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Résumé

Dans cette these, on s’intéresse a plusieurs probléemes intervenant dans I’étude d’Equa—
tions aux Dérivées Partielles Stochastiques paraboliques, non-dégénérées et dégénérées,
de lois de conservation hyperboliques stochastiques, et d’Equations Différentielles Sto-
chastiques avec des coefficients continus.

Dans la premiere partie, on s’intéresse a des EDPS paraboliques de la forme

du + div (B(u)) dt = div (A(2z)Vu)dt + &(u) dW, zeTVN, te(0,7),

o(0) — (0.1)

ou W est un processus de Wiener cylindrique. Sans ’hypothese que la matrice de dif-
fusion A est définie positive, cette équation peut étre dégénérée, ce qui constitue la
principale difficulté dans la résolution du probleme. On suppose que la matrice A est
semi-définie positive, et par conséquent elle peut étre identiquement nulle, donnant ainsi
une loi de conservation hyperbolique. On adapte les notions de formulation et de solu-
tion cinétiques, qui ont été précédemment étudiées dans le cas de lois de conservation
hyperboliques scalaires, a la fois dans le contexte déterministe (voir par exemple Im-
bert et Vovelle [38], Lions, Perthame et Tadmor [55], [56], Perthame [63], [64]) et la
situation stochastique par Debussche et Vovelle [16], ainsi que dans le cas d’equations
paraboliques dégénérées déterministes du second-ordre par Chen et Perthame [13]. Le
concept de solution cinétique s’applique a des situations plus générales que celle de solu-
tion entropique introduite par Kruzkov [45], et il parait plus adapté en particulier pour
des problemes paraboliques dégénérés : il permet de conserver la structure précise de la
mesure de dissipation parabolique, tandis qu’en utilisant des solutions entropiques une
partie de l'information est perdue et doit étre retrouvée a un certain moment.
Supposons que u est une solution réguliere de (0.1), plus précisément

u e C([0,T];C*(TN)) P-ps..
D’apres la formule d’Ito, il vient alors que f(z,t,§) = 1, 4)>¢ vérifie au sens des
distributions dans D'(TY x Ry)

df +b-Vfdt — div (AVf) dt = 6,—c® AW + 0 <n1 - ;G%uf) dt,

ou n1 est la mesure de dissipation parabolique définie par
dny(z,t, &) = (Vu)" A(Vu) ddy g, (§) do dt.

Ce probleme est généralisé, de telle sorte qu’on obtient la formulation cinétique de (0.1),
qui est également faible en temps, et s’écrit formellement

OWf+0b-Vf—div(AVSf) = 0y=e SW + O <m - ;G25u:€>. (0.2)

On recherche un couple (f,m), m étant une mesure cinétique - i.e. une mesure de Borel
positive bornée aléatoire sur T x [0, T] xR - obtenue comme somme de deux composantes
n1 + no : n est la mesure de dissipation parabolique mentionnée précédemment, et ng
est une mesure inconnue, de fagon a prendre en compte de possibles singularités, et
s’annulant dans le cas non-dégénéré. Une solution cinétique est alors définie comme
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suit : soit u € LP(Q2 x [0,T],P,dP ® dt; LP(TN))!, ¥p € [1,00). On dit que u est une
solution cinétique de (0.1) lorsque

u € LP(Q; L>(0,T; LP(TN))), Vp € [1, o0), o Vu € L*(Q x [0,T]; LA(TY)),

et lorsqu’il existe une mesure cinétique m > ny P-p.s., telle que (f = 1,5¢,m) vérifie
(0.2) pour toute fonction test p € C°(TV x [0,7T] x R).

Cette méthode fournit un bon cadre technique pour établir le caractére bien posé
du probleme ; en particulier on prouve le résultat suivant.

Theorem 0.0.1. Soit ug € LP(Q; LP(TV)), pour tout p € [1,00). Sous les hypothéses
de Chapitre 3, il existe une unique solution cinétique de (0.1) dont les trajectoires sont
presque surement continues & valeurs dans LP(TN), pour tout p € [1,00). De plus, si
u1, ug sont des solutions cinétiques de (0.1) avec conditions initiales respectives uy o et
ug,o alors pour tout t € [0,T]

Ellu1 () — u2(®)[|pr(rvy < Elluro — ugollp1(rvy-

Dans un travail préliminaire qui permet de montrer ’existence de solutions régu-
lieres pour des problemes approchés apparaissant dans la preuve d’existence de (0.1),
nous étudions des EDPS dirigées par un processus de Wiener d-dimensionnel de la forme :

du = [Au+ F(u)]dt +o(u)dW, z€ TV, te(0,T),

o0) — 1 (0.3)

ol —A est un opérateur différentiel fortement elliptique d’ordre 2/ avec coefficients vari-
ables, ou le coefficient F' est généralement un opérateur non-linéaire et non-borné et ou
o est galement non borné. Dans le cas semilinéaire (0.3), la difficulté principale provient
de la non-linéarité de F' et 0. En effet, on ne peut pas dans ce cas appliquer ’argument
de point fixe car, dans les espaces de Sobolev d’ordre supérieur, on ne peut espérer voir
la condition Lipschitz satisfaite. Ce probleme est étroitement lié aux propriétés fonction-
nelles des opérateurs de Nemytskij, i.e. Tg : h — G(h), ou h appartient a un espace de
fonctions F et G : R — R est non-linéaire. Il apparait que les propriétés fonctionnelles
de ces opérateurs dépendent principalement du domaine de définition choisi. Méme
lorsque E est un espace de Sobolev, ils n’envoient pas nécéssairement E sur lui méme
(ces questions sont développées en détails dans le livre de Runst et Sickel [68]). Par
exemple, si on considere 2 < m < N/p, p € (1,00), alors seuls les opérateurs linéaires
envoient W™P(TN) sur lui méme. En revanche, pour tout m € N et p € [1,00), et sous
I’hypothese que G est suffisamment réguliere et a des dérivées bornées, on peut montrer
que l'opérateur de Nemytskij T envoi W5hH™(TN) 0 W™P(TN) sur lui méme et que
pour tout z € W™P(TN)n WL (TV) on a

IG(2)llwmn ey < C(L+ Nellwmo ey + [ 2l1%me ) -

C’est 'argument fondamental de notre preuve de régularité. Nous procédons par étapes
successives. D’abord, nous étudions 1’équation (0.3) dans L™P(TY) et appliquons le
théoreme du point fixe de Banach pour montrer I’existence d’une solution faible a valeurs
dans L™P(TY). Ensuite, nous étudions ses itérations de Picard en tant que processus

a valeurs dans l’espace de Sobolev W1 (TN). Sachant que T envoie W5H™(TN) sur
lui méme, nous pouvons alors trouver une estimation uniforme au sens de la norme

1P la sigma-algebre prévisible associée & (F)i>o0-
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WLmP(TN) qui est utilisée ensuite pour trouver une estimation uniforme au sens de la
norme W™P(TV). Ces deux estimations restent valables pour le processus limite et, par
conséquent, la solution faible est en fait forte. Le résultat final est le suivant.

Theorem 0.0.2. Soit p € [2,00), q € (2,00), m € N. Supposons que
ug € LI W™P(TN)) n L™ (Q; whmp(T))
et
fa € CMR)NCEYR), |a|<20—1; o0;€ C™(TVN xR), i=1,...,d,

ont des dérivées bornées jusqu’a Uordre m. Alors il existe une unique solution a (0.3)
qui appartient a

LU C([0,T); WP (TY))) 0 L™9(Q; O([0, T]; WH™(TY)),
et nous avons l’estimation

B sup [140) ey + B 500 )

<C(1 +E||uo||me ™) +]E\|uo||rv?,"17mp(TN)).

Corollary 0.0.3. Soit k € Ng et ug € LI(Q; C*1(TN)) pour tout q € (2,00). Supposons
que

fo € CHFLR)YNCHEYR), o <20—1; o0, € CHYTN xR), i=1,...,d,

ont des dérivées bornées jusqu’a lordre k + 1. Alors il existe une solution a (0.3) qui
appartient a

LI(Q; C([0, T]; C*NTN))) pour tout A € (0,1).

Dans la deuxieme partie de cette these, on considere une loi de conservation hy-
perbolique avec un forcage aléatoire

du + div (A(u))dt = S(w)dW, =TV, t € (0,7), 04

u(0) = uo, 4)
et on étudie son approximation au sens de Bhatnagar-Gross-Krook (BGK). Dans ce
cadre, on étend le résultat de Debussche et Vovelle [16] montrant le caractére bien posé de
(0.4) au sens des solutions cinétiques. En particulier, on montre que la solution cinétique
est limite macroscopique du modele BGK stochastique lorsque 1’échelle microscopique
tend vers 0.

La motivation initiale vient de ’équivalent déterministe, qui a été tres étudié dans
la littérature (voir par exemple Berthelin et Vovelle [7], Imbert et Vovelle [38], Lions,
Perthame et Tadmor [55], [56], Perthame [64], Perthame et Tadmor [65]). Dans ce cas,
le modele BGK est donné par

(8t+a(£)-v)ffzxu%_f€, t>0 zeTV, ¢eR, (0.5)

ou la fonction déquilibre x,c est définie par

Xue (5) = 10<€<u6 - 1u5<5<0’
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a étant la dérivée de A, et la densité locale de particules étant définie par

Wt ) = /R Fo(t, 2, €) de.

L’idée est la suivante : quand e — 0, les solutions f¢ de (0.5) convergent vers y,,, ou u est
I'unique solution cinétique ou entropique de la loi de conservation scalaire déterministe.
Dans le cas stochastique, le modele BGK s’écrit

lyesg — F°
dF® + a(¢) - VFdt = %

F=(0) = Fg,

1
dt — . FEddW — = 2(—9:F%)) dt
OeF= @AW — 0GP (-OcF)) dt, )

ou la fonction F** correspond a f©+1p-¢ et la densité locale u° est donnée ci-dessus. Une
solution du modele BGK stochastique (0.6) est considérée au sens faible : un processus
prévisible € € L®(Q x [0,T] x TN x R) tel que F*—1ps¢ € L' (Q x [0, T] x TV x R) est
appelé solution faible de (0.6) s'il satisfait (0.6) au sens des distributions dans D'(TV xR)
pour presque tout ¢ € [0, T], P-presque stirement. On obtient le résultat suivant.

Theorem 0.0.4. Sous les hypothéses de Chapitre 4, pour tout € > 0, il existe F* €
L®(Q x [0,T] x TN x R) unique solution faible du modéle BGK stochastique (0.6) avec
condition initiale F§ = lyss¢e. De plus, si f© = F° — 1p5¢ alors (f¢) converge dans
LP(Q x [0,T] x TV x R), pour tout p € [1,00), vers la fonction d’équilibre x., ot u
est 'unique solution cinétique de la loi de conservation hyperbolique stochastique (0.4).
En outre, les densités locales (u®) convergent vers la solution cinétique u dans LP(€ x
[0,T] x TV), pour tout p € [1,00).

Dans la derniere partie de cette theése, on donne une preuve nouvelle et tres
élémentaire du théoreme classique dt & Skorokhod (voir [71], [72]) concernant l’existence
de solutions faibles d’équations différentielles stochastiques

dX =b(t, X)dt + o(t, X)dW,  X(0) L. (0.7)

ou les coefficients sont des fonctions boréliennes, continues en la deuxieme variable. Dans
un premier temps, on impose une condition de croissance linéaire, qui est ensuite relaxée
et remplacée par une condition de Lyapunov appropriée.

La preuve classique repose sur deux outils non triviaux : le théoreme de représenta-
tion de Skorokhod et le théoréme de représentation intégrale, dont la preuve devient tres
technique lorsque la dimension spatiale est supérieure a 1. Une approche alternative
permettant l'identification de la limite a été découverte récemment par Ondrejat [11],
[60], concernant I’étude des fonctions d’ondes stochastiques entre variétés, lorsque le
théoreme de représentation intégrale des martingales n’est plus valide. On franchit une
étape supplémentaire, en s’affranchissant du théoréeme de représentation de Skorokhod.
L’argument est inspiré de preuves tirées de Jacod et Shiryaev [41], et la démonstration
que nous proposons n’est pas difficile et presque entierement autonome ; elle nécessite
seulement deux lemmes auxiliaires dont la preuve est simple. On obtient le résultat
suivant.

Theorem 0.0.5. Soit b: [0,T] x R™ — R™ et o : [0,T] x R™ — M,,,x,, deux fonctions
boréliennes telles que b(t,-) et o(t,-) sont continues sur R™ pour tout t € [0,T], et telles
que Uhypothese de croissance linéaire est satisfaite :

K, < 0oVt € [0,T) Vo € R™  ||b(t,2)|| V [lo(t, )] < K. (1+ ||]).



Soit v une mesure de probabilité de Borel sur R™. Alors le probléme (0.7) admet une
solution faible.

De plus, on voit que cette nouvelle méthode s’applique également si on relaxe
I’hypothése de condition linéaire, en demandant I’existence d’une fonction de Lyapunov
appropriée.

Theorem 0.0.6. Supposons que ’hypothése

(A) b(r,-) et o(r,-) sont continues sur R™ pour tout r € [0,T] et les fonctions b et o
sont localement bornées sur [0,T] x R™, i.e.

sup  sup {[[b(r, 2)|| V [lo(r,2)[|} < oo
rel0, 1] [|z[I<L

pour tout L > 0,
est satisfaite, et qu’il existe une fonction V € €*(R™) telle que

(L1) il existe une fonction croissante k: Ry — 10, 00[ telle que lim, o k(1) = 400 et
V(z) > k(||z||) pour tout x € R™,

(L2) il existe v > 0 tel que

(blt, ), DV (@) + 3 Te(o(t,2)" DV (@)o(t,2)) <7V (2)

pour tout (t,x) € [0,T] x R™.

Alors (0.7) admet une solution faible.
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Introduction



2 Chapter 1 Introduction

This thesis contributes to the fields of stochastic partial differential equations
(SPDEs) and stochastic differential equations (SDEs), dynamically developing subjects
that lie at the cross section of probability theory, the theory of partial differential equa-
tions (PDEs) and mathematical physics. PDEs are used to describe a wide variety of
physical phenomena and from several points of view, depending on the concrete appli-
cation, it is reasonable to add a stochastic noise. In such a way one obtains SPDEs. It
is a well known fact in the field of PDEs and SPDEs that many equations do not, in
general, have classical or strong solutions and can be solved only in some weaker sense.
And therefore the very first question one has to ask while studying these models is: in
which sense can we solve this equation? Nevertheless, too weak notion of solution often
leads to existence of multiple solutions and uniqueness is lost. Hence it is necessary to
find some balance that allows to establish existence of a unique (physically reasonable)
solution. The third point we usually require is continuous dependence on initial data.
Once these tasks are accomplished we can study further properties of the solution such
as long time behavior or develop schemes for numerical simulations of our model.

In this thesis, we address several problems arising in the study of nondegenerate
and degenerate parabolic SPDEs, hyperbolic conservation laws and SDEs with conti-
nuous coefficients. Let us now introduce the models to be studied and summarize the
main results.

1.1 Degenerate parabolic SPDEs

This class of equations is the main object of study of Chapter 3. In particular, we
consider the Cauchy problem for a scalar semilinear degenerate parabolic SPDE of the
following form

du + div (B(u)) dt = div (A(z)Vu)dt + S(u)dW,  ze TN, t e (0,T),

(0 — (1.1)

where W is a cylindrical Wiener process. Equations of this type are used in fluid mechan-
ics since they model the phenomenon of convection-diffusion of ideal fluid in porous me-
dia. Namely, the important applications including for instance two or three-phase flows
can be found in petroleum engineering and hydrogeology. The addition of a stochastic
noise to this physical model is fully natural as it represents external perturbations or
a lack of knowledge of certain physical parameters. In order to get applicable results,
it is necessary to treat the problem (1.1) under very general hypotheses. Particularly,
the assumption of positive definiteness of the diffusion matrix A is not natural hence
the equation can be degenerate which causes the main difficulty in solving the problem
(1.1). We assume the matrix A to be positive semidefinite and, as a consequence, it can
for instance vanish completely, which leads to a hyperbolic conservation law

du + div (B(u)) dt = &(u) dW,
(1.2)

u(0) = wo,

or it can only vanish on some subdomain of T for which we have no further assumptions.
We point out, that we do not intend to employ any form of regularization by the noise to
solve (1.1) and thus we include the deterministic equation in our theory as well. In order
to find a suitable concept of solution, we observe that already in the case of deterministic
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hyperbolic conservation law

dyu + div (B(u))

0,
u(0) =wu

05

it is possible to find simple examples supporting the two following claims (see e.g. [57]):
(i) classical C! solutions do not exist,
(ii) weak (distributional) solutions lack uniqueness.

The first claim is a consequence of the fact that any smooth solution has to be constant
along characteristics but these can intersect in finite time (even in the case of smooth
data) and shocks can be produced. The second claim demonstrates the inconvenience
that was already indicated above: the usual way of weakening the equation leads to
occurrence of nonphysical solutions and therefore additional assumptions need to be
imposed in order to select the physically relevant ones. Although there exist several
possible ways in the literature, we adapt the notion of kinetic formulation and kinetic
solution. This concept that was first introduced by Lions, Perthame, Tadmor [56] for
deterministic hyperbolic conservation laws and applies to more general situations than
the one of entropy solution as introduced by Kruzkov [45] (we refer the reader to Chapter
3 for further references). Moreover, it appears to be better suited particularly for degen-
erate parabolic problems since it allows us to keep the precise structure of the parabolic
dissipative measure, whereas in the case of entropy solution part of this information is
lost and has to be recovered at some stage. This technique also supplies a good technical
framework to establish the well-posedness theory.

Among other significant references in this direction, let us emphasize the paper
of Chen and Perthame [13] who studied the case of deterministic degenerate parabolic
PDE of the form

Ou + div (B(u)) = div (A(u)Vu),

o0 — (1.3)

by means of both entropy and kinetic solutions. The first work dealing with kinetic
solutions in the stochastic setting and also the first complete well-posedness result for
hyperbolic conservation laws driven by a general multiplicative noise (1.2) was given by
Debussche and Vovelle [16]. In comparison to this case, i.e. equation (1.1) with A =0,
the problem (1.1) is significantly more difficult. Indeed, Debussche and Vovelle defined
a notion of generalized kinetic solution and obtained a comparison result showing that
any generalized kinetic solution is actually a kinetic solution. Accordingly, the proof of
existence simplified since only weak convergence of approximate viscous solutions was
necessary. The situation is quite different in the case of (1.1) as we are not able to
apply this approach: we prove the comparison principle only for kinetic solutions (not
generalized ones) and therefore strong convergence of approximate solutions is needed
in order to prove the existence. Moreover, the proof of the comparison principle itself
is much more delicate as it was necessary to develop a suitable method to control the
parabolic term.
The study of well-posedness for quasilinear degenerate parabolic SPDE’s

du + div (B(u)) dt = div (A(u)Vu) dt + &(u) dW,
u(0) = uo,
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is in progress. Due to a recent result concerning a generalized It6 formula, the corre-
sponding kinetic formulation might be derived also for weak solutions to suitable nonde-
generate approximations hence the necessity of regular approximate solutions might be
avoided. Indeed, the question of regularity in this case is interesting but highly delicate.
Even in the deterministic setting (1.3) the proofs that can be found in [51] are very
difficult and technical while the stochastic case still remains open.

1.1.1 Kinetic solutions

As already mentioned above, the basic idea for establishing well-posedness of (1.1) is to
search for a criterion that

e ensures uniqueness,
e selects the physical solution,
e is fulfilled by any sufficiently smooth solution,

i.,e. we need to weaken the problem (1.1) is some more efficient way. Towards this
end, let us briefly review our hypotheses: let (2, .#, (%#;)i>0,P) be a stochastic basis;
the flux function B is of class C! with a polynomial growth of its derivative b; the
diffusion matrix A is of class C'°°, symmetric, positive semidefinite; the process W is
a cylindrical Wiener process, i.e. W(t) = > ;< Bx(t)er with (Bk)r>1 being mutually
independent real-valued standard Wiener processes relative to (F)i>0 and (ex)r>1 a
complete orthonormal system in a separable Hilbert space 4l; the mapping @(z) : U —
L?(TV) is defined for each z € L?(TV) by &(2)er = gi(-, 2(-)) where gr € C(TVN x R)
and the following conditions

G (2,8) =) lgr(z, &P < C(1+[¢*),

k>1

D lgr(@,€) = gr(y, OF < C(Jz — y* + 1€ = (A€ = <)),

k>1

are fulfilled for every x,y € TV, ¢,¢ € R, with h being a continuous nondecreasing
function on R, satisfying, for some o > 0,

h(6) < C6%, §< 1. (1.4)

With this in hand, let us consider a smooth solution to (1.1), namely, we assume
u € C([0,T]; C*(TV)) P-a.s., so that (1.1) is satisfied pointwise

u(x,t) = up(x) — /0 div (B(u(z, s))) ds + /0 div (A(z)Vu(z,s)) ds

+ Z/t gk(w,u(:n,s)) dBi(s), ae. (w,z) € Qx TN, Vte[0,T].
e>1"0

Then it is correct to apply the Ité formula to (L, s, )¢ = O(u(z,t)), where 6 €
C*°(R). Furthermore, it is possible to allow test functions that depend on x and t as

1., )¢ denotes the duality between distributions and test functions over R.
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well, i.e. ¢ € C®(TV x [0,7) x R). In particular, we obtain?
T T
| 000+ (ol0) + [ (0.0 Vet

T
+1/ (f(t),div (A(x)Ve(t)) )t
0

T (1.5)
—-> [ [, onlzute 0ot e 0)dr dsute)
=170 JTN
1 (T
—2/ / G? (z,u(z,1))Ocp (2, t, u(w,t))dz dt + n1 (Jee),
0o JrN
where f(x,t,§) = 1yu>e fo = lyg>e and ny is the parabolic dissipative measure

defined by
dni(z,t,§) = ’U($)VU|2 d(su(x,t) (§) dz dt,

where o is the square-root matrix of A. Hence we have derived the kinetic formulation
of (1.1) which formally reads

Of 4+ b(E)-Vf — div (A(z)Vf) = Guee B(E)W + O <m - %GQ(az, 5)5u:§> (1.6)

and is solved by the pair (f, m) with m being a kinetic measure, i.e. a random nonnega-
tive bounded Borel measure on TV x [0, 7] x R that vanishes for large ¢ in the following
sense: if B = {£ € R; |{| > R} then

lim Em(TY x [0,T] x B§) =0,

R—o0
and consists of two components m = nj + ng, the parabolic dissipative measure n; and
an unknown measure ny which takes account of possible singularities and vanishes in
the nondegenerate case. A kinetic solution is then defined as follows: let u € LP(Q x
[0,T],P,dP® dt; LP(TN))?, for all p € [1,00). It is said to be a kinetic solution to (1.1)
provided

w e LP(Q; L0, T; LP(TM))), Vp € [1,00), o Vu € L*(Q x [0,T]; L*(TV)),

and there exists a kinetic measure m > ny P-a.s. such that (f = 1,5¢,m) satisfies (1.5)
P-a.s. for any ¢ € C°(TVN x [0,T] x R).

A few remarks are in place. First, a kinetic solution is a class of equivalence
in LP(Q x [0,T],P,dP ® dt; LP(T™)) so it is not a stochastic process in the classical
sense. However, it is shown in the very first step of the proof of uniqueness that, in
this class of equivalence, there exists a representative that is a continuous LP(T™)-
valued stochastic process. Second, one very important feature of the kinetic formulation
(1.6) is its linearity in f and, as a consequence, methods for linear equations can be
applied. For instance, one can easily consider approximations of coefficients as only
weak convergence of the approximate solutions, say f", is sufficient in order to pass
to the limit. To summarize, the original equation (1.1), which is nonlinear in wu, is
transformed into (1.6) which is a linear equation of the nonlinear function f = 1,5¢.

Let us now formulate our well-posedness result.

2(.,-) denotes the duality between distributions and test functions over TV x R.
3P denotes the predictable o-algebra associated to (F)¢>o.
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Theorem 1.1.1. Let ug € LP(Q; LP(TN)), for all p € [1,00). Under the above assump-
tions, there exists a unique kinetic solution to the problem (1.1) and it has almost surely
continuous trajectories in LP(TN), for all p € [1,00). Moreover, if uy, uy are kinetic
solutions to (1.1) with initial data w1 and ug, respectively, then for allt € [0,T]

Ellu1(t) — u2(t)[ L1 (rvy < Ellut,o — ugollp1(rny- (L.7)

The expression (1.7) is the L'-comparison principle and is to be understood as a
formula for the corresponding time-continuous representatives of u; and uo. It yields
pathwise uniqueness as well as continuous dependence on initial data in L'(TV).

1.1.2 Comparison principle

Since a kinetic solution u is a class of equivalence in LP(Q x [0,T],P,dP ® dt; LP(TV))
and similarly also f = 1,5¢ € L®(2 x TV x [0,T] x R), it is necessary to find suitable
representatives in ¢ (that are classes of equivalence in the remaining variables) with
good continuity properties. In particular, f admits representatives f~, fT which are
P-a.s. left- and right-continuous, respectively, on [0,7] in the sense of D'(TV x R).
Furthermore, there exist u® : @ x TV x [0, T] — R such that f* = 1,+ for a.e (w,z,¢)
and all ¢ and consequently u™ = u~ = u for a.e. t € [0,7]. The representative u™ is
then shown to have almost surely continuous trajectories in LP(T).

With this in hand, the weak formulation (1.5) can be strengthen to become only
weak in x and £ and the following result relating two kinetic solutions can be proved:
Let w1, ug be two kinetic solutions to (1.1) with initial data wu; o, ug 0, respectively, and
denote f; = 1y;>¢, fio = luy,o>¢, @ = 1,2. Then for ¢t € [0,T] and any nonnegative
functions o € C*(TV), ¢ € C(R) we have

E / / ol — y)o(€ — O FF (a1, €) 5 (y,£.¢) d¢ dC dardy
(TN)Q ]R2
<E / / o — )b — O fvole. ) Faoly, () dedC dedy + 1+ 3 + K,
(TN)Q ]R2

where f denotes the conjugate function f = 1 — f. For the precise definition of the
remainders I, J, K we refer the reader to Proposition 3.3.2. Testing now by (o,) and
(vs), approximations to the identity on TV and R, respectively, it is possible to control
these remainders and deduce that

E/TN/RffE(t)fQi(t)dgdxSE/TN/Rngfgpd{dx

which yields the comparison principle (1.7). Note that especially the term J that is
obtained from the second order term of (1.1) requires a very fine analysis.

1.1.3 Existence

The proof is divided into two parts. In the first part, we prove the result under an
additional assumption upon the initial condition: uy € LP(Q;C°(TV)), for all p €
[1,00). We employ the vanishing viscosity method: we approximate (1.1) by certain
nondegenerate problems and consequent passage to the limit gives the existence of a
kinetic solution to the original problem. To be more precise, we consider a viscous
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approximation of (1.1)

du® + div (B*(v®)) dt = div (A(z)Vu®) dt + eAu® dt + &°(u®) dW,

(O — (1.8)

where @°, B¢ are suitably chosen approximations of @ and B, respectively. According
o [33] (see Chapter 2), for each £ > 0 there exists a C°°(T")-valued process which is
the unique strong solution to (1.8). To conclude the compactness argument, we need to

establish several estimates uniform in ¢. Namely, we obtain the following*
E[Ju®|}

0 (0,T;LP(TN)) <0, p € [2,00),

EHUEHCA [OT H 2('1[‘N)) S Ca )\ (0)1/2)) q E [2700))
a 1
El|u®(t)]|ys < ny—-—,=rJ.
5w Bl Ollwaey <€ s (0min{ 5.5}

By interpolation and an Aubin-Dubinskii type compact embedding theorem, we obtain
tightness of the set of joint laws of {u® = Po (uf, W)™ ;¢ € (0,1)} in the path space
X = X, x Xy, where

X, = {u e £2(0,T; LX(TV)) n C([0, T); H~H(T™)); gyu € L2(TN)}
equipped with the norm

|- [, =1 - HLQ(O,T;LZ(’JI‘N)) + I HC([O,T};H*l(’H‘N)) + [l@ - HL?(TN)

and Xy = C([0,T]; ). Here, g, is the operator of restriction to {0}, i.e. gyu = uo,
and y D U such that the embedding i — g is Hilbert-Schmidt. Passing to a weakly
convergent subsequence pf" and denoting by p the limit law we apply the Skorokhod
representation theorem to infer the existence of random variables (" W”) n € N, and
(@, W) defined on a probability space (Q,.%,P) such that the laws of (", W”) and
(@, W) under P coincide with x° and p, respectively, and (™ W”) converges P-almost
surely to (@, W) in the topology of X. Identification of (&, W) with a (martingale)
kinetic solution is based on a new general method of constructing martingale solutions
of SPDEs, that does not rely on any kind of martingale representation theorem and
therefore holds independent interest especially in situations where these representation
theorems are no longer available. First applications were already done in [11], [60]
and, in the finite-dimensional case, also in [34], [35] (see Chapter 5). In the present
work, this method is further generalized as the martingales to be dealt with are only
defined for almost all times. Finally, we make use of the Gyongy-Krylov characterization
of convergence in probability: existence of a martingale kinetic solution together with
pathwise uniqueness leads to the existence of a pathwise kinetic solution, i.e. Kkinetic
solution defined on the original probability space.

The general case of ug € LP(Q; LP(TY)), for all p € [1,00), is a straightforward
consequence of the previous part. Indeed, we approximate the initial condition by a
sequence (u§) C LP(Q; C*°(TY)) such that u§ — ug in L'(€; LY(TY)). Due to the com-
parison principle (1.7), we deduce that there exists u € L' (2 x [0, T], P, dP®dt; L' (TV))
such that

ut —u in LY(Qx[0,7],P,dP ® dt; L(TV)),

‘o was introduced in (1.4)
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where u® are the kinetic solutions to (1.1) with initial data uj. Accordingly, we conclude
by passing to the limit in (1.5).

1.2 Regularity for the nondegenerate case

In this section, we present the results of Chapter 2. The aim is to ensure existence of
smooth solutions to the approximate problems (1.8) that arise in the proof of existence
of (1.1). Nevertheless, since the final regularity result is based on properties of strongly
elliptic operators, namely, the equivalence of the corresponding power scale with clas-
sical Sobolev spaces and semigroup arguments, generalization to more general higher
order equations does not cause any additional problems. Let us consider the following
semilinear SPDE driven by a d-dimensional Wiener process:

du = [Au+ F(u)]dt +o(u)dW, ze€ TV, te(0,T),

o) — (1.9)

where — A is a strongly elliptic differential operator of order 21 with variable coefficients of
class C°(TV). Let us assume, in addition, that —A is formally symmetric and positive,
i.e. 0 belongs to the resolvent set of —A. The coefficient F is generally nonlinear
unbounded operator defined as follows: for any p € [2, 00)

F: LP(TV) — w2+be(T)
zZ Z aq D% fo(2),

o] <211

where a, € R and the functions f,, |a] < 20 — 1, are smooth enough. The diffusion
coefficient o(z) : R — LP(TV) is also nonlinear, defined for any 2 € LP(T") by o(2)ej, =
oi(+, 2(-))” where the functions o1,...,04: TN x R — R are of linear growth.

As mentioned above, it is a common problem in the field of PDEs and SPDEs
that many real-world problems do not admit classical or strong solutions and can be
solved only in some weaker sense. For this reason the question of regularity is an
interesting topic that does not always possess a satisfactory (affirmative) answer. Unlike
deterministic problems, in the case of SPDEs we can only ask whether the solutions
is smooth in the space variable. The main difficulty in the semilinear case (1.9) lies
in the nonlinearities F' and ¢ as, in higher order Sobolev spaces, we cannot expect
the Lipschitz condition to be satisfied and hence the fixed point argument cannot be
applied. This issue is closely related to the mapping properties of Nemytskij operators,
ie. Tg : h — G(h), where h belongs to some function space F and G : R — R is
nonlinear. It turns out (and was discussed in-depth in the book of Runst and Sickel
[68]) that the mapping properties of these operators depend strongly on the chosen
domain of definition and even for E being a Sobolev space they do not, in general, map
E to itself. For example, if we consider 2 < m < N/p, p € (1,00), then only linear
operators map W™P(TN) to itself (see [68, Theorem 5.2.4/2]). On the other hand,
for any m € N and p € [1,00), under the hypothesis of a sufficiently smooth function
G having bounded derivatives one arrives at the fact that the Nemytskij operator T
maps W™ (TN) 0 W™P(TVN) to itself and the following estimate holds true for any
z € WmP(TN) N Wwhme(TN)

1G()lwmpyy < O+ 2lwmerny + 12151mprny) -
(TH)

5(ek)z:1 is an orthonormal basis in R?.
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It turns out to be the keystone of our proof of regularity. In particular, we proceed
successively in several steps. First of all, we consider the equation (1.9) in L™?(T") and
apply the Banach fixed point theorem to conclude the existence of an L"P (’]I‘N )-valued
mild solution. Next, we study its Picard iterations as processes having values in the
Sobolev spaces W1™P(TV). Having known that T maps W5HTP(TV) to itself we are
able to find a uniform estimate of the W1 (T¥)-norm which is then used in the last
step to deduce a uniform estimate of the W™P(T")-norm. Both estimates remain valid
also for the limit process and, as a consequence, the mild solution is even strong. We
obtain

Theorem 1.2.1. Let p € [2,00), q € (2,00), m € N. We suppose that
ug € LI W™P(TN)) n L™ (Q; whmp(T))
and
fo €C™R)NCHEYR), |a|<20—1; o0;€ C™(TYN xR), i=1,...,d,

have bounded derivatives up to order m. Then there exists a unique solution to (1.9)
which belongs to

LU; C([0, T]); W™P(TY))) 0 L™ C([0, T]; WH™(T™)))
and the following estimate holds true
E Sup H'LL( )H({]/[/m p(']TN) +]E Sup Hu( )HWl mp ']I‘N

0<t<
< C(]‘ +]E||UOHWmP 'IFN +E‘|u0||rg/€l,7np(’ﬂ‘N))'

Corollary 1.2.2. Let k € Ny and ug € LI(2; C*L(TN)) for all ¢ € (2,00). Assume
that

fa € CKFLR)YNCHYR), o <20—1; o0, € CH*YTN xR), i=1,...,d,

have bounded derivatives up to order k + 1. Then there exists a solution to (1.9) which
belongs to

LI(Q; C([0,T]; C*NTNY))) for every X € (0,1).

1.2.1 Proof

In order to solve the problem (1.9) in the L™ (T )-setting (and later also in WP (T)
and Wm’p(TN )) it was necessary to ensure the existence of the stochastic integral
fo u)dW in these spaces. As all of them belong to the class of the so-called 2-
smooth Banach spaces, we made use of the stochastic It6 integration theory developed
by Brzezniak [10]. Let S be the strongly continuous analytic semigroup generated by
A. Then it is shown by the Banach fixed point theorem that (1.9) admits a unique mild
solution

u(t)—S(t)uo+/0tS(t—s ds—i—/ S(t—s)o(u(s))dW (s)

that belongs to LI(Q2 x [0, T], P, dP®dt; L™P(T™)). In order to obtain a better regularity
of u, recall that it is the limit of Picard iterations: let u%(t) = up and for n € N we
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define
t t
u"(t) = Sp(t) uo + / Sp(t—s) F(u""1(s)) ds + / Sp(t —s) o (u"1(s)) dW(s).
0 0
By induction in n and by the fact that for any z € W1mP(T)

1E (2)lwmn oy + [l (2) lwrmp ey < C(1+ [|2llwrrmp(rn) ),

we deduce

n q q
EQ;?ET Hu (t)le,mp(’]I‘N) S C(l + EHU‘OHWI,mp(TN))a vn € Na

with a constant C' independent of n. As a consequence, we get the estimate

q
B sup [0z < O+ B0l )

hence the mild solution to (1.9) belongs to LI(Q2; C([0, T]; WL mP(TV))).
Proof of regularity in higher order Sobolev spaces (order greater than 1) is more

complicated as the norm of a superposition does not, in general, grow linearly with the
norm of the inner function. However, as for any z € W™P(TN) 0 Wimp(TV)

1F (2)[lwrmn oy + o () lwmaryy < C(1+ l2llwmomyy + 12151mmry)

we can make use of the previous step to verify

Eo;l% 1™ Oy mp vy < C(L+Ellwollfymp gy + Ellwollihm )

where the constant is independent of n, hence

B s (1) oy < O+ BNy + BN )

and the mild solution of (1.9) belongs to L4(2;C([0,T]); W™P(T¥))). The Corollary
1.2.2 then follows from the Sobolev embedding theorem.

1.3 Stochastic Bhatnagar-Gross-Krook model
In Chapter 4, we consider a scalar conservation law with stochastic forcing

du + div (A(u))dt = &(u) dW, te (0,T), z e TV, 10

u(0) = ug (1.10)
and study its approximation in the sense of Bhatnagar-Gross-Krook (a BGK-like ap-
proximation for short). In particular, we describe the conservation law (1.10) as the
hydrodynamic limit of the stochastic BGK model, as the microscopic scale € goes to 0.
As the latter are much simpler equations that can be solved explicitly, this analysis can
be used for developing innovative numerical schemes for hyperbolic conservation laws
leading to practical applications in physics. In this sense, we extend the result of De-
bussche and Vovelle [16], who showed the well-posedness for kinetic solutions of (1.10).
Note, that this is also covered by our result of Chapter 3 in the particular case A = 0,
however, as dealing with a general second order term brings many difficulties, Debussche
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and Vovelle [16] were able to prove a stronger result. In particular, they defined a notion
of generalized kinetic solution and obtained a comparison principle that says that any
generalized kinetic solution is a in fact a kinetic solution. Accordingly, we intend to
show that the generalized kinetic solution (thus the kinetic solution) is the macroscopic
limit of stochastic BGK approximations.

The initial motivation came from the deterministic counterpart that has already
been extensively studied in the literature (see [7], [38], [55], [56], [58], [59], [65], [64]). In
that case, the BGK model is given as follows

(8t+a(g).v)f€:’<“%f€, t>0,zeTV, ¢eR, (1.11)

where Y, the so-called equilibrium function, is defined by

Xue (5) = 10<£<uS - 1u5<£<07

and a is the derivative of A. The differential operator V is with respect to the space
variable x. The additional real-valued variable £ is called velocity; the solution f¢ is
then a microscopic density of particles at (¢,2) with velocity &. The local density of
particles is defined by

Wt ) = /R Pt €) de.

The collisions of particles are given by the nonlinear kernel on the right hand side of
(1.11). The idea is that, as € — 0, the solutions f¢ of (1.11) converge to x, where u is
the unique kinetic or entropy solution of the deterministic scalar conservation law. The
BGK model in the stochastic case reads as

1,5 — F°¢
dF +a(€) - VF dt = SuE T g — OcFe@ dW — %35 (GZ(—agFE)) de,

€ (1.12)
F*(0) = Fg,

where the function F* corresponds to f©+1¢~¢ and the local density u* is given as above.
The general concept of the proof is as follows: First, the stochastic characteristics method
developed by Kunita [50] is used to study certain auxiliary problem and existence of a
unique solution to the stochastic BGK model is obtained for any fixed . Second, uniform
estimates are established that together with the results of Debussche and Vovelle [16]
justify the limit argument.

Let us make some comments on the deterministic BGK model (1.11). Even though
the general concept of the proof is analogous, we point out that the techniques required
by the stochastic case are significantly different. In particular, the characteristic system
for the deterministic BGK model consists of independent equations

dZL‘Z' (t)
dt

:ai(f), ’izl,...,N,

and the &-coordinate of the characteristic curve is constant. Accordingly, it is much
easier to control the behavior of f¢ for large . Namely, if the initial data f§ are
compactly supported (in £), the same remains valid also for the solution itself and also the
convergence proof simplifies. On the contrary, in the stochastic case, the &é-coordinate of
the characteristic curve is governed by an SDE and therefore this property is, in general,
lost. Similar issues has to be dealt with in order to obtain all the necessary uniform
estimates. To overcome this difficulty, it was needed to develop a suitable method to
control the decay at infinity in connection with the remaining variables w, ¢, . Using
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this approach we are able to prove the convergence of the BGK model under a slightly
weaker hypothesis on the initial datum wug than usually assumed in the deterministic
case: it is not supposed to be bounded, we only assume ug € LP(Q x ™ ) for all

€ [1,00). Note, that under this condition, the initial data for the deterministic BGK
model, for instance f§ = xu,, are not compactly supported and so the usual methods are
not applicable. In the deterministic case, however, the boundedness assumption is fairly
natural since also the solution u to the conservation law remains bounded. Obviously,
this is not true for the stochastic case as it is impossible to get any L.X estimates due
to the active white noise term.

There is another difficulty coming from the complex structure of the characteristic
system for the stochastic BGK model (1.12). Namely, the finite speed of propagation
that is an easy consequence of boundedness of the solution u of the conservation law in
the deterministic case (see for instance [65]) is no longer valid and therefore some growth
assumptions on the transport coefficient a are in place. The hypothesis of bounded
derivatives is natural for the stochastic characteristics method as it implies the existence
of global stochastic flows. Even though this already includes one important example
of Burgers’ equation it is of essential interest to handle also more general coefficients
having polynomial growth. This was achieved by a suitable cut-off procedure which also
guarantees all the necessary estimates.

Let us state the assumptions. The hypotheses in the paper of Debussche and
Vovelle were the same as for the degenerate parabolic SPDEs (see Section 1.1 above),
however, in view of the application of the stochastic characteristics method, these as-
sumptions need to be strengthen. To be more precise, we assume the flux function A
to be of class C*", for some 1 > 0, with a polynomial growth of its first derivative a.
The driving process W is a d-dimensional Wiener process and the diffusion coefficient
D(2) : R* — L2(TV) is again defined for any z € L*(TV) by &(2)ex = g (-, 2(-)) where
the functions g, ..., gq are of class C*" with linear growth and bounded derivatives of
all orders. However, in order to get all the necessary estimates we restrict ourselves to
two special cases: either

gr(x,0) =0, zeTV, k=1,...,d,

or
gr(z,8)]| <C, 2TV, ¢eR, k=1,...,d

Note, that the latter is satisfied for instance in the case of additive noise. Concerning
the initial data for the BGK model (1.12), one possibility is to consider simply F§ =
1,,>¢, however, one can also take some suitable approximations of 1,,~¢. Namely, let
{u§; € € (0,1)} be a set of approximate .#p-measurable initial data, which is bounded in
LP(Q; LP(TN)) for all p € [1, 0c), and assume in addition that u§ — ug in L' (Q; L (TY)).

Theorem 1.3.1 (Hydrodynamic limit of the stochastic BGK model). Let the above
assumptions hold true. Then, for any e > 0, there exists F'* € LF (2 x [0,T] x TV x R)©
which is a unique weak solution to the stochastic BGK model (1.12) with initial condition
F§ = lygse. Furthermore, if f© = F° — 1os¢ then (f%) converges in LP(Q2 x [0,T] x
TN xR), for all p € [1,00), to the equilibrium function x,, where u is the unique kinetic
solution to the stochastic hyperbolic conservation law (1.10). Besides, the local densities
(uf) converge to the kinetic solution u in LP(Q x [0,T] x TN), for all p € [1,0).

Si.e. F* is measurable with respect to P @ B(T™) @ B(R).
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1.3.1 Existence

A solution to the stochastic BGK model (1.12) is understood in the weak sense: F*€ €
LE(Qx [0,T] x TN x R) satisfying F€ — 1o~¢ € L' (2 x [0,T] x TN x R) is called a weak
solution to (1.12) provided for a.e. t € [0,T], P-a.s.,

(Fe(t), 0) = (F§,¢) —|—/0 (F*(s),a-Vp)ds

1 [ d.
£ 1 ] a0 00) 0 3 [0, clonp) akl
t
+;/0 <Fs(s),85(G265<,0)>ds.

We intend to employ the stochastic characterics method hence it is more natural to
work with the Stratonovich integral as the Ito-Wentzell-type formula is then close to
the classical differential rule formula for composite functions. It can be seen that on the
level of the above defined weak solutions the problem (1.12) is equivalent to
€ € 1u5>f —I* € 1 € 2
dFf +a(§) -VFdt = ————dt — 0[P odW + Z@gF 0:G* dt,
€
F(0) = F§.

Therefore, in the first step we study the auxiliary problem

1
dX +a(¢) - VX dt = —9: XP o dW + Zafxagc:? dt.
X(S) = Xo.

(1.13)

and show existence of a unique weak solution provided Xog € L®(Q x TV x R). We
define § = {S(t,s); 0 < s <t < T} to be the solution operator of (1.13). Having this
in hand, it follows from the Duhamel principle that there exists a unique weak solution
of the stochastic BGK model (1.12) and is represented by

t—s

= S(t,8)1ye(s)>¢ ds. (1.14)

1 t
Fe(t) = e_§8(t,0)F05 + e/ e
0

In order to solve (1.13) we proceed in two steps. The problem is written in the
form that is suitable for the stochastic characteristics method, however, its coefficients
are not supposed to have bounded derivatives hence the existence of global solutions is
not guaranteed. To overcome this difficulty, we first employ truncations and then pass
to the limit. Let us consider

1
dX +a"(€) - VX dt = —9 X" o dW + S0 X0:G" d,
X(s) = Xo,

(1.15)

where aff, #f, G2 are truncated coefficients. The associated stochastic characteris-
tic system is defined by the following system of Stratonovich’s stochastic differential
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equations
1 d
dp? = _zagam(%) dt+ ) g (e) 0 dBi(t),
k=1
de! = aff(¢)) dt, i1=1,...,N,
where the processes ¢! and ¢!, i = 1,..., N, respectively, describe the evolution of the
&-coordinate and x'-coordinate, ¢ = 1,..., N, respectively, of the characteristic curve.

We denote by wﬁt(x, €) its solution starting from (z, &) at time s, it defines a stochastic

flow of C3-diffeomorphisms and the corresponding inverse flow is denoted by 1%,
If Xo € C3"(TN x R), P-a.s., then it follows from the It6-Wentzell formula that

X(t7$7£; 5) = XO(d’ft(xaﬁ))

is the unique strong solution to (1.15). We denote by S the solution operator and show
that it can be extended to more general function spaces. To be more precise, we set
St (t,5)Xo = Xo (v (2,€)) and show that S¥ is a family of bounded linear operators on
L' (2 x TN x R) that verifies the semigroup law and for any Xo € L>®(Q x TV x R) there
exists a unique weak solution to (1.15) and is represented by X = S%(t,s)Xy. Clearly,
the solutions of (1.15) and (1.13) coincide up to some stopping time. Nevertheless,
since the coefficients g,f satisfy a linear growth condition independently of R and z, the
blow-up cannot occur in a finite time and therefore the pointwise limit

[S(t,s)Xo] (w,z,§) ;= lim [SR(t,s)Xo] (w,z,§), 0<s<t<T,

R—o0
exists almost surely and X = S(t,s)X( is a unique weak solution to (1.13) provided
Xo € L=(Q x TV x R).
1.3.2 Convergence

To investigate the limit of the stochastic BGK model as € — 0, we consider the following
weak formulation of (1.12) and show its convergence to the kinetic formulation of (1.10).
Let ¢ € C°([0,T) x TV x R) then

T T
| (P o) ar+ (B o) + [ (P00 Vol at

1 (7 T

=2 [ e = FOp0) e+ [ @eF 0@ pw) (10
1 r 2 e
+ 5 <G OcF (t),8§¢(t)> dt.
0

Remark, that according to the representation formula (1.14), F© € [0,1], € € (0, 1) hence
the set of solutions {F*; € € (0,1)} is bounded in LY (2 x [0, 7] x TV xR). Consequently,
taking the limit in (1.16) is quite straightforward in all the terms apart from the first one
on the right hand side and can be done immediately: by the Banach-Alaoglu theorem,

there exists F' € L¥ (2 x [0,T] x TV x R) such that, up to subsequences,

FFYF in LE(Qx[0,T] x TV x R).
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Hence, almost surely,

/ (F5(t), Orp(t) dt—>/ ), Opp(t)) dt

/ (F*(t),a- V(1) dt—>/ ,a - V(t))dt,

1

- /0 (GP0c= (1), Dep()) At — /0 (G20 F (1), ep(t)) dt.

and, according to the hypotheses on the initial data,

(F5,0(0) — (Lugse 9(0)).

Moreover, by the dominated convergence theorem for stochastic integrals we also deduce
the almost sure convergence

T
/0<85F€()q5dW >—>/ (O F(t) @AW (1), ¢(t)).

In order to obtain the convergence in the remaining term of (1.16) and in view of the
kinetic formulation of (1.10), we define

1 ¢
=1 [ (e FO) e
—0o0

which is a nonnegative measure. Due to the convergence in (1.16), for almost every
w € Q there exists a distribution m(w) such that, almost surely,

T T
/ <m€, cp(t)> dt — / <m, go(t)> dt,
0 0

for any ¢ € C°([0,T) x TN x R). Now, it remains to verify that m is a kinetic measure.
We start with a uniform estimate for the local densities u®. In particular, we get

E sup [u(t)

0<t<T ||Lp(11‘N =

which leads to
s | €27 dme(t,2,€) < ©
[0,T]xTN xR

Setting p = 0, we regard m? as random variables with values in M, ([0, T]x TV xR)7. We
deduce that the set of laws {Po[m?®]~1; e € (0,1)} is tight and therefore any sequence has
a weakly convergent subsequence due to the Prokhorov theorem. Consequently, the law
of m is supported in M, ([0, T] x TV x R) and satisfies also the remaining requirements
of the definition of a kinetic measure.

"Mp([0,T] x TV x R) denotes the space of bounded Borel measures on [0,7] x TV x R whose norm
is given by the total variation of measures.
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1.4 Weak solutions to stochastic differential equations

In Chapter 5, we provide a modified proof of Skorokhod’s classical theorem on existence
of (weak) solutions to a stochastic differential equation

AX = b(t, X)dt + o(t, X)dW, X(0) = ¢,

where b : [0,T] x R™ — R™ and o : [0,T] x R™ — M, are Borel functions that
are continuous in the second variable. Initially, we assume the linear growth condition
which is then relaxed and replaced with a suitable Lyapunov condition. Our proof
combines tools that were proposed for handling weak solutions of stochastic evolution
equations in infinite-dimensional spaces, where traditional methods cease to work, with
results on preservation of the local martingale property under convergence in law. In
finite-dimensional situation, the “infinite-dimensional” methods simplify considerably
and in our opinion the alternative proof based on them is more lucid and elementary
than the standard one and we believe that the reader may find the comparison with
other available approaches illuminating.

To explain our argument more precisely, let us recall the structure of the usual
proof; for notational simplicity, we shall consider (in the informal introduction only)
autonomous equations. Kiyosi It6 showed in his seminal papers (see e.g. [39], [40]) that
a stochastic differential equation

dX = b(X)dt + o(X)dW (1.17)

X(0)=¢ (1.18)

driven by an n-dimensional Wiener process W has a unique solution provided that
b:R™ — R™, o :R™ — M,,xn are Lipschitz continuous functions. A next important
step was taken by A. Skorokhod ([71], [72]) in 1961, who proved that there exists a
solution to (1.17), (1.18) if b and o are continuous functions of at most linear growth,
ie.

[6(2) || + llo ()l

sup < 00
sekm 1+ |z

It was realized only later that two different concepts of a solution are involved: for
Lipschitzian coefficients, there exists an (%;)-progressively measurable process in R
solving (1.17) and such that X (0) = ¢, whenever (Q,.7,(%#;),P) is a stochastic basis
carrying an n-dimensional (%;)-Wiener process and ¢ is an %#p-measurable function.
(We say that (1.17), (1.18) has a strong solution.) On the other hand, for continuous
coefficients, a stochastic basis (§2,.7, (%;:),P), an n-dimensional (.%;)-Wiener process
W and an (.%;)-progressively measurable process X may be found such that X solves
(1.17) and X (0) and ¢ have the same law. (We speak about existence of a weak solution
to (1.17), (1.18) in such a case.) It is well known that this difference is substantial in
general: under assumptions of the Skorokhod theorem strong solutions need not exist
(see [5]).

Skorokhod’s existence theorem is remarkable not only by itself, but also because
of the method of its proof. To present it, we need some notation: if M and N are
continuous real local martingales, then by (M) we denote the quadratic variation of M
and by (M, N) the cross-variation of M and N. Let M = (M%)™, and N = (Nj);‘:1 be
continuous local martingales with values in R™ and R™, respectively. By (M) we denote

M, xn denotes the space of all m-by-n matrices over R endowed with the Hilbert-Schmidt norm
Al = (Tr AA*)Y/2,
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the tensor quadratic variation of M, (M) = (M, M*))™ _, and we set (M) = Tr((M).
Analogously, we define

M@N = (M'N’)", "

—1° «M: N>> = (<M17N]>)m ;

i=1j=1"

Let X and Y be random variables with values in the same measurable space (E, &), we

write X £V if X and Y have the same law on &. Similarly, X 2 v means that the law

of X is a probability measure v on &.
Let
dX, =b.(X,)dt + o, (X,)dW, X, (0)=¢

be a sequence of equations which have strong solutions and approximate (1.17) in a
suitable sense. (We shall approximate b and o by Lipschitz continuous functions having
the same growth as b and o, but likewise it is possible to use e.g. finite difference
approximations.) The linear growth hypothesis makes it possible to prove that

the laws of {X,; r > 1} are tight, (1.19)

that is, form a relatively weakly compact set of measures on the space of continuous
trajectories. Then Skorokhod’s theorem on almost surely converging realizations of con-
verging laws (see e.g. [18], Theorem 11.7.2) may be invoked, which yields a subsequence
{X,,} of {X,}, a probability space (Q,.%#,P) and sequences {Xy; k > 0}, {Wy; k> 0}
such that

(X W) & (X, W), B> 1 (Xi, Wi) — (KXo, Wo), P-aus.. (1.20)

It is claimed that Xj is the (weak) solution looked for. Skorokhod’s papers [71] and [72]
are written in a very concise way and details of proofs are not offered; nowadays stan-
dard version of Skorokhod’s proof is as follows (see [73], Theorem 6.1.6, [37], Theorem
IV.2.2, [42], Theorem 5.4.22): under a suitable integrability assumption upon the initial
condition,

My = X = X0, (0) = [ b, (X (5)) ds
0
is a martingale with a (tensor) quadratic variation
() = [, (0, (907, (3, 5)) dis.

for all k > 1. Equality in law (1.20) implies that also

Ny = Xy — X5 (0) — /0 by, (Xi(s)) ds

are martingales for k > 1, with quadratic variations
1) = [ a0, (K)o, (Ku() ds.

Using convergence P-almost everywhere, it is possible to show that

Ny = Ko — Ko(0) — /0 b(Xo(s)) ds
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is a martingale with a quadratic variation

(Vo) = /0 o (Ro(s))0" (Xo(s)) ds.

By the integral representation theorem for martingales with an absolutely continuous
quadratic variation (see e.g. [42], Theorem 3.4.2, or [8], Theorem I1.7.1%), there exists a
Wiener process W (on an extended probability space) satisfying

My = /0 o (Xo(s)) AT/ ().

Therefore, (W, Xo) is a weak solution to (1.17), (1.18). (In the cited books, martingale
problems are used instead of weak solutions. Then the integral representation theorem is
hidden in the construction of a weak solution from a solution to the martingale problem,
so a complete proof is essentially the one sketched above.)

This procedure has two rather nontrivial inputs: the Skorokhod representation
theorem, and the integral representation theorem whose proof, albeit based on a simple
and beautiful idea, becomes quite technical if the space dimension is greater than one.
An alternative approach to identification of the limit was discovered recently (see [11],
[60]) in the course of study of stochastic wave maps between manifolds, where integral
representation theorems for martingales are no longer available. The new method, which
refers only to basic properties of martingales and stochastic integrals, may be described
in the case of the problem (1.17), (1.18) in the following way: One starts again with a
sequence { (X, Wj)} such that (1.20) holds true. If the initial condition is p-integrable
for some p > 2, it can be shown in a straightforward manner, using the almost sure
convergence, that

Mo, [T - /0 No(Xo(s) 2 ds, Mo W — /0 o(Xo(s)) ds

are martingales, in other words,

(30 [ oEale)) i) 0.

whence one concludes that (Wp, Xp) is a weak solution. If the additional integrability
hypothesis on ¢ is not satisfied, the proof remains almost the same, only a suitable
cut-off procedure must be amended.

We take a step further and eliminate also the Skorokhod representation theorem.
Let Py, be the laws of (X, , W) on the space U = €([0, T]; R™) x €([0, T]; R™); we know
that the sequence {P;} converges weakly to some measure Py. Denote by (Y, B) the
canonical process on U and set

M =Y — Y(0) _/ by (V(s))ds, F >0
0
(with b,, = b, 0y = o). Then
My, |0 — / low (Y ()2 ds, My @ B — / o0 (Y (5)) ds, (1.21)

are local martingales under the measure P, for every k > 1, as can be inferred quite
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easily from the definition of the measure P. Now one may try to use Theorem IX.1.17
from [41] stating, roughly speaking, that a limit in law of a sequence of continuous
local martingales is a local martingale. We do not use this theorem explicitly, since to
establish convergence in law of the processes (1.21) as k — oo is not simpler than to
check the local martingale property for k& = 0 directly, but our argument is inspired
by the proofs in the book [41]. The proof we propose is not difficult and it is almost
self-contained, it requires only two auxiliary lemmas (with simple proofs) from [41] on
continuity properties of certain first entrance times which we recall in Appendix. Once
we know that the processes (1.21) are local martingales for k = 0 as well, the trick from
[11] and [60] may be used yielding that (B,Y) is a weak solution to (1.17), (1.18). It is
worth mentioning that this procedure is independent of any integrability hypothesis on
®.

The proof of (1.19) not being our main concern notwithstanding, we decided to
include a less standard proof of tightness inspired also by the theory of stochastic partial
differential equations. We adopt an argument proposed by D. Gatarek and B. Goldys
in [27] (cf. also [15], Chapter 8), who introduced it when studying weak solutions to
stochastic evolution equations in Hilbert spaces, and which relies on the factorization
method of G. Da Prato, S. Kwapien and J. Zabczyk (see [15], Chapters 5 and 7, for
a thorough exposition) and on compactness properties of fractional integral operators.
The fractional calculus has become popular amongst probabilists recently because of
its applications to fractional Brownian motion driven stochastic integrals and a proof
of tightness using it may suit some readers more than the traditional one based on
estimates of moduli of continuity.

The precise result to be proved by this method reads as follows.

Theorem 1.4.1. Let b : [0,7] x R™ — R™ and o : [0,T] x R™ — M, x,, be Borel
functions such that b(t,-) and o(t,-) are continuous on R™ for any t € [0,T] and the
linear growth hypothesis is satisfied, that is

K, < 0o ¥t € [0,T] Yo € R™  ||b(t, 2)|| V [lo(t, 2)]| < K. (1+ ||]).

Let v be a Borel probability measure on R™. Then there exists a weak solution to the
problem

dX =b(t, X)dt + o(t, X) dW, X(0) ~v. (1.22)

Furthermore, it turns out that this new method can be used even if the linear
growth condition is relaxed to existence of a suitable Lyapunov function. Namely, we
proved the following result.

Theorem 1.4.2. Assume that a hypothesis

(A) b(r,-) and o(r,-) are continuous on R™ for any r € [0,T] and both functions b, o
are locally bounded on [0,T] x R™, i.e.

sup  sup {[[b(r, 2)|| V [lo(r, 2)[|} < o0
rel0.1] |zI<L

for all L >0,
is satisfied and a function V € €*(R™) may be found such that

(L1) there exists an increasing function r: Ry — )0, 00] such that

lim k(r) = 400
T—00
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and V(z) > k(||z||) for all z € R™,

(L2) there exists v > 0 such that
1
(b(t,x), DV (x)) + 3 Tr(o(t,2)* D*V(z)o(t, z)) < vV (z)

for all (t,x) € [0,T] x R™.

Then there exists a weak solution to (1.22).



Chapter 2

Strong Solutions of Semilinear
Stochastic Partial Differential
Equations

Abstract: We study the Cauchy problem for a semilinear stochas-
tic partial differential equation driven by a finite-dimensional Wiener
process. In particular, under the hypothesis that all the coefficients
are sufficiently smooth and have bounded derivatives, we consider the
equation in the context of power scale generated by a strongly elliptic
differential operator. Application of semigroup arguments then yields
the existence of a continuous strong solution.

Results of this chapter were published under the title:

e M. HOFMANOVA, Strong Solutions of Semilinear Stochastic Partial Differential
Equations, Nonlinear Differ. Equ. Appl. 20 (3) (2013) 757-778.
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2.1 Introduction

In the present paper, we consider the following semilinear stochastic partial differential
equation driven by a finite-dimensional Wiener process:

du = [Au+ F(u)]dt +o(u)dW, z€ TV, te(0,T),

(0 — (2.1)

where —A is a strongly elliptic differential operator, F' is generally nonlinear unbounded
operator and the diffusion coefficient in the stochastic term is also nonlinear.

It is a well known fact in the field of PDEs and SPDEs that many equations
do not, in general, have classical or strong solutions and can be solved only in some
weaker sense. Unlike deterministic problems, in the case of stochastic equations we
can only ask whether the solution is smooth in the space variable. Thus, the aim of
the present work is to determine conditions on coefficients and initial data under which
there exists a spatially smooth solution to (2.1). The motivation for such a regularity
result came from our research in the field of degenerate parabolic SPDEs of second order
(see [32]), where smooth solutions of certain approximate nondegenerate problems were
needed in order to derive the so-called kinetic formulation and to obtain kinetic solution.
Nevertheless, since the regularity result of the present paper is based on properties of
strongly elliptic operators, generalization to higher order equations does not cause any
additional problems.

The literature devoted to the existence of a classical solution to deterministic
parabolic problems is quite extensive, let us mention for instance the works of Friedman
[25], Grunau, von Wahl [28], Ladyzhenskaya, Solonnikov, Ural’ceva [51], Lieberman
[53], von Wahl [77], Yagi [79] and the references therein. Regularity in the case of linear
parabolic SPDEs was treated by Krylov [46], Krylov and Rozovskii [47], [48] and the refe-
rences therein, and Flandoli [21]. However, there seems to be less papers concentrated
on regularity for nonlinear SPDEs. The starting point for our research was the paper
of Gyongy and Rovira [30] who studied a class of second order parabolic semilinear
SPDEs. However, they were only concerned with LP-valued solutions so our work can
be regarded as an extension of their result. Related problems were also discussed by
Zhang [80], [81], nevertheless, his assumptions are not satisfied in our case.

The main difficulty in the case of semilinear equations lies in the nonlinearities F
and o as, in higher order Sobolev spaces, we cannot expect the Lipschitz condition to
be satisfied and hence the fixed point argument cannot be applied. This issue is closely
related to the mapping properties of Nemytskij operators, i.e. T : h +— G(h), where h
belongs to some function space F and G : R — R is nonlinear. It turns out (and was
discussed in-depth in the book of Runst and Sickel [68]) that the mapping properties
of these operators depend strongly on the chosen domain of definition and even for F
being a Sobolev space they do not, in general, map FE to itself.

Let us make things clearer on a simple example of a heat equation with a nonlinear
right-hand side

ou=Au+H(u), zeTV te(0,7). (2.2)
Let p € [1,00). If H : R — R is Lipschitz continuous then

1H (1) = H(22)llo(rvy < Cllza = 22l oy, 21, 22 € LP(TY),
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therefore, as an easy consequence of the Banach fixed point theorem, there exists a
unique mild solution to (2.2) in LP(TY). However, if m > 1 it is not generally true that

IH (21) — H(22) lwmwervy < Cllzt — 22l wma(rny, 21, 22 € W™P(TY),

so the existence of a solution in higher order Sobolev spaces cannot be proved directly.
In fact, even the linear growth condition fails for m > 2 since the norm of a superposition
does not grow linearly with the norm of the inner function. For example, if we consider
2 <m < N/p, p € (1,00), then only linear operators map W™P(T¥) to itself (see [68,
Theorem 5.2.4/2]).

On the other hand, for any m € N and p € [1,00), under the hypothesis of a
sufficiently smooth function H having bounded derivatives one arrives at the fact that
the Nemytskij operator Ty maps WL (TN) 0 W™P(TV) to itself and the following
estimate holds true for any z € W™P(TN)nWLmP(TN) (cf. Proposition 2.3.1, Corollary
2.3.2 and Remark 2.3.3)

1H (2) [lwrmn ey < C(L+ I2llwm oy + [21151mepn)) -
(TY)

It turns out to be the keystone of our proof of regularity. In particular, we proceed
successively in several steps. First of all, we consider the equation (2.2) in L™P(T") and
apply the Banach fixed point theorem to conclude the existence of an L™?(T)-valued
mild solution. Next, we study its Picard iterations as processes having values in the
Sobolev spaces W1 (TV). Having known that Ty maps W1™P(TN) to itself we are
able to find a uniform estimate of the W1 (T¥)-norm which is then used in the last
step to deduce a uniform estimate of the W™ P (T )-norm. Both estimates remain valid
also for the limit process and, as a consequence, the mild solution to (2.2) is even strong
(for a detailed exposition of these two concepts of solution we refer the reader to [15]).

Unlike the introduction, in the proof of the main result, Theorem 2.2.1, the inte-
grability exponent p is only allowed to take values in [2,00) which is given by the use of
the stochastic It6 integration in 2-smooth Banach spaces (see [10], [61]).

As an immediate consequence of the main result, we obtain a continuous C**-
valued solution. Here, we use the Sobolev embedding theorem so the stochastic integra-
tion in Banach spaces, i.e. WP allows us to weaken the smoothness assumptions on
coefficients. We note that the regularity of the solution depends only on the regularity
of the coefficients and the initial data and is not limited by the order of the equation.

The paper is organized as follows. In Section 2, we review the basic setting and
state our main result. In Section 3, we collect important preliminary results related to
Nemytskij operators. In the final section, these results are applied and the proof of the
main theorem is established.

2.2 Setting and the main result

Let us first introduce the notation which will be used later on. We will consider periodic
boundary conditions: z € TV where T is the N-dimensional torus. The Sobolev spaces
on T will be denoted by W™P(TY) and by W™P(TV;R") we will denote the space of
all functions z = (21,...,2,) : TV — R" such that z; € W™P(TV), i =1,...,n.

We now give the precise assumptions on each of the terms appearing in the above
equation (2.1). We will work on a finite-time interval [0,7], T > 0. The operator —A
is a strongly elliptic differential operator of order 2I with variable coefficients of class
C>(TV). Let us assume, in addition, that —.A is formally symmetric and positive, i.e.
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we assume that 0 belongs to the resolvent set of —.A. As an example of this operator let
us mention for instance the second order differential operator in divergence form given

by
N
Au = Z Oy (Aij (%) 0z, 1),

ij=1
where the coefficients A;; = Aj; are real-valued smooth functions and satisfy the uniform
ellipticity condition, i.e. there exists a > 0 such that

N
Z Ay (2)G¢G > all, Ve e TV, v¢ e RV,

1,j=1

Let us now collect basic facts concerning strongly elliptic differential operators
satisfying our hypotheses (for a detailed exposition we refer the reader to [62]). Set
D(A,) = W2P(TN). Then the linear unbounded operator A, in LP(TV) defined by

Apu = Au, u € D(A,),

is the infinitesimal generator of a bounded analytic semigroup on LP(T). Let us denote
this semigroup by S,. Fractional powers of —A, are well defined and their domains
correspond to classical Sobolev spaces (see [1, Section 10]), i.e.

(D4, 14" i) = (W2, - lygasaemy). 820

We will also make use of the following property of analytic semigroups (see [62, Chapter
2, Theorem 6.13]):

Vt>0 V§>0 theoperator (—A,)°S,(t) is bounded in LP(TV),

|(—Ap)S,(0)]] < Capt™ (2.3)

(here || - || stands for the operator norm).
The nonlinear term F' is defined as follows: for any p € [2, 00)

F: LP(TY) — w2+Le(T)
Z— Z ao D fo(2),

o] <201

where a, € R and the functions f,, |a| < 20 — 1, are smooth enough (exact assumptions
will be given later). Let us denote by f the vector of functions (fu ;|| < 21—1, an # 0)
and denote its length by 7.

Throughout this article we fix a stochastic basis (£2,.%, (%¢)i>0,P) with a com-
plete, right-continuous filtration. Let P denote the predictable o-algebra on 2 x [0, T]
associated with (.%;);>0. For simplicity we will only consider finite-dimensional noise,
however, the result can be extended to the infinite-dimensional case. Let 4 be a finite-
dimensional Hilbert space and let {e;}%_; be its orthonormal basis. The process W
is a d-dimensional (%#;)-Wiener process in i, i.e. it has an expansion of the form
W(t) = Zle Wi(t) e;, where Wi, ¢ = 1,...,d, are mutually independent real-valued
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standard Wiener processes relative to (:#):>0. The diffusion coefficient o is then de-
fined as

d
h'—>20—i('7z('))<ei7h>7 KIS LP(TN>7
=1
where the functions o1, ..., 04 : TN xR — R satisfy the following linear growth condition
d
dolo@o <c(+lg),  zeTV ¢eR. (24)
i=1

Since we are going to solve (2.1) in LP(TY), for p € [2,00), we need to ensure
the existence of the stochastic integral as an LP(T")-valued process. Recall, that L?
spaces, p € [2,00), as well as the Sobolev spaces W™P p € [2,00), m > 0, belong to a
class of the so-called 2-smooth Banach spaces, which are well suited for stochastic It6
integration. (A detailed construction of stochastic integral for processes with values in
2-smooth Banach spaces can be found in [10] or [61].) Let us denote by ~(; X) the
space of all y-radonifying operators from 4 to a 2-smooth Banach space X. We will
show that o(z) € y(L; LP(TV)) for any z € LP(TY) and

||U(Z>”»27(g;Lp(TN)) < C(l + ||Z||%p(qu))-
Note, that the following fact holds true:

Vs >0 3Cs € (0,00) V91,...,7q independent N (0, 1)-random variables

d
Vri,...,rqg €R (E‘Zm%
i=1

1

s>s :Cs<§d:r§>é. (2.5)

i=1

_1
The proof is, by the way, easy: (Zle r3) 2 Z?:l riy; is an N (0, 1)-random variable.

Let {%}le be a sequence of independent A/ (0, 1)-random variables, by the definition of
a ~y-radonifying norm, using (2.5) and (2.4)

2 2

d d
||U(Z)||'2y(U;Lp(TN)) = IEH ;%U(z)ei Ny EH ;% Uz’(-,z(-))’ LP(TN)

< (EHizd;%gi(.,z(.))‘;(m>i _ (/TNE‘ZZCI;%’ O'i(y,Z(y))‘pdy>z2) o
= Ci(/w (i !ffi(y,z(y))F)gdy> < C(/TN (1+ !z(y)lQ)gdy)z

=1
< C(1+[I2l7o )

AR

and the claim follows. In this paper, the letter C' denotes a positive constant, which is
unimportant and may change from one line to another.
Let us close this section by stating the main result to be proved precisely.

Theorem 2.2.1. Let p € [2,00), ¢ € (2,00), m € N. We suppose that

up € LI(Q; W™P(TY)) N L™(Q; WH™P(TV))
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and
fa € C™R)NCHEYR), |a|<20—1; o0, C™(TY xR), i=1,...,d,

have bounded derivatives up to order m. Then there exists a unique solution to (2.1)
which belongs to

LA(; C([0, T); W™ P(TY))) 0 L™9(6; C((0, TT; WHP(T™)))
and the following estimate holds true

q mq
® 202 Oy E 2, O

< C(l + EHUOH?/Vm,p(’H‘N) + EHU()H%ql,mp(TN))'

Corollary 2.2.2. Let k € Ny and ug € LI(2; C*(TN)) for all ¢ € (2,00). Assume
that

fa € CHFLRYNCHYR), |o| <20—1; o0, € CH*YTN xR), i=1,...,d,

have bounded derivatives up to order k + 1. Then there exists a solution to (2.1) which

belongs to
LI(Q; C([0,T]; C*NTN))) for every A€ (0,1).

Remark 2.2.3. In the proof, we show regularity of the mild solution, however, the
resulting estimates imply that it is even strong (see [15] for a thorough exposition of
these two concepts of solution).

2.3 Preliminaries

For the reader’s convenience we shall first restate the following auxiliary result which is
taken from [68, Theorem 5.2.5].

Proposition 2.3.1. Let m € N, m > 2, p € [1,00). Suppose that the function G €
C™(R) has bounded derivatives up to order m. If h € W™P(TN) N WLmP(TN) then the
following estimate holds true

|G yn sy < O Il marsy + [llwmsceny)
with a constant independent of h.
Proof. Since G has a linear growth we have
IG(M)[ poervy < C(1+ [l pocrny)-
Next, we will employ the chain rule formula for partial derivatives of compositions:

18]
DPG(h(x) =" S Chiara GO(h(x)) D h(z) - D h(z),
=1 a1+~4a;=p

|ovi|7#0
where 8 = (B1,...,8n), a; = (af, ... ,afv), i=1,...,1, are multiindices and C3q, .. q,

are certain combinatorial constants. It is sufficient to consider |f| = m. By the Hélder
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inequality we obtain

l l ik
HG()(h)Dalh"'DathLp(qu) < HG()HLOO HHDO‘ LT oy
Due to interpolation inequalities, we have
. lo;| — 1
H H |o¢z| Tay] N < CHh’HWl mp TN HhHme('ﬂ‘N) Wlth 91 = m—1 :

Therefore

HDﬁG(h)HLp(’]]‘N) S Clrgnlag)fn Z H Hhle mp ']I‘N) HhH%/m,P(’]IN)

a1+t a=p 1=1
lovi|#0

mfl m—1l
< Clmax ||h|ywl mp TN ||h||Wm p(qu)
< O mp oy + Wllmogen):
where we used the fact that the function y — a¥(b/ a)% is monotone so the maximal
value is attained at y = 1 or y = m. The proof is complete. O

This result can be easily extended to more general outer function.

Corollary 2.3.2. Let m € Nym > 2,p € [1,00). Suppose that the function G €
C™(TN x R) has bounded derivatives up to order m. If h € W™P(TN) 0 Wwtme(TN)
then the following estimate holds true

1GC B ymnzry < COU+ IRy + elligmogen)
with a constant independent of h.

Remark 2.3.3. The situation is much easier for the first order derivatives: fix p € [1, 00)
and let h € WHP(TN)

(i) if G € C}(R) has a bounded derivative then

|G W) lwreryy < C(1+[[Bllwrey)),

(ii) if G € CY(TY x R) has bounded derivatives then

|GG RN wrwyy < C+ [hllwrway),

where the constant C' is independent of h.

2.4 Proof of the main result

Let us review the main ideas of the proof. The proof is divided into three steps. In
the first step, we apply the Banach fixed point theorem to conclude the existence of an
L™P(TN)-valued mild solution of (2.1). In the second step, we study Picard iterations
for (2.1) and find a uniform estimate of the W™ (TN )-norm. It is then used in the
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third step to derive a uniform estimate of the WP (T")-norm. This estimate remains
valid also for the limit process and the statement follows.
These steps will be stated as propositions.

Proposition 2.4.1 (Fixed point argument). Let p, ¢ € [2,00). Assume that uy €
L4(Q; LP(TN)) and

fo € CPYR), |aof <20 —1; 0; € CHTY xR), i=1,...,d,

have bounded derivatives of first order. Then there exists a unique mild solution to (2.1)
which belongs to
LI(Q x [0,T],P,dP ® dt; LP(TV)).

Proof. Let us denote
H = LYQ % [0,T],P,dP ® dt; LP(TV))

and define the mapping

()0 = Sylthun+ [ Syt =P ds+ [ Syt = 9)o(w() W (s)
0 0
= Sp(t)uo + (10) (1) + (Aav)(t), t€[0,T), ve .

Here, we employ stochastic integration in LP(T") as introduced in Section 2.2. We shall
prove that ¢ maps 2 into J# and that it is a contraction.
Since ug € L(Q; LP(TY)) it follows easily that S,(t)ug € #. In order to estimate

the second term, let § = 212—;1 and note that

Splt = ) F(v(s)) = Sp(t = 8)(=Ap)° (= Ap)° Y aaD*fulv(s)),
la<20—1
aa#0

where the operator (—.Ap)5 commutes with the semigroup and the operator
B, : IM(TV:RY) — LP(T")
{zabojca1— (=A4)7" Y aaD2
aa70 lo|<21—1

aq7#0

is bounded. Indeed, let p* be the conjugate exponent to p. Then the operator LP” (TN) —
LP (TN), v+ anD¥(—Ap) %0, |a| < 20 — 1, is clearly bounded so for z € LP(TV;R7)
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we have

H(—A;»‘S > @Dz

lal<2i—1 LP(TY)
aq#0
= sup / (—A,)~° Z aoD%2q(x) v(z) dz
veLr”(TV) | JTV la|<2i-1
HvIILp*(H*N)Sl aaio

= sup Z / 2a(2) aaD*(—Ap) v (x) d
vel?" (TV) | |oj<2i—17T"
HvIILp*('ﬂ-N)Sl CLQ#O

= sw /T i <z(:v), {aaDa(—Ap*)_‘sv(x)}aKQl1>Rn dz

veLP" (TN) aa#0
Hvlle*m-N)Sl
-5
<lellavan  sw {aaD™ (A0 b
veLr (TN) a0 (TN;R™)

”U”Lp* (TN)Sl

< C 2|l o (rv meny

and the claim follows. Next, all f,, |a| < 20—1, have bounded derivatives hence at most
linear growth, so it holds for any z € LP(TV)

1 owigny < C(L+ zlogeny). 27)
Later on, if there is no danger of confusion we will write LP(T%) instead of LP(TV;R").

Let v € 4, then using the above remark, the fact (2.3), the estimate (2.7) and the
Young inequality for convolutions we obtain

o], :E/OTH/OtSp(t—s)F(v(s))dquLp(TN)dt
T t
(]

< CE/O </0t(t_ls)6||Bpf(v(s))HL,,(TN)ds>th

< CIE/OT (/Ot @_:ysﬂf(v(s))HLp(TN)ds)th
<z [

b .
/0 t—s)d (1+ HU(S)HLP(TN))dS) dt

(—Ap)58p(t — s)Bpf(v(s))HLp(TN)ds> dt
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Next, by the Burkholder-Davis-Gundy inequality for martingales with values in 2-smooth
Banach spaces (see [9], [61]), we have

q
dt
Lr(TN)

< C/OTE</t Hsp(t - S)U(U(S))H2 u;Lp(TN))d8> % dt (29)

gquQQ/ /HU D2 oy ds .

The v-radonifying norm can be computed, for almost every s and w, using (2.5) as in
(2.6). Therefore

ol =2 [ [ stt-oteoname)

Tt
|0t < CTq22/0 IE/O (L4 [0(3)1y oy s dt < CTH(T + ]%).

We conclude that ¢ (.2°) C A for any T > 0.

In order to show the contraction property of %7, we will mimic the procedure
from (2.8) and use the Lipschitz continuity of f. Indeed, fa, |a| <20 —1, have bounded
derivatives so they are Lipschitz continuous and

[ £(21) = f(z2)llLo(rny < Cll21 = 2ol oy, 21, 29 € LP(TY),

can be proved as (2.7). For v,w €

T
|0 — Al = [ ar
' Lp(TN)

/ ( / [=4,)°5, t—3>3p(f(v(8))—f(w(S)))}ILP(TN)ds>th
sCE /0 ( /0 a—aplBe >>—f<w<s>)umw)ds)th

<0k [ ([ s 1706 = Hwo) g ds) o
<ee [ ([ (t_ls)gnv@ - w(s)HLp(TN)ds)th

T
<CTUE / [0(5) = w(s)I|% yds = C T o = w,.
0

/t Syt — s) (F(v(s)) - F(w(s))) ds

In the case of %2 we employ the same calculations as in (2.9) and the sequel:

q

dt
Lr(TN)

0
T t
gc/o IE</O Hsp(t—s)(a(v(s))—a(w(s)))uimp(w))ds> at

I
gcm/o E/O lo(w(s)) = o(w(s)[ ooy ds .

T t
| A0 — Haw||%, = ]E/O ot — ) (o(0(5)) — o(w(s))) AW (s)

Dk
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Let z1, 2o € LP(TY). Then for the y-radonifying norm we have

2
o)
P v
o)

= C(/]I‘N (f: |loi(y, 21(y)) — Ui(yvzz(y))ﬁ)gdy>g
i=1

<C HZl - ZQHqu(']rN)v

HU(Zl) - U(Zz)H?y(u;LP(TN))

ok

= (EH zd:%(oi(-,m(-)) - Ui(',z2(')))‘
i=1

= (EH i%(ai(-m(')) - Uz’('722(')))‘
=1

where the last inequality follows from the fact that all o;, ¢ = 1,...,d, have bounded
derivatives and therefore are Lipschitz continuous. We conclude

HJi/gv - %MHTI% < CT3 |lv — qujf

Consequently
1
| v — Hwl|e <C (T +T2)|Jv — || w,

where the constant does not depend on 7" and ug. Therefore, if
C(T" 0 +T3) <1 (2.10)

then the mapping .#  has unique fixed point u in " which is a mild solution of (2.1).
Furthermore, by a standard use of the factorization lemma, it has continuous trajectories
with values in LP(T?), i.e. belongs to

L2 C([0, T); LP(TV))).

Therefore, t}}e cqndi}:ion on T' can be easily removed by considering the equation on
intervals [0, T, [T',2T], ... with T satisfying (2.10).
O

The estimates from previous proposition can be improved in order to obtain a
better regularity of w.

Proposition 2.4.2 (Estimate in W1P(TV)). Let p € [2,00), ¢ € (2,00). Assume that
ug € LI(Q; WHP(TN)) and

fo € C*LHR), |a < 20— 1; o, € CHTN xR), i=1,...,d,
have bounded derivatives of first order. Then the mild solution of (2.1) belongs to
LU C([0, T); WHP(T™)))
and the following estimate holds true

q q
B sup [0l < O+ ol (211)
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Proof. Recall that u is the limit of Picard iterations: let u%(t) = ug and for n € N define
t
u(t) = Sp(t) uo + / Sp(t —s) F(u"_l(s)) ds
0
t
+ / Sp(t —s) a(u”_l(s)) dW (s).
0

We will show

Eoiltlf [ (¢ )H%VLP(TN) < C(l + EHUOH({I/[/LP(TN))u Vn €N, (2.12)
with a constant C' independent of n. By induction on n, assume that the hypothesis is
satisfied for 4"~ ! and compute the estimate for u™. We will proceed term by term and
follow the ideas of Proposition 2.4.1. Consider the operators Sy(t), t > 0, restricted to
the Sobolev space W1P(TV) and denote them by S; ,(¢), t > 0. These operators form
a bounded analytic semigroup on WP(T¥) generated by the part of A, in WHP(T¥)
(see [3, Theorem V.2.1.3]). Let us denote this generator by A; ;. Therefore we have

q — q
EozltlgT HSP(t)uouwl,p('ﬂ‘N) =E iltlp HSLP(t)uOHV[/Lp(’]IN)

< CEHU()lep (TN)*

As above, let 0 = 2121 and consider the operator

Bi, + WHP(TN;R") —>W14’(TN)

{Za}\a|<21 1 ( Z aaD%24.
aa#0 laf<20—1
aa#0

We will show that it is a bounded operator. Indeed, according to the computations in
the proof of Proposition 2.4.1, for any z € WL (TN, R"),

HBLPZHLP(’]I‘N) < C”zHLP(TN;Rﬂ)-

For any multiindex 8 = (f1,...,n) such that |8| = 1, we can write

1

ID7Bup2l| oy = DA (A3 (— )55 33T aaD 2,

Lp(TNY’

where the operator LP(TV) — LP(TN), v Dﬁ(—Ap)fév, is bounded. For each
a, |a| <20 —1, let us fix a multiindex o’ such that it is of order 1 and o — o’ is also a
multiindex, i.e. |@/| =1 and |a—a/| = |a|—1. Note, that if p* is the conjugate exponent
to p, the operator LP" (TN) — LP (TV), v s aaD* ' (—Aye) "2 =35 v, lof <20 —1, is
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bounded as well. We conclude

H(—./élp)%“r2 Z a,,D? za‘

Lp(TN
la|<20-1 ()
aa#0
72l+2
= sup g aaD%z dx
eLr™ (TN) /TN “ a ( )
v la<21—1
||U||Lp (TN)SI aa;ﬁO

= sup Z / DY 24 () aaD ™ (= A, )_22lfr2v(1:)dx
veL?" (TN) | |oj<2i-1
”U”Lp*(TN)S (la750

< H{Do‘lza}\agzzq’
aa7#0

LP(TN;R)
a—a’ —20+2
X sup {aaD (—Ap) "2 ’U}|a|§2l71 X
velLP" (TN) aa#0 LP"(TN;R7)
HUHLp*(TN)Sl
< Clzllwrervmn
and the claim follows. Therefore, we have
t q
E sup / Sp(t — s)F(u"_l(s)) ds
0<t<T|| JO Wlp(TN)
q
<E su H 68 (t—s)B n—l H ds)
0<tET</ ) lpf( (s )) Whp(TN)
q
<E su H ~A1,)°81,(t — 8)B u" (s H ds>
O<tET</0 (FAL) 51l Biad (5)) WLe(TN)
t 1 . q
N A e LA [Ny

< TR sup Hf n 1 )

0<t<T I P(TN)!

To deduce a similar estimate for the stochastic term, we need to consider stochastic
integration in W1?(T"). Employing the Hélder inequality and the equivalence of norms
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on WHP(TN) we obtain for z € W1P(TV)

q
2
HU Hq(uwlp(w _< HZ%% »# HWU’(’]I‘N)>

< (] Sty

<c(E| S artat )
—o( [ (S l-artatnam)ar)’
<CZHGM )] PR

Since g € (2,00), we make use of the maximal estimate for stochastic convolution [9,
Corollary 3.5] which can be proved by the factorization method. For the reader’s conve-
nience we recall the basic steps of the proof. Let ¢ € (1/q,1/2), then according to the
stochastic Fubini theorem [10, Proposition 3.3(v)],

t . 1 ¢ -
/0 Sy(t — s)or (" (s))dW (s) = F(ﬁ)/o (t = )71 (t — 5) y(s)ds,
where
W) = g [ =S = e ) aw ).

Hence application of the Holder, Burkholder-Davis-Gundy and Young inequalities yields
(here the constant C' is independent on T')

t q
E sup /Sp(ts)a(u"_l(s))dW(S)
0<¢<T || JO WL (TN)
T
q_
<CTHE [ o (6) Loy s
SO
t q
E sup /Sp(t—s)a(u”_l(s))dW(s)
o<e<r || Jo W1e(TV)

d T
< CTzle/O 1o (a5, ) [y s

< (T2 E
: Z; 5w floi (™ () [y
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and finally

E sup [[a" ()41 0wy < CEluol%1p )

0<t<T
(1-4) 1) [
+ CTIOR sup £ (w2 0) o2y
1 q
CT2 ZEOZ,IETHUZ( ’ (t, .))HWLP(TN)u

=1

where the constant does not depend on n. Now, we make use of Remark 2.3.3 and obtain

q
EoiltlgTHu (t )lep TN) < CEHuOHWLP(TN)

+ C(TQ(1—5) + T%) <1 +E sup ||Un_1( )”Wl p(TN >
0<t<T

Let us make an additional hypothesis: assume that T is such that
Cr=C(T1 +T5) < 1. (2.13)

Denoting K, = Esupg<;<r [[u"(t) n € Ny, we have

H({I/Vl,p(’]fN)a
Ky, < CEHUOH%VLP(TN) + C'T(1 + Kn—l)

and inductively in n

B sup 1" Ol < Or {1+ Elollysany) (2.14)

where Cr is independent n. So (2.12) follows if T is sufficiently small.

In order to remove this condition, we consider a suitable partition of the interval
[0,T). Let T > 0 satisfy (2.13) and 0 < T < 21" < --- < KT = T for some K € N. Fix
ke{l,...,K}. We will study the processes u”, n € N, on the interval [(k — 1)T", kT]
and find an estimate similar to (2.14). Each u™, n € N, is the unique mild solution to
the corresponding linear equation

= [Au" + F(u" D] dt +o(u" ) dW,  zeTV, te(0,T),
u(0) = up.

Let v(t, s,;up), t > s > 0, be the mild solution of this problem with the initial condition
ug given at time s. It follows from the uniqueness that for arbitrary t > r > s >0

v(t,r;v(r,s;uo)) = v(t, s;up) P-a.s.

and therefore we can write

u"(t) =8, (t = (k= )T)u" ((k - 1)T) + /( oy S IF W) ds

t —s)o(u" (s s - 1T, 7).
# ST @) W), e (- 1)7.1]
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Following the same approach as above we obtain

E o swp w0 (O)npmny < Cr(1+Ellw (k= D) 1w,
(k—1)T<t<kT

with a constant similar to Cy in (2.14). Hence

E s [[um ()
(k—1)T<t<kT
<Cp(1+E  sup [ @)1 )

(k—2)T<t<(k—1)T

< S (G + (G Elluolly gy < C(L+ Bl 1)

M=

1

-
Il

where the constant C' is independent of k and n. Finally, the estimate (2.12) follows:

E sup |u™(t)||? =E max sup lu™(t)[|2
OStST‘ ‘ WLp(TN) k=1...K (k;—l)TStSkT WLp(TN)

sup w0y eny < KO+ Elfuolfypqpoy)-
(k—1)T<t<kT

IN
gt
=

We have now all in hand to deduce that the sequence {u"; n € N} is bounded in
LIS L0, T WHP(T)))

and therefore has a weak-star convergent subsequence. Since any norm is weak-star
lower semicontinuous we get the estimate (2.11) for the limit process u. Moreover, since
the stochastic convolution has a continuous modification according to [9, Corollary 3.5],
the proof is complete. O

Proof of regularity in higher order Sobolev spaces (order greater than 1) is more
complicated as the norm of a superposition does not, in general, grow linearly with the
norm of the inner function (cf. Proposition 2.3.1, Corollary 2.3.2, Remark 2.3.3).

Proposition 2.4.3 (Estimate in W™P(TV)). Letp € [2,00), ¢ € (2,00), m € N, m > 2.
Assume that ug € LI(Q; W™P(TN)) 0 L™4(Q; WEmP(TN)) and

fo €C™R)NCHEYR), |a|<20—1; o0, C™(TY xR), i=1,...,d,
have bounded derivatives up to order m. Then the mild solution of (2.1) belongs to
LU C([0, T); WP (T)))
and the following estimate holds true
B sup [0 sz < C(L+ Eltolfymaen, + Bl e (215)
Proof. First, we intend to prove the following estimate for the Picard iterations

Eoiltlg 1™ Oy mp vy < C(L+ Elluollfymppay + Ellwoll i mp gy ) (2.16)
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with a constant independent of n. By induction on n, assume that the hypothesis
is satisfied for u"~! and compute the estimate for u". The following arguments and
calculations are mostly similar to those in Proposition 2.4.2. Recall that according to
(2.12), we have

E sup |u"(t)

mq

||W1 'mp(’]I‘N

Let us consider the restrictions of the operators S,(t), t > 0, to the Sobolev space
WmP(TN) and denote them by Sy, ,(t), t > 0. By [3, Theorem V.2.1.3], we obtain a
strongly continuous semigroup on WP(TV) generated by part of A, in W™P(TV). We
denote the generator by A, ;. It follows

q — q
EO?;ET Hsp(t)UOHWm,p(TN) - E()zltlgT HSm,p(t)UOHWm,p(TN)
< CE”UOH?/{/m,p(TN)~
-1

. . _ 2
As above, we employ the following bounded operator: let 6 = =5~

By @ WTP(TV;RY) —>Wm4’( N)

{Za}|a\<2l 1 ( Z aa D 2q,
a0 la|<2i—1
aa7#0
SO
t q
E sup /Sp(t—s)F(unl(s)) ds
OStST 0 WnL,p(’]I‘N)
q
_ n—1
SE@E%( / |~ A0St = $)Bpf ( (S))me,p(w)d5>
q
< CE n— 1 d
= oiltlgT </0 5Hf( ))me,p(qrzv) 3)
< CTI-9E sup Hf(un 1 )mepTN

0<t<T

And for the stochastic term, z € W™P(TN),
g
o (2) Hv(quP(TN —< HZ%UZ 12 mep(TN))
q
( HZ% 2@ i ’Z(‘))’ip(TN)p
» g
- (/ (Z\ 5o, z(y))|2>2dy>p

<CZH‘7% 12 me(TN)

| /\
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hence

q

/0 Sp(t —s)a(u"1(s))dW(s)

E sup

0<t<T wm.p(TN)

T
< CTg_lE/O [l (u" () [I3 cgepprmn vy ds

<CT:Y E
Z; 5w loi (™ (6 ) ey

We conclude

E sup Hun(t)Hme(qu) < CIEHu0|]me(TN)

0<t<T
TI=R n- 1
+C OiltlgT [FAZ ()] | (TN)
+CTQZE sup ||oi (" () [[fymon vy -

0<t<T
Applying Proposition 2.3.1, Corollary 2.3.2 and (2.17) we obtain

q 1-46) a
B s (1Ol po) < OBl + O 4 7)

X (1+E sup ||u" (¢ . +E sup ||u" (¢ m. >
(1 s 1 O e+ E 512 1 Ol

< CE[luo|fym vy + (1119 1 73)

)

(1 B0l ) +E 500 [0 Olmse) )

Let T satisfy the following condition
Cr=C(T919 +73) < 1

and define K, = Esupg<;<p [|[u"(t) n € No, Lo = Eluo|l{1.mp (TNY* Then we

me P(TN)»
have

K < CEluoll{ymp vy + Or(1+ Lo+ Kn-1)

hence inductively in n

q
E[)zltlgT Hu ( )Hme TN) CT(l + EHUOHW’V?LP(TN + EHUOHWI mp ’]I‘N))

where the constant does not depend on n. Therefore (2.16) follows under the additional
hypothesis upon 7. However, this condition can be removed by the same approach as
in Proposition 2.4.2.

Similarly to Proposition 2.4.2 we deduce that the sequence {u"; n € N} is bounded
in

LI(Q; L*°(0, T; W™P(TV)))

and therefore (2.15) holds true. Existence of a continuous modification follows again
from [9, Corollary 3.5]. O
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Proof of Theorem 2.2.1. If m = 1 the proof is an immediate consequence of Propositions
2.4.1 and 2.4.2. The case m > 2 follows from Propositions 2.4.1, 2.4.2 and 2.4.3. O

Proof of Corollary 2.2.2. Let m = k 4+ 1. According to Theorem 2.2.1 there exists a
solution of (2.1) which belongs to

LUQ; C([0, T); W™P(TY))),  Vp € [2,00).

If p > N, then according to the Sobolev embedding theorem, the space W™P(TYN) is
continuously embedded in C**(TV) for A € (0,1—N/p). Hence the assertion follows. [J






Chapter 3

Degenerate Parabolic Stochastic
Partial Differential Equations

Abstract: We study the Cauchy problem for a scalar semilinear de-
generate parabolic partial differential equation with stochastic forc-
ing. In particular, we are concerned with the well-posedness in any
space dimension. We adapt the notion of kinetic solution which is well
suited for degenerate parabolic problems and supplies a good technical
framework to prove the comparison principle. The proof of existence
is based on the vanishing viscosity method: the solution is obtained
by a compactness argument as the limit of solutions of nondegenerate
approximations.

Results of this chapter are available as a preprint:

e M. HOFMANOVA, Degenerate Parabolic Stochastic Partial Differential Equations.
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3.1 Introduction

In this paper, we study the Cauchy problem for a scalar semilinear degenerate parabolic
partial differential equation with stochastic forcing

du + div (B(w))dt = div (A(z)Vu)dt + S(u) dW, z €TV, t € (0,7),

o(0) — (3.1)

where W is a cylindrical Wiener process. Equations of this type are widely used in fluid
mechanics since they model the phenomenon of convection-diffusion of ideal fluid in
porous media. Namely, the important applications including for instance two or three-
phase flows can be found in petroleum engineering or in hydrogeology. For a thorough
exposition of this area given from a practical point of view we refer the reader to [26]
and to the references cited therein.

The aim of the present paper is to establish the well-posedness theory for solutions
of the Cauchy problem (3.1) in any space dimension. Towards this end, we adapt the
notion of kinetic formulation and kinetic solution which has already been studied in the
case of hyperbolic scalar conservation laws in both deterministic (see e.g. [38], [55], [56],
[63], or [64] for a general presentation) and stochastic setting (see [16]); and also in the
case of deterministic degenerate parabolic equations of second-order (see [13]). To the
best of our knowledge, in the degenerate case, stochastic equations of type (3.1) have not
been studied yet, neither by means of kinetic formulation nor by any other approach.

The concept of kinetic solution was first introduced by Lions, Perthame, Tadmor
in [56] for deterministic scalar conservation laws and applies to more general situations
than the one of entropy solution as considered for example in [12], [20], [45]. Moreover,
it appears to be better suited particularly for degenerate parabolic problems since it
allows us to keep the precise structure of the parabolic dissipative measure, whereas in
the case of entropy solution part of this information is lost and has to be recovered at
some stage. This technique also supplies a good technical framework to prove the L!-
comparison principle which allows to prove uniqueness. Nevertheless, kinetic formulation
can be derived only for smooth solutions hence the classical result [30] giving LP-valued
solutions for the nondegenerate case has to be improved (see [32], [20]).

In the case of hyperbolic scalar conservation laws, Debussche and Vovelle [16]
defined a notion of generalized kinetic solution and obtained a comparison result showing
that any generalized kinetic solution is actually a kinetic solution. Accordingly, the proof
of existence simplified since only weak convergence of approximate viscous solutions was
necessary. The situation is quite different in the case of parabolic scalar conservation
laws. Indeed, due to the parabolic term, we are not able to apply the approach of [16]:
we prove the comparison principle for kinetic solutions only (not generalized ones) and
therefore strong convergence of approximate solutions is needed in order to prove the
existence. Moreover, the proof of the comparison principle itself is much more delicate
than in the hyperbolic case.

We note that an important step in the proof of existence, identification of the limit
of an approximating sequence of solutions, is based on a new general method of con-
structing martingale solutions of SPDEs (see Propositions 3.4.14, 3.4.15 and the sequel),
that does not rely on any kind of martingale representation theorem and therefore holds
independent interest especially in situations where these representation theorems are no
longer available. First applications were already done in [11], [60] and, in the finite-
dimensional case, also in [34]. In the present work, this method is further generalized as
the martingales to be dealt with are only defined for almost all times.
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The exposition is organised as follows. In Section 3.2 we review the basic set-
ting and define the notion of kinetic solution. Section 3.3 is devoted to the proof of
uniqueness. We first establish a technical Proposition 3.3.2 which then turns out to
be the keystone in the proof of comparison principle in Theorem 3.3.3. We next turn
to the proof of existence in Sections 3.4 and 3.5. First of all, in Section 3.4, we make
an additional hypothesis upon the initial condition and employ the vanishing viscosity
method. In particular, we study certain nondegenerate problems and establish suit-
able uniform estimates for the corresponding sequence of approximate solutions. The
compactness argument then yields the existence of a martingale kinetic solution which
together with the pathwise uniqueness gives the desired kinetic solution (defined on the
original stochastic basis). In Section 3.5, the existence of a kinetic solution is shown for
general initial data. In the final section 3.A, we formulate and prove an auxiliary result
concerning densely defined martingales.

3.2 Notation and main result

We now give the precise assumptions on each of the terms appearing in the above
equation (3.1). We work on a finite-time interval [0,7], T > 0, and consider periodic
boundary conditions: z € TV where T?V is the N-dimensional torus. The flux function

B=(Bi,...,By):R— RN

is supposed to be of class C! with a polynomial growth of its derivative, which is denoted
by b = (b1,...,bx). The diffusion matrix

A= (Aij)gjzl : TN — RNXN
is of class C"*°, symmetric and positive semidefinite. Its square-root matrix, which is
also symmetric and positive semidefinite, is denoted by o.

Regarding the stochastic term, let (Q2,.%, (% )t>0,P) be a stochastic basis with a
complete, right-continuous filtration. Let P denote the predictable o-algebra on €2 x
[0,T] associated to (#)¢>0. The initial datum may be random in general, i.e. F(-
measurable, and we assume ug € LP(2; LP(TY)) for all p € [1,00). The process W
is a cylindrical Wiener process: W(t) = > .~ Bx(t)er with (B)g>1 being mutually
independent real-valued standard Wiener processes relative to (%;);>0 and (eg)r>1 a
complete orthonormal system in a separable Hilbert space 4. In this setting, we can
assume, without loss of generality, that the o-algebra .# is countably generated and
(Z)t>0 is the filtration generated by the Wiener process and the initial condition. For
each z € L?(TV) we consider a mapping @(z) : 4 — L?(TY) defined by ®(z)e, =
gr(+, 2(+)). In particular, we suppose that g; € C(T" x R) and the following conditions

G (2,6) = > gz, &) < L(1+ [P, (3.2)
k>1
S gk, €) = gr(y. O < L(lz — y? + |€ — ¢|h(l€ — ), (3.3)

k>1

are fulfilled for every x,y € TV, &, ¢ € R, where h is a continuous nondecreasing function
on R, satisfying, for some a > 0,

h(6) < C6%, §< 1. (3.4)
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The conditions imposed on @, particularly assumption (3.2), imply that
@ LA(TYN) — Ly(Y; LA(TV)),

where Lo(4; L?(TV)) denotes the collection of Hilbert-Schmidt operators from & to
L?(TV). Thus, given a predictable process u € L2(Q; L?(0,T; L*(TV))), the stochas-
tic integral t — f(f @(u)dW is a well defined process taking values in L2(TV) (see [15]
for detailed construction).

Finally, define the auxiliary space Ly D U via

o = {v:Zakek; Z;ﬁ“ <oo}7

k>1 k>1

endowed with the norm

2
«
HUHiO :Zkf’;, U:Zakek-

k>1 k>1

Note that the embedding 4 — 1y is Hilbert-Schmidt. Moreover, trajectories of W are
P-a.s. in C([0,T]; o) (see [15]).

In the present paper, we use the brackets (-,-) to denote the duality between the
space of distributions over TV x R and C2°(T x R). We denote similarly the integral

(F,G) = AN/H%F(x,g)G(x,g) ded¢é,  FeILP(TVN xR), G e LYTY x R),

where p,q € [1,00] are conjugate exponents. The differential operators of gradient V,
divergence div and Laplacian A are always understood with respect to the space variable
T.

As the next step, we introduce the kinetic formulation of (3.1) as well as the basic
definitions concerning the notion of kinetic solution. The motivation for this approach is
given by the nonexistence of a strong solution and, on the other hand, the nonuniqueness
of weak solutions, even in simple cases. The idea is to establish an additional criterion —
the kinetic formulation — which is automatically satisfied by any strong solution to (3.1)
and which permits to ensure the well-posedness.

Definition 3.2.1 (Kinetic measure). A mapping m from € to the set of nonnegative
finite measures over TV x [0, 7] x R is said to be a kinetic measure provided

(i) m is measurable in the following sense: for each 1 € Co(TY x [0,7] x R) the
mapping m(y) : © — R is measurable,

(ii) m vanishes for large &: if B, = {£ € R; [£] > R} then
lim Em(TY x [0,T] x Bf) =0, (3.5)
R—o0
(iii) for any 1 € Co(TV x R)
[ wgdmizsg) e L@ x 0.1)
TN x[0,t]xR

admits a predictable representative’.

!Throughout the paper, the term representative stands for an element of a class of equivalence.
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Definition 3.2.2 (Kinetic solution). Assume that, for all p € [1,00),
u € LP(Q x [0,T],P,dP ® dt; LP(TV))
and
(i) there exists C), > 0 such that

E ess sup ||u(t)
0<t<T

e (3.6)

(i) o Vu € L*(Q x [0, T); L?(TV)).

Let nq be a mapping from € to the set of nonnegative finite measures over T x [0,T]xR
defined for any Borel set D € B(TY x [0,T] x R) as®

ny (D) = / [ / 1p(2,4,6) oo (€) | [0 (@)Vul dzdt, Pas.,  (37)
TN x[0,7] L /R ’

and let
f=1ue: Qx TV x [0,T] xR — R.

Then w is said to be a kinetic solution to (3.1) with initial datum ug provided there
exists a kinetic measure m > n; a.s., such that the pair (f = 1,5¢,m) satisfies, for all
0 € CX(TN x [0,T) x R), P-a.s.,

T

T
/0 (£(t), Brp())dt + ( fo, p(0)) +/0 (£(£),b(€)- Vip(t) )t
T
+ [ (s @aiv (4@ Tp(0)
0
T
- _Z/o /TN gk (z, u(z,t)) o (z,t,u(z, t))de d By (t)

k>1
1 T
~3 / / G? (z,u(z,t))Ocp(,t, u(x, t))dz dt + m(Oep).
0 ™

Remark 3.2.3. We emphasize that a kinetic solution is, in fact, a class of equivalence
in LP(Q x [0,T], P,dP ® dt; LP(T¥)) so not necessarily a stochastic process in the usual
sense. Nevertheless, it will be seen later (see Corollary 3.3.4) that, in this class of
equivalence, there exists a representative with good continuity properties, namely, u €
C([0,T); LP(TN)), P-a.s., and therefore, it can be regarded as a stochastic process.

Remark 3.2.4. Let us also make an observation which clarifies the point (ii) in the
above definition: if u € L2(Q x [0, T]; L2(T™V)) then it can be shown that ¢ Vu is well
defined in L%(Q x [0, T]; H~1(T¥)) since the square-root matrix o belongs to W1 (TV)
according to [24], [66].

By f = 1,>¢ we understand a real function of four variables, where the additional
variable £ is called velocity. In the deterministic case, i.e. corresponding to the situation
¢ = 0, the equation (3.8) in the above definition is the so-called kinetic formulation of
(3.1)

Olyse +b(E) - V1yse — div (A(z)V1yse) = em

2We will write shortly dni(z,t,€) = |o(2)Vu|” ddu(e,q (€) dz dt.
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where the unknown is the pair (1,-¢,m) and it is solved in the sense of distributions
over TV x [0,T) x R. In the stochastic case, we write formally?

. 1
8t1u>§ + b(lf) . V1u>§ —div (A(iL‘)Vlu>§) = 5u:5d5(u)W + 85 (m — 2G2(5u:§> . (3.9)

It will be seen later that this choice is reasonable since for any u being a strong solution
to (3.1) the pair (1,5¢,n1) satisfies (3.8) and consequently u is a kinetic solution to
(3.1). The measure n; relates to the diffusion term in (3.1) and so is called parabolic
dissipative measure. It gives us better regularity of solutions in the nondegeneracy zones
of the diffusion matrix A which is exactly what one would expect according to the theory
of (nondegenerate) parabolic SPDEs. Indeed, for the case of a nondegenerate diffusion
matrix A, i.e. when the second order term defines a strongly elliptic differential operator,
the kinetic solution u belongs to L(2; L2(0,T; H'(TV))) (cf. Definition 3.2.2(ii)). Thus,
the measure ny = m—n; which takes account of possible singularities of solution vanishes
in the nondegenerate case.

We now derive the kinetic formulation in case of a sufficiently smooth u satisfying
(3.1), namely, u € C([0,T]; C*(T¥)), P-a.s.. Note, that also in this case, the measure
ng vanishes. For almost every z € TV, we aim at finding the stochastic differential
of O(u(x,t)), where § € C*°(R) is an arbitrary test function. Such a method can be
performed by the It6 formula since

t t
u(x,t) = up(x) — / div (B(u(z,s))) ds + / div (A(z)Vu(z,s)) ds
‘ ° (3.10)

t
+ Z/ g (z,u(z, 5)) dBi(s), ae. (w,z) € Qx TN, Vtel0,T]
k>170

In the following we denote by (-, -)¢ the duality between the space of distributions over R
and C2°(R). Fix x € T¥ such that (3.10) holds true and consider Ly(z,t)>¢ as a (random)
distribution on R. Then

<1u(:c,t)>f> 9,>E = /Rlu(x,t)>§9,(§) d§ = Q(U(lt, t))
and the application of the It6 formula yields:
A1y (0 56, 8)e = 0/ (u(,£)) | = div (Blu(z, 1))t + div (A(z)Vulz, 1))t

+ Z 9k (z,u(z,t)) dﬁk(t)} + %9"(u(aj, £)G? (u(z, t))dt.
k>1

3Hereafter, we employ the notation which is commonly used in papers concerning the kinetic solutions
to conservation laws and write d,—¢ for the Dirac measure centered at u(z,t).
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Afterwards, we proceed term by term and employ the fact that all the necessary deriva-
tives of u exists as functions

0’ (u(x,t)) div (B(u(z, t))) = 6’ (u(z,t))b(u(z, t) Vu(z,t)

u(z,t)
—aiv ([ beys <s>ds) = div (PLugoryse, 8)e)
N
0 (u(z,t)) div (A( )Vu(:n,t)) = Z O, [AU(J:)G (u(x,t))0y u(:n,t)]
ij=1
N
- Z 9”(u(:v,t))@xiu(:v,t)Aij(m)axju(:v,t)
2,7=1
N u(z,t)
= Oz, | Aij(x)0s, 0'(£)d¢ ) + (Oeny(w,t), 0
3ot [ otene) + e,

— div (A(x)v<1u(m,t)>5,9’>5) + (Oem (z,1),0'),

(u(x, t) gk(flf, u(xv t)) = <gk(xv é)éu(z,t):& 9,>£
9//(U(SC, t))GZ (.CL‘, U(CC, t)) = <G2 (‘T’ f)éu(:p,t)zﬁa 0”>§

= _<8§(G2 (l‘, g)éu(az,t)zf)a 0/>§
Note, that according to the definition of the parabolic dissipative measure (3.7) it makes
sense to write dgny(z,t), i.e for fixed x,t we regard ni(x,t) as a random measure on R:
for any Borel set D; € B(R)
2
ni(z,t,D1) = |o(x)Vu(z,t)| 0yzn(D1), P-as..

In the following, we distinguish between two situations. In the first case, we intend
to use test functions independent on t. We set 6(§) = [ foo ©1(¢) d¢ for some test function
@1 € CX(R) and test the above against o3 € C°(TY). Since linear combinations of the
test functions ¥ (z, &) = 1(£)p2(z) form a dense subset of C°(TY x R) we obtain for
any 1 € C°(TN x R), t € [0,T], P-a.s.,

(F(0),0) — (o) — / (F(5),b(€) V) ds — / (F(s), div (A(z)Ve)) ds
0 0
t t
-/ <6u:g¢<u>dw,w>+§ | (0ue @060 ds = (mn. 060 (0.1),
0 0

where <n1, 8@&)([ =nq (Ggwl 0 t)) In order to allow test functions from C°(TV x
[0,T) x R), take ©3 E C2(]0,T)) and apply the It formula to calculate the stochastic
differential of the product (f(t),%)ps(t). We have, P-a.s.,

(F(t),0)ps(t) — (fo,¥)p3(0) — /Ot (f(5),b(€)- Vo)ps(s) ds
- /0 (F(s), div (A(@)Ve) s (s) ds
= /t (Ou=e P(u)p3(s) AW, ¥) + % /t (Sue G*, 0¢1p)p3(s) ds
0 0

t
—n1(0e¥Li0.4)93) +/0 (f(5),¢)0sp3(s) ds.
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Evaluating this process at t = T" and setting ¢(x,t,&) = ¥ (z, &) ps(t) yields the equation
(3.8) hence f = 1,>¢ is a distributional solution to the kinetic formulation (3.9) with
ny = 0. Therefore any strong solution of (3.1) is a kinetic solution in the sense of
Definition 3.2.2.

Concerning the point (ii) in Definition 3.2.2, it was already mentioned in Remark
3.2.4 that o Vu is well defined in L?(Q x [0,T]; H~Y(T")). As we assume more in
Definition 3.2.2(ii) we obtain the following chain rule formula, which will be used in the
proof of Theorem 3.3.3,

oVf=0Vud— in D(TN xR), ae. (w,t) €Qx][0,T] (3.11)
It is a consequence of the next result.

Lemma 3.2.5. Assume that v € L*(TY) and o (Vv) € L*(TN). If g = 1,>¢ then it
holds true
oVg=0Vvi,—¢ n D'(TV x R).

Proof. In order to prove this claim, we denote by o’ the i*" row of o. Let us fix test
functions 11 € C®(TVN), 19 € C(R) and define 6(&) = ffoo 19(¢)d¢. We denote by
(-,)z the duality between the space of distributions over TV and C°°(T¥). It holds

(o' Vg, unta) = —( div(o"1), /_ G de) = —(div (o"1).6(v)),
= (0" VO(v),11)_. N
If the following was true
o'Vo(w) =0 (w)o'Vu in  D(TV), (3.12)

we would obtain

(0" Vg, p1tpa) = (0'(v) 0" Vv, 1) = (0" Vv Sy, th11)2)

and the proof would be complete.

Hence it remains to verify (3.12). Towards this end, let us consider an approxi-
mation to the identity on TV, denoted by (o,). To be more precise, let § € C°(RY)
be nonnegative symmetric function satisfying [, 6 = 1 and supp ¢ C B(0,1/2). This
function can be easily extended to become Z-periodic, let this modification denote

by 0. Now it is correct to define p = g o ¢~ !, where ¢ denotes the quotient mapping
q:RYN — TN =RV /ZN and finally

T

Since the identity (3.12) is fulfilled by any sufficiently regular v, let us consider v™, the
mollifications of v given by (o,). We have

o' V(™) — o' VO(v) in D'(TV).
In order to obtain convergence of the corresponding right hand sides, i.e.

0'(v) o' Vo — 0 (v) o' Vo in  D(TV),
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we employ similar arguments as in the commutation lemma of DiPerna and Lions (see
[17, Lemma II.1]). Namely, since o* (Vv) € L?(T¥) it is approximated in L?(T") by its
mollifications [0 Vv]™. Consequently,

o) o' Vo]" — 0 (v)o' Vv in D(TV).
Thus, it is enough to show that
e’w)(o—i Vo — [of vv]T) 50 in D(TVY). (3.13)
It holds
o' (&) Vo™ () — [0F Vo] (@)
= [ o) e @ (Ve a=ndy+ [ o) div, (0 werla ) dy

TN

=~ /va(y) (0'(y) = o' (2)) (Vor) (& — y)dy + /TNv(y) div (o' (y)) or(z — y)dy.
The second term on the right hand side is the mollification of vdive® € L2(T?) hence
converges in L2(TV) to vdive’. We will show that the first term converges in L*(TV)
to —vdivet. Since 7|Vo,|(-) < Coor(-) with a constant independent on 7, we obtain
the following estimate

Due to this estimate, it is sufficient to consider v and o’ smooth and the general case
can be concluded by a density argument. We infer?

< Cllo* lwoeemyllvll g2y

/TNv(y) (o' (y) — o'(x))(Vor)(z — y) dy

L2(TN)

- [ v ) = @) (Ve @ = )y
1 Tz —
w1 [, | v)Dei ey =) =) (Vo) () aray
1
= / / v(x — 72)Dot(z — r72)z - (Vo)(2) drdz
T~ Jo

— v(z) Do’ (x) : / z® (Vo)(z)dz, Ve e TV,

’]I‘N

Integration by parts now yields

/]I‘N z2® (Vp)(z)dz = —1d (3.14)
hence

v(x) Do'(x) : /1IN z2® (Vo)(2)dz = —v(z)div (Ji(l')), Vo e TV,

and the convergence in L'(TY) follows by the Vitali convergence theorem from the
above estimate. Employing the Vitali convergence theorem again, we obtain (3.13) and
consequently also (3.12) which completes the proof. O

4By : we denote the component-wise inner product of matrices and by ® the tensor product.
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We proceed by two related definitions, which will be useful especially in the proof
of uniqueness.

Definition 3.2.6 (Young measure). Let (X, \) be a finite measure space. A mapping
v from X to the set of probability measures on R is said to be a Young measure if, for
all ¥ € Cp(R), the map z — v,(¢)) from X into R is measurable. We say that a Young
measure v vanishes at infinity if, for all p > 1,

/X/Rlﬁlpduz(ﬁ) dA(2) < oo.

Definition 3.2.7 (Kinetic function). Let (X, \) be a finite measure space. A measurable
function f : X xR — [0, 1] is said to be a kinetic function if there exists a Young measure
v on X vanishing at infinity such that, for A-a.e. z € X, for all £ € R,

f(z7£) = l/z(g,OO).

Remark 3.2.8. Note, that if f is a kinetic function then O¢f = —v for A-a.e. z € X.
Similarly, let u be a kinetic solution of (3.1) and consider f = 1,~¢. We have O¢f =
—0y=¢, where v = §,—¢ is a Young measure on {2 x TV x [0, T]. Therefore, the expression
(3.8) can be rewritten in the following form: for all o € C°(TV x [0,T) x R), P-a.s.,

T

T
/0 (F(), 0up(D))t + (for 9(0)) + /O (F(1),0(6) Tip(t) Yt
T
+/ (f(t),div (A(z)Ve(t)))dt
0

= [ [, [aeosiowa@aann

k>1

(3.15)

1 (T ,
B 2/0 /]TN/]RG (l',f)agtp(x,t,f)dy%t({) dl‘dt—i—m(a&(p)_

For a general kinetic function f with corresponding Young measure v, the above formu-
lation leads to the notion of generalized kinetic solution as used in [16]. Although this
concept is not established here, the notation will be used throughout the paper, i.e. we
will often write v, (&) instead of §y,(54)—e-

Lemma 3.2.9. Let (X, \) be a finite measure space such that L'(X) is separable.” Let
{fn; n € N} be a sequence of kinetic functions on X xR, i.e. fn(z,&) = v}(&,00) where
V"™ are Young measures on X. Suppose that, for some p > 1,

sup /X /R EPdv2 (€) AA(2) < .

neN

Then there exists a kinetic function f on X X R and a subsequence still denoted by

{fn; n € N} such that
In SN fy, in L®(X x R)-weak".

Proof. The proof can be found in [16, Corollary 6]. O

® According to [14, Proposition 3.4.5], it is sufficient to assume that the corresponding o-algebra, is
countably generated.
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To conclude this section we state the main result of the paper.

Theorem 3.2.10. Let ug € LP(2; LP(TN)), for all p € [1,00). Under the above assump-
tions, there exists a unique kinetic solution to the problem (3.1) and it has almost surely
continuous trajectories in LP(TN), for all p € [1,00). Moreover, if u1, uy are kinetic
solutions to (3.1) with initial data w1 and ug, respectively, then for allt € [0,T]

Ellui(t) — u2(®)l|pr(rvy < Ellur,o — ugollp1orny-

3.3 Uniqueness

We begin with the question of uniqueness. Due to the following proposition, we obtain
an auxiliary property of kinetic solutions, which will be useful later on in the proof of
the comparison principle in Theorem 3.3.3.

Proposition 3.3.1 (Left- and right-continuous representatives). Let u be a kinetic so-
lution to (3.1). Then f = 1,>¢ admits representatives f~ and f* which are almost
surely left- and right-continuous, respectively, at all points t* € [0,T] in the sense of
distributions over TN x R. More precisely, for all t* € [0,T) there exist kinetic functions
5% on Q x TN x R such that setting f*(t*) = f*% yields f* = f almost everywhere
and

(fE(* £ e),¢) — (fFt),¢) el0 Ve CTY xR) P-a.s..
Moreover, fT = f~ for all t* € [0,T] except for some at most countable set.

Proof. Let ¢ € C*(TN xR) and a € CL([0,T)) and set ¢(z,t,&) = ¥(z, £)a(t). Integra-
tion by parts and the stochastic version of Fubini’s theorem applied to (3.15) yield

T
/0 gu (D) (DAt + (o, $)a(0) = (m, Bev)(a)  Peas.

where

t

golt) = (F(8), ) - /0 (£(5),b(€)- Vib)ds / (F(1), div (A(z) V) ds

0

= /0 L [ v 0006 dve(€) dwasts (3.16)

k>1
1 [t ,
- 2/0 /TN/Ragcb(x,g)G (x,8) drg s(&) da ds.

Hence 0ygy is a (pathwise) Radon measure on [0,7] and by the Riesz representation
theorem g, € BV([0,7]). Moreover, apart from the first one all terms in (3.16) are
continuous in ¢ hence (f, 1) € BV ([0,T]) almost surely. Let us denote the corresponding
set of full measure £}y, C ) to indicate its dependence on the chosen test function.
Due to the properties of BV -functions [4, Theorem 3.28], we obtain that (f(-,w), ),
w € Qy, admits left- and right-continuous representatives which coincide except for at
most countable set. Let them be denoted by (f(-,w),¥)™.

We will now establish three convergence facts (3.17), (3.18), (3.20) which together
imply the statement of the proposition. On the one hand, we infer for all t* € [0,7") and
w € Qd) that

t*+e 1 t*+e

<f(7§*,o.;),¢>+zlim1 <f(t,w),¢}>+dtzlimf <f(t,w),1j)>dt

e—0 ¢ t* e—0 ¢ $*
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hence by the dominated convergence theorem

t*+e .
1/t* (F), 0y dt 2 (f), )T i LO(Q)-w™. (3.17)

3

On the other hand, we consider a sequence ¢, | 0 and define (independently on ) for
almost all w € Q, z € TV, £ € R, and all t* € [0,T),

1 t*+€n
bt 9= [ pw g

En Jp-
For any t* € [0,T) the function f,(t*) is a kinetic function on X = Q x TV and by
(3.6) the assumptions of Lemma 3.2.9 are fulfilled. Accordingly, there exists a kinetic
function f** and a subsequence (n}) (which also depends on ¢*) such that

Far ()5 ot in LOQx TV x R)-w”. (3.18)

Note, that the domain of definition of f** does not depend on 1. As a consequence, we
obtain by the Fubini theorem, (3.17) and (3.18) that there exists a set of full probability,
denoted by €2, such that

(o (w),9) = (f(t*,w),9)"  Ywe Qy. (3.19)

Thus, the limit in (3.18) is independent of the chosen sequence (g,) and subsequence
(€ny). And furthermore, due to the Lebesgue differentiation theorem,

1 t*4¢e
lim — flw,z,t,8)dt = f(w,z,t*,§) for a.e. (w,x,t", &)

e=0¢€ Jyx

hence by the dominated convergence theorem, for almost every t* € [0,7T),

1 t*+e
/ fA)dt 2= f(t*)  in L¥(Q x TV x R)-w*. (3.20)
E t*
As a consequence, it follows from (3.18) that f**(w,z,€) = f(w,z,t*,£) almost every-
where in w, x, £ and the exceptional set here does not depend on .

Altogether, setting f+(t*) = f**, t* € [0,T), we finally conclude that f* = f
almost everywhere in w, z, t, £ and that (f*,4) is right-continuous, i.e. for all t* € [0,T)

<f+(t* + an);¢> — <f+(t*,(d),¢> Yw € (Lp

The rest follows immediately from the fact that the space C2(T™ xR) (endowed with the
topology of the uniform convergence on any compact set of functions and their first and
second derivatives) is separable. Indeed, if D is a countable dense subset of C2(TV xR),
then there exists a set of full probability {2p, C €2 such that

(Pt + e,w), ) — (fT(t"w),¥) el0 VY eD VYwe Qp,.
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Let now 9 € C?(TYN x R) be arbitrary. There exists (¢),) C D so that 1, — 1 in
C2(TN x R) and
[(FTE + o)) — (FTE) )| < [(FTE + ) —hn)]
H [ e n) = (FH(E), )]
+[(FHE), 0 — ).
If we restrict ourselves on Q2p, then the latter converge to zero, due to the boundedness
of £, and the claim follows. The proof of existence of the left-continuous representative
f~ can be carried out similarly and so will be left to the reader.
Now, it only remains to verify that there exists a countable set I C (0,7') such that

fH(t*) and f~(t*), equivalence classes in L™= (Q x TV x R), coincide for all t* € (0,T)\ I.
Due to separability of the test function space, it is enough to show that

(Fr@),¢) =(f~t"),v) YpeDy P-as. Vt'e (0,T)\I.

However, it follows directly from (3.19) and the fact that

(F,w), )" = (f(t",w), )" Vw e Qy
for all t* € (0,T) except for an at most countable set. O

From now on, we will work with these two fixed representatives of f and we can
take any of them in an integral with respect to time or in a stochastic integral.

As the next step towards the proof of the comparison principle, we need a technical
proposition relating two kinetic solutions of (3.1). We will also use the following notation:
if f: X xR — [0, 1] is a kinetic function, we denote by f the conjugate function f = 1— f.

Proposition 3.3.2. Let uy, ug be two kinetic solutions to (3.1) and denote fi = 1y, ¢,
f2 = 1y,~¢. Then fort € [0,T) and any nonnegative functions o € C°(TV), ¢ € C(R)
we have

N RQ bl
‘N RQ () I

where

t
I-E / / A7 (b(E) — b(O))- Vea(a, &y, ¢) dé dC de dy ds,
0 (']I‘N)Q RQ

J= IE/ /TN RQflfQZayj 1 (¥)0y; ) d€ d¢ da dy ds

1,5=1

t
—HE// /flfgzax] 1j(2)0y,0) A€ d¢ dx dy ds
0 (']I‘N)2 R2

i,7=1

t
- 1
IE:/O /(TN)2 /RZa(;v,f,%C) dv, ((€) da dna,1 (y, s, C)

t
— E/O /(‘TN)2 /RQ CY(HJ, €7 Y, <) dl/is(C) dy dnl,l(% s, 5)7
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_1 ' _ 241 2
- 2E/0/(TN)Z/RQO‘($7£7yaC)Z|gk($>£) gk(y7C)| dyx,s(f)dyy,s(g)dxdydsa

k>1

and the function « is defined as a(x,&,y,¢) = o(x — y)(§ — ().

Proof. Let us denote by {(-,-)) the scalar product in L?(TY x TN X Re x R¢). In order
to prove the statement in the case of f1 , f2 , we employ snmlar calculations as in [16,
Proposition 9] to obtain

E(f ()5 (1), ) =E{(frof20, )
+E /0 /(W /]R AR ()~ HQ)- Vaadgdc drdy ds

t
—I-E/ / fif Oy, (Aij(y)0y, ) A d( da dy ds
0 J(TN)2 JR2 ! 22 b (s )

ij=1
t
+EA /('JIN)2 R2 f1f2 Z a;r] zg 8 a) d{dgdﬂ?dyds
2] 1
1 ¢ -
+5E / /TN s oo f20ea GF dy, ((€) d¢ dy da ds (3.22)
1 t
) 2E/0 /(TN)2 R F10ca G5 dvy ((¢) d€ dy dads
t
_E/O /’]I‘N)2 - G1,2adui,s(£) dl/is(C) drdyds
t
_E/O /(TN)z o fz_agadml(x’37§)d<dy
t
! E/O /(TN)2 R2 fiocadma(y, s,¢) d€ dz.

In particular, since « > 0, the last term in (3.22) satisfies

t
]E/ / firocadma(y, s,¢) dé da
0 (TN)Q R2

t
:—E// /ad’/;s(f)dﬂfdnzl(y,&()
0 J(TN)2 JR2 ’
t
—E// /aduis(g)dxdngyg(y,s,g)
(TN)2 JR2 ’
// /adu §)dzdngi(y, s, )
TN)2 JR2

and by symmetry

t
—E// f5 Ogardmi (x,5,€) dC dy
o J(IN)2 Jr2

t
—E// /aduﬁs(g)dydnl,l(x,s,§).
0 ('H'N)Z R2 ’
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Thus, the desired estimate (3.21) follows. )
In the case of fi, f, we take t, 1 t, write (3.21) for f{ (t.), f5 (t,) and let
n — oo. O

Theorem 3.3.3 (Comparison principle). Let u be a kinetic solution to (3.1). Then there
exist uT and u~, representatives of u, such that, for all t € [0,T], f*(x,t,&) = Lyt (2,0)>¢
for a.e. (w,x,&). Moreover, if ui,ug are kinetic solutions to (3.1) with initial data u
and ug, respectively, then for all t € [0,T]

E|luy (t) — ug ()| prervy < Ellugo — uzoll oy (3.23)

Proof. Denote f1 = 1,,5¢, fo = Ly,>¢. Let (¢5), (or) be approximations to the identity
on R and TV, respectively. Namely, let ¢ € C>°(R) be a nonnegative symmetric function
satisfying [p 1 =1, suppy C (—1,1) and set

9@ = 59(3).

For the space variable 2 € TV, we employ the approximation to the identity defined in
Lemma 3.2.5. Then we have

B[ [ @toff o
_E / / o — Y05 (€ — O FE (1, ) FE (1, C) dEAC dar dy + (7, 8),
(TN)2 JR2

where lim; 5,0 7:(7,d) = 0. With regard to Proposition 3.3.2, we need to find suitable
bounds for terms I, J, K.
Since b has at most polynomial growth, there exist C > 0, p > 1 such that

b(&) = b(Q)] < T(EQIE=Cl,  TEQ<CO+[EP T +1¢P).

Hence
t —
<m0 [ ARTEOE— (us(e O dedc|Vaona —yldrayds.

As the next step we apply integration by parts with respect to (, £&. Focusing only on
the relevant integrals we get

/f1 /fz T(€O)l€ — Cls(€ — ()¢ de
/f1 / (&, C)E — s 6 — ¢)ac’ deé
¢
- [ @ [ e ole- Clule - acasat 0 32y
_ / 1) / T - Cls(E — )¢ dedi2 ()
R2 ¢
= [ 10 (a0
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where . .
T(6,¢) = / /C L, C)E — (e — ¢ad! de.

Therefore, we find
t
H<s [ [ ] 101 (OO Vaorlo - y)|drdy s
0 (']TN)2 R2
The function 7" can be estimated using the substitution £’ = ¢ — ('
reo-[ [ I(g" + ¢, e (€ de” dC’
¢ 1€7]<06, & <€—¢’
£+6 1 /! / !
< 05/ max rE"+¢,0)d
PR A (€ +¢,¢)d¢

€46
<5 / (14 €=t + [P d¢!
¢
< O8(1+ |EP + [¢]?)

hence, since v!, v? vanish at infinity,

1] < Ct5/ |vaT(LE‘)‘ dz < Ctér— L.
TN
We recall that f, = 1u1(x,t)>§7 fo= ]-UQ(y,t)>C hence

Oefr=—v'=0upn=e  Ocfo= V"= —0u(un=c

and as both ui, us possess some regularity in the nondegeneracy zones of A due to
Definition 3.2.2(ii), we obtain as in (3.11)

g Vfl =0 Vu1 5u1(z,s):§7 g V‘]EQ = —0 VUQ 5u2(y,s):§

in the sense of distributions over TV x R. The first term in J can be rewritten in the
following manner using integration by parts (and considering only relevant integrals)

/ "1/ fz Eyj (‘1ij(y)8yi97—($—y))dydx
TN TN
- /(TN)2 fi(z,s, f)Aij(y)ayjfE(y, 8,C) 0z, 0 (x — y)dz dy.

and similarly for the second term. Let us define

3
05(6) = / 5(¢) dc.
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Then we have J = J; + Jo 4+ J3 with
J =— E/Ot /(TN)Q(qul)*U(.T)U(I')(VQT)(.’L' —y)Os (ul(x, s) — ua(y, s))dmdyds,
=z o (T2 7)) (T — )05 (11(x,9) — ol ) s,
== [ @9 o) VynPle s -

X g (ul(x, s) — ua(y, 5)) dx dy ds.

Let
n-k | /( o T O (Fyalere ) () (v, ) dedy .

We intend to show that J; = H+0(1), Jo = H+o0(1), where o(1) — 0 as 7 — 0 uniformly
in ¢, and consequently

J=- ]E/O /(TN)JJ(QC)qul — a(y)VyqugT(x —9)

x s (ur(z, ) — ua(y, s)) dedyds + o(1) < o(1).

(3.25)

We only prove the claim for J; since the case of Jo is analogous. Let us define

g(xz,y,s) = (Vmul)*a(x)@g(ul(:v,s) — uQ(y,s)).

Here, we employ again the assumption (ii) in Definition 3.2.2. Recall, that it gives us
some regularity of the solution in the nondegeneracy zones of the diffusion matrix A and
hence g € L2(2 x TY x T} x [0,T7). It holds

Ji=-E /Ot /(TN)2 g(z,y,s) (0(3:) — U(y)) (Vor)(x —y)dedyds
—u [ [ o) (Ve - ) dedyas
H= E/Dt /(TN)2 g(z,y,s)div, (U(y)QT(aj — y)) dxdyds
=FE /Ot /(TN)2 g(x,y,s)div (U(y))QT(a: —y)dzdyds

B[] 9900 (Te @ —y) dedyds,

where divergence is applied row-wise to a matrix-valued function. Therefore, it is enough
to show that the first terms in J; and H have the same limit value if 7 — 0. For H, we
obtain easily

IE/O /(’JI‘N)2 9(z,y,s)div(c(y)) or(z — y) dz dyds

— E/O /IFN 9(y,y, s)div (J(y)) dyds
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so it remains to verify
t
_E/ / 9(x,y,s) (0(33) - a(y)) (Vor)(z —y)daxdyds
0 (TN)Q
t
— IE/ / 9(y,y,s)div (o(y)) dy ds.
0 JTN

Here, we employ again the arguments of the commutation lemma of DiPerna and Lions
(see [17, Lemma IL.1], c¢f. Lemma 3.2.5). Let us denote by g° the i** element of g and
by o the i row of o. Since 7|Vo,|(-) < Coa-(-) with a constant independent of 7, we
obtain the following estimate

L.

< C esssup
z/,y’ETN
|$/_yl|§7_

dyds

[ o >( (@) - i<y>)<vQT><x_y)dx

U( / / Yz, y, s }QQT:E— y)dx dy ds.
TN

Note that according to [24], [66], the square-root matrix of A is Lipschitz continuous
and therefore the essential supremum can be estimated by a constant independent of 7.

Next
/ / $y, |Q27—1’— )dxdyds

3
(// Y2y, 5 lng(w—y)dwdyd8>
']TN
1
2
x (/ 02 (z — )dxdy)
TN)2
3
(// Veup)*o(z ‘/ o2r(z —y )dydxds)
’I[‘N
Viu

So we get an estimate which is independent of 7 and §. It is sufficient to consider the
case when ¢’ and ¢° are smooth. The general case follows by density argument from the
above bound. It holds

— E/Ot /(’JI‘N)2 g'(z,y,s) (O‘i(iﬂ) — Ui(y)> (Vor)(x —y)drdyds

= ‘TNlﬂE/ot /mrN) /1 g'(x,,5) Do’ (y + r(z —y))(z — y)

(VQ)( - )drd:):dyds

1)o(z HLZ(QxTNx[o,T])'

t 1
= —E/ / / 9'(y+712,y,8) Do'(y +r7z)z- (Vo) (z) drdzdyds
0 J(mN)2Jo

t
— —E// 9"(y,y,s)Da'(y)z - (Vo) (2) dzdy ds.
0 (TN)2
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Moreover, by (3.14),
t . .
_E/ / 9'(y,y,5) Da' ()2 (Vo) (2) dz dy ds
0 (’]I‘N)2

= E/Ot/TNgi(y, y, s)div (o' (y)) dy ds

and accordingly (3.25) follows.
The last term K is, due to (3.3), bounded as follows

L t 2 1 2
K< B [ ool —al* [ vt~ v (4 () ey

Lel B o o )
+2E/O /(TN)QQT(QU y) /R (€= Q& = CIR(I€ = l)dv o (§)dwys () dzdyds
Lt

LtCyuh(6
< % |x—y\2QT(3:—y)dxdy+7g (9) / or(z —y)dady
(TN)? (TN)2

where Cy = supgcg [§1(€)]. Finally, we set § = 743 let 7 — 0 and deduce

e[, [ roisnaa<e | [ b

Let us now consider f; = f» = f. Since fo = 1,,>¢ we have the identity fo fo=0
and therefore f*(1 — f*) = 0 a.e. (w,z,€) and for all £. The fact that f* is a kinetic
function and Fubini’s theorem then imply that, for any ¢ € [0,7], there exists a set
¥ € Q x TV of full measure such that, for (w,z) € %y, f*(w,z,t,&) € {0,1} for a.e.
¢ € R. Therefore, there exist u™ : Q@ x TV x [0,T] — R such that f* = 1,4 for a.e
(w,z,€) and all t. In particular, u™ = [L(f* — L1os¢)d¢ for ae. (w,z) and all ¢. It
follows now from Proposition 3.3.1 and the identity

|04—/3’=/R!1a>5—15>§|d§, o, BER,

that ut =u~ = wu for a.e. t € [0,T]. Since

T _ (.t \+
JEP e
we obtain the comparison property
+
E|l (ur () — uz (¢)) HLl(’]I‘N) < El|(u10 - u2»0)+HL1(’]I‘N)'

O

As a consequence of Theorem 3.3.3, namely from the comparison property (3.23),
the uniqueness part of Theorem 3.2.10 follows. Furthermore, we obtain the continuity
of trajectories in LP(TY).

Corollary 3.3.4 (Continuity in time). Let u be a kinetic solution to (3.1). Then there
exists a representative of u which has almost surely continuous trajectories in LP(TN),
for all p € [1,00).
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Proof. Remark, that due to the construction of f* it holds, for all p € [1,00),

E sup / lut(z,t)|Pde =E sup / / [P dvE,(€) dz < C. (3.26)
TN TN JR ’

0<t<T 0<t<T

Now, we are able to prove that the modification u™ is right-continuous in the sense of
LP(TY). According to the Proposition 3.3.1 applied to the solution f*, we obtain

(ffit+e),v) — (fH(1),v), £l0, vy e LHTN x R).

Setting 9(z, &) = ¥1(x)detp2(€) for some functions ¢y € LY(TV) and d¢yp € C°(R), it
reads

/ V1(z)pe (ut (z,t +€)) do — / V1 (z)he (ut (z,t)) da. (3.27)
TN TN

In order to obtain that u™(t + &) = ut(t) in LP(TN), p € [1, 00), we set ¥9(&) = Exs(€)
where (xs) is a truncation on R, i.e. we define xs5(§) = x(0¢), where x is a smooth
function with bounded support satisfying 0 < y < 1 and

it g < g,
x(f)—{(), it e > 1,

and deduce

‘/ Yr(z)ut(z,t+¢)dr — Y1 (z)ut(z,t) do
TN TN

= /TN [1(2) wh (2,8 + )| Lyt (g,040) 126 A2

_I_

| @t (@t + ) — dr (@b (u* (@,1)) do
+ /’ﬂ‘N |1 (2) w™ (2, )| Lyt (.01 /26 A — 0, £l0,

since the first and the third term on the right hand side tend to zero as § — 0 uniformly
in £ due to the uniform estimate (3.26) and the second one vanishes as € — 0 for any ¢
by (3.27).

The strong convergence in L?(T") then follows easily as soon as we verify the con-
vergence of the L?(T")-norms. This can be done by a similar approximation procedure,
using ¥y (x) = 1 and ¥3(€) = &2xs(€). For the strong convergence in LP(T) for general
p € [1,00) we employ the Holder inequality and the uniform bound (3.26).

A similar approach then shows that the modification u~ is left-continuous in the
sense of LP(TY). The rest of the proof, showing that u~(t) = u*(¢) for all t € [0, T] can
be carried out similarly to [16, Corollary 12]. O

3.4 Existence - smooth initial data

In this section we prove the existence part of Theorem 3.2.10 under an additional as-
sumption upon the initial condition: ug € LP(£2; C*°(TV)), for all p € [1, 00). We employ
the vanishing viscosity method, i.e. we approximate the equation (3.1) by certain nonde-
generate problems, while using also some appropriately chosen approximations @°, B¢ of
@ and B, respectively. These equations have smooth solutions and consequent passage
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to the limit gives the existence of a kinetic solution to the original equation. Never-
theless, the limit argument is quite technical and has to be done in several steps. It is
based on the compactness method: the uniform energy estimates yield tightness of a
sequence of approximate solutions and thus, on another probability space, this sequence
converges almost surely due to the Skorokhod representation theorem. The limit is then
shown to be a martingale kinetic solution to (3.1). Combining this fact and the pathwise
uniqueness with the Gyongy-Krylov characterization of convergence in probability, we
finally obtain the desired kinetic solution.

3.4.1 Nondegenerate case

Consider a truncation (x.) on R and approximations to the identity (), (1) on TV xR
and R, respectively. To be more precise concerning the case of TV x R, we make use of
the same notation as at the beginning of the proof of Theorem 3.3.3 and define

ool ) = o D) w(2).

3 3

The regularizations of @, B are then defined in the following way
B (&) = ((Bi xte)xe)(§), i=1,...,N,

((gr * e)xe) (2, €), if k< [1/e],

9e(@, &) = {07 if k> |[1/¢],

where z € TV, ¢ € R. Consequently, we set BS = (Bi,...,B%) and define the operator
¢ by &°(2)ex = gi(-,2(")), z € L*(TV). Clearly, the approximations B¢, g are of class
C*° with a compact support therefore Lipschitz continuous. Moreover, the functions gj
satisfy (3.2), (3.3) uniformly in € and the following Lipschitz condition holds true

vreTV V& CER Y gk &) — gile, OF < Lef¢ — ¢ (3.28)
E>1

From (3.2) we conclude that ¢°(z) is Hilbert-Schmidt for all z € L2(T¥). Also the
polynomial growth of B remains valid for B and holds uniformly in €. Suitable approx-
imation of the diffusion matrix A is obtained as its perturbation by I, where I denotes
the identity matrix. We denote A* = A + €l.

Consider an approximation of problem (3.1) by a nondegenerate equation

du® + div (B (u®))dt = div (A*(z) Vu©)dt + 9 (u®) dW,

W (0) = up. (3.29)

Theorem 3.4.1. Assume that ug € LP(; C®°(TY)) for all p € (2,00). For any e > 0,
there exists a C™°(T™)-valued process which is the unique strong solution to (3.29).
Moreover, it belongs to

LP(; C([0, T]; Wh(TM))) for every p € (2,0), q € [2,00), 1 € N.

Proof. For any fixed ¢ > 0, the assumptions of [32, Theorem 2.1, Corollary 2.2] are
satisfied and therefore the claim follows. O
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Let m® be the parabolic dissipative measure corresponding to the diffusion matrix
A+ eI. To be more precise, set

dni(z,t,£) = |o(z)Vu© ‘ ddye (z,0)(§) dz dt,
an( ) = 5|vu6| d(sus(x t) (g) dz dt,

and define m® = nj + n5. Then, using the same approach as in Section 3.2, one can
verify that the pair (f® = 1yc5¢,m®) satisfies the kinetic formulation of (3.29): let
¢ € CX(TN x R), t € [0,7], then it holds true P-a.s.

(F00) = (o) = [ (F()8(6)- i) ds
—/t<f5(s),div (A(x)w)>ds—e/ (f5(s), Ap) ds (3.30)

1 t
/ (Buee O (u) AW, 0) + /0 (Sur—c G2, Be0) ds — (m*, i) (0, )
Note, that by taking limit in € we lose this precise structure of ns.

3.4.2 Energy estimates

In this subsection we shall establish the so-called energy estimate that makes it possible
to find uniform bounds for approximate solutions and that will later on yield a solution
by invoking a compactness argument.

Lemma 3.4.2. For all € € (0,1), for all t € [0,T] and for all p € [2,00), the solution
u® satisfies the inequality

Ellu () gy < C(1+Elluoll}ppw)- (3.31)

Proof. According to Theorem 3.4.1, the process uf is an LP(T" )-valued continuous semi-
martingale so we can apply the infinite-dimensional It6 formula [15, Theorem 4.17]
for the function f(v) = [jv[]}, (TV)- If ¢ is the conjugate exponent to p then f'(v) =

plv[P~2v € L4(TV) and
f'() =plp - DofP~?1d € .2 (LX(TY),LYTY)).
Therefore
[l (t )HLP ™) Hu0||§p(TN) —p/ot /TN \ueyp—ng div (Bé(ué)) dz ds
+p/t/ |uf [P~ 2uf div (A(z)Vu®) dz ds
0 JTN

t
+6p/ / u® P20 Auf dx ds (3.32)
+p2/ / [uf [P~ 2uf g5 (2, u®) dz d By (s)
k>1

t
+ *p(p— 1)/ / [uf[P~2G? (2, u) dz ds.
2 0 TN
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If we define He(§) = fog |¢[P=2B¢(¢) d¢ then the second term on the right hand side
vanishes due to the boundary conditions

t
—p/ / |uf [P~ 2uf div (B(u®))dz ds = / / div (H*(u)) dzds = 0.
0 JTN TN

The third term is nonpositive as the matrix A is positive-semidefinite
t
p [ [ e an(awva)aras
0 JTN
t
= —p/ / uf P2 (V) " A(z) (Vuf) deds < 0
o JTN

and the same holds for the fourth term as well since A is only replaced by eI. The last
term is estimated as follows

1 t t
2p(p—1)/ / |u5|p_2Gg(x,u5) dxds<C/ / \ua\p_2(1+|u5|2) dzds
0o JTN
<O+ [ I o).

Finally, expectation and application of the Gronwall lemma yield (3.31). O

Corollary 3.4.3. The set {u®; e € (0,1)} is bounded in LP(Q; C([0,T); LP(TN))), for
all p € [2,00).

Proof. Continuity of trajectories follows from Theorem 3.4.1. To verify the claim, an
uniform estimate of Esupg<,<r [[u®(t)[}, (TV) is needed. We repeat the approach from
the preceding lemma, only for the stochastically forced term we apply the Burkholder-
Davis-Gundy inequality. We have

T
s 050 o) < Bltolfeny + O (14 [ BN on )

0<t<T
/ / |u|P~ 2uf g5 (z,u) da dB(s)

+pE sup
0<t<T

k>1



64 Chapter 3 Degenerate Parabolic SPDEs

and using the Burkholder-Davis-Gundy and the Schwartz inequality, the assumption
(3.2) and the weighted Young inequality in the last step yield

E sup Z/ / uf P20 g8 (, u€) dar d Bx(s)
0st=T1 )~y
2 3
SCE(/ > </ !uglp_l\gi(w,uaﬂdx) ds)
k>1
%
2
SCE(/ H‘ua‘Z)Hm (TV) ZH |u5| 2 |9k '))|HL2(’]I‘N)dS>
k>1
! 3
SCE(/O HUEHLP TN) (1+||u6||Lp('[[‘N )ds)
: r .
<CE|[ sup ||u ) 1+/ u ) )
(0 O en) (14 [ IO

1 T
< LE sup WO, 0m, + (1+/0 EJju ()] g, 4 )

0<t<T

Therefore

T
B s [0, < (1 + Elnleny + [ By )

and the corollary follows from (3.31). O

3.4.3 Compactness argument

To show that there exists u : @ x TV x [0,7] — R, a kinetic solution to (3.1), one needs
to verify the strong convergence of the approximate solutions u®. This can be done by
combining tightness of their laws with the pathwise uniqueness, which was proved above.

First, we need to prove a better spatial regularity of the approximate solutions.

Towards this end, we introduce two seminorms describing the W !-regularity of a func-
tion u € LY(TV). Let A € (0,1) and define

u(y)|
— dx dy,
) /w/w [z —y \NH

pé\(u): sup / / y)|o-(x — y) dz dy,
0<7<2DyN T7 JTN JTN

where (o,) is the approximation to the identity on TV (as introduced in the proof of
Lemma 3.2.5) that is radial, i.e. o,(z) = 1/7¥0(|z|/7); and by Dy we denote the
diameter of [0,1]"V. The fractional Sobolev space W™ (TV) is defined as a subspace of
LY(TN) with finite norm

lullwrsgrny = llull ey +p* (w)-
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According to [16], the following relations holds true between these seminorms. Let
s € (0, ), there exists a constant C' = C) , y such that for all u € LY(TV)

PR S OPW, P S 5

Py (). (3.33)

Theorem 3.4.4 (W<l-regularity). Set ¢ = min{o%_l,%}, where a was introduced in
(3.4). Then for all s € (0,5) there exists a constant Cr,s > 0 such that for all t € [0,T]
and all e € (0,1)

Ep®(u®(t)) < Crs(1+Ep*(ug)). (3.34)

In particular, there ezists a constant Cr s, > 0 such that for all t € [0,T]
IEHuE(t)HWs,l(TN) < CO7s,u0 (1 + IE||u0HW<,1(TN)). (3.35)

Proof. Proof of this statement is based on Proposition 3.3.2. We have

E/(TN)Q /]R or(x —y) f* (2, ,8) f(y,t,§) d§ dx dy

= E/ / or(x — y)hs(§ — O (x,1,€) f*(y,t,¢) d¢ d¢ dw dy dt + &
(TN)2 JR?

<B[ [ oo - y)us(e — ol foly: dEdCady +5-+ T+ + K
(TN)2 JR2

< E/ / or(x —y) folz, &) foly, &) dé do dy + 20 + I° + J¢ + K€,
(TN)2 JR

where I, J¢, K® are defined correspondingly to I, J, K in Proposition 3.3.2 but using the
approximated coefficients B¢, A%, ¢ instead. From the same estimates as the ones used
in the proof of Theorem 3.3.3, we conclude

B[ era—n)(uf(et) ~ ui(y.0) " dedy
(TN)2
< E/(TN)2QT(JJ —y)(uo(z) — uo(y))Jr dady +20 + Ct(67'r + 67172 +6%) + J=.
In order to control the term J¢, recall that (keeping the notation from Theorem 3.3.3)
t
Fe—B[ [ (Vo)) (Ve )05 u(x) — w(y))dsdyar,
0 (TN)Q
t
B[ [ (T o) (Ve @~ )05 @) — (1) dadyr,

t
B[ [ lo@Vat w9y ede -y
0 J(TN)2
X s (u(z) — u®(y)) de dydr
t
—ck / / Vo = Vyu [Por (2 = y)ibs (uf (2) = u* () dadydr
0 J(TN)2
=J1+Jo+J3+ Js.

The first three terms on the above right hand side correspond to the diffusion term
div(A(x)Vu®). Since all u® are smooth and hence the chain rule formula is not an issue
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here, J4 is obtained after integration by parts from similar terms corresponding to e Auc.
Next, we have

T ]E/ /TN Vou') o(z) divy (o ( ()95 (ue(x) - ue(y)))Q‘r(ﬂC — y)dadydr
i E/o /(TNP )" 0(2) (0(9) = o)) (Vor) (& — y)Os (v (x) — u (y)) drydr
and
12 = / /TN)2 (Vyu” y) dive ( ()05 (ua(x) - “6(24)))&(36 — y)dadydr
* E/O /(TL‘N)Q Vyu') o(y) U (x) — U(y)><VQT)($ — )05 (v (z) — v (y))dadydr
hence J; = H+ R; and J, = H + Ry where

- | / o (VY @O0 (Vg ar — )i (4 () — (1) e

e[ /w V) (@) - u'(y)

% (o) = o(@) (Vo) (@ = y) = div (o)) e (& — ) ) dadydr
Ro=E [ /TN (V)"0 (1)8s (" (@) (1)
% (o) = o)) (Vor)(@ = y) + div ((x)) or (& — ) ) dudydr.

As a consequence, we see that J¢ = J4 + J5 + R1 + Ro where

- _E/ /mz Vo' — o(y)Vyu'| ez — y)
x s (uf(x) — u(y)) dedydr

and therefore J¢ < R; 4+ Ro. Let us introduce an auxiliary function

3
- / 05(¢) d¢
0
With this in hand we obtain

R; = IE/ /TN)2 o(2)VTs(u® () — u'(y))
% (o) = o(2)) (Ver) (@ = y) = div (o)) er (& — ) ) dadydr
- E / 1, 5@~ @) [ (o) (o) @) (Ver) &~

2) div (o)) (Vor) (& — ) + 0(2)(o(y) — o(2)) (Ve,) (& — y)
fdw( () div (o (9))r(z — ) = o(2) div (o(4)) (Vor) (& — y) | dadydr
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and similarly

Rs - / [ 106 ) [ o) o10) ) V) )

() div (0(1)) (Ver)(z = y) = o(y) (o(z) — (1)) (Ver)(z — y)
+div (o(y)) div (o(z)) o7 (z — y) — o(y) div (o(z)) (Vor)(z — y)} dzdydr

hence
Ri+Rg = E/o /('JTN)2 T (u () — u®(y))
X [Q(div (o(x)) +div (o(y))) (o(z) — o(y)) (Vor)(z —y)
+ (0(2) - o)) (V2er)(z — ) + 2div (o (x) div (o(0)or (& — )] ey,

Since |T5(&)| < €], 7|Vo-|(-) < Co2,(+) and 72|V20,|(:) < Co2-(+) with constants inde-
pendent on 7, we deduce that

t
FERARZCE [ [ oo y)lut@) - ()] dedydr
0 (']I‘N)Q
and therefore
E/ or(z = y)|u(z,t) — v (y,t)| dz dy
(TN)2

< E/ or(z — y)|uo(z) — uo(y)|dedy + Cr (6 + 67+ 6172 + 6%)
(TN)2
¢
+ CUE/ / 02 (x — y)|u (2, 5) — v (y, )| dw dy dr.
0 (TN)Q

By optimization in d, i.e. setting § = 77, we obtain

Cr(6+ 61 5172 4 g
sup r(0+ 671+ 6712 +6%) <
0<7<2DNn T

where the maximal choice of the parameter ¢ is min{a%rl, %} which corresponds to
£ = max {%H, %} As a consequence,

IE/ or(x — y)|u(2,t) — u®(y,t)| de dy

(TN)2
t

< Cr <T< + 7 Ep°(uo) +E/ / o2r(x — y)|u (2, 7) - ug(yﬂ")‘dxdydT)'
0 JTv

Let us multiply the above by 77175, s € (0,¢), and integrate with respect to 7 €
(0,2Dp). As |z —y| < 7 on the left hand side, we can estimate from below

2oy 1 1 ! Nts—1 C
——or(r—y)dr = ANF=Lo()dA > ——>
/Ia:y Fies orle T |z —y|Nt /la:y/wN oA > |z —y[ N+
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and similarly for the last term on the right hand side we estimate from above

L ) dr< — 5
/xy|/2 “Ts 02 (z —y)dr < P

Accordingly,

t
Ep®(u®(t)) < Crs <1 + Ep*(up) + E/ p*(u(r)) dr)
0
and (3.34) follows by the Gronwall lemma. Furthermore, due to (3.31)

1
Ellu(8) 2 (o) < Ellu ()l 2oy < C(1+ (Blluol22am))?)

hence we obtain (3.35). As a consequence of the previous estimate, the constant in
(3.35) depends on the L?(Q; L?(TY))-norm of the initial condition. O

Corollary 3.4.5. For ally € (0,5) and q > 1 satisfying vq < o, there exists a constant
C > 0 such that for all € € (0,1)

Ellu <C. (3.36)

3
HLq 0, ;W4 (TN))

Proof. The claim is a consequence of the bounds (3.31) and (3.35). Indeed, fix v € (0,<)
and g € (1,00). We will use an interpolation inequality:

H ||W’Y‘1 (TN) < CH ||WW0 a0 TN)H : H?/I/"/vaI('I[‘N)’ (337)

where Y0,M € R’ qo,q1 € (07 OO), Y= (1 - 9)70 + 9’71) 1= % + (%7 0 € (07 1)7 which
follows from a more general result [75, Theorem 1.6.7(1 or 674, Theorem 2.4.1]. Fix

€ (vg,<) and set 79 =5, 71 =0, go = 1, ¢ = p. Then we obtain § = =2, p = (z:zzq
and
g 4 € (1-6)q €
E | N @yrarny 46 S CE | (@)l 1 Ol )
1) 1-(1-6)g
< C(Elw Olporweavy)  (BIEO0 0w <c.
O

Also a better time regularity is needed.

Lemma 3.4.6. Suppose that A\ € (0,1/2), ¢ € [2,00). There exists a constant C > 0
such that for all € € (0,1)

E|lu C. (3.38)

a”c)\ OT]H (TN)) S
Proof. Let q € [2,00). Recall that the set {u®; ¢ € (0,1)} is bounded in
LI(Q;C(0,T; LY(T))).

Since all B¢ have the same polynomial growth we conclude, in particular, that

{div(B*(v®))}, {div(A(z)Vu)}, {eAu}
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are bounded in L9(; C(0,T; H=2(T%))) and consequently

w — /O'@E(ua)dW‘

In order to deal with the stochastic integral, let us recall the definition of the
Riemann-Liouville operator: let X be a Banach space, p € (1,00], @« € (1/p,1] and
f € LP(0,T;X), then we define

q

E
‘ CH([0,7];H=2(TN)) —

(Raf)® = 5y [ (=905 re o1

It is well known that R, is a bounded linear operator from LP(0,7; X) to the space of
Holder continuous functions C*~/P([0,T); X) (see e.g. [69, Theorem 3.6]). Assume now
that ¢ € (2,00), @ € (1/¢,1/2). Then according to the stochastic Fubini theorem [15,
Theorem 4.18]

/ & (u(s)) AW (s) = (RaZ) (1),

0

where

Z(s) = F(lla) /03(8 ) (u () W ().

Therefore using the Burkholder-Davis-Gundy and Young inequality and the estimate

(3.2)
o [ swran
0 co=1/4((o, T}-L?(TN))

q
2
<C/ </ ) H 5( 5)‘|%2(H;L2(TN))dS> dt

. T
- CT?(I_QQ)E/ <1 + |luf(s )||L2('I[‘N )
0

< OT41-2) (

q

< CEIZN Lo 1.r20vy)

1+ HuEHLq Q Lq(OTLQ(TN)))) ¢

and the claim follows. O
Corollary 3.4.7. For all 9 > 0 there exist > 0 and C > 0 such that for all € € (0, 1)
Ellu|lcs o,z (rvy) < C- (3.39)

Proof. If ¢ > 2, the claim follows easily from (3.38) by the choice g = A. If ¥ € (0,2)
the proof follows easily from interpolation between H~2(T¥) and L?(T"). Indeed,

0
E sup [l Oll-oge) < CB( sup IOl amy sup N Ol faer,)

» 1
VAW a\ g
< R 0
< 0(E(023£T\|u Ol [y > (E(oi?%'u (o)) )

<C({1+E sup ||lu (1-0)p >p<1+E sup |lu >
<c(1vE s 11, s (Bl oy

-
Q=
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where the exponent p for the Holder inequality is chosen in order to satisfy (1 —6)p = 1,
i.e. since 6 = %, we have p = %. The first parenthesis can be estimated using (3.38)
while the second one using (3.31). Similar computations yield the second part of the
norm of C?([0, T]; H=?(TV)). Indeed,

[[u () = w*(s) [ g-o(7v)

E
0<s,t<T |t — s’
s#t
s () — us ()13
<CE| sup i ™) sup |Ju®(t) — uE(S)H%Q('H‘N)
0<5,t<T it — s|P 0<s,4<T
s#t sF#t
—0)p 1 1
lus () = u(s) |~y \ ;
<C|14+E su <1+E sup |luf(t)]|% >
( W = 5P P, 1w O 2 pvy
s#t
where the same choice p = 2 and the condition Sp € (0, 3), which is needed for (3.38),
gives (3.39) for 5 € (0, ) O
Corollary 3.4.8. Suppose that k € (0, m) There exists a constant C > 0 such that
for alle € (0,1)
Ellu®|| g (0,7;22(rvy) < C. (3.40)

Proof. 1t follows from Lemma 3.4.6 that

Ellu <C, (3.41)

aHH)\ 0,T;H~ 2(']I‘N))
where A € (0,1/2), ¢ € [1,00). Let v € (0,¢/2). If K = O\ and 0 = —260 + (1 — )7 then
it follows by the interpolation (see [2, Theorem 3.1]) and the Holder inequality

Bl gre(o.zzcrvyy < CE (16 W 01,012 )uusnm —

(1—6)r ;
EJlu| )"

< C<EH“ L2 OTHW(’JI‘N))

EHHA(OTH (’JFN) (

where the exponent r is chosen in order to satisfy (1 — 0)r = 2. The proof now follows

from (3.36) and (3.41). O

Now, we have all in hand to conclude our compactness argument by showing
tightness of a certain collection of laws. First, let us introduce some notation which
will be used later on. If E is a Banach space and t € [0,7], we consider the space
of continuous E-valued functions and denote by g, the operator of restriction to the
interval [0,¢]. To be more precise, we define

0 : C([0,T]; E) — C([0,t]; E) (3.42)

Plainly, g, is a continuous mapping. Let us define the path space
X, = {u e L2(0,7; L2(TV)) n C([0, T); H-(TV)); ogu € LZ(TN)}
equipped with the norm

-1, =1 HL2(0,T;L2(TN)) + - HC([O,T];H*l(’]TN)) + lloo - HL?(TN)-
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Next, we set Xy = C([0,T];4p) and X = X, x Xy. Let py,e denote the law of u® on
Xy, € € (0,1), and pw the law of W on Xyy. Their joint law on X is then denoted by

€

ue.

Theorem 3.4.9. The set {u; e € (0,1)} is tight and therefore relatively weakly compact
m X.

Proof. First, we employ an Aubin-Dubinskii type compact embedding theorem which,
in our setting, reads (see [54] for a general exposition; the proof of the following version
can be found in [22)):

L2(0,T; HY(TN)) 0 H*(0, T; L*(TV)) <5 L2(0, T; L*(TV)).
For R > 0 we define the set
Bi g ={ue L*0,T; H'(TY)) n H*(0,T; L*(T"));
lwll 20,1 (o) + 1wl gm0, 7,2 (7)) < R}
which is thus relatively compact in L%(0,T; L2(TY)). Moreover, by (3.36) and (3.40)

R R
pe (BY ) < P(HUEHL?(O,T;HV(TN)) > 2) +P<HUEHH"~(O,T;L2(TN)) > 2>

C

2
< E(EHUSHLQ(O,T;HV(’EN)) +EHU5HH~(0,T;L2(TN))> Sy

In order to prove tightness in C([0,7]; H~'(T")) we employ the compact embedding
O%([o. T} H(TN)) % OF([0, T): HH(T) = (0.7 HH(T)),
where 3 < 8, 0 < ¥ < 1. Define
Bo g ={ue€ C?([0,T); H*(TV)); llull oo o.13.5-0 (o) < R}

then by (3.39)

1 C
pus (BS'R) < REHUEHCﬁ([O,T};H—ﬁ(TN)) <5

Tightness for the initial value is guaranteed as well since u®(0) = wg is smooth. As a
consequence, the set

Br = {’U, € BI,R N BQ,R; HQOUHHl(TN) < R}

is relatively compact in X, and if n > 0 is given then for some suitably chosen R > 0 it
holds true

e (BR) Z 1-— m,

we obtain the tightness of {j,e; € € (0,1)}. Since also the laws pg and py are tight as
being Radon measures on the Polish spaces Xy and Xy, respectively, we conclude that
also the set of their joint laws {u®; € € (0, 1)} is tight and Prokhorov’s theorem therefore
implies that it is also relatively weakly compact. O
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Passing to a weakly convergent subsequence p™ = p* (and denoting by p the
limit law) we now apply the Skorokhod representation theorem to infer the following
proposition.

Proposition 3.4.10. There exists a probability space (Q,j,@’) with a sequence of X -
valued random variables (4™, W™), n € N, and (a, W) such that

(i) the laws of (@™, W™) and (i1, W) under P coincide with u" and p, respectively,
(i) (@",W™) converges P-almost surely to (@i, W) in the topology of X,

Remark 3.4.11. Note, that we can assume without loss of generality that the o-algebra
F is countably generated. This fact will be used later on for the application of the
Banach-Alaoglu theorem. It should be also noted that the energy estimates remain
valid also for the candidate solution @. Indeed, for any p € [1,00), it follows

E ess sup || @(t)

<liminf E sup |a"(t)
0<t<T n—oo

0<t<T

— T n p <
il e 1 Ol < &

||ip(’]I‘N) ||pip(']1‘N)

Finally, let us define a complete, right-continuous filtration (ﬁ;t) such that all the
processes u, W, ", n € N, are (.%;)-adapted, that is

Fy = ﬂo(o(gsﬂ, o, W,0,0" n € N)U{N € Z; B(N) = 0}), t €[0,T.

s>t

Then u, 4", n € N, are (cgz})-predictable H~1(TV)-valued processes since they have
continuous trajectories. Furthermore, by the embeddings LP(T) — H~Y(TV), p €
[2,00), and L?(TV) < LP(T¥), p € [1,2), we conclude that, for all p € [1,00),

@, " € LP(Q x [0,T),P,dP @ dt; LP(TV)),  neN,

where P denotes the predictable o-algebra associated to (F)t>0-

3.4.4 Passage to the limit

In this paragraph we provide the technical details of the identification of the limit process
with a kinetic solution. The technique performed here will be used also in the proof of
existence of a pathwise kinetic solution.

Theorem 3.4.12. The triple ((Q,ﬁ, (Jt),f?’), W,ﬂ) is a martingale kinetic solution to
the problem (3.1).

Let us define functions
fr=Tynse : QO x TV x [0,T] x R — R,

= Tanse, f=1ase : O x TV X [0,T] x R — R,

and measures

dm"(x,t,£) = dnf(z,t,§) + dns(z,t,§),
dm"(z,t,§) = dinf (x,t,§) + dig(z,t, ),
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where
A (2,4,€) = o (2)Vu"[* db a0 (€) d dt,
dnj (z,t,€) = en|Vu" ‘ ddyn (g4 (§) dz dt,
A (2, 1,€) = |0 (2) V" [* A8y o) (€) darl,
Ay (,1,€) = e | VA" |* A0y (24 () Az .

Remark, that f" and f , Borel functions of @ and #, respectively, and £, are measurable
with respect to P @ B(TY) @ B(R). Besides, all the above measures are well defined.
Indeed, Theorem 3.4.1 implies, in particular, that v™ € C([0,7T]; H'(TY)), P-a.s., with
C([0,T); H(TY)) being a Borel subset of &, since the embedding C([0, T]; H'(TV)) —
X, is continuous. Thus, it follows from Proposition 3.4.10 that " € C([0, T]; H*(TV)),
P-a.s., consequently m” (1)) :  — R is measurable and

() L mr(), Yy € Co(TN x [0,T] x R).

Let My(TV x [0,T] x R) denote the space of bounded Borel measures on TV x
[0,T] x R whose norm is given by the total variation of measures. It is the dual space to
the space of all continuous functions vanishing at infinity Co(T™ x [0, 7] x R) equipped
with the supremum norm. This space is separable, so the following duality holds for
q,q" € (1,00) being conjugate exponents (see [19, Theorem 8.20.3]):

L(Q My(TN x [0,T] x R)) =~ (LT (2 Co(TY x [0,T] x R)))",

where the space on the left hand side contains all weak*-measurable mappings n : @ —
My(TN x [0,T] x R) such that i
E||n|/%,, < oc.
b

Lemma 3.4.13. [t holds true (up to subsequences)

(i) there exists a set of full Lebesque measure D C [0,T] which contains t = 0 such
that . . )
frt) = f(t) in L¥Qx TN x R)-weak®,  VteD,

(ii) there exists a kinetic measure m such that
" s in L2(€; My(TN x [0,T] x R))-weak". (3.43)
Moreover, m can be rewritten as ny + no, where
dity (2,1, €) = |o(2)Vi|* dg(p 4 (€) dzdt

and 7y is almost surely a nonnegative measure over T x [0,T] x R.

Proof. According to Proposition 3.4.10, there exists a set © € Q x TN x [0,T] of full
measure and a subsequence still denoted by {a"; n € N} such that @™ (w, z,t) — t(w, z,t)
for all (w,z,t) € ¥. We infer that

Lin(wz,t)>6 — La(wzt)>¢ (3.44)

whenever

(P@ETN ®E[07T]>{(w,x,t) €Y t(w,x,t) = f} =0,



74 Chapter 3 Degenerate Parabolic SPDEs

where by Ln, Lo 1) we denoted the Lebesque measure on TV and [0, T, respectively.
However, the set

= {E € R; (INP)® ETN ® ﬁ[O,T]) (’LNL = 5) > 0}
is at most countable since we deal with finite measures. To obtain a contradiction,

suppose that D is uncountable and denote

Dy={¢eR; (PoLyw & Lon)(a=¢) > %} keN.

Then D = UgenDy, is a countable union so there exists kg € N such that Dy, is uncount-
able. Hence

(Iﬁ)@ﬁ'ﬂ‘N ®£[0,T]> (ﬂ € D) > (HE@ETN ® Ly, T}) (1] = Dko)

-y (IP@ETN®£[OT]> >y ko

§€Dk0 §€Dk0

and the desired contradiction follows. We conclude that the convergence in (3.44) holds
true for a.e. (w,z,t,£) and obtain by the dominated convergence theorem

P F oin L@ x TV x [0,T] x R)-weak* (3.45)

hence (i) follows for a subsequence and the convergence at ¢ = 0 follows by a similar
approach.
As the next step we shall show that the set {m"; n € N} is bounded in

L2 (Q; My(TY x [0,T] x R)).

With regard to the computations used in proof of the energy inequality, we get from
(3.32)

T T
/ ‘a(x)Vu"‘Qda:dt—i—an// |Vu" *da dt < Cllug||apw
0 JTN
T
+C’Z/ / u" g (z,u" dxdﬁk(t)—i—C/ G2 (z,u") dz ds.
k>1 o JIN

Taking square and expectation and finally by the It6 isometry, we deduce

E|m™(TV x [0,T] x R)|* = E[m™(T" x [0,T] x R)|”

T 2
_]E‘// vun\destn// |Vur*dz dt
TN 0 JTN

Thus, according to the Banach-Alaoglu theorem, (3.43) is obtained (up to subsequence).
However, it still remains to show that the weak* limit m is actually a kinetic measure.
The first point of Definition 3.2.1 is straightforward as it corresponds to the weak*-
measurability of m. The second one giving the behavior for large £ follows from the
uniform estimate (3.32). Indeed, let (xs) be a truncation on R, then it holds, for

<C.
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€ [2,00),
fE/ £[P~2 din(z, t, €) < 1iminf1E/ [P~ 2x5(€) Az, t,€)
TN x[0,T] xR 6=0 TN x[0,T] xR

= liminf lim E / 1€P 2 xs(€) dm™(z,t,€) < C
TN x[0,T]xR

§—0 n—oo

where the last inequality follows from (3.32) and the sequel. As a consequence, m
vanishes for large £. In order to verify the remaining requirement of Definition 3.2.1, let
us define

(t) = / (e, €) A (s, . )
Nx[0,t]xR

and take the limit as n — oco. These processes are predictable due to the definition of
measures m"™. Let a € L?(), v € L?(0,T), then, by the Fubini theorem,

I‘E<a /0 e dt) :E(a /[0 g VT dmn(s,x,g))

= fST ~(t) dt. Hence, since I is continuous, we obtain by the weak convergence

IF:(a /OTv(t)x"(t) dt> —)JE(Q /OT'y(t)x(t) dt>,

x(t) = x,&)dm(s, z,§).
R SR COLLICER

where I'(s)
of m"™ to m

where

Consequently, 2" converges to z weakly in L*(€ x [0,7]) and, in particular, since the
space of predictable L2-integrable functions is weakly closed, the claim follows.

Finally, by the same approach as above, we deduce that there exist kinetic mea-
sures 01, 09 such that

A e, S e, in L2 (€ My(TN x [0,7] x R))-weak®.

Then from (3.32) we obtain

T
IE/ / |o()Va"*dzdt < C
0 N

hence application of the Banach-Alaoglu theorem yields that, up to subsequence, o Vi"
converges weakly in L2(Q x TV x [0,7]). On the other hand, from the strong conver-
gence given by Proposition 3.4.10 and the fact that o € W°(T"), we conclude using
integration by parts, for all 1» € C*(TV x [0, T7),

/ / )V ip(x, t) dxdt—>/ / )V (z, t)dedt, P-as..
™ TN

Therefore .
oVi" % oVa, in L*TY x[0,T]), P-as.
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Since any norm is weakly sequentially lower semicontinuous, it follows for all ¢ €
Co(TV x [0,T] x R) and fixed ¢ € R, P-a.s.,

T T
/ ‘U(x)va‘2<p2(x,t,§) dzdt < liminf/ ‘0($)V&”}2g02($,t,§)dxdt
0 JTN o JTN

n—oo

and by the Fatou lemma

T
// /‘a(x)Vﬁ‘zgoz(:c,t,g)déazgda:dt
0 ™ JR
T 9 B
§liminf/ / /‘o(x)VfL”| ©*(2,t,6) ddgn_g dz dt, P-as..
0 ™ JR

n—o0

In other words, this gives n; = |o V&|25ﬂ:§ < 6; P-a.s. hence fis = 09 + (01 —nq) is
P-a.s. a nonnegative measure and the proof is complete. ]

Note, that as the set D is a complement of a set with zero Lebesgue measure, it
is dense in [0, 7). Let us define for all t € D and some fixed p € C°(TV x R)

M) = {700 = o) = [ (76,070 Vo) s
—/ <f”(s)7div (A(x)ch)>ds—£n/ (f"(s), Ap)ds
0 0

t
- ;/0 <6u":§G?Lv a§¢> ds + <mn7 8590>([0a t))a n €N,

t ~
M™(t) = (f"(1), ) = (F"(0), ) —/0 (f"(5),0"(€)- V) ds
t t
—/ <f"(s),div (A(x)Vgp)>ds—5n/ <f”(s),A<p>ds
0 0

1 t
- 2/0 (Oan=¢Gr, Do) ds + (", 0e0)(0,1)),  n €N,

NI() = (), ) — (F(0), ) - /O (F(5),b(6)- Vip) ds

D Y

+(m, ¢ 0)([0,1)).

The proof of Theorem 3.4.12 is a consequence of the following two propositions.

Proposition 3.4.14. The process W is a (jt)-cylmdricgl Wiener process, i.e. there
exists a collection of mutually independent real-valued (F:)-Wiener processes { By }i>1
such that W = 2@1 Brer.

Proof. Hereafter, times s,t € [0,T], s < t, and a continuous function
v+ O([0,s]; HH(TY)) x C([0, 8]; o) — [0,1]

will be fixed but otherwise arbitrary and by @, we denote the operator of restriction to
the interval [0, s] as introduced in (3.42).
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Obviously, W is a $,-valued cylindrical Wiener process and is (jt)—adapted. Ac-
cording to the Lévy martingale characterization theorem, it remains to show that it is
also a (.%;)-martingale. It holds true

Evy(e.a", o,W™) [W"(t) = W"(s)] = Ex(e.u", 0,W) [W(t) = W(s)] =0

since W is a martingale and the laws of (4", W™) and (u™, W) coincide. Next, the
uniform estimate
=TT 2 2
sup E[[W" (#)[|§, = sup E[[W(?)]|g, < oo
neN neN

and the Vitali convergence theorem yields

£ (e, 0,W) [W(t) - W(s)] = 0
which finishes the proof. O
Proposition 3.4.15. The processes

M(t), Z/ a=¢ Gk, P d73 M(t)/ék(t)_/o (Oa—¢ gr. ) dr,

k>1

indexed by t € D, are (F;)-martingales.

Proof. All these processes are (ﬁt)—adapted as they are Borel functions of @ and B,
k € N, up to time t. For the rest, we use the same approach and notation as the
one used in the previous lemma. Let us denote by /Bk, k > 1 the real-valued Wiener
processes corresponding to W™, that is W™ Zk>1 Brex. For all n € N, the process

/ (Bure B ()W, 0) = 3 / Sune g ) dB(r)

k>1

is a square integrable (%;)-martingale by (3.2) and by the fact that the set {u"; n € N}
is bounded in L?(Q; L2(0, T; L?(TV))). Therefore

/<6u” fgk7<)0> d’l“ Mnﬁk_/ <6u”:fg]g7(p>dr
k>1 0

are (.%;)-martingales and this implies together with the equality of laws

Ev(gsa", QSW”) [M"(t) — M”(s)] = E’y(gsun, QSW) [M"(t) — M"(s)] =0, (3.46)

Ev(o,", 0,W") [(M”)z(t) — (M™2(s) = 3" [ (ane g 0)’ dr}

k>179

(3.47)
=E~(o.u", 0,V) [(Mn)2(t) Z/ Sun—¢ Gr,P) dr] =0,
E>1Y5
Ev(o,a", 0,W") [M”(t)@?(t)—f\?"(s)/@?(s)—/ (dan=¢ 95, ) r]
s (3.48)

d
:E*y(gsu", QSW) [M"(t)ﬁk(t) — M"(s)Br(s) — / <5un:§ 9 s (p> dr] =0.
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Moreover, for any s, t € D, s < t, the expectations in (3.46)-(3.48) converge by the Vitali
convergence theorem. Indeed, all terms are uniformly integrable by (3.2) and (3.31) and
converge P-a.s. (after extracting a subsequence) due to Lemma 3.4.13, (3.44), (3.45),
Proposition 3.4.10 and the construction of ®*, B*. Hence

fE’Y(Qsﬂa QSW) [M(t) - M(S)] =0,

Ev (e, 0,W) [MQ(t) —M?(s) =Y | (Sa=e o, 90>2dr} =0,
k>179

E~ (o, 0,W) [M(t)ﬁk(t) — M(s)Bx(s) —/ (0a—¢ gk,80>d7"] =0,

which gives the (%:t)—martingale property. O

Proof of Theorem 3.4.12. If all the processes in 3.4.15 were continuous-time martingales

then it would hold true
<<M — / <511:§ @(ﬂ) dW, QD>>> = O,
0

where by ((-)) we denote the quadratic variation process, and therefore, for every ¢ €
CX(TN x R), t € [0,7T], P-as.,

(F (1)) — (for o) — /0 (F(5),0(6) Vp)ds — /0 (F(5). div (A(z) V) )ds

t (3.49)

t ~
:/0 <5@5@(a)dW,cp>+;/o (85=¢G?, 0c0) ds — (1, D) ([0, 1))

and the proof would be completed with @ satisfying the kinetic formulation even in a
stronger sense than required by Definition 3.2.2.

In the case of martingales indexed by ¢t € D, we employ Proposition 3.A.1 to
conclude the validity of (3.49) for all ¢ € C°(TN x R), t € D, P-a.s., and we need to
allow a formulation which is weak also in time. Mimicking the technique developed in
order to derive the kinetic formulation in Section 3.2, let us define

t
0

~ t ~
N(E) = (o) + [ (7006 Vs + [ (Fs).div (A@) ) s
t _ 1 t
+ / <(5ﬂ:£ &(a)dW, g0> + 2/ <5ﬁ:§G2, 8§g0> ds.
0 0
Note, that NV is a continuous real-valued semimartingale and

N() = ((t).0) + (. de)((0,1)),  VEED.

Next, we apply the It6 formula to calculate the stochastic differential of the product
N(t)pi1(t), where 1 € C2°([0,T")). After application of the Fubini theorem to the term
including the kinetic measure m, we obtain exactly the formulation (3.8). O

3.4.5 Pathwise solutions

In order to finish the proof, we make use of the Gyongy-Krylov characterization of
convergence in probability introduced in [29]. It is useful in situations when the pathwise
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uniqueness and the existence of at least one martingale solution imply the existence of
a unique pathwise solution.

Proposition 3.4.16. Let X be a Polish space equipped with the Borel o-algebra. A
sequence of X -valued random variables {Y,; n € N} converges in probability if and only
if for every subsequence of joint laws, {fin, m,; k € N}, there ezists a further subsequence
which converges weakly to a probability measure p such that

p((z,y) € X x X;z=y) =1

We consider the collection of joint laws of (u™,u™) on X, x X,, denoted by "
For this purpose we define the extended path space

X =X, x X, x Xw

As above, denote by uw the law of W and set v™™ to be the joint law of (u™,u™, W).
Similarly to Proposition 3.4.9 the following fact holds true. The proof is nearly identical
and so will be left to the reader.

Proposition 3.4.17. The collection {v™™; n,m € N} is tight on X”.

Let us take any subsequence {v"*™*k; k € N}. By the Prokhorov theorem, it is
relatively weakly compact hence it contains a weakly convergent subsequence. Without
loss of generality we may assume that the original sequence {v"*"™*; k € N} itself con-
verges weakly to a measure v. According to the Skorokhod representation theorem, we
infer the existence of a probability space (2, Z, P) with a sequence of random variables
(4™, @™, W), k € N, converging almost surely in X’ to a random variable (a,, W)
and

P((ﬁ”k,ﬂmk,Wk) € ) = YL, P((Q,Q,W) € ) =v().

Observe that in particular, p,*""* converges weakly to a measure u, defined by

pu(+) = P((ﬁ, ) € )

As the next step, we should recall the technique established in the previous section.
Analogously, it can be applied to both (4™, W¥), (4, W) and (@™, W*), (@, W) in order
to show that (4, W) and (i, W) are martingale kinetic solutions of (3.1) defined on the
same stochastic basis (Q,.%, (%), P), where

~
m

=)

|

jt = G(U(Qtav Qt,&v QtW) U {N € 32:7 ED(N) = 0})7
Since 4(0) = u(0) = @, P-a.s., we infer from Theorem 3.3.3 that 4 = @ in X, P-a.s.,

pa((z,y) € Xy x Xy z=y) =P(i=uin X,) = 1.

Now, we have all in hand to apply Proposition 3.4.16. It implies that the original
sequence u" defined on the initial probability space (£2,.%#,P) converges in probability
in the topology of X, to a random variable u. Without loss of generality, we assume
that «™ converges to v almost surely in X, and again by the method from Section 3.4.4
we finally deduce that u is a pathwise kinetic solution to (3.1). Actually, identification
of the limit is more straightforward here since in this case all the work is done for the
initial setting and only one fixed driving Wiener process W is considered.
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3.5 Existence - general initial data
In this final section we provide an existence proof in the general case of
ug € LP(Q; LP(TY)), Vp € [1,00).
It is a straightforward consequence of the previous section. We approximate the initial
condition by a sequence {u§} C LP(Q;C®(T¥)), p € [1,00), such that u§ — wug in

LY(Q; LY(TV)). That is, the initial condition u§ can be defined as a pathwise mollification
of ug so that it holds true

w6l o e vy < llwollzeiecrvyy, € €(0,1), p € [1,00). (3.50)

According to the previous section, for each £ € (0, 1), there exists a kinetic solution u®
to (3.1) with initial condition uj. By application of the comparison principle (3.23),

Ellu(8) = w2 (@)l 1 zvy < Ellug' = ug vy, 21,82 € (0,1),

hence {uf; ¢ € (0,1)} is a Cauchy sequence in L'(Q x [0, T],P,dP ® dt; L*(T")). Con-
sequently, there exists v € L'(Q x [0,T],P,dP ® dt; L' (T")) such that

u® —u in LY(Qx [0,T],P,dP ® dt; L' (TV)).
By (3.50) and Remark 3.4.11, we still have the uniform energy estimates, p € [1, c0),

£ p <
E%Sgstsgujp | u (t)HLp(’]TN) < Cre- (3.51)

as well as (using the usual notation)
E|m (TN x [0,T] x R)|* < Cr.y,.

Thus, using this observations as in Lemma 3.4.13, one finds that there exists a subse-
quence {u"; n € N} such that

() "5 f in L@ x TV x [0,7] x R)-weak”,
(ii) there exists a kinetic measure m such that
m" s m in L2 (Q; My(TY x [0, T] x R))-weak*
and m = ny + ng, where
dny (2,1,€) = |o(2)Vu|* A6y (e (€) da dt
and ng is almost surely a nonnegative measure over TV x [0, 7] x R.

With these facts in hand, we are ready to pass to the limit in (3.8) and conclude that u
satisfies the kinetic formulation in the sense of distributions. Note, that (3.51) remains
valid also for u so (3.6) follows and, according to the embedding LP(TV) < L'(TY), for
all p € [1,00), we deduce

u € LP(Q x [0,T],P,dP @ dt; LP(TV)).

The proof of Theorem 3.2.10 is complete.
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3.A Densely defined martingales

In this section, we present an auxiliary result which is used in the proof of existence of a
martingale kinetic solution in Theorem 3.4.12. To be more precise, it solves the following
problem: it is needed to show equality of a certain martingale M and a stochastic integral
fot odW but the process M is only defined on a dense subset D of [0, 7] containing zero
and no continuity property is a priori known. Therefore, one cannot just prove that the
quadratic variation of their difference vanishes as it is not well defined.

To begin with, let us fix some notation. Let H, U be separable Hilbert spaces
with orthonormal bases (g;);>1 and (fx)r>1, respectively, and inner products (-,-) and
(-, )u, respectively. For simplicity, we will work on a finite-time interval [0,T], T' € D.

Proposition 3.A.1. Assume that W (t) = >, Bk(t) fx is a cylindrical Wiener process
in U defined on a stochastic basis (Q, F,(F)i>0,P) with a complete, right-continous
filtration. If (M(t);t € D) is an integrable (F;)-adapted H-valued stochastic process

such that, for any s,t € D, s <t, j, k>1, P-a.s.,
ERM(t) - M(S)agj>|=gis]

E[(M (1), 97) = (M(s). ;) - / ol ar] 7]

0,

0, (3.52)

BB (M (1).0) — ()M (s).) — [ oo dr] 7] —0,

where o is an (%)-progressively measurable Lo(U; H)-valued stochastically integrable
Process, i.e.

T
E/O HJH%Q(U;H) dr < oo, (3.53)

then .
M(t) = / odW, vVt € D, P-a.s..
0

In particular, M can be defined for all t € [0,T] such that it has a modification which is
a continuous (F)-martingale.

Proof. The crucial point to be shown here is the following: for any (.%;)-progressively
measurable Lo(U; H)-valued process ¢ satisfying (3.53) and any s, t € D, s <t, j > 1,
it holds, P-a.s.,

E|(M(t) - M(s),gj></stq§dW, gj> — /st<0*gj,¢*gj>(]d7“ ﬁs] —0. (3.54)

We consider simple processes first. Let ¢ be an (.%;)-adapted simple process with values
in finite-dimensional operators of L(U; H) that satisfies (3.53), i.e.

I
d)(t) = ¢01{0} (t) + Z ¢il(ti,ti+1](t)7 te [07 T]>
=0
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where {0 =ty <t} <--- <ty =T} is a division of [0,T] such that t; € D, i =0,...,1
Then the stochastic integral in (3.54) is given by

[ AW = 60 (W (1)~ W)
+ Z $i(W(tis1) = W(t:) + on (W (1) = W(ta))
:ZX%”ﬂwm—m@>

k>1

n—1
+ > OF (Br(tirr) — Bi(ts)) + o (Br(t) — ﬂk@n)))

provided t,,—1 < s <tp, tn <t <tpt1, ¢. ¢i fr.. Next, we write

and conclude

t
]E[(M(t) —M(S),gj></ AW, g;) 9;}
=E [<¢m—1 (W(tm) - W(S))’gj><M(tm) - M(S)v gj>
et (3.55)
+ Z (i (W (tiv1) = W(ti), gj)( M (tir1) — M(t:), g5)

i=m

+ (b (W(t) = W(tn)), 9;) (M () = M(tn), 95)

as one can neglect all the mixed terms due to the martingale property of S, k > 1, and
(3.52). Indeed, let i € {m,...,n — 1} then

E[(u(W (ti41) = W(t)), 95) (M (t) = M(5), 9;)| 7|
=E [E[Z (05 (Br(tir1) = Br(t:)), 9) (M (tm) — M(s), ;) d@tl} ffs]
k>1
= E[<M(tm) 9J>Z (87, 95) [/Bk (ti+1) — Br(t:) 9}} ffs} =0,

k>1

where the interchange of summation with scalar product and expectation, respectively,
is justified by the fact that

> 0F (Br(tivr) — Belts) = /t o ¢; AW

k>1

is convergent in L2(Q; H).
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As the next step, we proceed with (3.55). If ¢ € {m,...,n — 1} then we obtain
using again the martingale property of Sx, k > 1, and (3.52)

E[(6s(W (1) = W) 07) (M (1) = M (8).9,)| 7]

= B[] X (609 (Buesn) = e (M (tzer) — M (1),55)| 7|7
L L=t

=E Z(qbf,gﬁE[ﬁk(ti+1)<M(ti+1),gj> - ﬂk(ti)<M(ti)a9j>‘tdfti] 3?3]
- k>1

B>k [ (frotg)ydr 3}]
L e>1 ti

r tit1
=E Z(fk,cf)fgﬁ[f/. (frr0"gj)py dr

L i>1 ti

[ rtiv1
=E / (0%gj, ¢ gj)u dr
LJt;

The remaining terms being dealt with similarly. As a consequence, we see that (3.54)
holds true for simple processes and the general case follows by classical arguments using
approximation.

Now, we have all in hand to complete the proof. Let t € D and set s = 0 in (3.52),
(3.54), then

E(<M(t),gj> - </0t"dW791>>2 = E(M(t),9;)"

2E<M(t),gj></0todﬂ/,gj>+E</OtadI/V,gj>2:0, j>1,

and the claim follows. O






Chapter 4

A Bhatnagar-Gross-Krook
Approximation to Stochastic
Scalar Conservation Laws

Abstract: We study a BGK-like approximation to hyperbolic conser-
vation laws forced by a multiplicative white noise. First, we make use
of the stochastic characteristics method and establish the existence of a
solution for any fixed parameter €. In the next step, we investigate the
limit as € tends to 0 and show the convergence to the kinetic solution
of the limit problem.

Results of this chapter are available as a preprint:

e M. HOFMANOVA, A Bhatnagar-Gross-Krook Approximation to Stochastic Scalar
Conservation Laws.
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4.1 Introduction
In the present paper, we consider a scalar conservation law with stochastic forcing

du + div (A(u))dt = &(u) dW, te(0,7), zeTV, (1)
u(0) = ug '

and study its approximation in the sense of Bhatnagar-Gross-Krook (a BGK-like ap-
proximation for short). In particular, we aim to describe the conservation law (4.1) as
the hydrodynamic limit of the stochastic BGK model, as the microscopic scale € goes
to 0.

The literature devoted to the deterministic counterpart, i.e. corresponding to the
situation @ = 0, is quite extensive (see [7], [38], [55], [56], [58], [59], [65], [64]). In that
case, the BGK model is given as follows

(@+a@yVWf:55§ii t>0,zeTV, R, (4.2)

where ¢, the so-called equilibrium function, is defined by

Xue (f) = 10<£<uE - 1u5<§<07

and a is the derivative of A. The differential operator V is with respect to the space
variable x. The additional real-valued variable & is called velocity; the solution f¢ is
then a microscopic density of particles at (t,z) with velocity £. The local density of
particles is defined by

ue(t,x):/Rfe(t,azjﬁ)dﬁ.

The collisions of particles are given by the nonlinear kernel on the right hand side of
(4.2). The idea is that, as € — 0, the solutions f¢ of (4.2) converge to x, where u is the
unique kinetic or entropy solution of the deterministic scalar conservation law.

The addition of the stochastic term to the basic governing equation is rather
natural for both practical and theoretical applications. Such a term can be used for
instance to account for numerical and empirical uncertainties and therefore stochastic
conservation laws has been recently of growing interest, see [6], [16], [20], [36], [44],
[70], [76], [78]. The first complete well-posedness result for multi-dimensional scalar
conservation laws driven by a general multiplicative noise was obtained by Debussche
and Vovelle [16] for the case of kinetic solutions. In the present paper, we extend this
result and show that the kinetic solution is the macroscopic limit of stochastic BGK
approximations. As the latter are much simpler equations that can be solved explicitly,
this analysis can be used for developing innovative numerical schemes for hyperbolic
conservation laws.

The BGK model in the stochastic case reads

1, — F¢

F=(0) = Fg,

(4.3)

where the function F*° corresponds to f€ + 1g¢, the local density u° is given as above,
and the function G2 will be defined in (4.4). Note, that setting @ = 0 in (4.3) yields an
equation which is equivalent to the deterministic BGK model (4.2). Our purpose here
is twofold. First, we make use of the stochastic characteristics method as developed by
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Kunita in [50] to study a certain auxiliary problem. With this in hand, we fix € and prove
the existence of a unique weak solution to the stochastic BGK model (4.3). Second, we
establish a series of estimates uniform in € which together with the results of Debussche
and Vovelle [16] justify the limit argument, as ¢ — 0, and give the convergence of the
weak solutions of (4.3) to the kinetic solution of (4.1).

Let us make some comments on the deterministic BGK model (4.2). Even though
the general concept of the proof is analogous, we point out that the techniques required
by the stochastic case are significantly different. In particular, the characteristic system
for the deterministic BGK model consists of independent equations

de‘Z' (t)
dt

:ai(f), ’izl,...,N,

and the &-coordinate of the characteristic curve is constant. Accordingly, it is much
easier to control the behavior of f¢ for large . Namely, if the initial data f§ are
compactly supported (in £), the same remains valid also for the solution itself and also the
convergence proof simplifies. On the contrary, in the stochastic case, the &é-coordinate of
the characteristic curve is governed by an SDE and therefore this property is, in general,
lost. Similar issues has to be dealt with in order to obtain all the necessary uniform
estimates. To overcome this difficulty, it was needed to develop a suitable method to
control the decay at infinity in connection with the remaining variables w, t, z. (cf.
Proposition 4.5.3).

There is another difficulty coming from the complex structure of the characteristic
system for the stochastic BGK model (4.3). Namely, the finite speed of propagation that
is an easy consequence of boundedness of the solution u of the conservation law in the
deterministic case (see for instance [65]) is no longer valid and therefore some growth
assumptions on the transport coefficient @ are in place. The hypothesis of bounded
derivatives is natural for the stochastic characteristics method as it implies the existence
of global stochastic flows. Even though this already includes one important example
of Burgers’ equation it is of essential interest to handle also more general coefficients
having polynomial growth. This was achieved by a suitable cut-off procedure which also
guarantees all the necessary estimates.

The exposition is organized as follows. In Section 4.2, we introduce the basic
setting and state the main result, Theorem 4.2.1. In order to make the paper more self-
contained, Section 4.3 provides a brief overview of two concepts which are the keystones
of our proof of existence and convergence of the BGK model. On the one hand, it is
the notion of kinetic solution to stochastic hyperbolic conservation laws, on the other
hand, the method of stochastic characteristics for first-order linear SPDEs. Section 4.4
is mainly devoted to the existence proof for stochastic BGK model, however, in the
Subsection 4.4.2 we establish some important estimates useful in Section 4.5. This final
section contains technical details of the passage to the limit and completes the proof of
Theorem 4.2.1.

4.2 Setting and the main result

We now give the precise assumptions on each of the terms appearing in the above
equations (4.1) and (4.3). We work on a finite-time interval [0,7], 7' > 0, and consider
periodic boundary conditions: = € TV where T is the N-dimensional torus. The flux
function

A= (Ay,...,Ay): R —RY
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is supposed to be of class C*", for some 7 > 0, with a polynomial growth of its first
derivative, denoted by a = (a1, ..., an).

Regarding the stochastic term, let (Q2,.7, (% )t>0,P) be a stochastic basis with a
complete, right-continuous filtration. The initial datum may be random in general, i.e.
Fo-measurable, and we assume ug € LP(Q; LP(TV)) for all p € [1,00). As we intend
to apply the stochastic characteristics method developed by Kunita [50], we restrict
ourselves to finite-dimensional noise. However, our results extend to infinite-dimensional
setting once the corresponding properties of stochastic flows are established. Let 4l be a
finite-dimensional Hilbert space and (ek)zzl its orthonormal basis. The process W is a
d-dimensional (.%#;)-Wiener process: W (t) = Z‘,le Bi(t) e, with (8x)¢_, being mutually
independent real-valued standard Wiener processes relative to (:%;):>0. The diffusion
coefficient @ is then defined as

®(z): 4 — LA(TV)

d
h— ng('az(‘))<€k,h>7 Z € LZ(TN)ﬁ
k=1

where the functions g1, ..., gq : TV xR — R are of class C*", for some n > 0, with linear
growth and bounded derivatives of all orders. Under these assumptions, the following
estimate holds true

d
GHz,6) =Y g, P <C(1+[¢f), xeT R (4.4)
k=1

However, in order to get all the necessary estimates (cf. Corollary 4.4.11, Remark 4.4.12),
we restrict ourselves to two special cases: either

gr(x,0) =0, zeTV, k=1,...,d, (4.5)
hence (4.4) rewrites as
G*(z,) <ClgP',  zeTV, eR,
or we strengthen (4.4) in the following way
Gz, 6)<C, zeTV ¢eR. (4.6)

Note, that the latter is satisfied for instance in the case of additive noise.

In this setting, we can assume without loss of generality that the o-algebra % is
countably generated and (.%;);>¢ is the completed filtration generated by the Wiener
process and the initial condition. Let us denote by P the predictable o-algebra on € x
[0, T] associated to (.%;):>0 and by Ps the predictable o-algebra on  x [s, T'] associated
to (#¢)i>s. For notational simplicity, we write Ly (Q x [s,T] x TV x R) to denote’

L®(Q x [5,T] x TN x R, Py @ B(TV) ® B(R),dP ® dt ® dz ® df).

Concerning the initial data for the BGK model (4.3), one possibility is to consider
simply F§ = 1,,>¢, however, one can also take some suitable approximations of 1,,-¢.
Namely, let {uf; ¢ € (0,1)} be a set of approximate .#p-measurable initial data, which
is bounded in LP(; LP(T™)) for all p € [1,00), and assume in addition that u§ — ug in

'B(TY) and B(R), respectively, denotes the Borel g-algebra on TV and R, respectively.
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LY(Q; LY(TY)). Thus, setting F§ = lus>e, f5 = Xug yields the convergence f§ — fo =
Xuo in LH(Q x TV x R).
Let us close this section by stating the main result to be proved precisely.

Theorem 4.2.1 (Hydrodynamic limit of the stochastic BGK model). Let the above
assumptions hold true. Then, for any e > 0, there exists F© € L (Q x [0,T] x TV x R)
which is a unique weak solution to the stochastic BGK model (4.3) with initial condition
F§ = Lyss¢. Furthermore, if f© = F° — 1o5¢ then (f¥) converges in LP(Q x [0,T] x
TN x R), for all p € [1,00), to the equilibrium function x,, where u is the unique kinetic
solution to the stochastic hyperbolic conservation law (4.1). Besides, the local densities
(uf) converge to the kinetic solution u in LP(Q x [0,T] x TN), for all p € [1,00).

Throughout the paper, we use the letter C' to denote a generic positive constant,
which can depend on different quantities but € and may change from one line to another.

We also employ a shortened notation for various LP-type norms, e.g. we write || - ||z» .

for the norm in LP(2 x TV x R) and similarly for other spaces.

4.3 Preliminary results

As we are going to apply the well-posedness theory for kinetic solutions of hyperbolic
scalar conservation laws (4.1) as well as the theory of stochastic flows generated by
stochastic differential equations, we provide a brief overview of these two concepts.

4.3.1 Kinetic formulation for scalar conservation laws

The main reference for this subsection is the paper of Debussche and Vovelle [16]. For
further reading about the kinetic approach used in different settings, we refer the reader
to [13], [32], [55], [56], or [64]. In the paper [16], the notion of kinetic and generalized
kinetic solution to (4.1) was introduced and the existence, uniqueness and continuous
dependence on initial data were proved. In the following, we present the main ideas and
results while skipping all the technicalities.

Let u be a smooth solution to (4.1). It follows from the It6 formula that u also
satisfies the kinetic formulation of (4.1)

O F + a(f) VF = u:@(u)W + 35 (m — ;G25u:§>, (4.7)

where F' = 1,~¢ and m is an unknown kinetic measure, i.e. a random nonnegative
bounded Borel measure on [0,7] x TV x R that vanishes for large ¢ in the following
sense: if By, = {£ € R; [{| > R} then

lim Em (T x [0,7] x Bg) = 0.

R—o0
Hence we arrive at the notion of kinetic solution: u € LP(Q x [0, 7], P, dP @ dt; LP(TV))
is said to be a kinetic solution to (4.1) provided F' = 1,5¢ is a solution, in the sense
of distributions over [0,7] x TV x R, to the kinetic formulation (4.7) for some kinetic
measure m. Replacing the indicator function by a general kinetic function F' we obtain
the definition of a generalized kinetic solution. It corresponds to the situation where
one does not know the exact value of u(t,z) but only its law given by a probability
measure ¢ ;. More precisely, let F(t), t € [0,T], be a kinetic function on £ x ™ xR
and vy 5(§) = —0¢F(t,x,€). Then F is a generalized kinetic solution to (4.1) provided:
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F(0) = 1,,>¢ and for any test function ¢ € C°([0,T) x TV x R),
T T
| P00 at+ (FOLp0) + [ (F0).0(6)- Tl a
d T
- | L [o@ostagin©auann @

1 T
- /0 /T ) /R G2(x, €)Dep(t, 7,€)dvy o (€) dz dt + m(De)

holds true P-a.s.. The assumptions considered in [16] are the following: the flux func-
tion A is of class C! with a polynomial growth of its derivative; the process W is a
(generally infinite-dimensional) cylindrical Wiener process, i.e. W(t) = >, Bi(t)ex
with (Bk)k>1 being mutually independent real-valued standard Wiener processes and
(er)k>1 a complete orthonormal system in a separable Hilbert space &l; the mapping
d(z) : 4 — L*(TVN) is defined for each z € L2(TV) by &(2)er = gi(-,2(-)) where
gr € C(TN x R) and the following conditions

D gk, O < C(1+[¢P),

k>1

D lgk(@,8) = gk(y, O < CJx — y* + 1€ = ¢Ih(I€ = ¢])),

k>1

are fulfilled for every z,y € TV, ¢,¢ € R, with h being a continuous nondecreasing
function on R satisfying, for some o > 0,

h() < Cs®, 5 < 1.

Under these hypotheses, the well-posedness result [16, Theorem 11, Theorem 19] states:
For any up € LP(Q x TV) for all p € [1, 00) there exists a unique kinetic solution to (4.1).
Besides, any generalized kinetic solution F' is actually a kinetic solution, i.e. there exists
a process u such that F' = 1,5¢. Moreover, if u1, ug are kinetic solutions with initial
data uj o and ug g, respectively, then for all ¢t € [0, T]

Eflui(t) — ua2(t)||z1 < Elluto —uz0llr1-

4.3.2 Stochastic flows and stochastic characteristics method

The results mentioned in this subsection are due to Kunita and can be found in [49] and
[50]. To begin with, we introduce some notation. We denote by Cé’a(Rd) the space of
all [-times continuously differentiable functions with bounded derivatives up to order [
(the function itself is only required to be of linear growth) and ¢-Hoélder continuous I-th
derivatives.

Let B; = (B}, ..., B/") be an m-dimensional Wiener process and let * : R? — R9,
k =0,..., m. We study the following system of Stratonovich’s stochastic differential
equations

dgr = b°(¢) dt + Y b (¢r) o dBf. (4.9)
k=1

Under the hypothesis that b',..., b™ € Cé+1’6(Rd) and B° € C’é’é(Rd) for some [ > 1
and § > 0, and for any given y € R%, s € [0,T], the problem (4.9) possesses a unique
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solution starting from y at time s. Let us denote this solution by ¢, (y). It enjoys
several important properties. Namely, it is a continuous C'°-semimartingale for any
¢ < ¢ and defines a forward Brownian stochastic flow of C'-diffeomorphisms, i.e. there
exists a null set N of € such that for any w € N€¢, the family of continuous maps
{pst(w); 0 < s <t <T} satisfies

(i) ¢st(w) = ori(w)odsp(w) foral 0 < s <r <t <T,
(i) ¢pss(w)=Idforall 0 <s<T,

(iil) ¢ss(w) : R — RY is I-times differentiable with respect to y, for all 0 < s <t < T,
and the derivatives are continuous in (s, t,y),

(iv) ¢st(w) : R? — R4 is a C'-diffeomorphism for all 0 < s <t < T,

(V) bt,ti41, 1 =0,..., n—1, are independent random variables for any 0 <tg < --- <
t, <T.

Therefore, for each 0 < s < t < T, the mapping ¢,+(w) has the inverse ps;(w) =
qbs,t(w)_l which satisfies

(vi) psi(w) : R4 — R? is [-times differentiable with respect to y, for all 0 < s <t < T,
and the derivatives are continuous in (s,t,y),

(vii) psi(w) = psr(w)opri(w) forall0 < s <r <t <T,

and consequently ps; is a stochastic flow of C'-diffeomorphisms for the backward di-
rection. Indeed, the following holds true: For any 0 < s <t < T, the process ps+(y)
satisfies the backward Stratonovich stochastic differential equation with the terminal
condition y

Ps,t(y) =Y- / b (Pr,t(y)) dr — Z/ b (pm(y)) o &Bf,
s k=1"%

where the last term is a backward Stratonovich integral defined by Kunita [50] using
the time-reversing method. To be more precise, the Brownian motion B is regarded as
a backward martingale with respect to its natural two parametric filtration

U(Brl_Brz?SSTLTQSt), 0<s<t<T,

the integral is then defined similarly to the forward case and both stochastic flows ¢ ¢
as well as p,; are adapted to this filtration. Furthermore, we have a growth control for
both forward and backward stochastic flow. Fix arbitrary ¢ € (0, 1), then the following
convergences hold uniformly in s, t, P-a.s.,

|bs,t(y)] . |ps,t(y)]
im ——452— =0, lim ————— =0,
lyl—o0 (14 [y[)1+° lyl o0 (14 |y[)1+9

1 s 1 5
) o, P G )) _0
lyl—o0 14 |¢s¢(y)] lyl o0 14| ps.t(y)]

In the remainder of this subsection we will discuss the stochastic characteristics
method where the theory of stochastic flows plays an important role. We restrict our
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attention to a first-order linear stochastic partial differential equation of the form

dv =b(y) - Vyvdt + Z b (y) - Vv odBY,
k=1

(4.10)
v(0) = vy,
with coefficients b* : R? — R%, k = 0,..., m. The associated stochastic characteristic
system is defined by a system of Stratonovich stochastic differential equations
m
dgy = b(¢) dt + Y b¥(¢y) 0 dBYF, (4.11)

k=1

A solution of (4.11) starting at y is the so-called stochastic characteristic curve of (4.10)
and will be denoted by ¢;(y). Assume that bl,..., b™ € C’é+1’6(Rd) and b0 € Cé’5(Rd)
for some | > 3 and § > 0. If the initial function vg lies in C*°(R?), then the problem
(4.10) has a unique strong solution which is a continuous C*-semimartingale for some
€ > 0 and is represented by

U(t,y) = Vo (¢;1(y)>7 te [O,T], (4'12)

where the inverse mapping ¢, 1is well defined according to the previous paragraph. It
satisfies (4.10) in the following sense

v(t,y) = vo(y) +6°(y) - /0 Vyo(r,y)dr+ ) b5 (y) - /0 V,u(r, y) o dBE.
k=1

Moreover, if the initial condition vy is rapidly decreasing then so does the solution itself
and »
B s ([ I+ dr) <o, N peioc)
te[0,T] \ /R

The choice of the Stratonovich integral is more natural here and is given by appli-
cation of the It6-Wentzell-type formula in the proof of the explicit representation of the
solution (4.12). Indeed, in this case it is close to the classical differential rule formula
for composite functions (cf. [49, Theorem I1.8.1, Theorem 1.8.3]).

4.4 Solution to the stochastic BGK model

This section is devoted to the existence proof for the stochastic BGK model (4.3). Let
us start with the definition of its solution.

Definition 4.4.1. Let € > 0. Then F© € L¥ (2 x [0, T] x TN x R) satisfying F*—1gs¢ €
LY x [0,7] x TV x R) is called a weak solution to the stochastic BGK model (4.3)
with initial condition Fj provided the following holds true for a.e. ¢t € [0,T], P-a.s.,

(Fe(t), 0) = (F§,¢) +/0 (F*(s),a-V)ds

1 [ a0t
+ - /0 (Lue(ty>e — F= (1), (t)) dt + Z/o (F=(s), 0 (grsp)) dBr(s)
k=1

e

1

‘s /0 (F=(s), 0e(G*Deip)) ds.
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Remark 4.4.2. In particular, for any ¢ € C°(TY x R), there exists a representative
of (F&(t), ) € L>(Q2 x [0,T]) which is a continuous stochastic process.

In order to solve the stochastic BGK model (4.3), we intend to employ the stochas-
tic characterics method introduced in the previous section. Hence we need to reformu-
late the problem in Stratonovich form. It will be seen from the following lemma (see
Corollary 4.4.4) that on the level of above defined weak solutions the problem (4.3) is
equivalent to

1
dF¢ +a(€) - VFdt =
F=(0) = FE.

wese — F® 1
% dt — QcF=d o AW + 0 F*0,G* dt,

Lemma 4.4.3. If X be a C'(TN x R)-valued continuous (.F;)-semimartingale whose
martingale part is given by — fg 0 XPdW, then

t 1 t t 1 t
- / D XD AW + - / 9 (GO X)dt = — / OeXPodW + - / Oe X 0cG*dt. (4.13)
0 0 0 0

Moreover, the same is valid in the sense of distributions as well: let X be a D'(TYN x R)-
valued continuous (F;)-semimartingale whose martingale part is given by

t
- / 0 X AW,
0

i.e. (X(t),p) is a continuous (F)-semimartingale with martingale part

t
- / (0eX D, 0) AW
0

for any ¢ € CX(TN x R). Then (4.13) holds true in D'(TYN x R).

Proof. We will only prove the second part of the statement as the first one is straight-
forward and follows similar arguments. Let us recall the relation between It6 and
Stratonovich integrals (see [49] or [50]). Let Y be a continuous local semimartingale
and ¥ be a continuous semimartingale. Then the Stratonovich integral is well defined
and satisfies

t t
1
/ Tody = / AY + = (0, Y ),
0 0 2
where ((,-)); denotes the cross-variation process. Therefore, we need to calculate the
cross variation of —0:X g, and the Wiener process 8, k = 1,..., d. Towards this end,

we take a test function ¢ € C°(TY x R) and derive the martingale part of (9¢ X gi, ¢)
(in the following, we emphasize only the corresponding martingale parts).

(o) == [ (0cXa¢)asi(s),
(X, grp) = "'—/0 (0e X g, gep) dB(s),

(0: X, grp) = "'+/0 (0 X gr» Oc(grp)) dB(s),



94 Chapter 4 A BGK Approximation to Stochastic Scalar Conservation Laws

where
(0 X g, Oe(grp)) = —(0e(0e X gr), grp)
= —(OBX 4R ) — 5(0cX e )
= —(0(970eX), ) + %@X@w;?, ).

Consequently

((—35ng,¢>,ﬁk>>t=/ (35(9;3(95)(),90)018—;/ (0:X Oc i, ) ds
0 0

and the claim follows by summing up over k. O

Corollary 4.4.4. Lete > 0. If F* € L¥ (2 x [0,T] x TN x R) is such that F€ —1gs¢ €
LYQ x [0,T] x TV x R) then it is a weak solution to (4.3) if and only if, for any
¢ € C°(TN xR), there exists a representative of (F=(t), O¢(gre)) € L°(Q2x[0,T]) which
is a continuous (F)-semimartingale and the following holds true for a.e. t € [0,T], P-
a.s.,

<F€(t)790>=<F§,<p>+/O (F¥(s),a- V) ds
1 [ 4.t
£ 1 J) uomeF000) e 3 [0, 0l0n0) o st

3 /0 (F=(5), 0c (00 G?)) ds.

As the first step in order to show the existence of a solution to the stochastic BGK
model, we shall study the following auxiliary problem:

1
dX +a(f) - VX dt = —0: XPodW + 185X85G2 dt,
X(S) = Xo.

(4.14)

It will be shown in Corollary 4.4.10 that this problem possesses a unique weak solution
provided Xo € L>®(2 x TV x R). Let

S={S(,s);0<s<t<T}

be its solution operator, i.e. for any 0 < s <t < T we define S(t, s) X to be the solution
to (4.14). Then we have the following existence result for the stochastic BGK model.

Theorem 4.4.5. For any € > 0, there exists a unique weak solution of the stochastic
BGK model (4.3) and is represented by

1 [t s
Fe(t) = £ S( 0)FF + - / e S (1 5)Lys (oo ds. (4.15)
0

The proof of Theorem 4.4.5 will be divided into several steps. First, we have to
concentrate on the problem (4.14).



Chapter 4 A BGK Approximation to Stochastic Scalar Conservation Laws 95

4.4.1 Application of the stochastic characteristics method

In this subsection, we prove the existence of a unique solution to (4.14) and study the
behavior of the solution operator S. The equation (4.14) is a first-order linear stochastic
partial differential equation of the form (4.10), however, the coefficient a, as well as 8£G2
in the case of (4.5), is not supposed to have bounded derivatives. For this purpose we
introduce the following truncated problem: let (kg) be a smooth truncation on R, i.e.
let kr(€) = k(R™'¢), where k is a smooth function with compact support satisfying

0<k<1and
_ Lt gl <,
KE) = {o, if ¢l >1,
and define gf*(z,¢) = gr(z,&)kr(€), k = 1,...,d, and a®(¢) = a(&)kr(€). Coefficients

& and G2, respectively, can be defined similarly as @ and G2, respectively, using gZ
k
instead of g;.> Then
1
AX +a"(§) - VX dt = —9 X o dW + 20 XO:G" d,
X(s) = Xo

(4.16)

can be solved by the method of stochastic characteristics. Indeed, the stochastic charac-
teristic system associated with (4.16) is defined by the following system of Stratonovich’s
stochastic differential equations

d

1
dp? = —Z9:G2(p,) dt + R(o)) o dBy(t),
Pt 4% (¢t) ;gk (¢t) o dBi(t) (4.17)
dgoizaﬁ(apg)dt, i=1,...,N,
where the processes ¢ and ¢!, i = 1,..., N, respectively, describe the evolution of the
&-coordinate and x'-coordinate, i = 1,..., N, respectively, of the characteristic curve.

Let us denote by ¢ (z,£) the solution of (4.17) starting from (z,£) at time s.
Then f defines a stochastic flow of C3-diffeomorphisms and we denote by 1® the
corresponding inverse flow. It is the solution to the backward problem

d
auf = {0 w) At = 3 gf (1) 0 A1)

k=1
dyi = —alf(?)dt, i=1,...,N.

(4.18)

Remark 4.4.6. Note, that unlike the deterministic BGK model (i.e. gx = 0, k =
1,..., d), the stochastic case is not time homogeneous: gofft #* @é;ft_s.

Proposition 4.4.7. Let R > 0. If Xy € C3"(TY x R) almost surely,® there exists a
unique strong solution to (4.16) which is a continuous C>?-semimartingale for some

2For notational simplicity we write G2 as an abbreviation for (GR)2 and similarly g/*? instead of
2
(gt) "
31 > 0 is the Hélder exponent from Section 4.2.
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¥ >0, i.e. it satisfies (4.16) in the following sense
X(t7x7£; ) XU( / VX T$ ga )
—ng 7,€) / DX (r,2,€;5) 0 ABy(r)

+ 46§GR’2(:B,£)/ OeX(r,x,&;s)dr
S
Moreover, it is represented by

X(ta x)é-a S) = XO (wft(xvg))

Proof. The above representation formula corresponds to (4.12). It can be shown in a
straightforward manner using the It6-Wentzell formula (see [50, Theorem 6.1.9]). O

It is obvious, that the domain of definition of the solution operator to (4.16),
hereafter denoted by S, can be extended to more general functions which do not
necessarily fulfil the assumptions of Proposition 4.4.7. In this case, we define consistently

SE(t,5) X0 = Xo (v (2,€)), 0<s<t<T.

Since diffeomorphisms preserve sets of measure zero the above is well defined also if X
is only defined almost everywhere. The resulting process cannot be a strong solution to
(4.16), however, as it will be seen in Corollary 4.4.9 it can still satisfy (4.16) in a weak
sense. In the following proposition we establish basic properties of the operator S*.

Proposition 4.4.8. Let R > 0. Let ST = {Sf(t,5),0 < s <t < T} be defined as above.
Then

(i) ST is a family of bounded linear operators on L*( x TN x R) having unit operator
norm, i.e. for any Xo € L'(Q x TN xR),0<s<t<T,

Is™ ¢t )Xol <11 XollL:

HL1 LS Lo (4.19)

(ii) ST wverifies the semigroup law

SB(t,s) = ST(t,r) o ST(r,s), 0
SE(s,5) =1d,

IN

s<r<t<T,
s<T.

o
| /\

Proof. Fix arbitrary 0 < s < ¢t < T. The linearity of S%(t,s) follows easily from its
definition. In order to prove (4.19), we will proceed in several steps. First, we make an
additional assumption upon the initial condition X, namely,

Xoe LM Qx TV xR)NL>®(Q x TV x R). (4.20)

Let us now consider a suitable smooth approximation of Xj. In particular, let (hs) be
an approximation to the identity on TV x R, and (ks) a smooth truncation on R, i.e.
define ks(&) = k(6€), where k was defined at the beginning of this subsection. Then the
regularization Xg , defined in the following way

X (w) = (Xo(w) * hs) ks,
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is bounded, pathwise smooth and compactly supported and

X, — Xo in LYQx TN xR); X8 < | Xolls - (4.21)
I3 w,T,

e,

Furthermore, also all the partial derivatives 8§Xg , 836ng ,t=1,..., N, are bounded,
pathwise smooth and compactly supported.

Next, the process X° = S(t,s)X] is the unique strong solution to (4.16) or
equivalently

dX +af(¢) - VX dt = -0 X dW + %ag(amagx) dt,
X(s) = X3

(4.22)

which follows by a similar approach as in Lemma 4.4.3. For any z € TV, ¢ € R, the
above stochastic integral is a well defined martingale with zero expected value. Indeed,
for each k =1,..., d, we have®

’ 6 R 2 g 5( 1R R 2
E/ ‘aﬁX 9k (x7§)‘ dr = CE/ |v17£XO (ws,r(wvé-)) '6£¢s,r<m7§)‘ dr
s sT
< C’E/ |85¢§T(x,§)‘2dr < 00

since g,}j is bounded and the process 85wfr(x,§) solves a backward bilinear stochastic
differential equation with bounded coefficients (see [50, Theorem 4.6.5]) and therefore
possesses moments of any order which are bounded in 0 < s <r < T,z € TV, ¢ € R.
Nevertheless, we point out the same is not generally true without the assumption (4.20).
In this case, the stochastic integral can happen to be a local martingale only, which would
significantly complicate the subsequent steps.

We intend to integrate the equation (4.22) with respect to the variables w,zx,§
and expect the stochastic integral to vanish. Towards this end, it is needed to verify the
interchange of integrals with respect to x, £ and the stochastic one. We make use of the
stochastic Fubini theorem [15, Theorem 4.18]. In order to verify its assumptions, the
following quantity

r 3
/TN/R(E/S “9€X591§<$7§)\2dr) dé dz
’ 5 5 \?
:/ /gf(m,&)l(E/ Ve X0 (R (2,6)) - 90T (2, 6)] dT) de da
™ JR R

should be finite. Recall that g,f, k = 1,...,d, are bounded and the moments of
8§w§r(x,§) are finite and bounded in s, r, x, £&. Thus, since Vx,ng is bounded and
pathwise compactly supported it is sufficient to show that so does Vm,ng (wfr(az,ﬁ)).
However, this fact follows immediately from the growth control on the stochastic flow
™. Indeed, all the assertions of [50, Section 4.5], in particular Exercise 4.5.9 and 4.5.10,
can be modified in order to obtain corresponding results for the component @bﬁ}o only.
Hence, for any n € (0, 1), we have uniformly in s, r, z, P-a.s.,

1m — U, PO,
lg]=oo (1 + [€])1H7 lgl=00 1+ [1has0 (z, €)]

R,0
S| P ¢ 14

“By Va..¢ we denote the gradient with respect to the variables x, €.
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Consequently, it yields: for any fixed L > 0, there exists [ > 0 such that if || > [ then
it holds uniformly in s, r, z, P-a.s.,

(1+1eD™ < LA + [ (x, ).

The support of X§ as well as V,, ¢X§ in the variable ¢ is included in [—%, 1]. Therefore, if
in addition (1+[¢[)” > L(14-3) then [0z, &) > 3 forall s, r, x, P-a.s., and accordingly
nyng (wfr(a:,f)) = 0 for all s, r, x, P-a.s.. As a consequence, the stochastic Fubini
theorem can be applied.

Therefore, integrating the equation (4.22) with respect to w, z, ¢ yields

E/TN/RX‘S(tyxvg)dgde—F]E/st/RaR(g) TNVXé(T,ﬁ,f)dxdfdr

:E/TN/Rngfdx—k;E/: /EN/R8§(GR’2(:E,§)85X5(T,$,§)) d¢dzdr

where the second term on the left hand side vanishes due to periodic boundary conditions
and the second one on the right hand side due to the compact support of G%2 in &.

Hence we obtain
E/ /SR(t,s)nggdx:E/ /nggdx
TN JR TN JR

where the integrals on both sides are finite. Note, that if XJ is nonnegative (nonpositive)
then also ST(¢, s) X{ stays nonnegative (nonpositive). Therefore,

(8%t 9)X5)" =8t s) (X0, (8t 9)XD) T =S8R (t,9)(XD) 7,

and by splitting the initial data into positive and negative part we obtain that (4.19) is
satisfied with equality in this case.

In addition to (4.21), also the convergence ST (t,s)X§ — ST(t,s)Xo holds true
in LY(Q x TV x R). Indeed, let us fix 61, d2 € (0,1). Then (4.19) is also fulfilled by
Xgl - ng hence the set {ST(t,5)X3; 6 € (0,1)} is Cauchy in L'(2 x TV x R) and
the limit is necessarily ST(t, s) X since diffeomorphisms preserve sets of zero measure.
Finally, application of the Fatou lemma gives (4.19) for Xj.

As the next step, we avoid the hypothesis (4.20). Let Xo € L'(Q x TV x R) and
consider the following approximations

X(SLZXQ 1\X0\§n7 n € N.
Then clearly
Xg— Xo in LHQXTYxR), [ Xg],, <Xl
and X' € L®(Q x TV x R) hence the estimate (4.19) is valid for all XZ. As above, it
is possible to show that ST (¢, s) X — ST(t,5) X in L1(Q x TV x R) and by the lower

semicontinuity of the norm we obtain the claim.
Finally, item (ii) can be shown by the flow property of v:

SH(t,r) 0 8% (r, )Xo = Xo(vF, (¥ (,€))) = Xo (v (2, €)) = S*(t, 5) Xo.
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Corollary 4.4.9. Let R > 0. For any Fs @ B(TY) ® B(R)-measurable initial datum
Xo € L®(Q x TN xR) there exists a unique X € LE (2 x[s,T] x TN xR) that is a weak
solution to (4.22), i.e. the following holds true for any ¢ € C°(TN x R), a.e. t € [s,T],
P-a.s.,

(X(t),¢) = (Xo0,0) + /t (X(r),af - V¢)dr
S L (4.23)
S of16)) AB(r) + 5 [ (X(r),06(G20e0) ar

k=1"°%
Furthermore, it is represented by X = ST (t, s) Xo.

Proof. Let us start with the proof of uniqueness. Due to linearity, it is enough to prove
that any L*°-weak solution to (4.22) starting from the origin Xy = 0 vanishes identically.
Let X be such a solution. First, let (h;) be a symmetric approximation to the identity
on TV x R and test (4.22) by ¢(z,€) = hy(y — 2, —§). (Here, we employ the parameter
7 in order to distinguish from the regularization defined in Proposition 4.4.8, which will
also be used in this proof.) Then X7 (t) := X (¢t) % h., for a.e. t € [s, T, satisfies

s

t d t
XT(t,y. () = — / [a" - VX ()] (y, Q) dr =) / [0:X (r)gff]" (y,¢) dBr(r)
k=1"79%

1

+5 | 10E™0cX ()] (1O dr

hence is smooth in (y, () and can be extended to become continuous on [s,T]. Now, we
will argue as in [23, Theorem 20] and make use of the stochastic low ¢®. From the
It6-Wentzell formula for the Itd integral [50, Theorem 3.3.1] we deduce

X7 (t, 0B (5.0)) = — / [a® - VX)) (o5,(5.0)) dr
d ¢

=3 [ X (5.0 sl
k=1+%

I . -
+3 [ (6 20X ()] (eL3.0) dr
/VXT el (5,0) -l (105, 0))

+Z 3§X7 ol (3,0) 98 (0F,(5,0)) dBy(r)
k=1"%

1 ! 2T R (~ F R2( R [~
3 / X" (1, 8. (5, 0)) G2 7, 0)

— Z 85 85X gk] (@gr(ga 5))95 (‘Pﬁr(@ 5)) dr

k=175
= +Jo+Js+Js+J5+ g+ J7.

As the next step, we intend to show that J; +J4 — 0, Jo +J5 — 0, and J3 + Jg +
J; = 0 in D'(TY x R), P-a.s., as 7 — 0. Remark, that unlike [23], working with the
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Stratonovich form of (4.22) would not bring any simplifications here. To be more precise,
the Stratonovich version of the It6-Wentzell formula (see [50, Theorem 3.3.2]) is close to
the classical differential rule formula for composite functions hence any correction terms
(as Jg, J7 in the It6 version) are not necessary; however, due to the dependence on x, ¢
of the coefficients g,f, the corresponding Stratonovich integrals would not cancel and
therefore in order to guarantee their convergence to zero, one would need to control the
correction terms Jg, J7 anyway.

Let us proceed with the proof of the above sketched convergence. Towards this
end, we employ repeatedly the arguments of the commutation lemma of DiPerna and
Lions [17, Lemma II.1]. In particular, in the case of J; + J4 we obtain for a.e. r € [s, ],
P-a.s., that

B.vX"(r)—[af - VX(r)]" — 0 in D(TY xR). (4.24)
Indeed, since
VX (r,2,€) = [a' - VX (r)](2,€)
/TN/X O a(€) — a™(Q)] - Vhe(r — 9,6 — Oy

and 7|Vh.|(-) < Char(-), we obtain the following bound by standard estimates on con-
volutions : for any ¢ € C°(TV x R)

(o VX7 (1) = [ VX ()], )|
< O™ 1.0 gy | X () L2000 191l ey
where Ky C TV x R is a suitable compact set and p, q € [1,00] are arbitrary conjugate

exponents. As a consequence, it is sufficient to consider X (r) continuous in (z,§) as the
general case can be concluded by a density argument. We have

/TN /RX(Tay, O)[af(€) = a®(Q)] - Vhr (x — y, & — ()dCdy

- /TN /R /01 X (r,y,O)DaR (¢ + (€ = ) (€ — Q) - Vhr(z — y,€ — ()dod(dy
- /TN / /1 X (r,z = 7§,& = 7¢)Da"* (¢ = (1 = 0)7()( - VA(§, ()dod(dj
— X (r, z,&)Da’Y( / /gvn $dédg =0

hence (4.24) follows by the dominated convergence theorem. Moreover, we deduce also
that for a.e. r € [s,t], P-a.s.,

a®(pl0) VX (r,of)) = [af - VX ()] (¢F.) — 0 in D(TY xR). (4.25)
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It can be seen by using the change of variables formula: let war denote the Jacobian
of the inverse flow wfr, then

(" (050) - VX7 (r o) = [a" - VX)) (oF,). 0|
= [(a®- 97 - [a® - VX CY" 6@ )
< CJla" [y oo o 1X (M) o) |0 (055 IO | o

scHaRHWl,w(R)is;s;jp||X< Marollolieu) s 105 1agr) < o0,

which holds for a suitably chosen compact set K € TV x R as ¢(w§r) is compactly
supported in TV x R and any conjugate exponents p,q € [1,00]. The estimate of
SUPs<,<T HJq/JfrH re(k) is an immediate consequence of the fact that for almost every
w € Q the mapping (r,z,§) — Dzbfr(w,a:,f) is continuous due to the properties of
stochastic flows (see Subsection 4.3.2, (vi)) and therefore (r,z,£) — J1/1§T(w,:1:,§) is
bounded on the given compact set [s,T] x K. Having this bound in hand, we infer
(4.25) by using density again. Accordingly, the almost sure convergence J; + J4 — 0 in
D'(TN x R) follows by the dominated convergence theorem.

In order to pass to the limit in the case of J5 4+ J5, we employ the same approach
as above so we will only write the main points of the proof. We obtain

(g (05, 0eX7 (r,08,) = [of 06X ()] (¢5,),0)|
< O\, oo (R) CS55UD 1 X ()l e ) 18| oo () sup HJ¢§¢~||L<1(K)
hence for a.e. r € [s,T], P-a.s.,
gk (05) 0 X7 (r,0d) = [958 90X ()] () — 0 in D'(TV x R)
and accordingly we conclude by the dominated convergence theorem for stochastic inte-
grals [67, Theorem 32] that P-a.s. (up to subsequences) Jo + J5 — 0 in D'(TV x R).

Now, it remains to verify the convergence of J3 4+ Jg + J7. As the first step, we
will show that for a.e. r € [s,T], P-a.s., in D'(TV x R)

[35( 20X ()] + %(%X T(r)gy — 0[0eX (r)gf] gt — 0. (4.26)
Towards this end, we observe
[af( afx( ))]T(x7§) <6CX(T).9]}}27a§hT(:U_ '75_')>7

5355XT(73$»5)9;§’ (2,€) = (0 X (r), Ochr (2 — -, & — ))gp (@, €),
—85 [8€X(T>gl?]7(xa§) 9k (l’,f) - —<8<X(T)gf,35h7(:n -8 )>g]}j($',§),

[\D\H[\DM—‘
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and hence the left hand side of (4.26) evaluated at (z,§) is equal to
5 [ [ 0 O 0 — o, Oehs (o — €~ Oy
TN JR
== [, [ X006 0.0 = of 0. 0) kol .o =€ = el

+ ;/ / X (r, O/ (08 (0, Q) — 9f (2, ) 0 (v — y,€ — ()dCdy
™™ JR
=Li(z,§) + Ia(z, ).

Next, we proceed as in the case of J; + J4. We obtain
R|I2
(11 + 12, 0)| < C||gi HWl,oo(TNXR)||X(r)||LP(K¢)||¢HL’1(’]I‘N><R)

which holds true for a suitable compact set Ky C TN x R and arbitrary conjugate
exponents p,q € [1,00] and in the case of X (r) continuous in (x, &)

L (z,€) — —X(r,2,€) (9l (2,€))?,
L(z,€) — X (r,z,) (9egf(2,€))?,

which yields (4.26) by the dominated convergence theorem and density. As the next
step, we conclude that

(1et) +1a(e).0)

2
< Cllorl s o iy e 0 IX (D) a9l eay. 50 (1395 | gy

and consequently for a.e. r € [s,T], P-a.s.,
1 1
5 [0 (970X ()] (03) + 508X (ol )9y (8h)
— O [85X(r)g,?]7(<pgr)gf(4p£r) — 0 in D’(']TN x R).

Therefore, the desired convergence of J3 + Jg + J7 is verified.
Finally, since it holds true for a.e. ¢t € [s,T] that

XT(4) S x(t)  in L®(TN x R), P-as.,

we obtain for any ¢ € C°(TV x R)

(X(t0),0) = (X(0), () [Julk] ) = lim (X7 (8), 6 (01) IO L)
= lim (X7(t.¢1).0) =0

hence X = 0 since gaft is a bijection and the proof of uniqueness is complete.

The proof of the explicit formula for X follows by employing the regularization Xg
as in the proof of Proposition 4.4.8. The process X° = SF(t,s)X{ is the unique strong
solution to (4.16) or equivalently (4.22) by using a similar approach as in Lemma 4.4.3.
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Consequently, it satisfies for all ¢ € C°(TVN x R)
t
(X°(0),0) = (X3.0) + [ (X°(r).a"(e) - V) ar
d_ -t 1t
#3000, 0claf ) sl + 5 [ (X0, 0(6"200))
E—=1"S$ s

Now, it only remains to take the limit as 6 — 0. As Xg — Xj for a.e. w,z,€ we have
X0 = SB(t,8) X3 — SE(t,s)Xo = X for a.e. w,x,& and every t € [s,T]. Therefore,
the convergence in all the terms apart from the stochastic one follows directly by the
dominated convergence theorem. For the case of stochastic integral we can apply the
dominated convergence theorem for stochastic integrals. Since it holds

(XO(r),0¢(gfid)) — (X (1), 0c (g5 9)), ae. (w, 7)€ x]s,T]

and, setting K = supp¢ C TV x R,

[(X°(r), 0c(g'9))| < C /K | X3l (2,€)) | dedz < C,
where the constant C' does not depend on ¢ due to the fact that

)
1X3lzes, . < IXollzzs, -

Thus, we deduce (up to subsequences) the almost sure convergence of the stochastic
integrals. Furthermore, ST(t, s) Xy is exactly the representative (in ¢) of the unique weak
solution of (4.22) that satisfies (4.23) for all ¢ € [s, T], in particular, t — (SF(t, s) X, ¢)
is a continuous (%;);>s-semimartingale for any ¢ € C°(TV x R). O

As the next step, we derive the existence of a unique weak solution to (4.14) which
can be equivalently rewritten as

X + a(€) - VX dt = 9. X AW + %ag((;?ag)() dt,
X(S) = XO

(4.27)

due to Lemma 4.4.3. With regard to the definition of the truncated coefficients, let us
define
R(s,x,€) = inf {t > s; |<p£;0(a:,§)| > R}

(with the convention inf () = T'). Clearly, for any s € [0,T], z € TV, ¢ € R, 78(s,2,¢)
is a stopping time with respect to the filtration (.%;):>s. Nevertheless, it can be shown
that the blow-up cannot occur in a finite time and therefore

sup 78(s, z,8) = T, P-as., s € [0,7], z € TV, £ e R.
R>0

Indeed, for any R > 0, the process ¢ satisfies the It6 equation

d
dey" =" i (ef) dBi(t)
k=1
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where all the coefficients g,]j satisfy the linear growth estimate (4.4) that is independent
of R and x and therefore the claim follows by a standard estimation technique for SDEs.
Moreover, if R’ > R then due to uniqueness TR/(S,{L‘,f) > 7f(s,2,€) and SR/(t, $)Xo =
ST(t,5)Xo on [0, 77(s,z,£)]. As a consequence, the pointwise limit

[S(t, s)Xo] (w, z,£) := lim [SR(t,s)Xo] (w,z, &), 0<s<t<T,

R—o0

exists almost surely and we obtain the following result.

Corollary 4.4.10. The family S = {S(t,s), 0 < s <t < T} consists of bounded linear
operators on L' (QxTN xR) having unit operator norm, i.e. for any Xo € L*(QxTN xR),
0<s<t<T,

|S(t, 5)Xo S Xollzy -

s
Furthermore, for any Fs@B(TN)®B(R)-measurable initial datum Xo € L®°(Qx TN xR)
there exists a unique X € LF (2 x [s,T] x TV x R) that is a weak solution to (4.27).
Besides, it is represented by X = S(t,s)Xo and t — (S(t,s)Xo, ) is a continuous
(F)i>s-semimartingale for any ¢ € C°(TN x R). Consequently, S verifies the semi-
group law

IN
IN 3

t<T,

S(t,s) =S8(t,r) o S(r,s), 0< <
0 T.

s
S(s,s) =1d, <s
Proof. The first part of the proof follows directly from Proposition 4.4.8 while the rest
is a consequence of Corollary 4.4.9. O

Corollary 4.4.11. For all n € [0,00) it holds

sup E sup |[|(S(t,5)Lose — Los¢) (L+[E)"]|0 < C. (4.28)
0<s<T s<t<T z,§

Proof. Remark, that if (4.5) is fulfilled, then for any 0 < s <t < T and =z € TV
the process cpi;o(:c,()) = 0 is a solution to the first equation in (4.17) for any R > 0.
Moreover, since the solution to (4.17) is unique, we deduce

R,U( g) > 07 if é- > 07
Zz,
Pat <0, if £<o.

As a consequence, the same is valid for the inverse stochastic flow 1™° hence
SH(t,8)1ose = Losg

for all R > 0 and thus the left hand side in (4.28) is zero.

In the case of (4.6), it is enough to prove the statement for any S provided the
constant is independent on R. The stochastic characteristic system (4.17) rewritten in
terms of It0’s integral takes the following form
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whereas, in the case of the inverse flow, (4.18) reads

d
Ay = = g () dBi(t),

k=1
dyl = —alt(?)dt, i=1,...,N.

Thus, we obtain
R
ST 5)Lo>e — Lose =15 | 11 gruR, (0,6)d8u(r)>¢ — 10>

i< s, 1t o, o) s

(H!Zk S gRR (2, €)dB(r) )"
(1 +|f|>"+2

and since the fact that wm o gost R ', implies
t

d
Z/gk FERILCACED B W AORSIELA
s =178

by setting (z,§) = gpft(y, (), we deduce that

E sup / / [S(t, $)Lose — Lose| (1 4+ €)" dé da
s<t<T JTN
d t n+2
<C+C swp E sup §: / aF (0P (4, 0)) dBi(r)
(y,)eERNXR  s<t<T s

n+2

2
<C+C  sup (Z/ |98 (2% (4, €)) \dr> <C,
(y,0)eERNXR s
where the constant C' does not depend on R and s. O

Remark 4.4.12. Let us make some comments on hypotheses (4.5), (4.6) as the proof of
Corollary 4.4.11 is their only use. The main difficulty in proving (4.28) comes from the
unknown structure of dependence of the stochastic flows ¢ and ¥ on & in connection
with the remaining variables w, x, s,t. Although one cannot say much in general, it is
possible to find some (mostly simple) examples such that (4.28) holds true even without
(4.5), (4.6). If the stochastic characteristic curve is governed by a linear system of
stochastic differential equation as for instance

N

dp? = (1+¢f) dBi(1),

k=0
dapt gp?dt i1=1,...,N,

i.e. neither (4.5) nor (4.6) is fulfilled since go(z,&) = 1 + &, then both forward and
backward stochastic flow are given by explicit formulas where the dependence on £ is
clear and, as a consequence, the statement of Corollary 4.4.11 remains valid.

Now, we have all in hand to complete the proof of Theorem 4.4.5.
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Proof of Theorem 4.4.5. Recall, that the local densities are defined as follows

Wt x) = /R F(t 2, €) de = /R (F¥(t,2.€) — Lone) dé (4.29)

hence the function F* is not integrable with respect to £. For the purpose of the proof it
is therefore more convenient to consider the process h®(t) = F**(t) — S(t,0)1ps¢ instead
and prove that it exists and is given by a suitable integral representation. Due to
Corollary 4.4.10, S(t, 5)1p>¢ is the unique weak solution to (4.27) hence h® solves

(1u£>£ — S(t, 0)10>§) - h
9

— %ag(GQ(—aghf)) dt,
h*(0) = Xus,

€
dh® + a(€) - VS dt = dt — Och*d AW

(4.30)

in the sense of distributions. Then, by Lemma 4.4.3 and the weak version of Duhamel’s
principle, the problem (4.30) admits an equivalent integral representation

1 [t s
he(t) = e = S(t,0)xus + . / ¢ = S(t,8) [Lue ()5 — S(5,0)Lgs¢]ds (4.31)
0
and thus can be solved by a fixed point method. According to the identity

/!1a>s—15>s\d€:\a—517 a, BEeR,
R

some space of £-integrable functions seems to be well suited to deal with the nonlinearity
term 1,:-¢. Let us denote 52 = L>(0,T; L1(2 x TV x R)) and show that the mapping

1 [t s
(0) () = e £8(0005 5 7 [ ¢ 809 [Le = S 0L,

where the local density v(s) = [5(g(s, &) +S(s,0)1ose — Los¢)d€ is defined consistently
with (4.29), is a contraction on . Let g, g1, g2 € J with corresponding densities
v, v1, v2. By Proposition 4.4.8, Corollary 4.4.11 and the assumptions on initial data, we
arrive at

1 9) O] 1

w,z,§

ot 1 t _t=s
se el + 2 [ e T luwse = S(5:00Toxellry | ds

< sy, + sup (Ixulles , + 100 ose = Losellzy )
’ 0<s<t w,,§ w,z,€

<C+ sup |g(s)llpr
0<s<t w28

with a constant independent on ¢, hence

Hc%/gHLoop < C+lgllpeer , < oo
t w,x,& w,z,§
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Next, we have

]. t _t=s
H(’%/Ql)(t) - (%/92)(15)'&&,%& < 8/0 € -« Hlvl(s)>£ - 1vz(s)>£HLi}7z75d3
]. t _t=s
=2 [ ) — o)l
g Jo )
1

IN

t
_t—s
e 0o - w®)l, ds

3

SO
T

[ g1 %92”@%3}%5 <(I—e <)o — gollgery

and according to the Banach fixed point theorem, the mapping £ has a unique fixed
point in 7. Moreover, we deduce from Corollary 4.4.10 that h® is measurable with
respect to P ® B(TY) ® B(R) and therefore, according to the semigroup property of the
solution operator S, we obtain the existence of a unique weak solution to (4.3) that is
expressed as (4.15) and the proof is complete. O

Remark 4.4.13. As a consequence of Corollary 4.4.10, it can be seen that the repre-
sentative hf(t) of the unique weak solution to (4.30) that is given by (4.31) satisfies:
t +— (h%(t), ¢) is a continuous (%;)-semimartingale for any ¢ € C°(TY x R). Accord-
ingly, t + (F°(t), ) is a continuous (.%;)-semimartingale for any ¢ € C°(TV x R)
provided F*(t) is the representative of the unique weak solution to (4.3) given by (4.15).

4.4.2 Further properties of the solution operator

In the previous subsection we showed that the family S consists of bounded linear
operators on L' (Q2x TN xR) with unit operator norm which was essential for the existence
proof for the stochastic BGK model in Theorem 4.4.5. Nevertheless, for the proof of
convergence of the BGK approximation in the next section, namely, to derive certain
uniform estimates, we need to study also its behavior in other spaces. In particular,
S(t,s)Xo is well defined if Xo € LP(Q x TV x R) and we obtain the following result.

Proposition 4.4.14. For any p € [2,00), the family S consists of bounded linear oper-
ators on LP(Q x TV x R) having unit operator norm. Moreover, the solution to (4.14)
belongs to LP(£2; L>(0,T; LP(TN x R))) provided Xo € LP(Q2x TN xR) and the following
estimate holds true

sup E sup ||S(t,9)Xo|[}» <ClXol}, - (4.32)
0<s<T s<t<T z,§ w,x,€

Proof. Note, that it is enough to prove the statement for any S as the limit case of S
then follows by Fatou lemma provided the constant in (4.32) does not depend on R. If
R > 0 is fixed then we use the same approach as in the proof of Proposition 4.4.8, i.e.
we will only prove the statement under the additional assumption

Xo € LP(Q2x TV x R) N L>®(Q x TV x R).

Let Xg be bounded, pathwise smooth and compactly supported regularizations of X
such that

X, — Xo in LP(Qx TN xR), X3 < || Xo|| >

1 ,
Lw,z,{ w,@,§
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and X% = SE(t,s)XJ is the unique solution to (4.27). Now, we apply the Ité formula to
the function h(v) = [[v[|}, . If ¢ is the conjugate exponent to p then h'(v) = plv|P~2v €
2,6

L4(TY x R) and
B (v) = p(p — 1)|w[P~21d € Z(LP(TN x R); LTV x R)).
Therefore
I @, =%,

_p/: /TN/R|X5\p‘2X5aR(g)-VX5dgdxdr

d  rt
- pZ/ /TN /R | X0 [P X00: X gl (2, €) A€ da dBi(r)

k=1"%
t
+2 / / / | X0|P72X° 0 (G120 X°) de du dr
2J)s Jr~v Jr
. t
s 201 / / / | X072 |0 X° P G2 (2, €) de du dr
2 s JTv JR

Using integration by parts, the second term on the right hand side vanishes. Besides,
having known the behavior of X? for large £, we integrate by parts in the fourth term
and obtain the fifth term with opposite sign. To deal with the stochastic term, we also
integrate by parts and observe

—p/R}X‘;!p_QX‘SasX‘ng(:E,S) d¢
=p(p—1) /R | X 20: XX gfi (2, €) A€ + p /R | X0 0 gfi(x, €) dé

hence

[ 1P X00X0 g ) e = [ X0 Pogofi(e.) e
R R

and we arrive at

1x°®l5 =||xs|" +§d:/t/ /}Xﬂpa g5 (z,€) d€ da dBy(r)
LZ,& 0 Lg& ~J, o Jr E9k ) k )

where the stochastic integral on the right hand side is a martingale with zero expected
value. Taking the expectation now yields

B0, = E|xE,
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In order to derive (4.32), we employ the Burkholder-Davis-Gundy inequality and bound-
edness of O¢gy:

E sup X >u’zg <s|x3E,

s<t<T

s<t<T

SEuxguzgch( [ )’

1
<E|XE],, +5E s X0, +c/ B4,

3 Y E sup / /TN/ | X0 [P 0cgfi (x,€) A€ da dBy(r)

hence

d p S|P
B s X0, < OB,

Note, that the constant C' does not depend on 9, s, R. Therefore, the fact that the
operator norm is equal to 1 as well as the validity of (4.32) follow easily by the same
reasoning as in the proof of Proposition 4.4.8. 0

Proposition 4.4.15. Assume that w € LP(2 x TV) for all p € [1,00). Then for all
n € [0,00) there exists r € [1,00) such that

sup B sup [[(S(ts)x) (14 1)"| 0 < O (14wt ),
0<s<T s<t<T '

where the constant C does not depend on w.

Proof. We will prove that the claim holds true for all S with a constant independent
of R. Let us denote by 9% the vector of all z*-coordinates of the stochastic flow 1%,
ie. (2, €) = (W5 (2,€),..., v 5N (2,€)). Since it holds, for any m € [0, 00),

(1+ Jw|*)™
Xw| < (1+|E2)m Lie<ful

we can estimate

»8R<t,s>xw\<1+|£|"> Xt ey (s (2 O) (1 + (D"

w(y
)"

(1 + Jw(ed (@, 9)] .
= A ( Pym o<l mond T IED (4.33)
(1+ [¢P)/?

T g 90+ g

where the exact value of the exponent m will be determined later on. Now, we make
use of the classical moment estimate for SDEs that in our setting reads

R,0 2
1+ o0y, )27
B OGO
0<s<T  s<t<T (14 1[¢?)P
(y,{)eTVXR
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and rewritten in terms of the inverse flow by setting (z, &) = cpf’t(y, Q)

1+ [¢?)p
sup E su p ( + ’£| ) < C’ Vp c [1,00), (434)
0<s<T s<t<T (1 + |wst (x 5)’ )
(2,6)eTVxR

with a constant independent of R. Therefore, employing (4.33), the Young inequality,
(4.34) and Proposition 4.4.14 we obtain by a suitable choice of m

sup Boswp [ [ 18t spval (1 + €D d da

0<s<T s<t<T

<C sup E sup / / 1+|£‘) d¢dx
0<s<T  s<t<T JTN JR (1 + W (z,8)[2)2m

2
+C sup E sup / /‘SR(t,s) (1+]w\2)m1|g|<|w|” d{dx
0<s<T s<t<T JTN JR

2
< C+ O+ P gaull}, < (14wl

which completes the proof. ]

4.5 Convergence of the BGK approximation

In this final section, we investigate the limit of the stochastic BGK model as ¢ — 0 and
prove our main result, Theorem 4.2.1. To be more precise, we consider the following
weak formulation of (4.3), which is satisfied by F¢, and show its convergence to the
kinetic formulation of (4.1). Let ¢ € C°([0,T) x TV x R) then

T T
/O<F6(t),(9t<p(t)>dt+<F0‘€,cp(0)>—|-/0 (F*(t),a- Ve(t))dt
T
=2 [ (tuetoe - FEO 0ttt + / (OeF=(O)BAW (D), 0(1))  (4.35)

T
+;/O (GPOcFE(t), Ogip(t) ) dt

A similar expression holds true also for h®, namely, it satisfies the weak formulation of
(4.30). However, as in the following we restrict our attention to the representatives F**(t)
and h®(t), respectively, given by (4.15) and (4.31), respectively, we point out that both
are true even in a stronger sense. For the case of h®(t), we have: let p € C°(TV x R)
then it holds for all ¢ € [0, 7]

0.9 = G+ (00050
+i/0 <1u5(s)>£ —S5(5,0)105¢ — ha(s),<p> ds (4.36)
_/0 (Och®(s) D dW (s >_/ (G20che (s), 060 ds.

Proof of Theorem 4.2.1. Taking the limit in (4.35) is quite straightforward in all the
terms apart from the first one on the right hand side and can be done immediately.
Remark, that according to the representation formula (4.15) it holds that the set of
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solutions {F*; £ € (0,1)} is bounded in LK (2 x [0, 7] x TV x R), more precisely, F° €
[0,1], € € (0,1). Therefore, by the Banach-Alaoglu theorem, there exists F' € L¥ (€ x
[0,T] x TV x R) such that, up to subsequences,

FEYF in LE(Qx [0,T] x TV x R). (4.37)

Hence, almost surely,

T T
|0, o) ae— [ (), (o) at,
0 0

T T
/(Fe(t),a-Vgo(t)>dt—>/ (F(t),a- Ve(t)) dt,
0 0

1

4 2 € 1 4 2
2/0 (G*OcFe(t),0e0(t)) dt — 2/0 (G*OcF (1), Oep(t)) dt.

and, according to the hypotheses on the initial data,
<F0€7 30(0)> — <1u0>§a 90(0)>‘

We intend to prove a similar convergence result for the stochastic term as well. Since

<F€,8§(gkgp)> — <F, Gg(gkgo)>, a.e. (w,t) € Qx10,T],

and, due to the boundedness of F and the assumptions on gy,

|(F%, 8¢ (gre))| < C,

the dominated convergence theorem for stochastic integrals gives (up to subsequences)
the desired almost sure convergence

T T
/0<8§F5(t)q5dW(t),<p(t)>—>/O (O F(t) @AW (1), o(t)).

Furthermore, multiplying (4.35) by ¢ yields, almost surely,

T
/0 (Lus(yse — FE(1), () dt — 0 (4.38)

and, in particular,
351u6>§ — C%Fe —0 (439)

in the sense of distributions over (0,7) x TV x R almost surely. In order to obtain the
convergence in the remaining term of (4.35) and in view of the kinetic formulation of
(4.1), we need to show that the term 1(1,c5¢ — F¥) can be written as d¢m® where me is
a random nonnegative measure over [0,7] x TV x R bounded uniformly in e. However,
if we define

3
O =2 [ (e~ FO) &
B (4.40)

- / (Lyese — S(t,0)19s¢ — h°(C)) d¢,

€J-c
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it is easy to check that m® > 0 since F* € [0,1]. Indeed, m*(—o0) = m®(c0) = 0 and
me(t, x,-) is increasing if £ € (—oo,u®(t,z)) and decreasing if £ € (u®(t, ), 00).

Due to the convergence in (4.35) it can be seen that for almost every w € €2 there
exists a distribution m(w) such that, almost surely,

T T
/ (m®, p(t)) dt — / (m, p(t)) dt, (4.41)
0 0

for any ¢ € C°([0,7) x TN x R). Besides, the conditions on test functions can be
relaxed so that (4.41) holds true for any ¢ € C°([0,T] x TV x R). Now, it remains to
verify that m is a kinetic measure. The following proposition will be useful.

Proposition 4.5.1. The set of local densities {u®; € € (0,1)} is bounded in
LP(Q; L0, T; LP(TV))),  Vp € [1,00).

Proof. We need to find a uniform estimate for u®. It follows from the definition of u*®
(4.29) and (4.15) that

ut(t,x) = e /]R (S(ta0)1u3>§ —Los¢) d§

1 [t
+ / e = / (S(t, 5)1u5(5)>§ — 10>§) d¢ ds.
€Jo R

Let us now define the following auxiliary function

H(s) =

/]R (S(ta 5)1u5(8)>§ - 10>§) d¢|.

Then ) .
H(t)<e =H 1—e ¢ H
(t) < e”=H(0) + (1 —e”c) max H(s)
and we conclude that H(t) < H(0), t € [0,7]. In order to estimate H(0), we make use
of Proposition 4.4.15 and Corollary 4.4.11. If p = 1 they can be used directly

E sup / |u®(t,z)|de <E sup / /|S(t,0)1u6>§—10>5‘d§dx
0<t<T JTN o<t<T JTN JR

<E sup |[|S(t,0)xus
0<t<T

+E sup ||S(t,0)1gse — 1
L, ogthH (t,0)Lo>¢ o>§||L3§’5
<1+l ),

whereas the case of p € (1,00) can be dealt with by the Holder inequality and the fact
that

|S(t,0)Lys>e — Lose|” = |S(t,0)Luse — Losel-
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Indeed,

p
E sup / |u®(t,z)|P de <E sup / (/ ‘S(t,0)1u8>5—10>5|d§> dz
0<t<T JTN 0<t<T JTN

<CE sup 1S (£, 0)xus (14 1£]) HL1

0<t<

+CE sup [[(S(t,0)105¢ — Lose) (1 + [€]) HL1
0<t<T

<C(1+ sl ).
The above exponents 7, are given by Proposition 4.4.15 and the proof is complete. [

Corollary 4.5.2. For any n € [0,00) it holds

sup E ||h°(t) 1—|—]§\)”HL1 <C.
0<t< 2,6

Proof. 1t follows from (4.31), Proposition 4.4.15, Corollary 4.4.11 and Proposition 4.5.1
that

S E||h®(t)(1 + !E\)”HLl S SEESTEHS(t,S)XUe(S)(lJr !E\)"HL;5

+ 0<§1<11t)<TE [ (Los¢ — S(5,0)105¢) (1 + |£DHHL;£

<c(1+ suwp u(s)lf,,) <C.
0<s<T “®

O]

As a consequence, the assumptions of [16, Theorem 5| are satisfied for Vig =
Oye (t,7)—¢ and hence there exists a kinetic measure v, vanishing at infinity such that
v — v in the sense given by this theorem. We deduce from (4.39) that 0¢F' = —v hence
F is a kinetic function in the sense of [16, Definition 4].

Remark, that it follows now from (4.40) that the function m®(t) satisfies

sup E [[m* ()1 +16)"][,,, < C(e),
0<t<

for any e fixed. Nevertheless, we do not know yet if this fact holds true also uniformly
in e. Towards this end, we will study the weak formulation for A* and employ a suitable
test function.

Proposition 4.5.3. For any p € [0,00) it holds

IE/ €% dmE(t, 2, €) < C. (4.42)
[0,T]xTN xR

£2p+1

Proof. Let p € [1/2,00). Regarding (4.36), we need to test by p(&§) = 371 Due to
the behavior of m® and h® for large £ we can consider test functions which are not
compactly supported in £, however, in this case the stochastic integral is not necessarily
a martingale. Therefore we will first employ the truncation ¢%(¢) = p(£)ks(¢) and then
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pass to the limit. We have

T
ogE/O (mf(t), 8e®) dt = E (1§, %) — E (h°(T), ")

1

T
—21@/ (G2Oh(t), 0¢p”) dt.
0

The first and the second term on the right hand side can be estimated by Corollary 4.5.2
E (h§,¢’) —E(h°(T),¢") < C,

while for the remaining term we first employ the growth properties of G? and 8§G2 to
obtain

T
E / (G2Och?(t), O’ ) dt
0

T

< OE/O ([RE()], (1 +£)0e’ + (1 + [€%) 020" ) dt
T

<CE [ (Il a<c

0

The constant C is independent of § thus the claim follows.

If p = 0 a suitable modification in the above estimation leads to the proof in this
case whereas the case of p € (0,1/2) follows from (4.42) for p = 0 and p = 1/2 due to
the fact that |¢|?? < 1+ [¢]. O

Setting p = 0 in (4.42) we regard m® as random variables with values in M ([0, T x
TV x R), the space of bounded Borel measures on [0, 7] x TV x R whose norm is given by
the total variation of measures. We deduce that the set of laws {P o [m]~!; ¢ € (0,1)}
is tight and therefore any sequence has a weakly convergent subsequence due to the
Prokhorov theorem. Consequently, the law of m is supported in M,([0,T] x TV x R).
Besides, m is nonnegative as it holds true for all m®. Moreover, since Co([0, T] x TV x R),
the space of continuous functions vanishing at infinity equipped with the supremum
norm, is the predual of My([0,T] x TV x R) and C°([0,T] x TV x R) is dense in
Co([0,T] x TN x R) it can be seen that (4.41) holds true for any ¢ € Co([0,T] x TV x R).
Now, it is left to verify the three points of the definition of a kinetic measure [16,
Definition 1]. The second requirement giving the behavior for large £ follows from the
above uniform estimate (4.42). Indeed, let (ks) be a truncation on R, e.g. the set of
functions defined in the proof of Proposition 4.4.8, then

E / €2 dm(t, 2, €) < liminf E / €2k (€) dim(t, 2, €)
[0,T]xTN xR [0,T]xTN xR

6—0

= liminf lim E / €|?Pks (&) dmE(t,z,€) < C.
6—0 &—=0 [0,T]xTN xR

As a consequence, m vanishes for large . The first point of [16, Definition 1] is straight-

forward for ¢ € Co([0,T] x TN x R) as a pointwise limit of measurable functions is

measurable. The case of ¢ € Cy([0,7] x TV x R) now follows by employing the trunca-

tion (ks) together with the dominated convergence theorem as ¢ — 0 and the behavior
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of m at for large £. In order to show predictability of the process

t— ¢(z, &) dm(s, z,§)
[0,¢] xTN xR

in the case of ¢ € Co(TY x R) let us remark that due to (4.36) it is the pointwise limit
(in w and t) of predictable processes

t— ¢(z, &) dm*(s, , &)
[0,¢] x TN xR

and hence is also measurable with respect to the predictable o-algebra. The case of
¢ € Cy(TYN x R) can be verified by using truncations as above. Therefore, we have
proved that m is a kinetic measure.

Finally, we deduce that F' satisfies the generalized kinetic formulation (4.8) and
thus is a generalized kinetic solution to (4.1). Since any generalized kinetic solution is
actually a kinetic one, due to the reduction theorem [16, Theorem 11], it follows that
F =1,5¢ and v = §, where u € LP(2 x [0,T] x TV) is the unique kinetic solution to
(4.1). Therefore, it only remains to verify the strong convergence of f¢ and u® to x, and
u, respectively.

According to (4.37), we deduce for f¢ = F* — 1p>¢ that

*

ff2s xu  in L®(Qx [0,7] x TV x R),
and by (4.38) it holds
Xur — Xu 0 D(0,T) x TV x R), P-a.s..
Besides, {xus; € € (0,1)} is bounded in L>(Q x [0,T] x TV x R) hence (up to subse-

quences) it converges weak*® in this space and since C°((0,7) x TV x R) is separable
and dense in L'([0,T] x TV x R), it follows that Y, is the limit, i.e.

Yoo Soxe in LP(Qx[0,7] x TV x R).

Furthermore, according to Proposition 4.5.1, it holds for any n € [0, c0)

sup E/ / (Xuz(t)] + Ixu(n ) (1 + €)™ dg da < C, (4.43)
o<t<T JTV JR

hence we can relax the conditions on test functions and obtain the strong convergence
Xur — Xu in L2(Q x [0,T] x TV x R). Indeed,

T
E/ / /Ixus—XUIQdidxdt
0 TN JR

T
:E/ / /‘Xua]—QXHEXU—&—]Xu‘d{da:dt—)O
0 TN JR

since for the first term on the right hand side we have

T T
]E/ / /|Xus|d£dxdt:IE/ / / (XusLes0 — Xusle<o) d€ da dt
0 TN JR 0 TN JR

where 1¢50,1¢<o can be taken as test functions due to (4.43) and for the second term

(4.44)
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on the right hand side we consider x, as a test function. As |xo — x3/” = |xa — x| We
conclude also the strong convergence in all LP(Q x [0,7] x TV x R), p € [1,00).

Moreover, a similar approach can be used to prove the convergence of f¢. Indeed,
the same calculation as in (4.44) gives

ff—xu in L} x[0,T] x TN x R)

and using the uniform bound of {f¢; ¢ € (0,1)} in L=(Q x [0,T] x TV x R) we deduce
the convergence in LP(Q2 x [0,T] x TV x R) for all p € [1,00).
Eventually, by the properties of the equilibrium function we have

ut —u in LYQx[0,T] x TV).

On the other hand, it follows from Proposition 4.5.1 that the set {u®; e € (0,1)} is
bounded in LP(Q2 x [0,T] x TV), for all p € [1,00), hence by application of the Holder
inequality, we get also the strong convergence

ut —u  in LP(Qx[0,T] x TV) Vp € [1,00).

Therefore, the proof of convergence in the stochastic BGK model is complete. O



Chapter 5

On Weak Solutions of Stochastic
Differential Equations

Abstract: A new proof of existence of weak solutions to stochastic
differential equations with continuous coefficients based on ideas from
infinite-dimensional stochastic analysis is presented. The proof is fairly
elementary, in particular, neither theorems on representation of mar-
tingales by stochastic integrals nor results on almost sure representa-
tion for tight sequences of random variables are needed. In the second
part we show that the same method may be used even if the linear
growth hypothesis is replaced with a suitable Lyapunov condition.

Results of this chapter were published under the titles:

e M. HOFMANOVA, J. SEIDLER, On Weak Solutions of Stochastic Differential Equa-
tions, Stoch. Anal. Appl. 30 (1) (2012) 100-121,

e M. HOFMANOVA, J. SEIDLER, On Weak Solutions of Stochastic Differential Equa-
tions II., Stoch. Anal. Appl., to appear.
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5.1 Introduction

In this paper, we provide a modified proof of Skorokhod’s classical theorem on existence
of (weak) solutions to a stochastic differential equation

AX = b(t, X)dt + o(t, X)dW, X(0) = ¢,

where b: [0,T] x R™ — R™ and o : [0,T] x R"™ — M, x5, are Borel functions of at most
linear growth and continuous in the second variable. (Henceforward, by M, we shall
denote the space of all m-by-n matrices over R endowed with the Hilbert-Schmidt norm
|A|| = (Tr AA*)Y/2)) Our proof combines tools that were proposed for handling weak
solutions of stochastic evolution equations in infinite-dimensional spaces, where tradi-
tional methods cease to work, with results on preservation of the local martingale prop-
erty under convergence in law. In finite-dimensional situation, the “infinite-dimensional”
methods simplify considerably and in our opinion the alternative proof based on them
is more lucid and elementary than the standard one. A positive teaching experience of
the second author was, in fact, the main motivation for writing this paper. Moreover,
we believe that the reader may find the comparison with other available approaches
illuminating.

To explain our argument more precisely, let us recall the structure of the usual
proof; for notational simplicity, we shall consider (in the informal introduction only)
autonomous equations. Kiyosi It6 showed in his seminal papers (see e.g. [39], [40]) that
a stochastic differential equation

dX = b(X)dt + o(X)dW (5.1)

X(0) = ¢ (5.2)

driven by an n-dimensional Wiener process W has a unique solution provided that

b:R™ — R™, ¢g:R™ — M,,xn are Lipschitz continuous functions. A next important

step was taken by A. Skorokhod ([71], [72]) in 1961, who proved that there exists a

solution to (5.1), (5.2) if b and o are continuous functions of at most linear growth, i.e.
[6(@) + [lo ()l

Ssu < 00.
sepm L1 |J2]]

It was realized only later that two different concepts of a solution are involved: for
Lipschitzian coefficients, there exists an (%;)-progressively measurable process in R
solving (5.1) and such that X(0) = ¢, whenever (2, .%#,(%,),P) is a stochastic basis
carrying an n-dimensional (%;)-Wiener process and ¢ is an %#p-measurable function.
(We say that (5.1), (5.2) has a strong solution.) On the other hand, for continuous
coefficients, a stochastic basis (£2,.%, (%), P), an n-dimensional (.%;)-Wiener process W
and an (.%;)-progressively measurable process X may be found such that X solves (5.1)
and X (0) and ¢ have the same law. (We speak about existence of a weak solution to
(5.1), (5.2) in such a case.) It is well known that this difference is substantial in general:
under assumptions of the Skorokhod theorem strong solutions need not exist (see [5]).
Skorokhod’s existence theorem is remarkable not only by itself, but also because
of the method of its proof. To present it, we need some notation: if M and N are
continuous real local martingales, then by (M) we denote the quadratic variation of M
and by (M, N) the cross-variation of M and N. Let M = (M*)™, and N = (Nj)?:1 be
continuous local martingales with values in R and R, respectively. By (M)) we denote
the tensor quadratic variation of M, (M) = ((M?, M’“>)Tk:1, and we set (M) = Tr({(M)).
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Analogously, we define

M@ N = (N QLN = (LN

Let X and Y be random variables with values in the same measurable space (E, &), we

write X 2 Y if X and Y have the same law on &. Similarly, X 2 » means that the law
of X is a probability measure v on &.
Let
dX, =b.(X,)dt + o, (X,)dW, X, (0)=¢

be a sequence of equations which have strong solutions and approximate (5.1) in a
suitable sense. (We shall approximate b and o by Lipschitz continuous functions having
the same growth as b and o, but likewise it is possible to use e.g. finite difference
approximations.) The linear growth hypothesis makes it possible to prove that

the laws of {X,; r > 1} are tight, (5.3)

that is, form a relatively weakly compact set of measures on the space of continuous
trajectories. Then Skorokhod’s theorem on almost surely converging realizations of con-
verging laws (see e.g. [18], Theorem 11.7.2) may be invoked, which yields a subsequence
{X,,} of {X,}, a probability space (Q,.%,P) and sequences {Xy; k > 0}, {Wy; k > 0}
such that

(eru W) i (Xk7wk)7 k>1; (Xka Wk) — (X()’WO)v I@'a's" (54)

It is claimed that Xj is the (weak) solution looked for. Skorokhod’s papers [71] and [72]
are written in a very concise way and details of proofs are not offered; nowadays stan-
dard version of Skorokhod’s proof is as follows (see [73], Theorem 6.1.6, [37], Theorem
IV.2.2, [42], Theorem 5.4.22): under a suitable integrability assumption upon the initial
condition,

My = X,, — X, (0) /0 by (X, (s)) ds

is a martingale with a (tensor) quadratic variation

(M) = /0 0y (X ()07, (X (5)) s,

for all £ > 1. Equality in law (5.4) implies that also

My = X — Xu(0) — /0 by, (Xi(s)) ds

are martingales for k > 1, with quadratic variations
(1) = [ (Fals))r, (Fas)) s

Using convergence P-almost everywhere, it is possible to show that

My = Xo — Xo(0) — /O b(Xo(s)) ds
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is a martingale with a quadratic variation

(Vo) = /0 o (Ro(s))0" (Xo(s)) ds.

By the integral representation theorem for martingales with an absolutely continuous
quadratic variation (see e.g. [42], Theorem 3.4.2, or [8], Theorem I1.7.1%), there exists a
Wiener process W (on an extended probability space) satisfying

My = /0 o (Xo(s)) AT/ ().

Therefore, (W, Xy) is a weak solution to (5.1), (5.2). (In the cited books, martingale
problems are used instead of weak solutions. Then the integral representation theorem is
hidden in the construction of a weak solution from a solution to the martingale problem,
so a complete proof is essentially the one sketched above.)

This procedure has two rather nontrivial inputs: the Skorokhod representation
theorem, and the integral representation theorem whose proof, albeit based on a simple
and beautiful idea, becomes quite technical if the space dimension is greater than one.
An alternative approach to identification of the limit was discovered recently (see [11],
[60]) in the course of study of stochastic wave maps between manifolds, where integral
representation theorems for martingales are no longer available. The new method, which
refers only to basic properties of martingales and stochastic integrals, may be described
in the case of the problem (5.1), (5.2) in the following way: One starts again with a
sequence {(Xj, W)} such that (5.4) holds true. If the initial condition is p-integrable
for some p > 2, it can be shown in a straightforward manner, using the almost sure
convergence, that

Mo, [T - /0 No(Xo(s) 2 ds, o Wo — /0 o(Xo(s)) ds

are martingales, in other words,

(30 [ oEale)) i) 0.

whence one concludes that (Wp, Xp) is a weak solution. If the additional integrability
hypothesis on ¢ is not satisfied, the proof remains almost the same, only a suitable
cut-off procedure must be amended.

We take a step further and eliminate also the Skorokhod representation theorem.
Let Py, be the laws of (X, , W) on the space U = €([0, T]; R™) x €([0, T]; R™); we know
that the sequence {P;} converges weakly to some measure Py. Denote by (Y, B) the
canonical process on U and set

M =Y — Y(0) _/ by (V(s))ds, F >0
0
(with b,, = b, 0y = o). Then
My, |0 — / low (Y ()2 ds, My @ B — / o (Y(s)ds,  (5.5)

are local martingales under the measure P, for every k > 1, as can be inferred quite
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easily from the definition of the measure P. Now one may try to use Theorem IX.1.17
from [41] stating, roughly speaking, that a limit in law of a sequence of continuous
local martingales is a local martingale. We do not use this theorem explicitly, since to
establish convergence in law of the processes (5.5) as k — oo is not simpler than to
check the local martingale property for k& = 0 directly, but our argument is inspired
by the proofs in the book [41]. The proof we propose is not difficult and it is almost
self-contained, it requires only two auxiliary lemmas (with simple proofs) from [41] on
continuity properties of certain first entrance times which we recall in Appendix. Once
we know that the processes (5.5) are local martingales for k = 0 as well, the trick from
[11] and [60] may be used yielding that (B,Y’) is a weak solution to (5.1), (5.2). It is
worth mentioning that this procedure is independent of any integrability hypothesis on
®.

The proof of (5.3) not being our main concern notwithstanding, we decided to
include a less standard proof of tightness inspired also by the theory of stochastic partial
differential equations. We adopt an argument proposed by D. Gatarek and B. Goldys
in [27] (cf. also [15], Chapter 8), who introduced it when studying weak solutions to
stochastic evolution equations in Hilbert spaces, and which relies on the factorization
method of G. Da Prato, S. Kwapien and J. Zabczyk (see [15], Chapters 5 and 7, for
a thorough exposition) and on compactness properties of fractional integral operators.
The fractional calculus has become popular amongst probabilists recently because of
its applications to fractional Brownian motion driven stochastic integrals and a proof
of tightness using it may suit some readers more than the traditional one based on
estimates of moduli of continuity.

Let us close this Introduction by stating the result to be proved precisely.

Theorem 5.1.1. Let b : [0,T] x R™ — R™ and o : [0,T] x R™ — M,,xn be Borel
functions such that b(t,-) and o(t,-) are continuous on R™ for any t € [0,T] and the
linear growth hypothesis is satisfied, that is

3K, < 0oVt € [0,T) Vo € R™  |b(t, )| V |o(t, )| < K.(1+ ||z]).  (5.6)

Let v be a Borel probability measure on R™. Then there exists a weak solution to the

problem
d

dX =b(t, X)dt + o(t, X)dW, X(0) ~ v. (5.7)

We recall that a weak solution to (5.7) is a triple ((G,¥,(¥4),Q), W, X), where

(G,9,(%4),Q) is a stochastic basis with a filtration (%;) that satisfies the usual condi-

tions, W is an n-dimensional (%;)-Wiener process and X is an R™-valued (% )-progres-
sively measurable process such that Q o X(0)~! = v and

X(t)—X(O)+/0 b(r,X(r))dr—i—/o o(r, X (r))dW (r)

for all ¢t € [0, 7] Q-almost surely.

The rest of the paper is devoted to the proof of Theorem 5.1.1. In Section 5.2, a
sequence of equations with Lipschitzian coefficients approximation (5.7) is constructed,
tightness of the set of their solutions being shown in Section 5.3. In Section 5.4, cluster
points of the set of approximating solutions are identified as weak solutions to (5.7).
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5.2 Approximations

In this section we introduce a sequence of equations which have strong solutions and
approximate the problem (5.7). If E and F are metric spaces, we denote by €' (E; F) the
space of all continuous mappings from E to F'. For brevity, we shall sometimes write %}
instead of €([0, T];RY) if V € N. If f € €([0,T]; F') and s € [0, T] then the restriction of
f to the interval [0, s] will be denoted by g, f. Plainly, os : €([0,T]; F) — €([0, s]; F) is
a continuous mapping. Finally, LI(G;R"Y) stands for the space of g-integrable functions
on G with values in RV .
Our construction is based on the following proposition.

Proposition 5.2.1. Suppose that F : R, x RN — RV is a Borel function of at most
linear growth, i.e.

AL < ooVt >0Vz e RY ||F(t, )| < L(1+ [|z]]),

such that F(t,-) € €(RY;RY) for any t € Ry. Then there exists a sequence of Borel
functions Fy, : Ry x RN — R, k > 1, which have at most linear growth uniformly in k,

namely
Vk>1Vt>0Vz e RN ||Ey(t2)| < L(2 + ||z]]),

which are Lipschitz continuous in the second variable uniformly in the first one,
Wk > 131y < 00 V2 0Va,y €RY [ Fu(t,2) — Fu(t,p) | < Lillz — gl
and which satisfy

lim Fy(t,-) = F(t,-) locally uniformly on RY

k—o0

for allt > 0.

Proof. The proof is rather standard so it is not necessary to dwell on its details: one
takes a smooth function ¢ € €°(R") such that ¢ > 0, supp¢ C {z € RY; |z| < 1}
and [py (dz =1 and sets

Gult.o) =K [ F(t)C(kta =) dy

for k> 1,t> 0 and € RY. The functions G}, have all desired properties except for
being only locally Lipschitz, but it is possible to modify them outside a sufficiently large
ball in an obvious manner. O

Let the coefficients b and o satisfy the assumptions of Theorem 5.1.1. Using
Proposition 5.2.1 we find Borel functions by : [0,7] x R™ — R™ and oy, : [0, 7] x R™ —
M, %, & > 1, such that

sup sup ([|bx(t, )|V llow(t, 2)l) < K (2+ |z]l), 2€R™, (5.8)
k>1 t€[0,T]

bi(t,-) and oy (t,-) are Lipschitz continuous uniformly in ¢ € [0,7] and converge locally
uniformly on R™ as k — oo to b(t,-) and o(t,-), respectively, for all ¢ € [0,7]. Fix
an arbitrary stochastic basis (£2,.%,(%;),P), on which an n-dimensional (.%#;)-Wiener
process W and an .Zp-measurable random variable ¢ : @ — R™ having the law v are
defined. It is well known that for any & > 1 there exists a unique (%;)-progressively
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measurable R"*-valued stochastic process X solving the equation
dXy = bi(t, Xi) dt + oy (t, Xi) AW, X3 (0) = . (5.9)

Moreover, for any p € [2,00) there exists a constant C, < oo, depending only on p, T
and K, such that

supE sup [ Xx(0)|P < C.(1+Eg]]), (5.10)
k>1  0<t<T

provided that
/ lelP dv(z) = Eflg|]” < oo.

5.3 Tightness

Let {Xg; k > 1} be the sequence of solutions to (5.9). Plainly, the processes X} may
be viewed as random variables Xj : Q — %, (where the Polish metric space %, is
endowed with its Borel o-algebra). In this section, we aim at establishing the following
proposition.

Proposition 5.3.1. The set {Po X,;l; k > 1} of Borel probability measures on
([0, T];R™)
18 tight.

To this end, let us recall the definition of the Riemann-Liouville (or fractional
integral) operator: if ¢ € |1,00], @ € ]%, 1] and f € L9([0,T]; R™), we define a function
R.f :[0,T] = R™ by

(Raf) (1) :/0 (t— )" f(s)ds, 0<t<T.

The definition is correct, as an easy application of the Holder inequality shows. Note
that, in particular, Rif = [, f(t)dt. It is well-known (and may be checked by very
straightforward calculations) that R, is a bounded linear operator from L4([0,T]; R™)
to €02~1/4([0,T];R™), the space of (o — %)—Hélder continuous functions (see e.g. [69],
Theorem 3.6). Balls in €%~ /4([0, T];R™) are relatively compact in %([0, T]; R™) by
the Arzela-Ascoli theorem, hence we arrive at

Lemma 5.3.2. If g € |1,00] and o € ]%, 1], then Ry is a compact linear operator from
L9((0, T} R™) to ([0, T]; R™).

We shall need also a Fubini-type theorem for stochastic integrals in the following
form (a more general result may be found in [15], Theorem 4.18):

Lemma 5.3.3. Let (X, X, u) be a finite measure space, (G,9,(%),Q) a stochastic basis,
and B an n-dimensional (¢;)-Wiener process. Denote by # the o-algebra of (4;)-
progressively measurable sets and assume that ¥ : [0, T] x G X X — Myxp is an M @ X-
measurable mapping such that

/X</OT/G!\w(s,m)udeds>1/2du(m)<oo_ (5.11)
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S wtmrane] aner =[] [ o000 ass)

Q-almost surely.

Then

The last auxiliary result to be recalled is the Young inequality for convolutions
(see, for example, [52], Theorem 4.2).

Lemma 5.3.4. Let p,r,s € [1,00] satisfy

1 1 1
- =1+4-.
P g s

If f € LP(RY) and g € LI(R?), then the integral

0= [ fa=nady

converges for almost all v € R, f x g € L*(R?) and

If * gl

In fact, we shall need only a particular one-dimensional case of Lemma 5.3.4: if
feLr0,T), g L10,T), ]13 + % =141, then

s < flleellgllza-

(t =r)g(r)dr dt < |[fl|7o0.1) 19 70c0.7)- (5.12)

Now we derive a representation formula that plays a key role in our proof of
Proposition 5.3.1.

Lemma 5.3.5. Let ¢ be an M, x,-valued progressively measurable process such that

T
q
E /0 [(s)]|7 ds < oo

for some q > 2. Choose a € |+, 1] and set

1
2(t) = /0 (t— w)p(u) dW (), 0<t<T.

Then

/ O(s) dW (s) = sin ro (RQZ) )
for all t € [0,T] P-almost surely.

Proof. The result is well-known and widely used for infinite-dimensional systems (see
e.g. [15], §5.3). For finite-dimensional equations, the proof is slightly simpler and thus
it is repeated here for the reader’s convenience.

Since s72® € LY(0,T), E||v(:)||> € L*(0,T), their convolution

- /0 (t — ) 2B (s)|>ds = E /0 (¢ — )~ (s[> ds
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belongs to L' (0, T) as well and so is finite almost everywhere in [0, 7], which implies that
Z(t) is well defined for almost all ¢ € [0, T]. By the Burkholder-Davis-Gundy inequality,

E [ Uz a = / TE\ [ = ut aw)

<CE /OT (/05(8 )2y ()P du)q/2 ds

<aff Ty ds)q/2 (f TEwu)nqdu),

the last estimate being a consequence of (5.12) and the fact that E|[«(-)||> € L¥/2(0,T).
Hence Z(-,w) € L9(0,T;R™) for P-almost all w € Q and R,Z is well defined P-almost
surely. Further,

q
ds

1/2

/Ot (E /OtH(t —8)* g5 (u) (s — u)_a@b(u)H2 du> ds

-/ (s ([ =0l du)m s
< ([ s ds)” " ([ ([ 6-w e du)w ds)l/q
< </0t8(a1)q* ds>1/q* (/Ot s ds>1/2 (/OtEW(u)yqdu)l/q < 00,

where + 4+ 1 = 1 and the Hélder and Young inequalities were used consecutively. This
means that the hypothesis (5.11) of Lemma 5.3.3 is satisfied and this lemma may be
used to obtain

(RaZ)(t) = /0 (= 5ot ( /0 (s — W) w) dW(u)) ds
_ /0 t /0 t(t—s)a_ll[o’s[(u)(s—u)_a¢(u) AW (u) ds
= [ =9 tputs - w e as]vwaw )

0

_ /Ot Uut(t ) (s — ) ds} () AW ()

_ /Ot [/01(1 _pyelye dv} () AW (w).

=T
sin T

O]

Proof of Proposition 5.3.1. Let an arbitrary € > 0 be given, we have to find a relatively
compact set K C %, such that

lirzlfl]P’{Xk eEK}>1—c¢.

In what follows, we shall denote by D; constants independent of k and by |- |, the norm
of L(0,T;R™).



126 Chapter 5 On Weak Solutions of SDEs

First, we prove our claim under an additional assumption that there exists p > 2
such that
Ello[[? < oco. (5.13)

Plainly, a compact set I" C R™ may be found satisfying
v()=Efpel}>1-.

Take an o € 1, 3[. By Lemma 5.3.5,

Xi(t) =@+ /Ot bi (s, Xk (s))ds + /t or(s, Xi(s)) dW (s)

0
sin T

=+ [Rub(-, Xi(1))] () + (RaZy)(t), 0<t<T,

P-almost surely, where

Zi(s) = /Os(s —u) Yop(u, Xg(uw)dW(u), 0<s<T.
Applying the Chebyshev inequality, (5.8) and (5.10) we get

P Xy = 4} < 8 [ e, X

T
< Lgog / (24 X)) dt
AP 0

D1 »
< 2L+ EflglP?).

Similarly, invoking in addition the Burkholder-Davis-Gundy and Young inequalities,

1 T
P{|Z4, > 4} < ApE/ 1 Z(0) | at

D ! o P/2
< A;E/ (/0 (t — 5 Jox(s, Xe())|] ds> dt
D p/2 T
< Aj(/ szads> (/0 EHO‘k s, Xp(s des)

Dg
2 (14 EllolP).

<=2
- A

Let us choose Ay < oo so that

Dy + Ds €
—7 L +E[el?) <3
B <
and set
—{F € €0, TER"); f =2+ Ryr + = Rov, z € I

rv € LP(0, T5R™), |rl, V [vly < AO}.
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Since the operators R; and R, are compact, the set K is relatively compact and
P{Xy ¢ K} <P{o ¢ I'} +P{bk(, Xi(-)lp > Ao} +P{|Zg|p > Ao}
2

< -e<

<ge<e
for any k£ > 1, which completes the proof of tightness under the additional assumption
(5.13).

Finally, let ¢ be arbitrary. Let ¢ > 0 be fixed, we may find II > 0 such that

P{||¢|| > 1T} < 5. Let X}, k > 1, be the solutions to

ka = bk(t,Xk) dt—l—o‘k(t,Xk) dw, Xk(()) = 1{||<PHSH}QD‘ (5.14)

The initial condition in (5.14) satisfies (5.13), so by the first part of the proof we know
that the set {Po Xk_l; k > 1} is tight and there exists a compact set K C %, such that

IigrzlfIIP’{Xk ¢K)<

| ™

Since the coefficients by, o), are Lipschitz continuous in space variables,
Lpl<mXr = Ljpi<myXe  P-almost surely
for all k£ > 1, this implies
P{Xy ¢ K} <P{Xp, ¢ K} +P{|lg| > I} <e
for any k£ > 1 and tightness of the set {IP o X,;l; k > 1} follows. O

Corollary 5.3.6. The set {Po (X, W)~ L k> 1} is a tight set of probability measures
on ([0, T}, R™) x Z((0, T); R").

By the Prokhorov theorem, the set {P o (X, W)~!; k > 1} is relatively (sequen-
tially) compact in the weak topology of probability measures, so it contains a weakly
convergent subsequence. Without loss of generality we may (and shall) assume that

the sequence {IP o (X, W)71}22, itself is weakly convergent. Let us set for brevity
Py =Po (Xg, W)™1 k > 1, and denote the weak limit of {Px}?°, by Py. Set further

U=%n X%, % =Borel(¢,,)® Borel(%,),
and let (Y, B) be the process of projections on U, that is
(Y, By) : € X 6, — R™ X R", (h,g) — (h(t),g9(t)), 0<t<T.
Finally, let (%) be the Pg-augmented canonical filtration of the process (Y, B), that is

U = o(a(0Y, 0:B) U{N € %; By(N) =0}), 0<t <T.

5.4 Identification of the limit

In this section we shall show that ((U,%,(%),Po), B,Y) is a weak solution to the
problem (5.7). Towards this end, define

My =Y — Y(0) — /O be(r, Y (1)) dr, k> 0,
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where we set by = b, 09 = 0. The proof is an immediate consequence of the following
four lemmas.

Lemma 5.4.1. The process My is an m-dimensional local (%)-martingale on (U, % ,Pg).
Lemma 5.4.2. The process B is an n-dimensional (%)- Wiener process on (U, % ,Py).

Lemma 5.4.3. The process
' 2
I3l = [ Yt o) ar

is a local (74)-martingale on (U, U, Py).

Lemma 5.4.4. The process
My® B — / o(r,Y(r))dr
0

is an My, xn-valued local (% )-martingale on (U, ?/,IF’O).

Proofs of these lemmas have an identical structure, so we prove only the first of
them in detail, the other ones being treated only in a concise manner. In the course of
the proof, we shall need two easy results on continuity properties of the first entrance
times as functionals of paths. Let V > 1, for any L € R, define

L6y — [0,T], fr— inf{t >0; ||If()| > L}
(with a convention inf () = T).
Lemma 5.4.5. The following holds true

(i) for any f € Gy, the function L — 1(f) is nondecreasing and left-continuous on
R-i—;

(ii) for each L € Ry, the mapping 71, is lower semicontinuous. Moreover, Ty, is con-
tinuous at every point f € Gy for which Te(f) is continuous at L.

If (Zi)ejo,m is a continuous RY-valued stochastic process defined on a probabil-
ity space (G,¥,q), then (TL(Z)) ;>0 18 a stochastic process with nondecreasing left-
continuous trajectories, whence we get

Lemma 5.4.6. The set
{L e Ry; q{7e(Z) is not continuous at L} > 0}

1s at most countable.

Lemma 5.4.5 is proved (but not stated exactly in this form) in [41], see Lemma
VI.2.10 and Proposition VI.2.11 there. For Lemma 5.4.6, see [41], Lemma VI.3.12. In
the book [41], 71, is considered as a function on the Skorokhod space D, in our case the
proofs simplify further; they are recalled in Appendix to keep the paper self-contained.

Further, let us quote an useful result on weak convergence of measures (cf. e.g.
[8], Proposition I1X.5.7).



Chapter 5 On Weak Solutions of SDEs 129

Lemma 5.4.7. Let {v,},>1 be a sequence of Borel probability measures on a metric
space @ converging weakly to a Borel probability measure vo. Let f : @ — R be a
bounded real function continuous at vg-almost all points of ©. Then

lim fdv, = / fdug.
e e

T—00

Proof of Lemma 5.4.1. The idea of the proof is simple: define processes
= X = X0(0) = [ bl X)) dr, k=1,
0

in analogy with the definition of M} but using the solutions X to the problem (5.9)
instead of the process Y. We shall prove: i) pg, k > 1, are local martingales, ii) My,
k > 1, are local martingales with respect to the measure P;. due to the equality of laws
Pro(Y,B)™! = Po(Xy, W)™, iii) My is a local martingale as a limit of local martingales
M.

First, as X}, solves (5.9),

t
() = / ou(r, Xe(r) AWy, 0<t<T,
0

and so puy is a local (%;)-martingale. Take an L € Ry, for the time being arbitrary.
Obviously, 71,(X}) is a stopping time and p(- A 71,(X%)) is a bounded process by (5.8)
and the definition of 77, hence py(- A 71,(Xy)) is a martingale.

Hereafter, times s,t € [0,7], s < ¢, and a continuous function

v : €([0,s];R™) x €([0, s];R") — [0, 1]

will be fixed but otherwise arbitrary. Obviously, v(0sXk, 0sW) is a bounded .%;-measu-
rable function, hence

Ey(0s Xk, 0sW)pw(t A 7L (X)) = Ey(0s Xk, 0sW)pw(s A 70 (Xg)) (5.15)

by the martingale property of (- A 77,(X%)).
Note that the mapping

[0,T] X €, — R™, (u,h) — h(u) — h(0) — / by (r, h(r)) dr
0
is continuous for any k > 0 due to the continuity of by (r,-), and the mapping
Gm — [0,T] X €, h— (E ANTL(R),h)
is Borel for any ¢ € [0, 7] fixed by Lemma 5.4.5(ii), thus also their superposition

EnTr(h)
Hi(&, ) : Cn — R™, h— h(§ A7r(h)) — h(0) — /0 bi(r, h(r)) dr

is Borel. Consequently, the mapping

Cm X € — R™, (h,g) — v(0sh, 0s9)Hi(§, )
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is Borel. Since px(§ A 70(Xk)) = Hi(&, Xk), k > 1, and Mp(E A7L(Y)) = Hp(§,Y),
k>0, we get

Po [1(0s Xk, esW)in(§ ATo(X)] " = Bro [y(esY. 05B) Mi(§ AT (Y))]
for all k¥ > 1 by the definition of Px, which together with (5.15) implies
Ery(0sY, 0sB)M(t ATL(Y)) = Biy(0sY, 0sB)Mi(s A 1Y), k> 1. (5.16)
Now, suppose in addition that L is chosen so that
Po{7e(Y) is continuous at L} = 1. (5.17)
(Lemma 5.4.6 shows that such a choice is possible.) Then
Po{(f,g) € U; 71,(-) is continuous at f} =1

by Lemma 5.4.5(ii) and the fact that Y is a canonical projection from U onto %,,, so
also

Po{(f,g) € U; Ho(&, ") is continuous at f}=1

This implies that v(osY, 0sB)Ho(€,Y) is a bounded function continuous Py-almost ev-
erywhere on U for any ¢ fixed. We may estimate

HEk"V(QSK QSB)HIC(£7 Y) - EO’Y(QSK QSB)HO(§7 Y)H
< HEk’Y(stv QSB) [Hk(gv Y) - HO(&? Y)] H
+ || Exy(esY, 0sB)Ho(€,Y) — Eoy(0sY, 0sB)Ho (€, V).

From Lemma 5.4.7 we obtain that
lim Eivy(0sY, 0sB)Ho(€,Y) = Eov(0sY, 0sB)Ho(&,Y).
Further,
By (oY 00B) [Hi(&,Y) = Ho(&, V)] |
< By Hi(&,Y) — Ho(&, V)

- EnTL(Y)
_ &, /0 [by(r, Y (1)) = bo(r, Y (r))] dr

N EnTL(Y)
= Bl o0y /0 (b (r, Y () — bo(r, Y (r))] dr

IN
=

f/\TL(Y)
kl{m(y)>o}/0 |0k (r, Y (1)) = bo(r, Y (r))|| dr

IN
=

T
kl{TL(Y)>O}/O ku(T, Y(T‘ A TL(Y))) — bo(’l”, Y(T A TL(Y)))H dr

=

T
< k]-{TL(Y)>O}/O sup ||bx(r, 2) — bo(r, 2)|| dr

lzlI<L

T
< / sup [bi(r, 2) — bo(r, 2)|| dr,
0 Jlzl<L
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as |Y(rArr(Y))|| < L on the set {71,(Y) > 0}. Since bg(r,-) — bo(r, ) locally uniformly
on R™ for every r € [0,7] and

sup ||bg(r, 2) — bo(r, 2)|| < 2K.(2+ L)
lzlI<L

by (5.6) and (5.8), we have
T
lim sup ku(r,z) —bo(r,z)Hdr:0
F=ooJozI<L

by the dominated convergence theorem, hence
Jim Bry(esY, 0sB) Hi(&,Y) = Bov(osY, 0aB)Ho(§,Y)
for any ¢ € [0,T]. Therefore,
Eoy(0sY; 0sB)Mo(t ATr(Y)) = Eoy(0sY, 0sB)Mo(s ATr(Y)) (5.18)

follows from (5.16). If G C €(]0,s];R™ x R™) is an arbitrary open set, then there
exist continuous functions ¢g; : €([0, s];R™ x R") — [0,1] such that g ~ 1g on
€ ([0, s]; R™ x R™) as | — oo. Therefore, using the Levi monotone convergence theorem
we derive from (5.18) that

Eola(osY, 0sB)My(t A (V) = Eola(osY, 0sB)My(s A 1(Y)). (5.19)

Further,
{G C€([0,s];R™ x R"); G Borel and (5.19) holds for 1¢}

is a A-system containing, as we have just shown, the system of all open sets in
€ ([0, s];R™ x R™)

closed under finite intersections. Consequently, (5.19) holds for all Borel sets G C
% ([0, s]; R™ x R™), that is

EolAMo(t A TL(Y)) = IEO].AMO(S A TL(Y))

holds for all A € o(psY, 0sB), thus for all A € %;. We see that My(- A 7.(Y)) is a
(74)-martingale, whenever L € R, satisfies (5.17). It remains to note that by Lemma
5.4.6 there exists a sequence L, * oo such that

fP’O{T.(Y) is continuous at L, for every r > 1} = 1.

As {77, (Y)} is plainly a localizing sequence of stopping times, we conclude that My is
a local (%;)-martingale on (U, % ,Py), as claimed. O

Proof of Lemma 5.4.2. By our construction, P o W~1 = P, o B~! for each k > 1, so
also PoW~! =Pyo B! and B is an n-dimensional Wiener process (with respect to its
canonical filtration) on (U, % ,]?’0). In particular, its tensor quadratic variation satisfies
(B))t = tI. Mimicking the procedure from the previous proof we may check easily that
B is a local (%)-martingale, hence an (%)-Wiener process by the Lévy theorem. [
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Proof of Lemma 5.4.3. We know that pg, k > 1, are local martingales and

i) = </0'ak(r Xu(r > /Hak r X0 ()| dr.

uwwéwmmmmWw,kZL

thus

are continuous local martingales. For times s < ¢ and a function ~ introduced in the
proof of Lemma 5.4.1 we get

9 t/\TL(X
B0 W) st Ar (XD = [ ot X)) P ]
9 SATL (Xk)
:EV(QSX,C,g5w>[uﬂk<sm<xk)>” - /0 o (r, X (r))]|? dr} (5.20)
Note that
9 EnTr(h)
G — R, b || Hi(E,D) _/0 low(r, h(r))|* dr

is a Borel mapping for all £ > 0 and £ € [0,7]. It can be seen easily that it suffices to
check that

Cm — R, h—> /uuak(r,h(r))Her
0

is a continuous mapping for any u € [0, T]; this follows from the estimate

‘/ouHak(T’hl(r))Wdr_/OuHak(r,hQ(T))HZdT

< [Mllontr: )|+ ot ) [} ot b )] = o hate)

< (5 Wil + el ) [ lloutrn(r) = ot a(r) | dr

for hy, hy € G, continuity of functions o (r, -) and the dominated convergence theorem.
Hence (5.20) yields

Ir«:w(gsy,QSB>[\;Mk<tATL(y>>\\2/0 "o Yo ar]

~ sATL(Y)
:Ekfy(ng,gsB)[HMk(s/\TL(Y))H2—/0 oty () 2],

Passing to the limit exactly in the same way as in the proof of Lemma 5.4.1 we obtain

~ tATL(Y)
Eo3(0sY, 0,B) ||| Mo(t A 1Y) —/O oo, Y ()| ]
_ 9 sATL(Y)
= By(oaY, 0.3) [|[ Mos A 7(Y)| _/O Joo(r. ¥ (r)) 2]
provided that L € R, satisfies (5.17), and the proof may be completed easily. O

Proof of Lemma 5.4.4. Since pp and W are continuous local martingales, the process
pie @ W — ((pug, W) is an M, xp-valued local martingale. Let us denote py = (uy,)i%,
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W = (V[/j);":1 and oj = (azj)m "_,. Then

i=1j=

n

(i, W) = <lZ | ot ximnawt). )
=1

-y /0 ol (r, X1 (r)) AW, W),

=1

therefore,
e @ W — / o (r, Xg(r)) dr (5.21)
0

is an M, x,-valued local martingale. The process (5.21) stopped at 77 (X, W) is
bounded, hence it is a martingale and so

tATL( Xk, W)
B30 X0 07 [ (1 © W) ¢ A (X0 W)) — ou(r, Xi(r))

SATL (Xk, W)
— B0 X, 2.W) (11 W) (5 A (0 W) = [ ox(r, Xelr)) dr],

whenever 0 < s < ¢t < T and ~ is a continuous function as above. (Since %, x %, =
Gm-+n, it is clear how 77(f, g) is defined for (f,g) € € X €,.) Now we may proceed as
in the proof of Lemma 5.4.1. O

Proof of Theorem 5.1.1. Lemmas 5.4.1-5.4.4 having been established, it is straightfor-
ward to prove that ((U,%,(%),Po),B,Y) is a weak solution of (5.7). Since Py o
Y(0)™' = ProY(0)"! = Poy ! = v by our construction, it remains only to show
that

Y(t) =Y(0) —i—/o b(r,Y(r))dr—i—/O o(r,Y(r))dB(r)

for any t € [0, T] Py-almost surely, that is
t ~
My(t) = / o(r,Y(r))dB(r) for all t € [0,T] Pp-almost surely. (5.22)
0
Obviously, (5.22) is equivalent to

<MO - /0. o(r,Y(r)) dB(r)>T =0 Pp-almost surely. (5.23)
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We have

(M= [ ayenane) =i+ ([ oty e)ane )
_2§<Mg,;/o o' (r, Y (1)) B (1))
T
:<MO>T+/O lor, ¥ (r)|* dr
9 ;<M0; /0 oI, Y (1) dBI(r))

By Lemma 5.4.3,
T
(Mo = [ lotr XD ar

and by Lemma 5.4.4 we obtain

Shy ' m. n_ T
;;<M5/0 aij(r,Y(T))dBj(T)>T=;j;/o o, Y (1)) d(Mi, BT,
= izn:/T(O”(r,Y(r)))er
o =0
= [ oty ar,
hence (5.23) holds true. .

Remark 5.4.8. If the coefficients b and o of the equation (5.7) are defined on Ry x R™
and satisfy the assumptions of Theorem 5.1.1 there, then there exists a weak solution
to (5.7) defined for all times ¢ > 0. The proof remains almost the same, only its part
concerning tightness requires small modifications. However, it suffices to realize that
the space (R4 ;RY) equipped with the topology of locally uniform convergence is a
Polish space whose Borel o-algebra is generated by the projections f +— f(t), ¢ > 0 and

whose closed subset K is compact if and only if {orf; f € K} is a compact subset of
€([0,T];RY) for all T > 0.

Remark 5.4.9. Tracing the proofs in Section 5.4, we can check easily that, unlike the
proof of tightness in Section 5.3, they depend only on the following properties of the
coefficients b = by, 0 = 0g and their approximations by, o%:

(i) the functions bg(r, ), ox(r,-) are continuous on R™ for any r € [0,7] and k > 0,

(ii) bg(r,) — b(r,-), ox(r,:) — o(r,-) locally uniformly on R™ as k — oo for any
r € [0,T],

(iii) the functions by, o) are locally bounded uniformly in k& > 0, i.e.

sup sup sup {ku(r, 2|V ||og(r, z)H} < 00
k>0 re[0,T] ||2|I<L

for each L > 0.
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As a consequence, Theorem 5.1.1 remains valid if existence of a suitable Lyapunov
function is supposed instead of the linear growth hypothesis. One proceeds as in the
proof of Theorem 5.1.1, approximating the coefficients b and ¢ by bounded continuous
functions that satisfy the same Lyapunov estimate as b and o. However, the proof of
tightness is more technical, although no fundamentally new ideas are needed; details
may be found in a companion paper [35].

5.5 On Weak Solutions to SDEs I1I.

Let us consider a stochastic differential equation
dX = b(t, X)dt + o(t, X)dW, X(0) < v, (5.24)

where b: [0, 7] xR™ — R™, o: [0,T] x R™ — M,,,x,, are Borel functions and v is a Borel
probability measure on R™. (In what follows, we shall denote by M, «,, the space of all
m-by-n matrices over R endowed with the Hilbert-Schmidt norm ||A| = (Tr AA*)'/2))
If the coefficients b and ¢ are continuous in the second variable and satisfy a linear
growth hypothesis
wp sup PEDI+ lo2)]
te[0,T] z€R™ 1+ [z

o, (5.25)

then there exists a weak solution to (5.24) by a theorem established by A. V. Skorokhod
some fifty years ago. All proofs of his result that we know have a common basic struc-
ture: (5.24) is approximated with equations having a solution, then tightness of laws of
solutions to these approximating equations is shown and finally cluster points of the set
of laws are identified as weak solutions to (5.24). In the first part of our paper [34] we
proposed a new, fairly elementary, version of this argument. In [34] tightness is proved
by means of compactness properties of fractional integrals, while the identification pro-
cedure uses results on preservation of the local martingale property under convergence
in law, avoiding thus both Skorokhod’s theorem on almost surely converging realizations
of converging laws and results on integral representation of martingales with absolutely
continuous quadratic variation, see [34] for more details and references.

The purpose of the present paper, which may be viewed as a short addendum to
[34], is to show that the new method may be used even if (5.25) is relaxed to existence
of a suitable Lyapunov function. Namely, we shall prove the following result.

Theorem 5.5.1. Assume that a hypothesis

(A) b(r,-) and o(r,-) are continuous on R™ for any r € [0,T] and both functions b, o
are locally bounded on [0,T] x R™, i.e.

sup  sup {[[b(r, 2)|| V [|o(r,2)[|} < oo
rel0,7] |lzlI<L

forall L >0,
is satisfied and a function V € €*(R™) may be found such that

(L1) there exists an increasing function r: Ry — )0, 00] such that

lim k(r) = 400
r—00

and V(x) > k(||z||) for all z € R™,
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(L2) there exists v > 0 such that
1
(b(t,x), DV (x)) + 3 Tr(o(t, x)*D2V(x)a(t,x)) <AV(x)

for all (t,x) € [0,T] x R™.
Then there exists a weak solution to (5.24).

(By DV and D?V we denote the first and second Fréchet derivative of V, re-
spectively.) The assumption (L2) is the well known Khas’minskii’s condition for non-
explosion (see [43], Theorem 3.5, where equations with locally Lipschitz continuous
coefficients are considered), however, we do not work with local solutions and construct
global solutions directly. To prove Theorem 5.5.1 we approximate coefficients b and o
with bounded continuous functions. Essentially, we mimick the proof of tightness of the
laws of solutions to approximating equations from [34], however, in absence of (5.25) we
do not have uniform moment estimates for approximating processes X at our disposal,
instead, we have to resort to a well known trick from stability theory and show, roughly
speaking, that (e”7V(Xg(t))) are supermartingales. As a consequence, the proof is
less straightforward than the corresponding one in [34]. Once tightness is proved, the
identification procedure from [34] may be applied without any change, since it does not
depend on any particular form of approximations. More precisely, in [34], Remark 3.2,
we proved:

Proposition 5.5.2. Let the assumption (A) be satisfied. Let there exist Borel functions
br: [0,T] x R™ — R™ and oj: [0,T] x R™ — My, xn, k > 1, such that

1° br(r,-), or(r,-) are continuous on R™ for any r € [0,T] and k > 1,

2° bg(r,-) — b(r,:), op(r,:) — o(r,:) locally uniformly on R™ as k — oo for any
rel0,T],

3° the functions by, oy are locally bounded on [0,T] x R™ wuniformly in k > 1, that is

sup sup sup {[|bx(r,2)|| V [|ow(r, 2)||} < oo
k>1re0,T] 2] <L

for each L > 1.

Suppose that for any k > 1 there exists a weak solution ((2y, F*, (FF),Pr), Wi, Xi) to
the problem

AX = by(t, X) dt + ox(t, X)dW, X(0) L v, (5.26)

If {Ppo X; Y k > 1} is a tight set of probability measures on €([0,T]; R™) then there
exists a weak solution to (5.24).

Before proceeding to the proof of Theorem 5.5.1, we shall recall some defini-
tions and give a few illustrative examples. First, a weak solution to (5.24) is a triple
((G,9,(%4%),Q),W, X), where (G,¥,(%),Q) is a stochastic basis with a filtration (%)
that satisfies the usual conditions, W is an n-dimensional (¥;)-Wiener process and X is
an R™-valued (%;)-progressively measurable process such that Q o X (0)~! = v and

X(t):X(O)+/O b(r,X(r))dr+/0 o(r, X (r))dW (r)
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for all t € [0, 7] Q-almost surely. In the proof we use the Riemann-Liouville (or fractional
integral) operator: if ¢ € ]1,00], a € ]%,1] and f € LY([0,T];R™), a function R, f :
[0,7] — R™ is defined by

(Raf)(t) = /0 (t—5)21f(s)ds, 0<t<T.

The (easy) properties of Ry: f — R, f which we need are summarized in [34], Lemma
2.2. Finally, by %12 we shall denote the set of all h € €*([0,7] x R™) such that
h(t,-) € €*(R™) for each t € [0, T] and Dy,, D2h are continuous functions on [0, 7] x R™,
D, h(t,z) and D2h(t,x) being the first and second Fréchet derivative of h(t, -) at the point
x, respectively.

Example 5.5.3. If the coefficients b and o satisfy (A) and (5.25) then Theorem 5.5.1
is applicable. More generally, assume that

20b(t,x),z) + [lo(t, 2)|* < K (1 + [|=]|?)

for some K < oo and allt € [0, 7], z € R™. Then the Lyapunov function V': x + 14|z
satisfies (L1) and (L2).

Example 5.5.4. Suppose that o: [0,7] xR — R is a function bounded on bounded sets
and o(t,-) € €(R) for each t € [0,T]. Then we may use Theorem 5.5.1 with a Lyapunov
function V': x — log(e + 2?) to deduce that a stochastic differential equation

dX = o(t, X)dW, Xo S~ v

has a weak solution. Of course, it is known that explosions cannot occur for one-
dimensional stochastic differential equations without drift, irrespective of growth and
continuity properties of o, but a proof based on Lyapunov functions, when available, is
much simpler than the one in the general case.

Example 5.5.5. Let us consider a stochastic nonlinear oscillator & + 22t = o(z)w,
where k € N and o € ¢ (R), that is rigorously, a system
dX =Ydt, dY = —X%*T1dt + o(X)dW. (5.27)

Theorem 5.5.1 with a choice

$2k+2 2

5)
Skt 2

V:R? R, (‘;) — log(e+

implies that there exists a weak solution of (5.27) with an arbitrary initial condition v
provided o2(x) = O(2?¢*2), x — Fo0.

Proof of Theorem 5.5.1. For k > 1, let us define

b(t, z), 0<t<T, |z <k,
bi(t, ) = b(t, ) (2 — k~Y|z])?, 0<t<T, k< || <2k,
0 elsewhere,
and
olt,z), 0<t<T, ||z <k,

or(t,z) = qo(t,x)(2— k=), 0<t<T, k< || <2k,

0 elsewhere.
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Obviously, hypotheses 1° and 2° of Proposition 5.5.2 are satisfied, moreover | bg| < |||
and ||og|] < |lo|| on [0,7] x R™ for all £ > 1 and thus 3° is satisfied as well. The
coefficients by and oy are bounded, so Theorem 0.1 from [34] implies that there exists
a weak solution ((£24,.Z*, (FF),Pr), Wi, Xi.) of (5.26). Therefore, Theorem 5.5.1 will
follow from Proposition 5.5.2 provided we show that {Py o Xk_l; k > 1} is a tight set of
measures.

Towards this end, let us define for any h € €12 and k > 1 a function Lih: [0,T] X
R™ — R by

(Lih)(t, ) = (bi(t, ), Dyh(t, x)) + %Tr(ak(t,:c)*Dih(t,x)ak(t,x)),
(t,x) € [0,T] x R™. The definition of by and o} and the assumption (L2) imply that
LipV(t,x) <~4V(z) forall k>1and (¢,z) € [0,7] x R™.
A straightforward calculation shows that if we set U(t,xz) = e 'V (x) then
<8U

S+ LkU) (t,x) <0 forall k> 1 and (t,z) € [0,T] x R™. (5.28)

Let us fix £ > 1 for a while. From the It6 formula we get

Ut Ao, Xk(tAe)) —U(s Ao, Xk(s A o))

= /S:/;Q<(?9[tj + LkU) (r, Xg(r))dr + Sj\/;g DU (r, Xi (1)) or(r, Xk (r)) dWg(r),
and thus
Ut Ao, Xp(tAo)) —U(s Ao, Xp(s A o))
< s:QDxU(r,Xk(r))*ak(r,Xk(r))de(r) (5.29)

by (5.28), whenever s,t € [0,T], s <t and g is an [0, T]-valued (.#F)-stopping time.
First, let us choose s =0, L > 0, and

0o=1TL = inf{r >0; [|[Xg(r)|| > L}
(where we set inf ) = T'). Since U(0,-) =V we obtain
tATT,
UtA1r, Xp(t A1) < V(Xk(0)) + / D,U(r, Xk(T’))*O'k(T‘, Xi(r)) dWi(r).
0

Let x C R™ be an arbitrary Borel set such that

/V(z) dv(z) < 0. (5.30)
X
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(Plainly, any compact set x satisfies (5.30).) Denoting by A the set {X;(0) € x} € F#§
we get

1AU(t/\TL,Xk(t/\TL))

< ]_AV(Xk(O)) + /Ot/\TL lADZ»U(T, Xk(r))*o'k(r, Xk(T)) de(T>

As 141yg 7, () DU+, Xi(-))*ox (-, Xk (+)) is bounded on [0,7] x £2; due to continuity of
D, U, local boundedness of o5 and the definition of 77, we have

EklAU(t NTL, Xk(t A TL)) < EklAV(Xk(O)) = Eklx(Xk(O))V(Xk(O))
~ [ Vo))
X

the right-hand side is independent of L > 0. Clearly, {77, = T} 1 {2 Pi-almost surely
as L — oo, since X has continuous trajectories, so

Bl AU (t Xi(t)) < / V() du(z) < o

by the Fatou lemma.
In particular, if s,¢ € [0,T], s < t, then the conditional expectation

Ei(LaU(t, X5(8)) | ZF)

is well defined. Using (5.29) with the stopping time 77, replacing the Fatou lemma with
its version for conditional expectations but otherwise proceeding as above we arrive at
an estimate

Ex(1aU(t Xi(t) | ZF) < 14U (s, Xi(s)), 0<s<t<T.

Consequently, (1 AU, Xg(t),0<t<T ) is a nonnegative continuous supermartingale.
The maximal inequality for supermartingales implies

Puf sup L(XLOIU(E Xul0) > A} < {EL(Xu(O)V (X (0)

1
1 [V we,
AJx
hence, by the definition of U,
0<t<T

e’
Pr{ sup 1,(Xx(0))V(Xk(t)) > A} < )\/Xde/

for all A > 0; the estimate is uniform in £ > 1. From the assumption (L1) we deduce
that

e T
Bl s (KON >} < s [ v (531)

holds for all A > 0 and k > 1.

Now the proof of tightness of {Pj o Xt k> 1} can be completed essentially in
the same manner as in the proof of Proposition 2.1 in [34]. Let an arbitrary ¢ > 0 be
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given, we want to find a relatively compact set K C %([0,T]; R™) so that
supPp{X, ¢ K} <e. (5.32)
k>1
Let us take an arbitrary p € ]2, 00[ and @ € ]%, 5[ and recall that X}, has a representation
(see e.g. [34], Lemma 2.5)

sin T

(RaZi)(t), 0<t<T,

where

Z(t) = /Ot(t ) ou(s, Xu(s)) AWi(s), 0<t<T.

The process Zj, is plainly well defined for every t € [0, T, since o}, is a bounded function.
Let H C R™ be a compact set such that ¥(R™ \ H) = Pi{X,(0) ¢ H} < /8. The set

sin To

K={fe%(0,TR™); f =2+ Riv+ Row, z € H,
v,we LP(0,T;R™), |v|p V Jw], < A},

where by | - |, the norm of LP(0,T;R™) is denoted, is relatively compact owing to
compactness of the operators Ry and R,. It remains to show that A > 0 may be found
for K to satisfy (5.32).

From (5.31) and (L1) we obtain that there exists Ag > 0 such that

T €
sup Pr {1 (X%(0)) sup || Xg(t)|| > A S/le/<,
up k{1 (X ))ogthH kI > o} 00) 3

therefore the choice of H gives

€
supPr{ sup [ Xi(t)]| > Xo} < T
k>1 0<t<T

Hence if we set
B, ={w e 2y sup || Xp(t,w)|| < Ao},
0<t<T

then P (2 \ By) < e/4 for all k > 1.
Obviously,

Pe{ Xy ¢ K} <Pp{X3(0) & H} + Pp{|bi(-, Xi () |p > A} + Pe{|Zs|, > A}.
By the Chebyshev inequality, we get

Pk{|bk(,Xk())’p > /1} < Pk(ﬁk \ Bk) —i—Pk{w S Bk; ‘bk(,Xk()”p > /1}

e 1 T )
§1+ﬁElek ; bk (ry X (7))||P dr
€ T
<-4+ — su br.(t, 2)||?
Tt e, ()
llzII<Xo
€ T
<-4+ — su b(t, 2)||P.
T, bl

[2l1<A0
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The right-hand side is independent of k£ > 1, so there exists A; > 0 such that

g
sup Pp{ |bx (-, X5 (-)]p > A} < 3
k>1

for all A > A;. The norm |Z|, may be estimated analogously. Clearly,
Pe{|Zklp > A} < Pr(£2; \ Bi) + Pr{w € By; |Zy|, > A}
< Z + Pr{w € By; |Zklp > A}
For each k > 1 let us define an (.%})-stopping time (; by
G = inf{t € [0, T; [[Xk ()| > Ao},

setting again inf ) = T. Using the Chebyshev and Young inequalities and noting that
(r =T on By we obtain

Pp{w € By |Zglp > A}

1 T
N p
= A,,Elek/O 12k (s)[|P ds

T\ rs ,
= jpElek/O /0 (5 — u) %o (u, Xg(u)) dW (u)|| ds
T\ ps )
= /L)Elek/o /0 (s — U)fal[O,Ck[(u)Uk(U, Xp(w) dW (u)|| ds
T\ ps )
= /LE’“/O /O (s = u)" Ly ¢ (w)og(u, Xp(u)) AW (u)|| ds

C Trors ) R
< Seme [ ([ - 0 Log@lontu Xew)Pau ) s
0 0

C T p/2 T
Ap</0 “2ad“) Ek/O Ljo,c[(w)lo (u, X (w)) [P du

p
CT T p/2
<[ wman) s ol
0 0<t<T
lzI<Ao
C.T T p/2
<G an) up ot
AP
0 0<t<T
lzI<Ao

where C), is a constant coming from the Burkholder-Gundy-Davis inequality. We see
that there exists a constant Ay > 0 such that

€
supPr{|Zy|, > A} < 3
k>1
for all A > A and hence the proof may be completed easily. O

5.A Appendix

To keep the paper self-contained as much as possible, we provide here proofs of Lemmas
5.4.5 and 5.4.6.
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Proof of Lemma 5.4.5. Choose f € ¢y and L > 0 arbitrarily. The function K +— 75 (f)
is obviously nondecreasing, hence it has a left-hand limit at the point L and

Jme e (f) < 7 (f)- (5.33)

If ||fll, < L then ||f|ls, < L — 6 for some § > 0 and thus 7.(f) = T = 7x(f) for
all K € [L —6,L], so we may assume that || f|ls, > L. Then | f(rx(f))|| > K for all
K € [0, L] and continuity of f yields

£ (lim 7 (H)[| = Jim [[f(rc ()]} = Jim K =L,

whence
7o(f) = dim 7r(f),

—L—

which together with (5.33) proves the statement (i).
To prove (ii), take an arbitrary sequence {f,} in €y such that f, — f uniformly
on [0,T] as r — co. Let € > 0, then

max || f|| < L,
(0.7(F) ]

so there exists rg € N such that

max || fy| <L
[0,72.(f)—¢]

for all r > rg, thus 71.(f;) > 71.(f) — € for all » > ry. Since € was arbitrary,

liminf 77(f.) > 7o.(f),

T—00

that is, 77, is lower semicontinuous at the point f.
Finally, assume in addition that 7¢(f) is continuous at the point L. If 7 (f) =T
then
T'=7(f) < liminf 7 (f;) <limsuprp(fr) <T

r—00
(note that 7z, is [0, T]-valued) and we are done. So assume that 77(f) < 7" and take an
arbitrary € > 0 satisfying 7.(f) + ¢ < T. By continuity, a K > L may be found such
that 7 (f) < 7.(f) + . Consequently,

max ||f|| > K > L,
[OvTL (f)+g]
thus
max || fr|| = L
(0,7L(f)+e]
for all r sufficiently large, that is 77.(f,) < 71(f) + € for all r sufficiently large, which
implies
limsup 77.(f,) < 71.(f)

T—00

and 77, is upper semicontinuous at f. O

Proof of Lemma 5.4.6. Here we follow the book [41] closely. First, note that for any
given u > 0 g-almost any trajectory of 74(Z) has only finitely many jumps of size
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greater than u. For brevity, set

AT (Z) = Mh—{rfi-i- ™v(Z) — T11(Z)

and define recursively random times
Zo(u) =0, Xp(u) =inf{L > Xy(u); Arp(Z) >u}, u>0, peN.

Plainly, the set
{L>0; ¢{Zy(n) =L} >0}

is at most countable for any p € N and u > 0, hence it only remains to note that

{L>0; ¢{A7(2) >0} >0} = D D {L>0; ¢{Z,(r"") =L} >0}.
p=0r=1
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Résumé

Dans cette thése, on considere des problemes issus de 'analyse
d’EDP stochastiques paraboliques non-dégénérées et dégénérées,
de lois de conservation hyperboliques stochastiques, et d’EDS avec
coefficients continus.

Dans une premiére partie, on s'intéresse a des EDPS paraboliques
dégénérées ; on adapte les notions de formulation et de solutions
cinétiques, puis on établit I'existence, l'unicité ainsi que la
dépendance continu en la condition initiale. Comme résultat
préliminaire, on obtient la régularité des solutions dans le cas non-
dégénéré, sous I'hypothése que les coefficients sont suffisamment
réguliers et ont des dérivées bornées.

Dans une deuxiéme partie, on considére des lois de conservation
hyperboliques avec un forgage stochastique, et on étudie leur
approximation au sens de Bhatnagar-Gross-Krook. En particulier,
on décrit les lois de conservation comme limites hydrodynamiques
du modele BGK stochastique lorsque le paramétre d’échelle
microscopique tend vers 0.

Dans une troisieme partie, on donne une preuve nouvelle et
élémentaire du théoréme classique de Skorokhod, concernant
I'existence de solutions faibles d’EDS a coefficients continus, sous
une condition de type Lyapunov appropriée.

N
ueh
~—

Abstract

In this thesis, we address several problems arising in the study
of nondegenerate and degenerate parabolic SPDEs, stochastic
hyperbolic conservation laws and SDEs with continues
coefficients.

In the first part, we are interested in degenerate parabolic SPDEs,
adapt the notion of kinetic formulation and kinetic solution and
establish existence, uniqueness as well as continuous dependence
on initial data. As a preliminary result we obtain regularity of
solutions in the nondegenerate case under the hypothesis that
all the coefficients are sufficiently smooth and have bounded
derivatives.

In the second part, we consider hyperbolic conservation laws
with stochastic forcing and study their approximations in the
sense of Bhatnagar-Gross-Krook. In particular, we describe the
conservation laws as a hydrodynamic limit of the stochastic BGK
model as the microscopic scale vanishes.

In the last part, we provide a new and fairly elementary proof of
Skorkhod’s classical theorem on existence of weak solutions to
SDEs with continuous coefficients satisfying a suitable Lyapunov
condition.
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