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Résume

Dans le contexte actuel de mondialisation des marchés, le processus classique de conception par
essais et erreurs, traditionnellement employé par les ingénieurs, n'est plus capable de répondre aux
exigences de plus en plus accrues en termes de délais trés courts, réduction des cofits de
production, etc. L'outil d'optimisation propose une réponse a ces questions, en accompagnant les
ingénieurs dans la tache de conception optimale.

L'objectif de cette these est centré sur la conception optimale des systémes complexes. Deux
approches d'optimisation sont abordées dans ce travail: I'optimisation par modeles de substitution
et la conception optimale basée sur la décomposition des systemes complexes.

L'utilisation de la conception assistée par ordinateur (CAO) est devenue une pratique réguliere
dans l'industrie. La démarche d'optimisation basée sur modeles de substitution est destinée a
répondre a l'optimisation des dispositifs avec ce genre de modeéles cofiteux de simulation, tels que
les éléments finis (EF) en électromagnétisme. L'optimisation multi-objectif se présente comme un
outil d'aide a la décision, en aidant le concepteur a prendre une décision éclairée. Le calcul distribué
est utilisé pour réduire le temps global du processus d'optimisation.

Les systemes d'ingénierie tels que les chaines de traction ferroviaires sont trop complexes pour
étre traités comme un tout. Les stratégies d'optimisation basées sur la décomposition cherchent a
répondre a la conception optimale de ces systémes. Les approches de décomposition par modele,
discipline ou objet visent a distribuer la charge de calcul. Des stratégies de coordination multi-
niveaux sont utilisées pour gérer le processus d'optimisation. Ces approches permettent a chaque
équipe de spécialistes de travailler sur leur expertise de fagon autonome. Les techniques
d'optimisation a base de modeles de substitution peuvent étre intégrées dans les stratégies
d’optimisation multi-niveaux, allégeant ainsi la charge de calcul.

Les approches d'optimisation développées au sein de ce travail sont appliquées pour résoudre
plusieurs problemes d'optimisation électromagnétiques, ainsi que la conception optimale d'un

systeme de traction ferroviaire de la Société Alstom.

Mots-clés

Conception optimale des systemes électromagnétiques

Optimisation par modeles de substitution

Conception optimale de systéemes complexes basée sur décomposition
Optimisation multi-niveaux

Chailne de traction ferroviaire






Abstract

Within a globalized market context, the classical trial-and-error design process traditionally
employed by engineers is no longer capable of answering to the ever-growing demands in terms of
short deadlines, reduced production costs, etc. The optimization tool presents itself as an answer to
these issues, accompanying the engineers in the optimal design task.

The focus of this thesis is centered on the optimal design of complex systems. Two main
optimization approaches are addressed in this work: the metamodel-based design optimization and
the decomposition-based complex systems optimal design.

The use of computer-aided design/engineering (CAD/CAE) software has become a regular
practice in the engineering design process. The metamodel-based optimization approach is
intended to address the optimization of devices represented by such computational expensive
simulation models, as the finite element analysis (FEA) in electromagnetics. The multi-objective
optimization stands as a decision-making support tool, helping the design engineer make an
informed decision. The distributed computation is employed to reduce the overall time of the
optimization process.

Engineering systems such as railway traction systems are too complex to be addressed as a
whole. The decomposition-based optimization strategies are intended to address the optimal design
of such systems. Model, discipline or object-based decomposition approaches intend to distribute
the computational burden across the system. Multi-level coordination strategies are used to manage
the optimization process. Each team of specialists can work independently at the object of their
expertise. The metamodel-based optimization techniques can be integrated within the multi-level
decomposition-based strategies, reducing the computational burden.

The optimization approaches developed within this work are applied for solving several
electromagnetic optimization problems and a railway traction system optimal design problem of

the Alstom Company.

Keywords

Optimal design of electromagnetic devices
Metamodel-based optimization

Decomposition-based complex systems optimal design
Multi-level optimization

Railway traction system
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Introduction

The classical design process traditionally employed by engineers, in whom a trial-and-error
approach is used for selecting and validating the designs to be conceived, no longer responds to the
ever-growing demands in terms of short deadlines, financial budget limitations, resources
reduction and “environmental-friendliness” requirements dictated by the concurrence in today’s
globalized market context. “Better, faster, cheaper!” is the slogan which best describes the
requirements which guide today’s and tomorrow’s industrial design processes. Proof of these
statements stand the numerous recent industrial research studies in diverse domains of
engineering, among which the most notable are represented by the aeronautics, automobile,
electronics and chemical industry.

To all the issues previously invoked and the continuously growing complexity of the design task
performed by engineers, the optimization comes as a natural answer by assisting the designer in
the process of decision making. Numerous optimization techniques have been developed over the
time, especially during the last two decades, when the computational resources have known an
exponential development. Nowadays, computer-aided design (CAD) and computer-aided
engineering (CAE) software represent powerful analysis tools, which are employed in all domains
of the engineering, such as electrical, mechanical, thermal, acoustics, vibratory etc. for simulating
the behavior of the devices or systems to be conceived. These simulation codes act as virtual
prototypes of the devices to be conceived. The natural tendency is to introduce such simulation
tools into the optimization process, in order to benefit from the accuracy offered by these tools.
However, the integration of such simulation tools within the optimization process raises a number
of issues which need to be addressed, mainly due to the prohibitive amount of time required by the
numerous model calls of classical optimization algorithms. The large number of specific feasibility
constraints and conflicting objectives which require being accounted for within the design process
encumber the optimization task. Also, a more systemic optimal design approach is desired, since
strong interactions are exercised between the components of a system. The multi-disciplinary
nature of the complex systems requires accounting for all disciplines involved into the design
process. For addressing all these issues, adapted optimization techniques are required and the
development of such optimization approaches makes the subject of this research work. The focus in
this manuscript is thus set on the complex system design approaches, which find their application
in many domains of engineering in general and in railway systems in particular.

The manuscript is organized into three chapters, as follows. The first chapter introduces the
context for the research work and presents the general aspects of the complex system optimal
design methodology. The single-objective and the multi-objective mathematical formulations of an

optimization problem are introduced and there are underlined some important notions and
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concepts which are later used within the optimization techniques and approaches developed and
presented in the following chapters of the manuscript. The optimization process is only a phase, the
core, of the three-step optimal design process. Two other steps, equally important, a preliminary
model analysis phase and a results interpretation and analysis, finalized with the decision making
must also be accounted for within the optimal design process of complex systems.

The second chapter of the manuscript addresses a specific category of optimization techniques
relevant for complex engineering design problems — the metamodel-based design optimization
approach. The simulation codes (FEA, CFD, etc.) are accurate tools for simulating the behavior of
the device, allowing to account for complex physical phenomena which cannot be captured through
analytical relations. The increased accuracy of these tools comes for the price of long computational
time, a single evaluation of such a code taking between minutes, up to hours and even days,
depending on the complexity of the model and the type of analysis required. The integration of
such expensive simulations within a classical optimization process is thus prohibitive, due to the
great number of successive calls of the optimization algorithm to the simulation model. For devices
or systems represented by such simulation codes, a common practice consists in creating
metamodels, which benefit of a fast evaluation. The main issue with the metamodels represents the
accuracy of these representations. The integration of metamodels into the optimization process is
discussed in this chapter and the purposes are sustained through both mathematical analytical test
problems and a well-known electromagnetic benchmark problem. These optimization techniques
find application in the last chapter of the manuscript, which addresses the design optimization at a
larger extent, considering a system as an ensemble of models or components.

The third chapter addresses the complex system optimization through means of decomposition
of the system following different perspectives and the associated specific coordination techniques of
the optimizations formulated for each element of the decomposed structure. Such optimization
approaches represent a current practice in the automobile and aerospace industries, where they
were developed and employed for more than a decade. The motivation of analyzing such
optimization techniques for electromagnetic and railway applications comes from the great
success that they have shown in the domains where they were introduced, showing a great
potential. Several decomposition perspectives are reviewed, based on different models of the same
device, the disciplines involved in the representation of the system and the different physical sub-
systems and components of the complex system. First, the optimization of model-based
decomposed systems is introduced and addressed using a Space Mapping technique, Output Space
Mapping (OSM). A single-phase safety isolation transformer benchmark is introduced as
application for this optimization technique. The OSM optimization approach makes use of two
models of the same device, one being a high fidelity finite element model (3D FEM) and the other
one a fast evaluation coarse analytical model with a limited fidelity. The synergies of the two
models are exploited by the OSM algorithm, retrieving the optimal design with a much reduced call
to the expensive high fidelity FE model of the transformer. Another decomposition-based
optimization approach considers the complex system by the different disciplines involved in
analyzing the system. The most representative optimization technique of this category, the
Collaborative Optimization (CO) technique is introduced and its performance is analyzed through
application to the same transformer benchmark optimization problem previously mentioned.
Another decomposition-based optimization technique, this time considering the complex system

through its sub-systems and components is analyzed. The Analytical Target Cascading (ATC) is an
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optimization technique which addresses the system decomposed into its sub-systems and
components, which are hierarchically displaced onto several levels, starting with the most global at
the top of the hierarchy and the smallest component placed at the bottom level of the hierarchy.
This technique was originally introduced as a specifications formalizing method, to cascade the
system-level targets down the hierarchy, to the most basic components. This optimization approach
was already found to cope very well with the hierarchical organization of the Alstom Company
and the way the system design specifications are imposed in the different departments of the
company. The previous research studies of Moussouni [MOU (09a] and Kreuawan [KRE 08] have
analyzed the basic configuration of this technique. The exploration of this technique is continued
within this research study by going further into the functional mechanisms of the technique. A
multi-level railway test-problem of Alstom Company, consisting in the optimal dimensioning of an
ultra-capacity energy storage system onboard a tramway, is introduced and used here as

application of the ATC technique.






Chapter 1 Decision support tools for

complex electromagnetic systems design

In this chapter, the optimal design process is introduced and the general aspects of the complex
system optimal design are addressed in general lines. The optimal design process is regarded as a
three-step process, consisting of a preliminary phase of problem definition, the main phase of
optimization problem solving and a result analysis and decision making phase. The basic
mathematical formulations of both the single- and the multi-objective optimization are introduced
and the notion of optimality in both the single- and the multi-objective context is discussed. Some
classical both deterministic and stochastic optimization algorithms are briefly presented for solving
single-objective optimization problems. Several techniques for transforming a multi-objective
optimization problem into a single-objective problem are reviewed, which will be used later on
within the advanced optimization techniques developed in the manuscript. A number of multi-
dimensional data representation techniques, meant to assist the designer with the decision making,

are presented towards the end of the chapter.

1.1 General aspects of an optimal design process

The optimal design approach of a device, product or system implies three main steps:

- Preliminary phase (problem formulation);
- Optimization process (algorithm run);

- Results visualization and analysis (decision making).

These sequential steps are strongly related one to another and the result of the optimal design
process depends on the appropriate addressing of all three steps. The brief description of these

steps is presented next.

Preliminary phase (optimization problem formulation)

The preliminary phase of the optimal design approach consists in acquiring and resembling all
the necessary information about the device, system or process to be optimally designed. In this
phase, the designer tries to gain as much information as possible about the object of his design, for
this will help him to appropriately define the optimization problem to be solved. The result of the

optimization process depends entirely on the formulation of the optimization purpose, therefore
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the proper formulation of the optimization problem is crucial for the success of the optimal design
process. A number of issues are addressed within this step, such as: the model (or models) of the
device which are to be used within the optimization process, the parameters and design variables of
the model, the type of design variables (continuous, discrete, unclassifiable), the domain of
variation for the design variables, the output variables of the model, the type of optimization
problem (linear, non-linear), etc.

An important action at this stage consists in determining the kind of relationships existing
between the input, output and input/output variables of the model, as well as the relative influence
of the input variables over the outputs of the model (sensitivity analysis). The influence of the
different design variables on the outputs of the considered model are analyzed with the goal of
identifying those variables which do not (or have very little) influence upon the outputs of the
model, so that they will be ignored in the formulation of the optimization problem. This way, the
optimization algorithm is charged with determining the optimal values of only the influent
parameters, thus alleging more or less considerably the task of optimization and saving important
computational time. A few tools for the analysis of the functional relationships governing a model

are presented later on, in paragraph 1.2.

Optimization process (algorithm run)

The second step of the optimal design process is represented by the optimization process itself,
which represents the core of the optimal design process. Complex mathematical techniques are
employed at this stage for solving the optimization problem previously formulated. During the last
two decades, once with the strong development of the computational power and the appearance of
the personal computers, a lot of research has been dedicated to the development of optimization
algorithms and mathematical optimization techniques. These optimization algorithms make
successive calls to the model of the device considered, selecting then new samples to be evaluated
based on the values already calculated.

Depending on the type of optimization problem previously formulated, an appropriate
optimization algorithm is selected to solve this problem. The optimization problems can be
classified based on several different criteria. Thus, if the objective function can be expressed as a
linear combination of the design variables, we deal with a linear optimization problem or linear
programming. Otherwise, the problem is said to be non-linear, solved using non-linear
programming techniques (NLP). If the design variables of the problem take discrete values, the
optimization problem is discrete or combinatorial. A number of combinatorial techniques with
application in electrical engineering are presented in [TRA 09]. If the domain of variation of
variables is continuous, then the optimization problem is continuous. It often arrives that an
optimization problem presents both continuous and discrete variables. In this case, it is employed
the term of mixed-integer optimization.

The optimization techniques developed and presented further on in Chapter 2 and Chapter 3 of
this manuscript belong to the category of NLP techniques. Although several optimization
applications addressed in this work have both discrete and continuous variables, in this work all

variables of the applications are considered continuous and handled accordingly.
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Results visualization and analysis (decision making)

The third and final step of the optimal design process is represented by the analysis and
interpretation of the results supplied by the optimization process mentioned in the previous
paragraph. When a multi-objective formulation has been chosen for the optimization problem, the
result is a set of optimal trade-off designs between the considered objective functions. In this case,
the final choice for the design to be considered remains at the latitude of the designer, engineers
and/or managers, which will select one design to be conceived. Thus, the multi-objective
optimization represents a tool for decision-making. A number of tools for the representation and
visualization of the results, such as bar charts, spider diagrams, bubble plots, parallel coordinates
representations, scatter plot matrix, etc. [EST 12], [NOE 12] have as goal to assist the designer with
the decision-making process. Some of these multi-dimensional data representation techniques will
be introduced later on in this chapter, in paragraph 1.4.2.

Now that the steps of the optimal design process were briefly described, the attention is turned
to each of them at a time, starting with some means of analyzing the correlation between the

variables of a model, in the preliminary phase of the optimal design process.

1.2 Variables influence and correlation

An important number of statistical analysis tools exist, assisting the designer in obtaining
insights into the functional relationships between the variables of a model. Model analysis
techniques and tools such as the screening technique [VIV 02], analysis of variance (ANOVA) [GOU
06], and response surface methodology are based on the realization of different experimental
designs and represent notorious statistical tools. Therefore, these techniques will not be addressed
here. Nevertheless, some techniques for the qualitative analysis of models, such as the Pearson
correlation coefficient and the Spearman correlation coefficient represent powerful tools for gaining
insights into the functional relationships of a model, being less employed currently. These

coefficients will be next presented in the following paragraphs.

Pearson correlation coefficient

The Pearson correlation coefficient is a measure for the linear relationship between two
input/output variables of a model [MAS 06]. The value of the coefficient is calculated based on a set
of n samples (x;, y;), for which the model has been run. Such a set of samples can be obtained using
a design of experiments (DOE) technique [GOU 06], also known as experimental design. The value
taken by this coefficient is always between -1 and 1. If the graphical representation of all pairs of
samples is a straight line, it means that there is a strong linear correlation between the two
variables. The slope of the straight line gives the sense of the correlation: positive slope gives
positive value for the Pearson coefficient, respectively negative slope corresponds to a negative
value of the Pearson coefficient. A value of zero for the Pearson correlation coefficient signifies that
no linear correlation exists between the corresponding pair of variables of the model.

The expression of the Pearson correlation coefficient between variables x and y is given in (1.1).
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C f
w@w=iﬂﬂg (1.1)

0,0y
where o, represents the standard distribution of the values of the variable x from the experimental
design, o, represents the standard distribution of the values of y and Cov(x,y)represents the
covariance between the two variables over the experimental design considered.

The expression of the covariance Cov(x,y) between the two variables x and y is given in (1.2).

1 n
Cov(x,y) = —= > (i = D = 7) (12)

where X represents the mean value of the variable x over the experimental design considered and ¥

represents the mean value of y.

Spearman rank correlation coefficient

The Spearman rank correlation coefficient [NAK 09], also known as Spearman’s rho [EST 12] is a
non-parametric statistical measure of the monotonicity of a function.

The first step in calculating the Spearman correlation coefficient consists in assigning to each
value of the variables from the experimental design a rank, following a descending order, i.e.
rank(x;) = 1 where x; = max;(x), j = 1,---,n.

As in the case of the Pearson coefficient, the value taken by the Spearman correlation coefficient
is always between -1 and 1. A value close to 1 for this coefficient signifies that there is a strong
direct correlation between the two variables, while a value close to -1 indicates a strong inverse
correlation between the two variables. If the value of this coefficient is close to zero, then it means
that no correlation exists between the two variables. However, in this latter case, a non-monotonic
correlation may exits.

The expression of the Spearman correlation coefficient is given in (1.3).

n <(rank(xi) - m(x)) : (rank(yi) - m(y)))

ps(x,y) = (1.3)

_ 2 _ 2
\/ X (rank(xl-) — rank(x)) X (rank(xi) - rank(x))
where rank(x) represents the mean value of the ranks of all values of the x variable, calculated

according to (1.4).

n

rank(x) = %Z rank(x;) (1.4)

i=1

Correlation matrix

The correlation matrix or correlation chart [EST 12] represents a graphical tool for visualizing the
values of different correlation coefficients. Once a correlation coefficient (Pearson, Spearman or
other) is calculated for every pair of input/output variables of a model, these values can be

represented under a matrix form. This way, the strong correlations between variables can be easily
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detected, as well as variables which present a negligible correlation, being therefore considered
uncorrelated. A correlation matrix tool, inspired from the correlation chart of the modeFRONTIER
commercial optimization software product [EST 12], has been developed under Matlab®.

To exemplify the purpose of the correlation coefficients, a simple model consisting of four

mathematical analytical relations depending on two variables is considered in (1.5).
Vi =4x, +x, — 4
y, =—x; — 1
Y3 =X X =2 (15)
Vo= (g =2+ (x + 1?

with Xy, %, € [-4,4]

For the model expressed in (1.5), a design of experiments of 20 designs has been considered
using the Latin Hypercube Sampling (LHS) methodology. The LHS technique, introduced by
McKay et al. in [MCK 00] is very popular experimental design for computer experiments [KRE 08].

The correlation coefficients for the model considered in (1.5) have been calculated and
represented using the correlation matrix shown in Figure 1.1.

Y2
- 1

3
0.5

Y2

Y3

Vs

-0.5

X
1
X, 0.320 -0.108 0.167 0.108

%, 0.325 -0.091 0.096 0.091
L +A NA 41 43 4 +A
a) Pearson correlation coefficients b) Spearman correlation coefficients

Figure 1.1 : Correlation matrix

Similar values for the two correlation coefficients, Pearson and Spearman, have been obtained,
as can be seen from Figure 1.1a and Figure 1.1b. In complement to the correlation coefficients, the
strong correlations are represented using dark blue or red colors (for negative, respectively positive
correlations), while the low correlations have a faded color.

From these two correlation charts, it can be seen the level of correlation between the variables of
the model (x4, x,) and the outputs (y;, y,,¥3,ys). For example, a complete linear inverse correlation
is immediately detected for the couple (x4, y,). Also, a strong linear correlation is observed between
y: and x;, which is logic if we take a look at the expression of y; in (1.5). Another remark is that
although both x; and x, variables are present in the expression of y,, due to the quadratic terms, x;

is almost completely correlated with y,, while no correlation is detected between y, and x,. The
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correlation matrix presents itself as an easy mean of empirically validating the tendencies of the
functional relationships of a model.

Once reviewed the correlation matrix as a tool for the empirical model validation prior to the
optimization process run, the basic mathematical formulations of both the single- and the multi-

objective general optimization problems are introduced next.

1.3 Single and multi-criteria optimization

Most of the real life optimization problems are multi-objective by their nature. However, the
optimization problem can be expressed using a unique objective (single-objective optimization) or
several criteria can be accounted for within the expression of the optimization problem. The
optimization problems may or may not present constraint functions (constrained or unconstrained
optimization). There are next introduced some elementary notions about a single-objective

optimization problem formulation.

1.3.1 Single-objective optimization

The general mathematical formulation [VEN 01] of a single-objective constrained optimization

problem is expressed in (1.6).

Mini;nize fx)
subjectto g;(x) <0 i=1,,m
hi(x) =0 j=1,,n, (1.6)
with X =[xy, -, Xp, -+, %] k=1,-,n

where X represents the vector of design variables, each variable x; being defined between a lower
and an upper bound, x; respectively x¥, also known as “box constraints”, f represents the objective
function to be minimized!, g; represents the i-th inequality constraint function, h; represents the j-th
equality constraint function, n represents the number of design variables, n; represents the number
of inequality constraint functions and n, represents the number of equality constraint functions of
the optimization problem.

Within the formulation of an optimization problem, the equality and/or inequality constraint
functions might be absent. If both equality and inequality constraint functions are lacking, the
optimization problem is said to be “unconstrained”. However, rare is the case in practical

applications where no constraint functions are formulated within the optimization problem.

1 The convention generally adopted by the research community expresses any optimization problem as a minimization
problem. When the optimization problem implies an objective function to be maximized, this is represented within the
general formulation of the optimization problem by using the minus sign (Maximize, f(x) = Minimize, —f (x)).
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1.3.2 Local vs. global optimality

Two different types of optima exist in the resolution of a nonlinear optimization problem. These are
illustrated graphically using an abstract single-dimensional continuous example function f(x)
presented in Figure 1.2.

A point x* is a local minimum of the function f(x) if the expression (1.7) is valid [MES 07].

fx*) < f(x) vx € N(x*), x* #x, N(x*) € D(x), D(x) c R" (1.7)

where N(x*) is a subdomain of D(x), the domain of definition of the f(x) function, defining the
neighborhood of the point x*.
The function f(x) may have several local optima (minima).

A point x* is a global minimum of the function f (x) if the expression (1.8) is respected.
f&x)<fx® vx € D(x), x* # X, D(x) c R" (1.8)

As in the case of the local optima, several global optima (minima) of the function f(x) may exist.

The uniqueness of the global solution is guaranteed if the relation (1.9) is respected.
fx*) < f) vx € D(x), x* #x, D(x) c R" (1.9)

Hence, the global optimum of a function is necessarily also a local optimum of the function. The

reverse statement is obviously not true.

fx) :

fxs)
Fe)
F&5)

Xmin x; X3 x;- Xmax X
Figure 1.2 : Local vs. global optimality representation

The example function f(x) presented in Figure 1.2 shows three distinct local optima (minima),
x1, x; and x3. Among these local minima, the function f(x) presents only one global minimum, x3,
since f(x3) < f(x), VX € [Xpmin, Xmax]-

The main difficulty faced by an optimization algorithm is to avoid being caught in a local basin

of attraction of the function to be optimized.
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1.3.3 Deterministic optimization algorithms

A number of classical deterministic optimization algorithms have been developed over the last half
century. These are gradient-based optimization algorithms, basing their behavior on the available
or estimated information about the gradients of the objective and constraint functions. The gradient
information is used by these algorithms to guide the search by mathematically determining the
basins of attraction of the search.

These algorithms require specifying an initial design as start point and the result of the
optimization process depends on the initial design considered. These algorithms produce a local
search and if the model presents several basins of attraction (i.e. the problem is multi-modal), there
is an important possibility of getting stuck in a local basin of attraction, therefore producing an
optimal design which is not the global optimum of the problem.

Among these algorithms, the Sequential Quadratic Programming (SQP) represents one of the
most notorious and most employed algorithms for solving single-objective constrained
optimization problems with continuous functions. An implementation of this algorithm can be
found in the greatest majority of commercial optimization software. A detailed presentation of this
and other algorithms alike, with public Matlab® codes for testing different problems is given by
Venkataraman in [VEN 01]. Practical application issues of the gradient-based SQP algorithm for
solving electromagnetic problems with finite element models can be found in [MES 07]. A Matlab®

“

implementation of the SQP algorithm is coded under the “fmincon” function, available in the
Optimization Toolbox. Other deterministic approaches, such as interval methods and real algebraic

geometry-based methods are equally employed for solving nonlinear optimization problems.

Variable’s normalization

In practical optimization applications, it often arrives to encounter design variables with different
scales. Such scale differences may impact on the result of the optimization process employing a
gradient-based optimization algorithm such as SQP [GIL 09]. Hence, precautions must be taken
prior to the optimization process launch by making all design variables uniform. The most common
way of bringing all design variables of the problem to the same scale is to normalize the design
variables. Several techniques are available for normalizing the design variables, which can be found
in [MES 07]. The most often employed technique consists of transforming the vector of all design
variables such that their values lie within the interval [0,1].

For this transformation, the mathematical formulation is given in (1.10).

ol
X—X (1.10)

X =
x4 —x!

where X represents the normed or normalized design vector and X represents the vector of real or
true design variable values.

The reverse transformation, from normalized to true variable values, is expressed in (1.11).
x=%Xo (x*—x!) +x! (1.11)

This normalization might also show useful for the constraint functions and — in a multi-objective

context — for the objective functions of an optimization problem.
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Multi-run process

In order to ensure the global optimality of the result, a common practice in the optimization using
gradient-based algorithms consists in employing a multi-run process. As the result of the
optimization using a gradient-based approach is highly dependent upon the initial design
considered, the multi-run or multi-launch process consists in several (usually between 10 and 100)
successive or simultaneous optimization algorithm runs, with different initial design points for each
of the runs. Thus, at the end of all optimization algorithm runs, the best result is retained with the
hope that it represents the global optimum of the problem. This fact is not guaranteed, but
however, the larger the number of optimization runs of the multi-start, the greater the probability
that the global optimal design is determined.

An important obvious drawback of the multi-run approach consists in the very important

computational expense required by all the optimization runs.

1.3.4 Stochastic optimization algorithms

The stochastic optimization methods represent optimization approaches which are based on the
realization of a random process. These approaches are meant to overcome the drawbacks faced by
the deterministic methods, such as the possibility of finding a local optimum solution and which is
strongly related to the initial configuration. Compared to the deterministic approaches, which offer
the same solution for two algorithm runs starting from the same initial design configuration, the
stochastic approaches are not expected to return the same result from identical conditions. This
feature is related to the random process underlying the stochastic algorithm. Nevertheless, most of
the commercial optimization software offers the possibility of obtaining the same results for
different runs of a stochastic optimization algorithm with the same settings, through the means of a
controlled pseudo-random process.

The stochastic approaches are also known as derivative-free or direct search algorithms. These
algorithms do not require any information about the gradients of the objective and/or constraint
functions, thus being suited for a larger category of optimization problems. The underlying
mechanism of a stochastic algorithm is inspired from different processes in nature, such as
biological evolutionary processes (such as reproduction, mutation, natural selection etc.), animal
behavior (e.g. flocking, swarm behavior, etc.) and others. In general, these are population-based
algorithms, thus requiring a large number of model evaluations.

Stochastic algorithms are global optimization methods, meaning that they seek to obtain not just
a local optimum, but the global optimum of the problem, through exploration of the entire design
space. In compare to the gradient-based approaches, which obtain local optima with high precision,
the solutions offered by the stochastic algorithms are less accurate, but with more chances of being
the global optimum of the problem. Once a solution is obtained by the stochastic optimization
process, a gradient-based optimization algorithm can then be launched starting from the optimum
obtained, in order to refine the values of its design variables. This technique is known as the hybrid
approach, combining both features in the search for the accurate value of the global optimum.

Some of the most notorious stochastic optimization algorithms are represented by the Genetic
Algorithm (GA), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO).
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A Matlab® implementation of a genetic algorithm is available under the “ga” function of the
Global Optimization Toolbox. The basic principles of the genetic algorithms are inspired from
nature, simulating the natural evolution process by employing two genetic operators — crossover
and mutation and a natural selection process. These are population-based optimization algorithms,

usually elitist, i.e. the best obtained solutions are always kept for continuing the evolution process.

1.3.5 Multiple criteria optimization

Most of the real-world optimal design problems are multi-objective by nature. General engineering
design optimization criteria such as mass reduction, efficiency improvement, environmental impact
reduction are obviously antagonistic and must be all accounted for within an optimal design
process. In mathematical terms, the general formulation of a multi-objective optimization problem
(MOP) is expressed in (1.12).

Minimize — F(x) = [fi(%), (%), ", fu ()]

subjectto g;(x) <0 i=1-,m
Wlth X= [xlﬂ'”!xkr'";xn] k = 1,"‘,n

where F represents the vector of objective functions and m is the number of objective functions of
the optimization problem.

The result of an optimal design process, either single or multi-objective, is a design which best
fits the formally and/or informally specified requirements. In the case when multiple optimization
criteria are stated in the optimization problem, a compromise solution must be searched among a
set of several optimal solutions.

In the following paragraph, some definitions concerning the optimality concept within the
multi-objective context are introduced, which lie at the basis of all further multi-objective

approaches presented in this manuscript.

1.3.5.1 Pareto optimality

The Pareto optimality represents a measure of efficiency in the multi-objective context [CHI 07],
where several conflicting objectives must be accounted for in an optimization process. The notion of
Pareto optimality or Pareto efficiency is thus similar to the global optimality in the single-objective
case. The name of Pareto comes from the economics domain, taking the name of an Italian
economist, Vilfredo Pareto, at the beginning of the 19t century [CHI 07]. A design is considered
Pareto optimal or Pareto efficient if there does not exist any other design which improves the value
of any of its objective criteria without deteriorating at least one other criterion.

From the mathematical point of view, the definition of the Pareto optimality or Pareto efficiency
[CHI 07], [PAP 08] can be expressed as in (1.13).
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{x* € D c R"*|f(x*)} is Pareto optimal

& {axe plfit0 < )i = Tun (0 < i),V € (1)) (1.13)

If a design x, with the properties expressed in (1.13) however exists, then this solution x is said to
dominate x* in the sense of Pareto or simply dominate x* [ALB 11]. Otherwise, the design x* is said
to be non-dominated (in the sense of Pareto).

The set of all designs respecting the definition given in (1.13) form the Pareto front or the Pareto
frontier, representing thus the optimal trade-off between all objective functions.

In order to present the concept of the Pareto optimality, a generic bi-objective optimization is
considered and two possible types of Pareto fronts, a convex and a non-convex front, which are
represented graphically in Figure 1.3a, respectively Figure 1.3b.

A A F&0)

() »
Py JACO R —
fo(X") e :
P, P,
: | >
f1(x*) fi fi(x") fi

a) Convex Pareto front b) Non-convex Pareto front

Figure 1.3 : Pareto front representation for a generic bi-objective optimization problem

The bold curve presents the Pareto front in both the convex and non-convex Pareto front cases.
The yellow circle presents a non-dominated solution on the Pareto front.

Through analogy with the local optimality in the single-objective case, a local Pareto optimality
can be defined also in the multi-objective context. The mathematical definition of the local Pareto

optimality is expressed in (1.14).

{x* € D c R"|f(x*)} is locally Pareto optimal
é {36 > 0|x* is Pareto optimal in D N N(x*,6)} (114
where § defines the radius of an n-dimensional sphere N centered in x*.
As in the single-objective case, a Pareto optimal design x* is also locally Pareto optimal; the
reverse is true only if all the objective functions are convex.
Another notion which requires being introduced is the weak Pareto optimality [CHI 07], [NAK
09]. The mathematical definition of a weak Pareto optimal solution is expressed in (1.15).

{x* € D c R"|f(x*)} is weakly Pareto optimal

A _ (1.15)
o {#xe D c R"f,(x) < f;(x*),i = 1,n}
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A weak Pareto solution is therefore a design which can be improved in one objective function
while maintaining the values for the other objective functions. As stated in [NAK 09], weak Pareto
solutions are not desired in the final optimal design decision making, but a number of optimization
approaches can guarantee only weak Pareto optimality.

An example of bi-objective problem presenting weak Pareto solutions is given in Figure 1.4.

L
f

Figure 1.4 : Weak Pareto solutions of the bi-objective generic optimization problem

It can be seen that the design represented through a yellow circle, as well as all designs situated
on the same vertical dotted line are weak Pareto designs, but they are not Pareto optimal.

The determination of one or more non-dominated designs of the Pareto front is the subject of all
multi-objective optimization approaches. Depending on the moment of decision making in the
optimization process, several categories of multi-objective optimization approaches exist, which are

reviewed briefly in the following paragraph.

1.3.5.2 Decision making in the optimal design process

The compromise between the different optimization criteria can be fixed prior to the
optimization process. Such optimization approaches are called “a priori” methods, due to the
compromise between the design objectives which is imposed prior to the optimization run. All
optimization criteria are expressed under the formulation of a single-objective optimization
problem. The result of this optimization problem is a design which is optimal with regard to the
given compromise expressed between the different optimization criteria. A number of
transformation techniques, allowing the handling of multiple optimization criteria by a single-
objective formulation exist in the literature and the most notorious of them are selected for
presentation in paragraph 1.3.6 of this manuscript.

Nevertheless, expressing all optimization criteria under the form of a single-objective
formulation might not always be possible or desired sometimes. The selection of proper values for
the different weighting coefficients associated to different design objective functions involving
completely different output variables such as mass, efficiency, consumption, environmental impact
etc. cannot be done prior to the optimization run. In this case, the designer, engineers and the
managers in a company prefer a set of different trade-off designs between the different objective
functions expressed in the multi-objective optimization problem. The final choice for the optimal

design remains at their latitude, who will take an informed decision among a set of possible and
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equivalent (from the point of view of the optimization problem). These optimization approaches are
called “a posteriori” methods, giving the fact that the decision for the compromise between
objectives is taken after the optimization run.

A third class of optimization approaches consists in the interactive selection of designs. In this
case, the designer intervenes at each step of the optimization process, expressing each time his
preferences based on the current data placed at his disposal by the optimization process. The
designer guides thus the optimization algorithm towards the regions of his interest. However, this
type of optimization approach is less current, since it implies the regular and often intervention of

the designer in the decision taking within the optimal design process.

1.3.6 Optimization problem transformation techniques

It often arrives, for different reasons, to require rephrasing the formulation of the optimization
problem. The formulation of an optimization problem can be transformed in a number of different
ways in order to simplify the initial problem or to allow solving it by the means of available
optimization tools. Hence, a multi-objective optimization problem can be transformed into a single-
objective problem, constraint functions can be transformed into objectives and vice-versa, etc. A
taxonomy of transformation techniques can be found in [BRI 07]. In this section, there are addressed
only those transformation techniques meaning to reduce the number of objective functions of a
problem to a single objective function, also known as scalarization techniques. Some of these basic
formulations will be then implemented within the more complex optimization techniques described

later on, in the following chapters of the manuscript.

1.3.6.1 Weighted objectives method

The weighting objectives method [COL 02], [MIE 99] is a transformation technique consisting in the
aggregation of the m objective functions from (1.12) after associating certain weighting coefficients

to each of them, depending on their relative importance.

Linearly-weighted objectives method

The most known and used of the weighted aggregation techniques is the linear aggregation
function [MIE 99], [BRI 07]. The formulation of the rephrased optimization problem following the

linearly-weighed objectives method is given in (1.16).

m
Minimize  £(0) = wyf; (%) + Wafs(X) + -+ W fon () dw=1
=1
subjectto  g;(x) <0 i=1,-,n
(1.16)
hj(x) =0 j=1,-,n,
with X = [xq, ", X, -, Xn] k=1,-,n

xp < xp < xf



42 Decision support tools for complex electromagnetic systems design

where w; represents the weighting coefficient associated to the I-th objective function.

An important remark is related to the normalization of the objective functions, which must be
done prior to the aggregation [DIB 10]. In order for the aggregation to be efficient, therefore to
reflect the desired relative influence of each objective, the different objective functions must be
normalized using the same normalization formulations as in the case of the design variables,
expressed in (1.10). The normalization must be done with respect to the minimum, respectively
maximum known or estimated values of each objective function.

Launching several optimization processes using each time a different set of weighting
coefficients allows for determining different solutions on the Pareto front of the initial multi-
objective optimization problem.

To exemplify the mechanism of the weighted objectives method, a simple bi-objective
optimization case is considered. Two figure-cases are imagined for the shape of the Pareto front of
the problem, a convex and a non-convex form being represented graphically in Figure 1.5a and

Figure 1.5b, respectively.

a) Convex Pareto front b) Non-convex Pareto front

Figure 1.5 : Weighted objectives method applied to a bi-objective optimization problem

The two extreme points of the Pareto front are determined in both convex and non-convex shape
Pareto front cases by setting each weighting coefficient at a time equal to 1, hence giving exclusive
importance to only one of the objectives. For intermediate values of the weighting coefficients
w; € (0,1), the corresponding design on the Pareto front is represented by the point on the line of

slope _W—M which is tangent to the Pareto front curve, situated at the exterior of the objective
2

function’s domain. Thus, while such a point can be obtained in the convex Pareto front case for any
combination of weighting coefficients, the weighting objectives method fails in supplying that point
in the case where the Pareto front contains non-convex zones, as can be seen from Figure 1.5b.

The advantage of this method consists in its ease of implementation. Nevertheless, the method
presents some stated drawbacks which limit its application. Hence, the most important
inconvenient of the method consists in its inefficiency in solving problems which have a non-
convex Pareto front. In practical applications, the shape of the Pareto front is not known “a priori”,
thus applying the weighting objectives method might be misleading if the front is non-convex.
Also, the selection of proper weighting coefficients for obtaining a uniform distribution of solutions

along the Pareto front is difficult.



1.3 Single and multi-criteria optimization 43

Weighted objectives method with Tchebyshev scalarization function

To overcome the drawback represented by the inability of the previously-presented weighted
objectives method employing linear weights to obtain the Pareto front in the case of optimization
problems presenting a non-convex Pareto front, two non-linear weighting functions have been
developed [NAK 09]. A first weighting function, the Tchebyshev scalarization function is meant to
guarantee that the obtained solution employing the weighted objectives formulation is weakly
Pareto optimal [NAK 09].

The mathematical formulation of the Tchebyshev scalarization function is expressed in (1.17).

fG0 = maxw,f,(x) l=1,-,m (1.17)

The graphical representation of the weighted objectives method employing the Tchebyshev
scalarization function for determining a compromise design of a bi-objective optimization problem
presenting a non-convex Pareto front is presented in Figure 1.6a.

As can be remarked from (1.17), the Tchebyshev scalarization function is not continuous, due to
the presence of the max function in its expression. Therefore, this fact may pose certain difficulties
to a gradient-based optimization algorithm. A solution to this problem might be the use of a

heuristic optimization algorithm, such as genetic algorithm (GA).

Weighted objectives method with augmented Tchebyshev function

The Tchebyshev scalarization function presented in the previous paragraph only guarantees that
the obtained solution is weakly Pareto optimal. For the Pareto optimality to be guaranteed, an
improved weighting function has been proposed, the augmented Tchebyshev scalarization
function, which represents in fact the same Tchebyshev formulation with an additional term. The

expression of the augmented Tchebyshev scalarization is given in (1.18).

fx) = mlaxwlfl(x) + pZWlfl(x) l=1,-,m (1.18)
=1

where p represents a parameter with a small positive value.

The p parameter allows controlling the angle determined by the two dotted lines which are
presented in Figure 1.6. The non-dominated solutions situated on the convex areas of the Pareto
front can be determined for any value of the p parameter. However, the non-dominated solutions
situated on the non-convex parts of the Pareto front require using a small value for the p parameter,
usually p € [107¢,1072].

The mechanism of the weighted objectives method using the augmented Tchebyshev
scalarization function for finding a compromise solution on a non-convex Pareto front is presented

graphically in Figure 1.6b.
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a) Tchebyshev scalarization b) Augmented Tchebyshev scalarization

Figure 1.6 : Weighted objectives method with improved non-linear scalarization functions

The weighted objectives method employing the augmented Tchebyshev scalarization function
will be further used by the optimization techniques proposed in the subsequent chapter of the
manuscript.

Compared to the two previous scalarization functions, the augmented Tchebyshev function
allows determining the non-dominated trade-off solutions of optimization problems presenting

non-convex Pareto fronts, also guaranteeing the Pareto optimality of the solutions.

1.3.6.2 e-constraint method

The e-constraint method [BRI 07], [COL 02], [DIB 10] also known as the constraint transformation
method [NAK 09], is a technique which transforms the initial multi-objective optimization problem
into a single-objective constrained optimization problem so that it will be next handled using a
classical single-objective optimizer.

Considering the multi-objective problem formulation of (1.12), the e-constraint method implies
keeping one of the m objective functions (f; for example here) as objective, while passing all the
other m-1 objective functions in constraint. The additional constraint functions are imposed

different limit values. The formulation of the obtained single-objective problem is given in (1.19).

Minimize fix)
X
subjectto g;(x) <0 i=1,,m
h](x)=0 j:l’...'ne
(1.19)
Inin(X) = filx) =6, <0 1=2,,m
Wlth X = [xl,"-,xk,-",xn] k = 1,-.."”

where €, represents the imposed limit for the I-th objective function which was transformed in

constraint function.



1.3 Single and multi-criteria optimization 45

In order to retrieve the Pareto front of the initial multi-objective problem using the e-constraint
method, a sequence of single-objective optimizations must be run, using several different limit
values €, for the additional constraint functions.

Considering a bi-objective optimization problem, the application of the e-constraint method for
determining a design on the Pareto front is presented graphically in Figure 1.7. The objective
function f; is kept as objective, while a limit €; is imposed to f;. The success of the e-constraint
method in determining a compromise design for the two figure-cases, when the Pareto front is

convex and non-convex can be remarked from Figure 1.7a, respectively Figure 1.7b.

f2 A f2 A
3 P,
Py
€ fi € fi
a) Convex Pareto front b) Non-convex Pareto front

Figure 1.7 : e-constraint method application for determining a design on the Pareto front of a bi-

objective optimization problem

As with the weighted objectives method previously presented, the advantage of this method
consists in its simplicity of implementation. Nevertheless, compared to the previous weighted
objectives method, the e-constraint technique does not present difficulties when dealing with
optimization problems presenting a non-convex Pareto front. Moreover, the total desired number of
non-dominated designs belonging to the Pareto front is imposed by the designer. Different areas of
the Pareto front, judged interesting by the designer, can be explored using a proper selection of the
limits for the constraint functions.

An inconvenient of this method is represented by the fact that the distribution of the obtained
trade-off solutions along the Pareto front might be strongly non-uniform, depending on the form of
the front.

The e-constraint technique was applied for solving different optimization applications which

can be found later on in the following chapters of the manuscript.

1.3.6.3 Goal-attainment method

The goal-attaining method [BRI 07], [COL 02], [DIB 10] is a technique which seeks to find the design
belonging to the Pareto front which is closest to a point of given coordinates in the objective space,
following a given direction. The mathematical formulation of the rephrased optimization problem

using the goal-attainment method is given in (1.20).
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Minimize 3
X
subjectto  g;(x) <0 i=1,-,n
hix)=0 j=1,-,n,

(1.20)
nr1(®) = i) —wé - %<0 1=1-m

with X = [xq, -, X, ", Xp] k=1-,n
xp < xp < xf

where £, oal represents the goal value imposed by the designer for the I-th objective function, w; is
the weighting coefficient associated to the [-th objective function.

The goal-attainment method consists of minimizing a scalar value ¢ while respecting the
constraints of the initial optimization problem and m additional constraint functions depending on
the goal and current objective function value, the weighting coefficients and the scalar quantity to
be minimized. The mechanism of the goal-attainment method is graphically exemplified on a

simple bi-objective optimization problem in Figure 1.8.
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a) Convex Pareto front b) Non-convex Pareto front

Figure 1.8 : Goal-attainment method exemplification on a bi-objective case

The weighting vector w = [w;, w,] imposed by the designer gives the direction of search,
relating the goal point P9°4(£,9°%, £9°%!) to the Pareto front.

As can be observed from Figure 1.8, the goal-attainment method works for both convex and
non-convex shapes of the Pareto front of an optimization problem.

The goal-attainment method can be employed when a goal is known or can be easily estimated,
for example if the optimal design process starts from an existing design, which is sought to be

improved by a given percentage.
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1.3.6.4 Other transformation techniques

Several other transformation techniques allowing the resolution of a multi-objective optimization
problem by a single-objective optimization technique exist in the literature. Two other techniques
propose finding a design on the Pareto front by minimizing the maximum discrepancy to a goal
design [BRI 07], [COL 02], also known as weighted min-max formulation [DIB 10], using the

expression (1.21) or by minimizing a sum of squared differences as in (1.22).

Minimize  f(0) = max wy|fiG0 — £ (1.21)
Minimize  f(x) = Z wi (i) — £9°° (1.22)

=1

As with the goal-attainment transformation technique previously presented, the goal design can
be considered the ideal point of the Pareto front [BRI 07] and the weighting coefficient vectors

uniformly distributed are generated in the same manner.

1.3.6.5 Example test-problem

To exemplify the mechanisms of the different transformation techniques presented in the previous
paragraphs, a simple analytical test-problem has been considered. The optimization problem
considered is known as the VLMOP?2 test-problem and was proposed by Veldhuizen et al. in [VEL
99]. The mathematical formulation of the bi-objective optimization problem VLMOP?2 is expressed
in (1.23).

( f1p<z(%))

Minimize
X n 1 2
fo=1—exp <—Z (xi + \/—ﬁ) ) (1.23)
i=
with  x =[x, -, x,] n=2

x; € [-2,2] i €{1,2}

The Pareto front of the problem is non-convex, fact which can be observed from the graphical
representation of the front in Figure 1.9b obtained by the calculation of a grid of 80*80 designs over

the design space, as in [KRE 08].
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Figure 1.9 : Result of the 80*80 design grid evaluation for the analytical test-problem

The different previously presented transformation techniques have been employed for solving
the bi-objective optimization problem expressed in (1.23). A number of 6 non-dominated solutions
were imposed to all approaches.

The e-constraint technique was employed with success for solving this non-convex optimization
problem. The Pareto front obtained is presented in Figure 1.10a. The approach for finding the
Pareto front was decomposed into two steps. First, two single-objective unconstrained optimization
problems were formulated in order to retrieve the two extreme points of the Pareto front, by
minimizing the f;, respectively the f, function. Second, for each of the 4 remaining non-dominated
points, a different single-objective constrained optimization problem was formulated. The f;
function was kept as unique objective function, while the f, function has been passed in constraint,
as expressed in (1.19). A different limit value has been imposed to the f, function for each
optimization, calculated based on its value for the two extreme points of the Pareto front. The
Pareto front shape has been well retrieved by this transformation technique. Nevertheless, it can be
also observed an irregular spacing of the solutions on the Pareto front, with a higher populated
zone at the right-most part of the Pareto front in exchange for a less-denser zone at the upper-left
area of the Pareto front. The e-constraint technique is thus shown to be sensitive to the shape of the
Pareto front. It is expected that in the extreme case of a problem presenting an “L” -shape Pareto

front, the technique would fail dramatically in finding a uniformly-distributed Pareto front.
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Figure 1.10 : Optimal results of the analytical test-problem optimization employing the presented

transformation techniques

The weighted objectives transformation technique using the three scalarization functions
presented previously in this chapter has also been employed for finding the Pareto front of the test-
problem. Prior to the optimization runs, a set of 6 uniformly-spaced vectors of weighting

coefficients A has been generated, obtaining the coefficients presented in (1.24).
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A ={[0,1],[0.2,0.8], [0.4,0.6], [0.6,0.4], [0.8,0.2], [1,0]} (1.24)

For each vector of A an optimization process has been run. As expected, the linearly-weighted
scalarization function failed in retrieving the Pareto front of the problem, due to its inability of
handling problems presenting a non-convex Pareto front. It is only the two extreme points of the
Pareto front that have been obtained by this method, as can be seen from Figure 1.10b. The three
optimization runs using the first three weighting vectors of A supplied the design corresponding to
minimum f, value on the Pareto front, while the three other weighting vectors generated the other
extreme point, corresponding to minimum f; value. No intermediary point on the non-convex
Pareto front has been determined by this technique.

The optimal results of the weighted objectives transformation technique employing the
Tchebyshev and the augmented Tchebyshev scalarization function are presented in Figure 1.10c,
respectively Figure 1.10d. A uniform distribution of the points on the obtained Pareto front can be
observed for the case of the two non-linear scalarization functions, Tchebyshev and augmented
Tchebyshev function.

The goal-attainment transformation technique was equally employed for finding the Pareto
front of the optimization test-problem. The optimal results of the goal-attainment technique are
presented in Figure 1.10e. As in the case of the e-constraint technique, the approach of finding the
Pareto front of the problem implies two distinct steps; the first step being identical with the one
from the e-constraint technique. The two extreme points of the Pareto front allow defining a
suitable goal design for the formulation of the subsequent optimization problems using (1.20). The
goal design has been thus selected the design which presents the minimal values of each objective
function of the extreme designs, f9°0! = [£9°%, £9°U!] = [fmin, gmin] The optimal results obtained
are similar with those obtained using the weighted objectives technique employing the two non-
linear scalarization functions.

Among the presented transformation techniques, the weighted objectives method employing the
two non-linear scalarization functions and the goal-attainment method provided similar results for
the analytical test-problem considered. The uniformity of the points distribution on the Pareto front
employing the e-constraint technique was shown to be strongly related to the shape of the Pareto
front, with a less fortunate performance in the case of optimization problems presenting Pareto
fronts showing an “L”-shape Pareto front. The weighted objectives transformation technique
employing linear weighting coefficients was found to not function in the case of problems
presenting a non-convex Pareto front. The choice of one technique over another depends on the
context of the study, the available data concerning the optimization problem, and it is the designer’s

call to judge a method more appropriate than the others.

1.3.7 Complex systems specific optimization strategies

The complexity of these systems is given by:

- The expensive computation cost of heavy simulation models;
- The large number of components of the system, thus many design variables and specific

constraints.
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Each of these features is addressed through different methods. Hence, for the optimization
problems which use costly simulation models, it is appropriate to employ metamodel-based
optimization strategies for reducing the computational cost of the optimization. When the system to
be designed is very large, being composed of several components and having a large number of
design variables and constraint functions, it is appropriate to employ optimization strategies based

on the decomposition of the system, distributing thus the computation across the system.

1.3.71 Metamodel-based optimization strategies

In electromagnetics and other domains of the engineering, the devices or products to be optimally
designed are commonly represented through complex analysis codes (such as: finite element
method (FEM), boundary element method (BEM), computational fluid dynamics (CFD), etc.), which
apply the basic laws of the concerned domain on a discretized grid of small elements representing
the device to be analyzed. The main problem encountered when using such complex analysis codes
consists in the computationally expensiveness of such a model. Also, due to the discretization
employed, these models present discontinuities over the considered domain and for some given
combinations of design variables, the analysis of such codes might fail in providing valid responses.
All these facts make the integration of models represented using such analysis tools within a
classical optimal design process, limited or even impossible.

A common practice in the optimal design process consists in creating response surfaces or
metamodels of these expensive simulation models. They are fast, continuous and offer responses
for any design configuration considered. In exchange, the accuracy of such representations might
be very poor, therefore offering erroneous information about the modeled device. The problematic
of the integration of metamodels within the optimal design process makes the subject of Chapter 2
of this manuscript. Several means of integration of metamodels within the optimal design process

are discussed and a complex multi-objective efficient optimization approach is developed.

1.3.7.2 Decomposition-based optimization strategies

A complex system is seen here as a collection of models, disciplines or components, strongly
interacting and which must be considered together within a design process. The complex system is
too large to be addressed as a whole, thus requiring being decomposed.

A classification of these strategies can be done based on the number of optimization algorithms
employed for the optimization task. Hence, these optimization approaches fall into two categories:
single-level methods and multi-level methods. The single-level methods imply a single
optimization algorithm. The multi-level methods employ a separate optimization algorithm for

solving each of the optimization problems of the components of the decomposed structure.

Single-level design optimization strategies

The single-level design optimization strategies refer to the classical multidisciplinary design
optimization (MDO) formulations. The multi-disciplinary feasible (MDF), individual disciplinary
feasible (IDF) and all-at-once (AAO) formulations, introduced by Cramer et al. [CRA 94], are
intended to address multi-disciplinary optimization problems with models having a relatively

reduced size. If the number of design variables or constraint functions is important, these
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approaches are shown to be unreliable [ALL 08]. The single-level methods employ a single
optimizer for solving the optimization problem, thus the inter-disciplinary consistency is implicitly
guaranteed. These optimization approaches have been intensively studied. Recent works of
Kreuawan [KRE 08] and Ben-Ayed [BEN 12b] at L2EP laboratory from Ecole Centrale de Lille
address such approaches. Thus, these approaches will not be addressed here. Instead, the younger

multi-level approaches make the subject of the work presented in Chapter 3 of this manuscript.

Multi-level design optimization strategies

The multi-level design optimization strategies make use of several optimizers to address the
optimization of each element of the decomposed structure, thus implying the distribution of the
computational burden across the decomposed structure. The different optimizers called to address
the multi-level problem communicate under a specific coordinated strategy. Depending on the
object of the decomposition, several categories of optimization strategies exist. Many multi-level
strategies have been developed during the last two decades, such as Collaborative Optimization
(CO), Analytical Target Cascading (ATC), Collaborative Sub-Space Optimization (CSSO), Bi-Level
Integrated System Synthesis (BLISS), to cite only a few. The multi-level design optimization
methodology makes the subject of Chapter 3 of this manuscript. Several electromagnetic

applications are addressed using some of these strategies.

1.4 Pareto front quality assessment tools

Frequently, it shows the need to estimate the quality of the obtained Pareto front or to compare two
or more Pareto fronts. Most of the multi-objective formulations of practical optimization problems
imply a number of two or maximum three objective functions. In this case, the assessment of the
Pareto front’s quality or the comparison between two or more Pareto fronts can be done visually,
based on the graphical 2D, respectively 3D representation of the objective function values of the
optimal results. This represents a qualitative estimation or comparison of one or more Pareto fronts.

However, the visual estimation of the Pareto front quality might not suffice. In this case, a
quantitative estimation of the Pareto front imposes. In comparison with the single-objective case,
where the optimal result is a single value, in the multi-objective case, the optimal result is a multi-
dimensional set of designs. Usually, two aspects must be addressed in the assessment of Pareto
front’s quality:

- Convergence of the Pareto front to the true Pareto front;

- Diversity of the solutions in the obtained Pareto front.

A number of different metrics have been proposed in the literature over the years for assessing
the quality of the Pareto front, by addressing the above-mentioned aspects. Several metrics have

been introduced here for addressing the above-mentioned aspects of a Pareto front.
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1.4.1 Metrics definition

In order to assess the quality of a Pareto front or to objectively compare two Pareto fronts, a number
of metrics have been developed and exist in the literature. Three complementary metrics for

assessing the quality of a Pareto front are introduced here.

Generational distance (GD)

The generational distance (GD) measure introduced by Veldhuizen and Lamont in [VEL 00] is a
measure for the closeness of the obtained front to the real Pareto front. The mathematical

formulation of this metric is expressed in (1.25).

(1.25)

where 74,54 is the cardinality of the obtained Pareto front §f,unq and d; is the distance in the
objective space between the i-th point of § 74,4 and the closest point on the true Pareto front ..
The closer the value of GD is to zero, the closer are the obtained non-dominated solutions to the
true Pareto front. When the cardinality of §f,ynq is reduced, a low value for GD might be obtained
and therefore it is suggested the use of a complementary metric, named reverse generational

distance (RGD). The expression of this later metric is given in (1.26).

(1.26)

where 14, is the cardinality of the true Pareto front §;,,, and c~l,- represents the distance between

the j-th point of ¢,,,,, and the closest point on £ ¢,ynq-

Spacing (S)

The Spacing metric (S) [VEL 00] quantifies how uniformly the non-dominated solutions are spread

out on the obtained Pareto front. The mathematical formulation of this metric is given in (1.27).

Nfound

s— |t Z (d-a) (1.27)

Nfound — 1 =

where d; represents a distance calculated for each i-th design of @44 according to (1.28) and d

represents the mean value of all d;.

m
d; = min Y[ = f/| (1.28)
k=1



54 Decision support tools for complex electromagnetic systems design

where fi and fkj represent the values of the k-th objective function of i-th, respectively j-th design of
50 found-
A value of § = 0 signifies that the designs of §f,,nq are equally-spaced, the § ¢4 presenting a

uniform distribution of points.

Error ratio (ER)

The error ratio (ER) is a measure introduced by Van Veldhuizen in [VEL 99] which accounts for the
quantity of non-dominated designs of the obtained Pareto front §s4,nq Which do not belong to the

true Pareto front §,,,,.. The mathematical formulation of the ER metric is expressed in (1.29).

Nfoun,
ER = u (1.29)
Nfound
where e; = 1 if an obtained design is not on §9;,,,, and e; = 0 otherwise.

An obtained design is considered to belong to ;. if it is within a tolerance (generally 1-5%) in
the objective space from a design of ;..

Obviously, a value of ER = 1 signifies that none of the designs of §f,,nq belongs to £, while
ER = 0 signifies that £ ,ynq is included in @y.

The metrics presented here are intended to quantify the performance of a multi-objective
optimization problem. Other metrics, such as the hypervolume estimation [ZIT 99] are equally
available to designers. However, the graphical representation of the obtained sets of data is very
helpful, compulsory even, for the designer, guiding him in the decision-making process. Some

common multi-dimensional data representation techniques are next reviewed.

1.4.2 Multi-dimensional data representation

A number of graphical tools for the representation of multi-dimensional data exist in the literature
and are meant to assist the designer in the decision-making process [RAH 99]. Graphical
representations such as bar charts, spider diagrams, bubble plots, scatter plot matrix, parallel
coordinates representation, etc. offer the designer a very good vision over the multi-dimensional
results data. A few of these representation techniques, commonly used by designers, are next

introduced.

Box-plot

The box-plot diagram, also known as box-and-whisker diagram or plot, is a current representation
tool of series of data in statistics?. Its great popularity resides in the number of different information
that can be represented condensed in one figure. A box-plot diagram regularly presents five
different details about a set of data: the minimum value of the samples, the maximum value of the
samples, the lower quartile (i.e. standard deviation at 25%), the maximum quartile (i.e. standard

deviation at 75%) and the median quartile (i.e. mean value of the samples 50%).

2 Details about the box-and-whisker diagram can be found online at: http://en.wikipedia.org/wiki/Box_plot.
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Scatter plot matrix

The scatter plot matrix?, also known as scatter chart or scatter graph* represents a bi-dimensional
graphical representation of data. In this graph, the designs from a set of data are represented
through two of their coordinates, as a cloud of points, with each coordinate of the designs along one
dimension of the Cartesian space. Eventual correlations between design variables can be observed
graphically. For data with a dimensionality superior to two, all combinations of two design
variables scatter representation can be displayed under the form of a matrix of scatter plots, where a
scatter plot of the matrix displays the two dimensions of the designs associated to the row and the

column of the matrix.

Bubble plot

The bubble plot, also known as bubble chart® is used to represent three or more coordinates
(objective function, constraint function or design variable) of a set of designs. Usually, in
optimization it is used to represent the data in the associated multi-dimensional objective space. For
the standard version of the bubble plot, the designs are represented as different size bubbles in a bi-
dimensional Cartesian space. Each coordinate of the Cartesian space is associated one design
coordinate (objective function) and the size of the bubbles is associated to a third coordinate.
Supplementary information can be represented on the same graph by associating the color of the
bubbles, their transparence, their shape, etc. to a different design coordinate. The feasibility of
designs can be also associated to one mean of representation (color, transparency or shape of the

bubbles), thus being easily recognizable.

Parallel coordinates representation

The parallel coordinates chart [WEG 90] represents a graphical tool for representing multi-
dimensional data sets‘. In this representation, parallel lines are used to represent the domain of
variation along each dimension of the considered data. The parallel lines can be either displaced
vertically or horizontally. This graph allows the representation of both the design variables values
and those of the objectives and constraints. Each design is represented by a multi-line across the
parallel lines; the intersection of the multi-line with the parallel lines giving the coordinates of the
design along the different dimensions. This kind of representation is very useful for identifying the
feasible sub-domain of the design space of a problem, the sub-domain containing the optimal

solutions or the dependence of the objective and constraint functions on the design variables.

1.5 Commercial optimization software

A number of commercial general-purpose optimization software products are available on the

market. These commercial optimization software products, dedicated to the optimal design of

3 A Matlab® implementation of the scatter plot matrix is available at:
http://www.mathworks.fr/help/techdoc/ref/plotmatrix.html.

4 More information about the scatter plot matrix can be found at: http://en.wikipedia.org/wiki/Scatter plot.

5 Online information about the bubble chart is available at: http://en.wikipedia.org/wiki/Bubble chart.
¢ More information about the parallel coordinates is available online: http://en.wikipedia.org/wiki/Parallel coordinates.
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devices, systems and processes, offer a large palette of tools for both the preliminary analysis and
the post-optimization results visualization and decision making of the optimization problem, along
with a number of single- and multi-objective optimization algorithms. To respond to the industrial
needs, the producers of most of these software products have developed integrated bridges to the
most notorious CAD and CAE software products. This way, simulation models developed using
such software products can be directly integrated within the optimization process.

In order to benefit from the large selection of analysis and decision-making tools offered by such
software, two commercial optimization software products have been analyzed modeFRONTIER®
[EST 12], a product of Esteco Company and Optimus® [NOE 12], a product of Noesis Solutions.
Both products offer the possibility of integrating externally-developed optimization algorithms
within their structure. The integration of the optimization strategies developed and presented
further on in this manuscript has been analyzed for the two optimization software products. An
example of integration of the MEGO algorithm developed in this work, within the
modeFRONTIER® product is presented in paragraph 2.5.9 of this manuscript.

1.6 Conclusion

The optimal design process of a device or system represents a three-phase process. The core
element of this process is represented obviously by the optimization algorithm runs. Nevertheless,
two equally important phases, a pre-processing phase and respectively a post-processing or results
analysis and interpretation phase, must be correctly addressed within the process of optimal
design. In this chapter, the elementary notions implied by the single- and multi-objective
optimization problem formulations have been reviewed, and the notion of global optimality and
Pareto optimality have been introduced for the single-objective, respectively the multi-objective
optimization context. A number of different classical optimization approaches, deterministic and
metaheuristic have been cited, along with some ways of addressing the optimal design of complex
systems, which makes the subject of this work and which will be addressed in the following
chapters. Sometimes, it might be useful to express a multi-objective optimization problem using a
single-objective formulation. For this purpose, several different transformation techniques have
been reviewed and their performance has been analyzed with regard to the convexity of the
underlying Pareto front. For the comparison and results validation of a multi-objective
optimization, different metrics have been introduced. Different tools for the preliminary model
analysis and validation phase of the optimal design and the post-processing of an optimization run,
having as goal to assist the designer with the decision-making task have been reviewed. Once all
these elements introduced, the focus is set in the next chapter on the optimization approaches based

on metamodels of the devices to be optimally conceived.



Chapter 2 Metamodel-based  Design
Optimization (MBDO)

In this chapter, the attention is focused on the integration of metamodels within an optimization
process. The optimal design process based on the use of metamodels is called “metamodel-based
design optimization” or “surrogate-assisted design optimization”, depending on the different
schools that worked in parallel at the development of this optimization approach. However, the
two denominations address one and the same thing. The idea behind the optimization based on
metamodels consists in reducing the computational burden of heavy simulations, by using fast-
evaluation metamodels. This chapter starts by presenting the metamodel-based optimization
process, identifying its advantages along with its drawbacks. The different types of metamodel-
based optimization strategies are then presented and each of them is studied in detail, highlighting
the different advances in the field, developed in this work. The application of these approaches to

the optimal design of electromagnetic devices is addressed towards the end of the chapter.

2.1 Why optimizing using a metamodel?

A natural question that arises is: “Why using metamodels within an optimization process?”

In order to accurately model the numerous physical phenomena fostered by electromagnetic
devices, heavy analysis codes are often used to simulate their behavior. Despite the advances in
computing power, over the last decade especially, the expense of running analysis codes remains
non-neglecting. Hence, single evaluations of finite element analysis codes can take for instance from
a few minutes up to hours, even days, following the desired type of simulation (e.g. dynamic
analysis, transient analysis etc.). The main purpose of the use of metamodels within an optimization
process consists therefore in the significant overall time reduction of the optimization process, by
avoiding heavy simulations with long computational time.

Numerical models are confronted to numerical noise (e.g. for the FEM, the source of numerical
noise consists of the mesh adaptation and the FE discretization) [NEI 96], [MES 07], which affects or
alters the convergence of the optimization algorithm, especially in the case of gradient-based
algorithms. However, metamodels, mostly interpolating models, are noise-free and hence they are
not confronted to such problems.

Complex numerical models are often non-robust, the analysis and even the mesh generation of
such models failing for different design configurations. Usually, the development of such a complex

numerical model is realized starting from an existing electromagnetic device, in order to simulate
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its behavior. The simulation model can thus be adjusted and improved by aligning the simulation
results to experimental measurements of the existing device. The numerical model will therefore
provide accurate results for design configurations close to the initial device configuration that
served at the construction of the numerical model; for important geometric and/or physical changes
in the design, the model is liable for failing in providing with an accurate prediction, or, even
worse, any prediction at all (failing the high fidelity simulation). When this event occurs, the design
engineer has to intervene, correct the problem by adjusting diverse parameters and re-launch the
simulation. The resources (e.g. time, money, experience, etc.) required by the development of a
completely parameterized, fault-proof numerical model can be prohibitive. In exchange,
metamodels do not need any parameter adjustment and, once again, they offer the robustness
which numerical simulations are not able to provide.

In the industrial practice, it often occurs that the person which develops a model of a device or a
system is not the same with the one that performs the optimal design task. Also, simulation models
may be exchanged between engineers from different teams inside the same company, and which
might be used for various purposes and necessitating different levels of accuracy. Thus, all the
compatibility issues generated by the use of different platforms, different hardware configurations,
different versions of the software, etc. might represent a real problem and result in an important
time loss in the product development. Due to their reduced size and portability property, the
metamodels might present themselves as a solution to this kind of problems.

Another aspect is related to the intellectual property protection issues. For example, in the case
of partnerships, models need to be exchanged between companies, or between the company and
diverse service provider companies or consultancy offices. Also, the commercial or in-house
CAD/CAE or other simulation software is often protected by means of static or network licenses,
dongles or other means of preventing illicit use of the software. Hence, the cooperation process,
ensuring the protection of the intellectual property contained by the developed models often faces a
great challenge. An answer to this problem of cooperation without disclosing confidential
information might come from the use of metamodels. From this point of view, the metamodel
behaves as a “black-box”, simulating the functional relationship between the inputs and outputs of
the fine model, and without supplying any insight into the nature of the underlying relationships.

Metamodels, due to their fast evaluation characteristic, allow a thorough exploration of the
design space, thus gaining “computationally cheap” insights into the functional relationship
between the input and the output parameters of the high fidelity model (computationally expensive
analysis code), by means of different statistical methods, such as parameter influence analysis,
ANOVA, non-influential factors detection, which can be excluded from the optimization problem
formulation by transforming them into fixed parameters, exploration of the design space, etc.

However, the use of metamodels within an optimization process presents also some drawbacks
that must be stated. No matter how many design configurations served at constructing a
metamodel, the global prediction accuracy of the metamodel will always be inferior to the accuracy
of the model that served as reference; the metamodel cannot replace entirely the real model. The
metamodel is less accurate than the real model, which might sometimes be deceiving from the
optimization point of view and could misguide the optimization process. To overcome this
drawback, several solutions have been proposed over the last decade, which will be overviewed

later on in this chapter.
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2.2 Metamodel-Based Design Optimization strategies

The optimization process integrating metamodels of the expensive simulation code can be found in
the literature under different denominations, depending on the domain of science that is employed,
the different schools, or it can be just a question of preference. Thus, to cite only a few members of
the scientific community addressing the subject from different domains of the science, in Canada,
Wang et al., in the mechanical engineering branch at the University of Manitoba prefer the term of
“metamodel-based design optimization” [WAN 07], at the University of Southampton, Forrester,
Sébester and Keane, who deal with aerospace applications, prefer the notion of “surrogate model-
based optimization” [FOR 08], Knowles et al. from the University of Manchester, UK prefer the
notion of “Optimization on a given-budget of evaluations” in the computer science domain [KNO
05], Couckuyt, Crevecoeur, Gorissen et al., at the University of Gent, in Belgium use both the notion
of “surrogate-based infill optimization” and “metamodel-based optimization” for their applications
in the electromagnetic domain [COU 10], Villemonteix et al., at Université Paris-Sud XI, France
prefer the notion of “Optimization of expensive-to-evaluate functions” for their diverse industrial
applications [VIL 09], Holmstrém, Quttineh et al. from the Mélardalen University in Sweden use
the notion of “expensive black-box optimization” within a mathematical framework [HOL 08], the
notion of “Kriging-based optimization” is preferred by Ginsbourger, Le Riche, and Carraro at the
Ecole Nationale Supérieure des Mines of Saint-Etienne in an applied mathematics context [GIN 10],
Hemker at Technischen Universitat Darmstadt in Germany speaks of “Surrogate Optimization”
when addressing electrical engineering applications [HEM 08]. In the international literature, there
is a great number of works addressing the integration of metamodels within the optimization
process, but all these can be regrouped in the following main categories presented in Figure 2.1. In
[WAN 07], an additional method is suggested, a direct sampling approach which uses metamodels
only to guide an adaptive sampling, but it does not use a formal optimization process, therefore it is

not considered in this study.
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Figure 2.1 : Different MBDO strategies
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The first approach presented in Figure 2.1a is a sequential approach, straight-forward or one-
shot approach, and does not involve any model reworking in the optimization process. A global
metamodel is first built using a metamodeling strategy, in order to accurately represent the
expensive simulation code. Next, a validation step might or might not be present in the
metamodeling process. Once the metamodel is created, it is then used to substitute the expensive
analysis code within a single- or multi-objective optimization loop using a classical optimization
algorithm, either a trust-region method (gradient-based optimizer) or an evolutionary algorithm
(e.g. genetic algorithm) to find the optimal design(-s). The main advantage of this approach consists
in the simplicity of its implementation. The fine model is simply replaced by the objective and
constraint functions metamodels within the single- or multi-objective optimization process. Also,
the metamodel is independent from the optimization process, thus it can be easily exchanged.
However, when the metamodels have a poor accuracy, the optimization process might fail in
finding the optimal solutions of the problem. This is more problematic in the case of constrained
optimization problems, where the constraint functions metamodels lack of accuracy might result in
finding a suboptimal design, or worse, finding an unfeasible design.

In the second approach, synthesized in Figure 2.1b, an iterative process of metamodel
adaptation is fostered within the metamodel-based optimization process. At each iteration of this
metamodel-based optimization strategy, the metamodels are used within an internal single- or
multi-objective optimization loop in order to search for optimal design(-s). Once a design or a set of
designs found, the expensive simulation code is run and the obtained values are used for
reconstructing the metamodels. The new metamodels integrate thus more information and result in
an increased accuracy. In order to ensure the metamodels increase of accuracy throughout
iterations, an additional global accuracy improvement phase can be present in the general
optimization process. Hence, the global metamodels prediction becomes more and more accurate
with the iterations, increasing the accuracy of the final optimal solution(-s). Apart from its relatively
moderated implementation complexity, this approach has the advantage of naturally coping with
the distributed computation, which could reduce substantially the overall optimization time. The
desired number of fine model evaluations at each iteration of the MBDO process is specified by the
designer. Nevertheless, a major drawback of this approach is represented by the high dependence
of its success on the global accuracy of the metamodels. When many design variables are involved
and/or the fine model is highly non-linear, obtaining high global accuracy metamodels is not
possible. Therefore, the metamodels lack of accuracy might prevent the optimization process to
converge to the optimal solution(-s) of the problem.

In many cases, the functional relationships that govern the functioning of the device to be
optimized are highly non-linear, in which case globally-accurate metamodels are difficult or
impossible to obtain, demanding a prohibitive amount of computation. For this type of problems,
an optimal solution might be required with a reduced number of simulation model runs. Thus, the
third approach considered and presented schematically in Figure 2.1c proposes to address this type
of problems, by combining the search for optimal solutions with the phase of metamodels
exploration, throughout the expression of an infill criterion or merit function. Compared to the
previous approach, this strategy does not seek to attain a high global accuracy of the metamodels.
Instead, the metamodels will present high accuracy locally, in the regions where the optimal
solution(-s) lies. This approach is the most complex among the three approaches presented, but also

the most efficient. Using a complex infill criterion which combines the progressive global
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improvement of metamodels along the optimization process with the search of optimal solutions,
the exploration of the design space is ensured while obtaining improved solutions, and with a
reduced number of fine model (e.g. simulation model) evaluations. An important drawback of this
approach is represented by the sequential character of its infill criterion, i.e. at each iteration of the
algorithm only one infill design is selected for evaluation using the fine model. Thus, at each
iteration the optimization process necessitates a valid output from the fine model. This is an
important inconvenient because simulation models are never completely robust; when a design
analysis fails, the automatic process is suspended and the design engineer needs to intervene to
adjust the simulation models parameters and resume the optimization process. Moreover, due to its
sequential character, the fine model evaluation cannot benefit from the advantages of the
distributed computation. To overcome this aspect, a couple of solutions are proposed in order to
adapt this MBDO approach to the distributed computation, therefore allowing for an important
overall optimization time-saving. This approach is well-suited for optimization problems with a
moderate number of design variables, i.e. less than 10-15 variables.

Generally, the metamodel-based optimization algorithms present two main features:

(i) Search the design space for the optimal solution(-s) using the metamodels, phase which is
named “metamodel exploitation”, or simply “exploitation”;
(ii) Search the design space for promising areas and improve the metamodels global accuracy,

phase which is called “design space exploration”, or just “exploration”;

These two features can be found at the basis of all metamodel-based optimization algorithms,
either as two independent mechanisms, as in the case of the second MBDO approach presented
above, or aggregated within a unique mechanism, as for the infill criterion of the third MBDO
approach previously presented.

In the following paragraphs, the three-mentioned metamodel-based optimization approaches
will be presented in detail and their advantages and drawbacks will be analyzed using both
abstract analytical test-problems and physical applications addressing the optimal design of
electromagnetic devices. A special attention will be dedicated to the latter one, which mainly
represents the core of this chapter, containing most of the author’s original contribution to the

domain and to which a dedicated optimization tool was developed.

2.3 Sequential metamodel-based optimization

This approach represents the most classic of the optimization strategies employing metamodels,
and also the most basic. The idea behind this strategy is to create a “cheap”-evaluation copy of the
expensive simulation model, by building a metamodel for each objective and constraint function of
the latter. The metamodel has the advantage of a fast evaluation, in exchange for the loss of
accuracy, allowing it to be integrated into an optimization process. The sequential metamodel-

based optimization technique can be described using the following steps:

- Step 1: Select an experimental design and run simulation model to compute the outputs;
- Step 2: Build a metamodel for each objective and constraint function of the optimization

problem using the points of the experimental design;



62 Metamodel-based Design Optimization (MBDO)

- Step 3: (optional) Validate the metamodels created at Step 2. If metamodels are not accurate
enough, then go to Step 1; otherwise continue with Step 4;

- Step4: Use an optimization algorithm (e.g. genetic algorithm, SQP) to search for the non-
dominated trade-off front using the metamodels built at Step 2;

- Step 5: Run the simulation model to calculate its outputs for the selected design.
The workflow of the sequential metamodel-based optimization technique is given in Figure 2.2.

Select initial sample points
using a DOE technique

Step 1

Evaluate initial designs using the
fine model

!

Fit metamodels for the
objective & constraint functions

Step 2

Search optimum design by
optimization using the metamodels

|

Evaluate optimal-found design
using the fine model

Figure 2.2 : Workflow of the sequential metamodel-based optimization
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Once an experimental design is selected, the simulation model is called to compute the output
parameters. A global metamodel (Response Surface (RS), Radial Basis Function (RBF), Kriging etc.)
is then fit over the initial samples. An optimization loop is then launched with a classical
optimization algorithm using not the “computationally expensive” simulation model, but instead,
the “computationally cheap” metamodel. Hopefully, if the problem is not multi-modal and the
metamodel gets to capture and accurately predict the output parameters of the analysis code that it
replaces, the optimum found through this optimization will also be the global optimum of the

simulation model. The mathematical expression of the optimization problem becomes thus:

min F(x) min F(x)
GX)<0(—16(x) <0 (2.1)
Hx)=0 Hx) =0

To exemplify this purpose, the single-objective two-variable optimization test function, the
modified Branin-Hoo function [PAR 10] is considered here.
2

51 , 5 1
Mi;liiyrjgize f(x1,x5) = (xz a2 X + —X1 6) +10 [(1 - g) cosx; + 1] + 5x; (2.2)

where x, € [-5,10] and x, € [0,15].
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> global opt.
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a) Contour representation b) 3D surface representation

Figure 2.3 : The modified Branin-Hoo function

The modified version of the Branin-Hoo function has only one global optimum, represented by

the yellow star in Figure 2.3 and two local optima, represented by the green stars in Figure 2.3 and
presented with their numeric values in Table 2.1.

Table 2.1 : Global/local optima of the modified Branin-Hoo function

X1 X, f Optimum type
-3.695 13.635 -16.644 global
2.59 2.745 14.772 local
8.875 2.055 46.188 local

To launch the sequential metamodel-based optimization with the modified Branin-Hoo
function, we consider a RBF metamodel as surrogate for the true function (i.e. fine model) in (2.2),
and we choose a space filling Latin Hypercube sampling design (LHS) of 10 designs to sample the
design space. Figure 2.4a presents the contour of the true function and the RBF metamodel is
presented in Figure 2.4b. The dots in Figure 2.4b show the support points.

\\\\\\\\
metamodel
e global

N true glob.

optimum optimum

100

a) True function (2.2) b) 10 LHS support points for the RBF model

Figure 2.4 : Model comparison for the Branin-Hoo modified function

The RBF metamodel captures the global trend of the true function, as can be seen in Figure 2.4.
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A gradient-based optimization algorithm (sequential quadratic programming — SQP in this case)
is used to search for the global minimum of the previously created metamodel. The two optima are
represented in Figure 2.4 through the white asterisks. Table 2.2 presents the optimum found using

the metamodel, in comparison to the global optimum of the true function.

Table 2.2 : True function/metamodel global optima comparison

Model type X1 X2 f f
true function -3.695 13.635 -16.644 -15.371
metamodel -5 13.364 2.342 -35.714

The results obtained for the modified Branin-Hoo function are deceiving. Although the
metamodel succeeded in capturing the global trend of the modeled function, its accuracy is not
good enough in order to predict the outputs of the true function with precision. The metamodel
cannot substitute the real model of the function.

The main drawback of this “one-shot approach” is thus represented by the inaccuracy in the
metamodels prediction of the true function. Moreover, in the case of constrained optimization
problems, the lack of accuracy of the constraint functions metamodels might misguide the
optimization algorithm, either by selecting a design which is suboptimal, or worse, a design which
fails to respect the fine model constraint, therefore unfeasible. A solution which might overcome
this drawback is represented by the use of an adaptive metamodeling strategy. The global quality
of a metamodel is related to the size of its list of support points, hence adding more points to this
list will improve the global accuracy of its prediction. Once we have seen that the success of the
“one-shot approach” is highly dependent of the global accuracy of the objective and constraint
functions metamodels, thus possibly deceiving, we will next analyze the integration of an adaptive-

metamodeling within an optimization process.

2.4 Adaptive metamodel-based optimization

The adaptive metamodel-based optimization consists in performing a sequence of multiple
optimization processes using a metamodel of the device to be optimized which is systematically
improved from one optimization process to the following one. The optimal design point resulting
from an optimization process is introduced into the list of support points that serves for
constructing new metamodels for the device to be optimized. By considering the previously
obtained optimal design for constructing new metamodels generally improves the prediction
accuracy of the new metamodels. Thus, through this systematic process, the metamodels prediction
is improved, increasing the chances of finding the global optimal design. The general process of this
technique as well as single- and multi-criteria particularities and implementation issues are

discussed in the following paragraphs.
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2.4.1 General process

The general process of this adaptive optimization process with systematic metamodel improvement

is considered. The adaptive metamodel-based optimization process consists of the following steps:

- Step 1: Select an experimental design and run simulation model to calculate the outputs;

- Step2: Build a metamodel for the objective and each constraint function of the
optimization problem using all simulated designs;

- Step 3: Use an optimization algorithm (e.g. genetic algorithm, SQP with multi-start”) to
search for the global optimum using the metamodels built at Step 2;

- Step 4: Run the simulation model in order to validate the selected design;

- Step 5: Add the design obtained at Step 4 to the list of evaluated designs (£);

- Step 6: Verify stopping criteria (e.g. prescribed number of simulation model evaluations,
total elapsed time, prescribed metamodels accuracy, etc.). If stopping criteria are

met, then stop the algorithm; otherwise go to Step 2, using the updated list L.

The general workflow for the adaptive metamodel-based optimization process is presented

Select initial sample points
using a DOE technique

l Step 1
Evaluate initial designs using the
fine model

l

Fit metamodels for the
objective & constraint functions

|

Search global optimum design by
optimization using the metamodels

l

Evaluate optimal design found }

graphically in Figure 2.5.

using the fine model

I

Add infill design to the set of
sampled data £
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Stopping criterion ?

Figure 2.5 : Adaptive metamodel-based optimization process workflow

As in the previous paragraph, a metamodel is built using an initial sampling plan (generated
using a space-filling strategy, such as Latin Hypercube). An optimization is launched using this

metamodel and an optimum is found. This optimal point is evaluated using the fine model, is next

7 The multi-start refers to multiple consecutive launches of the trust-region algorithm with different random initial points.
This process is required when the optimization problem is expected to be multi-modal, i.e. the optimization problem has
multiple local optima, or in the absence of such information. The best feasible design is retained as the global optimum.



66 Metamodel-based Design Optimization (MBDO)

added to the list of support points (£) and the metamodel is rebuilt, with the hope of improving the
prediction accuracy of the metamodel by the addition of supplementary information. The
optimization is re-launched using the new metamodel and the process is repeated until the true

location of the global optimum of the problem is found.

2.4.2 Multiple criteria

Electromagnetic optimal design problems generally have several — often conflicting — goals, and
constraints. The result of such a multi-objective optimization problem is a multi-dimensional set of
non-dominated trade-off designs forming a Pareto frontier. The number of dimensions of the
resulting Pareto frontier equals the number of objectives of the optimization problem.

Within a multi-objective MBDO framework, a major problem that arises consists in the selection
of — not just one optimal design to validate using the simulation model — but a set of non-dominated
designs of a given size. Using multi-objective optimization algorithm to find the Pareto front of the
metamodel at a given iteration of the MBDO algorithm, the result will consist of a large set of non-
dominated trade-off solutions between the different objectives. The size of this set, in order for it to
be representative for all trade-offs, increases with the number of objective functions involved.

If for the bi-objective optimization case, the selection of a representative sub-set of metamodel
Pareto® optimal solutions to be validated using the simulation model is intuitive (both
mathematically and graphically), resuming to selecting points out of a curve, for three or higher
dimensions, the selection should be done among the points forming a surface, respectively a multi-
dimensional surface. The difficulty consists in choosing the best-spaced designs, which, after
validation with the simulation model, would provide the designer with a diversified trade-off set of
designs, for him to select from.

The multi-objective adaptive MBDO technique can be described using the following steps:

- Step 1: Select an experimental design and run simulation model to calculate the outputs;

- Step 2: Build a metamodel for each objective and constraint function of the optimization
problem using all simulated designs;

- Step 3: Use a multi-objective optimization algorithm (e.g. NSGA-II) to search for the non-
dominated trade-off front using the metamodels built at Step 2;

- Step4: Select a given-size well-spread sub-set of designs (J) from the metamodel Pareto
front obtained at Step 3;

- Step 5: Run the simulation model in order to validate the selected designs;

- Step 6: Add obtained designs to the list of evaluated designs (£);

- Step 7: Verity stopping criteria (e.g. prescribed number of simulation model evaluations,
total elapsed time, prescribed metamodels accuracy, etc.). If stopping criteria are

met, then stop the algorithm; otherwise go to Step 2, using the updated list £.

When dealing with constrained optimization problems, the constraint functions are
metamodeled along with the objective functions. The constraints are then handled directly by the

optimization algorithm at Step 3, through their metamodel predictions. Thus, at the beginning of

8 The “metamodel Pareto front” refers to the non-dominated trade-off solutions found using an optimization algorithm and
the metamodels of the fine model.
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the MBDO process, when only a few support points are available for building the metamodels, and
especially for highly non-linear constraint functions, these metamodels lack of accuracy might have
an important impact on the shape of the metamodel Pareto front obtained at Step 3. This can result
in an undesired reduction of the feasible design space, therefore leaving out feasible areas of the
design space, or in a larger variety of non-dominated solutions, including solutions which satisfy
the metamodel constraints but not the fine model calculated constraints. This is more critical when
the optimal designs lie on the boundary between the feasible and unfeasible regions of the design
space. To overcome this drawback, a constraint relaxation method can be employed with the
MBDO process. The method consists of adding a tolerance to the metamodel prediction of the
constraint, so as to reduce the chance of leaving unexplored interesting areas of the design space.
Hence, the algorithm can start with a higher tolerance level (e.g. a few % of the initial constraint
limit), which can be decreased progressively to zero towards the last iterations of the MBDO
process, when the metamodels prediction becomes more accurate due to the infill designs (J)
added at each MBDO iteration to the list of support points (L).

The general workflow of the multi-objective version of the adaptive MBDO technique is

Select initial sample points
using a DOE technique

presented graphically in Figure 2.6.
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Figure 2.6 : Workflow of the multi-objective adaptive MBDO technique

When multiple optimization criteria are involved, at each iteration a set of optimal trade-off
designs are to be selected instead of just one design, as for the single-objective case. This change is
reflected in Step 4 of the adaptive MBDO technique, consisting of the selection of a representative
sub-set of designs of given size from the large set of Pareto optimal designs obtained by the multi-

objective optimization algorithm with the metamodels. The different ways of selecting a well-



68 Metamodel-based Design Optimization (MBDO)

spread representative sub-set of designs from the Pareto front obtained using the metamodels are

presented next.

2.4.3 Well-spread sub-set selection from a metamodel-optimal n-

dimension Pareto front

This stage of the MBDO process consists of selecting a reduced, but representative set of designs
from the Pareto non-dominated set of points, previously obtained from the optimization using the
metamodels. The selected designs are then evaluated using the fine model in order to validate their
feasibility and optimality. This step represents one of the key elements of the MBDO process; the
designs to be selected for validation using the fine model, at each iteration of MBDO, should be as
uniformly spread across the metamodel Pareto front as possible in order to attain a wide range of
optimal trade-off designs on the final Pareto front.

Let’s consider the bi-objective two-dimensional unconstrained optimization test problem “Binh”

[BIN 97], [GIL 09]. The mathematical formulation of the Binh optimization problem is given in (2.3).
Minimize  f; = x? + x2
X1,X2
_ _ 2 _ 2
fZ - (xl 5) + (xz 5) (23)
with X3, x, € [-5,10]
The solution of the optimization problem, obtained using a grid with a step of 0.2 represented by

black dots is presented in Figure 2.7. The Pareto front is represented by the red dots in Figure 2.7a

and the corresponding design variables are represented by the red dots in Figure 2.7b.
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Figure 2.7 : Optimal solution of the Binh test problem

From Figure 2.7b it can be observed that the non-dominated solutions of the Binh problem lie all
on the line limited by the point of coordinates (0,0) which minimizes the 1st objective f;, resulting
in the objective couple (0,50) and the point of coordinates (5,5) which minimizes the 2nd objective
f2, resulting in the objective couple (50,0). The Pareto front is presented in Figure 2.7a.

An initial experimental design of 10 points uniformly spread across the design space was

considered using the Latin Hypercube Sampling (LHS) strategy. Figure 2.8 presents the resulting
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initial Pareto front (black circles), which is composed of only 4 non-dominated points. Using the 10
initial LHS designs, a Kriging metamodel was created for each of the two objective functions, using
the very popular Design and Analysis of Computer Experiments (DACE) toolbox implemented
under Matlab®, available from [LOP 02]. The Kriging model is an interpolating metamodeling
strategy, having its origin in geostatistics and was first introduced for modeling computer
experiments by Sacks et al. in [SAC 89]. The mathematical expression of the Kriging predictor and
the associated prediction error estimate within DACE are given in Appendix A. An optimization
process is launched using the previously created metamodels of the true functions, by the means of
a multi-objective genetic algorithm, NSGA-II [DEB 02], implementation of [MOU (9a]. The
resulting Pareto front is presented in Figure 2.8 by the red circles.

The question that arises next is:

“Which n designs should be selected for evaluation with the fine model, in order to provide with a set of

optimal compromises as diversified as possible?

The infill designs are selected with the hope that after validation using the fine model, the

uniform distribution is maintained also on the true Pareto front.

60 \ \ 10 ‘ ‘
* ® initial true Pareto front nit. LHS ® metamodel opt.
s0- Py ® metamodel Pareto front|| ® init. opt. designs| ¥ infill designs
20! ¥¢ metamodel infill points || o p
" % true infill points 5 ° ﬁ 5 1
L ° i .
L3P P,
2 > o % P, ff P
20 ] . 4
Of i
107 ' . 1 i
ol P3 % R %‘k. [ ] |
P et
4 P,
5
_10 I I I I _5 I |
-20 0 20 40 60 80 -5 0 5 10
f X
a) Objective function space b) Design space

Figure 2.8 : Infill set selection for the Binh optimization test problem

In the bi-objective case, this choice is intuitive and can be made graphically. In Figure 2.8a, the 5
infill points, marked using the orange stars, were chosen among the metamodel Pareto solutions,
marked by the red circles, so that the Euclidian distances between each pair of consecutive points
(e.g. (Py, Py), (P, P3), etc.) are all equal. This selection resulted in a well-spaced set of points in the
design space, as can be seen from Figure 2.8b. The mathematical expression of the Euclidian

distance between two points, P; and P, is presented in (2.4).

dpip; = J K-+ -£) Lj €L 5) i #] 24

where dpi‘p]. is the Euclidian distance between P; and P;, fi and flj are the objective function values

of P; and P;, respectively.
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After the evaluation with the fine model (i.e. the true Binh function), the good spacing between
the selected points is maintained among the points marked by the magenta stars, as can be seen
from Figure 2.8a.

Things complicate if the Pareto front obtained using the metamodels is not convex or concave, it
presents discontinuities, or, even worse, the Pareto front has no particular form. When the
optimization problem consists of three or more objective functions, the graphical representation is
less obvious and the infill point selection becomes a complex task. This is why it is necessary to
clearly define the selection criteria.

To exemplify the purpose, let’s consider an optimization problem consisting of three objective
functions, the Viennet problem [COE 07]. The optimization problem consists of two design
variables with three objective functions to minimize, and three constraint functions to respect.
Therefore, the result of this optimization problem will be a 3 dimensional Pareto front. The

mathematical formulation of the Viennet problem is presented in (1.5).

(e — 2)? n (xp + 1)2 n

Minimize =
X1%z fi 2 13 3
(x1 +x,—3)%  (2x, — x1)?
fo= 175 1B
3x; — 2x, +4)?  (x; —x, + 1)?
G LD SRS S

2.5
with Xy, %, € [—4,4] (2.5)

subjectto g1 =4x; +x, —4<0

g=—x—1<50

g3 =x1 —x%,—2=<0

The true Pareto front® of the Viennet problem is known and presented here in Figure 2.9a. The

constraints are linear functions, limiting the design space, as presented in Figure 2.9b.
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Figure 2.9 : Pareto front of the Viennet optimization test problem

9 The notion “true Pareto front” refers to the Pareto frontier of the simulation model, thus composed uniquely of designs
evaluated using the simulation model.
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The three constraint functions will not be metamodeled; instead, they will be handled by the

optimization algorithm as “inexpensive constraints”?, thus using their true expression.

Random sub-set selection strategy

The most basic and intuitive approach for selecting a uniformly spread infill subset of the Pareto
metamodel front is through random selection. A large number of subsets of randomly selected
designs from the metamodel Pareto front are generated. From all these subsets it is selected the one
that presents the greatest Euclidian distance between each of its elements. To summarize, the

random strategy for selection of new infill points carries out the following steps:

- Step 1: Generate a large number (>1000) of subsets of randomly selected designs from the
metamodel Pareto front;
- Step 2: Calculate the Euclidian distance in the objective space between the designs of each

candidate subset;

@l == (- R+ (= )+t (=) = D (-1 @9)
=1

where df; represents the Euclidian distance in the objective space between designs i and j of the k-th

candidate subset and m is the number of objective functions of the optimization problem.
K

- Step 3: Retain the minimum distance for each candidate subset, d,;, ;
d*. = mind¥.
min n’llﬁl’l ij (2.7)

- Step 4: Order descending all subsets according to the values of d¥,;,, calculated at Step 3;

ke .
min-

- Step 5: Select the subset with the greatest value for d

The example of the Binh test problem from 2.4.3 is considered. The Euclidian distance expressed
in (2.6) is represented graphically in Figure 2.10 for the pair of points (P,,P3).
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Figure 2.10 : Euclidian distance in the objective space between two points, P, and P;

10 The “inexpensive constraints” represent those constraint functions whose expression is a simple analytical combination of
the design variables (e.g. geometrical constraints), thus easy to evaluate, no needing to run the expensive simulation model.
In exchange, the “expensive constraints” are those constraint functions that depend on the output parameters of the
simulation model, thus requiring the evaluation of the expensive model in order to compute their value.
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The described selection strategy is simple to implement but its computation effort is directly
related to: a) the number of objective functions, b) the size of the metamodel Pareto front, c) the
number of candidate subsets, and d) the infill set size. Hence, an important drawback is that it can
quickly become time consuming when, for example, the number of candidate subsets is large
and/or the size of the Pareto set issued from the optimization on metamodels is important. Another
drawback is given by the fact that the diversity of solutions in the infill set is directly related to the
number of candidate subsets. In order to ensure a uniform distribution of solutions in the infill set,
a higher number of candidate subsets must be considered, thus augmenting considerably the

computation expense.

Systematic best-spread sequential selection strategy

This time, instead of generating and testing a number of candidate subsets of randomly chosen
designs from the metamodel Pareto front, a systematic selection of the design with the greatest
Euclidian distance (in the objective space) from the already selected points of the infill set is

considered. The sequential selection process is described using the following steps:

- Step1: Select a design from the metamodel Pareto front (random or extreme point, for
instance, the point with the minimum value for one of the objective functions) and
add it to the infill set;

- Step 2: Calculate the Euclidian distance between all existing points in the infill set and all
the remaining designs of the metamodel Pareto front, using equation (2.6);

- Step 3: Select the design with the greatest Euclidian distance (in the objective space) to the
existing designs in the infill set (Steps 3 and 4 of random sub-set selection strategy);

- Step4: Add the design to the infill set and continue with Step 2.

This selection strategy benefits from the ease of implementation. A good spreading between
points is ensured by systematically choosing the point furthest from the existing points. However, a
drawback which should be mentioned consists of the fact that a considerable number of designs
will be selected on the extremities of the metamodel Pareto front. If the metamodels of the objective
and/or constraint functions have a low accuracy, the designs selected close to the limit of the
feasible domain have high chances of not satisfying the constraints after validation using the fine
model. If the metamodel Pareto front is not continuous and has many discontinuities, isolated
groups of designs on the Pareto front might be missed. The computational cost of this strategy is
directly correlated with the size of the metamodel Pareto front and especially, the desired size for
the infill set. The greater the size of the infill set and/or the metamodel Pareto front, the greater is

the computational cost of this procedure.

Discrete optimization-based selection strategy

To ensure a uniform distribution of designs inside the infill set, a strategy based on a discrete
optimization process is considered. This strategy is an automation of the random sub-set selection
strategy. The uniform distribution of designs inside the infill set is ensured by the convergence of
the discrete optimization algorithm. The discrete optimization problem has a number of variables
equal to the size of the infill set and one objective function to maximize, the distance in the objective

space, between all designs of the infill set. The variables of the discrete optimization problem are
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represented by the indexes of the designs from the list of the metamodel Pareto front. The

mathematical formulation of the discrete optimization problem is given in (2.8).
Maxiiénize f= r%n(di'j)
with id = [idy, idy, -+, idy, ], id; € {1,2,, 1,4} (2.8)
Lj=1-n,i#j

where n;; represents the size of the infill set, n,4 is the size of the metamodel Pareto front, id; is the
index of the i-th of the n;; designs in the list of metamodel Pareto front.

The variables of this optimization problem are integers, representing position indexes in the list
of metamodel Pareto front. The maximization of the distance described aims to uniformly spread
the n; points of the infill set. The uniform distribution of points inside the infill set is thus strongly

related to the convergence of this optimization process.

Selection point strategies discussion

In the previous paragraphs there have been reviewed three methods of selecting a set of well-
spread designs from the metamodel Pareto front. The goal of this step of the algorithm is to supply
the algorithm with a reduced set of potentially optimal designs from a very large set (n5; < Npgreto)
of Pareto designs obtained using the metamodels. These designs are next evaluated using the fine
model and hopefully the good spreading will be maintained also on the true Pareto front. Each
selection strategy has its own advantages and drawbacks. A summary of the advantages and
drawbacks of all three selection strategies has been represented in Figure 2.11 using a spider

diagram! representation. The desired criteria values are found at the extremities of beams.
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Figure 2.11 : Summary of the selection point strategies

11 The spider diagram, also known as radar diagram or chart, is a method used in statistics for visualizing multivariate data.
It allows multiple data sets comparison. More information available online: http://en.wikipedia.org/wiki/Radar chart.
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2.4.4 Application: LIM device design optimization problem

The MBDO technique was applied with success to the optimal sizing of a double-sided linear
induction motor (LIM) device [GON 11]. The LIM device to be conceived represents a reduced-scale
prototype of a device designated for railway system applications. The device to optimally conceive
consists of two symmetrical primaries, placed face-to-face, and a secondary consisting of an
aluminum plate, which is placed between the two primaries. Each of the two primaries has three
concentrated windings. The static part, represented by the aluminum plate is installed on the
ground, while the mobile parts, represented by the two primaries, are installed on the train. The

basic structure of the double-sided LIM device is presented in Figure 2.12.
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Figure 2.12 : Double-sided linear induction motor (LIM) device

The primary windings are fed from a three-phase AC symmetric voltage system, producing a
travelling magnetic field, which induces eddy currents in the aluminum plate. The travelling
magnetic field and the eddy currents give birth to a thrust force, which shifts the two primaries
along the length of the aluminum plate. The model of the device is parameterized i.e. the
dimensions of different elements of the device are easily modifiable.

This optimization study focuses on the optimal sizing of the primary of the device.

2441 Modeling of the LIM device

A 3D finite element modeling of the LIM device has been previously developed at the L2EP
laboratory, within the framework of a previous PhD thesis [GON 11a]. Due to the complexity of the
physical phenomena associated with the functioning of the LIM, the 3D finite element method was
considered in order to analyze the behavior of the device. To account for the two main parasite
effects: the longitudinal end effect, given by the finite length of the device, and the transverse edge
effect, given by the finite width of the primaries, a 3D electromagnetic modeling imposed.
Furthermore, to account for the temperature influence on the operation of the LIM, a 3D thermal
model has been developed. Both electromagnetic and thermal models were developed using a
commercial FEM software kit, Opera 3D, a product of Cobham Company [COB 12]. The two
solvers, magnetic and thermal, are managed through command lines, in batch mode, by Matlab.
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In order to accurately predict the behavior of the device, the two models, electromagnetic and
thermal, have been coupled. The electrical losses, consisting of the iron and Joule losses are
considered as unique heat source. The magnetic model needs the conductor temperature
information, which is supplied by the thermal model. To compute the conductor temperature, the
thermal model needs to take into account the iron and Joule losses, supplied by the magnetic
model. The coupling between the two models is graphically presented in Figure 2.13.

The interaction between several disciplines of a system makes the object of the Multidisciplinary
Design Optimization (MDO) [CRA 94], [BAL 94]. The resolution of these interactions is performed
using a fixed point iteration (FPI) method. This problem is called Multidisciplinary Design Analysis
(MDA).

Several approaches exist for solving such optimization problems. Among them, the classic
approach consists of placing the MDA with its solver directly within the optimization process. The
consistency of the interactions between the disciplines is ensured by the system analyzer (the FPI).
The optimizer is only concerned with the resolution of the optimization problem, in order to find
the optimal results respecting the constraints. This type of problem formulation is known under the

name of Multidisciplinary Feasible (MDF) formulation, and its expression is given in (2.9) [GIL 09].

MDF = SO[MDA] = SO[SA[EMM — TM]] (2.9)

where SO represents the system optimizer, SA is the system analyzer, EMM and TM represent the
electromagnetic, respectively the thermal discipline, which are evaluated sequentially (denoted by
the “—” sign).

The system analyzer of the coupled model, the FPI, uses in the mean from 4 to 6 iterations to
converge. Depending on the configuration, one coupled model evaluation (i.e. the evaluation of a
given set of design variables) takes between half hour and two hours. Hence, the evaluation time of
the model is prohibitive for traditional optimization approaches, such as genetic algorithms.

The multi-objective adaptive MBDO algorithm, using the discrete optimization-based infill point

selection strategy, was used for the MDF optimization of the LIM device.

n

(l4e, T,

Optimization loop Design vector
_________ T::E:___________________fgl____________________________________
1
T .
1
1
H 1
H 1
- |
: Rropper Li}'on Tmppei' 1
H 1
H 1
- |
: Lroppei' |
- |
I S
1 \ Limarcen J g »y 1
! SR, !
1 Ty
! {__ Consistence loop '\ y i
X
H 1
: Update the resistance :
i -1 1
H 1
H 1
L

Figure 2.13 : The coupling between the electromagnetic (EMM) and thermal (TH) models



76 Metamodel-based Design Optimization (MBDO)

2.4.4.2 Optimization problem formulation

The optimal sizing of the LIM device, using the coupling model previously presented will be done
by accounting for several optimization criteria. The goal of this optimization study is to find those
designs which present a small mass, a reduced level of iron and copper losses, and a force as
important as possible, while respecting the thermal feasibility constraints. However, the above
mentioned criteria are antagonist (e.g. a small mass design would also present a light force, but also
an important amount of losses), thus imposing a three-objective optimization problem formulation.

The mathematical expression of the optimization problem is given in (2.10).
Minimize f; = Mass(x)
X
f, = Losses(x)

fz = —Force(x)
with X = [twy, twy,, twg, U] (2.10)
tw; € [5,12], tw, € [5,10], tw, € [5,10], U € [0,20]
subject to Teo —200<0

where Mass represents the total mass of the device, Losses represents the sum of iron and copper
losses, Force is the Maxwell force, tw: is the width of the two end teeth, tw: is the width of the teeth
in the center of the windings, tws is the width of the teeth between the windings, U represents the
voltage applied to the primary, and Tw is the copper parts temperature. The different geometrical

dimensions considered for optimization are presented graphically in Figure 2.14.

C 1 = —

Figure 2.14 : Geometrical variables of the optimization problem

2.4.4.3 Optimization results

Due to the computationally expensive character of the 3D FE model of the LIM, a limited budget of
model evaluations was imposed to the optimization process. The total budget of 150 model
evaluations was divided in two quantities. Thus, the first 50 LIM device configurations were
initially selected using a space-filling strategy, by the means of a Latin Hypercube Sampling (LHS).
These device configurations were then evaluated using the fine model and for each of the three
objective and one constraint functions, a Kriging metamodel was created. The rest of 100 device
configurations have been selected by the MBDO process in packages of 10 designs, during a total of
10 MBDO iterations. Figure 2.15 presents the Pareto designs, marked with blue dots, obtained from

the optimization using the metamodels of the objective and constraint functions at the first iteration
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of the process. Among the total 10 000 metamodel evaluations of the genetic algorithm used to find
the metamodel Pareto front, about 4 000 designs are Pareto optimal (the blue dots). The infill set
selection strategy based on a discrete optimization process was used to select 10 well spread
designs for evaluation with the fine model (FEM) of the LIM, represented by the large black dots in
Figure 2.1. The red-filled triangles in Figure 2.15 represent the designs evaluated using the FEM of
the LIM device. One can remark that there is a small difference between the metamodel predicted
optimal designs and the designs evaluated using the FE model, meaning that the metamodels

predict with a good accuracy the outputs of the fine model of the LIM.

!
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Figure 2.15 : Infill set selection of 10 well-spread designs for evaluation using the FE model at the 1st
MBDO iteration of the LIM device optimization

The final Pareto front of the LIM device optimization using the presented MBDO process is
presented in Figure 2.16.
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Figure 2.16 : Pareto front of the LIM device optimization using MBDO
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The Pareto trade-off designs between the three objectives of the LIM device optimization
problem, represented by the stars in Figure 2.16 are computed with accuracy, being issued from the
fine model (FEM) of the LIM device. A good spreading of the non-dominated points along the 3D
Pareto front can be remarked from Figure 2.16, thus providing the designer with a large choice of
trade-off designs for him to make his final choice from.

The optimization process with an imposed budget of 150 FE model evaluations needed a week
of computation. The elapsed time for the MBDO process of the LIM device was decomposed
following the main steps of the algorithm. This time decomposition is presented graphically in
Figure 2.17 below.
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Figure 2.17 : LIM optimization time decomposition

From Figure 2.17, one can see that the total optimization time is dominated by the FEM
evaluation for the infill designs considered at each iteration of the optimization process. At the
opposite end, the time consumed by the metamodeling process and the optimization using
metamodels is completely negligible, with less than 1% of the optimization time.

A particular time consuming step of the optimization process of the LIM device is represented
by the designer’s intervention within the optimization process in order to re-launch the failed FEM
simulations. For certain configurations, due to the mesh discretization, the volume mesh generation
process might fail, causing the optimization process to stop. A less occurring event which makes the
optimization process stop is the FEM analysis failure. In these cases, the designer has to step in,
manually re-mesh the sensitive regions of the device and re-launch the FE model analysis. All this
wasted time and effort of the designer strongly advocates for an “as robust as possible” FE
modeling of the device, prior to its integration within an optimization process. The proposed
strategy allows bypassing this problem by simply ignoring the failed design evaluations. Once all
the simulation model evaluations at a given iteration are completed (successfully or failed), the
failed designs are left aside when the new metamodels are fitted. This represents one of the most
important advantages of this method, obtaining optimal results even with failing simulations.

However, the adaptive metamodel-based optimization approach might be deceiving, resulting
in the convergence to suboptimal designs, instead of the desired real optimal design. To overcome
this obstacle, a strategy that manages both the global accuracy of the metamodel and the search for

optimal solutions imposes. This approach is next presented in the following paragraph.



2.5 Criterion-based metamodel optimization 79

2.5 Criterion-based metamodel optimization

The metamodel that has been built and used in the previous paragraph is just an approximation of
the fine model that is to be optimized. The previous MBDO strategy works well when the
metamodel provides a good approximation of the fine model. In the case that the objective and
constraint functions present strong non-linearities, with lots of peaks and valleys which can be very
difficult to model, the previous MBDO strategy has strong chances to fail in finding the optimal
solution(-s). Furthermore, in order to accurately predict the outputs of the fine model, a large set of
well-spread training points is needed. The size of the design space is directly related to the number
of design variables and their domain of variation. When the number of design variables is
important, and their domain of variation is wide, the size of the design space becomes enormous.
Hence, it is impossible to uniformly sample the design space and create a metamodel of the fine
model with fair accuracy, with a limited budget of fine model evaluations (tens up to a few
hundreds).

Attaining a highly accurate metamodel is however not necessary, nor desired for this MBDO
strategy. Instead of wasting computational effort for sampling non-optimal, thus non-interesting,
zones of the design space, the focus should be on promising areas, with a high chance of detaining
the optima. Therefore, the idea of the strategy in this paragraph is to simultaneously seek the
optimal solution(-s) (exploit the metamodels), while improving the global prediction accuracy of
the metamodels (explore the design space). These two features can be aggregated within the
expression of an update or infill criterion. The optimization process will thus be guided by a unique
criterion for adding new points, called “infill point selection criterion” or just simply “infill criterion”,
which accounts for the optimal designs and the metamodel accuracy at the same time. An
equivalent term for the infill criterion is “utility function”, preferred by some other authors [HAW

a7

07], or “figure of merit”, “merit function”, notion preferred by other authors [SOB 05].

2.5.1 Single-objective infill point selection criteria

A detailed taxonomy of infill criteria for optimization with global metamodels is provided by Jones
et al. [JON 01]. The simplest infill criterion is the metamodel predictor itself. This idea consists in
optimizing directly using the prediction supplied by the metamodels. This “minimize prediction”
(“MinPred”) strategy is equivalent to the idea presented in paragraph 2.4. The focus in this case is
totally directed on the exploitation of the metamodels, assuming a good level of global accuracy for
the metamodels.

Another possible idea consists in finding the design that presents the maximum of uncertainty
in the metamodels prediction (i.e. the design that gives the maximum predicted error). Sampling
sequentially in those points that present the maximum of predicted error (maximum variance) will
result in a progressive improvement of the global accuracy of metamodels. Note, however, that in
this case, there is no mechanism of directing the search towards areas susceptible of containing the
optimal solution(-s) of the problem. This criterion focuses exclusively on the exploration of the
design space, while neglecting the search for optimal designs. In [SAS 02b], this uncertainty
measure is named “MaxVar” or the “maximum variance” criterion, and represents a simplified

version of the Watson and Barnes “minimize surprises” criterion [WAT 95] with application to the
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geostatistics. As its name suggests, this criterion aims to reduce the metamodel prediction surprises
by minimizing the maximum probability of finding an important discrepancy between the
predicted value and the true value of the function at a given point. Along with this measure, two
other criteria were proposed in [WAT 95] and further studied in [SAS 02b], the “locate the
threshold-bounded extreme” and “locate the regional extreme” criteria. These two criteria are
exactly and very similar to the probability of improvement (PI), respectively the expected
improvement (EI).

In order to show the action of the two basic criteria, MinPred and MaxVar, we consider the
modified Branin-Hoo function. An experimental design of 6 points is selected using the Latin
Hypercube Sampling (LHS) strategy, represented by the magenta circles in Figure 2.18. A Kriging
metamodel is created using the initial experimental design. A total number of 10 infill points is then
selected using the MinPred criterion, in Figure 2.18a, respectively the MaxVar criterion, in Figure
2.18b. Favoring exclusively the metamodel exploitation, the MinPred criterion searches locally,
ending up in finding one of the local optima of the function, as shown by the trajectory of points P
to P marked with red circles in Figure 2.18a. On the contrary, the MaxVar criterion performs a
design space exploration, globally improving the quality of the Kriging metamodel, as can be seen
from the shape of the final Kriging metamodel contour in Figure 2.18b, which is very close to the
true function, previously presented in Figure 2.4a. In this case, an important number of infill points
(6 points) were placed on the border of the design space, while only 4 points were selected in less

accurate spots inside of the design space, hence improving metamodels global accuracy.
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Figure 2.18 : Basic infill criteria, MinPred (exploitation) and MaxVar (exploration) for the modified

Branin-Hoo function

Both MinPred and MaxVar criteria present their advantages and their drawbacks, representing
the extreme figure-cases of balance between metamodel exploitation and exploration. Based on the
combination of these two criteria, a number of more complex infill criteria, with integrated
mechanisms for balancing the metamodels exploration/exploitation have been proposed by Sasena
[SAS 02b].
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The combination of the two features previously mentioned, within the expression of an infill
criterion can be done in a number of different manners. Among these criteria, the probability of

improvement (PI) and the expected improvement (EI) have shown a great popularity.

Lower Confidence Bound

The simplest infill criterion consists of minimizing a lower confidence bound (LCB), as proposed by
Cox and John in their SDO algorithm [COX 97]. The expression of this statistical lower bound is a

linear combination of the predictor § and the estimated error $, as in (2.11).

LCB = LCB(x) = y(x) — a8(x) (2.11)

where a represents a constant parameter which controls the balance between metamodels
exploration and exploitation.

The two extreme figure-cases of exploitation only, respectively exploration only, can be found
for different values of the constant a. Thus, for « = 0, LCB = J(x), yielding a criterion that exploits
the metamodels, optimizing directly using their prediction. The other extreme case, when a — o,
then the first term of LCB becomes negligible and minimizing LCB becomes equivalent to
maximizing $, therefore improving the global quality of metamodels.

From a practical point of view, the use of the lower confidence bound as an infill criterion is very
marginal, due to the choice of the user-defined parameter a. In order to choose pertinent values of
a for a good balance between exploration and exploitation, a certain insight into the pattern of the

objective function is required, which is not always obvious, nor desired in most cases.

Probability of Improvement

One of the most popular infill criteria in the literature is the probability of improvement [JON 01].
The Probability of Improvement (PI) infill criterion represents the probability of the current best
objective value being improved by sampling at a given point. The expression of the PI criterion is

givenin (2.12).

-3 1 0 512 /(962
PI=P[I(X)]=CI>< - )= f o-l1-912/(27) g
s SV2mJ_w
(2.12)

with [ =1(x) = max{f;,, — (%), 0}

where O represents the normal cumulative distribution function.

However, the PI criterion quantifies the probability of improving the best known value of the
objective function by a certain value, but it does not give any indication on the amount of this
improvement. The probability of finding a better solution is stronger in the region containing the
current best known solution and having less uncertainty. Thus, this makes the PI criterion guide the

search towards local optimal solutions.

Expected Improvement

The expected improvement (EI) criterion was first used by Schonlau [SCH 97] in 1997. An
optimization algorithm based on the expected improvement criterion, called “Efficient Global
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Optimization” (EGO), was proposed by Jones et al. in 1998 [JON 98]. Jones’ EGO algorithm stands
as reference in the field of metamodel-based design optimization and served as research basis for
many researchers over the time.

The expected improvement criterion quantifies the amount of improvement expected to be
attained by sampling at a certain point. The EI can be seen as an extension of the previously-

presented probability of improvement criterion, proposing a quantification of the improvement

given by the PI.
The mathematical formulation of the EI criterion is given in (2.13).
e (fr fmin =9\ o4
El = E[I(®)] = {(fmi" - Y)q)( e ) ¢’( e ) if$>0 2.13)
0 if$ =

where ¢ and ® represent the normal probability density function, respectively the normal
cumulative distribution function, represented graphically in Figure 2.19.

In the expression of EI, one can distinguish the two terms corresponding to the exploitation of
the metamodels (first term), respectively the exploration of the design space (second term).

When the value of the predicted error § is zero (i.e. point already sampled), the EI becomes null,
meaning that for this point there is no expectation of improvement. If the predicted error § is
different from zero, but small, and the predicted value of the function ¥ is very small, in
comparison with the current best known value of the function f,;,, then the first term of the
expression (2.13) becomes predominant. Thus, the search is performed locally, exploiting the good
accuracy of the metamodels prediction. Otherwise, if the predicted error § is important, then the
second term in (2.13) takes control, looking to explore areas of the design space with high

metamodel inaccuracy.
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Figure 2.19 : Normal probability density and normal cumulative distribution functions

Generalized Expected Improvement

The same team of researchers that integrated the expected improvement within the EGO algorithm,
proposed in 1998 an extension of the EI criterion to a general case [SAS 02b]. The novel criterion,

named generalized expected improvement (GEI) criterion proposes a control mechanism on the
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balance between the metamodels exploitation and exploration. The expression of the GEI criterion

is presented in (2.14).

g
|
GEI = E[I‘g(X)] =389 Z(—l)k (m) ug'ka
k=0

where u=u(x) = M
$(x)
Ty = —pukt + (k — 1Ty,
(2.14)
T() = CD(‘U.)
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= 500 = W5 Go)
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The balance between exploration and exploitation is controlled by the means of one single
parameter, g. One can see that increasing the value of g, the prediction error § becomes more
important, thus the focus being more on the metamodel exploration, and the improvement of the
global accuracy of metamodels.

In the expression of the GEI, for certain values of g we find the already overviewed PI and EI

criteria. These cases are resumed in Table 2.3 below.

Table 2.3 : Special cases of GEI

Values of g GEI expression Infill criterion
0 GEI = E[I°(X)] = PI(x) Probability of Improvement
1 GEI = E[I'(x)] = EI(x) Expected Improvement

To assess the influence of the g parameter on the value of GEI criterion, thus on the metamodels
exploration/exploitation, several values of g = {0,1,:+,5} were considered for the modified Branin-
Hoo function. The impact of g on the value of GEI is presented in Figure 2.20. In the first case, when
g = 0 a high probability of improvement is detected in the vicinity of a sampled point (x = [-5,10]),
as shown in Figure 2.20a. This point is characterized by a small predicted function value $ and a
high accuracy (small prediction error §). When g =1 the GEI criterion yields an expected
improvement both at the point x = [—5,10] and at the point x = [—5,0], as presented in Figure 2.20b.
The latter is characterized by a low metamodel accuracy (important value for the prediction error
8). As the value of g is increased (g = 3 and g = 5), the focus is moved from local improvement
towards global metamodel improvement (extreme point x = [—5,0], with high prediction error $),
as shown in Figure 2.20c and Figure 2.20d. Hence, by tuning the g parameter, the balance between
exploitation and exploration can be turned in the favor of one or the other, as desired.

From Figure 2.20, one important feature that should be remarked is the shape of the different

infill criteria, consisting of a plane surface over most of the design space, especially for higher
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values of the ¢ parameter. This might be tricky for most classical optimization algorithms and the
use of a global algorithm such as GA or a local algorithm such as SQP with a multi-start strategy is

required to determine the most promising sites from the infill criterion point of view.
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Figure 2.20 : Impact of g on the GEI, for the modified Branin-Hoo function

2.5.2 Adaptive infill strategies

The infill criteria overviewed in the previous paragraph, except for the two extreme cases,
“minimize prediction” and “maximum variance”, dispose of a lever to throttle between the
metamodel exploitation and exploration. Leaning this balance in the favor of one or the other can be
done in a number of different ways. Before overviewing some of the possible strategies of guiding
the search towards the global optimum of a function using the already presented infill criteria,
some assumptions have to be made:

Hypothesis 1: Sampling at the site with the highest uncertainty level (maximum variance) of the
metamodel leads to an improvement of the metamodels global accuracy.
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Hypothesis 2: Sampling at the site presenting the smallest metamodel prediction value (minimize
prediction) for the objective function leads to an improvement of the best known value for

the objective function, while locally improving the metamodels accuracy.

Considering the above-mentioned hypothesis, one can imagine that starting the optimization
process with a global search and turning to a local search during iterations will improve the
metamodels global accuracy at the beginning, when a few sites were sampled and thus the

metamodel has poor prediction accuracy, and will end up refining the global optimal solution.

Cooling strategy

Based on the GEI criterion, by analogy with the Simulated Annealing algorithm, Sasena proposed a
“cooling schedule” [SAS 02b] for his “cool criterion”, by starting with a large value for the g
parameter, which is reduced throughout iterations up to zero at the end of the optimization
process. Hence, at the beginning of the optimization process, when few points are sampled and the
metamodels accuracy is poor, the focus is set on the metamodels improvement, while towards the
end of the optimization, the metamodels dispose of an increased accuracy, the metamodels

exploitation is favored.

Switching strategy

In the same work [SAS 02b] with the previous strategy, a “switching criterion” has been proposed.
This time, the balance between metamodels exploitation and exploration is controlled by
alternating between the two extreme phases.

The proposed strategy starts by globally improving the metamodels prediction using the
“maximum variance” criterion for a given number of k iterations (k = 5), switching then to a local
search using the “minimize prediction” criterion until a local optimum is sought (three consecutive
points with a maximum distance of 0.1% of each other in the design space). The criterion is then

replaced by the “maximum variance” and the process is repeated until the stopping criterion is met.

Weighting strategy

Based on the expression of the expected improvement criterion, Sobester et al. introduce a new
strategy for balancing between the two phases of exploration and exploitation [SOB 05]. The new
strategy is based on a criterion called “weighted expected improvement” (WEI) which is formulated
as a linear combination of the two terms of the expected improvement criterion. The mathematical
expression of the WEI criterion is given in (2.15).
fmin — 9 —y) + (1 - w)s¢ (—mi" _5’) if$>0

3 $ (2.15)

WEI = WEI(x) = {W(fmin - (
0 ifs =

with w being the weighting factor, w € [0,1].
Considering the two extreme values of w, one can find the two extreme figure-cases, of
exploration only, respectively exploitation only. Therefore, for w = 0, the WEI criterion will locate

global improving sample points thus exploring the metamodels, while using w = 1 for the search
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with the WEI criterion will yield a local search, thus the pure metamodel exploitation phase. The
value of w = 0.5 for the WEI yields exactly the expected improvement criterion (0.5EI).

The strategy proposed along with the WEI criterion is similar to the one proposed in [GUT 01]
and consists in cycling through the values of w = {0.1,0.3,0.5,0.7,0.9}. Thus, the search starts with a
global design space exploration, moving towards metamodel exploitation. This pattern is repeated

along the algorithm till the stopping criterion is met.

Adaptive and metamodel based weighting strategies

Two more complex strategies based on the weighted expected improvement were proposed
recently in [XIA 11]. The first one entitled “adaptive weighted expected improvement” (AWEI) uses
a reinforcement learning inspired approach, based on a system of “rewards”. Its expression is given
in (2.16) below.

~ fmin - y A fmin - y PN
AWEI = AWEI(x) = {Wl(fmin —Ne (—S ) +wase (—S ) if$>0 (2.16)
0 if§ =

Instead of using one weighting parameter w of given levels, as in paragraph 0, two independent
weighting coefficients (w;,w,) are calculated automatically at each iteration using a system of
numerical rewards. Two potential rewards are calculated based on the average value of the mean
squared error (MSE) value of all predicted points, representing the potential amount of reward
resulting from each of the two possible actions, exploration and exploitation, respectively. The
determined rewards are then used to update the values of the two weighting coefficients, w; and
w,. Once calculated, the weighting coefficients are then used to calculate the AWEI criterion using
(2.16).

The second approach, the “surrogate model based weighted expected improvement” (SMWEI)
proposes to improve the action selection on a long term basis (accounting for the future iterations of
the algorithm), by predicting the cumulative rewards that are likely to occur as a particular action
selection. For this purpose, at each iteration a metamodel is used in parallel to the AWEI strategy
using the calculated pair of weighting coefficients in order to search for the global optimum of the
problem.

These two strategies seem however burdensome and difficult to implement. Moreover, the

AWEI strategy is not completely adaptive, since it still requires the tuning of an internal parameter.

2.5.3 Constraint handling

An important issue with the EGO algorithm is represented by the constraint handling [SAS 02].
Initially, the EGO algorithm was conceived to address unconstrained optimization problems [SAS
01], and was later adapted to handle also constrained problems.

As we have previously seen in paragraph 2.4.3, the constraint functions come in two flavors: the
ones calculated based on the outputs of the fine model (“expensive constraints”), and the
constraints calculated using only the design variables, through simple analytical expressions
(“inexpensive constraints” or “cheap constraints”). The expensive constraints require the run of the
simulation or fine model in order to compute their value, exactly as for the case of the objective

function. Thus, the expensive constraints can be handled in a similar way to the objective function.
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The cheap constraints are mostly geometric or topological constraints, which are imposed in order
to avoid aberrant designs (i.e. designs that are not physically realizable, with certain elements that
would overlap on each other). The value for these constraints is thus known without any (or
reduced) computational effort. Given their different nature, the two types of constraints can be
handled differently within the optimization process. Several approaches for handling both the
expensive and the cheap constraints have been proposed in the literature, each with their own
advantages and drawbacks.

The inexpensive constraints, as they are easy to determine, without any (or very reduced)
computational effort, are handled in most cases directly by the optimizer that searches to maximize
one of the infill sampling criteria presented in paragraph 2.5.1.

However, the expensive constraints, as they are not “a priori” known, require special attention.
The most employed means of handling this type of constraints are either through penalties or by
calculating the probability of feasibility, presented herein.

The general expression of the constrained optimization problem is presented in (2.17).

Minimize f(x)
X

SUbjeCt to ginexpi(x) <0,i=12,-- ’n;nexp
Gerp;(0) < 0,j = 12,0+, ng™" (2.17)

hinexpk(x) =0,k=1,2, ,.,’n;'lnexp
hexpl(X) =0,1=1,2, ,_"n’elxp

where ginexp,(X) represent the inexpensive inequality constraints, gexpj(x) are the expensive
inequality constraints, hje.p, (X) are the inexpensive equality constraints and hey,,(X) are the
expensive equality constraints.

The expensive equality constraints are very problematic, so their handling is difficult. To

overcome this problem, these constraints are mostly transformed into two separate inequality

constraints, hexpk| < €, using a tolerance level €, as in [HAW 08]. The value of ¢ is arbitrarily
chosen as a small percentage (5%) of the range between the minimum and maximum values of the
k-th expensive equality function. The same transformation can be done to handle the inexpensive
equality constraint functions.

An analysis of a number of constraint handling techniques, specific to the EGO algorithm, with
application to different analytical test problems can be found in [SCH 97]. In the following
paragraphs, the most representative EGO constraint handling techniques existing in the literature

will be presented.

Penalty function

A basic way of dealing with constraints is by penalizing the infill criterion whenever the expensive
constraint functions are not respected [SAS 00]. A large negative constant is added to the expected
improvement in order to restrain it from choosing points from infeasible areas of the design space.

This can equally be done for the inexpensive constraint functions.
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Considering for example the expected improvement criterion case, in order to account for

constraints, the following modifications impose:

EIp — {E[I(x)] + Penalty if ginexp(X) >0 0Or Jerp(x) >0 2.18)

E[I(X)] if ginexp(x) <0Oand gexp (X) <0

where Penalty is a large negative'? constant, EIP is the expected improvement with penalty.

However, an inherent problem with this approach consists in the selection of an appropriate
value for the penalty applied to the infill criterion. To overcome this drawback, a simplified version
of this procedure was presented by Soébester in [SOB 04]. Instead of adding a penalty to the
expected improvement criterion, each time the inexpensive or predicted expensive constraints are
violated, the EI is simply set to zero. As the EI criterion is always positive or null, it is sufficient to
set the value of EI to zero (i.e. there is no improvement).

EIP = E[I(¥)]

(Fim — ) (f min ~ 4 ) + 54 (f min ~ 4 ) if (8> 0 and Ginexp(®) < 0 and Jozp(x) < 0)  (2.19)
0 if(§=0 or Jinexp(X) >0 0r Jepp(x) > 0)

When the prediction error § of the objective function is null (i.e. already visited point, thus no
improvement), or at least one of the expensive or inexpensive constraint functions is violated, the
EIP criterion is set to zero. Otherwise, the EIP criterion is calculated using the expected
improvement expression. For this modified version of the expected improvement, f,,;, should be
the best feasible known value of the objective function. The importance of selecting the f,;, instead
of the f,,;,, (without regard to the feasibility) was proven using a one-dimensional demonstrative
example in [SOB 04].

The penalty method can be applied with all the other infill criteria earlier presented.

Probability of feasibility

The probability of feasibility method of handling constraints was proposed by Schonlau in [SCH
97]. The method consists in multiplying the expected improvement criterion by the probability of
each constraint function being feasible.

Let’s consider the presence of k expensive constraint functions within an optimization problem,
Gexpy X), Gexp, XD, ) Gexp, (X), With gorp,(X) < 0, for i = 1,2, -, k.

By analogy with the probability of improvement (PI), the probability of feasibility (PF)
represents the probability that the prediction will be greater or less than a constraint limit (i.e. the
constraint is satisfied) when sampling in a particular point. The probability of feasibility therefore
identifies feasible regions of the design space. The expression of the probability of feasibility for a

constraint function is given in (2.20).

_ _ (G(X) - gmin) - gexp) _ 1 J-OO ~[(6®) - Imin)-Fex ]2/(2§2)
PF = P[F(X)] = c1>< ; ==l e v dG (220

12 Since the problem consists of maximizing the infill criterion (e.g. expected improvement criterion), penalizing the criterion
consists of subtracting a large constant from its value, thus the negative penalty.
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where §e,, is the metamodel prediction of the expensive constraint function, g, is the limit value
of the constraint, G(X) — gmn is the measure of feasibility, and § is the variance predicted by the
Kriging model of the constraint function.

Then, the expected improvement with the probability of feasibility constraint handling becomes:
E[I(x) n F(x)] = E[IG)]IP[F(X) > gmin] (2.21)

This method is referred to by Forrester et al. [FOR 08] as the “constrained expected
improvement” (CEI). The probability of feasibility is calculated for each expensive constraint
function. The CEI is obtained by multiplying the expected improvement by the probability of
feasibility of each constraint, as in (2.22).

CEI = EI - PF, - PF, - -+ PE, = E[1(x)]P[F,(X)]P[F,(x)] +- P[F,(x)] (2.22)

By contrast with the penalty method, this method gradually drives the infill criterion to zero in
the zone of transition between feasible and unfeasible regions, thus smoothing the landscape of the
infill criterion in this area [PAR 10].

In a similar manner, the probability of feasibility can be used with other infill criteria, such as the

probability of improvement or the generalized expected improvement.

Expected violation

Another method of handling constraints within the EGO algorithm was proposed in [AUD 00].
Similar to the expected improvement criterion, Audet et al. proposed the quantification of the
amount of constraint overpassing, which they term as “expected violation” (EV). The mathematical

expression of the expected violation criterion is given in (2.23).

Jex Gexp =0\ .,
EV = E[V(®)] = (gexp O)CI)( p ) + ¢< P ) if$§>0 (2.23)
0 ifs=0

The EV has a greater value in regions where the constraint is likely to be violated or the
metamodels accuracy is poor and a lower value elsewhere.

In their implementation, the search for feasible infill points is done in two steps. First, a feasible
set of solutions is sought. Secondly, among all the feasible solutions, the ones having the greatest
expected improvement are selected as infill points.

Instead of maximizing or minimizing an infill criterion, they apply an enumeration method by
using a very large Latin Hypercube (10000, 100000 points) to sample the design space in the search
for feasible solutions. For each point of the Latin Hypercube, the EV is calculated for all expensive
constraint functions. The points having the smallest maximum expected violation among all
constraints are then selected. For these possibly feasible points the expected improvement is
calculated and the point with the greatest expected improvement is selected (in the original

proposition, the first 5 points are selected).

Constraint handling discussion

The constraint handling methods previously presented are analyzed here with regard to the

modified Branin-Hoo function first introduced in paragraph 2.3. For this, an analytical constraint
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function is considered and the expression of the constraint modified Branin-Hoo problem is given
in (2.24).

2

5.1 5 1
Migcllixn;ize flx,x;) = (xz - m’ﬁz + —X 6) +10 [(1 - g) cosx; + 1] + 5x;

suchas g(x1, %) = 2(18 — x;)? + 3(15 — x,)? — 40x; — 47x, — 100 (2.24)

With x1 E [_5,10], xz E [0,15]

Two of the constraint methods previously presented, the Penalty function respectively the PF
were considered for finding the optimum of the constrained modified Branin-Hoo function. For
each optimization run, an initial experimental design of 4 points chosen using a LHS strategy was
imposed. A number of 16 infill points were added by the EGO algorithm. The results are presented
graphically in Figure 2.21.

15 0 15 = o
[ < > Branin fun. ! <— > Braninfun.
. 7 Unfeasible | . 7 Unfeasible
—— Const. limit — Const. limit
| [ Feasible [ JFeasible
101 @ hit. LHS 10 @ |Initial LHS
T Infill points O Infill points

X X1

a) Penalty function b) Probability of Feasibility (PF)

Figure 2.21 : Performance comparison of EGO algorithm with two constraint handling methods

Both optimization runs did not encounter any difficulty in finding the site of the constrained
optimum of the problem, having a similar performance. From the results presented in Figure 2.21, it
can be seen that most of the infill points added by the EGO algorithm were placed inside the
feasible area of the design space, defined by the constraint function. However, some of the points
were equally sampled into the infeasible region, as a result of the metamodel improvement feature
of the El infill criterion used with the EGO algorithm. Moreover, it can be remarked that most of the
points sampled by the algorithm using the PF constraint handling method, Figure 2.21b, were
displaced mainly on one sides and the other of the feasible domain boundary. In compare, the
points sampled by the algorithm using the Penalty function for handling the constraint, Figure
2.21a, were placed into the feasible domain. This could be explained by the quadratic pattern of the
constraint function, which was relatively simple to predict with only a few support points, and thus

correctly penalize the infill criterion.
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For constrained optimization problems, both methods can be applied with the EGO algorithm.
The Penalty function seems more appropriate for cases where the constraint functions are relatively
simple. For highly nonlinear constraint functions, where a global accurate metamodel of the
constraint functions is unlikely to be obtained, the PF method is more appropriate. Both constraint

methods were implemented in the EGO algorithm developed.

2.5.4 Application: single-objective SMES device optimization

To analyze the behavior of the EGO algorithm and to assess its performance, a classical
electromagnetic test-problem from the electromagnetic community is considered. The device to be
optimally sized is a superconducting magnetic energy storage system (SMES), and the optimization
benchmark is known to the international electromagnetic community as the TEAM22 problem
[MAG 08]. The SMES device description along with the TEAM?22 optimization problem formulation

and the optimization process details are presented towards the end of the chapter, in paragraph 2.6.

2.5.5 EGO algorithm with multiple objectives (MEGO algorithm)

So far, the focus in this work was set on single-objective optimization problems. In practice, as
mentioned earlier in paragraph 2.4.2, most of the real engineering problems have several, often
conflicting, optimization criteria which must be accounted for within the optimal design process.
Optimization criteria such as mass, efficiency, environmental impact, production cost etc. are most
often present in the formulation of electrical devices or systems optimization. Until one-two
decades ago, when most of the optimization algorithms were single-objective, the designers used to
group the different goals of the optimization problem within one single optimization function, by
the means of some suitable weighting function which combined the goals of interest. However,
expressing all the goals of a design problem under the form of a single-objective function might not
always be obvious, nor desired, sometimes. Instead of a single optimal design, corresponding to “a
priori” fixed combination of weighting coefficients, the designer may wish for an optimal set of
compromise designs, for him or her to make his or her final choice from. For this, a multi-objective
optimization algorithm is required. Consequently, the number of simulation model evaluations
required by a multi-objective optimization algorithm to construct a decent Pareto front is much
more substantial than for the single-objective optimization case. In the following paragraphs, the
attention is turned to the case of optimization problems presenting multiple objectives and the way
this can be accounted for by the metamodel-based design optimization algorithm EGO presented

thus far, which is meant to reduce the number of calls to the expensive simulation model.

2.5.5.1 Existing multi-objective extensions of the EGO algorithm

A few attempts have been made recently to extend the principles of the single-objective EGO
algorithm to the determination of not one solution (global optimum) of a problem, but instead, a set
of non-dominated tradeoff solutions forming the Pareto front of a multi-objective problem. Most of
these multi-objective extensions are based on the EGO algorithm with the EI as infill point sampling
criterion. Here, there were selected for presentation the most representative multi-objective

propositions.
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Multi-objective EI

A multi-objective derivation of the expected improvement criterion has been proposed by Keane in
[KEA 06]. The multi-objective expected improvement was derived for the bi-objective case. First, a

bi-dimensional probability density function was calculated using the expression (2.25).

1 e~ (1=91)%/(257) .

- - e—(Yz—f/z)z/(Zﬁg) (2.25)
§1V2em $iV2m

d(Y,Y,) =
Instead of calculating the probability of improving each objective function individually, the
probability of improving the current Pareto front is calculated.
A new point can represent an improvement point in two ways: either by improving one of the
two objective functions or by improving both objective functions, as presented in Figure 2.22a.
The improvement measure is accounted through the probability of augmenting the current
Pareto front. A slightly different derivation, by considering only the probability of dominating at
least one non-dominated solution was developed by Forrester and Keane in [FOR 09]. The latter

approach was chosen for presentation herein.

£ 0
Improvement :
in f1(x)
® (5"1! 5}2)
P(f1, f2)
........................................................ (1. f2)
Improvement in Improvement ®#/ / /
both functions in £>(x) C(H (), % ()
(%) E f1(0)
a) Possible Pareto front improvements b) Centroid of EI and current Pareto front

Figure 2.22 : Bi-objective expected improvement calculation

The shaded area in Figure 2.22b represents those designs that augment the Pareto front and the
hatched area represents the designs that dominate one or several points of the current Pareto front.

By analogy with the single-objective case, the probability of improving the current Pareto front
is obtained by integrating the volume under the joint probability density function. The probability

of improving the current Pareto front is thus given by the expression (2.29).
PUGOT = PRGO <3 17,00 < 7] = [ Vi (2.26)

where V}4¢cp is the volume given by the hatched zone in Figure 2.22b.

In order to calculate the expected improvement, the position of its centroid is needed. Hence, the
position of the centroid of EI is then calculated by integration with respect to the origin and division
by P[I(x)]. The expression of the expected improvement is given in (2.27).
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EU@H=Pmmkdmxn=PM@MGK@—ﬁ@0f+ﬁK@—ﬁ@ﬂf (227)

where C represents the centroid of EI, located at ()71(x), Y, (x)) and # is the current Pareto front,
yi(x*) and y; (x*) are the coordinates of the point from the Pareto set, closest to the tested point x.
However, the decomposition of the area under the Pareto front and the calculation of its
integral, as well as the determination of the centroid of EI is a computationally demanding task.
Moreover, the generalization of the concept for cases of more than two objective functions is not at

all a trivial task.

Enhanced multi-objective PI

An enhancement of the multi-objective probability of improvement previously presented was
proposed by Hawe and Sykulsky in [HAW 07a]. Their proposition is meant to yield a more global
search by acquiring larger improvements.

At a given iteration, depending on the number of points forming the current Pareto front Ny, ,
the hatched area in Figure 2.22b, over which the probability of improvement is calculated, is
divided into several smaller areas. Each of these areas are then associated a level of improvement,
depending on the number of points from the Pareto front that are dominated by a design belonging

to a certain area. This division into levels of improvement is graphically presented in Figure 2.23.
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Figure 2.23 : Partitioning of the PI in n=5 levels of improvement

where P[I¥(x)] represents the probability that the tested point x yields a level of improvement k,
and P;[I¥(x)] represents the probability that the tested point x will dominate the k non-dominated
solutions of the Pareto front S;, 1, Si 42, ", Sisk-

The enhanced probability of improvement can thus be expressed as in (2.28).

Npar

PI*(O] = ) PlIF(] (228)
i=0



94 Metamodel-based Design Optimization (MBDO)

Even though the authors argue that the technique is extensible to optimization problems
implying more than two objective functions, this exercise is less obvious and a numerical burden is
required. This enhancement was introduced as a concept; no application was provided in support

to its worthiness.

ParEGO algorithm

A more straightforward attempt to transform EGO in order to account for the multiple criteria of a
multi-objective problem is represented by Knowles Pareto EGO algorithm (ParEGO) [KNO 05a]. In
order to determine the Pareto frontier of a multi-objective optimization problem, Knowles proposes
applying a transformation technique, prior to the infill search internal optimization loop of the EGO
algorithm. Hence, the multi-objective optimization problem is transformed into a single-objective
problem using a weighting method.

The algorithm starts by drawing an initial experimental design, which is evaluated using the
fine model. A set of evenly distributed weighting vectors A is generated, depending on the
dimension of the objective space, i.e. number of objective functions. The set of weighting vectors is

generated prior to the optimization process using the expression in (2.29).

K
, l
A={1= (Al,/lz,---,/lk)|z,1j = 1AVj, 2 =<, L€ 0,5} (2.29)
j=1
_(s+k—-1 . .. C .
where [A] = ( k-1 ), s is a constant determining the total number of weighting vectors of A, 4; is

a weighting vector whose elements are evenly distributed so that its sum is equal to the unit.

A vector of weighting coefficients 4 is then selected at random among the initially generated set
of evenly distributed weighting vectors A. Using the selected 1 weighting coefficients vector, the
normalized objective function values of the initial experimental design are then aggregated within a
single-objective measure, by applying the augmented Tchebyshev scalarization formulation [NAK
09] presented in the first chapter of the manuscript. The mathematical expression of the augmented

Tchebyshev function is given in (2.30).

k
£160 = max (3 - £00) + pjzzlzj £

(2.30)
with 0 = LRI
J J

where f;(x) is the single-objective measure obtained using the augmented Tchebyshev formulation
for the weighting vector 4, f;(x) is the value of the j-th objective function, /™™ and f/"** are the
minimum, respectively the maximum known or supposed values of the j-th objective function, f;(x)
is the normalized value of the j-th objective function to the range [0,1], and p is a constant with a
small positive value (p = 0.05 for their implementation).

The infill search problem is reduced then to the maximization of the expected improvement of
expression (2.13). Other single-objective infill criteria might be also used. At each iteration of the
algorithm, the infill criterion (EI for their implementation) is calculated for the single-objective

measure obtained by aggregation of the objective functions of the problem. An infill point is
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obtained and evaluated using the fine model. The aggregation measure is then recalculated using
the same vector of weighting coefficients 4. This weighting vector is maintained for a number of
iterations (5 for their implementation). After that, the next weighting coefficient A in the set of
vectors A is selected, so that the weighting between the objective functions is modified regularly.
The rotation of the different weighting vectors along iterations allows for progressively
determining the Pareto front of the initial multi-objective optimization problem.

This weighting procedure is the simplest multi-objective extension of EGO. A comparison of the
ParEGO algorithm to an evolutionary algorithm on a test suite of a number of analytical test
functions with a limited budget of 250 function evaluations is presented in [KNO 05]. A more
extensive comparison of ParEGO to similar and other algorithms, this time accounting for the noise
in the objective functions is presented in [KNO 09]. To assess the impact of noise on the
performance of the algorithms, different levels of numerical noise were artificially added to the

expressions of the objective functions.

Multi-EGO algorithm

Another approach for extending the applicability of EGO to account for multiple criteria is
represented by Jeong and Obayashi’s Multi-EGO algorithm [JEO 05]. Instead of aggregating the
infill criteria (expected improvement) of each objective function within one criterion, they propose
using the EI's of the objective functions directly in a multi-objective optimization. The formulation

of the infill sampling optimization problem is presented in (2.31).

Minimize {fy' (), fz (), fif %)}
(2.31)
with f7(x) = EI(x, f,, f**), i€{1,k}

where k is the number of objective functions of the multi-objective problem, EI(X, f;) is the expected
improvement value of i-th objective function for the design vector x, with respect to the current best
known value of the i-th objective function, f;?¢5¢.

A multi-objective evolutionary algorithm (MOEA) is used to determine the Pareto front of the
expected improvements of all objective functions. MOEA’s are population-based algorithms,
therefore the subsequent Pareto front is composed of a large set of points. From the EI Pareto front,
a reduced set of k solutions having the best EI value for each objective function is selected.
Additionally, for a better convergence of the Pareto front, the solution located closest to the center
of the n-dimensional EI Pareto front is also selected. The selected k+1 infill points are then evaluated
using the fine model. Their algorithm was applied with success to an aerodynamic shape
optimization problem [JEO 05]. A slightly modified version of this algorithm, including a k-means
clustering of the EI Pareto designs in order to limit the number of infill designs, was successfully
applied to the multi-objective (4 objective functions) optimization of the combustion chamber of a
Diesel engine [JEO 06].

Scalarizing one-stage algorithm

Another algorithm, which uses a transformation technique to turn the multi-objective problem

formulation into a single-objective problem, was presented by Hawe and Sykulski in [HAW 08].
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The objective functions of the multi-objective problem are normalized with respect to their
known minimum and maximum values, so that they lie in the interval [0,1], according to the

expression given in (2.32).

- fi®) = fimn
fl(x) = f'max _ fmin (2~32)
L L
where f;(x) is the i-th normalized objective function, f/™" and f™%* represent the current

minimum, respectively the maximum values of the i-th objective function.

Then, the augmented weighted Tchebyshev function presented in (2.30) is used to aggregate all
objectives within a unique variable. The same way as for the ParEGO algorithm, a normalized
weight vector is used, and at each iteration, a different weight vector is chosen at random from the
list of initially generated weight vectors.

Once the multi-objective problem is transformed into a single-objective problem, a conditional
likelihood based single-objective infill criterion [JON 01] is maximized with respect to the expensive

constraint functions.

2.5.,5.2 Pseudo-distance infill point selection criterion

The pseudo-distance (PD) infill criterion, initially proposed by Kreuawan in [KRE 08] was
integrated within the MEGO (Multi-objective EGO) algorithm developed by Berbecea et al. [BER
10]. This infill point selection criterion is based on the definition of the non-domination concept
which is found at the basis of the NSGA-II algorithm [DEB 02].

In order for a Pareto front to represent a good trade-off between the objective functions that

define it, two conditions have to be fulfilled, which can be expressed as:

(i) The non-dominated points that compose the Pareto front should be situated as close as
possible to the utopia point (point created using the minimum value of each objective
function among all points of the Pareto front);

(ii) The members of the Pareto front should be as uniformly spaced as possible.

The two previously mentioned features of a proper Pareto front are found at the basis of the
mechanisms for the advancement of the Pareto front of the pseudo-distance criterion.

The mathematical expression of the pseudo-distance infill criterion is given in (2.33).

PD = PD(x) = Dy(X) + D,(x) (2.33)
5 ~ m Dfi ~ m Mdom fi(Sj) _fi(x) . 1 034
CRORHCED) JZ Fomar— fimin ) 5 239
m m (s4) ~
_ Firen _ i~ hix) A
D,(x) = ; D,'(x) = ; ( fi—_max — fi_mm> 5 (%) (2.35)

where m represents the number of design objectives, ng,, is the number of points on the current
Pareto front, which are dominated by the trial point x, f; ;4 and f; min are the known maximum,

respectively minimum of the i-th objective function on the current Pareto front, f; and §; are the
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Kriging metamodels prediction of the i-th objective function, respectively the estimated error
associated to this prediction, fi(sj ) is the value of the i-th objective function of the j-th point of the

current Pareto front, which is dominated by the trial point x, fl.(s") is the value of the i-th objective
function of the point from the current Pareto front, closest to the trial point.

The infill sampling problem consists thus of maximizing the pseudo-distance infill criterion
expressed in (2.33)-(2.35). The pseudo-distance infill criterion is composed of two terms. The first
term, Dy(x), expressed in (2.34) is called the dominance distance and it focuses on points that
dominate one or more points of the current Pareto front. The second term, D,(x), expressed in
(2.35), is named neighboring distance, addressing those points that do not dominate any of the
existing points from the current Pareto front, but which would augment the size of the Pareto front.

In the expression of the pseudo-distance criterion, the uncertainty of the metamodels prediction
is equally accounted for within the two terms of the criterion. When § — 0, the metamodels
prediction present a high accuracy. In this case, the second term of the pseudo-distance, the
neighboring distance, tends to zero and the first term, the dominance distance, becomes important.
Hence, the maximization of the pseudo-distance infill criterion becomes equivalent to maximizing
the dominance distance, Dy (x). On the contrary, when § — oo, the metamodels prediction for these
points is highly inaccurate. In this case, the first term of the pseudo-distance criterion, the
dominance distance, becomes negligible, while the second one, the neighboring distance, becomes
dominant. For this figure-case, maximizing the pseudo-distance reduces to maximizing the
neighboring distance, D, (x).

The dominance distance D;(x) searches among the points that dominate one or more points of
the Pareto front, and which are predicted by the metamodel with a high accuracy. According to the
dominance distance, the point that dominates one or more existing Pareto points with the greatest
distance will be selected. This term is meant to address the first feature of a good Pareto front,
expressed in (i) and is thus responsible of advancing the Pareto front towards the utopia point.

The neighboring distance, D,(x) addresses those points which have a less accurate prediction
and are equivalent to the existing Pareto points (do not dominate any of the existing Pareto points).
This distance searches thus for less accurate points which fill at best the gaps between the existing
points of the Pareto front. This term responds hence to the second characteristic of a good Pareto
front, (ii) by attempting to improve the spacing of the Pareto front.

To exemplify the purpose, let's consider a simple example of a bi-objective optimization
problem. Suppose that at the i-th iteration of the optimization process using the pseudo-distance
infill criterion, the Pareto front is composed of five points, marked Py, P;, P, Py, Ps, as in Figure 2.24a.
The two trial points Tyand T,, belonging to the hatched area in Figure 2.24a, dominate one or more
points of the current Pareto front. Between the two trail points, the one having the longest
dominance distance to the current Pareto front will be selected, thus T;, as its dominance distance is
clearly larger than that of T,. This point will next be evaluated using the fine model, yielding a new
point on the Pareto front, P, and eliminating two existing non-dominated points, P; and P,. At the
next iteration of the optimization process, the new Pareto front is the one given in Figure 2.24b,
consisting of points Py, Py, Pg, Ps. Considering two other trial points, T; and T,, which in this case do
not dominate any of the existing points of the Pareto front, as they belong to the shaded area in

Figure 2.24b, the selection will be done with regard to their neighboring distance values. Hence, the

point T; will be selected over T,, due to its larger neighboring distance, D,ST3).
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Figure 2.24 : Example of optimization using the pseudo-distance infill criterion

2.5.6 Multi-objective EGO algorithm (MEGO)

A Multi-objective Efficient Global Optimization (MEGO) algorithm integrating the above-presented

pseudo-distance multi-objective infill criterion has been developed [BER 10]. Figure 2.25 presents
the flowchart of the MEGO algorithm. The MEGO algorithm follows the following main lines:

Step 1:

Step 2:

Step 3:

Step 4:
Step 5:

Step 6:

Step 7:

An initial sampling plan is selected using a design of experiments technique, such
as the Latin Hypercube Sampling (LHS) technique and the designs are evaluated
using the fine model (e.g. simulation model);

Kriging metamodels are fitted for each objective and constraint function of the
optimization problem over the list of sampled data (£);

An infill point is searched by maximizing the pseudo-distance multi-objective infill
criterion (paragraph 2.5.5.2);

Evaluate the previously-determined infill point using the fine model;

Test the infill point for improvement by recalculating the current Pareto front and
add the point to the set of Pareto solutions (£) if improvement is found; to
accelerate the calculus, an external C code developed by Yi Cao'® for extracting the
Pareto front from a list of evaluated designs is used here;

Add the evaluated infill point to the list of sampled data (£), augmenting the
information used for fitting the Kriging metamodels;

Verify the stopping criterion (e.g. a pre-imposed number of iterations is attained); if

the stopping criterion is met, then stop the process, otherwise continue with Step 2.

The workflow of the multi-objective EGO algorithm developed (MEGO) is given in Figure 2.25.

13 The well-written C code wrapped into a Matlab function for extracting the Pareto front out of a list of evaluated designs
developed by Yi Cao is available online on the Mathworks MatlabCentral site at the following address:
http://www.mathworks.com/matlabcentral/fileexchange/17251-pareto-front
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Figure 2.25 : Multi-objective Efficient Global Optimization (MEGO) algorithm flowchart

2.5.7 Distributed computation-suited MEGO

In its initial form, the MEGO algorithm, as all other EGO-based approaches have a sequential
mechanism of adding new infill points. At a given iteration, one single infill point is selected for
evaluation with the fine model. However, as the fine model is in most of the cases a simulation
model (e.g. FE analysis), requiring an important computational burden, the idea of distributing the
fine model computation on several different machines, or on different cores of the same machine
brings out an important potential gain in computational time. For this to be possible, the algorithm
should be able to generate at each iteration not just one design, but instead, a set of N, designs.
Therefore, a sum of structural modifications to the algorithm is required. Once generated, these
designs are then evaluated simultaneously using the fine model, each on a different available core
of the machine. The total fine model evaluation time of an iteration would be reduced to the slowest
of the model evaluations. Ideally, the time gain would be directly proportional to the number of
cores that perform the model evaluations for different configurations (e.g., the time needed for the
concurrent evaluation of 4 model configurations on 4 different cores of a machine would be 4 times
less than the time needed to perform the model evaluations sequentially, on a single core). In order

to test the purpose, two different strategies for generating a set of Ny, designs to allow
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distributing the model evaluations are implemented and tested on a high-end server'* which
disposes of 2 CPUs with 4 cores each. The two strategies were successfully tested with the
optimization of the SMES device of the TEAM22 benchmark problem on different core
configurations (from 1 up to 8 cores) of the server. The results of the SMES optimization can be
found in [BER 10].

2.5.7.1 Hybrid model approach

The first method that has been implemented and tested was initially proposed by Schonlau [SCH
97] within a single-objective optimization context based on the expected improvement. The idea
consists of using the objective function metamodel prediction in order to generate a set of Ny
infill designs at each iteration k of the algorithm. This approach can be described using the

following steps:

- Step 1: Initiate the list L'by £ = L and seti = 1;

- Step 2: Fit Kriging metamodels over the list £;

- Step 3: Search for an infill point by maximizing the pseudo-distance infill criterion;

- Step 4: Evaluate the infill design using the Kriging metamodels;

- Step 5: Augment the list L' by adding the Kriging metamodels prediction of the previously
determined infill point to £’;

- Step 6: Verify if the number of N, infill points has been reached; if yes, then evaluate the
N¢ore infill designs by the fine model using all available cores of the machine;

otherwise, continue with Step 2.

The above detailed steps can be graphically represented using the workflow in Figure 2.26.

L'=Li=1 }Stepl
v
Fit metamodels over
Step 2

the list £’

v
Search infill point by maximizing } Step 3

FETS the pseudo-distance criterion
= Vi
Step > i=i+1 )

Evaluate i-th infill design using } Step 4

the Kriging metamodels

No -
i = Neore?
Yes
{ i Step 6
Evaluate Evaluate Evaluate point
point #1 by point #2by | --- | #N,, by fine
fine model fine model model

Figure 2.26 : Workflow for generating N, infill points using the “hybrid model” approach

14 The server’s configuration consists of an Intel® Xeon® X5470 at 3.33GHz, dual CPU, on 64-bit, 4cores/CPU, with 32GB of
RAM, turning on a Windows Server 2007 64-bit platform with SP2.
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This approach was named here “hybrid model approach”, with regard to the hybrid evaluation
of designs (i.e. the list of sampled points (£) contains a mix of both fine model evaluated designs
and Kriging metamodel predictions).

The infill point generation in this case remains sequential. However, this does not have a strong
impact on the computational time since the infill point search phase consumes a negligible amount

of time compared to the infill point evaluation with the fine model.

2.5.7.2 Weighted pseudo-distance approach

The second implemented and tested approach for generating the N,,.. designs to be evaluated
concurrently using the fine model is inspired in part by the technique used by Sobester with the
weighted expected improvement (see paragraph 2.5.2), and in part by Knowles’ approach for
extending EGO to handle multiple objectives (see paragraph 2.5.5.1). In Sobester’s approach, the
weighting coefficients which control the balance between metamodel exploration and exploitation
of the expected improvement are used in order to generate the desired number of infill points.
Here, it is proposed to introduce a controlled weighting in the expression of the pseudo-distance
multi-objective infill criterion, which would balance between the different objective functions of the
multi-objective optimization problem. The variable weighting between the objective functions of
the multi-objective problem is meant to progressively determine the entire Pareto front. The

expression of the weighted pseudo-distance (WPD) criterion is given in (2.36)-(2.38).

m m
WPD(x,w) = Dy(x,w) + D, (x,w) = Z w;DSi (%) + Z w;DJi(%) (2.36)
i=1 i=1
m
Dy(x,w) = Z wiDSi(%) = w; DJ1(X) + w,D 2 (X) +  + Wy DI (%) (2.37)
i=1
m
D, (x,w) = Z w;:D{(%) = w, DA (%) + wpD2(X) + - + wiy, DI (%) (2.38)

i=1
Depending on the number of cores available for distributing the calculi, a list of uniformly

spaced weight vectors W is generated at the beginning of the optimization process, using the
procedure proposed by Knowles for his ParEGO algorithm (paragraph 2.5.5.1). The procedure for
generating N, infill points using the weighted pseudo-distance approach can be described using

the following steps:

- Step 1: Select a weight vector w; at random among the list of all possible combinations of
weights, W, making sure that no vector is selected twice;

- Step 2: Determine a new candidate location by maximizing the weighted pseudo-distance
criterion for the previously selected combination of weights w;, Max, WPD (x, w;);

- Step 3: Verify if the desired number of infill designs is attained; if this number is reached,
then launch the fine model evaluations of all infill points, otherwise increment i and

continue with Step 1.

The workflow sequence that generates N, infill designs within the MEGO algorithm is
presented in Figure 2.27.
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Figure 2.27 : Workflow for generating N, points using the “weighted pseudo-distance” approach

The infill search phase using different weight vectors can be equally distributed, but the
computational time gain of this phase would however rest negligible compared to the fine model
evaluation phase of the algorithm.

The two approaches which generate a set of infill points for distributing the calculi over the
number of available cores of the machine have been implemented with the developed MEGO
algorithm. The workflow of the MEGO algorithm integrating these two strategies for generating
N¢ore infill points is presented in Figure 2.28. Different time trackers (t, + t5) have been placed in
Figure 2.28 in order to track down the elapsed time of all major steps of the algorithm and will be
addressed later, in paragraph 2.6.4.3, which addresses the speedup for the optimization of an

electromagnetic device.
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Figure 2.28 : MEGO algorithm workflow implementing the two strategies for distributing the

calculi over several cores of one or more machines

Another phase of the algorithm that is equally subjected to distributed calculation of the fine

model is represented by the initial sampling plan evaluation, as can be seen from Figure 2.28. At

this step of the algorithm, the distribution of the fine model calculation can be done without any

additional complexity.

To reduce the total optimization time and to fully benefit from the computational power at hand

represented by the eight cores of the high-end server, the two strategies for generating a set of infill

designs presented here have been implemented within the developed MEGO algorithm. The total

optimization time gain is directly related to the number of available cores of the server. The

previously-mentioned electromagnetic optimization test-problem TEAM22 has been used as

benchmark for evaluating the potential optimization time-gain resulting from the use of different

number of cores for the server. The results of this benchmark are presented at the end of this

chapter, in paragraph 2.6.4.3.
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2.5.8 Development of the MEGO tool — graphical user interface

In order to facilitate the user the optimization problem formulation, as well as the parameter setting
for the different modules of the MEGO algorithm, a graphical user interface (GUI) has been
developed equally under Matlab®. The main window of the interface is presented in Figure 2.29.

The GUI is organized into several modules. The first module, entitled “Problem setup” gathers
the general information relative to the optimization problem definition (number of design variables,
objective and constraint functions, as well as the upper and lower bounds of the design variables
(i-e. box constraints)).

The second module, named “Project info”, assembles all information relative to the model used
in the optimization process (project name and path, name of the function that launches the fine
model evaluation). Remark that the GUI accepts only one function for launching both objective and
expensive constraint functions. This decision was made with respect to the vision of the model as a
black-box. In most electromagnetic engineering cases, the models of electromagnetic devices
represent simulation models (e.g. FE model), hence both objective and constraint functions are
obtained through just one launching of the model. However, the inexpensive constraints are
basically geometric constraints, evaluated independently of the simulation model and with no (or
much reduced) computational expense, thus specified here in a distinct function.

The third module of the interface, “Sampling plan”, is dedicated to the experimental design (or
sampling plan) selection and parameter setting. The type of desired initial sampling plan can be
specified here by the user among a list of available experimental designs (e.g. random, random
feasible, Latin Hypercube, Central Composite Design). An already evaluated sampling plan can be

reused here, by specifying the corresponding data file.

<) ParMoSAODoptions - D:\alex'\Projets'\Matlab\ TEAM22_8p'\TEAM22_8p.mat

File Run Help »

Optimization problem setup and ParMEGO algorithm tuning

~— Problem setup - Sampling plan
No. of design variables: 8 Type: !Latin Hypere... = I Size: | 50
No. of objective functions: 2 Load existing sampling plan: ... |
No. of expensive constraints: | 2 — Infill criteria — -
Single-obj; o o o
No. of inexpensive constraints: 1 go-ob) & B 5 I_ sl
Mutti-obi: ParEGO  ( MuliEl ¢ Pseudo-dist
Lowver bounds: [ [11.801,01,01,01.0,-30] ~ - — -
— Constraint handling
Upper bounds: I [451.8,1808)0830-10] Handiing method: Penalty ' pPF  EV
Stopping criteria
— Project info 7 Max HFM evals:  Max iterations: Time budget:
Project name: [ TEAM22_8p | | 100 | h ] m
. : ‘ _ Save data
Project path: p.'talex\Proletsmaﬂab\TEAmzz ek e |—1 0 T ‘
High fidelity model file: | FEModlel_TEAM22_Sp ‘ — Distributed computation -
Available cores: I 1
Inexpensive constraint I INexpCon_TEAM22_Bp
function file: = = | Strategy: & hybrid { weighted

Figure 2.29 : Main window of the MEGO graphical user interface (GUI)
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Several both single- and multi-objective infill criteria among those discussed in paragraphs 2.5.1
and 2.5.5.1, along with different constraint handling methods presented in paragraph 2.5.3 have
been implemented within the algorithm and their selection is made possible in the graphical
interface.

Other parameters, such as stopping criteria (e.g. given number of fine model evaluations,
number of iterations, given time budget), results saving parameters and parameters required for
distributing the fine model evaluation (number of available cores, parallelization strategy, server

configuration) can also be specified in the interface.

2.5.9 MEGO coupling with ModeFrontier® optimization software

First of all, it is necessary to state that the author does not intend to promote here any commercial
software in any way. The decision of choosing one optimization software over another for coupling
with the developed algorithm has been made here purely on license availability considerations and
ease of coupling implementation. Both tested optimization software, ModeFrontier® [EST 12] and
Optimus® [NOE 12], offer the possibility of adding an external scheduler to their optimization
process. For convenience, only one of the two software has been chosen for coupling with the
MEGO algorithm developed in this work.

The advantages of coupling the developed MEGO algorithm with a commercial optimization
software, such as Esteco’s ModeFRONTIER® are manifold. Apart from the different optimization
algorithms available under ModeFrontier®, the software fosters a large palette of statistical analysis
tools (e.g. ANOVA, correlation matrices, scatter plot matrices, box-whiskers etc.) which are meant
to supply the designer with insights into the model of the device to be optimally designed, thus
helping him to analyze and formulate his optimization problem. The response surface methodology
(RSM) is equally present in the software; metamodels such as polynomial, RBF or Kriging can be
created and surfed with ease. A sum of response surface tools is equally available in the software.
Moreover, the software beneficiates of an important number of visualization and decision-support
tools (e.g. 3D and 4D bubble plots, history charts, parallel coordinates representations, clustering
charts etc.), which are meant to assist the designer in the decision-making process. In order for the
user to beneficiate from all these analysis and visualization tools, along with the developed MEGO
algorithm, all within a homogenous design environment, the MEGO algorithm implemented in
Matlab® has been coupled with the ModeFrontier® optimization software. This coupling was
possible due to the opening of the commercial software offered by Esteco starting with version 4.3.0
of the ModeFrontier® software, by the means of an external scheduler bridge integrated in the
software’s workspace.

Figure 2.30 presents the coupling and the information flux between ModeFrontier®
optimization environment and the MEGO algorithm developed under Matlab®, for the optimal
design of a SMES device modeled by finite elements in Opera® 2D. The roles of the different

modules presented in Figure 2.30, are presented in Table 2.4.
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Table 2.4 : Role of the different modules in Figure 2.30 within the SMES optimization process

Module Role
ModeFrontier® environment | start optimization, manage and visualize results
MEGO optimizer perform optimization on a low-budget of FEM evaluations
Analyzer launch FEM evaluation, export results to ModeFrontier®
Opera® 2D perform FEM evaluation (pre-, post-processing and analysis)

The SMES device optimization is launched by ModeFrontier® in a master-slave process.
ModeFrontier® sends a start signal to Matlab®, passing the control to the optimizer, the MEGO
algorithm. The optimization process is then launched in Matlab® and the MEGO algorithm makes
regular calls to the finite element model of the SMES device, throughout a Matlab®-developed
bridge. The SMES model evaluation is done using the commercial finite element optimization
software Opera® 2D of Cobham. The FE model evaluation implies three distinct phases: pre-
processing (the mesh is generated for the given geometrical configuration), analysis (a static
analysis is performed for the SMES model, generating a results file) and post-processing (analysis
results are extracted and made available to the Matlab® model launching function by the Matlab®-
Opera® bridge). Depending on the geometrical configuration, one FE model evaluation (pre-, post-
processing and analysis) takes between 2-3 and 10-15 seconds. The Matlab® model launching
function then exports the results to the ModeFrontier® optimization environment. Hence, the
optimization process can be followed interactively in the ModeFrontier® environment. Once the
optimization process has finished, the control is returned to ModeFrontier® and the optimization

results are managed and analyzed in its environment.

Optimization environment

1R& mOodeFRONTIER

]

Start [xl-, yi]
[ 1
Optimizer X; 1 Analyzer ; Pre-processor SMES & !
MEGO L - device : |
| Analysis .
yi 1 - ‘\ H |
- | Post-processor : 1
1 , il
I J I
1 |
1 I
1 JECIITTITEIPIIIPIEN PRARRRRRRRAR |
1 Vi |
L o e e e e e e e e e e e . |

Figure 2.30 : MEGO optimizer integration within ModeFrontier® environment
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2.6 Application: SMES device optimization problem

In order to assess the performance of the different single- and multi-objective MBDO approaches
presented in this chapter, a classic electromagnetic test-problem of the electromagnetic community
is considered. The device to be optimally sized is a superconducting magnetic energy storage
system (SMES) [ALO 08], [MAG 08]. The SMES device consists of two concentric coils made of
superconducting wires, disposed as in Figure 2.31. The coils are fed with energy from the network
in opposite directions. Then, the coils are short-circuited, the energy being stored in the coil’s
magnetic fields. The energy is released when needed by reconnecting the coils to the network.

The goal of the optimization benchmark is to find those configurations (geometric and electric
parameters of the coils) that give a storage capability of 50 kWh (180 M]J) of the device, and a

minimum value for the stray field at a given distance from the device.

A

First coil

Second coil

btation

i‘

Figure 2.31 : 3D representation of the SMES device

2.6.1 TEAM?22 benchmark description

The SMES device optimization problem has been first proposed as single-ob