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Abstract

Trusted parties are fundamental for the establishment of secure communication among users.
Such is the case, for example, when establishing a trusted relationship between users and certain
public information in a public-key infrastructure for public-key encryption and signature schemes
or when storing high-entropy secret keys in a cryptographic device. Clearly, if the trusted party
misbehaves in either of these situations, then the overall security of the scheme or protocol in
which we are interested can be adversely affected.

There are several ways in which one can try to reduce the amount of trust in third parties,
such as making the task of recovering the secret key harder for the adversary, as in distributed
cryptosystems or minimizing the damage caused by secret-key exposures, as in forward-secure
and intrusion-resilient cryptosystems. In this thesis, we consider two additional methods.

The first one, which goes by the name of password-based key exchange, is to assume that
the secret keys used in authenticated key exchange protocols have low entropy and do not need
to be stored in a cryptographic device. In spite of the low entropy of secret keys, such protocols
can still provide a level of assurance which may be sufficient for most applications.

The second method for reducing the amount of trust in third parties is to use an identity-
based cryptosystem, in which the public key of a user can be an arbitrary string such as an
email address. As identity-based cryptosystems provide collusion resistance, they can also be
used to lessen the damage caused by secret-key exposures by generating independent secret keys
for different time periods or devices. Moreover, identity-based cryptosystems can allow users to
have a more fine-grained control over the decryption capabilities of third parties, further limiting
the harmful consequences due to their misbehavior.

Keywords: Provable security, password-based cryptography, identity-based cryptography.
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Résumé

Les tiers de confiance sont essentiels aux communications sécurisées. Par exemple, dans une
infrastructure de gestion de clés, l’autorité de certification est la clé de voute de l’authentification
en garantissant le lien entre une identité et une clé publique. Une carte à puce se doit, pour sa
part, d’assurer la confidentialité et l’intégrité des données secrètes lorsqu’elle sert de stockage
de données cryptographiques. En effet, si ces garanties sont mises en défaut dans l’une de ces
situations, alors la sécurité globale du système peut en être affectée.

Plusieurs approches permettent de réduire l’importance des tiers de confiance, telles qu’ac-
croître la difficulté de recouvrer la clé secrète, en la distribuant parmi plusieurs entités, ou limiter
l’impact d’une fuite d’information secrète, comme dans les cryptosystèmes « intrusion-resilient »
ou « forward-secure ». Dans cette thèse, nous considérons deux méthodes complémentaires.

La première méthode consiste à utiliser des mots de passe, ou des clés secrètes de faible
entropie, qui n’ont pas besoin d’être stockés dans un dispositif cryptographique sécurisé. Malgré
la faible entropie du secret, de tels protocoles peuvent fournir un niveau d’assurance satisfaisant
pour la plupart des applications. On considère en particulier la mise en accord de clés.

La deuxième méthode limite le besoin de garantie de la part des tiers de confiance en utilisant
un cryptosystème basé sur l’identité, dans lequel la clé publique d’un utilisateur peut être une
chaîne de caractères arbitraire, telle qu’une adresse email. Comme ces systèmes fournissent une
résistance aux collusions, ils peuvent aussi être utilisés pour réduire les dommages causés par
l’exposition de clés secrètes en générant des secrets indépendants pour chaque période de temps
ou pour chaque périphérique/entité. Par ailleurs, ces systèmes basés sur l’identité permettent aux
utilisateurs d’avoir un contrôle plus fin sur les capacités de déchiffrement des tiers, en limitant
les conséquences liées à un mauvais usage.

Mots-clés : Sécurité prouvée, cryptographie basée sur des mots de passe, cryptographie basée
sur l’identité.
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Introduction

The primary goal of cryptography is to enable parties to communicate securely over an insecure
channel, which may be under the control of an adversary. Though originally used mainly for
the purpose of protecting the privacy of messages, cryptography now encompasses many other
goals, such as guaranteeing the integrity of messages being exchanged or the authenticity of the
sender.

For most of its history, cryptography was essentially a game played between designers and
attackers in which one side would try to outsmart the other by conceiving ad hoc attack and
defense mechanisms for their particular goals [Bel11]. Although this ad hoc aspect may always
be present in the field, cryptography has since become a well established science, with clear
security definitions and objectives.

The exact security objectives in which one might be interested will be determined by the
application one has in mind and may depend on many factors, such as how powerful adversaries
may be or the type of information that needs to be protected. The two most common goals
usually considered are data privacy and authenticity. While the goal of data privacy is to keep
unintended parties from learning the contents of the message being sent over the channel, data
authenticity aims at guaranteeing that the contents of the message have not been tampered with
during the course of transmission.

Encryption schemes. The usual way to achieve data privacy and allow parties to exchange
messages privately over an insecure channel is to use an encryption scheme. In these schemes,
there are two types of keys, known as the encryption and decryption keys. Whenever a sender
wants to send a private message, or plaintext, to a receiver, he first converts it into an enciphered
form, called a ciphertext, with the help of the encryption key and then sends the latter to the
receiver. Upon the receipt of a ciphertext, the receiver can use the decryption key to recover the
original plaintext. The algorithms used to generate the ciphertext and to recover the plaintext
are known as the encryption and decryption algorithms respectively.

The classical example of an encryption scheme is Shannon’s one-time pad [Sha49]. In the
one-time pad scheme, both the sender and receiver have to share a secret key whose length is at
least that of the message being exchanged. To encrypt a message, the sender simply computes
the bit-wise XOR of the message with the shared secret key, which serves as the encryption
key, and sends it to the receiver. Upon receiving a ciphertext, the receiver can recover the
original message in a similar manner using the shared secret key as the decryption key. Despite
its simplicity, Shannon showed that the one-time pad is actually as secure as it gets since, as
long as the shared secret key does not get reused, it is impossible for an adversary to gain any
information about the plaintext, other than its length, from the ciphertext. Moreover, this is
the case even if the adversary has unlimited computational resources. Its main drawback lies
in the key size, which needs to be at least as long as the message, thus imposing a limit on the
amount of information that can be securely transmitted.

Signature schemes. The standard way of achieving data authenticity is to use a signature
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scheme. As in an encryption scheme, there are two types of keys, to which we refer as signing
and verification keys. Using the signing key, a sender can create a signature for each message
whose authenticity needs to be guaranteed. This signature will be attached to the message
before its transmission and will serve as a testament to the fact that the message is authentic.
After receiving a message together with its signature, the receiver can verify its authenticity by
checking the validity of the signature with the help of the verification key. The algorithms used
to generate the signature and to verify its validity are known as the signing and verification
algorithms respectively.

Symmetric and asymmetric settings. In order for an encryption scheme to guarantee data
privacy, it is clear that the decryption key used by the receiver should be kept hidden from
the adversary or else the adversary could use it to recover the plaintext associated with any
ciphertext sent over the channel. Likewise, to guarantee data authenticity, the signing key of a
signature scheme needs to remain secret or else the adversary could fabricate authenticators for
any message of its choice.

As for the encryption and verification keys used in these schemes, they might be either
secret or not depending on the particular setting in which we are interested. In the private-key
cryptographic setting, both encryption and verification keys are assumed to be unknown to
the adversary. Due to the secrecy of these keys, both senders and receivers have to agree on
their values before they can start communicating securely. Moreover, since these keys usually
have high entropy, one may need a cryptographic device to safely store them. In this setting,
signature schemes are also known as message authentication codes. On the other hand, in the
public-key cryptographic setting, encryption and verification keys are not necessarily hidden
from the adversary. They are only mathematically related to the corresponding decryption and
signing keys and may be made public. Because the encryption and verification keys are usually
equal to the decryption and signing keys, respectively, in the private-key setting and different
from them in the public-key setting, we also refer to these settings as symmetric and asymmetric.

The notion of public-key cryptography was introduced by Diffie and Hellman [DH76] and is
one of the main innovations of modern cryptography. Unlike private-key cryptography, public-
key cryptography does not require previously established secrets to enable secure communication
between parties. In public-key cryptography, each user has a pair of public and secret keys
associated to him. While the public key is known to all parties, including the adversary, the
secret key should only be known to the user with whom it is associated.

Since public and secret keys are mathematically related, it is always possible for an adversary
to compute a corresponding secret key when given a public key. Hence, public-key cryptography
should only be considered in an environment in which adversaries are assumed to be computa-
tionally bounded. In this computational-complexity setting, rather than impossibility, we talk
about the infeasibility of breaking the security of a scheme.

In order to link users to their public keys, public-key encryption and signature schemes have
to rely on the existence of a public-key infrastructure (PKI), where a trusted authority certifies
the relation between users and their public keys by means of a digital signature. Since users
need to know the public key associated with the trusted authority itself to be able to verify the
validity of signatures issued by this authority, the latter public key needs to be pre-distributed
to all users in the system.

Key exchange. Although public-key encryption and signature schemes can guarantee the
privacy and authenticity of exchanged messages when users have access to certified copies of each
other’s public keys, their costs may be too high for certain applications. To avoid the use of such
primitives and improve the overall efficiency, users often prefer to secure their communication
via symmetric encryption and signature schemes. Unfortunately, this is only possible when users
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are in possession of pre-established common secrets. To alleviate the need for pre-established
secrets without significantly impacting the overall efficiency, another way of dealing with this
problem is for users to first establish a common secret key via a key exchange protocol and to
use this key to derive keys for symmetric encryption and signature schemes.

Public information: (G, g, p)

Alice Bob

x
R

← Zp ; X ← gx y
R

← Zp ; Y ← gy

X
−−−−−−−−−−−→

Y
←−−−−−−−−−−−

SK A ← Y x SK B ← Xy

Figure 1: The Diffie-Hellman key exchange protocol [DH76]. The protocol works over a finite
cyclic group G of prime order p, generated by an element g.

The classical example of a key exchange protocol is the Diffie-Hellman key exchange [DH76],
which is depicted in Figure 1. Let G be a cyclic group of prime order p, let g be a generator
for G, and let Alice and Bob be two users willing to establish a shared secret key. In the Diffie-
Hellman key exchange protocol, Alice chooses a secret value x uniformly at random from Zp and
then sends the ephemeral public key value X = gx to Bob. Likewise, Bob chooses a secret value
y in Zp and sends Y = gy to Alice. Finally, after receiving the values X and Y , both Alice and
Bob can compute a common secret SK = gxy using their corresponding secret values.

Despite its simplicity, the Diffie-Hellman key exchange protocol can be shown to be secure
under reasonable assumptions with respect to adversaries which only eavesdrop on the commu-
nication without altering it. However, the same is not true with respect to active adversaries.
The problem with it is that the Diffie-Hellman key exchange protocol does not include any form
of authentication and can be easily compromised by an adversary that plays the role of one
of the parties in the protocol. It thus becomes clear that to avoid such impersonation attacks
and achieve security even in the presence of active adversaries, both parties need to somehow
authenticate each other in addition to establishing a common secret.

Authenticated key exchange. There are several ways in which one can embed authentication
into a key exchange protocol. The first one, to which we refer as the 2-party asymmetric model,
is to assume that each user in the system is associated with a pair of public and secret keys and
to use public-key signature schemes to authenticate the communication between the parties. An
example of a popular protocol in this model is the 2-party SIGMA protocol [Kra03] used as the
basis for the signature-based modes of the Internet Key Exchange (IKE) protocol. It is worth
noting that we implicitly assume the existence of a PKI when adopting this model.

A second method of adding authentication, known as the 3-party symmetric model, is to
assume the existence of a trusted server with which all parties share a secret. In this model,
users can use the help of the trusted server with which they share a key together with symmetric
encryption and signature schemes to avoid active attacks during the key establishment protocol.
A well-known protocol in this model is the 3-party Kerberos authentication system [SNS88].
The problem with this approach is that the trusted server needs to be present during the key
establishment and this may possibly cause a bottleneck.

Finally, yet another form of obtaining an authenticated key exchange, referred to as the 2-
party symmetric model, is to assume that all users in the system already share a common secret.
As in 3-party model, users can use their pre-established secrets to secure their communication
when establishing new common secrets.
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The need for trusted parties. As the above discussion shows, trusted parties are fundamental
for the establishment of secure communication among parties. Such is the case, for example,
when establishing a trusted relationship between users and certain public information in a public-
key infrastructure (PKI) for public-key encryption and signature schemes or when storing high-
entropy secret keys in a cryptographic device. Clearly, if the trusted party misbehaves in either of
these situations, then the overall security of the scheme or protocol in which we are interested can
be adversely affected. For instance, if the trusted certificate authority of a PKI is compromised
and issues certificates for users without verifying their identities, then the privacy or authenticity
of the communication can no longer be guaranteed. Likewise, if the cryptographic device in which
secret keys are stored gets compromised, then the information advantage that honest users have
over the adversary in the form of a secret key may no longer exist.

There are several ways in which one can try to reduce the amount of trust in third parties.
One method is to use distributed cryptosystems such as the one by Desmedt and Franklin
in [DF92]. In their scheme, secret signing keys are shared among several servers so that the
adversary needs to compromise a sufficiently large set of servers in order to recover a signing key.
Another method of reducing the trust in third parties is to use a intrusion-resilient cryptosystem,
such as the constructions by Dodis et al. in [DKXY02, DFK+03], which tries to minimize the
damage caused by secret-key exposures. A third method requiring fewer interactions among
parties is to use forward-secure cryptosystems, as in the signature scheme of Bellare and Miner
in [BM99]. In these schemes, even though the public key is fixed, the secret key is updated
at regular intervals so that the compromise of the current secret key does not compromise the
security of previous time periods.

Contributions. In this thesis, we consider two additional methods for reducing the amount of
trust in third parties. The first one, which is described in Chapter 2, is to assume that the secret
keys used in authenticated key exchange protocols have low entropy and do not need to be stored
in a cryptographic device. As we show in Chapter 2, despite the low entropy of secret keys, such
protocols can still provide a level of assurance which may be sufficient for most applications.
The second method, which is described in Chapter 3, is to use a generalization of public-key
cryptography known as identity-based cryptography, in which the public key of a user can be
an arbitrary string such as his own identity or email address. As shown in [BF03], in addition
to facilitating the deployment of a public key infrastructure, identity-based cryptosystems can
have several other applications. Like intrusion-resilient cryptosystems, identity-based schemes
can be used to minimize the damage caused by secret-key exposures by generating independent
secret keys for different time periods or devices. Additionally, identity-based encryption schemes
can also allow the sender to have a more fine-grained control over the decryption capabilities of
the receiver with the appropriate use of attributes.

Outline. Since the schemes considered in this thesis follow the provable-security paradigm, we
start by describing this paradigm in more detail in Chapter 1. Next, in Chapters 2 and 3, we
present an overview of password-based and identity-based cryptography along with our main
contributions to these areas. The main articles in which these contributions are based can be
found in the appendix. Finally, we conclude this thesis by presenting some closing remarks and
perspectives.
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Chapter 1

Provable security

1.1 Introduction

Even though we have already mentioned in the previous chapter several properties that a crypto-
graphic scheme may possess, such as data privacy and authenticity, we have not actually shown
how one can prove that a cryptographic scheme has these properties. In the past, the most
common approach to validate the security of a cryptographic scheme was to search for attacks
and to declare a scheme secure if no attack is found that contradicts its security. Unfortunately,
the problem with this approach is that we can never be certain that an attack does not exist.
Hence, the security of the scheme can only be considered heuristic at best as the possibility that
an attack exists cannot be excluded.

Another approach for proving the security of a cryptographic scheme, known as provable
security, is to relate the security of a cryptographic scheme with that of its underlying primi-
tives or computational problems. To achieve this goal, one needs to first specify the attacker’s
capabilities and the security goals that a given cryptographic scheme must meet. Next, one
needs to specify the attacker’s capabilities and the security goals for the underlying primitives
and computational problems. Finally, one needs to provide a reduction which shows how to
transform an adversary that breaks the security goals of a cryptographic scheme into an adver-
sary against the security goals of the cryptographic primitives and computational problems on
which the scheme is based.

One direct consequence of provable security is that it obviates the need to search for specific
attacks against a cryptographic scheme. This is because as long as we are ready to believe that
the underlying primitives are secure or the computational problems are hard, then there can be
no attacks against the cryptographic scheme in question.

In order to illustrate how the provable security methodology can be used in practice, we
also provide a concrete example on how to prove the security of a cryptographic scheme by
considering the classical ElGamal public-key encryption scheme [ElG85a]. But before doing so,
we start by recalling some of the standard tools and computational problems that are used in
this thesis.

1.2 Basic tools

In this section, we recall some of the definitions and basic tools that will be used in the remaining
chapters, such as the syntax of code-based games and the description of bilinear maps.
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Chapter 1. Provable security

1.2.1 Notation and conventions

Let N denote the set of natural numbers. If n ∈ N, then {0, 1}n denotes the set of n-bit strings,
and {0, 1}∗ is the set of all bit strings. The empty string is denoted ε. More generally, if S is a
set, then Sn is the set of n-tuples of elements of S, S≤n is the set of tuples of length at most n.
If x is a string then |x| denotes its length, and if S is a set then |S| denotes its size. If S is finite,
then x

R
← S denotes the assignment to x of an element chosen uniformly at random from S. If

A is an algorithm, then y ← A(x) denotes the assignment to y of the output of A on input x,
and if A is randomized, then y

R
← A(x) denotes that the output of an execution of A(x) with

fresh coins assigned to y. Unless otherwise indicated, an algorithm may be randomized. “PT”
stands for polynomial time and “PTA” for polynomial-time algorithm or adversary. We denote
by k ∈ N the security parameter. A function ν : N → [0, 1] is said to be negligible if for every
c ∈ N there exists a kc ∈ N such that ν(k) ≤ k−c for all k > kc, and it is said to be overwhelming
if the function |1− ν(k)| is negligible.

1.2.2 Code-based games

Some of the definitions in this thesis use code-based game-playing [BR06]. In such games, there
exist procedures for initialization (Initialize) and finalization (Finalize) and procedures to
respond to adversary oracle queries. A game G is executed with an adversary A as follows.
First, Initialize executes and its outputs are the inputs to A. Then A executes, its oracle
queries being answered by the corresponding procedures of G. When A terminates, its output
becomes the input to the Finalize procedure. The output of the latter, denoted G(A), is called
the output of the game, and “G(A) = y” denotes the event that the output takes a value y.
Boolean flags are assumed initialized to false. Games Gi, Gj are identical until bad if their code
differs only in statements that follow the setting of bad to true.

1.2.3 Represented groups

Let G = 〈g〉 be a finite cyclic group of prime order p generated by an element g, where k = |p|
is the security parameter. Throughout this thesis, we will use the multiplicative notation for
the group operation. Hence, g0 denotes the identity element of G and gu denotes the group
element of G that results from multiplying u copies of g, for u ∈ N. Note that gu = gu mod |G|

by Lagrange’s theorem.
Algorithms which operate on G will be given string representations of elements in G. For

that, we require an injective map _ : G → {0, 1}ℓ associated to G, where ℓ is the length of
the representation of group elements. Similarly, when a number i ∈ N is an input to, or output
of, an algorithm, it must be appropriately encoded, say in binary. We assume all necessary
encoding methods are fixed, and do not normally write the _ operators.

The schemes considered in this thesis are parameterized by a group generator, which is a
PTA G that on input 1k returns the description of a multiplicative group G of prime order p,
where 2k < p < 2k+1.

1.2.4 Bilinear maps

The pairing-based schemes that we consider in this thesis are parameterized by a pairing param-
eter generator, which is a PTA G that on input 1k returns the description of two multiplicative
groups G and GT of prime order p with an admissible map ê : G×G→ GT , where 2k < p < 2k+1.
By admissible, we mean that the map is bilinear, non-degenerate, and efficiently computable.
Bilinearity means that for all a, b ∈ Z∗p and all g ∈ G, we have ê(ga, gb) = ê(g, g)ab. By non-
degenerate, we mean that ê(g, g) = 1 if and only if g = 1.
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1.3. Standard complexity assumptions

1.3 Standard complexity assumptions

CDH and DDH Problems. Two of the most common computational problems in finite cyclic
groups are the computational Diffie-Hellman (CDH) and the decisional Diffie-Hellman (DDH)
problems. In the CDH problem, the adversary is given a tuple (g, ga, gb) for random integers
a, b ∈ Z∗p and a random generator g

R
← G∗ and its goal is to compute gab. In the DDH problem,

the goal is to distinguish (g, ga, gb, gab) from (g, ga, gb, gc) when g is a random generator for G
and a, b, c are chosen uniformly at random from Z∗p.

To define more precisely the CDH problem with respect to a group generator G, we consider
the game Expcdh

G,k (A) described in Figure 1.1 using the notation of code-based games. The game
is defined by two procedures and is executed with an adversary A as follows. The procedure
Initialize chooses a random generator g

R
← G∗ and two random integers x, y

R
← Z∗p, computes

X ← gx and Y ← gy, and returns ((G, p), g, X, Y ) to A. Eventually, the adversary ends the
game by querying the Finalize procedure with a group element Z, which outputs true if Z = gxy

and false, otherwise. The advantage Advcdh
G,k (A) of an adversary A in solving the CDH problem

relative to G is then defined as the probability that Expcdh
G,k (A) outputs true. In other words,

Advcdh
G,k (A) = Pr

[
Expcdh

G,k (A) = true
]
.

In order to define more formally the DDH problem relative to a group generator G, consider
the games Expddh-β

G,k (A) described in Figure 1.1 for β ∈ {0, 1}. Both games are defined by two
procedures, which are executed with an adversary A as follows. In the game Expddh-0

G,k (A), the

procedure Initialize chooses a random generator g
R
← G∗ and random integers x, y

R
← Z∗p, sets

z ← xy mod p, computes X ← gx, Y ← gy, and Z ← gz, and returns ((G, p), g, X, Y, Z) to
A. In the game Expddh-1

G,k (A), the procedure Initialize chooses a random generator g
R
← G∗

and random integers x, y, z
R
← Z∗p, computes X ← gx, Y ← gy, and Z ← gz, and returns

((G, p), g, X, Y, Z) to A. In both games, the adversary eventually ends the game by querying
the Finalize procedure with a guess β, which in turn returns true if β′ = 1 and false, otherwise.
The advantage Advddh

G,k (A) of an adversary A in solving the DDH problem relative to G is then
defined as the probability that Expddh-0

G,k (A) outputs true minus the probability that Expddh-1
G,k (A)

outputs true. That is,

Advddh
G,k (A) = Pr

[
Expddh-0

G,k (A) = true
]
− Pr

[
Expddh-1

G,k (A) = true
]
.

Finally, the CDH and DDH problems are said to be hard relative to G if Advcdh
G,k (A) and

Advddh
G,k (A) are negligible functions in k for all PTAs A.

BDH and BDDH Problems. In the bilinear-map setting, two of the most common computa-
tional problems are the bilinear Diffie-Hellman (BDH) problem and its decisional version, the
bilinear decisional Diffie-Hellman (BDDH) problem [BF01, Jou04]. While in the BDH problem,
the goal is to compute ê(g, g)abc given a tuple (g, ga, gb, gc) for random integers a, b, c ∈ Z∗p, in
the BDDH problem, the goal is to distinguish the element ê(g, g)abc from a random element of
G∗T .

More precisely, the advantage Advbdh
G,k (A) of an adversary A in solving the BDH problem

relative to a pairing parameter generator G is defined as the probability that the adversaryA out-
puts ê(g, g)abc on input ((G,GT , p, ê), g, ga, gb, gc) for randomly chosen g

R
← G∗ and a, b, c

R
← Z∗p.

Using the code-based notation, Advbdh
G,k (A) corresponds to probability that the game Expbdh

G,k (A)
returns true in Figure 1.2.

To define the advantage Advbddh
G,k (A) of an adversary A in solving the BDDH problem

relative to G, we consider the game Expbddh-β
G,k (A) between A and a challenger in Figure 1.2
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Chapter 1. Provable security

Game Expcdh
G,k (A)

proc Initialize(k)

(G, p) R

← G(1k)
−→
G ← (G, p)
g

R

← G∗

x
R

← Z∗
p ; X ← gx

y
R

← Z∗
p ; Y ← gy

Return (
−→
G , g, X, Y )

proc Finalize(Z)
Return (Z = gxy)

Game Expddh-0
G,k (A)

proc Initialize(k)

(G, p) R

← G(1k)
−→
G ← (G, p)
g

R

← G∗

x
R

← Z∗
p ; X ← gx

y
R

← Z∗
p ; Y ← gy

z ← ab mod p ; Z ← gz

Return (
−→
G , g, X, Y, Z)

proc Finalize(β′)
Return (β′ = 1)

Game Expddh-1
G,k (A)

proc Initialize(k)

(G, p) R

← G(1k)
−→
G ← (G, p)
g

R

← G∗

x
R

← Z∗
p ; X ← gx

y
R

← Z∗
p ; Y ← gy

z
R

← Z∗
p ; Z ← gz

Return (
−→
G , g, X, Y, Z)

proc Finalize(β′)
Return (β′ = 1)

Figure 1.1: Games Expcdh
G,k (A), Expddh-0

G,k (A), and Expddh-1
G,k (A) defining the advantage of an

adversary A against the CDH and DDH problems relative to a group generator G and security
parameter k.

Game Expbdh
G,k (A)

proc Initialize(k)

(G,GT , p, ê) R

← G(1k)
−→
G ← (G,GT , p, ê)
g

R

← G∗

a
R

← Z∗
p ; A← ga

b
R

← Z∗
p ; B ← gb

c
R

← Z∗
p ; C ← gb

Return (
−→
G , g, A, B, C)

proc Finalize(Z)
Return (Z = ê(g, g)abc)

Game Expbddh-0
G,k (A)

proc Initialize(k)

(G,GT , p, ê) R

← G(1k)
−→
G ← (G,GT , p, ê)
g

R

← G∗

a
R

← Z∗
p ; A← ga

b
R

← Z∗
p ; B ← gb

c
R

← Z∗
p ; C ← gb

z ← abc mod p ; Z ← ê(g, g)z

Return (
−→
G , g, A, B, C, Z)

proc Finalize(β′)
Return (β′ = 1)

Game Expbddh-1
G,k (A)

proc Initialize(k)

(G,GT , p, ê) R

← G(1k)
−→
G ← (G,GT , p, ê)
g

R

← G∗

a
R

← Z∗
p ; A← ga

b
R

← Z∗
p ; B ← gb

c
R

← Z∗
p ; C ← gb

z
R

← Z∗
p ; Z ← ê(g, g)z

Return (
−→
G , g, A, B, C, Z)

proc Finalize(β′)
Return (β′ = 1)

Figure 1.2: Games Expbdh
G,k (A), Expbddh-0

G,k (A), and Expbddh-1
G,k (A) defining the advantage of an

adversary A against the BDH and BDDH problems relative to a pairing parameter generator G
and security parameter k.

for β ∈ {0, 1}. In these games, the procedure Initialize first chooses a random generator
g

R
← G∗, random integers a, b, c

R
← Z∗p, and a random element T

R
← GT . If β = 1, Initialize

returns the tuple ((G,GT , p, ê), g, ga, gb, gc, ê(g, g)abc) to A; if β = 0, it returns the tuple
((G,GT , p, ê), g, ga, gb, gc, T ) instead. The advantage Advbddh

G,k (A) is then defined as the proba-
bility that game Expbddh-0

G,k (A) outputs true minus the probability that game Expbddh-1
G,k (A) out-

puts true. Finally, the BDH and BDDH problems are said to be hard relative to G if Advbdh
G,k (A)

and Advbddh
G,k (A) are negligible functions in k for all PTAs A.
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1.4. Example: Public-key encryption

1.4 Example: Public-key encryption

In order to illustrate how provable security can be used in practice, we provide in this section a
proof of security for the classical ElGamal public-key encryption scheme [ElG85a] as an example.
Towards this goal, we start by recalling the formal definition of a public-key encryption scheme
and what it means to be secure. Next, we describe the ElGamal public-key encryption scheme
and show that it meets the notion of indistinguishability under chosen-plaintext attacks under
the decisional Diffie-Hellman assumption described in Section 1.3.

Syntax. A public-key encryption scheme (PKE) is defined by a tuple of algorithms PKE =
(PG, KeyGen, Enc, Dec) and a message space M, providing the following functionality. Via
pars

R
← PG(1k), one can run the probabilistic parameter generation algorithm PG to setup

the common parameter pars for a given security parameter k. Via (pk, sk) R
← KeyGen(pars), a

user can run the probabilistic algorithm KeyGen to obtain a pair (pk, sk) of public and secret
keys with respect to common parameter pars. Via C

R
← Enc(pk, m), one can send an encrypted

message m ∈M to the user with public pk. Finally, via m← Dec(sk, C ), the user in possession
of the secret key sk and a ciphertext C can run the deterministic decryption algorithm to re-
cover the underlying plaintext m. For correctness, it is required that for all honestly generated
keys (pk, sk) R

← KeyGen, for all messages m ∈ M, m = Dec(sk, Enc(pk, m)) holds with all but
negligible probability.

Security definition. The now-standard definition of security of PKE schemes, suggested by
Goldwasser and Micali [GM84], is indistinguishability under chosen-plaintext attacks (IND-CPA).
In this security model, the adversary receives the public key of the scheme that he is trying to
attack and his goal is to find a pair of messages of the same length whose encryptions he is able
to distinguish. Since the adversary is allowed to choose the challenge messages after seeing the
public key, this security notion implicitly provides security against key recovery attacks.

The precise definition of IND-CPA security considers the game Expind-cpa-β
PKE,k (A) described in

Figure 1.3. Expind-cpa-β
PKE,k (A) contains three procedures, which are executed with an adversary

A as follows. The procedure Initialize generates the common parameter pars
R
← PG(1k) and

a pair of public and secret keys (pk, sk) R
← KeyGen(pars) and returns pk to A. During the

execution of the game, the adversary is allowed to make a single query (m∗0, m∗1) to the LR
procedure, where m∗0, m∗1 ∈ {0, 1}∗ are assumed to have the same length. To answer it, the
game Expind-cpa-β

PKE,k (A) generates a challenge ciphertext C ∗
R
← Enc(pk, m∗β) and gives C ∗ to A.

Eventually, the adversary ends the game by querying the Finalize procedure with a guess β′

for the bit β used to generate the challenge ciphertext. The advantage Advind-cpa
PKE,k (A) of the

adversary A in breaking the IND-CPA security of PKE is then defined as the probability that
game Expind-cpa-0

PKE,k (A) outputs true minus the probability that game Expind-cpa-1
PKE,k (A) outputs

true. Finally, we say that PKE is secure if Advind-cpa
PKE,k (A) is a negligible function in k for all

PTAs A.

ElGamal encryption. The ElGamal public-key encryption scheme, described in Figure 1.4,
was proposed in [ElG85a]. It can be seen as an adaptation of the Diffie-Hellman key exchange
described in Figure 1 on page 5 to the public-key setting by fixing the first message sent by one
the parties as the public key for that party.

As in the Diffie-Hellman key exchange, the ElGamal encryption scheme works over a finite
cyclic group G of prime order p obtained via a group generator G. To generate a pair (pk, sk)
of public and secret keys, the user chooses a generator g for G and a random element x ∈ Z∗p,
computes X ← gx, and sets pk = (G, p, g, X) and sk = (G, p, g, x). To encrypt a message m ∈ G
to a user with public key pk = (G, p, g, X), the sender simply chooses a random element r ∈ Z∗p
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Game Expind-cpa-β
PKE,k (A)

proc Initialize(k)

pars
R

← PG(1k)
(pk, sk) R

← KeyGen(pars)
Return pk

proc LR(m∗
0, m∗

1)

C∗ R

← Enc(pk, m∗
β)

Return C∗

proc Finalize(β′)
Return (β′ = 1)

Figure 1.3: Game Expind-cpa-β
PKE,k (A) for β ∈ {0, 1} defining the IND-CPA security of a public-key

encryption scheme PKE = (PG, KeyGen, Enc, Dec).

and outputs (C1, C2) = (gr, m ·Xr) as the ciphertext. To decrypt it, the user in possession of
the secret key sk = (G, p, g, x) corresponding to pk = (G, p, g, X) computes C2/C1

x to recover
the underlying message.

PG(1k):
(G, p) R

← G(1k)
pars ← (G, p)
Return pars

KeyGen(pars):
parse pars as (G, p)
g

R

← G∗

x
R

← Z∗
p ; X ← gx

sk ← (G, p, g, x)
pk ← (G, p, g, X)
Return (pk, sk)

Enc(pk, m):
r

R

← Z∗
p ; C1 ← gr

K ← Xr

C2 ← m ·K
Return (C1, C2)

Dec(sk, C):
parse C as (C1, C2)
parse sk as (G, p, g, x)
m′ ← C2/C1

x

Return m′

Figure 1.4: The ElGamal public-key encryption scheme [ElG85a], where G is a group generator.

Security of ElGamal encryption. In order to prove that the ElGamal encryption scheme
meets the IND-CPA security notion depicted in Figure 1.3 if the DDH problem is hard with
respect to group generator G, we will provide a reduction which relates the advantage of the
adversary in breaking IND-CPA security game to the advantage of another adversary in breaking
the DDH problem with respect to G. More precisely, we want to prove the following theorem.

Theorem 1.4.1 Let EG refer to the ElGamal PKE scheme in Figure 1.4, let G be the underlying
group generator, let k be the security parameter, and let A be an adversary against IND-CPA
security notion as depicted in Figure 1.3, making at most a single query to the LR procedure.
Then, there exists an adversary B against the DDH problem with respect to G, whose running
time is that of A and such that

Advind-cpa
EG,k (A) ≤ 2 ·Advddh

G,k (B).

The actual proof of Theorem 1.4.1 is quite simple and uses the fact that, in order to dis-
tinguish between the encryption of the challenge messages, the adversary needs to somehow
distinguish the value K = Xr = grx used to hide the message in C2 from a random element in
the group, when given the public key pk = (G, p, g, X = gx) and the first part of the ciphertext,
C1 = gr. However, to make this intuition more precise and to illustrate the usefulness of games
in security proofs, we will prove Theorem 1.4.1 using a sequence of hybrid games.

Our proof contains a total of 5 games, which are described in Figure 1.5, in which games
G0 and G4 correspond respectively to the games Expind-cpa-0

EG,k (A) and Expind-cpa-1
EG,k (A) of the

IND-CPA security definition. Hence, in order to show that the advantage Advind-cpa
EG,k (A) of A
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Game G0

proc Initialize(k)

(G, p)
R
← G(1k)

g
R
← G∗

x
R
← Z∗

p ; X ← gx

sk ← (G, p, g, x)
pk ← (G, p, g, X)
Return pk

Game G1

proc Initialize(k)

(G, p)
R
← G(1k)

g
R
← G∗

x
R
← Z∗

p ; X ← gx

sk ← (G, p, g, x)
pk ← (G, p, g, X)
Return pk

Game G2

proc Initialize(k)

(G, p)
R
← G(1k)

g
R
← G∗

x
R
← Z∗

p ; X ← gx

sk ← (G, p, g, x)
pk ← (G, p, g, X)
Return pk

Game G3

proc Initialize(k)

(G, p)
R
← G(1k)

g
R
← G∗

x
R
← Z∗

p ; X ← gx

sk ← (G, p, g, x)
pk ← (G, p, g, X)
Return pk

Game G4

proc Initialize(k)

(G, p)
R
← G(1k)

g
R
← G∗

x
R
← Z∗

p ; X ← gx

sk ← (G, p, g, x)
pk ← (G, p, g, X)
Return pk

proc LR(m∗
0, m∗

1)

r
R
← Z∗

p ; C∗
1 ← gr

K ← Xr

C∗
2 ← m∗

0 ·K
Return (C∗

1 , C∗
2 )

proc LR(m∗
0, m∗

1)

r
R
← Z∗

p ; C∗
1 ← gr

K
R
← G∗

C∗
2 ← m∗

0 ·K
Return (C∗

1 , C∗
2 )

proc LR(m∗
0, m∗

1)

r
R
← Z∗

p ; C∗
1 ← gr

K
R
← G∗

C∗
2

R
← G

Return (C∗
1 , C∗

2 )

proc LR(m∗
0, m∗

1)

r
R
← Z∗

p ; C∗
1 ← gr

K
R
← G∗

C∗
2 ← m∗

1 ·K

Return (C∗
1 , C∗

2 )

proc LR(m∗
0, m∗

1)

r
R
← Z∗

p ; C∗
1 ← gr

K ← Xr

C∗
2 ← m∗

1 ·K
Return (C∗

1 , C∗
2 )

proc Finalize(β′)

Return (β′ = 1)

proc Finalize(β′)

Return (β′ = 1)

proc Finalize(β′)

Return (β′ = 1)

proc Finalize(β′)

Return (β′ = 1)

proc Finalize(β′)

Return (β′ = 1)

Figure 1.5: Sequence of games for the security proof of the ElGamal PKE scheme described in
Figure 1.4, where the rectangular boxes indicate differences with respect to the previous game.
G is the underlying group generator used in the ElGamal PKE scheme.

against EG is negligible for all PTAs A, it suffices to show that the probability that GAi outputs
true for i = 0, . . . , 4 does not change significantly.

Proof: Consider the sequence of games depicted in Figure 1.5. By substituting the description
of the ElGamal PKE scheme (EG) in Game Expind-cpa-β

EG,k (A) for β ∈ {0, 1} in Figure 1.3, we
have that

Advind-cpa
EG,k (A) = Pr

[
Expind-cpa-0

EG,k (A) = true
]
− Pr

[
Expind-cpa-1

EG,k (A) = true
]

= Pr [ G0(A) = true ]− Pr [ G4(A) = true ] . (1.1)

We now claim that there exists an adversary B1 against the DDH problem relative to G such that
Pr [ G0(A) = true ]−Pr [ G1(A) = true ] ≤ Advddh

G,k (B). In order to prove this claim, we build B1

as follows. Let ((G, p), g, X, Y, Z) be the input that B receives from the Initialize procedure in
Expddh-β

G,k (B1). B1 then sets (G, g) as the underlying group for EG and returns pk = (G, p, g, X)

to A as the output of its Initialize procedure of Expind-cpa-0
EG,k (A). When A queries its LR

procedure with a pair of messages (m∗0, m∗1), B1 simulates its behavior by setting (C ∗1 , C ∗2 ) = (Y,
m∗0 · Z) and returning it to A. Finally, when A queries its Finalize procedure with a guess bit
β′, B1 queries its own Finalize procedure with β′.

Given the above description of B1, it is not hard to see that, when we execute B1 in Expddh-0
G,k (B1),

B1 simulates Expind-cpa-0
EG,k (A) to A. Likewise, when B1 interacts with the challenger in

Expddh-1
G,k (B1), it simulates Expind-cpa-1

EG,k (A) to A. Thus,

Pr [ G0(A) = true ] = Pr
[

Expddh-0
G,k (B1) = true

]

Pr [ G1(A) = true ] = Pr
[

Expddh-1
G,k (B1) = true

]

which implies that

Pr [ G0(A) = true ]− Pr [ G1(A) = true ] ≤ Advddh
G,k (B1) . (1.2)
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Due to the similarities between games G0(A) and G4(A) and games G1(A) and G3(A), we can
easily build an adversary B2 against the DDH problem relative to G such that

Pr [ G3(A) = true ]− Pr [ G4(A) = true ] ≤ Advddh
G,k (B2) . (1.3)

Finally, we note that the differences between games G1(A) and G2(A) and between games G2(A)
and G3(A) are purely syntactic since, in all of these cases, C ∗2 is a random element in the group
which does not depend on the guess bit β used to select the challenge message. Hence,

Pr [ G1(A) = true ] = Pr [ G2(A) = true ] = Pr [ G3(A) = true ] . (1.4)

The proof of Theorem 1.4.1 follows by combining equations 1.1, 1.2, 1.3, and 1.4 and by notic-
ing that the adversary B of the theorem statement runs B1 with probability 1/2 and B2 with
probability 1/2.
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Chapter 2

Password-based cryptography

2.1 Introduction

Password-based encrypted key exchange (PAKE) protocols are a particular case of authenticated
key exchange protocols in which the secret key or password used for authentication is not
uniformly distributed over a large space, but rather chosen from a small set of possible values (a
four-digit pin, for example). Since PAKE protocols rely on short and easily memorizable secrets,
they also seem more convenient to use as they do not require an additional cryptographic devices
capable of storing high-entropy secret keys.

Due to their practicality, password-based key exchange protocols have been very popular
over the years. Unfortunately, the vast majority of protocols found in practice do not account
for the fact that passwords have low entropy and are often subject to the so-called dictionary
attacks. These are attacks in which an adversary tries to break the security of a scheme by
a brute-force method, by trying all possible combinations of secret keys in a given small set
of values (i.e., the dictionary). Although not very effective in the case of high-entropy keys,
dictionary attacks can be very damaging when the secret key is a password since the attacker
has a non-negligible chance of winning. Such attacks are usually divided in two categories:
off-line and online dictionary attacks.

To address the problem of dictionary attacks, several protocols have been designed to be
secure even when the secret key is a password. The goal of these protocols is to restrict the
adversary’s success to online dictionary attacks only, in which the adversary must be present and
interact with the system in order to be able to verify whether its guess is correct. The security
in these systems usually relies on a policy of invalidating or blocking the use of a password if a
certain number of failed attempts has occurred.

Overview of this chapter. Since the security analysis of PAKE schemes is one of the most chal-
lenging aspects in their design, we recall in Section 2.2 the different security notions used in the
analysis of PAKE schemes. Next, we continue our review of PAKE schemes by recalling the
first seminal work in this area, namely the encrypted key exchange protocol by Bellovin and
Merritt [BM92], together with its main variants. As security of existing EKE-based protocols
relies on idealized models, such as the random-oracle model, we review in Section 2.4 the main
PAKE schemes with a proof of security in the standard model. Then, in Section 2.5, we dis-
cuss schemes which remain secure under arbitrary composition and when participants run the
protocol with different but possibly related passwords. Finally, in Sections 2.6, 2.7, and 2.8, we
consider extensions to the group setting.
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2.2 Security models for PAKE

Due to the low entropy of passwords, password-authenticated protocols are always subject to
online guessing attacks in which an attacker tries to impersonate one of the parties by simply
guessing the correct password and running the protocol. Since these attacks are unavoidable
and can succeed with non-negligible probability, standard notions of security for authenticated
key exchange protocols cannot be used in this scenario. To tackle this issue and capture the non-
negligible success probability of online dictionary attacks, three different types of security models
have been proposed in the literature based on the indistinguishability-based model of Bellare and
Rogaway [BR94a], on the simulation-based model of Bellare, Canetti, and Krawczyk [BCK98],
and on the universal composability of Canetti [Can01]. We now briefly review each of these
security models.

2.2.1 Indistinguishability-based model

The first indistinguishability-based security model for PAKE protocols was proposed by Bellare,
Pointcheval, and Rogaway (BPR) in [BPR00]. As in [BR94a], each instance of a user is modeled
as a stateful oracle with which the adversary can interact via specific oracle queries, which
model the adversary’s capabilities in a real attack. These queries will usually have the form
(U1, i, U2, m), meaning that the adversary is sending a message m to instance i of user U1

claiming that it is from user U2 and will be answered according to the protocol specification.
Since several sessions may be executed concurrently in a real execution of the protocol, several
user instances may be active at any given time.

Let U i denote the i-th instance of a user U and let b be a bit chosen uniformly at random.
The standard queries used to model the adversary’s capabilities in a real attack are Execute,
Send, Reveal, Corrupt, and Test.

• Execute(U i
1, U j

2 ): This query models passive attacks in which the attacker eavesdrops on
honest executions between a user instances U i

1 and U j
2 . Its output consists of the messages

that would be exchanged between these two instances during an honest execution of the
protocol.

• Send(U i, m): This query models an active attack, in which the adversary may intercept a
message and then either modify it, create a new one, or simply forward it to the intended
participant. Its output is the message that the participant instance U i would generate
upon receipt of message m.

• Reveal(U i): This query models the misuse of session keys by clients. It returns to the
adversary the session key of user instance U i, if the latter is defined.

• Corrupt(U): The exact output of this query depends on the corruption model which is
being assumed. Usually, this query simply returns the long-lived key of user U , which in
the password-based setting means his password. However, in a stronger corruption model,
the adversary may also learn the internal states of all instances of user U .

• Test(U i): This query captures the adversary’s ability to tell apart a real session key from
a random one and returns the session key for instance U i if b = 1 or a random key of the
same size if b = 0.

While the first four queries serve to model the adversary’s capability in a real attack, the last
one intends to capture a specific security goal for key exchange protocols, which is the difficulty
of distinguishing real session keys from a random one. Nonetheless, in order to define the latter
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security goal more precisely, we first need to introduce the notions of partnering and freshness.
While partnering defines the set of user instances which should be treated together, freshness
captures situations in which the adversary can trivially know the value of the session key being
held by a user instance.

Partnering. Following [KY03], the notion of partnering is defined via session and partner
identifiers. More precisely, let the session identifier sidi

U be a function of all the messages sent
and received by user instance U i as specified by the key exchange protocol. Let the partner
identifier pidi

U be the set of users with whom user instance U i wishes to establish a common
secret key, including U i himself. We say that U i

1 and U j
2 are partners if and only if they have

the same session and partner identifiers.
Freshness. A user instance is said to be fresh if neither this instance nor its partner have

been corrupted and if no Reveal query has been asked to it or to its partner.
Now that we have defined these properties, we can state the two main properties that a

secure PAKE protocol should satisfy: correctness and semantic security.

• Correctness. For a protocol to be correct, it should always be the case that, whenever
two instances U i

1 and U j
2 are partnered and have successfully completed the protocol, both

instances should hold the same non-null session key.

• Security. Consider an execution of the PAKE protocol P by a polynomial-time adversary,
in which the latter is given access to the Reveal, Execute, Send, Corrupt and Test oracles
and asks a single Test query to a fresh instance, and outputs a guess bit b′. Let b be the
hidden bit used by the Test oracle and assume that user passwords are chosen uniformly
from a dictionary space Dict. We say that the PAKE protocol P is secure if the probability
that b′ = b is only negligibly larger than O(q/|Dict|) + 1/2, where q is number of different
protocol instances to which the adversary has asked Send queries.

Remark 2.2.1 We note that the factor 1/2 in the security definition is to disregard as unsuc-
cessful attacks in which the adversary simply guesses the value of the hidden bit b uniformly
at random. Likewise, the factor O(q/|Dict|) is to account for the fact that the adversary can
succeed with probability q/|Dict| + 1/2 by simply guessing the password of a given user and
playing its role via Send queries.

Contributions. In [AFP05, AFP06], Fouque, Pointcheval, and I extended the security notion
above to the scenario in which the adversary is allowed to ask multiple Test queries. As we show
in these articles, one of the advantages of the new notion is that it provides security proofs with
better concrete bounds when the PAKE protocol is used inside other protocols. This is due to
the fact all session keys can be replaced with random ones in a single hybrid step within these
security reductions. Though not important for the standard AKEs, such factors are extremely
important in the password-based scenario due to low entropy of passwords.

2.2.2 Simulation-based model

The first simulation-based security model for PAKE protocols was proposed by Boyko, MacKen-
zie, and Patel (BMP) in [BMP00], based on the formal security models by Shoup [Sho99] and
by Bellare, Canetti, and Krawczyk [BCK98]. As in [Sho99], security is defined using an ideal
system, which models the service being performed (PAKE in this case), and a real system, which
describes the actual environment in which the protocol is executed. Intuitively, in order to prove
the security of a PAKE scheme, it suffices to show that anything that an adversary can do in a
real system can also be done in the ideal system.
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As in the indistinguishability-based model, each user can have several instances associated
to him and the adversary interacts with the system via oracle queries. Additionally, each user
assumes a particular role in each session, depending on whether it is going to open itself for
connection or whether it is going to connect to another instance. Unlike the BPR model, there is
a new trusted entity called the ring master, which is responsible for keeping track of the session
keys that are established among user instances, and an environment variable R modeling he
information shared by users in higher-levels protocols.

Ideal world. To model the PAKE service in the ideal world, the following types of queries are
available to the adversary.

• InitUser(U, id): This query allows the adversary to assign the string id to user U and
models the initialization of the latter. Upon receiving this query, for each user Ui with
identity idi in the system, the ring master chooses a password pw i at random from the
dictionary and assigns it to the pair (id, idi).

• SetPassword(Ui, id
′,pw): This query allows the adversary to set the password for the pair

(id, id′) to pw as long as id′ has not been assigned to any user.

• InitInstance(U j
i , role, pid): This query assigns the role for the j-th instance of user Ui in a

session with user pid, if the latter is defined.

• TerminateInstance(U j
i ): This query forces instance U j

i to terminate its session.

• TestPassword(U j
i ,pw): This query models a password guess by the adversary with respect

to user instance U j
i . This query returns either true or false to the adversary depending

on whether the guess is correct. The adversary is only allowed to query this oracle once
per user instance.

• StartSession(U j
i , opt): This query forces the construction of a session key Kj

i for U j
i . If

U j
i is open for connection, untested (no query TestPassword has been asked of it), and

both U j
i and its partner have not been corrupted (not initialized via InitUser), then the

ring master chooses Kj
i uniformly at random from the proper distribution. Likewise, if U j

i

is connecting to another instance, untested, and both U j
i and its partner have not been

corrupted, then Kj
i is set to key value assigned to its partner. If U j

i is corrupted or if
a successful TestPassword has been asked of it, then the ring master sets Kj

i to value
specified in opt.

• Application(U j
i , f): This query models leakage of the session key information through

the use of the latter in a real protocol. It enables the adversary to learn an efficiently
computable function f about the environment variable and the session keys.

Real world. In the real world, user instances are defined as state machines with access to the
user’s id, pid, password, and private random inputs. Each user instance has an initial state and
only updates its state once it receives an input message, at which point it generates a reply
message. When generating the response, a user instance also updates its status to indicate that
it is prepared to receive another message (continue), that it has finished and generated a session
key (accept), or that it has finished unsuccessfully (reject).

In addition to the queries InitUser, InitInstance, SetPassword, and Application used in
the ideal world, the adversary in the real world also has access to a message delivery query
MsgDelivery . Moreover, if the proof of security requires an idealized model, such as the random-
oracle model [BR93], the adversary is also given access to the latter.
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Secure PAKE. Now that we have defined the ideal and real worlds, we can state the two main
properties that a secure PAKE protocol should satisfy in the BMP model: completeness and
security.

• Completeness. For any real-world adversary that faithfully follows the protocol, deliv-
ering messages between two user instances with complementary roles and identities, both
user instances should accept and hold the same non-null session key.

• Security. For any efficient real-world adversary, there exists an efficient ideal-world ad-
versary such that the transcripts of the adversary’s operations in the ideal and real worlds
are computationally indistinguishable.

2.2.3 Universally-composable-based model

Even though indistinguishability-based and simulation-based security models provide a security
level that is sufficient for most applications, they fail to consider arbitrary compositions with
other protocols or some realistic scenarios such as participants running the protocol with different
but possibly related passwords. To overcome these deficiencies, Canetti, Halevi, Katz, Lindell,
and MacKenzie [CHK+05] proposed an ideal functionality for PAKE protocols in the universal
composability (UC) framework [Can01, CK02], which makes no assumption on the distribution
on passwords used by the protocol participants. In particular, the model does not assume
independence between the passwords of different parties.

The FpwKE ideal functionality. In the UC model, the aim is to ensure that UC-secure
protocols will continue to behave in the ideal way even if executed in arbitrary environments.
This model relies on the indistinguishability between two worlds, the ideal world and the real
world. In the ideal world, the security is provided by an ideal functionality F , that can be
thought of as a trusted party in the context of multi-party computation. In order to compute
a function f , this functionality interacts with n players, but there is no communication among
the players themselves. These players give their inputs to F , which in turn give them back their
outputs. F ensures that the computation is correct and that the players learn nothing more
than their own inputs and outputs. The security is then guaranteed since an adversary A can
only learn and thus modify data of corrupted players.

In order to prove that a protocol P realizes F , one considers an environment Z that provides
inputs to the players and plays the role of a distinguisher between the real world (with players
and a real adversary that can control some of them and also the communication among them)
and the ideal world (with dummy players interacting only with the ideal functionality F , and
a simulated adversary also interacting with F). The protocol P is then said to realize F if
for all polynomial adversary A, there exists a polynomial simulator S such that no polynomial
environment Z can distinguish between the two worlds with a significant advantage.

In Figure 2.1, we recall the PAKE ideal functionality first described in [CHK+05]. The main
idea behind this functionality is as follows: If neither party is corrupted and if they share the
same password, then they both end up with the same uniformly-distributed session key, and the
adversary learns nothing about it (except that it was indeed generated). On the other hand, if
one party is corrupted, or if the adversary successfully guessed the player’s password (the session
is then marked as compromised), then it is granted the right to fully determine its session key.
Note that as soon as a party is corrupted, the adversary learns its key: There is in fact nothing
lost by allowing it to determine the key.

In addition, the players become aware of a failed attempt of the adversary at guessing a
password. This is modeled by marking the session as interrupted. In this case, the two players
are given independently-chosen random keys.

— 19 —



Chapter 2. Password-based cryptography

The functionality FpwKE is parameterized by a security parameter k. It interacts with an
adversary S and a set of parties P1,. . . ,Pn via the following queries:

• Upon receiving a query (NewSession, sid, Pi, Pj, pw, role) from party Pi:

Send (NewSession, sid, Pi, Pj , role) to S. If this is the first NewSession query, or if this is
the second NewSession query and there is a record (Pj , Pi, pw′), then record (Pi, Pj , pw)
and mark this record fresh.

• Upon receiving a query (TestPwd, sid, Pi, pw′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark
the record compromised and reply to S with “correct guess”. If pw 6= pw′, mark the
record interrupted and reply with “wrong guess”.

• Upon receiving a query (NewKey, sid, Pi, sk) from the adversary S:

If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi,
then:

– If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk)
to player Pi.

– If this record is fresh, and there is a record (Pj , Pi, pw′) with pw′ = pw, and a
key sk′ was sent to Pj , and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′)
to Pi.

– In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Figure 2.1: The password-based key-exchange functionality FpwKE

A session that is nor compromised nor interrupted is called fresh. In such a case, the two
parties receive the same, uniformly distributed session key if they execute the protocol with the
same password.

Finally notice that the functionality is not in charge of providing the password(s) to the
participants. The passwords are chosen by the environment which then hands them to the
parties as inputs. This guarantees security even in the case where two honest players execute
the protocol with two different passwords: This models, for instance, the case where a user
mistypes its password. It also implies that the security is preserved for all password distributions
(not necessarily the uniform one) and in all situations where the password is used in different
protocols. Also note that allowing the environment to choose the passwords guarantees forward
secrecy.

Contributions. In [ACCP08], Catalano, Chevalier, Pointcheval, and I extend the above definition
to the group setting and define an ideal functionality for password-based group key exchange with
explicit authentication and contributiveness in the UC framework. As with previous definitions
in the same framework, our definitions do not assume any particular distribution on passwords
or independence between passwords of different parties. Additionally, the new contributiveness
security notion captures security against insider adversaries and guarantees the adversary cannot
bias the distribution of the session key as long as a few players involved in the protocol are honest.
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2.3 The encrypted key exchange protocol and its variants

The seminal work in the area of password-based key exchange is the encrypted key exchange
(EKE) protocol of Bellovin and Merritt [BM92] (see Figure 2.2). In their protocol, two users
execute an encrypted version of the Diffie-Hellman key exchange protocol, in which each flow is
encrypted using the password shared between these two users as the symmetric key. Intuitively,
since the elements to which the encryption function is applied are chosen uniformly at random
from the underlying group, an adversary eavesdropping on the communication cannot learn any
additional information which would allow him to perform an off-line dictionary attack.

Public information: (G, g, p), E ,D
Secret information: pw

Alice Bob

x
R
← Zp ; X ← gx y

R
← Zp ; Y ← gy

X⋆ ← Epw(X) Y ⋆ ← Epw(Y )
X⋆

−−−−−−−−−−−→
Y ⋆

←−−−−−−−−−−−
SKA ← (Dpw(Y ⋆))x SKB ← (Dpw(X⋆))y

Figure 2.2: The encrypted key exchange protocol [BM92]. The protocol uses symmetric encryp-
tion and decryption algorithms E and D and works over a finite cyclic group G of prime order
p generated by an element g.

Due to the simplicity of the EKE protocol, several other protocols were soon proposed in
the literature based on it [BM93, Luc97, Jab97, STW95]. Unfortunately, due to the lack of a
proper security model for the analysis of PAKE schemes, these protocols were only heuristically
secure.

It was only in 2000 that Bellare, Pointcheval, and Rogaway [BPR00], as well as Boyko,
MacKenzie, and Patel [BMP00], proposed security models for PAKE schemes and proved vari-
ants of the EKE protocol, under ideal assumptions, such as the random-oracle model [BR93]. In
addition to these, several other protocols were proposed in the literature based on EKE proto-
col [BCP03, BCP04, Mac02, AP05], each with its own instantiation of the encryption function.
Currently, the simple password-authenticated key exchange protocol in Appendix A (to which
we refer as SPAKE) is among the most efficient PAKE schemes based on the EKE protocol.

The SPAKE scheme is a variation of the EKE protocol in Figure 2.2, in which the encryption
function Epw(.) is replaced with a simple one-time pad function. More specifically, whenever
a user Alice wants to send the encryption of a value X ∈ G to a user Bob, it does so by
computing X · h1

pw , where h1 is an element in G associated with user Alice and the password
pw is assumed to be in Zp. The session identifier is defined as the transcript of the conversation
between Alice and Bob together with their identities, and the session key is set to be the hash
(random oracle) of the session identifier, the password pw , and the Diffie-Hellman key. The full
description of SPAKE is given in Figure 2.3.

As we show in Appendix A, SPAKE is a secure PAKE scheme in the random-oracle model
according to the definition in Section 2.2.1 if the computational Diffie-Hellman problem is in-
tractable in G.

Contributions. In addition to proposing SPAKE in [AP05] (see Appendix A), Pointcheval and I
also proposed in the same paper a variant of SPAKE in which the password pw is not an input
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Public information: (G, g, p), h1, h2, H
Secret information: pw ∈ Zp

Alice Bob

x
R

← Zp ; X ← gx y
R

← Zp ; Y ← gy

X⋆ ← X · h1
pw Y ⋆ ← Y · h2

pw

X⋆

−−−−−→
Y ⋆

←−−−−−
KA ← (Y ⋆/h2

pw )x
KB ← (X⋆/h1

pw )y

SKA ← H(Alice, Bob, pw , X⋆, Y ⋆, KA) SKB ← H(Alice, Bob, pw , X⋆, Y ⋆, KB)

Figure 2.3: SPAKE: A simple password-based key exchange protocol [AP05]. SPAKE works over
a finite cyclic group G of prime order p generated by an element g.

to the hash function H used to derive the session key. While the latter variant is more suitable
to scenarios in which the password is shared across several servers, its security only holds in
the non-concurrent scenario. The proof of security for both protocols is in the random-oracle
model and based on hardness of the computational Diffie-Hellman problem. Moreover, they
only require a single random-oracle instance.

In [ACP05], Chevassut, Pointcheval, and I considered a related PAKE protocol, called Au-
thA, and proved its security even when adversaries are allowed to corrupt users and learn their
passwords, which was a known open problem at the time.

In [ABC+06], together with Bresson, Chevassut, Möller, and Pointcheval, we showed how to
design an efficient and provably secure PAKE scheme specifically for the TLS (Transport Layer
Security) protocol. The goal was to provide a technique that allows users to employ (short)
passwords to securely identify themselves to servers. In addition to its provable security, our
protocol is also believed to be free from patent and licensing restrictions based on an analysis
of relevant patents in the area.

2.4 PAKE protocols in the standard model

Even though EKE-based protocols are extremely efficient and easy to use, their security re-
lies fundamentally on a heuristic assumption, namely the random-oracle model, in which hash
functions are assumed to behave as a random oracle. Unfortunately, the random-oracle model
is known not to be sound [CGH98]. More precisely, there are several examples of schemes
[CGH98, Nie02, GK03, BBP04] that can be proven secure in the random-oracle model and for
which there does not exist any concrete instantiation of the hash function for which the scheme
remains secure. Hence, it is an important security goal to design schemes which do not rely on
any idealized model such a random-oracle model.

The first protocols whose security proof did not rely on any idealized model were proposed by
Katz, Ostrovsky, and Yung (KOY) [KOY01] based on the decisional Diffie-Hellman assumption
and by Goldreich and Lindell [GL01], who proposed a solution based on general assumptions.
While the former KOY protocol assumed the existence of a common reference string, the protocol
by Goldreich and Lindell did not rely on any trusted setup assumption. Later, Gennaro and
Lindell [GL03] abstracted and generalized (under various indistinguishability assumptions) the
KOY protocol using the concept of smooth projective hash functions [CS02], which became
the basis of several other protocols [BCL+05, AP06, BGS06, ACP09] in the literature. To

— 22 —



2.4. PAKE protocols in the standard model

understand how the Gennaro-Lindell protocol works, let us first review the concept of smooth
projective hash functions.

Public information (CRS): pk
Secret information: pw

Alice Bob

(sk, vk) R
← SKG(1k)

l ← vk ‖Alice ‖Bob

cA = Encl
pk(pw ; rA)

(l,cA)
−−−−−→

hkB
R
← HK(pk)

hpB

R
← α(hkB, l, cA)

cB ← Encl
pk(pw ; rB)

(hpB,cB)
←−−−−−−

hkA
R
← HK(pk)

hpA

R
← α(hkA, l, cB)

σA = Signsk(l, cA, cB, hpA, hpB)
(hpA, σA)
−−−−−−−→

abort if Vfvk((l, cA, cB, hpA, hpB), σA) = 0
KA = HP(hpB, cA, l ‖pw , rA) KA = H(hkB, cA, l,pw)

KB = H(hkA, cB, l ‖ pw) KB = HP(hpB, cB, l,pw , rB)
SKA = KA ·KB SK B = KA ·KB

Figure 2.4: An overview of the Gennaro-Lindell PAKE protocol [GL03]. (KG, Enc, Dec) are
the key generation, encryption, and decryption algorithms of a labeled public-key encryption
scheme [Sho04]. (SKG, Sign, Vf) are the key generation, signing, and verification algorithms of
a one-time signature scheme [EGM96]. (HK, α, H, HP) are the key generation, key projection,
hashing, and projected hashing algorithms of a family of smooth projective hash functions for
the language L consisting of triples {(c, ℓ,pw)} such that c is an encryption of the password pw

with label ℓ.

Smooth projective hash functions. One of the main tools used in the Gennaro-Lindell (GL)
protocol is the notion of smooth projective hash functions (SPHF, [CS02, GL03]), which can be
seen as special type of zero-knowledge proof system for an NP language. More precisely, the
definition of SPHF requires the existence of a domain X and an underlying NP language L such
that it is computationally hard to distinguish a random element in L from a random element in
X \ L. For instance, in the particular case of the PAKE scheme in [CHK+05], the language L
is defined as the set of triples {(c, ℓ,pw)} such that c is an encryption of the password pw with
label ℓ under a public key given in the common reference string (CRS). The semantic security
of the encryption scheme guarantees computational indistinguishability between elements from
L and elements from X.

One of the key properties that make SPHF so useful is that, for a point x ∈ L, the hash value
can be computed using either a secret hashing key hk, or a public projected key hp (depending
on x [GL03] or not [CS02]) together with a witness w to the fact that x ∈ L. Another important
property of these functions is that, given the projected key hp, their output is uniquely defined
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for points x ∈ L and statistically indistinguishable from random for points x ∈ X \L. Moreover,
without the knowledge of the witness w to the fact that x ∈ L, the output of these functions on
x is also pseudo-random.

Overview of the GL protocol. Now that we have informally introduced the SPHF concept, we
can finally review the GL PAKE protocol, whose detailed description is given in Figure 2.4. At
a high level, the players in the GL protocol exchange CCA-secure encryptions of the password,
under the public-key found in the common reference string, and then compute the session key
by combining smooth projective hashes of the two password/ciphertext pairs. More precisely,
the players first exchange ciphertexts consisting of encryption of their respective passwords with
respect to the label ℓ containing their identities and the verification key for a one-time signature
scheme. Next, each player chooses a hashing key for a smooth projective hash function for the
language {(Encl

pk(pw), ℓ,pw)} and sends the corresponding projected key to the other player.
Each player can thus compute the output of its own hash function with the help of the hashing
key, and the output of the other one using its knowledge of the randomness that was used to
generate the ciphertext of the password. To avoid attacks in which the adversary generates new
projection keys without modifying the corresponding ciphertexts and projection keys, Alice also
signs the transcript of the conversation.

To understand informally why this protocol is secure, first consider the case in which the
adversary plays a passive role. In this case, the pseudo-randomness property of the smooth
hash function ensures that the value of the session key will be computationally indistinguishable
from uniform since the adversary does not know the randomness that was used to encrypt the
password. Now imagine the case in which the adversary provides the user with an encryption
of the wrong password. In this case, the security of the protocol will rely on the smoothness
of the hash functions, which ensures that the session key will be random and independent of
all former communication. Thus, in order to be successful, the adversary has to generate the
encryption of the correct password. To do so, the adversary could try to copy or modify existing
ciphertexts. Since the encryption scheme is CCA-secure, and thus non-malleable, modifying is
not really a possibility. Copying does not help either since either the label used for encryption
will not match (making the session key look random due to the smoothness property) or the
signature will be invalid (in the case where the adversary changes the projection keys without
changing the label and hence the verification key). As a result, the only successful strategy left
for the adversary is essentially to guess the password and perform the trivial online dictionary
attack, as desired.

2.5 PAKE protocols in the UC model

Most of the existing PAKE protocols, including the ones mentioned so far, have proofs either
in the indistinguishability-based security model of Bellare, Pointcheval, and Rogaway (BPR) or
in the simulation-based of Boyko, MacKenzie, and Patel (BMP). As we already mentioned in
Section 2.2.3, though these models provide a security level that is sufficient for most applications,
they fail to consider some realistic scenarios such as participants running the protocol with
different but possibly related passwords. To surmount these deficiencies, Canetti Halevi, Katz,
Lindell, and MacKenzie [CHK+05] proposed an ideal functionality for PAKE protocols in the UC
framework which makes no assumption on the distribution on passwords used by the protocol
participants.

The CHKLM protocol. As noted by Canetti et al in [CHK+05], the KOY/GL protocol is not
known to achieve UC security: the main issue is that the ideal-model simulator must be able
to extract the password used by the adversary. One could think that, since the simulator has
control over the common reference string and knows the private keys associated with the public
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Public information (CRS): pk1, pk2

Secret information: pw

Alice Bob

c0 = Encpk1
(pw; r0)

(c0)
−−−−→

(sk, vk) R
← SKG(1k)

l ← vk ‖Alice ‖Bob

c1 = Encl
pk2

(pw; r1)
(l,c1)
←−−−−−

hkA
R
← HK(pk2)

hpA

R
← α(hkA, l, c1)

c2 ← Encpk1
(pw ; r2)

(hpA,c2)
−−−−−−−→
ZKP(c0≈c2)
−−−−−−−−−→

hkB
R
← HK(pk1)

hpB

R
← α(hkB, c2)

σB = Signsk(c0, c2, hpA, hpB)
(hpB, σB)
←−−−−−−−

abort if Vfvk((c0, c2, hpA, hpB), σB) = 0
KA = HP(hpB, c2,pw , r2) KA = H(hkA, c2,pw)

KB = H(hkB, c1, l,pw) KB = HP(hpB, c1, l ‖ pw, r1)
SK B = KA ·KB SK B = KA ·KB

Figure 2.5: An overview of the PAKE protocol by Canetti et al. [CHK+05]. (KG, Enc, Dec) are
the key generation, encryption, and decryption algorithms of a labeled public-key encryption
scheme [Sho04]. (SKG, Sign, Vf) are the key generation, signing, and verification algorithms of
a one-time signature scheme [EGM96]. (HK, α, H, HP) are the key generation, key projection,
hashing, and projected hashing algorithms of a family of smooth projective hash functions for
the language L consisting of triples {(c, ℓ,pw)} such that c is an encryption of the password pw

with label ℓ. ZKP(c0 ≈ c2) is a simulation-sound zero-knowledge proof [Sah99] that c0 and c2

are encryptions of the same value.

keys, it can decrypt all ciphertexts sent by the adversary and recover its password. Yet, this does
not seem to be sufficient. In the case where the adversary begins to play (i.e., it impersonates the
client), everything works well: The simulator decrypts the ciphertext generated by the adversary
and can recover the password used by the latter. If the guess of the adversary is incorrect (that
is, the password is the wrong one), then the smoothness of the hash functions leads to random
independent session keys. Otherwise, if the guess is correct, the execution can continue as an
honest one would do (the simulator has learned which password to use).

Let us now consider the case in which the simulator has to start the game, on behalf of
the client. Here, the simulator needs to send an encryption of the password before having
seen anything coming from the adversary. As mentioned above, it can recover the password
used by the adversary as soon as the latter has sent its value, but this may be too late in this
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case. If it turns out that the guess of the adversary is incorrect, then the smoothness property
guarantees the statistical independence of the session keys. Conversely, when the adversary’s
guess is correct, the simulator is stuck with an incorrect ciphertext and will not be able to
predict the value of the session key.

To tackle this problem, the authors of [CHK+05] provided a new scheme based on the
GL construction [GL03] that securely realizes the ideal functionality for PAKE under static
corruptions. In their protocol (to which we refer as CHKLM), which is described in Figure 2.5,
the client first sends a pre-flow which also contains an encryption of the password. The server
then sends its own encryption, and finally the client sends another encryption (this time the
simulator is able to use the correct password, recovered from the value sent by the adversary),
as well as a zero-knowledge proof claiming that both ciphertexts are consistent and encrypt the
same password. The first flow is never used in the remaining of the protocol. This solves the
problem since the simulator is of course able to give a valid proof of a false statement and the
first flow is never used afterwards. Moreover, the resulting scheme is quite efficient and enjoys
several nice properties such as security under arbitrary compositions with other protocols.

Adaptive security. As mentioned above, the CHKLM protocol is only known to be secure
in the presence of static adversaries, when the set of corrupted players is known in advance.
However, in reality, the adversary may be able to corrupt parties adaptively and learn their
internal states.

To address the issue of adaptive security, Barak, Canetti, Lindell, Pass, and Rabin (BCLPR)
proposed in [BCL+05] a simple and intuitive construction that uses general techniques from
multi-party computation. Their construction works in two phases. In the link initialization
phase, each user first generates a fresh pair of signing and verification keys for a strongly un-
forgeable signature scheme and then broadcasts the verification key to the other users. After
receiving the verification keys of all users, each user then signs the sequence of keys received
together with the identities of the users and broadcasts it to the other users. Once all signa-
tures are received, each user verifies that all signatures refer to the same set of users. If all
the checks succeed, then the users can use their corresponding keys to set up an authenticated
channel among themselves. Once the link initialization phase is over, the users proceed to the
secure computation phase in which they run a generic multi-party computation protocol over
the authenticated channels.

As shown in [BCL+05], an adaptively-secure PAKE protocol can be easily obtained in the
common reference string (CRS) model via the generic construction above by instantiating it
with a multi-party computation protocol for the functionality that returns a long random key
to each party if both of their inputs are the same and ⊥ otherwise. Unfortunately, due to its
generality, their protocol is quite inefficient.

In order to understand the difficulties involved in design an efficient adaptively secure PAKE
scheme in the standard model, let us consider the case of the CHKLM scheme [CHK+05],
described in Figure 2.5. In their protocol, the client needs to to remember the randomness
used in the pre-flow message c0 in order to later prove in zero-knowledge that the password
encrypted in c2 is equal to the one encrypted in c0. Though sufficient to provide UC security
with respect to static adversaries, this modification does not seem to work when dealing with
adaptive adversaries. This is because the simulator cannot correctly open the commitment when
the adversary corrupts the client after the pre-flow has been sent. A similar remark applies to
the case in which the server gets corrupted after sending its first message.

Overview of the ACP protocol. To get around the above problem, Chevalier, Pointcheval
and I take a different approach in [ACP09], whose full version can be found in Appendix B. In
our protocol, we use the GL PAKE protocol (Figure 2.4) as a starting point and replace the
encryption scheme with a non-interactive committing primitive with extraction and equivocation
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capabilities. Since the commitment scheme that we use allows for extraction and equivocation at
any moment, the simulator can provide a consistent view to the adversary. As this change also
impacts the language used by a family of smooth projective hash functions, we also provide a
new instantiation of the latter. The resulting scheme, with a few minor technical modifications,
is described in Figure 2.6.

Public information (CRS): ρ

Alice Bob

(sk, vk)
R
← SKG(1k)

ℓA = B ◦ A ◦ ssid ◦ vk

c
A

= comρ(ℓA,pwA; RA)
(c

A
,vkA)

−−−−−−−−→

Check validity of c
A

(vkB, skB)
R
← SKG

ℓB ← B ◦A ◦ ssid ◦ vkB

hkB ← HK(ρ, (ℓA, pwB), rB)
c

B
← comρ(ℓB,pwB; RB)

hpB ← α(hkB; ρ, (ℓA,pwB), cA )
hashB ← H(hkB; ρ, (ℓA,pwB), c

A
)

(c
B

,vkB,hpB)
←−−−−−−−− erase hkB

(Check validity of c
B

hkA
R
← HK(ρ, (ℓB,pwA), rA)

hpA ← α(hkA; (ℓB,pwA), cB )
σA ← SignskA

(c
A

, c
B

, hpA, hpB)

skA ← HP(hpB; ρ, (ℓA,pwA), c
A

; wA)
+ H(hkA; ρ, (ℓB,pwA), c

B
)

erase hkA
(σA,hpA)

−−−−−−−−−→

abort if VfvkA
((cA , cB , hpA, hpB), σA) = 0

σB ← SignskB
(c

A
, c

B
, hpA, hpB)

skB = HP(hpA; ρ, (ℓB,pwB), c
B

; wB)
+ hashB

output (sid, ssid, skB)
erase everything

(σB)
←−−−−−− set session status to accepted

abort if VfvkB
((cA , cB , hpA, hpB), σB) = 0

output (sid, ssid, skA)
erase everything

set session status to accepted

Figure 2.6: The PAKE protocol in Appendix B for players (Alice, ssid), with index A and pass-
word pwA and (Bob, ssid) with index B and password pwB. At the end of rounds 1 and 2, the
players will erase the part of RA and RB which is not needed in the following rounds, keeping only
wA and wB. (com, decom) are the commitment and decommitment algorithms of an equivocable
and conditionally extractable commitment scheme [ACP09]. (SKG, Sign, Vf) are the key gener-
ation, signing, and verification algorithms of a one-time signature scheme [EGM96]. (HK, α, H,
HP) are the key generation, key projection, hashing, and projected hashing algorithms of a family
of smooth projective hash functions for the language consisting of triples {(com(ℓ,pw), ℓ,pw)}.

Security of the ACP protocol. Let com be the non-malleable (conditionally) extractable
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and equivocable committing scheme as described in Appendix B, H be a family of smooth hash
functions with respect to this commitment, and SIG be a one-time signature scheme. Denote by
F̂pwKE the multi-session extension of the functionality FpwKE described in Section 2.2.1, and let
FCRS be the ideal functionality that provides a common reference string ρ to all parties, where
ρ are the common parameters for com. Then, as shown in [AP06], the protocol in Figure 2.6
securely realizes F̂pwKE in the FCRS -hybrid model, in the presence of adaptive adversaries.

Contributions. In addition to the construction in Appendix B, Catalano, Chevalier, Pointcheval
and I provided in [ACCP08] an alternative and more efficient construction of an adaptively-
secure PAKE protocol in the UC model. Even though the scheme is almost as efficient as
previous EKE-based PAKE constructions, the proof of security relies on the random-oracle and
ideal-cipher models.

2.6 PAKE protocols in the group setting

In order to provide support for collaborative and distributed applications, authenticated key
exchange has also been considered in the group setting. In these protocols, the goal is to
provide a group of users communicating over an insecure channel with an authenticated session
key which they can use to secure that subsequent communication. Although protocols for
authenticated group Diffie-Hellman key exchange protocols seem to be a natural mechanism
for supporting these applications, they rely on the use of public key infrastructures (PKI).
To avoid the use of PKIs, Bresson, Chevassut, and Pointcheval [BCP02b, BCP07] considered
password-based authentication in the group setting and showed how to adapt their group Diffie-
Hellman protocol [BCPQ01] to the password-based scenario. The resulting protocol is reasonably
efficient in terms of computation and proven secure in the random-oracle model based on the
computational Diffie-Hellman assumption. However, as the original protocol [BCPQ01], the
total number of communication rounds is linear in the number of players, making their scheme
impractical for large groups.

In order to reduce the total number of communication rounds and improve the scalability of
password-based protocols in the group setting, Bresson, Chevassut, Pointcheval and I proposed
a new password-authenticated group key exchange (GPAKE) protocol in [ABCP06], which is
reproduced in Appendix C. Our new protocol is based on the group key exchange (GKE) protocol
by Burmester and Desmedt [BD94, BD05] and provably-secure in the random-oracle and ideal-
cipher models, under the Decisional Diffie-Hellman assumption. In addition to being provably
secure, the new protocol is also very efficient and fully scalable since it only requires four rounds of
communication and four multi-exponentiations per user. To better understand how our constant-
round GPAKE scheme works, let us first recall the Burmester-Desmedt GKE protocol [BD94,
BD05].

Let G be a finite cyclic group of prime order p generated by an element g, in which the
Decisional Diffie-Hellman (DDH) assumption described in Section 1.3 holds. That is, given
elements g, ga, and gb in G, no PPT adversary should be able to distinguish gab from gc with
non-negligible probability, when a, b, c are chosen uniformly at random from Zp. Let n be
the number of players in the group key exchange protocol and assume that all the indices are
taken modulo n. The Burmester-Desmedt protocol, whose description is provided in Figure 2.7,
works in two rounds. First, each player Pi chooses a random exponent xi ∈ Zp and broadcasts
Xi = gxi . Next, after receiving all first-round messages, each player Pi computes the keys
Ki = Xxi

i−1 and Ki+1 = Xxi
i+1 that it shares with its predecessor Pi−1 and successor Pi+1, and

broadcasts Zi = Ki+1/Ki. Finally, each player Pi computes his session key as SK i =
∏n

j=1 Kj =
Kn

i Zn−1
i Zn−2

i+1 · · ·Zi+n−2 using the values Z1, . . . , Zn received during the second round.
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Public information: (G, g, p)

P1 . . . Pi . . . Pn

x1
R
← Zp xi

R
← Zp xn

R
← Zp

X1 ← gx1 Xi ← gxi Xn ← gxn

X1−−−−−−−−−−−→
Xi−−−−−−−−−−−→

Xn−−−−−−−−−−−→

K1 ← Xx1
n Ki ← Xxi

i−1 Kn ← Xxn
n−1

K2 ← Xx1
2 Ki+1 ← Xxi

i+1 K1 ← Xxn
1

Z1 ← K2/K1 Zi ← Ki+1/Ki Zn ← K1/Kn
Z1−−−−−−−−−−−→

Zi−−−−−−−−−−−→
Zn−−−−−−−−−−−→

SK 1 ← Kn
1

∏n−2
j=1 Zn−j

j SK i ← Kn
i

∏n−2
j=1 Zn−j

j+i−1 SKn ← Kn
i

∏n−2
j=1 Zn−j

j+n−1

Figure 2.7: The Burmester-Desmedt group key exchange protocol [BD94, BD05]. The protocol
works over a finite cyclic group G of prime order p generated by an element g.

As shown in [BD94, BD05], the Burmester-Desmedt GKE protocol is only secure against
passive adversaries. In order to convert it into a GPAKE protocol, we make four main mod-
ifications to the Burmester-Desmedt GKE protocol. First, we add a first round of nonces to
original protocol to clearly identify the different sessions. Second, we assume the existence of a
family of random permutations Ek : G → G indexed by a key k and use this family to encrypt
the first round messages of the original Burmester-Desmedt GKE protocol. The encryption key
k is derived via an ideal hash function (i.e., a random oracle) from the password, together with
nonces, and the index of the user. Third, in order to avoid malleability attacks in which the
adversary reorders messages in the same session or replay them in a different session, we add a
final round of key confirmation. Finally, we change the key derivation step to make it depend
on the shared group key as well as on the session identifier with the help of another ideal hash
function. The resulting protocol is described in Figure 2.8.

As shown in Appendix C, the protocol in Figure 2.8 is a secure GPAKE protocol in the ideal-
cipher and random-oracle models if the Decisional Diffie-Hellman (DDH) assumption described
in Section 1.3 holds in G.

Contributions. The GPAKE scheme in Figure 2.8 was the first provably-secure GPAKE scheme
with a constant number of rounds. In Appendix C, in addition to proposing a new GPAKE pro-
tocol, we also provide concrete attacks against two constant-round GPAKE schemes previously
proposed in the literature [DB06, LHL04].

2.7 GPAKE protocols in the standard model

As in the case of EKE-based protocols, the security of the GPAKE protocol in Figure 2.8 relies
fundamentally on heuristic assumptions, due to the use of random oracles and ideal ciphers in
the construction. To avoid having to rely on any idealized model, Pointcheval and I proposed
a new GPAKE scheme in [AP06] (see Appendix D), which extends the Gennaro-Lindell (GL)
PAKE protocol [GL03] to the group setting using ideas similar to those used in the Burmester-
Desmedt GKE protocol [BD94, BD05]. Similarly to the GL PAKE protocol, the new protocol,
to which we refer as AP, also relies on the notion of smooth projective hash functions. Hence, it
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Public information: (G, g, p),H1,H2,H3, E ,D
Secret information: pw

P1 . . . Pi . . . Pn

N1
R
← {0, 1}ℓ Ni

R
← {0, 1}ℓ Nn

R
← {0, 1}ℓ

P1,U1−−−−−−−−−−−−−−−→
Pi,Ui−−−−−−−−−−−−−−→

Pn,Un
−−−−−−−−−−−−−−−→

x1
R
← Zp xi

R
← Zp xn

R
← Zp

X1 ← gx1 Xi ← gxi Xn ← gxn

k1 ←H1(S, 1,pw) ki ←H1(S, i, pw) kn ←H1(S, n,pw)
X⋆

1 ← Ek1(X1) X⋆
i ← Eki

(Xi) X⋆
n ← Ekn(Xn)

X⋆
1−−−−−−−−−−−−−→

X⋆
i−−−−−−−−−−−−−→

X⋆
n−−−−−−−−−−−−−→

Xn ← Dkn (X⋆
n) Xi−1 ← Dki−1

(X⋆
i−1) Xn−1 ← Dkn−1

(X⋆
n−1)

X2 ← Dk2(X⋆
2 ) Xi+1 ← Dki+1

(X⋆
i+1) X1 ← Dk1 (X⋆

1 )
K1 ← Xx1

n Ki ← Xxi
i−1 Kn ← Xxn

n−1

K2 ← Xx1
2 Ki+1 ← Xxi

i+1 K1 ← Xxn
1

Z1 ← K2/K1 Zi ← Ki+1/Ki Zn ← K1/Kn

Z1−−−−−−−−−−−−−→
Zi−−−−−−−−−−−−−→

Zn−−−−−−−−−−−−−→

K̃1 ← Kn
1

∏n−2

j=1
Zn−j

j K̃i ← Kn
i

∏n−2

j=1
Zn−j

j+i−1 K̃n ← Kn
i

∏n−2

j=1
Zn−j

j+n−1

Auth1 = H2(S̃, K̃1, 1) Authi = H2(S̃, K̃i, i) Authn = H2(SS̃, K̃n, n)
Auth1−−−−−−−−−−−−−−−→

Authi−−−−−−−−−−−−−−−→
Authn−−−−−−−−−−−−−−−→

SK 1 ←H3(S̄, K̃i) SK i ←H3(S̄, K̃i) SKn ←H3(S̄, K̃i)

Figure 2.8: The password-authenticated group key exchange protocol in [ABCP06] (see Ap-
pendix C). The protocol works over a finite cyclic group G of prime order p generated by
an element g. The elements S, S̃, and S̄ are defined respectively as P1‖N1‖ . . . ‖Pn‖Nn,
S‖X⋆

1‖Z1‖ . . . ‖X⋆
n‖Zn, and S̃‖Auth1‖ . . . ‖Authn. E and D are ideal symmetric encryption

and decryption algorithms. H1, H2, and H3 are ideal hash functions. ℓ is a security parameter.

also enjoys efficient instantiations based on the decisional Diffie-Hellman, quadratic residuosity,
and N -residuosity assumptions (see [GL03]).

Overview of the AP protocol [AP06]. The AP protocol is built in a modular way from four
cryptographic primitives: a labeled encryption scheme, a signature scheme, a family of smooth
projective hash functions, and a family of universal hash functions. Like the Burmester-Desmedt
protocol, the AP protocol assumes a ring structure for the users and each user is associated with
an index i between 1 and n, where n is the size of the group. After deciding on the order of
the users, the protocol works as follows. First, each user in the group executes two correlated
instances of the GL protocol, one with his predecessor and one with his successor so each user
can authenticate his neighbors (this accounts for the first 3 rounds of the protocol). However,
instead of generating a single session key in each of these instances, the original GL protocol is
modified so that two independent session keys are generated in each session. Next, the first of
these keys is used as a test key to authenticate the neighbor with whom that key is being shared
and the other one is used to help the computation of the group session key, which is defined as
the product of these latter keys. As in the Burmester-Desmedt protocol, this is achieved via
an additional round of communication in which each user computes and broadcasts the ratio of
the session keys that he shares with his predecessor and successor. After this round, each user
is capable of computing the group session key. Still, to ensure that all users agree on the same
key, a final round of signatures is added to the protocol to make sure that all users compute
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the group session key based on the same transcript. The key used to verify the signature of a
user is the same one transmitted by that user in the first round of the GL protocol. A pictorial
description can be found in Figure 2.9.

Security of the AP protocol. Let PKE be a labeled encryption secure against chosen-ciphertext
attacks and let HASH be a family of smooth projective hash functions for the language consisting
of triples {(c, ℓ,pw)} such that c is an encryption of the password pw with label ℓ. Let UH and
UH′ be two families of universal hash functions, and let SIG be a signature scheme that is strongly
unforgeable against chosen-message attacks. Then, as shown in Appendix D, the protocol in
Figure 2.9 is a secure GPAKE protocol in the standard model according to the definition in
Section 2.2.1.

2.8 GPAKE protocols in the UC model

Like most existing GPAKE protocols, the GPAKE protocols that we discussed so far have proofs
in the indistinguishability-based security model discussed in Section 2.2.1, which does not guar-
antee security under arbitrary composition. To address this problem, together with Catalano,
Chevalier, and Pointcheval, we defined in [ACCP08] an ideal functionality for GPAKE with ex-
plicit authentication and contributiveness in the UC framework. As with previous definitions in
the same framework, our definitions do not assume any particular distribution on passwords or
independence between passwords of different parties. In addition to the new definition, we also
provided the first steps towards realizing this functionality by analyzing a variant of the GPAKE
protocol in Figure 2.8 and showing that it realizes the new ideal functionality in the random-
oracle and ideal-cipher models based on the computational Diffie-Hellman (CDH) assumption
described in Section 1.3.

To overcome the limitations of the protocol in [ACCP08], Chevalier, Granboulan, Pointcheval,
and I proposed in [ACGP11] a new generic construction of password-authenticated group key ex-
change protocol from any UC-secure PAKE with explicit authentication. The new construction
has several advantages when compared to existing solutions. First, it only assumes a common
reference string and does not rely on any idealized model. Second, it enjoys a simple and in-
tuitive security proof in the UC framework and is optimal in the sense that it allows at most
one password test per user instance. Third, it also achieves a strong notion of security against
insiders in that the adversary cannot bias the distribution of the session key as long as one of the
players involved in the protocol is honest. Finally, the new construction can be easily extended
to the dynamic case in a way that the costs of establishing a common key between two existing
groups is significantly smaller than computing a common key from scratch.
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Figure 2.9: The GPAKE protocol in [AP06] (also in Appendix D) with n players {P1, . . . , Pn},
where T R

i and Ti are defined respectively as Pi ‖Pi+1 ‖ cR
i ‖ cL

i+1 ‖ hpi ‖ hpR
i ‖ hpL

i+1 ‖ testR
i and

vki ‖Pi ‖ ci ‖ hpi ‖ hpL
i ‖ hpR

i ‖Zi ‖ SKL
i for i = 1, . . . , n. (KG, Enc, Dec) are the key generation,

encryption, and decryption algorithms of a labeled public-key encryption scheme [Sho04]. (SKG,
Sign, Vf) are the key generation, signing, and verification algorithms of a signature scheme. (HK,
α, H, HP) are the key generation, key projection, hashing, and projected hashing algorithms of
a family of smooth projective hash functions for the language L consisting of triples {(c, ℓ,pw)}
such that c is an encryption of the password pw with label ℓ. UH and UH′ are two universal
hash functions chosen uniformly at random from their respective families [HILL99], with UH1(·)
and UH2(·) referring to the first and second halves of UH(·).
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Chapter 3

Identity-based cryptography

3.1 Introduction

In order to link users to their public keys, public-key cryptosystems have to rely on the existence
of a public-key infrastructure (PKI), where a trusted authority certifies the relation between
users and their public keys by means of a digital signature. Since the costs of maintaining
such a PKI can be prohibitive, Shamir proposed the concept of identity-based cryptography in
[Sha85], which is a generalization of the standard notion of public-key cryptography. In identity-
based cryptography, the public key of a user is his identity (e.g., his name or email address)
and the corresponding private key is handed to him by a trusted key distribution center. In the
particular case of identity-based encryption schemes, given an email address and a set of user-
independent public parameters, one can encrypt a message to the owner of the email address
without needing to obtain an authentic copy of the owner’s public key first.

Since being introduced by Shamir in 1984 [Sha85], identity-based cryptography has received
a lot of attention due to the fact that one no longer needs to maintain a separate public key
for each user. While an efficient construction of identity-based signatures was also proposed
in the same paper, it was only in 2001 that the first practical identity-based encryption (IBE)
construction appeared in the literature based on elliptic-curve pairings [BF03]. Later that year,
Cocks proposed an alternative IBE construction based on the quadratic residuosity problem
[Coc01].

Overview of this chapter. Since most of my work in the area of identity-based cryptography
concerns the design of encryption schemes, the remainder of this chapter will focus on the
latter. In Section 3.2, we start by recalling some standard definitions and security notions for IBE
schemes that we will be using in the following sections. This is followed by a review of some of the
main constructions in the identity-based setting in Section 3.3, such as the seminal IBE scheme
by Boneh and Franklin [BF03] and the hierarchical IBE scheme by Boneh and Boyen [BB04a].
After reviewing standard IBE constructions, we discuss in the remaining sections generalizations
and applications of the IBE schemes. First, in Section 3.4, we present a generalization of IBE in
Section 3.4, known as IBE with wildcards, in which users can simultaneously encrypt a message
to a group of users matching a certain pattern defined through a sequence of fixed strings and
wildcards. Then, in Section 3.5, we discuss an extension of public-key encryption, known as
public-key encryption with keyword search (PEKS), which is closely related to IBE schemes. As
we show in Section 3.5, A PEKS scheme can be seen as a special form of IBE in which a user’s
decryption key only allows him to test whether he is the intended target of a ciphertext or not.
Finally, in Section 3.6, we discuss some further generalizations.
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3.2 Security notions for identity-based encryption

In this section, we review some of the standard security notions used in the context of the
hierarchical identity-based encryption (HIBE), such as data privacy, anonymity, and robustness.
Towards this goal, we first recall their syntax.

3.2.1 Syntax

The concept of identity-based encryption (IBE) is a generalization of the standard notion of
public-key encryption in which the sender can encrypt messages to a user based only on the
identity of the latter and a set of user-independent public parameters. In these systems, there
exists a trusted authority, called private key generator, that is responsible for generating de-
cryption keys for all identities in the system.

More formally, an IBE scheme is defined by a tuple of algorithms IBE = (Setup, KeyDer,
Enc, Dec), a message space M and an identity space ID. The scheme provides the following
functionality. The algorithm Setup is run by a trusted authority to generate a pair of keys
(mpk, msk) such that mpk is made public, whereas msk is kept private. On input an identity id ∈
ID, the key derivation algorithm KeyDer(msk, id) uses the master secret key to generate a key skid

for the user with identity id. Then, every user holding the master public key mpk, can encrypt
a message m ∈ M for the identity id by running C

R
← Enc(mpk , id, m). Finally, the ciphertext

C can be decrypted by running the deterministic decryption algorithm, m← Dec(skid , C). For
correctness, it is required that for all honestly generated master keys (mpk, msk)

R
← Setup, for all

messages m ∈ M and all identities id ∈ ID, m ← Dec(KeyDer(msk, id), Enc(mpk, id, m)) holds
with all but negligible probability.

Soon after being proposed, the notion of IBE was generalized to the hierarchical setting by
Horwitz and Lynn [HL02], who considered the scenario in which intermediate nodes can act as
private key generators. In a hierarchical identity-based encryption (HIBE) scheme, users are
hierarchically organized in a tree of depth L whose root is the trusted authority. The identity of
a user at level 1 ≤ ℓ ≤ L is represented by a vector id = (id1, . . . , idℓ) ∈ IDℓ. Similarly to IBE,
a HIBE scheme can be defined more formally by a tuple of algorithms HIBE = (Setup, KeyDer,
Enc, Dec) working as an IBE except that a user at level ℓ with identity id = (id1, . . . , idℓ) can
use the key derivation algorithm KeyDer(skid, id′) to generate a secret key for any of its children
id′ = (id1, . . . , idℓ, idℓ+1) at level ℓ + 1. Since this process can be iterated, every user can
generate keys for all its descendants. In a HIBE, the encryption algorithm takes as input a
vector of identities. The correctness requirement is almost the same as that of IBE, except that
it is extended so that a ciphertext C

R
← Enc(mpk , id, m) can be decrypted by any identity id′

which is an ancestor of id. Finally, note that an IBE is a particular case of a HIBE with L = 1.

3.2.2 Data privacy

The now-standard definition of security of (H)IBE schemes, first suggested by Boneh and
Franklin [BF03], is indistinguishability under adaptive-identity chosen-plaintext attacks
(IND-CPA). In this security model, the adversary is allowed to obtain secret keys for adap-
tively chosen identities before deciding the identity and a pair of messages upon which it wishes
to be challenged. By allowing these queries, this notion implicitly captures resistance against
collusion attacks as different users should be unable to combine their keys in an attempt to
decrypt ciphertexts intended to another user.

To define this security notion more precisely, we consider the game Expind-cpa-β
HIBE,L,k (A) described

in Figure 3.1 using the notation of code-based games. The game is defined by four procedures
and is executed with an adversary A as follows. The procedure Initialize initializes the set U
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Game Expind-cpa-β
HIBE,L,k (A)

proc Initialize(k, L)

(mpk, msk) R

← Setup(1k , L)
V ← ∅
Return mpk

proc KeyDer(id)
V ← V ∪ {id}

skid
R

← KeyDer(msk, id)
Return skid

proc LR(id∗, m∗
0, m∗

1)

C∗ R

← Enc(mpk, id∗, m∗
β)

Return C∗

proc Finalize(β′)
if (ancestor(id∗) ∈ V )

then return false
Return (β′ = 1)

Game Exps-ind-cpa-β
HIBE,L,k (A)

proc Initialize(k, L, id∗)

(mpk, msk) R

← Setup(1k, L)
V ← ∅
Return mpk

proc LR(m∗
0, m∗

1)

C∗ R

← Enc(mpk, id∗, m∗
β)

Return C∗

Figure 3.1: Games Expind-cpa-β
HIBE,L,k (A) and Exps-ind-cpa-β

HIBE,L,k (A) defining IND-CPA and s-IND-CPA
security (respectively) of a hierarchical identity-based encryption scheme HIBE = (Setup, KeyDer,
Enc, Dec) of depth L. The procedures KeyDer and Finalize are common to both games, which
differ in their Initialize and LR procedures.

and the decryption key table DK to empty, generates a fresh key pair (mpk, msk)
R
← Setup and

returns mpk to the adversary. During the execution of the game, the adversary is allowed to
make queries to the KeyDer procedure that, on input an identity id = (id1, . . . , idℓ), returns
the secret key uskid

R
← KeyDer(msk, id) corresponding to identity id. A is also allowed to

make a single query (id∗, m∗0, m∗1) to the LR procedure, where m∗0, m∗1 ∈ {0, 1}∗ are assumed to
have the same length. To answer it, the game Expind-cpa-β

HIBE,L,k (A) generates a challenge ciphertext

C ∗
R
← Enc(mpk , id∗, m∗β) and gives C ∗ to A. Eventually, the adversary ends the game by

querying the Finalize procedure with a guess β′ for the bit β used to generate the challenge
ciphertext.

The advantage Advind-cpa
HIBE,L,k(A) is then defined as the probability that game Expind-cpa-1

HIBE,L,k (A)

outputs true minus the probability that game Expind-cpa-0
HIBE,L,k (A) outputs true. Note that game

Expind-cpa-β
HIBE,L,k (A) returns true only if A outputs 1 without ever having queried the key derivation

oracle on any ancestor identity id = (id∗1, . . . , id∗ℓ) of id∗, ℓ ≤ ℓ∗. Finally, a HIBE scheme HIBE

is said to be secure if Advind-cpa
HIBE,L,k(A) is a negligible function in k for all PTAs A.

A weaker definition of data privacy for (H)IBE schemes, suggested by Canetti, Halevi,
and Katz in [CHK03], is indistinguishability under selective-identity chosen-plaintext attacks
(s-IND-CPA). Unlike the standard IND-CPA definition, the adversary in the s-IND-CPA se-
curity game has to commit to the challenge identity before obtaining the public parameters
of the scheme. As shown in [CHK03], selective-identity security may be sufficient for certain
applications, such as the constructions of forward-secure encryption schemes. The experiment
describing the s-IND-CPA security is also described in Figure 3.1.

3.2.3 Anonymity

In addition to data privacy, which is captured by the notion of indistinguishability under
adaptive-identity chosen-plaintext attacks, another useful security notion is anonymity [ABC+08,
ABC+05a, BBDP01]. Informally, anonymity under adaptive-identity chosen-plaintext attacks
(ANO-CPA) asks that a ciphertext does not reveal the identity under which it was created, even
when the adversary is allowed to obtain secret keys for adaptively chosen identities of its choice.
Though originally considered in the context of public-key encryption schemes in [BBDP01], this
notion has found several other applications in the identity-based setting (see Appendix F). In
particular, as we show in Section 3.5, anonymity is extremely important when constructing
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Game Expano-cpa-β
HIBE,L,k (A)

proc Initialize(k, L)

(mpk, msk) R

← Setup(1k , L)
V ← ∅
Return mpk

proc KeyDer(id)
V ← V ∪ {id}

skid
R

← KeyDer(msk, id)
Return skid

proc LR(id∗
0, id∗

1, m∗)

C∗ R

← Enc(mpk, id∗
β , m∗)

Return C∗

proc Finalize(β′)
if (ancestor(id∗

0) ∈ V )
then return false

if (ancestor(id∗
1) ∈ V )

then return false
Return (β′ = 1)

Game Exps-ano-cpa-β
HIBE,L,k (A)

proc Initialize(k, L, id∗
0, id∗

1)

(mpk, msk) R

← Setup(1k, L)
V ← ∅
Return mpk

proc LR(m∗)

C∗ R

← Enc(mpk, id∗
β , m∗)

Return C∗

Figure 3.2: Games Expano-cpa-β
HIBE,L,k (A) and Exps-ano-cpa-β

HIBE,L,k (A) defining ANO-CPA and s-ANO-CPA
security (respectively) of a hierarchical identity-based encryption scheme HIBE = (Setup, KeyDer,
Enc, Dec) of depth L. The procedures KeyDer and Finalize are common to both games, which
differ in their Initialize and LR procedures.

public-key encryption schemes with keyword search [BDOP04] from IBE schemes. As in the
IND-CPA case, the anonymity notion ANO-CPA implicitly captures resistance against collusion
attacks by allowing the adversary to query the key derivation oracle adaptively, as different users
should be unable to combine their keys in an attempt to decrypt ciphertexts intended to another
user.

As described in Appendix F, the notion of anonymity can be defined more formally by
considering the game Expano-cpa-β

HIBE,L,k (A) described in Figure 3.2 using the notation of code-based

games. As in the IND-CPA case, the Expano-cpa-β
HIBE,L,k (A) game is defined by four procedures,

which are executed with an adversary A. The procedures Initialize, KeyDer, and Finalize
are defined as in the Expind-cpa-β

HIBE,L,k (A) game. During the execution of the game, the adversary
A is allowed to make a single query (id∗, m∗0, m∗1) to the LR procedure, where m∗0, m∗1 ∈ {0, 1}∗

and id∗0 and id∗1 have length at most L. To answer it, the game generates a challenge ciphertext
C ∗

R
← Enc(mpk, id∗β, m∗) and returns C ∗ to A. The game ends when the adversary queries the

Finalize procedure with a guess β′, which is considered the output of the game Expano-cpa-β
HIBE,L,k (A).

The advantage Advano-cpa
HIBE,L,k(A) is then defined as the probability that game Expano-cpa-1

HIBE,L,k (A)

returns true minus the probability that Expano-cpa-0
HIBE,L,k (A) returns true. Note that game Expano-cpa-β

HIBE,L,k (A)
returns true only if A outputs 1 without ever having queried the key derivation oracle on any
ancestor identity id of the challenge identities id∗0 and id∗1. Finally, a HIBE scheme HIBE is said
to be anonymous if Advano-cpa

HIBE,L,k(A) is a negligible function in k for all PTAs A.

For completeness, the notion of anonymity under selective-identity chosen-plaintext attacks
(s-ANO-CPA), in which the adversary has to commit to the challenge identities before obtaining
the public parameters of the scheme is also described in Figure 3.2.

Contributions. Besides formalizing the notion of anonymity in the identity-based setting in
[ABC+05a, ABC+08] (see Appendix F), we also proved that the IBE scheme due to Boneh and
Franklin in [BF03] is anonymous in the random-oracle model if the BDH problem described in
Section 1.3 is hard in the underlying group. Moreover, we also proved that a modified version
of the Gentry-Silverberg HIBE scheme in [GS02] achieves a limited form of anonymity under
similar assumptions.
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3.2.4 Robustness

The notion of robustness, introduced by myself together with Bellare and Neven in [ABN10] (see
Appendix G), reflects the difficulty of producing a ciphertext which is valid under two different
encryption keys. More precisely, suppose C is an IBE ciphertext for an encrypted message M
under an identity id0. We know that if C is decrypted using the secret key sk0 corresponding to
id0, the result would be M . But what if we decrypt C using a secret key sk1 corresponding to
an identity id1 6= id0? Previous security notions for identity-based encryption are silent about
this. Roughly, we refer to a scheme as “robust” if the result of this decryption is ⊥, meaning
that the decryption algorithm rejects.

Robustness can be trivially achieved by appending the public key or identity of the intended
recipient to the ciphertext, and by checking for it upon decryption. However, this solution comes
at the expense of anonymity and is only acceptable in cases where the latter does not need to
be preserved. Unfortunately, finding a solution which achieves robustness while preserving
anonymity is not so easy. As shown in Appendix G, natural (anonymity-preserving) solutions,
such as including the identity of the recipient in the plaintext and have recipients check this upon
decryption, do not work in general as there are (anonymous) IBE schemes where it is possible
for an adversary to create a ciphertext that multiple recipients will accept. This is where the
notion of robustness comes into play. If the encryption scheme is robust, then only the intended
recipient will obtain a valid result upon decryption, meaning one different from ⊥. In hindsight,
the natural solutions we just mentioned are just attempts to add robustness without violating
anonymity.

Two different flavors of robustness are defined in Appendix G, depending on whether cipher-
texts are honestly or adversarially generated. In a weakly robust IBE scheme, the adversary
outputs a pair (id0, id1) of distinct identities together with a message m∗ and is considered
successful if the decryption of an honest encryption of the message m∗ for identity id0 under
the decryption key sk1 corresponding to id1 returns non-⊥. In a strongly robust IBE scheme,
the adversary outputs a pair (id0, id1) of distinct identities together with a ciphertext C ∗ and is
considered successful if the decryption of C ∗ returns non-⊥ under both decryption keys sk0 and
sk1 corresponding to identities id0 and id1. Both weak and strong robustness can be consid-
ered under chosen-plaintext (CPA) or chosen-ciphertext (CCA) attacks, depending on whether
the adversary is given access to a decryption oracle. The resulting four notions are denoted
WROB-CPA, WROB-CCA, SROB-CPA, and SROB-CCA.

As shown in Appendix G, the notions of weak and strong robustness can be defined more
formally by considering the games Expwrob

IBE,k(A) and Expsrob
IBE,k(A) described in Figure 3.3 us-

ing the notation of code-based games. Both games are defined by four procedures, which are
executed with an adversary A. The procedures Initialize, KeyDer and Dec are common to
both games, which differ in their Finalize procedures. While the adversary A makes no Dec
queries in a chosen-plaintext attack (CPA), it might ask such queries in a chosen-ciphertext at-
tack (CCA). The procedure Initialize initializes the set V to empty, generates a fresh key pair
(mpk, msk)

R
← Setup, and returns mpk to the adversary. To answer a KeyDer query id made

by A, the game returns the secret key uskid
R
← KeyDer(msk, id) corresponding to identity id. To

answer a Dec query (C , id), the game generates a secret key uskid for id if necessary, computes
m ← Dec(uskid , C ), and returns m to the adversary. Finally, in the game Expwrob

IBE,k(A), the
adversary outputs a challenge message m∗ ∈ {0, 1}∗ and two challenge identities id∗0 and id∗1 and
wins the game if the encryption of m∗ under identity id∗0 decrypts correctly under the secret key
corresponding to identity id∗1. In the game Expsrob

IBE,k(A), the adversary outputs a challenge ci-
phertext C ∗ and two challenge identities id∗0 and id∗1 and wins the game if C ∗ decrypts correctly
under the secret keys corresponding to id∗0 and id∗1.

The advantage Advwrob
IBE,k(A) (resp. Advsrob

IBE,k(A)) is then defined as the probability that
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Games Expwrob
IBE,k(A) and Expsrob

IBE,k(A)

proc Initialize(k)

(pk, msk) R

← Setup(1k)
V ← ∅
Return mpk

proc KeyDer(id)
V ← V ∪ {id}

skid
R

← KeyDer(msk, id)
Return skid

proc Dec(C , id)

skid
R

← KeyDer(msk, id)
m← Dec(skid , C)
Return m

proc Finalize(id∗
0, id∗

1, m∗) // WROB
if (id∗

0 ∈ V ) ∨ (id∗
1 ∈ V ) then return false

if (id∗
0 = id∗

1) then return false

m0 ← m∗ ; C
R

← Enc(pk, id0, m0)
sk1

R

← KeyDer(msk, id1)
m1 ← Dec(sk1, C∗)
Return (m0 6= ⊥) ∧ (m1 6= ⊥)

proc Finalize(id∗
0, id∗

1, C∗) // SROB
if (id∗

0 ∈ V ) ∨ (id∗
1 ∈ V ) then return false

if (id∗
0 = id∗

1) then return false

sk0
R

← KeyDer(msk, id∗
0)

sk1
R

← KeyDer(msk, id∗
1)

m0 ← Dec(pk, id∗
0, sk0, C∗)

m1 ← Dec(pk, id∗
1, sk1, C∗)

Return (m0 6= ⊥) ∧ (m1 6= ⊥)

Figure 3.3: Games Expwrob
IBE,k(A) and Expsrob

IBE,k(A) defining WROB-ATK and SROB-ATK se-
curity (respectively) of an identity-based encryption scheme IBE = (Setup, KeyDer, Enc, Dec).
The procedures Initialize, KeyDer and Dec are common to both games, which differ in their
Finalize procedures. ATK ∈ {CPA, CCA} indicates whether the adversary is given access to
the Dec procedure.

game Expwrob
IBE,k(A) (resp. Expsrob

IBE,k(A)) returns true. Finally, a IBE scheme IBE is said to be
weakly (resp. strongly) robust if Advwrob

IBE,k(A) (resp. Advsrob
IBE,k(A)) is a negligible function in k

for all PTAs A.

Contributions. In addition to introducing the notion of robustness, we consider and dismiss
natural approaches to achieve it in Appendix G. We also provide two general robustness-adding
transforms; test robustness of existing schemes and patch the ones that fail; and discuss some
applications.

3.3 Identity-based encryption constructions

The Boneh-Franklin IBE scheme. The first practical IBE construction to appear in the literature
was due to Boneh and Franklin [BF03], based on elliptic-curve pairings. Let ê : G × G → GT

be a non-degenerate bilinear map as defined in Section 1.2.4, let g be a generator of G, and let
H1 : {0, 1}∗ → G∗ and H2 : GT → {0, 1}k be random oracles. In the basic version of Boneh-
Franklin IBE scheme, called BasicIdent and described in Figure 3.4, the master secret key is an
exponent s

R
← Z∗p and the corresponding master public key is S ← gs. Then, given S and the

user’s identity id, the user’s ephemeral public key gid can be computed as the pairing between
S and the hash of id, i.e. gid ← ê(S, H1(id)). To encrypt a message m under identity id, the
sender simply chooses r

R
← Z∗p and outputs the tuple (gr, m ⊕ H2(gr

id)) as the ciphertext. To
decrypt a ciphertext (C1, C2), the user with identity id first needs to obtain a decryption key
usk ← H1(id)s from the master authority and then compute m← C2 ⊕H2(ê(C1, usk)).

Security of BasicIdent. To understand why the BasicIdent IBE scheme is correct, note that
ê(C1, usk) = ê(gr, H1(id)s) = ê(gs, H1(id))r = gr

id . To understand informally why it is also
secure, first note that ephemeral public values gid used in the encryption of a message for user
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Setup(1k):
(G,GT, p, ê) R

← G(1k)
g

R

← G ; s
R

← Z∗
p ; S ← gs

msk ← s
mpk ← ((G,GT, p, ê), S, H1, H2)
Return (mpk, msk)

KeyDer(msk, id):
Qid ← H1(id)
usk ← Qs

id

Return (usk)

Enc(mpk, id, m):
r

R

← Zp ; C1 ← gr

Qid ← H1(id) ; gid ← ê(S, Qid)
C2 ← m⊕H2(gr

id)
Return (C1, C2)

Dec(usk, C):
parse C as (C1, C2)
m′ ← C2 ⊕H2(ê(C1, usk))
Return m′

Figure 3.4: The Boneh-Franklin BasicIdent IBE scheme [BF03], where G is a pairing parameter
generator and H1 : {0, 1}∗ → G∗ and H2 : GT → {0, 1}k are random oracles.

id are independent of each other due to the use of the random oracle H1 in its computation.
Likewise, the use of H1 in the key derivation algorithm also protects against user collusion by
making the decryption key values usk independent of each other. Finally, let (m∗0, m∗1) and id∗

be the challenge message pair and identity and let (C ∗1 , C ∗2 ) be the challenge ciphertext, where
C ∗1 = gr∗

and C ∗2 = m∗β⊕H2(ê(S, H1(id∗))r∗
) and β is the hidden challenge bit. Since the values

S, C ∗1 , H1(id∗) look random to the adversary, the latter can only distinguish the encryption of
m∗0 from that of m∗1 if it queries the random oracle H2 on input ê(S, H1(id))r∗

. However, since
this amounts to breaking the BDH problem, no PTA adversary should succeed in this task with
non-negligible probability. As shown formally in [BF03], this is indeed the case.

Hierarchical setting. In order to consider scenarios in which intermediate nodes can act as
private key generators, Horwitz and Lynn proposed in [HL02] a generalization of IBE known
as hierarchical identity-based encryption (HIBE). In their paper, they also provided a two-level
HIBE construction based on the Boneh-Franklin IBE scheme, but their scheme could provide
full collusion resistance only in the upper level. The first HIBE scheme to provide full collusion
resistance in all levels is due to Gentry and Silverberg [GS02]. Like the Horwitz-Lynn HIBE
scheme, the Gentry-Silverberg HIBE scheme was also based on the Boneh-Franklin IBE scheme
and proven secure in the random-oracle model [BR93].

The first HIBE to be proven secure in the standard model is due to Canetti, Halevi, and
Katz [CHK03], but in a weaker security model, called the selective-identity model. Unlike the
IND-CPA security definition, the selective-identity model requires the adversary to commit to
the challenge identity before obtaining the public parameters of the scheme (see Figure 3.1 in
Section 3.2.2). Despite providing weaker security guarantees, Canetti, Halevi, and Katz showed
that the selective-identity model is sufficient for building forward-secure encryption schemes,
which was the main motivation of their paper.

The work by Canetti, Halevi, and Katz was soon improved by Boneh and Boyen [BB04a], who
provided two very efficient selective-identity-secure (H)IBE constructions in the standard model:
one based on the BDDH assumption described in Section 1.3 and another one based on the
Decision Bilinear Diffie-Hellman Inversion (Decision BDHI) assumption, which was introduced
in the same paper. Since the first of these HIBE schemes became the basis of several other
schemes in the literature, let us recall it here.

The BB-HIBE scheme. Let ê : G × G → GT be a non-degenerate bilinear map as defined
in Section 1.2.4 and let g1 and g2 be two random generators of G. In the first Boneh-Boyen
HIBE scheme [BB04a] (BB-HIBE), which is described in Figure 3.5, identities are assumed to
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be vectors of elements of Z∗p. If necessary, this can be achieved by applying a collision-resistant
hash function h : {0, 1}∗ → Z∗p to binary identities before applying the scheme. To generate the

master public key, the master authority first chooses α
R
← Zp, then computes h1 ← gα

1 , h2 ← gα
2 ,

and ui
R
← G for i = 0 . . . L, and sets mpk ← (g1, g2, h1, u0, . . . , uL) and msk ← h2. To encrypt a

message m for user id = (id1, . . . , idℓ), the sender simply chooses r
R
← Z∗p, and outputs the tuple

(gr
1, ((u1 · u

id1
0 )r, . . . , (uℓ · u

idℓ
0 )r), m · ê(h1, g2)r) as the ciphertext. To decrypt a ciphertext (C1,

C2,1, . . . , C2,ℓ, C3), the user with identity id = (id1, . . . , idℓ) first obtains a decryption key (usk0,

usk1, . . . , uskℓ) = (h2
∏ℓ

i=1(ui ·u
idi
0 )ri , gr1

1 , . . . , grℓ
1 ) from the master authority and then computes

m← C3 ·
∏ℓ

i=1 ê(uski, C2,i)/ê(C1, usk0).

Setup(1k , L):
(G,GT, p, ê) R

← G(1k)
g1, g2

R

← G ; α
R

← Zp

h1 ← gα
1 ; h2 ← gα

2

ui
R

← G for i = 0 . . . L
mpk ← (G,GT, p, ê, g1, g2, h1, u0, . . . , uL)
msk ← h2

Return (mpk, msk)

KeyDer(usk(id1,...,idℓ), idℓ+1):
parse usk(id1,...,idℓ) as (usk0, . . . , uskℓ)
rℓ+1

R

← Zp

usk′
0 ← usk0 ·

(
uℓ+1 · u

idℓ+1

0

)rℓ+1

usk′
ℓ+1 ← g

rℓ+1

1

Return (usk ′
0, usk1, . . . , uskℓ, usk′

ℓ+1)

Enc(mpk, id, m):
parse id as (id1, . . . , idℓ)
r

R

← Zp ; C1 ← gr
1

for i = 1, . . . , ℓ do
C2,i ←

(
ui · u

idi

0

)r

C3 ← m · ê(h1, g2)r

Return (C1, C2,1, . . . , C2,ℓ, C3)

Dec(usk(id1,...,idℓ), C):
parse usk(id1,...,idl) as (usk0, . . . , uskℓ)
parse C as (C1, C2,1, . . . , C2,ℓ, C3)

m′ ← C3 ·

∏
ℓ

i=1
ê(uski,C2,i)

ê(C1,usk0)

Return m′

Figure 3.5: The BB-HIBE scheme [BB04a], where G is a pairing parameter generator. The
description of KeyDer assumes uskε = (usk0) = (msk) = (h2).

Security of BB-HIBE. As shown in [BB04a], the BB-HIBE scheme in Figure 3.5 is a selective-
identity-secure HIBE scheme if the BDDH problem described in Section 1.3 is hard with respect
to the parameters (G,GT, p, ê) generated by pairing parameter generator G. In the same paper,
the authors also showed a generic transformation in the random oracle model that converts any
selective-identity-secure (H)IBE scheme into a (H)IBE that is secure against adaptive-identity
chosen-plaintext attacks, described in Section 3.2.2.

3.4 Identity-based encryption with wildcards

One of the main motivating applications of (H)IBE is email-based encryption where the identity
of a user is his email address. In these applications, one can encrypt a message to the owner of
the email address without needing to obtain an authentic copy of the owner’s public key first.
Motivated by the fact that many email addresses correspond to groups of users rather than
single individuals, together with Catalano, Dent, Malone-Lee, Neven, and Smart, we introduced
in [ABC+11, ACD+06] a new primitive called wildcarded identity-based encryption, or WIBE
for short. It allows a sender to encrypt messages to a whole range of receivers whose identities
match a certain pattern defined through a sequence of fixed strings and wildcards, where any
string can take the place of a wildcard in a matching identity.
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To better understand the concept of WIBE, consider the scenario where there is some kind
of organizational hierarchy, such as a hierarchy of email addresses at an university of the form
user@dept.univ.edu. Now suppose that we wish to send an encrypted email to all the users
of the computer science department, which may include several personal addresses. If we use
a standard HIBE, then one would need to encrypt the message to each user individually. On
the other hand, in a WIBE scheme, we can easily achieve this goal by encrypting to the pattern
*@cs.univ.edu.

3.4.1 Definition

As per [ACD+06] (whose full version is described in Appendix E), a WIBE scheme is a gen-
eralization of a HIBE in which users can decide at the time of encryption whether to make
the ciphertext decryptable by a group of users whose identities match a certain pattern. More
formally, a WIBE scheme is defined by a tuple of algorithms WIBE = (Setup, KeyDer, Enc, Dec).
The Setup, KeyDer, and Dec algorithms are defined exactly as in a HIBE. On the other hand,
the encryption algorithm Enc takes as input a pattern P ∈ (ID ∪ *)ℓ, the master public key
mpk and the message m and returns a ciphertext for P . Such a pattern may contain a special
wildcard symbol * at some levels. An identity id = (id1, . . . , idℓ) ∈ IDℓ is said to match a
pattern P ∈ (ID ∪ *)ℓ′

, denoted as id ∈* P , if and only if ℓ ≤ ℓ′ and ∀i = 1, . . . , ℓ: idi = Pi

or Pi = *. Note that any ancestor of a matching identity is also a matching identity under
this definition, which seems reasonable given that any ancestor can derive the secret key of a
matching descendant identity.

For correctness, it is required that for all honestly generated master keys (mpk, msk)
R
← Setup,

for all messages m ∈M, all patterns P ∈ (ID∪*)ℓ′
and all identities id ∈ IDℓ such that id ∈* P ,

m ← Dec(KeyDer(msk , id), Enc(mpk, P, m)) holds with overwhelming probability. The security
of WIBE schemes against adaptive-pattern chosen-plaintext attacks can be defined analogously
to those of HIBE schemes in Section 3.2.2, except that the adversary outputs a challenge pattern
instead of an identity at the end of the first phase. To exclude trivial attacks, the adversary
is not allowed to query the key derivation oracle on any identity that matches the challenge
pattern. Moreover, similar changes also apply to the case of selective-pattern chosen-plaintext
attacks.

3.4.2 Constructions

In Appendix E, several instantiations of WIBE schemes are introduced based on existing HIBE
constructions, such as the BB-HIBE scheme described in Figure 3.5 and the HIBE schemes due
to Waters [Wat05] and to Boneh, Boyen, and Goh [BBG05]. As the WIBE scheme based on
BB-HIBE (to which we refer as the BB-WIBE) illustrates well the idea behind these constructions,
let us now recall it here.

The BB-WIBE scheme. To understand how the BB-HIBE scheme in Figure 3.6 can be trans-
formed into a WIBE scheme, let us consider a particular case in which we want to encrypt
to pattern P = (id1, id2, *) where id1 and id2 are two arbitrary identities in the identity
space ID. In the BB-HIBE scheme, the ciphertext for an identity (id1, id2, id3) has the form
(C1, C2,1, C2,2, C2,3, C3) = (gr

1, (u1 · u
id1
0 )r, u2 · u

id2
0 )r, (u3 · u

id3
0 )r, m · ê(h1, g2)r). In order to allow

decryption by any user having id1 and id2 as the first two components and an arbitrary value
in the third component (including ε), the first step is to leave the computation of C2,1 and
C2,2 unchanged and to partition C2,3 into two parts C2,3,0 = ur

0 and C2,3,1 = ur
3, which are

independent of the third identity component. This way, any user that matches the pattern can
reconstitute the original BB-HIBE ciphertext by combining these two parts by plugging in its
own third identity component. That is, it simply computes C2,3 as C2,3,0 ·C

id3
2,3,1. Unfortunately,
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this modification is not enough to obtain a secure WIBE as the element C2,3,0 = ur
0 can be used

to change the recipient identity for non-wildcard positions as well. This is because the same
value u0 is used in the computation of each C2,i. To overcome this problem and obtain a secure
WIBE scheme, we further need to modify the original BB-HIBE scheme so that a different value
u0,i is associated with each level. The resulting scheme, which we call BB-WIBE, is described in
Figure 3.6.

Setup(1k, L):
(G,GT, p, ê) R

← G(1k)
g1, g2

R

← G ; α
R

← Zp

h1 ← gα
1 ; h2 ← gα

2

ui,j
R

← G for i = 1 . . . L, j = 0, 1
mpk ← (G,GT, p, ê, g1, g2, h1, u1,0, . . . , uL,1)
msk ← h2

Return (mpk, msk)

KeyDer(usk(id1,...,idℓ), idℓ+1):
parse usk(id1,...,idℓ) as (usk0, . . . , uskℓ)
rℓ+1

R

← Zp

usk ′
0 ← usk0 ·

(
uℓ+1,0 · u

idℓ+1

ℓ+1,1

)rℓ+1

usk ′
ℓ+1 ← g

rℓ+1

1

Return (usk ′
0, usk1, . . . , uskℓ, usk′

ℓ+1)

Enc(mpk, P, m):
parse P as (P1, . . . , Pℓ)
r

R

← Zp ; C1 ← gr
1

for i = 1, . . . , ℓ do
if i /∈ W (P ) then C2,i ←

(
ui,0 · u

Pi

i,1

)r

if i ∈ W (P ) then C2,i ← (ur
i,0, ur

i,1)
C3 ← m · ê(h1, g2)r

Return (P, C1, C2,1, . . . , C2,ℓ, C3)

Dec(usk(id1,...,idℓ), C):
parse usk(id1,...,idl) as (usk0, . . . , uskℓ)
parse C as (P, C1, C2,1, . . . , C2,ℓ, C3)
for i = 1, . . . , ℓ do

if i /∈W (P ) then C ′
2,i ← C2,i

if i ∈W (P ) then
parse C2,i as (v1, v2)
C ′

2,i ← v1 · v
idi

2

m′ ← C3 ·

∏
ℓ

i=1
ê(uski,C ′

2,i)

ê(C1,usk0)

Return m′

Figure 3.6: The BB-WIBE scheme in [ACD+06] and Appendix E, where G is a pairing parameter
generator and W (P ) = {1 ≤ i ≤ ℓ : Pi = *} denotes the set of wildcard positions in P . The
description of KeyDer assumes uskε = (usk0) = (msk) = (h2).

Security of BB-WIBE. Let (G,GT, p, ê) be the parameters generated by pairing parameter
generator G. If the BDDH problem described in Section 1.3 is hard with respect to (G,GT, p, ê),
then, as shown in Appendix E, the BB-WIBE scheme in Figure 3.6 is a secure against selective-
pattern chosen-plaintext attacks.

Contributions. In addition to proposing the concept of wildcarded identity-based encryption
and instantiations based on the HIBE schemes in [BB04a, BBG05, Wat05], we also propose in
Appendix E a generic transformation in the random oracle model that converts any selective-
pattern chosen-plaintext-secure WIBE scheme into a WIBE that is secure against adaptive-
pattern chosen-plaintext attacks.

3.4.3 IBE with wildcard key derivation

Even though the concept of WIBE allows the sender to have a more fine-grained control over
the list of recipients, its key delegation mechanism is similar to that of a hierarchical identity-
based encryption scheme, which is not as flexible as one would like. In [AKN07, AKN08], Kiltz,
Neven, and I introduce a related primitive called identity-based encryption with wildcard key
derivation (WKD-IBE, or “wicked IBE”) that enhances the concept of hierarchical identity-based
encryption (HIBE) by allowing more general key delegation patterns. In a WKD-IBE, a secret
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key is derived for a vector of identity strings, where entries can be left blank using a wildcard.
This key can then be used to derive keys for any pattern that replaces wildcards with concrete
identity strings. For example, one may want to allow the university’s head system administrator
to derive secret keys (and hence the ability to decrypt) for all departmental sysadmin email
addresses sysadmin@*.univ.edu, where * is a wildcard that can be replaced with any string.
In addition to providing appropriate security notions and provably secure instantiations for the
new primitive, we also present a generic construction of identity-based broadcast encryption
from any WKD-IBE scheme.

3.5 Public-key encryption with keyword search

One of the mains applications of IBE, WIBE, and WKD-IBE schemes is that of intelligent email
routing, where emails usually consist of some header information, a body, and a list of keywords.
In the scenario where a user may use different electronic devices to read his email, this user may
prefer emails to be routed to his devices depending on the associated keywords. For example, a
user may like to receive emails with the keyword “urgent” on his pager, emails with the keyword
“agenda” on his PDA, and all other emails on his desktop computer. Though existing mail
server software could be updated to provide this type of service for plain, unencrypted email,
routing becomes much harder when emails are encrypted. One option would be for the user to
leave the list of keywords unencrypted. However, since the keyword information may already be
considered sensitive by the user, this option may not be very useful in practice.

Public-key encryption with keyword search. To address the above problem, Boneh, Di Cres-
cenzo, Ostrovsky and Persiano proposed in [BDOP04] the notion of public-key encryption with
keyword search (PEKS for short) where the user can give the mail server or gateway some piece
of trapdoor information that allows it to test whether a given keyword is among those in the
list, without revealing any other information about the email to the gateway. The user can then
use a standard public-key encryption scheme to encrypt the body of the email, and a PEKS
scheme to separately encrypt each of the keywords.

3.5.1 Definition

PEKS scheme [BDOP04] is a tuple PEKS = (KeyGen, PEKS, Td, Test) of algorithms. Via (pk,

sk)
R
← KeyGen, the key generation algorithm produces a pair of public and private keys. The

encryption algorithm PEKS takes as input a keyword w and the public key pk and returns a
ciphertext C

R
← PEKS(pk, w). Via tw

R
← Td(sk, w), the trapdoor extraction algorithm computes

a trapdoor tw for keyword w. The deterministic test algorithm Test(tw , C ) returns 1 if C is an
encryption of w and 0 otherwise.

In order to be useful, a PEKS scheme needs to satisfy three important conditions [ABC+05a]:
correctness, privacy, and consistency. The correctness condition states that, for all honestly
generated keys (pk, sk)

R
← KeyGen and for all keywords w in the keyword space, Test(Td(sk,

w), PEKS(pk, w)) = 1 holds with overwhelming probability. The privacy condition (IND-CPA)
for PEKS schemes is similar to the standard indistinguishability notion for HIBE schemes in
Section 3.2.2 and asks that no PTA adversary should be able to distinguish with non-negligible
probability between the encryption of two challenge keywords of its choice, even if it is allowed
to obtain trapdoors for any non-challenge keywords. Finally, the (computational) consistency
condition requires that no PTA adversary should be able to find two different keywords (w0,
w1) such that Test(Td(sk, w0), PEKS(pk, w1)) = 1 with non-negligible probability. For a formal
definition, please refer to Appendix F.
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3.5.2 Constructions

In addition to proposing the concept of PEKS, Boneh et al. also showed how to build a PEKS
scheme using the Boneh-Franklin IBE scheme described in Figure 3.4 as a starting point. Let
BDOP-PEKS and BF-IBE refer to the new PEKS and the Boneh-Franklin IBE schemes. More
precisely, keywords in the BDOP-PEKS scheme are mapped to identities in the BF-IBE scheme,
with a trapdoor in the former simply corresponding to a decryption key in the latter. To encrypt
a keyword w in the BDOP-PEKS, one simply uses BF-IBE to the encrypt the all-zero message
for identity w. To test whether a ciphertext encrypts a given keyword w in the BDOP-PEKS
scheme, one simply uses the BF-IBE decryption algorithm with the key associated with w and
tests whether the result equals the all-zero message.

KeyGen(1k):
(G,GT, p, ê) R

← G(1k) ; g
R

← G∗ ; s
R

← Z∗
p

pk ← (G,GT, p, ê, g, gs) ; sk ← (pk, s)
Return (pk, sk)

Td(sk, w):
parse sk as ((G,GT, p, ê, g, gs), s)
tw ← (pk, H1(w)s)
Return tw

PEKS(pk, w):
parse pk as (G,GT, p, ê, g, gs)
r

R

← Z∗
p ; T ← ê(H1(w), gs)r

C ← (gr, H2(T ))
Return C

Test(tw, C):
parse tw as ((G,GT, p, ê, g, gs), X)
parse C as (U, V ) ; T ← ê(X, U)
if V = H2(T ) then return 1
else return 0

Figure 3.7: The BDOP-PEKS scheme [BDOP04], where G is a pairing parameter generator and
H1 : {0, 1}∗ → G∗ and H2 : GT → {0, 1}k are random oracles.

Security of BDOP-PEKS. Let (G,GT, p, ê) be the parameters generated by pairing parameter
generator G. If the BDH problem is hard with respect to (G,GT, p, ê), then, as shown in
[BDOP04], the BDOP-PEKS scheme in Figure 3.7 is correct and private (IND-CPA) in the
random oracle model. The computational consistency of their scheme is proven in [ABC+05a,
ABC+08] also in the random oracle model (see Appendix F).

Contributions. In addition to proving the computational consistency of the BDOP-PEKS scheme
in [ABC+05a, ABC+08], we formally define computational and statistical relaxations of the
existing notion of perfect consistency and provide a new PEKS scheme that is statistically
consistent. Moreover, we also suggest three extensions of the basic notions of PEKS and IBE,
namely anonymous hierarchical identity-based encryption, public-key encryption with temporary
keyword search, and identity-based encryption with keyword search. For more details, please
refer to Appendix F.

3.5.3 Generic transforms

As the intuition behind the BDOP-PEKS scheme shows, the notions of PEKS and IBE are
closely related to each other. In fact, Boneh et al. informally suggested a simple transformation
from IBE to PEKS in [BDOP04]. The transform, to which we refer as bdop-ibe-2-peks, takes
as input an IBE scheme IBE = (Setup, KeyDer, Enc, Dec) and returns a PEKS scheme PEKS
= (KeyGen, Td, PEKS, Test) as follows. The public key pk and secret key sk of the receiver
in the PEKS scheme are the master public and secret keys, respectively, of the IBE scheme
(i.e., KeyGen = Setup). The trapdoor tw associated to keyword w is the secret key that the IBE
scheme would assign to the identity w (i.e., Td(sk, w) = KeyDer(sk, w)). A keyword w is PEKS-
encrypted by IBE-encrypting the message 0k for the identity w (i.e., PEKS(pk, w) = Enc(pk,
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w, 0k)). Finally, testing is done by checking that the ciphertext decrypts to 0k (i.e., Test(tw , C )
returns 1 iff Dec(tw , C ) = 0k).

While [BDOP04] stops short of stating and proving a formal result, it is not hard to ver-
ify that if the starting IBE scheme IBE is anonymous under adaptive-identity chosen-plaintext
attacks (ANO-CPA, cf. Section 3.2.3), then PEKS = bdop-ibe-2-peks(IBE) is IND-CPA. Un-
fortunately, as we show in Appendix F, there are IBE schemes for which the PEKS scheme
outputted by bdop-ibe-2-peks is not computationally consistent even if the IBE scheme is se-
mantically secure (IND-CPA) and anonymous (ANO-CPA). Intuitively, this is due to the fact
that the decryption algorithm may behave oddly when the secret key used to decrypt does not
correspond to the identity used during encryption.

To address the problem of oddly-behaving Dec algorithms, we propose in Appendix F a
randomized variant of the bdop-ibe-2-peks transform. The new transform, to which we refer
as new-ibe-2-peks, is similar to bdop-ibe-2-peks except that instead of always using 0k as the
encrypted message, the PEKS-encryption algorithm chooses and encrypts a random message
m ∈ {0, 1}k and appends m in the clear to the ciphertext. In more detail, the new-ibe-2-peks
transform takes input an IBE scheme IBE = (Setup, KeyDer, Enc, Dec) and returns a PEKS
scheme PEKS = (KeyGen, Td, PEKS, Test) as follows. The public key pk and secret key sk of
the receiver in the PEKS scheme are the master public and secret keys, respectively, of the IBE
scheme. (I.e. KeyGen = Setup.) The trapdoor associated to keyword w is the secret key that the
IBE scheme would assign to the identity w. (I.e. Td(sk, w) = KeyDer(sk, w).) PEKS-encryption
of keyword w is done as follows: PEKS(pk, w) picks m

R
← {0, 1}k , lets C

R
← Enc(pk, w, m), and

returns (C , m) as the ciphertext. Finally, Test(tw , (C , m)) returns 1 iff Dec(tw , C ) = m.

The bdop-ibe-2-peks transform

KeyGen(1k):

(pk, sk) R

← Setup(1k)
Return (pk, sk)

Td(sk, w):

tw
R

← KeyDer(sk, w)
Return tw

PEKS(pk, w):
m← 0k

C
R

← Enc(pk, w, m)
Return C

Test(tw, C):
m′ ← Dec(tw, C)
if m′ = 0k then return 1 else return 0

The new-ibe-2-peks transform

KeyGen(1k):

(pk, sk) R

← Setup(1k)
Return (pk, sk)

Td(sk, w):

tw
R

← KeyDer(sk, w)
Return tw

PEKS(pk, w):

m
R

← {0, 1}k

C
R

← Enc(pk, w, m)
Return (C , m)

Test(tw, (C , m)):
m′ ← Dec(tw, C)
if m′ = m then return 1 else return 0

Figure 3.8: The bdop-ibe-2-peks and new-ibe-2-peks transforms in [ABC+05a, ABC+08]. Both
transforms take as input an IBE scheme IBE = (Setup, KeyDer, Enc, Dec) and return a PEKS
scheme PEKS = (KeyGen, Td, PEKS, Test).

Security of new-ibe-2-peks. Let IBE be the starting IBE scheme and let PEKS =
new-ibe-2-peks(IBE) be the resulting PEKS scheme obtained via the new-ibe-2-peks transform
in Figure 3.8. As we show in Appendix F, if IBE is semantically secure under chosen-identity
attacks (IND-CPA, cf. Section 3.2.2), then PEKS is computationally consistent. Further, if IBE
is anonymous under adaptive-identity chosen-plaintext attacks (ANO-CPA, cf. Section 3.2.3),
then PEKS is also IND-CPA-secure.
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Security of bdop-ibe-2-peks. As mentioned above, the PEKS scheme outputted by
bdop-ibe-2-peks may not be computationally consistent in cases where the IBE decryption algo-
rithm behaves oddly when the incorrect secret key is used during decryption. However, as we
observe in Appendix G, the bdop-ibe-2-peks transform can provide consistency if the starting
IBE scheme is robust. More precisely, let IBE denote the starting IBE scheme and let PEKS =
bdop-ibe-2-peks(IBE) be the resulting PEKS scheme obtained via the new-ibe-2-peks transform in
Figure 3.8. As we show in Appendix G, if IBE is weakly robust (WROB-CPA, cf. Section 3.2.4),
then PEKS is computationally consistent. Moreover, if IBE is anonymous under adaptive-identity
chosen-plaintext attacks (ANO-CPA, cf. Section 3.2.3), then PEKS is IND-CPA-secure.

3.6 Further extensions

As the transformation from IBE to PEKS above shows, IBE schemes can be quite useful for
the construction of other seemingly unrelated primitives. In [ACF09], Catalano, Fiore, and I
exploit yet another property of IBE schemes. More precisely, we propose a methodology to
construct verifiable random functions from a class of identity based encryption schemes that we
call VRF-suitable. Informally, an IBE is VRF-suitable if it provides what we call unique key
derivation (by which the secret key associated with an identity id is uniquely defined when given
the public key) and it satisfies an additional property that we call pseudorandom decapsulation.
In a nutshell, pseudorandom decapsulation means that if one decrypts a ciphertext C , produced
with respect to an identity id, using the decryption key corresponding to any other identity id ′

the resulting value looks random to a polynomially bounded observer. Interestingly, we show
that most known IBE schemes already achieve pseudorandom decapsulation. Our construction is
of interest both from a theoretical and a practical perspective. Indeed, apart from establishing
a connection between two apparently unrelated primitives, our methodology is direct in the
sense that, in contrast to most previous constructions, it avoids the inefficient Goldreich-Levin
hardcore bit transformation.

— 46 —



Conclusion

In this thesis, we explored mechanisms for reducing the amount of trust in third parties based
on passwords and identities. In the password-based setting, we presented several key exchange
protocols which remain secure in spite of the low entropy of the secret keys used for authentica-
tion. In the identity-based setting, we considered new security requirements, such as anonymity
and robustness, as well as new extensions allowing senders to have better control over the de-
cryption capabilities of the receiver, such as WIBE and PEKS. While these results contribute
significantly to the state of the art, there are still several interesting research directions to be
explored in these areas.

In the password-based setting, one important open problem is to design efficient PAKE
schemes achieving adaptive security, in which adversaries can corrupt users at any time and learn
their internal states. Though the security model achieved by these schemes is more realistic,
current adaptively secure PAKE constructions are either too inefficient or only proven secure
in idealized models, such as the random oracle model, where certain building blocks such as
hash functions are assumed to behave in ideal way. Therefore, it is important to overcome these
limitations and design a practical PAKE scheme achieving adaptive security without having to
resort to any idealized models.

In addition to adaptive security, another interesting research direction is this area is to design
practical PAKE schemes in the group setting which can tolerate network failures and password
mistypes and that can remain secure even in the presence of malicious insiders. Currently, the
vast majority of the PAKE schemes do not take these cases into account.

In the identity-based setting, one interesting research direction is to reduce the gap be-
tween the existing models used in security proofs and the actual environment in which these
cryptosystems are deployed. For instance, most of the existing security models assume that no
information about the secret key or the randomness used to encrypt the message is leaked during
the encryption process. However, it is well known that this is not always true in practice as the
adversary may be able to learn partial information about these secrets using different types of
side-channel attacks, such as power-consumption, fault, or time analyses. As a result, a crypto-
graphic algorithm which is perfectly secure in theory can be completely insecure in practice if
improperly implemented. In order to decrease this gap between theory and practice, it is thus
important to design cryptographic schemes which are leakage-resilient in the sense that they re-
main secure even when the adversary is capable of learning partial information about the secret
key or randomness used in these schemes. Although there have been several recent proposals of
leakage-resilient identity-based cryptosystems schemes (e.g., [DHLAW10, LLW11, LRW11]) in
the literature, most of these schemes either are not very inefficient or do not take into account
all possible sources of side-channel attacks.

Another important direction in the identity-based setting is to design more advanced forms of
encryption schemes, allowing for more complex decryption policies. In such encryption schemes,
the capability of a receiver to decrypt a ciphertext may depend on the attributes associated
with the decryption key and on the policy specified by the ciphertext. It is worth pointing out
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that certain forms of advanced encryption schemes already exist in the literature, such as the
functional encryption schemes of Lewko et al. [LOS+10], but they usually lack in efficiency or
only support limited classes of functions and policies. Hence, designing more efficient functional
encryption schemes which allow for more complex decryption policies still remains an important
open problem.

Finally, in addition to the settings considered in this thesis, there are other interesting venues
for reducing the amount of trust in third parties. Among these, perhaps the most promising
direction is to use fully-homomorphic encryption schemes, such as the one by Brakerski, Gentry,
and Vaikuntanathan in [BGV11], for performing arbitrary computations on encrypted data.
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Appendix A:
Simple Password-Based Encrypted Key Exchange Protocols, CTRSA 2005
Michel Abdalla and David Pointcheval

This article proposes two simple constructions of password-based authenticated key ex-
change protocols in the random-oracle model based on the computational Diffie-Hellman
problem. Both constructions are among the most efficient password-based authenticated key
exchange schemes based on the encrypted key exchange protocol of Bellovin and Merritt.

Appendix B:
Smooth Projective Hashing for Conditionally Extractable Commitments, CRYPTO
2009
Michel Abdalla, Céline Chevalier, and David Pointcheval

This article shows how to generalize the password-based authenticated key exchange con-
struction of Gennaro and Lindell so that it achieves adaptive security in the universal
composability framework with erasures. The new construction is reasonably efficient and
does not rely on random oracles. It also avoids the use of zero-knowledge proofs by build-
ing more complex smooth projective hash functions that can be efficiently associated to
extractable commitment schemes.

Appendix C:
Password-based Group Key Exchange in a Constant Number of Rounds, PKC
2006
Michel Abdalla, Emmanuel Bresson, Olivier Chevassut, and David Pointcheval

This article proposes the first provably-secure password-based group key exchange protocol
with a constant number of rounds. The new protocol is based on the Burmester-Desmedt
group key exchange and is very efficient, having low communication and computational
costs per user. Its security is proven in the random-oracle and ideal-cipher models, under
the Decisional Diffie-Hellman assumption.

Appendix D:
A Scalable Password-based Group Key Exchange Protocol in the Standard
Model, ASIACRYPT 2006
Michel Abdalla and David Pointcheval

This article provides the first construction of a constant-round password-based group key
exchange protocol whose security proof does not rely on any idealized model. The new
construction is based on the Gennaro-Lindell password-based authenticated key exchange
construction and on the Burmester-Desmedt group key exchange and only assumes the
existence of a common reference string. Like the Gennaro-Lindell scheme, it can be in-
stantiated under various computational assumptions, such as decisional Diffie-Hellman
and quadratic residuosity.
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Simple Password-Based Encrypted
Key Exchange Protocols

CT-RSA 2005
[AP05] with D. Pointcheval

Abstract : Password-based encrypted key exchange are protocols that are designed to provide
pair of users communicating over an unreliable channel with a secure session key even when the
secret key or password shared between two users is drawn from a small set of values. In this paper,
we present two simple password-based encrypted key exchange protocols based on that of Bellovin
and Merritt. While one protocol is more suitable to scenarios in which the password is shared
across several servers, the other enjoys better security properties. Both protocols are as efficient,
if not better, as any of the existing encrypted key exchange protocols in the literature, and yet
they only require a single random oracle instance. The proof of security for both protocols is in
the random oracle model and based on hardness of the computational Diffie-Hellman problem.
However, some of the techniques that we use are quite different from the usual ones and make
use of new variants of the Diffie-Hellman problem, which are of independent interest. We also
provide concrete relations between the new variants and the standard Diffie-Hellman problem.

A.1 Introduction

Background. Keys exchange protocols are cryptographic primitives used to provide a pair of
users communicating over a public unreliable channel with a secure session key. In practice, one
can find several flavors of key exchange protocols, each with its own benefits and drawbacks. An
example of a popular one is the SIGMA protocol [Kra03] used as the basis for the signature-based
modes of the Internet Key Exchange (IKE) protocol. The setting in which we are interested
in this paper is the 2-party symmetric one, in which every pair of users share a secret key. In
particular, we consider the scenario in which the secret key is a password.

Password-based key exchange. Password-based key exchange protocols assume a more
realistic scenario in which secret keys are not uniformly distributed over a large space, but
rather chosen from a small set of possible values (a four-digit pin, for example). They also seem
more convenient since human-memorable passwords are simpler to use than, for example, having
additional cryptographic devices capable of storing high-entropy secret keys. The vast majority
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of protocols found in practice do not account, however, for such scenario and are often subject to
so-called dictionary attacks. Dictionary attacks are attacks in which an adversary tries to break
the security of a scheme by a brute-force method, in which it tries all possible combinations of
secret keys in a given small set of values (i.e., the dictionary). Even though these attacks are
not very effective in the case of high-entropy keys, they can be very damaging when the secret
key is a password since the attacker has a non-negligible chance of winning.

To address this problem, several protocols have been designed to be secure even when the
secret key is a password. The goal of these protocols is to restrict the adversary’s success to
on-line guessing attacks only. In these attacks, the adversary must be present and interact with
the system in order to be able to verify whether its guess is correct. The security in these
systems usually relies on a policy of invalidating or blocking the use of a password if a certain
number of failed attempts has occurred.

Encrypted key exchange. The seminal work in the area of password-based key exchange is
the encrypted key exchange (EKE) protocol of Bellovin and Merritt [BM92]. In their protocol,
two users execute an encrypted version of the Diffie-Hellman key exchange protocol, in which
each flow is encrypted using the password shared between these two users as the symmetric
key. Due to the simplicity of their protocol, several other protocols were proposed in the liter-
ature based on it [BR00, BCP03, BCP04, KI02, Mac02], each with its own instantiation of the
encryption function. Our protocol is also a variation of their EKE protocol.

Minimizing the use of random oracles. One of our main goals is to provide schemes that
are simple and efficient, but relying as little as possible on random oracles. Ideally, one would
want to completely eliminate the need of random oracles as done in the KOY protocol [KOY01].
However, such protocols tend to be less efficient than those based on the EKE protocol of
Bellovin and Merritt [BM92].

Public information: G, g, p, M, N
Secret information: pw ∈ Zp

User A User B

x
R
← Zp ; X ← gx y

R
← Zp ; Y ← gy

X⋆ ← X ·Mpw Y ⋆ ← Y ·Npw

X⋆
−→
Y ⋆
←−

SK A ← (Y ⋆/Npw )x SK B ← (X⋆/Mpw )y

Figure A.1: An insecure password-based key exchange protocol.

To understand the difficulties involved in the design of protocols with few random oracles,
let us consider the extreme case of the protocol in Figure A.1 in which no random oracles are
used. Despite being secure against passive attacks, this protocol can be easily broken by an
active adversary performing a man-in-the-middle attack. Such an adversary can easily create
two different sessions whose session keys are related in a predictable manner. For instance, an
adversary can do so by multiplying X⋆ by gr for a known value r. The relation between the
underlying session keys SKA and SK B is SK B = SK A · Y

r. Hence, if the adversary learns the
value of these two keys, it can perform an off-line dictionary attack using Y = (SK B/SK A)−r

and Y ⋆ to recover the password. Moreover, since the adversary can use arbitrary values for r,
we cannot detect such attacks.

Protecting against related key attacks. In order to fix the problem in the protocol pre-
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sented in Figure A.1 and prevent the adversary from altering the messages, one may be tempted
to use message authentication code (MAC) algorithms for key derivation (e.g., by making the
session key equal to MACSKA

(A, B, X⋆, Y ⋆, 0)) or key confirmation (e.g., by computing tags
via MACSK A

(A, B, X⋆, Y ⋆, 1)). In fact, this is the approach used by Kobara and Imai in the
construction of their password-authenticated key exchange protocol [KI02]. Unfortunately, this
approach does not quite work.

Let us now explain the main problems with using MACs. First, the standard notion of
security for MACs does not imply security against related key attacks. Hence, new and stronger
security notions are required. Second, such new security notions may have to consider adversaries
which are given access to a related-key tag-generation oracle. These are oracles that are capable
of generating tags on messages under related keys, where the related key function is also passed
as a parameter. This is actually the approach used in [KI02]. However, it is not clear whether
such MACs can even be built. Such security notion, for instance, may completely rule out the
possibility of using block-cipher-based MAC algorithms since similar security requirements in
the context of block ciphers are known to be impossible to achieve [BK03]. Perhaps, hash-based
MAC algorithms may be able to meet these goals, but that does not seem likely without resorting
to random oracles, which would defeat the purpose of using MACs in the first place.

Simple constructions. In this paper, we deal with the problem of related-key attacks by
using a single instance of a random oracle in the key derivation process. We present two simple
constructions, whose only difference to one another is the presence of the password in the key
derivation function. The presence of the password in the key derivation function is an important
aspect, for example, when one wants to consider extensions to the distributed case, where each
server only holds a share of password (see [DG03]).

Surprisingly, the techniques that we use to prove the security of these two constructions
are quite different and so are the exact security results. While we are able to provide a tight
security reduction for the scheme which includes the password in the key derivation phase, the
same cannot be said about the other scheme, for which we can only prove its security in the
non-concurrent scenario. However, the techniques that we use to prove the security of the latter
are quite interesting and make use of new variants of the Diffie-Hellman problem.

New Diffie-Hellman assumptions. The new variants of the Diffie-Hellman problem that we
introduce are called Chosen-Basis Diffie-Hellman assumptions due to the adversary’s capability
to choose some of the bases used in the definition of the problem. These assumptions are
particular interesting when considered in the context of password-based protocols and we do
expect to find applications for them other than the ones in this paper. Despite being apparently
stronger than the standard Diffie-Hellman assumptions, we prove that this is not the case by
providing concrete reductions to the computational Diffie-Hellman problem.

Contributions. In this paper, we address the issue of constructing efficient password-based
encrypted key exchange protocols. Our main contributions are as follows.

Simple and efficient constructions in random oracle model. In this paper, we pro-
pose two new password-based encrypted key exchange protocols, called SPAKE1 and SPAKE2,
both of which can be proven secure based on the hardness of the computational Diffie-Hellman
problem in the random oracle model. Both protocols are comparable in efficiency to any of
the existing EKE protocols, if not more efficient, and they only require one random oracle in-
stance. This is contrast with existing EKE constructions, which require either a larger number
of random oracle instances or additional ideal models, such as the ideal cipher model. Moreover,
neither SPAKE1 nor SPAKE2 requires full domain hash functions or ideal ciphers onto a group,
which are hard to implement efficiently. While one protocol is more suitable to scenarios in
which the password is shared across several servers, the other enjoys better security properties.
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New Diffie-Hellman assumptions. In proving the security of our protocols, we make use
of new variations of the computational Diffie-Hellman assumption, called chosen-basis computa-
tional Diffie-Hellman assumptions. These new assumptions are of independent interest and we
do expect to find new applications for it other than the ones in this paper. Reductions between
the problems underlying the new assumptions and the standard computational Diffie-Hellman
assumption are also provided.

Related work. Password-based authenticated key exchange has been extensively studied in
the last few years [BPR00, BMP00, BCP03, BCP04, GL03, GL01, HK99, KOY01, MPS00,
MSJ02, DG03] with the majority of them being submitted for inclusion in the IEEE P1363.2
standard [IEE04], a standard dealing with the issues of password-authenticated key agreement
(e.g. EKE) and password-authenticated key retrieval. With the exception of [GL03, GL01,
KOY01], all of these protocols are only proven secure in the random oracle model.

Perhaps, the related work that is closest to ours is the pretty-simple password-authenticated
key exchange protocol of Kobara and Imai [KI02], whose proof of security is claimed to be in
the “standard” model. Their protocol consists of EKE phase that is similar to the one used in
our protocols followed by an authentication phase based on message authentication code (MAC)
algorithms. However, the security model which they use is different from the standard one and
hence their result only applies to their specific model. Moreover, as we pointed out above, their
protocol needs a stronger security notion for the MAC algorithm and it is not clear whether such
MACs can be built without resorting to random oracles, which would contradict their claims.

Organization. In Section A.2, we recall the security model for password-based authenticated
key exchange. Next, in Section A.3, we present our new variants of the Diffie-Hellman problem
and their relations to the computational Diffie-Hellman problem. Section A.4 then introduces
the first of our password-based encrypted key exchange protocols, called SPAKE1, along with its
proof of security. SPAKE1 is in fact based on one of the variants of the Diffie-Hellman problem
introduced in Section A.3. Our second protocol, SPAKE2, is then presented in Section A.4 along
with its security claims. In the appendix, we present proofs for several lemmas in Section A.3
as well as the proof of security for SPAKE2.

A.2 Security model for password-based key exchange

We now recall the security model for password-based authenticated key exchange of Bellare et
al. [BPR00].

Protocol participants. Each participant in the password-based key exchange is either a
client C ∈ C or a server S ∈ S. The set of all users or participants U is the union C ∪ S.

Long-lived keys. Each client C ∈ C holds a password pwC . Each server S ∈ S holds a
vector pwS = 〈pwS [C]〉C∈C with an entry for each client, where pwS [C] is the transformed-
password, as defined in [BPR00]. In this paper, we only consider the symmetric model, in which
pwS [C] = pwC , but they may be different in general. pwC and pwS are also called the long-lived
keys of client C and server S.

Protocol execution. The interaction between an adversary A and the protocol participants
occurs only via oracle queries, which model the adversary capabilities in a real attack. During
the execution, the adversary may create several instances of a participant. While in a concurrent
model, several instances may be active at any given time, only one active user instance is allowed
for a given intended partner and password in a non-concurrent model. Let U i denote the instance
i of a participant U and let b be a bit chosen uniformly at random. The query types available
to the adversary are as follows:
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• Execute(Ci, Sj): This query models passive attacks in which the attacker eavesdrops on
honest executions between a client instance Ci and a server instance Sj. The output of
this query consists of the messages that were exchanged during the honest execution of
the protocol.

• Send(U i, m): This query models an active attack, in which the adversary may tamper with
the message being sent over the public channel. The output of this query is the message
that the participant instance U i would generate upon receipt of message m.

• Reveal(U i): This query models the misuse of session keys by a user. If a session key is not
defined for instance U i or if a Test query was asked to either U i or to its partner, then
return ⊥. Otherwise, return the session key held by the instance U i.

• Test(U i): This query tries to capture the adversary’s ability to tell apart a real session key
from a random one. If no session key for instance U i is defined, then return the undefined
symbol ⊥. Otherwise, return the session key for instance U i if b = 1 or a random key of
the same size if b = 0.

Notation. Following [BR94a, BR95], an instance U i is said to be opened if a query Reveal(U i)
has been made by the adversary. We say an instance U i is unopened if it is not opened. We
say an instance U i has accepted if it goes into an accept mode after receiving the last expected
protocol message.

Partnering. The definition of partnering uses the notion of session identifications (sid). More
specifically, two instances U i

1 and U j
2 are said to be partners if the following conditions are met:

(1) Both U i
1 and U j

2 accept; (2) Both U i
1 and U j

2 share the same session identifications; (3) The
partner identification for U i

1 is U j
2 and vice-versa; and (4) No instance other than U i

1 and U j
2

accepts with a partner identification equal to U i
1 or U j

2 . In practice, the sid could be taken to
be the partial transcript of the conversation between the client and the server instances before
the acceptance.

Freshness. The notion of freshness is defined to avoid cases in which adversary can trivially
break the security of the scheme. The goal is to only allow the adversary to ask Test queries to
fresh oracle instances. More specifically, we say an instance U i is fresh if it has accepted and if
both U i and its partner are unopened.

Semantic security. Consider an execution of the key exchange protocol P by an adversary
A, in which the latter is given access to the Reveal, Execute, Send, and Test oracles and asks
a single Test query to a fresh instance, and outputs a guess bit b′. Such an adversary is said to
win the experiment defining the semantic security if b′ = b, where b is the hidden bit used by
the Test oracle.

Let Succ denote the event in which the adversary is successful. The ake-advantage of an
adversary A in violating the semantic security of the protocol P and the advantage function
of the protocol P , when passwords are drawn from a dictionary D, are respectively

Advake
P,D(A) = 2 · Pr[ Succ ]− 1 and Advake

P,D(t, R) = max
A
{Advake

P,D(A) } ,

where maximum is over allA with time-complexity at most t and using resources at most R (such
as the number of queries to its oracles). The definition of time-complexity that we use henceforth
is the usual one, which includes the maximum of all execution times in the experiments defining
the security plus the code size [ABR01].
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A.3 Diffie-Hellman assumptions

In this section, we recall the definitions for the computational Diffie-Hellman assumption and
introduce some new variants of it, which we use in the proof of security of simple password-based
encrypted key exchange protocols. We also present some relations between these assumptions.
In doing so, we borrow some of the notations in [ABR01].

A.3.1 Definitions

Notation. In the following, we assume a finite cyclic group G of prime order p generated by
an element g. We also call the tuple G = (G, g, p) the represented group.

Computational Diffie-Hellman: CDH. The CDH assumption states that given gu and
gv, where u and v were drawn at random from Zp, it is hard to compute guv . Under the
computational Diffie-Hellman assumption it might be possible for the adversary to compute
something interesting about guv given gu and gv .

This can be defined more precisely by considering an Experiment Expcdh
G (A), in which we

select two values u and v in Zp, compute U = gu, and V = gv , and then give both U and V
to an adversary A. Let Z be the output of A. Then, the Experiment Expcdh

G (A) outputs 1 if
Z = guv and 0 otherwise. Then, we define advantage of A in violating the CDH assumption as
Advcdh

G (A) = Pr[ Expcdh
G (A) = 1 ] and the advantage function of the group, Advcdh

G (t), as the
maximum value of Advcdh

G (A) over all A with time-complexity at most t.

Chosen-basis computational Diffie-Hellman: CCDH. The chosen-basis computational
Diffie-Hellman problem is a variation of the CDH problem. It considers an adversary that
is given three random elements M , N and X in G and whose goal is to find a triple of values
(Y, u, v) such that u = CDH(X, Y ) and v = CDH(X/M, Y/N). The idea behind this assumption
is that the adversary may be able to successfully compute either u (e.g., by choosing Y = g and
u = X) or v (e.g., by choosing Y = g · N and v = X/M), but not both. In fact, as we prove
later, solving this problem is equivalent to solving the underlying computational Diffie-Hellman
problem in G. We now proceed with the formal definition.

Definition A.3.1 [CCDH] Let G = (G, g, p) be a represented group and let A be an adversary.
Consider the following experiment, where M , N and X are elements in G,

Experiment Expccdh
G (A, M, N, X)

(Y, u, v)← A(M, N, X)
u′ ← CDH(X, Y )
v′ ← CDH(X/M, Y/N)
if u = u′ and v = v′ then b← 1 else b← 0
return b

Now define the advantage of A in violating the CCDH assumption with respect to (M, N, X),
the advantage of A, and the advantage function of the group, respectively, as follows:

Advccdh
G (A, M, N, X) = Pr[ Expccdh

G (A, M, N, X) = 1 ]

Advccdh
G (A) = PrM,N,X

[
Advccdh

G (A, M, N, X)
]

Advccdh
G (t) = max

A
{Advccdh

G (A) },

where the maximum is over all A with time-complexity at most t. ♦
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Password-based chosen-basis computational Diffie-Hellman: PCCDH. The password-
based chosen-basis computational Diffie-Hellman problem is a variation of the chosen-basis com-
putational Diffie-Hellman described above that is more appropriate to the password-based set-
ting. The inputs to the problem and the adversarial goals are also somewhat different in this
case so let us explain it.

Let D = {1, . . . , n} be a dictionary containing n equally likely password values and let P
be a public injective map P from {1, . . . , n} into Zp. An example of an admissible map P is
the one in which {1, . . . , n} is mapped into the subset {1, . . . , n} of Zp. Now let us consider
an adversary that runs in two stages. In the first stage, the adversary is given as input three
random elements M , N and X in G as well as the public injective map P and it outputs a value
Y in G. Next, we choose a random password k ∈ {1, . . . , n} and give it to the adversary. We
also compute the mapping r = P(k) of the password k. The goal of the adversary in this second
stage is to output a value K such that K = CDH(X/M r, Y/N r).

Note that an adversary that correctly guesses the password k in its first stage can easily solve
this problem by computing r = P(k) and making, for instance, Y = g ·N r and K = X/M r. Since
we assume k to be chosen uniformly at random from the dictionary {1, . . . , n}, an adversary
that chooses to guess the password and follow this strategy can succeed with probability 1/n.

The idea behind the password-based chosen-basis computational Diffie-Hellman assumption
is that no adversary can do much better than the adversary described above. In fact, as we later
prove, this should be the case as long as the computational Diffie-Hellman problem is hard in
G. We now proceed with the formal definition.

Definition A.3.2 [PCCDH] Let G = (G, g, p) be a represented group and let A be an adversary.
Consider the following experiment, where M and N are elements in G, and P is a public injective
map from {1, . . . , n} into Zp,

Experiment Exppccdh
G,n (A, M, N, X ′,P)

(Y ′, st)← A(find, M, N, X ′,P)

k
R
← {1, . . . , n} ; r ← P(k)

(K)← A(guess, st, k)
X ← X ′/M r ; Y ← Y ′/N r

if K = CDH(X, Y ) then b← 1 else b← 0
return b

Now define the advantage of A in violating the PCCDH assumption with respect to (M, N, X ′,
P), the advantage of A, and the advantage function of the group, respectively, as follows:

Advpccdh
G,n (A, M, N, X ′,P) = Pr[ Exppccdh

G,n (A, M, N, X ′,P) = 1 ]

Advpccdh
G,n (A,P) = PrM,N,X′

[
Advpccdh

G,n (A, M, N, X ′,P)
]

Advpccdh
G,n (t,P) = max

A
{Advpccdh

G,n (A,P) },

where the maximum is over all A with time-complexity at most t. ♦

Set password-based chosen-basis computational Diffie-Hellman: S-PCCDH. The set
password-based chosen-basis computational Diffie-Hellman problem (S-PCCDH) is a multidi-
mensional variation of the password-based chosen-basis computational Diffie-Hellman problem
described above, in which the adversary is allowed to return not one key but a list of keys at
the end of the second stage. In this case, the adversary is considered successful if the list of keys
contains the correct value. We now proceed with the formal definition.
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Definition A.3.3 [S-PCCDH] Let G = (G, g, p) be a represented group and let A be an adver-
sary. Consider the following experiment, where M and N are elements in G, and P is a public
injective map from {1, . . . , n} into Zp,

Experiment Exps−pccdh
G,n,s (A, M, N, X ′,P)

(Y ′, st)← A(find, M, N, X ′,P)

k
R
← {1, . . . , n} ; r ← P(k)

(S)← A(guess, st, k)
X ← X ′/M r ; Y ← Y ′/N r

if CDH(X, Y ) ∈ S and |S| ≤ s then b← 1 else b← 0
return b

As above, we define the advantage of A in violating the S-PCCDH assumption with respect to
(M, N, X ′,P), the advantage of A, and the advantage function of the group, respectively, as
follows:

Advs−pccdh
G,n,s (A, M, N, X ′,P) = Pr[ Exps−pccdh

G,n,s (A, M, N, X ′,P) = 1 ]

Advs−pccdh
G,n,s (A,P) = PrM,N,X′

[
Advs−pccdh

G,n,s (A, M, N, X ′,P)
]

Advs−pccdh
G,n,s (t,P) = max

A
{Advs−pccdh

G,n,s (A,P) },

where the maximum is over all A with time-complexity at most t. ♦

A.3.2 Some relations

In this section, we first provide two relations between the above problems. The first result
is meaningful for small n (polynomially bounded in the asymptotic framework). The second
one considers larger dictionaries. Then, we show that these assumptions are implied by the
classical computational Diffie-Hellman assumption. Finally, we also prove that the most general
assumption is also implied by the classical computational Diffie-Hellman assumption.

Relations between the PCCDH and CCDH problems. The following two lemmas present
relations between the PCCDH and CCDH problems. The first lemma, whose proof can be
found in Appendix A.7, is oriented to the case of small dictionaries, for which n is polynomially-
bounded. However, if n is large, super-polynomial in the asymptotic framework, or more con-
cretely n ≥ 8/ǫ, then one should use the second lemma, whose proof can be easily derived from
the proof of the first lemma (see Appendix A.7).

Lemma A.3.4 Let G = (G, g, p) be a represented group, let n be an integer, and let P be a
public injective map from {1, . . . , n} into Zp.

2

n
≥ Advpccdh

G,n (t,P) ≥
1

n
+ ǫ =⇒ Advccdh

G (2t + 3τ) ≥
n

128
× ǫ3.

Lemma A.3.5 Let G = (G, g, p) be a represented group, let n be an integer, and let P be a
public injective map from {1, . . . , n} into Zp.

Advpccdh
G,n (t,P) ≥ ǫ ≥

8

n
=⇒ Advccdh

G (2t + 3τ) ≥
ǫ2

32
,

where τ denotes the time for an exponentiation in G.
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Relation between the CCDH and CDH problems. The following lemma, whose proof is
in Appendix A.7, shows that the CCDH and CDH problems are indeed equivalent.

Lemma A.3.6 Let G = (G, g, p) be a represented group.

Advccdh
G (t) ≤ Advcdh

G (t + 2τ),

where τ denotes the time for an exponentiation in G.

Relation between the S-PCCDH and CDH problems. The following lemma, whose proof
is in Appendix A.7, gives a precise relation between the S-PCCDH and CDH problems.

Lemma A.3.7 Let G = (G, g, p) be a represented group, let n and s be integers, and let P be
a public injective map from {1, . . . , n} into Zp.

Advs−pccdh
G,n,s (t,P) ≥

1

n
+ ǫ =⇒ Advcdh

G (t′) ≥
n2ǫ6

214
−

2s4

p
,

where t′ = 4t + (18 + 2s)τ and τ denotes the time for an exponentiation in G. More concretely,

Advs−pccdh
G,n,s (t,P) ≥

1

n
+ ǫ ≥

1

n
×

(
1 +

8(ns)2/3

p1/6

)
=⇒ Advcdh

G (t′) ≥
n2ǫ6

215
.

A.4 SPAKE1: a simple non-concurrent password-based encrypted
key exchange

We now introduce our first protocol, SPAKE1, which is a non-concurrent password-based en-
crypted key exchange protocol, based on the multi-dimensional version of password-based chosen-
basis computational Diffie-Hellman problem, S-PCCDH.

A.4.1 Description

SPAKE1 is a variation of the password-based encrypted key exchange protocol of Bellovin and
Merritt [BM92], in which we replace the encryption function Epw(.) with a simple one-time pad
function. More specifically, whenever a user A wants to send the encryption of a value X ∈ G
to a user B, it does so by computing X ·Mpw , where M is an element in G associated with
user A and the password pw is assumed to be in Zp. The session identification is defined as
the transcript of the conversation between A and B, and the session key is set to be the hash
(random oracle) of the session identification, the user identities, and the Diffie-Hellman key. The
password pw is not an input to the hash function. The full description of SPAKE1 is given in
Figure A.2.

Correctness. The correctness of our protocol follows from the fact that, in an honest execution
of the protocol, KA = KB = gxy.

A.4.2 Security

As Theorem A.4.1 states, our non-concurrent password-based key exchange protocol is secure
in the random oracle model as long as we believe that the S-PCCDH problem is hard in G.
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Public information: G, g, p, M, N, H
Secret information: pw ∈ Zp

User A User B

x
R
← Zp ; X ← gx y

R
← Zp ; Y ← gy

X⋆ ← X ·Mpw Y ⋆ ← Y ·Npw

X⋆
−→
Y ⋆
←−

KA ← (Y ⋆/Npw)x KB ← (X⋆/Mpw )y

SK A ← H(A, B, X⋆, Y ⋆, KA) SK B ← H(A, B, X⋆, Y ⋆, KB)

Figure A.2: SPAKE1: a simple non-concurrent password-based key exchange protocol.

Theorem A.4.1 Let G be a represent group and let D be a uniformly distributed dictionary of
size |D|. Let SPAKE1 describe the password-based encrypted key exchange protocol associated
with these primitives as defined in Figure A.2. Then, for any numbers t, qstart, qA

send, qB
send, qH ,

qexe,

Advake
SPAKE,D(t, qstart, qA

send, qB
send, qH , qexe)

≤ 2 · (qA
send + qB

send) ·Advs−pccdh
G,|D|,qH

(t′,P) +

2 ·

(
(qexe + qsend)2

2p
+ qH Advcdh

G (t + 2qexeτ + 3τ)

)
,

where qH represents the number of queries to the H oracle; qexe represents the number of queries
to the Execute oracle; qstart and qA

send represent the number of queries to the Send oracle with
respect to the initiator A; qB

send represents the number of queries to the Send oracle with respect
to the responder B; qsend = qA

send + qB
send + qstart; t′ = t+O(qstartτ); and τ is the time to compute

one exponentiation in G.

Since the S-PCCDH problem can be reduced to the CDH problem according to Lemma A.3.7,
it follows that SPAKE1 is a secure non-concurrent password-based key exchange protocol in the
random oracle model as long as the CDH problem is hard in G, as stated in Corollary A.4.2.

Corollary A.4.2 Let G be a represent group and let D be a uniformly distributed dictionary of
size |D|. Let SPAKE1 describe the password-based encrypted key exchange protocol associated
with these primitives as defined in Figure A.2. Then, for any numbers t, qstart, qA

send, qB
send, qH ,

qexe,

Advake
SPAKE,D(t, qstart, qA

send, qB
send, qH , qexe)

≤ 2 ·


qA

send + qB
send

|D|
+ 6

√
214

|D|2
Advcdh

G (t′) +
215q4

H

|D|2p


+

2 ·

(
(qexe + qsend)2

2p
+ qH Advcdh

G (t + 2qexeτ + 3τ)

)
,

where t′ = 4t + O((qstart + qH)τ) and the other parameters are defined as in Theorem A.4.1.
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H
or

ac
le – On hash query H(q) (resp. H ′(q)) for which there exists a record (q, r) in

the list ΛH (resp. ΛH), return r. Otherwise, choose an element r ∈ {0, 1}lk,
add the record (q, r) to the list ΛH (resp. ΛH), and return r.

Figure A.3: Simulation of random oracles H and H ′.
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– On a query Send(Ai, start ), assuming Ai is in the correct state, we
proceed as follows:

if ActiveSessionIndex 6= 0 then abort AActiveSessionIndex

ActiveSessionIndex = i

θ
R

← Zp ; Θ← gθ ; Θ⋆ ← Θ ·Mpw

return (A, Θ⋆)
– On a query Send(Bi, (A, Θ⋆)), assuming Bi is in the correct state, we
proceed as follows:

φ
R

← Zp ; Φ← gφ ; Φ⋆ ← Φ ·Npw

K ← (Θ⋆/Mpw)φ

SK ← H(A, B, Θ⋆, Φ⋆, K)
return (B, Φ⋆)

– On a query Send(Ai, (B, Φ⋆)), assuming Ai is in the correct state, we
proceed as follows:

K ← (Φ⋆/Npw)θ

SK ← H(A, B, Θ⋆, Φ⋆, K)
ActiveSessionIndex = 0

Figure A.4: Simulation of Send oracle query.

Proof idea. Let A be an adversary against the semantic security of SPAKE. The idea is to use
A to build adversaries for each of the underlying primitives in such a way that if A succeeds
in breaking the semantic security of SPAKE, then at least one of these adversaries succeeds in
breaking the security of an underlying primitive. Our proof consists of a sequence of hybrid
experiments, starting with the real attack and ending in an experiment in which the adversary’s
advantage is 0, and for which we can bound the difference in the adversary’s advantage between
any two consecutive experiments.

Proof of Theorem A.4.1. Our proof uses a sequence of hybrid experiments, the first of which
corresponds to the actual attack. For each experiment Expn, we define an event Succn corre-
sponding to the case in which the adversary correctly guesses the bit b involved in the Test query.

Experiment Exp0. This experiment corresponds to the real attack, which starts by choosing
a random password pw. By definition, we have

Advake
SPAKE(A) = 2 · Pr[ Succ0 ]− 1 (A.1)

Experiment Exp1. In this experiment, we simulate the Execute, Reveal, and Send oracles as
in the real attack (see Figure A.4 and Figure A.5), after having chosen a random password pw .
One can easily see that this experiment is perfectly indistinguishable from the real experiment.
Hence,

Pr[ Succ1 ] = Pr[ Succ0 ] (A.2)

Experiment Exp2. In this experiment, we simulate all oracles as in Experiment Exp1, ex-
cept that we halt all executions in which a collision occurs in the transcript ((A, X⋆), (B, Y ⋆)).
Since either X⋆ or Y ⋆ was simulated and thus chosen uniformly at random, the probability of
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– On query Reveal(U i), proceed as follows:
if session key SK is defined for instance U i

then return SK ,
else return ⊥.

– On query Execute(Ai, Bj), proceed as follows:
θ

R

← Zp ; Θ← gθ ; Θ⋆ ← Θ ·Mpw

φ
R

← Zp ; Φ← gφ ; Φ⋆ ← Φ ·Npw

K ← Θφ

SKA ← H(A, B, Θ⋆, Φ⋆, K) ; SKB ← SK A

return ((A, Θ⋆), (B, Φ⋆))
– On query Test(U i), proceed as follows:

SK ← Reveal(U i)
if SK = ⊥ then return ⊥
else

b
R

← {0, 1}
if b = 0 then SK ′ ← SK else SK ′ R

← {0, 1}lk

return SK ′

Figure A.5: Simulation of Execute, Reveal and Test queries.

collisions in the transcripts is at most (qsend + qexe)
2/(2p), according to the birthday paradox.

Consequently,

∣∣Pr[ Succ2 ]− Pr[ Succ1 ]
∣∣ ≤ (qexe + qsend)2

2p
(A.3)

Experiment Exp3. In this experiment, we replace the random oracle H by a secret one, for
computing SK A and SK B for all sessions generated via an Execute oracle query. As the following
lemma shows, the difference between the current experiment and the previous one is negligible
as long as the CDH assumption holds. More precisely, we use a private random oracle H ′, and
in the Execute oracle queries, one gets SK A, SK B ← H ′(A, B, Θ⋆, Φ⋆).

Lemma A.4.3
∣∣Pr[ Succ3 ]− Pr[ Succ2 ]

∣∣ ≤ qH ·Advcdh
G (t + 2qexeτ + 3τ) .

Proof: The proof of Lemma A.4.3 uses the random self-reducibility of the Diffie-Hellman prob-
lem. Indeed, the only way for an execution to be altered by the above modification is if
the adversary directly asks for H(A, B, Θ⋆, Φ⋆, K), which will output something different from
H ′(A, B, Θ⋆, Φ⋆), the answer of a Reveal query. But let us simulate the Execute oracle with a
Diffie-Hellman instance (A, B), and thus Θ ← A · gθ and Φ ← B · gφ. As a consequence, the
above event means that K = CDH(Θ, Φ) = CDH(A, B) × Aφ × Bθ × gφθ is in the list of the
queries asked to H: a random guess leads to CDH(A, B).

Experiment Exp4. The goal of this experiment is to bound the advantage of the adversary
during active attacks, in which the adversary has possibly generated the input of a Send oracle.
To achieve this goal, we change the simulation of the Send oracle so that its output is chosen
uniformly at random and independently of the password. The session key associated with each
oracle is a bit string of appropriate length chosen uniformly at random and independently of
input being provided to the Send oracle. The exact simulation of the Send oracle is as follows:

• On a query of type (Ai, start ), we reply with (A, X⋆ = gx⋆
) for a random x⋆ ∈ Zp, if Ai

is in the correct state. If another concurrent session already exists for user A, then we also
terminate that session.

• On a query of type (Bi, (A, X⋆)), we reply with (B, Y ⋆ = gy⋆
) for a random y⋆ ∈ Zp and

we set the session key SK B to H ′(A, B, X⋆, Y ⋆), if Bi is in the correct state.
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• On a query of type (Ai, (B, Y ⋆)), we set the session key SK A to H ′(A, B, X⋆, Y ⋆), if Ai is
in the correct state.

As the following lemma shows, the adversary cannot do much better than simply guessing
the password when distinguishing the current experiment from the previous one.

Lemma A.4.4
∣∣Pr[ Succ4 ] − Pr[ Succ3 ]

∣∣ ≤ (qA
send + qB

send) · Advs−pccdh
G,|D|,qH

(t′,P) , where t′ =

t + O(qstartτ).

Proof: The proof of this lemma is based on a sequence of qA
send + qB

send + 1 hybrid experiments
Hybrid3,j, where j is an index between 0 and qAB = qA

send +qB
send. Let i be a counter for number

of queries of the form (Bk, (A, X⋆)) or (Ak, (B, Y ⋆)). That is, we do not count start queries (we
do not increment this counter). We define Experiment Hybrid3,j as follows:

• If i ≤ j, then we processes the current Send query as in Experiment Exp4.

• If i > j, then we processes the current Send query as in Experiment Exp3.

It is clear from the above definition that experiments Hybrid3,0 and Hybrid3,qAB
are equivalent

to experiments Exp3 and Exp4, respectively. Now let Pj denote the probability of event Succ

in Experiment Hybrid3,j. It follows that Pr[ Succ3 ] = P0 and Pr[ Succ4 ] = PqAB
. Moreover,

∣∣∣Pr[ Succ4 ]− Pr[ Succ3 ]
∣∣∣ ≤

qAB∑

j=1

∣∣Pj − Pj−1

∣∣ .

The lemma will follow easily from bounding
∣∣Pj − Pj−1

∣∣. In order to so, consider the following
algorithm Dj for the S-PCCDH problem in G.

Algorithm Dj. Let U = gu, V = gv , and W = gw be random elements in G and let P be
any injective map from {1, . . . , n} into Zp. Dj starts running A, simulating all its oracles. The
Reveal, Execute, and Test oracles are simulated as in Experiment Exp3. The Send oracle is
simulated as follows, Let i be the index of the current Send query.

• If the Send query is of the form (Ak, start ),

– if i ≤ j, then Dj replies with (A, X⋆ = W gx⋆
) for a random x⋆ ∈ Zp, if Ak is in the

correct state. If another concurrent session already exists for user A, then Dj also
terminates that session.

– if i > j, then Dj processes it as in Experiment Exp3.

• If the query is of the form (Bk, (A, X⋆)),

– if i < j, then Dj processes it as in Experiment Exp4.

– if i = j, then Dj replies with (B, Y ⋆ = W ). It also returns (st, Y ′ = X⋆) as the
output of its find stage and waits for the input (st, k) of the guess stage. It then
sets the password pw shared between A and B to P(k) and the session key SK B to
H(A, B, X⋆, Y ⋆, KB), where KB = (X⋆/V pw)w−u pw . We note that st should contain
all the necessary information for Dj to continue the execution of A and the simulation
of its oracles in the guess stage. Let this be Case B.

– if i > j, then Dj processes it as in Experiment Exp3.

• If the Send query is of the form (Ak, (B, Y ⋆)),
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– if i < j, then Dj processes it as in Experiment Exp4.

– if i = j, and Ak is in the correct state, then it returns (st, Y ′ = Y ⋆) as the output of its
find stage and waits for the input (st, k) of the guess stage. Then, it sets the password
pw shared between A and B to P(k) and the session key SKA to H(A, B, X⋆, Y ⋆, KA),
where KA = (Y ⋆/V pw)w+x⋆−u pw . Let this be Case A.

– if i > j, then Dj processes it as in Experiment Exp3.

Let K be the part of the input of H that is not present in H ′ and let K1, . . . , KqH
be the list of

all such elements. When in Case A, Dj sets K ′i = Ki/(Y ′/V pw)x⋆
for i = 1, . . . , qH , where x⋆ is

the value used to compute X⋆ in the crucial query. When in Case B, Dj simply sets K ′i = Ki.
Finally, Dj outputs K ′1, . . . , K ′qH

.

We note that in the above, the password is only defined at the j-th step and it is not used before
that. Due to the non-concurrency, we do not need to know the password for simulating flows in
Experiment Exp4. We only need it in Experiment Exp3.

Using the knowledge of u, v, and w in the above, it is clear that the processing of the Send

queries matches that of Experiment Hybrid3,j−1. However, in the actual description of the
S-PCCDH problem, we do not have access to these values. For this reason, the actual algorithm
Dj replaces the random oracle H by a secret random oracle H ′ in the computation of SK A and
SKB during the processing of the j-th Send query. More precisely, it computes SKA and SKB

as H ′(A, B, X⋆, Y ⋆). Moreover, we note that in this new scenario, the processing of the Send

queries matches that of Experiment Hybrid3,j.

Probability analysis. Let AskH represent the event in which the adversary asks for H(A, B,
X⋆, Y ⋆, K), where K = CDH(X⋆/Upw , Y ⋆/V pw) and either X⋆ or Y ⋆ is involved in the crucial
j-th query. We first observe that experiments Hybrid3,j−1 and Hybrid3,j are identical if event
AskH does not happen. Therefore, it follows that the probability difference

∣∣Pj − Pj−1

∣∣ is at
most Pr[ AskH ].

However, whenever event AskH happens, we know that the list of queries asked to H contains
the key K = CDH(X⋆/Upw , Y ⋆/V pw) involved in the crucial query, and thus Dj will be able
to successfully use A to help it solve the S-PCCDH problem. This is because KA (Case A) or
KB (Case B) can be used to compute the solution CDH(W/Upw , Y ′/V pw) for the S-PCCDH
problem as follows:

KA = CDH(Y ⋆/V pw , W gx⋆
/Upw ) = CDH(W/Upw , Y ′/V pw)× (Y ′/V pw)x⋆

KB = CDH(X⋆/V pw , W/Upw ) = CDH(W/Upw , Y ′/V pw)

Therefore, the list of candidates K ′1, . . . , K ′qH
outputted by Dj should contain the solution for

the S-PCCDH problem whenever AskH happens. Hence, Pr[ AskH ] is less than or equal to the
success probability of Dj . The lemma follows easily from the fact that Dj has time-complexity
at most t′.

A.5 SPAKE2: a simple concurrent password-based encrypted key
exchange

We now introduce our second protocol, SPAKE2, which is a concurrent password-based encrypted
key exchange protocol, based on the computational Diffie-Hellman problem, CDH.
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A.5.1 Description

SPAKE2 is a also variation of the password-based encrypted key exchange protocol of Bellovin
and Merritt [BM92] and is almost exactly like SPAKE1. The only difference between the two is in
the key derivation function, which also includes the password pw. More specifically, the session
key in SPAKE2 is set to be the hash (random oracle) of the session identification, the user identi-
ties, the Diffie-Hellman key, and the password. In other words, SK ← H(A, B, X⋆, Y ⋆,pw, K).
The session identification is still defined as the transcript of the conversation between A and B.

A.5.2 Security

As the following theorem states, our concurrent password-based key exchange protocol is secure
in the random oracle model as long as the CDH problem is hard in G.

Theorem A.5.1 Let G be a represent group and let D be a uniformly distributed dictionary of
size |D|. Let SPAKE2 describe the password-based encrypted key exchange protocol associated
with these primitives as defined in Section A.5.1. Then, for any numbers t, qstart, qA

send, qB
send,

qH , qexe,

Advake
SPAKE2,D(t, qstart, qA

send, qB
send, qH , qexe)

≤ 2 ·

(
qA

send + qB
send

n
+

(qexe + qsend)2

2p

)
+

2 ·
(
qH Advcdh

G (t + 2qexeτ + 3τ) + q2
H Advcdh

G (t + 3τ)
)

,

where the parameters are defined as in Theorem A.4.1.

Proof of Theorem A.5.1. The proof of security for SPAKE2 also uses a hybrid argument con-
sisting of a sequence of experiments, the first of which corresponds to the actual attack. Since
the proof of security for SPAKE2 is similar to that of SPAKE1, we only state the differences here.

In Exp1, we need to change the simulation of oracles in order to allow concurrent executions
and to account for the presence of the password in the key derivation function. The claims
remain unchanged.

In Exp2, no changes are required and thus the claims remain unchanged.

In Exp3, the only change comes from the fact the password is part of the input of H but
not of H ′. This change, however, does not affect the claims.

In Exp4, we also need to account for the password being part of the input of H but not
of H ′. In this case, however, the claims are different. In order to bound the difference in the
adversary’s success probability in experiments Exp3 and Exp4, we use a technique similar to
the one used in the proof of security of the protocol MDHKE in [BCP04].

Let AskH4 be the event in which the adversary directly asks the query H(A, B, Θ⋆, Φ⋆, K)
in experiment Exp4, where either Θ⋆ or Φ⋆ has been simulated during an active attack. Clearly,
this is the only case in which the adversary can distinguish experiment Exp4 from experiment
Exp3.

In order to upper-bound the probability of event AskH4, let us first define Coll to be the
event in which there exist two different values pw1 and pw2 such that the tuples (X⋆, Y ⋆,pw i,
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CDH(X⋆/Mpw i , Y ⋆/Npwi)) are present in the list of queries to H, for i = 1, 2. Then, by using
a technique similar to that used in Lemma 5 in [BCP04], one can show that

Pr[ Coll ] ≤ q2
H ·Advcdh

G (t + 3τ) .

Now, let us consider the event AskH4 given that the event Coll does not happen. That is,
for each pair (X⋆, Y ⋆) involved in an active attack, there is at most one value of pw such that
(X⋆, Y ⋆,pw, CDH(X⋆/Mpw , Y ⋆/Npw)) is in the list of queries to H. Since the password pw is
not needed in the simulation of the oracles, we can postpone choosing its value until the very
end of the simulation, at which moment we can detect whether the event AskH4 has happened.
Hence, the probability that the event AskH4 happens given that the event Coll did not happen

can be upper-bound by qA
send+qB

send
n . That is,

Pr
[

AskH4 | Coll
]
≤

qA
send + qB

send

n
.

As a result,

Pr[ AskH4 ] ≤ Pr[ AskH4 ∧Coll ] + Pr[ AskH4 ∧Coll ]

≤ Pr[ Coll ] + Pr
[

AskH4 | Coll
]

≤ q2
H ·Advcdh

G (t + 3τ) +
qA

send + qB
send

n
.

The proof of theorem follows immediately by noticing that the adversary’s success probability
is exactly 1/2 in this last experiment.
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A.6 Appendix: The splitting lemma

For simplicity, we reproduce here the splitting lemma presented in [PS00].

Lemma A.6.1 [Splitting Lemma] Let A ⊂ X × Y such that Pr[(x, y) ∈ A] ≥ ǫ. For any α < ǫ,
define

B =

{
(x, y) ∈ X × Y Pr

y′∈Y
[(x, y′) ∈ A] ≥ ǫ− α

}
and B̄ = (X × Y )\B,

then the following statements hold:

(i) Pr[B] ≥ α

(ii) ∀(x, y) ∈ B, Pry′∈Y [(x, y′) ∈ A] ≥ ǫ− α.

(iii) Pr[B |A] ≥ α/ǫ.
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Proof: In order to prove statement (i), we argue by contradiction. Assume that Pr[B] < α.
Then

ǫ ≤ Pr[B] · Pr[A |B] + Pr[B̄] · Pr[A | B̄] < α · 1 + 1 · (ǫ− α) = ǫ.

This implies a contradiction, hence the result. Statement (ii) is a straightforward consequence
of the definition. We finally turn to the last assertion, using Bayes’ law:

Pr[B |A] = 1− Pr[B̄ |A] = 1− Pr[A | B̄] · Pr[B̄]/ Pr[A] ≥ 1− (ǫ− α)/ǫ = α/ǫ.

A.7 Appendix: Proof of lemmas

A.7.1 Proof of Lemma A.3.4

By definition of Advpccdh
G,n (A,P), we have

Pr[ b = 1 ] ≥
1

n
+ ǫ,

where all the variables follow the distribution defined in Experiment Exppccdh
G,n (A, M, N, X ′,

P), for uniformly distributed M, N, X ′ ∈ G and b ∈ {0, 1}. The probability space is thus defined
by the variables ω, ρ, the random tapes of the adversary in the find-stage and the guess-stage
respectively; M, N, X ′, the group elements; and k, the password:

Ω0 =
{

(ω, ρ, M, N, X ′, k)
∣∣∣ ω, ρ

R
← {0, 1}⋆; (M, N, X ′)

R
← G3; k

R
← {1, . . . , n}

}
.

By definition, we have

PrΩ0 [ b = 1 ] ≥
1

n
+ ǫ.

Applying the splitting lemma A.6.1, we get that if we split Ω0 into Ω′1 × Ω1:

Ω′1 =
{

ω
∣∣∣ ω

R
← {0, 1}⋆

}

Ω1 =
{

(ρ, M, N, X ′, k)
∣∣∣ ρ

R
← {0, 1}⋆ ; (M, N, X ′)

R
← G3 ; k

R
← {1, . . . , n}

}
,

there exists a set S1 ⊆ Ω′1 such that

PrΩ′
1

[S1 ] ≥
ǫ

2
, for any ω ∈ S1, PrΩ1 [ b = 1 ] ≥

1

n
+

ǫ

2
,

PrΩ0 [ ω ∈ S1 | b = 1 ] ≥
nǫ

2 + 2nǫ
.

Applying again the splitting lemma A.6.1, we get that if we split Ω1 into Ω′2 ×Ω2:

Ω′2 =
{

(M, N, X ′)
∣∣∣ (M, N, X ′)

R
← G3

}

Ω2 =
{

(ρ, k)
∣∣∣ ρ

R
← {0, 1}⋆ ; k

R
← {1, . . . , n}

}
,

for each random tape ω ∈ S1, there exists a set S2(ω) ⊆ Ω′2 such that

PrΩ′
2

[S2(ω) ] ≥
ǫ

4
, for any (M, N, X ′) ∈ S2(ω), PrΩ2 [ b = 1 ] ≥

1

n
+

ǫ

4
,
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PrΩ1

[
(M, N, X ′) ∈ S2(ω) | b = 1

]
≥

nǫ

4 + 2nǫ
.

Let (U, V, X) be a random instance of the CCDH problem. We choose a random tape ω
R
←

{0, 1}⋆, and two random indices i < j ∈ {1, . . . , n}. Then, we define r = P(i) and r′ = P(j),
and then set δ = r′ − r, M = U1/δ, N = V 1/δ , as well as X ′ = X × M r. Since (U, V, X)
is a random triple, (M, N, X ′) is also uniformly distributed (and thus independently of r and
r′, and thus of i and j): with probability greater than 1/n + ǫ, A wins the Experiment
Exppccdh

G,n (A, M, N, X ′,P), with k = i, and the random tape (ω, ρ). In the favorable case, we
have ω ∈ S1 and (M, N, X ′) ∈ S2(ω) with probability

nǫ

2 + 2nǫ
×

nǫ

4 + 2nǫ
≥

1

8
×

(
nǫ

1 + nǫ

)2

.

Thereafter, with probability greater than ǫ/4, A wins the Experiment Exppccdh
G,n (A, M, N, X ′,

P), with k = j, and the random tape (ω, ρ′):

Pr[ K = CDH(X ′/M r, Y ′/N r) ∧K ′ = CDH(X ′/M r′

, Y ′/N r′

) ] ≥

(
1

n
+ ǫ

)
×

1

8
×

(
nǫ

1 + nǫ

)2

×
ǫ

4
.

Since we assumed, in the theorem, that 2/n ≥ 1/n + ǫ, then 1 + nǫ ≤ 2. Furthermore,

K = CDH(X ′/M r, Y ′/N r) = CDH(X, Y )

K ′ = CDH(X ′/M r′

, Y ′/N r′

) = CDH(X/M δ , Y/N δ) = CDH(X/U, Y/V )

This concludes the proof of this lemma.

A.7.2 Proof of Lemma A.3.5

The proof of this lemma is similar to that of Lemma A.3.4 and is hence omitted in this version
of the paper.

A.7.3 Proof of Lemma A.3.6

Let us consider an instance A, B for the Diffie-Hellman problem. We choose a random b ∈ Zp.
Then we set M ← A, N ← B and X ← Ab. We run an adversary A on this triple (M, N, X),
and get (Y, u, v), which in case of success u = CDH(X, Y ) and v = CDH(X/M, Y/N):

u = CDH(X, Y ) = CDH(Ab, Y ) = CDH(A, Y )b

v = CDH(X/M, Y/N) = CDH(Ab−1, Y/B) = CDH(A, Y/B)b−1

= CDH(A, Y )b−1/CDH(A, B)b−1

ub−1 = CDH(A, Y )b(b−1)

vb = CDH(A, Y )b(b−1)/CDH(A, B)b(b−1) = ub−1/CDH(A, B)b(b−1)

Thus,

CDH(A, B)b(b−1) = ub−1/vb and CDH(A, B) = u1/bv−1/(b−1).
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A.7.4 Proof of Lemma A.3.7

In this proof, we use a general technique presented in [Sho97] for computing the solution of a
given instance of a problem by finding a collision between the list of candidates for two related
instances.

On a given A, B instance of the Diffie-Hellman problem, we use exactly the same argument
as in the proof of Lemma A.3.4, running the S-PCCDH algorithm to break two instances of the
CCDH problem: U1 = Agu1 , V1 = Bgv1 and X1 = Ab1 , and U2 = Agu2 , V2 = Bgv2 and X2 = Ab2 ,
for random values u1, u2, v1, v2, b1, b2 ∈ Zp. We then get four sets, S1, S ′1, S2 and S ′2, (instead
of values) which contain candidates for CDH(X1, Y1), CDH(X1/U1, Y1/V1), CDH(X2, Y2) and
CDH(X2/U2, Y2/V2) respectively. Therefore, with probability greater than (nǫ3/128)2, each set
contains the correct value. Note that

Ki = CDH(Xi, Yi) = CDH(A, Yi)
bi

K ′i = CDH(Xi/Ui, Yi/Vi)

= CDH(Xi, Yi)×CDH(Ui, Vi)/CDH(Xi, Vi)× CDH(Ui, Yi)

= CDH(Xi, Yi)×CDH(Agui , Bgvi)/CDH(Abi , Bgvi)× CDH(Agui , Yi)

= CDH(Xi, Yi)×CDH(A, B)AviBuiguivi/CDH(A, B)biAvibi × CDH(A, Yi)Y
ui

i

= CDH(A, Yi)
bi−1 × CDH(A, B)1−bi ×Avi(1−bi)(B/Yi)

uiguivi

CDH(A, B)bi−1 = CDH(A, Yi)
bi−1 ×Avi(1−bi)(B/Yi)

uiguivi/K ′i

CDH(A, B) = CDH(A, Yi)×A−vi(B/Yi)
ui/(bi−1)guivi/(bi−1)/K ′i

1/(bi−1)

=
(
Ki

1/bi/K ′i
1/(bi−1)

)
×A−vi(B/Yi)

wigwivi ,

where wi = ui/(bi − 1) mod p.
With all the pairs in S1×S

′
1, we build the s2 candidates for CDH(A, B), and we do the same

with all the pairs in S2 × S
′
2. The first collision in the two lists is outputted as the value for

CDH(A, B). But for each pair (ki, k′i) ∈ S1 × S
′
1, the candidate is

α =
(
ki

1/bi/k′i
1/(bi−1)

)
×A−vi(B/Yi)

wigwivi =

(
ki

Ki

)1/bi

×

(
K ′i
k′i

)1/(bi−1)

.

If ki 6= Ki, or k′i 6= K ′i, it is totally random in G, because of the randomness of bi. The probability
of a wrong collision is thus bounded by 2s4/p.
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Appendix B

Smooth Projective Hashing for
Conditionally Extractable
Commitments

CRYPTO 2009
[ACP09] with C. Chevalier and D. Pointcheval

Abstract : The notion of smooth projective hash functions was proposed by Cramer and Shoup
and can be seen as special type of zero-knowledge proof system for a language. Though originally
used as a means to build efficient chosen-ciphertext secure public-key encryption schemes, some
variations of the Cramer-Shoup smooth projective hash functions also found applications in
several other contexts, such as password-based authenticated key exchange and oblivious transfer.
In this paper, we first address the problem of building smooth projective hash functions for
more complex languages. More precisely, we show how to build such functions for languages
that can be described in terms of disjunctions and conjunctions of simpler languages for which
smooth projective hash functions are known to exist. Next, we illustrate how the use of smooth
projective hash functions with more complex languages can be efficiently associated to extractable
commitment schemes and avoid the need for zero-knowledge proofs. Finally, we explain how to
apply these results to provide more efficient solutions to two well-known cryptographic problems:
a public-key certification which guarantees the knowledge of the private key by the user without
random oracles or zero-knowledge proofs and adaptive security for password-based authenticated
key exchange protocols in the universal composability framework with erasures.

B.1 Introduction

In [CS02], Cramer and Shoup introduced a new primitive called smooth projective hashing
and showed how to use it to generalize their chosen-ciphertext secure public-key encryption
scheme [CS98]. The new abstraction not only provided a more intuitive description of the
original encryption scheme, but also resulted in several new instantiations based on different
security assumptions such as quadratic residuosity and N -residuosity [Pai99].

The notion of smooth projective hash functions (SPHF, [CS02], after slight modifications
[GL03]) has been proven quite useful and has found applications in several other contexts, such
as password-based authenticated key exchange (PAKE, [GL03]) and oblivious transfer [Kal05].
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In the context of PAKE protocols, the work of Gennaro and Lindell abstracted and generalized
(under various indistinguishability assumptions) the earlier protocol by Katz, Ostrovsky, and
Yung [KOY01] and has become the basis of several other schemes [BCL+05, AP06, BGS06]. In
the context of oblivious transfer, the work of Kalai [Kal05] also generalized earlier protocols by
Naor and Pinkas [NP01] and by Aiello, Ishai, and Reingold [AIR01].

To better understand the power of SPHF, let us briefly recall what they are. First, the
definition of SPHF requires the existence of a domain X and an underlying NP language L such
that it is computationally hard to distinguish a random element in L from a random element in
X \ L. For instance, in the particular case of the PAKE scheme in [CHK+05], the language L
is defined as the set of triples {(c, ℓ, m)} such that c is an encryption of m with label ℓ under a
public key given in the common reference string (CRS). The semantic security of the encryption
scheme guarantees computational indistinguishability between elements from L and elements
from X.

One of the key properties that make SPHF so useful is that, for a point x ∈ L, the hash value
can be computed using either a secret hashing key hk, or a public projected key hp (depending
on x [GL03] or not [CS02]) together with a witness w to the fact that x ∈ L. Another important
property of these functions is that, given the projected key hp, their output is uniquely defined
for points x ∈ L and statistically indistinguishable from random for points x ∈ X \L. Moreover,
without the knowledge of the witness w to the fact that x ∈ L, the output of these functions on
x is also pseudo-random.

The first main contribution of this paper is to extend the line of work on SPHF, the element-
based version proposed by Gennaro and Lindell [GL03], to take into account more complex NP
languages. More precisely, we show how to build SPHF for languages that can be described
in terms of disjunctions and conjunctions of simpler languages for which SPHF are known to
exist. For instance, let Hm represent a family of SPHF for the language {(c)}, where c is the
encryption of m under a given public key. Using our tools, one can build a family of SPHF for
the language {(c)}, where c is the encryption of either 0 or 1, by combining H0 and H1.

One of the advantages of building SPHF for more complex languages is that it allows us
to simplify the design of the primitives to which they are associated. To demonstrate this, we
consider in this paper the specific case of extractable commitment schemes. In most protocols
in which extractable commitments are used, the capability of extracting the committed message
usually depends on the commitment being properly generated. To achieve this goal and enforce
the correct generation of the commitment, it is often the case that additional mechanisms, such as
zero-knowledge proofs, may have to be used. This is the case, for instance, of several protocols
where a specific public-key registration phase is required, such as most of the cryptographic
protocols with dynamic groups (multisignatures [Bol03, LOS+06], group signatures [DP06], etc).
Such a framework is sometimes named registered public-key model, where a proof of knowledge
of the secret key is required before any certification.

To be able to build more efficient extractable commitment schemes and avoid the use of pos-
sibly expensive concurrent zero-knowledge proofs, a second main contribution of this paper is
to generalize the concept of extractable commitments so that extraction may fail if the commit-
ment is not properly generated. More specifically, we introduce a new notion of L-extractable
commitments in which extraction is only guaranteed if the committed value belongs to the lan-
guage L and may fail otherwise. The main intuition behind this generalization is that, when
used together with a SPHF for the language L, the cases in which extraction may fail will not
be very important as the output of the SPHF will be statistically indistinguishable from random
in such cases.
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B.1.1 Applications

Registered Public-Key Setting. For many cryptographic protocols, for proving the security
even when users can dynamically join the system, the simulator described in the security proof
often needs to know the private keys of the authorized users, which is called the registered
public-key setting, in order to avoid rogue-attacks [Bol03]. This should anyway be the correct
way to proceed for a certification authority: it certifies a public key to a user if and only if the
latter provides a proof of knowledge of the associated private key. However, in order to allow
concurrency, intricate zero-knowledge proofs are required, which makes the certification process
either secure in the random oracle model [BR93] only, or inefficient in the standard model.

In this paper, we show how SPHF with conditionally extractable commitments can help to
solve this problem efficiently, in the standard model, by establishing a secure channel between
the players, with keys that are either the same for the two parties if the commitment has been
correctly built, or perfectly independent in the other case.

Adaptively-secure PAKE schemes. We thereafter study more involved key exchange schemes.
In 1992, Bellovin and Merritt [BM92] suggested a method to authenticate a key exchange based
on simple passwords, possibly drawn from a space so small that an adversary might enumerate
off-line all possible values. Because of the practical interest of such a primitive, many schemes
have been proposed and studied. In 2005, Canetti et al. [CHK+05] proposed an ideal function-
ality for PAKE protocols, in the universal composability (UC) framework [Can01, CK02], and
showed how a simple variant of the Gennaro-Lindell methodology [GL03] could lead to a secure
protocol. Though quite efficient, their protocol is not known to be secure against adaptive ad-
versaries, where they can corrupt players at any time, and learn their internal states. The first
ones to propose an adaptively-secure PAKE in the UC framework were Barak et al. [BCL+05]
using general techniques from multi-party computation (MPC). Though conceptually simple,
their solution yields quite inefficient schemes.

Here, we take a different approach. Instead of using general MPC techniques, we extend
the Gennaro-Lindell methodology to deal with adaptive corruptions by using a non-malleable
conditionally-extractable and equivocable commitment scheme with an associated SPHF family.
The new scheme is adaptively secure in the common reference string model in the UC framework
under standard complexity assumptions with erasures.

B.1.2 Related work

Commitments. Commitment schemes are one of the most fundamental cryptographic primi-
tives, being used in several cryptographic applications such as zero-knowledge proofs [GMW91]
and secure multi-party computation [GMW87]. Even quite practical protocols need them, as
already explained above in the public-key registration setting, but also in password-based au-
thenticated key exchange [GL03]. They allow a user to commit a value x into a public value C,
such that the latter does not reveal any information about x (the hiding property), but C can
be opened later to x only: one cannot change its mind (the binding property). Various addi-
tional properties are often required, such as non-malleability, extractability and equivocability.
Canetti and Fischlin [CF01] provided an ideal functionality for such a primitive and showed that
achieving all these properties at the same time was impossible in the UC plain model. They also
provided the first candidate in the CRS model. Damgård and Nielsen [DN02] later proposed
another construction of universally composable commitments, that is more efficient for some
applications. Since we want to avoid the use of possibly inefficient proofs of relations present
in the Damgård-Nielsen construction and given that the Canetti-Fischlin construction is well
suited for our purpose of designing an associated smooth hash function, we opted to use the
latter as the starting point for our constructions.
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PAKE. The password-based setting was first considered by Bellovin and Merritt [BM92] and
followed by many proposals. In 2000, Bellare, Pointcheval, and Rogaway [BPR00] as well as
Boyko, MacKenzie, and Patel [BMP00] proposed security models and proved variants of the
Bellovin and Merritt protocol, under ideal assumptions, such as the random oracle model [BR93].
Soon after, Katz, Ostrovsky, and Yung [KOY01] and Goldreich and Lindell [GL01] proposed the
first protocols with a proof of security in the standard model, with the former being based on
the decisional Diffie-Hellman assumption and the latter on general assumptions. Later, Gennaro
and Lindell [GL03] proposed an abstraction and generalization of the KOY protocol and became
the basis of several other variants, including ours in the last section.

B.1.3 Organization of the Paper

In Section B.2, we review the basic primitives needed in this paper. Then, in Section B.3, we
describe our first contribution: SPHF families on conjunctions and disjunctions of languages.
In Section B.4 we combine that with our second contribution, conditionally-extractable com-
mitments. We focus on the ElGamal-based commitment, since this is enough to build more
efficient public-key certification protocols. Finally, in Section B.5, we add equivocability to
the commitment, borrowing techniques from Canetti and Fischlin [CF01]. Then, we add the
non-malleability property, granted the Cramer-Shoup encryption scheme, which can then be
used to build an adaptively-secure PAKE in the UC framework, based on the Gennaro and
Lindell [GL03] framework. Due to space restrictions, formal definitions, proofs, and application
details were postponed to the appendix.

B.2 Commitments

In the following, we focus on Pedersen commitments, and certification of Schnorr-like public keys,
hence, we work in the discrete logarithm setting. As a consequence, to get extractable com-
mitments, we use encryption schemes from the same family: the ElGamal encryption [ElG85b]
and the labeled version of the Cramer-Shoup encryption scheme [CS98] (for achieving non-
malleability).

Labeled Public-Key Encryption. Labeled encryption [Sho04] is a variation of the usual
encryption notion that takes into account the presence of labels in the encryption and decryption
algorithms. More precisely, both the encryption and decryption algorithms have an additional
input parameter, referred to as a label, and the decryption algorithm should only correctly
decrypt a ciphertext if its input label matches the label used to create that ciphertext.

The security notion for labeled encryption is similar to that of standard encryption schemes.
The main difference is that, whenever the adversary wishes to ask a query to its Left-or-Right
encryption oracle in the indistinguishability security game (IND-CPA) [GM84, BDJR97], in
addition to providing a pair of messages (m0, m1), it also has to provide a target label ℓ to
obtain the challenge ciphertext c. When chosen-ciphertext security (IND-CCA) is concerned,
the adversary is also allowed to query its decryption oracle on any pair (ℓ′, c′) as long as ℓ′ 6= ℓ
or the ciphertext c′ does not match the output c of a query to its Left-or-Right encryption oracle
whose input includes the label ℓ. For formal security definitions for labeled encryption schemes,
please refer to [CHK+05, AP06].

One of the advantages of using labeled encryption, which we exploit in this paper, is that
we can easily combine several IND-CCA labeled encryption schemes with the help of a strongly
unforgeable one-time signature scheme so that the resulting scheme remains IND-CCA [DK05].

ElGamal and Cramer-Shoup Encryption. We denote by G a cyclic group of prime order
q where q is large (n bits), and g a generator for this group. Let pk = (g1, g2, c = gx1

1 gx2
2 , d =
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gy1
1 gy2

2 , h = gz
1 , H) be the public key of the Cramer-Shoup scheme, where g1 and g2 are random

group elements, x1, x2, y1, y2 and z are random scalars in Zq, and H is a collision-resistant
hash function (actually, second-preimage resistance is enough), and sk = (x1, x2, y1, y2, z) the
associated private key. Note that (g1, h) will also be seen as the public key of the ElGamal
encryption, with z the associated private key. For the sake of simplicity, we assume in the
following that public keys will additionally contain all the global parameters, such as the group G.

If M ∈ G, the multiplicative ElGamal encryption is defined as EG×pk(M ; r) = (u1 = gr
1, e =

hrM), which can be decrypted by M = e/uz
1. If M ∈ Zq, the additive ElGamal encryp-

tion is defined as EG+
pk(M ; r) = (u1 = gr

1, e = hrgM ). Note that EG×pk(gM ; r) = EG+
pk(M ; r).

It can be decrypted after an additional discrete logarithm computation: M must be small
enough. Similarly, if M ∈ G, the multiplicative labeled Cramer-Shoup encryption is defined
as CS×pk

ℓ
(M ; r) = (u1, u2, e, v), such that u1 = gr

1, u2 = gr
2, e = hrM , θ = H(ℓ, u1, u2, e) and

v = (cdθ)r. Decryption works as above, with M = e/uz
1, but only if the ciphertext is valid:

v = ux1+θy1
1 ux2+θy2

2 . If M ∈ Zq, its additive encryption CS+
pk

ℓ
(M ; r) is such that e = hrgM . The

following relation holds CS×pk

ℓ
(gM ; r) = CS+

pk

ℓ
(M ; r). The decryption applies as above if M is

small enough.
As already noted, from any Cramer-Shoup ciphertext (u1, u2, e, v) of a message M with

randomness r, whatever the label ℓ is, one can extract (u1, e) as an ElGamal ciphertext of the
same message M with the same randomness r. This extraction applies independently of the
additive or multiplicative version since the decryption works the same for the ElGamal and the
Cramer-Shoup ciphertexts, except for the validity check that provides the CCA security level to
the Cramer-Shoup encryption scheme, whereas the ElGamal encryption scheme achieves IND-
CPA security level only.

Commitments. With a commitment scheme, a player can commit to a secret value x by
publishing a commitment C = com(x; r) with randomness r, in such a way that C reveals
nothing about the secret x, which is called the hiding property. The player can later open C to
reveal x, by publishing x and a decommitment, also referred to as witness, in a publicly verifiable
way: the player cannot open C to any other value than x, which is the binding property. In
many cases, the decommitment consists of the random r itself or some part of it. In this paper,
we only consider commitment schemes in the common reference string (CRS) model in which
the common parameters, referred to as the CRS, are generated honestly and available to all
parties.

Note that an IND-CPA public-key encryption scheme provides such a commitment scheme:
the binding property is guaranteed by the uniqueness of the plaintext (perfectly binding), and the
hiding property is guaranteed by the IND-CPA security (computationally hiding). In this case,
the CRS simply consists of the public-key of the encryption scheme. The Pedersen commitment
C = comPed(x; r) = gxhr provides a perfectly hiding, but computationally binding commitment
under the intractability of the discrete logarithm of h in basis g.

We now present additional properties that can be satisfied by the commitment. First, we say
that a commitment is extractable if there exists an efficient algorithm, called an extractor, capable
of generating a new set of common parameters (i.e., a new CRS) whose distribution is equivalent
to that of an honestly generated CRS and such that it can extract the committed value x from
any commitment C. This is of course only possible for computationally hiding commitments,
such as encryption schemes: the decryption key is the extraction trapdoor. Second, we say that
a commitment is equivocable if there exists an efficient algorithm, called an equivocator, capable
of generating a new CRS and a commitment with similar distributions to those of the actual
scheme and such that the commitment can be opened in different ways. Again, this is possible for
computationally binding commitments only, such as the Pedersen commitment: the knowledge
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of the discrete logarithm of h in basis g is a trapdoor that allows the opening of a commitment
in more than one way. Finally, a non-malleable commitment ensures that if an adversary that
receives a commitment C of some unknown value x can generate a valid commitment for a related
value y, then a simulator could perform as well without seeing the commitment C. A public-key
encryption scheme that is IND-CCA provides such a non-malleable commitment [GL03]. For
formal security definitions for commitment schemes, please refer to [GL03, DKOS01, CF01].

In the following, we use encryption schemes in order to construct commitments, which im-
mediately implies the hiding, binding and extractable properties, as said above. However, when
one uses the additive versions of ElGamal or Cramer-Shoup encryption schemes, extractability
(or decryption) is only possible if the committed values (or plaintexts) are small enough, hence
our notion of L-extractable commitments (see Section B.4) which will mean that the commit-
ment is extractable if the committed value lies in the language L. More precisely, we will split
the value to be committed in small pieces (that lie in the language L), but we will then need
to be sure that they actually lie in this language to guarantee extractability. We thus introduce
smooth hash functions in order to allow communications if the commitments are valid only.

B.3 Smooth Hash Functions on Conjunctions and Disjunctions
of Languages

B.3.1 Smooth Projective Hash Functions.

Projective hash function families were first introduced by Cramer and Shoup [CS02] as a means
to design chosen-ciphertext secure encryption schemes. We here use the definitions of Gennaro
and Lindell [GL03], who later showed how to use such families to build secure password-based
authenticated key exchange protocols, together with non-malleable commitments. In addition
to commitment schemes, we also consider here families of SPHF associated to labeled encryption
as done by Canetti et al. [CHK+05] and by Abdalla and Pointcheval [AP06].

Let X be the domain of these functions and let L be a certain subset of points of this
domain (a language). A key property of these functions is that, for points in L, their values
can be computed by using either a secret hashing key or a public projected key. While the
computation using the secret hashing key works for all points in the domain X of the hash
function, the computation using a public projected key only works for points x ∈ L and requires
the knowledge of the witness w to the fact that x ∈ L. A projective hash function family is
said to be smooth if the value of the function on inputs that are outside the particular subset
L of the domain are independent of the projected key. Another important property of these
functions is that, given the projected key hp, their output is uniquely defined for points x ∈ L.
Moreover, if L is a hard partitioned subset of X (i.e., it is computationally hard to distinguish
a random element in L from a random element in X \ L), this output is also pseudo-random if
one does not know a witness w to the fact that x ∈ L [GL03]. The interested reader is referred
to Appendix B.6 for more formal definitions.

In the particular case of the Gennaro-Lindell scheme [GL03], the subset Lpk,m was defined
as the set of {(c)} such that c is a commitment of m using public parameters pk: there exists r
for which c = compk(m; r) where com is the committing algorithm of the commitment scheme.
In the case of the CHKLM scheme [CHK+05], the subset Lpk,(ℓ,m) was defined as the set of {(c)}
such that c is an encryption of m with label ℓ, under the public key pk: there exists r for which
c = Eℓ

pk
(m; r) where E is the encryption algorithm of the labeled encryption scheme. In the case

of a standard encryption scheme, the label is simply omitted. The interested reader is referred
to [GL03, CHK+05, AP06] for more details.

Languages. Since we want to use more general languages, we need more detailed notations.
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Let LPKE be a labeled encryption scheme with public key pk. Let X be the range of the
encryption algorithm. Here are three useful examples of languages L in X:

• the valid ciphertexts c of m under pk, L(LPKE,pk),(ℓ,m) = {c|∃r c = Eℓ
pk

(m; r)};

• the valid ciphertexts c of m1 or m2 under pk (that is, a disjunction of two versions of the
former languages), L(LPKE,pk),(ℓ,m1∨m2) = L(LPKE,pk),(ℓ,m1) ∪ L(LPKE,pk),(ℓ,m2);

• the valid ciphertexts c under pk, L(LPKE,pk),(ℓ,∗) = {c|∃m ∃r c = Eℓ
pk

(m; r)}.

If the encryption scheme is IND-CPA, the first two are hard partitioned subsets of X. The
last one can also be a hard partitioned subset in some cases: for the Cramer-Shoup encryption,
L  X = G4 and, in order to distinguish a valid ciphertext from an invalid one, one has to break
the DDH problem. However, for the ElGamal encryption scheme, all the ciphertexts are valid,
hence L = X = G2.

More complex languages can be defined, with disjunctions as above, or conjunctions: the
pairs of ciphertexts (a, b) such that a ∈ L(LPKE,pk),(ℓ,0∨1) and b ∈ L(LPKE,pk),(ℓ,2∨3). This set
can be obtained by (L(LPKE,pk),(ℓ,0∨1)) ×X) ∩ (X × L(LPKE,pk),(ℓ,2∨3)).

Likewise, we can define more general languages based on other primitives such as commitment
schemes. The definition would be similar to the one above, with pk playing the role of the
common parameters, Epk playing the role of the committing algorithm, (m, ℓ) playing the role
of the input message, and c playing the role of the commitment.

More generally, in the following, we denote the language by the generic notation L(Sch,ρ),aux

where aux denotes all the parameters useful to characterize the language (such as the label used,
or a plaintext), ρ denotes the public parameters such as a public key pk, and Sch denotes the
primitive used to define the language, such as an encryption scheme LPKE or a commitment
scheme Com. When there is no ambiguity, the associated primitive Sch will be omitted.

We now present new constructions of SPHF to deal with more complex languages, such
as disjunctions and conjunctions of any languages. The constructions are presented for two
languages but can be easily extended to any polynomial number of languages. We then discuss
about possible information leakage at the end of this section. The properties of correctness,
smoothness and pseudo-randomness are easily verified by these new smooth hash systems. Due
to the lack of space, the formal proofs can be found in Appendix B.7.

B.3.2 Conjunction of two Generic Smooth Hashes

Let us consider an encryption or commitment scheme defined by public parameters and a public
key aggregated in ρ. X is the range of the elements we want to study (ciphertexts, tuples
of ciphertexts, commitments, etc), and L1 = L1,ρ,aux and L2 = L2,ρ,aux are hard partitioned
subsets of X, which specify the expected properties (valid ciphertexts, ciphertexts of a specific
plaintext, etc). We consider situations where X possesses a group structure, which is the case if
we consider ciphertexts or tuples of ciphertexts from an homomorphic encryption scheme. We
thus denote by ⊕ the commutative law of the group (and by ⊖ the opposite operation, such
that c⊕ a⊖ a = c).

We assume to be given two smooth hash systems SHS1 and SHS2, on the sets corresponding
to the languages L1 and L2: SHSi = {HashKGi, ProjKGi, Hashi, ProjHashi}. Here, HashKGi and
ProjKGi denote the hashing key and the projected key generators, and Hashi and ProjHashi the
algorithms that compute the hash function using hki and hpi respectively.

Let c be an element of X, and r1 and r2 two elements chosen at random. We denote
by hk1 = HashKG1(ρ, aux, r1), hk2 = HashKG2(ρ, aux, r2), hp1 = ProjKG1(hk1; ρ, aux, c), and

— 85 —



Chapter B. Smooth Projective Hashing for Conditionally Extractable Commitments

hp2 = ProjKG2(hk2; ρ, aux, c) the keys. A smooth hash system for the language L = L1 ∩ L2 is
then defined as follows, if c ∈ L1 ∩ L2 and wi is a witness that c ∈ Li, for i = 1, 2:

HashKGL(ρ, aux, r = r1‖r2) = hk = (hk1, hk2)

ProjKGL(hk; ρ, aux, c) = hp = (hp1, hp2)

HashL(hk; ρ, aux, c) = Hash1(hk1; ρ, aux, c) ⊕Hash2(hk2; ρ, aux, c)

ProjHashL(hp; ρ, aux, c; (w1, w2)) = ProjHash1(hp1; ρ, aux, c; w1)⊕ ProjHash2(hp2; ρ, aux, c; w2)

B.3.3 Disjunction of two Generic Smooth Hashes

Let L1 and L2 be two languages as described above. We assume to be given two smooth hash
systems SHS1 and SHS2 with respect to these languages. We define L = L1 ∪ L2 and construct
a smooth projective hash function for this language as follows:

HashKGL(ρ, aux, r = r1‖r2) = hk = (hk1, hk2)
ProjKGL(hk; ρ, aux, c) = hp = (hp1, hp2, hp∆ = Hash1(hk1; ρ, aux, c) ⊕ Hash2(hk2; ρ, aux, c))

HashL(hk; ρ, aux, c) = Hash1(hk1; ρ, aux, c)
ProjHashL(hp; ρ, aux, c; w) = ProjHash1(hp1; ρ, aux, c; w) if c ∈ L1

or hp∆ ⊖ ProjHash2(hp2; ρ, aux, c; w) if c ∈ L2

where w is a witness of c ∈ Li for i ∈ {1, 2}. Then ProjHashi(hpi; ρ, aux, c; w) = Hashi(hki; ρ, aux,
c). The player in charge of computing this value is supposed to know the witness, and in
particular the language which c belongs to (and thus the index i).

B.3.4 Uniformity and Independence

In the above definition of SPHF (contrarily to the original Cramer-Shoup [CS02] definition), the
value of the projected key formally depends on the ciphertext/commitment c. However, in some
cases, one may not want to reveal any information about this dependency. In fact, in certain
cases such as in the construction of a SPHF for equivocable and extractable commitments in
Section B.5, one may not even want to leak any information about the auxiliary elements aux.
When no information is revealed about aux, it means that the details about the exact language
will be concealed.

We thus add a notion similar to the smoothness, but for the projected key: the projected
key may or may not depend on c (and aux), but its distribution does not: Let us denote by
Dρ,aux,c the distribution {hp | hk = HashKGL(ρ, aux, r) and hp = ProjKGL(hk; ρ, aux, c)}, on
the projected keys. If, for any c, c′ ∈ X, Dρ,aux,c′ and Dρ,aux,c are indistinguishable, then we
say that the smooth hash system has the 1-uniformity property. If, for any c, c′ ∈ X, and
any auxiliary elements aux, aux′, Dρ,aux′,c′ and Dρ,aux,c are indistinguishable, we name it 2-
uniformity property.

More than indistinguishability of distributions, the actual projected key hp may not depend
at all on c, as in the Cramer and Shoup’s definition. Then, we say that the smooth hash system
guarantees 1-independence (resp. 2-independence if it does not depend on aux either). Note
that the latter independence notions immediately imply the respective uniformity notions.

As an example, the smooth hash system associated with the ElGamal cryptosystem (see
Section B.4.1) guarantees 2-independence. On the other hand, the analogous system associated
with the Cramer-Shoup encryption (see Appendix B.9.1) guarantees 2-uniformity only. For
smooth hash systems combinations, one can note that in the case of disjunctions, one can get,
at best, the uniformity property, since hash computations on the commitment are needed for
generating the projected key. Furthermore, this is satisfied under the condition that the two
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underlying smooth hash systems already satisfy this property (see Appendix B.7 for more details
and proofs).

Finally, one should note that, in the case of disjunction, the view of the projected hash value
could leak some information about the sub-language in which the input lies, if an adversary
sends a fake hp∆. The adversary could indeed check whether ProjHashL(hp; ρ, aux, c; w) equals
Hash1(hk1; ρ, aux, c) or hp∆ ⊖ Hash2(hk2; ρ, aux, c). But first, it does not contradict any secu-
rity notion for smooth hash systems; second, in all the applications below, the projected hash
value is never revealed; and third, in the extractable commitments below, because of the global
conjunction of the languages, an exponential exhaustive search would be needed to exploit this
information, even if the committed value is a low-entropy one.

B.4 A Conditionally Extractable Commitment

B.4.1 ElGamal Commitment and Associated Smooth Hash

The ElGamal commitment is realized in the common reference string model, where the CRS
ρ contains (G, pk), as defined in Section B.2, for the ElGamal encryption scheme. In practice,
sk should not be known by anybody, but in the security analysis, sk will be the extraction
trapdoor. Let the input of the committing algorithm be a scalar M ∈ Zq. The commitment
algorithm consists of choosing a random r and computing the following ElGamal encryption
under random r: C = EG+

pk(M, r) = (u1 = gr
1, e = hrgM ).

The smooth projective hashing, associated with this commitment scheme and the language
L = L(EG+,ρ),M ⊂ X = G2 of the additive ElGamal ciphertexts C of M under the global pa-
rameters and public key defined by ρ, is the family based on the underlying ElGamal encryption
scheme, as defined in [GL03]:

HashKG((EG+, ρ), M) = hk = (γ1ù, γ3ù)
$
← Zq × Zq

Hash(hk; (EG+, ρ), M, C) = (u1)γ1 ù(eg−M )γ3 ù

ProjKG(hk; (EG+, ρ), M, C) = hp = (g1)γ1 ù(h)γ3 ù

ProjHash(hp; (EG+, ρ), M, C; r) = (hp)r

First, under the Decisional Diffie-Hellman problem (semantic security of the ElGamal en-
cryption scheme), L is a hard partitioned subset of X = G2. Then, for C = EG+

pk(M, r), and thus
with the witness r, the algorithms are defined as above using the same notations as in [GL03].

B.4.2 L-extractable Commitments

Note that the value gM would be easily extractable from this commitment (seen as the multi-
plicative ElGamal encryption). However, one can extract M itself (the actual committed value)
only if its size is small enough so that it can be found as a solution to the discrete logarithm
problem. In order to obtain “extractability” (up to a certain point, see below), one should rather
commit to it in a bit-by-bit way.

Let us denote M ∈ Zq by
∑m

i=1 Mi · 2
i−1, where m ≤ n. Its commitment is comEGpk(M) =

(b1, . . . , bm), where bi = EG+
pk(Mi ·2

i−1, ri) = (u1,i = g1
ri , ei = hrigMi·2

i−1
), for i = 1, . . . , m. The

homomorphic property of the encryption scheme allows to obtain, from this tuple, the above
simple commitment of M

C = EG+
pk(M, r) = (u1, e) = (

∏
u1,i,

∏
ei) =

∏
bi, for r =

∑
ri.

We now precise what we mean by “extractability”: Here, the commitment will be extractable
if the messages Mi are bits (or at least small enough), but we cannot ensure that it will be
extractable otherwise. More generally, this leads to a new notion of L−extractable commitments,
which means that we allow the primitive not to be extractable if the message does not belong
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to a certain language L (e.g. the language of encryptions of 0 or 1), which is informally the
language of all commitments valid and “of good shape”, and is included into the set X of all
commitments.

Smooth Hash Functions. For the above protocol, we need a smooth hash system on the
language L = L1∩L2, where L1 = {(b1, . . . , bm) | ∀i, bi ∈ L(EG+,ρ),0∨1}, L2 = {(b1, . . . , bm) | C =∏

i bi ∈ L(EG×,ρ),gM }, to within a factor (corresponding to the offest 2i−1) with

L(EG+,ρ),0∨1 = L(EG+,ρ),0 ∪ L(EG+,ρ),1 L(EG+,ρ),0 = {C | ∃r C = EG+
pk(0, r)}

L(EG×,ρ),gM = {C | ∃r C = EG×pk(gM , r)} L(EG+,ρ),1 = {C | ∃r C = EG+
pk(1, r)}

It is easy to see that this boils down to constructing a smooth hash system corresponding to
a conjunction and disjunction of languages, as presented in the previous section.

B.4.3 Certification of Public Keys

Description. A classical application of extractable commitments is in the certification of public
keys (when we want to be sure that a person joining the system actually knows the associated
private key). Suppose that a user U owns a pair of secret and public keys, and would like to
have the public key certified by the authority. A natural property is that the authority will not
certify this public key unless it is sure that the user really owns the related private key, which
is usually ensured by a zero-knowledge proof of knowledge: the user knows the private key if a
successful extractor exists.

Here we present a construction that possesses the same property without requiring any
explicit proof of knowledge, furthermore in a concurrent way since there is no need of any
rewinding:

• First, the user sends his public key gM , along with a bit-by-bit L-extractable commitment
of the private key M , i.e. a tuple comEGpk(M) = (b1, . . . , bm) as described above, from
which one can derive C =

∏
bi = EG+

pk(M, r) = EG×pk(gM , r).

• We define the smooth hash system related to the language L1 ∩ L2, where L1 = ∩iL1,i,
with L1,i the language of the tuples where the i-th component bi is an encryption of 0 or
1, and L2 is the language of the tuples where the derived C =

∏
bi is an encryption of the

public key gM (under the multiplicative ElGamal, as in Section B.4.1).

Note that when the tuple (b1, . . . , bm) lies in L1∩L2, it really corresponds to an extractable
commitment of the private key M associated to the public key gM : each bi encrypts a bit,
and can thus be decrypted, which provides the i-th bit of M .

• The authority computes a hash key hk, the corresponding projected key hp on (b1, . . . , bm)
and the related hash value Hash on (b1, . . . , bm). It sends hp to U along with Cert⊕Hash,
where Cert is the expected certificate. Note that if Hash is not large enough, a pseudo-
random generator can be used to expand it.

• The user is then able to recover his certificate if and only if he can compute Hash: this
value can be computed with the algorithm ProjHash on (b1, . . . , bm), from hp. But it also
requires a witness w proving that the tuple (b1, . . . , bm) lies in L1 ∩ L2.

With the properties of the smooth hash system, if the user correctly computed the commitment,
he knows the witness w, and can get the same mask Hash to extract the certificate. If the user
cheated, the smoothness property makes Hash perfectly unpredictable: no information is leaked
about the certificate.
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Security Analysis. Let us outline the security proof of the above protocol. First, the security
model is the following: no one can obtain a certificate on a public key if it does not know the
associated private key (that is, if no simulator can extract the private key). In other words, the
adversary wins if it is able to output (gM , Cert) and no simulator can produce M .

The formal attack game can thus be described as follows: the adversary A interacts several
times with the authority, by sending public keys and commitments, and asks for the correspond-
ing certificates. It then outputs a pair (gM , Cert) and wins if no simulator is able to extract M
from the transcript.

The simulator works as follows: it is given access to a certification (signing) oracle, and
generates a pair of public and private keys (sk, pk) for the ElGamal encryption. The public
key is set as the CRS that defines the commitment scheme. The private key will thus be the
extraction trapdoor.

When the simulator receives a certification request, with a public key and a commitment,
it first tries to extract the associated private key, granted the extraction trapdoor. In case of
success, the simulator asks the signing oracle to provide it with the corresponding certificate
on the public key, and complete the process as described in the protocol. However, extraction
may fail if the commitments are not well constructed (not in L1 ∩ L2). In such a case, the
simulator sends back a random bit-string of appropriate length. In case of successful extraction,
the answer received by the user is exactly the expected one. In case of failure, it is perfectly
indistinguishable too since the smoothness property of the hash function would make a perfectly
random mask Hash (since the input is not in the language).

After several interactions, A outputs a pair (gM , Cert), which is forwarded by the simulator.
Either gM has been queried to the signing oracle, which means that the extraction had succeeded,
the simulator knows M and the adversary did not win the attack game, or this is a valid signature
on a new message: existential forgery under chosen-message attack.

B.5 A Conditionally Extractable Equivocable Commitment

In this section, we enhance the previous commitment schemes with equivocability, which is
not a trivial task when one wants to keep the extraction property. Note that we first build
a malleable extractable and equivocable commitment using the ElGamal-based commitment
(see Section B.4.1), but one can address the non-malleability property by simply building the
commitment upon the Cramer-Shoup encryption scheme. All the details of this extension are
given in Appendix B.9. In the following, if b is a bit, we denote its complement by b (i.e.,
b = 1− b). We furthermore denote by x[i] the ith bit of the bit-string x.

B.5.1 Equivocability

Commitments that are both extractable and equivocable seem to be very difficult to obtain.
Canetti and Fischlin [CF01] proposed a solution but for one bit only. Damgård and Nielsen [DN02]
proposed later another construction. But for efficiency reasons, in our specific context, we extend
the former proposal. In this section, we thus enhance our previous commitment (that is already
L-extractable) to make it equivocable, using the Canetti and Fischlin’s approach. Section B.5.3
will then apply a non-malleable variant of our new commitment together with the associated
smooth hash function family in order to build a password-authenticated key exchange protocol
with adaptive security in the UC framework [Can01]. The resulting protocol is reasonably ef-
ficient and, in particular, more efficient than the protocol by Barak et al. [BCL+05], which to
our knowledge is the only one achieving the same level of security in the standard model.
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Description of the Commitment. Our commitment scheme is a natural extension of Canetti-
Fischlin commitment scheme [CF01], in a bit-by-bit way. It indeed uses the ElGamal public-key
encryption scheme, for each bit of the bit-string. Let (y1 , . . . , ym) be random elements in G.
This commitment is realized in the common reference string model, the CRS ρ contains (G, pk),
where pk is an ElGamal public key and the private key is unknown to anybody, except to the
commitment extractor. It also includes this tuple (y1 , . . . , ym), for which the discrete logarithms
in basis g are unknown to anybody, except to the commitment equivocator. Let the input of
the committing algorithm be a bit-string π =

∑m
i=1 πi · 2

i−1. The algorithm works as follows:

• For i = 1, . . . , m, it chooses a random value xi,πi
=
∑n

j=1 xi,πi
[j] · 2j−1 and sets x

i,πi
= 0.

• For i = 1, . . . , m, the algorithm commits to πi, using the random xi,πi
: ai = comPed(πi, xi,πi

)

= g
xi,πi yπi

i
and defining a = (a1 , . . . , am).

• For i = 1, . . . , m, it computes the ElGamal commitments (see the previous section) of x
i,δ

,
for δ = 0, 1: (bi,δ = (b

i,δ
[j])j = comEGpk(x

i,δ
), where b

i,δ
[j] = EG+

pk(x
i,δ

[j] · 2j−1, r
i,δ

[j]).
One can directly extract from the computation of the b

i,δ
[j] an encryption B

i,δ
of x

i,δ
:

B
i,δ

=
∏

j b
i,δ

[j] = EG+
pk(x

i,δ
, r

i,δ
), where r

i,δ
is the sum of the random coins r

i,δ
[j].

The entire random string for this commitment is (where n is the bit-length of the prime order q
of the group G) R = (x1,π1

, (r1,0 [1], r1,1 [1], . . . , r1,0 [n], r1,1 [n]), . . . , xm,πm
, (rm,0 [1], . . . , rm,1 [n])).

From which, all the values r
i,πi

[j] can be erased, letting the opening data (witness of the
committed value) become limited to w = (x1,π1

, (r1,π1
[1], . . . , r1,π1

[n]), . . . , xm,πm
, (rm,πm

[1], . . . ,
rm,πm

[n])). The output of the committing algorithm, of the bit-string π, using the random R,
is comρ(π; R) = (a, b), where a = (ai = comPed(πi, xi,πi

))i, b = (b
i,δ

[j] = EG+
pk(x

i,δ
[j] · 2j−1,

r
i,δ

[j]))i,δ,j .

Opening. In order to open this commitment to π, the above witness w (with the value π) is
indeed enough: one can build again, for all i and j, bi,πi

[j] = EG+
pk(xi,πi

[j] · 2j−1, ri,πi
[j]), and

check them with b. One can then also compute again all the ai = comPed(πi, xi,πi
), and check

them with a. The erased random elements would help to check the encryptions of zeroes, what
we do not want, since the equivocability property will exploit that.

Properties. Let us briefly check the security properties, which are formally proven in Ap-
pendix B.8. First, because of the perfectly hiding property of the Pedersen commitment, unless
some information is leaked about the x

i,δ
[j]’s, no information is leaked about the πi’s. And

granted the semantic security of the ElGamal encryption scheme, the former privacy is guaran-
teed. Since the Pedersen commitment is (computationally) binding, the ai ’s cannot be opened
in two ways, but only one pair (πi, xi,πi

) is possible. Let us now consider the new extended
properties:

• (conditional) extractability is provided by the bit-by-bit encryption. With the decryption
key sk, one can decrypt all the b

i,δ
[j], and get the x

i,δ
(unless the ciphertexts contain

values different from 0 and 1, which will be one condition for extractability). Then, one
can check, for i = 1, . . . , m, whether ai = comPed(0, xi,0) or ai = comPed(1, xi,1), which
provides πi (unless none of the equalities is satisfied, which will be another condition for
extractability).

• equivocability is possible using the Pedersen commitment trapdoor. Instead of taking a
random xi,πi

and then x
i,πi

= 0, which specifies πi as the committed bit, one takes a random
xi,0 , computes ai = comPed(0, xi,0), but also extracts xi,1 so that ai = comPed(1, xi,1) too
(which is possible with the knowledge of discrete logarithm of yi in basis g, the trapdoor).
The rest of the commitment procedure remains the same, but now, one can open any

— 90 —



B.5. A Conditionally Extractable Equivocable Commitment

bit-string for π, using the appropriate xi,πi
and the corresponding random elements (the

simulator did not erase).

B.5.2 The Associated Smooth Projective Hash Function

As noticed above, our new commitment scheme is conditionally extractable (one can recover the
x

i,δ
’s, and then the committed value π), under the conditions that all the ElGamal ciphertexts

encrypt either 0 or 1, and the ai is a commitment of either 0 or 1, with random xi,0 or xi,1 .
As before, one wants to make the two hash values (direct computation and the one from the

projected key) be the same if the two parties use the same input π and perfectly independent if
they use different inputs (smoothness). One furthermore wants to control that each ai is actually
a Pedersen commitment of πi using the encrypted random xi,πi

, and thus g
xi,πi = ai/yπi

i : the
extracted xi,πi

is really the private key M related to a given public key gM that is ai/yπi
i in our

case. Using the same notations as in Section B.4.1, we want to define a smooth hash system
showing that, for all i, δ, j, b

i,δ
[j] ∈ L(EG+,ρ),0∨1 and, for all i, Bi,πi

∈ L(EG×,ρ),(ai /yi
πi), where

Bi,πi
=
∏

j bi,πi
[j].

Combinations of these smooth hashes. Let C be the above commitment of π using ran-
domness R as defined in Section B.5.1. We now precise the language Lρ,π, consisting informally
of all the valid commitments “of good shape”:

Lρ,π =

{
C

∣∣∣∣∣
∃R s. t. C = comρ(π, R) and ∀i ∀j bi,πi

[j] ∈ L(EG+,ρ),0∨1

and ∀i Bi,πi
∈ L(EG×,ρ),ai /yi

πi

}

The smooth hash system for this language relies on the smooth hash systems described
previously, using the generic construction for conjunctions and disjunctions as described in Sec-
tion B.3. The precise definition of this language (which is constructed from conjunctions and
disjunctions of simple languages) can be found in Appendix B.9, omitting the labels and replac-
ing the Cramer-Shoup encryption CS+ by the ElGamal one EG+.

Properties: Uniformity and Independence. With a non-malleable variant of such a com-
mitment and smooth hash function, it is possible to improve the establishment of a secure
channel between two players, from the one presented Section B.4.3. More precisely, two parties
can agree on a common key if they both share a common (low entropy) password π. However,
a more involved protocol than the one proposed in Section B.4.3 is needed to achieve all the
required properties of a password-authenticated key exchange protocol, as it will be explained
in Section B.5.3 and proven in Appendix B.10.

Nevertheless, there may seem to be a leakage of information because of the language that
depends on the input π: the projected key hp seems to contain some information about π, that
can be used in another execution by an adversary. Hence the independence and uniformity
notions presented Section B.3.4, which ensure that hp does not contain any information about
π. Proofs of these properties can be found in Appendix B.9.

Estimation of the Complexity. Globally, each operation (commitment, projected key, hash-
ing and projected hashing) requires O(mn) exponentiations in G, with small constants (at most
16).

B.5.3 UC-Secure PAKE with Adaptive Security

The primitive presented above, but using the Cramer-Shoup encryption scheme (as described
in Section B.9) is a non-malleable conditionally extractable and equivocable commitment. We
now sketch how to use this new primitive in order to construct the first efficient adaptively-secure
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password-authenticated key exchange protocol in the UC framework with erasures. For lack of
space, all the details can be found in Appendix B.10. The passwords are not known at the
beginning of the simulation: S will manage to correct the errors (thanks to the equivocability)
but without erasures there would remain clues on how the computations were held, which would
give indications on the passwords used.

Our protocol is based on that of Gennaro and Lindell [GL03]. At a high level, the players
in the KOY/GL protocol exchange CCA-secure encryptions of the password, under the public-
key found in the common reference string, which are essentially commitments of the password.
Then, they compute the session key by combining smooth projective hashes of the two pass-
word/ciphertext pairs. The security of this protocol relies on the properties of smoothness
and pseudo-randomness of the smooth projective hash function. But as noted by Canetti et al
in [CHK+05], the KOY/GL protocol is not known to achieve UC security: the main issue is that
the ideal-model simulator must be able to extract the password used by the adversary before
playing, which is impossible if the simulator is the initiator (on behalf of the client), leading to
such situation in which the simulator is stuck with an incorrect ciphertext and will not be able
to predict the value of the session key.

To overcome this problem, the authors of [CHK+05] made the client send a pre-flow which
also contains an encryption of the password. The server then sends its own encryption, and
finally the client sends another encryption, as well as a zero-knowledge proof showing that both
ciphertexts are consistent and encrypt the same password. This time the simulator, playing as
the client or the server, is able to use the correct password, recovered from the encrypted value
sent earlier by the other party. The pre-flow is never used in the remaining of the protocol,
hence the simulator can send a fake one, and simulate the zero-knowledge proof.

Unfortunately, the modification above does not seem to work when dealing with adaptive
adversaries, which is the case in which we are interested. This is because the simulator cannot
correctly open the commitment when the adversary corrupts the client after the pre-flow has
been sent. A similar remark applies to the case in which the server gets corrupted after sending
its first message. As a result, in addition to being extractable, the commitment scheme also needs
to be equivocable for the simulator to be able to provide a consistent view to the adversary.
Since the use of the equivocable and extractable commitment schemes also seems to solve the
problem of proving the original Gennaro-Lindell protocol secure in the UC model, we opted to
use that protocol as the starting point of our protocol.

These remarks are indeed enough (along with minor modifications) to obtain adaptive secu-
rity. Thus, our solution essentially consists in using our non-malleable extractable and equivo-
cable commitment scheme in the Gennaro-Lindell protocol when computing the first two flows.
As presented in the previous subsections, extractability may be conditional: We include this
condition in the language of the smooth hash function (note that the projected keys sent do not
leak any information about the password). Additional technical modifications were also needed
to make things work and can be found in Appendix B.10.
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B.6 Appendix: Formal Definitions for Smooth Projective Hash
Functions

As defined in [GL03], a family of smooth projective hash functions, for a language Lpk,aux ⊂ X,
onto the set G, based on a labeled encryption scheme with public key pk or on a commitment
scheme with public parameters pk consists of four algorithms and is denoted by HASH(pk) =
(HashKG, ProjKG, Hash, ProjHash). Note that X is the range of either the encryption or commit-
ment algorithm.

The probabilistic key-generation algorithm produces hash keys via hk
$
← HashKG(pk, aux).

The key projection algorithm produces projected hash keys via hp = ProjKG(hk; pk, aux, c),
where c is either a ciphertext or a commitment in X. The hashing algorithm Hash computes, on
c ∈ X, the hash value g = Hash(hk; pk, aux, c) ∈ G, using the hash key hk. Finally, the projected
hashing algorithm ProjHash computes, on c ∈ X, the hash value g = ProjHash(hp; pk, aux, c; w) ∈
G, using the projected hash key hp and a witness w of the fact that c ∈ Lpk,aux.

We now recall the three properties of a smooth hash system.

Correctness. Let c ∈ Lpk,aux and w a witness of this membership. Then, for all hash keys and pro-

jected hash keys hk
$
← HashKG(pk, aux) and hp = ProjKG(hk; pk, aux, c), then Hash(hk; pk, aux,

c) = ProjHash(hp; pk, aux, c; w).

Smoothness. For every c which is not in Lpk,aux, the hash value g = Hash(hk; pk, aux, c) is
statistically close to uniform and independent of the values hp, pk, aux and c: for uniformly-
chosen hash key hk, the two distributions are statistically indistinguishable:

{pk, aux, c, hp = ProjKG(hk; pk, aux, c), g = Hash(hk; pk, aux, c)}

{pk, aux, c, hp = ProjKG(hk; pk, aux, c), g
$
← G}

Pseudorandomness. If c ∈ Lpk,aux, then without a witness w of this membership, the hash
value g = Hash(hk; pk, aux, c)} is computationally indistinguishable from random: for uniformly-
chosen hash key hk, the following two distributions are computationally indistinguishable:

{pk, aux, c, hp = ProjKG(hk; pk, aux, c), g = Hash(hk; pk, aux, c)}

{pk, aux, c, hp = ProjKG(hk; pk, aux, c), g
$
← G}

Let Lpk,aux be such that it is hard to distinguish a random element in Lpk,aux from a random
element not in Lpk,aux. Gennaro and Lindell formalized the latter property by showing in [GL03]
that the two following experiments are indistinguishable:

Expt-Hash(D): Let D be a adversary that is given access to two oracles: Ω and Hash. The
first oracle receives an empty input and returns x ∈ Lpk,aux chosen according to the distribution
of Lpk,aux. The Hash oracle receives an input x. If x was not previously outputted by Ω, it
outputs nothing. Otherwise, it chooses a key hk and returns the pair (ProjKG(hk; pk, aux, x),
Hash(hk; pk, aux, x)). The output of the experiment is whatever M outputs.

Expt-Unif(D): This experiment is defined exactly as above except that the Hash oracle is
replaced by the following Unif oracle. On input x, if x was not previously outputted by Ω, it
outputs nothing. Otherwise, it chooses a key hk and a random element g and returns the pair
(ProjKG(hk; pk, aux, x), g). The output of the experiment is whatever M outputs.

In the case where the language Lpk,aux is associated with a labeled encryption scheme,
we rename the oracle Ω to Enc. In the case where the language Lpk,aux is associated with a
commitment scheme, we rename the oracle Ω to Commit.
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B.7 Appendix: Proofs for SPHF Constructions in Section B.3

In this appendix, we prove the properties of the smooth projective hash functions on conjunctions
and disjunctions of languages.

B.7.1 Disjunction

We first deal with L = L1 ∪L2, and study the additional information provided by the projected
key, which contains hp1 and hp2, but also hp∆ = Hash1(hk1; ρ, aux, x) ⊕ Hash2(hk2; ρ, aux, x).
Since both SHS1 and SHS2 are smooth projective hash functions, the pseudo-randomness prop-
erty for each of them (or even the smoothness, if x does not lie in one of the languages) guarantees
that the pairs (hpi, Hashi(hki; ρ, aux, x)) are (statistically or computationally) indistinguishable
from (hpi, gi). As a consequence, one easily gets that the tuple (hp1, hp2, Hash1(hk1; ρ, aux,
x), Hash2(hk2; ρ, aux, x)) is (statistically or computationally) indistinguishable from (hp1, hp2,
g1, g2), where g1 and g2 are independent. This a fortiori implies that the tuple (hp1, hp2,
Hash1(hk1; ρ, aux, x) ⊕ Hash2(hk2; ρ, aux, x)) is (statistically or computationally) indistinguish-
able from (hp1, hp2, g): the element hp∆ does not provide any additional information.

Efficient Hashing from Key. Given any element x ∈ X and a key hk, it is possible to
efficiently compute HashL(hk; ρ, aux, x).

Proof: This follows from the efficient hashings of the two underlying smooth projective hash
functions, and namely SHS1, since HashL(hk; ρ, aux, x) = Hash1(hk1; ρ, aux, x).

Efficient Hashing from Projected Key. Given an element x ∈ L, a witness w of this
membership, and the projected key hp = ProjKGL(hk; ρ, aux, x), it is possible to efficiently
compute the projected hash value ProjHashL(hp; ρ, aux, x, w) = HashL(hk; ρ, aux, x).

Proof: If x ∈ L1, then,

HashL(hk; ρ, aux, x) = Hash1(hk1; ρ, aux, x)

= ProjHash1(hp1; ρ, aux, x, w) = ProjHashL(hp; ρ, aux, x, w),

which can be computed efficiently since SHS1 is a smooth projective hash function. If x ∈ L2,
then,

HashL(hk; ρ, aux, x) = Hash1(hk1; ρ, aux, x)

= ProjHash1(hp1; ρ, aux, x, w) = hp∆ ⊖ ProjHash2(hp2; ρ, aux, x, w),

which can be computed efficiently since SHS2 is a smooth projective hash function.

Smoothness. For each element x ∈ X \ L, HashL(hk; ρ, aux, x) is uniformly distributed, given
the projected key.

Proof: Consider x /∈ L. Then, x /∈ L1 and x /∈ L2. If hk = (hk1, hk2) is a random key, and
hp = (hp1, hp2, hp∆) the corresponding projected key, then the above analysis showed the sta-
tistical indistinguishability between the tuples (hp1, hp2, Hash1(hk1; ρ, aux, x), Hash2(hk2; ρ, aux,
x)) and (hp1, hp2, g1, g2), where g1 and g2 are random and independent elements. This means
the statistical indistinguishability between the tuples (hp1, hp2, hp∆, Hash1(hk1; ρ, aux, x)) and
(hp1, hp2, g1, g2). As a consequence, the tuple (hp, HashL(hk; ρ, aux, x)) is statistically indistin-
guishable from (hp, g), which is the definition of the smoothness for the new system.

Pseudo-Randomness. For each element x ∈ L, the value HashL(hk; ρ, aux, x) is computation-
ally indistinguishable from uniform, given the projected key.
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Proof: Exactly the same analysis as in the previous paragraph can be done, but with com-
putational indistinguishability when x ∈ L1 or x ∈ L2. Hence one gets that the tuple (hp,
HashL(hk; ρ, aux, x)) is computationally indistinguishable from (hp, g), which is the definition of
the pseudo-randomness for the new system.

B.7.2 Conjunction

The case of L = L1∩L2, can be dealt as above: (hp1, hp2, Hash1(hk1; ρ, aux, x)⊕Hash2(hk2; ρ, aux,
x)) is statistically (if x 6∈ L1 or x 6∈ L2) or computationally (if x ∈ L1 ∩ L2) indistinguishable
from the tuple (hp1, hp2, g).

B.7.3 Preservation of the Uniformity and Independence Properties.

If the two underlying smooth hash systems verify 1-uniformity (resp. 2-uniformity), then the
smooth hash system for conjunction or disjunction verifies these properties. If the two underlying
smooth hash systems verify 1-independence (resp. 2-independence), then the smooth hash system
for conjunction verifies these properties. We insist on the fact that independence does not
propagate to disjunction, since the hash value (that needs both aux and x) is included in the
projected key.

Proof: We only prove the result for 1-uniformity for disjunction (the proof is the same in the
other cases —excepted independence for disjunction, where the result does not hold). Then, if
(ρ, aux) are the parameters of the languages and x and x′ belong to L, D1,ρ,aux,x ≈ D1,ρ,aux,x′

and D2,ρ,aux,x ≈ D2,ρ,aux,x′ . Due to the form of hp, this ensures that the first two element of hp
are indistinguishable. We now have to consider the third part. Without loss of generality, we
can suppose that x ∈ L1. Then, due to the pseudo-randomness of the first smooth-hash, the
value Hash1(hk1; ρ, aux, x) is computationally indistinguishable from uniform. This is at least
the same for the value Hash2(hk2; ρ, aux, x). Since the projected keys depend on independent
random values and languages, both parts of the ⊕ are independent: the value HashL(hkL; ρ, aux,
x) is then indistinguishable from uniform. As a result, Dρ,aux,x ≈ Dρ,aux,x′ .

B.8 Appendix: Proofs for Commitment in Section B.5

Extractability. The extraction key is sk, the ElGamal decryption key (or the Cramer-Shoup
one in the non-malleable version of the primitive, also used for the ElGamal decryption). First,
the simulator tries to decrypt all the b

i,δ
[j] into x

i,δ
[j] and aborts if one of them is not either 0

or 1. It then builds up the x
i,δ

, and checks whether ai = gxi,0 or ai = gxi,1 yi , which makes it
recover πi (unless none or both are satisfied). This extraction only fails in three cases:

• First, if the ciphertexts do not encrypt 0 or 1;

• Second, if ai satisfies none of the equalities;

• Third, if ai satisfies both equalities.

The two first reasons will be excluded in the language L, while the third one would break the
binding property of the Pedersen commitment, which leads to the discrete logarithm of some yi

in base g. It thus happens only with negligible probability.

Equivocability. Note that, with the knowledge of the discrete logarithms of (y1 , . . . , ym), one
is able to compute, for all i ∈ {1, . . . , m}, both xi,0 and xi,1 . The equivocation thus consists in
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computing, for all i, an encryption of both xi,0 and xi,1 (and not that of 0). Provided one does
not erase any random, this allows one to change its mind and open each commitment on any πi

(0 or 1).
We now prove that committing to all the bit-string π in a unique commitment does not

change the view of an adversary. The proof is based on a Left-or-Right hybrid argument,
see [BDJR97]. We suppose the existence of an oracle answering with either E(gx) or E(g0)
when provided with gx (and g0 is implicitly given). We then define hybrid games in which the
encryptions for xi,πi

[j] in the commitment are computed with the help of this oracle. The first
hybrid game, in which the oracle always encrypts g0, is equivalent to the real computation,
where only one bit-string is committed (perfectly binding). Similarly, the last one, in which
it always encrypts gx, is equivalent to the simulation, where all the bit-strings are committed
(equivocable).

G1a G1−b = G2−a G2−b = G3−a Gmn−b

1 g
x

1,π1
[1]

g
x

1,π1
[1]

g
x

1,π1
[1]

1 1 g
x

1,π1
[2]

g
x

1,π1
[2]

...
...

... · · ·
...

1 1 1 g
x

m,πm
[n]

←→ ←→ ←→
Advcpa(E) Advcpa(E) Advcpa(E)

Hiding. This property simply follows from the equivocability of the commitment.

Binding. First suppose that we do not know the discrete logarithms of (y1, . . . , ym) in base
g and that the adversary has managed to send a commitment that can be opened on π and
on π′, then, for some bit i = 1, . . . , m, πi 6= π′i, and the adversary is able to give us xi 6= x′i such
that gxiyπi = gx′

iyπ′
i. This event thus boils down to breaking the discrete logarithm problem,

which happens only with negligible probability. This means that if equivocability is not used,
the commitment is (computationally) binding, under the discrete logarithm problem.

Now, since a real commitment (with a zero encryption) and an equivocable commitment (with
no zero encryption) are indistinguishable for an adversary, the view of equivocable commitments
does not help the adversary to break the binding property, or otherwise it would break the IND-
CPA property of the underlying encryption scheme.

B.9 Appendix: A Non-Malleable Conditionally-Extractable
Equivocable Commitment

In this section, we show how to enhance the previous commitment schemes as described in Sec-
tion B.5 with non-malleability: briefly, one simply needs to extend the ElGamal commitment
to the labeled Cramer-Shoup one together with one-time signatures. As before, if b is a bit, we
denote its complement by b (i.e., b = 1 − b). We furthermore denote by x[i] the ith bit of the
bit-string x.

B.9.1 Non-Malleability

Non-malleability is a usual requirement for encryption schemes or commitments [GL03]. We
thus now aim at achieving this property. We thus use labeled Cramer-Shoup encryption instead
of ElGamal, and we add a one-time signature. Using the results of Dodis and Katz [DK05] for
chosen-ciphertext security of multiple encryption, one can easily show that the chosen-ciphertext
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security (and thus non-malleability) of the combined encryption scheme used to compute a ci-
phertext vector (b1, . . . , bm) follows trivially from the chosen-ciphertext security of the underlying
labeled Cramer-Shoup scheme and strong unforgeability of the one-time signature scheme used
to link all the ciphertexts together.

More precisely, if M is defined as before, and ℓ is a label, the commitment comCSℓ
pk(M)

is obtained as follows. First, the user generates a key pair (VK, SK) for a one-time signature
scheme. Then, it computes the following values, with ℓ′ = ℓ ◦ VK:

∀i bi = CS+
pk

ℓ′

(Mi · 2
i−1, ri) = (u1,i = gri

1 , u2,i = gri
2 , ei = hrigMi·2i−1

, vi = (cdθi)ri).
Defining b = (b1, . . . , bm), it computes σ = Sign(SK, b). The final commitment is then defined
as comCSℓ′

pk(M) = (b, VK, σ). One can obtain, from any bi, an ElGamal encryption of Mi · 2
i−1:

Bi = EG+
pk(Mi · 2

i−1, ri) = (u1,i = gri
1 , ei = hrigMi·2i−1

). The homomorphic property of the
encryption scheme allows to obtain B = EG×pk(gM ,

∑
ri) = EG+

pk(M,
∑

ri) = (
∏

u1,i,
∏

ei) =∏
Bi.
In order to define the smooth projective hashing associated with this commitment scheme,

we recall the family of smooth projective hashing functions for the underlying labeled Cramer-
Shoup encryption scheme, as defined in [GL03].

Let X ′ = G4 and L′ = L(CS+,ρ),(ℓ,M) be the language of the elements C such that C is a
valid Cramer-Shoup encryption of M under the label ℓ (aux is defined as (ℓ, M)). Under the
DDH assumption, this is a hard subset membership problem. Denoting by C = CS+

pk

ℓ
(M, r) =

(u1, u2, e, v), the associated smooth hash system is the following:

HashKG((CS+, ρ), (ℓ, M)) = hk = (γ1ù, γ2ù, γ3ù, γ4ù)
$
← Zq × Zq × Zq × Zq

ProjKG(hk; (CS+, ρ), (ℓ, M), C) = hp = (g1)γ1 ù(g2)γ2 ù(h)γ3 ù(cdθ)γ4 ù

Hash(hk; (CS+, ρ), (ℓ, M), C) = (u1)γ1 ù(u2)γ2 ù(egM )γ3 ù(v)γ4 ù

ProjHash(hp; (CS+, ρ), (ℓ, M), C; r) = (hp)r

From these definitions, we consider the language: L(CS+,ρ),(ℓ,0∨1) = L(CS+,ρ),(ℓ,0) ∪L(CS+,ρ),(ℓ,1),

where L(CS+,ρ),(ℓ,0) = {C | ∃r C = CS+
pk

ℓ
(0, r)} and L(CS+,ρ),(ℓ,1) = {C | ∃r C = CS+

pk

ℓ
(1, r)},

and we want to define a smooth hash system showing that

∀i bi ∈ L(CS+,ρ),(ℓ′,0∨1) and B =
∏

Bi ∈ L(EG×,ρ),gM .

Note that, for all i, the first membership also implies that Bi ∈ L(EG+,ρ),0∨1, since the ElGamal
ciphertexts Bi are extracted from the corresponding Cramer-Shoup ciphertexts bi: It is thus
enough to check the validity of the latter membership to get extractability, which means that
one can extract the committed private key M , associated to the public key gM . The signature
has of course to be verified too, but this can be publicly performed, from VK.

B.9.2 Equivocability

We here describe our commitment for completeness, but note that it is very similar to the one
described in Section B.5.

Description of the Commitment. Our scheme uses the labeled Cramer-Shoup public-key
encryption scheme and a one-time signature scheme, to achieve non-malleability as explained
in the previous section. More precisely, the specific example given in this section relies on
the labeled version of the Cramer-Shoup encryption scheme [CS98], used for each bit of the
bit-string, seen as an extension of the homomorphic ElGamal encryption [ElG85b].

Let the input of the committing algorithm be a bit-string π =
∑m

i=1 πi · 2
i−1 and a label ℓ.

The algorithm works as follows:
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• For i = 1, . . . , m, it chooses a random value xi,πi
=
∑n

j=1 xi,πi
[j] · 2j−1 and sets x

i,πi
= 0.

It also generates a key pair (VK, SK) for a one-time signature scheme.

• For i = 1, . . . , m, it commits to πi, using the random xi,πi
: ai = comPed(πi, xi,πi

) =

g
xi,πi yπi

i
and defining a = (a1 , . . . , am).

• For i = 1, . . . , m, using ℓi = ℓ ◦ VK ◦ a ◦ i, it computes the Cramer-Shoup commitments
(see the previous section) of x

i,δ
, for δ = 0, 1:

(bi,δ = (b
i,δ

[j])j , VK, σi,δ) = comCS
ℓi
pk(x

i,δ
), where b

i,δ
[j] = CS+

pk

ℓi (x
i,δ

[j] · 2j−1, r
i,δ

[j]).

The computation of the b
i,δ

[j] implicitly defines B
i,δ

[j] = EG+
pk(x

i,δ
[j] · 2j−1, r

i,δ
[j]), from

which one can directly extract an encryption B
i,δ

of x
i,δ

: B
i,δ

=
∏

j B
i,δ

[j] = EG+
pk(x

i,δ
, r

i,δ
),

where r
i,δ

is the sum of the random coins r
i,δ

[j].

The entire random string for this commitment is (where n is the bit-length of the prime order
q of the group G) R = (x1,π1

, (r1,0 [1], r1,1 [1], . . . , r1,0 [n], r1,1 [n]), . . . , xm,πm
, (rm,0 [1], . . . , rm,1 [n]),

SK). From which, all the values r
i,πi

[j] can be erased, letting the opening data (witness of the
committed value) become w = (x1,π1

, (r1,π1
[1], . . . , r1,π1

[n]), . . . , xm,πm
, (rm,πm

[1], . . . , rm,πm
[n])).

The output of the committing algorithm, of the bit-string π, with the label ℓ, and using the
random R, is comρ(ℓ, π; R) = (ℓ, a, b, VK, σ), where a = (ai = comPed(πi, xi,πi

))i, b = (b
i,δ

[j] =

CS+
pk

ℓ
i (x

i,δ
[j] · 2j−1, r

i,δ
[j]))i,δ,j , and σ = (σi,δ = Sign(SK, (b

i,δ
[j])j))i,δ .

Properties. This commitment is opened as in Section B.5 and the proofs given in Section B.8
still hold.

Furthermore, let us show now that the view of equivocable commitments does not help the
adversary to build a valid but non-extractable commitment (it could be open in any way, and
thus extraction leads to many possibilities) due to the CCA property of the encryption. As in
Appendix B.8, we use a Left-or-Right argument, see [BDJR97]. The “left” oracle, which always
provides the player with an encryption E(g0), is equivalent to the game where no equivocable
commitments are available, and the “right” oracle, which always provides him with E(gx), is
equivalent to the game where the commitments are equivocable. Then, if the adversary was
more likely to build a valid but non-extractable commitment in the latter case than in the former
one, one could construct a distinguisher to the Left-or-Right oracles. However, contrarily to the
proof in Appendix B.8, a decryption oracle is required to check whether the commitment is valid
but non-extractable (whereas in Appendix B.8 the adversary breaks the binding property with
two different opening values).

As a consequence, producing valid but non-extractable commitments is not easier when
equivocable commitments are provided to the adversary, than when no equivocable commitments
are provided, under the IND-CCA security of the encryption scheme. Furthermore, a valid but
non-extractable commitment, with a decryption oracle leads to two different opening values for
the commitment, and thus to an attack against the binding property, which relies on the discrete
logarithm problem.

The additional property is non-malleability, and it is guaranteed by the labeled Cramer-
Shoup encryption scheme (IND-CCA) and the one-time signature, as already explained [DK05].
More precisely, for the results of Dodis and Katz [DK05] for chosen-ciphertext security of multiple
encryption, one can easily show that the chosen-ciphertext security of the combined encryption
scheme used to compute ciphertext vector b follows trivially from the chosen-ciphertext secu-
rity of the underlying labeled Cramer-Shoup scheme and strong unforgeability of the one-time
signature scheme used to link all the ciphertexts together.
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B.9.3 The Associated Smooth Projective Hash Function

As noticed above, our new commitment scheme is conditionally extractable (one can recover the
x

i,δ
’s, and then π), under the conditions that all the Cramer-Shoup ciphertexts encrypt either

0 or 1, and the ai is a commitment of either 0 or 1, with random xi,0 or xi,1 .
Since we want to apply it later to the password-based setting, we want to make the two hash

values (direct computation and the one from the projected key) to be the same if the two parties
use the same password π, but perfectly independent if they use different passwords: using their
password π =

∑m
i=1 πi ·2

i−1, one furthermore wants to ensure that each ai is actually a Pedersen
commitment of πi using the encrypted random xi,πi

, and thus g
xi,πi = ai/yπi

i : the extracted xi,πi

is really the private key M related to a given public key gM that is ai/yπi
i in our case. Using the

same notations as in Section B.9.1, we want to define a smooth hash system showing that, for all
i, δ, j, b

i,δ
[j] ∈ L(CS+,ρ),(ℓi ,0∨1) and, for all i, Bi,πi

∈ L(EG×,ρ),(a
i
/yi

πi), where Bi,πi
=
∏

j Bi,πi
[j].

As before, note that, for all i, δ, j, the first membership also implies that B
i,δ

[j] ∈ L(EG+,ρ),0∨1

since this value is extracted from the corresponding value b
i,δ

[j]: It is thus enough to check the
validity of the latter.

Combinations of these smooth hashes. Let C be the above commitment of π using label ℓ
and randomness R as defined in Section B.9.2. We now precise the language Lρ,(ℓ,π), consisting
informally of all the valid commitments “of good shape”:

Lρ,(ℓ,π) =





C

∣∣∣∣∣∣∣

∃R such that C = comρ(ℓ, π, R)
and ∀i ∀δ ∀j b

i,δ
[j] ∈ L(CS+,ρ),(ℓi ,0∨1)

and ∀i Bi,πi
∈ L(EG×,ρ),ai /yi

πi





The smooth hash system for this language relies on the smooth hash systems described in the
previous subsection, using the generic construction for conjunctions and disjunctions as described
in Section B.3. More precisely, adding the values B

i,δ
easily computed from the values b

i,δ
[j],

the commitment can be converted into a tuple of the following form (we omit the signature part,
since it has to be verified before applying any hashing computation):

(ℓ, a1 , . . . , am , b1,0 [1], b1,1 [1], . . . , b1,0 [n], b1,1 [n], . . . , bm,0 [1], bm,1 [1], . . . , bm,0 [n], bm,1 [n],
B1,0 , B1,1 , . . . , Bm,0 , Bm,1) ∈ {0, 1}∗ ×Gm × (G4)2mn × (G2)2m.

We denote by Li,δ,j
(CS+,ρ),(ℓ

i
,0∨1) the language that restricts the value b

i,δ
[j] to be a valid Cramer-

Shoup encryption of either 0 or 1:

{0, 1}∗

︸ ︷︷ ︸
ℓ

×Gm

︸︷︷︸
a

× (G4)2n

︸ ︷︷ ︸
b1,∗ [∗]

× . . . ×( G4

︸︷︷︸
bi,0 [1]

× G4

︸︷︷︸
bi,1 [1]

× . . .× L(CS+,ρ),(ℓi ,0∨1)︸ ︷︷ ︸
b

i,δ
[j]

× . . . × G4

︸︷︷︸
bi,0 [n]

× G4

︸︷︷︸
bi,1 [n]

)

× . . .× (G4)2n

︸ ︷︷ ︸
b1,m [∗]

× (G2)2m

︸ ︷︷ ︸
B∗,∗

and by Li
(EG×,ρ) the language that restricts the Bi,πi

ElGamal ciphertexts:

if πi = 0, Li
(EG× ,ρ) = {0, 1}∗

︸ ︷︷ ︸
ℓ

×Gm

︸︷︷︸
a

× (G4)2mn

︸ ︷︷ ︸
b∗,∗ [∗]

× (G2)2

︸ ︷︷ ︸
B1,∗

× . . .× (L(EG×,ρ),a
i︸ ︷︷ ︸

B
i,0

× G2

︸︷︷︸
B

i,1

)× . . .× (G2)2

︸ ︷︷ ︸
Bm,∗

if πi = 1, Li
(EG× ,ρ) = {0, 1}∗

︸ ︷︷ ︸
ℓ

×Gm

︸︷︷︸
a

× (G4)2mn

︸ ︷︷ ︸
b∗,∗ [∗]

× (G2)2

︸ ︷︷ ︸
B1,∗

× . . .× ( G2

︸︷︷︸
Bi,0

×L(EG×,ρ),a
i
/yi︸ ︷︷ ︸

Bi,1

)× . . .× (G2)2

︸ ︷︷ ︸
Bm,∗

.
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Then, our language Lρ,(ℓ,π) is the conjunction of all these languages, where the Li,δ,j
(CS+,ρ),(ℓi ,0∨1)’s

are disjunctions:

Lρ,(ℓ,π) =


⋂

i,δ,j

Li,δ,j
(CS+,ρ),(ℓi ,0∨1)


 ∩

(
⋂

i

Li
(EG×,ρ)

)
.

Properties: Uniformity and Independence. With such a commitment and smooth hash
function, it is possible to improve the establishment of a secure channel between two players,
from the one presented Section B.4.3. More precisely, two parties can agree on a common key
if they both share a common (low entropy) password π. However, a more involved protocol
than the one proposed in Section B.4.3 is needed to achieve all the required properties of a
password-authenticated key exchange protocol, as it will be explained and proven in the next
appendix.

Nevertheless, there may seem to be a leakage of information because of the language that
depends on the password π: the projected key hp seems to contain some information about π,
that can be used in another execution by an adversary. Hence the independence and uniformity
notions presented Section B.3.4, which ensure that hp does not contain any information about
π:

• for the languages Li
(EG×,ρ), the smooth hash functions satisfy the 2-independence property,

since the projected key for a language L(EG×,ρ),M depends on the public key (and thus
ρ) only. One thus generates one key for each pair (Bi,0 , Bi,1) only, and uses the correct
ciphertext according to actual/wanted πi when evaluating the hash value. But this dis-
tinction on πi appears in the computation of the hash value only, that is pseudo-random.
The projected key is totally independent of πi.

• for the languages Li,δ,j
(CS+,ρ),(ℓi ,0∨1), the smooth hash functions satisfy the 2-uniformity prop-

erty only, but not 2-independence. Therefore, the projected key and (aux, ρ) are statisti-
cally independent, but the former depends, in its computation, of the latter. If we want
the equivocability property for the commitment (as needed in the next section), we have
to include all the pairs (bi,0 [j], bi,1 [j]), and not only the bi,πi

[j], so that we can open later
in any way. Because of 2-uniformity instead of 2-independence, we need a key for each
element of the pair, and not only one as above.

Estimation of the Complexity. Globally, each operation (commitment, projected key, hash-
ing and projected hashing) requires O(mn) exponentiations in G, with small constants (at most
16).

Let us first consider the commitment operation, on a m-bit secret π, over a n-bit group G.
One has first to make m Pedersen commitments of one bit (m exponentiations) and then 2mn
additive Cramer-Shoup encryptions (2 exponentiations and 2 multi-exponentiations each, and
thus approximately the cost of 8mn exponentiations).

About the smooth hash function, the hash key generation just consists in generating random
elements in Zq: 8 for each Cramer-Shoup ciphertext, in order to show that they encrypt either 0
or 1, and 2 for each pair of ElGamal ciphertexts, then globally 2m(8n + 1) random elements in
Zq. The projected keys need exponentiations: m(4n + 1) multi-exponentiations, and 4mn hash
evaluations (one multi-exponentiation each). Then, globally, the cost of m(8n + 1) exponentia-
tions in G is required for the projected key. Finally, the hash computations are essentially the
same using the hash key or the projected key, since for the sub-functions, the former consists of
one multi-exponentiation and the latter consists of 1 exponentiation. They both cost m(4n + 1)
exponentiations, after the multiplications needed to compute the Bi,πi

, which are negligible.

— 100 —



B.10. Appendix: A New Adaptively-Secure PAKE Protocol in the UC Framework

B.10 Appendix: A New Adaptively-Secure PAKE Protocol in
the UC Framework

B.10.1 Password-Based Key Exchange and Universal Composability

The Password-Based Key Exchange Functionality.

In this section, we present the password-based key-exchange functionality FpwKE (see Fig-
ure B.1) first described in [CHK+05]. The main idea behind this functionality is as follows:
If neither party is corrupted, then they both end up with the same uniformly-distributed session
key, and the adversary learns nothing about it (except that it was indeed generated). However, if
one party is corrupted, or if the adversary successfully guessed the player’s password (the session
is then marked as compromised), then it is granted the right to fully determine its session key.
Note that as soon as a party is corrupted, the adversary learns its key: There is in fact nothing
lost by allowing it to determine the key.

In addition, the players become aware of a failed attempt of the adversary at guessing a
password. This is modeled by marking the session as interrupted. In this case, the two players
are given independently-chosen random keys.

A session that is nor compromised nor interrupted is called fresh. In such a case, the two
parties receive the same, uniformly distributed session key.

Finally notice that the functionality is not in charge of providing the password(s) to the
participants. The passwords are chosen by the environment which then hands them to the
parties as inputs. This guarantees security even in the case where two honest players execute
the protocol with two different passwords: This models, for instance, the case where a user
mistypes its password. It also implies that the security is preserved for all password distributions
(not necessarily the uniform one) and in all situations where the password is used in different
protocols. Also note that allowing the environment to choose the passwords guarantees forward
secrecy.

The KOY/GL Protocol.

The starting point of our protocol is the password-based key exchange protocol of Katz, Os-
trovsky and Yung [KOY01], generalized by Gennaro and Lindell in [GL03]. At a high level,
the players in the KOY/GL protocol exchange CCA-secure encryptions of the password, under
the public-key found in the common reference string, which is essentially a commitment of the
password. Then, they compute the session key by combining smooth projective hashes of the
two password/ciphertext pairs. More precisely, each player chooses a hashing key for a smooth
projective hash function and sends the corresponding projected key to the other player. Each
player can thus compute the output of its own hash function with the help of the hashing key,
and the output of the other one using the projected key and its knowledge of the randomness
that was used to generate the ciphertext of the password. All the flows generated by a party
are linked together with a one-time signature, generated in the last flow, but which public key
is included in the label of the CCA-secure encryption of the password.

To understand informally why this protocol is secure, first consider the case in which the
adversary plays a passive role. In this case, the pseudo-randomness property of the smooth
hash function ensures that the value of the session key will be computationally indistinguishable
from uniform since the adversary does not know the randomness that was used to encrypt the
password. Now imagine the case in which the adversary provides the user with an encryption
of the wrong password. In this case, the security of the protocol will rely on the smoothness
of the hash functions, which ensures that the session key will be random and independent of

— 101 —



Chapter B. Smooth Projective Hashing for Conditionally Extractable Commitments

The functionality FpwKE is parameterized by a security parameter k. It interacts with an
adversary S and a set of parties P1,. . . ,Pn via the following queries:

• Upon receiving a query (NewSession, sid, Pi, Pj, pw, role) from party Pi:

Send (NewSession, sid, Pi, Pj , role) to S. If this is the first NewSession query, or if this is
the second NewSession query and there is a record (Pj , Pi, pw′), then record (Pi, Pj , pw)
and mark this record fresh.

• Upon receiving a query (TestPwd, sid, Pi, pw′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark
the record compromised and reply to S with “correct guess”. If pw 6= pw′, mark the
record interrupted and reply with “wrong guess”.

• Upon receiving a query (NewKey, sid, Pi, sk) from the adversary S:

If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi,
then:

– If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk)
to player Pi.

– If this record is fresh, and there is a record (Pj , Pi, pw′) with pw′ = pw, and a
key sk′ was sent to Pj , and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′)
to Pi.

– In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Figure B.1: The password-based key-exchange functionality FpwKE

all former communication. Thus, in order to be successful, the adversary has to generate the
encryption of the correct password. To do so, the adversary could try to copy or modify existing
ciphertexts. Since the encryption scheme is CCA-secure, and thus non-malleable, modifying is
not really a possibility. Copying does not help either since either the label used for encryption
will not match (making the session key look random due to the smoothness property) or the
signature will be invalid (in the case where the adversary changes the projection keys without
changing the label and hence the verification key). As a result, the only successful strategy left
for the adversary is essentially to guess the password and perform the trivial online dictionary
attack, as desired.

Extending the protocol to the UC Framework (Static Case). As noted by Canetti et
al in [CHK+05], the KOY/GL protocol is not known to achieve UC security: the main issue is
that the ideal-model simulator must be able to extract the password used by the adversary. One
could think that, since the simulator has control over the common reference string, it knows all
private keys corresponding to the public keys and can thus decrypt all ciphertexts sent by the
adversary and recover its password.

But indeed, this doesn’t not seem to be sufficient. In the case where the adversary begins
to play (i.e. it impersonates the client), everything works well: The simulator decrypts the
ciphertext generated by the adversary and can thus recover the password it has used. If the
guess of the adversary is incorrect (that is, the password is the wrong one), then the smoothness
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of the hash functions leads to random independent session keys. Otherwise, if the guess is
correct, the execution can continue as an honest one would do (the simulator has learned which
password to use).

However, let’s now suppose that the simulator has to start the game, on behalf of the client.
Here, the simulator needs to send an encryption of the password before having seen anything
coming from the adversary. As described above, it recovers the password used by the adversary
as soon as the latter has sent its value, but this is too late. If it turns out that the guess of
the adversary is incorrect, there is no problem thanks to the smoothness, but otherwise, the
simulator is stuck with an incorrect ciphertext and will not be able to predict the value of the
session key.

To overcome this problem, the authors of [CHK+05] made the client send a pre-flow which
also contains an encryption of the password. The server then sends its own encryption, and
finally the client sends another encryption (this time the simulator is able to use the correct
password, recovered from the value sent by the adversary), as well as a zero-knowledge proof
claiming that both ciphertexts are consistent and encrypt the same password. The first flow is
never used in the remaining of the protocol. This solves the problem since on the one hand, the
simulator is of course able to give a valid proof of a false statement, and on the other hand, the
first flow will never be used afterwards.

B.10.2 Description of the Protocol

As explained above, Canetti et al. [CHK+05] proposed a simple variant of the Gennaro-Lindell
methodology [GL03] that is provably secure in the UC framework. Though quite efficient, their
protocol is not known to be secure against adaptive adversaries. The only one PAKE adaptively-
secure in the UC framework was proposed by Barak et al. [BCL+05] using general techniques
from multi-party computation. It thus leads to quite inefficient schemes.

In the following, we use our non-malleable conditionally-extractable and equivocable com-
mitment scheme with an associated smooth projective hash function family, in order to build an
efficient PAKE scheme, adaptively-secure in the common reference string model under standard
complexity assumptions, in the UC framework.

The complete description of the protocol can be found in Figure B.3, whereas an informal
sketch is presented in Figure B.2. We use the index I for a value related to the client Alice, and
J for a value related to the server Bob.

Correctness. In an honest execution of the protocol, if the players share the same password
(pwI = pwJ = pw), it is easy to verify that both players will terminate by accepting and comput-
ing the same values for the session key, equal to Hash(hkI; pw, ℓJ, com

J
)+Hash(hkJ; pw, ℓI, com

I
).

Security. The intuition behind the security of our protocol is quite simple and builds on that of
Gennaro-Lindell protocol. The key point in order to achieve adaptive security is the use of the
commitment, which allows for extraction and equivocation at any moment, thus not requiring
the simulator to be aware of future corruptions. The following theorem, which full proof will
be given in Appendix B.10.3, states that the protocol is UC-secure. The ideal functionality
FpwKE has been presented in Figure B.1 and described in Appendix B.10.1. Since we use the
joint state version of the UC theorem, we implicitly consider the multi-session extension of
this functionality. In particular, note that the passwords of the players depend on the session
considered. For sake of simplicity, we denote them by pwI and pwJ, but one should implicitly
understand pwI,ssid and pwJ,ssid.

Theorem B.10.1 Let com be the non-malleable (conditionally) extractable and equivocable
committing scheme described in Section B.9,H be a family of smooth hash functions with respect
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Client U Server S

(U1) (VKI, SKI)← SKG

ℓI = J ◦ I ◦ ssid ◦VKI

comI = comρ(ℓI, pwI; RI)
(flow-one,com

I
,VKI)

−−−−−−−−−−−−−−→

(S2) (publicly) checks the validity of com
I

(VKJ, SKJ)← SKG

ℓJ = J ◦ I ◦ ssid ◦ VKJ

hkJ = HashKG(ρ, (ℓI, pwJ), rJ)
com

J
= comρ(ℓJ, pwJ; RJ)

hpJ = ProjKG(hkJ; ρ, (ℓI, pwJ), com
I
)

HashJ = Hash(hkJ; ρ, (ℓI, pwJ), comI )
(flow-two,com

J
,VKJ,hpJ)

←−−−−−−−−−−−−−−−− erases hkJ

(U3) (publicly) checks the validity of comJ

hkI = HashKG(ρ, (ℓJ, pwI), rI )
hpI = ProjKG(hkI; (ℓJ, pwI), com

J
)

σI = Sign(SKI, (com
I
, com

J
, hpI, hpJ))

skI = ProjHash(hpJ; ρ, (ℓI, pwI), com
I
; wI)

+ Hash(hkI; ρ, (ℓJ, pwI), com
J
)

erases hkI
(flow-three,σI,hpI)
−−−−−−−−−−−−→

(S4) aborts if
Ver(VKI, (com

I
, com

J
, hpI, hpJ), σI) = 0

σJ = Sign(SKJ, (com
I
, com

J
, hpI, hpJ))

skJ = ProjHash(hpI; ρ, (ℓJ, pwJ), com
J
; wJ)

+ HashJ

outputs (sid, ssid, skJ)
erases everything

(flow-four,σJ)
←−−−−−−−−− sets the session as accepted

(U5) aborts if
Ver(VKJ, (com

I
, com

J
, hpI, hpJ), σJ) = 0

outputs (sid, ssid, skI)
erases everything
sets the session as accepted

Figure B.2: Description of the protocol for players (PI, ssid), with index I and password pwI

and (PJ, ssid), with index J and password pwJ. At the end of rounds 1 and 2, the players will
erase the part of the random values RI and RJ used in the commitment which is not needed in
the following rounds, keeping only wI and wJ.

to this commitment, and SIG be a one-time signature scheme. Denote by F̂pwKE the multi-
session extension of the functionality FpwKE of password-based key-exchange, and let FCRS be
the ideal functionality that provides a common reference string (G, pk, (y1 , . . . , ym), Extract) to
all parties, where G is a cyclic group, y1, . . . , ym random elements from this group, pk a public
key for the Cramer-Shoup scheme and Extract a randomness extractor. Then, the above protocol
securely realizes F̂pwKE in the FCRS -hybrid model, in the presence of adaptive adversaries.

B.10.3 Proof of Theorem B.10.1

Sketch of Proof. In order to prove Theorem B.10.1, we need to construct, for any real-world
adversary A (interacting with real parties running the protocol), an ideal-world adversary S
(interacting with dummy parties and the functionality FpwKE) such that no environment Z
can distinguish between an execution with A in the real world and S in the ideal world with
non-negligible probability.

— 104 —



B.10. Appendix: A New Adaptively-Secure PAKE Protocol in the UC Framework

We first describe two hybrid queries that are going to be used in the games. The GoodPwd

query checks whether the password of some player is the one we have in mind or not. The
SamePwd query checks if the players share the same password, without disclosing it. In some
games the simulator has actually access to the players. In such a case, a GoodPwd (or a SamePwd)
query can be easily implemented by letting the simulator look at the passwords owned by the
oracles. When the players are entirely simulated, S will replace the queries above with TestPwd

and NewKey queries.
We say that a flow is oracle-generated if it was sent by an honest player and arrives without

any alteration to the player it was meant to. We say it is non-oracle-generated otherwise, that
is either if it was sent by an honest player and modified by the adversary, or if it was sent by a
corrupted player or a player impersonated by the adversary (more generally denoted by attacked
player, that is, a player whose password is known to the adversary).

We incrementally define a sequence of games starting from the one describing a real execution
of the protocol and ending up with game G8 which we prove to be indistinguishable with respect
to the ideal experiment. For the sake of clarity, we will use the following notation: the client
is Alice (hence She), the server is Bob (hence He), and we use It for the adversary A and the
simulator S.

• G0 is the real game.

• From G1, S is allowed to program the CRS.

• From G2, S always extracts the password committed to by the adversary and aborts when
the extraction fails due to the commitment being valid for two or more passwords. This
would lead to an attack against the binding property of the commitment scheme.

• From G3, S simulates all the commitments and makes them equivocable granted the
simulated CRS. The commitment remains binding and hiding for the environment and the
adversary, which follows from the CCA2-property of the encryption. As a side note, the
knowledge of the passwords is not necessary anymore for the simulation of the committing
step.

• From G4, S simulates the honest client without using her password anymore (except
for the hybrid queries). She is given a random key in (U3) in the case where flow-two

was oracle-generated and the server was not corrupted. If the server was corrupted, S
recovers his password pwJ and makes a call to the GoodPwd functionality for Alice. If it
is incorrect, Alice is also given a random key, but if it is correct, the key is computed
honestly using that password. If no password is recovered, Alice is also given a random
key. Alice then aborts in (U5) if the signature of the server is invalid. If the server was
corrupted before (U5), S recovers his password and does exactly the same as previously
described. This is indistinguishable from the former game due to the pseudo-randomness
of the hash function.

• From G5, in the case where flow-two was not oracle-generated, S extracts pwJ from com
J

and proceeds as described in G4: it asks a GoodPwd query for Alice and provides her with
either a random value or a value computed honestly for skI. Similarly, if no password
is recovered, Alice is given a random key. Alice aborts in (U5) if the signature of the
server is invalid. A corruption of the server before (U5) is dealt with as in G4. This is
indistinguishable from the former game due to the smoothness of the hash function.

• From G6, S simulates the server without using his password anymore. It aborts if the
signature received from the client is invalid. Otherwise, the server is given a random key

— 105 —



Chapter B. Smooth Projective Hashing for Conditionally Extractable Commitments

in (S4) in the case where flow-one was oracle-generated and the client was not corrupted.
A corruption of the client before (S4) is dealt with as in G4: S asks a GoodPwd query for
Bob and provides him with either a random value or a value computed honestly for skJ (if
no password is recovered, Bob is given a random key). This is indistinguishable from the
former game due to the pseudo-randomness of the hash function.

• From G7, in the case where flow-one was not oracle-generated, S extracts pwI from com
I

and proceeds as described in G4: it asks a GoodPwd query for Bob and provides him with
either a random value or a value computed honestly for skJ (if no password is recovered,
Bob is given a random key). This is indistinguishable from the former game due to the
smoothness of the hash function.

• Finally, the hybrid queries are replaced by the real ones in G8, which is shown to be
indistinguishable to the ideal-world experiment.

Description of the simulator The description of our simulator is based on that of [CHK+05].
When initialized with security parameter k, the simulator first runs the key-generation algo-
rithm of the encryption scheme E , thus obtaining a pair (sk, pk). It also chooses at random m
elements (y1, . . . , ym) in G and a randomness extractor Extract. It then initializes the real-world
adversary A, giving it (pk, (y1, . . . , ym), Extract) as common reference string.

From this moment on, the simulator interacts with the environment Z, the functional-
ity FpwKE and its subroutine A. For the most part, this interaction is implemented by the
simulator S just following the protocol on behalf of all the honest players. The main difference
between the simulated players and the real honest players is that S does not engage on a partic-
ular password on their behalf. However, if A modifies a flow-one or a flow-two message that
is delivered to player P in session ssid, then S decrypts that ciphertext (using sk) and uses the
recovered message pw in a TestPwd query to the functionality. If this is a correct guess, then S
uses this password on behalf of P , and proceeds with the simulation. More details follow.

Corruptions. Since we consider adaptive corruptions, that can occur at any moment during
the execution of the protocol, our simulator, given the password of a player, needs to be able
to provide the adversary with an internal state consistent with any data already sent (without
the knowledge of the player’s password at that time). To handle such corruptions, the key point
relies in the equivocable property of our commitment. More precisely, instead of committing to
a particular password, the simulator commits to all passwords, being able in the end to open to
any of them. In a nutshell, committing to all passwords means to simulate the commitment in
such a way that encryptions of all xi, corresponding to all pwi, are sent instead of encryptions
of 0 (see the “equivocability” part of Section B.9 for details). Recall that the values hk and hp
do not depend on the password, so that it does not engage the player on any of them.

Session Initialization. When receiving a message (NewSession, sid, ssid, I, J, role) from
FpwKE, S starts simulating a new session of the protocol for party PI, peer PJ, session identifier
ssid, and common reference string (pk, (y1, . . . , ym), Extract). We denote this session by (PI, ssid).
If role = client, then S generates a flow-one message by committing to all the passwords,
choosing a key pair (SKI, VKI) for a one-time signature scheme. It gives this message to A on
behalf of (PI, ssid).

If (PI, ssid) gets corrupted at this stage, then S recovers his password pwI and is able to
open his commitment in such a way that it is a commitment on pwI. It can thus provide A with
consistent data.

Protocol Steps. Assume that A sends a message m to an active session of some party. If
this message is formatted differently from what is expected by the session, then S aborts that
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session and notifies A. Otherwise, we have the following cases (where we denote a party in the
client role as PI and a party in the server role as PJ):

1. Assume that the session (PJ, ssid) receives a message m = (flow-one, com
I
, VKI). Then,

PJ is necessarily a server and m is the first message received by PJ. If com
I

is not equal
to any commitment that was generated by S for a flow-one message, S uses its secret
key sk to decrypt the ciphertext and obtain pwI or nothing. Obtaining nothing is con-
sidered similar to an invalid password below due to the construction of the smooth hash
function related to the commitment. When the extraction succeeds, because of the bind-
ing property, only one pwI is possible (on-line dictionary attack), then S makes a call
(TestPwd, sid, ssid, J, pwI) to the functionality. If this is a correct guess, then S sets the
password of this server session to pwI, otherwise, this is an invalid password. In both
cases, S produces a commitment com

J
on all the passwords (it makes use of the equivo-

cable property), chooses a key pair (SKJ, VKJ) for a one-time signature scheme, runs the
key generation algorithms of the smooth hash function on com

I
to produce (hkJ, hpJ) and

sends the flow-two message (com
J
, VKJ, hpJ) to A on behalf of (PJ, ssid).

If the sender (PI, ssid) of this message, or if (PJ, ssid) gets corrupted at the end of this
step, S handles this corruption just as when this player gets corrupted at the end of the
initialization step. Note in addition that S is able to compute and give to A a correct
value for HashJ, the projected key being independent of the password (see discussion
in Section B.9.3).

2. Assume that a session (PI; ssid) receives a message m = (flow-two, com
J
, VKJ, hpJ). Then,

PI must be a client who sent a flow-one message and is now waiting for the response.
We say that (PJ, ssid) is a peer session to (PI, ssid′) if ssid = ssid′, if session (PI, ssid) has
peer PJ, session (PJ, ssid) has peer PI, and these two sessions have opposite roles (client

/server). If the pair (com
J
, VKJ) is not equal to the pair (com

J
, VKJ) that was generated

by S for a flow-one message from peer session (PJ, ssid) (or if no such ciphertext was
generated yet, or no such peer session exists) then S uses its secret key sk to compute pwJ,
or nothing which is considered similar to an invalid password below (as before). Also note
that S can recover pwJ if (PJ, ssid) has been corrupted after having sent its commitment. In
case of recovery of pwJ, S then makes a call (TestPwd, sid, ssid, I, pwJ) to the functionality.
If this is a correct guess, S sets the password of this client session to pwJ, otherwise, this
is an invalid password.

Then, it runs the key generation algorithms of the smooth hash function on com
J

to
produce (hkI, hpI), as well as the signing algorithm with SKI to compute σI and sends the
flow-three message (σI, hpI) to A on behalf of (PI, ssid).

Note that in the former case (correct password guess), S computes honestly the session key
using password pwJ, without issuing it yet. Otherwise, PI is provided with a key chosen
at random.

If (PJ, ssid) gets corrupted at the end of this step, S handles this corruption just as when
this player gets corrupted at the end of the previous step.

If it is (PI, ssid) that gets corrupted, we face two cases. If a correct password guess occurred
in this step, then S has computed everything honestly and can provide every value to A
(recall that the projection key does not depend on the password). Otherwise, if S has set
the session key at random, recall that it has not sent anything yet, so that the adversary
totally ignores the values computed. S then recovers the password of (PI, ssid) and is able
to compute the data and give them to the adversary.
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3. Assume that a session (PJ, ssid) receives a message m = (flow-three, σI, hpI). Then,
(PJ, ssid) must be a server who sent a flow-two message and is now waiting for the
response. S aborts if the signature σI is not valid. If flow-one was not oracle-generated,
then S has extracted the password pwI from the commitment (or failed to extract it).
Similarly, if the peer session PI (exists and) was corrupted sooner in the protocol, then
S knows its password pwI (which was in particular used in the commitment). In both
cases, the simulator makes a call (TestPwd, sid, ssid, J, pwI) to the functionality to check
the compatibility of the two passwords. In case of a correct answer, S sets the password
of this server session to pwI, and computes honestly the session key using password pwI.
Otherwise, PJ is provided with a key chosen at random.

Next, S runs signing algorithm with SKJ to compute σJ and sends this flow-four message
to A on behalf of (PJ, ssid).

S handles a corruption of (PI, ssid) just as it did at the end of the former step. And recall
that no more corruption of (PJ, ssid) can occur since it claimed its session as “completed”
and erased its data.

4. Assume that a session (PI, ssid) receives a message m = (flow-four, σJ). (PI, ssid) must
then be a client who sent a flow-three message and is now waiting for the response. S
aborts if the signature σJ is not valid. If flow-two was not oracle-generated, then S has
extracted the password pwJ from the commitment (or failed to). Similarly, if the peer
session PJ (exists and) was corrupted sooner in the protocol, then S knows its password
pwJ (which was in particular used in the commitment). In both cases, the simulator makes
a call (TestPwd, sid, ssid, J, pwJ) to the functionality to check the compatibility of the two
passwords. In case of a correct answer, S sets the password of this client session to pwJ

and computes honestly its session key. Otherwise, it sets its session key at random. Finally
note that no corruption can occur at this stage.

If a session aborts or terminates, S reports it to A. If the session terminates with a session
key sk, then S makes a NewKey call to FpwKE, specifying the session key. But recall that unless
the session is compromised or corrupted, FpwKE will ignore the key specified by S, and thus we
do not have to bother with the key in these cases.

Description of the games We now provide the complete proof by a sequence of games. The
detailed proof of some gaps are provided in Appendix B.11.

Game G0: G0 is the real game.

Game G1: From this game on, we allow the simulator to program the common reference
string, allowing it to know the trapdoors for extractability and equivocability.

Game G2: This game is almost the same as the previous one. The only difference is that
S always tries to extract the password committed to by the adversary (without taking advantage
of the knowledge of this password for the moment) whenever the latter attempts to impersonate
one of the parties. We allow the simulator to abort whenever this extraction fails because
the adversary has generated a commitment which is valid for two or more passwords. Due to
the binding property of the commitment (see Section B.9), the probability that the adversary
achieves this is negligible. Note that the extraction can also fail if the values sent were not
encryptions of 0 or 1 but we do not abort in this case; For the moment we still assume that the
simulator knows the passwords of the players. In the following games, when it will not have this
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knowledge anymore, we will show that the smooth hashes will be random so that this failure
will have no bad consequences. This shows that G2 and G1 are indistinguishable.

Game G3: In this game, S still knows the passwords of both players, but it starts simulating
the commitments by committing to all possible passwords (in order to be able to equivocate
afterwards, see Section B.9 for details). Note that since the commitment is hiding, this does
not change the view of an environment, and that the commitment remains binding (even under
access to equivocable commitments —see Section B.9 and Appendix B.8). Also note that the
generation of the projected keys for the smooth hash function (see Section B.9) is done without
requiring the knowledge of the password. Hence, G3 and G2 are indistinguishable.

As a side note, we have just proven that the knowledge of the passwords is not necessary
anymore for steps (U1) and (S2). If a player gets corrupted, the simulator recovers its pass-
word and is able to equivocate the commitment and thus provide the adversary with consistent
data (since the projected key for the smooth hash function does not depend on the password
committed).

Game G4: In this game, we suppose that flow-one was oracle-generated. We are now at
beginning of round (U3) and we want to simulate the (honest) client. We suppose that the
simulator still knows the password of the server but not that of the client anymore. Let’s first
consider the case in which Alice received a flow-two which was oracle-generated. In such a case,
the simulator chooses a random value Hash(hkI; ρ, (ℓJ, pwI), com

J
). Then, if the server remains

honest until (S4), the simulator asks a SamePwd query to the functionality. If the answer is yes
(that is pwI = pwJ), it gives Bob the same random value for ProjHash(hpI; ρ, (ℓJ, pwJ), com

J
; wJ)

and computes honestly Hash(hkJ; ρ, (ℓI, pwJ), com
I
), thus completely determining skJ. Otherwise,

it computes correctly the entire key. If both remain honest until (U5), then, if they have the same
password, S sets ProjHash(hpJ; ρ, (ℓI, pwI), com

I
; wI) = Hash(hkJ; ρ, (ℓI, pwJ), com

I
). Otherwise,

S sets skI at random.
The description of the corruptions and the proof of the indistinguishability between G4

and G3 can be found in Appendix B.11.1 (it follows from the pseudo-randomness of the smooth
hash function).

Game G5: In this game, we still suppose that flow-one was oracle-generated, but we now
consider the case in which flow-two was non-oracle-generated. We are now at beginning of
round (U3) and we want to simulate the (honest) client. The simulator still knows the password
of the server.

com
J
, VKJ or hkJ has been generated by the adversary. If com

J
is a replay, then the adversary

could not modify VKJ, because of the label used for com
J
, and then the signature verification

will fail. com
J

is thus necessarily a new commitment. Recall that from G2, the simulator
extracts the password from the commitment of the server, with the help of the secret key. The
extraction can fail with negligible probability if S recovers two different passwords (thanks to
the binding property, see G2 and G3). In such a case, the simulator aborts the game. It can
also happen that the extraction issues no password or that it fails if the values sent were not
encryptions of 0 or 1.

Then, if it has recovered a password, the simulator asks a GoodPwd query to the functionality.
If it is correct, then it computes honestly the session key of the client. Otherwise, or if it has
not recovered any password in the extraction, it sets the value Hash(hkI; ρ, (ℓJ, pwI), com

J
) at

random (the entire key skI will be set in round (U5)). Note that the smooth hash value will
necessarily be random by construction if the values sent in the commitment were not encryptions
of 0 or 1.

The corruptions which can follow this step are dealt with as in the former game (recall that
the projected keys sent do not depend on the password). Due to the smoothness of the hash
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function, this game is indistinguishable from the previous one (see Appendix B.11.2).

Game G6: In this game, we deal with the case in which all flows received by the client up
to (S4) were oracle-generated. We are now at beginning of round (S4) and we want to simulate
the (honest) server. We suppose that the simulator doesn’t know any passwords anymore. Let’s
first consider the case in which flow-three was oracle-generated. Note that flow-one must
have been oracle-generated too, otherwise the signature σ1 would have been rejected.

Then, the simulator asks a SamePwd query to the functionality. If it is correct, it sets the value
for ProjHash(hpI; ρ, (ℓJ, pwJ), com

J
; wJ) equal to Hash(hkI; ρ, (ℓJ, pwJ), com

J
), and it also sets the

value for Hash(hkJ; ρ, (ℓI, pwJ), com
I
) at random. Otherwise, it sets these values at random.

In (U5), if the passwords of Alice and Bob are the same and both remain honest, we set
the value ProjHash(hpJ; ρ, (ℓI, pwI), com

I
; wI) = Hash(hkJ; ρ, (ℓI, pwJ), com

I
): skI and skJ are thus

equal, as required. Note that since Hash(hkI; ρ, (ℓJ, pwI), com
J
) is already set at random since G4

or G5, all the keys are already random.

If their passwords are not the same but both remain honest, Alice will be given in (U5) a key
chosen independently at random: Here, ProjHash(hpJ; ρ, (ℓI, pwI), com

I
; wI) doesn’t have to be

programmed, since the keys do not have any reason to be identical. In this case, as in G4, the
pseudo-randomness of the hash functions ensures the indistinguishability (see Appendix B.11.3
for the treatment of corruptions).

Game G7: In this game, we still deal with the case in which all flows received by the client
up to (S4) were oracle-generated. We are now at beginning of (S4) and we want to simulate
the (honest) server, without knowing any password, but we now suppose that flow-three

was not oracle-generated. Note that in this case flow-one cannot have been oracle-generated.
Otherwise, the signature σ1 would have been rejected.

Recall that from G2, the simulator extracts the password from the commitment of the
client, with the help of the secret key. The extraction can fail with negligible probability if S
recovers two different passwords (thanks to the binding property, see G2 and G3). In such a
case, the simulator aborts the game. It can also happen that the extraction issues no password
(for example if the values sent in the commitment were not encryptions of 0 or 1). Then, if
it has recovered a password, the simulator asks a GoodPwd query to the functionality. If it is
correct, then it computes honestly the session key of the server. Otherwise, or if it has not
recovered any password in the extraction, it sets the values Hash(hkJ; ρ, (ℓI, pwJ), com

I
) and

ProjHash(hpI; ρ, (ℓJ, pwJ), com
J
; wJ) at random. Recall that if the values sent in the commitment

were not encryptions of 0 or 1, the smooth hash value will be random.

The corruptions which can follow this step are dealt with as in the former game. Due to
the smoothness of the hash function, this game is indistinguishable from the previous one: The
proof is exactly the same as in G5, but it is made more easier, since the key of the client is
already random.

Game G8: In this game, we replace GoodPwd queries by TestPwd ones, and SamePwd by
NewKey ones. If a session aborts or terminates, S reports it to A. If a session terminates with
a session key sk, then S makes a NewKey call to the functionality, specifying the session key sk.
But recall that unless the session is compromised, the functionality will ignore the key specified
by S.

We show in Appendix B.11.4 that this game is indistinguishable from the ideal-world exper-
iment.
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B.11 Appendix: Additional Proof Details

B.11.1 Indistinguishability of G4 and G3

We now describe what happens in case of corruptions. First, if Alice gets corrupted after the
execution of (U3), then the simulator will recover her password and thus be able to compute
everything correctly. Recall that the projection key did not depend on the password.

Second, if Bob gets corrupted after (U3) or after (S4), then the simulator will be able to
compute everything correctly. In particular in the second case, the adversary will get a coherent
value of skJ. Then, the simulator asks a GoodPwd query for Alice with Bob’s password to the
functionality. If they are the same, S recovers the password of Alice, and since it hasn’t really
erased her data, it will be able to compute skI exactly as the adversary should have done it for
Bob (in particular because the projection key does not depend on the password). Otherwise, it
gives Alice a random key: there is no need that the players get the same key if they don’t share
the same password – recall that all private data is erased so that the adversary cannot verify
anything.

Finally, if Alice gets corrupted by the end of (U5), the simulator will recover her password
and ask a SamePwd query to the functionality. If σJ is correct and they share the same password,
then the simulator computes skI exactly as the adversary should have done it for Bob (one again
because the projection key does not depend on the password). Otherwise, if the signature is
correct but their passwords are different, then Alice is provided with a random value (recall that
her data is supposed to be erased, so that the adversary is not supposed to be able to verify
it). Otherwise, if the signature is incorrect, the simulator aborts the game. We can see here the
necessity of step (U5) in order to guarantee adaptive security.

We now show that an environment that distinguishes G4 from G3 can be used to construct
a distinguisher between Expt-Hash and Expt-Unif as described in [GL03] (see Appendix B.6),
violating their Corollary 3.3.

We first define hybrid games Hi as follows. First note that the sessions are ordered with
respect to the rounds (U1). In all sessions before the ith one, the computation is random, and
in all the sessions afterwards (i, i + 1, . . .), the values are set as real. In all “random” cases, we
set ProjHash(hpI ; ρ, (ℓJ, pwJ), com

J
; wJ) to the same value during the simulation of the server if

everything goes well, that is, if no corruption occurred and the passwords are the same. With
these notations, the i = 1 case is exactly G3 and i = qs + 1 is exactly G4. Pictorially,

{
Random 1, . . . , i− 1
Real i, . . . , qs

Our aim is now to prove the indistinguishability of Hi and Hi+1. We define the event Ei,
stating that there exists a corruption between the committing (U1) and hashing (U3) steps in
the ith session. Notice that the probability of this event is the same in the two following games
Hi and Hi+1. This is true despite the fact that we consider concurrent sessions. To see this,
notice that even though Ei may depend on sessions with a larger index, the only difference
between these two games concerns round (U3) of the ith session: everything is identical before
this step. Since the corruption occurs before this round, the probability that the adversary
corrupts a player in the ith session, which only depends on what happened before, is the same
in both cases.

We now denote by outZ the output of the environment at the end of the execution and
compute the difference between Pr [outZ = 1] in the two different games:
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∣∣PrHi+1 [outZ = 1]− PrHi [outZ = 1]
∣∣

=
∣∣PrHi+1 [outZ = 1 ∧Ei] + PrHi+1 [outZ = 1 ∧ ¬Ei]

− PrHi [outZ = 1 ∧ Ei]− PrHi [outZ = 1 ∧ ¬Ei]|

≤
∣∣PrHi+1 [outZ = 1 ∧Ei]− PrHi [outZ = 1 ∧ Ei]

∣∣

+
∣∣PrHi+1 [outZ = 1 ∧ ¬Ei]− PrHi [outZ = 1 ∧ ¬Ei]

∣∣

≤
∣∣PrHi+1 [outZ = 1|Ei]− PrHi [outZ = 1|Ei]

∣∣ |PrHi [Ei]|

+
∣∣PrHi+1 [outZ = 1|¬Ei]− PrHi [outZ = 1|¬Ei]

∣∣ |PrHi [¬Ei]|

First consider the first term of this sum. If there is a corruption, we learn the password and
also (in fact, we simulate in a coherent way) the randomness, enabling us to compute everything
correctly. Thus, this term is equal to zero.

We now consider the second term, corresponding to the case where there is no corruption,
and show that |Pr [Expt-Hash(D) = 1]− Pr [Expt-Unif(D) = 1]| bounds (to within a negligible
amount) the probability that the environment distinguishes Hi+1 from Hi. More precisely, let’s
consider the following game H (as described below) in which the oracles Commit and Hash appear
in the ith session only under the assumption ¬Ei.

H is as follows: Let D be a machine that receives a randomly chosen public key pk2 and
emulates the game Hi with the following changes for the ith session. On receiving a valid oracle-
generated flow-one, D does not directly compute c2 but it queries instead the oracle Commit()
and sets c2 to the value returned. If Alice receives the unmodified com

J
in the flow-two

message, then D queries Hash(com
J
) and receives a pair (sI , ηI). Then it sets hpI = sI and

ProjHash(hpI ; ρ, (ℓJ, pwI), com
J
; wJ). Note that wJ was here the randomness used by the oracle

Commit in the query that generated com
J
. Then, if Bob receives the unmodified projected

key hpI , D also uses ηI for the appropriate portion of the session key – in the case they have
the same password. Finally, D outputs whatever the environment outputs. It is easy to see
that H = Hi+1 in the case where the oracle Hash returns a random value, and it is equal to Hi

otherwise. �

B.11.2 Indistinguishability of G5 and G4

First note that the corruptions which can follow this step are dealt with as in the former game,
and that this simulation is compatible with the former game.

If the password recovered from the server is correct, the simulation is done honestly, so that
this game is perfectly equivalent to the previous one. Otherwise, if the password is incorrect, or
if no password was recovered, then com

J
is invalid.

Given an invalid com
J
, with (PI, ssid)’s password pwI and the label ℓI, the distribution {pkI,

com
I
, ℓI, pwI, hpI, Hash(hkI; ρ, (ℓJ, pwI), com

J
)} is statistically close to the distribution {pkI, com

I
,

ℓI, pwI, hpI, z} where z is a random element of the group G (due to the smoothness of the hash
function). Since Hash(hkI; ρ, (ℓJ, pwI), com

J
) is a component of the session key skI for (PI, ssid),

then the session key generated is statistically close to uniform.

Then, since com
J

is invalid, (PJ, ssid) will compute honestly the key, but he will not obtain
the same session key since the passwords are different. This behavior is equivalent to what
happens in the ideal functionality: the corresponding sessions of (PI, ssid) and (PJ, ssid) either
do not have a matching conversation, or were given different passwords by the environment, so
that (PJ, ssid) will not be given the same session key as (PI, ssid).
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B.11.3 Indistinguishability of G6 and G5

The pseudo-randomness of the hash functions shows the indistinguishability between G6 and G5.
Indeed, the environment cannot become aware that the keys were chosen at random. More pre-
cisely, we do the same manipulation as in the proof of G4, but this time considering the smooth
projective hash function Hash with respect to com

J
. Note that in the hybrid games, the sessions

are ordered with respect to the rounds (S2).
We now consider the case where Bob gets corrupted between (S4) and (U5). Then, the

simulator recovers his password and it is able to compute everything correctly (recall that the
projection keys do not depend on the passwords). It then asks a GoodPwd query for the client.
If their passwords are different, Alice is provided with a random key. Otherwise, S gives her the
same key as Bob.

Finally note that for sake of simplicity, we only compute HashJ in (S4) in the simulation.
But, if the server is corrupted after (S2), the simulator recovers his password and is able to
provide the adversary with a correct HashJ (once more because the projection key does not
depend on the password).

B.11.4 Indistinguishability between G8 and the Ideal Game

The only difference between G7 and G8 is that the GoodPwd queries are replaced by TestPwd

queries to the functionality and the SamePwd by a NewKey query. We say that the players have
matching sessions if they share the same ssid and if they agree on the values of com

I
, com

J
, hpI

and hpJ (that is, all the values that determine the key). We now show that G8 and IW E are
indistinguishable.

First, if both players share the same password and remain honest until the end of the game,
and if there are no impersonations, they will obtain a random key, both in G8 (from G6) and
IW E, as there are no TestPwd queries and the sessions remain fresh. Second, if they share the
same password but there are impersonation attempts, then they receive independently-chosen
random keys (from G5 or G7). Third, if they don’t share the same password, then they get
independently-chosen random keys. Now, we need to show that two players will receive the same
key in G8 if and only if it happens in IW E.

First consider the case of players with matching session and the same password. If both
players remain honest until the end of the game, they will receive the same key from G6. If not,
it will still be the same from G5 or G7. Recall that if there are some impersonation attempts,
the keys will be random and independent, both in G8 and IW E. In IW E, the functionality
will receive two NewSession queries with the same password. If both are honest, it will not
receive any TestPwd query, so that the key will be the same for the two players. And if one is
corrupted and a TestPwd query is done (and correct, since they have the same password), then
they will also have the same key, chosen by the adversary.

Then, consider the case of players with matching session but not the same password. If both
players remain honest until the end of the game, they will receive independently-chosen random
keys from G6. If not, it will still be the same from G7. In IW E, the functionality will receive
two NewSession queries with different passwords. It will give them different keys by definition.

Finally, consider the case of players with no matching session. It is clear that in G8 the
session keys of those players will be independent because they are not set in any of the games.
In IW E, the only way that they receive matching keys is that the functionality receives two
NewSession queries with the same password, and S sends a NewKey query for these sessions
without having sent any TestPwd queries. But if the two sessions do not have a matching
conversation, they must differ in either com

I
, com

J
, hpI or hpJ . In this case, they will refuse the

signature of the other player and abort the game.
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If one of the players is corrupted by the end of the game, the simulator recovers its password
and uses it in a TestPwd query for the other player to the functionality, as explained in G4.
If the result is correct, then both players are give the same key. Otherwise, they are given
independently-chosen random keys. This is exactly the behavior of the functionality in IW E.
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Common reference string. A tuple (G, pk, (y1 , . . . , ym), Extract), where G is a cyclic group,
y1 , . . . , ym random elements from this group, pk a public key for the Cramer-Shoup scheme,
and Extract a randomness extractor.

Protocol steps.

1. When PI is activated with input (NewSession, sid, ssid, I, J, pwI, role), we face two
cases: If role = server, it does nothing. If role = client, it uses SKG to gen-
erate a key pair (VKI, SKI) for a one-time signature scheme, sets the (public) label
ℓI = J ◦ I ◦ ssid ◦ VKI, computes com

I
= comρ(ℓI, pwI; RI) and sends the message

(flow-one, com
I
, VKI) to PJ. From this point on, assume that PI is a party activated

with input (NewSession, sid, ssid, I, J, pwI, client) and that PJ is a party activated with
input (NewSession, sid, ssid, I, J, pwJ, server). Recall that PI erases nearly all the ran-
doms (in RI) used in the computation of com

I
(see Section B.9). More precisely, it only

keeps from RI the values present in the witness wI that will be used in the computation
of the smooth hash function.

2. When PJ receives a message (flow-one, com
I
, VKI), it (publicly) checks that com

I
is well

constructed. Otherwise, it aborts. Then it uses SKG to generate a key pair (VKJ, SKJ)
for a one-time signature scheme, and HashKG to generate a key hkJ for the smooth
projective hash function family H with respect to ρ. It sets the (public) label ℓJ =
J◦I◦ssid◦VKJ and computes the projection hpJ = ProjKG(hkJ; ρ, (ℓI, pwJ), com

I
). Next it

computes com
J

= comρ(ℓJ, pwJ; RJ) and sends the message (flow-two, com
J
, VKJ, hpJ)

to PI. It finally computes HashJ = Hash(hkJ; ρ, (ℓI, pwJ), com
I
) and erases hkJ and the

values of RJ that are not present in the witness wJ.

3. When PI receives a message (flow-two, com
J
, VKJ, hpJ), it (publicly) checks that

com
J

is well constructed. Otherwise, it aborts. Then it uses HashKG to gener-
ate a key hkI for the smooth projective hash function family H with respect to pk
and computes the projection hpI = ProjKG(hkI; ρ, (ℓJ, pwI), com

J
). Next it computes

σI = Sign(SKI, (com
I
, com

J
, hpI, hpJ)) and sends the message (flow-three, σI, hpI)

to PJ. It computes the session key skI = ProjHash(hpJ; ρ, (ℓI, pwI), com
I
; wI) +

Hash(hkI; ρ, (ℓJ, pwI), com
J
), and erases all private data except pwI and skI, keeping

all public data in memory.

4. When PJ receives a message (flow-three, σI, hpI), it checks that
Ver(VKI, (com

I
, com

J
, hpJ), σI) = 1. If not, it aborts the session outputting noth-

ing. Otherwise, it computes σJ = Sign(SKJ, (com
I
, com

J
, hpI, hpJ)) and sends the

message (flow-four, σJ) to PI. Then, it computes the session key skJ = HashJ

+ ProjHashI(hpI; ρ, (ℓJ, pwJ), com
J
; wJ), outputs (sid, ssid, skJ), sets the session as

accepted, which means in particular that it erases everything except pwJ and skJ and
then terminates (i.e., publishes the session key).

5. When PI receives a message (flow-four, σJ), it checks that
Ver(VKJ, (com

I
, com

J
, hpI, hpJ), σJ) = 1. If not, it aborts the session outputting

nothing. Otherwise, it terminates the session (i.e., publishes the session key).

Figure B.3: Description of the protocol for two players Alice and Bob. Alice is the client PI,
with index I and password pwI, and Bob is the server PJ, with index J and password pwJ.
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Appendix C

Password-based Group Key
Exchange in a Constant Number of
Rounds

PKC 2006
[ABCP06] with E. Bresson, O. Chevassut, and D. Pointcheval

Abstract : With the development of grids, distributed applications are spread across multiple
computing resources and require efficient security mechanisms among the processes. Although
protocols for authenticated group Diffie-Hellman key exchange protocols seem to be the natural
mechanisms for supporting these applications, current solutions are either limited by the use
of public key infrastructures or by their scalability, requiring a number of rounds linear in the
number of group members. To overcome these shortcomings, we propose in this paper the first
provably-secure password-based constant-round group key exchange protocol. It is based on the
protocol of Burmester and Desmedt and is provably-secure in the random-oracle and ideal-cipher
models, under the Decisional Diffie-Hellman assumption. The new protocol is very efficient and
fully scalable since it only requires four rounds of communication and four multi-exponentiations
per user. Moreover, the new protocol avoids intricate authentication infrastructures by relying
on passwords for authentication.

C.1 Introduction

Motivation. Modern distributed applications often need to maintain consistency of replicated
information and coordinate the activities of many processes. Collaborative applications and
distributed computations are both examples of these types of applications. With the develop-
ment of grids [FK04], distributed computations are spread across multiple computing resources
requiring efficient security mechanisms between the processes. Although protocols for group
Diffie-Hellman key exchange [BCP01, BCP02b, BCP02a, BCPQ01] provide a natural mecha-
nism for supporting these applications, these protocols are limited in their scalability due to a
number of rounds linear in the number of group members. An alternative is to use a protocol
for group key exchange that runs in a constant number or rounds [DB06, KY03, KLL04]. The
two measures of a protocol’s efficiency are the computational cost per member and the com-
munication complexity (number of protocol rounds) of the given protocol. Since the Moore’s
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laws has told us that computing power grows faster than communication power, it is therefore
natural to trade communication power for computing power in a group key exchange protocol.

A password is the ideal authentication means to exchange a session key in the absence
of public-key infrastructures or pre-distributed symmetric keys. In a group, the sharing of a
password among the members greatly simplifies the setup of distributed applications [BCP02b,
DB06]. An example of distributed applications could simply be the networking of all the devices
attached to a human. Low-entropy passwords are easy for humans to remember, but cannot
of course guarantee the same level of security as high-entropy secrets such as symmetric or
asymmetric keys. The most serious attack against a password-based protocol is the so-called
dictionary attack: the attacker recovers the password and uses it to impersonate the legitimate
user. The low-entropy feature makes the job of the attacker easier since the attacker (off-line)
runs through all the possible passwords in order to obtain partial information and to maximize
his success probability. The minimum required from a protocol is security against this attack.

Contributions. In the present paper, we study the problem of scalable protocols for authen-
ticated group Diffie-Hellman key exchange. Many researchers have studied and found solutions
to this problem in the context of a Public-Key Infrastructure (PKI), yet a (secure) solution
had to be found in the context of a (short) password shared among the members of the group.
Two attempts in this direction are due to Dutta and Barua [DB06] and to Lee, Hwang, and
Lee [LHL04]. Unfortunately, adding authentication services to a group key exchange protocol is
a not trivial since redundancy in the flows of the protocol can open the door to different forms
of attacks. In fact, in Section C.3, we briefly describe attacks against the schemes of Dutta
and Barua [DB06] and of Lee, Hwang, and Lee [LHL04]. Then, in Section C.4, we show how
to add password-authentication services to the Burmester and Desmedt scheme [BD94, BD05].
Our protocol is provably secure in the random-oracle [BR94b] and ideal-cipher models [BPR00]
under the Decisional Diffie-Hellman assumption.

Related Work. Following the work of Bresson et al. on the group Diffie-Hellman key exchange
problem [BCP01, BCP02b, BCP02a, BCPQ01], several researchers have developed similar pro-
tocols but that run in a constant number of rounds. Katz and Yung [KY03] added authentication
services to the original Burmester and Desmedt’s protocol [BD94, BD05]. Later, Kim, Lee and
Lee extended the work of Katz and Yung to take into account the notion of dynamicity in the
membership [KLL04]. The problem of adding password-authentication services followed shortly
after. In [BCP02b], Bresson et al. proposed the first solution to the group Diffie-Hellman key
exchange problem in the password-based scenario. Their protocol, however, has a total num-
ber of rounds which is linear in the total number of players in the group. In [DB06, LHL04],
two different password-based versions of Burmester-Desmedt protocol were proposed along with
proofs in the random-oracle and ideal-cipher models. Unfortunately, the latter two schemes are
not secure.

Outline of the paper. The paper is organized as follows. In Section C.2, we recall the security
model usually used for password-based group Diffie-Hellman key exchange. This model was
previously defined in [BCP02b], but also takes advantage of [AFP05]. In Section C.3 we recall
Burmester-Desmedt scheme and describe attacks against the schemes of Dutta and Barua [DB06]
and of Lee, Hwang, and Lee [LHL04]. In Section C.4, we describe the mechanics behind our
protocol. In Section C.5, we show that our protocol is provably-secure in the random-oracle and
ideal-cipher models under the Decisional Diffie-Hellman assumption.
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C.2 Security Model

C.2.1 Password-Based Authentication

In the password-based authentication setting, we assume each player holds a password pw drawn
uniformly at random from the dictionary Password of size N . This secret of low-entropy (N is
often assumed to be small, i.e. typically less than a million) will be used to authenticate the
parties to each other

Unfortunately, one cannot prevent an adversary to choose randomly a password in the dic-
tionary and to try to impersonate a player. However such on-line exhaustive search (even if N
is not so large) can easily be limited by requiring a minimal time interval between successive
failed attempts or locking an account after a threshold of failures. Security against such active
attacks is measured in the number of passwords the adversary can “erase” from the candidate
list after a failure.

On the other hand, off-line exhaustive search cannot be limited by such practical behaviors
or computational resources considerations. Hopefully, they can be prevented if the protocol is
carefully designed and ensures that no information about the password can leak from passively
eavesdropped transcripts, but also from active attacks.

C.2.2 Formal Definitions

We denote by U1, . . . , Un the parties that can participate in the key exchange protocol P . Each
of them may have several instances called oracles involved in distinct, possibly concurrent,
executions of P . We denote Ui instances by U j

i . The parties share a low-entropy secret pw
which is uniformly drawn from a small dictionary Password of size N .

The key exchange algorithm P is an interactive protocol between the Ui’s that provides the
instances with a session key sk. During the execution of this protocol, the adversary has the
entire control of the network, and tries to break the privacy of the key.

Remark C.2.1 In the “constant-round” protocols that we will study, simultaneous broadcasts
are intensively used. However we do not make any assumption about the correctness of the
latter primitive: it is actually a multi-cast, in which the adversary may delay, modify, or cancel
the message sent to each recipient independently.

In the usual security model [BCP02b], several queries are available to the adversary to
model his capability. We however enhance it with the Real-or-Random notion for the semantic
security [AFP05] instead of the Find-then-Guess. This notion is strictly stronger in the password-
based setting. And actually, since we focus on the semantic security only, we can assume that
each time a player accepts a key, the latter is revealed to the adversary, either in a real way, or
in a random one (according to a bit b). Let us briefly review each query:

• Send(U j
i , m): This query enables to consider active attacks by having A sending a message

to any instance U j
i . The adversary A gets back the response U j

i generates in processing the
message m according to the protocol P . A query Send(Start) initializes the key exchange
algorithm, and thus the adversary receives the initial flows sent out by the instance.

• Testb(U j
i ): This query models the misuse of the session key by instance Ui (known-key

attacks). The query is only available to A if the attacked instance actually “holds” a
session key. It either releases the actual key to A, if b = 1 or a random one, if b = 0. The
random keys must however be consistant between users in the same session. Therefore, a
random key is simulated by the evaluation of a random function on the view a user has
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of the session: all the partners have the same view, they thus have the same random key
(but independent of the actual view.)

Remark C.2.2 Note that it has been shown [AFP05] that this query is indeed enough to
model known-key attacks —where Reveal queries, which always answer with the real keys,
are available—, and makes the model even stronger. Even though their result has only
been proven in the two-party and three-party scenarios, one should note that their proof
can be easily extended to the group scenario.

As already noticed, the aim of the adversary is to break the privacy of the session key (a.k.a.,
semantic security). This security notion takes place in the context of executing P in the presence
of the adversary A. One first draws a password pw from Password, flips a coin b, provides coin
tosses to A, as well as access to the Testb and Send oracles.

The goal of the adversary is to guess the bit b involved in the Test queries, by outputting
this guess b′. We denote the AKE advantage as the probability that A correctly guesses the
value of b. More precisely we define Advake

P (A) = 2 Pr[b = b′]− 1. The protocol P is said to be
(t, ǫ)-AKE-secure if A’s advantage is smaller than ǫ for any adversary A running with time t.

C.2.3 On the Simplification of the Model

In previous models, Execute queries were introduced to model passive eavesdropping. However,
they can easily be simulated using the Send queries. In our analysis, we refine the way to deal
with the adversary possible behaviors. We will denote by qactive the number of messages the ad-
versary produced by himself (thus without including those he has just forwarded). This number
upper-bounds the number of on-line “tests” the adversary performs to guess the password. And
we denote by qsession the total number of sessions the adversary has initiated: nqsession, where
n is the size of the group, upper-bounds the total number of messages the adversary has sent
in the protocol (including those he has built and those he has just forwarded). We emphasize
that this is stronger than considering only Execute and Send queries: while being polynomially
equivalent, the two models are not tightly equivalent, since the adversary does not need to know
in advance if he will forward all the flows, or be active when a new session starts. Moreover,
suppressing the Execute queries makes the model even simpler.

The best we can expect with such a scheme is that the adversary erases no more than 1
password for each session in which he plays actively (since there exists attacks which achieve
that in any password-based scheme.) However, in our quite efficient scheme, we can just prevent
the adversary from erasing more than 1 password for each player he tries to impersonate (we
will even show our proof is almost optimal.)

C.3 Preliminaries

The best starting point for an efficient password-based group key exchange, and namely if one
wants a constant-round protocol, is the scheme proposed by Burmester and Desmedt [BD94,
BD05] at Eurocrypt 94 and later formally analyzed by Katz and Yung in 2003 [KY03].

C.3.1 The Burmester and Desmedt Protocol

In the Burmester-Desmedt scheme, one considers a cyclic group G generated by g, in which the
Decisional Diffie-Hellman (DDH) assumption holds. The protocol works as follows, where all
the indices are taken modulo n (between 1 and n), and n is the size of the group:
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• Each player Ui chooses a random exponent xi and broadcasts zi = gxi ;

• Each player computes the Zi = zxi
i−1 and Zi+1 = z

xi+1

i = zxi
i+1, and broadcasts Xi =

Zi+1/Zi;

• Each player computes his session key as Ki = Zn
i Xn−1

i Xn−2
i+1 · · ·Xi+n−2.

It is easy to see that for any i, we have Ki =
∏j=n

j=1 Zj = gx1x2+x2x3+···+xnx1.

C.3.2 A Naive Password-Based Approach

We immediately note that encrypting values in the second round would lead to a trivial dic-
tionary attack, since the product of all values is equal to 1. One may want to enhance the
Burmester and Desmedt’s protocol by using a password pw to “mask” the first round only. One
then comes up to the simple protocol, using a mask of the form hpw , where h is another generator
of the group G, whose discrete logarithm in the base g is unknown [AP05]:

• Each player Ui chooses a random exponent xi, computes zi = gxi and broadcasts z⋆
i =

zih
pw ;

• Each player extracts zi−1 and zi+1, and computes the Zi = zxi
i−1 and Zi+1 = z

xi+1

i = zxi
i+1.

He then broadcasts Xi = Zi+1/Zi;

• Each player computes his secret as Ki = Zn
i Xn−1

i Xn−2
i+1 · · ·Xi+n−2

Thereafter, one can add any key confirmation and/or any intricate key extraction (even in the
random oracle model, such as ski = H(View, Ki)), but it does not help. Indeed, the homomorphic
property of this “masking” technique allows active attacks from the adversary: Assume that the
adversary impersonates players U1 and U3 and sends for the first round z⋆

1 = gu1 and z⋆
3 = gu3 ,

for known values u1 and u3. On the second round, the adversary waits for receiving X2 from
player U2:

X2 =

(
z3

z1

)x2

= gx2(u3−u1) =

(
z2

hpw

)u3−u1

.

Then one knows that hpw = z2/X
(u1−u3)−1

2 , which can be easily checked off-line: a dictionary
attack.

Furthermore, one can be easily convinced that any mechanism such as proof of knowledge,
commitments, etc. to “enforce” the adversary to properly construct his values are useless against
this attack, since in the above attack, the adversary plays “honestly”.

C.3.3 The Dutta and Barua Protocol

Dutta and Barua [DB06] proposed a variant of the Kim-Lee-Lee protocol [KLL04] presented at
Asiacrypt ’04. It makes use of the ideal-cipher model, instead of a simple mask as above, and is
claimed to be secure against dictionary attacks:

• Each player Ui chooses a random exponent xi, as well as a random key ki, computes
zi = gxi , and broadcasts z⋆

i = Epw(zi);

• Each player extracts zi−1 and zi+1, and computes the KL
i = H(zxi

i−1) = H(gxi−1xi) and
KR

i = H(z
xi+1

i ) = H(zxi
i+1) = H(gxixi+1). For i = 1, . . . , n−1, Ui computes Xi = KL

i ⊕KR
i ,

while Un computes Xn = kn ⊕KR
n ; For i = 1, . . . , n − 1, Ui broadcasts E ′pw(ki‖Xi), while

Un broadcasts E ′′(Xn);
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• After decryption, they can all recover all the ki, and then the common session key is set
as sk = H(k1‖ . . . ‖kn).

Unfortunately, their protocol contains another source of redundancy that can be exploited
by an attacker: the encryption algorithm of all users use the password as their encryption
key. Therefore, a simple attack against their scheme runs as follows: the adversary plays the
role of user U3, with honest users U1 and U2. When the adversary receives z⋆

1 = Epw(z1) and
z⋆

2 = Epw(z2), he sets z⋆
3 = Z⋆

1 , sends it to users U1 and U2, and waits for their responses.
Note that setting z⋆

3 = Z⋆
1 implicitly sets x3 = x1. At this point, the adversary knows that

KL
2 = H(gx1x2) and KR

2 = H(gx2x3) = H(gx1x2), and thus X2 = 0k (where k is the output
length of the function H). Upon receiving E ′pw(k2‖X2) from U2, he can perform an off-line
dictionary attack that immediately leads to the correct password, since this will be the only one
decrypting this value to k2‖0

k.
This confirms the fact that converting a provably-secure scheme into a password-based pro-

tocol is not a simple task. The main problem we observe with the above scheme is the unique
way in which the initial messages of all users are encrypted, allowing attacks where one player
can easily replay messages from another player. Thus, to avoid problems such as these, one
should at least make sure that the encryption key used by each user is unique to that user. In
fact, this is one of the features of the protocol that we present in the next section.

C.3.4 The Lee-Hwang-Lee Protocol

In [LHL04], Lee, Hwang, and Lee proposed another password-based version of the Burmester-
Desmedt protocol, which makes use of the random-oracle and ideal-cipher models. Let E be an
ideal cipher and let H and H′ be random oracles. Their protocol works as follows:

• Each player Ui chooses a random exponent xi, computes zi = gxi , and broadcasts (Ui, z⋆
i =

Epw(zi));

• Each player Ui extracts zi−1 and zi+1, computes Ki = H(zxi
i+1) = H(gxixi+1), Ki−1 =

H(zxi
i−1) = H(gxi−1xi), wi = Ki−1 ⊕Ki, and broadcasts (Ui, wi).

• Each player Ui first computes the values Kj = H(gxj−1xj ) for j = 1, . . . , n, using the
values wj that were broadcasted in the second round. Next, each player Ui sets sk =
H′(H(gx1x2)‖ . . . ‖H(gxn−1xn)‖H(gxnx1)) as the common session key.

To show that the protocol above is not secure, we present the following simple attack against
the semantic security of the session key. First, we start two sessions with player U1 using
{U1, . . . , U4} as the group. Let x1 and x′1 be the corresponding values chosen by the two instances
of player U1 in each of these sessions and let (U1, z⋆

1 = Epw(gx1)) and (U1, z′⋆1 = Epw(gx′
1)) be the

corresponding values outputted by these instances. For the instance that outputted (U1, z⋆
1), we

provide to it the values (U2, z′⋆1), (U3, z⋆
1), and (U4, z′⋆1), as the first-round messages of players

U2, U3, and U4. This implicitly makes K1 = K2 = K3 = K4 = H(gx′
1x1). Likewise, for the

instance that outputted (U1, z′⋆1 ), we provide to it the values (U2, z⋆
1), (U3, z′⋆1), and (U4, z⋆

1), as
the first-round messages of players U2, U3, and U4. This implicitly makes K ′1 = K ′2 = K ′3 =
K ′4 = H(gx′

1x1). As a result, w1 = w2 = w3 = w4 = 0 and w′1 = w′2 = w′3 = w′4 = 0 and,
thus, we can easily compute the appropriate second-round messages for players U2, U3, and U4

in both sessions. Moreover, the session keys of these two sessions are the same. Thus, we can
ask test queries to both instances of player U1 and check whether we get back the same value.
This should be the case whenever the output of test oracle is the actual session key.
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C.4 Our protocol

As above, we use the ideal-cipher model. The latter considers a family of random permutations
Ek : G → G indexed by a ℓH-bit key k which are accessible (as well as their inverses) through
oracle queries (E and D). Here we use the password, together with nonces, and the index of
the user, to encrypt the values in the first round. Other values are sent in the clear. Also a
preliminary round is used during which each player chooses random nonces to be used. This
will be crucial to define sessions, and then link the encrypted values altogether.

Key generations (for the symmetric encryption E , and for the session key) will make use of
hash functions H : {0, 1}⋆ → {0, 1}ℓH and G : {0, 1}⋆ → {0, 1}ℓG . Key confirmations will apply
the function Auth : {0, 1}⋆ → {0, 1}ℓAuth .

C.4.1 Description

The protocol runs as follows:

1. Each player Ui chooses a random nonce Ni and broadcasts (Ui, Ni);

2. The session S = U1‖N1‖ . . . ‖Ui‖Ni . . . ‖Un‖Nn is then defined, in which each player has a
specific index i, and a specific symmetric key ki = H(S, i, pw). Each player Ui chooses a
random exponent xi and broadcasts z⋆

i = Eki
(zi), where zi = gxi ;

3. Each player extracts zi−1 = Dki−1
(z⋆

i−1) and zi+1 = Dki+1
(z⋆

i+1), and computes the Zi =
zxi

i−1 and Zi+1 = z
xi+1

i = zxi
i+1. He then broadcasts Xi = Zi+1/Zi;

4. Each player computes his secret as Ki = Zn
i Xn−1

i Xn−2
i+1 · · ·Xi+n−2, and broadcasts his key

confirmation Authi = Auth(S, {z⋆
j , Xj}j , Ki, i).

5. After having received and checked all the key confirmations, each player defined is session
key as ski = G(S, {z⋆

j , Xj ,Authj}j , Ki).

C.4.2 Security Theorem

Here we present the main security result of this paper, whose proof appears in Section C.5.

Theorem C.4.1 Let P the above protocol in which the password is chosen in a dictionary of
size N . Then for any adversary A running in time t, that makes at most qactive attempts within
at most qSession sessions, his advantage in breaking the semantic security of the session key,
in the ideal-cipher model, is upper-bounded by:

Advake
P (t) ≤

2qactive

N
+ 4qsessionnAdvddh

G (t) +
2q2
G

2ℓG
+

2q2
Auth

2ℓAuth

+
8qG + 2qAuth + 2qD + 2nqEqsession + (qE + qD)2

|G|
+

2qH(qH + qD)

2ℓH

where qG, qH, qAuth, qE , qD denote the number of oracle queries the adversary is allowed to make
to the random oracles G, H and Auth, and to the ideal-cipher oracles E and D, respectively.

This theorem states that the security of the session key is protected against dictionary
attacks: the advantage of the adversary essentially grows linearly with the number of active
attempts that the adversary makes (i.e., the number of messages that the adversary builds by
himself). While the number of sessions includes both active attacks and passive ones (i.e., the
session transcripts A passively eavesdropped), the theorem shows that these passive attacks are
essentially negligible: a honest transcript does not help a computationally bounded adversary
in guessing the password.
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C.4.3 On the tightness of Theorem C.4.1

Clearly, Theorem C.4.1 ensures that when building a message by himself, the adversary cannot
“test” more than one password per message. Actually, in the proof, we use qactive to upper-
bound the number of players the adversary tries to impersonate and thus the number of different
passwords he can inject. Hence, we achieve a stronger security result than the one claimed in
Theorem C.4.1. However, it leaves open the possibility of whether an adversary can test several
passwords in the same session. Since one may wonder whether a security proof with a tighter
reduction could be found, here we present an online dictionary attack against our scheme that
shows that this is not the case. More precisely, we exhibit an online dictionary attack in which
the adversary can test several passwords in the same session (but still no more than one password
for each message!). The idea behind the attack is to create a session in which the number of
dishonest players (whose roles are played by the adversary) is twice the number of honest players
and to surround each of the honest players with two dishonest players.

Let k be the number of honest players. The attack works as follows. First, the adversary
starts a session in which all the honest players have indices of the form 3(i−1)+2 for i = 1, . . . , k.
Then, let {pw1, . . . , pwk} be a list of candidate passwords that an adversary wants to try and
let i′ = 3(i − 1). To test whether pwi for i = 1, . . . , k is the correct password, the adversary
plays the role of players Ui′+1 and Ui′+3 and follows the protocol using pwi as the password.
That is, he chooses random exponents xi′+1 and xi′+3, computes the values zi′+1 = gxi′+1 and
zi′+3 = gxi′+3, and then computes z⋆

i′+1 and z⋆
i′+3 from zi′+1 and zi′+3 using pwi as the password.

Let Xi′+2 be the value that the honest user Ui′+2 outputs in the third round of our protocol.
To verify if his guess pwi for the password is the correct one, the adversary computes zi′+2 from
z⋆

i′+2 using pwi as the password and checks whether z
xi′+3−xi′+1

i′+2 = Xi′+2. This should be the
case whenever pwi is equal to the actual password.

C.4.4 Computational Assumptions

Decisional Diffie-Hellman assumption: DDH. The DDH assumption states (roughly) that
the distributions (gu, gv , guv) and (gu, gv , gw) are computationally indistinguishable when u, v, w
are indices chosen uniformly at random. This can be made more precise by defining two exper-
iments, DDH⋆ and DDH$. In experiment DDH⋆, the inputs given to the adversary are U = gu,
V = gv , and W = guv , where u and v are two random indices. In experiment DDH$, the inputs
given to the adversary are U = gu, V = gv, and W = gw, where u, v, and w are random indices.
The goal of the adversary is to guess a bit indicating the experiment he thinks he is in. A
(t, ǫ)-distinguisher against DDH for G is a probabilistic Turing machine ∆ with time-complexity
t, which is able to distinguish these two distributions with an advantage Advddh

G (∆) greater than
ǫ. The advantage function Advddh

G (t) for the group G is then defined as the maximum value
of Advddh

G (∆) over all ∆ with time-complexity at most t.

Parallel Decisional Diffie-Hellman assumption: PDDH. We define a variant of the DDH
problem, we name it the Parallel Decisional Diffie-Hellman problem, which is equivalent to the
usual DDH problem. To this aim, we define the two following distributions:

PDH⋆
n = {gx1 , . . . , gxn , gx1x2, . . . , gxn−1xn , gxnx1 |x1, . . . , xn ∈R Zq} ,

PDH$
n = {gx1 , . . . , gxn , gy1 , . . . , gyn |x1, . . . , xn, y1, . . . , yn ∈R Zq} .

A (t, ǫ)-distinguisher against PDDHn for G is a probabilistic Turing machine ∆ with time-
complexity t, which is able to distinguish these two distributions with an advantage Adv

pddhn
G (∆)

greater than ǫ. The advantage function Adv
pddhn
G (t) for the group G, is then defined as the

maximum value of Adv
pddhn
G (∆) over all ∆ with time-complexity at most t.
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Lemma C.4.2 [Equivalence between PDDHn and DDH] For any group G and any integer n,
the PDDHn and the DDH problems are equivalent: for any time bound T ,

Advddh
G (T ) ≤ Adv

pddhn
G (T ) ≤ n Advddh

G (T ).

Proof: We omit the proof of this lemma in this version of the paper as it follows from a standard
hybrid argument [Gol04, GM84] with n + 1 hybrid experiments, in which the first i DDH values
are replaced by random ones in the i-th hybrid experiment for i ∈ {0, . . . , n}. In fact, a proof
of this lemma was implicitly made in the proceedings version of the paper by Katz and Yung
in Crypto 2003 [KY03] when showing an upper bound for the probability distance between the
experiments Faken and Real. Moreover, in the full version of their paper, they provide an even
tighter security reduction between these two problems.

In our security analysis, we will need a challenger that outputs a new tuple either from PDH⋆
n

or PDH$
n, according to an input bit. That is, we have a fixed bit β, and for any new query S,

Challβ(S) outputs a new tuple from PDH⋆
n if β = 0, or from PDH$

n if β = 1. If the same S is
queried again, then the same output tuple is returned. It is a well-known result that after q
queries to the challenger, any adversary in time t cannot guess the bit β with advantage larger
than q × Adv

pddhn
G (t) ≤ qn× Advddh

G (t).

C.5 Proof of Theorem C.4.1

We proceed by defining several experiments (or games), the first one being the real-world ex-
periment (in which the success of the adversary in outputting b′ = b — denoted by event S —
is larger than (1 + Advake(A))/2 by definition), the last one being a trivially secure experiment
in which the success of the adversary is straightforwardly 1/2.

Game G9: This is the real attack game, in the random-oracle and ideal-cipher models.

Game G10: We simulate the random oracles G, H and Auth in a classical way using the
lists ΛG , ΛH and ΛAuth, with a random value for any new query, and we cancel executions (by
halting the simulation and declaring the adversary successful) in which a collision occurs in the
output of hash functions. The probability of such bad event is upper-bounded by the birthday
paradox.

∣∣Pr[S10]− Pr[S9]
∣∣ ≤

q2
G

2ℓG
+

q2
H

2ℓH
+

q2
Auth

2ℓAuth
.

Game G11: In this game, we start to control the simulation of the ideal cipher by maintaining
a list Λ that keeps track of the previous queries-answers and that links each query to a specific
user. Members of the list Λ are of the form (type, S, i, α, k, z, z⋆), where type ∈ {enc, dec}. Such
record means that Ek(z) = z⋆, and type indicates which kind of queries generated the record.
The index i indicates which player is associated with the key k, while S indicates the session
with which we are dealing. These values are both set to ⊥ if k does not come from a H query of
the form (S, i, ∗) with i ∈ {1, . . . , n}, and S of any form. The element α will be explained later.

• On encryption query Ek(z), we look for a record (·, ·, ·, ·, k, z, ∗) in Λ. If such a record
exists, we return its last component. Otherwise, we choose uniformly at random z⋆ ∈ G,
add (enc,⊥,⊥,⊥, k, z, z⋆) to Λ, and return z⋆.

• On decryption query Dk(z⋆), we look for a record (·, ·, ·, ·, k, ∗, z⋆) in Λ. If such a record
exists, we return its sixth component. Otherwise, we distinguish two sub-cases, by looking
up in ΛH if k has been returned to a hash query of the form (S, i, ∗): if it the case,
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we choose z at random in G⋆ = G\{0} and update the list Λ with (dec, S, i,⊥, k, z, z⋆);
otherwise, we choose z at random in G⋆ and update the list Λ with (dec,⊥,⊥,⊥, k, z, z⋆).
In both cases, the decryption query on z⋆ is answered with z.

Such a simulation is perfect, except for the following three points. First, collisions may appear
that contradict the permutation property of the ideal-cipher: the probability can be upper-
bounded by (qE + qD)2/2|G|. Second, we avoided z being equal to 1 in the decryption queries.
Finally, in the case of the decryption query simulation, one will cancel executions (by halting the
simulation and declaring the the adversary successful) if the value k (involved in a decryption
query) is output later by H. Fortunately, this happens with probability at most qH/2ℓH for each
decryption query. Intuitively, as it will become clear in the next games, we indeed want to make
sure that, for any k involved in a decryption query, if k comes from a H query, we know the
corresponding pair (S, i). All being considered, such bad events are unlikely:

∣∣Pr[S11]− Pr[S10]
∣∣ ≤ (qE + qD)2

2|G|
+

qD
|G|

+
qHqD
2ℓH

.

Game G12: In this game, we change the simulation of the decryption queries, and make use of
our challenger to embed an instance of the PDH problem in the protocol simulation. In this game,
we set β = 0, so that our challenger Challβ(·) output tuples (ζ1, . . . , ζn, γ1, . . . , γn) according to
the PDH⋆

n distribution. We use these (2n)-tuples to properly simulate the decryption queries.
More precisely, we issue a new tuple each time a new session S appears in a decryption

query. But if several queries are asked with the same S, the challenger outputs the same tuple,
so we will derive many related instances, granted the random self-reducibility. The latter tells
us that, given one tuple outputted by the challenger, then for any randomly chosen (α1, . . . , αn),
the tuple (ζα1

1 , . . . , ζαn
n , γα1α2

1 , . . . , γαnα1
n ) has the same distribution as the original one.

We make use of this property as follows, by modifying the first sub-case previously considered
for new decryption queries.

• On a new decryption query Dk(z⋆), such that k = H(S, i, ∗) was previously obtained from
H for some valid index i, we query Challβ(S) in order to get a tuple (ζ1, . . . , ζn, γ1, . . . , γn).
We then randomly choose α ∈ Z⋆

q, add (dec, S, i, α, k, z = ζα
i , z⋆) to Λ, and return z.

Above, we have defined the list Λ whose elements are of the form (type, S, i, α, k, z, z⋆). The
component ’α’ now comes into play. This element is an exponent indicating how we applied the
random self-reducibility of the PDDH problem, to the instance generated by the challenger upon
the request S: X = ζα

i . Here, the element α can only be defined if S and i are known (in order
to know which tuple, and which ζi, we are working with.) If α is unknown to the simulator, we
set α = ⊥.

This change does not modify the view of the adversary, so: Pr[S12] = Pr[S11].

Game G13: We are now ready to simulate the Send queries in a different way, but only
in the second and third rounds: when the session S is defined, user i computes the symmet-
ric keys as before kj = H(S, j, pw), for all j. We thus know we are working with the tuple
(ζ1, . . . , ζn, γ1, . . . , γn).

In the second round, Ui randomly chooses a value z⋆
i ∈ G to be broadcasted, and asks

zi = Dki
(z⋆

i ), using the above simulation (which leads to add αi to the list Λ, unless z⋆
i already

appeared as an encryption result. But the latter event cannot happen with probability greater
than qE/|G|.)

In the third round, Ui recovers zi−1 = Dki−1
(z⋆

i−1) and zi+1 = Dki+1
(z⋆

i+1). But then, two
situations may appear:
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• z⋆
i−1 and z⋆

i+1 have been simulated according to the above simulation of the second round,
and then one gets αi−1 and αi+1 in the list Λ such that zi−1 = ζ

αi−1

i−1 and zi+1 = ζ
αi+1

i+1 ;

• one of the z⋆
j has been previously answered by the encryption oracle in response to an

attacker query Ek(z⋆), where k = H(S, j, pw) is the correct key for player Uj in session S.
We denote such an event by Encrypt. In such a case, we stop the simulation, letting the
adversary win.

If everything runs smoothly, one gets

zi = ζαi
i zi−1 = ζ

αi−1

i−1 zi+1 = ζ
αi+1

i+1 .

One can then correctly compute

Zi = CDH(zi−1, zi) = γ
αi−1αi

i−1 Zi+1 = CDH(zi, zi+1) = γ
αiαi+1

i .

One then broadcasts Xi = Zi+1/Zi. After this final round, everybody can compute the session
key as before. The simulation is still perfect, unless the above bad events happen:

∣∣Pr[S13]− Pr[S12]
∣∣ ≤ qEqpassive

|G|
+ Pr[Encrypt13] ≤

nqEqsession

|G|
+ Pr[Encrypt13].

Game G14: Since it is clear that the security of the above scheme still relies on the DDH
assumption, we now flip the bit β to 1, in order to receive tuples (ζ1, . . . , ζn, γ1, . . . , γn) according
to the PDH$

n distribution (in which the yi’s denote the values logg γi).

∣∣Pr[S14]− Pr[S13]
∣∣ ≤ qsessionAdv

pddhn
G (t)

∣∣Pr[Encrypt14]− Pr[Encrypt13]
∣∣ ≤ qsessionAdv

pddhn
G (t).

Game G15: In order to stop active attacks, where the adversary forges flows, we modify the
computation of the key confirmations: we replace the function Auth by a private one Auth′:
Authi = Auth′(S, {z⋆

j , Xj}j , Ki, i), where

Ki = Zn
i Xn−1

i Xn−2
i+1 · · ·Xi+n−2 = γ

nαi−1αi

i−1 Xn−1
i Xn−2

i+1 · · ·Xi+n−2

= gn(αi−1αiyi−1)Xn−1
i Xn−2

i+1 · · ·Xi+n−2.

Let us list all the information a (powerful) adversary may have, from all the Xj sent by Uj in
the S-th session:

log Xj = yj(αjαj+1)− yj−1(αj−1αj) = Ajyj −Aj−1yj−1.

As explained in [KY03], this does not leak any information about yi−1, since the above system
contains only n−1 independent equations with n unknowns. Any value for yn−1 is thus possible
and would determine all the other values.

Therefore, after this modification, the probability for the adversary to see the difference
between the current and the previous experiments is to query Auth(S, {z⋆

j , Xj}j , Ki, i), which
is upper-bounded by qAuth/|G|.

∣∣Pr[S15]− Pr[S14]
∣∣ ≤ qAuth

|G|

∣∣Pr[Encrypt15]− Pr[Encrypt14]
∣∣ ≤ qAuth

|G|
.

Game G16: Finally, we now derive the session keys using a private random oracle G′:
ski = G′(S, {z⋆

j , Xj ,Authj}j). As above, after the modification of the derivation of the session
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key, the probability for the adversary to see the difference between the current and the previous
experiments is to query G(S, {z⋆

j , Xj ,Authj}j , Ki). Since the previous game, we know that inside
each session, all the honest users have the same view, and thus theses queries are identical: the
probability of such an event can also be upper-bounded by qG/|G|, since no information has
been leaked about Ki (except it does not correspond to the Auth queries asked above.)

∣∣Pr[S16]− Pr[S15]
∣∣ ≤

qG
|G| − qAuth

≤
2qG
|G|

∣∣Pr[Encrypt16]− Pr[Encrypt15]
∣∣ ≤

qG
|G| − qAuth

≤
2qG
|G|

.

Furthermore, because the private oracle G′ is private to the simulator, it is clear that

Pr[S16] =
1

2
.

Game G17: In order to conclude the proof, we need to upper-bound the event Encrypt16.
One can note that the password pw is only used in the simulation of the second and third rounds,
to compute zi, zi−1 and zi+1 (using the elements ζi, ζi−1 and ζi+1), but eventually, we output Xi

only, which are computed from the γi−1 and γi. The latter is totally independent of the former.
We can thus simplify the simulation of the second and third rounds: In the second round,

Ui randomly chooses z⋆
i ∈ G, and sends it (this is exactly as before.) However no decryption is

needed. In the third round, Ui simply computes and sends Xi = γi/γi−1 (this is just to make
sure that the product of the Xi is equal to 1, but we just need random elements satisfying this
relation, since they do not appear anywhere else.) This is a perfect simulation, since one does
not need anymore to compute Ki.

At this point, the password is never used, and can thus be chosen at the very end only,
which makes clear that probability of the Encrypt event is less than the number of first flows
manufactured by the adversary, divided by N . The latter part is upper-bounded by qactive:

Pr[Encrypt16] = Pr[Encrypt17] ≤ qactive/N.

In the above, we used the fact that collisions in the output of H have been eliminated in previous
games.

Putting all equations together, one easily gets the announced bound.

C.6 Conclusion

We described a constant-round password-based key exchange protocol for group, derived from
the Burmester-Desmedt scheme. The protocol is proven secure against dictionary attacks under
the DDH assumption, in the ideal-cipher and random oracle models. It remains an open problem
to find a scheme whose security depends on the number of active sessions rather than on the
number of manufactured flows.
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Appendix D

A Scalable Password-based Group
Key Exchange Protocol in the
Standard Model

ASIACRYPT 2006
[AP06] with D. Pointcheval

Abstract : This paper presents a secure constant-round password-based group key exchange
protocol in the common reference string model. Our protocol is based on the group key exchange
protocol by Burmester and Desmedt and on the 2-party password-based authenticated protocols
by Gennaro and Lindell, and by Katz, Ostrovsky, and Yung. The proof of security is in the
standard model and based on the notion of smooth projective hash functions. As a result, it can
be instantiated under various computational assumptions, such as decisional Diffie-Hellman,
quadratic residuosity, and N -residuosity.

D.1 Introduction

Key exchange is one of the most useful tools in public-key cryptography, allowing users to
establish a common secret which they can then use in applications to achieve both privacy and
authenticity. Among the examples of key exchange protocols, the most classical one is the Diffie-
Hellman protocol [DH76]. Unfortunately, the latter only works between two players and does
not provide any authentication of the players.

Group Key Exchange.

Group key exchange protocols are designed to provide a pool of players communicating over an
open network with a shared secret key which may later be used to achieve cryptographic goals
like multicast message confidentiality or multicast data integrity. Secure virtual conferences
involving up to one hundred participants is an example.

Due to the usefulness of group key exchange protocols, several papers have attempted to ex-
tend the basic Diffie-Hellman protocol to the group setting. Nonetheless, most of these attempts
were rather informal or quite inefficient in practice for large groups. To make the analyses of such
protocols more formal, Bresson et al. [BCP01, BCPQ01] introduced a formal security model for
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group key exchange protocols, in the same vein as [BR94a, BR95, BPR00]. Moreover, they also
proposed new protocols, referred to as group Diffie-Hellman protocols, using a ring structure
for the communication, in which each player has to wait for the message from his predecessor
before producing his own. Unfortunately, the nature of their communication structure makes
their protocols quite impractical for large groups since the number of rounds of communication
is linear in the number of players.

A more efficient and practical approach to the group key exchange problem is the one pro-
posed by Burmester and Desmedt [BD94, BD05], in which they provide a constant-round Diffie-
Hellman variant. Their protocol is both scalable and efficient, even for large groups, since it
only requires 2 rounds of broadcasts. Thus, with reasonable time-out values, one could always
quickly decide whether or not a protocol has been successfully executed. Furthermore, their
protocol has also been formally analyzed, in the above security framework [KY03].

Password-Based Authenticated Key Exchange.

The most classical way to add authentication to key exchange protocols is to sign critical message
flows. In fact, as shown by Katz and Yung [KY03] in the context of group key exchange
protocols, this technique can be made quite general and efficient, converting any scheme that
is secure against passive adversaries into one that is secure against active ones. Unfortunately,
such techniques require the use of complex infrastructures to handle public keys and certificates.
One way to avoid such infrastructures is to use passwords for authentication. In the latter case,
the pool of players who wants to agree on a common secret key only needs to share a low-entropy
password —a 4-digit pin-code, for example— against which an exhaustive search is quite easy
to perform. In password-based protocols, it is clear that an outsider attacker can always guess
a password and attempt to run the protocol. In case of failure, he can try again with a different
guess. After each failure, the adversary can erase one password. Such an attack, known as
“on-line exhaustive search” cannot be avoided, but the damage it may cause can be mitigated
by other means such as limiting the number of failed login attempts. A more dangerous threat is
the “off-line exhaustive search”, also known as “dictionary attack”. It would mean that after one
failure, or even after a simple eavesdropping, the adversary can significantly reduce the number
of password candidates.

In the two-party case, perhaps the most well known Diffie-Hellman variant is the encrypted
key exchange protocol by Bellovin and Merritt [BM92]. However, its security analyses [BPR00,
BMP00, BCP03, BCP04] require ideal models, such as the random oracle model [BR93] or the
ideal cipher model. The first practical password-based key exchange protocol, without random
oracles, was proposed by Katz et al. [KOY01] in the common reference string model and it is
based on the Cramer-Shoup cryptosystem [CS98]. Their work was later extended by Gennaro
and Lindell [GL03] using the more general smooth projective hash function primitive [CS98,
CS02, CS03].

In the group key exchange case, very few protocols have been proposed with password au-
thentication. In [BCP02b, BCP07], Bresson et al. showed how to adapt their group Diffie-
Hellman protocols to the password-based scenario. However, as the original protocols on which
they are based, their security analyses require ideal models and the total number of rounds
is linear in the number of players, making their schemes impractical for large groups. More
recently, several constant-round password-based group key exchange protocols have been pro-
posed in the literature by Abdalla et al. [ABCP06], by Dutta and Barua [DB06], and by Kim,
Lee, and Lee [KLL04]. All of these constructions are based on the Burmester and Desmedt
protocol [BD94, BD05] and are quite efficient, but their security analyses usually require the
random oracle and/or the ideal cipher models. 1 Independently and concurrently to our work,

1In fact, in [ABCP06], Abdalla et al. showed that the protocols by Dutta and Barua [DB06] and by Kim, Lee,
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a new constant-round password-based group key exchange protocol has been proposed by Bohli
et al. [BGS06]. Their protocol is more efficient than ours and also enjoys a security proof in the
standard model.

Contributions.

In this paper, we propose the first password-based authenticated group key exchange protocol
in the standard model. To achieve this goal, we extend the Gennaro-Lindell framework [GL03]
to the group setting, using ideas similar to those used in the Burmester-Desmedt protocol
[BD94, BD05]. In doing so, we take advantage of the smooth projective hash function primi-
tive [CS02] to avoid the use of ideal models. Our protocol has several advantages. First, it is
efficient both in terms of communication, only requiring 5 rounds, and in terms of computation,
with a per-user computational load that is linear in the size of the group. Second, like the
Burmester-Desmedt protocol, our protocol is also contributory since each member contributes
equally to the generation of the common session key. Such property, as pointed out by Steiner,
Tsudik and Waidner [STW00], may be essential for certain distributed applications. Finally, as
in the Gennaro-Lindell framework [GL03], our protocol works in the common reference string
model and is quite general, being built in a modular way from four cryptographic primitives:
a LPKE-IND-CCA-secure labeled encryption scheme, a signature scheme, a family of smooth
projective hash functions, and a family of universal hash functions. Thus, it can be instan-
tiated under various computational assumptions, such as decisional Diffie-Hellman, quadratic
residuosity, and N -residuosity (see [GL03]). In particular, the Diffie-Hellman variant (based
on the Cramer-Shoup cryptosystem [CS98]) can be seen as a generalization of the KOY proto-
col [KOY01] to the group setting.

D.2 Security Model

The security model for password-based group key exchange protocols that we present here is
the one by Bresson et al. [BCP07], which is based on the model by Bellare et al. [BPR00] for
2-party password-based key exchange protocols.

Protocol participants.

Let U denote the set of potential participants in a password-based group key exchange protocol.
Each participant U ∈ U may belong to several subgroups G ⊆ U , each of which has a unique
password pwG associated to it. The password pwG of a subgroup G is known to all the users
Ui ∈ G.

Protocol execution.

The interaction between an adversary A and the protocol participants only occurs via oracle
queries, which model the adversary capabilities in a real attack. During the execution of the
protocol, the adversary may create several instances of a participant and several instances of the
same participant may be active at any given time. Let U 〈i〉 denote the instance i of a participant
U and let b be a bit chosen uniformly at random. The query types available to the adversary
are as follows:

• Execute(U
〈i1〉
1 , . . . , U

〈in〉
n ): This query models passive attacks in which the attacker eaves-

drops on honest executions among the participant instances U
〈i1〉
1 , . . . , U

〈in〉
n . It returns the

messages that were exchanged during an honest execution of the protocol.

and Lee are insecure by presenting concrete attacks against these schemes.
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• Send(U 〈i〉, m): This query models an active attack, in which the adversary may tamper with
the message being sent over the public channel. It returns the message that the participant
instance U 〈i〉 would generate upon receipt of message m.

• Reveal(U 〈i〉): This query models the misuse of session keys by a user. It returns the session
key held by the instance U 〈i〉.

• Test(U 〈i〉): This query tries to capture the adversary’s ability to tell apart a real session
key from a random one. It returns the session key for instance U 〈i〉 if b = 1 or a random
key of the same size if b = 0.

Partnering.

Following [KY03], we define the notion of partnering via session and partner identifiers. Let the
session identifier sidi of a participant instance U 〈i〉 be a function of all the messages sent and
received by U 〈i〉 as specified by the group key exchange protocol. Let the partner identifier pidi

of a participant instance U 〈i〉 is the set of all participants with whom U 〈i〉 wishes to establish
a common secret key. Two instances U

〈i1〉
1 and U

〈i2〉
2 are said to be partnered if and only if

pidi1
1 = pidi2

2 and sidi1
1 = sidi2

2 .

Freshness.

Differently from [KY03], our definition of freshness does not take into account forward security
as the latter is out of the scope of the present paper. Let acci be true if an instance U 〈i〉 goes
into an accept state after receiving the last expected protocol message and false otherwise. We
say that an instance U 〈i〉 is fresh if acci = true and no Reveal has been asked to U 〈i〉 or to any
of its partners.

Correctness.

For a protocol to be correct, it should always be the case that, whenever two instances U
〈i1〉
1 and

U
〈i2〉
2 are partnered and have accepted, both instances should hold the same non-null session

key.

Indistinguishability.

Consider an execution of the group key exchange protocol P by an adversary A, in which the
latter is given access to the Reveal, Execute, Send, and Test oracles and asks a single Test query
to a fresh instance, and outputs a guess bit b′. Let Succ denote the event b′ correctly matches
the value of the hidden bit b used by the Test oracle. The AKE-IND advantage of an adversary
A in violating the indistinguishability of the protocol P and the advantage function of the
protocol P , when passwords are drawn from a dictionary D, are respectively Advake-ind

P,D (A) =

2 · Pr [Succ ]− 1 and Advake-ind
P,D (t, R) = maxA{Advake-ind

P,D (A)} , where maximum is over all A
with time-complexity at most t and using resources at most R (such as the number of queries
to its oracles). The definition of time-complexity that we use henceforth is the usual one, which
includes the maximum of all execution times in the experiments defining the security plus the
code size.

We say that a password-based group key exchange protocol P is secure if the advantage
of any polynomial-time adversary is only negligibly larger than O(q/|D|), where q is number
of different protocol instances to which the adversary has asked Send queries. Given that the
dictionary size can be quite small in practice, the hidden constant in the big-O notation should
be as small as possible (preferably 1) for a higher level of security.
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D.3 Building blocks

D.3.1 Universal Hash Function Families

One of the tools used in our protocol is a family of universal hash functions. A family UH of
universal hash function is a map K × G 7→ R, where K is the key or seed space, G is the
domain of the hash function, and R is the range. For each seed or key k ∈ K, we can define a
particular instance UHk : G 7→ R of the family by fixing the key being used in the computation
of the function. For simplicity, we sometimes omit the seed k from the notation when referring
to a particular instance of the family. Let UHk be a universal hash function chosen at random
from a family UH . One of the properties of universal hash function families in which we are
interested is the one that says that, if an element g is chosen uniformly at random from G, then
the output distribution of UHk(g) is statistically close to uniform in R [HILL99].

D.3.2 Signatures

The signature scheme used in our protocol is the standard one introduced by Goldwasser, Micali,
and Rivest [GMR88]. A standard signature scheme SIG = (SKG, Sign, Ver) is composed of three
algorithms. The key generation algorithm SKG takes as input 1k, where k is a security parameter,
and returns a pair (sk, vk) containing the secret signing key and the public verification key. The
signing algorithm Sign takes as input the secret key sk and a message m and returns a signature
σ for that message. The verification algorithm Ver on input (vk, m, σ) returns 1 if σ is a valid
signature for the message m with respect to the verification key vk.

The security notion for signature schemes needed in our proofs is strong existential unforge-
ability under chosen-message attacks [GMR88]. More precisely, let (sk, vk) be a pair of secret
and public keys for a signature scheme SIG , let Sign(·) be a signing oracle which returns σ =
Sign(sk, m) on input m, and let F be an adversary. Then, consider the experiment in which
the adversary F , who is given access to the public key vk and to the signing oracle Sign(·),
outputs a pair (m, σ). Let {(mi, σi)} denote the set of queries made to the signing oracle with
the respective responses and let Succ denote the event in which Ver(vk, m′, σ′) = 1 and that
(m′, σ′) 6∈ {(mi, σi)}. The SIG-SUF-CMA-advantage of an adversary F in violating the chosen
message security of the signature scheme SIG is defined as Advsig-suf-cma

SIG ,F (k) = Pr [Succ ]. A
signature scheme SIG is said to be SIG-SUF-CMA-secure if this advantage is a negligible func-
tion in k for all polynomial time adversaries (PTAs) F asking a polynomial number of queries
to their signing oracle.

D.3.3 Labeled Encryption

The notion of labeled encryption, first formalized in the ISO 18033-2 standard [Sho04], is a
variation of the usual encryption notion that takes into account the presence of labels in the
encryption and decryption algorithms. More precisely, in a labeled encryption scheme, both
the encryption and decryption algorithms have an additional input parameter, referred to as a
label, and the decryption algorithm should only correctly decrypt a ciphertext if its input label
matches the label used to create that ciphertext.

Formally, a labeled encryption scheme LPKE = (LKG, Enc, Dec) consists of three algorithms.
Via (pk , sk)

$
← LKG(1k), where k ∈ N is a security parameter, the randomized key-generation

algorithm produces the public and secret keys of the scheme. Via c
$
← Enc(pk, l, m; r), the

randomized encryption algorithm produces a ciphertext c for a label l and message m using r
as the randomness. Via m ← Dec(sk, l, c), the decryption algorithm decrypts the ciphertext c
using l as the label to get back a message m.
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The security notion for labeled encryption is similar to that of standard encryption schemes.
The main difference is that, whenever the adversary wishes to ask a query to his Left-or-Right
encryption oracle, in addition to providing a pair of messages (m0, m1), he also has to provide a
target label l in order to obtain the challenge ciphertext c. Moreover, when chosen-ciphertext
security (LPKE-IND-CCA) is concerned, the adversary is also allowed to query his decryption
oracle on any pair (l, c) as long as the ciphertext c does not match the output of a query to
his Left-or-Right encryption oracle whose input includes the label l. Formally, let LPKE =
(LKG, Enc, Dec) be a labeled encryption scheme. To any bit b ∈ {0, 1} and any adversary D, we
associate the experiment:

Experiment Explpke-ind-cca-b
LPKE ,D (k)

(pk, sk)
$
← LKG(1k)

EncList← ∅ ; DecList ← ∅

b′
$
← DEnc(·,·,·),Dec(·,·)(pk)

if (EncList ∩DecList = ∅)
then return b′ else return 0

Oracle Enc(l, m0, m1)

c
$
← Enc(pk, l, mb)

EncList ← EncList ∪ {(l, c)}
return c

Oracle Dec(l, c)
DecList ← DecList ∪ {(l, c)}
return Dec(sk, l, c)

The LPKE-IND-CCA-advantage of an adversary D in violating the chosen-ciphertext indis-
tinguishability of LPKE is defined as

Advlpke-ind-cca
LPKE ,D (k) = Pr

[
Explpke-ind-cca-1

LPKE ,D (k) = 1
]
− Pr

[
Explpke-ind-cca-0

LPKE ,D (k) = 1
]

.

A LPKE scheme LPKE is said to be LPKE-IND-CCA-secure if this advantage is a negligible
function in k for all PTAs D. As shown by Bellare et al. in the case of standard encryption
schemes [BBM00], one can easily show that the Left-or-Right security notion for labeled encryp-
tion follows from the more standard Find-Then-Guess security notion (in which the adversary
is only allowed a single query to his challenging encryption oracle).

D.3.4 Smooth Projective Hash Functions

The notion of projective hash function families was first introduced by Cramer and Shoup [CS02]
as a means to design chosen-ciphertext secure encryption schemes. Later, Gennaro and Lin-
dell [GL03] showed how to use such families to build secure password-based authenticated key
exchange protocols. One of the properties that makes these functions particularly interesting is
that, for certain points of their domain, their values can be computed by using either a secret
hashing key or a public projective key. While the computation using secret hashing key works
for all the points in the domain of the hash function, the computation using a public projective
key only works for a specified subset of the domain. A projective hash function family is said
to be smooth if the value of the function on inputs that are outside the particular subset of the
domain are independent of the projective key. In [GL03], the notion of smooth hash functions
was presented in the context of families of hard (partitioned) subset membership problems. Here
we follow the same approach.

Hard partitioned subset membership problems. Let k ∈ N be a security parameter. In a
family of hard (partitioned) subset membership problem, we first specify two sets X(k) and L(k)
in {0, 1}poly(k) such that L(k) ⊆ X(k) as well as two distributions D(L(k)) and D(X(k) \L(k))
over L(k) and X(k) \ L(k)) respectively. Next, we specify a witness set W(k) ⊆ {0, 1}poly(k)

and a NP-relation R(k) ⊆ X(k)×W(k) such that x ∈ L(k) if and only if there exists a witness
w ∈W(k) such that (x, w) ∈ R(k). Then, we say that a family of subset membership problems is
hard if (X(k), L(k), D(L(k)), D(X(k)\L(k)), W(k), R(k)) instances can be efficiently generated,
that a member element x ∈ L(k) can be efficiently sampled according to D(L(k)) along with a
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witness w ∈ W(k) to the fact that (x, w) ∈ R(k), that non-member elements x ∈ X(k) \ L(k)
can be efficiently sampled according to D(X(k) \ L(k)), and that the distributions of member
and non-member elements cannot be efficiently distinguished. The definition of hard partitioned
subset membership problem is an extension of the one given above in which the set X(k) is
partitioned in disjoint subsets X(k, i) for some index i ∈ {1, . . . , l} and for which for all i it
remains hard to distinguish an element x ∈ L(k, i) chosen according to a distribution D(L(k, i))
from an element x ∈ X(k, i) \ L(k, i) chosen according to a distribution D(X(k, i) \ L(k, i)).

Hard partitioned subset membership problems from labeled encryption. The fam-
ilies of hard partitioned subset membership problems in which we are interested are those
based on LPKE-IND-CCA-secure labeled encryption schemes. More precisely, let LPKE =
(LKG, Enc, Dec) be a LPKE-IND-CCA-secure labeled encryption scheme and let pk be a public
key outputted by the LKG algorithm for a given security parameter k. Let Enc(pk) denote an
efficiently recognizable superset of the space of all ciphertexts that may be outputted by the
encryption algorithm Enc when the public key is pk and let L and M denote efficiently rec-
ognizable supersets of the label and message spaces. Using these sets, we can define a family
of hard partitioned subset membership problems as follows. First, we define the sets X and L
for the family of hard subset membership problems as X(pk) = Enc(pk) × L ×M and L(pk)
= {(c, l, m) | ∃r s.t. c = Enc(pk, l, m; r)}. Next, we define the partitioning of the sets X and L
with respect to the message and label used in the encryption as X(pk, l, m) = Enc(pk) × l ×m
and L(pk, l, m) = {(c, l, m) | ∃r s.t. c = Enc(pk, l, m; r)}. The distribution D(L(pk, l, m)) can
then be defined by choosing a random r ∈ R and outputting the triple (Enc(pk , l, m; r), l, m)
with r as a witness. Likewise, the distribution D(X(pk, l, m) \ L(pk, l, m)) can be defined by
choosing a random r ∈ R and outputting the triple (Enc(pk, l, m′; r), l, m), where m′ is a dummy
message different from m but of the same length. Finally, we define the witness set W(pk) to
be r and the NP-relation R(pk) in a natural way. It is easy to see that the hardness of distin-
guishing non-members from members follows from the LPKE-IND-CCA security of the labeled
encryption scheme.

Smooth projective hash functions. Let HLPKE (pk) = (X(pk), L(pk), D(X(pk , l, m) \
L(pk, l, m)), D(L(pk , l, m)), W(pk), R(pk)) be a family of hard (partitioned) subset membership
problems based on a LPKE-IND-CCA-secure labeled encryption scheme LPKE with security
parameter k. A family of smooth projective hash functions HASH (pk) = (HashKG, ProjKG,

Hash, ProjHash) associated with HLPKE consists of four algorithms. Via hk
$
← HashKG(pk),

the randomized key-generation algorithm produces hash keys hk ∈ HK(pk), where k ∈ N
is a security parameter and pk is the public key of a labeled encryption scheme LPKE . Via
phk

$
← ProjKG(hk, l, c), the randomized key projection algorithm produces projected hash keys

phk ∈ PHK(pk) for a hash key hk with respect to label l and ciphertext c. Via g ← Hash(hk, c,
l, m), the hashing algorithm computes the hash value g ∈ G(pk) of (c, l, m) using the hash key
hk. Via g ← ProjHash(phk , c, l, m; r), the projected hashing algorithm computes the hash value
g ∈ G(pk) of (c, l, m) using the projected hash key phk and a witness r to the fact that c is a
valid encryption of message m with respect to the public-key pk and label l.

Properties. The properties of smooth projective hash functions in which we are interested are
correctness, smoothness, and pseudorandomness.

Correctness.

Let LPKE be a labeled encryption scheme and let pk be a public key outputted by the LKG
algorithm for a given security parameter k. Let c = Enc(pk, l, m; r) be the ciphertext for a
message m with respect to public key pk and label l computed using r as the randomness.
Then, for any hash key hk ∈ HK(pk) and projected hash key phk

$
← ProjKG(hk, l, c), the values

— 135 —



Chapter D. Scalable Password-based Group Key Exchange in the Standard Model

Hash(hk, c, l, m) and ProjHash(phk, c, l, m, r) are the same.

Smoothness.

Let hk ∈ HK(pk) be a hash key and let phk ∈ PHK(pk) be a projected hash key for hk with
respect to l and c. Then, for every triple (c, l, m) for which c is not a valid encryption of message
m with respect to the public-key pk and label l (i.e., (c, l, m) ∈ X(pk, l, m) \ L(pk, l, m)), the
hash value g = Hash(hk, c, l, m) is statistically close to uniform in G and independent of the
values (phk , c, l, m).

Pseudorandomness.

Let LPKE be a LPKE-IND-CCA-secure labeled encryption scheme, let pk be a public key out-
putted by the LKG algorithm for a given security parameter k, and let (l, m) ∈ L ×M be
a message-label pair. Then, for uniformly chosen hash key hk ∈ HK(pk) and randomness
r ∈ R(pk), the distributions {c = Enc(pk, l, m; r), l, m, phk

$
← ProjKG(hk, l, c), g ← Hash(hk,

c, l, m)} and {c = Enc(pk, l, m; r), l, m, phk
$
← ProjKG(hk, l, c), g

$
← G} are computationally

indistinguishable.
More formally, let LPKE = (LKG, Enc, Dec) be a LPKE-IND-CCA-secure labeled encryption

scheme, pk be a public key outputted by the LKG algorithm for a given security parameter k,
and let HLPKE = (X(pk), L(pk), D(X(pk , l, m) \ L(pk, l, m)), D(L(pk , l, m)), W(pk), R(pk)) be
a family of hard (partitioned) subset membership problems based on LPKE . To any adversary
D, consider the experiments Exph-prf-real

HASH ,D (k) and Exph-prf-random
HASH ,D (k), defined as follows.

Exph-prf-real
HASH ,D (k)

(pk, sk) $
← LKG(1k)

EncList← ∅
b ← DEnc(·,·),Hash(·,·,·)(pk)
return b

Oracle Enc(l, m)

c
$
← Enc(pk, l, m)

EncList← EncList ∪ {(l, m, c)}
return c

Oracle Hash(l, m, c)
if (l, m, c) 6∈ EncList

then return ⊥
hk

$

← HashKG(pk)
phk

$
← ProjKG(hk, l, c)

g ← Hash(hk, l, m, c)
return (phk, g)

Exph-prf-random
HASH ,D (k)

(pk, sk) $
← LKG(1k)

EncList← ∅
b ← DEnc(·,·),Hash(·,·,·)(pk)
return b

Oracle Enc(l, m)

c
$
← Enc(pk, l, m)

EncList← EncList ∪ {(l, m, c)}
return c

Oracle Hash(l, m, c)
if (l, m, c) 6∈ EncList

then return ⊥
hk

$
← HashKG(pk)

phk
$

← ProjKG(hk, l, c)

g
$
← G

return (phk, g)

Then, for every (non-uniform) PTAsD, the advantage Advh-prf
HASH ,D(k) = Pr

[
Exph-prf-real

LPKE ,D (k) = 1
]

− Pr
[

Exph-prf-random
LPKE ,D (k) = 1

]
is a negligible function in k.

Examples. To provide the reader with an idea of how efficient smooth projective hash func-
tions are, we recall here the example given in [GL03] based on the Cramer-Shoup encryption
scheme [CS98].

The labeled version of the Cramer-Shoup scheme works as follows. Let G be a cyclic group
of prime order q where q is large. The key generation algorithm chooses two additional random
generators g1, g2 in G, a collision-resistant hash function H, and random values z, z̃1, z̃2, ẑ1,
ẑ2 in Zq with z 6= 0. The secret key is set to (z, z̃1, z̃2, ẑ1, ẑ2) and the public key is defined to
be (h, h̃, ĥ, g1, g2, H), where h = gz

1 , h̃ = gz̃1
1 gz̃2

2 , and ĥ = gẑ1
1 gẑ2

2 . To encrypt a message m ∈ G
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with respect to label l, the sender chooses r ∈ Zq , and computes u1 = gr
1 , u2 = gr

2 , e = hr ·m,
θ = H(l, u1, u2, e) and v = (h̃ĥθ)r. The ciphertext is c = (u1, u2, e, v). To decrypt a ciphertext
c = (u1, u2, e, v) with respect to label l, the receiver computes θ = H(l, u1, u2, e) and tests if v
equals uz̃1+θẑ1

1 uz̃2+θẑ2
2 . If equality does not hold, it outputs ⊥; otherwise, it outputs m = eu−z

1 .
The smooth projective hashing for the labeled Cramer-Shoup encryption scheme is then

defined as follows. The hash key generation algorithm HashKG simply sets the key hk to be the
tuple (a1, a2, a3, a4) where each ai is a random value in Zq. The key projection function ProjKG,
on input (hk, l, c), first computes θ = H(l, u1, u2, e) and outputs phk = ga1

1 ga2
2 ha3(h̃ĥθ)a4 . The

hash function Hash on input (hk, c, l, m) outputs ua1
1 ua2

2 (e/m)a3 va4 . The projective hash function
ProjHash on input (phk , c, l, m, r) simply outputs phkr.

D.4 A scalable password-based group key exchange protocol

In this section, we finally present our password-based group key exchange protocol. Our protocol
is an extension of the Gennaro-Lindell password-based key exchange protocol [GL03] to the group
setting and uses ideas similar to those used in the Burmester-Desmedt group key exchange
protocol [BD05]. The Gennaro-Lindell protocol itself is an abstraction of the password-based
key exchange protocol of Katz, Ostrovsky, and Yung [KOY01, KOY02]. Like the Gennaro-
Lindell protocol, our protocol is built in a modular way from four cryptographic primitives:
a LPKE-IND-CCA-secure labeled encryption scheme, a signature scheme, a family of smooth
projective hash functions, and a family of universal hash functions. Thus, our protocol enjoys
efficient instantiations based on the decisional Diffie-Hellman, quadratic residuosity, and N -
residuosity assumptions (see [GL03]). Like the Burmester-Desmedt group key exchange protocol,
our protocol only requires a constant number of rounds and low per-user computation.

As done in the Gennaro-Lindell protocol, we also assume the existence of a mechanism to
allow parties involved in the protocol to differentiate between concurrent executions as well as
identify the other parties with which they are interacting. As in their case, this requirement is
only needed for the correct operation of the protocol. No security requirement is imposed on
this mechanism.

D.4.1 Protocol Description

Overview. As in the Burmester-Desmedt protocol, our protocol assumes a ring structure for
the users so that we can refer to the predecessor and successor of a user. Moreover, we associate
each user with an index i between 1 and n, where n is the size of the group. After deciding
on the order of the users, our protocol works as follows. First, each user in the group executes
two correlated instances of the Gennaro-Lindell protocol, one with his predecessor and one with
his successor so each user can authenticate his neighbors (this accounts for the first 3 rounds of
the protocol). However, instead of generating a single session key in each of these instances, we
modify the original Gennaro-Lindell protocol so that two independent session keys are generated
in each session (this requires an extra hash key and an extra projection key per user). We then
use the first one of these as a test key to authenticate the neighbor with whom that key is shared
and we use the other one to help in the computation of the group session key, which is defined
as the product of these latter keys. To do so, we add one more round of communication like in
the Burmester-Desmedt protocol, so that each user computes and broadcasts the ratio of the
session keys that he shares with his predecessor and successor. After this round, each user is
capable of computing the group session key. However, to ensure that all users agree on the same
key, a final round of signatures is added to the protocol to make sure that all users compute the
group session key based on the same transcript. The key used to verify the signature of a user
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is the same one transmitted by that user in the first round of the Gennaro-Lindell protocol.

User Ui

pidi = {U1, . . . , Un}

(ski, vki)
$
← SKG(1k)

li = vki ‖U1 ‖ . . . ‖Un

cR
i = Enc(pk, li, pw; rR

i )

li, cR
i

−−−−−−−−→

hkL
i

$
← HK(pk)

phkL
i

$
← ProjKG(hkL

i , li−1, cR
i−1)

cL
i = Enc(pk, li, pw; rL

i )

phkL
i
, cL

i
−−−−−−−−→

hki, hkR
i

$
← HK(pk)

phki
$
← ProjKG(hki, li+1, cL

i+1)

phkR
i

$
← ProjKG(hkR

i , li+1, cL
i+1)

KL
i+1 = ProjHash(phkL

i+1, cR
i , li, pw, rR

i )

KR
i = Hash(hkR

i , cL
i+1, li+1, pw)

XR
i = KL

i+1 ·K
R
i

testR
i = UH1(XR

i )
σR

i = Sign(ski, TR
i )

phki, phkR
i
, testR

i
, σR

i
−−−−−−−−−−−−−→

if Ver(vki−1, TR
i−1, σR

i−1) = 0 then acci = false

KL
i = Hash(hkL

i , cR
i−1, li−1, pw)

KR
i−1 = ProjHash(phkR

i−1, cL
i , li, pw, rL

i )

XL
i = KL

i ·K
R
i−1

if testR
i−1 6= UH1(XL

i ) then acci = false

testL
i = UH2(XL

i )
Ki = Hash(hki, cL

i+1, li+1, pw)

Ki−1 = ProjHash(phki−1, cL
i , li, pw, rL

i )
Xi = Ki/Ki−1

Xi, testL
i

−−−−−−−−→

if testL
i+1 6= UH2(XR

i ) then acci = false

if
∏n

l=1
Xl 6= 1 then acci = false

T = T1 ‖ . . . ‖Tn

σi = Sign(ski, T)

σi−−−−−−−−→

for j = 1, . . . , i− 1, i + 1, . . . , n
if Ver(vkj , T , σj) = 0 then acci = false

MSK = Kn
i ·
∏n−1

j=1
X

n−j
i+j

SK = UH′(MSK)
acci = true

sidi = T

Figure D.1: An honest execution of the password-authenticated group key exchange protocol by
player Ui in a group {U1, . . . , Un}, where T R

i = Ui ‖Ui+1 ‖ cR
i ‖ cL

i+1 ‖ phki ‖ phkR
i ‖ phkL

i+1 ‖ testR
i

and Ti = vki ‖Ui ‖ ci ‖ phk i ‖ phkL
i ‖ phkR

i ‖Xi ‖XL
i for i = 1, . . . , n.

For a pictorial description of our protocol, please refer to Figure D.1. The formal description
follows.

Description. Let LPKE = (LKG, Enc, Dec) be a labeled encryption scheme, let SIG = (SKG,
Sign, Ver) be a signature scheme, and let HASH (pk) = (HashKG, ProjKG, Hash, ProjHash) be
a family smooth projective hash functions based on LPKE . Let UH : G 7→ {0, 1}2l and
UH′ : G 7→ {0, 1}l be two universal hash functions chosen uniformly at random from the
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families UH and UH ′ and let UH1(g) and UH2(g) refer to the first and second halves of UH(g).
Let U1, . . . , Un be the users wishing to establish a common secret key and let pw be their joint
password chosen uniformly at random from a dictionary Dict of size N . We assume pw either
lies in the message space M of LPKE or can be easily mapped to it. Our protocol has a total of
five rounds of communication and works as follows.

Initialization.

A trusted server runs the key generation algorithm LKG on input 1k, where k ∈ N is a security
parameter, to obtain a pair (pk, sk) of secret and public keys and publishes the public key pk
along with randomly selected universal hash function UH and UH′ from the families UH and
UH ′.

Round 1.

In this first round, each player Ui for i = 1, . . . , n starts by setting the partner identifier pidi

to {U1, . . . , Un}. Then, each player Ui generates a pair (ski, vki) of secret and public keys for a
signature scheme and a label li = vki ‖U1 ‖ . . . ‖Un. Next, each player encrypts the joint group
password pw using the encryption algorithm Enc with respect to the public key pk and label
li using rR

i as the randomness. Let cR
i denote the resulting ciphertext (i.e., cR

i = Enc(pk, li, pw;
rR

i )). At the end of this round, each player Ui broadcasts the pair (li, cR
i ).

Round 2.

In this second round, each player Ui for i = 1, . . . , n encrypts once more the joint group password
pw using the encryption algorithm Enc with respect to the public key pk and label li using rL

i as
the randomness. Let cL

i denote the resulting ciphertext (i.e., cL
i = Enc(pk, li, pw; rL

i )). Next, each
player Ui chooses a hash key hkL

i uniformly at random from HK(pk) for the smooth projective
hash function and then generates a projection key phkL

i for it with respect to the pair (cR
i−1, li−1).

That is, phkL
i

$
← ProjKG(hkL

i , li−1, cR
i−1). Here and in other parts of the protocol, the indices are

taken modulo n. At the end of this round, each player Ui broadcasts the pair (cL
i , phkL

i ).

Round 3.

In this round, player Ui first chooses two new hash keys hki and hkR
i uniformly at random from

HK(pk) for the smooth projective hash function. Next, player Ui generates two projection keys
phki and phkR

i for the hash keys hki and hkR
i , both with respect to the pair (cL

i+1, li+1). That is,

phki
$
← ProjKG(hki, li+1, cL

i+1) and phkR
i

$
← ProjKG(hkR

i , li+1, cL
i+1). Then, player Ui computes a

test master key XR
i = K L

i+1 ·K
R
i for its successor, where K L

i , Hash(hkL
i , cR

i−1, li−1, pw) and K R
i ,

Hash(hkR
i , cL

i+1, li+1, pw). Note that player Ui can compute K R
i using hkR

i and K L
i+1 using phkL

i+1

and the witness rR
i to the fact that cR

i is a valid encryption of pw with respect to pk and li.
Finally, player Ui computes a test key testR

i = UH1(XR
i ), sets T R

i = Ui ‖Ui+1 ‖ cR
i ‖ cL

i+1 ‖ phki ‖
phkR

i ‖ phkL
i+1 ‖ testR

i , and computes a signature σR
i on T R

i using ski. At the end of this round,
player Ui broadcasts the tuple (phk i, phkR

i , testR
i , σR

i ).

Round 4.

In this round, each player Ui first verifies if the signature σR
i−1 on the transcript T R

i−1 is correct
using vki−1. If this check fails, then player Ui halts and sets acci = false. Otherwise, player Ui

computes the values K L
i and K R

i−1, using the hash key hkL
i and the projection key phkR

i−1 along
with the witness rL

i to the fact that cL
i is a valid encryption of pw with respect to pk and li.

That is, K L
i = Hash(hkL

i , cR
i−1, li−1, pw) and K R

i−1 = ProjHash(phkR
i−1, cL

i , li, pw, rL
i ). Next, player

Ui computes the test master key XL
i = K L

i · K
R
i−1 for its predecessor and verifies if testR

i−1 =
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UH1(XL
i ). Once again, if this test fails, then player Ui halts and sets acci = false. If this test

succeeds, then player Ui computes a test key testL
i = UH2(XL

i ) for its predecessor and an auxiliary
key Xi = Ki/Ki−1, where Ki , Hash(hk i, cL

i+1, li+1, pw). More precisely, player Ui computes the
value Ki using the hash key hki and the value Ki−1 using the projection key phki−1 along with
the witness rL

i to the fact that cL
i is a valid encryption of pw with respect to pk and li. Finally,

each player Ui broadcasts the pair (Xi, testL
i ).

Round 5.

First, each player Ui checks whether testL
i+1 = UH2(XR

i ) and whether
∏n

l=1 Xl = 1. If any of
these tests fails, then player Ui halts and sets acci = false. Otherwise, each player Ui sets Tj =
vkj ‖Uj ‖ cj ‖ phkj ‖ phkL

j ‖ phkR
j ‖Xj ‖XL

j for j = 1, . . . , n and T = T1 ‖ . . . ‖Tn and then signs
it using ski to obtain σi. Finally, each player Ui broadcasts σi.

Finalization.

Each player Ui checks for j 6= i whether σj is a valid signature on T with respect to vkj. If
any of these checks fails, then player Ui halts and sets acci = false. Otherwise, player Ui sets
acci = true and computes the master key MSK =

∏n
j=1 Kj = K n

i · X
n−1
i+1 · X

n−2
i+2 · . . . · X2

i+n−3 ·
Xi+n−1, and the session key SK = UH′(MSK ). Each player Ui also sets the session identifier
sidi to T .

Observation.

Let Ki , Hash(hki, cL
i+1, li+1, pw), K R

i , Hash(hkR
i , cL

i+1, li+1, pw), and K L
i , Hash(hkL

i , cR
i−1, li−1,

pw) denote temporary keys. In a normal execution of the protocol, the temporary keys Ki and
K R

i are known to both player Ui (who knows hki and hkR
i ) and his successor Ui+1 (who knows

phki, phkR
i , and the witness rL

i+1 to the fact that cL
i+1 is a valid encryption of pw with respect

to pk and li+1). Likewise, the temporary key K L
i is known to both player Ui (who knows hkL

i )
and his predecessor Ui−1 (who knows phkR

i and the witness rR
i−1 to the fact that cR

i−1 is a valid
encryption of pw with respect to pk and li−1).

D.4.2 Correctness and Security

Correctness. In an honest execution of the protocol, it is easy to verify that all participants in
the protocol will terminate by accepting and computing the same values for the partner identifier,
session identifiers, and the session key. The session key in this case is equal to

∏n
j=1 Hash(hkj ,

cj+1, lj+1, pw) =
∏n

j=1 Kj .

Security. As the following theorem shows, the GPAKE protocol described above and in Fig-
ure D.1 is a secure password-based authenticated group key exchange protocol as long as the
primitives on which the protocol is based meet the appropriate security notion described in the
theorem.

Theorem D.4.1 Let LPKE be a labeled encryption secure against chosen-ciphertext attacks, let
HASH be a family of smooth projective hash functions, let UH and UH ′ be families of universal
hash functions, and let SIG be a signature scheme that is unforgeable against chosen-message
attacks. Let GPAKE denote the protocol built from these primitives as described above and let A
be an adversary against GPAKE . Then, the advantage function Advake-ind

GPAKE ,A(k) is only negligibly
larger than O(q/N ), where q denotes the maximum number of different protocol instances to
which A has asked Send queries and N is the dictionary size.
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The proof of Theorem D.4.1 is in Appendix D.5. In it, we actually show that the security of
our protocol is only negligibly larger than (qsend-1 +qsend-2)/N , where qsend-1 and qsend-2 represent
the maximum number of Send queries that the adversary can ask with respect to the first and
second round of communication and N is dictionary size. Even though we believe this security
level is good enough for groups of small to medium sizes, it may not be sufficient in cases where
the number of users in a group is large and the dictionary size is small. In the latter case, it
would be desirable to have a scheme whose security is only negligibly larger than the number of
sessions (and not protocol instances) over the size of the dictionary. Unfortunately, the latter
cannot be achieved by our protocol as it is possible for an active adversary to test in the same
session a number of passwords that is linear in the total number of users, for instance by playing
the role of every other user.

D.4.3 Efficiency

Our protocol is quite efficient, only requiring a small amount of computation by each user. In
what concerns encryption and hash computations, each user only has to perform 2 encryptions, 3
projection key generations, 3 hash computations, 3 projected hash computations, and 5 universal
hash computations. The most expensive part of our protocol, which is linear in the group size, is
the number of signature verifications and the master session key computation. While the latter
computation can be improved by using algorithms for multi-exponentiations, the former can be
improved by using two-time signature schemes.

It is worth mentioning here that, as done by Katz et al. [KMTG05] in the case of the KOY
protocol [KOY01], one could also improve the efficiency of our protocol by using two different
encryption schemes in the computation of the ciphertexts cR

i and cL
i broadcasted in the first

and second rounds. While the computation of the ciphertexts cR
i would require a CCA-secure

labeled encryption scheme, the computation of the ciphertexts cL
i would only require a CPA-

secure encryption scheme. To show that this would actually be the case, one would need to
modify the proofs of lemmas D.5.9 and D.5.13 in Appendix D.5. In the case of the proof of
Lemma D.5.9 (which would rely on the CPA-secure encryption scheme), the decryption oracle
can be avoided by using the secret key for the CCA-secure labeled encryption scheme to check
the validity of a ciphertext cR

i . In the case of the proof of Lemma D.5.13 (which would rely on
the CCA-secure labeled encryption scheme), one would only need the decryption oracle to check
the validity of a ciphertext cR

i , since the validity of a ciphertext cL
i would be checked using the

secret key for the CPA-secure encryption scheme.

D.4.4 Future Work

One issue not addressed in the current paper is whether our protocol remains secure in the
presence of Corrupt queries, through which the adversary can learn the values of the long-term
secret keys held by a user. This is indeed a significant limitation of our security model which
we expect to address in a future version of this paper. In fact, we do hope to be able to prove
that our protocol achieves forward security according to the definition given in [KY03].
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D.5 Appendix: Proof of Theorem D.4.1
Notation.

Before proceeding with the proof of Theorem D.4.1, we define some basic notation and termi-
nology that will be used in the proof. We start by classifying the Send queries into 6 categories,
depending on the stage of the protocol to which the query is associated.

• Send0. This query has the form (U
〈j〉
i , {U1, . . . , Un}) and denotes the initial Send query

made to user instance U
〈j〉
i when executing the protocol in a group G = {U1, . . . , Un}

that contains user Ui. The output of this query is the pair (li, cR
i ) that user instance U

〈j〉
i

generates in the first round of communication.

• Send1. This query has the form (U
〈j〉
i , {(l1, cR

1), . . . , (ln, cR
n)}, {U1, . . . , Un}) and denotes the

second Send query to user instance U
〈j〉
i . It returns the tuple (phkL

i , cL
i ) that instance U

〈j〉
i

would generate on input {(l1, cR
1), . . . , (ln, cR

n)}.

• Send2. This query has the form (U
〈j〉
i , {(phkL

1, cL
1), . . . , (phkL

n, cL
n)}, {U1, . . . , Un}) and de-

notes the third Send query to user instance U
〈j〉
i . It returns the tuple (phki, phkR

i , testR
i ,

σR
i ) that instance U

〈j〉
i would generate on input {(phkL

1, cL
1), . . . , (phkL

n, cL
n)}.

• Send3. This query has the form (U
〈j〉
i , {(phk1, phkR

1, testR
1, σR

1), . . . , (phkn, phkR
n, testR

n, σR
n)},

{U1, . . . , Un}) denotes the fourth Send query to user instance U
〈j〉
i . It returns the pair (Xi,

testL
i ) that instance U

〈j〉
i would generate on input {(phk1, phkR

1, testR
1, σR

1), . . . , (phkn, phkR
n,

testR
n, σR

n)}.

• Send4. This query has the form (U
〈j〉
i , {(X1, testL

1), . . . , (Xn, testL
n)}, {U1, . . . , Un}) denotes

the fifth Send query to user instance U
〈j〉
i . It returns the signature σi that instance U

〈j〉
i

would generate on input {(X1, testL
1), . . . , (Xn, testL

n)}.

• Send5(U
〈j〉
i , {σ1, . . . , σn}, {U1, . . . , Un}). This denotes the last Send query to user instance

U
〈j〉
i . This query forces instance U

〈j〉
i to either halt and reject (setting accj

i = false) or to
halt, accept (setting accj

i = true), and compute a session key. It has no output.

We say a message is t-oracle-generated if that message has been generated by an oracle in
round t of some session. We say that a ciphertext-label pair (cR, l = vk ‖U1 ‖ . . . ‖Un) is valid

for U
〈j〉
i if cR is a valid encryption of the password pwG with respect to the public key pk and

the label l, and pidj
i = G = {U1, . . . , Un}.

Proof of Theorem D.4.1.

Let A be an adversary against our password-based group key exchange protocol GPAKE . The
goal of proof is to show that the advantage of A in breaking the semantic security of GPAKE
is only negligibly better than qsend-1 + qsend-2 over the size of the dictionary. To do so, our
proof uses a sequence of hybrid experiments, the first of which corresponds to the actual attack.
For each hybrid experiment Hybn, we define an event Succn corresponding to the case in
which the adversary A correctly guesses the bit b involved in the Test query. Likewise, we
also define the corresponding advantage of the adversary A in each of these experiments to be
Advake-ind

GPAKE ,A,Hybn
(k) = 2 · Pr [Succn ]− 1.

Hybrid experiment Hyb0. This first experiment corresponds to a real attack, in which all the
parameters, such as the public parameters in the common reference string and the passwords
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associated with each group of users, are chosen as in the actual scheme. By definition, the
advantage of an adversary A in guessing the bit b involved in the Test query in this experiment
is exactly the same as in the real attack.

Advake-ind
GPAKE ,A,Hyb0

(k) , Advake-ind
GPAKE ,A(k) (D.1)

Hybrid experiment Hyb1. In this experiment, we change the simulation of the Execute oracle
so that the values Ki, K L

i , and K R
i for i = 1, . . . , n are chosen uniformly at random from G, where

n is the size of the group G. As the lemma below shows, the difference in the advantage between
the current experiment and previous one is a negligible function of the security parameter. This
is due to pseudorandomness property of the smooth projective hash function.

Lemma D.5.1
∣∣Advake-ind

GPAKE ,A,Hyb1
(k)−Advake-ind

GPAKE ,A,Hyb0
(k)
∣∣ ≤ neg(k).

Proof: To prove this lemma, we show how to construct an adversary D against the pseudo-
randomness property of the smooth projective hash function from an adversary A capable of
distinguishing the current experiment from the previous one.

To do so, we recall that the adversary D is given a public key pk for a labeled encryption scheme
and access to two oracles: Enc(·, ·) and Hash(·, ·, ·). The oracle Enc(·, ·) receives as input
a message m and a label l and outputs a ciphertext c, which is an encryption of message m
with respect to the public key pk and the label l. The oracle Hash(·, ·, ·) receives as input a
label l, a message m, and a ciphertext c. If the ciphertext c is not the result of a previous
query (l, m) to the oracle Enc, then it outputs ⊥. Otherwise, the oracle Hash computes a
hash key hk via hk

$
← HashKG(pk) and a projection hash key phk as phk

$
← ProjKG(hk, l, c).

Then, Hash computes the output g of the hash function in one of two ways depending on the
experiment in which it is. In experiment Exph-prf-real

HASH ,D (k), Hash sets g to Hash(hk, l, m, c) .

In experiment Exph-prf-random
HASH ,D (k), it sets g to a random value in G. Finally, Hash outputs

(phk, g). The goal of adversary D is to tell the exact experiment with which he is dealing. By
the pseudorandomness property of a smooth projective hash function, no adversary D should
be able to distinguish the experiment Exph-prf-random

HASH ,D (k) from the experiment Exph-prf-real
HASH ,D (k)

with non-negligible probability.

We construct an adversary D as follows. First, D uses pk to initialize the common reference
string exactly as in the experiment Hyb0. Then, whenever A asks a Send or Execute query with
respect to a group G for which no password has been defined, then D chooses a password pwG
for that group uniformly at random from the dictionary Dict. Then, D continues to simulate
all of A’s oracles exactly as in experiment Hyb0 except when computing the values cR

i , cL
i , phk i,

phkL
i , phkR

i , Ki, K L
i , and K R

i in a Execute query for a group G. To compute the latter values,
D makes uses of its Enc and Hash oracles. That is, D first computes cR

i = Enc(li, pwG) and
cL

i = Enc(li, pwG) for i = 1, . . . , |G|. Next, D queries its oracle Hash three times for each i in
{1, . . . , |G|} on inputs (li−1, cR

i−1), (li+1, cL
i+1), and (li+1, cL

i+1), to obtain respectively the values
(phkL

i , K L
i ), (phkR

i , K R
i ), and (phki, Ki). Finally, D continues the simulation of the Execute query

using the values above exactly as in the experiment Hyb0. At the end of the simulation, D
outputs the same guess as A.

One can easily see that, whenever D is in experiment Exph-prf-real
HASH ,D (k), then its simulation of

the Execute oracle is performed exactly as in experiment Hyb0. Moreover, whenever D is
in experiment Exph-prf-random

HASH ,D (k), then its simulation of the Execute oracle is performed ex-
actly as in experiment Hyb1. Thus, the probability that D distinguishes between experiments
Exph-prf-real

HASH ,D (k) and Exph-prf-random
HASH ,D (k) is exactly Advake-ind

GPAKE ,A,Hyb1
(k) − Advake-ind

GPAKE ,A,Hyb0
(k).
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Thus, the proof of Lemma D.5.1 follows from the pseudorandomness property of the family of
smooth projective hash functions.

Hybrid experiment Hyb2. In this experiment, we change again the simulation of the Execute

oracle so that the master key MSK i computed by each player in an Execute query is chosen
uniformly at random from the group G. As the lemma below shows, the difference in the
advantage between the current experiment and previous one is a negligible function of the
security parameter. The arguments used to prove this lemma are in fact information theoretic.

Lemma D.5.2 Advake-ind
GPAKE ,A,Hyb2

(k) = Advake-ind
GPAKE ,A,Hyb1

(k).

Proof: The proof of Lemma D.5.2 uses an argument similar to the one used by Katz and Yung
in their proof of Burmester-Desmedt protocol [KY03]. First, we note that in the simulation of
Execute oracle in experiment Hyb1, the values Ki for i = 1, . . . , |G| are all chosen at random
in G. Second, let g denote a generator for G. We note that, from the transcript T that the
adversary receives as output for an Execute query, the values Ki are constrained by the following
|G| equations.

logg X1 = logg K1 − logg K|G|

...

logg X|G| = logg K|G| − logg K|G|−1.

Of these equations, only |G| − 1 are linearly independent. Finally, the master key computed by
the players defines an additional equation

logg MSK =

|G|∑

i=1

logg Ki.

Since the last equation is linearly independent of the previous ones, the master secret key MSK i

that each player in the group G computes in an Execute query is independent of the transcript T
that the adversaryA sees. Thus, no computationally unbounded adversaryA can tell experiment
Hyb2 apart from Hyb1. As a result, for any A, Advake-ind

GPAKE ,A,Hyb2
(k) = Advake-ind

GPAKE ,A,Hyb1
(k).

Hybrid experiment Hyb3. In this experiment, we change once more the simulation of the
Execute oracle so that the session key SK i computed by each player in an Execute query
is chosen uniformly at random in {0, 1}l . As the lemma below shows, the difference in the
advantage between the current experiment and previous one is a negligible function of the
security parameter. The proof of Lemma D.5.3 follows easily from the properties of the family
of universal hash functions UH ′, which guarantees that its output is statistically close to uniform
in {0, 1}l when given a random value in G as input.

Lemma D.5.3
∣∣Advake-ind

GPAKE ,A,Hyb3
(k)−Advake-ind

GPAKE ,A,Hyb2
(k)
∣∣ ≤ neg(k).

Hybrid experiment Hyb4. In this experiment, we change one last time the simulation of
the Execute oracle so that the password pwG associated with a group G is no longer used.
More specifically, when simulating an Execute query, the ciphertexts cR

i and cL
i that each player

Ui ∈ G computes becomes the encryption of a dummy password pw′G 6= pwG . As the lemma
below shows, the difference in the advantage between the current experiment and previous one
is a negligible function of the security parameter. The proof of Lemma D.5.4 follows from the
semantic security of the labeled encryption scheme LPKE .
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Lemma D.5.4
∣∣Advake-ind

GPAKE ,A,Hyb4
(k)−Advake-ind

GPAKE ,A,Hyb3
(k)
∣∣ ≤ neg(k).

Proof: To prove this lemma, we show how to construct an adversary D against the chosen-
ciphertext indistinguishability of LPKE from an adversaryA capable of distinguishing the current
experiment from the previous one. We recall that the adversary D is given a public key pk for
the labeled encryption scheme and access to two oracles: the Left-or-Right encryption oracle
Enc(·, ·, ·) and a decryption oracle Dec(·, ·). The latter, however, is not needed in this part of
the proof.

We construct an adversary D as follows. First, D uses pk to initialize the common reference
string exactly as in the experiment Hyb3. Then, whenever A asks a Send or Execute query with
respect to a group G for which no password has been defined, then D first chooses a password
pwG for that group uniformly at random from the dictionary Dict. At this time, D also chooses
a dummy password pw′G 6= pwG of the appropriate length. Next, D continues to simulate all of
A’s oracles exactly as in experiment Hyb3 except when computing the ciphertext values cR

i and
cL

i in a Execute query for a user group G. To compute the latter values, D makes uses of its
Left-or-Right encryption oracle Enc. More precisely, D computes cR

i = Enc(li, pwG , pw′G) and
cL

i = Enc(li, pwG , pw′G) for i = 1, . . . , |G|. Finally, D continues the simulation of the remaining
part of the Execute query exactly as in the experiment Hyb3, choosing the session key SK i

of each player Ui and the intermediate values K L
i , K R

i , and Ki uniformly at random in their
respective groups. At the end of the simulation, D outputs the same guess as A.

One can easily see that, whenever D is in experiment Explpke-ind-cca-0
LPKE ,D (k), then its simula-

tion of the Execute oracle is performed exactly as in experiment Hyb3, since in this case
the Left-or-Right encryption oracle Enc always returns the encryption of the actual password.
Moreover, whenever D is in experiment Explpke-ind-cca-1

LPKE ,D (k), then its simulation of the Execute

oracle is performed exactly as in experiment Hyb4, since in this case the Left-or-Right encryp-
tion oracle Enc always returns the encryption of a dummy password. Thus, the probability
that D distinguishes between experiments Explpke-ind-cca-1

LPKE ,D (k) and Explpke-ind-cca-0
LPKE ,D (k) is exactly

Advake-ind
GPAKE ,A,Hyb4

(k) −Advake-ind
GPAKE ,A,Hyb3

(k). Thus, the proof of Lemma D.5.4 follows from the
chosen-ciphertext indistinguishability of LPKE .

Hybrid experiment Hyb5. In this new experiment, we change the simulation of the Send

oracle of an instance U
〈j〉
i whenever the latter receives an 1-oracle-generated ciphertext cR

i−1

(the one that should have been created by its predecessor) in Send1 query. Let U
〈j′〉
i′ be the

instance that created this ciphertext (note that i′ may or may not be equal to i − 1). More
precisely, if the instance U

〈j〉
i does not reject after a Send3 query (by setting accj

i = false), then
the values Ki−1 and K R

i−1 are chosen uniformly at random from G. Remember from the protocol

that instance U
〈j〉
i halts and sets accj

i = false whenever the signature σR
i−1 on the transcript T R

i−1

with respect to vki−1 is not valid or the test session key testR
i−1 is not correct. Furthermore,

if i′ = i − 1 and the values cR
i−1 and cL

i seen by instances U
〈j〉
i and U

〈j′〉
i′ are the same, then

the values Ki′ and K L
i′ for instance U

〈j′〉
i′ are also chosen uniformly at random. As the lemma

below shows, the difference in the advantage between the current experiment and previous one
is a negligible function of the security parameter. The proof of Lemma D.5.5 follows from the
security properties of the smooth projective hash function family HASH .

Lemma D.5.5
∣∣Advake-ind

GPAKE ,A,Hyb5
(k)−Advake-ind

GPAKE ,A,Hyb4
(k)
∣∣ ≤ neg(k).

Proof: The proof of Lemma D.5.5 has two cases depending on whether or not the 1-oracle-generated

ciphertext cR
i−1 is valid for U

〈j〉
i . We observe here that ciphertext cR

i−1 is valid for U
〈j〉
i if it
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has been created by an instance U
〈j′〉
i′ , forwarded to instance U

〈j〉
i , and it holds that pidj′

i′ = pidj
i

and i′ = i− 1.

cR
i−1 is invalid for U

〈j〉
i . The proof in this case follows easily from the smoothness property of

the family of smooth projective hash functions, which says that if cR
i−1 is not a valid encryption

of the password pwG with respect to the public-key pk and label li−1, then the hash value K L
i =

Hash(hkL
i , cR

i−1, li−1, pw) is statistically close to uniform in G. Likewise, the master key XL
i = K L

i ·
K R

i−1 used to check the test session key of its predecessor is also statistically close to uniform

in G. As a result, except with negligible probability, the instance U
〈j〉
i will halt and reject (by

setting accj
i = false) after receiving the test value testR

i−1. Hence, the difference in the advantage
between the current experiment and previous one due to this case is a negligible function of the
security parameter.

cR
i−1 is valid for U

〈j〉
i . The proof of this case follows from pseudorandomness property of the

family of smooth projective hash functions. To prove so, we show how to construct an adversary
D against the pseudorandomness property of the family HASH from an adversary A capable of
distinguishing the current experiment from the previous one when cR

i−1 is valid for U
〈j〉
i .

We construct an adversary D as follows. First, D uses pk to initialize the common reference
string exactly as in the experiment Hyb4. Then, whenever A asks a Send or Execute query with
respect to a group G for which no password has been defined, then D chooses a password pwG
for that group uniformly at random from the dictionary Dict. Then, D continues to simulate
all of A’s oracles exactly as in experiment Hyb4 except when an instance U

〈j〉
i receives a valid

1-oracle-generated ciphertext cR
i−1 from an instance U

〈j′〉
i−1 . In the latter, instead of computing

the ciphertext cL
i as in the original protocol, D obtains cL

i by making a call to its Enc oracle
using the label li and password pwG as the input. Then, if the adversary A correctly forwards

the ciphertext cL
i to instance U

〈j′〉
i−1 in a Send2 query, then D makes two calls to his Hash oracle

using cL
i and label li as input to obtain respectively the values (phkL

i−1, K L
i−1), and (phk i−1, Ki−1)

instead of computing these values by itself. D also uses the value K L
i−1 and Ki−1 to compute

testR
i−1 in round 3 and the value XL

i−1 in round 4. Next, if instance U
〈j〉
i receives the projection

keys phkL
i−1 and phk i−1 in a Send2 query that D obtained from the Hash oracle, then D also

uses the values K L
i−1 and Ki−1 to compute XL

i and Xi. If instance U
〈j〉
i does not receive the

projection keys phkL
i and phk i in a Send2 query, then it halts and sets accj

i = false. Apart from
these changes, no other modification is made to the simulation. At the end of the simulation,
D outputs the same guess as A.

To analyze the success probability of D, first notice that if instance U
〈j〉
i receives projection

keys phkL
i−1 and phki−1 different from those outputted by the Hash oracle, then U

〈j〉
i rejects

with overwhelming probability due to the security of the signature scheme SIG . This is because
the case we are considering is the one in which the ciphertext cR

i−1 is 1-oracle-generated and

valid for U
〈j〉
i . Thus, the only way for A to send projections keys phkL

i−1 and phki−1 different

from those computed by instance U
〈j′〉
i−1 is for the latter to forge the signature σR

i−1. A formal
reduction to the security of the signature scheme SIG in this case is straight-forward and omitted
here.

Next, notice that, whenever D is in experiment Exph-prf-real
HASH ,D (k), then its simulation of the Send

oracle is performed exactly as in experiment Hyb4. This is because in this case, whenever an
instance U

〈j〉
i receives a valid 1-oracle-generated ciphertext cR

i−1, the values for Ki−1 and K R
i−1

that U
〈j〉
i computes come from the Hash oracle and are thus correct. Moreover, if both U

〈j〉
i
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and U
〈j′〉
i−1 see the same transcript T R

i−1, then U
〈j′〉
i−1 also computes the same values for Ki−1 and

K R
i−1 (except when A succeeds in forging a signature). Finally, notice that, whenever D is in

experiment Exph-prf-random
HASH ,D (k), then its simulation of the Send oracle is performed almost exactly

as in experiment Hyb5 since the values for Ki−1 and K R
i−1 that U

〈j〉
i computes when receiving a

valid 1-oracle-generated ciphertext cR
i−1 are random in this case. The only difference occurs

when A succeeds in forging the signature σR
i−1 of instance U

〈j′〉
i−1 . Thus, the probability that D

distinguishes between experiments Exph-prf-real
HASH ,D (k) and Exph-prf-random

HASH ,D (k) is negligibly close to

Advake-ind
GPAKE ,A,Hyb5

(k)−Advake-ind
GPAKE ,A,Hyb4

(k). Hence, the difference in the advantage between the
current experiment and previous one due to this case is a negligible function of the security
parameter.

Since in both cases, the difference in the advantage between the current experiment and previous
one is a negligible function of the security parameter, the proof of Lemma D.5.5 follows.

Hybrid experiment Hyb6. In this new experiment, we change once again the simulation of the
Send oracle of an instance U

〈j〉
i whenever the latter receives an 1-oracle-generated ciphertext

cR
i−1 in a Send1 query so that U

〈j〉
i computes the ciphertext cL

i using a dummy password pw′G
that is different from the password pwG associated with the group G. As the lemma below shows,
the difference in the advantage between the current experiment and previous one is a negligible
function of the security parameter. The proof of Lemma D.5.6 follows from the chosen-plaintext
security of the labeled encryption scheme LPKE .

Lemma D.5.6
∣∣Advake-ind

GPAKE ,A,Hyb6
(k)−Advake-ind

GPAKE ,A,Hyb5
(k)
∣∣ ≤ neg(k).

Proof: The proof of this lemma is similar to that of Lemma D.5.4 and follows easily from the
chosen-plaintext security of the labeled encryption scheme LPKE . To construct the adversary
D for LPKE from an adversary A capable of distinguishing the current experiment from the
previous one, we proceed as follows. First, D uses pk to initialize the common reference string
exactly as in the experiment Hyb5. Then, whenever A asks a Send0 or Execute query with
respect to a group G for which no password has been defined, then D first chooses a password
pwG for that group uniformly at random from the dictionary Dict as well as a dummy password
pw′G 6= pwG of the appropriate length. also chooses a dummy password pw′G 6= pwG of the
appropriate length. Next, D continues to simulate all of A’s oracles exactly as in experiment
Hyb5 except when A makes a Send1 query to an U

〈j〉
i using a 1-oracle-generated value for

the ciphertext cR
i−1. To simulate the latter query, D computes cL

i as Enc(li, pwG , pw′G) with
the help of its Left-or-Right encryption oracle Enc. One should note here that this change is
only possible because the values Ki−1 and K R

i−1 that U
〈j〉
i may need to compute in the sessions

are chosen at random from G since the previous experiment. No other change is made to the
simulation. At the end of the simulation, D outputs the same guess as A.

One can easily see that, whenever D is in experiment Explpke-ind-cca-0
LPKE ,D (k), then its simula-

tion of the Send1 oracle is performed exactly as in experiment Hyb5, since Enc always re-
turns the encryption of the actual password in this case. Moreover, whenever D is in ex-
periment Explpke-ind-cca-1

LPKE ,D (k), then its simulation of the Send1 oracle is performed exactly as
in experiment Hyb6, since Enc always returns the encryption of a dummy password in this
case. Thus, the probability that D distinguishes between experiments Explpke-ind-cca-1

LPKE ,D (k) and

Explpke-ind-cca-0
LPKE ,D (k) is exactly Advake-ind

GPAKE ,A,Hyb6
(k)−Advake-ind

GPAKE ,A,Hyb5
(k). Thus, the Lemma D.5.6

follows from the chosen-ciphertext indistinguishability of LPKE .
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Hybrid experiment Hyb7. In this experiment, we change the simulation so that, whenever
an instance U

〈j〉
i receives a valid adversarially-generated ciphertext cR

i−1 in a Send1 query,
we halt the simulation and consider the adversary A successful. No other change is made to
simulation. Clearly, if such ciphertext cR

i−1 is never sent by A, then the current and the previous
experiments are identical. On the other hand, if the adversary A does happen to send such a
valid ciphertext, then A is considered successful. Therefore, as the following lemma states, the
advantage of A in the current experiment is greater or equal to that in the previous experiment.

Lemma D.5.7 Advake-ind
GPAKE ,A,Hyb6

(k) ≤ Advake-ind
GPAKE ,A,Hyb7

(k).

Hybrid experiment Hyb8. In this experiment, we change the simulation so that, whenever
an instance U

〈j〉
i receives a invalid adversarially-generated ciphertext cR

i−1 in a Send1 query,

then U
〈j〉
i always chooses the value K L

i uniformly at random from G. Moreover, it always halts
and rejects (by setting accj

i = false) after receiving a Send3 query from A. Everything else
remains the same. As the following lemma shows, the difference in the advantage between the
current experiment and previous one is a negligible function of the security parameter.

Lemma D.5.8
∣∣Advake-ind

GPAKE ,A,Hyb8
(k)−Advake-ind

GPAKE ,A,Hyb7
(k)
∣∣ ≤ neg(k).

Proof: The proof of Lemma D.5.8 follows easily from the smoothness property of smooth
projective hash function family HASH , which says that if cR

i−1 is not a valid encryption of
the password pwG with respect to the public-key pk and label li−1, then the hash value K L

i =
Hash(hkL

i , cR
i−1, li−1, pw) is statistically close to uniform in G. Likewise, the master key XL

i = K L
i ·

K R
i−1 used to check the test session key of its predecessor is also statistically close to uniform

in G. As a result, except with negligible probability, the instance U
〈j〉
i will halt and reject (by

setting accj
i = false) after receiving the test value testR

i−1. Hence, the difference in the advantage
between the current experiment and previous one due to this case is a negligible function of the
security parameter.

Hybrid experiment Hyb9. In this experiment, we change once again the simulation of the
Send oracle of an instance U

〈j〉
i whenever the latter receives a invalid adversarially-generated

ciphertext cR
i−1 in a Send1 query so that the latter computes the ciphertext cL

i using dummy
password pw′G that is different from the pwG associated the group G. Everything else remains
the same. As the following lemma shows, the difference in the advantage between the current
experiment and previous one is a negligible function of the security parameter. The proof of
Lemma D.5.9 follows from the semantic security of the labeled encryption scheme LPKE .

Lemma D.5.9
∣∣Advake-ind

GPAKE ,A,Hyb9
(k)−Advake-ind

GPAKE ,A,Hyb8
(k)
∣∣ ≤ neg(k).

Proof: The proof of this lemma is similar to that of Lemma D.5.6 and follows easily from the
chosen-ciphertext security of the labeled encryption scheme LPKE . As in that case, we are only
able to make this change to the simulation because instance U

〈j〉
i always chooses the value K L

i

uniformly at random from G and because it always halts and rejects (by setting accj
i = false) after

receiving a Send3 query from D. The only difference between the proof of Lemma D.5.6 and the
present one is that here we need to make use of the decryption oracle for LPKE to find out if cR

i−1 is
a valid encryption of the group password pwG with respect to the public key pk and the label li−1.
This is because the ciphertext cR

i−1 is generated by the adversary in this case. Like in the proof of
Lemma D.5.6, the probability that D distinguishes between experiments Explpke-ind-cca-1

LPKE ,D (k) and
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Explpke-ind-cca-0
LPKE ,D (k) is exactly Advake-ind

GPAKE ,A,Hyb9
(k) −Advake-ind

GPAKE ,A,Hyb8
(k). Thus, Lemma D.5.9

follows from the chosen-ciphertext indistinguishability of LPKE .

Hybrid experiment Hyb10. In this new experiment, we change the simulation of the Send2

oracle of an instance U
〈j〉
i so that, whenever the latter receives an 2-oracle-generated ciphertext

cL
i+1, the values Ki and K R

i are chosen uniformly at random from G. As the lemma below shows,
the difference in the advantage between the current experiment and previous one is a negligible
function of the security parameter. The proof of Lemma D.5.10 is omitted here since it follows
easily from the smoothness property of smooth projective hash function family HASH as, since
the previous any 2-oracle-generated ciphertext cL

i+1 is always an encryption of a dummy
password in this case and hence not valid.

Lemma D.5.10
∣∣Advake-ind

GPAKE ,A,Hyb10
(k)−Advake-ind

GPAKE ,A,Hyb9
(k)
∣∣ ≤ neg(k).

Hybrid experiment Hyb11. In this experiment, we change the simulation of the Send2 or-
acle of an instance U

〈j〉
i so that, whenever an instance U

〈j〉
i receives a valid adversarially-

generated ciphertext cL
i+1 in a Send2 query, we halt the simulation and consider the adversary

A successful. No other change is made to simulation. Clearly, if such ciphertext cL
i+1 is never

sent by A, then the current and the previous experiments are identical. On the other hand, if
the adversary A does happen to send such a valid ciphertext, then A is considered successful.
Therefore, as the following lemma states, the advantage of A in the current experiment is greater
or equal to that in the previous experiment.

Lemma D.5.11 Advake-ind
GPAKE ,A,Hyb10

(k) ≤ Advake-ind
GPAKE ,A,Hyb11

(k).

Hybrid experiment Hyb12. In this experiment, we change once again the simulation of
the Send2 oracle of an instance U

〈j〉
i so that, whenever an instance U

〈j〉
i receives a invalid

adversarially-generated ciphertext cL
i+1 in a Send2 query, then U

〈j〉
i always chooses the val-

ues K R
i and Ki uniformly at random from G. Moreover, it always halts and rejects (by setting

accj
i = false) after receiving a Send4 query from A. Everything else remains the same. As the

following lemma shows, the difference in the advantage between the current experiment and
previous one is a negligible function of the security parameter.

Lemma D.5.12
∣∣Advake-ind

GPAKE ,A,Hyb12
(k)−Advake-ind

GPAKE ,A,Hyb11
(k)
∣∣ ≤ neg(k).

Proof: As in the proof of Lemma D.5.8, Lemma D.5.12 follows easily from the smoothness
property of smooth projective hash function family HASH , which says that if cL

i+1 is not a valid
encryption of the password pwG with respect to the public-key pk and label li+1, then the hash
values K R

i = Hash(hkR
i , cL

i+1, li+1, pwG) and Ki = Hash(hki, cL
i+1, li+1, pwG) are statistically close

to uniform in G. Likewise, the master key XR
i = K R

i · K
L
i+1 used to check the test session key

of its successor is also statistically close to uniform in G. As a result, except with negligible
probability, the instance U

〈j〉
i will halt and reject (by setting accj

i = false) after receiving the
test value testL

i+1. Hence, the difference in the advantage between the current experiment and
previous one due to this case is a negligible function of the security parameter.

Hybrid experiment Hyb13. In this experiment, we change the simulation of the Send0 oracle
of an instance U

〈j〉
i so that the latter computes the ciphertext cR

i using dummy password pw′G
that is different from the pwG associated the group G. Everything else remains the same. As
the following lemma shows, the difference in the advantage between the current experiment and
previous one is a negligible function of the security parameter. The proof of Lemma D.5.13
follows from the semantic security of the labeled encryption scheme LPKE .
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Lemma D.5.13
∣∣Advake-ind

GPAKE ,A,Hyb13
(k)−Advake-ind

GPAKE ,A,Hyb12
(k)
∣∣ ≤ neg(k).

Proof: The proof of this lemma is similar to that of Lemma D.5.9 and follows easily from
the chosen-ciphertext security of the labeled encryption scheme LPKE . As in that case, we are
only able to make this change because at this point instance U

〈j〉
i no longer needs to know the

randomness rR
i used to create the ciphertext cR

i to be able to compute the test master key XR
i

since the latter is always a random value in G (this is because K R
i is always chosen uniformly

at random from G). As in the proof of Lemma D.5.9, we also need access to a decryption
oracle for LPKE to be to verify whether adversarially-generated ciphertexts cR

i−1 and cL
i+1

are valid encryptions of the group password pwG , the first with respect to the pair (pk, li−1) and
the second with respect to the pair (pk, li+1). Like in the proof of Lemma D.5.9, the probability
that D distinguishes between experiments Explpke-ind-cca-1

LPKE ,D (k) and Explpke-ind-cca-0
LPKE ,D (k) is exactly

Advake-ind
GPAKE ,A,Hyb13

(k) − Advake-ind
GPAKE ,A,Hyb12

(k). Thus, Lemma D.5.13 follows from the chosen-
ciphertext indistinguishability of LPKE .

Hybrid experiment Hyb14. In this experiment, we change the simulation of the Send5 oracle
so that the master key MSK computed by an instance U

〈j〉
i is chosen uniformly at random from

the group G whenever U
〈j〉
i accepts (by setting accj

i = true). As the lemma below shows, the
difference in the advantage between the current experiment and previous one is a negligible
function of the security parameter.

Lemma D.5.14
∣∣Advake-ind

GPAKE ,A,Hyb14
(k)−Advake-ind

GPAKE ,A,Hyb13
(k)
∣∣ ≤ neg(k).

Proof: The proof of Lemma D.5.14 follows from the unforgeability of the signature scheme SIG
and uses arguments similar to those in the proof of Lemma D.5.2. To prove this, first, we note
that an instance U

〈j〉
i that accepts only does so after verifying that the instances of users Ui−1

and Ui+1 in G that are next to it actually know the correct password (this is done in rounds 3
and 4) and after verifying the correctness of all the signatures that it receives in the last round
of communication. Thus, whenever an instance U

〈j〉
i does not halt and reject, it must be the

case that its neighbors are in fact oracle instances not played by the adversary (since we always
halt the simulation when the adversary produces a valid ciphertext). Moreover, the keys Ki and
Ki−1 computed by instance U

〈j〉
i and by its predecessor are chosen at random from G. Second,

we note that in all sessions in which the adversary plays an active role, with very overwhelming
probability, he causes all the oracles instances in that session to halt and reject. While the
instances that are next to A reject in round 3 or 4 because A has sent an invalid ciphertext
in one of the first two rounds, the other ones reject with overwhelming probability because
A does not succeed in forging the signatures of those instances that have rejected before the
last round of communication (this requires a formal reduction to the security of the signature
scheme SIG , which is straight-forward and omitted here). This holds because the signature of
a user always guarantees the validity of the verification keys associated with his successor and
predecessor. Thus, attacks in which the adversary sends different verification keys to different
users will always cause at least one of signatures in the ensemble to be invalid.

Putting everything together, we can conclude that, whenever an instance U
〈j〉
i accepts, its session

partners are in fact oracle instances not played by the adversary and that all keys Kt for t =
1, . . . , |G| are random values in G. As a result, the values Xt for t = 1, . . . , |G| outputted by
the Send4 oracles define exactly |G| equations, of which |G| − 1 are linearly independent, as in
the proof of Lemma D.5.2. Since in round 5, each instance broadcasts its own signature of the
transcript, it must be the case that, if U

〈j〉
i accepts after a Send5 query, with high probability
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it has received the correct values Xt computed by each partner instance of Ut in that session.
If that is not the case, then it is straight-forward to build an adversary capable of breaking the
security of the signature scheme SIG . Finally, since the master key computed by instance U

〈j〉
i

defines an additional equation, which is linearly independent of the other |G| − 1 equations that
were defined by the values X1, . . . , X|G|, its value is independent of the transcript T that the
adversary A sees. It follows that the difference in the advantage between the current experiment
and previous one is a negligible function of the security parameter.

To conclude the proof, we first notice that, since the session keys of all accepting instances
are chosen at random and since all session partners that accept end up computing the same
session key (due to the security of the signature scheme SIG ), the advantage of A in the current
experiment is 0 when A does not generate a valid ciphertext round 1 or 2. Second, in the current
experiment, all oracle instances are simulated using dummy passwords, A’s view of the protocol
is independent of the passwords that are chosen for each group of users. Finally, since each
ciphertext uniquely defines a password, we have that the probability that any given adversarially
generated ciphertext is valid is at most 1/N , where N is the size of the dictionary. As the number
of adversarially generated ciphertexts is bounded by qsend-1 + qsend-2 , the advantage of A in the
current experiment is only negligibly larger than (qsend-1 + qsend-2)/N .

Lemma D.5.15 Advake-ind
GPAKE ,A,Hyb14

(k) ≤ (qsend-1 + qsend-2)/N + neg(k).

By combining all the lemmas above, one easily obtains the announced result in Theorem D.4.1.
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Identity-Based Cryptography

Appendix E:
Wildcarded Identity-Based Encryption, Journal of Cryptology, 24(1):42–82
M. Abdalla, J. Birkett, D. Catalano, A. Dent, J. Malone-Lee, G. Neven, J.

Schuldt, and N. Smart

This article introduces the notion of identity-based encryption with wildcards, which is a
generalization of identity-based encryption that allows a sender to encrypt messages to a
whole range of receivers whose identities match a certain pattern. In addition to proposing
the new primitive, this paper also presents several efficient implementations which are
shown to be secure under an appropriate security notion.

Appendix F:
Searchable Encryption Revisited: Consistency Properties, Relation to Anony-
mous IBE, and Extensions, Journal of Cryptology, 21(3):350–391
M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J.

Malone-Lee, G. Neven, P. Paillier, and H. Shi

This article revisits the notion of public-key encryption with keyword search, also known as
searchable encryption, and provides new security definitions for these schemes which take
false positives into account. It also provides generic transformations to and from anony-
mous identity-based encryption schemes and suggests a few extensions, such as public-key
encryption with temporary keyword search, and identity-based encryption with keyword
search.

Appendix G:
Robust Encryption, TCC 2010
Michel Abdalla, Mihir Bellare, and Gregory Neven

This article formalizes the notion of robust encryption which reflects the difficulty of pro-
ducing a ciphertext that is valid under two different encryption keys. In addition to the
formalization in the public-key and identity-based settings, this paper also assesses the
robustness of specific encryption schemes in the literature, providing simple patches for
some that lack the property. Moreover, it also shows that the robustness of anonymous
identity-based encryption schemes is closely related to issue of false positives of searchable
encryption schemes.
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Appendix E

Wildcarded Identity-Based
Encryption

Journal of Cryptology, 24(1):42–82
[ABC+11] with J. Birkett, D. Catalano, A. Dent, J. Malone-Lee, G.

Neven, J. Schuldt, and N. Smart

Abstract : In this paper we introduce a new primitive called identity-based encryption with
wildcards, or WIBE for short. It allows a sender to encrypt messages to a whole range of
receivers whose identities match a certain pattern. This pattern is defined through a sequence
of fixed strings and wildcards, where any string can take the place of a wildcard in a matching
identity. Our primitive can be applied to provide an intuitive way to send encrypted email to
groups of users in a corporate hierarchy. We propose a full security notion and give efficient
implementations meeting this notion under different pairing-related assumptions, both in the
random oracle model and in the standard model.

E.1 Introduction

The concept of identity-based cryptography was introduced by Shamir as early as in 1984 [Sha85],
and the same paper proposed an identity-based signature scheme. However, it took nearly twenty
years for an efficient identity-based encryption (IBE) scheme to be proposed. In 2000 and 2001
respectively Sakai, Ohgishi and Kasahara [SOK00] and Boneh and Franklin [BF03] proposed
IBE schemes based on elliptic curve pairings. Also, in 2001 Cocks proposed a system based on
the quadratic residuosity problem [Coc01].

One of the main application areas proposed for IBE is that of email encryption. In this
scenario, given an email address, one can encrypt a message to the owner of the email address
without needing to obtain an authentic copy of the owner’s public key first. In order to decrypt
the email the recipient must authenticate itself to a trusted authority who generates a private
key corresponding to the email address used to encrypt the message.

E.1.1 Identity-Based Encryption with Wildcards

Our work is motivated by the fact that many email addresses correspond to groups of users
rather than single individuals. Consider the scenario where there is some kind of organisational
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hierarchy. Take as an example an organisation called ECRYPT which is divided into virtual
labs, say AZTEC and STVL. In addition, these virtual labs are further subdivided into working
groups WG1, WG2 and WG3. Finally, each working group may consist of many individual
members. There are several extensions of the IBE primitive to such a hierarchical setting
(HIBE) [HL02, GS02]. The idea is that each level can issue keys to users on the level below. For
example the owner of the ECRYPT key can issue decryption keys for ECRYPT.AZTEC and
ECRYPT.STVL.

Suppose that we wish to send an email to all the members of the AZTEC.WG1 working
group, which includes the personal addresses

• ECRYPT.AZTEC.WG1.Nigel,

• ECRYPT.AZTEC.WG1.Dario,

• ECRYPT.AZTEC.WG1.John.

Given a standard HIBE one would have to encrypt the message to each user individually. To
address this limitation we introduce the concept of identity-based encryption with wildcards
(WIBE). The way in which decryption keys are issued is exactly as in a standard HIBE scheme;
what differs is encryption. Our primitive allows the encrypter to replace any component of
the recipient identity with a wildcard so that any identity matching the pattern can decrypt.
Denoting wildcards by *, in the example above the encrypter would use the identity

• ECRYPT.AZTEC.WG1.*

to encrypt to all members of the AZTEC.WG1 group.
It is often suggested that identity strings should be appended with the date so as to add

timeliness to the message, and so try to mitigate the problems associated with key revocation.
Using our technique we can now encrypt to a group of users, with a particular date, by encrypting
to an identity of the form

• ECRYPT.AZTEC.WG1.*.22Oct2006

for example. Thus any individual in the group

• ECRYPT.AZTEC.WG1

with a decryption key for 22nd October 2006 will be able to decrypt.
As another example, take a hierarchy of email addresses at academic institutions of the form

• name@department.university.edu,

i.e., the email address of John Smith working at the computer science department of Some State
University would be johnsmith@cs.ssu.edu. Using our primitive, one can send encrypted
email to everyone in the computer science department at Some State University by encrypting
to identity *@cs.ssu.edu, to everyone at SSU by encrypting to *@*.ssu.edu, to all computer
scientists at any institution by encrypting to *@cs.*.edu, or to all system administrators in the
university by encrypting to sysadmin@*.ssu.edu.

E.1.2 Our Contributions

In this paper, we introduce the primitive of identity-based encryption with wildcards, or a WIBE
for short. We define appropriate security notions under chosen-plaintext and chosen-ciphertext
attack, and present the first instantiations of this primitive. In more detail, we present the
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syntax and security notions in Section E.3. To illustrate the relationship between WIBEs and
other identity-based primitives, we show how WIBE schemes can be built from HIBE schemes
and from fuzzy identity-based encryption schemes.

As is the case for most public-key and identity-based encryption schemes, the non-hybrid
WIBE schemes can only be used to encrypt relatively short messages, typically about 160 bits.
To encrypt longer messages, one will have to resort to hybrid techniques: the sender uses the
WIBE to encrypt a fresh symmetric key K and encrypts the actual message under the key K.
The basic construction has been used within the cryptographic community for years, dating back
to the work of Blum and Goldwasser in 1984 [BG85], but its security for the case of public-key
encryption was not properly analysed until the work of Cramer and Shoup [CS03]. One would
intuitively expect these results to extend to the case of WIBEs, which is indeed the case. We
present the syntax for a WIB-KEM in Section E.4, along with the composition theorem which
proves that the combination of a secure WIB-KEM and a secure DEM results in a secure WIBE
scheme.

We also give several constructions for a WIBE scheme, classified according to their security
guarantees. We first present the Boneh-Boyen WIBE (BB-WIBE – see Section E.5.1) and the
Boneh-Boyen-Goh WIBE (BBG-WIBE – see Section E.5.2). These schemes are IND-CPA secure
in the selective identity model and do not require random oracles to be proven secure, although
we do require random oracles in order to prove their security in the full (non-selective-identity)
model (see Section E.5.4). We also present the Waters WIBE scheme (see Section E.5.3) which
is secure in the non-selective-identity IND-CPA setting without random oracles.

The range of IND-CPA WIBE schemes available makes selection difficult. The Waters WIBE
scheme has the best security guarantees, but the worst performance. In particular, the number
of elements in the master public key depends upon the maximum length of an identity, which
is typically of the order of 160 bits. Hence, even with a small number of levels, the size of the
master public key can be prohibitive. Both the BB-WIBE scheme and the BBG-WIBE scheme
have better performance characteristics, but their security (in the non-selective-identity model)
depends on random oracles. Furthermore, the BBG-WIBE scheme reduces to the less-studied
L-BDHI assumption, but has the best performance characteristics.

The construction of IND-CCA secure WIBE schemes is more difficult. We present two generic
transformations from an IND-CPA scheme into an IND-CCA scheme. The first transformation
is based on the Canetti-Halevi-Katz transform (see Section E.6.1) which builds an L-level IND-
WID-CCA secure WIBE from an (L + 1)-level IND-WID-CPA WIBE. The disadvantage of our
construction compared to the original CHK transform is that our construction always encrypts
messages under patterns of length L + 1. This often increases the space and time complexity of
the scheme in practical situations (as the worst performance characteristic are often obtained
for “full-length” patterns). The approach we present in this paper is different from the approach
given in the ePrint version of [ACD+06], which requires using 2L + 2 levels as opposed to L + 1.
We thank the anonymous referee for helping guide us to this improvement.

Our second transform is based on Dent’s construction of a KEM (see Section E.6.2). This
converts a weakly secure (one-way) WIBE scheme into an IND-CCA secure WIB-KEM, but
requires the random oracle model in order to prove its security. We note that one-way security
is implied by IND-CPA security (for sufficiently large messages spaces). Consequently, we can
use any of the IND-CPA constructions given in Section E.5 to build an IND-CCA secure scheme.

In [BDNS07] we also presented a WIB-KEM in the standard model based on the Kiltz-
Galindo HIB-KEM from [KG09]. Due to our improved CPA to CCA transform described above
this is no longer as efficient as the transformed Waters WIBE, hence we do not consider the
Kiltz-Galindo WIB-KEM in this paper.

An overview of all the schemes we present is given in Table E.1 and Table E.2.
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Scheme |mpk| |d| |C| Decrypt Assumption RO

Generic |mpkHIBE | 2L · |dHIBE | |CHIBE | DecryptHIBE IND-HID-CPA HIBE No

BB-WIBE 2L + 3 L + 1 2L + 2 L + 1 BDDH Yes

BBG-WIBE L + 4 L + 2 L + 3 2 L-BDHI Yes

Waters-WIBE (n + 1)L + 3 L + 1 (n + 1)L + 2 L + 1 BDDH No

Table E.1: Efficiency comparison between our CPA-secure schemes. We compare the generic
scheme of Section E.3.3, the Waters-WIBE scheme of Section E.5.3, the BB-WIBE scheme
of Section E.5.1, the BBG-WIBE scheme of Section E.5.2, and the Waters-WIBE scheme of
Section E.5.3. The schemes are compared in terms of master number of elements in the public
key (|mpk|), number of elements in the user secret key (|d|), number of element in the ciphertext
(|C|), number of pairing operations required for decryption (Decrypt), the security assumption
under which the scheme is proved secure, and whether this proof is in the random oracle model
or not. The generic construction does not introduce any random oracles, but if the security
proof of the HIBE scheme is in the random oracle model, then the WIBE obviously inherits this
property. L is the maximal hierarchy depth and n is the bit length of an identity string. Figures
are worst-case values, usually occurring for identities at level L with all-wildcard ciphertexts.

Scheme |mpk| |d| |C| Encap Decap Security loss

OML(BB-WIBE) 2L + 5 L + 1 2L + 3 2L + 4 L + 2 qL+1
H

OW (BB-WIBE) 2L + 3 L + 1 2L + 2 2L + 2 L + 1 qL
H

OML(BBG-WIBE) L + 4 L + 1 L + 3 L + 3 2 qL+1
H

OW (BBG-WIBE) L + 4 L + 1 L + 3 L + 3 2 qL
H

OML(Waters) (n + 1)(L + 1) + 3 L + 1 (n + 1)L + 3 (n + 1)L + 3 L + 2 (2nqK )L+1

Table E.2: Efficiency comparison between our CCA-secure schemes. The BB-WIBE scheme is
the IND-WID-CPA scheme given in E.5.1; the BBG-WIBE scheme is the IND-WID-CPA scheme
given in E.5.2; the Waters scheme is the IND-WID-CPA scheme given in E.5.3. The OML(·)
transformation refers to the (one more level) generic CCA-secure construction of a CCA-secure
WIBE from a CPA-secure WIBE presented in Section E.6.1. The OW (·) transformation is our
random-oracle based construction of a WIB-KEM scheme from a CPA-secure WIBE presented in
Section E.6.2. We compare the schemes in terms of number of elements in the master public key
(|mpk|), number of elements in the user secret key (|d|), number of elements in the ciphertext
(|C|), number of exponentiations required for key encapsulation (Encap), number of pairings
required for key decapsulation (Decap), and the dominant factor lost in the security reduction
to the underlying assumption. L is the maximal hierarchy depth and n is the bit length of an
identity string. The values qH and qK refer to the number of queries made by an adversary to
the random oracle and key derivation oracle, respectively.

E.2 A Recap on Various Primitives

In this section, we recall basic notation and known results on different primitives that we will
be using throughout this paper. In particular, we will recall several constructions of Hierar-
chical Identity-Based Encryption schemes (HIBEs) upon which out Wildcarded Identity-Based
Encryption schemes (WIBEs) are based.

E.2.1 Basic Notation

Let N = {0, 1, 2, . . .} be the set of natural numbers. Let ε be the empty string. If n ∈ N,
then {0, 1}n denotes the set of n-bit strings and {0, 1}∗ is the set of all finite bit strings. If
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s = (s1, . . . , sn) is an ordered sequence of n elements of some set and 0 ≤ ℓ ≤ n, then s≤ℓ is the
ordered sequence consisting of the first ℓ elements of s, i.e. s≤ℓ = (s1, . . . , sℓ). Furthermore, if
ID is an n-bit string, then we set

[IDi] = {1 ≤ j ≤ n : the jth bit of IDi is one} .

If S is a finite set, then y
$
← S denotes the assignment to y of a randomly chosen element of

the set S. If A is a deterministic algorithm, then y ← A(x) denotes the assignment to y of the
output A when run on the input x. If A is a randomised algorithm, then y

$
← A(x) denotes the

assignment to y of the output of A on the input x when the algorithm is run with fresh random
coins.

E.2.2 Hash Functions

A hash function is a family of maps Fk : IP → OP index by a keyspace K in which the output
space OP is finite. The input space IP may be finite or infinite. Additionally, the key space
may be empty or non-empty. There are many security properties that can be ascribed to a
hash function. We will only need to consider one security property at this time (although we
will introduce further security notions in later sections and may model these hash functions as
random oracles).

Definition E.2.1 A (t, ǫ)-adversary A against the second pre-image resistance property of a
family of hash functions Fk : IP → OP with a finite input space IP is an algorithm that runs
in time at most t and has advantage at least ǫ, where the adversary’s advantage is defined to be:

Pr[x 6= y ∧ Fk(x) = Fk(y) : x
$
← IP; k

$
← K; y

$
← A(k, x)] .

E.2.3 One-Time Signature Schemes

In order to amplify the security of a HIBE/WIBE (from IND-CPA security to IND-CCA security)
we will make use of a one-time signature scheme. A one-time signature scheme is a triple of
algorithms (SigGen, Sign, Verify). The key generation algorithm SigGen outputs signing and
verification keys (sk, vk) for the signature scheme. The signing algorithm takes as input a
signing key sk and a message m ∈ {0, 1}∗, and outputs a signature σ ∈ {0, 1}∗. The verification
algorithm takes as input a verification key vk, a message m ∈ {0, 1}∗ and a signature σ ∈ {0, 1}∗,
and outputs either ⊤ (indicating a valid signature) or ⊥ (indicating an invalid signature). For
correctness, we require that for all key pairs (sk, vk), messages m ∈ {0, 1}∗, and signatures
σ

$
← Sign(sk, m), we have that Verify(vk, m, σ) = ⊤ with probability one.

The security notion for a one-time unforgeable signature scheme is captured by the following
game played between an adversary A = (A1,A2) and a hypothetical challenger:

1. The challenger generates a key pair (sk∗, vk∗)
$
← SigGen.

2. The adversary runs A1 on input vk∗. The adversary outputs a message m∗ and some state
information state.

3. The challenger computes σ∗
$
← Sign(sk∗, m∗).

4. The adversary runs A2 on σ∗ and state. The adversary outputs a message signature pair
(m, σ).

The adversary wins the game if Verify(vk∗, m, σ) = ⊤ and (m, σ) 6= (m∗, σ∗). The adversary’s
advantage is defined to be Pr [A wins ].
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Definition E.2.2 A (t, ǫ)-adversary against the one-time unforgeability of the signature scheme
is an algorithm that runs in time t and has advantage at least ǫ in winning the above game.

E.2.4 Bilinear Maps and Related Assumptions

Let G,GT be multiplicative groups of prime order p with an admissible map ê : G × G → GT .
By admissible we mean that the map is bilinear, non-degenerate and efficiently computable.
Bilinearity means that for all a, b ∈ Zp and all g ∈ G we have ê(ga, gb) = ê(g, g)ab. By non-
degenerate we mean that ê(g, g) = 1 if and only if g = 1.

In such a setting we can define a number of computational problems. The first we shall
be interested in is called the bilinear decisional Diffie-Hellman (BDDH) problem [Jou04]: given
a tuple (g, ga, gb, gc, T ), the problem is to decide whether T = ê(g, g)abc or whether it is a
random element of GT . More formally, we define the following game between an adversary A
and a challenger. The challenger first chooses a random generator g

$
← G∗, random integers

a, b, c
$
← Zp, a random element T

$
← GT , and a random bit β

$
← {0, 1}. If β = 1 it feeds A the

tuple (g, ga, gb, gc, ê(g, g)abc) as input; if β = 0 it feeds A the tuple (g, ga, gb, gc, T ) as input. The
adversary A must then output its guess β′ for β. The adversary has advantage ǫ in solving the
BDDH problem if

∣∣∣Pr
[
A
(
g, ga, gb, gc, ê(g, g)abc) = 1

]
− Pr

[
A
(
g, ga, gb, gc, T

)
= 1

] ∣∣∣ ≥ ǫ,

where the probabilities are over the random choice of g, a, b, c, T and over the random coins of
A.

Definition E.2.3 A (t, ǫ)-adversary A against the BDDH problem is an algorithm that runs in
time at most t and has advantage at least ǫ.

We note that throughout this paper we will assume that the time t of an adversary includes its
code size, in order to exclude trivial “lookup” adversaries.

A second problem we will use in our constructions is the ℓ-bilinear Diffie-Hellman Inversion
(ℓ-BDHI) problem [BB04a, MSK02]. The problem is to compute ê(g, g)1/α for random g

$
← G∗

and α
$
← Zp given g, gα, . . . , g(αℓ). The decisional variant of this problem is to distinguish

ê(g, g)1/α from a random element of GT . We say that adversary A has advantage ǫ in solving
the decisional ℓ-BDHI problem if

∣∣∣Pr
[
A
(
g, gα, . . . , g(αℓ), ê(g, g)1/α) = 1

]
− Pr

[
A
(
g, gα, . . . , g(αℓ), T

)
= 1

] ∣∣∣ ≥ ǫ ,

where the probability is over the random choice of g
$
← G∗, α

$
← Zp, T

$
← GT , and the coins of

A.

Definition E.2.4 A (t, ǫ)-adversary against the decisional ℓ-BDHI problem is an algorithm that
runs in time at most t and has advantage at least ǫ in the above game.

We note that the BDDH problem is a weaker assumption than the ℓ-BDHI assumption.
Hence, all other things being equal schemes which are based on the BDDH assumption are to
be preferred to ones based on the ℓ-BDHI assumption. However, our most efficient construc-
tions are based on the ℓ-BDHI assumption as opposed to the BDDH assumption. As the two
assumptions are very different in nature, it is hard to compare precisely various schemes; indeed
the comparison would depends on the readers view with respect to the intepretation of exact
security results and the view of the relative hardness of the two underlying problems.
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E.2.5 Hierarchical Identity-Based Encryption

An identity-based encryption (IBE) scheme is a tuple of algorithms (Setup, KeyDer, Encrypt,
Decrypt) providing the following functionality. The trusted authority runs Setup to generate
a master key pair (mpk , msk). It publishes the master public key mpk and keeps the master
secret key msk private. When a user with identity ID wishes to become part of the system, the
trusted authority generates a decryption key dID

$
← KeyDer(msk, ID), and sends this key over

a secure and authenticated channel to the user. To send an encrypted message m to the user
with identity ID, the sender computes the ciphertext C

$
← Encrypt(mpk , ID, m), which can be

decrypted by the user as m ← Decrypt(dID , C). We refer to [BF03] for details on the security
definitions for IBE schemes.

In this paper, we are more interested in the concept of Hierarchical Identity-Based Encryption
(HIBE) [HL02, GS02]. In a HIBE scheme, users are organised in a tree of depth L, with the
root being the master trusted authority. The identity of a user at level 0 ≤ ℓ ≤ L in the tree
is given by a vector ID = (ID1, . . . , IDℓ) ∈ ({0, 1}∗)ℓ. A HIBE scheme is a tuple of algorithms
(Setup, KeyDer, Encrypt, Decrypt) providing the same functionality as in an IBE scheme, except
that a user ID = (ID1, . . . , IDℓ) at level ℓ can use its own secret key dID to generate a secret
key for any of its children ID′ = (ID1, . . . , IDℓ, IDℓ+1) via dID′

$
← KeyDer(dID , IDℓ+1). Note

that by iteratively applying the KeyDer algorithm, user ID can derive secret keys for any of its
descendants ID′ = (ID1, . . . , IDℓ+δ), δ ≥ 0. We will occasionally use the overloaded notation

dID′
$
← KeyDer(dID , (IDℓ+1, . . . , IDℓ+δ))

to denote this process. The secret key of the root identity at level 0 is dε ← msk. Encryption
and decryption are the same as for IBE, but with vectors of bit strings as identities instead of
ordinary bit strings.

The security of a HIBE scheme is defined through the following IND-HID-CPA game, played
between an adversary A = (A1,A2) and a hypothetical challenger:

1. The challenger generates a master key pair (mpk , msk)
$
← Setup.

2. The adversary runs A1 on mpk. The adversary is given access to a key derivation or-
acle that, on input of an identity ID = (ID1, . . . , IDℓ), returns the secret key dID

$
←

KeyDer(msk, ID) corresponding to that identity. The adversary outputs two equal-length
messages (m0, m1) and a challenge identity ID∗ = (ID∗1, . . . , ID∗ℓ∗), along with some state
information state.

3. The challenger chooses a bit β
$
← {0, 1} and computes the ciphertext C∗

$
← Encrypt(mpk ,

ID∗, mβ).

4. The adversary runs A2 on the input C∗ and the state information state. The adversary is
given access to a key derivation oracle as before. The adversary outputs a bit β′.

In most cases, we will suppress the state information passed between adversary algorithms
and simply assume that all necessary details are passed from one algorithm to the next. The
adversary wins the game if β = β′ and it never queries the key derivation oracle with any
ancestor identity of ID∗, i.e. any identity ID = (ID∗1, . . . , ID∗ℓ ) where ℓ ≤ ℓ∗. The adversary’s
advantage is defined to be equal to |2 · Pr [A wins ]− 1|.

Definition E.2.5 A (t, qK , ǫ)-adversary against the IND-HID-CPA security of a HIBE scheme
is an algorithm that runs in time at most t, makes at most qK queries to the key derivation
oracle, and has advantage at least ǫ in winning the IND-HID-CPA game described above.
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The IND-HID-CCA security game is identical to the IND-HID-CPA security game with the
exception that in the IND-HID-CCA security game the adversary additionally has access to a
decryption oracle that, on input of a ciphertext C and an identity ID, returns the decryption
m ← Decrypt(KeyDer(msk, ID), C). The adversary wins the game if β = β′, it never queries
the key derivation oracle with any ancestor identity of ID∗, and it never queries the decryption
oracle with the pair (C∗, ID∗) after the challenge ciphertext is computed.

Definition E.2.6 A (t, qK , qD, ǫ)-adversary against the IND-HID-CCA security of the HIBE
scheme is an algorithm that runs in time at most t, makes at most qK queries to the key
derivation oracle, makes at most qD queries to the decryption oracle, and has advantage at least
ǫ in winning the IND-HID-CCA game described above.

In a selective-identity (sID) attack [BB04a], the adversary has to output the challenge identity
ID∗ at the very beginning of the game, before even seeing the master public key. In other
words, the adversary is considered to be a triple (A0,A1,A2), where A0 simply outputs the
challenge identity (and some state information to be passed to A1). The definitions for IND-
HID-CPA and IND-HID-CCA security are otherwise identical to those above. In the random
oracle model [BR93], all algorithms, as well as the adversary, have access to a random oracle
mapping arbitrary bit strings onto a range that possibly depends on the master public key. All
above security definitions then take an extra parameter qH denoting the adversary’s maximum
number of queries to the random oracle.

We now recap on the main efficient HIBE constructions in the literature, namely the HIBE
schemes of Waters (W-HIBE), Boneh-Boyen (BB-HIBE), and Boneh-Boyen-Goh (BBG-HIBE).

E.2.6 The Boneh-Boyen HIBE

In this section, we present a variant of the HIBE scheme by Boneh and Boyen [BB04a]. In
this scheme, we assume that identities are vectors of elements of Zp – if necessary this can
be achieved by applying a collision-resistant hash function h : {0, 1}∗ → Zp to binary identities
before applying the scheme. The scheme is described in Figure E.1. The main difference between
the original HIBE scheme of [BB04a] and our variant above is that our scheme uses a different
value ui,1 for each level, while the original scheme uses the same value u1 for all levels. Adding
wildcard functionality to the original scheme would require us to include ur

1 in the ciphertext, but
this ruins security as it can be used to change the identity for which a ciphertext is encrypted.

For completeness, we prove the security of this new HIBE scheme, despite its similarities to
scheme of Boneh and Boyen [BB04a].

Theorem E.2.7 If there exists a (t, qK , ǫ)-adversary against the IND-sHID-CPA security of
the BB-HIBE (with hierarchy depth L) then there exists a (t′, ǫ′)-adversary against the BDDH
problem in G, where ǫ′ ≥ ǫ − qK/p and t′ ≤ t + O(L · qK · texp) and texp is the maximum time
for an exponentiation in G and p is the order of G.

Proof: The present proof follows very closely the proof of security for the original scheme
in [BB04a]. As before, we assume that there exist an adversary A = (A0,A1,A2) that breaks
the IND-sID-CPA-security of the BB-HIBE scheme and then we show how to efficiently build
another adversary B that, using A as a subroutine, manages to solve the BDDH problem in G.

Algorithm B first receives as input a random tuple (g, A = ga, B = gb, C = gc, Z) and its goal
is to determine whether Z = ê(g, g)abc or ê(g, g)z for a random element z in Zp. Algorithm B
should output 1 if Z = ê(g, g)abc and 0 otherwise. Algorithm B works as follows.
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Algorithm Setup:
g1, g2

$
← G ; α

$
← Zp

h1 ← gα
1 ; h2 ← gα

2

ui,j
$
← G for i = 1 . . . L, j = 0, 1

mpk ← (g1, g2, h1, u1,0, . . . , uL,1)
msk ← h2

Return (mpk, msk)

Algorithm KeyDer(d(ID1,...,IDℓ), IDℓ+1):
Parse d(ID1,...,IDℓ) as (d0, . . . , dℓ)
rℓ+1

$
← Zp

d′
0 ← d0 ·

(
uℓ+1,0 · u

IDℓ+1

ℓ+1,1

)rℓ+1

d′
ℓ+1 ← g

rℓ+1

1

Return (d′
0, d1, . . . , dℓ, d′

ℓ+1)

Algorithm Encrypt(mpk, ID, m):
Parse ID as (ID1, . . . , IDℓ)
r

$
← Zp ; C1 ← gr

1

For i = 1, . . . , ℓ do
C2,i ←

(
ui,0 · u

IDi

i,1

)r

C3 ← m · ê(h1, g2)r

Return (C1, C2,1, . . . , C2,ℓ, C3)

Algorithm Decrypt(d(ID1,...,IDℓ), C):
Parse d(ID1,...,IDl) as (d0, . . . , dℓ)
Parse C as (C1, C2,1, . . . , C2,ℓ, C3)

m′ ← C3 ·

∏
ℓ

i=1
ê(di,C2,i)

ê(C1,d0)

Return m′

Figure E.1: The Boneh-Boyen HIBE scheme.

Initialisation. Algorithm B starts by running algorithm A0, which responds with the challenge
identity ID∗ = (ID∗1, . . . , ID∗ℓ∗) where 0 ≤ ℓ∗ ≤ L. If ℓ∗ = L then B sets ˜ID∗ ← ID∗. Oth-
erwise, B randomly generates ID∗ℓ∗+1, . . . , ID∗L

$
← Zp and sets ˜ID∗ ← (ID∗1, . . . , ID∗L).

Setup. To generate the systems parameters, B first sets g1 ← g, h1 ← A, and g2 ← B. Al-
gorithm B then chooses α1,0, . . . , αL,0, α1,1, . . . , αL,1

$
← Z∗p at random and sets ui,0 ←

g
αi,0

1 · h
−ID∗

i αi,1

1 and ui,1 ← h
αi,1

1 for i = 1, . . . , L. B defines the master public key to be
mpk ← (g1, h1, g2, u1,0, . . . , uL,0, u1,1, . . . , uL,1). Note that the corresponding master secret
key msk = ga

2 is unknown to B.

Phase 1. B runs A1 on input mpk. If A1 makes a key derivation oracle query on ID =
(ID1, . . . , IDℓ), where IDi ∈ Zp and ℓ ≤ L then ID cannot be a prefix of ID∗. Hence,
if ID is a prefix of ˜ID∗ then A aborts; we let E be the event that this occurs. Other-
wise, let j be the smallest index such that IDj 6= ˜ID

∗
j . To reply to this query, B first

computes the key for identity ID′ = (ID1, . . . , IDj) and then derive the key for ID using
the key derivation algorithm. To derive the key for identity ID′, B chooses the values
r1, . . . , rj

$
← Zp at random and sets dID′ = (a0, a1, . . . , aj) where

a0 ← g2

−αj,0
αj,1(IDj−ID∗

j
)
·

j∏

i=1

(
ui,0 · u

IDi
i,1

)ri

ai ← gri
1 for i = 1, . . . , j − 1

aj ← g2

−1
αj,1(IDj−ID∗

j
)
· g

rj

1

Algorithm A1 terminates and outputs two equal-length messages (m0, m1).

Challenge. Algorithm B then chooses a random bit β
$
← {0, 1} and sends C∗ = (C, Cα1,0 , . . . ,

Cαℓ∗,0 , mβ · Z) to A as the challenge ciphertext. Since ui,0 · u
ID∗

i
i,1 = g

αi,0

1 for all i, we have
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that
C∗ = (gc

1, (u1,0 · u
ID∗

i
1,1 )c, . . . , (uℓ∗,0 · u

ID∗
ℓ∗

ℓ∗,1 )c, mβ · Z).

As a result, when Z = ê(g, g)abc = ê(h1, g2)c, C∗ is a valid encryption of message mβ for
the challenge identity ID∗ = (ID∗1, . . . , ID∗ℓ∗). On the other hand, when Z = ê(g, g)z for
a random value z

$
← Zp, then the challenge ciphertext is independent of β from the view

point of the adversary.

Phase 2. B runs A2 on the challenge ciphertext C∗. If A2 makes any key derivation oracle
queries, then they are answered as in Phase 1. A2 terminates and outputs a bit β′.

Output. If β = β′ then B outputs 1, guessing that Z = ê(g, g)abc, otherwise B outputs 1.

Suppose E does not occur. Clearly, when Z = ê(g, g)abc, the view of A is identical to its view
in a real attack and, thus, the probability that b = b′ is exactly the probability that A wins the
IND-sHID-CPA game. On the other hand, when Z is a random group element in GT , then the
probability that b = b′ is exactly 1/2. Hence, if E does not occur then A wins with probability
ǫ. If E does occur, then the simulator fails; however, for E to occur then A must submit a
key extraction query for an identity ID where ID∗ is a prefix of ID and ID is a prefix of ˜ID

∗
.

This implies that IDℓ∗+1 = ID∗ℓ∗+1 but, since ID∗ℓ∗+1 is chosen at random and hidden from the
execution of the attacker A, we have that Pr [ E ] ≤ qK/p. From the above, the result announced
in Theorem E.2.7 follows immediately.

E.2.7 The Boneh-Boyen-Goh Scheme

In this section we present the HIBE scheme due to Boneh, Boyen and Goh [BBG05], referred to
as the BBG-HIBE scheme here. Again, we assume that identities are vectors of elements of Zp.
The scheme is described in Figure E.2.

Algorithm Setup:
g1, g2

$
← G ; α

$
← Zp

h1 ← gα
1 ; h2 ← gα

2

ui
$
← G for i = 1, . . . , L

mpk ← (g1, g2, h1, u0, . . . , uL)
d0 ← h2

For i = 1, . . . , L + 1 do
di ← 1

msk ← (d0, d1, . . . , dL, dL+1)
Return (mpk, msk)

Algorithm KeyDer(d(ID1,...,IDℓ), IDℓ+1):
Parse d(ID1,...,IDℓ) as (d0, dℓ+1, . . . , dL, dL+1)
rℓ+1

$
← Zp

d′
0 ← d0 · d

IDℓ+1

ℓ+1 ·
(
u0

∏ℓ
i=1 uIDi

i

)rℓ+1

For i = ℓ + 2, . . . , L do
d′

i ← di · u
rℓ+1

i

d′
L+1 ← dL+1 · g

rℓ+1

1

Return (d′
0, d′

ℓ+2, . . . , d′
L, d′

L+1)

Algorithm Encrypt(mpk, ID, m):
Parse ID as (ID1, . . . , IDℓ)
r

$
← Zp ; C1 ← gr

1

C2 ←
(
u0

∏ℓ
i=1 uIDi

i

)r

C3 ← m · ê(h1, g2)r

Return (C1, C2, C3)

Algorithm Decrypt(d(ID1,...,IDℓ), C):
Parse d(ID1,...,IDℓ) as (d0, dℓ+1, . . . , dL+1)
Parse C as (C1, C2, C3)
m′ ← C3 ·

ê(C2,dL+1)
ê(C1,d0)

Return m′

Figure E.2: The Boneh-Boyen-Goh HIBE scheme.
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The following theorem about the security of the scheme was proved in (the full version
of) [BBG05].

Theorem E.2.8 If there exists a (t, qK , ǫ)-adversary against the IND-sHID-CPA security of the
BBG-HIBE (with hierarchy depth L) then there exists a (t′, ǫ′)-adversary against the L-BDHI
problem in G, where ǫ′ ≥ ǫ and t′ ≤ t + O(L · qK · texp) and texp is the time for an exponentiation
in G.

E.2.8 The Waters Scheme

Waters [Wat05] argued that his IBE scheme can easily be modified into an L-level HIBE scheme
as per [BB04a]. Here we explicitly present this construction, that we refer to as the Waters-
HIBE scheme. The scheme makes use of n-bit identities and is described in Figure E.3. The
scheme makes use of group elements (u1,0, . . . , uL,n) which are available as part of the scheme’s
public parameters. These group elements define a series of hash functions (F1, . . . , FL) where

Fi(IDi) = ui,0

∏

j∈[IDi]

ui,j .

Algorithm Setup:
g1, g2

$
← G ; α

$
← Zp

h1 ← gα
1 ; h2 ← gα

2

ui,j
$
← G for i = 1, . . . , L; j = 0 . . . n

mpk ← (g1, g2, h1, u1,0, . . . , uL,n)
msk ← h2

Return (mpk, msk)

Algorithm KeyDer(d(ID1,...,IDℓ), IDℓ+1):
Parse d(ID1,...,IDℓ) as (d0, . . . , dℓ)
rℓ+1

$
← Zp

d′
0 ← d0 · Fℓ+1(IDℓ+1)rℓ+1

d′
ℓ+1 ← g

rℓ+1

1

Return (d′
0, d1, . . . , dℓ, d′

ℓ+1)

Algorithm Encrypt(mpk, ID, m):
Parse ID as (ID1, . . . , IDℓ)
r

$
← Zp ; C1 ← gr

1

For i = 1 . . . ℓ do
C2,i ← Fi(IDi)r

C3 ← m · ê(h1, g2)r

Return (C1, C2,1, . . . , C2,ℓ, C3)

Algorithm Decrypt(d(ID1,...,IDℓ), C):
Parse d(ID1,...,IDℓ) as (d0, . . . , dℓ)
Parse C as (C1, C2,1, . . . , C2,ℓ, C3)

m′ ← C3 ·

∏
ℓ

i=1
ê(di,C2,i)

ê(C1,d0)

Return m′

Figure E.3: The Waters HIBE scheme.

Waters [Wat05] informally states that the above HIBE scheme is IND-HID-CPA secure under
the BDDH assumption, in the sense that if there exists a (t, qK , ǫ)-adversary against the HIBE,
then there exists an algorithm solving the BDDH problem with advantage ǫ′ = O((n · qK)Lǫ).
We shall assume in what follows that the Waters HIBE scheme is indeed IND-HID-CPA secure.
However, the reader should be aware that any security results we state for schemes derived from
the Water HIBE scheme are conjectural relative to the above assumption.

E.2.9 Hierarchical Identity-Based Key Encapsulation

One efficient paradigm for producing HIBE schemes is to the hybrid KEM-DEM construction.
In the public key setting, this was first formally investigated by Cramer and Shoup [CS03] and
extended to the identity-based setting by Bentahar et al. [BFMLS08]. A hybrid construction
consists of an asymmetric KEM and a symmetric DEM.
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A hierarchical identity-based KEM (HIB-KEM) consists of four algorithms (Setup, KeyDer,
Encap, Decap). The setup algorithm Setup and key derivation algorithm KeyDer have the same
syntax as for a HIBE scheme. The encapsulation algorithm Encap takes as input a master
public key mpk and an identity ID = (ID1, . . . , IDℓ) with 0 ≤ ℓ ≤ L; it outputs a symmetric
key K ∈ {0, 1}λ and an encapsulation C. The decapsulation algorithm Decap takes as input a
private key dID and an encapsulation C, and outputs either a symmetric key K ∈ {0, 1}λ or the
error symbol ⊥.

The security models for a HIB-KEM is similar to those of a HIBE scheme. The IND-HID-
CCA game for a HIB-KEM, played between an attacker A = (A1,A2) and a challenger, is
defined as follows:

1. The challenger generates a master key pair (mpk , msk)
$
← Setup.

2. The adversary runs A1 on mpk. The adversary is given access to a key derivation or-
acle that, on input of an identity ID = (ID1, . . . , IDℓ), returns the secret key dID

$
←

KeyDer(msk, ID) corresponding to that identity. The adversary is also given access to a
decryption oracle that will, on input of an identity ID = (ID1, . . . , IDℓ) and a cipher-
text C, return Decap(KeyDer(msk, ID), C). The adversary outputs a challenge identity
ID∗ = (ID∗1, . . . , ID∗ℓ∗) and some state information state.

3. The challenger chooses a bit β
$
← {0, 1}, computes the encapsulation (C∗, K0)

$
← Encap(mpk ,

ID∗) and chooses a random key K1
$
← {0, 1}λ.

4. The adversary runs A2 on the input (C∗, Kβ) and the state information state. The ad-
versary is given access to a key derivation oracle and decryption oracle as before. The
adversary outputs a bit β′.

The adversary wins the game if β = β′, it never queries the key derivation oracle with any
ancestor identity of ID∗, and if it doesn’t query the decryption oracle on the pair (ID∗, C∗) after
it receives the challenge ciphertext. As usual, the adversary’s advantage is defined to be equal
to |2 · Pr [A wins ]− 1|.

Definition E.2.9 A (t, qK , qD, ǫ)-adversary against the IND-HID-CCA security of the HIB-
KEM is an algorithm that runs in time at most t, makes at most qK queries to the key derivation
oracle, makes at most qD queries to the decryption oracle, and has advantage at least ǫ in winning
the IND-HID-CCA game described above.

Again, if the random oracle model [BR93] is used in the analysis of a scheme, then the above
security definitions take an extra parameter qH as input. This parameter denotes the adversary’s
maximum number of queries to the random oracle.

A DEM is a pair of deterministic algorithms (Enc, Dec). The encryption algorithm Enc takes
as input a symmetric key K ∈ {0, 1}λ and a message m of arbitrary length, and outputs a
ciphertext C ← Dec(K, C). The decryption algorithm Dec takes as input a symmetric key
K ∈ {0, 1}λ and a ciphertext C, and returns either a message m or the error symbol ⊥. The
DEM must satisfy the following soundness property: for all K ∈ {0, 1}λ and for all m ∈ {0, 1}∗,
we have that Dec(K, Enc(K, m)) = m.

The only security model which will concern us for DEMs is the (one-time) IND-CCA security
game, which is played between an adversary A = (A1,A2) and a challenger:

1. The challenger generates a key K
$
← {0, 1}λ.

2. The adversary runs A1. The adversary outputs two equal-length messages (m0, m1) and
some state information state.
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3. The challenger chooses a bit β
$
← {0, 1} and computes the ciphertext C∗ ← Enc(K, mβ).

4. The adversary runs A2 on input C∗ and the state information state. The adversary may
query a decryption oracle which will, on input of a ciphertext C 6= C∗, return Dec(K, C).
The adversary outputs a bit β′.

The adversary wins if β = β′ and its advantage is defined to be |2 · Pr [A wins ]− 1|.

Definition E.2.10 A (t, qD, ǫ)-adversary against the (one-time) IND-CCA security of the DEM
is an algorithm that runs in time at most t, makes at most qD decryption oracle queries, and
has advantage at least ǫ in winning the IND-CCA game described above.

A HIB-KEM and a DEM can be “glued” together to form a complete HIBE scheme. Further
details can be found in [BFMLS08].

E.2.10 The Canetti-Halevi-Katz Transform

We shall, in one of our constructions of a CCA WIBE scheme, make use of the techniques
behind the Canetti-Halevi-Katz transform [CHK04]. To aid the reader we recap on this here.
This is a transform to turn a weakly secure (IND-sID-CPA) IBE scheme into a fully secure
(IND-CCA) public key encryption scheme. We let (Setup, KeyDer, Encrypt, Decrypt) denote
the key-generation, extraction, encryption, and decryption algorithms of the IBE scheme, and
(Setup′, Encrypt′, Decrypt′) denote the key-generation, encryption, and decryption algorithms of
the derived public key scheme. The transform also makes use of a one-time signature scheme,
defined by a tuple of algorithms (SigGen, Sign, Verify).

The algorithm Setup′ is defined to be equal to Setup, i.e. public/private key of the PKE
scheme is the master public/private keys, (mpk , msk), of the IBE scheme. Algorithm Encrypt′ is
defined as follows: First a key-pair (sk, vk) for the one-time signature scheme is created by calling
SigGen; then the message is encrypted via Encrypt(mpk, vk, m) with respect to the “identity” vk
to produce c. The resulting ciphertext c is then signed with sk to produce σ = Sign(sk, c). The
tuple (vk, c, σ) is the ciphertext for our PKE.

To decrypt the recipient first verifies σ is a valid signature on c with respect to the verification
key vk, by calling Verify(vk, c, σ). If it is then the function KeyDer is called with respect to the
“identity” vk, using private key of the PKE (i.e. msk). Then the ciphertext can be decrypted
using the algorithm Decrypt.

E.3 Wildcard Identity-Based Encryption

E.3.1 Syntax

Identity-based encryption with wildcards (WIBE) schemes are essentially a generalisation of
HIBE schemes where at the time of encryption, the sender can decide to make the ciphertext
decryptable by a whole range of users whose identities match a certain pattern. Such a pattern
is described by a vector P = (P1, . . . , Pℓ) ∈ ({0, 1}∗∪{*})ℓ, where * is a special wildcard symbol.
We say that identity ID = (ID1, . . . , IDℓ′) matches P , denoted ID ∈* P , if and only if ℓ′ ≤ ℓ
and for all i = 1, . . . , ℓ′ we have that IDi = Pi or Pi = *. Note that under this definition, any
ancestor of a matching identity is also a matching identity. This is reasonable for our purposes
because any ancestor can derive the secret key of a matching descendant identity anyway.

If P = (P1, . . . , Pℓ) is a pattern, then we define W (P ) to be the set of wildcard positions in
P , i.e.

W (P ) = {1 ≤ i ≤ ℓ : Pi = *} .
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Formally, a WIBE scheme is a tuple of algorithms (Setup, KeyDer, Encrypt, Decrypt) providing
the following functionality. The Setup and KeyDer algorithms behave exactly as those of a HIBE
scheme. To create a ciphertext of a message m ∈ {0, 1}∗ intended for all identities matching
pattern P , the sender computes C

$
← Encrypt(mpk, P, m). Any of the intended recipients ID ∈*

P can decrypt the ciphertext using its own decryption key as m← Decrypt(dID , C).
Note that we implicitly assume that the pattern P used to encrypt the message is included

within the ciphertext. This is because any parent of the pattern should be able to decrypt the
message, and hence the parent will need to be able to fill in the non-wildcarded entries in the
pattern for decryption. For example, suppose the pattern is P = (ID1, *, ID3) and that the
decryptor has identity ID = (ID1, ID2). Then by our definition of a matching pattern we have
ID ∈* P , and so the decryptor will need to be informed of ID3 so as to be able to decrypt the
ciphertext. Note that an anonymous version of the definitions can be presented, but we do not
consider this further in this paper for simplicity.

Correctness requires that for all key pairs (mpk , msk) output by Setup, all messages m ∈
{0, 1}∗, all 0 ≤ ℓ ≤ L, all patterns P ∈ ({0, 1}∗ ∪ {*})ℓ, and all identities ID ∈* P , we have

Decrypt( KeyDer(msk, ID) , Encrypt(mpk, P, m) ) = m

with probability one.

E.3.2 Security Notions

We define the security of WIBE schemes analogously to that of HIBE schemes, but with the
adversary choosing a challenge pattern instead of an identity to which the challenge ciphertext
will be encrypted. To exclude trivial attacks, the adversary is not able to query the key derivation
oracle on any identity that matches the challenge pattern, nor is it able to query the decryption
oracle on the challenge ciphertext in combination with any identity matching the challenge
pattern.

More formally, the IND-WID-CPA security model is defined through the following game,
played between an adversary A = (A1,A2) and a challenger:

1. The challenger generates a master key pair (mpk , msk)
$
← Setup.

2. The adversary runs A1 on mpk. The adversary is given access to a key derivation or-
acle that, on input of an identity ID = (ID1, . . . , IDℓ), returns the secret key dID

$
←

KeyDer(msk, ID) corresponding to that identity. The adversary outputs two equal-length
messages (m0, m1) and a challenge pattern P ∗, along with some state information state.

3. The challenger chooses a bit β
$
← {0, 1} and computes the ciphertext C∗

$
← Encrypt(mpk ,

P ∗, mβ).

4. The adversary runs A2 on the input C∗ and the state information state. The adversary is
given access to a key derivation oracle as before. The adversary outputs a bit β′.

The adversary wins the game if β = β′ and it never queries the decryption oracle on any identity
ID which matches the pattern P ∗, i.e. any identity ID ∈* P ∗. The adversary’s advantage is
defined as |2 · Pr [A wins ]− 1|.

Definition E.3.1 A (t, qK , ǫ)-adversary against the IND-WID-CPA security of the WIBE scheme
is an algorithm that runs in time at most t, makes at most qK key derivation oracle queries, and
has advantage at least ǫ in the IND-WID-CPA game described above.

— 168 —



E.3. Wildcard Identity-Based Encryption

In the IND-WID-CCA security model is identical to the IND-WID-CPA security model with
the exception that the adversary has access to a decryption oracle, which will, on input of
an identity ID and a ciphertext C, return Decrypt(KeyDer(msk, ID), C). The adversary wins
the game if β = β′, it never queries the decryption oracle on any identity ID ∈* P ∗, and the
adversary doesn’t query the decryption oracle the combination of any identity ID ∈* P ∗ and
the ciphertext C∗. The adversary’s advantage is defined as |2 · Pr [A wins ]− 1|.

Definition E.3.2 A (t, qK , qD, ǫ)-adversary against the IND-WID-CCA security of the WIBE
scheme is an algorithm that runs in time at most t, makes at most qK key derivation oracle
queries, makes at most qD decryption oracle queries, and has advantage at least ǫ in the IND-
WID-CCA game described above.

As for the case of HIBEs, we also define a weaker selective-identity (sWID) security notion,
in which the adversary commits to the challenge pattern at the beginning of the game, before
the master public key is made available. The notions of IND-sWID-CPA and IND-sWID-CCA
security are defined analogously to the above. In the random oracle model, the additional
parameter qH denotes the adversary’s maximum number of queries to the random oracle, or the
total number of queries to all random oracles when it has access to multiple ones.

If the WIBE scheme has a finite message spaceM, then we may also define a one-way notion
for encryption security (OW-WID-CPA). This is formally defined via the following game, played
between an adversary A = (A1,A2) and a challenger:

1. The challenger generates a master key pair (mpk , msk)
$
← Setup.

2. The adversary runs A1 on input mpk. The adversary is given access to a key derivation
oracle as in the IND-WID-CPA game. The adversary outputs a challenge pattern P ∗ and
some state information state.

3. The challenger generates m
$
← M and computes the ciphertext C∗

$
← Encrypt(mpk, P ∗,

m).

4. The adversary runs A2 on the input C∗ and the state information state. The adversary is
given access to a key derivation oracle as before. It output a message m′.

The adversary wins the game if m = m′ and the adversary never queries the key derivation
oracle on an identity ID ∈* P ∗. The adversary’s advantage is defined to be |2 ·Pr [A wins ]− 1|.

Definition E.3.3 A (t, qK , ǫ)-adversary against the OW-WID-CPA security of the WIBE scheme
is an algorithm that runs in time at most t, makes at most qK key derivation oracle queries, and
has advantage at least ǫ in winning the OW-WID-CPA game described above.

E.3.3 Constructing a WIBE from a HIBE

In order to clarify the relationship between HIBEs and WIBEs, we first point out a generic
construction of a WIBE scheme from any HIBE scheme. However, this WIBE scheme has a
secret key size that is exponential in the depth of the hierarchy tree. Let “*” denote a dedicated
bitstring that cannot occur as a user identity. Then the secret key of a user with identity
(ID1, . . . , IDℓ) in the WIBE scheme contains the 2ℓ HIBE secret keys of all patterns matching
this identity. For example, the secret key of identity (ID1, ID2) contains four HIBE secret keys,
namely those corresponding to identities

(ID1, ID2), (“*”, ID2), (ID1, “*”), (“*”, “*”) .
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To encrypt to a pattern (P1, . . . , Pℓ), one uses the HIBE scheme to encrypt to the identity
obtained by replacing each wildcard in the pattern with the “*” string, i.e. the identity (ID1,
. . . , IDℓ) where IDi = “*” if Pi = * and IDi = Pi otherwise. The final WIBE ciphertext consists
of the pattern and the HIBE ciphertext. Decryption is done by selecting the appropriate secret
key from the list and using the decryption algorithm of the HIBE scheme.

Theorem E.3.4 If there exists a (t, qK , ǫ) attacker against the IND-WID-CPA security of the
WIBE scheme (with hierarchy depth L) then there exists a (t′, 2LqK, ǫ)-adversary against the
IND-HID-CPA security of the corresponding HIBE scheme, where t′ ≤ t + 2LqKtK and tK

is the time taken to compute a key derivation query. If there exists a (t, qK , qD, ǫ) attacker
against the IND-WID-CCA security of the WIBE scheme (with hierarchy depth L) then there
exists a (t′, 2LqK , qD, ǫ)-adversary against the IND-HID-CCA security of the corresponding HIBE
scheme, where t′ ≤ t + 2LqKtK + qDtD, tK is the time taken to compute a key derivation query,
and tD is the time taken to compute a decryption query.

Notice that the appearance of the term 2L in the security reduction means that this construction
is only guaranteed to be secure when the number of levels grows poly-logarithmically in the
secure parameter. This restriction occurs in the security analysis of all the HIBE schemes that
we consider.

The efficiency of the WIBE scheme obtained with this construction is roughly the same
as that of the underlying HIBE scheme, but with the major disadvantage that the size of the
secret key is 2ℓ times that of a secret key in the underlying HIBE scheme. This is highly
undesirable for many applications, especially since the secret key may very well be kept on an
expensive secure storage device. It is interesting to investigate whether WIBE schemes exist
with overhead polynomial in all parameters. We answer this question in the affirmative here by
presenting direct schemes with secret key size linear in ℓ. Unfortunately, for all of our schemes,
this reduction in key size comes at the cost of linear-size ciphertexts, while the generic scheme
can achieve constant-size ciphertexts when underlain by a HIBE with constant ciphertext size,
e.g. that of [BBG05].

E.3.4 The Relationship Between WIBE and GIBE, FIBE, and ABE

As we have seen WIBEs are closely related to HIBEs. They are also related to a concept called
Generalised Identity-Based Encryption (GIBE) [BH08]. In a GIBE one has a set of policies P
and a set of roles R. The roles are partially ordered so that a “higher” role can delegate its
abilities to a “lower” role. Whether a party can decrypt a ciphertext depends on whether a
predicate defined on the set P ×R evaluates to true. In particular a ciphertext is encrypted to
a policy π ∈ P , and it can be decrypted by a role ρ if and only if the predicate evaluated on
(π, ρ) evaluates to true. It is easy to see that the roles in a GIBE correspond to the identities in
a WIBE, whilst the policies correspond to the wildcarded patterns. Hence, a WIBE is a specific
example of a GIBE. However, the expressive nature of a GIBE being greater than that of a
WIBE comes at a cost, in that one can construct WIBE schemes which are more secure than
the equivalent GIBE.

Another related primitive is fuzzy identity-based encryption (FIBE) [SW05], which allows
a ciphertext encrypted to identity ID to be decrypted by any identity ID′ that is “close” to
ID according to some metric. In the schemes of [SW05], an identity is a subset containing n
elements from a finite universe. Two identities ID and ID′ are considered “close” if |ID∩ID′| ≥ d
for some parameter d. A FIBE with n = 2L and d = L can be used to construct a WIBE scheme
(without hierarchical key derivation) by letting the decryption key for identity (ID1, . . . , IDℓ)
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correspond to the decryption key for the set

{1‖ID1, . . . , ℓ‖IDℓ, (ℓ + 1)‖ε, . . . , L‖ε,

1‖“*”, . . . , L‖“*”} .

Suppose that “⊥” is a unique string which cannot occur as a user identity and distinct from
“*”. One can encrypt to pattern P = (P1, . . . , Pℓ) by encrypting to the set

{1‖P ′1, . . . , ℓ‖P ′ℓ , (ℓ + 1)‖ε, . . . , L‖ε, 1‖“⊥”, . . . , L‖“⊥”},

where the P ′i ← Pi if i /∈ W (P ) and P ′i ← “*” if i ∈ W (P ). The dummy symbols “⊥” are only
used to ensure that the size of the encryption set is exactly 2L (as required by the definition
of the FIBE scheme). We stress that this construction does not give a full WIBE scheme as it
does not permit hierarchical key derivation. This also implies that a “parent” identity cannot
decrypt message sent to its “children” identities as it cannot derive the key for the child.

Fuzzy-IBE, GIBEs, and WIBEs are themselves examples of a policy-based encryption mech-
anisms. In such systems access to encrypted data is provided as long as the recipient has a key
(or set of keys) which correspond to some policy. The power of identity-based mechanisms to
enable policy-based access control to encrypted data was realised very early on in the history of
pairing-based IBE [Sma03]. In recent years this idea has been formalised under the heading of
Attribute Based Encryption.

In Attribute Based Encryption [SW05], or, more correctly, Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) [BSW07, GPSW06], a recipient is issued keys corresponding to
a number of credentials. An encryptor will encrypt a message under a policy, i.e. a set of
credentials which are required by any user who wishes to obtain access to the message. Any
recipient which has credential key which meet the policy statement has access to the encrypted
data. The defining characteristic of CP-ABE is that the policies are embedded in the ciphertexts.

In the context of WIBEs the policy is that the user should have a key (credential) which
matches the pattern. For a pattern such as (ID1, *, ID3) this can be interpreted as having a
credential for an identity with ID1 in the first position and an identity with ID3 in the third
position. However, a CP-ABE scheme would offer separate credentials (keys) for each position,
whereas a WIBE compresses all of these credentials in a single key. Hence, ABE is clearly a
more powerful concept than a WIBE, as it allows more expressive policies, but WIBE schemes
are often simpler to construct.

E.4 Identity-based Key Encapsulation with Wildcards

We can also define a notion of Identity-Based Key Encapsulation Mechanism with Wildcards
(WIB-KEM). A WIB-KEM consists of the following four algorithms (Setup, KeyDer, Encap,
Decap). The algorithms Setup and KeyDer are defined as in the WIBE case. The encapsu-
lation algorithm Encap takes the master public key mpk of the system and a pattern P , and
returns (C, K), where K ∈ {0, 1}λ is a symmetric key and C is an encapsulation of the key
K. Again we assume that the encapsulation includes a public encoding of the pattern P under
which the message has been encrypted. Finally, the decapsulation algorithm Decap(mpk, dID , C)
takes a private key dID and an encapsulation C, and returns either a secret key K or the error
symbol ⊥.

A WIB-KEM must satisfy the following soundness property: for all pairs (mpk , msk) output
by Setup, all 0 ≤ ℓ ≤ L, all patterns P ∈ ({0, 1}∗ ∪ {∗})ℓ, and all identities ID ∈* P , we have

Pr
[
K ′ = K : (C, K)

$
← Encap(mpk , P ); K ′

$
← Decap(KeyDer(msk , ID), C)

]
= 1 .
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The IND-WID game for WIB-KEMs is similar to both the IND-WIB game for WIBEs and
the IND-HIB game for HIB-KEMs. The IND-WIB-CCA game is played between an adversary
A = (A1,A2) and a challenger:

1. The challenger generates a master key pair (mpk , msk)
$
← Setup.

2. The adversary runs A1 on mpk. The adversary is given access to a key derivation or-
acle that, on input of an identity ID = (ID1, . . . , IDℓ), returns the secret key dID

$
←

KeyDer(msk, ID) corresponding to that identity. The adversary is also given access to a
decryption oracle that will, on input of an identity ID = (ID1, . . . , IDℓ) and a ciphertext
C, return Decap(KeyDer(msk, ID), C). The adversary outputs a challenge pattern P ∗ and
some state information state.

3. The challenger chooses a bit β
$
← {0, 1}, computes the encapsulation (C∗, K0)

$
← Encap(mpk ,

P ∗) and chooses a random key K1
$
← {0, 1}λ.

4. The adversary runs A2 on the input (C∗, Kβ) and the state information state. The ad-
versary is given access to a key derivation oracle and decryption oracle as before. The
adversary outputs a bit β′.

The adversary wins the game if β = β′, it never queries the key derivation oracle on any identity
ID ∈* P ∗, and if it doesn’t query the decryption oracle on the pair (ID, C∗) for some ID ∈* P ∗

after it receives the challenge ciphertext. As usual, the adversary’s advantage is defined to be
equal to |2 · Pr [A wins ]− 1|.

Another common form for writing the advantage of an IND-WID-CCA adversary for a WIB-
KEM is given by the following simple lemma.

Lemma E.4.1 IfA is a (t, qK , qD, ǫ)-adversary against the IND-WID-CCA security of the WIB-
KEM and β, β′ are as in the IND-WID-CCA security game, then

ǫ = |Pr
[
β′ = 1 | β = 1

]
− Pr

[
β′ = 1 | β = 0

]
|

Definition E.4.2 A (t, qK , qD, ǫ)-adversary against the IND-WID-CCA security of a HIB-KEM
is an algorithm that runs in time t, makes at most qK queries to the key derivation oracle, makes
at most qD queries to the decryption oracle, and has advantage at least ǫ in winning the IND-
WID-CCA game described above.

We may combine a WIB-KEM (Setup, KeyDer, Encap, Decap) with a DEM (Enc, Dec) (see
Section E.2.9) to form a complete WIBE scheme (Setup, KeyDer, Encrypt, Decrypt), where the
encryption and decryption algorithms are as follows:

• Encrypt(mpk , P ∗, m):

1. Compute (C1, K)
$
← Encap(mpk, P ∗).

2. Compute C2 ← Enc(K, m).

3. Output the ciphertext C = (C1, C2).

• Decrypt(dID , C):

1. Parse C as (C1, C2).

2. Compute K
$
← Decap(dID , C1). If K = ⊥ then output ⊥.

3. Compute m← Dec(K, C2).
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4. Output m.

Theorem E.4.3 If there exists a (t, qK , qD, ǫ)-adversary A = (A1,A2) against IND-WID-CCA
security of the hybrid WIBE, then there is a (tB, qK , qD, ǫB)-adversary B = (B1,B2) against the
IND-WID-CCA security of the WIB-KEM and a (tB′ , qD, ǫB′)-adversary B′ = (B′1,B′2) against
the IND-CCA security of the DEM such that:

tB ≤ t + qDtDec + tEnc

tB′ ≤ t + qD(tDec + tDecap + tKeyDer) + qKtKeyDer

+tEncap + tSetup

ǫ ≤ 2ǫB′ + ǫB

where tEnc is the time to run the DEM’s Enc algorithm, tDec is the time to run the DEM’s Dec
algorithm, tSetup is the time to run the KEM’s Setup algorithm, tDecap is the time to run the
KEM’s Decap algorithm and tKeyDer is the time to run the KEM’s KeyDer algorithm.

Proof: This proof mirrors the proofs of Cramer and Shoup [CS03] and Bentahar et al. [BFMLS08].
We prove this result in two stages. First, we change the nature of the security game. Let Game 1
be the normal IND-WID-CCA game for the WIBE scheme. Let Game 2 be the slight adaptation
of the IND-WID-CCA game:

1. The challenger generates a master key pair (mpk , msk)
$
← Setup.

2. The adversary runs A1 on mpk. The adversary is given access to a key derivation or-
acle that, on input of an identity ID = (ID1, . . . , IDℓ), returns the secret key dID

$
←

KeyDer(msk, ID) corresponding to that identity. The adversary is also given access to a de-
cryption oracle that, on input of an identity ID and a ciphertext C, returns
Decrypt(KeyDer(msk, ID), C). The adversary outputs two messages (m0, m1) of equal
length and a challenge pattern P ∗, along with some state information state.

3. The challenger chooses a bit β
$
← {0, 1} and a key K∗

$
← {0, 1}λ, then computes the

ciphertext (C∗1 , K)
$
← Encap(mpk, P ∗) and C2 ← Enc(K∗, mβ). The challenge ciphertext

is C∗ ← (C∗1 , C∗2 ).

4. The adversary runs A2 on the input C∗ and the state information state. The adversary
is given access to a key derivation oracle as before. The adversary is also given to a
decryption oracle that, on input of an identity ID and a ciphertext C = (C1, C2), returns

{
Decrypt(KeyDer(msk, ID), C) if ID 6∈* P ∗ or C1 6= C∗1
Dec(K∗, C2) if ID ∈* P ∗ and C1 = C∗1 )

.

The adversary outputs a bit β′.

Note that the only two differences between the game and the IND-WID-CCA game are that a
random key is used to compute the challenge ciphertext and to decrypt certain ciphertexts after
the challenge ciphertext is issued.

We show that any change in the actions of A between Game 1 and Game 2 give rise to an
adversary B = (B1,B2) against the IND-WID-CCA security of the WIB-KEM. We describe the
algorithm B1 below:
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1. B1 takes as input the master public key mpk.

2. B1 runs A1 on mpk. If A1 makes a key derivation oracle query, then B1 forwards this
query to its own oracle and returns the result. If A1 makes a decryption oracle query on
an identity ID and a ciphertext (C1, C2), the B1 forwards C1 to its decapsulation oracle
and receives a key K in return. B1 returns Dec(K, C2) to A. A1 outputs a challenge
pattern P ∗ and two equal-length messages (m0, m1).

3. B1 outputs the challenge pattern P ∗.

The challenger then computes a challenge encapsulation (C∗1 , K∗) where K∗ is either the decap-
sulation of C∗1 or a random key. The algorithm B2 runs as follows:

1. B2 takes as input the challenge encapsulation (C∗1 , K∗). B2 chooses a bit β
$
← {0, 1} and

computes the remainder of the challenge ciphertext C∗2 ← Enc(K∗, mβ).

2. B2 runs A2 on the challenge ciphertext C∗ = (C∗1 , C∗2 ). If A2 makes a key derivation
oracle query, then B2 forwards this query to its own oracle and returns the result. If A2

makes a decryption oracle query on an identity ID ∈* P ∗ and a ciphertext (C∗1 , C2), then
B2 returns Dec(K∗, C2) to A2. Otherwise, if A2 makes a decryption oracle query on an
identity ID and a ciphertext (C1, C2), then B2 answers the query as before, by querying
its own oracle to find the decapsulation of C1 and decrypting C2 itself. A2 outputs a bit
β′.

3. If β = β′ then B2 outputs 1; otherwise B2 outputs 0.

If K∗ is the decapsulation of C∗1 then B simulates Game 1 for A; whereas if K∗ is a random key
then B simulates Game 2 for A. Thus we have,

|Pr [A wins in Game 1 ]− Pr [A wins in Game 2 ]| = ǫB

by virtue of Lemma E.4.1.

However, the security of Game 2 depends only on the (one-time) IND-CCA security of the DEM.
We give an algorithm B′ = (B′1,B′2) reduces the security of the WIBE in Game 2 to the security
of the DEM. We describe the algorithm B′1 below:

1. B′1 computes (mpk, msk)← Setup.

2. B′1 runs A1 on mpk. If A1 makes a key derivation or decryption oracle query, then B′1
computes the correct answer using its knowledge of the master private key msk. A1

outputs a challenge pattern P ∗ and two equal-length messages (m0, m1).

3. B′1 outputs the messages (m0, m1).

The challenger chooses a bit β
$
← {0, 1} and computes C∗2

$
← Enc(K∗, mβ) as the challenge

encryption using a randomly chosen (and hidden) key K∗
$
← {0, 1}λ. The algorithm B′2 runs as

follows:

1. B′2 takes C∗2 as input. B′2 computes the encapsulation (C∗1 , K)
$
← Encap(mpk , P ∗) and sets

the challenge ciphertext C∗ ← (C∗1 , C∗2 ).
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2. B′2 runs A2 on the input C∗. If A2 makes a key derivation oracle query, then B′2 answers
it correctly using its knowledge of the master private key msk. If A2 makes a decryption
oracle query on an identity ID ∈* P ∗ and a ciphertext (C∗1 , C2) then B′2 computes the
correct answer by querying its own decryption on C2 and returning the result. Otherwise,
if A2 makes a decryption oracle query on an identity ID and a ciphertext C, then B′2
computes the correct answer using its knowledge of the master private key msk. A2

outputs a bit β′.

3. B′2 outputs the bit β′.

B′ correctly simulates Game 2 for A. Furthermore, A wins in Game 2 if and only if B wins the
IND-CCA game for a DEM. Hence,

|2 · Pr [A wins Game 2 ]− 1| = ǫB′

and so we have that

ǫ = |2 · Pr [A wins Game 1 ]− 1|

≤ 2 · |Pr [A wins in Game 1 ]− Pr [A wins in Game 2 ]|

+|2 · Pr [A wins in Game 2 ]− 1|

= 2ǫB + ǫB′ .

E.5 IND-WID-CPA Secure WIBEs

In this section, we propose several WIBE schemes which are IND-WID-CPA secure, based on
three existing HIBE schemes from the Boneh-Boyen family (BB-HIBE, BBG-HIBE, Waters-
HIBE). These three direct constructions all utilize a similar technique of modifying a HIBE’s
ciphertext generation to include some extra data related to each wildcard. The security proof
then reduces the security of the resulting WIBE to that of the underlying HIBE. These schemes
are all proven secure using the same “projection” technique and so we only prove the security
of one scheme (Waters-WIBE) relative to the security of the underlying HIBE (in this case
Waters-HIBE). Note, in that due to our earlier comment on the lack of a full security proof for
the Waters-HIBE, we obtain a full security theorem only for the cases of the BB- and BBG-based
WIBE’s.

Each of these three schemes is proven secure, relative to the underlying HIBE, in the standard
model; however, two of these schemes are only proven secure in the IND-sWID-CPA model. We
therefore give a generic transformation from an IND-sWID-CPA secure scheme to an IND-WID-
CPA secure scheme which uses the random oracle model.

E.5.1 The Boneh-Boyen WIBE

Our first construction is based on the slight variant of the BB-HIBE [BB04a] which we prove
secure in Section E.2.6. As with the BB-HIBE scheme, the BB-WIBE makes use of identities
which are vectors of elements of Zp. The scheme is described in Figure E.4. Note that the
decryption algorithm can determine if i ∈ W (P ) by checking whether C2,i contains one group
element or two.
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Algorithm Setup:
g1, g2

$
← G ; α

$
← Zp

h1 ← gα
1 ; h2 ← gα

2

ui,j
$
← G for i = 1 . . . L, j = 0, 1

mpk ← (g1, g2, h1, u1,0, . . . , uL,1)
msk ← h2

Return (mpk, msk)

Algorithm KeyDer(d(ID1,...,IDℓ), IDℓ+1):
Parse d(ID1,...,IDℓ) as (d0, . . . , dℓ)
rℓ+1

$
← Zp

d′
0 ← d0 ·

(
uℓ+1,0 · u

IDℓ+1

ℓ+1,1

)rℓ+1

d′
ℓ+1 ← g

rℓ+1

1

Return (d′
0, d1, . . . , dℓ, d′

ℓ+1)

Algorithm Encrypt(mpk, P, m):
Parse P as (P1, . . . , Pℓ)
r

$
← Zp ; C1 ← gr

1

For i = 1, . . . , ℓ do
If i /∈W (P ) then C2,i ←

(
ui,0 · u

Pi

i,1

)r

If i ∈W (P ) then C2,i ← (ur
i,0, ur

i,1)
C3 ← m · ê(h1, g2)r

Return (P, C1, C2,1, . . . , C2,ℓ, C3)

Algorithm Decrypt(d(ID1,...,IDℓ), C):
Parse d(ID1,...,IDl) as (d0, . . . , dℓ)
Parse C as (P, C1, C2,1, . . . , C2,ℓ, C3)
For i = 1, . . . , ℓ do

If i /∈ W (P ) then C′
2,i ← C2,i

If i ∈ W (P ) then
Parse C2,i as (v1, v2)
C′

2,i ← v1 · v
IDi

2

m′ ← C3 ·

∏
ℓ

i=1
ê(di,C′

2,i)

ê(C1,d0)

Return m′

Figure E.4: The Boneh-Boyen WIBE scheme.

The BB-WIBE can actually be seen as a close relative of the Waters-WIBE scheme (see
Section E.5.3) with the hash function Fi(IDi) being defined as

Fi(IDi) = ui,0 · u
IDi
i,1 .

Its security properties are different though since the BB-WIBE scheme can be proved secure in
the selective-identity model only. We reduce its security to that of the BB-HIBE scheme, which
in its turn is proved IND-sHID-CPA secure under the BDDH assumption in Section E.2.6. The
proof of the theorem below is analogous to that of Theorem E.5.3, and hence omitted. One
important difference with Theorem E.5.3 is that the reduction from the BB-HIBE scheme is
tight: because we prove security in the selective-identity model, we do not lose a factor 2L due
to having to guess the challenge pattern upfront.

Theorem E.5.1 If there exists a (t, qK , ǫ)-adversary against the IND-sWID-CPA security of a
BB-WIBE (with hierarchy depth L) then there exists a (t′, q′K , ǫ′)-adversary against the IND-
sHID-CPA security of the BB-HIBE, where

t′ ≤ t + 2L(1 + qK) · texp , q′K ≤ qK and ǫ′ ≥ ǫ ,

where texp is the time required to compute an exponentiation in G.

In terms of efficiency, the BB-WIBE scheme easily outperforms the Waters-WIBE scheme:
the master public key contains 2L+3 group elements. Encryption to a recipient pattern of length
ℓ and w wildcards involves ℓ+w+2 (multi-)exponentiations and produces ciphertexts containing
ℓ+w+2 group elements, or 2L+2 group elements in the worst case that ℓ = w = L. Decryption
requires the computation of ℓ + 1 pairings, just like the Waters-WIBE scheme. However, this
scheme is outperformed by the BBG-WIBE.
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E.5.2 The Boneh-Boyen-Goh WIBE

Our second construction is based on the BBG-HIBE [BBG05] (see Section E.2.7). The BBG-
HIBE scheme has the advantage of constant-sized ciphertexts. Our BBG-WIBE scheme does
not have this advantage, but does have the advantage that a pattern with w wildcards leads to
a ciphertext with w + 3 elements and is secure under the same decisional L-BDHI problem as
the BBG-HIBE. Again, identities are considered to be vectors of elements of Zp and the scheme
is given in Figure E.5.

Algorithm Setup:
g1, g2

$
← G ; α

$
← Zp

h1 ← gα
1 ; h2 ← gα

2

ui
$
← G for i = 1, . . . , L

mpk ← (g1, g2, h1, u0, . . . , uL)
d0 ← h2

For i = 1, . . . , L + 1 do
di ← 1

msk ← (d0, d1, . . . , dL, dL+1)
Return (mpk, msk)

Algorithm KeyDer(d(ID1,...,IDℓ), IDℓ+1):
Parse d(ID1,...,IDℓ) as (d0, dℓ+1, . . . , dL, dL+1)
rℓ+1

$
← Zp

d′
0 ← d0 · d

IDℓ+1

ℓ+1 ·
(
u0

∏ℓ
i=1 uIDi

i

)rℓ+1

For i = ℓ + 2, . . . , L do
d′

i ← di · u
rℓ+1

i

d′
L+1 ← dL+1 · g

rℓ+1

1

Return (d′
0, d′

ℓ+2, . . . , d′
L, d′

L+1)

Algorithm Encrypt(mpk, P, m):
Parse P as (P1, . . . , Pℓ)
r

$
← Zp ; C1 ← gr

1

C2 ←
(
u0

∏ℓ
i=1,i/∈W (P ) uPi

i

)r

C3 ← m · ê(h1, g2)r

C4 ← (ur
i )i∈W (P )

Return (P, C1, C2, C3, C4)

Algorithm Decrypt(d(ID1,...,IDℓ), C):
Parse d(ID1,...,IDℓ) as (d0, dℓ+1, . . . , dL+1)
Parse C as (P, C1, C2, C3, C4)
Parse C4 as (vi)i∈W (P )

C′
2 ← C2

∏ℓ
i=1,i∈W (P ) vIDi

i

m′ ← C3 ·
ê(C′

2,dL+1)
ê(C1,d0)

Return m′

Figure E.5: The Boneh-Boyen-Goh WIBE scheme.

The BBG-WIBE scheme is significantly more efficient than the Waters-WIBE and BB-WIBE
schemes in terms of decryption, and also offers more efficient encryption and shorter ciphertexts
when the recipient pattern contains few wildcards. More precisely, the master public key contains
L + 4 group elements. Encryption to a recipient pattern of length ℓ with w wildcards involves
w + 3 (multi-)exponentiations and w + 3 group elements in the ciphertext, or L + 3 of these in
the worst case that ℓ = w = L. Decryption requires the computation of two pairings, as opposed
to ℓ + 1 of these for the Waters-WIBE and BB-WIBE schemes.

Again, the proof of the following theorem is analogous to that of Theorem E.5.3, and hence
omitted.

Theorem E.5.2 If there is a (t, qK , ǫ)-adversary against the IND-sWID-CPA security of the
BBG-WIBE (with hierarchy depth L) then there exists a (t′, q′K , ǫ′)-adversary against the IND-
sHID-CPA security of the BBG-HIBE where

t′ ≤ t− L(1 + 2qK) · texp, q′K ≤ qK , and ǫ′ ≥ ǫ,

where texp is the time it takes to perform an exponentiation in G.

E.5.3 The Waters WIBE

Our third construction is based on the Waters-HIBE [Wat05] (see Section E.2.8). As in the
HIBE scheme, the WIBE makes use of identities which are n-bit strings and a series of hash

— 177 —



Chapter E. Wildcarded Identity-Based Encryption

functions (F1, . . . , FL) where
Fi(IDi) = ui,0

∏

j∈[IDi]

ui,j .

The scheme is described in Figure E.6.

Algorithm Setup:
g1, g2

$
← G ; α

$
← Zp

h1 ← gα
1 ; h2 ← gα

2

ui,j
$
← G for i = 1, . . . , L; j = 0 . . . n

mpk ← (g1, g2, h1, u1,0, . . . , uL,n)
msk ← h2

Return (mpk, msk)

Algorithm KeyDer(d(ID1,...,IDℓ), IDℓ+1):
Parse d(ID1,...,IDℓ) as (d0, . . . , dℓ)
rℓ+1

$
← Zp

d′
0 ← d0 · Fℓ+1(IDℓ+1)rℓ+1

d′
ℓ+1 ← g

rℓ+1

1

Return (d′
0, d1, . . . , dℓ, d′

ℓ+1)

Algorithm Encrypt(mpk, P, m):
Parse P as (P1, . . . , Pℓ)
r

$
← Zp ; C1 ← gr

1

For i = 1 . . . ℓ do
If i /∈W (P ) then C2,i ← Fi(IDi)r

If i ∈W (P ) then C2,i ← (ur
i,0, . . . , ur

i,n)
C3 ← m · ê(h1, g2)r

Return (P, C1, C2,1, . . . , C2,ℓ, C3)

Algorithm Decrypt(d(ID1,...,IDℓ), C):
Parse d(ID1,...,IDℓ) as (d0, . . . , dℓ)
Parse C as (P, C1, C2,1, . . . , C2,ℓ, C3)
For i = 1, . . . , ℓ do

If i /∈ W (P ) then C′
2,i ← C2,i

If i ∈ W (P ) then
Parse C2,i as (v0, . . . , vn)
C′

2,i ← v0

∏
i∈[IDi] vi

m′ ← C3 ·

∏
ℓ

i=1
ê(di,C′

2,i)

ê(C1,d0)

Return m′

Figure E.6: The Waters WIBE scheme.

In terms of efficiency, the Waters-WIBE compares unfavourably with the BB-WIBE and
BBG-WIBE (but (conjecturally) provides stronger security guarantees in the standard model).
The master public key of the Waters-WIBE scheme contains (n + 1)L + 3 group elements.
Encrypting to a pattern of length ℓ containing w wildcards comes at the cost of ℓ + nw + 2
exponentiations and ℓ + nw + 2 group elements in the ciphertext; in the worst case of ℓ = w = L
this means (n + 1)L + 2 exponentiations and group elements. (The pairing ê(h1, g2) can be
precomputed.) Decryption requires the computation of ℓ + 1 pairings.

In terms of efficiency, the Waters-WIBE scheme performs well enough to be considered for
use in practice, but definitely leaves room for improvement. The main problem is the dependency
of the scheme on n, the bit length of identity strings. In practice, one would typically use the
output of a collision-resistant hash function as identity strings, so that n = 160 for a reasonable
level of security. We note that the techniques of [CS05, Nac07] could be applied to trade a factor
d in efficiency against the loss of a factor of 2Ld in the tightness of the reduction.

We now prove the security of the Waters-WIBE, relative to the security of the Waters-
HIBE. This proof provides a template for the proofs of the security theorems for the BB and
BBG WIBE’s mentioned above. We reduce the security of the Waters-WIBE to the security of
the Waters-HIBE. The security of the latter scheme, as has already been mentioned, is believed
to reduce to the security of the BDDH problem (see Section E.2.8).

Theorem E.5.3 If there exists a (t, qK , ǫ)-adversary against the IND-WID-CPA security of the
Waters-WIBE scheme (with hierarchy depth L) then there exists a (t′, q′K , ǫ′)-adversary against
the IND-HID-CPA security of the HIBE scheme, where

t′ ≤ t + Ln(1 + qK) · texp, q′K ≤ qK and ǫ′ ≥ ǫ/2L,
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and texp is the time it takes to perform an exponentiation in G.

Proof: Suppose there exists a (t, qK , ǫ)-adversary A = (A1,A2) against the IND-WID-CPA
security of the Waters-WIBE scheme. We construct an adversary B = (B1,B2) against the
IND-HID-CPA security of the Waters-HIBE.

The intuitive idea behind the proof is that B guesses the levels in which the challenge pattern
contains wildcards. Any query that A makes is passed by B to its own oracles after stripping
out the levels corresponding to wildcards in the challenge pattern. To this end, we construction
a ‘projection” map π : {1, . . . , L} → {1, . . . , L}. Suppose that P̄ ∗ ∈ {ε, *}L is B’s guess for the
wildcard positions in the challenge pattern. Define P̄ ∗≤i to be equal to the first i components of
P̄ ∗ and define π as

π(i) =

{
0 if i ∈W (P̄ )

i−
∣∣W (P̄ ∗≤i)

∣∣ if i /∈W (P̄ )

B is an adversary against the Waters-HIBE scheme. We denote parameters associated with the
HIBE scheme using tildes. The algorithm B1 runs as follows:

1. B1 takes as input the master public key of the HIBE scheme m̃pk = (g̃1, g̃2, h̃1, ũ1,0, . . . ,
ũL,n).

2. B1 computes P̄ = (P̄1, . . . , P̄L)
$
← {ε, *}L.

3. B1 computes the master public key mpk = (g1, g2, h1, u1,0, . . . , uL,n) as follows:

g1 ← g̃1 g2 ← g̃2 h1 ← h̃1

ui,j ← ũπ(i),j if i /∈W (P̄ ) and j = 1, . . . , n

ui,j ← g
αi,j

1 if i ∈W (P̄ ), j = 1, . . . , n and αi,j
$
← Zp

4. B1 runs A1 on mpk. If A1 makes a key derivation oracle on input ID = (ID1, . . . , IDℓ) then
B1 constructs an identity ˜ID = ( ˜ID1, . . . , ˜IDℓ̃) by setting ˜IDπ(i) ← IDi for each i ∈W (P̄ ∗≤ℓ).
B1 queries its key derivation oracle on ˜ID and receives (d̃0, . . . , d̃ℓ̃). B1 reconstructs the
decryption key dID = (d0, . . . , dℓ) for ID as:

d0 ← d̃0
∏

i∈W (P̄ ∗
≤ℓ

)

(
ui,0

∏
j∈[IDi] ui,j

)ri for ri
$
← Zp

di ← dπ(i) if i /∈W (P̄ ∗≤ℓ)

di ← gri
1 if i ∈W (P̄ ∗≤ℓ)

B1 returns the key dID to A1. A1 outputs two equal-length messages (m0, m1) and a
challenge pattern P ∗ = (P ∗1 , . . . , P ∗ℓ∗).

5. If P̄ ∗≤ℓ∗ and P ∗ do not have wildcards in exactly the same positions, then B1 aborts.

Otherwise, B1 computes a challenge identity ˜ID
∗

= ( ˜ID
∗
1, . . . , ˜ID

∗
ℓ̃∗) by setting ˜ID

∗
i ← P ∗i

for all i /∈W (P ∗). B1 outputs the challenge identity ˜ID
∗

and the two messages (m0, m1).

The challenger will now encrypt mβ under the identity ˜ID
∗

using the Waters-HIBE (for β
$
←

{0, 1}). This results in a ciphertext C̃∗ = (C̃∗1 , C̃∗2,1, . . . , C̃∗
2,ℓ̃∗ , C̃∗3 ) which is input to the algorithm

B2 described below:
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1. B2 computes a challenge WIBE ciphertext C∗ = (P ∗, C∗1 , C∗2,1, . . . , C∗2,L, C∗3 ) as follows:

C∗1 ← C̃∗1
C∗2,i ← C̃∗2,π(i) if i /∈W (P ∗)

C∗2,i ← (C∗1
αi,0 , . . . , C∗1

αi,n) for i ∈W (P ∗)

C∗3 ← C̃∗3

2. B2 runs A2 on the input C∗. If A2 makes a key derivation oracle query, then B2 answer
its queries as before. A2 outputs a guess β′.

3. B2 outputs β′.

We make several observations about the adversary B. First, note that B cannot correctly guess
the bit β′ unless it correctly guesses the locations of the wildcards in the challenge pattern.
This happens with probability at least 1/2L. Second, we observe that if B correctly guesses
the position of the wildcards in the challenge ciphertext, then B correctly simulates the key
derivation oracle and challenge ciphertext for A. Furthermore, if B correctly guesses the position
of the wildcards in the challenge ciphertext, then any legal key derivation oracle query that A
makes results in a legal key derivation oracle query made by B. This is because for any identity
ID 6∈* P ∗ there must exist an index i such that P ∗i 6= * and IDi 6= P ∗i . Hence, the “projected”
identity ˜ID has ˜IDπ(i) = IDi 6= P ∗i = ˜ID

∗
π(i). Hence, if B correctly guesses the position of the

wildcards in the challenge ciphertext, then B wins if and only if A wins. This leads to the results
of the theorem.

Note that the proof above loses a factor of 2L in the security reduction. This limits the
secure use of the scheme in practice to very small (logarithmic) hierarchy depths, but this was
already the case for the Waters-HIBE scheme, which loses a factor (nqK)L in its reduction
to the BDDH problem. Alternatively, if we only consider patterns with a single sequence of
consecutive wildcards, for example (ID1, *, *, *, ID5) or (ID1, *, *), then we only lose a factor
of L2 when reducing to the Waters-HIBE scheme. If we consider the selective-identity notion,
there is no need to guess the challenge pattern, so we do not lose any tightness with respect to
the Waters-HIBE scheme. In addition, the Waters-HIBE scheme would itself also have a tight
security reduction to the BDDH problem in the selective-identity notion.

E.5.4 Converting Selective-Identity Security to Full Security

As observed by Boneh and Boyen [BB04a] for the case of IBE schemes and by Boneh, Boyen, and
Goh [BBG05] for the case of HIBE schemes, any HIBE scheme that is selective-identity (IND-
sHID) secure can be transformed into a HIBE scheme that is fully (IND-HID) secure in the
random oracle model. The transformation only works for small hierarchy depths though, since
the proof loses a factor O(qL

H) in reduction tightness. We show here that the same transformation
works for the case of WIBE schemes at a similar cost of a factor O(qL

H) in reduction.
Let Π = (Setup, KeyDer, Encrypt, Decrypt) be a WIBE scheme with maximum hierarchy depth

L. We construct a WIBE scheme Π′ = (Setup, KeyDer′, Encrypt′, Decrypt′) where KeyDer′, Encrypt′,
and Decrypt′ are identical to KeyDer, Encrypt, and Decrypt with the exception that the iden-
tity/pattern is input to a hash function before it is input to the relevant algorithm. A pattern
P = (P1, . . . , Pℓ) is transformed into a pattern P ′ = (P ′1, . . . , P ′ℓ) where

P ′i ←

{
Hi(Pi) if Pi 6= *

* otherwise,
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where Hi : {0, 1}∗ → ID (for 1 ≤ i ≤ L) are independent hash functions (modelled as distinct
random oracles) and ID is an appropriately sized subset of the allowable identities for the
original WIBE scheme.1

Theorem E.5.4 In the random oracle model, suppose that there exists a (t, qK , qH , ǫ)-adversary
against the IND-WID-CPA security of Π′ (with hierarchy depth L) then there exists a (t′, qK , ǫ′)-
adversary against the IND-sWID-CPA security of Π, where t′ ≤ t and

ǫ′ ≥
ǫ

(L + 1)(qH + qKL + 1)L
−

(qH + qKL + 1)2

|ID|
.

Proof: Suppose there exists a (t, qK , qH , ǫ)-adversary A = (A1,A2) against the IND-WID-CPA
security of Π′. We construct an IND-sWID-CPA adversary B = (B0,B1,B2) against Π that uses
A as a subroutine. The algorithm B0 runs as follows:

1. B0 chooses ℓ̂∗
$
← {0, 1, . . . , L} and ˆctr

$
← {0, 1, . . . , qH + qKL + 1}. B0 computes the

challenge pattern P̂ ∗ ← (P̂ ∗1 , . . . , P̂ ∗
ℓ̂∗

) where

P̂ ∗i ←

{
* if ˆctr = 0

ID if ˆctr 6= 0 where ID
$
← ID

B0 outputs P̂ ∗.

The challenger now issues the master public key mpk to the adversary. Algorithm B1 run as
follows:

1. B1 receives the master public key mpk.

2. B1 initialises a set of lists Ti to answer the random oracle queries for the hash function Hi.
These lists are initially empty. For each list, B1 initialises a counter ctr i ← 1.

3. B1 runs A1 on mpk. B1 answers A1’s oracle queries as follows:

• Suppose A1 queries the random oracle Hi on input ID. If Ti[ID] is defined, then
B1 returns Ti[ID]. Otherwise, if ctr i = ˆctr i, then B1 sets Ti[ID] ← P̂ ∗i , else B1 sets
Ti[ID]

$
← ID. In either case, B1 increments ctr i by one and returns Ti[ID].

• Suppose A1 queries the key derivation oracle on ID = (ID1, . . . , IDℓ). B1 computes
the hashed identity ID′ = (ID′1, . . . , ID′ℓ) where ID′i ← Hi(IDi) using the random
oracle algorithm defined above. B1 queries its own key derivation oracle on the input
ID′ and returns to the result to A1.

A1 terminates by outputting a challenge pattern P ∗ = (P ∗1 , . . . , P ∗ℓ∗) and two equal-length
messages (m0, m1).

4. If ℓ∗ 6= ℓ̂∗, if there exists i ∈ W (P̂ ∗) such that P ∗i 6= *, or if there exists 1 ≤ i ≤ ℓ∗ such
that i /∈W (P̂ ∗) and Hi(P

∗
i ) 6= P̂ ∗i , then B1 aborts.

5. B1 outputs the two messages (m0, m1).

1These L independent random oracles (H1, . . . , HL) can easily be constructed from a single random oracle H ,
e.g. by setting Hi(·) = H([i]‖·) where [i] is a fixed-length representation of the integer i.
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The challenger computes the challenge ciphertext C∗ (which is the encryption of mβ for some

randomly chosen β
$
← {0, 1}). This value is input to algorithm B2 which runs as follows:

1. B2 runs A2 on the input C∗. If A2 makes any oracle query, then they are answered as
above. A2 outputs a bit β′.

2. B2 outputs β′.

B wins the IND-sWID-CPA game if (1) A wins the IND-WID-CPA game; (2) B does not abort
because the challenge pattern it outputs is incorrect; (3) A does not force B to make an illegal key
derivation oracle query. The idea is that the counters ˆctr i are B’s guess as to which oracle query
will define the challenge patterns (where a counter values of ˆctr i = 0 means that that position
is a wildcard). We require that for each of the hash oracles provides no collisions – i.e. for each
ID 6= ID′ we have Hi(ID) 6= Hi(ID

′). Since such a collision could only occur by accident, the
probability is bounded by (qH +qKL+1)2/|ID| as there exists at most qH +qKL+1 entries in all
the lists. We exclude the possibility this occurs by losing an additive factor of (qH +qKL)2/|ID|
in the security reduction.

Furthermore, we require that the algorithm B correctly identifies the pattern that A outputs.
Since the values are chosen at random, we have that ℓ̂∗ = ℓ∗ with probability 1/(L + 1) and
that the ˆctr i value will be correct with probability 1/(qH + qKL + 1). If B correctly guesses
these values and there are no hash collisions, then A will never force B to make an illegal key
derivation query. Hence, the result of the theorem holds.

The above theorem is easily seen to extend to the case of converting an IND-sWID-CCA
scheme into an IND-WID-CCA scheme, with an appropriate alteration of the error term in the
advantage statement; to take into account the number of decryption oracle queries. Indeed
adversary B is modified so that when it obtains a decryption query it first hashes the identities
to produce a decryption query suitable for A. Such a simulation will fail if and only if the
hashed identity is equivalent to the challenge identity for A, but this would imply a collision in
the random oracle.

E.6 IND-WID-CCA Secure WIBEs

In this section, we present constructions for IND-WID-CCA secure WIBEs. We present one
generic transform from an IND-WID-CPA WIBE into an IND-WID-CCA WIBE based on the
Canetti-Halevi-Katz transform [CHK04] and a generic random-oracle-based transform from an
OW-WID-CPA WIBE into an IND-WID-CCA WIB-KEM based on a transform of Dent [Den03].

E.6.1 The Canetti-Halevi-Katz Transform

In this section, we construct a variant of the Canetti-Halevi-Katz transform [CHK04] to convert
an IND-WID-CPA secure WIBE with hierarchy depth L + 1 into an IND-WID-CCA secure
WIBE with hierarchy depth L, using a one-time signature scheme (see Section E.2.3).

In order to complete this transform, we will make liberal use of an “encoding” function
Encode. We will need to restrict the space of allowable identities. We assume that “−” represents
some fixed, public-known allowable identity for the CPA scheme; we will deliberately exclude
“−” from the space of allowable identities in the CCA scheme. We assume that 1k is an allowable
identity in the CCA scheme. We then encode a pattern P = (P1, . . . , Pℓ) and a verification key
vk as the L + 1 level identity:

Encode(P, vk) = (P1, . . . , Pℓ,−, . . . ,−, vk) .
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We define a similar map for identities (interpreted as patterns without wildcards).
Given an IND-WID-CPA WIBE scheme Π = (Setup, KeyDer, Encrypt, Decrypt) with hierar-

chy depth L + 1, we define an IND-WID-CCA WIBE Π′ = (Setup, KeyDer, Encrypt′, Decrypt′)
with hierarchy depth L. This scheme is described in Figure E.7. The encryption algorithm now
produces ciphertexts which are (a) encrypted under the pattern Encode(P, vk) for a randomly
generated (sk, vk)

$
← SigGen, and (b) signed using sk. The decryption algorithm checks the

signature and (if correct) decrypts the ciphertext using a key for an identity which matches
Encode(P, vk) (using the valid identity 1k in place of wildcards).

Algorithm Encrypt′(mpk, P, m):
(sk, vk) $

← SigGen
P ′ ← Encode(P, vk)
C′ $
← Encrypt(mpk, P ′, m)

σ
$
← Sign(sk, (P, C′))

C ← (vk, C′, σ)
Return C

Algorithm Decrypt′(dID, C):
Parse C as (vk, C′, σ)
If Verify(vk, C′, σ) = ⊥ then return ⊥
For i equals 1 to |P | − |ID|

If P|ID|+i 6= * then ID′
i ← P|ID|+i

If P|ID|+i = * then ID′
i ← 1k

For i equals 1 to L− |P |
ID′

|P |−|ID|+i ← −
ID′

L−|ID|+1 ← vk

d
$
← KeyDer(dID, ID′)

m← Decrypt(d, C)
Return m

Figure E.7: The Canetti-Halevi-Katz transform.

Theorem E.6.1 Suppose that there exists a (t, qK , qD, ǫ)-adversary against the IND-WID-CCA
security of the WIBE Π′ then there exists a (tw, qK + qD, ǫw)-adversary against the IND-WID-
CPA security of Π and a (ts, ǫs)-adversary against the one-time unforgeability of the signature
scheme, where

tw ≤ t + tSigGen + tSign + qD(tVerify + tDecrypt) ,

ts ≤ t + tSetup + tEncrypt + qK · tKeyDer + qD · tDecrypt ,

ǫ ≥ ǫw + 2ǫs ,

where tALG is the time to execute the algorithm ALG.

Proof: The proof closely follows that of [CHK04]. Let A be an IND-WID-CCA adversary
against the scheme Π′. Suppose P ∗ is the challenge pattern that A chooses and (vk∗, C∗, σ∗) is
the challenge ciphertext that A receives during an execution of the attack game. Let Forge be
the event that at some point during its execution A queries the decryption oracle on an identity
ID ∈* P ∗ and a ciphertext of the form (vk∗, C, σ) such that the algorithm Verify(vk∗, C, σ)
returns ⊤. Then we have that A’s advantage is

∣∣2 · Pr [A wins ]− 1/2
∣∣ ≤

∣∣2 · Pr [A wins | ¬Forge ]− 1
∣∣+ 2 · Pr [ Forge ] .

Claim E.6.2 Pr [ Forge ] ≤ ǫs.

We describe an algorithm B = (B1,B2) which breaks the one-time unforgeability of the signature
scheme if the event Forge occurs. The algorithm B1 runs as follows:
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1. B1 receives vk∗ as input.

2. B1 generates a master key pair (mpk, msk)
$
← Setup.

3. B1 runs A1 on mpk. If A1 makes a decryption or key derivation oracle query, then B1

answers it using its knowledge of the master private key msk. B1 outputs a challenge
pattern P ∗ and two equal-length messages (m0, m1).

4. If A1 submitted a decryption oracle query (vk∗, C, σ) for which Verify(vk∗, C, σ) = ⊤, then
B1 chooses a ciphertext C∗ 6= C and returns C∗. This is known as the error event.

5. Otherwise, B1 chooses β
$
← {0, 1}, computes C∗

$
← Encrypt(mpk , Encode(P ∗, vk∗), mβ) and

returns C∗.

The challenger then computes a signature σ∗ on the “message” C∗. This is input to the algorithm
B2 described as follows:

1. B2 receives σ∗ as input.

2. If the error event occurred during the first phase, then B2 outputs (C, σ).

3. Otherwise B2 runsA2 on the input (vk∗, C∗, σ∗). IfA2 makes a key derivation or decryption
oracle query, then B2 answers them using its knowledge of the master private key msk. B2

outputs a bit β′.

4. If A2 submitted a decryption oracle query (vk∗, C, σ) for which Verify(vk∗, C, σ) = ⊤, then
B2 outputs (C, σ). Otherwise B2 outputs the error symbol ⊥.

Algorithm B is designed to output a valid forgery if the event Forge occurs. If A1 makes a valid
decryption oracle query on (vk∗, C, σ), then the error event occurs, and B trivially wins. If A2

makes a valid decryption oracle query on (vk∗, C, σ), then, since A2 is forbidden from making a
decryption oracle query on (vk∗, C∗, σ∗), B wins after A finishes its execution. Hence, we have
ǫs = Pr [ Forge ].

Claim E.6.3
∣∣2 · Pr [A wins | ¬Forge ]− 1

∣∣ ≤ ǫw.

We describe an algorithm B′ = (B′1,B′2) which breaks the IND-WID-CPA security of the WIBE
scheme Π whenever A wins and Forge did not occur. Algorithm B′1 runs as follows:

1. B′1 receives a master public key mpk as input.

2. B′1 generates (vk∗, sk∗)
$
← SigGen.

3. B′1 run A1 on mpk. If A1 makes a key derivation oracle query on identity ID, then B1

makes a key derivation oracle query on ID and returns the result. If A1 makes a decryption
oracle query on identity ID and ciphertext (vk, C, σ), then B′1 returns ⊥ if vk = vk∗ or if
Verify(vk, C, σ) = ⊥. Otherwise, B′1 computes the extension identity ID′ required so that
ID‖ID′ matches the pattern Encode(P, vk) as in the decryption algorithm, queries the key
extraction algorithm on ID‖ID′ to obtain a decryption key d and returns Decrypt(d, C).
A1 outputs a pattern P ∗ and two equal-length messages (m0, m1).

4. B′1 returns the challenge pattern Encode(P ∗, vk∗) and the messages (m0, m1).
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The challenger will pick a random β
$
← {0, 1} and computes the ciphertext

C∗
$
← Encrypt(mpk , Encode(P ∗, vk∗), mβ).

This ciphertext is input to the algorithm B′2 below:

1. B′2 receives the ciphertext C. B′2 computes σ∗
$
← Sign(sk∗, C∗).

2. B′2 runs A2 on the ciphertext (vk∗, C∗, σ∗). All oracle queries are answered in exactly the
same way as in the the first phase. A2 outputs a bit β′.

3. B′2 outputs β′.

It is clear that as long as B′ does not make an illegal key derivation oracle query, then B′ wins if
and only if A wins (assuming that Forge does not occur). B′ may make key derivation oracle
queries in response to A making a key derivation oracle query or a decryption oracle query. If
A makes a decryption oracle query on an identity ID and ciphertext (vk, C, σ) then B′ makes a
key derivation query on Encode(ID‖ID′, vk); however Encode(ID‖ID′, vk) 6∈* Encode(P ∗, vk∗) as
both encodings are (L + 1)-bits long and vk 6= vk∗ since Forge does not occur. Furthermore, if
A makes a key derivation oracle query on an identity ID then, by definition, we have ID 6∈* P ∗.
We need to show that ID 6∈* Encode(P ∗, vk∗). This is true as:

• if |ID| > |P ∗| then ID and Encode(P ∗, vk∗) do not agree at level |P ∗|+1 (where Encode(P ∗,
vk∗) is defined to be “−” and ID cannot be defined to be “−” since it was excluded from
the message space);

• if |ID| ≤ |P ∗| then ID 6∈* Encode(P ∗, vk∗) as Encode(P ∗, vk∗)i = P ∗i for levels 1 ≤ i ≤ |ID|
and ID 6∈* P ∗.

Hence, A never forces B′ to make an illegal key derivation oracle query and so B′ wins whenever
A. Thus, ∣∣2 · Pr [A wins | ¬Forge ]− 1

∣∣ ≤ ǫw .

A combination of the two claims gives the theorem.

Applying the transformation to Waters-WIBE.

We may optimise the CHK transform in the particular case of the Wates-WIBE scheme describe
in Section E.5.3. In particular, there is no implicit functional reason why we have to fix the
encoded identity using “−” strings, as it is possible to determine a key for which the (L + 1)-th
level is fixed to vk while leaving lower levels undetermined. In particular, we obtain the scheme
given in Figure E.8 which is IND-CCA secure and has depth L. We assume (for simplicity) that
verification keys vk are n-bits long.

E.6.2 The Dent KEM Transform

One approaching to building systems secure against adaptive chosen ciphertext attacks is to
transform a weakly-secure (OW-WID-CPA) WIBE scheme into a strongly-secure (IND-WID-
CCA) WIB-KEM scheme. This obviously gives rise to an IND-WID-CCA WIBE scheme when
combined with a suitably secure DEM (see Sections E.2.9 and E.4). We apply an analogue of
the transformation of Dent [Den03].
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Algorithm Setup:

g1, g2
$
← G ; α

$
← Zp

h1 ← gα
1 ; h2 ← gα

2

ui,j
$
← G for i = 1, . . . , L + 1; j = 0 . . . n

mpk ← (g1, g2, h1, u1,0, . . . , uL+1,n)
msk ← h2

Return (mpk, msk)

Algorithm KeyDer(d(ID1,...,IDℓ), IDℓ+1):
Parse d(ID1,...,IDℓ) as (d0, . . . , dℓ)

rℓ+1
$
← Zp

d ′
0 ← d0 · Fℓ+1(IDℓ+1)rℓ+1

d ′
ℓ+1 ← g

rℓ+1

1

Return (d ′
0, d1, . . . , dℓ, d ′

ℓ+1)

Algorithm Encrypt(mpk, P, m):
Parse P as (P1, . . . , Pℓ)

r
$
← Zp ; C1 ← gr

1

For i = 1 . . . ℓ do
If i /∈ W (P ) then C2,i ← Fi(IDi)

r

If i ∈ W (P ) then C2,i ← (ur
i,0, . . . , ur

i,n)

(sk, vk)
$
← SigGen

C2,L+1 ← FL+1(vk)r

C3 ← m · ê(h1, g2)r

σ ← Sign(sk, (P, C1, C2,1, . . . , C2,ℓ, C2,L+1, C3))
Return (vk, P, C1, C2,1, . . . , C2,ℓ, C2,L+1, C3, σ)

Algorithm Decrypt(d(ID1,...,IDℓ), C):
Parse d(ID1,...,IDℓ) as (d0, . . . , dℓ)
Parse C as (vk, P, C1, C2,1, . . . , C2,ℓ, C2,L+1, C3, σ)
If Verify(vk, (P, C1, C2,1, . . . , C2,ℓ, C2,L+1, C3), σ) =⊥ then

Return ⊥
For i = 1, . . . , ℓ do

If i /∈W (P ) then C′
2,i ← C2,i

If i ∈W (P ) then
Parse C2,i as (v0, . . . , vn)
C′

2,i ← v0

∏
i∈[IDi]

vi

m′ ← C3 ·
ê(g1,C2,L+1)·

∏
ℓ

i=1
ê(di,C′

2,i
)

ê(C1,FL+1(vk))·ê(C1,d0)

Return m′

Figure E.8: The IND-WID-CCA Waters WIBE scheme.

Suppose Π = (Setup, KeyDer, Encrypt, Decrypt) be an OW-WID-CPA WIBE scheme (see
Section E.3.2) with a finite message space M. We assume that the Encrypt algorithm uses
random values taken from a set R. We can write Encrypt as a deterministic algorithm C ←

Encrypt(mpk, P, m; r) where r
$
←R. We require that the scheme satisfies a notion of randomness

called γ-uniformity.

Definition E.6.4 A WIBE scheme Π is γ-uniform if for all master public keys mpk that could
be output by the key generation algorithm, for all patterns P , for all messages m and ciphertexts
C, we have

Pr [ Encrypt(mpk, P, m; r) = C ] ≤ γ,

where the probability is taken over the choice of the randomness r used in the encryption
function.

The only difficulty in applying the method of Dent [Den03] is that we must re-encrypt the
recovered message as an integrity check. In the WIBE setting, this means we must know the
pattern under which the message was originally encrypted. Recall, that the set W (C) = {i ∈
Z : Pi = *} of the pattern P used to encrypt the message, along with the length ℓ of the
pattern, is easily derived from the ciphertext. We use this information to give an algorithm P,
which on input (ID, C), where C is a ciphertext and ID = (ID1, . . . , IDℓ), returns the pattern
P = (P1, . . . , Pℓ) where

Pi =

{
* if i ∈W (C)

idi if i /∈W (C)

We transform the WIBE scheme Π = (Setup, KeyDer, Encrypt, Decrypt) with a finite message
space M and hierarchy depth L into a WIB-KEM scheme Π′ = (Setup, KeyDer, Encap, Decap)
using two hash functions:

H1 : ({0, 1}n ∩ {*})∗ × {0, 1}∗ →R
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and
H2 : {0, 1}∗ → {0, 1}λ .

The complete scheme is given in Figure E.9.

Algorithm Encap(mpk, P ):
m←M
r ← H1(P, m)
C ← Encrypt(mpk, P, m; r)
K ← H2(m)
Return (C, K)

Algorithm Decap(dID, C):
m← Decrypt(dID, C)
P ← P(ID, C)
r ← H1(P, m)
C′ ← Encrypt(mpk, P, m; r)
If C = C′ then return m
Otherwise return ⊥

Figure E.9: The Dent transform.

Theorem E.6.5 Suppose that there exists a (t, qK , qD, qH , ǫ)-adversary, in the random oracle
model, against the IND-WID-CCA security of the WIB-KEM Π′ then there exists a (t′, qK , ǫ′)-
adversary against the OW-WID-CPA security of the WIBE Π, where

ǫ′ ≥
ǫ− qD(|M|−1 + γ)

qH + qD

t′ ≤ t + qHtEncrypt

where tEncrypt is the time taken to perform an encryption, Π has finite message spaceM, and Π
is γ-uniform.

Proof: Suppose there exists a (t, qK , qD, qH , ǫ)-adversary A = (A1,A2) against the IND-WID-
CCA security of the WIB-KEM in the random oracle model. We construct an adversary B =
(B1,B2) against the OW-WID-CPA security of the WIBE. The algorithm B1 runs as follows:

1. B1 receives a master public key mpk.

2. B1 initialises three lists T1, E1, and T2 which are initially set to be empty.

3. B1 runs A1 on mpk. B1 answers A1’s oracle queries as follows:

• Suppose A1 queries the H1-oracle on input (P, m). If T1[P, m] is defined, B1 re-
turns T1[P, m]. Otherwise, B1 chooses r

$
← R, sets T1[P, m] ← r, sets E1[P, m] ←

Encrypt(mpk , P, m; r), and returns r.

• Suppose A1 queries the H2-oracle on input r. If T2[r] is defined, B1 returns T2[r].
Otherwise, B1 chooses K

$
← {0, 1}λ, sets T2[r]← K, and returns K.

• Suppose A1 queries the key derivation oracle on the input ID. B1 forwards this
request to its own key derivation oracle and returns the result.

• Suppose A1 queries the decryption oracle on the identity ID and the ciphertext C.
B1 searches the list T1 for an entry C = E1[P, m] where P = P(ID, C). If no such
entry exists, then B1 returns ⊥. Otherwise, B1 computes K ← H2(m) as above and
returns K.

The adversary outputs a challenge pattern P ∗.

4. B1 outputs the challenge pattern P ∗.
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The challenger then computes a challenge encryption C∗
$
← Encrypt(mpk , P ∗, m∗; r∗) for m∗

$
←

M and r∗
$
←R. This ciphertext is input to the algorithm B2:

1. B2 receives C∗.

2. B2 generates K∗
$
← {0, 1}λ.

3. B2 runs A2 on the input (C∗, K∗). If A2 queries any oracle, then B2 answers these queries
as before. A2 outputs a bit β′.

4. B2 randomly chooses a defined entry for one of the hash functions, either T1[P, m] or T2[m],
and outputs m.

The basic strategy of this security proof is to take advantage of the fact that the only way that
A can determine if C∗ is an encapsulation of K∗ is to query the H2-oracle on m∗. However, we
first have to show that the simulated hash function, key derivation, and decryption oracles are
consistent with the real IND-WID-CCA game.

The simulated key derivation oracle is perfect, as is the hash function oracle, with the exception
that the hash function oracle fails to respond to correctly to an H1-oracle query on (P ∗, m∗) or
a H2-oracle query on m∗. However, the decryption oracle is more problematic. There are two
types of error event that can occur with the decryption oracle:

• The decryption oracle will respond incorrectly if A1 queries the oracle on an identity
ID ∈* P ∗ and the ciphertext C∗. However, since m∗ is information theoretically hidden
from A1, this occurs with probability at most 1/|M|.

• The decryption oracle will respond incorrectly if A queries the decryption oracle on an
identity ID and a ciphertext C for which T1[P, m] is undefined, where P ← P(ID, C) and
m← Decrypt(dID , C), but for which

C = Encrypt(mpk , P(ID, C), m; T1[P, m])

where T1[P, m] is randomly chosen at the end of the game if it is not defined later by an
adversarial query. Since T1[P, m] is randomly chosen and Π is γ-uniform, we have that
this occurs with probability γ.

We have that the probability that either of these events occurs is therefore bounded by qD(|M|−1+
γ). Assuming none of these events occur, we have that the simulation is perfect unless A1 makes
a query which defines the hash function values T1[P ∗, m∗] or T2[m∗]. Since A cannot determine
whether K∗ is the correct key for C∗ without querying the H2-oracle on m∗, we have that this
event will occur with probability at least ǫ− qD(|M|−1 + γ). However, if this event occurs, then
B will win the OW-WID-CPA with probability at least 1/(qH + qD) (as there exists at most
qH + qD entries on T1 and T2). Hence, B wins with probability at least

ǫ′ ≥
ǫ− qD(|M|−1 + γ)

qH + qD

which gives the theorem.
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Appendix F

Searchable Encryption Revisited:
Consistency Properties, Relation to
Anonymous IBE, and Extensions

Journal of Cryptology, 21(3):350–391
[ABC+08] with M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J.

Malone-Lee, G. Neven, P. Paillier, and H. Shi

Abstract : We identify and fill some gaps with regard to consistency (the extent to which
false positives are produced) for public-key encryption with keyword search (PEKS). We define
computational and statistical relaxations of the existing notion of perfect consistency, show that
the scheme of [BDOP04] is computationally consistent, and provide a new scheme that is sta-
tistically consistent. We also provide a transform of an anonymous identity-based encryption
(IBE) scheme to a secure PEKS scheme that, unlike the previous one, guarantees consistency.
Finally, we suggest three extensions of the basic notions considered here, namely anonymous hi-
erarchical identity-based encryption, public-key encryption with temporary keyword search, and
identity-based encryption with keyword search.

F.1 Introduction

There has recently been interest in various forms of “searchable encryption” [SWP00, BDOP04,
Goh03, GSW04, WBDS04]. In this paper, we further explore one of the variants of this
goal, namely public-key encryption with keyword search (PEKS) as introduced by Boneh,
Di Crescenzo, Ostrovsky and Persiano [BDOP04].

The killer application envisaged by Boneh et al. is that of intelligent email routing. We
consider emails as consisting of some header information, a body, and a list of keywords. Imagine
Alice uses different electronic devices to read her email, including a pager, a PDA, and a desktop
computer. Alice may prefer emails to be routed to her devices depending on the associated
keywords. For example, she may like to receive emails with the keyword “urgent” on her pager,
emails with the keyword “agenda” on her PDA, and all other emails on her desktop computer.

Existing mail server software could be updated to provide this type of service for plain,
unencrypted email. When Bob sends an email to Alice encrypted under her public key, however,
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routing becomes much harder. One option would be for Bob to leave the list of keywords
unencrypted; if Bob is a colleague of Alice however, he may not like the gateway to know that
he is exchanging emails with her with the keyword “personal”. Alice is probably not willing
to hand her decryption key to the gateway either. Rather, she would like to give the gateway
some piece of trapdoor information that allows it to test whether the keyword “urgent” is among
those in the list, without revealing any other information about the email to the gateway. This
is exactly the type of functionality provided by a PEKS scheme. Bob can then use a standard
public-key encryption scheme to encrypt the body of the email, and a PEKS scheme to separately
encrypt each of the keywords.

The routing configuration of the email gateway need not be static. Alternatively, Alice could
send the trapdoors for the keywords that she wants to receive at the time of login. This could
be useful for checking email over a low-bandwidth connection: when Alice is at a conference,
for example, she may want to download to her laptop only those emails tagged with keyword
“urgent”.

As another application, Waters et al. [WBDS04] show how PEKS schemes can be used to let
an untrusted logging device maintain an encrypted audit log of privacy-sensitive data (e.g. user
actions on a computer system) that is efficiently searchable by authorized auditors only. The
entries in the audit log are encrypted under the public key of a PEKS scheme, of which the
corresponding secret key is unknown to the logging device. If the device is ever confiscated, or
if the logbook leaks, privacy of users and their actions is maintained. The secret key is known
only to a trusted audit escrow agent, who provides (less trusted) authorized investigators with
trapdoors for the keywords they want to search for.

In this paper, we investigate some consistency-related issues and results of PEKS schemes,
then consider the connection to anonymous identity-based encryption (IBE), and finally discuss
some new extensions.

F.1.1 Consistency in PEKS

Any cryptographic primitive must meet two conditions. One is of course a security condition.
The other, which we will here call a consistency condition, ensures that the primitive fulfills its
function. For example, for public-key encryption, the security condition is privacy. (This could
be formalized in many ways, eg. IND-CPA or IND-CCA.) The consistency condition is that
decryption reverses encryption, meaning that if M is encrypted under public key pk to result in
ciphertext C, then decrypting C under the secret key corresponding to pk results in M being
returned.

PEKS. In a PEKS scheme, Alice can provide a gateway with a trapdoor tw (computed as a
function of her secret key) for any keyword w of her choice. A sender encrypts a keyword w′

under Alice’s public key pk to obtain a ciphertext C that is sent to the gateway. The latter
can apply a test function Test to tw , C to get back 0 or 1. The consistency condition as per
[BDOP04] is that if w = w′ then Test(tw , C) returns 1 and if w 6= w′ it returns 0. The security
condition is that the gateway learn nothing about w′ beyond whether or not it equals w. (The
corresponding formal notion will be denoted PEKS-IND-CPA.) The application setting is that
C can be attached to an email (ordinarily encrypted for Alice under a different public key),
allowing the gateway to route the email to different locations (eg. Alice’s desktop, laptop or
pager) based on w while preserving privacy of the latter to the largest extent possible.

Consistency of BDOP -PEKS . It is easy to see (cf. Proposition F.3.1) that the main con-
struction of [BDOP04] (a random oracle (RO) model, bilinear Diffie-Hellman (BDH) based
PEKS-IND-CPA secure PEKS scheme that we call BDOP -PEKS ) fails to meet the consistency
condition defined in [BDOP04] and stated above. (Specifically, there are distinct keywords w, w′
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such that Test(tw , C) = 1 for any C that encrypts w′.) The potential problem this raises in
practice is that email will be incorrectly routed.

New notions of consistency. It is natural to ask if BDOP -PEKS meets some consistency
condition that is weaker than theirs but still adequate in practice. To answer this, we provide
some new definitions. Somewhat unusually for a consistency condition, we formulate consistency
more like a security condition, via an experiment involving an adversary. The difference is that
this adversary is not very “adversarial”: it is supposed to reflect some kind of worst case but
not malicious behavior. However this turns out to be a difficult line to draw, definitionally, so
that some subtle issues arise. One outcome of this approach is that it naturally gives rise to a
hierarchy of notions of consistency, namely perfect, statistical and computational. The first asks
that the advantage of any (even computationally unbounded) adversary be zero; the second that
the advantage of any (even computationally unbounded) adversary be negligible; the third that
the advantage of any polynomial-time adversary be negligible. We note that perfect consistency
as per our definition coincides with consistency as per [BDOP04], and so our notions can be
viewed as natural weakenings of theirs.

An analogy. There is a natural notion of decryption error for encryption schemes [Gol04,
Section 5.1.2]. A perfectly consistent PEKS is the analog of an encryption scheme with zero
decryption error (the usual requirement). A statistically consistent PEKS is the analog of an
encryption scheme with negligible decryption error (a less common but still often used condition
[AD97, DNR04]). However, computational consistency is a non-standard relaxation, for consis-
tency conditions are typically not computational. This is not because one cannot define them
that way (one could certainly define a computational consistency requirement for encryption)
but rather because there has never been any motivation to do so. What makes PEKS differ-
ent, as emerges from the results below, is that computational consistency is relevant and arises
naturally.

Consistency of BDOP -PEKS , revisited. The counter-example (cf. Proposition F.3.1) show-
ing that BDOP -PEKS is not perfectly consistent extends to show that it is not statistically
consistent either. However, we show (cf. Theorem F.3.3) that BDOP -PEKS is computationally
consistent. In the random-oracle model, this is not under any computational assumption: the
limitation on the running time of the adversary is relevant because it limits the number of
queries the adversary can make to the random oracle. When the random oracle is instantiated
via a hash function, we would need to assume collision-resistance of the hash function. The
implication of this result is that BDOP -PEKS is probably fine to use in practice, in that incorrect
routing of email, while possible in principle, is unlikely to actually happen.

A statistically consistent PEKS scheme. We provide the first construction of a PEKS
scheme that is statistically consistent. The scheme is in the random oracle model, and is also
PEKS-IND-CPA secure assuming the BDH problem is hard. The motivation for the new scheme
was largely theoretical. From a foundational perspective, we wanted to know whether PEKS
was an anomaly in the sense that only computational consistency is possible, or whether, like
other primitives, statistical consistency could be achieved. However, it is also true that while
computational consistency is arguably enough in an application, statistical might be preferable
because the guarantee is unconditional.

F.1.2 PEKS and anonymous IBE

BDOP -PEKS is based on the Boneh-Franklin IBE (BF -IBE ) scheme [BF03]. It is natural to ask
whether one might, more generally, build PEKS schemes from IBE schemes in some blackbox
way. To this end, a transform of an IBE scheme into a PEKS scheme is suggested in [BDOP04].
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Interestingly, they note that the property of the IBE scheme that appears necessary to provide
PEKS-IND-CPA of the PEKS scheme is not the usual IBE-IND-CPA but rather anonymity. (An
IBE scheme is anonymous if a ciphertext does not reveal the identity of the recipient [BBDP01].)
While [BDOP04] stops short of stating and proving a formal result here, it is not hard to
verify that their intuition is correct. Namely one can show that if the starting IBE scheme
IBE meets an appropriate formal notion of anonymity (IBE-ANO-CPA, cf. Section F.4.1) then
PEKS = ibe-2-peks(IBE ) is PEKS-IND-CPA, where ibe-2-peks denotes the transform suggested
in [BDOP04].

Consistency in ibe-2-peks. Unfortunately, we show (cf. Theorem F.4.1) that there are IBE
schemes for which the PEKS scheme outputted by ibe-2-peks is not even computationally con-
sistent. This means that ibe-2-peks is not in general a suitable way to turn an IBE scheme into
a PEKS scheme. (Although it might be in some cases, and in particular is when the starting
IBE scheme is BF -IBE , for in that case the resulting PEKS scheme is BDOP -PEKS .)

new-ibe-2-peks. We propose a randomized variant of the ibe-2-peks transform that we call
new-ibe-2-peks, and prove that if an IBE scheme IBE is IBE-ANO-CPA and IBE-IND-CPA
then the PEKS scheme new-ibe-2-peks(IBE ) is PEKS-IND-CPA and computationally consis-
tent (cf. Section F.4.3). We do not know of a transform where the resulting PEKS scheme is
statistically or perfectly consistent.

Anonymous IBE schemes. The above motivates finding anonymous IBE schemes. To-
wards this, we begin by extending Halevi’s condition for anonymity [Hal05] to the IBE setting
(cf. Section F.4.4). Based on this, we are able to give a simple proof that the (random-oracle
model) BF -IBE scheme [BF03] is IBE-ANO-CPA assuming the BDH problem is hard (cf. The-
orem F.4.4). (We clarify that a proof of this result is implicit in the proof of security of the
BF -IBE based BDOP -PEKS scheme given in [BDOP04]. Our contribution is to have stated the
formal definition of anonymity and provided a simpler proof via the extension of Halevi’s con-
dition.) Towards answering the question of whether there exist anonymous IBE schemes in the
standard (as opposed to random oracle) model, we present in Appendix F.8.1 an attack to show
that Water’s IBE scheme [Wat05] is not IBE-ANO-CPA.

F.1.3 Extensions

Anonymous HIBE. We provide definitions of anonymity for hierarchical IBE (HIBE) schemes.
Our definition can be parameterized by a level, so that we can talk of a HIBE that is anonymous
at level l. We note that the HIBE schemes of [GS02, BBG05] are not anonymous, even at level 1.
(That of [HL02] appears to be anonymous at both levels 1 and 2 but is very limited in nature
and thus turns out not to be useful for our applications.) We modify the construction of Gentry
and Silverberg [GS02] to obtain a HIBE that is (HIBE-IND-CPA and) anonymous at level 1.
The construction is in the random oracle model and assumes BDH is hard.

PETKS. In a PEKS scheme, once the gateway has the trapdoor for a certain keyword, it can
test whether this keyword was present in any past ciphertexts or future ciphertexts. It may be
useful to limit the period in which the trapdoor can be used. Here we propose an extension of
PEKS that we call public-key encryption with temporary keyword search (PETKS) that allows
this. A trapdoor here is created for a time interval [s, e] and will only allow the gateway to test
whether ciphertexts created in this time interval contain the keyword. We provide definitions of
privacy and consistency for PETKS, and then show how to implement it with overhead that is
only logarithmic in the total number of time periods. Our construction can use any HIBE that
is anonymous at level 1. Using the above-mentioned HIBE we get a particular instantiation that
is secure in the random-oracle model if BDH is hard.
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IBEKS. We define the notion of an identity-based encryption with keyword search scheme.
This is just like a PEKS scheme except that encryption is performed given only the identity of
the receiver and a master public-key, just like in an IBE scheme. We show how to implement
IBEKS given any level-2 anonymous HIBE scheme. The first suitable implementation of the
latter primitive was proposed in subsequent work by Boyen and Waters [BW06].

F.1.4 Remarks

peks-2-ibe. Boneh et. al. [BDOP04] showed how to transform a PEKS-IND-CPA PEKS scheme
into an IBE-IND-CPA IBE scheme. We remark that their transform requires the starting PEKS
scheme to be perfectly consistent. Unfortunately, no perfectly consistent PEKS schemes are
known to date. If it is only statistically or computationally consistent, the resulting IBE scheme
will only meet a corresponding statistical or computational relaxation of the consistency condi-
tion for IBE schemes. Thus, the resulting scheme will not be an IBE scheme as per the standard
definition of the latter [BF03].

Limited PEKS schemes. Boneh et. al. [BDOP04] also present a couple of PEKS schemes that
avoid the RO model but are what they call limited. Both use a standard public-key encryption
scheme as a building block. In the first scheme, the public key has size polynomial in the number
of keywords that can be used. In the second scheme, the key and ciphertext have size polynomial
in the number of trapdoors that can be securely issued to the gateway. Although these schemes
are not very interesting due to their limited nature, one could ask about their consistency. In
[ABC+05b], we extend our definitions of consistency to this limited setting. Interestingly, we
show that based on only a computational assumption about the underlying standard public-
key encryption scheme (namely, that it is IND-CPA, or even just one-way), the first scheme
is statistically consistent. We also show that the second scheme is computationally consistent
under the same assumption on the standard public-key encryption scheme, and present a variant
that is statistically consistent.

Consistency of other searchable encryption schemes. Of the other papers on search-
able encryption of which we are aware [SWP00, Goh03, GSW04, WBDS04], none formally
define or rigorously address the notion of consistency for their respective types of searchable
encryption schemes. Goh [Goh03] and Golle, Staddon, and Waters [GSW04] define consistency
conditions analogous to BDOP’s “perfect consistency” condition, but none of the constructions
in [Goh03, GSW04] satisfy their respective perfect consistency condition. Song, Wagner, and
Perrig [SWP00] and Waters et al. [WBDS04] do not formally state and prove consistency con-
ditions for their respective searchable encryption schemes, but they, as well as Goh [Goh03], do
acknowledge and informally bound the non-zero probability of a false positive.

Subsequent work. In a preliminary version of our work, we raised various open problems
that have subsequently been solved. The first one of these problems was to find a construction
of an (IBE-IND-CPA and) IBE-ANO-CPA IBE scheme with a proof of security in the standard
model (i.e., without random oracles). This problem was solved independently by Gentry [Gen06]
and by Boyen and Waters [BW06]. As a result, one can also obtain a PEKS-IND-CPA and
computationally consistent PEKS scheme in the standard model due to Theorem F.4.2.

Another interesting question that we raised was to find a HIBE scheme providing anonymity
at the second level, even in the RO model. This open problem was solved by Boyen and
Waters [BW06], who proposed a fully anonymous HIBE scheme in the standard model.

Finally, we raised the issue of building a searchable encryption scheme that allows for more
advanced searching tools such as searches for simple boolean formulas on keywords (say w1 ∧
w2∨w3). First steps in this direction have been taken [GSW04, PKL04, BW07] by schemes that
allow for conjunctive combinations of keywords, range queries, and subset queries.
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F.2 Some definitions

Notation and conventions. If x is a string then |x| denotes its length, and if S is a set then
|S| denotes its size. The empty string is denoted ε. Constructs in the RO model [BR93] might
use multiple random oracles, but since one can always obtain these from a single one [BR93],
formal definitions will assume just one RO. Unless otherwise indicated, an algorithm may be
randomized. “PT” stands for polynomial time and “PTA” for polynomial-time algorithm or
adversary. We denote by N the set of positive integers, and by k ∈ N the security parameter.
A function ν : N → [0, 1] is said to be negligible if for every c ∈ N there exists a kc ∈ N such
that ν(k) ≤ k−c for all k > kc, and it is said to be overwhelming if the function |1 − ν(k)| is
negligible. A message space MsgSp is a map, assigning to every k ∈ N a set of strings, such that
{0, 1}k ⊆ MsgSp(k) ⊆ {0, 1}∗ for all k ∈ N and the following conditions hold: first, there is a PTA
that on input 1k, M returns 1 if M ∈ MsgSp(k) and 0 otherwise; second, {0, 1}|M | ⊆ MsgSp(k)
for all k ∈ N and M ∈ MsgSp(k).

PEKS. A public key encryption with keyword search (PEKS) scheme [BDOP04] PEKS = (KG,

PEKS, Td, Test) consists of PTAs. Via (pk, sk)
$
← KG(1k), where k ∈ N is the security param-

eter and KG is the randomized key-generation algorithm, the receiver produces its keys; via
C

$
← PEKSH(pk, w) a sender encrypts a keyword w to get a ciphertext; via tw

$
← TdH(sk, w)

the receiver computes a trapdoor tw for keyword w and provides it to the gateway; via b ←
TestH(tw , C ) the gateway tests whether C encrypts w, where b is a bit with 1 meaning “accept”
or “yes” and 0 meaning “reject” or “no”. Here H is a random oracle whose domain and/or range
might depend on k and pk.

Consistency. The requirement of [BDOP04] can be divided into two parts. The first, which
we call right keyword consistency, is that Test(tw , C ) always accepts when C encrypts w. More
formally, for all k ∈ N and all w ∈ {0, 1}∗,

Pr
[

TestH(TdH(sk, w), PEKSH(pk, w)) = 1
]

= 1 ,

where the probability is taken over the choice of (pk, sk)
$
← KG(1k), the random choice of H,

and the coins of all the algorithms in the expression above. Since we will always require this,
it is convenient henceforth to take it as an integral part of the PEKS notion and not mention
it again, reserving the term “consistency” to only refer to what happens when the ciphertext
encrypts a keyword different from the one for which the gateway is testing. In this regard,
the requirement of [BDOP04], which we will call perfect consistency, is that Test(tw′ , C ) always
reject when C doesn’t encrypt w′. More formally, for all k ∈ N and all distinct w, w′ ∈ {0, 1}∗,

Pr
[

TestH(TdH(sk, w′), PEKSH(pk, w)) = 1
]

= 0 ,

where the probability is taken over the choice of (pk, sk)
$
← KG(1k), the random choice of H,

and the coins of all the algorithms in the expression above. (We note that [BDOP04] provide
informal rather than formal statements, but it is hard to interpret them in any way other than
what we have done.)

Privacy. Privacy for a PEKS scheme [BDOP04] asks that an adversary should not be able to
distinguish between the encryption of two challenge keywords of its choice, even if it is allowed
to obtain trapdoors for any non-challenge keywords. Formally, we associate to an adversary A
and a bit b ∈ {0, 1} the following experiment:
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Experiment Exppeks-ind-cpa-b
PEKS ,A (k)

WSet ← ∅ ; (pk, sk)
$
← KG(1k)

pick random oracle H

(w0, w1, state)
$
← ATrapd(·),H(find, pk)

C
$
← PEKSH(pk, wb)

b′
$
← ATrapd(·),H(guess, C , state)

if {w0, w1} ∩WSet = ∅ then return b′ else return 0

Oracle Trapd(w)

WSet ←WSet ∪ {w}

tw
$
← TdH(sk, w)

return tw

The PEKS-IND-CPA-advantage of A is defined as

Advpeks-ind-cpa
PEKS ,A (k) = Pr

[
Exppeks-ind-cpa-1

PEKS ,A (k) = 1
]
− Pr

[
Exppeks-ind-cpa-0

PEKS ,A (k) = 1
]

.

A scheme PEKS is said to be PEKS-IND-CPA-secure if the above advantage is a negligible
function in k for all PTAs A.

Parameter generation algorithms and the BDH problem. All pairing based schemes
will be parameterized by a pairing parameter generator. This is a PTA G that on input 1k

returns the description of an additive cyclic group G1 of prime order p, where 2k < p < 2k+1, the
description of a multiplicative cyclic group G2 of the same order, and a non-degenerate bilinear
pairing e: G1 × G1 → G2. See [BF03] for a description of the properties of such pairings. We
use G∗1 to denote G1 \ {0}, i.e. the set of all group elements except the neutral element. We
define the advantage of an adversary A in solving the bilinear Diffie-Hellman (BDH) problem
relative to a pairing parameter generator G as

Advbdh
G,A(k) = Pr

[
A(1k, (G1,G2, p, e), P, aP, bP, cP ) = e(P, P )abc :

(G1,G2, p, e)
$
← G(1k) ;

P
$
← G∗1 ; a, b, c

$
← Z∗p

]
.

We say that the BDH problem is hard relative to this generator if Advbdh
G,A is a negligible function

in k for all PTAs A.

F.3 Consistency in PEKS

We show that the BDOP -PEKS scheme is not perfectly consistent, introduce new notions of
statistical and computational consistency, and show that although BDOP -PEKS continues to fail
the former it does meet the latter. We then provide a new PEKS scheme that is statistically
consistent.

F.3.1 Perfect consistency of BDOP -PEKS

Figure F.1 presents the BDOP -PEKS scheme. It is based on a pairing parameter generator G.

Proposition F.3.1 The BDOP -PEKS scheme is not perfectly consistent.

Proof: Since the number of possible keywords is infinite, there will certainly exist distinct
keywords w, w′ ∈ {0, 1}∗ such that H1(w) = H1(w′). The trapdoors for such keywords will be
the same, and so TestH1,H2(Td(sk, w), PEKSH1,H2(pk, w′)) will always return 1.

It is tempting to say that, since H1 is a random oracle, the probability of a collision is small,
and thus the above really does not matter. Whether or not this is true depends on how one
wants to define consistency, which is the issue we explore next.
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KG(1k)
(G1,G2, p, e) $

← G(1k) ; P
$
← G∗

1 ; s
$
← Z∗

p

pk ← (G1,G2, p, e, P, sP ) ; sk ← (pk, s)
return (pk, sk)

PEKSH1,H2 (pk, w)
parse pk as (G1,G2, p, e, P, sP )
r

$
← Z∗

p ; T ← e(H1(w), sP )r

C ← (rP, H2(T )) ; return C

TdH1 (sk, w)
parse sk as (pk = (G1,G2, p, e, P, sP ), s)
tw ← (pk, sH1(w)) ; return tw

TestH1,H2 (tw, C)
parse tw as ((G1,G2, p, e, P, sP ), X)
parse C as (U, V ) ; T ← e(X, U)
if V = H2(T ) then return 1
else return 0

Figure F.1: Algorithms constituting the BDOP -PEKS scheme. G is a pairing parameter generator
and H1: {0, 1}∗ → G1 and H2: G2 → {0, 1}k are random oracles.

F.3.2 New notions of consistency

We consider a possible relaxation of perfect consistency and argue that it is inadequate because
it is too weak. We then motivate and present our approach and definitions.

A possible relaxation of perfect consistency. One way to obtain a relaxed definition
of perfect consistency is by analogy with the definition of encryption with negligible decryption
error [Gol04, Section 5.1.2]. This results in asking that there exist a negligible function ν(·) such
that for all k and all distinct keywords w, w′,

∀ w 6= w′ : Pr
[

TestH(pk, TdH(sk, w′), PEKSH(pk, w)) = 1
]
≤ ν(k) , (F.1)

where the probability is taken over the choice of (pk, sk)
$
← KG(1k), the random choice of H,

and the coins of all the algorithms in the expression above. Now, since we are fixing w, w′ before
taking the probability, and the latter includes the choice of H1 in the BDOP -PEKS scheme, the
probability that H1(w) = H1(w′) is at most 2−k. Our “attack” of Proposition F.3.1 therefore
no longer applies. And in fact (using the techniques of our proof of Theorem F.3.3) one can
show that the BDOP scheme does meet the above condition. However, Equation (F.1) is in our
view an incorrect definition of consistency because it does not allow w, w′ to depend on public
quantities related to the receiver, such as its public key, the hash functions being used, or queries
to them if they are random oracles. Our claim is that, as a result, the condition is too weak to
guarantee that email is correctly routed by the gateway.

Our definitions. To define consistency, we take a different approach. Namely, we imag-
ine the existence of an adversary U that wants to make consistency fail. More precisely, let
PEKS = (KG, PEKS, Td, Test) be a PEKS scheme. We associate to an adversary U the following
experiment:

Experiment Exppeks-consist
PEKS ,U (k)

(pk, sk)
$
← KG(1k) ; pick random oracle H

(w, w′)
$
← UH(pk) ; C

$
← PEKSH(pk, w) ; tw′

$
← TdH(sk, w′)

if w 6= w′ and TestH(tw′ , C ) = 1 then return 1 else return 0

We define the advantage of U as

Advpeks-consist
PEKS ,U (k) = Pr

[
Exppeks-consist

PEKS ,U (k) = 1
]

,

where the probability is taken over all possible coin flips of all the algorithms involved, and over
all possible choices of random oracle H. The scheme is said to be perfectly consistent if this
advantage is 0 for all (computationally unrestricted) adversaries U , statistically consistent if it
is negligible for all (computationally unrestricted) adversaries U , and computationally consistent
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if it is negligible for all PTAs U . We remark that we have purposely re-used the term perfect
consistency, for in fact the above notion of perfect consistency coincides with the one from
[BDOP04] recalled above.

Stronger notions? In giving the adversary U the public key and access to the random
oracle, our definition is already quite liberal. One could however, consider an even more liberal
(i.e. stronger) definition in which the adversary gets a trapdoor oracle and/or a test oracle under
trapdoors for keywords of its choice. To be able to tell whether or not this would be appropriate,
we must ask whether in “real-life” there could be an occasion in which the keywords chosen by
a sender could depend on information provided by these oracles. Given that the answer is not
cut-and-dry and since we believe that our current definition is already quite strong, we opted
here not to consider these stronger variants of our definition.

F.3.3 Statistical and computational consistency of BDOP -PEKS

Having formally defined the statistical and computational consistency requirements for PEKS
schemes, we return to evaluating the consistency of BDOP -PEKS . We first observe that Propo-
sition F.3.1 extends to show:

Proposition F.3.2 The BDOP -PEKS scheme is not statistically consistent.

Proof: Recall that in the proof of Proposition F.3.1 we show that there there exist two dis-
tinct keywords w, w′ ∈ {0, 1}∗ such that H1(w) = H1(w′), and that, for these two keywords,
Test(Td(sk, w′), PEKS(pk, w)) will always return 1. A computationally unbounded adversary can
find two such keywords by exhaustive search.

On the positive side, the following means that BDOP -PEKS is probably fine in practice:

Theorem F.3.3 The BDOP -PEKS scheme is computationally consistent.

Proof: Let U be a PTA. Let (w, w′) denote the pair of keywords that U returns in the consistency
experiment, and assume without loss of generality that w 6= w′. Let r ∈ Z∗p denote the value
chosen at random by PEKSH1,H2(pk, w). Let T = e(H1(w), sP )r and let T ′ = e(H1(w′), sP )r.
Note that U wins exactly when w 6= w′ and H2(T ) = H2(T ′). Let w1, . . . , wq1 be the queries of U
to H1 and let WSet = {w1, . . . , wq1(k)}∪{w, w′}. Let T1, . . . , Tq2(k) be the queries of U to H2 and
let TSet = {T1, . . . , Tq2(k)} ∪ {T, T ′}. Let E1 be the event that there exist distinct v, v′ ∈WSet
such that H1(v) = H1(v′), and let E2 be the event that there exist distinct x, x′ ∈ TSet such
that H2(x) = H2(x′). If Pr [ · ] denotes the probability in the consistency experiment, then

Advpeks-consist
PEKS ,U (k) ≤ Pr [ E1 ] + Pr [ E2 ] + Pr

[
Exppeks-consist

BDOP -PEKS ,U (k) = 1 ∧E1 ∧ E2

]
. (F.2)

Our definition of G required that |G1| > 2k, and hence the first and second terms are respectively
upper bounded via (q1 + 2)2/|G1| < (q1 + 2)2/2k and (q2 + 2)2/2k. Now we claim that if
H1(w) 6= H1(w′), then T 6= T ′. Under this claim, the last term of Equation (F.2) is 0, since if
E1 occurs, then H1(w) 6= H1(w′) and T 6= T ′, and if E2 also occurs, then H2(T ) 6= H2(T ′). To
justify our claim above, note that if H1(w) 6= H1(w′), then H1(w) = αP and H1(w′) = α′P for
some distinct α, α′ ∈ Zp. Setting g = e(P, P )rs, we can rewrite T, T ′ as T = gα and T ′ = gα′

.
Since e(P, P ) is a generator of G2, since G2 is of prime order p, and since p does not divide rs,
g must also be a generator of G2. Thus T 6= T ′.

F.3.4 A statistically consistent PEKS scheme

We present the first PEKS scheme that is (PEKS-IND-CPA and) statistically consistent. To
define the scheme, we first introduce the function f(k) = klg(k). (Any function that is super-
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KG(1k)
(G1,G2, p, e) $

← G(1k) ; P
$
← G∗

1

s
$
← Z∗

p ; pk ← (1k, P, sP,G1,G2, p, e)
sk ← (pk, s) ; return (pk, sk)

PEKSH1,H2,H3,H4 (pk, w)
parse pk as (1k, P, sP,G1,G2, p, e)
if |w| ≥ f(k) then return w

r
$
← Z∗

p ; T ← e(sP, H1(w))r

K1 ← H4(T ) ; K2 ← H2(T )
K

$
← {0, 1}k ; c← K1 ⊕K

t← H3(K||w)
return (rP, c, t, K2)

TdH1 (sk, w)
parse sk as (pk = (1k, P, sP,G1,G2, p, e), s)
tw ← (pk, sH1(w), w)
return tw

TestH1,H2,H3,H4 (tw, C)
parse tw as ((1k, P, sP,G1,G2, p, e), sH1(w), w)
if |w| ≥ f(k) then

if C = w then return 1 else return 0
if C cannot be parsed as (rP, c, t, K2) then return 0
T ← e(rP, sH1(w))
K ← c⊕H4(T )
if K2 6= H2(T ) then return 0
if t = H3(K||w) then return 1 else return 0

Figure F.2: Algorithms constituting the PEKS scheme PEKS -STAT . Here f(k) = klg(k), G is a
pairing parameter generator and H1: {0, 1}∗ → G1, H2: G2 → {0, 1}3k , H3: {0, 1}∗ → {0, 1}k ,
and H4: {0, 1}∗ → {0, 1}k are random oracles.

polynomial but sub-exponential would suffice. This choice is made for concreteness.) The
algorithms constituting our scheme PEKS -STAT are then depicted in Figure F.2.

The scheme uses ideas from the BDOP -PEKS scheme [BDOP04] as well as from the BF -IBE
scheme [BF03], but adds some new elements. Note that the encryption algorithm is trivial,
returning the keyword as the ciphertext, when the keyword has length more than f(k). If
not, the processing is more complex, depending on some random choices and numerous random
oracles. In particular the random choice of “session” key K, and the fact that the random oracle
H2 is length-increasing, are important.

The first thing we stress about the scheme is that the algorithms are PT. This is because
PT means in the length of the inputs, and the input of (say) the encryption algorithm includes
w as well as 1k, so it can test whether |w| ≥ f(k) in polynomial time. Now the following says
that the scheme is private:

Proposition F.3.4 The PEKS -STAT scheme is PEKS-IND-CPA-secure assuming that the BDH
problem is hard relative to generator G.

Before providing the proof, let us give some intuition. While sending w in the clear looks at first
glance like it violates privacy, the reason it does not is that this only happens when w has length
at least f(k), and the privacy adversary is poly(k) time and thus cannot even write down such
a keyword in order to query it to its challenge oracle. (This is where we use the fact that f(k)
is super-polynomial. We will use the fact that it is sub-exponential in the proof of statistical
consistency.) The privacy adversary is thus effectively restricted to attacking the scheme only on
keywords of size at most f(k). Here, privacy can be reduced to solving the BDH problem using
techniques used to prove IBE-IND-CPA of the BF -IBE scheme [BF03] and to prove anonymity
of the same scheme (cf. Theorem F.4.4).

Proof of Proposition F.3.4: Let B be a PTA attacking the PEKS-IND-CPA security
PEKS -STAT = (KG, PEKS, Td, Test). Say it makes at most q queries to its Trapd(·, ·) oracle
and at most qi queries to Hi for i = 1, 2, 3. (These are actually functions of k, but we drop the
argument to simplify notation.) We construct a PTA A attacking the BDH relative to G such
that

Advbdh
G,A(k) ≥

1

e(1 + q) · (q2 + q4)
·

(
1

2
·Advpeks-ind-cpa

PEKS ,B (k)−
q3

2k

)
. (F.3)
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Adversary A(1k, (G1,G2, p, e), P, sP, rP, αP )
pk ← (1k, P, sP, p, G1, G2, e) ; Q ← ∅
(w0, w1, state) $

← BTrapd(·),H1,H2,H3,H4 (find, pk)
b

$
← {0, 1} ; h← H1(wb)

if d[wb] = 0 then abort
K1

$
← {0, 1}k ; K2

$
← {0, 1}3k

K
$
← {0, 1}k ; c← K1⊕K ; t← H3(K‖wb)

C ← (rP, c, t, K2)
b′ $
← BTrapd(·),H1,H2,H3,H4 (guess, C , state)

if Q 6= ∅ then T
$
← Q else abort

return T x[wb]−1

Oracle Trapd(w)
h← H1(w)
if d[w] = 1 then abort
tw ← (x[w] · sP, w)
return tw

Oracle H1(w)
if h1[w] is not defined then

flip biased coin d[w] ∈ {0, 1} such that Pr[d[w] = 1] = δ

x[w] $
← Zp

if d[w] = 0 then define h1[w]← x[w] · P
else define h1[w]← x[w] · αP

return h1[w]

Oracle H2(T )
if h2[T ] is not defined then

define h2[T ] $
← {0, 1}3k

Q ← Q∪ {T }
return h2[T ]

Oracle H3(X)
if h3[X ] is not defined then

define h3[X ] $
← {0, 1}k

return h3[X ]

Oracle H4(T )
if h4[T ] is not defined then

define h4[T ] $
← {0, 1}k

Q ← Q∪ {T }
return h4[T ]

Figure F.3: Adversary A attacking the BDH problem.

Our adversary A is shown in Figure F.3. We show that A outputs the correct answer T =
e(P, P )rsα with probability at least the quantity on the right-hand-side of Equation (F.3).

Let t(k) be a polynomial which bounds the running time of B. So there is an integer N such that
t(k) < f(k) for all k ≥ N . Notice that the PEKS algorithm of the PEKS scheme in Figure F.2
returns w in the clear when |w| ≥ f(k). However, the keywords output by B in the find stage
have length at most t(k), so if k ≥ N , the encryption is done by the code for the case |w| < f(k)
shown in PEKS. Since it suffices to prove Equation (F.3) for all k ≥ N , we assume that the
encryption is done by the code for the case |w| < f(k) shown in PEKS.

Let Pr1 [ · ] denote the probability over the experiment for Advbdh
G,A(k) as defined in Section F.2.

Let E1 denote the event in this experiment that A aborts in simulating the trapdoor oracle.
Let E2 denote the event that d[wb] = 0 (which also causes A to abort). Let E3 denote the
event that Q = ∅ (which also causes A to abort). Let E4 denote the event that B issues
a query H2(e(rP, sH1(wb))) or H4(e(rP, sH1(wb))). Let Pr2 [ · ] denote the probability over
Exppeks-ind-cpa-b

PEKS ,B for a random choice for b ∈ {0, 1}, and let b′ denote the output of B in this
experiment. Let E5 be the event that B issues a query H2(e(rP, sH1(wb))) or H4(e(rP, sH1(wb)))
to its oracles in this experiment. Let E6 denote the event that B issues a query K‖wb to its oracle
H3, where K is the random k-bit string that Exppeks-ind-cpa-b

PEKS ,B used in PEKS when replying B’s
challenge after the find stage. Equation (F.3) follows from the following claims.

Claim 1. Advbdh
G,A(k) ≥ Pr1 [¬E1 ∧ ¬E2 ∧ ¬E3 ∧ E4 ]/(q2 + q4).

In the above simulation if none of the events E1, E2 and E3 happens, then A will randomly
choose an element T

$
← Q and return T x[wb]−1

. However, by definition of event E4, one of the

— 201 —



Chapter F. Searchable Encryption Revisited

elements inQ is equal to e(P, P )srα·x[wb], thusA has at least the probability of 1/|Q| ≥ 1/(q2+q4)
to give the correct answer to the BDH problem. ✷

Claim 2. Pr[¬E1 ∧ ¬E2 ∧ ¬E3 ∧E4] = Pr[E4|¬E1 ∧ ¬E2] · Pr[¬E1 ∧ ¬E2].

Notice that when event E4 happens, the set Q must contain at least one element, thus E3 is
always false. Therefore we have Pr1 [¬E1 ∧ ¬E2 ∧ ¬E3 ∧E4 ] = Pr1 [¬E1 ∧ ¬E2 ∧ E4 ]. The
claim follows by conditioning off of the event ¬E1 ∧ ¬E2. ✷

Claim 3. Pr1 [ E4 | ¬E1 ∧ ¬E2 ] = Pr2 [ E5 ].

Under the condition that A does not abort, the simulation is perfect, i.e. all A’s answers to
the simulated oracles Trapd(sk, ·), H1(·) . . . H4(·) have exactly the same distribution as those
in the real PEKS-IND-CPA experiment. ✷

Claim 4. Pr2 [ E5 ] ≥ 1/2 ·Advpeks-ind-cpa
PEKS ,B (k)− q3 · 2

−k.

First observe that

Pr2
[
b = b′

]
= Pr2

[
b = b′ ∧ E5

]
+ Pr2

[
b = b′ ∧ ¬E5 ∧ E6

]
+ Pr2

[
b = b′ ∧ ¬E5 ∧ ¬E6

]

≤ Pr2 [ E5 ] + Pr2 [ E6 ] + Pr2

[
b = b′ | ¬E5 ∧ ¬E6

]
· Pr2 [¬E5 ∧ ¬E6 ]

≤ Pr2 [ E5 ] + q3 · 2
−k + Pr2

[
b = b′ | ¬E5 ∧ ¬E6

]
· Pr2 [¬E5 ∧ ¬E6 ] (F.4)

≤ Pr2 [ E5 ] + q3 · 2
−k + 1/2 . (F.5)

Equation (F.4) comes from the fact that, by assumption, B makes at most q3 queries to H3.
Equation (F.5) comes from the fact that, if E5 and E6 both do not occur, B learns no information
from the ciphertext. Rearranging gives

Pr2 [ E5 ] ≥ Pr2
[
b = b′

]
− 1/2 − q3 · 2

−k = 1/2 ·Advpeks-ind-cpa
PEKS ,B (k)− q3 · 2

−k .

The last equality follows from the standard result that Advpeks-ind-cpa
PEKS ,B (k) = 2·Pr2 [ b = b′ ]−1. ✷

Claim 5. Pr[¬E1 ∧ ¬E2] ≥ 1/(e(q + 1)) for δ = 1/(q + 1).

Since for every keyword w the biased coin d[w] is flipped independently, and Pr[d[w] = 1] = δ
for all w, let QT be the set of queries issued by B to the Trapd(sk, ·) oracle, then

Pr[¬E1 ∧ ¬E2] = δ ·
∏

w∈QT

(1− δ) = δ · (1− δ)|QT | ≥ δ · (1− δ)q

The last quantity is maximized at δ = 1/(q + 1) with value at least 1/e(q + 1).

Let us move to the more interesting claim, namely consistency:

Proposition F.3.5 The PEKS -STAT scheme is statistically consistent.

Before providing the proof, let us give some intuition. The main issue is that the computationally
unbounded consistency adversary U can easily find any collisions that exist for the random-oracle
hash functions. Let w, w′ denote the keywords output by the adversary U . We proceed via a
case analysis. One can show that if either w or w′ have length at least f(k) then Test will not be
wrong. The interesting case is when w, w′ both have length at most f(k). Let (rP, c, t, K2) denote
the challenge ciphertext formed by encrypting w. Let T = e(rP, H1(w)) and let K = c⊕H4(T )
be the underlying session key. Let T ′ = e(rP, H1(w′)) and let K ′ = c⊕H4(T ′). Now consider
two cases.

The first case is that H1(w) 6= H1(w′). Properties of pairings imply T 6= T ′. Now we claim
that this means K2 = H2(T ) 6= H2(T ′) with high probability, and thus Test will correctly reject,
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meaning U does not win. This is not merely because H2 is random, for remember the adversary
is not computationally bounded and can search for, and find, any collisions that exist. The
reason is that H2 is with high probability an injective function and collisions for it simply do
not exist. The reason for this is that its domain is G2 which has size p < 2k+1 (our definition of
a pairing parameter generator required this) but H2 outputs 3k bits, and thus a union bound
can be used to show that H2 is injective except with probability 4 · 2−k.

The second case, which is the harder one, is that H1(w) = H1(w′) (again, we cannot prevent U
from finding collisions in H1), and this is where we will use the fact that f(k) is sub-exponential.
Here the idea is that at the time it chooses w, w′, adversary U does not know the value of the
session key K that is randomly chosen later. We divide pairs (V, V ′) of strings of length at
most f(k) (candidate keywords) into two classes. A pair is heavy if there are “lots” of session
keys L such that H3(L ‖V ) = H3(L ‖V ′), and light otherwise, where “lots” is defined as 2k/2.
Now we again consider two cases. If (w, w′) is light then the randomly chosen K has only a
2−k/2 chance of being a session key for which H3(K ‖w) = H3(K ‖w′) and thus Test will most
likely reject, so U does not win. Next we use an occupancy problem based counting argument
to show that the probability (over H3) that a particular pair (V, V ′) of keywords is heavy is
double exponentially small in k. But the number of choices of keyword pairs is 2O(f(k)) which is
sub-double-exponentially small by choice of f(k), and thus a union bound allows us to conclude
that (w, w′) is not likely to be heavy.

Proof of Proposition F.3.5: Let U be a computationally unbounded adversary algorithm.
We show that there is a constant c > 0 such that

Advpeks-consist
PEKS ,U (k) ≤ O(2−ck) .

Consider the experiment Exppeks-consist
PEKS ,U (k). Let w, w′ denote the keywords output by U and

assume they are distinct, since otherwise U does not win. Let Win be the event that the
experiment outputs 1. Let r, K be the random choices made by PEKSH1,H2,H3,H4(pk, w) in the
experiment. Then we let

T = e(rP, sH1(w)) T′ = e(rP, sH1(w′))
c = K⊕H4(T) K′ = c⊕H4(T′)

K2 = H2(T) K′2 = H2(T′)
t = H3(K ‖w) t′ = H3(K′ ‖w′) .

The random choices of H1, H2, H3, H4, r and K determine all these random variables. Let Bad

be the event that Test(tw′ , (C, c, t, K2)) = 1. Let Big be the event that either w or w′ has length
greater than or equal to f(k). Then

Advpeks-consist
PEKS ,U (k) = Pr [Bad ] ≤ Pr [Bad ∧Big ] + Pr [Bad ∧ ¬Big ]

≤ Pr [ Bad | Big ] + Pr [Bad ∧ ¬Big ] .

Suppose Big holds. If |w′| ≥ f(k) then Test(tw′ , C) will return 1 only if C = w′. But this will
not be the case because either |w| ≥ f(k) and C = w 6= w′, or |w| < f(k) and, for large enough
k, |C| < f(k) ≤ |w′|. On the other hand if |w| ≥ f(k) and |w′| < f(k) then C = w and the latter
cannot be parsed as an appropriate 4-tuple (rP, c, t, K2), so Test will return 0. We conclude that
Pr [ Bad | Big ] = 0 for all large enough k. We now want to bound

Pr [Bad ∧ ¬Big ]

= Pr
[
Bad ∧ ¬Big ∧H1(w) 6= H1(w′)

]
︸ ︷︷ ︸

p1

+ Pr
[
Bad ∧ ¬Big ∧H1(w) = H1(w′)

]
︸ ︷︷ ︸

p2

.
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We bound p1, p2 in turn. We let S be the set of all distinct pairs (g, g′) of elements in G1. So
p1 is at most the sum, over all (g, g′) ∈ S, of the product terms

Pr
[

H2(e(rP, g)) = H2(e(rP, g′)) | (H1(w), H1(w′)) = (g, g′)
]
· Pr

[
(H1(w), H1(w′)) = (g, g′)

]
.

Properties of pairings tell us that g 6= g′ implies e(rP, g) 6= e(rP, g′). So due to the randomness
of H2, the first term of each product above is 2−3k. However, there are at most p2 choices for
the pair (g, g′), and we know that p < 2k+1. Thus we have

p1 ≤ p2 · 2−3k ≤ 22k+2−3k = 4 · 2−k .

(As we discussed above, the intuition here is that with probability at least 1 − 4 · 2−k the
function H2 is injective.) We now proceed to bound p2. In this argument, we regard H1 as
fixed. (Formally, imagine that we condition on a particular choice of H1. This suffices since
what follows holds for all values of this choice.) Let U be the set of all pairs (V, V ′) of distinct
keywords of length at most f(k) each such that H1(V ) = H1(V ′). For any (V, V ′) ∈ U we let

Keys(V, V ′) = { A ∈ {0, 1}k : H3(A ‖V ) = H3(A ‖ V ′) } .

We say that (V, V ′) is heavy if |Keys(V, V ′)| ≥ 2k/2, and light otherwise. We let Lt(V, V ′) denote
the event that (V, V ′) is light and Hw(V, V ′) the event that (V, V ′) is heavy, where the probability
is over the choice of H3 only. Then p2 ≤ pL + pH where

pL =
∑

(V,V ′)∈U

Pr
[
Bad ∧ (w, w′) = (V, V ′) ∧ Lt(V, V ′)

]

pH =
∑

(V,V ′)∈U

Pr
[
Bad ∧ (w, w′) = (V, V ′) ∧ Hw(V, V ′)

]
.

We bound these in turn. We have

pL =
∑

(V,V ′)∈U

Pr
[
Bad | (w, w′) = (V, V ′) ∧ Lt(V, V ′)

]
· Pr

[
(w, w′) = (V, V ′) ∧ Lt(V, V ′)

]

≤
∑

(V,V ′)∈U

2k/2

2k
· Pr

[
(w, w′) = (V, V ′) ∧ Lt(V, V ′)

]
(F.6)

= 2−k/2 ·
∑

(V,V ′)∈U

Pr
[
(w, w′) = (V, V ′) ∧ Lt(V, V ′)

]

≤ 2−k/2 .

Equation (F.6) is justified by the definition of the Test, the fact that K is chosen at random
from {0, 1}k and the fact that (V, V ′) is light. Now we turn to bounding pH .

Claim. For any (V, V ′) ∈ U ,

Pr
[
Hw(V, V ′)

]
≤ O(2−2k/2

) ,

where the probability is only over the choice of H3.

Note the bound of the claim is double-exponentially small. We prove the claim later. Using it
we can conclude via the union bound:

pH =
∑

(V,V ′)∈U

Pr
[
Bad ∧ (w, w′) = (V, V ′) ∧ Hw(V, V ′)

]

≤
∑

(V,V ′)∈U

Pr
[
Hw(V, V ′)

]
≤ 22+2f(k) ·O(2−2k/2

) ≤ O(2−g(k)) ,

— 204 —



F.4. PEKS and anonymous IBE

where g(k) = 2k/2 − 2− 2f(k) = Ω(2k/2). So certainly 2−g(k) is O(2−k).

Proof of Claim. We use an occupancy problem approach:

Pr
[
Hw(V, V ′)

]
=

2k∑

i=2k/2

(
2k

i

)
· (2−k)i · (1− 2−k)2k−i ≤

2k∑

i=2k/2

(
2k

i

)
· (2−k)i

≤
2k∑

i=2k/2

(
2k · e

i

)i

· (2−k)i ≤
2k∑

i=2k/2

(
e

i

)i

≤
∞∑

i=2k/2

(
e

i

)i

.

Let x = e2−k/2. For k ≥ 6, we have x ≤ 1/2. So the above is at most
∞∑

i=2k/2

xi = x2k/2
·
∞∑

i=0

xi = x2k/2 1

1− x
≤

2

22k/2
,

as desired.

F.4 PEKS and anonymous IBE

We formally define anonymity of IBE schemes and investigate the relation between PEKS and
anonymous IBE.

F.4.1 Definitions

IBE schemes. An identity-based encryption (IBE) scheme [Sha85, BF03] IBE = (Setup, KeyDer,

Enc, Dec) consists of four PTAs. Via (pk, msk)
$
← Setup(1k) the master generates master keys

for security parameter k ∈ N; via usk[id]
$
← KeyDerH(msk, id) the master computes the secret

key for identity id; via C
$
← EncH(pk, id, M ) a sender encrypts a message M to identity id to

get a ciphertext; via M ← DecH(usk, C ) the possessor of secret key usk decrypts ciphertext C
to get back a message. Here H is a random oracle with domain and range possibly depending
on k and pk. Associated to the scheme is a message space MsgSp obeying the conventions
discussed in Section F.2. For consistency, we require that for all k ∈ N, all identities id and
messages M ∈ MsgSp(k) we have Pr[DecH(KeyDerH(msk, id), EncH(pk, id, M )) = M ] = 1, where
the probability is taken over the choice of (pk, msk)

$
← Setup(1k), the random choice of H, and

the coins of all the algorithms in the expression above.

Privacy and anonymity. Privacy (IBE-IND-CPA) follows [BF03] while anonymity
(IBE-ANO-CPA) is a straightforward adaptation of [BBDP01] to IBE schemes. Let IBE =
(Setup, KeyDer, Enc, Dec) be an IBE scheme with associated message space MsgSp. To an ad-
versary A and bit b ∈ {0, 1}, we associate the following experiments:

Experiment Expibe-ind-cpa-b
IBE ,A (k)

IDSet ← ∅ ; (pk, msk) $
← Setup(1k)

pick random oracle H

(id, M0, M1, state) $
← AKeyDer(·),H(find, pk)

if {M0, M1} 6⊆ MsgSp(k) then return 0
C

$
← EncH(pk, id, Mb)

b′ $

← AKeyDer(·),H(guess, C , state)
if id 6∈ IDSet and |M0| = |M1|
then return b′ else return 0

Experiment Expibe-ano-cpa-b
IBE ,A (k)

IDSet ← ∅ ; (pk, msk) $
← Setup(1k)

pick random oracle H

(id0, id1, M , state) $
← AKeyDer,H(find, pk)

if M 6∈ MsgSp(k) then return 0
C

$
← EncH(pk, idb, M )

b′ $

← AKeyDer,H(guess, C , state)
if {id0, id1} ∩ IDSet = ∅
then return b′ else return 0
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Setup(1k)

(pk, msk)
$
← Setup(1k)

R
$
← {0, 1}k

pk ← (pk, R) ; msk ← (msk, R)
return (pk, msk)

KeyDer(msk, id)
parse msk as (msk, R)

usk
$
← KeyDer(msk, id)

usk ← (usk, R)
return usk

Enc(pk, id, M )
parse pk as (pk, R)

C
$
← Enc(pk, id, M‖R)

return C

Dec(usk, C )
parse usk as (usk, R)
X ← Dec(usk, C )
parse X as M‖R′ where |R′| = k
if R′ = R then return M
else return 0k

Figure F.4: IBE scheme for proof of Theorem F.4.1.

where the oracle KeyDer(id) is defined as

IDSet ← IDSet ∪ {id} ; usk[id]
$
← KeyDerH(msk, id) ; Return usk[id]

For prop ∈ {ind, ano}, we define the advantage of A in the corresponding experiment as

Advibe-prop-cpa
IBE ,A (k) = Pr

[
Expibe-prop-cpa-1

IBE ,A (k) = 1
]
− Pr

[
Expibe-prop-cpa-0

IBE ,A (k) = 1
]

.

IBE scheme IBE is said to be IBE-IND-CPA-secure (resp., IBE-ANO-CPA-secure) if the respec-
tive advantage function is negligible for all PTAs A.

F.4.2 The ibe-2-peks transform

The ibe-2-peks transform suggested in [BDOP04] takes input an IBE scheme IBE = (Setup,
KeyDer, Enc, Dec) and returns a PEKS scheme PEKS = (KG, Td, PEKS, Test) as follows. The
public key pk and secret key sk of the receiver in the PEKS scheme are the master public and
secret keys, respectively, of the IBE scheme (i.e., KG = Setup). The trapdoor tw associated to
keyword w is the secret key that the IBE scheme would assign to the identity w (i.e., Td(sk,
w) = KeyDer(sk, w)). A keyword w is PEKS-encrypted by IBE-encrypting the message 0k for
the identity w (i.e., PEKS(pk, w) = Enc(pk, w, 0k)). Finally, testing is done by checking that
the ciphertext decrypts to 0k (i.e., Test(tw , C ) returns 1 iff Dec(tw , C ) = 0k).

We know that BF -IBE is anonymous (Theorem F.4.4), that BDOP -PEKS = ibe-2-peks(BF -IBE ),
and that BDOP -PEKS is not statistically consistent (Proposition F.3.2). Thus, we can conclude
that the ibe-2-peks transform does not necessarily yield a statistically consistent PEKS scheme.
Unfortunately, as the following theorem shows, the ibe-2-peks transform does not necessar-
ily yield a computationally consistent PEKS scheme either (under the minimal assumption of
the existence of some IBE-IND-CPA- and IBE-ANO-CPA-secure IBE scheme). As a result,
ibe-2-peks is not in general a suitable way to obtain a PEKS scheme.

Theorem F.4.1 Assume there exist IBE-ANO-CPA-secure and IBE-IND-CPA-secure IBE
schemes. Then there exists a IBE-ANO-CPA-secure and IBE-IND-CPA-secure IBE scheme
IBE such that the PEKS scheme PEKS derived from IBE via ibe-2-peks is not computationally
consistent.

Proof of s: The proof of Theorem F.4.1 is quite simple and its details are omitted here.
Instead, we only provide the general intuition behind it. In order to show that ibe-2-peks does
not necessarily yield a computationally consistent PEKS scheme, we first assume the existence of
a IBE-IND-CPA- and IBE-ANO-CPA-secure IBE scheme IBE = (Setup, KeyDer, Enc, Dec) and

— 206 —



F.4. PEKS and anonymous IBE

then build an IBE scheme IBE = (Setup, KeyDer, Enc, Dec) as shown in Figure F.4. It is easy to
see that the IBE-IND-CPA- and IBE-ANO-CPA-security of IBE follows from simple reductions
from the security of IBE . Now, let PEKS denote the PEKS scheme outputted by ibe-2-peks on
input IBE . Clearly, PEKS is not computationally consistent as its test algorithm outputs 1 with
overwhelming probability, when given the trapdoor for the wrong keyword. The only case in
which it outputs 0 when given the wrong trapdoor is when the last k bits of the decryption of
the ciphertext C with the wrong trapdoor matches the random value R in the public key pk,
but this only happens with negligible probability due to the IBE-IND-CPA security of the IBE
scheme IBE .

F.4.3 The new-ibe-2-peks transform

The negative result in Theorem F.4.1 raises the question: Does the existence of IBE schemes
imply the existence of computationally consistent PEKS schemes? We answer that in the af-
firmative by presenting a revision of the ibe-2-peks transform, called new-ibe-2-peks, that trans-
forms any IBE-IND-CPA- and IBE-ANO-CPA-secure IBE scheme into a PEKS-IND-CPA-secure
and computationally consistent PEKS scheme. It is similar to ibe-2-peks except that instead
of always using 0k as the message encrypted, the PEKS-encryption algorithm chooses and en-
crypts a random message R and appends R in the clear to the ciphertext. In more detail, the
new-ibe-2-peks transform takes input an IBE scheme IBE = (Setup, KeyDer, Enc, Dec) and re-
turns a PEKS scheme PEKS = (KG, Td, PEKS, Test) as follows. The public key pk and secret key
sk of the receiver in the PEKS scheme are the master public and secret keys, respectively, of the
IBE scheme. (I.e. KG = Setup.) The trapdoor associated to keyword w is the secret key that the
IBE scheme would assign to the identity w. (I.e. Td(sk, w) = KeyDer(sk, w).) PEKS-encryption
of keyword w is done as follows: PEKS(pk, w) picks R

$
← {0, 1}k , lets C

$
← Enc(pk, w, R), and

returns (C , R) as the ciphertext. Finally, Test(tw , (C , R)) returns 1 iff Dec(tw , C ) = R.
Intuitively, this construction avoids the problem of oddly-behaving Dec algorithms by making

sure that the only way to ruin the consistency of the PEKS scheme is by correctly guessing the
value encrypted by a ciphertext, using the secret key of a different identity, which should not
be possible for an IBE-IND-CPA-secure IBE scheme. Hence, the consistency of the resulting
PEKS scheme is due to the data privacy property of the IBE scheme, while the data privacy
property of the PEKS scheme comes from the anonymity of the IBE scheme. The formal result
statement and proof follow.

Theorem F.4.2 Let IBE be an IBE scheme and let PEKS be the PEKS scheme derived from
IBE via new-ibe-2-peks. If IBE is IBE-IND-CPA-secure, then PEKS is computationally consistent.
Further, if IBE is IBE-ANO-CPA-secure, then PEKS is PEKS-IND-CPA-secure.

Proof: Let U be any PTA attacking the computational consistency of PEKS , and consider the
following PTA A attacking the IBE-IND-CPA-security of IBE . In its find stage, given master
public key pk, adversary A runs U(pk) to get keywords w, w′. It returns w as the challenge
identity and R0, R1

$
← {0, 1}k as the challenge messages. In the guess stage, given challenge

ciphertext C (that encrypts Rb under identity w for challenge bit b ∈ {0, 1}), A uses its key-
derivation oracle to obtain a trapdoor tw′ for w′. If Dec(tw′ , C ) = R1 then it returns 1 else it
returns 0. It is easy to see that

Pr
[

Expibe-ind-cpa-1
IBE ,A (k)] = 1

]
≥ Pr

[
Exppeks-consist

PEKS ,U (k) = 1
]

Pr
[

Expibe-ind-cpa-0
IBE ,A (k)] = 1

]
≤ 2−k .

Thus Advpeks-consist
PEKS ,U (k) ≤ Advibe-ind-cpa

IBE ,A (k) + 2−k, proving the first claim of the theorem.
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Let B be any PTA attacking the PEKS-IND-CPA-security of PEKS , and consider the following
PTA A attacking the IBE-ANO-CPA-security of IBE . In its find stage, given master public key
pk, adversary A runs B(find, pk) to get challenge keywords w0, w1, which it returns along with a
message R

$
← {0, 1}k . In the guess stage, given challenge ciphertext C (that encrypts R under

identity wb for challenge bit b ∈ {0, 1}), A runs B, in its guess stage, with challenge ciphertext
(C , R), to get its guess bit b′, which A returns. In both stages, A answers any trapdoor-oracle
queries of B via its key-derivation oracle. It is easy to see that for b = 0, 1,

Pr
[

Expibe-ano-cpa-b
IBE ,A (k) = 1

]
= Pr

[
Exppeks-ind-cpa-b

PEKS ,B (k) = 1
]

.

Thus Advpeks-ind-cpa
PEKS ,B (k) ≤ Advibe-ano-cpa

IBE ,A (k), proving the second claim of the theorem.

F.4.4 A sufficient condition for anonymity

Halevi [Hal05] provides a simple sufficient condition for an IND-CPA public-key encryption
scheme to meet the notion of anonymity (a.k.a. key-privacy) of [BBDP01]. The condition is
that even a computationally unbounded adversary, given public keys pk0, pk1 and the encryption
of a random message under pkb, have only a negligible advantage in determining the random
challenge bit b. Towards finding anonymous IBE schemes (a task motivated by Theorem F.4.2)
we extend Halevi’s condition to identity-based encryption. In the process we also extend it
in two other ways: first to handle the random oracle model (the standard model is a special
case) and second to weaken the statistical (i.e. information-theoretic) requirement of [Hal05] to
a computational one. (The application of this paper does not need the last extension, but it
may be useful in other contexts.)

We begin by defining a relevant (new) notion of security that we call IBE-ANO-RE-CPA.
Let IBE = (Setup, KeyDer, Enc, Dec) be an IBE scheme with associated message space MsgSp.
We associate to an adversary A and bit b ∈ {0, 1} the following experiment:

Experiment Expibe-ano-re-b
IBE ,A (k)

IDSet ← ∅ ; (pk, msk)
$
← Setup(1k)

pick random oracle H

(id0, id1, M , state)
$
← AKeyDer(·),H(find, pk)

if M 6∈ MsgSp(k) then return 0

R
$
← {0, 1}|M | ; C

$
← EncH(pk, idb, R)

b′
$
← AKeyDer(·),H(guess, C , state)

if {id0, id1} ∩ IDSet = ∅ then return b′

else return 0

Oracle KeyDer(id)

IDSet ← IDSet ∪ {id}

usk[id]
$
← KeyDerH(msk, id)

return usk[id]

The IBE-ANO-RE-CPA-advantage of an adversary A in violating the anonymity of the scheme
IBE is defined as

Advibe-ano-re
IBE ,A (k) = Pr

[
Expibe-ano-re-1

IBE ,A (k) = 1
]
− Pr

[
Expibe-ano-re-0

IBE ,A (k) = 1
]

.

A scheme IBE is said to be IBE-ANO-RE-CPA-secure if the above advantage is a negligible
function in k for all PTAs A.

Lemma F.4.3 Let IBE be an IBE scheme that is IBE-IND-CPA and IBE-ANO-RE-CPA-
secure. Then it is also IBE-ANO-CPA-secure.

Proof of Lemma F.4.3: The proof is a simple hybrid argument. Let A be a PTA attack-
ing the IBE-ANO-CPA-security of IBE . It is easy to construct PTAs A1,A3 attacking the
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Setup(1k)

(G1,G2, p, e)
$
← G(1k) ; P

$
← G∗1 ; s

$
← Z∗p

pk ← (G1,G2, p, e, P, sP ) ; msk ← s
return (pk, msk)

KeyDerH1(msk, id)
sk[id]← sH1(id)
return sk[id]

EncH1,H2(pk, id, M )

r
$
← Z∗p ; T ← e(H1(id), sP )r

C ← (rP, M⊕H2(T ))
return C

DecH2(sk[id], C )
parse C as (U, V )
T ← e(sk[id], U) ; M ← V⊕H2(T )
return M

Figure F.5: Algorithms of the IBE scheme BF -IBE = (Setup, KeyDer, Enc, Dec). Here G is a
pairing parameter generator and H1: {0, 1}∗ → G∗1 and H2: G2 → {0, 1}k are random oracles.
The message space is defined by MsgSp(k) = {0, 1}k for all k ∈ N.

IBE-IND-CPA-security of IBE , and PTA A2 attacking the IBE-ANO-RE-CPA-security of IBE ,
such that

Pr
[

Expibe-ano-cpa-1
IBE ,A (k) = 1

]
− Pr

[
Expibe-ano-re-1

IBE ,A (k) = 1
]
≤ Advibe-ind-cpa

IBE ,A1
(k)

Pr
[

Expibe-ano-re-1
IBE ,A (k) = 1

]
− Pr

[
Expibe-ano-re-0

IBE ,A (k) = 1
]
≤ Advibe-ano-re

IBE ,A2
(k)

Pr
[

Expibe-ano-re-0
IBE ,A (k) = 1

]
− Pr

[
Expibe-ano-cpa-0

IBE ,A (k) = 1
]
≤ Advibe-ind-cpa

IBE ,A3
(k) .

Summing concludes the proof. We omit the details, save to remark that we use here the second
convention about message spaces noted in Section F.2.

F.4.5 Anonymity of BF -IBE

The Boneh-Franklin BasicIdent IBE scheme [BF03] is shown in Figure F.5. We apply Lemma F.4.3
to give a simple proof that it is IBE-ANO-CPA.

Theorem F.4.4 The BF -IBE scheme is IBE-ANO-CPA-secure assuming that the BDH is hard
relative to generator G.

Proof: Given Lemma F.4.3, and given that the BF -IBE scheme is IBE-IND-CPA-secure [BF03],
it suffices to show that the scheme is IBE-ANO-RE-CPA-secure. Notice that the ciphertext C in
Figure F.5 has two parts, namely U = rP and V = M⊕H2(T ). The value U is chosen uniformly
at random fromG∗1 by the encryption algorithm. If the message M is chosen uniformly at random
from {0, 1}k , then V is also uniformly distributed in {0, 1}k and independent of the H2(T ). Thus
in both the 0- and 1- worlds of the IBE-ANO-RE-CPA-security game, the challenge ciphertext C
has exactly the same distribution. Therefore any adversary against IBE-ANO-RE-CPA-security
will have 0 advantage.

F.5 Anonymous HIBE

F.5.1 Definitions

HIBE schemes. A hierarchical identity-based encryption (HIBE) scheme [HL02, GS02, BBG05]
is a generalization of an IBE scheme in which an identity is a vector of strings id = (id1, . . . , id l)
with the understanding that when l = 0 this is the empty vector (). The number of components
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in this vector is called the level of the identity and is denoted |id|. If 0 ≤ i ≤ l then id|i =
(id1, . . . , id i) denotes the vector containing the first i components of id. If |id ′| ≥ l + 1 (l ≥ 0)
and id ′|l = id then we say that id is an ancestor of id ′, or equivalently, that id ′ is a descendant
of id. If the level of id ′ is l + 1 then id is a parent of id ′, or, equivalently, id ′ is a child of id. For
any id with |id| ≥ 1 we let par(id) = id||id|−1 denote its parent. Two nodes id = (id1, . . . , id l)
and id ′ = (id ′1, . . . , id ′l) at level l are said to be siblings iff id|l−1 = id ′|l−1. Moreover, if id l < id ′l
in lexicographic order, then id is a left sibling of id ′ and id ′ is a right sibling of id. An identity
at level one or more can be issued a secret key by its parent. (And thus an identity can issue
keys for any of its descendants if necessary.)

Formally a HIBE scheme HIBE = (Setup, KeyDer, Enc, Dec) consists of four PTAs. Via
(pk, msk = usk[()])

$
← Setup(1k), where k ∈ N is a security parameter, the root generates master

keys, with the secret key being associated to the (unique) identity () at level 0. Via usk[id]
$
←

KeyDerH(usk[par(id)], id) the parent of an identity id with |id| ≥ 1 can compute a secret key
for id. Note that by iteratively applying the KeyDer algorithm a user id can derive secret keys
for any of its descendants id ′; we occasionally use the notation usk[id ′]

$
← KeyDerH(usk[id], id ′)

to denote this process. Via C
$
← EncH(pk, id, M ) a sender encrypts a message M to identity

id to get a ciphertext; via M ← DecH(usk[id], C ) the identity id decrypts ciphertext C to get
back a message. Here H is a random oracle with domain and range possibly depending on k
and pk. Associated to the scheme is a message space MsgSp obeying the conventions discussed
in Section F.2. For consistency, we require that for all k ∈ N, all identities id with |id| ≥ 1 and
all messages M ∈ MsgSp(k),

Pr
[

DecH(KeyDerH(usk[par(id)], id), EncH(pk, id, M )) = M
]

= 1 ,

where the probability is taken over the choice of (pk , usk[()])
$
← Setup(1k), the random choice of

H, and the coins of all the algorithms in the expression above.

Privacy and anonymity. The notion of privacy for HIBE schemes is analogous to that for
IBE schemes (IBE-IND-CPA) but using identity vectors rather than identity strings and where
the adversary is not allowed to query the KeyDer oracle for the secret key of any ancestor of
the identity under attack. Since we will deal with schemes where privacy holds only up to some
level, the notion is parameterized by a maximum depth function d: N→ N, and all identities id
(in queries or challenges) must have |id| ≤ d(k). To allow a fine-grained treatment of anonymity
we introduce the concept of anonymity at a set L(k) of levels, meaning that in an experiment the
adversary A is challenged to distinguish two distinct identities differing only at levels l ∈ L(k).
(Here for each k, L(k) is a finite set of integers. For ease of notation, we will write l rather than
{l} when L(k) = {l} is a singleton set.)

Formally, let HIBE = (Setup, KeyDer, Enc, Dec) be an identity-based encryption scheme with
message space MsgSp, let d : N → N be the maximum depth, and let L be a set of levels. Let
diff(·, ·) be the function that returns the set of coordinates at which the input identities differ,
and anc(·) the function returning the set of ancestors of the input identity. To any bit b ∈ {0, 1}
and any adversary A, we associate the experiments:
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Experiment Exp
hibe-ind-cpa-b[d]
HIBE ,A (k)

IDSet ← ∅ ; (pk, msk) $
← Setup(1k)

pick random oracle H

(id , M0, M1, state) $
← AKeyDer(·),H(find, pk)

if |M0| 6= |M1| or |id| > d(k)
or {M0, M1} 6⊆ MsgSp(k)
then return 0

C
$

← EncH(pk, id, Mb)
b′ $
← AKeyDer(·),H(guess, C , state)

if IDSet ∩ anc(id) = ∅
then return b′ else return 0

Experiment Exp
hibe-ano-cpa-b[L,d]
HIBE ,A (k)

IDSet ← ∅ ; (pk, msk) $
← Setup(1k)

pick random oracle H

(id0, id1, M , state) $
← AKeyDer(·),H(find, pk)

if |id0| 6= |id1| or |id0| > d(k)
or |id1| > d(k) or M 6∈ MsgSp(k)
then return 0

C
$
← Enc(pk, idb, M )

b′ $
← AKeyDer(·),H(guess, C , state)

if IDSet ∩ (anc(id0) ∪ anc(id1)) = ∅ and
diff(id0, id1) ⊆ L(k)
then return b′ else return 0

where the oracle KeyDer(·) is defined as

if |id| > d(k) then return ⊥ ; IDSet ← IDSet ∪ {id} ; return KeyDer(msk, id) .

We define the advantage of A in the corresponding experiments as

Adv
hibe-ind-cpa[d]
HIBE ,A (k) = Pr

[
Exp

hibe-ind-cpa-1[d]
HIBE ,A (k) = 1

]
− Pr

[
Exp

hibe-ind-cpa-0[d]
HIBE ,A (k) = 1

]

Adv
hibe-ano-cpa[L,d]
HIBE ,A (k) = Pr

[
Exp

hibe-ano-cpa-1[L,d]
HIBE ,A (k) = 1

]
− Pr

[
Exp

hibe-ano-cpa-0[L,d]
HIBE ,A (k) = 1

]

The scheme HIBE is said to be HIBE-IND-CPA[d]-secure (resp. HIBE-ANO-CPA[L, d]-secure)
if the respective advantage function is negligible for all PTAs A.

F.5.2 A sufficient condition for anonymity

We further extend Lemma F.4.3 to the hierarchical case. To this end, we introduce a new notion
HIBE-ANO-RE-CPA[L, d] as follows. Let HIBE = (Setup, KeyDer, Enc, Dec) be a HIBE scheme
with message space MsgSp, let L be a set of levels, and let d be the maximum hierarchy depth.
To an adversary A and a bit b, we associate the following experiment:

Experiment Exp
hibe-ano-re-b[L,d]
HIBE ,A (k)

IDSet ← ∅ ; (pk, msk) $
← Setup(1k)

pick random oracle H

(id0, id1, M , state) $
← AKeyDer(·),H(find, pk)

if |id0| 6= |id1| or |id0| > d(k) or |id1| > d(k)
or M 6∈ MsgSp(k) then return 0

R
$
← {0, 1}|M | ; C

$
← EncH(pk, idb, R)

b′ $
← AKeyDer(·),H(guess, C , state)

if IDSet ∩ ({id0, id1} ∪ anc(id0) ∪ anc(id1)) = ∅
and diff(id0, id1) ⊆ L(k) then return b′ else return 0

Oracle KeyDer(id)
if |id| > d(k) then return ⊥
IDSet ← IDSet ∪ {id}

return KeyDerH(msk, id)

The HIBE-ANO-RE-CPA[L, d]-advantage of an adversary A in violating the level-L anonymity
of the scheme HIBE with depth d(k) is defined as

Adv
hibe-ano-re[L,d]
HIBE ,A (k) = Pr

[
Exp

hibe-ano-re-1[L,d]
IBE ,A (k) = 1

]
− Pr

[
Exp

hibe-ano-re-0[L,d]
IBE ,A (k) = 1

]
.

A scheme HIBE is said to be HIBE-ANO-RE-CPA[L, d]-secure if this advantage is a negligible
function in k for all PTAs A. The following lemma follows from a hybrid argument similar to
that of Lemma F.4.3.

Lemma F.5.1 Let HIBE be a HIBE scheme that is HIBE-IND-CPA[d] and
HIBE-ANO-RE-CPA[L, d]-secure for some set of levels L and hierarchy depth d. Then HIBE is
also HIBE-ANO-CPA[L, d]-secure.
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Setup(1k)
(G1,G2, p, e) $

← G(1k) ; P
$
← G∗

1

s0
$
← Z∗

p ; S0 ← 0 ; Q0 ← s0P
pk ← (G1,G2, p, e, P, Q0)
msk ← (pk, (), S0, s0)
return (pk, msk)

KeyDerH1,1,...,H1,l (usk, id)
parse id as (id1, . . . , id l+1)
parse usk as (pk, id|l, Sl, Q1, . . . , Ql−1, sl)
parse pk as (G1,G2, p, e, P, Q0)
Sl+1 ← Sl + slH1,l+1(id l+1)
Ql ← slP ; sl+1

$
← Z∗

p

return (pk, id, Sl+1, Q1, . . . , Ql, sl+1)

EncH1,1,...,H1,l,H2(pk, id, M )
parse pk as (G1,G2, p, e, P, Q0)
parse id as (id1, . . . , id l)
r

$
← Z∗

p ; C1 ← rP
for i = 2, . . . , l do Ci ← rH1,i(idi)
Cl+1 ← M ⊕H2(e(rH1,1(id1), Q0))
return (C1, . . . , Cl+1)

DecH2 (usk, C)
parse usk as (pk, id, Sl, Q1, . . . , Ql−1, sl)
parse id as (id1, . . . , id l)
parse pk as (G1,G2, p, e, P, Q0)
parse C as (C1, . . . , Cl+1)
κ← e(Sl, C1) ·

∏l
i=2 e(Qi−1, Ci)−1

return Cl+1 ⊕H2(κ)

Figure F.6: Algorithms of the mGS -HIBE scheme. G is a pairing parameter generator and
H1,i: {0, 1}∗ → G∗1 and H2: G2 → {0, 1}k are random oracles.

F.5.3 Construction

The HIBE scheme of [HL02] appears to be anonymous, but supports only two levels of identities,
and is only resistant against limited collusions at the second level, and hence is not usable for
our constructions that follow. Since the HIBE of [GS02], here denoted GS -HIBE , is equivalent to
the Boneh-Franklin IBE scheme [BF03] when restricted to the first level, and since the latter is
provably anonymous as per Theorem F.4.4, one could hope that GS -HIBE is level-1 anonymous,
but this turns out not to be true, and the HIBE of [BBG05] is not level-1 anonymous either.
To see why, consider the following. The GS -HIBE encryption of a message M under identity
id = (id1, . . . , id l) is a tuple

(
rP, rH1(id|2), . . . , rH1(id|l), H2(e(rP, H1(id1))) ⊕m

)
(F.7)

where H1, H2 are random oracles, P is a generator of a pairing group that is part of pk, and r
is chosen at random from Zp by the encryption algorithm. Anonymity is violated because an
adversary can decide whether a given ciphertext (C1, C2, C3) is intended for id = (id1, id2) or
id ′ = (id ′1, id2) by checking whether e(C2, P ) equals e(C1, H1(id)) or e(C1, H1(id ′)).

The lack of anonymity in GS -HIBE stems from the fact that the hashes in the first l compo-
nents of the ciphertext depend on the first component of the recipient’s identity. In Figure F.6,
we present a modified mGS -HIBE scheme that uses a different random oracle H1,l for each level
l, and that computes ciphertexts as

(
rP, rH1,2(id2), . . . , rH1,l(id l), H2(e(rP, H1,1(id1)))⊕m

)
.

The following implies in particular that mGS -HIBE is the first full HIBE scheme providing
anonymity at any level. The restriction on d is inherited from [GS02]. We note that, sub-
sequently to our work, Boyen and Waters [BW06] proposed a HIBE scheme that is anonymous
at all levels in the standard (i.e., non-random-oracle) model.

Theorem F.5.2 For any d(k) = O(log(k)), the mGS -HIBE scheme is HIBE-ANO-CPA[1, d]-
secure and HIBE-IND-CPA[d]-secure in the random oracle model assuming the BDH problem
is hard relative to the generator G.

We split up the proof in the following two lemmas. The proof of the first is given in Appendix F.9,
and recycles ideas from [GS02, BF03]. We use Lemma F.5.1 to prove the second lemma.
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Lemma F.5.3 For any d(k) = O(log(k)), the mGS -HIBE scheme is HIBE-IND-CPA[d]-secure
in the random oracle model assuming the BDH problem is hard relative to the generator G.

Lemma F.5.4 For any d(k) = O(log(k)), the mGS -HIBE scheme is HIBE-ANO-CPA[1, d]-secure
in the random oracle model assuming the BDH problem is hard relative to the generator G.

Proof: Given Lemmas F.5.1 and F.5.3, it suffices to show that mGS -HIBE is
HIBE-ANO-RE-CPA[1, d]-secure. In the challenge ciphertext (C ∗1 , . . . , C ∗l+1), the first compo-
nent C1 is chosen uniformly at random from G∗1. Component C ∗i for 2 ≤ i ≤ l is uniquely
defined by C ∗1 and the i-th component of the identity, which is the same for both challenge
identities since they can only differ at level 1. Finally, if the message M is chosen uniformly at
random from {0, 1}k , then the last component C ∗l+1 is also uniformly distributed over {0, 1}k ,
independent of H2(e(rH1,1(id1), Q0)). Hence, the challenge ciphertext is identically distributed
in both worlds, and the advantage of any adversary is 0.

F.6 Public-key encryption with temporary keyword search

In a PEKS scheme, once the gateway has the trapdoor for a certain keyword, it can test whether
this keyword was present in past ciphertexts, and can test its presence in any future ciphertexts.
It may be useful to limit the period in which the trapdoor can be used. Here we propose an
extension of PEKS that allows this. We call it public-key encryption with temporary keyword
search (PETKS) or temporarily searchable encryption for short. A trapdoor here is created for
a time interval [s, e] and will only allow the gateway to test whether ciphertexts created in this
time interval contain the keyword.

F.6.1 Definitions

PETKS schemes. Public-key encryption with temporary keyword search (PETKS) is a gener-
alization of PEKS in which a trapdoor can be issued for any desired window of time rather than
forever. Formally, the scheme PETKS = (KG, Td, PETKS, Test, N) consists of four PTAs and a
function N : N → N. Via (pk, sk)

$
← KG(1k), the receiver generates its public and secret key;

via C
$
← PETKSH(pk, w, i) a sender encrypts a keyword w in time period i ∈ [0, N(k) − 1] to

get a ciphertext; via tw
$
← TdH(sk, w, s, e) the receiver computes a trapdoor tw for keyword w in

period [s, e] where 0 ≤ s ≤ e ≤ N(k) − 1, and provides it to the gateway; via b← TestH(tw , C )
the gateway tests whether C encrypts w, where b is a bit with 1 meaning “accept” or “yes”
and 0 meaning “reject” or “no”. Here H is a random oracle whose domain and/or range might
depend on k and pk. We require that for all k ∈ N, all s, e, i with 0 ≤ s ≤ i ≤ e ≤ N(k) − 1,
and all w ∈ {0, 1}∗,

Pr
[

TestH(TdH(sk, w, s, e), PETKSH(pk, w, i)) = 1
]

= 1 ,

where the probability is taken over the choice of (pk, sk)
$
← KG(1k), the random choice of H,

and the coins of all the algorithms in the expression above.

Consistency. Consistency for PETKS schemes requires that no user U can output keywords
w, w′ and time period indices s, e, i ∈ [1, N(k) − 1] such that w 6= w′ or i 6∈ [s, e], yet still an
encryption of w for time period i tests positively under a trapdoor for keyword w′ and time
period [s, e]. We define the advantage Advpetks-consist

PETKS ,U (k) as the probability that U succeeds in
doing so. Just like for standard PEKS schemes, we distinguish between perfect, statistical and
computational consistency.
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Privacy. Privacy for a PETKS scheme asks that an adversary be unable to distinguish between
the encryption of two challenge keywords of its choice in a time period i ∈ [0, N(k) − 1] of its
choice, even if it is allowed not only to obtain trapdoors for non-challenge keywords issued for
any time interval, but also is allowed to obtain trapdoors for any keywords (even the challenge
ones), issued for time intervals not containing i. The formal experiment and the definition of
PETKS-IND-CPA-advantage and security are otherwise analogous to those of standard PEKS
schemes, and hence are omitted here.

F.6.2 Constructions for PETKS schemes

Constructions with linear complexity. PETKS is reminiscent of forward-security [BM99,
CHK03], and, as in these works, there are straightforward solutions with keys or trapdoors of
length linear in N(k). One such solution is to use a standard PEKS scheme and generate a
different key pair (pki, ski) for each time period i ∈ [0, N(k) − 1]. Let pk = (pk0, . . . , pkN(k)−1)
be the PETKS public key and sk = (sk0, . . . , skN(k)−1) be the PETKS secret key. During
time period i, the sender encrypts a keyword w by encrypting w under pki using the PEKS
scheme. The trapdoor for a keyword w in the interval [s, e] consists of all PEKS trapdoors
for w of periods s, . . . , e. A somewhat more efficient solution is to let the PETKS master key
pair be a single key pair for the standard PEKS scheme, and append the time period to the
keyword (making sure that the string is uniquely decodable, e.g. by using a special separator
symbol) when encrypting or computing trapdoors. This scheme achieves short public and secret
keys, but still has trapdoor length linear in N(k), because the PETKS trapdoor still contains
PEKS trapdoors for all time periods s, . . . , e. Note that both these construction only work for
polynomially bounded N(k).

The hibe-2-petks transform. We now present a transformation hibe-2-petks of a HIBE scheme
into a PETKS scheme that yields a PETKS scheme with complexity logarithmic in N(k) for
all parameters. The construction is very similar to the generic construction of forward-secure
encryption from binary-tree encryption [CHK03]. The number of time periods is N(k) = 2t(k)

for some polynomially bounded function t : N→ N. If i ∈ [0, N(k)−1], then let i1 . . . it(k) denote
its binary representation as a t(k)-bit string. Intuitively, our construction instantiates a HIBE
of depth t(k) + 1 with keywords as the first level of the identity tree and the time structure on
the lower levels. The trapdoor for keyword w and interval of time periods [s, e] consists of the
user secret keys of all identities from (w, s1, . . . , st(k)) to (w, e1, . . . , et(k)), but taking advantage
of the hierarchical structure to include entire subtrees of keys.

More precisely, let HIBE = (Setup, KeyDer, Enc, Dec) be a HIBE scheme. Then we associate
to it a PETKS scheme PETKS = hibe-2-petks(HIBE , t(k)) = (KG, Td, PETKS, Test, N) such that
N(k) = 2t(k), KG(1k) = Setup(1k) and PETKS(pk, w, i) = (i, R, C ) where R

$
← {0, 1}k and C

← Enc(pk, (w, i1, . . . , it(k)), R). The trapdoor algorithm Td(sk, w, s, e) first constructs a set T of
identities as follows. Let j be the smallest index so that sj 6= ej . Then T is the set containing
(w, s1, . . . , st(k)), (w, e1, . . . , et(k)), the right siblings of all nodes on the path from (w, s1, . . . , sj+1)
to (w, s1, . . . , st(k)), and the left siblings of all nodes on the path from (w, e1, . . . , ej+1) to
(w, e1, . . . , et(k)). If j does not exist, meaning s = e, then T ← {(w, s1, . . . , st(k))}. The trapdoor
tw is the set of tuples ((w, i1, . . . , ir), KeyDer(sk, (w, i1, . . . , ir))) for all (i1, . . . , ir) ∈ T . To test
a ciphertext (i, R, C ), the Test algorithm looks up a tuple ((w, i1, . . . , ir), usk[(w, i1, . . . , ir)]) in
tw . It returns 0 when no such tuple is found. Otherwise, it derives usk[(w, i1, . . . , it(k))] using
repetitive calls to the KeyDer algorithm, and returns 1 iff Dec(usk[(w, i1, . . . , it(k))], C ) = R.

Theorem F.6.1 Let HIBE be a HIBE scheme, and let PETKS = hibe-2-petks(HIBE , t(k)) for
some polynomially bounded function t : N→ N. If HIBE is HIBE-ANO-CPA[1, t(k) + 1]-secure,
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then PETKS is PETKS-IND-CPA-secure. Furthermore, if HIBE is
HIBE-IND-CPA[t(k) + 1]-secure, then PETKS is computationally consistent.

We split the proof of the theorem over the following two lemmas.

Lemma F.6.2 Let HIBE be a HIBE scheme, and let PETKS = hibe-2-petks(HIBE , t(k)) for some
polynomially bounded function t : N→ N. If HIBE is HIBE-ANO-CPA[1, t(k) + 1]-secure, then
PETKS is PETKS-IND-CPA-secure.

Proof: Let HIBE = (Setup, KeyDer, Enc, Dec) be a level-1 anonymous (HIBE-ANO-CPA[1, t(k)+
1]-secure) HIBE scheme, and let PETKS = hibe-2-petks(HIBE , t(k)) = (KG, Td, PETKS, Test,
N) be the associated PETKS scheme. Given an adversary A breaking the PETKS-IND-CPA
security of PETKS , we construct an adversary B breaking the HIBE-ANO-CPA[1, t(k)+1] security
of HIBE as follows. On input public parameters pk, B runs A on inputs (find, pk). When A
queries its Trapd oracle for the trapdoor of keyword w for interval [s, e], then B constructs a
set T exactly as the Td algorithm does, and constructs the corresponding trapdoor by querying
its KeyDer oracle for the user secret keys corresponding to all identities in T .

When A outputs challenge keywords w0, w1 and time period i, B outputs challenge identities
id0 = (w0, i1, . . . , it(k)), id1 = (w1, i1, . . . , it(k)) and a randomly chosen message M of length k.
Note that identities id0 and id1 differ on level 1, but are otherwise equal, as required for level-1
anonymity. Upon receiving challenge ciphertext C , adversary B sends (i, R, C ) to A and runs
it until A outputs a bit b′ (responding to A’s oracle queries the same way as before). Adversary
B outputs the same bit b′.

It is easy to see that, due to the ordered structure of the time tree, adversary B does not need
to corrupt any ancestors of its challenge identities. Therefore, adversary B succeeds whenever
A does, and we have

Advpetks-ind-cpa
PETKS ,A (k) ≤ Adv

hibe-ano-cpa[1,t(k)+1]
HIBE ,B (k)

for all k ∈ N, from which the lemma follows.

Lemma F.6.3 Let HIBE be a HIBE scheme, and let PETKS = hibe-2-petks(HIBE , t(k)) for some
polynomially bounded function t : N → N. If HIBE is HIBE-IND-CPA[t(k) + 1]-secure, then
PETKS is computationally consistent.

Proof: Let A be an adversary of the consistency of PETKS . We construct an HIBE-IND-CPA
adversary B of HIBE as follows.

Adversary BKeyDer(·)(find, pk)

(w, w′, s, e, i)
$
← A(pk)

R, R′
$
← {0, 1}k (where {0, 1}k is the message space of HIBE )

id ← (w, i1, . . . , it(k))

M0 ← R ; M1 = R′

state ← (pk, w, w′, R, R′, s, e, i)
return (id, M0, M1, state)

Adversary BKeyDer(·)(guess, C, state)
parse C as (i, R, C ′)

tw′
$
← KeyDer((w′, i1, . . . , it(k))) ; X ← Dec(tw′ , C ′)

if X = R′ then return 1 else return 0
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Since, by construction, Test(tw , C ) returns 0 whenever i /∈ [s, e], we can assume that w′ 6= w and
i ∈ [s, e]. Then, exactly as in Theorem F.4.2, we have

Pr
[

Exp
hibe-ind-cpa-1[t(k)+1]
HIBE ,B (k) = 1

]
≥ Pr

[
Exppetks-consist

PETKS ,A (k) = 1
]

(F.8)

Pr
[

Exp
hibe-ind-cpa-0[t(k)+1]
HIBE ,B (k) = 1

]
≤ 2−l. (F.9)

Equation (F.8) and Equation (F.9) give us

Advpetks-consist
PETKS ,A (k) ≤ Adv

hibe-ind-cpa[t(k)+1]
HIBE ,B (k) + 2−l.

The result follows.

Complexity. Since the mGS -HIBE has user secret keys and ciphertexts of size linear in the depth
of the tree, our resulting PETKS scheme has public and secret keys of size O(1), ciphertexts
of size O(log N(k)) and trapdoors of size O(log2 N(k)). We note that in this case a user can
decrypt ciphertexts intended for any of its descendants directly, without needing to derive the
corresponding secret key first. This makes the call to the KeyDer algorithm in the Test algorithm
superfluous, thereby improving the efficiency of Test. Note that since the mGS -HIBE scheme is
only secure for tree depths d(k) = O(log(k)), the derived PETKS scheme is restricted to a
polynomial number of time periods.

Unbounded time periods. Using the techniques of [MMM02], one can create a variant of
our scheme with efficiency depending on the number of elapsed time periods, rather than the
maximal number of time periods N(k). This means that there is no efficiency penalty for
overestimating N(k), so that a sufficiently high value can be chosen when setting up the system.
However, for security reasons the number of time periods remains limited to a maximum of
N(k) ≤ 2d(k)−⌈log d(k)⌉−1 periods, where d(k) is the maximum depth of the underlying HIBE
scheme.

F.7 Identity-based encryption with keyword search

In this section, we show how to combine the concepts of identity-based encryption and PEKS to
obtain identity-based encryption with keyword search (IBEKS) or ID-based searchable encryp-
tion for short. Like in IBE schemes, this allows to use any string as a recipient’s public key for
the PEKS scheme.

F.7.1 Definitions

IBEKS schemes. An identity-based encryption with keyword search scheme IBEKS = (Setup,

KeyDer, Td, IBEKS, Test) is made up of five algorithms. Via (pk, msk)
$
← Setup(1k), where k ∈ N

is the security parameter, the master generates the master keys; via usk[id]
$
← KeyDerH(msk,

id), the master computes the secret key for identity id; via C
$
← IBEKSH(pk, id, w), a sender

encrypts a keyword w to identity id to get a ciphertext; via tw
$
← TdH(usk[id ], w), the receiver

computes a trapdoor tw for keyword w and identity id and provides it to the gateway; via b←
TestH(tw , C ), the gateway tests whether C encrypts w, where b is a bit with 1 meaning “accept”
or “yes” and 0 meaning “reject” or “no”. As usual H is a random oracle whose domain and/or
range might depend on k and pk. For correctness, we require that for all k ∈ N, all identities
id, and all w ∈ {0, 1}∗,

Pr
[

TestH(TdH(KeyDerH(msk, id), w), IBEKSH(pk, id, w)) = 1
]

= 1 ,
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where the probability is taken over the choice of (pk, msk)
$
← Setup(1k), the random choice of

H, and the coins of all algorithms in the expression above.

Consistency. The notion of consistency for IBEKS is similar to the one given for PEKS. The
advantage of a user U is defined as the probability that, on input the master public key pk,
it can output keywords w, w′ and identities id, id ′ such that w 6= w′ or id 6= id ′, yet still an
encryption of w under identity id tests positively under a trapdoor derived for keyword w′ and
identity id ′. We again distinguish between perfect, statistical and computational consistency.
Note that this definition also considers it a consistency problem if a trapdoor for identity id ′

tests positively for a ciphertext intended for identity id 6= id ′. This type of problems is easily
avoided by having the KeyDer, Td and IBEKS algorithms include the intended identity into the
user secret keys, trapdoors and ciphertexts, respectively.

Privacy. We define privacy for IBEKS schemes says that an adversary should not be able to
distinguish between the encryption of two different challenge keywords w0, w1 of its choice for
any identity id of its choice. Moreover, this should be the case even if the adversary is allowed to
obtain trapdoors for non-challenge keywords issued for any identity and to obtain trapdoors for
w0, w1 for identities other than id. The advantage function Advibeks-ind-cpa

IBEKS ,A (k) of an adversary A
and the notion of IBEKS-IND-CPA security are defined analogously to standard PEKS schemes.

F.7.2 A generic transformation from anonymous HIBE schemes

We now propose a generic transform, called hibe-2-ibeks, to convert any HIBE scheme with
two levels into an IBEKS scheme. To obtain an IBEKS that is IBEKS-IND-CPA-secure, it is
sufficient to start with a HIBE that is anonymous at level 2. Moreover, if the underlying HIBE
is HIBE-IND-CPA[2]-secure, then the resulting IBEKS is also computationally consistent.

The hibe-2-ibeks transform. Given a HIBE scheme HIBE = (Setup, KeyDer, Enc, Dec) with
two levels, hibe-2-ibeks returns the IBEKS scheme IBEKS = (Setup, KeyDer, IBEKS, Td, Test)

such that KeyDer(msk, id) = (usk, id) where usk
$
← KeyDer(msk, id), IBEKS(pk, id, w) = (id, R,

C ) where R
$
← {0, 1}k and C = Enc(pk, (id, w), R), Td(usk = (usk, id), w) = (id, tw) where

tw
$
← KeyDer(usk, (id, w)) and Test(tw = (id, tw), (id ′, R, C )) returns 1 iff Dec(tw , C ) = R and

id = id ′.

Theorem F.7.1 Let HIBE be a HIBE scheme and let IBEKS = hibe-2-ibeks(HIBE ). If HIBE is
HIBE-IND-CPA[2]-secure, then IBEKS is computationally consistent. Furthermore, if HIBE is
HIBE-ANO-CPA[2, 2]-secure, then IBEKS is IBEKS-IND-CPA-secure.

The proof of Theorem F.7.1 follows from Lemma F.7.2 and Lemma F.7.3.

Lemma F.7.2 Let HIBE be a HIBE scheme and let IBEKS = hibe-2-ibeks(HIBE ). If HIBE is
HIBE-ANO-CPA[2, 2]-secure, then IBEKS is IBEKS-IND-CPA-secure.

Proof: Given an adversary A breaking the IBEKS-IND-CPA-security of IBEKS , we construct
an HIBE-ANO-CPA[2, 2]-adversary B breaking HIBE as follows. On input a public key pk,
algorithm B runs A on the same input, answering A’s KeyDer(·) queries by forwarding the
output of its own KeyDer(·) oracle, and answering A’s Trapd(id, w) oracle queries by querying
its own KeyDer(·) oracle for the secret key corresponding to identity (id, w). When A outputs a
challenge identity id⋆ and two challenge keywords w⋆

0 , w⋆
1 , adversary B chooses a random message

M ⋆ ∈ {0, 1}k and outputs M ⋆ as the challenge message and id⋆
0 = (id⋆, w⋆

0 ) and id⋆
1 = (id⋆, w⋆

1 )
as the challenge identities, which in fact differ only in the second entry. Let C ⋆ be the challenge
ciphertext that B receives at the beginning of its guess phase. Adversary B returns (M ⋆, C ⋆) to
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A, and continues to run A (answering Trapd queries the same way as before) until it outputs
a bit b′. Algorithm B then outputs the same bit b′ as its own output.

It is clear from the construction that B’s simulation ofA’s environment is perfect. SinceA cannot
query its Trapd oracle on keywords (id⋆, w⋆

0 ) and (id⋆, w⋆
1 ), B will not be forced to query its

KeyDer on identities id⋆
0 and id⋆

1, and hence wins the game whenever A does. Therefore, we
have that

Advibeks-ind-cpa
IBEKS ,A (k) ≤ Adv

hibe-ano-cpa[2,2]
HIBE ,B (k) ,

from which the theorem follows for CPA security. This proves the lemma.

Lemma F.7.3 Let HIBE be a HIBE scheme and let IBEKS = hibe-2-ibeks(HIBE ). If HIBE is
HIBE-IND-CPA[2]-secure, then IBEKS is computationally consistent.

Proof: Let A1 be an adversary of the consistency of IBEKS . We construct an HIBE-IND-CPA[2]
adversary B1 of HIBE as follows.

Adversary B
KeyDer(·)
1 (find, pk)

(w, w′, id, id ′)
$
← A1(pk) ; R, R′

$
← {0, 1}l (where {0, 1}l is the message space of HIBE )

id = (id ′, w)
w0 = R ; w1 = R′

state = (pk, w, w′, R, R′)
return (id, w0, w1, state)

Adversary B
KeyDer(·)
1 (guess, C , state)

tw′
$
← KeyDer((id ′, w′)) ; X ← Dec(tw′ , C )

if X = R′ then return 1 else return 0

Since, by construction, Test(tw , C ) returns 0 whenever id 6= id ′, we can assume that w′ 6= w and
id ′ = id. Thus, exactly as in Theorem F.4.2, we have

Pr
[

Exp
hibe-ind-cpa-1[2]
HIBE ,B1

(k) = 1
]
≥ Pr

[
Expibeks-consist

IBEKS ,A (k) = 1
]

(F.10)

Pr
[

Exp
hibe-ind-cpa-0[2]
HIBE ,B1

(k) = 1
]
≤ 2−l. (F.11)

Equation (F.10) and Equation (F.11) give us

Advibeks-consist
IBEKS ,A1

(k) ≤ Adv
hibe-ind-cpa[2]
HIBE ,B1

(k) + 2−l.

The result follows.

F.7.3 Concrete instantiations

Neither the GS -HIBE scheme of [GS02] nor the mGS -HIBE scheme of Figure F.6 are anonymous
at the second level. For the GS -HIBE scheme, consider an adversary A who outputs challenge
identities id = (id1, id2) and id ′ = (id1, id ′2) for any id1, id2, id ′2 ∈ {0, 1}∗ such that id2 6= id ′2,
and any challenge message M ∈ {0, 1}k . When given the challenge ciphertext C = (C1, C2, C3),
A checks whether e(C1, H1(id)) = e(P, C2). (See Equation (F.7) for how ciphertexts are created
in the GS -HIBE scheme.) If the test succeeds, then A returns 0, otherwise it returns 1. It is
easy to see that the advantage of A is Adv

hibe-ano-cpa[2,2]
GS -HIBE ,A (k) ≥ 1− 2−k. A similar attack can be

mounted on the mGS -HIBE scheme by checking whether e(C1, H1,2(id2)) = e(P, C2).
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In Appendix F.8.3, we show that the recently introduced HIBE scheme by Boneh et al. [BBG05]
is not level-2 anonymous either (and actually, not anonymous at any level). Subsequent to our
work, Boyen and Waters [BW06] proposed a fully anonymous HIBE scheme that, when used
to instantiate our generic construction, immediately yields an IBEKS scheme with security and
consistency in the standard model.

F.7.4 Identity-based encryption with temporary keyword search

The ideas of Sections F.6 and F.7 can be further combined to create an identity-based encryption
scheme with temporary keyword search. This can be constructed from a level-2 anonymous HIBE
scheme by putting the users’ identities at the first level of the hierarchy, the keywords at the
second, and a binary tree of time frames on the levels below.
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F.8 Appendix: Attacks against the anonymity of existing schemes

F.8.1 Waters’ IBE scheme

We recall Waters’ IBE scheme [Wat05] W -IBE = (Setup, KeyDer, Enc, Dec) in Figure F.7. As-
sociated with W -IBE is a polynomial n. It is assumed that all user identities are n(k)-bit (e.g.
160-bit) strings (for instance obtained by hashing the actual identity using a collision-resistant
hash function), which are written as id = id[1]id[2] . . . id[n], where each id[i] (1 ≤ i ≤ n) is a
bit id[i] ∈ {0, 1}. (We drop the argument k to n when k is understood.) The message space is
defined by MsgSp(k) = {0, 1}k , and messages are encoded as elements of G2 in the scheme.

We now describe a PTA A against the IBE-ANO-CPA-security of W -IBE . In the find stage
it gets input a public key (G1,G2, p, e, P, P1,U , E), and returns any two distinct n-bit strings
id0, id1 as challenge identities, along with any k-bit challenge message. In the guess phase, given
a challenge ciphertext C = (C1, C2, C3) formed by encrypting M under idb, where b ∈ {0, 1}
is the challenge bit, it computes V ′ ← U [0] +

∑n
i=1 id1[i]U [i]. If e(P, C3) = e(C2, V ′) then it

returns 1 else it returns 0. It is easy to see that Advibe-ano-cpa
W -IBE ,A (k) ≥ 1− 2−k.

F.8.2 Boneh-Boyen’s IBE scheme

The IBE scheme by Boneh and Boyen [BB04b], here referred to as BB -IBE , is depicted in
Figure F.8. An identity is represented by a vector of n(k) symbols id[1 . . . n] ∈ Σn where Σ is
an alphabet of size s. In the original scheme, these are obtained as the output of an admissible
hash function, but we ignore this here as it is irrelevant to the attack.

— 219 —

http://www.sentinels.nl


Chapter F. Searchable Encryption Revisited

Setup(1k)
(G1,G2, p, e) $

← G(1k)
P, Q

$
← G∗

1 ; α
$
← Zp ; P1 ← αP ; Q1 ← αQ

U [0 . . . n] $
← Gn+1

1 ; E ← e(P, Q)
pk ← (G1,G2, p, e, P, P1,U , E) ; msk ← (pk, Q1)
return (pk, msk)

KeyDer(msk, id)
parse msk as ((G1,G2, p, e, P, P1,U , E), Q1)
r

$
← Zp ; V ← U [0] +

∑n
i=1 id[i]U [i]

usk[id]← (Q1 + rV, rP )
return usk[id ]

Enc(pk, id, M )
parse pk as (G1,G2, p, e, P, P1,U , E)
V ← U [0] +

∑n
i=1 id [i]U [i]

t
$
← Zp ; T ← Et

C ← (T ·M , tP, tV )
return C

Dec(usk[id ], C)
parse usk[id ] as (S1, S2), C as (C1, C2, C3)
T ′ ← e(S1, C2) · e(S2, C3)−1

return T ′−1 · C1

Figure F.7: The algorithms constituting W -IBE . Identities are represented as bit strings id =
id[1, . . . , n] ∈ {0, 1}n.

Setup(1k)
(G1,G2, p, e) $

← G(1k)
P, Q

$
← G∗

1 ; α
$
← Zp ; P1 ← αP ; Q1 ← αQ

U [1 . . . n, 1 . . . s]) $
← Gn×s

1

pk ← (G1,G2, p, e, P, P1, Q,U) ; msk ← (pk, Q1)
return (pk, msk)

KeyDer(msk, id)
parse msk as ((G1,G2, p, e, P, P1,U , Q), Q1)
r1, . . . , rn

$
← Zp ; V ←

∑n
i=1 riU [i, id [i]]

usk[id ]← (Q1 + V, r1P, . . . , rnP )
return usk[id]

Enc(pk, id, M )
parse pk as (G1,G2, p, e, P, P1,U , Q)
t

$
← Zp ; T ← e(P1, Q)t

C ← (T ·M , tP, tU [1, id [1]], . . . , tU [n, id [n]])
return C

Dec(usk[id ], C)
parse usk[id ] as (S1, S2, . . . , Sn+1)
parse C as (C1, . . . , Cn+2)
T ′ ← e(S1, C2) ·

∏n
i=1 e(Si+1, Ci+2)−1

return T ′−1 · C1

Figure F.8: The algorithms constituting BB -IBE . Identities are represented as vectors of symbols
id = id[1, . . . , n] ∈ Σn, where |Σ| = s.

Consider a PTA A that, on input pk = (G1,G2, p, e, P, P1, Q,U), outputs any two distinct
identities id0, id1 ∈ Σn, and any message M ∈ {0, 1}k . Let i ∈ {1, . . . , n} be an index so that
id0[i] 6= id1[i]. When A is given the challenge ciphertext C = (C1, . . . , Cn+2), it checks whether
e(C2,U [i, id0[i]]) = e(P, Ci+2). If so, then A returns 0, else it returns 1. It is easily verified that
Advibe-ano-cpa

BB -IBE ,A (k) ≥ 1− 2−k.

F.8.3 Boneh-Boyen-Goh’s HIBE scheme

The recently proposed BBG -HIBE scheme [BBG05], depicted in Figure F.9, is not anonymous at
any single level, and therefore not at any set of multiple levels either. This can be seen from the
following adversary A that breaks the anonymity at level l. On input pk = (G1,G2, p, e, P, P1, Q,
Q2,U), adversary A outputs challenge identities (id1, . . . , id l−1, id l) and (id1, . . . , id l−1, id ′l) for
any id1, . . . , id l, id ′l ∈ Zp such that id l 6= id ′l, and any challenge message M ∈ {0, 1}k . When given
the challenge ciphertext C = (C1, C2, C3), A checks whether e(C2, id1U [1]+. . .+id lU [l]+Q2) =
e(P, C3). If this is the case, then A returns 0, otherwise it returns 1. It is easily verified that
Adv

hibe-ano-cpa[l,d]
BBG -HIBE ,A (k) ≥ 1− 2−k.
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Setup(1k)
(G1,G2, p, e) $

← G(1k)
P

$
← G1 ; α

$
← Zp ; P1 ← αP

Q, Q2
$
← G1 ; Q1 ← αQ

U [1 . . . d(k)]) $
← G

d(k)
1

pk ← (G1,G2, p, e, P, P1, Q, Q2,U)
msk ← (pk, Q1, 0, . . . , 0)
return (pk, msk)

KeyDer(usk, id)
l← |id | ; parse usk as (pk, A, B, Sl, . . . , Sd(k))
parse pk as (G1,G2, p, e, P, P1, Q, Q2,U)
parse id as (id1, . . . , id l) ; r

$
← Zp

A′ ← A + id lSl + r(id1U [1] + . . . + id lU [l] + Q2)
B′ ← B + rP
for l + 1 ≤ i ≤ d(k) do S′

i ← Si + rU [i]
return (pk, A′, B′, S′

l+1, . . . , S′
d(k))

Enc(pk, id , M )
parse pk as (G1,G2, p, e, P, P1, Q, Q2,U)
parse id as (id1, . . . , id l)
t

$
← Zp ; T ← e(P1, Q)t

C3 ← t(id1U [1] + . . . + id lU [l] + Q2)
C ← (T ·M , tP, C3)
return C

Dec(usk, C)
parse usk as (pk, A, B, Sl, . . . , Sd(k))
parse pk as (G1,G2, p, e, P, P1, Q, Q2,U)
parse C as (C1, C2, C3)
T ′ ← e(A, C2) · e(B, C3)−1

return T ′−1 · C1

Figure F.9: The algorithms constituting BBG -HIBE with maximum hierarchy depth d(k). An
identity at level l is represented as a vector id = (id1, . . . , id l) ∈ Z

l
p.

F.9 Appendix: Proof of Lemma F.5.3

Suppose that there is an adversary A of mGS -HIBE that breaks its HIBE-IND-CPA[d] security.
We will show how to use A in the construction of a simulator B that solves the bilinear Diffie-
Hellman problem. Let n1,i be the number of queries that A makes to the H1,i oracle, let n2 be
the number of queries to the H2 oracle, let ne be the number of queries to the key extraction
oracle, and let nh =

∑d(k)
i−1 n1,i + n2 be the total number of hash queries.

The simulator is given as input (P, aP, bP, cP ). It sets Q0 ← bP as the public key and
then runs A(find, pk). The simulator responds to A’s queries as described below. To maintain
consistency between queries it keeps lists L1,1, . . . , L1,d(k), L2 and L3. All lists are initially

empty. At the very beginning the simulator chooses n∗1,i
$
← {1, . . . , n1,i} and s∗i , x∗i

$
← Z∗p, and it

computes Q∗i ← s∗i (bP ) for 1 ≤ i ≤ d(k).
For the description of the simulation we distinguish between H1,1 queries and H1,i queries

for i ≥ 2. Without loss of generality, we assume that before querying the KeyDer oracle to
obtain the secret key of id = (id1, . . . , id l), adversary A first queried H1,i(idi) for all 1 ≤ i ≤ l.

H1,1 Queries: To respond to a query id1, proceed as follows.

• If L1,1 contains (id1, P1, ∗) for some P1, respond with P1.

• If this is the n∗1,1-th call to the H1,1 oracle, let id∗1 ← id1, add (id∗1, aP,⊥) to L1,1 and
respond with aP .

• Else, randomly choose an integer x1
$
← Z∗p, add (id1, x1P, x1) to L1,1 and reply with

x1P .

H1,i Queries, i ≥ 2: To respond to a query id i, proceed as follows.

• If L1,i contains (idi, Pi, ∗) for some Pi then respond with Pi.

• If this is the n∗1,i-th query to the H1,i oracle, let id∗i ← idi, add (id∗i , x∗i P, x∗i ) to L1,i

and respond with x∗i P .
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• Else, choose an integer xi
$
← Z∗p and compute Pi ← xiP−s∗i−1

−1(aP +
∑i−1

j=2 s∗j−1x∗jP ).
If Pi = 0, then abort; else, add (id i, Pi, xi) to L1,i and reply with Pi.

H2 Queries: To respond to a query κ, proceed as follows.

• If (κ, K) ∈ L2 for some K, respond with K.

• Else, choose K uniformly at random from {0, 1}n, respond with K and add (κ, K) to
L2.

KeyDer Queries: To respond to a query id = (id1, . . . , id l), proceed as follows.

• If (id1, . . . , id l) = (id∗1, . . . , id∗l ), then B aborts.

• Let j be the largest integer 1 ≤ j ≤ l so that (id|j , Sj , Q1, . . . , Qj−1, sj) ∈ L3, or let
j = 0 if such element does not exist.

• For i = j + 1, . . . , l, do the following:

– Find (idi, Pi, xi) ∈ L1,i.
– If i = 1 and id1 = id∗1, then add (id∗1,⊥,⊥) to L3. If i = 1 and id1 6= id∗1, then

compute S1 ← xi(bP ), choose s1
$
← Z∗p, and add (id1, S1, s1) to L3.

– If i > 1 and Si−1 6= ⊥, then look up (id i, Pi, xi) in L1,i, compute Si ← Si−1 +

si−1Pi, Qi−1 ← si−1P , choose si
$
← Z∗p, and add (id|i, Si, Q1, . . . , Qi−1, si) to L3.

– If i > 1 and Si−1 = ⊥ and idi = id∗i , then compute Qi−1 ← s∗i−1(bP ) and add
(id|i,⊥, Q1, . . . , Qi−1,⊥) to L3.

– If i > 1, Si−1 = ⊥ and idi 6= id∗i , then look up (id i, Pi, xi) in L1,i, compute Si ←

s∗i−1xiP , let Qi−1 ← s∗i−1(bP ), choose si
$
← Z∗p, and add (id|i, Si, Q∗1, . . . , Q∗i−1, si)

to L3.

• Find (id, Sl, Q1, . . . , Ql−1, sl) ∈ L3 and return (id, Sl, Q1, . . . , Ql−1, sl).

At some point A outputs (id = (id1, id2, . . . , id l), M0, M1, state). Without loss of generality,
we assume that the adversary submitted id i to the H1,i oracle before for all 1 ≤ i ≤ l. If
id 6= (id∗1, . . . , id∗l ), then B aborts. Otherwise, he sets C ∗1 ← cP , C ∗2 ← x∗2(cP ), . . . , Cl ← x∗l (cP ),
he chooses C ∗l+1 uniformly at random from {0, 1}n, and lets C ∗ ← (C ∗1 , C ∗2 , . . . , C ∗l+1). He then
proceeds to run A(guess, C ∗, state). Once A completes its attack by outputting its guess b′, the
simulator chooses a random element (κ, K) from L2 and outputs κ as its solution to the bilinear
Diffie-Hellman problem.

We first show that our simulator B provides a real attack environment for A as long as
B doesn’t abort. The public key pk given to A is correctly distributed because the challenge
elements aP, bP, cP are random elements from G∗1. The responses to H1,i queries are uniformly
distributed over G∗1 due to the independent random choices of xi (when simulating queries
H1,i(id i), idi 6= id∗i , 1 ≤ i ≤ d(k)), of x∗i (which is used to simulate H1,i(id

∗
i ) queries, 2 ≤

i ≤ d(k)) and due to the uniform distribution of aP (which is used to simulate H1,1(id∗1)).
Responses to H2 queries are easily seen to be correctly distributed. The way KeyDer queries
are handled requires a bit more explanation. For all level-1 identities id1 6= id∗1, the returned
secret key (S1, s1) contains the unique group element S1 such that e(Q0, H1,1(id1)) = e(S1, P )
and a uniformly distributed scalar s1, as in the real game. For all descendants of id1 6= id∗1,
the secret keys are derived from (S1, s1) exactly as in the real scheme. Now consider identity
(id∗1, . . . , id∗i−1, id i) with idi 6= id∗i , for which a tuple (Si, Q1, . . . , Qi−1, si) is returned as the secret
key. The values Q1, . . . , Qi−2 are inherited from the ancestors, as in the real scheme; Qi−1 is a
random group element due to the random choice of s∗i−1; and si is a random element in Z∗p. The
simulated value Si = s∗i−1xi(bP ) is then the unique group element such that e(H1,1(id∗1), Q0) =
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e(Si, P ) ·
∏i−1

j=2 e(H1,j(id∗j), Qj−1)−1 · e(H1,i(idi), Qi−1)−1, as required by the scheme. This can
be seen from:

e(H1,1(id∗1), Q0) ·
i−1∏

j=2

e(H1,j(id∗j), Qj−1) · e(H1,i(id i), Qi−1)

= e(aP, bP ) ·
i−1∏

j=2

e(x∗j P, s∗j−1bP ) · e
(
xiP − s∗i−1

−1(aP +
∑i−1

j=2 s∗j−1x∗jP ), s∗i−1bP
)

= e(aP, bP ) · e
(∑i−1

j=2s∗j−1x∗jP, bP
)
· e
(
s∗i−1xiP − aP −

∑i−1
j=2 s∗j−1x∗jP, bP

)

= e(S3, P ) .

The secret keys of descendants of these nodes are derived from (Si, Q1, . . . , Qi−1, si) as dictated
by the scheme, and hence are correctly distributed as well.

The only part of A’s environment left to analyze is the challenge ciphertext C ∗ = (C ∗1 , . . . ,
C ∗l+1). The first component C ∗1 = cP is uniformly distributed over G∗1, and the second to l-th
components are the unique group elements such that e(C ∗i , P ) = e(C ∗1 , H1,i(id

∗
i )) for 2 ≤ i ≤ l.

The last component C ∗l+1 however may deviate from the distribution in a real game, depending
on A’s H2 queries. In the following, we show that this does not harm our analysis, intuitively
because the only way A can distinguish between the real and the simulated game is by making
an H2 query that helps B solve the BDH problem.

Let s0 be the master secret key of the scheme in a real HIBE-IND-CPA[d] attack on
mGS -HIBE , and let D ← e(s0H1,1(id1), C ∗1 ). Let Ask be the event that A queries the H2

oracle on point D. Let Pr R [ · ] denote the probability of an event taking place in a real attack
on mGS -HIBE , and let Pr B [ · ] denote the probability in the environment simulated by B. We
argue that Pr R [Ask ] = Pr B [Ask ], as long as B doesn’t abort. Let Aski be the event that
A queries H2(D) within the first i queries to H2. Obviously, Pr R [Ask0 ] = Pr B [Ask0 ] = 0.
Now assume that Pr R [Aski−1 ] = Pr B [Aski−1 ]. We have that

Pr R [Aski ] = Pr R [ Aski | Aski−1 ] · Pr R [Aski−1 ]

+ Pr R [ Aski | ¬Aski−1 ] · Pr R [¬Aski−1 ]

= Pr R [Aski−1 ] + Pr R [ Aski | ¬Aski−1 ] · Pr R [¬Aski−1 ] .

We know that Pr R [Aski−1 ] = Pr B [Aski−1 ], so we only have to show that
Pr R [ Aski | ¬Aski−1 ] = Pr B [ Aski | ¬Aski−1 ]. Given that ¬Aski−1 and that B’s simu-
lation didn’t abort, the simulated public key, the oracle responses and the first l components of
the ciphertext provided by B are distributed exactly as in a real attack, as we explained before.
Moreover, since A did not query for H2(D) yet, from A’s point of view the last ciphertext
component C ∗l+1 is a random string in {0, 1}n, both in the real attack and in the simulated
environment. Since all the information on which A can base its decision for its next H2 query
is identically distributed in both environments, the probability that A chooses to query D is
the same in both environments as well. Hence, we have that Pr R [Aski ] = Pr B [Aski ], and by
induction that Pr R [Ask ] = Pr B [Ask ].

The probability that A wins a real attack against mGS -HIBE can be written as

Pr R [A wins ] = Pr R [A wins ∧Ask ] + Pr R [A wins ∧ ¬Ask ]

= Pr R [A wins ∧Ask ] +
1

2

≤ Pr R [Ask ] +
1

2
,
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where the second equation is true because in the event ¬Ask, the distribution of the chal-
lenge ciphertext is completely independent of M0, M1, and hence the probability that A guesses
correctly is 1/2. Since Pr R [Ask ] = Pr B [Ask ] and moreover

Pr R [A wins ] =
1

2
·Adv

hibe-ind-cpa[d]
mGS -HIBE ,A (k) +

1

2
,

it follows that
Pr B [Ask ] ≥

1

2
·Adv

hibe-ind-cpa[d]
mGS -HIBE ,A (k) .

Now we only have to relate B’s advantage in solving the BDH problem to Pr B [Ask ]. In the game
simulated by B, the probability that B guesses the correct identities such that id = (id∗1, . . . , id∗l )

1/
∏l

i=1 n1,i ≥ n
−d(k)
h ; the probability that B guesses the correct H2 query is 1/n2 ≥ n−1

h ; and

the probability that B aborts when answering H1,i queries is
∑d(k)

i=1 n1,i/(p − 1) ≤ nh/2k. The
advantage of B in solving the BDH problem is

Advbdh
G,B (k) ≥

1

n
d(k)+1
h

·

(
1−

nh

2k

)
· Pr B [Ask ]

and hence
Adv

hibe-ind-cpa[d]
mGS -HIBE ,A (k) ≤ 2 · n

d(k)+1
h ·Advbdh

G,B (k) +
nh

2k
,

from which the theorem follows.
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Appendix G

Robust Encryption

TCC 2010
[ABN10] with M. Bellare and G. Neven

Abstract : We provide a provable-security treatment of “robust” encryption. Robustness means
it is hard to produce a ciphertext that is valid for two different users. Robustness makes explicit
a property that has been implicitly assumed in the past. We argue that it is an essential conjunct
of anonymous encryption. We show that natural anonymity-preserving ways to achieve it, such
as adding recipient identification information before encrypting, fail. We provide transforms
that do achieve it, efficiently and provably. We assess the robustness of specific encryption
schemes in the literature, providing simple patches for some that lack the property. We explain
that robustness of the underlying anonymous IBE scheme is essential for PEKS (Public Key
Encryption with Keyword Search) to be consistent (meaning, not have false positives), and our
work provides the first generic conversions of anonymous IBE schemes to consistent (and secure)
PEKS schemes. Overall our work enables safer and simpler use of encryption.

G.1 Introduction

This paper provides a provable-security treatment of encryption “robustness.” Robustness re-
flects the difficulty of producing a ciphertext valid under two different encryption keys. The
value of robustness is conceptual, “naming” something that has been undefined yet at times
implicitly (and incorrectly) assumed. Robustness helps make encryption more mis-use resis-
tant. We provide formal definitions of several variants of the goal; consider and dismiss natural
approaches to achieve it; provide two general robustness-adding transforms; test robustness of
existing schemes and patch the ones that fail; and discuss some applications.

The definitions. Both the PKE and the IBE settings are of interest and the explication is
simplified by unifying them as follows. Associate to each identity an encryption key, defined
as the identity itself in the IBE case and its (honestly generated) public key in the PKE case.
The adversary outputs a pair id0, id1 of distinct identities. For strong robustness it also outputs
a ciphertext C∗; for weak, it outputs a message M∗, and C∗ is defined as the encryption of
M∗ under the encryption key ek1 of id1. The adversary wins if the decryptions of C∗ under
the decryption keys dk0, dk1 corresponding to ek0, ek1 are both non-⊥. Both weak and strong
robustness can be considered under chosen plaintext or chosen ciphertext attacks, resulting in
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four notions (for each of PKE and IBE) that we denote WROB-CPA, WROB-CCA, SROB-CPA,
SROB-CCA.

Why robustness? The primary security requirement for encryption is data-privacy, as cap-
tured by notions IND-CPA or IND-CCA [GM84, RS92, DDN00, BDPR98, BF03]. Increasingly,
we are also seeing a market for anonymity, as captured by notions ANO-CPA and ANO-CCA
[BBDP01, ABC+08]. Anonymity asks that a ciphertext does not reveal the encryption key under
which it was created.

Where you need anonymity, there is a good chance you need robustness too. Indeed, we
would go so far as to say that robustness is an essential companion of anonymous encryption.
The reason is that without it we would have security without basic communication correctness,
likely upsetting our application. This is best illustrated by the following canonical application
of anonymous encryption, but shows up also, in less direct but no less important ways, in other
applications. A sender wants to send a message to a particular target recipient, but, to hide
the identity of this target recipient, anonymously encrypts it under her key and broadcasts
the ciphertext to a larger group. But as a member of this group I need, upon receiving a
ciphertext, to know whether or not I am the target recipient. (The latter typically needs to
act on the message.) Of course I can’t tell whether the ciphertext is for me just by looking at
it since the encryption is anonymous, but decryption should divulge this information. It does,
unambiguously, if the encryption is robust (the ciphertext is for me iff my decryption of it is not
⊥) but otherwise I might accept a ciphertext (and some resulting message) of which I am not
the target, creating mis-communication. Natural “solutions,” such as including the encryption
key or identity of the target recipient in the plaintext before encryption and checking it upon
decryption, are, in hindsight, just attempts to add robustness without violating anonymity and,
as we will see, don’t work.

We were lead to formulate robustness upon revisiting Public key Encryption with Keyword
Search (PEKS) [BDOP04]. In a clever usage of anonymity, Boneh, Di Crescenzo, Ostrovsky
and Persiano (BDOP) [BDOP04] showed how this property in an IBE scheme allowed it to be
turned into a privacy-respecting communications filter. But Abdalla et. al [ABC+08] noted that
the BDOP filter could lack consistency, meaning turn up false positives. Their solution was
to modify the construction. What we observed instead was that consistency would in fact be
provided by the original construct if the IBE scheme was robust. PEKS consistency turns out
to correspond exactly to communication correctness of the anonymous IBE scheme in the sense
discussed above. (Because the PEKS messages in the BDOP scheme are the recipients identities
from the IBE perspective.) Besides resurrecting the BDOP construct, the robustness approach
allows us to obtain the first consistent IND-CCA secure PEKS without random oracles.

Sako’s auction protocol [Sak00] is important because it was the first truly practical one to
hide the bids of losers. It makes clever use of anonymous encryption for privacy. But we present
an attack on fairness whose cause is ultimately a lack of robustness in the anonymous encryption
scheme (cf. Appendix G.8).

All this underscores a number of the claims we are making about robustness: that it is of
conceptual value; that it makes encryption more resistant to mis-use; that it has been implicitly
(and incorrectly) assumed; and that there is value to making it explicit, formally defining and
provably achieving it.

Weak versus strong. The above-mentioned auction protocol fails because an adversary
can create a ciphertext that decrypts correctly under any decryption key. Strong robustness is
needed to prevent this. Weak robustness (of the underlying IBE) will yield PEKS consistency
for honestly-encrypted messages but may allow spammers to bypass all filters with a single
ciphertext, something prevented by strong robustness. Strong robustness trumps weak for ap-
plications and goes farther towards making encryption mis-use resistant. We have defined and
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considered the weaker version because it can be more efficiently achieved, because some existing
schemes achieve it and because attaining it is a crucial first step in our method for attaining
strong robustness.

Achieving robustness. As the reader has surely already noted, robustness (even strong) is
trivially achieved by appending the encryption key to the ciphertext and checking for it upon
decryption. The problem is that the resulting scheme is not anonymous and, as we have seen
above, it is exactly for anonymous schemes that robustness is important. Of course, data privacy
is important too. Letting AI-ATK = ANO-ATK + IND-ATK for ATK ∈ {CPA, CCA}, our goal
is to achieve AI-ATK + XROB-ATK, ideally for both ATK ∈ {CPA, CCA} and X ∈ {W, S}.
This is harder.

Transforms. It is natural to begin by seeking a general transform that takes an arbitrary
AI-ATK scheme and returns a AI-ATK + XROB-ATK one. This allows us to exploit known
constructions of AI-ATK schemes, supports modular protocol design and also helps understand
robustness divorced from the algebra of specific schemes. Furthermore, there is a natural and
promising transform to consider. Namely, before encrypting, append to the message some
redundancy, such as the recipient encryption key, a constant, or even a hash of the message, and
check for its presence upon decryption. (Adding the redundancy before encrypting rather than
after preserves AI-ATK.) Intuitively this should provide robustness because decryption with the
“wrong” key will result, if not in rejection, then in recovery of a garbled plaintext, unlikely to
possess the correct redundancy.

The truth is more complex. We consider two versions of the paradigm and summarize our
findings in Figure G.1. In encryption with unkeyed redundancy, the redundancy is a function
RC of the message and encryption key alone. In this case we show that the method fails
spectacularly, not providing even weak robustness regardless of the choice of the function RC.
In encryption with keyed redundancy, we allow RC to depend on a key K that is placed in the
public parameters of the transformed scheme, out of direct reach of the algorithms of the original
scheme. In this form, the method can easily provide weak robustness, and that too with a very
simple redundancy function, namely the one that simply returns K.

But we show that even encryption with keyed redundancy fails to provide strong robust-
ness. To achieve the latter we have to step outside the encryption with redundancy paradigm.
We present a strong robustness conferring transform that uses a (non-interactive) commitment
scheme. For subtle reasons, for this transform to work the starting scheme needs to already be
weakly robust. If it isn’t already, we can make it so via our weak robustness transform.

In summary, on the positive side we provide a transform conferring weak robustness and
another conferring strong robustness. Given any AI-ATK scheme the first transform returns a
WROB-ATK + AI-ATK one. Given any AI-ATK + WROB-ATK scheme the second transform
returns a SROB-ATK+AI-ATK one. In both cases it is for both ATK = CPA and ATK = CCA
and in both cases the transform applies to what we call general encryption schemes, of which
both PKE and IBE are special cases, so both are covered.

Robustness of specific schemes. The robustness of existing schemes is important because
they might be in use. We ask which specific existing schemes are robust, and, for those that
are not, whether they can be made so at a cost lower than that of applying one of our general
transforms. There is no reason to expect schemes that are only AI-CPA to be robust since the
decryption algorithm may never reject, so we focus on schemes that are known to be AI-CCA.
This narrows the field quite a bit. Our findings and results are summarized in Figure G.1.

Canonical AI-CCA schemes in the PKE setting are Cramer-Shoup (CS ) in the standard
model [CS03, BBDP01] and DHIES in the random oracle (RO) model [ABR01, BBDP01]. We
show that both are WROB-CCA but neither is SROB-CCA, the latter because encryption with
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Transform WROB-ATK SROB-ATK

Encryption with unkeyed redundancy (EuR) No No
Encryption with keyed redundancy (EkR) Yes No

Scheme setting AI-CCA WROB-CCA SROB-CCA RO model

CS PKE Yes [CS03, BBDP01] Yes No No
CS ∗ PKE Yes Yes Yes No
DHIES PKE Yes [ABR01] Yes No Yes
DHIES ∗ PKE Yes Yes Yes Yes

BF IBE Yes [BF01, ABC+08] Yes Yes Yes
BW IBE Yes [BW06] No No No

Figure G.1: Achieving Robustness. The first table summarizes our findings on the encryption
with redundancy transform. “No” means the method fails to achieve the indicated robustness
for all redundancy functions, while “yes” means there exists a redundancy function for which it
works. The second table summarizes robustness results about some specific AI-CCA schemes.

0 randomness yields a ciphertext valid under any encryption key. We present modified versions
CS ∗,DHIES ∗ of the schemes that we show are SROB-CCA. Our proof that CS ∗ is SROB-CCA
builds on the information-theoretic part of the proof of [CS03]. The result does not need to
assume hardness of DDH. It relies instead on pre-image security of the underlying hash function
for random range points, something not implied by collision-resistance but seemingly possessed
by candidate functions.

In the IBE setting, the CCA version BF of the RO model Boneh-Franklin scheme is AI-CCA
[BF01, ABC+08], and we show it is SROB-CCA. The standard model Boyen-Waters scheme
BW is AI-CCA [BW06], and we show it is neither WROB-CCA nor SROB-CCA. It can be
made either via our transforms but we don’t know of any more direct way to do this.

BF is obtained via the Fujisaki-Okamoto (FO) transform [FO99] and BW via the Canetti-
Halevi-Katz (CHK) transform [CHK04, BCHK07]. We can show that neither transform gener-
ically provides strong robustness. This doesn’t say whether they do or not when applied to
specific schemes, and indeed the first does for BF and the second does not for BW .

Summary. Protocol design suggests that designers have the intuition that robustness is natu-
rally present. This seems to be more often right than wrong when considering weak robustness of
specific AI-CCA schemes. Prevailing intuition about generic ways to add even weak robustness
is wrong, yet we show it can be done by an appropriate tweak of these ideas. Strong robust-
ness is more likely to be absent than present in specific schemes, but important schemes can be
patched. Strong robustness can also be added generically, but with more work.

Related work. There is growing recognition that robustness is important in applications and
worth defining explicitly, supporting our own claims to this end. In particular the correctness
requirement for predicate encryption [KSW08] includes a form of weak robustness and, in recent
work concurrent to, and independent of, ours, Hofheinz and Weinreb [HW08] introduced a
notion of well-addressedness of IBE schemes that is just like weak robustness except that the
adversary gets the IBE master secret key. Neither work considers or achieves strong robustness,
and neither treats PKE.
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proc Initialize

(pars, msk) $
← PG ; b

$
← {0, 1}

S, T, U, V ← ∅
Return pars

proc GetEK(id)
U ← U ∪ {id}

(EK[id ], DK[id ]) $
← KG(pars, msk, id)

Return EK[id ]

proc GetDK(id)
If id 6∈ U then return ⊥
If id ∈ S then return ⊥
V ← V ∪ {id}
Return DK[id]

proc Dec(C, id)
If id 6∈ U then return ⊥
If (id, C) ∈ T then return ⊥
M ← Dec(pars, EK[id ], DK[id ], C)
Return M

proc LR(id∗
0, id∗

1, M∗
0 , M∗

1 )
If (id∗

0 6∈ U) ∨ (id∗
1 6∈ U) then return ⊥

If (id∗
0 ∈ V ) ∨ (id∗

1 ∈ V ) then return ⊥
If |M∗

0 | 6= |M
∗
1 | then return ⊥

C∗ $
← Enc(pars, EK[idb], M∗

b )
S ← S ∪ {id∗

0, id∗
1}

T ← T ∪ {(id∗
0, C∗), (id∗

1, C∗)}
Return C∗

proc Finalize(b′)
Return (b′ = b)

Figure G.2: Game AIGE defining AI-ATK security of general encryption scheme GE =
(PG, KG, Enc, Dec).

G.2 Definitions

Notation and conventions. If x is a string then |x| denotes its length, and if S is a set
then |S| denotes its size. The empty string is denoted ε. By a1‖ . . . ‖an, we denote a string
encoding of a1, . . . , an from which a1, . . . , an are uniquely recoverable. (Usually, concatenation
suffices.) By a1‖ . . . ‖an ← a, we mean that a is parsed into its constituents a1, . . . , an. Similarly,
if a = (a1, . . . , an) then (a1, . . . , an)← a means we parse a as shown. Unless otherwise indicated,
an algorithm may be randomized. By y

$
← A(x1, x2, . . .) we denote the operation of running A

on inputs x1, x2, . . . and fresh coins and letting y denote the output. We denote by [A(x1, x2, . . .)]
the set of all possible outputs of A on inputs x1, x2, . . .. We assume that an algorithm returns
⊥ if any of its inputs is ⊥.

Games. Our definitions and proofs use code-based game-playing [BR06]. Recall that a game
—look at Figure G.2 for an example— has an Initialize procedure, procedures to respond to
adversary oracle queries, and a Finalize procedure. A game G is executed with an adversary
A as follows. First, Initialize executes and its outputs are the inputs to A. Then A executes,
its oracle queries being answered by the corresponding procedures of G. When A terminates,
its output becomes the input to the Finalize procedure. The output of the latter, denoted GA,
is called the output of the game, and we let “GA” denote the event that this game output takes
value true. Boolean flags are assumed initialized to false. Games Gi, Gj are identical until bad
if their code differs only in statements that follow the setting of bad to true. Our proofs will use
the following.

Lemma G.2.1 [BR06] Let Gi, Gj be identical until bad games, and A an adversary. Then
∣∣∣Pr

[
GA

i

]
− Pr

[
GA

j

]∣∣∣ ≤ Pr
[

GA
j sets bad

]
.

The running time of an adversary is the worst case time of the execution of the adversary
with the game defining its security, so that the execution time of the called game procedures is
included.

General encryption. We introduce and use general encryption schemes, of which both PKE
and IBE are special cases. This allows us to avoid repeating similar definitions and proofs.
A general encryption (GE) scheme is a tuple GE = (PG, KG, Enc, Dec) of algorithms. The
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proc Initialize

(pars, msk) $
← PG ; U, V ← ∅

Return pars

proc GetEK(id)
U ← U ∪ {id}

(EK[id ], DK[id ]) $
← KG(pars, msk, id)

Return EK[id]

proc GetDK(id)
If id 6∈ U then return ⊥
V ← V ∪ {id}
Return DK[id ]

proc Dec(C, id)
If id 6∈ U then return ⊥
M ← Dec(pars, EK[id ], DK[id], C)
Return M

proc Finalize(M, id0, id1) // WROBGE
If (id0 6∈ U) ∨ (id1 6∈ U) then return false
If (id0 ∈ V ) ∨ (id1 ∈ V ) then return false
If (id0 = id1) then return false

M0 ←M ; C
$
← Enc(pars, EK[id0], M0)

M1 ← Dec(pars, EK[id1], DK[id1], C)
Return (M0 6= ⊥) ∧ (M1 6= ⊥)

proc Finalize(C, id0, id1) // SROBGE
If (id0 6∈ U) ∨ (id1 6∈ U) then return false
If (id0 ∈ V ) ∨ (id1 ∈ V ) then return false
If (id0 = id1) then return false
M0 ← Dec(pars, EK[id0], DK[id0], C)
M1 ← Dec(pars, EK[id1], DK[id1], C)
Return (M0 6= ⊥) ∧ (M1 6= ⊥)

Figure G.3: Games WROBGE and SROBGE defining WROB-ATK and SROB-ATK security
(respectively) of general encryption scheme GE = (PG, KG, Enc, Dec). The procedures on the
left are common to both games, which differ only in their Finalize procedures.

parameter generation algorithm PG takes no input and returns common parameter pars and a
master secret key msk. On input pars, msk, id, the key generation algorithm KG produces an
encryption key ek and decryption key dk. On inputs pars, ek, M , the encryption algorithm Enc
produces a ciphertext C encrypting plaintext M . On input pars, ek, dk, C , the deterministic
decryption algorithm Dec returns either a plaintext message M or ⊥ to indicate that it rejects.
We say that GE is a public-key encryption (PKE) scheme if msk = ε and KG ignores its id input.
To recover the usual syntax we may in this case write the output of PG as pars rather than
(pars, msk) and omit msk, id as inputs to KG. We say that GE is an identity-based encryption
(IBE) scheme if ek = id, meaning the encryption key created by KG on inputs pars, msk, id
always equals id. To recover the usual syntax we may in this case write the output of KG as dk
rather than (ek, dk). It is easy to see that in this way we have recovered the usual primitives.
But there are general encryption schemes that are neither PKE nor IBE schemes, meaning the
primitive is indeed more general.

Correctness. Correctness of a general encryption scheme GE = (PG, KG, Enc, Dec) requires
that, for all (pars, msk) ∈ [PG], all plaintexts M in the underlying message space associated to
pars, all identities id, and all (ek, dk) ∈ [KG(pars, msk, id)], we have Dec(pars, ek, dk, Enc(pars,
ek, M )) = M with probability one, where the probability is taken over the coins of Enc.

AI-ATK security. Historically, definitions of data privacy (IND) [GM84, RS92, DDN00,
BDPR98, BF03] and anonymity (ANON) [BBDP01, ABC+08] have been separate. We are inter-
ested in schemes that achieve both, so rather than use separate definitions we follow [BGH07] and
capture both simultaneously via game AIGE of Figure G.2. A cpa adversary is one that makes
no Dec queries, and a cca adversary is one that might make such queries. The ai-advantage of
such an adversary, in either case, is

Advai
GE (A) = 2 · Pr

[
AIA
GE

]
− 1.

We will assume an ai-adversary makes only one LR query, since a hybrid argument shows that
making q of them can increase its ai-advantage by a factor of at most q.

Oracle GetDK represents the IBE key-extraction oracle [BF03]. In the PKE case it is
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AI-CCA WROB-CCA + AI-CCA SROB-CCA + AI-CCA

AI-CPA WROB-CPA + AI-CPA SROB-CPA + AI-CPA

Figure G.4: Relations between notions. An arrow A→ B is an implication, meaning every
scheme that is A-secure is also B-secure, while a barred arrow A 6→ B is a separation, meaning
that there is a A-secure scheme that is not B-secure. (Assuming of course that there exists a
A-secure scheme in the first place.)

superfluous in the sense that removing it results in a definition that is equivalent up to a factor
depending on the number of GetDK queries. That’s probably why the usual definition has no
such oracle. But conceptually, if it is there for IBE, it ought to be there for PKE, and it does
impact concrete security.

Robustness. Associated to general encryption scheme GE = (PG, KG, Enc, Dec) are games
WROB, SROB of Figure G.3. As before, a cpa adversary is one that makes no Dec queries,
and a cca adversary is one that might make such queries. The wrob and srob advantages of an
adversary, in either case, are

Advwrob
GE (A) = Pr

[
WROBA

GE

]
and Advsrob

GE (A) = Pr
[

SROBA
GE

]
.

The difference between WROB and SROB is that in the former the adversary produces a message
M , and C is its encryption under the encryption key of one of the given identities, while in the
latter it produces C directly, and may not obtain it as an honest encryption. It is worth
clarifying that in the PKE case the adversary does not get to choose the encryption (public)
keys of the identities it is targeting. These are honestly and independently chosen, in real life
by the identities themselves and in our formalization by the games.

Relations between notions. Figure G.4 shows implications and separations in the style
of [BDPR98]. We consider each robustness notion in conjunction with the corresponding AI
one since robustness is interesting only in this case. The implications are all trivial. The first
separation shows that the strongest notion of privacy fails to imply even the weakest type of
robustness. The second separation shows that weak robustness, even under CCA, doesn’t imply
strong robustness. We stress that here an implication A→ B means that any A-secure, unaltered,
is B-secure. Correspondingly, a non-implication A 6→ B means that there is an A-secure that,
unaltered, is not B-secure. (It doesn’t mean that an A-secure scheme can’t be transformed into a
B-secure one.) Only a minimal set of arrows and barred arrows is shown; others can be inferred.
The picture is complete in the sense that it implies either an implication or a separation between
any pair of notions.

G.3 Robustness failures of encryption with redundancy

A natural privacy-and-anonymity-preserving approach to add robustness to an encryption scheme
is to add redundancy before encrypting, and upon decryption reject if the redundancy is absent.
Here we investigate the effectiveness of this encryption with redundancy approach, justifying
the negative results discussed in Section G.1 and summarized in the first table of Figure G.1.
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RKG RC(K, ek‖M) RV(K, ek‖M, r)

Return K ← ε Return ε Return 1
Return K ← ε Return 0k Return (r = 0k)
Return K ← ε Return ek Return (r = ek)
Return K ← ε L

$
← {0, 1}k ; Return L‖H(L, ek‖M)L‖h← r ; Return (h = H(L, ek‖M))

Return K
$
← {0, 1}k Return K Return (r = K)

Return K
$
← {0, 1}k Return H(K, ek‖M) Return (r = H(K, ek‖M))

Figure G.5: Examples of redundancy codes, where the data x is of the form ek‖M . The first
four are unkeyed and the last two are keyed.

Redundancy codes and the transform. A redundancy code RED = (RKG, RC, RV) is a
triple of algorithms. The redundancy key generation algorithm RKG generates a key K. On
input K and data x the redundancy computation algorithm RC returns redundancy r. Given K,
x, and claimed redundancy r, the deterministic redundancy verification algorithm RV returns 0
or 1. We say that RED is unkeyed if the key K output by RKG is always equal to ε, and keyed
otherwise. The correctness condition is that for all x we have RV(K, x, RC(K, x)) = 1 with
probability one, where the probability is taken over the coins of RKG and RC. (We stress that
the latter is allowed to be randomized.)

Given a general encryption scheme GE = (PG, KG, Enc, Dec) and a redundancy code RED =
(RKG, RC, RV), the encryption with redundancy transform associates to them the general encryp-
tion scheme GE = (PG, KG, Enc, Dec) whose algorithms are shown on the left side of Figure G.6.
Note that the transform has the first of our desired properties, namely that it preserves AI-ATK.
Also if GE is a PKE scheme then so is GE , and if GE is an IBE scheme then so is GE , which
means the results we obtain here apply to both settings.

Figure G.5 shows example redundancy codes for the transform. With the first, GE is identical
to GE , so that the counterexample below shows that AI-CCA does not imply WROB-CPA ,
justifying the first separation of Figure G.4.The second and third rows show redundancy equal
to a constant or the encryption key as examples of (unkeyed) redundancy codes. The fourth
row shows a code that is randomized but still unkeyed. The hash function H could be a MAC
or a collision resistant function. The last two are keyed redundancy codes, the first the simple
one that just always returns the key, and the second using a hash function. Obviously, there are
many other examples.

SROB failure. We show that encryption with redundancy fails to provide strong robustness
for all redundancy codes, whether keyed or not. More precisely, we show that for any redundancy
code RED and both ATK ∈ {CPA, CCA}, there is an AI-ATK encryption scheme GE such that
the scheme GE resulting from the encryption-with-redundancy transform applied to GE , RED is
not SROB-CPA. We build GE by modifying a given AI-ATK encryption scheme GE ∗ = (PG,
KG, Enc∗, Dec∗). Let l be the number of coins used by RC, and let RC(x; ω) denote the result of
executing RC on input x with coins ω ∈ {0, 1}l. Let M∗ be a function that given pars returns
a point in the message space associated to pars in GE ∗. Then GE = (PG, KG, Enc, Dec) where
the new algorithms are shown on the bottom right side of Figure G.6. The reason we used 0l as
coins for RC here is that Dec is required to be deterministic.

Our first claim is that the assumption that GE ∗ is AI-ATK implies that GE is too. Our
second claim, that GE is not SROB-CPA, is demonstrated by the following attack. For a pair
id0, id1 of distinct identities of its choice, the adversary A, on input (pars, K), begins with
queries ek0

$
← GetEK(id0) and ek1

$
← GetEK(id1). It then creates ciphertext C ← 0 ‖K and

returns (id0, id1, C). We claim that Advsrob
GE

(A) = 1. Letting dk0, dk1 denote the decryption keys
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Algorithm PG

(pars, msk) $
← PG ; K

$
← RKG

Return ((pars, K), msk)

Algorithm KG((pars, K), msk, id)
(ek, dk) $

← KG(pars, msk, id)
Return ek

Algorithm Enc((pars, K), ek, M )
r

$
← RC(K, ek‖M )

C
$
← Enc(pars, ek, M‖r)

Return C

Algorithm Dec((pars, K), ek, dk, C)
M‖r ← Dec(pars, ek, dk, C)
If RV(K, ek‖M, r) = 1 then return M
Else return ⊥

Algorithm Enc(pars, ek, M )
C

$
← Enc∗(pars, ek, M )

Return C

Algorithm Dec(pars, ek, dk, C)
M ← Dec∗(pars, ek, dk, C)
If M = ⊥ then

M ← M ∗(pars)‖RC(ε, ek‖M ∗(pars); 0l)
Return M

Algorithm Enc(pars, ek, M )
C∗ $
← Enc∗(pars, ek, M )

Return 1‖C∗

Algorithm Dec(pars, ek, dk, C)
b‖C∗ ← C
If b = 1 then return Dec∗(pars, ek, dk, C∗)
Else return M ∗(pars)‖RC(C∗, ek‖M ∗(pars); 0l)

Figure G.6: Left: Transformed scheme for the encryption with redundancy paradigm. Top
Right: Counterexample for WROB. Bottom Right: Counterexample for SROB.

corresponding to ek0, ek1 respectively, the reason is the following. For both b ∈ {0, 1}, the output
of Dec(pars, ekb, dkb, C ) is M ∗(pars)‖rb(pars) where rb(pars) = RC(K, ekb‖M

∗(pars); 0l). But
the correctness of RED implies that RV(K, ekb‖M

∗(pars), rb(pars)) = 1 and hence Dec((pars, K),
ekb, dkb, C ) returns M ∗(pars) rather than ⊥.

WROB failure. We show that encryption with redundancy fails to provide even weak ro-
bustness for all unkeyed redundancy codes. This is still a powerful negative result because
many forms of redundancy that might intuitively work, such the first four of Figure G.5, are
included. More precisely, we claim that for any unkeyed redundancy code RED and both
ATK ∈ {CPA, CCA}, there is an AI-ATK encryption scheme GE such that the scheme GE re-
sulting from the encryption-with-redundancy transform applied to GE , RED is not WROB-CPA.
We build GE by modifying a given AI-ATK + WROB-CPA encryption scheme GE ∗ = (PG, KG,
Enc∗, Dec∗). With notation as above, the new algorithms for the scheme GE = (PG, KG, Enc,
Dec) are shown on the top right side of Figure G.6.

Our first claim is that the assumption that GE ∗ is AI-ATK implies that GE is too. Our
second claim, that GE is not WROB-CPA, is demonstrated by the following attack. For a pair
id0, id1 of distinct identities of its choice, the adversary A, on input (pars, ε), makes queries
ek0

$
← GetEK(id0) and ek1

$
← GetEK(id1) and returns (id0, id1, M∗(pars)). We claim that

Advwrob
GE

(A) is high. Letting dk1 denote the decryption key corresponding to ek1, the rea-

son is the following. Let r0
$
← RC(ε, ek0‖M

∗(pars)) and C
$
← Enc(pars, ek0, M∗(pars)‖r0).

The assumed WROB-CPA security of GE ∗ implies that Dec(pars, ek1, dk1, C ) is most proba-
bly M ∗(pars)‖r1(pars) where r1(pars) = RC(ε, ek1‖M

∗(pars); 0l). But the correctness of RED
implies that RV(ε, ek1‖M ∗(pars), r1(pars)) = 1 and hence Dec((pars, ε), ek1, dk1, C ) returns
M ∗(pars) rather than ⊥.

G.4 Transforms that work

We present a transform that confers weak robustness and another that confers strong robustness.
They preserve privacy and anonymity, work for PKE as well as IBE, and for CPA as well as
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CCA. In both cases the security proofs surface some delicate issues. Besides being useful in its
own right, the weak robustness transform is a crucial step in obtaining strong robustness, so we
begin there.

Weak robustness transform. We saw that encryption-with-redundancy fails to provide
even weak robustness if the redundancy code is unkeyed. Here we show that if the redundancy
code is keyed, even in the simplest possible way where the redundancy is just the key itself, the
transform does provide weak robustness, turning any AI-ATK secure general encryption scheme
into an AI-ATK + WROB-ATK one, for both ATK ∈ {CPA, CCA}.

The transformed scheme encrypts with the message a key K placed in the public parameters.
In more detail, the weak robustness transform associates to a given general encryption scheme
GE = (PG, KG, Enc, Dec) and integer parameter k, representing the length of K, the general
encryption scheme GE = (PG, KG, Enc, Dec) whose algorithms are depicted in Figure G.7. Note
that if GE is a PKE scheme then so is GE and if GE is an IBE scheme then so is GE , so that
our results, captured by Theorem G.4.1 below, cover both settings.

The intuition for the weak robustness of GE is that the GE decryption under one key, of an
encryption of M‖K created under another key, cannot, by the assumed AI-ATK security of GE ,
reveal K, and hence the check will fail. This is pretty much right for PKE, but the delicate
issue is that for IBE, information about K can enter via the identities, which in this case are
the encryption keys and are chosen by the adversary as a function of K. The AI-ATK security
of GE is no protection against this. We show however that this can be dealt with by making K
sufficiently longer than the identities.

Theorem G.4.1 Let GE = (PG, KG, Enc, Dec) be a general encryption scheme with identity
space {0, 1}n, and let GE = (PG, KG, Enc, Dec) be the general encryption scheme resulting from
applying the weak robustness transform to GE and integer parameter k. Then
1. AI-ATK: Let A be an ai-adversary against GE . Then there is an ai-adversary B against GE

such that

Advai
GE

(A) = Advai
GE (B) .

Adversary B inherits the query profile of A and has the same running time as A. If A is a
cpa adversary then so is B.

2. WROB-ATK: Let A be a wrob adversary against GE with running time t, and let ℓ =
2n + ⌈log2(t)⌉. Then there is an ai-adversary B against GE such that

Advwrob
GE

(A) ≤ Advai
GE (B) + 2ℓ−k .

Adversary B inherits the query profile of A and has the same running time as A. If A is a
cpa adversary then so is B.

The first part of the theorem implies that if GE is AI-ATK then GE is AI-ATK as well. The
second part of the theorem implies that if GE is AI-ATK and k is chosen sufficiently larger than
2n + ⌈log2(t)⌉ then GE is WROB-ATK. In both cases this is for both ATK ∈ {CPA, CCA}.
The theorem says it directly for CCA, and for CPA by the fact that if A is a cpa adversary
then so is B. When we say that B inherits the query profile of A we mean that for every oracle
that B has, if A has an oracle of the same name and makes q queries to it, then this is also the
number B makes. The proof of the first part of the theorem is straightforward and is omitted.
The proof of the second part is given in Appendix G.9. It is well known that collision-resistant
hashing of identities preserves AI-ATK and serves to make them of fixed length [BB04a] so the
assumption that the identity space is {0, 1}n rather than {0, 1}∗ is not really a restriction. In
practice we might hash with SHA256 so that n = 256, and, assuming t ≤ 2128, setting k = 768
would make 2ℓ−k = 2−128.
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G.4. Transforms that work

Algorithm PG

(pars, msk)
$
← PG

K
$
← {0, 1}k

Return ((pars, K), msk)

Algorithm Enc((pars, K), ek, M )

C
$
← Enc(pars, ek, M‖K))

Return C

Algorithm KG((pars, K), msk , id)

(ek, dk)
$
← KG(pars, msk, id)

Return (ek, dk)

Algorithm Dec((pars, K), ek, dk, C )
M ← Dec(pars, ek, dk , C )
If M = ⊥ then return ⊥
M‖K∗ ←M

If (K = K∗) then return M
Else Return ⊥

Figure G.7: General encryption scheme GE = (PG, KG, Enc, Dec) resulting from applying our
weak-robustness transform to general encryption scheme GE = (PG, KG, Enc, Dec) and integer
parameter k.

Commitment schemes. Our strong robustness transform will use commitments. A commit-
ment scheme is a 3-tuple CMT = (CPG, Com, Ver). The parameter generation algorithm CPG
returns public parameters cpars. The committal algorithm Com takes cpars and data x as input
and returns a commitment com to x along with a decommittal key dec. The deterministic veri-
fication algorithm Ver takes cpars, x, com, dec as input and returns 1 to indicate that accepts or
0 to indicate that it rejects. Correctness requires that, for any x ∈ {0, 1}∗, any cpars ∈ [CPG],
and any (com, dec) ∈ [Com(cpars, x)], we have that Ver(cpars, x, com, dec) = 1 with probabil-
ity one, where the probability is taken over the coins of Com. We require the scheme to have
the uniqueness property, which means that for any x ∈ {0, 1}∗, any cpars ∈ [CPG], and any
(com, dec) ∈ [Com(cpars, x)] it is the case that Ver(cpars, x, com∗, dec) = 0 for all com∗ 6= com.
In most schemes the decommittal key is the randomness used by the committal algorithm and
verification is by re-applying the committal function, which ensures uniqueness. The advantage
measures Advhide

CMT
(A) and Advbind

CMT
(A), referring to the standard hiding and binding properties,

are recalled in Appendix G.6. We refer to the corresponding notions as HIDE and BIND.

The strong robustness transform. The idea is for the ciphertext to include a commit-
ment to the encryption key. The commitment is not encrypted, but the decommittal key is. In
detail, given a general encryption scheme GE = (PG, KG, Enc, Dec) and a commitment scheme
CMT = (CPG, Com, Ver) the strong robustness transform associates to them the general encryp-
tion scheme GE = (PG, KG, Enc, Dec) whose algorithms are depicted in Figure G.8. Note that
if GE is a PKE scheme then so is GE and if GE is an IBE scheme then so is GE , so that our
results, captured by the Theorem G.4.2, cover both settings.

In this case the delicate issue is not the robustness but the AI-ATK security of GE in the CCA
case. Intuitively, the hiding security of the commitment scheme means that a GE ciphertext does
not reveal the encryption key. As a result, we would expect AI-ATK security of GE to follow from
the commitment hiding security and the assumed AI-ATK security of GE . This turns out not
to be true, and demonstrably so, meaning there is a counterexample to this claim. (See below.)
What we show is that the claim is true if GE is additionally WROB-ATK. This property, if not
already present, can be conferred by first applying our weak robustness transform.

Theorem G.4.2 Let GE = (PG, KG, Enc, Dec) be a general encryption scheme, and let GE =
(PG, KG, Enc, Dec) be the general encryption scheme resulting from applying the strong robust-
ness transform to GE and commitment scheme CMT = (CPG, Com, Ver). Then
1. AI-ATK: Let A be an ai-adversary against GE . Then there is a wrob adversary W against
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Algorithm PG

(pars, msk)
$
← PG

cpars
$
← CPG

Return ((pars, cpars), msk)

Algorithm Enc((pars, cpars), ek, M )

(com, dec)
$
← Com(cpars, ek)

C
$
← Enc(pars, ek, M‖dec))

Return (C , com)

Algorithm KG((pars, cpars), msk, id)

(ek, dk)
$
← KG(pars, msk, id)

Return (ek, dk)

Algorithm Dec((pars, cpars), ek, dk, (C , com))
M ← Dec(pars, ek, dk, C )
If M = ⊥ then return ⊥
M‖dec ←M

If (Ver(cpars, ek, com, dec) = 1) then return M
Else Return ⊥

Figure G.8: General encryption scheme GE = (PG, KG, Enc, Dec) resulting from applying our
strong robustness transform to general encryption scheme GE = (PG, KG, Enc, Dec) and com-
mitment scheme CMT = (CPG, Com, Ver).

GE , a hiding adversary H against CMT and an ai-adversary B against GE such that

Advai
GE

(A) ≤ 2 ·Advwrob
GE (W ) + 2 ·Advhide

CMT (H) + 3 ·Advai
GE (B) .

Adversaries W, B inherit the query profile of A, and adversaries W, H, B have the same
running time as A. If A is a cpa adversary then so are W, B.

2. SROB-ATK: Let A be a srob adversary against GE making q GetEK queries. Then there
is a binding adversary B against CMT such that

Advsrob
GE

(A) ≤ Advbind
CMT (B) +

(
q

2

)
·CollGE .

Adversary B has the same running time as A.

The first part of the theorem implies that if GE is AI-ATK and WROB-ATK and CMT is HIDE
then GE is AI-ATK, and the second part of the theorem implies that if CMT is BIND secure
and GE has low encryption key collision probability then GE is SROB-ATK. In both cases this
is for both ATK ∈ {CPA, CCA}. We remark that the proof shows that in the CPA case the
WROB-ATK assumption on GE in the first part is actually not needed. The encryption key
collision probability CollGE of GE is defined as the maximum probability that ek0 = ek1 in the
experiment

(pars, msk)
$
← PG ; (ek0, dk0)

$
← KG(pars, msk , id0) ; (ek1, dk1)

$
← KG(pars, msk, id1) ,

where the maximum is over all distinct identities id0, id1. The collision probability is zero
in the IBE case since ek0 = id0 6= id1 = ek1. It is easy to see that GE being AI implies
CollGE is negligible, so asking for low encryption key collision probability is in fact not an
extra assumption. (For a general encryption scheme the adversary needs to have hardwired
the identities that achieve the maximum, but this is not necessary for PKE because here the
probability being maximized is the same for all pairs of distinct identities.) The reason we made
the encryption key collision probability explicit is that for most schemes it is unconditionally
low. For example, when GE is the ElGamal PKE scheme, it is 1/|G| where G is the group being
used. Proofs of both parts of the theorem are in Appendix G.9.

The need for weak-robustness. As we said above, the AI-ATK security of GE won’t be
implied merely by that of GE . (We had to additionally assume that GE is WROB-ATK.) Here
we justify this somewhat counter-intuitive claim. This discussion is informal but can be turned
into a formal counterexample. Imagine that the decryption algorithm of GE returns a fixed string
of the form (M̂ , ˆdec) whenever the wrong key is used to decrypt. Moreover, imagine CMT is such
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G.5. A SROB-CCA version of Cramer-Shoup

Algorithm PG

K
$
← Keys(H) ; g1

$
← G∗ ; w

$
← Z∗

p

g2 ← gw
1 ; Return (g1, g2, K)

Algorithm Enc((g1, g2, K), (e, f, h), M )

u
$
← Z*

p

a1 ← gu
1 ; a2 ← gu

2 ; b← hu

c← b ·M ; v ← H(K, (a1, a2, c))
d← eufuv ; Return (a1, a2, c, d)

Algorithm KG(g1, g2, K)

x1, x2, y1, y2, z1, z2
$
← Zp

e← gx1
1 gx2

2 ; f ← gy1
1 gy2

2 ; h← gz1
1 gz2

2

Return ((e, f, h), (x1, x2, y1, y2, z1, z2))

Algorithm Dec((g1, g2, K), (e, f, h), (x1, x2, y1, y2, z1, z2), C )

(a1, a2, c, d)← C ; v ← H(K, (a1, a2, c)) ; M ← c · a−z1
1 a−z2

2

If d 6= ax1+y1v
1 ax2+y2v

2 Then M ← ⊥

If a1 = 1 Then M ← ⊥

Return M

Figure G.9: The original CS scheme [CS03] does not contain the boxed code while the variant
CS ∗ does. Although not shown above, the decryption algorithm in both versions always checks
to ensure that the ciphertext C ∈ G4. The message space is G.

that it is easy, given cpars, x, dec, to find com so that Ver(cpars, x, com, dec) = 1. (This is true for
any commitment scheme where dec is the coins used by the Com algorithm.) Consider then the
AI-ATK adversary A against the transformed scheme that that receives a challenge ciphertext
(C∗, com∗) where C∗ ← Enc(pars, EK[idb], M ∗‖dec∗) for hidden bit b ∈ {0, 1}. It then creates a
commitment ˆcom of EK[id1] with opening information ˆdec, and queries (C∗, ˆcom) to be decrypted
under DK[id0]. If b = 0 this query will probably return ⊥ because Ver(cpars, EK[id0], ˆcom, dec∗)
is unlikely to be 1, but if b = 1 it returns M̂ , allowing A to determine the value of b. The weak
robustness of GE rules out such anomalies.

G.5 A SROB-CCA version of Cramer-Shoup

Let G be a group of prime order p, and H: Keys(H)×G3 → G a family of functions. We assume
G, p, H are fixed and known to all parties. Figure G.9 shows the Cramer-Shoup (CS) scheme and
the variant CS ∗ scheme where 1 denotes the identity element of G. The differences are boxed.
Recall that the CS scheme was shown to be IND-CCA in [CS03] and ANO-CCA in [BBDP01].
However, for any message M ∈ G the ciphertext (1, 1, M , 1) in the CS scheme decrypts to M
under any pars, pk , and sk, meaning in particular that the scheme is not even SROB-CPA.
The modified scheme CS ∗ —which continues to be IND-CCA and ANO-CCA— removes this
pathological case by having Enc choose the randomness u to be non-zero —Enc draws u from Z∗p
while the CS scheme draws it from Zp— and then having Dec reject (a1, a2, c, d) if a1 = 1. This
thwarts the attack, but is there any other attack? We show that there is not by proving that
CS ∗ is actually SROB-CCA. Our proof of robustness relies only on the security —specifically,
pre-image resistance— of the hash family H: it does not make the DDH assumption. Our proof
uses ideas from the information-theoretic part of the proof of [CS03].

We say that a family H: Keys(H)× Dom(H) → Rng(H) of functions is pre-image resistant
if, given a key K and a random range element v∗, it is computationally infeasible to find a pre-
image of v∗ under H(K, ·). The notion is captured formally by the following advantage measure
for an adversary I:

Advpre-img
H (I) = Pr

[
H(K, x) = v∗ : K

$
← Keys(H) ; v∗

$
← Rng(H) ; x

$
← I(K, v∗)

]
.

Pre-image resistance is not implied by the standard notion of one-wayness, since in the latter the
target v∗ is the image under H(K, ·) of a random domain point, which may not be a random range
point. However, it seems like a fairly mild assumption on a practical cryptographic hash function
and is implied by the notion of “everywhere pre-image resistance” of [RS04], the difference being
that, for the latter, the advantage is the maximum probability over all v∗ ∈ Rng(H). We now
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claim the following.

Theorem G.5.1 Let B be an adversary making two GetEK queries, no GetDK queries and
at most q − 1 Dec queries, and having running time t. Then we can construct an adversary I
such that

Advsrob
CS ∗ (A) ≤ Advpre-img

H (I) +
2q + 1

p
. (G.1)

Furthermore, the running time of I is t + q · O(texp) where texp denotes the time for one expo-
nentiation in G.

Since CS ∗ is a PKE scheme, the above automatically implies security even in the presence of
multiple GetEK and GetDK queries as required by game SROBCS ∗. Thus the theorem implies
that CS ∗ is SROB-CCA if H is pre-image resistant. A detailed proof of Theorem G.5.1 is in
Appendix G.10. Here we sketch some intuition.

We begin by conveniently modifying the game interface. We replace B with an adversary
A that gets input (g1, g2, K), (e0, f0, h0), (e1, f1, h1) representing the parameters that would be
input to B and the public keys returned in response to B’s two GetEK queries. Let (x01, x02,
y01, y02, z01, z02) and (x11, x12, y11, y12, z11, z12) be the corresponding secret keys. The decryption
oracle takes (only) a ciphertext and returns its decryption under both secret keys, setting a Win

flag if these are both non-⊥. Adversary A no longer needs an output, since it can win via a Dec
query.

Suppose A makes a Dec query (a1, a2, c, d). Then the code of the decryption algorithm Dec
from Figure G.9 tells us that, for this to be a winning query, it must be that

d = ax01+y01v
1 ax02+y02v

2 = ax11+y11v
1 ax12+y12v

2

where v = H(K, (a1, a2, c)). Letting u1 = logg1
(a1), u2 = logg2

(a2) and s = logg1
(d), we have

s = u1(x01 + y01v) + wu2(x02 + y02v) = u1(x11 + y11v) + wu2(x12 + y12v) (G.2)

However, even acknowledging that A knows little about xb1, xb2, yb1, yb2 (b ∈ {0, 1}) through its
Dec queries, it is unclear why Equation (G.2) is prevented by pre-image resistance —or in fact
any property short of being a random oracle— of the hash function H. In particular, there seems
no way to “plant” a target v∗ as the value v of Equation (G.2) since the adversary controls u1

and u2. However, suppose now that a2 = aw
1 . (We will discuss later why we can assume this.)

This implies wu2 = wu1 or u2 = u1 since w 6= 0. Now from Equation (G.2) we have

u1(x01 + y01v) + wu1(x02 + y02v)− u1(x11 + y11v)− wu1(x12 + y12v) = 0 .

We now see the value of enforcing a1 6= 1, since this implies u1 6= 0. After canceling u1 and
re-arranging terms, we have

v(y01 + wy02 − y11 − wy12) + (x01 + wx02 − x11 − wx12) = 0 . (G.3)

Given that xb1, xb2, yb1, yb2 (b ∈ {0, 1}) and w are chosen by the game, there is at most one
solution v (modulo p) to Equation (G.3). We would like now to design I so that on input K, v∗

it chooses xb1, xb2, yb1, yb2 (b ∈ {0, 1}) so that the solution v to Equation (G.3) is v∗. Then
(a1, a2, c) will be a pre-image of v∗ which I can output.

To make all this work, we need to resolve two problems. The first is why we may assume
a2 = aw

1 —which is what enables Equation (G.3)— given that a1, a2 are chosen by A. The second
is to properly design I and show that it can simulate A correctly with high probability. To solve
these problems, we consider, as in [CS03], a modified check under which decryption, rather than
rejecting when d 6= ax1+y1v

1 ax2+y2v
2 , rejects when a2 6= aw

1 or d 6= ax+yv
1 , where x = x1 + wx2,

y = y1 + wy2, v = H(K, (a1, a2, c)) and (a1, a2, c, d) is the ciphertext being decrypted. In our
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G.6. Appendix: Hiding and blinding of commitment schemes

proc Initialize

cpars
$
← CPG ; b

$
← {0, 1} ; Return cpars

proc LR(x0, x1)

(com, dec)
$
← Com(cpars, xb) ; Return com

proc Finalize(b′)
Return (b′ = b)

proc Initialize

cpars
$
← CPG ; Return cpars

proc Finalize(com, x0, dec0, x1, dec1)
d0 ← Ver(cpars, x0, com, dec0)
d1 ← Ver(cpars, x1, com, dec1)
Return (x0 6= x1 ∧ d0 = 1 ∧ d1 = 1)

Figure G.10: Game HIDECMT (left) captures the hiding property while Game BINDCMT (right)
captures the binding property. The adversary may call LR only once.

proof in Appendix G.10, games G0–G2 move us towards this perspective. Then, we fork off two
game chains. Games G3–G6 are used to show that the modified decryption rule increases the
adversary’s advantage by at most 2q/p. Games G7–G11 show how to embed a target value v∗

into the components of the secret key without significantly affecting the ability to answer Dec
queries. Based on the latter, we then construct I as shown in Appendix G.10.
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G.6 Appendix: Hiding and blinding of commitment schemes

The advantage measures

Advhide
CMT (A) = 2 · Pr

[
HIDEA

CMT ⇒ true
]
− 1 and Advbind

CMT (A) = Pr
[

BINDA
CMT ⇒ true

]
,

which refer to the games of Figure G.10, capture, respectively, the standard hiding and binding
properties of a commitment scheme. We refer to the corresponding notions as HIDE and BIND.

G.7 Appendix: More results on robustness of specific trans-
forms and schemes

The Boneh-Franklin IBE. Boneh and Franklin proposed the first truly practical provably
secure IBE scheme in [BF01]. They also propose a variant that uses the FO transform to obtain
provable IND-CCA security in the random oracle model under the bilinear Diffie-Hellman (BDH)
assumption; we refer to it as the BF-IBE scheme here. A straightforward modification of the
proof can be used to show that BF-IBE is also ANO-CCA in the random oracle model under the
same assumption. We now give a proof sketch that BF-IBE is also (unconditionally) SROB-CCA
in the random oracle model.
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Let e: G1×G1 → G2 be a non-degenerate bilinear map, where G1 and G2 are multiplicative
cyclic groups of prime order p [BF01]. Let g be a generator of G1. The master secret key
of the BF-IBE scheme is an exponent s

$
← Z∗p, the public parameters contain S ← gs. For

random oracles H1 : {0, 1}∗ → G∗1, H2 : G2 → {0, 1}k , H3 : {0, 1}k × {0, 1}ℓ → Z∗p, and
H4 : {0, 1}k → {0, 1}ℓ, the encryption of a message M under identity id is a tuple

(
gr , x⊕H2(e(S, H1(id))r) , M ⊕H4(x)

)
,

where x
$
← {0, 1}k and r ← H3(x, M ). To decrypt a ciphertext (C1, C2, C3), the user with

identity id and decryption key usk = H1(id)s computes x ← C2 ⊕ H2(e(C1, usk)), M ← C3 ⊕
H4(x), and r← H3(x, M ). If C1 6= gr he rejects, otherwise he outputs M .

Let us now consider a SROB-CCA adversary A that even knows the master secret s (and
therefore can derive all keys and decrypt all ciphertexts that it wants). Since H1 maps into G∗1,
all its outputs are of full order p. The probability that A finds two identities id1 and id2 such
that H1(id) = H1(id2) is negligible. Since S ∈ G∗1 and the map is non-degenerate, we therefore
have that gid1 = e(S, H1(id1)) and gid2 = e(S, H1(id2)) are different and of full order p. Since
H3 maps into Z∗p, we have that r 6= 0, and therefore that gr

id1
and gr

id2
are different. If the output

of H2 is large enough to prevent collisions from being found, that also means that H2(gr
id1

) and
H2(gr

id2
) are different. Decryption under both identities therefore yields two different values

x1 6= x2, and possibly different messages M1, M2. In order for the ciphertext to be valid for both
identities, we need that r = H3(x1, M1) = H3(x2, M2), but the probability of this happening is
again negligible in the random oracle model. As a result, it follows that the BF-IBE scheme is
also SROB-CCA in the random oracle model.

The Boyen-Waters IBE. Boyen and Waters [BW06] proposed a HIBE scheme which is
IND-CPA and ANO-CPA in the standard model, and a variant that uses the CHK transform
to achieve IND-CCA and ANO-CCA security. Decryption in the IND-CPA secure scheme never
rejects, so it is definitely not SROB-CPA. Without going into details here, it is easy to see
that the IND-CCA variant is not SROB-CPA either, because any ciphertext that is valid with
respect to one identity will also be valid with respect to another identity, since the verification
of the one-time signature does not depend on the identity of the recipient. (The natural fix to
include the identity in the signed data may ruin anonymity.)

The IND-CCA-secure variant of Gentry’s IBE scheme [Gen06] falls to a similar robustness
attack as the original Cramer-Shoup scheme, by choosing a random exponent r = 0. We did
not check whether explicitly forbidding this choice restores robustness, however.

G.8 Appendix: Application to auctions

Robustness of ElGamal. The parameters of the ElGamal encryption scheme consist of the
description of a group G of prime order p with generator g. The secret key of a user is x

$
← Zp,

the corresponding public key is X = gx. The encryption of a message M is the pair (gr, Xr ·M )

for r
$
← Zp. A ciphertext (R, S) is decrypted as M ← R/Sx. Since the decryption algorithm

never returns ⊥, the ElGamal scheme is obviously not robust. Stronger even, the ciphertext
(1, M ) decrypts to M under any secret key. It is this strong failure of robustness that opens the
way to attacks on applications like Sako’s auction protocol [Sak00].

The protocol. Sako’s auction protocol [Sak00] is important because it is the first truly
practical one to hide the bids of losers. Let 1, . . . , N be the range of possible bidding prices.
In an initialization step, the auctioneer generates N ElGamal key pairs (x1, X1), . . . , (xN , XN ),
and publishes g, X1, . . . , XN and a fixed message M ∈ G. A bidder places a bid of value
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v ∈ {1, . . . , N} by encrypting M under Xv and posting the ciphertext. Note that the privacy
of the bids is guaranteed by the anonymity of ElGamal encryption. The authority opens bids
C1 = (R1, S1), . . . , Cn = (Rn, Sn) by decrypting all bids under secret keys xN , . . . , x1, until the
highest index w where one or more bids decrypt to M . The auctioneer announces the identity
of the winner(s), the price of the item w, and the secret key xw. All auctioneers can then check
that Si/Rxw

i = M for all winners i.

An attack. Our attack permits a dishonest bidder and a colluding auctioneer to break the
fairness of the protocol. (Security against colluding auctioneers was not considered in [Sak00],
so we do not disprove their results, but it is a property that one may expect the protocol to
have.) Namely, a cheating bidder can place a bid (1, M ). If w is the highest honest bid, then
the auctioneer can agree to open the corrupted bid to with xw+1, thereby winning the auction
for the cheating bidder at one dollar more than the second-highest bidder.

Sako came close to preventing this attack with an “incompatible encryption” property that
avoids choosing r = 0 at encryption. A dishonest bidder however may deviate from this en-
cryption rule; the problem is that the decryption algorithm does not reject ciphertexts (R, S)
when R = 1. The attack is easily prevented by using any of our robust encryption schemes, so
that decryption under any other secret key than the intended one results in ⊥ being returned.
Note that for this application we really need the strong robustness notion with adversarially
generated ciphertexts.

It is worth noting that, to enforce that all bids are independent of each other even in the
presence of a colluding auctioneer, all bidders would also need to commit to their sealed bids
(using a non-malleable commitment scheme) during a first round of communication and only
open their commitments once all commitments made public.

G.9 Appendix: Proofs of Theorems G.4.1 and G.4.2

The proof of Part 2 of Theorem G.4.1 relies on the following information-theoretic lemma.

Lemma G.9.1 Let ℓ ≤ k be positive integers and let A1, A2 be arbitrary algorithms with the
length of the output of A1 always being ℓ. Let P denote the probability that A2(A1(K)) = K
where the probability is over K drawn at random from {0, 1}k and the coins of A1, A2. Then
P ≤ 2ℓ−k.

Proof of Lemma G.9.1: We may assume A1, A2 are deterministic for, if not, we can hardwire
a “best” choice of coins for each. For each ℓ-bit string L let SL = {K ∈ {0, 1}k : A1(K) = L}
and let s(L) = |SL|. Let L be the set of all L ∈ {0, 1}ℓ such that s(L) > 0. Then

P =
∑

L∈L

Pr [ A2(L) = K | A1(K) = L ] · Pr [ A1(K) = L ]

=
∑

L∈L

1

s(L)
·

s(L)

2k

=
∑

L∈L

1

2k

which is at most 2ℓ−k as claimed.

Proof of Part 2 of Theorem G.4.1: Games G0, G1 of Figure G.11 differ only in their
Finalize procedures, with the message encrypted at line 04 to create ciphertext C in G1 being
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proc Initialize // G0, G1

01 (pars, msk) $
← PG

02 K
$
← {0, 1}k

03 U, V ← ∅
04 Return (pars, K)

proc GetEK(id) // G0, G1

01 U ← U ∪ {id}

02 (EK[id ], DK[id]) $
← KG(pars, msk, id)

03 Return EK[id ]

proc GetDK(id) // G0, G1

01 If id 6∈ U then return ⊥
02 If id ∈ {id∗

0, id∗
1} then return ⊥

03 V ← V ∪ {id}
04 Return DK[id ]

proc Dec(C, id) // G0, G1

01 If id 6∈ U then return ⊥
02 M ← Dec(pars, EK[id], DK[id ], C)
03 If M = ⊥ then return ⊥
04 M‖K∗ ←M

If (K = K∗) then return M
05 Else Return ⊥

proc Finalize(M , id0, id1) // G0

01 If (id0 6∈ U) ∨ (id1 6∈ U) then return false
02 If (id0 ∈ V ) ∨ (id1 ∈ V ) then return false
03 If (id0 = id1) then return false

04 M 0 ← M ; C
$
← Enc(pars, EK[id0], M 0‖K)

05 M ← Dec(pars, EK[id1], DK[id1], C)
06 If M = ⊥ then M 1 ← ⊥
07 Else
08 M 1‖K∗ ←M

09 If (K 6= K∗) then M 1 ← ⊥
10 Return (M 0 6= ⊥) ∧ (M 1 6= ⊥)

proc Finalize(M , id0, id1) // G1

01 If (id0 6∈ U) ∨ (id1 6∈ U) then return false
02 If (id0 ∈ V ) ∨ (id1 ∈ V ) then return false
03 If (id0 = id1) then return false

04 M 0 ← M ; C
$
← Enc(pars, EK[id0], 0|M0|‖0k)

05 M ← Dec(pars, EK[id1], DK[id1], C)
06 If M = ⊥ then M 1 ← ⊥
07 Else
08 M 1‖K∗ ←M
09 If (K 6= K∗) then M 1 ← ⊥
10 Return (M 0 6= ⊥) ∧ (M 1 6= ⊥)

Figure G.11: Games for the proof of Part 2 of Theorem G.4.1.

a constant rather than M 0 in G0. We have

Advwrob
GE

(A) = Pr
[

GA
0

]
=
(
Pr
[

GA
0

]
− Pr

[
GA

1

])
+ Pr

[
GA

1

]
.

we design B so that

Pr
[

GA
0

]
− Pr

[
GA

1

]
≤ Advai

GE (B) .

On input pars, adversary B executes lines 02,03 of Initialize and runs A on input (pars, K). It
replies to GetEK, GetDK and Dec queries of A via its own oracles of the same name. When
A halts with output M, id0, id1, adversary B queries its LR oracle with id0, id0, 0|M |‖0k, M‖K
to get back a ciphertext C. It then makes query GetDK(id1) to get back DK[id1]. Note this
is a legal query for B because id1 is not one of the challenge identities in its LR query, but it
would not have been legal for A. Now B executes lines 01–09 of the code of Finalize of G1. If
M 1 6= ⊥ it outputs 1, else 0.

To complete the proof we show that Pr[GA
1 ] ≤ 2ℓ−k. We observe that M as computed at line 05

of Finalize in G1 depends only on pars, EK[id1], EK[id0], DK[id1], |M 0|, k. We would have liked
to say that none of these depend on K. This would mean that the probability that M 6= ⊥
and parses as M 1‖K is at most 2−k, making Pr[GA

1 ] ≤ 2−k. In the PKE case, what we desire
is almost true because the only item in our list that can depend on K is |M 0|, which can carry
at most log2(t) bits of information about K. But id0, id1 could depend on K so in general,
and in the IBE case in particular, EK[id0], EK[id1], DK[id1] could depend on K. However we
assumed that identities are n bits, so the total amount of information about K in the list
pars, EK[id1], EK[id0], DK[id1], |M0|, k is at most 2n + log2(t) bits. We conclude by applying
Lemma G.9.1 with ℓ = 2n + ⌈log2(t)⌉.
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Proof of Part 1 of Theorem G.4.2: Game G0 of Figure G.12 is game WROB
GE

tailored to
the case that A makes only one LR query, an assumption we explained we can make. If we wish to
exploit the assumed AI-ATK security of GE , we need to be able to answer Dec queries of A using
the Dec oracle in game AIGE . Thus we would like to substitute the Dec(pars, EK[id], DK[id], C)
call in a Dec((C, com), id) query of G0 with a Dec(C, id) call of an adversary B in AIGE . The
difficulty is that C might equal C∗ but com 6= com∗, so that the call is not legal for B. To
get around this, the first part of our proof will show that the decryption procedure of G0 can
be replaced by the alternative one of G4, where this difficulty vanishes. This part exploits the
uniqueness of the commitment scheme and the weak robustness of GE . After that we will exploit
the AI-ATK security of GE to remove dependence on dec∗ in LR, allowing us to exploit the
HIDE security of CMT to make the challenge commitment independent of EK[id∗b ]. This allows
us to conclude by again using the AI-ATK security of GE . We proceed to the details.

In game G0, if A makes a Dec((C∗, com), id∗b) query with com 6= com∗ then the uniqueness of
CMT implies that the procedure in question will return ⊥. This means that line 02 of Dec in
G0 can be rewritten as line 02 of Dec in G1 and the two procedures are equivalent. Procedure
Dec of G2 includes the boxed code and hence is equivalent to procedure Dec of G1. Hence

1

2
+

1

2
Advai

GE
(A) = Pr

[
GA

0

]
= Pr

[
GA

1

]
= Pr

[
GA

2

]

= Pr
[

GA
3

]
+ Pr

[
GA

2

]
− Pr

[
GA

3

]

≤ Pr
[

GA
3

]
+ Pr

[
GA

3 sets bad
]

.

The inequality above is by Lemma G.2.1 which applies because G2, G3 are identical until bad.
We design W so that

Pr
[

GA
3 sets bad

]
≤ Advwrob

GE (W ) .

On input pars, adversary W executes lines 02,03,04,05 of Initialize and runs A on input
(pars, cpars). It replies to GetEK, GetDK, Dec queries of A via its own oracles of the same
name, as per the code of G3. When A makes its LR query id∗0, id∗1, M

∗
0, M

∗
1, adversary W

executes lines 01,02,03 of the code of LR of G3. It then outputs M
∗
b‖dec∗, id∗b , id∗1−b and halts.

Next we bound Pr[GA
3 ]. Procedure Dec of G4 results from simplifying the code of procedure

Dec of G3, so

Pr
[

GA
3

]
= Pr

[
GA

4

]
=
(
Pr
[

GA
4

]
− Pr

[
GA

5

])
+ Pr

[
GA

5

]
.

The step from G4 to G5 modifies only LR, replacing dec∗ with a constant. We are assuming
here that any decommitment key output by Com, regardless of the inputs to the latter, has
length d bits. We design B1 so that

Pr
[

GA
4

]
− Pr

[
GA

5

]
= Advai

GE (B1) .

On input pars, adversary B1 executes lines 02,03,04,05 of Initialize and runs A on input
(pars, cpars). It replies to GetEK, GetDK, Dec queries of A via its own oracles of the same
name, as per the code of G4. Here we make crucial use of the fact that the alternative decryption
rule of Dec of G4 allows B1 to respond to Dec queries of A without the need to query its own
Dec oracle on (C∗, id∗0) or (C∗, id∗1). When A makes its LR query id∗0, id∗1, M

∗
0, M

∗
1, adversary

B1 executes lines 01,02,03 of the code of LR of G4. It then queries id∗b , id∗b , M
∗
b‖0

d, M
∗
b‖dec∗ to

its own LR oracle to get back a ciphertext C∗, and returns (C∗, com∗) to A. When A halts with
outut a bit b′, adversary B1 outputs 1 if b = b′ and 0 otherwise.
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proc Initialize // G0–G6

01 (pars, msk) $
← PG

02 cpars
$
← CPG

03 b
$

← {0, 1}
04 S, U, V ← ∅ ; C∗ ← ⊥ ; com∗ ← ⊥
05 id∗

0 ← ⊥ ; id∗
1 ← ⊥

06 Return (pars, cpars)

proc GetEK(id) // G0–G6

01 U ← U ∪ {id}

02 (EK[id ], DK[id]) $
← KG(pars, msk, id)

03 Return EK[id ]

proc GetDK(id) // G0–G6

01 If id 6∈ U then return ⊥
02 If id ∈ {id∗

0, id∗
1} then return ⊥

03 V ← V ∪ {id}
04 Return DK[id ]

proc Finalize(b′) // G0–G6

01 Return (b′ = b)

proc LR(id∗
0, id∗

1, M
∗

0, M
∗

1) // G0–G4

01 If (id∗
0 6∈ U) ∨ (id∗

1 6∈ U) then return ⊥
02 If (id∗

0 ∈ V ) ∨ (id∗
1 ∈ V ) then return ⊥

03 (com∗, dec∗) $
← Com(cpars, EK[id∗

b ])
04 C∗ $

← Enc(pars, EK[id∗
b ], M

∗

b‖dec∗)
05 Return (C∗, com∗)

proc LR(id∗
0, id∗

1, M
∗

0, M
∗

1) // G5

01 If (id∗
0 6∈ U) ∨ (id∗

1 6∈ U) then return ⊥
02 If (id∗

0 ∈ V ) ∨ (id∗
1 ∈ V ) then return ⊥

03 (com∗, dec∗) $
← Com(cpars, EK[id∗

b ])
04 C∗ $

← Enc(pars, EK[id∗
b ], M

∗

b‖0
d)

05 Return (C∗, com∗)

proc LR(id∗
0, id∗

1, M
∗

0, M
∗

1) // G6

01 If (id∗
0 6∈ U) ∨ (id∗

1 6∈ U) then return ⊥
02 If (id∗

0 ∈ V ) ∨ (id∗
1 ∈ V ) then return ⊥

03 (com∗, dec∗) $

← Com(cpars, 0e)
04 C∗ $

← Enc(pars, EK[id∗
b ], M

∗

b‖0
d)

05 Return (C∗, com∗)

proc Dec((C, com), id) // G0

01 If id 6∈ U then return ⊥
02 If (id = id∗

b) ∧ (C, com) = (C∗, com∗) then return ⊥
03 If (id = id∗

1−b 6= id∗
b) ∧ (C, com) = (C∗, com∗) then

04 Return ⊥
05 M ← Dec(pars, EK[id ], DK[id ], C)
06 If M = ⊥ then return ⊥
07 M‖dec ←M
08 If Ver(cpars, EK[id ], com, dec) = 1 then return M
09 Else return ⊥

proc Dec((C, com), id) // G1

01 If id 6∈ U then return ⊥
02 If (id = id∗

b) ∧ (C = C∗) then return ⊥
03 If (id = id∗

1−b 6= id∗
b) ∧ (C, com) = (C∗, com∗) then

04 Return ⊥
05 M ← Dec(pars, EK[id ], DK[id ], C)
06 If M = ⊥ then return ⊥
07 M‖dec ←M
08 If Ver(cpars, EK[id ], com, dec) = 1 then return M
09 Else return ⊥

proc Dec((C, com), id) // G2 ,G3

01 If id 6∈ U then return ⊥
02 If (id = id∗

b) ∧ (C = C∗) then return ⊥
03 If (id = id∗

1−b 6= id∗
b) ∧ (C, com) = (C∗, com∗) then

04 Return ⊥
05 M ← Dec(pars, EK[id ], DK[id ], C)
06 If (id = id∗

1−b 6= id∗
b) ∧ (C = C∗) ∧ (com 6= com∗) then

07 M∗ ←M

08 If M 6= ⊥ then bad← true ; M ← ⊥ ; M ←M∗

09 If M = ⊥ then return ⊥
10 M‖dec ←M
11 If Ver(cpars, EK[id ], com, dec) = 1 then return M
12 Else return ⊥

proc Dec((C, com), id) // G4–G6

01 If id 6∈ U then return ⊥
02 If (id = id∗

0) ∧ (C = C∗) then return ⊥
03 If (id = id∗

1) ∧ (C = C∗) then return ⊥
04 M ← Dec(pars, EK[id ], DK[id ], C)
05 If M = ⊥ then return ⊥
06 M‖dec ←M

07 If Ver(cpars, EK[id ], com, dec) = 1 then return M
08 Else return ⊥

Figure G.12: Games for the proof of Part 1 of Theorem G.4.2.
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Next we bound Pr[GA
5 ]. Procedure LR of G6 uses a constant 0e rather than EK[id∗b ] as data for

Com at line 03. The value of e is arbitrary, and we can just let e = 1. Then

Pr
[

GA
5

]
=
(
Pr
[

GA
5

]
− Pr

[
GA

6

])
+ Pr

[
GA

6

]
.

We design H so that

Pr
[

GA
5

]
− Pr

[
GA

6

]
≤ Advhide

CMT (H) .

On input cpars, adversary H executes lines 01,03,04,05 of Initialize and runs A on input
(pars, cpars). It replies to GetEK, GetDK, Dec queries of A by direct execution of the
code of these procedures in G5, possible since it knows msk. When A makes its LR query
id∗0, id∗1, M

∗
0, M

∗
1, adversary H executes lines 01,02 of the code of LR of G5. It then queries

0e, EK[id∗b ] to its own LR oracle to get back a commitment com∗. It executes line 04 of LR of
G5 and returns (C∗, com∗) to A. When A halts with outut a bit b′, adversary H returns 1 if
b = b′ and 0 otherwise.

Finally we design B2 so that

2 · Pr
[

GA
6

]
− 1 ≤ Advai

GE (B2) .

On input pars, adversary B2 executes lines 02,04,05 of Initialize and runs A on input (pars,
cpars). It replies to GetEK, GetDK, Dec queries of A via its own oracles of the same name,
as per the code of G6. Again we make crucial use of the fact that the alternative decryption
rule of Dec of G6 allows B2 to respond to Dec queries of A without the need to query its own
Dec oracle on (C∗, id∗0) or (C∗, id∗1). When A makes its LR query id∗0, id∗1, M

∗
0, M

∗
1, adversary

B2 executes lines 01,02,03 of the code of LR of G6. It then queries id∗0, id∗1, M
∗
0‖0

d, M
∗
1‖dec∗ to

its own LR oracle to get back a ciphertext C∗, and returns (C∗, com∗) to A. When A halts with
outut a bit b′, adversary B2 outputs b′.

Adversary B of the theorem statement runs B1 with probability 2/3 and B2 with probability
1/3.

Proof of Part 2 of Theorem G.4.2: In the execution of A with game SROB
GE

let coll

be the event that there exist distinct id0, id1 queried by A to its GetEK oracle such that the
encryption keys returned in response are the same. Then

Advsrob
GE

(A) = Pr
[

SROBA
GE
∧ coll

]
+ Pr

[
SROBA

GE
∧ coll

]

≤ Pr [coll ] + Pr
[

SROBA
GE
∧ coll

]
.

But

Pr [coll ] ≤

(
q

2

)
·CollGE

and we can design B such that

Pr
[

SROBA
GE
∧ coll

]
≤ Advbind

CMT (B) .

We omit the details.
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G.10 Appendix: Proof of Theorem G.5.1

The proof relies on Games G0–G11 of Figures G.13–G.15 and the adversary I of Figure G.16.
See Section G.5 for intuition.

We begin by transforming B into an adversary A such that

Advsrob
CS ∗ (B) ≤ Pr

[
GA

0

]
. (G.4)

On input (g1, g2, K), (e0, f0, h0), (e1, f1, h1), adversary A runs B on input (g1, g2, K). Adver-
sary A returns to B the public key (e0, f0, h0) in response to B’s first GetEK query id0, and
(e1, f1, h1) in response to its second GetEK query id1. When B makes a Dec query, which can
be assumed to have the form (a1, a2, c, d), idb for some b ∈ {0, 1}, adversary A queries (a1, a2, c, d)
to its own Dec oracle to get back (M0, M1) and returns Mb to B. When B halts, with output
that can be assumed to have the form ((a1, a2, c, d), id0, id1), adversary A makes a final query
(a1, a2, c, d) to its Dec oracle and also halts.

We assume that every Dec query (a1, a2, c, d) of A satisfies a1 6= 1. This is without loss
of generality because the decryption algorithm rejects otherwise. This will be crucial below.
Similarly, we assume (a1, a2, c, d) ∈ G4. We now proceed to the analysis.

Games G1, G2 start to move us to the alternative decryption rule. In G1, if a2 = aw
1 and

d = axb+ybv
1 then d = axb1+yb1v

1 axb2+yb2v
2 , so Dec in G1 returns the correct decryption, like in G0.

If a2 6= aw
1 or d 6= axb+ybv

1 then, if d 6= axb1+yb1v
1 · axb2+yb2v

2 , then Dec in G1 returns ⊥, else it
returns ca−zb1

1 a−zb2
2 , so again is correct either way. Thus,

Pr
[

GA
0

]
= Pr

[
GA

1

]

= Pr
[

GA
2

]
+ (Pr

[
GA

1

]
− Pr

[
GA

2

]
)

≤ Pr
[

GA
2

]
+ Pr

[
GA

2 sets bad
]

, (G.5)

where the last line is by Lemma G.2.1 since G1, G2 are identical until bad. We now fork off two
game chains, one to bound each term above.

First, we will bound the second term in the right-hand side of Inequality (G.5). Our goal
is to move the choices of xb1, xb2, yb1, yb2, zb1, zb2 (b = 0, 1) and the setting of bad into Finalize
while still being able to answer Dec queries. We will then be able to bound the probability that
bad is set by a static analysis. Consider Game G3. If a2 6= aw

1 and d = axb1+yb1v
1 axb2+yb2v

2 then
bad is set in G2. But a2 = aw

1 and d 6= axb+ybv
1 implies d 6= axb1+yb1v

1 axb2+yb2v
2 , so bad is not set

in G2. So,

Pr
[

GA
2 sets bad

]
= Pr

[
GA

3 sets bad
]

. (G.6)

Since we are only interested in the probability that G3 sets bad, we have it always return true.
The flag bad may be set at line 315, but is not used, so we move the setting of bad into the
Finalize procedure in G4. This requires that G4 do some bookkeeping. We have also done some
restructuring, moving some loop invariants out of the loop in Dec. We have

Pr
[

GA
3 sets bad

]
= Pr

[
GA

4 sets bad
]

. (G.7)

The choice of xb1, xb2, xb at lines 404, 405 can equivalently be written as first choosing xb and xb2

at random and then setting xb1 = xb−wxb2. This is true because w is not equal to 0 modulo p.
The same is true for yb1, yb2, yb. Once this is done, xb1, xb2, yb1, yb2 are not used until Finalize,
so their choice can be delayed. Game G5 makes these changes, so we have

Pr
[

GA
4 sets bad

]
= Pr

[
GA

5 sets bad
]

. (G.8)
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proc Initialize Game G0

000 g1
$
← G∗ ; w

$
← Z∗

p ; g2 ← gw
1

001 K
$
← Keys(H)

002 For b = 0, 1 do
003 xb1, xb2, yb1, yb2, zb1, zb2

$
← Zp

004 eb ← gxb1

1 gxb2

2

005 fb ← gyb1

1 gyb2

2

006 hb ← gzb1

1 gzb2

2

007 Return (g1, g2, K), (e0, f0, h0), (e1, f1, h1)

proc Initialize Games G1,G2,G3,G4

100 g1
$
← G∗ ; w

$
← Z∗

p ; g2 ← gw
1

101 K
$
← Keys(H)

102 For b = 0, 1 do
103 xb1, xb2, yb1, yb2, zb1, zb2

$
← Zp

104 xb ← xb1 + wxb2 ; yb ← yb1
+ wyb2

105 eb ← gxb

1 ; fb ← gyb

1 ; hb ← gzb1

1 gzb2

2

106 Return (g1, g2, K), (e0, f0, h0), (e1, f1, h1)

proc Finalize Games G0,G1,G2

020 Return Win

proc Finalize Game G3

320 Return true

proc Finalize Game G4

420 For b = 0, 1 do
421 For all (a1, a2, c, d, v) ∈ S do
422 If d = axb1+yb1v

1 · axb2+yb2v
2 Then

423 bad← true
424 Return true

proc Dec((a1, a2, c, d)) Game G0

010 v ← H(K, (a1, a2, c))
011 For b = 0, 1 do
012 Mb ← c · a−zb1

1 a−zb2

2

013 If d 6= axb1+yb1v
1 · axb2+yb2v

2 Then Mb ← ⊥
014 If (M0 6= ⊥) ∧ (M1 6= ⊥) Then Win← true
015 Return (M0, M1)

proc Dec((a1, a2, c, d)) Games G1 ,G2

110 v ← H(K, (a1, a2, c))
111 For b = 0, 1 do
112 Mb ← c · a−zb1

1 a−zb2

2

113 If (a2 6= aw
1 ∨ d 6= axb+ybv

1 ) Then
114 Mb ← ⊥
115 If d = axb1+yb1v

1 · axb2+yb2v
2 Then

116 bad← true ; Mb ← ca−zb1

1 a−zb2

2

117 If (M0 6= ⊥) ∧ (M1 6= ⊥) Then Win← true
118 Return (M0, M1)

proc Dec((a1, a2, c, d)) Game G3

310 v ← H(K, (a1, a2, c))
311 For b = 0, 1 do
312 Mb ← c · a−zb1

1 a−zb2

2

313 If (a2 6= aw
1 ) Then

314 Mb ← ⊥
315 If d = axb1+yb1v

1 · axb2+yb2v
2 Then bad← true

316 Return (M0, M1)

proc Dec((a1, a2, c, d)) Game G4

410 v ← H(K, (a1, a2, c))
411 For b = 0, 1 do Mb ← c · a−zb1

1 a−zb2

2

412 If (a2 6= aw
1 ) Then

413 S ← S ∪ {(a1, a2, c, d, v)} ; M0, M1 ← ⊥
414 Return (M0, M1)

Figure G.13: Games G0, G1, G2, G3, and G4 for proof of Theorem G.5.1. G1 includes the boxed
code at line 116 but G2 does not.
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proc Initialize Games G5,G6

500 g1
$
← G∗ ; w

$
← Z∗

p ; g2 ← gw
1

501 K
$
← Keys(H) ; S ← ∅

502 For b = 0, 1 do

503 xb, yb, zb1, zb2
$
← Zp

504 eb ← gxb
1 ; fb ← gyb

1 ; hb ← gzb1
1 gzb2

2

505 Return (g1, g2, K), (e0, f0, h0), (e1, f1, h1)

proc Dec((a1, a2, c, d)) Games G5,G6

510 v ← H(K, (a1, a2, c))

511 For b = 0, 1 do Mb ← c · a−zb1
1 a−zb2

2

512 If (a2 6= aw
1 ) Then

513 S ← S ∪ {(a1, a2, c, d, v)} ; M0, M1 ← ⊥
514 Return (M0, M1)

proc Finalize Game G5

520 For b = 0, 1 do

521 xb2, yb2
$
← Zp

522 xb1 ← xb − wxb2 ; yb1 ← yb − wyb2

523 For all (a1, a2, c, d, v) ∈ S do

524 If d = a
xb1+yb1v
1 · axb2+yb2v

2 Then bad← true

525 Return true

proc Finalize Game G6

620 For b = 0, 1 do

621 xb2, yb2
$
← Zp

622 xb1 ← xb − wxb2 ; yb1 ← yb − wyb2

623 For all (a1, a2, c, d, v) ∈ S do
624 u1 ← logg1

(a1) ; u2 ← logg2
(a2)

625 s← logg1
(d) ; tb ← s− u1xb + u1ybv

626 α← w(u2 − u1) ; β ← wv(u2 − u1)
627 If tb = αxb2 + βyb2 Then bad← true

628 Return true

Figure G.14: Games G5 and G6 for proof of Theorem G.5.1.

Game G6 simply writes the test of line 524 in terms of the exponents. Note that this game
computes discrete logarithms, but it is only used in the analysis and does not have to be efficient.
We have

Pr
[

GA
5 sets bad

]
= Pr

[
GA

6 sets bad
]

. (G.9)

We claim that

Pr
[

GA
6 sets bad

]
≤

2q

p
, (G.10)

(Recall q is the number of Dec queries made by A.) We now justify Equation (G.10). By
the time we reach Finalize in G6, we can consider the adversary coins, all random choices of
Initialize, and all random choices of Dec to be fixed. We will take probability only over the
choice of xb2, yb2 made at line 621. Consider a particular (a1, a2, c, d, v) ∈ S. This is now fixed,
and so are the quantities u1, u2, s, t0, t1, α and β as computed at lines 624–626. So we want
to bound the probability that bad is set at line 627 when we regard tb, α, β as fixed and take
the probability over the random choices of xb2, yb2. The crucial fact is that u2 6= u1 because
(a1, a2, c, d, v) ∈ S, and lines 612, 613 only put a tuple in S if a2 6= aw

1 . So α and β are not 0
modulo p, and the probability that tb = αxb2 + βyb2 is thus 1/p. The size of S is at most q so
line 627 is executed at most 2q times. Equation (G.10) follows from the union bound.

We now return to Equation (G.5) to bound the first term. Game G7 removes from G2 code
that does not affect outcome of the game. Once this is done, xb1, yb1, xb2, yb2 are used only to
define xb, yb, so G7 picks only the latter. So we have

Pr
[

GA
2

]
= Pr

[
GA

7

]
. (G.11)
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proc Initialize Game G7

700 g1
$
← G∗ ; w

$
← Z∗

p ; g2 ← gw
1

701 K
$
← Keys(H)

702 For b = 0, 1 do

703 xb, yb, zb1, zb2
$
← Zp

704 eb ← gxb
1 ; fb ← gyb

1 ; hb ← gzb1
1 gzb2

2

705 Return (g1, g2, K), (e0, f0, h0), (e1, f1, h1)

proc Dec((a1, a2, c, d)) Games G7–G11

710 v ← H(K, (a1, a2, c))
711 For b = 0, 1 do

712 Mb ← c · a−zb1
1 a−zb2

2

713 If (a2 6= aw
1 ∨ d 6= axb+ybv

1 ) Then Mb ← ⊥
714 If (M0 6= ⊥) ∧ (M1 6= ⊥) Then Win← true

715 Return (M0, M1)

proc Finalize Games G7–G11

720 Return Win

proc Initialize Game G8/ G9

800 g1
$
← G∗ ; w

$
← Z∗

p ; g2 ← gw
1 ; K

$
← Keys(H)

801 For b = 0, 1 do

802 xb, yb, zb1, zb2
$
← Zp

803 eb ← gxb
1 ; fb ← gyb

1 ; hb ← gzb1
1 gzb2

2

804 If y1 = y0 Then

805 bad← true ; y1
$
← Zq − {y0}

806 Return (g1, g2, K), (e0, f0, h0), (e1, f1, h1)

proc Initialize Game G10

1000 g1
$
← G∗ ; w

$
← Z∗

p ; g2 ← gw
1 ; K

$
← Keys(H)

1001 x0, y0, x1
$
← Zq ; y1

$
← Zq − {y0}

1002 For b = 0, 1 do

1003 zb1, zb2
$
← Zp ; eb ← g

xb
1

1004 fb ← gyb
1 ; hb ← gzb1

1 gzb2
2

1005 Return (g1, g2, K), (e0, f0, h0), (e1, f1, h1)

proc Initialize Game G11

1100 g1
$
← G∗ ; w

$
← Z∗

p ; g2 ← gw
1 ; K

$
← Keys(H) ; v∗ $

← Zq

1101 x0, y0
$
← Zq ; y1

$
← Zq − {y0} ; x1 ← x0 − (y1 − y0)v∗

1102 For b = 0, 1 do zb1, zb2
$
← Zp ; eb ← gxb

1 ; fb ← gyb
1 ; hb ← gzb1

1 gzb2
2

1103 Return (g1, g2, K), (e0, f0, h0), (e1, f1, h1)

Figure G.15: Games G7–G11 for proof of Theorem G.5.1. G9 includes the boxed code at line 805
but G8 does not.

Game G8 is the same as G7 barring setting a flag that does not affect the game outcome, so

Pr
[

GA
7

]
= Pr

[
GA

8

]

= Pr
[

GA
9

]
+ Pr

[
GA

8

]
− Pr

[
GA

9

]

≤ Pr
[

GA
9

]
+ Pr

[
GA

8 sets bad
]

(G.12)

≤ Pr
[

GA
9

]
+

1

p
. (G.13)

Equation (G.12) is by Lemma G.2.1 since G8, G9 are identical until bad. The probability that
G8 sets bad is the probability that y1 = y0 at line 805, and this is 1/p since y is chosen at
random from Zp, justifying Equation (G.13). The distribution of y1 in G9 is always uniform
over Zq − {y0}, and the setting of bad at line 805 does not affect the game outcome, so

Pr
[

GA
9

]
= Pr

[
GA

10

]
. (G.14)

Game G11 picks xb, yb differently from G10, but since y1− y0 6= 0, the two ways induce the same
distribution on x0, x1, y0, y1. Thus,

Pr
[

GA
10

]
= Pr

[
GA

11

]
. (G.15)

We now claim that

Pr
[

GA
11

]
≤ Advpre-img

H (I) (G.16)

where I is depicted in Figure G.16. To justify this, say that the A makes a Dec query (a1, a2, c, d)
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Adversary I(K, v∗)

g1
$
← G∗ ; w

$
← Z∗p ; g2 ← gw

1 ; x0, y0
$
← Zp ; y1

$
← Zp − {y0} ; x1 ← x0 − (y1 − y0)v∗

For b = 0, 1 do
zb1, zb2

$
← Zp ; eb ← gxb

1 ; fb ← gyb
1 ; hb ← gzb1

1 gzb2
2

Run A on (g1, g2, K), (e0, f0, h0), (e1, f1, h1)
On query Dec((a1, a2, c, d))

v ← H(K, (a1, a2, c))
For b = 0, 1 do

Mb ← c · a−zb1
1 a−zb2

2

If (a2 6= aw
1 ∨ d 6= axb+ybv

1 ) Then Mb ← ⊥
If (M0 6= ⊥) ∧ (M1 6= ⊥) Then (a∗1, a∗2, c∗)← (a1, a2, c)

Return (M0, M1) to A
Until A halts
Return (a∗1, a∗2, c∗)

Figure G.16: Adversary I for proof of Theorem G.5.1.

which returns (M0, M1) with M0 6= ⊥ and M1 6= ⊥. This means we must have

d = ax0+y0v
1 = ax1+y1v

1 , (G.17)

where v = H(K, (a1, a2, c)). Let u1 = logg1
(a1) and s = logg1

(d). Now, the above implies
u1(x0 + y0v) = u1(x1 + y1v). But (a1, a2, c, d) is a Dec query, and we know that a1 6= 1, so
u1 6= 0. (This is a crucial point. Recall the reason we can without loss of generality assume
a1 6= 1 is that the decryption algorithm of CS ∗ rejects otherwise.) Dividing u1 out, we get
x0 + y0v = x1 + y1v. Rearranging terms, we get (y1 − y0)v = x0 − x1. However, we know
that y1 6= y0, so v = (y1 − y0)−1(x0 − x1). However, this is exactly the value v∗ due to the
way I and Game G11 define x0, y0, x1, y1. Thus, we have H(K, (a1, a2, c)) = v∗, meaning I will
be successful. Putting together Equations (G.4)–(G.11), (G.13)–(G.16) concludes the proof of
Theorem G.5.1.

G.11 Appendix: Applications to searchable encryption

Public-key encryption with keyword search. A public key encryption with keyword
search (PEKS) scheme [BDOP04] is a tuple PEKS = (KG, PEKS, Td, Test) of algorithms. Via
(pk, sk)

$
← KG, the key generation algorithm produces a pair of public and private keys. Via

C
$
← PEKS(pk, w), the encryption algorithm encrypts a keyword w to get a ciphertext under

the public key pk. Via tw
$
← Td(sk, w), the trapdoor extraction algorithm computes a trapdoor

tw for keyword w. The deterministic test algorithm Test(tw , C ) returns 1 if C is an encryption
of w and 0 otherwise. Privacy and consistency of PEKS schemes. We formulate privacy

notions for PEKS using the games of Figure G.17. Let ATK ∈ {CPA, CCA}. We define the
advantage of an adversary A against the indistinguishability of PEKS as follows:

Advind-atk
PEKS (A) = Pr

[
IND-ATKA

PEKS ⇒ true
]

.

We re-formulate the consistency definition of PEKS schemes of [ABC+08] using the game of
Figure G.17. We define the advantage of an adversary A against the consistency of PEKS as
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proc Initialize

(pk, sk)
$
← KG ; b

$
← {0, 1}

W ← ∅ ; C∗ ← ⊥ ; Return pk

proc TD(w)

TT[w]
$
← Td(sk, w) ; W ←W ∪ {w} ; Return TT[w]

proc LR(w∗0 , w∗1 )

C∗
$
← PEKS(pk, w∗b ) ; Return C∗

proc Test(w, C )
If (C = C ∗) ∧ (w ∈ {w∗0 , w∗1}) Then return ⊥
If TT[w] = ⊥ Then TT[w]

$
← Td(sk, w)

Return Test(TT[w], C )

proc Finalize(b′)
Return (b = b′) ∧ ({w∗0 , w∗1} ∩W = ∅)

proc Initialize

(pk, sk)
$
← KG(pars)

Return pk

proc Finalize(w, w′)

C
$
← PEKS(pk, w)

t ′
$
← Td(sk, w′)

Return (w 6= w′) ∧ (Test(t ′, C ))

Figure G.17: PEKS = (PG, KG, PEKS, Td, Test) is a PEKS scheme. Games IND-CCAPEKS and
IND-CPAPEKS are on the left, where the latter omits procedure Test. The LR procedure may
be called only once. Game CONSISTPEKS is on the right.

follows:

Advconsist
PEKS (A) = Pr

[
CONSISTA

PEKS ⇒ true
]

.

Furthermore, we also recall the advantage measure Advconsist
PEKS (A), which captures the notion

CONSIST of computational consistency of PEKS scheme PEKS .

Transforming IBE to PEKS. The bdop-ibe-2-peks transform of [BDOP04] transforms an
IBE scheme into a PEKS scheme. Given an IBE scheme IBE = (Setup, Ext, Enc, Dec), the
transform associates to it the PEKS scheme PEKS = (KG, PEKS, Td, Test), where the key-
generation algorithm KG returns (pk, sk)

$
← Setup; the encryption algorithm PEKS(pk, w) returns

C ← Enc(pk, w, 0k); the trapdoor extraction algorithm Td(sk, w) returns t
$
← Ext(pk, sk, w); the

test algorithm Test(t, C ) returns 1 if and only if Dec(pk, t, C) = 0k. Abdalla et al. [ABC+08]
showed that this transform generally does not provide consistency, and presented the consistency-
providing new-ibe-2-peks transform as an alternative. We now show that the original
bdop-ibe-2-peks transform does yield a consistent PEKS if the underlying IBE scheme is robust.
We also show that if the base IBE scheme is ANO-CCA, then the PEKS scheme is IND-CCA,
thereby yielding the first IND-CCA-secure PEKS schemes in the standard model, and the first
consistent IND-CCA-secure PEKS schemes in the RO model. (Non-consistent IND-CCA-secure
PEKS schemes in the RO model are easily derived from [FP07].)

Proposition G.11.1 Let IBE be an IBE scheme, and let PEKS be the PEKS scheme associated
to it per the bdop-ibe-2-peks transform. Given any adversary A running in time t, we can
construct an adversary B running in time t+O(t) executions of the algorithms of IBE such that

Advconsist
PEKS (A) ≤ Advsrob-cpa

IBE (B) and Advind-cca
PEKS (A) ≤ Advano-cca

IBE (B) .

To see why the first inequality is true, it suffices to consider the adversary B that on input pars

runs (w, w′)
$
← A(pars) and outputs C

$
← Enc(pars, w). The proof of the second inequality is

an easy adaptation of the proof of the new-ibe-2-peks transform in [ABC+08], where B answers
A’s Test queries using its own Dec oracle.
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Securely combining PKE and PEKS. Searchable encryption by itself is only of limited use
since it can only encrypt individual keywords, and since it does not allow decryption. Fuhr
and Paillier [FP07] introduce a more flexible variant that allows decryption of the keyword. An
even more powerful (and general) primitive can be obtained by combining PEKS with PKE to
encrypt non-searchable but recoverable content. For example, one could encrypt the body of an
email using a PKE scheme, and append a list of PEKS-encrypted keywords. The straightforward
approach of concatenating ciphertexts works fine for CPA security, but is insufficient for a strong,
combined IND-CCA security model where the adversary has access to both a decryption oracle
and a testing oracle. Earlier attempts to combine PKE and PEKS [BSNS06, ZI07] do not give
the adversary access to the latter. A full IND-CCA-secure PKE/PEKS scheme in the standard
model can be obtained by combining the IND-CCA-secure PEKS schemes obtained through our
transformation with the techniques of [DK05]. Namely, one can consider label-based [Sho01]
variants of the PKE and PEKS primitives, tie the different components of a ciphertext together
by using as a common label the verification key of a one-time signature scheme, and append to
the ciphertext a signature of all components under the corresponding signing key. We omit the
details.
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Abstract

Trusted parties are fundamental for the establishment of secure communication among users.
Such is the case, for example, when establishing a trusted relationship between users and certain
public information in a public-key infrastructure for public-key encryption and signature schemes
or when storing high-entropy secret keys in a cryptographic device. Clearly, if the trusted party
misbehaves in either of these situations, then the overall security of the scheme or protocol in
which we are interested can be adversely affected.

There are several ways in which one can try to reduce the amount of trust in third parties,
such as making the task of recovering the secret key harder for the adversary, as in distributed
cryptosystems or minimizing the damage caused by secret-key exposures, as in forward-secure
and intrusion-resilient cryptosystems. In this thesis, we consider two additional methods.

The first one, which goes by the name of password-based key exchange, is to assume that
the secret keys used in authenticated key exchange protocols have low entropy and do not need
to be stored in a cryptographic device. In spite of the low entropy of secret keys, such protocols
can still provide a level of assurance which may be sufficient for most applications.

The second method for reducing the amount of trust in third parties is to use an identity-
based cryptosystem, in which the public key of a user can be an arbitrary string such as an
email address. As identity-based cryptosystems provide collusion resistance, they can also be
used to lessen the damage caused by secret-key exposures by generating independent secret keys
for different time periods or devices. Moreover, identity-based cryptosystems can allow users to
have a more fine-grained control over the decryption capabilities of third parties, further limiting
the harmful consequences due to their misbehavior.

Résumé

Les tiers de confiance sont essentiels aux communications sécurisées. Par exemple, dans une
infrastructure de gestion de clés, l’autorité de certification est la clé de voute de l’authentification
en garantissant le lien entre une identité et une clé publique. Une carte à puce se doit, pour sa
part, d’assurer la confidentialité et l’intégrité des données secrètes lorsqu’elle sert de stockage
de données cryptographiques. En effet, si ces garanties sont mises en défaut dans l’une de ces
situations, alors la sécurité globale du système peut en être affectée.

Plusieurs approches permettent de réduire l’importance des tiers de confiance, telles qu’ac-
croître la difficulté de recouvrer la clé secrète, en la distribuant parmi plusieurs entités, ou limiter
l’impact d’une fuite d’information secrète, comme dans les cryptosystèmes « intrusion-resilient »
ou « forward-secure ». Dans cette thèse, nous considérons deux méthodes complémentaires.

La première méthode consiste à utiliser des mots de passe, ou des clés secrètes de faible
entropie, qui n’ont pas besoin d’être stockés dans un dispositif cryptographique sécurisé. Malgré
la faible entropie du secret, de tels protocoles peuvent fournir un niveau d’assurance satisfaisant
pour la plupart des applications. On considère en particulier la mise en accord de clés.

La deuxième méthode limite le besoin de garantie de la part des tiers de confiance en utilisant
un cryptosystème basé sur l’identité, dans lequel la clé publique d’un utilisateur peut être une
chaîne de caractères arbitraire, telle qu’une adresse email. Comme ces systèmes fournissent une
résistance aux collusions, ils peuvent aussi être utilisés pour réduire les dommages causés par
l’exposition de clés secrètes en générant des secrets indépendants pour chaque période de temps
ou pour chaque périphérique/entité. Par ailleurs, ces systèmes basés sur l’identité permettent aux
utilisateurs d’avoir un contrôle plus fin sur les capacités de déchiffrement des tiers, en limitant
les conséquences liées à un mauvais usage.
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