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I. INTRODUCTION 

Graphics hardware and software development domains have seen a vast expansion in the 

last decades. Due to the spectacular evolution in digital technologies, the amount of multimedia 

content (i.e., still images, videos, 2D/3D graphics…) available today is continuously increasing. 

Within this context, disposing of powerful search and retrieval methods becomes a key issue for 

intelligent and efficient access to audio-video material. 

When large databases of multimedia content are involved, user access to specific material 

of interest is not possible without efficient search engines. 

Multimedia retrieval tools may be divided into two main families: concept-based and 

content-based techniques. In the first case, some metadata, such as keywords and tags, are 

associated to the multimedia data and the retrieval is performed starting from textual indices. 

However, the linguistic barriers represent an important drawback of such approaches. Also, a 

prior, manual annotation is required, which is a tedious and highly subjective process. 

In contrast, in content-based retrieval the search process analyzes the actual content of the 

data (e.g., colour, shape, texture, and motion feature for describing the visual appearance…). By 

using computer vision algorithms, the salient features of the multimedia content are revealed and 

transformed into numerical representations, so-called descriptors. Such descriptors allow an 

objective comparison of different audio-video materials, making it possible to perform similarity 

retrieval of multimedia data. 

Moreover, such objective descriptors can be used for classification purposes. More 

precisely, they can be employed to evaluate the similarity between multimedia materials. Thus, if 

we dispose of categorized content, we can analyse its similarity with respect to any unknown 

multimedia material in order to automatically assign one of the existing classes to the new 

material.  

A large number of existing methods uses prior knowledge in order to accomplish this kind 

of objective. Such approaches generally exploit machine learning (ML) techniques. They 

automatically learn to recognize complex structures based on sets of both positive and negative 
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examples. ML techniques involve two main stages. First, some characteristic features are 

extracted starting from a set of examples involved in the training phase. Then, these features are 

used in order to recognize new cases. Such methods should be able to generalize the features of a 

given class while ensuring the accuracy of the recognition process. 

However, when a large number of categories is involved, the number of recognition criteria 

(and implicitly the number of exploited features) increases and thus the computational complexity 

may become intractable. In addition, in order to allow generalization, a large variety of examples 

should be used in the training set. Moreover, a given object may present highly different 

appearances due to pose variation. Thus, for effective ML-based 2D object classification 

purposes, the training set should include not only a variety of examples but also different 

instances of the same object, corresponding to different poses (Figure I.1). 

    

  

Figure I.1 Different views of a 3D object representing a bicycle.  

The first (profile) and the last (front) views are completely different in terms of 2D shape, but can be 

related if the 3D model is available. 

This thesis specifically addresses the issue of still image and video object classification. In 

our work, we propose to overcome the limitation of existing ML approaches by exploiting the 

information contained in categorized 3D model repositories. In order to enable the transfer of 

semantic labels from 3D models to 2D objects, shape-based 2D/3D indexing methods are 

employed. The 2D/3D description (also known as view-based description) consists of 

characterizing a 3D model through a set of 2D views. Further, the shape features are extracted and 

used in the recognition process. The choice of using only the shape information is motivated by 

the fact that the shape is a feature shared by all object within a class, compared to the colour or the 

texture which may change from one object to another. The availability of 3D models (involved in 

the recognition process) is not an issue because nowadays a large amount of 3D object collections 
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can be found on the internet. Moreover, these repositories are already classified, which represents 

an important advantage within the proposed framework. 

The main purpose of this thesis is the exploitation and evaluation of 2D/3D indexing 

techniques within the context of 3D model retrieval as well as for 2D or 2D + t object 

classification purposes. 

Chapter II introduces the main 2D/3D indexing techniques. The background definitions and 

terminologies are here recalled and several important issues related to the view-based description 

process are discussed. A review of the state of the art methods is also presented. 

Chapter III presents the 2D/3D indexing approaches adopted in our work. We notably 

introduce here a new clustering-based method for adaptive selection of representative views and a 

novel contour-based descriptor, so-called Angular Histogram (AH). The 3D model repositories 

exploited in our work are also presented and an objective intra and inter class variability analysis 

is proposed. The performances of the various 2D shape descriptors and viewing angle strategies 

retained are experimentally evaluated within a 3D model retrieval framework. 

The object classification issue is addressed in the fourth chapter. The view-based indexing 

methods presented previously are here employed to allow semantic inference between 3D and 2D 

content. The underlying principle consists of exploiting the a priori knowledge contained in 

classified 3D models and to transfer it, with the help of view-based indexing, to unknown 2D 

objects. Such methods can be applied to both still objects (SO, i.e., objects extracted from still 

images) and video objects (VO, i.e., objects extracted from videos and composed of several 

instances). We propose here a classification framework which ensures fast computation and 

allows combining several indexing methods. A main contribution of our work, compared to state 

of the art 3D model-based classification approaches, is the capacity to deal with a large number of 

semantic classes (up to 161 categories). In order to experimentally evaluate the performances of 

the recognition framework, we have created several test sets, including objects extracted from real 

and synthetic images and videos. 

In order to allow integrating the proposed 2D object recognition framework in real 

applications, we have also developed a segmentation approach, designed to assist the user to 

extract an object of interest from an image. The proposed method, presented in chapter V, adopts 

the scribble-based segmentation paradigm. The user interaction consists of specifying a set of 

lines, corresponding to both foreground and background scribbles. The segmentation process is 

based on colour distributions, estimated with Gaussian Mixture Models (GMM). In order to 

overcome the compression artefacts that may appear, a modified GMM model is proposed. The 

experimental evaluation demonstrates the superiority of the modified GMM model which is able 

to appropriately take into account compression artefacts. 

Finally, an important aspect in 2D/3D object retrieval and recognition is to dispose of 

appropriate user interfaces. The proposed DIANA (Digital Image Analysis aNd Annotation) system 

is a Web platform integrating the various developments proposed in this thesis. Chapter VI 

presents the main tools and functionalities proposed by the DIANA platform. 

Chapter VII concludes the manuscript, highlights the main contributions proposed in this 

work and opens some perspectives of future research. 
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II. 2D/3D INDEXING 

 

Abstract. This chapter introduces the view-based 3D model indexing. The principle of the 2D/3D 

description methods is first presented. The background definitions and terminologies are briefly 

recalled and several important issues related to 2D/3D indexing are discussed. 

In the second part of the chapter we review the state of the art methods. We propose a 

classification of the various approaches, based on the viewing angles selection strategy employed. 

We conclude with an analysis of the advantages and limitations related to each family of 2D/3D 

indexing methods.  

Keywords: shape descriptor; projection strategy; 3D meshes; 2D/3D indexing; similarity 

measure. 
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The concept of 2D/3D indexing refers to a class of 3D model description methods. Their 

particularity is that a 3D model is not directly characterized in the 3D space, but instead through a 

set of 2D projection views, which provide the 2D appearance of the model from different 

perspectives/angles of view.  

The underlying principle of 2D/3D indexing approaches is based on the following 

observation: two similar 3D models should present similar views when projected in 2D images 

from similar perspectives (e.g., frontal projection, profile projection…). Such a strategy allows 

comparing two different 3D models through their corresponding 2D views. In addition, and more 

interestingly, such view-based approaches make it possible to compare not only 3D models, but 

also to match 3D models with 2D objects.  

This chapter first presents the principle of the 2D/3D indexing paradigm, with the necessary 

theoretical background and main concepts involved. The state of the art methods are then 

described and analyzed, and the main methodological challenges that still need to be solved are 

identified.  

II.1. THEORETICAL BACKGROUND 

The 2D/3D indexing includes several stages (Figure II.1). First, a pre-processing pose 

normalization step is required in order to ensure a canonical representation of the 3D mesh 

geometry. Next, the model is projected into 2D, resulting in a set of views. Finally, each view is 

described with the help of a 2D shape descriptor. 

    

a. b. c. d. 

Figure II.1 Main stages of 2D/3D Indexing. 

a.&b. Pose normalization; c. 3D-to-2D projection; d. 2D shape description. 

When analyzing this process, some fundamental questions rise up: how many projection 

views are needed to obtain an accurate representation of the considered 3D shape? Which are the 

angles of view of the model that optimally represent its shape? Which shape descriptors are suited 

for this purpose? 

The various solutions proposed in the state of the art for each stage involved are detailed in 

the following sections.  
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II.1.1. Pre-processing: normalization and invariance issues 

Existing 3D models are most often specified with arbitrary orientations, positions and scales 

in the 3D virtual space. In our case, we have considered exclusively 3D models represented as 3D 

mesh models (cf. Annexe A1). Thus, the model geometry is specified by the set of 3D position of 

the mesh vertices, in a given 3D coordinate system. However, not all shape descriptors are 

intrinsically invariant to geometric transforms. Therefore, in order to ensure at least an extrinsic 

invariant behaviour, it is necessary to apply some position/pose/size normalization.  

Thus, the objective is to prepare the 3D model for 2D/3D indexing by offering invariance 

with respect to similarity transforms (i.e., translation, rotation, isotropic scaling and combinations 

of them  Figure II.2). After the normalization process, similar models should present similar size, 

orientation and position in the 3D virtual space. In addition, the normalization process should be 

robust to small, local deformations of the model. 

The normalization process includes the following three steps: 

 Centring: consists of positioning the 3D model with respect to the origin of the coordinate 

system and ensures invariance to translation. 

 Alignment: consists of orienting the 3D model in the virtual space, which ensures 

invariance to rotation.  

 Scaling: consists of resizing the object in order to ensure scale invariance. 

The following sections detail the main pose normalization techniques encountered in the 

literature. 

II.1.1.1. Model centring 

The centring consists in displacing the 3D model such that its "centre" coincides with the 

origin of the coordinate system. There exists several ways to define the centre of a 3D model.  

II.1.1.1.1. The centre of the bounding box 

A first approach [Paquet00] defines the centre of a 3D model as the centre CBB of its 

corresponding bounding box and is defined as: 

 
a. b. c. 

Figure II.2 Affine transformations of a 3D Model. 

 a. translation; b. rotation; c. scaling. 
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    (II.1) 

where: 

 xmin, xmax, ymin, ymax, zmin, zmax  respectively denote the minimum and maximum coordinate 

values of the 3D mesh vertices, along the x, y and z axes. 

Let us observe that the centre of a 3D model’s bounding box is not invariant with respect to 

rotations. Therefore, such a bounding box centring approach should be applied after the alignment 

phase.  

The main drawback of the bounding box-based centring is the sensibility to minor shape 

modifications, as illustrated in Figure II.3. Here, two 3D models of tanks are presented, which 

correspond to the same real-life objects. The difference between them concerns the position of the 

tank machine gun, which points horizontally in Figure II.3a and vertically in Figure II.3b. As a 

result, the corresponding bounding boxes are significantly different and centring approach will 

lead to an erroneous result. Let us note that this situation is often appearing in practice, in the case 

of articulated shapes (i.e., shapes composed of multiple parts that can independently exhibit rigid 

motion).  

  
a. b. 

Figure II.3 Sensibility to minor modification of bounding box-based centring. 

II.1.1.1.2. The gravity centre  

The gravity centre (G) is also known as centre of mass or centre of inertia and represents the 

barycentre of the 3D mesh M, defined as described in the following equation:  

       
 

 
         

 

  

   

    (II.2) 

where: 

 NT is the number of the mesh triangles; 

 Ai represents the area of the ith triangle; 

 gi
x,y,z are the coordinates of the gravity centre of the ith triangular face.  

As the entire surface of the 3D model is taken into consideration when computing       , the 

barycentre method is less sensitive to minor modification of the shape than the bounding box 

approach. Thus, in our work we have considered that the centre of a 3D model is given by the 

barycentre, computed as described in Equation II.2. 
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II.1.1.2. Pose alignment  

The pose alignment phase aims at ensuring rotation invariance. For this purpose, an object-

dependent, orthogonal 3D coordinate system needs to be constructed first. An orthogonal 

transform is then applied in order to transform the initial coordinate system in an object-dependent 

one.  

The most commonly employed approach is to consider the system defined by the three axes 

of inertia of the 3D mesh. The axes of inertia, also known as principal axes, are obtained with the 

help of a Principle Component Analysis (PCA) approach [Mather04], [Schwengerdt97]. The PCA 

technique involves a mathematical procedure that transforms a set of possibly correlated variables 

(e.g., the coordinates of the 3D model's vertices) into a set of uncorrelated variables, called 

principal components.  

Various types of information and data can be used for 3D model alignment, including 

vertex coordinates and normal vectors. 

In the PCA framework, such data are considered as realizations of a 3D random vector. A 

m  3 matrix, denoted by X, is constructed; it stores on each row a realization Xt of the random 

vector: 

  

 
 
 
 
  

   
   

 

  
   

   
 

             
  

   
   

  
 
 
 

  

  

  

 
  

             (II.3) 

Most often, the number of observations m is equal to the number of mesh vertices V and the 

observations Xt represent the x, y and z coordinate values of the mesh vertices.  

The (3 × 3) covariance matrix Σ of X is then computed as described by the following 

equations: 

                        
                               (II.4) 

               
         

     

 

   

   (II.5) 

with 

                           
  

 

 

 

   

   (II.6) 

In Equation II.4, E [.] and (.) T respectively denote the statistical expectation and the matrix 

transpose operators.  

By definition, the covariance matrix is symmetric and positive definite. Thus, it can be 

diagonalized with the help of an orthogonal transform constructed as a matrix V with the 

eigenvectors as columns. In addition, the corresponding eigenvalues are real and positive 

numbers, which provide a measure of extent of the object along each eigen-direction. More 

precisely, the following equation is satisfied:  
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          (II.7) 

where D is a diagonal matrix storing the eigenvalues of Σ. 

The eigenvectors Vi that compose the matrix V are also called principal axes or axes of 

inertia. The planes defined by each couple of eigenvectors are referred to as principal planes. 

Finally, the 3D object pose alignment is accomplished by applying the following 

transformation: 

          (II.8) 

Let us note that depending on the space where the PCA is performed, two families of PCA 

methods can be distinguished: discrete and continuous PCA. The discrete case corresponds to the 

matrix formulation presented here above, where a finite set of observation is employed. Matrix X 

can store the coordinates of the vertices, the coordinates of the face gravity centres or the normal 

vectors associated with polygonal face. The main limitation of such approaches is the dependence 

on the distribution of the vertices, in the case where the mesh vertices are irregularly distributed. 

In order to overcome this drawback, [Paquet00] propose to weight the contribution of each gravity 

centre by the area of the corresponding triangular face.  

In the case of continuous PCA (CPCA) approach [Vranic01], the analysis is performed in 

the infinite-dimensional space of the mesh surface σ. Here, the covariance matrix is defined as the 

matrix of second order surface moments.  

   

            

            

            

    (II.9) 

where: 

 A is the total area of the 3D mesh surface; 

 p = (xp,yp,zp) is a point on the surface of the 3D mesh; 

 mijk is the moment of order        , defined as:  

     
 

 
    

   
 
  
    

 

   

  (II.10) 

Compared to discrete PCA approaches, CPCA is more accurate, at the price of an increased 

computational complexity [Chaouch09]. 

In our work we have adopted the weighted PCA methods [Paquet00] which ensures good 

results with a limited computational complexity. Figure II.4 presents some examples of 3D 

models and corresponding principal axes for various shapes, obtained with the weighted PCA 

approach. We observe that in such cases, the PCA alignment corresponds to intuitive notions, 

such as frontal, profile and bottom views.  

Whatever the approach considered, the main drawback of the PCA-based alignment is 

related to its incapacity of dealing with miss-alignment problems, in the case where different axes 

of inertia are computed for similar 3D models [Zaharia01, Tangelder04].  
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Three miss-alignment situations may appear: 

 The two sets of principal axes have significantly different orientations. This problem, 

illustrated in Figure II.5 a and b, is a stability issue, which arises in the case where some 

object details affect the symmetry of the objects. 

 The same orientations are detected for both models, but the order of the principal 

components is not the same. Let us note that the ordering of the eigenvectors in the 

construction of the transform matrix V in Equation II.7 is important, since different orders 

lead to completely different transforms. Most of the time, such an ordering is performed 

with respect to the values of the corresponding eigenvalues. However, such a mechanism 

can lead to erroneous alignments, as illustrated in Figure II.5 a and c. 

 The principal components have the same directions for both models, but different 

orientations: solely the PCA cannot uniquely determine the orientation of the eigenvectors, 

but gives only their direction. This ambiguity leads to miss-alignments in the case of non-

symmetric objects, as illustrated in Figure II.5 a and d. 

    

a. b. c. d. 

Figure II.5 Example of similar models presenting differently detected principal axes. 

a. the reference model; b. the principal axes has a different orientation w.r.t the model's geometry; 

c. the principal axes have different order compared to those of the reference model; d. the principal 

axes have different directions than those of the reference model. 

 

 

 
 

Figure II.4 Example of principal axes determined with weighted PCA. 



2D/3D INDEXING 

13 

Another alignment approach is proposed in [Papadakis08]. Let M be a mesh, A its total 

surface area, and α, β and γ rotation angles around the Ox, Oy and Oz axes, respectively. Let 

M(α,β,γ) denote the rotated model. The aim of the so-called rectilinearity-based alignment is to 

determine the set of angles (α,β,γ) maximizing the fallowing ratio: 

              
     

 
    

                                            
    (II.11) 

where: 

               ,                and                represent the areas of the 

projections on the (xy), (yz) and (zx) planes of the rotated model. 

Compared to discrete PCA, the rectilinearity-based alignment present higher computational 

complexity.  

II.1.1.3. Model scaling 

The objective of the model scaling stage is to determine an intrinsic scale for each 3D 

model in order to normalize the object in size and achieve representation invariance.  

II.1.1.3.1. Bounding sphere approach  

In order to determine the bounding sphere, the farthest vertex from the centre of the object 

is first determined and the corresponding distance (dmax) is computed. The maximum distance dmax 

represents the radius of the bounding sphere. The normalization is accomplished by resizing the 

model to the unit sphere.  

This normalization technique is invariant to rotation and translation. However, such a naive 

approach is highly sensitive to minor changes of the 3D mesh or to articulated shape (cf. 

Section II.1.1.1.1) which can modify the value of dmax. 

In order to overcome such a limitation, different techniques exploit the eigenvalues 

computed in PCA in order to statistically determine the intrinsic scale. 

II.1.1.3.2. Eigenvalue-based normalization 

In [Elad02], authors propose to rescale the model such as the largest eigenvalue (D11) 

becomes equal to 1. 

Such an approach presents the same drawback as PCA: in some cases, for two similar 

models, the principal axes can have different directions and orientations. Thus, the corresponding 

eigenvalues are different and the scale normalization is not the same for both models.  

In order to overcome this drawback, in [Zaharia02] the authors propose to consider the three 

eigenvalues D11, D22, D33 (cf. Equation II.7). The object is resized such as the expression 

                becomes equal to 1. 
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II.1.1.3.3. Distance to surface 

In [Vranic04], authors propose to determine the intrinsic scale of the model based on the 

mean distance      
         between the object surface σ and the principal planes. 

     
          

  
       

       
    

 
   (II.12) 

where: 

   
       

       
     represent the mean distance from the model surface to (yz), (xz) respectively (xy) 

planes: 

  
    

 

 
           

 

   

                   (II.13) 

where: 

 p=(px,py,pz) is a point on the surface σ of the model;  

 G=(Gx,Gy,Gz) is the centre of the 3D model; 

 A is the area of the 3D model surface; 

Normalization is accomplished by resizing the model such that the computed distance 

     
         becomes equal to a given value.  

Another distance-based method [Vranic04] proposes to define the intrinsic scale based on 

the mean distance     
       from the centre C of the model to its surface σ. 

    
       

 

 
        

 

   

          (II.14) 

Here again, the 3D model is resized such as the distance     
        becomes equal to a given 

value. 

Compared to other scale normalization techniques, the distance to surface-based approach is 

more robust to small shape deformations but computationally more complex. 

In our work, we have adopted the eigenvalues-based scaling due to its robustness and low 

computational complexity required within our framework (the eigenvalues are already computed 

in the alignment phase).  

Once normalization in orientation, size and position is completed, the 2D views of the 3D 

model can be acquired, with the help of a 3D-to-2D projection mechanism, as described in the 

following section.  
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II.1.2. 3D-to-2D projection 

The projection of the 3D model into 2D images represents a key phase in 2D/3D indexing 

process. The mesh model M is projected and rendered in 2D from NP different viewing angles 

(i.e., positions of a virtual camera in the 3D space) (Figure II.6 a), resulting in a set of NP 

projections, denoted by Pi (M), with i=1..NP. 

The projection may be a binary image (the silhouette of the object) or a gray level image 

representing the depth map (Figure II.6 b and c). However, only the silhouette representation 

allows matching between 2D and 3D content, as there is no depth information available in 2D 

images.  

A viewing direction {ni} is associated to each viewing angle; it represents the direction of 

the straight line that connects the position of the camera with the origin of the considered 

Cartesian system (which, after normalization, coincides with the centre of the 3D model).  

When projecting a 3D model for 2D/3D indexing purpose, the key aspects that need to be 

considered concern the number of considered views and the specification of the viewing angles.  

II.1.2.1. The number of views 

The number of views (NP) defines how many views are generated for each object. A large 

number of views ensures good description of the 3D model, which is suited for indexing and 

retrieval purposes. However, the associated computational aspects have to be taken into account. 

The time required for projection and descriptor extraction, as well as memory/storage 

requirements, are proportional to the number of views. Therefore, a “good” balance has to be 

ensured between the level of detail of the 2D/3D representation and the computational costs 

involved.  

 

  

a. b. c. 

Figure II.6 3D-to-2D projection. 

 a. viewing directions; b. example of silhouette image; c. example of depth image. 
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II.1.2.2. The viewing angles 

The viewing angles (directions) {ni} define the perspectives used to generate the set of 

views. Obviously, there is an infinity of potential viewing angles. However, some views are more 

salient than other. In addition, there exists couples of very similar views. For 2D/3D indexing 

purposes, only the shape information is exploited. Under the assumption of a parallel projection 

model, the silhouettes obtained from opposite perspectives (e.g., front and back, left and right, up 

and down) represent mirror reflections of each other. In order to avoid representation redundancy, 

solely a demi-space around the model should be considered for specifying the views.  

There exist three main families of viewing angle selection strategies. A first and largely 

popular family makes the assumption that the most salient views correspond to the projection onto 

the principal planes. Therefore, the viewing directions correspond to the principal axes of the 

model. Throughout this work, this class of approaches will be referred to as PCA-based viewing 

angle selection. 

The second family of approaches considers that there are no preferential viewing directions. 

Therefore, the viewing angles are distributed as evenly as possible around the object. Most often, 

in this case the camera repartition is obtained using the vertices of a regular polyhedron (e.g., 

octahedron, dodecahedron...). 

Finally, the third class of viewing angles selection strategy attempts an intelligent selection 

of the views. First, a large number of evenly distributed views is generated. Next, the similarity 

between views is analyzed and a subset of representative views is selected to represent the 3D 

model. In order to measure the similarity between two views, each view is characterized with the 

help of shape descriptors. A discussion on descriptor extraction and similarity measurement can 

be found in the following sections. 

The main disadvantage of the representative views strategies is the computational costs 

which includes the achievement and description of a large number of views as well as the high 

number of pairwise comparison between couples of views needed. A second drawback is related 

to the intrinsic nature of such strategies: two different 3D models will be described by completely 

different, object-dependent views. How is it possible, in this case, to specify a matching strategy 

that can be exploited for 3D model retrieval purposes? 

Whatever the viewing angle selection strategy adopted, the 2D shape descriptors involved 

for describing the resulting silhouettes strongly influence the discriminative power of the 

representation. Descriptor-related aspects are discussed in the following section.  

II.1.3. 2D shape descriptors 

Descriptors are mathematical representations of the salient features of the multimedia 

content which allow an objective and quantitative comparison between various objects. For 2D-

3D matching purposes the shape attribute represents the most popular feature considered.  

Let us first recall the various criteria enounced in the literature that a shape descriptor 

should satisfy [Zaharia04], [Tangelder04]: 
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 Scope: the descriptor should be able to characterize any kind of shape. 

 Uniqueness: a given shape is described by only one descriptor and a given descriptor 

corresponds to a single shape. 

 Efficiency: for a large database, the system should be able to quickly describe models and 

to perform a fast retrieval. Therefore, rapidity and low complexity of the feature extraction 

is necessary. Some descriptors allow early rejection of non-similar models based on a 

subset of features. This ability is useful for speeding up the matching process.  

 Robustness: the descriptor should be almost insensitive to noise and to small extra features. 

 Sensitivity: a descriptor should present the capacity to describe and take into account even 

fine details of the shape. 

 Discrimination power: the descriptor should be able to capture the properties that best 

discriminate the shape. 

 Multiresolution support: the descriptor should not depend on the resolution of the shape. 

 Ability to perform partial matching: such a feature is useful in the case of incomplete 

shapes, such when a part of the object is invisible (for example, in the case of occluded 

objects).  

 Geometric and topologic invariance: the description of a given object should not depend 

on the scale, orientation or position that it has in the image. 

 Agreement with the human perception: it is important that the similarities given by a 

descriptor correspond to the human perception.  

 Ability to match articulated objects: a descriptor should extract similar features for 

different instances of an articulated object. 

 The storage size of the descriptor: an important property especially in the case of big 

databases where a large number of descriptors must be stored.  

Such criteria are taken into account in various manners by the different approaches of the 

state of the art, which can be categorized within three main families of 2D shape descriptors: 

 Region shape descriptors: in this case, the input information to be described represents the 

support region of the 2D shape (Figure II.7b). 

 Contour shape descriptors: solely the external contour information is retained (Figure 

II.7c). Consequently, the principal limitation of such approaches concerns the limited area 

of applicability, since shapes with more complex topologies (e.g., holes, multiple connected 

components...) cannot be accurately described.  

 Graph-based descriptors: the principle consists of setting-up a part-based representation, 

achieved with the help of a graph or a multi-level graph (Figure II.7d). In some cases, the 

nodes of the graph may store attributes of the corresponding region of the 2D object. The 

advantage of such elaborate representations is the possibility to represent accurately 

complex shape and, in particular, articulated shapes. However, specifying fast similarity 

measures for graph-based representations, which is mandatory for indexing and retrieval 

applications, is still an open issue of research.  
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a. b. c. d. 

Figure II.7 Different representations of a 2D shape. 

a. The 3D model; b. Region support; c. Contour representation; d. Graph representation. 

The various 2D shape descriptors of the state of the art are presented and discussed in 

Section II.2. 

Whatever the type of descriptor considered, it is of outmost importance to define 

appropriate similarity measures between them.  

II.1.4. Similarity measurement 

The similarity measurement employs the mathematical representation of the shape features 

(i.e., the descriptor) in order to associate a quantitative appreciation to the similarity between 

shapes.  

Depending on the shape descriptor considered, one of the following similarity measurement 

methods can be used:  

 Distance (metric)-based methods, suitable for feature vector representation and supposed 

to compute metrics such as the Euclidian distance. 

 Graph matching methods, specifically adapted for graph-based representations.  

II.1.4.1. Distance metric-based method 

The distance metric measures the dissimilarity between two vectors. A small value denotes 

that the two vectors are very similar while higher values correspond to dissimilar vectors. In order 

to ensure good similarity estimation, a distance metric must satisfy several properties, recalled 

here below.  

II.1.4.1.1. Distance metric properties 

Let X, Y, Z be three vectors in a n-dimensional space and        a function defined as 

                              (II.15) 

Then, the function d is a distance if it satisfies the following properties: 

 Identity:         ; the distance between two identical vectors should be equal to zero.  

 Positivity:         ; the distance between two different vectors should always have a 

positive value.  
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 Symmetry:              ; the distance from X to Y should be equal to the distance 

from Y to X. 

 Triangle inequality:                     ; the distance from X to Z is at most as 

large as the sum of the distances from X to Y and from Y to Z.  

 Transformation invariance:                 , where g is a transformation in a given 

group. In the particular case of shape description, the group of similarity transforms is most 

often considered. This means that the distance between two shapes is independent of their 

position, size or orientation.  

Various distance metrics can be used. They are recalled in the following section.  

II.1.4.1.2. Distance metrics 

Let               and               be two points in the    space. Several 

metrics are defined in order to measure the distance between X and Y: 

Minkowski distance of order p:  

                
 

 

   

 

   (II.16) 

Manhattan distance (L1 norm): 

               

 

   

   (II.17) 

Euclidean distance (L2 norm):  

                
 

 

   

   (II.18) 

Weighted Euclidean distance: 

                  
 

 

   

   (II.19) 

where wi represents the weight of each component of the n-dimensional space. 

Hausdorff distance:  

          
 

    
   

   
   

          
   

   
   

          (II.20) 

where: 

 d is a distance metric, such as Euclidian distance; 
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              represents the shortest distance between X and a given element y of Y and is 

given by the closest element x of X to y; 

                    represents the longest distance from Y to X; 

Let us note that the Hausdorff distance [Atallah83, Dubuisson94] is very sensitive to noise, 

since even a single outlier can affect its value.  

Earth mover’s distance (EMD): represents the minimum effort required to transform the 

distribution of X into the distribution of Y. The distributions are interpreted as mounds of sand and 

the distance represents the cost of turning one mound into the other, knowing that moving an 

amount ε of earth from a point i to a point j takes          effort (with d a distance metric such as 

the Euclidian distance) [Rubner00]. 

Kullback-Leibler divergence (KLD): is not a real distance because it is a non-symmetric 

measure. X and Y are considered as two distributions having the associated codes CX, respectively 

CY. KLD measures the number of extra bits required to code samples of X using CY rather than 

using CX.  

II.1.4.2. Graph matching methods 

If the shape of 2D objects is represented by a graph, then a graph matching procedure is 

necessary in order to compare the two shapes.  

The aim of a graph matching method is to determine the best correspondence between the 

two graph representations. The resemblance level between graphs is given by a function which 

measures the similarity between couples of corresponding vertices and edges. The graph matching 

approach can also be seen as an energy minimization algorithm [Bengoetxea02].  

There exist two classes of matching methods. When the two graphs have the same size (i.e., 

the same number of vertices) an isomorphic mapping can be found between them. This family is 

called exact matching. On the contrary, when the two graphs have different sizes, the one-to-one 

correspondence becomes impossible. This case is referred to as inexact matching. 

The combinatorial nature of the graph matching approaches leads to high computational 

complexity, which most often is NP-complete [Garey79, Conte04].  

Let us now detail how the various aspects presented above are taken into account in the 

literature.  

II.2. STATE OF THE ART 

The literature presents a large variety of 2D/3D indexing methods, mainly developed for 3D 

model retrieval purpose. Since the choice of viewing directions is a fundamental issue for 

successful 2D/3D description, we have categorized various families of approaches with respect to 

the viewing angle selection strategy (cf. Section II.1.2.2). The classification adopted in our work 

includes: 
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 Methods using PCA-based projections make the underlying assumption that the views 

corresponding to the projection on the principal planes present higher relevance than other 

views.  

 Methods using evenly distributed viewing angles offer the same importance to all the 

views around the model.  

 Methods using representative views include a clever selection of the views used in the 

2D/3D description. 

Let us begin our analysis with the PCA-based projection approaches.  

II.2.1. Methods using PCA-based projection 

As a representative of the 2D/3D shape-based retrieval approaches, let us first mention the 

MultiView description scheme (DS) proposed by MPEG-7 standard [Bober02, Manjunath02, 

ISO/IEC02].  

The pre-processing stage involves translation and scaling, the 3D object being transformed 

such that its gravity centre coincides with the coordinate system origin and fits the unit sphere. 

The rotation invariance is achieved by applying a principal component analysis (cf. 

Section II.1.1.2).  

Three views are generated by projecting the 3D model onto the principal planes (Figure 

II.8a). Four secondary views can be added in order to ensure better description. The secondary 

viewing directions correspond to the diagonal of the octants defined by the principal planes 

(Figure II.8b). Figure II.8c illustrates the repartition of the seven cameras and the corresponding 

viewing directions.  

 

  

a. b. c. 

Figure II.8 Selection of the principal and secondary axes. 

a. The three principal viewing directions which corresponds to the first three principal axes; 

 b. the secondary viewing angles; c. the seven cameras reparation;  
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Concerning the shape descriptors, let us first mention the MPEG-7 framework [ISO/IEC02], 

where two different MPEG-7 2D shape descriptors, the Contour Shape (CS) and the Region 

Shape (RS), have been considered.  

In the case of the RS descriptor, the object's support function is decomposed within a base 

of Angular Radial Transform (ART) functions [Kim99]. Thus, the image is be represented as a 

weighted sum of ART coefficients. In order to achieve rotation invariance, solely the absolute 

values of the coefficients are used. The similarity measure simply consists of L1 distances 

between ART coefficients. The 2D-ART is invariant under similarity transforms, and it is suitable 

for meshes of arbitrary topologies, which can present holes or multiple connected components 

under the projection operator. A more detailed presentation of the RS descriptor can be found in 

Section III.2.2.1.  

The second 2D shape descriptor promoted within the MPEG-7 DS is Contour Shape (CS), 

which employs the Contour Scale Space (CSS) representation [Mokhtarian92]. More restrictive, 

the MPEG-7 CS descriptor assumes that the shape of the object can be described by a unique, 

closed contour. The descriptor is obtained by successively convolving an arc-length parametric 

representation of the curve with a Gaussian kernel. The curvature peaks are thus robustly 

determined in a multi-scale analysis process and serve to characterize the contour shape, with 

their value and corresponding position (expressed as curvilinear abscise).The associated similarity 

measure between two contours in CSS representation is the EMD [Rubner00]. A more detailed 

discussion on the CS descriptor is presented in Section III.2.2.4. 

Whatever the 2D shape descriptor considered, when comparing two 3D models MA and MB, 

a distance value eij is obtained for each pair of views Pi(MA) – Pj(MB). An error matrix E=(eij) is 

thus computed. The global similarity measure between the two models is then defined as:  

            
   

                (II.21) 

where 

   represents the set of all possible permutations between the columns of matrix E;  

 p is a permutation in  ; 

 p(E) represents the permuted version of matrix E.  

Let us note that such a similarity measure is highly expensive since the number of possible 

permutations is NP!, where NP is the number of projections. In practice, such a similarity measure 

can be applied only for a reduced number of views and becomes computationally un-tractable 

when the number of views increases (3!=6, 7!=5040). 

In [Mahmoudi02], authors re-visit the MPEG-7 CSS representation. Here, the contour of 

each projection image is represented in CSS and decomposed into a set of segments called tokens, 

i.e., sets of 2D points delimited by two inflexion points. The tokens are then clustered and 

hierarchically organized in a M-Tree structure [Ciaccia97]. This organization allows to 

considerably decrease the computation time, as proved by their experimental evaluation. To 

compare two tokens, a sum of geodesic distances between points is computed. The obtained 

descriptor is intrinsically invariant to similarity transforms.  
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The M-Tree-based CSS algorithm was further developed in [Mahmoudi07], where a 

Bayesian voting procedure is employed. To each part pi of the contour is associated a posterior 

probability Pr(pi|Pj(M)) that reflects what is the chance to have a given view Pj(M) in the image, 

knowing the presence of the part pi. Based on the posterior probability, a rank R(Q, Pj(M)) can be 

associated to query image Q with respect to a given view Pj(M). The rank denotes the similarity 

between the query and the view and is calculated as the sum of posterior probabilities Pr(pi|Pj(M)) 

for all parts pi composing the contour of Q. A notable consequence of the Bayesian voting 

procedure is that it allows partial matching. Also, the experimental evaluation presented in 

[Mahmoudi07] has shown that the Bayesian approach increases the performance of the M-Tree-

based CSS algorithm. 

Another method based on multi-scale shape representation is proposed in [Napoléon08]. 

Here, the authors employ a 2D/3D approach based on the MCC (Multi-scale 

Convexity/Concavity) representation introduced in [Adamek04]. The 3D object is scaled with 

respect to its bounding sphere and CPCA is applied in order to normalize the pose of the model. A 

number of three to nine silhouettes are then computed. The viewing directions used correspond to 

the three principal axes and to their six bisectors.  

Each silhouette is further represented by its contour, normalized to         sample 

points. As in the case of the CSS descriptor, a scale-space analysis is performed here. Each 

silhouette contour is successively convolved with        Gaussian functions, with increasing 

kernel bandwidths σ (Figure II.9b). Then, the displacement         of the position of sample u 

between two consecutive scale levels σi-1 and σi is computed. The MCC representation is a 

100  10 matrix composed of the displacements of all 100 contour sample points for the 10 scale 

levels (Figure II.9c).  

  

 
a. b. c. 

Figure II.9 MCC-based representation. 

a. the initial contour; b. the convolved contours; c. the MCC representation;  

The similarity measure used to compare two MCC representations is given by the L1 

distance. In order to ensure 2D rotation invariance, all the 100 possible matching between two sets 
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of samples are tested. Furthermore, as the order or the direction of the principal axes may present 

some errors, 48 possible poses of an object (corresponding to 6 possible permutations of the 

principal axes and to 8 possible orientation configurations) are tested. Thus, the computation 

complexity represents the main drawback of the MCC descriptor. Also, the size of the feature 

vector (i.e., 1000 values/descriptor  9 views) may become a disadvantage when large 3D model 

databases are involved.  

In [Napoléon07] the so-called Silhouette Intersection (SI) method is proposed. Only the 

three views, corresponding to the CPCA principal directions are here retained. The signature of a 

model is simply constituted by the three binary silhouettes obtained. The distance between two 

silhouette images is defined as the number of pixels belonging to the symmetric difference [Alt98] 

of the two silhouettes (i.e., the green and orange pixels in Figure II.10). The global distance 

between two 3D objects is defined as the sum of silhouette distances between pairs of images 

corresponding to the same axis.  

Even if this method is very simple and the computational complexity is very low, the SI 

approach is not robust against small variations of the shape (e.g., in Figure II.10b the two 

silhouettes are very similar but because the position of the wings is slightly different, the 

corresponding distance is very large). Another drawback of the SI algorithm is the strongly 

dependence of the results on the PCA alignment.  

In [Vranic04], authors propose the so-called Enhanced silhouette based approach (ESA), 

which exploits the three views corresponding to the projection onto the principal planes. The 

contour of each silhouette is extracted and sampled using a uniform angular distribution (i.e., the 

polar angles of adjacent selected points differ by a constant) with respect to the centre of the 

silhouette. The sampled contour      is decomposed using Fourier series: 

   
 

 
      

      
           

   

   

  (II.22) 

where: 

       stores the distance from the centre of the model to the tth
 sample. 

   

a. b. c. 

Figure II.10 Silhouette intersection.  
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The feature vector of the 3D model contains the absolute values of the decomposition 

coefficient for each contour. Since samples of the contour are defined with respect to the centre of 

the 2D object, the Fourier descriptor is invariant to rotation and translation.  

A different, single view approach is presented in [Liu09]. Authors propose to exploit a 

unique projection onto the principal plane of maximal eigenvalue. The projection is described 

using two descriptors: region-based Zernike Moments [Mukundan98] and contour-based Fourier 

descriptors [Zahn72].  

The first descriptor employs the decomposition of the support region function        onto 

the basis of Zernike moments. In order to ensure rotation invariance, the feature vector contains 

only the absolute values of the decomposition coefficients. Section III.2.2.3 offers a detailed 

description of Zernike moments computation.  

The second descriptor exploits the uniform sampled contour of the silhouette, expressed as 

a weighted sum of Fourier functions (Equation II.22). The decomposition coefficients      are 

used as feature vector. The descriptor achieves, through the Fourier transform, invariance to 

translation and rotation. The scale invariance is obtained by dividing each coefficient by the 

continous component   .  

Finally, let us mention the approach proposed in [Shih07]. A voxelized, volumetric 

representation is determined prior to performing the PCA. The viewing angle directions used to 

project the model correspond to the three principal axes. Each of the obtained images is 

decomposed into L=60 concentric circles defined around the object’s gravity centre (Figure 

II.11). The feature vector associated to each projection stores for each circle the number of pixels 

representing the object. The so-called principal plane descriptor (PPD) proposed is defined as the 

set of all three feature vectors. The scale invariance is obtained by dividing the feature vector by 

the total number of valid pixel present in the three projections. Let us note that, because of the 

concentric circular regions involved, the PPD is intrinsically invariant under 2D rotation. 

     
a. b. c. d. e. 

Figure II.11 Principle of the PPD approach.  

a. the 3D model; b.-d. the object’s projections onto the principal planes;  

e. concentric circles used to determine the descriptor. 

However, the method implicitly assumes an ordering of the three principal directions based 

on the corresponding eigenvalues. Such an approach may lead, in the general case, to miss-

alignments, as shown in [Zaharia01, Tangelder04]. This problem is illustrated in Figure II.12.  



2D/3D KNOWLEDGE INFERENCE FOR INTELLIGENT ACCESS TO ENRICHED VISUAL CONTENT 

26 

 

  

 

 

  

 

a. b. c. d. 

Figure II.12 PCA miss-alignment.  

a. The directions of the principal axes are different for two similar models.  

b.-d. Couples of miss-matched images. 

PCA-based methods offer the advantage of obtaining a representation associated with a 

canonical, object-dependent coordinate system that partially solves the 3D transform invariance 

issues. However, the principal axes may present strong variations when dealing with similar 

model (Section II.1.1.2). Furthermore, a second limitation is related to the eventual miss-

alignments that might occur. The reliability of the PCA is a key factor within this process that 

should be taken into account appropriately.  

In order to overcome such limitations, a second family of methods, described in the next 

section, proposes to perform the 3D/2D projection according to a set of dense and evenly 

distributed viewing angles.  

II.2.2. Methods using evenly distributed viewing angles  

Instead of computing preferential projection planes, this second family of approaches uses a 

set of dense and evenly distributed viewing angles.  

In [Wen08] an extension of the SI algorithm [Napoléon07], so-called Enhanced Silhouette 

Intersection (ESI), is introduced. Instead of exploiting the PCA directions, the vertices of a 

regular dodecahedron are used to generate ten views, acquired after object normalization in 

translation, scale and rotation. As in the case of the SI method, the distance between two images is 

given by the number of pixels included in the symmetric differences between the corresponding 

support regions. However, when computing the global distance between two 3D models, instead 

of summing up the distances between similar views, a weighted sum is proposed. This choice is 

based on the simple assumption that the relevance of a projection is proportional to the root square 

of its area. Both the descriptor extraction procedure and the dissimilarity measure are fast to 

compute. The experimental evaluation proposed in [Wen08] shows that, compared with the SI 

algorithm, the ESI algorithm provides superior retrieval results. However, articulated object 
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matching is not supported and even small variations of the shape can strongly influence the 

retrieval results. 

In [Chen03], authors introduce the LightField Descriptor (LFD) which encodes ten 

silhouettes of the 3D object obtained by projection from the vertices of the dodecahedron. 

Translation and scaling invariance of the image are extrinsically achieved by normalizing the size 

of the projection images. Furthermore, the silhouettes are described by both Zernike moments 

[Mukundan98] (III.2.2.3) and Fourier descriptor [Zahn72]. A number of 35 coefficients of 

Zernike moments are used as well as 10 coefficients for the Fourier descriptor. Thus, the resulting 

descriptor includes 45 coefficients for each projection image, and 450 for each LFD associated 

with a 3D model.  

To compare two LFDs, the similarity measure used is the L1 distance between the 

descriptor’s coefficients. The minimum sum of the distances between all possible permutations of 

views provides the dissimilarity between the 3D models. Let us note that in the case of LFD there 

are 60 possible permutations and for each of them 10 individual distances between pairs of images 

need to be computed. In addition, as one LFD is not totally invariant under rotation, a set of 10 

LFDs per model is used to improve the robustness. This leads to a total number of 5460 

comparisons to be computed.  

The need for multiple matches for each two objects makes LFD very time consuming. In 

order to reduce the computational cost, a multi-step fitting approach is adopted. In the first stage a 

reduced number of images per model and of coefficients is used in order to filter the results and 

retain a reduced number of candidate models. This procedure allows the early rejection of non-

relevant models. The results obtained show that this algorithm outperforms most 3D shape 

descriptors at the cost of a significantly increased computational complexity. 

A modified version of the LFD method is proposed in [Yang08]. Authors start from the 

observation that two different objects can have similar projections (Figure II.13), under the 

assumption that the scaling normalization is performed upon the silhouette images.  

 
 

 

 

 

 
a. b. c. 

Figure II.13 Dissimilar objects presenting similar views after scale normalization.  
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The Modified LFD (MLFD) approach proposes to skip the resizing step of the original LFD 

algorithm. Tested on the Princeton Shape Database [Shilane04], MLFD slightly outperformed the 

LFD performance (the Nearest Neighbour measure increases by 5.3%, the First and Second Tier 

measures by 4.1%, respectively 3.6% and the Discounted Cumulative Gain increases by 2.3%). 

This shows that, for 3D model retrieval purpose, the normalization issues needed for achieving 

invariance should be considered in the 3D space rather than in the domain of 2D projections 

and/or descriptors.  

In [Daras09] the Compact Multi-View Descriptor (CMVD) is proposed. The authors tested 

the CMVD on both binary and depth images. The descriptor extraction starts with the 

normalization stage, which includes translation, rotation and scaling. In order to compute the 

principal axes, both PCA and VCA [Pu05] are performed. A number of 18 projections are 

obtained by placing the camera on the vertices of a 32-hedron and each of them is described by 

three sets of coefficients. First, 78 coefficients of the 2D Polar-Fourier Transform are computed. 

The usage of polar coordinates ensures rotation invariance. Secondly, 2D Zernike moments up to 

the 12th order are obtained, resulting in 56 coefficients. Finally, they consider the 78 coefficients, 

corresponding to 2D Krawtchouk moments     [Yap03]: 

                                       

   

   

   

   

   (II.23) 

where: 

        is the support region function of the 2D silhouette; 

 N  M is the size of the image; 

            . 

               is the nth order weighted Krawtchouk polynomial, defined as: 
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and 

                  
 

 
   

         
 

      

 

   

   (II.25) 

When comparing two projection images, the L1 norm is used to compute the distance 

between two descriptor vectors. Authors also take into account the fact that in some cases the first 

principal axis may not be successfully selected among the three principal axes. In order to deal 

with such an issue, 3  8 = 24 different alignments are considered. The total dissimilarity between 

two sets of images is obtained by summing up the dissimilarities between corresponding images. 

The distance between two models is the minimum distance that results when comparing the 18 

projections of the first model with each of the 24 sets of images of the second model. In terms of 

computational complexity, the view generation process is the most time consuming. The 2D 

rotation invariance is ensured by the considered image descriptors. Experiments conducted on 
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several 3D model databases have shown that CMVD performs similarly to LFD while offering a 

reduced computational complexity.  

In general, the methods that use evenly distributed viewing angles generate a higher number 

of projections (e.g., 100 views for LFD, 18 views for CMVD) than those based on PCA analysis 

(between 3 and 9 views). Obviously, a larger number of images will carry more information, 

which results in a more complete description. However, the main limitation of such approaches 

remains their high computational complexity. 

In order to overcome this drawback, some authors propose to reduce the number of views 

generated by the evenly distribution of the camera. Thereby, a subset of representative views is 

selected in order to reduce the computation complexity and the possible redundancy within the 

initial set. 

II.2.3. Methods using representative views 

This family of approaches proposes to perform an intelligent selection of the views 

associated to each 3D model in order to reduce their number. The selection process supposes to 

cluster the silhouettes according to their 2D similarity. Thus, a reduced number of representative 

projections is obtained, that can be used to appropriately describe the 3D object.  

The representative views selection problem can be formalized as follows: given a set 

                 of 2D views of a 3D model M and an associated similarity distance 

       , determine the subset     
           that maximize      

     
          

     
  

  
  while minimizing     

    
           

     
       

      
 . In other words, the selected 

representative views have to be as different as possible while any other views have to be close to 

one of the representative views. 

A representative views selection algorithm is proposed in [Cyr01], where the authors 

present a method based on a similarity aspect graph. First introduced in [Koenderink76], the 

aspect graph represents a set of representative object projections and their spatial connection. In 

[Cyr01], authors propose to place the camera in the third principal plane, around the principal 

axis. A number of 36 silhouettes are obtained by uniformly sampling the (0, 180°) interval and the 

similarity is computed between each two projections. The aspects are defined as groups of similar 

silhouettes with respect to the considered similarity measure. They are obtained with the help of a 

clustering algorithm that maximizes the intra-class similarity while minimizing the inter-class 

similarity. A prototype view is determined for each aspect. Finally, the prototype views are 

represented as graph structure; each node corresponds to a stable view and each two adjacent 

stable views are connected by an edge of the graph. The similarity metric used for prototype 

selection employs the shock graph representation proposed in [Sebastian01]. The authors integrate 

the 2D/3D indexing method in a 3D model recognition framework. Only one projection image is 

used as query for each model, and compared to all the prototypes in the database. The number of 

comparisons is thus proportionally with the number of prototypes per model. The object is 
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matched against the one in the database having the most similar prototypes to the query. The same 

similarity measure is used to compare prototypes as the one exploited for their selection.  

The main drawback of this method is the computational complexity of both prototype 

selection and similarity measure used for retrieval purposes. Also, since the viewing angles lie in 

a unique plane, the selection of this plane has to generate a robust response in order to ensure a 3D 

pose invariant behaviour. 

[Denton04a] continued to exploit the aspect graph concept and proposed the canonical set 

selection algorithm. The viewing angle selection strategy is similar to the one adopted in [Cyr01] 

(i.e., views acquired along a circle within the third principal plane), but the number of projections 

is increased to 180 for each 3D model. The novelty of their method consists in the selection of the 

representative views that compose the so-called canonical set. The set of projections           

is modelled as a weighted graph where each node      corresponds to a projection and the 

weight     between two adjacent nodes is equal to the similarity between corresponding views: 

        
    

     (II.26) 

The graph contains an edge    
    

   between each two nodes if the potential weight     is 

larger than a given threshold σ. The selection of the canonical set issue can be then formulated as 

determining the smallest subset      such as for any node   
        there exists an edge 

   
    

   with   
     and which maximizes the weight       of the cut          . In order to 

solve this multi-objective optimization problem, authors employ semi-definite programming 

[Alizadeh95]. 

The canonical set method was further extended in [Denton04b] to bounded canonical set 

(BCS). Here, the authors propose to limit the size of the canonical set to 2 or 3 views, thus 

ensuring a compact description of the 3D model.  

In [Yamauchi06] a similar method, so-called Stable View, is proposed. The approach aims 

at selecting the viewing angles based on the degree of representativity of the corresponding 

projection images. Here, 162 silhouette images are rendered according to a uniform viewing angle 

distribution, defined over the unit sphere as a spherical triangular mesh. The obtained images are 

described using Zernike moments [Mukundan98] (III.2.2.3), up to the 15th order. The similarity 

between each two adjacent projections is computed using the L2 norm distance. Then, a spherical 

weighted graph is constructed using the viewing angles as vertices. The weight of each edge is 

equal to the similarity between the views connected by the considered edge. Stable view regions 

represent sub-parts of the graph with similar corresponding projections (i.e., sets of edges with 

low weights). Two stable view regions are separated by so-called heavy edges. Thus, based on the 

edge weights, the graph is partitioned into eight sub-graphs representing the stable view regions. 

Furthermore, a representative viewpoint needs to be found for each stable region. In order to 

achieve this goal, a pertinence value is assigned to each viewpoint. This value is based on the 

mesh saliency, a measure that evaluates the mesh curvature evolution when smoothed at different 

filter scales. The saliency measure is also used to sort the views according to the amount of 

information they carry. The algorithm is complex because of the weighted graph construction 
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procedure, which is the most time consuming stage (162 vertices of 6 adjacent edges each which 

generate 486 edges and as many weights to be computed). However, the approach proves to be 

effective for determining representative viewpoints. 

The graph-based selection of representative views takes into account the position of the 

viewing angles around the model. Thus, a selected view can represent only its neighbours. 

However, views that are distant in the 3D virtual space can be very similar in the feature vector 

space (for example in the case of objects presenting symmetries). Therefore, it may be more 

useful to select views that represent their neighbours in the feature vector space and also to allow 

adapting their number to the geometry of the model. 

In [Ansary07], authors propose to employ clustering techniques for representative views 

selection. After the normalisation of the 3D model in size, position and orientation, their 

algorithm generates a set of 320 views, equally spaced on the unit sphere. Each view is further 

described by the first 49 coefficients of the Zernike Moments [Mukundan98] (III.2.2.3). Thus, the 

views can be represented in a 49 dimensional space and grouped with the help of a k-means 

clustering algorithm [Silverman02]. 

However, the goal of [Ansary07] is to provide an algorithm able to adapt the number of 

representative views to the geometry of the 3D model. Therefore, they propose to use a Bayesian 

Information Criteria (BIC) [Schwarz79] in order to obtain an Adaptive Views Clustering (AVC). 

The algorithm starts with all views in a single cluster. Further, an iterative process is 

applied, where at each step the existing clusters are divided in two sub-clusters. The BIC is 

computed for the initial cluster and for the corresponding sub-cluster and the configuration giving 

the maximum score is retained. The process continues until the maximum number of accepted 

clusters (i.e., 40) is reached. The global BIC score is computed for each intermediate 

configuration and the best one is finally considered. 

The authors also make the assumption that not all views have the same importance. Thus, a 

probability is associated to each representative view depending on the size of the corresponding 

cluster. Moreover, the probability to observe a model is computed based on the number of 

representative views associated to that object and on the total number of representative views in 

the database. Thus, the distance between a query and a model of the database can be expressed by 

the conditional probability of apparition of that model, knowing the query. Their experimental 

evaluation proves that, for 3D model retrieval purposes, view-based indexing methods (i.e., AVC 

and LFD) outperform global 3D shape descriptors. Also, the results prove a better effectiveness of 

the probabilistic measure compared to the Euclidian distance. However, AVC does not reach 

retrieval scores as good as LFD. 

The clustering selection in the feature vector space is also exploited in [Gao11, Gao12a] 

where an Agglomerative Hierarchical Clustering (AHC) approach [Cormack71, Fernandez08] 

was adopted for representative view selection. The AHC is a bottom-up clustering method where 

each cluster has sub-clusters, which in turn have sub-clusters until obtaining clusters with only 

one element. This hierarchical structure is obtained by starting with every single element in a 

cluster. Then, an iterative fusioning process is applied, where the most similar clusters (with 
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respect to a given similarity metric) are successively merged until obtaining a unique cluster (or 

the suited number NRV of representative views). The projection with the minimal distance 

compared with all other views in the same cluster is selected as the representative view of that 

cluster. [Gao12a] propose to select NRV=10 projections among 60 or 41 evenly distributed views. 

The similarity is given by the Euclidian distance between the first 49 coefficients of Zernike 

Moments [Mukundan98, Mukundan08] (cf. Section III.2.2.3). 

Moreover, the authors propose to also analyse the set of projections that describe the 3D 

model query. After the AHC, the representative views associated to the query are treated as sub-

queries of different relevance (formally expressed by a weighting factor). The authors make the 

underlying assumption that the sub-queries that are close to the top retrieved models should be 

assigned higher weights. Therefore, a k-partite graph [Long06] is constructed. Each part of the 

graph corresponds to a 3D model and each vertex to a representative view. Initially, the weight of 

each representative view is proportional to the size of the corresponding cluster. Then, a k-partite 

graph reinforcement approach is performed in order to update the weights of the sub-queries. The 

experimental evaluation proposed in [Gao12a] proves that by weighting the sub-queries the 3D 

model, the retrieval performances are slightly increased. 

In [Gao12b], the graph representation of the representative views is extended to hyper-

graphs. In the case of hyper-graphs, an edge can connect three or more vertices, which allows 

creating more complex and realistic structures. All the views of all the objects in the database are 

grouped into clusters. Further, each cluster is considered as an edge that connects objects with 

similar views. The weight of an edge depends on the mean similarity between two elements of the 

cluster. By varying the number of clusters, multiple hyper-graphs can be generated. The hyper-

graphs are merged together and the retrieval is performed on the fusion of the hyper-graphs. A 

training stage is first required in order to determine the weight of each hyper-graph in the fusion. 

Finally, the relevance score matrix is obtained as the minimum solution of the graph 

regularization problem. 

The experimental evaluation proposed in [Gao12b] proves that the hyper-graph algorithm 

outperforms AVC and CMVD indexing methods. 

In general, the representative view selection leads to greater complexity of the 2D/3D 

indexing process. For 2D object recognition purpose, the extraction complexity is not a drawback, 

since this stage is performed offline. However, in the case of 3D model retrieval, the query has to 

be described in a fast way and thus the computational complexity penalizes the methods 

employing representative views.   

II.2.4. Conclusions 

Table II.1 synthesizes the various descriptors presented in this section. For each method, the 

extraction and the matching complexities, respectively denoted by CE and CM, are qualitatively 

estimated (i.e., + for low complexity and +++ for high). The numbers of views per model as well 
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as the viewing angle selection procedure are also indicated. The last column recalls the 2D 

descriptors associated to the projection images. 

PCA-based methods present low complexity for both extraction and matching. They also 

offer the advantage of providing an object-dependent representation. However, as the principal 

axes may present strong variations, the reliability of the PCA remains a key factor to be solved. 

The methods employing a dense repartition of the cameras (e.g., LFD, CMVD) attempt to 

overcome the PCA-related limitations and provide best retrieval performances [Ansary07]. Yet, 

the price to pay is the cost of large descriptors and complex matching strategies. 

The descriptor size can be reduced by using a clever selection of views. However, the 

representative view selection leads to higher extraction costs, which can be very penalizing 

especially for 3D model retrieval purposes.  

The literature shows a wide palette of useful approaches. However, when comparing the 

different 2D/3D indexing methods it is difficult to evaluate objectively in what measure the 

choices involved at each stage of the retrieval process (i.e., normalization, viewing angle 

selection, 2D shape description, matching strategy...) affects the retrieval performances. This issue 

is treated in detail in the following chapter. The power of 2D/3D indexing approaches is here first 

investigated for 3D model retrieval purpose. This will give us a first qualitative evaluation of the 

adopted elements. Then, in Chapter IV, the view-based 3D model indexing will be integrated in 

the 2D shape classification framework.  
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III. VIEW-BASED 3D MODEL RETRIEVAL 

 

Abstract. In this chapter we tackle the issue of view-based 3D model retrieval. The objective here 

is twofold. On one hand, we investigate the impact of various 2D shape descriptors and viewing 

angle strategies upon the 3D model retrieval performances. On the other hand, we propose an 

analysis of existing 3D model repositories considered in our work, in terms of intra and inter-

class variability/separability, which can be useful under the perspective of 2D/3D semantic 

categorization.  

The various 2D shape descriptors adopted are presented and discussed. In addition, a novel 

contour-based shape descriptor, so-called Angular Histogram (AH) is proposed. The retained 

viewing angle selection strategies are also detailed and analyzed. A clustering-based approach 

for the adaptive selection of representative views is also introduced here.  

Our experiments first concern the analysis of 3D model repositories. The MPEG-7 and Princeton 

data sets are here considered and analyzed with the help of a set of objective criteria. The study 

involves the various descriptors and viewing angle selection strategies retained.  

Finally, a comparative and objective evaluation of the various descriptors and viewing angle 

selection techniques for 3D model retrieval purposes is proposed. 

Keywords: shape descriptor, 3D meshes; 2D/3D indexing, multiview matching, 3D model 

database, MPEG-7 standard; projection strategy. 
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III.1. INTRODUCTION 

One of the main applications of 2D/3D indexing framework concerns, naturally, the field of 

3D model retrieval. The objective here is to identify/retrieve pertinent 3D models in a given 

repository. The queries can be formulated in several ways: 

 by example: a 3D model, similar to those suited by the user, is given as example,  

 by 2D projections/sketches: a set of 2D views (real images or sketches) representing 

different perspectives of the suited model are provided at the input; 

 by 3D sketches: the user models itself a 3D sketch that represents the query. Such a method 

requires from the user advanced 3D modelling skills and dedicated modelling tools, which 

is penalizing for general-purpose applications,  

 by text: the query is based on text keywords, 

 multimodal queries, involving combinations of the above-mentioned individual queries.  

In the current chapter, only queries by example will be considered, where the input is an 

example 3D model provided by the user. The example is further described with the help of view-

based, 2D/3D descriptors and compared to all the objects in the database. The most similar 

models are determined, sorted by decreasing similarity order and proposed to the user as response 

to his query. A synoptic scheme of a 3D model retrieval system is illustrated in Figure III.1. 

The 2D/3D indexing of the database is performed only once, offline, and the resulting 

descriptors are stored and employed each time when a new query is formulated. Therefore, it is 

important to employ adequate descriptors which guarantee a limited storage size. On the other 

hand, the comparison of the example model with those on the database is done online and thus a 

speed requirement appears. Therefore, the similarity computation and matching has to be fast 

enough, especially when large 3D model databases are involved.  

 

Figure III.1 The 3D model retrieval scheme.  
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In this chapter, we address the issue of view-based 3D model retrieval. First, the adopted 

2D/3D indexing methods are presented. Further, the 3D model retrieval framework is detailed. 

The first part of our experiments is dedicated to the analysis in term of intra and inter-class 

variability/separability of the 3D model repositories involved in our work. Next, we provide a 

comparative study of the retrieval performance of various 2D shape descriptors and viewing 

angle selection techniques retained. These experiments allow a first evaluation of the various 

2D/3D indexing techniques employed further in Chapter IV for 2D object recognition purposes.  

Let us start by presenting the 2D/3D indexing techniques adopted in our work. 

III.2. ADOPTED 2D/3D INDEXING METHOD 

As discussed in Chapter II, the behaviour of the 2D/3D indexing methods is strongly 

influenced by the various choices involved in the 2D/3D processing chain. Within this 

framework, the adoption of appropriate viewing angles selection strategies and of discriminant 

2D descriptors is determinant. Let us first detail the viewing angle selection strategies retained in 

our work.  

III.2.1. Viewing angle selection 

As already underlined, the strategy adopted for projecting the 3D model represents an 

important phase in 2D/3D indexing. The resulting set of views has to be representative for the 3D 

model, to contain as more information as possible, while including a relatively small number of 

projections. As presented in Section II.1.2.2 there exist several families of viewing angle 

strategies, corresponding to various underlying hypotheses. In our work we have considered 

strategies from each family, in order to experimentally determine their influence on the results. 

Concerning the pose normalization aspects (cf. Section II.1.1), the model is first translated 

such as its gravity centre coincides with the origin of the coordinate system (as described in 

Section II.1.1.1.2). Next, the PCA analysis is performed(cf. Section II.1.1.2) and the object is 

oriented such as its principal axes are aligned with those of the coordinate system. Finally, the 

model is resized with respect to the eigenvalues obtained through the PCA (cf. Section II.1.1.3.2). 

Let us recall that, in order to avoid redundancy within the set of views, only half of the bounding 

space is used for camera placement. 

 A first viewing angle selection strategy that we have adopted is based on PCA.  

III.2.1.1. PCA-based viewing angle selection 

The PCA-based viewing angle selection strategy uses the principal components of the 3D 

model as viewing directions. The 3D model is projected onto the three principal planes, resulting 

in a set of views, so-called PCA3 (Figure III.2). 
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The principal planes describe eight octants, whose diagonal can be used as secondary 

viewing directions (Figure III.3). Thus, a set of seven views is obtained. From now on, this 

viewing angle selection strategy will be referred to as PCA7.  

 
 

 

a. b. c. 

Figure III.2 PCA3 viewing angle selection strategy. 

a. The aligned 3D model; b. the PCA3 viewing angles; c. the resulting projections.  

 

 
 

a. b. 

Figure III.3 Secondary views used by the PCA7 viewing angle selection strategy. 

a. the secondary viewing angles; b. the resulting projections.  

Let us recall that the PCA3 and PCA7 strategies are those recommended by the 

ISO/MPEG-7 standard for the MultiViewDS [Bober02, ISO/IEC02].  

The second class of viewing angle selection strategies proposes to use a uniform repartition 

of the cameras around the 3D model. 

III.2.1.2. Uniform camera distribution 

This viewing angle selection strategy is inspired by the one proposed to the LFD descriptor 

introduced in [Chen03]. A regular dodecahedron, placed around the 3D model, is considered. A 

number of 10 cameras are placed on the vertices of the dodecahedron and oriented towards the 

3D model (i.e., the origin of the considered coordinate system).  
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When using a uniform repartition of the camera, the 3D model can present an arbitrary 

orientation in the virtual space, as illustrated in Figure III.4a. However, for 3D-to-3D matching 

purposes, it is useful to achieve consequent sets of views (i.e., two sets of views to contain similar 

perspectives of the associated 3D models).  

Therefore, two sub-cases of dodecahedron-based cameras repartition have been considered. 

In the first one, the 3D model has a random orientation (Figure III.4), while in the second case, 

the 3D model is first aligned with the help of PCA (Figure III.5). From now on, this viewing 

angle selection strategies will be referred to as DODECA, respectively DDPCA.  

 

 

a. b. 

Figure III.4 DODECA viewing angle selection strategy. 

a. the viewing angles; b. the resulting projections.  

 

 

 

a. b. 

Figure III.5 DDPCA viewing angle selection strategy. 

a. the viewing angles; b. the resulting projections. 

Finally, we have considered an angle selection strategy based on representative views, 

described in the following section. 
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III.2.1.3. Combined method 

The third viewing angle selection strategy proposes to exploit in the same time the uniform 

repartition of the cameras and the PCA-based repartition. First, the 3D model is normalized in 

orientation, size and position such as its axes of inertia coincide with the coordinate system.  

An octahedron, whose diagonals coincide with the axes of the coordinate system (Figure 

III.6a), is used for cameras placement. Positioning the cameras on the vertices of the octahedron 

results in a set of three views, corresponding to the projections on the principal planes (the same 

set obtained with the PCA3 projection strategy). The faces of the octahedron are further 

successively subdivided, resulting in a mesh with 18, respectively 66 vertices (Figure III.6 c and 

d). By placing cameras on the vertices of the subdivided octahedron meshes and orienting them 

towards the 3D model's centre, it results sets of 9, respectively 33 uniformly distributed views. 

From now on, the octahedron-based viewing angle selection strategies will be referred to as 

OCTA9, respectively OCTA33.  

    
a. b. c. d. 

Figure III.6 Octahedron-based viewing angle selection strategy. 

a. the 3D model; b. Octahedron wireframe representation (OCTA3); c. First subdivision level of the 

octahedron (OCTA9); d. Second subdivision level of the octahedron (OCTA33).  

III.2.1.4. Representative views  

In order to obtain a dense and uniform repartition of the viewing angles, we have exploited 

here the vertices of an icosahedron, whose faces were successively subdivided (Figure III.7). 

    
a. b. c. d. 

Figure III.7 Icosahedron-based viewing angle selection strategy. 

a. & b. Icosahedron; c. First level of subdivision of the icosahedron; d. second level of 

subdivision of the icosahedron.  
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The 3D model, which presents an arbitrary orientation in the virtual space, is placed inside 

the subdivided icosahedron mesh. The cameras, placed on the vertices of the mesh and oriented 

toward the 3D model, generate a set of NP=81 views. 

Next, the objective is to determine a subset of     (with     < NP) representative views. 

For this purpose, an adapted k-means clustering approach [Silverman02] is employed. The aim of 

the clustering is to divide the NP views into NRV groups (i.e., clusters) maximizing the intra-class 

similarity between views, while minimizing the inter-class similarity. A central view (centroid) is 

determined for each cluster. The set of representative views is defined as the set of all central 

views.  

In order to evaluate the similarity between projections, a ND-dimensional feature vector 

(i.e., 2D shape descriptor) is associated with each view. A similarity measure (appropriate for 

each descriptor) is employed in order to compute the distance dij between each two views i and j. 

The adopted 2D shape descriptors, as well as the corresponding similarity measures, will be 

presented in Section III.2.2.  

First, NRV views evenly distributed around the model are selected as initial centroids. Next, 

each of the available NP views is assigned to the cluster with the closest centroid with respect to 

the given similarity measure. A set of clusters is thus determined. Further, for each cluster, the 

view which presents the minimum mean distance to the other views within the same cluster is 

chosen as new centroid. The process is then iterated until convergence.  

In order to homogenize the inter-cluster distances and thus to avoid the case where two 

clusters are close one to the other, while other clusters present distant views, an additional 

refinement stage is introduced. The minimum distance dC-C between two centroids and the 

maximum distance dC-V between a centroid and a view within the same cluster are computed. If 

there exist two clusters which are closer than the most distant view dC-V, then that corresponding 

view will constitute a new cluster, while the two closest clusters are merged. This refinement test 

is performed after each re-calculation of the clusters.  

The algorithm is formally expressed by the following pseudo-code: 

0. Compute the distance matrix 

1. Initiate the cluster centroids 

2. Associate each view to the closest centroid 

3. Compute the new centroid of each cluster 

4. Test clusters 

4.1. Compute the maximum centroid-view distance (dC-V) 

4.2. Compute the minimum centroid-centroid distance (dC-C) 

4.3. if(dC-V > dC-C) 

4.3.1. Join the two closest clusters 

4.3.2. Split the most spread cluster 

4.3.3. Compute the new centroids 

Repeat steps 2-4 until convergence 
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In our work the number NRV of representative views was set to 6 and 10. From now on, the 

representative views selection methods will be refer to as RV6, respectively RV10. Figure III.8 

illustrates the 81 views obtained by placing the camera on the vertices of the icosahedron and the 

views selected with RV10 strategy.  

 

Figure III.8 RV10 views selection strategy.  

With the help of the above-presented viewing angle selection strategies, a set of projections 

can be associated to a 3D model. In order to accomplish the 2D/3D indexing process, each view 

has to be characterized with the help of 2D shape descriptors. The next section present the 2D 

shape descriptors considered in our work.  

III.2.2. Retained 2D shape descriptors 

For 2D/3D indexing purpose, the 2D shape descriptor employed has to satisfy some 

constraints, imposed by the large number of views that needs to be encoded and compared. 

Therefore, besides a good discrimination power, small storage size and fast similarity estimation 

represent very important criteria for 2D shape descriptor selection.  

In our work we have adopted the following 2D shape descriptors, exploiting both region 

and contour information: 

 Region Shape (RS) and Contour Shape (CS) descriptors, adopted by the MPEG-7 

standard [ISO/IEC02, Bober02]; 

 Zernike Moments (ZM), widely used for 2D/3D indexing purpose; 

 Hough Transform (HT), appropriate for describing shapes with arbitrary topologies;  

 Angular Histogram (AH), a new contour-based descriptor proposed in this thesis.  
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Let us now detail each of the retained descriptors. 

III.2.2.1. Region Shape 

The RS descriptor, adopted within the MPEG-7 DS, employs the Angular Radial 

Transform (ART) [Kim99] in order to decompose the object's support function       , expressed 

in polar coordinates      , within a base of radial functions            defined as: 

         
 

 
               (III.1) 

where: 

          ; 

          ; 

       is the imaginary unit; 

     are the coordinates of the polar system. 

The decomposition coefficients       are given by the equation: 

The RS descriptor is defined as the set of coefficients      . In order to intrinsically 

achieve rotation invariance, only the absolute values       of the coefficients are used. The 

translation invariance is obtained by centring the 2D object with respect to its gravity centre. 

Finally, the scale invariance is achieved by resizing the shape to the unit disc.  

The similarity measure simply consists of L1 distance between ART coefficients. The 2D-

ART is thus invariant under similarity transforms, and is suitable for shapes with arbitrary 

topologies, which can present holes or multiple connected components. 

Concerning the parameters involved, we have adopted the values recommended by MPEG-

7 (i.e., M = 12 and N = 3), resulting in a base of 36 functions. As the first radial basis function 

         presents a constant value over the entire domain of definition, the first decomposition 

coefficient will represent the object’s area. Therefore, this coefficient is discarded from the 

representation and the feature vector is limited to the other 35 coefficients. Let us also note that 

the decomposition coefficients take real values within the       interval. In order to reduce the 

storage size, the interval is divided into 16 non-uniform sub-intervals, numbered from 0 to 16, 

and for each real coefficient only the number of the corresponding interval is stored. When 

computing the similarity measure, each stored index is replaced by the central value of the 

corresponding sub-interval.  

Figure III.9 a and b illustrates the real, respectively the imaginary parts of the Angular 

Radial Transform basis functions. 

                        

 

 

  

 

   (III.2) 
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a. 

 

b. 

Figure III.9 The Angular Radial Transform (ART) basis functions. 

a. the real parts; b. the imaginary parts. 

III.2.2.2. Hough Transform 

The Hough Transform (HT) [Duda72] can be used as a region-based descriptor which 

expresses the 2D shape as a cumulative distribution. The HT of a 2D shape is the discrete version 

of the Radon Transform [Radon86], defined as: 

where: 

        is the object's support region function; 

   is the Dirac distribution. 

The HT employs the polar parameterization of straight lines in the IR2 plane. Thus, each 

line in the Cartesian space is uniquely determined by s, the distance from the origin of the 

coordinate system to the line, and , the slope of the line (Figure III.10a).  

In order to obtain the HT of a point         in the Cartesian space, a family of lines 

         passing through that point is considered (Figure III.10b) and represented in the HT 

space      (Figure III.10c). The HT of a 2D shape is obtained by accumulating the transforms of 

all points composing the object's support function.  

                                  

 

  

   (III.3) 
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a. b. c. 

Figure III.10 The Hough Transform. 

a. polar coordinates of a straight line; b. the family of lines considered for HT;  

c. HT representation of a family of lines associated to a Cartesian point. 

Exploiting both distance and angle measures, the HT is not invariant under similarity 

transformations (i.e., translation, rotation, scaling or combinations of them). Therefore, before the 

computation of the HT, a PCA of the 2D shape is performed in order to determine the principal 

axes of the object and its intrinsic size. The 2D object is translated with its gravity centre in the 

origin of the coordinate system and rotated such that its principal axes coincide with those of the 

coordinate system. Finally, the object is scaled with respect to the square root of the summed 

eigenvalues.  

In our work we have considered families of N =64 lines, uniformly sampling the set of 

possible orientations [0, 2]. The distance parameter s has been quantified uniformly to Ns =32 

values. Thus, the HT representation contains N  Ns = 2048 bins. The L1 norm is used in order to 

compute the distance between two HT descriptors. Figure III.11 illustrates some examples of 2D 

shapes and the corresponding Hough Transforms. 

a. 

     

b. 

     

Figure III.11 Examples of Hough Transforms. 

a. 2D objects; b. corresponding Hough Transform images. 
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III.2.2.3. Zernike Moments 

The last region-based descriptor retained is represented by Zernike Moments 

[Mukundan98]. This descriptor employs the decomposition of the support region function        

on the basis of Zernike moments    
       (Figure III.12): 

   
                 

      

   
     

 
     

     
 

    
     

         

   

   (III.4) 

where: 

     are the polar coordinates; 

 n represents the order and m the repetition of a given function, with         and      . 

The decomposition coefficients            are given by the following equation: 

         
   

 
        

 

 

  

 

   
             (III.5) 

In order to ensure rotation invariance, only the absolute values of the decomposition 

coefficients are used for description. The invariance to other affine transformations is achieved in 

the same way as in the case of the RS descriptor (Section III.2.2.1). 

In our work, we have considered Zernike Moments up to order 11 (i.e.,        ) which 

results in 42 functions. As the first component presents a constant value over the entire domain of 

definition, the corresponding coefficient is discarded from the representation, thus resulting in a 

41 values feature vector. The similarity measure used in order to compare two shapes described 

by the Zernike Moments is simply the L1 distance computed between the corresponding 

coefficients. 

  

a. b. 

Figure III.12 Zernike basis functions. 

a.the real parts; b. the imaginary parts. 
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III.2.2.4. Contour Shape  

The Contour Shape (CS) descriptor, adopted within the MPEG-7 DS, exploits the Contour 

Scale Space (CSS) representation proposed in [Mokhtarian92]. 

The first step in the CS descriptor computation is the extraction of the contour     , with 

       . The CSS representation is obtained by performing a multi-scale analysis of the 

contour. A bank of Gaussian filters       , with increasing standard deviation σ, is applied to 

    , resulting in a set of contours           (Figure III.13a): 

                    ,  (III.6) 

 

 

a. 

 

 

b. c. 

Figure III.13 Contour Scale Space. 

a. Contour filtering and inflexion points; b. colourbar (the colour indicates the curvilinear position of 

each sample point); c. CSS representation. The most important curvature peaks are marked with letters 

from A to E on both filtered contours and CSS representation. 
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with: 

       
 

    
  

 
 
 
 
 
 
 

   (III.7) 

Further, the inflexion points of each contour         are computed and represented in the 

      space (Figure III.13c). 

Finally the CS descriptor stores the predominant curvature peaks in the CSS representation 

(with the corresponding curvature values and associated curvilinear abscises). The resulting 

feature vector stores in total 26 values. The Earth Mover's Distance (Section II.1.4.1.2) is 

employed in order to measure the similarity between two contours described with the help of CSS 

representations. The CSS representation is invariant to translation and scaling. The rotation of the 

2D shape leads to a cyclic permutation of the CSS representation. 

III.2.2.5. Angular Histogram 

Finally, we propose a new descriptor, so-called Angular Histogram (AH). The shape 

contour is extracted and sub-sampled in a number NS of successive 2D points. Further, the angles 

defined by each three consecutive samples (                        ) are computed and 

represented in a N -bins histogram. However, such a description encodes only the details of the 

contour. In order to offer in the same time local and global representation capabilities, several 

distances    are considered between the three samples that define each angle (     

                       ). Therefore, a total of NL histograms are computed, one for each 

value of   . The AH histogram is obtained by the concatenation of NL histograms of N bins 

each.  

As the samples of the contour take quantified values (due to the pixel representation), the 

angles    will also take quantified values. This behaviour can lead to errors in the computation of 

the histogram. In order to avoid such inconvenience, we introduce, before sampling, a contour 

filtering stage. Both x and y coordinates are low-pass filtered with a simple kernel 

K=             .  

Two AH descriptors are compared using the L1 distance computed between corresponding 

AH coefficients. Let us note that the obtained descriptor is intrinsically invariant to similarity 

transformations.  

In our work we have considered N=18 bins histograms for an 180◦
 interval and NL=5 

different levels, resulting in a 90 integer values feature vector. Figure III.14 and Figure III.15 

illustrate two shape contours and the associated angular histograms.  
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Figure III.14 Angular Histogram — humanoid. 

Each histogram corresponds to a different distance between the samples (red dots) 

used to compute the angles. 

 

 

 

Figure III.15 Angular Histogram — airplane. 

Each histogram corresponds to a different distance between the samples (red dots) 

used to compute the angles 
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III.3. SIMILARITY AGGREGATION FOR 3D MODEL RETRIEVAL  

In order to measure the similarity between two 3D models, described with the help of a set 

of 2Dviews (and associated 2D shape descriptors), the corresponding sets of views need to be put 

into correspondence and compared. A first, exhaustive matching approach consists of considering 

all the possibilities and to keep the optimal one (i.e., the one which yields the smallest distance). 

This can be achieved by considering the set of all possible permutations between views. For each 

permutation, a global similarity measure is calculated by summing up all similarities measures 

between individual views. However, such a matching strategy is computationally intractable in 

practice: assuming that each model is described by a set of NP views, the total number of 

permutations equals NP!. Even for a relatively low number of views, this results in a prohibitive 

number of permutations. For example, when Np = 10, the number of permutations is of 3628800... 

Another matching solution consists of directly putting into correspondence the views obtained by 

the same camera, under the assumption that the 3D model presents a canonical representation in 

the virtual space, as the one obtained after PCA alignment. Figure III.16a illustrates two objects 

  , and    , the associated projections and the corresponding distances stored as a similarity 

matrix. The distance          between the two 3D models is therefore obtained by summing 

up the distances stored on the diagonal of the matrix (Figure III.16b). 

                           

  

   

  (III.8) 

From now on, this approach will be referred to as Diagonal matching strategy. 
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a. b. 

Figure III.16 3D models matching. 

a. The distance similarity matrix associated with two 3D models; b. Diagonal matching strategy. 
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The main drawback of the Diagonal matching strategy is related to the limitations of the 

PCA alignment process, which fails in a certain number of situations (cf. Section II.1.1.2). 

Therefore, we propose a different matching approach, so-called Minimum, which exploits a 

greedy strategy for fitting the various 2D views. When comparing two 3D models, the best 

match, corresponding to the minimal distance in the similarity matrix, if first determined (Figure 

III.17a). The corresponding views are considered as matched and ignored during the next steps. 

The process is successively applied upon the remaining sets of views, until all the projections are 

matched (Figure III.17 b-d). The global distance between two models is obtained by summing up 

the individual distances between the matched views.  
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a. b. c. d. 

Figure III.17 3D models matching with the Minimum strategy. 

a.-d. Intermediate steps of the Minimum strategy. The best match determined at each step is marked 

with green, while the projections which were already considered are marked with blue. 

III.4. STORAGE AND COMPUTATIONAL ASPECTS  

Within the context of 2D/3D indexing, the time required for both descriptor extraction and 

similarity measure computation represent key issues, since the number of shapes to be described 

and compared can be important in the case of large 3D model repositories. Another aspect to be 

taken into account is the descriptor size which has an impact on the required storage space.  

Table III.1 presents the storage size (DS), as well as the extraction (TE) and similarity (TS) 

computation times for each of the retained descriptors. The computation times reported here have 

been obtained on an Intel Xeon machine with 2.8GHz and 12GB RAM, under Windows 7 

platform.  

Regarding the storage size, all descriptors present similar values, except the HT which 

requires a significant larger storage space. The second drawback of the HT descriptor is the 

extraction time TE (about 0.1s for a given shape). However, if RS and ZM descriptors are faster to 

extract (11ms and 13ms, respectively), they require additional time (0.15s, respectively 0.5s) for 

the computation of the basis functions (Equations III.1 and III.4) employed for the object support 

function decomposition. Therefore, the most powerful descriptors in terms of extraction time are 

the AH (6.5ms) and CS (54ms). As the pre-processing is a mandatory stage for some descriptors 

(e.g., HT, RS, ZM), the corresponding time was considered when computing TE.  
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The last criterion is the similarity computation time TS, which is determinant for the time of 

response to the queries. The slowest descriptors are HT and CS, which requires 120μs, 

respectively 76μs for each comparison. The RS, ZM and AH descriptors present all similar 

performance (84ns, 101ns, and 168ns, respectively): they are about 1000 times faster than HT 

and CS!  

When a query is formulated, the time of response to the query TR, in the case of the 

minimum aggregation strategy, can be expressed as: 

              
            (III.9) 

where: 

 NP is the number of projections associated with each model;  

 NDB is the number of models in the database. 

Thus RS, ZM and AH descriptors allow performing more than 1,000,000 comparisons per 

second, which represents an important advantage for deploying real-life applications.  

Table III.1 Overview of adopted 2D shape descriptors  

Descriptor DS TE (ms) TS (μs) Additional computation time (TA) 

RS 35  integer 11.33 0.084 ART basis function computation (0.15s) 

HT 2048  double 111.04 120.13 – 

ZM 41  double 13.13 0.101 Zernike Moments computation (0.5s) 

CS 23  integer 54.21 73.17 – 

AH 90  integer 6.57 0.168 – 

DS – Descriptor size; TE – Mean descriptor extraction time (including pre-processing); TS–mean 

similarity computation time.  

III.5. 3D MODEL DATABASES: VARIABILITY ANALYSIS 

Let us now present and analyze the 3D model databases exploited in our work.  

III.5.1. MPEG-7 database 

First, we have retained the MPEG-7 3D model database [Zaharia04]. The MPEG7 

repository is composed of NM=362 mesh models, divided into 23 semantic classes: airplanes, 

humanoids, cars, tanks, trucks, Formula 1 vehicles, motorcycles with three wheels, motorcycles 

with two wheels, helicopters, pistols, rifles, chess, screwdrivers, cylindrical shapes (missiles, 

cylinders, submarines), threes without leaves, trees, spherical objects, fingers and five letters 

categories (A to E). 

Figure III.18 illustrates some sample models from the MPEG7 dataset.  
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Figure III.18 Sample models from the MPEG7 3D dataset.  

III.5.2. Princeton database 

The second 3D database considered is the Princeton Shape Benchmark (PSB) [Shilane04] 

which includes NM=1814 models. The objects are divided into two groups of equal size 

corresponding to training and test model set. As there is no need for such a separation for our 

work, since we are not considering any learning methods, and in order to obtain a richer data set, 

we have joined the training and test models into the same corpus. 

A multilevel, hierarchical classification is proposed for the PSB models. The first level 

includes two groups: natural and manmade objects. The second level is composed of 7 classes: 

vehicles, animals, household objects, buildings, furniture, plants and other. The third 

classification level includes 53, more detailed categories, like: winged vehicles, arthropod 

animals, lamp, hat, bridge, skeleton, flying creature, train... The full list of categories is provided 

in Annexe A2, Table A.2. Finally, the fourth and last classification level presents 161 categories 

as precise as biplane, commercial airplane, bee, walking human, race car, dining chair, barren 

tree... The list including all 161 categories can be found in Annexe A2, Table A.3. Figure III.19 

illustrates some sample models from the Princeton Shape Benchmark.  

 

Figure III.19 Sample models from the PSB 3D dataset.  
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III.5.3. Analysis of intra and inter class variability 

Before an experimental evaluation of the 2D/3D indexing methods, it is important to 

analyse the test database in terms of intra and inter-class variability. In this section we propose an 

analytical evaluation of the intra and inter class variability of MPEG7 and PSB datasets, 

described previously. In the case of PSB, we have retained the two most detailed classification 

levels: the third level, where the 1814 objects are divided into 53 categories and the fourth level 

which includes 161 categories. From now on, the two cases will be referred to as PSB_53 and 

PSB_161. The MPEG7 dataset, which includes 362 models divided into 23 classes, will be 

referred to as MPEG7_23.  

Let us start by presenting the evaluation measures adopted in our work.  

III.5.3.1. Evaluation measures 

The intra-class variability evaluates how similar are the models within the same semantic 

category, while the inter-class variability indicates how similar are the categories of objects 

included in the database. For both 3D model retrieval and 2D object recognition purpose it is 

important to have a large variety of objects and classes. 

We propose to measure the intra-class variability     with the help of the mean distance δX 

between all the elements within a given category X: 

    
       

    
  (III.10) 

where      represents the cardinality of the DB, i.e., the number of categories included in the 

database and 

   
                  

    
  (III.11) 

where: 

          is a distance between the two 3D models    and   . In our case this distance 

corresponds to the aggregated similarity measure (cf. Section III.3) between 2D shape 

descriptors within a 2D/3D indexing framework; 

     represents the cardinality of X. 

The distance between two classes X and Y is then defined as the mean distance between a 

model of X and a model of Y: 

       
                  

       
  (III.12) 

The distance    between a class X and the database (DB) is given by the equation: 

   
           

     
  (III.13) 
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A high value of    denotes that the elements of X are easily to distinguish among the 

others objects of the database. 

The inter-class variability (   ) is defined as the mean distance between all the classes of 

the database: 

    
                

     
  (III.14) 

Finally, we analyse for each pair of classes how independent they are one from the other. 

Thus, we define the separability S(X,Y) between two classes of objects X and Y with respect to 

their class-to-class distance and intra-class variability: 

       
      

     

  (III.15) 

and the separability SX of a class as the mean separability between the considered class and all the 

categories of the database: 

   
           

    
  (III.16) 

The global separability of the database is defined as the mean class separability: 

    
       

    
  (III.17) 

and reflects how easy to distinguish are the elements of the database. 

Figure III.20 illustrates the intra and inter class variability analysis in a 2D Euclidian space. 

Each class is represented by a circle, whose radius is equal to the intra-class variability (  ). The 

more two circles are overlapped, the less the corresponding categories can be separated (e.g., 

classes A and F).  

 

Figure III.20 Intra and inter class variability.  
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As the range of the distance value depends on the descriptors considered and on their 

corresponding similarity measures, a mean distance    has been computed over all 3D models in 

the databases and for each descriptor. The mean distance    is defined as follows: 

    
       

                       

   
      

  (III.18) 

where: 

                                                  , i.e., the set of all 

possible projection methods; 

     represents the number of models included in the database. 

Table III.2 summarizes the mean distances obtained for the various descriptors retained in 

our work.  

Table III.2 Normalization reference 

 AH CS HT RS ZM 

   719.8 1.26 21.2 1.67 8.31 

The mean distance is used as reference to normalize the   ,    ,       ,    and     

measures, by dividing them with the corresponding value of   . This makes it possible to define a 

common range for expressing the intra and inter class variabilities obtained for various 

descriptors, and thus to allow comparisons between them.  

In Section III.3 we have presented two matching strategies, so-called diagonal and 

minimum. The diagonal approach is based on the assumption that the 3D model presents a 

canonical representation, which is not true for all viewing angle selection techniques. Therefore, 

for inter and intra class variability analysis, only the minimum matching approach is considered, 

as it is appropriate for all the viewing angle selection strategies retained in our work. 

III.5.3.2. Results and discussion 

The global mean values of the inter-class variability     (cf. Equation III.14) and 

separability     (cf. Equation III.17) for the MPEG7_23, PSB_53 and PSB_161 databases are 

presented in Table III.3, Table III.4 and Table III.5 respectively. Each column corresponds to one 

2D shape descriptor (i.e., AH, CS, HT, RS and ZM) and each row to one projection method (i.e., 

PCA3, PCA7, DODECA, DDPCA, OCTA9, OCTA33, RV6 and RV10). The last row contains 

the average values obtained for a given database, over all the considered 2D/3D indexing 

methods. 

First, it can be observed that the inter-class variability is very similar for all databases (the 

difference is less than 4%). The lower value of ΔPSB_161 compared to ΔPSB_53 can be explained by 

the fact that some categories in PSB_161 are very similar (e.g., SUV and jeep vehicles). 
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Regarding the separability of each database, it can be observed that MPEG7_23 database 

presents the highest values, with a mean value of 1.155, which means that the categories of 

MPEG7_23 are better defined in the 2D/3D indexing space, in the sense that they present less 

overlapping.  

In contrast, PSB_53 presents lower separability than PSB_161 (0.688 compared to 0.756), 

while including fewer categories. Actually, even if the classes of PSB_53 are less numerous, they 

are more spread, as indicated by the intra-class variability (Table III.6, Table III.7 and Table 

III.8). 

The higher intra-class variability of PSB_53 (0,736) compared to PSB_161 (0,659) is 

naturally explained by the way the two databases are constructed: both contain the same 3D 

models (i.e., the Princeton shape benchmark) but differently divided. PSB_161 presents very 

definite classes (e.g., F117 aircraft, glider airplane, biplane, commercial airplane, fighter jet 

aircraft, multi-fuselage airplane...), while PSB_53 merges them in more general categories (e.g., 

winged aircraft). 

The MPEG7_23 presents even less intra-class variability, with a mean value of 0.511.  

Figure III.21, Figure III.22 and Figure III.23 illustrate the intra-class variability for each 

category of MPEG7_23, PSB_53 and PSB_161 databases respectively, in the case of PCA7 

viewing angle selection strategy, which is a representative choice illustrating the global 

behaviours (cf. Table III.6, Table III.7 and Table III.8). The correspondence between the index 

number and the name of each category can be found in Annexe A2.  

In Figure III.21 we can observe that some classes of the MPEG7_23 database (e.g., letters 

A to E categories) present very low variability. Actually, each letter category includes models 

which are differentiated one from each other only by their topologies. This observation confirms 

the validity of our analysis and explains the low global intra-class variability of the MPEG7_23 

database. The PSB_53 and PSB_161 databases are more homogeneous in terms of intra-class 

variability (Figure III.22, Figure III.23). In addition, the lowest intra-class variability values are 

higher in the case of PSB databases than for MPEG7_23. 

The class-to-class separability        (Equation III.15) and distance        (Equation 

III.12) are illustrated in Figure III.24, Figure III.25 and Figure III.26 for MPEG7_23, PSB_53 

and PSB_161 respectively. The colour-bar legend present at the bottom of each figure indicates 

the relation between the value of               and the colours in the images. Each row and 

each column of those images corresponds to one category (cf. Annexe A2). The numbering starts 

from left to right and from top to bottom. The lower-left half of each image stores the separability 

values and the upper-right half indicates the class-to-class distance. 

The results show that some categories of objects present high distances to all or almost all 

other classes, which means that those categories are more isolated in the 2D/3D indexing space 

(e.g., spherical category of the MPEG7_23 database). This behaviour is highlighted by the L-

shaped red lines in Figure III.24, Figure III.25 and Figure III.26.  
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The database analysis also allows us to make a first evaluation of the projection methods 

and 2D shape descriptors. Thus, the separability measure let us evaluate how appropriate is each 

2D/3D indexing method for each semantic class. 

It can be observed that contour-based descriptors (i.e., AH and CS) have a similar 

discrimination power for all categories of models. This behaviour is highlighted by the uniformity 

of the distance and separability colours in the corresponding images. On the other hand, the 

region-based descriptors seem to advantage some categories (e.g., motorcycles with three wheels 

in MPEG7_23 database), while disadvantaging other categories (e.g., trees models from 

MPEG7_23 database). 

The fact that some descriptors are more suitable for certain classes of objects is also visible 

in Figure III.21, Figure III.22 and Figure III.23, where it can be observed that the intra-class 

variability is not the same for all descriptors. In other words, one descriptor can better 

encapsulate the similarities within a given class than the other descriptors. For example, in the 

case of PSB_53 database, AH indicates the lowest intra-class variability for swing-set models 

(48th category) but the highest value for wheel objects (53th category).This shows the potential 

interest of combining various descriptors within an intelligent aggregation mechanism for 

category recognition purposes.  

The results analysis shows that the most challenging 3D model databases are the Princeton 

related ones, which offer the advantage of an increased number of categories, but present 

relatively low separability properties.  

In the following section we present an experimental evaluation of the proposed 2D/3D 

indexing methods on the retained 3D model databases. 
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Table III.3 MPEG7_23 database: inter-class variability and separability 

ΔMPEG7_23 AH CS HT RS ZM 

PCA3 1,108 0,960 1,033 1,025 1,057 

PCA7 1,043 0,911 0,980 1,010 0,980 

DODECA 1,006 0,892 0,962 0,999 0,952 

DDPCA 1,024 0,898 0,955 1,012 0,955 

OCTA9 1,059 0,914 0,984 1,014 1,002 

OCTA33 1,018 0,882 0,960 0,992 0,960 

RV6 1,012 0,871 0,943 0,936 0,903 

RV10 0,999 0,855 0,925 0,917 0,887 

mean 0.970 
 

SMPEG7_23 AH CS HT RS ZM 

PCA3 1,248 1,145 1,301 1,422 1,536 

PCA7 1,214 1,108 1,338 1,512 1,580 

DODECA 0,934 0,892 0,854 0,974 0,986 

DDPCA 1,180 1,070 1,347 1,545 1,552 

OCTA9 1,216 1,083 1,266 1,512 1,513 

OCTA33 1,195 1,088 1,320 1,543 1,554 

RV6 0,895 0,883 0,792 0,937 0,984 

RV10 0,918 0,859 0,811 0,951 1,019 

mean 1.155 
 

 

Table III.4 PSB_53 database: inter-class variability and separability 

ΔPSB_53 AH CS HT RS ZM 

PCA3 1,069 0,953 1,134 1,062 1,144 

PCA7 1,004 0,932 1,065 1,030 1,059 

DODECA 0,970 0,914 1,035 1,022 1,031 

DDPCA 0,984 0,921 1,035 1,027 1,034 

OCTA9 1,023 0,893 1,089 1,037 1,093 

OCTA33 0,977 0,921 1,042 1,011 1,041 

RV6 0,978 0,896 1,024 0,988 1,018 

RV10 0,964 0,881 1,017 0,977 1,003 

mean 1.007 
 

SPSB_53 AH CS HT RS ZM 

PCA3 0,706 0,665 0,661 0,690 0,717 

PCA7 0,704 0,675 0,663 0,724 0,726 

DODECA 0,694 0,667 0,639 0,720 0,713 

DDPCA 0,705 0,671 0,661 0,725 0,720 

OCTA9 0,708 0,677 0,660 0,711 0,724 

OCTA33 0,710 0,665 0,666 0,729 0,728 

RV6 0,682 0,649 0,621 0,696 0,701 

RV10 0,684 0,651 0,624 0,694 0,708 

mean 0.688 
 

 

Table III.5 PSB_161 database: inter-class variability and separability 

ΔPSB_161 AH CS HT RS ZM 

PCA3 0,948 0,948 1,046 0,984 1,123 

PCA7 0,990 0,921 1,007 0,990 1,030 

DODECA 0,958 0,903 0,995 0,988 0,997 

DDPCA 0,972 0,910 0,999 0,984 1,003 

OCTA9 1,009 0,914 1,012 0,987 1,063 

OCTA33 0,965 0,884 0,986 0,987 1,010 

RV6 0,970 0,881 0,968 0,989 0,991 

RV10 0,954 0,866 0,957 0,990 0,973 

mean 0.976 
 

SPSB_161 AH CS HT RS ZM 

PCA3 0,772 0,730 0,727 0,764 0,805 

PCA7 0,773 0,744 0,740 0,812 0,822 

DODECA 0,752 0,729 0,690 0,789 0,791 

DDPCA 0,772 0,741 0,736 0,810 0,815 

OCTA9 0,770 0,728 0,731 0,786 0,814 

OCTA33 0,775 0,744 0,740 0,812 0,821 

RV6 0,727 0,697 0,663 0,755 0,771 

RV10 0,729 0,698 0,669 0,753 0,771 

mean 0.756 
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Table III.6 MPEG7_23 database: intra-class variability 

δMPEG7_23 AH CS HT RS ZM 

PCA3 0,522 0,505 0,539 0,510 0,500 

PCA7 0,496 0,485 0,506 0,478 0,459 

DODECA 0,556 0,534 0,602 0,537 0,515 

DDPCA 0,496 0,484 0,494 0,479 0,454 

OCTA9 0,504 0,490 0,520 0,489 0,479 

OCTA33 0,487 0,470 0,500 0,468 0,457 

RV6 0,583 0,522 0,630 0,529 0,498 

RV10 0,562 0,522 0,605 0,514 0,478 

mean 0.511 

 

Table III.7 PSB_53 database: intra-class variability 

δPSB_53 AH CS HT RS ZM 

PCA3 0,768 0,723 0,872 0,782 0,816 

PCA7 0,722 0,697 0,816 0,725 0,743 

DODECA 0,707 0,691 0,821 0,723 0,734 

DDPCA 0,708 0,693 0,794 0,722 0,731 

OCTA9 0,732 0,666 0,837 0,742 0,770 

OCTA33 0,698 0,699 0,794 0,707 0,729 

RV6 0,726 0,694 0,833 0,721 0,738 

RV10 0,712 0,681 0,824 0,714 0,721 

mean 0.736 

 

Table III.8 PSB_161 database: intra-class variability 

δPSB_161 AH CS HT RS ZM 

PCA3 0,693 0,661 0,786 0,698 0,713 

PCA7 0,650 0,630 0,724 0,633 0,636 

DODECA 0,645 0,629 0,747 0,640 0,636 

DDPCA 0,640 0,624 0,705 0,629 0,624 

OCTA9 0,665 0,637 0,746 0,656 0,664 

OCTA33 0,632 0,603 0,706 0,618 0,624 

RV6 0,673 0,639 0,778 0,651 0,652 

RV10 0,661 0,627 0,764 0,645 0,639 

mean 0.659 
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Figure III.21 MPEG7_23 database: Intra-class variability with PCA7 strategy. 

 

 

Figure III.22 PSB_53 database: Intra-class variability with PCA7 strategy. 

 

 

Figure III.23 PSB_161 database: Intra-class variability with PCA7 strategy. 
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Figure III.24 Separability / inter-class variability – MPEG7_23 database. 
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Figure III.25 Separability / inter-class variability – PSB_53 database. 
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Figure III.26 Separability / inter-class variability – PSB_161 database. 
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III.6. EXPERIMENTAL EVALUATION 

In this section we propose an experimental evaluation of the view-based 3D model retrieval 

framework and analyse the influence of each element involved within the 2D/3D indexing 

framework (i.e., projection strategy, 2D shape descriptor, matching approach) on the retrieval 

results. 

Let us first present the evaluation protocol adopted in our work.  

III.6.1. Evaluation protocol 

The retrieval performances are separately measured for each database (i.e., MPEG7_23, 

PSB_53 and PSB_161) and each object is used to formulate a query on the corresponding 

database. A retrieved model is estimated as correct if it belongs to the same category as the query 

object, with respect to the classification of the considered database.  

As objective evaluation measure we have retained the First Tier (FT), the Second Tier (ST) 

[Shilane04, Zaharia04] and the Precision-Recall (PR) curve [Chen03]. 

The FT score is defined as the percentage of correctly retrieved models within the first NQ 

positions:  

   
    

  

  (III.19) 

where: 

 NQ represents the total number of correct objects that can be retrieved; 

 NC|Q represents the number of correct objects within the first NQ positions. 

The ST score, also known as Bull Eye score, is defined as the percentage of correct 

retrieved models within the first 2NQ positions:  

   
     

  

  (III.20) 

where: 

 NC|2Q represents the number of correct objects within the first 2NQ positions. 

In the case of an ideal retrieval system both FT and ST are equal to 1. 

The Precision represents the percentage of retrieved objects that are relevant: 

  
    

  

  (III.21) 

where: 

 NR represents the number of retrieved objects; 

 NC|R represents the number of correct objects among the retrieved ones. 

The Recall represents the fraction of relevant models that are retrieved: 
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  (III.22) 

The last two metrics are represented as a curve, namely the Precision-Recall curve. 

In order to illustrate the various evaluation measures retained, let us consider the airplane 

retrieval example in Figure III.27. If the total number of airplanes in the database is NQ=8, then 

we obtain FT = 5/8 = 0.625, ST = 7/8 = 0.875 and PR curve as illustrated in Figure III.28. 
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Figure III.27 Example of airplane retrieval result.  

 

 

Figure III.28 The Precision-Recall curve associated with the example in Figure III.27. 

III.6.2. 3D model retrieval results and discussion 

Figure III.29 and Figure III.30 illustrate the FT and ST scores obtained on the MPEG7_23 

database with minimum, respectively diagonal matching strategy. The FT and ST scores obtained 

in the case of PSB_53 database are presented in Figure III.31 and Figure III.32 for the two 
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matching strategies. Finally, Figure III.33 and Figure III.34 present the FT and ST score for the 

PSB_161 database. The precise values of the FT and ST scores are provided in Table III.9 to 

Table III.14.  

Concerning the case of DODECA, RV6 and RV10 strategies, the 3D model has an either 

random or object-dependent orientation in the virtual space. In such cases, the underlying 

hypothesis of a one-to-one correspondence between views, which represents the basis of the 

diagonal matching approach, does not hold. Thus, in the case of the diagonal matching strategy, 

solely the scores obtained for the projection methods which employ a canonical representation of 

the 3D model (i.e., PCA3, PCA7, DDPCA, OCTA9 and OCTA33) are pertinent and reported in 

our results.  

The Precision-Recall curves obtained for the three databases when using the minimum 

matching strategy are presented in Figure III.35, Figure III.37 and Figure III.39. Figure III.36, 

Figure III.38 and Figure III.40 present the Precision-Recall curves in the case of the diagonal 

matching approach. 

As expected from the database analysis, the highest retrieval performances are obtained on 

the MPEG7_23 repository, with FT and ST scores up to 72.3% and 82.7%, respectively. In the 

case of PSB_53 dataset the best scores attain 35.4% in terms of FT and 48.2% in terms of ST. The 

retrieval performances on the PSB_161 (which presents lower intra-class variability and higher 

global separability) are slightly superior, while including three times more categories. Thus, we 

obtain here an FT score of up to 38.2% and an ST up to 50.2%. Such results are in accordance 

with the database analysis proposed in Section III.5. 

When analysing the scores, the first observation is that the retrieval performances do not 

improve significantly when increasing the number of views. Thus, the results obtained with 

PCA3 are very close to those obtained with PCA7.  

Globally, the variation in terms of FT score between PCA3 and OCTA33 (i.e., between 3 

and 33 views) is of maximum 3.6%, whatever the database and the various shape descriptors 

considered.  

The OCTA9 strategy ensures the highest retrieval performances in a large majority of 

cases. When passing from OCTA9 to OCTA33, the retrieval scores can degrade.  

Such a behaviour can be explained by the following three facts:  

 The shape characteristics are well captured by the first, PCA-based 9 views;  

 When increasing the number of views, the inherent shape characterization ambiguities 

related to the various descriptors involved can lead to erroneous matches. This behaviour is 

stronger for the CS descriptor (5% decrease in FT score), which involves a filtering/early 

rejection procedure based on global shape characteristics.  

 In the case of 3D models presenting symmetries, the set of views contains redundancies, 

which are reducing de facto the number of useful views.  

Concerning the representative view selection strategies (RV6 and RV10), the related 

performances are inferior to PCA-based approaches. Such approaches generate object-dependent 

sets of view. Since the angles of views are different from one object to another, the corresponding 
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2D shapes to be matched can present significant variations, which make it difficult to derive 

pertinent similarity measures. Moreover, the RV6 and RV10 retrieval performances are quite 

equivalent with those corresponding to the DODECA uniform repartition strategy.  

When comparing the minimum and diagonal matching strategies, we can observe that the 

diagonal approach leads to slightly superior results (about 2% of gain in both FT and ST scores). 

Actually, the minimum strategy aims to be more generic and able to match arbitrary views, such 

as those obtained by the DODECA, RV6 and RV10 strategies. The price to pay is the slight 

overall decrease in retrieval performances. In addition let us note that no global information 

concerning the relative position of the matched views is considered in this case. Determining a 

global match instead of adopting a greedy, per view matching strategy would be an interesting 

axis of research to explore in our future work.  

The results obtained also show the superiority of contour-based shape descriptors with 

respect to region-based approaches. This observation appears clearly from the analysis of both 

FT/ST scores and Precision-Recall curves. Globally, the contour based-descriptors outperform 

the region-based techniques by up to 13% in terms of FT score and up to 15% in terms of ST 

score and with a mean difference between contour and region based descriptors of about 5% for 

both FT and ST scores (when comparing the results obtained with the same projection strategy 

and on the same database).  

A finer analysis of results shows that the maximum difference between the performance of 

RS and ZM descriptors (for a given database and same projection strategy) is always less than 3% 

in terms of both FT and ST scores, with a slight superiority of the ZM descriptor. The HT 

descriptor leads to poorest overall retrieval on the three databases and for almost all 2D/3D 

indexing techniques. The difference between HT and the other descriptors is more significant in 

the case of DODECA, RV6 and RV10 with the minimum matching strategy, as show the low HT 

Precision-Recall curve in the corresponding figures. This behaviour leads to the conclusion that 

HT descriptor is more sensitive to small change of the shape, like those generated by the variation 

of the camera position. Such modifications seem to produce more ambiguity in the case of HT 

than when other descriptors are employed.  

Concerning the two contour-based representations considered, the results demonstrate the 

superiority of the AH descriptor over the CS approach, with a global gain in performances of 2-

3% over all databases and viewing angle selection strategies. This behaviour is also confirmed by 

the Precision-Recall curves presented. 
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Figure III.29 MPEG7_23 database: FT and ST score, minimum matching strategy. 

 

Figure III.30 MPEG7_23 database: FT and ST score, diagonal matching strategy. 

 

Figure III.31 PSB_53 database: FT and ST score, minimum matching strategy. 

 

Figure III.32 PSB_53 database: FT and ST score, diagonal matching strategy. 
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Figure III.33 PSB_161 database: FT and ST score, minimum matching strategy. 

 

Figure III.34 PSB_161 database: FT and ST score, diagonal matching strategy. 
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Figure III.35 MPEG7_23 database: Precision-Recall curves, minimum matching strategy. 
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Figure III.36 MPEG7_23 database: Precision-Recall curves, diagonal matching strategy. 
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Figure III.37 PSB_53 database: Precision-Recall curves, minimum matching strategy. 
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Figure III.38 PSB_53 database: Precision-Recall curves, diagonal matching strategy. 
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Figure III.39 PSB_161 database: Precision-Recall curves, minimum matching strategy. 
 

0 

0,2 

0,4 

0,6 

0,8 

0
,0

5
 

0
,1

5
 

0
,2

5
 

0
,3

5
 

0
,4

5
 

0
,5

5
 

0
,6

5
 

0
,7

5
 

0
,8

5
 

0
,9

5
 

PCA3, minimum, PSB_161 

AH CS HT RS ZM 

0 

0,2 

0,4 

0,6 

0,8 

0
,0

5
 

0
,1

5
 

0
,2

5
 

0
,3

5
 

0
,4

5
 

0
,5

5
 

0
,6

5
 

0
,7

5
 

0
,8

5
 

0
,9

5
 

PCA7, minimum, PSB_161 

AH CS HT RS ZM 

0 

0,2 

0,4 

0,6 

0,8 

0
,0

5
 

0
,1

5
 

0
,2

5
 

0
,3

5
 

0
,4

5
 

0
,5

5
 

0
,6

5
 

0
,7

5
 

0
,8

5
 

0
,9

5
 

DODECA, minimum, PSB_161 

AH CS HT RS ZM 

0 

0,2 

0,4 

0,6 

0,8 

0
,0

5
 

0
,1

5
 

0
,2

5
 

0
,3

5
 

0
,4

5
 

0
,5

5
 

0
,6

5
 

0
,7

5
 

0
,8

5
 

0
,9

5
 

DDPCA, minimum, PSB_161 

AH CS HT RS ZM 

0 

0,2 

0,4 

0,6 

0,8 

1 

0
,0

5
 

0
,1

5
 

0
,2

5
 

0
,3

5
 

0
,4

5
 

0
,5

5
 

0
,6

5
 

0
,7

5
 

0
,8

5
 

0
,9

5
 

OCTA9, minimum, PSB_161 

AH CS HT RS ZM 

0 

0,2 

0,4 

0,6 

0,8 

0
,0

5
 

0
,1

5
 

0
,2

5
 

0
,3

5
 

0
,4

5
 

0
,5

5
 

0
,6

5
 

0
,7

5
 

0
,8

5
 

0
,9

5
 

OCTA33, minimum, PSB_161 

AH CS HT RS ZM 

0 

0,2 

0,4 

0,6 

0,8 

0
,0

5
 

0
,1

5
 

0
,2

5
 

0
,3

5
 

0
,4

5
 

0
,5

5
 

0
,6

5
 

0
,7

5
 

0
,8

5
 

0
,9

5
 

RV6, minimum, PSB_161 

AH CS HT RS ZM 

0 

0,2 

0,4 

0,6 

0,8 

0
,0

5
 

0
,1

5
 

0
,2

5
 

0
,3

5
 

0
,4

5
 

0
,5

5
 

0
,6

5
 

0
,7

5
 

0
,8

5
 

0
,9

5
 

RV10, minimum, PSB_161 

AH CS HT RS ZM 



VIEW-BASED 3D MODEL RETRIEVAL 

77 

  

 

  

Figure III.40 PSB_161 database: Precision-Recall curves, diagonal matching strategy. 
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Table III.9 MPEG7_23 database: FT and ST score with minimum matching strategy 

FT AH CS HT RS ZM 

PCA3 0,672 0,672 0,585 0,608 0,634 

PCA7 0,682 0,680 0,598 0,626 0,631 

DODECA 0,656 0,628 0,504 0,580 0,582 

DDPCA 0,675 0,675 0,586 0,612 0,612 

OCTA9 0,696 0,680 0,603 0,630 0,639 

OCTA33 0,685 0,602 0,596 0,628 0,629 

RV6 0,616 0,606 0,476 0,564 0,575 

RV10 0,648 0,588 0,499 0,584 0,592 
 

ST AH CS HT RS ZM 

PCA3 0,782 0,771 0,691 0,713 0,737 

PCA7 0,785 0,766 0,686 0,733 0,736 

DODECA 0,776 0,716 0,620 0,713 0,706 

DDPCA 0,779 0,767 0,673 0,719 0,716 

OCTA9 0,802 0,752 0,689 0,734 0,734 

OCTA33 0,796 0,689 0,675 0,740 0,731 

RV6 0,748 0,707 0,586 0,684 0,689 

RV10 0,772 0,669 0,604 0,695 0,701 
 

Table III.10 MPEG7_23 database: FT and ST score with diagonal matching strategy 

FT AH CS HT RS ZM 

PCA3 0,701 0,701 0,606 0,638 0,646 

PCA7 0,699 0,718 0,580 0,638 0,634 

DDPCA 0,698 0,706 0,582 0,627 0,621 

OCTA9 0,727 0,729 0,618 0,646 0,652 

OCTA33 0,723 0,731 0,600 0,646 0,645 
 

ST AH CS HT RS ZM 

PCA3 0,808 0,811 0,700 0,733 0,739 

PCA7 0,808 0,810 0,670 0,739 0,734 

DDPCA 0,802 0,813 0,664 0,726 0,718 

OCTA9 0,827 0,821 0,709 0,751 0,748 

OCTA33 0,824 0,822 0,683 0,746 0,737 
 

Table III.11 PSB_53 database: FT and ST score with minimum matching strategy 

FT AH CS HT RS ZM 

PCA3 0,321 0,284 0,235 0,249 0,254 

PCA7 0,332 0,295 0,236 0,257 0,265 

DODECA 0,317 0,251 0,189 0,242 0,242 

DDPCA 0,325 0,284 0,226 0,250 0,252 

OCTA9 0,338 0,284 0,236 0,265 0,265 

OCTA33 0,338 0,234 0,237 0,267 0,263 

RV6 0,300 0,252 0,170 0,227 0,225 

RV10 0,314 0,244 0,179 0,240 0,235 
 

ST AH CS HT RS ZM 

PCA3 0,452 0,397 0,332 0,359 0,358 

PCA7 0,460 0,403 0,329 0,371 0,374 

DODECA 0,448 0,347 0,284 0,356 0,355 

DDPCA 0,452 0,385 0,315 0,359 0,358 

OCTA9 0,469 0,383 0,333 0,379 0,373 

OCTA33 0,466 0,333 0,329 0,379 0,374 

RV6 0,433 0,357 0,265 0,340 0,335 

RV10 0,447 0,342 0,277 0,351 0,346 
 

Table III.12 PSB_53 database: FT and ST score with diagonal matching strategy 

FT AH CS HT RS ZM 

PCA3 0,337 0,305 0,244 0,263 0,259 

PCA7 0,340 0,312 0,223 0,262 0,260 

DDPCA 0,332 0,299 0,218 0,252 0,251 

OCTA9 0,353 0,317 0,240 0,272 0,270 

OCTA33 0,354 0,315 0,229 0,272 0,267 
 

ST AH CS HT RS ZM 

PCA3 0,470 0,420 0,340 0,371 0,360 

PCA7 0,469 0,425 0,316 0,372 0,365 

DDPCA 0,460 0,409 0,308 0,363 0,355 

OCTA9 0,482 0,425 0,336 0,383 0,373 

OCTA33 0,481 0,420 0,324 0,381 0,373 
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Table III.13 PSB_161 database: FT and ST score with minimum matching strategy 

FT AH CS HT RS ZM 

PCA3 0,327 0,308 0,277 0,279 0,296 

PCA7 0,346 0,335 0,286 0,294 0,308 

DODECA 0,314 0,279 0,194 0,262 0,267 

DDPCA 0,340 0,331 0,275 0,293 0,300 

OCTA9 0,350 0,323 0,284 0,303 0,316 

OCTA33 0,354 0,271 0,292 0,315 0,316 

RV6 0,279 0,264 0,174 0,239 0,246 

RV10 0,302 0,262 0,190 0,258 0,264 
 

ST AH CS HT RS ZM 

PCA3 0,444 0,415 0,358 0,369 0,389 

PCA7 0,462 0,436 0,368 0,389 0,401 

DODECA 0,429 0,358 0,269 0,358 0,361 

DDPCA 0,456 0,429 0,355 0,387 0,391 

OCTA9 0,469 0,415 0,365 0,404 0,409 

OCTA33 0,469 0,340 0,372 0,411 0,412 

RV6 0,389 0,346 0,241 0,330 0,333 

RV10 0,417 0,337 0,264 0,353 0,352 
 

Table III.14 PSB_161 database: FT and ST score with diagonal matching strategy 

FT AH CS HT RS ZM 

PCA3 0,350 0,338 0,290 0,302 0,314 

PCA7 0,361 0,351 0,254 0,300 0,308 

DDPCA 0,349 0,343 0,251 0,295 0,297 

OCTA9 0,376 0,362 0,285 0,318 0,322 

OCTA33 0,382 0,368 0,269 0,325 0,322 
 

ST AH CS HT RS ZM 

PCA3 0,472 0,451 0,378 0,403 0,413 

PCA7 0,482 0,463 0,335 0,399 0,402 

DDPCA 0,467 0,452 0,330 0,391 0,389 

OCTA9 0,497 0,471 0,369 0,421 0,417 

OCTA33 0,502 0,474 0,349 0,425 0,415 
 

III.7. CONCLUSIONS 

In this chapter we have tackled the issue of view-based 3D model retrieval. First, we have 

described the 2D/3D retrieval framework adopted and detailed both the various 2D shape 

descriptors and viewing angle selection strategies retained. A representative viewing angle 

selection approach employing a modified k-means clustering algorithm was also proposed. In 

addition, a novel contour-based 2D shape descriptor, so-called angular histogram (AH), able to 

capture both local and global shape characteristics has been introduced.  

The first part of our experiments concerns an analysis of existing, categorized 3D model 

repositories in terms of intra and inter-class variability/separability properties. Both MPEG-7 

(with 23 categories) and Princeton (with two levels of detail, corresponding to 53 and 161 

categories) databases have been retained. An evaluation protocol, relying on a set of objective 

criteria has been introduced. The experimental analysis shows, without surprise, that the 

categories of MPEG7_23 database are better defined in the 2D/3D indexing space, and therefore 

easier to separate. We have also observed that PSB_53 presents classes which are more generic 

than those of PSB_161, which leads to more ambiguity and less separability. The database 

analysis has also shown that contour-based descriptors present similar behaviours for all classes, 

while the region-based descriptors are particularly appropriate for a sub-set of object categories. 

An objective evaluation of the various 2D shape descriptors and viewing angle selection 

strategies has then been carried out on the same 3D repositories. The obtained results confirm the 
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database analysis. Thus, the best retrieval scores were obtained on the MPEG7_23 database, with 

FT up to 72.3% and ST up to 82.7%. On PSB_53 and PSB_161 databases we have achieved 

respectively 35.4% and 38.2% in terms of FT and 48.2% and 50.2% in terms of ST. 

Concerning the viewing angle selection strategies, the experimental evaluation shows that 

they have limited impact (within a range of 3.6% of FT score variation from PCA3 to OCTA33) 

on the 3D model retrieval performances. Moreover, when passing from 9 views (OCTA9 

strategy) to 33 (OCTA 33 strategy), the performances can even degrade.  

A final major conclusion is related to the performances of the descriptors retained for 

evaluation. Thus, the contour-based approaches clearly outperform the region-based techniques, 

whatever the database and viewing angle selection strategies considered. The highest retrieval 

scores have been obtained for the proposed AH descriptor, for all the databases considered.  

The experimental evaluation of view-based indexing performance in 3D model retrieval 

allows a first comparative analysis of the different elements that compose the 2D/3D indexing. In 

the following chapter we present how the view-based indexing methods can be exploited for 2D 

object recognition purposes. 
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IV. 2D OBJECT CLASSIFICATION 

 

Abstract. In this chapter, we tackle the issue of object classification. The view-based indexing 

methods presented previously are here employed to allow semantic inference between 3D and 2D 

content. The underlying principle consists in exploiting the a priori knowledge contained in 

classified 3D models and to transfer it, with the help of view-based indexing, to unknown 2D 

objects. Such methods can be applied to both still objects (SO, i.e., objects extracted from still 

images) and video objects (VO, i.e., objects extracted from videos and composed of several 

instances). 

After presenting an overview of the state of the art, we introduce the proposed 2D object 

classification framework. The proposed approach ensures fast categorization and also allows the 

effective combination of several indexing techniques. 

In order to experimentally evaluate the proposed method, we have created several test datasets, 

including objects extracted from images and videos, but also synthetic views generated by 3D 

model projection. The experiments prove that the proposed framework leads, in the case of still 

objects, to recognition rates of up to 74%. Superior recognition results are obtained for video 

objects, where the same scores are up to 87.5%.  

Keywords: object classification; 2D/3D inference; 2D/3D indexing; similarity measure; 

recognition framework; 
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IV.1. INTRODUCTION 

In this chapter, we address the issue of object classification. The objective here is to 

automatically determine the semantic meaning of objects present in images and/or videos.  

Until recently, semantic labelling approaches were exclusively based on keywords. 

However, the linguistic barriers represent an important drawback of such approaches. Also, a 

prior, manual annotation is required, which is a tedious and highly subjective process. 

The early automatic methods employed correlation-based template matching [Lewis95] for 

recognition purposes. Such approaches have rapidly shown their limitations when dealing with 

strong changes of the object's appearance, such as those generated by 2D or 3D transforms, 

scaling and variations of the illumination. 

Recent research on automatic object classification is mainly based on machine learning 

(ML) techniques [Mithchell97, Xue09]. The goal of ML algorithms is to automatically learn to 

recognize complex structures using a set of examples included in a so-called training set. Two 

families of approaches are available: supervised and unsupervised methods. In the first case, the 

required training set is labelled with both positive and negative examples, while unsupervised ML 

methods allow unlabelled training data. 

In the case of supervised ML, a training set of labelled objects divided into N categories is 

supposed to be available. Based on such a training set, the objective is to determine a function 

which best discriminates between the N classes. Once the function is defined, it can be applied for 

each unknown object in order to determine to which category the object belongs. The supervised 

ML techniques may be highly accurate [Deselaers10]. However, it may happen that the function is 

too appropriate for the training set and thus inadequate for new objects [Pados94]. This 

phenomenon is known as over-fitting and represents one of the main drawbacks of supervised ML 

approaches. A second limitation is the requirement of sufficiently large training sets containing 

labelled data.  

Concerning the unsupervised approaches, some popular methods are K-means, mixture 

methods and K-nearest neighbours… For some examples, the reader is invited to refer to 

[Weber00, Fergus03, Torralba08, Makadia08]. However, in terms of performances, the 

unsupervised methods are less accurate than the supervised machine learning methods. 

Generally, when a large number of classes has to be considered, the ML approaches need to 

exploit a large set of features. Thus, in such cases the computational complexity becomes 

intractable [Li06]. Also, if we take into consideration that an object may change its appearance 

due to the pose variation, then the training set should include not merely different examples of 

objects from each class, but also different instances of each object, corresponding to various 

poses.  

In our work, we consider a different approach, consisting of introducing in the recognition 

process some a priori 3D information, with the help of existing 3D models. The goal here is to 
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overcome the sensitivity to the object's pose of ML methods by exploiting a set of examples 

composed of 3D models. In order to allow the matching between 2D and 3D content, the 2D/3D 

shape indexing methods presented in Section III.2 are used. 

This chapter first presents the state of the art methods in the field of 3D model-based 2D 

object classification. The proposed SO and VO classification frameworks are further described 

and experimentally evaluated. 

IV.2. RELATED WORK 

Within the context of various 2D object recognition applications, there exist two main 

families of approaches, corresponding to different meaning of the term recognition. In a first case 

recognition refers to classification (categorization). In this case, the goal is to assign semantic 

labels, corresponding to a set of pre-defined categories, to the various objects that may appear in 

images or videos. The second family of methods aims to detect if some classes of objects are 

appearing in the image/video content, and to determine their position (e.g., detecting pedestrians 

for video surveillance purpose). We speak in this case about object detection. 

The two applications (i.e., classification and detection) are in a certain sense 

complementary, since the first one searches for the semantic class of a given 2D object, while the 

second one searches for 2D objects knowing their semantic class. Even if the detection methods 

can be used for classification purposes, they are not specifically designed for such a purpose. In 

addition, classification methods aim at dealing with a large variety of semantic categories, while 

detection approaches are more particularly conceived to recognize objects from certain classes 

(e.g., cars, pedestrians, guns...).  

Both detection and classification techniques can exploit 3D representations. Here again 

there exists a certain ambiguity, because the term 3D model can have different meanings: 

 An object represented in the virtual space with the help of 3D graphical elements (e.g., 3D 

mesh) [Toshev09, Liebelt08, Gupta08]. Such models can be obtained by scanning real 

objects or by modelling them with the help of 3D computer graphics software. 

 A compact representation of the visual features (e.g., shape, appearance...) extracted from 

several images representing different perspectives/views of a 3D object (real or synthetic) 

or several objects from the same semantic category [Ferrari04a, Hoeim07, Thomas06, 

Savarese07].  

The large majority of 3D model-based detection methods is designed for video surveillance. 

Thus, most applications are dedicated to the identification of cars [Gupta08, Patterson08, 

Hoeim07, Kushal07, Leotta11, Hodlmoser12...], motorcycles [Thomas06], bicycles, pedestrians 

or combinations of them [Liebelt08, Schels11]. 
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In [Ferrari04], authors integrate 3D information in the recognition process. The 3D 

representation of an object, generated from a set of different views, is composed of so-called 

region-tracks. Each track is defined by a circular region together with all regions from other views 

that have been matched with it. The region matching process is achieved with the help of an affine 

invariant interest point matcher [Matas02, Mikolajczyk02]. This makes it possible to put into 

correspondence pairs of regions with the help of a 2D affine transformation. Moreover, such a 

transformation induces a measure of similarity between the two matched regions.  

During the recognition process, the test image is compared to each view of the object. Each 

comparison generates a set of matches which are further partitioned into groups of aggregated 

matches (GAMs). Each GAM includes regions which can be mapped onto each other by a 

geometric affine transformation. As the views are related through the region-tracks, the geometric 

consistency of the GAMs configurations can be evaluated and thus it becomes possible to 

eliminate potential mismatches. A genetic algorithm is further employed to determine the most 

consistent GAM configuration, whose matches cover the 2D object as completely as possible. 

The region-tracks are further exploited by [Thomas06] in order to improve the Implicit 

Shape Model (ISM) proposed in [Liebe04]. The ISM builds, for each semantic class, a codebook 

composed of clusters of local features with similar appearance as well as their spatial distribution 

across several examples. Each codebook corresponds to a semantic class and to a viewpoint. In 

order to allow multi-view recognition, the codebooks are connected with the help of region tracks 

[Ferrari04], trained separately on the same dataset. The recognition process employs a voting 

procedure. The use of connected codebooks allows transferring votes across views with different 

poses, which improves the recognition performances, notably in the case of articulated objects. 

The principle of linking together object parts from different viewing angles has also been 

exploited in [Savarese07]. First, the saliency detector [Kadir01] and the SIFT descriptor [Lowe99] 

are applied in order to characterize local appearance features. The local features are further 

grouped into regions (parts) that are consistent across images in both appearance and geometry. 

The 3D representation is finally obtained by linking together parts from a so-called canonical 

subset containing for each region its most frontal view. Two canonical parts are connected only if 

they are both visible in the corresponding frontal views. Each link is also characterized by an 

explicit homographic relationship between the connected regions.  

In the recognition stage, the occurrences of each canonical part are searched across various 

pixel locations, scales and orientations. Homographic relationships are computed between pairs of 

matched regions and, by applying an optimization algorithm, a dissimilarity score can be 

determined. The object’s category is then determined as the one of the model that yields to the 

lowest dissimilarity score. The experimental evaluation presented in [Savarese07] proves that the 

proposed algorithm outperforms the one introduced in [Thomas06].  

An important contribution to the field of object recognition has been recently made by 

Liebelt et al. [Liebelt08, Liebelt10, Schels11, Schels12]. The objective of such methods is 

twofold: (1) viewpoint-independent object detection and (2) 3D pose estimation. In contrast to the 
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previously presented approaches [Ferrari04, Thomas06, Savarese07], synthetic, textured 3D 

models are here exploited.  

In [Liebelt08], authors introduce the term of 3D feature map, defined as a set of annotated 

local features extracted from several views of a given 3D model. In order to obtain such a 

representation, the models are first normalized in size and position. Further, 324 views are 

rendered in 2D by varying the camera's parameters (i.e., azimuth, elevation and distance). For 

each image, the local features are obtained by computing the SURF descriptor [Bay06] of each 

point of interest (POI) identified with the Fast Hessian detector [Bay06]. The annotated features 

are obtained by associating to each SURF descriptor the corresponding 3D model position. A 

discriminative filtering is performed in order to select feature that are discriminant enough for the 

object category and robust to viewpoint and background changes. Finally, a visual codebook with 

k=2000 elements is obtained by clustering the retained features with the k-means algorithm 

[Silverman02]. 

During the detection phase, local features are extracted from the image and matched with 

the 5 closest codebook entries. The desired object is detected by a voting procedure involving the 

features included in the 5 selected clusters. The experimental results obtained are promising but 

somehow limited, since solely two object categories (corresponding to cars and motorbikes) are 

considered. 

Liebelt et al. propose further in [Liebelt10] to keep only the geometry information of the 3D 

models and to exploit the appearance information contained in real-life images. The proposed 

method requires that, for each training image, the 2D bounding box and the viewpoint (i.e., 3D 

camera parameters) of the object are available. The synthetic 3D models are rendered in 2D by 

varying the camera parameters, resulting in a set of 240 synthetic projection images. The 

bounding boxes of both real and synthetic images are subdivided into a regular grid, where each 

grid block corresponds to a part of the object. For each grid block associated to a real image, the 

geometry information is extracted from the block with the same position on the corresponding 

synthetic image (i.e., the synthetic image presenting the most similar viewpoint). The 3D 

geometry associated to each grid block is obtained as follows. Each pixel inside a part region 

corresponds to a 3D position on the surface of the model. The set of 3D positions associated to a 

grid block is modelled by a mixture of Gaussians [Reynolds07]. The parameters of the Gaussian 

Mixture Model (GMM) are used to encode the geometry features of the grid block. The local 

appearance features are described with the DAISY descriptor [Tola10]. In the training phase, a 

codebook of DAISY descriptors is generated. The codebook is further used to identify regions 

which present a high likelihood of containing the object of interest. A SVM classifier [Vapnik95] 

is learned for each object region, under each considered viewpoint. 

The recognition process starts by a pre-detection step. A sliding-window detection and a 

subsequent mean-shift mode estimation are employed to localize potential regions of interest in 

the image. Further, the most likely viewpoints are determined through a region voting procedure. 

The object’s position and pose are finally determined with the help of an evaluation score which 

measures the consistency between the detected regions and the learnt 3D geometry model. The 

experimental evaluation proposed by the authors proves that the average precision of the object 
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detection process is significantly increased (by about 6-7%) when object detection and pose 

estimation are simultaneously performed.  

Part detectors are also exploited in [Schels11]. In contrast with [Liebelt10], here solely 

synthetic images are considered for training. The parts (i.e., regions of the object) are detected as 

local regions presenting high gradients across training images. The algorithm uses two sets of 

images for learning, including part examples and viewpoint examples, both representing rendered 

views of 3D models. The appearance of each part is described with the help of the histogram of 

gradients (HOG) descriptor [Dalal05]. A separate linear SVM classifier [Vapnik95] is trained for 

each viewpoint and for each part. Based on the trained part detectors, a spatial layout model is 

generated for each viewpoint. The images from the second set (i.e., the viewpoint examples) are 

described through a spatial pyramid which accumulates responses for each part detector. A 

second, more powerful classifier (a non-linear SVM) is trained on the set of spatial pyramids. 

For each image, the detection is performed in two steps. First, possible regions of interest 

(hypotheses) are determined with the help of the spatial layout model. Further, the spatial pyramid 

representation is generated and the second classifier is employed to refine the previously detected 

hypotheses. The experimental evaluation proposed shows that the method outperforms the 

[Liebelt10] approach. 

The above-presented methods lead to interesting results, which are achieved at the end of a 

complex process, involving a high number of SVM classifiers. In order to reduce the 

computational complexity, the same authors propose in a more recent work [Schels12] to reduce 

the number of parts considered. First, the parts of synthetic images, encoded by HOG features, are 

grouped with the help of an unsupervised clustering procedure. Further, the parts are ranked as 

more or less informative, based on the number of models and viewpoints where they occur. The 

most suited parts for detection are finally determined through an entropy-based selection process. 

The rest of the approach is similar to the one presented in [Schels11], except that only the most 

informative parts are employed for the spatial representation. 

The experimental evaluation presented in [Schels12] demonstrates that the detection is 

improved by eliminating non-informative parts. Moreover, authors also compared their approach 

with state-of-the-art detection methods [Glasner11, Su09, Sun09] trained on images of real 

objects. The comparison shows that for a similar amount of training information (i.e., number of 

objects and views per object), synthetically-trained approaches lead to similar results.  

In [Heisele09], solely the shape information is exploited, from textureless synthetic 3D 

models. Only five 3D objects, each one representing a different category, are here considered. The 

models are rendered in 60,000 images by randomly varying the camera location and orientation 

and the lighting conditions.  

The first set of experiments aims to discriminate between two 3D objects, whatever their 

orientation. Histograms of gradients [Dalal05, Lowe04] are used to encode the appearance 

features and two classifiers are tested: Support Vector Machine (SVM) [Vapnik95] and nearest 

neighbour (NN) [Cover67]. The number of images employed to learn each category (represented 

by only one 3D model) varies from 2,000 to 40,000.  
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The second set of experiments deals with pose-invariant object detection. Here, the test 

images are obtained from 642 viewing positions corresponding to the vertices of a geodesic grid 

placed around the 3D object.  

Even if the proposed analysis is minimalistic (only five 3D models are exploited), some 

interesting conclusions are presented. Thus, the experiments show that, even for a simple task 

such as distinguishing between two objects, very large training sets have to be used in order to 

achieve high accuracy. Since finding a large amount of training images is a tedious task, 

employing synthetic 3D models can be a suitable solution.  

[Toshev09] extrapolates the 3D model-based recognition problem to video objects. The first 

stage of their algorithm consists in detecting moving objects. Feature tracking [Shi94] and 

motion-based clustering are combined in order to separate the objects and the background. A set 

of several instances of the object (corresponding to different frames) is obtained at the end of this 

stage.  

The 3D models used in the recognition process are described by a so-called view graph, 

determined as follows. First, 500 silhouettes are generated for each model from approximately 

uniformly distributed viewing angles. Each silhouette boundary is described with the help of 

shape contexts [Belongie02]. Further, their number is reduced to 20 views per model with the help 

of the k-medoids clustering technique. Finally, the selected silhouettes are organized as a graph 

covering the entire viewing sphere.  

In the recognition process, each video object is compared to all 3D models. The most 

similar 3D model gives the semantic class of the object and the pose estimation. The 3D/2D 

matching procedure takes into account the shape similarity (through shape contexts features) 

while maintaining motion coherence over time (i.e., the silhouettes corresponding to successive 

frames should present limited changes of the viewing angle). The proposed algorithm was tested 

on a database of 42 videos, containing 3 different classes: cars, airplanes and helicopters. The 

recognition process involves 260 PSB 3D models (cf. Section III.5.2, 52 categories but only 5 

models per class). The authors reported achieving an accuracy of 83% (80% for cars, 91.7% for 

airplanes and 80% for helicopters). 

Another video object recognition approach was proposed very recently in [Hodlmoser12]. 

The algorithm is designed to detect vehicles in videos, to determine their model and their pose. 

The recognition process exploits the information contained in textureless 3D vehicle objects. The 

images representing the rendered 3D model contain not only the external contour, but also internal 

edges. The unknown objects and their bounding box are first detected in each frame with a state-

of-the-art approach [Felzenszwalb10]. Further, the object is described by its contours, identified 

with the Canny edge detector [Canny86]. The object is further compared to several views of each 

model, obtained from viewpoints close to the initial pose estimation, and the most similar models 

are identified. The fast directional chamfer matching [Liu10] was here employed to compare the 

contours of two objects. Further, the best matching model through the entire video sequence is 

determined using a Markov random field (MRF) [Li95]. The experimental evaluation proposed in 

[Hodlmoser12] is performed on a database with 8 videos, representing 6 different car models 
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(Chevrolet Silverado 2500HD, Chrysler PT Cruiser, VW Beetle, Toyota RAV4, Chevrolet Blazer 

and Skoda Fabia). The reported results proved that the above presented approach outperforms the 

one proposed in [Toshev09]. 

The analysis of the literature shows that a large majority of object recognition approaches 

are designed for object detection and pose estimation, frequently exploited for video surveillance 

purposes. However, for such applications the number of categories to be detected is relatively 

low. The methods in [Thomas06, Liebelt08, Liebelt10, Schels11, Schels12, Toshev09] are trained 

for only 2 or 3 categories. In [Heisele09], their number increases to 5; however, their analysis 

remains minimalistic, as each class contains only one object whose projections are employed for 

both training and tests. In [Savarese07], authors deal with a larger number of categories (i.e., 10), 

representing everyday objects: cars, staplers, irons, shoes, monitors, computer mice, heads, 

bicycles, toasters and cellphones. However, their approach requires that each training object to be 

captured from 7 different viewpoints, which can be a difficult constraint in creating the learning 

database. The number of views associated to each training object is even higher in [Thomas06], 

where the target is to acquire 16 images per object. However, in some cases it is impossible to 

capture it from all the necessary perspectives (e.g., capturing an airplane from many different 

perspectives). Such drawbacks can be overcome by using synthetic 3D models, which allows 

automatically generating as many views as needed, from arbitrary viewing angles.  

In order to overcome the limitations of existing approaches, in our work we have considered 

the inclusion of synthetic 3D models in the recognition process. The proposed method, detailed in 

the next section relies exclusively on the shape information, as the geometry is, in general, the 

most discriminant feature of real objects. 

In our work we address the classification issue, i.e., the objective is to determine the 

semantic category of a given object. Therefore, from now on throughout this chapter, the term 

recognition will refer to classification.  

The main contributions of our work can be summarized as follows: 

 The proposed approach is able to deal with a large number of categories. In our current 

implementation, the system disposes of up to 161 categories of objects and was tested on up 

to 23 classes. 

 The classification method is able to deal with both still and video objects. 

 We provide a comparative study of different 2D/3D indexing methods that can be involved 

in the recognition process. The influence on the recognition performance of the viewing 

angle selection strategy, 2D shape descriptors and number of instances per video object is 

analyzed here.  

 The proposed method allows real-time category recognition.  

The proposed classification method is presented in the following section. 
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IV.3. PROPOSED METHOD 

The proposed 2D object classification method exploits the inference between categorized 

3D models and 2D content. Such an inference is possible through the use of view-based indexing 

techniques, as those presented in Section III.2. 

The principle consists in exploiting the a priori information contained in the categorized 3D 

model data set in order to transfer the semantic labels from such models to unknown 2D content. 

The objects to be classified can be present in images or in videos. In the first case, the 

unknown content represents a still object (SO), while in the second case a video object (VO). 

The two classification processes are very similar and exploits the same 2D/3D semantic 

inference techniques. Let us start by presenting the still object classification approach. 

IV.3.1. Still object classification 

The still object recognition process is illustrated in Figure IV.1. In order to classify an 

unknown 2D shape, the system needs to utilise a categorized 3D model repository. Each 3D 

model is further described using view-based shape indexing, which allows comparison between 

3D and 2D content. 

In the 2D/3D indexing stage, a set of 2D views is generated for each model and a 2D shape 

descriptor is associated to each view. This stage is performed only once, in an offline phase, and 

the resulting descriptors are further stored and used for recognition purposes. 

 

Figure IV.1 Still object recognition framework. 

The system input is an unknown 2D object that needs to be identified. If the object of 

interest is not extracted from the image, a pre-processing step is required in order to obtain a 

binary image representing the shape of the unknown object. The binary image may be obtained 

with the help of some semi-automatic segmentation methods, as those presented in Chapter V.  
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Furthermore, the 2D shape descriptor is extracted for the current unknown image. In order 

to allow the comparison between 3D and 2D content, the same descriptor needs to be used in the 

2D shape indexing as in the 2D/3D indexing process. 

Next, in the similarity matching stage, the distance d(SO,M) between a still object SO and a 

3D model M is computed. It is defined as the best match between the still object and the 

projections of the 3D model: 

           
 

              (IV.1) 

where: 

       represents the ith projections of the model M; 

             represents the similarity metric associated with the considered 2D shape 

descriptor; it is computed between the feature vector associated with the shape of the 2D object 

SO and the one corresponding to the ith silhouette of the 3D model M. 

The last module of the recognition framework is represented by the result analyzer. It 

examines the similarity between the query and the categorized 3D models in order to determine 

which are the most probable categories that may fit the unknown image. 

In this analysis, we make the underlying assumption that among the top retrieved 3D 

models a large number should belong to the semantic category of the query. In order to determine 

the query's category based on the similarity between 3D and 2D content, the result analysis 

includes the following steps: 

 Sort the models by decreasing order of similarity; 

 Keep the NTRM top retrieved models; 

 Determine the NMRC most represented categories among the first NTRM models; 

 Present the NMRC categories as response to that query. 

The still object recognition framework is extended to video objects, as described in the 

following section. 

IV.3.2. Video object classification 

The term video object (VO) refers to the set of various instances {Ii(VO)} of an object 

within a video. The goal of the video object recognition framework is to associate semantic labels 

to the objects present in a video. 

Figure IV.2 represents an overview of the video object recognition framework. As in the 

case of still images, a categorized 3D model database is supposed to be available and described 

with the help of 2D/3D indexing techniques. 

The input is the unknown object present in the given video V, represented through a subset 

of NF frames        , including the object of interest in different poses. The frame selection may 

be performed by considering a frame-clustering algorithm such as those introduced in [Tapu11], 

[Rasheed05]. 
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The object of interest is further segmented from each selected frame, resulting in a set of 

NI= NF binary images, representing the instances Ii(VO) of the video object. Each instance of the 

video object is described using a 2D shape descriptor (according to the 2D/3D indexing methods 

employed for describing the 3D model repository). 

The similarity measure         between a video object and a 3D model is defined as the 

sum of individual distances between each instance Ii (VO) of the video object and the 3D 

model M: 

                    

  

   

   (IV.2) 

with 

               
 

                  (IV.3) 

Finally, the result analyzer is applied to the distances determined in Equation IV.3 in order 

to establish which are the most probable categories that fit the input video object.  

 

Figure IV.2 Video object recognition framework. 

Both still and video object recognition systems allow combining several 2D/3D indexing 

methods. The framework is the same as in the case of individual 2D/3D indexing methods, 

excepting the result analyzer step. The query is successively compared with the 3D models using 

each considered method. Next, for each 2D/3D indexing approach Ai, the NTRM,Ai top retrieved 

models are determined. Finally, the models found in the top retrieved positions for each method 

Ai are merged, resulting a global set which contains NTRM elements, with:  

             

  

   

   (IV.4) 

The most represented categories are determined by analyzing the number of occurrences of 

each class within the global set.  
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In order to validate the above-presented 2D object recognition framework, we propose an 

experimental evaluation, described in the following section.  

IV.4. EXPERIMENTAL EVALUATION 

The aim of the experimental evaluation proposed is to analyze the classification power of 

the 2D object recognition framework proposed previously. In addition, we also aim at analyzing 

the influence of each 2D/3D indexing element (i.e., the projection strategy and the 2D shape 

descriptor) involved in the classification process. 

The 3D model repositories exploited in the recognition process are those presented in 

Section III.5:  

 The MPEG7 3D model database (MPEG7_23), including NM=362 models divided into 23 

semantic categories (Section III.5.1); 

 The Princeton shape benchmark (PSB), composed of NM =1814 models; two classifications 

are associated with PSB, one including 53 categories (PSB_53) and the other one presenting 

161 semantic classes (PSB_161 – cf. Section III.5.2). 

Each 3D model is described using the view-based indexing approaches presented in Section 

III.2. The same viewing angle selection strategies (PCA3, PCA7, DODECA, DDPCA, OCTA9, 

OCTA33, RV6 and RV10 – cf. Section III.2.1) are here employed.  

The retained shape descriptors are those described in Section III.2.2: MPEG-7 Region 

Shape (RS) and Contour Shape (CS), Hough Transform (HT), Zernike Moments (ZM), and 

Angular Histogram (AH).  

In order to experimentally determine the classification power of the proposed framework, 

we have created several test datasets, described in the following section.  

IV.4.1. 2D object test datasets 

Several test datasets were created in order to evaluate the object classification framework 

for both still and video objects. 

IV.4.1.1. Still objects 

First, we have created a dataset by selecting Still Objects from Images (SOI). The SOI set 

consists of NSOI=115 images randomly acquired from the Web, by performing textual queries with 

existing image search engines (e.g., Google Images, Flickr). The SOI dataset includes 23 object 

classes corresponding to the MPEG7_23 categories. For each category, 5 images have been 

retained. The objects of interest were manually segmented. However, we have experimentally 
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determined that similar recognition results are obtained when employing the interactive 

segmentation proposed in Chapter V. Figure IV.3 illustrates the still image dataset obtained.  

As solely 13 classes of models are common for all MPEG-7 and Princeton databases, only 

65 objects are considered when performing experiments with the PSB_53 and PSB_161 

repositories. They correspond to commercial airplanes, humans, sedan cars, tanks, race cars, 

motorcycles, helicopters, handguns, rifles, chess pieces, screwdrivers, trees and barren trees. 

When using the PSB_53 dataset for recognition, sedan cars, race cars and tanks are merged in the 

 

Figure IV.3 Still object dataset. 
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cars class, trees and barren trees are included in the plants category and handguns combined with 

rifles become the guns class. 

Annexe A3 contains the list of SOI classes. The list of 3D model databases used to test each 

2D object class is listed in the same annexe. 

IV.4.1.2. Video objects 

Next, we have created a video object database which includes NV=40 videos selected from 

the Internet. Eight categories of objects have been considered, including airplanes, cars, chess 

pieces, helicopters, humanoids, motorcycles, pistols and tanks. Each one of these categories is 

present in 5 videos and for each video NF=3 representative frames have been considered. 

Therefore, each video object consists of NI=3 instances (Figure IV.4). 

    

    

    

    

    

    

    

    

Figure IV.4 Sample frames from VOV test set and the corresponding segmented objects. 
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The considered frames have been segmented with the algorithm presented in Chapter V.3. 

From now on, the set of Video Objects extracted from Videos will be referred to as VOV.  

The 2D objects segmented from each frame were also considered independently as still 

objects. Thus, an extended still object database, so-called SOV (Still Objects extracted from 

Videos) has been obtained, consisting in NSOV=120 shapes.  

IV.4.1.3. Synthetic images 

Finally, in order to further enlarge the 2D object test sets, we have created a set of synthetic 

images, representing 3D-to-2D projections of MPEG7 3D models. Only the 13 categories which 

are common for all databases have been considered. For each of them, three models were 

randomly selected, resulting in a subset of 39 3D models (Figure IV.5).  

Further, a number of 10 views, corresponding to the DODECA projection strategy, were 

generated for each of the 39 models, resulting in a synthetic dataset of NSy=390 classified images. 

The 390 views were used to test the classification frameworks for both still and video 

object. In the first case, the images were considered independently, resulting in a set of Still 

Objects from Synthetic images (SOSy) of NSOSy=390 objects. 

 

Figure IV.5 The 3D models selected to generate the synthetic image dataset. 
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In the second case, the views of the same 3D model were considered as a video object. 

Therefore, the resulting set consists of NVOSy=39 Video Objects from Synthetic images (VOSy), 

each one being composed of NI=10 different instances of the object.  

IV.4.2. Evaluation protocol 

The experiments have been carried out separately on each one of the five databases 

previously described (SOI, SOV and SOSy for still objects and VOV and VOSy for video 

objects). 

All the 8 projection strategies and 5 shape descriptors have been considered individually for 

evaluation. In addition, in order to exploit the potential complementarities between different 

descriptors or projection strategies, we have also considered a combination strategy between 

various descriptors/projection approaches. 

For each object O to be recognized, a binary recognition label, denoted by          , is 

defined as follows: 

           
                        

 

                                        
    (IV.5) 

where: 

      represents the category of the query object; 

    denotes the ith category the most represented within the top retrieved models. 

The recognition rate, denoted by         , is defined as the mean value of the recognition for all 

the objects in the test dataset: 

         
           

  
   

  

   (IV.6) 

where: 

    denotes the number of still/video objects in the test dataset. 

In the ideal case,        , which means that the correct category was the most 

represented (within the top retrieved models) for all the objects. 

The recognition rate was computed by taking into account one, two or three most probable 

categories (NMRC=1,2,3). For the case of PSB_161 database, we have also considered the RR(10) 

score because of the higher number of available categories (161 classes). 

When considering only the most represented category (NMRC=1), the parameter NTRM,Ai has 

been set to 10 (i.e., only the 10 top retrieved models have been taken into account for each 

indexing approach). When more than one class is considered (NMRC>1) the set of retained 3D 

models is enlarged to 20.  

In order to illustrate the recognition process, let us consider the example presented in Figure 

IV.6. The query consists of a still object representing a humanoid (C(O)=humanoids    ). Two 

different indexing approaches, denoted by A1 and A2 (which may correspond to different shape 
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descriptors and/or viewing angle selection strategies), are here considered. For each one, the eight 

top retrieved models have been retained (represented by the 3D model's view the most similar to 

the query). 

When the first approach was used (i.e., A1), cars was determined as the category the most 

represented (4 occurrences) within the first        top retrieved models. The second category 

is humanoids, with 3 occurrences, while pistols class is represented by only 1 model (C1=cars, 

C2=humanoids and C3=pistols). Therefore, when considering only the most represented category, 

        ; however,             for       . 

In the case of the second approach (i.e., A2), C1=pistols and C2=humanoids, are the most 

represented categories, both with 3 occurrences; C3=helicopters and C4=cars are represented by 

only one model each. When two classes have the same number of occurrences, the one having the 

best placed model is considered first (e.g., pistols and humanoids are represented by the same 

number of models but the best retrieved pistol is in the first position, while the best retrieved 

humanoid is in the fourth position). 

Finally, when considering the combination of approaches A1 and A2, the humanoids class is 

determined in the first position, with 6 retrieved models, followed by cars, pistols and helicopters 

with 5, 4, respectively 1 occurrences. 

 

Figure IV.6 Example of recognition rate computation. 

IV.4.3. Results and discussion 

Let us start by presenting the results obtained for still objects. 

IV.4.3.1. Still objects 

Figure IV.7, Figure IV.8 and Figure IV.9 respectively present the recognition rates obtained 

on the SOI test set with the MPEG7_23, PSB_53 and PSB_161 3D model databases. Similarly, 

the recognition rates obtained on the three databases are illustrated in Figure IV.10, Figure IV.11 

and Figure IV.12 for the SOSy test set and in Figure IV.13, Figure IV.14 and Figure IV.15 for the 

SOV dataset. The corresponding values of the recognition rates obtained are detailed in 

Annexe A4.  
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In the case of SOI test set, the highest recognition rates RR(1) are about 51%, 74% and 54% 

when MPEG7_23, PSB_53 respectively PSB_161 models were employed. The RR(3) scores are 

up to 71%, 86% and 66%, respectively.  

Similar recognition rates are obtained when testing the SOV objects: 54%, 64% and 53% in 

terms of RR(1) and 79%, 83% and 69% in terms of RR(3) with each one of the 3D model 

databases. 

Finally, in the case of synthetic objects (SOSy database), the best RR(1) rates are about 

58%, 63% and 56% while RR(3) are up to 84%, 82% and 75% with MPEG7_23, PSB_53 and 

PSB_161 respectively. 

The highest recognition rates are obtained in all cases with the contour-based descriptors 

(i.e., AH and CS). As in the case of 3D model retrieval, we observe that contour-based descriptors 

lead to higher recognition rates than those exploiting the region (i.e., HT, RS and ZM). The 

difference between the two families of descriptors is about 10% to 20%. We observed that this 

difference is less important in the case of SOV test objects (4% to 13%). This behaviour may be 

explained by the fact that SOV objects present poorer resolution (4585 – 500350) than the SOI 

objects. The poorest results are obtained with HT, which leads to a mean difference of 10%-15% 

compared to other descriptors. On the contrary, the highest classification scores are generally 

obtained with AH on SOI and SOSy test sets and with CS on SOV objects.  

Concerning the viewing angle selection, we observed here again that the repartition strategy 

is more important than the number of views. Thus, DODECA, RV6 or RV10 globally outperform 

OCTA9 and lead to rates similar to OCTA33, for 3 to 5 times less views. This shows the 

pertinence of employing representative views, such as those obtained by the RV6 and RV10 

strategies, which both avoid redundancies and ensure a discriminative shape representation. Also, 

when comparing DODECA and DDPCA we observed that the first strategy presents better overall 

scores (up to 20%). As explained when discussing the 3D model retrieval framework results, the 

difference between DODECA and DDPCA may be induced by the fact that numerous 3D models 

present symmetries. As DDPCA cameras are places symmetrically with respect to the principal 

planes of the model, the resulting silhouettes represent mirror-reflected versions of the same 

image. Thus, DDPCA set may include redundancy, which reduces the amount of relevant 

information. The same phenomenon appears in the case of OCTA9 and OCTA33 and leads to 

relatively poor results with respect to the number of views employed. 

When comparing the results obtained with PSB_53 and with PSB_161, we observe that the 

first database leads to better results, which is explained by the lower number of classes. However, 

if we consider that selecting 3 possibilities among 53 is similar to selecting 10 classes among 161, 

than we should compare RR(3, PSB_53) to RR(10, PSB_161). It can be observed in the 

corresponding figures and tables that the two scores present very similar values. 
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Figure IV.7 SOI database: RR(1) and RR(3) scores  

obtained with the help of MPEG7_23 3D models. 

 

Figure IV.8 SOI database: RR(1) and RR(3) scores  

obtained with the help of PSB_53 3D models. 

 

  

Figure IV.9 SOI database: RR(1), RR(3) and RR(10) scores  

obtained with the help of PSB_161 3D models.  

0,00 

20,00 

40,00 

60,00 

80,00 

100,00 

SOI: RR(1), MPEG7_23 
AH CS HT RS ZM 

0,00 

20,00 

40,00 

60,00 

80,00 

100,00 

SOI: RR(3), MPEG7_23 
AH CS HT RS ZM 

0,00 

20,00 

40,00 

60,00 

80,00 

100,00 

SOI: RR(1), PSB_53 
AH CS HT RS ZM 

0,00 

20,00 

40,00 

60,00 

80,00 

100,00 

SOI: RR(3), PSB_53 
AH CS HT RS ZM 

0,00 

20,00 

40,00 

60,00 

80,00 

100,00 

SOI: RR(1), PSB_161 
AH CS HT RS ZM 

0,00 

20,00 

40,00 

60,00 

80,00 

100,00 

SOI: RR(3), PSB_161 
AH CS HT RS ZM 

0,00 

20,00 

40,00 

60,00 

80,00 

100,00 

SOI: RR(10), PSB_161 
AH CS HT RS ZM 



2D OBJECT CLASSIFICATION 

101 

 

Figure IV.10 SOSy database: RR(1) and RR(3) scores  

obtained with the help of MPEG7_23 3D models. 

 

Figure IV.11 SOSy database: RR(1) and RR(3) scores  

obtained with the help of PSB_53 3D models. 

 

 

Figure IV.12 SOSy database: RR(1), RR(3) and RR(10) scores  

obtained with the help of PSB_161 3D models.   
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Figure IV.13 SOV database: RR(1) and RR(3) scores  

obtained with the help of MPEG7_23 3D models. 

 

Figure IV.14 SOV database: RR(1) and RR(3) scores  

obtained with the help of PSB_53 3D models. 

 

 

Figure IV.15 SOV database: RR(1),RR(3)and RR(10) scores  

obtained with the help of PSB_161 3D models. 
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Further, we have analyzed the individual behaviour of each category of models. Here, we 

have considered only the DODECA projection strategy, as it is one of the best performing. Figure 

IV.16 to Figure IV.24 illustrate the RR(3) scores obtained for each category of the still object test 

sets. The correspondence between the number and the name of the categories can be found in 

Annexe A3. 

We observe that some categories, such as airplanes, humanoids and cars, are globally 

easier to classify and lead to high recognition rates in most of the cases and with all descriptors. 

Some other categories, as motorcycles and tanks, present poorer scores. We observed that tanks, 

trucks and Formula 1 are often classified as cars. When using the PSB_161 3D model database, 

many commercial airplanes are detected as fighter jet aircrafts. Such mistakes can be explained 

by the similarity between the true class and the one mis-assigned. 

By analysing the results for each class of objects, we also observe that the relative 

performance of the retained descriptors depends on the semantic class. Therefore, we tested our 

system when two descriptors were combined (cf. the combination strategy described in 

Section IV.3.2) in order to exploit the possible complementarities between them. 

We have chosen to combine the two descriptors with the best performances (i.e., CS and 

AH). We have also retained ZM, the best region-based descriptor, and combined it in turn with 

AH and CS. 

Figure IV.25 to Figure IV.33 illustrate the recognition rates obtained individually with the 

AH and CS descriptors, but also with combined descriptors: AH&CS, AH&ZM and CS&ZM. 

The corresponding values are provided in Annexe A4. 

We observed that the combined AH&CS method provide recognition rates RRAH&CS slightly 

superior to the maximum scores between CS and AH (max(RRAH, RRCS)): 2%-4% higher with the 

MPEG7_23 models, a gain of 2%-6% when PSB_53 DB is employed and up to 10% higher when 

PSB_161 models are involved. However, when the recognition rates obtained with each one of the 

two descriptors are very different (|RRAH-RRCS|>15%), the rate obtained with the combined 

method is inferior to the maximum between RRAH and RRCS. In these cases, the poorest method 

has a negative influence on the result of the combined approach. 

When comparing the rate obtained with the combined method RRAH&CS with the mean 

RRm=(RRAH+RRCS)/2 of the rates obtained with AH and CS separately, we observe that the 

combined approach leads to scores superior to the mean rate RRm. The gain obtained is up to 10% 

(with a mean of 3%-4%) when MPEG7_23 database is used, up to 13% (with a mean of 6%-7%) 

when employing PSB_53 models and up to 16% (with a mean of 7%-8%) when PSB_161 DB 

was involved. 

When a contour-based descriptor (i.e., AH or CS) is combined with ZM, the performance of 

the contour-based descriptor is sometimes slightly improved; however, in some other cases the 

recognition rate is inferior to the one obtained only with the contour-based descriptor. In 

conclusion, a better improvement is obtained when a contour-based descriptor is combined with 

the other contour-based descriptor than when ZM is involved.  
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Globally, we observe that the combination of the two contour-based descriptors improves 

the results and guarantees more stability in the recognition process. Thus, we reached RRAH&CS(3) 

up to 69% and 86% with MPEG7_23 respectively PSB_53 models, while with PSB_161 the 

RRAH&CS(3) score was up to 77% and RRAH&CS(10) up to 91%.  

Let us underline that such recognition rates are highly promising, since in the case of still 

images, the recognition is achieved starting from a single image. Let us now analyze the case of 

video objects, where multiple object instances are available. 

 

Figure IV.16 SOI database: RR(3) scores per category 

obtained with the help of MPEG7_23 3D models. 

 

 

Figure IV.17 SOI database: RR(3) scores per category 

obtained with the help of PSB_53 3D models. 

 

 

Figure IV.18 SOI database: RR(3) scores per category 

obtained with the help of PSB_161 3D models. 
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Figure IV.19 SOSy database: RR(3) scores per category 

obtained with the help of MPEG7_23 3D models. 

 

 

Figure IV.20 SOSy database: RR(3) scores per category 

obtained with the help of PSB_53 3D models. 

 

 

Figure IV.21 SOSy database: RR(3) scores per category 

obtained with the help of PSB_161 3D models. 
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Figure IV.22 SOV database: RR(3) scores per category 

obtained with the help of MPEG7_23 3D models. 

 

 

Figure IV.23 SOV database: RR(3) scores per category 

obtained with the help of PSB_53 3D models. 

 

 

Figure IV.24 SOV database: RR(3) scores per category 

obtained with the help of PSB_161 3D models. 
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Figure IV.25 SOI database – combined descriptors: RR(1) and RR(3) scores  

obtained with the help of MPEG7_23 3D models. 

 

Figure IV.26 SOI database – combined descriptors: RR(1) and RR(3) scores  

obtained with the help of PSB_53 3D models. 

 

 

Figure IV.27 SOI database – combined descriptors: RR(1), RR(3) and RR(10) scores  

obtained with the help of PSB_161 3D models.   
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Figure IV.28 SOSy database – combined descriptors: RR(1) and RR(3) scores  

obtained with the help of MPEG7_23 3D models. 

 

Figure IV.29 SOSy database – combined descriptors: RR(1) and RR(3) scores  

obtained with the help of PSB_53 3D models. 

 

 

Figure IV.30 SOSy database – combined descriptors: RR(1), RR(3) and RR(10) scores  

obtained with the help of PSB_161 3D models.   
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Figure IV.31 SOV database – combined descriptors: RR(1) and RR(3) scores  

obtained with the help of MPEG7_23 3D models. 

 

Figure IV.32 SOV database – combined descriptors: RR(1) and RR(3) scores  

obtained with the help of PSB_53 3D models. 

 

 

Figure IV.33 SOV database – combined descriptors: RR(1), RR(3) and RR(10) scores  

obtained with the help of PSB_161 3D models.   
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IV.4.3.2. Video objects 

The video object recognition rates obtained on the VOV test set with the help of 

MPEG7_23, PSB_53 and PSB_161 3D models are respectively presented in Figure IV.34, Figure 

IV.35 and Figure IV.36. The rates obtained on the same databases are illustrated in Figure IV.37, 

Figure IV.38 and Figure IV.39, for the case when combined descriptors are employed. The precise 

recognition values are provided in Annexe A4.  

As in the case of SOV test set (where the same images were considered independently), 

here again we observe that the CS descriptor provides maximal performance, with:  

 RR(1) = 75%and RR(3) = 85%, for the MPEG7_23 data set,  

 RR(1) = 85% and RR(3) = 92.5% for the PSB_53 models,  

 RR(1) = 77.5%, RR(3) = 87.5% and RR(10) = 92.5%, for the PSB_161 data set.  

In terms of RR(1) rate, the CS descriptor outperforms AH by about 15%. However, the AH 

descriptor presents more important gains when NMRC increases (i.e., from RR(1) to RR(3) and 

RR(10)) then CS. Thus, in terms of RR(3) and RR(10) the AH and CS descriptors lead to similar 

results. The AH descriptor achieves RR(3) scores up to 87.5% with the MPEG7_23 and PSB_53 

models. For the PSB_161 models, the AH descriptor reaches RR(3) of 77.5% and RR(10) of 

92.5%.  

Concerning the combination of the AH and CS descriptors, the hybrid strategy is effective 

in the sense of the RR(3) and RR(10) scores. Thus, for the combined approach the recognition 

rates RR(3) are up to 87.5% with MPEG7_23, 97.5% with PSB_53 and 90% with PSB_161 

models. 

Further, we have compared the recognition scores obtained on the set of images extracted 

from videos when they were tested independently as still objects (i.e., the SOV test set) and when 

each query consists of several images (i.e., the VOV test set). We observe that, by increasing the 

input information from one image (in the case of still objects) to three images (in the case of video 

objects), the recognition performance is improved by 10% to 20%. This shows the pertinence of 

considering in the recognition process multiple images as input.  

In order to analyse how the recognition scores increases with NI (the number of instances 

used to formulate each video object query), we have considered the set of synthetic images. Here, 

we have generated up to NI=10 instance for each query. Figure IV.40, Figure IV.41 and Figure 

IV.42 illustrate the recognition rates obtained with different NI, for the case where DODECA 

projection strategy was employed. We observe that the considered recognition rates (i.e., RR(1) 

and RR(3) for all 3D model databases and RR(10) for PSB_161) are significantly improved (by 

about 10%) when the number of instances increases from one to two images per video object 

query. When the third instance is added to the query, the recognition improves by about 5%. 

Furthermore, each new instance leads to a very limited improvement of the scores (less than 1-

2%), notably in the case of RR(3) and RR(10) rates.   
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Figure IV.34 VOV database: RR(1) and RR(3) scores  

obtained with the help of MPEG7_23 3D models. 

 

Figure IV.35 VOV database: RR(1) and RR(3) scores  

obtained with the help of PSB_53 3D models. 

 

 

Figure IV.36 VOV database: RR(1),RR(3)and RR(10) scores  

obtained with the help of PSB_161 3D models.   
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Figure IV.37 VOV database – combined descriptors: RR(1) and RR(3) scores  

obtained with the help of MPEG7_23 3D models. 

 

Figure IV.38 VOV database – combined descriptors: RR(1) and RR(3) scores  

obtained with the help of PSB_53 3D models. 

 

 

Figure IV.39 VOV database – combined descriptors: RR(1), RR(3) and RR(10) scores  

obtained with the help of PSB_161 3D models.   
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Figure IV.40 VOSy database: RR(1) and RR(3) scores obtained with DODECA  

strategy and MPEG7_23 3D models for different NI per VO query. 

 

Figure IV.41 VOSy database: RR(1) and RR(3) scores obtained with DODECA 

strategy and PSB_53 3D models for different NI per VO query. 

 

 

Figure IV.42 VOSy database: RR(1),RR(3)and RR(10) scores obtained with DODECA 

strategy and PSB_161 3D models for different NI per VO query. 
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IV.5. CONCLUSIONS 

In this chapter, we have considered the issue of 2D object classification by 2D/3D 

inference. The objective is to exploit the a priori knowledge contained in classified 3D models 

and, with the help of view-based indexing techniques, to transfer it to unknown 2D objects. Such 

methods can be applied both to still objects (i.e., objects extracted from still images) and to video 

objects (i.e., objects extracted from videos and composed of several instances). 

A review of the state of the art 2D object classification techniques has been first proposed. 

Further, we have introduced a 3D-model based object recognition framework which integrates the 

2D/3D indexing techniques presented in Section III.2. The result analyser module included in this 

framework makes it possible to combine several 2D/3D indexing methods. Thus, the possible 

complementarities between the retained descriptors can be exploited and the performance can be 

improved.  

The experimental evaluation on still objects proved that, just by using simple and fast 

descriptors, we can reach RR(1) score up to 74% and RR(3) score up to 86%. The recognition 

scores can be further improved by 2% to 6% when CS and AH descriptors are combined. 

The tests performed on video objects lead to RR(3) up to 87.5% when selecting among 23 

semantic classes (MPEG7_23) and 97.5% when selecting among 53 categories (PSB_53). In the 

case of PSB_161, the highest RR(3) score was of 90%, while RR(10) reached up to 97.5%. Our 

analyses also proved that disposing of three different instances of a video objects is sufficient to 

allow correct classification. 

In order to make possible the integration of the proposed 2D object recognition framework 

in real-life applications, an object segmentation module is required. In the next chapter, we 

propose a semi-automatic segmentation tool, designed to help the user to extract an object of 

interest from an image. 
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V. INTERACTIVE OBJECT SEGMENTATION 

 

Abstract. In this chapter, we present an interactive segmentation method, designed to help the 

user to extract an object of interest from an image. The proposed approach adopts the scribble-

based segmentation paradigm. The user interaction consists of specifying a set of lines, 

corresponding to both foreground and background scribbles. The segmentation process is based 

on colour distributions, estimated with Gaussian Mixture Models (GMM). We show that such a 

technique presents some limitations when dealing with compressed images, even for relatively 

high quality compression factors: in this case, blocking artefacts may degrade the segmentation 

results. In order to overcome such a drawback, a modified GMM model, which re-shapes the 

Gaussian mixture based on the eigenvalues of the GMM components, is proposed.  

The experimental evaluation, carried out on a corpus of various images with different 

characteristics and textures, demonstrates the superiority of the modified GMM model which is 

able to appropriately take into account compression artefacts. 

Keywords: interactive image segmentation; foreground extraction; Gaussian mixture model; 
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V.1. INTRODUCTION 

This chapter tackles the issue of interactive, semi-automatic image segmentation. The 

objective is to assist the user to extract meaningful objects of interest from a given image, 

whatever their complexity in terms of colour, texture and shape characteristics, while minimizing 

the required human interaction. Let us underline that, in order to be able to design a general public 

tool and to facilitate its adoption in industrial applications, the interaction process should not 

involve any specific knowledge or abilities from the user.  

In recent years, a scribble-based interactive segmentation paradigm has emerged 

[Protiere07, Bai07, Boykov01, Gulshan10]. The principle consists of interactively specifying a set 

of scribbles, marking both the object of interest and the background. Such scribble may be 

arbitrary lines or free-form curves [Protiere07, Bai07, Boykov01, Gulshan10] (Figure V.1a), 

rough object boundaries [Blake04] (Figure V.1b) or bounding rectangles [Rother04] (Figure 

V.1c).  

   
a. b. c. 

Figure V.1 Various scribbles encountered in the literature.  

a. free-form curves; b. rough object boundaries; c. bounding rectangles. 

Nevertheless, when the interaction required from the user is too low, the lack of information 

has to be compensated by additional a priori knowledge, like in [Veksler08]. Here, the user is 

asked to specify the centre of the convex star shape (cf. Section V.2) which is then used to control 

the segmentation process. However, such a notion is often quite difficult to deal with for non-

expert users. 

In this chapter, we present a novel segmentation method suited for both expert and non-

advised users. The human interaction is limited to sketching line segments over the desired object 

as well as over parts of the background. The main advantage of the proposed method is its ability 
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to perform well on both compressed and uncompressed images. This is particularly useful since 

most of the auto-created image content available today is represented in a compressed form (e.g., 

JPEG/JPEG2000 for most of the existing commercial cameras).  

The remainder of this chapter is organized as follows. In the next section, we present an 

overview of the state of the art scribble-based segmentation techniques. The proposed method is 

then detailed in the third section. The experimental evaluation, carried out on a corpus with 

ground truth and including various objects, is presented in the fourth section. Finally, we conclude 

the chapter and open some perspectives of future work. 

V.2. RELATED WORK 

Among one of the first and in the same time one of the most popular interactive 

segmentation approaches let us mention the Graph Cut technique introduced in [Boykov01]. 

Here, the user marks some more or less thick scribbles on the image in order to specify the 

foreground F and background B components. The labelled pixels are used to approximate the 

image intensity distribution of the F and B components. In order to perform the segmentation, a 

weighted graph is generated (Figure V.2).  

The graph contains one node np for each pixel p of the image and two terminal nodes (nF, 

nB) that represent the two possible labels         . Each node np is connected by an edge to the 

set of its 8 neighbours and to the two terminals nodes (ep-F and ep-B edges). The weight of an edge 

that connects a pixel with a terminal node (ep-F,B) denotes the probability that the considered pixel 

belongs to the corresponding F or B plane. The weight w(p,q) of an edge that connects two 

neighbouring pixels p and q is given by an exponential function that takes into account both the 

variation of their intensities (Ip, Iq) and the Euclidian distance dist(p,q) between the considered 

pixels, as defined in the following equation: 

 

Figure V.2 Graph representation exploited in the Graph Cut approach. 
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   (V.1) 

Thus, two similar pixels will have a strong connection, expressed by a high weight of the 

edge. Finally, the segmentation is performed by searching for the cut of minimal cost [Boykov04] 

that partitions the graph into two components, one containing the nF node and the other one the nB 

node. 

The Graph Cut approach has been subject to numerous extensions. Among them, let us 

mention the GrabCut method, introduced in [Rother04]. The human interaction is here reduced to 

a rough specification of a bounding rectangle, placed around the object of interest. The pixels 

located inside the rectangle are considered as being part of the foreground, while the external 

pixels are labelled as background. Two Gaussian Mixture Models (GMM) [Reynolds07] are 

generated: one for the foreground (F) and one for the background (B) component. Further, an 

iterative process is applied. Each F and B pixel is assigned to the most probable cluster from the 

corresponding GMM. Then, each component of the two GMMs is re-estimated according to the 

updated pixel assignment. In the same time, the weights of the graph edges are re-calculated 

accordingly and the minimum cut segmentation is performed. The iterative process continues 

using the resulting partition of the F and B pixels until convergence.  

Another extension of the Graph Cut approach is proposed in [Veksler08]. Here, some a 

priori information is introduced in the segmentation process. Thus, the authors propose to 

consider solely objects that can be represented by star-convex shapes [Smith68]. Therefore, the 

ambiguity is reduced by excluding all the shapes that violate this assumption.  

Let us recall that a shape S is called star-convex if there exists a point c in S such that for 

any arbitrary point x within S the line segment from c to x is completely included within the 

shape. The star-convexity condition can be re-formulated in the discrete domain with respect to 

neighbouring pixel as follows. Let us consider S a star-convex shape with the centre c and x a 

pixel within S. If y is a neighbour of x that belongs to the (x,c) segment, than y should also belong 

to S. This observation makes it possible to introduce an additional, star-convex shape constraint in 

the Graph Cut process, which consists of forbidding cuts along the (x,c) segment. 

Compared to Graph Cut and GrabCut, the Star-Convexity approach is significantly less 

demanding in terms of human interaction, which represents its main advantage. Here, solely the 

centre of the star-convex shape needs to be specified by the user. As no background pixels are 

marked, the border of the image is used as background label. However, the star-shape constraint is 

not appropriate for all the objects that can be encountered in practice, which are not star-shaped 

(Figure V.3). 
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a. b. c. 

Figure V.3 Star-shape condition: a. example of star-shaped object.  

b.&c. example of shapes which do not fulfill the star-shape condition.  

This drawback may be overcome using multiple stars and geodesic star-convexity, as 

proposed in[Gulshan10]. Here, the segment that connects a given pixel x and the centre c is 

replaced by the shortest geodesic path Γ(x,c) between x and c. A shape is geodesic star-convex 

(GSC) if the path Γ(x,c) lies inside the shape. Authors define the elementary distance        

between two neighbour pixels p and q as a function of the Euclidian distance dE(p,q) and of the 

image gradient between the two pixels, as described in the following equation: 

                     
               (V.2) 

where the parameter γg weights the Euclidian distance versus the geodesic term.  

Moreover, in order to cover a larger range of shapes, the star-convexity is extended to 

multiple stars. Here, the centre c is replaced by a set of centres {ci}. For each pixel x, only the 

closest centre is considered ci(x). Thus, a shape S is geodesic multiple-star-convex if for any x 

within S, the path Γ(x,ci(x)) lies entirely inside the shape. As the choice of the centres {ci} is a 

difficult task, authors propose to use the foreground labelled pixels as multiple-star centres. The 

experimental evaluation presented in [Gulshan10] shows that Geodesic Star-Convexity algorithm 

outperforms Star-Convexity, GraphCuts and DistanceCut methods.  

The powerful geodesic distance principle is also adopted, in a different manner in 

[Protiere07]. Here, authors present a semi-automatic segmentation approach which uses the 

concept of adaptive weighted distances. The algorithm requires two sets of labelled pixels, one for 

the foreground (F) and the other for the background (B), which are roughly scribbled (i.e., free-

form curves) by the user in an interactive manner. Each image is described by a combination of 

NCh = 19 channels consisting of the luminance/chrominance components in the Y, Cb, Cr colour 

space, as well as the output of 16 Gabor filters [Kyrki04] (with 4 scales and 4 orientations) 

applied on the Y channel and aiming at describing the texture information. Based on the values of 

the labelled pixels, the probability density functions (    
 ) are approximated by a Gaussian 

distribution for each channel i and for each foreground/background label         . As the 

channels that better discriminate between planes are not the same in all cases, a weighting 

coefficient    
  is computed for each channel. The value of this coefficient depends on the 
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probability to assign a wrong label to a given pixel, according to the PDF of the considered 

channel. Finally, the global likelihood Pl(x) of each pixel x to belong to the foreground (l = F) and 

to the background (l = B) is computed as described by the following equation: 

                          
 

    
    

  

    
    

        
    

  

   

   

   (V.3) 

where: 

    
   are the channel components of the pixel x; 

 NCh denotes the number of channels (19, in this case).  

A weight       is associated to each pixel x and for each label l: 

                                  (V.4) 

This leads to two complementary, foreground and background weight images. For each 

pixel x, the geodesic distances dF
 (x) and dB

 (x) to the F and B scribbles are then computed 

conditionally to the WF and WB weight maps, respectively, as described in the following equation:  

                    
       

     
          

               

   

  
 (V.5) 

where: 

        denotes the set of all possible paths    between pixels x and s; 

       represents the path's tangent vector in point p;  

 {l} denotes the set of scribble pixels s associated to label l.  

 dF and dB are the foreground and background geodesic distance maps.  

The segmentation is finally achieved by assigning each pixel to the closest scribble pixel, in 

the sense of the geodesic distance in Equation V.5. Thus the label    associated to pixel x is 

obtained as: 

         
        

        (V.6) 

A similar method, called DistanceCut, is proposed in [Bai07]. Here, the representation of 

the image is reduced to the 3 channels corresponding to the Luv colour space [Tkalcic03]. The 

colour distribution of the labelled pixels, previously assimilated as a Gaussian, is now 

approximated in a finer manner, with the help of the kernel density estimation technique described 

in [Yang03]. Finally, the segmentation is performed in a similar manner to the method in 

[Protiere07], by assigning each pixel to the closest label via the foreground and background 

geodesic distances.  

In this chapter, we propose a different extension of the scribble-based segmentation method 

proposed in [Protiere07]. Instead of using kernel density estimation as in [Bai07], we consider 

Gaussian mixture models for colour distribution estimation, which makes it possible to obtain an 

adaptive representation, well-suited for characterizing non-uniform regions. Let us note that this 

has already been suggested as a perspective by the authors in [Protiere07]. However, to our very 

best knowledge, such an extension has not yet been presented and validated by any of the methods 
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reported in the literature. We notably show that the direct extension from a single Gaussian model 

to a GMM leads, in the case of compressed images, to block artefacts that can significantly 

degrade the segmentation results. In order to overcome this limitation, a modified GMM model, 

able to deal with compressed images, is further proposed.  

Let us first present the GMM-based segmentation approach. 

V.3. GMM-BASED SEGMENTATION 

As in [Protiere07], the proposed method starts from two arbitrary sets of labels, marked by 

the user, indicating the foreground and the background parts. For the user's convenience, a straight 

line drawing tool is used in order to mark the labels (Figure V.4a). However, the algorithm 

performs as well when the labels are free-form strokes. The labelled pixels are used to estimate 

the colour distribution of the foreground and background planes. 

The proposed method extends the reference method introduced in [Protiere07]. Instead of 

modelling the foreground/background PDFs by a single Gaussian function, which can solely 

approximate roughly the colour distributions, we have considered a GMM model, described in the 

following section.  

V.3.1. From Gaussian PDFs to GMMs 

In order to accurately model the foreground and background PDFs, two dedicated GMMs 

[Reynolds07] are employed. In our work, we have considered the Luv colour space, because of its 

recognized perceptual uniformity features [Tkalcic03].  

A GMM model, denoted by g(X), is by definition a weighted sum of NGMM multivariate 

Gaussian functions: 

             

    

   

   (V.7) 

where: 

 X is a D-dimensional vector (in our case D = 3 and X stores the Luv values of a given pixel x);  

 ωi is a positive weight associated to the ith component of the GMM; 

 gi(X) is the ith multivariate Gaussian distribution, defined as: 

      
 

           
   

     
 

 
      

   
            (V.8) 

where Σi is its covariance matrix and μi the mean vector.  

Starting from each of the two sets of foreground and background scribbles, the 

corresponding GMM's parameters (i.e., ωi, Σi, μi) are estimated using the iterative Expectation-

Maximization (EM) algorithm [Dempster77, Moon96]. The number of GMM components (NGMM) 
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is adaptively estimated using the Rissanen criterion [Rissanen83], as described in [Bouman97]. 

The resulting foreground and background probability densities are respectively denoted by gF and 

gB.  

Let us mention that straight lines scribbles are highly convenient in terms of simplicity of 

the required user interaction but may lead to a relatively low number of pixels, insufficient to 

obtain a reliable GMM estimation. In order to overcome such limitation, the user-specified sets of 

scribbles are enlarged as follows. A parameter    is computed for each label          based on 

the total length Ll of their corresponding scribbles (i.e., number of pixels included in the 

considered F and B sets of scribbles). Further, each set of F and B pixels is enlarged by including, 

for each considered pixel, a number    of its neighbours, which are randomly selected. The 

parameter    is computed as follows: 

        
  

 

  
       (V.9) 

where   
  is a parameter that specifies the target number of pixels in each set. The maximal value 

of the parameter    is limited to 8, since a 8-connected neighbourhood is considered.  

For each label         , the likelihood maps Pl(x) defined in Equation V.3 become: 

                       
      

             
    (V.10) 

The weight maps Wl(x) are further obtained by applying the Equation V.4. The 

segmentation is then achieved with the help of geodesic distances computed conditionally to the 

background and foreground weights, as described in Section V.2 (cf. Equations V.5 and V.6). 

Finally, if several connected components are obtained, only those adjacent to a foreground 

scribble are retained. 

The sets of Nl pixels used for foreground and background GMM estimation are illustrated in 

Figure V.4c and f, respectively. In order to allow the comparison between the input and the output 

of the GMM estimator, Nl random variables (Figure V.4e. and h.) were generated using the 

parameters {ωi, Σi, μi}
l associated to each label l. Here, only for visualization purposes, Figure 

V.4 c, e, f, and h are illustrated in the RGB colour space.  

Figure V.5 presents another GMM-based segmentation result. Figure V.5c and e illustrate 

the distance between each pixel and the closest foreground, respectively background scribble, 

with respect to the corresponding likelihood maps (Figure V.5b and d). Low values (dark pixels) 

denote short distances to labelled pixels. 

The result of the segmentation process is presented in Figure V.5f. We can observe that, in 

this case, despite of the richness of the texture information present in the image, the foreground 

flower has been correctly segmented with the help of solely 5 scribbles (2 for the foreground and 

3 for the background). 
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a. b. 

 

 

 

c. d. e. 

 

 

 

f. g. h. 

Figure V.4 Example of GMM-based segmentation. 

 a. the user's scribbles (foreground in green and background in red). b. the segmentation result. c.&f. 

The set of N
l
 pixels used for foreground, respectively background GMM estimation; b.&g. the mean 

values of the GMM components; e.&h. the estimated GMM. N
l
 random variables were generated 

using the parameters {ωi, Σi, μi}
l
 of the estimated GMM. 
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a. b. c. 

   

d. e. f. 

Figure V.5 The segmentation process. 

a. The input image and the labels; b. the foreground likelihood map; c. the foreground distance map; d. 

the background likelihood map; e. the background distance map; f. the obtained segmented object. 

Figure V.6 and Figure V.7 illustrate the segmentation result obtained with simple Gaussian 

PDFs, as in [Protiere07], and with GMM for two different examples. In the case of Gaussian 

PDFs, each colour component (i.e., Y, Cb, Cr) of each label          is modeled by a single 

Gaussian PDF. The likelihood       of the pixel x to belong to the label l is computed as a 

weighted sum of Gaussian probabilities (Equation V.3). 

Both methods provide good results for the first example (Figure V.6), representing a sheep 

on a relatively uniform grass texture. Here, the background is almost monochromatic (green) and 

the corresponding GMMB components (Figure V.6d, bottom row) are very close. Thus, the 

background distribution can be correctly modelled with the help of simple Gaussian PDFs. In 

addition, the background and the foreground do not contain similar colours and can be therefore 

easily separated (as indicated by the likelihood maps presented in Figure V.6e and Figure V.6f). 

However, the GMM approach performs better at the level of boundaries (where colour blending 

effects occur), which are more accurately delineated. This behaviour is also true for the region 

corresponding to the level of the sheep’s legs, which are more accurately segmented by the GMM 

model, able to better take into account the shadowing effects. 

The superiority of the GMM approach is even more evident in the second example (Figure 

V.7), which represents a boy skating. The image is here acquired by night and the background 

presents relatively important variations in terms of level of luminance. In addition, both the 

foreground and the background include similar colours and present more complex distributions 

(Figure V.7d), which cannot be correctly modelled by simple Gaussians. It can be observed on the 
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foreground likelihood map (Figure V.7f) that the object of interest has similar likelihood to some 

regions of the background. 

However, in the case of GMMs (Figure V.7e), the differences between the likelihood of 

foreground and background regions are more accentuated, which makes it possible to obtain a 

more accurate segmentation result (Figure V.7b). 

   

a. b. c. 

 

  

d. e. f. 

Figure V.6 Example of segmentation. 

a. Object of interest representing a sheep on relatively homogeneous grass texture: Input image and 

scribbles; b. object segmented with GMM; c. object segmented with simple Gaussian PDFs; d. GMM 

components: foreground (top) and background (bottom); e. foreground likelihood map obtained with 

GMM; f. foreground likelihood map obtained with single Gaussian PDFs. 
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a. b. c. 

 
  

d. e. f. 

Figure V.7 Example of segmentation. 

a. Object of interest representing a boy skating in a night scene: a. input image and scribbles; b. object 

segmented with GMM; c. object segmented with simple Gaussian PDFs; d. GMM components: 

foreground (top) and background (bottom); e. foreground likelihood map obtained with GMM; f. 

foreground likelihood map obtained with single Gaussian PDFs. 

V.3.2. On the influence of the compression process 

When dealing with compressed images, several artefacts, as block or contour effects, may 

appear. In the case of high quality compression, such artefacts are not visible on the image. 

However, they can significantly influence the segmentation performances. This problem is 

illustrated in Figure V.8, which shows the segmentation results obtained by the GMM method 

described in the previous section for original, uncompressed images, as well as for their JPEG 

compressed versions (with quality factors of 75%, 50% and 25%). In our work, we have 

considered JPEG compression because of its high popularity and availability on existing, 

commercial cameras.  

We observe that the segmentation results are strongly affected by the compression process, 

even when the quality factors are relatively high (e.g., 75%). 

In order to analyze this phenomenon, Figure V.9a shows the foreground likelihood map 

obtained for the 50%-compressed image in Figure V.8. We can observe that the block artefacts 

are strongly affecting the likelihood map, even if they are not visible on the compressed images. 

This result is due to the block-based compression mechanism adopted by JPEG but also to the 
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structure of the GMM model employed. Let us underline that such a phenomenon does not appear 

in the case of the original method in [Protiere07], where a unique Gaussian function is used to 

model the corresponding PDFs (Figure V.9b and Figure V.10).  

    

    

    

100% 75% 50% 25% 

Figure V.8 Compression influence on the segmentation result. 

 Top row: Input images with different compression levels (quality factor from 100% to 25%); Middle 

row: details from the compressed images: block effects are not or merely visible (for 25% compressed 

image); Bottom row: Corresponding GMM segmentation results.  

A finer analysis of such results shows that the block artefacts are caused by the degenerate 

shape of some components of the GMM model. More precisely, the presence of block effects in 

the likelihood map (Figure V.9) is caused by the parameters of the GMM. Figure V.11 illustrates 

the 3D Gaussian distribution of one of the background GMM components associated to the cross 

image in Figure V.8. The eigenvalues of the corresponding covariance matrix are:   
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a. b. 

Figure V.9 Background likelihood map for the 50% compressed image illustrated in Figure V.8. 

 a. obtained with GMM; b. obtained with Gaussian PDFs. 

 

    

100% 75% 50% 25% 

Figure V.10 Segmentation results for uncompressed and compressed images  

with single Gaussian PDFs. 

 

 

Figure V.11 Example of elongated Gaussian distribution. 
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The last two eigenvalues indicate that the considered Gaussian component has very low 

variabilities on the corresponding eigen-directions, with respect to the first direction. This 

explains the elongated shape of the Gaussian function in Figure V.11. As a consequence, the 

probability field is very high near the centre of the Gaussian distribution and presents a strong 

decay when moving away in the direction of the last two eigenvectors. Thus, two colours which 

are close in terms of distance within the Luv colour space can take very different probabilities.  

This phenomenon is highlighted in Figure V.12. For simplicity of representation we have 

considered two 1D Gaussian functions, denoted by gB (background) and gF (foreground) and 

respectively characterized by small and large variances. For the argument a considered in Figure 

V.12, the probability gF(a) is higher than the probability gB(a). This means that the variable a is 

more likely to belong to the foreground than to the background. However, in terms of distances to 

the two Gaussian mean values, a is much closer to the foreground than to the background: 

               . When extrapolating this analysis to the 3D case, this means that a colour 

which is visually very close to a foreground GMM component can present a high probability to 

belong to a background GMM component.  

 

Figure V.12 Example of 1D Gaussian distributions. 

with strongly different standard deviations (F
 >> B

). The variable a is much closer, in terms of 

distance, to the mean value B
 of the Gaussian g

B
 than to the mean value F

. However, the 

probability g
B
(a) of belonging to the B distribution is smaller than the probability g

F
(a). 

This phenomenon explains the block effect obtained in the case of block-based coding 

methods such as JPEG. Such compression methods transform relatively uniform regions in blocks 

of slightly different colours (phenomenon which is often invisible for the human eye, at least for 

reasonable compression quality factors). However, such small differences may lead to strong 

variations of the likelihood maps, for the entire blocks. This phenomenon is far from being 



INTERACTIVE OBJECT SEGMENTATION 

131 

isolated and appears frequently in practice, notably in the case of images available over Internet, 

which are in most cases JPEG compressed. Figure V.13 illustrates a second example, where the 

object of interest is representing a soft toy placed on a chair.  

 

 

  

a. b. c. d. 

Figure V.13 Compression block artefacts for a soft toy image. 

a. the input image; b. Gaussian components determined for foreground and background 

components; c. the foreground likelihood map; d. segmented object with GMM. 

In this example, some regions of the wall (e.g., the upper left corner, the back of the chair 

above the soft toy) have high likelihood to belong to the foreground, even if they are visually 

highly similar to the rest of the background. The segmentation result is illustrated in Figure V.15e. 

It can be observed that several parts of the background were wrongly extracted as foreground 

(e.g., the part of the wall above the stuffed toy). The straight contour on the right of the extracted 

object is also a consequence of the block-based coding. The upper left corner is not detected as 

foreground (Figure V.13d), although it has a high foreground likelihood, because only the 

components which are adjacent to an F scribble are retained. 

In order to overcome this drawback we propose to slightly modify the GMM colour 

distribution model, as described in the following section. 

V.3.3. Modified GMMs 

In order to attenuate the block artefacts, we propose to alter the GMM components that 

present low eigenvalues. Thus, the Gaussian distributions are expanded (Figure V.14) by 

modifying the low eigenvalues i of each GMM component as follows: 

 
  

 
 

                              
 

 
    

 
    

 

 
    

 
                               

    (V.11) 

where β is a parameter used to limit the maximum elongation of each GMM component.  
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The parameter β involved should be selected in a manner such that the overall shape of the 

corresponding Gaussian component should not be severely denatured. In the same time, it should 

make it possible to overcome the stability issues related to such degenerated Gaussians. In our 

work, we have experienced various values of the β parameter, ranging from 10 to 100, with quite 

equivalent results in terms of obtained segmentations.  

In this way, the variability on the corresponding eigen-directions is increased and thus the 

variation of the probability is decreased. Figure V.14 illustrates a Gaussian distribution and its 

modified version in the Luv colour space. 

  
a. b. 

Figure V.14 Example of Gaussian distribution in Luv colour space. 

a. original Gaussian distribution; b. modified Gaussian distribution. 

A final refinement has been introduced: we impose likelihood Pl equal to 0.5, for any pixel 

whose colour has both the foreground and the background probabilities gF and gB inferior to a 

given threshold ε. This makes it possible to eliminate the influence of colours with very small 

foreground and background probability values, which are often unreliable. In this way, pixels 

which are highly unlikely to belong to either foreground or background are neutralized, in terms 

of corresponding likelihood values.  

       
                          
                                           

    (V.12) 

In our work, the probability threshold ε has been set to 10-6. 

The modified GMM representation makes it possible to significantly reduce the block 

artefacts due to compression, as illustrated in Figure V.15. For the same example previously 

presented in Figure V.13, we obtain in this case an accurate segmentation result. We can observe 

that this time the effect of the block artefacts is significantly reduced (Figure V.15b). 
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a. b. c. 

Figure V.15 Compression artefacts reduction with modified GMM. 

a. the input image; b. the foreground likelihood map obtained with the modified GMM; 

c. segmentation result. 

V.4. EXPERIMENTAL EVALUATION 

Experiments have been carried out on the database proposed in [Gulshan10], which 

includes the GrabCut dataset [GrabCutDB], images from the PASCAL VOC'09 segmentation 

challenge [Everingham09], and 3 images from the alpha-matting dataset [Rhemann09], for a total 

number of 151 test images, with resolutions from 284398 to 800618 pixels and stored in PNG, 

BMP and JPEG format. The retained corpus presents a large variety of objects (humans, airplanes, 

cars, trains, animals, plants, furnish, household items …) acquired indoor, in urban areas or in 

nature. The ground truth segmentations are also provided. 

Concerning the scribble specification, we have considered at most 5 line segments per 

image. This allows us to keep a relatively low amount of human interaction, which is an important 

aspect for commercial applications. 

Parameter   
  (cf. Section V.3.1) was set to 2000 (i.e., each scribble pixel set is attempted to 

be extended to at least 2000 pixels), which ensures sets large enough for estimating GMMs with 

up to 10 components. The elongation parameter β used to modify the GMM (Equation V.11) was 

set to 50. 

The algorithm has been run on an Intel Xeon machine with 2.8GHz and 12GB RAM, under 

a Windows 7 platform. The segmentation process takes 2 seconds for a 320*480 pixels image and 

5 seconds for a 600*450 pixels image, which ensures interactive segmentation rates. Let us note 

that numerous optimizations are possible, for example using LUT for computing the Gaussian 

probabilities involved, or exploiting GPU implementations for parallelization. 

The performance measure adopted is the overlap score (OS) already used for evaluation 

purposes in [Gulshan10, Everingham09]. The OS rate measures the number of correctly and 

incorrectly assigned pixels and it is defined as: 
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    (V.13) 

where: 

 NF|F is the number of foreground pixels detected as foreground, 

 NB|F is the number of background pixels detected as foreground, 

 NF|B is the number of foreground pixels detected as background. 

We have first analyzed the impact of using a more sophisticated colour model with respect 

to the reference method in [Protiere07], where single Gaussians, computed marginally on each 

colour plane, are exploited. Here, the genuine, non-modified GMM representation has been 

considered. The average overlap score obtained for the whole test data set with GMM is of 85.2%, 

while with single Gaussian PDF modelling is of only 75.6%. This clearly shows the superiority of 

a more realistic colour distribution model as the GMM. Several examples of GMM-based 

segmentation results are illustrated in Figure V.16 to Figure V.19. 

Figure V.16 presents an example of a highly accurate segmentation result, where the 

overlap score is of 95.2%. For the same input, the reference method leads to an OS of 92.4%. 

Figure V.17 illustrates a segmentation result with a score of 93.2%. Here, the few segmentation 

errors may be explained by the presence of similar materials (i.e., cement) in foreground and 

background components. In the example illustrated in Figure V.18, the segmentation is less 

precise (OS = 80%) because of the similarity between the black jacket of the character of interest 

and the dark background. However, the OS measure obtained for the reference method in 

[Protiere07] is here of only 57%. Another difficult example is presented in Figure V.19. The result 

obtained here can be explained by the fact that the foreground GMM does not contain a white 

component, suited to model the horse's white spots. The absence of such component is due to the 

low resolution of the image (the size of the horse's bounding box is of 70220 pixels) which lead 

to an insufficient number of white pixels used for GMM estimation. Also, the fact that the 

foreground and background components include similar colours (e.g., grey) has a negative impact 

on the segmentation process. However, the obtained OS measure is of 77% for the GMM 

approach, which outperforms the reference method (OS = 62%). 

Such results demonstrate the superiority of the GMM representation. However, the main 

limitation is related to the block artefacts which appear in the case of compressed images (cf. 

Section V.3.2, Figure V.13).  
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a. b. c. d. 

Figure V.16 Example of segmented object. 

a. the input image and the used labels; b. the object segmented with the GMM-based method 

(OS = 95.2%); c. the object segmented with Gaussian PDFs approach (OS = 92.4%);  

d. the ground truth. 

 

    

a. b. c. d. 

Figure V.17 Example of segmented object.  

a. the input image and the used labels; b. the object segmented with the GMM-based method 

(OS = 93.2%); c. the object segmented with Gaussian PDFs approach (OS = 90.6%);  

d. the ground truth. 

 

 

    

a. b. c. d. 

Figure V.18 Example of segmented object.  

a. the input image and the used labels; b. the object segmented with the GMM-based method 

(OS = 80%); c. the object segmented with Gaussian PDFs approach (OS = 57%);  

d. the ground truth. 
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a. b. c. d. 

Figure V.19 Example of segmented object. 

a. the input image and the used labels; b. the object segmented with the GMM-based method 

(OS = 77.7%); c. the object segmented with Gaussian PDFs approach (OS = 62.7%); 

d. the ground truth. 

In order to objectively evaluate the improvement introduced by the modification of GMM, 

we have compressed the images used in the first experiment (JPEG compression with quality 

factors of 75%, 50% and 25%). Further, we have computed the overlap score when Gaussian 

PDFs, GMM and modified GMM representations are employed. Table V.1 summarizes the 

average overlap scores obtained with the three approaches at different compression levels.  

Table V.1 Overlap score on original and compressed images. 

Quality factor: 

Method: 
100% 75% 50% 25% 

Gaussian PDF 75.6 75.6 75.3 75.4 

GMM 85.2 83.3 82.1 79.8 

modified GMM 85.8 84.4 83.9 82.2 

Let us observe that the performance of the reference method in [Protiere07] (Gaussian 

PDFs) is not affected by the compression. This can be explained by the fact that marginal 

Gaussian distributions provide a global representation, where the various colours are blended 

together, and which is insensitive to small variations of colour content as those introduced in the 

JPEG compression process. However, in all cases, the overlap score is inferior to the one obtained 

with GMM (almost 10% lower for the original images). 

The overlap score of the GMM method decreases from 85.2% for original images down to 

79.8% on 25%-compressed images. This loss in performance is significantly attenuated in the 

case of the modified GMM approach, where the OS measure goes down from 85.8% (original 

images) to 82.2% (25%-compressed images). Over the whole range of compression factors 

considered, the modified GMM representation offers a slight gain in performances: 1.1% on 75%-

compressed images, 1.8% on 50%-compressed images and of 2.4% for a quality factor of 25%.  

The superiority of the modified GMM model is even more manifest in terms of visual 

quality of the obtained segmentations. Figure V.20 to Figure V.23 illustrate the segmentation 

results obtained with simple GMM on the original images (Figure V.20b to Figure V.23 b) and on 
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the 25%-compressed images (Figure V.20c to Figure V.23 c) as well as those obtained with 

modified GMM on the 25%-compressed images (Figure V.20d to Figure V.23 d). We can observe 

that the compression artefacts mainly affect the contour regions between foreground and 

background, which become ragged in the case of the genuine GMM approach. In terms of overlap 

scores such differences are relatively low (1-2%), as the OS measure is computed globally over 

the object’s region of support. However, the visual quality is significantly altered by such a 

phenomenon. The modified GMM representation makes it possible to overcome this limitation 

and leads to neat borders, with results approaching those obtained on uncompressed images.  

V.5. CONCLUSION 

In this chapter, we have addressed the issue of interactive object segmentation. The 

proposed method employs a GMM representation for both foreground and background colour 

distribution estimation. We have observed that when dealing with compressed images, several 

artefacts may appear. In order to attenuate the negative impact of the compression artefacts on the 

segmentation process, a modified GMM representation has been proposed. We have shown that 

the obtained model is well-suited for dealing with compressed images. Thus, the objective 

experimental evaluation proposed, demonstrated that the block-based coding effect is significantly 

attenuated and the segmentation quality is improved.  

In our future work we intend to adjust the GMM for shadowy regions. The objective here is 

to extrapolate the colour distribution from the lighted regions to the shaded areas and inversely. A 

second perspective concerns the integration of a scribble refinement stage, based on an adaptive 

exploitation of the available contour information. 
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Figure V.20 The influence of JPEG compression. 

a. the input images; b. the object segmented from the initial image;  

c. the object segmented from the 25%-compressed image with simple GMM;  

d. the object segmented from the 25%-compressed image with modified GMM. 
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Figure V.21 The influence of JPEG compression. 

a. the input images; b. the object segmented from the initial image;  

c. the object segmented from the 25%-compressed image with simple GMM;  

d. the object segmented from the 25%-compressed image with modified GMM. 
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Figure V.22 The influence of JPEG compression. 

a. the input images; b. the object segmented from the initial image;  

c. the object segmented from the 25%-compressed image with simple GMM;  

d. the object segmented from the 25%-compressed image with modified GMM. 
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Figure V.23 The influence of JPEG compression. 

a. the input images; b. the object segmented from the initial image;  

c. the object segmented from the 25%-compressed image with simple GMM;  

d. the object segmented from the 25%-compressed image with modified GMM. 
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VI. DIANA PLATFORM 

 

Abstract. An important aspect in 2D/3D object retrieval and recognition is to dispose of 

appropriate user interfaces. For this purpose, we have developed a Web platform designed to 

help the user in comparing and evaluating the 2D/3D indexing methods adopted in our work. We 

have considered both 3D model retrieval and 2D object classification frameworks. In addition, 

the segmentation method presented in chapter V has been integrated in the platform, in order to 

allow the users to test the system on their own images. The 3D models exploited in our work can 

be visualized online with the help of a 3D model viewer integrated in the interface. A review of the 

2D/3D indexing principle and methods adopted in our work is also proposed.  

Keywords: Graphical user interfaces, SLQ databases, Web services, Web platform; 
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In order to facilitate the access to our work, we have developed the so-called DIANA 

(Digital Image Analysis aNd Annotation) Web platform. DIANA integrates the developments 

proposed in this thesis, including a content-based 3D model search engine, a 2D object 

classification tool and a segmentation/recognition tool. DIANA is conceived as a Web 

application, which can be accessed remotely from various devices. Since all computationally 

intensive tasks (e.g., segmentation, descriptor extraction, similarity computation…) are handled 

on the server, the users do not need to have high system requirements and can even access the 

application on mobile devices.  

Let us start by presenting the architecture of DIANA platform. 

VI.1. ARCHITECTURE 

 The proposed architecture is designed to function as a multi-platform, multi-server 

application. Currently, the platform includes three main components (Figure VI.1): a Web server, 

a user interface and a SQL server.  

 

Figure VI.1. DIANA platform architecture. 

The Web server (Figure VI.2) runs a Web application, written in PHP, which manages user 

requests. It also includes dedicated software which implements our segmentation and recognition 

approaches (S&R applications module). The S&R applications were developed in C++ and are 

used by the segmentation and recognition tool. For any request, the first S&R application (Figure 

VI.2) to be run is the segmentation approach. It takes as input an image and the associated labels 

and provides as output the 2D silhouette of the desired object. Further, the recognition approach 

determines which semantic labels correspond to the silhouette and sends them to the Web 

application. The recognition process includes the MPEG-7 software for the CS and RS 

description. In the case of AH, HT and ZM descriptors, our own implementation has been 

considered. A dedicated database (hosted on the Web server) stores all the descriptors extracted 

during the 2D/3D indexing of the retained 3D models and exploited by the recognition process. 

As designed, the recognition tool easily supports further extensions, e.g., new descriptors and 

similarity measures. Moreover, let us emphasize that within this framework, the various 

implementations can be deployed on various servers/platforms, whatever the underlying operating 

system.  

The Web server also hosts the various multimedia data (3D models, 2D images) to be 

displayed to the user. 
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Figure VI.2 The Web server. 

The SQL server runs a MySQL database which contains a set of tables storing the output 

of the 3D model retrieval/2D object recognition tool for each possible query. It manages the SQL 

queries issued by the PHP application.  

The user interface (UI) supports all major browsers. It makes use of JavaScript in order to 

provide a better user experience. For 3D model rendering purposes, the popular Cortona 3D 

viewer plug-in [Cortona3D-Website] has been considered. Alternatively, the application can be 

adapted to use WebGL in order to avoid depending on a specific plug-in like Cortona.   

VI.2. FUNCTIONALITIES 

DIANA offers the following functionalities: 3D model viewing and examination, content-

based 3D model retrieval, 2D object classification and real time segmentation and classification.  

The 3D model examination is available on the 3D model databases page (Figure VI.3). All 

3D objects included in the two datasets exploited in our work (i.e., MPEG7 and PSB – section 

III.5) can be examined with the help of Cortona3D viewer [Cortona3D-Website].  
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Figure VI.3 DIANA Web platform: the 3D models databases page. 

The content-based 3D model retrieval tool is available on the 3D – 3D searching page, 

illustrated in Figure VI.4.  

A typical 3D model retrieval operation consists of specifying one or more indexing 

methods, one of the two 3D model databases and a 3D object used as query. These inputs are sent 

through a HTTP GET request to the Web application, which in turn queries the MySQL database 

according to the user's choice. Next, the Web application displays the images corresponding to the 

list of sorted models retrieved from the MySQL database.  

The retrieved models can be examined with the help of Cortona3D viewer and visually 

compared with the query object. Thus, the performance of different descriptors and/or selection 

strategies can be easily analysed by the user. 
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Figure VI.4 DIANA Web platform: the 3D – 3D searching page. 

The next functionality is the 2D object recognition, available on the 2D – 3D searching 

page. The request operations are similar to those in the previous case, except that the query is 

represented as a 2D object.  

The system returns as response at most three proposed categories (represented by 

suggestive, symbolic images) and also the list of 3D models sorted by decreasing order of 

similarity. Here again, the retrieved 3D models can be examined with the help of Cortona 3D 

viewer. A 2D query example is illustrated in Figure VI.5.  
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Figure VI.5 DIANA Web platform: the 2D – 3D searching page. 

Finally, the Segmentation and Classification tool allows user to test the system by 

uploading his own images. First, the user uploads the desired image on the server through a HTTP 

POST request. Next, both foreground and background scribbles are specified with the help of a 

JavaScript straight line drawing tool. We have chosen to draw straight lines and not free form 

strokes because it requires less gesture precision. When the Segment & Recognize button is 

clicked, the Web application performs an external system call to run the segmentation. Once the 

object is extracted from the image, the recognition application is employed in order to extract the 

2D shape descriptor of the object, to compare it to all 3D models (whose descriptors were 
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previously extracted and stored on the server) and to determine its semantic class. The Web server 

then returns an image representing the segmented object and the list of detected categories (Figure 

VI.6).  

 

Figure VI.6 DIANA Web platform: the segmentation and classification page. 
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VII. CONCLUSIONS AND PERSPECTIVES 

In this thesis we have proposed a novel 2D object recognition framework, specifically 

designed for real time applications. For this purpose, the knowledge inference between 3D and 2D 

content was exploited with the help of the view-based description. 

In order to find the more suited 2D/3D indexing method for our application, we have 

considered several viewing angle selection strategies and 2D shape descriptors. Besides the state 

of the art projection methods adopted, we have also proposed a new approach which performs an 

intelligent selection of views (RV). It exploits a clustering algorithm, similar to the k-means 

method, intended to select a subset of views with no redundancy. We have also introduced a new 

contour-based descriptor, so-called Angular Histogram (AH). It offers a compact representation 

of both local and global features of the shape. AH is specially suited for 2D/3D indexing and real 

time applications because it allows fast extraction (6.6ms) and very quick similarity computation 

(0.17μs). 

Two 3D model repositories were employed in our work: the MPEG-7 dataset and the 

Princeton Shape Benchmark. In order to better understand the results obtained by exploiting this 

object (for both 3D model retrieval and 2D shape classification), we have proposed an analytical 

evaluation protocol for the analysis of the intra- and inter-class variability. This analysis provided 

some objective information about the adopted databases as well as a first evaluation of the 

retained indexing methods. Thus, the results have shown that contour-based descriptors (i.e., AH 

and CS) have a similar discrimination power for all categories of models, while the region-based 

descriptors (i.e., HT, TS and ZM) are globally less discriminant and seem to advantage some 

individual categories.  

The various 2D/3D indexing methods adopted were first evaluated within the framework of 

3D model retrieval. The results have shown the superiority of contour-based descriptors with 

respect to those exploiting the region support function. The descriptor introduced in our work (i.e., 

AH) lead to results slightly superior to the one adopted within the MPEG-7 MultiView DS (i.e., 

CS) (about 2%-3% in terms of FT and ST scores). Moreover, AH also present a significant 
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computational advantage with respect to CS, the associated similarity measure being 400 faster 

than the one associated with the CS descriptor. 

Two different matching approaches, so-called diagonal and minimum, have been 

considered. For the projection methods exploiting a canonical representation of 3D models (i.e., 

model alignment with PCA), the diagonal matching approach lead to results which are slightly 

superior (about 2% of gain in terms of both FT and ST scores) to those obtained with the 

minimum strategy that we proposed. However, minimum is more appropriate for projection 

methods like DODECA, RV6 and RV10 or in those cases where the PCA alignment fails (cf. 

section II.1.1.2). 

The selection of representative views – performed to eliminate the redundancy within the 

set of projections – leads also to an unpleasant effect. The sets of views obtained with RV 

strategies suffer of lack of consistency. Thus, two similar objects can be represented through 

perspectives which are different and, therefore, cannot be matched correctly. This explains why 

RV methods lead to results similar to strategies which extract an equivalent number of views with 

less computation effort. 

However, the representative views selection shows its interest within the proposed 

framework of 2D shape recognition. For classification purpose, RV6 lead to results similar to 

OCTA33, while involving 5 times fewer views (and, implicitly 5 times less computation 

complexity). 

The experiments concerning the recognition framework lead to promising results, with 

RR(1) scores on real images up to 74% for still objects and up to 85% for video objects. When 

three categories are accepted as response, the same scores are up to 86%, respectively 93%. The 

experiments have also shown that further increasing the number of instance per video object does 

not lead to a significant improvement of the recognition process. 

However, the performance of the classification system can be improved by exploiting in the 

same time several descriptors. In the case of combined description methods, the proposed 

framework presents the advantage of allowing parallelization up to the Results Analyser module. 

Compared to the state of the art 3D model based classification methods, our approach was 

designed and tested for a large variety of semantic classes. However, its main limitation concerns 

the occluded objects, whose class is harder to determine from incomplete shape information. 

Our perspectives of future improvements of the recognition system concern the elaboration 

of a post-filtering module. The aim of such module would be to reduce the number of proposed 

categories from NRMC to 1. By involving only a limited number of objects and classes, more 

sophisticated and computationally expensive techniques can be considered in this framework. 

Within this context, a possible solution in eliminating the shape ambiguities is to exploit the 

internal contours of the objects. 

A second perspective concerns the estimation of the object's pose. The video object 

recognition could also be improved by introducing a pose coherence criterion relying on the 

assumption that the pose of the object cannot vary drastically between consecutive frames within 
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the same video shot. Another perspective is to speed up the recognition process by introducing an 

early rejection step. 

In order to integrate the approach on a completely automatic annotation system, the 

segmentation input – specified in the current framework by the user – should be automatically 

determined. In the case of video objects, a solution would be to exploit the motion consistency of 

the different regions composing the image. In addition, such motion information can also improve 

the accuracy of the segmentation results. Another solution is to exploit the saliency information in 

order to extract the labels required by the proposed segmentation approach. 

The object extraction methods proposed in this thesis was specially designed to overcome 

the compression artefacts. We shown how, by remodelling the shape of the GMM components, 

the effects of the block and contour artefacts are attenuated. Future work can concern a similar 

adjustment of the GMM, intend to extrapolate the colour distribution from lighted regions to 

shaded areas and inversely. Another perspective concerns the integration of a scribble refinement 

stage, based on an adaptive exploitation of the available contour information. 

Finally, let us recall that the various methodologies developed in this thesis have been 

integrated within a Web platform, called DIANA (Digital Image Analysis aNd Annotation). 
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ANNEXE 

A1. 3D MESH MODELS 

The 3D models employed in the current work are represented as triangular meshes and 

stored in Virtual Reality Modelling Language (VRML) format.  

The triangular mesh represents a collection of triangular faces in the 3D space that defines 

the surface of the model (Figure A.1a). 

  
a. b. 

Figure A.1 Mesh representation. 

The storage strategy is based on the face–vertex mesh representation method. First, the 

vertices positions in the 3D space (sample points with (x, y, z) coordinates) are stored in an 

unorganized way consisting on the vertex list. Then, the triangular faces are also defined by an 

unorganized face list.  

Each entry of the faces list defines a triangle by the indices of its vertices (indexed by their 

order of appearance in the vertex list). In other words, any mesh file format will store mainly the 

geometry and the connectivity of the model. However, additional information can be included, 

such as colour, normal vertices, transparency or texture data. 

In the VRML format, 3D objects are specified in a dedicated node, so-called “Shape”. This 

node type has several attributes, including its material appearance and its geometry. The 

“geometry” attributes can be valued with pre-defined shape primitive nodes or with an 

“IndexedFaceSet” node. This latter node has two main attributes which are the coordinates of the 

sample points (“coord” field, valued with a “Coordinate” node) and the face specification 
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(“coordIndex” valued with an array of vertex integer indices) [Sch98]. Consequently, the VRML 

format could cover the most basic mesh needs: 

 a list of vertices; 

 a list of faces; 

 a list of materials (texture and colour); 

 a list of texture coordinates; 

 a list of lights (material, description and position). 

A standard layout for surface mesh storage with VRML v2.0 can be written in the following 

way: 

 

#VRML V2.0 utf8 

DirectionalLight { 

 ambientIntensity  1 

 colour             1 1 1 

 direction         0 0 -1 

 intensity         0 

 on                TRUE 

} 

DEF MATERIAL Material { 

  diffuseColour 1 1 1 

}  

 Shape { 

  geometry IndexedFaceSet { 

   coord Coordinate { 

   point [ 

   # sample point coordinate (x, y, z) list 

   0 0 0 

   1 0 0 

   ... 

         ] 

       } 

   texCoord TextureCoordinate { 

   point [ 

   0.1291 0.3485 

   0.1706 0.3248 

   ... 

   ] 

   } 

       coordIndex [ 

   # face list: vertex indices (face separator: “-1”) 

   0 1 2 -1 

   0 1 5 -1 

   ... 

   ] 

     } 

   } 

In our work, only the geometry of the modes is exploited and any material or light 

information is ignored.  
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A2. CATEGORIES OF 3D MODELS 

This annexe contains the full list of categories for each one of the 3D model databases 

involved in our work. 

 

Table A.1 List of categories included in the MPEG7_23 database 

1 airplanes 9 helicopters 17 spherical 

2 humanoides 10 pistols 18 finger 

3 cars 11 rifles 19 letter_a 

4 tanks 12 chess 20 letter_b 

5 trucks 13 screwdrivers 21 letter_c 

6 formula_1 14 missiles_cylinders_submarines 22 letter_d 

7 motorcycles_3_wheels 15 trees_without_leeves 23 letter_e 

8 motorcycles_2_wheels 16 trees   

 

Table A.2 List of categories included in the PSB_53 database 

1 winged_vehicle__aircraft 19 chest 37 microchip 

2 balloon_vehicle__aircraft 20 city 38 musical_instrument 

3 helicopter__aircraft 21 display_device 39 plant 

4 arthropod__animal 22 door 40 satellite_dish 

5 human__biped__animal 23 dragon__fantasy_animal 41 sea_vessel 

6 trex__biped__animal 24 fireplace 42 shoe 

7 flying_creature__animal 25 bed__furniture 43 sign 

8 quadruped__animal 26 cabinet__furniture 44 sink 

9 snake__animal 27 seat__furniture 45 slot_machine 

10 underwater_creature__animal 28 shelves__furniture 46 snowman 

11 blade 29 table__furniture 47 staircase 

12 head__body_part 30 geographic_map 48 swingset 

13 hand__body_part 31 gun 49 handheld 

14 skeleton__body_part 32 hat 50 car__vehicle 

15 torso__body_part 33 ladder 51 cycle__vehicle 

16 bridge 34 lamp 52 train__vehicle 

17 building 35 liquid_container 53 wheel 

18 chess_piece 36 mailbox   
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Table A.3 List of categories included in the PSB_161 database 

1 F117__airplane__aircraft 41 butcher_knife__blade 

2 biplane__airplane__aircraft 42 sword__blade 

3 commercial__airplane__aircraft 43 brain__body_part 

4 fighter_jet__airplane__aircraft 44 face__body_part 

5 glider__airplane__aircraft 45 hand__body_part 

6 multi_fuselage__airplane__aircraft 46 head__body_part 

7 stealth_bomber__airplane__aircraft 47 skeleton__body_part 

8 hot_air_balloon__balloon_vehicle__aircra

ft 

48 torso__body_part 

9 dirigible__balloon_vehicle__aircraft 49 skull__body_part 

10 helicopter__aircraft 50 bridge 

11 enterprise_like__spaceship__aircraft 51 book 

12 space_shuttle__spaceship__aircraft 52 castle__building 

13 x_wing__spaceship__aircraft 53 dome_church__building 

14 satellite__spaceship__aircraft 54 lighthouse__building 

15 flying_saucer__spaceship__aircraft 55 roman_building__building 

16 tie_fighter__spaceship__aircraft 56 barn__building 

17 ant__insect__arthropod__animal 57 church__building 

18 bee__insect__arthropod__animal 58 gazebo__building 

19 butterfly__insect__arthropod__animal 59 one_story_home__building 

20 spider__arthropod__animal 60 skyscraper__building 

21 human__biped__animal 61 one_peak_tent__tent__building 

22 human_arms_out__human__biped__anim

al 

62 multiple_peak_tent__tent__building 

23 walking_human__biped__animal 63 two_story_home__building 

24 trex__biped__animal 64 chess_set 

25 flying_bird__bird__flying_creature__anim

al 

65 chess_piece 

26 duck__bird__flying_creature__animal 66 chest 

27 standing_bird__bird__flying_creature__an

imal 

67 city 

28 dog__quadruped__animal 68 desktop__computer 

29 160abelling160s__quadruped__animal 69 laptop__computer 

30 feline__quadruped__animal 70 computer_monitor__display_device 

31 pig__quadruped__animal 71 tv__display_device 

32 horse__quadruped__animal 72 door 

33 rabbit__quadruped__animal 73 double_doors__door 

34 snake__animal 74 eyeglasses 

35 dolphin__underwater_creature__animal 75 dragon__fantasy_animal 

36 shark__underwater_creature__animal 76 fireplace 

37 sea_turtle__underwater_creature__animal 77 bed__furniture 

38 fish__underwater_creature__animal 78 cabinet__furniture 

39 axe__blade 79 school_desk__furniture 

40 knife__blade 80 desk_with_hutch__desk__furniture 
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82 stool__chair__seat__furniture 122 satellite_dish 

83 dining_chair__chair__seat__furniture 123 sailboat__sea_vessel 

84 couch__seat__furniture 124 large_sail_boat__sailboat__sea_vessel 

85 desk_chair__seat__furniture 125 sailboat_with_oars__sailboat__sea_vessel 

86 shelves__furniture 126 ship__sea_vessel 

87 rectangular__table__furniture 127 submarine__sea_vessel 

88 round__table__furniture 128 shoe 

89 single_leg__round__table__furniture 129 billboard__sign 

90 table_and_chairs__furniture 130 street_sign__sign 

91 geographic_map 131 sink 

92 handgun__gun 132 skateboard 

93 rifle__gun 133 slot_machine 

94 hat 134 snowman 

95 helmet__hat 135 staircase 

96 hourglass 136 swingset 

97 ice_cream 137 hammer__tool 

98 ladder 138 screwdriver__tool 

99 desk_lamp__lamp 139 shovel__tool 

100 streetlight__lamp 140 wrench__tool 

101 bottle__liquid_container 141 umbrella 

102 mug__liquid_container 142 antique_car__car__vehicle 

103 tank__liquid_container 143 race_car__car__vehicle 

104 glass_with_stem__liquid_container 144 sedan__car__vehicle 

105 pail__liquid_container 145 sports_car__car__vehicle 

106 vase__liquid_container 146 covered_wagon__vehicle 

107 mailbox 147 bicycle__cycle__vehicle 

108 microchip 148 motorcycle__cycle__vehicle 

109 electrical_guitar__guitar__musical_instru

ment 

149 military_tank__vehicle 

110 acoustic_guitar__guitar__musical_instrum

ent 

150 monster_truck__vehicle 

111 piano__musical_instrument 151 pickup_truck__vehicle 

112 161abelling_toy 152 semi__vehicle 

113 phone_handle 153 suv__vehicle 

114 bush__plant 154 jeep__suv__vehicle 

115 flowers__plant 155 train__vehicle 

116 flower_with_stem__plant 156 train_car__train__vehicle 

117 potted_plant__plant 157 watch 

118 tree__plant 158 wheel 

119 barren__tree__plant 159 tire__wheel 

120 conical__tree__plant 160 gear__wheel 

121 palm__tree__plant 161 microscope 
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A3. CATEGORIES OF 2D OBJECTS 

Table A.4 List of SOI categories tested with MPEG7_23 database 

1 airplanes 13 screwdrivers 

2 humanoids 14 missiles_cylinders_submarines 

3 cars 15 trees_without_leeves 

4 tanks 16 trees 

5 trucks 17 spherical 

6 formula_1 18 finger 

7 motorcycles_3_wheels 19 letter_a 

8 motorcycles_2_wheels 20 letter_b 

9 helicopters 21 letter_c 

10 pistols 22 letter_d 

11 rifles 23 letter_e 

12 chess 12 chess 

Table A.5 List of SOI categories with PSB-53 and PSB_161_23 databases 

1 airplanes 8 pistols 

2 humanoids 9 rifles 

3 cars 10 chess 

4 tanks 11 screwdrivers 

5 formula_1 12 trees_without_leeves 

6 motorcycles_2_wheels 13 trees 

7 helicopters 13 trees 

Table A.6 List of SOV and VOV categories 

1 airplanes 5 humanoids 

2 cars 6 motorcycles_2_wheels 

3 chess 7 pistols 

4 helicopters 8 tanks 

Table A.7 List of SOSy and VOSy categories 

1 airplanes 8 pistols 

2 humanoids 9 rifles 

3 cars 10 chess 

4 tanks 11 screwdrivers 

5 formula_1 12 trees_without_leeves 

6 motorcycles_2_wheels 13 trees 

7 helicopters   
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A4.  2D OBJECT RECOGNITION RESULTS 

Table A.8 SOI database: Recognition rates obtained with the help of MPEG7_23 models. 

MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 34,78 44,35 22,61 44,35 46,09 48,70 51,30 47,83 

RR(2) 50,43 56,52 35,65 59,13 60,87 60,00 59,13 60,00 

RR(3) 58,26 65,22 42,61 66,09 67,83 71,30 66,96 69,57 

CS 

RR(1) 40,00 40,87 42,61 39,13 42,61 44,35 44,35 42,61 

RR(2) 46,96 53,04 52,17 51,30 53,91 54,78 53,04 53,91 

RR(3) 55,65 60,87 60,00 55,65 63,48 61,74 60,87 65,22 

HT 

RR(1) 20,00 23,48 32,17 29,57 33,91 40,00 35,65 39,13 

RR(2) 29,57 31,30 42,61 33,91 38,26 42,61 41,74 45,22 

RR(3) 38,26 40,00 54,78 40,00 47,83 48,70 52,17 54,78 

RS 

RR(1) 20,87 24,35 30,43 24,35 30,43 35,65 36,52 34,78 

RR(2) 33,91 37,39 43,48 43,48 40,87 46,09 44,35 40,87 

RR(3) 40,87 47,83 49,57 47,83 51,30 51,30 54,78 51,30 

ZM 

RR(1) 34,78 36,52 40,00 31,30 42,61 40,00 40,87 40,87 

RR(2) 38,26 44,35 51,30 40,00 46,96 50,43 51,30 51,30 

RR(3) 43,48 52,17 58,26 50,43 53,04 59,13 58,26 56,52 

AH 

+ 

CS 

RR(1) 39,13 44,35 41,74 45,22 47,83 47,83 50,43 51,30 

RR(2) 53,91 54,78 48,70 60,00 60,87 59,13 60,00 60,00 

RR(3) 60,87 65,22 61,74 68,70 69,57 68,70 67,83 70,43 

AH 

+ 

ZM 

RR(1) 40,87 42,61 40,00 40,87 51,30 46,09 51,30 49,57 

RR(2) 51,30 54,78 48,70 53,91 60,00 61,74 56,52 58,26 

RR(3) 54,78 61,74 59,13 65,22 68,70 66,09 65,22 65,22 

CS 

+ 

ZM 

RR(1) 42,61 41,74 44,35 36,52 48,70 49,57 48,70 46,96 

RR(2) 48,70 51,30 53,91 48,70 55,65 56,52 56,52 58,26 

RR(3) 55,65 58,26 62,61 58,26 60,00 65,22 60,87 65,22 

Table A.9 SOI database: Recognition rates obtained with the help of PSB_53 models. 

MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 50,77 55,38 73,85 61,54 63,08 64,62 63,08 69,23 

RR(2) 64,62 69,23 81,54 72,31 72,31 72,31 80,00 78,46 

RR(3) 66,15 73,85 83,08 76,92 81,54 83,08 84,62 86,15 

CS 

RR(1) 47,69 52,31 58,46 55,38 58,46 61,54 55,38 60,00 

RR(2) 58,46 69,23 69,23 69,23 72,31 67,69 72,31 66,15 

RR(3) 63,08 75,38 73,85 75,38 75,38 72,31 76,92 70,77 

HT 

RR(1) 26,15 32,31 38,46 32,31 38,46 47,69 46,15 49,23 

RR(2) 35,38 38,46 55,38 35,38 47,69 60,00 58,46 64,62 

RR(3) 40,00 44,62 63,08 41,54 53,85 63,08 63,08 67,69 

RS 

RR(1) 32,31 36,92 35,38 33,85 44,62 40,00 38,46 41,54 

RR(2) 46,15 52,31 58,46 52,31 55,38 64,62 53,85 56,92 

RR(3) 53,85 58,46 64,62 60,00 67,69 69,23 58,46 67,69 

ZM 

RR(1) 44,62 44,62 43,08 44,62 47,69 46,15 47,69 50,77 

RR(2) 49,23 49,23 60,00 47,69 55,38 61,54 61,54 67,69 

RR(3) 55,38 58,46 66,15 60,00 63,08 64,62 66,15 73,85 
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MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

+ 

CS 

RR(1) 56,92 64,62 70,77 67,69 73,85 72,31 69,23 72,31 

RR(2) 63,08 76,92 81,54 80,00 83,08 81,54 80,00 80,00 

RR(3) 72,31 80,00 83,08 86,15 86,15 84,62 86,15 84,62 

AH 

+ 

ZM 

RR(1) 56,92 56,92 66,15 67,69 61,54 69,23 67,69 72,31 

RR(2) 63,08 70,77 78,46 72,31 73,85 78,46 78,46 84,62 

RR(3) 67,69 76,92 84,62 73,85 83,08 81,54 86,15 86,15 

CS 

+ 

ZM 

RR(1) 52,31 52,31 58,46 53,85 61,54 64,62 58,46 58,46 

RR(2) 61,54 66,15 67,69 60,00 72,31 66,15 66,15 72,31 

RR(3) 64,62 70,77 73,85 70,77 75,38 72,31 76,92 75,38 

Table A.10 SOI database: Recognition rates obtained with the help of PSB_161 models. 

PSB_161 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 35,38 38,46 40,00 43,08 43,08 43,08 43,08 46,15 

RR(2) 50,77 50,77 56,92 58,46 55,38 55,38 64,62 55,38 

RR(3) 60,00 55,38 61,54 66,15 64,62 64,62 64,62 64,62 

RR(10) 67,69 69,23 78,46 80,00 80,00 80,00 83,08 90,77 

CS 

RR(1) 35,38 35,38 44,62 38,46 41,54 53,85 41,54 33,85 

RR(2) 44,62 50,77 58,46 47,69 55,38 61,54 52,31 46,15 

RR(3) 49,23 61,54 63,08 56,92 63,08 61,54 58,46 55,38 

RR(10) 64,62 75,38 72,31 72,31 73,85 69,23 73,85 76,92 

HT 

RR(1) 12,31 16,92 29,23 21,54 27,69 36,92 36,92 40,00 

RR(2) 15,38 23,08 32,31 24,62 36,92 44,62 44,62 49,23 

RR(3) 21,54 23,08 36,92 32,31 40,00 47,69 47,69 52,31 

RR(10) 30,77 36,92 49,23 38,46 50,77 58,46 53,85 58,46 

RS 

RR(1) 21,54 26,15 24,62 21,54 32,31 30,77 27,69 32,31 

RR(2) 32,31 27,69 41,54 33,85 40,00 44,62 46,15 44,62 

RR(3) 36,92 35,38 50,77 47,69 46,15 49,23 50,77 53,85 

RR(10) 47,69 52,31 56,92 58,46 64,62 61,54 60,00 63,08 

ZM 

RR(1) 27,69 30,77 33,85 33,85 36,92 41,54 38,46 41,54 

RR(2) 29,23 38,46 41,54 43,08 41,54 50,77 44,62 53,85 

RR(3) 36,92 41,54 46,15 49,23 47,69 50,77 47,69 55,38 

RR(10) 52,31 60,00 60,00 60,00 60,00 63,08 61,54 66,15 

AH 

+ 

CS 

RR(1) 36,92 46,15 49,23 49,23 50,77 46,15 50,77 50,77 

RR(2) 53,85 60,00 66,15 61,54 66,15 63,08 66,15 63,08 

RR(3) 64,62 69,23 70,77 70,77 73,85 67,69 73,85 76,92 

RR(10) 75,38 78,46 84,62 81,54 84,62 83,08 84,62 90,77 

AH 

+ 

ZM 

RR(1) 38,46 41,54 44,62 47,69 46,15 47,69 47,69 52,31 

RR(2) 50,77 50,77 60,00 58,46 61,54 64,62 56,92 66,15 

RR(3) 56,92 58,46 69,23 66,15 69,23 70,77 67,69 73,85 

RR(10) 72,31 75,38 81,54 81,54 81,54 81,54 83,08 92,31 

CS 

+ 

ZM 

RR(1) 40,00 40,00 43,08 43,08 50,77 52,31 46,15 38,46 

RR(2) 46,15 50,77 56,92 49,23 56,92 60,00 56,92 53,85 

RR(3) 52,31 56,92 67,69 53,85 58,46 63,08 61,54 63,08 

RR(10) 64,62 73,85 72,31 73,85 73,85 75,38 73,85 78,46 
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Table A.11 SOSy database: Recognition rates obtained with the help of MPEG7_23 models. 

MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 37,18 48,21 53,59 53,33 51,54 56,15 54,62 52,82 

RR(2) 54,10 65,90 77,69 72,05 67,69 74,87 71,03 70,77 

RR(3) 64,10 75,38 84,36 80,77 79,49 83,85 80,77 81,54 

CS 

RR(1) 38,72 49,23 58,21 54,10 48,46 54,87 52,82 50,26 

RR(2) 48,97 63,33 68,97 69,49 60,77 71,79 65,38 67,95 

RR(3) 61,28 72,31 78,97 77,44 72,56 82,05 79,23 80,00 

HT 

RR(1) 23,33 28,46 36,67 27,95 32,56 41,03 34,87 36,15 

RR(2) 34,87 43,08 54,36 48,46 48,46 57,69 47,69 51,03 

RR(3) 45,90 57,44 62,82 58,21 58,97 68,72 55,90 61,79 

RS 

RR(1) 27,69 34,87 39,23 39,74 37,18 44,36 40,00 42,31 

RR(2) 44,87 49,74 57,95 56,15 55,90 62,31 57,69 58,21 

RR(3) 50,00 61,03 71,03 66,92 64,36 71,79 68,72 71,03 

ZM 

RR(1) 28,97 34,87 42,82 39,74 40,51 51,03 39,74 45,13 

RR(2) 42,82 53,33 61,03 56,92 58,46 67,95 55,90 59,49 

RR(3) 55,64 66,15 71,28 66,92 67,69 78,72 67,18 68,21 

AH 

+ 

CS 

RR(1) 42,31 52,56 59,49 56,92 54,62 59,23 56,92 58,21 

RR(2) 50,77 64,62 75,90 70,00 67,95 74,36 70,26 72,31 

RR(3) 66,15 75,90 84,62 82,56 79,74 85,13 81,79 83,08 

AH 

+ 

ZM 

RR(1) 37,69 48,21 55,13 53,08 52,56 58,97 52,31 55,38 

RR(2) 49,23 61,28 74,36 66,67 65,13 75,13 66,92 68,97 

RR(3) 63,33 72,31 85,13 76,92 76,15 83,85 80,51 80,51 

CS 

+ 

ZM 

RR(1) 36,15 48,21 54,62 52,56 50,26 55,64 50,51 54,62 

RR(2) 48,46 60,26 68,21 64,36 62,82 71,03 63,85 66,92 

RR(3) 60,00 69,49 80,26 75,64 72,82 83,08 77,69 81,03 

Table A.12 SOSy database: Recognition rates obtained with the help of PSB_53 models. 

MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 44,36 49,49 56,92 51,79 54,87 59,23 55,64 57,18 

RR(2) 60,51 66,67 72,82 71,03 68,72 75,64 71,54 73,33 

RR(3) 72,31 74,87 81,28 77,69 77,69 82,56 80,77 81,28 

CS 

RR(1) 41,03 54,62 60,26 55,38 58,97 62,82 58,21 59,23 

RR(2) 53,85 65,38 68,97 67,44 70,51 74,10 70,77 70,77 

RR(3) 63,85 70,77 76,67 74,62 76,92 79,74 77,95 76,67 

HT 

RR(1) 22,82 33,85 45,13 34,87 38,46 46,15 45,13 46,92 

RR(2) 30,51 43,08 54,87 44,36 49,23 57,44 53,59 56,67 

RR(3) 35,13 52,82 62,82 53,33 57,18 67,44 61,03 64,62 

RS 

RR(1) 33,85 41,79 51,03 41,79 44,62 52,56 47,18 49,74 

RR(2) 50,51 56,67 63,85 59,49 58,72 64,62 60,77 63,85 

RR(3) 60,26 65,90 71,03 70,77 67,95 73,59 68,97 72,56 

ZM 

RR(1) 35,64 44,36 54,87 47,18 47,95 54,62 53,33 56,41 

RR(2) 46,67 53,59 64,87 59,49 57,69 67,44 64,10 66,15 

RR(3) 55,64 63,08 71,03 67,18 66,15 77,95 70,26 73,85 
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MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

+ 

CS 

RR(1) 48,21 55,38 63,85 57,44 63,08 66,92 64,62 64,36 

RR(2) 62,56 69,74 74,10 71,28 74,62 78,72 74,62 74,10 

RR(3) 74,10 79,23 83,33 81,54 82,05 85,90 83,08 83,59 

AH 

+ 

ZM 

RR(1) 47,18 53,33 62,31 56,41 57,18 63,59 61,79 62,05 

RR(2) 62,56 67,69 72,31 70,77 68,72 75,90 70,51 71,79 

RR(3) 72,56 76,92 82,56 78,72 77,44 82,82 80,51 80,51 

CS 

+ 

ZM 

RR(1) 43,59 57,18 63,08 59,74 61,54 67,69 63,85 63,85 

RR(2) 55,90 66,15 71,03 69,49 68,72 74,87 72,05 73,33 

RR(3) 65,64 72,56 78,21 77,44 76,15 82,31 80,51 78,46 

Table A.13 SOSy database: Recognition rates obtained with the help of PSB_161 models. 

PSB_161 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 35,38 42,56 51,79 47,95 46,41 55,13 49,23 51,28 

RR(2) 47,69 53,33 60,77 60,51 59,49 66,41 60,26 66,41 

RR(3) 55,64 63,59 70,26 67,44 66,67 75,64 68,72 72,82 

RR(10) 68,21 78,21 85,38 80,26 80,77 85,38 84,62 84,87 

CS 

RR(1) 30,26 45,13 50,77 46,92 48,97 56,15 47,44 53,59 

RR(2) 43,08 56,15 63,85 60,00 60,77 67,18 62,56 64,62 

RR(3) 48,97 62,82 70,00 66,15 67,95 74,62 70,51 71,28 

RR(10) 64,10 74,87 80,26 77,69 78,46 84,62 82,56 82,56 

HT 

RR(1) 18,46 27,95 36,92 27,95 33,33 41,28 38,97 41,03 

RR(2) 22,56 33,85 44,62 35,38 42,82 53,59 46,67 52,05 

RR(3) 27,18 39,74 50,51 40,26 47,18 57,44 51,28 54,36 

RR(10) 35,90 52,82 69,49 56,67 61,03 73,59 68,97 69,49 

RS 

RR(1) 27,44 33,59 46,67 38,72 36,92 47,69 42,56 43,08 

RR(2) 36,67 44,62 57,69 48,21 49,49 58,46 55,13 55,90 

RR(3) 40,26 52,31 60,77 55,13 55,64 65,90 60,51 62,05 

RR(10) 52,31 63,85 73,85 68,72 66,41 78,21 74,10 76,92 

ZM 

RR(1) 27,18 35,64 46,41 38,46 40,77 48,97 43,85 47,95 

RR(2) 35,38 45,38 58,72 48,97 46,92 61,03 55,13 58,46 

RR(3) 40,51 51,03 65,90 55,13 53,08 68,72 62,82 62,56 

RR(10) 57,18 66,92 77,95 70,26 67,95 83,59 75,90 80,26 

AH 

+ 

CS 

RR(1) 39,23 50,51 58,21 53,85 57,18 65,90 58,97 60,26 

RR(2) 50,51 62,56 70,51 66,92 64,87 74,36 69,74 71,03 

RR(3) 57,69 69,49 77,69 74,36 71,79 80,77 76,41 77,95 

RR(10) 72,82 81,79 86,41 83,33 85,13 88,21 87,44 87,69 

AH 

+ 

ZM 

RR(1) 37,95 46,15 58,46 51,03 52,82 61,28 56,92 58,21 

RR(2) 49,74 59,74 71,03 64,36 63,08 72,31 65,90 69,23 

RR(3) 56,15 66,15 75,90 69,49 69,23 80,51 73,33 77,44 

RR(10) 73,33 79,49 87,44 81,28 82,56 88,97 86,41 88,46 

CS 

+ 

ZM 

RR(1) 34,36 45,90 56,67 48,97 52,56 60,51 56,92 56,67 

RR(2) 44,87 57,44 66,41 62,05 63,33 71,03 68,72 68,21 

RR(3) 51,54 63,59 72,56 68,46 68,97 76,67 74,10 74,10 

RR(10) 68,21 76,41 82,56 80,77 79,49 85,90 84,62 85,64 
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Table A.14 SOV database: Recognition rates obtained with the help of MPEG7_23 models. 

MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 28,33 40,00 46,67 44,17 39,17 51,67 45,00 46,67 

RR(2) 47,50 60,83 62,50 64,17 53,33 65,00 61,67 62,50 

RR(3) 64,17 69,17 73,33 70,83 70,00 73,33 73,33 73,33 

CS 

RR(1) 37,50 50,00 50,83 49,17 52,50 54,17 49,17 52,50 

RR(2) 48,33 60,00 66,67 62,50 63,33 69,17 63,33 65,00 

RR(3) 60,83 70,00 79,17 72,50 71,67 76,67 70,83 78,33 

HT 

RR(1) 26,67 32,50 36,67 34,17 39,17 49,17 42,50 50,00 

RR(2) 35,00 45,83 48,33 48,33 47,50 59,17 52,50 57,50 

RR(3) 44,17 56,67 57,50 57,50 55,00 67,50 60,83 70,00 

RS 

RR(1) 27,50 42,50 48,33 39,17 40,00 47,50 49,17 50,83 

RR(2) 45,83 57,50 62,50 52,50 57,50 68,33 60,00 63,33 

RR(3) 57,50 63,33 69,17 62,50 66,67 77,50 70,00 70,83 

ZM 

RR(1) 31,67 40,83 44,17 40,00 45,83 52,50 42,50 50,00 

RR(2) 40,83 50,00 64,17 57,50 58,33 70,00 55,00 61,67 

RR(3) 50,00 69,17 70,83 70,00 64,17 75,00 62,50 70,00 

AH 

+ 

CS 

RR(1) 43,33 45,83 53,33 45,83 50,83 54,17 53,33 50,00 

RR(2) 56,67 62,50 65,00 67,50 60,83 67,50 67,50 63,33 

RR(3) 67,50 73,33 79,17 79,17 70,00 78,33 75,00 75,00 

AH 

+ 

ZM 

RR(1) 34,17 49,17 54,17 45,00 51,67 55,83 50,00 50,83 

RR(2) 46,67 57,50 65,83 63,33 63,33 70,00 68,33 64,17 

RR(3) 56,67 73,33 78,33 74,17 69,17 79,17 73,33 75,00 

CS 

+ 

ZM 

RR(1) 40,00 50,83 50,83 50,00 52,50 52,50 49,17 49,17 

RR(2) 49,17 61,67 66,67 62,50 60,83 69,17 62,50 66,67 

RR(3) 58,33 70,83 76,67 76,67 73,33 76,67 70,83 75,00 

Table A.15 SOV database: Recognition rates obtained with the help of PSB_53 models. 

MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 32,50 42,50 50,83 39,17 35,83 50,83 48,33 50,83 

RR(2) 46,67 57,50 62,50 58,33 55,00 65,83 65,83 65,83 

RR(3) 58,33 67,50 70,83 69,17 64,17 75,83 73,33 77,50 

CS 

RR(1) 44,17 60,83 64,17 55,83 61,67 62,50 60,83 63,33 

RR(2) 58,33 73,33 75,00 69,17 72,50 76,67 74,17 74,17 

RR(3) 68,33 79,17 82,50 75,83 77,50 83,33 80,83 80,83 

HT 

RR(1) 28,33 34,17 51,67 30,00 40,00 49,17 50,83 55,00 

RR(2) 32,50 40,83 64,17 40,00 51,67 59,17 60,00 64,17 

RR(3) 37,50 45,00 69,17 44,17 57,50 65,83 66,67 68,33 

RS 

RR(1) 31,67 41,67 50,00 40,00 44,17 51,67 52,50 52,50 

RR(2) 42,50 54,17 65,83 50,83 57,50 64,17 60,00 65,83 

RR(3) 45,83 60,00 70,00 56,67 62,50 66,67 65,00 69,17 

ZM 

RR(1) 31,67 38,33 55,83 43,33 47,50 51,67 59,17 50,83 

RR(2) 36,67 52,50 65,83 51,67 56,67 68,33 71,67 66,67 

RR(3) 45,83 60,83 71,67 60,83 60,83 72,50 73,33 70,00 
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MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

+ 

CS 

RR(1) 47,50 55,00 63,33 52,50 56,67 65,00 60,00 63,33 

RR(2) 63,33 68,33 76,67 72,50 70,83 79,17 75,00 76,67 

RR(3) 69,17 82,50 85,00 80,83 78,33 87,50 84,17 87,50 

AH 

+ 

ZM 

RR(1) 40,00 41,67 58,33 40,83 46,67 54,17 65,00 58,33 

RR(2) 50,00 60,00 70,00 63,33 61,67 74,17 76,67 73,33 

RR(3) 60,00 69,17 80,00 70,83 70,00 79,17 81,67 79,17 

CS 

+ 

ZM 

RR(1) 48,33 56,67 65,00 54,17 63,33 67,50 67,50 66,67 

RR(2) 59,17 70,83 76,67 66,67 70,83 80,00 79,17 78,33 

RR(3) 65,00 78,33 84,17 80,00 75,83 86,67 87,50 85,00 

Table A.16 SOV database: Recognition rates obtained with the help of PSB_161 models. 

PSB_161 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 27,50 35,00 38,33 35,00 30,00 47,50 45,00 44,17 

RR(2) 40,00 45,83 50,00 40,83 45,83 51,67 55,00 55,00 

RR(3) 45,83 52,50 53,33 50,00 53,33 58,33 59,17 65,83 

RR(10) 62,50 66,67 72,50 63,33 72,50 72,50 74,17 78,33 

CS 

RR(1) 34,17 51,67 53,33 48,33 51,67 52,50 48,33 45,83 

RR(2) 45,00 59,17 62,50 57,50 62,50 61,67 57,50 60,00 

RR(3) 52,50 63,33 69,17 59,17 65,00 65,00 61,67 65,83 

RR(10) 68,33 75,00 79,17 70,83 76,67 81,67 76,67 76,67 

HT 

RR(1) 21,67 22,50 38,33 22,50 35,83 38,33 40,83 46,67 

RR(2) 22,50 27,50 46,67 27,50 42,50 47,50 50,83 55,00 

RR(3) 27,50 32,50 54,17 33,33 45,83 55,00 56,67 57,50 

RR(10) 35,83 46,67 60,83 49,17 54,17 69,17 66,67 66,67 

RS 

RR(1) 22,50 31,67 34,17 32,50 34,17 38,33 36,67 40,00 

RR(2) 30,00 38,33 50,00 40,83 44,17 47,50 47,50 50,83 

RR(3) 35,83 45,83 52,50 42,50 50,83 54,17 52,50 53,33 

RR(10) 50,83 58,33 66,67 55,83 64,17 70,00 69,17 68,33 

ZM 

RR(1) 24,17 30,83 46,67 29,17 41,67 42,50 44,17 42,50 

RR(2) 29,17 37,50 53,33 36,67 47,50 54,17 55,00 54,17 

RR(3) 33,33 43,33 55,83 41,67 50,00 58,33 58,33 59,17 

RR(10) 50,83 57,50 73,33 58,33 60,00 72,50 66,67 68,33 

AH 

+ 

CS 

RR(1) 36,67 47,50 55,83 47,50 52,50 58,33 55,00 53,33 

RR(2) 47,50 52,50 64,17 54,17 62,50 66,67 63,33 68,33 

RR(3) 55,83 65,00 67,50 61,67 70,00 71,67 70,83 74,17 

RR(10) 73,33 80,83 85,00 75,83 85,00 85,00 83,33 87,50 

AH 

+ 

ZM 

RR(1) 33,33 38,33 50,83 39,17 40,83 51,67 50,00 47,50 

RR(2) 42,50 44,17 57,50 47,50 50,83 60,83 56,67 57,50 

RR(3) 48,33 55,00 63,33 53,33 58,33 64,17 64,17 65,83 

RR(10) 66,67 71,67 80,00 66,67 75,00 80,83 80,00 85,00 

CS 

+ 

ZM 

RR(1) 40,83 46,67 59,17 44,17 55,00 55,83 54,17 53,33 

RR(2) 48,33 56,67 65,00 55,00 63,33 67,50 64,17 62,50 

RR(3) 55,83 64,17 71,67 60,83 69,17 72,50 70,83 71,67 

RR(10) 71,67 76,67 81,67 70,00 80,00 84,17 81,67 81,67 
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Table A.17 VOV database: Recognition rates obtained with the help of MPEG7_23 models. 

MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 35,00 50,00 50,00 57,50 50,00 57,50 52,50 50,00 

RR(2) 65,00 75,00 75,00 72,50 65,00 77,50 77,50 70,00 

RR(3) 75,00 87,50 82,50 82,50 72,50 85,00 85,00 80,00 

CS 

RR(1) 50,00 62,50 75,00 65,00 72,50 70,00 62,50 65,00 

RR(2) 62,50 77,50 82,50 72,50 77,50 80,00 75,00 77,50 

RR(3) 75,00 82,50 85,00 77,50 80,00 82,50 82,50 82,50 

HT 

RR(1) 35,00 42,50 42,50 37,50 47,50 52,50 52,50 65,00 

RR(2) 40,00 57,50 60,00 47,50 52,50 67,50 62,50 72,50 

RR(3) 42,50 67,50 75,00 60,00 60,00 75,00 67,50 80,00 

RS 

RR(1) 35,00 57,50 62,50 50,00 50,00 67,50 57,50 65,00 

RR(2) 60,00 77,50 75,00 70,00 80,00 90,00 75,00 82,50 

RR(3) 75,00 82,50 80,00 80,00 87,50 92,50 85,00 87,50 

ZM 

RR(1) 40,00 50,00 62,50 50,00 60,00 62,50 55,00 55,00 

RR(2) 52,50 62,50 80,00 72,50 75,00 80,00 70,00 77,50 

RR(3) 52,50 80,00 85,00 82,50 85,00 87,50 82,50 87,50 

AH 

+ 

CS 

RR(1) 47,50 62,50 62,50 67,50 62,50 67,50 60,00 62,50 

RR(2) 67,50 77,50 77,50 80,00 75,00 85,00 80,00 77,50 

RR(3) 82,50 87,50 87,50 85,00 82,50 87,50 85,00 85,00 

AH 

+ 

ZM 

RR(1) 42,50 57,50 62,50 62,50 55,00 67,50 62,50 60,00 

RR(2) 52,50 70,00 77,50 75,00 65,00 77,50 77,50 75,00 

RR(3) 62,50 87,50 82,50 87,50 80,00 82,50 87,50 82,50 

CS 

+ 

ZM 

RR(1) 45,00 70,00 67,50 60,00 72,50 67,50 57,50 62,50 

RR(2) 57,50 75,00 77,50 70,00 77,50 82,50 75,00 77,50 

RR(3) 62,50 82,50 87,50 85,00 82,50 92,50 85,00 87,50 

Table A.18 VOV database: Recognition rates obtained with the help of PSB_53 models. 

MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 37,50 55,00 62,50 47,50 47,50 62,50 57,50 60,00 

RR(2) 42,50 72,50 77,50 57,50 67,50 77,50 72,50 65,00 

RR(3) 62,50 82,50 87,50 70,00 72,50 87,50 85,00 85,00 

CS 

RR(1) 60,00 75,00 85,00 72,50 85,00 85,00 82,50 77,50 

RR(2) 72,50 85,00 90,00 85,00 87,50 90,00 87,50 87,50 

RR(3) 77,50 85,00 92,50 92,50 92,50 92,50 90,00 92,50 

HT 

RR(1) 32,50 32,50 60,00 27,50 47,50 60,00 52,50 75,00 

RR(2) 37,50 50,00 72,50 42,50 50,00 72,50 67,50 80,00 

RR(3) 40,00 50,00 77,50 47,50 57,50 77,50 77,50 82,50 

RS 

RR(1) 30,00 62,50 62,50 50,00 52,50 70,00 62,50 77,50 

RR(2) 45,00 72,50 75,00 60,00 67,50 80,00 75,00 85,00 

RR(3) 55,00 72,50 77,50 65,00 72,50 80,00 77,50 85,00 

ZM 

RR(1) 45,00 50,00 72,50 47,50 55,00 65,00 62,50 67,50 

RR(2) 52,50 60,00 85,00 55,00 60,00 80,00 75,00 77,50 

RR(3) 57,50 67,50 87,50 65,00 70,00 82,50 80,00 82,50 
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MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

+ 

CS 

RR(1) 57,50 60,00 87,50 60,00 75,00 85,00 75,00 80,00 

RR(2) 70,00 77,50 97,50 87,50 90,00 92,50 90,00 92,50 

RR(3) 82,50 90,00 97,50 95,00 97,50 95,00 95,00 97,50 

AH 

+ 

ZM 

RR(1) 45,00 57,50 80,00 47,50 60,00 70,00 75,00 77,50 

RR(2) 55,00 80,00 90,00 62,50 75,00 82,50 80,00 82,50 

RR(3) 60,00 87,50 97,50 75,00 85,00 87,50 90,00 92,50 

CS 

+ 

ZM 

RR(1) 60,00 72,50 87,50 62,50 85,00 82,50 85,00 82,50 

RR(2) 72,50 85,00 90,00 82,50 87,50 92,50 92,50 90,00 

RR(3) 77,50 90,00 92,50 95,00 92,50 95,00 92,50 92,50 

Table A.19 VOV database: Recognition rates obtained with the help of PSB_161 models. 

PSB_161 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 50,00 47,50 50,00 35,00 47,50 70,00 65,00 60,00 

RR(2) 55,00 62,50 65,00 40,00 52,50 72,50 67,50 65,00 

RR(3) 62,50 70,00 67,50 47,50 60,00 75,00 72,50 77,50 

RR(10) 77,50 80,00 85,00 77,50 92,50 90,00 85,00 90,00 

CS 

RR(1) 57,50 72,50 70,00 55,00 75,00 77,50 67,50 62,50 

RR(2) 65,00 75,00 77,50 70,00 80,00 85,00 75,00 80,00 

RR(3) 70,00 77,50 85,00 77,50 85,00 87,50 80,00 80,00 

RR(10) 77,50 87,50 92,50 87,50 90,00 90,00 90,00 90,00 

HT 

RR(1) 30,00 30,00 45,00 25,00 45,00 47,50 55,00 60,00 

RR(2) 35,00 40,00 57,50 32,50 50,00 62,50 62,50 65,00 

RR(3) 35,00 40,00 60,00 35,00 50,00 70,00 65,00 65,00 

RR(10) 45,00 50,00 72,50 50,00 62,50 80,00 77,50 82,50 

RS 

RR(1) 27,50 47,50 45,00 42,50 52,50 60,00 52,50 67,50 

RR(2) 37,50 52,50 65,00 52,50 57,50 67,50 65,00 75,00 

RR(3) 42,50 62,50 67,50 52,50 62,50 72,50 67,50 80,00 

RR(10) 57,50 70,00 82,50 67,50 80,00 85,00 80,00 82,50 

ZM 

RR(1) 32,50 45,00 60,00 40,00 45,00 57,50 62,50 65,00 

RR(2) 42,50 52,50 70,00 47,50 55,00 75,00 75,00 72,50 

RR(3) 42,50 55,00 72,50 55,00 62,50 77,50 80,00 77,50 

RR(10) 55,00 77,50 90,00 70,00 77,50 90,00 87,50 87,50 

AH 

+ 

CS 

RR(1) 60,00 62,50 77,50 40,00 77,50 82,50 77,50 80,00 

RR(2) 62,50 75,00 82,50 62,50 80,00 87,50 87,50 82,50 

RR(3) 77,50 85,00 85,00 77,50 90,00 90,00 87,50 87,50 

RR(10) 90,00 95,00 92,50 92,50 95,00 95,00 95,00 97,50 

AH 

+ 

ZM 

RR(1) 40,00 47,50 65,00 40,00 52,50 70,00 65,00 72,50 

RR(2) 55,00 57,50 75,00 45,00 55,00 77,50 72,50 75,00 

RR(3) 57,50 80,00 85,00 62,50 67,50 85,00 82,50 82,50 

RR(10) 80,00 92,50 95,00 87,50 92,50 95,00 92,50 95,00 

CS 

+ 

ZM 

RR(1) 55,00 67,50 75,00 50,00 72,50 80,00 77,50 75,00 

RR(2) 62,50 82,50 80,00 70,00 82,50 90,00 87,50 85,00 

RR(3) 70,00 85,00 82,50 77,50 82,50 92,50 90,00 90,00 

RR(10) 85,00 92,50 95,00 90,00 92,50 95,00 92,50 95,00 
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Table A.20 VOSy database: Recognition rates obtained with the help of MPEG7_23 models. 

MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 41,03 58,97 69,23 71,79 61,54 71,79 76,92 76,92 

RR(2) 74,36 87,18 87,18 87,18 89,74 87,18 89,74 92,31 

RR(3) 79,49 92,31 97,44 94,87 89,74 89,74 92,31 97,44 

CS 

RR(1) 61,54 71,79 76,92 66,67 71,79 76,92 74,36 69,23 

RR(2) 66,67 82,05 94,87 89,74 84,62 92,31 89,74 87,18 

RR(3) 79,49 92,31 94,87 94,87 89,74 97,44 94,87 92,31 

HT 

RR(1) 23,08 33,33 48,72 30,77 38,46 51,28 38,46 43,59 

RR(2) 38,46 48,72 66,67 51,28 71,79 71,79 56,41 61,54 

RR(3) 51,28 71,79 79,49 64,10 76,92 84,62 64,10 71,79 

RS 

RR(1) 41,03 51,28 64,10 61,54 53,85 69,23 61,54 64,10 

RR(2) 61,54 66,67 79,49 74,36 64,10 76,92 76,92 76,92 

RR(3) 69,23 87,18 84,62 84,62 82,05 87,18 84,62 87,18 

ZM 

RR(1) 48,72 64,10 66,67 66,67 74,36 74,36 61,54 69,23 

RR(2) 61,54 74,36 79,49 76,92 79,49 79,49 74,36 82,05 

RR(3) 71,79 87,18 89,74 84,62 84,62 84,62 82,05 89,74 

AH 

+ 

CS 

RR(1) 53,85 61,54 74,36 74,36 71,79 82,05 74,36 76,92 

RR(2) 74,36 84,62 94,87 84,62 87,18 92,31 92,31 89,74 

RR(3) 87,18 92,31 94,87 94,87 92,31 97,44 94,87 97,44 

AH 

+ 

ZM 

RR(1) 51,28 66,67 71,79 82,05 71,79 76,92 74,36 71,79 

RR(2) 69,23 82,05 92,31 92,31 84,62 87,18 82,05 87,18 

RR(3) 82,05 92,31 92,31 94,87 92,31 92,31 89,74 94,87 

CS 

+ 

ZM 

RR(1) 66,67 69,23 74,36 69,23 74,36 76,92 69,23 69,23 

RR(2) 69,23 79,49 84,62 76,92 82,05 87,18 87,18 84,62 

RR(3) 76,92 89,74 89,74 92,31 87,18 92,31 92,31 94,87 

Table A.21 VOSy database: Recognition rates obtained with the help of PSB_53 models. 

MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 56,41 64,10 71,79 69,23 74,36 79,49 66,67 69,23 

RR(2) 87,18 84,62 87,18 87,18 89,74 92,31 79,49 82,05 

RR(3) 92,31 89,74 94,87 92,31 89,74 94,87 89,74 92,31 

CS 

RR(1) 66,67 76,92 79,49 74,36 71,79 74,36 74,36 74,36 

RR(2) 79,49 87,18 87,18 89,74 87,18 84,62 87,18 82,05 

RR(3) 82,05 89,74 92,31 89,74 89,74 97,44 92,31 92,31 

HT 

RR(1) 38,46 46,15 56,41 41,03 58,97 64,10 56,41 56,41 

RR(2) 46,15 58,97 66,67 56,41 64,10 74,36 66,67 64,10 

RR(3) 53,85 69,23 66,67 66,67 74,36 76,92 74,36 71,79 

RS 

RR(1) 46,15 58,97 71,79 71,79 69,23 74,36 69,23 74,36 

RR(2) 64,10 69,23 74,36 76,92 82,05 82,05 74,36 84,62 

RR(3) 74,36 76,92 79,49 84,62 84,62 84,62 82,05 92,31 

ZM 

RR(1) 61,54 71,79 76,92 74,36 76,92 84,62 66,67 74,36 

RR(2) 66,67 74,36 84,62 79,49 79,49 87,18 74,36 79,49 

RR(3) 74,36 82,05 89,74 84,62 82,05 89,74 82,05 84,62 
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MPEG7_23 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

+ 

CS 

RR(1) 74,36 74,36 79,49 74,36 79,49 82,05 71,79 74,36 

RR(2) 84,62 87,18 89,74 87,18 87,18 89,74 89,74 84,62 

RR(3) 92,31 94,87 89,74 92,31 92,31 92,31 92,31 89,74 

AH 

+ 

ZM 

RR(1) 74,36 74,36 82,05 76,92 79,49 82,05 76,92 74,36 

RR(2) 82,05 84,62 89,74 84,62 87,18 89,74 87,18 84,62 

RR(3) 89,74 94,87 92,31 92,31 89,74 92,31 89,74 89,74 

CS 

+ 

ZM 

RR(1) 71,79 76,92 82,05 76,92 76,92 79,49 76,92 79,49 

RR(2) 74,36 84,62 84,62 82,05 84,62 87,18 84,62 84,62 

RR(3) 87,18 87,18 89,74 87,18 89,74 87,18 89,74 87,18 

Table A.22 VOSy database: Recognition rates obtained with the help of PSB_161 models. 

PSB_161 PCA3 PCA7 DODECA DDPCA OCTA9 OCTA33 RV6 RV10 

AH 

RR(1) 53,85 66,67 71,79 76,92 76,92 82,05 64,10 74,36 

RR(2) 71,79 82,05 76,92 84,62 82,05 89,74 79,49 84,62 

RR(3) 84,62 84,62 84,62 89,74 92,31 92,31 89,74 87,18 

RR(10) 87,18 92,31 92,31 92,31 92,31 92,31 92,31 94,87 

CS 

RR(1) 61,54 69,23 76,92 66,67 71,79 76,92 76,92 76,92 

RR(2) 71,79 82,05 87,18 84,62 84,62 89,74 87,18 87,18 

RR(3) 79,49 82,05 89,74 87,18 84,62 92,31 89,74 89,74 

RR(10) 82,05 92,31 92,31 92,31 89,74 92,31 92,31 92,31 

HT 

RR(1) 23,08 41,03 56,41 41,03 56,41 64,10 56,41 46,15 

RR(2) 38,46 48,72 58,97 48,72 66,67 74,36 64,10 53,85 

RR(3) 38,46 56,41 64,10 56,41 66,67 76,92 64,10 69,23 

RR(10) 61,54 82,05 84,62 79,49 82,05 84,62 84,62 84,62 

RS 

RR(1) 56,41 61,54 76,92 71,79 69,23 76,92 71,79 74,36 

RR(2) 61,54 71,79 79,49 76,92 76,92 82,05 76,92 79,49 

RR(3) 69,23 79,49 79,49 82,05 79,49 82,05 79,49 84,62 

RR(10) 79,49 84,62 87,18 84,62 87,18 87,18 87,18 89,74 

ZM 

RR(1) 48,72 64,10 74,36 66,67 69,23 79,49 74,36 71,79 

RR(2) 61,54 82,05 82,05 79,49 79,49 82,05 79,49 82,05 

RR(3) 71,79 84,62 84,62 82,05 84,62 84,62 79,49 84,62 

RR(10) 84,62 87,18 89,74 87,18 89,74 87,18 89,74 89,74 

AH 

+ 

CS 

RR(1) 69,23 74,36 74,36 79,49 76,92 79,49 84,62 76,92 

RR(2) 79,49 84,62 89,74 87,18 84,62 87,18 87,18 87,18 

RR(3) 79,49 84,62 92,31 87,18 87,18 89,74 89,74 87,18 

RR(10) 89,74 92,31 92,31 92,31 92,31 92,31 92,31 94,87 

AH 

+ 

ZM 

RR(1) 66,67 74,36 82,05 76,92 76,92 82,05 82,05 82,05 

RR(2) 76,92 84,62 87,18 84,62 82,05 82,05 87,18 82,05 

RR(3) 82,05 84,62 87,18 89,74 87,18 89,74 89,74 84,62 

RR(10) 87,18 92,31 92,31 92,31 92,31 92,31 92,31 94,87 

CS 

+ 

ZM 

RR(1) 66,67 74,36 76,92 74,36 76,92 79,49 74,36 82,05 

RR(2) 74,36 84,62 82,05 82,05 82,05 84,62 84,62 84,62 

RR(3) 76,92 84,62 89,74 82,05 84,62 89,74 87,18 87,18 

RR(10) 82,05 92,31 92,31 92,31 89,74 92,31 92,31 92,31 
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GLOSSARY 

ACRONYMS 

a priori  not based on prior study or examination 

cf.  confer (compare) 

i.e.  id est (in other words) 

e.g.  exempli gratia (for example) 

et al.  et alii (and others) 

vice-versa  with position turned, in reverse order from the way something has been stated 
   

AH  Angular Histogram (0) 

ART  Angular Radial Transform (III.2.2.1) 

AVC  Adaptive Views Clustering (II.2.3) 

B  background (V.2) 

BCS  Bounded Canonical Set (II.2.3) 

BIC  Bayesian Information Criteria (II.2.3) 

BMP  bitmap image file format 

CMVD  Compact Multi-View Descriptor (II.2.2) 

CPCA  Continuous Principal Component Analysis (II.1.1.2) 

CS  Contour Shape (III.2.2.4) 

DB  Database 

DDPCA  Dodecahedron-based viewing angle selection for an aligned 3D model (III.2.1.2) 

DODECA  Dodecahedron-based viewing angle selection (III.2.1.2) 

DS  Description Scheme 

EM  Expectation Maximization (V.2) 

ESA  Enhances Silhouette-based Approach (II.2.1) 

ESI  Enhanced Silhouette Intersection (II.2.2) 

F  foreground (V.2) 

FT  First Tier (III.6.1) 

GMM  Gaussian Mixture Model (V.3.1) 

GPU  Graphics processing unit 

HAC  Hierarchical Agglomerative Clustering (II.2.3) 
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HT  Hough Transform (III.2.2.2) 

JPEG  Joint Photographic Experts Group image file format 

LFD  Light Field Descriptor (II.2.2) 

LUT  Look-up table 

Luv  The Luv colour space (V.2) 

MCC  Multi Curve Convexity/Concavity (II.2.1) 

ML  machine learning (0) 

MLFD  modified Light Field Descriptor (II.2.2) 

MPEG  Moving Picture Experts Group 

MPEG7_23  MPEG7 database (the classification includes 23 categories) (III.5.1) 

MRF  Markov Random Field (IV.2) 

NN  Nearest Neighbour (IV.2) 

OCTA33  Octahedron-based viewing angle selection – 33 views/model (III.2.1.3) 

OCTA9  Octahedron-based viewing angle selection – 9 views/model (III.2.1.3) 

OS  Overlap score (V.4) 

PCA  Principal Component Analysis (II.1.1.2) 

PCA3  PCA-based viewing angle selection – 3 views/model (III.2.1.1) 

PCA7  PCA-based viewing angle selection – 7 views/model (III.2.1.1) 

PDF  The probability density function (V.2) 

PNG  Portable Network Graphics image file format 

POI  Point of Interest (IV.2) 

PR  Precision-Recall curve (III.6.1) 

PSB_161  
Princeton Shape Benchmark database (the classification includes 161 categories) 

(III.5.2) 

PSB_53  
Princeton Shape Benchmark database (the classification includes 53 categories) 

(III.5.2) 

RR  The recognition rate (IV.4.2) 

RS  Region Shape descriptor (III.2.2.1) 

RV10  Representative views selection – 10 views/model (III.2.1.4) 

RV6  Representative views selection – 6 views/model (III.2.1.4) 

SI  Silhouette Intersection (II.2.1) 

SIFT  Scale Invariant Feature Transform (IV.2) 

SO  Still object (IV.3.1) 

SOI  Still objects from images database (IV.4.1.1) 

SOSy  Still objects from synthetic images database (IV.4.1.3) 
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SOV  Still objects from videos database (IV.4.1.2) 

SQL  Structured Query Language 

ST  Second Tier score (III.6.1) 

SURF  Speeded Up Robust Features (IV.2) 

SVM  Support Vector Machine (IV.2) 

UI  User Interface 

V  Video (IV.3.2) 

VCA  Vertex Component Analysis (II.2.2) 

VO  Video object (IV.3.2) 

VOSy  Video objects from synthetic images database (IV.4.1.3) 

VOV  Video objects from videos database (IV.4.1.2) 

VRML  Virtual Reality Modelling Language (A1) 

WebGL  Web Graphics Library 

ZM  Zernike Moments (III.2.2.3) 

NOTATIONS 

 (X,Y)  The distance between two semantic classes X and Y (III.5.3.1) 

 DB  
The mean distance between each two semantic classes of a database DB 

(III.5.3.1) 

 X  
The mean distance between the semantic class X and the other classes of the 

database (III.5.3.1) 

αl  Parameter used to enlarge the set of labelled pixels (V.3.1) 

β  The elongation parameter (V.3.3) 

δDB  The average intra-class variability of a database DB (III.5.3.1) 

δX  The intra-class variability of the semantic category X (III.5.3.1) 

ε  The probability threshold (V.3.3) 

λi  The ith eigenvalues (V.3.3) 

Σi  The covariance matrix of the ith GMM component (V.3.1) 

Σij  The element ij of the covariance matrix (II.1.1.2) 

ωCh
i  The weighting coefficient of the ith channel (V.2) 

ωi  The weight of the ith GMM component (V.3.1) 

c(u)  The sampled contour of a shape 

D(MA, MB)  The distance between the 3D model MA and the 3D model MB (III.3) 
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d(X, Y)  The distance between two 2D shapes X and Y (II.1.4.1) 

dl(x)  The geodesic distance between pixel x and label l (V.2) 

Fi(V)  The ith frame of the video V (IV.3.2) 

g(X)  The GMM probability density function (V.3.1) 

gi(X)  The ith component of the GMM (V.3.1) 

Ii(VO)  The ith instance of the video object VO (IV.3.2) 

l  The set {F, B} of possible labels (V.2) 

Ll  The length of l scribbles (V.3.1) 

NC/X  The number of correct elements among the top X retrieved (III.6.1) 

NCh  The number of channels (V.2) 

NF  The number of frames selected from each video (IV.3.2) 

NI  The number of instances that compose a video object (IV.3.2) 

Nl  The number of pixel in the l set (V.3.1) 

NM  The number of 3D models in the database (III.5) 

NMRC  
The number of the most represented categories (within the NTRM first models) 

which are proposed as response to a query (IV.3) 

NP  The number of 2D projections associated to a 2D model 

NQ  The number of elements in the database which are similar to the query (III.6.1) 

NR  The number of elements retrieved from the database (III.6.1) 

NRV  The number of representative views selected to describe a 3D model (III.2.1.4) 

Nt
l  The target number of pixel in the l set (V.3.1) 

NTRM  
The number of top retrieved models which are taken into account in the 

recognition process (IV.3) 

PDFi
l   The probability density function of the ith channel w.r.t. the l label (V.2) 

Pi(M)  The ith projection of model M 

Pl(x)  The likelihood of the pixel x to belong to the l label (V.2) 

RR(NMRC)  The recognition rate obtain when NMRC categories are considered (IV.4.2) 

RR(O,NMRC)  
The recognition label associated to object O when NMRC categories are 

considered (IV.4.2) 

S(X,Y)  The separability between two semantic classes X and Y (III.5.3.1) 

SDB  
The mean inter-class separability between the categories of a database DB 

(III.5.3.1) 

SX  The separability of the semantic class X (III.5.3.1) 

Wl(x)  The weight of the pixel x on the likelihood map associated to the label l (V.2) 

Xx  A D-dimensional vector storing the colour components of pixel x (V.3.1) 



 

 



 

 





 

 

ABSTRACT 

Automatic classification and interpretation of 2D objects is a key issue for various computer 

vision applications. In particular, when considering image/video indexing and retrieval 

applications, automatically labelling, in a semantically pertinent manner, still remains an open 

challenge, especially when huge multimedia databases are involved.  

This Ph.D. thesis tackles the issue of sill and video object categorization. The objective is to 

associate semantic labels to 2D objects present in natural images/videos. The principle of the 

proposed approach consists of exploiting categorized 3D model repositories in order to identify 

unknown 2D objects based on 2D/3D matching techniques. Notably, we use view-based indexing 

methods, where 3D models are described through a set of 2D views. 

We propose here an object recognition framework, designed to work for real time 

applications. The similarity between classified 3D models and unknown 2D content is evaluated 

with the help of the 2D/3D description. A voting procedure is further employed in order to 

determine the most probable categories of the 2D object. 

The highest recognition rates obtained on real objects were up to 74% for still objects and 

up to 85% for video objects. When three categories are accepted as response, the same scores 

were up to 86%, respectively 93%.  

In our work, we consider several state of the art projection strategies and 2D shape 

descriptors. In addition, a representative viewing angle selection strategy (so-called RV) and a 

new contour based descriptor (so-called AH), are proposed. The experimental evaluation proved 

that, by employing the intelligent selection of views, the number of projections can be decreased 

significantly (up to 5 times) while obtaining similar performance. The results have also shown the 

superiority of AH with respect to other state of the art descriptors.  

An objective evaluation of the intra and inter class variability of the 3D model repositories 

involved in this work (i.e., MPEG-7 and Princeton datasets) is also proposed, together with a 

comparative study of the retained indexing approaches within the framework of 3D model 

retrieval. 

An interactive, scribble-based segmentation approach, designed to facilitate the task of 2D 

object extraction, is also introduced. The proposed method is based on colour distributions, 

estimated with Gaussian Mixture Models (GMM), and is specifically designed to overcome 

compression artefacts such as those introduced by JPEG compression.  

We finally present an indexing/retrieval/classification Web platform, so-called DIANA – 

Digital Image Analysis aNd Annotation, which integrates the various methodologies proposed in 

this thesis. 


