
HAL Id: tel-00916835
https://theses.hal.science/tel-00916835v1

Submitted on 10 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual camera control using dynamic spatial partitions
Christophe Lino

To cite this version:
Christophe Lino. Virtual camera control using dynamic spatial partitions. Other [cs.OH]. Université
de Rennes, 2013. English. �NNT : 2013REN1S072�. �tel-00916835�

https://theses.hal.science/tel-00916835v1
https://hal.archives-ouvertes.fr

 ANNÉE 2013

THÈSE / UNIVERSITÉ DE RENNES 1

sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1
Mention : Informatique

Ecole doctorale Matisse

présentée par

Christophe Lino
Préparée à l’unité de recherche UMR 6074 - IRISA

 Institut de Recherche en Informatique et Systèmes Aléatoires
ISTIC - UFR Informatique et électronique

Virtual Camera
Control using
Dynamic Spatial
Partitions

Contrôle de caméra
virtuelle à base de
partitions spatiales
dynamiques

Thèse soutenue à Rennes
le 3 Octobre 2013

devant le jury composé de :

Éric MARCHAND
Professeur, Université de Rennes 1 /

Président

Daniel COHEN-OR
Professor, Tel Aviv University /
Rapporteur

Michael YOUNG
Professor, North Carolina State University /
Rapporteur

Rémi RONFARD
Chargé de Recherche HDR, INRIA /
Examinateur

Kadi BOUATOUCH
Professeur, Université de Rennes 1 /
Directeur de thèse

Marc CHRISTIE
Maître de Conférences, Université de Rennes 1 /
Co-directeur de thèse

Acknowledgments

I first thank my two advisers Pr Kadi Bouatouch and Dr Marc Christie for all the
things they taught me during this thesis and even before, for being the first to trust in
my capacity for doing a good PhD thesis as well as for their every day cheerfulness. It
has provided me with ideal working conditions which I really appreciated. I particularly
thank Marc for his patience and for all the things he has done in order for this thesis to
begin and also to be completed. He has always been supportive (from any point of view)
in good and even more in difficult moments. And he has been a really great adviser
with a clear vision of the field and with constructive remarks, which has helped me
achieve my full potential throughout the last three years. It has been a great pleasure
to work with Marc and I look forward to working with him again.

I kindly thank all members of the jury for their constructive remarks, which helped
me to improve this manuscript. I particularly thank Éric Marchand for accepting to
chair the jury; as well as Daniel Cohen-Or and Michael Young, for having accepted the
charge of reviewing this thesis.

I thank all the people who collaborated to the different works and projects which
are presented and discussed hereafter. I thank Marc Christie (again) and Fabrice
Lamarche for their co-supervision of my Master thesis, which has made me inexorably
attracted to motion planning and particularly virtual camera control problems and is
at the origin of this PhD thesis. I thank Patrick Olivier for proof reading some of
the papers, and for welcoming me on many occasions in the Culture Lab Newcastle. I
thank Guy Schofield for the instructive and constructive discussions we had about real
cinematography. I thank William Bares, Roberto Ranon, Rémi Ronfard and Mathieu
Chollet for the constructive discussions we had on various aspects of real/virtual film
editing, and for their participation in some common works presented in this thesis. I
thank Arnav Jhala for welcoming me at the University of California Santa Cruz and
for the instructive discussions we have had about narrative and cinematic discourse.

I thank the permanent and non-permanent members of the historical (and even
legendary) Bunraku research team; and particularly of the Mimetic team, for all the
relevant remarks they made me before, during and after the writing of this thesis. I
thank my successive roommates, and particularly Steve for the studious atmosphere of
the room as well as for all the interesting discussions we had on a variety of topics. I
thank all the nice people I had the privilege to meet during my time at IRISA, for the
friendly atmosphere both in the corridors and during the numerous coffee breaks we
had together.

Je remercie ma famille, et en particulier mes parents pour tout le soutiens qu’ils
m’ont apporté tout au long de ces (longues) années d’études. Enfin, je remercie Aurélie

C

Acknowledgments

qui a vécu avec moi les bons et les moins bons moments de cette thèse, et qui a contribué
pour une large part à sa réussite. Je la remercie pour tout le soutiens qu’elle m’a apporté
durant ces trois années, et plus généralement pour tout ce qu’elle représente pour moi
depuis toujours.

D

Résumé en français

Avec les avancées des techniques de rendu, le réalisme des environnements virtuels
ne cesse de s’améliorer. Il est donc important que ces progrès s’accompagnent d’une
meilleure présentation de leur contenu. Une caméra virtuelle peut-être vue comme une
fenêtre à travers laquelle le contenu d’un environnement virtuel est présenté à un uti-
lisateur. Une configuration de caméra (i.e. une position fixée et une orientation fixée
de la caméra) permet de fournir une vue (i.e. une image) montrant une partie d’un
environnement ; en fournissant un flux d’images sur cet environnement, on peut alors
aider un utilisateur à se construire une représentation mentale du contenu de l’envi-
ronnement (i.e. se faire une idée de l’agencement spatial et temporel des éléments qui
le composent, tels que l’existence d’un objet dans l’environnement ou sa position à un
moment donné). Il est alors essentiel de bien choisir les points de vue que l’on va utiliser
pour présenter un environnement. Le contrôle d’une caméra virtuelle est un composant
essentiel dans un grand nombre d’applications, telles que la visualisation de données, la
navigation dans les environnements virtuels (un musée virtuel par exemple), la narra-
tion virtuelle (e.g. un film d’animation) ou encore les jeux vidéos. Il existe trois aspects
essentiels lorsque l’on contrôle une caméra virtuelle, qui sont : le choix des points de
vue, le choix des mouvements de camera et le montage (i.e. décider du moment et de la
manière d’effectuer une coupure entre les points de vue ou d’effectuer un mouvement
de caméra). La nature du contrôle d’une caméra virtuelle peut varier selon les besoins,
d’un contrôle semi-automatisé tel que dans les applications interactives, à un contrôle
complètement automatisé. On peut cependant identifier trois problèmes transverses : (i)
la composition à l’écran (i.e. la disposition des éléments à l’écran), (ii) la planification
de trajectoires de caméra et (iii) le montage.

Le contrôle de caméra virtuelle consiste en la recherche, à chaque pas de temps, du
meilleur point de vue (par rapport à un ensemble de propriétés) dans un espace à 7
degrés de liberté. Par conséquent, on peut le voir comme une sous-classe de problèmes
de planification de mouvements. Ce genre de techniques est généralement utilisé pour
rechercher, dans un espace de grande dimension, un mouvement ou une trajectoire
(d’un bras articulé par exemple) qui évite de rentrer en collision avec les obstacles
de l’environnement. Toutefois, le contrôle d’une caméra virtuelle ne se résume pas
simplement à trouver une suite discrète de configurations telle qu’il n’y ait pas de
collision avec des éléments de l’environnement ; cela nécessite en supplément que cette
suite de points de vue satisfasse un certain nombre de contraintes, qui peuvent être
liées à l’agencement des éléments à l’écran (par exemple maintenir un angle de vue ou
maintenir la visibilité de sujets clés) ou bien à la trajectoire de la caméra (par exemple
maintenir une certaine continuité entre les points de vue successifs).

i

Résumé en français

Des chercheurs se sont intéressé aux trois problèmes principaux que nous avons
mentionnés, et ont proposé des techniques qui vont d’un contrôle complètement ma-
nuel jusqu’à un contrôle complètement automatisé des degrés de liberté de la caméra.
À partir de l’étude de la littérature, nous effectuons dans cette thèse trois observations.
Premièrement, il n’existe aucun modèle générique prenant en compte les trois aspects
du contrôle d’une caméra virtuelle (la composition visuelle, la planification de trajec-
toires et le montage). En effet, les travaux de recherche se sont généralement focalisés
sur un seul, voire deux de ces aspects. En outre, la composition, la planification de tra-
jectoires et le montage impliquent une bonne gestion de la visibilité, problème qui a été
assez peu étudié dans le domaine. La prise en compte simultanée de ces quatre aspects
constitue pourtant une base qui semble indispensable pour construire des applications
graphiques plus évoluées (e.g. pour la narration virtuelle ou les jeux vidéo). De plus,
les techniques existantes manquent d’expressivité ; elle n’offrent qu’une prise en compte
limitée des styles/genres cinématographiques, et s’intéressent assez peu à fournir des
moyens de les mettre en œuvre. Deuxièmement, nous pensons qu’il est nécessaire que
l’utilisateur puisse interagir avec ces différents aspects. Bien que les techniques automa-
tisées permettent d’obtenir de bons résultats, le résultat attendu par un réalisateur est
souvent plus subtil et ne peut pas forcément être modélisé. Les technique automatisées
existantes ne fournissent pas de réelle assistance aux utilisateurs dans la construction
d’une séquence cinématographique. Enfin, la composition visuelle est un élément central
dans le placement d’une caméra. Les problèmes de composition évolués sont générale-
ment modélisés comme une fonction d’objectif, construite comme une agglomération
de fonctions de qualité liées chacune à une contrainte que l’on désire satisfaire (e.g. la
position à l’écran, la taille projetée ou encore la visibilité de certains éléments de la
scène) ; les chercheurs utilisent ensuite des techniques d’optimisation numérique pour
chercher un point de vue qui maximise cette fonction d’objectif. Cependant, agréger un
ensemble de fonctions de qualité réduit la capacité à guider le processus de résolution à
travers l’espace de recherche, ce qui conduit à l’exploration de larges zones de l’espace
de recherche pour lesquels il n’existe aucune solution. Ce problème très spécifique de
composition visuelle est ainsi transformé en un processus de recherche générique pour
lequel il est difficile de proposer des heuristiques générales permettant d’accélérer la
recherche.

À partie des ces trois considérations, nous avons identifié trois axes de recherche :
vers un système de cinématographie complètement intégré, c’est à dire qui per-
mette de prendre en compte le calcul de points de vue, la planification de trajec-
toires, les aspects liés au montage et à la visibilité de manière interactive, tout
en prenant en considération un certain nombre d’éléments de style cinématogra-
phique ;
vers une approche interactive qui assiste l’utilisateur dans son processus de
construction d’un film, et qui lui permette d’avoir un certain degré de contrôle sur
le montage final, par la proposition d’une approche hybride combinant des calculs
automatisées avec une interaction plus directe de l’utilisateur ;
vers une approche efficace du problème de composition visuelle.

Nous détaillons ci-dessous les contributions de la thèse, qui répondent à ces trois

ii

Résumé en français

axes de recherche.

Résumé de nos contributions

Un moteur cinématographique pour les environnements 3D interactifs

Nous proposons une approche unificatrice du problème de cinématographie inter-
active, découlant sur un moteur cinématographique complètement intégré appelé Ci-
neSys. CineSys gère les points de vue, le montage et la planification de trajectoire
dans un contexte temps-réel (ou temps-interactif). Nous présentons un modèle expres-
sif de montage, qui s’attaque à la complexité intrinsèque de problèmes très classiques
tels que la détermination de visibilité et la planification de trajectoires – qui sont des
pré-requis au contrôle temps-réel d’une caméra virtuelle – ainsi qu’à des problème de
plus haut niveau liés au maintien d’une certaine continuité dans la succession de plans
cinématographiques. Notre moteur de cinématographie encode des idiomes cinémato-
graphiques et des règles dites de ”continuity-editing”, afin de produire des montages et
des trajectoires de caméra appropriés à partir d’un ensemble d’événements narratifs et
d’indicateurs de style. Nous présentons le concept de Volumes Directeur, une partition
spatiale novatrice sur laquelle repose notre modèle de montage. Ces Volumes Directeurs
fournissent une caractérisation des régions de visibilité (avec visibilité totale, visibilité
partielle ou occultation totale) ainsi que des points de vues stéréotypiques (les Volumes
Sémantiques). CineSys raisonne ensuite sur ces Volumes Directeurs afin d’identifier
quand et comment les transitions entre plans (mouvements de caméra ou coupures)
doivent être effectuées. Ce raisonnement sémantique et géométrique repose sur une
mise en œvre basée filtrage de conventions cinématographiques. Notre processus de rai-
sonnement est de plus suffisamment expressif pour offrir la possibilité d’implémenter
une variété de styles cinématographique. Nous démontrons l’expressivité de notre mo-
dèle en faisant varier un certains nombre d’indicateurs stylistiques, tels que la visibilité
des sujets, le rythme de coupures (ou pacing), la dynamicité de la camera, ou encore
la dimension narrative. L’expressivité de notre modèle est en contraste très net avec
les approches existantes qui sont soit de nature procédurales, soit ne permettent pas
des calculs interactifs, soit ne prennent pas réellement en considération la visibilité des
sujets clés.

Prise en compte de la participation d’un réalisateur dans le processus de
montage

Nous présentons un cadre théorique novateur pour la cinématographie virtuelle et
le montage qui ajoute une évaluation de la qualité des plans, des coupures et du rythme
des coupures. Nous proposons ensuite deux approches basées classement au problème de
montage d’un film, qui se basent à la fois sur notre moteur de cinématographie CineSys
et sur les métriques d’évaluation que nous avons proposée, pour aider un réalisateur
dans son processus créatif. Nous présentons une stratégie de recherche performante de
la meilleure suite de plans parmi un grand nombre de candidats générés par les idiomes

iii

Résumé en français

traditionnellement utilisés, et qui permet à l’utilisateur d’avoir une certaine maîtrise du
montage final. Nous permettons de plus l’application d’un rythme de coupures reposant
sur un modèle fondé de durées de plans. Nous présentons ensuite un système interactif
d’aide au montage, qui amène un processus novateur de création d’un film, basé sur la
collaboration interactive de la créativité d’un réalisateur et du potentiel de calcul d’un
système automatisé. Ce processus de création permet une exploration rapide d’un grand
nombre de possibilités de montage, et une prévisualisation rapide de films d’animation
générés par ordinateur.

Une approche efficace du contrôle d’une caméra virtuelle : l’Espace Torique
Nous présentons une approche efficace et innovante du problème de placement d’une

caméra virtuelle ayant le potentiel de remplacer un certain nombre de techniques pré-
cédentes de contrôle de caméra, et qui laisse entrevoir de grandes possibilités d’intégra-
tion de techniques de composition visuelles plus évoluées dans un nombre important
d’application d’infographie. dans un premier temps, nous présentons un modèle para-
métrique assez simple (la Variété Torique) qui résout le problème de positionnement
exact de deux sujets à l’écran. Nous utilisons ensuite ce concept pour nous attaquer à
des problèmes liés à la tâche de positionner une caméra virtuelle afin de satisfaire des
spécifications de positionnement d’éléments à l’écran. En particulier, nous proposons
la toute première méthode de résolution du problème du “vaisseau spatial” de Blinn
[Bli88] utilisant une formulation purement algébrique plutôt qu’un processus itératif.
De même, nous montrons comment formuler des problèmes de composition simples, gé-
néralement gérés en 6D, comme une recherche dans un espace 2D sur la surface d’une
variété Dans un second temps, nous effectuons une extension de notre modèle en un
espace 3D (l’Espace Torique) dans lequel nous intégrons la plupart des propriétés vi-
suelles classique qui sont utilisées dans la littérature [RCU10]. Nous exprimons la taille
de sujets clés (ou distance à la caméra), l’angle de vue (ou “vantage angle”) et une
description plus souples du positionnement des sujets à l’écran comme des ensembles
de solutions en 2D dans l’Espace Torique. Nous détaillons la résolution théorique de la
combinaison d’un nombre indéterminé de tels ensembles de solutions, alors que cette
combinaison s’évère très difficile (voire impossible) à opérer dans l’espace classique des
configurations de caméra en 6D. Nous montrons de plus comment les règles de mon-
tage (“continuity-editing”) peuvent être exprimées facilement comme un ensemble de
contraintes (e.g. distance, angle de vue) puis combinés avec les autres contraintes da,s
l’Espace Torique. Nous présentons enfin une technique efficace qui génère un ensemble
de points de vues représentatifs de la solution globale d’un problème de composition, et
effectue une estimation intelligente de la visibilité afin de sélectionner le meilleur point
de vue de cet ensemble. Du fait de la réduction de l’espace de recherche inhérente à
notre Espace Torique, le bénéfice en temps de calcul donne un avantage sérieux à notre
approche.

iv

Contents

Acknowledgments C

Résumé en français i

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

Publications 6

2 State of the Art 7
1 Cinematographic Background . 7

1.1 Shots . 8
1.2 Camera motions . 9
1.3 Editing . 11
1.4 From Real Cinematography to Virtual Cinematography 12

2 Interactive Control . 13
2.1 Direct and Assisted Control . 13
2.2 Physical Controllers . 14
2.3 Through-The-Lens Control . 15
2.4 From Interaction to Automation 17

3 Automated Camera Composition . 17
3.1 Direct algebra-based Approaches 17
3.2 Constraint-based Approaches . 18
3.3 Optimization-based Approaches . 20
3.4 Constrained-optimization Approaches 21
3.5 Hybrid Approaches . 22

4 Automated Camera Planning . 23
4.1 Procedural Camera Movements . 23
4.2 Reactive Approaches . 24
4.3 Constraint-based Approaches . 24
4.4 Optimization-based Approaches . 25

v

Contents

5 Automated Editing . 30
6 Visibility/Occlusion Handling . 34
7 Conclusion . 38

3 A Cinematic Engine for Interactive 3D Environments 41
1 Contributions . 42
2 Overview . 42
3 Computing Director Volumes . 44

3.1 Semantic Volumes . 46
3.2 Visibility Volumes . 48
3.3 Director Volumes . 51

4 Reasoning over Director Volumes . 51
4.1 Filtering operator . 53
4.2 Continuity editing filters . 53
4.3 Style filters . 55
4.4 Selection operator . 56
4.5 Failures in available Director Volumes 57

5 Enforcing Screen Composition . 57
6 Performing cuts or continuous transitions 59

6.1 Controlling cuts with Pacing and Dynamicity 60
6.2 Performing continuous transitions by path-planning 61

7 Results . 66
7.1 Pacing . 67
7.2 Degree of Visibility . 67
7.3 Camera Dynamicity . 70
7.4 Narrative Dimension . 73
7.5 Limitations . 77
7.6 Discussion and Comparison . 78

8 Conclusion . 81

4 Integrating Director’s Inputs into the Editing Process 83
1 Contributions . 83
2 Film grammar rules . 84

2.1 Shot composition . 85
2.2 Relevance of a shot . 86
2.3 Shot transitions . 87
2.4 Relevance of a transition . 93
2.5 Pace in transitions . 94

3 An automated approach to constructing a well-edited movie 95
3.1 Overview . 95
3.2 Computing takes . 96
3.3 Editing graph . 96
3.4 A best-first search for film editing 97
3.5 Feature weights selection . 101
3.6 Experimental results . 102

vi

Contents

4 The Director’s Lens . 104
4.1 Overview . 104
4.2 Computing suggestions . 105
4.3 Ranking suggestions . 106
4.4 Learning from the user inputs . 107
4.5 The Director’s Lens system . 108
4.6 Results . 112

5 Discussion and Conclusion . 115

5 An Efficient Approach to Virtual Camera Control: The Toric Space 117
1 Contributions . 118
2 Reducing search space in virtual camera composition 118
3 Tackling exact on-screen positioning of two subjects: The Toric Manifold . 119

3.1 Solution in 2D . 119
3.2 Solution in 3D . 121
3.3 Application #1: Solution of Blinn’s spacecraft problem 123
3.4 Application #2: Solution for three or more subjects 126

4 Tackling more evolved on-screen composition problems: The Toric Space . 129
5 Expressing classical visual constraints in the Toric Space 130

5.1 On-screen positioning . 131
5.2 Projected Size . 133
5.3 Distance . 135
5.4 Vantage angle . 137

6 Combining Constraints . 145
7 Satisfaction of constraints . 146

7.1 Measuring the satisfaction of a distance constraint 146
7.2 Measuring the satisfaction of a vantage constraint 147

8 Results . 148
8.1 Specification #1: static application of constraints 149
8.2 Specification #2: visual composition enforcement 151
8.3 Specification #3: editing . 152
8.4 Performances . 154

9 Discussion . 156
10 Conclusion . 160

6 Conclusion 161

Bibliography 174

Abstract 176

vii

List of Figures

2.1 Rule of thirds . 9
2.2 Framing heights . 10
2.3 Shot angles . 10
2.4 180◦ rule . 13
2.5 Physical controller for virtual cameras . 15
2.6 A simple camera model based on Euler angles 16
2.7 Blinn’s composition problem . 17
2.8 Evaluate-and-split approach . 18
2.9 Hierarchical application of constraints . 19
2.10 Semantic partitioning [CN05] . 23
2.11 Artificial potential field . 26
2.12 Heat map illustrating an analysis of viewpoint quality w.r.t. limbs visibility

[ACoYL08] . 27
2.13 Cell decomposition and path planning . 27
2.14 Rapidly-exploring Random Trees (RRT) 28
2.15 Probabilistic Roadmap Method (PRM) . 29
2.16 Corridor Map Method (CMM) . 30
2.17 Film idioms as finite state machines [HCS96] 31
2.18 Film tree [CAH+96] . 31
2.19 Intercut PRM [LC08] . 33
2.20 Hierarchical lines of action [KC08] . 33
2.21 Staging [ER07] . 34
2.22 Potential Visibility Regions (PVR) [HHS01] 36
2.23 Occlusion anticipation . 37
2.24 Sphere-to-sphere visibility [OSTG09] . 38
2.25 Proactive camera movement [OSTG09] . 38
2.26 Visibility computation inside a camera volume [CON08a] 39

3.1 Overview of CineSys . 45
3.2 Construction of an a-BSP data structure 46
3.3 Design of Semantic Volumes . 47
3.4 Visibility computation principle . 49
3.5 Visibility propagation . 50
3.6 Combining visibility information . 52
3.7 Computing Director Volumes . 52
3.8 Reasoning over Director Volumes . 54

ix

List of Figures

3.9 Local search optimization inside a Director Volume 59
3.10 Evaluation of a camera configuration w.r.t. frame composition 60
3.11 Construction of the sampling-based roadmap 62
3.12 Sampling method . 63
3.13 Computation of camera paths in the roadmap 65
3.14 Results: fast pacing . 68
3.15 Results: slow pacing . 68
3.16 Results: enforcing full visibility . 69
3.17 Results: enforcing full occlusion . 69
3.18 Results: enforcing partial visibility . 70
3.19 Results: no dynamicity . 71
3.20 Results: dynamicity on orientation . 72
3.21 Results: dynamicity on orientation and position 72
3.22 Results: full dynamicity . 73
3.23 Results: influence of affinity . 75
3.24 Results: influence of dominance . 76
3.25 Results: default narrative dimension . 77
3.26 Results: affinity between Syme and Smith 77
3.27 Results: dominance of Syme . 77
3.28 Results: isolation of Syme . 78

4.1 Visibility scores . 85
4.2 Action scores . 86
4.3 Screen continuity scores . 88
4.4 Gaze continuity scores . 89
4.5 Motion continuity scores . 90
4.6 Left-to-right ordering scores . 91
4.7 Jump-cut scores . 91
4.8 Size continuity scores . 92
4.9 Line of action scores . 93
4.10 Editing graph . 97
4.11 Observation window . 98
4.12 Bi-directional search . 101
4.13 Results on shots . 102
4.14 Results on edits . 103
4.15 Automated computation of suggestions . 105
4.16 Our hand-held virtual camera device . 109
4.17 Explore Suggestions mode . 110
4.18 Explore Suggestions mode (expanded with filtering) 111
4.19 Manual Control / Movie Playing mode . 112
4.20 Suggestions satisfying continuity rules . 113

5.1 Heat map representing the quality of on-screen composition for two subjects 119
5.2 Range of solutions for the exact composition of two subjects 120
5.3 Example of 3D solution set for 2 subjects 121

x

List of Figures

5.4 Method used to solve a distance-to-B constraint 124
5.5 Resolution of Blinn’s spacecraft problem 125
5.6 Example solution of Blinn’s spacecraft problem 126
5.7 Three-subject on-screen positiong: heat map 128
5.8 Two solutions of the exact on-screen positioning of three subjects 128
5.9 Toric manifold . 129
5.10 Representation of our Toric Space . 130
5.11 Relationship between β, β′ and θ . 131
5.12 Soft two-subject on-screen positioning . 132
5.13 Computation of the camera orientation for a given camera position 134
5.14 Illustration of the resolution of a strict distance constraint in the plane (θ, α) 137
5.15 Solution set corresponding to a camera in a range of distance to both subjects138
5.16 Computation of the vantage function in the space (β, ϕ) (ellipse) 139
5.17 Solution range of a vantage angle . 144
5.18 Intersection of the solution sets for both a vantage angle 145
5.19 Satisfaction of camera positions w.r.t. a range of distance 147
5.20 Satisfaction of camera positions w.r.t. a vantage constraint 148
5.21 Results: static application of constraints 150
5.22 Results: constraints enforcement through a static camera in the Toric Space 153
5.23 Results: constraints enforcement through a dynamic camera in the Toric

Space . 153
5.24 Results: constraints enforcement through a static camera + editing in the

Toric Space . 155
5.25 Results: constraints enforcement through a dynamic camera + editing in

the Toric Space . 155

xi

List of Tables

3.1 Comparison with main contributions in the domain 80

5.1 Performances: static application of constraints 151
5.2 Comparison of performances of constraints enforcement techniques, for a

sampling density 5×5×5 . 157
5.3 Comparison of performances of constraints enforcement techniques, for a

sampling density 10×10×10 . 157
5.4 Comparison of performances of constraints enforcement techniques, for a

sampling density 15×15×15 . 158
5.5 Comparison of performances of constraints enforcement techniques, for a

sampling density 20×20×20 . 158

xiii

1Introduction

With the advances in rendering, the realism of virtual environments is continuously
increasing. It is therefore necessary to relate such progress to better presentation of
their contents. A virtual camera is a window through which such content can be pre-
sented to a viewer. A single camera viewpoint provides a view (i.e. a single image)
conveying a subpart of an environment; the flow of images then assists a viewer in the
construction of a mental representation (spatial and/or temporal layout) of this envi-
ronment. It is therefore necessary to carefully select viewpoints on these environments.
Virtual camera control is an essential component for a large range of applications, such
as data visualization, virtual navigation (in a museum for instance), virtual storytelling
or 3D games. The three essential aspects of virtual camera control are the choice of
the viewpoint, the choice of the camera motions and the editing (i.e. deciding when
and where to perform cuts between viewpoints or motions). The nature of virtual cam-
era control can vary w.r.t. needs, from semi-automated control such as in interactive
applications, to fully automated approaches. However, one can identify three transver-
sal issues: (i) the on-screen composition (i.e. visual arrangement of elements on the
screen), (ii) the planning of camera paths and (iii) the editing.

Virtual camera control consists in searching, at each time step, for the best camera
viewpoint (w.r.t. a set of properties) in a 7 dof s (degrees of freedom) search space.
Consequently, it can be viewed as a sub-class of Motion Planning issues. Such tech-
niques are generally used to search for a motion or path (of an articulated arm for
instance) with no collision with obstacles of an environment in high dimensions. How-
ever, controlling a camera cannot be summarized as the search for a discrete series of
configurations with no collision; it also requires the sequence of camera viewpoints to
satisfy a set of constraints on the on-screen layout of elements (e.g. maintain a view
angle or the visibility of key subjects) or on the camera path (e.g. enforce coherency
between successive camera viewpoints).

Researchers tackled the three main issues we have mentioned, and proposed a num-
ber of techniques ranging from manual control to fully automated control of camera
parameters. From the literature, three observations can be made. Firstly, there is no
general model accounting for the three aspects (visual composition, path planning and
editing). Indeed, researchers generally focused on one or two of these aspects only. In
complement, composition, planning and editing need to deal with visibility, which has
been under-addressed in the field. The consideration of these four aspects together
is a crucial basis to build more evolved computer graphics applications (e.g. in vir-
tual storytelling or 3D games). Furthermore, existing techniques lack expressiveness,

1

Introduction

i.e. they provide limited account of cinematographic styles/genres and means to en-
force them. Secondly, we believe there is a necessity to let the user interact. Though
automated techniques provide good results, the result intended by the user is generally
more subtle and cannot be easily expressed. Existing automated techniques do not
really provide assistance to users in the task of constructing a movie. Lastly, the visual
composition is a central element of camera placement. Evolved composition problem
are commonly modeled as an objective function constructed as the agglomeration of
quality functions related to each desired visual property (e.g. on-screen position, size
or visibility of scene elements); researchers then use optimization-based techniques to
find a camera that maximizes this objective function. Aggregating quality functions
for all properties together however reduces the capacities to guide the solving process
through the search space, therefore leading to techniques which explore large areas of
the search space without solutions. The specific problem of composition is transformed
into a general search process for which it is difficult to propose efficient and general
heuristics.

In this thesis, we investigate the control of a virtual camera in the context of virtual
cinematography in interactive 3D environments. The thesis is organized as follows. In a
first part, we present our motivations, as well as a state of the art of existing techniques.

In a second part, we present a unifying approach to the problem of interactive cin-
ematography. Our approach handles viewpoint computation, editing and planning in
a real-time context. We address the innate complexity of well understood problems
such as visibility determination and path planning required in real-time camera con-
trol, while tackling higher-level issues related to continuity between successive shots
in an expressive editing model. Our model relies on a spatial partitioning, the Direc-
tor Volumes, on which we reason to identify how, when and where shot transitions
should be performed. This reasoning relies on a filtering-based encoding of cinematic
conventions together with the possibility to implement different directorial styles. The
expressiveness of our model stands in stark contrast to existing approaches that are
either procedural in character, non-interactive or do not account for proper visibility
of key subjects.

In a third part, we introduce a novel framework for virtual cinematography and
editing which adds a quantitative evaluation of the key editing components. We further
propose two ranking-based approaches to editing a movie, that build upon the proposed
evaluation metrics to assist a filmmaker in his creative process. We introduce an efficient
search strategy for finding the best sequence of shots from a large number of candidates
generated from traditional film idioms, while providing the user with some control on
the final edit. We further enable enforcing the pace in cuts by relying on a well-founded
model of shot durations. We then present an interactive assistant (The Director’s Lens)
whose result is a novel workflow based on interactive collaboration of human creativity
with automated intelligence. This workflow enables efficient exploration of a wide range
of cinematographic possibilities, and rapid production of computer-generated animated
movies.

In a fourth part, we introduce a parametric model (the Toric Manifold) to solve a
range of problems that occur in the task of positioning a virtual camera given exact on-

2

screen specifications. Our model solves Blinn’s spacecraft problem [Bli88] by using an
algebraic formulation rather than an iterative process. It casts simple camera optimiza-
tion problems mostly conducted in 6D into searches inside a 2D space on a manifold
surface. We further extend this model as a 3D space (the Toric Space) in which we
integrate most of the classical visual properties employed in the literature [RCU10].
Because of the reduction in the search space inherent to our Toric Space, the benefits
in terms of computational cost greatly favors our approach.

We finally conclude by presenting the limitations of our work, the improvements
that could be made and proposing some interesting perspectives.

3

Publications

[ACS+11] R. Abdullah, M. Christie, G. Schofield, C. Lino, and P. Olivier. Advanced
Composition in Virtual Camera Control. In Smart graphics, volume 6815
of Lecture Notes in Computer Science, pages 13–24. Springer Berlin Hei-
delberg, 2011. 21

[BLCR13] W. Bares, C. Lino, M. Christie, and R. Ranon. Methods, System and
Software Program for Shooting and Editing a Film Comprising at least One
Image of a 3D Computer-generated Animation. US Patent n°20130135315,
May 2013.

[CLR12] M. Christie, C. Lino, and R. Ronfard. Film Editing for Third Person
Games and Machinima. In Workshop on Intelligent Cinematography and
Editing, Raleigh NC, USA, 2012.

[HLCO10] H. N. Ha, C. Lino, M. Christie, and P. Olivier. An Interactive Interface
for Lighting-by-example. In Smart graphics, volume 6133 of Lecture Notes
in Computer Science, pages 244–252. Springer-Verlag Heidelberg, 2010.

[LC12] C. Lino and M. Christie. Efficient Composition for Virtual Camera Con-
trol. In 2012 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 65–70, Lausanne, Switzerland, 2012.

[LCCR11a] C. Lino, M. Chollet, M. Christie, and R. Ronfard. Automated Camera
Planner for Film Editing Using Key Shots. In 2011 ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation (Poster), Vancouver,
Canada, 2011.

[LCCR11b] C. Lino, M. Chollet, M. Christie, and R. Ronfard. Computational Model
of Film Editing for Interactive Storytelling. In Interactive Storytelling
(Poster), volume 7069 of Lecture Notes in Computer Science, pages 305–
308. Springer Berlin Heidelberg, 2011.

[LCL+10] C. Lino, M. Christie, F. Lamarche, G. Schofield, and P. Olivier. A Real-
time Cinematography System for Interactive 3D Environments. In 2010
ACM SIGGRAPH / Eurographics Symposium on Computer Animation,
pages 139–148, Madrid, Spain, 2010.

[LCLO09] C. Lino, M. Christie, F. Lamarche, and P. Olivier. A Real-time Cinematog-
raphy System for 3D Environments. In 22es Journées de l’Association
Francophone d’Informatique Graphique (AFIG), pages 213–220, Arles,
France, 2009.

[LCRB11a] C. Lino, M. Christie, R. Ranon, and W. Bares. A Smart Assistant for
Shooting Virtual Cinematography with Motion-tracked Cameras. In 19th

5

Publications

ACM International Conference on Multimedia (Demo), pages 831–832,
Scottsdale Arizona, USA, 2011.

[LCRB11b] C. Lino, Marc Christie, Roberto Ranon, and William Bares. The Direc-
tor’s Lens: An Intelligent Assistant for Virtual Cinematography. In 19th
ACM International Conference on Multimedia, pages 323–332, Scottsdale
Arizona, USA, 2011.

6

2State of the Art

Virtual camera control encompasses viewpoint computation, path planning and
editing. Virtual camera control is a key element in many computer graphics applications
such as scientific visualization, virtual exploration of 3D worlds, proximal inspection
of objects, video games or virtual storytelling. A wide range of techniques have been
proposed, from direct and assisted interactive camera control to fully automated camera
control techniques.

This state of the art is divided as follows. Firstly, we describe the cinematographic
background about the use of real-world cameras in Section 1. Secondly, we describe
interactive camera control techniques in Section 2. Thirdly, we describe automated
camera control techniques (viewpoint computation, path planning and editing) in Sec-
tions 3 to 5. Fourthly, we discuss about a transverse issue in virtual camera control,
the occlusion avoidance, in Section 6. Finally, we conclude on lacks of existing camera
control techniques, before detailing the contributions of the thesis in Section 7.

1 Cinematographic Background
An overview of the use of real-world cameras can be found in some reference books

on photography and cinematography practice [Ari76, Mas65, Kat91]. In addition to
camera placement, cinematography involves a number of issues such as shot compo-
sition, lighting and staging (how actors and scene elements are arranged), as well as
the implementation of filmmaker’s communicative goals. In movies, camera placement,
lighting and staging are highly interdependent. However, in other situations such as
in documentaries or news reports, the operator generally has no or a limited control
over staging and lighting. In this state of this art, we will review cinematic camera
placement with this in mind. Indeed, in computer graphics applications (e.g. computer
games) real-time camera control is very similar to documentaries; one must generally
present scene elements to a viewer without direct modification of the elements them-
selves [CON08a].

When taking a close look at the structure of a movie, one can view it as a sequence
of scenes. A scene can, in turn, be decomposed as a sequence of shots, separated with
cuts. Finally, a shot can be viewed as a continuous series of frames, and may contain
camera motions. In the following, we will focus on the cinematic knowledge at the scene
level. This knowledge can be classified into three categories: the shots, the camera
motions, and the editing. The construction of a movie is both a creative and technical

7

State of the Art

craft, through which a director communicates his vision to the audience; shots, camera
motions, and editing play a key role in the communication of the director’s message.
Real cinematographers have thus been elaborating a “visual” grammar of movie making
for more than a century. How a director uses this grammar then determines his capacity
to properly convey his vision. Indeed, two different directors, through the use of their
own style, would convey two different visions of the same narrative elements; which
would potentially result in the construction of two different stories.

1.1 Shots

A shot is a key unit which provides information to the viewer. Each shot represents
a unique way to frame one or more narrative element(s). The composition of these
elements (i.e. their spatial arrangement within the frame) is very important. Common
rules of composition [Tho98] encompass the content of the frame (what the key elements
are and what their degree of visibility is), the visual aspect of key elements, as well as
the arrangement and visual balance of elements. We here review a range of significant
composition rules:

Head-room Head-room specifically refers to how much or how little space exists be-
tween the top of an actor’s head and the top edge of the recorded frame.

Look-room The look-room is the empty area that helps balance out a frame where,
for instance, the weight of an element occupies the left of the frame and the weight
of the empty space occupies the right of the frame. Here, the word “weight” really
implies a visual mass whether it is an actual object, such as a head, or an empty
space, such as the void filling the right of the frame.

Rule of thirds The rule of thirds is a composition rule that helps in building a well-
balanced framing. The frame is equally divided into thirds, both vertically and
horizontally. Key elements are then to be placed along a line (called power line) or
at the intersection of two lines (called power point). See Figure 2.1 for illustration.

Shot size There is a variety of common shot sizes classified according to the proportion
of a subject that is included in the frame. This rule is commonly associated
with the framing of a character (see Figure 2.2). For instance, a close up shot
would frame a character from the shoulders, a medium shot from the hips, a full
shot would include his whole body, whereas a long shot would be filmed from a
distance.

Camera angles Horizontal camera angles are stereotypical positions around one (or
more) subject(s). For a one-character shot, horizontal angles can be represented
as degrees of a circle (see Figure 2.3a). The 3/4 front, for instance, is the most
common view angle in fictional movies; it provides a clear view of facial expres-
sions, or hand gestures. In a two-character shot, the over-the-shoulder (or OTS,
shot above and behind the shoulder of one character shooting the other charac-
ter) is very often used in dialogue scenes. The sense of proximity conveyed by
such a shot is used, for example, to establish affinity between the viewer and the
character.

8

Cinematographic Background

The vertical angles (see Figure 2.3b) have strong meanings. Literature distin-
guishes three main vertical angles: high angle (taken from above), low angle
(taken from below), or neutral angle (taken from the subject’s height). A high
angle often conveys the feeling that what is on screen is smaller, weaker, or cur-
rently in a less powerful or compromised position. A low angle usually generates
the reverse feeling. The subject seen from below appears larger, more significant,
more powerful and physically higher in the film space.

(a) (b)

Figure 2.1 – The rule of thirds. (a) The frame is equally divided into thirds, both
vertically and horizontally. Key elements are placed along a line (power line) or at the
intersection of two lines (power point). (b) Example of framing, extracted from The
Great Dictator.

1.2 Camera motions
Shots can contain be created using camera motions. Camera motions are used

to change the viewer’s perspective. Classical camera motions can be divided into 3
categories: (1) the mounted camera creates the motion, (2) the camera and operator
move together and (3) only the camera lens moves. We hereafter review some well
established camera motions.

1.2.1 Mounted camera motions

This category is characterized by a camera motion with no physical motion of the
operator. This is commonly performed by mounting the camera on a tripod, for a
smooth effect.
Pan (or panoramic) The camera is turned horizontally left or right. Pan is used to

follow a subject or to show the distance between two subjects. Pan shots are also
used for descriptive purposes.

Tilt The camera is turned up or down without raising its position. Like panning, it
is used to follow a subject or to show the top and bottom of a stationary object.
With a tilt, one can also reveal size of a subject.

9

State of the Art

Figure 2.2 – Framing heights describe the proportion of a subject that is included in
the frame.

(a) (b)

Figure 2.3 – Shot angles: (a) the different horizontal camera angles, (b) the different
vertical camera angles.

Pedestal The camera is physically moved up or down (in terms of position), without
changing its orientation.

1.2.2 Camera and operator motions

This category is characterized by a physical motion of both the operator and the
camera. Some of them may be performed by mounting the camera on a tripod.

Dolly The camera is set on tracks or wheels and moved toward or back from a subject.
It can be used to follow a subject smoothly.

10

Cinematographic Background

Crane or Boom This works and looks similar to a construction crane. It is used for
high sweeping shots or to follow the action of a subject. It provides a bird’s eye
view, that may be used for example in street scenes so one can shoot from above
the crowd and the traffic, then move down to the level of individual subjects.

Hand held The camera is held without a tripod, which leads to a shaking motion to
the camera. It may introduce more spontaneity in the unfolding action (e.g. in
documentaries), or introduce a feeling of discomfort.

1.2.3 Camera lens motions

This category is characterized by a change in intrinsic parameters of the camera
only (i.e. the field of view angle). There is no physical motion of the operator, and no
change of the extrinsic camera parameters (i.e. position and orientation).

Zoom The field of view is narrowed or widened, in order to zoom in or out. It is used to
bring subjects at a distance closer to the lens, or to show size and perspective. It
also changes the perception of depth. Zooming in brings the subject closer, with
less visible area around the subject and distant objects are compressed. Zooming
out shows more of the subject and make surrounding areas visible.

Rack Focus Depth of field determines the range of depth at which elements are in
focus (i.e. appear sharp). Elements before and behind are out of focus (i.e. appear
blurred). In a rack focus, the focal length is changed so that the depth of field
changes. Elements at a the initial depth of field become more and more blurred,
while elements at the final depth of field appear more and more clearly. Rack
focus makes a transition similar to an edit by constructing two distinct shots.
It is often used in dramas, changing focus from one character’s face to another
during a conversation or a tensed moment.

Simple camera motions can be combined to construct more complex camera mo-
tions.

1.3 Editing
The process of editing – the timing and assembly of shots into a continuous flow of

images – is a crucial step in constructing a coherent cinematographic sequence. Some
general rules can be extracted from the literature. For instance, a new shot should
provide new information which progresses the story, and each cut should be motivated.

1.3.1 Continuity Editing

In order not to get the audience disoriented, editing should not break continuity.
Here are some of the basic continuity rules listed in the literature.

Continuity of screen direction To help maintain lines of attention from shot to
shot, the concept of 180 degree line or line of interest (LOI) was introduced. The
LOI is an imaginary line, commonly established as the sight line of the subject in
a one-character shot, or the line passing through both subjects for a two-character

11

State of the Art

shot. When editing two shots, one must ensure that the camera does not “cross
the line” (i.e. ensure that the two shots are taken from the same side of this line).
Indeed, crossing the LOI would reverse the established directions of left and right
and lead to disorientation in the audience. Note that, when it is the intended
effect, cinematographers can voluntarily introduce such a cut.

Continuity of motion If during a shot a subject walks out left of the frame, the
subject’s leftward motion dictates that in the new shot it should enter from the
right of the frame. This enforces the direction of leftward motion within the film’s
space.

Jump Cut Because each shot or view of the action is supposed to show new infor-
mation to the audience, it also makes sense that one should edit shots with a
significant difference in their visual composition. This will avoid what is known
as a jump cut – two shots with similar framing of the same subject, causing
a visual jump in either space or time. This rule is commonly implemented by
providing a minimum change in the view angle (usually 30 degrees) and/or a
minimum change in the size of a subject.

1.3.2 Idioms

Given prototypical situations (i.e. simple actions performed by the actors, such as
dialogue scenes, walking scenes or door passing), there are typical camera placements
(called idioms) to convey them (see [Ari76] for a cookbook of idioms). For instance, in
dialogue scenes, a classical idiom is to alternate between an OTS shot of one character
and an OTS shot of the other character (also known as shot / reverse shot). Usually,
each shot shows the speaker from front, and a cut is made when a change of speaker oc-
curs. One can also introduce reaction shots (i.e. shots on the listener, to see his reaction
to the speaker’s words). For a given situation, however, the number of possible idioms
and how they are constructed are only limited by the creativity of cinematographers.

1.3.3 Pacing

Pacing is the rhythm at which transitions (cuts or camera motions) occur. Pacing
has a strong impact on the emotional response from the audience. For instance, in
highly dramatic moments, the story’s tension may be conveyed through fast-paced
cuts; while a romantic scene would rely on slow-paced cuts.

1.4 From Real Cinematography to Virtual Cinematography

Through this section, we have shown that real cinematography supplies filmmakers
with a range of practical tools and rules (on camera placement, camera motions and
editing) which both furnish a framework for creating consistent movies and means to
express their creativity. Virtual camera control can also benefit from such cinematic
elements. This however requires to be capable of (i) modeling these elements and (ii)
providing the user with means to re-use them to fully express his creativity in 3D
environments. In the following sections, we review techniques that have been proposed

12

Interactive Control

Figure 2.4 – 180◦ rule. To enforce space continuity, a cut between two camera view-
points must never cross the line of interest, drawn between the two subjects. The current
viewpoint is drawn in black. A cut to a green camera would enforce space continuity,
while a cut to the red camera would break space continuity.

to control a virtual camera, and pay particular attention to how these elements have
been accounted for.

2 Interactive Control

The interactive control of a camera is the process through which a user interactively
modifies (directly or indirectly) camera parameters. Explored techniques can be cat-
egorized into three classes: direct control techniques, assisted control techniques and
“through-the-lens” control techniques.

2.1 Direct and Assisted Control

Direct control of a virtual camera requires dexterity from the user. It is however
problematic to deal simultaneously with all seven degrees of freedom (dof). Researchers
investigated means to facilitate this control; they provided mappings of the dof s of an
input device (commonly a mouse) into camera parameters. Such mappings are referred
to as camera control metaphors, and have mainly been designed for applications such
as proximal inspection of objects or exploration of 3D worlds.

As stated in [CON08a], Ware and Osborne [WO90] reviewed the possible mappings,
and categorized a broad range of approaches:

eyeball in hand: the camera is directly manipulated as if it were in the user’s
hand, encompassing rotational and translational movement. User input modifies
the values of the position and orientation of the camera directly.
world in hand: the camera is fixed and constrained to point at a fixed location
in the world, while the world is rotated and translated by the user’s input. User

13

State of the Art

input modifies the values of the position and orientation of the world (relative to
the camera) directly.
flying vehicle: the camera can be treated as an airplane. User input modifies the
rotational and translational velocities directly.
walking metaphor : the camera moves in the environment while maintaining a
constant distance (height) from a ground plane [HW97][Bro86].

Drucker et al. [DGZ92] proposed Cinema, a general system for camera movement. Cin-
ema was designed to address the problem of combining metaphors (eyeball in hand,
scene in hand and flying vehicle) for direct interactive viewpoint control. Cinema also
provides a framework in which the user can develop new control metaphors through a
procedural interface. Zeleznik in [ZF99] demonstrated the utility of this approach by
proposing smooth transitions between multiple interaction modes with simple gestures
on a single 2-dimensional input device. Chen et al. [CMS88] reviewed the possible map-
pings of 3D rotations using 2D input devices. Notably, Shoemake [Sho92] introduced
the concept of the arcball, a virtual ball that contains the object to be manipulated.
His solution relies on quaternions to stabilize the computation and avoid Euler sin-
gularities (i.e. gimbal lock) while rotating around an object. Shoemake’s techniques
only considers the position parameters. The camera is oriented toward the central key
subject. Jung et al. [JPK98] suggested a helicopter metaphor, as a mapping function
in which transitions are eased by using a set of planes to represent the camera’s 6 dof s.
Transitions between planes can then be specified with a 2-dimensional input device.

Presented metaphors does not account for physical properties of cameras. To get
closer to a real camera’s behavior, Turner et al. [TBG91] explored the application of
a physical model to camera motion control. User inputs are treated as forces acting
on a weighted mass (the camera). Friction and inertia are then incorporated to damp
degrees of freedom. Turner et al. ’s approach easily extend to manage any new set
of forces and has inspired approaches that rely on vector fields to guide the camera
parameters.

Direct camera control metaphors lack avoidance of occlusions of key elements
and collisions with the scene elements. To overcome these issues, researchers pro-
posed techniques to assist the user in interacting with the camera parameters. Khan
et al. [KKS+05] proposed an assisted interaction technique for proximal object inspec-
tion that automatically avoids collisions with scene objects and local environments. The
hovercam tries to maintain the camera at both a fixed distance around the object and
(relatively) normal to the surface, following a hovercraft metaphor. Thus the camera
easily turns around corners and pans along flat surfaces, while avoiding both collisions
and occlusions. A similar approach has been proposed by Burtnyk et al. [BKF+02],
in which the camera is constrained to a surface defined around the object to explore
(as in [HW97]). The surfaces are designed to constrain the camera to yield interest-
ing viewpoints of the object that will guarantee a certain level of quality in the user’s
exploration, and automated transitions are constructed between the edges of different
surfaces in the scene.

Such camera control metaphors enable full control over the camera placement and
motions. These tasks however remain tedious and are not intuitive w.r.t. cinemato-
graphic practice.

14

Interactive Control

2.2 Physical Controllers

In the purpose of getting closer to the look, feel, and way of working of real movie
cameras, physical or tangible human input controllers have been proposed. These
physical controllers typically include a combination of a portable display, hand-held
motion sensors, buttons, and joysticks. Physical input controllers enable filmmakers to
intuitively operate virtual cameras in computer graphics applications. Filmmakers can
then rapidly preview and record complex camera motions by simply moving, turning,
and aiming the physical controller as if it were a real camera.

Though physical controllers enable fine and intuitive control of the camera place-
ment and of camera motions w.r.t. cinematic tasks, the operator needs to manually
set a scale factor between the physical controller motion and the motion mapped to
the virtual camera; this enables handling motions at different scales, from fine cam-
era motions to large fly-by movements. Setting the camera so as to match a given
composition of scene elements moreover remains tedious, and involves the operator to
physically explore the space of camera placements.

Figure 2.5 – Physical controller for virtual cameras (here the NaturalPoint Insight
VCS). Real-time virtual camera tracking replicates the organic cinematographer’s expe-
rience with fidelity.

2.3 Through-The-Lens Control

Gleicher and Witkin [GW92] introduced the paradigm of “Through The Lens” Cam-
era Control. This paradigm relies on the handling of the camera parameters through
direct manipulations on the visual composition of a shot. The mathematical relation
between an object in the 3D scene and its projection on the 2D screen is however
strongly non-linear. If we consider a Euler-based camera model (see Figure 2.6) for
which the parameters are q = [xc, yc, zc, ϕc, θc, ψc, φc, ac]T , then the projection is given
by Equation 2.1. This relation is expressed as a 4×4 uniform matrixM(q) representing
the transformation from the world coordinates (x, y, z) of a 3D point to its on-screen
coordinates (x′, y′). This transformation is the combination of three consecutive oper-
ations: a translation T (xc, yc, zc), a rotation R(ϕc, θc, ψc) and a perspective projection

15

State of the Art

P (φc, ac). This transformation can be put into equations as follows:

x′

y′

z′

1

= P (φc, ac) ·R(ϕc, θc, ψc) ·T (xc, yc, zc) ·

x

y

z

1

= M(q) ·

x

y

z

1
(2.1)

with z′ = −1 (depth of the camera plane). The strong non-linearity of this relation
makes it difficult to invert (i.e. to decide where to position the camera and how to
orient it given both the world and screen positions of the object).

φ
ϕ

θ

ψ

X

Y

Z

Figure 2.6 – A simple camera model based on a position (x, y, z), set in a global Carte-
sian coordinate system (−→X,−→Y ,−→Z), and three Euler angles: pan (θ), tilt (ϕ) and roll (ψ).
The camera also has two intrinsic parameters: a field of view φ – which defines the zoom
factor –, and an aspect ratio a (generally fixed) – which defines the ratio width/height
of the screen.

Gleicher and Witkin proposed a technique that allows a user to control a camera
through a direct manipulation of on-screen positions of elements (m points). New
camera parameters are recomputed to match the user’s desired positions. The difference
between the actual and desired on-screen positions is then treated as a velocity. They
expressed the relationship between the velocity (ḣ) of the m displaced points on the
screen and the velocity (q̇) of the camera parameters through a Jacobian matrix J
representing the derived perspective transformation. As detailed in [CON08a], Gleicher
and Witkin presented this as a non-linear optimization problem in which a quadratic
energy function is minimized. This problem is then converted into a Lagrange equation,
and solved. When the problem is over-constrained (i.e. the number of control points, m,
is higher than the number of degrees of freedom), the complexity of the Lagrange process
is O(m3). The formulation of this problem has then been improved and extended by

16

Automated Camera Composition

Kung et al. [KKH95], reducing the complexity to O(m).
This technique enables an easy control of shot composition rules such as the rule of

thirds, the head-room and the look-room. The handling of shot size and view angles is
also possible, with some restrictions. For instance, the proposed method hardly handles
long shots – because points are mixed up from a certain distance –, or back views –
where one or more points are occluded. Controlling the camera motions through the
on-screen motion of projection points is moreover a tedious task.

2.4 From Interaction to Automation

On one hand, the interactive control of cinematic aspects is a tedious, and time con-
suming task; especially as we think of dynamic scenes. Indeed, it is extremely difficult
to manually handle shot composition, camera motions and editing at the same time,
while minimizing occlusion of key subjects. On the other hand, cinematic knowledge is
made of well established rules; these rules can be formalized. The research community
thus focused on such formalizations and on the automation of camera positioning tasks,
to tackle the automated composition of shots, planning of camera motions and editing.
In the following sections we review the automated camera control techniques that have
been proposed to tackle each of these three tasks.

3 Automated Camera Composition
Given the difficulty of manually arranging the composition of shots, researchers have

proposed automated camera composition techniques. Given a number of constraints
on the composition (i.e. visual properties to be satisfied), camera dof s are computed
automatically. The main problem here is to find where to position and how to orient
a camera so that such visual properties are satisfied. Camera composition techniques
can be categorized into three classes of approach: direct algebra-based approaches,
constraint-based approaches and optimization-based approaches.

3.1 Direct Algebra-based Approaches

The very first automated camera composition system has been proposed by Blinn
[Bli88], who developed a framework for configuring a camera so that a probe and a
planet appear on screen at given exact coordinates.

Blinn’s expressed his spacecraft problem in terms of vector algebra for which both
an iterative approximation and a closed form solution can be found. Blinn’s approach
requires the world coordinates of the objects f and a (see Figure 2.7), their desired
position on the screen (x′f , y′f) and (x′a, y′a), the up-vector −→U , as well as the camera’s
field of view. The closed form solution computes the parameters of the translation
matrix T and rotation matrix R of the transformation from world space to view space
(Equation 2.1). Blinn’s numerical solution has the advantage of producing an approx-
imate result even where the specified properties have no algebraic solution. Two main

17

State of the Art

U

V

X

Y

Z

(x′f , y′f)

(x′a, y′a)

f (xf , yf , zf)

a (xa, ya, za)

Figure 2.7 – Blinn’s algebraic approach to camera control: two points on the screen, the
field of view and an up-vector allow direct computation of the camera position [Bli88].

drawbacks can however be highlighted. As for most vector algebra approaches, the so-
lution is prone to singularities. Blinn’s technique is moreover restricted to this simple
composition problem; it cannot extend to more evolved composition problems.

To implement cinematic knowledge related to visual composition, there is a need
to resolve more complex problems involving a combination of both visual properties
(e.g. on-screen position or projected size of subjects) and properties on the camera
(e.g. distance or view angle w.r.t. subjects). With this in mind, researchers then pro-
posed a range of declarative approaches. They take a set of properties as input, then
rely on constraint-based and/or optimization-based techniques to compute the camera
parameters that best satisfy those properties.

3.2 Constraint-based Approaches

Constraint satisfaction problem (CSP) frameworks enable modeling a large range
of constraints in a declarative manner, and propose reliable techniques to solve them.

For instance, interval arithmetic-based solvers compute the whole set of solutions
as interval boxes through an evaluate-and-split dynamic programming process, as pre-
sented in Figure 2.8. Each unknown in the problem is considered as an bounded interval
representing the domain within which to conduct the search. All the computations are
therefore casted into operations on intervals. For a better insight of the use of interval
arithmetic in computer graphics, see [Sny92].

Bares et al. [BMBT00] designed a graphical interface to efficiently define sophisti-
cated camera compositions by creating storyboard frames. The storyboard frames are
then automatically encoded into an extensive set of camera constraints capturing their
key visual composition properties. They account for visual composition properties such
as the size and position of a subject appearing in a camera shot. A recursive heuris-
tic constraint solver then analyzes the camera space to determine camera parameters
which produce a shot close to the given storyboard frame.

However, applicable constraints are numerous, and imposing conflicting constraints
prevents solving the entire problem. Such conflicts can appear between two constraints,
or in the combination of three or more constraints for example. Consequently, there is
a necessity of a trade-off in the resolution of constraints and/or of a relaxation value

18

Automated Camera Composition

Figure 2.8 – Evaluate-and-split approach to solve f(x) ≤ 0 with interval arithmetic.
White boxes contain solutions configurations only, dark boxes contain configurations
that do not satisfy the relation, and gray boxes contain both solution configurations and
configurations that do not satisfy the relation.

on each constraint (e.g. an acceptable interval of values).
Hierarchical constraint approaches are able to relax some of the constraints to pro-

vide an approximate solution to the problem. Bares et al. [BZRL98] proposed Con-
straintCam, a partial constraint satisfaction system for camera control. Inconsisten-
cies are identified by manually constructing a pair graph of incompatible constraints.
If the system fails to satisfy all the constraints of the original problem, it relaxes weak
constraints; and if necessary, decomposes a single shot problem to create a set of cam-
era placements that can be composed in multiple viewports [BL99]. ConstraintCam
uses a restricted set of cinematographic properties (viewing angle, viewing distance and
occlusion avoidance) and the constraint satisfaction procedure is applied to relatively
small problems (i.e. involving two objects). Halper et al. [HHS01] proposed an incre-
mental solving process based on successive improvements of a current configuration (see
Figure 2.9). Their system accounts for various properties, including relative elevation,
size, visibility and screen position. The solving process then incrementally satisfies the
set of screen constraints at each frame, relaxing subsets as required.

One of the main drawbacks of constraint-based approaches is their lack in detecting
and effectively resolving inconsistencies in over-constrained problems. Such approaches
are thus hardly usable when no optimal solution exist. This has lead researchers to
take an active interest in optimization-based techniques.

3.3 Optimization-based Approaches

Pure optimization techniques express shot properties to verify as a set of objective
functions fi(q) (one for each property) to maximize. Each objective function is ex-
pressed from both a description of the problem and one or more metrics evaluating the
satisfaction of the property. A global fitness function F is then defined as the aggre-
gation of objective functions fi(q). Finally, an optimization solver performs a search

19

State of the Art

Figure 2.9 – Hierarchical application of constraints [HHS01].

in the 7D space of possible camera configurations Q. This optimization process can
formulated as

maximize F (f1(q), f2(q), . . . , fn(q)) s.t. q ∈ Q

where fi : Q→ R is the objective function of property i to maximize, and F is generally
a linear combination of scalar weighted functions:

F (f1(q), f2(q), . . . , fn(q)) =
n∑
i=1

wi · fi(q)

where wi is the weight of property i. Note that the metric provided for a given visual
property is not necessarily accurate. Ranon et al. [RCU10] proposed a rendering-based
technique that provides, through pixel counts, a rather accurate approximation of the
actual satisfaction of commonly used visual properties or a combination of them.

Classical optimization techniques range from deterministic approaches (such as
gradient-based) to non-deterministic approaches such as population-based algorithms
(e.g. genetic algorithms), probabilistic methods (Monte Carlo) or stochastic local search
methods (Artificial Potential Fields).

Discrete approaches tackle the exploration of this 7-dof continuous search space by
considering a regular discretization on each dof. In [BTM00], Bares et al. proposed
to use an exhaustive search by covering the search space by a 50 × 50 × 50 grid of
camera positions, every 15◦ angle for orientation and 10 possible values for the field of
view. They further reduced the computational cost of their technique by (i) narrowing
the discretization to feasible regions of the search space (built from the intersection
of individual regions related to each composition property) and (ii) reducing the grid
resolution at each step. The time complexity of such an exhaustive search is however

20

Automated Camera Composition

O(n7), which is the worst case possible. The grid structure will moreover never find
the optimal solution if it is not located exactly on the grid.

To scan the configuration space in a more continuous way, researchers explored the
use of population-based algorithms. Olivier et al. [OHPL99] proposed CamPlan, a
camera planning subsystem for polygonal graphics. They used a large set of properties
including explicit spatial relationships between objects, partial/total occlusion and size
of objects. CamPlan uses a polygonal representation of the scene elements. The fitness
function is a linear-weighted combination of the fulfillment of the shot properties. The
seven parameters of the camera are encoded in the allele. A population of cameras is
then randomly distributed in the search space. Each individual of this population is
evaluated w.r.t. the set of objective functions. The top 90% of the population survives
to the next generation, and the selection is made by binary tournament. The remaining
10% is re-generated by random crossover and/or mutation. This was extended for a
dynamic camera by optimizing the control points of a quadratic spline (with a fixed
look-at point and known start and end positions) [HO00]. The computation time
CamPlan requires is however uneven and strongly dependends on the inital population
of cameras.

More recently, Ranon et al. [DER08] proposed to use a Particle Swarm Optimiza-
tion (PSO) technique, which exhibits better performances. PSO is a population-based
method for global optimization, which is inspired by the social behavior that un-
derlies the motions of insects or flocks of birds. They approximated subjects by a
bounded sphere and accounted for constraints such as subject view angle, subject inclu-
sion/exclusion, subject distance, subject projection size, subject occlusion, and subject
on-screen position (as frames), as well as constraints on the camera position. Each
particle is represented by a position, and a velocity. At the beginning of the search,
the particles’ position and orientation are chosen randomly. The search is then per-
formed as an iterative process, which at step n modifies the velocity and position of
each particle on the basis of the values at step n − 1. During the search, the particle
best visited positions are memorized. Abdullah [ACS+11] used a similar technique, but
used low-resolution renderings for the evaluation of properties’ satisfaction. This has
the advantage of providing more precise results, at the cost of a higher computation
time.

In some cases, multiple solutions with approximately the same value of fitness may
exist. Preuss and Burelli [PBY12] proposed the application of niching and restart evo-
lutionary algorithms to the problem of diversity of shot generation in virtual camera
composition. Their technique simultaneously identifies multiple valid camera configu-
rations. Though effective, their method does not evaluate accurately how different are
the shots generated by two solutions. For such purposes, Vázquez et al. [VFSH03] ex-
plored the use of viewpoint entropy as a metric to maximize the quantity of information
in a minimal set of views.

The main drawbacks of population-based approaches are their computational cost,
and their non-deterministic behavior.

More generally, optimization-based approaches suffer from the difficulty of modeling
objective functions for each property, and aggregating multiple properties into a single

21

State of the Art

fitness function. These two difficulties lead to a tedious tuning process.

3.4 Constrained-optimization Approaches

On one hand, pure optimization techniques enable computing of a possibly good
solution, i.e. in which each property is satisfied to some degree. In the worst case, this
partial satisfaction can however lead to unnatural solutions in which either one function
dominates, or both are poorly satisfied. On the other hand, pure complete constraint-
based techniques compute the whole set of solutions, but are often computationally
expensive. Furthermore, pure constraint-based systems are not suitable in case of
an over-constrained problems, i.e. they cannot provide an approximate solution for
such problems. A compromise can be found in the use of constrained-optimization
approaches. In such approaches, the camera control problem is expressed as a set of
properties to enforce (constraints) and a set of properties to optimize (through a fitness
function to maximize).

Drucker and Zeltzer [DZ95] proposed the specification of behaviors for virtual cam-
eras as task-level goals (objective functions) and constraints on the camera parameters.
The main drawback of their technique is that constraint functions and fitness functions
must be continuously differentiable, thus limiting their approach to smooth functions
subject to smooth constraints; this conditions are often difficult to guarantee.

3.5 Hybrid Approaches

Constraint-based and optimization-based approaches directly tackle the whole 7-dof
problem, and consider the whole scene as search space. To find a good representative,
the complexity of their solving process is then O(n7) with n large. A possible way to
reduce this complexity is to consider the whole problem as made of sub-problems of
lower complexity. Sub-problems can then be solved incrementally by using (for each)
either a constraint-based or an optimization-based approach.

Researchers proposed to firstly reduce the search space, by creating geometric
volumes (only based on camera positions), to build models of the feasible space
[BMBT00, PO03]. Classical stochastic search (as in [PO03]), or heuristic search (as in
[BMBT00]) can then be applied within the resulting volumes. Christie and Normand
[CN05] proposed the notion of Semantic Volumes, which can be considered as an ex-
tension of visual aspects [KV79] and is closely related to viewpoint space partitioning
[PD90]. Semantic Volumes are 3D volumes that categorize possible solutions w.r.t. their
cinematic properties (see Figure 2.10). Their approach relies on (i) a space partitioning
process derived from a study of possible camera locations w.r.t. the subjects in the
scene, and (ii) on local search numerical techniques inside volumes to compute good
representatives of each volume. [BDER08] used a similar process to compute feasible
camera volumes from some of the properties. The search inside volumes is then car-
ried out with PSO. The visual properties they adopted, as well as the solving process,
are however not meant for dynamic scenes with temporary occlusions, which requires
properties expressed over more than just the current point in time.

22

Automated Camera Planning

(a) (b)

Figure 2.10 – Semantic partitioning [CN05]: (a) encoding of camera distances, (b)
encoding of relative camera angles.

In this section we have focused on the problem of automatically setting the camera
so as to compose static shots (i.e. a given frame of a shot). One may now want to
create dynamic shots, i.e. containing camera motions. In the next section we will
review techniques proposed to automate the planning of camera motions.

4 Automated Camera Planning

A dynamic shot can be viewed as a discrete series of images (e.g. 25, 30, or 60
images per second). In terms of camera placement, it then corresponds to a discrete
sequence of camera configurations; one configuration for each frame. These sequences
have to fulfill a set of requirements, such as enforce visual composition, avoid collision
with scene elements or mimic the behavior of a real camera.

4.1 Procedural Camera Movements

Early attempts to build cinematic-like camera motions focused on a direct deriva-
tion of cinematic conventions. Palamidese [Pal96] proposed a camera motion metaphor
based on film grammar. She used a camera operator, that incorporates camera motion
rules derived from accepted conventions in filming practice. Her camera operator can
use a set of basic techniques and concepts such as framing, tracking, panning, zooming
and shooting to build complex camera actions. Bares et al. [BZRL98] developed a cin-
ematic task modeling framework for automated real-time task-sensitive camera control.
Cinematic task models dynamically map the intentional structure of users’ activities
to visual structures that continuously portrays the most relevant actions and subjects
in the environment. By exploiting cinematic task models, a cinematography interface

23

State of the Art

to 3D learning environments can dynamically plan camera positions, view directions,
and camera movements that help users perform their tasks.

Though procedural techniques allow to mimic cinematic camera movements, they
generally account for single subject situations. They moreover poorly account for issues
related to complex scenes, such as occlusions or collisions. Indeed, they consider either
a fully static environment or a single dynamic subject traveling in a static environ-
ment. Camera movements are modeled as splines; they does not account for collisions
and occlusions along the camera path, or use a cut to overcome this problem. As a
consequence, there is a need for techniques capable of automatically planning camera
paths in complex dynamic environments, while avoiding collisions and occlusions.

Camera planning is the process of planning a path between a source and a target
camera configuration, while enforcing properties along the path (e.g. maintaining com-
position properties, avoiding collisions or occlusions, avoiding jerkiness of the camera).
This problem is a sub-class of motion planning problems. Motion planning techniques
have mainly been inspired from robotics [Lat91] and have been re-explored in com-
puter graphics [LaV06]. Approaches can be categorized into three main classes: purely
reactive approaches, constraint-based approaches, and optimization-based approaches.

4.2 Reactive Approaches

Reactive approaches consists in re-computing a camera configuration to respond
to changes in the image properties without resorting to any search process. Such ap-
proaches are generally based on techniques from the robotics community. For instance,
visual servoing approaches [ECR92] involve the specification of a task (usually posi-
tioning or subject tracking) as the regulation of a set of visual features in an image. In
[CM01], Courty and Marchand proposed a visual servoing approach integrating con-
straints on a camera trajectory to address a range of non-trivial computer animation
problems. In a way similar to [GW92], a Jacobian matrix expresses the interaction
between the motion of the points on the screen and the motion of the camera.

Visual servoing approaches are computationally efficient. Consequently, they are
suitable for highly dynamic environments such as in computer games. It is however
difficult to determine beforehand which camera dof will be instantiated by the main
task. Furthermore, such approaches often lead to sudden modifications of the camera
speed and direction; they thus require to use an additional process to smooth the
camera path.

4.3 Constraint-based Approaches

Similarly to Section 3.2, constraint-based planning techniques are based on the dec-
laration of constraints on the visual features and on the camera path, then rely on a
numerical resolution process. Jardillier et al. [JL98] proposed a method in which the
path of the camera is created by declaring a set of properties on the desired shot includ-
ing the vantage angle, framing and size of objects. They used pure interval methods

24

Automated Camera Planning

to compute camera paths, which yields sequences of images that satisfy temporally in-
dexed image properties. The path is further modeled by using a parameterized function
(of degree 3) for each dof of the camera. Christie et al. [CLGL02] proposed a range
of improvements, from the inclusion of more expressive camera path constraints to the
integration of propagation techniques in the solving process. They model the camera
path as a set of primitive camera movements (hypertubes), which are then sequentially
linked together. These primitives include travelings, panoramics, arcings and any com-
position of these primitives. Their interval-based approach guarantees the satisfaction
of properties all through the shot. Each primitive is then treated as a separate, but
related, constraint satisfaction problem. The problem is processed sequentially, by
constraining the end of hypertube i to join the beginning of hypertube i+ 1.

Constraint-based planning techniques allow implementing cinematic-like camera
motions. They however do not account for issues related to the geometry of the envi-
ronment, such as collisions with the scene or occlusions of key subjects. Moreover, as
for the camera composition, pure constraint-based approaches fail to find an acceptable
solution when not all constraints can be satisfied. To account for this problem, one
may use optimization-based approaches, which allow providing sub-optimal solutions
for the camera path.

4.4 Optimization-based Approaches

Optimization-based planning techniques are based on the construction of a rep-
resentation of the environment, then on a search (global or local) in this structure.
Representations of environments can be categorized into three classes: Cell Decompo-
sitions [TS91], Artificial Potential Fields [Kha86], and Sampling-based Roadmaps.

4.4.1 Artificial Potential Fields

Potential fields come from theoretical physics and the study of the interaction of
charged particles in electrostatic fields. A path-planning problem can be modeled by
considering both the obstacles and the camera as similarly charged particles. The
solving process is based on a series of local motions following the steepest descent
[Kha86]. A field function F is defined as the sum of attractive potentials (the targets)
and repulsive potentials (the obstacles). For efficiency, repulsive potentials attached
to obstacles are usually set to zero outside a given distance from the obstacle (see
Figure 2.11). The gradient of the field function F at position pv then gives the direction
of the next motion:

M(p) = −∇F (p)

For example, [HKB+97] and [CKL+98] presented a technique that avoids collisions for
guided navigation in the human colon. The surfaces of the colon and the center line
of the colon are resp. modeled with repulsive and attractive fields. Burelli and Jhala
[BJ09] moreover proposed to control both the camera motion and the visual composi-
tion by casting frame constraints into force fields. They employed Artificial Potential
Fields to move the camera and solve frame composition tasks. Obstacle avoidance is

25

State of the Art

modeled using repulsive forces and frame composition is obtained by translating frame
constraints into forces affecting both the position and the look-at point of the camera.

Figure 2.11 – Artificial potential field. A field function is defined as the sum of at-
tractive potentials (goals) and repulsive potentials (obstacles). The gradient of the field
function then gives the direction of the next move.

Dedicated to the specific task of creating overviews of human motions (e.g. from
mocap data), Assa et al. [ACoYL08] casted the problem of camera control as an en-
ergy minimization process guided by the conjunction of external forces (describing the
viewpoint quality at each location and time) and internal forces (enforcing smoothness
on the generated path). Internal forces are composed of a number of criteria based on
the motion analysis of a single character including widest aspect descriptor (an approx-
imation of the largest projection of the character) and limb visibility (see Figure 2.12).
Other criteria such as motion direction and facing the character are included. As a
result, the system generates a sequence of camera paths (with edits) using an optimiza-
tion process on a potential field defined by the aggregation of forces. Interestingly the
authors provide means to detect the best moment to perform cuts between shots (as a
threshold on path quality and shot duration). While purely based on character motion
analysis and viewpoint quality heuristics, the process generates meaningful overviews of
human motions without integrating semantic aspects and notions of continuity between
shots (other than line of motion).

The low cost of implementation and evaluation of potential fields make them a can-
didate for applications in real-time contexts. The efficiency of the method is, however,
overshadowed by its limitations with respect to the management of local minima. It
also has difficulties incorporating highly dynamic environments. Some authors however
proposed some extensions. Beckhaus [Bec02] relies on dynamic potential fields to man-
age dynamic environments by discretizing the search space, and therefore only locally
re-computing the potentials. In [BY10], a process similar to [BJ09] is used to find the
best camera configuration, and a stochastic population-based global search is employed
to avoid premature convergences to local minima.

26

Automated Camera Planning

Figure 2.12 – Heat map illustrating an analysis of viewpoint quality w.r.t. limbs visibil-
ity (the right leg here) [ACoYL08]. Yellow areas represent viewpoint with best quality,
i.e. for which the projected size of the right leg silhouette is maximal.

4.4.2 Cell Decomposition

Cell decomposition approaches split the environment into spatial regions (cells) and
build a network (usually known as a cell-and-portal graph) that connects the regions.
Navigation and exploration tasks then utilize this cell connectivity while enforcing other
properties on the camera. In [AVF04], for instance, Andùjar et al. proposed a technique
to ease the navigation process and achieve shots of key subjects and locations. Critical
way-points for the path could be identified by using a cell-and-portal decomposition of
the scene together with an entropy-based measure of the relevance of each cell. The
search of the camera path is then operated in two steps. A global search is operated in
the cell-and-portal graph. In each traversed cell, a path is then searched between the
entry point and the exit point of the cell (see Figure 2.13).

4.4.3 Sampling-based Roadmaps

Roadmap planners operate in two phases: they first sample the space of possible
configurations, then construct a connectivity graph (roadmap) linking possible con-
secutive configurations. There are three main classes of sampling-based methods: the
Rapidly-exploring Random Trees [Ove92, KL00], the Probabilistic Roadmaps [KL94]
and the Corridor Maps [GO07].

The Rapidly-exploring Random Trees (RRT) method is based on the online iterative
construction of a search tree, whose root node is the source camera configuration. The
construction process of the tree then attempts, at each step, to reach the target camera
configuration. An illustration of this construction process is given in Figure 2.14. This
method has been designed for single-query problems and is not well-suited for multiple-
query problems. To our knowledge, no use of this method has been made in controlling

27

State of the Art

Figure 2.13 – Cell decomposition and path planning. A cell-and-portal model parti-
tions the search space and the relevance of each cell is evaluated with an entropy-based
measure. A path is built by ordering and connecting the most interesting cells [AVF04].

a virtual camera.

Figure 2.14 – The Rapidly-exploring Random Trees (RRT) [Ove92, KL00] are based
on the inline iterative construction of a search tree. Its root node is the source camera
configuration, and it tries, at each step, to reach the target configuration.

The Probabilistic Roadmap Method (PRM) is based on the offline construction of
a (static) roadmap, by randomly sampling the space of camera configurations. Sam-
pled camera configurations that are selected (i.e. outside any obstacle) are denoted
as nodes in the roadmap. The construction process then connects each pair of possi-
ble consecutive configurations by a straight line segment (denoted as an edge in the
roadmap). The criteria to create an edge in the roadmap is that the related segment
is free from collision with the geometry of the environment. A search of a path can
finally be operated, by adding the source and target configurations to the roadmap,
then applying a search algorithm (an A* or IDA* for instance) to find an acceptable
path in the roadmap (see Figure 2.15a). Probabilistic roadmap approaches have been
used to compute collision-free paths to correct a user’s input, as described in [LT00].

The main issue of PRMs is their lack to produce natural-looking paths (i.e. enforcing
continuity in the camera path). Indeed, the planned paths are broken lines. They are
C0 continuous. Additional smoothing techniques are necessary on these paths. In

28

Automated Camera Planning

(a) (b)

Figure 2.15 – The Probabilistic Roadmap Method consists in building a connectivity
graph between randomly sampled configurations then building a path between an initial
and a final configuration. (a) The computed path from a source to a target configuration
(in red). (b) The planned path can be smoothed by using circular blends [NO04].

[LT00], Li and Ting used a global roadmap. During the interactive navigation process,
a set of possible paths are then selected according to the current configuration and the
user’s input, from which the shortest and smoothest one is chosen. Nieuwenhuisen and
Overmars [NO04] also proposed a technique to improve the computed path. They used
circular blends between the edges that meet at a node, and replaced parts of the path
by a circle arc lying in the plane spanned by the two edges. By this process, the path
is made C1 continuous (see Figure 2.15b).

Another issue of PRMs is their lack of flexibility. The search is restricted to the
sampled configurations and segments linking them only. They consequently can not
account for dynamic obstacles. In their real-time camera planning system, Li and
Cheng [LC08] used a roadmap update strategy similar to the one called Lazy PRM,
proposed in [BK00]. The validity of a node or a link is checked only when the node or
the link is under consideration during the search. They then used an “anytime” search
(i.e. a search operated within a given time budget) to build camera paths.

To overcome these two lacks, Geraerts and Overmars [GO07] also proposed an
other approach: the Corridor Map Method (CMM). The CMM is based on a two phase
process. First, in an offline phase, a system of collision-free corridors is created for the
static obstacles of the environment. Then, in a query phase, paths are planned inside
the corridors while avoiding dynamic obstacles. In [Ger09], Geraerts used the CMM
to plan camera motions. Their technique tackles, in real-time, the trade-off between
good motions (trajectories that are collision-free and keep the target in clear view),
and frame coherence (i.e. the view changes smoothly such that the viewer does not get
disoriented).

In the last two sections, we have focused on automatically computing camera place-
ments and sequences of camera placements to build shots. It is now necessary to take

29

State of the Art

Figure 2.16 – The Corridor Map Method (CMM) [GO07] is based on a system of
collision-free corridors. Corridors are created for static obstacles. Paths are the planned
inside the corridors while avoiding dynamic obstacles.

a look at editing shots together, i.e. constructing proper sequences of shots, so as to
satisfy cinematographers’ communicative goals. In the next section, we will review
techniques proposed to automate the editing and storytelling process.

5 Automated Editing

The cinematic expertise w.r.t. editing is built upon a wide range of empirical
rules, which are used differently by cinematographers (e.g. timing, preferred shots,
preferred camera movements). Researchers have investigated means to encode this
knowledge. We here review proposed editing approaches, ordered from purely proce-
dural approaches to more expressive approaches.

He et al. [HCS96] proposed the first cinematography system, namely The Virtual
Cinematographer. The authors encoded cinematographic expertise (film idioms) as
small hierarchically-organized finite state machines (see Figure 2.17). Though their
system runs in real-time, it is fully procedural and thus lacks expressiveness. Indeed, no
variation is possible in the directorial style. To each prototypical situation corresponds
a single idiom (i.e. a single finite state machine) which is hard coded in the system.
The execution of such state machines is obviously deterministic.

To overcome this lack of expressiveness, researchers proposed high-level declarative
languages for encoding film idioms, and structured a film being generated as a film tree –
a AND/OR graph (see Figure 2.18). Christianson et al. [CAH+96] proposed a language
to declare film idioms as procedural sequences of shots. Their system then operates
in two steps. It first expands the film tree until it has compiled detailed solutions for
each idiom. A heuristic evaluator then selects appropriate candidate frames for each
scene. Amerson et al. [AKY05] abstractly defined film idioms as weighted constraints,
and in case of an over-constrained problem, used a procedural model for the relaxation

30

Automated Editing

(a) idiom choosing (b) idiom 2Talk

Figure 2.17 – Cinematic expertise (i.e. film idioms) is encoded as hierarchically orga-
nized finite state machines [HCS96].

of constraints. Friedman and Feldman [FF04] split film idioms into shots (default
viewpoints, list of viewpoints, preferred viewpoints) and cut rules (minimum change in
angle, do not cross the line of interest). They then used a non-monotonic reasoning
process to output the sequence of shots. A good property of their approach is that it
enables emergent behaviors to appear, i.e. in case of conflicts between rules, shots can
be introduced without being explicitly specified.

Figure 2.18 – Film tree [CAH+96]. a movie is organized into a hierarchical structure.

Although such idiom-based systems enable expressing cinematic knowledge for sim-
ple situations (e.g. discussions between 2 or 3 actors), they fail to be expressive enough
to take the users’ communicative goals into account, and necessitate the explicit defi-
nition of idioms for each possible situation. To reach a higher level of expressiveness,
it is necessary to provide editing rules that are more generic, and to propose models of
users’ communicative goals.

The earlier attempt to account for user’s communicative goals is UCam [BL97].
Users can describe their visualization preferences by using a Cinematographic Specifi-
cation Language (CSL). UCam constructs a cinematographic user model consisting in
probabilistic micro-level camera planning directives (e.g. shot type, camera orientation,
minimum shot durations). A camera planner then interprets this model to compute

31

State of the Art

executable directives for shot type, viewing angle, viewing elevation, transitions (cut,
tracking, panning), shot duration, and panning/tracking speeds in real-time. Their
approach works extremely well in real-time, but still lacks expressiveness. Indeed, their
user model is restricted to eight possible directorial styles, as a combination of three
features: a viewpoint style (informational or dramatic), a camera pacing (slow or fast)
and a transition style (gradual or jump).

More recently, significant advances have been made in improving the expressiveness
of virtual cinematography systems. In their real-time navigation system, Li and Cheng
[LC08] also integrated editing rules in their local PRM. They implemented two cut rules
(LOI and minimum change in angle) in a simple way. The nodes of the local PRM are
split into regions (see Figure 2.19). A cut is then possible between two regions lying
on the same side of the LOI, and which are not adjacent. Their technique is however
limited to tracking a single subject; the PRM being locally defined around a single
subject. In what could be seen as an extension of [ACoYL08] to multiple characters
[YLL12], Yeh et al. proposed to automatically extract social events from the joint
analysis of multiple character motions (e.g. related to trajectories and similarities in
distance and direction of character motions). Events are then processed, analyzed for
spatio-temporal correlation and ranked so as to generate a motion clip segmentation.
The motion clip segmentation is used as a basis to express an optimization problem on
the camera parameters for each motion clip (actually long motion clips can be separated
into segments solved individually). Following the lines of [ACoYL08], the optimization
process is guided by internal, external and continuity forces shaping a potential field.
Continuity forces integrate the 180-degree rule as well as the jump-cut rule. Automated
editing of different viewpoints has further been addressed in an approach similar to
[YLL12]. The objective is to properly convey motions of multiple humans in a real-
time context [AWCO10] (while [YLL12] reported overall computation time between 1
and 3 minutes). The authors consider a set of virtual cameras animated in real-time
that shoot multiple-character motions and offer means, not to control the cameras but
to appropriately select viewpoints that maximize a measure of correlation between the
motion of the characters in the scene, and the projected motion of the characters on
the screen. The hypothesis is that a strong correlation is a good indicator of viewpoint
quality. The approach uses a correlation analysis based on a optimized implementation
of CCA (Canonical Correlation Analysis). The motion capture data is viewed as a
sequence of joint rotation vectors (the animation stream) and the projected data is
a rendering of the 3D scene (the view stream). At each time step, the correlation is
computed for a number of camera viewpoints and camera paths (the computation of
their trajectories is either performed randomly or uses basic heuristics such as three-
quarter views or over the shoulder cameras), and the best one is selected. In order
to perform cuts between viewpoint an interesting measurement of quality erosion is
proposed. The measurement defines a maximum shot duration (3 seconds) coupled
with a quality erosion based on the evolution of the quality of the current view in
comparison with the best view of the sequence. Furthermore, continuity in edits are
guaranteed by filtering the viewpoints which do not respect the jump-cut rule or the 180
degree rule, before correlations are computed. The necessity to compute and analyze the
projected view for each camera limits the number of cameras that are simultaneously

32

Automated Editing

considered. Their technique is further limited in the number of subjects considered
when performing cuts; the jump cut and 180 degree rules being only applicable to
either a single subject or a pair of subjects. Kardan and Casanova proposed a method
for defining hierarchical lines of actions [KC08], and identified relevant first principles
of cinematography for using these lines of actions. Their approach is more flexible
and powerful than previous techniques because it naturally generalizes to any number
of subjects. They also provided an explicit enumeration of heuristics for continuity
editing and stylistic rules resulting in various possible edits [KC09]. Their approach is,
however, only suitable for static scenes.

Figure 2.19 – Intercut PRM [LC08]. The local PRM is augmented with editing infor-
mation. Nodes are categorized into regions of space. Cut rules (180◦rule and minimum
change in angle) are then implemented by cuts between two regions on the same side of
the line of interest and which are not adjacent.

Figure 2.20 – Hierarchical lines of action are built by grouping actors [KC08]. The line
of interest relative to a pair of subject is then the line of action built for their respective
groups. This enables filming dialogues whith more than two or three subjects, while
enforcing space continuity.

To get closer to how real movies are built, the additional control of the staging
has also been explored. Elson and Riedl [ER07] proposed Cambot, a system to as-
sist users in machinima production. They defined three different levels (or facets) of
cinematic knowledge (see Figure 2.21): the stage (area of space that is assumed to

33

State of the Art

be free of occlusion and obstruction), the blocking (geometric placement of subjects
w.r.t. the center point of a stage), and the shot (position, rotation, and focal length of
a virtual camera w.r.t. the center point of a stage). These modular and reusable facets
of cinematic knowledge enable the coordination between positions and movements of
the camera and the actors. Cambot then relies on a dynamic programming algorithm
to search for the best sequence of shots. Cambot also considers a few directorial style
parameters, such as pacing (slow or fast), viewpoint preferences and intensity.

(a) (b)

Figure 2.21 – Coordination of positions and movements of camera and actors [ER07].
(a) relationships between the different facets of cinematic knowledge; blockings and shots
are defined w.r.t. to the center point of a stage; (b) a stage is associated with a blocking
and shot.

As introduced in Section 1, every shot provides information (about narrative el-
ements). Cuts may also provide information, i.e. links between narrative elements;
these links can be intentional or unintentional. However presented approaches still lack
considering the viewer’s comprehension of the complete sequence of shots and cuts.
Jhala and Young [JY10] proposed Darshak, that uses cognitive models of narrative
comprehension to automatically construct cinematic discourse of a story in a 3D en-
vironment. Dramatic situation patterns are realized through abstract communicative
operators; these operators represent operations on a viewer’s beliefs about the story
and its telling. Darshak then relies on a hierarchical partial-order causal link (POCL)
planning algorithm to generate story events and directives for filming them.

On one hand, recent approaches have enabled modeling, with some flexibility, both
classical cinematic knowledge and aspects of directorial style, and to compute accept-
able sequences of shots. On the other hand, two issues remain: (1) it is still difficult to
express a specific style (or genre), and (2) there are so many possible combinations of
shots and transitions that it is difficult to properly evaluate them.

34

Visibility/Occlusion Handling

6 Visibility/Occlusion Handling
Visibility is a transverse issue in controlling a virtual camera. Visibility computa-

tion received much attention in computer graphics; for a complete survey on visibility,
see [COCS+03]. Paradoxically, it has been under-addressed in the virtual camera con-
trol domain. In most existing approaches (e.g. virtual exploration, computer games or
virtual storytelling), the visibility of subjects is computed by using raycast-based tech-
niques on an abstraction of subjects (commonly bounding boxes). There are however
better ways of tackling visibility issues related to virtual camera control. We here first
review the main visibility concerns when controlling a virtual camera, then review the
most significant visibility computation techniques proposed to tackle these issues.

In a camera control context, we identified four issues in handling visibility:

Static vs. Dynamic One question is whether the scene is purely static, or contains
dynamic elements (occluders/occludees). For the static part of the environment,
the visibility information can be pre-computed. For the dynamic part, the visibil-
ity information must be computed on-the-fly, with real-time constraints imposed
by interactive applications.

Accurate vs. Approximate vs. Inaccurate The visibility computation techniques
can be categorized into three main classes, w.r.t. the level of accuracy of the
result: the techniques providing an accurate visibility information (i.e. a precise
degree of visibility, as a real value between 0 and 1), the techniques providing an
approximate visibility information (as an approximate degree of visibility, such
as visible/partially visible/occluded), and the techniques providing an inaccurate
visibility information (as a boolean result such as visible/occluded).

Adapted to path planning vs. Adapted to viewpoint planning The potential
of a camera control approach is often dependent on the capabilities of the visi-
bility computation technique it uses. In order to compute unoccluded viewpoints
(e.g. for checking the visibility/occlusion from the current camera viewpoint, or
for planning a cut to a new camera viewpoint), the visibility process must com-
pute the visibility/occlusion of key subjects from discrete points of space. In
the same way, to plan a path between two given camera viewpoints, the visibil-
ity process must compute the visibility/occlusion of key subjects along possible
sequences of intermediate camera viewpoints.

Anticipation In a range of applications (e.g. reactive approaches), the visibility pro-
cess must be capable of anticipating future occlusions of key subjects. In other
words, it must provide a good prediction of their visibility over time. This may
then serve for instance to predict a change in the camera position in reaction to
past and/or current changes in the scene.

We will now focus on relevant contributions on visibility handling for camera control.
Halper et al. [HHS01] proposed handling occlusion avoidance by using Potential

Visibility Regions (PVR). They imposed constraints on the camera movements as a
set of geometric constraints using polygons (spheres). Polygons are shaded w.r.t. their

35

State of the Art

preference (a brighter color meaning a higher preference). To find the best position
that satisfies visibility requirements, a visibility map is created. This visibility map
only considers the depth information from potential occluders. The potential visibility
geometry is then rendered to the buffer from most desirable to least desirable regions.
The result is an image buffer, whereby the brightest colors that first pass the depth
test are visible. The brightest color in the image buffer, therefore, denotes the most
desirable position for the camera to move to (see Figure 2.22). They also tackled the
problem of occlusion anticipation. Their method uses approximative calculations for
future scene and object state based on past trajectory and acceleration information,
and solve the camera for that predicted state. The current camera path is adapted
so that the camera will be at this predicted position at the predicted time t. An
estimated camera position is finally computed for the next frame along this path (see
Figure 2.23). Halper et al. ’s approach is however only suited for planning camera paths
locally (i.e. step by step). If no solution exists in the rendering, their method will fail
finding an unoccluded position (even if one exists), and planning a global camera path
to this unoccluded position.

To enable computing collision-free and occlusion-free camera paths in arbitrary envi-
ronments, Oskam et al. [OSTG09] proposed to augment a roadmap graph with visibility
information, what they call a visibility-aware roadmap structure. Their method relies
on the precomputation of a coarse representation of the scene (with a grid of bound-
ing spheres), the creation of a roadmap by connecting overlapping spheres (through
circular portals), and an estimate of pair-wise visibility between all spheres by using
a Monte-Carlo ray tracing algorithm (see Figure 2.24). Their system executes a path
planning algorithm using the precomputed roadmap values to find a coarse path. This
path is then refined using a sequence of occlusion maps computed on-the-fly. Their
global planning strategy on the visibility-aware roadmap enables both large-scale cam-
era transitions and a local third-person camera module following a player and avoiding
obstructed viewpoints. The data structure itself adapts at run-time to dynamic occlud-
ers of the environment. Dynamic occluders are handled by performing an on-the-fly
update of the roadmap information. Moving objects are approximated by one or more
bounding spheres. When searching a path in the roadmap, all the connections between
two circular portals that touch the bounding spheres are marked as being occupied.
This prevents the camera from colliding with the moving object. To anticipate future
occlusions of the player, they also proposed a risk prediction method. They extended
an algorithm inspired by the work of Bandyopadhyay et al. [BLAH06]. Their predic-
tion algorithm uses the visibility-aware roadmap to find a path to the sphere closest
to the player and which is not visible from the camera’s current position. This path
represents the highest risk of escape. The camera’s current position is then rotated to
a new vantage so that this escape route is in view. An illustration of their method is
given in Figure 2.25. Their technique is however limited to single-point focus targets.

Christie et al. [CON08b] presented an approach to the real-time evaluation of the
visibility of multiple target objects. The visibility of both targets is simultaneously
computed for a large sample of points. This involves to perform a low resolution
projection from points on pairs of target objects onto a plane parallel to the pair and
behind the camera (see Figure 2.26). The combination of the depth buffers for these

36

Visibility/Occlusion Handling

(a)

(b)

Figure 2.22 – Potential Visibility Regions [HHS01]. (a) sample use of rendering camera
solution regions; selection is based first on highest color, then on closest angle. (b) The
camera solution region is warped according to motion characteristics of the camera. In
this case, selected regions are favored in the direction of motion, and the algorithm
returns the point to the right even though its angle of change is greater than that of the
point to the left.

two projections then enables creating visibility volumes around the camera, with the
joint visibility information on the pair of objects. They also provided an extension of
this pair-wise computation for three or more target objects. To mitigate over-reactive
camera behavior, visibility results are aggregated in a temporal window. They moreover
addressed the problem of idealization of the target objects geometry. To this end, they
used a stochastic approximation of the physical extent of target objects by selecting
projection points randomly from the visible surface of the target object. A different
projection point is used at each frame, so the aggregation of visibility information along
the time provide a good approximation of the degree of visibility of the target object.

37

State of the Art

Figure 2.23 – Altering the camera path to adapt to a predicted occlusion [HHS01].

Figure 2.24 – Sphere-to-sphere visibility [OSTG09]. Based on an initial geometry of
the environment, a spatial discretization is computed. A roadmap is then built from the
overlap regions. Finally, for each pair of spheres, a visibility probability is computed
with a Monte-Carlo raytracing algorithm.

7 Conclusion

From the literature study, we detailed a number of methods dedicated to controlling
a virtual camera in 3D environments. We highlighted that the research community is
moving towards models of cinematic knowledge that are more and more expressive.
There are however some important issues to tackle.

38

Conclusion

Figure 2.25 – Proactive camera movement [OSTG09]: the algorithm finds the closest
sphere (indicated in orange) that has reduced visibility from the original camera position.
After detecting a high escape risk, the camera’s viewing direction is aligned toward this
sphere. Spheres with reduced visibility from the original camera position are shown in
darker shades of gray.

Figure 2.26 – Computation of the visibility inside a camera volume by using the depth
buffer [CON08a]. The scene is rendered from each target back towards the actual position
of the camera. The visibility information for all target objects is then composed as a
visibility volume.

In this thesis, we identified three research axes:
1. Existing automated approaches generally focus on one or two cinematic aspects

only: visual composition, tracking of targets (camera planning), cinematography
(editing, with no account for the visibility of subjects). These techniques also lack
expressiveness, i.e. they provide limited account of styles or genres. Furthermore,
the handling of visibility appears as an essential aspect in controlling a camera,
but has been under addressed in the field. In Chapter 3, we propose the first fully
integrated cinematic engine, which handles both viewpoint computation, planning
and editing, while accounting for visibility and proposing means to control some
elements of style.

2. On one hand, fully automated cinematography approaches pose the problem of
tuning a large set of high-level parameters to account for each single aspect (visual

39

State of the Art

properties, properties on the camera path, editing properties, visibility proper-
ties). Furthermore, not all elements of directorial style can be modeled. Though
automated approaches provide good results, the result intended by a user is gen-
erally more subtle and cannot be easily expressed. Indeed, one may use metrics
to approximate a given directorial style (e.g. statistics of shot preferences, or shot
duration), but we will never be capable of reproducing exactly the creative process
of a given editor (e.g. build a “Spielberg-like” movie). This therefore raises the
necessity to let the user interact in the editing process. On the other hand, some
interactive control techniques enable finely controlling cinematic aspects (visual
composition and camera motions) within a single shot, but lack the handling of
the aspects related to editing. In Chapter 4, we propose a hybrid approach that
build upon an evaluation of the different cinematic aspects, and combines an au-
tomated control of modeled cinematic aspects with direct interaction of an editor
in the editing process.

3. The central element in controlling a camera is the visual composition. A large
range of computer graphics applications rely on the computation of viewpoints
over 3D scenes that need to display a number of characteristic composition proper-
ties. Such problems are generally casted as non-linear optimization problems in a
7 degree-of-freedom search space. Given the size of the search space and the com-
putational cost in the evaluation of composition properties (typically the visibility
of subjects), this optimization process is a time-consuming task and hampers the
use of evolved composition techniques in most applications. In Chapter 5, we in-
troduce the Toric Space, a novel and efficient approach to virtual camera control.
Based on a simple parametric model of the space of camera configurations, the
Toric Space has the intrinsic advantage to reduce the search space, and most of
classical visual properties can be easily expressed and combined in this space.

40

3A Cinematic Engine for Interactive
3D Environments

Related publications: This chapter presents a unifying approach to a fully auto-
mated cinematic engine. As described in the state of the art, current contributions
in the field generally focus on individual aspects of cinematography: (i) on-screen
composition [BMBT00], (2) visibility and path-planning [OSTG09] or (iii) editing
[CAH+96, ER07, AWCO10]. They moreover suffer from a limited integration of di-
rectorial style and visibility enforcement. In this chapter, we propose CineSys, a fully
automated cinematic engine for interactive environments accounting for both viewpoint
computation, viewpoint planning and editing.

The provision of a fully automated camera control system is complex as it raises
four important challenges:

First, such a system needs to be underpinned by a narrative model that both
structures the way the actions are organized, and allows to reason on their rela-
tive importance and presentation. Following Chatman’s bipartite model [Cha80],
interactive narratives have two levels: (1) the story, i.e. the chronologic account of
events over time; and (2) the discourse, i.e. the way in which events are organized
and presented to the spectator.
Second, the system should provide the user with well-composed viewpoints of
key subjects in the scene following established conventions in the literature, while
maintaining the visibility of these subjects in fully interactive 3D environments.
For example, the simultaneous computation of the visibility of multiple subjects in
a dynamic environment requires both an efficient solution and a good estimation
of the visibility for a large range of viewpoints.
Third, the system must address the innate complexity of planning path between
viewpoints. For example, selecting appropriate tracking shots (sequences of view-
points to follows an event) involves planning a camera’s motion in a dynamic
environment whilst simultaneously taking account of the visibility of scene ele-
ments from viewpoints along the spatio-temporal path.
Last, a critical issue is related to the challenge of operationalizing editing rules and
conventions in a sufficiently expressive model of automated editing. Such rules are
often expressed as a set of idioms (i.e. a typical set of camera configurations that,
when assembled, bring to the screen the viewer’s understanding of the spatial and
causal relations pertained to a specific action). While current implementations
strongly rely on these pragmatic representations to model camera editing systems,
there is a clear necessity and demand to perform a shift toward more expressive

41

A Cinematic Engine for Interactive 3D Environments

representations that augment the range of possible variations in the montage. To
this end, another essential task consists in identifying some of the parameters
and devices (i.e. indicators) that underpin directorial style, such as pacing, dy-
namicity, preferred views and enforcement of specific cinematic conventions. As
a consequence, the challenge consists in the design of a model expressive enough
to control such indicators and to yield a range of variations in results.

1 Contributions

We propose a fully automated system that allows the construction of a movie from
a specified sequence of low-level narrative events (e.g. subjects’ actions and motions, or
establishing subjects in the scene). In essence, our approach contributes to the domain
on the following points:

Real-time integrated system Our model proposes an integrated approach that
characterizes full and partial visibility of key subjects, performs camera planning
between viewpoints, and enforces continuity editing rules in real-time.

Expressiveness Our cinematic engine introduces the notion of Director Volumes as
a spatial characterization of viewpoint regions around key subjects. Director
Volumes encode the empirical knowledge from practice and literature on camera
staging (e.g. Internal, External, Parallel) as well as classical shot sizes (e.g. close,
medium, long). Additionally, knowledge related to continuity editing and style
is encoded by filtering operators over the Director volumes (line-of-interest, line-
of-action, thirty-degree angle, preferred viewpoints). At last, our engine enforces
on-the-screen composition that selects the best camera configuration from the
resulting volumes using a local search optimization technique and following well-
known composition rules.

Variation in directorial style CineSys moreover provides means to express notable
variations in directorial style in a real-time context by controlling indicators such
as pacing, camera dynamicity and composition. High-level narrative dimensions
such as isolation, dominance and affinity between key subjects can furthermore
be enforced.

This chapter is organized as follows. First, we present an overview of our approach
(Section 2), before detailing the construction of Director Volumes (Section 3) and the
mechanics of the reasoning process for editing (Section 4). Second, we present results
on a 3D replica of the canteen scene in Michael Radford’s 1984 movie (Section 7),
in which we demonstrate variations in the application of directorial styles (pacing,
dynamicity), together with variations in the visibility degree of subjects and in the
narrative dimensions. Finally, we compare our model to the state of the art in virtual
cinematography on a set of important features.

42

Overview

2 Overview
Our cinematic engine takes as input a flow of narrative events (which are not known

beforehand). Our system computes appropriate viewpoints on these narrative events.
A camera viewpoint is a camera placement defined at a symbolic level w.r.t. to a con-
figuration of subjects, as the combination of a shot size (e.g. medium close-up, long)
and a view angle (e.g. internal, external, parallel). Viewpoints are computed by select-
ing specific regions referred to as Director Volumes that capture information both on
visibility and on stereotypical viewpoints. We then rely on filtering-based techniques to
reason over Director Volumes and from a large set of possible camera configurations to
select the appropriate candidate camera configuration (a camera configuration is a cam-
era placement defined at a numerical level). In this filtering process, cinematographic
rules are expressed as constraints (applied on with constraint-based filtering processes)
and cinematographic style is expressed as preferences to choose where to position the
camera, how to plan paths between viewpoints, and when to perform cuts. The output
of our system is a movie which conveys these narrative events according to some cine-
matic rules and directorial style parameters. A movie is defined as a sequence of shots
separated by cuts, where shots are continuous sequences of camera configurations. We
furthermore propose the notion of an action shot as a continuous sequence of camera
configurations that conveys a given narrative event. A shot is then described as a se-
quence of (one or more) action shots separated by continuous transitions (i.e. camera
motions).

At runtime, our system first selects the most relevant event (or set of events) and
chooses the best viewpoint to convey this event by filtering the Director Volumes accord-
ing to (i) the visibility of key-subjects, (i) the coherency in the sequence of viewpoints,
(iii) and a characterization of style. A transition planner then determines appropriate
viewpoint transitions, either by using a cut or a path-planning process between view-
points. specifically, our system follows a five-step process to compute viewpoints and
transitions (see Figure 3.1):

1. Selecting narrative events. Whenever a new transition is enabled, the system
selects at run-time an event among all those occurring during the same time
step. We here consider that relevance of an event is computed by an external
process (e.g. a narrative engine) that distinguishes the relative importance of
events running in parallel. This step selects the most relevant event; and in case
of failure in the following steps, re-iterate by selecting another event, considered
by decreasing order of relevance.

2. Computing Director Volumes. This stage turns a selected event into areas
which can potentially portray the event (we refer to them as Director Volumes),
by composing areas of characteristic viewpoints with an analysis of the full and
partial visibility of key subjects involved in the event.

3. Reasoning over Director Volumes. The selection of appropriate Director Vol-
umes among all available is performed by applying two filtering processes, then
a selection operator. Continuity filters typically enforce classical continuity rules

43

A Cinematic Engine for Interactive 3D Environments

between shots when performing a cut. They prune inconsistent regions in the
set of Director Volumes (for example those that would make the camera cross a
line-of-action). Style Filters then annotate Director Volumes w.r.t. elements of
directorial style (e.g. preferred viewpoints, enforcement of a narrative dimension).
A Selection Operator finally selects one (or a set of) Director Volume(s) from all
available, by using a ranking over remaining volumes.

4. Computing frame composition. A numerical optimization process is performed
in each selected Director Volume to compute the best camera configuration in
terms of on-screen composition (exact locations of key subjects on the screen).

5. Computing transitions. Whenever it appears necessary to switch between Di-
rector Volumes (e.g. end of event, new event, subject(s) occluded, pace in transi-
tions), the system selects an appropriate transition (either a cut or a continuous
camera motion). For camera motions, we first build a roadmap over the Director
Volumes. We then rely on an incremental Dijkstra search process to plan an
appropriate path between the current camera configuration and a set of target
Director Volumes (that may evolve as the scene evolves). When the camera enters
a target Director Volume, we compute an appropriate camera configuration inside
the volume, as described above, and moves the camera toward this configuration.

In the sequel we detail the major steps of our computational process, namely com-
puting Director Volumes, reasoning over Director Volumes and performing transitions.

3 Computing Director Volumes

At the core of our approach stands a spatial representation: the Director Volumes.
A Director Volume aggregates camera configurations that give rise to a “cinemato-
graphically” equivalent viewpoint in terms of information conveyed to the user (i.e. its
semantic w.r.t. a narrative event to convey), and in terms of visibility of key subjects.
The Director Volumes are computed through a three-step process:

A first characterization process captures the semantic of viewpoints through a
spatial representation of regions around key subjects. These regions represent
stereotypical viewpoints, and we refer to them as Semantic Volumes [CN05].
A second characterization process captures visibility information on key subjects
through a spatial representation of regions of full visibility, partial visibility and
full occlusion of each key subject. We refer to these regions as Visibility Volumes.
An intersection operator then augments the Semantic Volumes with visibility
information. This intersection operator takes as input the previously computed
spatial representations and outputs a new spatial representation of regions (the
Director Volumes) that can potentially portray the narrative event.

To implement these spatial representations of regions (or volumes), we rely on
BSP data-structures. We use annotated Binary Space Partitions (a-BSPs), which are
classical BSPs augmented with information on the nodes and leaves. These structures
are dynamically and procedurally processed w.r.t. the configuration of key subjects, for
each frame, and allows to efficiently characterize and partition the environment into

44

Computing Director Volumes

Figure 3.1 – Overview of our real-time cinematic engine CineSys. First, a relevant
narrative event is selected from a flow of unfolding events. This narrative event is
then turned into Director Volumes (all regions of space from which the narrative event
can be portrayed). Editing is performed by reasoning over Director Volumes to select
one or more target volume(s), given continuity rules, and style rules. A target camera
configuration is then computed by using a local optimization process inside selected
volumes, given composition rules. Finally a transition between the previous and new
camera configuration is computed (as a cut or as a continuous transition).

such sets of viewpoints (see Figure 3.2). Each node is represented by an intermediate
(convex) cell and a stabbing line. Nodes are further annotated with information on
sub-cells’ connectivity, which is updated as new intermediate cells are drawn. Each leaf
then corresponds to a categorized cell (or volume), annotated with relevant information
(e.g. viewpoint semantic, subjects’ visibility). The intersection operator then operate
by merging the a-BSP structures associated with both Semantic Volumes and Visibility
Volumes, to create a new a-BSP structure corresponding to Director Volumes.

45

A Cinematic Engine for Interactive 3D Environments

This a-BSP representation enables (i) an on-the-fly cell subdivision process, through
the use of a description of intermediate cells in each node; and (ii) a reduction of the
search complexity when characterizing a given camera configuration in the environment
(binary tree search of complexity O(logn), for a BSP with n leaves).

(a) Cell splitting

(b) a-BSP data structure over the cell

Figure 3.2 – Construction of an annotated Binary Space Partition (a-BSP) data struc-
ture. The a-BSP is procedurally processed through a top-down injection of stabbing
lines. Each node (dotted box) is represented by an intermediate convex cell (in black)
and a stabbing line. Nodes are also annotated with information on sub-cells’ connectiv-
ity (colored segments separating two sub-cells), which is updated as new intermediate
cells are drawn. Each leaf (at the bottom) corresponds to a categorized cell (or volume),
annotated with relevant information (e.g. viewpoint semantic, subjects’ visibility).

3.1 Semantic Volumes
The first step consists in translating the selected narrative event into Semantic

Volumes. Semantic Volumes are a formalization of the cinematic knowledge in terms of
camera staging. In our approach, each narrative event is associated with a collection of
stereotypical viewpoints that convey the event according to established cinematographic
conventions. A narrative event is modeled by a semantic tag (the performed action,
e.g. “A speaks to B”, where participating subjects are abstracted), a start and end time,

46

Computing Director Volumes

(a)

(b)

Figure 3.3 – Design of Semantic Volumes (a) for a single subject action, and (b) for a
classical interaction between two key subjects (adapted from [Ari76]). Each blue circle
represents a key subject.

as well as the participating subjects (abstracted as “A”, “B”, “C”, etc. in the semantic
tag). Typically an event such as “Symes speaks to Smith” can be portrayed through
a large collection of viewpoints described in the literature (Internal, External, Apex,
Subjective) together with a range of distances (Close-Up, Medium Shot, Long Shot,
Extreme Long Shot) [Ari76]. Do note that for such an event, the utterance of a key
subject may be portrayed either by framing the talking key subject, the listening key
subject, or both (the choice is a matter of continuity and directorial style). By default
each narrative event is portrayed by all possible viewpoints, though some events may
require a specific subset of viewpoints (e.g. “Symes looks at Smith” obviously requires
that the camera should not be located behind Syme).

In the task of precisely designing the Semantic volumes that encodes cinemato-
graphic knowledge, we followed an experimental process that consists in positioning

47

A Cinematic Engine for Interactive 3D Environments

and evaluating camera configurations in a 3D modeler for key configurations of sub-
jects (single subject, two subjects facing, two subjects not facing). This process was
guided by empirical evidence in literature and a professional experienced modeler (Guy
Schofield, Newcastle University). As a result we characterized the spatial extents of
viewpoint regions for key configurations of subjects. Resulting Semantic Volumes are
displayed in Figure 3.3. Additionally, we studied the evolution of these Semantic Vol-
umes w.r.t. the distance between the key subjects and the orientations of the key
subjects. In cases where the subjects are too close to each other, areas of Subjective
Shots are removed. In a similar way, as the distance between key subjects increases,
the range of typical shot sizes is extended for Internal Shots (Close-Up, Close Shot,
Medium Shot, Long Shot).

To represent Semantic Volumes, we rely on a single a-BSP data-structure. This
structure is dynamically and procedurally processed w.r.t. the configuration of the key
subjects (e.g. single subject, two subjects). First, the root cell of this a-BSP is set to a
bounding cell of all Semantic Volumes. Second, the regions of space corresponding to
the different shot sizes and view angles are modeled with bounding cells, and stereotyp-
ical viewpoints (Semantic Volumes) are described with set operations on these regions
(e.g. union, intersection, difference). Third, edges of these bounding cells are succes-
sively injected into the a-BSP structure. Last, final leaves are categorized w.r.t. their
inclusion in the Semantic Volumes as described above.

Some sub-regions of space cannot however be selected as candidates since key sub-
jects are fully or partially occluded. To efficiently compute the visibility information
that we then store in the regions, a topological level of representation of the geometry
is employed.

3.2 Visibility Volumes

The second step consists in computing and characterizing the visibility of key sub-
jects. Real-time visibility computation is a prohibitively expensive process. We address
this constraint by reducing the practical complexity through two assumptions on the
geometric properties of the environment. Firstly, we estimate the visibility of a key
subject (here, a character) by using a 2D convex hull of the projection of its geome-
try onto the floor. Secondly, we restrict the setting to static 3D indoor environments
which we represent as a 2D cell-and-portal (C&P) structure [TS91]. Cells represent
rooms and portals represent doorways and connections between cells. Further, hard
visibility constraints are related to the portal extremities (e.g. walls or doorways); each
boundary between a wall and a doorway supports a stabbing line representing a sep-
aration between visibility and occlusion. By assuming that the indoor environment
resides on plane (i.e. distinct floors) we extract a 2.5D topological C&P representation.
All geometric elements in the scene above a specified height (here 1.5m) are treated
as occluders. The visibility process is therefore restricted to dynamic targets in static
environments.

To characterize partial visibility, we extend classical cell-and-portal visibility prop-
agation techniques [TS91] to handle from-region visibility where subjects are approxi-

48

Computing Director Volumes

(a) (b)

Figure 3.4 – From a portal vertex p, two stabbing lines are defined w.r.t. a key subject
(blue circle). (a) By combining both stabbing lines, a categorization into three regions
(full occlusion, partial visibility and full visibility) is obtained. 2D visibility of a key
subject corresponds to a segment s (visibility segment) linking its extreme points. (b)
From a viewpoint with partial visibility, we approximate the visibility degree of the key
subject by first computing the length of the non-occluded portion of segment s, then
calculating the relative proportion which remains visible.

mated as convex cells [COCS+03]. We base our visibility analysis on the use of stabbing
lines to compute a dynamic categorization of the full and partial visibility of a key sub-
ject. First, we identify the current topological cell in which the key subject is located,
and list all adjacent topological cells (i.e. which can be reached through a single por-
tal). Second, for a portal vertex p, two stabbing lines are defined such that each line is
tangential to, but on opposite sides of, the convex hull of the key subject (Figure 3.4).
Each stabbing line therefore defines a point of contact (or extreme point) e on the
convex hull of the key subject. The stabbing line tangential to such a point e separates
two regions: the region from where e is visible, and the region from where e is occluded.
As the key subject is fully included between stabbing lines, the visibility categorization
of the whole key subject is then performed by combining the visibility categorization
of each stabbing line. This categorization follows a two-step process:

1. A visibility prism (or v-prism) is defined as the triangle between the portal vertex
p and the two extreme points of the key subject. The segment s joining both
extreme points is then viewed as the abstraction of the 2D visible aspect of the
key subject at point p.

2. A reversed prism (or r-prism) is computed as the point reflection of the v-prism

49

A Cinematic Engine for Interactive 3D Environments

w.r.t. point p. This r-prism defines the partial visibility region generated by the
vertex p. Three regions are then defined: a region from where the key subject is
fully occluded, a region from where the key subject is fully visible, and an inter-
mediate region from where the key subject is partially visible (r-prism). Further,
for any camera viewpoint v inside the r-prism, we estimate the visibility degree
of the key subject as follows. We first create a frustum F , defined as a triangle
between v and s, which is used to detect the occluding scene elements. We then
combine all portions segment s that are occluded by at least one scene element.
We finally calculate the visible degree as the remaining proportion of s which
remains visible.

This process is further repeated for all portals connected to the current topolog-
ical cell in which the key subject is located (see Figure 3.5). Areas of full visibility,
partial visibility and full occlusion are then propagated through the cell-and-portal
representation in a way similar to [TS91].

An a-BSP representation is used for each topological cell to represent the regions
of full visibility, partial visibility, and full occlusion (i.e. the Visibility Volumes) in this
cell. The root cell of such an a-BSP is first set to the associated topological cell itself.
The r-prisms are then propagated (and eventually reduced) incrementally to adjacent
topological cells through portals (see Figure 3.5). The propagation of r-prisms in a
topological cell is processed by using a three-step process. First, we inject stabbing
lines associated with each r-prism into the a-BSP of the topological cell. Second, we
categorize the leaves of the a-BSP included in at least one r-prism as “partially visible”.
Last, to categorize remaining leaves as either “fully visible” or “fully occluded”, we rely
on the information held by stabbing lines (i.e. w.r.t. visibility/occlusion of associated
extreme points of the convex hull of the key subject).

3.3 Director Volumes
In the previous sections, we have computed volumes corresponding to semantic

information on stereotypical viewpoints around key subjects, and volumes correspond-
ing to visibility information on key subjects. The last step consists in combining this
information to characterize sets of “cinematographically” equivalent viewpoints (the
Director Volumes) in terms of both semantic and visibility of key subjects. The inter-
section operator uses the compatibility between both BSP structures to fusion them,
and create an a-BSP representation of Director Volumes per topological cell. This
intersection operator can be formalized as follows.

First, we refer to the a-BSP characterizing Semantic Volumes around key subjects
as S.
Second, we refer to the a-BSP characterizing visibility of key subject k in topo-
logical cell j as Vjk.
Last, we refer to the a-BSP characterizing Director Volumes around key subjects
in topological cell j as Dj , procedurally computed as

Dj =
(⋂

k

Vjk

)
∩ S

50

Reasoning over Director Volumes

(a) (b)

(c) (d)

Figure 3.5 – Visibility propagation using the cell-and-portal representation. Each
visibility prism issued from a vertex of a portal is propagated through the portals of the
adjacent cells. The process is repeated inside each cell until all cells are explored.

The successive steps of this intersection process are illustrated in Figures 3.6 and 3.7.
We finally categorize all leaves of Dj by collecting (i) the visibility information asso-
ciated with each subject k by using a binary tree search in Vjk and (ii) the semantic
information on stereotypical viewpoints by using a binary tree search in S.

This process provides a good basis to reason on camera Director Volumes to either
perform a cut, move in the environment, or maintain the camera position. In the
following we will present our editing method, providing the camera paths and cuts
given as input to the dynamic resolution of non-occluded camera positions.

4 Reasoning over Director Volumes

Once the space of viewpoints has been characterized in terms of Director Volumes,
the next step consists in selecting the best candidate volume(s) following continuity
rules and directorial style.

To enforce elements of continuity and style in an expressive way, we propose to
model rules as a two step generic process that operates over a set of Director Volumes.
Our editing model considers a set of Director Volumes as input. We then sequen-
tially apply a filtering operator over Director Volumes, then a selection operator over
remaining volumes. The filtering operator is responsible for (i) pruning inappropri-
ate viewpoints in Director Volumes and (ii) annotating remaining Director Volumes
with information that will be used by the selection operator. The selection operator is
then responsible for evaluating and ranking remaining Director Volumes (through a fit-

51

A Cinematic Engine for Interactive 3D Environments

Figure 3.6 – Combination of visibility information for a two-subject configuration (sub-
jects are displays with a yellow area). The left-most image displays the Visibility Volumes
of the left-most subject. The right-most image displays the combination of both visibil-
ity information. This combination consists in building a new set of Visibility Volumes,
informed with both visibility information, and is operated through an intersection of
visibility a-BSPs of both subjects. In this image, black areas represents regions where
both subjects are fully occluded while white areas represent regions where both subjects
are fully visible.

Figure 3.7 – Computation of Director Volumes for a two-subject configuration. From a
topological analysis of the scene (top-left image), we compute two a-BSP representations
around subjects: a representation of full/partial visibility regions (top-right image, see
Figure 3.6), and a representation of semantic regions (bottom-left image, see Figure 3.3).
We then combine both representations to build Director Volumes around subjects, by
simply intersecting the visibility a-BSP with the semantic a-BSP.

52

Reasoning over Director Volumes

ness function accounting for annotations), and returning a sub-set of Director Volumes
(which maximize the fitness value). The process is detailed in Figure 3.8.

4.1 Filtering operator
The first reasoning step consists in applying the filtering operator, which is built as

a sequential application of filters over Director Volumes. A filter is defined in a generic
manner, as an operator that takes as input a set of (annotated) Director Volumes, and
returns a – possibly empty – new set of (annotated) Director Volumes. Each filter
implements either a continuity rule or a style rule. Filters can therefore be defined
recursively, i.e. a filter can be constructed as a sequential or parallel application of
sub-filters.

Filters can be categorized into three classes in accordance to their reasoning level
over Director Volumes: the geometric filters, the semantic filters and the annotation
filters.
Geometric filters reason on the geometry of Director Volumes. They can split Direc-

tor Volumes to prune inappropriate geometric areas from these Director Volumes
(e.g. remove all viewpoints that subtend an angle lower than 30 degrees to a given
subject from Director Volumes).

Semantic filters reason on the semantic aspects of Director Volumes. They either
accept or prune entire Director Volumes according to constraints established at
a semantic level (e.g. remove all Director Volumes which are Close Shots).

Annotation filters can reason on the specific properties of each Director Volume.
They can add, remove or edit the annotations associated with each Director
Volume. A typical example is the fitness property. Each Director Volume has a
fitness (e.g. representing a degree of preference of this Director Volume) and rules
can add values (annotations) to the fitness property.

Our filtering operator is defined as the combination of two filtering processes. First,
continuity editing filters remove inappropriate viewpoints in Director Volumes that do
not match editing continuity rules (e.g. crossing the line-of-interest or crossing the line-
of-action). Second, directorial style filters prune inappropriate viewpoints w.r.t. the
current directorial style, then annotate Director Volumes according to style preferences.
Style preferences model for example the preferred set of viewpoints from which to shoot
a narrative event or a scene.

In this approach, we pose as the hypothesis that continuity in editing prevails over
style. Indeed, we believe that violation in continuity is far more noticeable for the
viewer than violation in style. For this purpose, as filters are applied in sequence, we
first process the Director Volumes with continuity filters before style filters.

4.2 Continuity editing filters
Continuity ensures compliance with cinematographic conventions and enforces the

maintenance of the spatio-temporal context when the camera switches between two
viewpoints. Conventions are well established in relation to the key subjects’ motions,

53

A Cinematic Engine for Interactive 3D Environments

Figure 3.8 – Reasoning over Director Volumes. The selection of a sub-set of Director
Volume is a two-step process. First, we apply a filtering operator on the set of Director
Volumes. At this step, we sequentially apply (1) continuity editing filters, and (2) direc-
torial style filters. We then apply a selection operator on remaining Director Volumes,
to evaluate (w.r.t. a fitness function), rank, then select the sub-set of Director Volumes
with best fitness value(s).

spatial locations, line-of-interest and actions. We describe some continuity rules and
the way to model them as filters in our editing model:

Line-of-action continuity. Between two shots that portray the same key subject,
coherency must be maintained in the apparent direction of motion of this key
subject. A line-of-action (LOA) is modeled as a geometric filter. All the view-
points located on the opposite side w.r.t. the direction of motion of the subject
are removed from Director Volumes. For this purpose, we inject the line of action
of the subject into the a-BSP representation (i.e. along the direction of motion
of the subject) and we compute the intersection of the resulting half plane with
the current set of Director Volumes.

54

Reasoning over Director Volumes

Line-of-interest continuity. In narrative events that involve two or more key sub-
jects, once the side of the line-of-interest (LOI) has been chosen, it should not
be crossed, unless using an Extreme Long Shot (that re-establishes the key sub-
jects in relation to the environment) or a continuous transition. The relative side
w.r.t. the LOI is directly encoded in the Semantic Volumes structure, which is
recomputed at each frame. The line-of-intersect is modeled as a semantic filter;
all Director Volumes on the opposite side of the LOI, but Extreme Long Shots,
are then discarded.

Matching between lines of interest. This LOI is, for a character, represented by
his gaze direction. If a key subject (character) watches an item which does not
appear in the frame, the corresponding viewpoints should convey the fact that his
eyes are directed toward the place where user thinks the item is. Therefore, all
the Director Volumes for which the direction of the characters gaze is not visible
need to be removed. This is implemented by a geometric filter; in the a-BSP, we
insert a new couple of half-lines representing a 60◦ wedge around the character’s
gaze. All viewpoints out of the wedge are then discarded.

Change in angle or size. Between two shots that portray the same key subject,
there should be at least a thirty-degree difference in orientation, or a notable
difference in size of portrayed subjects. This rule is implemented by applying
to sub-filters in parallel. First, a geometric filter that, in each Director Volume,
removes all viewpoints that subtend an angle lower than 30◦ to the subject; to
this end, we inject two new half-lines in the a-BSP. Second, a semantic filter
that prunes Director Volumes which are less than two units different in size (in
a graduation that ranges in Close-Up, Close Shot, Medium Shot, Long Shot and
Extreme Long Shot). Last, we build the union of the two resulting sets of Director
Volumes.

4.3 Style filters

Style in Director Volumes is defined as a number of preferences as to which view-
points should be considered first for the next shot. Style is encoded as a secondary
filtering process that ranks the Director Volumes according to different style param-
eters. In our approach, we consider three style parameters, modeled as annotation
filters:

Preferred viewpoints. Moviemakers generally shoot a scene with a restricted set of
viewpoints (among all the possible ones). Obviously this sub-set is different from
one scene to another and such a variation underlines the narrative discourse out
through the whole movie. We offer the possibility to indicate the viewpoints that
should be used in priority, together with the viewpoints that should be avoided. A
scalar value ranging from -1 to +1 is attached to each Director Volume, indicating
its degree of preference (+1 to give preference, and -1 to avoid). In case of no
preference, all Director Volumes have the same value for this parameter. Note that
we do not account for preferred transitions between viewpoints, but that such a
preference would be easy to implement with our model. Indeed, to get closer from

55

A Cinematic Engine for Interactive 3D Environments

cinematic idioms, another possibility would be to use transition matrices (i.e. a
specification of the scalar value for each viewpoint, depending on the previous
viewpoint).

Variation in the choice of successive viewpoints. Another style parameter to
consider when selecting the next viewpoint, is how different it should be from
the previous ones, i.e. what is the degree of variation in the choice of the succes-
sive viewpoints. Some styles impose a limited variation (e.g. in dialogue scenes
of the Exotica movie, the camera switches back and forth between parallel shots
only), while others provide an important variation (e.g. in dialogue scenes of the
1984 movie from Michael Radford). For this purpose, we offer the possibility of
ranking the Director Volumes against their use in the previous shots. That is,
when variation is required, the selection process will better rank the viewpoints
which have not been employed recently. In case of no variation, all volumes are
annotated with the same value and this parameter will not influence the final
selection.

Narrative dimensions. One can augment the Director Volumes with some symbolic
information representing narrative dimension (namely dominance, affinity, iso-
lation). For instance, in case dominance of one character over an other needs
to be conveyed in a dialogue, this filter selects a set of Director Volumes to be
updated with the “Dominance” annotation. Typically, External Shots better en-
force the impression of dominance (compared to Apex Shots). Consequently, in
the selection process, whenever dominance style is required, the Director Volumes
annotated with “Dominance” will be better ranked.

4.4 Selection operator
The second step is the use of a selection operator over remaining Director Volumes.

From the set of Director Volumes which have been filtered for continuity in edits and
style, this operator simply evaluate and rank volumes, then select the best N volumes
(N ≥ 1) of the set.

To evaluate a Director Volume v, we account for a range of features of the Director
Volume: visibility, preferred viewpoint, variation in style, narrative dimension, and
composition. To each feature i, we associate an objective function fi(v) to maximize.
We then rank Director Volumes through a fitness function F expressed as a weighted
sum over all objective functions:

F (v) =
∑
i

wi · fi(v)

where wi is the (positive) weight associated with feature i.
First, objective functions related to preferred viewpoints, variations in style and

narrative dimensions are built upon annotations added by style filters. Second, we
define the objective function fvis(v) related to visibility (w.r.t. static scene elements)
as the aggregation of the visibility degree of each key subject, which we can express as:

fvis(v) = 1
k

∑
k

√
1− δ
�
visactualk (v), visdesiredk

�
56

Enforcing Screen Composition

In this formula, visactualk (v) represents the actual visibility degree of key subject k from
volume v and visdesiredk represents its desired visibility degree (as an interval). The
function δ represents a distance between them, returning a value ranging from 0 (the
actual visibility degree belong to the desired interval) to 1 (the maximum distance
value). The use of a square root in fvis will therefore favor balancing the distance
to the desired visibility degree for both key subjects. Third, the objective function
related to composition is defined as follows. We here assume that we have computed
the composition error εk of each key subject k for a single camera configuration in
the volume v – the computation of this error is described later (see Section 5). This
objective function is then expressed as

fcomp(v) = 1
k

∑
k

È
1− εk(v)

where the error εk ranges from 0 (no error) to 1 (maximum error). Note that, similarly
to visibility, the use of a square root will balance the error in composition for each key
subject.

We finally select, among all available, the N Director Volumes of highest fitness
value(s). Note that in case the number of available volumes is lower or equal to N , we
select all those volumes without resorting to the fitness function.

4.5 Failures in available Director Volumes
Failures occur when filtering operators prune all possible Director Volumes (before

applying Style filters). We handle such failures in two ways. First, in our design, Ex-
treme Long Shots are not impacted by continuity rules; such viewpoints are generally
used to (re-)establish the relation between a key subject and his environment, and film-
makers classically use this device. Second, continuous transitions are applied to violate
continuity rules (e.g. crossing the line-of-interest) as long as the spatial continuity is
maintained.

5 Enforcing Screen Composition
The next step consists in selecting an appropriate camera configuration inside a

selected Director Volume and enforcing some composition rules (e.g. the rule of thirds
and balance in the image). By definition each Semantic Volume encompasses some
implicit elements of composition (number of key subjects and relative positions of the
subjects on the screen). For example, an Apex Shot should portray two key subjects
respectively on the left and on the right of the screen; and a Parallel Shot should
portray a single key subject on one half of the frame, looking toward the other half of
the frame. Our approach expresses the composition through the specification of the
position of key subjects on the screen. When key subjects are characters, we actually
abstract characters by using their eyes or head location (depending on the shot size).

To enforce composition, we first associate with each Semantic Volume some con-
straints on the composition for one, two or more key subjects on the screen. Since

57

A Cinematic Engine for Interactive 3D Environments

the volumes already encompass a notion of size (Close Shot to Long Shot), we do not
model the size of the key subjects on the screen as a constraint. We build an objective
function to optimize as follows. For a given camera position inside the Director Volume,
we compute the camera orientation algebraically. For each subject k, the composition
error εk is defined as the Euclidean distance between the desired and actual on-screen
positions of the subject (the eyes or head for a character). The objective function fc(p)
to minimize is then defined as

fc(p) = 1
k

∑
k

εk(p)

where p represents a camera position. The on-screen positioning constraints can there-
fore be modified to enforce some specific narrative dimensions (e.g. dominance of one
character over another can be expressed by constraining his eye-line to be higher on
screen than the eye-line of the dominated character). The Results section details the
implementation of narrative dimensions with our system and displays the impact on
composition.

At this step, the handling of dynamic occluders could be included by adding an new
component visdynk (p), related to the visibility of each key subject for dynamic occluders,
to the objective function. Simple techniques such as ray-casts or depth rendering can
be integrated with little overhead.

We then rely on a local search optimization technique to compute the best camera
configuration inside a Director Volume. We start with a uniformly distributed set of
candidate positions pi, i ∈ {1, n} inside a Director Volume. For each position pi, we
then use the following algorithm

1. We randomly sample m candidate positions qji around pi.

2. We discard all samples which lie outside the volume.

3. Among others, the best neighbor, i.e. with lowest composition error fc(qji), is
referred to as qbesti .

4. If fc(qbesti) < fc(pi), then we use qbesti as new candidate position and we reiterate
the process.

5. If not, no improvement has been made and we stop the process.

We also consider two additional stopping conditions. First, we use a threshold on the
number of iterations, ensuring the termination of the algorithm. Second, we use a
threshold on the composition error. When fc(pi) get under this threshold, the process
is also stopped. Finally, among all candidate camera positions p computed in Director
Volumes, we select the one with minimum value of fc(p).

58

Performing cuts or continuous transitions

See Figure 3.9 for an overview of the algorithm, and Figure 3.10 for an illustration
of the on-screen positioning optimization. The specification of the framing for this
example is further provided hereafter:

Viewpoint "OTS-B"
configuration 2-subject
type External
size Medium Close-up
side B
Framing

Subject -0.33 -0.33
Subject +0.33 +0.33

Figure 3.9 – A local search optimization is performed inside a Director Volume to
search the viewpoint providing the best composition on the screen. The search process
starts from a set of uniformly distributed viewpoints inside the 2.5D volume. Then,
for each viewpoint, a number of neighbor candidates are generated and evaluated with
regard to composition. The best neighbor is chosen as the current configuration and the
process iterates on a new set of neighbors.

6 Performing cuts or continuous transitions

Our system constantly reasons as to whether to
maintain the current position of the camera,
perform a cut,
make a continuous transition to another viewpoint,
react to a new narrative event that has occurred.

These choices depend on: (i) the current and incoming narrative events (and their likely
duration), (ii) the current viewpoint, (iii) the past viewpoint, (iv) continuity and style
parameters.

59

A Cinematic Engine for Interactive 3D Environments

(a) (b)
+

Figure 3.10 – The evaluation of a camera configuration w.r.t. frame composition is
expressed as the Euclidian distances between on-screen actual positions (red) and desired
positions (green) of characters eyes. The solving process seeks for minimizing these
distances using a local search optimization process.

6.1 Controlling cuts with Pacing and Dynamicity

In our approach we introduce two indicators of directorial style that control transi-
tions: pacing and dynamicity.

6.1.1 Pacing

As described in literature, cuts are motivated either by directorial style or by neces-
sity. When a matter of necessity, transitions may be performed at any moment in the
movie. Such transitions are motivated by the occlusion of a key subject, or by a key
subject leaving the frame. When a matter of style, transitions are driven by the pacing,
a specific indicator which represents the rate at which transitions are performed. Our
pacing is modeled with three values [dnew : [dmin; dmax]], where dnew is the minimum
duration before making a transition to convey a (new) more relevant narrative event
and [dmin; dmax] is the interval of duration in which a transition is allowed to still convey
the same narrative event. The probability of making a transition within these bounds
is driven by a Gaussian (the closer to dmin the less probable, the closer to dmax the
more probable). Transitions will occur either due to pacing, or due to the onset of a
narrative event of higher relevance.

6.1.2 Dynamicity

Changes in viewpoints may be realized through continuous transitions (i.e. camera
paths). Such changes are typically a matter of directorial style, which we model through
the dynamicity indicator. In our implementation, dynamicity ranges from static shots
to panoramics, travellings or free camera motions. Interestingly, continuous transitions

60

Performing cuts or continuous transitions

may allow the director to break continuity rules, for example by crossing the line-of-
interest or a line-of-action. Thus in cases where no Director Volume is applicable after
filtering on continuity, we allow the camera to continuously move to any visible Director
Volume.

The possibility our system offers to control the camera dynamicity encompasses both
the camera motions performed inside a Director Volume (none, panoramic, travelling)
and the transitions between action shots (cuts or camera paths). Our cinematic engine
offers four possible levels of dynamicity:
1. No Dynamicity (static shots): No camera motion is allowed inside an action shot,

and action shots are always separated by cuts (i.e. each shot is made of a single
action shot);

2. Panning: Camera motions are restricted to pans inside an action shot;
3. Travelling & Panning: Travelling camera motions are also allowed inside action

shots;
4. Full Dynamicity (long take): All motions are allowed, and action shots are sepa-

rated by continuous transitions instead of cuts (i.e. a single shot is built to convey
story events).

Examples illustrating some variations in Pacing and Dynamicity are presented in
the Results section.

6.2 Performing continuous transitions by path-planning

To enforce continuous transitions between viewpoints, it is necessary to first build
a roadmap of the environment and second, from this roadmap, perform path planning
requests between the camera current configuration and the desired location in the
selected Director Volume.

6.2.1 Building a roadmap of the environment

Connectivity graphs of the scene can be defined at multiple levels:
Topological cell-and-portal graph By construction, the topological cell-and-portal

decomposition offers a connectivity graph that avoids obstacles. At this level
of connectivity, one could be used to plan coarse paths at the cell level as in
[AVF04]. At this level, we could consider a cell-to-cell path length and potentially
preferences in cells to go through, or to avoid.

Connectivity between Visibility Volumes Each topological cell contains an a-
BSP decomposition into Visibility Volumes. On could then build a connectivity
graph by interconnecting all adjacent cells inside a-BSPs and between a-BSPs in
different cells. At this level of connectivity, one would be enabled to plan paths
inside a topological cell; it would also adds the possibility to reason about the
visibility (of one or more subjects) along the path.

61

A Cinematic Engine for Interactive 3D Environments

Figure 3.11 – The roadmap is built in multiple steps: (a) a first roadmap is built
from the cell-and-portal topological representation, (b) topological cells are split by the
a-BSP representation of Director Volumes which in turn (c) forms a coarse roadmap
by interconnecting all adjacent partitions inside a-BSPs and between a-BSPs, (d) the
roadmap is then refined by sampling the edges shared between the partitions to provide
smoother paths in the planning process.

Connectivity between Director Volumes Each topological cell also contains an a-
BSP decomposition into Director Volumes. As well as for Visibility Volumes, one
could build a connectivity graph upon Director Volumes. At this level of connec-
tivity, one could further reason about preferences in viewpoints to go through or
to avoid.

Sampling-based roadmap We here propose a 4th level of connectivity, by construct-

62

Performing cuts or continuous transitions

(a) (b)

Figure 3.12 – Refinement of the connectivity inside a Director Volume. Walls are
here represented as thick black edges. We refine connectivity through the volume by
sampling way points (black dots) on accessible edges (in red) with a given density δ. We
create a roadmap node to represent each way point. We then create a roadmap edge
to represent a link (in blue) between each pair of way point located on two different
edges. This sampling-based connectivity enables exploring more accurately the different
possible camera paths inside a volume, thus enhancing the quality of the global camera
path.

ing a finer roadmap on top of Director Volumes’ connectivity. The connectivity
graph built for Director Volumes is refined by using a two step-process. First,
instead of considering a camera path as just a sequence of Director Volumes, we
propose to further explore the different possible ways to go through a volume.
We then uniformly sample way-points on each connection edge, with a sampling
density δ; we further set the minimum number of samples on a connection edge
to 1, so as to guarantee the connectivity between two adjacent volumes. Each
sample way-point is then used as a node in the roadmap. Second, inside a given
Director Volume, we create roadmap edges between all pairs of way-point nodes
located on distinct connection edges. This sampling process has the advantage
of providing a finer sampling of possible paths inside volumes, thus allowing to
reason more accurately on the global path properties.

The different levels of connectivity are illustrated in Figure 3.11, and a focus on
our sampling process inside volumes is illustrated in Figure 3.12. The sampling-based
roadmap is therefore recomputed on demand each time the scene evolves (i.e. when a
key subject moves or new narrative events occur which demand the re-computation of
the Director Volumes).

In contrast to existing sampling-based roadmap methods, our roadmap has two
main advantages. First, our roadmap is augmented with both semantic and visibility
information, what enables reasoning about a range of properties along computed camera
paths (e.g. minimize the path length, keep the camera at a certain distance from a
key subject, enforce visibility along the path, avoid/prefer sub-sets of scene areas or
viewpoints). Second, our roadmap is computed dynamically (the roadmap is updated as
the Director Volumes evolve), what enables recomputing paths dynamically to account
for changes in the key subjects’ configuration (e.g. in case of subjects motions in the

63

A Cinematic Engine for Interactive 3D Environments

scene).

6.2.2 Computing Camera Paths

For a matter of simplicity, practically, we plan paths over the complete sampling-
based roadmap built on top of Director Volumes. Theoretically, however, it would be
possible to design a more efficient path planning process taking advantage of the multi-
level connectivity, and using an incremental planning algorithm from low resolution
to high resolution connectivity graphs. This would particularly avoid building the
complete roadmap; only the traversed cells/volumes would then need to be considered
for sampling.

Our roadmap can be formalized as a vector 〈N,E,AN , AE〉, where N the set of
nodes, E is the set of edges, AN is the set of node annotations (e.g. position, distance
to subjects), and AE is the set of edge annotations (e.g. length, traversed Visibility
Volume(s) and Semantic Volume). A camera path t can then be described in two ways:

as a sequence of edges: t = {e1, e2, . . . , em}, with ei ∈ E;
as a sequence of nodes: t = {n0, n1, n2, . . . , nm}, where n0 and nm are resp. the
initial and target camera configurations, and ni ∈ N, 0 < i < n is the node shared
by edges ei and ei+1.

The task of planning a path between two Director Volumes is then expressed as a
classical optimization process. The cost C (to minimize) of the path t is given by

C(t) =
∑
e∈t

∑
i

wi ·Ci(e) +
∑
n∈t

∑
j

wj ·Cj(n)

Ci and wi are resp. the cost function (to minimize) and weight associated with edge
feature i (e.g. path length, occlusions of key subjects); similarly, Cj and wj are resp. the
cost function (to minimize) and weight associated with node feature j.

In our implementation, we have considered two important features: the visibility of
key subjects along the path and the length of the path. We have thus built our cost
function C as a weighted sum of the path length and visibility of key subjects:

C(t) =
∑
e ∈ t

�
wvis ·Cvis(e) + wlen ·C len(e)

�
In this formula, C len(e) is set to |e| > 0, the length of edge e. In the same way, Cvis(e)
is the cost associated with visibility along edge e. By default, we express Cvis as a
weighted sum of the visibility of each key subject k

Cvis(s) =
∑
k

wk ·Cvisk (e)

where wk is the weight associated with the visibility of subject k, and with

Cvisk (e) =
√
δ
�
visactualk (e), visdesiredk

�
Here the function δ is defined in the same way as in Section 4.4. The square root in
Cvisk (e), together with the weights wk allows both balancing the visibility degree of

64

Performing cuts or continuous transitions

Figure 3.13 – We build upon the roadmap to compute paths between Director Volumes.
Since the roadmap is built from the Director Volumes a-BSPs, each cell (and therefore
each node of the roadmap holds the information of the Director Volumes (visibility, type
of viewpoint). Therefore the search for a path in the roadmap may contain evolved
search criteria such as finding paths with maximum visibility of targets, or finding paths
which avoid certain shots (e.g. long shots).

subjects, and potentially favoring the maintenance of visibility on some subjects to the
detriment of others. By tuning the two weights wvis and wlen, such a representation
allows favoring paths with (for each key subject) little, no or many occlusions on the
way.

Our search is performed with a Dijkstra process that handles multiple target vol-
umes and stops as soon as a solution path is found. We then use classical smoothing

65

A Cinematic Engine for Interactive 3D Environments

techniques to improve the computed path.

7 Results

This section details the application of our virtual cinematography system to the
canteen scene from Michael Radford’s 1984 movie, by exploring different ways of filming
the same set of narrative events occurring in the same environment. The degrees of
variation in the directorial style that we explore are related to low-level style parameters
such as camera dynamicity, visibility of characters, and pacing. We then demonstrate
the editing possibilities of our system with high-level narrative dimensions (dominance,
affinity and isolation of characters) that influence the main components of our system.

To generate results, we provided our system with an annotated screenplay. This
screenplay specifies a set of narrative events (possibly overlapping in time) as they
occur in a sequence of scenes by specifying, for each one, the starting and ending times,
the involved subjects/objects (if any), a relevance value, and a textual description of
the event. Events may be attached to a character or an object (e.g. "Parsons walks to
the table"), or describe any general event (e.g. "Characters are entering the canteen").
In addition, the screenplay includes the names of particular 3D model parts for the
subjects, which are required to perform appropriate screen composition in computing
viewpoints (e.g. for a character, body part, head part and eyes parts). All 3D models,
XML representations of narrative events and cinematic idioms, together with resulting
videos are available at www.cameracontrol.org/1984-Canteen-scene.

In the context of the current application, our system however assumes that events
are not known in advance; events are instead only considered in the system when they
occur. An excerpt of the annotated screenplay for the canteen scene from Michael
Radford’s 1984 is provided below

Screenplay "1984"
Scene "Canteen"

Location "Canteen"
Subject "Smith" Character

body "SmithBody"
head "SmithHead"
leftEye "SmithLeftEye"
rightEye "SmithRightEye"

Subject "Syme" Character
...

Event "A pours gin"
relevance 5
begin 0 end 4
Character "Smith"

Event "A drinks gin"
relevance 5
begin 4 end 12

66

www.cameracontrol.org/1984-Canteen-scene

Results

Character "Smith"
Event "A turns"

relevance 3
begin 10 end 18
Character "Smith"

Event "A speaks to B"
relevance 9
begin 18 end 21
Character "Smith"
Character "Syme"

...
End Screenplay

7.1 Pacing
The pacing influences the duration of each shot, i.e. the interval of time in which

the system is allowed to make a cut or perform a camera movement. We recall that the
pacing is defined as an input to the system declared as three values [d0 : [d1; d2]], where
d0 is the minimum duration before making a cut to convey a new event, and [d1; d2] is
the interval of shot duration in which a cut is allowed to still convey the same event.
Here, we display two simple examples of variations in editing by changing the pacing
parameter in the 1984 canteen scene. For each of them, three snapshots of the system
are taken at three different dates (88s, 90s and 93s).

Example #1: Fast pacing (pacing=[2 : [4; 6]]) In the first example, three cuts
are performed (see Figure 3.14), respectively after 3 seconds, 2 seconds, and 3 seconds.

Example #2: Slow pacing (pacing=[4 : [6; 8]]) In this second example, only one
cut is performed (see Figure 3.15). Snapshots were taken at the same time steps as in
Example #1 (88s, 90s and 93s). All three snapshots occur in the same shot (no cut),
whereas in the same case in Example #1, three cuts were performed.

7.2 Degree of Visibility
Another style parameter that we illustrate here is the degree of visibility that is

desired for a key subject and how it influences the editing. Our system considers as
input an interval of allowed visibility of key subjects in a continuous range between
0 and 1. Value 0 stands for no visibility, while value 1 stands for full visibility. This
interval influences the editing process in (1) the choice of the viewpoints (the system
needs to select viewpoints which ensure that the degree of visibility can be maintained),
and (2) the critical moments to perform cuts (when the degree of visibility cannot be
maintained any more). Here we display three results on the same narrative event “Syme
turns around pillars”, with three different ranges for the desired degree of visibility: full
visibility (interval [1; 1]), full occlusion (interval [0; 0]) and partial visibility of Syme
(interval [0.25; 0.75]).

67

A Cinematic Engine for Interactive 3D Environments

Figure 3.14 – Example #1: fast pacing. Pacing parameters are set to [2 : [4; 6]].
Therefore cuts to convey a new narrative event may be performed after 2 seconds of the
same shot, and cuts to convey the same narrative event should be performed within the
interval of 4 to 6 seconds. Snapshots 1, 2 and 3 were taken respectively at time steps
88, 90 and 93 seconds. Here three cuts of the same narrative event (Parson walking to
the table) were performed.

Figure 3.15 – Example #2: slow pacing. Pacing parameters are set to [4 : [6; 8]].
Therefore cuts to convey a new narrative event may be performed after 4 seconds of the
same shot, and cuts to convey the same narrative event should be performed within the
interval of 6 to 8 seconds. As a result, there are only two shots. Snapshots were taken
respectively at time steps 88, 90 and 93 seconds (compare to Example #1, where three
cuts were performed during this same interval).

Example #3: Full Visibility In this example, the degree of visibility is constrained
to interval [1; 1] (maintain full visibility of the subject). As displayed in Figure 3.16, as
soon as the character is occluded by a pillar, the system performs a cut to an unoccluded
view by selecting a Director Volume where visibility is equal to 1.

68

Results

Figure 3.16 – Example #3: enforcing a full visibility. In our editing model, as soon
as the visibility constraint is violated, the system performs a cut. In this example, the
visibility is set to full visibility (interval [1; 1]). Therefore as soon as the character is
occluded by a pillar, the system automatically cuts to a new viewpoint.

Example #4: Full Occlusion In this example, we constraint the visibility to inter-
val [0; 0] which stands for no visibility. As displayed in Figure 3.17, as soon as a part
of the character starts to be visible, the system performs a cut to an occluded view by
selecting a Director Volume where visibility is equal to zero.

Figure 3.17 – Example #4: enforcing a full occlusion. In this example, the visibility is
set to no visibility (interval [0; 0]). Therefore as soon as a part of the character is visible,
the system automatically cuts to a new viewpoint where the character is occluded. On
shots 2, 4 and 6 parts of the character which start to be visible are highlighted with a
red circle, just before the system cuts to another viewpoint (time 0.9s, 4.3s and 6.1s).

Example #5: Partial Visibility In this example, the degree of visibility is con-
strained to interval [0.25; 0.75], which stands for partial visibility of the key subject. As
displayed in Figure 3.18, as soon as the character is either strongly visible or strongly

69

A Cinematic Engine for Interactive 3D Environments

occluded, the system performs a cut to a more appropriate view by selecting adequate
Director Volumes with visibility inside the specified range.

Figure 3.18 – Example #5: enforcing a partial visibility. In this example, the visibility
is set to partial visibility (interval [0.25; 0.75]). Therefore as soon as the character is
either strongly occluded (visibility < 0.25), or strongly visible (visibility > 0.75), the
system automatically cuts to a new viewpoint where the partial visibility is satisfied.
See how the different shots display the character as only partially visible.

7.3 Camera Dynamicity
In this result section, we describe how the camera dynamicity parameter impacts

the editing and the generation of camera movements computed by the system. The
camera dynamicity influences our system in (1) allowing specific camera movements
(panning, travelling, etc.) and (2) the choice of the next viewpoint when performing a
cut, due to changes in view angle and/or character size between the beginning and the
end of a shot. Four level of dynamicity are proposed in our system:

No dynamicity: only static camera positions are computed;
Dynamicity on orientation: panning motions are allowed for the camera;
Dynamicity on orientation and position: travelling and panning motions are al-
lowed (together with compositions of travellings and pannings);
Full dynamicity: all camera motions are allowed. Furthermore all the transitions
between shots need to be continuous transitions instead of cuts (this generates a
long-take shot).

In the system, camera movements on position (i.e. travellings) are enabled by using
the roadmap to plan a linear motion of the camera. A continuous transition consists
in planning a camera path from the starting Director Volume to the Director Volume
chosen as candidate. A panning consists in re-orientating the camera to maintain the
satisfaction of the frame composition.

Example #6: No Dynamicity This level of dynamicity disallows any camera
movement. The editing is then only made of cuts between static viewpoints. Fig-

70

Results

ure 3.19 illustrates some results.

Figure 3.19 – Example #6: no dynamicity. In this example, the dynamicity of the
camera is set to “no dynamicity”, which means that only static shots are computed.
The editing process therefore cuts according to the pacing constraints, the visibility of
characters and the occurrence of new events. For example, the cut from shot #1 to shot
#2 is due to the new event “Parsons walks to the table”, the cut from shot #2 to shot
#3 is due to the visibility of Parsons (he leaves the screen, see second snapshot), the
cuts from shots #3 to #4 is due to visibility once again, while the last cut (#4 to #5)
is due to the pacing parameter.

Example #7: Dynamicity on Orientation This level of dynamicity enables the
camera to perform panning shots. The editing process then selects either static shots
or panning shots depending on the nature of events occurring in the scene. In our
system, events are tagged by the user with camera dynamicity features; i.e. for each
event, the user specifies whether it may be shot with a static shot, or a dynamic shot
(panning, travelling, full dynamic). This represents a matter of style, and different
directorial styles will obviously tag the events in a different way. In our Example #7,
the event “Symes eats” is tagged with “static shot”, while the event “Parsons walks to
the table” is tagged with “dynamic shot”. Figure 3.20 details some results: shot #1
is a static shot, shot #2 is a panning shot and a cut is performed at time=90s due to
pacing constraints. Shots #3 and #4 are panning shots too.

Example #8: Dynamicity on Orientation and Position This level of dynamic-
ity enables the camera to perform both panning and travelling motions. In a way similar
to Dynamicity on Position, our system uses the tags associated with the events to know
whether a dynamic motion of the camera is possible. Travelling motions are computed
by relying on the underlying roadmap (i.e. searching for close-to-linear paths). Snap-
shots have been taken at the same time steps than Example #7, which provides a nice
basis for comparison: snapshots 1 and 2 are quite similar, while snapshots 3, 4, 5 and
6 display some variation since a travelling motion is used. Cuts 2 and 3 are performed
due to pacing constraints only (see Figure 3.21).

71

A Cinematic Engine for Interactive 3D Environments

Figure 3.20 – Example #7: dynamicity on orientation. In this example, the dynamicity
of the camera is set to “orientation”, which means that the camera can perform static
shots or panning shots. The editing process therefore cuts according to the pacing
constraints, the visibility of characters and the occurrence of new events. Shot #1 is a
static shot, while all others are panning shots. The second and third cuts occur due to
pacing constraints.

Figure 3.21 – Example #8: dynamicity on orientation and position. In this example,
the dynamicity of the camera is set to “orientation and position”, which means that
the camera can perform static shots, panning shots, travelling shots or a mix between
panning and travelling. The editing process therefore cuts according to the pacing con-
straints, the visibility of characters and the occurrence of new events. Shot #1 is a static
shot, while all others are mixing panning and travelling shots. The second and third
cuts occur due to pacing constraints. All snapshots are taken at the same time steps
than Example #7, which provides a basis to compare the results.

Example #9: Full Dynamicity (Orientation, Position, Continuous Transi-
tion) This level of dynamicity enables full dynamicity; i.e. the camera moves freely in
the environment, and no cuts are performed between the viewpoints. Such a parameter
generates long-takes. All transitions between viewpoints are continuous transitions us-

72

Results

ing the path planning process from the roadmap. When a new event occurs (e.g. here
Parsons walking to the table), the camera performs a long movement and rotates to
grab a view of Parsons, then the camera follows him continuously until he reaches the
table (see Figure 3.22).

Figure 3.22 – Example #9: full dynamicity. In this example, the dynamicity of the
camera is set to “full dynamicity”, which means that the camera can perform any motion,
and performs path planning between viewpoints conveying different events. Only one
shot is produced with this system (a long take).

7.4 Narrative Dimension

In this section, we selected three narrative dimensions which could be manipulated
to affect a viewer’s perception of inter-character relationships in the scene: (1) isolation,
(2) dominance of one character over another and (3) characters’ affinity for each other.
The manipulation of these dimensions substantially changes the dramatic outcomes of
a section of the narrative, independently of dialogue and other characters’ actions.

We here detail the mechanisms by which we enforce dominance, affinity and isolation
within our cinematography system and present our results with the 1984 Canteen scene.
The narrative dimension influences our system in (1) specifying preferences on the set
of characters that appear on screen and in (2) applying a specific frame composition of
this set of characters.

The enforcement of these dimensions produces fairly different results in terms of
editing, viewpoint selection and composition. For each dimension, three snapshots of
the system were taken at exactly the same time steps (19s, 41s and 50s), and clearly
demonstrates the variation (see Figures 3.26 to 3.28).

In order to implement these narrative dimensions, we extended the virtual cinematic
engine in four ways:

narrative dimensions influence the selection of the next narrative events to convey.
For example, by selecting a different protagonist in the story, only the narrative
events related to this protagonist (and his interactions) will be considered.

73

A Cinematic Engine for Interactive 3D Environments

each Semantic Volume is annotated beforehand with the appropriate dimensions
it can convey (e.g. Apex shots better convey affinity, external shots better convey
affinity and dominance, parallel shots better convey isolation). Each Semantic
Volume may be annotated by multiple dimensions.
a specific filter (called DimensionFilter) is added in the style filtering queue. Its
role is to remove from the list of Director Volumes, all Volumes (i.e. viewpoints)
which do not enforce a specified dimension.
constraints on the screen composition are different from one dimension to an
other. For example, in an External shot, the dominant character will have his
eyes constrained to a higher location on the screen than the dominated character.
Similarly, for isolation, the characters body, head or eyes (depending on the size
of the shot) will be constrained on the far left or far right side of the screen.

Figures 3.23 and 3.24 illustrate how these narrative dimensions influence the differ-
ent components of our cinematography system on an example with multiple narrative
events. As displayed in these figures, the narrative dimensions mainly control the style
parameters which in turn control the choice of appropriate Director Volumes, edit-
ing and screen composition. The narrative dimensions first influence the selection of
appropriate narrative events in the story (e.g. selecting events related to the main pro-
tagonist). To each narrative event is associated a range of viewpoints. In a second step,
this range of viewpoints is narrowed down by selecting preferred viewpoints (Director
Volumes) associated with each narrative dimension. For example, affinity is better
conveyed using apex shots or over-the-shoulder shots, rather than using parallel shots.
Third, narrative dimensions influence the selection of the next best Director Volume to
cut to, given previous camera locations and preferred shots (Resulting shots in the Fig-
ure). Finally, such dimensions influence the composition of key subjects on the screen,
inside each Director Volume.

Example #10: Default Narrative Dimension For this narrative dimension,
there is no preference as to which characters have to be framed: the DimensionFilter
thus eliminates no viewpoint. Moreover, the frame composition is balanced: i.e. with
regard to the rule of thirds, the eyes of both characters are placed on the top third
horizontal line (see Figure 3.25).

Example #11: Affinity between Syme and Smith To convey affinity between
both characters, the system will prefer shots with a balanced frame composition on
Syme and Smith, and with regard to the rule of thirds, the eyes of both characters
are placed on the top horizontal line. Specifically, the system will favor apex shots
or external shots through the DimensionFilter which will only keep Apex or External
shots (see Figure 3.26).

Example #12: Dominance of Syme To illustrate the dominance of Syme over
Smith, the system will optimize the viewpoints where the eyes of Syme can be placed
higher than eyes of Smith on screen: with regards to the rule of thirds, the eyes of
Syme are placed on the top horizontal line, and the eyes of Smith are placed on the

74

Results

Figure 3.23 – Influence of the “affinity” narrative dimension on main components of
CineSys. It influences both the selection of narrative events in the story (e.g. selecting
events related to the main protagonist), the selection of preferred viewpoints (Director
Volumes) and the composition of key subjects on the screen, inside each Director Volume.
Affinity is better conveyed using apex shots or over-the-shoulder shots, rather than using
parallel shots, and positioning subjects at the same height on the screen.

bottom horizontal line. In terms of shots, the system the system will prefer external
shots: the DimensionFilter will only keep external shots (see Figure 3.27).

Example #13: Isolation of Syme To display the isolation of a character, our
system favors shots where this character is alone. In this example, all along the dialog
between Syme and Smith, the DimensionFilter will eliminate all viewpoints but internal

75

A Cinematic Engine for Interactive 3D Environments

Figure 3.24 – Influence of the “dominance” narrative dimension on main components of
CineSys. It influences both the selection of narrative events in the story (e.g. selecting
events related to the main protagonist), the selection of preferred viewpoints (Director
Volumes) and the composition of key subjects on the screen, inside each Director Volume.
Dominance is better conveyed using over-the-shoulder shots, and positioning the eyes of
the dominant subject higher than the ones of the dominated subject on the screen.

shots on Syme, parallel shots on Syme and subjective shots on Syme. Moreover, the
frame composition shows Syme spatially isolated on screen (composition is expressed
with the rule of the fifths, and character Syme is constrained to the rightmost vertical
line (see Figure 3.28).

76

Results

Figure 3.25 – Example #10: shots illustrating the “default” narrative dimension (no
specific narrative dimension is enforced). All viewpoints are available to the process and
compositions are balance according to the rule of the thirds. Shots were respectively
taken at time steps 19s, 41s and 50s (see Figures 37, 38 and 40 for a comparison).

Figure 3.26 – Example #11: shots illustrating the “affinity” narrative dimension.
Only external shots and apex shots will be selected by the DimensionFilter process.
The composition is a balanced composition in both apex and external views. Shots
were respectively taken at time steps 19s, 41s and 50s (see Figures 36, 38 and 39 for a
comparison).

Figure 3.27 – Example #12: shots illustrating the “dominance” narrative dimension.
Only external shots will be selected by the DimensionFilter process. The composition
process computes shots where the character Syme (right character) is always higher on
the screen than Smith (left character). Shots were respectively taken at time steps 19s,
41s and 50s (see Figures 36, 37 and 39 for a comparison).

7.5 Limitations

A limitation of our approach lies in that the visibility computation for static oc-
cluders is performed in 2D. Though the 2D cells are extruded to 2D1

2 (by considering
the respective ceiling heights) and composition is computed in full 3D, the propagation
of visibility between cells fundamentally relies on a 2D process. Therefore, in envi-
ronments with multiple levels, inter-level visibility will not be computed although this
could potentially be addressed by pre-computing inter-cell visibility for cells on different
levels using ray casting techniques (in a way similar to [OSTG09]). Additionally visi-

77

A Cinematic Engine for Interactive 3D Environments

Figure 3.28 – Example #13: Shots illustrating the “isolation” narrative dimension.
Only shots with one character on the screen are kept by the DimensionFilter. The
composition process computes shots where the character Syme is always on the right
most part of the screen. Shots were respectively taken at time steps 19s, 41s and 50s
(see Figures 3.25 to 3.27 for a comparison).

bility of key subjects w.r.t. dynamic occluders can be handled by including ray-casting
or depth rendering techniques in the screen-composition process.

7.6 Discussion and Comparison

To compare our contribution to the state of the art, we selected a number of prop-
erties a virtual cinematography system should display in a real-time context.

Interactive/Dynamic. First of all, such a system needs to be fully interactive,
that is, enjoying the possibility to react to interactive events occurring in the
environment. Events may be new actions, new characters entering the scene, new
dialogues or any narrative events that influences the unfolding of the story. The
dynamic aspect requires re-computing camera locations for characters motions
which are not known in advance.
Shot coherency. As empirical rules guide the way shots should be organized in a
coherent way to convey a piece of a story, a virtual cinematography system needs
to encode such knowledge. The key relies in the expressiveness of approaches to
encode such coherency.
Composition. The composition property represents the capacity of a system to
handle screen composition and variation in screen composition. Composition is
an essential component of cinematography, not only from the perspective of aes-
thetics (modeling aesthetics in images represents an impossible challenge), but
more basically for understanding spatial relations between characters (a character
on the left of the screen and looking right is implicitly interacting with a subject
on his right) and causal relations. The range of composition properties and the
expressiveness of the underlying computational process is a key property of any
virtual cinematography system.
Style. The style property represents the capacity of a cinematography system to
provide a range of directorial styles, or some degree of variation in a style. While
characterizing and enforcing style may represent a challenging task, a number of
devices and parameters can be used to enforce variation.
Path-planning. The path-planning property represents the ability of performing
complex camera motions in environments. Nonetheless, path-planning is a key-

78

Results

component to represent simple motions such as travellings and trackings, together
with more complex motions such as those encountered with hand-held cameras.
Cinematic discourse. This last property characterizes the ability of a camera
control system to deliver a coherent construction of viewpoints over a set of events,
thereby conveying a coherent narration of the events.

Table 3.1 provides a comparison of major scientific contributions in the domain of
automated camera control. As displayed in the table, our approach satisfies most of the
properties required in an interactive storytelling system and stands in stark contrast.
The closest contribution to our work (Elson & Rield [ER07]) is not a reactive approach
(the system runs offline) and therefore cannot handle interactivity, does not handle
composition on the screen (all shots are pre-computed path sequences) and does not
offer path-planning capacities for complex camera motions.

79

A
Cinem

atic
Engine

forInteractive
3D

Environm
ents

Paper Technique Interactive /
Dynamic Coherency Composition Style Path

Planning Visibility Staging Cinematic
Discourse

He et al.
[HCS96]

Finite State
Machine Yes Limited No No No No No No

Christianson
et al. [CAH+96] Tree Model No Limited No No No No No No

Jhala & Young
[JY05] Tree Model No Yes Pre-

computed No No No Yes Yes

Elson & Riedl
[ER07]

Pre-set
Idioms No Yes Pre-

computed Yes Pre-
computed No Yes Limited

Li & Cheng
[LC08]

Probabilistic
Roadmaps Yes Limited No No Yes No No No

Assa
et al. [AWCO10] Correlation Yes No No No No Yes No No

Yeh
et al. [YLL12] Optimization No Yes No No Yes Yes No No

Our approach Director
Volumes Yes Yes Yes Yes Yes Yes No Limited

Table 3.1 – Comparing our cinematography system to main contributions in the domain. This table compares 7 properties of main
cinematography systems proposed in the computer science literature, together with the techniques that we implemented. The “Staging”
parameter characterizes the ability of the system to automate the staging of characters in the scene. The “Interactive/Dynamic”
parameter represents the ability to react to interactive events occurring in the environment. “Coherency” stands for the capacity to
enforce some degree of coherency in a sequence of shots. “Composition” is related to the possibilities the system have in changing
the composition in shots. “Style” stands for the ability to perform some variations in the directorial style. Only Elson07 and our
approach offer this possibility. “Path-planning” indicates whether the system is able to perform some camera motions inside the
environment. Finally “cinematic discourse” represents the possibility of maintaining a cinematic discourse over a number of events.
All in all, our approach fulfills most of the properties desired in a virtual cinematography system, and clearly represents a improvement
in comparison to previous approaches.

80

Conclusion

8 Conclusion
In this chapter we have presented a unifying approach to the problem of interactive

cinematography. The approach indeed handles viewpoint, editing and planning in a
real-time context. We address the innate complexity of well understood problems such
as visibility determination and path planning required in real-time camera control,
while tackling higher-level issues related to continuity between successive shots in an
expressive editing model. Our real-time cinematic engine encodes cinematographic
idioms and continuity-editing rules to produce appropriate edits and camera paths
from a set of narrative events and style indicators. The model relies on a spatial
partitioning, the Director Volumes, providing a characterization into visibility regions
(with full visibility, partial visibility or full occlusion) and characteristic viewpoints (the
Semantic Volumes). We reason on these Director Volumes to identify how, when and
where shot transitions should be performed. This semantic and geometric reasoning
relies on a filtering-based encoding of cinematic conventions together with the possibility
to implement different directorial styles. The expressiveness of our model stands in stark
contrast to existing approaches that are either procedural in character, non-interactive
or do not account for proper visibility of key subjects.

On one hand, as we stated earlier, not all elements of directorial style can be
modeled. Further, the few elements of style we have considered are insufficient to
express more complex directorial guidelines and more subtle compositions or edits. On
the other hand, we have proposed a working automated model for efficiently tackling
key components of film editing (particularly the composition of shots and editing rules,
according to a given directorial style). There is a real interest in using this model as a
tool to assist a cinematographer in his creative process. In the next chapter, we build
upon CineSys to propose an approach of film editing which (i) accounts for the quality
of the edit and (ii) provides directors with a novel and efficient workflow.

81

4Integrating Director’s Inputs into
the Editing Process

This chapter presents two approaches to the problem of editing an animated movie
that add a measure of the quality of the edit, and provide assistance to a cinematog-
rapher in his creative task. In existing approaches, the choice of shots and cuts is led
either by (i) the application of a restricted number of deterministic and manually pre-
encoded films idioms (one has to declare one idiom for each situation) or (ii) by relying
on continuity editing rules. These techniques are restricted to computing cinematically
“acceptable” sequences of shots and transitions. Further, it appears tedious for a user
to generate a sequence s/he consider satisfying, due to a lack in providing a real control
on the final edit. The user has to tune a set of parameters for which the impact they
will have in terms of final edit are not obvious. Particularly, the user has no control on
the moments of cuts, which is a key element in the art of building a good movie; and
has no mean to keep some part(s) of the movie, which s/he finds satisfactory, and make
changes on some other part(s) (one has to make changes on the system parameters,
then regenerate the entire movie).

In this chapter, we propose the first computational model dedicated to the qualita-
tive evaluation of an edit. We then propose to build upon CineSys, together with this
evaluation model, to assist a director in his creative process of constructing a movie
s/he finds satisfactory.

Note that Sections 2 and 3 stem from a joint work with Mathieu Chollet and
Rémi Ronfard from INRIA Grenoble (France), and that Section 4 stems from a joint
work with William Bares from Millsaps College (USA) and Roberto Ranon from the
University of Udine (Italy).

1 Contributions
Quality measurement of film edits. We present the first computational model

dedicated to evaluating the quality of an edit. In particular, we propose scores for
shots, cuts and pacing (rhythm at which cuts are performed), independently of the
film idioms used to generate them. The score for a shot is based on the Hitchcock
principle of showing action from the best angle [ST85], the score for a cut between
shots is based on the working practices of film and television [Tho93, Tho98] and
the score for pacing relies on a well-founded model to account for shots duration.

83

Integrating Director’s Inputs into the Editing Process

Efficient automated construction of well-edited movies. We introduce an effi-
cient search strategy for finding the best sequence of shots from a large number
of candidates generated by traditional film idioms. By building upon our quality
metrics, our approach enables separating correct from incorrect shot sequences.
In contrast to related work, we account for a precise enforcement of pacing and
study in detail the best moment to perform a cut, by precisely examining all pos-
sible edit points. We further provide the user with more control on the final edit,
through a specification of key shots as constraints during the search (i.e. shots
the user wants to maintain in the sequence).

Novel workflow for film preview. We propose a novel workflow based on the inter-
active collaboration of human creativity with automated intelligence that enables
efficient exploration of a wide range of cinematic possibilities, and rapid produc-
tion of a film preview. This workflow is the first to combine the creative intel-
ligence and skill of filmmakers with the computational power of an automated
cinematic engine.

Learning from examples. The approaches we propose learn editing preferences from
examples of human experts. In particular, we introduce a novel modeling of
film idioms, through transition matrices, and our work constitutes the first effort
toward learning cinematic idioms from live human camera work, instead of trying
to pre-encode a limited number of situations.

This chapter is organized as follows. We firstly present our quality measurement of
film edits (Section 2). We secondly present the search algorithm we propose to auto-
matically explore the possible sequences of shots and find the best film edit (Section 3).
We thirdly present The Director’s Lens (Section 4), our intelligent and interactive as-
sistant for film preview, that builds upon CineSys. We finally discuss the limitations
of our ranking-based approach and conclude on future research.

2 Film grammar rules

Evaluating the score of an entire sequence for a movie is built up from the scores
of its shots and transitions. We make the assumption that a cost function can be
computed for each fragment and cut in the sequence. We define a fragment as a piece
of a shot of duration ∆t, that we can express as a couple 〈i, t〉 where i denotes the
shot index, and t the time. The cost per shot fragment is evaluated as a weighted sum
of all violations of the rules of frame composition. And similarly, the cost of a cut is
evaluated as a weighted sum of all violations of the rules of continuity editing. The
cost associated with shot i at time t is then given by CS(i, t), and the cost associated
with a transition from shot i to shot j at time t is given by CT (i, j, t), expressed as

CS(i, t) =
∑
k

wSk ·CSk (i, t) CT (i, j, t) =
∑
l

wTl ·CTl (i, j, t)

where wk and wl are weights associated with each rule.

84

Film grammar rules

We furthermore consider a third key component of a movie: the pace in transitions.
We assume that the cost of an entire sequence of shots (i.e. a movie, which we denote
as m) w.r.t. pace can be computed as a sum of a cost on the duration of each shot:

CP (m) =
n∑
s=0

CPDur(e(s)− b(s))

where b(s) and e(s) are resp. the beginning and end time of shot s.
We finally build the cost function C of an entire sequence of shots as the weighted

sum of the costs taken on these three key components:

C(m) = WS ·

n∑
s=0

e(s)∑

t=b(s)
CS(s, t)

 +W T ·

[
n−1∑
s=0

CT (s, s+ 1, e(s))
]

+WP ·CP (m)

where WS , W T and WP are the weights associated with resp. the scores of shots, the
scores of transitions and the score of the pace in transitions.

In the next sections, we detail the key features and rules we consider in this evalu-
ation. These features and rules can be categorized into five classes: shot composition,
continuity editing rules, relevance of a shot, relevance of a transition, and pace in
transitions.

2.1 Shot composition
We evaluate the composition of a shot fragment according to (i) a score on visibility

of subjects and (ii) a score on the composition of subjects on the screen.
Before detailing the components of CS(i, t), we first introduce some useful notations.

Firstly, we will use K to represent the set of subjects that are within the frame in a
fragment f = 〈i, t〉. Secondly, we denote the on-screen location of eyes (middle of both
eyes) and the projected size of subject k in fragment f resp. as ek(f) and sk(f). Finally,
we introduce two vectors computed in the 2D screen space of a fragment f : the gaze
direction and the motion of a subject k (resp. gk(f) and mk(f)).

2.1.1 Visibility

CSV is = 0.538 CSV is = 0.340 CSV is = 0
Figure 4.1 – Visibility scores. Left: Poor. Middle: Better. Right: Best.

85

Integrating Director’s Inputs into the Editing Process

A good shot should maximize the visibility of the actions performed by the protag-
onists. To account for this feature, we express a visibility cost CSV is which measures
the occlusion degree of the projected bounding box of each protagonist

CSV is(f) =
∑
a

∑

i∈prtg(a)
j 6=i

occlusion(boxi, boxj)

where prtg(a) are protagonists of action a, boxi represents the projection of the bound-
ing boxes of actor i on the screen in fragment f , and occlusion(box1, box2) represent
the quantity of box1 that is occluded by box2. This occlusion is measured by using the
overlap of projections of both bounding boxes. Figure 4.1 displays three shots with in-
creasing visibility scores in a scene with two subjects. Shots with poor visibility scores
typically show subjects coming too close together, or hiding each other.

2.1.2 Look room

Following common practice, we favor shot composition where each key subject k is
given enough screen space relative to the image frame, especially in the direction in
which (s)he is looking. We compute this score as

CSLook(f) =
∑
k∈K

[ek(f) + λ (sk(f)) · gk(f)]

where λ is a scalar function of the subject’s on-screen size sk.

2.2 Relevance of a shot

CSAction = 0.8 CSAction = 0.3 CSAction = 0.2

CSAction = 0.7 CSAction = 0.5 CSAction = 0.2
Figure 4.2 – Action scores. Top: Action Drink. Bottom: Action Pour. Left: Poor.
Middle: Better. Left: Best.

86

Film grammar rules

Relevance of a viewpoint is measured by exploring its capacity to enhance a viewer’s
comprehension of the unfolding narrative events. Each event has a relevance value that
encodes its importance for the story (e.g. representing whether the event is a foreground
action, an establishing action, or a background action). Viewpoints that depict more
relevant events, from relevant viewpoints enforce the comprehension of the story and
will have a higher quality. We choose to evaluate the relevance of a shot with an
“Action” term, which measures the amount of the scene events which is missed in a
shot fragment f = 〈i, t〉

CSRel(f) = CSAction(f)

To this end, we define a cost table AS [a, s, p] which specifies the effectiveness of a shot
size s and a profile angle p conveying an action type a. This effectiveness is expressed
as a cost ranging from 0 (most effective) to 1 (least effective). For example, one can
prefer framing a subject speaking using a medium close-up from a front view.

The computation of the Action term over fragment f is expressed with a weighted
sum over all actions a occurring during this fragment. The weighting is expressed by
the importance imp(n) of an event at time t in the scene (the closer to 0, the more
important). a = type(n) represents the type of the event, while size(n, f) and pr(n, f)
represents resp. the shot size and profile angle of the viewpoint in fragment f w.r.t. the
main subject of narrative event n

CSAction(f) =
∑
n

imp(n) ·AS [type(n), size(n, f), pr(n, f)]

With a suitable choice of the AS [a, s, p] coefficients, the Action term can serve to
enforce the Hitchcock principle, which states that the screen size of subjects should
be proportional to their importance in the scene [ST85]. In our implementation, we
tabulate the values in AS [a, s, p] with four action types: facial actions (speak, listen,
watch, turn, nod), hand actions (lift, pour, drink, eat), feet actions (walk, sit down,
stand up) and no action (idle). In the 3 cases, AS [a, s, p] stores preferences for shots
showing the face, hands and feet with the largest possible screen size. For idle actions,
AS [‘idle’, s, p] stores preferences for shots showing the subjects with the least possible
screen size. Because screen size is a limited resource, minimizing CSAction has the effect
of allocating screen space according to the importance of actions. Figure 4.2 illustrates
the preferences for shot sizes and profile angles for the special case of two hand actions:
pour and drink.

2.3 Shot transitions

A transition between consecutive shots always causes discontinuity. The art of the
editor is to choose minimally intrusive transitions by selecting appropriate shots and
moments for cutting. A complete theory of what makes a cut intrusive is not currently
available, although there has been work in film aesthetics [Ond02, BC11] and cognitive
psychology [DV90, Smi05, ZM10] on the subject. For our purpose, we have found
useful to compute the cost of a cut as the sum of terms measuring typical grammatical
errors according to the classical style of continuity editing (continuities in the screen

87

Integrating Director’s Inputs into the Editing Process

positions, gaze directions and motion directions of subjects). Continuity editing is
the dominant style of editing in western cinematography and especially mainstream
Hollywood movie-making. The primary goal of continuity editing is to hide the cuts as
much as possible by avoiding all causes of screen discontinuities between shots. Such
discontinuities result in ungrammatical shot transitions. Ungrammatical cuts can also
be obtained when the screen positions, orientations and sizes of actors are so similar
that the viewer may be tricked to believe that the subjects are jumping around the
screen. Such jump cuts can be prevented by ensuring that the screen sizes and profile
angles of subjects change significantly between successive shots.

Before detailing the components of CT (i, j, t), we introduce some additional nota-
tions. First, in the following, we evaluate a cut performed from a fragment f1 = 〈i, t〉
to another fragment f2 = 〈j, t+ ∆t〉. We then use Ki to represent the set of subjects
that are within the frame in fragment fi. Finally, we use the Kroneker symbol and
refer to it as δ(x, y). For the record, the Kroneker symbol is defined as

δ(x, y) =
{

1, if x 6= y

0, if x = y

2.3.1 Screen continuity

CTScreen = 0.596

CTScreen = 0
Figure 4.3 – Screen continuity scores. Left: cutting from left to right has the leftmost
character jumping to the screen center resulting in a poor cut. Right: keeping the center
character in the same screen location produces a smooth cut.

The score of screen continuity in transitions prevents subjects who appear in two
successive shots to jump around the screen. Because the subject’s eyes are the most
important center of attention, we favor transitions which maintain the subject’s eyes
at the same screen location. We weight this term with the screen size of actors, so
that continuity in the foreground receives a larger reward than in the background. As

88

Film grammar rules

a result, screen continuity is enforced by minimizing

CTScreen(i, j, t) =
∑

k∈K1∩K2

savgk ·φ(‖ek (f1)− ek (f2)‖)

where φ is a non-linear function of the change in on-screen location (in terms of distance)
such as a sigmoid or threshold function. Each term in the sum is further weighted with
the average on-screen size savgk of the subject in the two fragments

savgk = sk (f1) + sk (f2)
2

Figure 4.3 displays two examples of screen continuity score.

2.3.2 Gaze continuity

CTGaze = 1

CTGaze = 0
Figure 4.4 – Gaze continuity scores. Left: the gaze direction of the main character
changes between the left and right images, resulting in a poor cut. Right: keeping the
gaze directions consistent results in a better cut.

Another important focus of attention when watching a movie is the gaze direction
of subjects. We propose a cost function that penalizes viewpoint changes that cause
apparent reversals in the subjects’ gaze directions. This cost is expressed as

CTGaze(i, j, t) =
∑

k∈K1∩K2

savgk · δ (sign [gxk (f1)] , sign [gxk (f2)])

where gxk(f) is the x component of gk(f). Figure 4.4 displays two examples of gaze
continuity scores.

2.3.3 Motion continuity

Motion direction of subjects in two successive shots represents another focus of
attention. The corresponding transition score penalizes viewpoint changes that cause

89

Integrating Director’s Inputs into the Editing Process

CTMotion = 1

CTMotion = 0
Figure 4.5 – Motion continuity scores. Left: the main character’s head is oriented
differently in left and right shots, resulting in a poor cut. Right: keeping the head
orientations consistent results in a better cut.

apparent reversals in the subjects’ motions. This score is expressed as

CTMotion =
∑

k∈K1∩K2

savgk · δ (sign [mx
k (f1)] , sign [mx

k (f2)])

where mx
k(f) is the x component of mk(f). Figure 4.5 displays two examples of motion

continuity scores.

2.3.4 Left-to-right ordering

The left to right ordering of subjects is another important factor for ensuring screen
continuity. Subjects whose relative screen location are reversed appear to be jumping
around, which attracts attention to the cut. We penalize such situations with the
following penalty cost

CTOrder =
∑

k,k′∈K1∩K2

savgk,k′ · δ (sign [exk (f1)− exk′(f1)] , sign [exk (f2)− exk′(f2)])

where exk(f) is the x component of ek(f). Unlike previous cases, each term is here
weighted with savgk,k′ , the minimum value of the average screen size of subjects k and k′

savgk,k′ = min
(
savgk , savgk′

)

This gives more importance to changes in the relative screen locations of two subjects in
the foreground, who are both the focus of attention. Figure 4.6 displays two examples
of left-to-right ordering score.

90

Film grammar rules

CTOrder = 1

CTOrder = 0
Figure 4.6 – Left-to-right ordering scores. Left: the foremost character moves from the
rightmost position to the leftmost position, resulting in a poor cut. Right: keeping the
relative ordering of all characters results in a better cut.

CTJump = 1

CTJump = 0
Figure 4.7 – Jump-cut scores. Transitions with insufficient change in size or orientation
w.r.t. actors do not make good cuts (left) while transitions with significant changes make
good cuts (right).

2.3.5 Change-in-angle-or-size

An editor should always avoid putting together two shots which are too similar to
each other. In other terms, a cut should be avoided between two viewpoints when there
is not sufficient change in either the apparent size or the profile angle of at least one
subject. Such a cut would be interpreted as a sudden change in the subject’s pose, also

91

Integrating Director’s Inputs into the Editing Process

known as a jump cut. We penalize this type of transitions by the following cost

CTJump =
∑

k∈K1∩K2

savgk · δ′ (|sk (f1)− sk (f2)| ,∆sk) · δ′ (|θk (f1)− θk (f2)| , α)

where θk(f) is the profile angle of actor k in fragment f , α is the minimum accepted
change in profile angle, and ∆sk is the minimum accepted change in the apparent size.
Further, we here introduce δ′, a modified version of the Kronecker symbol, which we
define as

δ′(x, y) =
{

1, if x < y

0, if x ≥ y
We thus favor transitions where a significant change in appearance occurs for each
subject on the screen; and we favor changes occurring on foreground subjects rather
than background subjects. Transitions with no change for all subjects receive the
highest penalty (see Figure 4.7).

CTSize = 1

CTSize = 0
Figure 4.8 – Size continuity scores. Left: cutting directly from medium close-up to
long shot results in a poor cut (the change in shot range is too strong). Right: cutting
to a medium shot results in a smooth cut.

We also penalize excessive changes in shot sizes, i.e. between a Long Shot and a
Close-up, because they make it more difficult for the viewer to recognize correspon-
dences between subjects in the two shots. This is enforced with the simple cost term

CTSize =
∑

k∈K1∩K2

φ (|sk (f1)− sk (f2)|)

where φ is a non-linear function of the size difference, such as a sigmoid or threshold
function (see Figure 4.8).

2.3.6 Action line continuity

In addition to preserving the continuity of subjects between successive shots, it
is equally important to preserve the direction of the line of action between subjects

92

Film grammar rules

CTLoA = 0

CTLoA = 1
Figure 4.9 – Line of action scores. In the left-most image, the gaze direction of the
main subject defines the line of action. The right-most image shows the second subject.
Top: the gaze direction of subjects are opposite, conveying that they are looking at each
other. The action line is maintained. Bottom: the gaze direction is the same for both
subject, breaking the action line. The camera has crossed the line, resulting in a poor
cut.

(usually the world line between their eyes or heads). Thus, when cutting between two
subjects A and B, the direction of the line (AB) should be preserved; even if the two
subjects are not simultaneously visible on the screen. This typical case occurs when
subjects are looking at each other: the cut is good when gaze directions cross each
other in the successive shots, which we express as

CTLoA =
∑

k∈K1−K2
k′∈K2−K1

savgk,k′ · δ (sign [exk (f1)− exk′ (f1)] , sign [exk (f2)− exk′ (f2)])

where exk(f) is x component of ek(f). Note that we also project the eyes of off-screen
subjects, without clipping to the image frame. As a result, the lines between all subjects
must retain their relative orientations when projected to the screen plane. Figure 4.9
displays two examples of score according to action line continuity.

2.4 Relevance of a transition
Relevance of a transition is measured by exploring its capacity to enhance a viewer’s

comprehension of successive narrative events and causal links between them. We choose
to evaluate the relevance of a transition with two elements: an “Action” term, and a
“View” term. The Action term measures the effectiveness in enforcing a continuity
in the story, through the use of a cut between two narrative events n1 and n2. The
View term measures the effectiveness in providing an acceptable link between these two
events, through the use of a cut between a first viewpoint conveying n1 and a second
viewpoint conveying n2.

93

Integrating Director’s Inputs into the Editing Process

To this end, we define two cost tables: AT (a1, a2) (where ai = type(ni)) and
V T (s1, p1, s2, p2 | a1, a2). AT specifies the effectiveness in cutting between two events
n1 and n2 w.r.t. their (causal) links in the story. V T specifies the effectiveness of a
transition between two viewpoints (each characterized by a shot size si and a profile
angle pi), knowing the two narrative events and their existing links in the story. Each
effectiveness is expressed as a cost ranging from 0 (most effective) to 1 (least effective).
For example, within in a dialog, a cut to a viewpoint that still convey the dialog may
be preferred to a cut to another event that has no link with the dialog. Similarly, when
a change in speaker occurs in the dialog, a cut from a OTS shot on the first subject
speaking and an OTS shot on the second subject speaking will probably be preferred,
rather than cutting to a viewpoint where the new speaker is not framed.

We expressed this relevance cost as the product of two costs CTAction and CTV iew,
intended to evaluate the effectiveness resp. on the Action term and on the View term

CTRel(i, j, t) = CTAction(i, j, t) ·CTV iew(i, j, t)

with
CTAction(i, j, t) = [imp(n1) + imp(n2)] ·AT [a1, a2]
CTV iew(i, j, t) = V T [size (n1, f1) , pr (n1, f1) , size (n2, f2) , pr (n2, f2) | a1, a2]

where imp(n) denotes the relative importance of narrative event n in the story.
The values in tables P TAction and P TV iew can be left under the control of the user, or

be inferred from example movie scenes.

2.5 Pace in transitions
In his book History of Film Style and Technology [Sal03], Barry Salt asserts that

shot durations in movies generally follow log-normal distributions – similar to sentence
lengths in natural language – and proposes to use the parameters of the log-normal
distribution as a signature of film editing styles.

Remember the 2-parameter log-normal distribution for a variable X can be ex-
pressed as a function of its scale parameter m and shape parameter ∑. The scale
parameter m is related to the mean µ of logX by the simple relation µ = logm. The
shape parameter is simply the standard deviation σ of logX. The resulting distribution
is asymmetric and unimodal.

Because shot durations are such an important element of film editing style, we
introduce a duration cost per shot, measuring the deviation from a log-normal law

CPDur(d) = (ln(d)− µ)2

2σ2

where d is the duration of the shot to evaluate.
The values for µ and σ can be left under the control of the user, be inferred from

the pacing of actions, or be inferred from example movie scenes.

In this section, we have introduced a computational model for evaluating an entire
film edit w.r.t. film grammar. We have studied different key features and rules to

94

An automated approach to constructing a well-edited movie

consider, and provided evaluation metrics for them. In the next section, we present an
approach to film editing that take full advantage of our quality measurement and build
upon CineSys to automate the task of editing a grammatically correct movie, while
providing a filmmaker with direct control on the final edit.

3 An automated approach to constructing a well-edited movie

In this section, we propose a general computational framework which provides the
user with an interactive process to generate a cinematic editing of a 3D animation.
Based on the previously presented quality metrics for shots and transitions, we first
cast film editing as selecting a path in time through a collection of takes (a take is a
continuous sequence of images from a given camera) and precisely deciding when to
cut in and out the takes. We then propose an algorithm suitable for on-line editing
which uses an efficient best-first search technique. The algorithm relies on short-term
anticipation to improve quality in cuts and produce movies consistent with the rules of
cinematography and editing. The user can further specify “key shots” to constrain the
search. In contrast to previous work, our method precisely examines all possible edit
points and relies on a well-founded model to account for shot duration.

The section is organized as follows. After presenting an overview of our system, we
detail how we generate takes, and report on the search process we propose for exploring
the possible sequences of shots. We then present a collection of results before discussing
the limitations of the system.

3.1 Overview

The generation process is decomposed into three major steps.
In a first step, we procedurally compute a collection of takes from the events
occurring in the 3D animation (the collection of takes is large enough to make
the search problem strongly combinatorial by generating many different camera
configurations – 80 in average per narrative event). All takes are cut into fragments
of duration ∆t and individually evaluated to establish their fragment quality.
In a second step, we construct a graph (which we refer to as the editing graph),
in which a node represents a fragment of a take i at time t, and an arc represents
either a cut-arc or a shot-arc. A cut-arc represents a cut from a take i at time t
to a take j 6= i at timet + ∆t. A shot-arc represents continuity (i.e. no cut) in a
take i between time t and time t+ 2∆t.
In a last step, a search process is performed through this graph to compute a
traversal of the animation sequence.

To integrate the user in the process of designing a sequence, constraints can be
added, e.g. enforcing camera positions at specific times in the editing graph (we refer to
these constrained shots as key shots). In this case, our system computes all intermediate
shots that match the key shots ensuring both continuity rules and appropriate pacing.
All variations in cinematic style are possible through the specification of numerous

95

Integrating Director’s Inputs into the Editing Process

parameters (pacing, preferred viewpoints for each type of event, preferred transitions,
...).

3.2 Computing takes
The first step consists in generating takes. We build upon our cinematic engine

to procedurally compute, for each narrative event in the story, the set of possible
viewpoints around subjects. A take is then associated with each computed viewpoint
– we here assume that takes are “static” (i.e. no camera motion) –, and the take is
made available for the duration of the event. We further extend this duration by using
a look-ahead of 1s before the beginning and after the end of the event, to allow the
director anticipating an event or making a short pause after conveying an event.

Sometimes, subjects involved in the event are moving so much that it is impossible
to keep them within the frame during the entire duration of the take (typically, in feet
actions). In such a case, we split the interval of time in which the event occurs into a
set of sub-intervals of duration at least 1s. We then apply the same generation process
as previously, with a look-ahead on each sub-interval.

We have generated a set of takes conveying the events of the story. We can now
use these takes to reason on possible sequences of shots and cuts.

3.3 Editing graph
Remember that a movie can be viewed as a sequence of shot fragments of duration

∆t (time step). Our editing problem can be cast into the choice, at each time step, of
the best take fragment to use w.r.t. the fragments that have been chosen at previous
time steps.

The construction of our editing graph is operated in two steps. We first split the
takes we have computed into fragments of duration ∆t. We then construct an oriented
graph (the editing graph) over all take fragments, which we will use as a way to explore
the possible sequences of shots, cuts, and moments of cut. Our editing graph can
be formalized as follows. Each node n of the graph corresponds to a take fragment
(n = 〈i, t〉, where i is the take index, and t the beginning time of the take fragment).
We then use two different types of arc in this graph: shot-arcs and cut-arcs. A shot-arc
as corresponds to a continuity (i.e. no cut) in the take i from time t to time t + 2∆t,
which we can formalized as the transition

as = 〈i, t〉 → 〈i, t+ ∆t〉

A cut-arc ac corresponds to a cut from a take i to a take j (i 6= j) at time t+∆t, which
we can formalized as the transition

ac = 〈i, t〉 → 〈j, t+ ∆t〉

At each time step t, we create a graph node 〈i, t〉 for each available take. We then
create a shot-arc between all pairs of node 〈i, t〉 and 〈i, t+ ∆t〉 when such nodes are
available; and we create a cut-arc between all pairs of node 〈i, t〉 and 〈j, t+ ∆t〉 (i 6= j)

96

An automated approach to constructing a well-edited movie

when such nodes are available. We further introduce two ’neutral’ nodes (of cost 0): an
initial node S (start) and and a final node E (end). Node S is linked to each available
node at time 0 with a ’neutral’ arc (of cost 0). Similarly, each available node at time
tend (end time of the story) is linked to node E with a cut-arc. Figure 4.10 illustrates
the construction of the editing graph. The editing problem is then cast into a search
of the best path from node S to node E, of which cost is computed as a sum of node
costs and arc costs. The cost of a node corresponds to CS , the cost of shot-arc is 0 and
the cost of a cut-arc corresponds to CT together with the cost of pace on the (current)
shot duration CPDur.

Figure 4.10 – Editing graph. Nodes (black dots) represent available take fragments.
Shot-arcs (in red) represent continuity in a take (i.e. no cut). Cut-arcs (in blue) represent
a cut from a take to another. The black squares (S and E) represent resp. the initial
node (start) and final node (end). They are linked to the takes available resp. at the
beginning and at the end of the story. The construction of a movie is then operated by
searching the best path from node S to node E in the editing graph.

We discuss the way the user can constrain the search, and how constraints are taken
into consideration in the editing graph, in Section 3.4.2.

3.4 A best-first search for film editing
The computation of an optimal sequence of shots consists in searching for the path

of least cost in our editing graph. Algorithms to solve these classes of problems (dy-
namic programming, A*-based algorithms) remain computationally complex in prac-
tice. Additionally, the problem we address displays a very large collection of solutions
which yield similar costs (e.g. consider the case of symmetric viewpoints around a sub-
ject), and for which an optimal computation seems unnecessary. We thus propose a
sub-optimal best-first search with anticipation through the editing graph.

97

Integrating Director’s Inputs into the Editing Process

Figure 4.11 – Searching for the optimal transition in the observation window to decide
whether to cut or stay in the shot. Each green/blue rectange represents a fragment
of a shot. On the top image, the current optimal shot sequence is drawn in red and
recommends to cut at time t. A scanning process over the observation window (window
in light blue) is performed to seek for a possible better moment. On the bottom image,
a sequence with a better cost is found (displayed in red). The observation window is
then shifted ahead one fragment in time and the process starts over.

3.4.1 Best-first search with anticipation

Given that the quality of the overall sequence strongly depends on the output of this
search process, we propose to enhance the search by proposing an informed best-first
search. This informed search uses a sliding observation window over the next fragments

98

An automated approach to constructing a well-edited movie

to locally reason on the best moment for a transition.
At a given depth in the search process (i.e. advancement in time over the fragments),

a critical decision needs to be made whether to stay within the current take or to
perform a transition to another take. To inform this decision, we rely on this observation
window over the next w fragments. We study within this window the best transition to
be performed, given the knowledge of the takes to come. If the best transition occurs
immediately, the cut is performed. If the best transition occurs later in the observation
window, we shift the window a fragment ahead and start the process over.

To compute the best moment for a transition inside the observation window we use
an incremental scanning process. The process is illustrated in Figure 4.11. Given the
current take is i, for a given time t in the observation window and for each take j 6= i,
we compute the cost CCut of a possible transition from shot i to shot j, and we compare
it to the cost CStay of staying in the current take for the next w fragments.

CCut(i, j, tc) = WS ·

 tc∑
tw=0

CS(i, t+ tw) +
w∆t∑
tw=tc

CS(j, t+ tw)

+W T ·CT (i, j, t+ tc) +WP ·

�
CPDur(dw + tc) + CPDur(w∆t− tc)

�
and

CStay(i) = WS ·

w∆t∑
tw=0

CS(i, t+ tw)

+WP ·CPDur(dw + w∆t)

where t is the current time (i.e. the beginning time of the observation window), tc is the
time of the cut within the observation window and dw is the duration of the current
shot at time t (i.e. the duration already spend in that shot before the observation
window). Further, for a shot for which (i) the end time is not yet known (i.e. occurs
after the end of the observation window) and (ii) the duration d is still lower than the
mode (i.e. ln(d) < µ), we set CPDur(d) to 0. This is to avoid penalizing such shots, as
the cut will occur later (and we do not know at which time yet). Indeed, in such a case
we cannot yet state that the shot duration will not be close to the mode, which would
correspond to the lowest cost of pace (i.e. 0).

Theoretically, to decide whether to operate a cut within w time steps or not, we need
to scan the entire observation window. This is the worst case, using a search algorithm
with complexity O(nw2) (considering n takes and w time steps in the observation
window). If the cost of staying in the current take i have the minimal cost, we have

CStay(i) ≤ min
j,tc

CCut(i, j, tc)

In this case, we extend the duration of current shot by ∆t and we shift the observation
window a fragment ahead. Another case is when there exists a take j such thatC

Cut(i, j, 0) = min
k
CCut(i, k, 0)

CCut(i, j, 0) < CStay(i)

In such a case we need to know whether to cut at the current time t to take j, or
to wait for a better moment. To implement this, the process explores the successive

99

Integrating Director’s Inputs into the Editing Process

fragments at tc = ∆t, tc = 2∆t, .. tc = w∆t in the observation window until a cost
lower than CCut(i, j, 0) is found. On one hand, if no better cut is found later in the
window, the current time t represents the best moment for a transition and a cut is
performed toward shot j. On the other hand, if any better cut is found later in the
window, we know that the best moment for cutting (no matter which) occurs later;
the observation window can then be shifted a fragment ahead. And so it is for the
initial case (continuing with the current take). We also know that the best moment for
cutting (no matter which) occurs later as soon as

CStay(i) ≤ min
j
CCut(i, j, 0)

This has two main advantages. First, we can evaluate cut moments with more antici-
pation on what occurs after the cut. Second, this provide a significant improvement to
the search complexity. In most cases, our scanning process have a complexity close to
O(n); and the worst case only occurs when a cut is necessary.

We fixed the size of the observation window to the mod m of the log normal law
(m = logµ): w = m/∆t. Indeed, the evaluation over the window only considers
one possible transition between takes, which optimally occurs every m seconds. Any
window size larger than the mod would provide an erroneous estimation (considering
one cut when two may occur) and any size smaller would not fully consider the cost of
the pacing over the next shot.

3.4.2 User Constraints: Key Shots

The process we describe enables a user to specify any number of key shots in the
sequence. Each key shot is expressed as the specification of the take to use during
a selected interval of time. One may also specify a given part of an edit, s/he finds
satisfying, as a sequence of key shots. Key shots thus represent constrained shots which
need to be integrated as mandatory nodes in the editing graph. These constraints
are implemented by modifying the topology of the editing graph. We first create an
intermediate ’neutral’ node Ki (similar to nodes S and E) to represent each key shot i
in the editing graph. Each node immediately before a key shot i is then only linked to
Ki, by a cut-arc. In a symmetric way, only Ki is linked to each node immediately after
the key shot, by a cut-arc. This enables recomputing some parts of the edit only, by
searching the editing graph (in parallel) between each pair of neutral node (i.e. from
node E to K1, from a node Ki to a node Ki+1 and from node Kn to node E).

3.4.3 Bidirectional search

The presented algorithm provides a good support for constructing correct movies.
There however remain a significant issue on the last shot, which may be of poor quality
due to pace. Indeed, our search algorithm may lead to a last shot with very short
duration, as all nodes (take fragments) at the end of the movie are forced to cut to the
final node E.

To improve the quality of the process, we propose to run a second best-first search
process, in reverse order between all pairs of neutral nodes. We then build a new graph

100

An automated approach to constructing a well-edited movie

Figure 4.12 – Searching for the optimal transition between forward and reverse searches
in the editing graph. Forward search may lead to an ending sequence of average quality
due to constraint imposed by the user on the last shot. A reverse process is then per-
formed from the last key shot to the first one. And in a final stage, we create a new
editing graph with all possible transitions, and compute the optimal transition between
both paths.

only composed of the forward and backward paths, together with all possible transitions
between the take fragments composing the paths (see Figure 4.12). Finally the optimal
transition between the two paths (the transition of minimal cost for the whole graph)
is computed using a simple graph traversal algorithm (given the topology, the number
of alternatives to evaluate is M the number of time steps).

This interactive process offers both the flexibility of fully automated computation
and the ability to let the user integrate his own shots.

3.5 Feature weights selection

Putting everything together, we now build the cost function for an arbitrary se-
quence of key shots, as a weighted sum of all its features. We choose the weights with
a linear discriminant analysis (LDA) of shots and cuts labeled as ’grammatical’ and
’ungrammatical’. LDA finds linear combinations of the cost features that minimize the
overlap of the transformed distributions [DHD00]. We separately set the weights with
a first LDA for the shot terms using shot examples, then for the cut terms using cut
examples. Finally, we arbitrarily set the relative weights WS , W T and WP to 2, 1 and
1, resp. representing the weighting of CS , CT and CPDur.

101

Integrating Director’s Inputs into the Editing Process

3.6 Experimental results
We have generated experimental results by using our system on the 1984 animation

content and annotated scene. The duration of the animation is 3 minutes, with over
70 actions occurring with overlaps. Currently, the duration ∆t of a fragment is set to
250ms (i.e. cuts between shots may occur every 250ms). For each action occurring
in the scene, we generate between 50 shots (single-subject actions) and 80 shots (two-
subject actions), corresponding to classical cinematic viewpoints.

Figure 4.13 – Two images illustrating the on-going actions (bottom part), the costs
(middle part) and selected shot (top part). The left shot clearly displays the action (the
character is speaking), and respects head-rooom and look-room. The right shot displays
the actor eating and guarantees a good visibility even if another character is in the frame.

Figure 4.13 displays two shots at different moments in a generated movie with
details on the current action and values of all cost functions. We now allow the user
to constrain the first shot of the movie by selecting a key shot. The system therefore
computes a sequence which respects all continuity rules. Figure 4.14 compares the
first shots with and without the key shot constraint. For the three-minute sequence
in 1984, the fully automatic method takes 15 seconds; generating key shots manually
from a gallery of candidate cameras and automatically recomputing the remaining shots
makes it possible to edit the entire scene in less than five minutes.

In this section, we have introduced a novel framework for virtual cinematography
and editing which, in contrast to previous approaches, considers an evaluation of the
quality of the movie edit. Experimental results demonstrate that our approach is
efficient in separating correct from incorrect shot sequences. Furthermore, we have
introduced an efficient search strategy for finding the best sequence of shots from a
large number of candidates generated by traditional film idioms.

102

An automated approach to constructing a well-edited movie

Figure 4.14 – Two different edits computed without a key shot at the beginning (top),
and with a key shot at the beginning (first shot from the bottom row is user-constrained).

One of the limitations of our system resides in the learning phase. The system re-
quires a substantial amount of correct and incorrect examples. In this task, it is however
possible to provide the system with real movies, in which frames would be annotated
with information used in our evaluation metrics (e.g. subjects’ eyes location, gaze di-
rection or size) – this would for instance enable approximating a given directorial style
–, even if such an annotation remains tedious. Further, even in case of manually cre-
ated edits, the learning phase provides a significant improvement compared to previous
systems. Indeed, our system can be parameterized through an explicit specification of
what leads to a “correct” or “incorrect” result, whereas existing approaches necessitate
the user to manually tune sets of parameters which are not directly related to the result
quality. In our system, the contribution lies in the fact that the user interacts with a
high-level parameterization of the system, and do not need to be concerned about the
low-level parameters of the system (i.e. feature weights).

A second limitation is in our evaluation of pace. Inherently, the log-normal distri-
bution of shot durations is the (involuntary) result of a filmmaker’s creative process,
which is further strongly linked to the flow of events. Using such an output as an
input of an editing system, when applied to a completely different flow of events, may
lead to an edit that seems unnatural. This raises an open question, about the best
moments for cutting. Relevance of the transitions timing strongly depends both on the
flow of narrative events, on their unfolding and on existing causal relations between
them. In particular, the extraction of critical moments for entering or leaving takes is
an interesting and open problem.

A third limitation of our system is that the user control on the final edit remains
limited and appears tedious. Indeed, one has to explore takes on multiple features: the
time, the number of subjects (e.g. single-subject events, two-subjects events, . . .), as
well as the shot type and shot size. In this task, the user is missing the provision of a
clear visualization of the events timeline so as to decide when to cut, as well as a mean
to compare a take with one another so as to decide where to cut to. Our approach is
however the first automated editing technique that gives a user a real opportunity to
interact with the final edit directly.

A last limitation of our technique is that it does not account for dynamic shots,
i.e. camera paths inside takes. Indeed, it is difficult to explore every possibility of
a moment to initiate and terminate a camera motion, as well as every possibility of
an initial and final camera configuration. Similarly, evaluating the quality of each

103

Integrating Director’s Inputs into the Editing Process

camera configuration on each camera path would lead to an exponential computational
complexity.

More generally, an important research issue is the discovery of film idioms and styles
from examples. For instance learning pace parameters from a user created edit is an
interesting problem; and more particularly in the case where shot durations of this edit
do not follow a log-normal distribution.

In the next section, we present an intelligent assistant which provides the user with
a more efficient workflow for creating a film edit and which enables learning cinematic
idioms from user live camerawork.

4 The Director’s Lens: an intelligent assistant for interactive
preview

In in this section, we build upon the limitations of our previous technique, to-
gether with a more general analysis of automated camera control techniques. We here
make two findings: it is difficult to (i) integrate all composition feature in the process
of positioning a camera and (ii) create camera paths that mimic cinematic camera
motions (particularly when considering complex scenes, with occlusions and dynamic
scene elements). In this section, we propose to combine automated control techniques
and manual control techniques. We here present the Director’s Lens, an intelligent
interactive assistant for crafting virtual cinematography using a motion-tracked hand-
held device that can be aimed like a real camera. Our Director’s Lens system builds
upon CineSys to compute, at the request of the filmmaker, a set of suitable camera
placements (or suggestions) for starting a new shot. These suggestions represent se-
mantically and cinematically distinct choices for visualizing the current narrative. In
computing suggestions, the system considers established cinema conventions of conti-
nuity and composition along with the filmmaker’s previous selected suggestions. His or
her manually crafted camera compositions are also considered, by a machine learning
component that adapts shot editing preferences from user-created camera edits.

4.1 Overview

The core of our Director’s Lens system relies on the automated generation of a large
range of suggested cameras and on the ranking of these suggestions according to the
last frame of the current shot.

As the user requests a list of suggestions (at time in the movie we denote ts), our
system performs a three-step computation:

from the screenplay the system selects the list of all narrative events overlapping
time ts or occurring within a second after time ts (this enables to suggest a shot
which anticipates an event);
for each selected event, the set of key subjects (characters, objects, buildings)
is extracted and our cinematic engine generates a wide collection of viewpoints
ensuring both a complete coverage of the key subjects and events, as well as

104

The Director’s Lens

significant difference between viewpoints (see detailed description in next Section).
Each viewpoint represents a suggested starting point for a shot;
each suggestion is then ranked by considering the enforcement of cinematic con-
tinuity rules between the current viewpoint and the suggested viewpoint, the
quality of the composition in the shot (how elements are spatially organized on
the screen), the relevance of the suggestion with relation to the action type and
the quality of the transition between the current shot and the suggestion.

Figure 4.15 – The automated computation of suggestions. Each selected action in the
screenplay leads to the computation of a set of spatial partitions (each partitioned area
represents a typical shot of the action). Suggestions are computed and ranked for each
area.

4.2 Computing suggestions

The first step consists in generating, for a given set of events occurring at time ts, a
range of viewpoints around participating subjects of these events. To that purpose, we
build upon our space partitioning into Director Volumes. For each volume, our process
generates three suggestions: a high-angle shot, a low-angle shot, and a medium angle
shot; and for each of these suggestions, a default screen composition is computed by
enforcing the rule of the thirds (key subjects are spatially arranged on the screen to
appear at the intersection of power lines [Ari76]).

105

Integrating Director’s Inputs into the Editing Process

4.3 Ranking suggestions
Once a set of suggestions is computed (for a two-subject configuration, over 240

shots are generated and for a one-subject configuration, 120 shots are generated), our
system performs a quality ranking process, whose result is used when displaying the
suggestions to the user (see Section 4.5).

The quality Q(s) > 0 of a suggestion s is defined as a weighted sum of qualities
assessing specific features of s:

Q(s) = wSComp ·QSComp(s) + wTCont ·QTCont(s) + wSRel ·QSRel(s) + wTRel ·QTRel(s)

with
QTCont(s) = wTLOI ·QTLOI(s) + wTChange ·QTChange(s)

where wi are weights associated with each feature. In these formulas, QTCont measures
the enforcement of continuity rules in the cut from current shot to suggestion s. QTLOI
then measures compliance with line-of-interest rule and QTChange the compliance with
the change-in-angle-or-size rule. QSComp represents the satisfaction of composition rules,
QSRel represents the relevance of the suggestion s with relation to the relevance of the
current event, and QTRel represents the relevance of the transition between the current
viewpoint and the suggestion s. All the QSi (s) and QTj (s) functions return positive real
values. We have implemented some of these quality functions by relying on either the
capacities of filters supplied by our cinematic engine (QTCont), or the evaluation function
we have presented in Section 2 (QSComp(s)).

We hereafter detail how we build each of these quality functions.

4.3.1 Respecting continuity in the cut

First, filters associated with continuity editing rules (the line-of-interest filter and
the change-in-size/change-in-angle filters) are switched to “annotation” mode. If a
volume violate a rule associated with a given filter, this filter will tag it with a specific
annotation. Then, the resulting suggestions are then evaluated w.r.t. these annotations:

QTX(s) =
{

1, if s respects the rule X
0, if s violates the rule X

4.3.2 Respecting classical composition rules

We first use the visibility filter supplied by our cinematic engine to prune suggestions
where a key subject is occluded by a static element of the scene. We then use the two
visual composition features (visibility and look-room) defined in Section 2, to rank the
remaining suggestions as follows

QSComp(s) = φ
�
CS(s)
�

with
CS(s) = wSV is ·CSV is(s) + wSLook ·CSLook(s)

106

The Director’s Lens

where the feature costs CSi are computed similarly as in Section 2.1, and wi denotes the
weight associated with feature i. In the top formula, φ represents a non-linear quality
function, such as a sigmoid or threshold function; φ(s) returns a value ranging from 0
(highest value of CS(s)) to 1 (lowest value of CS(s)).

4.3.3 Relevance of a suggestion w.r.t. current event

Relevance of a suggestion is measured by exploring the capacity of the viewpoint to
enhance a viewer’s comprehension of the unfolding actions. Each action has a relevance
value that encodes its importance for the story (e.g. representing whether the action is
a foreground action, an establishing action, or a background action). Viewpoints that
depict more relevant actions, from relevant viewpoints enforce the comprehension of
the story and will have a higher quality. To evaluate this feature, we use the “action”
term defined in Section 2, to rank suggestions as follows

QSRel = φ
�
CSAction(s)

�
where the feature cost CSAction is computed similarly as in Section 2.2. As previously,
φ represents a non-linear quality function, such as a sigmoid or threshold function;
φ(s) returns a value ranging from 0 (highest value of CSAction(s)) to 1 (lowest value of
CSaction(s)).

4.3.4 Relevance of transitions between viewpoints

We here measure the quality in transitions (i.e. cuts) by using transition matrices
accounting for both the "Action" and "View" terms described in Section 2.4. We model
a transition matrix as a stochastic matrix describing the transitions of a Markov chain.
We encode our transitions with a right stochastic matrix, i.e. a square matrix where each
row consists of nonnegative real numbers summing to 1. Each value tij of the matrix
T (i being the row index, and j the column index) corresponds to the probability of
performing a cut from viewpoint (i.e. Semantic Volume) i to viewpoint j. We use three
different matrices depending on whether the transition is performed inside the same
action (TS), between related actions (TR), or between unrelated actions (TU). The
quality of the transition is given by an affine function y = ax + b, where a > 0, b > 0
and x is equal to the value tkij related to the transition in the corresponding matrix Tk.
The values in the matrices therefore represent user preferences in performing cuts. In
our approach, the values in these matrices are updated by a learning process described
in Section 4.4.

4.4 Learning from the user inputs
We rely on a simple reinforcement learning technique to update the probabilities in

the transition matrices, using the cuts already performed by the user. Three distinct
transition matrices are encoded depending on whether the transition is performed:
1. during the same event (matrix TS): the two consecutive shots are conveying

the same action;

107

Integrating Director’s Inputs into the Editing Process

2. between related events (matrix TR): the two consecutive shots are conveying
two different actions, but the actions have a causal link (e.g. in case of dialog,
the first action being “Syme speaks Smith” and the second one “Smith answers
to Syme” for instance). A causal link is established when the two actions share
the same key subjects;

3. between unrelated events (matrix TU): the two consecutive shots are con-
veying two different actions, and there is no causal link between them;

These transition matrices actually define preferences in using some transitions be-
tween viewpoints over others. A viewpoint is identified by its type (orientation to
subject) and its size (Extreme Long to Extreme Close-up). Our system learns the tran-
sition matrices from the user inputs, by analyzing the successive choices in viewpoints
performed by the user. The learning process operates as follows. Each time the user
selects a suggestion as the new camera viewpoint, we first determine the transition
matrix Tk to consider by analyzing whether (1) the successive conveyed events are the
same, (2) the events are different but causally linked or (3) the events are different and
have no causal link. Then all the values tkij of the row i of the corresponding matrix
Tk (where i is the viewpoint used in the last frame of the current shot), are updated in
the following way. We first introduce a matrix Pk, representing the number of use of
each transition, in which all values pkij are initially set to 1. We then assume that the
current viewpoint at time ts is i. When a viewpoint of type n is selected as the start
of a new shot, the value pkin is increased by 1. The values tkij are then re-computed as
the number of use of such a transition compared to the number of transitions already
operated from viewpoint i

tkij =
pkij
cutski

, with cutski =
∑
x

pkix

The probabilities in the matrices influence the quality of a suggestion by ranking
preferred cuts higher (the quality of transition QTRel(s) is expressed as a function of tkij).

4.5 The Director’s Lens system
We now describe the interface and user interactions with the Director’s Lens system.

To demonstrate the system, we use as example a reconstruction from a sequence of
Michael Radford’s 1984 movie, together with a set of 70 actions which describe in
details the events occurring over the scene. The scene is composed of 5 key subjects
(Syme, Parsons, Julia, Smith and an anonymous member of the party).

In the following, we detail user inputs devices we use and the different possible
interactions enabled between a user and our system.

4.5.1 User input devices

The Director’s Lens system features a 7-inch HD LCD touch-screen mounted to a
custom-built dual handgrip rig (see Figure 4.16) that can be paired with either a 3dof
or 6dof motion sensor.

108

The Director’s Lens

When used with a 3dof sensor (rotation controls camera aim direction), the
two thumb sticks control camera position, and buttons adjust lens zoom, move-
ment/zoom speed, and record/playback functions.
When paired with an optical 6dof tracking system, a rigid cluster of reflective
markers is fixed to the device and one of the thumb sticks is configured to increase
or decrease lens zoom angle.

The spatial configuration (position/orientation) read by the tracking sensor is synchro-
nized with the spatial configuration of the virtual camera in the system, so that (besides
a distance scaling factor that can be adjusted) movements of the motion-tracked device
will correspond to analogous movements of the virtual camera in the 3D scene.

The system can also be used with just a desktop or notebook computer and a mouse.
In this mode, the preferred workflow is primarily one of clicking to select a suggested
camera placement for each shot to very rapidly compose a virtual 3D movie made with
shots featuring static cameras.

Figure 4.16 – Our hand-held virtual camera device with custom-built dual handgrip
rig and button controls, a 7-inch LCD touch-screen.

4.5.2 User interfaces and interaction

The user’s interaction with Director’s Lens is divided into two interface modes: (i)
explore suggestions (Figure 4.17) and (ii) manual control/movie playing (Figure 4.19).

Interface #1: explore suggestions The explore suggestions interface (Figure 4.17)
displays the suggestions for beginning a new shot from any instant in the recorded
movie. The suggestions are presented as small movie frames, arranged in a grid whose
rows and columns correspond to visual composition properties of the suggested cam-
eras. More specifically, the horizontal axis from left-to-right varies by decreasing shot
size (or distance) in order of Extreme Long, Long, Medium, Close-up, and Extreme
Close-up. The vertical axis from top-to-bottom presents suggestions from a variety of
camera heights in order of High angle, Medium angle, and Low angle. For example,
Figure 4.17 shows the suggestions that are proposed to transition from a shot depicting
the event “Syme eats” to a new shot where two parallel events occur: “Syme eats”
(which continues from the previous shot) and “Smith speaks to Syme” (the last frame
of the previous shot is shown in the reel at the bottom left). Notice, for example,

109

Integrating Director’s Inputs into the Editing Process

that all suggestions in the top row are viewed by cameras positioned above the virtual
actors.

When more than one suggestion is generated for each shot size and camera angle,
the system displays a stack of frames in that grid position, where the top one is the
most highly ranked (of all the suggestions in the stack). If the user wishes to browse
a stack (s)he can expand the actually displayed suggestions for a grid column or row
by clicking on the corresponding column/row heading. For example, Figure 4.18 shows
the suggestions grid expanded to display all suggestions for Medium size / Medium
angle shots.

When the suggestions do not refer to the first instant in the movie (i.e. there are
previous shots), the system allows the user to visually filter the presented suggestions on
the basis of respect of cinematography rules, namely the line-of-interest, and minimum
change-in-angle-or-size with respect to the previous shot’s last frame. For example, in
Figure 4.17 we have selected to display only suggestions that respect the line-of-interest
rule (i.e. the camera is on the same side of the line-of-interest as in the last frame of
the previous shot), while Figure 4.18 displays only suggestions where the camera has
at least a 30◦ difference in orientation w.r.t. the key subject (with respect to the last
frame of the previous shot).

The user selects a suggestion by touching its icon in the grid. The larger image
framed in the reel at the bottom left represents the previous shot to assist the user
in choosing or modifying a suggestion to best follow its predecessor, and shows the
currently selected suggestion to its right. The user finally confirms his or her choice
and goes to the camera control/movie playing interface.

Previous Shot
Last Frame

Number of
suggestions with

Extreme Long Shot,
High Angle

Cinematographic
Filters

Suggestions
with Close-Up
Shot Length

Suggestions
with Low

Camera Angle

Currently selected
 suggestion

Figure 4.17 – Screenshot of the interface in Explore Suggestions mode. In this ex-
ample, we filter suggestions w.r.t. the line-of-intersect rule (only suggestions that respect
this rule are displayed).

110

The Director’s Lens

Figure 4.18 – Screenshot of the interface in Explore Suggestions mode with expan-
sion of medium shots and medium camera angles that were visualized in Figure 4.17. In
this example, we also filter suggestions w.r.t. the change-in-angle rule (only suggestions
that provide at least a 30◦ difference w.r.t. previous frame are displayed).

Interface #2: manual control / movie playing The manual control/movie play-
ing screen (see Figure 4.19) allows the filmmaker to view the recorded movie or man-
ually take control of the camera to record a shot. The interface features a single
large viewport to display the 3D scene as viewed from a virtual camera correspond-
ing to either (i) the filmmaker’s choice for the current instant in the movie or (ii) the
position/orientation of the motion-tracked device (when the tracking of the device is
enabled).

When camera tracking is not enabled, the Play button allows one to play-pause the
animation, and visualize it from the currently recorded shots; while Previous Shot and
Next Shot buttons enables to move in the recorded movie shot-by-shot. With these
functionalities, the user can review the recorded movie, and decide where to introduce
a cut - this is implicitly introduced when one asks the system to explore suggestions.

When camera tracking is enabled, the virtual camera is driven by the motion track-
ing and lens zoom controls of the hand-held device. The tracking starts from the
currently used camera, so that, if the user is coming from the explore suggestions inter-
face (after having selected a suggestion), tracking starts from the virtual camera in the
configuration associated with that suggestion. By using the Turn on Recording button,
the user starts/Stops recording of the stream of virtual camera position, orientation,
and lens angle input data. Starting recording also starts playback of the pre-produced
animated character event and digitized audio dialog.

A graphic overlay can appear over the camera image to display an animated timeline
of the unfolding subject events and dialog. Horizontal bars along each row represent one

111

Integrating Director’s Inputs into the Editing Process

 Switch to
Suggestions

Interface

Browse
recorded shots animated timeline of

screenplay events

start / stop
camera

recording

play / pause
animation

toggle camera
 control

Lens zoom

Figure 4.19 – Screenshot of the interface in Manual Control / Movie Playing
mode. The overlay horizontal bars show an animated timeline of screenplay events and
their duration, together with an indication of the camera angle and framing that is
currently being used in the movie.

subject’s event or dialog. The length of each bar represents the duration of that event.
Bars scroll by as the animation plays to indicate the passage of time. This allows the
filmmaker to move the camera at the precise time in anticipation of an upcoming event
or spoken dialog in the screenplay. The overlay also displays the framing properties
(e.g. Medium, Low, etc.) of the current camera view.

Figure 4.20 demonstrates an example in which the system suggests shots which
match the composition of the user’s previous shot. In this scene, Smith pours gin while
seated facing Syme. The user has composed a shot (shown in the right image in the
figure) in which Smith fills the rightmost third of the frame, gazing to the left and
the camera is located to his left-hand side. Consequently, when we click to enable the
line-of-interest filter, the system generates suggestions in which no viewpoints violate
the line-of-interest by placing the camera on Smith’s right-hand side. Furthermore, all
viewpoints display Smith on the right-most third of the frame. Also note suggested
compositions leave more room ahead of Smith’s face, as did the user’s composition.

4.6 Results

Our system is coded in C++ and uses the OGRE real-time rendering engine, and a
custom-written abstraction layer to interface to a variety of button and joystick input
devices and motion trackers. In our tests we used 6dof rigid body reflective markers
with an A.R.T. optical tracker with 16 cameras covering a workspace of 4× 8 meters.
The application runs on a computer whose video output is routed over an HDMI cable
to the small LCD touch screen. The largest computational cost of the cinematic engine
is in finding visibility and Director Volumes, which depend on the geometric complexity
of the scene and the variations in position of the key subjects. In the pictured example,
the computation of suggestions takes around a second on a Intel Core i7 2.13 GHz

112

The Director’s Lens

Figure 4.20 – Given user’s composition for the current shot (shown in the left image),
the system suggests shots (right image) which satisfy continuity rules of editing.

notebook, which is acceptable since this computation is not required to happen in
real-time.

4.6.1 Applicability to Other Scenarios

The examples shown here feature mostly dialog events involving two or three char-
acters, and also generic events (e.g. “Parsons walks to the table”) for which proper
suggestions are computed. In general, the system can model any event where one
character or object, or group of objects (e.g. , cars driving, architectural elements) is
involved, and propose suggestions to properly frame it using different angles and shot
lengths. Note that for many situations (e.g. shooting of architecture, or crowds) there
are not many cinematographic conventions other than using establishing shots first,
and then closer shots. However, in general, the cinematography knowledge the system
uses can be expanded by designing additional Director Volumes for specific cases or
using the automatically learned tables of transitions. For situations that involve, in the
same instant, more than three characters, the system could be extended by employing
the method of hierarchical lines of action [KC08].

Scenes involving very fast action can be a bit problematic as the system might
generate suggestions that are good for the considered instant, and decrease in quality
after a short delay, for example because the framed character moves away or is covered
by some moving objects. This kind of situation would require the system either to
consider animations occurring in an interval of time, instead of an instant, or to suggest
camera movements, instead of just starting frames. However, this would be of much
greater computational cost than deriving suggestions for single instants. In these cases,
however, the filmmaker can at worst ignore the suggestions and deal with the situation

113

Integrating Director’s Inputs into the Editing Process

by taking manual control.
Finally, the system computes all suggestions using a single fixed lens field of view.

However, the user can quickly adjust the field of view by manual control. The system’s
search algorithm can be extended by taking into account variations on lens angle. In
practice, the set of lens angles to consider would be limited to model the cinematography
practice of using a small number of user-selected “prime” or standard lenses.

4.6.2 User Feedback

While we do not currently have results from formal and extensive user evaluations,
a few videographers have tried the system, reporting great satisfaction in using it.

In general, users found the system workflow refreshing compared to mouse-based
solutions, were very willing to try it, and could rapidly use it to produce results. In
our tests, after a very brief introduction to the system, users familiar with camerawork
could shoot a 3 minutes video of the 1984 scene in around 10-15 minutes, including
taking decisions on camera angles and cuts. For comparison, producing a video for the
same animation sequence took an expert user a few hours of work using 3DS Max. The
reason for the huge difference in time comes from the fact that with typical animation
software tools one is forced to a workflow where cameras have to be manually positioned
and animated, and then the shot can be watched, and often one has to go back and
forth between cameras modifications and testing the result. Furthermore, there’s the
complexity of manually keeping track of timings and motion curves, making sure that
edits occur in the correct place and time.

While the use of a motion-tracked virtual camera is surely pivotal in reducing the
amount of time needed, we can hypothesize that suggestions also played a role, as in
general users needed to make very small movements to refine the suggestions and find
their ideal starting camera positions. Moreover, from our feedback with professionals
in the development of motion-tracked virtual cameras, we know that having to walk
around in the tracked space to explore angles and distances is perceived as a real issue.
Finally, users more experienced in real camerawork appreciated on-screen information
overlays of character actions and their timing while shooting.

The interface for browsing suggestions by shot size and height was considered easy
to learn and effective for a videographer, and the possibility of quickly visualizing many
alternatives was very appreciated, though not all users agreed with each suggestion.
This is expected since the perceived quality of a suggestion is a subjective factor,
which changes from one videographer to another. However, users’ attitude towards the
cinematography engine work was positive, mainly because the system does not force
one to any shooting or editing style, and suggestions can be ignored. However, many
times, they caused the videographer to consider solutions he had not thought about,
thus enhancing creative thinking and exploration.

While a few experiments have been done in combining human expertise with au-
tomatic camera planners, we believe this work is the first attempt at innovating the
shooting process of CG animations, by providing intelligent and adaptive support in
creating shots. In the shooting of CG movies, video game cinematic scenes and ma-

114

Discussion and Conclusion

chinima, the system has the potential of making the process much easier and quicker
than current methods. From our early tests, unlike existing automated systems which
rely on pre-coded cinematic knowledge to cover all anticipated scenarios, our interac-
tive approach proves effective even if no suggested viewpoint is "perfect" in the user’s
creative judgment.

5 Discussion and Conclusion
In this chapter, we have introduced a novel framework for virtual cinematography

and editing which adds a cost-driven evaluation of the key editing components. We
have further proposed two ranking-based approaches to editing a movie, that build
upon the proposed evaluation metrics to assist a filmmaker in his creative process. We
have introduced an efficient search strategy for finding the best sequence of shots from
a large number of candidates generated from traditional film idioms, while providing
the user with some control on the final edit. We further enable enforcing the pace in
cuts by relying on a well-founded model of shot durations. We have then presented an
interactive assistant whose result is a novel workflow based on interactive collabora-
tion of human creativity with automated intelligence. This workflow enables efficient
exploration of a wide range of cinematographic possibilities, and rapid production of
computer-generated animated movies.

In the last chapters, we have relied on the concept of Director Volumes that pro-
vide a good support in representing and solving viewpoints corresponding to a given
sub-set of visual composition elements. This space representation is however prone to
some issues: (1) volumes remain expensive to compute, (2) they do not allow mod-
eling all composition features, thus necessitating to re-evaluate computed viewpoints
w.r.t. other features and (3) enforcing composition features while moving the camera is,
as in most existing approaches, difficult to implement with this model. More generally,
due to computational cost, all existing automated camera control techniques reduce the
search of a camera configuration by first searching the camera position, then comput-
ing algebraically an orientation corresponding to this camera position. Because of this
reduction, it is really difficult to find a camera configuration satisfying all composition
features; and particularly the exact position of subjects on the screen, as this feature
is strongly dependent of the camera orientation.

In the next chapter, we propose and investigate a novel and robust space repre-
sentation which, in contrast to existing approaches, allows taking the whole camera
configuration (position and orientation) into consideration when searching for a solu-
tion camera configuration.

115

5An Efficient Approach to Virtual
Camera Control: The Toric Space

As presented in our state of the art, a large range of computer graphics applications
rely on the computation of viewpoints over 3D scenes that need to display a number of
characteristic composition properties (e.g. the on-screen position, size, vantage angle or
visibility of key subjects). Simplified versions have been tackled with straightforward
vector algebra approaches (e.g. within an iterative technique [Bli88]) that compute an
approximate solution. More expressive versions are generally casted as non-linear op-
timization problems in a 7 degree-of-freedom search space, i.e. computing the camera
position, orientation and field of view, given a number of composition properties ex-
pressed and aggregated in a single viewpoint quality function which is then maximized.
Given the size of the search space and the computational cost in the evaluation of com-
position properties (typically the visibility of subjects), this optimization process is a
time-consuming task and hampers the use of evolved composition techniques in most
applications.

An analysis of the problem and current solutions reveals a central issue. Aggregating
quality functions for all the properties reduces the capacities to guide the solving process
through the search space, therefore leading to techniques which explore large areas of
the search space without solutions. The specific problem of viewpoint computation is
transformed into a general search process for which it is difficult to propose efficient
and general heuristics. In the context of a dynamic scene, one generally re-executes this
search process at each time step. The use of optimization-based approaches therefore
lead to variations in the output camera viewpoint, which causes camera stability issues.

In this chapter, we introduce a novel and efficient approach to virtual camera con-
trol. Based on a simple parametric model of the camera configurations space, we reduce
the search space and consider both the camera position and orientation in the search.
We first address an important visual property in virtual camera composition: the speci-
fication of exact on-screen coordinates at which key subjects should project. We express
the solution space for each couple of subjects as a 2D manifold surface. We demon-
strate how to use this manifold surface to solve Blinn’s spacecraft problem [Bli88] with
a straightforward algebraic approach, and extend the solution to three subjects. We
secondly extend this parametric model as a novel 3D search space, in which most of
classical visual properties can be easily expressed. The result is a robust and efficient
approach which finds a wide range of applications in virtual camera control and more
generally in computer graphics.

117

An Efficient Approach to Virtual Camera Control: The Toric Space

1 Contributions
The key contributions of this chapter are the following:

The Toric Manifold We provide a novel way to express, in a 2D manifold represen-
tation, the solution space of the exact on-screen positioning of two subjects. We
then provide an algebraic formulation using this manifold which is the first to
solve Blinn’s spacecraft problem [Bli88] without resorting to an iterative tech-
nique. We further provide an expression of the on-screen positioning of three or
more targets as a search in a 2D space rather than in a 6D space (as performed
in most of the literature).

The Toric Space We provide of a novel 3D search space (that we refer to as Toric
Space), as an extension of the Toric Manifold concept, in which most of classical
visual properties can be expressed and combined. We show how to compute
algebraic solutions, or a good approximation, to expressive composition problems
(e.g. on-screen position, vantage angle, distance or projected size of subjects) in
the Toric Space. Furthermore, an inherent properties of our Toric Space is the
provision of a mean to dynamically enforce a set of visual properties on moving
subjects and to perform live editing. Particularly, our work provides the first
model that enables expressing, in a simple way, continuity editing rules in 3D.

Combination of expressive visual properties We propose an efficient algorithm
to combine a set of expressive visual properties and compute a representative set
of solution viewpoints in the Toric Space. As an extension, our algorithm provides
a mean to detect potential issues in the application of visual constraints (e.g. a
conflict between two or more constraints).

The chapter is organized as follows. Firstly, we show how the exact on-screen
positioning of two subjects can be expressed in a 2D manifold. We show how Blinn’s
spacecraft problem [Bli88] can be solved by using this manifold, and how to extend to
three (or more) subjects. Secondly, we show how this model can be extended to a 3D
search space so as to tackle more expressive composition problems. We provide the
expression of a range of classical visual properties in this space then show how to tackle
the combination of constraints for a range of applications.

2 Reducing search space in virtual camera composition
By focusing on the problem of composing two subjects on the screen, our objective

is to show that large regions of the search space can be discarded. For this purpose,
we illustrate the quality of the on-screen positioning of two subjects as a 2D heat map.
Figure 5.1 presents a 2D topview of a scene comprizing two subjects. Regions around
the subjects are colored w.r.t. viewpoint quality (expressed as the distance between the
desired and actual on-screen positions of subjects), from dark red (highest quality) to
dark blue (lowest quality) through yellow and green (intermediate quality). Note how
the region with highest quality is restricted to a small continuous portion of the whole

118

Tackling exact on-screen positioning of two subjects: The Toric Manifold

search space. In the following section we show that the entire solution set for the exact
on-screen positioning problem can be determined with simple mathematical concepts,
and that this model serves as a cornerstone for the resolution of more complex camera
composition problems.

Figure 5.1 – Heat map representing the quality of on-screen composition for two sub-
jects (white points) for a region of camera configurations (topview of a the 3D scene).
Each colored point represents a camera configuration. Dark red areas are regions of
good quality viewpoints (i.e. good compositions) while dark blue areas are regions of
bad quality viewpoints. Green regions represent average quality viewpoints. Note that
the best viewpoints are very local to a given curve around the subjects.

Definition. Let two vectors −→u and −→v . We denote the oriented angle between −→u and
−→v asØ�(−→u ,−→v), and the non-oriented angle between −→u and −→v as

∣∣∣∣Ø�(−→u ,−→v)
∣∣∣∣.

3 Tackling exact on-screen positioning of two subjects:
The Toric Manifold

In this section, we show that the range of solutions for the exact composition of
two subjects on the screen is a 2D manifold shaped as a spindle torus (we will refer
to it as Toric Manifold) and that the manifold can be explored using two meaningful
parameters θ and ϕ (see Figure 5.3). We then use this formulation to easily solve
Blinn’s spacecraft problem [Bli88], and show how to generalize the approach to three
and more subjects.

3.1 Solution in 2D
We first provide an intuition of our model by studying the 2-subject on-screen

positioning problem in 2D (i.e. in the plane). In this case the screen dimension is 1D.

119

An Efficient Approach to Virtual Camera Control: The Toric Space

The goal is to find a 2D camera position P such that two subjects of world positions A
and B (A 6= B) project respectively at normalized screen positions pA, pB ∈ [−1; +1],
knowing the camera field of view φ. We here assume that A is the left-most subject
(i.e. pA < pB).

Theorem. (Inscribed Angle Theorem) The set of points P satisfying Ú�(−−→PB,−→PA) = α

is equal to the arcøAB (excluding A and B) of a circle C of center O passing through

A and B, such that Ú�(−−→OB,−→OA) = 2α (see Figure 5.2). The arcøAB then goes from A to
B in the counterclockwise direction, and the radius r of C is equal to AB

2 sinα .

Figure 5.2 – The range of solutions for the exact composition of two subjects A and B
on the screen is displayed in red. The set of points satisfying a given angle α is exactly

the arc÷AB of the inscribed circle centered on O. MoreoverÚ�(−−→OB,−→OA) = 2α.

In our case, α is easily expressed from the on-screen distance between A and B and
the fixed field of view φ. We introduce two points in the camera coordinate system,
projecting respectively at pA and pB on the screen:

pcamA

�
pA
S

; 1
�

and pcamB

�
pB
S

; 1
�
, with S = tan(φ)

The solution of our 2D problem is then the arcøAB corresponding to α = Û�(−−→pcamB ,
−−→
pcamA)

To compute the direction vector −→f of our 2D camera, we also know to haveÙ�(−→PA,−→f) = φ

2 · pA and Ù�(−−→PB;−→f) = φ

2 · pB

By using the same theorem we know that the line of direction −→f and passing through

P intersects the circle C at a point F such thatÛ�(−−→OB,−−→OF) = φ· pB, and is tangent to C
when points P and F coincide. The camera orientation is thus algebraically determined
from the camera position (see Figure 5.2).

120

Tackling exact on-screen positioning of two subjects: The Toric Manifold

As a conclusion, in 2D, the range of solutions to an exact on-screen positioning
of two subjects is described with a single angular parameter θ ∈]0 ; 2(π − α)[. θ

represents the angle (−−→OP,−−→OB), P being the position of the camera.

3.2 Solution in 3D
We now consider the same composition problem in 3D. The screen dimension is now

2D, and the goal is to find a 3D camera position P such that the two subjects A and B
(A 6= B) project respectively at normalized screen positions pA (xA; yA) , pB (xB; yB) ∈
[−1; +1]2, knowing the camera field of view φ and its aspect ratio a. Note that φ here
represents the field of view on the x axis (representing the left-to-right direction on the
screen). We also assume that A is the left-most key subject (i.e. either xA < xB, or
xA = xB and yA 6= yB).

(a) (b)

Figure 5.3 – Example of 3D solution set for 2 subjects. Subjects A and B are dis-
played resp. in red and green. (a) View of the solution set (a two-dimension para-
metric space (θ, ϕ)), for the on-screen projections of A and B, resp. pA (−0.33;−0.33)
and pB (+0.33; +0.33). (b) The result obtained from the viewpoint parameterized with
θ = π − α

2 and ϕ = π

6 .

As previously, we introduce two points described in the camera coordinate system,
projecting respectively at pA and pB on the screen:

pcamA
xA
Sx

; yA
Sy

; 1 pcamB
xB
Sx

; yB
Sy

; 1

with Sx = tan(φ) and Sy = 1
a

· tan(φ).
Remember the previous section. By considering a plane P defined by the two points

A and B, together with a third point C (not lying on the line (AB)), the solution of

our 3D problem on plane P is a 2D arc AB corresponding to α = (−−→pcamB ,
−−→
pcamA)

121

An Efficient Approach to Virtual Camera Control: The Toric Space

We therefore have the solution of our problem for an arbitrary plane. Let’s now
consider that point C is the center of the inscribed circle in P, that we previously called
O. And let point I be the middle of segment AB. Note that, from the definition of
the solution in 2D, we know to have OI = AB

2 tanα . We build a plane Q, defined by the
point I and the normal vector −→n = −−→AB. The set of possible positions for O is then
the circle CO of center I and radius AB

2 tanα defined in the plane Q. This, together with
the solution of our problem in an arbitrary plane containing A and B, defines a unique
solution set for the camera position. This solution set is a 2-parameter manifold M
shaped like a spindle torus, that we refer to as Toric Manifold (see Figure 5.3).

We now show how to compute the camera orientation that satisfies the composition,
assuming a camera position P ∈ M. We first construct an initial camera orientation
(quaternion) qi from an orthonormal frame made of three unit vectors: a forward (look-
at) vector −→fi , a right vector −→ri , and an up vector −→ui . They are given by

−→ui = −−→PB ×−→PA scaled to unit length

−→
fi =

� −−→
PB∥∥∥−−→PB∥∥∥ +

−→
PA∥∥∥−→PA∥∥∥
�

scaled to unit length

−→ri = −→fi ×−→ui

Note that −→ui is normal to the supporting plane P, and that −→fi and −→ri belong to P.
The quaternion qi here represents a “default” composition of A and B

(i.e. yA = yB = 0 and xA = −xB). We then compute the rotation (quaternion) qc such
that, when applied to qi, points A and B project at the appropriate locations on the
screen (i.e. pcamA and pcamB). qc is computed in a way similar to qi, by replacing −→PA by
−−→
pcamA and −−→PB by −−→pcamB in the formulas, then computing an orthonormal frame made of
unit vectors fc, rc and uc. The solution camera orientation q is finally given by

q = qi · (qc)−1 (5.1)

Note that qi and qc are algebraically determined from respectively the camera position,
and the desired on-screen composition.

As a conclusion, in 3D, the range of solutions (6D camera configurations) to the
exact on-screen positioning of two subjects is described with two angular parameters
θ ∈]0 ; 2(π − α)[and ϕ ∈]− π ; +π]. ϕ represents the angle (in the circle CO) defin-
ing the point O; thus defining the supporting plane P. As previously, θ then represents

the angleÛ�(−−→OP,−−→OB) in this plane.
In other words, to each 2D point on our Toric Manifold corresponds a unique 6D

camera configuration (position and orientation) satisfying this exact 2-subject on-screen
positioning. The world (Cartesian) coordinates of a given viewpoint P (θ, ϕ) of our Toric
manifold can then be computed in the following way. First, we define the reference
position O0, that we consider as the center of the inscribed circle for ϕ = 0, such that

122

Tackling exact on-screen positioning of two subjects: The Toric Manifold

−−→
IO0 has a z component equal to 0. Second, we compute the vector −→n0 normal to the
corresponding supporting plane P0

−→n0 = −−→O0A×
−−→
O0B scaled to unit length

Third, we build two quaternions qθ and qϕ as the rotations resp. of θ radians around
the axis −→n0 and of ϕ radians around the axis −−→AB scaled to unit length. The position
of P (θ, ϕ) on the manifold is then given by

−→
P = −→I + qϕ ·−−→IP0 (5.2)

with P0(θ, 0) (belonging to P0) such that
−−→
IP0 = −−→IO0 + qθ ·−−→O0B

In the following sections, we show how our model is applied to the resolution of
exact composition problems.

3.3 Application #1: Solution of Blinn’s spacecraft problem
The problem presented by Blinn [Bli88] is similar to the following. Where to put

the camera and how to set its orientation knowing (i) the result on-screen positions of
two key subjects A and B, (ii) the distance d between the camera and the subject B
and (iii) a given vector (a non-null vector −→v starting from B) that must appear vertical
and pointing “up” on the screen? An illustration of this problem is given in Figure 5.6.
To our knowledge, we here propose the first general technique to compute the exact
solution (or range of solutions) to this on-screen composition problem.

On-screen positioning constraint We can already state that the solution of Blinn’s
problem belongs to a 2D manifold as defined in Section 3.2.

Distance constraint We here make the assumption that α is lower than π/2; we
do not consider wide angle views, but the solution(s) for α ≥ π/2 can be computed
with a similar resolution. By using the analytic solution of the on-screen positioning
problem in 2D (Section 3.1), the distance constraint is quite simple to resolve. Indeed,
let’s define a point B′ as the symmetric point to B w.r.t. the center point O of the
inscribed circle. We will use the properties between angles and edges in the triangle
BPB′ which is rectangle in P . Let’s then define the angle β as

β =
Û�
(−−→BP,

−−→
BB′) = 1

2
Û�
(−−→OP,

−−→
OB′) = cos−1

�
d

2r

�
Then we can state that there are 0, 1 or 2 solutions to this distance problem:

no solution if d = 0 or d > 2r
a single solution if d ∈]0 ; AB]: θ = π − 2β

123

An Efficient Approach to Virtual Camera Control: The Toric Space

Figure 5.4 – Illustration of the method used to solve a distance-to-B constraint. The
distance BP (P being the camera position) is d meters. The segment BB′ is a di-
ameter of the inscribed circle of radius r. The angle β = cos−1 d

2r corresponds to

(−−→BP,
−−→
BB′) = 1

2(−−→OP,
−−→
OB′). The solution for (−−→OP,−−→OB) is then θ = π ± 2β, with the

restriction that P must lie on the arc AB (in red).

a single solution if d = 2r: θ = π
two solutions if d ∈]AB ; 2r[: θ = π ± 2β

The resolution method is illustrated in Figure 5.4. Each solution θn in 2D works in 3D
since they are not dependent of the value of the parameter ϕ (vertical angle). Such a
solution to the distance constraint can therefore be viewed as a circle Cn lying on the
Toric Manifold; this circle is such that every point of the circle is at a distance d to B,
i.e. this is the set of points P (θ, ϕ) such that θ = θn on the manifold.

“Up” vector constraint In the following, we will assume that the position of the
camera satisfying all the composition constraints is P . As stated above, P belongs to
a circle Cn defined by the parameter θ = θn (solution to the distance constraint). We
then search for the appropriate value of ϕ (if one value exists) such that P (θn, ϕ) is
solution to this last constraint.

Let us consider −→u the up vector of the camera (computed from the quaternion q

described in equation Equation 5.1) at position P , and −→w the vector representing −−→PB.
Solving Blinn’s problem corresponds to finding a position P on the circle Cn such that
the two following constraints are satisfied.
1. the vector −→v must appear vertical on the screen. This involves that −→u , −→w and
−→v are coplanar.

2. −→v must point “up” on the screen. This implies −→u ·−→v > 0.
From Equation 5.2, we know that the camera configuration (i.e. its position and

orientation) is defined as a rotation of a reference configuration, in which the camera

124

Tackling exact on-screen positioning of two subjects: The Toric Manifold

position is Pn,0(θn, 0) belonging to the circle Cn, by an angle of ϕ radians around the
axis −−→AB. Our problem is then similar to finding the rotation of ϕ radians around the
axis −−→BA = −−−→AB (scaled to unit length) to apply to the vector −→v such that it appears
vertical and points “up” on the screen when the camera position is set to Pn,0. Instead
of searching the camera position P on the circle Cn, we build a circle C representing the
range of possible positions for the extremity of the vector −→v , and look for a position
on C such that the previous property is satisfied.

Before solving this dual problem, let us define three new vectors: −−→un,0 the up vector
of the camera when at Pn,0, −−→wn,0 the vector −−−→Pn,0B, and −→v0 the vector −→v rotated by an
angle of ϕ radians around −−→BA (i.e. the solution vector). We then solve the problem as
follows.

We first define a plane P by the point P0,n and a normal vector −→n = −−→u0,n ×−−→w0,n
(scaled to unit length). By definition, B belongs to P. We then define a half-plane
PH ⊂ P delimited by the line L of direction −−→wn,0 passing through Pn,0. The points
belonging to PH are located in the direction of −−→un,0. This half-plane defines the set of
vectors starting from B that appear vertical and pointing “up” on the screen when the
camera is positioned at Pn,0.

We then define an other plane Q by a normal vector −→t = −−→AB (scaled to unit
length) and a point F given by −→F = −→B +−→t · |−→v |· cos(π − γ), where γ = (−→t ,−→v)
(NB: F belongs to the line (AB)). We then define the circle C as the circle of center F
and radius r′ = |−→v |· sin(π − γ) in the plane Q.

Figure 5.5 – Resolution of Blinn’s spacecraft problem. The vector (in black) starting
from B must appear vertical and pointing “up” on screen. Subjects A and B are drawn
resp. in red and green. The camera position P is a solution to the distance constraint
(see Figure 5.4), corresponding to a given value θ = θn, and located at a given vertical
angle (ϕ0 = 0) of the manifold. The red circle represents the appearance of −→v depending
on the vertical angle ϕ applied to the viewpoint P . The half-plane (in blue) represents
the set of vectors starting from B that appear vertical and pointing “up” on screen (−→u is
the up vector of the camera when at P , and −→w represents −−→PB). The solution of Blinn’s
problem is given by the intersection (E′) of the half-plane and the circle, and provides a
mean to compute the rotation ϕ to apply.

125

An Efficient Approach to Virtual Camera Control: The Toric Space

Figure 5.6 – Example solution of Blinn’s spacecraft problem. Subjects A and B are
drawn respectively in red and green. The camera must satisfy desired exact on-screen
positions of A and B, and be d meters away from subject B. An additional constraint
is that the vector (in black) starting from B must appear vertical and pointing “up” on
screen.

The solution value of ϕ is finally given by using the intersection(s) of the half-plane
PH and the circle C. In other words, we compute the solution in a 3-step process:
1. we compute the intersection I of PH with Q (none, a half-line or the half-plane
PH itself);

2. we compute the intersection(s) E′ of I with the circle C in the plane Q;
3. the vertical angle ϕ that is solution to our problem is then given by ϕ =Û�

(
−−→
FE′,

−−→
FE).

Figure 5.5 provides an illustration of this geometric resolution, and Figure 5.6 provides
an example of solution computed with this method.

By using our method, the overall Blinn’s spacecraft problem (on-screen positioning,
distance and “up” vector constraints) is solved algebraically in about 0.01ms per frame.

3.4 Application #2: Solution for three or more subjects
We now take an interest in the problem of finding a camera configuration satisfying

the exact on-screen positioning of three or more subjects (abstracted as points).
This could be viewed as a PnP (perspective n-points) problem. PnP problems

estimate the position (and sometimes the orientation) of an image sensor given the
obtained on-screen projection of a well known pattern composed by n points. For
instance, some techniques have been proposed that use analytic resolutions for problems
involving a given number of points (e.g. P3P or P4P problems) [FB81, Hor87, HCLL89,
DRLR89] or an iterative resolution for the more general PnP problem [DD95]. However,
in PnP problems, one make the strong assumption that at least one solution camera
configuration exist. Moreover, such resolutions generally extend the formulation of
Fischler and Bolles [FB81] which involves the resolution of a non-linear system. This

126

Tackling exact on-screen positioning of two subjects: The Toric Manifold

requires a lot of computations and thus prevents such resolution techniques from being
usable in interactive applications.

In opposition to PnP problems, we here start from a desired (but not necessarily
feasible) on-screen positioning of independent 3d world points (i.e. subjects). As a
consequence, there is no guarantee (at least for more than three subjects) that an exact
solution camera configuration exist. Moreover, in our case we do not need the overall
on-screen positioning to be exact. Actually, in a cinematic context, there are commonly
one or two main subjects which the director wants to position precisely on the screen
and a set of secondary subjects that can be positioned in an more flexible way. In
order to account for these two preconditions, in the following, we propose a novel and
efficient method based on our manifold concept to estimate a camera viewpoint for the
“cinematic” on-screen positioning of three or more subjects.

Notice that the on-screen positioning approach we have presented for two subjects is
also extensible to three or more subjects. Indeed, let consider the case of three subjects
with world positions A, B, C (different from each other). As stated earlier, the solution
set for each pair of subjects is a 2D manifold. Consequently, the camera configuration
P satisfying this 3-subject composition must verify two conditions:

the camera position P must be at the intersection of three manifoldsM,M′ and
M′′ respectively defined by couples (A,B), (B,C) and (A,C);
the camera orientation corresponding to P must match for this three manifolds.

This defines three angles α, α′ and α′′ corresponding to resp. M, M′ and M′′.
Similarly, we define three quaternions q, q′ and q′′ as the orientations (defined as unit
quaternions) at a given 3D point P , as defined respectively onM,M′ andM′′. If for
instance P belongs toM, then it verifies the following manifold equation:Ú�(−−→PB,−→PA)− α = 0 (5.3)

We here propose an algorithm which searches, on the surface of one manifold M,
the configuration which maximizes the viewpoint quality (defined as a distance to the
other manifolds). Typically the on-screen position of two subjects is fixed, and we
optimize the on-screen position of the third subject. The cost function to minimize is
then

dmin
θ,ϕ

�∣∣∣∣∣Û�(−−→PC,−−→PB)− α′
∣∣∣∣∣+

∣∣∣∣∣Ú�(−−→PC,−→PA)− α′′
∣∣∣∣∣+ ∣∣∣1− 〈q′, q′′〉2∣∣∣�

where 〈q′, q′′〉 denotes an inner product of q′ and q′′, providing a measure of the angle
between them ranging from −1 (opposite orientations) to +1 (same orientation). This
cost function is illustrated with a heat map in Figure 5.7. The solutions of an example
3-subject composition problem are displayed in Figure 5.8.

The main advantage of this technique is that it can easily extend to more than
three subjects. Though the composition may not be strictly satisfied, it enables fixing
the on-screen position of two (main) subjects, then optimizing the position of other
subjects.

127

An Efficient Approach to Virtual Camera Control: The Toric Space

We used this method on both a 3-subject and a 4-subject on-screen positioning
problem. In our test, we approximated the 3-subject exact composition in about 0.10ms
per frame and we minimized the 4-subject composition error in about 0.42ms per frame.

(a) (b)

Figure 5.7 – Heat map drawn on one of the manifolds. The cost function represents
the sum of the distance to the two other manifolds. Red: points close to both other
manifolds (drawn in blue and green), thus verifying the on-screen positioning of the 3
subjects. Blue: points farest to both other manifolds. Green: intermediate-distance
points. (a) 3D view of the manifolds and of the heat map; (b) view of the heat map
when the manifold is unfolded.

(a) (b)

Figure 5.8 – Two solutions of the exact on-screen positioning of three subjects A (red),
B (green) and C (blue). Their respective on-screen positions are pA(−0.50; +0.25),
pB(−0.25; +0.50) and pC(+0.25; +0.50). These solutions correspond to the intersection
of three solution set (described in Figure 5.7), each solving the exact on-screen positioning
of two of the subjects.

In this section, we investigated the algebraic solution to the exact two-subject on-
screen positioning problem. We showed that it corresponds to a 2D manifold surface.
We showed how, by using this manifold, to solve Blinn’s spacecraft problem without

128

Tackling more evolved on-screen composition problems: The Toric Space

resorting to an iterative algorithm; and how the on-screen positioning problem for three
or more subject can be cast into a search in 2D. In the next section, we investigate
more expressive composition problems in which a degree of relaxation on constraints is
necessary so as not to restrict to much the possibility of finding an overall solution to
the problem (by avoiding conflicts between constraints as much as possible).

4 Tackling more evolved on-screen composition problems:
The Toric Space

In this section, we extend the concept of Toric Manifold to a 3-dimensional search
space (α, θ, ϕ) that we will refer to as Toric Space. This space represents the set of Toric
Manifolds that may be generated around a pair of subjects (A,B). The parameter α is
the manifold generator (which depends on both the field of view and the aspect ratio of
the camera), and the pair (θ, ϕ) represents a unique position on a given manifold. In the
following we will show that a number of classical constraints related to virtual camera
composition are easier to manipulate in our Toric Space (3 angular parameters) than in
the classical 6D camera space (3 Cartesian coordinates and 3 Euler angles). Illustration
of Toric Manifold and Toric Space are given resp. in Figure 5.9 and Figure 5.10.

Figure 5.9 – Toric Manifold. To a given on-screen positioning of two subjects (red an
green boxes) corresponds a unique angle α that generates such a manifold. Any point of
this 2D manifold then represents a 6D camera configuration (position and orientation)
satisfying this exact on-screen positioning.

Note that imposing conflicting constraints can prevent from finding an appropri-
ate camera configuration, satisfying a set of exact visual features. Consequently, we
hereafter consider composition problems in which there is a degree of relaxation in the
application of constraints. In our approach the relaxation is represented as a range of
accepted values for each feature.

In the next section, we compute solutions to constraints that are independent of
the geometry of both the surrounding environment and of subjects (e.g. vantage an-
gle, distance, on-screen positioning), together with good approximations to constraints
such as visibility or projected size of subjects. We will then show how, by using in-
terval analysis techniques, such computations in the Toric Space greatly improve the

129

An Efficient Approach to Virtual Camera Control: The Toric Space

Figure 5.10 – Representation of our Toric Space (3D extension of the Toric Manifold
concept) in an orthogonal coordinate system. Here, there are however two singularities:
(1) the two planes ϕ = ±π (top/bottom) are actually indistinguishable, and (2) the three
planes θ = 0, α = 0, and α = π− θ2 (sides) represent the set of forbidden configurations.

placement of a virtual camera in a range of computer graphics applications.

5 Expressing classical visual constraints in the Toric Space
We here show how we express visual constraints in the Toric Space as 2D solution

sets. In our process, two planes of the Toric Space appear useful: the plane (θ, α) and
the plane (θ, ϕ). Note that a 2d solution set in the plane (θ, α) do not depend on the
value of ϕ. Conversely, a solution set in the plane (θ, ϕ) will strongly dependent of the
value of α. Indeed, there is a straightforward relationship between the parameter α
and the maximum value the parameter θ can take:

0 < θ < 2(π − α)

We here introduce two additional angular parameters: β, β′ ∈ [0, π] (see Figure 5.11).
β represents the angle between the vector −−→AB and a vector −→a whose origin is A and
destination is P . In the same way, β′ represents the angle between the vector −−→BA and
a vector −→b whose origin is B and destination is P . As illustrated in Figure 5.11, in
2D, iff (β + β′) ∈]0, π[then the line passing through A and of direction −→a and the
line passing through B and of direction −→b intersect on the manifold generated by the
angle α = π − (β + β′). Moreover the coordinate θ corresponding to the intersection
point on this manifold is given by (inscribed angle theorem)

θ = 2β = 2(π − α− β′) (5.4)

For practical reasons, we will then first solve a number of constraints related to respec-
tively A or B in a virtual plane (β∗, ϕ), where β∗ represents resp. β or β′. Second, we
will extend the resulting solution into the plane (θ, ϕ) by using the Equation 5.4, then
combine the computed solutions for both A and B (an example of such combination is
illustrated in Figure 5.18).

130

Expressing classical visual constraints in the Toric Space

Figure 5.11 – There is a straightforward relationship between the parameter α and the
parameter θ (0 < θ < 2(π − α)). In the same way, if we consider one line passing through
A and of direction a vector −→a (making an angle β with −−→AB), and one line passing through
B and of direction a vector −→b (making an angle β′ with −−→BA), then iff (β + β′) ∈]0, π[
then these two lines intersect on the manifold generated by the angle α = π − (β + β′).
Furthermore, the coordinate θ of this intersection is given by θ = 2β = 2(π − α− β′).

5.1 On-screen positioning
We here consider a more flexible positioning constraint for both subjects. We want

each subject (A and B) to project in a known convex shape expressed in the screen-
space, that we will refer to them resp. as sA and sB (see Figure 5.13c). We then
look for a set of camera configurations (position and orientation) that satisfies this
constraint. For practical reasons, in the following, we will handle the camera position
and orientation separately.

Camera position At this point, we first use a scanning algorithm on both shapes.
We sample points on both shapes, then compute the angle α (with our previous method,
presented in Section 3.2) for every couple of a point on sA and a point on sB. Since sA
and sB are convex shapes, this allows computing a range rα = [αmin, αmax] of possible
angles α satisfying the constraint of having one subject projecting inside sA and the
other subject projecting inside sB. The solution of the relaxed 2-subject on-screen
positioning problem therefore corresponds to a horizontal strip in the plane (θ, α), as
shown in Figure 5.12.

Camera orientation We here consider the camera position is set to PT (α, θ, ϕ),
computed so as to satisfy the previous condition (α ∈ rα). For a given angle α ∈ rα,

131

An Efficient Approach to Virtual Camera Control: The Toric Space

Figure 5.12 – The on-screen positioning of two subjects inside convex shapes corre-
sponds to a horizontal strip α ∈ [αmin, αmax] in the plane (θ, α).

there are however an infinite number of orientations, satisfying the on-screen positioning
of A and B or not. We here propose a 3-step method to compute an appropriate camera
orientation.

Step 1: we compute a first orientation q1 that guarantees the satisfaction of the
on-screen positioning constraint. We first consider two pairs of points Pmin(pmin

A , pmin
B)

and Pmax(pmax
A , pmax

B). They correspond to the points of sA and sB that respectively
generate the angles αmin and αmax. We then define two points, pCA and pCB, as the
barycenter of resp. sA and sB. We finally use a dichotomy algorithm to search for
appropriate on-screen positions pA and pB in resp. sA and sB. We consider Pmin

as minimum value, Pmax as maximum value and Pi(pCA, PCB) as initial value. The
dichotomous process is stopped when the angle get close enough to the subject value
α. An example of computed orientation is given in Figure 5.13a.

Step 2: we compute the orientation q that minimizes the roll angle of the camera.
To this end, we first construct a “default” orientation qd (i.e. such that pA = −pB)
from an orthonormal frame, made of three unit vectors −→r (right vector), −→f (forward
vector) and −→u (up vector). −→f (xf , yf , zf) is computed as follows:

−→
f =

−−−→
PWA∥∥∥−−−→PWA

∥∥∥
+
−−−→
PWB∥∥∥−−−→PWB

∥∥∥
scaled to unit length

where PW is the world position corresponding to PT . We then define a vector−→
f ′ (xf , yf , 0) as the projection of −→f along the z direction. The right vector is then de-
fined as −→r = qr ·

−→
f ′ , where qr is the rotation of −pi

2 radians around the axis −→z (0, 0, 1);
and the up vector is defined as −→u = −→r × −→f . We secondly compute the rotation to
apply so as to have the camera viewpoint centered on the barycenter of shapes sA and
sB. We define two points, PO(0, 0) the origin of the screen and pM (xM , yM) the middle

132

Expressing classical visual constraints in the Toric Space

point between pCA and pCB. We construct two 3d points in the camera coordinate system:
p3
O and p3

M , representing points that project resp. at pO and pM on the screen.

p3
O(0, 0, 1) and p3

M

�
xM
Sx

,
yM
Sy

, 1
�

scaled to unit length

We then define qm as the rotation of angle
∣∣∣∣(−→p3

O,
−→
p3
M)
∣∣∣∣ around the axis −→m =

−→
p3
M×
−→
p3
O. The

orientation q2 of the camera is then built as q2 = qd · qm. An example of computed
orientation is given in Figure 5.13b. Note that this orientation does not necessarily
guarantee that A and B project resp. in sA and sB.

Step 3: we combine the two previously computed orientation, so as to get a camera
orientation q that guarantees A and B to project in sA and sB, while minimizing the
roll angle of the camera. To do so, we use a dichotomous process between q1 and
q2 (through the use of the “Slerp” function to compute an interpolated orientation).
The dichotomous process is stopped when the current positions pA and pB belong to
resp. sA and sB. An example of computed orientation is given in Figure 5.13c.

The advantages of our method are fourfold: (i) it provides a fast orientation com-
putation, (ii) a unique solution orientation can be computed for any position in the
solution set – in particular, our computation algorithm prevents camera jerkiness –,
(iii) the computed orientation minimizes the camera roll angle and (iv) it preserves
continuity of the camera orientation in the space of possible camera positions.

5.2 Projected Size
We here consider a constraint on the projected size (size in terms of ratio of the

screen area) of a subject, as an interval of accepted sizes [smin, smax]. We then search
the set of camera configurations for which the projected size of the subject belongs to
this interval. Note that the solution set of a projected size is one of the most complicated
to solve. Indeed, such a solution set is strongly dependent of the shape of the subject.
Consequently, to our knowledge, previous work has mainly focused on sampling-based
methods in a 6D search space. We here propose to compute an approximated solution
set, through a 2-step computation. To do so, we first make a strong assumption: we
consider that the subject is abstracted as a bounding sphere S of a given radius r.

5.2.1 Naive resolution

We here assume the camera is set at a given position and is oriented so that the
subject is centered at the origin of the screen. The projection of the sphere S on the
screen corresponds to an ellipse of parameters a and b, computed as follows:

a = r·Sx
d

and b = r·Sy
d

where d represents the distance between the camera and the subject. The projected
size of the subject (i.e. the area of the ellipse in terms of frame ratio, the frame being

133

An Efficient Approach to Virtual Camera Control: The Toric Space

(a)

(b)

(c)

Figure 5.13 – Computation of the camera orientation for a given camera position.
The on-screen positioning of the two subjects is here expressed as two convex areas
(red and green ellipses) of the screen. (a) step 1: we compute a first orientation that
guarantees that the center of each subject projects in the proper area; (b) step 2: we
compute algebraically the orientation that minimizes the roll angle of the camera (ψ = 0,
see Figure 2.6); (c) step 3: by using a dichotomy between these two orientations, we
compute the final camera orientation that satisfies the on-screen positioning constraint
while minimizing the roll angle of the camera.

of area 4) is then given by

4s = π· r2 ·Sx ·Sy
d2

Starting from this formula, we then compute the reverse solution, which provides the
distance d at which to position the camera depending on the projected size of the
abstracted subject

d = r

Ê
π·Sx ·Sy

4s

134

Expressing classical visual constraints in the Toric Space

To consider the range of projected size [smin, smax], one must then consider the
corresponding approximate range of distance [dmin, dmax], where the distances dmin
and dmax correspond resp. to projected sizes smax and smin. This calculation provides
a naive resolution of the interval [dmin, dmax]. With this interval, we can reduce the
range of possible values for the parameter θ; this can further be applied for both
subjects. The projected size is however dependent of on-screen position of the subject.

5.2.2 A more accurate approximation

We here consider that the subject projects at position p(x, y) on the screen (for
instance a position belonging to sA or sB). The projection of the sphere on the cam-
era plane (i.e. before applying the projection component) corresponds to an ellipse of
parameters a and b, computed as follows:

a = sin γ cos γ
| cos2 λ− sin2 γ|

and b = sin γÈ
| cos2 λ− sin2 γ|

with cosλ =

�Ì
x2

S2
x

+ y2

S2
y

+ 1

�−1

and γ = atan
�
r

d

�
The projected size of the subject is then given by s = (π· a· b)÷ 4

Sx ·Sy
where the

left-most part represents the area of the ellipse, and the right-most part represents the
area of the rectangle representing the frame limits on the camera plane.

The distance d at which to position the camera can then be solved by using a
dichotomous search. We start the search from a close neighborhood of the value com-
puted with the naive resolution process, and we stop the search when the error on the
size gets under a given threshold ε.

We have proposed a method to convert a range [smin, smax] of projected size into
an approximate range [dmin, dmax] of distance at which to place the camera. In the
following section, we investigate the resolution of a distance constraint, which we could
then use for computing an appropriate camera configuration.

5.3 Distance

We here consider a constraint on the distance between the camera and a subject,
as an interval of accepted distance. We then search for the set of camera positions,
expressed in the Toric Space, that are at an acceptable distance from the subject. We
solve such a constraint in the plane (θ, α). We first show how to solve a single strict
distance constraint (i.e. to a single subject). We then show how to compute the solution
set corresponding to a range of distance between the camera and a single subject, then
to a (possibly different) range of distance for both subjects.

135

An Efficient Approach to Virtual Camera Control: The Toric Space

5.3.1 Single distance

Distance to A. Let first consider a strict distance constraint dA to A. We have,
∀θ ∈]0, 2π[,

α = acos

�
dA −AB· cos(θ/2)È

d2
A +AB2 − 2 ·AB· dA · cos(θ/2)

�
(5.5)

See Figure 5.14a for illustration and Figure 5.15a for an example (red curve).

Distance to B. Let now consider the strict distance constraint dB to B. There are
two cases to consider here: dB ≤ AB and dB > AB.

Case dB ≤ AB: we have, ∀θ ∈
�
0, 2 asin

�
dB
AB

��
,

α = π

2 ± acos
�
AB

dB
· sin
�
θ

2

��
(5.6)

Note that in the particular case dB = AB, the upper bound of θ (i.e. π) will be
excluded.

Case dB > AB: we have, ∀θ ∈]0, 2π[,

α = π

2 − acos
�
AB

dB
· sin
�
θ

2

��
(5.7)

See Figure 5.14b for illustration and Figure 5.15b for an example (green curve).

5.3.2 Range of distance

Range of distance to A. Let consider a range of distance rA = [dAmin, d
A
max]. The

solution set is the interval

IAα (θ) = [αAmax(θ), αAmin(θ)]\{0, π}

where αAmin(θ) (resp. αAmax(θ)) is determined by injecting dAmin (resp. dAmax) in Equa-
tion 5.5.

Range of distance to B. Let consider a range of distance rB = [dBmin, d
B
max]. The

solution set is the interval

IBα (θ) = IBα,max(θ)− IBα,min(θ)

where IBα,min(θ) (resp. IBα,max(θ)) is determined by injecting dBmin (resp. dBmax) in the
Equation 5.6 or 5.7.

As a conclusion, when constraining the camera by the two ranges of distance rA
and rB, the solution is then the interval

Iα(θ) = IAα (θ) ∩ IBα (θ)

136

Expressing classical visual constraints in the Toric Space

(a)

(b)

Figure 5.14 – Illustration of the resolution of a strict distance constraint in the plane
(θ, α). We express the solution value(s) of α for a given value of the angle θ. (a)
Resolution of a strict distance dA to subject A. (b) Resolution of a strict distance dB to
subject B.

5.4 Vantage angle

The vantage angle constraint corresponds to a relative angle w.r.t. to a given subject.
For instance, if we want to see a car from front with a high angle, this constraint can
be expressed as a direction vector from the car. More generally, a vantage angle can
be represented as a half-line of origin the subject (A or B) and direction vector −→v .
To relax this constraint, we here further consider a range of accepted directions in the
form of a maximum deviation to this reference direction; we represent such a constraint
as a vantage cone, of directrix −→v and half-angle γ (the maximum accepted deviation).
The solutions then belong to this cone. We hereafter show how to express, in the
Toric Space, the set of camera positions that satisfy a single vantage angle constraint

137

An Efficient Approach to Virtual Camera Control: The Toric Space

(a) Distance to A (b) Distance to B

(c) Solution to both distance constraints (A and B)

Figure 5.15 – Solution set corresponding to a camera in a range of distance to A
and/or B. (a) Solution camera positions for a distance to A in [5, 10] (white area);
red curves correspond to the bounding values of the interval of distance. (b) Solution
camera positions for a distance to B in [4, 8] (white area); green curves correspond to
the bounding values of the interval of distance. (c) Solution camera positions for the
satisfaction of both ranges of distance to resp. A and B.

(w.r.t. either A or B). We then show how to solve the set of camera positions satisfying
multiple vantage constraints (w.r.t. to both A and B) in the Toric Space.

5.4.1 Resolution for one subject

We here focus on a single vantage angle constraint. For generalization purposes,
we will refer to the concerned key subject (either A or B) as K, and to the other key
subject as K ′; the set of camera positions satisfying the vantage angle, with maximum
deviation γ, is the then set of points inside a vantage cone of apex K, direction −→v
and half-angle γ. Note that the directrix −→v can be parameterized as a couple (λ, ϕv),
where λ is the angle between vectors −→v and

−−→
KK ′ (λ ∈ [0, π]) and ϕv represents the

plane supporting −→v .
In this section, we show how to solve the set of camera positions satisfying such a

vantage angle constraint algebraically in the Toric Space; and more particularly in the
plane (β∗, ϕ) – β∗ represents either β or β′ (see Figure 5.11).

138

Expressing classical visual constraints in the Toric Space

Let first introduce three planes whose normal vector −→n =
−−→
KK ′

KK ′
:

Pβ∗<π/2, Pβ∗=π/2 and Pβ∗>π/2

They are built such that Pβ∗<π/2 contains the point K + −→n , Pβ∗=π/2 contains the
point K itself, and Pβ∗>π/2 contains the point K −−→n . That is, a vector −→a (resp. −→b)
intersect with them iff β∗ is respectively lower than, equal to or greater than π

2 .
Remember that the intersection of a cone and a plane is a conic; it can be either an

ellipse (a particular case is the circle), a parabola, or a hyperbola. As a consequence, we
here propose to use equations of conics to compute either the range of possible values
for ϕ in function of the value β∗, or the range of possible values for β∗ in function of
the value ϕ.

Figure 5.16 – Computation of the vantage function in the space (β, ϕ) in the case of
an ellipse. We intersect the ellipse with a circle of radius r = tan(β) = tan(θ/2), then
calculate the corresponding values of ϕ as ϕ = ± atan(y/x). This process is basically
the same in case of a parabola or hyperbola.

In a first step, we will assume γ ∈ 0, π2 . We will also assume that −→v belongs to
the half-plane ϕv = 0. We will consider the general case afterwards. Here is the detail
of resulting conics in function of λ and γ:

Pβ∗<π/2 Pβ∗=π/2 Pβ∗>π/2

λ = 0 circle ∅ ∅

0 < λ ≤ π/2 λ+ γ < π/2 ellipse ∅ ∅
λ+ γ = π/2 parabola single line ∅

0 < λ ≤ π/2 λ+ γ > π/2 hyperbola two lines hyperbola
π/2 ≤ λ < π λ− γ < π/2

π/2 ≤ λ < π
λ− γ = π/2 ∅ single line parabola
λ− γ > π/2 ∅ ∅ ellipse

λ = π ∅ ∅ circle

139

An Efficient Approach to Virtual Camera Control: The Toric Space

Note that the second half of this table is obtained by symmetry with the first half,
by replacing both λ by π−λ and β∗ by π−β∗ in the different cases. In the following we
will only consider the first half of the table and solve each case separately. We hereafter
detail the two possible resolutions of the vantage angle. In any case, one will only use
one of them, depending on the need.

Resolution 1: ϕ in function of β∗ To express the frontier of the vantage cone in
the Toric Space, as a function Iϕ(β∗) – the interval of possible values of ϕ such that
any point (β∗, ϕ) belong to the cone – we will compute the intersection(s) I(x, y) of
the given conic section C with a circle C′ of center (0, 0) and radius r, with r = tan β∗.
The equation of C′ is given by x2 + y2 = r2

We will then resolve the maximum angle ϕ as

ϕ ∈
�
− atan

�
y

x

�
,+ atan

�
y

x

��
In the following cases, the range of values of β∗ that need a resolution is given by
β∗inf = max(λ− γ , γ − λ) and β∗sup = min(λ+ γ , 2π − (λ+ γ)).

Moreover, here are the solution ranges Iϕ when β∗ /∈ [β∗inf , β∗sup]:
β∗ < β∗inf β∗ > β∗sup

λ− γ < 0 [−π; +π]
λ− γ ≥ 0 ∅
λ+ γ ≤ π ∅
λ+ γ > π [−π; +π]

Resolution 2: β∗ in function of ϕ To express the frontier of the vantage cone in
the Toric Space, as a function Iβ∗(ϕ) – the interval of possible values of β∗ such that
any point (β∗, ϕ) belong to the cone – we will compute the intersection(s) I(x, y) of the
given conic section C with a half-line L of origin (0, 0) and direction −→d (cosϕ, sinϕ).

When ϕ 6= ±π2 , the equation of L is

y = tanϕ·x, with sign(x) = sign (cosϕ)

When ϕ = ±π2 , L is defined as(x, y) s.t. x = 0 and

y ∈ R+ if sinϕ > 0

y ∈ R− if sinϕ < 0

We then compute the bounds of the corresponding range of β∗ as

β∗ = atan
(È

x2 + y2
)

An illustration of these two resolutions is given, for the ellipse, in Figure 5.16. We
will now focus on each case of conic section separately and proper solutions for them.

140

Expressing classical visual constraints in the Toric Space

5.4.2 Ellipse

The conic section (ellipse) C is defined by its center C(xc, 0), its major radius a and
its minor radius b, defined as follows

a = sin γ· cos γ
| cos2 λ− sin2 γ|

b = sin γÈ
| cos2 λ− sin2 γ|

xc = sinλ· cosλ
cos2 λ− sin2 γ

The equation of C is here (x− xc)2

a2 + y2

b2
= 1

Resolution 1: Iϕ(β∗) The intersections I(x, y) are computed by solving the following
system Ax

2 +Bx+ C = 0

y =
√
r2 − x2

with A = b2 − a2, B = −2b2xc, C = b2x2
c + a2(r2 − b2).

Resolution 2: Iβ∗(ϕ)

Case ϕ 6= ±π2 . The intersections I(x, y) are computed by solving the following system

Ax
2 +Bx+ C = 0

y = tanϕ·x

with A = b2 + a2 tan2 ϕ, B = −2b2xc, C = b2(x2
c − a2).

Case ϕ = ±π2 . The solution intersection I(x, y) is given by

x = 0

y = sinϕ· b

a

È
a2 − x2

c

Moreover, when γ ≤ λ, the extreme values of ϕ are reached when
∆ = B2 − 4AC = 0, i.e.

Iϕ ⊆

− atan

�√
b2

x2
c − a2

�
; + atan

�√
b2

x2
c − a2

�
Otherwise (γ > λ), Iϕ ⊆ [−π; +π].

141

An Efficient Approach to Virtual Camera Control: The Toric Space

5.4.3 Circle

When λ = 0, the conic section (circle) C is here a special case of ellipse. The radius
of C is then r′ = a = b = tan γ, and its center is C(0, 0). In this case, the only possible
intersection between C and C′ is when r = r′. In the same way, the intersection between
C and L is always I(tan γ· cosϕ, tan γ· sinϕ). Thus, the solution to both resolutions
is trivial: it corresponds to the line of equation β∗ = γ, for all ϕ ∈ [−π; +π].

5.4.4 Parabola

The conic section (parabola) C is defined by its vertex V (h, 0), and its focal length
f defined as follows

h = tanλ− cotλ
2

f = cotλ
2

The equation of C is here y2 = 4f(x− h)

Resolution 1: Iϕ(β∗) The intersections I(x, y) are computed by solving the following
system Ax

2 +Bx+ C = 0

y =
√
r2 − x2

with A = −1, B = −4f , C = 4fh+ r2.
The intersection with the intermediate plane will moreover be a single line. It

corresponds to the angle β∗ = π

2 , and the associated range Iϕ is {0}.

Resolution 2: Iβ∗(ϕ)
Case ϕ 6= ±π2 . The intersections I(x, y) are computed by solving the following systemAx

2 +Bx+ C = 0

y = tanϕ·x

with A = tan2 ϕ, B = −4f , C = 4fh.
Case ϕ = ±π2 . The solution intersection I(x, y) is given byx = 0

y = sinϕ· 2
√
−fh

Moreover, when γ ≤ λ, the extreme values of ϕ are reached when
∆ = B2 − 4AC = 0, i.e.

Iϕ ⊆
[
− atan

(Ê
f

h

)
; + atan

(Ê
f

h

)]

142

Expressing classical visual constraints in the Toric Space

Otherwise (γ > λ), Iϕ ⊆ [−π; +π].

5.4.5 Hyperbola

The conic section (hyperbola) C is defined by its vertex V (xv, 0), its major radius
a, and its minor radius b, defined as follows

a = sin γ· cos γ
| cos2 λ− sin2 γ|

b = sin γÈ
| cos2 λ− sin2 γ|

xv = sinλ· cosλ
cos2 λ− sin2 γ

The equation of C is here (x− xv)2

a2 − y2

b2
= 1

Resolution 1: Iϕ(β∗) The intersections I(x, y) are computed by solving the following
system Ax

2 +Bx+ C = 0

y =
√
r2 − x2

with A = b2 + a2, B = −2b2xv, C = b2x2
v − a2(r2 + b2).

Resolution 2: Iβ∗(ϕ)

Case ϕ 6= ±π2 . The intersections I(x, y) are computed by solving the following systemAx
2 +Bx+ C = 0

y = tanϕ·x

with A = b2 − a2 tan2 ϕ, B = −2b2xv, C = b2(x2
v − a2).

Case ϕ = ±π2 . The solution intersection I(x, y) is given byx = 0

y = sinϕ· b

a

È
x2
v − a2

Moreover, when γ ≤ λ, the extreme values of ϕ are reached when
∆ = B2 − 4AC = 0, i.e.

Iϕ ⊆

− atan

�√
b2

a2 − x2
v

�
; + atan

�√
b2

a2 − x2
v

�
Otherwise (γ > λ), Iϕ ⊆ [−π; +π].

143

An Efficient Approach to Virtual Camera Control: The Toric Space

5.4.6 Generalization

In the general case (i.e. ϕv 6= 0), these resolutions will serve as a basis to compute
the actual solution. Indeed, the remaining operation is to shift the resulting range Iϕ
from ϕv upward. The actual solution with this offset is then obtained by replacing ϕ
by ϕ− ϕv in the resolutions above.

Note that, in the particular case of γ = π

2 , the cone bounds will represent a plane

and the solution set will then be a half-space. We furthermore study the case γ > π

2 .
In this case, the solution will then be given by considering the exclusion of the cone
whose axis is opposite to the vantage vector and such that its half-angle γ′ and γ are
complementary angles (they sum to π). This cone is then parameterized as λ′ = π−λ,
γ′ = π − γ and ϕv′ = π − ϕv.

Examples of solutions for various vantage angles are given in Figure 5.17.

(a) γ ≤ π/6 (b) γ ≤ π/3 (c) γ ≤ 5π/6

Figure 5.17 – Solution range of a vantage angle, for a given direction vector and
different values of the half-angle γ of the vantage cone. In the examples, the direction
vector of the vantage cone is parameterized by λ = π

4 and ϕv = 0. In each case, the
white area represent the set of couples (β∗, ϕ) satisfying the vantage angle.

5.4.7 Intersection for both A and B

We here consider the combination of two vantage angle constraints: one relative
to A and one relative to B. Its solution is located at the intersection of both vantage
cones. In order to find the set of camera positions satisfying both constraints, lets take
a look at a section of the Toric Space at a given height ϕ ∈ IAϕ ∩ IBϕ . We compute the
ranges Iβ(ϕ) w.r.t. A and Iβ′(ϕ) w.r.t. B. We then build the functions that project
the ranges of solution for A and B in the plane (θ, α), i.e. depending on the value of
α. To do so, we use the Equation 5.4. Resulting functions are of the form

θAi (α) = 2βi
θBj (α) = 2(π − α− β′j)

where θAi (α) and θBj (α) are relative to respectively the range of vantage angle of A and
B. The intersection of two such functions is then the point at which these functions

144

Combining Constraints

are equal, i.e.
θi,j = θi, and αi,j = π − βi − β′j

The solution of such a combination of vantage constraints is then, for a given value ϕ,
a set of parallelograms in the plane (θ, α), as illustrated in Figure 5.18; and the entire
solution is given by the integration of such intersections for all possible values of ϕ.

Figure 5.18 – Intersection, for a section at a given height ϕ, of the solution sets for
both a vantage angle w.r.t. A and a vantage angle w.r.t. B. The set of solution couples
(θ, α) for each section corresponds to a set of parallelograms (in yellow).

6 Combining Constraints
We hereafter detail the general process we propose to solve the entire set of con-

straints. Our process is made of three consecutive steps, and enables computing the
range of overall solutions in terms of positions (α, θ, ϕ).

Step 1 We compute the interval Iϕ = IAϕ ∩ IBϕ range of ϕ, for which there is
potentially an intersection of both vantage angles. By default IXϕ is set to [−π; +π].

Step 2 For all ϕ ∈ Iϕ, we compute the ranges (i.e. one or more intervals) IAθ (ϕ)
and IBθ (ϕ) corresponding to the ranges of values of θ such that (θ, ϕ) is solution to the
vantage angle of resp. A and B. We then define the range Iθ(ϕ), for which there is
potentially a solution to the intersection, as Iθ(ϕ) = IAθ (ϕ) (see Figure 5.18).

Step 3 For all θ ∈ Iθ(ϕ), we compute:
IV ANTα (θ, ϕ), the range of values of α corresponding to the satisfaction of vantage
angles for both subjects.
IDISTα (θ), the interval of values of α corresponding to the satisfaction of distance
constraints for both subjects.
IOSPα , the interval of values of α corresponding to the satisfaction of the on-screen
positioning of both subjects.

145

An Efficient Approach to Virtual Camera Control: The Toric Space

We then compute the interval Iα(θ, ϕ) corresponding to the satisfaction of all con-
straints as

Iα(θ, ϕ) = IV ANTα (θ, ϕ) ∩ IDISTα (θ) ∩ IOSPα

This provides a general mean to solve the range of solution coordinates (α, θ, ϕ). In
addition, it provides a mean to check, at each step, issues in the application of con-
straints (e.g. unsolvable constraints, or conflicts between two or more constraints) by
simply intersecting their solution intervals w.r.t. α, θ or ϕ.

An obvious way to compute the range of solutions would be to rely on interval
analysis techniques and interval-based constraint solving. Such techniques provide an
approximation of the inner and outer limits of the solution as boxes (in the solution,
out of the solution and on the frontier of the solution). However, the computational
cost of these techniques, coupled with the necessity to carefully control each step of
the solving process led us to favor a progressive sampling technique. This efficient
sampling-based technique computes a representative set of solution viewpoints. To do
so, at each step, we use a sampling density (resp. dϕ, dθ and dα) and perform a regular
sampling of the solution intervals Iϕ, Iθ(ϕ) and Iα(θ, ϕ). Therefore, we sample ϕ at
step 1 which provides a range of intervals on θ (step 2), which we sample to compute
a range of intervals on α (step 3), which we then sample to evaluate visibility. Each
step filters inconsistent intervals on the parameters. We then introduce a fourth step,
needed to handle the visibility constraint on subjects.

Step 4 For all α ∈ Iα(θ, ϕ) we compute the camera viewpoint (position and
orientation) in world coordinates, then evaluate the visibility of each subject by using
a ray casting technique over an object-oriented bounding box representing the subject
(we cast rays to the 8 corners and the center of the bounding box). We finally either
accept or discard the camera viewpoint depending on its satisfaction of the visibility
constraint for each of the subjects.

7 Satisfaction of constraints
We here consider the case where there is no overall solution to a given composition

problem. In such a case, one could then imagine to use an optimization-based technique
guided by the algebraic solution of each single property in the Toric Space. As for the
on-screen positioning constraint, the satisfaction can be trivially measured by using the
solution interval rα. We therefore study the two other properties we have previously
introduced (the distance and vantage angle constraints), and show how to measure
their satisfaction in the Toric Space.

7.1 Measuring the satisfaction of a distance constraint
Lets take a look at how we can evaluate, for a given camera position P (α, θ, ϕ), the

satisfaction of a distance constraint. The actual distances to A (dA) and to B (dB) are

dA = AB

sin(α) · sin
�
α+ θ

2

�
, and dB = AB

sin(α) · sin
�
θ

2

�
146

Satisfaction of constraints

We can then evaluate the satisfaction of the different distance constraints by a
simple comparison between the actual distance(s) and the desired range(s) of distance.
An illustration of this satisfaction measurement is given in the form of a heat map in
Figure 5.19.

Figure 5.19 – Heat map representing the satisfaction of camera positions w.r.t. a range
of distance to A and a range of distance to B. Dark red: highest quality (solution
positions); dark Blue: lowest quality.

7.2 Measuring the satisfaction of a vantage constraint

Lets now take a look at how we can evaluate, for a given camera position P (α, θ, ϕ)
defined in the Toric Space, the satisfaction of a vantage constraint.

Firstly, we define two vectors −→c , representing the axis of the cone; and −→v , repre-
senting the vector −→TV . Moreover, by using the equation Equation 5.4, the coordinates
of −→c and −→v in the plane (β∗, ϕ) can be computed as respectively (β∗C , ϕC) and (β∗V , ϕV).

Secondly, to compute the angle between −→v and the axis −→c , we use the three pro-
jection planes Pβ∗<π/2, Pβ∗=π/2 and Pβ∗>π/2. They serve as basis to express, in an
orthonormal frame local to T , the coordinates of the intersection I(x, y, z) of one vector
(−→c or −→v) with one of these planes. Here is the way we compute the coordinates of this
intersection point, accordingly to the value of β∗:

β∗ < π/2 β∗ = π/2 β∗ > π/2
x tan(β∗) · cos(ϕ) cos(ϕ) tan(π − β∗) · cos(ϕ)
y tan(β∗) · sin(ϕ) sin(ϕ) tan(π − β∗) · sin(ϕ)
z −1 0 +1

Finally, we compute the angle γ′ as the non-oriented angle between −→c and −→v . The
satisfaction of a vantage angle constraint can then be computed by a simple comparison
between γ′ and the desired range of vantage angle. An illustration of this satisfaction
measurement is given in the form of a heat map in Figure 5.20.

147

An Efficient Approach to Virtual Camera Control: The Toric Space

Figure 5.20 – Heat map representing the distance to the vantage cone for each point
of the plane (β∗, ϕ). Here, the direction vector of the vantage cone is parameterized by
λ = π

4 and ϕ = 0 and the half-angle γ is equal to π/6. Dark red: highest quality ; dark
blue: lowest quality.

8 Results
We illustrate the key features of our model by exploring three different specifications:

(i) applying, in a static scene, a set of visual constraints on a two-subject configura-
tion, (ii) enforcing constraints on two moving subjects and (iii) using our model for
cinematic purposes, i.e. editing a sequence of shots while enforcing a number of pre-
ferred framings on the two-subject configuration. For the materials, we rely on a fully
animated 3D environment of a city, in which two cars are racing together. The city is a
static geometry (e.g. buildings, bridges), and contains dynamic occluders (e.g. buses).
Another particularity is that the scene also contains some occluders in which the cars
get into (e.g. tunnels, trailers) during the race; this constitutes a challenge w.r.t. the
search of a non-occluded viewpoint.

We cast Semantic Volumes specification into a set of constraints that our model
solves: vantage angles, distances, on-screen positions of key subjects. In our tests, we
have used two different framings:
Composition #1: Over-the-shoulder of A; A must be at a distance between 4 and 8,

and B must be at a distance greater than 5; the visibility of both subject must be
within [0.25, 1.00]; A is positioned at (0.00,−0.33) on the screen (within a radius
of 0.15), and B is positioned at (0.00,+0.33) on the screen (within a radius of
0.15).

Composition #2: Over-the-shoulder of B; A must be at a distance greater than 5,
and B must be at a distance between 4 and 8; the visibility of both subject
must be within [0.25, 1.00]; A is positioned at (0.00,+0.33) on the screen (within

148

Results

a radius of 0.15), and B is positioned at (0.00,−0.33) on the screen (within a
radius of 0.15).

All tests have been run at a frame rate of 30fps on the same sequence of the ani-
mation, of duration 93s.

8.1 Specification #1: static application of constraints

In this example, we consider all frames of the animation separately. At each time
step, we apply the composition to the two-subject configuration, without considering
the previous/next time step. We then perform the two phases of the solution computa-
tion: (i) the sampling phase of candidate configurations, and (ii) the ray cast phase (to
check the visibility feature) on these candidates. We here make the assumption that
the evaluation of visibility is the bottleneck of the pipeline. We therefore propose a
technique to reduce, as much as possible, the computation time necessary in this phase
to select the best candidate viewpoint.

For the purpose of comparison, we launched a random ray cast in our scene, using
108 rays for which origin and target points are taken randomly in a bounding box of
the whole environment. In our implementation, the ray casts are performed by using
the C++ library bullet. In our scene, the mean cost per ray cast ranges from around
7. 10−4 ms in regions with weak visibility constraints to 1. 10−2 ms in regions with
strong visibility constraints. In our tests, we sampled 9 points on the surface of each
subject, corresponding to the 8 corners and the center of its bounding box; we then
used 18 ray casts per candidate viewpoint. In the worst case, this computation could
therefore cost up to 0.18 ms per candidate. To reduce cost in the worst case, we instead
use a “smart” selection process of the best candidate. We first rank sample candidates
with their satisfaction of constraints (or quality, by using a distance to the optimal
value of each constraint). We sort samples w.r.t. their ranking QOthers w.r.t. visual
constraints (but visibility), then consider candidates in order of decreasing quality. We
finally introduce a maximal value QV ismax corresponding to the evaluation of subject’s
visibility (i.e. QV is(i) ≤ QV ismax). We then stop our iterative selection process as soon
as the current candidate verifies

Qbest ≥ QOthers(i) +QV ismax

where i is the index of the current candidate, and Qbest is the best overall ranking
(integrating the visibility quality) after iterating on the i− 1 best ranked candidates.

We launched our viewpoint computation algorithm on both composition #1 and
#2, and used four different sampling densities on the three parameters dϕ, dθ and dα
(5×5×5, 10×10×10, 15×15×15 and 20×20×20). Figure 5.21 illustrates an example of
the evolution of parameters α, θ and ϕ, as well as the satisfaction of constraints over
time. Table 5.1 further aggregates the performances of our computation algorithm
according to the sampling density used. We compute and evaluate an average of 3208
viewpoints corresponding to a given composition in about 122ms (with a sampling
density of 20×20×20). Four observations can further be made. First, one can observe
that the number of cameras sampled increases proportionally to the sampling density,

149

An Efficient Approach to Virtual Camera Control: The Toric Space

and that it goes with an improvement in the number of successful frames (i.e. frames
for which a solution to the overall composition problem has been found). Second, the
mean computation time per camera is further improved through the use of a higher
sampling resolution; in our tests this improvement however reaches a threshold for
densities higher than 15×15×15. This result might be explained by a balance between
the cost of computing intervals Iϕ, Iθ (which remains expensive) and Iα and the cost
of computing more samples in these intervals (which in comparison is quite negligible,
but necessitate the computation of more intervals in the next step). Third, as for
the visibility computations, we can observe that the number of cameras tested for
visibility is rather low (above 15%). An improvement in the ratio of cameras tested is
further observed when increasing the sampling density. These two results demonstrates
that our regular interval-based sampling technique effectively computes a set of camera
viewpoints that properly represents the solution set of the overall composition problem,
whether it be for low or high sampling resolutions. Indeed, if sampled cameras were
too close to each other, they would have a similar ranking and one could not discard so
many cameras. Last, interactive computation performances can reasonably be reached
by using a budget between 800 and 950 cameras. In our tests, this could be implemented
through the use of a sampling density between 12 and 13 samples on each interval
(i.e. using the resolution 12×12×12 or 13×13×13).

ϕ

θ

α

Time

visibility
vantages
distances

vantages∩distances
vantages∩framing
distances∩framing vantages∩distances∩framing

Figure 5.21 – Illustration of the evolution of the parameters α, θ and ϕ (black curves),
as well as the satisfaction of constraints over time, for an example of static application of
constraints. Colored areas corresponds to failures. The color legend explains failures in
the application or combination of constraints. In this example, only the visibility caused
failures.

150

Results

5×5×5 10×10×10 15×15×15 20×20×20
frames 2792 2792 2792 2792

successful frames 2369.5 2498 2519 2539.5
(84.87%) (89.47%) (90.22%) (90.96%)

cameras sampled 54 414 1301 3208
Sampling (ms) 0.15 0.63 1.13 2.36
Mean time 0.0030 0.0017 0.0009 0.0008
per sampled camera (ms)

cameras tested 7.5 48.5 143 342
(13.9%) (11.7%) (10.9%) (10.6%)

Ray cast (ms) 2.52 17.36 46.71 119.58
Standard deviation (ms) 5.97 50.12 141.47 373.46
Mean time 0.0428 0.0399 0.0340 0.0348
per sampled camera (ms)
Total (ms) 2.67 17.99 47.84 121.94
Mean time 0.0458 0.0416 0.0349 0.0356
per sampled camera (ms)
Table 5.1 – Performances of the two consecutive phases of the solutions computation:
(i) sampling candidate camera configurations and (ii) evaluating their visibility over
subjects (through a ray casting technique). We here use four different sampling densities
on the three parameters dϕ, dθ and dα (5×5×5, 10×10×10, 15×15×15 and 20×20×20).
The number of successful frames here corresponds to frames for which a solution to the
overall composition problem has been found.

8.2 Specification #2: visual composition enforcement

Since the Toric Space is defined relative to the subjects, the camera will move
along the subject. Therefore, a coordinate (α, θ, ϕ) computed at time t may preserve
the satisfaction of all or a part of constraints at time t + ∆t, even if the subjects
have moved in the world. The camera position computed in the Toric Space therefore
serves as a mean to automatically re-compute an appropriate world camera position
and orientation from the subjects new world positions.

We hereafter compare two possible ways of enforcing the constraints: using either
a static camera or a dynamic camera in the Toric Space.

8.2.1 Enforcement of constraints through a static camera in the Toric Space

In this example, we compute a unique camera position (α, θ, ϕ) satisfying a given
composition in the Toric Space at time t = 0. This position is then used to enforce

151

An Efficient Approach to Virtual Camera Control: The Toric Space

the constraints satisfaction, during the whole sequence, while the two cars are moving.
Only the camera orientation is recomputed at each time step. Figure 5.22 illustrates
an example of evolution of the parameters α, θ and ϕ, as well as the satisfaction of
constraints over time.

8.2.2 Enforcement of constraints through a dynamic camera in the Toric Space

In addition to previous enforcement, in this example, we maintain the camera posi-
tion (α, θ, ϕ) as much as possible and compute a new camera position (α′, θ′, ϕ′), in the
neighborhood of the current camera configuration, when necessary. This new position
is then used to enforce the constraints satisaction on the moving cars. One advantage
of our Toric Space is that, by simply using a linear interpolation between these two
configurations in the Toric Space, the camera can be moved in a natural way. Fig-
ure 5.23 illustrates an example of the evolution of parameters α, θ and ϕ, as well as
the satisfaction of the constraints over time.

8.3 Specification #3: editing

The Toric Space also offers the possibility to implement classical continuity editing
rules [Tho93] when constraints are not satisfied. We here detail how we express such
rules by using the constraints we have introduced beforehand. We then compare the
same constraints enforcement methods as previously, with the possibility to cut to
another viewpoint.

8.3.1 Continuity rules

We here express the continuity rules through previously presented constraints. This
enables defining rules in 3D, whereas previous techniques only focused on applying
editing rules in 2D [HCS96, CAH+96, JY05, ER07, LC08]. We then combine these new
constraints with others, by simply intersecting their solution ranges with Iϕ, Iθ(ϕ) and
Iα(θ, ϕ) in the appropriate step (as described in Section 6). In the following, we assume
that the current camera configuration is C(αc, θc, ϕc).

Line of interest continuity: 180◦ rule. We have built our toric coordinate system
so that the 180◦ rule is quite simple to implement.

I180
ϕ =

[−π
2 ,+

π
2] if ϕc ∈ [−π

2 ,+
π
2]

[−π,−π
2] ∪ [+π

2 ,+π] if ϕc /∈ [−π
2 ,+

π
2]

Line of action continuity. To enforce the line of action of a subject, we simply
remove the half-space located either on his/her left side or on his/her right side de-
pending on the case. To do so, we proceed as follows. Let −→r be the right vector of
a subject T (can be either A or B). If the non-oriented angle between −→v and −→TC is
lower than π

2 , then we apply a new vantage angle on T parameterized by the direction

152

Results

ϕ

θ

α

Time

visibility
vantages
distances

vantages∩distances
vantages∩framing
distances∩framing vantages∩distances∩framing

Figure 5.22 – Illustration of the evolution of parameters α, θ and ϕ (black curves),
as well as the satisfaction of constraints over time, for an example of enforcement of
constraints through a static camera in the Toric Space. The red bar represent the initial
cut, and colored areas corresponds to failures. The color legend explains failures in the
application or combination of constraints.

ϕ

θ

α

Time
Figure 5.23 – Illustration of the evolution of the parameters α, θ and ϕ (black curves),
as well as the satisfaction of constraints over time, for an example of enforcement of
constraints through a dynamic camera in the Toric Space. The red bar represent the
initial cut, and colored areas corresponds to failures. The color legend explains failures
in the application or combination of constraints.

153

An Efficient Approach to Virtual Camera Control: The Toric Space

vector −→v and of half-angle γ = π
2 . Otherwise, we apply a new vantage angle on T

parameterized by the opposite direction vector (−−→v) and of half-angle γ = π
2 .

Minimum change in angle: 30◦ rule. We construct:
a new vantage angle w.r.t. A parameterized by λ = θc

2 , ϕ = ϕc and γ = π

6 .

a new vantage angle w.r.t. B parameterized by λ = π−α− θc2 , ϕ = ϕc and γ = π

6 .
The intersection of these two vantage angles then describes the region of space in which
a camera would not satisfy the minimum change in angle.

Minimum change in size. We first compute the projected size of both subjects
then construct a constraint on their projected size so that there is at most a 20% size
difference between two consecutive shots for both subjects. This intersection of distance
constraint on both subjects then describes the region of space in which a camera would
not satisfy the minimum change in size.

The intersection of the two described regions (minimum change in angle and dis-
tance) then describes the region of space in which a camera would not satisfy the
minimum change in angle; this region is removed from the search.

8.3.2 Enforcement of constraints through a static camera + editing in the Toric
Space

In this example, we compute a unique camera position (α, θ, ϕ) for each shot. This
position is used to enforce the constraints satisfaction during the whole shot and a cut
is performed when necessary (e.g. unsatisfied constraint, visibility issue). Figure 5.24
illustrates an example of evolution of the parameters α, θ and ϕ, as well as the satis-
faction of constraints over time.

8.3.3 Enforcement of constraints through a dynamic camera + editing in the Toric
Space

In this example, we maintain the camera position (α, θ, ϕ) as much as possible
and compute a new camera position (α′, θ′, ϕ′), in the neighborhood of the current
camera configuration, when necessary. As previously, we use a linear interpolation in
Toric Space to describe the camera motions. We then perform a cut when no solution
configuration can be found locally. Figure 5.25 illustrates an example of evolution of
the parameters α, θ and ϕ, as well as the satisfaction of constraints over time.

8.4 Performances

We here compare the performances of the previous constraints enforcement meth-
ods, with four different sampling densities on the three parameters dϕ, dθ and dα
(5×5×5, 10×10×10, 15×15×15 and 20×20×20). The results of our tests are shown in
Tables 5.2 to 5.5. We can interpret these results as follows.

154

Results

ϕ

θ

α

Time

visibility
vantages
distances

vantages∩distances
vantages∩framing
distances∩framing vantages∩distances∩framing

Figure 5.24 – Illustration of the evolution of the parameters α, θ and ϕ (black curves),
as well as the satisfaction of constraints over time, for an example of enforcement of
constraints through a static camera + editing in the Toric Space. The red bars represent
cuts, and colored areas corresponds to failures. The color legend explains failures in the
application or combination of constraints.

ϕ

θ

α

Time
Figure 5.25 – Illustration of the evolution of the parameters α, θ and ϕ (black curves),
as well as the satisfaction of constraints over time, for an example of enforcement of
constraints through a dynamic camera + editing in the Toric Space. The red bars
represent cuts, and colored areas corresponds to failures. The color legend explains
failures in the application or combination of constraints.

155

An Efficient Approach to Virtual Camera Control: The Toric Space

The use of a static camera in the Toric Space all along the sequence already enables
to have near 50% of the frames in which all constrainst are satisfied, at a very low cost;
its cost is near to 0 (the 1ms computation time per frame shown integrates the test of
constraints satisfaction). The use of a dynamic camera in the Toric Space significantly
improves the quality of the sequence of viewpoints, but at cost of computation time
due to re-computation of a solution viewpoint occurring more often (i.e. as soon as
the current viewpoint does not satisfy all the constraints). Furthermore, increasing the
sampling density provides a real improvement in the number of successful frames. It
further leads to less occlusions of subjects, but above all leads to significant reduction
of the duration of occlusions (up to a 17% redution). Editing seems a better choice
to reach both a lower computation time and an improvement in the quality of the
sequence of viewpoints. Using cuts between static cameras in the Toric Space provides
a real improvement in the number of successful frames w.r.t. just using a single static
camera for the full sequence (up to a 60% improvement). In our tests, it further enables
reaching interactive computation performances even at highest resolution (20×20×20).
Though, in some cases, editing may lead to more occlusions of subjects, the possibility
to perform cuts when necessary enables reducing the mean duration of these occlusions.
In a logical manner, increasing the sampling density also enables reducing the number
of occlusions. When the sampling density becomes too important, one can however
observe a rise in both the number of occlusions and their mean duration. In our test,
the best results for cuts between static cameras are obtained by using an intermediate
sampling density (10×10×10). Using dynamic cameras, instead of a static camera, in
the Toric Space for each shot is a mean to reduce the number of cuts necessary (up to
60%), and to reduce both the number and mean duration of occlusions. This appears
more clearly at high resolutions (15×15×15 and 20×20×20). The computation time
is however close to three times higher. As a conclusion, it clearly appears that both
editing, camera motions in Toric space and the use of a higher sampling resolution
yield improvements in the quality of the viewpoints, but each at the cost of a higher
computation time. Results of combinations of these three features are mitigated. Oner
needs to consider a trade-off between the use of camera motions in Toric Space, the
use of cuts and the sampling resolution associated with each. One good compromise
seems to be the use of a dynamic camera with cuts when necessary, while using an
intermediate sampling density, for instance 15×15×15. In our tests, these settings
provide the best results in terms of number and mean duration of occlusions, while
providing interactive computation performances (about 27fps in average).

9 Discussion

Though our approach is efficient, some aspects can be improved.

Projected size We here used a double approximation during the resolution: (i) a
subject is assimilated to a sphere and (ii) a given subject size is approximated to a
unique distance to the sphere, whatever the view angle. Theoretically, the approxima-
tion could benefit from the use of an aspect graph of the subject geometry, that would

156

Discussion

5×5×5
Type SC DC SC + Editing DC + Editing
frames 2792 2792 2792 2792
cuts 1 1 25.5 12.5
successful frames 1388.5 (49.7%) 2398 (86.9%) 1940 (69.5%) 1931 (69.2%)
occlusions of A 29 24.5 35 25

duration (s) mean 0.44 0.38 0.34 0.26
(std dev.) (0.83) (0.83) (0.58) (0.31)

occlusions of B 28.5 29.5 38 33

duration (s) mean 0.44 0.33 0.37 0.30
(std dev.) (0.84) (0.67) (0.57) (0.32)

occlusions of both 23.5 22.5 30.5 22

duration (s) mean 0.46 0.35 0.37 0.27
(std dev.) (0.90) (0.75) (0.62) (0.33)

Time per frame (ms) 1.021 4.922 2.053 2.360

Table 5.2 – Comparison of performances of constraints enforcement techniques, for a
sampling density 5×5×5 (dϕ, dθ and dα). SC: single camera; DC: dynamic camera.

10×10×10
Type SC DC SC + Editing DC + Editing
frames 2792 2792 2792 2792
cuts 1 1 37 15.5
successful frames 1322.5 (47.4%) 2529.5 (91.6%) 2320 (83.1%) 2265 (81.1%)
occlusions of A 32 20 24.5 25

duration (s) mean 0.43 0.36 0.29 0.35
(std dev.) (0.85) (0.66) (0.39) (0.64)

occlusions of B 34.5 23.5 36.5 30

duration (s) mean 0.40 0.31 0.30 0.31
(std dev.) (0.83) (0.61) (0.39) (0.59)

occlusions of both 28.5 16.5 24 23

duration (s) mean 0.41 0.33 0.30 0.31
(std dev.) (0.90) (0.71) (0.40) (0.66)

Time per frame (ms) 0.984 20.416 3.906 14.320

Table 5.3 – Comparison of performances of constraints enforcement techniques, for a
sampling density 10×10×10 (dϕ, dθ and dα). SC: single camera; DC: dynamic camera.

157

An Efficient Approach to Virtual Camera Control: The Toric Space

15×15×15
Type SC DC SC + Editing DC + Editing
frames 2792 2792 2792 2792
cuts 1 1 32 14
successful frames 1322 (47.3%) 2551.5 (91.4%) 2244.5 (80.4%) 2459 (88.1%)
occlusions of A 30.5 19.5 28.5 19

duration (s) mean 0.45 0.34 0.41 0.19
(std dev.) (0.84) (0.63) (0.80) (0.23)

occlusions of B 32 24 32 29

duration (s) mean 0.42 0.29 0.38 0.25
(std dev.) (0.83) (0.57) (0.76) (0.27)

occlusions of both 26 17 24 18

duration (s) mean 0.45 0.29 0.43 0.19
(std dev.) (0.90) (0.66) (0.86) (0.24)

Time per frame (ms) 0.952 42.732 13.157 36.925

Table 5.4 – Comparison of performances of constraints enforcement techniques, for a
sampling density 15×15×15 (dϕ, dθ and dα). SC: single camera; DC: dynamic camera.

20×20×20
Type SC DC SC + Editing DC + Editing
frames 2792 2792 2792 2792
cuts 1 1 40 15
successful frames 1331.5 (47.7%) 2575 (92.2%) 2269 (81.3%) 2334.5 (83.6%)
occlusions of A 31.5 23 28.5 24.5

duration (s) mean 0.43 0.28 0.39 0.30
(std dev.) (0.88) (0.51) (0.75) (0.56)

occlusions of B 33 25 33.5 29

duration (s) mean 0.42 0.26 0.35 0.27
(std dev.) (0.87) (0.49) (0.70) (0.51)

occlusions of both 28 18.5 24 21

duration (s) mean 0.42 0.24 0.39 0.26
(std dev.) (0.93) (0.54) (0.80) (0.57)

Time per frame (ms) 1.083 97.044 31.419 87.722

Table 5.5 – Comparison of performances of constraints enforcement techniques, for a
sampling density 20×20×20 (dϕ, dθ and dα). SC: single camera; DC: dynamic camera.

158

Discussion

(potentially) lead to a more precise computation. This could however be at the cost of
a less generic technique. Another problematic of such a resolution would be the time
necessary to compute the solution set, and to combine this solution set to the solution
sets of other constraints.

Visibility Ray cast techniques provide very local visibility information (point to point
check), while computationally expensive. A possibility offered by the Toric Space would
be to express the subject’s visibility as a spheric depth map around the subject, then
cast this depth map onto the plane (β∗, ϕ). The remaining problem with such a com-
putation is related to (i) how to compute the spheric depth map, (ii) how to map the
depth map information onto a 2D manifold surface (iii) how to explore this information
and (iv) how to overall reach a low computational cost for each step.

Anticipation To further improve results, we could use the inherent properties of the
Toric Space to predict potential occlusions of subjects or that a given visual constraint
will no longer be satisfied from the current viewpoint in the Toric Space at time t+∆t.
From a predicted state of the world (positions and orientation of each relevant scene
element, and particularly key subjects) at time t+ ∆t, one could compute the camera
viewpoint (world position and orientation) corresponding to a given position in the
Toric Space (current position or target position in case of camera motions or cuts).
This camera viewpoint, together with the predicted state of the scene at time t + ∆t,
would provide a good mean to test the constraints satisfaction at time t+ ∆t. It could
therefore assist our system in the decision of initiating a new camera motion or a new
cut to prevent future issues, then in the computation of a target camera viewpoint
(potentially statisfying all constraints at time t+ δt) to which move or cut to.

Over-constrained problem In case of an over-constrained problem (i.e. if there is
at least one conflict in the application of constraints), two trails could be investigated.

Trail #1 The algebraic solutions we have provided can serve as a good starting
point to the use of an optimization-based method. Initial samples could then be taken
from solution sets of each constraints, and a cost-minimization process (using the satis-
faction measures we provided could finally be operated so as to quickly converge toward
an approximate solution.

Trail #2 A set of partial solution S′ (i.e. satisfying a solvable sub-set of con-
straints) could be computed. This solution set could then used as the starting point
to the application of an optimization-based technique, by sampling S′ then operating
a cost-minimization on these samples through the use of the satisfaction functions we
provided for each constraint. One problematic would here be the provision of techniques
for constructing optimal solvable sub-sets of constraints.

More generally, these two trails lead to a central problematic closely related to
proposing good sampling heuristics and optimization techniques that adapt to the shape
of the solution sets.

159

An Efficient Approach to Virtual Camera Control: The Toric Space

10 Conclusion
In this chapter, we have introduced a parametric model (the Toric Manifold) to

solve a range of problems that occur in the task of positioning a virtual camera given
exact on-screen specifications. Our model solves Blinn’s spacecraft problem [Bli88] by
using an algebraic formulation rather than an iterative process. It casts simple camera
optimization problems mostly conducted in 6D into searches inside a 2D space on a
manifold surface. Though the solution for two subjects appears easy to formulate with
vector algebra, it has not been reported before and the model serves as an expressive
way on which to build more evolved techniques.

We extended our model as a 3D space (the Toric Space) in which we integrated
most of the classical visual properties employed in the literature [RCU10]. The size of
key subjects (or distance to camera), vantage angle and a softer on-screen positioning
of subjects are expressed as 2D solution sets in the Toric Space. We have detailed
the theoretical resolution of the combination of any number or such solution sets (note
that this combination is difficult, if not impossible, to perform in the classical 6D
camera space). We have presented an efficient technique to perform this combination to
compute a representative set of solutions viewpoints, and a “smart” visibility estimation
to compute the best candidate camera. Because of the reduction in the search space
inherent to our Toric Space, the benefits in terms of computational cost greatly favors
our approach.

The techniques presented in this chapter have the potential to replace a number
of previous formulations related to camera control with a simpler and more efficient
approach, and opens great possibilities to include more evolved on-screen composition
techniques in a large range of applications in computer graphics.

One interesting problem to investigate would be the planning of cinematic camera
motions in Toric Space, in static scenes as well as in dynamic scenes. This however
give rise to problematics related to planning a global path in this space, while enforcing
a range of visual constraints. In the same way, another interesting problem is about
the planning of a camera motion from a two-subject configuration to a single-subject
configuration, or to another two-subject configuration.

Our Toric Space could also be used to position lights, as light placement and camera
placement have quite similar constraints. There however raises the problem related to
expressing the set of constraints pertaining to light placement (expected visual effect)
into either constraints similar to the ones we introduced earlier (e.g. distance, vantage
angle), or as constraints that can be integrated in the Toric Space. To go further, in a
cinematic context, the Toric Space could then serve as a good basis for controlling the
staging (character placement), the camera and the lights simultaneously, as all three
steps are closely linked to each other.

160

6Conclusion

This thesis has focused on virtual camera control in interactive and non-interactive
3D environments. After identifying key issues, we have presented three contributions
that are now summarized. We then conclude this manuscript by proposing perspectives
for future research in the field.

In this thesis, we introduced the motivations and issues of controlling a virtual
camera in 3D environments. We presented a state of the art of existing camera control
techniques, ranging from purely manual to fully automated control of camera param-
eters. We highlighted that the research community is oriented toward a control that
is more and more automated and models of cinematic knowledge that are more and
more expressive. We identified three essential aspects in controlling a virtual camera:
the viewpoint computation, the planning of camera motions and the editing. We iden-
tified another essential element, the handling of key subjects’ visibility, which has been
under-addressed in the field. We then identified three limitations in existing automated
techniques. First, they generally focus on one or two of the aspects: visual composition
(viewpoint computation), tracking of targets (viewpoint computation and planning),
cinematography (editing, with no account for the visibility of subjects). The four
elements (viewpoint, planning, editing and visibility) considered simultaneously are
however an essential basis for constructing more evolved camera control and virtual
cinematography techniques. Existing techniques further lack expressiveness, i.e. they
do not provide means to address the modeling of directorial style and genre. Second,
there is an interest in supporting the user’s creativity when building a cinematographic
sequence, by weaving automated computation steps and user interactivity. This aspect
has only very partially been addressed in the literature. There exist interactive tech-
niques enabling a finer control of some cinematic aspects (visual layout of elements on
the screen, “cinematic-like” camera motions) but suffer from a tedious handling of the
editing aspect. Third, the central element in controlling a camera is the visual com-
position (i.e. on-screen layout of key elements). Composition problems are generally
casted into non-linear optimization problems in a 7 degree-of-freedom search space.
Given the size of the search space and the computational cost in the evaluation of com-
position properties (typically the visibility of subjects), this optimization process is a
time-consuming task and hampers the use of evolved composition techniques in most
applications.

From these considerations, we identified three research axes:
towards a fully integrated cinematography system, i.e. which handles viewpoint
computation, planning, editing and the visibility of subjects interactively, while
accounting for elements of cinematographic style;

161

Conclusion

towards an interactive approach which assists the user in the task of constructing
a movie, while having a degree of control on the final edit, through a hybrid
approach which combines automated computation with direct user interaction;
towards an efficient approach to the virtual camera composition problem.

Summary of our contributions

A cinematic engine for interactive 3D environments

We have proposed a unifying approach to the problem of interactive cinematogra-
phy, as a fully integrated cinematic engine (CineSys) which handles viewpoint, editing
and planning in a real-time context. We have introduced an expressive editing model,
which addresses the innate complexity of problems such as visibility determination and
path planning required in real-time camera control, and tackles higher-level issues re-
lated to continuity between successive shots. Our real-time cinematic engine encodes
cinematographic idioms and continuity-editing rules to produce appropriate edits and
camera paths from a set of narrative events and style indicators. We have introduced
a novel spatial partitioning, the Director Volumes, on which our model relies. Director
Volumes provide a characterization into visibility regions (with full visibility, partial
visibility or full occlusion) and stereotypical viewpoints (the Semantic Volumes). Our
cinematic engine then reason on these Director Volumes to identify how, when and
where shot transitions should be performed. This semantic and geometric reasoning
relies on a filtering-based encoding of cinematic conventions. Our reasoning process
is further expressive enough to offer the possibility to implement different directorial
styles. We have demonstrated the expressiveness of our model on a range of style in-
dicators (visibility of subjects, pacing, camera dynamicity, narrative dimension). The
expressiveness of our model stands in stark contrast to existing approaches that are
either procedural in character, non-interactive or do not account for proper visibility
of key subjects.

Integrating director’s input into the editing process

We have introduced a novel framework for virtual cinematography and editing which
adds an evaluation of the quality of shots, cuts and pacing. We have further proposed
two ranking-based approaches to editing a movie, that build upon CineSys and pro-
posed evaluation metrics to assist a filmmaker in his creative process. We have intro-
duced an efficient search strategy for finding the best sequence of shots from a large
number of candidates generated from traditional film idioms, while providing the user
with some control on the final edit. We have further enabled enforcing the pace in
cuts by relying on a well-founded model of shot durations. We have then presented an
interactive assistant whose result is a novel workflow based on interactive collabora-
tion of human creativity with automated intelligence. This workflow enables efficient
exploration of a wide range of cinematographic possibilities, and rapid production of
computer-generated animated movies.

162

An efficient approach to Virtual Camera Control: the Toric Space

We have introduced a novel and efficient approach to virtual camera control which
has the potential to replace a number of previous formulations related to camera control
and opens great possibilities to include more evolved on-screen composition techniques
in a large range of applications in computer graphics.

First, we have introduced a simple parametric model (the Toric Manifold) which
solves a two-subject exact on-screen positioning problem. We then used this concept
to tackle a range of problems that occur in the task of positioning a virtual camera
given exact on-screen specifications. Noticeably, we have proposed the first method to
solve Blinn’s spacecraft problem [Bli88] by using an algebraic formulation rather than
an iterative process. As well, we have shown how to cast simple camera optimization
problems mostly conducted in 6D into searches inside a 2D space on a manifold surface.

Second, we have extended our model as a 3D space (the Toric Space) in which
we have integrated most of the classical visual properties expressed in the litera-
ture [RCU10]. We have expressed the size of key subjects (or distance to camera),
vantage angle and a softer on-screen positioning of subjects as 2D solution sets in the
Toric Space. We have detailed the theoretical resolution of the combination of any num-
ber or such solution sets, where such combination is really difficult (if not impossible)
to perform in the classical 6D camera space. We have further shown how continuity
editing rules can be easily expressed as a set of constraints (e.g. distance, vantage) and
combined with other constraints in Toric Space. We have finally presented an efficient
technique to compute a representative set of solutions viewpoints, and a “smart” vis-
ibility estimation to compute the best candidate viewpoint. Because of the reduction
in the search space inherent in our Toric Space, the benefits in terms of computational
cost greatly favors our approach.

Perspectives

In this thesis, we attempted to overcome limitations of existing camera control ap-
proaches in the placement of a virtual camera in 3D environments. However, virtual
camera control is a very complex problem which is not limited to the aspects we ad-
dressed in the thesis. We here enumerate four points of interest which shape the future
of our research in the field.

Learning from real input data

From a user-created edit one can extract indicators on the user style and preferences.
Extracting indicators could then serve to better approximate a given directorial style.
In this thesis, we already extracted a simple indicator from user input: the preference
in transitions from one shot to the following shot, as transition matrices. Learning
a directorial style is however more complicated, as it raises questions such as what
indicator(s) do we learn, and from which input data? For instance, in case of shot

163

Conclusion

preference, one further needs to differentiate the various causes of a given preference for
a shot over another: which composition criterias causes this choice? which link has this
choice with other composition criteria? which link has this choice with previous/next
shot(s)? Learning such indicators also raises the question about the influence one
indicator may have on another, or about the influence of the set of narrative events on
the indicator values (e.g. the pacing is strongly dependent of the scheduling of events).
This learning process finally raises the question about how to re-apply such indicators
as an input to an automated system. All these issues must be addressed if we want to
properly learn elements of directorial style, and be capable of successfully re-applying
this style to a different set of narrative events.

Visual composition
The aesthetic of a visual composition is more complex than just the geometric visual

constraints which are commonly studied in the field (e.g. on-screen position, distance,
vantage angle). For instance, the consideration of more subtle features, such as visual
balance, weight or convergence lines represents a step in the provision of more expressive
composition techniques, which could further greatly improve the quality of computed
viewpoints.

Study of camera parameters linked to human vision
To go further in computing more qualitative viewpoints, one should also take an

interest in additional camera parameters, such as stereoscopy and depth of field, which
cause a modification in the visual perception of depth in images. Stereoscopy provides
a depth information through the use of two separate images (i.e. two slightly different
camera viewpoints, one for the left eye and one for the right eye) reproducing the
parallax effect. The depth of field is basically an intrinsic consequence of camera lenses,
which results in a sharp region (around the focus point) and a blurred region in the
image. Note that for the depth of field parameter, one camera viewpoint can result in
different images (depending on the focus point), and could then potentially serve as
a new mean to perform a transition, by changing the focal point instead of changing
the camera viewpoint. The study of these two parameters could further, through
experiments, provide interesting information on the impact such depth perceptions
may have on other visual features.

Narrative discourse
The narrative discourse addresses the scheduling of narrative events to convey, as

well as the camera shots and cuts, so as to fulfill communicative goals (e.g. convey
that Bill has been shot and that John is the murderer, but without showing the gun).
This is a challenging problem which raises issues such as determining the potential
cognitive state of a viewer, at each time step, depending on the sequence of shots and
on the information contained in each shot; and finding a scheduling of narrative events
(with or without time ellipses) and associated camera placements that make the viewer

164

follow a given cognitive path (as a sequence of changes in cognitive states). Note that
each cognitive path may represent either a different way to tell the same story or to
tell a completely different story (e.g. Bill survived, the murderer has not been found
or we did not see who has been shot). In that sense, the integration of narrative
discourse with evolved cinematographic techniques represents a key step in reaching
more expressiveness in cinematography applications.

165

Bibliography

[ACoYL08] J. Assa, D. Cohen-or, I.-C. Yeh, and T. Lee. Motion Overview of Human
Actions. ACM Transactions on Graphics (TOG) - Proceedings of ACM
SIGGRAPH Asia 2008, 27(5), December 2008. ix, 25, 27, 32

[ACS+11] R. Abdullah, M. Christie, G. Schofield, C. Lino, and P. Olivier. Advanced
Composition in Virtual Camera Control. In Smart Graphics, volume 6815
of Lecture Notes in Computer Science, pages 13–24. Springer Berlin Hei-
delberg, 2011. 21, 19

[AKY05] D. Amerson, S. Kime, and R. M. Young. Real-time Cinematic Camera
Control for Interactive Narratives. In 2005 ACM SIGCHI International
Conference on Advances in Computer Entertainment Technology, pages
369–369, Stanford, CA, 2005. 30, 28

[Ari76] D. Arijon. Grammar of the Film Language. Hastings House Publishers,
1976. 7, 12, 47, 105, 5, 10, 45, 103

[AVF04] C. Andújar, P. Vázquez, and M. Fairén. Way-Finder: Guided Tours
Through Complex Walkthrough Models. Computer Graphics Forum,
23(3):499–508, Septembre 2004. 26, 27, 61, 25, 59

[AWCO10] J. Assa, L. Wolf, and D. Cohen-Or. The Virtual Director: a Correlation-
Based Online Viewing of Human Motion. Computer Graphics Forum,
29(2):595–604, January 2010. 32, 41, 80, 39

[BC11] T. Berliner and D. J. Cohen. The Illusion of Continuity: Active Perception
and the Classical Editing System. Journal of Film and Video, 63(1):44–63,
Spring 2011 2011. 87, 85

[BDER08] P. Burelli, L. Di Gaspero, A. Ermetici, and R. Ranon. Virtual Camera
Composition with Particle Swarm Optimization. In Smart Graphics, vol-
ume 5166 of Lecture Notes In Computer Science, pages 130–141. Springer
Berlin Heidelberg, 2008. 22, 21

[Bec02] S. Beckhaus. Dynamic Potential Fields for Guided Exploration in Virtual
Environments. PhD thesis, Fakultät für Informatik, University of Magde-
burg, September 2002. 26, 24

[BJ09] P. Burelli and A. Jhala. Dynamic Artificial Potential Fields for Au-
tonomous Camera Control. In 5th Conference on Artificial Intelligence
and Interactive Digital Entertainment, Palo Alto, California, USA, 2009.
25, 26, 24

167

Bibliography

[BK00] R. Bohlin and L. E. Kavraki. Path Planning using Lazy PRM. In IEEE
International Conference on Robotics and Automation, volume 1, pages
521–528, San Francisco, CA, 2000. 29

[BKF+02] N. Burtnyk, A. Khan, G. Fitzmaurice, R. Balakrishnan, and G. Kurten-
bach. StyleCam: Interactive Stylized 3D Navigation using Integrated Spa-
tial and Temporal Controls. In 15th annual ACM Symposium on User In-
terface Software and Technology, pages 101–110, Toronto, Canada, 2002.
14, 12

[BL97] W. H. Bares and J. C. Lester. Cinematographic User Models for Auto-
mated Realtime Camera Control in Dynamic 3D Environments. In 6th
International Conference on User Modeling, pages 215–226, 1997. 31, 29

[BL99] W. H. Bares and J. C. Lester. Intelligent Multi-shot Visualization Inter-
faces for Dynamic 3D Worlds. In International Conference on Intelligent
User Interfaces, pages 119–126, Los Angeles, CA, USA, 1999. 19, 17

[BLAH06] T. Bandyopadhyay, Y. Li, M. H.. Jr Ang, and D. Hsu. A Greedy Strat-
egy for Tracking a Locally Predictable Target among Obstacles. In IEEE
International Conference on Robotics and Automation, pages 2342–2347,
Orlando, FL, USA, 2006. 37, 34

[Bli88] J. Blinn. Where Am I? What Am I Looking At? IEEE Computer Graphics
and Applications, 8(4):76–81, July 1988. iv, 3, 17, 117, 118, 119, 123, 160,
163, 15, 16, 115, 116, 121, 157, 161

[BMBT00] W. H. Bares, S. McDermott, C. Boudreaux, and S. Thainimit. Virtual 3D
Camera Composition from Frame Constraints. In Eighth ACM Interna-
tional Conference on Multimedia, pages 177–186, 2000. 18, 22, 41, 16, 21,
39

[Bro86] F. P. Brooks. Walkthrough—A Dynamic Graphics System for Simulating
Virtual Buildings. In Workshop on Interactive 3D graphics, pages 9–21,
1986. 14, 12

[BTM00] W. H Bares, S. Thainimit, and S. Mcdermott. A Model for Constraint-
Based Camera Planning. In AAAI Spring Symposium on Smart Graphics,
pages 84–91, 2000. 20, 19

[BY10] P. Burelli and G. N. Yannakakis. Global Search for Occlusion Minimi-
sation in Virtual Camera Control. In IEEE Congress on Evolutionary
Computation, pages 1–8, Barcelona, Spain, 2010. 26, 24

[BZRL98] W. H. Bares, L. S. Zettlemoyer, D. W. Rodriguez, and J. C. Lester. Task-
Sensitive Cinematography Interfaces for Interactive 3D Learning Environ-
ments. In International Conference on Intelligent User Interfaces, pages
81–88, San Francisco, CA, USA, 1998. 19, 23, 17, 22

[CAH+96] D. B. Christianson, S. E. Anderson, L.-W. He, D. H. Salesin, D. S. Weld,
and M. F. Cohen. Declarative camera Control for Automatic Cinematog-
raphy. In AAAI’96 Proceedings of the Thirteenth National Conference on
Artificial Intelligencec, volume 1, pages 148–155, 1996. ix, 30, 31, 41, 80,
152, 28, 29, 39, 78, 151

168

Bibliography

[Cha80] S. B. Chatman. Story and Discourse: Narrative Structure in Fiction and
Film. Cornell University Press, 1980. 41

[CKL+98] R. C. H. Chiou, A. E. Kaufman, Z. Liang, L. Hong, and M. Achniotou.
Interactive Path Planning for Virtual Endoscopy. In IEEE Nuclear Science
Symposium, volume 3, pages 2069 – 2072. Toronto, Canada, 1998. 25, 24

[CLGL02] M. Christie, E. Languénou, L. Granvilliers, and E. Languénou. Modeling
Camera Control with Constrained Hypertubes. In Principles and Practice
of Constraint Programming, volume 2470 of Lecture Notes in Computer
Science, pages 618–632. Springer Berlin Heidelberg, 2002. 24, 23

[CM01] N. Courty and E. Marchand. Computer Animation: A new Application
for Image-based Visual Servoing. In IEEE International Conference on
Robotics and Automation, volume 1, pages 223–228, 2001. 24, 22

[CMS88] M. Chen, S. J. Mountford, and A. Sellen. A Study in Interactive 3-D Ro-
tation using 2-D Control Devices. ACM SIGGRAPH Computer Graphics,
22(4):121–129, August 1988. 14, 12

[CN05] M. Christie and J.-M. Normand. A semantic Space Partitioning Approach
to Virtual Camera Composition. Computer Graphics Forum, 24(3):247–
256, September 2005. ix, 22, 23, 44, 21, 42

[COCS+03] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, F. Durand, and Y. Chrysan-
thou. A Survey of Visibility for Walkthrough Applications. IEEE Trans-
actions on Visualization and Computer Graphics, 9(3):412–431, July 2003.
34, 48, 31, 46

[CON08a] M. Christie, P. Olivier, and J.-M. Normand. Camera Control in Computer
Graphics. Computer Graphics Forum, 27(8):2197–2218, December 2008.
ix, 7, 13, 16, 39, 5, 34, 36

[CON08b] M. Christie, P. Olivier, and J.-M. Normand. Occlusion-free Camera Con-
trol. Technical Report RR-6640, INRIA, 2008. 37

[DD95] D. Dementhon and L. Davis. Model-Based Object Pose in 25 Lines of
Codes. International Journal of Computer Vision, 15(1-2):123–141, 1995.
126

[DER08] L. Di Gaspero, A. Ermetici, and R. Ranon. Swarming in a Virtual World:
A PSO Approach to Virtual Camera Composition. In Ant Colony Opti-
mization and Swarm Intelligence, volume 5217 of Lecture Notes in Com-
puter Science, pages 155–166. Springer Berlin Heidelberg, 2008. 21, 19

[DGZ92] S. M. Drucker, T. A.. Galyean, and D. Zeltzer. CINEMA: A System for
Procedural Camera Movements. In 1992 Symposium on Interactive 3D
Graphics, pages 67–70, 1992. 14, 12

[DHD00] R.O. Duda, P.E. Hart, and Stork D.G. Pattern Classification (2nd ed.).
Wiley Interscience, 2000. 101, 99

[DRLR89] M. Dhome, M. Richetin, J.-T. Lapresté, and G. Rives. Determination
of the Attitude of 3D Objects from a Single Perspective View. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(12):1265–
1278, December 1989. 126

169

Bibliography

[DV90] G. D’Ydewalle and M. Vanderbeeken. Perceptual and Cognitive Processing
of Editing Rules in Film. 1990. 87, 85

[DZ95] S. M. Drucker and D. Zeltzer. CamDroid: A System for Implementing In-
telligent Camera Control. In 1995 Symposium on Interactive 3D Graphics,
pages 139–144, 1995. 22, 20

[ECR92] B. Espiau, F. Chaumette, and P. Rives. A New Approach to Visual
Servoing in Roboticsh. IEEE Transactions on Robotics and Automation,
8(3):313–326, June 1992. 24, 22

[ER07] D. K. Elson and M. O. Riedl. A Lightweight Intelligent Virtual Cinematog-
raphy System for Machinima Production. In 3rd Annual Conference on
Artificial Intelligence and Interactive Digital Entertainment, pages 8–13,
2007. ix, 33, 34, 41, 79, 80, 152, 29, 31, 39, 77, 78, 151

[FB81] N. Fischler and R. C. Bolles. Random Sample Consensus: A Paradigm
for Model Fitting with Application to Image Analysis and Automated
Cartography. Communication of the ACM, 24(6):381–395, June 1981. 126

[FF04] D. A. Friedman and Y. A. Feldman. Knowledge-based Cinematography
and its Applications. In 16th European Conference on Artificial Intelli-
gence, pages 256–260, Amstredam, The Netherlands, 2004. 30, 28

[Ger09] R. Geraerts. Camera Planning in Virtual Environments using the Corridor
Map Method. In Motion in Games, volume 5884 of Lecture Notes in
Computer Science, pages 194 – 206. Springer Berlin Heidelberg, 2009. 29,
27

[GO07] R. Geraerts and M. H. Overmars. The Corridor Map Method: A General
Framework for Real-time High-quality Path Planning. Computer Anima-
tion and Virtual Worlds, 18(2):107–119, May 2007. 28, 29, 30, 25, 27

[GW92] M. Gleicher and A. Witkin. Through-the-lens Camera Control. ACM
SIGGRAPH Computer Graphics, 26(2):331–340, July 1992. 15, 24, 13

[HCLL89] R. Horaud, B. Conio, O. Leboulleux, and B. Lacolle. An Analytic Solution
for the Perspective 4-points Problem. Computer Vision, Graphics and
Image Processing, 47(1):33–44, July 1989. 126

[HCS96] L. W. He, M. F. Cohen, and D. H. Salesin. The Virtual Cinematographer:
A Paradigm for Automatic Real-time Camera Control and Directingh. In
SIGGRAPH ’96 Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, pages 217–224, 1996. ix, 30, 31, 80,
152, 28, 78, 151

[HHS01] N. Halper, R. Helbing, and T. Strothotte. A Camera Engine for Com-
puter Games: Managing the Trade-Off Between Constraint Satisfaction
and Frame Coherence. In Computer Graphics Forum, volume 20, pages
174–183, September 2001. ix, 19, 35, 36, 37, 17, 18, 32, 33, 34

[HKB+97] L. Hong, A. Kaufman, D. Bartz, S. Muraki, and T. He. Virtual Voyage:
Interactive Navigation in the Human Colon. In SIGGRAPH ’97 Proceed-
ings of the 24th Annual Conference on Computer Graphics and Interactive
Techniques, pages 27–34, 1997. 25, 24

170

Bibliography

[HO00] N. Halper and P. Olivier. CamPlan: A Camera Planning Agent. In Smart
Graphics AAAI Spring Symposium, pages 92–100, 2000. 21, 19

[Hor87] R. Horaud. New Methods for Matching 3D Objects with Single Perspective
Views. IEEE Transactions on Pattern Analysis and Machine Intelligence,
9(3):401–412, May 1987. 126

[HW97] A. J. Hanson and E. A. Wernert. Constrained 3D Navigation with 2D
Controllersk. In 8th Conference on Visualization, pages 175–182„ 1997.
14, 12

[JL98] F. Jardillier and E. Languénou. Screen-Space Constraints for Cam-
era Movements: The Virtual Cameraman. Computer Graphics Forum,
17(3):175–186, September 1998. 24, 23

[JPK98] M.R. Jung, D. Paik, and D. Kim. A Camera Control Interface Based on
the Visualization of Subspaces of the 6D Motion Space of the Camera.
In 6th Pacific Conference on Computer Graphics and Applications, pages
198–206, 1998. 14, 12

[JY05] A. Jhala and R. M. Young. A Discourse Planning Approach to Cinematic
Camera Control for Narratives in Virtual Environments. In AAAI’05 Pro-
ceedings of the 20th National Conference on Artificial Intelligence, vol-
ume 1, pages 307–312, 2005. 80, 152, 78, 151

[JY10] A. Jhala and M. Young. Cinematic Visual Discourse: Representation,
Generation, and Evaluation. IEEE Transactions on Computational Intel-
ligence and AI in Games, 2(2):69–81, June 2010. 34, 30

[Kat91] S. D. Katz. Film Directing Shot by Shot: Visualizing from Concept to
Screen. Michael Wiese Productions, 1991. 7, 5

[KC08] K. Kardan and H. Casanova. Virtual Cinematography of Group Scenes
using Hierarchical Lines of Actions. In 2008 ACM SIGGRAPH Symposium
on Video Games, pages 171–178, 2008. ix, 32, 33, 113, 29, 30, 111

[KC09] K. Kardan and H. Casanova. Heuristics for Continuity Editing of Cine-
matic Computer Graphics Scenes. In 2009 ACM SIGGRAPH Symposium
on Video Games, pages 63–69, 2009. 33, 29

[Kha86] O. Khatib. Real-time Obstacle Avoidance for Manipulators and Mobile
Robots. IEEE International Journal of Robotics and Automation, 2:500 –
505, 1986. 25, 23, 24

[KKH95] M. H. Kyung, M. S. Kim, and S. Hong. Through-the-lens Camera Control
with a Simple Jacobian Matrix. In Graphics Interface, pages 117–178,
1995. 16, 15

[KKS+05] A. Khan, B. Komalo, J. Stam, G. Fitzmaurice, and G. Kurtenbach. Hover-
Cam : Interactive 3D Navigation for Proximal Object Inspection. In 2005
Symposium on Interactive 3D Graphics and Games, pages 73–80, 2005. 14,
12

[KL94] L. Kavraki and J. C. Latombe. Randomized Preprocessing of Configuration
for Fast Path Planning. In IEEE International Conference on Robotics and
Automation, volume 3, pages 2138–2145, San Diego, CA, 1994. 28, 25

171

Bibliography

[KL00] J. J. Kuffner Jr. and S. M. LaValle. RRT-Connect: An Efficient Approach
to Single-Query Path Planning. In IEEE International Conference on
Robotics and Automation, volume 2, pages 995–1001, San Francisco, CA,
2000. 28, 25, 26

[KV79] J. J. Koenderink and A. J. Van Doorn. The Internal Representation of
Solid Shape with Respect to Vision. Biological Cybernetics, 32(4):211–
216, January 1979. 22, 21

[Lat91] J.-C. Latombe. Robot Motion Planning. Kluwer Editions, 1991. 24, 22
[LaV06] S. M. LaValle. Planning Algorithms. Cambridge University Press, Cam-

bridge, 2006. 24, 22
[LC08] T.-Y. Li and C. C. Cheng. Real-Time Camera Planning for Navigation in

Virtual Environments. In Smart Graphics, volume 5166 of Lecture Notes
in Computer Science, pages 118–129. Springer Berlin Heidelberg, 2008. ix,
29, 32, 33, 80, 152, 27, 30, 78, 151

[LT00] T.-Y. Li and H.-K. Ting. An Intelligent User Interface with Motion Plan-
ning for 3D Navigation. In IEEE Virtual Reality, pages 177–184, 2000. 28,
26

[Mas65] J. Mascelli. The Five C’s of Cinematography: Motion Picture Filming
Techniques. Cine/Grafic Publications, Hollywood, 1965. 7, 5

[NO04] D. Nieuwenhuisen and M. H. Overmars. Motion Planning for Camera
Movements. IEEE International Conference on Robotics and Automation,
4:3870 – 3876, 2004. 28, 29, 26, 27

[OHPL99] P. Olivier, N. Halper, J. H. Pickering, and P. Luna. Visual Composition
as Optimisation. In AISB Symposium on on AI and Creativity in Enter-
tainment and Virsual Art, pages 22–30, 1999. 20, 19

[Ond02] M. Ondaatje. The Conversations: Walter Murch and the Art of Editing
Film. Knopf, 2002. 87, 85

[OSTG09] T. Oskam, R. W. Sumner, N. Thuerey, and M. Gross. Visibility Tran-
sition Planning for Dynamic Camera Control. In 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 55–65,
2009. ix, 36, 38, 41, 77, 33, 35, 39, 76

[Ove92] M. H. Overmars. A Random Approach to Motion Planning. Technical
report RUU-CS-92-32, Dept. Comput. Sci., Utrecht University, 1992. 28,
25, 26

[Pal96] P. Palamidese. A Camera Motion Metaphor Based on Film Grammar.
The Journal of Visualization and Computer Animation, 7(2):61–78, April
1996. 23, 22

[PBY12] M. Preuss, P. Burelli, and G. Yannakakis. Diversified Virtual Camera
Composition. In Applications of Evolutionary Computation, volume 7248
of Lecture Notes in Computer Science, pages 265–274. Springer Berlin Hei-
delberg, 2012. 21, 19

172

Bibliography

[PD90] H. Plantinga and C. R. Dyer. Visibility, Occlusion, and the Aspect Graph.
International Journal of Computer Vision, 5(2):137–160, November 1990.
22, 21

[PO03] J. Pickering and P. Olivier. Declarative Camera Planning Roles and Re-
quirements. In Smart Graphics, volume 2733 of Lecture Notes in Computer
Science, pages 182–191. Springer Berlin Heidelberg, 2003. 22, 21

[RCU10] R. Ranon, M. Christie, and T. Urli. Accurately Measuring the Satisfaction
of Visual Properties in Virtual Camera Control. In Smart Graphics, volume
6133 of Lecture Notes in Computer Science, pages 91–102. Springer Berlin
Heidelberg, 2010. iv, 3, 20, 160, 163, 18, 157, 161

[Sal03] B. Salt. Film Style and Technology: History and Analysis (2nd edition).
Starword, 2003. 94, 92

[Sho92] K. Shoemake. Arcball: a User Interface for Specifying Three-dimensional
Orientation using a Mouse. In Graphics Interface, pages 151 – 156, 1992.
14, 12

[Smi05] T. J. Smith. An Attentional Theory of Continuity Editing. PhD thesis,
University of Edinburgh, 2005. 87, 85

[Sny92] J. M. Snyder. Interval Analysis for Computer Graphics. ACM SIGGRAPH
Computer Graphics, 26(2):121–130, July 1992. 18, 16

[ST85] H. G. Scott and F. Truffaut. Hitchcock-Truffaut (Revised Edition). Simon
and Schuster, 1985. 83, 87, 81, 85

[TBG91] R. Turner, F. Balaguer, and E. Gobbetti. Physically-based Interactive
Camera Motion Control using 3D Input Devices, chapter 2. Springer
Japan, 1991. 14, 12

[Tho93] R. Thompson. Grammar of the Edit. Focal Press, 1993. 83, 152, 81, 149
[Tho98] R. Thompson. Grammar of the Shot. Focal Press, 1998. 8, 83, 6, 81
[TS91] S. J. Teller and C. H. Séquin. Visibility Preprocessing for Interactive

Walkthroughs. ACM SIGGRAPH Computer Graphics, 25(4):61–70, July
1991. 25, 48, 50, 23, 46

[VFSH03] P.-P. Vàzquez, M. Feixas, M. Sbert, and W. Heidrich. Automatic View
Selection Using Viewpoint Entropy and its Application to Image-Based
Modelling. Computer Graphics Forum, 22(4):689–700, December 2003.
21, 20

[WO90] C. Ware and S. Osborne. Exploration and Virtual Camera Control in
Virtual Three Dimensional Environments. ACM SIGGRAPH Computer
Graphics, 24(2):175–183, March 1990. 13, 11

[YLL12] I.-C. Yeh, W. C. Lin, and T. Y. Lee. Social-Event-Driven Camera Control
for Multicharacter Animations. IEEE Transactions on Visualization and
Computer Graphics, 18(9):1496–1510, September 2012. 32, 80

[ZF99] R. Zeleznik and A. Forsberg. UniCam—2D Gestural Camera Controls for
3D Environments. In 1999 Symposium on Interactive 3D Graphics, pages
169–173, 1999. 14, 12

173

Bibliography

[ZM10] J. M. Zacks and J. P. Magliano. Art and the Senses, chapter Film, Nar-
rative, and Cognitive Neuroscience. Oxford University Press., 2010. 87,
85

174

Bibliography

175

Résumé
Le contrôle de caméra virtuelle est aujourd’hui un composant essentiel dans beau-

coup d’applications d’infographie. Malgré cette importance, les approches actuelles
restent limitées en terme d’expressivité, d’interactivité et de performances. Typique-
ment, les éléments de style ou de genre cinématographique sont difficiles à modéliser et
à simuler dû à l’incapacité des systèmes actuels de calculer simultanément des points
de vues, des trajectoires et d’effectuer le montage. Deuxièmement, elles n’explorent pas
assez le potentiel créatif offert par le couplage potentiel d’un humain et d’un système
intelligent pour assister les utilisateurs dans une tâche complexe de construction de
séquences cinématographiques. Enfin, la plupart des approches existantes se basent
sur des techniques d’optimisation dans un espace de recherche 6D, qui s’avèrent coû-
teuses et donc inadaptées à un contexte interactif. Dans cette thèse, nous proposons
tout d’abord un cadre unique intégrant les quatre aspects clés de la cinématographie
(le calcul de point de vue, la planification de trajectoires, le montage et la visibilité).
Ce cadre expressif permet de simuler certaines dimensions de style cinématographique.
Nous proposons ensuite une méthodologie permettant de combiner les capacités d’un
système automatique avec une interaction utilisateur. Enfin, nous présentons un mod-
èle de contrôle de caméra efficace qui réduit l’espace de recherche de 6D à 3D. Ce
modèle a le potentiel pour remplacer un certain nombre de formulations existantes.

Mots-clés : contrôle de caméra, cinématographie virtuelle, interaction.

Abstract
Virtual camera control is nowadays an essential component in many computer

graphics applications. Despite its importance, current approaches remain limited in
their expressiveness, interactive nature and performances. Typically, elements of direc-
torial style and genre cannot be easily modeled nor simulated due to the lack of simul-
taneous control in viewpoint computation, camera path planning and editing. Second,
there is a lack in exploring the creative potential behind the coupling of a human with
an intelligent system to assist users in the complex task of designing cinematographic
sequences. Finally, most techniques are based on computationally expensive optimiza-
tion techniques performed in a 6D search space, which prevents their application to
real-time contexts. In this thesis, we first propose a unifying approach which handles
four key aspects of cinematography (viewpoint computation, camera path planning,
editing and visibility computation) in an expressive model which accounts for some ele-
ments of directorial style. We then propose a workflow allowing to combine automated
intelligence with user interaction. We finally present a novel and efficient approach
to virtual camera control which reduces the search space from 6D to 3D and has the
potential to replace a number of existing formulations.

Keywords: camera control, virtual cinematography, interaction.

ACM Classification
Categories and Subject Descriptors (according to ACM CCS):
I.3.6 [Computer Graphics]: Methodology and Techniques–Interaction Techniques;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism–Animation;
H.5.1 [Information Systems]: Multimedia Information Systems–Animations, Video

General Terms: Algorithms, Human Factors

 VU : VU :

 Le Directeur de Thèse Le Responsable de l'École Doctorale
 (Nom et Prénom)

 VU pour autorisation de soutenance

 Rennes, le

Le Président de l'Université de Rennes 1

 Guy CATHELINEAU

 VU après soutenance pour autorisation de publication :

 Le Président de Jury,
 (Nom et Prénom)

	Acknowledgments
	Résumé en français
	Contents
	List of Figures
	List of Tables
	Introduction
	Publications
	State of the Art
	Cinematographic Background
	Shots
	Editing
	From Real Cinematography to Virtual Cinematography

	Interactive Control
	From Interaction to Automation

	Automated Camera Composition
	Direct algebra-based Approaches
	Constraint-based Approaches
	Optimization-based Approaches
	Constrained-optimization Approaches
	Hybrid Approaches

	Automated Camera Planning
	Procedural Camera Movements
	Reactive Approaches
	Constraint-based Approaches
	Optimization-based Approaches

	Automated Editing
	Visibility/Occlusion Handling

	A Cinematic Engine for Interactive 3D Environments
	Contributions
	Overview
	Computing Director Volumes
	Visibility Volumes
	Director Volumes

	Reasoning over Director Volumes
	Filtering operator
	Continuity editing filters
	Style filters
	Selection operator
	Failures in available Director Volumes

	Enforcing Screen Composition
	Performing cuts or continuous transitions
	Performing continuous transitions by path-planning

	Results
	Pacing
	Degree of Visibility
	Limitations
	Discussion and Comparison

	Conclusion

	Integrating Director's Inputs into the Editing Process
	Contributions
	Film grammar rules
	Shot transitions
	Pace in transitions

	An automated approach to constructing a well-edited movie
	Overview
	Computing takes
	Editing graph
	Experimental results

	The Director's Lens
	Overview
	Ranking suggestions
	Learning from the user inputs
	The Director's Lens system

	Discussion and Conclusion

	An Efficient Approach to Virtual Camera Control: The Toric Space
	Contributions
	Reducing search space in virtual camera composition
	Tackling exact on-screen positioning of two subjects: The Toric Manifold
	Solution in 2D
	Application #1: Solution of Blinn's spacecraft problem
	Application #2: Solution for three or more subjects

	Expressing classical visual constraints in the Toric Space
	On-screen positioning
	Projected Size
	Distance
	Vantage angle

	Satisfaction of constraints
	Measuring the satisfaction of a distance constraint

	Results
	Specification #1: static application of constraints
	Specification #2: visual composition enforcement
	Specification #3: editing
	Performances

	Discussion
	Conclusion

	Conclusion
	Bibliography
	Abstract

