetrahedral mesh hinted at above.

A first important point is that « may be defined only at the vertices x € S, and not at the internal ones
- shape optimization (see Chapters [2| and E[) is only one example of such setting among many. One could
of course try and deform 7 by the sole displacement of the vertices of the boundary mesh [231]. However,
following [I15] 29], extending consistently the displacement field u to the internal vertices of the mesh may
ease the process dramatically. The work [29] proposes to generate a displacement field @ on the whole mesh
T of the considered domain 2 as the solution to a linear elasticity system posed on €2, with imposed Dirichlet
boundary conditions u on 9% (i.e. at the vertices of Sr.

Once a displacement value has been assigned to each vertex x € T (even if it implies that u(z) = 0 at
the internal vertices € T), the advection of T along u can be carried out. Of course, doing so is very
likely to cause overlappings of the resulting mesh 7. This situation can be easily detected by comparing the
orientations of the elements of 7 with those of T.

Now, to get past this difficulty, the works [29] [IT5] 231] propose to rely on a smart intertwining of
incomplete advection stages of the evolving mesh and remeshing stages, which is illustrated in figure [3.20
and about which we now provide a coarse, schematic description. If by any chance T happens to be valid
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(i.e. non overlapping), the procedure stops. Otherwise, T is advected as long as it stays valid, meaning
that a real number « € (0,1) is found (e.g. by dichotomy) such that the advected mesh 7' along o u is
valid, but ‘on the verge of becoming invalid’ (e.g. one or several elements are nearly degenerate). Then,
the nearly degenerate configurations of 7’ are improved by triggering a remeshing procedure of 7' (edge
swaps prove especially useful in getting rid of nearly flat elements). A new, hopefully well-shaped, partially
advected mesh 77 is obtained, and the algorithm starts back with the advection of T along the remaining
displacement (1 — a)u.

(a) (b) (c)
(d) (e)

Figure 3.20: An example of mesh deformation procedure; (a) Initial mesh 7, (b) the invalid, advected mesh

T (the element in red has been inverted), (¢) the partially advected mesh 77; the greyed element is on the
cusp of inversion, (d) the remeshed, partially advected configuration 7”; en edge swap has made it possible
to resolve the nearly degenerate configuration (in blue); (e) the final configuration T.

Note that, in the course of its deformation, an evolving domain 7 may of course develop self-intersections.
This typically happens when two independent parts of S; tend to merge, and cannot be prevented by other
methods than those evoked in section The fundamental difficulty is that, once again, no ‘volume
structure’ exists to prevent such collisions. For this reason, in [231], the authors to embed any evolving
triangulated surface S or domain 7 into a mesh of a larger computational box D. In the last case, the fact
that D\ T is also meshed enables an easy detection of any kind of self-intersection of 7T, at the expense of
more constraints on the deformation.

Remark 3.7. Several strategies, referred to as Arbitrary Lagrangian-Eulerian methods (see the introductory
material [I18] [I81]), have been devised in the field of numerical simulation in which the displacement of the
vertices of the mesh may be decoupled from the movement of the considered domain, so that the movement
is always possible and the quality of the mesh is never too much degraded. A correspondance between the
actual mesh, referred to as the reference mesh - which may not exactly account for the domain - and the
real domain itself, must be kept, and the underlying equations of the simulation involved must be written
in terms of the reference coordinates.

3.4.2 Hybrid methods

The difficulties in carrying out mesh evolution methods in a purely Lagrangian way, especially when
it comes to describing motions during which numerous topological changes occur, urged many authors to
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free themselves from tracking deformations explicitly. A non exhaustive and biased selection of alternative
methods is now provided:

— The method proposed in [33] features an explicit discretization S of an evolving surface I' (we do not
make explicit the dependance of I" with respect to time for simplicity) at each time step of the evolution,
but describes its deformation in a purely Eulerian way: a background (adaptive) Cartesian grid of a
computational box D is maintained, and the interface I' is described from the standpoint of the level
set method. The surface evolution between any two iterations of the process is performed using the
level set method (see chapter (1} section for a description of Strain’s numerical scheme, which is
the one used here), and at each iteration, a contouring step extracts a piecewise affine representation
of I' at the current state, using a variant of the marching cubes method. The resulting mesh of the
interface is very ill-shaped, but the mesh is only extracted for visualization purposes, a case in which
it does not pose any problem. Note that this technique also allows for an easy transfer of physical
properties of the surface from one iteration to the other (in this particular case, the color).

A similar approach is used in [221]: a polygonal contour is deformed under the motion of its vertices,
and at each time, the (possibly invalid) contour is resampled from a intersecion with a background
grid, and a marching cubes reconstruction analysis.

— The method for mesh evolution proposed by Persson in [254], §5.3 shares many characteristics with
the one proposed in chapter [0} it is interested in a shape optimization problem, namely the Cantilever
test case (see Chapter where computing the displacement field u for the evolving domain )
requires solving a linear elasticity equation on 2. To this end, €2 is tracked by relying on the level set
method (performed on a Cartesian grid), and at each time step, Persson’s method for generating a
mesh associated to an implicitly-defined domain (see section to get a mesh of the actual shape
), which makes it possible to compute the new displacement field for 2.

— Eventually, the method proposed in [260] is of an altogether different type. It proposes to embed a
mesh 7 of an evolving domain §2 into a mesh of a larger box D. At each iteration, the mesh 7T is
advected in a purely Lagrangian way, and becomes potentially invalid. Yet, it allows to get an ‘print’
of the advected domain Q (e.g. by removing the inverted elements). Besides, its also provides a (non
connected) set of vertices P for building a mesh T of Q. This operation is achieved by taking the
restricted Delaunay triangulation of P (in D) to the available ‘print’ of Q.






Part 11

Two problems in shape optimization






Chapter 4
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set method
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set method, submitted (2013).

which omits certain technical details around the signed distance function, presented here in section
as well as the proofs of most of the presented theoretical results (notably the convergence proof in section

13).

4.1 Introduction

As exemplified by the recent enthusiasm encountered by the study of composite materials, the general
problem of finding the optimal distribution of several materials in a fixed working domain, in order to
minimize a criterion related to the overall mechanical behavior or cost of the phases mixture, is of great
relevance in material science and industry.

A crucial issue in the modeling of this problem is the parametrization of the phases mixture. While the
exact formulation require the material properties, or the global Hooke’s tensor, to be discontinuous at the
interfaces between two materials, it is often convenient, for numerical purposes, to devise an appropriate
material interpolation scheme to smoothen the coefficients or equivalently to replace sharp interfaces by
diffuse ones. This diffuse or smeared interface approach has its own interest when one is interested in the
optimization of functionally graded materials [66], [203], [296], [308], [314].

There is already a vast literature about multiphase optimization and various methods have been proposed
to address the problem. The Hadamard method of geometric shape optimization, as described in [105], [172],
[234] (see also the brief reminder in chapter [2), was used, for example, in [I71] for optimal composite design.
The homogenization method [§], [82], [305] was the main tool in the multiphase problem studied in [I1] for the
optimal reloading of nuclear reactors (sequential laminates were shown to be optimal composite materials).
In the framework of the SIMP (Solid Isotropic Material with Penalization) method, several interpolation
schemes have been proposed for the mathematical formulation of the Hooke’s tensor of the mixture [39],
[303], [328]. In general, material interpolation schemes can be quite involved [328] and one may design
such a model in order to favor certain phases [303]. Applications range from the design of materials with
extreme or unusual thermal expansion behavior [287] to multi-material actuators [285], through conductivity
optimization for multi-phase microstructural materials [336]. In the framework of the phase-field method, a
generalized Cahn-Hilliard model of multiphase transition was implemented in [335] to perform multi-material
structural optimization.
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The first publications on multi-phase optimization, using the level set method, are [223] and [321] (see
also [224], [320], [322]). Following an idea of Vese and Chan [315], the authors in [223], [32I] used m level
set functions to represent up to n = 2" materials: we shall adhere to this setting (see section . The level
set functions are advected through eikonal Hamilton-Jacobi equations in which the normal velocity is given
by the shape derivative of the objective function. Unfortunately, the shape derivatives, derived in [223] and
[321], are not correct in full mathematical rigor as we explain in section Fortunately, they are however
approximations of the correct formula upon various assumptions. A first goal of the present chapter is to
clarify the issue of shape differentiability of a multi-phase optimization problem. In section [£:3] we give the
correct shape derivative in the setting of a sharp interface between phases (see Proposition . It was
first obtained in [I5] for a problem of damage and fracture propagation but, in a scalar setting, previous
contributions can be found in [I75], [46], [248]. Because the phase properties are discontinuous through
the interfaces, the transmission conditions imply that only the elastic displacement and the normal stress
are continuous at the interfaces, leaving the tangential stress and the normal strain discontinuous. These
discontinuities yield obvious difficulties which must be handled carefully. The exact or continuous shape
derivative turns out to be somehow inadequate for numerical purposes since it involves jumps of strains and
stresses through the interfaces, quantities which are notably hard to evaluate with continuous finite elements.
Therefore, Proposition [f.11] gives a discrete variant of this shape derivative which does not involve any jumps
and is similar to the result of [223] and [321I]. The idea is to consider a finite element approximation of the
elasticity system, the solution of which has no derivative jumps through the interface, implying that the
shape derivative is much easier to compute.

Another delicate issue in multiphase optimization using the level set method is that the interface is
inevitably diffused and its thickness may increase, thus deterioring the peformance of the analysis and
eventually of the optimization. Note that, for most objective functions, it is always advantageous to introduce
intermediate values of the material properties, so that the interface spreading is produced by the optimization
process itself and not merely by the numerical diffusion. In [223] the authors introduced a penalization term
to control the width of the interpolation zone between the materials. In [321I] the level set functions are
re-initialized to become signed distance functions, which permits a more explicit control of the interpolation
width.

A second goal of the present chapter is to propose a smoothed-interface setting which guarantees a fixed
thickness of the interface without any increase in its width (as it is already the case in the standard single
material level set method for shape and topology optimization). This setting relies on the notion of signed
distance function to a domain, whose related features have already been extensively used in image processing
[329], or shape optimization [I08]. In the course of a long digression in section we are interested in the
behavior of the signed distance function with respect to variations of the considered domain, as well as in
other related properties of independent interest. In section [£.4] we describe a regularization of the interface
which relies on the signed distance function to the interface. Note that the signed distance function has
nothing to do with the level set function which is used in numerical simulations. Indeed, the solution of
the advection Hamilton-Jacobi equation (with a velocity given by the shape derivative) is usually not the
signed distance function (which explains why reinitialization is often used in practice). In such a smoothed
interface setting our main result is Theorem which gives the shape derivative of the objective function. It
requires several intermediate technical results, notably finding the shape derivative of the distance function
(first obtained in [I08]) and using a coarea formula to reduce a volume integral to a product integral on
the interface and along normal rays. Once again, we show in section [1.4.3] that, when the regularization
parameter (or the thickness of the diffuse interface) is vanishingly small, the exact shape derivative can be
approximated by the formula already obtained in Proposition which corresponds to the result of [223]
and [321] too.

Section [£:4.4] and the appendix in section [4.8] explain how the smoothed interface model converges to
the sharp interface problem as the regularization parameter goes to zero. Since, for simplicity, all the
previous theoretical results were stated in the case of a single interface between two phases, we explain how
to generalize our smoothed interface setting to more materials in section [4.5] Section [4.6] is devoted to a
comparison with [223] and [321]. Finally, in section we show several 2-d results and make comparisons
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between the different settings and formulas for the shape derivatives. Some optimal designs obtained by
our approach are compared to those previously computed in [32I] and [322]: ours are more symmetric and
sometimes slightly different. We believe it is due to our use of a correct shape derivative instead of an
approximate one.

4.2 Around the shape differentiability of the signed distance func-
tion

4.2.1 Some facts around the signed distance function
The main purpose of this section is to study the signed distance function to a domain.

Definition 4.1.
~ Let A C R? be a closed set. The Euclidean distance function to A, denoted as d(., A), is defined as:

Vo € RY, d(z,A) = gréig |z — al. (4.1)

— Let Q C R? be a Lipschitz domain. The signed distance function dq to € is defined as:

—d(z,0Q) if zeQ
Vo € RY, do(x) = 0 if ©eodQ . (4.2)
d(z,00) if z€Q

Throughout section Q2 stands for a bounded open set in R? which is only assumed to be Lipschitz for
the moment. Note that some of the hereafter presented concepts and results would hold in a more general
settings, but we shall not require so much generality.

Let us start by collecting some definitions related to the signed distance function to Q (see Figure for
a geometric illustration).

Definition 4.2. Let Q C R be a Lipschitz bounded open set.

— For any x € RY, Tlpq(z) := {yo € 0N such that |v — yo| = infycaq |v — y|} is the set of projections of
x on 0. It is a closed subset of OQ). When Iy (x) reduces to a single point, this point is denoted as
poqa(x), and is called the projection of x onto OS).

- ¥ := {z € R? such that (dg)? is not differentiable at x} is the skeleton of OQ (or sometimes Q by a
small abuse in terminology).

~ For any x € 0%, rayyq(r) := {y € RY such that dg, is differentiable at y and poa(y) = z} is the ray
emerging from x. Equivalently, rayyq () = pag ().

Note that these definitions are easily generalized to the case of an arbitrary closed set A ¢ R%. For in-

stance, one may define the set of projections of x € R? onto A as: I14(x) := {yo € A such that |z — yo| = infyea |z — y[}.
We now recall some classical results (see [I05], chapter 7, theorems 3.1, 3.3 and [I72], prop. 5.4.14 for

proofs).

Proposition 4.1.
1. Let x € R4\ OQ and y € Hpq(x). If OQ enjoys C' reqularity in a neighbourhood of y, then:

where n(y) is the unit normal vector to Q at y, pointing outward.
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2. A point x ¢ O has a unique projection paa(x) onto O if and only if x ¢ X. In such a case, it satisfies
d (z,00) = |psa(z) — x| and the gradient of dq at = reads

Vdq () = n (poa(x)) = x?ié)?;))(w)'

3. As a consequence of Rademacher’s theorem ([126], section 3.1.2), X has zero Lebesque measure in R,
Furthermore, when @ is C%, 3 has zero Lebesque measure too [217).

4. For any x € R, p € Tlpa(x), a € [0,1], denoting xo := p + a(z — p) the points of the ray o () lying
between p and x, we have dg(rs) = adg(x) and o (zs) C Hoq(x).

5. If Q is of class C*, for k > 2, then dq is C* too in a tubular neighborhood of 0. In that case, dq is
differentiable at every point x € 09, and at such a point: Vdg(x) = n(x).

21 € Maa(y)

Figure 4.1: Unique projection point pgo(x) and line segment ray,q (x) of a point « lying outside the skeleton
Y of . For a point y € X, at least two points z1, 2o belong to the set of projections Iyq(y).

When the boundary 992 of the considered domain enjoys additional regularity, sharper results become
available. Suppose now that € is a bounded domain of class C2. For z € 052, denote r;(z), i = 1,...,d — 1
the principal curvatures of the smooth submanifold 912, and e;(x) the associated principal directions. These
curvatures are oriented with the convention that ;(x) > 0 if 0 is locally convex near z, in the normal
section defined by e;(x) (see figure [1.2)).

The following proposition is proved in [69].

Proposition 4.2. For every x € R?, and every y € Hpq(x), one has
Vi=1,..,d—1, —k;(y)da(z) <1.
Furthermore, denote T' the set of points x ¢ ¥ such that the above equality holds for some i. Then we have:
Y =3 UrL.

If v ¢ %, then dg is twice differentiable at x and
d—

—ki(poa(x))da(z) <1 5 Hdo(z) =) T ,:Z;;?f );le(:r) ei(poa(z)) ® €;(poa(x))

,_.

i=1
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Figure 4.2: Case of a negative curvature : 92 is locally concave near x, in the normal section associated to
ei(x).

Remark 4.1. From this result, a standard bootstrap argument allows to conclude that dq is actually ‘as
regular as the boundary’, outside ¥. The projection application psq is indeed related to dg and Vdg by:

Vo € RY\ X, poq(z) =z — do(x)Vdg(x).

Let us end this section with a result around the behavior of the skeleton of a series of domains which
‘smoothly’ converge to a given domain 2. To this end, we need the following definition:

Definition 4.3. (C* topology on the space of domains) Let &, the set of all bounded domains in RY with C*
boundary. The C* topology on & is the topology spanned by the sets

Us 0o = {Q € Ey: there exists a surjective embedding ¢ : Qo — Q, || — id||crqy) < €},

where H.Hck(ﬂo) is the usual norm on the set of class C* mappings.

The following proposition, is proved only in two space dimensions in [69]; yet, the proof extends mutatis
mutandis to the d-dimensional case.

Proposition 4.3. Let Q,, a sequence of bounded connected domains of R% with C? boundary, and for any
n € N, denote ¥, the corresponding skeleton. If )y, converges to a domain € in the sense of the C? topology,
then X,, converges to 3 in the sense of the Hausdorff distance between compacts subsets of RY.

4.2.2 Shape derivative of the signed distance function

Let 2 be a bounded domain with Lipschitz boundary. So as to account for variations of {2, we rely on
Hadamard’s boundary variation method: we look for variations of ) of the form

Qp:= (I +0)(Q), 0 € WH2RERY), ||8]| 100 (e gy < 1.

In the following, we will be led to impose higher regularity over Q2 and the allowed deformations 6, which
will be specified when the time comes.

Let us start our study of the dependence of the signed distance function on the domain with the following
elementary result:

Lemma 4.1.
1. Let A, B two closed subsets of R, and x € RY. The Euclidean distance function fulfills the following
Lipschitz-like inequality:
‘d(xa A) - d(ﬂj, B)‘S dH(Av B)v
where d¥ (A, B) := max (p(4, B), p(B, A)) is the Hausdorff distance between A an B, introducing the
notation p(A, B) := max d(z, B).
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2. Let x € R? be a fived point. The Euclidean distance functions 0 v~ d(x,0Q), 0 + d(z,Qy) and
0 — d(x,°Qg), from B(0,1) C WE>(R? R?) into R are 1-Lipschitz.

3. Let x € R? be given. The signed distance function 0 v dg,(z) to x is 1-Lipschitz as a function from
B(0,1) ¢ Wh>(R4,R?) into R.
Proof. 1. Without loss of generality, assume da(x) > dg(z). Then, there exists b € B such that, for all
a € A, one has :
|d(z, A) — d(z, B)| = d(z, A) — d(z, B) < d(z,a) — d(z,b) < d(a,b).

Since this is true for every a € A, it comes from the definitions that:

ld(z, 4) — d(z, B)| < d(b, 4) < maxd(b, ) = p(B, 4),
whence the result.

2. Let us prove the result for B(0,1) 5 0 — d(z,08). The other points will follow in the same way. For
61,05 small enough so that (I + 6,), (I + 62) are Lipschitz diffeomorphisms of R?, using point (1), we

have :
|d(z,000,) — d(z,00,)| < dT(0Q,,09,).

Now, any point y € 9§, can be written under the form y = z + 6;(z), for some z € 9Q. Thus,

p(000,,00,) = S%% d(z + 01(z),000,) < s%% |24+ 01(2) — (2 + 62(2))| < ||61 — 92||W1,oo(RdJRd).
z€ zE

Estimating p(0Qg,, 082y, ) the same way, point (2) is proved.

3. First, note that, as a direct consequence of point (2), and of the fact that dg(z) = d(x,Q) — d(z,°Q)
for any open domain (2, the application § — dq,(x) is 2-Lipschitz (hence continuous). Let 61,62 be
two elements in B(0,1) ¢ W (R4 R%). Two cases arise:

— If dq,, (x) and dg,, (z) have same sign, one simply has:

|d991 (:L’) - d992 (I)‘: |d(£l?,8991) - d($,6992)|,

and the result follows from point (2).
— On the contrary, if dg, (z) and dg,, (x) have different signs, there exists to € [0,1] such that
dgeﬁt(erm () = 0. Then,

‘dﬂsl (x) - d992 (l‘)| = dQsl (x) + d992 (l‘)
= (day, (2) = doy 0,00y @) F (0 (@) = dy, oy o) ()
>~ t0||92 - 91||W1,oo(Rd7]Rd)+<1 - t0)||92 - 91||W1*°°(Rd,Rd)

A

where the last inequality follows from point (2). This ends the proof.

Recall the following result over the differentiation through a minimum [105] (Chap 10, th. 2.1):
Theorem 4.1. Let X be an arbitrary set, 7 > 0 and G : [0,7] x X — R a functional. Denote, for every
t €[0,7], g(t) :=infx G(t,.). Assume that the four conditions below are fulfilled :

1. For every t € [0,7], the set X(t) :={z € X, G(t,x) =infx G(t,.)} is nonempty.

2. G is differentiable with respect to t at every (t,x) € [0,7] x X.

3. for every x € X(0), the map t — %—f(t, x) is upper semicontinuous at t = 0.
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4. (sequential semi-continuity for the set-valued function) There ewists a topology {Ui};c; over X such
that, for any sequence {t,} C [0,7], t, — 0, there exists xo € X (0), a subsequence {t,,} of {tn}, and
elements x,, € X(t,,) such that :
~ T, — xq for the {U;};.; - topology over X.

oG
“im inf (2, ) > (0,
m . G tam,) = 5 00
then there exists xo € X (0) such that
dg .. 0G oG

99 04y — inf 2% 0.5y = 2C
gt (0") = Jnt 5y 0.2) = F5p(0.20).

The shape differentiability of the signed distance function is now assessed by the following proposition.

Proposition 4.4. Assume Q is Lipschitz, and let § € W1>°(R% R?) a deformation direction. Fix a point
x € R%. Then the function Ry 3t +— dq,,(z) is right-differentiable at t = 0, and, if v € Q,

@) = o ((555) o) =
whereas, if x € R\ Q,
Glaa)| = mt (£5) o) (149)

Proof. We first prove the right-differentiability of the square signed distance function ¢ — dg,,(x)?. To this
end, define a functional G : [0,7] x 92 — R as :

Vi e [0,7],y €0, Gt,y) =z — T +t0)(y)>.

It is clear that dq,,(7)? = inf,caq G(t,y); we will apply theorem to GG, and must check that hypotheses
(1 —4) are fulfilled:

— Condition (1) is immediate since 92 is bounded.

— Condition (2) is also easy, and we have, for every (¢,y) € [0, 7] x 0Q:

oG

E“’ y)=—2(z— (y+t0(y))) .0(y), (4.5)

where - stands for the usual scalar product over R<.

~ Condition (3) holds because of expression (4.5)).

— Endow 99 with the topology induced by that of R?, and let {t,} be a sequence of real numbers de-
creasing to 0. For each n, let y,, € 9§ be any element y,, € X(t,). As 99 is compact, one can extract
a subsequence {t,, }, with y,, — yo € .

Now assume yo ¢ X (0) = Ipq(x), and let zg € X(0). Then, there exists a > 0 such that:
inf |z —y|=|z— 20| <|z—yo| —2
inf |z~ y] =z — 20| < [ — yo| ~ 20

By continuity, for ¢ > 0 small enough:

inf |2~ (I +t0)(y)] < o~ (I +t9)(z0)] < o = (I +t6) ()] (4.6)

On the other hand, for k large enough, and by definition of y,,,

|aj - (I + tnke)(y0)| < |£L‘ - (I + tﬂke)(ynk” + |y’ﬂk - yOl + tnkle(y’l’bk) - 9(y0)|
< infyean |z — (I + 10, 0) ()| + (1 4t |[0] w100 (e ) [Yns — ol
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and since the last term in the right hand side goes to 0 as k — oo, this is in contradiction with (4.6]).
Thus, yo € X(0).
oG

oG
It remains to show that lim kinf E(t’ Yny) > E(O, Yo), which in our case amounts to:

tl0

lim inf —2 (2 = (yn, +10(yn,))) - 0(yn) = —2(z = y0) - 0(%0)-

t—0

and this is a direct consequence of the fact that y,, — yo, and of the continuity of 6.
Thus, Theorem [.1] allows to conclude that:

S| =2 -

=0+ y€llpa(x)
The other expressions follow easily. O

In case © enjoys at least C' regularity, this result can be given a more convenient form, using Proposition

A1) (1):

Corollary 4.1. Assume that Q is of class C*. For any x € R?, the functiont — dq,,(z) is right-differentiable
att =0, and,

a0, g (da, ()] g =~ _inf 0y) ny).
—ifz e °Q, % (dﬂm(x))|t:0+ =— EISTup( )Q(y) -n(y).
Y aalx

If furthermore x ¢ X, then 6 — do, (z) is Gateaua-differentiable at 8 = 0, and its derivative dg,(8)(x) reads:
v € WH(R,RY), do(0)(z) = —0(paa(2)) - n(poa(@)).

Remarks 4.2.
— These results were already observed in [107] and used (in a completely different situation than that of
this chapter) in [108], without complete proof (although they are admittedly not very involved).
— The signed distance function can also be seen as a solution of the following Hamilton-Jacobi equation

|Vdo (z)| =1 in D,
do(z) =0 on Of.

The behavior of the variations of dn with respect to the domain can be retrieved by a formal compu-
tation. Indeed, assuming that dg is shape differentiable, taking (formally) the derivative in the above
system yields that the directional shape derivative d,(0) satisfies

{ Vda(z) - dy(0)(z) = in D,
dg(0)(z) = —0(x) - n(x) on ON.

— In proposition |4.4] and corollary we did not consider the case x € 9f2. Actually, it seems unclear
what happens then. The proof of proposition [£.4] does not extend as is, and the situation seems more
complicated (it is for instance difficult to assess whether z belongs to {249 or not). Anyway, we will not
need this in the sequel.

— Let us catch a glimpse of the case that 92 is not smooth near a projection point y € Iga(x). Suppose
for instance that y is a ‘reentrant corner’, which defines a fan as regards its influence over the signed
distance function (see figure . Formulae express that the derivative of the signed distance
function at = depends on #(y) not through its normal component at y (which has no meaning), but
rather through its component along the segment [xy].
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Figure 4.3: The reentrant corner y creates a ‘fan’ of influence (in grey) over the signed distance function.

We now turn to the differentiability with respect to the domain of some functionals that depend on (2
through the associated signed distance function dg. To this end, we consider a large (bounded) ‘computa-
tional’ domain D which contains €2 and all its variations. We have the following result:

Proposition 4.5. Assume (2 is a bounded domain of class C*, and j : R x Ry — R a function of class CL.
Define the functional J(Q) as:

J(Q) = /D j(z, do(z)) da. (4.7)

The application 0 — J (I +0)(2)), from WE2(R? R?) into R, is Gateaus-differentiable at 0 = 0 and its
derivative at € reads:

7@(0) =~ [ 2 5.d0()) 0pon(@))m(pon(o))da (1.9

Proof. This is merely a use of Lebesgue’s dominated convergence theorem. Note that because the skeleton
¥ of Q is of null Lebesgue measure, pgq is well-defined at almost every point of D and the above expression
does make sense.

To prove the result, since formula (4.8) accounts for a continuous linear form on W1>°(R%¢ R%), we only
have to prove that, for every sequence of positive real numbers ¢, — 0, the ratio I Q1y0) =T () converges to

(4.8). From the previous analysis, it is clear that, for almost any point € D (actually, forzeD \ ), one

has: . . ‘
](z,dmne(x)t)n j(z,da(x)) N 7%@@9(@)9(%9(@) n(pon(@)).

Moreover, the domination hypothesis is fulfilled since, for any = € D:

i(@,dgy,, (@) = j(z,de(@)) | _  |da,,,(z) — da(z)]
tn - t

)

2016 [w1. (e )

IN

where the constant C' appearing in the first line is a Lipschitz constant for j over the (bounded) set
{(;U, do,y(z)) € D x R, t small enough}, and the second line is a consequence of lemma (3).

Hence, Lebesgue’s dominated convergence theorem can be applied, and the desired result follows. O
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Remark 4.3. The very same proof shows that the signed distance function is Gateaux-differentiable with
respect to the domain when seen as a LfOC(Rd)—valued function, with 1 < p < +00. More precisely, for such
p, and for a fixed bounded domain D, and a fixed § € W1°(R% R9), the function 0 — dg, € LP(D) is
Géateaux-differentiable at 0. As we shall see soon, this happens to be wrong in the critical case p = co.

Using the same recipe as in the proof of proposition [£.4] one can differentiate other geometric functionals
with respect to the domain, e.g. the diameter functional:

Proposition 4.6. Suppose Q C R? is a bounded domain with (only) Lipschitz boundary. Denote

diam(Q?) := sup |z —y| = sup |z —y]
z,yeN z,y€ON

the diameter of Q). The function W1 (R4 R?) 3 0+ diam(§y) is directionally differentiable at 6 = 0, and
its directional derivative reads for any and 6 € W1 (R4 R%) :

d ..
a (dlam(Qte)) = sup (Q(y) n(y) + 9(2) n(z))
=0+ |\yfilfi3?§i<g>

4.2.3 Another expression for these derivatives

The purpose of this section is to present another expression of the shape derivatives produced by proposi-
tion[4.5] which will come in handy later on, in section[4.4.2] in the search for descent directions for functionals
which depend on the domain through the signed distance function. In this section, we are especially interested

in integrals of the form:
| ta)aa.
D

where D C R? is a large (bounded) domain enclosing the (still bounded and Lipschitz) domain € under
consideration, and ¢ presents ‘simple’ variations along the rays rayyn(y), y € 092 (compare formula (4.8))
with proposition .

Let us start with the following definition:

Definition 4.4. Let m > n, and f : R™ — R" a differentiable function at a point x € R™. The Jacobian
Jac(f)(x) of f at x is defined as

Jac(f)(z) := \/det(Vf(Z‘) V)T

Note that Jac(f)(z) > 0 if an only if Vf(x) is of mazimum rank, that is n, i.e. if and only if the differential
of f at x is a surjective map from R™ to R™.

The key ingredient in the present discussion is a coarea formula (see [75]):

Theorem 4.2. Let X,Y be two smooth Riemannian manifolds of respective dimensions m > n, and f :
X — Y a surjective map of class C', whose differential d,f : T, X — Tr()Y is surjective for almost every
x € X. Let ¢ an integrable function over X. Then:

/X p(x)dr = /Y (/zefl(y) @(z)m dz) dy

Remark 4.4. From Sard’s theorem, almost every y € Y is a regular value of f, and f~*(y) is a submanifold
of X, so that the right-hand side of the above expression is well-defined.
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We intend to apply this formula in our context to X = 2, Y = 90 and f = pgq. To do so, we need pyo
to be smooth enough. This is the purpose of the following lemma.

Lemma 4.2. Assume that Q enjoys C? regularity, and let x € RI\X. The projection map paq is differentiable
at x and, in the orthonormal basis {e1,...,eq_1,n} (poa(z)) of Re (see Figure , its gradient is the d x d
diagonal matriz

do (z)k1(paq(x))
L= e mm oty O 0

0

Vpoa(z) = (4.9)

1 — _de@ra1(poa(=))
. 14+do(z)ka—1(poa(x))
0 0

Proof. The proof starts from the characterization of the projection map when z € D\ ¥ (see Lemma
poa(x) = x — do(x)Vda(x).
This last equality can then be differentiated once more for x € D \ ¥, leading to:
Vpoa(z) = I — Vdq(z) Vda ()" — do(x)Hda(z). (4.10)

Since Vdq(z) = n(psa(x)), a simple calculation ends the proof. O

oy

Figure 4.4: Principal directions, normal vector at the projection point y = pga(x) of x € R

We are now in position to get to the main result of this section.
Corollary 4.2. Let Q C D be a C? bounded domain, and let ¢ an integrable function over D. Then,

d—1

Ry A (N

i=1

(1+ dQ(Z)m(y))dZ> dy, (4.11)

where z denotes a point in the ray emerging from y € 0Q and dz is the line integration along that ray.

Proof. Since ¥ is of null Lebesgue measure, we have

/Dgp(x)da::/D\Ega(x)dx.
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Applying Lemmas and Paq is a surjective and differentiable map from D \ ¥ into 99, with a positive
finite Jacobian for any x € D\ ¥

1

Jac (pr?Q) ((E) =
(1 + dQ(a:)m(paQ(x)))

1

~.
Il

Proposition [.2] then yields the desired result. O

Remark 4.5. The result of corollary echoes to other very similar formulae in the literature (see for
instance [I33]), but does not restrict to tubular neighborhoods of 9 as for the domain of integration D.
Actually, in this chapter (and manuscript), we shall only use corollary in this restricted context. See
nevertheless [228] for a more advanced use.

This point marks the end of the material about the signed distance function which we shall need from
section [£4] and the remainder of section [£.2]is devoted to several brief topics that may find an interest in
themselves, and which are used - for one part - in [22§].

4.2.4 More differentiability results for the signed distance function

Proposition[L.5] together with the subsequent remark, claims that the signed distance function is Gateaux-
differentiable as a P -valued function of the domain (1 < p < o), namely,  being a Lipschitz bounded

loc
domain, for any fixed relatively compact open set D CC R?, the application

wie (R4 RY)  —  LP(D)
0 — dQs

is Gateaux-differentiable at 0. This naturally raises the question of whether this result stands in higher
regularity spaces than L} | p < oo. in this section, we are going to see that, in utter generality, the answer
is negative.

4.2.4.1 The signed distance function is not differentiable as a Lj5-valued function of the
domain

Consider the following counterexample: Q = B(0,1) C R? is the unit open ball in the plane, whose
skeleton is simply ¥ = {0}. As for deformation field 6, define

Vz = (z,y) € R?, 6(2) = (0,1).

Choose eventually any computational domain D CC R? that encloses ¥. For ¢t > 0 sufficiently small, the
signed distance function dq,, to %y can be computed explicitly:

Vz = (z,y) € R?, dq,,(2) = Va2 + (y — )2 — 1.
For any point z ¢ ¥, we know from proposition that ¢ — dq,,(2) € R is differentiable at 0 and:

4 oy (2)| = ~Bon) - n(pon(z).

t=01

Then t — dg,, € R is not right-differentiable as a L>(D)-valued function, for if it was, the quotient

Pt 2) = da,y(2) — da(z) + 1 0(poe(z)) - n(paa(2))
) . t
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would converge to 0 uniformly on D as ¢t — 0, which is not the case, as we are going to see now.

For z ¢ ¥, as simple computation yields:

2 —1)2— /22442
NGED D VIR 6mo0(2))n(poa(2))
VP’ Vet |y
t

Va2 +y?

Intuitively, the lack of uniform convergence near 0 is due to the fact that, for any ¢ > 0 - however small -
there are some points z € D which do not lie ‘on the same side’ of the skeletons of Q and 9, and then
whose projection paq,, () change suddenly. As there are ‘few’ such points, they are unseen by the LP norms,
for p < oo, but impede the uniform norm of r(¢,.) to converge to 0 as ¢ — 0.

Concretely, consider the sequence of points z, := (0, %") (see figure . One has, for any n € N:

r(t,z) =

|7 (tn, Moy = [r(tn, 2n)|
(—tn)? i
4
tn +1
1

o0

o .-valued function

Figure 4.5: Non-differentiability of the signed distance function as a L

Actually, we will see that, upon some regularity assumptions on the considered domain 2 and allowed
deformations 6, this phenomenon of ‘crossing of the skeleton’ is the only obstruction to the derivation of the
signed distance function in more regular functional spaces.

4.2.4.2 Shape differentiability of the projection application psq

Let us now study the shape differentiability of the projection application Q — pgqo(x), for a fized point
x € R?\ ¥. The main result of this paragraph is the following:

Proposition 4.7. Let Q@ C R? a bounded domain of class Ci, and consider a smooth variation of €,
0 € 2> (RY,R?) :=C? (R, RY) N W2 (R, RY). Let x € R?\ 3, where & denotes the skeleton of Q.
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Then there exists a > 0 such that the function t — paq,,(x) is well-defined and Cl-differentiable over
(0,). Besides,
d

7 (P () T (0(2) - n(2)) n(z) + da(z) (I + da(z)Hda(2) " Voa(0.n)(2),

where z := paa(x), and Vg stands for the tangential gradient on OS).

Remark 4.6. Thanks to proposition we know that for z ¢ 3, —k;(paq(z))da(z) < 1, i = 1,...,d.
Hence, because the Hessian matrix of dn at any point of the boundary matches with the matrix of the
second fundamental form of 9€, the matrix (I + dq(z)Hda(2)) is invertible and the above expression makes
sense.

Proof. The point x € R\ ¥, and 0 € C>> (Rd,Rd) being fixed, denote as z = papq(x). Moreover, to keep
expressions as simple as possible in this proof, we take the shortcuts d; := dq,,, p+ = paq,, and n: = nq,,,
the unit normal vector field to $2;9, pointing outward.

Recall that, because € is of class C2, proposition claims that there exists a tubular neighborhood W of
99, such that Vdy, is a well-defined, unitary vector field of class C* on W, such that Yy € 9Q, Vdq(y) = n(y)
(a similar operation holds for ). In the following, this unit extension of the normal vector field is still
denoted as n: W — S'.

Owing to proposition we may restrict ¢ (say |¢| < «) so that, for any such ¢, 9 C W.

Eventually, recall that, if y € 09, because of the regularity assumptions made on {2 and 6, the normal
vector field n, at (I + t0)(y) reads (see [234], sec. 4.3.3) :

_ com (I+tVo(y))n(y)
|com (I +tVO(y)) n(y)|

(1 +16)(y)) (4.12)

o First step : existence and differentiability of t — pi(x), for t small enough.

Consider the function F :] — o, a[xW — R defined as :

F(t,y) =y +di(z)n(y) — x.

Because of the regularity assumptions we have made on the data at hand, F is a function of class C! (even
if it means decreasing « > 0). Indeed, because of proposition for ¢ close to 0, z does not belong to
the skeleton of €9, the function ¢ — d;(x) is continuously differentiable in a vicinity of 0, and t — py(x) is
well-defined (i.e. Ilpq,, is a singleton).

Our purpose is to characterize p;(z) as the unique zero of F(t,.) over W, then to apply the implicit func-
tion theorem to get the desired differentiability result. Proposition (1) guarantees that, if y € IIg,, (),
then F(t,y) = 0. However, the converse may not hold, since F(t,y) = 0 does not necessarily imply that
Yy e ath.

For now, let us apply the implicit function theorem to F' at point (0, psa(x)). The Jacobian matrix of
the partial application y — F(0,y) at pso(z) reads :

V., F(0,paa(z)) = I + do(xz)Hda(paa(zx)).

Since € R?\ ¥, this matrix is invertible (see remark . As a consequence, there exists a neighborhood
V C R? of pgq (), areal @ > 0 (maybe smaller than the previous one), as well as a C! function g : (—a, o) —
V such that :

Vi€l —a,af, y €V, F(t,y) =0< y=g(t).
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Of course, g(0) = pga(x). Now, we need to identify g(¢) with p;(z). To this end, we make use of the following
elementary lemma:

Lemma 4.3. Let Q a bounded domain, Y. its skeleton. Let x € R4\ ¥, ppa(x) its projection point. Let
0 € Wh° (R4 RY). Then, for any open neighborhood V' of paa(x), there exists o > 0 such that

V|t| <aq HaQte ('T) cV.

Proof. This is a direct consequence of the continuity with respect to the domain of the signed distance
function (whose minimum is achieved by projection points). Suppose the contrary holds, that is, there exists
a sequence t, — 0, and p, € Ilpq, ,(z), p, ¢ V. Up to a subsequence (still denoted t,), p, converges
towards a point ¢ € 99, ¢ ¢ V. Moreover,

di, (z) = |z — pal*.

As df (x) — d(z), and |z — p,|*— |z — ¢|?, we conclude that ¢ is a projection point of 2 onto €2, which is
impossible because the unique such point belongs to V. O

Remark 4.7. Lemma actually is a manifestation of a more general phenomenon (which is proved using
exactly the above argument), namely the fact that the set of minimum points M (t) := {yo, G(t,y0) = inf, G(t,y)}
of a continuous function G(t,y) is upper semi-continuous as a set-valued function.

Thus, decreasing « if need be, we may assume that for |[t| < a, IIpq,,(x) C V, but we have seen that, for
any |t|< «, there is exactly one point y € V such that F(t,y) = 0, which we called g(¢), so that p;(z) = g(t).
As a consequence, for |t| < «, the mapping t — p;(x) is of class C!.

e Second step : computation of % (ps()).

We know that, for ¢ small enough : F(t,pi(x)) = 0. As F and ¢t — p.(z) are regular enough, differen-
tiating at ¢t = 0 yields :
d

O F(0,2) + V,F(0,z2) - a(pt(x)) B =0.

Now, for a point y € 99, we compute 9;F(0,y) :

OF(0,y) = H(d(2)|,_, n) +da(z) E(n(y))],_,
= —(0(2)n(2)) n(y) + da(z) F(n:(y))|,_,-

Now, the term < (ny(y))| .o 18 a bit tedious to deal with. It corresponds to the Eulerian derivative of the
(extended) normal vector field. It is more convenient to deal first with its Lagrangian derivative (remember
the discussion in chapter |2} §2.2.2.2)). More precisely, for ¢ sufficiently small:

com (I +tVl(y)) n(y)

(I +19)(y)) = |com (I +tVO(y)) n(y)|

(4.13)

Using the matrix identity
(I4tVO(y))T - com (I +tVA(y)) = det (I +tVO(y))I,

differentiating at ¢t = 0 (which makes sense because all the terms are polynomials in ¢), we get:

%(com(] +tVo(y)) = div()(y) I — VO(y)".
t=0
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After some computation, the following expression for the Lagrangian derivative of the normal vector field at
y follows:

(T 00| = (900)" n(y) - n(3)) ) ~ T n(y)

Thus, the Fulerian derivative of the normal at y reads, using the chain rule:

G )| = (900" nw) - n)n(s) ~ V0T n(s) = Fniy) 003,

where the gradient Vn(y) has to be understood as that of the smooth extension of the normal to a tubular
neighborhood of 92. Recall eventually that, by definition of the tangential gradient:

Voa(0-n)(y) = V(0 -n)(y) = (V(0-n)(y) -n(y))n(y)
= V)" ny) + Vo) -0(y) - (VO@)"n)) -n(y) + (Vny)" () - n(y)) n(y)
= Vo(y)".n(y) + Vn(y)" - 0(y) = (VOW)" - n(y) - n(y)) n(y), "
because we chose an extension of the normal vector that has a symmetric gradient with Vn(y).n(y) = 0. .We
then end up with:

— (m(y))| = —Vaall-n)(y), (4.15)

and:
0 F(0,y) = — (0(2) - n(2)) n(y) — da(z)Voa( - n)(y).

Finally, the derivative of the projection point reads:

L)),y = —(V,F(0,2) " (F (0, 2))
= (I +da(@)Hda(=) " [(0-n) ()n(2) + da(x) Voa(0 - n)(2) (4.16)
(6-) (=) n(2) + da (@) (I + da(2)Hda(2)) " Voa(# - n)(2).

O

4.2.4.3 Application to shape differentiability results for the signed distance function in higher
regularity spaces

As a first application of proposition[4.7] we can compute the shape derivative of the gradient of the signed
distance function.

Corollary 4.3. Still under the assumption that Q C R? is a bounded domain of class C?, let @ € C>> (Rd, ]Rd).
Let also x € R4\ X. Then, function t — Vdq,,(x) enjoys C' regularity over some interval (—a, «), and its
derivative at t = 0 reads, introducing z = papq(z):

d

(Vo (@) = [—1 +da(x)Hda(2) (I + dg<x)fHdQ(z))—1} Voa(0 - n)(z). (4.17)

t=0
Proof. Here again, we use the abbreviations of the proof of proposition z = paa(x), di :==daq,,, Pt = Doq,,
and ny = ng,,. Owing to proposition the projection application ¢ — pi(z) is well-defined over some
interval (—a, «). Then, so is t — Vu.(z) (see proposition [4.1)). We know also that, for such values of ¢:

Vui(z) = ni(pe());
using formulae (4.15) and (4.16)), it comes:

E(Vu(2)],_, = & (ne(2))|,_y + Vn(2) - 5 (pe(2))],_ 0,
—Voa(l-n)(z) + da(z)Vn (z) (I + do(z)Hda(2)) " Voo (6.n)(z2)
- {_1 +do(z)YHda(2) (I + de (a;)HdQ(z))—l} Voa(0 - n)(z).
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Remark 4.8. Actually, we could get a little bit more regularity at this point. Indeed, putting = ¢ ¥ as a
parameter in the application of the implicit function theorem, in the proof of proposition [£.7], we could get
that (t,y) — Vue(y) is actually differentiable in a vicinity of (0, x).

From the last corollary, a higher differentiability result for do can be obtained. To this end, we will need
the following lemma, which is a nothing but ‘Schwartz property’ for the derivatives of d;, with respect to ¢
and the space variable = ¢ X:

Lemma 4.4. Under the hypothesis of corollaTy if v € RI\'Y, function RY > z % (ue(x))
differentiable at x and its gradient reads :

’t:O s

v (g ()

)= )

Proof. One last time, we use here the abbreviations of the proof of proposition [I.7] Proposition [£.4] asserts

t=0

that, for y € R? close to z, function R% 5 y % (ue(y)) | +—o 18 well-defined and that the following expression
holds: J
7 (W) —0(poa(y))-n(poa(y));
t=0

thus, in order to prove the desired result, we have to differentiate this expression at x, and compare it with

(4.17). We get :

V (@ e(@)o) = ~V(B(poa())" - n(z) = V(n(poa(x))" - 6(2)
= —Vpaﬂ( )T (VO(2) n( )+Vn(2) 0(2))
= —Vpoa(2)" (Voa(0.n)(z) + (VO(2)" n(2)) - n(2)) n(2)) ,
where we used formula (4.14]) for the tangential gradient. Recall now the expression for the gradient of the
projection application (4.10)), from which we get easily that Vpsa(x)? - n(z) = 0 so that the second term

in the above expression vanishes. Using also that Vaq(6.n)(z) - n(z) = 0, and the fact that expression (4.9)
reads, in compact form:

Vpon() = |1+ do(e)Hdo(2) (I + do(2)Hda(2)) ],

we get eventually:

v (4 (wlo)

) - [—I + do(z)Hdg(2) (I + dﬂ(x)HdQ(z))*l} Voo (0.n)(2),

t=0

which is the sought expression. O

We now end up with the result of interest:

Proposition 4.8. Let Q C R% a bounded domain of class C?, with skeleton ¥, and § € C>> (Rd7Rd). For
any computational domain D CC R\ X, and any 1 < p < oo, the signed distance function § — dq,, from
C%3°° (R4, RY) into WHP(D) is differentiable at 6 = 0.

Proof. In view of proposition [£.4] and the subsequent remarks, the only thing there is to prove is that, for a
fixed § € C>°° (R4, R?):
-)

|| Vdg, —Vda  d
= || 4 (Vdo,, (@)

t—0
=30.

1 d
- ngw — Vdg —tV (
t L?(D)

dt
)

the

Using lemma [£.4] one has:

1 d
n HVthe — Vdq —tV (dtdﬂte

L? (D) t=011L?r(D) .
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As hinted at in remark function (¢, ) — Vdgq,, () is of class C! in (—a,a) x D. Hence, the mean value
theorem ensures the existence of a constant M such that for ¢ small enough,

Vo, (2) = Vi) | _ -
t <M

Ve e D,

This guarantees that the domination hypothesis in Lebesgue’s dominated convergence theorem is satisfied,
and allows to conclude. O

4.2.4.4 The conclusion of proposition does not extend when D intersects ¥

At this point, one could wonder what happens when the integration domain D does intersect the closure
3 of the skeleton of Q. In this case, because of the counter-example at the beginning of this section, and
owing to Sobolev’s embeddings, one cannot hope that 6 — dg, could be differentiable as a WP (D)-valued
function for any p > d, which leaves the case p < d open for discussion.

Actually, the counterexample of section as for the lack of shape differentiability of dg as a L°°-
valued function does not allow to conclude in this case. Consider the situation depicted in figure below
(which is presented with a non-bounded open set €2, but could easily be brought down to this case).

...................................................................

TN,

Figure 4.6: Non-differentiability of the signed distance function as a Wllo’f -valued function when the domain
of integration meets the skeleton.

Take Q := {z =(r,y) €R?, —1<z< 1}, so that ¥ = {z = (z,y) €ER? 2= 0}, and take for instance
D = {z = (z,y) € R?, —% <x< %, -l<y< 1}, with a displacement field 6 such that 6(z) = (0,0) if
x=—1and 6(z) = (1,0) if x = 1. Intuitively speaking, the skeleton of 0y is translated to the right together
with the right part of the boundary.

Elementary computations show that, for ¢ > 0 and z € D:

\
TN
O =
N~
=
&

Vv
oo+

r—1—t if x>

de(Z) = { 1 if z< ) detO(z) =

[SIEENIEN

N
O |
—_
~
=
8
A
N+
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Thus, for z ¢ ¥, 4(Vdg,, (Z))‘t:O = 0, whereas:

: t
Vdg,,(z) — Vda(z) 0, i e>zore<o
t a ( o ) if O<z<i
Hence,

da,, — Vd d 1 5 9p
[ =¥ _ 4, = ([ 2w

¢ dt t=0llLr(D) 1 o P

op
= tl)j7

and this quantity does not converge to 0 as t — 07, for p > 1.

Remark 4.9. This last, negative result indicates that, in ‘most cases’, functionals 2 f p J(nq) dx depend-
ing on the domain 2 through the extension of the normal vector field ng given by Vdg are not differentiable
with respect to € if the domain D of integration goes as far as 3 (even if this extension makes sense almost
everywhere in D).

4.2.5 Some words around the notion of minimum thickness of a domain

This subsection is essentially independent from the rest of section and studies domains  C R that
are ‘not too thin’ or whose different parts are ‘not too close’ from one another. Such requirements around
shapes appear naturally in industrial applications of structural optimization; indeed, mechanical structures
exhibiting very thin parts may prove very hard and costly to manufacture. See [228] for further motivations
and explanations.

To investigate further on this topic, the key notion is that of the reach of a set, which we briefly recall
now.

4.2.5.1 The reach of a set

Let A an arbitrary closed subset of R%. If h > 0, denote A;, := {(E eR?, d(x, A) < h} The following
definition stems from [I33].

Definition 4.5. Let h > 0. A closed set A C R is said to have reach > h provided every point x € Ay, has

a unique projection point on A (i.e. the infimum in is achieved at a unique point). The supremum of
such h is called the reach of A, and denoted as reach(A).

Grossly speaking, the reach of a set A is the largest value such that each A is homeomorphic to A for
all 0 < h < reach(A). This concept of reach is actually closely related to the so-called uniform exterior ball
condition.

Definition 4.6. Let h > 0. A set A C R? is said to comply with the exterior ball condition of radius h at
point x € OA if there erxists a unit vector ¢ € R? such that B (z + h&é,h) N A = 0. It is said to comply with
the uniform exterior ball condition of radius h if the exterior ball condition of radius h is satisfied at each
x € OA. Symmetrically, A is said to comply with the interior ball condition of radius h at © € OA (resp.
uniform interior ball condition of radius h) if R\ A complies with the exterior ball condition of radius h at
x (resp. uniform exterior ball condition of radius h) .

We easily infer the following property:

Proposition 4.9. Let A C R? a closed set, with reach(A) = h > 0. Then A satisfies the uniform exterior
ball condition with radius h.
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Proof. This proof is a rephrasing of the arguments stated in [94] (section 2 and corollary 4.15).
For some given r» > 0, x € OA, a simple computation shows that a unit vector ¢ € R? is such that
B(z+r& r)N A =0 if and only if it satisfies the so-called prozimal normal inequality:

1
Vy € A, 5-(y—x)§§|y—wl2- (4.18)

Now, consider a sequence u; of points in R? \ A converging to x, at which d(., A) is differentiable (this
is possible because d(., A) is differentiable almost everywhere). Then, for each i, I 4(u;) = {z;} for some
x; € OA, and of course x; — x. Because reach(A) = h, th. 6.2, (iv) of chap. 6 in [I05] (which also follows
from a simple computation, reasoning by contradiction) implies that, for every y € A, we have:

|ui — @lly — 2|

(ug — ;) - (y —x;) < o)

(4.19)

Because u; ¢ A, up to extraction, one may assume that x; — x, u; — = and

Ui —T4
[ui— 4]
¢ (this argument is the one for the existence of a so-called prozimal normal at each point of the boundary,

in the finite-dimensional context). Then, taking the limit in (4.19)), we end up with :

— &, for some unit vector

VyeA & (y—a) < —|y—af?,

|
2h
which is exactly saying B (x + h&, h) N A = 0. O

Actually, a far deeper result states that some converse happens to be true in the case when the set A is
compact and epi-lipschitz (see below), in the more general context of p-convezity [238]. However, we will
not need it for our purposes.

4.2.5.2 Sets with minimum thickness

Thanks to this concept, we can now define the intuitive notions of minimum thickness and minimum
distance between members of a domain Q) (see figure .

Definition 4.7. Let Q C R? a bounded domain with Lipschitz boundary.
- We call minimum thickness of ), and denote e(2) the reach of the complementary of 2, that is

e(Q2) = reach(°Q).
— We call minimum distance between members of 1, and denote md(Q) the reach of the closure of 2,

md () = reach(€).

We are now interested in domains which answer constraints of minimum thickness and minimum distance
between members. To this end, for A > 0, define

En={Qopen, QC D, e(Q) >h, md(2) >h}.

We are going to see those sets are compact, in a far stronger way than the sets of domains with uniformly
bounded perimeter.
Recall first the following definitions from [I72]:

Definition 4.8. ~ Forz € R, £ € S¥! and e > 0, the (open) cone C(x,€,¢) of apex x, direction & and
width € is defined as

O(I7£a€) = {yERda g(yfx) >COS(€)‘y7I|7 |y*$‘ <€}'
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—

L md(Q < reach(Q)*

Figure 4.7: Definition of the minimum thickness and distance between members functions

— An open set Q C R? is said to enjoy the uniform e-cone property provided for each xo € 02, there
exists a unitary vector &,, € RY such that, for every x € QN B(xg,¢), C(z,&4,,¢) C Q.

~ An open set Q C R? is said to be epi-lipschitz with constants (r,a, L) if, for every xo € 09, there erists
a local orthonormal frame {ey, ..., eq} with origin xg, and a Lipschitz function ¢ : Bg_1(xg,7) = (—a,a)
(where By_1(xq,r) is the ball of radius r in span{ey, ...,eq} around xy) with ©(0) = 0 and Lipschitz
constant < L, such that, denoting K(r,a) = Bq_1(zg,r) X (—a,a),

NN K(r,a) = {(a',3q) € RV xR, 24 = o(z')},

QNK(r,a) = {(z/,2q) ER" xR, 24 > p(z)}.

Actually, these two notions are equivalent. This is the meaning of the following result (see [I72], th.
2.4.7 and the subsequent remark), which quantifies the correspondence between the values of the different
constants appearing in the definitions above.

Theorem 4.3. Let Q C R? a bounded domain. Then Q0 enjoys the e-cone property for some € > 0 if and
only if Q is epi-lipschitz with some constants (r,a, L). Moreover,
— if Q enjoys the e-cone property, then r,a, L can be chosen equal to, respectively vtan(v),v, ﬁ for
any v < £, tan*(v) < 1.
— conversely, if Q is epi-lipschitz with constants (r,a, L), the constant € in the corresponding e-cone
).

condition can be chosen as € = min(%, %, arctan(+)

Consider now a large (yet bounded) computational domain D, and denote:
O, ={Qopen, Q C D, Q enjoys the e-cone property} .

These sets of domains are well known to enjoy many crucial compactness properties (in the sense of the
Hausdorff metric, of y-convergence,...) [172].
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The following theorem expresses the compactness which is brought by the notion of reach (see [105], sec.
6, th. 6.6). Note that, in the following, we will only need the fact that the set of domains with uniformly
positive reach is closed for the Hausdorff distance, which is actually the difficult part in the demonstration
of theorem [£.4

Theorem 4.4. Let h > 0. The set {A CR® closed, ) # A C D, reach(A) > h} is compact for the topology
induced by the Hausdorff distance between compact subsets of R?.

To achieve compactness of the sets &, it is then enough to include them in some O.. Actually, ‘well-
known’ results assess that domains enjoying both a uniform and an exterior ball criterion (with some positive
radius) are of class C''. However, we need to control the uniform cone constant of such an Q € &, by the
constant h, independently from . Reading along the lines of the proof of [30] (th. 5.1.13), the following
quantitative result is proved.

Theorem 4.5. If Q@ C R? is a bounded domain which satisfies both the uniform exterior and interior ball
conditions with radius h > 0, then Q is a domain of class CY'. In particular, Q0 is epi-lipschitz, and the
constants r,a, L that appear in definition[{.8 can be chosen as:

r=Xh, a=h, L:\/(((\f—x)2—1)2—1>

for some absolute constant A > 0, that depends neither on r, nor on .

Recall that if Q1,09 C D are open sets, one defines the (complementary) Hausdorff distance between €y
and Q, as o o
dp(Q1,9) :=d?(D\ 1, D\ Qy),

where d (K1, K») stands for the usual Hausdorff distance between the compact sets K1, K» (see [172], chap.
2 for properties of this metric).

The following result is now a consequence of theorems [4-3] [1.4] and [L.5]

Theorem 4.6. For every h > 0, there exists € > 0 such that &, is a closed subset of O, for the topology
induced by the Hausdorff distance over open subsets of D.

Proof. First, let us prove the inclusion &, C O, for a certain € > 0. Let Q € &, ; as reach(2) > h, and
reach(¢§?) > h, proposition implies that € satisfies both a uniform interior and exterior ball conditions,
with radius h. Consequently, theorem implies that € is an epi-Lipschitz domain with constants r,a, L
only depending on h (through explicit formulae). Thus, because of theorem Q belongs to O, for some
constant ¢ depending on h through explicit formulae.

Now, let us turn to the closedness of &, for the topology induced by the Hausdorff metric over open
subsets of D. Let Q, € &, be a sequence of domains converging to a domain  C R? in the sense of the
complementary Hausdorff distance. As each element of the sequence (2, lies in O, using theorem 2.4.10 in
[172], one can extract a subsequence 2, such that €, converges to Q for the Hausdorff distance between
open subsets of D, and Q,, and 95, converge respectively to Q and 95 for the Hausdorff distance between
compact sets. Because reach(f2,,,) > h, theoremimplies that reach(Q) > h. On the other hand, the very
definition of Hausdorff convergence for open subsets of D means that D \ §,,, converges to D \ Q. Choose
a big ball B (or any other bounded convex set) such that D CC B. The properties of Hausdorff distance
entail that for any open sets Q1,02 C D, d?(D\ Q1,D \ Q2) = d¥(B\ Q1, B\ Q2). Hence, B\ Q,, also
converges to B\ 2. What’s more, as ,,, CC B for any k, one gets 0 (§ \ an) = 0B U0, , and B being
convex,

reach(B \ ,,) = reach(°Q,, ).

Using theorem one finally finds that reach(B \ Q) = reach(°Q) is greater than h, hence the desired
result. O
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As an illustration to how such a result allows to obtain existence results of optimal shapes under con-
straints of minimum thickness and minimum distance between members, we use here the framework of [I72].

Let D C R? a bounded computational domain, and f € L?(D) a source term. For any domain  C D
with Lipschitz boundary, denote as ug € H}(2) the unique solution to the Dirichlet problem:

—Au = f inQ

U 0 on 0N (4.20)

Find u € H () s.t. {

Then, the following result (see [I72], th. 4.3.1) holds:

Theorem 4.7. Let j : D x R x R? — R a measurable function such that the partial application j(z,.,.)
R x R — R is continuous for almost every x € D, and that there exists a constant C > 0 with

Ve e D, reR, peRy |j(z,rp) <CO+72+]pl?).

For any domain Q2 C D, define the functional

J(Q) = /Qj(x,ug(x),VuQ(x))dx.

If O is any subset of O, for some € > 0, which is closed for the topology of Hausdorff distance between open
subsets of D, then J has a global minimizer over O.

As a consequence of this theorem and of the results of this section, for any h > 0, J admits a minimizer
over &y,.

4.3 Sharp-interface formulation in a fixed mesh framework

After the fairly long aside of section [£.2] around the signed distance function to a domain, we now turn
to the main topic of this chapter, to wit the modeling of multi-phase shape optimization problems.

To simplify the exposition in the first sections we limit ourselves to the case of two materials. Of course,
the proposed approach extends to more phases and the corresponding details are given in section

4.3.1 Description of the problem

The general purpose of this chapter is to optimize the position of the interface I' between two linear
elastic materials, hereafter labeled as 0 and 1, with respective Hooke’s law Ag, A;. These materials fill two
respective subdomains Q°, Q! of a (bounded) working domain D of R%, (d = 2 or 3) which accounts for the
resulting structure of the optimal distribution of materials, i.e. D = Q°UT UQ!. To avoid mathematical
technicalities, we assume that I' is a smooth surface without boundary and strictly included in D, that is,
I'NaD = (). We refer to Q! as the exterior subdomain, so that 9Q° =T (see Figure . Thus, the shape of
the interface I is altogether conditionned by that of °, and conversely. In the sequel, the variable of shape
optimization is denoted either by I' or Q°, without distinction.

The structure D is clamped on a part I'p C 9D of its boundary, and is submitted to body forces and
surface loads, to be applied on a part I'y C 0D, which are given as two vector-valued functions defined on
D, respectively f € L?(D)? and g € H' (D).

Perhaps the most natural and physical way to model such a distribution of two materials among a fixed
working domain is the so-called sharp-interface formulation. More specifically, the total Hooke’s law on D
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Ol D

Figure 4.8: Fixed working domain D occupied by two distinct materials Q° and Q' separated by a smooth
interface T'.

is defined as A, := Aoxo + A1x1, where x; stands for the characteristic function of the phase Q°. In this
context, the displacement field u is the unique solution in H'(D)? to the linearized elasticity system

—div(Aye(u)) = f inD
u = 0 onlp (4.21)
(Aje(u))n = g only,

W is the strain tensor, and n stands for the outer unit normal vector to 0D.

where e(u) =
Our purpose is to minimize an objective function of the interface I', which is rather expressed as a function
J(Q°) of the interior subdomain,

J(QO):/Dj(:c,u)d:EwL/F k(x,u)ds, (4.22)

where j(z,u) and k(x,u) are smooth functions satisfying adequate growth conditions. A typical example is
the compliance of the structure D (the work done by the loads), which reads

J(QO)—/Df~ud:c+/FNg~uds—/DAX(:E)e(u):e(u)dz. (4.23)

Of course, the minimization of or is complemented by a volume constraint on the phase Ag. In
particular, it is often a requirement in order to avoid obvious designs made of only one phase.

We do not discuss the well-posedness of this optimal design problem. Let us simply recall that the mini-
mization of or usually does not admit a solution in the class of open subsets Qg C D. Existence
of an optimal shape is rather obtained with some additional smoothness or geometrical or topological con-

straints (for example, imposing a uniform bound on the perimeter of Qp, i.e., on the measure of the interface
T'); see for instance the discussion in chapter [2] §2.1.2]

4.3.2 Shape-sensitivity analysis of the sharp-interface problem

There exists a vast literature on the Hadamard method for computing derivatives with respect to the
exterior boundary (see e.g. [9], [I05], [172], [234] and references therein) but relatively few works on the
derivation with respect to an interface between two regions. In the conductivity context (i.e. replacing (4.21))
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by a scalar equation), derivatives with respect to an interface have been obtained in [I75], [46], [248]. These
results were extended to the elasticity setting in [I5]. Let us also mention the works [I88], [239] where similar
results are obtained for a stratified media (where the interfaces are flat and parametrized by a single scalar
parameter).

In the present context, we go on relying on Hadamard’s method for describing variations of I" (or equiv-
alently °). For a smooth open subset Q° C D, we consider variations of the type

(Id+6)(Q°) := {z +0(z) for z€Q°},

with § € W1°°(D;R%) such that 6 is tangential on dD (this last condition ensures that D = (Id + 6)D). It
is well known that, for sufficiently small 6, (Id + 0) is a diffeomorphism in D.
The notion of derivation with respect to the domain of interest is now the following;:

Definition 4.9. The shape derivative of a function J(Q°) is defined as the Fréchet derivative in W1>°(D;R)
at 0 of the application 6 — J((Id + G)QO), i.e.

J((Id+0)Q%) = J(Q°) + J'(Q2°)(0) + o(0)  with lim, Z(”?V'm =0,

where J'(Q°) is a continuous linear form on W1>°(D;R?).

As noticed in [I5] and [248], the essential ingredients that must be considered in the calculation of the
shape derivative of a problem such as are the transmission conditions and the differentiability of the
solution u with respect to the interface I'. Furthermore, when a numerical implementation is sought, an
additional element must be taken into account: the way in which the transmission conditions (continuity of
the displacement and continuity of the normal stress across the interface) are interpreted by finite element
methods in a fixed mesh framework. In general these methods either partially preserve the transmission
conditions (e.g. classical Lagrange finite elements method) or exactly preserve the transmission conditions
(e.g. extended finite elements XFEM [293], adapted interface meshing, which is one of the main topics of
this manuscript).

It is known [I5], [248] that the solution u € H'(D) of (4.21) is not shape differentiable with respect
to the interface I'. The reason is that some spatial derivatives of u are discontinuous across the interface
because of the jump of the material elastic properties. Note however that the transported (or pull-back)
function ug := wo(Id+0) is indeed differentiable with respect to 6 (this is the difference between the material
derivative in the latter case and the shape derivative in the former case, see [9], [I72]). It is not necessary to
use the concept of material derivative for computing the shape derivative of the objective function. One can
stay in a Eulerian framework and use Céa’s formal Lagrangian method [72] to find the correct formula for
the shape derivative J'(Q°)(6). In order to circumvent the non-differentiability of u, the idea is to introduce
the restrictions of u on Q° and Q', denoted by u° := u|qo and u' := ulg:.

We recall the result of [I5] for the shape derivation of the objective function (4.22). We need to introduce
some notations about jumps through the interface I'. For any quantity s which is discontinuous across T',
taking values s° (resp. s') on QU (resp. Q!), denote as [s] = s' — s the jump of s. We also introduce
at each point of I' the local basis obtained by gathering the unit normal vector n (pointing outward °)
and a collection of of unit tangential vectors, denoted by 7, such that (7,n) is an orthonormal frame. For a
symmetric d x d matrix M, written in this basis, we introduce the notation

MTT MT’I’L
M= (Mm Mnn>

where M, stands for the (d — 1) x (d — 1) minor of M, M, is the vector of the (n — 1) first components
of the n-th column of M, M, is the row vector of the (n — 1) first components of the n-th row of M, and
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M, the (n,n) entry of M. Finally, we define the adjoint problem

—div(Aye(p) = —j'(z,u) inD,
p =0 on I'p, (4.24)
(Are(p))n = —K(x,u) only,

where the symbol / denotes differentation with respect to w.
Proposition 4.10. The shape derivative of the cost function J, defined in , reads

J/(Q0)(0) = —/Fp(u,p)e.nds,

D(u,p) = =0 (p)nn * [e(Wnn] = 20(w)ns - [e(P)nr] + [0(w)rs] : e(p)7r- (4.25)
where [-] = -1 — .0 denotes the jump through T, n =n® = —n! and o(v) = A, e(v).

Remark 4.10. To better appreciate the expression where some terms have jumps and others not,
we recall that the tangential strain tensors e(u),, and e(p),, are continuous through the interface I" while
the normal components e()nn, €(4)nr, €(P)nn and e(p),, are discontinuous. On the contrary, the normal
components of the stress tensors o(u)nn, 0(4)nr, 0(P)nn and o(p)n, are continuous through I'" while their
tangential parts o(u), and o(p)., are discontinuous.

Proof. We merely sketch the proof that can be found in [I5]. In order to apply Céa’s Lagrangian method
[72] (see the sketch of the method in chapter 2] §2.2.2.4), we first introduce the restrictions of u on Q° and
Q! denoted by u® := u|qo and u! := u|q1, which satisfy the transmission problem:

—div (4dye(ut)) = f Q!
' = 0 onIpnaot
(Are(w')n = g onTynoOt (4.26)
ul = u’ onT
(Ape(u®))n® + (Ase(u'))n! = 0  onT,
and
—div (Ape(w®)) = f inQ°
ul = w® onTl (4.27)
(Age(u®))n® + (Are(ut))nt = 0  onT.

Of course, (4.21]) and (4.26)-(4.27) are equivalent. Note that, by standard regularity theory [222], u is smooth
on each subdomain, namely u® € H2(Q°) and u! € H?(Q'). Then, we define the Lagrangian

L£0,0,0°,¢',¢%) = Z / ‘j(x,vi)dx—i—/ k(x,v")ds (4.28)
=oa \Jud+o)oi Iy

Z / Aje(v®) : e(q)dx — / f-qide — / g-qids
(Id+0)% (Id+0)Qi I'n

i=0,1

1 o)+ (W"))n - (¢t = ¢%)ds
# 5  EHWOn @ —)d

+

+ g / (0 (q") + o (@ )n - (0" =°)ds,
2 J(1a+o)r

where the last two surface integrals account for the transmission conditions. Differentiating £ with respect to
q', q° yields the state equations (4.26))-(4.27)), while differentiating with respect to v!,v" leads to the adjoint
equation (4.24]). Then a standard, albeit nasty, computation (see [I5] for full details) shows that

J(Q0)(0) = %(07u17u07p17p0)(g)7

which yields the result. O
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Remark 4.11. Proposition can be extended in several ways. For example, if the integrand j depend
on x, namely if the objective function is

J(Q°) :/Djx(:r:,u)dx—i—/FN k(z,u)ds := Z /iji(x,u)da?—&—/ k(x,u)dz,

i=0,1 Iy

we obtain a shape derivative which is
7@°)(6) =~ [ (litw. ] + Dlwp))0 - nds,
r

with the same expression (4.25)) for D(u,p).

Although formula for the shape derivative makes perfect sense in a continuous setting, its numerical
discretization is not obvious. Indeed, involves jumps through the interface which are difficult to
evaluate from a numerical point of view if the interface is not exactly meshed. Let us explain the difficulty
by making some specific discretization choices, keeping in mind that any other numerical method will feature
similar drawbacks. Suppose D is equipped with a conforming simplicial mesh D), = Uivzl K; with N elements
K; of maximal size h. Let II;(Dy) and IIo(Dy) be the finite-dimensional spaces of Lagrange P!, respectively
PO finite element functions. Define uy,p, € I1;(Dy) the internal approximations of u and p respectively,
ie.,

/ Aye(up) :e(vy)dr = / fropdx +/ g-vpds, Yuvp € I11(Dy), (4.29)
D D 'y

and
/ Ave(pp) : e(vp) dx = —/ 7' (z, up) - vy do — / K (x,up) - vnds, Yoy € II1(Dp). (4.30)
D D I'n

Since the discrete strain tensors e(v;,) are constant in each cell K;, we can replace A, in the above internal
approximate variational formulation by its PV interpolate A* defined by

A = pA" + (1 - p)A*, Withp:/ x dz.
K

Within this discretized framework the naive evaluation of the jumps in has no meaning. Indeed,
consider the generic case of an element K cut in its interior by the interface T' (see Figure [4.9). For P!
Lagrange finite elements the strain tensors e(vy), for v, = up,ps, are constant in K, thus yielding a zero
jump. Similarly, if the stress tensors are evaluated as o, = A*e(vy), they are constant in K and their jump
is again zero, leading to a vanishing shape derivative if formula is used with these values | There is
an alternative formula for the stress tensor which is oy, = Aye(vp): it yields a non-vanishing jump [A]e(vy)
and the discretization of would be

(D(u, p))y, = ([Ale(w)) ., = e(p)rr, (4.31)

which is different from the discrete formula (4.33)) by lack of any normal components. On the same token,
note that the theoretical continuity of the normal stress through I' does not hold when this approximation
is used, for o, = A,e(vp) with v, = up, pp, since

[ - n] = ([A]e(vn)) - n # 0.

Henceforth some special care is required for the numerical approximation of (4.25)). A complicated process
was proposed in [I5] for computing the jump of a discontinuous quantity sp, based on the diffuse interface
approximation

[sn] ~ ((1 = X)Sh — Xsh)- (4.32)



4.3. SHARP-INTERFACE FORMULATION IN A FIXED MESH FRAMEWORK 129
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Figure 4.9: Transmission condition in a fixed mesh framework.

Notwithstanding this approximation seems to work well when the contrast between the two elastic phases
is very large (as is the case in damage or fracture models, see [I5]), more general numerical experiments for
comparable elastic moduli indicate a much worse behavior of this approximation, up to the point that
does not any longer provide a proper descent direction to minimize (see section .

This difficulty in the numerical evaluation of the shape derivative is just another example of the
well-known paradigm ‘should we differentiate first and then discretize or vice versa 7’ as already studied in
[240]. In order to get around this issue it is tempting, and we do so now, to investigate the case when we
first discretize and then differentiate. In other words we consider the objective function

Jh(QO)=/ j(x,up) de + k(z,up)ds,
D Tn

where uyp, € II;(Dy) is the discrete solution of (4.29)).

Proposition 4.11. Assume that the interface I' generically cut the mesh Dy, namely that it is never aligned
with part of a face of any cell K;. Then, the solution up of is shape differentiable and the shape
derivative of the cost function Jy is given by

TQ®) = = [ (Adewn) : ()0, (4.33)

where [-] denotes the jump through T' and py, is the solution of (4.30).

Remark 4.12. Note that Proposition holds true for most finite elements discretization and not merely
P! Lagrange finite elements. The assumption on the interface I' is necessary in the sense that, if a face of
an element K of the mesh is embedded in T', then neither u; nor Jj are shape differentiable (in the most
favorable case, there would be two directional derivatives corresponding to I' moving on one side or on the
other of this face of K'). However, if instead of Lagrange finite elements, we use Hermite finite elements which
ensure that e(uy) is continuous on D, then the results of Proposition hold true without any assumption
on I

Proof. Let us denote by ¢;(x) the basis functions of the finite element space II1(Dy). The solution u;, €
I1;(Dy,) is decomposed as

up(z) = Z Ulgi(),
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and the vector U" of components U/ is the solution of the linear system
Khyh — ph

where the stiffness matrix K" and the right hand side F”* are defined as

thj :/ Aye(¢;) : e(¢;) dr, and Fih :/ [ dﬂc—i—/ g ¢;ds.
D D 'n
The basis functions ¢; are independent of I" so the shape differentiability of the function wuj, reduces to that
of the vector U" and thus of the stiffness matrix K”. Since the quantity e(¢;) : e(¢;) is piecewise constant
on each element K, we need our assumption that I' does not overlap any face of K. In such a case we obtain

(Kn) (T)(0) = / [AJe(:) : e(6;)0 - nds

and thus, the shape differentiability of U” is a simple consequence of the implicit function theorem. We end
up with:
/ / _ /
w, (D)(0) = > (UF) (T)(0)¢s, where (U") (T)(0) = —(K")~" (K") (T)(0)U™.
Once uy, is shape differentiable, it is not necessary anymore to consider a complicated Lagrangian like (4.28)),
taking into account the transmission conditions through I' (which, by the way, do not hold true for up).
Therefore we define a discrete Lagrangian as

Ln(0,vn,qn) =/ J(x,vp) dw + k(x,vh)d8+/ A(1d+9)xe(vh)ie(%)d$—/ f'thl‘—/ g qnds,
D I'n D D I'n

to which it is easy to apply Céa’s method. Note that the adjoint problem obtained by differentiating £; with
respect to vy, is exactly (4.30) which was a discretization of the continuous adjoint. Therefore we deduce

TOO)(6) = T 0,1, ) 0),

which yields the desired result. O

There is a clear difference between the discrete derivative (4.33) and the continuous one . Even
if the continuous derivative is further discretized as suggesteddin;@[), there is still a difference between
(4.33) and which is that the last one is restricted to the tangential components of the stress and strain
tensors.

There is however one case where both formulas coincide which is when one of the phases is void. Indeed,
assume (formally) that Ay = 0 (and similarly that f = 0 and j = 0 in QY so that no loads are applied to the
void region). Then, in the domain Q° we have

(P)nn =0, 0(P)nr =0, 0(t)pn =0 and o(u)p, = 0.

Thus, the continuous derivative (4.25)) becomes

J(Q%)(0) = —/ o(u")rr s e(pt)r, 0 - nds,
r
which, upon discretization, coincides with the discrete derivative (4.33))

T (Q0)(0) = —/PAle(uh):e(ph)O-nds,
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since o(ut)pn = o(ul),, =0 on T.

The above study shows that the numerical discretization of the sharp-interface problem should be handled
carefully when a standard finite element method is used for solving the state and adjoint systems and
in a fixed mesh setting. The main reason of this difficulty lies in the difference of regularity of the
exact and approximated solutions through the interface. The discrete derivative proves very efficient
in numerical practice. Many examples are given in [I10] in the context of optimal design of laminated
composite panels.

4.4 Shape derivative in the smoothed-interface context

4.4.1 Description of the problem

We now present an alternative approach to that of section [£:3 which can be coined as smoothed or diffuse
interface approach. It can be seen as a mathematically convenient approximation of the sharp-interface prob-
lem but, as explained in the introduction, it has its own merits for some problems in material science which
feature physically thick transition zones [66], [296], [308], [314]. More precisely, either for a mathematical
approximation or for physical reasons, it may be desirable to model the interface I' between Q° and Q! as a
thin layer of (small) width 2 > 0 rather than as a sharp interface. In this context, we rely on the notion of
signed distance function, described in section

The material properties in D are defined as a smooth interpolation between Ay and A; in the layer of
width 2e around I', so that the resulting Hooke tensor Agqo . reads

AQO75(l‘) = AO + ha(dQO (x))(A1 — Ao), Ve D, (434)

where h. : R — R is a smooth approximation of the Heaviside function, that is, a smooth monotone function
enjoying the properties : h.(t) = 0 for t < —e, h.(t) = 1 for t > €. In the sequel, we chose the C? function

0 if t<—¢
VEER, ho(t)=¢ $(1+L+Lsin(Z)) if —e<t<e (4.35)
1 if t>e¢

Remark 4.13. Formula expresses a simple choice for the interpolation of the material properties
between the two materials, and of course, one could think of different interpolation rules. Moreover, the
interpolation function could also contain parameters that are themselves subject to optimization (e.g. the
layer width €) and both a geometric and parametric optimization could be combined using a method of
alternating directions.

We modify (4.21]) so that the elastic displacement now solves

—div (Aqo.e(u)) = f inD
u = 0 onlp (4.36)
(Are(u))n = g only.

The objective function does not change and we still minimize (4.22]) which depends on dgo through (4.34]).
In order to compute its shape derivative, we shall use the preliminary material of section [4.2]

4.4.2 Shape derivative of the compliance in the multi-materials setting

With the results of section [f.2] we have all the necessary ingredients to differentiate the cost function
(4.22) with respect to the domain. We keep the geometrical assumptions of section namely for a given
bounded open set D C R? which is partitioned in two subdomains Q°, Q' € D, Q0 is a strict subset of D in
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the sense that its boundary T, as well as its thick approximation, does not touch 0D (see figure and I’
is smooth.
We define the adjoint problem

—div (Ago . e(p)) = —j'(z,u) inD,
p = 0 on I'p, (4.37)
(Are(p))n = —K(x,u) only,

where the symbol / denotes differentation with respect to w.
Our main result is the following.

Theorem 4.8. The objective function is shape differentiable in the sense of Gdteauz, namely 0 —
J((Id + 0)Q°) admits a Gateaux derivative at 0 = 0, which is

J(Q°)(0) = — /F 0(z) - n(x) ( folz) + fl(x))dx, V6 e WL (D, RY), (4.38)

where n is the outer unit normal to Q0 and fy, f1 are scalar functions defined by

d—1

fo(z) = / h. (doo(2)) (A1 = Ao)e(u)(2) : e(p)(2) [ ] (1 + doo (2)ri(2))dz,
ray.(z)nQo

i=1

d—1
fi(z) = / hL (dao (2)) (A1 — Ag)e(u)(2) : e(p)(2) [ [ (1 + dao(2)i(x))dz,
rayn(z)nQt i=1

where z denotes a point in the ray emerging from x € I

Proof. The rigorous proof of existence of the shape derivative stems from classical arguments (typically the
implicit function theorem) similar to those invoked in [234] or chapter 5 in [I72]. We rather focus on the
actual computation of the shape derivative and use once again the formal Lagrangian method of Céa [72].
As the computation unfolds very similarly to that in the proof of Theorem 3.6 in [I4], we limit ourselves to
the main arguments.

Define first the functional space V := {v € H'(D)? such that v = 0 on I'p}, in which are sought the
solution of the state equation and of the adjoint equation . We introduce the Lagrangian
L:Whe (D,RY) x V x V — R, defined by

E(G,v,q):/ j(m,v)dm+/ k(x,v) d8+/ A(raroyao,ce(v) = e(q) dx—/ f-qd:r—/ g-qds. (4.39)
D I'n D D I'n

Here, ¢ is intended as the Lagrange multiplier associated to the enforcement of the state equation. As usual,
stationarity of the Lagrangian provides the optimality conditions for the minimization problem. At 6 = 0,
cancelling the partial derivative of £ with respect to ¢ yields the variational formulation of the state u. In
the same way, the nullity of the partial derivative of £ with respect to v leads to the variational formulation
of the adjoint p.

Eventually, the shape derivative of the objective function is the partial derivative of £ with respect to 6,
evaluated at u and p

7(00)(6) = 20, )(6).

Some elementary algebra yields, using proposition

T(O0)6) = /D (Agaroan.) (0) e(w) : ep) da

(4.40)
—/D h(dgo(x)) (0(pr(x)) - n(pr(x))) (A1 — Ao)e(u) : e(p) dz,
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where (A(Id+9)QU’E)/ (6) is the directional shape derivative of A(7449)0 . while h. is the standard derivative
of the real function h.. It remains to transform this expression by the coarea formula in order to deduce a

boundary integral. Using formula (4.11)) for (4.40)), we get:

i=1

d—1
J%QUW):—iéemﬁwux)Qé%,(mDhﬁdmCﬁﬂAr—A®€WX2%eOﬂ@)II(1+dQM@HJ@ﬁh>d%

Now decomposing the above integral over Q° and Q' readily yields the desired result. O

Remark 4.14. Theorem provides a simple way of choosing a descent direction for a shape gradient
based algorithm. Indeed it is enough to perturb the interface I' by choosing the vector field

0(2) = (fol@) + fi(@) ()

which ensures that the directional derivative is negative and thus yields a decrease of the objective
function (4.23)). This is in sharp contrast with Proposition [4.5] which provided formula for the shape
derivative. However it was impossible to extract directly from an explicit value of 6§ which was a
guaranteed descent direction.

Remark 4.15. In the case of compliance minimization, namely for the objective function , we have
j'=f, k' = g and thus p = —u. If we assume that material 1 is stronger than material 0, in the sense that
A! > AV as positive definite tensors, we deduce from the formulas of Theorem that both fy and f; are
non-positive because 1 + k;(x)dgo(z) > 0 by virtue of Lemma Thus, a descent direction is obtained by
choosing 6 such that 6(z) - n(z) < 0 on I', namely we expand Q. This is in accordance with the mechanical
intuition that a more robust mixture of the two materials is achieved when A' prevails over A°. Of course,
for the problem to be reasonable, a volume constraint is imposed on the phases.

4.4.3 Approximate formulas for the shape derivative

Although formula is satisfying from a mathematical point of view, its numerical evaluation is not
completely straightforward. There are two delicate issues. First, one has to compute the principal curvatures
k;(z) for any point « € T on the interface. Second, one has to perform a 1-d integration along the rays of
the energy-like quantity [Ale(u) : e(p). This is a classical task in the level-set framework [274] but, still, it is
of interest to devise a simpler approximate formula for the shape derivative.

A first approximate formula is to assume that the interface is roughly plane, namely to assume that the
principal curvatures k; vanish. In such a case we obtain a ‘Jacobian-free’ approximate shape derivative

7(90)0) = = [ 6@ (fo(o) + fr(o) da

fi() he (dao(2)) (A1 = Ao)e(u)(2) : e(p)(2)dz.

rayp(z)nQé

(4.41)

A second approximate formula is obtained when the smoothing parameter ¢ is small. Note that, since the
support of the function Al is of size 2e, the integral in formula is confined to a tubular neighborhood
of T' of width 2¢. Therefore, if € is small, one may assume that the functions depending on z are constant
along each ray, equal to their value at € I'. In other words, for small £ we assume

e(u)(z) ~e(u)(x), e(p)(z) ~ e(p)(z) and doo(z) ~ dgo(x) =0,

which yields the approximate formulas, for x € T,

folz) = (A1 = Ag)e(u)(z) : e(p)(af)/ he (doo (2)) dz,

rayr (z)NNO
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() ~ (A1 — Ap)e(u)(z) - e(p)(x) / . (deo (=) de.

rayr (z)NQL
Furthermore, most rays have a length larger than 2¢ so that

/ B, (dew (2)) d= + / B, (deo (2)) dz = he(e) — ho(—c) = 1.
rayr (z)NNO rayr (z)NQL
In turn we obtain the following approximate formula for (4.38))
J(Q%)(0) ~ —/(A1 — Ap)e(u) : e(p) 0 - ndx, (4.42)
r

which is nothing but the discrete shape derivative that we obtained in the sharp-interface case. This
computation seems a bit miraculous but makes sense as a kind of commutation property between interface
regularization and optimization.

Our numerical results show that the latter simplification , which we shall refer to as the approximate
shape derivative, works very well in practice for problems of compliance minimization. Formula is also
used by other authors in their numerical simulations [321].

4.4.4 Convergence of the smoothed-interface shape optimization problem to
the sharp-interface problem

When the smoothed-interface setting is used as an approximation of the sharp-interface case, it is a
natural task to prove that this approximation is mathematically consistent. In this section, we present a
result in this direction, and outline the main ideas of the proof, referring to the appendix (section for
all the technical details.

More specifically, for a given regular interface I', we prove that the shape gradient obtained in Theorem
[4:8|for a smoothed transition layer of width 2e converges, as € goes to 0, to the corresponding shape gradient
in the sharp-interface context, recalled in Proposition [£.10]

To set ideas, let us limit ourselves to the case of compliance minimization, the case of a general objective
function such as being no different in principle. In order to make explicit the dependence on the
half-thickness € of the smoothed transmission area, the solution of the state system is denoted u. in
this section. Similarly the stress tensor is o(u.) = Aqo . e(u.) and the compliance is

J(Q°) = /D o(ue) : e(ue) du.

The solution of the state system in the sharp-interface case is still denoted as u, and the associated
compliance as J(Q0).

To find the limit of J.(€p), as € — 0, requires some knowledge of the asymptotic behavior of e(u.) and
o(ue) in the vicinity of the interface I'. Unfortunately, one cannot expect all the components of e(u.) and
o (ue) to converge toward their counterpart in e(u) and o(u) in any space of smooth enough functions. Indeed,
for fixed €, e(uc) is smooth over D (because so is the associated Hooke’s tensor), whereas we recalled in
Remark that e(u),n and e(u)y,, are discontinuous across I', as imposed by the transmission conditions.
However, some of the components of e(u.) and o(u.) do behave well as ¢ — 0. This is the purpose of the
following proposition, which is a consequence of rather classical results in elliptic regularity theory.

Proposition 4.12. Assuming I' is a C? interface, there exists a tubular neighborhood V. CC D of T' such
that one can define a smooth extension in V of the normal n and of a set of tangentials and orthonormal
vectors T. Then, the following strong convergences hold true

L

in Hl(‘/)(d’l)2 strong,
in HY(V)? strong,
in HY(V') strong.

®
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£
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e(ue) e
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Remark 4.16. The components of the strain and stress tensors which converge in Proposition are
exactly those which are continuous through the interface I' as explained in Remark [£.10]

We are now in a position to state the main result of the present section which implies that the shape
derivative of the smoothed-interface objective function is a consistent approximation of the corresponding
shape derivative in the sharp-interface case.

Theorem 4.9. Under the above assumptions, we have

lim J(Q°)(0) = J'(Q°)(0) V6O c W= (D,R?).

e—0

Sketch of the proof. We limit ourselves with an outline of the main steps, referring to section [I.8]for details.
The goal is to pass to the limit ¢ — 0 in formula (4.38)), for a fixed § € W' (D,R9). To achieve this,
the rays rayp(x) N Q° and rayp(z) N Q! are expressed as integrals over the segment (0, 1). Therefore, (4.38)

becomes
)0 =~ [

0(@) - n(@)(f5(2) + [ () )da,

where f§, ff € L'(T) are defined as

0
fo(x) = [1 hl(se)(A1 — Ag)e(ue)(z + sen(x)) : e(ue)(z + sen(z)) ke(x, s) ds, (4.43)
filz) = /0 h.(se)(A1 — Ap)e(ue)(x + sen(w)) : e(ue)(x + sen(z)) ke (z, s) ds, (4.44)
with
d—1
ke(xz,s) = H (1 + seri(z)) .

Since h.(se) does not depend on €, to pass to the limit in (4.43) and (4.82)) requires merely the following
simple technical convergence result:

/0 C0(8) fo (o + sen(@))ge (e + sen(x)) ds =2 ( /O Co(s) ds) F@)g(z) in LX(T) (4.45)

for a smooth function v(s) and any sequences f.,g. € H'(D), which converge strongly in H'(D) to f,g
respectively. In order to apply we rewrite expressions and in terms of the components
e(ue)rr and o (te)rn, 0(Ue)ny of the strain and stress tensors, which have a fine behavior at the limit € — 0 as
guaranteed by Proposition[{.15] After some algebra, we obtain the following rearrangement for the integrand
in f§ and ff:

(A1 = Ag)e(ue) s eluc)(w +sen(@) = p/(s) (e(ue)rr : e(ue)rr) (@ + sen(a))

" 5(52 (0 (te)rn - 0% (te)rn) (x + sen(2))
PN () + 2 (9NS)

oar |
s s . 0

B
pH(s)A'(s) —4p'(s)Als) ,

i (QM(S) +)\(S))2 (0 (us)”" tr(e(us)m—)) ($+55n(g;))

with
A(s) = Ao+ he(se) (M1 — Xo),  pu(s) = po + he(se)(p1 — po),
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D

o0

QB

Figure 4.10: Two subdomains of D (top) and the four phase domains derived by combining them together
(down,).

where Ao, o and A1, 1 are the Lamé coefficients of materials 0, 1 respectively. Note that all the functions
of s involving A(s) and u(s) appearing in the above expression arise as exact derivatives of functions of A(s)
and p(s). Passing to the limit in the above expression using (4.45)) leads to

(f§ + f5) = D(u,u) in L'(T),
where D(u,u) is defined as
D(u,u)(z) = 2[ple(u)rr(z): e(u)rr(z) — %} o(t)rn (@) - 0(u)rn(2)
+ [ | trle()er(@))? - |5k | o) @12, .
t

+ [525] o (Wan (@) tr(e(w)or (2))

which after some algebra rewrites as (4.25)). This completes the proof. O

4.5 Extension to more than 2 materials

The methods presented in sections and [£:4] for two phases can be extended to the case of several
materials to be optimally placed in the domain D, following a classical idea in the level-set framework [315],
21,

Hitherto, we considered a single subdomain Q° C D, which allows to account for two separate phases
within D, occupying respectively the domains Q° and Q! := <Q0 (where ¢ denotes the complementary part
in D). To consider more phases, we introduce m subdomains OV, ..., O™~! C D which are not subject to any
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geometrical constraints (they can intesect, or not, and they don’t need to cover D). These m subdomains
allow us to treat up to 2 distinct phases, filling respectively the phase domains Q°,...,Q2" ! C D, defined

as (see Figure

0o = 0'no'n..nom
% = 0O'NO'Nn..NnO™ 1,

(4.46)
Q¥ -1 = c00ncoin..ncOm-1.

Note that Q°, ..., Q2" ! is a partition of D. To simplify the exposition, from now on we take m = 2, meaning
that we consider four different materials, with respective Hooke’s law Ag, A1, A, As. Two subdomains O°, O*
of D are then introduced, and each material A; fills an area Q¢ C D, defined through formula .

For the sharp-interface problem, the definition of the mixture Hooke’s tensor A, is standard. Introducing
Xo and x; the characteristic functions of O and O, respectively, we define

Ay (@) := xo(@)x1(x) Ao + (1 = xo(2)) x1(2) A1 + xo(2) (1 = x1(2)) A2 + (1 = x0(2)) (1 — x1(x)) As. (4.47)
For the smoothed-interface problem, we propose a formula inspired from
Apoo1 () = (1 —he(doo(2)))(1 — he(dor(x)))Ao + he(doo(x))(1 — he(dor(x)))Ax
+ (1= he(doo(x)))he(dor(z))As 4+ he(doo(x))he(do1 (x))As,

where h. is the smooth approximation (4.35]) of the Heaviside function and dpo, do1 are the signed distance
functions to O° and O respectively. Of course, there are other interpolation formulas and any alternative
choice which, as (4.48)), satisfies the following consistency

(4.48)

Ag if deo(z) < and dp1(x) < —¢,

Ay if deo(z) > —|—€ and doi(x) < —¢,
AOO’Ol’E(f,C) = AQ if doo (.13) and d@l( ) > +€, (449)

A3 if d(’)O( ) > +€ and d@l( ) > +e,

a smooth interpolation between Ag, A1, Ao, A3 otherwise,

will do. In particular, for applications in material science where the thick interface has a clear physical
interpretation, one could choose a physically relevant choice of the interpolant Hooke’s law for the mixture
of Ag, Ay, As, A3 in the intermediate areas, like a sequential laminate or another microstructure achieving
Hashin and Shtrikman bounds [229]. On the other hand, if the smoothed-interface problem is merely a
mathematical approximation of the sharp-interface case, then it is a consistent approximation since, as the
regularizing parameter ¢ goes to 0, the smooth tensor Apo o1 . converges to the discontinuous one A, .

In the multiphase case, the definition of the objective function does not change

J((907(’)1):/Dj(nc,u)dav—&—/F k(x,u)ds, (4.50)

and the state or adjoint equations are the same, up to changing the previous Hooke’s tensor by Apo o1 .
There are now two variable subdomains, O, O!, as design variables for the optimization problem. Ac-
cordingly, we introduce two separate vector fields 6g,60; € W1 (D,Rd) in order to vary the subdomains
0° 0.

According to Theorem |4.§ . the partlal shape derlvatlve of the objective function with respect to
OY and O, which we shall denote as 800 and aol respectively, in the direction of 90 and ', respectively,
are

aJ 0A
8(90( )(00) = / bo(Pooo () - no(paoo (x))%(doo,dol)e(u) s e(p) dz, (4.51)
oJ 0A
8(91( )(01) = / 01 (poor (z nl(paol($)>6T@(d007d01)€(u) re(p) dz, (4.52)
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where A(dpo,dor) = Apo o1 ¢, defined in (4.49). Of course, one can apply Theorem to simplify (4.51)
and (4.52)) and transform them in surface integrals on 90° and 9O*.

Remark 4.17. In the sharp interface context one could compute shape derivatives of the objective function
J with respect to O% and O' too, thus recovering formulas similar to and . However, it is possible
only if we assume that the boundary of O° and @' do not superpose. Indeed if, for example, 00° = O,
then moving O inside O, or vice versa, implies that one phase or another one appears. This means that
a topology change is occuring which cannot be handled by Hadamard’s method. At most, one can expect
to compute two different directional derivatives (inward and outward) which clearly shows that there is no
differentiability in this case. Note that there is no such difficulty in the smoothed interface setting: formulas
(4.51) and hold true for any geometrical situation of O and O' since Apo 1 . is a smooth function
of z in D.

4.6 Discussion and comparison with previous formulae in the lit-
erature

To our knowledge, the first works on multi-phase optimization using a level-set method are [223] and
[321]. Further references include [224], [320], [322]. In all these works the computation of the shape derivative
is not mathematically rigorous and the obtained formulas are not strictly correct. Indeed, either the shape
differentiation is performed in the sharp-interface case and then the non-differentiable character of the
solution of is ignored (as explained in section , or the shape derivative is evaluated in the
smoothed-interface case and then the derivative of the signed distance function is not taken into account.
Fortunately, the shape derivative formulas in [223] and [32I] coincide with what we called our approximate
shape derivatives obtained in Proposition for a discretization of the sharp-interface case and in
for a very thin smoothed interface. A third possibility for interpreting these works is to consider that the
regularization of the interface is made with the help of the level set function % (used in numerical practice for
representing and advecting the shape, see section below) rather than with the signed distance function
dgo. Then the differentiation is performed with respect to 1 rather than with respect to the shape Q. It
alleviates all the technical details of section [£.4] but it has one major flaw that we now describe.

w W
. \\ \
E \ E
w(x)
interpolation width = 2¢ intefpolation width > 2¢
wix) = ¢ wix)=¢
— * X — L
Material 1 Material O Material 1 Material 0
Wx) = -& wix)=-€
X=¢ X=-£ X =Q<-g X =Bt

Figure 4.11: Intermediate zone for regularization with the signed distance function (left) or with an arbitrary
level set function (right).

Indeed, in the context of section [£.4]on the smoothed interface approach, one could be tempted to replace



4.6. DISCUSSION AND COMPARISON WITH PREVIOUS FORMULAE IN THE LITERATURE 139

the regularization formula (4.34]) by a similar one
AQO75(I) = AO + hs(d)(z))(Al — Ao), Vo e D, (453)

where the signed distance function dg has simply been replaced by the level set function 1. Then, as is
done in [223] and [224], one may differentiate the objective function with respect to 1. A serious problem
that rises directly from this choice, is that the interpolation zone, where Aqo . takes intermediate values
between Ag and Aj, can thicken during the optimization process, especially if the level set function ¢ is not
frequently reinitialized towards the signed distance function to the boundary (see Figure[4.11]). The reason is
that the interpolation zone corresponds to some kind of homogenized material made of Ay and Ay, which is
known to be more advantageous than pure phases in most problems [9]. The optimization process therefore
does not only move the interface location but also flatten the level set function 1 so that the interpolation
zone gets thicker. Even when the level set function is reinitialized, there remains a difficulty in the sense
that the value of the objective function may change before and after reinitialization. A partial remedy to
this inconvenient, as suggested in [223], is to add to the objective function a penalization term to control the
enlargement.

The computation of the shape derivative is slightly different in [32I]: the authors carry out the derivation
with the level set function v but in the resulting formula they assume that 1 coincides with the signed distance
function to the interface dg. More precisely, following the notations of Proposition they consider a
functional

1@ = [ e i) da, (4.54)
D
where v is a solution of the Hamilton-Jacobi equation
oy
Ewmvw =0.

Then, the authors claim that the shape derivative is

0
T = — | 2, 0(x) 0(z) - n(z) d. (4.55)
p oY
Note the difference with our formula (4.8)), which involves the projection pr(z) of « on the boundary I' = 02,
and that we recall as

om
p OV
Unfortunately, there is no a priori guarantee that the transported signed distance function to the boundary
O remains the signed distance function to the transported boundary (Id + 0)0f2. Therefore, the shape
derivative d,(0)(x) cannot be replaced by the expression %—f = —60-n|V4| coming from the Hamilton-Jacobi
equation, as it is done in [223] and [321], without making any further assumptions. For example, in [160]
it is shown that the transported level set function remains the signed distance function (at least for a small

time) if the advection velocity remains constant along the normal, namely (6 - n)(z) = (8 - n)(pr(z)).

A difficulty with is that it does not satisfy the Hadamard structure theorem (see e.g. [9], [105],
[172], [234] and references therein) since it does not depend solely on the normal trace 6 - n on the interface
I' = 99Q. In fact, assuming that the support of % is concentrated around T, form would be similar
to what we called earlier ‘approximate shape derivative’, obtained in Proposition 4.11[Tor a discretization of
the sharp-interface case and in for the smoothed-interface case when the regularization parameter e
is small. In any case, does not guarantee a descent direction in general, unless %—2’; keeps a constant

sign along the normal, at Teast for the width of the intermediate zone.

J()(0) = (z,do(x)) 0(pr () - n(pr(z)) dz.
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4.7 Numerical results

4.7.1 Level-set representation

Following the lead of [14], [15], we represent the moving and optimizable interfaces by level set functions
[245] defined on a fixed mesh in an Eulerian framework. According to Section using m level set functions
we can represent up to 2" separate phases.

When there are only two phases to optimize, it suffices to use one level set function to represent the
interface T’ between two complementary sub-domains Q° and Q' of the working domain D. The level set
function v (see figure complies with the properties:

Y(x) =0 forx el =0,
P(x) <0 for z € QO
P(xz) >0 for z € QL

Ql P >0 D

I

Figure 4.12: Level-set representation of the domains Q° and Q.

During the optimization process the shape is advected with a scalar velocity field V' (z) in the direction
of the outer normal vector field n(z) to Q° (V = 6 -n). For instance, in the smoothed-interface setting of
section [£.4] the value of this scalar field is derived from the shape sensitivity analysis of Theorem More
precisely, the choice

Vi(z) = fo(z) + fi(),

where fy, f1 are defined by , clearly gives a descent direction for § = V' n. The functions fy and f;
are defined for all points x € I' as integrals along rays in the normal direction. Since the interface I" is
not explicitly discretized, fy and f; are evaluated at the nodes of the elements that are crossed by the zero
level-set. The normal vector is computed for each of these nodes, which defines the direction of the rays and
a simple quadrature formula is used for the numerical approximation of fy and f;. This computation is done
only in a band of thickness 2e around the interface, where h. is non-zero, and as long as the skeleton of T’
(see Definition is not detected (recall that the rays end up at the skeleton). When integrating along a
ray the skeleton is identified as the region where the signed-distance function loses its monotonicity.

The advection is described in the level set framework by introducing a pseudo time ¢ € R and solving
the Hamilton-Jacobi equation over D
o

B +V|Vy| =0, (4.56)

using an explicit upwind scheme [274] (see also chapter [1], §1.2.1). However, the scalar field V is a priori
defined only on the boundary of the shape and therefore it is necessary to extend it to the whole domain
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in order to be able to perform multiple iterations of the transport equation for each finite element
analysis. Moreover, it is numerically advantageous to regularize the advection velocity in order to assure
some smoothness required by sensitivity analysis [162] (see chapter . One way to extend and
regularize at the same time V' is to solve the variational formulation for Q@ € H'(D)

/ (’VQ-VV +QV)dx=J'(Q)(Vn) forany Ve H' (D), (4.57)
D

where a > 0 is a positive parameter that controls the regularization width (typically « is of the order of the
mesh size). Then, choosing V = —@Q, we find

J(Q)(~Qn) = /D (02IVQI? + Q?) dx,

which guarantees again that —Q n is a descent direction for J.
In order to describe up to four distinct phases, two level-set functions ¥y and 1; are defined such that

Po(z) =0 for z € OO, Pi1(z) =0 for z € OO,
Yo(xz) <0 forx e (’& and P1(x) <0 forx e OL
Yo(z) >0 for z € cO, P1(z) >0 for z € O,

following the notations of Figure 4.5l Then, each level set function ;, i = 0,1, is transported independently

solving (4.56]), where V;, i = 0,1 results from the formulas (4.51)) and (4.52).
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NAONNANANAAANNN

A
\

Figure 4.13: Boundary conditions for the long cantilever.

4.7.2 Two materials in the sharp interface context

We work in the context of Section [£:3] namely in a sharp interface framework. We compare the two
shape derivatives: the continuous formula furnished by Proposition [I.10] and the discrete formula given
in Proposition [£1I] The numerical implementation of the continuous formula of the shape derivative in
Proposition is achieved according to the scheme proposed in [I5] for computing the jump approximation
. We consider a long cantilever of dimensions 2 x 1, discretized by 100 x 50 P1 elements, clamped at its
left side and submitted to a unit vertical load at the middle of its right side (see Figure . The domain
is filled by two isotropic materials 0 and 1, with different Young’s moduli, respectively E° = 0.5 and E! =1
(material 1 is stiffer than material 0) but with the same Poisson ratio v = 0.3. We minimize the compliance
with a constraint of fixed volume for the two phases. The computations are done with the FreeFem-++
package [259].

For all the numerical examples in this chapter, an augmented Lagrangian method is applied to handle
the constraints. Following the approach in [237], supposing that our problem contains m equality constraints
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of the type ¢;(Q2°) =0 (i =1,...,m), an augmented Lagrangian function is constructed as

m

L0, 6, 1) = J(°) = S i (20) + S 22 e2(q0),
( n) = J(2°) ; Q%) ;2 (1)

where ¢ = (¢;)i=1,..,m and g = ({4;)i=1,..,m are Lagrange multipliers and penalty parameters for the con-
straints. The Lagrange multipliers are updated at each iteration n according to the optimality condition
@?H = 0" — p;c;(Q0). The penalty parameters are augmented every 5 iterations. With such an algorithm the
constraints are enforced only at convergence (see for example Figure . Of course, other (and possibly
more efficient) optimization algorithms could be used instead.

The results are displayed on Figure As usual the strong phase 1 is black and the weak phase 0
is white. The design obtained with the discrete formula is quite similar to the one exposed in Figure 4.16
(c). However the continuous formula gives a different optimal shape which is worse in terms of the objective
function than the one obtained with the discrete formula (see Figure .

> de

Figure 4.14: Optimal shapes for the long cantilever using the discrete shape gradient (left) and the continuous
formula (right).
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Figure 4.15: Convergence history of the compliance (left) and the volume (right) for the sharp interface
results displayed on Figure [4.14

4.7.3 Two materials in the smoothed-interface context

We now switch to the smoothed-interface setting as described in Section We perform the same test
case, with the same parameter values, as in Section All computations are performed in Scilab. A first
goal is to compare the smoothed-interface approach to the sharp-interface one. A second goal is to compare
the various formulas for the shape derivative obtained in Section
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“True" formula
" Jacobian-free” formula
" Approximate" formula

"True" formula
" Jacobian-free” formula
" Approximate" formula

Compliance
Volume of material 1

I I I
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Iterations Iterations
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Figure 4.16: Long cantilever using two phases with Vp = 0.7|D| and a small smoothing parameter ¢ = 2Ax;
(a) initialization, (b) optimized shape using the ‘true’ formula, (c¢) optimized shape using the ‘Jacobian-
free’ formula, (d) optimized shape using the ‘approximate’ formula, (e) convergence of the compliance, (f)
convergence of the volume.

We minimize again the compliance (4.23) with a constraint of fixed volume for the two phases which is
written

/D he(doo(z))dz = Vr,

where V7 is the target volume of the strong phase occupying Q!.

We test three different formulas for the shape gradient. The first one is the ‘true’ formula given by
(see also (4.51) and (4.52) in the case of more than two phases). The second one, called ‘Jacobian-free’,
is (4.41) which is obtained from by neglecting the Jacobian term. The reason for this choice is that
the curvature is not precisely calculated using a fixed mesh and therefore we may introduce a significant
approximation error. In any case, it amounts to neglecting a positive factor, thus it remains a descent
direction. The third one is the ‘approximate’ formula obtained for a very thin smoothing zone around
the interface.

First, we consider the case of a ‘thin’ interface. The interpolation width is chosen as € = 2Az, where Ax
is the uniform mesh size. The results for V = 0.7|D| are shown in Figure We plot the Young modulus
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distribution (black being the strong material A; and white the weak material Ag). The convergence histories
are almost identical for the ‘true’ and ‘Jacobian-free’ formulas of the shape derivative. It is slightly more
oscillating for the ‘approximate’ formula although it converges to almost the same value of the objective
function. The resulting optimal designs are very similar.

For a larger interpolation width ¢ = 8 Az (‘thick’ interface), the results are shown in Figure We
clearly see a difference for the optimal shape obtained using the "true" formula of the shape derivative: in
this case, the algorithm produces a very long and oscillating interface in such a way that the overall structure
is almost like a composite structure. This is due to the fact that the intermediate zone inside the interface
is very favorable compared to the pure phases. Nevertheless, despite the differences in the final shapes, the
values of the compliance are almost the same for the ‘true’ and ‘Jacobian-free’ formulas, slightly worse for
the "approximate" formula of the shape gradient.

"True" formula )
" Jacobian-free” formula r " -free’” formula
" Approximate" formula [ g " Approximate" formula

Compliance
Volume of material 1

I
0 50 100 0 50 100

Iterations Tterations

(e) (f)

Figure 4.17: Long cantilever using two phases with Vr = 0.7|D| and a large smoothing parameter ¢ = 8Aw;
(a) initialization, (b) optimized shape using the ‘true’ formula, (c¢) optimized shape using the ‘Jacobian-
free’ formula, (d) optimized shape using the ‘approximate’ formula, (e) convergence of the compliance, (f)
convergence of the volume.
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4.7.4 Four phases in the smoothed interface context

We consider now the case of using up to four phases and consequently two level set functions. A smoothed
approximation of the characteristic function of each phase can be constructed using combinations of the
functions h., defined in equation (4.35]), as follows

X0 = (1 = he(doo))(1 = he(don)),
X1 = hg(d(go)(]. - hs(d(m)), (4 58)
X2 = ( ( '

and the global Hooke’s tensor in given by (4.48). The optimization problem now reads

i 0 h = Aono o1 :
oo i, J(0°.0Y) = [ Aonor (a)etu) s elu) da .

s.t. i dm:VTi7 1=0,...,3,
D

where V. is the target volume for the phase i (they sum up to the volume of D). As previously, an augmented
Lagrangian algorithm is applied to enforce the constraints. In this section we work with a ‘thin’ interface,
namely ¢ = 2Ax. For all test cases, we checked numerically that the three formulas of the shape gradient
give very similar optimal shapes, as expected. The results presented in the sequel have been obtained using
the ‘Jacobian-free’ formula.

We test our method with several benchmark examples presented in [32I] and [322]. Since the initial
design are different, as well as the numerical methods, it is hard to make a quantitative comparison and we
satisfy ourselves with a qualitative comparison.

4.7.4.1 Short cantilever using two materials and void

In this paragraph we consider only three phases, made of two materials and void. The first structure to be
optimized is a two-dimensional short cantilever, of dimensions 1 x 2, discretized using 80 x 160 Q! elements.
The left part of the structure is clamped and a unitary vertical force is applied at the mid point of its right
part (see Figure . The Young moduli of the four phases are defined as E® = 0.5, B! = 1073, E? =
and E? = 1073, where both phases 1 and 3 represent void. The target volumes for phases 0 and 2 are set to
V2 = 0.2|D| and V# = 0.1|D|. Remark that phases 1 and 3 are the same, corresponding to void. The fact
that the void zone is represented by two different characteristic functions has no influence on the numerical
results (at least in all our numerical experiments). The initial and the optimal shape (obtained after 200
iterations) are shown in Figure [4.19] (a) and (b). We plot the Young modulus with a grey scale: dark stands
for the stronger phase, white for void and grey for the intermediate phase.

This test case was previously studied in [321] (see figures 7 and 8 therein for two different initializations).
Our results are roughly similar to those in [321] and even slightly better since the design of Figure m (b)
is symmetric (as expected), contrary to the results in [321].

4.7.4.2 Short cantilever using three materials and void

The same example as in the previous paragraph is considered here with an additional phase: half of the
volume of material 0 is replaced by a weaker material 1. More precisely, the Young moduli of the four phases
are defined as E° = 0.5, E' = 0.25, E? = 1 and E? = 1072, while the target volumes for the three materials
0, 1 and 2 are set to V2 = V} = V2 = 0.1|D|. The initial and optimal shapes (after 200 iterations) are

displayed on Figure (c) and (d).
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(©) (d)

Figure 4.19: Short cantilever using two or three phases and void; (a) initialization for two phases and void,
(b) optimal shape for two phases and void, (¢) initialization for three phases and void, (d) optimal shape for
three phases and void.

This test case was also studied in [321] (see figures 11 and 12 therein for two different initializations).
Our result differs notably from these previous ones. Indeed, in [321] the strong material 2 always forms a
two-bar truss which is further reinforced by the other materials. On the contrary, in our Figure m (d) the
strong phase is disconnected and the intermediate material 0 plays a more active role in the transfer of the
load to the fixed wall.
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4.7.4.3 3-force bridge using two materials and void

A bridge-type structure of dimensions 2 x 1 is discretized by 160 x 80 Q! elements. Both the horizontal
and vertical displacement are fixed at the lower left part as well as the vertical displacement of the lower
right part. Three equally spaced forces are applied at the lower part (see Figure. The value of F' is set
to 1. The Young moduli of the four phases are set to E° = 0.5, B! = 1073, E? = 1 and E® = 1072 and the
target volumes for phases 0 and 2 are set to V.2 = 0.2|D| and V2 = 0.1|D|. The initial and optimal designs
(after 250 iterations) are shown in Figure (a) and (b).

Once again this test case was performed in [321] (see figure 13 therein). Our result is quite different.
First, our design in Figure (b) is symmetric, as it should be. Second, a major difference occurs in the
use of the strong phase. In our design, the strong material is used in the lower part of the ‘radial’ bars
whereas it was absent in figure 13 of [32I] (and rather used in the upper ‘arch’).

I

2F F

Figure 4.20: Boundary conditions for the 3-force bridge.

(c) (d)

Figure 4.21: 3-force bridge using two or three phases and void; (a) initialization for two phases and void,
(b) optimal shape for two phases and void, (¢) initialization for three phases and void, (d) optimal shape for
three phases and void.
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4.7.4.4 3-force bridge using three materials and void

The same example as in the previous paragraph is considered here with an additional phase: half of the
volume of material 0 is replaced by a weaker material 1. The Young moduli of the four phases are defined
as E° = 0.5,E' = 0.25, E? = 1 and E® = 1073, while the target volumes for phases 0, 1 and 2 are set to
V2 =V} = V2 =0.1|D|. The initial and optimal designs (after 250 iterations) are displayed on Figure
(c) and (d).

This test case can be found in [321] (figure 14) too, and again our result is quite different.

4.7.4.5 Medium cantilever using three materials and void

The next structure is a medium cantilever of dimensions 3.2 x 2, discretized using 120 x 75 Q1 elements.
The left part of the structure is clamped and a unitary vertical force is applied at the bottom of its right
part (see Figure . The Young moduli of the four phases are again set to E° = 0.5, E' = 0.25,E? =1
and E3 = 1073, while the target volumes for phases 0, 1 and 2 are V2 = V}} = V.2 = 0.1|D|. The initial and
optimal shapes (after 250 iterations) are shown in Figure [£.23]

This test case was also performed in [322] (see figure 7 therein). Our optimal design has a more complex
topology and a different layout of the three materials. However, the final volumes of the three materials in
[322] are not the same as ours and thus a comparison is not easy to establish.

3.2

A
\
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Figure 4.22: Boundary conditions and initialization for the medium cantilever.

(a) (b)

Figure 4.23: Medium cantilever using three materials and void; (a) initialization, (b) optimal shape.
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4.7.4.6 Long cantilever using two materials and void

The goal of this last paragraph is twofold. First, we consider again the 2 x 1 long cantilever, as in Figure
but with four phases, defined by their Young moduli E® = 0.5, E' = 1073, E? = 1 and E3 = 1073,
Second, we switch to an unconstrained optimization algorithm. We do not impose equality constraints for the
volume of each phase. Rather, we fix Lagrange multipliers and we minimize an objective function J(O% O1),
which reads

3 .
J(O°, 0 = /D A(doo,d01)e(u):e(u)d:c—FZW /D xi(x)dz. (4.60)
=0

We then carry out a standard constraint-free steepest descent algorithm in order to minimize J.

Objective function

Iterations

Figure 4.24: Initialization with two materials (top left), optimal shape (top right) and convergence history
of the objective function (bottom,).

A small tolerance parameter tol > 0 (in the example below, we used tol = 0.02) over acceptance of the
produced shapes is introduced so as to ease the occurrence of topological changes and is then turned off
after some iterations. More accurately, in the course of the optimization process, a step 02 — 09 41 and
O} — O}, is accepted provided:

J(O11,0541) < (1 +t0l) J (O, Oy).

For the results shown in Figure the Lagrange multipliers in are set to /0 = 100, ¢/ =0, 2 =
200, £3 = 0. As can be expected the strong material is distributed at the areas of high stress, while the weak
material completes the shape of the optimal cantilever.

It is interesting to see the optimal subdomains O° and O! (defined in Section in Figure Recall
that it is the intersections of these two subdomains and their complementaries which give rise to the phase
domains in the optimal design of Figure m Nevertheless, O and O! are important from a numerical
point since, rather than the phase domains, they are advected by the shape gradients and represented by
the level set functions.
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Figure 4.25: Final subdomains O° (left) and O (right).

4.8 Appendix: convergence of the smoothed-interface shape opti-
mization problem to its sharp-interface equivalent

In this appendix, we focus on the demonstration of the convergence result of section[f.4:4] As a first step,
in section [4.8.1] we investigate into the case of a simplified model in thermal conductivity, before turning, in
section [1.82] to the case of the linearized elasticity system, which is very similar in our considerations, yet
involving more tedious algebra.

The results and proofs concentrated in this section do not seem to exist as is in the literature, however
very reminiscent of previous works they are. They rely (in a probably non optimal way) of classical methods
in the theory of elliptic equations.

4.8.1 A model problem in the context of thermal conductivity

Consider the situation depicted in figure I' is a C? compact submanifold of R¢, delimiting two
complementary subdomains QY and Q! in a larger (bounded) computational domain D. We assume that
QY cc D, so that 90° N oD = 0.

Ql

Figure 4.26: The considered situation: two distinct phases are separated by an interface I'.

For small enough ¢ > 0, one defines u. € H{(D) as the solution to the smoothed-interface problem:

{ —div(A:Vue)=f in D

u: =0 on 0D ’ (4.61)



4.8. APPENDIX: CONVERGENCE OF THE SMOOTHED-INTERFACE SHAPE OPTIMIZATION PROBLEM TO ITS
SHARP-INTERFACE EQUIVALENT 151

and u € H}(D) as the solution to the sharp-interface problem:

{ —div(AVu)=f in D (4.62)

u=20 on 0D ’

where the source term f belongs to L>°(D), the conductivity matrix A € L (D)d2 is discontinuous across
the interface I', say A = Agxo + A1x1 -X; standing for the characteristic function of the phase Q*-, and A,
is a smooth interpolation between Ay and A; in the layer of (small) width 2¢ around I':

Ac(w) = Ag + he(dao(2)) (A1 — Ao). (4.63)

where h. : R — R is the smooth approximation of the Heaviside function defined by (4.35). Remark
that notations have been slightly altered with respect to those of the previous sections; in particular, the
dependence of A and A, on Q° has been dropped since variations of I are not considered in this section.

Remark 4.18. At first glance, the setting of the problem could seem a bit restrictive because of the choice of
Dirichlet’s homogeneous boundary conditions on dD. Actually, imposing other kinds of boundary conditions
would not change a word in the forthcoming analysis, since we are solely interested in what happens in the
neighborhood of T', which lies ‘far’ from 9D, and all the regularity results of interest (e.g. Meyer’s theorem

4.10)) are local.

Consider now the compliance of the resulting structure D from the distribution of materials accounted
for by the partition of D into Q° and Q!, in the smoothed-interface context:

J.(Q%) = /D f ue de.

The conclusions of this section would hold in the case of any ‘reasonable’ objective function of the domain,
up to some additional regularity assumptions on the data at hand, but, for the sake of simplicity, we will
only focus on this case.

In section we computed the sensitivity of J. with respect to the shape of this partitioning of D
(in truth, we performed the equivalent computation in the linear elasticity setting); it is described by the
following shape gradient:

9 € Whe(RYRY), JL(Q%)(0) = /F [f5 () + f1 (2)] (0(x).n(z)) ds(), (4.64)

where for all z € T, n(z) stands for the unit normal vector to I' (pointing outward QV), and:

d—1

it = | o, B ) T 0+ o (0 0) (A = A0) ¥V 0) o,

=1

d—1
i) = [ ) TT O+ daol(@) (s = 40) V) efo) dy

i=1

The purpose of this appendix is to study the convergence of J(0°)(0), for fixed Q° and 6, as the thickness
¢ of the smooth interpolation layer between the two different conductivities goes to 0.

4.8.1.1 Study of the asymptotic behavior of u. as ¢ — 0.

Let us first recall the following regularity results arounf w. and u, under the above hypotheses :
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— Since the conductivity matrix A, is smooth (and uniformly coercive) over D, for any £ > 0, the solution
ue to belongs to H?(D) (and even to W2P(D) for 1 < p < o). This stems from the ‘classical’
elliptic regularity theory [57].

— The solution u to is less regular : actually, one can show [222] that u|go€ W2P(00), and similarly,
that u|gr€ W2P(Q), for any 1 < p < oo.

The first thing to study is in which extent u. converges to u, when € — 0. To this end, we will use repeatedly
Meyer’s theorem (see [41], chap. 1, sec. 4):

Theorem 4.10. Let Q C R? a bounded open domain of class C?. Let 0 < o < B two real numbers, and
A€ L=(Q)¥4 q matriz-valued application on 2, such that

Vo€ QY6 € R, al¢’< A@)(,€) < B¢,
For f € H-Y(Q), let u be the unique solution in H}(Q) of :

—div(AVu) = f in
u =0 on 0’

There exists a number p > 2 and a constant C > 0 which both depend only on «a,f and 2, such that, if f
belongs to W—1P(Q), then u belongs to Wy (Q) and satisfies:

||UHW01"’(Q)S CHfHW*Lp(Qy

Introducing ellipticity o > 0 and continuity S > 0 constants available for Ay and A;, we denote thence-
forth as p > 2 various exponents depending only on D (and possibly on fixed subdomains of D), «, 3,
supplied by repeated uses of Meyer’s theorem. Now we can prove:

Lemma 4.5. The solution u. to converges towards the solution u to in H}(D).
Proof. First note that, as a consequence of Lebesgue’s dominated convergence theorem, one has:
Vp < 0o, Ac =% Ain LP(D)*, (4.65)

which obviously fails to happen in L>°(D), since A is not even continuous. Now, for any function v € H}(D),

/A VW (z) - Volo da:—/f o /DA(x)Vu(x)~V1}(x)dx:/Df(x)v(x)dx

Consequently, we get:

/ A(@)V (e — u)(z) - Vo(z)dz = / (A — A)(@)Vu(z) - Vo(z)da. (4.66)
D D
Putting v = u — u in (4.66)) and using Holder’s inequality yields:

allu = uel[F2 py < 1A = AellLr(p) llullyyro py Hu = welliy (),

for some r > 0 such that % + % + % =1 (which is possible since p > 2). Hence, there exists a constant C > 0
such that:

allu —ue||g2(p)y < C [|A = Acl[Lr(p) [ fllw-12(D)>
and the result follows. O

Actually, the situation is a bit better than that, owing to the following lemma:

Lemma 4.6. Let Q C R? any open domain, u. a sequence of functions of some LP(Q), forp > 2, u € LP(S2),
and suppose:



4.8. APPENDIX: CONVERGENCE OF THE SMOOTHED-INTERFACE SHAPE OPTIMIZATION PROBLEM TO ITS
SHARP-INTERFACE EQUIVALENT 153

— ue converges to u strongly in L*(Q).
~ there exists C > 0 such that ||uc||pr )< C for every e.
Then u. converges to u strongly in L1(Q), for any 2 < ¢ < p.

Proof. Define 6 € (0,1) such that ¢ = 260 + p(1 — 8). Then one has :

\u—u5|qu=/ (‘u—ue|2)0 (|u—u8|p)1_9 dx.
Q Q

Now, using Hélder’s inequality between (|u — u8|2)0 € L7(Q) and (Ju — u|P)' % e L%@(Q), we get :

3 7
/ |lu — uel¥da < </ |u—u5|2dx) </ |u—u5|pdz> ,
Q Q Q

whence »
v = uel[Lago) < lJu - U’EHEZ(Q) [Ju - UEHZ(;(};)) :
2 _»
Eventually, ||u—ucl||#% oes to 0 as € — 0, while |Ju—wu.|| 0,2 is bounded, owing to the second hypothesis,
£2(0) 8 Lr () & Y
which ends the proof. O

Putting together lemmas [-5] and and another use of Meyer’s theorem shows that actually, u.
goes to u in every W, 4(D), for 2 < q < p.

Now, we investigate convergence of the higher-order derivatives of u.. Actually, we are only interested
in what happens very close to I'. Since I is of class C2, let us introduce a tubular neighborhood T C V. C D
as in proposition (5). As we have seen, one can then introduce an extension of the normal vector field
n € C1(T') to V, still denoted n, as:
Ve eV, n(z) = Vdgo(x),

and similarly, one can construct an extension (still denoted as 7) of any vector field 7 € TT on I to V' by
considering 7(paq(x)).
The result of interest is the following:

Proposition 4.13. Let 7 € TT be any C' vector field on T'. The following strong convergence results hold
true:

% =9 gu in HY(V') strong,
(AcVue) - n =9 (AVu)-n  in HY(V) strong

Proof. The proof unfolds exactly as that of theorem 9.25 in [57], except that there is no need to use the
method of difference quotients to perform integration by parts (since we already know that the handled
functions enjoy enough regularity), and that a priori estimates resulting from Meyer’s theorem are used
to get the desired convergence result.

Before passing to the proof of proposition [£.13]itself, let us operate several simplifications in the problem,
owing to a standard argument of partitions of unity. Let @ = [—1, 1]d C R?, and denote:

Q+ = {l’ = (irlv’“vmd) € Q? Tq > 0}7
Q- = {x=(x1,...,2q) €Q, x4 <0}, .
Qo = {z=(z1,...,2q) €Q, x4 =0}

As I' is compact, it can be covered by finitely many open sets W; C D, j =1, ..., J, such that, for each index
J, there exists a C? diffeomorphism ¢; : Q — W; with the properties:

$;(Q-) =W;NQ°, ¢;(Q1) =W, NAY, ¢;(Qo) =W;NT.
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Considering a partition of unity {O‘j}j:L._.,J associated to this covering, that is, for every j, aj is a C?
function with compact support included in W;, and one has: > jo5=1onD. It is then enough to prove
proposition@ with xu. and xu instead of u. and u respectively, where x stands for any of the «; above,
associated to W = W; (see figure .

Now, we restrict (the variational formulations of) equations by expressing the problems solved

Ql

0 /:ﬁ
0
0. 0

Figure 4.27: Reduction in the proof of proposition

by ve := Xu., and v := yu. We find, after some computation, that, for all test functions ¢ € H(W):

/ A Vv, -Vodr = / gep dx + / he - Ve dx, (4.67)
1% 1% 1%
/ AVv-Vepdr = / g dr + / h-Vydz, (4.68)
1% 1% 1%
where we have defined:
ge = xf—ANVu.-Vy he = u:AVx
g = xf—AVu-Vy ’ h = uAVy

We then pull equations (4.67H4.68) back to ), using a change of variables. Again, after some computations,
we find that 0. := v. 0 ¢ and ¥ := v o ¢ are respectively solution to: for any v € Hg(Q),

/Z;V@~dex:/g}wdx+/ﬁ;-vwdx, (4.69)
Q Q Q
/Zv5~vwdx=/§¢dx+/ﬁ-v¢dx, (4.70)
Q Q Q
where
g := |det (V§)| gz 0 ¢, §:= |det (V)| go ¢,
he = |det (V)| he 0 ¢, h :=|det (V)| ho ¢,
and:

Az = |det (Vo) Vo' (A- 0 6) Vo7, A= |det (Vg)| Vo' (Aog) Vo
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With this done, we have, as far as the quantity (0. —?) is concerned, for any ¢ € H}(Q):
/ AV (6. — ) ~V1/)dm:/ 7 —§)¢dx+/ (i —7) -Vz/)dx—i—/ (A-A)Vi-Vedr  (47)
Q Q Q Q

e We are now in position to prove the first point of proposition[[.13 Note that, because of the linearity of
T Q’f, it is enough to prove that the result holds for any of the vector fields 7; (i = 1,....d — 1) on V

defined as:

Yy eV, 7i(y) == Vo6~ (y))es,

where eq, ..., eq are the vectors of the canonical basis of R.

Because g”f = gf (and similarly with ¥ and v instead of 0; and v.), we show that
v, ov
Vi=1,...,d—1, a;i — 5;‘ strongly in H3 (Q).

Let ¢ € C°(Q); applying 1D with % as a test function, then integrating by parts leads to:

(05 o B 10 PO : PR
/QA€v<ami—axi)-wdx - —/Q o Vol (A0 6) Ve ]V(UE D) - Vb do
_ / OV o¢)V¢_T]V(1}5—U) Vi do
Q_ 83’}1
- [ |vort e s T ]V(vsm Vo d @)
QL Ti 1 _
o oh.  oh
/Q(gsg) oz, d:CJr/Q s 83%) -V dx

+/Q (A"—AZ)V(SE) Vo d

where we used the facts that 0. € H?(Q),v € H?(Q4+) N H*(Q-), and that %‘;‘: = ng = 0. Note also
that, because u. — u in some W1P(D), this equality also holds for 1 € Hi(Q) owing to a standard density

argument. Eventually, letting ¢ = (8”5 — 85) in (4.72) and applying Holder’s inequality as above leads to:

Ba:i 8301
’ LT(QW) ’

for some r > 0 large enough, and some constant C which does not depend on €. Applying once again Holder’s

H@ﬁ; o
a

#[lA-4

< O (15z =Bl + 1ldz — G + ||
iy = € (15 =Py + 16 =Gl + [[oe =,

inequality to deal with the terms [|g: — gl| ;2 () and eventually yields the result. Note that,

‘ L2(Q)4
owing to Meyer’s theorem, this last conclusion even holds in some space VVO1 P(Q), for some p > 2

e We now prove that (A:Vue) - n — (AVu) - n strongly in H'(V), which boils down to showing that
(A;Vﬁ;) ceq — (ZV5) - eq strongly in H}(Q). Still in the spirit of [57], the previous point already made
it clear that, for: =1,...,d — 1,

8?102- ((IV@) -ed) — (,;Zi ((XV5) -ed> strongly in L*(Q),
so that we are left with proving:

0
893(1

((A V’UE) ~ed) 6id ((AVU) ed) strongly in L*(Q).
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To achieve this, we return to the original variational formulations (4.69)4.70) for vz and v, and make appear
the term of interest; for any ¢ € H}(Q), one has:

/Q(AVEV@—KVU) ed—dx— Z/ AVUE AVU) .€; gw dx—i—/( §)wdx+/Q(71;—f~L)-V¢dx.

We can now conclude as for the first point: performing integration by parts an using the conclusions of the
first point leads to, for any ¢ € H(Q),

[ o (v aw) ) oar = =3 [ 2 (v a90) ) vt [ @y

Q
+/Qdiv(ﬁgﬁ)1/1dz

and using the a priori estimates at our disposal in the same way as before leads to the desired conclusion,
which ends the proof. O

4.8.1.2 Convergence of the shape gradient associated to the smoothed-interface problem as
e — 0.

Our purpose is now to pass to the limit € — 0 in expression (4.64)). To achieve this, we can first assume
that ¢ is so small that every point « € D with |dgo(x)| < € has a unique projection over I' (with the language

of section e < reach(I")). Then,

veel, fi(z)= /E h.(s) ke(x,s) (A1 — Ao) Vue(z + sn(z)) - Vue(x + sn(z)) ds,

0

where we have introduced k. (z,s) = H?:_ll (14 sk;(x)), and a similar expression holds for f§.

Now, the idea consists in using the convergence results of section (4.8.1.1 for % and (A:Vue).n. Tt
requires decomposing the gradient Vu. into its tangential and normal components, bringing into play the
components that behave ‘nicely’ in the limit ¢ — 0, in light of proposition [4.13]

For the sake of simplicity, we will dwell on the case when these tensors are isotropic, that is

A=aly, alz)=q;ifz € Q! for oy > 0 fixed,

although the whole argument would hold in the general case, but yield to more complex expressions as far
as the limit of .J/(0°)(8) is concerned. Accordingly, we shall also denote A. = a. I, with obvious signification.

We need a small technical result to perform our study:
Proposition 4.14. Let Q C R? a bounded open domain of class C?, n the corresponding unit outer normal
vector field, and € < g9 < reach(0R2), so that for any x € 9Q, and any 0 < s < ¢, © — sn(x) € Q. Let
v:[0,1] = R a continuous function, and f-, g. € H'(Q) two sequences of functions such that:
fe =9 f, ge =0 g strongly in H' ().
Then, the sequence I. € L*(0Q), defined as
1
Vo € 09, I ( / v(8) fe(x — sen(x))ge(x — sen(x)) ds,
0

converges in L*(0Q) to I(x) := ( ds) flx
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Proof. First, because of the trace theorem, f. — f and g. — g in L?(99). It is then enough to prove that:

I — (/01 v(s)ds) fege — 0in L' (09).

This arises in turn as a consequence of the following lemma, whose proof is postponed:

Lemma 4.7. Under the assumptions of proposition for any continuous function v : [0,1] = R, and
any functions f,g € H'(Q), define J. : 0L — R as:

veeon = [ " (s) o — sen(a)gla — sena)as) - ([ 1 v(s)ds ) Flogla).

Then, there exists a constant C > 0, which depends only on 9S), v and €9, such that, for any two functions
f,g € HY (), and any € < &g, one has :

el 22 0o = € (1 o2y Hlg o )
where 0, = {x € Q, d(x,00) < €}.

Lemma [4.7] implies the existence of a constant C' such that:

‘ I — (foly(s)ds> fege < ¢ <||f6||§11(895)+||95||%I1(895))
< of

|f = fa||%11(Q)+||f||%11(395)+”9 - 98‘|%11(Q)+||9H%11(395)> )
and eventually, the right-hand side goes to 0 as € — 0, because of the assumptions on f., g. and f, g, O

L1(8Q)

A

We can now state and prove the main convergence result of this section:

Theorem 4.11. Under the above assumptions, the following convergence result holds:

Eli_r}%) JLQ%)(0) = (a1 — ) /F Vru - Vru (6 -n)ds — (o]t — 0161)/F (a?Z) (a?Z) (0-n)ds. (4.73)

Proof. First of all, recall that, denoting as u* € H'(Q?) the restriction of u to QF, the transmission conditions
on I read:

Vrul(z) = Vrul(z) | <a0%1:j> (z) = (alaati> (z), ae. z €T,

so that the quantities Vru and (ag—Z) are well-defined on T'.
From a simple change of variables and the definition of h, we get:
Veel, filz)= /01 ke(z,s) m'(s) Vue(z + sen(z)) - Vue(z + sen(x)) ds,
where m is the function defined as :
m(s) = Ac(x + sen(x)) = ap + % <1 + s+ isin(ws)) (a1 — a).

This is actually the expression in which we have to pass to the limit. To achieve this, we rely on proposition
separating the tangential and normal components of Viu, appearing in the dot product.

Veel, fi(z) = /0 ke(z,s) m'(s) Vrue(z + sen(zx)) - Vrue(z + sen(x)) ds

+/01 ke (z, 5) :2((3 (a a;;) (@ + sen(z)) (a 8;;) (@ + sen(x)) ds
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Finally, we end up with ff — f1 in L*(T), where f; is defined as :

Vrel, filz (/ m( ds> Vru(z) - Veule ( mzz )@gi) (@) (ag;i) (@),

and after some easy computation:

Ve el, filz)= (al _ 20 ;L al) Vru(z) - Vru(e) — <;1 - i a1> (agz> (x) <agz> (2).

Similarly, one shows that f§ — fo in L'(I), where fy is defined as:

Ve €T, folz)= (0‘0 ;r @ a0> Vru(z) - Vru(z) — <a0 i - a10> <agz> (x) <agZ) ().

Eventually, combining the two latter expressions results in the desired formula. O

Remark 4.19. Fortunately, expression (4.73) is exactly the formula obtained in [248] for the shape gradient
of the objective function for the sharp interface problem.

We end this short note with the proof of the missing link in proposition

proof of lemma[.7 By a standard density ~argument, it is enough to tackle the particular case when f and
g are smooth functions, namely f,g € C*>°(2). In this setting, for any xz € 912, one has:

wie) = 2 [ o (2) s snte) e sn(o) - g ds + L [0 () (1t~ snla)) - f)ale) s
= 5/ (S)fx—sn (/ Vg(x —tn(x)). (x)dt)ds ,
i/ (%) (/ Vi(z — tn(z)). (x)dt)g(m)ds
whence,
llon < '””/ (/ Ifw—sn()IdS) ([ 199te - tntapiar) as
s [ (91— i) oto)ias da 2
< |U||L;5Q(Ol)</{m (/ f(z — sn(x ))|ds> dx—i— (/ |Vg(x—sn(a:))|ds) da:)
””'L*)</@Q</ lg(z |d5) dx+/89( IVf(z — sn(z ))ds>2d:c> .
< ||v||LOC01) (/ / |f(x — sn(x 2dsdx+/89/ |V f(z —sn(z ))|2dsdx>

+|Ivlle (/ / |gx|2dsdx+/ / Vg(w — sn(x))| dm)
2 o0 Jo a0 Jo

Now, using back the coarea formula (see theorem [4.2)) yields the existence of a constant C' > 0, which only
depends on 9 (through its principal curvatures), v and gy such that :

1 12300 € (1151 omy + gl o )

which is the expected estimate. O
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4.8.2 Extension to the context of linearized elasticity

This section is devoted to extending the results of the previous section to the isotropic linearized elasticity
setting. Let us first set some notations.

We are still interested in a situation like that depicted in figure For € > 0 sufficiently small, define
u € H'(D)? as the solution to the sharp-interface problem:

—div(Ae(u)) = f inD
u = 0 onlIp . (4.74)
Ae(fuyn = g only

Here, A is a discontinuous Hooke’s tensors across the interface I' = 00° : A = Agxo + A1x1, where Ag, A;
are isotropic Hooke’s tensors, with respective Lamé coefficients Ao, g and A1, p1, i.e.

Ve € SUR), A€ = 2 + Mitr(€)1.

Once again, as an approximation to (4.74)), we consider the smoothed-interface problem with parameter € > 0,
bringing into play the displacement u. € H'(D)? as the solution to

—div(Ace(ue)) = f inD
ue = 0 onlp | (4.75)
Ace(ue)n = g only

with the following expression for A.:
Ac(z) = Ao + he(dao(2)) (A1 — Ap). (4.76)
In the smoothed-interface setting, the compliance J.(2°) of the total structure D, subdivided as D =

QO UT UO! reads
JE(QO):/fusdx"‘/ g U ds,
D I'n

and we have proved with theorem [£.§] that, for any € > 0 small enough, the shape derivative of J, reads:

Vo € WH(R? R?), J/(Q°)(0) = /F [f5(x) + f1(@)] (0(x).n(x)) ds(z), (4.77)
where Vo € T', we have, denoting x1(z), ..., kq—1 () the principal curvatures of I' at a:
d—1
fo(@) = /1( o H (1 + dao(y)ri(x)) he (dao(y)) (A1 — Ao)e(us)(y) : e(us(y)) dy, (4.78)
d—1
filz) = /1( o T (1 + dao (v)ri(@)) L (dao () (A1 = Ag)e(ue)(y) : e(uc(y)) dy. (4.79)
pp (2)Nfh

On the other hand, as mentioned in section |4.3] the shape derivative of the compliance J(Q°) associated to
the sharp-interface problem reads as:

W0 € Wheo(RE RY), J(00)(6) = / D, u)(8.n) ds, (4.80)
T

where D(u, u) is defined by formula (4.10)), or equivalently by the following formula which will turn out more
convenient in our context (see [15]):

Vo €T, Dluu)@) = 20 e(u(@)rs : e(u(@))rr = [2] o(u@)ns - o((@))ns
+ (2?%)\)} tr(e(u(z))r-)? — {Mlﬂ\} U(u(x))fm , (4.81)
+

2iix] o (w(@))n,n tr(e(u(z))r, )
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L — a? still denotes the jump of a discontinuous quantity « across the interface T'.

where [a] = «

Our purpose is to show that formula for the shape derivative of the compliance in the smoothed-
interface context converges towards its equivalent in the sharp-interface context in the limit ¢ — 0.

The proof of this fact unfolds almost exactly as its counterpart in the scalar conductivity setting: us-
ing information about the derivatives of u. which behave ‘well’ in the neighborhood as ¢ — 0, expressions
(4.78l14.79) are decomposed so that they feature u. only through these derivatives. Eventually, the con-
vergence result of Proposition is used. According to this sketch, we have to start with the following
proposition, whose proof arises exactly as that of Proposition (with the tedious algebra of linear elas-
ticity, see for instance the convergence results in [222]):

Proposition 4.15. Assuming I' is a C? interface, there exists a tubular neighborhood V. CC D of T such
that one can define a smooth extension in V of the normal n and of a set of tangentials and orthonormal
vectors 7. Then, the following strong convergences hold true

L

e(uc)rr 2 e(u)rr in HY(V)@V" strong,
o(ue)rn = o(u)rn in HY(V)? strong,
o (Ue)nn =8 o(Wnn in HY(V) strong.

We can now state and prove the result of interest:

Theorem 4.12. Under the above assumptions, we have:

lim J(Q°)(0) = J'(Q°)(0) V6O € WH>=(D,R?).

e—0

Proof. Here again, assume that ¢ is so small that € < reach(I"). We are interested in the asymptotic behavior
of f§ as € — 0 (the case of f§ being identical). One can write:

ed—1

Ve el, fi(x)= /0 H (1+ ski(z)) hi(s) (A1 — Ao)e(uc(z + sn(z))) : e(us(z + sn(z))) ds.
A straightforward change of variables provides:
Ve el, fi(x)= /0 ke(z, s) (ehl(se) (A1 — Ag)e(uc(x + sen(z)))) : e(us(z + sen(x))) ds. (4.82)

For any s € (0,1), and any symmetric matrix ¢ € S?(R), note that:
eh(se)(A1 — Ao)§ = 2/ (5)§ + N (s)tr(€) =: M'(s)¢,

where we have introduced: M (s) = Ag + ho(se)(4; — Ag) the isotropic linear elasticity tensor with Lamé
coeflicients

{A@): Mot he(se) (M =Ko) = Ao+ 5 (14 2+ 2sim(E) (1 = Ao)
uls) = po+he(se)(pa—po) = po+3 1+ 2L+ 2sin("E)) (u — po)

Let us now simplify a bit notations. In the forthcoming (algebraic) computations, let x.(s) = x 4 sen(x),
€f(s) = e(uc(z:(s)) and 0°(s) = o(uc(z:(s)). We also denote k.(s) instead of k.(z,s). What’s more, for
any = € I', introduce an orthonormal basis {Ti}izl,w’ 4—1 of vectors of the tangent plane to I', collectively
denoted as 7, and let n the unit normal vector to I', pointing outward Q°, in such a way that (7,n) is an
orthonormal basis of RY.
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We have to modify expression (4.82)), so that it involves only those quantities that enjoy a ‘nice’ behavior
near I' as ¢ — 0, as expressed by Proposition [f.14 To this end, the following relationship will come in
handy:

O'E(S)n,n = ZN(S)GE(S)H,n + /\( ) ( (6 ( )) + es(s)n,n)
O—E(S)n,n = 2#(5)6 ( )n Ti) Vi = 1 d -1 ; (483)
0 (8)riyr; = 20(8)e"(8)r,r; + A(S) (t (e 7,7 +(8)) + e (s )nm) 0ij Vi, =1,..,d=1

where §; ; stands for the Kronecker symbol, and we have denoted tr(e; .(s)) = Zf lle (8)r;,7;- These
relations can be inverted to produce the following formulae, where the right-hand sides only depend on
quantities whose passing to the limit € — 0 ‘unfolds well’ near I":

E(hn = g (0 (S = Ms)tr(es 1 (s))
() = 20 (8)nr . (4.84)
O—g(s)"'iﬂ'j = 2:“‘(5)68(5)7'71,7"7‘ + (%tr( (5)) + %0’6(8)”7,’0 51‘,]’

Now, expression (4.82)) for f{(z) rewrites, in condensed form:

1
:/ ke (s)M'(s)e(s) : €°(s) ds.
0
Expanding the symmetric tensor M’(s)e®(s) yields:

M'(s)e®(s) = 2u'(s)e®(s) + N (s)tr(e(s))1,

whence:
M'(s)e=(s)e=(s) = 2u/(s)e=(s) = () + N (s)tr(e" (s))tr(e" (s)),
= 2 () (€5 (8)rir 2 €5 () rr + 265 () - € (8)nr + € () € (8)nn)
+X(>(tr<eT (5)) + € (5)n, )2
= ( )e (S)TT e (s )TT+4#(5 ‘75(5) (s )n,'r
+ﬁ(af(s> — A(s)tr(es , (s >>)2 2
N (s >( 1(65.0(9) + s (05 (5)nn — A)tr(e5 1 (5)))

where we have been using relations . Now, rearranging things a bit, we obtain:

M/(s)e(5)e(s) = 20/ (8)e°(5)rr 2 € (8)rr + frho" (S)nr - 0% () r
+<8+”>9 (o% =Nt )4 X () (or(e5,, (51)°
+aaaytr(es - (s)) (0%(s) A(s)tr(es ()

and, after some computation:
1 (s)

M'(s)e*(s)e(s) = 2#'(8)65(8)7,7165(8)w+ 1970 (nr - 0% (S)n,r
42 ()N (5)+204" ()N (5) 2 () 4N (5)
G e tr(es )+ G e (nm

SN (8)—u’ (s)A(s
+4 el (80) o () tr(es,,)

We are now in position to apply proposition .14} noticing that:

240(s) - 2us)
1 (s) _ < 1 )’
n(s)? u(s) ,
4> ()N () 420/ ()N (s)  _ ( C2A(s)uls) )
(2u(s)+A(s))? (2u(s )+/\(S))
21 (8)+ XN (s) — ( )/
(2p(s)+A(s))? - 2u(s)+A(s) +)\s )
PEE /O THOLC R (X
(2u(s)+X(s))? 21(s)+A(s)
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We then have that f{ — f; in L!(T'), where f! is defined as:

vrel, filz) = [2u(s)])ew(@))ry : e(u(a:))TT - [u(ls)r o(u(x))n,r - o(u(x))n,r
+ [ 29T tr(eu(@)r)?  [garaess | o)
a(s)  °
+ | 528w |, o @) trle(u(@))rr)

Doing the exact same job for the convergence of f§ as ¢ — 0 eventually shows that the limit of the integrand

[f§ + f§] in formula reads, for all z € T":
fo(@) + fix) = 2[ple(w(@))rr : e(u(@))r,r — ﬂ o (w(z))nr - o (w(z))n,r

2
+ (2?1')::3\)] tr(e(u(z))r-)? — Q#I_M] U(U(x))%n ,
+

25| o (wl@)nn tr(e(ul)r.r)

which is exactly formula (4.81)) for the integrand in the formula for the shape derivative of the sharp-interface
problem. [
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The purpose of this chapter is to propose a deterministic method for optimizing a structure when a ‘small’
uncertainty exists over some of its features, with respect to its worst possible behavior. The main idea of
the method is to linearize all the dependences of the considered cost function with respect to the uncertain
parameters, then to consider the supremum function of the obtained linear approximation, which can be
rewritten as a more ‘classical’ function of the design, owing to classical adjoint techniques from optimal
control theory. This formal approach can be legitimated in some particular cases, and is very general. In
particular, it allows to address several problems of considerable importance in both parametric and shape
optimization of elastic structures, in a unified framework.

This chapter is a joint work with Grégoire Allaire.

5.1 Introduction

As idealized visions of reality, most optimization frameworks assume a complete knowledge of the pa-
rameters of the experiments they represent. Unfortunately, for a lot of reasons, physical parameters involved
in realistic applications are hardly ever known with such exactness, and the feasibility and optimality of the
solution to an optimization problem can be tremendously jeopardized by slight variations in the attached
parameters. In this spirit, an example of the less compliant microstructure for an elastic composite material
submitted to a particular set of traction loads is given in [83], which is infinitely compliant when submitted to
any load with a different orientation (see also [42] for a discussion about the sensitivity of linear programming
problems with uncertain parameters).

In the more specific context of shape optimization of elastic structures, which is at stake in this paper,
optimization problems may be plagued by (at least) three very different types of uncertainties:

— Uncertainties about the location, magnitude and orientation of the body forces or surface loads exerted
on shapes: not to mention the fact that they are generally known through error-prone measurements,
these external stresses are affected by the outer medium, which may itself undergo unknown perturba-
tions.

— Uncertainties about the elastic material’s properties: changes in the conditions in the considered
medium (temperature, humidity, etc...) may alter the material’s stiffness. On a different note, the
material’s properties could also be perturbed during its manufacturing process, in which small inclu-
sions of ‘parasitic’ bodies may accidentally occur.

— Uncertainties about the geometry of the shape itself: due to wear, or in the course of the manufacturing
process, the geometry of the shape may cease to be (or may not be from the beginning) completely in
keeping with the initially forecast design.

Robust design has been paid much attention in shape and topology optimization (and in optimization in
general). Depending on the available information regarding the uncertainties, the question has been studied
from two distinct perspectives.

On the one hand, many authors assume the knowledge of a probabilistic distribution (which is often
obtained via statistical studies) as for the behavior of perturbations around an unperturbed state; see for
instance [137},[190] and references therein. Then, the mean value of the considered objective criterion [95] [186],
or a weighted sum of its mean value and standard deviation are minimized to guarantee a fine performance,
which is relatively independent of the perturbations. Likewise, reliability-based approaches (see the overview
in [88]) put the emphasis on guaranteeing that constraints stay satisfied even in the perturbed configurations,
and add for instance upper bound constraints on failure probabilities. Regardless of the particular considered
model, such probabilistic methods generally prove very costly, since they imply repeated evaluations of the
mean value or standard deviation of the objective function, or probabilities of violation of constraint functions.
This is generally achieved by (expensive) sampling methods (e.g. Monte-Carlo methods).

On the other hand, when no information is available on the expected perturbations but for bounds on
their magnitude, so-called worst-case designs approaches are preferred. The problem can then be rephrased
either as that of minimizing the worst value of the objective function among all the perturbed designs [163],
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or guaranteeing that constraints are fulfilled by every such design [165] (the latter approach being called
confidence optimization). Such problems are generally formulated as bilevel ‘min-max’ problems [166]: a first
problem consists in finding the worst-case perturbation for a given design, then a second one is about finding
the optimal design with respect to this supremum criterion. Of course, worst-case design problems are very
difficult and computationally expensive in utter generality (see for instance [263] for a reduced-basis method
adapted to a worst-case design problem). They cannot be solved without resorting to approximations, except
in a few very specific cases; see the very interesting works [84] [163] about finding the less compliant shape
under uncertainties on the body forces. On the theoretical side, worst-case functionals have recently been
studied, for instance in [I74], where conditions are given for such min-max problems to admit at least one
solution. In [I78], it is shown that the concept of topological derivative is robust when the linear elasticity
system at play undergoes ‘small’ perturbations.

The aim of this chapter is to propose a unified framework for the worst-case design of elastic structures,
with respect to ‘small’ perturbations on the applied body forces and surface loads, on the material’s prop-
erties and on the geometries of the structures. More precisely, a formal and rather inexpensive approach is
presented for the minimization of the maximum value of a given criterion under the assumption of ‘small
amplitude’ perturbations. Note that we do not attempt to tackle the so-called ‘confidence worst-case design’
approach, which would ask constraints to be satisfied for all the perturbed designs, but claim that the same
philosophy would allow to deal with them. The starting ingredient of our approach is to take advantage
of the smallness of the perturbations and thus to linearize the cost function with respect to perturbations
around the unperturbed configuration. The maximum value of the resulting linear functional among all pos-
sible perturbations can be explicitly computed, and is then optimized. This idea is quite natural and it has
already been used in some specific cases (for example, [I65] considers the case of compliance minimization
under geometric uncertainties). Our approach is however systematic and very general. It is formal, for there
is absolutely no guarantee that the supremum of the linearized cost function should be close to the real worst
value of the criterion. Yet, we shall see that, in some cases, it can be legitimated and admits a physical
interpretation. Besides, in general, it should provide valuable help in discerning ‘trends’ towards robustness
with respect to perturbations of various kinds.

This chapter is organized as follows: Section opens the discussion with a presentation of the general
philosophy of the proposed method in a formal, abstract framework. This method is then carried out
in Section in the simpler situation of (parametric) optimization of the thickness of an elastic plate,
which already features almost all the salient features of the approach; then, it is used in shape optimization
in Section Then, some numerical examples and discussions are proposed in Section to appraise
the efficiency of the proposed method, and some technical details are supplied concerning the proposed
implementation.

5.2 General setting and main notations

This very informal section presents the generic worst-case optimization problem addressed in this chapter,
and exposes the main ideas of the proposed approach to deal with it. In the meantime, some notations are
introduced, which are used throughout this chapter.

Let H be a set of admissible designs among which the ‘best’ element is sought, with respect to a prescribed
criterion or cost function C(u(h)), depending on h € H via the solution (or state) u(h) to a system where h
acts as a parameter, say:

A(h)u(h) = b. (5.1)

In the applications ahead, H will stand for either the space L>°(Q) of thickness functions for an elastic plate
with fixed cross-section §2 (Section , or a space of linear elastic structures (section .

The system may undergo perturbations that affect the state u(h), thus spoiling the performance of
the corresponding design h € H. The set P of such perturbations is assumed to be a Banach space, with
norm ||.||p, and we only assume that the expected perturbations have ‘small’ maximum norm m > 0.
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To keep things simple, let us assume that these perturbations only affect the right-hand side of , i.e.
b="5(0), 0 € P. As we shall see, this is the case when the optimal thickness (resp. shape) of an elastic plate
(resp. structure) is sought under uncertainties over the applied external body forces or traction loads. The
state u = u(h, d) is now solution to:

A(h)u(h, 8) = b(d). (5.2)

By convention, the case § = 0 accounts for the unperturbed situation, and we shall indifferently denote by
u(h,0) or u(h) the corresponding state when the context is clear. The associated worst-case optimization
problem consists in minimizing the functional J : H — R, defined as the maximum value reached by the
cost function C(u(h,d)) for all the potential perturbations § € P, i.e.

VYheH, J(h)= sup C(u(h,9)).

€
[18]lp<m

Taking advantage of the assumption that the amplitude m of the exerted perturbations is small, and since we
claimed that this problem is difficult to solve as such in general, we propose to trade it for that of minimizing
another functional J, obtained from J by linearizing the dependence of C(u(h,d)) on ¢ before evaluating
the supremum:

~ dc 0
v, T = s (Ctum)+ G ) G n0), (53)
18115
where % stands for the (total) differential of C with respect to u, and % is the (partial) differential of u with

respect to 5. Note that the application § — (C(u(h)) + % (u(h))%(h, 0)(9)) is linear by construction, since
‘

du
it only involves differentials of functions. Now, the supremum in formula (5.3) can be computed explicitly.

Indeed, assuming that P arises as the dual of another Banach space, say Q, it comes, using lemma [5.6

dc ou
o () 5 (1,0)

VheH, J(h) =C(u(h) +m ’ o5

Q

The resulting expression is still not explicit in terms of h, for it involves the sensitivity g—g(h, 0) of the solution

to the state equation with respect to perturbations. However, classical techniques in optimal control theory
allow to make it explicit, up to the introduction of an adjoint state p(h), which arises as the solution to an
adjoint system very similar to :
A(h)p(h) = C'(u(h)),
dc

where the notation C’ stands for the identification of the differential application §- with respect to some
dual pairing between Banach spaces (here, we implicitly assumed that A(h) is a linear, self-adjoint operator).

Anyhow, J rewrites as:

J(h) = C(u(h) +m|lp(h)||o- (5:4)

This last expression can be interpreted as follows: the approximate cost function J (h) is an aggregated sum
of the unperturbed cost function C(u(h)) and a penalization of the perturbations ||p(h)||g, the penalization
parameter m being precisely the expected magnitude of perturbations.

Of course, the above argument is very formal, since the involved expressions mix blithely the spaces
associated to perturbations, state variables, etc... As we shall see, a significant part of the work consists in
giving a precise meaning to this rough sketch.

Remark 5.1. It is no surprise that formula 1) for functional J features the adjoint state p(h); it is indeed
well-known that the adjoint measures the sensitivity of the cost function C with respect to perturbations on
the state equation (5.1) (see e.g. [9], rem. 4.14 and 5.21).

The previous analysis leaves us with a more classical state-constrained optimization problem, save that
the functional to be minimized itself brings an adjoint state into play. The computation of the derivative of
J can however be carried out as follows:
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— Derivating the part C(u(h)) in does not pose any further difficulty: it is merely the unperturbed
cost function of the considered problem. It involves the already introduced adjoint state p(h), which
accounts for the sensitivity of C with respect to its argument.

— Derivating the second part ||p(h)||g is a little bit more tricky, and brings into play two further adjoint
states g(h) and z(h). The first one g(h) has nothing to do with p(h) and expresses the sensitivity of the
new ‘objective function’ ||.||g with respect to its argument. As we shall see, even when the unperturbed
optimization problem is self-adjoint (i.e. p(h) = +u(h)), q(h) differs from +u(h). The second one z(h)
describes the sensitivity of p(h) - that is, in some way, of C' - and typically involves second order
derivatives of C with respect to its argument. When the unperturbed problem is self-adjoint, z(h)
happens to be equal to +q(h).

Remark 5.2. For simplicity of the exposition, we did not evoke the possibility that the problem of mini-
mizing J (or J) may be constrained. Actually, in the remainder of this chapter, we will only be considering
constraints on the volumes of structures, which is especially easy to enforce in our context (see Section [5.5)).
In this regard, one could wonder over the possibility to tackle worst-case design problems with confidence
constraints, i.e. problems of the form:
i axC(u(h,d)) s.t. maxc;(u(h,d)) <0, Vi=1,...,N
min maxC(u(h,d)) st. maxeci(u(h,0)) <0, Vi=1,.., N,
where ¢; are scalar-valued functions of the state u.
Note that, all things considered, the proposed method is nothing but a formal and approximate way
to differentiate supremal functionals of the form H > h — max C(u(h,d)). Hence, since most algorithms
€

for constrained optimization rely at some point on a linearization of the cost and constraint functions (the

Method of Moving Asymptotes [300], or the Method of Feasible Directions [312] to name a few), we believe
that the methods and computations of this chapter can be used in this context.

Notations. Throughout this chapter, we consistently denote as C the various cost functions under consider-
ation. Note that, contrary to the basic setting presented above, such cost functions may themselves depend
on the perturbations (which is not subsequently problematic). We will denote as J the associated worst-case
design functional, and as J the approximate worst-case design functional, obtained by the aforementioned
linearization of the cost function.

5.3 Worst-case design in parametric optimization

5.3.1 Description of the model problem

Throughout Section we consider a thin linear elastic plate in plane stress situation, with Lipschitz
cross-section  C R? (d = 2 in concrete applications) and positive thickness h € L>(Q) (see figure |5.1)).

From the plane stress assumption, the equilibrium equation of the plate can be written as a d-dimensional
system posed on ). More specifically, assume the plate is clamped on a part of its boundary, associated to
the subset I'p of 9. Surface loads are applied on the complementary part of the plate, which are equivalent
to transversal loads g € L?(I'y)?, where I'y := 9Q \ I'p. Denote also as f € L?(Q)? the d-dimensional
equivalent body force to the whole body force exerted on the plate.

The transversal displacement function u belongs to the space H%D ()%, where we have defined:

HY(Q) D> HE () :={ue H(Q),u=0o0onTp}.
It arises as the unique solution to the d-dimensional linear elasticity system on :

—div(hAe(u)) f inQ
u = 0 onTp | (5.5)
hAe(u)n = g onTy
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Figure 5.1: Thin plate with cross section €2 and thickness h, clamped on a part of its boundary corresponding
to I'p C 992, and submitted to transversal loads, applied on a part associated to I'y C 0€.

vVul +Vu
2

where e(u) := is the strain tensor, A is the material Hooke’s law, with Lamé coefficients A, y, i.e.

Ve € S(RY), Ae = 2pue + Mr(e),

where S(R?) is the set of d x d symmetric matrices with real coefficients, and n : 9Q — S?~! is the unit
outer normal vector field to 2.

Our general purpose is to optimize the thickness h of the considered plate among a set U,q C L™(Q2) of
admissible thickness functions, with respect to a criterion yet to be specified . Throughout Section we
shall simply work with:

Upg = {h € L®(Q), s.t. ae. 2 € Q, hpmin < (@) < honas} (5.6)

where 0 < hmin < hmaz are prescribed lower and upper bounds for thickness functions.

Notations:

— If J : Uyg — R is any (Fréchet differentiable) functional of the thickness, J'(h) stands for the Fréchet
derivative of J with respect to h.

— In the following subsections, we shall be considering various (smooth enough) integrand functions j of
the form: j : R? x RZ x Rg — R, where f stands for the perturbation variable, u stands for the solution
to a ‘state’ linear elasticity system of the form , and p stands for the solution to an ‘adjoint’ linear
elasticity system (see below). These functions may generally depend also on the space variable z € R?,
but, to keep notations as light as possible, this dependence will be systematically omitted (and does
not change anything in any of the forthcoming formulae). The partial gradients of j with respect to
the f,u,p variables are denoted respectively as: Vj, Vj, Vpj € R,

The remainder of Section [5.3] is now dedicated to illustrating the general guideline of Section [5.2] on a
series of model problems, which hopefully better embody the difficulties that may arise when carrying it out
than the diversity of situations it may allow to tackle.

5.3.2 Worst-case design of an elastic plate under perturbations on the body
forces

Let us start our study with the optimization of the thickness of the considered plate in the worst-case
scenario when the applied body forces f are perturbed as f + &, for small ¢ € L2(Q)%.
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Let j: R? x RE — R be a function of class C?, which complies with the following growth conditions:

3 (f;w)]< CUF1P+ul?)
VieR, ueR?, S |Vei(f,u)|< C(fHul), [Vuilf,w)|<C(fl+ul) (5.7)
V3 (f,u)l< C, [ViVui(f,u)< Cy [VEG(fu)|< O

for a large enough constant C' > 0. Note that V,j(f,u) and Vj(f,u) are vectors in R%, and V?cj(f, u),
Vi Vui(f,u) = V25(f,u) are d x d matrices.

For any admissible thickness function h € U4, any body force term f € L?(2)4, and any traction loads
g € L*(Tn)4, denote as uyp, ; € H%D (2)¢ the unique solution to problem using these parameters.

The cost of such a plate is then defined as:

Clh ) = /Q J(frunp) de. (5.8)

To set ideas, we have only assumed this cost to depend on wuy ¢ - and not on its gradient-, as an integral
expression on () - not on its boundary -, but it would be easy to generalize the discussion ahead to such
cases (see sections and for instance).

Let us now fix f € L?(Q)? and g € L?(I'y)¢. As in Section when no confusion is possible, we will
denote indifferently uj, = us,; the solution to the unperturbed problem. The worst-case design problem in
our situation reads:

min J(h), where J(h) = sup  C(h,f+&). (5.9)
he€Uqq ceL2(0)d
1€l 2 (gya <m

Following the general guideline of Section we propose to trade problem ([5.9) for a new one where C(h, f)
has been linearized with respect to f, namely:

- - oC
min T, where 7(0) = sup (c<h,f>+af<h,f><§>). (5.10)
HEHLz(Q)dSm

We now aim at devising a gradient algorithm for problem (5.10]), which requires to compute the gradient of
functional J with respect to the thickness h € L>(2).
The result of interest is the following:

Theorem 5.1. The functional j, defined as rewrites as:
vh S uad7 j(h’) = / ](f?uh) dx +m||Vf](f,Uh) _thL2(Q)d )
Q

where pp, € H%D ()% is the first adjoint state, defined as the unique solution to

—div(hAe(p)) = —=Vuji(fiun) inQ
p =0 onI'p . (5.11)
hAe(p)n = 0 onT'n

Let h € Uyq such that NV j(f,up) — pn # 0 in L2(Q)4. Then J is Fréchet differentiable at h, and its
derivative reads:

Vs e L%(Q), F(h)(s) = / Ot Dos Qo 1) 8 . (5.12)
Q
where:

m
+ -
2 vaj(f; up) _ph||L2(Q)d

V(Uk, Phy Gy 28) = (Ae(uh) :e(pn) (Ae(up) : e(zn) + Ae(pp) : e(qh))> .
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In the last formula, the second, and third adjoint states qn, zp, € H%D ()¢ are defined as the unique solutions
to, respectively:

—div(hAe(q)) = —2(pn—Vysi(fiun)) nQ
g = 0 onT'p (5.13)
hAe(g)n = 0 on 'y
—div(hAe(z)) = =2V Vuj(fun)® (Vyi(f,un) —pn) = Vii(f,un)an  in Q
z =0 onT'p (5.14)
hAe(z)n = 0 on 'y

Proof. First and foremost, note that we have been a little sloppy in writing expression for the derivative
of J at any point h € U,q, whereas, rigorously speaking, it only makes sense at h € Upa. Actually, J can
be evaluated over a larger set of designs than the sole U,q (see the definition ), and its differentiation
over the whole set U, is not a difficulty. We shall repeatedly commit this minor abuse in notations in the
following.

The differentiability issues raised by theorem being postponed to lemma we proceed within two
steps.

e Frpression ofj as a function of h using an adjoint state.

As evoked in Section [5.2] this first step consists in encoding the dependence of j on the body force term
into an associated adjoint state. We start from the very definition of J:

[ . . Oup, f
0= [ittwte s sw ([ vt s [ v @ @) 6

Il 2 (gya <m

Dealing with the first term in the supremum in (5.15)) does not pose any problem. As for the second, let us

use the variational formula for the derivative 82§’f (&) obtained by differentiating that of uy ; with respect
to f (which is possible since we already know that f — wuy, s is differentiable). We get:

VUEH%D(Q)CI, /hAe(uhvf):e(v)dx:/f-vdx—|—/ g-vds,
Q Q

I'n

whence:

V¢ e L2 ()%, Yo € HE (Q)7, /hA (88ff(§)> ce(v) da:z/§~vdx.
Q Q

Now introduce the first adjoint state p, € H{_ (€)% as the unique solution to the system (5.11). It comes
from the associated variational formulation that:

Oup,
A = . .
/ Vui(f,un,) - 8f /h e(pn) ( o/ (f)) dx = /Qph Edx
In this view, (5.15) becomes:

J(h) = /j(f,uh)dx—i— sup (/ ij(f,uh)'fdx—/ph-fdx>
° I e "

= [ 3 ) da 9 3 0) =l

, (5.16)

where lemma has been used from the first line to the second.
Note that a similar approach to the one used in the proof of lemma (using Céa’s method) could
have been used here, instead of directly differentiating with respect to f in the defining problem for u, ;.
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Céa’s method offers a more systematic and understandable derivation of the adjoint equation, and is well-
suited when the dependence on f (the variable with respect to which sensitivity is evaluated in general) of the
state equation is complex. Both (formal) viewpoints are of course equivalent (see the discussion in chapter|l)).

o Differentiation ofj with respect to the thickness h.

At this point, we are brought back to the more classical problem of minimizing a functional J with
respect to h, and the whole problem of worst-case design with respect to an uncertainty on the body forces
has been concealed in the adjoint state py,.

As expected, the first term fQ J(f,up) dz in equation is the unperturbed cost function; its differ-
entiation is a classical result recalled in lemma [5.2] below and we obtain:

Vs € L>(9), % (/Qj(f, up) d:r) (s) = /QsAe(uh) s e(pp) dx. (5.17)

Remark that the same adjoint state pj is used here to express a sensitivity with respect to a perturbation
on the body force term f, while it is used in the first step to express a perturbation on the thickness h.
This is indeed natural since py, actually describes the way j depends on its argument (which is the quantity
depending on h and f).

As for differentiating the second term

IV 53 (fs un) = pull g2 (ye = \//Q IV ¢i(f;un) — pnl? dz,

we have to assume that h is such that V;j(f,un) — pn # 0 in L?*(Q)?. This is a reasonable hypothesis,
meaning that the considered plate with thickness h is not indifferent to a small perturbation on the applied
body forces. Excluding such a case, and using again Lemma with function ¢ : R4 x R 5 (u,p)
l(u,p) = |Vsj(f,u) — p|?, an elementary calculation yields:

1
2[|Vyi(foun) = pall 2y

0
o (1927 un) = prll (e ) () /Q s(Ae(un) : e(z) + Aelpn) s elan)) de,

(5.18)
where ¢, and zj, are defined in (5.13)) and (5.14)).
Eventually, combining expressions ([5.17]) and ([5.18)) delivers the desired formula. O

In the course of the proof, we made use of the following lemma around the regularity of the dependency
of the solution uy, ¢ to with respect to the source term f. This is a classical result in optimal control
theory (see e.g. [9], or [172], chap. 5 in a harder case), which results from a use of the implicit function
theorem. In the remaining of this chapter, we shall not dwell too much on these issues (nor on the necessary
regularity assumptions that should be put on  and f so that u is smooth enough with respect to h and f)
and generally content ourselves with formal computations.

Lemma 5.1. Still denoting as up.f € HllD (Q)4 the solution to with parameters h, f, the mapping
[ ung, from L2(RY)? into HE ()4, is of class C*°.

We also made use of the following general lemma for differentiating functionals depending on h via up
and the adjoint state pj, solution to ((5.11):

Lemma 5.2. For h € Uy, denote as up, € HllD ()% the unique solution to problem ,

(i) Let j : R — R be a function of class C, which fulfills the corresponding growth conditions in .
Consider the functional:

K(h) = /Qj(uh) da.
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Then K is Fréchet differentiable at any h € Uyq and its derivative reads:

Vs e L>(Q), K'(h)(s) = /QsAe(uh) :e(pp) dz.

where the adjoint state py, € Hf: ()% is the unique solution to:

—div(hAe(p)) = —Vuj(up) inQ
p =0 onl'p (5.19)
hAe(p)n = 0 onT'n

(ii) Suppose moreover that j is of class C2, let £ : RY x Rg — R a function of class C* (both of them comply
with the relevant growth conditions in ), and consider the functional:

L(h’) = E(“hvph) d.l?,
Q
where py, is defined by . Then L is Fréchet differentiable at any h € Uyq and its derivative reads:
Vs € L>®(Q), L'(h)(s) = / s (Ae(up) : e(zn) + Ae(py) : e(qp)) dx.

Q

where q, € Hi ()% is the unique solution to:

—div(hde(q)) = —Vpl(up,pr) inQ
qg = 0 onl'p (5.20)
hAe(g)n = 0 on 'y

and z, € HE ()% is the unique solution to:

—div(hAe(z)) = —Vl(un,pn) — VZj(up)gn inQ
z = 0 onTp (5.21)
hAe(z)n = 0 on 'y

Proof. (i): This is a classical result in optimal control theory. For the sake of completeness, we briefly recall
its derivation using Cea’s method [72] (see also chapter in the context of shape optimization).
Note that, since we already know that h — wuy, is differentiable (by an analogous result to lemma , the
forthcoming argument is not only formal, as in most cases where Céa’s method generally comes in handy.
Introduce the Lagrangian £ : Uaq x HE ()% x Hf_(Q)? — R, defined as:

cisap) = [

Q

(@) d:v+/

sAe(u) : e(p) de — / f-pdx— / g-pds, (5.22)
Q Q I'n

and let us search for the points (u, p) where the partial derivatives of L(h,.,.) cancel, for a given h € U,q.
First, the cancellation of the derivative of £ at (h,u,p) € Usa x Hf(Q)* x H}_(Q)? with respect to p
reads:
~ 1 ond 9L . - ~ ~
Vp € Hr, ()¢, %(h,uyp)(p) = 2hA€(U) te(p) do — A f-pdr— | g-pds=0, (5.23)
¢ r

N

which is just the variational formulation for problem (5.5)); hence v = wy, solution to (5.5]).
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Next, cancelling the derivative of £ with respect to u leads to the variational formulation for the adjoint
state:

Yu € H%D(Q)d, g£ h,u, p)( /Vu] udx—|—/ hAe(u p) dx =0, (5.24)

which readily gives that p = p;, defined by -

By definition of uj, we now have:
Vs € L=(Q), Vp e HE (D), K(s) = L(s, us, D).
Thus, differentiating this last expression with respect to s, evaluating it at point h yields:

Ve HE, (@) K/ (0)(5) = 0= (h,un, ) (s) + o (b, (S (5)).

Now taking p = pj, in the previous expression and using (5.24)) lead to:

o
ds
Eventually, differentiating (5.22)) with respect to s leads to the desired formula:

K'(h)(s) = = (h, un, pn)(s).

Vs € L*(Q), K'(h)(s) = /QsAe(uh) s e(pp) dz.

(#i): Similarly, note that in this case, the application h — py, is differentiable (see again Lemma. Let us
introduce the (different) Lagrangian £ : Uaq x HE ()4 x HE () — R, defined as:

L(s.5.4) = /Q U, ) da + /Q sAe(p) : e(@) d + /Q V.i(us) - .

Searching for a point (p,q) € H}D ()4 x H%D(Q)d at which the derivative of L(h,.,.) with respect to ¢
vanishes yields:

R oc R R ‘ .
Vg € Hi ()7, aqu(hvp, 9)(q) = /QhAe(p) :e(q) dw+/QVuJ(uh) -gdz =0, (5.25)

and we find p = pp, the solution to (5.19).

Now cancelling the derivative of £ with respect to p one finds:
. oL
Vp € H%D Q)4 8p (h,p,q / Vo l(up, p pda:+/ hAe(p q) dz =0, (5.26)
and since p = py, we identify ¢ = ¢, the unique solution to ([5.20).

Consequently, we have, for any s € U,q, and any ¢ € H%D ()% L(s) = L(s,ps,q). As in the previous
point, differentiating this expression with respect to s, evaluating it at a particular point h € U4, then
taking ¢ = g5, we end up with:

L'(h)(s) = %(h,ph,%)(s)

Now, we are left with computing this partial derivative. Since £ depends on s € U,y via us, we use point
(i): for a fixed h € L*°(Q), define the C! function m : R — R as:

Vu € R, m(u) = l(u, pr) + Vuj(u) - gn-
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Note that m actually also depends on the space variable z € R?, and this dependence is omitted. Applying
the first point to function m as an integrand, and introducing z, € HllD (2)¢ as the unique solution to ((5.21]),
we end up with:

L(h)(s) = 5( [ ez [ vujms).qhdx) 0+ [ saeton) s elan) ds

/ sAe(uy) : e(zp) dzx +/ sAe(pr) : e(qn) dz
Q Q

)

which ends the proof.
O

Remark 5.3. The differentiation of 7 in the second step, using Cea’s formal method, is by no means the
easiest way to proceed in this particular case. Indeed, expressing the variational problems satisfied by the
different derivatives with respect to the thickness h, then introducing the associated adjoint states from the
according variational formulation is rather straightforward in this case (see for instance the first step of the
proof of Theorem . Yet, such an easy expression of these derivatives no longer holds when it comes to
shape optimization. To put the stress on the similarities between both settings, we thought it better to prove
Lemma [5.2] using Cea’s method, which will be the convenient tool in Section [5.4]

Example 5.1. For the sake of simplicity, suppose that no surface loads are applied - ¢ = 0 (however, the
argument would adapt mutatis mutandis to the general case)-, and that we are interest in the compliance as
a cost function, i.e. j(f,u) = f-wu in (5.8)). The various derivatives of j are:

Vuj(fvu):fv ij(fau):u> Vij(U):O, vauj(fvu)zl'

For any h € Uyq, pn € HllD () is the unique solution to problem 1D and in this case p, = —uy the

unperturbed problem is self-adjoint, as is well-known in this case). Then, J has the following expression:
Vh € Upa, J(h) = / [ dz+2m|[up || p2 (g - (5.27)
Q

Furthermore, ¢, € Hf-_(Q)? is the unique solution to the problem:

—div(hAe(q)) = 4up inQ
qg = 0 onI'p |
hAe(g)n = 0 on 'y

and from (5.14]), one acknowledges that z;, = —qy,, which gives the straightforward expression for the gradient
of J(h), for any h € U,q such that uy, # 0:

m

Vs € L>(9), j’(h)(s) = - /Q s (Ae(uh) ce(up) + Ae(uy) : e(qh)> dx.

2 |Jun|| 20y

Remarks 5.4.

— Interestingly enough, formula expresses the fact the - at first order - optimizing the worst-case
scenario compliance when uncertainties around body forces are expected translates into a penalization
(with fixed weight m equal to the magnitude of the anticipated perturbations) of the unperturbed
compliance by the norm of the displacement w; of the structure.

— As we already mentioned in the introduction, in this particular case where the cost function C is the
compliance, the study of the eract worst-case functional J defined in can be addressed without
linearization of C, resorting to more involved techniques [84] [163].
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Adapting in a straightforward way the proofs of Theorem [5.1] and Lemma [5.2] allows to derive analogous
results around very close models to that of Example [5.1]

Example 5.2 (Localization of perturbations). Still assuming that g = 0, let x € L () be a fixed function
on ), meant to localize the area where perturbations on the body forces are exerted (for example, x may
be the characteristic function of a subdomain of Q); i.e. only perturbed configurations associated to body
forces of the form (f + x§), &€ € L2()%, ||¢]|12(q)a< m are considered.

Consider once again the compliance as an objective function, meaning that the cost of a plate of thickness
h € Uyq and submitted to body forces f € L*(Q)% is C(h, f) = [, f - un dz. The worst-case functional of
interest is in this case:

Vh € Upg, T(h)=  sup  C(h, f+xE). (5.28)
ceL2()d
el 2 (qya <m

A mere rephrasing of the proofs of lemma [5.2] and theorem [5.1] allows to derive the following result:

Theorem 5.2. Consider the functional J : Usg > h — J(h) = sup (C(h,f) + g—?(h,f)(xf)),
geL2(@d
1€l 2 (gya <m

obtained by replacing C by its linear approzimation at (h, f) in . Then J rewrites:
J(h) = / foun dz 4+ 2m |[xunl| 2 (g -
Q

Let h € Uyq such that xuy, # 0 in L2(Q)?. Then J is Fréchet differentiable at h, and its differential reads:

m

Vs e L®(Q), J'(h :_/ L_m
’ @), 7)) 2 |Ixunll g2

Q

s <Ae(uh) e(up) Ae(up) : e(qh)> dz.

where the adjoint state qp, € H%D(Q)d is the unique solution to:

—div(hAe(q)) = 4dxup in
g = 0 onTp
hAe(g)n = 0 on Ty

Example 5.3 (Localization and restriction of the direction of perturbations). Eventually, still assuming
that g = 0, let n € L>(2)9 be a fixed vector field on €; the most important case we have in mind is when 7,
is 0 everywhere except on a small portion of (2, where it is a constant unit direction. The underlying idea is
to investigate perturbed body forces of the kind (f + &n), € € L3(), 1]l L2 ()< m.

Still considering the compliance as an objective function, the worst-case functional 7 of interest is in this
case:

Vh€Uag, T(h)= sup  C(h,f+én), (5.29)
H&ﬁig(é?)sfn

where C is still defined as (5.8]). We then have:

Theorem 5.3. Consider the functional J : Uaq > h— J(h) =  sup (C(h, )+ g—?(h, f)(fn)) Then
2
e,
j rewrites:

Ty = [ £-undot2mlin-unll ). (530)
Q
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Let h € Uyq such that 1 -up, # 0 in L?(Q). Then T is Fréchet-differentiable at h, and its differential reads:

m

_|_—
2|n- uh||L2(Q)

Vs € L2(Q), J'(h)(s) = — /Q s (Ae(uh) s e(up) Ae(uy) : e(qh)> dz.

where the adjoint state gy, € H%D(Q)d is the unique solution to:

—div(hAe(q)) = 4(n-up)p inQ
q = 0 onTp
hde(g)n = 0 onT'n

5.3.3 Extension to a worst-case optimization problem, with respect to a per-
turbation on surface loads

The analysis of section [5.3.2] adapts in a straightforward way to the case of perturbations concerning the
traction loads exerted on the boundary I'yy of the plate. For any thickness function h € U,q, body forces
f e L*(Q)?, and any surface loads term g € L*(I'y)?, denote by up,, € HE (€)% the unique solution to
problem using these parameters.

Let j: R = R and k : R? x R — R be two functions of class C2, and define the cost of the design with
thickness h, when submitted to surface loads g:

C(h,g) = /Qj(uh,g) dx Jr/r k(g,un.q) ds. (5.31)

Now, consider fixed body forces f € L?(Q)% and surface loads g € L?(I'y)?; we are interested in perturbations
on the surface loads of the form (g + &), ¢ € L?(I'y)4, [[€]|L2(ry)e < m, for some parameter m > 0. As in
the previous section, we shall denote by up = uy, 4,, the solution to the unperturbed problem.

The worst-case scenario optimization problem for the cost reads:

min J(h), where J(h) = sup C(h,g+¢),
he€Uqq cer2(90)d
1€l 2 pgya <m

which is, as in section traded for the approximate problem:

N . ac
in J(h), where J(h) = (Ch, + = (h, ) 5.32
min (h), where J(h) | E‘ELS;?ZM (h,9) 89( 9)(&) (5.32)
Il 2 gaya =™

This last problem lends itself to an easier analysis, owing to the following result, whose proof is an easy
rephrasing of that of Theorem [5.1] and Lemma [5.2] and is then omitted.

Theorem 5.4. The functional T Upg — R, defined in rewrites:

Vh € uada j(h) = / j(uh,g) dx +/ k(gauh,g) ds +m ||vgk(gvuh> 7ph||L2(FN)d b
Q I'n

where pp, € HllD (Q)4 is the first adjoint state, defined as the unique solution to

—div(hAe(p)) —Vuj(up) in Q
P 0 onT'p
hAe(p)n = —=Vuk(g,un) onTy
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Let h € Uyy such that Vk(g,up) — pn # 0 in L2 (Tn)%. Then J is Fréchet differentiable at h, and its
differential reads:

Vs € Lo(Q), F(h)(s) = / 5 0(ttns prs ais 21)
Q

where
m
+
2(|Vgk(g: un) = pull g2y

V(Wh, Phs Gy 2n) = Ae(un) @ e(pn) (Ae(un) = e(zn) + Ae(pn) : e(qn)) »

and the second and third adjoint states qp, zp, € H%D ()4 are defined as the unique solutions to, respectively:

—div(h4e(q)) = 0 in

q = 0 onT'p

hAe(g)n = —2(pn — Vgk(g,un)) onTy
—div(hAe(z)) = —VZ2i(un)qn in Q
z = 0 onI'p
hAe(z)n = =2V, Vk(go,un)’ (Vyk(g,un) —pr) onTy

5.3.4 Parametric optimization of a worst-case scenario problem under geomet-
ric uncertainty

We now investigate perturbations of a different nature, searching for the optimal thickness h € L>°(Q)
of the considered plate when robustness is expected with respect to uncertainties over the thickness of the
plate itself. As we have already mentioned in the introduction, such a problem typically occurs in the case of
mechanical parts which are likely to undergo high stress during their use, thus to wear out, or of mechanical
parts whose manufacturing process is especially error-prone.

More accurately, let f € L2(Q)?, and g € L*(I'y)? be body forces and surface loads terms, and let
4,k :R? — R be two functions of class C?; for any h € Uy,q, denote as uy, the solution to problem when
h is the considered thickness function.

Introduce the cost of the design with thickness h:

c(h) ::/Qj(uh)da:—&— (up) ds.

I'n

Modeling uncertainties over the geometry (i.e. thickness) of the plate itself demands first to address an
important issue around the perturbed designs: if h € Uy,q and s € L>®(Q) is a ‘small’ perturbation over
h, the thickness (h + s) of the corresponding perturbed design may not belong to U,q (although it is still
uniformly bounded away from 0 and oo). However, we believe this is part of the modeling, for designs
generally end up perturbed in an accidental way, and there is no particular reason that a perturbed design
should still fulfill any imposed constraint. Furthermore, not enforcing that (h + s) should belong to U,q
allows for an easier mathematical study.

Let m < hupin the maximum expected amplitude of the uncertainty over the thickness h. We consider
the optimization problem:

min J(h), where J(h) = sup C(h+s). (5.33)
heuad sELC(Q)
HSHLOO(Q)SWL

As alluded to in section [5.3.1] this problem is very difficult to tackle in such form. However, in the particular
situation where the cost C(h) is the compliance of the structure, it turns out almost trivial, meaning that
the worst case in ([5.33]) can be found analytically:
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Proposition 5.1. Suppose that the cost function C(h) is the compliance, that is:

Vh € Uy, C(h):/hAe(uh):e(uh) dx:/f~uh dx—i—/ g - up ds.
Q Q r

N

Then, the exact worst-case functional J equals:

J(h)= saup  C(h+s)=C(h—m).
seL®(Q)
I1sllp 00 (@)<m

Simply put, the worst case with respect to the compliance, when there is an uncertainty of maximum amplitude
m over h, is the corresponding structure with thickness (h —m), which is the less rigid (thinner) perturbed
structure.

Proof. This is a simple consequence of the elastic energy minimization principle. One has:

1
C(h)=-2 inf f/hAeu ce(u dx—/ .udm—/ .uds).
() ueH%DWQ [ hac):etwydo— [ fude— [

Hence,
J(h) = sup sup (2/ fude+ 2/ g.uds — / (h+ s)Ae(u) : e(u) dx)
SELO(Q)  yeHL (Q)¢ Q I'n Q
HSHLOO(Q)S‘M D
= sup sup (2/ fudr+ 2/ g.uds — / (h+ s)Ae(u) : e(u) dx)
wEHL (Q)d  s€L®(@) Q In Q ’
D HSHLOO(Q)ST”
= sup (2/ foudx + 2/ g.uds — / (h—m)Ae(u) : e(u) dx)
ueH} () Q Iy Q
which allows to conclude. O

Remark 5.5. The situation is more complex (and cannot be dealt with analytically) if a constraint on the
volume of the perturbed shapes is incorporated into the modeling, e.g. if we are to assume that fQ sdx =0
for any potential perturbation s € L°°(£2) over the thickness of shapes.

In the general, non trivial setting (i.e. when C(h) is not the compliance), we propose to reformulate our
optimization problem according to the general principle of Section [5.2

min J(h), where J(h) = sup <C(h) + aC(h)(s)), (5.34)
hEljlad | is‘eLoc(Q) 8h
s LDO(Q)SWL

and the following result makes it possible to build a gradient-based algorithm for this simplified minimization
problem.

Theorem 5.5. The functional T, defined as rewrites:

Vh € Usa, F(j) = / Jlun) o+ | Kun) ds+m || Ae(un) : e(on)ll i
Q I'n

where pp, € H%D ()% is the first adjoint state, defined as the unique solution to

—div(hAe(p)) = —Vuj(up) inQ
p = 0 onTp . (5.35)
hAe(p)n = —Vyk(up) onTy
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Moreover, T is differentiable at any h € Uyq such that the set
Ep:={xe€Q, Ae(up) :e(pn) =0} (5.36)

has zero Lebesgue measure, and its differential at such a point reads:

Vs € L(Q), J'(h)(s) = /QS (Ae(un) = e(pn) +m (Ae(pn) : e(qn) + Ae(un) : e(zn))) dz,

the second and third adjoint states qn, zn € H%D ()% being respectively defined as the unique solutions to:

—div(hAe(q)) = div(AAe(up)) in
g = 0 onTp (5.37)
hAe(g)n = —MAe(up)n  onTy
—div(hde(z)) = —VZj(un)gn +div(AAe(pp)) in Q
z = 0 onlp | (5.38)
hAe(z)n = —AAe(pn)n — V2k(up)qn on TN

and A € L>*(Q) is defined as A = sgn (Ae(up) : e(pn)).

Proof. The derivation of this result is close in essence to that of Theorem and we illustrate another way
to get the desired expressions, without relying on Céa’s method (see Remark [5.3). Knowing that h — uy,
and h — pj, are differentiable as functions from U,q into HllD ()¢ (see lemma , we achieve a variational
formulation for their derivatives by differentiating the ones of and , then introducing the adjoint
states pp, qn and zp with simple algebraic manipulations (in the parametric setting).

e Frpression ofj as a function of h using an adjoint state.

From the very definition of the cost C, we get, for any h € Z/l;d:

j(h):/ﬂj(uh) der/FN ) st sup (/Qvuj(uh)~ @"ZL(S)) ot [ Fuk(m)- (%LZL(S)) ds).

HSHLOO(Q)SW

Then, using the variational formula for the adjoint state py, defined as the solution to (5.35)), it comes:

Yo € Hp Q) / hAe(pp) : e(v) de = —/ Vuj(up).vdx — Vuk(up).v de,
Q Q I'n

and this yields:

j(h):/Qj(uh) dx—i—/FN k(w)ds+  sup (—/QhAe(ph):e@"ZL(s)) ds).

HSHLOO(Q)SW

On the other hand, differentiating in the variational formulation of (5.5)), one has:

Vs € L(Q), Vv € HE ()¢ /

ce(v) de = — Oun
QsAe(uh). (v)d /

[ e (ah(s)> : e(v) d.

Eventually,

J(h) = / jlup) dx + k(up) ds + sup (/ sAe(uy) : e(pp)) ds) .
Q I'n SEL(Q) Q
lsllp oo (@) <m



CHAPTER 5. A LINEARIZED APPROACH TO WORST-CASE DESIGN IN PARAMETRIC AND GEOMETRIC
180 SHAPE OPTIMIZATION

This, used in combination with Lemma and Theorem delivers the desired expression for J.
o Computation of the Fréchet derivative of J.

Assume now that the set E}, defined by (5.36]) has zero Lebesgue measure, and introduce A := sgn (Ae(uy) : e(pr)) €
L>(€)). We then have, for all s € L>(Q),

Fwe = g ([ [ k(w) ds)'hos)

+m (/AA@(a;hh( ))  e(pn) dx+/QAAe(uh);e<88p;( )) dx),

where we used Lemma As usual, the first term actually rewrites, from the definition of p, by (5.35)),

o ([ sty [ k) i)

As for the second term, differentiating with respect to h directly in the variational formulation satisfied by
ph, we get, for all s € L°(Q), and any v € H}_(Q)%,

/QhA (%p}f( )) ce(v)dr = —/QsAe(ph):e(v) dx—/Q <V2](uh)8§;ﬁ( )) ‘vde
[ (Vb G 0)) o |

Thus, introducing g5 € HllD ()4 as the unique solution to 1) we get:

/Q)\Ae(uh) e (aap:( )> dx f/QhAe(qh) e <5ap}:( )> dx
= [ sactm)setado+ [ (Vi) o

8uh
2 —_— .
s (vumuh) o (s>) an ds

. (s) = /QsAe(uh) s e(pp) d.

Now introduce one last adjoint state z, € H%D ()¢ as the unique solution to 1) This yields, for all

s € L>():
[ xae (G - elon) o

[ (Vi G ) ado+ [ (T GEE) ads = [ nacta):e () o
o h - h o ah
= sAe(zp) : e(up) dx
Q
thus ending the proof. O

Example 5.4. Consider once again the model case of the minimization of the compliance, assuming g = 0
(for simplicity). Then, j(u) = f.u, k(u) = 0, and one has:

Vujw) =f , Vij(u)=0.
Since py, € HllD (2)? is the unique solution to lj one easily finds that p, = —uj. Then, the approximate

worst-case functional J rewrites:

Wh € Uy, F(h) = / £ - un da +m ][ Ae(un) : e(un)l| 1 g -
Q
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Consider a value of the thickness h € U,4 such that the elastic energy density function Ae(up) : e(up) does
not vanish on ) except possibly on a subset of null Lebesgue measure. One has:

A =sgn(—Ae(up) : e(up)) = —1.
In this view, it is then easy to show that the second and third adjoint states actually amount to:
qh =Un 5, RZp = —Up.

Eventually, the differential of J reads:

Vs € L=(Q), J'(h)(s) = —(1 + Qm)/ sAe(up) : e(up) dz.
Q
Remark 5.6. This expression can be given a mathematical legitimacy when compared to Proposition [5.1
which claims that, in the setting of Example [5.4] the exact worst-case functional J reads:

Vh € Uaa, J(h)=C(h—m),

whence, for a function h € Zj[ad,

Vs € L*(Q), J'(h)(s) = %(h —m)(s) = — /Q sAe(up—m) : e(Up—m) dz.

Then, it is easy to check that, (still formally) linearizing the above expression with respect to m as in the
proofs of Theorems and the following asymptotic expansion holds, for a given h € U,q4:

Vs € L=(Q), J'(h)(s) = T'(h)(s) + O(m®).

5.3.5 Worst-case design with uncertainties over the elastic material’s properties

We eventually investigate one last potential source of uncertainties, namely perturbations on the me-
chanical behavior of the constituent material of the plate. Suppose the plate is submitted to body forces
f € L?(92)?, and traction loads g € L*(T'y)¢, and that the mechanical properties of the constituent material
is subject to variations.

Dealing with this case requires slight changes in the previous notations. For functions A, u € L% () such
that:

Az), p(z) > v >0, aex e,

denote by A ,e = 2ue + Atr(e), the Hooke’s tensor with (possibly inhomogeneous) Lamé coefficients A, p,
and as upx,, € HllD (2)¢ the unique solution to the linear elasticity system when h is the thickness of
the plate and the Lamé moduli of the constituent material are A, p.

Let j: R — R and k : R? — R be two functions of class C2. The cost of the associated plate is defined
by:

ClhAp) = [ Gtunr) dat [ blun,) ds
Q Tn

We investigate perturbations (A + «, u + 3) over the Lamé coeflicients of the material of magnitude (i.e.
of L*>-norm) m < =, around a reference state (A, ), which is thenceforward assumed to be fixed. These
coeflicients are confessedly not the physically relevant properties of the material over which perturbations
should be considered: for instance, the impact of an increase in temperature on the material’s properties is
certainly better transcribed in terms of the Young’s modulus and Poisson ratio. Nevertheless, we will focus
on perturbations on the Lamé coefficients, so to keep expressions as light as possible; Young’s modulus and
Poisson ratio being analytical functions of the Lamé coefficients of the material, this last case would be no
more difficult.
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In the following, we shall denote as up, := up x , and A := Ay ,, when no ambiguity is possible.

The considered objective function is, in this context:

Vh € Uga, T(h) = sup Clhy\+ a,u+ B).
a,BEL>X(Q)
HQHLOO(Q)SM
|\/3\|Loo(Q)Sm

Note that, an analogous result to proposition [5.1] holds in this case: if the chosen cost function C is the
compliance of the plate, the worst-case functional J can be computed exactly as:

Vh € Upa, T(h) =C(h,A—m,u—m). (5.39)

In the general case, of course, no such expression holds, and functional J is as usual replaced by the
approximated worst-case functional:

~ oc oc
=+ s (G0A i)+ G0 (5.40)
Hal,‘BeLOO(SQ o\ 8,u
1511 oo ) <
We have the following theorem:
Theorem 5.6. The functional J defined by reduces to:
J(h) = / jup) dz —|—/ k(un) ds +2m|lhe(un) : e(un)|| L1 (o) +m||hdiv(un)div(ps)| 1) (5.41)
Q 'n

where pp, € H%D ()4 is the first adjoint state, defined as the unique solution to:

—div(hAe(p)) = —Vuj(up) in
p = 0 on'p . (5.42)
hAe(p)n = —Vyuk(up) onTn

Moreover, J is differentiable at any h € Uy such that the set
En:={x€Q, Ae(uy) : e(pr) =0 or div(ug)div(p,) = 0}

is of null Lebesgue measure, and its differential at such a point reads:

Vs € L=(Q), j/(h)(s) = / sv(up, P, qn, 2n) dz,
Q

where

V(Up, Phy Gh, 2n) = Ae(ug) : e(pn)+m (2kee(up) : e(pr) + kadiv(up)div(ps) + Ae(pr) : e(qn) + Ae(up) : e(zr)),

the second and third adjoint states qp,zn € H%D ()% being respectively defined as the unique solutions to
some boundary value problems which are best formulated in terms of the associated variational equations:

Vv € Hf, Q)4 hAe(qy) : e(v) doe = —/ (2hkee(uy) : e(v) + hrgdiv(uy)div(v)) dz,
Q Q

Yo e HE ()4, /QhAe(zh) ce(v) da = 7/9 (2hssce(pn) : e(v) + hrqdiv(py)div(v) + (V25 (up)qn) - v) dz

— (Vik(uh)qh) -vds 7
I'n

and Ke, kg € L= () are respectively defined as k. = sgn (e(up) : e(pr)), kg = sgn (div(up)div(pg)).
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Proof. The proof is in essence identical to that of theorem and the derivation of formula (5.41)) makes
use of the general lemma [5.5] O

Example 5.5. As an example, let us specify Theorem in the case that the plate is only submitted to
body forces (i.e. g = 0), and the considered functional is the compliance of the structure, that is: j(u) = f.u,
k(u) = 0, and:

Vuj(u)=f . Vij(w) =0.
Since pp € HllD ()¢ is the unique solution to 1} one easily finds that p, = —uy, so that J can be
rewritten:

Vh € Z/{ada j(h) = / f - Up dx + 2m||he(uh) : e(uh)\|L1(Q)+m|\hdiv(uh)2||L1(Q).
Q

Now, assuming that e(u) and div(up) do not vanish, except possibly on a subset of Q of null Lebesgue
measure, one has: k. = kg = —1. q € HllD (2)4 is then defined as the unique solution to the following
variational problem:

Yo € Hf Q)4 ; hAe(qp) : e(v) de = /Q (2he(up) : e(v) + hdiv(ug)div(v)) dz,
zn = —qn, and easy computations yield:
Vs € L=(Q), T'(h)(s) = /Qs (—Ae(up) : e(up) +m (2e(up) : e(up) + div(ug)div(uy) — 24e(up) : e(qrn))) dx.
This expression can be drawn closer to the exact expression for J in this case. After some computa-
tions, we find, as in Remark that for any h € U,q:

Vs € L=(Q), J'(h)(s) = J'(h)(s) + O(m?).

Of course, the whole argument still holds (involving more computations) when g # 0 and k(u) = g - u.

5.4 Worst-case design in shape optimization

5.4.1 Description of the model problem

We now get interested in shapes, that is bounded domains Q C RY, with at least Lipschitz regularity.
Every considered shape € is submitted to body forces f € H'(R9)4. It is moreover clamped on a part
I'p C 99 of its boundary, and subject to traction loads g € H?(R)¢, applied on another part I'y C 99Q.
Neither of these parts is subject to optimization, and in this view, contrary to the previous setting of section
we introduce the free boundary T' := 0Q \ (I'p UT'y), which is the only optimizable part of 9.

The displacement of this shape arises then as the unique solution in H%D ()% to the linear elasticity
system posed on 2:

—div(de(u)) = f inQ
u = 0 onlp

Ae(fuyn = g onTxn (5.43)
Ae(uyn = 0 onT

where A is the material’s Hooke’s law. In accordance with this setting, the set U,y of admissible domains is:
Upa = {Q c R? is open, Lipschitz and bounded, T'p UTy C OQ} .

As for representing variations of shapes, we rely once more on Hadamard’s boundary variation method (see
the outline in Chapter : for a shape Q C R?, we consider variations of the form:

Qp = (I+0)(Q), 6 € W2 (R RY), [|0]]yp1.00 (e ey < 1.

This leads to the following notion of differentiation with respect to the domain:
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Definition 5.1. A functional J(2) of the domain is shape differentiable at Q if the underlying function
0 — J((I+6)(Q)), from WH (R4 RY) into R is Fréchet differentiable at § = 0. The shape derivative J'(£2)
of J at ) is then the corresponding Fréchet differential, so that the following asymptotic expansion holds in
the vicinity of 0 € WHo° (R4, R9):

lo(0)] 050

J(Q) = J(Q) + J'(Q)(0) + 0(F), where — 0. (5.44)

0] w100 (Ra R

To guarantee that all the considered variations of shapes belong to U4, the set of deformations of shapes
is restricted from W1 (R4 R?) to ©,9 C W (R4 R?), where:

Oua={0€ Whe(RYRY) s.t. O(z) =0 ae. z€Tp Uln}.

Notation: As in Section[5.3} we will be considering several functions as integrands of our objective functions.
The possible dependences of these functions on the space variable x are consistently omitted. If j : R?ﬁ X
RE x ]Rg — R is any smooth enough function, its partial gradients with respect to the f,u,p variables are
still denoted respectively: V3, V.3, Vi € R,

5.4.2 Worst-case design in shape optimization under uncertainties over the ap-
plied body forces

In this section, we aim at optimizing the shape of a structure €2 with respect to the greatest value reached
by a given objective function of the domain when small perturbations are expected on the body force term.
This problem is the simplest of all the ones we are going to investigate in the shape optimization setting. To
keep things simple, we only limit the forthcoming presentation to the simplest case as regards the form of the
cost function, which is easily generalized to more complex situations (as well as to ones where perturbations
are also expected over the surface loads term).

Let j: R? x R% — R be a function of class C?. For any admissible domain Q2 € U,q, any body force term
f € HY(R?Y)? and any surface loads g € H*(R?), let ugq ¢ be the corresponding displacement of €, solution
to problem when it is submitted to this set of forces.

The cost associated to this configuration is:

C(ny):/gj(f,un,f) dzx.

We now fix a particular body force term f € H'(R%)?, and introduce the worst-case optimization problem
at stake in the section:

min J (), where J(Q) = sup Cf+8). (5.45)
QeUyq cer?(rdyd
H§HL2(Rd>d§m

As proposed in Section the following linearized version of problem (5.45) lends itself to a far easier
analysis:

~ ~ oc
min J(£2), where J(Q) = sup (C(Q, )+ (Q,f)(f)). (5.46)

Q€Uga ccr2(rdyd 8f
H&HLQ(Wd)d <m

We now intend to compute the shape gradient of J. To achieve this, we follow the steps of Section and
start with the following lemma (which is an equivalent for Lemma in the shape optimization context):

Lemma 5.3. For any Q) € U,q, denote by ug € H%D(Q)d the unique solution to .
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(i) Let j, k: RY — R be two functions of class C', and define a functional K of the domain Q as:

VQ € Upg, K(Q) :/

Qj(uQ) dx + / k(uq) dx.

T'ul'y
Then K is shape differentiable at any Q € Uyq, and its derivative reads

V0 € Oua, K'()(0) = /r (](UQ) + Ae(ugq) : e(pa) — pa.f + W + K (k(ug))> (0-n)ds,

where k is the mean curvature of 0S) (oriented so that it is positive when ) is locally conver around
), and the adjoint state pq € HE_(Q)* is the unique solution to:

—div(4e(p)) = —Vaujluq) in Q
p = 0 onTp . (5.47)
Ae(p)n = —=Vyuk(ug) onTUTy

(ii) Let b,c: R — R4 and £ : R4 x Rg — R be three functions of class C*. Note that V,b and V,c are
d x d matrices, and that V0 and ¥V, are vectors in R. Introduce the functional L, defined as:

VQ € Uyg, L(Q):/ﬁ(umpﬂ)dl‘,
Q

where pq € H%D(Q)d is defined as the unique solution to

—div(4e(p)) = —bugq) in Q
p =0 onI'p . (5.48)
Ae(p)n = —c(ug) onTUTyN

L is then shape differentiable at any Q € Uyq, and its shape derivative reads

VO € Ouq, L'(Q)(0) = /F(E(UQ,PQ) + b(ug).qo + Ae(uq) : e(zq) + Ae(pa) : e(qa) — 2a.f) (0 - n) ds
+/F <‘W + k (c(ugq) - qQ)> (6 -n)ds

where qq, zq € HllD ()4 are respectively defined as the unique solutions to the systems:

—div(4e(q)) = —Vpl(uq,pa) in Q
g = 0 onl'p (5.49)
Ae(g)n = 0 onT'UT' N
—div(4e(z)) = —Vublua)ga — Vul(ua,pa) in Q
z = 0 onTp . (5.50)
Ae(z)n = —=Vyc(ua)ga onTUT N

Proof. (i): this is a particular case of (the proof of) theorem 3.6 in [14].

(ii): Let us once again rely on Céa’s method. Introduce the Lagrangian £ : Uy x Hf: (RT)?x HL (RY)? — R,
defined as:

L5 = [ tuap)de+ [ Ac@):e@da+ [ blug)-Gdr+ / c(ug) - 3 ds,
Q Q Q I'ul'n
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and let us search for the points (p,q) € Hf (R*)? x HL (R%)? where the partial derivatives of £(€,.,.)
vanish, for a given, arbitrary shape 2 € Uy, 4.

e The partial derivative of £ with respect to g at (€2, p, q) reads:

blug) - ¢dx + / c(uq) - g ds.

. oL Iy ~
Vi € i, R G2 (@ a)(@ = [ Actp): el da+ | B
Ul'y

Q

Canceling this expression against test functions with compact support in €2, say ¢ € C2°(f2), implies that p
is a solution to: —div(Ae(p)) = —b(ug) in . Then, using test functions ¢ with null trace on I'p yields the
boundary condition: Ae(p)n = —c(ug) on I' UTy. Eventually, since by essence p € H{_(R?), we readily
obtain that p = pq, the ‘adjoint’ state defined by .

e The derivative of £ with respect to p evaluated at (£, p, q) reads:

- oL N ~ IR
Vi e}, (R G p0)@) = [ Vptlunn) 5o+ [ Al selq) do.
Canceling this expression against test functions with compact support in , p € C°(Q), we get that ¢ is a
solution to: —div(Ae(q)) = —V,l(uq, pa) in . As above, using test functions p with null trace on I'p yield

the boundary condition: Ae(g)n = 0 on I' Uy, and the last condition ¢ = 0 on I'p is naturally recovered
from the definition ¢q € HllD (RY). Eventually, ¢ = qq, defined by 1)

e Eventually, one has, for any Q € U,4, and for any ¢ € H%D (RY), L(Q) = L(Q,pa,q). As usual, dif-
ferentiating this relation with respect to §2, then taking ¢ = qq in the resulting expression yields:

oL

V0 € ©ua, L'()(0) = 55 (

This last (partial) shape derivative can now be computed using point (¢), since it depends on Q only via ug,
the solution to 1) Introducing the third adjoint state zo € H%D (Q)d as the unique solution to 1)

one has:
VO € Ouq, L'(Q)(0) = /F(E(UQ,pQ) +b(uq) - go + Ae(ugq) : e(zq) + Ae(pq) : e(ga) — za - f) (0 -n) ds
—I—/F (W + K (c(uq) - qg)) (0-n)ds ’
which is the desired formula. O

We are now in position to carry out the shape sensitivity analysis of functional (5.46)):

Theorem 5.7. The functional J defined in rewrites:
VQ e L{ad, j(Q) = / ](f, UQ) dx + mHVf](f, UQ) - pQ||L2(Q)d, (551)
Q

where po € H%D(Q)d is the first adjoint state, defined as the unique solution to

—div(Ae(p)) —Vui(f,uq) in Q
D 0 onTp . (5.52)
Ae(p)n = 0 onTUTy
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Moreover, J is differentiable at any Q € Uaq such that Vi(f,uq) — pa # 0 in L2(Q)? and its derivative at
such a point reads:

j/(Q)(Q) = /1“ (J(f,uq) + Ae(uq) : e(pa) —pa - f) (0 -n)ds
V0 € O, + AT T /F (IV4i(fua) = pal?+Vui(f ua).qo — za.f) (6 - n) ds)

o ([, (Aeun) :cea) + Actpn) : elan) (0 n) s ).

d

where the second and third adjoint states qq,zq € H%D(Q) are respectively defined as the unique solutions

to the following systems:

—div(4e(q)) = —-2(pa—Vyi(f,ua)) inQ
g = 0 onTp . (5.53)
Ae(g)n = 0 on 'y
—div(Ae(z)) = —Vij(f,ua)ae =2V Vuj(f,ua)"(Vi(f ue) —pa) inQ
z =0 onl'p . (5.54)
Ae(z)n = 0 on Ty

Proof. Once again, the (formal) proof follows the general outline sketched above, and is divided into two
steps.

e Rearrangement of the expression ij as a function of (.

To achieve an explicit expression of J in terms of Q, we introduce an adjoint state, whose expression
may be found by differentiating the variational formula for (5.43)) with respect to f. Let us start with:

vee 2@t Lo, e = / <ij(f7ufz)~§+vuj(f7u9)' (8“‘” (5))) dz.

of of

As usual, the first part Vj(f, uq).§ of the integrand does not pose any problem since it leads to an explicit
expression with respect to €2. As for the second one, the variational formulation associated to ugq, ¢ reads,
for any source term f € L%(Q)%:

Vv € Hi ()%, /
Q

Ae(umf):e(v)dx:/fmder/ g-vds,
Q T

N

ve e LA(Q)?, o e HE (Q)°, /Ae (ag‘}’f (g)) L e(v) do = / f&da.
Q Q

On the other hand, from the defining system 1' for po € H%D (2)4, one gets:

whence

Vv € HE ()7, /

A Ae(pq) : e(v) de = — /Q Vui(f,uq) - vde.

Combining those two relations produces:

ve e 120)", [ uithun): (%52L©)) do= - [ actom)se (% ©) do = [ 1 pan

Hence, using one more time lemma delivers the sought expression for J (Q).
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o Shape sensitivity analysis of J.

Differentiating the first term in (5.56) with respect to the domain is a straightforward application of
lemma (5.3, (i). Its shape derivative reads:

d ) .
Vo € ©qa, I (/ J(fsua) dﬂ?) (0) = / (J(f,uq) + Ae(uq) : e(pa) —pa - f) (0 - n) ds.
Q r
As for the second term, we use lemma (5.3)), (ii), with £(u,p) = [V ;j(f,u) — p|?, so that

€/<u7p) =2 vauj(u)T : (vfj(fa ’LL) _p) ) Vpﬂ(u,p) = 2(}9 - vf](f» u))

Doing so entails, for all 8 € ©,4:

i(ANmMWﬁﬂm%Qw>: J 9537000 = P49 i) 00— 20 ) (0 ) ds

+ [ (Aclun) : e(z0) + Actpa) + €lga)) (0 m) ds

where qq, zq € H%D ()¢ are defined by l} and 1) These two identities lead to the desired formula
for 7'(Q)(6). O

Example 5.6. As an illustration of Theorem assume that g = 0 and consider the case of the compliance
as a cost function. We have: j(f,u) = f - u, therefore:

ij(f,U):u, vu](fvu):fv vauj(fvu)zl’ Vi](ﬁu):O

In this context, it is easy to see that pq = —ugq. Thus, J admits the following expression:
VQ € Uy, j(Q) = / fugdr + 2m||UQ||L2(Q)d.
Q

Furthermore, if ug # 0 in L2(Q)4, J is shape differentiable at ). Easy computations allow then to deduce
that the adjoint state go € HllD ()% is the unique solution to the system:

—div(4e(q)) = 4dug in
q = 0 onI'p ,
Ae(g)n = 0 onTUTy

and that zg = —¢q. The shape derivative of J at Q then takes the form:

V0 € Os, TI(Q)0) = /F(ng.f—Ae(uQ):e(uQ))(e-n) ds

+44”"“|T22<9>;/r (4|uq|*+2qq.f — 24e(uq) : e(qn)) (6 - n) ds.

5.4.3 Worst-case design in shape optimization under uncertainties on the Lamé
moduli of the material

This section is intended as the mirror image of Section [5.3.5]in the context of shape optimization, namely,
we investigate into the worst-case design of an objective functional of the domain with respect to perturba-
tions on the Lamé coefficients of the elastic material filling Q.
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Let us first recollect some notations. As in Section for functions A, 1 € L°°(R%) such that
Iy >0, Vo e RY Az) > v, pu(x) >, (5.55)

denote by Ay e = 2ue + Mr(e), e € S(R?) the linear elasticity tensor with Lamé coefficients A, 1, and as
ug ., € HE ()7 the solution to problem posed on a shape 2 filled with such a material.

Let j: R? — R and k : RY — R be two functions of class C2. For any functions A, u € L (R9) satisfying
, the cost of the structure 2 filled with a material with such Lamé coefficients is defined as:

C( A, 1) Z/j(un,w) dl”r/ k(ug,,p) ds.
Q

T'ul'n

Let us now fix Lamé coefficients A, p. For the sake of simplicity, when the context is clear, we still denote
ug = uoz, and A = A, ,. Considering perturbations of magnitude m < v over A, u, the corresponding
worst-case objective function J is then:

VQ € Upay, T(Q) = sup CUAN+a,u+B),
a,B€ L (RD)
Holl oo gy <m
111 oo (gay <m

and the considered approximated objective function J then reads:

~ oC oC
VO € Uyt T =COUAW+  sup ((Q,A,uxa) + (Q,wm)) .
«,BeL° (k) 8)\ 8/14
all oo (gdy <m

1811 oo (gd) <™

We have the following result, whose proof is omitted:

Theorem 5.8. The considered functional J rewrites, for any Q € Ugqy:

7(9) = /Q j(ug) d + / b(un) do+ 2mlle(un) < elpo)o oy +miv(un)div )|y, (556)

where po € H%D(Q)d is the first adjoint state, defined as the unique solution to

—div(d4e(p)) = —Vujluq) in Q
p = 0 onTp . (5.57)
Ae(p)n = —Vyuk(uq) onT UTy

Moreover, J is differentiable at any shape Q) € U,y such that the set
Eq:={x€Q, (e(uq):e(pa))(x) =0 or (div(ug)div(pa))(z) = 0}

is of null of null Lebesque measure, and its shape derivative at such a point is:

W0 € Ous, F(Q)(0) = / o(un, pr qns 20) (0 ) ds,
T

where:
V(Un, Phy Qhy 2n) = j(uq) + Ae(uq) : e(pa) —pa - f
+m (2le(uq) : e(pa)|+|div(ua)div(pa)|[+Vuj(ua).qo + Ae(pa) : e(qa) + Ae(uq) : e(zq))
UG s ((ug)) + m (2T 4 (Vb(ug) - go) )
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where the second and third adjoint states qq, zq € H%D(Q)d are respectively defined as the unique solutions
to the variational equations:

Yo € HE_(Q)%, /QA@((]Q) ce(v)de = — /Q (26ce(ugq) : e(v) + kadiv(ug)div(v)) dz,

Yo € Hi ()4, / Ae(zq) 1 e(v) dz = —/ (26ce(pa) @ e(v) + Kadiv(pe)div(v) + (VZi(un)ge) - v) dx
Q Q
—/ (Vik(UQ)(IQ) -vds
T'ul'y

and Ke, kg € L™ (Q) are respectively defined as: ke = sgn (e(ugq) : e(pq)), and kg = sgn (div(ug)div(pq)).

)

Remark 5.7. The observation of Remark[5.5|can be extended from the parametric to the shape optimization
setting (up to some extra computations): when the cost function C is the compliance, i.e. j(u) = f -« and
k(u) = g - u, the exact worst-case functional J reads:

VQ € Upg, T(Q)=C(QN—m,pu—m),
and the following asymptotic expansion holds at any Q € Uyq:

VO € Ouq, J'()(0) = T'(Q2)(8) + O(m?).

5.4.4 Worst-case design in shape optimization under geometric uncertainties

The purpose of this section is to compute a shape derivative for a given functional of the domain J(f2)
which is robust with respect to uncertainties on the boundaries of shapes themselves.

Let us first specify what we intend by shape optimization under geometric uncertainty. We assume that
perturbations only affect the free boundary I' of ; more precisely, let x : R — R be a cutoff function, and
01 € Oy be two open neighborhoods of I'p UT'x in R%, enjoying the following properties:

x(x) =0 for xe€ Oy,
x is smooth and nonnegative over R?, x(x) € (0,1] for x€ O3\ Oy (5.58)
x(z)=1 for x€ O,

If m > 0 is the expected magnitude of perturbations over the geometry, we are interested in perturbations
of Q € Uy,q of the form (see Figure |5.2)):

(I+xV)(Q), VeW ™ RLRY), |[V||poo(raye< m. (5.59)
Note that an other way to describe this problem consists in assuming perturbations of 2 of the form:
(I +xvn)(Q), v € WH(RT), [Jv]| gz < m, (5.60)

where n = ng denotes (an extension to R? of) the normal vector field to Q (the o - index is meant to
emphasize its dependence on 2 and will be omitted when the situation is clear).

As we shall observe, both descriptions are equivalent as far as we are concerned. However, the former one
, which is the one retained in the following, proves more convenient from a mathematical viewpoint,
since it features independent sets for admissible shapes and admissible perturbations of them; on a different
note, perturbed shapes in the sense of are ‘less regular’ than the unperturbed one.

Remark 5.8. The chosen description for perturbations over the geometry slightly differs from that adopted
in other contributions on the topic, for instance:
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I+V

)(€)

N

Figure 5.2: Perturbation (I + xV)(f2) of a domain

— in [286], the only retained possibility is that {2 may suffer from a (small) uniform ‘shrinking’ or ‘thick-
ening’, i.e. perturbations of shapes are of the form , with constant v; a filtering approach is used
to incorporate this uncertainty into the objective function.

— Closer to the present work, in [77], the authors also perturbations of the form with a scalar
field v varying in a random fashion over the boundary of the shape, following a Gaussian probability
distribution with 0 mean value.

— Eventually, in [I65], perturbations of a shape € are of the form , with v being bounded in
L?(R%)-norm, and ‘small’ in the sense that the discrepancy between the volumes of the perturbed and
unperturbed shapes is ‘small’.

We believe that the above setting is well-suited to simulate ‘realistic’ uncertainties over manufacturing
constraints, but the approaches considered in [165] [286] could be tackled owing to similar computations to
those presented in this section.

Actually, the proposed approach in this chapter almost requires to differentiate J twice with respect to
the domain. Hence, the formulae derived below could also be used in the context of a second-order algorithm
for shape optimization.

Let us start with a fairly informal discussion to emphasize the connection between both topics. For any
Q € Uag, denote as uq € Hf (2)? the unique solution to problem . Let J(€2) be a functional of the
domain (e.g. one of those we have been considering hitherto) whose minimization is under scrutiny. Under
reasonable regularity assumptions on the data, it is well-known (and we have seen several such examples)
that the shape derivative of J can be put under the generic form:

VO € Oua, J'(Q)(0) = /Fj(x,uQ,e(uQ)) (0 -ng) ds, (5.61)

for some function j. B

On the other hand, the proposed approach in this note deals with functionals 7 of the domain cooked
by linearizing the functional J under consideration around each shape with respect to the expected per-
turbations, then taking the supremum of the resulting linear function over all possible perturbations of
prescribed maximum amplitude m. Consequently, when perturbations over the geometry of the shape itself
are expected, the method described in section [5.2] naturally brings about functionals of the form:

J(Q) = /Fk(x, ug, e(un)) ds, (5.62)
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for some function k, closely related to j. Devising a numerical algorithm for minimizing J naturally demands
to differentiate in (5.62). Actually, doing so almost boils down to differentiating expressions such as (5.61)),
that is to differentiating J twice with respect to the domain. Indeed, the general forms of and (5.62)
only differ from one another because of the factor (6 - ng). Yet, provided {2 is smooth enough, the Eulerian
derivative of the normal vector field ng reads (see [234], or the computation in chapter :

d
Y € 090, % (n(r4t0) () (@) L:O: —Vaa(f - na)(x).

Thus, applying (formally) the chain rule entails, for all §,& € ©,4:

J”(Q)(Q,f) = (J’(Q)(e))/(f)

= % (/Fj(x,uQ,e(UQ))v ds)

(©) - / i@, uge(ug)) (0- Voo(& -ng)) ds -
v=0-ng r

Now, if we constrain 6 to be a normal vector field, that is 8 = (6 - n)n (at least in a neighborhood of T') -
which is very natural because of the structure theorem for shape derivatives - see [105], Th. 9.3.6 or Theorem
in Chapter [2] of this manuscript -, the second term vanishes, and the computation of J” () amounts to
differentiating in an expression of the form (5.62). Hence, both problems of computing the shape Hessian
of J, and analyzing the worst-case design of J with respect to geometric uncertainties are very much akin,
and some ideas in the remainder of this section could be prove useful in the device of a second order shape
optimization algorithm (see [I09] for further remarks around second-order shape derivatives).

Let us now get into the heart of the matter. Let C(2) be a cost functional; the associated worst-case
scenario functional is:

J(Q) = S C((I+xV)(Q)),

IV oo (zdyd <m

where x is the cutoff function defined by .

In what follows, we will focus on several particular cases as regards the form of C(Q); the presented
techniques could easily be generalized to different problems. The first investigated example will be that of
the compliance C(2) of a shape

cQ) = /QAe(uQ) ce(ug) dr = /Qf cug dx —l—/r g - ugq ds; (5.63)

N

then we will turn to a functional J(£2), which depends only on uq (not on e(uq)) by means of a smooth
enough function j : R? — R (we have in mind the least-square discrepancy criterion, with respect to a target
displacement):

J(Q) = /Q j(uq) dz. (5.64)

Finally, we will consider the case of a functional S(Q2), which depends only on the stress tensor o(ug) =
Ae(ug), through a smooth function j : S(R?Y) — R (we have in mind a LP-norm of the stress, as studied in

[13]):
S(9) = / i(o(ua)) d, (5.65)

where o(ugq) := Ae(uq) is the stress tensor associated to the displacement ugq.

As in the corresponding context of parametric optimization (see section|5.3.4)), the case of the compliance
as a cost function is especially simple, as confirmed by the following proposition, whose proof unrolls along
the lines of Proposition 5.1
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Proposition 5.2. Assume that no body forces are applied to the structures under optimization: f =0, and
that the cost function C(Y) is the compliance, that is:

C(Q)=C(Q) = /QAe(uQ) ce(uq) de = /F g.uq ds.

N

Then, for any shape 2 € U,q, the exact worst-case functional J reads:

J@)= O XV)) = O = mna) (@)
VIl oo (gdya <m

Simply put, the most compliant shape among all the perturbed designs of a shape Q0 according to 18
the thinnest of all.

However, for a general objective function, the worst-case functional 7 () is not explicit and we approx-
imate it by J (), defined as:

VQ € Upg, T(Q) = sup  (C(Q) + () (xV)).
vewl oo rd rd)
IV

Lo (rd)d S™

From now on, we assume that the data f, g are smooth enough, and that the sets U, of admissible shapes
and ©,4 of admissible variations of shapes incorporate enough smoothness in their definitions, so that all
the state and adjoint functions ug, pa, go and zq appearing in the forthcoming formulae are also smooth
enough.

Before stating the results of interest, let us set some more notations. If 2 € U, is any shape, we denote
as 7 a local basis of tangent vectors to T', so that (7,7n) is a local orthonormal frame of R?. Any matrix
M € S(R?) can be decomposed into this basis as:

MTT M‘rn
M= (Mw Mm)

where M, stands for the (d — 1) x (d — 1) tangential minor of M, M., is the vector of the (n — 1) first
tangential components of the normal column Mn, M, is the row vector of the (n — 1) first tangential
components of the normal row n” M, and M,,, = Mn -n. We eventually denote as divr the tangential
divergence operator defined on T'.

We start with a technical lemma concerning our example (5.64]) of a cost function.

Lemma 5.4. 1. For any Q € Uyq, the shape derivative of the functional J(Q2), defined by , reads:
V0 € Ous, J((0) = [ (i(un) + Ac(un) s elpo) — 1 - pa) (0-n) s,
r

where the adjoint state po € HllD ()4 is defined as the unique solution to:

—div(de(p)) = —Vuj(uq) in )
p = 0 onTp . (5.66)
Ae(p)n = 0 onTUTN

2. Let £:R% x Rg X Re — R be any smooth enough function which vanishes in a neighborhood of T p UT y,
and define the functional L(Q)) as:

L(Q) = /Fﬁ(umpg,Ae(uQ) e(pq)) ds, (5.67)
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where pq is defined by system . Then L is shape differentiable, and its shape derivative reads:

V0 € Oug, L/(Q)(0) = /F w(uo, pasga, 20) (0-n) ds, (5.68)

where we defined:

w(ua, pe, 4o, 2) = (8 + KJ) (L(uq, (0(ua)rr) : (e(pa)rr))) + Ae(pa) : e(qa) + Ae(uq) : e(zq) — f - 2q,

on
(5.69)
and the second an third adjoint states qq, zq € H%D ()4 are respectively defined as the unique solutions
to:
—div(4e(q)) = 0 in Q
qg = 0 onTp
Ae(g)n = 0 onT'y
Ae(q)n = —Vpl(ug,pa, Ae(uq) : e(pa)) + divr (25 (ua, pa, Ae(uq) : e(pa))(o(uq))r+) onT
(5.70)
and:
—div(4e(z)) = —Vij(ua)ge in Q
z = 0 onI'p
Ae(z)n = 0 on 'y
Ae(z)n = =V, l(uq,pa, Ae(uq) : e(pa)) + divp (%(UQ,pQ, Ae(ugq) : e(pg))(a(pg))TT) onT
(5.71)

Proof. (1): This is a very classical result in shape optimization (see e.g. [14]).

(2): Here, we need to assume that uqg and pq enjoy more regularity than the sole ‘natural’ H'(Q)? regularity,
e.gug € H2 ()N HE ()% and po € H*(Q)* N HE ()4, so that the very definition of L(2) makes sense.
This is typically the case when the data Q, f, g are assumed smooth enough (see the above assumptions).

As we are about to see, the problem of differentiating L(€2) is not that simple. Indeed, if we attempt to
carry out Cea’s formal method as usual, we will get stuck by a problem of loss of regularity in the derived
variational formulations for the adjoint states go and zq, which feature traces on I' of first order derivatives
of test functions (which should enjoy only H'(2)¢ regularity).

We introduce the Lagrangian £ : Uyq x (H*(R)? N H} (Rd)d)4 — R, defined by:

L0250 = /z(a,ﬁ,Ae(a):e(ﬁ))d3+/Ae(a):e(2) dx—/f-?dac—/ g-2ds
T Q Q I'n .

+ [ A e@ o= [ V(@) -

As usual, we look for the points (u, z,p, q) € (H*(RY)* N H} (Rd)d)4 where the partial derivatives of £(£2, ., .)
vanish, for a particular shape Q € U,4.

e As before, canceling the partial derivative of £ with respect to z at (Q,u, z,p, ¢) imposes that u should
satisfy:

vz e H*(RYYn HE (RY)Y, /

Q

Ae(u):e(?)dxz/f-?dm—i—/ g-Zzds.
Q r

N

As H?(RY) is dense in H'(R?), this is equivalent to the fact that u = uq, the unique solution to ([5.43)).
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e Similarly, canceling the derivative of £ with respect to ¢ at (Q,u, z,p, ¢) imposes that p should satisfy:

VG e HARY® N HL (RY, /

A Ae(p) : e(q) de = — /Q Vuj(ug) - ¢ dx.

For the same reason, this implies that p = pq, the unique solution to ([5.66)).

e Let us now study the partial derivative of £ with respect to p at (Q,u,z,p,q). It reads, for all p €
H2(R%)4 N H} (R%):

oL R oL ~
7(Qa U, 2, P, Q)(p) = / <Vp£(u>p7 A@(U) : e(p)) ‘p+ 7(uap7 Ae(u) : e(p))Ae(u) : 8(]))) ds
p r Oe (5.72)
—|—/ Ae(p) : e(q) dx

Q

Under this form, this last expression does not lend itself to an unambiguous definition of ¢ by means of a

variational formulation over the space H%D (R%), because the term

P [ (Gtwpdct) ) actu) s e(s)) ds

is not a continuous linear form over H%D (R4)4. The trick consists in noticing that we already identified u
as ug. In particular, u complies with Neumann homogeneous boundary conditions Ae(u)n = 0 over I". This
allows for a convenient simplification of the nasty term in (5.72):

vp e H* (RN N HE (RN, Ae(u) : e(p) = (Ae(u))rr : e(P)rr a.e. onT.

Using this information in (5.72)) together with an integration by parts on I' yields, for all p € H2(R%)4 N
HllD (R%)4:

oL

@ ep0® = [ (Totp A ctoa)) -5 aive ((Gol0p e ) (Aclw) ) -5) s

—|—/Q Ae(p) : e(q) dx

Under the previous assumption that u = uq is smooth enough, canceling this last expression yields a well-
defined variational problem for g, which admits as unique solution in H?(R%)9 N H%D (R4 (owing to the
regularity theory for linear elasticity, see [92]) ¢ = qq, defined by (5.70).

e The study of the partial derivative of £ with respect to u at (9, u, z,p,¢) unrolls in the same way. It
reads, for all @ € H*(R")? N H (R)%:

0L O,z pq) (@) = / (vmu,p,Ae(u):e<p>>-a+“<u,p,Ae<u>:e<p>><Ae<p>>TT:e<a>w) ds

ou =
+/QAe(a):e(z) dx+/Q (V2(u)q) - @ da
/F (Vuf(u,p, Ae(u) : e(p)) - u — divp <gi(u7p7 Ae(u) : €(P))(Ae(p))TT> ﬂ) W

+/Q Ae(u) : e(z) der/Q (V24(u)q) - U dx

where the third line stems again from integration by parts on I', with £ = 0 on JI'. Under the previous
assumption that u = ug is smooth enough, canceling this last expression yields a well-defined variational
problem for z, which admits z = zg as unique solution in H Q(Rd)d N H%D (Rd)d, defined by l|
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Eventually, for any domain Q € Uyq, and any fixed functions g,z € H*(RY)? N HE (R%)%, one has:
L(Q) = ‘C(Qa U@, Evpﬂv 6\)7

whence, differentiating this expression with respect to €2, and evaluating at § = qo and z = zq,

o
a0

and the desired formula (5.68)) follows. O

Vo S @ad7 L/(Q)(e) (Qa UQ, 20, PQ, qQ>(0>7

Using this technical result, we are now in position to prove the following theorem:

Theorem 5.9. Consider the worst-case design functional j(ﬂ), defined as:

VO EUpa, T =JQ)+  sup  J(QKV).
VEeroc(ﬂ«id,ﬂid)
NV oo (rdyd <™

Then j rewrites:

7@ = /Q j(ug) dz +m / X li(ug) + Ae(ug) : e(pa) — f - pal ds, (5.73)

where the adjoint state pq € H%D ()% is defined as the unique solution to:

—div(de(p)) = —Vuj(ua) in
p = 0 onTp . (5.74)
Ae(p)n = 0 onTUT'y

Furthermore, T is shape differentiable at any € Uyq such that the set
Eq:={z el (jlua)+ Ae(ua) : e(pa) — f - pa) (x) = 0}
is of null (surface) Lebesque measure. At such a point, its shape derivative reads:
V0 € Ouu, T'()(0) = /X(j(m) + Ae(uq) : e(pa) — f - pa) (0 -n) ds
r
0 )
am [ (g ) (clitun) + Actun) s lon) = £-pa) ) 0 ds . (575
r

—|—m/ (Ae(pq) : e(ga) + Ae(uq) : e(zq) — f - zq) (0-n) ds
r

where the second and third adjoint states qq, zq are respectively defined as the unique solutions in H%D ()4
to the systems:

—div(4e(q)) = 0 in Q
qg = 0 onI'p (5.76)
Ae(g)n = 0 on 'y ’
Ae(g)n = ex f+divp(ex (o(uq))rr) onT
and:
—div(4e(z)) = —V2j(uq)ga in Q
z =0 on FD
Ae(z)n = 0 onTxn (5.77)
Ae(z)n = —ex Vyj(uq) +divr (ex (0(pa))r-) onT

where & := sgn (j(ug) + Ae(ug) : e(pa) — f - pa).
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Proof. First, using lemma (5.4) (i), we know that J is shape differentiable at any Q € U,q4, with shape
derivative:

VO € Ouq, J'(Q)(0) = /F (j(uq) + Ae(uq) : e(pa) — f - pa) (0 -n) ds.

Using this expression together with theorem readily gives rise to formula (5.73]).
Then, using Lemma [5.4] (3), with £(u,p,e) = x [;(u) + e — f - p| produces formula (5.75). O

We conclude this tour with the study of the stress-based cost function S(2) defined by (5.65). The
following result is proved in the exact same way as Theorem [5.9} and the proof is omitted:

Theorem 5.10. Let jv(Q) the worst-case design functional defined as:

VO € Upg, T(Q) = S(Q) + sup S' () (xV).
VEWI»x(Rd,Rd)

VIl oo (zdyd <™

Then j rewrites:
F(9) = /Q §(o(ug)) ds +m / ¥ li(o(ug)) + Ae(ug) : e(pa) — f - pal ds, (5.78)

where the adjoint state pq € H%D ()4 is defined as the unique solution to:

—div(Ae(p)) = diV(A%(O’(UQ))) in Q
p =0 onTp . (5.79)
Ae(p)n = fA%(a(uQ))n onT'UT'y

Besides, J is shape differentiable at any Q € U,q such that the set
Eq :={z €T, (j(o(uqa))+ Ae(uq) : e(pa) — f.pa) (z) = 0}

is of zero (surface) Lebesgue measure. At such a point, its shape derivative reads, for all 0 € ©44:

V0 € O4a, T'()(0) = (0(uq)) + Ae(uq) : e(pa) — f - pa) (6 - n) ds

x (@
o J (55 + ) (x o)) + Actun) - elpe) — 7 pel) ) (0-0) ds

+m/ (Ae(pq) : e(qa) + Ae(uq) s e(zq) — f - zq) (0-n) ds
r

(5.80)
where the second and third adjoint states qq, zq are respectively defined as the unique solutions in H%D ()4
to the following variational problems:

voe L, @), [ Aclq) s e)dn = = [ ex((@lua)r s ew)ry £ -0) s, (5.81)
and:
Vo € HY ()7, /QAe(z):e(v)dx - /F ex ((Agi(a(ug)))TT) e(v)ﬂ+(a(p9))”:e(v)w) ds,
_/Q (i@(a(m)me(qﬂ)) Ae(v) de

where € := sgn (j(o(uq)) + Ae(uq) : e(pa) — [ - pa)-
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5.5 Numerical results

5.5.1 Worst-case optimization problems in parametric structural optimization

Let us start with the parametric structural optimization setting, and test the derivatives computed in
Section [5.3] We reuse the notations introduced then: in every case, a cost functional C of the thickness
(and of perturbation parameters) is considered, and the corresponding approximate worst-case functional J
is minimized using either a steepest-descent algorithm, or an augmented Lagrangian algorithm (see [237],
§17.4 or chapter [4] sec. for a short description).

In both examples below, the imposed bounds over admissible thickness functions are h,,;, = 0.1 and
hmaz = 1, and the initial design of the plate is described by a uniform thickness h = 0.5. The elastic
material filling the plate is characterized by its (normalized) Young’s modulus and Poisson ration v given
by:

E=1, v=03. (5.83)

Both examples are performed within the FreeFem++ environment [259)].

5.5.1.1 TUncertainties around the applied body forces in parametric optimization

This first example illustrates the results of Section [5.3.2] and more accurately those of Example The
situation is as depicted in Figure 5.3} the plate is clamped on its bottom-left and bottom-right sides, and
its cost, when its thickness is h and when submitted to body forces f is its compliance:

Ch, ) = / f -un de,

(no surface loads are applied). The plate is equipped with a triangular computational mesh, which is
worth 10128 vertices (thus, twice as many triangles). The unperturbed state is associated to the following
distribution of forces: f = (0, —1) near the centre of the bottom side of the plate (red spot on Figure
top), and f = (0,0) elsewhere. Vertical perturbations (0,¢) € L*(€2)? of maximum amplitude ||€||12(q)2< m
are expected, which are located on the bottom side on the plate, between the regions where it is clamped,
and that where body forces are applied on the unperturbed shape (grey areas on Figure top).

The approximate worst-case functional J defined by (D is considered for minimization, and so that
the problem is not trivial, a volume constraint is added, using a fixed Lagrange multiplier ¢ = 5.10~%. The
considered minimization problem thus becomes:

min <j(h) +€/ hdm).

h€Uqq Q
For increasing values of m, 100 iterations of a gradient-based steepest descent algorithm are performed and
the resulting shapes and convergence histories are reported in Figures [5.3] and [5.4]

Predictably, this simple setting does not really allow to compare the obtained shapes with one another:
since the Lagrange multiplier used to enforce a volume constraint is always the same regardless of the value
of m (which actually acts as a penalization parameter as we have discussed), it does not always expresses
the same volume constraint, and shapes show a trend towards thickening as the amplitude of perturbation
grows.

Nevertheless, the results show interesting changes in behaviors as m increases. To better capture this
phenomenon, we turn to a more ‘realistic’ context, where a volume constraint

Vol(h) := | hdx = Vr,
Q

is enforced owing to an augmented Lagrangian method in the course of minimizing J. The same test case is
run with a target volume Vi = 0.7; 150 iterations prove necessary to achieve convergence of the algorithm,
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Figure 5.3: Minimization of the compliance with uncertainties over the body forces; from left to right, top
to bottom, m = 0 (with boundary conditions), 0.05,0.1,0.2,0.35,0.5,1,1.5,2, 5.

and each computation takes about 6 — 7 minutes (except for the one associated to the value m = 0, which
does not involve any computation of an adjoint state). Results and convergence histories are reported on

Figures [5.5] and

5.5.1.2 Geometric uncertainties in parametric optimization

We now illustrate the proposed model for dealing with geometric uncertainty in parametric optimization
of section [5.3:4] Recall that, in this context, the case of the compliance as a cost function is almost trivial,
as assessed by Proposition [5.1}

Hence, let us consider another example, depicted in Figure 5.7} the considered plate is fixed on a part
I'p C 99, and submitted to surface loads g € L?(T'y)? on another part I'y C 9. g equals (0, —1) on the
upper part of 'y, and (0, 1) on its lower part. The plate is endowed with a triangular mesh of 12382 vertices.

In this case, we chose as cost function C(h) a least-square discrepancy criterion between the solution up,
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Figure 5.4: Convergence histories for the problem of compliance minimization under uncertainties over the
body forces, using the same Lagrange multiplier for all examples.

to (5.5)), and a target displacement ug, that is:

%e%wamZ/\m—%PW

I'r

where I'r is another non optimizable subset of 92, disjoint from I'p and I'y. We chose ug = (0,—1) on the
upper part of I'r, and up = (0,1) on its lower part.

To help the optimization algorithm of the associated approximate worst-case functional J to reach a
connected optimal shape, a very small volume constraint is imposed by using a fixed Lagrange multiplier
¢ = 0.0003, which is a mere numerical token (the cost criterion does not vary monotonically with the volume
of the structure in this case).

For increasing values of m, 100 iterations of a steepest-descent algorithm based on the conclusions of
Theorem are performed, and the results are depicted in Figures and each computation takes
about 10 minutes (except for the one associated to m = 0, which only involves the computation of one
adjoint state at each iteration of the process, whereas the others involve three). As in the previous test-case,
one observes that the performances of the obtained shapes in their unperturbed states worsen as m grows
(which is coherent, since the larger the value of m, the lower the importance of this unperturbed problem in
the balance expressed by J between perturbed and unperturbed states). An interesting ‘topological’ change
in trends among the optimal shapes is also to be noted at m =~ 0.0365.

5.5.2 Examples of shape optimization problems under uncertainties
5.5.2.1 Details around the numerical implementation

As far as numerical simulations are concerned, shape optimization of elastic structures differs from its
parametric counterpart mainly regarding the difficulty to account for the evolutions of shapes during the
process. To deal with this issue, we rely on the level set method, as was originally suggested in [14], 319] (see
chapter [1] for a description), which roughly speaking consists in describing every shape 2 C R? by means of
a scalar function ¢ : R¢ — R enjoying the properties:

o(z) <0 fzeQ
Ve e RY { é(x)=0 ifzecon .
é(r) >0 ifxecQ
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Figure 5.5: Minimization of the compliance with uncertainties over the body forces, with an imposed volume
Vpr = 0.7; from left to right, top to bottom, m = 0,0.05,0.1,0.2,0.35,0.5,1,1.5,2,5, with a target volume
Vr =0.7.
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Figure 5.6: Convergence histories for the approximate worst-case compliance (left) and for the volume (right)
of the plate when uncertainties over body forces are considered.
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Figure 5.7: Parametric optimization of a plate under uncertainties over its thickness. From left to right, top to
bottom, details of the test case, and obtained shapes for m = 0, 0.01,0.02, 0.03, 0.036, 0.0365, 0.038, 0.04, 0.05.
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Figure 5.8: Convergence histories for the parametric optimization example under uncertainties over the
thickness.

The main asset of this change in perspectives lies in that the motion of a domain Q(t), t € [0,7] evolving
in time, driven by a normal velocity field V (¢, 2) nqo)(z) is translated in terms of a corresponding level set
function ¢(t,.) into the following Hamilton-Jacobi equation:

5 + V|Vg|=0on [0,T] x R (5.84)
In the situation of Section (whose notations are reused here), the minimization of a functional J(Q) of
the domain is considered, whose shape derivative is of the form:

V0 € Oug, T'(Q)(0) = /Fv(umpg,qn,m) (0 -n)ds,
for some algebraic combination v(ugq, pa, ga, zq) of solutions to (state and adjoints) elasticity systems posed
on Q. V is then set to 0 on I'p UT'y and to —v(uq, pa, ga, 2q) on the free boundary T'.

In numerical practice, the whole space R is reduced to a large working domain D C R?, which encloses
all the considered shapes, and comes equipped with a fized simplicial mesh 7. The (state or adjoints) linear
elasticity systems posed on a given shape 2, involved in the expressions of V', cannot be computed exactly
since € is only known by means of an associated level set function (i.e. no mesh of  is available). The
Ersatz material approach [I4] is then used to transfer a linear elasticity system posed on € to one posed
on D by filling the void D\ with a very soft material with Hooke’s law €A, ¢ < 1 (¢ = 1le~? in our examples).

All the numerical operations in the sequel are performed using the FreeFem++ package [259], except for
the routines for solving and redistancing ¢, which come from the works described in chapters |§| and
[l For the sake of completeness, the computational times of two representative computations are provided,
in Sections (whose model involves one adjoint state) and (whose model involves three adjoint
states).

5.5.2.2 Shape optimization under uncertainties about the applied loads

Let us start by illustrating the conclusions of Section [5.4.2] and more accurately of Example [5.6] The
cost C(£2, f) of a shape Q C R%, when submitted to body forces f € L?(2)? and traction loads g € L?(T'x)?
is its compliance:

C(Q,f)z/f-ug7fdx+/ g-uQ,de.
Q I'n
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We first consider the situation depicted in Figure 5.9} a mast is clamped on a part ['p of its boundary
and traction loads g = (0, —1) are applied on I'y, near the bottom-left and bottom-right parts of its arms.
In the unperturbed state, no body forces are applied (f = 0). Perturbations are expected as vertical body
forces (0, §), of amplitude [[]|12(ray< m, which are located on near the bottom of the arms of the mast (blue
areas in Figure .

We first minimize the corresponding worst-case scenario functional J with respect to the shape for dif-
ferent values of parameter m, using a fixed Lagrange multiplier / = 1 to impose a volume constraint. 200
iterations of a gradient algorithm are used, and results are displayed on Figure

One observes that, once again, the shapes tend to thicken as m grows, but also notices interesting changes
in trends in the layout of the structure. Once again, to better appraise this feature, we run the very same
example, using an augmented Lagrangian method to enforce a volume constraint Vol(Q2) = Vi, where Vr is
a target volume (in this example, V = 2000). Each computation (except for the one associated to m = 0)
takes about 25 minutes, for a computational mesh composed of 11257 vertices. The results are reported on
Figure and confirm our initial guess (see also Figure for convergence histories).

The exact same sequence of operations is applied on another model, namely the benchmark optimal bridge
test case, as described in Figure (top): a bridge is clamped on two sides of its boundary, and vertical
body forces f = (0,—10) are applied at the middle of the bottom of the structure (yellow box). Vertical
perturbations of amplitude lower than m are expected to occur on the blue areas. First, a minimization
procedure is carried out, using a fixed Lagrange multiplier ¢ = 0.2 for the volume constraint, for several
values of m, and results are to be seen on Figure [5.12] The results of the subsequent step, to get optimal
shapes with the same target volume Vp = 0.75 are displayed on Figure [5.13

Remark 5.9. Some of the ‘optimal’ shapes displayed turn out to be non symmetric, whereas the setting
of the corresponding test case is. This is mainly because no particular attention has been paid about this
feature; in particular, the meshes of the (symmetric) bounding boxes are triangular, and not symmetric.
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Figure 5.9: (From left to right, top to bottom): Setting of the test case, and optimal shapes of a mast for com-
pliance minimization, with uncertainties on the body forces of amplitude m = 0, 0.1,0.25,0.4,0.6, 1, 2, 3, 5.
The same Lagrange multiplier for the volume constraint is used in all cases.
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Figure 5.10: (From left to right, top to bottom): optimal shapes of a mast for compliance minimization,
under uncertainties on the body forces of amplitude m = 0, 0.1,0.25,0.4,0.6, 1, 2, 3, 5; all the shapes have
the some volume Vi = 2000.
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Figure 5.11: Convergence history for the approximate worst-case compliance (left) and for the volume (right)
in the (worst-case) optimal mast test case.
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Figure 5.12: (From left to right, top to bottom): Optimal shape of a bridge under perturbations over the
body forces of amplitude m = 0, 0.1,0.2,0.5,0.7,1,1.2,1.5,2. The same Lagrange multiplier for the volume
constraint is used in all cases.
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Figure 5.13: (From left to right, top to bottom): optimal shape for the worst-case optimal bridge example,
for m =0, 0.2,0.5,1,1.5,2. The same volume constraint V' = Vy = 0.75 is imposed in all six cases.

5.5.2.3 Shape optimization under uncertainties on the material’s properties

The proposed approach is evaluated in the context of Section we seek the optimal design of a force
inverter: the considered shapes are clamped on the upper and lower parts of their left-hand side, a surface
load g = (—0.1,0) is applied at the centre of this left-hand side, and should exhibit a prescribed displacement
up = (1,0) in a (non optimizable) area located at the centre of their right-hand side (see the details on Figure
5.14)).

In this context, the cost of a shape 2 € U, 4, when filled with a material with Lamé coefficients A, u is:

CAN ) = / () oy p — tio]? de,
Q

where k is the characteristic function of the area where the target displacement should be reached.

We are in search of a shape Q € U,q which minimizes this cost, when perturbations |a|< m, |3|< m are
expected over the ‘reference’ Lamé coefficients A\, p associated to , and this leads us to consider the
functional J of formula .

As was the case in the example of section the performance of a shape has nothing to do with
its weight. Nevertheless, for purely numerical purposes, we add a very small penalization, with respective
parameters £, = 5.¢73 and £, = 0.02 on the volume and compliance of the shapes to the expression of 7. The
first additional term helps in removing the small ‘islands’ (i.e. disconnected parts obtained after topological
changes occurred), while the second one makes it easier to obtained a connected structure (which is difficult,
since shapes tend to develop very small parts in the course of the process in order to gain flexibility).

Figure shows the shapes obtained after 400 iterations of a gradient algorithm, for several values
of m, and Figure displays the corresponding displaced shapes. The convergence histories for these
computations are reported on Figure [5.16]
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Figure 5.14: (From left to right, top to bottom): details of the test-case, optimal shape for the worst case

force inverter test case, with perturbations over the Lamé coefficients of the material of magnitude m =
0,0.001, 0.002, 0.003, 0.0045, 0.0075, 0.01, 0.02,0.1.
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Figure 5.15: (From left to right, top to bottom): deformed configurations of the optimal shapes of Figure
with m = 0,0.001,0.002,0.003, 0.0045, 0.0075,0.01,0.02,0.1. The bounding box of the optimal shapes
is displayed in red.
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Figure 5.16: Convergence histories for the (worst-case) force inverter test case.
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5.5.2.4 Shape optimization under geometric uncertainties

We eventually look into the setting of Section [5.4.4] where geometric uncertainties are considered, first
in the context of the device of a gripping mechanism, as illustrated in Figure the shapes of interest
are clamped on the top and bottom parts of their left-hand side, and a small horizontal force g = (0.1, 0)
is applied at the centre of this side, with the hope that the jaws (corresponding to the blue area in Figure
will comply with a target displacement ug, equalling (0, —0.2) on the upper part, and (0,0.2) on the
lower part. The cost C(€2) of a shape Q reads:

VQ € Upq, C(Q2) = / k(x)|uq — uol? du,
Q

where k is the characteristic function of the area near the jaws.

As perturbations of magnitude m on the geometry of shapes are expected, we_aim at optimizing the
approximate worst-case functional J associated to this problem, defined by formula |-D Small constraints
over the volume and compliance of shapes are incorporated using fixed Lagrange multipliers ¢, = 0.003, and
l. =1, serving the same purposes as in the force inverter test case, and 200 iterations of the usual gradient-
based algorithm are performed.

Several results are displayed on Figure [5.17] corresponding to different values of m. Each computation
takes about 35 minutes, except for the one associated to m = 0. The corresponding displacements are shown
on Figure and it is easily seen that, as expected, the performances of the unperturbed shapes are less
and less efficient as m increases.

The proposed approach for addressing geometric uncertainties is eventually applied to a case where the
stress of structures is at stakes. Our shapes are now L-shaped beams, clamped on their upper part, and
submitted to traction loads g = (0, —1) on a portion of their right-hand side (see the details on Figure[5.19)).
The cost C(Q2) of a shape Q is now related to the stress o(ug) induced by its displacement as:

VQ € Ung, C(Q)z/ﬂk(m)“a(ug)ﬂp da, (5.85)

where p > 2, k is a characteristic function which equals 1 everywhere on the working domain except near
the area I'y where loads are applied, and ||.|| is the Frobenius norm for matrices.

The worst-case design associated to this cost function is investigated, when uncertainties over the geom-
etry of the shape of maximum amplitude m are expected. The approximate worst-case function J defined
by is minimized, using parameter p = 2.

At first, a volume constraint is enforced by means of a fixed Lagrange multiplier £ = 3, and several
examples are shown in figure [5.19] associated to various values of m. An augmented Lagrangian method is
then used to impose a target volume Vi = 0.8 on shapes and confirm the changes in trends caused by uncer-
tainties over the geometry: see the results on Figure the stress distribution in the resulting structures
in Figure and the convergence histories in Figure [5.21]

Eventually, the same procedure is applied for the value p = 5 (and still increasing values for m). As
expected, the resulting optimal shapes are more ‘rounded’ in the vicinity of the reentrant corner, where a
stress singularity develops. See Figure for results, Figure for the stress distribution in the shapes,
and Figure for convergence histories.
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Figure 5.17: (From left to right, top to bottom): details of the test-case, optimal shape for the worst-case
gripping mechanism test case, with m = 0,0.001, 0.002, 0.004, 0.005, 0.007, 0.009, 0.01, 0.02.
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Figure 5.18: (From left to right, top to bottom): deformed configurations of the optimal shapes for the
worst-case gripping mechanism test case, with m = 0,0.001,0.002,0.004, 0.005,0.007,0.009,0.01,0.02 (the
bounding box of the optimal shapes is displayed in red).
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Figure 5.19: (From left to right, top to bottom): details of the test-case, optimal shape in the (worst-case)
L-Beam test case, for geometric perturbations of amplitude m = 0,0.005,0.01,0.015,0.02, 0.05.
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Figure 5.20: (From left to right, top to bottom): details of the test-case, optimal shape for m =
0,0.005,0.01,0.015, 0.02,0.05, for the (worst-case) L-Beam example, using p = 2.
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Figure 5.21: Convergence history for (left): the stress [, k[|o(uq)|[” dz and (right): the volume, in the
(worst-case) L-Beam example, using p = 2.
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Figure 5.22:  (From left to right, top to bottom):  stress distribution (||o||?)
0,0.005,0.01,0.015,0.02,0.05 in the optimal L-Beams displayed on Figure [5.20] using p = 2.
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Figure 5.23: (From left to right): optimal shape for m = 0,0.01, 0.02, for the L-Beam example, using p = 5.

=

or m =




5.5. NUMERICAL RESULTS 217

1 6604E+00 43011E400 1 S040E400 45121400 15231500 45694E00

38018E-11 33208E+00 5.5415E+00 38121E-11 3.0081E+00 6.0161E+00 41045811 30462E400 609256400

L ‘ L

Figure 5.24: (From left to right): stress distribution (||o||?) for m = 0,0.01,0.02 for the L-Beam example,
using p = 5.
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Figure 5.25: Convergence history for the volume for the L-Beam example, using p = 5.
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Appendix: some useful technical tools

5.5.3 General tools

For the reader’s convenience, this section reproduces several well-known results from the general theory
of linear and Banach spaces that are repeatedly used throughout this chapter. First of all, the following
basic fact allows for the identification of the dual norm of a product of vector spaces:

Lemma 5.5. Let E, F two vector spaces. Then the application ¢ : (E x F)* — E* x F* defined as:
Ve e (B x F), ¢(f) = (£(.,0),00,.))

is a linear isomorphism, which is an isometry when E* x F* is equipped with the norm ||.||1, defined as:

v(€E7£F) € E" x F*7 ||(€E7£F)||1: ||€E|

m+||¢F]|

-
Recall the following corollary of Hahn-Banach theorem:

Lemma 5.6. Let (E,||.||) any normed vector space, and E* its topological dual. Then, for all x € E, one
has:

lzll= sup <p,x>p.p= max <@,z >pp.
€EE* ®
el e <1 Hellgx <1

The following theorem can be found in [57]:

Theorem 5.11. Let Q C R? any open set, ¢ € LY(Q)*. Then, there exists a unique function u € L*°(Q)
such that:

V€O, (e e e = [ uf d.
2
What’s more, one has: ||u|| )= |¢||L1(0)--
We shall also need the following easy result:

Lemma 5.7. Let Q C R? an open, bounded domain, and denote as f : L*(2) — R the L' norm function:
Vu € LY (Q), flu) = / |u(z)| da.
Q

[ is then convez, and its subgradient df(u) C L> () at any point u € L*() reads:

Az)=1 if u(z) >0
A€edf(u) Az)=-1  dfu(x) <0
Mz) € [-1,1] ifu(x)=0

As a consequence, if u € LY(Q) is such that {x € Q, u(x) = 0} is of null Lebesque measure, f is Fréchet-
differentiable at u, and its differential df (u) reads:

Yo € LYQ), df(u)(v) = / sgn(u(z))v(z) dz.

Q
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5.5.4 Several Green’s formulae

Notations: Let I' C R? a compact, oriented C? submanifold of dimension d — 1, and V € C!(I", R?) a vector
field on I'. The tangential divergence divr(V) € C°(T) of V is defined as:

divp(V) = div(V) = VVn - n,

where V stands for any C! extension of V to a tubular neighborhood of I'. One can actually see [172] that
this definition is independent on the choice of such an extension, and that, denoting as DrV the d x d matrix
whose i-th line equals V1V,

diVF(V) = tr (DFV) .

There is another equivalent point of view as regards the tangential divergence of a vector field, which is
completely intrinsic to the submanifold I'. T' may be viewed as a Riemannian manifold, when equipped with
the Euclidean metric on R%. Let V be the associated Levi-Civita connection on I'. Then, if V is a vector
field on I' (i.e. for this definition, we need that, for all x € ', V(z) € T,I'), for any = € T divp(V)(z) may
be defined as the trace of the linear operator

T,I' 36— VeV(z) € T,T.

Now, let o € CO(T", S(R?)) be a continuous symmetric matrix-valued function. The tangential part o, of
o is the symmetric bilinear form over TT (or equivalently the associated symmetric matrix-valued function)
defined as:
Ve e I''Vo,w € T,T, o7 (2)(v,w) = o(z)(v,w).

Roughly speaking, o,,(z) is the restriction of o(z) to the tangent plane T,I" - i.e. o reads:

( Orr Orn )

o =

Ont  Onn

in an orthonormal basis of R? obtained by gathering (d — 1) tangent vectors of I (collectively denoted as 7).
Similarly, if o € C}(T', S(R?)), one defines its tangential divergence divr : I' — R? as:

Vi = 1, ceny d, diVF(U)i = [diVF ((Ui,j)jzl,,wd)]r,

where [.|r denotes the projection of a vector field onto TT.

Let us start with the following Green’s formula on a submanifold of R%:

Proposition 5.3. Let I' C R? a compact, oriented C*> submanifold of dimension d— 1, with (possibly empty)
boundary . Let ny, : ¥ — S~ the outer unit normal vector to X in T'. For any C' function u : R? — R,
and any C* vector field T € TT, one has:

ou

—ds= / ut.ny dl — / divp(7)u ds, (5.86)
r o7 by r

where ds and dl stand for the volume forms on I' and X respectively.

Proof. First, note that, owing to a standard argument involving partitions of unity, it is enough to show that
formula holds locally, i.e. with U and U N instead of I" and X respectively, where U is an arbitrarily
small open subset of T".

Now, we can assume that I' amounts to a single local chart, and introduce local coordinates x :=
(r1,.,q_1) : T — W C R4 on T, that is, = is a C? diffeomorphism. Let (%, e 8553—1) the associated

basis of the tangent bundle 7T, and (dx1, ..., dz4—1) the dual basis of TT*. The decomposition of 7 into this
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local basis of the tangent bundle then reads 7 = E?:_ll Tia%i, and the expression of the volume form ds in

terms of these local coordinates reads:

ds = +/det(g) dey A ... Ndxg—q,

where g is the (d — 1) x (d — 1) matrix

. 0 0
vp € F7VZ7.7 = 1,"'7d_ 1a gl;J<p) = <07(p)7 87(p)>17
? J

One computes:

ou
/FECZS

I
N
S—
Q
gle
B
QL
»

d—1
— Z/%szmsl/\/\dxd,1
— Jr 0%;
o1, S
_ Z/ — (uﬁm) dxlA...Adxd,l—Z/ . (m/@) udzy A .. A dzg_y
— Jr O0x; i=1 /T 7

Now, using the expression of the tangential divergence in terms of local coordinates:

divp(7) ( det(g)T'),

d—1
L v
- \/det(g) —~ Ox;

the second term amounts to:

d—1
Z/ai (ﬂ\/@) del/\"'/\dxdfl:/diVF(T)uds.
i— /T Y

T

As for the first term, using Stokes’ theorem (Th. XII.2.1 in [I98]), it rewrites:

d—1
Z/ (71)1-717'2' u/ det(g) dl‘l VANRTRIAN dl?i_l A dSCZ‘_._l A A d:cd_l.
i=17%

Hence, the only remaining thing to prove is that:
Vi=1,..,d—1, (=1)""*y/det(g) dey A ... Adx; 1 ANdxizi A ... Ndzg_1 = (ng)dl.

To see this, note that because d¢ is a volume form on X, there exists a function a € C*>(I") such that
(—=1)=1\/det(g)dwy A ... Adxi—y Adxipq A ... Ndwg_1 = adl. We are left with the problem of identifying «;
this can be carried out in a pointwise fashion. Thus, let p € X, and (eq, ..., e4—2) a direct orthonormal basis
of T, (that is, ordered so that (ny,e1,...,eq—2) is a direct orthonormal basis of T,I" |5.). By definition, one
has:

dﬁ(el, ceey ed,Q) =1.

On the other hand,

dxl(el) dxl(ed_g)
dx;_ v dxi— _

dry N ... Ndzi—1 Ndxi /\.../\dxd,l(el,...7ed,2) = di+1g23 di+1EZj §§
i i _

drg-1(e1) ... dzg_1(eq—2)
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This last expression arises as the (¢,1) minor of det(M), where M is the (d — 1) x (d — 1) matrix defined as:

dzy(ny) dxi(e1) ... dxi(eq—2)
M = dl‘l(’ng) dwi.(el) d:vi(e.zd,g)
dl’d,.g(nz) d:cd,.l (e1) d:cd,li(ed,g)

Note that M is the passing matrix between the two bases (ny,eq,...,eq—2) (which is orthonormal) and
(-2 ) of T,,T". Hence,

6:61 0 6:6{1 1

1

i—1 — tar—1
(—1) d.’El/\.../\d.’Ei,1 Adxi+1/\.../\dxdfl(€17...7ed72) = det(M) ( M )i,l'

Now, it is not difficult to see that det(M) = y/det(g) (see e.g. [198], prop. XV.1.1). What’s more,
(tM’l)i , 1s the coefficient of % along ny in the orthonormal basis (ny,eq,...,eq—2), that is ny;, which
ends the proof. O

We shall have use of this result under the following form:

Proposition 5.4. Let I' € R? a compact, oriented submanifold of class C?, with (possibly empty) boundary
Y. For any function u € C*(RY), and any symmetric matriz-valued function o € C'(S(R?)), one has:

[ ersetwerds = [ ludrtorrans) e [ fulrdive(o) ds.

Proof. This formula is a consequence of the following identity:
divr(orr.Julr) = orr : e(u)rr + [u]r.divr (o). (5.87)

Indeed, if this equality holds, then using proposition (5.3)) with 7 = o,..[u]r, © = 1 leads to the desired
result.

As for proving (5.87)), consider any fixed point p € T, and chose local normal coordinates (x1, ..., 24—1)
on I' at p. In particular, (see [I16], chap. 3, ex. 14), one has:

— The basis (8%(1)), s ﬁ(p)) of TpI' is orthonormal.

— The Christoffel symbols associated to this basis of TT vanish at p, that is:

Vij=1,.,d=1, V_a ai(p):(), (5.88)

where V stands for the Levi-Civita connection on I" when equipped with the metric induced by the
Euclidean scalar product of R%.
— For any vector field X on I', whose coordinates in system (z1,...,24-1) read: X = Zd ' X; s, one

has:
dive (X Z o (5.89)
Now writing o,-.[u|r in coordinates (z1,...,24—1), and using formulae (5.88]-[5.89)) yields the desired result.
O

Remark 5.10. Propositions [5.3] and [5.4] were stated and proved in the context of a smooth function u €
C'(R?). Obviously, the results extend owing to the standard density argument to the case of functions
u € H2(RY).
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