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Résumé

Les architectures des machines multi-coeurs actuelles deviennent de plus en plus complexes a
cause du modele de conception hiérarchique adopté. En effet, dans ces machines, les coeurs
partagent plusieurs ressources comme des mémoires cache, des bus mémoires, des pré-chargeurs
ou des nceuds mémoires. Par conséquent, atteindre de trés bonnes performances sur ces ma-
chines nécessite une compréhension approfondie des interactions qui existent entre les applica-
tions multi-threads et le matériel sous-jacent. Une compréhension précise de ces interactions
aidera pour mieux estimer les vraies performances de ces programmes d’un coté, et de fournir
des techniques d’optimisation de programmes efficaces de 'autre coté. Dans cette these, nous
étudions deux aspects importants pour les performances des applications multi-threads. Nous
montrons que la stabilité des performances est un critéere important a considérer dans le pro-
cessus d’évaluation des performances, et que le placement des threads est une technique efficace
pour améliorer les performances des programmes d’un coté et pour une meilleure stabilité des
performances de 'autre coté.

A cause des interactions qui existent entre les couches logicielles et le matériel, les temps
d’exécution des programmes peuvent étre instables. En réalité, lancer un programme plusieurs
fois peut engendrer plusieurs temps d’exécution, produisant ainsi, ce qui appelé une variabilité
dans les temps d’exécution des programmes ou variabilité des performances. Plus cette vari-
abilité est importante, plus le risque de surestimer ou de sous-estimer le vrai comportement
du programme est élevé. Donc ces variations peuvent conduire a de conclusions erronéses sur
les performances d’un programme. Pour étudier ces variations, nous proposons une évaluation
statistique rigoureuse des performances des applications multi-threads. En utilisant des config-
urations expérimentales fixes, notre objectif est de 1) quantifier ces variations, et 2) identifier
les facteurs qui influenceent la variabilité des temps d’exécution.

En considérant les architectures multi-coeurs avec des mémoires cache partagées, notre étude
de la variabilité des temps d’exécution nous a permis de constater que ces applications sont sensi-
bles au placement ou affinité des threads. L’affinité des threads est aussi apparu comme 'un des
moyens les plus importants pour accélérer le temps d’exécution des programmes. Cependant,
il est encore difficile de comprendre comment 'affinité des threads peut contribuer a améliorer
ou a détériorer les performances. Pour ce faire, nous avons pris le partage des données entre
threads comme métrique, et en utilisant une méthode de profilage, nous étudions les perfor-
mances de plusieurs stratégies de placement des threads en termes de stabilité et d’amélioration
des performances.

En dernier, les applications OpenMP peuvent avoir plusieurs régions paralleles ot chacune
peut avoir un différent modele de partage des données entre threads. Ceci implique qu’il est
trés rare que la méme stratégie de placement des threads puisse avoir les meilleurs performances
pour toutes les régions. Pour cette raison, nous proposons une approche qui autorise les mi-
grations de threads. En effet, nous proposons d’instrumenter les programmes OpenMP dans le
but d’identifier les régions paralleles, puis de calculer une affinité différente pour chaque région
parallele. Nous donnons aussi une analyse qui permet d’identifier les conditions nécessaires pour
le bon fonctionnement de cette approche.

Mots clés: OpenMP, partage de données, localité de données, affinité entre threads, multi-
coeurs, parallélisme, évaluation des performances.



Abstract

Current architectures of multicore machines are becoming increasingly complex due to hierarchi-
cal designs where multiple cores share common resources like caches, memory buses, prefetchers
or memory nodes. Consequently, extracting high performance from these machines requires a
deep understanding of the interactions between multi-threaded applications and the underlying
hardware. An accurate understanding of these interactions helps to better estimate the true
program performance behaviour of multi-threaded applications in one side, and to provide effi-
cient program optimisation techniques on the other side. In this thesis, we study two important
aspects for the performance of multi-threaded applications. We show that performance stabil-
ity is an important criteria to consider in the process of performance evaluation, and thread
placement is an effective technique for improving program performance in one hand, and for a
better performance stability on the hand.

Due to the interactions between the software layers and the hardware, program execution
times may be instable. In fact, running a program multiple times can lead to distinct pro-
gram execution times, thus producing what is called a variability of program execution times
or variability of program performance. The more this variability is important, the more the
risk of overestimating or underestimating the true program performance is high. Consequently,
these variations can lead misleading conclusions about program performance. To study these
variations, we use a rigorous statistical performance evaluation of multi-threaded applications.
Using fixed experimental setups, we aim to 1) quantify these variations, and 2) identify the
factors that influence the variability of program execution times.

Regarding multicore architectures with shared caches, our study of the variability of program
execution times allowed us to identify that these applications are sensitive to thread affinity.
Thread affinity has also appeared to be one of the most important factors to accelerate program
execution times. However, it is still unclear how thread affinity contributes to increase or to
decrease execution times. Taking the inter-thread data sharing as metric, and using a profile
guided method, we investigate the performance of multiple thread affinity strategies in terms
of performance stability and performance improvement.

Last, OpenMP applications may have multiple parallel regions, where each region may have
a distinct inter-thread data sharing pattern. It is unlikely that a single thread affinity produces
the best program performance for all the parallel regions. For this reason, we propose an
approach that allows thread migrations. Indeed, we instrument OpenMP programs in order to
identify OpenMP regions, then we compute a distinct thread affinity for each parallel region.
Furthermore, we provide an analysis about the required conditions to improve the effectiveness
of the approach.

Keywords: OpenMP, thread affinity, data sharing, data locality, multicore processors, paral-
lelism, performance evaluation.



Contents

11

soals and contributions of the thesisl . . . . . . . ... ... ... . .. 12

[1.1.1  Pertormance stability ot OpenMP applications| . . . ... ... ... ... 12
[1.1.2  Enhancing data sharing with efficient thread placements| . . . . . . . . .. 12

[L2" Dissertation outline]. . . . . . . . . . .. 13
2__The Multicore Eral 15
[2.1 Hardware evolution: the race for more parallelism| . . ... ... ... ... ... 15
[2.1.1 Taxonomy of parallel machines| . . . . . . . . ... ... ... ... 15
[2.1.2  Instruction-level parallelism| . . . . . .. ... ... ... ... 0. 18
[2.1.3  SIMD parallelism and vector processors| . . . .. ... ... ... ..... 19
[2.1.4  Multiprocessor parallelism|. . . . . . ... ... ... ... .. 0. 20
[2.1.4.1  Multicore processor architecturel . . . . . . . ... ... ... .. 20

2.2 Programming models|. . . . . . ... ... 22
[2.2.1 Message passing programining| . . . . . . o v v e v e e e e e 22
[2.2.2  Shared memory programming| . . . . . . . . . . ... 23
[2.2.2.1  Libraries for parallel programming in shared memory machines| . 23

[2.2.2.2  Parallel programming languages tor shared memory machines|. . 24

[2.2.3  Virtual shared memory programming| . . . . ... ... ... ... .... 25
[2.2.4  Hybrid programming modell . . . . . .. ... o000 26

2.3 Conclusion of the chapter| . . . . . . . ... ... . o oo 27
[3 Multicore Performance Evaluation and Tunning| 29
[3.1  Variability of program execution times| . . . . . . . . ... .. ... ... ... .. 29
|3.1.1  Factors influencing the variability ot program execution times| . . . . . . . 31
[3.1.2  Quantitying and qualifying variability of program execution times| . .. . 32
[3.1.3  Statistical performance evaluation| . . . . . . . ... ... ... ... 34
BI131 JavaSats . . ... .. ... 34

13.1.3.2  The Speedup-Test protocol| . . . . . . ... ... ... ... ... 35

[3.1.4  Discussion on variability of program execution times| . . . . . . . . . ... 37

[3.2  Data locality and reuse distance analysis[. . . . . . . ... .. ... ... ... .. 38
13.2.1  Measuring data locality] . . . . . . ... . ... ... .. 38
[3.2.1.1  Architecture-dependent metrics| . . . .. .. ... ... ... .. 39

[3.2.1.2  Architecture-independent metrics| . . . ... ... ... ... .. 39

[3.2.2  Single-threaded data reuse distance analysis|. . . . . .. ... ... .. .. 40
[3.2.3  Multi-threaded data reuse distance analysig| . . . . . ... ... ... ... 42
|3.2.4  Discussion about data locality measurement{. . . . . . .. ... ... ... 44

[3.3  Processes co-scheduling and cache performancel . . . . . . ... ... ... .... 45
[3.3.1  Predicting inter-thread shared caches contention| . . . . . . ... ... .. 46

7



8 CONTENTS
[3.3.2  Cache partitioning| . . . . . . . . ... o o o 48
13.3.2.1  Software cache partitioning| . . . . . . . . .. ... ... ..... 48

[3.3.2.2  Hardware cache partitioning| . . . . . . ... ... ... ... .. 49

13.3.2.3  Combined hardware and OS approach for shared caches man- |

| agement|. . . . ..o Lo L oL 50
[3.3.3  Discussion on inter-thread shared cache contention| . . . . . .. ... ... 51

[3.4 Data sharing and thread atfinity] . . . . . ... .. ... ... ... ........ 51
13.4.1  Explicit software support for thread athnity] . . . . . . . . ... ... ... 54
13.4.2  Application level data sharing detection and thread mapping| . . . . . . . 55
[3.4.3  Compiler and runtime data sharing detection and thread mappingl . . . . 57
[3.4.4  Discussion about inter-thread data sharing and thread placement|. . . . . 59

[4 Variability of program execution times| 61
4.1 Introduction|. . . . . . . . . L 61
4.2 Experimental setup and methodology| . . . . . . . . ... ... ... 62
[4.2.1 Hardware setup|. . . . . . . . . .. 62
4.2.2 Software environment! . . . . . . . ... oL 62
4.2.3  Experimental methodology| . . . . . .. ... ... oo o000 63
4.2.3.1  Reporting performance data with violin plots| . . . . . . .. . .. 64

[4.2.4  Definition of program performance variability] . . . . . . . ... ... ... 64

4.3 Program execution times variability of SPEC benchmarks] . . . . . . ... . ... 65
[4.3.1  Variability of SPEC CPU2006 execution times| . . . ... ... ... ... 65
|4.3.2  Variability of SPEC OMP2001 execution times| . . . . . . ... ... ... 66

4.4  Thread athnity impact on performance variability]. . . . . . . ... ... .. ... 68
4.5 SPEC OMP performance with co-running processes| . . . ... ... . ... ... 75
[4.5.1  Experimental setup|. . . . . . . . ... Lo 75
[4.5.2  SPEC OMP2001 with co-running processes performance results and analysis| 76

4.6 Micro-benchmarks performance with co-running processes| . . . . . . . . . . ... 77
[4.6.1 Memory-bound micro-benchmarks| . . . . . .. ... ... 7
PU- -benchmarks . .. ... ... ... 0L 81

47 Conclusionl . . . . . . . . . 82
[5 Thread placement strategies on multicores 85
b1 Introductionl. . . . . . . . L 85
5.2  Tested thread pinning techniques| . . . . . . . . .. . ... .. ... .. ...... 86
[5.2.1  Application independent thread pinning techniques|. . . . . . . . . .. .. 86
[5.2.2  Application dependent thread pinning techniques|. . . . . . . .. ... .. 87
[5.2.2.1 Step 1: memory trace profile collection and analysis| . . . . . .. 88

[5.2.2.2  Step 2: affinity graph modell . . . . . .. ... 000 89

5.2.2.3  Step 3: computing thread atfinity using an athnity graph| . . . . 89

[5.2.3  Metrics for data sharing characterisation|. . . . . . . ... ... ... ... 99
[5.2.3.1 The working set size| . . . . . . . . . . ... . L. 99

[>.2.3.2  The data reuse ratio (DRR)| . . . . ... ... ... ... .. ... 99

5.3 Experimental setup and methodology| . . . . . . ... ... oL 100
0.3.1  Software environment! . . . . . . . ... ... oL 100
[5.3.2  Hardware setup|. . . . . . . . . .. 100
15.3.3  Experimental methodologyl . . . . .. ... ... ... ... . 101
[5.3.4  Statistical significance analysis| . . . . . . . .. ... ... L. 102

b.4  Performance evaluation| . . . .. .. ... ... ... . o 103




0412 ccNUMA machineresults . . ... ... ... ... ... ..... 105

5.4.2 NAS Parallel Benchmarksl . . . . . ... ... ... 00000 111

b5 Conclusion| . . . . . . . . . e 113
[6 Dynamic Thread Pinning for Phase-Based Programs| 115
6.1 Introduction|. . . . . . . . . .. 115
6.2  Motivation and problem description| . . . . .. .. ... ... ... ... 116
6.3 Parallel OpenMP phases extraction and thread pmnningl . . . . ... ... .... 117
|6.3.1  Automatic detection of OpenMP parallel regions| . . . . . ... ... ... 118
16.3.2  Memory trace profile and analysis for OpenMP regions|. . . . . . . . ... 119
|6.3.3  Building an affinity graph for each parallel region|. . . . . . . . . ... .. 120
16.3.4  Tested thread pinning techniques| . . . . . . . . ... ... ... ... ... 120
16.3.5  Setting a per-parallel OpenMP thread pinning| . . . ... ... ... ... 121

6.4  Experimental setup and methodology| . . . . . . ... ... ... .. ... ... 122
6.4.1 Software environment| . . . . . . . . .. ... oo 122
6.4.2  Hardware setup|. . . . . . . . . . . . 123
16.4.3  Evaluation methodology| . . . . . . . .. .. .. ... L. 125

6.5 Experimental evaluation of phase-based thread pinningf. . . . . . . ... ... .. 126
|6.5.1  Performance analysis using micro-benchmarks|. . . . . . . ... ... ... 126
[6.5.1.1  Synthetic benchmark with two inter-thread data sharing patterns|126

[6.5.1.2 A matrix multiply benchmark| . . .. ... ... ... ... ... 129

|6.5.2  Performance analysis using SPEC OMPO1 and NPB benchmarks| . . . . . 137
6.5.2.1  Experimental results|. . . . . . . ... ... .. 0. 138

6.5.2.2 Discussionl . . . . .. ... 140

6.6 Conclusionl . . . . . . . . . . 141
[7__Conclusion| 143
[r. 1 Contributions] . . . . . . . . . 143
(7.2 Perspectives| . . . . . . .. 145







Chapter 1

Introduction

High performance computing refers to running applications with high needs in terms of compu-
tational power and having large data input sizes. These applications cover areas such image pro-
cessing, weather modeling, financial analyses or computational fluid dynamics simulations. To
satisfy this increasing demand for power processing, computer architecture has made incredible
advancements in processing hardware thanks to techniques like high cpu clock frequency, deeper
processor pipelines, using larger caches, or multiple functional units at the micro-architectural
level on one hand and using multiple processors at the architectural level on the other hand.
Moreover, advances in integrated circuits technology allow to pack more and more independent
processing units in a single die resulting in the emergence of what is called multicore technology.

The increasing number of processing units in today’s multicore processor architectures allows
to run multiple independent applications concurrently. Moreover, each application may run
with multiple threads, hence, improve overall application performance by exploiting thread
level parallelism. Unfortunately, the increasing architectural complexity of these new state of
the art designs makes the task of achieving the peak performance non-trivial. Consequently, a
better understanding of the interactions between the operating system layers, the applications
and the underlying hardware platforms is of high importance. In fact, due to these interac-
tions, program performance may not be stable. Therefore, multiple runs of an application
may produce multiple program performance behaviours, also called performance variations or
performance instability. Depending on execution environments, performance variations can be
small or large. Larger variations make the process of accurately determining the performance
of a program more challenging, because the risk of overestimating or underestimating the true
performance behaviour of a program is high. So, the ability to characterise and to quantify
those interactions can be useful in the process of performance evaluation and analysis, compiler
optimisation techniques and operating system job scheduling allowing to achieve better perfor-
mance stability, reproducibility and predictability.

Multicore processor architectures have multiple shared resources such as common buses, last
level prefetchers, a hierarchy of caches or memory nodes creating complex topologies. Run-
ning multiple parallel or concurrent applications on top of these platforms requires adequate
parallelisation strategies to take benefit from the available resources on one side, and intelli-
gent operating system scheduling policies that carefully allocate shared resources on the other
side. Indeed, naive or inadequate resources sharing by multiple threads or processes can gen-
erate resource contention, therefore leading to severe overall performance degradation. In this
context, to be closer to the theoretical peak performance, it is important to extract the commu-

nication/data sharing patterns exhibited by parallel applications and place them accordingly
11



12 CHAPTER 1. INTRODUCTION

onto the hardware architecture topology. Several techniques have been developed to tackle this
problem. We can mainly consider three cases: 1) manually by the application programmer, 2)
compilers and 3) operating systems or runtime libraries. Our aim in this thesis is to study the
interactions of parallel OpenMP applications and the hardware platforms from the performance
stability perspective on one hand, and to study the impact of thread placement on the overall
program performance on the other hand.

1.1 Goals and contributions of the thesis

The contribution of this thesis is a study of program performance of OpenMP applications on
multicore processors. Applications are studied from both the performance stability on one hand
and the relation between the inter-thread data sharing and thread placement techniques on the
other hand.

1.1.1 Performance stability of OpenMP applications

The first part of this thesis studies the variability of program execution times as a performance
instability metric in native executions of OpenMP programs. Underestimating this variability
can very likely affect the accuracy of any program performance study, and at worst can lead
to misleading conclusions about the true performance behaviour of the application. In this
context, an accurate quantification and qualification of this variability is important. We focus
on the task of isolating the factors that may influence the most this performance variability.

First, we give a definition of variability of program execution times and present a rigorous per-
formance evaluation methodology for better performance reproducibility. Second, we perform
multiple experiments that aim to measure the variability of program execution times. By fixing
the experimental setup, we stress various micro-architectural, application, and operating system
components. Our goal is to understand the influence and the sensitivity of OpenMP programs
to each of these components and their direct relation on program execution times variability.

1.1.2 Enhancing data sharing with efficient thread placements

Our effort to isolate the factors that contribute to increase the variability of program execu-
tion times, has led us to find that OpenMP applications are very sensitive to thread placement.
Indeed, bad threads placement can lead to non-negligible performance variability. Thread place-
ment of OpenMP threads mainly impacts cache performance and may exacerbate non-uniform
memory access effects. Therefore, knowing the influence of thread placement on performance
improvement or variability is necessary. In this context we conduct the studies presented in
the second part of this thesis. By considering the inter-thread data sharing as a metric for
thread placement, our objective is to understand the impact of multiple thread placements
on application performance for a given OpenMP application. In fact, we do not track inter-
thread data sharing, but inter-thread memory cache lines sharing. However, in the remainder of
this thesis, we use the terms cache memory lines, data sharing or data reuse without distinction.

For this study, we proceed in two steps. First, we perform an evaluation and analysis of multi-
ple thread placements strategies on some multicore architectures featuring different hierarchies
of shared caches. The tested strategies are application-wide, this means that we fix the same
thread placement from the beginning of an application until it finishes its execution. Moreover,
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we decompose the tested strategies into two classes: 1) strategies that do not require informa-
tion about the characteristics of the application, and 2) strategies that do require information
about the characteristics of the application.

Second, we consider that any parallel program may have different phases, each with a distinct
performance behaviour. Each phase is also characterized with a temporal window (duration
of the phase). It is possible to identify program phases using metrics such cache miss ratio,
instructions per cycle, or the amount of data sharing between threads. A program phase may
have different granularities: going from few instructions, to function calls. Thus, it is unlikely
that the same fixed thread placement gives the best performance for all parallel phases. Indeed,
if each parallel phase exhibits a distinct sharing pattern between threads, then an application-
wide thread affinity strategy will not be able to effectively exploit that distinct patterns. This
situation has motivated us to extend our study to account for multiple OpenMP phases. In
this thesis, we consider that program phases in OpenMP programs correspond to OpenMP
parallel regions. Consequently, we investigate other thread placement solutions based on thread
migrations or per-phases thread placement.

1.2 Dissertation outline

The outline of this thesis is organised as follows. Chapter [2|reminds the evolution of parallel ma-
chine architectures used nowadays and the most common parallel programing paradigms used to
exploit the power of these parallel machines. Chapter [3|first introduces the problem of program
execution times variability. After that, it gives a large overview about the problems of measur-
ing data locality and the impact of shared cache access contention. Last, it presents techniques
to exploit data sharing using thread placement in multicore processors. Chapter [4 presents
an experimental study for measuring and analysing the variability of program execution times.
Chapter [5] discusses the relation between the inter-thread data sharing using optimised thread
placement techniques and the performance stability. Chapter [6] extends Chapter 5] and presents
an approach to compute efficient thread placement techniques for multiple OpenMP parallel
phases. Finally, Chapter [7] concludes this thesis and gives some future research proposals.
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Chapter 2

The Multicore Era

In this chapter, we give a short overview of the evolution of current computer systems from
both the hardware and software perspectives. First, we revisit hardware implemented techniques
that aim to increase parallelism and performance. We distinguish between micro-architectural
optimisations inside a single processing unit (not visible to the programmer/compiler) and
architectural optimisations (visible to the programmer/compiler) which combine multiple pro-
cessing units. Second, we present some parallel programming models, languages and runtimes
for efficient and effective parallel machines utilisation.

2.1 Hardware evolution: the race for more parallelism

Computer technology has made an incredible progress since early days of general purpose com-
puting. Advances in integrated circuits technology and architecture design have allowed to
build machines going from single to multiple processing units per chip. To improve perfor-
mance, computer designs have focused on increasing parallelism by executing multiple streams
of instructions. In this quest for more parallelism, it is possible to say that hardware performance
optimisation is achieved by means of two complementary approaches. With the first approach,
the hardware optimisations logic is implemented inside a single processing unit. Mainly, they
are intended to enhance the single thread performance. From the programming perspective,
these optimisations are hidden or not visible to the programmer or to the compiler. We can call
them as micro-architectural optimisation. The main goal of micro-architectural optimisations is
to lower the execution latency of a single instruction, while increasing the number of instructions
that can be executed in a single clock tick. Many optimisations such as deeper pipelines, better
branch predictors, larger cache sizes, etc. are an example. Regarding the second approach, we
can talk about architectural optimisations. From the programming perspective, an architectural
optimisation is exposed and is visible by the programmer and/or by the compiler. The goal
of this approach is to increase the throughput by executing multiple independent instructions
streams on multiple processors in parallel. Thus, increasing parallelism. This section presents
some concepts regarding the design of parallel machines.

2.1.1 Taxonomy of parallel machines

According to several criteria, there are different ways to classify parallel machines. The most
widespread classification is called the Flynn’s Taxonomy [Fly72]. Table summarises this
classification.

e SISD (Single Instruction, Single Data). This organisation represents traditional sequen-

tial machines. A processing unit executes instructions from one single stream sequentially,
15



16 CHAPTER 2. THE MULTICORE ERA

Data Stream

Single Instruction, Single Data Single Instruction, Multiple Data

Instruction Stream

Multiple Instruction, Single Data | Multiple Instruction, Multiple Data

Table 2.1: Flynn’s Taxonomy

Communication/Synchronisation

Global Memory, Shared Variables Global Memory, Message Passing

Memory organisation

Distributed Memory, Shared Variables | Distributed Memory, Message Passing

Table 2.2: Johnson’s MIMD -classification

the execution of instructions may be overlapped within the pipeline’s stages. An instruc-
tion operates only on one data stream during any clock cycle. Some embedded machines
belong to this architecture organisation.

e SIMD (Single Instruction, Multiple Data). In this class of architectures, all the processing
units execute the same instruction at the same time and synchronise. However, the
different processing units operate on different data. Vector processors belong to the SIMD
architectures class.

e MISD (Multiple Instruction, Single Data). This class represents architectures where a
single data stream is fed into multiple processing units. Each processing unit operates on
the data independently by acting with different instructions streams. However, even if all
the units operate on the same data stream, each unit operates on a distinct data. This
category includes specialised machines like systolic machines where processing units are
arranged given some fixed topology, are highly synchronised and which are supported by
a generalised processor.

e MIMD (Multiple Instruction, Multiple Data). This class represents multiprocessor ma-
chines where, each processor executes its own code independently and asynchronously
from others. Each processor operates on its own input data stream. Processors commu-
nicate data among them. Most current supercomputers, networked parallel machines and
multiprocessors follow this architecture organisation.

Flynn’s classification suffers from some limitations. The MIMD class for instance includes
a wide variety of computers. For this reason Johenson [Joh88| proposed further classification
of such machines, it is based on their memory organisation (global/distributed) and the mech-
anism used for communications/synchronisation (shared variables/message passing). Table
summarises this classification.
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Figure 2.1: A GMSV machine
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Figure 2.2: A DMSV machine
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Figure 2.3: A DMMP machine

e GMSYV (Global Memory, Shared Variables). This class represents traditional shared-
memory multiprocessors also known as symmetrical multiprocessing (SMP) (see Fig-
ure . A set of identical processors are connected by a bus or a cross bar switch and
access a single global memory with an equal time latency. We can talk about Uniform
Memory Access (UMA). If processors feature memory caches which is the case nowadays,
we talk about Cache-Coherent UMA. The coherency is ensured by protocols implemented
within each memory cache controller [CSG98].

e GMMP (Global Memory, Message Passing). This class represents machines implement-
ing a global addressing space and where communications are achieved by means of message
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passing instead of using shared variables. This class of architectures is not widely used.

e DMSV (Distributed Memory, Shared Variables). This class represents machines where
the memory is physically distributed, but all the processors have the same shared ad-
dress space allowing remote access of data. Regarding the performance of memory oper-
ations, the latency depends on the data location (see Figure . In general, accessing
local data is faster than accessing remote data. In this case we talk about Non-Uniform
Memory Access (NUMA) machines. Again, if processors feature memory caches with an
implemented coherency protocol among them, we can talk about Cache-Coherent NUMA
machines.

e DMMP (Distributed Memory, Message Passing). Also known as distributed-memory
multi-computers (see Figure . This class of architectures implements a model where
the memory is physically distributed without any possibility to access remote data trans-
parently. Data communication is achieved explicitly by message passing through a com-
munication network.

2.1.2 Instruction-level parallelism

Since the mid-80s, almost all processor architectures rely on the pipelining principle to overlap
the execution of multiple instructions and improve performance. Practically, executing an
instruction requires to go through some intermediate stages or basic operations before a result
is produced. For example, we can say that a pipeline has four stages:

1. Instruction fetch (IF): bring the instruction from memory;
2. Instruction decode (ID): decide which operation to execute;

3. Instruction execute (EX): use the arithmetic and logic unit to evaluate and produce a
result. If required bring the operands from memory;

4. Write result (WR): store data back to memory.

IF 1D EX WR
Clockeylel EDCB | A
Clockeycle2  EDC | B A
Cockeyle3  ED | C B A
g Clock cycle 4 El D C B A
= | Clockeyele s E D C B
Clock cycle 6 E D C
Clock yele 7 E D
Clock cycle 8 E

Figure 2.4: The instruction flow for five instructions (A,B,C,D,E) in a pipeline with four stages

If we consider all the steps above as an atomic operation or a black box, the execution of each
instruction has to wait until all these operations are finished for a previously issued instruction.
This execution model can generate a non negligible overhead. In addition of splitting-up the
execution of an instruction using intermediate stages, in the pipelining principle, each stage
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involves a separate and an independent hardware component. This design allows theoretically,
to issue an instruction to execute as soon as the first stage in the pipeline becomes free. It is
then possible to execute multiple instructions in parallel from one instructions stream leading
to better program performance. The principle of overlapping instructions in the pipeline to in-
crease performance is called the Instruction-Level Parallelism (ILP). Figure reports the case
where up to four instructions are executed in parallel with a pipeline of four stages. The time
that each instruction spends in each stage of the pipeline is controlled by the clock frequency
or the frequency of operation; that means, a given stage requires one or many cycles to perform
the operation. The higher the clock frequency, the lower the time spent on the pipeline stages.

To achieve a higher clock frequency, architecture designers have to increase the depth of the
pipelines. With this design, pipeline stages operate on simpler operations with a low overhead.
However, even with that design, there are some limitations to keep all the pipeline stages busy.
Keeping pipeline stages busy all the time is quite difficult. There are multiple reasons for that:
a non-fixed execution time for some complex instructionsﬂ cache and/or memory effects, etc.
When such instructions are issued, they are taking long periods of time inside the different
stages of the pipeline. Therefore, if new instructions have to pass through the same stages,
the pipeline needs to suspend their execution until the required resources become free. And
of course, it contradicts the principle of issuing one instruction in the pipeline each cycle. To
overcome this limitation, computer architects made the choice of duplicating some functional
units and hardware components involved in the different stages of the pipeline. This duplication
aims to reduce the impact of such bottlenecks by allowing the execution of multiple instruction
in parallel per cycle. With the advent of this design, we can talk about superscalar processors
(Alpha 21264, HP PA 8500 or Pentium III/4 |Joh02]). Data dependency between consecutive
instructions can also be a reason for suspending the execution of an instruction in the pipeline.
It happens when an instruction depends on the result produced by another instruction. In this
situation, the second instruction has to wait until the first one finishes its execution and produce
the required result. Many other hardware optimisation techniques are implemented inside the
pipeline logic as: out of order execution, branch prediction, rename registers, etc. All these
techniques contribute to increase the instruction-level parallelism [Joh02].

2.1.3 SIMD parallelism and vector processors

There are multiple applications where a single operation has to be applied on large sets of data
elements. For instance, it is possible to consider matrix-oriented computations and media/sound
processing. In programming languages, loops represent an abstraction of repetitive operations.
If the different iterations of the loop do not carry any or little dependencies, and if they operate
on large data items, it is then possible to increase the amount of parallelism among the iterations
of the loop. This parallelism is inherent to the large data set.

Listing 2.1: A simple loop sample
for (i=0; i<N; i++)
X[i] =Y[i] + Z[i]

Listing shows an example of a loop where the iterations do not carry any data depen-
dency. It means that each iteration can be executed independently and in parallel, and each
executing for a distinct data item. This execution model allows to expose what is called Data-
Level Parallelism. One way to exploit this parallelism is to use vector or SIMD instructions.

1This is actually the case in CISC architectures compared to RISC architectures
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Basically, one vector instruction operates on a collection of data items in parallel. If we look to
Listing again, using vector instructions may translate to the use of up to four instructions:
two instructions to load vectors Y and Z, one instruction to perform the addition and finally
one instruction to store back the vector X. A vector operation has the property that all the
functional units are pipelined. Although, the instruction operates on a whole vector, the oper-
ations are performed sequentially on the consecutive elements of a vector inside these pipelined
units.

There are two main types of architectures of vector processors [Joh02]:

1. Vector-register processor. All the vector operations (except load and store) are per-
formed between the different registers of the machine.

2. Memory-memory processor. In this class of vector architectures, all the vector oper-
ations are memory to memory operations.

Besides vector processors, we can find multimedia extensions to standard instructions sets (in
micro-processors) which belongs also to the SIMD execution model. For X86 architectures, Intel
introduced in 1996 the MMX (Multi Media eXtensions) instruction set which operates on 64-bits
floating-point registers. The later was extended later by the SSE (Streaming SIMD Extensions)
in order to operate on 128-bits wide registers. In 2010, Intel added the AVX (Advanced Vector
Extensions) that doubles again the registers width to 256 bits. For non-X86 architectures, we
can think to the AltiVec (128-bits wide registers) technology from IBM, Motorola and Apple
for PowerPC processors. Unlike vector processors (a register can hold up to 128 64-bit elements:
Cray T-90), the relative small register size of multimedia SIMD extensions can be considered
as short-vector SIMD processors.

2.1.4 Multiprocessor parallelism

In the previous section, we discussed some hardware techniques to exploit parallelism within
a single stream of instructions. Although this approach is effective for programs with a high
amount of fine-grain parallelism, programs may implement high-level parallelism that is limited
or hard to exploit automatically by the hardware logic. This is true for instance for programs
which implement medium-grain or coarse-grain parallelism. As an example of this high-level
parallelism, we can consider the case of Thread-Level Parallelism. 1t is structured as separate
and independent streams of instructions also called threads of execution. Moreover, thread-level
parallelism can be exposed explicitly by creating multiple threads of execution at the high-level
programming language. This is still true, because there are many applications which are inher-
ently parallel. For example, an online file server receives file requests, each request to the server
can be processed independently and in parallel.

For the purpose of exploiting thread-level parallelism, advances in computer design technol-
ogy allowed computer architects to start building parallel machines at the architectural level.
Unlike instruction-level parallelism which exploit parallelism at the micro-architectural level
(within a processor), taking benefit from thread-level parallelism requires to aggregate multiple
processing units, processors or microprocessors within a single machine and ensures that they
operate in parallel in a coherent way.

2.1.4.1 Multicore processor architecture

Thanks to advances in integrated circuits manufacturing, processor performance has signifi-
cantly increased since their first introduction to market in early 70s. In 1975, Gordon Moore



2.1. HARDWARE EVOLUTION: THE RACE FOR MORE PARALLELISM 21

described what is called nowadays as the Moore’s law. The law states that the number of tran-
sistors that can be placed on an integrated circuit would double every couple of years [Moo75]
with the same surface, for the same price. This law is actually a revising of his earlier prediction
in 1965. While this technology trend led to smaller, faster and higher number of transistors, it
has contributed to get higher processor clock frequency and allowed multiple micro-architectural
optimisations which aim to increase the ILP.

Due to various physical limitations such as power dissipation and signal propagation delays,
building high performance processors with the increase of clock frequency only, is not anymore
a viable solution. While clock frequency does not increase, the build process of processors con-
tinues to make advances by shrinking the die size. Moore’s law has nothing to do with the
expected performance, it predicts only the number of transistors to put on a single die. So, a
question can rise: how to use the new die space? Due to the hard task of exploiting the ILP, it
is useless to add more transistors within a single processor. On the other hand, there are many
applications which expose thread-level parallelism. These observations led computer architects
to propose designs where a set of identical processors (cores) are put together within a single
die or a chip. This design is called now multicore processors. A multicore processor consists of
multiple and identical cores on a single chip, all the cores share the same micro-architectural
optimisations. Most often, multicore processors share one or several levels of memory caches.
Multicore processors are also known as Chip multiprocessors (CMPs) for SMP on a chip, be-
cause they are sharing many architectural features design with SMPs.

CPUO CPU 1
Memory module Memory module
| I
Core 0 | | Core 1 | | Core 2 | | Core 3 Core 0 | | Core 1 || Core 2 | | Core 3
Shared cache | | Shared cache
Core 0 | | Core 1 || Core 2 | | Core 3 Core 0 | | Core 1 || Core 2 | | Core 3
Shared cache | | Shared cache
Memory module Memory module
CPU 2 CPU 3

Figure 2.5: A NUMA machine with 4 multicore processors

The growing gap between processor performance and memory performance has led man-
ufacturers to propose highly hierarchical machines to alleviate this problem. The common
architectural design consists of two or more cores sharing some levels of memory caches. When
building parallel machines with multiple multicore processors, a simple design would be to con-
nect all the processors to a single shared memory through a bus topology (as the traditional
SMP design). Bus snooping technique has the drawback of achieving poor scalability (weak
scalability of bus snooping coherency protocols). So, to achieve good performance, scalability
increase of new multicore-based shared memory machines is of paramount importance. To over-
come this limitation, new trends propose distributed shared memory architectures where, each
multicore processor is attached to its own main memory and where all the processors are con-
nected with proprietary interconnect networks (Quickpath from Intel and Hyper-Transport



22 CHAPTER 2. THE MULTICORE ERA

from AMD for instance). When a core in one processor requires data located on a remote proces-
sor, it has to send a request through the network. It is clear from this design that the cost of
accessing the local or the remote data is not the same, we can talk again about NUMA machines
(see Figure . Consequently, an effective use of such machines whether by programmers,
compilers or runtime systems is more challenging.

2.2 Parallel programming models, languages and runtimes for
parallel machines

In this section, we review most popular parallel programing paradigms and some specific imple-
mentations. Among the variety of parallel programming models, we mainly discuss four parallel
programming models that are widely used in the area of parallel programming:

e Shared memory programming model.

e Message passing programming model.

e Virtual shared memory programming model.
e Hybrid programming model.

The programming models that we mention earlier represent abstractions of the machine
structure. Independently of the machine implementation, it is also possible to define two high-
level programming models:

e SPMD (Single Program, Multiple Data). All the tasks of the parallel program execute
their copy of the same program simultaneously. The set of tasks operate on different
input data. It is not necessary that all the tasks execute the same stream of instructions,
logic can be added inside the program to allow tasks to execute only a sub-set from the
program. This model is very common in the community of high performance computing.

e MPMD (Multiple Program, Multiple Data). All the tasks of the parallel program execute
different programs or instructions streams simultaneously. The programs can be threads,
message passing, data parallel or hybrid. Each task operates on a distinct input stream.
An example of applications implementing this model is the Client/Server applications.

Before addressing the most used programming paradigms, it is important to know the differ-
ent possibilities to leverage the power of parallel machines. We mainly have two implementation
possibilities of parallelism: 1) languages or language extensions/pragmas and 2) using libraries.

2.2.1 Message passing programming

In this programming model, a program creates a set of parallel tasks, each is restricted to its
own memory location. This gives the possibility to collocate multiple tasks on the same physical
machine or across multiple machines. Data communication between tasks is explicit by sending
and receiving messages through a message passing protocol. Data transfer requires cooperative
operations to be performed by each task (a send must have a receive operation). Although
this programming model highly involves the responsibility of the programmer (all the parallel
operations have to be specified explicitly), it offers better control on a parallel program. There
are mainly two important implementations of this programming model: PVM and MPI. We
limit our discussion to MPI which is presented in the following paragraph.
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Message Passing Interface (MPI)

MPI [MPI] is a high-level API for parallel programming which implements the message passing
paradigm. Before the MPI standard, every parallel system vendor provided its own version of
message passing model. Due to the variety of implementations, it was a hard task to port an
application from one parallel system to another. To tackle this issue, a group of parallel com-
puter vendors, university researchers and software developers proposed a standard and portable
interface. Although, the high-level interface is common, each hardware vendor may implement
an optimised MPI version for their own machines and allows to take benefit from specific net-
work topologies. The MPI library is defined for both Fortran and C/C++ languages. Besides
the message passing model, MPI uses the SPMD model, where an MPI application creates a set
of processes, each executing a copy of the program and using its own data input. MPI is used
to program a variety of MIMD machines going from massively-parallel machines to clusters
of workstations.

2.2.2 Shared memory programming

In this programming model, multiple tasks share a global address space in which they read and
write to asynchronously. From the programmer’s point of view, there is no notion of explicit
data communication or data exchange between tasks. Thanks to this principle, the programming
effort can be greatly simplified, it is all about accessing and modifying memory locations in the
shared address space. For parallel machines with memory caches, cache coherency protocols
play an important role on keeping all the copies of data in different locations in sync. However,
cache coherency protocols in stand-alone are not able to prevent concurrent access to shared
data. Therefore, to ensure the coherency of shared objects, explicit synchronisation mechanisms
such as locks and semaphores are required to control concurrent accesses.

2.2.2.1 Libraries for parallel programming in shared memory machines

We discuss in this section thread libraries and TBB.

Lightweight processes (Threads)

A thread-model is an approach to achieve parallelism in shared-memory parallel systems. A
single process can have multiple flows of control, called threads of execution. These threads
share the same global memory (code and data segments, heap) but, each thread has its own
stack and program counter. Thread libraries provide functions for thread management such as
creation, control, termination and synchronisation. Writing parallel or concurrent programs us-
ing thread programming requires more care, it is often associated to low-level OS programming
where specific skills are needed. However, thread programming is a powerful way to achieve high
performance in shared memory systems. Thanks to the rich API and resources offered to the
programmer, programming with threads allows better control on the application behaviour. As
usual, due to portability issues of different multi-threading libraries, the POSIX ThreadsE] (also
referred as Pthreads) standard |Thea] was proposed for a standardised programming interface.
Nowadays, implementations of the Pthreads API are available on many POSIX-conformant op-
erating systems.

Depending on the software component responsible for thread management, we can classify
threading packages into three traditional models:

2POSIX refers to Portable Operating System Interface. It defines a standard operating system interface and
environment.
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1. User-level: Threads created within a process are invisible to the kernel scheduler. This
means that user-level threads have to be scheduled by a runtime system which is part
of the process or part of the threading package. Therefore, the operating system is not
involved at all regarding context switch of threads, except the main process. While user-
level threads offer better performance and flexibility due to the low overhead incurred
by context switches (less implication of the OS), user-threads have a problem: a thread
making a system call will block the whole process with all its threads until the system
call returns. Moreover, since user-level threads are invisible to the OS, one thread only
within the process has the possibility to take the CPU resource, limiting the ability of the
application to use multiple processors (cores) offered by the platform. An example of this
threading model is the POSIX/ANSI-C based GNU Pth (Portable Threads) library [GNU]
for UNIX-like platforms.

2. Kernel-level: Unlike user-level threads, kernel-level threads created within a process are
visible by the operating system. Hence, context switch and scheduling of threads is fully
performed at the kernel level. Kernel-level threads do not have the problem of blocking
when making system calls: a system call blocks only the calling thread. Another benefit,
kernel threads take better advantage of multiple processors, hence increasing the amount
of parallelism that can be achieved. However, switching among threads can be more
time-consuming due to the OS implication. The current implementation of threads in the
Linux kernel is the NPTL (Native POSIX Threads Library) [DMO03].

3. Hybrid-level: As seen above, user-level threads offer better flexibility and performance
than kernel threads. On the other hand, kernel threads do not have any problems with
I/0O blocking problems and take better benefit from multiple CPUs. So the idea behind
a hybrid model is to combine the advantages of both models, while avoiding their dis-
advantages. A hybrid library creates a number of kernel threads, capable to execute a
number of user-level threads. We talk about an N:M model, where N user-level threads
map onto M kernel threads. This is a compromise between kernel-level 1:1 and user-level
N:1. Solaris offers this kind of model [PKB™91].

TBB (Intel Threading Building Blocks)

TBB [Int] is a generic library that extends the ISO C++ language for an efficient use of mul-
ticore architectures. Like OpenMP (to be presented in Section , TBB is designed to
promote scalable data parallel programming. To use the TBB library, the programmer has
to specify TBB tasks instead of threads. Tasks represent portions of code that might run in-
dependently and concurrently. The library itself maps these tasks onto physical threads and
processors for an efficient cache utilisation and load balancing. A specified concurrent task is
split into independent tasks by the library, each task processes a subset of the data. This ap-
proach allows to leverage the power of multicore processors, while ignoring issues of parallelism
such as low-level threading constructs or the scheduling and distribution of computations. TBB
employs generic programming or template-based programming in C+4; many of the library
interfaces are defined by requirements on data types and not on specific types, thus, allowing
to write flexible and efficient code.

2.2.2.2 Parallel programming languages for shared memory machines

This section discusses Cilk and OpenMP.
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Cilk

Cilk [FLR9§| is an extension to the C language and a runtime for efficient multi-threaded pro-
gramming on shared memory multiprocessors developed at MIT. The Cilk language consists
of C with the addition of some keywords to indicate parallelism and synchronisations. Con-
sequently, it is the responsibility of the programmer to structure his code in order to expose
parallelism. By doing so, the programmer lets the Cilk runtime deal with the low-level thread
management and computation scheduling in order to run efficiently on a given platform. Se-
lected sections of code that can run in parallel are translated to Cilk threads which are mapped
onto physical threads by a Cilk runtime. The execution model of Cilk is the following: a set
of physical threads executing Cilk threads are created at the beginning of the application, the
number of physical threads corresponds to the number of available processors. The Cilk runtime
implements a Work-Stealing Scheduler; each physical thread maintains a work queue of ready
Cilk threads and manipulates the bottom of the queue like a stack. When a physical thread’s
queue becomes empty, it steals a Cilk thread from a randomly selected queue of an another
thread.

Open Multi-Processing (OpenMP)

OpenMP [Theb] is a specification for a portable Application Program Interface (API), it aims to
facilitate parallel programming of a range of shared-memory parallel machines. It defines a col-
lection of compiler directives, library routines and environment variables to parallelise sequential
programs written in both Fortran and C/C++ languages. Like MPI, OpenMP is a joint collab-
oration between major hardware and software vendors. The goal is to provide a portable model
for developing parallel applications across a variety of computer architectures, operating sys-
tems and compilers. The compiler directives allow to extend the C/C++ and Fortran languages
with loop-based parallelisation, tasking, work-sharing and synchronisations constructs. What
makes the OpenMP model more attractive from the programming perspective, is the reasonable
effort required to achieve the parallelisation of sequential programs. Indeed, by using compiler
directives, the programmer has only to specify which sections of code to execute in parallel or
to specify potential parallel loops associated to some policies for iterations distribution. After
compilation, the compiler generates code for automatically creating a set of threads (equal to
the number of available CPUs/cores seen by the OS by default), distributes iterations among
threads by applying the user-specified policy or a static default one, synchronise threads at the
end of the parallel region and finally terminates the execution of threads. It is also possible to
use constructs providing support for sharing and privatising data.

Using TBB or OpenMP depends on the code structure and the developer objective. OpenMP
is much more easier and offers an incremental way to parallelise code, it keeps the code clean and
easier to maintenance unlike TBB that needs major changes to the code. Moreover, OpenMP
is a standard for programing shared memory machines. On the other hand, TBB’s advantage
is that the programmer does not need to understand how threads work, he has just to specify
sections of code that could run concurrently and let the library map the tasks onto threads.
Another advantage of using TBB is that it matches well with code that is highly object oriented
since it makes heavy use of C++ templates and provides thread-safe and concurrent containers
and some generic parallel algorithms.

2.2.3 Virtual shared memory programming

Virtual shared memory model is also known as distributed shared memory or partitioned global
address space model. It is a high-level abstraction of a distributed memory machine (or a set
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of interconnected machines as well) that allows the programmer to see the machine as a global
shared addressing space. This abstraction can be provided by either an operating system, a
library or a compiler. The goal is to hide to the programmer the details of low-level communica-
tions primitives. The processes of an application can access local (private) data or distributed
shared data. The runtime ensures synchronisation and coherence. The advantage of virtual
shared memory programming is to free the programmer from explicit communications, and
consequently to use shared memory programming model. However, this comes at the expense
of performance loss due to the high overhead incurred by the employed memory coherency
mechanisms. There exists multiple language extensions to support the virtual shared mem-
ory programming model. We can think to Co-array Fortran [NR98| which consists of Fortran
95 extensions, the Titanium language [YSP'98] which consists of Java language extensions to
support parallel computing, the Chapel parallel programming language [CCZ07| or the object-
oriented X10 programming language |[CGST05]. The later two languages are designed as new
languages rather than language extensions.

We present in the next paragraph UPC which is another language belonging to the virtual
shared memory programming model.

UPC (Unified Parallel C)

UPC |CDC™99] is an extension to ANSI-C programming language for parallel processing. UPC
follows the SPMD parallel programming model and supports a partitioned global address space.
In other words, it supports a distributed /virtual shared memory model. In UPC, the program-
mer has explicit control over data distribution across threads. UPC offers constructs that allow
the programmer to declare data as shared or private to each thread. It aims to exploit memory
locality by placing data as close as possible to the threads that use that data. On one hand,
private data of a given thread can not be accessed by other threads. On the other hand, shared
data are logically partitioned into fragments, where each thread owns a private fragment. That
is, each thread has a logical association or affinity to the portion of data that is assigned to it.
However, independently of fragment association, all threads can access the whole shared mem-
ory space. Besides data distribution constructs, the UPC memory model offers also memory
consistency constructs to ensure coherency of the declared shared data. With the UPC memory
model, shared accesses are either strict or relaxed. Strict memory accesses issued by a given
thread always appear to all threads as being executed in a sequential program order. Relaxed
shared memory accesses issued by a given thread may be reordered by the implementation. In
this case, other threads may not see these accesses as in a sequential program order.

Applications written using UPC may have poor program performance if data locality is not
ensured regarding the computations performed by the intervening threads. In fact, if all threads
make heavy use of large portions of shared data, the risk of false sharing is high. Moreover,
ensuring memory consistency may require a heavy use of data synchronisation constructs. Con-
sequently, it may degrade performance in a large extent.

2.2.4 Hybrid programming model

Hybrid models combine multiple parallel programming models in the same program. The
strength of such models is to take benefit from each composing parallel programing model,
while limiting their disadvantages, thus adapting for particular situations. For example, using
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MPI with OpenMP can be considered as a hybrid programming model. It is then possible to
use shared memory programming with OpenMP inside a NUMA node and message passing
with MPI for inter-node communications. As an implementation example of this programming
model, we present in the next section a framework called MPC.

MPC

MPC is unified parallel framework for HPC clusters of NUMA machines [PJNOS|]. Its main goal
is to unify multiple parallel programming models inside a single framework in order to efficiently
exploit parallel machines. Mainly, MPC is a thread library. It proposes three programming
models:

1. Shared memory programming:

(a) POSIX thread,;
(b) Intel TBB;
(c) OpenMP

2. Message passing programming:
(a) MPI,
3. Hyerid MPI/OpenMP

MPC implements a non-preemptive user-level threads package which is compatible with
POSIX-threads. In this case, threads created in MPC are not visible by the operating system
kernel. That is, an MPC thread manager does all the scheduling management. In addition, by
recompiling the open source version of TBB, MPC is able to run TBB applications. Moreover,
MPC proposes OpenMP and thread-based MPI implementations which are highly integrated
(using MPI/OpenMP). Regarding the MPI implementation, instead of using processes, MPC
uses a user-level thread for each MPI task.

2.3 Conclusion of the chapter

With the rise of parallel machines that support the simultaneous execution of multiple threads
in parallel, has come the need of languages, compilers, runtimes and operating systems that
support and exploit these resources. Several software studies were made in this direction in
order to take benefit from these machines and many programming models and implementations
were proposed. However, the rising complexity of the hardware makes it difficult to generalise
one solution among all kind of machines. Moreover, the intervention of the programmer is in-
creasingly required to achieve decent program performance. Indeed, improving the performance
requires the knowledge of internal characteristics of the hardware, both micro-architectural and
architectural. Applications have to be written with an explicit parallelism to be able to exploit
all the available resources. Of course, there is a trade off between the programming effort and
the expected performance improvement.

Nowadays, multicore platforms are everywhere, from the cheapest embedded system to the
very expensive supercomputer. Getting the best performance from these machines is even more
complicated and crucial. There are hundred of parallel languages, runtimes and operating sys-
tems that worked very well for past multiprocessors and distributed machines but, most often,
they are not anymore adapted for current hardware designs. So applications written on top
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of these software technologies have to be re-written or adapted to tackle these new designs
and constraints. For instance, taking into account the hierarchy of shared caches present in
multicore processors is mandatory if the programmer wants to get good performance from a
given architecture. Indeed, let us consider the cases of OpenMP and MPI for instance. The
former proposes a flat memory model where all threads are supposed to access memory with
a similar behaviour (uniform latency of access to memory). The later proposes a flat com-
munication model where the communication latency is considered to be uniform between all
processes. From the programming perspective, these abstract models of the machine simplify
programming. However, from the performance perspective, these flat models are not adequate
since they do not account for memory hierarchy (multiple cache levels) or for NUMA effects
that make the threads/processes do not access memory or communicate in an homogeneous
manner.

Multiple efforts have been done to enhance the expressiveness of programming models in
order to efficiently exploiting heterogeneous machines. The OpenMP standard (version 3.0)
was extended by the concept of tasks and by nested parallelism. OpenMP tasks are generated
inside a parallel region, then each task can be executed by the threads of that parallel region.
Nested parallelism allows to nest parallel regions inside others allowing a hierarchy of paral-
lelism. Similarly, the OpenMP execution runtime developed in [oBFG™10] exploits the concept
of a hierarchical parallelism. A topology-aware OpenMP thread scheduler is implemented allow-
ing to distribute threads into groups and to map each group of threads in a certain NUMA node
or socket for instance. Heterogeneous machine designs can also consist of the combination of
CPUs and accelerators like GPUs (Graphical Processing Unit). In this context, we can consider
the case of OpenCL (Open Computing Language). OpenCL is an open standard for parallel
programming of heterogeneous systems, it aims to exploit the power of state of art multicore
processors and GPUs using user specified tasks or kernels.

In this thesis we study the performance of applications following the shared memory pro-
gramming model (OpenMP and Pthreads) and running on shared memory multicore machines.
As we noticed earlier, these programming models offer a flat memory model. This means that
while from the application programming perspective, memory accesses latency is considered as
uniform (same access latency whatever the location of the data), it is actually not true from the
performance tuning perspective since we are dealing with hierarchical designs. The next chapter
gives an overview on some performance optimisation issues when it comes to run multi-threaded
applications on multicore architectures.



Chapter 3

Related Work on Multicore
Performance Evaluation and
Tunning

This chapter presents an overview on performance evaluation methodologies. Besides, it presents
software and hardware techniques to improve shared cache performance in multicore architec-
tures. It is organised as follows. In our study, depending on the experimental setup, we observed
non-negligible performance variability of some high performance codes. It is clear that if this
instability is not rigorously considered, the conclusions of the performance evaluation and mea-
surement may be misleading. In this context, Section discusses the problem of program
execution times variability and introduces a statistically rigorous performance evaluation pro-
tocol. In our effort to quantify and qualify the various factors that can influence the variability
of program execution times, we found that thread affinity plays an important role. However, it
is not clear how thread affinity contributes to increase or decrease the performance variability.
In order to understand these interactions, we studied two aspects: 1) data sharing/reuse and
2) shared cache contention. These concepts are introduced in Sections and The for-
mer (Section presents software techniques to measure data locality of single-threaded and
multi-threaded applications. The later (Section discusses the impact of cache sharing on
the overall performance of co-running workloads. Finally, in multicore architectures with a hier-
archy of shared caches, running a multi-threaded application can yield multiple thread affinity
placements, where each can have a distinct performance impact regarding cache performance.
In order to compute effective strategies as far as data reuse is concerned, Section describes
techniques to exploit data sharing by thread affinity in multicore processors.

3.1 Variability of program execution times

Performance analysts often consider the program execution time as the first metric to inves-
tigate in the process of performance evaluation, for instance comparing the execution times
of two versions of the same program compiled with two different compiler optimisation flags.
Unfortunately, performance data can be polluted by errors or noise that can affect experimental
results. These errors or noise can come either from the experimental environment of the experi-
ment: hardware and/or software or from the measurement itself (the act of measuring perturbs
the program being measured). For example, there is a time required to read a timer before the
code to measure and store the timer after this code. Thus, if we execute a program N times, we

may obtain N execution times. The phenomena of observing these N distinct execution times
29
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is called wvariability of program execution times. Program performance optimisations, feedback-
directed iterative compilation and auto-tuning systems [KSP09|] all assume a fixed estimation
of execution time given a fixed input data for the program. However, in practice we observe
non-negligible program performance variations on hardware platforms. These variations appear
differently, depending on the applications and platforms.

Confidence interval of the mean
Confidence level 95%

o
N _
—
—
o
/('/)\F!_
—
o
CH
o
S _
b
o
T S |
H -
£ o
l_
o
&
o
—

Two alternatives comparaison

Figure 3.1: Comparing between two confidence intervals of the mean

When a program exhibits a large variability of program execution times, the conclusions
about the true performance behaviour of the program are hard to derive. Indeed, the main
problem is what is the real performance of the program? In this context, if we do not consider
a fixed estimation of program execution times, then we have two answer two questions: 1) what
kind of metric should be used to summarise the performance of the program? And 2) how to
compare the performance of multiple configurations of the same program? To illustrate this
situation, suppose that we have two samples of program execution times X and YE While X
represents execution times of a program P, Y represents execution times of a program P’ after
applying an optimisation technique to P. In order to compare between P and P’, we report
in Figure the average execution times and the confidence interval (CI) of the average with
confidence level of 95%. If we consider only the average execution time, we may conclude that
P’ is better than P (the optimisation works). However, due to variations of execution times, the
CIs of the average execution time of the two configurations overlap and the average value of Y is
in the CI of X. This means that this time, we can not conclude that P’ is better than P [Raj91].

Even if ClIs do not overlap, it does not mean that really the two alternatives are different.
Consider again the same example presented above with the exception that X and Y have dif-
ferent data. Figure [3.2 reports the execution times using the average and the CI of the average
execution time. Since the CIs do not overlap, we can conclude that X is higher than Y. (P’
is better than P). However, if we consider the median execution time (diamond point for P
and triangle point for P’), it is possible to conclude that there is no difference between the two

1X and Y are real performance data measured in real experiments
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Figure 3.2: Comparing between two confidence intervals of the mean

configurations.

To deal with performance variations, we need two use three complementary approaches:

1. Given an evaluation environment, identify the factors that influence the most on perfor-
mance variations. This aspect is one of the goals of this thesis, it is presented in Chapter [4]
Some of these factors are presented in Section [3.1.1]

2. Better control on the experimental setup and use of a rigorous performance evalua-
tion methodology. When a performance evaluation is performed, the experimental setup
(whether hardware or software) has to be fixed in order to reduce as much as possible the
variations and reproduce results (this thesis presents an example of such methodologies).

3. Use statistical analysis protocols for comparing the program performance of multiple ver-
sions. Section discusses some examples of such protocols.

The next section presents some factors that may influence on program execution times
variability.

3.1.1 Factors influencing the variability of program execution times

There are multiple factors that can make program execution times to vary. We classify these
factors into four distinct classes:

1. Inherent to measuring errors.
2. Inherent to the program:

(a) synchronisation and lock contention;
(b) OS calls;
3. Inherent to the execution environment:

(a) Machine workload;
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(b) Starting stack address [MDHS09];
(c) Thread and process placement;
(d) Variable CPU frequency;
4. Inherent to the micro-architecture:
(a) Memory hierarchy;
(b) Out of order and speculative execution;
(c) Data prefetching;
(d) Branch prediction;

The next section gives some related work on quantification and qualification of variability
of program execution times.

3.1.2 Quantifying and qualifying variability of program execution times

We can classify performance variability studies mainly in two classes: 1) variability of pro-
gram execution times or 2) variability of hardware performance counters. In the former class,
we can consider the variability of program execution times in native executions whether for
the whole program [MDHS09,|Gri09], for program fractions [HKA™01,[Hug09| or for simulated
programs [AWO03|. Regarding hardware counters, it possible to consider the variability of the
number of executed instructions [WMOS8| or comparative studies between multiple hardware
performance counters access infrastructures [ZJHO09).

Hughes et al. [HKAT01] studied the variability of program execution times of multimedia
applications running on top of general purpose processors. They focused on the analysis of the
frame-level execution time variability. The analysed multimedia applications periodically pro-
cess a set of data, the processing of each piece of data is commonly called a frame; each frame
has a constraint that it must be completed in a certain deadline. Using simulations and some
real machine measurements, they observed that most of the analysed multimedia applications
exhibit frame-level execution time variability. They observed that the frame-level execution
time variability is in the range of 37% and 195%. They concluded that the variability is mostly
caused by the application algorithm and the media input rather than the architecture. They
considered that if there are variations in the instruction counts, then this variability is inherent
to the application (standard deviation is up to 27% in some cases). On the other hand, vari-
ations in the IPC (instruction per cycle) means that the variability is due to the architecture
(standard deviation less than 5%). They also concluded that aggressive architectural features
induce little additional variability and unpredictability.

Collective optimisation |Gri09] is a valuable effort in the community of program optimisa-
tion aiming to log performance numbers in a central database. One of the main motivations
behind this effort is the disparity of performance scores reported in the literature, and the dif-
ficulty in comparing, checking and reproducing them. A fraction of the non reproducibility of
experimental code optimisation results comes from the variability of program execution times;
if not correctly reported or evaluated, the overall reported speedups would have a low chance
of being reproduced.

Another effort dealing with variability is the work of Leather et al. [Hug09]. They proposed
a performance optimisation system based on observing the execution time of code fractions
(functions and so on). The average execution time of such code fraction is analysed thanks to
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the Student’s t-test, aiming to compute a confidence interval for the average execution time.

Alameldeen et al. [AWO03] studied time and space variability in architectural simulation
studies of multi-threaded workloads (transactional workloads). Time variability occurs when a
workload exhibits different characteristics during different phases of a single run, it means that
the execution time for each processed transaction may not be similar. Space variability occurs
when two runs exhibit different execution times. For instance, in our work we focus on the
later definition of performance variability. Regarding time variability, they observed variations
up to 31%. In the case of space variability, they found that for the tested benchmarks, the
variability exceeds 3% in almost all the tested benchmarks. Interestingly, they also observed
that variability decreases when the applications run for longer periods of time. They conclude
that ignoring these variations can lead to incorrect results when comparing architectural designs
using simulations.

Variability of program execution times has been shown to lead to wrong conclusions if some
execution environment parameters are not kept under control [MDHS09|.

For instance, the experiments on sequential applications reported in [MDHS09| show that
the size of Unix shell variables may influence the execution times. In fact, the size of Unix shell
variables affects the starting address of the stack which in turn affects memory alignment (up to
5% variations in execution times). They also showed that the linking order of object codes may
influence the execution times. Regarding these two parameters, a performance analysis may
overestimate/underestimate the performance of an application or lead to incorrect conclusions.

Contrary to the variability of execution times, Weaver et al. [WMO8|] studied the variability
of instruction counts across multiple runs (7 runs) and multiple processor platforms (processors
from Intel and AMD, benchmarks from SPEC CPU2006 and SPEC2000). The number of
executed instructions is measured in two ways: 1) using hardware performance counters (the
retired instructions counter measured with the perfmon [Era04] tool) and 2) using dynamic
binary instrumentation (using the Pin [LCM™05] and Valgrind [NSO7| frameworks).

They considered multiple sources of variations:

e The accuracy of the counter. Each platform provides a specific counter for retired instruc-
tions. However, what the counter really does, differs from one platform to another. For
instance, the instruction fldcw is counted as two retired instructions in some processors
whereas it is counted only once on others.

e The virtual memory layout. Some applications are sensitive to virtual memory layout, for
instance the size of environment variables [MDHS09] can lead to significant performance
variability.

e System effects: page faults, I/O and number of timer interrupts.
e Variability incurred by dynamic binary instrumentation tools.

The measurement study compares two configurations: 1) a naive execution of CPU2000 and
CPU2006 (the experimental setup is not fixed), and 2) a more careful run by following a fixed
measurement methodology (we discuss a similar methodology in Chapter [4)).

To quantify variability, they used the coefficient of variation (CoV) metric. The CoV is
defined as the standard deviation divided by the average. Using an overall estimation of the
variations of benchmarks across all the machines, they conclude that with a naive execution,
the coefficient of variation of instruction counter is up to 1.07%. They observed that after
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fixing the experimental setup, the variations are less than 0.002% for all the benchmarks. They
found most of the variability of instruction counts is due to the virtual memory layout (some
benchmarks are sensitive to starting address of the heap and the stack), and to some extent the
variations are due to timer interrupts (number of time the timer interrupt is triggered ).

In the field of hardware performance counters again, Zaparaunuks et al. [ZJH09] studied the
accuracy of performance counter measurement tools. They performed a comparative study of
three well known measurement infrastructures on three different processors. The tested infras-
tructures are: 1) perfctr [Per], 2) perfmon [Era04] and 3) PAPI [BDGT00]. They concluded
that multiple factors have a non negligible effect on the accuracy of the measurement like: 1)
the number of measured performance counters (the number of hardware registers used simul-
taneously), 2) high level vs low level APIs, 3) kernel mode vs user mode measurement and
4) the duration of the measurement . As an overall estimation for example, they found that
when measuring the number of instructions at user level, the measurement error can lead to
2500 user-mode instructions across the tested tools. When counting at user and system level,
the error between the used measurement tools can lead 10000 instructions. One may say that
10000 instructions error is not important compared to the total number of instructions of an
application (possibly billions of instructions). However, if the measurement is intended for some
regions of the code or for program phase characterisation for instance, the impact of mislead-
ings conclusions may be high. Similarly, Moore [Moo02] discussed accuracy and efficiency issues
when using PAPI with the counting and sampling modes of hardware performance counters.

In the light of the different studies that we presented in this section, we can conclude
that variability is commonplace and can not be considered as negligible whether variability of
program execution times or instruction counts. We presented some related work discussing
possible factors that may produce these variations. Most often, we can notice that non-fixed
parameters in the experimental setup is the key factor that leads the execution times to vary
[IMDHS09]. So, to avoid some of these variations, the experimental setup (whether hardware
or software) has to be kept under control. However, this is not sufficient to eliminate all
the variations. Still, it is possible to use statistical analysis to limit the influence of outlier
(the minimal and the maximal) values when comparing different alternatives. Using statistical
analysis allows to be careful regarding the conclusions about the performance behaviour of the
applications under study. The next section presents some statistical performance data analysis
protocols.

3.1.3 Statistical performance evaluation

In this section, we present two statistical performance evaluation protocols: 1) JavaStats and
the 2) Speedup-Test protocols. We present in the next section the JavaStats protocol.

3.1.3.1 JavaSats

Georges et al. [GBE07] studied variability of program execution times for Java programs. They
first showed that Java programs are experiencing non-determinism or variability of execution
times. Second, they presented some prevalent Java performance evaluation methodologies.
These methodologies differ from each other in different ways: 1) measurement methodology
and 2) data analysis. In the measurement methodology, they discussed three approaches: 1)
iterate the benchmarks multiple times within a single virtual machine (VM) invocation; 2)
multiple VM invocations and iterate a single benchmark execution; and 3) multiple VM invoca-
tions and iterate the benchmark multiple times. Regarding data analysis, the authors discussed



3.1. VARIABILITY OF PROGRAM EXECUTION TIMES 35

methodologies that differ in the way they report performance numbers from a given sample of
execution times: average or median vs best vs the worst execution time. To overcome the weak-
ness of the previous methodologies to account for performance variability, they advocated the
use of a rigorous statistical methodology to compare Java performance. For a single Java pro-
gram with a fixed input data running on a single virtual machine, they considered performance
evaluation methods for two cases:

e Measure startup performance (the performance of the virtual machine):

1. Take multiple measurements, each comprises one VM invocation and a single bench-
mark iteration;

2. Compute confidence intervals for the average execution time across these measure-
ments.

e Measure steady performance (the performance of the program itself)

1. Consider p VM invocations and g benchmark iterations i.e. we have p X ¢ measure-
ments;

2. For each 1 < i < p invocation, retain only k£ measurements from the ¢ iterations. The
k' iteration is reached once the coefficient of variation (CoV) of these k iterations
falls below a fixed threshold;

3. For each VM invocation compute the sample mean of the retained k£ measurements;

4. Compute the confidence interval across the computed means from multiple VM in-
vocations

After computing confidence intervals for the average execution time, the authors consider
two cases: 1) comparing two alternatives and 2) comparing more than two alternatives. The
former computes a confidence interval for the difference in the two samples average. If the
confidence interval includes zero, there is no statistically significant difference between the al-
ternatives for the chosen confidence level. If the confidence interval does not include zero, the
sign of the average difference indicates which alternative is better [Raj91]. The later considers
an analysis of variance (ANOVA). An ANOVA analysis tests if there is a statistically significant
difference between all the alternatives. To know between which alternatives, there is or there is
not a statistically significant difference, the authors use the Tukey HSD (Honestly Significantly
Different) test. The Tukey HSD test allows to compare all the possible pairwise averages of the
tested alternatives with a risk level a and find which average value is significantly different from
another.

3.1.3.2 The Speedup-Test protocol

The statistical protocol for performance analysis proposed by [GBEQ7]| focused on average ex-
ecution times only. It is well known that the average is sensitive to outliers (minimal and
maximal values); so relying heavily on it may not be appropriate. For that reason, the median
is usually advised for reporting performance numbers. Touati et al. [TWB12] proposed a rigor-
ous statistical methodology (The Speedup-Test protoco]Eb based on well-known statistical tests
to study the statistically significance of observed speedups. By fixing a confidence level a, the
protocol is able to compare between two sample averages or two sample medians.
The Speedup-Test uses the following tests:

2The Speedup-Test protocol is implemented and distributed as an open source tool based on the R software.
In the remainder of this document, we rely on this protocol to certify the significance of our computed speedups
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. Shapiro-wilk test. It checks for the normality of a sampleﬂ of program execution times X.

In other words, it checks if the sample X follows the normal distribution.

. Fisher F-test. For a risk level «, it checks if two samples of program execution times X

and Y have similar variances O'g( = 012,.

. Student’s t-test. For two samples of program execution times X and Y, the student’s

t-test checks with a risk level « for the null hypothesis ux < py where ux and py are
the average values for the X and Y samples respectively.

. Welch’s test. This test is an adaptation of the Student’s t-test. It is used when two

samples of program execution times X and Y have unequal variances.

. Kolmogorov-Simirnov test. It checks if two samples of program execution times X and Y

follow the same distribution.

. Wilcoxon-Mann-Whitney’s test. For two samples of program execution times X and Y,

the Wilcoxon-Mann-Whitney test checks if the median of X is greater than the median
of Y and if P[X > Y] > %, which means the probability that an individual execution Y is
faster than an individual execution X.

Having two samples X and Y of program execution times, computing a statistically sig-

nificant speedup of the observed average execution time using the Speedup-Test methodology
follows the following protocol:

1. If the two samples are large enough (| X| > 30 and |Y'| > 30), use the Student’s t-test with

a fixed risk level o4l

2. If one of the samples is small (] X| < 30 or |Y] < 30)

(a) If X or Y does not follow Gaussian distributions (using the Shapiro-Wilk test) with
a risk level «, then it is not possible to conclude about the statistical significance
of the observed speedup of the average execution time. In this case more runs are
required to build a large sample.

(b) If X and Y follow Gaussian distributions (Shapiro-Wilk test) with a risk level o then:
i. If X and Y have the same variance (using the Fisher F-test) with a risk level «
then use the standard Student’s t-test.

ii. If X and Y do not have the same variance (using the Fisher F-test) with a risk
level o then use the Welch’s version of the Student’s t-test.

Similarly, the Speedup-Test computes a statistically significant speedup of the observed

median execution time for two samples X and Y. The computed speedup relies on the Wilcoxon-
Mann-Whitney test to check if the median execution time has been reduced or not between the
two samples. Performing the later test follows the following protocol:

1. Perform the two-sided and unpaired Kolmogorov-Simirnov test with risk level a to check

that the two samples are from the same distribution.

2. If X and Y are not from the same distribution, then check if X and Y are large enough:

3A sample is a finite set of program execution times.
4The Student’s t-test makes the assumption that the distribution function of the two samples follow a normal

distribution. However, if they are not, then it is admitted (but not proved) that the test stays robust for large
samples
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(a) If | X| and |Y'| are large enough (|X| > 30 and |Y'| > 30), then it is known that it is
possible to use the Wilcoxon-Mann-Whitney test for large samples with risk level «
but the risk level may not be preserved.

(b) If | X| <30 or |Y| < 30 then it is not possible to use the Wilcoxon-Mann-Whitney
test, more runs are required.

In addition of computing a statistically significant speedups for the average or median exe-
cution times for a given benchmark and a fixed data input, the Speedup-Test protocol gives the
possibility to compute two metrics 1) an overall speedup S and 2) an overall performance gain
factor G across a set of benchmarks. The idea behind these metrics is when we apply a code
optimisation technique on a set of benchmarks, practically only a fraction of programs will take
benefit from it. In [TWB10|, they suggested that it is possible to compute the S and G only for
the fraction of benchmarks that succeed with the Student’s t-test or Wilcoxon-Mann-Whitney.
If we consider that we observe a speedup in p out of n benchmarks, then the fraction £ repre-
sents the proportion of accelerated benchmarks. To evaluate if the code optimisation technique
is beneficial for a large faction of programs, the Speedup-Test protocol computes a confidence
interval with a fixed confidence level « for this proportion of accelerated benchmarks.

3.1.4 Discussion on variability of program execution times

In native program execution, the instability of program performance makes an accurate quan-
tification of program performance highly challenging. Indeed, this variability may lead to wrong
conclusions about the true performance behaviour of programs. For example, varying the size
of the UNIX shell environment may lead to up to 5% variability in execution times [MDHS09].
Measurement infrastructures like software to access hardware performance counters can also
introduce variations in the reported counters, mainly it is dependent to the way that these
counters are used |ZJHO09]. One would think that using simulators will help to reduce this
variability. Unfortunately, not only they are slow, they also present a bias in measurement,
more than 3% variability in execution times [AWO03|. The sources of the measurement bias are
numerous. However, one of the important factors is incorrectly fixed parameters in the exper-
imental setup [MDHS09, WMOS]|. Still, operating system (OS) effects like process scheduling,
page faults management, OS interrupt handlers have also to be considered.

In order to reduce the effects of these variations, and consequently to decrease the probabil-
ity to be wrong about the performance of a given program or a system, two aspects have to be
considered: 1) rigorous performance evaluation methodologies, and 2) use rigorous statistical
methods for performance analysis [TWB10,GBE07]. With the former, we think to a fixed soft-
ware and hardware setups, multiple runs (for a statistical significance analysis), longer runs (to
overcome the overhead of the measurement itself) or by using a large number of benchmarks
(to overcome the variations that come from the application itself). The later aspect is related
to the use of statistics. Indeed, a statistical data analysis does not remove the variations, but
it helps to better interpret performance data with fixed confidence levels.

When it comes to program execution time measurement, it is possible to consider two dimen-
sions: 1) the measurement granularity and 2) the program data input. First, the measurement
granularity consists of whether we are measuring a fraction of the program or the whole program
(i.e. single loop, function or the whole program). For small granularity measurement targets,
the sensitivity to errors or noise can be significant, and consequently leading to important vari-
ations. On the other hand, long running programs may be less sensitive to variations [AWO03].
However, in all cases, the size of the sample has to sufficiently large (more than 30 runs [Raj91])
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even if it is time consuming for large programs. In fact, multiple statistical tests require a large
sample of data [TWB10,|Raj91]. As a complementary aspect to the measurement granularity,
we can consider how the repetitive runs are performed: 1) a single run where the repetitions
are performed inside the program or 2) multiple invocations of the program. When we perform
multiple invocations of the program, even if is not always true, the successive executions can
be considered as independent. Unfortunately, this situation is not true when we do repeti-
tions inside a single invocation of the program. There are two main reasons for that. The OS
does not behave as if the program is launched multiple times from the shell. For example, the
startup time of the program is not accounted. The second reason is caches may be warmed
by the repetitive executions. Regarding the program data input, the variability of execution
times in this case cannot be analysed with the Student t-test or the Wilcoxon-Mann-Whitney
test. Simply because when data input varies, the execution time varies inherently based on the
algorithmic complexity, and not on the structural hazard. In other words, observing distinct
execution times when varying data input cannot be considered as hazard, but as an inherent
reaction of the program under analysis. However, an analysis of the variance (ANOVA) [Raj91]
may be used for this aspect. In the remainder of this thesis, we focus on the variability of
program execution times with a fixed data input.

The presence of multiple levels of memory cache in mulicore processors increases the need
for a better understanding of the locality of data and its measurement in termes of performance
stability and performance improvement. In this context, the next section discusses metrics and
methods to measure data locality in single-threaded and multi-threaded applications.

3.2 Data locality and reuse distance analysis

The organisation of modern computers relies on the implementation of a hierarchy of memory
systems. This organisation defines multiple levels: the highest level of the memory hierarchy is
the processor’s registers, the lowest level is the main memory and the intermediate levels are
memory caches. While lower levels have bigger storage capacity but slower time accesses, upper
levels (i.e. registers and caches) have less capacity but have lower latency access (depending
of the level in the hierarchy). When a processor issues a memory operation on a data, it first
looks for at the highest level, then at the lower levels (until the data is found).

Since memory caches have lower latency and less capacity, to achieve good performance, it
is better to keep the most frequently data on caches as long as possible, hence improving the
data locality of the program. We can divide data locality in two classes:

e Temporal locality: It refers to the reuse of a given piece of data in a relatively short
time duration in the future.

e Spacial locality: It refers to the use of data elements which are stored in relatively close
memory locations.

The next section discusses techniques to measure data locality.

3.2.1 Measuring data locality

Data locality of a program is not easy to measure, there is no a counter or a ratio that gives
an intuition about its locality. However, since data locality is a consequence of a good or a
poor behaviour of a program as far as memory hierarchy is concerned, it can be approximated
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by some metrics like number of cache misses or cache hits. These metrics can be computed
differently according to their dependence or not to a certain architectural platform. So, we
consider architecture dependent and architecture independent metrics.

The next sections discusses the case of architecture dependent metrics to measure data
locality.

3.2.1.1 Architecture-dependent metrics

One way to measure data locality of a program on a given hardware platform, is the use of
an expensive cache simulation approach or by using hardware performance counters. It is then
possible to estimate metrics such as cache miss ratio or cache hit ratio for instance. This ap-
proach can derive valuable information about the locality of the program by characterising the
behaviour of a program when running on top of a fixed hardware platform. For example, it
is possible to compare the performance of a program before and after applying a data locality
optimisation technique. On one hand, a good impact of applying a data locality optimisation
technique translates in a reduction in the number of cache misses and consequently in program
execution time. On the other hand, a negative impact translates to an increase in the num-
ber cache misses and consequently, an increase in program execution time. The drawback of
this approach is the following: performance data are collected for a given hardware with fixed
cache parameters (fixed cache size, number of sets, number of ways, etc.), they are not portable
across various platforms. So, if locality information is required for different architectures, the
program has to be run on each of these hardware configurations (whether direct measurement
or simulation). Consequently, the overhead of the profiling may not be negligible.

When it comes to cache simulation, we can consider for example the case of Cachegrind
[Net94]. Cachegrind simulates the machine cache hierarchy when a given program executes.
It simulates independent first level L1 instruction and data caches and a unified L2 cache. If
a machine has also an L3 cache, Cachegrind simulates the first level (instruction and data
cache) and the last level (L3 cache). Cachegrind gathers statistics about hits and misses for
each individual source code line. These statistics are related to each tracked level in the cache
hierarchy. At the end of the execution, it reports a summary of global statistics for the whole
application for each tracked level in the cache hierarchy.

The next section introduces architecture independent metrics to measure data locality.

3.2.1.2 Architecture-independent metrics

One of the most influential metrics to measure data locality is the reuse distance analysis. Mat-
tison et al. studied stack algorithms in cache management and defined the concept of stack
distance [MGST70|. Reuse distance is similar to stack distance using the LRU (Least Recently
Used) replacement policy. It measures the program locality behaviour of an application in a fully
or set-associative cache. It does not depend on any hardware or cache parameters. This allows
this technique to measure the locality of programs independently of any particular machine.
Most often, reuse distance is used as dynamic technique to approximate the cache behaviour of
a program.

It is also possible to estimate data reuse or data locality at compile time using static analysis.
A compiler analyses array references in nest loops of a program, and determines if these refer-
ences access the same memory locations [WL91,MCT96| Fah97]. It is then possible to classify
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Figure 3.3: An example of reuse distance on a sequence of memory accesses, a reuse distance
histogram, and cache miss rate curve for a cache with sizes going from 0 to 3 cache lines

these accesses in terms of data reuse, and by using cost models to predict the cache performance
of the program. The idea behind analytical methods for predicting cache behaviour is to model
the cache behaviour of a program by means of mathematical formulas. If these formulas can be
solved then output of such models like the number of cache misses or the number cache lines a
loop nest accesses can be exploited by data locality optimisation techniques. These analytical
models include Presburger formulas [CPHLO1], probabilistic analytical models [FDZ99| or the
Cache Miss Equations [GMM99,VX02]. The main limitation of such analytical models is that
they do not account for indirect references, they require known lower and upper bounds of
iteration counts, affine expressions or regular accesses patterns.

Due to the limitation of compile-time techniques to accurately model the cache behaviour
of programs, we focus our discussion on runtime techniques. The next section presents some
related work regarding the concept of single-threaded data reuse distance analysis.

3.2.2 Single-threaded data reuse distance analysis

In a sequential execution, reuse distance is defined as the number of distinct data elements
accessed between two consecutive references to the same element [DZ03,DZ01, BD01] or oo if
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the element has not been referenced before. Figure shows an example of reuse distance
computation for a memory references stream. We can observe that while the second reference
of X has a reuse distance of 1, the second reference of Y has a reuse distance of 0. The granu-
larity of a data element can be a processor word, cache lines, memory page or/and instructions.
Moreover, this metric measures the distance (in terms of the number of distinct data accesses)
between two accesses to the same data element instead of time.

To measure program locality with reuse distance, a histogram of the reuse of all memory
references is used. Shorter reuse distances means good temporal locality because these ref-
erences are more likely to be cached. On the other hand, longer reuse distances means bad
locality because these references are more likely to not be present in the cache when they are
referenced again. For a fully associative cache with N lines and with a LRU replacement policy,
there are NV + 1 counters: C4,(Cs,...,Cn,Cspn. For each cache access, one of these counters is
incremented. The i + 1** counter is incremented if the data element is found at the i** position
on the LRU stack. For instance, if the reuse distance of a data element is equal to zero, then
the C} counter is incremented by one, if the reuse distance for an access is 1, then the Cs is
incremented accordingly and so on. For all accesses with reuse distances larger than the cache
size (the data element is not present in the LRU stack), then the Csy counter is incremented
representing the cache miss counter. The CSs counter is also incremented when a memory
reference has never been referenced before (first time access equivalent to compulsory misses).

Regarding the above definition of the reuse distance measurement, if we want to study the
locality of a full associative cache size having lower cache lines number, says N’ < N then
the hit counter (H(N’)) and the miss counter (M(N’)) can be computed with the following
formulas:

N’ N
H(N)=>C; and M(N')= > Ci+Csy
=1 i=N'+1

This formulas is actually a slight adaptation of the formulas presented in [CP03|. The miss rate
for a given cache size is computed as the ratio between the number of misses for reuse distances
greater than the cache size and the total number of references. Figure [3.3D] shows the reuse
distance histogram. The histogram reports four bars, each represents reuse distance of 0, 1, 2
and a cold misses counter respectively. A cold miss counter tracks memory locations that are
referenced for the first time. Figure [3.3¢| shows the miss rate curve for a cache with 0, 1, 2 and
3 cache lines size.

Compared to simulating the whole program locality for various cache parameters, reuse dis-
tance measurement is faster. However, full reuse distance measurement has the limitation to
be slow. The overhead is due to the need to feed the model with all the memory references.
Moreover, this overhead is even more prevalent for large data sets. To overcome this limitation,
researchers have proposed sampled reuse distance measurement [DZ03, BH04, BH05, SKP10].
The idea behind the concept of a sampled reuse distance analysis is the following: instead of
tracking all the memory references, a sampled analysis randomly selects individual references
from the dynamic references stream and tracks the selected addresses until their reuse. With
this approach, only a subset of memory references have to be tracked to compute the model
which can greatly reduce the overhead of the analysis. In this context, statistical models can
be used to estimate the miss rate of shared caches. Though fast, the accuracy of a sampling
approach can be a problem. Indeed, sampling methods implies to select a sample of random
addresses. However, estimating to what extent these selected addresses can be considered as
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representative of the full data stream remains difficult.

Reuse distance analysis can also be applied for data locality prediction purpose. It allows to
profile few runs of program using different data input. With the help of some statistical models,
it tries to predict how the locality behaviour of the program will be affected when running
with other (larger) data inputs. In this context, Zhong et al. [ZSD09| examined approximate
algorithms for measuring reuse distance and prediction methods for modelling whole-program
locality.

The next section presents some related work about reuse distance analysis for multi-threaded
applications.

3.2.3 Multi-threaded data reuse distance analysis

The previous section presented the single thread data reuse analysis. We showed that it is able
to model the program data locality for a large set of possible cache sizes. Unfortunately, this
is not sufficient when it comes to predict the locality behaviour of multi-threaded applications
running on multicore processors. The problem with the single thread reuse distance analysis
is that it is unable to capture the dynamic behaviour of a parallel execution. This behaviour
can be translated to the need to understand the following: how the different threads interact as
far as the use of a shared cache is concerned? To accurately predict the locality behaviour of
a multi-threaded application, a multicore-aware reuse distance analysis also called a concurrent
reuse distance (CRD) [WY11] has to consider two key parameters:

e Memory interleaving. This parameter considers how memory references of the simulta-
neous execution of different threads interleave. Considering a parallel execution, dynamic
parameters (such as scheduling, synchronisation, I/O, etc.) impact memory references in-
terleaving on the shared cache. Hence, the CRD model has to reflect this thread-interleave
behaviour to precisely model inter-thread interaction.

e Data sharing. Data sharing impacts cache performance into two ways. First, considering
the case of data accessed by all threads in read only mode, the first access to the shared
data by one thread will effectively prefetch that data to the cache making it available to
other threads. The direct consequence of prefetching that data is to avert future cache
misses when the data is accessed by other threads. Second, when a shared data is accessed
by multiple threads, only one copy of the data needs to be brought to the cache and used by
all threads. Moreover, bringing one copy to the cache saves cache space which can be used
to hold other memory blocks with positive impact on the multi-threaded performance.

Figures |3.4] and show examples on how a CRD analysis has to consider memory refer-
ences interleaving and data sharing among multiple threads. The first figure shows a concurrent
reuse distance profile for two threads sharing data with distinct memory references. It reports
the effects of data sharing on the reuse distance profile. The first scenario is related to the reuse
distance of the memory reference A. If we consider the case of the first thread, the reference to
A by both threads breaks the reuse interval into “ACBCA” and “AEA”. The new CRD has to
consider the RD of 2 (for “ACBCA”) and RD of 1 (for “AEA”) compared to original RD of 2.
The second scenario is related to the memory reference C'. Referencing C' by thread 2 has the
effect of prefetching that data to the cache, the direct effect is to avert a cache miss for thread
1. So, instead of having an RD = oo for the memory reference C by thread 1, the new CRD is
equal to 1. The second figure shows the case of uniform and non-uniform interleaving. When
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Figure 3.4: A case of a concurrent reuse distance of two threads sharing data
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Figure 3.5: A case of uniform and non-uniform interleave of memory references of two threads

it comes to model memory references interleaving, some studies distinguish between a uniform
or a non-uniform thread-interleaving (see Figure . Considering a uniform or a non-uniform
thread-interleaved memory references streams depends on how the concurrent reuse distance is
computed. Mainly, there are two approaches to build a concurrent reuse distance: 1) one single
CRD and 2) merging multiple per-thread reuse distance profiles.

The first approach aims to directly build a global and shared CRD; all memory references
of all threads go through this single CRD. In this approach, thread-interleaved memory ref-
erences is implicit, it is based on the order of arrival of memory references to the shared
CRD [SKP10,SPP10,|ZKY11]. This approach has one main drawback, it captures one possible
memory references order among many other possibilities; thread scheduling and synchronisa-
tion for instance, may impact the order in which memory addresses are accessed by threads.
Therefore, the reuse distance analysis may vary across multiple profiles.

The second approach [WY11,DC09,lJZTS10] aims to build per-thread reuse distance pro-
files, each per-thread profile captures the classical reuse distance in isolation at the end of the
parallel execution. All the individual RDs are merged into a single shared CRD. It is only at
the time of merge that the model has to consider the nature of memory references interleave.
The merge decision highly depends on the expected behaviour of the multi-threaded application
or by answering the question: do threads execute the same code or not? If threads execute the
same code, then it is more likely that threads access memory in a similar way, so it possible
to consider a uniform model for merging the distinct RDs. On the other hand, when threads
execute distinct instruction streams, they are more likely to access memory in different ways.
So, it is possible to consider a non-uniform merging model for such applications.
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Wu et al. [WY11] studied the locality of multi-threaded applications which exhibit loop-level
parallelism running on top of tiled multicore processors (using simulators). For these loop-
level programs, they made the assumption of uniform memory references interleave and study
how CRD profiles scale for larger core numbers. Ding et al. [DC09| and Jiang et al. [JZTS10]
considered the general case of asymmetric behaviour of threads. They considered a non-uniform
interleave of memory references to build their CRD models. Although the former approach
addresses only one class of multi-threaded applications, it has the advantage of simplifying
the problem, since it considers that all threads exhibit symmetrical memory access behaviour.
Though general, the later approach employs complex statistical models to account for the highly
large number of ways that threads interleave and interfere. For this reason, this approach may
be inapplicable for large data sets.

3.2.4 Discussion about data locality measurement

Data locality is the measure of how programs are taking benefit from caching systems. Since
the introduction of memory caches, locality has increasingly gained importance in computing
systems. Depending on the program locality or the patterns of data reuse and due to the higher
speed of memory caches, a memory hierarchy can substantially increase or decrease the program
performance [Joh02]. While locality can be measured by hardware-dependent measures such
cache miss rates (using hardware performance counters for instance), hardware-independent
metrics such as reuse distance, ensures better portability and predictability. Reuse distance
can be computed by an exact measurement or by a sampled measurement. Although the exact
measurement gives better accuracy, analysing all the memory references is slow. On the other
hand, a sampled measurement leads to a substantial overhead decrease but with some accuracy
loss. It also possible to measure data locality by static code analysis. This method may be
more attractive due to its low overhead (it can be implemented in a source-to-source compiler
or a full compiler). Unfortunately, since it is hard to track all the memory references statically,
the accuracy of the measurement could be affected (pointer references, data input known at
runtime, etc.).

While single thread reuse distance focus mainly on single-threaded programs, it has to be
augmented to account for a multi-threaded execution. A multi-threaded aware reuse distance
analysis has to consider two aspects: data sharing and memory references interleaving. So,
data locality measurement is highly dependent on the two later aspects when it comes to build
a concurrent reuse distance. Our work on the data locality techniques presented above differs
fundamentally in one aspect. While these techniques focus on how to effectively and accurately
measure data locality, this thesis presents runtime techniques aiming to enhance multi-threaded
data reuse.

The next section discusses the problem of inter-thread cache contention in multicore pro-
cessors. This problem happens when multiple independent applications run simultaneously and
access to common caches. Indeed, co-locating on the same cache multipe processes may lead to
significant performance variability and leads to severe performance degradation on the other.
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3.3 Improving shared cache performance for co-running appli-
cations

In multicore processors with shared caches, the concurrent execution of multiple processes can
result on a destructive interaction leading to a severe performance degradation. An example of
such destructive interaction is the case of two programs A and B running on a neighbouring
cores accessing to a shared cache. Let us consider the following scenario: while program A
exhibits a streaming behaviour on a large working set, program B operates on a small working
set, but with good temporal locality. The performance of the program B will be highly affected
by the execution of program A. The later will occupy a large footprint on the cache without
any temporal reuse. This will lead to evict useful cache lines of program B, hence, degrading
its performance.

Impact of inter—thread cache contention

O C1:Worst
M C2:Best

Speedup (Time solo/ Time share)

0.45 055 065 0.75 0.85 0.95

namd milc mef Ibm

Figure 3.6: The observed performance degradation of four SPEC CPU2006 benchmarks run-
ning under three different co-schedules on an Intel quad-core processor (higher bars means low
performance degradation)

In order to illustrate the performance behaviour when running multiple concurrent appli-
cations on a multicore processor, we followed the idea presented in |ZBF10|, and performed an
experiment using four applications from SPEC CPU2006 benchmarksﬂ namd, milc, mcl and
the 1bm benchmark. The four applications were run simultaneously on an Intel quad-core pro-
cessor, where each couple of cores share an L2 cacheﬁ Each application runs with one thread
and is placed in a distinct core. Each execution of the four applications under multiple thread
placement configurations is called a co-schedule.

Figure 3.6 shows the performance degradation of the four applications when running simul-
taneously under different co-schedule configurations. With four cores and two L2 caches, there
are three unique ways to co-schedule the four applications. For each co-schedule, the median
execution time (35 runs) of each application is reported. Besides, we measured the execution
time of each application when it runs alone. For each application 7, and for each co-schedule
7, we computed the speedup of running the application ¢ under j relative to a solo run as the

SSPEC CPU2006 are single threaded sequential applications.
5The machine has two sockets, each with four cores. We use only one socket for our experiments
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: solo
following: T;:Lm’ej where Time} represents the reported execution time of application = under
co-schedule y. Fligure 3.6]reports for each application the best and the worst observed speedups.
It shows that depending on applications, the performance degradation due to sharing the L2

cache may be significant.

The impact of cache sharing on program performance in multicore architectures was stud-
ied in many research papers, mainly focused in architecture design and in operating system
(OS) process scheduling. These studies have different objectives like the increase of system
throughput, overall fairness or quality of service. Achieving these objectives requires a better
understanding of the interaction between threads in order to: 1) propose prediction models or
classification schemes of cache sharing behaviours and 2) propose solutions and techniques that
aim to minimise the inter-thread cache misses and contention by placing the different programs
appropriately. Most of these studies focused on single threaded applications and target multi-
programmed environments.

The next section discusses some related work on inter-thread shared cache contention pre-
diction models and classifications schemes of cache sharing behaviours.

3.3.1 Predicting inter-thread shared caches contention

The first approach to alleviate the problem of cache contention relies on finding a co-scheduling
that minimises capacity misses and cache access contention. The advantage of implementing a
process scheduling policy is flexibility. The scheduling algorithm can be implemented into two
distinct locations:

1. At system level or inside the OS scheduler: this solution is more attractive, since it allows
to monitor all the processes running on top of the system.

2. At user level: this solution allows to monitor only a subset of processes. In a high
performance system for instance, it is possible to consider only high consuming time
applications.

In addition to the implementation location, a software solution for process scheduling can
adapt to a dynamic behaviour of applications.

Tackling cache contention purely by process scheduling requires the knowledge of some
information or characteristics about the running applications. For that reason, most often
these techniques are profile guided. The profile can be collected in two ways:

1. Each application is run once until termination, analyse the profile and apply a scheduling
policy.

2. It is not necessary to run the whole application until termination, just take a profile on
an sample of the execution and apply the scheduling policy.

Program profiling is important because it allows to build models to understand and predict
how applications interact with each other. Despite its advantages, profiling may be highly time
consuming. For this reason trade-offs have to be done between accuracy and speed.

Many performance models were studied to predict the impact of cache sharing on co-
scheduled applications |[CGKS05, XL08, KBH"08,[ZBF10]. Chandra et al. [CGKSO05] studied
the impact of L2 cache sharing on threads that simultaneously share the cache on a chip multi-
processor (CMP). They proposed three performance models to predict the impact of inter-thread
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cache sharing on the performance of each co-scheduled thread that shares the cache. They ob-
served that cache contention can significantly increase the number of cache misses of a thread
in a co-schedule, and showed that the degree of such contention is highly dependent on the
thread-mix in the workload. The input of the proposed models is the isolated L2 cache reuse
distance of each thread. A reuse distance profile captures the temporal reuse behaviour of an
application in a fully or set-associative cache. The output of the models is an estimated number
of extra L2 cache misses for each thread due to cache sharing.

In the spirit of predicting the performance degradation experienced by co-running appli-
cations when sharing common caches, Zhuravlev et al. [ZBF10] investigated contention-aware
scheduling techniques to mitigate the contention on shared caches in multicore processors. In
order to prototype efficient scheduling techniques, they studied some well-known classification
schemes (prediction models) in the research community. The studied models aim to predict
the impact of cache sharing on the overall program performance of co-scheduled applications.
In other words, the prediction models estimate how likely each thread can affect another when
competing for shared caches. After studying the Stack Distance Competition (SDC) |[CGKS05],
Animal Classes [XL08], Solo Miss Rate [KBHT08| and the Pain Metric (proposed by [ZBF10])
models, they selected the best scheme to design a scheduling algorithm.

A Stack Distance Competition model based on reuse distance analysis. It tries to build a
new reuse distance profile that merges individual reuse distance profiles of threads that run
together. The output of the model is an estimation of the number of extra cache misses due to
the cache competition access.

Animal Classes model classifies cache behaviour of benchmarks into four classes based on
simple heuristic metrics. Each class is related to the behaviour of a specific animal with respect
to its use of the shared cache. The model uses metrics such the total number accesses to the
L2 cache, the total number of L2 misses if the program use the whole n ways of the cache,
the relative miss rate if the program has exclusive use of the n ways of the cache (number of
misses per accesses) and finally the smallest number of ways needed to achieve a miss rate that
is greater than or equal to k% of solo miss rate. The combination of these metrics allows to
define four profiles (animals) of applications:

1. Low-rate access to the shared cache.

2. Frequent L2 accesses but the miss rate is reasonable even if the number of used cache
ways is small.

3. Frequent L2 accesses and require an adequate number of ways to achieve good performance
(very-sensitive to co-running applications).

4. Frequent L2 cache misses with a high cache miss rate whatever the allocated cache size
(frequently hurts other applications).

A Solo Miss Rate model uses hardware performance counters to measure the number of
misses or the cache miss rate. This metric can give the scheduler hints about applications with
high-rate cache misses. Therefore, it is possible to spread-out these applications onto multi-
ple shared caches in such a way that no cache will experience more cache misses than an another.

The Pain metric model uses the concept of the cache sensitivity and cache intensity. Sensi-
tivity measures how much an application will suffer when it shares the last level cache. Using
probabilities, the model estimates how likely hits in the reuse distance profile turn into misses
due to cache contention. The Intensity metric measures how much an application will hurt
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other applications. It is measured as the number of last-level cache accesses per one million
instructions.

Besides contention on shared caches, Zhuravlev et al. [ZBF10] studied other factors causing
performance degradation of co-running applications running on chip multiprocessors (CMPs).
They provided an approximation of the performance degradation due to:

1. DRAM controller contention;

2. FSB contention;

3. Shared cache contention;

4. Contention in resources involved in prefetching.

From the classification schemes study, they concluded that the Solo Miss Rate [KBHT08]
gives good results while keeping the profiling overhead low. Indeed, the miss-rate of an applica-
tion is easy to obtain online via hardware performance counters present in commodity hardware.
They presented an algorithm exploiting the miss-rate called Centralised Sort. The algorithm
examines the list of applications, sorted by their miss rates, and distributes them across cores,
such that the total miss rate of all threads sharing a cache is balanced across all caches.

The next section discusses cache partitioning as a technique to reduce the inter-thread cache
sharing contention.

3.3.2 Cache partitioning

As an alternative to process scheduling, several research studies address cache contention via
software-based or hardware-based cache partitioning. Indeed, cache partitioning is a technique
that refers to the partitioning of the shared L2 or the L3 caches among multiple computing
processes running concurrently on distinct cores. In order to reduce capacity misses experienced
on shared caches, the partitioning aims to confine the working set of an application in an portion
of the shared cache. Usually, cache partitioning may follow multiple optimisation objectives:

1. Improving overall program performance: improve the IPC of each intervening co-scheduled
application by minimising the overall cache miss rate.

2. Providing quality of service (QoS): if we consider that each program has its own perfor-
mance requirement, an example of QoS can be defined as follows: the performance of a
program A when co-scheduled with a program B should never be less than X % compared
to the case when running in solo.

3. Ensuring fairness: an example of a fairness metric is to ensure that the slowdown (speedup)
of each co-scheduled program should be identical after cache partitioning. Another fairness
metric may follow the optimisation objective of balancing the number of cache misses
experienced by each co-runner when sharing a cache.

In the following sections, we discuss the principle of software and hardware cache partition-
ing techniques. Besides, in order to reduce the inter-thread cache contention, we also present
an approach that combines both software and hardware techniques.

3.3.2.1 Software cache partitioning

Most often, software cache partitioning techniques rely on the classical OS-page coloring. In
this case, page coloring is implemented inside th OS virtual memory manager or inside virtual
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machines. In physically indexed caches, page colouring aims to control the mapping of physical
memory pages to a processor’s cache blocks. Figure [3.7]illustrates the OS-page colouring tech-
nique. Memory pages in the physical address space are assigned three different colors, pages
with the same color are mapped to the same cache blocks (a group of cache sets). Page colouring
aims to: 1) maximise the total number of physical pages cached by the processor and 2) reduce
conflicts by ensuring that contiguous pages in virtual space do not map to conflicting physical
pages |TDF90,/CJ06, ATSS09,[LLD"08,ZDS09]. Therefore, when physical pages are required by
an application, the OS will attempt to allocate free pages that are contiguous from the CPU
cache’s view.

Memory pages

Cache
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Way 1 Way 2 Way n offset

Cache address | Cache set number

Cache sets
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Physical memory

Color 3
address

Physical page number Memory page offset

Color 1
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page color

Figure 3.7: An illustration of the page colouring Figure 3.8: Page colors codification on an X86
technique |[ZDS09] architecture

As stated above, memory pages that map onto the same cache portion (blocks) are assigned
the same colour. The amount of cache size to allocate to each co-running application is controlled
by the colour of pages assigned to each application. By doing so, the operating system can isolate
the shared cache usage of co-running applications. Assigning a page colour to a physical page
works as follows: a physical address contains several common bits between the cache index and
the physical page number (See Figure . These bits are referred to as page colour. The
maximum number of colours that a platform can support can be computed by the following

formulas:
CacheLineSize x NumberofSets

[ =
Colors PageSize

Given this total number of colours, an operating system (OS) can partition the shared cache
between the co-running processes by assigning a given number of colours for each of them. The
number of colours to provide for each application is dependent on the optimisation objective:
performance, QoS or fairness. It can be computed statically (once for each application) after an
application profiling phase or dynamically to adapt to program’s time-varying phase behaviour.
The next section discusses the principle of hardware cache partitioning.

3.3.2.2 Hardware cache partitioning

Hardware cache partitioning techniques mainly focus on efficient (cache sharing aware) cache
replacement policies. The goal is to minimise cache misses or maximising fairness. Contrary
to OS or programmer approaches, hardware techniques assume that a co-schedule is already
determined by the OS or by the programmer, and the hardware’s task is to optimise the per-
formance for the given co-schedule by dynamically allocate/partition the shared cache between
the running jobs.

As an example of such hardware technique, we present the work of Qureshi et al. [QP06].
They proposed a hardware mechanism (UCP for Utility-based Cache Partitioning) to partition
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a shared cache between multiple applications. The partitioning depends on the reduction of
cache misses that each application is likely to obtain for a given amount of cache resources. The
proposed mechanism monitors each application at runtime, it uses a hardware circuit (UMON:
utility monitoring) to obtain information about benefit (utility) of cache resource. Mainly, for
each application, the mechanism estimates the number of hits and misses for all possible number
of ways allocated to the applications. The approach is based on reuse distance profiles. The
idea behind the approach is as follows. The utility of a cache resource can be directly correlated
to the change in the number of cache misses or improvement in performance of the application
when the cache size is varied. Using the utility information, the cache is then partitioned (decide
the number of cache ways to allocate for each application) in order to minimise the number of
cache misses of the co-running applications.

We presented in the previous sections the principle of software and hardware cache partition-
ing. The next section discusses an approach that combines hardware and software techniques
for shared caches partitioning to reduce the impact of inter-thread cache contention.

3.3.2.3 Combined hardware and OS approach for shared caches management

To illustrate the principle of a combined approach, we present the work of Rafique et al. [RLT06].
They proposed an architectural support for an OS to manage shared caches with multiple
policies. The idea behind the scheme follows these observations:

1. Shared cache resources are purely managed in hardware with simple replacement policies
such as LRU.

2. Managing shared caches in hardware does not offer flexibility to handle all the sharing
scenarios.

3. The OS can offer the required flexibility to adapt to different cache sharing scenarios.

Managing shared caches purely in software (OS) is impractical due to a high overhead.

5. A combined software/hardware approach may meet the double objectives: performance
and flexibility

e~

From the observations presented above, the authors propose a scheme which consists of a
hardware cache quota management mechanism, an OS interface and a set of OS level quota
orchestration policies. When the OS assigns some portion of the cache (i.e. quota) to a given
application, the hardware mechanism guarantees that these OS-specified quotas are enforced in
shared caches. The quotas are defined by the OS for each co-running application and multiple
applications can be assigned to the same portion of the cache. All the assigned quotas are
not fixed for the whole application execution life. Indeed, the OS can adapt the quotas to the
demand of applications during regularly scheduled OS interventions.

The quota assigned to an application by the OS is specified in terms of number of ways or
a set granularity in the cache. The hardware checks that the quota assigned to a process is
not violated at the time of cache block replacement. To do so, the hardware needs to know
the identity of the running process. The identity of the process is stored in a special register
called SID (i.e. sharer identifier) to identify the identity of the process running on the current
processor. Whenever a processor makes a memory request, its SID register is used to access a
special hardware table SQT (i.e., sharer quota table) to relieve the quota value of the process
currently running on that processor.

The idea of dynamic partitioning of shared caches was first investigated by Suh et al.
[SDR02,SRD04]. They proposed an on-line memory monitoring scheme utilising a set of hard-
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ware counters. The counters indicate the marginal gain in cache hits as the cache size is increased
giving the cache miss-rates for each process as a function of cache size under the standard LRU
replacement policy. Using these monitoring information, a partitioning module implemented
in software partitions the cache among the active processes so as to minimise the overall cache
miss-rate.

3.3.3 Discussion on inter-thread shared cache contention

Cache contention has motivated several studies, going from performance prediction models and
process scheduling policies in one hand, and software and hardware cache partitioning techniques
on the other hand. Prediction models intend to qualify and quantify the impact of cache sharing
on the performance of multi-programmed workloads. In other words, these models study the ex-
tent to which cache sharing hurts the performance of co-scheduled applications. In general, the
output of such models is the number of extra cache misses when the cache is shared compared
to a solo run. In reality, the prediction accuracy is dependent on the complexity or simplicity
of the model. If the model is too simple, the accuracy goes down. A complex model will be
impractical to implement in real systems. Almost all the studies related to inter-thread cache
contention focus on the optimisation of some hand built workloads. Once the prediction models
are applied to a workload, the output of such models can be used to propose scheduling policies.

Cache partitioning techniques delivers promising results by confining the working set of each
application in some portion of the cache. However, they have some limitations. First, software
techniques require non trivial change to virtual memory manager in the OS. Besides, the size
of the portion of cache to assign is manipulated in the memory page granularity; the question
which may rise: how many page colors to assign for each process? While simple metrics could
lead to unpredictable performance behaviour, more sophisticated metrics will be hard to com-
pute on-line. Second, hardware techniques offer better flexibility in terms of the size of cache to
assign for each process. This is true because a lot of partitioning policies can be implemented at
the cache block replacement. However, these techniques are based on new micro-architectures
with no guarantee to be implemented in future processors. Moreover, the impact of such designs
is unclear from the needed-hardware to build such machines.

The next section discusses techniques to characterise the amount of inter-thread data shar-
ing for multi-threaded applications and techniques to exploit that sharing by means of thread
placement. In the context of multi-threaded applications, adequate thread placement may lead
to better performance statbility and to siginificant performance improvement.

3.4 Exploiting data sharing with thread affinity on multicore
architectures

Modern shared chip multiprocessors (CMPs) consist of several multicore processors, where each
processor has a hierarchy of memory caches. This implementation design allows to exploit data
sharing between threads running on such platforms. Of course, to exploit that, a multi-threaded
application has to meet two conditions. First, the application’s threads have actually to access
or to share common data. Second, the reuse distance has to be sufficiently short to effectively
exploit these shared data across multiple threads (see Section for more information about
data locality measurement and prediction). In this context, thread affinity in multicore proces-
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sors (see Figure can be defined as the process of assigning each thread (process) to one or
a subset of cores. The idea behind this definition is to impose to the OS to run a given thread
on core #N or to run that thread on all the cores except cores #0 and #1 for example. The
operating system takes into account this notification, and the thread runs only on the allowed
cores.

Threads of a parallel application

Multicores

Figure 3.9: Thread affinity in multicore processors

There are many advantages for thread affinity. The first one is enhancing the inter-thread
data locality. For instance, if two threads make extensive accesses to common data in memory,
it is better to place them on adjacent cores sharing the same L2/L3 cache, or the same NUMA
node. Doing so, we would decrease the number of cache misses. Indeed, if one thread brings the
required data to some cache level, the second thread accessing the same data element will avert
a cache miss. Thus, the latency of memory access is reduced. Furthermore, binding threads
to cores by considering the machine architecture may help hardware prefetching of frequently
accessed shared regions. Enhancing data locality is another benefit from thread affinity. If we
consider a machine with two multicore processors and a memory bound application creating
two threads, it would be preferable to bind each thread to a distinct processor socket. First,
such thread placement will enhance the single thread data locality of both threads. Second, it
reduces the cache access contention. Consequently, it leads to better cache performance. On
the other hand, wrong thread placement can lead to a severe performance degradation. Indeed,
the overhead of accessing common data between two threads running on distinct cores depends
on their physical location. Therefore, thread affinity to cores called also thread pinning is of
high importance.

In the absence of an explicit management of thread placement by the application program-
mer, the decision about thread placement is achieved by the operating system (OS) scheduler
or by the runtime library. Unfortunately, current OS consider every core as a distinct processor.
If we have a processor with, say 8 cores, the OS sees 8 homogeneous processors that are capable
of executing concurrent threads, processes or jobs. However, in terms of performance tuning,
we cannot consider the cores as homogeneous because they share common micro-architectural
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resources: L2 or L3 shared caches, shared memory buses, etc.
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Figure 3.10: Nehalem NUMA machine architecture

In order to illustrate the program performance of a parallel application running with mul-
tiple threads that access common data in function of different thread placements (different
cache sharing situations), we use a synthetic benchmark. Figure reports the performance
of a synthetic micro-benchmark (Listing depending on multiple cache sharing situations.
The micro-benchmark creates two OpenMP threads, each increments a shared global counter
concurrently. The test machine is a NUMA machine with two Bloomfield sockets (Nehalem
micro-architecture). Each processor has 4 cores with a shared L3 cache. The platform has
two L3 caches of 8 MB, one on each chip, for both instructions and data. The main mem-
ory size is 12GB. Each chip in the platform features an integrated memory controller. The
hyper-threading and the Turbo Boost technologies were enabled (the diagram of the ma-
chine is given in Figure . We have to notice the following: first, since Hyper-Threading is
enabled, hardware threads (HWTs) 4 and 12 share an L2 cache. Second, HWTs 4, 5, 6 and 7
share an L3 cache. Finally, The HWT 4 in one side and HWTs 0, 1, 2 and 3 on the other side
are on distinct NUMA nodes. Figure [3.11] reports the speedup of the median execution time
(35 runs for each software execution) for various cache sharing configuration relative to the C1
configuration. It is clear from the figure that, more the distance (in termes of thread place-
ment) between threads is important, more the latency of access to shared data is important.
Consequently, program performance is highly sensitive to thread placement.

Listing 3.1: OpenMP micro-benchmark code

#pragma omp parallel default(none) private(i) shared (N, counter)
{
#pragma omp for
for (i=0; i<N; i++) {
#pragma omp critical
sum 4= 1i;
}
}

return counter;

The next section discusses some system calls and libraries to manage thread affinity explic-
itly in applications code.
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A global counter benchmark running with 2 threads
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Figure 3.11: Micro-benchmark program performance depending on thread thread

3.4.1 Explicit software support for thread affinity

Almost all major operating systems (except MAC OSX) propose programming interfaces to set
thread affinity. The programmer can decide on which core a given thread should run. Unfortu-
nately, it is challenging for a programmer to determine which are the shared data regions and
the intensity of sharing between threads at development time. There is an another problem with
this approach, the required effort to rewrite each application to benefit from this service can
be important. Other problems can rise as well: multiple source code files, shared libraries, etc.
Regarding the Linux kernel, one can use the cpuset interface. The cpusetﬂ interface provides
a mechanism for assigning a set of CPUs and memory nodes to a set of processes (threads).
Cpusets constrain the CPU and memory placement of processes/threads to only the resources
within a task’s current cpuset. The OS scheduler will not schedule a task on a CPU that is
not allowed in its cpus_allowed vector, and the kernel page allocator will not allocate a page
on a node that is not allowed in the requesting tasks mems_allowed vector.

As explained earlier, by using cpusets, the programmer can mainly control the list of CPUs
and the memory allocation policy (will be detailed later) of a particular task. The different
system calls provided by the Linux kernel to manipulate this interface are as the following:

1. CPU affinity. The CPU affinity interface allows the programmer to manage the process’s
(thread) CPU affinity mask. The mask determines the set of CPUs on which it is allowed
to run. Setting and getting the process’s CPU affinity mask can be achieved by the
sched_setaffinity and sched_getaffinity system calls. The Native POSIX Thread
Library (NPTL) implements also a similar interface. It allows to confine a given thread to
a set of CPUs. Similarly, this can be achieved by the functions pthread setaffinity np
and pthread getaffinity_np.

2. Memory affinity. The memory affinity interface allows the programmer to set the
memory policy of its application. The programmer can use the mbind, set_mempolicy and

"A cpuset interface is exposed by the OS as a file system which can be accessed by special system calls



3.4. DATA SHARING AND THREAD AFFINITY 95

get mempolicy system calls. The 1ibNUMA library [Kle05] offers a simple programming
interface to the NUMA (Non Uniform Memory Access) policy supported by the Linux
kernel. Basically, this library is a wrapper layer over the system calls. Available policies
are page interleaving (i.e. allocate in a round-robin fashion from all or a subset of the nodes
on the system), preferred node allocation (i.e. preferably allocate on a particular node),
local allocation (i.e. allocate on the node on which the thread is currently executing), or
allocation only on specific nodes (i.e. allocate on some subset of the available nodes).

The next section presents some related work on inter-thread data sharing detection and its
exploitation by thread placement at the application level.

3.4.2 Application level data sharing detection and thread mapping

In the field of quantifying the importance of exploiting data locality between threads, Bellosa
et al. [BS96] examined the performance implications of locality information usage in thread
scheduling algorithms for shared-memory multiprocessors. They proposed a non preemptive
user-level thread package with an application interface to inform the runtime system about
memory regions repeatedly used. These hints are used to trigger prefetch operations at each
process scheduling decision to hide memory latency. In addition, they proposed scheduling
policies based on locality information of individual threads derived from hardware performance
counters. The data locality information needed by the proposed algorithms consist of cache
miss rate, the processor stall time, and the processor that was assigned to the process during its
last execution. They focused on enhancing cache reuse of individual threads not multi-threaded
applications. In order to enhance the chance of cache reuse, Bellosa [Bel97] proposed to schedule
sequentially (i.e. one after each other) kernel threads that share large parts of memory. He
proposed the use of TLB information to detect memory pages sharing between threads.

Similarly, Weissman [Wei98| proposed an approach for improving data locality. It uses hard-
ware performance counters and program-centric code annotations to guide thread scheduling on
symmetrical multiprocessors (SMPs). The idea behind this approach is the use of an analytical
model which takes the number of cache misses and source code annotations as input; the later
are used to express the sharing patterns inherent in the applications. The output of the model
is a prediction of threads footprints. Using this model, he proposed some practical scheduling
policies to enhance the locality of applications.

Zhang et al. |ZJS10] conducted a measurement analysis to study the influence of chip mul-
tiprocessors (CMP) cache sharing on multi-threaded performance applications using the PAR-
SEC [BKSLO§| benchmark suite. Through measurement, they tested various factors of interac-
tions between cache sharing and the performance of multi-threaded applications such as types
of parallelism (data-level or pipelined), input datasets, numbers of threads and the assignment
of threads to cores. They suggested that cache sharing has very limited influence on the perfor-
mance of the PARSEC applications due to the large working sets and to the limited inter-thread
data sharing of the tested multi-threaded programs. However, they do not conclude that cache
sharing has no potential to be explored for multi-threaded programs. Regarding the PARSEC
benchmark suite, the authors concluded that current multi-threaded applications are not well
optimised to leverage the power of existing chip multiprocessor (CMP) architectures.

Tang et al. [TMV™11] studied the impact of sharing memory resources on data-centre appli-
cations. Across these applications, they investigated the importance of thread to core pinnings
to share or to not share caches and bus bandwidth. Through measurements, they also in-
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vestigated the impact of co-running threads from multiple applications with diverse memory
behaviours to discover the best pinning suitable to the co-running applications. By studying
some key performance characteristics of the applications when running alone and by using hard-
ware performance counters, they proposed a heuristic approach to compute the best pinning of
threads when co-running multiple independent applications.

Kazempour et al. [KFAO8] examined the performance effect of exploiting cache affinity on
multicore multiprocessors{s_;] and uniprocessorsﬂ They demonstrated that, while exploiting cache
affinity on multicore uniprocessors has no measurable impact on performance, performance im-
provement from exploiting cache affinity on multicore multiprocessors is significant.

Terboven et al. [TaMST08] examined the programming possibilities to improve memory
pages and thread affinity in OpenMP applications running on ccNUMA architectures. They
provided a performance analysis of some HPC codes which may suffer from ccNUMA architec-
tures effects.

Binding threads in nested OpenMP parallel regions is a challenge. Indeed, there is no guar-
antee that two active parallel regions with identical ancestry will be executed by the same set
of system threads. Schmidl et al. [STaMB10| discussed the performance problems of nested
OpenMP programs on ccNUMA machines. They provided a library to retrieve the hardware
information (cache topology) of the target machine and to set a static thread binding strategy
for each parallelisation level in the OpenMP program. They used the OPARI OpenMP instru-
mentation tool to add a function call to their library at the beginning of every parallel region
to find out which threads are used. The library does not detect any sharing behaviour between
threads, it just applies some predefined thread binding strategies to the encountered nested
OpenMP parallel regions.

Klug et al. [KOWT11] proposed a framework to automatically determine the thread pinning
best suited for a multi-threaded application based on hardware performance counters informa-
tion. The idea behind the framework is to evaluate the performance (measured by the CPI) of
a set of different thread pinning strategies for a fixed quantum of time and select the strategy
with the best CPI. The framework requires that the time measurement interval and a set of
multiple pinning be provided as input.

Marathe et al. [MTM10| proposed a hardware-assisted page placement approach based on
automated tracing of the memory references made by application threads for ccNUMA ma-
chines. The objective is to allocate pages near processors that most frequently access that
memory pages. During trace generation, hardware performance counters are used to extract
an approximate trace of memory accesses. The target program is run for one stable execution
phase of the program and data trace is collected (cache misses and TLB information). The sta-
ble execution phase must be manually identified by the user. The idea is to collect a snapshot
of the program’s memory access patterns during a snippet of its stable execution phase, which
becomes the basis for guiding page placement decisions. The collected trace data is used to
compute the page affinity, i.e. the node to which the page is bound and the entire program is
re-run using this data trace. The approach is based on the first-touch page placement policy.

Song et al. [SMDO7,[SMDO09] uses a feedback guided method to compute thread affinity. The

8Multiple processors, each with multiple cores.
9Single processor with multiple cores
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method relies upon binary instrumentation to acquire the memory sharing relationship between
user-level threads by analysing the memory trace. After, they build an affinity graph to model
the relationship. Then, they used hierarchical graph partitioning to compute optimised thread
schedules. They also introduce an analytical model to estimate the cost of running an affinity-
based thread schedule. Their model considers the number of addresses accessed in common,
not the number of access to common memory line addresses. In fact, considering only num-
ber of addresses accessed in common does not reflect the real cache access intensity. Actually,
the approach that we follow in Chapter 5| to compute thread pinnings is quite close to that
of [SMDO07]. However, our work differs from theirs in four main points: 1) we take into account
the performance variability (running each application 35 times) when we run a given benchmark
with different thread affinity schedules, 2) we focus on real complex applications and not on
synthetic benchmarks or small kernels, 3) we use linear programming and graph partitioning
to compute optimised thread pinnings (produce optimal results as far as cache performance is
concerned) and finally 4) our work is not limited to find the best schedule against the default
one of the application; instead, we investigate how the overall performance of a given multi-
threaded applications behave under a set of predominant thread affinity schedules. The last
point is important because we show that simple strategies (do not need any memory tracing
phase) perform very well in many OpenMP applications .

Jeannot et al. [JM10] proposed an algorithm that maps MPI processes to cores in order
to reduce communication cost of the whole application. The described algorithm requires the
target’s application communication pattern. This pattern consists of the global amount of
data exchanged between each pair of precesses in the MPI application. The later is stored
in a communication matrix. To retrieve the communication pattern, they instrumented low-
level communication channels in the MPICH?F_U] MPI implementation to track point-to-point
and collective communications. The approach needs two runs, the first run for data collection
and computing the processes mapping and re-run of the target application with the computed
processes mapping. They concluded that although the proposed algorithm outperforms some
placement strategies that do not require profiling (heuristics), there is a slight performance dif-
ference between them. As an explanation for this performance behaviour, the authors suggested
that may be it is due to modelling issues; as the communication matrix is an aggregated view of
the whole execution and does not account for different phases of the application with different
communication patterns.

The next section presents some related work on compiler and runtime level management of
inter-thread data sharing and thread placement.

3.4.3 Compiler and runtime data sharing detection and thread mapping

Some studies have addressed the data cache sharing at the compiler or runtime/OS level. These
studies have focused on improving data locality in multicores by being aware of the architecture
topology.

Sridharan et al. [SKM™06] proposed to exploit the locality of the critical section data. The
principle of this approach is simply to enforce an affinity between locks and the processor that
has cached the execution state of the critical section protected by that lock. They also investi-
gated the idea of migrating threads to the processor that has cached the highly-contended lock.
The proposed technique heavily relies on the kernel thread scheduler. Furthermore, it requires

1ONMPICH2 is an open source implementation of MPI.
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that the scheduler must be able to identify the thread that currently holds a contended lock.
The identification is achieved by annotating user-level synchronisation libraries and a kernel
scheduler modification.

Tam et al. [TASO7] proposed thread clustering to schedule threads based on data sharing
patterns detected online using hardware performance monitoring counters. The mechanism
was implemented inside a Linux operating system running on IBM Power5 multiprocessor. For
testing purpose, they concentrated on commercial multi-threaded server programs. Iteratively,
they attempted to group threads exhibiting high degree of data sharing in the same processor.
Using hardware performance counters, CPU cycles are broken down and assigned to different
microprocessor components to determine the performance impact of cross-chip communication.
They monitored the addresses of cache lines that are invalidated due to remote cache-coherence
activities and build a data structure for each thread. Each data structure shows which data
items each thread is fetching from caches on remote chips. After that, they compared these
data structures to detect the sharing behaviour between threads and cluster them accordingly.

Broquedis et al. o BFGT10| proposed an OpenMP runtime for NUMA architectures. The
runtime is based on a multi-level thread scheduler and on a NUMA-aware memory manager.
The user can specify to the runtime information about thread and memory pages placements.
These information are converted by the runtime into scheduling hints related to thread-memory
affinity issues. These hints enable dynamic load distribution of threads and data over NUMA
architectures.

Lee et al. [LWRC10] proposed a framework to automatically adjusts the number of threads
in an application to optimise system efficiency. The framework uses an off-line analysis to esti-
mate what type of threads will exist at runtime and the communication patterns between them.
Using this information and using graph partitioning algorithms, the framework dynamically
combines threads. The tested applications were compiled statically to spawn 128 threads at
runtime. The framework was prototyped using the Low-Level Virtual machine (LLVM) tool-
sets for compiling and running the applications. The work assumes a uniform distribution of
the data between threads.

Kandamir et al. [KMNT09, KYM"10,|ZKY11] discussed a compiler directed code restruc-
turing scheme for enhancing locality of shared data in multicores. Using a source-to-source
compiler, the scheme operates as follows. First, the arrays accessed by the application are di-
vided into equal size data blocks. Second, for each core, the set of loop iterations assigned to
it are divided into equal size computation blocks. Finally, the compiler captures data depen-
dences and data sharing between computation blocks which are assigned to cores. The goal is
to increase data reuse regarding the access to data blocks by the computations blocks.

Our work differs from the last efforts in two main points. First, we dot not focus on providing
a new thread scheduling strategy. Unlike other studies, we perform statistical performance
evaluation (running multiple times, we fix the experimental setup, etc.). We aim to study
the impact of different thread affinity strategies on performance stability as long as as data
sharing is concerned. Moreover, we consider also NUMA effects, this is not actually the case
for most of the previous studies. Second, when it comes to compute a scheduling affinity,
we rely on a profile-guided method. Using dynamic binary instrumentation, we fully analyse
optimised binaries regardless of the compiler. Furthermore, we believe that extracting all data
dependencies and data sharing at compile time may not be sufficient, because these information
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depend on the working set which is known only at runtime.

3.4.4 Discussion about inter-thread data sharing and thread placement

Data sharing characterisation is inherently dependent on an accurate inter-thread data locality
or data reuse study. Indeed, in terms of performance improvement, converting memory accesses
to shared memory lines in shared caches requires to qualify and quantify the amount of sharing
implemented in the multi-threaded application, and implement a thread placement strategy
to exploit that propriety. Knowing that, an application that has short reuse distances means
that it worth the effort to implement a data sharing strategy exploitation. On the other hand,
long reuse distances may necessitate to rewrite the application in order to shorten these reuse
distances, thus, effectively exploit that sharing behaviour. There is another category, it con-
sists of multi-threaded applications in which the access to shared data between threads is rare.
Therefore restructuring the application may be useless.

In the case of existing shared data, thread affinity offers a simple approach to transform data
sharing into performance improvement. However, from the performance perspective, cache shar-
ing is tricky. With a wrong pinning, instead to be beneficial, it can degrade performance (see
Section , or it can lead to performance instability (see Section . In addition, an affinity
strategy that focuses on data reuse only in order to improve cache performance may not be suf-
ficient. Indeed, an efficient affinity strategy has to consider other factors (i.e. data prefetching,
memory pages placement, the workload of the machine, etc.).

The quantification of data sharing and its corresponding affinity strategy can be achieved
mainly in three ways. First, data sharing is quantified by the programmer (application level)
and an adequate affinity is applied to the application for its lifetime. This approach has a main
drawback, it is not clear or easy for the application programmer to quantify the amount of
sharing implemented in the application. Second, a compiler may perform some static analysis
to deduce the amount of sharing implemented in the application. A compile time approach has
the advantage to be automatic and it does not require the programmer intervention. However,
data sharing quantification at compile time may not be accurate. Many reasons contribute
to this inaccuracy. Most importantly, it is not obvious to capture all memory references at
compile time for programs with irregular access patterns or for programs that make heavy use
for pointers. It is also possible to consider the number of threads and the data input which are
usually known at runtime. However, the impact of the two later factors can be limited by a
parametric analysis for instance. Finally, we can consider a runtime approach. The advantage
of this approach is its ability to adapt to the runtime environment (i.e. the workload of the
machine, number of available cores). Despite this, the profiling/characterisation overhead of
the application may not be negligible.

We discussed in this chapter multiple aspects related to enhancing program performance
in multicore architectures. The next chapter presents an experimental study to quantify and
qualify the variability of program execution times in multi-threaded programs.
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Chapter 4

Measuring and Analysing the
Variations of Program Execution
Times on Multicore Platforms

In this chapter, we present a study of variations of program execution times. We show that
while these variations are statistically insignificant for large sequential applications, we observe
that parallel native OpenMP programs have less performance stability. We investigate multiple
factors such as thread affinity and memory pages size in the goal to quantify the influence of
that factors on the variability of execution times.

4.1 Introduction

Multicore architectures are nowadays the state of the art in the industry of processor design for
desktop and high performance computing. With this architectural design, multiple threads can
run simultaneously exploiting a thread level parallelism. Unfortunately, achieving better pro-
gram performance is a little bit hard work. Indeed, programmers have to deal with some issues in
both software and hardware levels (thread and process scheduling, memory management, shared
resources managements, energy consumption and heat dissipation of cores, etc.). Furthermore,
the lack in understanding the interactions between the operating system layers, applications
and the underlying hardware makes this task even more difficult. A good understanding of
these interactions may be exploited in performance evaluation, compiler optimisations and in
process/thread scheduling to achieve a better performance stability, reproducibility and pre-
dictability.

In this context, applications designers and performance analysts have to iteratively inves-
tigate how to achieve the best performance and checking the behaviour of their applications
on that architectures. Most often, program execution time is considered as the first metric to
investigate in the process of performance evaluation. The execution time is usually observed
by measurements, or can be simulated or predicted with a performance model. In our thesis
we consider direct measurements (either by hardware performance counters, or by OS timing
functions calls). Contrary to emulated or virtualised programs (such as Javabyte-codes), native
program binaries are executed directly on the hardware with possibly some basic OS requests
(OS function calls). Our current study focuses on this family of programs: we consider the sam-
ple of SPEC 2006 and SPEC OMP2001 [Sta06] benchmark applications. We do not consider

binary virtualisation or byte-code emulation because they add software layers influencing the
61
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program performance in a more complex way: garbage collector strategies, threads organisation,
caching and dynamic compilation techniques all may dramatically influence the measurements
of program execution times. Direct measurements of native applications have one software layer
(namely the OS) between the user code and the hardware. Unfortunately, the measurement
process may also introduce errors or noise (the act of measuring perturbs the program being
measured) that can affect our experimental results. For example, there is a time required to
read a timer before the code to measure and store the timer after this code. Experimental
setups may also introduce other factors (see Section lead to variations of program exe-
cution times. Thus, if we execute a program NN times, we may obtain N distinct execution times.

For our study, we introduce some experiments aimed to measure, quantify and analyse the
variations of program execution times on an Intel multicore machine. We report measurement
results for single-threaded applications (SPEC CPU2006), as well for parallel multi-threaded ap-
plications (SPEC OMP2001) with a fixed data input. The parallel applications use the OpenMP
paradigm, one of the most used in parallel programming model on shared memory computers.
We show that large SPEC CPU2006 applications have minor variations with the train data
input. This of course does not guarantee that the variations of sequential applications would
always be negligible especially for small codes (kernels). Unlike single-threaded applications, we
show that the variations of execution times of OpenMP applications are really sensitive from a
human user point of view.

This chapter is organised as follows. Section introduces the experimental setup and
methodology that we follow. Section studies the performance variability of sequential appli-
cations (SPEC CPU2006), and parallel OpenMP applications (SPEC OMP2001). Section
studies the impact of thread placement SPEC OMPO1 program execution times. The influ-
ence of background co-running processes on the performance of SPEC OMP2001 is studied
in Section Finally, the influence of co-running processes on the performance of OpenMP
micro-benchmarks is studied in Section before concluding.

4.2 Experimental setup and methodology

4.2.1 Hardware setup

As an example of hardware machine, we use an Intel (Dell) server with two Clovertown pro-
cessors. Each processor has 4 cores, while each couple of cores have a shared level 2 cache. Our
system has two L2 caches on each chip with 4 MB, for both instructions and data. The core
frequency is 2.33 GHz. The maim memory size is 4 GB RAM. The frontside bus has a clock
rate of 1.33 GHz. The main features of the test machine are summarised in Figure [4.1

4.2.2 Software environment

The version of the Linux kernel is X86_64 2.6.26, patched with perfmon kernel 2.81. We used
multiple compilers: gcc 4.1.3, gcc 4-3.2, icc 11.0 and ifort 11.1, all applied with optimisa-
tion level -03 -fopenmp. The experimented benchmarks are SPEC CPU2006 and OMP2001
applications run with the train input and various configurations of thread numbers. We also
designed our own micro-benchmarks to analyse the interaction between the software, the micro-
architecture and the OS layer.
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Figure 4.1: Dual processor architecture

4.2.3 Experimental methodology

In order to improve the reproducibility of the results, the experiments were done following some
practices:

e The data input is fixed.
e The test machine was entirely dedicated during the experiments to a single user.

e Running each benchmark 31 times [Raj91, TWBI10] for each software configuration. This
high number of runs allows us to report statistics with a high confidence level;

e Unset all the shell environment variables that were inessential;

e The experiments were done on a minimally-loaded machine (disable all inessential OS
services except sshd);

e Starting address of the stack randomisation deactivated (this is an option in the Linux
kernel versions since 2.6.12);

e Dynamic voltage scaling (DVS) disabled;

e Using the build system and scripts of SPEC CPU2006 and OMP2001 to compile and
optimise applications, launch them, measure execution times, check validity of the results
and report the performance numbers;

e The SPEC system measurement of execution times relies on the gettimeofday function;
e The successive executions are performed sequentially in back-to-back way;

e No more than one application was executed at a time, except when we study co-running
effects.

e We use violin plots to report the program execution times of the 31 execution of each
software configuration (see Section [4.2.3.1 for more details).

e All observed execution times are reported, we do not remove any outliers (except if the
run crashes or produces a wrong output result)
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10

Figure 4.2: A violin plot example

4.2.3.1 Reporting performance data with violin plots

Violin plot gives a good and simple graphical way to check whether an application exhibits
or not variability of program execution times. The Violin plot is similar to box plots, except
that they also show the probability density of the data at different values. Figure shows an
example of violin plot. The white dot in each violin gives the median and the thick line through
the white dot gives the inter-quartile range.

4.2.4 Definition of program performance variability

When we observe a sample of execution times of an application P, say {t1,--- ,t,} where ¢; is
the execution time of the i*” run, then we may define the variability according to many metrics.
Any used metric must define the feeling of the end user about the instability of the execution

time of the application. We can use the usual sample variance, or ‘maxlt’t—fmmlm where t is

| max; ¢; —min; ¢;|
med(t)

metrics that measure the disparity between extrema observations (outliers):

the sample mean, or where med(t) is the sample median. In our study, we use

1. An absolute variability, which is the difference between the maximal and the minimal
observed execution times AV (P) = | max; t; — min; t;|;

2. A relative variability, which is the absolute variability divided by the maximal observed
. . _ AV(P) _ |max;t;—min; ¢
execution time RV (P) = = .

max; t; max; t;

Now the question is how to decide about a definition of a program with non negligible per-
formance variability. Since any experimental measure brings a sample variation (it is impossible
in practice to observe exactly equal execution times), when can we speak about non negligible
variability? In our study, we say that a program P has non negligible performance variability if
its relative variability exceeds 1% (RV (P) > 1%). Another definition may exist; In our context



4.3. PROGRAM EXECUTION TIMES VARIABILITY OF SPEC BENCHMARKS 65

we chose the previous definition in order to be close to the feeling of a user executing a program
interactively (i.e. when he launches the program and he waits for its termination).

In the remainder of this thesis, we refer to program execution times variability as the relative
variability (RV) multiplied by 100. This will present the variability as a percentage. The next
section shows that the execution times of long running sequential applications have marginal
variability.

4.3 Study of the variability of SPEC benchmarks execution
times

This section presents experiments which aim to study the variability of program execution times
of SPEC CPU2006 and OMP2001 applications. While the former are sequential applications,
the later are parallel programs written with the OpenMP API. For SPEC CPU2006 benchmarks,
we test the relation between the UNIX shell environment size and the variation of program
execution times. Following the methodology explained in [MDHSO09|, we varied the size of the
UNIX shell environment. We also experimented two code optimisation level -02 and -03. For
SPEC OMP2001 applications, we fixed the UNIX shell environment, and we varied the number
of threads as: sequential (without OpenMP), 1 thread (OMP version with a unique thread),
2,4, 6 and 8 threadsﬂ The idea behind OpenMP experiments is to study the impact of two
factors. First, are the parallel execution with different number of threads lead to variability of
program execution times? Second, compare the benefit of the parallel execution with different
number of threads against the sequential version.

4.3.1 Variability of SPEC CPU2006 execution times

We used the gcc 4.1.3 compiler with the -02 and -03 optimisation flags. We had to add the
-—fno-strict-aliasing option for the perlbench benchmark because of a technical error in
that codd?l

Figure reports the execution times of four applications, and for each Unix shell environ-
ment size using violin plots (see Section . The leftmost point of the X-axis is for a Unix
shell environment size of 0 bytes (the null environment); we generated the data using the bash
shell and for each point, we added 63 bytes to the environment. The width of a violin plot at
y-value y is proportional to the number of times we observed y. Figure [4.3|says that for each
UNIX shell environment size in the X-axis, the Y-axis reports the 31 execution times.

From all these figures we can deduce that: 1) the size of the Unix shell environment may
influence the execution times and 2) the variations of execution times are minor (less than 1%).
These observations are valid for all the SPEC CPU2006 benchmarks that we experimented.
Figure reports the confidence interval of the mean of these benchmarks. We can see that
these intervals are sufficiently tights. These figures show that the sample mean at each Unix
shell environment size does not vary in a significant way.

1We limited the number of threads to 8, because our experimental machine have a maximum number of cores
equal to 8.

2The benchmark has some known aliasing issues. Hence the compilation with high optimisation level will most
likely produce binaries assuming strict aliasing. The problem was reported in the SPEC CPU2006 documentation.
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From the experiments presented in this section, we deduce in overall that varying the Unix
shell environment size has a negligible impact (less than 1%) on the variability of the execution
times of SPEC CPU2006 benchmarks. This observation is true, whatever the optimisation flag
we used (-02 or -03).

The next section shows the performance variability of the multi-threaded SPEC OMP2001
benchmarks given a fixed experimental setup.

4.3.2 Variability of SPEC OMP2001 execution times

For SPEC OMP2001, we used the gcc 4.3.2 and icc 11.0 compilers. For each application,
we generated two compiled binary codes. The first one is sequential or single-threaded (using
the -03 compilation flag). The second one is a multi-threaded version, it is generated by setting
-03 -fopenmp and -03 -openmp compilation flags respectively for the gcc and icc compilersﬂ

We use violin plots to report in Figure the execution times of each application com-
piled with gcc. The UNIX shell environment size was fixed. We choose three applications
that highlight significant performance variability. The X-axis represents the different software
configurations for the application: sequential version (no threads), OMP version with 1 thread,
2 threads, 4 and 8 threads. The Y-axis represents the 31 observed execution times for each
software configuration. We conclude the following observations:

1. The sequential and the single threaded versions do not exhibit significant variability.

2. When we use thread level parallelism (2 or more threads), the execution times decreases in
overall but with a significant disparity. Consider for instance the case of swim in Figure[4.5]
The version with 2 threads runs between 76 and 109 s the version with 4 threads runs
between 71 and 90 s. This variability is also present when swim is compiled with icc,
see Figure [1.6] The example of wupwise in Fig. is also interesting. The version with
2 threads runs between 376 and 408 s, the version with 6 threads runs between 187 and
204 s. This disparity between the distinct execution times of the same program with the
same data input cannot be justified by accidents or experimental hazards. Applying the
Shapiro-Wilk normality check on performance data we concluded that the execution times
are not normally distributed, and frequently have a bias.

3. The case of the application galgel is also interesting. In addition to the variability of
the execution times for each software configuration, we observe that the performance of
the program substantially decreases when increasing the number of threads! This example
illustrates that, on a multicore architecture, increasing thread parallelism may bring severe
performance loss. We checked the situation of galgel when we use the Intel icc 11.0
compiler instead of gcc, and the situation was radically different, see Figure[d.6} increasing
the number of threads decreases the execution times. We can observe a huge difference
between the performance of the program compiled with gcc vs. icc, either in terms of
execution times and in terms of variability. We have to notice that using the gcc-4.4.3
version of the GNU compiler has effectively reduced the execution times when we increase
the number of threads (see Figure . This situation illustrates that the quality of the
code generated by a compiler has a significant impact on performance stability.

3gcc was not able to compile the OpenMP version of mgrid_m because of a bug (Bugzilla Bug 33904). The
parallel execution of gafort m failed because of a segmentation fault (this execution error was also reported if
we use the Intel icc compiler).
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4. The galgel application compiled with the gcc compiler, shows that speedup computation
is not fair if we consider the minor execution time. We can see from the Figure that
the violin plots of the second (PAR (1TH)) and third (PAR(2TH)) configurations gives an
interesting result on how we have to summarise the performance data of one configuration
to single number. If we use the min function to summarise data of the two configurations,
then, we can say that the third configuration is better than the second one. But if we take
the median function to summarise these data, we may conclude that the two configurations
are similar. We note that the choice of which function to use to define the execution time
is crucial and may lead to misleading conclusions about the real behaviour of the system.

5. Figure shows that the sequential version of ammp is better than its parallel version
when parallelisation is achieved with: 1 thread by about 25%, and 2 threads by about
15%. The case of ammp shows that the OpenMP API does not necessarily produce faster
codes against the sequential version. Although we do not checked the reason for this perfor-
mance behaviour, we can consider aspects like synchronisation primitives overhead, work
imbalance between threads or the compiler makes better optimisations when OpenMP is
not enabled (less system calls, less function calls, etc.).

6. When the number of threads is equal to 8, then the variability is significantly reduced on
the 8 cores machine.

The next section presents a study of the effect of running SPEC OMP applications with an
affinity to the system cores taking into account the impact of sharing the last level cache (L2
cache).

4.4 Study of the impact of thread affinity on SPEC OMP2001
execution times

In Section we demonstrated that contrary to sequential applications, parallel OpenMP ap-
plications suffer from a severe instability in performance. In order to analyse the reason of such
performance variability, this section presents experiments aiming to measure and quantify the
impact of thread affinity on the variability of program execution times of OpenMP applications.
When affinity is enabled, we mean that we fix the placement of the threads on the cores of the
processor. In our thesis, we restrict the number of threads to be less or equal to the number of
cores.

We used the gcc 4.4.3 and icc 11.0 compilers. For each SPEC OMP2001 application,
we generated a multi-threaded version of each benchmark by setting -03 -fopenmp and -03
-openmp compilation flags respectively for the gcc and icc compilers. We run each application
with respectively 2, 4 and 6 threads under three runtime configurations:

1. Running the benchmarks without scheduling affinity (affinity disabled, threads placement
let to the OS).

2. Running the benchmarks under the icc compiler compact affinity strategy. Specifying
compact as affinity strategy assigns the OpenMP thread n + 1 to a free core as close as
possible to the core where the OpenMP thread n was placed. We experiment this affinity
strategy because it leads to increase the L2 cache sharing between threads, even if not all
the applications can take advantage from it.



4.4. THREAD AFFINITY IMPACT ON PERFORMANCE VARIABILITY 69

312.swim_m 312.swim_m

110
1

110
|

100
1

100
|

90

Time(seconds)
90
|

Time(seconds)

80
1

IS A

70
1

70
|

SEQ  PAR(ITH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH) SEQ  PAR(ITH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH)
gfortran—4.3.2: -03 vs -03 —fopenmp ifort-11.1: O3 vs ~O3 —openmp
310.wupwise_m 310.wupwise_m
3 - [
g 1 g
R

S 4

8 S
—~ — ©
) )
s g | kel
[ [
& &
g g == g 8§+ —
= =

— P =Sy
g =r= 8 - =
T T T T T T T T T T T T
SEQ  PAR (1TH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH) SEQ  PAR(1TH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH)
gfortran-4.3.2: 03 vs -03 ~fopenmp ifort-11.1: ~O3 vs ~O3 —openmp
318.galgel_m 318.galgel_m
< | N v o -
= 2

50

&@ , | =
T I

T T T T T T T T
SEQ  PAR(1TH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH) SEQ  PAR(1TH) PAR (2TH) PAR (4TH) PAR (6TH) PAR (8TH)

Time(seconds)
100
|

Time(seconds)

40

80
1
30

gfortran—4.3.2: 03 vs -03 —fopenmp ifort-11.1: -O3 vs -O3 —openmp

Figure 4.5: Observed Execution Times of some Figure 4.6: Observed Execution Times of some
SPEC OMP 2001 Applications (compiled with SPEC OMP 2001 Applications (compiled with
gee) icc)

3. Running the benchmarks under the icc compiler scatter strategy. Specifying scatter
as affinity strategy distributes the threads as evenly as possible across all the sockets.
scatter is an opposite affinity strategy compared to compact. Running applications
under this strategy may be beneficial to alleviate the problem of system bus contention
of neighbours cores.

Figure and Figure show violin plots of program execution times (CPU time) for the
wupwise and swim applications (from SPEC OMP2001 benchmarks) compiled with the gcc and
icc compilers. In each figure, three violin plots report the execution times when the benchmarks
are launched with 2, 4 and 6 threads. The X-axis represents the three affinity configurations
(no affinity, compact, scatter). The Y-axis represents the 31 observed execution times for
each configuration. We make the following observations:
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1. When the scheduling affinity is disabled, we observe a significant variability of execution
times for SPEC OMP2001 benchmarks. If we consider the case of swim in Figure [4.13
compiled with gcc, the version with 2 threads runs between 79 and 110 s, the version with
4 threads runs between 73 and 90 s and the version with 6 threads runs between 71 and
82 s. Figure shows that when the benchmark is compiled with the icc compiler, it
exhibits a variability too.

2. The variability is insignificant in almost all the benchmarks when the scheduling affinity
is enabled (the observed relative variability (RV) is less than 1.5%). The variability
disappears either when the threads shares L2 cache (compact binding) or not (scatter
binding). Figure shows for the wupwise application compiled with gcc that the
version with 2 threads runs ~ 454 s when they share the L2 cache (2 threads runs on 2
cores sharing single L2 cache compact) and runs between 419 and 421 s when they do not
share it (scatter).

3. The art (compiled with both compilers) and the apsi (compiled with gcc) benchmarks
exhibit a less sensitivity to changing scheduling affinity. We observed that even when we
set up the binding feature, variability in execution times still appear (see Figures
and where the variability exceeds 5%). In other words, fixing the affinity between



4.4. THREAD AFFINITY IMPACT ON PERFORMANCE VARIABILITY 71
the threads does not remove the performance variability of all the benchmarks.

4. We observed in 7 out of the 9 tested benchmarks, that they run faster when they are
launched with a scatter strategy). The benchmarks which take benefits from L2 cache
sharing compact are ammp and galgel with both compilers (see Figures and [4.17]).

In order to check the origin of the performance variability observed when we disable the
affinity, we study the impact of thread placements (fixed by the OS) on the cache effects. For
instance, we run swim and we report its number of last level cache misses (L2 cache misses).
Figure shows violin plots summarising the number of L2 cache misses when swim runs with
2 threads. We observe clearly that the variability of the execution times observed in Figure 4.10
is closely related to the number of L2 cache misses. Indeed, when we binded the threads of
swim explicitly to the system cores, we observed insignificant variability in the execution times.
But when letting the system to handle threads placement on the cores, the situation was com-
pletely different and we observed an important variability. The interesting thing is that higher
execution time in the configuration without affinity was accompanied with a higher L2 cache
misses number. This situation shows that swim is sensitive to cache affinity.

When affinity is not fixed, the increase in the number of L2 cache misses does not explain
the cause of the observed performance variability, but just an effect. A further analysis showed
that thread migration operated by OS kernel is another important factor contributing to perfor-
mance variability. Indeed, we traced the mapping of threads to cores each time a new parallel
region is entered. The analysis of the tracing of the mapping event allowed us to see that the
runs with high execution times, the application threads have suffered from a thread migration.
Thus, migration has a negative impact on cache utilisation which leads to a significant perfor-
mance variability. However, it is possible that thread migration improves execution times: this
is the case for instance when data reuse and L2 cache sharing are less important.
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In addition to swim, we observed also that the performance of wupwise, applu, equake,
apsi, fma3d, ammp applications are sensitive to cache affinity too.

In this section, we clearly observe that fixing affinity between threads removes performance
variability in many applications, but not all: there are still other influencing factors that make
executions time to vary (threads synchronisation, cache access contention between threads,
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Figure 4.14: Observed Execution Times of the art Application (compiled with gcc and icc)
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Figure 4.15: Observed Execution Times of the apsi Application (compiled with gcc and icc)
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etc.). By now, while it is clear that thread affinity helps to reduce performance instability,
it is unclear if all thread affinity strategies would be beneficial for the program performance.
Indeed, we observed that 7 out of 9 benchmarks (Figures [4.12] 4.13| |4.14]and [4.15) run faster
with the scatter strategy. This is does not mean that the scatter strategy would be better
for all the benchmarks. Sometimes, it is also better to let some hazard (OS) to decide about
thread binding. If we consider the median execution time of the wupwise benchmark compiled
with icc and running with 4 threads in Figure we can see that no affinity produces
better performance than the scatter and compact strategies. For a further analysis of the
impact of thread affinity on program performance, we study in Chapter [5| the performance of
OpenMP programs under various affinity strategies. The next section explores the performance
variability when SPEC OMPO1 are executed in parallel with other co-running processes.

4.5 Analysing the variability of SPEC OMP performance with
co-running processes

One of the factors which can influence the variability of program execution times is when more
than one thread is scheduled to run on top of a single core. In our study, we focus on the sharing
between the OpenMP parallel programs and some artificial concurrent applications. For each
OpenMP benchmark, we measure its execution times in user mode (run level 3 : least privileged
mode), system mode (run level 0 : most privileged mode) and real execution time (total elapsed
execution time).

In these experiments we generate a system load by running some artificial co-running pro-
cesses in background. These processes are launched by one process executing the fork system
call a number of times equal to the number of processes that we need to generate at runtime.
This number is supplied as an argument to the command line. The code executed by these
co-running processes is a dummy non terminating loop without memory access (do while(1);).
Note that the threads of an OpenMP benchmark and the co-running processes do not share the
same internal memory, they are independent applications.

4.5.1 Experimental setup

e The SPEC OMP2001 benchmarks are launched with 8 threads at runtime to occupy all
the cores of the system.

e Each SPEC OMP2001 benchmark (8 threads) is run either as a single application on the
machine (minimal system load) or in parallel with 8, 16, 24 or 32 co-running processes
respectively (performance perturbation created in background). This leads to five distinct
runtime configurations.

e We report here the results when SPEC OMP2001 and the co-running processes are
launched without scheduling affinity to the system cores (no explicit binding of threads
on cores). Similar experiences have been conducted when affinity is fixed, the conclusions
remain similar.

e The number of the OpenMP threads (from applications under study) and co-running
processes running on each core are respectively: 1, 2, 3, 4 and 5. For example, a configu-
ration with 5 threads or co-running process per core consists of 1 OpenMP thread plus 4
co-Tunning processes.
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4.5.2 SPEC OMP2001 with co-running processes performance results and
analysis

Figure and Figure [4.19] show the violin plots of the user and real program execution times
for four applications from SPEC OMP2001 benchmarks compiled using the gcc-4.3.2 compiler.
The X-axis represents the violin plots of program execution times when the SPEC OMP2001
benchmarks run together with the co-running processes. The Y-axis represents the 31 observed
execution times for each software configuration. In each violin plot, we still have non-negligible
performance variability since thread affinity is not fixed.

In addition, a strange phenomenon appears. From Figure we can see that when we
increase the number of processes running in background, the program execution times at user
level of the OpenMP applications decreases. Meanwhile, we observe in Figure [4.19] an increase
of real execution times as expected. Running the threads of the SPEC OMP2001 benchmarks
and the co-running processes with a fixed scheduling affinity leads to the same conclusion (not
plotted here): when we increase the number of co-running processes, we observe a decrease
in program execution times at user level of the OpenMP applications. There are multiple
factors that may explain such phenomena. These factors can be classified mainly into micro-
architectural or OS interactions. In order to make an analysis of this phenomena, we design
micro-benchmarks (SPEC OMP2001 are too complex to analyse directly) to isolate some micro-
architectural and OS events for this application behaviour. The next section describes our study
with micro-benchmarks.
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4.6 Analysing the variability of micro-benchmarks with co-running
processes

In Section we performed experiments where SPEC OMPO1 applications run simultaneously
with co-running processes. We showed that increasing the number of co-running processes
may decrease the execution time at the user level. In order to understand these observations,
we used synthetic micro-benchmarks. The idea behind such benchmarks is to isolate micro-
architectural, application and operating system level events that may have an influence on the
observed performance behaviour. To do so, we use two classes of micro-benchmarks: 1) memory-
bound benchmarks (make intensive access to the memory), and 2) CPU-bound benchmarks (do
not make intensive access to memory).

4.6.1 Memory-bound micro-benchmarks

We start our evaluation by memory-bound benchmarks. This class of micro-benchmarks stresses
the memory cache hierarchy in order to understand the relation between increasing the number
of co-running processes and the decreasing of the user execution times.

Micro-benchmarks code

The code of the micro-benchmarks in Listing is composed of three loops Loopl (parallel
loop), Loop2, Loop3 and one statement S1. The 