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Notations & Usual definitions

Set theory and topology

is the set of natural integers and

is the field of real numbers and

In all this document, the integer represents the dimension of the state space
denotes the absolute value of : denotes the Euclidian norm of
If is a linear mapping from to denotes the operator norm, that is

is the Euclidian open ball centered in  of radius
is the Euclidian closed ball centered in  of radius

If is a subset of |, we denote by  the interior of , that is the biggest open

subset of

Similarly, we denote by  the closure of , that is the smallest closed set containing

The boundary of is defined by !

The set " is convex iff for any $# and for any % & , we have
%%
It " , the convex hull of |, denoted<¥ , is defined as the smallest (in the

sense of inclusion) convex set containing . We denote also<F the closure of

the convex hull of . We recall that a compact set has a compact convex hull.

If and are bounded subsets of |, the distance between and is defined by

B9/ .



Notations € Usual definitions

Functions & Vector fields

We call function any Lebesgue measurable mapping from to
We call vector field any Lebesgue measurable mapping from to

For any , if is an open set and , denotes the set of
mappings from  to having continuous differential up to the order . We also
define . A mapping is said to be of class
iff it belongs to ;

If is a differentiable mapping, we denote its differential at the

point

If is a differentiable function and is a vector field, we denote

the Lie derivative of  along

If and are differentiable vector fields, we denote the Lie bracket of and
defined by "ol !

For any # , if is an open set, g denotes the set of locally
essentially bounded measurable mapping from to . For any & and
any compact set ' , we denote(( ) 10/

For any # , if is an open set, denotes the set of (globally)
essentially bounded measurable mapping from to . For any , we
denote(( + /01

A function is positive definite, denoted by 23 | if3B and43 for

all® . A function is negative definite if "23

A mapping 6 is proper if for any compact set ' , 6™ is a

compact set of

A multivalued map 9 from a set : to a set ; , denoted 9:< ; , 1s a map
9 = , where = denotes the set of subsets of ; .

Miscellaneous
For any >?3 and .@fE B,



The set  is defined as the set of strictly increasing continuous functions
with

We also define
The set is defined as the set of continuous functions such
that:

! is decreasing and "

The identity mapping of a set $ is denoted %. If the set $ is clear from the context,

we simply denote it %

The vector space  is endowed with the Borel (-algebra and the Lebesgue measure.

We denote ) the set of all zero measure subsets of

If * is a diffeomorphism, * * denotes the pullback by * . See Appendix B.

Abbreviations

Here is the list of the abbreviations used in this document. Those with a , are defined in

details in Appendix - .

DI : Differential Inclusion.

FTS: : Finite-Time Stable.

GAS: : Globally Asymptotically Stable.
GFTS  : Globally Finite-Time Stable.
LAS: : Locally Asymptotically Stable.
LAT- : Locally ATtractive.

ODE : Ordinary Differential Equation.

SPI : Strictly Positively Invariant.
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(zeneral introduction

Homogeneous, from Ancien Greek ,
"of the same race, family or kind",

from ,"same" and , "kind".

The homogeneity is an intrinsic property of an object on which the flow of a particular
vector field operates as a scaling. This definition, rather simple, entails a lot of qualitative
properties for a homogeneous object, and is of particular interest in view of stability
purposes.

The study of the stability or the asymptotic stability of a dynamical system is a
central problem in the control theory. Given that the equations of a system are very often
impossible to integrate explicitely, indirect methods have to be used for getting qualitative
properties. Even though the results of Kurzweil |Kurzweil 1963| and Clarke |Clarke 1998
prove the equivalence of the asymptotic stability and the existence of a smooth Lyapunov
function, finding such a Lyapunov function may be a very difficult task. Qualitative
results not involving the computation of a Lyapunov function are therefore of a great
interest. This is why the homogeneity theory has been developed and used in control
theory: the rigid properties of homogenous systems simplify the study of the stability and
give sufficient conditions for deriving it.

The literature on the homogeneity theory is vast and detailed. A lot of theoretical
and practical results have been proved in the last decades, and used in different context.
The first Chapter of this work is devoted to a state of the art about homogeneity. The
usual context of homogeneous systems as well as their main features are recalled. In
that Chapter, we present the three steps of the definition of homogeneity. The classical
definition, going back to Euler and his homogeneous function theorem, is very common
in mathematics as well as in control theory. The weighted definition, firstly introduced in
control theory by Zubov and Hermes, was extensively studied by Khomenuk, Kawski and

Rosier afterwards. It is nowadays the most widely known and used notion of homogeneity.
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General introduction

The geometric definition is the last step of the homogeneity theory, giving it a unified and
coordinate-free framework. The main results of the theory are stated in the first Chapter,
among which various ways of checking homogeneity, the theorem of Rosier (homogeneous
converse second Lyapunov’s theorem), the equivalence between local attractiveness and
global stability, the link between a negative degree of homogeneity and the finite-time sta-
bility, and the Hermes’ theorem (homogeneous extension of the first Lyapunov’s theorem).
Finally this Chapter gives a quick introduction to the theory of local homogeneity.

The next Chapters are devoted to extensions, adaptations and applications of the usual
theory. This work focuses on two main aspects of the homogeneity theory: first, deriving
stability properties from the homogeneity or the local homogeneity; second, proving that
the homogeneity of a system provides some useful robustness properties. The results are
split into Chapters 2 to 5.

In Chapter 2, we extend the existing results on the homogenization of a nonlinear sys-
tem. This technique has been already defined and studied in the framework of weighted
homogeneity. We focus here on an extension to a more general setting of the geomet-
ric homogeneity. The advantages of the proposed extension include the coordinate-free
definition, allowing us to define an approximation that is perserved under a change of coor-
dinates, and its larger range of applicability due to a more general definition of geometric
homogeneity. The main approximation theorems are extended and academic examples of
use are given.

The third Chapter develops a theoretical framework for defining geometric homogene-
ity of discontinuous systems and/or systems described by a differential inclusion. Few
results already exist in this direction; we propose a unified theoretical framework based
on the geometric homogeneity. We show that the proposed definition is consistent with
respect to the Filippov’s regularization procedure. Then we give extensions of well-known
qualitative properties of homogeneous systems, which have been presented herebefore.
First, the converse homogeneous Lyapunov Theorem (Rosier’s Theorem) is extended us-
ing the result of Clarke, Ledyaev and Stern about the existence of a Lyapunov pair for an
asymptotically stable differential inclusion under standard assumptions. This allows us
to link negative degree of homogeneity and finite-time stability. The equivalence between
local attractiveness and global stability is also proved to hold.

Even though a nominal system is homogeneous, in applications the perturbations and
unmodelled dynamics cannot be avoided. That is why Chapter 4 is devoted to a study of
robustness properties of (weighted) homogeneous or homogenizable systems. We adress

the question of the input-to-state and integral input-to-state stability property of homoge-

12



neous systems. In order to do that, we consider two different assumptions. The first one is
algebraic and consists in the homogeneity of the system with respect to the perturbation.
This assumption, although appearing at first sight to be very strong, is in fact tractable
since a nonlinear change of coordinates can be performed on the perturbation. The second
assumption is more analytic: we consider that the diffence between the perturbed and the
nominal systems is bounded in an appropriate way. Both assumptions lead to a type of
robustness linked to the degree of homogeneity. The results are compared to each other,
and finally extended to the more general setting of homogenizable systems.

In the fifth Chapter, we study the example of the double integrator system. This
system is very important in practice (in mechanics, electrical engineering...) since a lot
of systems have a nominal form of the double integrator. However, in some applications,
the usual exponential convergence is not sufficient. Our aim is hence to synthesize a fam-
ily of (homogeneous) continuous finite-time stabilizing output feedbacks. The proposed
algorithm is somehow between the linear control and the purely discontinuous control
(twisting algorithm). The former does not achieve finite-time convergence, but the lat-
ter presents some chattering effects that are often an issue in practical situations. The
proposed method is a mix between the preceding two, and displays some of their main
features. Thereafter, we study the robustness of the closed loop system with respect to
perturbations and the impact of the discretization by using techniques developed before.
Simulations conclude the theoretical study of this system and illustrate its behavior.

Finally, a conclusion summarizes the results presented therein and proposes some
ongoing or future works. Three appendices are given afterwards, the first two recalling
classical definitions and results used in the document, and the third one presenting another
result not linked with the topic of this document, but done in parallel and published in
[Bernuau 2013d].
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Chapter 1

Homogeneity
Contents
1.1 Introduction . .. ... ... ... .. e 15
1.2 Standard homogeneity . .. ... ... ... ... ... ... 17
1.3 Weighted homogeneity . ... ... ................ 20
1.4 Geometric homogeneity . . . . . ... ... ... .. 000 24
1.5 Extensions. . . . . ... ... ittt 28
1.6 Conclusion. . . . . . . . . i ittt it e 29

1.1 Introduction

Homogeneity has a long standing history. In the classical sense, a mapping is homoge-
neous if it maps an argument scaled by a given constant to the image of that argument,
scaled by the same constant at a fixed power, called the degree. This property has been
the subject of a huge amount of works, because it holds for a lot of very common math-
ematical objects, like linear mappings or norms. Omne of the most interesting property
of homogeneous objects is that the scaling operation allows us to compare the behavior
at any point with the behavior at a corresponding point on the sphere. This fact can
be used for instance to reduce the dimension of a problem or to obtain symmetry prop-
erties, like the homogeneous function Theorem of Euler. The symmetry properties of
the homogeneous polynomials were first studied by Euler and then more deeply during
the nineteenth century, in view of projective geometry, algebraic geometry or in num-

ber theory. The classical homogeneity was also used to investigate stability properties
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Chapter 1. Homogeneity

[Malkin 1952, Krasovskii 1963, Hahn 1967, Rothschild 1976, Goodman 1976| and a par-

ticular attention was paid for polynomial systems [Dayawansa 1989).

The first generalization of the classical homogeneity was introduced in Control Theory
independently by V. I. Zubov [Zubov 1958] and H. Hermes [Hermes 1986, Hermes 1991b)].
The main idea is to replace the classical scaling by a slightly more general transformation,
namely a dilation. Indeed, each coordinate is scaled by the same constant but with

different powers, called weights. This leads to a weighted dilation written under the form

for , Where are the weights and is a generalized weight. Such a
dilation leads to the extended notion called weighted homogeneity. The degrees of freedom

given by the weights allow us to see much more objects as homogeneous.

Such homogeneity property was naturally considered looking at a local approximation
of nonlinear systems: small time local controllability and local asymptotic stability is
shown to be inherited by the original nonlinear system if this property holds for the
homogeneous approximation [Hermes 1991b, Kawski 1988|. With this property, many
results were obtained for stability, feedback stabilization [Kawski 1990, Kawski 1991b,
Hermes 1995, Sepulchre 1996 or output feedback stabilization [Andrieu 2008]. Another
very important result was obtained independently by Zubov [Zubov 1958] and Rosier
[Rosier 1992a|: if a continuous homogeneous system is globally asymptotically stable,

then there exists a homogeneous proper Lyapunov function.

This notion was also used in different contexts: switched systems [Orlov 2005b], self-
triggered systems [Anta 2008, Anta 2010|, time delay systems [Efimov 2011], control and
analysis of oscillations [Efimov 2010]. Since investigation of the finite-time stability in
[Haimo 1986| many papers were devoted to this concept (e.g. [Bhat 2000]) and its link
with the homogeneity: the finite-time property is obtained if the system is locally asymp-
totically stable and homogeneous of a negative degree (see [Bhat 1998, Bacciotti 2005]).
This result is exploited in [Bhat 1997, Orlov 2005a, Bhat 2005] and with application
to controllers design in [Bhat 1998, Hong 2002b|, observers design in [Perruquetti 2008,
Shen 2008, Menard 2010], and output feedback in [Hong 2002a].

Extensions were given for vector fields of a degree of homogeneity that is a function
of the state [Praly 1997] and to homogeneity in the bi-limit [Andrieu 2008], which pro-
vides homogeneous approximations at the origin and at infinity. The local homogeneity

concept has been also introduced in [Efimov 2010]. These tools were useful for nonlinear
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1.2. Standard homogeneity

observer and output feedback design. Let us finally mention the extensions provided by
[Orlov 2005b| and [Levant 2005|, defining weighted homogeneity for differential inclusions
and making a short study of their properties.

In addition to all these works on weighted homogeneity, another approach has been
considered. Since the weighted homogeneity is based on a dilation that is dependent on the
coordinates, then there exist vector fields which are homogeneous for some coordinates,

but not using other ones. In [Bacciotti 2005], it is even proved that the system

is globally asymptotically stable, but no change of coordinates could put it in a form
for which the homogeneous approximation associated with any dilation is asymptotically
stable. Moreover, seeing dilations as a one-parameter group, homogeneity can easily
be stated without coordinates. This leads to a geometric definition of homogeneity. The
very first geometric definitions appeared independently in [Khomenuk 1961, Kawski 1990]
and |[Rosier 1993]. The paper of S. Bhat and D. Bernstein [Bhat 2005] is written in
this context, and proves a lot of theoretical results about homogeneous systems in the
geometric sense. Let us also mention [Anta 2010|, where the geometric homogeneity is
used for self-triggered systems.

In this Chapter, we shall present the basics on the homogeneity theory. In the Section
1.2, we shall present the classical homogeneity and the related properties. The Section
1.3 will be devoted to the weighted homogeneity and the Section 1.4 to the geometric
homogeneity. Each of these two sections will be an extension of the preceding. Finally,
some extensions of the main theory shall be presented in Section 1.5. The contents of this

Chapter have been submitted in a survey [Bernuau 2013b|.

1.2 Standard homogeneity

Definition 1.1. [Hahn 1967] Let and  be two positive integers. A mapping

15 said to be homogeneous of degree in the classical sense iff

Note that no regularity assumption is made on the mapping . Let us see some
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Chapter 1. Homogeneity

examples.

The function
— if
if

is homogeneous of degree 1 and continuous, but it is not linear.

The function defined by:

if

else
is homogeneous of degree - and not continuous.
There exists a necessary and sufficient condition for homogeneity.

Proposition 1.2 (Euler’s Theorem for classical homogeneity). Let be a

differentiable mapping. Then  is homogeneous of degree iff for ali%&

[
*

(*+ +|q $
X (

Let us mention that the regularity of a homogeneous mapping is related to its degree:

if - then is either discontinuous (at the origin) or the zero vector field;
if . -# then either the Lipschitz condition is not satisfied by at or is
constant.

These conditions are necessary but not sufficient.

We will be particularly interested in homogeneous systems, e.g. systems like

where the vector field is homogeneous. Let us consider some examples.

Let O! 1 and0 . Then is homogeneous of degree # Note that the

flow of @ is homogeneous as well.

18



1.2. Standard homogeneity

The scalar vector field is homogeneous of degree . For any ,
denote (resp. ) a solution of with initial condition

(resp. ). We have

thus

These examples lead us to the following proposition.

Proposition 1.3. [Zubov 1964, Hahn 1967] Assume that the vector field
s homogeneous of degree . For any solution of (1.1) and for all , the curve
"

s a solution of
If the system (1.1) admits a (semi-)flow #% | we have

# Tk (° (1.2)

Taking advantage of the Proposition 1.3, we can now state stability results.

Theorem 1.4. [Krasovskii 1963] Consider the homogeneous system (1.1) with a contin-
wous vector field  and with forward uniqueness of solutions. If the origin is a locally

attractive equilibrium, then the origin is globally asymptotically stable.

Theorem 1.5. [Krasovskii 1963] Consider the homogeneous system (1.1) with a contin-
uwous vector field . Then the origin is globally asymptotically stable iff there exists a
homogeneous, proper and continuous function)* -+ , s.t. ) is positive definite

and ) are negative definite.

Corollary 1.6. [Malkin 1952, Krasovskii 1963] Let (( . be continuous homogeneous
vector fields with degree -« | off( _and denote 1P . Assume moreover
that . If the origin is globally asymptotically stable under - then the origin is

locally asymptotically stable under

See the book [Hahn 1967| for more details. The preceeding results have been stated
with the assumption of continuity of the vector field and the first one with the additional
hypothesis of forward uniqueness of solutions. We will see in the Chapter 3 that the first
hypothesis may be significantly weakened while the second may be dropped.
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Chapter 1. Homogeneity

1.3 Weighted homogeneity

Let us first formally state the basic definitions of weighted homogeneity that have been

evoked in the introduction.

Definition 1.7. A generalized weight is a n-tuple with . The
dilation associated to the generalized weight s the action of the group on
given by:

Remark 1.8. Let us emphasize some facts.

The definition of the dilation is coordinate-dependant. In all this work, homogeneity
will be used for functions and wvector fields defined on a vector space , with a
positive integer | . For the sake of simplicity, we will always assume that the chosen

basis is the canonical basis of , unless otherwise stated.
In Chapter 4, we will sometimes allow the weights  to be non-negative.

Definition 1.9. [Zubov 1958, Hermes 1986] Let be a generalized weight.

A function " is said to be -homogeneous of degree # iff for all $ and all

we have "&" " ;

A wvector field' is said to be -homogeneous with degree # iff for all $ and all
we have *& % ' ;

The system (1.1) is -homogeneous iff ' is so.

Let us stress the links and the differences with the classical homogeneity. To begin

with, taling ( , we see that the dilation associated to is ) . Hence
&n

a function " is -homogeneous of degree # iff " , and we see that the
Definitions 1.1 and 1.9 coincide. However, a vector field ' is -homogeneous of degree #
iff ! & . We see here a gap in the degrees of the two definitions: a vector
field is homogeneous in the classical sense of degree # iff it is -homogeneous of degree

#( . For instance, every linear vector field is -homogeneous of degree

Remark 1.10. A vector field' is -homogeneous of degree # iff each coordinate function

15  -homogeneous of degree #
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1.3. Weighted homogeneity

Obviously, some objects are weighted homogeneous without being homogeneous in the

classical sense. Let us see some examples.

Example 1.11. The function 8 -homogeneous of degree ;

Let be strictly positive. Consider the -integrator system:
The system is -homogeneous of degree ! with " " iff the following
relations hold: #

1] n +%*

" n | + %*
Let us fix " . We easily see that this assumption forces ! to be greater than & .
The equations become:

#
" %*
S T W

If'& , then the vector field defining the system is discontinuous on each coordi-
nate azis. If 10, then we recover a chain of integrators of 2 -order with a linear

state feedback. This example will be treated with more details in Chapter 5 for the

case

Remark 1.12. The generalized weight defining the homogeneity of a function or a vector
field is not unique. Indeed, an object is -homogeneous of degree! iff it is  -homogeneous
of degree!  for all 30 . Let us also stress that some systems can be -homogeneous for
different generalized weights  that are not colinear. For instance, the system on

4 is -homogeneous (of degree 0) for any generalized weight

Let us check how the properties of classical homogeneity from Section 1.2 are extended

into the framework of weighted homogeneity.

Proposition 1.13. [Zubov 1958] Assume that 54 4  is a -homogeneous vec-
tor field of degree . For any solution'® of (1.1) and for all 73 0 , the curve
8 B "6 is a solution of (1.1).
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Chapter 1. Homogeneity

If the system (1.1) admits a (semi-)flow , we have
(1.3)

The Proposition 1.13 is the natural extention of the Proposition 1.3 in the framework
of classical homogeneity.

Let us see now the Euler theorem.

Proposition 1.14 (Euler’s Theorem for weighted homogeneity). [Zubov 1958] Let  be

a differentiable function. Then  is -homogeneous of degree  iff

Let  be a differentiable vector field. Then is -homogeneous of degree iff for all

Theorems 1.4 and 1.5 remain true in the weighted homogeneity framework [Zubov 1958]
(in Russian), [Rosier 1992a|. The homogeneous converse Lyapunov theorem has been

proved independently by Zubov and Rosier.

Theorem 1.15. Let be a continuous -homogeneous vector field. If the origin is a glob-
ally asymptotically equilibrium of , then there exists a -homogeneous Lyapunov function

for  of class'
Let us set other results, which are fundamental in the study of finite-time stability.

Theorem 1.16. [Bhat 1997] Let  be a continuous -homogeneous vector field of degree
#$  with forward uniqueness of solutions. If the origin is a locally attractive equilibrium
of (1.1), then the origin is globally finite-time stable (FTS).

Corollary 1.17. [Bhat 1997] Let % be continuous homogeneous vector fields of
degrees  # gt wand denote Il o Assume moreover tha$b f
the origin is globally asymptotically stable under  then the origin is locally asymptotically
stable under . Moreover, if the origin is FT'S under  then the origin is FTS under

Let us finally introduce a useful tool in the study of homogeneous systems.
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1.3. Weighted homogeneity

Definition 1.18. Let be a generalized weight. A function  is said to be a -homogeneous

norm if the three following assumptions hold:

1. s positive definite;
2. is -homogeneous of degree 1;
3. 1S CONtinuous.

The following function gives us an example of a -homogeneous norm:

T (1.4)
Lemma 1.19. Let be a generalized weight and  be a -homogeneous norm.
We denote and 2 . Then for all %& the
following inequality holds
] (,)u( +)+
where' ( and'  are positive constants and ) and )+ are class , . functions defined by
/
0 25 ;rxg
)¢
12 496
/
0 25 s+
) -
1 2 4906
Proof. The inequality obviously holds for ; . Let us consider ¥ . There exists
H5%& 3} such that @ A with A . If A6 we have
B De
@ A A% =€
which leads to
B De B De
A23a —C * A 235 —C
A% =% A 235 —
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Chapter 1. Homogeneity

Setting and , we get

If , we get similarly which completes the proof. [

1.4 Geometric homogeneity

As we have seen, the definition of the weighted homogeneity is based on a particular
choice of a basis in the construction of the dilation and is therefore coordinate-dependent.

For instance, consider the following vector field:

According to the previous definitions, it is not weighted homogeneous. But setting $

, this vector field becomes:

I I
$ T $ $—%
and in this form, the vector field i®0 -homogeneous.

Since we are particularly looking at stability properties, a coordinate-free definition
should be of a great interest. Let us take a look at the definition of weighted homogeneity.
For a given &  ( theset) « 4 isacurveon' (. An object is homogeneous iff its
variations along these curves reduces to the dilation and a scaling. With this point of
view, the homogeneity property should be invariant under a change of coordinates if these
curves are encoded in a geometric object.

This remark has been done very early in the development of the homogeneity theory
[Khomenuk 1961, Kawski 1990, Rosier 1993|. The basic idea is to consider a vector field

and to replace the curves) « 4 by the integral curves of .. Even though this
idea is widely shared in the literature, the authors do not always agree on the specific
assumptions on this vector field. The definition we shall take here is not the most general,
but allows us to translate the main properties of the two preceding sections into the

geometric framework.

Definition 1.20. [Kawski 1991a] A vector field & ' (% is said to be Euler if it is
complete and if the origin is a GAS equilibrium of . . We will always write O the flow
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1.4. Geometric homogeneity

of , that is 15 the current state at time  of the trajectory of  starting from  at

Definition 1.21. Let be an Euler vector field. A function  or a vector field is said

to be -homogeneous of degree iff for all we have':
(1.5)

Consider a generalized weight and the vector field —. It
is straightforward to check that -homogeneity is equivalent to -homogeneity, and hence
the weighted homogeneity is a particular case of the geometric homogeneity in a fixed
basis.

We will be particularly interested in the homogeneity for a vector field. Since the
definition of the geometric homogeneity needs to compute the flow , it will be a difficult
task in general. Nevertheless, there exist equivalent conditions for a vector field to be

homogeneous assuming regularity properties on

Proposition 1.22. [Kawski 1995] Assume that the vector field is -
homogeneous of degree . For any solution of (1.1) and for all , the curve
! is a solution of (1.1).

If the system (1.1) admits a (semi-)flow " * | we have

g Brn #g (1.6)

The Proposition 1.22 is the natural extension of the Propositions 1.3 and 1.13 in the
framework of classical homogeneity. The Euler’s Theorem also admits an extension, that

justifies the name “Euler vector field”.

Proposition 1.23 (Euler’s Theorem for geometric homogeneity). [Kawski 1995/

Let  be a differentiable function. Then is -homogeneous of degree iff

()

Let  be a differentiable vector field. Then is -homogeneous of degree  iff

L4 - denotes the pullback by the diffecomorphism +', see Appendix B.

25



Chapter 1. Homogeneity

Remark 1.24. In [Rosier 1993/, the property is the definition of a symme-
try. This definition s based on the classical theory of partial differential equations as
set in [Olver 1986]. The properties (1.5) and (1.6) are then seen as consequences of this
definition in [Rosier 1993].

The Theorems 1.4, 1.5, 1.16 and 1.17 remain true in the geometric homogeneity frame-
work [Bhat 2005, Rosier 1992a]. The geometric homogeneous version of the Theorem 1.5
is often referred as the Theorem of Rosier. Some other results were proved in the geometric

homogeneity framework and obviously hold for classical and weighted homogeneities.

Theorem 1.25. /Bhat 2005] Consider a homogeneous continuous vector field — with for-

ward uniqueness of solutions. If there exists a SPI compact set for then is GAS.

The definition of a homogeneous norm remains unchanged for geometric homogeneity.

However, the existence of such a homogeneous norm is not trivial.

Proposition 1.26. Let  be an Euler vector field. Then there exists a -homogeneous

norm.
Proof. Set . Since , 1s -homogeneous of degree 0. By Theorem 3.22,
there exists a continuous Lyapunov function of degree for any . Take . The

obtained function is definite positive, -homogeneous of degree 1 and continuous. [J

Another natural question is to wonder whether a given Euler vector field corresponds

to a weight up to a change of coordinates.

Proposition 1.27. Let  be an Fuler vector field. There exist coordinates in
which — iff there exists -homogeneous functions of
degree such that rank

Proof. Assume that there exist coordinates in which —. Then the
functions are appropriate choices.

Conversely, assume that there exist -homogeneous functions
such that rank . Set ' Let us prove first
that is a global diffeomorphism. The rank of the differential of at is

rank
The functions being of class , this rank is locally constant: there exists a neigh-
borhood " of the origin such that for all " , rank ! . By the
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1.4. Geometric homogeneity

inverse function Theorem, is a local diffeomorphism. Now, let us show that is

injective. The condition is equivalent to for all . Con-

sider a -homogeneous norm . Being continuous and homogeneous, it is proper (see

[Bhat 2005]). Therefore the set is compact, and there exists
such that . There exists also such

that and . Hence gives

and . Then leads to

because is a diffeomorphism on , and finally is injective on . We conclude by

the Theorem of global inversion that is a global diffeomorphism, and a straightforward

verification shows that ,'— O

Remark 1.28. Let us mention that such functions do not always exist. First, note
that the conditions of the Proposition imply that the coefficients  are non zero, since
a continuous homogeneous function of degree 0 is constant and therefore cannot verify the
rank condition.

Considering now a norm 1 vector and a scalar #% , we have:

& #
G # id
(y % # %
(y (# ( ,#
G .- C /-
Letting now #0 % |, we get
(. C (. /

Being true for any in the unit sphere, the equality implies

that is (| 2 is an eigenvector of (| 2 with associated eigenvalue . Finally, the conditions
of the Proposition imply that (. ? admits 3 independant eigenvectors, that is, (| 2 is
diagonizable. This is obviously not always true.

Let us finally mention that an example of an Euler vector field that does not reduce to
a dilation is given in the Example 5.9 p. 194 of [Bacciotti 2005].
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Chapter 1. Homogeneity

1.5 Extensions

Even though the successive improvements of the definitions of homogeneity allow us to
see much more functions and vector fields as homogeneous, the interest of the theory is
not only restricted to homogeneous objects. Sometimes, a homogeneous vector field can
be seen as an approximation of non-homogeneous one, and some qualitative properties of
the approximation hold for the approximated vector field. The first result in this direction
is due to Hermes [Hermes 1991a], with an assumption of forward uniqueness of solutions
and then generalized by Rosier in [Rosier 1992a] without this assumption. This theorem

is a generalization of the Theorem of linearization of Lyapunov.

Theorem 1.29 (Hermes’ Theorem). [Rosier 1992a] Let  be a continuous vector field and
be a generalized weight. Assume that there exists a continuous -homogeneous vector
field  of degree  such that

If the origin is a GAS equilibrium for , then it is a LAS equilibrium for
Remark 1.30. The Hermes’ theorem implies the first part of the Corollary 1.17.

Following this idea, [Andrieu 2008| developed a theory on homogeneous approxima-
tions in the weighted homogeneous framework. To the approximation around the origin
is added an approximation at the infinity; considering both lead to the notion of bilimit
homogeneity. We refer to [Andrieu 2008 for more details. Let us also mention that sim-
ilar ideas appear in [Zubov 1958|. In [Efimov 2010], these ideas are extended for getting

approximation not only at the origin and at infinity.

Definition 1.31. [Andrieu 2008, Efimov 2010] For a generalized weight | let us denote

the -homogeneous norm defined by (1.4) and b 8
A function % i& & -homogeneous of degree , with a generalized weight |
&t and a -homogeneous function ' of degree if we have:
%',
0
A wvector field ik & -homogeneous of degree , with a generalized weight
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1.6. Conclusion

, and a -homogeneous vector field  of degree if we have:
#

The Hermes’ theorem can be easily reformulated in this setting. There exists also a

similar result using the local homogeneity at infinity.

Theorem 1.32. [Andrieu 2008] Let the vector field be (, , )-homogeneous with a
continuous . If the origin is (globally) asymptotically stable for the system 9% ,
then there exists an invariant compact set &'( ) containing the origin that is globally

asymptotically stable for the system¥%b

1.6 Conclusion

In this Chapter, we have seen the well-known definitions of the classical, weighted, ge-
ometric and local homogeneities. We have seen the main results of the theory, among
which the Theorem of Rosier, that is a converse homogeneous Lyapunov theorem, the
equivalence of local attractiveness and global stability for homogeneous systems and the
Hermes’ Theorem, that is a homogeneous extension of the first Theorem of Lyapunov.

This Chapter is the starting point of our work. In the Chapter 2, we shall extend the
local homogeneity theory defined in Section 1.5 in the geometric setting. In the Chapter
3, we shall extend the geometric setting defined in Section 1.4 to discontinuous systems
defined by a differential inclusion. In the Chapter 4, we shall see how the homogeneous
systems behave under perturbations, and study their robustness. The Chapter 4 will be
formulated in the weighted homogeneity framework defined in Section 1.3. Finally, the
Chapter 5 will be an application of the preceding Chapters to the output stabilization of
the double integrator.
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Chapter 2. Coordinate-free transition from global to local homogeneity

2.1 Introduction

Do non-homogeneous objects exist? Even if this question may seem trivial, it is actually
a bit delicate. Indeed, the geometric homogeneity allows us to see a lot of objects as
homogeneous. Let us take a look at vector fields. It is obvious that a homogeneous vector
field has no isolated equilibrium except the origin. However, in a lot of applications,
global stabilization is achieved. Let us then restrict ourselves to vector fields with a
unique possible equilibrium, namely the origin. Since a vector field always commutes with
itself, we might think that any such vector field is eventually homogeneous. However, it
is worth to stress that the Euler vector field defining homogeneity is specific: that is the
main difference between homogeneity theory and symmetry theory. Restricting ourselves

to complete  vector fields, we get:

Lemma 2.1. The origin ts GAS for a complete vector field iff the origin s LAT
for this vector field and there exists a Euler vector field  for which this vector field s

-homogeneous.

When dealing with global stabilization of smooth systems, the geometric homogeneity
approach may hence be applied. This lemma, despite its appearance of generality, gives

us in return a way of designing a non-homogeneous vector field.

Example 2.2. [Hahn 1967] Let us consider the following vector field on

It is shown in [Hahn 1967] that this vector field is globally attractive but unstable. If
this vector field were -homogeneous for a given Euler vector field , attractiveness would

imply stability. Thus for any Euler vector field , this vector field is not -homogeneous.

This example shows that the class of homogeneous vector fields, even though very large,
will not be able to manage all the issues for the global stabilization of nonlinear systems.
This setting is somehow similar to the linear setting. Indeed, many systems are linear,
but the applicability of the linear systems approach becomes wider due to linearization.
The same scheme can be used with homogeneity. If a vector field or a function fails to
be homogeneous, sometimes we can compute a local homogeneous approximation of this
object.

The study of a homogeneous approximation has a long history. Basically, to study

a problem, the idea is to find another problem which is more easily solvable and which
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2.2. Local homogeneous approximation

approximates in some sense the first problem. In the context of the stability theory,
the method is to compute an approximation of a given vector field and to deduce the
local stability of the initial system from the stability of the approximation. The second
Theorem of Lyapunov may be consider to be the first attempt of formalizing this method:
from the asymptotic stability of the linear approximation we deduce the local asymptotic
stability of the nonlinear system.

Zubov [Zubov 1958] and Rosier [Rosier 1992a| proved independently an extension of
this result for the weighted homogeneity. With this property, many results were obtained
for stability /stabilization [Kawski 1990, Kawski 1991b, Hermes 1995, Sepulchre 1996| or
output feedback [Andrieu 2008]|. This notion was also used in different contexts: switched
systems [Orlov 2005b], self-triggered systems [Anta 2010], control and analysis of oscilla-
tions [Efimov 2010], time delay systems [Efimov 2011]. Extensions were provided for the
vector fields which are homogeneous of degrees of homogeneity that are functions of the
state [Praly 1997] and to homogeneity in the bi-limit [Andrieu 2008|, which makes the ho-
mogeneous approximation valid both at the origin and at infinity. The local homogeneity
concept has been also introduced in [Efimov 2010]. These tools were useful for nonlinear
observer and output feedback design [Menard 2013].

In this chapter, our aim is to extend the applicability of these homogeneous approx-
imations by considering geometric homogeneity. First, we shall define the homogeneous
approximation and its basic properties. Then we shall see conditions under which the
approximation can be computed more easily. Finally, we shall recast the theorems of ap-
proximations in this setting and use them to treat examples. The contents of this Chapter

have been submitted in [Bernuau 2013a).

2.2 Local homogeneous approximation

We recall that the functions and vector fields under consideration are assumed to be
defined on . We assume moreover in all this Chapter that they are merely continuous,
unless stronger regularity assumptions are explicitely stated.

Following [Andrieu 2008], we may now define the local approximation. The following

definitions uses the uniform convergence on compact sets recalled in Appendix B.
Definition 2.3. Let and be functions and let and  be vector fields.

The function 1is the -homogeneous approzimation of degree at  of the function
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Chapter 2. Coordinate-free transition from global to local homogeneity

if:
(2.1)

The vector field is the -homogeneous approximation of degree at  of the vector
field  if:
(2.2)

If the uniform convergence is taken when , we get the approximation at
Proposition 2.4. Let  be a function. Assume that the -homogeneous approrima-

tion of degree at orat  of exists and 1s denoted by . Then is a continuous

-homogeneous function of degree
Let  be a vector field. Assume that the -homogeneous approximation of degree
at orat of exists and is denoted by . Then is a continuous -homogeneous

vector field of degree

Proof. We shall prove the proposition for a function and for homogeneous approximation

at , the others cases being similar. Fix and let us prove the continuity of at
. Pick an . The uniform convergence property gives:
|! %|$ |& )(* %

+ +

The function is clearly continuous, hence there exists a neighborhood , of

, which we can choose contained in '& ), such that:

$ * + + + + %
Finally for all ,
* *0p * + %
* + + + + *
* * + *
% -
It remains to prove that is -homogeneous of degree . For any " and , We
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2.2. Local homogeneous approximation

have:

]

The following proposition shows that the uniform convergence on compact sets can be

replaced with another property which is easier to check.

Proposition 2.5. Let  be a compact subset of  such that the origin is in the interior

of

Let  be a function. Assume that there exists a ! -homogeneous function  of degree
" such that converges to  uniformly on  when # %& . Then s

the ! -homogeneous approximation of at' of degree" .

Let ( be a vector field. Assume that there exists a ! -homogeneous vector field ) of
degree " such that ( converges to) uniformly on  when # %& . Then

) is the ! -homogeneous approximation of ( at' of degree " .

Proof. We only give the proof for a vector field. Let * be a compact set. Since ! is Euler,

there exists + such that *- . We have for all *
/ /@) 2 / 1 @6)
5 6
3 / o) /
5
p] / 1 @6)
5
0O 73 / 800)
5
where 7 2 5 / B' . Finally, we have:
3 / 1 08) '
&
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Chapter 2. Coordinate-free transition from global to local homogeneity

and is the local approximation of at . O
Example 2.6. Consider the scalar vector field — —. We want to compute the -
approximation around of the vector field —. The problem is that here we are not

able to find a explicit expression of the flow of . However, we have:

and we find that:

Therefore for all

and hence the uniform convergence of the flow of  on the ball proves that the vector field

is the -homogeneous approrimation of  of degree at

When dealing with homogeneity, we often want to check a property on the unit sphere
and extend it everywhere by homogeneity. The following proposition shows that, un-
der mild conditions, we can check that a homogeneous function or vector field is the
homogeneous approximation of a given function or vector field only on the sphere. In
[Bacciotti 2005|, the definition used for homogeneous approximation only takes the uni-
form convergence on the unit sphere, instead of taking it on all compact sets. This

proposition shows also that these approaches match under some conditions.

Proposition 2.7. Let us denote  the unit sphere of , 1  the smallest real part of
the eigenvalues of "4 . Let $ be a function and Y%be a -homogeneous function of degree

& let  be a vector field and be a -homogeneous vector field of degree &.

©If &( and ifH - 1 $% 0 when 10 2 then %is the

-homogeneous approzimation of degree & at  of $.

IR v and iffy 3/ ' D when 10 2 then

15 the -homogeneous approximation of degree & at  of

Proof. We will only prove the second point, the first being an easy adaptation. In this
proof, we work in a fixed basis of and we identify linear mappings with their corre-

sponding matrices in this basis. Next we aim at comparing the speed of convergence of
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2.2. Local homogeneous approximation

and . To do that, we will first find a differential equation
verified by , and then use it to compare the speeds by an approximation of
by
1. A look at the identity — — — gives:
Differentiating the identity leads to the desired differential
equation:
2. Let us now consider a given compact set ! " and prove that:
$ + il 0 (2.3)
)& .
Since 3 4 60 , the matrix 1 is Hurwitz, and thus there exists a matrix

77 860 and B0 such that:

7 2 21 8769

Since the mapping

-7 2 21 879

is continuous, there exists a neighborhood ; of the origin such that for all <=

7 2 21 %769
There exists <! such that for all > , . Therefore, for all <'
and for all >
7 2 21 %769
Fix now a vector ,< and < . Set ? , . We have:
—? @ 21 A?
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Chapter 2. Coordinate-free transition from global to local homogeneity

If we denote , we have:

Then for

and thus

Given that
e (Y

Y&

with ) the biggest eigenvalue of , there exists a constant +, independant of ;&

such thHat ' - *  We conclude thAt0' when [/ 12
uniformly on ;& , that is (2.3).

3. Let us prove that@ . We still denote 5 a compact subset of 6 7. Assume
that @8 . For all 90 , there exists . -6 , such that for all -, for all
*5

v ( °*9
Set ,-&  and denote =304 . By continuity, 34 /=
| 12 . Hence, if @ , there exists < -6 such that for all
L4 -, & . Therefore:
| ( “34 12
which is a contradiction. This proves that @ and hence:
| <
0 ( 34 ) o 0

4. Consider now a compact set E. We want to prove that:

BG CD
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2.2. Local homogeneous approximation

Since is compact, there exists such that

Let be a non zero element of . There exists and such that

. An easy rewritting gives:

I
# % # & # (
The uniform convergence of on the sphere implies that for all
¥ , there exists + such that for all ++
5 0 ' 0)
/
Thus for ++ + , we have 4 + - and therefore:
% &
-, 0% # 0)
/
But we have seen that
= 0 @7
a 89
Since , we conclude that there exists + such that for all ++
0 0)
Since , we finally get the uniform convergence.

]

Remark 2.8. In the Proposition 2.7, the unit sphere  can be replaced by any compact

set ; such that for all <= , there exists such that

Beforehand, we have given the definition of an homogeneous approximation for a given
degree. We may naturally wonder about the possible choice for this degree. There is yet
at most one degree of interest for a given function or vector field. Consider for instance
the vector field case. Let > be such that the homogeneous approximation of degree >

at  of a vector field exists. Then for all 2@> , we have

e

89
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Chapter 2. Coordinate-free transition from global to local homogeneity

Moreover, if then for all

Finally, there exists at most one degree for which a non-vanishing approximation exists.
This degree will be of a particular interest, because it may give us a non-vanishing approx-

imation, and because this approximation will inherit qualitative properties of the initial

object.
Definition 2.9. Let be a Euler vector field and let be a function.
1. The local degree of -homogeneity of at is defined as:

"H$% &
with conventior andp (
2. The local degree of -homogeneity of at  is defined as:
"B% | &
with convention¥Y and®

The local degree of homogeneity of a vector field vs defined similarly.

Example 2.10. Set . 0’— on $. The scalar function %l O has a local degree
of -homogeneity of 0 at the origin and the homogeneous approrimation is the constant
function 2. Howewver, the limit of is  for all " when 3 ( , and thus
g

As we have seen, the degree may be infinite and therefore the local approximation
may not exist. But even when the degree is finite, the local approximation may not be of
any interest. Indeed, it is possible to go from a vanishing approximation to a diverging

approximation when the degree is increasing, as in the following example.

Example 2.11. Let  be an FEuler vector field. Let  be a continuous -homogeneous

function of degree " . We define:
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2.2. Local homogeneous approximation

This series converges, since for all , , and thus
. The function  is continuous. Set , and let  be an integer such that
. We have:
!
Therefore, 8 o, . On the other hand, if & , we have for all'
/

X —X 1

+ 0 +
thus® %, , but with a vanishing approximation. Finally, for all , the local 3-
homogeneous approximation of s vanishing, and for all , the local 3-homogeneous

approximation is diverging.

The previous example shows that sometimes, the only possible homogeneous approxi-
mation is vanishing. We have to be careful that even if the local degree of homogeneity is
finite, say , it does not imply that there exists a local approximation of 4 of degree , even

vanishing, as we can see in Example 2.12 (the same observation holds for [Andrieu 2008]).

Example 2.12. Let 3 be a Fuler vector field and  a 3-homogeneous function of degree
Considd® . The function is continuous. Let us compute the

local degree of homogeneity of at . We have
& 2 7 1 &
thus the local degree of 1s , but

5 &/2

does not converge and the function  has no 3-homogeneous approximation at
This example justifies the following definition.
Definition 2.13. Let  be a function. We say that is 3-homogenizable at (resp. at )
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Chapter 2. Coordinate-free transition from global to local homogeneity

iof (resp. ) is finite and  admits a local -homogeneous approximation at
of degree (resp. a local -homogeneous approzimation at  of degree ).
If is -homogenizable of degree , the -homogeneous approrimation of  of degree

15 called the -homogenization of

The -homogenizability and the -homogenization of a vector field are defined similarly.

2.3 Stability results

The framework of homogenization allows us to give a precise meaning of the approximation
evoked previously. In the preceeding section, we have given the basic properties of this
homogenization, and we have seen how to compute it more easily. But up to now, we
have not seen in which sense this homogenization approximates the initial object. In
this section, we shall show that qualitative properties of a vector field are encoded in its

homogenization.

Theorem 2.14. Let  be a vector field -homogenizable at —with and denote
by its -homogenization at . If the origin is an asymptotically stable equilibrium for

then it is a locally asymptotically stable equilibrium for

Proof. From the theorem of Rosier |Rosier 1992a|, there exists a homogeneous proper

Lyapunov function of degree for . Set"
# and $ w () . Since , 9 s continuous on ! .
Therefore the number +-, w | of is well defined and strictly positive. For all
"l and all O we have (2 (& 2 48 g 2 % . Moreover, we
find(2 & 3 (¢8 ¥ $and
(g 2 %8 *(rraparyp B
8% ., @2 vC "
<g% ., 8®2 pC
%,

Since is the local homogeneous approximation of , we have:

-5 8%2 pC
08 36
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