N

N
N

HAL

open science

Meet-in-the-Middle Attacks on AES
Patrick Derbez

» To cite this version:

Patrick Derbez. Meet-in-the-Middle Attacks on AES. Cryptography and Security [cs.CR]. Ecole Nor-

male Supérieure de Paris - ENS Paris, 2013. English. NNT: . tel-00918146

HAL Id: tel-00918146
https://theses.hal.science/tel-00918146
Submitted on 17 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00918146
https://hal.archives-ouvertes.fr

Ecole doctorale de sciences mathématiques de Paris-Centre (ED 386)

ENS

ECOLE NORMALE
SUPERIEURE

Attaques par Rencontre par le Milieu

sur I’AES

THESE

présentée et soutenue publiquement le 9 Décembre 2013
pour 'obtention du
Doctorat de I’Ecole Normale Supérieure
(Spécialité Informatique)
par

Patrick Derbez

Composition du jury

Directeur de thése : Pierre-Alain Fouque

Rapporteurs : Gilles Barthe
Jacques Patarin

Eraminateurs : Henri Gilbert
Gaétan Leurent
David Pointcheval

Département d’Informatique de ’ENS — UMR 8548
Ecole Normale Supérieure

Mis en page avec la classe thesul.

Remerciements

En premier lieu je veux remercier Pierre-Alain Fouque pour avoir été un excellent
directeur tout au long de cette theése. J’ai réellement apprécié travailler avec lui car outre
son appui scientifique et la grande autonomie qu’il m’a laissée, il a également toujours
été 1a pour me soutenir et me conseiller durant ces trois années. Je le remercie aussi
ainsi que 'ENS pour m’avoir donner la chance de participer a autant de conférences
internationales qui, malgré le trac que j’ai pu avoir avant mes présentations, me laisse de
trés bon souvenirs.

Je suis trés reconnaissant envers les deux rapporteur de cette thése, Gilles Barthe
et Jacques Patarin, pour avoir examiner mon travail en le peu de temps qui leur était
imparti. J’associe également a ces remerciements Henry Gilbert, Gaétan Leurent et David
Pointcheval qui ont accepté de participer a ce jury de thése.

Merci a toutes les personnes de 'ENS et d’ailleurs avec qui j’ai pu échanger au cours de
I’élaboration de cette thése et en particulier a tous mes co-auteurs pour nos collaborations
fructueuses. Des remerciements spéciaux a Jérémy Jean et Charles bouillaguet sans qui ma
thése aurait compté beaucoup moins de moments sympathiques et de travaux intéressants.

Enfin je souhaite remercier toute ma famille et tous mes amis en particulier pour le
soutien qu’ils m’ont apporté pendant cette thése. Aussi, merci beaucoup a mes parents
pour m’avoir toujours encouragé dans mes études et dans la vie. Merci beaucoup a Thomas
et Florent pour tous ces bons moments en France, en Irlande ou sur SC2. Et finalement, un
énorme merci & ma compagne Natacha pour m’avoir supporté et soutenu quotidiennement
durant toutes ces années. Je te remercie de me pardonner pour tous ces week-ends et toutes
ces soirées plongé dans mes recherches. La réussite de cette thése te doit beaucoup et c’est
pourquoi je te la dédie.

i

il

A ma Pacsette.

iv

Table des matiéres

1 Introduction 1
(1.1 ~Cryptographie Symétrique] 1
(1.1.1 Les Types de Chiffrements Symétriques|. 2
[.1.2 Sécurité des Chiffrements|. 3
(1.2 Présentation de mes travauxl 3
[1.2.1 Mes Résultatsl 7
(1.2.2 [istes de mes Publicationsl 7

2 Automated Tool For Low Data Complexity Attacks on AES and Deri-
vatives 11
x -and-Determine Solversl 12
[2.1.1 Adapting the Gaussian klimination| 13
[2.1.2 Finding the Best Solver|00 20
-in-the-Middle Solvers 29
[2.2.1 Solving Subsystems Recursively| 29
2.2.2 Recursive Combinations of Solvers| 30
[2.2.3 Finding the best solver| 31
2.3 Conclusionl. o 37
[2.3.1 Other Settings and Open problems| 38
3 Low Data Complexity Attacks on Round-Reduced AES-128 41
[3.1 Low Data Complexity Attacks| 41
[3.2 Description of the AES| oo 44
B.3 Observations on the Structure of ARSI, 46
3.4 Attack on One-Round AFES 47
.41 Two Known Plamntextsl 0. 47
342 One Known Plaintextl. 48

vi Table des matieres
(3.0 Attacks on Two-Round AES oo 51
[3.5. [wo Known Plaintexts]. 51
3.50.2 A Three Known Plantext Variant!. 54
3.0.3 A lwo Chosen Plaintext Vapantl 54
(3.5.4 One Known Plaimntextl., 57
[3.5.5 Improved Attack When the Second MixColumns 1s Omitted| 60
(3.6 Attacks on Three-Round AESIo 000 60
3.6.1 Two Chosen Plaintexts 60
[3.6.2 Nine Known Plaintexts| 60
[3.6.3 One Known Plaintextl. 62
3.7 Attacks on Four-Round AESo oo 62
B.1 Ten Chosen Plantextsl 64
3.2 Iive Chosen Plaintextsl 64
3.3 Four Chosen Plaintexts) 65

3.8 Attack on Five-Round AES| 65
3.8.1 One Known Plaintext) 66

3.9 Attack on Six-Round AES| oo oo 66
[3.10 Implementations| Lo 69
4 Low Data Complexity Attacks on AES-Derivatives 71
[4.1 A Forgery Attack Against Pelican-MAC| 71
[4.2 A Key-Recovery Attack Against LEX| 73
421 Prior Artl 74
422 A New Attackl. 76

5 Fault Attacks on the AES 79
(5.1 Fault Analysis|. 79
H.1.1 Related Worksl oo 80

[5.2 Meet-in-the-Middle Fault Analysison AES| 81
[>.2.1 Original Attack of Piret-Quisquater| 81
[6.2.2 Improvement of Piret-Quisquater Attackl 81
b.2.3 Fxtension to One More Roundl. 82

[5.3 Impossible Difterential Fault Attack on AES 84

vii

6 Faster Chosen-Key Distinguishers on Reduced-Round AES 87
[6.1 Chosen-key distinguishers| 88
[6.1.1 Limited Birthday Distinguishers| 88

[6.1.2 Distinguisher for 7-round AES-128|. 90

[6.1.3 Distinguisher for 8-round AES-128|. 93

6.2 Extention to AES=256l. 97
[6.2.1 Distinguisher for 7-round AES-256[. 97

[6.2.2 Distinguisher for 8-round AES-256[. 98

[6.2.3 Distinguisher for 9-round AES-256[. 98

6.3 Conclusionl. 99

7 Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-

Round AES 103
[7.1 Attack of Demirci and Selcuk and Improvements|. 103
(/.1.1 The Demirci and Selcuk Attackl 104
[7.1.2 Previous Improvements of the Original Attack| 106

[7.2 Generalization of the Demirci and Selcuk Attackf. 107
[7.2.1 New Improvements of the Original Attack] 107
[7.2.2 Finding the Best Attackl 108

M3 Resulld. oo 108
[(.3.1 Overview of the Results| 108
[7.3.2 Observation on the Keyschedules| 110
[7.3.3 Attack on Six-Round AES-128 with 2° chosen-plaintexts| 111
[7.3.4 Attack on Seven-Round AES-256 with 2'° chosen-plaintexts|. 113
[7.3.5 Attack on Seven-Round AES-192 with 2°2 chosen-plaintexts|. 113

(4 An SPN-dedicated loollo oo 114
[7.5 Application to Low Data Complexity Attacks| 114
[7.5.1 Attack on Five-Round AES-128 with Eight Chosen Plaintexts| . . . 115

0.2 A K on Six- nd AES-128 with Thirteen Chosen Plaintexts| . . 116

8 The Differential Enumeration Technique 125
[8.1 Unified View of Previously Known MITM Attacks on AES| 127
8.2 New Attack on AES|. e 129
8.2.1 Efficient Tabulation|. 000000 129

viii Table des matiéres

[8.2.3 Efficient Attack: New Property | 133

[8.2.4 Turning the distinguisher into a key recovery attack|{ 135

8.3 Extension to More Roundsl 136
[8.3.1 Eight-Round Attacks on AES-192 and AES-256 136

[8.3.2 Improved Eight-Round Attack|. 138

8.3.3 Nine-Round Attack on AFS-2561 140

8.3.4 Nine-Round Attack on AFS-192 140

8.4 Conclusion|. 141
Bibliographie 151

Table des figures 161

Chapitre 1

Introduction

1.1 Cryptographie Symétrique

La cryptographie symétrique, ou cryptographie a clé secréte, est utilisée depuis des
milliers d’années et inclue tous les cas ol la méme clé est utilisée pour chiffrer et déchiffrer
un message donné. L’un des exemples les plus connus est sans doute le « chiffre de César »,
aujourd’hui appelé «chiffrement par décalage », ayant, selon la légende, servi a Jules César
pour pour ses correspondances secrétes et dont le principe est de décaler dans 1’alphabet
chaque lettre du message, la clé secréte étant le décalage.

Une variante de ce systéme cryptographique est de considérer une permutation quel-
conque de 'alphabet et non plus un décalage. Dans ce cas la clé pourrait étre une longue
séquence de nombres comme 5, 19, 1, 2, 11, ... indiquant que A correspond a E, B a S,
CaA, DaB,EakK,.. De tels systémes sont en réalité particuliérement faibles et la
cryptographie moderne repose sur des problémes mathématiques réputés trés compliqués
a résoudre.

A la différence de la cryptographie a clé publique oul le chiffrement est réalisé a I'aide
du clé (potentiellement) connue de tous mais ou la clé déchiffrement n’est (pratiquement,)
jamais partagé, la cryptographie symétrique requiére que la méme clé soit connue et
maintenue secréte par un petit groupe de personnes. Si cette clé secréte tombe entre
de mauvaises mains alors la confidentialité de tous leurs échanges est immédiatement et
complétement compromise. Ainsi se pose le probléme de la gestion et de ’échange de clés
secrétes. En particulier, ’environnement dans lequel est effectué le chiffrement doit étre
sous le controle total de 1'utilisateur pour garantir le meilleur niveau de sécurité, ce qui
exclu de fait les systémes d’exploitation fermés.

On fait souvent référence a des clés de tailles particuliéres comme 64 ou 128 bits. Ces
longueurs sont celles utilisées dans les algorithmes de chiffrement symétriques. A I'heure
actuelle, on admet que personne sur Terre ne peut effectuer plus de 2%° opérations en un
temps raisonnable. Ainsi un systéme de chiffrement est considéré comme sir si il utilise
une clé secréte d’au moins 80 bits et si la meilleure facon d’obtenir la clé secréte est de
toutes les tester. Cependant, pour certaines applications peu sensibles comme les cartes
de transport en commun, une sécurité de 64 bits est largement suffisante car réaliser 264
opérations est loin d’étre a la portée de tout le monde tant au niveau de la puissance de

2 Chapitre 1. Introduction

calcul que du cotit en électricité. En revanche, dans le cas de la cryptographie asymétrique
la taille de clés (ou au moins de la clé privée) est beaucoup plus grande. On estime qu’avec
Palgorithme de chiffrement RSA une clé privée de 1024 bits correspond approximativement
a la sécurité offerte par une clé de 80 bits dans le cas symétrique.

Les algorithmes de chiffrement symétriques sont considérablement plus rapides que les
méthodes & clé publique et sont donc préférés lorsque la quantité de données a chiffrer
est grande. Par exemple, le DES (Data Encryption Standard) est au moins 100 fois plus
rapide que le RSA en implémentation logicielle et jusqu’a 10 000 fois plus rapide sur
machines dédiées. En pratique, les systémes de chiffrement modernes sont hybrides : une
clé secréte est échangée utilisant un algorithmes de chiffrement a clé publique puis les
données sont chiffrées/déchiffrer avec un systéme symétrique.

1.1.1 Les Types de Chiffrements Symétriques

Les systémes de chiffrement symétriques sont maintenant généralement mis en ceuvre
en utilisant des algorithmes de chiffrement par blocs ou par flot, qui sont examinées dans
cette section. On présentera aussi ce qu’on appelle les codes d’authentification de message
(MAC), un mécanisme de controle qui utilise une clé secréte.

Chiffrement par Bloc. Un algorithme de chiffrement par bloc transforme un message
(claire) de taille fixée en un message (chiffré) de méme taille sous l'action d’une clé secréte.
Le déchiffrement est effectué en utilisant la transformation inverse et la méme clé. De nos
jours la taille des blocs de messages est le plus souvent de 64 ou 128 bits.

La taille des données a chiffrées est le plus souvent bien plus grande que la taille de
Pentrée d’'un algorithme de chiffrement par bloc et donc différentes techniques, appelés
modes d’opérations, sont utilisées. On peut citer par exemple le mode « Dictionnaire de
codes »(Electronic code book, ECB), « Enchainement des blocs »(Cipher Block Chaining,
CBC) ou encore « Chiffrement & rétroaction »(Cipher Feedback, CFB). avec le mode
ECB le message est divisé en plusieurs blocs puis chacun est chiffré séparément. Le gros
défaut de cette méthode est que deux blocs avec le méme contenu seront chiffrés de la
méme maniére et 'on peut donc tirer des informations & partir des données chiffrées
en cherchant les séquences identiques et ce mode est donc a proscrire dans certains cas
comme par exemple le chiffrement d’une image. Dans le mode CBC, on ajoute a chaque
bloc le chiffrement du bloc précédent avant qu’il ne soit lui-méme chiffré. Ainsi ce mode
ajoute un niveau de sécurité supplémentaire rendant certaines attaques bien plus difficiles
a réaliser. Une erreur courante faite par les développeurs non-spécialistes est d’utiliser un
algorithme de chiffrement par bloc en mode ECB plutdt que d’utiliser le mode d’opération
le plus adapté pouvant fournir des garanties supplémentaires.

La plupart des algorithmes de chiffrement symétriques sont aujourd’hui construit par
itération. Plus précisément, le méme algorithme de chiffrement (appelé «fonction de tour
») est appliqué plusieurs fois utilisant une clé de tours (ou sous-clé). Les sous-clés sont gé-
nérées a partir de de la clé secréte par un algorithme, appelé « algorithme de cadencement
de clé »ou « keyschedule ». Le nombre de tours choisi pour un algorithme de chiffrement
est un compromis entre la sécurité et la vitesse d’exécution voulu pour le systéme.

Les algorithmes de chiffrement par bloc les plus connus et utilisés sont le DES, IDEA,

1.2. Présentation de mes travaux 3

SAFER, Blowfish, Skipjack et 'AES qui est ’algorithme recommandé par le NIST depuis
2001.

Chiffrement par Flot. Les algorithmes de chiffrements par flot peuvent étre extré-
mement rapides par rapport aux chiffrement par bloc, bien que certains de ces derniers
sont aussi efficaces dans certains mode d’opérations (comme le DES en CFB ou OFB).
Un systéme de chiffrement par flot se présente souvent sous la forme d’un générateur de
nombres pseudo-aléatoires avec lequel on opére un « OU Exclusif »entre un bit a la sortie
du générateur et un bit provenant des donnée.

Les systémes de chiffrement par flot sont basés sur le « chiffre de Vernam », seul
algorithme de chiffrement théoriquement siir bien que présentant d’importantes difficultés
de mise en ceuvre pratique. En exemple de chiffrements par flot on peut citer RC4 et SEAL,
ainsi que HC-128, Rabbit, Salsa20/12, SOSEMANUK, Grain, MICKEY et Trivium du
projet européen eSTREAM.

Code d’Authentification de Message. Un code d’authentification de message (Mes-
sage Authentication Code, MAC) n’est pas a proprement parler un chiffrement mais plutot
un type particulier mécanisme de controle généré & partir d’une clé secréte et attaché au
message. Contrairement aux fonctions de hachage qui sont publiques et plus générale-
ment aux signatures électroniques, seuls une personne autorisée (connaissant le secret)
peut valider le code.

1.1.2 Sécurité des Chiffrements

La taille de la clé secréte est 'un des nombreux facteurs qui déterminent le degré de
sécurité d’'un systéme de chiffrement. Comme avec tous les problémes relatifs a la sécurité,
ce qui est important est le compromis entre les risques, les cofits et le temps d’exécution
entre autres choses. Par exemple, personne ne dépenserait 1 000 000 € dans une serrure
sophistiquée pour protéger 1 000 € de biens.

Les développeurs doivent donc évaluer précisément leurs besoins en fonction des cotits
de développement, la vitesse d’exécution, le paiement éventuel de droit d’exploitation, et
le niveau de sécurité. En revanche, il est clair qu’a restriction équivalente il vaut mieux
utiliser la solution offrant les meilleures garanties en termes de sécurité tout en restant
cohérent avec le milieu dans lequel le systéme sera déployé.

Il est également extrémement important d’examiner les modalités d’application d’al-
gorithmes particuliers, certaines pouvant ne pas étre trés sir. S’ajoute a cela la question
de permettre ’examen public, ce qui est essentiel pour assurer la confiance dans le pro-
duit. N'importe quel développeur ou éditeur de logiciels qui refuse de rendre les éléments
cryptographiques de leur application disponible publiquement ne méritent probablement
pas la confiance et fournit, presque certainement, un produit de qualité inférieure.

1.2 Présentation de mes travaux

Ma thése a été consacrée a l'algorithme de chiffrement symétrique AES, aussi connu
sous le nom de Rijndael. Il a été con¢u par Joan Daemen and Vincent Rijmen et est le

4 Chapitre 1. Introduction

grand gagnant d’une compétition internationale lancée par le NIST en 1997 pour trouver
un successeur au DES dont la taille de la clé de 56 bits ne permettait plus de garantir une
sécurité suffisante di a la forte augmentation de la puissance de calcul des ordinateurs.

Son statut de standard international a fait de I’AES I'un des chiffrements & clé secréte
les plus utilisés dans le monde et donc tout naturellement aussi I'un des plus étudiés par
les cryptanalystes. Deux principaux reproches ont été fait & I’AES, le premier concernant
la simplicité algébrique de sa description et le second concernant son algorithme de ca-
dencement de clé. En 2002, Nicolas Courtois et Josef Pieprzyk annoncaient une attaque
algébrique sur 'AES (JCP02]) mais qui fit quelques temps plus tard infirmée (JCLO3|)
et la possibilité de monter une attaque algébrique plus rapide que la recherche exhaus-
tive est toujours aujourd’hui un probléme ouvert. En revanche, en 2009, Alex Biryukov
and Dmitry Khovratovich utilisérent les faiblesses de l'algorithme de cadencement de
clé des versions 192 et 256 bits de ’AES pour obtenir des attaques plus rapide que la
recherche exhaustive pour ces deux versions ([BK09]). Dés lors ’'AES peut étre considé-
rer comme vulnérable mais, premiérement, la complexité théorique de ses attaques est
bien trop élevée pour étre praticable et, deuxiémement, ils se placent dans un modéle
fort ou l'adversaire peut observer les opérations d’un algorithme de chiffrement lorsqu’il
est utilisé avec différentes clés, aux valeurs inconnues, mais qui sont liées entre elles par
des propriétés mathématiques connues de I'attaquant. Ainsi, de 'avis de la communauté
scientifique, et aux vues des connaissances actuelles, ’algorithme de chiffrement AES est
toujours considéré comme str.

Mes travaux sur ’AES ont commencé par la remarque suivante : il est en pratique
souvent plus facile d’effectuer 2°° opérations sur un ordinateur que de voler 50 couples
claire/chiffré & quelqu’un. Ainsi je me suis intéressé au modéle d’attaque ou la quantité
de données en possession de 'adversaire est limitée & un maximum d’une dizaine de
couples clair/chiffré. Avec une telle restriction, les attaques classiques en cryptographie
symétrique telles que les attaques statistiques ne sont pas applicables car elles requiérent
beaucoup plus de données. Il est bien connu que les attaques algébriques n’ont besoin
que de peu données pour fonctionner et c’est donc tout naturellement que je me suis
intéressé au systéme d’équations décrivant ’AES. Mais, au lieu d’essayer de résoudre ces
équations avec un SAT-solver ou un algorithme basé sur les bases de Grobner, j'ai utilisé
des méthodes plus simples combinant ’algébre linéaire avec les techniques algorithmiques
de la rencontre par le milieu (Meet-in-the-Middle) et du diviser pour régner. Cela a donner
naissance a un outil permettant de résoudre un certain type d’équations sur les corps finis
ou, plus précisément, pour un systéme d’équations donné, de décrire une facon de le
résoudre ainsi qu'une bonne estimation de la complexité en temps et en mémoire de cette
résolution.

Comme il a été développé pour, cet outil a tout d’abord été utilisé pour trouver des
attaques sur un nombre réduit de tours d’AES lorsque la quantité de couples claire/chiffré
est trés limitée, trouvant des attaques ayant échapper aux cryptanalystes. Ensuite, en
tant qu’outil assez générique, il a pu étre appliquer & d’autres primitives cryptographiques
comme le chiffrement par flot LEX et le code d’authentification de message Pelican-MAC.
Enfin, j’ai utilisé une version légérement modifiée de cet outil pour exhauster certains types
d’attaques, me permettant d’améliorer la complexité en données des attaques de Demirci

1.2. Présentation de mes travaux 5)

et Selcuk publiées a FSE 2008, ainsi que de trouver les meilleures attaques connues sur
7 tours d’AES toutes versions confondues, sur 8 tours d’AES-192 et 256 et sur 9 tours
d’AES-256.

L’organisation de ce manuscrit suit cet ordre chronologique et dans la suite de cette
section je décris plus en détail chacune de mes contributions.

Automated Tool For Low Data Complexity Attacks on AES and Derivatives.

Ce chapitre est dédié a la description de I'outil ou, plus précisément, du probléme posé
ainsi que de la solution apportée. L’idée principale pour résoudre un systéme d’équations
du type considéré est de combiner ensemble par la technique du «Meet-in-the-Middle »des
algorithmes énumérant toutes les solutions de sous-systémes d’équations. Il y a plusieurs
fagons de construire un algorithme permettant de résoudre un systéme et le principal
probléme est de trouver la plus efficace. Malheureusement il est le plus souvent impossible
d’exhauster toutes ces facons mais néanmoins les résultats obtenus sont déja bien meilleurs
que ceux trouvé précédemment a la main. Trouver de meilleurs algorithmes de recherche
est aujourd’hui un probléme ouvert qui m’intéresse tout particuliérement.

Low Data Complexity Attacks on Round-Reduced AES-128.

Dans ce chapitre sont décrites la majorité des attaques trouvées par 'outil sur les
versions réduites de ’AES-128. Avec seulement 1 message & disposition de 1'adversaire,
loutil a réussi a trouver des attaques sur 1, 2, 3, 4 et 5 tours. L’utilisation de plus de
couples claire/chiffré n’a pas permis de casser plus de tours car le nombre de variables
devient trop grand pour étre géré par le programme. En revanche, cela a permis d’améliorer
la complexité des attaques sur moins tours avec en particulier une attaque sur 2 tours en 28
opérations utilisant 2 claires choisies et une attaque sur 4 tours en 232 opérations utilisant
4 claires choisies. Toutes les attaques trouvées ayant une complexité estimée inférieure ou
égale a 232 ont étaient testées en pratique, confirmant, chaque fois, les estimations faites.

Low Data Complexity Attacks on AES Derivatives.

Comme dit précédemment, 'outil a également donné des résultats sur un MAC basé
sur ’AES, Pelican-MAC et sur un systéme de chiffrement par flot également basé sur
I’AES, LEX.

Sur le code d’authentification de message Pelican-MAC proposé par Joan Daemen et
Vincent Rijmen, I'outil a aidé a la construction de la meilleure attaque connue a ce jour,
en mettant au point une procédure qui révéle 'état interne de la fonction en temps 232 une
fois qu’une collision sur I'état interne est trouvée. Cela est obtenu en résolvant 1’équation
AES,(z)—AESy(x+A;) = A, en la variable z, ot AES, désigne 4 tours complets d’AES
sans addition de clef. L’attaque résultante a une complexité de 254 requétes au MAC (pour
obtenir la collision).

Sur le systéme de chiffrement LEX proposé par Alex Biryukov, 'outil a également été
utilisé pour construire une meilleure attaque. Il a d’abord aisément retrouvé tout seul la
meilleure attaque connue, de complexité environ 2'°° opérations, puis, avec I'intervention

6 Chapitre 1. Introduction

d’un utilisateur, il a produit une attaque de complexité 280 utilisant 80 tera-octets de
key-stream.

Fault Attacks on the AES.

Les attaques par canaux auxiliaires sont aujourd’hui les seules & méme de menacer
la sécurité des systémes de chiffrement. Le principe est d’étudier ’environnement dans
lequel est exécuté le chiffrement pour obtenir des informations sur les calculs effectués et
ainsi obtenir une partie ou la totalité de la clé ou d’états internes. Dans ce chapitre on
s’intéresse aux attaques par fautes, modéle dans lequel I'adversaire peut modifier un ou
plusieurs octets d’un état interne. L’outil a permis d’améliorer 'attaque par faute de Piret
et Quisquater, en réduisant sa complexité de 232 opérations a 2%, Plus intéressant encore,
il a trouvé une attaque en 2%° lorsqu’une faute est injectée 3 tours avant le dernier, soit
un tour de plus que dans le cas de Piret et Quisquater, répondant ainsi & un probléme
ouvert. Enfin, dans ce chapitre est aussi décrite une nouvelle attaque par faute basée sur
la technique de la différentielle impossible.

Faster Chosen-Key Distinguishers on Reduced-Round AES.

Dans ce chapitre on étudie I’AES dans un modéle complétement différent de précé-
demment. Ici le but n’est plus de retrouver la clé & partir de plusieurs couples claire/chiffré
mais de générer rapidement des triplets composés d’une clé et d'un couple de messages
vérifiant certaines propriétés particuliéres.

Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round
AES.

Dans ce chapitre je décris une amélioration de 'attaque de Demirci et Selguk sur ’AES
présentée a FSE 2008. Plus précisément je montre comment monter approximativement
216 attaques similaires & la leur mais avec des complexités possiblement différentes. Pour
chacune d’elles, la complexité dépend du nombre de valeurs que peuvent prendre un
certains nombre de variables intermédiaires et de la vitesse a laquelle on peut les énumérer.
Ainsi, en utilisant 'outil j’ai pu exhauster toutes ces attaques et trouver les meilleures.
Cela a permis d’améliorer grandement la complexité en données des attaques de Demirci
et Selguk.

The Differential Enumeration Technique.

Dans ce chapitre je présente une version corrigée d’une technique introduite par Orr
Dunkelman, Nathan Keller et Adi Shamir pour améliorer I’ attaque de Demirci et Selguk
présentée dans le chapitre précédent. Combinée & ma propre amélioration de 1’ attaque
de Demirci et Selcuk, cette technique m’a permis d’obtenir les meilleurs attaques connues
(dans le modéle a claires choisis) sur 7 tours d’AES toutes versions confondues, sur 8 tours
d’AES-192 et 256 et sur 9 tours d’AES-256.

1.2. Présentation de mes travaux 7

1.2.1 Mes Résultats

Pendant ma thése j’ai eu la chance de participer a la découverte de nouveaux résultats
sur ’AES et ses dérivés souvent meilleurs que ceux précédement trouvé. Nombre d’entre
eux sont décrit dans ce manuscrit et repertoriés dans les Tables et [[.2] La Table
contient les complexités de nos attaques sur I’AES-128 dans le modéle a clairs connus ainsi
que dans celui a clairs choisis. Celles des nos attaques sur les versions 192 et 256-bit de
I’AES sont reportés sur la Table [I.2] Des tableaux de résultats plus complet sont donnés
dans les chapitres suivant contenant aussi les résultats autres que les nétre pour mesurer
les améliorations que nous avons apportées.

1.2.2 Listes de mes Publications

e Automatic Search of Attacks on Round-Reduced AES and Applications.
Charles Bouillaguet, Patrick Derbez, Pierre-Alain Fouque (CRYPTO 2011)

e Meet-in-the-Middle and Impossible Differential Fault Analysis on AES.
Patrick Derbez, Pierre-Alain Fouque, Delphine Leresteux (CHES 2011)

e Faster Chosen-Key Distinguishers on Reduced-Round AES.
Patrick Derbez, Pierre-Alain Fouque, Jérémy Jean (INDOCRYPT 2012)

e Low-Data Complexity Attacks on AES.
Charles Bouillaguet, Patrick Derbez, Orr Dunkelman, Pierre-Alain Fouque, Nathan
Keller, Vincent Rijmen (IEEE Transactions on Information Theory 58)

e Improved Key Recovery Attacks on Reduced-Round AES in the Single-Key Setting.
Patrick Derbez, Pierre-Alain Fouque, Jérémy Jean (EUROCRYPT 2013)

e Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES.
Patrick Derbez, Pierre-Alain Fouque (FSE 2013)

Chapitre 1. Introduction

TABLE 1.1 — Summary of our key-recovery attacks on AES-128 described in this thesis.

Complexity

#Rounds Data Time Memory Description
1 1 KP 232 216 Section |3.4.2
2 1 KP 2064 248 Section [3.5.4
2 2 KP 232 224 Section [3.5.1
2* 2 KP 224 216 Section [3.5.5
2 2 CP 28 28 Section [3.5.3
3 1 KP 2% 272 Section [3.6.3
3 2 CP 216 28 Section [3.6.1
4 4 CP 232 224 Section [3.7.3
5* 1 KP 2120 296 Section [3.8.1
5 8 CP 264 256 Section [7.5.1
6 21085 KPp 2112 2108:5 Section (3.9
6 13 CP 2120 2% Section [7.5.2
6 28 CP 210617 210617 Section [7.3.3
7 932 CPp 12647 912647 Apnendix [7.B.6
7 2105 CP 299 2% Section |8.2
7 297 CP 299 298 Section [8.2.3

KP : Known-plaintext — CP : Chosen-plaintext.

* 1 Last MixColumns omitted.

Time complexity is measured in approximate encryption units.
Memory complexity is measured approximately in 128-bit blocks.

1.2. Présentation de mes travaux 9

TABLE 1.2 — Summary of our key-recovery attacks on AES-192 and 256 described in this thesis.

Complexity
Version #Rounds Data Time Memory Description
6 28 2109.67 210967 Appendix [7.B.1
7 28 2163 215334 Appendix [7.B.3
7 232 2129.67 2129.67 Section [7.3.5
192 7 2105 299 290 Section 8.2
7 297 299 298 Section [8.2.3
8 932 Q18217 9182.17 Appendix [7.B.8
8 2107 2172 296 Section [8.3.1
8 2104.83 2140 Q13817 Section [8.3.2
6 28 2122 211334 Appendix [7.B.2
7 28 217034 2186 Appendix [7.B.4
7 216 2178 215334 Section [7.3.4
7 232 2133.67 2133.67 Appendix [7.B.7
056 7 2105 299 290 Section [8.2
7 297 299 298 Section [8.2.3
8 28 223417 223417 Appendix [7.B.5
8 232 2195 219334 Appendix [7.B.9
8 2107 2196 296 Section [8.3.1
8 2102.83 9156 2140.17 Section [8.3.2
9 232 2254.17 2254.17 Appendix [7.B.10
9 2120 2203 2203 Section [8.3.3

KP : Known-plaintext — CP : Chosen-plaintext.

* : Last MixColumns omitted.

Time complexity is measured in approximate encryption units.
Memory complexity is measured in 128-bit, blocks.

10

Chapitre 1. Introduction

Chapitre 2

Automated Tool For Low Data
Complexity Attacks on AES and
Derivatives

Breaking a good cipher should require "as much work as solving a system of simulta-
neous equations in a large number of unknowns of a complex type”.

Since the introduction of the AES in 2001, it has been questioned whether its sim-
ple algebraic structure could be exploited by cryptanalysts. Soon after its publication
as a standard [NISOI], Murphy and Robshaw showed in 2002 an interesting algebraic
property: the AES encryption process can be described only with simple algebraic op-
erations in Fos [MRO02]. Such a result paved the way for multivariate algebraic tech-
niques [CP02, [Cid04] since the AES encryption function can also be described by a very
sparse overdetermined multivariate polynomials system over Fo. However, so far this ap-
proach has not been so promising [MV04, [CL0O5|, and the initial objective of this simple
structure, providing good security protections against differential and linear cryptanalysis,
has been fulfilled.

In this chapter, we describe an automated tool we originally designed to find very low
data complexity attacks on the AES. The global strategy is to encode the cryptanalytic
problem at hand (key-recovery, state-recovery, differential pair-finding, etc.) as a system
of equations over Fys involving a non-linear S-box and then solve it. However, our tool is
not an equations solver strictly speaking as it does not try to solve the equations directly.
Actually, given a system of equations, it runs a search for an ad-hoc solver among a
particular class of solvers tailored for this system and then returns the source code of the
fastest found. Once compiled, the executable program (a.k.a. the attack) can enumerate
all the solutions of the system. Furthermore, the tool gives a good approximation of the
expected run-time the attacks it produced, which is identical for any good instantiation
of the S-box. Thus, our approach is quite different from the usual algebraic attacks based
on SAT-solvers or Grobner basis algorithms [MR02, BPW06| which require to replace the
S-box by its polynomial expression and lack good bounds on their complexity.

The idea of building an automated tool to find attacks of some kind on a given primitive
to alleviate the task of cryptanalyst is not new and has been successful many times. Nice

11

12Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

examples include the cryptanalyses of Grindhal by Peyrin [Pey07] and of RadioGatun
by Fuhr and Peyrin [FP09]: in both case a custom-made program found a truncated
or symmetric differential characteristic leading to a collision. Biryukov and Nikoli¢ de-
signed a tool to automatically find related-key attacks in the AES [BN10], and along with
Khovratovich they designed a tool to search for collision attacks on byte-oriented hash
functions [KBN09|. Much earlier, Matsui designed a tool to find differential characteris-
tics and linear approximations [Mat93]. Leurent developed a tool to find good differential
paths in MD4 and MD5 [FLNQT|, while De canniére and Rechberger developed a tool to
find good differential characteristics in SHA-1 [CRO6], etc.

Our tool is somewhat generic, as it is not specialized to a particular block cipher, and
we applied it to reduced-round versions of the AES, to the stream cipher LEX [Bir08al, to
the message authentication code Pelican-MAC [DR05¢], to the block cipher SQUARE [DKRI7],
to SkipJack [NSA9§]|, etc. Some of the attacks found by this algorithm are described in
next chapters. Once given a very little bit of human knowledge, our tool automatically
rediscovers the best known attacks on Alpha-MAC [DRO5b| and LEX. It also discovered
the best known attack on Pelican-MAC (a different attack with the same complexity was
independently discovered at about the same time by Dunkelman, Keller and Shamir).
The tool also helped us to find the best known attack on the LEX stream cipher. The
tool outputs the source code of a program performing the attack, but can also provide a
somewhat human-readable description of the attack procedure, which was used in some
cases to understand and describe the attacks. Furthermore, it was later used as a sub-
component of an other tool described Chapters[7]and [§leading to the discovery of the best
attacks on 7, 8 and 9 rounds for the 128, 192 and 256-bit versions of the AES respectively.

All in all, this chapter is dedicated to the description of the particular class of solvers
considered in our tool and to the methods we may applied to find the fastest among it.
First we will describe the kind of systems of equations studied and explain our general
idea. Then we will present a restricted class of solvers based on the guess-and-determine
technique and see some interesting properties they share. Finally, we will show how to
extend the previous class by using the meet-in-the-middle technique.

2.1 Guess-and-Determine Solvers

Let begin by properly define the kind of systems of equations studied in this chapter.
Given a finite field F,, where ¢ is a power of a prime number, and a non-linear function
S :F, — F,, we define an AES-like equation as follows:

Definition 1 (AES-like equation). An AES-like equation in variables X = {x1,..., 2}
s an equation of the form:

iaixi + iblS(xl) +c= O,
=1 =1

where ay, ..., ap,b1,...,0,,ceFy,.

AES-like equations enjoy some very interesting properties. First the set of all the
AES-like equations in variables X = {zy,...,z,} is a vector space over F,. Indeed, this

2.1. Guess-and-Determine Solvers 13

set is stable by the multiplication by a scalar and the sum of two AES-like equations is
still an AES-like equation.

Definition 2 (AES-like system). We denote by V (X) the vector space spanned by all the
AES-like equations in variable X.

As a consequence a system of AES-like equations is a subspace of V (X) and this
chapter is dedicated to solving such systems. This structure allows us to use some of
the resolution techniques used in linear algebra. Indeed, faced to a system of equations
(possibly describing a cryptographic problem), the most naive way to obtain its solutions
consists in enumerating all the possible values of the variables and retaining only the
ones satisfying all the equations. But in the case of a system of linear equations, the
best method is to first put the system into an echelon form by performing a Gaussian
elimination and then enumerate all the solutions (linearly in the number of solutions).
For instance, suppose the goal is to find and describe the set of solutions of the following
system of linear equations:

T + - Z = a
4 ,where a and b are some constants.
2 + y + z = b

Then performing a Gaussian elimination leads to the equivalent system:

r + vy — z = a
y — 3z = 2a—b
We note that there is a first (polynomial) step where the system of equations is refined
independently of the two constants a and b and then, for each values of the constants, we
can enumerate all the solutions of the system linearly (in the number of solutions). This
resolution process is well-adapted to cryptanalysis because a and b may be seen as the
information owned the adversary when she will run the attack. For instance a and b may
be a plaintext and its corresponding ciphertext and as a consequence the attack will work

whatever the couple in his possession. Our idea is to apply a similar resolution scheme
on systems of AES-like equations.

2.1.1 Adapting the Gaussian Elimination

Let E be (the vector space spanned by) a system of AES-like equations in variables
X = {x1,...,x,}. Our first goal is to put this system into an "echelon form" in order to
build a fast solver to enumerate all the solutions of E (denoted Sol (E)). We stress that
there is no reason for Sol (E) to be a vector space. The classical method to echelonize
the system is to eliminate the variables one by one and therefore we need to be able to
extract from the system E the biggest subsystem in any subset Y of X. The most natural
way to achieve this operation is to perform the intersection of the two subspaces E and
V (Y), leading to the following definition:

Definition 3 (subsystem). Let E be a system of AES-like equations in variables X and
let Y be a subset of X. We denote by E(Y) the subspace E NV (Y). This subspace is the
biggest subsystem of |E composed of AES-like equations in variables Y.

14Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

Indeed, by definition V (Y) is the subspace of all AES-like equations in variables Y
so E(Y) is obviously the biggest subspace of E in variables Y that we can reach by
performing linear combinations on vectors of [E. However, if we replace the function S by
its polynomial expression then a Grébner basis of E for a well-chosen elimination order
may contain more polynomials in variables Y than dimE(Y), leading to more equations
than contained in E(Y'). But first those equations will probably not be AES-like equations,
then they do depend on the choice of the function S, and finally obtaining them may be
a very hard task depending on the number of variables and on the degree of S.

Now it is natural to consider the following sequence of subspaces:

E(g) c E({z}) € E({zy,22}) € ... € E({x1,...,2p1}) €S E({2y,...,2,}) = E.

Performing a Gaussian elimination on the system [is equivalent to building a basis of E
by first taking a basis of E((J), then by completing it into a basis of E({x}), then into
a basis of E({z1,25}), and so on. Thus, the first step is to look at E(&) = En V ().
The vector space V () is the set of equations with the form 0 = ¢ where ¢ is a known
constant or a parameter that will be required to run the solver as for instance the variables
representing the plaintexts and the ciphertexts (in the sequel we will just say parameter).
If E(&) # {0 = 0} then it contains such an equation with ¢ being a non-zero constant
or a parameter. In the first case the system has no solution so we can stop the analysis
here. In the second case we replace ¢ by 0 in the system of equations and add to the
solver this condition to check. So without loss of generality we can assume that E(¢J) =
{0 = 0}. Now let assume that we know how to solve E({z1,...,2:}) for some constant
ke {0,...,n —1}. In that case we can solve E({zy,...,z,41}) by first enumerating all
the solutions of E({z1,...,zx}) and then by computing for each of them all the possible
values of the variable xyq such that (z1,...,2,41) is a solution of E({z1,...,xx41}). As
the assumption is obviously true for £ = 0, this algorithm allows us to solve the system
E.

System of Linear Equations. If the system E is linear then it is known that for
any ke {l,...,n— 1}, dmE({zy,...,z511}) —dimE({z1,...,2}) € {0,1} depending on
whether there is or not an equation involving x4 and (eventually) some variables of
{z1,...,2,}. More precisely, at each step the variable xj,; is either guessed or uniquely
determined by the previous ones. Furthermore, the number of guessed variables does not
depend on the order we chose for X as we have the equation:

Y dimE({zy,...,2}) — dimE({zy,. .., 2—1}) = dimE({zy,...,2,}) — dmE(Q)

= dimE. (2.1)
Indeed, if we denote by n; the number of variables x; such that
dimE({z1,...,23}) —dimE({zq,...,2x_1}) = 1,

then we have ng+n; = n and the above equation implies ng = n—dim [E which is constant
(for a given system of equations).

System of AES-like Equations. Things are a bit different for systems of AES-like
equations and the following property is the main reason:

2.1. Guess-and-Determine Solvers 15

Property 1. Let E be a system of AES-like equations in variables X. If x € X and
Y=X—-{z}, VIX)=WV(Y),z=0,52) =0) and so dimV (X) = dimV (Y) + 2. As
a consequence

dimE(X) — dimE(Y) € {0, 1,2}.

Two equations like x + f(Y) = 0 and S(x) + g(Y) are linearly independent and thus
the elimination of a variable may result in the loss of two equations instead of one in the
case of linear equations. This directly affects the number of variables guessed during the
solving process because Equation now implies ny +2ny = dimE so ng = n+ny—dimE
which may vary. In particular, modifying the order in which variables are enumerated
may increase the number of variables to guess, potentially resulting in an increase of the
time complexity. It turns out that our set of solvers for E will be identified to the set of
all the permutation of X. But before that we have to understand how a variable can be
deduced from other ones. There is two cases to consider:

i) dmE({zy,...,2x}) — dimE({zy,...,25_1}) = 1: there is an AES-like equation

flzx) = g(x1, ..., x81),

with f: 2 — ax + 3S(z) where « or 8 is non-zero. For each value of (z1,...,x5_1),
the variable x) can assume any value of the set f~'(g(xy,...,zx_1)). Note that
this set may contain more or less than one element since the function f is not nec-
essary one-to-one. The inverse of the function f can be precomputed and stored
in a hash table to access each solution in constant time. As a result, finding all
the solutions of E({xy,...,zx}) from the ones of E({z1,...,xx_1}) requires exactly
|Sol (E({x1,...,x,_1})) | evaluations of g, as much lookup in the hash table and the
reading of |Sol (E({z1,...,zx})) | solutions.

it) dimE({z1,...,2x}) —dimE({zq,...,2x_1}) = 2: there are two AES-like equations

T = gl(‘rlv s ,l’k_1)7 S(xk’) = 92(‘%'17 s 7xk—1)-
For each value of (z1,...,x,_1), the first equation is used to uniquely determine the
value of variable xj and then (z1,...,x) is a solution if and only if the second one

holds. In particular, |Sol (E({z1,...,zx})) | < |Sol (E({z1,...,zk-1}))|.
All in all, this leads to the following definition of a solver:

Definition 4 (class of guess-and-determine solvers). Let E be a system of AES-like equa-
tions in variables X. The class of solvers considered to solve E is identified to the set
of all the permutations of X: given such a permutation o, we associate to it the solver
corresponding to the chain:

E({o(1)}) c E({c(1),0(2)}) ... € E({c(1),...,0(n—1)}) < E({o(1),...,0(n)}) = E.
We denote its time complexity by T, which is approrimated by:

T~ max(|Sol (E({o(1)})) [, [Sol (E({a(1),a(2)})) |, - .., [Sol (E) |).

16Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

Note that we omit the time spent to inverse the functions — ax+S(z) because they
can be precomputed and only ¢ of them have to be processed, bounding the complexity of
this part to ¢* elementary operations and approximately g% log,(q) bits of storage. Indeed,
for any non-zero A and any subset X of F,, we know that:

(z > dax + A\BS(z)) 1 (X) = (2 — ax + 3S(x)) ' (AN 1X).

As a consequence, we only have to process the functions such that « = 1 and 8 # 0 (the
case (o, 3) = (1,0) is obviously not required) or a = 0 and § = 1. As the value of ¢
considered in practice is 256, the complexity of this part is negligible.

Assumption on the Number of Solutions

Computing the complexity of the solver requires evaluating the number of solutions
of various subsystems. This is a difficult problem in general, and in order to be able to
quickly evaluate it, we use the following heuristic assumption:

ISol (E(Y)) | ~ ¢Y74mEX) for any subset Y of X.

This heuristic assumption comes from the intuition that any function f(z1,...,zx) =
Zle a;x; +b;S(x;) reaches each element of F, almost as much times. Given two sequences
(an),en and (by,), oy it is easy to show that for any k:

Sy Sy
eFa i=1 =te i=1

k+1 k
max Prob <Z a;x; + b;S(x;) = c) < max Prob (Z a;x; + b;S(x;) = c) ,

where the x;’s are pick randomly, following a uniform distribution.
Indeed, let p; . = Prob <Zf:1 a;x; + b;S(x;) = c) and po . = Prob (ag112k11 + bpr1S(2k41) =).

Then for any o € F, we have Prob (Zf:ll a;x; + b;S(x;) = oz) = Zcqu D1,a—cD2,c leading
to the expected result:

Z P1,a—cP2,c < maxpi a—c Z P2, = Maxpy c.
celFy celfy

cely celFy

As a consequence our assumption makes sense as long as the equation ax + bS(x) = ¢
doesn’t have too many solutions whatever the value of {a, b, ¢} (excepted {a, b} = {0, 0}).
However it introduces a risk of failure, or of wrong estimation of the complexity. In par-
ticular, a difficulty that we encountered in practice stems from the following "differential"
system:

r—y = A

S(x)=Sy) = A,
If S'is the S-box of the AES, then this system has one solution on average (over the random
choice of the differences), and the hypothesis holds. However, in degenerate situations,

for instance when A; = A, = 0, then the system has 2° solutions... Surprisingly, an S-box
with very bad differential properties would make life more difficult for us. This follows

2.1. Guess-and-Determine Solvers 17

from the fact that on a good S-box, there are very few pairs of input/output values that
generate a given input/output difference, and this makes our assumption more likely to
hold in "differential" situations. However this case is easily handled in practice: if there
is an equation like x — y = 0 then we will replace each occurrence of y and S(y) by =
and S(x) respectively in the system of equations. More generally, if there is an equation
like az 4+ bS(z) — ay — bS(y) = c then the three cases {¢ # 0}, {¢ = 0,z = y} and
{c = 0,2 # y} are considered. A more vicious case failing the heuristic assumption comes
from over-determined systems that leads to a non-integer number of solutions. In itself it
is not a real issue since in that case ¢/YI=4™E(Y) can be seen as the probability that there
is a solution. But it may lead to pathological cases such that:

Tr =
S(x) = b
y+z = c

This system has three equations in three variables so we expect 1 solution. But in fact
this system has exactly ¢ solutions if S(a) = b and 0 otherwise. Such cases are more
delicate to handle without computing dimE(Y) for each subset Y of X. Indeed, if we
echelonize this system according to the chain:

E({z}) = E({r,y}) < E({z,y, 2}),

then we will see that [{z}| — dimE({z}) < 0 and we will take an appropriate action. But
if we consider the chain:

E({y}) = E({z,y}) < E({z,y, 2}),

then no problems will be detected leading to a possible wrong estimation of the time
complexity. When such a problem is encountered for a subsystem E(Y), our idea is to
stop the analysis at this point and to restart an analysis of E but where the variables
Y will be seen as parameters (denoted by Ey). Then, by combining the solver for E(Y)
and the one for Ey, we will obtain a solver for the whole system E. In the sequel we will
assume that this pathological case never happens.

In any case, this assumption makes it very easy to evaluate the time complexity of a
solver: it boils down to computing a vector-space intersection.

A Toy Example

To fully understand how works the solver, let study the following system of equations:

r + y + Sy + z — Sz + t + Sit) =0
S(x) + y — Sy + =z — Sk + t + S 0
r + S() + 2y + Sy) + 3z — 35(2) + 2t + 3S(t) = 0

This system is composed of three AES-like equations involving four variables z, y, z and
t. If the equations were linear and independent then a solver for such a system would have

18 Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

exactly ¢ solutions and enumerate all of them would require ¢ operations. Let see what
happens in the case of AES-like equations. First, let consider the permutation [¢, z,y, x|
corresponding to the chain:

E({t}) < E({z,t}) = E({y, 2, t}) < E({z,y, 2, 1}).

In that case the system is refined into:

5($)+y—5(y)+z—5(z)+t+S(t);

As we can see, E({t}) = E({z,t}) = {0 = 0} so we begin by guessing the two variables z
and ¢. Then we observe that the only equation contained in E({y, z,t}) is

S(y) +z—S(z) +S(t) =0.

So the variable y can be deduced from z and ¢, the set of possible values for y being the
set S7! ({—z + S(z) — S(t)}). Finally, for each solution of E({y, z,t}) we have to find the
possible values for x according to the two equations:

r+y+Sy)+z—8(z) +t+S(t) =
Sx)+y—Sy)+z—-95(2)+t+5(t) =

To do so, the first equation is used to deduced x from y, z and t and then we check
whether the second equation holds. This solver is described in an algorithmic manner in
Algorithm [I}

2.1. Guess-and-Determine Solvers 19

Algorithm 1: Solver of the toy example system of AES-like equations
Data: A function S : F, — F,.
Result: All the solutions of the system of equations.

T «—— table of ¢ empty sets;

forall the v € F, do // Inverse the function S
| T[S(v)] «— T[S(v)] v {v}

end

Sol — empty set;
forall the t € F, do // solutions of E({t})
forall the z € F, do // solutions of E({zt})
forall the y e T[—2+ S(2) — S(t)] do // solutions of E({y,zt})
re——(y+Sy)+2z—9k)+t+S5());
if S(x)+y—S(y)+2—S(2) +t+ S(t) =0 then

‘ Sol «—— Sol u {(x,y,z,t)} // solutions of E({z,y,zt})
end
end
end
end
return Sol

First a table representing the inverse of the function S is constructed in order to be able
to quickly deduced the possible values of y from z and t. Performing this part requires
q elementary operations and approximately glog,(q) bits to store the table. Then, the
solutions of the system are computed in time 7" depending only on the number of solutions
of the considered subsystems. Indeed, the number of operations performed is:

max (|Sol (E({t})) [, |Sol (E({z,})) |, |Sol (E({y, 2, t})) |, |Sol (E({z, y, z,})) |) -

According to the heuristic assumption it is equal to:

max (¢, ¢*,¢%, q) = ¢*.

However, this assumption is used only to determine the number of solutions of E({y, z, t}).
Indeed, the two subsystems E({t}) and E({z,t}) contain the equation 0 = 0 only and we
are sure that E({z,y, z,t}) cannot have more solutions than E({y, z,t}). As a consequence
T = max (¢%, |Sol (E({y, z,t}))|) and will be between ¢? and ¢* for any S-box which is
higher than expected in the linear case.

Now let consider the solver obtained with the permutation [y, z,t, z] corresponding to
the chain:

E({y}) < E({z,y}) € E({z, y,t}) < E({z,y, z,1}).

20Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

In that case the system is refined into:

z — S(2) + S(t) + Sy =0
< t + Sx) + y — 25@y) = 0
r — S(z) + 2S(y) = 0

L

The corresponding solver begins by guessing the variable y and then the variables z, ¢
and z are deduced successively. Its complexity is

T

max (|Sol (E({y})) |, [Sol (E({z,y})) |, |Sol (E({z,y,t})) |, |Sol (E({z,y, 2,1})) |)
= max (q, [Sol (E({z,1})) |, |Sol (E({z,y, 2, 1})) |)

because E({y}) = {0 = 0} and |Sol (E({z,y}))| = [Sol (E({z,y,t}))|. According to the
heuristic assumption we have T' = ¢ and for instance if the function v — v — S(v)
is a bijection this complexity is reached. In that case this solver will be faster than the
previous one, proving that the complexity of such solvers does depend on the permutation
used to echelonize the system. So now our goal is clearly identified: find the permutation
corresponding to the fastest solver.

2.1.2 Finding the Best Solver

The most naive way to find the best solver is to try all the permutations. But |S,,| = n!
and for each permutation computing its complexity require computing the dimension of
n subspaces. Furthermore those subspaces are obtained by performing the intersection
between [E and various subspaces. As a consequence such an algorithm requires approxi-
mately (n+1)! non-elementary operations and only systems involving a very small number
of variables can be handled in practice. However it is possible to improve this algorithm
by using some simple observations. Actually, there are two possible methods to tackle the
problem depending on whether it is seen as finding the best guess-and-determine attacks
or as finding the best way to echelonize the system. Indeed, a bottom-up approach seems
more adapted to the first case while a top-down approach is the most natural in the sec-
ond one. For each of them we will show how to reduce the search space and describe an
algorithm that solves the problem.

From the Bottom

Let begin by the bottom-up approach. It is natural to think that an optimal solver
can be constructed by first guessing a variable, then deducing all the variables we can,
then guessing a new one and so on until we obtain all of them. More generally, given a
subset of the variables we are interested by the variables that can be deduced from it,
leading to the following definition:

2.1. Guess-and-Determine Solvers 21

Definition 5 (PROPAGATE). Let E be a system of AES-like equations in variables X and
let be Y < X. We say that a variable v can be deduced directly from Y if and only if
reY ordmE(Y u{z}) —dimE(Y) > 1 (i.e., there is at least one equation involving
the variable x and (possibly) some of Y). We denote by PROPAGATER(Y) the set of all
such variables.

In the sequel we will omit to specify the system of equations and write only PROPAGATE(Y).
The variable x is said to be deduced from Y because according to the heuristic assumption
on the number of solutions, we have the equivalence:

r € PROPAGATE (Y) < |Sol (E(Y u {x}))| < |Sol (E(Y)) |.

The operator PROPAGATE has some interesting properties. First it is fairly easy to see
that it is monotonic:

Y € Z — PROPAGATE(Y) € PROPAGATE(Z).

Furthermore, and as the time complexity of a solver only depends on the number of
solutions of subsystems, we can build from a solver o of a subsystem E(Y) a solver for
E(PROPAGATE(Y)) denoted PROPAGATE(0) such that Tpropacars(o) = 1o-

Property 2. Let E be a system of AES-like equations in variables X, Y be a subset of X
and Z = PROPAGATE(Y)—Y. Let oy be a permutation of Y. Then, for any permutation
oz of Z, the permutation 0 = oy || 0z of PROPAGATE(Y) is such that

|Sol (E({o(1),...,0(k)}))| = |Sol (E({o(1),...,0(k+1)}))],

for all k € {|Y|,...,|PROPAGATE(Y)| — 1}. In particular,
T, =T,, and |Sol (PROPAGATE(Y))| < |Sol (Y) |.

Here a permutation is seen as an ordered sequence and then o = oy || 0z means that
o(k) is equal to oy (k) (resp. oz(k—1|Y])) for any k < |Y| (resp. k > |Y|). The definition
of PROPAGATE(0) seems unclear as we have many choices for it but makes sense as all the
choices for PROPAGATE(0) have the same time complexity and solve the same subsystem.
Indeed it is fairly easy to show the following property:

Property 3. Let E be a system of AES-like equations in variables X and Y be a subset of
X. Let o and o' be two permutations of Y such that T, < T,.. Then, for any permutation
" of X =Y, we have Tyjor < Torjjon.

Proof. By definition, we have:

— Tyor = max(T,, |Sol (E(Y u {o"(1)}))|,...,|Sol (E)|)
— Tyor = max(Tyr, |Sol (B(Y U {o"(1)}))],...,|Sol (E))
ThllS, Tg < Tg/ implies TJHJ// < TU/HJ//.]

A natural extension of this property is to expect that if a solver enumerates as fast the
solutions of a bigger subsystem than an other solver then we could use it instead. While
it seems to hold in practice, unfortunately it does not in general and Theorem [1| is the
best we can get.

22Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

Theorem 1. Let E be a system of AES-like equations in variables X and Y ,Z be two
subsets of X such that Y < Z. Let oy, oz and ox_y be permutations of Y, Z and
X =Y respectively. Let ox_z be the permutation of X — Z conserving the order induced
by ox_v. If for any subset V such that Y < V < Z then |Sol (E(V))| = |Sol (E(Z)) |
and if T,, <1, , then

Y’

T[Uszfxfz] < T[UYHﬂfo]'

In particular, if there is an optimal solver going through Y then there is one going through
Z.

The proof is fairly easy but notations introduced in this section make it ugly. However
a proof of a more general theorem is given Section [2.2.3.0 Tt relies on the following lemma
about the evolution of the number of solutions:

Lemma 1. Let X, X5 and X3 be three subsets of X such that:
i) Xo € X,

i) |Sol (E(Xy)) | < [Sol (E(Xz)) |

i) Xy n Xz =Xy n X3

Then |Sol (E(X; U X3)) | < [Sol (E(X; uX3))|. In addition, if the inequality in ii)
18 strict, then the resulting inequality is also strict.

Proof. Let us prove the case where |Sol (E(X;)) | < |Sol (E(X3)) |, the other being treated
in the same way. According to the heuristic assumption on the number of solutions we
have:

<

|X1 U X3’ — ‘XQ U X3| < dlmE(Xl U X3) — dlmE(Xg U Xg)
In an other hand, as X; n X3 = Xy n X3 and |Sol (E(X;)) | < |Sol (E(X2)) |, we obtain

|X1) X3| - ‘XQ U X3| = |X1| - ’X2| < dlm]E(Xl) - dlmE(Xg)

Consequently, it remains to prove that dimE(X,; u X3) — dimE(X;) < dimE(X; u
X3) — dimE(X;) to establish the result. In other words, we have to prove that there are
more equations in [E involving at least one variable of X3 and possibly some of X; than

equations involving at least one variable of X3 and possibly some of X5 which is trivial
since Xy € X. O

The condition about the number solutions of the intermediate subsytems may be hard
to check in practice and the interest of this theorem is mainly theoretical. However, it
allows us to show the following useful property about PROPAGATE:

Property 4. Let E be a system of AES-like equations in variables X = {z1,...,2,}
and let o be a permutation of X. Let k,l € {1,...,n} such that k < | and let ' be the
permutation defined as follows:

- 0'(i)=0(i) for 1 <i<k.

- o'(k) = o(l).

2.1. Guess-and-Determine Solvers 23

~0o(i)=0(—1) for k<i<l.

- 0'(i) =0(i) forl <i<n.
Then o(l) € PROPAGATE({o(1),...,0(k — 1)}) implies T, < T,. In particular, if o leads
to an optimal solver then o’ too.

Proof. The proof of this theorem is very simple. By definition and according to the
heuristic assumption on the number of solutions, we have:

1-dimE({o’(1)}) ,2—dimE({o’(1),0"(2)})

q . qnfdimE)

T, = max(ql—dimE({a(l)})7q2—dimE({a(1),a(2)}) 7qn—dirnIEI)
T, = max(q

If o(l) € PROPAGATE({o(1),...,0(k — 1)}) then o(l) € PROPAGATE({c(1),...,0(i)})
forany ¢ > k — 1 since PROPAGATE is monotonic, and as a consequence,

dmE({o (1),...,0(),0())}) —dimE({o (1),...,0(i)}) < 1.
But by definition {o (1),...,0(i),0 ()} = {¢'(1),...,0' (i + 1)} and then
i+1—dimE({o'(1),....,0' (i +1)}) =i—dimE({o (1),...,0()}).

By combining this to the fact that o({1,...,i}) = o’({1,...,1}) for any i € {1,..., k —
L,I+1,...,n} we easily obtain T,, < T,.]

In other words, this theorem means that to find an optimal solver we can only consider
the permutations such that for each k € {1,...,n} either o(k) € PROPAGATE({o(1),...,0(k—
1)}) or PROPAGATE({c(1),...,0(k—1)}) = {o(1),...,0(k —1)}. In particular we should
begin by the variables belonging to PROPAGATE(() which is the set of the variables that
can be deduced from the parameters. More precisely, PROPAGATE(() contains a variable
z if and only if dimE({z}) > 0 so that we know at least an equation involving only z,
S(z) and eventually some parameters. To be consistent with the heuristic assumption on
the number of solutions it is assumed that = takes a single value that will be computed
at the beginning of the solving process in a negligible time, and thus z can be seen as
a parameter. So without loss of generality we can assume that dimE({z;}) = 0 for all
ke{l,...,n}

Let come back on PROPAGATE. By definition Y € PROPAGATE(Y) which combined to
the fact that PROPAGATE is monotonic implies that the sequence (PROPAGATE"(Y))nen
is increasing. As there is only a finite number of subsets of X, this is a stationary
sequence (from a particular rank ng). Thus the set PROPAGATE™ (Y) contains all the
variables deduced from Y and we denote it by PROPAGATE*(Y). As a result the sequence
(PROPAGATE"(0))en is also constant from the same rank allowing us to uniquely define
the solver PROPAGATE* (o). This solver has similar properties with PROPAGATE(0):

Property 5. Let E be a system of AES-like equations in variables X, Y be a subset of
X and Z = PROPAGATE*(Y). Let oy be a permutation of Y and 0 = PROPAGATE*(0y).
Then T, = T,,, and |Sol (PROPAGATE*(Y)) | < |Sol (Y) .

oy

Finally, and related to Property [the following property shows how the move of one
variable affects the complexity of a solver:

24Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

Property 6. Let E be a system of AFES-like equations in variables X = {x1,...,2,}
and let o be a permutation of X. Let k,l € {1,...,n} such that k < | and let o’ be the
permutation defined as follows:

- 0d'(i)=0(i) for 1 <i<k.

- d(k)=0o(l).

~0'(i)=0(—1) for k <i<l.

- 0'(i) =0(i) forl <i<n.
Then for any i€ {1,...,n},

|Sol (E({o(1),...,0(i)})) | —|Sol (E({c’'(1),...,0"(i)})) | € {-1,0,1}.
In particular, log, (Ty) — log, (T5) € {—1,0, 1}.

All in all, our combination of those results leads to Algorithm [2l It takes as input a
system of equations E in variables X = {z1,...,2,} and an integer ¢,, > 1, and returns a
solver for E with a time complexity equals to at most ¢'» if any exists. The complexity
of this algorithm is hard to evaluate but if the case |Sol (E(Z))| < |Sol (E(Y)) | never
occurs then it only looks for a minimal set of variables sufficient to deduce the other ones,

bounding the complexity by ¢, (f(pl) applications of PROPAGATE".

From the Top

The theorems we just saw are well-adapted to a bottom-up approach which is usual
when looking for guess-and-determine attacks. However systems of linear equations are
commonly handled by a top-down approach and it could be powerful for system of AES-
like equations as well. Actually we will see that both approaches are quite similar. First
let define a particular class of variables called the linear variables:

Definition 6 (linear variable). Let E be a system of AFES-like equations in variables X and
let be x € X. The variable x is a linear variable if and only if dimE—dim E(X —{z}) < 1.
The set of all the linear variables is denoted by LIN (E). Furthermore, for each subset Y
of X the set LIN(E(X —Y)) uY is denoted by LIN (Y).

This definition may seem abstract and the following proposition clarifies it:

Property 7. Let E be a system of AES-like equations in variables X and let x € LIN (E).
Then it exists (a,b) € Fg such that each equation of E involving the variable x involves in
fact a multiple of ax + bS(x). In other words, if we replace ax +bS(x) by X in the system
of equations then x and S(z) do not appear any more. In particular, LIN(E) n'Y <
LIN (E(Y)) for any subset Y of X.

This class of variables is interesting because actually the operator LIN acts exactly as
PROPAGATE but for an other measurement of the time complexity. Let Y be a subset of
X and o a permutation of Y. We saw that o can be seen as a solver for E(Y) and its

2.1. Guess-and-Determine Solvers 25

Algorithm 2: Exhaustive search of an optimal solver (from the bottom)

Function BottomSearch (E,t,,)

Data: A system of equations [in variables X and an upper bound t,,

Result: A permutation of X leading to a solver with time complexity equals to
at most ¢'»» if any and & otherwise.

[E «—— E without equations between the parameters;
if PROPACATE((J) = ¢J then
| return tmp-Bottom (E, &, I, I, 1)
else
o «— a permutation of PROPAGATE());
return o || BottomSearch (Eprosacars(z)s tup)
end
end

Function tmp-Bottom (E,Y,G)0,0,t,)

Data:

— a system of equations E in variables X,

— a subset Y of X stable by PROPAGATE,

— a subset G, containing Y and the variables not allowed to be guessed,

— a permutation o of Y such that T, < ¢'»,

— a bound t,, > 1.

Result: A permutation of X leading to a solver with time complexity equals to
at most ¢'*» and which begins by solving E(Y) according to o if any
and ¢J otherwise.

if X — Gt = J then return &J;
x «— Pick one variable from X — G,,o;
Z «—— PROPAGATE*(Y v {z});
o' «—— PROPAGATE*(0||[z]) ;
if Z = X then return o’;
if [Sol (E(Z))| < |Sol (E(Y))| then
if |Sol (E(Z))| < 1 then return ¢’ | BottomSearch (Ez,t,,);
if log, (|Sol (E(Y))|) = tup — 1 then return tmp-Bottom (E,Z,Z,0",t,,);
if (Z—-Y)n Gpoe = then return tmp-Bottom (E,Z,Got U Z,0" 1) ;
else
if [Sol (E(Z))| < tup and (Z —Y) N Gpot = & then
0" «—— tmp-Bottom (E,Z,G0 U Z,0" t,p) ;
if 0" # & then return o”;
end

end
return tmp-Bottom (E,Y G\ U Z,0" 1))
end

26 Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

complexity is defined by T, = max (1 — dimE({o(1)}),...,|Y|— dimE(Y)). However o
can also be seen as an ending solver for E with a time complexity defined by:

Tr = max (|X| = dimE, |X| - 1 = dimE(X — {o(|[Y])}),..., | X| = [Y| = dimE(X - Y)).
More precisely 77 is the minimal complexity that a solver of E ending by o could have.

Property 8. Let E be a system of AES-like equations in variables X and Xy u Xy be
a partition of X. Then, for any permutations o, of X1 and oo of Xs, the permutation
o =01 || o2 of X is such that

T, = max(T,,,T7) =T.

017 ~ 09

Then, given a permutation oy of a subset Y and for Z = LIN(Y) — Y, for any
permutation oz of Z the permutation ¢ = oz || oy of LIN (Y) is such that 77} = T7 . We
pick one of those permutations and denote it by LIN (oy). Thanks to Property |8 this
choice does not affect the complexity of any solver builds from it. Furthermore, we can
show a property of £ comparable to Property [4] concerning PROPAGATE:

Property 9. Let E be a system of AES-like equations in variables X = {x1,...,x,} and
let o be a permutation of X. Let be k € {1,...,n} and let o’ be the permutation defined
as follows:

- 0'(i) =0(i) for 1 <i<k.

~o0'(i)=0(i+1) for k <i<n.

- o'(n) =oa(k).
If o(k) is a linear variable then T, < T,. In particular, if o leads to an optimal solver
then o’ too.

This means that there is an optimal solver o such that for all k € {1,...,n} either
o(k)e LIN({o(k+1),...,0(n)}) or LIN({o(k +1),...,0(n)}) = {o(k+1),...,0(n)}. In
particular, we know that for any permutation of LIN (¢F) there is an optimal solver ending
by it and so only the subsystem E(X — LIN (¢F)) has to be studied. Thus, without loss
of generality, we can assume that LIN (J) = . Actually, it allows us to answer a non-
trivial question. Indeed, our solvers alternate between guessing and deducing variables
but one could ask why restrict ourselves to variables and not to linear combinations of
them. Allowing a solver to guess a particular linear combination [can be done by adding
to the system a new variable z and the equation x — [= 0. But then this new variable
occurs linearly in the system of equations and thanks to the property we are sure there
is an optimal solver which does not require to guess it.

As previously, Property [9] comes from a more general theorem about the replacement
of a solver by an other and is stated as follows:

Theorem 2. Let E be a system of AES-like equations in variables X and Y,Z be two
subsets of X such that Y < Z. Let oy, oz and ox_y be permutations of Y, Z and
X =Y respectively. Let ox_z be the permutation of X — Z conserving the order induced
by ox_v. If for any subset V such that Y < V < Z then |Sol (E(V))| = [Sol (E(Z)) |
and if T; < T7,, then

[ox—zlloz] = T lox—vlov]

2.1. Guess-and-Determine Solvers 27

In particular, if there is an optimal solver going through Y then there is one going through
Z.

All in all, as for PROPAGATE we define £* as the least fixed point of LIN, leading
to Algorithm [4] which is very close to the previous one. The only difference concerns the
detection of E(X —Z) as an overdetermined subsystem failing the heuristic assumption on
the number of solutions. In that case, and unlike to Algorithm 2, we do not have a solver
for this subsystem and the complexity of the ending solver has been underestimated. Thus
we first try to find a solver fast enough for the subsystem. If there is no such solver then
we can continue the search. But if such a solver is found then the existence of solver for
[fast enough only depends on the existence of such one for Ex_z.

As previously the complexity of this algorithm is hard to evaluate. However if the
case |Sol (E(X —Z))| < |Sol (E(X —Y)) | never occurs then the complexity is bounded
by tup (tur‘)‘(ﬂi dimE) applications of £*. As a consequence this top-down approach seems
faster than the bottom-up one as long as the system is underdefined. In practice we
noticed that to be true even for systems with few more equations than variables. Our
feeling is that once we know enough variables the other ones can be deduced in almost

any order.

Bounding Complexity of Optimal Solvers

It is always interesting to bound the complexity of an optimal solver before looking for
it. First, the solvers we consider enumerate all the solutions of the system of equations and
thus the time complexity of a solver is greater than the number of solutions enumerated.

Property 10. Let E be a system of AES-like equations and o be (a permutation corre-
sponding to) a solver for BE. Then T, = |Sol (E)|. In particular, if T, = |Sol (E)| then o
18 optimal.

This gives us a lower bound on the time complexity of an optimal solver. Thanks to
Property[IJand under the heuristic assumption, we can obtain an upper bound by noticing
that for any permutation o and any k € {1,...,n — 1}, we have

log, (|Sol (E({o(1),...,0(k+1)}))|) —log, (|Sol (E({o(1),...,0(k)}))]) € {~1,0,1}.

As a consequence, and as log, (|Sol (E({c(1)}))[) = 1 and log, (|Sol (E({o(1),...,0(n)}))|) =
n — dim [E, we obtain

log, (|Sol (E({o(1),...,0(k)}))|) < min(k,n —dimE +n — k) <n — dim[E/2.

Thus the time complexity of an optimal solver is at most ¢" 4mE/2,

28 Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

Algorithm 3: Exhaustive search of an optimal solver (from the top)

Function TopSearch (E,t,,)

Data: A system of equations E in variables X and an upper bound t,,

Result: A permutation of X leading to a solver with time complexity equals to
at most ¢'» if any and & otherwise.

E «— E without equations between the parameters;
if LIN () = & then
if PROPAGATE((J) = & then

| return tmp-Top (E, &, &, &, tu,)
else

o «— a permutation of PROPAGATE(Y);
return o || TopSearch (Epropacare(g), tup)
end
else
o «— a permutation of LIN (&F);
return TopSearch (E(X — LIN (&), ty,) || o
end
end

Function tmp-Top (E,Y,G)0,0,t,)

Data:

— a system of equations E in variables X,

— a subset Y of X stable by L,

— a subset G, containing Y and variables not allowed to be guessed,

— a permutation o of Y,

— a bound ¢, > 1.

Result: A permutation of X leading to a solver with time complexity equals to
at most ¢'*» and which ends by solving E(Y) according to o if any and
&5 otherwise.

if X — Gt = & then return J;
x «<— Pick one variable from X — G,,;
Z — LIN* (Y u {z}); o' «— LIN" ([z] || o) ;
if Z = X then return o’;
if [Sol (E(X —12Z))| <|Sol (E(X—Y))| then
if |Sol (E(X—Z))| <1 then
o1 «— TopSearch (E(X —Z),t,,) ;
if 01 # (& then return o, || TopSearch (Ex_z),tup) ;
else
if [Sol (E(X—7Y))| =ty — 1 then return tmp-Top (E,Z,Z,0'.t,,) ;
if (Z—-Y)n Gpot = & then return tmp-Top (E,Z,Gp U Z,0" 1) ;
end
else
if [SOl(E(X—2))| <tu and (Z—-Y) N G = & then
0" «—— tmp-Top (E,Z,G,0t U Z,0 ,ty,) ;
if 0" # 4 then return o”;
end
end
return tmp-Top (E,Y,G,n U Z,0",t,,)
end

2.2. Recursive Meet-in-the-Middle Solvers 29

2.2 Recursive Meet-in-the-Middle Solvers

Given a system of equations E in variables X, we saw in the previous section how to
build from a solver of a subsystem E(Y) a solver for E(Y u {z}), allowing us to build
various guess-and-determine solvers for [E. But actually this is a particular case of a more
general framework and in this section we will see how to extend the previous solvers to
get faster ones by using a "divide-and-conquer" meet-in-the-middle approach.

2.2.1 Solving Subsystems Recursively

Given a partition X = X; u Xy and two black-bozx solvers A; and A, that find all the
solutions of E(X;) and E(X,) respectively, we seek to use the two sub-solvers A; and A,
to find the solutions Sol (E) of the full problem. An obvious way would be to compute
the solutions S; of E(X;) and S of E(X3), and to test all the solutions in the Cartesian
product S; x Sy. This would require checking |S;| - |Ss| candidates against the equations.

It is possible to do better though. Firstly, we observe that the vectors in &; x Sy
automatically satisfy the equations in E(X;) + E(Xy). Therefore we first compute a
supplementary of E(X;) + E(Xy) inside E (let us call it M). The solutions of E are
in fact the elements of §; x Ss satisfying the equations of M. This already makes less
constraints to check. Second, sieving the elements satisfying constraints from M can be
done in roughly |S;|+|Ss| operations, using variable separation and a table. Let (fi)1<i<m
be a basis of M. Thanks to the structure of AES-like equations, each of those equations
can be written ¢;(X;) = h;(Xy). If the values of all the variables in X; (resp. Xs) are
available, then the g¢;’s (resp. h;) may be evaluated. We denote by G (resp. H) the
function that evaluates all the g; (resp. h;) on its input. If ¢ = |Xy|, then:

G:(v1,...,2) — (gl(:pl,...,xg),...,gm(xl,...,xg))
We build two tables:

Ly «— {(G(z1),z1) | =1 solution of E(Xy)}
L2 <« {(H(I’Q),{EQ) | T solution of E(Xg)}

Then, the solutions of E are the pairs (z,y) for which there exist a z such that (z,z) € Ly
and (z,y) € Ly. They can be identified efficiently by various methods (sorting the tables,
using a hash index, etc.). We have just combined A; and A to form a new solver,
A= A; X A,, that enumerates the solutions of E. Note that to extend this work at a
cover of X we just have to perform the match also on variables common to X; and Xo.

Complexity of the Combination.

Given a cover X = X; U Xy, and two sub-solvers A; and As respectively computing
Sol (E(X;)) and Sol (E(X3)), the complexity and the properties of A = A; X Ay are
easy to determine. Let us denote by T'(A) the running time of A, by M (.A) its memory
consumption, and by V' (A) the set of variables occurring in the corresponding equations.
The set of solutions returned by a solver A only depends on V(A), as it is the set of

30Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

solutions of E (V' (A)). For the sake of simplicity, we denote it by Sol (A). Note that the
number of solutions found by a solver cannot be greater than its running time, so that
|Sol (A) | < T(A).

The number of operations performed by the combination is the sum of the number of
operations produced by the sub-solvers plus the number of solutions (the time required to
scan the tables, namely |Si| + |Ssl, is in the worst case of the same order as the running
time of the two sub-solvers), so that

T(.Al X .Az) =T (.Al) + T (./42) + ‘SOZ (.Al X Ag) |

However, we use the following approximation
T(A X Ay) = max{T (A1), T (As) , |Sol (A; X Asy) \}.

It is possible to store only the smallest table, and to enumerate the content of the
other “on the fly”, while looking for a collision. This reduces the memory complexity to

the maximum of the memory complexity of the sub-solvers, and the size of the smaller
table. This yields:

M(A; X Ay) = maX{M(Al), M(As), min<|Sol (A1) |, 1Sol (As) \) }

2.2.2 Recursive Combinations of Solvers

Given a system of equations E, we would like to build an efficient solver by breaking
the problem down to smaller and smaller subsystems, recursively generating efficient sub-
solver for the sub-problems and combining them back.

Recursively combining solvers yields solving trees of various shapes. In such a tree,
all the nodes are labelled by a set of variables: the leaves are labelled by single variables
and each node is labelled by the union of the labels of its children. Each node is in fact
a solver that solves the sub-system E(Y), where Y is the label of the node. For obvious
reasons, we enforce that the label of each node is strictly larger than the labels of its
children.

The leaves of a solving tree are the “base solvers” associated to variables of X. Note
that for any variable z the subsystem E({z}) cannot be further broken down because
obviously {z} cannot be partitioned anymore. It is a “base case” of the decomposition.
As previously, to be consistent with the heuristic assumption on the number of solutions
if E({z}) # {0} then it is assumed that z takes a single value, and then = can be seen as
a parameter. So without a loss of generality we only consider the case E({z}) = {0}. As
a consequence, a base solver essentially guesses a variable and its complexity is:

e T (BaseSolver(z)) = gq.

e M (BaseSolver(z)) = 1.

e |Sol (BaseSolver(z)) | = g.

This implies that, for considered solvers (i.e., those generated by base solvers), time,
memory and number of solutions are powers of ¢. In the sequel, unless otherwise stated
explicitly, a “solver” always designates the recursive combinations with base solvers at the
end.

2.2. Recursive Meet-in-the-Middle Solvers 31

Note that the guess-and-determine solvers discussed in the previous section can be
described by a recursive combination where, at each step of the decomposition, one of the
two solvers is a base solver. However, it turns out that allowing more general tree shapes
may results in better solvers.

Comparing Solvers.

It is always possible to construct several solving trees for the same problem in different
ways, and sometimes more or less efficiently. Indeed, a quick calculation, with |X| = n,
gives the number of distinct covers of X:

3" 41
o

H{XlaXZ} ’Xl UXQ = X,Xl #* X,Xz #* X}‘ =

The actual number of different solvers is then necessarily even larger. In addition, because
our solvers are at least as fast as exhaustive search, we observe that our approximation
of the time complexity of a solver for E(X) can take only n different values. So we
deduce that there are many solvers with the same approximate complexity solving the
same system. We will therefore introduce a (quasi-)order relation over solvers. A natural
candidate is:

Vi(A) = V(Ay)

T(A) < T(A)

In other words, a solver is better than an other if it solves the same system in less time.
Just like any other partial quasi-order, it induces an equivalence relation:

A121A2(:){

A = A, if and only if A1 >; Ay and Ay >, A;.

This quasi-order has the advantage of being compatible with the combination operation
(i.e., Ay =1 Ay implies A; X A3 >; Ay X A3), and it is therefore also the case of the
equivalence relation. We observe that given a set of variables X;, there can be only
one maximal solver (up to equivalence) for E(X;). Thus, our objective is now clearly
identified: find a maximal (i.e., the best) solver for E (up to equivalence).

2.2.3 Finding the best solver

In this part, we present two different approaches to find an optimal solver, and theo-
rems of reducing the search space.

From The Top.

We begin by presenting an algorithm that find a solver with a time T, for a system
of equations E in the variables X. First, we check that the number of solutions of the
system is not higher than the time T, otherwise we could not list them all in less than
T,y Then, we just try all possible decompositions of X.

32Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

Algorithm 4: Exhaustive search of an optimal solver (from the top)

Function ExhaustiveSearchTop (E,T,,)
Data: A system of equations [E in variables X and a bound T,,,.

Result: A solver A for E such that T(A) < T, (if any).

if |Sol (X) | > T\, then return NULL;
if |X| =1 then return BASESOLVER(X);
foreach cover X; u Xy = X do
A; —ExhaustiveSearchTop (E(X;),Ty,) ;
Ay —ExhaustiveSearchTop (E(Xs), Typ) ;
if A; # NULL and Ay # NULL then return A; X A,;
end

return NULL
end

The complexity of the procedure EXHAUSTIVESEARCHTOP is hard to evaluate but
can be bounded below by the number of covers of X, which is 2 — 2" where n = [X|.
It can still be improved by using dynamic programming techniques to avoid searching
several times a solver for the same system but this requires storing at most 2" solvers.
Unfortunately, this algorithm can not even be applied to the system of equations from one
AES round (the number of variables and equations being 64), and need to be improved.

Hopefully, Property [9] about linear variables can be transposed to this new set of solvers:

Theorem 3. Let E be a system of equations in variables X. For any x € LIN (E) (i.e.,
x linearly occurs in the system E), if A is an optimal solver for E(X — {x}) then A X
BASESOIVER(z) is an optimal solver for E.

The proof is easy and comes from the fact that given a solver A for E(X) and = €
LIN (E) then the solver A’ for E(X — {z}) built following the same decomposition than .4
but without the variable x verifies T'(A") < T'(A). As previously, this theorem allows us
to focus on a smaller system of equations in our research of an optimal solver. On systems
of equations from the AES, this improvement significantly reduces the search space but
it is still infeasible for more than one round of AES.

From The Bottom.

After the failure of the previous approach, it is natural to try to start from the base
solvers and test different combinations until obtaining an optimal solver.

The procedure EXHAUSTIVESEARCH in Algorithm [5] computes the set of all maximal
solvers for all sub-systems of a given system of equations E (up to equivalence). In
particular, it will construct a maximal solver for E itself. The algorithm is reminiscent of
(and inspired by) the Buchberger algorithm for Grébner bases [Buc65]. More generally
Algorithm [5|is a saturation procedure, and this also makes it similar to many automated
deduction procedures (such a Resolution-based theorem provers or the Knuth-Bendix
completion algorithm). At each step, the algorithm maintains a list G of solvers for

2.2. Recursive Meet-in-the-Middle Solvers 33

subsystems of the original system E. It also maintains a list P of pairs of solver that
remain to be processed. When a new solver is found, all the solvers that are worse
(according to >1) are removed from G (and all pairs containing it are removed as well).
Then, new pairs containing the new solver are scheduled for processing.

Algorithm 5: Exhaustive Search from the top for an optimal solver (from the
bottom)

Function Update—Queue (G, P, A)

if A"+, A for all A’ € G then
G—{AuvG-—{AeG: A= A}
P/(_P_{(Al,A2>€P c A > A or A > ./42};
PP u{(AA): AecG V(A ¢ VA, V(A) ¢t V(A)};
return (G',P’)
end
return (G,P)
end

Function ExhaustiveSearch (E,T,,)

Data: A system of equations [E in variables X and a bound T,,.
Result: The set of all maximal solvers for all subsystems of E with time
complexity smaller or equal to T),.

G < {BaseSolver(z) : z € X};
P—{(Gi,G)):1<i<j<|Glh
while P # J do

Pick (A;, A;) € P and remove it from P;

C — A X A,

if T'(C) < Ty, then (G, P) «— Update—Queue (G,P,C);
end

return G
end

Termination. This search procedure only uses the compatibility of >; with the com-
bination operation X. First, we notice that, at each step of the algorithm, GG can contain
at most one solver by subset of X (the best found so far). It follows that |G| < 21XI.
Next, for a subset Y of X, there exist at most |Y| distinct solvers (up to equivalence).
It follows that the number time G will be modified by UPDATEQUEUE is upper bounded
by |X| - 2XI. Next, there can be only a finite number of steps between two updates of G,
because each iteration of the loop consumes an element of P, and only an actual modifi-
cation of G can increase P. As a result, the EXHAUSTIVESEARCH procedure terminates
in finite time.

34Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

Correction. One of the invariants of this algorithm comes from the compatibility of
>; with the combination operation X and is the property: "if A;, As € G and T(A; X
As) < T, then either there is (A3, A4) € P such that A3 X Ay >; Ay X Ay or there is
Ajs € G such that A3 >; A; X Ay". But, when the algorithm terminates, P is empty and
so we always are in the second case of the previous property. This means that for each
solver with an approximate time complexity smaller than 7T, and generated from solvers
of G, there is a solver in GG solving the same system with at least the same approximate
time complexity. But the base solvers allow to generate all solvers and G contains them,
so G also allows it. In particular G allows to generate the best solver for E(X) and, as a
consequence, if T,,, is high enough then G contains it.

Complexity. The complexity of this algorithm seems difficult to evaluate. It depends on
the equations, and on the order in which the combinations are performed. The parameter
T, allows the user to enforce an upper-bound on the time complexity of the generated
solvers (by discarding the ones that are too slow). For small values of T, this may for
instance allow to prove the non-existence of recursive solvers with complexity lower than
a threshold. The running time of the exhaustive search also gets smaller with lower values
of Typ.

In practice, what dominates the execution of this algorithm is the computation of the
dimension of the combination C, and the bookkeeping required to update G (P can be
handled implicitly).

Comparing Solver II.

The complexity of this algorithm depends directly on the quasi-order relation: more
the solvers are comparable between them, more G (and by the way P) will be small. But
we note that many solvers are not comparable with this quasi-order. In particular, two
solvers cannot be compared if they do not enumerate the exact same set of variables.
It would seem natural that if a solver is faster and enumerates more variables, then it
should be better. This prompts for the relaxation of the V(A;) = V(Ay) condition into
V(A;) 2 V(Ay) in the definition of >;. However, a problem is that this relaxed quasi-
order relation is incompatible with the X operation (explicit counter-examples exist).
The problem is that a faster solver that enumerates more variables may generate more
solutions, and this can slow down the subsequent combination operations. Trying to fix
the problem leads to the definition of:

T (A) T (Ay)
A >9 Ay = V (-Al) Vv (‘AZ)
|Sol (A1)]| < [Sol (A)]

I /A

Unfortunately, and as for guess-and-determine solvers (see Theorem , this new con-
dition is not enough to ensure compatibility with the X operation (explicit yet subtler
examples exist). To solve this problem once and for all, we impose the compatibility in
the definition.

2.2. Recursive Meet-in-the-Middle Solvers 35

Definition 7. Let A; and Ay be two solvers. We denote by Ay =5 As the following

property:
For any sequence of solvers (B,),,, the two sequences defined by:

A) = A .
{ATL“ _ ANB fori=1,2.

verify A? =9 Ay for alln > 0.

In other words, A; >} A, if for any solver built from A, we can construct a better
solver (according to >5) from A;. We easily verify that >} is a quasi-order compatible with
the combination operation. But now the problem is that there is no obvious algorithm
to compare solvers according to this relation. The next property shows a necessary and
sufficient condition on A; and A, to imply A; >3 A,.

Property 11. Let Ay, and Ay be two solvers. Then:

. { Ay =2 Ay
./41 Z9 ./42 <~
V(A2) €Y € V(A)) = [Sol (E(Y)) | = Sol (Ay) |

Proof. (=) First, let A; and A be two solvers such that A; >3 As. Then, by definition we
have A; >3 Ay. Next, let Y be subset of V(. A;) such that V(A3) € Y. Let B be a solver
such that V(B) = Y. Then, by hypothesis, we have A4; X B >3 Ay X B. In particular
|SOZ (Al X B)‘ < |SOl (.AQ X B) | But V(Al X B) = V(Al) and V(.AQ X B) =Y. In
consequence, |Sol (E(Y)) | = [Sol (A;) |.

(<) Now, let A; and A, be two solvers such that A; >3 A;. We assume that for any
set Y such that V(Ay) €Y < V(Ay) we have |Sol (E(Y))| = |Sol (A;)|. We will show
that A; >3 Ay. Let (B,,), be a sequence of solvers. We show the result by induction on
n.

— By hypothesis, we have A4; >3 As, so the theorem is true when n = 0.

— Next, we assume that A? >, A2 and we will prove that this implies A}*! >, A5+

First, we notice that by hypothesis we know that V(A7) 2 V(A%), and this easily
implies V(A7) 2 V(AZ™). Next, because T (A7) < T (A3) and

T (A} X B,) =max (T (A?),T(B,),|Sol (A7 X B,)|),

it follows that we just have to prove that |Sol (A} X B,)| < |Sol (A5 X B,,)| to
establish the result.
Let us define Y = |J_,V(B;). We use the lemma [l| with X; = V(A4), Xy =
V(As) u (V(A1) nY) and X3 = Y. Indeed, we easily verify that X, < X; and
X1 N X3 =Xy n X3. Then, as V(Ay) € Xy € V(A;), by hypothesis we know that
|Sol (E(X3))| = |Sol (E(X4))|. So the conditions to apply the lemma are satisfied,
and we deduce that |Sol (E(Xy U X3))| = |Sol (E(X; uX3))|. But X; u X3 =
V(A1) so we obtain the expected result.

[

36Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

As said in the previous section, it is difficult in practice to check whether the assump-
tions of this property are satisfied. We therefore use the relation >} rarely, preferring to
use >; or >, which are easier to compute.

Finally, to end this part, we note that if A; and A, are two solvers then:

A > A = A, Z; Ay = A, >, As.
If, in addition, they satisfy V' (A;) = V(Ajy) then:
./41 >1 Ag <~ ./41 Z; Ag — ./41 >9 Ag.

In particular, an optimal solver for E(X) is a maximal solver for each one of the quasi-
orders. In addition, equivalence relations induced by all introduced quasi-orders are iden-
tical.

Search Space Reduction.

Even if the above results can be seen as a failure, we have two theorems that bypass
partially this compatibility problem.

The first theorem is used to restrict the shape of solvers to consider and, in practice,
greatly reduces the complexity of the search procedure.

Theorem 4. Let A be a solver with running time T and let s = T, s and T being power
of q. Then there exists a solver solving the same system with a time complexity of at most
s and verifying the following property: at each step of its decomposition, one of the solvers
15 a base solver or the two solvers that are combined together both give s solutions.

Proof. Let (A;, A2) be a pair of solver combined together in the construction of A. As
T(A) = T, necessary both of them have a running time of at most 7". Let assume that
the property is true for solvers enumerating less variables than A, so in particular for
A; and Ay. If A; gives less than s solutions then we combine it with base solvers of
E(V(A)) until either the resulting solver A| gives exactly (according to the heuristic
assumption) s solutions or solves E(V(A;) u V(Az)). Similarly we construct A} from A,
and then we can replace A; M Ay in A by A if V(A]) = V(A1) u V(Az), or by Aj if
V(AY) = V(A) u V(Ap) or by A} X AL O

This theorem shows the importance to combine solver with base solvers and, by the
way, the importance of guess-and-determine solvers. In particular, a solver with time
and memory equal to T" can be generated by guess-and-determine solvers with time 7.
We can therefore reuse the ideas of the previous sections and in particular the operator
PROPAGATE.

Theorem 5. Let A be a solver. There exists another solver B such that:
- V(B) = PROPAGATE*(V (A)),
- T(B) = T(A),
- B =5 A

2.3. Conclusion 37

Such a solver is unique up to equivalence, so we denote it by PROPAGATE*(.A) and
its construction is straightforward. As PROPAGATE*(A) >} A, it will always be more
interesting to process solvers through PROPAGATE*.

These two theorems allow to improve the EXHAUSTIVESEARCH procedure by using the
function IMPROVED-UPDATE-QUEUE instead of UPDATE-QUEUE to reduce the number of
tested pairs. The fact that we can replace A by PROPAGATE*(A) comes from Theorem [
The others changes come from Theorem {4 Then, we can use the Theorem [3| to find an
optimal solver for a subsystem of E(X) before extending it to an optimal solver for the
entire system. Finally, as a last improvement, we perform a first pass using >, instead of
>1.

Algorithm 6: Improved UPDATE-QUEUE procedure.

Function Improved-Update—Queue (G, P, A)

A < PROPAGATE*(A);

if there is A' € G such that A’ >, A then return (G, P);

G —{AluG—-{AeG: A= A}

P — P — {(A1,A2) eP ./421 ./41 or ./421 ./42};

P’ P' U {(A,BASESOLVER(z)) : z€ X —V(A)};

if T(A) =|Sol(A)| then
PP u{(A4A): AeqG, V(A VA, V(A) ¢t V(A), T(A) =
Sol (A) | = T(A)

end

return (G',P')

end

In practice, when two guess-and-determine solvers A; and Ay such that T'(A;) =
|Sol (A1) | = T(As) = |Sol (A3) | = |Sol (A; X A) | are found, we are able, in most cases,
to build very quickly an optimal solver from them.

2.3 Conclusion

Algorithms presented in this chapter have been developed and implemented in C. The
running time is dominated by the computation of the time-complexity of a combination
of solvers, which involves computing the dimension of a vector-space intersection. Var-
ious tricks can also be used to speed this operation up (using a sparse representation,
precomputing partially echelonized forms, not computing an intersection but a sum, etc.

The complexity of the exhaustive search is inherently exponential, and exploring the
whole space might not be feasible. In that case, a non-exhaustive randomized search
might find good results, without offering the guarantee that they are the best possible.
There are many possible ways to perform a randomized search and this presently seems
to be more of an art than a science.

38Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

When an interesting solver for E is found by the search procedure, it is not particularly
complicated to recursively generate a C+-+ implementation thereof (i.e., a function that
takes as input the parameters, and returns the solutions of the system of equations), or
a text file that describes which variables to enumerate, which tables to join, in a nearly
human-readable language. The generated C++ files are not very optimized.

2.3.1 Other Settings and Open problems

In its present form, our algorithms are suited to situations where all the solutions
of the given equations are wanted. However some other problems concerning AES-like
equations are interesting as well.

Reducing the Memory Complexity

We saw how to combine two solvers A; and Ay of E(V(A;)) and E(V(A)) into
a solver for E(V(A;) u V(Ay)). However we can also combine 4; with a solver Aj
of Ev(a,)(V(A3)) (i.e., the subsystem E(V(As)) where the variables V(A;) are seen as
parameters) into a solver for E(V(A;) u V(A3)) denoted by A; — Aj;. This is done
by first running A; and then for each solution returned running As. It is fairly easy to
see that this sequential join cannot lead to faster solvers than the original one but may
save some memory. Unfortunately, if the sequential join is allowed then Theorem [3| about
variables occurring linearly does not hold anymore. As a consequence, to be sure to find
the best solver we now have ¢?" base solvers: one for each linear combination of the z;’s
and S(x;)’s. As a result, the exhaustive search seems far from practicality.

Note that for guess-and-determine solvers, both the sequential and parallel joins give
the same solvers.

Underdefined System of Equations

If there are much more variables than equations, the number of solutions will be
overwhelming, and returning them all will be very expensive (and often unnecessary). A
typical example is the case of collisions in hash functions (there are many, yet a single one is
sufficient). A possible workaround is to allow solvers returning only a part of the solutions.
More precisely, we can assume that [Sol (A; X Ay) | ~ |Sol (A;) | x |Sol (As) | x p, where
p is the probability that a solution of E(V (A1) x E(V(Ay)) is a solution of E(V (A1) u
V(Ay)):

. |Sol (E(V(Ay) uV(Ag)))|
P SOl (B(V(A)) | % [Sol (E(V (A2)) |

As a base solver only guesses a variable we can obtain 0 < ¢ < ¢ solutions of E({z})
in t operations. Then, following a similar strategy than previously we can build the
fastest solver giving ¢ solutions for any 0 < ¢t < |Sol (E) |. However some issues come up.
First the heuristic assumption on the number of solutions holds globally but not locally,
and the resulting complexity is often underestimated, in particular when the number of
solutions wanted is low. Then, unlike what happens when looking for all the solutions,
the sequential join may lead to better solvers, making the exhaustive search infeasible.

2.3. Conclusion 39

Restricting Possible Values of Some Variables

Given a subset Y of X, an other interesting problem is to find the best solvers A
such that Y < V(A). For instance, it is common that an attack partially encrypts or
decrypts some data requiring to enumerate all the values of some key bytes related by
a keyschedule. A solver enumerating them can be used as sub-component of this attack
and the resulting complexity depends on how many values they can assume and how fast
we can enumerate them.

The most naive way to find such solvers is to process each subset between Y and X.
However, only the ones stable by PROPAGATE and without linear variables (excepted Y)
have to be considered. Furthermore, in most cases we can assume that the solver cannot
solve the full system since otherwise it seems pointless to use it as a sub-component of an
other attack.

Algorithm 7: TweakedTool (naive implementation)

Data: System of equations E in variables X involving some S-boxes and a subset
Y < X.
Result: A list of optimal algorithms to enumerate all the possible values of Y
according to the system of equations E with predictable time and memory
complexities.

L — &;
foreach Y € Z < X do
V «— PROPAGATE}(Z);
if V#Xthen L — Lu{OriginalTool (E(V))};
end
return L

Making a System Easier to Solve

Using the tool requires some knowledge of the primitive under scrutiny. For instance,
on two AES rounds, two truncated differential paths with probability one yield two very
different results: if the 4 active byte are on the same column, the tool finds an attack
of complexity about 2%, whereas if the active bytes are on a diagonal, the best attack
found by the tool has complexity 232. More generally, it would be interesting to know
which equations add to a system in order to make it easier to solve, leading to a trade-off
between time and data complexities.

40Chapitre 2. Automated Tool For Low Data Complexity Attacks on AES and Derivatives

Chapitre 3

Low Data Complexity Attacks on
Round-Reduced AES-128

We present a collection of low-data complexity attacks on round-reduced versions of
the AES-128. These attacks have been found in the course of a joint work with Bouil-
laguet, Dunkelman, Keller and Rijmen, during which the automated tool of the previous
chapter have been developed. Some of these results led to the submission of a journal
paper |[BDD* 12], while some others were presented in [BDF11).

During the course of 2009 and 2010, Dunkelman and Keller announced in several
occasions that they were investigating low-data complexity attacks against the AES, and
announced interesting results. We developed the automated tool described in the previous
chapter hoping to catch up on their results. This effort has been gratifying, as the tool
could often improve on the manually-found attacks. When it is the case, it is interesting
to compare both the manually-found and the automatically-found attacks.

3.1 Low Data Complexity Attacks

The field of block cipher design has advanced greatly in the last two decades. New
strategies of designing secure block ciphers were proposed, and following the increase in
computing power, designers could other larger security margins with reduced performance
penalties. As a result, practical attacks on block ciphers became extremely rare, and even
"certificational attacks" (that is, attacks which are not practical but are still faster than
exhaustive key search on the full version of the cipher), are not very common, while
the situation of hash functions and also stream ciphers is dramatically different. Several
commonly used hash functions were practically broken in recent years [SSAT09, MPOS],
and practical attacks on new stream cipher designs appear every several months [SHJ09,
HJ11].

This led to two approaches in the block-cipher cryptanalysis community. The first one
is to concentrate on attacking reduced-round variants of block ciphers, where the usual
goal of the adversary is to maximize the number of rounds that can be broken, using less
data than the entire codebook and less time than exhaustive key search. This approach
usually leads to attacks with extremely high data and time complexities, such as those

41

42 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

shown in [DS08, LDKKO§|. The second approach is to allow the adversary more degrees
of freedom in his control. Examples of this approach are attacks requiring adaptive chosen
plaintext and ciphertext queries, the related-key model, the related-subkey model, and
even the known-key model [BK09, DKSI0b, [KRO7|. This approach allows to achieve
practical complexities even against widely used block ciphers such as the AES, but the
practicality of the models themselves in real-life situations can be questioned. Attacks
following each of these approaches are of great importance, as they ensure that the block
ciphers are strong enough, almost independently of the way in which they are deployed.
Moreover, they help to establish the security margins offered by the ciphers. A block
cipher which is resistant to attacks when the adversary has a strong control and almost
unrestricted resources offers larger security margins than a block cipher which does not
possess this resistance. At the same time, concentrating the cryptanalytic attention only
on such attacks may prove insufficient to truly understand the security of the analyzed
block cipher. It seems desirable to also consider other approaches, such as restricting
the resources available to the adversary in order to adhere to "real-life" scenarios. For
example, one may study the maximal number of rounds that can be broken with practical
data and time complexity, as considered for instance in [BDK™10| with respect to the
related-key model.

Low Data Complexity Attacks. In this part we pursue this direction of research,
but we concentrate on another restriction of the adversary’s resources. In the attacks we
consider, the time complexity is not restricted (besides the natural bound of exhaustive
search), but the data complexity is restricted to only a few known or chosen plaintexts.
At first glance, this scenario may seem far fetched. However, it makes sense to question
whether it is easier in practice for an attacker to perform 2°° elementary operations or
to acquire 50 plaintext/ciphertext pairs. We are inclined to believe that in many actual-
life situations, performing the computation is easier. In addition, the EMV protocol for
credit cards specifies that at most 2'6 signatures shall be issued by a given chip, which
practically restricts the quantity of available data. It also turns out that this setup is very
natural in the context of several classes of attacks:

1. Slide attacks [BW99]: This class of attacks is especially designed against block
ciphers whose rounds are very similar to each other. The main feature of slide
attacks is that they are independent of the number of rounds, and thus, the common
countermeasure of increasing the number of rounds is not effective against them.
Since most other attack techniques can be easily undermined by adding a few rounds,
this makes the slide attacks one of the most powerful attacks against modern block
cipher designs. The main idea of the slide attacks is to reduce the attack on the
entire block cipher to an attack on a single round, where the data available to
the adversary is only two known plaintext/ciphertext pairs. Hence, the scenario
considered in our paper is exactly the one faced by the adversary in the slide attack.
We note that several variants of slide attacks suggested methods to increase the
amount of data available to the adversary [BW0Q, BDKOT7, [Fur01]. However, all
these methods either require the knowledge of large portion of the codebook or
perform in the adaptively chosen plaintext model.

2. Attacks based on fized point properties [CBW0S/: In this class of attacks, the adver-

3.1. Low Data Complexity Attacks 43

sary looks for a fixed point of some part of the encryption process. For such a fixed
point, the cipher is reduced to a smaller variant, which can (sometimes) be attacked
efficiently. Since usually the number of fixed points is extremely small (e.g., one or
two), the adversary’s goal is to attack a reduced-round variant of the cipher given
a few known plaintexts.

3. Side channel attacks: In this class of attacks, the adversary has access to some
information on the internal states during the encryption process. Usually, due to
practical restrictions, the amount of data available to the adversary is extremely low.
In the (somewhat unlikely) case where the information available to the adversary
is the full intermediate state after a few rounds, the scenario the adversary faces is
exactly the one considered in our paper. We note that the complementary scenario,
where the adversary has access to a small part of the internal state in multiple
encryptions, was studied in [DS09].

4. Building block in more complexr attacks: As we will demonstrate on the example
of AES, an attack on 2-round AES with two known plaintexts can be leveraged
to a known plaintext attack on 6-round AES. The attack uses a meet-in-the-middle
approach combined with a low probability differential. Also, the block cipher GOST
was recently broken by such an attack, where an attack against the full 32 rounds
is reduced to an attack against 8 rounds using four known plaintext [Isoll]. We
expect that such "leveraging" attacks are applicable against other block ciphers as
well.

5. Attacks on other primitives based on the block cipher: In recent years, many designs
of stream ciphers (e.g., Sosemanuk [BBCT08]), hash functions (e.g., Hamsi [Kuc09]),
MACs (e.g., Alpha-MAC [DRO5b]), etc., use a small number of rounds of a block
cipher as one of their components. Some of these constructions can be broken when
internal collisions are found and thus the attackers are in a setting in which they
have to exploit a very limited quantity of data (the colliding inputs). The attacks
we consider can be used against these primitives, once collisions are found (which
may require a large quantity of data though).

The AES, a Natural Target. In order to make our results concrete, we have cho-
sen to concentrate on a single block cipher — the AES, the Advanced Encryption Stan-
dard [NISO1]. The AES is a 128-bit block cipher with a variable key length (128, 192, and
256-bit keys are supported). Since its selection, AES gradually became one of the most
widely used block ciphers and received a great deal of cryptanalytic attention, both dur-
ing the AES process, and even more after its selection. Studying reduced-round versions
of AES is also motivated by the recent blossom of many AES-based primitives for hash-
ing or authentication, such as the Grostl, ECHO, SHAVite-3 and LANE hash functions,
the LEX |Bir08al stream cipher, or the Alpha-MAC [DR0O5b] and Pelican-MAC [DRO5C]
message authentication codes. In these construction, AES rounds (and sometimes the
full AES) are used as internal permutations. A possible explanation of this fancy is that
the AES enjoys very interesting security properties against statistical attacks: two rounds
achieve full diffusion, and there exist very good differential and linear lower bounds for
the best differential on four rounds [KMTO01a, [KMTO1bl [Kel04]. It results that in some

44 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

S C+—MxC
[
X X 0(4|8(12
SB X|SR X MC AK 115|913
X X 21610/14
X X 3711115
Ty Yi Zi wy Li+1
An AES round applies AK o MC o SR o SB to the state. Ordering.

Figure 3.1: Description of one AES round and the ordering of bytes in an internal state.

applications (such as authentication or hashing), only a small number of AES rounds are
sufficient to yield a reasonable internal permutation. The relative weakness of the per-
mutation is then usually compensated by the fact that the internal state is either hidden
from the adversary (in MACs, because of the secret key), or only partially accessible to
the adversary (because only certain parts can be seen and modified). Furthermore, in
some particular attacks, such as side-channel attacks, only a small number of rounds of
the cipher needs to be studied [PQO03|, BK(O7a]. Lastly, much attention has been recently
devoted to the AES block cipher as a by-product of the NIST SHA-3 competition. The
low diffusion property of the key schedule has been used to mount several related-key
attacks [BKN09, BK09, BDK™10, [KBN09| and differential characteristic developed for
hash functions have been used to also improve single-key attacks [DKS10a]. The AES is
therefore a relevant and interesting case study to demonstrate our techniques.

3.2 Description of the AES

The Advanced Encryption Standard [NISO1] is a Substitution-Permutation network
that supports key sizes of 128, 192 and 256 bits. The 128-bit plaintext initializes the
internal state viewed as a 4 x 4 matrix of bytes, where each byte represents an element
from Fos. This field is defined using the irreducible polynomial X® + X% + X3 + X + 1
over [F5. Depending on the key length, N, rounds are applied to that state: N, = 10 for
128-bit keys, N, = 12 for 192-bit keys, and N, = 14 rounds for 256-bit keys. An AES
round applies four operations to the state matrix:

— SubBytes (SB) applies the same 8-bit to 8-bit invertible S-Box S 16 times in

parallel on each byte of the state,

— ShiftRows (SR) shifts the i-th row left by i positions,

— MixColumns (MC) replaces each of the four column C' of the state by M x C' where

M is a constant 4 x 4 maximum distance separable matrix over Fys,

— AddRoundKey (AK) adds a 128-bit subkey to the state.

We outline an AES round in Figure[3.1} Before the first round, an additional AddRoundKey
operation (using a whitening key) is applied, and in the last round the MixColumns op-
eration is omitted.

Let Fos be the finite field with 256 elements used in the AES. We represent the S-box
of the SubBytes transformation by S : Fos — [Fas. In a 4 x 4 matrix, we use the following

3.2. Description of the AES 45

numbering of bytes: byte zero is the top-left corner, the first column is made of bytes 0-3,
while the last column is made of bytes 12-15, with byte 15 in the bottom-right corner
(this is illustrated by Figure . We denote the four columns of a 4 x 4 matrix M by
M][0..3], M[4..7], M[8..11] and M[12..15] respectively. We count the AES rounds from
0 and, in the ¢-th round, we denote the internal state after AddRoundKey by z;, after
SubBytes by y;, after ShiftRows by z; and after MixColumns by w;. To refer to the
difference in a state x, we use the notation Az. Because the final AES round is different
from the others, we use the term “r.5 rounds AES” to denote the AES reduced to (r + 1)
rounds, including the final round. We use “r rounds AES” to denote the AES reduced to
r identical full rounds. In our terminology, the “normal” 128-bit AES has 9.5 rounds.

The key expansion algorithms to produce the N,.+1 subkeys are described in Figure|3.2
for each keysize. As the AES-128 will be studied more intensively we shall describe this
version more precisely and refer to the original publication |[NISOI| for further details
about the two other versions. The key schedule of AES-128 takes the 128-bit master
key ko and extends it into 10 subkeys kq, ..., ko of 128 bits each using a key-schedule
algorithm given by the following equations:

-

k:[0] + ki—1[0] + S (ki—1[13]) + RCON; = 0
L ki3] + Ria[3] 4+ S (ki [12]) = 0
HEER [SHRH
e
e
{SH ” SHEH >0
b
%i@ . %é
o —P

—® > >
e e

(a) AES-128 (b) AES-192 (c) AES-256

Figure 3.2: Key schedules of the variants of the AES: AES-128, AES-192 and AES-256.

In some cases, we are interested in interchanging the order of the MixColumns and
AddRoundKey operations. As these operations are linear they can be interchanged, by

46 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

first XORing the data with an equivalent key and only then applying the MixColumns
operation. We denote the equivalent subkey for the altered version by:

O0e 00 0d 09

b 0d
we = MOk = |00 0 0 0d|
0d 09 Oe 0b

0b 0d 09 Oe

3.3 Observations on the Structure of AES

In this section we present well-known observations on the structure of AES, that we
use in our attacks. We first consider the propagation of differences through SubBytes,
which is the only non-linear operation in AES.

Property 12 (the SubBytes property). Consider pairs (o # 0,08) of input/output
differences for a single S-box in the SubBytes operation. For 129/256 of such pairs, the
differential transition is impossible, i.e., there is no pair (v,y) such that t @y = o and
S(x)®S(y) = B. For 126/256 of the pairs («,), there ezist two ordered pairs (z,y) such
that t®y = a and S(x) ® S(y) = B, and for the remaining 1/256 of the pairs («, B)
there exist four ordered pairs (x,y) that satisfy the input/output differences. Moreover,
the pairs (x,y) of actual input values corresponding to a given difference pattern (a,)
can be found instantly from the difference distribution table of the S-box. We recall that
the time required to construct the table is 2'¢ evaluations of the S-box, and the memory
required to store the table is about 217 bytes.

Property [12] means that given the input and output difference of an S-box, we can find
in constant time the possible absolute values of the input, and there is only a single one
on average.

The second observation uses the linearity of the MixColumns operation, and follows
from the structure of the matrix used in MixColumns:

Property 13 (the MixColumns property). Consider a pair (a,b) of 4-byte vectors, such
that a = MC(b), i.e., the input and the output of a MixColumns operation applied to one
column. Denote a = (ag,ay,as,a3) and b = (by, by, ba, b3) where a; and b; are elements
of Foss. The knowledge of any four out of the eight bytes (ao, ay, as,ag, by, by, ba, b3) is
sufficient to uniquely determine the value of the remaining four bytes.

The third observation is concerned with the keyschedule of AES-128, and exploits the
fact that most of the operations in the algorithm are linear. It allows the adversary to
get relations between bytes of non-consecutive subkeys (e.g., k., k,y3 and k,,4), while

“skipping” the intermediate subkeys. The observation extends previous observations of
the same nature made in [FKL*00, [DK10al.

3.4. Attack on One-Round AES 47

Property 14 (the key-schedule properties). Consider a series of consecutive subkeys
kv kei1,..., and denote k., = (a,b,c,d) and:

u = RotBytes(SubBytes(k,[12..15])) @ RCON|r + 1]
v = RotBytes(SubBytes(k,4+1[12..15])) ® RCON|r + 2]
w = RotBytes(SubBytes(k,2[12..15])) ® RCON|r + 3]
r = RotBytes(SubBytes(k,43[12..15])) @ RCON|r + 4]
Then, the subkeys kyi1,kyy2,... can be represented as linear combinations of (a,b,c,d)

(the columns of k,.) and the 32-bit words u,v,w,x, as shown in the following table:

Round k[0..3] k[4..7] k[8..11] k[12..16]

r a b c d
r+1 a®u a®bDdu aPb®cPu aPbPc®dDu
r+2 aPuPv bdv aPcPuPv bdddv
r+3 aPud®Dvdw aPbAOUDW bPchHvPw cOHdPw
r+4 | aQuPrvPwdx bdvdx chwdx d®x

As a result, we have the following useful relations between subkeys:

1. Eyi0]0..3] @ kyoo[8..11] = K, [8..11],

2. kyiof[4..7] ® kyrin[12..15] = k,[12..15],

3. Eyiofd.T) @ v = k[4..7],

4. kpa[12.15] @ @ = k,[12..15],

5. kpps[12..15] = k,[8..11] ® k,[12..15] @ w.

Similar observations on both the keyschedules of AES-192 and AES-256 are made
Chapter [7]

3.4 Attack on One-Round AES

We start our analysis with the simplest case, an adversary who seeks to break one full
round of AES (a sequence of AddRoundKey, SubBytes, ShiftRows, MixColumns
and AddRoundKey operations)

3.4.1 Two Known Plaintexts

We first describe a simple but suboptimal attack. It starts by applying SR™*o MC~!
to the ciphertext difference, to obtain the output differences of all the S-boxes. Since
the input differences of the S-boxes are equal to the plaintext difference in the respective
bytes, the adversary can consider each S-box independently, go over the 28 possible pairs
of inputs whose difference equals the plaintext difference, and find the pairs suggesting

48 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

the "correct" output difference. In each S-box, the expected number of suggested pairs
is two, and each such pair gives a suggestion of one byte in the subkey ky. Thus, the
adversary gets 219 suggestions for the entire subkey kg, which can be checked by trial
encryption.

This attack, whose time complexity is 2'¢ encryptions, can be further improved using
the relation between the subkeys kg and k;. If the adversary checks the S-boxes in bytes
0, 5, 10 and 15 she can use the 2* = 16 suggestions of output values of these S-boxes to get
16 suggestions for the column k;[0..3], along with bytes 0, 5, 10 and 15 of kq. Similarly,
checking bytes 3, 4, 9, 14 yields 16 suggestions for the column k;[4..7], along with bytes
3, 4,9, 14 of ky. Combining the suggestions, the adversary obtains 256 suggestions for
two columns of k£ and eight bytes of k. At this stage, the adversary can use the relation
k1[4] = ko[4] + k1[0] which holds by the AES key schedule, as a consistency check. Only
a single suggestion is expected to remain. The value of the remaining 8 bytes of ky can
be obtained similarly by examining the other eight S-boxes. This improvement reduces
the time complexity of the attack to 22 S-box applications.

3.4.2 One Known Plaintext

If the data available to the adversary is only a single plaintext, then the attack must
use the relation between the two subkeys ky and ky. If the subkeys were independent,
then the information available to the adversary would not be sufficient to retrieve the
key uniquely. Since any relation between the plaintext and the ciphertext involves the
MixColumns operation, it seems likely that any such attack should require the guess of
a full column, and thus have complexity of at least 232 encryptions.

In this setup, the best attack found manually is a guess-and-determine attack by
Dunkelman and Keller [DKI0b| that has a running time equivalent to that of 2** encryp-
tions. The tool described in the previous chapter was able to find an attack with time
complexity of 232 encryptions, and memory requirement of 21¢ bytes. Restricted to guess-
and-determine solver an attack with time complexity of 20 encryptions and a negligible
memory requirement was found, which is still better than Dunkelman and Keller’s one.

The attack, depicted in Figure [3.3] is based on Property [15] below. In the first phase
of the attack, the adversary guesses the column k;[0..3], and retrieves the value of seven
additional subkey bytes. This phase is shown in Figure , where steps 6 and 10 are
based on key schedule arguments, and the rest of the steps use the application of known
operations on known values. The second phase of the attack, depicted in Figurd3.3(b)]
starts with retrieving the possible values of bytes ko[7] and ko[8] using Property [15 Steps
6, 7, 8 and 15 use the key schedule, steps 13 and 19 use Property [I3, and the rest of the
steps follow the application of AES’ operations to known values.

The key step of the attack is the discovery of Property 9.5 by the tool of Chapter [2
We went though the output produced by the tool to write a readable description of the
solver’s steps.

Property 15. The knowledge of P, C' and the column k1[0..3] allows one to retrieve bytes
ko[7] and ko[8] by a table look-up to a precomputed table of size 22*. For each value of
k1[0..3], there are at most 12values of (ko[7], ko[8]), and a single one on average. The

3.4. Attack on One-Round AES 49

P T Y z w

AK SB SR AK

MC
11

Van)
A

VAR ESEEN]
== =] =
A\

(a) First half of the attack

19
AK

12

19

-~ - - -
A\

12

[S13 IS T IS

(b) Second half of the attack

Figure 3.3: An attack on one round AES given one known plaintext with time complexity of
232 and memory complexity of 224, Bytes marked by gray are known (from previous steps of
analysis). Bytes marked with tilted lines are retrieved using Property

time complezity required to generate the table is 232 operations.

The proof of this property is based on obtaining two non-linear 8-bit relations involving
two key bytes (given that other bytes of the key and the state are known). In such a case,
we expect on average one solution to these equations (and as our test shows, in reality
the maximal number of solutions is 12). Moreover, as there are 23 possible systems, one
can precompute the acceptable solutions and store them.

Proof. First, we note that the knowledge of the column £;[0..3] along with the plaintext
and the ciphertext allows us to retrieve one additional byte of k; and six bytes of kg, as
shown in Figure We denote a = yo[8] and b = yo[7], and express several other bytes
in terms of a, b, and known bytes (from the plaintext, the ciphertext and k;[0..3]). Our
goal is to obtain a system of two equations in a and b, and to solve it using a precomputed
table. This system is constructed in 5 steps.

50 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

1. First, note that the third column of k£ can be expressed as:

k1[8.1] = C[8..11] + wy[8..1]
= CO[8.11] + MC(%[8..11])
= C[8.11] + MC (*(a, S(P[13] + ko[13]), S(P[2] + ko[2]),b)) . (3.1)

In this expression, bytes 2 and 13 of kg can be deduced from the 4 guessed bytes in k;
after the first phase of the attack, as shown in Figure

2. Let us now turn our attention towards the second column of k;. Note that k;[5] can
be computed following the procedure shown in Figure , and the remaining three
bytes of ki[4..7] can be expressed as:

k4] = k8] + S (a) + P[8]
ki[6] = Ea[10] + ko[10] (3.2)
k[7] = ki[3]+ S~ (b) + P[7]

Again, ko[10] (appearing in the expression of k1[6]) can be derived from the guessed
bytes.

3. Next, we will turn our attention away from the key-schedule, to the second column of
2o, and in particular to z[4] and zo[5]. We first express it in function of the plaintext.
It follows from the definition of the encryption and schedule algorithm that:

o
i)
o

B

5] = S(PIO]+kol0]) — S(P[9]+ k5] + ka[9)) (33)

M

{ z[4] = S(P[4] + ko[4]) [4] + k1 [0] + Fy|

It must be noted that all key bytes occurring in these expression can be readily derived
from a, b and the four guessed key bytes.

4. On the other hand, the whole column zy[4..7] can be expressed as a function of the
ciphertext:

20[4..7] = MO wo[4..7]) = MO~ (C[4..7] + k1[4..7]) . (3.4)

5. Identifying zo[4] and z,[5] in (3.3) and (3.4), and exploiting (3.1 and (3.2)) results in

a system of two linearly independent equations in the unknowns a, b, and the known
plaintext, ciphertext, and bytes that can be derived from k;[0..3]. These equations can
be written in the form:

Al = fl(ai b) + S(fQ(a’7 b) + Az) (3 5)
A3 = f3<aa b) + S(f4(aa b) + A4)
where fi, fo, f3 and f; are fixed known functions, and Ay, Ay, Az and A, are one-byte
parameters depending on the plaintext, the ciphertext, and the guessed subkey bytes
(the actual expressions are not given as they are a bit lengthy).

3.5. Attacks on Two-Round AES 51

Equations (3.5) allows to perform the following two-phase procedure:

Offline Phase: for each of the 232 possible values of (a,b, As, Ay), evaluate the right-
hand in (3.5)), and find the values of A; and Aj. Store the pair (a,b) in a data-structure
(typically an array of linked lists, or a hash table) indexed by (A, Ag, Az, Ay). This
phase requires 232 simple operations and 232 16-bit blocks of storage.

Online Phase: once the values of P, C are known, and for each guess of k[4..7], compute
the value (Ap, Ay, Az, Ay), and obtain from the precomputed table the corresponding
values of (a,b). Then deduce the subkey bytes ko[7] and ko[8] using the equations:

RS = PIS+xols] = P[s]+5 () 56)
Ko[7] = Pl +20[7] = P[7]+S70) |
Reducing the Memory Complexity: We can reduce the 23?2 memory required for
storing the solutions to only 2'¢. This is done by fixing the value of two particular linear
combinations of the A;’s, such that we can deal only with the equations relevant to this
specific value in each step of the attack. Those linear combinations are chosen such that
from their knowledge it is easy to enumerate the 2! corresponding first columns of k; as
well as the 216 corresponding values of (a,b, Ay, A4). The outcome of such an approach is
the ability to reduce the number of possible systems that we need to consider in a given

time to 2'¢, which reduces the memory complexity without affecting the time complexity.
O

3.5 Attacks on Two-Round AES

In this section we consider attacks on two rounds of AES, denoted by rounds 1 and 2.
First we present attacks on two full rounds with two known plaintexts. We then study the
interesting case of two chosen plaintext. In both settings, the tools vastly outperformed
human cryptanalysts. We then look at the case of a single known plaintext. We conclude
by presenting an improved attack with two known plaintexts that can be applied if the
MixColumns operation in round 1 is omitted (i.e., if we are facing 1.5 rounds). This
attack is used as a procedure in our attack on 6-round AES presented in.

3.5.1 Two Known Plaintexts.

The Manually-Found Attack. We first describe an attack found manually by Dunkel-
man and Keller. This attack with two known plaintexts, depicted in Figure [3.4] is based
on Property As in the one-round attack with two known plaintexts, we observe that
the ciphertext difference allows us to retrieve the intermediate difference after the Sub-
Bytes operation of round 2. This observation is used in both phases of the attack. We
also "swap" the order of the MixColumns and the AddRoundKey operations of the sec-
ond round. This can be done since both operations are linear, as long as the subkey k5 is
replaced by the equivalent subkey uy = MC™!(ky).

In the first phase of the attack, the adversary guesses bytes 0, 5, 10 and 15 of kg,
which allows her to retrieve the intermediate difference in 25[0..3] (i.e., just before the

52 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

SubBytes operation of round 2). Then, Property 12 can be applied to the four S-boxes in
that column, yielding their actual input/output values in both encryptions. This in turn
allows us to obtain k;[0..3] (as the values before the AddRoundKey with k; are known).
At this stage, the adversary tries to deduce and compute as many additional bytes as she
can.

In the second phase of the attack, the adversary guesses two additional subkey bytes
(ko[7] and ko[8]) which are sufficient to retrieve the intermediate difference in x4[8..11].
Then, Property [12| can be applied to the four S-boxes in bytes 8-11 of round 2.

We note that the while the first phase of the attack allows us to obtain several bytes
in uy, the knowledge of these bytes cannot be combined directly with the knowledge of
bytes in k; and kg, since uy does not satisfy the equations of the key schedule algorithm.
Hence, in the second phase of the attack, we obtain bytes in both us and ks in parallel,
and apply Property to the relation between ko and wus, since they are the input and
output of a MixColumns operation.

In Phase 1 of the attack, depicted in the top half of Figure [3.4] step 5 is based
on Property steps 9 and 13 exploit the key schedule, and the rest of the steps are
performed using encryption/decryption. In the second phase, depicted in the bottom half
of the figure, step 5 is based on Property 9.1, step 12 uses Property applied to the
relation between ko and wuo, steps 9, 10, 11 and 13 exploit the key schedule, and the rest
of the steps are performed using encryption/decryption.

The time complexity of the attack is determined by the fact that 6 subkey bytes are
guessed, and for each guess a few simple analysis steps are performed. Hence, the time
complexity of the attack is 248,

The Automatically-Found Attack. Our tool has found an attack with time and
memory complexity 232 in this setting, vastly outperforming human cryptanalysts. The
attack is a meet-in-the-middle whose main ingredient is the possibility to isolate a set of
about 232 candidates for both k;[0..3] and k;[12..15] with only 232 operations. These 8
bytes are a sufficient to recover the full key with a complexity of about one encryption.

First, we assume that x,[12..15] is known (for the first message), and we try to derive
the value of some other bytes. We can easily obtain the differences in x;[12..15]. Then,
by linearity of the MixColumns operation, we obtain the differences in 2y[12..15]. Using
Property we also obtain the values and the differences in byte 1, 6, 11 and 12 of xg
(and thus of ko). Note that the values of w[12..15] and k;[12..15] are revealed in the
process. Let us denote by A the set of bytes that can be obtained from z;[12..15].

Similarly, if the value of z1[0..3] is known, then the values (and differences) in byte
0,2, 5,10, 13 and 15 of xy and ko, as well as wp[0..3] and k;[0..3] could be recovered. Let
us denote these bytes by B.

Even though the bytes in A U B can take 2%* values, this can efficiently be reduced
to 232, Indeed, we claim that there exist (at least) 4 linear relations between bytes of A

3.5. Attacks on Two-Round AES

P Zo Yo 20 Wo
1 2 3 4
AK SB SR MC AK
1 10 2 11 3 12 4
10 11 2 3 12 4
1 2 3 4
6
9 6 (13
ko . ky .
6
x Y1 21
5 5 7
SB SR
5 5 7
5 5 7
5 5 7
8
MC
8
kg Uz

8

(a) First half of the attack: The difference in the bytes marked is guessed. The bytes
marked by 5 are found using the known input and output differences of the Sbox.

20

Wo

(b) Second Half: The difference in the bytes marked in black is guessed. The bytes
marked by 5 are found using the known input and output differences of the Sbox. The
bytes marked by 12 are found using the relation between the keys ko and ws.

Figure 3.4: The attack with two known plaintexts on two round AES.

93

54 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

and those of B:

fi(4) = ¢1(B)
f2(A) 92(B)
f3(4) 93(B)
f1(A) = g(B)

Thanks to these relations, a tuple of values from A is associated to a single tuple of values
of B on average: for each one of the 232 tuples of values in A, evaluate the f;’s and store
the result in a hash table. Then for each one of the of the 232 tuples of values in B,
evaluate the g;’s, and loop-up the corresponding value(s) in A.

Two of these linear relations can be obtained very simply: given k;[0..3] and k[12..15],
we deduce k»[0..3]. From there, it is also possible to compute bytes 0, 5, 10 and 15 from
x1 by partial decryption. Amongst these, x1[15] occurs in A while z1[0] occurs in B. This
already gives two linear equations connecting A and B.

Two other constraints can be obtained in a more sophisticated way. First, we notice
that given the key bytes in A and B, it is possible to retrieve the full ky except byte 4,
8 and 12 by just exploiting the key-schedule and Property [14 Focusing on the last two
columns of w;, we find that 3 bytes are known in each column in w; and two bytes are
known in each column of z;. Thanks to Property [I3] this gives a linear relation between
the known bytes of each column.

3.5.2 A Three Known Plaintext Variant

We note that if the adversary is given three known plaintexts, then a simpler attack
can be applied, with the same complexity, namely 232 encryptions. The adversary applies
the first phase of the manually-found attack twice (for the pairs (P, P,) and (P, %)),
and uses the values of k;[0..3] retrieved in that phase for a consistency check. Since for
the correct guess of bytes 0, 5, 10 and 15 of kg, both pairs suggest the same value of
the four bytes of ki, and for an incorrect guess, the two pairs suggest the same value
only with probability 232, this allows us to discard most of the wrong guesses. Then, the
adversary performs the second phase of the attack only for the remaining guesses, and
thus the time complexity of the attack is dominated by the first step, whose complexity
is 232 encryptions.

3.5.3 A Two Chosen Plaintext Variant

If the adversary is given two chosen plaintexts, then the time complexity can be
reduced. We first describe an attack found manually by Dunkelman and Keller, with a
complexity of 2% encryptions. We will next describe an attack found by the improved
tool, with complexity 28 (!).

The Manually-Found Attack. In order to improve on the known-plaintext scenario,
the adversary asks for the encryption of two plaintexts which differ only in four bytes

3.5. Attacks on Two-Round AES 55

composing one column. Figure shows the difference pattern. In this case, at the
end of round 1, there are exactly 127 possible differences in each column. For each such
difference, the adversary can apply Property to the four S-boxes of the column, and
obtain one suggestion on average for the actual values after the SubBytes operation of
round 2. Combining the values obtained from all four columns, the adversary gets about
228 suggestions for the entire state after the SubBytes operation of round 2, and each such
suggestion yields a suggestion of the subkey ko. Thus, the time complexity of the attack
is 228 encryptions.

The Automatically-Found Attack. The adversary asks for the encryption of two
plaintexts which differ only in four bytes composing one column. The attack relies on
Property [16] below, which cleverly uses the linearity in the key-schedule of the AES.

Property 16. For all i > 1 we have the following equations:
1 2 1 [4.7] @ 2:]0..3] @ 2:[4..7] = MO (mi[4..7] @ 2:41[0..3] @ xi+1[4..7]>

2. 2 [8.11] @ 2[4..7] @ zi[8..11] = Mcfl@[&.n] @ 2441 [4..7] @:v,-+1[8..11]>
3. 2 1[12..15] @ #[8..11] @ = [12..15] = MC’_l(xi[12..15]@xiH[S..ll]@xi+1[12..15]>

Proof. Here again the idea is to exploit the interaction between the linearity of MixColumns
and the linear operations in the key-schedule. We only prove the first equation (the proofs
of the other two is quite similar). Expressing y in terms of w gives:

zi1[4.7) = MC™" (w;_1[4..7])
We can relate w;_; to x; thanks to the AddRoundKey operation:
zi4[4..7) = MC™' (k;[4..7) ® x,[4..7])
And there, we can exploit the linearity of the key-schedule:
2 1[4.7] = MC™ (ki1[0..3] @ ki1 [4..7) @ x4[4..7])
The sub-keys can then be expressed back in terms of w and z:
2 4[4..7] = MC™ (w;[0..3] ® 2411[0..3] ® w;[4..7] ® 74,1 [4..7] ® 7,[4..7])
And then, the linearity of MixColumns can be exploited as well:
zi1[4..7]) = 2,[0..3] ® z[4..7T] ® MC ™ (2,[4..7) ® 2411[0..3] ® w411 [4..7]) .
O O

Assume that z0[0] is known: it is possible to deduce there from the value (and the
difference) in z0[0], and finally the difference in 21[0..3] (by Property [L3)). Because the
difference in 3, [0..3] can be deduced from the ciphertexts, it follows that the actual values
in 21[0..3] can be deduced thanks to Property [I2] This also reveals bytes 0,7,10 and
13 of z; (observe Figure B.5)). It follows that if zo[0..3] were known, then the key could

56 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

P To 20 1 z1 C
0 0 01321 013]2]1
1 SB 1| mc [0]3|2]1] sB |3]2]1]0] mc
ARK | 9 SR 2 ARK [()|312]1| sr |2|1]0|3| arK
3 3 0]3]2]1 1/0/3]|2

Figure 3.5: Two chosen plaintexts attack on two AES rounds. Gray bytes indicate the presence
of a difference, and hatched bytes indicate the presence of a known difference. If byte i is known
in xg, then the actual values of all the bytes with the same number can be found.

easily be deduced. The attack works by constructing a set of possibles values of z4[0..3]
of expected size 256 in which the actual solution is guaranteed to be found. This process
has a complexity of the order of 256 encryptions, and therefore dominates the complexity
of the attack. A pseudo-code of the attack is shown in Algorithm [§ The attack works in
3 stages, each one using Property (16| in a different way.

Algorithm 8: Pseudo-code of the attack on 2 rounds using 2 chosen plaintexts.

Function 2R-2CP-Attack (P, (')
forall the z4[2] € Fo56 do // Build T,
compute z[10] and z4[8..11];
let u =12,[8..11] ® C[4..7] ® C[8..11] in;
let i = z[10] @ (0d, 09, Oe, 0b) - u in;
Doli] — Toli] v {xo[2]};
nd
orall the x[3] € Fa56 do // Build Tj
compute zy[7] and x[4..7];
let v = 21[4..7] @ C[0..3] ® C[4..7] in;
let i = 2[7] @ (0b, 0d, 09, 0e) - u in;
Tsli] — Ta[i] o {wo[3]};

= 0

end

forall the z([1] € Fo56 do // Retrieve the key
Compute z[13], z1[12..15], z1[3], 21[6], z1[9], z1[12];
Compute z[13] ; // Using Property

Compute z4[1], the difference in zy[1], and z,[0];
Compute z,[0], 21[0..3], 21[0], 21[7] and 21[10]
Read possible value(s) of zo[2] in T3[21[6] @ 21[10]];
Read possible value(s) of zo[3] in T3]z [3] @ 21[7]];
Compute k; and check for correctness;

end

end

1. We first show that once zo[1] is known, then z([0] can be determined using Prop-

3.5. Attacks on Two-Round AES 57
erty |16}, item iii). The equation is:
20[12..15] @ 21[8..11] @ 1 [12..15] = MO~ (:51[12..15] @ C[s..11] @ 0[12..15]> ,

We enumerate the possible values of x¢[1] and compute all the bytes marked “1” in
Figure 3.5l At this stage, the right-hand side the equation is fully known. In the
left-hand side, zp[13] and z;[9] are known, and therefore z;[13] can be deduced by
projecting the (vector) equation on the second component. The actual values and
the differences can then be deduced in x;[1], which reveals the difference in zy[0]
(by Property [L3). The actual values in zo[0] can then be deduced by Property [12]
We expect on average one possible value of z,[0] per value of zo[1].

2. We then seek to extend this procedure to x¢[2] and z([3]. To this end, we still use
Property [16] equation ii):

A[4.7] ® 21 [8..11] = 2[8..11] @Mc—l(xl[&.n] @ C[4..7] @0[8..11]), ()

The third coordinate of the right-hand side can be entirely deduced from xy[2]. We
can therefore build a table yielding x¢[2] from the third coordinate of the right-hand
side of (&), as shown in the first loop in Algorithm [§

We perform the same operations with z[3], using Property [16] equation i):
2[0..3] @ 21[4..7] = 2[4..7] ® MO <x1[4..7] @ C[0.3]® 0[4..7]) . (©)

Here, the fourth coordinate of the right-hand side can be entirely deduced from
zo[3]. We therefore build a table yielding z([3] from the third coordinate of the
right-hand side of (Q) (as shown in the second loop in Algorithm [§).

3. Once the two tables Ty and T3 have been built, we are ready to derive z([2] and
zo[3]. For this purpose, we enumerate the values of xy[1], derive z([0] as explained
above. The third component of equation (&) and the fourth component of (©) can
be computed, and thanks to 7o and T3 the corresponding values of z[2] and z([3]
can be retrieved in constant time, resulting in an average of 256 suggestion for the
first column of xy. From there, ky can be deduced, and the key-schedule can be
inverted to retrieve k.

3.5.4 One Known Plaintext

Both Dunkelman and Keller, and our tool of independently found a 1 known-plaintext
attack against two full rounds. One possible version of the attack, depicted in Figure [3.6],
is based mainly on Property (14| (the "jumps" in the key-schedule) and on many simpler
key schedule considerations.

In the first phase of the attack, the adversary guesses nine subkey bytes (marked in
black in the upper part of the figure). Step 7 uses Property (3), step 8 uses Prop-
erty (2)7 steps 5, 6 and 9 use the key schedule, and the remaining steps are computed
using the AES algorithm.

o8

Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

Yo 20 Wo
2 3 3 4
SB SR MC AK
2 3 4
2 2 3 3 4
2 3 4
]{) 6
! H
T Y1 21 w1 C
10 11 12 1311313
SB SR MC AK
10 11 12
13 13
10 11 12
7198
7 8 2

(a) First half of the attack: the value of the bytes marked in black is guessed. The bytes
marked by 7 and 8 are found using Property

20

Wo

17

17

AK

17

17

(b) The bytes marked is black are guessed. The bytes marked by 9 and 13 are found

using Property 1)

Figure 3.6: The attack with one known plaintext on two round AES.

3.5. Attacks on Two-Round AES 59

In the second phase of the attack, the adversary guesses one state byte (marked in
black in the lower part of the figure). Steps 9 and 13 are based on Property [14(1), steps
1, 5, 29 and 32 use Property steps 3, 7, 8, 10-12 and 21-24 use the key schedule, and
the remaining steps are performed by applying AES’ operations on known values.

The time complexity of the attack is determined by the amount of bytes which are
guessed. Namely, as the adversary guesses 10 bytes, the time complexity of the attack is
280 encryptions. Because the automated tool is quite flexible, we could check without any
effort that the SQUARE block cipher was a bit less strong than its successor (the AES):
in the same setup, we found an attack with 9 guessed bytes, i.e., a time complexity of 272
encryptions.

A Time-Memory Trade-Off. The time complexity can be reduced at the expense of
enlarging the memory complexity, using non-linear equations and a precomputed table
as in Property [I5] This improved attack was also found by our tool. In order to achieve
this reduction, the adversary performs the following precomputation: Let bytes 4 and
14 of kg be denoted by b and c. It is possible to represent all the bytes found during
the attack procedures in terms of b, ¢, the plaintext, the ciphertext, and the other 8 key
bytes which are guessed in the original attack procedure. At the end of the deduction
procedure, after a suggestion for the full subkey ko (in terms of b and ¢) is obtained, the
adversary decrypts the ciphertext through the last round and obtains a suggestion for
bytes 4 and 5 of k;. These bytes can be used as a consistency check, as they can be
retrieved independently by the key schedule algorithm, using the suggestion of ks. This
consistency check supplies two non-linear equations in b and ¢, and it turns out that the
equations are of the following form:

as = fo(bacﬂo,al,amazs,%)

(3.7)
ary = fl(b7 ¢, g, a1, a2, Aas, aﬁ)

where fy and f; are fixed known functions, and aq,...,a; are one-byte parameters de-
pending on the plaintext, the ciphertext, and the eight additional subkey bytes guessed in
the original attack. Since the values of ay, ..., a; are very cumbersome, we do not present
them in this thesis.

Hence, it is possible to compute in advance the values of (b, ¢) corresponding to each
value of (ao,...,ar), and store them in a table. In the online phase of the attack, the
adversary guesses only 8 subkey bytes (instead of 10), computes the values of (aq, ..., ar),
and uses the table in order to retrieve b and c. The rest of the attack is similar to the
original attack.

The time complexity of the resulting attack is reduced to 2%4, but on the other hand,
the attack requires 264 16-bit blocks of memory.

The memory requirement can be further reduced to 2*® by observing that the knowl-
edge of a1, az and the six subkey bytes ko[6], ko[11], ko[12], k1[8], k1[13], k1[15] allows
one to deduce the value of the two remaining subkey bytes guessed in the modified at-
tack. Using this observation, the attack procedure can be slightly changed as follows:
The adversary starts with guessing the values of a; and a3, and prepares the table for
the given value of ay, az. In the online phase of the attack, the adversary guesses the
six subkey bytes ko[6], ko[11], ko[12], k1[8], k1[13], k1[15], deduces the value of the two

60 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

additional required subkey bytes, and performs the original attack. This change reduces
the memory complexity to 29 bytes (since the table is constructed according to 6 byte
parameters instead of 8), while the time complexity remains unchanged at 2°4.

3.5.5 Improved Attack When the Second MixColumns is Omitted

In Section we present a differential attack on 6-round AES which uses as a sub-
routine a 2-round attack on AES. In the attack scenario, the two rounds attacked in the
subroutine are the last two rounds of AES, i.e., a full round and a round without the
MixColumns operation. In this section we present an improved variant of the attack with
two known plaintexts presented above that applies in this scenario. We note that this
attack gives another evidence to the claim made in [DK10b| that the omission of the the
last MixColumns operation in AES reduces the security of the cipher.

The attack, presented in Figure consists of two phases. In the first phase, the
first 13 steps are identical to the first 13 steps of the attack on two full rounds presented
in Section [3.5.1 above. Steps 14-20 and 25 exploit the key schedule, and the rest of the
steps apply AES’ operations to known values.

The second phase uses Property 9.3 and simpler key schedule observations. Step 1
uses Property [14)(1,2), step 20 uses Property [L4|(1), step 9 uses Property [L3] steps 2-4, 11,
12, 16-19 and 25 use the AES key schedule, and the remaining steps are performed using
partial encryption or decryption.

3.6 Attacks on Three-Round AES

In this section we consider attacks on three rounds of AES, denoted by rounds 1-3.
First we present a simple attack with two chosen plaintexts, then we present a bit more
complex meet-in-the-middle attack with 9 known plaintexts, and finally we present a very
time-consuming attack with a single known plaintext.

3.6.1 Two Chosen Plaintexts

The 2 rounds/2-chosen plaintext attack of section can easily be leveraged into
a 3-round attack of complexity 2'®, thus improving on a manually-found attack with
complexity 232 described in [BDD¥12].

In this improved attack, the adversary asks for the encryption of two plaintexts which
differ only in the first byte. By guessing ko[0], the adversary obtains the differences in
71[0..3]. This is sufficient to apply the attack of section to rounds 2 and 3. The
complexity of the process is therefore 2'¢ encryptions.

3.6.2 Nine Known Plaintexts

An attack with 9 known plaintexts has been found manually by Dunkelman and Keller.
It uses a combination between the differential approach and the standard meet-in-the-
middle approach. The adversary guesses subkey material in ky and k3, and obtains a

3.6. Attacks on Three-Round AES 61

P Zo Yo 20 Wo
1 2 3 4
AK SB SR MC AK
1(26]10 2 (27|11 3 (27]12 4124|2424
10 1 11 2 3 12 4
1 2 3 4
6
k‘ 259 k‘ 6 [13|15]|14
0 9 1 6 19
6
x Y1 21
5 5 T
SB SR
5)123(23[23 5)22(22]|22 21(21(21| 7
5)23 5)22 7121
5 5 7
8
18|17|16| 8 k
8 |20 2
8

(a) First half of the attack.

(b) Second half.

Figure 3.7: The attack on two rounds of AES without the second MixColumns using two
known plaintexts. Bytes marked in black are guessed, and bytes marked in gray are known at
this phase of the attack.

62 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

consistency check on the intermediate difference after the ShiftRows operation of round
2.

Concretely, denote the intermediate values in byte 0 after the ShiftRows operation of
round 2 by X, X5, ..., Xg. In the first phase of the attack, the adversary guesses bytes 0,
7, 10 and 13 of the equivalent subkey u3 and partially decrypts the ciphertexts through
the last round (obtaining the actual values in x3[0..3]). Then, using the linearity of the
MixColumns operation, the adversary computes the differences X; + Xo,..., X7 + Xy,
and stores their concatenation (a 64-bit vector) in a hash table. In the second phase
of the attack, the adversary guesses bytes 0, 5, 10 and 15 of ky and byte k;[0] and by
partial encryption of the plaintexts, obtains the values of X; + Xo,..., X7 + Xy, and
checks whether their concatenation appears in the hash table. This consistency check is
a 64-bit filtering, and thus only 272 x 2764 = 28 key suggestions are expected to remain.
By repeating the procedure with the three other columns, the adversary obtains about
232 suggestions for the full subkey ky (along with many other subkey bytes), which can
be checked by exhaustive key search. The time complexity of the attack is about 2%
encryptions, and the memory requirement is 2% bytes of memory.

3.6.3 One Known Plaintext

The tool found a guess-and-determine attack with a single known plaintext, depicted
in Figure The attack consists of two phases.

In the first phase (shown in the top part of the figure) the adversary guesses 15 subkey
bytes, and uses key schedule considerations deduce numerous additional subkey bytes in
the four subkeys ko, k1, ko and k3. Step 4 of the deduction uses Property (1), and the
other steps use the key schedule algorithm directly.

The second phase (shown in the bottom part of the figure) is the meet-of-the-middle
part of the attack. Using the known subkey bytes, the adversary partially encrypts the
plaintext and decrypts the ciphertext and obtains sufficient information in order to apply
Property [13| to the MixColumns operations of rounds 2 and 3. Steps 13 and 17 of this
part use Property [[3] and the other steps use AES’ operations and the knowledge obtained
in previous steps.

Since the adversary guesses 15 key bytes, the time complexity of the attack is
encryptions. As in the single-plaintext attacks on one-round and two-round AES, the
adversary can reduce the time complexity at the expense of enlarging the memory re-
quirement, using non-linear equations and a precomputed table. The time complexity of
the resulting attack is 2% encryptions, and the memory requirement is 27 bytes. Since
the technique is similar to the improvement of the 2-round attack presented in [3.5.4] and
the obtained equations are quite cumbersome, we do not present the improvement here.

2120

3.7 Attacks on Four-Round AES

We now consider attacks on 4-round AES and turn our attention to chosen-plaintexts
attacks. The well-known “square” attack on 4 rounds requires 256 chosen plaintexts and
the equivalent of 2'* encryptions. Manually-found attacks with 10,5 or 2 chosen plaintexts

3.7. Attacks on Four-Round AES

ko Ky ks
6|6 3|33 21|11
KS KS
7 5 4 2 1
7|6|6|6 53|33 21|11
7|6|6|6 53|33 21|11

(a) he first half of the attack only uses the key-schedule. All
bytes but one are guessed in ks (marked in black), and the dia-
gram shows in which order other subkey bytes can be deduced
using the key relations

P Zo Yo 20 Wo
1 1 2|2 33 4
AK SB SR MC AK
; 1 2 3 4 .
1 1 1 1 2121212 313133 4
1111 2121212 3131313 4
k() kl
T n 21 w1y
5 6 13 T 12 12(12
SB SR MC AK
13 13 12 12 .
5 6 13| 7 13 1212|1213
5 6 7 13 13[12(12]12

T2 U1 22 wWa

11 1111 10 10|10 911719 |9 8818
SB SR MC

1111 11 10|10 10 9 (171919 8 (17| 8

11|11(11|14 10|10|10(15 916|919 888

14|11(11|11 15/10|10(|10 9 (16|19 1|9 8818

o

(b) Second half of the attack: deduction of the remaining subkey bytes. Known bytes
are marked in gray.

Figure 3.8: The attack on three rounds of AES using one known plaintext.

63

64 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

with respective time complexities 219, 264 and 214 are described in [BDD*12|. The tool
described Chapter [2| automatically found a practical attack using four plaintext differing
only in one byte, of complexity about 232.

We note that these attacks can be transformed into known plaintext attacks using
the standard birthday-based transformations, but these usually result in a high data
complexity.

3.7.1 Ten Chosen Plaintexts

The attack with 10 chosen plaintexts is similar to the 3-round attack with 9 known
plaintexts presented The adversary asks for the encryption of ten plaintexts which
differ only in bytes 0,5,10 and 15. Then she guesses subkey material in the subkeys
ko, k1 and the equivalent subkeys us and u4, and obtains a consistency check on some
intermediate difference after the MixColumns operation of round 2.

Let us denote the intermediate values in byte 0 after the MixColumns operation of
round 2 by X7, Xs, ..., Xjo. In the first phase of the attack, the adversary guesses bytes
0, 7,10 and 13 of the equivalent subkey u4 and byte 0 of the equivalent subkey u3 and
partially decrypts the ciphertexts through the last two rounds obtaining the actual values
in the byte z3[0]. (Note that reversing the order of the MixColumns and AddRoundKey
operations in the two last rounds allows her to obtain this intermediate value by guessing
only 40 subkey bits). Then, using the linearity of the AddRoundKey operation, the
adversary computes the differences X7 + Xs, ..., X7 + Xy, and stores their concatenation
(a 72-bit vector) in a hash table.

In the second phase of the attack, the adversary guesses bytes 0, 5, 10 and 15 of kg
and the byte k1[0]. By the structure of the chosen plaintexts, this allows her to compute
the differences between pairs of intermediate values w[0..3] (since the actual values in
byte 0 before the MixColumns operation of round 2 are known by partial encryption,
and the difference in bytes 1, 2, 3 is zero). Thus, the adversary obtains the values of
X1+ X, ..., X1+ X9, and checks whether their concatenation appears in the hash table.
This consistency check is a 72-bit filtering, and thus only 2% x 2772 = 28 key suggestions
are expected to remain. By repeating the procedure with the three other columns (from
the ciphertext side), the adversary obtains about 232 suggestions for the full equivalent
subkey uy (along with many other subkey bytes), which can be checked by exhaustive
key search. The time complexity of the attack is about 24 encryptions, and the memory
requirement is about 2*3 bytes of memory.

3.7.2 Five Chosen Plaintexts

If only five chosen plaintexts are available to the adversary, she can perform a variant of
the attack described above, at the expense of enlarging the time and memory complexities.
The plaintexts are chosen as before, but more key material is guessed: from the ciphertext
side, the adversary guesses bytes 0, 7, 10 and 13 of u4 and bytes 0, 1, 2 and 3 of ug, and
from the plaintext side, the adversary guesses bytes 0, 5, 10 and 15 of ky and bytes 0, 1,
2 and 3 of k;. This allows her to get a consistency check on the intermediate difference
at the end of round 2 in bytes 0, 5, 10 and 15 (instead of only byte 0), and thus, the four

3.8. Attack on Five-Round AES 65

pairs which can be extracted from the data supply a 128-bit filtering and only the correct
key suggestion is expected to remain. Finally, the adversary repeats the attack procedure
with three other columns from the ciphertext side, and obtains a single suggestion (or a
few suggestions) for the full equivalent subkey uy. The time complexity of the attack is
about 2% encryptions, and the memory requirement is about 2% bytes.

3.7.3 Four Chosen Plaintexts.

The four plaintext only differ in byte 0 of the plaintext (but they must be pairwise
different). We use the notation xgj) to denote the j-th message.

In a first phase, we construct 16 hash tables 7y, ..., Ti5, which are subsequently used
in the remaining steps of the attack. The table 7, is constructed according to the following
steps:

1. First, enumerate all the possible values of xéo) [0]. Because the differences in x, are

known, then x(()i) [0] can be deduced for i = 1,2,3. This in turn allows to determine
the differences in y[0], and also in z;[0..3].

2. Define ¢y = |£/4] and r = o(c3), where o denotes the permutation (0321).

3. Next, enumerate x§°> [r1]. Because the differences in this byte are known, then the

values in acgi) [71] can be deduced for i = 1,2,3. This allows to find the differences
in y1[r1], and then in z5[4ey..4co + 3].

4. Finally, enumerate the values of xgo) []. Again, recover ;z:g) [¢] for i = 1,2,3, and
thus recover the differences in ys[/].

5. Store the association

(1@ 10,510 @ [0, o[@67 1) — (270), 2" [r])
in the hash table 7.

The hash tables are now used in the following way: enumerate the values of mgo) [0..3],
compute the differences in byte 0, 5, 10 and 15 of gy, and use the differences to look-
up in Ty, 75, Tio and Ty5. Only keep values of x3[0..3] that suggest the same value of
x(()o) [0] (there should be about 2% of them). We implemented the attack, and we could
indeed verify in practice that this procedure isolates a set of about 2% candidates for the
first column of x3. It can then be repeated for the other three columns, and we are left
with about 234 candidates for the full x5, each one of which suggest a full key (partial
encryption reveals ws, which in turns reveal k4 and the key-schedule can be inverted back
to ko).

This could be refined a little bit by only considering the quadruplets of columns that
suggest the same values of 1[0..3]”) (and there should very likely be very few of them).
This would avoid testing 232 keys.

3.8 Attack on Five-Round AES

In this section we present two new attacks on five rounds of AES. The first one is an
attack using only one known plaintext. Its approximate time complexity is 2'2° with a

66 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

memory requirement around 2% bytes so it is unclear that this “attack” can be imple-
mented faster than exhaustive search. However, it shows a weakness of the AES and, in
particular, a weakness in the key-schedule. The second one is an attack requiring 8 chosen
plaintexts with a time and memory complexities around 2% and 2°° respectively.

3.8.1 One Known Plaintext.

The attack is a direct meet-in-the-middle between two sets of bytes. Knowing the
values of all the bytes in both sets allows to retrieve the master key kq instantly.

The first set of bytes is represented in white on figure [3.90 It is obtained from 15
well chosen key-bytes (indexed by 1 and circled in the figure). Thanks to key-schedule
equations, it is possible to deduce all the white key bytes from the 15 first bytes. The
remaining white bytes are found by partial encryption/decryption.

The second set of bytes is pretty small and is represented in black. Like white bytes,
it is obtained from bytes indexed by 1 (and circled) which allow to deduce some other
key-bytes in a simple way.

Even though black and white bytes can take 28(+12) yalues, this can efficiently be
narrowed down to 2'2° by the technique presented Chapter 2l To apply it, we need
12 independent and separable equations between some of these bytes. To obtain these
equations, we look for bytes which are linear combinations of white and black bytes
(assumed known). They are colored in gray.

1. Bytes indexed by A are obtained from ks by using key-schedule equations and this
leads to three equations because ko[0], ko[11] and ko[12] are constrained. Further-
more, they are linear combinations of white and black bytes because the last column
of each subkey is known and only those bytes go through the Sbhox.

2. Bytes indexed by B are obtained from partial encryption/decryption (only the Ad-
dRoundKey operation).

3. Bytes indexed by C are obtained by application the Property [I3] This leads to nine
equations since in three cases 5 bytes are known and in two cases 6 bytes are known.

3.9 Attack on Six-Round AES

The design of AES follows the wide trail design strategy, which assures that the proba-
bility of differentials is extremely low, even for only four rounds of the cipher. For example,
it was proved in [PSC*02, [PSLLO03|, that any 4-round differential of AES has probability
of at most 271% Hence, it is widely believed that no regular differential attack can be
mounted on more than 5 rounds of AES. Furthermore, the best currently known differ-
ential attack on AES-128 is on only four rounds, and all known attacks on 5 and more
rounds use "more sophisticated" techniques like impossible differentials, boomerangs, or
Squares.

In this section we show that the low data complexity attack on 2-round AES presented
in [3.5.5] can be leveraged to a differential attack on 6-round AES. Although the data
complexity of the resulting attack is high, the data complexity of its known plaintext

3.9. Attack on Six-Round AES

67

T 21 W1
o800 14 (@) 20090000 14 10008000
AR 20007 XA
Aty pgap L
AR S5 A AR D
0ooo00000 14 0000 14 {220002077 10L000008000
AR 7 s SN
R 7 AT AT
AV RN 2009000000000 14 aone
I 11[11]11 e w102 |@®
2 [5]s]> 3]s ®
32 413]2|Q@
W3 Ty 24
14 -14 14 14 14|14 14 14 | 14
14 14|14 |14 |14 14|14 |14 |14 14|14 |14 |14
& C
14 14|14 |14 | 14 14|14 |14 | 14 14|14 |14 |14
14 14|14 |14 |14 14|14 |14 |14 14|14 |14 |14
EE 2
o]2]2]@ 4 ©
Ky ks
56|78 6 9
4132 |Q@® 5 8

Figure 3.9: One known plaintext attack on 4.5 AES rounds. Black bytes

are enumerated and

stored in a hash table. White bytes are enumerated. Gray bytes are linear combinations of white
and black bytes. Hatched bytes play no role. The number indicates the step of the attack in
which the value of each byte is discovered.

68 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

variant is still smaller than the data complexity of the best known attack on 6-round AES
in the known plaintext model. While our attack certainly does not threaten the security
of AES, it shows that its security with respect to conventional differential attacks is lower
than expected before.

As in most published attacks on reduced-round variants of AES, we assume that the
MixColumns operation in the last round is omitted, like in the full AES. We were not able
to extend the attack to the case where the last MixColumns operation is not omitted.
This gives another evidence to the claim made in [DK10b] that the omission of the last
round MixColumns affects the security of AES.

Our 6-round attack is based on the following 3-round truncated differential: The input
difference in all bytes except for byte 0 is zero, and the output difference in all bytes except
for bytes 0, 5, 10 and 15 is zero. We depict the differential in Figure[3.10] A pair satisfying
the input and output requirements of the differential in rounds 2-4 is called a right pair.

AZl Al’g Ayg AZL’g Ayg Al’4 Ay4

MC [77 SB [77 ZIsrR MC[77 SB

77
ARKIZZ 22l ARK
77 Z

Figure 3.10: The 3-Round Truncated Differential Used in the 6-round Differential Attack.

Consider a right pair (P, P’). By the structure of AES, the intermediate difference
at the input of round 3 is zero in all bytes except for 0, 1, 2 and 3. Thus, there are at
most 23! possible differences in the input of the SubBytes operation of round 4. On the
other hand, since the difference at the output of round 4 is zero in all bytes except for
0, 5, 10 and 15, there are only 232 possible differences after the SubBytes operation of
round 4. Note that by Property 9.1, the input and output differences of a SubBytes
operation yield a single suggestion (on average) for the actual values. Therefore, if (P, P’)
is a right pair, then there are only 26* possibilities of the corresponding actual values after
the SubBytes of round 4 (or equivalently, for the actual values after the MixColumns
operation of round 4).

This observation allows us to mount the following known plaintext attack:

1. Ask for the encryption of 2085 plaintexts P; under the unknown key, and denote the
corresponding ciphertexts by C;.

2. Insert (P;,C;) into a hash table indexed according to bytes 1-4, 6-9, 11-14 of P; and
bytes 1-6, 8, 9, 11, 12, 14, 15 of C}, and consider only the colliding pairs in the hash
table (which are the only pairs which may be right). The number of remaining pairs
is 9216 9—192 _ 924

3. For each of the remaining pairs, assume that it is a right pair, and for each of the 264

possible actual values after the MixColumns operation of round 4, apply the attack
presented in [3.5.5]on rounds 5-6. Note that the 2-round attack requires that the differ-
ence in the four bytes x[0..3] in the attacked variant is non-zero, and this condition is
indeed satisfied in our attack (for the state 24 which corresponds to x5 in the two-round
attack).

3.10. Implementations 69

Since the time complexity of the 2-round attack presented in is 224 encryptions,
the overall complexity of the attack is 2% x 264 x 224 = 2112 encryptions. The data com-
plexity of the attack is 21°-5 known plaintexts, which is smaller than the data complexities
of the previously known attacks in the known plaintext model (see, e.g. [CKK*01]).

3.10 Implementations

We have implemented and verified attacks (or parts thereof) in practice. This brief
section mentions some of the techniques we used and the result we obtained.

Several attacks are meet-in-the-middle that require hash tables containing 232 entries
(only in the case of described attacks), each entry being 2 or 4-byte long. The main
difficulty in implementing these attacks was memory management (how to represent and
store the tables). Careful and “low-level” memory management, e.g., using mmap, was
necessary for the attack to be somewhat practical. The standard techniques for hash
tables (storing buckets as linked lists) incurs an important space overhead in our case,
because the pointers are 64-bit wide, and are impractical.

We also observed that the distribution of the number of entries in each bucket roughly
follows a Poisson law of expectation 1, so that the maximum number of entries in a bucket
can be represented by an 8-bit number. We thus use three arrays to store the hash table:

— An array A. stores the size of each bucket in 8-bit entries (size = 4Gbyte)
— An array A, stores the content of all the buckets (size=16Gbyte)
— An array A; stores the location of each bucket in the previous array (size=16Gbyte)

The last array is useful to access the hash table in O (1) time, but it needs not be
stored, which means that such a hash table can be stored in a 20Gbyte file. We then used
a two-pass approach: first count the number of entries with the same key in the table and
update A.. Then computes the entries in A;. Lastly, perform a second pass and stores
the actual data in Aj. This way, the peak memory consumption is 36Gbyte.

2 AES Rounds / 2 Known Plaintext.

The meet-in-the-middle part attack has been implemented manually in C. Using the
above techniques, it uses 52Gbyte of RAM, and isolates a set of about 232 candidates for
the first and last column of x; in about two hours. We checked that the set of candidates
actually contains the correct solution, and that the number of candidates was consistent
with our estimates.

2 AES Rounds / 2 Chosen Plaintext.

The automated tools generated an implementation of this attack, which allowed us to
test it. The automatically-generated C file is 110Kbyte long. On average, there are 255
candidates for x¢[0..3], which is very close to our hypothesis.

70 Chapitre 3. Low Data Complexity Attacks on Round-Reduced AES-128

4 AES Rounds / 4 Chosen Plaintext.

We implemented the meet-in-the-middle part of the attack manually in C+-+. Our
implementation uses the above techniques for representing the hash tables, and each one
of the 16 tables requires 112Mbyte. The attack therefore runs on a laptop and uses less
than 1.8Gbyte of RAM. The total running time of the meet-in-the-middle phase is about
2 hours on a single core (the code is easily parallelized is easy using OpenMP, and actually
runs in 14 minutes using eight Xeon E5520 cores at 2.27Ghz).

Comparison with optimal attacks.

As mentioned earlier, attacks presented in this article have been modified in order to
make them more understandable. But these changes have made them, in practice, less
efficient than original attacks found by the tool. Even unoptimized C codes automatically
generated by the tool are faster than manual implementations of described attacks. This
is mainly due to two reasons. The first one is the memory requirement: each one of
these attacks has an optimal version with an approximate memory complexity of 224 so
we can use a simple structure to handle hash tables. Furthermore, optimal attacks use
less big tables than described attacks. For instance, the best attack on four rounds with
four chosen plaintexts, instead of using 16 hash tables with 22* entries, use only 12 lists:
3 with 22 entries, 1 with 2!6, and 8 with 2%. The second reason comes from the fact
that two attacks with the same approximate time complexity may have different real time
complexity. For instance, the optimal attack on four rounds with four chosen plaintexts
assign each byte 2332 times on average when the described attack do it 23%® times.

Chapter 4

Low Data Complexity Attacks on
AES-Derivatives

Because our tool is somewhat generic, it is not restricted to the AES as a block
cipher, and we used it to find new attacks on the message authentication code Pelican-
MAC |[DR05¢], and to the stream cipher LEX [BirO8al]. The tool found the fastest known
attacks on these two constructions, again a gratifying result. This demonstrates in a
concrete way that low-data complexity attacks can be leveraged into actual attacks on
full versions of some primitives.

4.1 A Forgery Attack Against Pelican-MAC

Pelican-MAC |[DRO05¢] is a Message Authentication Code designed by Daemen and
Rijmen in 2005. Tt is an instance of the more general ALRED construction by the same
authors, which is reminiscent of CBC-MAC but aims at greater speed [DR05al. MACs
derived from the ALRED construction enjoy some level of provable security: it is shown
that the MAC cannot be broken with less than 22 queries (i.e., without finding internal
state collisions) unless the adversary also breaks the full AES itself. Pelican-MAC works
as follows:

1. The internal state (an AES state) is initialized to xy = AESk(0).

2. The message is split in 16-byte chunks, and each chunk is processed in two steps:
it is XORed to the internal state, and 4 keyless AES rounds are applied (the
AddRoundKey operation is skipped).

3. Finally, the full AES is applied with the key K to the internal state, which is then
truncated and returned as the tag.

In this construction, recovering the internal state xy is sufficient to perform nearly-
universal forgeries: first the adversary asks the MAC of an arbitrary message. Given her
knowledge of x, she can compute the internal state z;,; just before the full AES is applied
and the tag 7' is returned. Then, given an arbitrary message M, she computes the internal
state x; after M has been fully processed. Then, she knows that Pelican-MAC (M |z,
Tiast) = T, without querying the MAC (the extra message block sets the internal state to
Tyast, Which is known to result in the tag T).

71

72 Chapter 4. Low Data Complexity Attacks on AES-Derivatives

The best published attacks against Alpha-MAC (another ALRED construction) and
Pelican-MAC has been recently found by Zheng Yuan, Wei Wang, Keting Jia, Guangwu
Xu, Xiaoyun Wang [YW.JT09| and aim at recovering the initial secret internal state. For
Alpha-MAC, after having found an internal state collision (this requires 25 queries), the
internal state is recovered with a guess-and-determine attack that makes about 2% simple
operations. For Pelican-MAC, an impossible differential attack recovers the internal state
with data and time complexity 255,

The general idea of our attack on Pelican-MAC is to find a single collision in the
internal state, found by injecting message blocks following a fixed truncated differential
characteristic. Then, the state recovery problem has been encoded in equations and given
to the tool of Chapter 2] It must be noted that an attack with the same global complexity
has been independently found time by Dunkelman, Keller and Shamir [DKS11], using
impossible differential techniques. The “state-recovery” phase presented here is faster
though.

Our Attack.

We now present our attack against Pelican-MAC, with time and data complexity 264,
We pick an arbitrary message block M; and query the MAC with 25 random two-block
messages M; || M, and store the (message,tag) pair in a table. Then, we query the
MAC on (M; @ A) || M4, where A is zero everywhere except on the first byte, and M is
random. When the tags collide, we check whether there is also a collision in the internal
state by checking if:

MAC i (My | M || M) = MAC ((My @ A) | Mj | M)

for several random message blocks Mj. If all the resulting tags collide, then we known
that an internal collision occurred after the first two blocks with overwhelming probability,
and we have:

AES4($0 (—B Ml) (—B M2 = AES4($0 (—B M1 (—B A) (-B Mé

In other terms, the input difference A goes to the output difference M, @ M, though
4 keyless AES rounds. The most likely differential characteristic is the one shown in
Figure 4.1 even though there could be accidental difference cancellations with small
probability.

We then write down the state-recovery problem as a system of equations: two unknown
states with a known one-byte difference yields two unknown states with a known (full)
difference. The tool described in the previous chapter quickly foundE] an attack that runs
in time and space about 232, and which is summarized by Figure [4.1] Property [13 tells

1. it also found an attack with a smaller memory consumption 224, but the improved attack is much
more complicated to describe

4.2. A Key-Recovery Attack Against LEX 73

Zo) T 21 X2 22 €3 z3
% 1(2]3|4 1(2]3|4 1 2(3 |4
5 4 (1]2]|3 1(2]3|4 1 2(3 (4
Y 34|12 1(2]3|4 1(2|3]|4
B 21341 1(2]3|4 1(2|3]|4

Figure 4.1: Differential path used in the attack against Pelican-MAC. Gray squares denote
the presence of a difference. Hatched squares denote a known difference.

us that if o, 5,7 and 0 denote the differences in z;, then the differences in x5 are:

02« B~ 036
a B 03y 02
a 0368 02y 9

03 026 ~ 6

The state-recovery proceeds as follows:

1-a. Guess the values in x3[0..3] and obtain the differences (thanks to the output differ-
ence).

1-b. Partially decrypt to get suggestions for a, 8,7 and § (using Property .
1-c. Store bytes 0-3 of x3 in a hash table 7y indexed by («, 5,7, 9)

2. Repeat the process with the second column of z3. Store bytes 4-7 of x5 in a table
71 indexed by («, 3,7, 0).

3. Repeat the process with the third and fourth column of z3. Build tables 75 and 73
4. Enumerate (o, 3,7,0). Look-up 7o, 71, T2 and T3 and retrieve the parts of x3 corre-
sponding to (a, 3,7,0), if present.

5. if (a, 5,7, 0) occurs in the 4 tables, then we get a complete suggestion for x3. Decrypt
3 rounds and recover xy. Check if the input difference is right.

Alpha-MAC.

Obviously, we cannot overally improve on the attack of [YWJT09|, since finding the
internal state collision dominates the running time of their attack. However, it is note-
worthy that the tool found a state-recovery procedure that requires only 232 elementary
operations and lists of 2'¢ items, when the first input message difference contains only
one active byte. This is much more efficient than its counterpart in [YW.JT09).

4.2 A Key-Recovery Attack Against LEX

LEX is a stream cipher presented by Biryukov as an example of the leak extraction
methodology of stream cipher design [Bir(6]. In this methodology, a block cipher is used
in the OFB mode of operation, where after each round of the cipher, some part of the

74 Chapter 4. Low Data Complexity Attacks on AES-Derivatives

Odd Round Even Round

Figure 4.2: State Bytes which Compose the Output in Odd and Even Rounds of LEX. The
gray bytes are the leaked bytes.

intermediate encryption value is output as part of the key stream. LEX itself uses the
AES as the block cipher.

In the initialization step of LEX, the publicly known IV is encrypted by AES under
the secret key K to obtain S = AESk(IV). Actually, LEX uses a tweaked version of
AES where the AddRoundKey before the first round is omitted, and the MixColumns
operation of the last round is present. Then, S is repeatedly encrypted in the OFB
mode of operation under K, where during the execution of each encryption, 32 bits of the
internal state are leaked in each round. These state bits compose the key stream of LEX.
The state bytes used in the key stream are shown in Figure [£.2] After 500 encryptions,
another IV is chosen, and the process is repeated. After 232 different IVs, the secret key is
replaced. It follows that with a given key LEX can only generate 2%-3 bytes of keystream.

4.2.1 Prior Art

LEX was submitted to the eSTREAM competition (see |[BirO8b]). Due to its high
speed (2.5 times faster than the AES in counter mode), fast key initialization phase
(a single AES encryption), and expected security (based on the security of AES), LEX
was considered a very promising candidate and selected to the third (and final) phase
of evaluation. However, it was not selected to the final portfolio of eSTREAM due to
an attack with data complexity of 2352 bytes of key stream and time complexity of 2'!2
encryptions found by Dunkelman and Keller a few weeks before the end of the eSTREAM
competition [DK08|. These authors subsequently improved their own result, and the best
published attack on LEX requires about 2% bytes of keystream and the time equivalent
of 219 AES encryptions [DK10a].

Their attack is illustrated by Figure [£.3] The key idea is to find a pair of internal
states, potentially obtained with different I'Vs, and after different numbers of encryptions,
that partially collide after 4 rounds. More precisely, the objective is to find a pair of state
yielding the same bytes in x4[4..7] and x4[12..15]. Because this is a collision on 64 bits,
the birthday paradox guarantees that 23 distinct internal states are necessary. In fact,
the attack is not restricted to “start” at the first round of an AES encryption cycle, but
can be applied (with minor variations) to rounds 1,...,8. Thus, only 261/8 = 26! pairs of
encryptions are necessary for the collision to occur. This number of pairs can be obtained
from 23! distinct encryptions, and thus from 232 - 10 - 4 = 2363 keystream bytes.

One of the problems is that the collision needed for the attack cannot be fully detected
just by observing the keystream: it can be detected on bytes 4,6,12 and 14, but we have

4.2. A Key-Recovery Attack Against LEX 75

€ 21 wq X2 Z2 Wa

a
A%

a
v

ko ks
€3 <3 3 oz 24 ! s
0 0 0 0 0 0 0 0 0 f22%1 0
07590 0 0 0 0 0 0 0 0
o o
T 777 T
0 0 0 0 0 0 0 0 077210
017574 0 0 0 0 0 0 0 0 0
k4 ks

Figure 4.3: Gray squares are leaked to form the key-stream. The differences are null in squares
with a 0. The differences in the hatched squares can be deduced from the leaked bytes and the
existence of zero differences.

no way of detecting whether bytes 5,7,13 and 15 collide or not. The only solution is to
assume that the full collision occurred and to run the next steps of the attack. In case
of failure, we know a posteriori that the full collision did not occur. Thus, the remaining
steps of the attacks have to be carried out on average 23? times in order for a full collision
to occur.

In the first attack of Dunkelman and Keller (given in [DKO08|), the collision is ex-
ploited by a guess-and-determine attack that guesses 10 bytes. Their second attack (given
in [DK10al]) uses an improved key-ranking procedure that filters the guesses and dis-
cards unlikely candidates.

Revisiting the Existing Attacks.

The key-recovery problem can be encoded as a system of equations and given to
the tools. Helped by our tool we found that Dunkelman and Keller first attack was
sub-optimal, as the guess-and-determine part of the attack could be dealt with in 264
elementary operations (versus 2% previously). This yields an attack with time complexity
about 2% and data complexity 2303 marginally improving on their second attack.

76 Chapter 4. Low Data Complexity Attacks on AES-Derivatives

4.2.2 A New Attack

It turns out that the tool can be used to mount a different, more efficient attack.
This new attack proceeds in 3 phases. The first phase is similar to the existing attacks.
However, instead of looking for a pair of states colliding on bytes 4-7 and 12-15 in x4, we
look for 3-way collisions on these bytes (i.e., a triplet of states all having the same values
in these bytes). The advantage of working with 3 messages instead of just two is that
Property [12| generalizes nicely to this case: if 4 differences «, 3,7, d are randomly chosen
in Fys, then the probability that S(z @ a) @ S(x) = v and S(z@® B) ® S(x) = § is 279°.
Thus, in most cases, no single value of x satisfies these constraints.

Phase 1: Finding the 3-Collision. Finding the 3-collision requires 2'?%/8 = 212
triplets of encryptions, which can be obtained from 2425 distinct encryptions. This makes
2478 hytes of key-stream, about three times the maximally allowed quantity for a given
key. This means that in the normal setting where LEX is restricted to produce 2463 bytes
of key stream (80 terabytes), then out attack will only succeed with probability ~ 1/32.
Indeed, under the normal restrictions, only 500 x 232 encryptions are allowed, leading to
21203 triplets. Because each triplet leads to a 3-collision with probability 2712, it follows
that the probability that the 3-collision exists is about 1/32. Our attack thus targets on
average one key over 32.

The problem of detecting the 3-collision is even more acute than previously, because it
can only be partially observed. The strategy is again to repeat the last two phases of the
attack on the expected 2% triplets matching on the observable 32 bits. The subsequent
steps require about 2'% simple operations, yielding a total time complexity of 2.

Phase 2: Exploiting the 3-Collision. First of all, by exploiting the zero-difference
bytes and the known key-stream bytes, it is possible to reconstruct the differences between
the 3 concurrent processes in vast portions of the internal state. Figure [4.3| shows the
situation.

— The differences in bytes 0, 2, 8 and 10 of w, are given by the leakage in x5. Also,
the differences are known to be zero in bytes 1, 3, 9 and 11 of z,. Thus, thanks to
observation the differences can be found in bytes 0-3 and 8-11 of both z4 and
wyq.

— It is also known that the differences are zero in bytes 4-7 and 12-15 of both 23 and ws,
and these zero differences propagate to x3 and ws. Accordingly, using Property
in 2o and w, yields the missing differences in x3, ws and 2s.

The second phase of the attack obtains the value of bytes 0-3 and 8-11 in x4, as well
as bytes 5,7,13 and 15 in z3 and bytes 0,2,8 and 10 in x4. This requires 2'¢ simple
operations, and is illustrated by Figure [4.4 In fact, four independent processes could be
run in parallel:

1-a. Guess bytes 7 and 13 of z3 (these are the dotted squares). This enables to find
the actual values in the 3 concurrent states in bytes 8-11 of z3 and w3, because the
differences in x5 are known. This also yields the differences in bytes 8-11 of x,.

1-b. In both x, and y4, the differences are now known in bytes 8 and 10. Only a fraction
2795 of the differences are comsistent in each byte. Thus, we expect to sieve all

4.2. A Key-Recovery Attack Against LEX 77
T 21 w1
0
. D
ks
T3 Z3 Ts
0 0 0 0 2o
0 0 [0[5 o 0 N
0 0 0 0 0 b
o [o 0[5 o 10
k4 k5
Figure 4.4: Second stage of the attack.
the wrong guesses in the previous step, and to be left with only the right value. In
addition, the actual values in bytes 8 and 10 of x4 are revealed.

2-a. Guess bytes 5 and 15 of z3 (cross-hatched squares). This yields the differences in
bytes 0-3 of x4.

2-b. Using the same sieving technique allows us to filter just the right value for the two
guesses, and to get bytes 0 and 2 in 4.

3-a. Guess bytes 1 and 3 in x5 (cross-hatched squares). This yields the corresponding
differences in w;. Then, the differences in bytes 0-3 of w; and xo can be found
thanks to Property [L3]

3-b. The differences are known in bytes 0 and 2 in both x5 and y,. Therefore, the sieving
technique yields the only feasible value for bytes 0-3 of z,.

4. Guess bytes 9 and 11 in x5 (dotted squares). Use the same difference propagation

and sieving to recover the only value of bytes 8-11 in z5.

Phase 3: a Guess-and-determine Finish. The third phase of the attack is a standard
guess-and-determine procedure that guesses 2 bytes in order to completely recover ks, and
thus the master key. It requires 2'° simple operations, and is summarized by Figure [4.5]
The actual values are known (from the previous phase) in gray squares. Hatched squares
denotes known differences. The bytes are numbered in the order in which they can be
computed. Circled bytes numbered 11 are guessed. In fact, some key bytes can be
determined from the result of the second phase without guessing anything.

78 Chapter 4. Low Data Complexity Attacks on AES-Derivatives
I 21 w1 T z2 %)
8 [3 1 3| |12
4 4 4 11 4 12
2 ® O @
8 {77 8 {77 3| |12
9 48 () |4 4 11 4 12
7115| 2 |19 2 |14|13(20
k‘ 10 5|7 k 2001 (6|1
2 7115| 2 |19 3 2 |14|13(18
101195 | 7 18/ 1|6 |1
T3 Z3 W3 Ty Z4 Wy T5
16 16 16 22; 222
16 16 17 Zl A
R 7 PN
A\ Az
16 17 17 16 16 222 22?
17 16 17 16 17 757 257 270 777
1 (141
4 11(14|1 5

Figure 4.5: Third phase of the attack.

Step 1,5,10,13 and 18 result from the knowledge of both w; and x; ;. Step 2,6,7,14,15,19
and 20 exploit the key-schedule equations, and bytes obtained in previous steps. Steps
3,8 and 16 are just partial encryptions/decryptions. Step 4,9,12 and 17 use Property .

Chapitre 5

Fault Attacks on the AES

Since the early work of Piret and Quisquater [PQ03| on fault attacks against AES at
CHES 2003, many works have been devoted to reduce the number of faults and to improve
the time complexity of this attack. This attack is very efficient as a single fault is injected
on the third round before the end, and then it allows to recover the whole secret key in
232 in time and memory. However, since this attack, it is an open problem to know if
provoking a fault at a former round of the cipher allows to recover the key. Indeed, since
two rounds of AES achieve a full diffusion and adding protections against fault attack
decreases the performance, some countermeasures propose to protect only the three first
and last rounds.

In this chapter, we present several news fault attacks on the AES. We first show an
improvement of the original attack of Piret and Quisquater reducing its overall complexity
by a factor 28. Then we give two practical cryptographic attacks on one round earlier for
all keysize variants. The first attack requires 5 faults and its complexity is around 240 in
time and memory while the second one is an impossible differential attack that requires
at least 28 faults (depending on fault model) and recovers the secret key a bit faster.

Excepted the impossible differential attack, those attacks were found helped by the
tool described Chapter [2]

5.1 Fault Analysis

Fault Analysis was introduced in 1996 by Boneh et al. [BDLI7| against RSA-CRT
implementations and soon after Biham and Shamir described differential fault attack
on the DES block cipher [BS97|. Several techniques are known today to provoke faults
during computations such as provoking a spike on the power supply, a glitch on the
clock, or using external methods based on laser, Focused Ion Beam, or electromagnetic
radiations [HCTWO4]. These techniques usually target hardware or software components
of smartcards, such as memory, register, data or address bus, assembly commands and so
on JAK97|. After a query phase where the adversary collects pairs of correct and faulty
ciphertexts, a cryptographic analysis of these data allows to reveal the secret key. The
knowledge of a small difference at an inner computational step allows to reduce the analysis
to a small number of rounds of a block cipher for instance. On the AES block cipher,

79

80 Chapitre 5. Fault Attacks on the AES

many such attacks have been proposed [BS03, [DILV03, |Gir04, MSS06, [PQO03| and the
first non trivial and the most efficient attack has been described by Piret and Quisquater
in [PQO3].

5.1.1 Related Works

The embedded software and hardware AES implementations are particularly vulner-
able to side channel analysis [BKO7bl, Bog07, SLFP04]. Considering fault analysis, it
exists actually three different categories of attacks. The first category is non crypto-
graphic and allows to reduce the number of rounds by provoking a fault on the round
counter [AK97, [CT05]. In the second category, cryptographic attacks perform fault in the
state during a round [BS03| [DIL.V03, [Gir04, IMSS06l, [PQ03| and in the third category, the
faults are performed during the key schedule [CY03, |Gir04, [TFY0T].

Several fault models have been considered to attack AES implementations. The first
one and the less common is the random bit fault [BS03], where a fault allows to switch
a specific bit. The more realistic and widespread fault model is the random byte fault
model used in the Piret-Quisquater attack [PQO3|, where a byte somewhere in the state
is modified. These different fault models depend on the technique used to provoke the
faults.

Piret and Quisquater described a general Differential Fault Analysis (DFA), against
Substitution Permutation Network schemes in [PQO03|. Their attack uses a single random
byte fault model injected between the two last MixColumns of AES-128. They exploited
only 2 pairs of correct and faulty ciphertexts. Since this article was published in 2003,
many works have proposed to reduce the number of faults needed in [Muk09, [TM09|, or
to apply this attack to AES-192 and to AES-256 [Kim10].

There exist two kinds of countermeasures to protect AES implementations against
fault attacks. The first category detects fault injection with hardware sensors for in-
stance. However, they are specifically designed for one precise fault injection mean and
do not protect against all different fault injection techniques. The second one protects
hardware implementation against fault effects. This kind of countermeasures increases
the hardware surface requirement as well as the number of operations. As a consequence,
there is a tradeoff between the protection and the efficiency and countermeasures essen-
tially only protect from existing fault attacks by taking into account the known state-
of-the-art fault analysis. Therefore, the first three and the last three rounds used to be
protected [CEGRI0]. The same kind of countermeasures has been performed on DES
implementation and a rich literature has been devoted to increase the number of attacked
rounds as it is done in [Riv09]. Securing AES implementation consists in duplicating
rounds, verifying operation with inverse operation for non-linear operations and with com-
plementary property for linear ones, for example. Moreover, another approach computes
and associates to each vulnerable intermediate value a cyclic redundancy checksum or, an
error detection or correction code, for instance fault detection for AES S-Boxes [KRMOS|
as it has been proposed at CHES 2008. Our attacks could target any operation between
MixColumns at the 6'* round and MixColumns at the 7** round. Another countermeasure

5.2. Meet-in-the-Middle Fault Analysis on AES 81

consists in preventing from fault attack inside round [SSHAO8|. However, it is possible to
perform fault injection between rounds.

5.2 Meet-in-the-Middle Fault Analysis on AES

In this section, we remind how the Piret-Quisquater attack works and present the
improvements found by the tool of Chapter

5.2.1 Original Attack of Piret-Quisquater

In [PQO3|, Piret and Quisquater assume a fault injection on one byte during the state
computation between MixColumns at round 6 and MixColumns at round 7. on AES-
128 as it is represented in the Figure 5.1l We assume that the fault is injected on the
first column, the extension to other columns being straightforward. This attack allows to
recover the last subkey in 232 in time and negligible memory.

. AK. SB. SR. MCI

I
I
! AK SB SR AK

Figure 5.1: Fault injected on one byte between MixColumns at the round and
MixColumns at the 8 round on AES-128. Black bytes are active, white bytes are not.

7th

The idea of the attack consists of partitioning the last subkey in four sets of 4 bytes
such that each one can assume only a restricted number of values. As we know the
difference in the ciphertexts, we also know the difference right after the last SubBytes
operation in the state yg. The state zg has exactly four active bytes, one per column.
Guessing the difference in one of them allows us to deduce the differences in one column
of the state just before the last SubBytes operation. As a consequence, we know the
differences before and after the SubBytes and thus we can deduce its actual value (there
is one on average) leading to the knowledge of four bytes of k1.

As a result, this attack allows us to restrict the number of candidates for the last
subkey to (28) = 232, If the adversary has in his possession the corresponding plaintext
then he may perform an exhaustive search on those candidates, otherwise asking for a
second pair of correct and faulty ciphertexts should allow him to isolate the right one
(with very high probability).

5.2.2 Improvement of Piret-Quisquater Attack

To improve the Piret-Quisquater attack, we essentially use the keyschedule equations
between the two last subkeys. Indeed, for each of the 232 candidates for the last subkey,

82 Chapitre 5. Fault Attacks on the AES

guessing the difference in the active byte of z; leads to the knowledge of 4 bytes of the
subkey wug in the exact same way we obtained the subkey kjp. In the case of AES-128
both the subkeys ug and ko are related and only 232 x 28 x 2732 = 28 candidates for the
last subkey should verify those equations.

Our attack is very simple as it is a basic meet-in-the-middle. First the adversary begins
by guessing the difference in the active byte of the state z7. Then he picks two active
bytes in state zg, guesses the differences in them, deduces the values of the corresponding
2 bytes of ug and 8 bytes of k19 and stores them. Then he builds a similar list from the
two others active bytes of zgz. As the equations between the three last columns of wug
and the full subkey kjy are linear, he can perform a meet-in-the-middle on the two lists
leading to only 26 x 216 x 2724 = 28 candidates. Finally he keeps only the remaining
candidates satisfying the equation concerning the byte of the first column of ug. All in
all, using hash tables this attacks can be performed in roughly 22* operations and 10 x 216
bytes of memory, and was found by the tool described Chapter [2l Note that the memory
complexity can be decreased by a factor 5 since it is sufficient to get back the value of the
differences in the actives bytes to recover the values of the key bytes.

Extension to AES-192. Our improved attack on AES-128 uses the fact that both
the subkeys u,_; and k, are related essentially by affine equations. For AES-192, those
subkeys are still related but now only the bytes of the two (instead of three) first columns
of u11 are linearly dependent of k5. Thus our attack still applies with the same complexity
but the number of candidates remaining is now 2?*. To recover the master key, we need
at least 24 — (16 + 4) = 4 key bytes so another pair of correct and faulty ciphertexts is
required and the fault must be located on one of the three other columns.

Extension to AES-256. In the case of AES-256 the subkeys u3 and kq4 are independent
so our attack restricts the number of possible values of 16 + 4 = 20 key bytes to 2%, in
240 simple operations which is not an improvement.

5.2.3 Extension to One More Round

AK

||
||
%}
w
||
2]
Bl
||
=
Q

I

I

! AK SB SR AK

- Rroulld 9

Figure 5.2: Fault injected on one byte between MixColumns at the 6 round and
MixColumns at the 7" round on AES-128. Black bytes are active, white bytes are not.

5.2. Meet-in-the-Middle Fault Analysis on AES 83

We now realize a fault injection on one byte between MixColumns at the 6" round
and MixColumns at the 7" round on AES-128. The fault is totally diffused at the whole
10" round as the Figure shows it. This fault analysis requires 5 pairs of correct and
faulty ciphertexts. The complexity of the attack is around 2%° in time and memory, and
is schematized as follows:

1. Ask for 5 five pairs of correct and faulty ciphertexts.

2. Build the four lists:

— Lo = {(k10[0], k10 [7] , k10 [10] , k1o [13], ug [0])}
= Ly = {(kw0 [3], k10 [6] , k10 [9] . k10 [12] , ug [13])}
— Lo = {(k10 (2], k10 [5] , k10 [8], k10 [15] , ug [10])}
— L3 = {(kwo [1], k10 [4] , k10 [11] , k1o [14] , ue [7])}

3. Bach list L; contains 2%° elements and each one allows to deduce unique values for
Ajzg[i] , j =1,...,5, so in particular it allows to deduce unique values for the
differences in the active byte of the first column of the state z; (which is byte 0 in
Figure [5.2)).

4. Build the list Ly, by taking all the element (a,b) € Lo x Ly such that a and b lead to
the same value of the 5-byte sequence (A;27[0], ..., Asz7[0]). Only 210 x 210 x 2710 =
240 candidates should remain.

0]

5. Similarly, build the list Ly ;2 and then the list Ly;23. Each of them still contains
240 elements.

6. The list Lo 23 suggests 2% values for 20 key bytes including the whole subkey k1.
By the keyschedule of AES-128, only 2% x 2732 = 2% may be correct.

7. For each of them decrypt the ciphertexts and keep only the ones leading to a single
active byte in state z; at expected location. Only the right key is expected to remain
since the probability for a wrong key to pass this test is 278%15%5 = 2600,

Allin all, storing the lists in hash tables indexed by the 5-byte sequence (A;27[0], ..., As27[0])
allows to perform this attack in 2% encryptions and 3 x 5 x 2% bytes of memory. We
stress that it is not required for the faults to be at the same location neither on the same
column.

Reduction of Memory Requirement. The complexity of our attack is considered
as practical but in practice it may be difficult to store as much as 3 x 5 x 20 bytes of
data on fast memory as computer RAM. Thus reducing the memory complexity may also
speed-up the attack on common computer.

Our idea is to begin by guessing A;z7[0]. From there, the four lists Lo, ..., L3 now
contain only 23?2 elements and can be built in as much operations. Indeed, from A;27[0] we
obtain Ajz5[0] and if we guess the four key bytes k1 [0], k10 [7], k10 [10] and k1 [13] then
we obtain A;ys[0] allowing us to deduce the actual value of x5[0] (and ys[0]) and leading
to the knowledge of ug[0]. As a consequence, we can reduce the memory complexity to
3 x 5 x 232 bytes which is already more practical.

If we suppose the adversary have a siztuplet consisting of a correct and five faulty
ciphertexts then the memory complexity can be reduced even further. This time we begin
by guessing A;2z7[0] and Ayz7[0] and the goal is to build the four lists from there in 224

84 Chapitre 5. Fault Attacks on the AES

operations. For instance, building the list Ly by assuming that these values are known
can be done as follows:

1. Build the list L6 = {(kﬁlo [0] , L8 [O])}

2. Each element of L allows to deduce unique values for:
- Ay (0], 5 =1,2
- AJZEQ[O] s jI 1,...,5

3. Guess k‘lo[?],]{?10[10],]{?10[13]
— Deduce Ajxg[1,2,3] , j=1,...,5
— Look in Ly for corresponding values of k1 [0] and zg [0] using Ajzg = MC (Ajz)
— Deduce ug[0] and A;z7[0] , j =3,4,5

The lists Ly, Lo and L3 can be built in the same way, reducing the memory complexity
of the overall attack to 3 x 15 x 22* bytes.

This improvement makes the attack much more feasible. The implementation provided
by the tool takes a little bit less than 13 days on a Core 2 Duo E8500 and 900MB of ram
to test all possibilities but it can be improved by optimizing and parallelizing the C code.

Random Byte Fault Model. In case of unknown fault positions, we have to guess the
column on which the fault occurs for each of the five pairs of correct and faulty ciphertexts.
As a result, the time complexity is increased by a factor 4° = 219 leading to an overall
complexity of 2°°. Our attack can still be considered as practical but not enough to run
it on a regular computer.

Extension to AES-192 and AES-256. Our attack can be easily applied on both
the 192 and 256-bit versions of the AES without requiring more faulty pairs. For i €
{0,...,15}, let K; be the 5 key bytes needed to decrypt the byte i of the state xg and L;
be the list of their possible values. In our attack we combined the lists Lg, L1, Lo and Ls
according to the value of the 5-byte sequence (A1z7[0],..., Asz7[0]) and obtained a list
Lo 123 containing 2% candidates for the key bytes needed to decrypt the first column of
xrg. But now those bytes are not sufficient to decrypt the ciphertexts and finding their
right value cannot be done as in our previous attack. Instead, we build the list L4567
containing 2% candidates for the key bytes needed to decrypt the second column of xs.
Then we perform a meet-in-the-middle between L ;23 and L4567 as they must suggest
the same value for the last subkey. Since 240 x 240 x 27128 = 2748 only the right value
should remain. Once the last subkey is known and thus we may decrypt the ciphertexts
by one round and apply the attack of Piret-Quisquater. However, continuing to combine
the lists is faster since Lg, ..., L5 now contain 2% elements each.

5.3 Impossible Differential Fault Attack on AES

In this section, we present a more efficient attack since we do not assume where the
fault is provoked and the time complexity is reduced to 22 inequality checks. However,
this fault attack needs more faulty ciphertexts, less than 28, 41, 355 or 800 depending
on the fault model. Our attack is based on the fact that it is impossible to have a zero-
difference in state zg in the 9" round just before MixColumns operation; as Phan and

5.3. Impossible Differential Fault Attack on AES 85

Yen mentioned this fact in [PY06] and developed with an example of the fault injected
on the subkey k7 in the key schedule. This fact is illustrated by the Figure [5.3] In this
section, two principles are associated, the first one impossible differential, which is first
published in [Knu98al, Knu98b|, and the second one fault analysis, like [BGNO5, PY06].
Our impossible differential fault analysis corresponds to 5-round impossible differential
cryptanalysis attack, which is described in [BK0Q)].

Te Ye 26 We
. SB . SR . MCI Round 6
T Yr 27 wr
Ty Ys Z8 wg
L9 Yo 29
koo —¢ b = Round 9
C

Figure 5.3: Colored bytes are active. Differences in black bytes are non-zero.

The Attack. Due to a well-known property of the differential through the MixColumn
operation, all differences between bytes are not null at the internal state zs.

Azli] #0 , forie{0,...,15} (5.1)

Moreover, we know that computing the difference in the zg can be done by guessing
last subkey k9. So we can reduce the number of candidates for the last subkey by keeping
only the ones such that the inequalities hold. Furthermore, ki can be partitioned in four
sets of four bytes such that each one allows to compute the difference in one column of
zg. Thus we work on each of them separately.

Given m pairs of correct and faulty ciphertexts, each 4-byte candidate satisfies the in-

equalities with probability (E)m. Hence, to be left with n candidates we need on average
@) 4m

256
m, pairs where m,, is the smaller integer m such that 23? x (256

this requires to check >, 4 x 232 (%)4Z inequalities which is equal to approximately
as long as n < 2?*. As a consequence it is unclear that this attack can be implemented

faster than the previous one.

< n. Furthermore,
240

86 Chapitre 5. Fault Attacks on the AES

Once we are left with n candidates for each of the four subsets of key bytes we can
applied the attack described Section with time and memory complexity reduced
by a factor 232/n. If we know where the faults are located then taking n = 22* makes
the complexity of this part around 232. Otherwise we have to take n = 2! to obtain
the same result. Anyway, the time complexity of this attack is dominated by checking
around 4 x 240 = 242 inequalities and the number of pairs of correct and faulty ciphertexts
required is either 355 or 800 depending on the model.

Reducing the Data Complexity. An interesting property of reusing incorrect cipher-
texts is described here. Let be given two faulty ciphertexts C'! and C? built from the same
plaintext while fault injection targeted on the same byte. Only MixColumns operation
generates collision in one byte, whereas the others do not. Furthermore, if two different
inputs of MixColumns only vary on one byte, the two outputs of MixColumns do not
collide. As a consequence, the pair (C’l, 6’2) is a pair of correct and faulty ciphertexts,
where the fault injection has been realized on one byte between MixColumns at the 6"
round and MixColumns at the 7.

More generally, if we have a tuple consisting of a correct and n faulty ciphertexts
such that all their faults are on the same byte then we can generate n(n + 1)/2 pairs of
correct and faulty ciphertexts. As a result, we can reduce the data complexity of our
attack from 355 to 28 and from 800 to 41 depending on the fault model. Furthermore,
instead of testing all the inequalities we just have to verify that for each byte of zg the
27-byte (resp. 40-byte) sequence built by decrypting the difference in this byte from the
ciphertexts does not contain the same value twice. So the number of inequalities we have
to check becomes:

(ifl)

255 - 255
32 32 39.5
4><§4><2 <256> ~4><E4 X 2 (256) ~ 2777,

All in all, the time complexity of the attack is still dominated by checking the in-
equalities but their number is decreased by a factor 23°. As the memory complexity is
approximately 232 bytes, we didn’t run this attack and thus we are not able to compare it
with the meet-in-the-middle attack described Section [5.2.3] However, this attack should
be faster on a computer with enough RAM.

5.4 Conclusion

We have presented an attack on the n — 3" round of AES and two different ones on
the n — 4" round. We studied the three AES versions against different fault models, and
improved the previous known results. Current state-of-the-art countermeasure consists on
protecting the three first rounds and the three last rounds of AES. All operations inside
round need to be protected and state between rounds too. In order to defeat our fault
analysis, all AES-128 rounds need to be protected against fault attacks. Considering AES-
192 and AES-256, at least the last 5 rounds and the first 5 rounds need to be protected
against fault analysis.

Chapitre 6

Faster Chosen-Key Distinguishers on
Reduced-Round AES

In this chapter, we study another model that has been suggested to study the security
of hash functions based on AES components. Knudsen and Rijmen [KR07| have proposed
to consider known-key attacks since in the hash function domain, the key is usually known
and the goal is to find two input messages that satisfy some interesting relations. In some
setting, a part of the key can also be chosen (for instance when salt is added to the hash
function) and therefore, cryptanalysts have also considered the model where the key is
under the control of the adversary. The latter model has been called chosen-key model and
both models belong to the open-key model. The chosen-key model has been popularized
by Biryukov et al. in [BKN09|, since a distinguisher in this model has been extended to
a related-key attack on the full AES-256 version.

Related Work. Knudsen and Rijmen in [KRO7] have been the firsts to consider known-
key distinguishers on AES and Feistel schemes. The main motivations for this model are
the following:

— if there is no distinguisher when the key is known, then there will also be no distin-
guisher when the key is secret,

— if it is possible to find an efficient distinguisher, finding partial collision on the output
of the cipher more efficiently than birthday paradox would predict even though the
key is known, then the authors would not recommend the use of such cipher,

— finally, such model where the key is known or chosen can be interesting to study the
use of cipher in a compression function for a hash function.

In the same work, they present some results on Feistel schemes and on the AES. Following
this work, Minier et al. in [MPP09] extend the results on AES on the Rijndael scheme
with larger block-size.

In [BKNQ9|, Biryukov et al. have been the firsts to consider the chosen-key distin-
guisher for the full 256-bit key AES. They show that in time ¢ - 257, it is possible to con-
struct g-multicollision on Davies-Meyer compression function using AES—256, whereas for
an ideal cipher, it would require on average ¢ - 9471128 time complexity. In these chosen-
key distinguishers, the adversary is allowed to put difference also in the key. Later,
Nikolic et al. in [NPSSI10|, describe known-key and chosen-key distinguishers on Feistel

87

88 Chapitre 6. Faster Chosen-Key Distinguishers on Reduced-Round AES

and Substitution-Permutation Networks (SPN). The notion of chosen-key distinguisher is
more general than the model that we use: here, we let the adversary choose the key, but
it has to be the same for the input and output relations we are looking for. We do not
consider related-keys in this article. Then in [MPRS09], rebound attacks have been used
to improve known-key distinguishers on AES by Mendel et al. and in [GP10], Gilbert and
Peyrin have used both the SuperSBox and the rebound techniques to get a known-key
distinguisher on 8-round AES-128. Last year at FSE, Sasaki and Yasuda show in [SYT11]
an attack on 11 Feistel rounds and collision attacks in hashing mode also using rebound
techniques, and more recently, Sasaki et al. studied the known-key scenario for Feistel
ciphers like Camellia in [SEHK12].

Our Results. In this chapter, we study 128- and 256-bit reduced versions of AES in the
(single) chosen-key model where the attacker is challenged to find a key k and a pair of
messages (m,m’) such that m@®m’ € E and AES,(m)DAES,(m') € F, where E and F are
two known subspaces. On AES-128, we describe in that model a way to distinguish the
7-round AES in time 2® and the 8-round AES in time 2?4, In the case of the 7-round dis-
tinguisher, our technique improves the 2'¢ time complexity of a regular rebound technique
IMRST09| on the SubBytes layer by computing intersections of small lists. The 8-round
distinguisher introduces a problem related the SuperSBox construction where the key
parameter is under the control of the adversary. As for AES-256, the distinguishers are
the natural extensions of the ones on AES-128. Our results are reported in Table
and have been published in [DFJ12]. We have experimentally checked our results and
examples are provided in the appendices. While those results do not threaten at all the
security of the AES, we believe that our low-time distinguishers may pave the way for
new cryptanalytic results on AES-based designs. For now, they can be useful to construct
non-trivial inputs for the AES block cipher to be able to check the validity of some theo-
retical attacks, for instance [DKS10a]. Future works may include investigating the bridge
between the open-key model and the secret-key traditional cryptanalysis framework by
using efficient constraint satisfaction techniques.

6.1 Chosen-key distinguishers

6.1.1 Limited Birthday Distinguishers

In this section, we precise the distinguishers we are using. Our first goal is to distin-
guish the AES-128 from an ideal keyed-permutation in the chosen-key model. We will
derive distinguishers for AES-256 afterwards. We are interested in the kind of distin-
guishers where the attacker is asked to find a key and a pair of plaintext whose difference
is constrained in a predefined input subspace such that the ciphertext difference lies in an
other predefined subspace.

Property 17. Given two subspaces E;, and E,y, a key k and a pair of messages (z,y)
verify the property on a permutation P if x +y € E;;, and P(x) + P(y) € Eou-

This type of distinguisher looks like the limited birthday distinguishers introduced
by Gilbert and Peyrin in |[GP10] with a very close lower bound proved in [NPSS10],

6.1. Chosen-key distinguishers 89

Table 6.1: Comparison of our results to previous ones on reduced-round distinguishers of the
AES-128 in the open-key model. Results from [BK09| are not mentioned since we do not consider
related-keys in this chapter.

Target Model Rounds Time Memory Ideal Reference
Known-key 7 2°0 - 208 * IKROT7]
Known-key 7 224 216 264 IMPRS09]
Chosen-key 7 222 - 264 [BNO9]
AES-128 Chosen-key 7 28 28 264 Section
Known-key 8 218 232 264 [GP10]
Chosen-key 8 244 - 264 IBNO9]
Chosen-key 8 224 216 264 Section 6.1.3
Chosen-key 7 28 28 204 Section [6.2.1
AES-256 Chosen-key 8 28 28 264 Section [6.2.2
Chosen-key 9 224 216 264 Section [6.2.3

* Claimed by the authors as a very inaccurate estimation of the [ideal] complexity.

except that we allow the attacker more freedom; namely, in the choice of the key bits.
To determine how hard this problem is, we need to compare the real-world case to the
ideal scenario. In the latter, the attacker faces a familyE] of pseudo-random permutations
F: K xD — D, and would run a limited birthday distinguisher on a particular random
permutation Fj, to find a pair of messages that conforms to the subspace restrictions of
Property [I7] The additional freedom of this setting does not help the attacker to find the
actual pair of messages that verifies the required property, because the permutation Fj
has to be chosen beforehand. Put it another way, the birthday paradox is as constrained
as if the key were known since no difference can be introduced in the key bits.

Therefore, even if we let the key to be chosen by the attacker, the limited birthday
distinguisher from |[GP10] applies in the same way. For known E;, and E,,;, we denote
n; = dim(E;,) and n, = dim(Fy,). In terms of truncated differences, n; (resp. n,)
represents the number of independent active truncated differences in the input (resp.
output) of a random permutation Fj € F (see Figure [6.1). Both n; and n, range in
the interval between 1 and n?, where n = 4 in the case of AES-128. Without loss of
generality, we assume that n; < n,: the attacker thus considers F}, rather than its inverse,
as it is easier to collide on n? — n, differences than on n? — n,.

The attacker continues by constructing two lists L and L’ of 287 plaintexts each by
choosing a random value for the n? — n; inactive bytes of the input and considering all
the n; active ones in Ej;,. With a birthday paradox on the two lists L and L', she expects
a collision on at most 2n; bytes of the ciphertexts. In the event that n? — n, > 2n,, then
n? — 2n; bytes have not a zero-difference in the ciphertext. Hence, we need to restart
the birthday paradox process about 28("*=me=2m) times, which costs 280"~ in total.
Otherwise, if n2 — n, < 2n;, then a single birthday paradox with lists of size 28("*=m0)/2 ig
sufficient to get a collision on the n? — n, required bytes in time 28(7°~70)/2,

2. where both K and D are {0,1}"*® in the case of AES-128.

90 Chapitre 6. Faster Chosen-Key Distinguishers on Reduced-Round AES

n? —nyg

Figure 6.1: Assuming n; < n,, the attacker searches for a pair of input to the random per-
mutation Fj differing in n; known byte positions such that the output differs in n, known byte
positions. A gray cell indicates a byte with a truncated difference.

6.1.2 Distinguisher for 7-round AES-128

We consider the 7-round truncated differential characteristic of Figure [6.2] where the
matrices of differences in both the plaintext and the ciphertext lie in matrix subspaces
of dimension four. Indeed, the output difference lies in a subspace of dimension four
since all the operations after the last SubBytes layer are linear. With respect to the
description of the distinguisher (Section [6.1.1]), the time complexity to find a pair of
messages that conforms to those patterns in a family of pseudo-random permutations is
204 basic operations.

|

-- Round 1

I

I
I
I
I

I
I
.AK(B). - . - . - E found 3
I
I
I
I
‘ !
I
! AK (4) SB SR MC .
- -- Round 4
I
I
I

-- Round 5

I
I

: I AK(6)I : I : ﬁ : . : d6
- oun

Figure 6.2: The 7-round truncated differential characteristic used to distinguish the AES-128
from a random permutation. Black bytes are active, white bytes are not.

6.1. Chosen-key distinguishers 91

The following of this section describes a way to build a key and a pair of messages
that conform to the restrictions in time 2° basic operations using a memory complexity of
28 bytes. This complexity has to be compared to 2'¢ operations, which is the time com-
plexity expected for a straightforward application of the rebound attack [MRST09] on the
SubBytes layer of the AES. In that case, there are 16 random differential transitions
around the AES S-Box, which happens to be all compatiblerﬂ with probability 2716, Re-
peating with random differences 2% times, we expect to find a pair of internal states that
conforms to the randomized differences. In the following, we proceed slightly differently
to reach a solution in time 28.

In terms of freedom degrees, we begin by estimating the number of solutions that
we expect to verify the truncated differential characteristic. There are 16 bytes in the
first message, 4 more independent ones in the second message and 16 others in the key:
that makes 36 freedom degrees at the input. On a random input, the probability that
the truncated differential characteristic being followed depends on the amount of freedom
degrees that we loose in probabilistic transitions within the MixColumns transitions: —3
in round 0 to pass one 4 — 1 truncated transition, —12 in round 3 to pass four 4 — 1
transitions and —3 again in round 4 for the last 4 — 1 transition. In total, we thus expect

28x(16+4+16) 2—8x(3+12+3) — 98x18

triplets (m, m’, k) composed by a pair (m,m’) of messages and a key k to conform to the
truncated differential characteristic of Figure Hence, we have 18 freedom degrees left
to find such a triplet.

First, we observe that whenever we find such a solution for the middle rounds (round 1
to round 4), we are ensured that all the rounds will be covered as in the whole truncated
differential characteristic due to an outward propagation occurring with probability 1.
Hence, our strategy focuses on those rounds. The context is similar to the rebound
scenario, where we first solve the inbound phase and then propagate it into the outbound
phase.

Z1 T2 Y2 T3 Ys T4 Y4 Wy
MC SB SR MC [7[72[/7F77] SB SR MC SB SR
ARK INS QAR ARK MC
(A07A17A27A3) (50751752753)

Figure 6.3: The 7-round distinguishing attack focuses of the middle rounds. Black bytes
have known values and differences, gray bytes have known values, hatched bytes have known
differences and white bytes have unknown values and/or differences.

To reduce the number of valid solutions, we begin by fixing some bytes (Figure(8.2) to a
random value: Az; and z5[0..3]. Therefore, we can deduce the values and differences in the

3. By compatible, we mean that we can find at least a pair of values that conforms to the differential
transition. In the case of the AES S-Box, for a random differential transition § — ¢’, this is known to be
possible with probability close to 1/2.

92 Chapitre 6. Faster Chosen-Key Distinguishers on Reduced-Round AES

first column of o and ys, as well as the difference Az by linearity. Let [Ag, Ay, Ay, Az]T
be the column-vector of deduced differences in Ay, and diag(do, d1, d2, d3) the differences
in the diagonal of Ax4. Linearly, we can express the differences around the SubBytes
layer of round 3 (see Figure . As a consequence, from the differential properties of

Axs Ays
200 Az [Ag BA, 1400[1161{1309/ 963
Ao [As BARA| g [1395 900 [1464{L 109
Ao BARA A, 146,/ 165146, 95,
3ApR2As Ay | Ay 1301|995 [1495]1 15

Figure 6.4: Differences around the SubBytes layer of round 3: each A; is fixed, whereas the
d; are yet to be determined.

the AES S-Box, for 4,7 € {0,...,3}, A; suggests 27 different values for d;: we store them
in the list L, ;.

L;;= {61- / Aj; — §; is possible}. (6.1)

Once done, we build the list L;, for i € {0,...,3}:
3
L= ﬂ Lij = {5i/vj €{0,...,3}, A; > ¢, is possible}. (6.2)
j=0

Each L;; being of size 27, we expect each L; to contain 2* elements.

We continue by setting Az4[0] to random value in Ly and z4[0] to a random value,
which allow to determine the value and difference in y4[0]. Since the difference Ay, can
only take 2% values due to the MixColumns transition of round 4, we also deduce Awy
and the remaining differences in Ay,. The knowledge of Ay, suggests 27 possible values
for 0;. As before, we store them in lists called T}, and we select a value for 9; in L; n T;
(Figure . We expect each intersection to contain about 2% elements. More rigorously,
if we assume that the lists L; ; and T; are uniformly distributed, then the probability
that Lo, L1 n Ty, Ly n Ty and L3 n T3 are not empty is higher than 99.96% (see proof in
IAppendix 6.B)). Finally, we compute the values in 23 and in the diagonal of z4.

We now need to find a key that matches the previous solving in the internal states: we
build a partial pair of internal states that conforms to the middle rounds, but that sets 8
bytes on constraints in the key. Namely, if we denote k; the subkey introduced in round ¢
and u; = MC™'(k;), then both uz and k4 have four known bytes (see Figure . We start
by fixing all the bytes marked by 1 in u3 to random values: this allows to compute the
values of all 2’s in the two last columns of k3. By the column-wise operations of AES key
schedule, we can get the values of all bytes marked by 3. As for the 4’s, we get them since
there are four known bytes among the eight in the first columns of u3 and k3. Again, the

6.1. Chosen-key distinguishers 93

Z1 T2 Yo T3 Ys T4 Ya Wy
R AR R [|
MC SB SR MC[’ 7 “Asr MC| |7 SB 2 SR
ARK ARK [/ 4 721 ARK % 2 | mc
(A07A17A27A3) (50751752753)

Figure 6.5: The 7-round distinguishing attack focuses of the middle rounds. Black bytes
have known values and differences, gray bytes have known values, hatched bytes have known
differences and white bytes have unknown values and/or differences.

Us]{73 /{?4

7111 317(2]2 8188
1|7]1 Me 141612]2] xs |5[1313
7] |1 416122 5131 |3
4] |1]1 41622 51313

Figure 6.6: Generating a compatible key: gray bytes are known, and numbers indicate the
order in which we guess or determine the bytes.

key schedule gives the 5’s and 6’s, and the MixColumns the 7’s. Finally, we determine
values for all the byte tagged by 8 from the key schedule equations. By inverting the key
schedule, we are thus able to compute the master key k.

All in all, we start by getting a partial pair of internal states that conforms to the
middle rounds, continue by deriving a valid key that matches the partial known bytes and
determine the rest of the middle internal states to get the pair on input messages. The
bottleneck of the time and memory complexity occurs when handling the lists of size at
most 2% elements to compute intersections. Note that those intersections can be done in
roughly 2% operations by representing lists by 256-bit numbers and then perform a logical
AND.

In the end, we build a pair of messages (m,m’) and a key k that conforms to the
truncated differential characteristic of Figure in time 2% basic operations, where it
costs 2% in the generic scenario. We note that among the 18 freedom degrees left for
the attack, we uses only 10 by setting 10 bytes to random values, such that we expect
28x8 — 264 golutions in total. All those solutions could be generated in time 2%* by iterating
over all the possibilities of the bytes marked by 1 in Figure [6.6]

We implemented the described algorithm to verify that it indeed works, and we found
for instance the triplet (m,m’, k) reported in [Appendix 6.Al

6.1.3 Distinguisher for 8-round AES-128

We consider the 8-round truncated differential characteristic of Figure [6.7, where the
matrices of differences in both the plaintext and the ciphertext lie in the same matrix
subspaces of dimension four as before. Indeed, the output difference lies in a subspace of
dimension four since all the operations after the last SubBytes layer are linear. Again,

94 Chapitre 6. Faster Chosen-Key Distinguishers on Reduced-Round AES

the distinguisher previously described (Section [6.1.1)) claims that the time complexity to
find a pair of messages that conforms to those patterns in a family of pseudo-random
permutations runs in time 254 operations.

Round 0

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Figure 6.7: The 8-round truncated differential characteristic used to distinguish the AES-128.
Black bytes are active, white bytes are not.

The following of this section describes a way to build a key and a pair of messages
that conform to the restrictions in time and memory complexity 2?4. We note that it is
possible to optimize the memory requirement to 2. As in the previous section, there
are 36 freedom degrees at the input, which shrink to 18 after the consideration of the
truncated differential characteristic. Therefore, we also expect 2818 solutions in the end.

First of all, we observe that finding 22* triplets (m,m’, k) composed by a key and a
pair of internal states that conform to the rounds 2 to 5 is sufficient since the propagation
in the outward rounds is done with probability 2724 due to the MixColumns transition
of round 1. The following analysis consequently focuses of those four middle rounds.

We now describe an instance of a problem that we use as a building block in our
algorithm, which is related to the keyed SuperSBox construction.

Problem 1. Let a and b two bytes. Given a 32-bit input and output differences A;, and
Ay of a SuperSBox,, for an unknown 32-bit k, find all the pairs of AES-columns (¢, c’)
and keys k such that:

6.1. Chosen-key distinguishers 95

i. c+d =40,
ii. SuperSBox,(c) + SuperSBox;(c') = Ay,
i1. SuperSBox,(c) = [a, b, *, *]T.

Considering the key k known and the case where there is no restriction on the output
bytes (i), we would expect this problem to have one solution on average. Finding it would
naively require 232 computations by iterating over the 232 possible inputs and checking
whether the output has the correct A,,; known difference. The additional constraints on
the two output bytes reduce the success of finding a pair (c,c’) of input to 276, but if
we allow the four bytes in the key k to be chosen, then we expect 2'6 solutions to this
problem.

To find all of them in 2'® simple operations, we proceed as follows (Figure : the
two output bytes a and b being known, we can deduce the values of the two associated
bytes before the last SubBytes, a and b respectively. We can also deduce the difference in
those bytes since the output difference is known. Then, we guess the two unset differences
at the input of the last SubBytes: the differences then propagate completely inside the
SuperSBox. At both SubBytes layers, by the differential properties of the AES S-Box,
we expect to find one value on average for each of the six unset transitions. Consequently,
the input and output of the AddRoundKey operation are known, which determines the
four bytes of k. In the end, we find the 26 solutions of Problem 1 in time 2! operations.

Aout

7774

7774

2777

7774 N 777

7777 777

7774 777

7777) 777

7774 777
y 777
y 777

Figure 6.8: Black bytes have known values and differences, hatched bytes have known differ-
ences and white bytes have unknown values and/or differences.

[]
[]

To apply this strategy to the 8-round truncated differential characteristic of Figure|6.7],
we start by randomizing the difference Ays, the difference Aws and the values in the
first column of ws. Due to the linear operations involved, we deduce Axs = Awsy from
Ayy and Ay, from Aw,. To use the previous algorithm, we randomize the values of
the two first columns of wy (situtation in Figure . Doing so, the four columns of
y4 are constrained on two bytes each and have fixed differences. Consequently, the four
SuperSBoxes between x3 and y4 keyed by the four corresponding columns of k4 conforms
to the requirements[]of Problem 1. In time and memory complexity 2'6, for i € {0,1,2, 3},
we store the 2'¢ solutions for the ith SuperSBox associated to the ith column of z, in
the list L;.

4. The positions of the known output bytes differ, but the strategy applies in the same way.

96 Chapitre 6. Faster Chosen-Key Distinguishers on Reduced-Round AES

T2 Yo Z9 w2
il s Round 2
I3 Ys Z3 w3
k3 R Round 3
KS w4
k4 R - Round 4
s Is Ys 25 Ws
|
ks N !ﬁ; = ﬁ SRI - Round 5

Figure 6.9: Black bytes have known values and differences, gray bytes have known values,
hatched bytes have known differences and white bytes have unknown values and/or differences.

We continue by observing that the randomization of the bytes in w, actually sets
the value of two diagonal bytes in ks, k5[0] and k5[5], which imposes constraints of the
elements in the lists L;. We start by considering the 2'¢ elements of Ls, and for each of
them, we learn the values x4[12..15] and k4[12..15]. Due to the column-wise operations
in the key schedule, we also deduce the value of k4[0]. Filtering the elements of Ly which
share that value of k4[0], we are left with 2% elements for bytes z4[0..3] and k4[0..3]. At
this point, we constructed 219t = 224 golutions in time 22* that we store in a list Lg .

As ks5[5] has been previously determined, we can deduce ky4[5] = ks[5] + ks[1] from
the AES key schedule for each of the entry of Ly3. Again, this adds an 8-bit constraint
on the elements of L;: we expect 2% of them to match the condition on k4[5]. In total, we
could construct a list L3 of size 22478 = 232 whose elements would be the columns 0,
1 and 3 of 74 and k4, but as soon as we get 22* elements in that list, we stop and discard
the remaining possibilities.

Finally, to ensure the correctness of the choice in the remaining column 2, we need to
consider the MixColumns operation in round 4 and the subkey k5. Indeed, as soon as we
choose an element in both Ly ;3 and Lo, x4, ks and ks become fully determined, but we
need to ensure that the values x5[10] and z5[15] equal to the known ones. In particular,
for z5[10], we have:

ka[10] + E5[6] = ks[10] (6.3)
= wy[10] 4 x5[10] :
24[8] + 24[9] + 2214[]_0] + 32’4[11] + 1’5[10], (65)

6.2. Extention to AES-256 97

and for x5[15]:

ka[11] + E5[7] + ka[15] = ks[11] + k4[15]
~ ki3]
= wy[15] + x5[15]
= 324[12] 4+ 2z4[13] + z4[14] + 224[15] + x5[15],

where (6.3)), and (6.7)) come from the key schedule, (6.4]) and from the AddRoundKey
and (6.5) and use the equation from the MixColumns. Hence, for each element of

Ly,13, we can compute:

(o) o) o))
© o -1 O

R i N

(
(
(
(

S(24[8]) + Ea[10] := w5[10] + E5[6] + S(za[13]) + 2 S(24[2]) + 3S(wa[7]), (6.10)
ka[11] + 2 S(wa[11]) := &s[7] + Ea[15] + 3 S(xa[12]) + S(2a[1]) + S(za[6]) + 25[15]
(6.11)

and lookup in L, to find 216278%2 = 1 element that match those two byte conditions. We
create the list L by adding the found element from Lo to each entry of L 3.

All in all, in time and memory complexity 2?4, we build L of size 2?* and we now
exhaust its elements to find one that passes the 2724 probability of the 4 — 1 back-
ward transition in the MixColumns of round 1. Indeed, an a — b transition in the
MixColumns layer cancels 4 — b output bytes, so that it would happen with probability
27847 for a random input a. Consequently, we expect to find a pair (m,m’) of messages
and a key k that conforms to the 8-round truncated differential characteristic of Figure
in time 22 when it requires 2% computations in the ideal case.

Among the 18 available freedom degrees available to mount the attack, we uses 17 of
them, which means that we expect to have 2® solutions. We could have them in time
232 but since we discarded 2° elements in the algorithm described, we get only 1 in time
221 We note that it is possible to gain a factor 2% in the memory requirements of our
attack since we can implement the algorithm without storing the lists Lo, L3 and Lo 3,
by using hash tables for L, L, and Ls.

We also implemented the described algorithm to verify that it indeed works, and we
found for instance the triplet (m,m’, k) reported in [Appendix 6.A}

6.2 Extention to AES-256

The two distinguishers described in the previous section can be easily extended in
distinguishers on the AES-256. The main idea is to use the 16 additional freedom
degrees in the key to extend the truncated differential characteristics by introducing a
new fully active round in the middle.

6.2.1 Distinguisher for 7-round AES-256

The first step of the attack described in the 7-round distinguisher on AES-128 (Sec-
tion [6.1.2)) still applies in the case of AES-256 since it does not involve the key schedule.

98 Chapitre 6. Faster Chosen-Key Distinguishers on Reduced-Round AES

Then, we can generate a compatible key easily since there are only two subkeys involved:
we can just choose bytes of k3 and k4 as we want, except the imposed ones, and deduce the
master key afterwards. This yields to a distinguisher with time and memory complexities
around 28.

6.2.2 Distinguisher for 8-round AES-256

We use a similar approach as the 7-round distinguisher on AES—-128 of Section [6.1.2}
but the truncated differential characteristic has one more fully active round in the middle[]

We begin by choosing values for Az; and x5[0..3]. This allows to deduce Az, Ays,
and Axs. Then, we also set random values for Aws and for the diagonal of x5 to obtain
both Azs and Ay,. Now, we find a value for Axs, which is compatible with Azs and
Ayys. Indeed, we can not take an arbitrary value for Az, because the probability that it
fits is very close to 2732, However, we can find a correct value with the following steps:

1. Store the 27 possible values for Az4[0] in a list L.

2. In a similar way, make lists L; with Azy[1], Ly with Az4[2] and L3 with Az4[3].
3. Choose a value for (z3[0], z3[5], x3[10], 3[15]) and compute Az4[0..3].

4. If Axy[0..3] is not in Lo x Ly x Ly x L3, then go back to step 3.

On average, we go back to the step 3 only (2877)* = 24 times since lists are of size 27. In
the same way, we can obtain values for the other columns of z,.

At this point, we computed actual values in all those internal states, and we need to
generate a compatible key. Finding one can be done using the procedure described in
Figure Bytes tagged by 1 are chosen at random, odd steps use the key schedule
equations and even steps the properties of MixColumns.

U9 Us]{52 kg k4 kS
41118 0/416/8 3719
1]1]1 MC 2|3|6|8] ks 311719
1[1] |1 214158 3151 19

2] |6]1 214167 31517

Figure 6.10: Generating a compatible key: gray bytes are known, and numbers indicate the
order in which we guess or determine the bytes.

6.2.3 Distinguisher for 9-round AES-256

We begin as in Section by choosing the difference Ays, the difference Awg and
the values in the first column of wg. Then, we deduce Awy = Azs from Ays and Ays
from Aws. In addition, we set z3 to a random value, which allows to determine Ax,. In
order to apply the result from Problem 1 again, we set the values in two first columns of
ws to random values.

5. In that case, the truncated differential characteristic is thus the one from Figure

6.3. Conclusion 99

As before, for i € {0, 1,2, 3}, we store in the list L; the 2'° possible values of the i-th
column of x5 and the i-th column of k5. Unlike previously, we also obtain values of the
i-th column of SR(k,), but the scenario of the attack still applies. We start by observing
that bytes of Ly allow to compute k4[1] and k4[13], which are bytes of Ls. Thus, we can
merge Lo and Lj in a list Lo 3 containing 2'¢ elements. Then, we construct the list Lo 3
containing 2?* elements of Loz x Lo. Finally, from bytes of Lg23, we can compute:

325[11] := kq[2] + S(k5[15]) + k4[6] + k4[10] + 25[8] + 25[9] + 225[10] + z4[10],
(6.12)

25[14] + ky4[3] := S(ks[12]) + Kka[7] 4+ ka[11] + Kk4[15] 4 325[12] + 25[13] + 225[15] + z6[15].
(6.13)

As a consequence, we expect only one element of L, to satisfy those two byte conditions
and so, we obtain 224 solutions for the middle rounds. All in all, this yields to a distin-
guisher with a time complexity around 2?* and a memory requirement around 2'¢ using
the same trick given in Section [6.1.3]

6.3 Conclusion

In this chapter, we studied the Advanced Encryption Standard and shown how to
find a pair of messages and a key that satisfy some property a lot more efficiently than
a generic attack based on the birthday paradox for both AES-128 and AES-256. Our
new results improve the previous claimed ones by reaching very practical complexities,
and give new insights of the open-key model for block ciphers, and hash functions based
on block ciphers.

On AES-128, we shown efficient distinguishers for versions reduced to seven and eight
rounds, and verified in practice that they indeed work by implementing the actual attacks.
We described precisely the algorithms to get the valid inputs, and by applying the same
strategy, we deduced similar results for AES-256. Namely, we get efficient distinguishers
on versions reduced to seven, eight and nine rounds.

100 Chapitre 6. Faster Chosen-Key Distinguishers on Reduced-Round AES

6.A. Experimental verification

Table 6.2: Example of a pair of messages (m,m’) that conforms to the 7-rounds truncated
differential characteristic for AES-128 of Section [6.1.2] The master key found by the attack is:
93CA1344 10A7TEBDF B659C8AF ECC59699. The lines in this array contains the values of

two internal states before entering the corresponding round, as well as their difference.

Round m m’ me®m'
Init. ESFC5DFE 79A851F7 7EB9E366 51C3D9C5 F8FC5DFE 79C951F7 7EB96566 51C3D96E 1D000000 00610000 00008600 000000AB
0 76364EBA 690FBA28 C8E02BCY9 BD064F5C 6B364EBA 696EBA28 C8EOADCY BDO64FF7 1D000000 00610000 00008600 000000AB
1 65CC94D1 85BE1AD3 F3D75BF1 ACCBB8BD 8DCC94D1 85BE1AD3 F3D75BF1 ACCBB8BD E8000000 00000000 00000000 00000000
2 E93319CD 88F41390 10623230 F66BFBAD C92309FD 88F41390 10623230 F66BFBAD 20101030 00000000 00000000 00000000
3 89C79074 EO9E6F44 F1DBAB2F F984FCC4 1404532A 09774F8D 24BF1AFA CD551921 9DC3C35E E9E920C9 D564B1D5 34D1ESES
4 867A12E6 BF19139C 1C848362 400030D3 047A12E6 BF5B139C 1C847C62 400030D7 82000000 00420000 O00OFF00 00000004
5 84606BEA 0E22D904 3BF29061 9F454807 4B606BEA 0E22D904 3BF29061 9F454807 CF000000 00000000 00000000 00000000
6 FF867544 274436AF 75ECC287 A6BFT2F6 3C6A996B 274436AF 75ECC287 A6BF72F6 C3ECEC2F 00000000 00000000 00000000
End C49E4CB3 0C944043 D5ED6D3B 247E3843 2563B1AF 68F0EC8B A6788B48 EEF27E05 E1FDFD1C 6464ACC8 7395E673 CA8C4646

Table 6.3: Example of a pair of messages (m,m') that conforms to the 8-round truncated
differential characteristic for AES-128 of Section [6.1.3] The master key found by the attack is:
98C45623 6CA00686 301E836D 614DFABO. The lines in this array contains the values of
two internal states before entering the corresponding round, as well as their difference.

Round m m’ m@®m’

Init.

O 0D4CE561 B89D0252 9B37098C 857B7D6B

9588B342 D43D04D4 AB298AEl E43687DB 0B88B342 D46904D4 AB29D0OEL E4368728 9E000000 00540000 00005RA00 000000F3

934CES561 B8C90252 9B37538C 857B7D98 9E000000 00540000 00005A00 000000F3

53FEBBOF 6BFF8ESE B471A8E3 1A2232A3 OEFEBBOF 6BFF8ESE B471A8E3 1A2232A3 5D000000 00000000 00000000 00000000

E9F44380 991A8ECB F7B18344 2C936CEB 65B2054A 991A8ECB F7B18344 2C936CEB 8C4646CA 00000000 00000000 00000000

2977F65C 3883EDEF 615D3C9E 5CE5384B 8F24A5A9 2398C0D9 10CEDEEF DFEEBOC3 A65353F5 1B1B2D36 7193E271 830B8888

BB1DB144 2BE947C3 5FCD89DF DF1CAOEB 82188658 42FFCAAE B337F0CA 09AB1513 3905371C 69168D6D ECFA7915 D6B7B5F8

C3E1961D 02A9713E 770A20D4 5470FA8SF 8DE1961D 029B713E 770A3AD4 5470FA27 4E000000 00320000 00001A00 000000A8

D79D534C 33CC3861 76635DCD 548870C9 EB9D534C 33CC3861 76635DCD 548870C9 3C000000 00000000 00000000 00000000

IO Ut W~

D7F645C6 89358035 09847940 D831EFDE 0211A2F4 89358035 09847940 D831EFDE D5E7E732 00000000 00000000 00000000

End

16E58308 DFD78F11 A8B05SBI9D COAO0363E E49CFA83 D4DC9207 FC4CF3C9 9B3BF6FE F279798B 0BOB1D16 54FCA854 5B9BCOCO

6.B. Probability of success

We are interested in the probability that the intersection of four or five subsets of
{1,...,255} each of size 128 being empty.

To evaluate it, let P denote the set of subsets X < {1,...,255} such that |X| = 128.
We also define:

T(n,k):=[{(X1,....X) eP" || Xin...n X,| =k} forn>1,k=>0.

6.3. Conclusion 101

In others words, T'(n, k)/|P"| is the probability that the intersection of n elements from P
has a size equal to k. We observe that T'(n, k) satisfies the following recurrence relation:

{ T(1,k) = |P|if k= 128,0 otherwise
7(

n+1,k) = 5T 0GR forn>1,k>0.

Indeed, if we fix a set X < {1,...,255}, then a set Y € P such that [X nY]| = k is
obtained by choosing k elements in X and 128 — £ elements in X°.

Using Maple, we found that the probability of failure of the distinguisher described in
Section is:

T(4,0) (T(5,0

) 3
|73|4 |’P|5) ~ 0.04%.

102 Chapitre 6. Faster Chosen-Key Distinguishers on Reduced-Round AES

Chapitre 7

Exhausting Demirci-Selcuk
Meet-in-the-Middle Attacks against
Reduced-Round AES

In this chapter we continue the study of meet-in-the-middle attacks on the AES but
when the adversary has access to more data than in Chapter[3] More precisely, we describe
a generalization of the attack shown by Demirci and Selquk [DS08| at FSE 2008 which
was an improvement of the Gilbert and Minier attack [GMO0| using meet-in-the-middle
technique instead of collision ideas. Their results at that time use a very small data
complexity 232 but require high precomputation and memory in 22!, They need a hash
table parametrized by 24 byte values and the attack only works for the 256-bit and 192-
bit versions thanks to a time/memory trade-off which significantly increases the data and
time complexity.

Here, we consider another direction to improve on Demirci and Selguk attack using
only meet-in-the-middle techniques. We generalize their attack and we automatize the
search of the best ones. To perform this search, we use the tool described Chapter [2
but only on the keyschedule equations instead of the system of equations describing the
whole AES. These equations are sparse in the number of Sbox and consequently, the
complexity of the search is very low. In particular, we have been able to reach a better
overall complexity than Demirci and Sel¢uk, without requiring more data than 232 chosen
plaintexts.

Those results have been published at FSE 2013 and some improvements presented in
this chapter are used in the next one to reach the best attacks on 7, 8 and 9 rounds for
the 128, 192 and 256-bit versions of the AES respectively.

7.1 Attack of Demirci and Selcuk and Improvements

In this section, we remind Demirci and Selguk attack together with its improvements
which are the main results used in our attack. They are based on the study of the encryp-
tion of structured sets of 256 plaintexts in which one active byte takes each one of the 256
possible values exactly once, and each one of the other 15 bytes is a (possibly different)

103

104Chapitre 7. Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES

< Tit1 Zit1 Tit2 Zi42 Tit3 Zi+3 Titq

w// 7077
7
7
2

Figure 7.1: 4 AES-rounds. The 25 black bytes are the parameters of Property . Hatched
bytes play no role. The differences are null in white squares

77
kzzd

constant. Such a structure is called a J-set. We refer the reader to [DS08| and [DKS10a]
for details.

7.1.1 The Demirci and Selcuk Attack
At FSE 2008, Demirci and Sel¢uk described the following 4-round property for AES.

Property 18. Consider the encryption of a 0-set through four full AES rounds. For
each of the 16 bytes of the state, the ordered sequence of 256 values of that byte in the
corresponding ciphertexts is fully determined by just 25 byte parameters. Consequently,
for any fized byte position, there are at most (28)*® = 22°0 possible sequences when we
consider all the possible choices of keys and 0-sets (out of the (28)%°¢ = 220% theoretically
possible 256-byte sequences).

The 25 parameters are intermediate state bytes for any message of the d-set and their
positions depend on the active byte of the d-set and on which byte we want to build values.
As depicted on Figure [7.1], if there are both at position 0 then the 25 parameters are the
first column of z;1, the full state x;,o, the first column of z;,3 and z;,4[0]. Indeed, if
those bytes are known for one of the messages, we can compute the value of x;,4[0] for
each message of the d-set as follows:

1. Knowing the 256 differences in the full state z; we can compute the 256 differences
in the full state ;.1 because Az, = MC.Az; for any round number j, where MC
is the matrix used in the MixColumns operation.

2. Knowing the value of the first column of x;,; for one message we can now compute
the value of this column for all messages.

3. Then we apply the Sbox on those bytes and get the value of z;,1[0], zi+1[7], zi+1[10]
and z;,1[13] for each message of the J-set.

4. The differences are null in all the other bytes of z;,1 so we know the 256 differences
in the full state z;,1.

5. In the same way we obtain the 256 differences in the full state z;,2 and then in the
first column of z;,3 to finally compute the 256 values of x;, 4[0]

They first use this property to mount a basic meet-in-the-middle attack on 7 rounds
AES-256 depicted on Figure and its procedure is roughly as follows:

2200

e Preprocessing phase: Compute all the possible sequences according to Prop-

erty and store them in a hash table.

7.1. Attack of Demirci and Sel¢uk and Improvements 105

Zo 20 x 21 Ts 25 Te 26

4 s 7477477 /s
rounds P T
P N

5955455355 $56595%

Figure 7.2: Online phase of Demirci and Selcuk attack. B,, is composed by gray and black
bytes. Gray bytes are used to identify a d-set and to order it. Black bytes are used to build the
sequence from ciphertexts. Hatched bytes play no role. The differences are null in white squares.

e Online phase:

1. Ask for a structure of 232 chosen plaintexts such that the main diagonal takes

the 232 possible values and the remaining bytes are constant.

2. Choose one plaintext and guess the first column of its intermediate state z
and byte 21 [0].

3. For each of the 255 non-zero values of Az; compute the corresponding difference
in the plaintext using the guessed bytes.

4. Order the obtained J-set according to the value of the state byte z1[0].

5. Guess the first column of zg and the byte z5[0] for one of the message and
deduce those state bytes for the 256 ciphertexts.

6. Build the sequence and check whether it exists in the hash table. If not, discard
the guess.

Note that the parameters of both the online and offline phases are state bytes which
we shall refer in the sequel as respectively B,, and B,ss. The complexity of the attack
depends directly on how many values can assume those state bytes and how fast can
we enumerate them. Indeed, bytes of B,¢s (resp. By, U P U C) are related by the AES
equations and thus lead to the knowledge of some linear combinations of the (sub)keys
bytes. Then it may exist some relations derived from the key-schedule between them,
allowing to reduce the number of assumed values. In the sequel, we will denote by KCos¢
(resp. KC,n) the vector space generated from these linear combinations. For instance, in
the case of the described attack and if the last MixColumns is omitted:

o {]{771[0],]{?71[5], k/’,l[lO],]{371[15], kQ[O], U5[0], /{36[0], I{ZG[?], 1{36[10],]{56[13]} is a basis of
lCon;

o {u1[0], u2[0], ua[7], ua[10], uz[13], k3[0], ks[5], k3[10], k3[15], k4[0]} is a basis of Koy
Allin all, this attack has a data complexity of 23? chosen plaintexts, a time complexity
of 280 x 2% partial encryptions/decryptions, and a memory requirement of 22%° 256-byte
sequences. The memory complexity of this attack is too high to apply it on the 128 and
192-bit versions. But its time complexity is low enough to mount an attack from it on 8
rounds AES-256. This is done by fully guessing the last subkey, decrypting the last round
and applying the 7-round attack, which increases the time complexity by a factor 2'28.

106 Chapitre 7. Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES

7.1.2 Previous Improvements of the Original Attack
We summarize the main improvements to the original attack of Demirci and Selguk.

Difference Instead of Value. Demirci and Selcuk showed that the number of param-
eters can be reduced to 24 in Property [18 by considering the sequence of the differences
instead of values because in that case z;44[0] is not needed.

Data/Time/Memory Trade-Off. They also showed that one can do a classical trade-
off by storing in the hash table only a fraction of the possible sequences. Then the attacker
has to repeat the online phase many times to compensate the probability of failure if the
sequence is not present in the table which will increase the data and time complexities.
In other word, if the attack has a complexity (D, T, M) (D for the data, T for the time
complexity of the online phase and M for the memory) then it is possible to modify it to
reach a complexity equal to (D x N,T x N, M/N) for any positive N such that D x N
is smaller than the size of the codebook. This trade-off allows to adapt the attack on 7
rounds of AES-256 to attack the 192-bit version.

Data Recycling. The structure of 232 plaintexts used in the attack contains 224 §-sets.
Thus the data may be reused 2% times in the Data/Time/Memory Trade-Off.

Time/Memory Trade-Off. Kara observed that considering the sequence of the differ-
ences instead of values allows to remove x5[0] from B,s; (as Demirci and Selcuk did) or
from B,,.

Multiset. A multiset is an unordered set in which elements can occur many times.
Dunkelman et al. introduce them to replace the functional concept used in the attack
and propose to store in the hash table unordered sequences of 256 bytes instead of ordered
sequences. Moreover, they claim that a multiset still contains enough information to make
the attack possible. Indeed they showed that given two random functions f, g : Fos —>
Fos, the multisets [f(0),..., f(255)] and [g(0),...,¢(255)] are equal with a probability
smaller than 274676, Combined to the fact that the Sbox is a bijection, the main gain is
to remove z1[0] from B,, since it was used only to ordered the d-set, and thus the time
complexity is decreased by a factor 28. Finally, we note that a multiset contains about
512 bits of information and its representation can be easily compressed into 512 bits of
space while an ordered sequence needs 256 x 8 = 2048 bits.

Differential Enumeration. In [DKS10a|, Dunkelman et al. introduce a more sophisti-
cated trade-off which reduces the memory without increasing the time complexity. The
main idea is to add restrictions on the parameters used to build the table such that those
restrictions can be checked (at least partially) during the online phase. More precisely,
they impose that sequences stored come from a J-set containing a message m which be-
longs to a pair (m,m’) that follows a well-chosen differential path. Then the attacker first
focus on finding such pair before to identify a d-set and build the sequence. The next
chapter is dedicated to this technique.

7.2. Generalization of the Demirci and Sel¢uk Attack 107

7.2 Generalization of the Demirci and Selcuk Attack

The basic attack of Demirci and Sel¢cuk requires a huge memory and a relatively
small time complexity. The classical data/time/memory trade-off allows to balance these
complexities by increasing the data complexity and randomizing the attack. In this section
we present new improvements to reduce the data complexity increase which leads to almost
216 variants of the Demirci and Selcuk attack and we explain how to find the best ones
between them.

7.2.1 New Improvements of the Original Attack

In this section we summarized our new improvements that allow us to reduce the
increase of the data complexity and, sometimes, to keep the deterministic nature of the
original attack.

Difference Instead of Value. The sequences stored in the table have the form [f(0) +
f(0),..., f(0) + f(255)] where f is a function that maps the value of z;[0] to the value
of 2;+4[0] + k;45[0]. But, as shown Section [7.1.1] the procedure used to build the table
produces functions that map the value of Az;[0] to the value of Az;,4[0] and then the only
effect of mapping the value of z;[0] is to set the value of the subkey byte u;[0] (i.e., u;[0] €
Kofs). In another hand, if we store in the table sequences of the form [f(0),..., f(255)]
where f is a function that maps the value of Az;[0] to the value of Ax; 4[0], then each
d-set can be ordered in 256 ways, saving data in the classical data/time/memory trade-off
described Section Furthermore, in the case of a d-set encryption, each byte of the
first columns of x;,; assumes the 256 values. As a consequence, setting one of those bytes
to 0 when building the hash table can be compensated by trying the 256 orders of a d-set
without randomizing the attack.

Multiset. Note that, given a sequence of 256 bytes by, ..., bass, b; = b; implies that the
multisets [b;+bo, . . ., bi+bass| and [bj+bo, . . ., bj+bass| are equal too. But Dunkelman et al.
shown that given a random function f : Fys —> Fys, the multiset [f(0) + f(1),..., f(0) +
f(255)] contains on average 162 different values out of 256. Thus we conclude that a J-set
can be reused 162 ~ 2734 times on average. This remark holds on for the multisets stored
in the hash table during the precompution phase and so the memory requirement must
be corrected by a factor 27966,

Time/Memory Trade-Off. To improve the attack of Demirci and Selguk our idea is to
store in the sequences the 256 differences in a linear combination of bytes of x5 instead
of the 256 differences in a byte of x5. As the matrix used in MixColumns operation
is MDS (Property [13)), minimal equations involving Az; and Az, contains exactly 5
variables such that k& are on a column c of Az; and 5 — k are on the column ¢ of Az, 1,
with 1 < k£ < 4 for any round number . We emphasize that Demirci and Sel¢cuk only
consider cases k = 1 and k = 4. The size of the set B,, (resp. B,ss) is determined
by k and it decreases (resp. increases) when k increases. Thus we can trade time by
memory and vice-versa without affecting the data complexity. Furthermore, contrary to
the other data/time/memory trade-offs, the attack need not to be randomized. Attacks
taking advantage of this trade-off are described Section [7.3.3] and [7.3.5]

108 Chapitre 7. Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES

New Data/Time/Memory Trade-Off. The idea of the previous trade-off can be
applied to the d-set. Instead of considering sets of 256 plaintexts such that one byte
assumes the 256 values and the others are constant, we consider set of 256 plaintexts
such that exactly 5 bytes of z; and ;. are active. We still call such a set a d-set. The
consequences on the attack are the same as the previous trade-off but it now affects the
size of the structure needed and bytes of z; must be guessed in the online phase despite
the use of unordered sequences. An attack taking advantage of this trade-off is described

Section [7.3.4]

7.2.2 Finding the Best Attack

Once the round-reduced AES is split into three parts, the new improvements allow to
mount (4 x (3))? ~ 2156 different attacks but there are only (4x (({) + (3) + (5) + (})))* ~
2118 possible sets B, (resp. B,r) to study. To exhaust all of them and find the best
attacks we decide to automatize the search. Thus for each set we need to answer to the

two following questions:

e How many values can assume those state bytes?
e How fast can we enumerate them?

A priori, this is not an easy task because S-boxes are involved in the keyschedule.
To perform it we used the tool presented Chapter 2, and more precisely in the setting
described Section 2.3.1.00

Note that the tool can be applied directly to the set B,ss (resp. B,,) and the system
of equations describing the AES but it is faster to apply it on a basis of K,zs (resp. Kop)
and the keyschedule equations since its complexity is exponential in the number of S-box
involved.

Finally we were able to perform an exhaustive search over all the parameters for all
round-reduced versions of AES for the three key lengths in less than an hour on a personal
computer.

7.3 Results

In this section we present the results obtained by exhausting the variants of the attack
of Demirci and Selguk. We give an overview of the complexities reached and describe
three new attacks requiring at most 232 chosen plaintexts and minimizing the maximum
between the time complexity (counted in AES encryption) and the memory complexity
(counted in 128-bit block).

7.3.1 Overview of the Results

Our best results on 7 and 8 rounds are summarized on Figures [7.3 and [7.5]
They give the (logys of) data complexity reached as a function of the number of guess
to perform in the online phase and in the offline phase. A gray cell means that the
corresponding attack is deterministic while the other attacks are obtained by applying
the classical data/time/memory trade-off.

7.3. Results 109

number of guess in the offline phase number of guess in the offline phase

71819 |10(11{12]13]|14/|15|16(17|18(19(20]|21|22(23 71819 (10(11{12]13]14/|15|16(17|18|19(20]|21(22(23
% 10 4 % 10 4
= |11 4 < (11 4
S 4 o2 4
£ 13 4 £ 13 4
5 14 4 3 g |14 4
215 4 3 R 4 3
- |16 4 = |16 4 3
[T 4 3 iV 4
§ 18 4 3 2 § 18 4 3
Boli9 4 3 1 2o 19 4 3 1
S [20 4 8 13| |1 S [20 4 311
g 21 4 3 1 g 21 4] |3 1
’5 22| |4 3|1 “’é 22| |4 311
Z [23]4 30 [1 Z [23]4 3] [1

last mixcolumns performed last mixcolumns omitted

Figure 7.3: Best variants on 7 rounds AES-192.

number of guess in the offline phase
11213456 |7|8]91(10({11|12]|13|14|15({16(17|18]19|20(21|22|23|24|25|26]27|28|29|30|31

10 4 3
11 4 3
12 4 2
13 4 3 2
14 4 3 2
15 4 3 1
16 4 3 1
17 4 2
18 4 3 2
19 4 3 2
20 4 3 1
21 4 3 1
22 4 2
23 4 B 2
24 4 3 2 1
25 4 3 1
26 4 813 2
27 4 3 2
28 4 4 3 201
29 5 4 3 1
30 6
317 4 3 2

number of guess in the online phase

[O\]
(\]

Figure 7.4: Best variants on 7 rounds AES-256.

110Chapitre 7. Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES

number of guess in the offline phase

161718 119(20(21(22(23|24|25(26|27|28[29|30]31
17 9
18 10{ 4
19 11| 4
20 12| 4
21 1314
22 14| 4
23 15(4 3
24 4 3
25 4 3
26 4 3 2
27 4 3 2
28 4 3 2 1
29 4 3 1
30 4 8 3 2
31| 4 3 2

AES-256

19120(21]22]23
22 4
23| 4

online

AES-192

number of guess in the online phase

Figure 7.5: Best variants on 8 rounds.

We observe that almost all the best attacks work with only 23? chosen-plaintexts.
For comparison, to reach balanced complexities on seven rounds from the original attack
by using the classical data/time/memory trade-off, the amount of data needed will be
approximately 27! chosen plaintexts. Furthermore, we have been able to increase by one
the number of rounds attacked with 23?2 chosen-plaintexts for the three key length but
with time and memory complexities very close to the natural bound of the exhaustive
search. We also obtained competitive results in the very low data complexity league with,
for instance, attacks on 8 rounds of AES-256 requiring only 2° chosen plaintexts.

7.3.2 Observation on the Keyschedules

Our attacks exploit the fact that most of the operations in the keyschedule algorithm
are linear. The relation used are described in Property [19, extending the observations
made Chapter [3] about the 128-bit version.

Property 19 (the key-schedule properties). Consider a sequence of consecutive sub-
keys k., k.11,.... We have the following useful relations between the equivalent subkeys

Upy Upg1sy -7

o AES-128 :
1) u,[4..7] = uy41[0..3] + wpy1[4..7]
2) u,[8.11] = wupy1[4..7] + upy1[8..11]
3) w,[12.15] = tpy1 [8..11] + tys1 [12..15]

7.3. Results 111

o AES-192 :
1) u,[4..7] = upy1[8..11] + upyq[12..15]
2) up[12..15] = uy42[0..3] + wp42[4..7]
3) if v is even:
i) uy[0..3] = upyq[4..7] + upyq[8..11]
i1) the knowledge of u,41[12..15] and u,12[0..3] allows to compute u,[8..11]
4) if ris odd:
i) w[8.11] = tys1[12..15] + uy2[0..3]
it) the knowledge of u,41[4..7] and u,11[8..11] allows to compute u,[0..3]
o AES-256 :
1) u,[4..7] = tp42[0..3] + upy2[4..7],
2) up[8.11] = uyyo[4..7] + u,42[8..11],
3) u,[12..15] = tyy0[8..11] + wr1o[12..15].

7.3.3 Attack on Six-Round AES-128 with 2% chosen-plaintexts

If the data available is limited to 2% chosen-plaintexts, the best attack found is based
on the attack depicted on Figure and the meet-in-the-middle is performed on the
equation

03.Az3[8] + Az3[9] = 07.Axy[8] + 07.Ax4[9] + 02.Az4[11].

i 20 il Z1) Z9

Figure 7.6: Attack on 6 AES rounds. Bytes of B,y are in black. Bytes of B,, are in gray.
Hatched bytes play no role. The differences are null in white squares

The bytes of B,s; are the first column of z;, the two last columns of 2, and bytes 8
and 9 of z3. They can assume 28%* different values and so the memory requirement is
2112066 — 911134 1y lgisets on average according to the remark made in Section [7.2.1]

As the S-box is a bijection and as we consider a d-set in which only one byte is
active, we do not need to guess zo[0] in order to identify the corresponding set of 256
plaintexts to build the multiset. As a consequence, the bytes of B,, are the entire state

112Chapitre 7. Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES

x5 except the first column, and the third column of z4 except byte 10. Thanks to the
keyschedule equations, they can take only 282 values instead of 28*1® since we have the
three equations ug[5] = us[1] + us[5], ua[8] = us[4] + u5[8] and uy[15] = us[11] + us[15].

All in all this leads to the following attack where e;, = 03.23[8] + 23[9] and ey =
07.24[8] + 07.24[9] + 02.24[11]:

e Preprocessing phase:

1. Set A;z[0] to ¢ for 0 < ¢ < 255. Then A,z is known since the other differences
are null.

2. Guess x1[0..3] (for one of the 256 messages) and use A,z to compute A;z;[0],
ANz [7], Aiz1[10] and A;z1[13]. Then A,;z; is known since the other differences
are null.

3. Guess bytes 1, 2, 6, 7, 8, 11, 12 and 13 of x5. Use them with A;z; to compute
Aiz[8..15].

4. Guess x3[8] then compute A;z3[8] using A;z[8..11].

5. Guess x3[13] then compute A;z3[9] using A;z2[12..15].

6. Compute the multiset [Agesn, ..., Aossein] and store it in a hash table (if it
was not already in it).

e Online phase:

1. Ask for a structure of 256 plaintexts such that byte 0 assume the 256 possible
values and others bytes are constant.

2. Choose one of them to be the one from which difference will be computed.

3. Guess bytes 1, 2, 4, 5, 8, 11, 14 and 15 of us. Compute uy[5] and u4[8] and then
partially decrypt the ciphertexts to obtain A;x4[8] and A;z4[9] for 0 < ¢ < 255.

4. Guess bytes 3, 6 and 9 of us, and continue to partially decrypt the ciphertexts.

5. Guess byte 12 of us. Compute uy[15] and then partially decrypt the ciphertexts
to obtain A;x4[11].

6. Build the multiset [Ageout, - - -, Aosseour] and check whether the multiset exists
in the hash table. If not, discard the key guess.

Finally, the time complexity is equivalent to 2 x 276 x 28 x 29 = 29 encryptions
and the memory requirement is 2'!33* AES-blocks. The probability for a wrong guess to
succeed is approximatively 211134 x 274676 — 9-356.26 3nd as we try 2% key guess, we
expect that only the right value remains after the last step.

Trade-Off. Since the memory is higher than the time complexity, the data/time /memory
trade-off presented Section is possible. This leads to an attack using 2° chosen
plaintexts (as the data is reused 2717 times), with a time complexity equivalent to 21917
encryptions and requiring 219617 128-bit blocks.

Key Recovery. This attack retrieves the right value of us except on bytes 0, 7, 10
and 13 and so can easily be turned into a key-recovery attack. The attacker guesses the
four missing bytes of us to retrieve the master key and try it. This step has a negligible
complexity compared to the previous one.

7.3. Results 113

7.3.4 Attack on Seven-Round AES-256 with 2'° chosen-plaintexts

The best attack on seven rounds AES—256 with 2% chosen-plaintexts is depicted on

Figure [7.7]

Figure 7.7: Attack on 7 AES rounds (key length : 256 bits). Bytes of B,s¢ are in black. Bytes
of By, are in gray. Hatched bytes play no role. The differences are null in white squares

The bytes of B,; are bytes 0,2 and 3 of x4, the three first columns of x5 and the third
column of z3. The bytes of B,, are bytes 0 and 15 of xy, the entire state xg, the second
column of x5 and byte 9 of x4,. The number of values assumed by the bytes of B,, is
reduced by a factor 2® using the equation u4[5] = ug[1] + ug[5]. The time complexity is
equivalent to 2'™® encryptions and the memory is 2!53* AES-blocks.

Key Recovery. This attack can easily be turned into a key-recovery attack without
increasing the complexity since only 12 key bytes are sufficient to recover the master key.

7.3.5 Attack on Seven-Round AES-192 with 23? chosen-plaintexts

The best attack on seven rounds AES—192 with 232 chosen-plaintexts is depicted on

Figure

Figure 7.8: Attack on 7 AES rounds (key length : 192 bits). Bytes of B,sy are in black. Bytes
of B,y are in gray. Hatched bytes play no role. The differences are null in white squares

The bytes of B,sy are the first column of x5, the three first columns of z3, and bytes 0,
1 and 2 of z4. The bytes of B, are the first column of zj, the second and third columns of
xg¢ and bytes 2 and 3 of z5. Thanks to Property we can reduce the number of possible

114Chapitre 7. Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES

values assumed by them by a factor 2% since us[7] = ug[11] +ug[15]. The time complexity
is equivalent to 2'% encryptions and the memory requirement is 2'°33* AES-blocks.

Trade-Off. Applying the classical data/time/memory trade-off leads to an attack using
232 chosen plaintexts, with a time complexity equivalent to 2'2%67 encryptions and a
memory requirement of 2'2%%7 AES-blocks. Note that the data complexity remains 232
because the structure may be divided into 224 §-sets and each of them may be reused 2734

times on average.

Key Recovery. This attack can easily be turned into a key-recovery attack without
increasing the complexity since only 15 key bytes are sufficient to recover the master key.

7.4 An SPN-dedicated Tool

The attacks described in this chapter are somewhat generic and can be applied on
AES-like block ciphers. More precisely, we can attack iterative block ciphers such that
each round takes as input a state and a subkey, both represented by a vector of Fy, and
performs the three following operations successively on the state:

1. SubBytes: a bijective non-linear Sbox is applied on each of the n components of
the state vector.

2. MixColumns: the state vector is multiplied by an n x n invertible matrix M, with
coefficients in the field IF,.

3. AddRoundKey: the subkey vector is added to the state vector.

An additional AddRoundKey operation (using a whitening key) may be applied before
the first round. Using the tool described Chapter [2| requires a keyschedule composed of
AES-like equations.

Such a construction is very common for recent block ciphers as for instance SQUARE,
AES, and LED [GPPRI11]. In most of them, the same Sbox and the same sparse matrix
are used each round to reach good performance but the generic attack presented works
without such assumptions.

All in all, we built a tool taking as input such a block cipher and gives the best meet-
in-the-middle attacks on it. The only difficult task is to find the minimal equations of the
system x = M, -y and for now we can only handle matrix composed of MDS submatrix.

7.5 Application to Low Data Complexity Attacks

The attack scheme can also be applied to find low data complexity attacks on AES-
like block cipher. The tool described Chapter [2|is strictly more general than this one but
exhausting all the attacks can be done in practical time and we were able to find results
on more rounds than previously.

7.5. Application to Low Data Complexity Attacks 115

Zo 20 x 21

Figure 7.9: First part of the attack on 5 AES rounds. Black bytes are enumerated and stored
in a hash table. Gray bytes are enumerated. Hatched bytes play no role. The differences are
null in white squares

7.5.1 Attack on Five-Round AES-128 with Eight Chosen Plain-
texts

The attack with eight chosen plaintexts is relatively easy and relies on three meet-in-
the-middle on equations derived from the mixcolumn operation. The first meet-in-the-
middle is depicted Figure 7.9

The adversary starts by asking for a set of eight (different) chosen plaintexts which
have a difference only on one byte. In the sequel we assume this is the byte 0, but similar
attacks exist for each other position. Then he builds three hash tables (the indexes will
be given later):

— Table 1: Guess (0], z1[1..3], z2[6], 22[11] and x2[12] for one message. Due to the
structure of the AES and of considered plaintexts, we can deduce those bytes for all
the eight messages by using the knowledge of the plaintexts. Store them in a hash
table. It contains exactly 27*® = 2°6 entries.

— Table 2: Guess the first column of x4 and x3[15] for one message. As in the con-
struction of the first table, we can deduce those bytes for all the eight messages but
by using the knowledge of the ciphertexts. Store them in a hash table. It contains
exactly 2°%8 = 240 entries.

— Table 3: Guess the second column of x, and z3[14] for one message. As in the
construction of the second table, we deduce those bytes for all the eight messages
and store them in a hash table containing exactly 2°*% = 20 entries.

Now the attack is pretty simple:
1. Guess the two last columns of x4 for one message.

2. As wy[9] = us[5] + us[9] and ug[12] = us[8] + us[12], we can deduce x3[12] and
3. Deduce those bytes for the eight messages.

4. As the mixcolumn matrix is MDS, we have the following equation:

03AS(22[6]) + AS(ws[11]) + 0TAS (2[12]) = OeAw3[12] + 0bAz5[13).

116 Chapitre 7. Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES

Zo 20 T 21 X2 22

Figure 7.10: First part of the attack on 6 AES rounds. Black bytes are enumerated and stored
in a hash table. Gray bytes are enumerated. Hatched bytes play no role. The differences are
null in white squares

5. This leads to seven independent equations between the bytes of Table 1 and the
actual known bytes. As a consequence we expect on average one entry of this hash
table to match.

6. Then we get back the seven differences in S(z5[6]) and S(xo[11]).

7. We can now perform a check on the two other hash tables using these equations:
07Az3[14] = 07Az3[12] + Ax3[13] + 02AS(z2[6]) + 03AS (z5[11]),

07Ax5[15] = 07Az5[12] + 03Az5[13] + AS(2,[6]) + 02A8(z,[11]).

8. Finally we get back the value of missing bytes in x4 allowing us to compute the
master key and check its correctness.

Note that the time complexity is 264 if and only if the last mixcolumn operation is not

omitted. Unless, the keyschedule equations used to deduce x3[12] and z3[13] do not hold
and the time complexity is 28°.

7.5.2 Attack on Six-Round AES-128 with Thirteen Chosen Plain-
texts

This attack is similar at the attack on five rounds and relies on two meet-in-the-
middle on equations derived from the mixcolumn operation. The first meet-in-the-middle
is depicted Figure [7.10}

The adversary starts by asking for a set of thirteen chosen plaintexts which have a
difference only on one byte. In the sequel we assume this is the byte 0, but similar attacks
exist for each other position. Then he builds two hash tables (the indexes will be given
later):

— Table 1: Guess the three last columns of x5 for one message. Since us[5] = ug[1] +
ug[5], us[8] = ue[4] + ue[8] and us[15] = ug[11] + ug[15], we deduce x4[8], x4[9] and
x4[11] respectively. Due to the structure of the AES, we can deduce those bytes for

7.5. Application to Low Data Complexity Attacks 117

all the thirteen messages by using the knowledge of the ciphertexts. Store them in
a hash table. It contains exactly 2!2*® = 2% entries.

— Table 2: Guess the first column of x5 and 24[10] for one message. As in the con-
struction of the first table, we deduce those bytes for all messages and store them
in a hash table containing exactly 2% = 210 entries.

Now the attack is pretty simple:
1. Guess 20[0], 21[0..3], 22[8..15], x3[8] and x3[13] for one message.
2. Deduce those bytes for the thirteen messages.

3. As the mixcolumn matrix is MDS, we have the following equation:
03AS(x3[8]) + AS(x3[13]) = 07TAx4[8] + 07Ax4[9] + 02Az4[11].

4. This leads to twelve independent equations between the bytes of Table 1 and the
actual known bytes. As a consequence we expect on average one entry of this hash
table to match.

5. Then we get back the twelve differences in x4[8] and z4[9], and the value of the
three last columns of x5 for one message.

6. We can now perform a check on the second hash table using this equation:

7. Finally we get back the value of missing bytes in x5 allowing us to compute the
master key and check its correctness.

Note that the memory complexity is 2% if and only if the last mixcolumn operation
is not omitted. Unless, the keyschedule equations used to deduce x4[8], 24[9] and z4[11]
do not hold and the memory complexity is 2!?°, also increasing the data complexity to
sixteen chosen plaintexts.

7.A Multiset Representation

As there are about (28+2288_1) ~ 250617 multisets of 256 elements from Fasg, we are able
to represent them on 512 bits. Here is one way of doing it for a given multiset M. In the
sequel, we consider that M = {z7*,... 2%}, with > n; = 256, that we may represent

by

T1 T T1 T ‘ Ty To To ‘ ‘ Tom T Lo Lon Loy (7.1)
—_ | = N — 5
ni n9 nm
where the distinct elements are the m elements x;, which appears each with multiplicity
n;. In M, the order of the elements is undetermined.

Consider the set S = {z1,...,2,,} deduced from M by deleting any repetition of
element in M. As there are at most 256 elements in S, we can encode whether e € Fosg

118Chapitre 7. Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES

belongs to S in a 256-bit number s by a 1-bit flag at the position e seen as an index in
[0,...,255] in s. Then, to express the repetition of element, we sort M using the natural
order in the integers and consider the sequence of multiplicity of each distinct element:
if ;1 < .-+ < xy,, then we consider the sequence ny,...,n,. We use a second 256-bit
number t to store the sequence of (2321 n;); seen as indexes in ¢, which actually encodes
the positions of the vertical separators in the multiset representation . The 512-bit
element (s,t) then represents the multiset M.

7.B More Optimal Attacks

In this section we describe some attacks minimizing the maximum between the time
complexity (counted in AES encryption) and the memory complexity (counted in 128-bit
block). For each of them we assume that the last MixColumns is performed.

7.B.1 Attack on Six-Round AES-192 with 2® Chosen Plaintexts

The best attack found on six rounds of AES—-192 is similar to the attack on the 128-bit
version but we mount it on an other column because of the key-schedule. It is depicted on
Figure [7.11] its time complexity is 2'° encryptions and the memory requirement, 21334
AES-blocks. Indeed, we can reduce the number of values taken by bytes of B,, by using
the two following equations derived from the key-schedule: wu4[0] = us[4] + us[8] and
u4[7] = us[11] + us[15]. Thus they can assume only 2813 values.

Zo 20 T 21 X2 22

777 777
777 777
727 v

Figure 7.11: Attack on 6 AES rounds (key length : 192 bits). Bytes of B,sy are in black. Bytes
of B, are in gray. Hatched bytes play no role. The differences are null in white squares

Finally, applying the tradeoff leads to an attack using 2® chosen plaintexts, with a
time complexity equivalent to 2'9%7 encryptions and a memory requirement of 219%:67
AES-blocks. It can be easily turned into a key-recovery attack without increasing the
complexity since only 11 key bytes are needed to recover the master key.

7.5. Application to Low Data Complexity Attacks 119

7.B.2 Attack on Six-Round AES-256 with 2°® Chosen Plaintexts

The six rounds attack on AES-128 described section [7.3.3] can be applied on the
AES-256. But in that case u4 and us are independent so the time complexity is increased
by a factor of 28*3. This leads to an attack using 2® chosen plaintexts, with a time
complexity equivalent to 2'?2 encryptions and a memory requirement of 211334 AES-blocks.

Key Recovery. The attacker can guess the 17 missing bytes of u, and us to retrieve
the master key but this increases the time complexity to 2'%6. Instead, we can apply the
six rounds attack on AES-192 described section As uy and us are independent,
the time complexity is increased by a factor of 22 but in an other hand wu;[4..11] are
already known so the time complexity is decreased by a factor of 288, Then the attacker
can perform an exhaustive search in order to retrieve the master key. All in all, this leads
to a key recovery attack using 28 chosen plaintexts, with a time complexity equivalent to
2122 encryptions and a memory requirement of 21143* AES-blocks.

7.B.3 Attack on Seven-Round AES-192 with 28 Chosen Plaintexts

The best attack found using 2% chosen plaintexts is depicted on Figure and has
a time complexity equivalent to 2'%3 encryptions and a memory requirement of 215334
AES-blocks. Indeed, the bytes of B,, assume only 25*2° values instead of 28*2% because
u5[0..3] can be computed from wug[4..11], and we have us[4..5] = ug[8..9] + ug[12..13],
ug|7] = us[11] + us[15] and ug[10] = us[14] + ug[2].

Zo 20 xy 21

7Yy
12307027
22
77
727
77
77

Figure 7.12: Attack on 7 AES rounds (key length : 192 bits). Bytes of B,y are in black. Bytes
of B,y are in gray. Hatched bytes play no role. The differences are null in white squares

Finally, this attack can be easily turned into a key-recovery attack without increasing
the complexity since only 4 key bytes are needed to recover the master key.

7.B.4 Attack on Seven-Round AES-256 with 2° Chosen Plaintexts

The best attack found with 2% chosen plaintexts is based on the attack depicted on
Figure which has a time complexity equivalent to 2'%% encryptions and a memory
requirement of 2'%33* AES-blocks. Indeed, since us and ug are independent we may expect
to reduce the number of possible values of B,, by a factor 2% only, and this is done by

120Chapitre 7. Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES

using the equation uy[13] = ug[9] + ug[13]. Tt is depicted on and is based on the equation

a1 Azs[0] + apAzs[1] + asAzs[2] + auAzs[3] = B1Az4|1].

Figure 7.13: Attack on 7 AES rounds (key length : 256 bits). Bytes of B,y are in black. Bytes
of By, are in gray. Hatched bytes play no role. The differences are null in white squares

Finally, applying the trade-off leads to an attack using 2% chosen plaintexts, with
a time complexity equivalent to 2!7%3* encryptions and a memory requirement of 286
AES-blocks. If we allow more data it is possible to reach a complexity of 2!%% chosen
plaintexts, 2!!7 encryptions and 2'"'7 AES-blocks, to compare to the attack with 2!
chosen plaintexts described Section [7.3.4] It can be easily turned into a key-recovery
attack without increasing the complexity since only 12 key bytes are needed to recover
the master key.

7.B.5 Attack on Eight-Round AES-256 with 2° Chosen Plaintexts

The best attack found with 2% chosen plaintexts is based on the attack depicted on
Figure which has a time complexity equivalent to 2227 encryptions and a memory
requirement of 224134 AES-blocks. Indeed, since us and ug are independent we may expect
to reduce the number of possible values of B,, by a factor 23*8 only, and this is reached
by using the equations uy[7] = wug[3] + ug[7], us[10] = ug[6] + ug[10] and uy[13] =

Zo 20 x 21 T2 Z2 Z3 z3

Figure 7.14: Attack on 8 AES rounds. Bytes of B,s; are in black. Bytes of B,, are in gray.
Hatched bytes play no role. The differences are null in white squares

7.5. Application to Low Data Complexity Attacks 121

Finally, applying the trade-off leads to an attack using 2® chosen plaintexts, with a
time complexity equivalent to 223%!7 encryptions and a memory requirement of 22417
AES-blocks. It can be easily turned into a key-recovery attack without increasing the
complexity since only 4 key bytes are needed to recover the master key.

7.B.6 Attack on Seven-Round AES-128 with 232 Chosen Plaintexts

The best attack we found is based on the attack depicted on Figure[7.15 The bytes of
B,y are the first column of x5, the entire state z3 excepted the second column, and bytes
8, 9 and 10 of z;. They can take 28%1 different values and so the memory requirement is
4 x 21527066 — 915334 Ap g blocks on average.

Zo 20 T 21 1) 22

Figure 7.15: Attack on 7 AES rounds (key length : 128 bits). Bytes of B,y are in black. Bytes
of B,y are in gray. Hatched bytes play no role. The differences are null in white squares

The bytes of B,, are the first column of zj, the second and third columns of x4, and
bytes 8 and 9 of x5. Thanks to the key-schedule equations, they can assume only 288
values instead of 2819 Tndeed we have the two equations us[5] = wg[1] + ug[5] and
us[8] = ug[4] + ug[8].

All in all this leads to the following attack:

e Preprocessing phase:

1. Let consider a d-set encryption and set A;z1[0] to i for 0 < i < 255. Then A,z
is known since the other differences are null.

2. Guess x2[0..3] and use A;z1 to compute A;25[0], A;22[7], A;22[10] and A;2z5[13].
Then A,z is known since the other differences are null.

3. Guess the state z3 excepted the second column. Use them with A,z to compute
A;z3[0..3] and A;z3[8..15].

Guess x4[2] then compute A;z4[10] using A, z3[0..3].
Guess z4[8] then compute A;z4[8] using A, z3[8..11].
Guess 4[13] then compute A;z4[9] using A;z3[12..15].

7. Compute the multiset and store it in a hash table (if it was not already in it).

S

e Online phase:

1. Ask for a structure of 232 chosen plaintexts such that bytes 0, 5, 10 and 15 can
take the 232 possible values and the remaining bytes are constant.

122Chapitre 7. Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES

2. Guess bytes 0, 5, 10 and 15 of k_;.
3. Choose a d-set.

4. Guess us[5] and bytes 1, 4, 11 and 14 of ug. Then partially decrypt the
ciphertexts to obtain A;x5[9] for 0 < ¢ < 255.

5. Guess bytes 2, 8 and 15 of ug. Compute ug[5] and us[8] and then partially
decrypt the ciphertexts to obtain A;x5[8]

6. Build the multiset and check whether the multiset exists in the hash table. If
not, discard the key guess.

Finally, the time complexity is equivalent to 232 x 3 x 276 x 28 x 264 ~ 2996 encryptions
and the memory requirement is 2'%33% AES-blocks. The probability for a wrong guess to
succeed is approximatively 219134 x 274676 — 9-316.26 and as we try 2% key guess, we
expect that only the right value remains after the last step.

Trade-Off. We note that the memory is higher than the time complexity and so the
classical data/time/memory trade-off can be applied. This leads to an attack using 23
chosen plaintexts, with a time complexity equivalent to 2'2547 encryptions and requiring
212647 128 bit blocks.

Key Recovery. This attack retrieves the right value of eight bytes of ug and so can be
easily turned into a key-recovery attack. The attacker guesses the missing eight bytes of
ug to retrieve the master key and try it. This step has a negligible complexity compared
to the previous one. However this attack is obviously slower than an exhaustive search
and its interest is only theoretical.

7.B.7 Attack on Seven-Round AES-256 with 232 Chosen Plaintexts

The seven rounds attack on AES—-128 described section can be applied on the
AES-256. But in that case us and ug are independent so the time complexity is increased
by a factor of 28%2. Thus, this leads to an attack using 232 chosen plaintexts, with a time
complexity equivalent to 2'3367 encryptions and a memory requirement of 23367 AES-
blocks once the trade-off applied.

Key Recovery. The attacker can guess the 22 missing bytes of us and ug to retrieve the
master key but this increases the time complexity to 2'72. Instead, as we know the right
value for the four bytes needed to identify a d-set, two bytes of us and columns 1 and 2
of ug, we can apply variants of the Demirci and Selguk attack with negligible complexity
compared to 213367 in order to get more key material before to perform an exhaustive
search on the remaining key bytes.

7.B.8 Attack on Eight-Round AES-192 with 232 Chosen Plaintexts

The best attack found is based on the seven rounds attack described section
extended by one round at the beginning. Thus the memory requirement remains the
same as 21933 AES-blocks. In another hand, we need to guess four more key bytes in the
online phase and the keyschedule equations used have changed.

7.5. Application to Low Data Complexity Attacks 123

The bytes of B,, are the entire state x7, the last column of xg and byte 1 of x5.
However, the knowledge of u; allows to compute ug[0..7], us[12..15] and k_;[12..15],
thanks to Property and the key bridging technique. Thus the online phase can be
performed as follows:

1. Ask for a structure of 232 chosen plaintexts such that bytes 0, 5, 10 and 15 assume
the 232 possible values and the rest of the bytes are constant.

Guess the subkey u; and compute k_q[15].

Guess bytes 0, 5 and 10 of k_; and then choose a J-set.

Compute ug[3] and ug[6] and then partially decrypt the ciphertexts.
Guess ug[9] and ug[12] and then partially decrypt the ciphertexts.

SN

Compute us[13] and then partially decrypt the ciphertexts to obtain A;x5[9] for
0 <2< 255.

7. Build the corresponding multiset and check whether it exists in the hash table. If
not, discard the key guess.

All in all, the time complexity is equivalent to 2 x 28%25 x 278x4 x 976 x 28 = 217

encryptions and the memory requirement is 2!%33% AES-blocks. Then we apply the
data/time/memory trade-off to reach a complexity of 232 chosen plaintexts, 2'%17 encryp-
tions and 2'8217 AES-blocks. Finally, this attack can easily be turned into a key-recovery
attack without increasing the complexity since only 8 key bytes are sufficient to recover
the master key.

7.B.9 Attack on Eight-Round AES-256 with 232 Chosen Plaintexts

The best attack found is the same as the 192-bit version. The only difference is
that there is only one equation between the key bytes guessed during the online phase.
Indeed, the only relation we have is us[13] = u7[9] + u7[13]. Thus the time complexity
of this attack is 2!'%° encryptions and its memory requirement about 2!%33% AES-blocks.
Finally, this attack can be easily turned into a key-recovery attack without increasing the
complexity since only 12 key bytes are sufficient to recover the master key.

7.B.10 Attack on Nine-Round AES-256 with 232 Chosen Plaintexts

We have been able to mount an attack on nine rounds depicted on Figure Since
uy and ug are independent we may expect to reduce the number of possible values of B,,,
by a factor of 22*® only, and this is reached by using the equations ug[10] = ug[6] + ug[10]
and ug[13] = ug[9] + ug[13]. As a consequence, its time complexity is equivalent to 2227
encryptions and the memory requirement is 2281:3* AES-blocks.

Finally, applying the data/time/memory trade-off leads to an attack using 23% cho-
sen plaintexts, with a time complexity equivalent to 22%!7 encryptions and a memory
requirement of 22°4'7 AES-blocks.

Key Recovery. First we note that about 2224 x 227934 x 974676 — 92357 wrong values

remain at the end of the attack. However, this attack can still be easily turned into a

124Chapitre 7. Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES

Zo 20 X 21 X2 22 x3 z3 Ty

7A T 777
2477 7477

Z
74

77 77

7 74
7A77477 77

74

70272477 77 74

NNV NN N

NNV NN

77 RZA

2 74
Az G 72477

74

Figure 7.16: Attack on 9 AES rounds. Bytes of B,ss are in black. Bytes of B,, are in gray.
Hatched bytes play no role. The differences are null in white squares

key-recovery attack without increasing the complexity since the attacker has to guess only
8 key bytes to recover the master key.

Chapitre 8

The Differential Enumeration
Technique

At ASIACRYPT 2010, Dunkelman, Keller and Shamir develop many new ideas to solve
the memory problems of the Demirci and Selguk attacks. First of all, they show that
instead of storing the whole sequence, we can only store the associated multiset, i.e.
the unordered sequence with multiplicity rather than the ordered sequence. As it was
explained in the previous chapter, this reduces the table by a factor 4 and avoids the need
to guess one key byte during the attack. The second and main idea is the differential
enumeration which allows to reduce the number of parameters that describes the set of
functions from 24 to 16. However, to reduce this number, they rely on a special property on
a truncated differential characteristic. The idea consists in using a differential truncated
characteristic whose probability is not too small. The property of this characteristic is that
the set of functions from one state to the state after 4 rounds can only take a restricted
number of values, which is much smaller than the number of all functions. The direct
consequence is an increase of the amount of needed data, but the memory requirement is
reduced to 2!%® and the same analysis also applies to the 128-bit version. However, this
attack is not better than the impossible differential attack even though many trade-off
could be used.

Dunkelman, Keller and Shamir’s Attack. In [DKSI0al, a new attack is developed
using ideas from differential and meet-in-the-middle attacks. In the first stage, differen-
tial attacks find a differential characteristic with high or low probability covering many
rounds. Then, in the online stage, the adversary asks for the encryption of many pairs:
for each pair, the adversary tries to decrypt by guessing the last subkey and if the differ-
ential characteristic is followed, then the adversary increases the counter of the associated
subkey. If the probability of the characteristic is high enough, then the counter corre-
sponding to the right secret-key would be among the higher counters. In some case, it is
also possible to add some rounds at the beginning by guessing part of the first subkeys.
Here, Dunkelman et al. propose a novel differential attack. Instead of increasing a
counter once a pair is found, the adversary uses another test to eliminate the wrong
guesses of the first or last subkeys. This test decides with probability one whether the
middle rounds are covered with the differential. The idea is that the middle rounds follow

125

126 Chapitre 8. The Differential Enumeration Technique

a part of the differential and the function f that associates each byte of the input state
to one byte of the output state can be stored efficiently. Demirci and Selguk propose
to store in a table the function with no differential characteristic, which turns out to be
much larger that this one. Consequently, in Dunkelman et al.’s attack, the adversary
guesses the first and last subkeys and looks for a pair that follows the beginning and last
rounds of the differential characteristic. Once such a pair is found, the adversary takes
one of the messages that follows the characteristic and constructs a structure to encrypt
which is related to a d-set for the intermediate rounds. From the encryption of this set,
the adversary can decrypt the last rounds and check whether the encryption of this d-set
belongs to the table. If this is the case, then the part of the first and last subkeys are
correct and an exhaustive search on the other parts of the key allows to find the whole
key.

To construct the table, the idea is similar to the attack. We need to find a pair of
messages that satisfies the truncated differential characteristic. Then, we take one message
in the pair and we compute the function f. Dunkelman et al. use a rebound technique to
find the pair that follows the characteristic.

Our Results. Dunkelman et al. show that by using a particular 4-round differential
characteristic with a not too small probability, the active states in the middle of the
characteristic can only take 264 values. In their characteristic, they also need to consider
the same 8 key bytes as Demirci and Selcuk. They claim that "In order to reduce the
size of the precomputed table, we would like to choose the d-set such that several of these
parameters will equal to predetermined constants. Of course, the key bytes are not known
to the adversary and thus cannot be "replaced” by such constants”. Here, we show that
it is possible to enumerate the whole set of solutions more efficiently than by taking all
the values for the key bytes such that every value of these bytes are possible. We show
that the whole set can take only 2% values with this efficient enumeration technique. Of
course, it might be possible to improve this result to 2% but not any further since the
key bytes may take all the 26 possible values. Using the same ideas, we show that it is
possible to have an efficient enumeration for a 5-round differential characteristic which
allows us to mount an attack on 9 rounds for AES-256. The bottleneck of the attack is
no longer the memory, but the time and data complexities.

In this chapter, we show that the number of parameters describing the functions can
be further reduced to 10 and that this attack is now more efficient than the impossible
differential attack [LDKKOS8|. We describe the best key-recovery attacks on 7 rounds of all
versions of AES with all complexities below 2% as the related-key attack of Biryukov and
Nikolit in [BN10]. We also show improved key-recovery attacks on 8 rounds of AES-192
and on 8 and 9 rounds of AES-256. To this end, we use several tradeoffs proposed by
Dunkelman et al. and we use a more careful analysis of the enumeration technique. Those
results have been published in [DFJ13| and in [DF13].

8.1. Unified View of Previously Known MITM Attacks on AES 127

8.1 Unified View of Previously Known MITM Attacks
on AES

In this section, we present a unified view of the previously known meet-in-the-middle
(MITM) attacks on AES[|GMO00, [DS08, DKS10a], where n rounds of the block cipher can
be split into three consecutive parts of ny, ny and ns rounds, n = ny + ne + ns, such that

a particular set of messages may verify a certain property that we denote % in the sequel
in the middle ny rounds (Figure [8.1]).

ny rounds N9 rounds ns3 rounds
— _/
~
*

Figure 8.1: General scheme of the meet-in-the-middle attack on AES, where some messages in
the middle rounds may verify a certain s property used to perform the meet-in-the-middle.

The general attack uses three successive steps:

Precomputation phase

1. In this phase, we build a lookup table T" containing all the possible sequences
constructed from a d-set such that one message verifies the % property.

Online phase
2. Then, in the online phase, we need to identify a d-set containing a message m
verifying the desired property.

3. Finally, we partially decrypt the associated d-set through the last nz rounds
and check whether it belongs to T

The two steps of the online phase require to guess some key bytes while the goal of this
attack is to filter some of their values. In the best case, only the right ones should pass
the test.

Demirci and Selguk Attack.

The starting point is to consider the set of functions
f:{0,1}° — {0, 1}°

that maps a byte of a d-set to another byte of the state after four AES rounds. A conve-
nient way is to view f as an ordered byte sequence (f(0),..., f(255)) so that it can be
represented by 256 bytes. The crucial observation made by the generalizing Gilbert and
Minier attack is that this set is tiny since it can be described using 25 byte-parameters

128 Chapitre 8. The Differential Enumeration Technique

2258 = 2200y compared with the set of all functions of this type which counts as many as

982° — 92048 elements. Considering the differences (f(0) — £(0), f(1) — £(0),..., f(255) —
f(0)) rather than values, the set of functions can be described by 24 parameters. Dunkel-
man et al. identify these parameters as follows:

— the full state z3 of message 0,

— four bytes of state x5 of message 0,

— four bytes of subkey k;.
The four bytes of the state x5 only depend on the column of z; where the active byte
of the d-set is located; for instance, if it is column 0, then those bytes are 5[0, 1,2, 3].
Similarly, the four bytes of k3 depend on the column of x5 where the byte we want to
determine is located; as an example, if it is column 0, then those bytes are k3[0, 5, 10, 15].

In their attacks [DS08|, Demirci and Selguk use the % property that does not filter
any message. Consequently, they do not require to identify a particular message m. The
data complexity of their basic attack is very small and around 232. However, since there
is no particular property, the size of the table T is very large and the basic attack only
works for the AES-256. To mount an attack on the AES-192, they consider some
time /memory tradeoff. More precisely, the table T' does not contain all the possible
states, but only a fraction a. Consequently, a specific)-set may not be in the table T,
so that we have to wait for this event and redo the attack O(1/a) times on average. The
attack becomes probabilistic and the memory requirement makes the attack possible for
AES-192. The consequence of this advanced version of the attack, which also works for
AES-256, is that the amount of data increases a lot. The time and memory requirement
of the precomputation phase is due to the construction of table T that contains messages
for the ny = 4 middle rounds, which counts as many as 2%2* = 292 ordered sequences of
256 bytes.

Finally, it is possible to remove from each function some output values. Since we know
that these functions can be described by the key of 24 or 32 bytes, one can reduce T' by
a factor 10 or 8 by storing only the first differences. Such an observation has been used
by Wei et al. in [WLHI11].

Dunkelman et al. Attack.

In [DKS10a], Dunkelman, Keller and Shamir introduced two new improvements to
further reduce the memory complexity of [DS08|. The first one uses multisets, behaving
as unordered sequences, and the authors show that there is still enough information so
that the attack succeeds. The second improvement uses a particular 4-round differential
characteristic (Figure to reduce the size of the precomputed lookup table T', at the
expense of trying more pairs of messages to expect at least one to conform to the truncated
characteristic.

The main idea of the differential characteristic is to fix the values of as many state-
bytes as possible to a constant. Assume now we have a message m such that we have a pair
(m, m') that satisfies the whole 7-round differential characteristic and our goal is to recover
the key. Contrary to classical differential attacks, where the adversary guesses some bytes
of the last subkey and eliminates the wrong guess, the smart idea of Dunkelman et al. is

8.2. New Attack on AES 129

21 1) Yo Ty Ya Ts

MC {77 SB {7/ SR MC [/ ZISR MC|[77 SB 7 SR MC

2 77 /7 77 77 77
ARKL[ZZ 77 ARK |72 7| ARK 77 77 AK
22 22 77 A7 A7 A7 77 77 77

Figure 8.2: The four middle rounds used in the 7-round attack from [DKS10a]. Dashed bytes
are active, others inactive.

to use a table to recover the right key more efficiently. Usually, differential attacks do not
use memory to recover the key or to find the right pair. The attack principle consists in
constructing the d-set from m which can be made since we already have to guess some key
bytes to check if the pair (m,m’) has followed the right differential characteristic. Then,
the table allows to identify the right key from the encryption of the J-set.

It is now easy to see that the differential characteristic can be described using only
16 bytes. The states x3 and y3 can only take 232 possible differences each, so that the
number of solutions for these two states is 24, 'We also have the 4 key-bytes of us and
the 4 key-bytes of k3 corresponding to the active bytes of Figure in states zo and x4.

Table [8.1] shows the best cryptanalysis of AES variants, including our new results
detailed in this chapter.

8.2 New Attack on AES

In this section, we describe our basic attack on AES, which is independent of the
key schedule algorithms. We begin in Section by describing an efficient way to
enumerate and store all the possible multisets in the middle that are used to mount the
meet-in-the-middle attack. We continue in Section by applying the general scheme
previously described to construct a key-recovery attack on all AES versions reduced to 7
rounds. Finally, in Section [8.2.3] we show that modifying slightly the property for the
middle rounds allows to trade some memory for data and time.

8.2.1 Efficient Tabulation

Asin the previous results, our attack also uses a large memory lookup table constructed
in the precomputation phase, and used in the online phase. Dunkelman, Keller and Shamir
showed that if a message m belongs to a pair of states conforming to the truncated
differential characteristic of Figure then the multiset of differences Axzs[0] obtained
from the J—set constructed from m in z; can only take 2'?® values, because 16 of the 24
parameters used to build the multisets can take only 294 values instead of 2!%®. We make
the following proposition that reduces the size of the table by a factor 28

Property 20. If a message m belongs to a pair of states conforming to the truncated
differential characteristic of Figure then the multiset of differences Axs|0] obtained
from the 6—set constructed from m in x1 can only take 2%° values. More precisely, the 24
parameters (which are state bytes of m) can take only 2%° values in that case. Conversely,

130 Chapitre 8. The Differential Enumeration Technique

for each of these 259 values there exists a tuple (m,m’, k) such that m is set to the chosen
value and, the pair (m,m’) follows the truncated characteristic.

Proof. The proof uses rebound-like arguments borrowed from the hash function crypt-
analysis domain [MRST09]. Let (m,m’) be a right pair. We show in the following how
the knowledge of 10 particular bytes restricts the values of the 24 parameters used to
construct the multisets, namely:

5[0, 1,2, 3], x3[0,...,15], 24[0,5,10, 15]. (8.1)
In the sequel, we use the state names mentioned in Figure [8.3l The 10 bytes

Az [0], 22[0,1,2,3], Aw4|0], 24[0,1,2,3]. (8.2)

can take as many as 2% possible values, and for each of them, we can determine the values
of all the differences shown on Figure 8.3} linearly in xo, applying the SBox to reach ys,

linearly for x3 and similarly in the other direction starting from z;. By the differential

SB SR MC [/
Round 1
Z
Z
7
Z
MO . SR 7 mo R
P—r% 425 A SL955205502% Round 2
[] Ry Ay A 77
() MC 2o V0000 SB |20 003000 SRV 005004 MC 777
Pary ARV Ny N 777 R d 3
o D iy sy s = oun
ARK Rz v7rrrb 2477 L aurz e 77
[] vy oy A 7
° 777 727 77 77
M 7 77 74 M
MC ° IS Z sB | 7 SR |77 Me
o & 7 7 Round 4
ARK 77 77 277
° 200 270 27
MC SB
yany
A\
ARK

Figure 8.3: Truncated differential characteristic used in the middle of the 7-round attacks on
AES. A hatched byte denotes a non-zero difference, whereas a while cell has no difference.

property of the AES SBox (Property , we get on average one value for each of the

8.2. New Attack on AES 131

16 bytes of state :cgﬁ. From the known values around the two AddRoundKey layers of
rounds 3 and 4, this suggests four bytes of the equivalent subkey uy; = MC*(k;) and four
others in subkey k3: those are us[0], us[7], ua[10], uz[13] and k3[0], ks[5], k3[10], ks[15];
they are marked by a bullet (o) in Figure [8.3]

The converse is now trivial: the only difficulty is to prove that for each value of the
8 key bytes, there exists a corresponding master key. This actually gives a chosen-key
distinguisher for 7 rounds of AES, as it has been done in Chapter [6]

To construct the multiset for each of the 28° possible choice for the 10 bytes from (8.2)),
we consider all the 2® — 1 possible values for the difference Ay;[0], and propagate them
until x5. This leads to a multiset of 28 — 1 differences in Az;[0]. Finally, as the AES SBox
behaves as a permutation over o6, the sequence in Ay, [0] allows to derive the sequence
in Az;[0]. Note that in the present case where there is a single byte of difference between
m and m’ in the state x1, both messages belongs to the same d-set. This does not hold if
we consider more active bytes as we will see in Section [8.3] We describe in an algorithmic
manner this proof in [Algorithm [10[of |Appendix 8.A{ CONSTRUCTTABLE). O

8.2.2 Simple Attack
Precomputation phase.

In the precomputation phase of the attack, we build the lookup table that contains
the 2% multisets for difference Axs by following the proof of Property This step is
performed by first iterating on the 2% possible values for the 10 bytes of and for
each of them, we deduce the possible values of the 24 original parameters. Then, for each
of them, we construct the multiset of 28 — 1 differences. Using the differential property of
the AES Sbox, we can count exactly the number of multisets that are computed:

28— 1 (22 —1)2"—1-1)\"
80 . 580.09
2% x (4 X [+ 2 % I > ~ 25007, (8.3)

Finally, the lookup table of the 28999 possible multisets that we simplify to 280 requires
about 282 128-bit blocks to be stored. To construct the table, we have to perform 2%
partial encryptions on 256 messages, which we estimate to be equivalent to 254 encryptions.

Online phase.

The online phase splits into three parts: the first one finds pairs of messages that
conform to the truncated differential characteristic of Figure [8.13] which embeds the
previous 4-round characteristic in the middle rounds. The second step uses the found
pairs to create a J-set and test them against the precomputed table and retrieve the
secret key in a final phase.

To generate one pair of messages conforming to the 7-full-round characteristic where
there are only four active bytes in both the plaintext and the ciphertext differences,

6. In fact, only 264 values of the 10 bytes lead to a solution for z3 but for each value, there are 26
solutions for xs.

132 Chapitre 8. The Differential Enumeration Technique

we prepare a structure of 232 plaintexts where the diagonal takes all the possible 232
values, and the remaining 12 bytes are fixed to some constants. Hence, each of the 232 x
(232 — 1)/2 ~ 25 pairs we can generate satisfies the plaintext difference. Among the 263
corresponding ciphertext pairs, we expect 203.279 = 2733 to verify the truncated difference
pattern. Finding one such pair then requires 233 structures of 232 messages and 23233 =
205 encryptions under the secret key. Using this secret key, the probability that the whole
truncated characteristic of Figure is verified is 272%3*8 = 2748 hecause of the two
4 — 1 transitions in the MixColumns of rounds 0 and 5. By repeating the previous
procedure to find 248 pairs, one is expected to verify the full 7-round characteristic. All in
all, we ask the encryptions of 248765 = 2113 messages to find 2*® pairs of messages. Note
that we do not have to examine each pair in order to find the right one. Indeed, if a pair
verifies the full 7-round characteristic, then the ciphertext difference has only four active
bytes. Thus, we can store the structures in a hash table indexed by the 12 inactive bytes
to get the right pairs in average time of one.

(8-2x3) . 9

For each of the 2 pairs, we get 28~ 8 = 224 guggestions for the 9 key bytes:

k_1[0,5,10,15], us[0], ug[0,7,10,13]. (8.4)

Indeed, there are 28 possibilities for the bytes from k_; since the pair of diagonals in
need to be active only in wy after the MixColumns operation. Among the 232 possible
values for those bytes, only 232 x 272 = 28 verifies the truncated pattern. The same
reasoning applies for us[0,7,10,13], and the last byte us[0] can take all the 2® values.

For all 22* possibilities, we construct a d-set to use the precomputed table. To do so,
we partially decrypt the diagonal of one message, using the four known bytes from k_;
and consider the 2® — 1 possible non-zero differences for Az[0]. This gives one set of
28 plaintexts, whose corresponding ciphertexts may be partially decrypted using the four
known bytes from ug and the one from u;. Once decrypted, we can construct the multiset
of differences for Axs and check if it lies in the precomputed lookup table. If not, we can
discard the subkey with certainty. On the other hand, the probability for a wrong guess
to pass this test is smaller than 280 .274676 — 273876 g5 a5 we try 248.224 = 272 multisets,
only the right subkey should verify the test. Note that the probability is 274676 (and not
27506-17) hecause the number of ordered sequences associated to a multiset is not constant.

We summarize the above description in the following [Algorithm 9] where the initial
call to the function CoNsTRUCTTABLE(0, 0) constructs the lookup table for Az, and Az
both at position zero (Figure and is defined in [Appendix 8.A]

8.2. New Attack on AES 133

Algorithm 9: — A simple attack.

Too < CONSTRUCTTABLE(0, 0) // |pppendix 8.Al;

while true do // 2% times on average
Ask for a structure S of 232 plaintexts P,, where bytes in diagonals 0 assume all
values;

Empty a hash table T of list of plaintexts;

forall the corresponding ciphertexts C,, do

index — MC™Y(C,)[1,2,3,4,5,6,8,9,11,12, 14, 15];
forall the P € T[index] do

Consider the pair (P, P,,) // 2733 pairs by structure on average;
forall the k_4[0,5,10,15] s.t. Aw[1,2,3] =0 do // 28 times on
average

Construct 0-set D from P // The §-set belongs to the structure;
forall the u4[0,7,10,13] s.t. Azs[1,2,3] =0 do
Decrypt column 0 of x4 for D;
forall the us[0] do // 2% times
Decrypt byte 0 of x5 for D;
Construct multiset M of Axs;
if M € Ty then return ExhaustiveSearch ();

end
end
end
end
Tlindex] < T[index] U {P,,};
end
end

To evaluate the complexity of the online phase of the simple attack, we count the
number of AES encryptions. First, we ask the encryption of 213 chosen-plaintexts, so
that the time complexity for that step is already 2''® encryptions. Then, for each of the
218 found pairs, we perform 22! partial encryptions/decryptions of a d-set. We evaluate
the time complexity of this part to 248248 . 275 = 27 encryptions since we can do the
computations in a good ordering as shown in Allin all, the time complexity
is dominated by 23 encryptions, the data complexity is 2'!* chosen-plaintexts, and the
memory complexity is 282 since it requires to store 2% multisets.

8.2.3 Efficient Attack: New Property %

Unlike the previous attacks where the bottleneck complexity is the memory, our attack
uses a smaller table which makes the time complexity to find the pairs the dominating
one. Therefore, we would like to decrease the time spent in that phase. The natural
idea is to find a new property % for the four middle rounds that can be checked more
efficiently. To do so, we reuse the idea of Dunkelman et al. from [DKS10a], which adds an

134 Chapitre 8. The Differential Enumeration Technique

A[EO AZO AZL‘l AZl AIQ AZQ
AZ4 Al’5 AZ5 AI‘G AZG
= =
ngs HOV

Figure 8.4: FExample of a truncated differential characteristic used in the efficient attack on 7
rounds.

active byte in the second round of the differential characteristic. The sequence of active
bytes becomes:

Ro R1 R2 RS R4
— — — —> —>

Rs Rg
— —>

8 2 4 16 4 1 4 16, (8.5)

with the constraint that the two active bytes of the second round belong to the same
diagonal to be transformed in a column in the next round.

As a consequence, it is now easier to find pairs conforming to that truncated differential
characteristic. Indeed, the size of the structures of plaintexts may take as many as 264
different values, so that we can construct at most 264 - (264 — 1)/2 = 2'27 pairs from each
structure. Therefore, it is enough to ask the encryption of 2833 /2127-812 — 941 gtryctures
to get 272 pairs with the desired output difference pattern, and expect one to conform to
the 7-round characteristic of Figure [8.4] Consequently in this new setting, we only need
2195 chosen plaintexts. In return, the number of pairs that the adversary has to consider
is increased by a factor 224 and so is the time complexity. Furthermore, we now need
11 parameters to generate the 24 parameters of the precomputed table, increasing the
memory requirement by a factor 28. These parameters are the previous 10 ones and the
difference in the second active byte of z5. All in all, the time complexity of this attack is
275424 — 999 epcryptions, the data complexity is 2!%° chosen plaintexts and the memory
requirement is 28278 = 290 128 bit blocks.

Note that the time spent on one pair is the same for both the simple attack and the new
one. Indeed, let K be the key bytes needed to construct the multiset. We suppose that
we have a set of pairs such that one follows the differential. To find it, and incidentally
some key-byte values, we proceed as follows: for each pair (m,m’), enumerate all possible
values of K such that (m,m’, K) have a non-zero probability to follow the differential.
For each of them, construct the corresponding multiset from m or m/. If it belongs to
the table, then we expect that it follows the differential characteristic since the table has
been constructed that way. Otherwise, we know with probability 1 that either the pair
(m, m') does not satisfy the characteristic, or the guessed value from K is wrong.

Assuming that the bytes of diagonals 0 and 2 of the structure of plaintexts takes all the
values[]] the two differences in the first state of the second round can take four different

7. Those are bytes 0, 2, 5, 7, 8, 10, 13 and 15.

8.2. New Attack on AES 135

positions: (0,10), (1,11), (2,8) and (3,9). Similarly, the position of the active byte in the
penultimate round is not constrained; it can be placed anywhere on the 16 positions. We
can also consiser the opposite: one active byte at the beginning, and two active bytes in
the end. These possibilities actually define tweaked versions of the property % and allows
to trade some time for memory: with less data, we can check more tables for the same
final probability of success. Namely, by storing 4 x 16 + (;L) x 4 = 2% tables to cover all
the cases by adapting the proof of Property [20} the encryption of 24! /28 = 233 structures
of 264 plaintexts suffices to expect a hit in one of the 2% tables. Therefore, the memory
complexity reaches 2% AES blocks and the time complexity remains unchanged since we
analyze 2% times less pairs, but the quantity of work to check one pair is multiplied by the
same factor. We describe this efficient attack in an algorithmic manner in [Appendix 8.B|

8.2.4 Turning the distinguisher into a key recovery attack

In this section, we present an efficient way to turn this distinguisher into a key recovery
attack. First, let us summarize what the adversary has in his possession at the end of the
efficient attack: a pair (m,m’) following the truncated differential characteristic, a d-set
containing m, the knowledge of 9 key bytes and the corresponding multiset for which we
found a match in the precomputed table. Thus, there are still 2°6, 2120 or 2184 possible
keys, if we consider AES-128, AES-192 or AES—-256 respectively. As a consequence,
performing an exhaustive search to find the missing key bytes would drastically increase
the complexity of the whole attack, except for the 128-bit version. Even in that case, it
seems nontrivial to recover the 2% possible keys in less than 2%, as the 9 key bytes do
not belong to the same subkey.

A natural way to recover the missing bytes would be to replay the efficient attack by
using different positions for the input and output differences. Unfortunately, this increases
the complexity, and it would also interfere with the trade-off since we could not look for
all the possible positions of the differences anymore.

We propose a method that recovers the two last subkeys in a negligible time compared
to the 2% encryptions of the efficient attack. First the adversary guesses the 11 parameters
used to build the table of multisets, computes the value the corresponding 24 parameters
and keeps the only one used to build the checked multiset. In particular, he obtains the
value of the all intermediate state x3 and one column of x,. As a consequence, and for
any position of the active byte of x5, the Demerci and Selguk original attack may be
performed really quickly. Indeed, among the 9 (resp. 24) bytes to guess to perform the
online (resp. offline) phase, at least 4 (resp. 20) are already known and the data needed is
also in his possession. Finally, the adversary do this attack for each position of the active
byte of x5 and thus retrieves the two last subkeys.

136 Chapitre 8. The Differential Enumeration Technique
8.3 Extension to More Rounds

8.3.1 Eight-Round Attacks on AES-192 and AES-256

We can extend the simple attack on the AES presented Section to an 8-round
attack for both 192- and 256-bit versions by adding one additional round at the end. This
attack is schematized on Figure [8.5]

T Z1 i) Z9 T3 zZ3

Figure 8.5: Scheme of the attack on 8 rounds. Gray bytes are needed to identify a d-set and to
build the multiset. Black bytes are needed to construct the table. White bytes are constant for a
d-set. If differences in hashed bytes are null then black bytes can be derived from the difference
in circled bytes.

The main difficulty compared to the previous attack is that we cannot apply a first step
to the structure to filter the wrong pairs. Indeed, now for each pair from the structure,
there exists at least one key such that the pair follows the differential characteristic. Then
our goal is to enumerate, for each pair and as fast as possible, the key bytes needed to
identify a d-set and construct the associated multiset assuming that the pair is a right
one.

The main idea to do so is the following: if there is a single non-zero difference in a
column of a state before (resp. after) the MixColumns operation, then the difference on
same column in the state after (resp. before) can only assume 2% — 1 values among all
the (28 — 1)* possible ones. Combining this with the key schedule equations and to the
differential property of the AES SBox (Property [12), this leads to an attack requiring 2!
chosen plaintexts, 252 128-bit blocks of storage and a time complexity equivalent to 272
(resp. 2'9%) encryptions on AES-192 (resp. AES—-256).

To reach this time complexity, the position of the output active byte must be chosen
carefully. The position of the input active byte for both the pair and the d-set must be
identical, as well as the output active byte of the pair and the byte that is to be checked.
Then, the output difference must be located at position 1, 6, 11 or 12 in the case of
AES-192. As for the AES—-256, it can be located anywhere, except on bytes 0, 5, 10 and
15. Finally, in both cases, the position of the input difference does not matter.

Assume that the positions of the input and output active bytes are respectively 0
and 1. In the first stage of the attack, we ask for the encryption of 28! structures of 232
plaintexts. Then, the following procedure applied on each of the 28! . 232+31 — 2144 pairg

8.3. Extension to More Rounds 137

allows to enumerate the 224 possible values for the needed key bytes in about 224 simple
operations for the 192-bit version:

1. (a) Guess the difference in column 0 of x.
(b) Deduce the actual values in this column.
(c) Deduce bytes 0, 5, 10 and 15 of k_;.
(d) Store all these values in a hash table 7" indexed by k_1[15].
2. Guess the difference in column 3 of .
3. (a) Guess the difference in columns 0 and 1 of z.
) Deduce the actual values of these two columns.
(c) Deduce the actual values of x¢[14] and xg[15].
)

Deduce ug[3], ug[6] and bytes 0, 1, 4, 7, 10, 11, 13 and 14 of k7 (or u; if we do
not omit the last MixColumns).

(e) Store all these values in a hash table 7.

4. (a) Similarly, guess the difference in the two other columns of x7 and deduce u4[9],
ug[12] and the 8 others bytes of the last subkey.
(b) Retrieve ug|3], ug[6] and bytes 0, 1, 4, 7, 10, 11, 13 and 14 of k; (resp. ur)
using 77 since ug[3] and ug[6] are linearly dependent of k7 (and also of uz).

(c) Deduce u;[13] and k_;[15] from k.
(d) Get bytes 0, 5 and 10 of k_; using T_;.

The fact we can deduce us[13], ug[3], ug[6] comes from the following observation.

Property 21. By the key schedule of AES-192, knowledge of the subkey k; allows to
linearly deduce columns O and 1 of kg and column 3 of ks.

In contrast, to deduce k_1[15] from k7, we need a more complicated observation made
by Dunkelman et al. in [DKS10a].

Property 22 (Key bridging, [DKS10a)). By the key schedule of AES—-192, the knowledge
of columns 0, 1, 3 of the subkey k7 allows to deduce column 3 of the whitening key k_;.

Note that it is now easy to see why the choice of the input active byte does not affect
the complexity and why only four positions for the output active byte lead to the minimal
complexity.

Finally, for each of the 2% pairs and for each of the 224 subkeys corresponding to one

pair, the adversary identifies the d-set and verifies whether the corresponding multiset
belongs to the precomputed table. Thus, the time complexity of this part is equivalent to
2144 . 924 . 98 . 9=4 — 2172 encryptions.

In the case of the 256-bit version, kg and k7 are independent and the only key schedule
property we can use is the following one.

Property 23. By the key schedule of AES-256, knowledge of the subkey k; allows to
linearly deduce columns 1, 2 and 3 of ks.

138 Chapitre 8. The Differential Enumeration Technique

21 X2 22 Z3 z3

Figure 8.6: Attack on 8 AES rounds. Bytes of B,y are in black. Bytes of B,, are in gray.
Hatched bytes play no role. The differences are null in white squares

248 possible values for the required key bytes and a procedure like the

248 simple operations.

Then, there are
previous one enumerates them in

It is possible to save some data in exchange for memory by considering several dif-
ferentials in parallel. We can bypass the fact that all the positions for the output active
byte does not lead in the same complexity by performing the check on ys instead of xs.
This is done by just adding one parameter to the precomputed table and increases its
size by a factor 2°. Then, we can look for all the 4 - 16 = 2°¢ differentials in parallel on
the same structure. All in all, the data complexity and the memory requirement become
respectively 2'%7 chosen plaintexts and 2% 128-bit blocks.

8.3.2 Improved Eight-Round Attack

In the previous chapter we described around 2% variants of the Demirci-Selcuk attack
and the differential enumeration technique can be applied on each of them. We present
here the attack on 8 rounds minimizing the overall complexity, which begins by considering
the attack on AES-192 depicted on Figure

The bytes needed to perform the offline phase (B,sf) are the first column of x5, the
entire state x3, the two last columns of z4 and bytes 2 and 3 of z5. The bytes used in the
online phase (B,,) are the second column of 2y, the three first columns of 7, and the first
column of x4 excepted byte 1. Thanks to Property [19] they take only 28*17 = 2136 values
because ug[0] = ur[4] + u7[8] and ug[7] = uz[11] + u7[15]. Finally, the time complexity
is equivalent to 2'3® encryptions and the memory requirement is 22413 AES-blocks.

Differential Enumeration. The idea of Dunkelman et al. is to store in the hash
table only the multisets built from a J-set containing a message m that belongs to a
pair (m,m’) following a well-chosen differential path. In our case this is the truncated
differential 4 - 1 -4 — 16 - 8 - 2 — 3 — 12 depicted on Figure 8.7

Then the bytes of B,s; can take only 2'%*® values for such a pair. Indeed, if we guess
the differences in circled bytes then we obtain the difference before and after the S-box
for each bytes of B,s; and thus we can derive their absolute value thanks to Property [T2]
As a consequence, the memory requirement is decreased by a factor 2!'2. However, we
now need to find a pair that follows this truncated differential path and so the procedure
of the online phase becomes:

8.3. Extension to More Rounds 139
Zo 20 T 21 i) Z9 I3 z3

1 1R

Xy Z4 Ty 25 Ze 26 X7 zZ7

_ER SNy "

Figure 8.7: Differential characteristic on 8 AES rounds. The differences are null in white
squares. The value of bytes of B,s; can be derived from the differences in circled bytes.

P

1. Ask for a structure of 232 plaintexts such that the second diagonal assume the 232

possible values and others bytes are constant.

2. Store the corresponding ciphertexts in a hash table to identify the pairs that have
a non-zero probability to follow the differential path.

3. For each of these pairs:

(a) Guess Azg[0], Azg[7] and Azg[10] and compute the difference in the three first
columns of x7.

—~
(=3

Deduce the value of the three first columns of z7 using Az;.
Deduce ug[0] and wug[7] using ur[4], u7[8], ur[11] and ur[15].
Deduce z6[0] and z6[7] and compute Azg[0] and Azg|3].
Check if the equation between Axg[0] and Axg[3] is satisfied.
Deduce Axzg[2] and then compute z4[2] using Azg[10].

Guess Az[5] and compute the difference in the second column of z.

N~
a2 o

—_
—

TN N
=

Deduce the value of the second column of z; using Axy.

¢}
— e N N e e e N

~~
—e

Get the d-set associated to one of the message of the pair and build the multiset
from the corresponding ciphertexts.

(j) Check whether the multiset exists in the hash table. If not, discard the key
guess.

4. Restart with a new structure if no check found.

As each structure contains 2% pairs and each of these pairs follows the differential with
probability 274, we need 2% structures on average. Then, for each structure we have to
study only 293732 = 23! pairs and for each of them we have to perform 224 x 2% partial
encryptions that is equivalent to 22® encryptions. All in all, this leads to an attack with
2113 chosen plaintexts, a time complexity equivalent to 2'4° encryptions and a memory
requirement of 230 AES-blocks.

Reducing the data complexity. Note that for each possible choice of the active diago-
nal in the plaintext we found 96 attacks with the same complexity. As the corresponding
differential paths are different it is possible to perform many attacks in parallel to save
data in exchange of memory. For instance, if we use structure with three active diagonals,

140 Chapitre 8. The Differential Enumeration Technique

Zo 20 X 21 X2 22 xs3

22 ARG
A
R
DAY
VoA,
7477
7477

a
2247
R
4

Figure 8.8: Scheme of the nine-round attack on AES-256. Gray bytes are needed to identify a
d-set and to build the multiset. Black bytes are needed to construct the table. White bytes are
constant for a d-set. If differences in hashed bytes are null then black bytes can be derived from
the difference in circled bytes.

it is possible to reach a complexity of 219483 chosen plaintexts and 2'3%!7 AES-blocks, the
time remaining unchanged.

Key Recovery. This attack can easily be turned into a key-recovery attack without
increasing the complexity since only 9 key bytes are sufficient to recover the master key.

AES-256. This attack can be applied to the AES-256 excepted that the keyschedule
does not allow us to reduce the time complexity anymore. This leads to an attack with
2113 chosen plaintexts, a time complexity equivalent to 2'°% encryptions and a memory
requirement of 213° AES-blocks. For each possible choice of the active diagonal in the
plaintext we found 384 attacks with the same complexity so it is possible to save more
data than previously. For instance, if we use structure with three active diagonals, it is
possible to reach a complexity of 219283 chosen plaintexts and 2'4%'7 AES-blocks, the time
remaining unchanged.

8.3.3 Nine-Round Attack on AES-256

The 8-round attack on AES-256 described Section [8.3.1] can be extended to an attack
on 9-round by adding one round right in the middle. This only increases the memory
requirements: the time and data complexities remain unchanged. More precisely, the
number of parameters needed to construct the precomputed table turns out to be 24416 =
40, but they can only assume 28%(10+16) — 9208 different values. All in all, the data
complexity of the attack stays at 2''3 chosen-plaintexts, the time complexity remains 29
encryptions and the memory requirement reaches about 221° 128-bit blocks. To reduce
its complexity, we can cover only 277 of the possible multisets stored in the precomputed
table. In return, the data and time complexities are increased by a factor 27 by replaying
the attack several times. This way, we reach the complexities mentioned in Table [8.1]
This attack is schematized on Figure [8.8

8.3.4 Nine-Round Attack on AES-192

A similar attack can be performed on AES-192 but it has to be mounted on other
columns to enjoy keyschedule equations and the check is performed after the 7" SubBytes.

8.4. Conclusion 141

Zo 20

g

Figure 8.9: Scheme of the nine-round attack on AES-192. Gray bytes are needed to identify a
d-set and to build the multiset. Black bytes are needed to construct the table. White bytes are
constant for a d-set. If differences in hashed bytes are null then black bytes can be derived from
the difference in circled bytes (helped by keyschedule).

This attack is depicted on Figure and requires 23 chosen plaintexts, a time complex-
ity of approximately 2'%0 encryptions and 2'%* 128-bit blocks of space. Using the classical
data/time/memory trade-off we can reach an attack requiring 2'?° chosen plaintexts and
with a complexity of 2'87 for both time and memory.

The bytes needed to compute the multisets can assume only values and lead to the
knowledge of bytes 3, 6, 9 and 12 of ug, the whole subkey k4, bytes 0, 5, 10 and 15 of ks
and byte 2 of kg. However those 25 key bytes are related by the keyschedule of AES-192
and actually wus[3], us[6] and k¢[2] can be computed from the other ones, reducing the
number of multisets stored by a factor 224, Furthermore, it is fairly easy to build those
2192 multisets in 2'92 encryption-like operations.

Actually we forgot to run our tool on 9-round AES-192 and then did not publish this
attack. Furthermore, Li, Jia and Wang recently described a slightly better one in [LJW13].

2216

8.4 Conclusion

In this chapter, we have provided improved cryptanalysis of reduced round variants
of all the AES versions in the standard single-key model, where the adversary wants to
recover the secret key. In particular, we present an attack on 7-round of all AES versions
that runs in less than 2'%° encryptions of chosen-plaintexts. To the best of our knowledge,
this is currently the most efficient result on AES-128 in this model. Additionally, we
show we can turn this algorithm into attacks for AES-192 and AES-256 on 8 rounds,
in time equivalent to 2'4° and 2'%% encryptions respectively, and we even reach an attack
on 9 rounds of AES-256 in about 229 encryptions.

Those results fit into the scheme on both differential and meet-in-the-middle attacks,
which have been extensively studied in the past. More precisely, our algorithms improve
on known techniques by drastically reducing the memory requirements so that the overall
bottleneck switches from memory complexity in the previous meet-in-the-middle attacks
to time or data complexity in our case.

We described the attacks leading to minimal overall complexity but, as in the previous
chapter, we have exhausted the almost 2'¢ variants to find the best attacks. Some of our

142 Chapitre 8. The Differential Enumeration Technique

number of guess in the offline phase number of guess in the offline phase
1011112131415 1011121131415
7 8.0 7 8.0
© 8 8.0 70 | 7.0 o 8 8.0 70 | 7.0
2 9 8.0 i 9 8.0
g g
gl 10 gl 10
g g
2|11 9.6 A 11
Z Z
2| 12 10.6 4.0 2| 12 9.6
[Gy
3 S
2113 14.0 6.0 2|13 14.1 0.0 | 40
£ g
g E
14 10.2 4.0 | 6.3 14 7.2 4.0 | 6.4
15 12.2 6.0 | 7.5 15 11.0 6.1 1|79
last mixcolumn performed last mixcolumn omitted

Figure 8.10: Differential Enumeration: results on 7 rounds AES-128. All attacks have a data
complexity of 213 chosen plaintexts. Numbers in cells are the log, of the numbers of attacks
found with the same complexity.

results are summarized on Figures[8.10] 8.1 and [8.12, Best cryptanalytic results on AES
in the single-key model are given reported Table

Limitations. To save more data, Dunkelman et al. propose to consider differential
paths with a bigger probability. We have exhausted the simple case where the new
differential paths do not have active new bytes in the middle rounds. However, we did
not try interesting cases where the active bytes of the pair and bytes of B,, and By
are desynchronized since, besides the number of cases to handle, the complexity of our
tweaked tool tends to explode as we cannot apply it to the keyschedule only.

As those complexities remain merely theoretical and also because the AES provides
a good security margin, the block cipher is not threatened. Nevertheless, we believe the
strategy behind these algorithms may pave the way for new cryptanalysis techniques.

8.4. Conclusion 143

number of guess in the offline phase

1011121314 |15|16 1718|1920 |21 |22

14 11.11 9.9
o[15 9.2 9.9
z
2116
% 17 6.2 7.2 10.6
= 18 8.6 8.3 104139
2 19 10.3 105 6280|8585
;gb 20 42| 7.7 (134100 7.6 (8.6(100]8.5
;:; 21(6.6]8.0 52 (6.5(109| 8.4 6.9 6.9 |10.1
5 2273|110 3.3]4.3 122 8.0

23 13.3 11.9

last mixcolumn omitted

number of guess in the offline phase

10111(12(13|14|15]16|17|18|19]20|21|22
12 6.0
13 7.0
@ 14 10.9]9.9
%
2115 9.219.9
% 16 6.6 | 7.6|11.0
o
é 17 8.6 6.6 | 7.6 |11.0
k=
Z 18 9.6 7.6 102|136
=
55’3 19 10.7]10.5 6280|8585
j: 20 42| 7.71133(100 7.6 |8.6(10.0| 8.5
e 21166 8.0 5216.5[109| 8.4 6.9 6.9 101
22731108 3.3 43122 8.0
23 13.4 11.9

last mixcolumn performed

Figure 8.11: Differential Enumeration: results on 8 rounds AES-192. All attacks have a data
complexity of 2!13 chosen plaintexts. Numbers in cells are the log, of the numbers of attacks
found with the same complexity.

144 Chapitre 8. The Differential Enumeration Technique

number of guess in the offline phase

21122123124 (25(26(27|28[29]30]31

19 9.5 103
20 9.6 | 9.6
21

HEE

g 23 9.6 |10.4

124 8.0 | 11.2 76| 7.6

ﬁ

E125 6.0 | 14.0

£ 126

- |27 12.2

S

5 2819876 12.2 7.01(7.0
29110.1|11.9 8.6 | 8.6
30199127 12.5
311(6.8]129 11.8

last mixcolumn omitted

number of guess in the offline phase

21122(23(24(25|26(2728(29|30|31
19 9.5 (103
20 9.6 | 9.6
21
HE?
E 23 9.6 104
E 24 8.0 [7.6 76|76
E 25 6.0 | 14.2
£[26
E 27 12.2
g 2819876 12.2 7.0 7.0
) 29 |10.1{ 8.3 8.6 | 8.6
30(9.9 133 125
3168129 11.8

last mixcolumn performed

Figure 8.12: Differential Enumeration: results on 9 rounds AES-256. All attacks have a data
complexity of 2!'3 chosen plaintexts. Numbers in cells are the log, of the numbers of attacks
found with the same complexity.

8.4. Conclusion

145

Table 8.1: Best cryptanalytic results on reduced AES variants in the secret-key model.

Version Rounds Data (CP) Time Memory Technique Reference
7 9901 QITINA 210 D [MDRMIL0]
7 9116 9116 9116 MITM [DKS10a]
198 7 2105 299 290 MITM Section
7 297 299 298 MITM Section
8 288 21253 28 Bicliques [BKR11]
10 (full) 288 21262 28 Bicliques IBKR1I]
7 916 916 2116 MITM [DKS10a]
7 28 2163 2153.34 MITM Appendix
7 232 212967 212967 MITM Section [7.3.5
7 19 - 232 9155 19 - 23 Square [FKLF00]
7 291.2 2101 2139.2 1D [LDKKOS]
7 295 9143 9143 MITM [DSO8]
7 2105 299 290 MITM Section
7 297 299 298 MITM Section
192 8 232 2182.17 2182.17 MITM Appendix
8 o1 9187.63 2186 MITM [WLHLI]
8 2104.83 2140 213817 MITM Section (8.3.2
8 2107 2172 296 MITM Section [8.3.1
8 2113 2140 2130 MITM Section (8.3.2
8 o113 9172 2129 MITM [DKS10a]
8 2113 2172 282 MITM Section
9 280 21888 28 Bicliques [BKR1I]
12 (full) 280 21894 28 Bicliques IBKR1I]
7 28 2170.34 2186 MITM
7 216 2178 2153.34 MITM
7 932 9133.67 9133.67 MITM
7 21 - 232 2172 21 - 232 Square
7 295 9143 9143 MITM [DSO8]
7 9116 9116 9116 MITM [DKS10a]
7 2105 299 290 MITM Section (8.2
7 297 299 298 MITM Section [8.2.3
8 28 223417 223417 MITM Appendix [7.B.5
056 8 232 2195 2193.34 MITM Appendix [7.B.9
8 234.2 2205.8 2205‘8 MITM [DSOS
8 210283 2156 214017 MITM Section [8.3.2
8 2107 2196 296 MITM Section (8.3.1
8 2113 2156 2130 MITM Section (8.3.2
8 9113 2196 2129 MITM [DKS10a]
8 2113 2196 282 MITM Section
9 232 225417 2254.17 MITM Appendix
9 2120 2203 2203 MITM Section (8.3.3
9 2120 22519 28 Bicliques [IBKR11]
14 (full) 210 22544 28 Bicliques [IBKRIT]

CP: Chosen-plaintext.

ID: Impossible Differential.

MITM: Meet-in-the-Middle.

146 Chapitre 8. The Differential Enumeration Technique

8.A Construction of the Tables

Algorithm 10: Construction of the table used in the simple attack.

Function ConstructTable (7,))
bi —i1—4(i mod4) mod 16 // Retrieving the right positions;
¢ < |bi/4] // because of the ShiftRows;
¢ — |i/4k;
Empty a lookup table T7;
foreach value of Az [bi], x2[4c;], xalde; + 1], xo[de; + 2], xa]de; + 3] do
Deduce differences in Axs;
foreach value of Aw,[j], waldc;], walde; + 1], walde; + 2], wy[4c; + 3] do
Deduce differences in Ays;
Use the differential property of the AES SBox to deduce the values in x3
and z%;
Deduce SR (up)[4¢;], SR (ug)[4e; + 1], SR™ (ug)[4e; + 2],
SR (uy)[4c; + 3);
Deduce SR(k3)[4c¢;], SR(ks)[4c; + 1], SR(k3)[4c; + 2], SR(k3)[4c; + 3];
Empty a multiset M;
forall the differences Az [b;] do
Obtain a column x5, and then a state xs;
Add Axs[j] to M;
end
Add M to the lookup table T
end
end
return 7' of size ~ 289
end

8.4. Conclusion 147

Algorithm 11: Construction of the table used in the efficient attack.

Function ConstructTable?2 (i,5)
b —i—4(i mod 4) mod 16 // x1[i] must be located on column O;
k<—((i+1) mod4)+4 // Position of the active byte on
column 1 of zy;
by — k —4(k mod 4) mod 16;
¢; < [j/4l;
Empty a lookup table T
foreach value of Az1[b;], Az |bi], x2[4ci], xa|de; + 1], xo|de; + 2], z2]de; + 3] do
Deduce differences in Axs;
foreach value of Awy[j], walde;], walde; + 1], walde; + 2], wal4c; + 3] do
Deduce differences in Ays;
Use the differential property of the AES SBox to deduce the values in x3
and x%;
Deduce SR™ (ug)[4¢;], SR™(ug)[4c; + 1], SR™ (ug)[4c; + 2],
SR (uy)[4c; + 3];
Deduce SR(l{ig)[4C]]7 SR(kg)[4CJ + 1]7 SR(]{??,)[Z.LC] + 2]7 SR(k’g)[40] + 3]7
Empty a multiset M,;
forall the differences Az |b;] do
Obtain a column z,, and then a state xj;
Add Azxs[j] to M;
end
Add M to the lookup table T’
end
end
return T of size ~ 2%8
end

148 Chapitre 8. The Differential Enumeration Technique

8.B Efficient Attack

Algorithm 12: — An efficient attack.
Function EfficientAttack ()

forall the (i,7) € {0,...,3} x {0,...,15} do // The 2° tables
‘ T;; < ConstructTable2 (i,7);
end
while true do // ~2% times
Ask for a structure S of 2%* plaintexts P,, where bytes in diagonals 0 and 1 assume all
values;
forall the k€ {0,...,3} do // Non-zero column of Aug

Empty a hash table T of list of plaintexts;
forall the corresponding ciphertexts C,, do
index — (SR™ o MC™H(C,,)[{0, ..., 15} — {4k, ..., 4k + 3}];
forall the P € T'[index]| do
Consider the pair (P, P,,) // ~2% pairs by structure;
forall the (4,1;) € {0,...,3} x {0,...,3} do
j < 4k —3l; mod 16;
OnlinePhase (P, Py),i,5,T;;,5);

end
end
Tlindex]| « Tlindex] v {P,,};
end
end
end
end
Function OnlinePhase ((m,m'),i,7,T,5)
bj — (j—4x (7 mod4)) mod 16 // Retrieving right positions;
cj < |b;j/4] // because of the ShiftRows;

Col; — {4c;j, ..., 4¢; + 3} ;
forall the k_1[0,5,10,15] s.t. Awg[{0,...,3} —{i}] =0do
Construct d-set D from m;
forall the SR(ug)[Col;] s.t. Azs[Col; — {j}] =0 do
Decrypt column c; of ¢ for D;
forall the us[b;] do

Decrypt byte j of z5 for D;

Construct multiset M of Azs;

if M €T then return ExhaustiveSearch() ;
end
end
end

end

8.4. Conclusion 149

8.C Truncated differential characteristics used in the sim-
ple attack

77
77

N
NN

k_q Zo Yo 20 Wo

* 7 SB SR 77 MC

- , % Round 0

N
N
KX
N
N
N

Ug ko 1 Y1 21 wi

MC = SB 4 SR % MC ff
o j: Round 1

MC Zi IB 5 SR 77 M C FSA554556%
7 7] 4 L sk sy s Round 2
ARK 1 ’ A Ak
MC 70oA07004 SB 777t 7771 SR (77071 MC T R d3
ARK LA RA% 7 RE R 7 oun
MC 77 SB 77 SR [77 MC
ARK 77 7 77 Round 4

MC SB SR MC

7 Round 5

M 7/ 7 77 Ak
MC 77 SB [~ SR JMC LT R d
= - - S ound 6
ARK (2 7 27 YA

<
=
5~
)
8
3

* . A
*x| MC WA

ALK EXA

* 222422V 2

Figure 8.13: Complete 7-round truncated differential characteristic used in the simple attack

ofection 83

150 Chapitre 8. The Differential Enumeration Technique

[AK97|

[BBC*08]

[BDD*+12]

IBDF11]

[BDKO7]

[BDK*10]

[BDL97]

[BGNOS]|

[Bir06]

[Bir08a]

Bibliographie

Ross J. Anderson and Markus G. Kuhn. Low Cost Attacks on Tamper Re-
sistant Devices. In Security Protocols Workshop, Lecture Notes in Computer
Science, pages 125-136. Springer, 1997.

Come Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois, Henri Gil-
bert, Louis Goubin, Aline Gouget, Louis Granboulan, Cédric Lauradoux,
Marine Minier, Thomas Pornin, and Hervé Sibert. Sosemanuk, a fast
software-oriented stream cipher. In Robshaw and Billet [RB0S|, pages 98—
118.

Charles Bouillaguet, Patrick Derbez, Orr Dunkelman, Pierre-Alain Fouque,
Nathan Keller, and Vincent Rijmen. Low-data complexity attacks on aes.
IEEE Transactions on Information Theory, 58(11) :7002-7017, 2012.

Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic
search of attacks on round-reduced AES and applications. In Phillip Roga-
way, editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science,
pages 169-187. Springer, 2011.

Eli Biham, Orr Dunkelman, and Nathan Keller. Improved slide attacks.
In Alex Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer
Science, pages 153-166. Springer, 2007.

Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and
Adi Shamir. Key recovery attacks of practical complexity on aes-256 va-
riants with up to 10 rounds. In Gilbert [Gil10], pages 299-319.

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance
of Checking Cryptographic Protocols for Faults (Extended Abstract). In
FEUROCRYPT, Lecture Notes in Computer Science, pages 37-51. Springer,
1997.

Eli Biham, Louis Granboulan, and Phong Q. Nguyen. Impossible Fault
Analysis of RC4 and Differential Fault Analysis of RC4. In FSE, pages
359-367, 2005.

Alex Biryukov. The Design of a Stream Cipher LEX. In Eli Biham and
Amr M. Youssef, editors, Selected Areas in Cryptography, volume 4356 of
Lecture Notes in Computer Science, pages 67-75. Springer, 2006.

Alex Biryukov. Design of a New Stream Cipher-LEX. In Robshaw and
Billet [RB0OS§]|, pages 48-56.

151

152
[Bir08b)
IBKOO|

[BKO7a|

[BKOTD]

[BK09]

[BKNO9|

[BKR11]

[BNO9]

IBN10]

[Bog07|

[BPWO06]

[BS97]

[BSO03]

[Buc65|

Bibliographie

Alex Biryukov. Design of a new stream cipher-lex. In Robshaw and Billet
IRBOS]|, pages 48-56.

Eli Biham and Nathan Keller. Cryptanalysis of Reduced Variants of Rijn-
dael. In 3rd AES Conference, New York, USA, 2000.

Alex Biryukov and Dmitry Khovratovich. Two new techniques of side-
channel cryptanalysis. In Pascal Paillier and Ingrid Verbauwhede, editors,
CHES, volume 4727 of Lecture Notes in Computer Science, pages 195-208.
Springer, 2007.

Alex Biryukov and Dmitry Khovratovich. Two New Techniques of Side-
Channel Cryptanalysis. In Proceedings of the 9th international workshop
on Cryptographic Hardware and Embedded Systems, CHES ’07, pages 195—
208. Springer, 2007.

Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the
Full AES-192 and AES-256. In Mitsuru Matsui, editor, ASITACRYPT,
volume 5912 of Lecture Notes in Computer Science, pages 1-18. Springer,
2009.

Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and
related-key attack on the full aes-256. In Halevi [Hal09], pages 231-249.

Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Bi-
clique Cryptanalysis of the Full AES. In Dong Hoon Lee and Xiaoyun
Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes in Computer
Science, pages 344-371. Springer, 2011.

Alex Biryukov and Ivica Nikolic. A New Security Analysis of AES-128.
CRYPTO 2009 rump session, slides only, 2009.

Alex Biryukov and Ivica Nikolic. Automatic search for related-key diffe-
rential characteristics in byte-oriented block ciphers : Application to aes,
camellia, khazad and others. In Gilbert |[Gil10], pages 322-344.

Andrey Bogdanov. Improved Side-Channel Collision Attacks on AES. In
Selected Areas in Cryptography, Lecture Notes in Computer Science, pages
84-95. Springer, 2007.

Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann. A Zero-
Dimensional Grobner Basis for AES-128. In Matthew J. B. Robshaw, edi-
tor, FSE, volume 4047 of Lecture Notes in Computer Science, pages 78-88.
Springer, 2006.

Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryp-
tosystems. In CRYPTO, Lecture Notes in Computer Science, pages 513—
525. Springer, 1997.

Johannes Bloemer and Jean-Pierre Seifert. Fault Based Cryptanalysis of the
Advanced Encryption Standard (AES). In Financial Cryptography, Lecture
Notes in Computer Science, pages 162—181. Springer, 2003.

Bruno Buchberger. Fin Algorithmus zum Auffinden der Basiselemente des

Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis,
University of Innsbruck, 1965.

[BW99]

[BWO0O]

[CBWOS]

[CFGR10]

[Cid04]

[CKK*01]

[CLO3]

|CP02

[CROG]

[CT05]

[CY03]

[DF13]

[DFJ12]

[DFJ13]

153

Alex Biryukov and David Wagner. Slide attacks. In Lars R. Knudsen, editor,
FSE, volume 1636 of Lecture Notes in Computer Science, pages 245-259.
Springer, 1999.

Alex Biryukov and David Wagner. Advanced slide attacks. In Bart Preneel,
editor, EUROCRYPT, volume 1807 of Lecture Notes in Computer Science,
pages 589-606. Springer, 2000.

Nicolas Courtois, Gregory V. Bard, and David Wagner. Algebraic and slide
attacks on keeloq. In Nyberg [Nyb08], pages 97-115.

Christophe Clavier, Benoit Feix, Georges Gagnerot, and Myléne Roussellet.
Passive and Active Combined Attacks on AES Combining Fault Attacks and
Side Channel Analysis. In FDTC, pages 10-19, 2010.

Carlos Cid. Some Algebraic Aspects of the Advanced Encryption Standard.
In Dobbertin et al. [DRS05|, pages 58-66.

Jung Hee Cheon, MunJu Kim, Kwangjo Kim, Jung-Yeun Lee, and Sung-
Woo Kang. Improved impossible differential cryptanalysis of rijndael and
crypton. In Kim [Kim02|, pages 39-49.

Carlos Cid and Gaétan Leurent. An Analysis of the XSL Algorithm. In
Bimal K. Roy, editor, ASTACRYPT, volume 3788 of Lecture Notes in Com-
puter Science, pages 333-352. Springer, 2005.

Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations. In Zheng [Zhe02], pages 267-287.

Christophe De Canniére and Christian Rechberger. Finding sha-1 charac-
teristics : General results and applications. In Xuejia Lai and Kefei Chen,
editors, ASTACRYPT, volume 4284 of Lecture Notes in Computer Science,
pages 1-20. Springer, 2006.

Hamid Choukri and Michael Tunstall. Round Reduction Using Faults. In
Proceedings of the Workshop on Fault Diagnosis and Tolerance in Crypto-
graphy, FDTC’ 05, pages 13-24, 2005.

Chien-Ning Chen and Sung-Ming Yen. Differential Fault Analysis on AES
Key Schedule and Some Countermeasures. In ACISP, Lecture Notes in
Computer Science, pages 118-129. Springer, 2003.

Patrick Derbez and Pierre-Alain Fouque. Exhausting demirci-selcuk meet-
in-the-middle attacks against reduced-round aes. In FSFE, 2013.

Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Faster Chosen-Key
Distinguishers on Reduced-Round AES. In S. Galbraith and M. Nandi,
editors, INDOCRYPT, volume 7668 of Lecture Notes in Computer Science,
pages 225-243. Springer, 2012.

Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key re-
covery attacks on reduced-round aes in the single-key setting. In Thomas
Johansson and Phong Q. Nguyen, editors, FUROCRYPT, volume 7881 of
Lecture Notes in Computer Science, pages 371-387. Springer, 2013.

154

[DKOS]

[DK10a]

IDK10b)

[IDKR97|

[DKS10a]

[DKS10b)]

IDKS11]

[DLV03]

[DRO5a]

[DRO5D)

[DRO5¢]

[DRS05]

[DS08]

Bibliographie

Orr Dunkelman and Nathan Keller. A New Attack on the LEX Stream
Cipher. In Josef Pieprzyk, editor, ASIACRYPT, volume 5350 of Lecture
Notes in Computer Science, pages 539-556. Springer, 2008.

Orr Dunkelman and Nathan Keller. Cryptanalysis of the Stream Cipher
LEX, 2010. Available at http://www.ma.huji.ac.il/~nkeller/
Crypt—jour-LEX.pdf.

Orr Dunkelman and Nathan Keller. The effects of the omission of last
round’s mixcolumns on aes. Inf. Process. Lett., 110(8-9) :304-308, 2010.

Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher
square. In Eli Biham, editor, FSE, volume 1267 of Lecture Notes in Com-
puter Science, pages 149-165. Springer, 1997.

Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key
Attacks on 8-Round AES-192 and AES-256. In Masayuki Abe, editor,
ASTIACRYPT, volume 6477 of Lecture Notes in Computer Science, pages
158-176. Springer, 2010.

Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-
key attack on the kasumi cryptosystem used in gsm and 3g telephony. In
Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer
Science, pages 393-410. Springer, 2010.

Orr Dunkelman, Nathan Keller, and Adi Shamir. Alred blues : New attacks
on aes-based mac’s. Cryptology ePrint Archive, Report 2011/095, 2011.
http://eprint.iacr.orqg/.

Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential Fault
Analysis on A.E.S. In ACNS, Lecture Notes in Computer Science, pages
293-306. Springer, 2003.

Joan Daemen and Vincent Rijmen. A New MAC Construction ALRED and
a Specific Instance ALPHA-MAC. In Henri Gilbert and Helena Handschuh,
editors, FSE, volume 3557 of Lecture Notes in Computer Science, pages 1—
17. Springer, 2005.

Joan Daemen and Vincent Rijmen. A new mac construction alred and a
specific instance alpha-mac. In Fast Software Encryption : 12th Interna-
tional Workshop, FSE 2005, Paris, France, February 21-23, 2005, Revised
Selected Papers, volume 3557 of Lecture Notes in Computer Science, pages
1-17. Springer, 2005.

Joan Daemen and Vincent Rijmen. The Pelican MAC Function. Cryptology
ePrint Archive, Report 2005/088, 2005. http://eprint.iacr.org/.
Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa, editors. Advan-
ced Encryption Standard - AES, Jth International Conference, AES 2004,
Bonn, Germany, May 10-12, 2004, Revised Selected and Invited Papers,
volume 3373 of Lecture Notes in Computer Science. Springer, 2005.

Hiiseyin Demirci and Ali Aydin Selguk. A meet-in-the-middle attack on
8-round AES. In Nyberg [Nyb0§|, pages 116-126.

http://www.ma.huji.ac.il/~nkeller/Crypt-jour-LEX.pdf
http://www.ma.huji.ac.il/~nkeller/Crypt-jour-LEX.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

[DS09]

[Dun09)

[FKL*00]

[FLNO7]

[FP09]
[Fur01]

|Gil10]

[Gir04]
|[GMO0]

|GP10]

[GPPR11]

[Hal09)]

[HCTW04]

[HJ11]

155

Itai Dinur and Adi Shamir. Side channel cube attacks on block ciphers.
IACR Cryptology ePrint Archive, 2009 :127, 2009.

Orr Dunkelman, editor. Fast Software Encryption, 16th International Work-
shop, FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected
Papers, volume 5665 of Lecture Notes in Computer Science. Springer, 2009.

Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David Wagner, and Doug Whiting. Improved cryptanalysis of rijndael. In
Bruce Schneier, editor, FSE, volume 1978 of Lecture Notes in Computer
Science, pages 213-230. Springer, 2000.

Pierre-Alain Fouque, Gaétan Leurent, and Phong). Nguyen. Automa-
tic search of differential path in md4. IACR Cryptology ePrint Archive,
2007 :206, 2007.

Thomas Fuhr and Thomas Peyrin. Cryptanalysis of radiogatin. In Dun-
kelman [Dun09], pages 122-138.

Soichi Furuya. Slide attacks with a known-plaintext cryptanalysis. In Kim
IKim02], pages 214-225.

Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings,
volume 6110 of Lecture Notes in Computer Science. Springer, 2010.

Christophe Giraud. DFA on AES. In AES Conference, Lecture Notes in
Computer Science, pages 27-41. Springer, 2004.

Henri Gilbert and Marine Minier. A collision attack on 7 rounds of
Rijndael. In AES Candidate Conference, pages 230-241, 2000.

Henri Gilbert and Thomas Peyrin. Super-sbox cryptanalysis : Improved at-
tacks for AES-like permutations. In Seokhie Hong and Tetsu Iwata, editors,
FSE, volume 6147 of Lecture Notes in Computer Science, pages 365-383.
Springer, 2010.

Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
The led block cipher. In Bart Preneel and Tsuyoshi Takagi, editors, CHES,

volume 6917 of Lecture Notes in Computer Science, pages 326-341. Sprin-
ger, 2011.

Shai Halevi, editor. Advances in Cryptology - CRYPTO 2009, 29th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 16-
20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer Science.
Springer, 2009.

Hagai Bar-El Hamid, Hamid Choukri, David Naccache Michael Tunstall,
and Claire Whelan. The Sorcerer’s Apprentice Guide to Fault Attacks. In
http ://eprint.iacr.org/2004/100.pdf, 2004.

Martin Hell and Thomas Johansson. Breaking the stream ciphers f-fcsr-h
and f-fesr-16 in real time. J. Cryptology, 24(3) :427-445, 2011.

156

[Isol1]

[Joul1]

[KBN09|

[Kel04]

[Kim02]

[Kim10]

[KMT01a]

[KMTO1D]

[Knu98al
[Knu98h|
[KROT]

[KRMOS]

[Kuc09]

[Kur07]

Bibliographie

Takanori Isobe. A single-key attack on the full gost block cipher. In Joux
[Joull], pages 290-305.

Antoine Joux, editor. Fast Software Encryption - 18th International Work-
shop, FSE 2011, Lyngby, Denmark, February 15-16, 2011, Revised Selected
Papers, volume 6733 of Lecture Notes in Computer Science. Springer, 2011.

Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolic. Speeding up Col-
lision Search for Byte-Oriented Hash Functions. In Marc Fischlin, editor,
CT-RSA, volume 5473 of Lecture Notes in Computer Science, pages 164—
181. Springer, 2009.

Liam Keliher. Refined analysis of bounds related to linear and differential
cryptanalysis for the aes. In Dobbertin et al. [DRS05|, pages 42-57.

Kwangjo Kim, editor. Information Security and Cryptology - ICISC 2001,
4th International Conference Seoul, Korea, December 6-7, 2001, Procee-
dings, volume 2288 of Lecture Notes in Computer Science. Springer, 2002.

Chong Hee Kim. Differential Fault Analysis against AES-192 and AES-
256 with Minimal Faults. Fault Diagnosis and Tolerance in Cryptography,
Workshop on, 0 :3-9, 2010.

Liam Keliher, Henk Meijer, and Stafford E. Tavares. Improving the upper
bound on the maximum average linear hull probability for rijndael. In Serge
Vaudenay and Amr M. Youssef, editors, Selected Areas in Cryptography, vo-
lume 2259 of Lecture Notes in Computer Science, pages 112-128. Springer,
2001.

Liam Keliher, Henk Meijer, and Stafford E. Tavares. New method for up-
per bounding the maximum average linear hull probability for spns. In
Birgit Pfitzmann, editor, FUROCRYPT, volume 2045 of Lecture Notes in
Computer Science, pages 420-436. Springer, 2001.

Lars R. Knudsen. DEAL - a 128 bit block cipher. In Technical report 151,
Departement of Informatics, University of Bergen, Norway, 1998.

Lars R. Knudsen. DEAL - a 128 bit block cipher. In AES Round 1 Technical
FEvaluation, NIST, 1998.

Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some
Block Ciphers. In Kurosawa [Kur07|, pages 315-324.

Mehran Mozaffari Kermani and Arash Reyhani-Masoleh. A Lightweight
Concurrent Fault Detection Scheme for the AES S-Boxes Using Normal
Basis. In Oswald and Rohatgi [OR0S8|, pages 113-129.

Ozgul Kucuk. The hash function hamsi. Submission to NIST (updated),
2009.

Kaoru Kurosawa, editor. Advances in Cryptology - ASTACRYPT 2007, 13th
International Conference on the Theory and Application of Cryptology and
Information Security, Kuching, Malaysia, December 2-6, 2007, Proceedings,
volume 4833 of Lecture Notes in Computer Science. Springer, 2007.

[LDKKO3]

[LIW13]

[Mat93]

[MDRMH10]

[MPO8|

[MPP09]

[MPRS09)]

[MR02|

[MRSTO09)

[MSS06]

[Muk09)

157

Jigiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New impos-
sible differential attacks on AES. In Dipanwita Roy Chowdhury, Vincent
Rijmen, and Abhijit Das, editors, INDOCRYPT, volume 5365 of Lecture
Notes in Computer Science, pages 279-293. Springer, 2008.

Leibo Li, Keting Jia, and Xiaoyun Wang. Improved meet-in-the-middle
attacks on aes-192 and prince. Cryptology ePrint Archive, Report 2013 /573,
2013. http://eprint.iacr.org/l

Mitsuru Matsui. Linear cryptoanalysis method for des cipher. In Tor Hel-
leseth, editor, FUROCRYPT, volume 765 of Lecture Notes in Computer
Science, pages 386-397. Springer, 1993.

Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud
Modarres-Hashemi. Improved Impossible Differential Cryptanalysis of 7-
Round AES-128. In Guang Gong and Kishan Chand Gupta, editors, IN-
DOCRYPT, volume 6498 of Lecture Notes in Computer Science, pages 282
291. Springer, 2010.

Stéphane Manuel and Thomas Peyrin. Collisions on sha-0 in one hour. In
Nyberg [Nyb0§|, pages 16-35.

Marine Minier, Raphael C.-W. Phan, and Benjamin Pousse. Distinguishers
for Ciphers and Known Key Attack against Rijndael with Large Blocks.
In Bart Preneel, editor, AFRICACRYPT, volume 5580 of Lecture Notes in
Computer Science, pages 60-76. Springer, 2009.

Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schlif-
fer. Improved Cryptanalysis of the Reduced Grgstl Compression Func-
tion, ECHO Permutation and AES Block Cipher. In Michael J. Jacobson
Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in
Cryptography, volume 5867 of Lecture Notes in Computer Science, pages
16-35. Springer, 2009.

Sean Murphy and Matthew J. B. Robshaw. Essential Algebraic Structure

within the AES. In Moti Yung, editor, CRYPTO, volume 2442 of Lecture
Notes in Computer Science, pages 1-16. Springer, 2002.

Florian Mendel, Christian Rechberger, Martin Schliffer, and Sgren S.
Thomsen. The rebound attack : Cryptanalysis of reduced Whirlpool
and Grestl. In Dunkelman [Dun09], pages 260-276.

Amir Moradi, Mohammad T. Manzuri Shalmani, and Mahmoud Salma-
sizadeh. A Generalized Method of Differential Fault Attack Against AES
Cryptosystem. In CHES, Lecture Notes in Computer Science, pages 91-100.
Springer, 2006.

Debdeep Mukhopadhyay. An Improved Fault Based Attack of the Advanced
Encryption Standard. In Proceedings of the 2nd International Conference on
Cryptology in Africa : Progress in Cryptology, AFRICACRYPT ’09, pages
421-434. Springer, 2009.

http://eprint.iacr.org/

158

[MV04]

INISO1]

[NPSS10]

[NSA9S|
[Nyb03]|

[ORO0S]

[Pey07]

[PQO3]

[PSC*02]

[PSLLO3]

[PYO06]

[RBOS]

Bibliographie

Jean Monnerat and Serge Vaudenay. On Some Weak Extensions of AES and
BES. In Javier Lopez, Sihan Qing, and Eiji Okamoto, editors, ICICS, vo-
lume 3269 of Lecture Notes in Computer Science, pages 414-426. Springer,
2004.

NIST. Advanced Encryption Standard (AES), FIPS 197. Technical report,
NIST, November 2001.

Ivica Nikolic, Josef Pieprzyk, Przemyslaw Sokolowski, and Ron Steinfeld.
Known and Chosen Key Differential Distinguishers for Block Ciphers. In
Kyung Hyune Rhee and DaeHun Nyang, editors, ICISC, volume 6829 of
Lecture Notes in Computer Science, pages 29-48. Springer, 2010.

NSA. Skipjack and kea algorithm specifications, May 1998.

Kaisa Nyberg, editor. Fast Software Encryption, 15th International Work-
shop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Se-
lected Papers, volume 5086 of Lecture Notes in Computer Science. Springer,
2008.

Elisabeth Oswald and Pankaj Rohatgi, editors. Cryptographic Hardware and
Embedded Systems - CHES 2008, 10th International Workshop, Washing-
ton, D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of Lecture
Notes in Computer Science. Springer, 2008.

Thomas Peyrin. Cryptanalysis of grindahl. In Kurosawa [Kur(07|, pages
251-567.

Gilles Piret and Jean-Jacques Quisquater. A differential fault attack tech-
nique against spn structures, with application to the aes and khazad. In
Colin D. Walter, Cetin Kaya Koc¢, and Christof Paar, editors, CHES, vo-
lume 2779 of Lecture Notes in Computer Science, pages 77-88. Springer,
2003.

Sangwoo Park, Soo Hak Sung, Seongtaek Chee, E-Joong Yoon, and Jongin
Lim. On the security of rijndael-like structures against differential and linear
cryptanalysis. In Zheng [Zhe(2|, pages 176-191.

Sangwoo Park, Soo Hak Sung, Sangjin Lee, and Jongin Lim. Improving
the upper bound on the maximum differential and the maximum linear
hull probability for spn structures and aes. In Thomas Johansson, editor,
FSE, volume 2887 of Lecture Notes in Computer Science, pages 247-260.
Springer, 2003.

Raphael C.-W. Phan and Sung-Ming Yen. Amplifying Side-Channel At-
tacks with Techniques from Block Cipher Cryptanalysis. In Josep Domingo-

Ferrer, Joachim Posegga, and Daniel Schreckling, editors, CARDIS, volume
3928 of Lecture Notes in Computer Science, pages 135-150. Springer, 2006.

Matthew J. B. Robshaw and Olivier Billet, editors. New Stream Cipher De-
signs - The eSTREAM Finalists, volume 4986 of Lecture Notes in Computer
Science. Springer, 2008.

[Riv09]

[SEHK12)

SHI09)|

[SLEPO4]

[SSA*09)

[SSHA0S]

[SY11]

[TFY07]

[TMO9]

[WLHI11]

[YWJ*+09)

[Zhe02)]

159

Matthieu Rivain. Differential Fault Analysis on DES Middle Rounds. In
Christophe Clavier and Kris Gaj, editors, CHES, volume 5747 of Lecture
Notes in Computer Science, pages 457-469. Springer, 2009.

Yu Sasaki, Sareh Emami, Deukjo Hong, and Ashish Kumar. Improved
known-key distinguishers on feistel-sp ciphers and application to camellia.
In Willy Susilo, Yi Mu, and Jennifer Seberry, editors, ACISP, volume 7372
of Lecture Notes in Computer Science, pages 87-100. Springer, 2012.

Paul Stankovski, Martin Hell, and Thomas Johansson. An efficient state
recovery attack on x-fcsr-256. In Dunkelman [Dun09|, pages 23-37.

Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. A
Collision-Attack on AES : Combining Side Channel- and Differential-
Attack. In CHES, Lecture Notes in Computer Science, pages 163-175.
Springer, 2004.

Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra, Da-
vid Molnar, Dag Arne Osvik, and Benne de Weger. Short chosen-prefix col-
lisions for md5 and the creation of a rogue ca certificate. In Halevi [Hal09],
pages 55—69.

Akashi Satoh, Takeshi Sugawara, Naofumi Homma, and Takafumi Aoki.
High-Performance Concurrent Error Detection Scheme for AES Hardware.
In Oswald and Rohatgi [OR08], pages 100-112.

Yu Sasaki and Kan Yasuda. Known-Key Distinguishers on 11-Round Feistel
and Collision Attacks on Its Hashing Modes. In Joux [Joull|, pages 397
415.

Junko Takahashi, Toshinori Fukunaga, and Kimihiro Yamakoshi. DFA Me-
chanism on the AES Key Schedule. In FDTC 07 : Proceedings of the

Workshop on Fault Diagnosis and Tolerance in Cryptography, pages 62-74.
IEEE Computer Society, 2007.

M. Tunstall and D. Mukhopadhyay. Differential Fault Analysis of the Ad-
vanced Encryption Standard using a Single Fault. Cryptolog ePrint Archive,
Report 2009/575, 2009. http://eprint.iacr.org/.

Yongzhuang Wei, Jigiang Lu, and Yupu Hu. Meet-in-the-middle attack on
8 rounds of the aes block cipher under 192 key bits. In Feng Bao and Jian
Weng, editors, ISPEC, volume 6672 of Lecture Notes in Computer Science,
pages 222-232. Springer, 2011.

Zheng Yuan, Wei Wang, Keting Jia, Guangwu Xu, and Xiaoyun Wang. New

birthday attacks on some macs based on block ciphers. In Halevi [Hal09],
pages 209-230.

Yuliang Zheng, editor. Advances in Cryptology - ASIACRYPT 2002, 8th
International Conference on the Theory and Application of Cryptology and

Information Security, Queenstown, New Zealand, December 1-5, 2002, Pro-
ceedings, volume 2501 of Lecture Notes in Computer Science. Springer, 2002.

http://eprint.iacr.org/

160 Bibliographie

Table des figures

B

Description of one AES round and the ordering of bytes in an internal state.| 44

B2

Key schedules of the variants of the ARS: ARS-128, AES-192 and ARS-256. 45

[3.3 An attack on one round AES given one known plaintext with time com-

plexity of 2°? and memory complexity of 2**. Bytes marked by gray are

known (from previous steps of analysis). Bytes marked with tilted lines are

retrieved using Property |15l oL

[3.4 'T'he attack with two known plaintexts on two round AES|

[3.5 'I'wo chosen plaintexts attack on two AES rounds. Gray bytes indicate the

presence of a difference, and hatched bytes indicate the presence of a known

difference. If byte 2 1s known in xg, then the actual values of all the bytes

[3.6 The attack with one known plaintext on two round AES|

[3.7 'The attack on two rounds of AES without the second MixColumns using

two known plaintexts. Bytes marked in black are guessed, and bytes mar-

ked 1n gray are known at this phase of the attack.|

[3.8 T'he attack on three rounds of AES using one known plaintext.|.

63

[3.9 One known plaintext attack on 4.5 AES rounds. Black bytes are enumera-

ted and stored in a hash table. White bytes are enumerated. Gray bytes

are linear combinations of white and black bytes. Hatched bytes play no

role. The number indicates the step of the attack in which the value ot

each byte is discovered.| L o

67

[4.1 Differential path used in the attack against Pelican-MAC. Gray squares de-

note the presence of a difference. Hatched squares denote a known difference.| 73

[4.2 State Bytes which Compose the Output in Odd and Even Rounds of LEX.

[T'he gray bytes are the leaked bytes.|. 74
[4.3 Gray squares are leaked to form the key-stream. The differences are null |
| in squares with a 0. T'he differences in the hatched squares can be deduced |
[from the leaked bytes and the existence of zero differences| 75
[4.4 Second stage of the attack. oL 7
[4.5 'T'hird phase of the attack.| 78

162

Table des figures

b1

Fault injected on one byte between MixColumns at the 7" round and

MixColumns at the 8" round on AES-128. Black bytes are active, white

bytes are not.| e e e

b2

Fault injected on one byte between MixColumns at the 6™ round and

MixColumns at the 7" round on AES-128. Black bytes are active, white

bytes are not.| L .. e e e

.3

Colored bytes are active. Diflerences in black bytes are non-zero.|.

6.1

Assuming n; < n,, the attacker searches for a pair of input to the random

permutation Fj differing in n; known byte positions such that the output

differs in n, known byte positions. A gray cell indicates a byte with a

truncated difference

62

The 7-round truncated differential characteristic used to distinguish the

AES-128 trom a random permutation. Black bytes are active, white bytes

are not. e e e e e e e

6.3

The 7-round distinguishing attack focuses of the middle rounds. Black

bytes have known values and differences, gray bytes have known values,

hatched bytes have known differences and white bytes have unknown values

and/or differences.|o

6.4

Differences around the SubBytes layer of round 3: each A; is fixed, whe-

reas the o; are yet to be determined.|

(6.5

The 7-round distinguishing attack focuses of the middle rounds. Black

byvtes have known values and differences, gray bytes have known values,

hatched bytes have known differences and white bytes have unknown values

and/or differences.| oL

(6.6

Generating a compatible key: eray bytes are known, and numbers indicate

the order in which we guess or determine the bytes.|

(6.7

The 8-round truncated differential characteristic used to distinguish the

AES-128. Black bytes are active, white bytes are not.|

6.8

Black bytes have known values and differences, hatched bytes have known

differences and white bytes have unknown values and/or differences.|

6.9

Black bytes have known values and differences, gray bytes have known va-

lues, hatched bytes have known differences and white bytes have unknown

values and /or differences.|.o

6.10

Generating a compatible key: eray bytes are known, and numbers indicate

the order in which we guess or determine the bytes|

71

4 AES-rounds. 'The 25 black bytes are the parameters of Property [18|

Hatched bytes play no role. The differences are null in white squares|. . . .

72

Online phase of Demirci and Selcuk attack. b, 1s composed by eray and

black bytes. GGray bytes are used to identify a 0-set and to order it. Black

bytes are used to build the sequence from ciphertexts. Hatched bytes play

no role. The differences are null 1n white squares.|

B rian n 7 rounds AES-192)

[7.6 Attack on 6 AES rounds. Bytes of 5,74 are in black. Bytes of 5,, are in |
[gray. Hatched bytes play no role. The differences are null in white squares] 111

[7.7 Attack on 7 AES rounds (key length : 256 bits). Bytes of B,s; are in black.

| Bytes of B,, are in gray. Hatched bytes play no role. The differences are

[null in white squares| oo 113
[7.8 Attack on 7 AES rounds (key length : 192 bits). Bytes of 5,¢; are in black.

| Bytes of B,, are in gray. Hatched bytes play no role. The differences are

[null in white squares| oo 113
[7.9 First part of the attack on 5 AES rounds. Black bytes are enumerated and |

| stored 1 a hash table. Gray bytes are enumerated. Hatched bytes play no |

[role. The differences are null in white squares| 115
[7.10 First part of the attack on 6 AES rounds. Black bytes are enumerated and |

| stored in a hash table. Gray bytes are enumerated. Hatched bytes play no |

| role. T'he differences are null in white squares| 116
[7.11 Attack on 6 AES rounds (key length : 192 bits). Bytes of B,¢; are in black.

| Bytes of B,, are in gray. Hatched bytes play no role. The differences are

| null in white squares| Lo o 118
[7.12 Attack on 7 AES rounds (key length : 192 bits). Bytes of B,s; are in black.

| Bytes of B,, are in gray. Hatched bytes play no role. The differences are
| null in white squares| oo 119

[7.13 Attack on 7 AES rounds (key length : 256 bits). Bytes of B,s; are in black.
| Bytes of B,, are in gray. Hatched bytes play no role. The differences are
| null in white squares| L oo 120

[(.14 Attack on 8 AES rounds. Bytes of b5,y; are in black. Bytes of b5,, are mn |
[gray. Hatched bytes play no role. T'he differences are null in white squares| 120

[7.15 Attack on 7 AES rounds (key length : 128 bits). Bytes of B,¢; are in black.
| Bytes of B,, are in gray. Hatched bytes play no role. The differences are
[null in white squares| 121

[7.16 Attack on 9 AES rounds. Bytes of 5,4 are in black. Bytes of 5,, are in |
[gray. Hatched bytes play no role. The differences are null in white squares| 124

[8.1 (General scheme of the meet-in-the-middle attack on AES, where some mes- |
| sages 1n the middle rounds may verity a certain x property used to perform |

[the meet-in-the-middle o oo 127
8.2 The four middle rounds used in the 7-round attack from |[DKS10al. Dashed |
[bytes are active, others mnactive.| 129

R3__Truncated differential characteristic used in the middle of the 7-round aft- |
| tacks on AES. A hatched byte denotes a non-zero difference, whereas a |
[while cell has no differenceo 130

[8.4 Example of a truncated differential characteristic used in the efficient attack |
[ON L TOUNAS « + « v v v v e e e e e e e e e e e e e e 134

164 Table des figures

[8.5 Scheme of the attack on 8 rounds. Gray bytes are needed to identity a 0-set |
[and to build the multiset. Black bytes are needed to construct the table. |
| White bytes are constant for a 0-set. If differences in hashed bytes are null |
[then black bytes can be derived from the difference in circled bytes.| 136
(8.6 Attack on 8 AES rounds. Bytes of 5,4 are in black. Bytes of 5,, are in |
| gray. Hatched bytes play no role. The differences are null in white squares| 138

squares. The Value of bytes of b5,¢r can be derlved from the dlﬂerences n |

circled bytes.| 139
[8.8 Scheme of the nine-round attack on AES-256. Gray bytes are needed

to identity a 0-set and to build the multiset. Black bytes are needed to

construct the table. White bytes are constant for a o-set. It differences in

hashed bytes are null then black bytes can be derived from the difference

in circled bytes.|o 140
(8.9 Scheme of the nine-round attack on AES-192. Gray bytes are needed

to identity a o0-set and to build the multiset. Black bytes are needed to

construct the table. White bytes are constant for a o-set. It differences in

hashed bytes are null then black bytes can be derived from the difference

in c1rcled bytes (helped by keyschedule) [.. 141

2115

Chosen plaintexts. Numbers in cells are the log2 of |
| the numbers of attacks found with the same complexity,| 142

| data complex1ty of

| data CompleX1ty of 211d chosen plamtexts Numbers in Cells are the log2 of |
[the numbers of attacks found with the same complexity,| 143

B2 Dl —TE —]]] 55 Al 5] l
| data complexity of 2''° chosen plaintexts. Numbers in cells are the log, of |
[the numbers ot attacks tfound with the same complexity.| 144

[8.13 Complete 7-round truncated differential characteristic used i the simple |
[attack oflsection 82l 149

Résumé

Cette thése est dédiée a la cryptanalyse de 'AES (Advanced Encryption Standard)
qui est I'un des systémes de chiffrement par bloc les plus répandu dans le monde. Nous
y présentons une nouvelle technique pour résoudre un type particulier d’équations spé-
cialement concu pour attaquer ’AES. Cette technique est basée sur l'algébre linéaire
ainsi que sur la technique de la « Rencontre par le Milieu » et offre pour un systéme
donné, plusieurs algorithmes de résolution de complexités différentes mais prédictibles.
Ainsi nous avons congu un programme pour trouver ’algorithme le plus rapide. Dans
un premier temps nous 'avons appliqué directement aux systémes d’équations décrivant
un nombre réduit de tours d’AES et avons trouvé de nouvelles attaques lorsque la quan-
tité de couples clair/chiffré est trés limitée, améliorant celles trouvées manuellement par
d’autres chercheurs. La technique étant générale nous avons pu utiliser le programme pour
étudier d’autres modéles comme celui des attaques par fautes et celui des attaques a clé
choisie ainsi que d’autres primitives cryptographiques comme la fonction d’authentifica-
tion Pelican-MAC et le systéme de chiffrement par flot LEX. Enfin nous présentons une
généralisation des attaques de Demirci et Selcuk publiées & la conférence FSE2008 ainsi
qu’un algorithme qui nous a permis de trouver les meilleures attaques de cette classe, avec
certaines parmi les meilleures connues a ce jour. Cet algorithme repose sur I'utilisation
du précédent programme afin de déterminer le nombre de valeurs prises par des sous-
ensembles d’octets de clé ou des états internes ainsi que la complexité de les énumeérer.

Mots-clés: cryptanalyse, chiffrement symétrique, AES, recherche automatique d’attaques,
rencontre par le milieu

Abstract

This thesis is dedicated to the cryptanalysis of the AES (Advanced Encryption
Standard) which is one of the most widely deployed block ciphers. We present a new
technique to solve a particular kind of equations designed to attack the AES. This tech-
nique relies on both the linear algebra and the “Meet-in-the-Middle” technique and, for
any system of equations, leads to many solvers with different but predictable complexity.
Thus we built a program in order to find the fastest solver. Initially we applied it directly
to the systems of equations describing round-reduced versions of the AES and found new
attacks when the data available to the adversary is very limited, improving the previous
ones manually found by others researchers. As the technique is generic, we were able to
use this program to study different models as faults or chosen-key attacks and different
cryptographic primitives as both the message authentication code Pelican-MAC and the
stream cipher LEX. Finally, we show a generalization of the attacks of Demirci and Selguk
published at the FSE2008 conference, together with an algorithm that allowed us to find
the best attacks of this class, with some of them belonging to the best known ones. This
algorithm relies on the previous program in order to determine the number of values
assumed by a subset of key and state bytes as well as the complexity of enumerating
them.

Keywords: cryptanalysis, AES, automatic attacks finder, meet-in-the-middle

	Introduction
	Cryptographie Symétrique
	Les Types de Chiffrements Symétriques
	Sécurité des Chiffrements

	Présentation de mes travaux
	Mes Résultats
	Listes de mes Publications

	Automated Tool For Low Data Complexity Attacks on AES and Derivatives
	Guess-and-Determine Solvers
	Adapting the Gaussian Elimination
	Finding the Best Solver

	Recursive Meet-in-the-Middle Solvers
	Solving Subsystems Recursively
	Recursive Combinations of Solvers
	Finding the best solver

	Conclusion
	Other Settings and Open problems

	Low Data Complexity Attacks on Round-Reduced AES-128
	Low Data Complexity Attacks
	Description of the AES
	Observations on the Structure of AES
	Attack on One-Round AES
	Two Known Plaintexts
	One Known Plaintext

	Attacks on Two-Round AES
	Two Known Plaintexts.
	A Three Known Plaintext Variant
	A Two Chosen Plaintext Variant
	One Known Plaintext
	Improved Attack When the Second MixColumns is Omitted

	Attacks on Three-Round AES
	Two Chosen Plaintexts
	Nine Known Plaintexts
	One Known Plaintext

	Attacks on Four-Round AES
	Ten Chosen Plaintexts
	Five Chosen Plaintexts
	Four Chosen Plaintexts.

	Attack on Five-Round AES
	One Known Plaintext.

	Attack on Six-Round AES
	Implementations

	Low Data Complexity Attacks on AES-Derivatives
	A Forgery Attack Against Pelican-MAC
	A Key-Recovery Attack Against LEX
	Prior Art
	A New Attack

	Fault Attacks on the AES
	Fault Analysis
	Related Works

	Meet-in-the-Middle Fault Analysis on AES
	Original Attack of Piret-Quisquater
	Improvement of Piret-Quisquater Attack
	Extension to One More Round

	Impossible Differential Fault Attack on AES
	Conclusion

	Faster Chosen-Key Distinguishers on Reduced-Round AES
	Chosen-key distinguishers
	Limited Birthday Distinguishers
	Distinguisher for 7-round AES-128
	Distinguisher for 8-round AES-128

	Extention to AES-256
	Distinguisher for 7-round AES-256
	Distinguisher for 8-round AES-256
	Distinguisher for 9-round AES-256

	Conclusion

	Exhausting Demirci-Selcuk Meet-in-the-Middle Attacks against Reduced-Round AES
	Attack of Demirci and Selçuk and Improvements
	The Demirci and Selçuk Attack
	Previous Improvements of the Original Attack

	Generalization of the Demirci and Selçuk Attack
	New Improvements of the Original Attack
	Finding the Best Attack

	Results
	Overview of the Results
	Observation on the Keyschedules
	Attack on Six-Round AES-128 with 28 chosen-plaintexts
	Attack on Seven-Round AES-256 with 216 chosen-plaintexts
	Attack on Seven-Round AES-192 with 232 chosen-plaintexts

	An SPN-dedicated Tool
	Application to Low Data Complexity Attacks
	Attack on Five-Round AES-128 with Eight Chosen Plaintexts
	Attack on Six-Round AES-128 with Thirteen Chosen Plaintexts

	The Differential Enumeration Technique
	Unified View of Previously Known MITM Attacks on AES
	New Attack on AES
	Efficient Tabulation
	Simple Attack
	Efficient Attack: New Property
	Turning the distinguisher into a key recovery attack

	Extension to More Rounds
	Eight-Round Attacks on AES-192 and AES-256
	Improved Eight-Round Attack
	Nine-Round Attack on AES-256
	Nine-Round Attack on AES-192

	Conclusion

	Bibliographie
	Table des figures

