M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Printing Office, vol.55, 1964.

M. A. Ancona-navarrete and J. A. Tawn, A comparison of methods for estimating the extremal index, Extremes, vol.3, issue.1, pp.5-38, 2000.
DOI : 10.1023/A:1009993419559

C. W. Anderson, Extreme value theory for a class of discrete distributions with applications to some stochastic processes, Journal of Applied Probability, vol.20, issue.01, pp.99-113, 1970.
DOI : 10.2307/1968974

R. Arratia, L. Goldstein, and L. Gordon, Poisson approximation and the Chen-Stein method, Statist. Sci, vol.5, issue.4, pp.403-434, 1990.

F. Avram and D. Bertsimas, On Central Limit Theorems in Geometrical Probability, The Annals of Applied Probability, vol.3, issue.4, pp.1033-1046, 1993.
DOI : 10.1214/aoap/1177005271

F. Baccelli, K. Tchoumatchenko, and S. Zuyev, Markov paths on the Poisson-Delaunay graph with applications to routeing in mobile networks, Advances in Applied Probability, vol.32, issue.01, pp.1-18, 2000.
DOI : 10.1007/BF02187821

A. Baddeley and E. B. Jensen, Stereology for statisticians, of Monographs on Statistics and Applied Probability, 2005.
DOI : 10.1201/9780203496817

P. Baldi and Y. Rinott, On Normal Approximations of Distributions in Terms of Dependency Graphs, The Annals of Probability, vol.17, issue.4, pp.1646-1650, 1989.
DOI : 10.1214/aop/1176991178

V. Baumstark and G. Last, Some distributional results for Poisson-Voronoi tessellations, Advances in Applied Probability, vol.39, issue.01, pp.16-40, 2007.
DOI : 10.1002/mana.19951760115

J. Beirlant, Y. Goegebeur, J. Teugels, and J. Segers, Statistics of extremes Wiley Series in Probability and Statistics, With contributions from Daniel De Waal and Chris Ferro, 2004.

M. W. Bern, D. Eppstein, and F. Yao, THE EXPECTED EXTREMES IN A DELAUNAY TRIANGULATION, International Journal of Computational Geometry & Applications, vol.01, issue.01, pp.79-92, 1991.
DOI : 10.1142/S0218195991000074

B. N. Boots, Some Models of the Random Subdivision of Space, Geografiska Annaler. Series B, Human Geography, vol.55, issue.1, pp.34-48, 1973.
DOI : 10.2307/490327

B. N. Boots, SOME OBSERVATIONS ON THE STRUCTURE OF SOCIO-ECONOMIC CELLULAR NETWORKS, The Canadian Geographer/Le G??ographe canadien, vol.42, issue.2, pp.107-120, 1975.
DOI : 10.1080/09595237200185061

P. Calka, The distributions of the smallest disks containing the Poisson-Voronoi typical cell and the Crofton cell in the plane, Advances in Applied Probability, vol.283, issue.04, pp.702-717863, 2002.
DOI : 10.1007/BF02789327

P. Calka, Precise formulae for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional Poisson-Voronoi tessellation and a Poisson line process, Advances in Applied Probability, vol.283, issue.03, pp.551-562, 2003.
DOI : 10.2307/3213589

P. Calka and N. Chenavier, Extreme values for characteristic radii of a Poisson-Voronoi tessellation Available in http

V. Capasso and E. Villa, On the Geometric Densities of Random Closed Sets, Stochastic Analysis and Applications, vol.26, issue.4, pp.784-808, 2008.
DOI : 10.1002/mana.19821080105

J. M. Chassery and M. Melkemi, Diagramme de Voronoi appliquésappliquésà la segmentation d'images etàetà la détection d'´ evènements en imagerie multi-sources, pp.155-164, 1991.

L. H. Chen, Poisson Approximation for Dependent Trials, The Annals of Probability, vol.3, issue.3, pp.534-545, 1975.
DOI : 10.1214/aop/1176996359

N. Chenavier, A general study of extremes of stationary tessellations with applications Available in http, 2013.

M. R. Chernick, T. Hsing, and W. P. Mccormick, Calculating the extremal index for a class of stationary sequences, Advances in Applied Probability, vol.23, issue.04, pp.835-850, 1991.
DOI : 10.1016/0167-7152(89)90033-3

H. Choi, Central limit theory and extremes of random fields, 2002.

N. H. Christ, R. Freidberg, and T. D. Lee, Random lattice field theory: General formulation, Nuclear Physics B, vol.202, issue.1, pp.89-125, 1982.
DOI : 10.1016/0550-3213(82)90222-X

URL : http://doi.org/10.1016/0550-3213(82)90222-x

R. Cowan, The Use of the Ergodic Theorems in Random Geometry, Spatial patterns and processes (Proc. Conf., Canberra, pp.47-57, 1977.
DOI : 10.2307/1427006

R. Cowan, Properties of ergodic random mosaic processes, Mathematische Nachrichten, vol.5, issue.1, pp.89-102, 1980.
DOI : 10.1002/mana.19800970109

D. J. Daley, D. Vere, and -. , An introduction to the theory of point processes, 1988.

F. David and J. M. Drouffe, Monte-Carlo simulations of random rigid surfaces with random lattices, Nuclear Physics B - Proceedings Supplements, vol.4, pp.83-87, 1988.
DOI : 10.1016/0920-5632(88)90087-4

L. De-haan and A. Ferreira, Extreme value theory. Springer Series in Operations Research and Financial Engineering, 2006.

K. Debicki, K. M. Kosi´nskikosi´nski, M. Mandjes, and T. Rolski, Extremes of multidimensional Gaussian processes. Stochastic Process, Appl, vol.120, issue.12, pp.2289-2301, 2010.

P. J. Diggle, Binary Mosaics and the Spatial Pattern of Heather, Biometrics, vol.37, issue.3, pp.531-539, 1981.
DOI : 10.2307/2530566

G. L. Dirichlet, ??ber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen., Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.1850, issue.40, pp.209-227, 1850.
DOI : 10.1515/crll.1850.40.209

J. H. Einmahl and E. V. Khmaladze, The two-sample problem in $\Bbb R\sp m$ and measure-valued martingales, State of the art in probability and statistics, pp.434-463, 1999.
DOI : 10.1214/lnms/1215090082

P. Embrechts, C. Klüppelberg, and T. Mikosch, Modelling of extremal events in insurance and finance, ZOR Zeitschrift f???r Operations Research Mathematical Methods of Operations Research, vol.73, issue.1, 1997.
DOI : 10.1007/BF01440733

D. M. Espriu, M. Gross, P. E. Rakow, and J. F. Wheater, Continuum limit on a 2-dimensional random lattice, Nuclear Physics B, vol.265, issue.1, pp.92-112, 1986.
DOI : 10.1016/0550-3213(86)90408-6

H. Fallert, Querma??dichten f??r Punktprozesse konvexer K??rper und Boolesche Modelle, Mathematische Nachrichten, vol.9, issue.1, pp.165-184, 1996.
DOI : 10.1002/mana.3211810106

H. Ferreira, The upcrossings index and the extremal index, Journal of Applied Probability, vol.43, issue.04, pp.927-937, 2006.
DOI : 10.1214/aop/1176992270

R. A. Fisher and L. H. Tippett, Limiting forms of the frequency distribution of the largest or smallest member of a sample, Proc. Cambridge Philos. Soc, pp.180-190, 1928.
DOI : 10.1017/S0305004100015681

S. G. Foss and S. A. Zuyev, On a Voronoi aggregative process related to a bivariate Poisson process, Advances in Applied Probability, vol.51, issue.04, pp.965-981, 1996.
DOI : 10.1214/aoms/1177704464

M. Fréchet, Sur la loi de probabilité de l'´ ecart maximum, Ann. Soc. Math. Polon, vol.6, pp.93-116, 1927.

A. C. Freitas, J. M. Freitas, and M. Todd, The extremal index, hitting time statistics and periodicity, Advances in Mathematics, vol.231, issue.5, pp.2626-2665, 2012.
DOI : 10.1016/j.aim.2012.07.029

C. Gaetan and X. Guyon, Spatial statistics and modeling, 2010.
DOI : 10.1007/978-0-387-92257-7

H. Georgii, O. Häggström, and C. Maes, The random geometry of equilibrium phases. Phase transitions and critical phenomena, pp.1-142, 2001.

M. Gerstein, J. Tsai, and M. Levitt, The Volume of Atoms on the Protein Surface: Calculated from Simulation, using Voronoi Polyhedra, Journal of Molecular Biology, vol.249, issue.5, pp.955-966, 1995.
DOI : 10.1006/jmbi.1995.0351

E. N. Gilbert, Random Subdivisions of Space into Crystals, The Annals of Mathematical Statistics, vol.33, issue.3, pp.958-972, 1962.
DOI : 10.1214/aoms/1177704464

B. Gnedenko, Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire, The Annals of Mathematics, vol.44, issue.3, pp.423-453, 1943.
DOI : 10.2307/1968974

D. P. Gomes and M. M. Neves, Extremal behaviour of stationary processes: the calibration technique in the extremal index estimation, Discussiones Mathematicae Probability and Statistics, vol.30, issue.1, pp.21-33, 2010.
DOI : 10.7151/dmps.1119

S. Graf and H. Luschgy, Foundations of quantization for probability distributions, Lecture Notes in Mathematics, vol.1730, 2000.
DOI : 10.1007/BFb0103945

A. Hayen and M. P. Quine, Areas of components of a Voronoi polygon in a homogeneous Poisson process in the plane, Advances in Applied Probability, vol.2, issue.02, pp.281-291, 2002.
DOI : 10.1239/aap/1013540022

L. Heinrich, Contact and chord length distribution of a stationary Voronoi tessellation, Advances in Applied Probability, vol.19, issue.03, pp.603-618, 1998.
DOI : 10.2307/3214584

L. Heinrich and L. Muche, Second-order properties of the point process of nodes in a stationary Voronoi tessellation, Mathematische Nachrichten, vol.214, issue.3, pp.350-375, 2008.
DOI : 10.1002/mana.200510607

L. Heinrich, H. Schmidt, and V. Schmidt, Limit theorems for stationary tessellations with random inner cell structures, Advances in Applied Probability, vol.3, issue.01, pp.25-47, 2005.
DOI : 10.1239/aap/1035228121

N. Henze, The limit distribution for maxima of " weighted " rth-nearest-neighbour distances, J. Appl. Probab. Ann. Appl. Probab, vol.19, issue.192, pp.344-354719, 1982.

D. Hlubinka, Stereology of extremes ; shape factor of spheroids, Extremes, vol.6, issue.1, pp.5-24, 2003.
DOI : 10.1023/A:1026234329084

T. Hsing, On the extreme order statistics for a stationary sequence, Stochastic Processes and their Applications, vol.29, issue.1, pp.155-169, 1988.
DOI : 10.1016/0304-4149(88)90035-X

T. Hsing, J. Hüsler, and R. D. Reiss, The extremes of a triangular array of normal random variables, The Annals of Applied Probability, vol.6, issue.2, pp.671-686, 1996.
DOI : 10.1214/aoap/1034968149

D. Hug, M. Reitzner, and R. Schneider, Large Poisson-Voronoi cells and Crofton cells, Advances in Applied Probability, vol.87, issue.03, pp.667-690, 2004.
DOI : 10.1007/BF02733102

D. Hug and R. Schneider, Large Cells in Poisson?Delaunay Tessellations, Discrete and Computational Geometry, vol.31, issue.4, pp.503-514, 2004.
DOI : 10.1007/s00454-003-0818-3

D. Hug and R. Schneider, Large typical cells in Poisson-Delaunay mosaics, Rev. Roumaine Math. Pures Appl, vol.50, pp.5-6657, 2005.

S. R. Jammalamadaka and S. Janson, Limit Theorems for a Triangular Scheme of $U$-Statistics with Applications to Inter-Point Distances, The Annals of Probability, vol.14, issue.4, pp.1347-1358, 1986.
DOI : 10.1214/aop/1176992375

W. Janke, M. Katoot, and R. Villanova, Ising model on 2D random lattices, Proceedings Supplements), pp.698-701, 1994.
DOI : 10.1016/0920-5632(94)90487-1

URL : http://arxiv.org/pdf/cond-mat/0211446v1.pdf

W. Janke and R. Villanova, Two-dimensional eight-state Potts model on random lattices: A Monte Carlo study, Physics Letters A, vol.209, issue.3-4, pp.179-183, 1995.
DOI : 10.1016/0375-9601(95)00813-9

S. Janson, Random coverings in several dimensions, Acta Mathematica, vol.156, issue.0, pp.83-118, 1986.
DOI : 10.1007/BF02399201

G. R. Jerauld, J. C. Hatfield, and H. T. Davis, Percolation and conduction on Voronoi and triangular networks: a case study in topological disorder, Journal of Physics C: Solid State Physics, vol.17, issue.9, pp.1519-1529, 1984.
DOI : 10.1088/0022-3719/17/9/010

G. R. Jerauld, L. E. Scriven, and H. T. Davis, Percolation and conduction on the 3D Voronoi and regular networks: a second case study in topological disorder, Journal of Physics C: Solid State Physics, vol.17, issue.19, pp.3429-3439, 1984.
DOI : 10.1088/0022-3719/17/19/017

L. Ju, M. Gunzburger, and W. Zhao, Adaptive Finite Element Methods for Elliptic PDEs Based on Conforming Centroidal Voronoi???Delaunay Triangulations, SIAM Journal on Scientific Computing, vol.28, issue.6, pp.2023-2053, 2006.
DOI : 10.1137/050643568

Z. Kabluchko, Spectral representations of sum- and max-stable processes, Extremes, vol.97, issue.4, pp.401-424, 2009.
DOI : 10.1007/s10687-009-0083-9

Z. Kabluchko, Extremes of independent Gaussian processes, Extremes, vol.145, issue.2, pp.285-310, 2011.
DOI : 10.1007/s10687-010-0110-x

O. Kallenberg, Random measures Akademie-Verlag, 1975.

R. W. Katz, M. B. Parlange, and P. Naveau, Statistics of extremes in hydrology, Advances in Water Resources, vol.25, issue.8-12, pp.1287-1304, 2002.
DOI : 10.1016/S0309-1708(02)00056-8

E. Khmaladze and N. Toronjadze, On the almost sure coverage property of Voronoi tessellation: the R 1 case, Advances in Applied Probability, vol.33, issue.4, pp.756-764, 2001.
DOI : 10.1239/aap/1011994027

I. N. Kovalenko, An extension of a conjecture of d.g. kendall concerning shapes of random polygons to poisson voronoi cells. In Voronoi's impact on modern science, Institute of Mathematics. Prop. Inst. Math. Natl. Acad. Sci. Ukr., Math. Appl, issue.212, pp.266-274

R. Lachì-eze-rey and G. Peccati, Fine gaussian fluctuations on the Poisson space, i : contractions, cumulants and geometric random graphs, Electron. J. Probab, vol.18, pp.1-32, 2013.

C. Lantuéjoul, J. N. Bacro, and L. Bel, Storm processes and stochastic geometry, Extremes, vol.90, issue.1, pp.413-428, 2011.
DOI : 10.1007/s10687-010-0121-7

F. Laurini and J. A. Tawn, New Estimators for the Extremal Index and Other Cluster Characteristics, Extremes, vol.6, issue.3, pp.189-211, 2003.
DOI : 10.1023/B:EXTR.0000031179.49454.90

M. R. Leadbetter, On extreme values in stationary sequences, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.42, issue.4, pp.289-30374, 1973.
DOI : 10.1007/BF00532947

M. R. Leadbetter, Extremes and local dependence in stationary sequences, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.25, issue.2, pp.291-306, 1983.
DOI : 10.1007/BF00532484

M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and related properties of random sequences and processes, 1983.
DOI : 10.1007/978-1-4612-5449-2

M. R. Leadbetter and S. Nandagopalan, On Exceedance Point Processes for Stationary Sequences under Mild Oscillation Restrictions, Extreme value theory (Oberwolfach, pp.69-80, 1987.
DOI : 10.1007/978-1-4612-3634-4_7

M. R. Leadbetter and H. Rootzén, On Extreme Values in Stationary Random Fields, Stochastic processes and related topics, pp.275-285, 1998.
DOI : 10.1007/978-1-4612-2030-5_15

G. Lecaer and J. S. Ho, The Voronoi tessellation generated from eigenvalues of complex random matrices, Journal of Physics A : Mathematical and General, vol.23, pp.3279-3295, 1990.

R. M. Loynes, Extreme Values in Uniformly Mixing Stationary Stochastic Processes, The Annals of Mathematical Statistics, vol.36, issue.3, pp.993-999, 1965.
DOI : 10.1214/aoms/1177700071

K. V. Mardia, R. Edwards, and M. L. Puri, Analysis of central place theory, Proceedings of the 41st Session of the International Statistical Institute, pp.93-110, 1977.

V. J. Martinez and E. Saar, Statistics of The Galaxy Distribution. Chapman & Hall, 2001.

G. Matheron, Random sets and integral geometry, 1975.

M. Mayer and I. Molchanov, Limit theorems for the diameter of a random sample in the unit ball, Extremes, vol.15, issue.3, pp.129-150, 2007.
DOI : 10.1007/s10687-007-0038-y

J. Mecke, Palm methods for stationary random mosaics, In Armenian Acad. Sci. Publ., Erevan, Trends Math, pp.124-132, 1980.

J. Mecke, Parametric representation of mean values for stationary random mosaics, Math. Operationsforsch. Statist. Ser. Statist, vol.15, issue.3, pp.437-442, 1984.

J. L. Meijering, Interface area, edge length, and number of vertices in crystal aggregates with random nucleation, Philips Res. Rep, vol.8, 1953.

R. E. Miles, On the homogeneous planar Poisson point process, Mathematical Biosciences, vol.6, pp.85-127, 1970.
DOI : 10.1016/0025-5564(70)90061-1

R. E. Miles and R. E. Miles, A synopsis of Poisson flats in Euclidean spaces Random points, sets and tessellations on the surface of a sphere, Izv. Akad. Nauk Armjan. SSR Ser. Mat, vol.5, issue.33, pp.263-285145, 1970.

R. K. Milne and M. Westcott, Further results for Gauss-Poisson processes, Advances in Applied Probability, vol.30, issue.01, pp.151-176, 1972.
DOI : 10.1093/biomet/53.3-4.627

J. Møller, Random tessellations in ???d, Advances in Applied Probability, vol.2, issue.01, pp.37-73, 1989.
DOI : 10.1002/mana.19800970118

J. Møller, Lectures on random Vorono? ? tessellations, Lecture Notes in Statistics, vol.87, 1994.

J. Møller and R. P. Waagepetersen, Statistical inference and simulation for spatial point processes, volume 100 of Monographs on Statistics and Applied Probability, 2004.

J. Møller and R. P. Waagepetersen, Modern statistics for spatial point processes. Scand, J. Statist, vol.34, issue.4, pp.643-684, 2007.

L. Muche, Distributional properties of the three-dimensional Poisson Delaunay cell, Journal of Statistical Physics, vol.283, issue.3, pp.147-167, 1996.
DOI : 10.1007/BF02179580

L. Muche and F. Ballani, The second volume moment of the typical cell and higher moments of edge lengths of the spatial Poisson???Voronoi tessellation, Monatshefte f??r Mathematik, vol.37, issue.1, pp.71-80, 2011.
DOI : 10.1007/s00605-010-0202-3

L. Muche and J. M. Nieminen, Wigner surmises and the two-dimensional Poisson-Voronoi tessellation, Journal of Mathematical Physics, vol.53, issue.10, p.103507, 2012.
DOI : 10.1063/1.4753977

D. S. Newman, A new family of point processes which are characterized by their second moment properties, Journal of Applied Probability, vol.20, issue.02, pp.338-358, 1970.
DOI : 10.1017/S0305004100026384

I. Nourdin and G. Peccati, Poisson approximations on the free Wigner chaos, The Annals of Probability, vol.41, issue.4, pp.2709-2723, 2013.
DOI : 10.1214/12-AOP815

URL : https://hal.archives-ouvertes.fr/hal-00578465

J. Ohser and D. Stoyan, Zur Beschreibung gewisser zufälliger Muster in der geologie, Z. angew. Geol, vol.26, pp.209-212, 1980.

A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial tessellations : concepts and applications of Voronoi diagrams. Wiley Series in Probability and Statistics, 2000.

M. Ostaja-starzewski, Random fields and processes in mechanics of granular materials, Mechanics of Materials, vol.16, issue.1-2, pp.55-64, 1993.
DOI : 10.1016/0167-6636(93)90027-O

C. Palm, Intensitätsschwankungen im Fernsprechverkehr. Ericsson Technics no, p.189, 1943.

Z. Pawlas, LOCAL STEREOLOGY OF EXTREMES, Image Analysis & Stereology, vol.31, issue.2, pp.99-108, 2011.
DOI : 10.5566/ias.v31.p99-108

M. Penrose, Random geometric graphs, volume 5 of Oxford Studies in Probability, 2003.

L. Pereira and H. Ferreira, Limiting crossing probabilities of random fields, Journal of Applied Probability, vol.4, issue.03, pp.884-891, 2006.
DOI : 10.1017/S0021900200116110

M. B. Petrovskaya and A. M. Leontovich, The Central Limit Theorem for a Sequence of Random Variables with a Slowly Growing Number of Dependences, Theory of Probability & Its Applications, vol.27, issue.4, pp.757-766, 1982.
DOI : 10.1137/1127089

J. Pickands and I. , Statistical inference using extreme order statistics, Ann. Statist, vol.3, pp.119-131, 1975.

J. Pickands and I. , Multivariate extreme value distributions, Proceedings of the 43rd session of the International Statistical Institute, pp.859-878, 1981.

A. Poupon, Voronoi and Voronoi-related tessellations in studies of protein structure and interaction, Current Opinion in Structural Biology, vol.14, issue.2, pp.233-241, 2004.
DOI : 10.1016/j.sbi.2004.03.010

M. Ramella, W. Boschin, D. Fadda, and M. Nonino, Finding galaxy clusters using Voronoi tessellations, Astronomy and Astrophysics, vol.368, issue.3, pp.776-786, 2001.
DOI : 10.1051/0004-6361:20010071

URL : http://arxiv.org/abs/astro-ph/0101411

P. N. Rathie, On the volume distribution of the typical Poisson-Delaunay cell, J. Appl. Probab, vol.29, issue.3, pp.740-744, 1992.

M. Reitzner, E. Spodarev, and D. Zaporozhets, Set reconstruction by Voronoi cells, Advances in Applied Probability, vol.44, issue.4, pp.938-953, 2012.
DOI : 10.1239/aap/1354716584

URL : http://arxiv.org/abs/1111.4169

A. Rényi, Remarks on the Poisson process, Symposium on Probability Methods in Analysis (Loutraki, 1966), pp.280-286, 1967.
DOI : 10.1007/BFb0061124

S. I. Resnick, Extreme values, regular variation, and point processes, 1987.
DOI : 10.1007/978-0-387-75953-1

W. L. Roque, Introduction to Voronoi Diagrams with Applications to Robotics and Landscape Ecology, Proceedings of the II Escuela de Matematica Aplicada, pp.1-27, 1997.

L. A. Santaló, Integral geometry and geometric probability, With a foreword by Mark Kac, Encyclopedia of Mathematics and its Applications, 1976.

W. Schaap, DTFE : the Delaunay Tessellation Field Estimator, 2007.

M. Schlather, Models for stationary max-stable random fields, Extremes, vol.5, issue.1, pp.33-44, 2002.
DOI : 10.1023/A:1020977924878

R. Schneider and W. Weil, Stochastische Geometrie, 2000.
DOI : 10.1007/978-3-322-80106-7

R. Schneider and W. Weil, Stochastic and integral geometry. Probability and its Applications, 2008.
DOI : 10.1007/978-3-540-78859-1

M. Schulte, A central limit theorem for the Poisson???Voronoi approximation, Advances in Applied Mathematics, vol.49, issue.3-5, pp.285-306, 2012.
DOI : 10.1016/j.aam.2012.08.001

M. Schulte and C. Thäle, The scaling limit of Poisson-driven order statistics with applications in geometric probability, Stochastic Processes and their Applications, vol.122, issue.12, pp.4096-4120, 2012.
DOI : 10.1016/j.spa.2012.08.011

M. Shamos and D. Hoey, Closest-point problems, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975), pp.151-162, 1975.
DOI : 10.1109/SFCS.1975.8

A. F. Siegel and L. Holst, Covering the circle with random arcs of random sizes, Journal of Applied Probability, vol.19, issue.02, pp.373-381, 1982.
DOI : 10.1073/pnas.42.4.199

R. L. Smith, Extreme value theory for dependent sequences via the stein-chen method of poisson approximation, Stochastic Processes and their Applications, vol.30, issue.2, pp.317-327, 1988.
DOI : 10.1016/0304-4149(88)90092-0

R. L. Smith and I. Weissman, Estimating the extremal index, J. Roy. Statist. Soc. Ser. B, vol.56, issue.3, pp.515-528, 1994.

M. Spanel, P. Krsek, . Svub, O. Stancl, and . Siler, Delaunay-Based Vector Segmentation of Volumetric Medical Images A bound for the error in the normal approximation to the distribution of a sum of dependent random variables, Computer Analysis of Images and Patterns Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability II : Probability theory, pp.261-269, 1970.

W. L. Stevens, SOLUTION TO A GEOMETRICAL PROBLEM IN PROBABILITY, Annals of Eugenics, vol.9, issue.4, pp.315-320, 1939.
DOI : 10.1111/j.1469-1809.1939.tb02216.x

D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and Its Applications., Biometrics, vol.45, issue.2, 2008.
DOI : 10.2307/2531521

S. Torquato, Random heterogeneous materials, Interdisciplinary Applied Mathematics, vol.16, 2002.
DOI : 10.1007/978-1-4757-6355-3

M. N. Van-lieshout, Stochastic geometry models in image analysis and spatial statistics. [B D] CWI Tracts (Amsterdam), 1995.

G. Voronoi, Nouvelles applications des paramètres continusàcontinusà la théorie des formes quadratiques .deuxì eme mémoire : Recherches sur lesparalléllò edres primitifs, Journal. für die Reine und Angewandte Mathematik, vol.133, pp.97-178, 1908.

G. S. Watson, Extreme Values in Samples from $m$-Dependent Stationary Stochastic Processes, The Annals of Mathematical Statistics, vol.25, issue.4, pp.798-800, 1954.
DOI : 10.1214/aoms/1177728670

R. E. Welsch, A Weak Convergence Theorem for Order Statistics From Strong-Mixing Processes, The Annals of Mathematical Statistics, vol.42, issue.5, pp.1637-1646, 1971.
DOI : 10.1214/aoms/1177693162

P. Yiou, K. Goubanova, Z. X. Li, and M. Nogaj, Weather regime dependence of extreme value statistics for summer temperature and precipitation, Nonlinear Processes in Geophysics, vol.15, issue.3, pp.36-378, 2008.
DOI : 10.5194/npg-15-365-2008

URL : https://hal.archives-ouvertes.fr/hal-00331119

H. Zessin, Point processes in general position, Journal of Contemporary Mathematical Analysis, vol.43, issue.1, pp.59-65, 2008.
DOI : 10.3103/s11957-008-1005-x

S. A. Zuyev, Estimates for distributions of the Voronoi polygon's geometric characteristics, Random Structures & Algorithms, vol.61, issue.3, pp.149-162, 1992.
DOI : 10.1002/rsa.3240030205