Finite bandwidth in a heavy-fermion model 3.

Introduction

Dimensionality is of fundamental importance in physics. From a theoretical perspective, the properties of a given model often change dramatically upon changing its number of spatial dimensions. A textbook example is the isotropic quantum Heisenberg model, which displays no spontaneous magnetization at nite temperature in two dimensions, while in the three dimensional case there is a nite critical temperature below which the system is ordered. This result can be generalized by way of the Mermin-Wagner theorem, which states that no continuous symmetry can be spontaneuously broken at nite temperature when the dimension is lower than or equal to 2, provided that the interactions are short-ranged.

While the study of dimensions other than 3 might seem irrelevant at rst sight, there are plenty of experimentally accessible systems whose properties are mainly ruled by low-dimensional phenomena. For instance, many bulk crystals are arranged in non-isotropic structures in which interactions will mostly happen within chains or layers, leading to eective one-or two-dimensional physical properties. Moreover, among such low-dimensional systems appear some of the most intriguing and technologically promising materials, as the recently discovered layered high-temperature superconductors pnictides.

The eld we are interested in here is condensed matter physics, which aims at describing the collective properties of a large number of atoms. Given that very few exact solutions are known for quantum systems beyond the most simple case of the hydrogen atom, this task implies the use of approximations that simplify the complexity of the problem. The notion of energy scale is therefore of crucial importance in order to neglect the degrees of freedom that will take no part in the phenomena under consideration. For instance, condensed matter theory can in most cases ignore the structure of the atomic nuclei that involve energies considerably larger than the electronic properties of interest. Eective models involving only the essential degrees of freedom can therefore be derived, but even these are in general extremely intricate. While many exact solutions can be computed analytically for quantum systems in one dimension or innite dimensions, only approximate results can in general be obtained for intermediate dimensions. The advances made during the last decades in both computer performance and algorithms have made numerical simulations an unavoidable tool for understanding such models. This work is devoted to describing physical systems in which a few two-dimensional electronic layers are coupled together. While 2D systems have been the object of intensive research -largely motivated by the fact that hightemperature superconducting cuprates are essentially made of weakly coupled layers-much less has been done on the case of layered systems. The latter can equivalently describe 2D models in which more than one electronic band is involved, or a layered material in which atomic planes are coupled and form a complex heterostructure. In spite of several limitations, which we will detail later on, the numerical technique we employ can compute exact properties of quantum clusters at nite temperature that take into account spatial correlations, thus providing an important complementary alternative to other methods.

The tools and methods will be presented in Chapter 1. After briey introducing the formalism of second quantization, we will derive the eective model that will be our theoretical framework, the Hubbard model. A few noteworthy physical limits of the latter will be discussed, before we present the numerical method called the Determinant Quantum Monte Carlo (DQMC). Our focus will be mainly on explaining the underlying concepts rather than on presenting detailed derivations of the formalisms. A section will be devoted to introducing the physical measurements that we will use in the subsequent chapters, which will oer the opportunity to illustrate a few standard results on the Hubbard model, as well as to underline some limitations and tricks of the trade of our numerical method. We will nally succinctly comment on a few other major methods used to study the Hubbard model, focusing on their advantages and drawbacks against the DQMC method.

The study of a rst system will be presented in the second Chapter, where two Hubbard planes will generate two electronic bands separated by a band gap of tunable width. Motivated by recent investigations on the eect of electronic correlation in band insulators, a particular realization of such a correlated insulator will be analyzed. The results will be systematically compared against those published a few years ago for the same hamiltonian by means of the Dynamical Mean Field Theory (DMFT) technique, showing in particular a strong disagreement with this work as we found no shrinking of the energy gap upon increasing the electronic repulsion. Comparisons will also be made against work previoulsy done on a very similar system, the Ionic Hubbard Model, in which a metallic phase was found in between two insulating phases, drawing much attention and controversy. Chapter 3 will be devoted to another multi-orbital two-dimensional system.

The Periodic Anderson Model (PAM) is a theoretical milestone in the study of the coupling of electronic transport with magnetism that has been used to describe the behaviour of an important class of correlated compounds known as heavy fermions. We will extend this model by allowing a tunable mobility in the magnetic band, therefore exploring a broad spectrum of physical phenomena related to the interplay of transport and magnetism. In particular, it will be shown that magnetic moments and correlations are maximized for a nite bandwidth f -band. The temperature dependence will be discussed, revealing the distinct energy scales of the model.

In Chapter 4, several Hubbard planes will no longer describe several orbitals of a two-dimensional system but rather the atomic layers of a few unit cells thick heterostructure. The latter will be made of a thin interface between a metal and a correlated insulator. After a brief introduction of the recent massive interest in correlated heterostructures and their potential applications in the eld of micro-electronics, we will present dierent works previously done on similar systems through alternative theoretical methods as well as experimental investigations. It will be shown that, as the coupling at the interface is tuned, the system undergoes a transition to an unexpected insulating paramagnetic state that involves atomic layers not directly at the interface, before another transition at large coupling in which the interface decouples from the bulk, the latter recovering its initial properties. The eect of the correlation strength and of the interface thickness on the propagation of the intermediate state into the materials will be nally discussed.

The last chapter has our conclusions and perspectives for future work.

[...] D'abord, nous allons faire le chapitre des nances, ensuite nous parlerons d'un petit système que j'ai imaginé pour faire venir le beau temps et conjurer la pluie.

Alfred Jarry [START_REF] Jarry | Ubu roi: drame en cinq actes[END_REF] La notion de dimensionalité a une importance fondamentale en physique. D'un point de vue théorique, les propriétés d'un modèle donné varient souvent de façon spectaculaire en fonction du nombre de dimensions spatiales.

Un exemple classique est le modèle de Heisenberg quantique isotrope, qui n'a pas d'aimantation spontanée à température nie en deux dimensions, tandis qu'il existe en trois dimensions une température critique non nulle en deçà de laquelle le système est ordonné. Ce résultat peut être généralisé au moyen du théorème de Mermin-Wagner, qui établit qu'il ne peut y avoir de brisure spontanée de symétrie continue à température nie dans un système de dimension inférieure ou égale à 2, tant que les interactions sont de courte portée.

Bien qu'au premier abord l'étude de dimensions autres que 3 puisse sembler peu pertinente, il existe de nombreux systèmes accessibles expérimentalement dont les propriétés sont dominées par des phénomènes de basse dimensionnalité. Par exemple, de nombreux cristaux présentent des structures non-isotropes dans lesquelles les interactions ont lieu au sein de chaînes ou de plans, conduisant à des propriétés eectives en une ou deux dimensions. De plus, parmi ces systèmes de basse dimensionalité gurent des matériaux aux propriétés fascinantes qui orent la possibilité d'applications prometteuses, tels les pnictides dont la supraconductivité à haute température n'a été découverte que récemment.

Le domaine qui nous intéresse est celui de la physique de la matière condensée, qui vise à décrire les propriétés collectives d'un grand nombre d'atomes.

Étant donné qu'il n'existe que très peu de solutions mathématiques exactes pour des systèmes quantiques au-delà de l'atome d'hydrogène, cette tâche impose d'avoir recours à des approximations qui réduisent la complexité du problème. La notion d'échelle d'énergie est par conséquent cruciale an de négliger les degrés de liberté qui ne contribuent pas aux phénomènes considérés. En matière condensée, par exemple, on peux en général ignorer la structure interne des noyaux atomiques, qui implique des énergies beaucoup plus élevées que les propriétés électroniques auxquelles on s'intéresse. Des modèles eectifs n'incluant que les degrés de liberté nécessaires peuvent donc être dérivés, mais ceux-ci demeurent souvent d'une grande complexité. Bien que de nombreuses solutions exactes existent en une dimension ou en dimension innie, seuls des résultats approchés peuvent en général être obtenus en dimensions intermédiaires. Les progrès qu'ont connu au cours des dernières décennies les performances des ordinateurs et des algorithmes font des simulations numériques un outil incontournable pour la compréhension de ces modèles.

Ce travail porte sur des systèmes physiques dans lesquels plusieurs couches électroniques sont couplées. Tandis que les systèmes 2D ont été l'objet de nombreux travaux, en grande partie motivés par le fait que les cuprates supraconducteurs à haute température sont composés de plans faiblement couplés, les systèmes en couches demeurent dans une large mesure inexplorés. Ces derniers peuvent décrire, de façon équivalente, des modèles 2D dans lesquels plusieurs bandes d'énergie sont prises en compte, ou des matériaux constitués de couches bidimensionnelles dans lesquels les plans atomiques couplés composent des hétérostructures complexes. En dépit de certaines restrictions qui seront discutées plus loin, la technique numérique que nous utilisons permet de calculer de façon exacte les propriétés d'agrégats quantiques à température nie en prenant en compte les corrélations spatiales, orant ainsi une alternative complémentaire d'autres méthodes.

Les outils et méthodes seront présentés au Chapitre 1. Après avoir introduit le formalisme de la seconde quantication, nous dériverons le modèle eectif qui nous servira de base, le modèle de Hubbard. Quelques limites physiques notables de ce dernier seront discutées, puis nous présenterons l'algorithme appelé Monte Carlo Quantique du déterminant (DQMC). Notre but sera principalement d'expliquer les concepts sous-jacents plutôt que de présenter une dérivation détaillée des formalismes. Une section sera dédiée à la description des mesures physiques que nous emploierons au cours des chapitres suivants, ce qui nous orira l'opportunité d'illustrer quelques résultats classiques concernant le modèle de Hubbard, ainsi que certaines limites et subtilités de notre méthode numérique. Pour nir, nous évoquerons succinctement quelques autres méthodes utilisées pour étudier le modèle de Hubbard, en nous concentrant sur leurs avantages et inconvénients par rapport à la méthode DQMC. L'étude d'un premier système sera présentée au cours du second chapitre, dans lequel deux plans de Hubbard engendreront deux bandes d'énergie séparées par une bande interdite (ou gap) de largeur ajustable. Une réalisation particulière d'un tel système sera étudiée, et motivée par de récentes recherches sur les eets de la corrélation électronique dans les isolants de bande. Les résultats seront comparés de façon systématique à ceux publiés il y a quelques années pour le même hamiltonien au moyen de la Théorie du Champ Moyen Dynamique (DMFT), démontrant en particulier un important désaccord au sujet du comportement du gap d'énergie lorsque la répulsion électronique est augmentée. On fera également la comparaison avec un modèle très similaire, le modèle de Hubard ionique, dans lequel une phase métallique avait été trouvée entre les deux phases isolantes.

Le Chapitre 3 sera dédié à un autre modèle bidimensionnel comprenant plusieurs orbitales. Le modèle périodique d'Anderson (PAM) est un jalon théorique essentiel pour l'étude du couplage entre transport électronique et magnétisme qui a permit la description d'une classe importante de matériaux correlés appelés fermions lourds. Nous étendrons ce modèle en permettant une mobilité électronique ajustable dans la bande magnétique, permettant par conséquent d'explorer une large gamme de phénomènes physiques engendrés par la présence simultanée de transport électronique et de magnétisme. En particulier, nous montrerons que la formation de moments locaux ainsi que les corrélations magnétiques sont maximisées quand la largeur de bande est étroite mais non-nulle. La dépendance en température sera également discutée, révélant les diérentes échelles d'énergie du modèle.

Dans le dernier chapitre, les plans de Hubbard ne décriront pas les plusieurs orbitales d'un système bidimensionnel, mais plutôt les couches atomiques d'une hétérostructure épaisse de quelques cellules unité. Cette dernière sera composée d'une interface mince entre un métal et un isolant corrélé. Après une brève mention du récent intérêt porté aux hétérostructures corrélées et de leurs possibles applications dans le domaine de la micro-électronique, nous présenterons diérents travaux eectués sur des systèmes similaires à l'aide d'autres méthodes théoriques, ainsi que des études expérimentales. Nous montrerons que, en ajustant le couplage à l'interface, le système présente une transition vers un état isolant paramagnétique qui implique des couches atomiques qui ne sont pas en contact direct avec l'interface. Dans le régime de couplage fort, on observera une autre transition dans laquelle l'interface se découple du volume, ce dernier recouvrant ses propriétés initiales. Les eets de la valeur de la corrélation et de l'épaisseur de la structure considérée sur la pénétration de la phase paramagnétique intermédiaire seront nalement discutés.

Le dernier chapitre résume nos conclusions et les perspectives de développement ultérieur. Introduction

The standard properties of metals are well described within the framework of the Fermi gas, in which the degrees of freedom of independent electrons are mainly ruled by the Pauli exclusion principle that leads the available particlehole excitations to be restricted in the vicinity k B T of the Fermi energy, so that only few of the total number of electrons are involved in the thermodynamic properties. Since in most metals the Coulomb interaction between electrons is typically of the order of magnitude of the kinetic energy, it is far from trivial that this description is relevant for describing even simple metals. The Fermi liquid theory, developed early on by Landau, addresses this question by acknowledging that the eigenstates of the interacting case shall be adiabatically connected to the eigenstates of the noninteracting problem. The excitations will therefore be described in terms of quasi-particles that share the same equilibrium properties as the non-interacting electrons but with renormalized parameters (such as the mass).

Although the Fermi liquid theory has proven to be extremely helpful in accounting for the thermodynamic properties of metals, there are broad classes of models and compounds in which this description breaks down. In particular the electron scattering, that scales as the square of the temperature T predicted in the Fermi liquid context, is not compatible with the linear resistivity observed in doped cuprates. In order to deal with non-Fermi liquid behavior, it is necessary to go beyond the picture drawn by Landau and to deal with electronic correlation in a non-pertubative way. Because of the complexity of the problem, it is often necessary to have recourse to eective models that are simpler than the exact problem but capture nonetheless some of its fundamental properties. The analysis of these models remains usually cumbersome, so that approximate analytical or numerical methods are required in order to study them.

After introducing briey the formalism of second quantization, the goal of this chapter is to present the particular model we will focus on, known as the Hubbard model, as well as the numerical method we shall use throughout this work, the Determinant Quantum Monte Carlo method. Some general properties of the Hubbard model will also be discussed, with a special emphasis on the advantages and limitations inherent to these model and numerical method.

Electrons on a lattice

The goal of this section is to introduce the tools we will be using below. We shall therefore not get into unnecessary details, and refer the reader the existing references for further details and rigour (see for example the books by Mahan [START_REF] Mahan | Many Particle Physics. Physics of Solids and Liquids[END_REF] or Coleman [START_REF] Coleman | Introduction to Many Body Physics[END_REF]).

Second quantization

In quantum mechanics, rst quantization refers to the formalism in which a system of N particles is described by means of a wavefunction Ψ, whose evolution is determined by the Schrödinger equation

i ∂ ∂t Ψ = ĤΨ. (1.1) 
When dealing with the statistical properties of an open system, the rst quantization formulation is cumbersome and it is convenient to turn to a formalism in which the basis set is made of products of the independent particles wavefunctions, called second quantization. The vector Φ {n 1 ,...,n i ,... } = |n 1 , n 2 , . . . , n i , . . . then denes the state with n i particles in the state i, the full set of all possible occupation numbers generating a complete basis set for the many-body system. This basis can be obtained by dening the vacuum state |0 , and a set of operators {c † i } that create a particle in a given state:

Φ {n i } = i (c † i ) n i |0 . (1.2)
The {c † i } operators are called creation operators, while their adjoints {c i } are called destruction operators for they remove particles from the system.

In order to enforce the symmetry of the state upon permutation of two particles, one must impose commutation relation between operators. We will focus on the antisymmetric case of fermions, the symmetric bosonic case being obtained in a similar manner. Let us rst introduce the anticommutator between operators  and B:

{ Â, B} = Â B + B Â (1.3)
We then dene the anticommutation relation for the fermionic creation and destruction operators

{c † i,σ , c j,σ } = δ i,j δ σ,σ {c † i,σ , c † j,σ } = {c i,σ , c j,σ } = 0.
(1.4)

The Pauli exclusion principle ensures immediately from these denitions, enforcing no state can be occupied by more than one particle (n i ∈ 0, 1):

c † i,σ c † i,σ = -c † i,σ c † i,σ = 0.
(1.5)

Hubbard model

In order to describe the electronic properties of a crystal, a simple model consists of considering electrons on a lattice. When the Coulomb interaction between the electrons is not taken into account this model can be easily solved and describes satisfactorily a broad class of metallic compounds. The only interaction we thus take temporarily into account is the eective potential generated by the mean electronic background and the underlying ionic lattice, V (r). For the sake of simplicity we also consider only one electronic band, and shall consider multi-band systems at a later stage. When the lattice is translationally invariant, Bloch theorem tells us the wavefunctions that are solutions of the Schrödinger equation for this problem are Bloch states, namely functions that are can be written as:

ψ k (r) = e ik•r u k (r), (1.6) 
where k denotes a momentum and u k (r) is a function that has the same periodicity as the ionic potential.

The Schrödinger equation then reads:

H 0 ψ k (r) = [- 2 2m ∇ 2 + V (r)]ψ k (r) = E k ψ k (r).
(1.7)

Because of the Pauli principle, each eigen-energy E k can be occupied by at most two electrons, corresponding to the spin states σ ∈ {↑, ↓}. The maximum of the eigen-energies that are occupied is called the Fermi energy, E F , and depends on the number of electrons present in the system. The Fermi energy denes, in momentum space, the Fermi surface around which most electronic processes occur at low temperature. It is now convenient to switch to the second quantization formalism and dene the eld operator Ψ σ (r) that destroys an electron of spin σ at the position r:

Ψ σ (r) = k,σ ψ k (r)c k,σ . (1.8)
The eld operators obey the canonical anticommutation relations if the Bloch states are normalized. It is possible to show that the free electron Hamiltonian operator takes, in this language, the diagonal form in momentum space:

Ĥ0 = k,σ E k c † k,σ c k,σ = k,σ E k n k,σ .
(1.9)

We introduced in the last equation the number operator n k,σ that counts the number of electrons with momentum k and spin σ, and that in the fermionic case takes the values 0 or 1. Let us now add to this non-interacting system the Coulomb interaction. To do so, it is convenient to introduce localized states centered on an atomic site labelled i of coordinates R i , called Wannier functions, and relate them to the non-local Bloch states through the Fourier transform

φ i (r) = 1 N k e -ik•R i ψ k (r), (1.10) 
where N is the number of sites. By dening the creation and destruction operators for Wannier states as the Fourier transforms of the respective operators for Bloch states, we can now write the eld operators equivalently in term of localized or delocalized operators:

Ψ σ (r) = k,σ ψ k (r)c k,σ = i,σ φ i (r)c i,σ .
(1.11)

The non-interacting Hamiltonian can then be rewritten in real space as

Ĥ0 = i,j,σ t i,j c † i,σ c j,σ , (1.12) 
where we introduced the hopping term that accounts for the kinetic energy betwen the sites i and j

t i,j = 1 N k e ik•(R i -R j ) E k . (1.13)
The set of Wannier functions makes it possible to account for the electronelectron interaction. The interaction term representing the Coulomb repulsion

V (|r -r |) reads in terms of eld operators Û = drdr Ψ † σ (r)Ψ † σ (r )V (|r -r |)Ψ σ (r )Ψ σ (r) = i,j,k,l U i,j,k,l c † i,σ c † j,σ c k,σ c l,σ , (1.14) 
with

U i,j,k,l = drdr φ * i (r)φ * j (r )V (|r -r |)φ k (r )φ l (r).
(1.15)

We will now make two assumptions. First, the electron overlap will be neglected beyond nearest-neighbors, which is reasonable since the Wannier functions are tightly localized on the ionic centers. Second, we will restrict the Coulomb repulsion to its on-site component and neglect any further electronelectron interaction. Finally, the band lling is allowed to be tuned by adding a chemical potential term µ. The Hubbard model then reads

Ĥ = i,j ,σ t i,j (c † i,σ c j,σ + c † j,σ c i,σ ) + i U i n i,↑ n i,↓ -µ i,σ n i,σ .
(1.16)

In spite of its appearant lack of complexity, the analysis of this model proves to be dicult and has kept physicists busy for decades.

Particle-hole symmetry

A lattice is said to be bipartite when two sublattices A and B can be dened such as every site belonging to one of the sublattices is connected only to sites belonging to the other sublattice. For instance this is the case for the square and the honeycomb lattices, while the triangular or the Kagome lattices are not bipartite.

In the case of a bipartite lattice, the Hubbard model has a particle-hole symmetry, which means its properties can equivalently be described in terms of creation and destruction operators for electrons -what we did up to now-or in terms of operators acting on holes, namely on the absence of an electron:

h i → (-1) i c † i h † i → (-1) i c i (1.17)
where the sign of the term (-1) i depends on the sublattice in which is located the site i. Upon these transformations the Hubbard Hamiltonian becomes:

Ĥ = i,j ,σ t i,j (h † i,σ h j,σ + h.c.) + i U i m i,↑ m i,↓ -µ i,σ m i,σ + i,σ U i ( 1 2 -m i,σ )
where we introduced the notation m i,σ = h † i,σ h i,σ for the number of holes at the site i and with spin σ.

The transformations thus add an extra term that cancels at half-lling

n i,↑ = n i,↓ = 1 2
. In that important special case, the Hubbard model is therefore unchanged upon the particle-hole transformation. More generally it is possible to demonstrate that the phase diagram of the model is symmetric about halflling. We now go back to the situation in which the electrons do not interact, namely in our Hubbard model when the local interaction U i is zero everywhere. The non-interacting Hamiltonian being diagonal in momentum space, it is natural to consider the dispersion relation E(k) in order to gain some insight into the band structure it generates. The latter depends on the parameters of the model such as the dimension, the geometry of the lattice and the specic pattern of hopping between each pair of sites. For the sake of simplicity we shall focus on the case of the two-dimensional square lattice with homogeneous nearest-neighbor hopping -t.

Ĥ0 = a,b ,σ t a,b (c † a,σ c b,σ + h.c.) = -t a,σ [(c † a,σ c a+x,σ + c † a,σ c a-x,σ + c † a,σ c a+y,σ + c † a,σ c a-y,σ ) + h.c.] = - t N a,σ kx,k x ,ky,k y e ikxa e -ik x (a+1) c † kx,σ c k x ,σ + . . .

= -2t

kx,ky,σ cos(k x )c † kx,σ c kx,σ + cos(k y )c † ky,σ c ky,σ . It is also worth noting that, in the half-lled square lattice, the density of states N (ω), which counts the number of disctinct quantum states at an energy ω, diverges at the Fermi energy. Such a divergence, known as Van Hove singularity, implies that a great number of electrons are available for low-energy excitations.

Strong interaction limit

Another important limit is the one in which the on-site repulsion is much larger than the bandwidth t/U → 0. In the large U limit, the ground-state minimizes the number of doubly occupied sites N d : at or below half-lling there is no double occupancy, while above half-lling there is no empty site. It is then tempting to reduce the complexity of the problem by deriving an eective lowenergy model that excludes the sectors with more than the minimal number of double occupancies, leading to a reduction of the dimension of the Hilbert space from 4 N to 3 N (see for example the book by Auerbach [START_REF] Auerbach | Interacting electrons and quantum magnetism[END_REF]).

We dene the projectors into the sectors of single occupancy P1 (the sector of empty sites gives a zero contribution to the Hamiltonian)

P1 = N i=1 (1 -n i,↑ n i,↓ ). (1.19)
The Hubbard hamiltonian becomes in the strong coupling limit the t -

J hamiltonian Ĥt-J = -t i,j ,σ P1 (c † i,σ c j,σ + h.c.) P1 + J i,j (S i • S j - n i n j 4 
).

(1.20)

where we introduced the spin operators {S i }, and the coupling J ∼ 4t 2 /U . The rst term in Eq. (1.20) is the kinetic term of the Hubbard model projected into the subspace of non doubly occupied states. The second term derives from the second order perturbative expansion of the interaction term, corresponding to the virtual hopping of an electron into a doubly occupied state. Because of the Pauli principle, such a process can happen only if the adjacent electrons carry dierent spins, leading to antiferromagnetism as suggested by the positive sign of coupling J. Hopping terms involving three sites have been here neglected.

At half-lling, every site is singly occupied so the hopping term would necessarily lead to a doubly occupied state; the kinetic term then vanishes and the model becomes the quantum Heisenberg hamiltonian

ĤH = J i,j (S i • S j - n i n j 4 
).

(1.21) 

Monte Carlo methods

The term Monte Carlo method is used to describe a broad range of numerical techniques in which the resolution of the problem is based on performing a stochastic sampling of the congurations of the system. The name is said to be a reference to the Casino de Monte Carlo, alluding to the randomness of the sampling. This class of methods is applied in a great number of elds going from physical sciences to nance.

In statistical physics, the most important probability distribution is the Boltzmann distribution which gives the probability to measure a state in a given system. In the grand-canonical ensemble -that is when both energy and particle number uctuate in the vicinity of an equilibrium determined by the temperature T and chemical potential µthe Boltzmann weight is given by:

P i = P (E i , N i ) = e -β(E i -µN i ) j e -β(E j -µN j ) ≡ 1 Z e -β(E i -µN i ) . (1.22)
The physical properties of such a nite temperature system are determined for a given observable Ô by the average value it takes over all the states i of the system weighted by the Boltzmann distribution:

Ô = j O j e -β(E j -µN j )
j e -β(E j -µN j )

(1.23)

A major diculty arises from the fact that the value of the partition function Z is in general not known, and would require exploring the whole conguration space of the system which is intractable in practice. A way to circumvent this diculty is to evaluate only the ratio of the probability of two congurations, for example by employing the Metropolis algorithm. Here we review the basic concepts behind it.

The goal is to perform a nite sampling of the conguration space through a random process known as a Markov chain, in which at each step the choice of the next sample does not depend on the history of the chain and is fully characterized by the probability distribution P (i → j) of the transition between two congurations i and j. The Boltzmann distribution {P i } will be the stationary distribution described by the Markov process if the detailed balance condition is fullled:

P i P (i → j) = P j P (j → i).
(1.24)

When generating a new conguration, an acceptance probability A(i → j)

will thus be dened such as to satisfy the detailed balance condition. The Metropolis probability is one possible choice for that acceptance, and is dened by

A(i → j) = min(1, P j P i ) = min(1, e -β[(E j -µN j )-(E i -µN i )] ) (1.25) 1.3.1 Quantum Monte Carlo
When the temperature is low enough more precisely when the quantum uctucations ω are larger than the thermal uctuations k B T the statistical system can no longer be viewed as composed of classical particles and quantum properties have to be taken into account. It would be deceptive to believe that such a temperature is necessarily close to the absolute zero. For instance, the Pauli principle that prevents fermions from occupying the same state leads in metals to characteristic Fermi energies of order T ∼ 10 4 K. In such cases, one has to worry about the quantum description of the states, which are then described by operators that make the direct way of sampling congurations used for classical systems impracticable and require using more sophisticated methods.

A tight-binding Hamiltonian can typically be written in the form

Ĥ = T + Û, (1.26) 
where Û is the interaction term (typically the electron-electron Coulomb repulsion), and T is a kinetic term Ĥ0 -µ N ( N is the number operator that measures the number of particles). While the rst term is usually diagonalizable in real-space, and the second term in the momentum-space, the general problem admits in most cases no trivial solution. Perturbation theory is the method of choice when one of the terms dominates, allowing a perturbative expansion in the vicinity of its exact solution, but this approach is bound to fail when both terms are of the same order. By the same token, rst principle where we introduced the L imaginary time steps ∆τ = βL. The systematic Trotter error O(∆τ 2 ) can in principle be made arbitrarily small by decreasing the time step, up to an additional computational cost.

Among the number of QMC methods that are available, the Determinant QMC is the one of choice for fermionic systems. We will describe it briey in the next section, but we suggest the interested reader to refer, for further details, to the original work by Blankenbecler et al. [START_REF] Blankenbecler | Monte Carlo calculations of coupled boson-fermion systems[END_REF], to the chapter by Loh and Gubernatis [START_REF] Loh | Stable numerical simulations of models of interacting electrons in condensed-matter physics[END_REF] or to the study of the 2D Hubbard model by White et al. [START_REF] White | Numerical study of the two-dimensional Hubbard model[END_REF]. The particular implementation we used, the quantum electron simulation toolbox (QUEST), can be found at http://quest.ucdavis.edu/.

Determinant QMC

When dealing with quadratic forms of fermionic operators, that is operators that can be written

Ĥl = i,j (H l ) ij c † i c j , (1.28) 
the trace over the product of exponentials of such operators can be evaluated straightforwardly by means of a determinant

Tr e Ĥ1 e Ĥ2 . . . e ĤL = det 1 + e -ĤL . . . e -Ĥ2 e -Ĥ1 .

(1.29)

The latter equality requires the use of algebras that account for the fermionic anticommutation relations, known as Grassman algebras. For a rigorous derivation the reader can refer, for instance, to the book by Negele and Orland [START_REF] Negele | Quantum Many-particle Systems[END_REF].

While the kinetic term T already has a quadratic form, the interaction term Û is quartic in fermionic operators. It is therefore necessary to transform it into a quadratic form by performing a discrete Hubbard-Stratonovich transformation

e -∆τ U (n i,↑ -1 2 )(n i,↓ -1 2 ) = C h i,l =±1 e λh i,l (n i,↑ -n i,↓ ) , (1.30) 
where cosh(λ) = e ∆τ U 2

and C = 1 2 e -∆τ U 4 . The quartic term is consequently decoupled into a quadratic form by the introduction of an auxiliary Ising-like bosonic eld {h i,l } known as the Hubbard-Stratonovich eld, that couples to the local magnetization at site i, (n i,↑ -n i,↓ ), at every time slice l. Coupling the auxiliary eld to the spin component S z breaks the SU (2) invariance of the hamiltonian, which is theoretically restored after sampling over the whole conguration space. Other choices of decomposition are also possible.

The partition function, now expressed in terms of quadratic forms only, can be written as a sum over every possible Hubbard-Stratonovich eld

Z = C LN Tr h [det(M ↑ ) det(M ↓ )] , (1.31) 
where we introduced the trace Tr h over the Ising eld h = ±1 and the matrices M σ = 1 + e -K e -Vσ(L) . . . e -K e -Vσ (1) ,

(1.32)
with the kinetic term reading in one dimension

K = -∆τ       µ t 0 t t µ t . . . 0 0 t µ 0 . . . . . . t 0 0 µ       (1.33)
and the interaction term (V σ (l)) ij = -λσ i,l δ i,j .

(1.34)

The Metropolis ratio of the Boltzmann weights that determines the acceptance probability of a Markov step from a conguration i to a conguration j thus becomes the product of determinants

r(i → j) = det(M ↑ (j)) det(M ↓ (j)) det(M ↑ (i)) det(M ↓ (i)) . (1.35)
Since this quantity is not always positive, its absolute value is usually taken as the Boltzmann weight. This might render the numerical convergence tough because of a numerical sign problem, one of the main limitations of QMC methods.

Limitations and tricks 1.3.3.1 The sign problem

In the Determinant QMC formalism we presented, there is a priori no reason for the determinants involved in the denition of the partition function to be positive, leading to the possibility of negative Boltzmann weights P i with no physical meaning. A solution consists in taking the absolute value of these weights when computing the expectation value of an observable Ô:

Ô = i O i P i i P i = i O i |P i |sgn(P i ) i |P i |sgn(P i )
.

(1.36)

The problem arises from the fact the average sign decreases exponentially [START_REF] Loh | Sign problem in the numerical simulation of manyelectron systems[END_REF], thus leading to large uctuations and a slow convergence of the measure-

ments i P i i |P i | ∼ e -β∆F , (1.37)
where we introduced the dierence in the free energy ∆F involved by taking the absolute value of the determinants. Since the free energy is an extensive quantity, both decreasing the temperature and increasing the size of the lattice cluster worsen the problem, when one is usually precisely interested in understanding the low-temperature properties of the system in the thermodynamic limit. It can be shown that, among the multiple possible choices for the Hubbard-Stratonovich transformation, none can systematically give the square of a determinant and thus a positive weight [START_REF] Ghassan | Fermion sign problem: Decoupling transformation and simulation algorithm[END_REF].

Fortunately, the sign problem is not a concern in several important cases.

One is the attractive Hubbard model U < 0, where the determinant for the two spin species are equal and consequently their product is always positive. In the repulsive case at half-lling, both determinants always have the same sign, thus also leading to well dened Boltzmann weights. Although every study presented in this work is performed at half-lling, and will be consequently devoid of any sign problem, this important limitation of the method should be kept in mind.

Boundary conditions

Because the DQMC algorithm computes properties of a nite cluster, a choice has to be made about the boundary conditions (BC). Even though any choice leads to the same result in the thermodynamic limit, the choice of periodic boundary conditions allows in general a better convergence. Periodic conditions allow the choice of a phase factor at each boundary, which once again does not aect the computed physical properties for an arbitrarily large cluster.

The real-space correlations computed by our algorithm can be equivalently computed in the reciprocal momentum-space by way of a numerical Fourier transform. All the information about spatial correlations will then be described within the rst Brillouin zone, which in the case of the square lattice belongs to {k x , k y } ∈ [-π, π[ 2 . The number of k-points sampled in this interval is equal to the number N of sites of the cluster under consideration. Increasing the size of the cluster thus improves the sampling of the Brillouin zone.

The eect of changing the phase factors at the boundaries is to shift the position of the k-points in the Brillouin zone. By averaging independent simulations performed under dierent choices of boundary conditions, it is therefore possible to increase the number of points sampled in the momentum-space at a linear numerical cost, better than by increasing the size of the cluster (whose numerical cost scales as N 3 ) [START_REF] Gros | The boundary condition integration technique: results for the Hubbard model in 1D and 2D[END_REF]. This is illustrated in Fig. 1.3, in which the k-points for a small N = 6 × 6 cluster are drawn for four dierent choices of boundary conditions.

1.4

Measurement of physical quantities

Static and dynamical measurements

A central quantity in statistical physics is the two-point correlator called Green's function, which is the response function to an elementary excitation.

In DQMC, the Green's function can be easily extracted from the matrices used Averaging results over dierent sets of BC allows a better sampling of the momentum-space.
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to perform the stochastic evolution:

G σ i,j = c i,σ c † jσ = M -1 σ ij .
(1.38)

For instance, the kinetic energy can be computed straightforwardly from the Green function:

Ĥ0 = i,j ,σ t i,j (h † i,σ h j,σ + h.c.) = i,j ,σ t i,j (G σ i,j + G σ j,i ).
(1.39)

General physical properties are determined by way of correlation functions of observables

Ô C(r) = Ôi+r Ô † i -Ôi+r Ô † i , (1.40) 
where • is the statistical average in the grand-canonical ensemble. Such correlation functions provide information about how an elementary perturbation at a site will aect the state of another site located at a distance r. Since in our denition we subtracted the uncorrelated value, the correlation function vanishes when the observable does not couple the distant sites.

Evaluating from the Green function the expectation value of physical quantities that involve more than two fermionic operators is made straightforward by using Wick's theorem. The latter gives the rules how to write such expectation values as a sum of products of two-point correlation functions. In the case of correlation functions involving four fermionic operators, it writes

c † i,α c j,β c † k,γ c l,δ = δ αβ δ γδ (δ ij -G α j,i )(δ kl -G α l,k ) + δ αδ δ γβ (δ il -G α l,i )G α j,k .

Time-dependent measurements

As we noted in a previous section, Quantum Monte Carlo methods account for quantum uctuations by considering an additional imaginary time dimension.

It is therefore possible to measure correlations at dierent imaginary times, in particular the Green function c † i,σ (τ )c j,σ (0) . By applying the Wick theorem, it is then possible to compute the imaginary time dependence of any observable.

The interest of computing time-dependent correlation functions stems from the possibility of extracting from them information about the real-time correlations (and consequently the energy spectrum), by means of the analytic continuation we shall briey review below.

Long-range order

A physical system can be driven from a state to another upon changing a parameter such as pressure, chemical doping, external electric or magnetic eld, etc., this phenomenon being called a phase transition. Temperature can also drive a thermal phase transition by increasing the thermal uctuations in the system. Two phases of matter can in general be distinguished by a quantity that takes a nite value in one phase and vanishes in the other, the order parameter. For instance, an external magnetic eld can align the disordered moments in a paramagnet, leading to a ferromagnetic order that breaks the rotational invariance of the moments. The order parameter is, in that case, the magnetization of the system. Such a transition is due to an external eld that changes the symmetry of the hamiltonian and consequently drives an explicit symmetry breaking. When a transition breaks the symmetry of the hamiltonian in the absence of an external eld, a spontaneous symmetry breaking occurs, an example being the order to disorder transition of a ferromagnet upon increasing the temperature. Some phase transitions can also occur with no symmetry breaking.

The order parameter that characterizes the transition is not always straightforward to determine. A way to characterize ordered phases is to look at the spatial Fourier transform of real-space correlation functions, known as structure factors. We will be mostly interested in magnetic order, which will be determined through the magnetic structure factor S(k):

     S(k) = 1 N e ik•R S(R), S(R) = 1 3N α={x,y,z} r σ α r+R σ α r .
(1.41)

where we introduced the three spatial components of the spin operators:

     σ x r = c † r↑ c r↓ + c † r↓ c r↑ σ y r = i(-c † r↑ c r↓ + c † r↓ c r↑ ) σ z r = c † r↑ c r↑ -c † r↓ c r↓ . (1.42)
Ferromagnetism is then seen as a peak in the magnetic structure factor at the wave-vector k = 0, and antiferromagnetism as a peak at k = π. It is useful to introduce a notation for the important particular point that characterizes antiferromagnetism, S af ≡ S(π).

(

Complex types of order will lead to more intricate structures. Inhomogeneities in the charge distribution can equivalently be determined by way of a charge structure factor.

Analytic continuation

In the non-relativistic formalism the evolution of a quantum system described by a wave function |Ψ is determined by the Schrödinger equation

i ∂ ∂t |Ψ = Ĥ |Ψ . (1.44)
This leads to a time-dependent solution that reads in the basis of eigenstates of the Hamiltonian {|n } as the linear sum of oscillating terms of frequency E n / , where E n is an eigenenergy and the reduced Planck constant:

|Ψ(t) = |Ψ 0 e -it Ĥ/ = n n|Ψ 0 |n e -itEn/ , (1.45) 
with |Ψ 0 ≡ |Ψ(t = 0) . This evolution in time bears a formal -and deep-resemblance to the probability distribution of a statistical system at equilibrium.

(For the sake of simplicity we consider here the canonical ensemble case.)

Ô 0 = n 1 Z n| Ô|n e -βEn ; Z ≡ 1 n e -βEn , β ≡ k B T. (1.46)
The similarity is evidenced by performing a Wick rotation it/ → β, that replaces the real time of the quantum mechanical system by the inverse tem- 

G σ i,j (τ ) = c i,σ (τ )c † jσ (0) (1.47)
Under some mathematical assumptions such as the analyticity of the correlation function, this function of a real variable admits a continuation over the whole complex plane that is uniquely determined by its expression on the real axis. This allows us to relate the correlation function to a spectral function

A(ω).

We want to compute the time-dependent correlation function of an operator Ô, which is

C(τ ) = Ô(τ ) Ô † (0) + Ô † (τ ) Ô(0) (1.48) = 1 Z Tr e -βH Ô(τ ) Ô † (0) + Ô † (τ ) Ô(0) = 1 Z n n| e -βH e τ H Ôe -τ H Ô † + e -βH e τ H Ô † e -τ H Ô |n = 1 Z n,m e -(β-τ )En e -τ Em n| Ô |m m| Ô † |n + n| Ô † |m m| Ô |n = 1 Z n,m e -βEn e -τ (Em-En) + e -βEm e -τ (En-Em) m| Ô † |n 2 ,
where |n and |m are eigenstates of the Hamiltonian.

By performing a Fourier transform one obtains

C(ω) = β 0 dτ e -iωτ C(τ ) (1.49) = 1 Z n,m e -βEn + e -βEm ω + E n -E m + i0 + m| Ô|n 2 .
We then dene the spectral function

A(ω) = - 1 π ImC(ω) (1.50) = 1 Z n,m e -βEn + e -βEm m| Ô|n 2 δ(ω + E n -E m ) = 1 + e -βω Z n,m e -βEn m| Ô|n 2 δ(ω + E n -E m ),
which veries the sum rule

+∞ -∞ dωA(ω) = 1, (1.51) 
C(τ ) = +∞ -∞ dωA(ω) e -τ ω 1 + e -βω .
(1.52)

A(ω) is a function of energy and determines the available excitations corresponding to the real-time correlation function. When one disposes of statistically noisy data, inverting the above relation is a mathematically ill-posed problem and the simple possibility of tting the integral of a trial function A(ω) to C(τ ) does not lead to satisfactory results. The Maximum Entropy Method (MaxEnt) [START_REF] Blankenbecler | Monte Carlo calculations of coupled boson-fermion systems[END_REF][START_REF] Gubernatis | Quantum Monte Carlo simulations and maximum entropy: Dynamics from imaginary-time data[END_REF] addresses that question by adding a constraint that enforces the likelihood of the solution by taking into account both the goodness of t χ 2 and the information entropy S. The likelihood of a given spectral function A is then given by

P [A] ∼ e αS-χ 2 , (1.53)
where α is a positive parameter that tunes the respective importance of minimizing the goodness of t and maximizing the information entropy. In practice, one averages the spectra obtained with a given distribution of α [START_REF] Gubernatis | Quantum Monte Carlo simulations and maximum entropy: Dynamics from imaginary-time data[END_REF]. This method has been more recently extended into the more general stochastic analytic continuation approach. The latter consists of generating a solution thermally averaged over dierent trial spectral functions, the Boltzmann weight of each function corresponding to its goodness of t [START_REF] Sandvik | Stochastic method for analytic continuation of quantum Monte Carlo data[END_REF][START_REF] Beach | Identifying the maximum entropy method as a special limit of stochastic analytic continuation[END_REF].

Spectral functions

Spectral functions provide information about the excitations available to the many-body system, thus bringing insight into the properties of the underlying phases. Throughout this work we will be particularly interested in the singleparticle and the spin-spin spectral functions.

Single-particle excitations

The single-particle spectral function A(ω, k) can be extracted from the timedependent Green function:

G(τ, k) = β 0 dωA(ω, k) e -τ ω 1 + e -βω .
(1.54) An important point is that this quantity is experimentally accessible by means of angle-resolved photo-emission spectroscopy (ARPES). This technique is based on photo-emission spectroscopy: when light falls on a sample, photons can be absorbed only at energies corresponding to the energy dierence between available excited and occupied states. The density of states of the material considered can consequently be deduced from the absorption spectrum because of the law of conservation of energy. Renement of this method allows to extract the momentum dependence of this absorption, by probing the angular dependence of the absorption and considering the conservation of total momentum.

Spin-wave excitations

Spin excitations can be probed experimentally by scattering neutrons, which have a typical wavelength comparable to the interatomic distance in materials and thus are diracted [START_REF] Lovesey | The theory of neutron scattering from condensed matter[END_REF]. Because they are neutral particles, neutrons can penetrate into the sample and reveal dierent properties of the bulk. In particular, magnetic order can be accessed because the spin of the incident neutron interacts with the magnetic degrees of freedom of the material. Inelastic scattering allows to access the momentum dependence of these excitations, providing the dynamic structure factor S(ω, k).

Finite-size eects on the DOS

Finite-size eects can lead to undesirable eects on the spectra obtained by way of analytic continuation, in particular at U = 0 as illustrated in Fig. 1.4 for the single-particle spectral function A(ω). Because of the high symmetry of the lattice, the eigen-energies of the hamiltonian take only a few values that are highly degenerate. The exact density of states for the nite cluster thus displays only a few peaks, diering dramatically from the smooth curve one obtains in the thermodynamic limit. Because the analytic continuation tends to prefer smooth solutions, it fails to reproduce the discrete spectrum. The result consequently diers from both the nite cluster exact solution and the thermodynamic spectrum. By the same token, articial small gaps due to the discrete spectrum of the small cluster can appear in the extracted data. On a N = 8 × 8 cluster, symmetries lead to highly degenerate spectra with only few peaks (continuous line). Analytic continuation of these discrete spectra gives the correct peak at the Fermi energy but spurious features are observed (dashed line). Exact diagonalization on a large cluster N = 32×32

in which the degeneracy is lifted by a small magnetic eld gives, in comparison, spectra close to the one expected in the thermodynamic limit.

The analytic continuation of clusters of dierent sizes can help detect such a problem. However, interactions between fermions tend to lift the degeneracy of the spectrum and therefore suer from nite size eect in a much lesser extent than the non-interacting case,

Electrical conductivity

Information about the transport properties can be obtained by computing the electrical conductivity. We rst introduce the current operator in the

x direction at site l j x (l, τ ) = e Hτ it σ c † l+x,σ c l,σ + c † l,σ c l+x,σ e -Hτ .
(1.55)

In momentum space, the current-current correlation function can then be dened as

Λ xx (k, iω n ) = 1 N l β 0 dτ j x (l, τ )j x (0, 0) e ik•l e -iωnτ (1.56)
where we introduced the Matsubara frequency ω n = 2πn β .

The direct current (dc) conductivity we are interested in is dened from the static component of the imaginary part of the analytic continuation of the current-current correlation into real frequencies

σ dc = 1 ω ImΛ xx (q = 0, ω).
(1.57)

The uctuation-dissipation theorem relates the current-current correlation we obtain in DQMC to its real frequency dependence through a bosonic kernel:

Λ xx (q, τ ) = +∞ -∞ dω π e -τ ω 1 -e -βω ImΛ xx (q, ω). (1.58)
Although it is, in principle, possible to invert numerically this Laplace transform by way of the Maximum Entropy Method or a related technique, it can be convenient to estimate the dc conductivity from its low frequency dependency σ dc ≈ 1 ω ImΛ xx (0, ω), this relation being valid at low temperature [START_REF] Randeria | Scalettar. Pairing and spin gap in the normal state of short coherence length superconductors[END_REF][START_REF] Trivedi | Deviations from Fermi-Liquid Behavior above T c in 2D Short Coherence Length Superconductors[END_REF]. By integrating the previous relation one nally obtains:

σ dc = β 2 π Λ xx (0, τ = β 2
).

(1.59)

Assessment of the theoretical framework

geometries with nite critical interaction would have been benecial. However, these limitations should be balanced against the following considerations.

In contrast with spin models, the Hubbard hamiltonian takes into account the charge uctuations inherent to nite interaction. This point is fundamental to capture the interplay of transport and magnetism that underlies the physics related to the Kondo eect, in particular the broad eld of heavy-fermions related physics. While Kondo-Heisenberg hamiltonians allow to work within a sub-space of the Hubbard hamiltonian and therefore to simplify the complexity, charge uctuations can not be neglected for mildly interacting systems.

Few alternative techniques are available for the study of strongly correlated electronic systems. Most of the exact results known for the Hubbard model apply to the one-dimensional case, for which real-space density-matrix renormalization techniques are also essentially restricted. On the other extreme stand mean eld theories, which are exact in the limit of innite dimensions, but are often unable to describe the phases that exist in low dimension. Belonging to this category is dynamical mean-eld theory (DMFT) [START_REF] Georges | Dynamical mean-eld theory of strongly correlated fermion systems and the limit of innite dimensions[END_REF], which is able to compute self-consistently the dynamical properties of the quantum problem at the cost of neglecting spatial correlations in its single-site version.

Cluster extensions of DMFT oer promising prospects, but the small size of the clusters considered imposes a spatial cut-o whose eects are cumbersome to evaluate a priori.

On the other hand, Determinant QMC can, in principle, generate exact results for nite clusters containing hundreds of sites. Working in the grandcanonical ensemble allows to study the temperature dependence of the phase diagram and capture transitions driven by thermal uctuations. Making the choice of avoiding any sign problem allows to attain low temperatures and to converge quickly. It is therefore possible to explore broad regions of the phase space, and to reach clusters large enough so to perform nite-size extrapolation.

Chapter 2

Correlations in a band insulator

Motivations

Band theory allows us to explain the sharp distinction of the electronic properties in materials between metals and insulators, depending on the lling of the band. When an electronic band is entirely lled, a nite energy is needed in order to access the rst available excited state, leading to insulating properties.

On the other hand, when the band is only partially lled excitations are accessible at an arbitrary small energy cost, thus displaying metallic properties.

Materials being described within that framework oer few opportunities for information technology applications since their conductivities are essentially not tunable. However, the intermediate case of semiconductors in which the band gap is small has allowed the development of integrated electronics in which logical properties can be obtained from interfaces of doped metal-oxyde semiconductors. As the miniaturization of transistor integration following the exponential Moore's law [START_REF] Moore | Cramming more components onto integrated circuits[END_REF] approaches the limit of few atomic sizes where quantum eects become predominant, new ways of controlling the electronic properties of materials are needed in order to ensure further progress in the eld of information technology. In that context, it is natural to look for materials displaying phase transitions that could be controlled by simple experimental parameters such as electric or magnetic elds. In the last decades, much attention has been focused on metal-insulator transitions driven by local electron-electron interactions, in particular the Mott transition that occurs in the Hubbard model as we previously discussed. However, other types of transitions have more recently been investigated and oer promising prospects.

Anderson-Mott transition

A crystal is not necessarily made of identical sites and can therefore include some degree of disorder. A typical realization of such a situation is when an alloy contains some proportion of impurities or defects randomly distributed in the crystal. This situation can be described by the Anderson model, a tight-biding hamiltonian which allows the energy of the sites to vary locally according to a given distribution of width ∆ µ . The electronic properties of this model are based on the competition between the completely delocalized planewaves found in the perfect crystal and the tendency of electrons to localize at the sites of lower energy, sometimes leading to an insulating transition called the Anderson localization (or strong localization) [START_REF] Anderson | Absence of Diusion in Certain Random Lattices[END_REF]. Dimensionality is a crucial factor in this model: in one dimension the localization is triggered as soon randomness is allowed ∆ µ = 0, while a metal-insulator transition has been reported in three dimension by theoretical and experimental works.

In the two-dimensional case, the localization occurs only marginally. It is thus relevant to ask whether an on-site repulsion could screen the disorder and lead to a metallic state, a question that has been addressed early on by

Anderson [START_REF] Fleishman | Interactions and the Anderson transition[END_REF] and has been the subject of considerable investigation since then [START_REF] Lee | Disordered electronic systems[END_REF][START_REF] Belitz | The Anderson-Mott transition[END_REF][START_REF] Dobrosavljevic | Conductor Insulator Quantum Phase Transitions[END_REF]. Quantum Monte Carlo studies have found signs of a such a transition at nite temperature [START_REF] Srinivasan | Delocalizing eect of the Hubbard repulsion for electrons on a twodimensional disordered lattice[END_REF][START_REF] Chakraborty | Determinant quantum Monte Carlo study of the screening of the one-body potential near a metal-insulator transition[END_REF], although it has been argued a metallic state can not survive at zero temperature in the ground-state [START_REF] Fleury | Many-Body Localization Study in Low-Density Electron Gases: Do Metals Exist in Two Dimensions?[END_REF][START_REF] Abrahams | Metallic behavior and related phenomena in two dimensions[END_REF]. In the limit of innite dimension, single-site DMFT has provided several results that demonstrate a metal-insulator transition driven by the correlations at intermediate interaction [START_REF] Tanaskovi¢ | Disorder Screening in Strongly Correlated Systems[END_REF][START_REF] Aguiar | Effects of disorder on the non-zero temperature Mott transition[END_REF][START_REF] Milo² | Inuence of disorder on incoherent transport near the Mott transition[END_REF].

Even though we shall not consider the role of disorder in the present work, it is important to keep in mind the variety of ways in which a non-interacting insulating state can be achieved and the fact that the role of including correlation in such models remains highly controversial.

Bilayer models

Another way to realize a band insulator is to consider a bilayer Hubbard model in which the orbitals are connected through a local hopping term V . The eect of the latter is to split the two original bands, which overlap at small V . In the non-interacting limit, this model is consequently characterized by the opening of a band gap at a critical V c from which singlet dimers are formed across the bands, the nite energy needed to break these pairs being the width of the gap.

Determinant QMC studies have yielded a phase diagram in which three phases can be distinguished, namely a paramagnetic metal at small interaction, and two insulating phases distinguished by the presence or absence of magnetic order [START_REF] Scalettar | Magnetic and pairing correlations in coupled Hubbard planes[END_REF][START_REF] Bouadim | Magnetic and transport properties of a coupled Hubbard bilayer with electron and hole doping[END_REF]. In spite of displaying no intermediate metallicity in between these two insulating phases, this model demonstrates that bilayer models can lead to richer phase diagrams than the single metal-insulating transition known in the single-band Hubbard model. The pair excitation spectra of a similar model was recently explored within a DMFT study [START_REF] Napitu | Traces of the evolution from Mott insulator to a band insulator in the pair excitation spectra[END_REF], in which the role of double occupancy in the metallicity of the doped phases was underlined.

Models including more than two orbitals were also shown to display complex phase diagram. For example, a three-band Hubbard model, including spinorbit interaction and Hund's rules coupling, was found to have an intermediate band insulating phase in between the Mott-metal transition [START_REF] Du | Metal-insulator transition in threeband Hubbard model with strong spin-orbit interaction[END_REF].

2.1.3 The ionic Hubbard model From [START_REF] Paris | Quantum Monte Carlo Study of an Interaction-Driven Band-InsulatortoMetal Transition[END_REF].

Another possibility is to consider the eect of local interactions in a band insulator. This case has been extensively studied in the framework of the Ionic Hubbard Model [START_REF] Hubbard | Model of the Neutral-Ionic Phase Transformation[END_REF], in which adjacent sites have a dierence in chemical potential ∆ due to crystal eld splitting. In the non-interacting limit, this model has a band gap ∆ owing to the energy cost when an electron hops from one site to another. Interest in this model was rst triggered by organic compounds [START_REF] Torrance | Anomalous Nature of Neutral-to-Ionic Phase Transition in Tetrathiafulvalene-Chloranil[END_REF] that can be described in a minimal way by the one-dimensional version of the IHM [START_REF] Nagaosa | Theory of Neutral-Ionic Transition in Organic Crystals. I. Monte Carlo Simulation of Modied Hubbard Model[END_REF][START_REF] A P Kampf | Nature of the insulating phases in the half-lled ionic Hubbard model[END_REF][START_REF] Batista | Exact Bond Ordered Ground State for the Transition between the Band and the Mott Insulator[END_REF]:

ĤIHM = -t i,j ,σ (c † i,σ c j,σ + c † j,σ c i,σ ) (2.1) + U i n i,↑ n i,↓ + i,σ ((-1) i ∆ 2 -µ)n i,σ .
The two-dimensional version of this model has then been studied and led to controversial results. Intermediate phases in between the band insulating and the Mott insulating states were indeed found, but the nature of this phase was claimed to be metallic by DMFT [START_REF] Garg | Can Correlations Drive a Band Insulator Metallic?[END_REF] and DQMC [START_REF] Paris | Quantum Monte Carlo Study of an Interaction-Driven Band-InsulatortoMetal Transition[END_REF][START_REF] Bouadim | Metallic phase in the two-dimensional ionic Hubbard model[END_REF], while a cluster DMFT study found it to be insulating with bond order [START_REF] Kancharla | Correlated Insulated Phase Suggests Bond Order between Band and Mott Insulators in Two Dimensions[END_REF]. An experimental illustration of the metal-insulator transition found in the 2D IHM was demonstrated on the compound SrRu 1-x Ti x O 3 by photoemission spectroscopy [START_REF] Maiti | Evolution of a band insulating phase from a correlated metallic phase[END_REF].

A correlated band insulator

The models we have briey reviewed in the former section show us there are multiple ways to approach the question of correlated insulators. In the last example, the Ionic Hubbard model, a non-interacting insulating phase stems from the ionicity of the system. Band insulating properties can alternatively arise from electronic hybridization, as in materials like FeSi [START_REF] Jaccarino | Paramagnetic Excited State of FeSi[END_REF] or FeSb 2 [START_REF] Petrovic | Kondo insulator description of spin state transition in FeSb 2[END_REF] which display transport properties similar to Kondo insulators while they do 

Hamiltonian

The band structure of a non-interacting tight-binding hamiltonian is determined by its particular pattern of hopping terms. The two-dimensional hon- -5 In principle many choices are possible in order to realize a band insulator.
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We chose the following bilayer hamiltonian:

Ĥ = - jk ,l,σ t l (c † j,l,σ c k,l,σ + c † k,l,σ c j,l,σ ) -V j,σ (c † j,1,σ c j,2,σ + c † j,2,σ c j,1,σ ) + U j,l (n j,l,↑ - 1 2 )(n j,l,↓ - 1 2 ) - j,l,σ µ l n j,l,σ . (2.2) 
Electrons are labelled by their coordinate at the site j of the layer l on a cubic lattice. The chemical potential µ is set to zero so the system is at half-lling, while the on-site Coulomb interaction is chosen to be repulsive U > 0. In-plane hopping have opposite signs, t 1 = -t 2 ≡ t, and t will be taken as the unit of energy. The non-interacting dispersion relation reads

E q = ± ε 2 q + V 2
, where ε q = -2t(cos(q x )+cos(q y )). It has a band gap at any inter-plane hopping V > 0, and the gap reaches the minimum width 2V along the Fermi surface parametrized in momentum-space by k y = ±π(1 -|k x |).

The bandwidth is a monotonically decreasing function of the perpendicular hopping: W = (V 2 + 16t 2 ) 1/2 -V . In the decoupled case V = 0 each plane is known to show a magnetic instablility due to the nesting of the Fermi surface of the square lattice, leading to AF long-range order (LRO) at any U > 0.

This system has been previously studied within the dynamical mean-eld theory (DMFT) formalism [START_REF] Georges | Dynamical mean-eld theory of strongly correlated fermion systems and the limit of innite dimensions[END_REF], although one should note that semi-circular electronic bands were used. They found a transition from a band insulator to a correlated insulator when increasing U , with a coexistence region at low temperature. The signal for the transition was a discontinuity in the double occupancy. A main result of that paper is the shrinking of the single-particle gap upon increasing the on-site correlation when approaching the transition.

One of our motivations for studying this system was to nd a possible metallic phase around the insulator-insulator transition.

Preliminary phase diagram

The phase diagram is sketched qualitatively in Fig. 2.3. In the innite-U limit our system is indeed the bilayer Heisenberg model, which is known to display antiferromagnetic order up to a critical interlayer hybridization V c ≈ 1.59 beyond which singlet formation destroys magnetism [START_REF] Hida | Quantum Disordered State without Frustration in the Double Layer Heisenberg Antiferromagnet[END_REF][START_REF] Wang | High-precision nite-size scaling analysis of the quantum-critical point of S = 1/2 Heisenberg antiferromagnetic bilayers[END_REF]. No magnetic transition is thus expected beyond this value. obtained by DMFT at V = 0.5 is shown by the square symbol [START_REF] Sentef | Correlations in a band insulator[END_REF]. The Heisenberg critical hybridization, V c , above which the transition to an ordered phase is prevented by singlet formation [START_REF] Wang | High-precision nite-size scaling analysis of the quantum-critical point of S = 1/2 Heisenberg antiferromagnetic bilayers[END_REF] is represented as a dashed line.

In order to draw a rst boundary between the band insulating and Mott insulating phases, we performed a mean eld calculation. In that framework the transition is characterized by the formation of local moments. The phase boundary we obtained is shown as a dotted line; at V = 0.5 the transition is found to occur at a much weaker interaction than in DMFT. The Mott transition was studied in DMFT only at the value V = 0.5, where the critical interaction is U ≈ 5.5.

Magnetism

An important property that was not accessible in the previous single-site DMFT work is magnetism. An onset of magnetic order is to be expected since as the interaction is increased the underlying band structure becomes less relevant and the model progresses toward the Heisenberg limit. However as previously noted, this magnetic transition happens only below a critical V c ≈ 1.59 beyond which well-formed pairs prevent the onset of magnetic order. Antiferromagnetic structure factor in the V -U plane, for a N = 2 × 10 × 10 cluster at inverse temperature β = 30. The interaction U c from which magnetic order arises grows with the width of the gap 2V . Finitesize eects smooth out the transition, hence the need to perform nite-size extrapolation in order to estimate where the thermodynamic transition takes place.

The antiferromagnetic structure factor (see Eq.(1.43)) in the V -U plane is represented in Fig. 2.4. As the non-interacting band gap increases the critical interaction needed to trigger the magnetic transition increases monotonically, reecting the fact that the hybridization across the planes tends to destabilize the tendency toward order. The importance of temperature should be noted: while at V = 0 the system is made of two decoupled Hubbard planes and magnetic order should thus be expected at any nonzero interaction U > 0, thermal uctuations destroy this order and lead to a paramagnetic state at small nite U .

Going beyond these qualitative trends and determining the actual phase boundary requires us to perform nite-size scaling of the antiferromagnetic structure factor. We rst focus on the V = 0.5 value. As shown in Fig. 2.5 the transition can be located precisely and occurs around U c ≈ 4.2, which should be contrasted with the higher value U ≈ 5.5 found in DMFT; this discrepancy can be explained by the fact that we take into account non-local correlations that contribute to the transition. The inset in Fig. 2.5 shows the AF structure factor dependence on temperature at a xed size N = 2 × 12 × 12. While S af (see Eq.(1.43)) shows no sensitivity to temperature in the disordered phase, high temperature destroy the magnetic order for points above the magnetic transition and the structure factor converges only below a critical temperature. In that example the β = 10 data seem to overestimate slightly the ground-state value, although this is not expected to shift signicantly the critical interaction we found for the transition. However, determining the precise value of the order parameter at a given interaction would require to go to lower temperatures.

For larger V , the critical interaction needed for the onset of order grows larger and uctuations make numerical simulations cumbersome. This is illus- 2 and β = 10 the system remains disordered up to U = 12, the maximum value of the interaction we could reach, although magnetism seems to be at the point of appearing. The inset shows no dierence in the extrapolation is found upon slightly decreasing the temperature. trated in Fig. 2.6 for the case of V = 1.2. It shows that in spite of being larger than at U = 10, the structure factor does not extrapolate to a nite value in the thermodynamic limit at U = 12, even though the Heisenberg limit is known to be ordered. Upon further increasing U (Fig. 2.7), the structure factor seems not to grow signicantly anymore although large uctuations make any strong statement dicult. Consequently, the magnetic boundary in our phase diagram will be limited to moderate values of U , the question of its detailed shape when approaching the Heisenberg limit being beyond the reach of our algorithm.

2.4

Local moments

Now that we determined the magnetic transition boundary we turn to the behavior of local moments m, which are related to the double occupancy d by (and using the z-component of the spin operator σ z j that was dened in Eq. (1.42)):

m = 1 N j (σ z j ) 2 = 1 - 2 N j n j ↑ n j ↓ = 1 -2d.
(2.3)

Our interest was at rst driven by the fact that DMFT characterizes the transition by a discontinuity in double occupancy. Even though we found this discontinuity to be an artifact, the derivative of double occupancy with respect to the interaction is indeed a susceptibility and is then expected to characterize the transition. Fig. 2.8a shows that upon increasing the interaction the local moments undergo a monotonic increase from the uncorrelated value 1/2. For small values of V an inexion point is observed that can be better distinguished as a maximum in the derivative ∂m/∂U , as illustrated in Fig. 2.8b. The position of these maxima can be located rather precisely, and for instance at V = 0.5 it indeed coincides within error bars with the critical interaction U c ≈ 4.2.

At large hybridization, for example at V = 2.0, no maximum is found in the derivative. This can be explained by the fact that we know from the Heisenberg model limit no magnetic transition will ever happen beyond V c = 1.59, so no phase transition is expected there. In order to capture where this maximum vanishes we show a close-up view in Fig. 2.8c. Surprisingly, the critical interaction at which the maximum occurs is reduced upon increasing the hybridization in the range V = [1.0, 1.2], while no peak is visible for any U above V ≈ 1.2. There is therefore a region of the phase diagram were the inexion point of the moments does not match the magnetic transition anymore.

Although we veried that the results have converged, it is numerically cumbersome to conclude whether the decoupling of the behavior of local moments from the magnetic ordering is an actual transition or a crossover. This opens the door to a possible intermediate featureless Mott insulating state in which no symmetry would be broken. 
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Spin correlations

The study of real space spin correlations brings further insight into the dierent regimes of the phase diagram. Fig. 2.9a shows the nearest-neighbor correlation across the layers σ j1 • σ j2 as a function of U (see Eq.1.42 for the denition of the spin operator σ). The increase in absolute value of this correlation upon increasing V is a well-known feature of bilayer models that characterizes singlet bound-state formation leading to the destruction of magnetic order. Here we see that increasing the interaction also enhances short-ranged correlation (Fig. 2.9b). This can be interpreted as concomitant to the formation of local moments, as a reduced proportion of double occupancies and vacancies favours spin correlation. The evolution exhibits a kink for an interaction value that corresponds to that found for the magnetic transition, as well as the inexion point in local moments. It is worth noting that within the magnetic phase the increase of correlation is slower than in the paramagnetic phase, the correlation being even suppressed at intermediate V upon entering the Mott phase.

This peculiarity can be understood as the competition between AFLRO and singlets. The right panel Fig. 2.9b presents the intra-plane real space nearest-neighbor spin correlations. This quantity decreases very slightly upon increasing U until the magnetic transition, where it sharply drops before saturating. At V = 2.0, where no transition is expected the correlation experiences no such drop and remains small at any U .
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The comparison of the two panels gives us a hint of the discrepancy between our calculations and the single site DMFT study: at small U the correlation across the layers (left panel) grows faster than the in-plane correlation, indicating the dierence in our study is more likely to be attributed to the inclusion of inter-layer short range correlations than to the short-ranged magnetic order within the planes.

Energy gaps and spectral functions

We now present results on the energy spectra of the correlated insulator. The single-particle gap ∆ sp and the spin gap ∆ S will be extracted by exponential ts of the time-dependent correlation functions corresponding to these excitations, which clearly follows from the expression we obtained in Eq. (1.49). This method is illustrated in Fig. 2.10 for the case of the single-particle gap. Band insulators are characterized by displaying a gap to all excitations. In contrast, a Mott insulator at half lling is gapped to charge excitations due to the energy cost of double occupancy, but might have low-energy excitations in other sectors. In particular, magnetic long-range order is expected to allow long wavelength Goldstone modes with arbitrarily small energies in the thermodynamic limit. The behavior of gaps at the transition between a BI and a MI is therefore expected to be non-trivial, and intervening metallic phases were indeed previoulsy reported in both the IHM and the system we presently study.

We plot in Fig. simulations. The gap was estimated to vanish when the data allowed no exponential tting and the correlation appeared to decrease as a power law, hinting at low-energy excitations.

In striking contrast with DMFT, which nds that the single-particle gap, ∆ sp , shrinks in the band insulating phase upon increasing the interaction, we nd this gap to increase monotonically from its non-interacting value ∆ 0 sp = V . More precisely, the gap remains roughly constant at low interaction U ≤ 2

where the system is still clearly in the band insulating regime, before it steadily increases toward the Heisenberg limit 2∆ sp = U . The evolution of the spin excitation gap ∆ S is opposite, the interaction suppressing the gap continuously from the non-interacting value ∆ 0 . While small Coulomb repulsion, U ≤ 2, does not aect signicantly its value, a further increase of the interaction monotonically suppresses the gap which nally closes at a critical interaction corresponding to the onset of magnetic order where spin density waves are expected. At V = 2.0, dimers across the interface prevent the transition to an ordered phase so the spin gap should not vanish even in the innite-U limit.

The upper right panel (Fig. 2.11b) demonstrates that nite size eects are small when estimating the spin gap ∆ S . However, to get a more precise value for the gap would require a huge computational eort. The lower right panel shows the dependence of the spin gap on decreasing temperature. In spite of the diculty of getting very precise values, the global behaviour gives condence that the values we obtained at β = 20 are reliable to show that the suppression of the gap is a feature of our model. A(q,w), V=0.5, U=6.0 A(q,w), V=1.5, U=10.0
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A(q,w), V=0.5, U=6.0 A(q,w), V=1.5, U=10.0 X(q,w), V=0.5, U=6.0 X(q,w), V=1.5, U=10.0 A deeper insight into the underlying low-energy physics in the Mott insulating phase can be gained by looking at the spectral functions resolved in momentum space. We show such functions in Fig. 2.12, where the color scale represents the spectral weight, the vertical axis is the energy, while the horizontal axis follows high symmetry lines of the rst Brillouin zone.

Let us rst focus on the case {V = 0.5, U = 6.0} shown in the left panels. The upper left panel Fig. 2.12a shows the single-particle spectrum at small V , at an interaction that ensures the Mott phase is fully attained. The black line represents the non-interacting exact result, in which we recognize the minimum gap ∆ 0 = 2V at the points belonging to the Fermi surface k y = ±π(1 -|k x |).

In spite of being of the order of magnitude of the bandwidth, the interaction mainly shifts the spectral functions as the gap becomes larger, so that no signicant transfer of spectral weight is noticed between the two insulating phases. The lower left panel shows the spin wave dispersion at the same point of the phase diagram. The standard dispersion expected for an antiferromagnet is retrieved, with the gap closing at the instability point (π, π).

A sharp contrast to this rst example is oered by looking at another point of the Mott phase, but this time in the region were no magnetic order is possible and at larger interaction {V = 1.5, U = 10.0}. The single-particle spectrum shown in the upper right panel displays in addition to the already stated broadening of the gap with respect to the non-interacting value a strong important attening of the bands. This tendency can be accounted for by the fact that the local interaction attenuates the peculiarity of the non-interacting dispersion due to the hopping pattern. The spin wave dispersion (lower right panel) also diers from the magnetic phase of the Mott insulator in that no closing of the spin gap is anymore in the disordered region.

Conclusions

The results we presented above can be summarized in the phase diagram shown in Fig. 2.13. Finite-size extrapolation of the magnetic structure factor allowed us to determine the boundary where antiferromagnetic long-range order sets in.

Although we were not able to establish this phase boundary above V = 1.0 because of the large critical interaction involved, the asymptotic behavior can be deduced from the innite-U case where no long-range order can be achieved with DQMC (dashed) and MFT (dotted). The vertical line corresponds to the critical V , predicted by studies on the Heisenberg model, above which no magnetic long order is possible. Circles correspond to maxima in dm/dU as a function of U at constant V (see Fig. 2.

8). Introduction

The work presented in this chapter is related to the eld of heavy-fermion materials which represents an important part of condensed matter physics.

Although we are going to introduce some basic concepts that are essential for the comprehension of the results we present, an extensive review of this complex eld falls clearly beyond the scope of this work. We therefore refer the reader to more comprehensive works, like the early article by Fisk et al.

[54], the book by Hewson [START_REF] Hewson | The Kondo Problem to Heavy Fermions[END_REF] on the Kondo problem, the review of results in the limit of innite dimensions by Georges et al. [START_REF] Georges | Dynamical mean-eld theory of strongly correlated fermion systems and the limit of innite dimensions[END_REF], and the other references given throughout the chapter.

Resistivity minimum

In most materials the electrical resistivity can be accounted for by the scattering of the conduction electrons by phonons, the vibrations of the underlying ionic lattice. Because the phonon modes associated with these vibrations become more accessible when thermal uctuations are important, this scattering process leads usually to a resistivity that decreases monotonically upon lowering the temperature. However, in the early thirties, materials were discovered displaying a resistivity minimum at nite temperature [START_REF] Meissner | Messungen mit Hilfe von üssigem Helium XI Widerstand der reinen Metalle in tiefen Temperaturen[END_REF][START_REF] De Haas | The electrical resistance of gold, copper and lead at low temperatures[END_REF], associated with the presence of magnetic impurities. The increase of resistivity at very low temperature was not understood, hence calling for further development of the theory.

The theoretical breakthrough came in 1964 from the work of Jun Kondo [START_REF] Kondo | Resistance Minimum in Dilute Magnetic Alloys[END_REF], who by taking into account spin ip scattering and computing higher order corrections unveiled a logarithmic contribution to the resistivity. This calculation led to an impressive agreement with experimental data, as illustrated in The comparison of experimental data and the theoretical expression derived by Kondo leads to excellent agreement. From [START_REF] Kondo | Resistance Minimum in Dilute Magnetic Alloys[END_REF].

The energy scale below which the free magnetic moments will be screened by the conduction electron is known as the Kondo temperature

T K ∼ W e -1 2ρJ , (3.1) 
where W is the bandwidth of the conduction sea, ρ is the density of states at the Fermi level and J the coupling between the impurities and the conduction electrons.

Heavy-fermions

The coupling of local moments to conduction electrons attracted attention a decade later following the discovery of Cerium based compounds (for instance

CeAl 3 ) with unexpected lack of magnetic order, and displaying huge eective masses at low temperature that are typically of the order of 100 times the free electron mass [START_REF] Andres | 4f -Virtual-Bound-State Formation in CeAl 3 at Low Temperatures[END_REF]. Other intriguing properties are observed in these materials, such as magnetism and unconventional superconductivity [START_REF] Fisk | Heavy-Electron Metals: New Highly Correlated States of Matter[END_REF]. Theoretical insight into this problem was gained by studying models in which each unit cell is coupled to a magnetic moment localized in the vicinity of the nuclei, forming a dense array of Kondo-like impurities known as the Kondo lattice [START_REF] Doniach | The Kondo lattice and weak antiferromagnetism[END_REF]. The possibility for localized electrons to tunnel into the conducting band creates a resonance in their density of states that leads to the rich physics observed in these rare-earth or actinide materials.

As in the single impurity problem, the temperature plays an important role in the phenomenology of heavy-fermion compounds. When the temperature is larger than the Coulomb repulsion T > U , the thermal uctuations dominate the overall behaviour. As the temperature is decreased, the interaction will prevent charge uctuations and thus lead to the formation of well localized moments, and, under certain conditions, to magnetic long-range order. Upon cooling the system further below the Kondo temperature, the spin will tunnel to the conduction sea and generate an entangled state that screens the local moments. This strong temperature dependence will be illustrated in a following section by studying the periodic Anderson model (PAM).

An important framework for the understanding of heavy-fermion phenomenology is the Kondo lattice model (KLM) [START_REF] Doniach | The Kondo lattice and weak antiferromagnetism[END_REF], which describes a periodic array of spins that interact with a conduction band through a Heisenberg interaction J:

ĤK = k σ ε k c † k σ c k σ + J i S i • s i , (3.2) 
where ε k is the dispersion relation of the conduction band. This model can be derived in the strong coupling limit from the PAM by mean of a Schrieer-Wol transformation [START_REF] Schrieer | Relation between the Anderson and Kondo Hamiltonians[END_REF]. Quantum Monte Carlo studies of the KLM have been performed in the last decade both in the absence [START_REF] Capponi | Spin and charge dynamics of the ferromagnetic and antiferromagnetic two-dimensional half-lled Kondo lattice model[END_REF] or presence [START_REF] Beach | Field-Induced Antiferromagnetism in the Kondo Insulator[END_REF] of an external magnetic eld. As was found by Doniach [START_REF] Doniach | The Kondo lattice and weak antiferromagnetism[END_REF], a weak antiferromagnetic interaction between the spins is mediated by the conduction band. In the case of the square lattice, the nesting of the Fermi surface makes the system unstable to antiferromagnetic excitations and long-range order is therefore induced by this interaction. This indirect interaction is named after Ruderman-Kittel-Kasuya-Yosida (RKKY), and was rst discussed in the context of nuclear physics.

The model we will consider throughout this chapter is the following two-band fermionic Hubbard Hamiltonian:

Ĥ = - j,k lσ t l (c † j l σ c k l σ + h.c.) (3.3) -V j,σ (c † j f σ c j d σ + h.c.) + j l U l (n j l ↑ - 1 2 )(n jl↓ - 1 2 ) -µ j l σ n j l σ .
Equation (3.4) describes a two-dimensional square lattice with electronic bands l = d and l = f . The coordinates (j, l) label the spatial site and the band, respectively; σ ∈ {↑, ↓} denotes the spin of the electron. The rst two terms are respectively the intra-band and inter-band kinetic energies. The nearest-neighbor hopping matrix element in the d-band will be chosen to be the unit of energy in the remainder of this work, t d = 1, while its f -band counterpart, t f , will be allowed to vary. The inter-band hybridization, V , controls the singlet formation and will be another tunable parameter. The on-site repulsion U l is chosen to be constant within a band: the f -band will include a moderate repulsive interaction, U f > 0, while the d-band will be noninteracting, U d = 0. The chemical potential µ is set to zero, the system being then at commensurate lling for both bands d and f . This latter choice emphasizes Mott and antiferromagnetic physics, and also avoids any sign problem in our DQMC simulations.

The Periodic Anderson Model

When the nearest-neighbor hopping in the f -band is chosen to be zero, t f = 0, the hamiltonian in Eq. (3.4) describes the periodic Anderson model (PAM).

Even though the properties of this model are well known (see for instance [START_REF] Veki¢ | Competition between Antiferromagnetic Order and Spin-Liquid Behavior in the Two-Dimensional Periodic Anderson Model at Half Filling[END_REF]), we will briey present, for pedagogical purpose, a few results we obtained at a moderate interaction U = 4 for a small lattice N = 8 × 8, in a broad range of temperatures.

At V = 0, the d-orbital is a metal while the f -orbital is made of independent electrons, insulating and not ordered. As we already observed in the bilayer model studied in Chapter 2, the hybridization V between the orbitals favors the formation of two-site singlets that are characterized by an antiferromagnetic coupling. This tendency is observable in Fig. 3.2, in which the inter-band spin

correlation, c ⊥ = σ x i,f σ x i,d
1 , is represented as a function of V for several inverse 1 The spin operator σ x was dened in Eq.1.42.

temperatures β. While at high temperature singlet formation is impaired by thermal uctuations, the low temperature limit shows a rapid appearance of an AF correlation that saturates at large V . The magnetic properties of the PAM can be quantied by looking at the antiferromagnetic structure factor S af that we dened in Eq.(1.43). Although we will not perform an extrapolation to the thermodynamic limit, the consideration of that small cluster is sucient to capture the general tendencies of the model. As we previously mentioned, the RKKY interaction is a weak coupling between the magnetic moments mediated by the conduction electrons, and favors AF order. Two phenomena will tend to destroy this tendency toward magnetic order, namely thermal uctuations and singlet formation.

C ⊥ = < σ x i,f σ x i,d > β = 1/4 β = 1 β = 4 β = 12 β = 20 PAM, U f = 4, N = 8x8
Consequently, while the zero-temperature phase diagram predicts the magnetic phase to exist in the whole V = [0, V c ] region prior to the appearance of singlets, the AF structure factor vanishes also in the small V limit where the RKKY coupling J RKKY ∼ V 4 /U2 f W is small (here W is the bandwidth). As a result, the AF structure factor at nite temperature is characterized by a peak below V c , that broadens toward small V as the temperature is decreased.

The role of temperature is made clearer by investigating the spectral func- gap due to antiferromagnetic order. The temperature at which this gap forms is concomitant with the magnetic ordering that we previously deduced from the peak in the AF structure factor. between the broad Hubbard bands is followed by the onset of a Kondo resonance at the Fermi level, which is eventually split as magnetic order emerges.

Parameters are V = 0.8, U = 4, and the lattice size is N = 10 × 10.

Finite f -orbital bandwidth

The PAM is a priori a richer model than its innite-U f limit, the Kondo lattice model, allowing, in particular, charge uctuations in the correlated band. However, the choice t f = 0 leads to a at band, a peculiar case that is not necessarily seen in real compounds. An important point to be considered is that a non-zero hopping t f will allow antiferromagnetism to appear through direct exchange. It is then natural to address the question of how this alternate magnetic coupling will aect the tendency to order, which is already favored in the PAM by the indirect RKKY coupling.

The hamiltonian we will consider further is the one given in Eq.(3.4). For convenience, we introduce the ratio between the bandwidths α = t f /t d . Several numerical studies have been performed on this model with t f = 0 (sometimes called actinide hamiltonian). To our knowledge, the rst paper on it was by Continentino et al. who computed the thermodynamic properties beyond the mean-eld level [START_REF] Mucio | Thermodynamic properties of Kondo insulators[END_REF], but without discussing the specic role played by the f -orbital bandwidth.

It was subsequently studied, within the single-site DMFT and the numerical renormalization group (NRG) methods, by Shimizu et al. [START_REF] Shimizu | The Eects of Band Dispersion and Interactions on the Excitation Gaps in the Periodic Anderson Model in Innite Dimensions[END_REF] who considered the cases of both positive and negative α. As we shall discuss in the next section, these choices lead to very distinct non-interacting limits: when α > 0 there is a metal-insulator transition at nite hybridization V , while α < 0 has a band gap at any V . At half-lling, they found that these features of the density of states are not modied in the interacting case, the widths of the gaps being merely renormalized. As our results will show, this is not always true when one accounts for the spatial correlations (or equivalently the momentum dependence of the self-energy, in the DMFT language). In another single-site DMFT study [START_REF] De' Medici | Mott Transition and Kondo Screening in f -Electron Metals[END_REF], de' Medici et al. found that, whenever the interband hybridization is nonzero, V > 0, there is no longer a Mott transition in the f -band at T = 0. At nite-T , the rst-order transition is still present. Some important discrepancies with our framework should be noted, making cumbersome a direct comparison with our results. First, the model used in this paper has a nonzero critical interaction U c f > 0; second, single-site DMFT forbids any magnetism to be accounted for.

A few works have compared results from this model to experimental values.

For example, Sakai et al. included the eect of the crystal eld and the spinorbit coupling, and were able to retrieve the Kondo temperature of Ceriumbased compounds [START_REF] Sakai | Band Calculation for Ce-Compounds on the basis of Dynamical Mean Field Theory[END_REF]. The relative importance of the inter-band hybridization

V and the f -band hopping t f was also evaluated [START_REF] Toropova | One-electron physics of the actinides[END_REF], estimating that V > t f in several elements of the actinide series. Finally, interband interaction was recently shown to engender a charge density wave (CDW) phase analogous to the one nd in several compounds [START_REF] Yoshida | Eects of Conduction Electron Correlation on Heavy-Fermion Systems[END_REF].

Non-interacting Limit

In the non-interacting limit, U f = 0, the regions with positive and negative t f /t d have quite distinct behavior. The former is a metal with two overlapping bands, up to a critical inter-orbital hybridization above which it crosses into a band insulator, while the latter is always a band insulator. Such behavior is easily understood in terms of the dispersion and ensuing crossing of the independent f and d bands.
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Band insulator when t d and t f have same or opposite signs. In the former situation (black curves), there are two overlapping bands as long as the interband hopping V is not too large, and the half-lled system is a metal up to a critical V c . In the latter case (red curves), a gap opens between the bands and the system is an insulator at half-lling for all V .

For simplicity, we dene x(k) = cos k x + cos k y . The two bands are then

given by

E ± (k) = -(t f + t d )x ± (t d -t f ) 2 x 2 + V 2 (3.4)
As in our previous models, a particle-hole symmetry enforces half-lling at µ = 0, and the system is metallic only if the equation E ± (k) = 0 is satised for some value of k. For this to happen, this equation must possess a real solution x(k) such that x 2 < 4, that is

t f /t d > 0 2|V | < √ W 1 W 2 (3.5)
where W 1 and W 2 are the bandwidths of the two distinct layers. For the two dimensional case, Eq. (3.4) implies that the metal-insulator transition happens when |V c | = 4 √ t f . The Fermi surface is given by the equation

± 2 t f t d (cos k x + cos k y ) = |V | (3.6)
There is a (π, π) nesting between the two branches of the Fermi surface. Consequently, the metal is expected to be highly susceptible to the formation of long-range magnetic order at T = 0 and for arbitrarily weak repulsion, as was previously discussed for the 2D Hubbard model.

The non-interacting phase diagram is illustrated in the inset of Fig. 3.5, while the main panel shows the dispersion relation, for one dimensional geometry, at two particular points. At {t f = 0.5, V = 0.2}, the hybridization is below the transition V c and the two bands overlap, leading to metallic properties. At {t f = -0.5, V = 0.2}, the two intra-orbital hopping terms have opposite signs, and consequently the bands are separated by a gap for an arbitrarily small hybridization.

Mean eld theory

The nite-temperature statistical properties of this system will be computed with two methodologies. The rst is the QMC method we already presented in Chapter 1, the second is mean eld theory (MFT) that we shall briey describe now.

The method consists of decoupling the on-site interaction

U n ↑ n ↓ → U ( n ↑ n ↓ + n ↑ n ↓ -n ↑ n ↓ ), (3.7) 
with mean-eld ansatz

     n ↑ iα n ↓ iα = 0 n ↑ iα + n ↓ iα = 1 n ↑ iα -n ↓ iα = 2m α . (3.8)
By introducing the mean-eld eigenvalues of a single layer

E k± = ± ε 2 k + (U m) 2 , (3.9) 
we can conveniently express those of the bilayer as

λ = ± 1 2 E 2 k,d + E 2 k,f + 2V 2 ± (E 2 k,d -E 2 k,f ) 2 + 4V 2 E 2 1/2 (3.10)
where we omitted the ± subscript (since E k± always enter as squares) and we dened

E 2 = α ε k,α 2 + α m α U α 2 . (3.11)
It is easy to verify that when m f m d < 0 (antiferromagnetic order) the equation λ = 0 does not admit any real solution regardless of the value of k. This implies that the Fermi surface is fully gapped and suggests that such an antiferromagnetic solution is the correct mean eld solution at moderate U values. At βt = 4 (top panels), the moments are mostly formed and decreasing the temperature to β = 24 has no signicant eect. m f is largest for small values of these two kinetic terms, since this minimizes the quantum uctuations. The asymmetry with respect to the PAM limit, t f = 0, reects the non-interacting metal-insulator boundary (green line).

Magnetic properties

The key ingredient for magnetism is the formation of magnetic moments. We recall that the local moment on the f -band, m f , is related to the double occupancy D by:

m = 1 N j (σ z jf ) 2 = 1 - 2 N j n ↑ jf n ↓ jf = 1 -2D.
(3.12)

The evolution of m f as a function of the nearest-neighbor hopping t f and of the hybridization V is presented in Fig. 3.6. The results obtained by both MFT and QMC are shown for two temperatures, β = 4 and β = 24. A rst observation is that there is almost no dierence when the temperature is decreased, showing that at β = 4 the moments have already converged to their ground-state value. A second striking feature is that MFT captures the general behavior of moments, and little dierence is seen with respect to the QMC data. However, the transition is made articially abrupt by the mean eld treatment, which also leads to the uncorrelated value m f = 1/2 at large {t f , V } while the eect of correlation is still visible in the QMC results.

Local moments in the f -band are found to be fully formed when both t f and V are small. Indeed, when the kinetic terms are much smaller than the interaction, the f -orbital is almost a two-dimensional Heisenberg model with localized spins. At xed t f , moments are monotonically suppressed upon increasing the hybridization that tends to create entangled singlet pairs. At constant hybridization V , increasing |t f | amounts to diminish the eective repulsion since the bandwidth is made larger, which consequently delocalizes the electrons. This evolution of the moments reaches a maximum at small positive t f , and these maxima roughly follow the non-interacting metal-insulator boundary. We shall see this asymmetry is also present in long-range magnetic correlations.

We now move to the nearest-neighbor spin correlation in the f -band, σ j f • σ j+1,f 3 . The QMC results for these short-range correlations are plotted in Fig. 3.7, showing three temperatures β = {4, 12, 36}. We rst underline the fact that at large t f and V , the absence of localized moments prevents any spin correlation. Beyond this observation, the behavior of this correlation diers in several ways from the evolution of the moments.

In the limit V = t f = 0, the localized spins are completely decoupled and there is consequently no correlation between neighbors. On the constant V = 0 line, increasing the bandwidth allows the spin to couple through a direct exchange J ∼ t 2 f /U f that favors antiferromagnetism, independently from the sign of t f . At large |t f |, the interaction becomes weak with respect to the kinetic energy and the correlation is thus suppressed. At t f = 0, no direct exchange is possible between the moments, and the antiferromagnetic correlation if mediated by the conduction electrons. At low temperature, this indirect RKKY exchange is at rst enhanced by increasing the hybridization between orbitals, but is eventually stopped when singlets form. The temperature dependence is much larger than for moments, because the energy scales of the exchange interactions are both smaller than the interaction U f that prevents double occupancy.

Beyond these nearest-neighbor correlations, it is interesting to track the magnetic long-range correlations in the f -band. We dene

S f = 1 3N j,k σ z k f σ z j f + 2 σ - k f σ + j f (-1) |k-j| . (3.13)
This quantity is related to the antiferromagnetic structure factor, which was dened in Eq. (1.43). However the prime symbols in the sum and in the number of sites N indicate that we omitted contributions from local and nearest neighbor correlations in order to better single out the long range behaviour.
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Long-range AF correlations in the f-band The f -band long-range antiferromagnetic correlations shown in the t f -V plane for dierent inverse temperatures β. Because S f probes spin ordering at large distance, the convergence with increasing β is more gradual than for the near-neighbor spin correlations. As β increases, the paramagnetic region where V and t f are both small, and hence so too are the AF energy scales, shrinks. As with the local moment S f is peaked at small, positive t f .

U f = 4, N = 8x8,
The temperature dependence of the long-range magnetic correlations is stronger than in the nearest-neighbor case. At β = 4, S f is essentially zero in the whole t f -V plane, and magnetic order is still not completely settled at β = 24. Even though we did not nely determined the magnetic boundary by performing an extrapolation to the thermodynamic limit, the behavior of the truncated structure factor on this small N = 8 × 8 cluster is sucient to capture its dominant features.

As for nearest-neighbor correlations, we can relate the vanishing of magnetism when t f or V are large to the suppression of local moments. The hybridization V destroys AF order by forming singlets, while large |t f | delocalizes the electrons and consequently also defeats magnetic order. The asymmetry relative to t f = 0 is also noticeable here, leading to a stronger magnetic order around t f = 0.2. The hole when t f and V are both small can be understood from a strong coupling perspective. Decreasing the bandwidth weakens the direct exchange between moments, while decreasing the hybridization suppresses the indirect exchange mediated by the d-band. Consequently, magnetic order should be found for arbitrary small kinetic energies in the T = 0 limit only.

Spectral functions

As we have discussed in the beginning of this chapter, the spectrum of excitations of the PAM at half-lling displays complex features that reect the interplay of antiferromagnetic order, the formation of a Mott insulator, and the emergence of Kondo singlets. The former two eects suppress the density of states at the Fermi level, giving rise to a gap. In the latter phenomenon, the screening of local moments in the f -band is associated with a Kondo resonance (peak) at the Fermi level. The temperature aects these competing possibilities. For example, a Kondo resonance might rst form as T is lowered, followed by a splitting of that resonance as AF order becomes established. In addition to such correlation eects, the spectral function of our Hamiltonian also exhibits the inuence of the non-interacting band structure which can be either gapped or metallic. In order to understand how the energy spectrum of the PAM is modied by a nite bandwidth, we will present in what follows results for the single-particle spectral function in the f -band, A f (ω)4 . In Fig. 3.9 is presented A f (ω) at a high temperature, β = 2, for which we proved there is no magnetic order. Four values of the hopping t f are shown, {-0.9, -0.2, +0.2, +0.9}, for each one of which the results are compared for two values of the interaction U f = {4.0, 8.0}. In green we plot the edges of the non-interacting bands, dened by Max [E -(k)] and Min [E + (k)], which delimit the band gap at U = 0. At large V , for both U f = 4 and U f = 8, this non-interacting gap is not signicantly altered by the interaction. In the V = 0 limit, the f -band is a simple 2D Hubbard model and a Mott gap is expected at any non-zero repulsion because of the nesting of the Fermi surface and the divergence of the non-interacting density of states (DOS). This Mott gap is clearly visible in the |t f | = 0.2 panels, separating by the energetic cost of double occupancy the two bands centered at -U f /2 and +U f /2. At nite V , a Kondo peak appears around ω = 0. This resonance is eventually destroyed at larger V , when the systems goes to the paramagnetic singlet phase. Strikingly, little dierence is observed at small V between the t f ± 0.2 cases, in spite of their dierence in the non-interacting limit where one is metallic and the other insulating. Since the interaction localizes the electrons in f -band, the screening by the d-band is largely independent of the sign of the hopping t f . The situation is clearly dierent at t f ± 0.9. At U f = 4, a peak at the Fermi energy is visible all the way down to the decoupled limit V = 0, and the lobes at -U f /2 and +U f /2 are barely distinguishable. This indicates that, at U f = 4, the temperature β = 2 is too high for the local moments to form and the Mott gap to appear. This interpretation is supported by the fact that, upon increasing the interaction up to U f = 8, the Mott gap becomes visible.

The dierences in the non-interacting limit between positive and negative t f persist when the interaction is plugged in. At t f ± 0.9, a negative t f leads to a band gap at any V , while a positive value keeps system metallic up to a critical hybridization V c ≈ 3.8. This observation can be made clearer by looking at the low temperature spectra.

The upper panels in Fig. 3.10 are the β = 24 counterpart of the previous gure, at U f = 4. At t f = 0.2, the Kondo resonance is now split, concomitantly with the establishment of long-range magnetic order. We already observed this phenomenon in the PAM, and a small positive hopping in the f -band leaves it qualitatively unchanged. At larger bandwith, for instance t f = 0.9, there is a broader range where free electrons can screen local moments, leading to a split resonance that survives up to V ≈ 3.8. When the hopping term is negative, the gap in the non-interacting density of states prevents the scattering of conduction electrons into f -band.

The mean eld results shown in the lower panels of Fig. 3.10 show an overall agreement with the QMC results. A notable dierence is the gap at moderate V , which in the case of MFT is not independent of the value of V , and is larger than the gap extracted from QMC. This can be explained by the fact that MFT can not access to the Kondo screening and thus captures only an antiferromagnetic Mott insulator.

Conclusion

Starting from a standard model for heavy-fermion physics, the periodic Anderson model, this part was devoted to study how a nite bandwidth in the interacting band modies the magnetic and spectral properties. After introducing a few basic notions of the eld, we presented some results we obtained for the PAM, underlining how tuning the temperature reveals the dierent energy scales of the model. We then reported several studies previously done on similar hamiltonians, before discussing the results we obtained by way of Determinant QMC and mean eld theory (MFT). By allowing the sign of the nearest neighbor hopping in the f -band, t f , to have the same or opposite as the hopping in the non-interacting d-band, we started from a rich non-interacting phase diagram. In the latter, a metal-insulator transition upon increasing the interband hybridization V exists only for positive t f , while the negative case leads to a band gap at any V . The interacting phase diagram reected this non-trivial starting point. In particular, it was shown that both local moments and long-range antiferromagnetic correlations are maximized at small positive t f , in correspondance with the U = 0 metal-insulator transition. Finally, the single-particle spectral functions reveals several features that come on top of the non-interacting band structure. While most properties are captured by a mean eld treatment, a Kondo resonance is found by DQMC at intermediate temperature for both negative and positive t f . This resonance gets eventually split at lower T , for positive t f only. is more apparent at this lower temperature. The right panels show the MFT results for same parameters. These mean eld results capture correctly most of the spectral properties, except the narrow constant gap at intermediate V when t f is positive.
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bypass the intrinsic limitations of the nanometer scale. Overcoming these diculties is a major technological challenge that requires a deeper understanding of the many-body properties of strongly correlated electronic systems as well as the improvement of the technological ability to synthesize and control them.

The eld of strongly correlated electronic systems oers a huge diversity of quantum phases, whose transport and magnetic properties are expected to lead to technological application. Phase transitions oer the advantage of accessing phases with very dierent physical properties within the same material by tuning a simple parameter, for instance magnetic or electric elds [START_REF] Ahn | Electric eld eect in correlated oxide systems[END_REF], the carrier densities or hydrostatic pressure. The last decades have seen considerable advances in this eld, eventually leading to mainstream applications.

The giant magnetoresistance (GMR) eect oers a striking example of how fundamental magnetic properties of materials can nd application in massmarket technology. Discovered independently in 1988 by Fert [START_REF] Baibich | Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices[END_REF] and Grünberg [START_REF] Binasch | Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[END_REF], the GMR takes advantage of the spin polarization shown by some ferromagnets, namely in which the two spin species display dierent densities of states at the Fermi level. It was shown by these early works that electrical conductivity in layered heterostructures (grown epitaxially or by simple sputtering) alternating such ferromagnets with nonmagnetic layers, shows strong magnetic-eld dependence. These structures work as spin valves that allow to switch electric current by varying the applied magnetic eld and have led in 1997 to the release by IBM of the rst hard drive disk using a GMR head.

More extensive reviews on spintronics can be found among the many works that have been published in the eld lately (for instance see [START_REF] Tsymbal | Multifunctional Oxide Heterostructures[END_REF][START_REF] Lee | The University of Texas at Austin[END_REF][START_REF] Igor Uti¢ | Spintronics: Fundamentals and applications[END_REF]).

The growth of thin lms has attained high precision with deposition techniques such as pulsed laser deposition and molecular beam epitaxy (MBE).

The latter consists of sublimating elements that will eventually condense on a substrate waer. This process can be monitored through reection high-energy electron diraction or other techniques [START_REF] Stangl | Structural properties of self-organized semiconductor nanostructures[END_REF] and leads to the fabrication of heterostructures made of layers whose thickness is controlled with great precision.

In addition, detailed stuctural properties such as the crystalline orientation or the epitaxial strain can be chosen during the growth [START_REF] Cao | Strain eects in low-dimensional transition metal oxides[END_REF], leading to a great number of accessible functional properties.

In order to illustrate the current possibilities of thin-lm oxyde heterostructures, we shall briey review the case of LaTiO 3 /SrTiO 3 and related junctions, which have been under close scrutiny during the last decade. In the bulk limit, SrTiO 3 and LaTiO 3 are both insulators. While in the former insulating properties arise from the band structure and is consequently a conventional band insulator, the latter is a Mott insulator in which transport vanishes because of the strong Coulomb repulsion between electrons. Ohtomo et al. [START_REF] Ohtomo | Articial charge-modulationin atomic-scale perovskite titanate superlattices[END_REF] built heterostructures alternating thin lms of these two materials by pulsed laser deposition. This technique allowed them to design superlattices in which the thickness of the lms are controlled down to the unit cell scale (Fig. 4.1). It was later discovered that in the similar heterostructure, LaAlO 3 /SrTiO 3 , a two-dimensional electron gas with high carrier mobility can be created by electron-doping the interface, while its hole-doped counterpart is insulating [START_REF] Ohtomo | A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface[END_REF]. The conductivity of this 2D state can be tuned by applying a gate voltage that drives a metal-insulator transition [START_REF] Thiel | Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures[END_REF], opening the door for possible applications. Superconductivity was also discovered at that interface, with an unexpected increase of the critical temperature by applying an external magnetic eld [START_REF] Gardner | Enhancement of superconductivity by a parallel magnetic eld in two-dime nsional superconductors[END_REF]. 

Theoretical methods

On the theoretical side several methods are in principle available, but each has advantages and limitations. Among the most successful are techniques related to the density functional theory such as the local density approximation (LDA), which can make allowance for local Coulomb interaction in the so-called LDA+U method [START_REF] Vladimir I Anisimov | Firstprinciples calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method[END_REF]. The latter has led to results showing good agreement with experiments [START_REF] Okamoto | Lattice Relaxation in Oxide Heterostructures: LaTiO 3 /SrTiO 3 Superlattices[END_REF]. Regarding model Hamiltonians such as the Hubbard model, dynamical mean eld theory (DMFT) can be applied to interfaces or heterostructures involving a large number of atomic layers [START_REF] Ishida | Embedding approach for dynamical mean-eld theory of strongly correlated heterostructures[END_REF], while its cluster extensions allow, to a certain extent, to take into account spatial correlations.

These spatial correlations are described better by way of Quantum Monte Carlo techniques, but a major obstacle is the number of sites available to simulations. While the single band Hubbard model in two-dimensions has been extensively studied by means of QMC methods, little has been done in the eld of heterostructures. Recent progress in both the numerical eciency of algorithms and the computational power of workstations has made it possible to deal with the case of multi-orbital 2D systems, such as the periodic Anderson model. In principle, such a plane involving two electronic orbitals can equivalently describe the coupling of two adjacent planes in which only one orbital is taken into account. It is then tantalizing to go further and try to understand the properties of thicker systems involving more than two atomic planes. Even though the accessible geometries are restricted, by numerical limitations, to a few layers, the perspectives oered by these models to understand better the electronic properties at interfaces or other heterostructures that are already accessible experimentally, make this eld very exciting. Because theoretical models allow to explore systematically vast regions of the phase diagrams, such studies could potentially lead to the design of thin lms with novel properties.

Metal-Mott Insulator Interface

The properties of the metal-semiconductor junction have been understood

since 1938 [START_REF] Schottky | Halbleitertheorie der Sperrschicht[END_REF] in terms of a Schottky potential barrier that originates from the dierence between the Fermi energy and the valence band of the insulator, and which have been massively applied in electronics for diode fabrication. Much less is known about the interface of a metal with a strongly correlated Mott insulator. This question was addressed for the one-dimensional case by Yonemitsu et al. in 2007 [START_REF] Yonemitsu | Suppression of rectication at metalMott insulator interfaces[END_REF]. In this work, a strong suppression of the potential barrier was observed when the band insulator is replaced by an organic Mott insulator, and explained by way of a simple 1D Hubbard model. The same model was recently examined through density-matrix renormalization-group (DMRG) calculations [START_REF] Luis | Real-time dynamics of particle-hole excitations in Mott insulator-metal junctions[END_REF] in order to understand the transport properties across the junction, motivated by potential applications of strongly correlated materials to solar cells. This last study found the charge transfer at the interface to be enhanced over the metal-band insulating case. Another DMRG paper had previously unveiled the possibility of creating a two-dimensional electron gas in the proximity of that interface [START_REF] Oka | Interfaces of Correlated Electron Systems: Proposed Mechanism for Colossal Electroresistance[END_REF].

This interface was subsequently studied in the three dimensional case in terms of a Hubbard model on a cubic lattice at half-lling. The single-site DMFT analysis [START_REF] Helmes | Kondo Proximity Eect: How Does a Metal Penetrate into a Mott Insulator?[END_REF] by Helmes et al. has shown the appearance of a quasiparticle peak at the Fermi level in the correlated side that propagates a few unit-cells deep, opening the possibility for an insulator-metal transition driven by the interfacial coupling. They, however, concluded this Kondo proximity eect would be eventually defeated by magnetism, which they could not account for through their single-site technique. A spin-wave analysis of a similar t-J Hamiltonian later found an induced magnetic order in the non-interacting side, decaying exponentially from the junction with a correlation length of a few unit cells [START_REF] Sherman | Excitations near the boundary between a metal and a Mott insulator[END_REF]. Another peculiar feature was found in epitaxially grown superlattices made up of thin layers of the paramagnetic metal CaRuO 3 and the antiferromagnet CaMnO 3 , were ferromagnetism appears [START_REF] He | Interfacial magnetism in CaRuO 3 /CaM nO 3 superlattices grown on (001) SrT iO 3[END_REF]. Although controversial, the explanation for this phenomenon was claimed to involve double-exchange, and thus our simple Hubbard model is unlikely to capture this property.

Transport properties at junctions between metals and strongly correlated transition metal oxydes have also attracted much attention in the context of solid-state memory applications, where a resistance switching could be controlled by an electric eld. This colossal electroresistance eect was experimentally demonstrated for a broad class of materials [START_REF] Menke | Separation of bulk and interface contributions to electroforming and resistive switching behavior of epitaxial Fe-doped SrTiO 3[END_REF][START_REF] Fursina | Interfacial transport properties between a strongly correlated transition metal oxide and a metal: Contact resistance in Fe 3 O 4 /M (M = Cu, Au, Pt) nanostructures[END_REF], and it was also shown that its properties can be tuned by carrier doping [START_REF] Tokunaga | Colossal electroresistance eect at metal electrode/La 1-x Sr 1+x M nO 4 interfaces[END_REF]. In a recent experiment on a Cu/CuO interface [START_REF] Munakata | Quenching of impurity spins at Cu/CuO interfaces: An antiferromagnetic proximity eect[END_REF], Munakata and coworkers surmised from magnetoresistance measurements showing a quenching of magnetic impurities that a magnetic ordering in the metallic copper side was plausible, and could be explained by a RKKY magnetic interaction mediated by the conduction band.

In the past few years, theoretical work has also investigated a related system, namely a few lattice sizes thick Mott insulating barrier inserted in between two semi-innite metallic leads. In 2007, a rst inhomogeneous DMFT study by Okamoto [START_REF] Okamoto | Nonequilibrium transport and optical properties of model metalMott-insulatormetal heterostructures[END_REF] showed that a paramagnetic Mott insulating barrier in the strong coupling regime has current-voltage characteristics that resemble those of the metal-semiconductor-metal heterostructures. Another DMFT work later found the appearance of a Fermi liquid phase in the correlated barrier at zero temperature, but also showed this phase was fragile against perturbation, such as disorder and voltage or thermal uctuations [START_REF] Zenia | Appearance of Fragile Fermi Liquids in Finite-Width Mott Insulators Sandwiched between Metallic Leads[END_REF], this fragility oering numerous possibilities for applications. In-plane spatial correlations for this model were recently considered in the framework of the Hartree-Fock method [START_REF] Gupta | Physics of a metal-correlated barrierâmetal heterostructure[END_REF]. This work showed that in the vicinity of the junction the gap closes in the Mott phase, this eect being suppressed as the Coulomb repulsion U or the thickness of the barrier are increased.

Metal-Mott insulator interface

In the previous section, we reviewed several works done on the Metal-Mott insulator interface, their most striking feature being the diversity of the results obtained. This is not a surprise, considering that the models and ranges of parameters studied vary considerably. Of similar importance are the peculiarities of the dierent methods employed, which in general involve intrinsic approximations that are known to generate irrelevant (or even deceptive) features.

Despite its own limitations, the Determinant QMC oers a complementary insight into the eld. It can in particular compute the exact thermodynamic properties of the Hubbard model at nite temperatures on nite clusters. The single fact that it often leads, for similar models, to dierent conclusions than DMFT calculations is valuable, since it allows a critical evaluation of the results produced by both methods. Even though the particular system we will study below does not necessarily bear every feature that should be accounted for in a realistic model, the observation of non-trivial phase transitions in that simple model oers the perspective of further developments.

Hamiltonian

The interface we consider is described by the following Hamiltonian:

Ĥ = - ij ,l,σ t l (c † ilσ c jlσ + h.c.) - i, ll ,σ t ll (c † ilσ c il σ + h.c.) (4.1) - i,l,σ µ l n ilσ + i,l U l (n il↑ - 1 2 )(n il↓ - 1 2 
).

This equation describes, in the grand-canonical formalism, electrons of spin σ ∈ {↑, ↓} on a cubic lattice whose coordinates are labelled by indeces (i, l) that indicate a site on the layer l with in-plane coordinates i. The layers on the metal side will be labelled with negative integers l ∈ {-1, -2, . . . } while the correlated layers will bear a positive label l ∈ {+1, +2, . . . }. The intra-plane hoppings t l are chosen to be homogeneously equal to 1 and will be taken as the unit of energy through this chapter. The interlayer hybridizations between sites belonging to adjacent layers t ll will be chosen to be equal to 1, with the exception of the interface where we dene t -1,+1 = V , which will be the main tunable parameter we will consider. The local Coulomb interaction is zero on the metallic side U l<0 = 0 and positive on the correlated side U l>0 > 0. Finally, the chemical potential will be homogeneously set to zero µ l = 0, putting the system at half-lling and avoiding any numerical sign problem in this work.

Unless otherwise mentioned, the case of two non-interacting layers coupled to two interacting ones will be considered. For the sake of clarity, a sketch of the geometry is drawn in Fig. 4.2. 

Spin correlations and singlet formation

In order to understand the major trends in that interface we start by examining the nearest-neighbor spin correlator between layers l and l (we recall the spin operator σ x was dened in Eq.(1.42)):

c ⊥ (l, l ) = σ x i,l σ x i,l , (4.2) 
shown in Fig. 4.3. Starting from the trivial V = 0 case where the two sides are not correlated, the layers right at the interface (l, l ) = (-1, 1) acquire an V . As V is increased, the correlator c ⊥ (-1, 1) drops, signalling the formation of an interfacial state decoupled from the bulk. Each layer is 10 × 10, half lled and at β = 10.

antiferromagnetic coupling as V is increased. As pairs form, this correlation converges to a value that characterizes the singlet state formed between each pair of sites across the interface. This singlet formation goes along with the decoupling of the outer layers: the spin correlation with the adjacent interfacial layer starts from a non-zero value at V = 0, this value being higher on the correlated side because of its antiferromagnetic order. As V is increased and singlets are formed, the spin correlation vanishes on both sides. This leads us to the picture, at large V , of a two-layer strongly coupled interface that does not see the bulk anymore. We draw in Fig. 4.4 the spin correlations between sites across the interface for dierent values of the interaction U . It shows the striking feature that singlet formation does not strongly depend on the interaction, the antiferromagnetic correlation converging to its strong coupling value around V = 4.

It is important to note that the singlet pairs that are formed in the large-V limit dier by their amount of double occupancy (or equivalently by the local moment formation), which is dependent on the strength of the interaction on the correlated side. When U is large, the antiferromagnetic coupling is thus larger because local moments are enhanced. V -dependence of local moments, m l = i (σ z il ) 2 /N , on each layer, when two metallic layers are coupled to two correlated ones. As dimers form at the interface, moments in the outer interacting layer increase due to the decoupling from the interface.

These observations are supported by the evolution undergone by the local moments (Fig. 4.6). The layers at the interface are driven to a common value characteristic of the singlet pairs they form, the behavior of the outer Mott plane is non-monotonic with moments being at rst suppressed before recovering, while electrons in the outer metallic plane remain essentially non-localized.

Suppression of magnetic order

We just saw how the short range correlations are modied upon tuning the hybridization across the interface. The next question we address is what happens to the long-range order that exists in the Mott phase prior to connecting it to the metal side. The antiferromagnetic structure factor (AFSF) was dened as S af in Eq.(1.43), and characterizes the magnetic order. The dependence of S af on V is plotted in Fig. 4.7 for the case of a relatively large lattice (N = 14×14).

While the layers in the metal side l < 0 remain clearly disordered (not needing any nite-size scaling), the AFSF in the correlated side drops abruptely in both layers as soon as V is increased. After reaching a minimum around V ≈ 1.5 the outer correlated layer l = 2 recovers a high signal as V gets larger. Concurrently, the interfacial correlated layer l = 1 remains disordered as singlet pairs destroy moments, thus preventing direct exchange.

As usual it is necessary to perform a nite-size scaling in order to determine whether the structure factor converges in the thermodynamic limit to a nite layer (l = 2) farthest from the interface. For small V , there is long range order in the thermodynamic limit which vanishes for intermediate V and is recovered for large V . The inset shows the inverse temperature dependence for a 10 × 10 layer. S af 2 reaches its ground state value at β = 10.

order parameter. This extrapolation for the outer correlated layer l = 2 is shown in the main panel of Fig. 4.8. This analysis conrms the actual vanishing of magnetic order at V = 2.0, as well as its resurgence in the large coupling limit. The inset of Fig. 4.8 shows the convergence of the AF structure factor upon decreasing the temperature, validating the choice of β = 10 for this study.

We also investigated whether this non-monotonic magnetic behavior of the outer Mott plane is found for other choices of the on-site repulsion U l>0 in the 2 as a function of V depends on U , for 2 + 2-layers systems. From U 6, the magnetic order does not vanish at intermediate V although it is somewhat suppressed. Each plane is 10 × 10 and half-lled with β = 10.

range U ∈ [2t, 6t]. As shown in Fig. 4.9, this phenomenon is observed on a rather broad range. At weak interaction, thermal uctuations make the AF structure factor small, including at small V , even though we know magnetic order is to be expected at any U > 0 because of the nesting of the Fermi surface. As U is increased, the range in which suppression of magnetic order occurs gets smaller. Although performing nite-size extrapolation was beyond the possibilities of this study, there seems to be no complete vanishing of order from U ≈ 6 but, instead, a mere suppression of the order parameter. Since a derivation of one-band Hubbard models for Cu-O cuprate planes estimated the local Coulomb repulsion to be of the order of the bandwidth W ≈ 8t [START_REF] Silvia | Derivation of a one-band Hubbard model for CuO planar materials[END_REF], the suppression of magnetism should be looked for in weaker Mott insulators, like organic compounds.

Spectral functions

The previous ndings indicated the existence, at intermediate coupling, of a phase in which the whole system is disordered, including the planes that are not directly in contact with the interface. This phase is an intermediate state before the interface is driven into strongly correlated dimers that decouple from the outer layers. To characterize better the dierent phases, we now investigate the spectral functions A l (ω) in each plane (Fig. 4.10) for three values of V corresponding to each regime. The denition of the spectral function can be found in Eq. (1.54).

The outer correlated layer (Fig. 4.10a) is initially gapped, as expected from a Mott insulator. The two external peaks correspond to the Mott gap whose width corresponds to the energy cost of double occupancy U = 4. This gap is narrowed due to antiferromagnetic order to a so-called Slater gap. At intermediate V = 2.0, the plane remains insulating but the gap is smaller. Finally at strong coupling the initial gap is recovered as the plane decouples from the interface. In the interfacial correlated layer (Fig. 4.10b) the evolution is at rst similar: the Slater gap shrinks upon increasing V as the system becomes disordered. However, at strong coupling singlet formation leads to a large gap that corresponds to the amount of energy needed to break the singlet pairs E ≈ V .

We turn now to the spectral properties on the metallic side. In the noninteracting two-dimensional case a Van Hove singularity is present at the Fermi level. Here at V = 0.2 a dip in the density of states foreshadows the appearance of a gap in the intermediate phase. At strong coupling the singlet gap is perfectly visible. The outer non-interacting plane shows roughly the same behavior at small and medium coupling, while a peak at the Fermi level at V = 6.0 illustrates the decoupling from the interface and the recovery of metallic properties.

dc Conductivity

Since the dc conductivity, which was dened in Eq.(1.59), is experimentally measured within a whole sample, the in-plane conductivity in a monolayer of an heterostructure is not likely to be accessible. The total conductivity will involve the sum of all intra-layer and inter-layer contributions. However, accessing the in-layer conductivity is relevant in order to understand accurately the underlying microscopic transport properties.

The in-plane dc conductivities in each layer of the (2 + 2)-system are presented in Fig. 4.11, as a function of the interface hybridization V . These measurements were performed at several temperatures in order to check qualitatively the convergence in the low-temperature limit: when the conductivity increases upon lowering the temperature one expects a metallic ground-state, while if the conductivity decreases the ground-state should be insulating.

Let us rst consider the conductivity in the non-interacting layer located right at the interface (Fig. 4.11c). When the coupling to the interacting side is small (V = 0.2) the conductivity increases upon lowering the temperature from β = 8 to β = 16, signalling the metallicity of the layer. As the interface coupling is increased the conductivity drops down to small values, and now decreases with the temperature, thus clearly signalling an insulating state at V = 1.0. This insulating transition is concomitant with the magnetic transition we previously described. Interestingly, as the coupling at the interface is further enhanced the conductivity rises slightly and seems to tend to a small but nite value at low temperature. As the singlet gap opens around V = 4.0 the conductivity eventually goes to zero, since moving a particle in that regime requires a nite energy in order to break a dimer.

The outer non-interacting layer (Fig. 4.11d) shows a similar drop in the conductivity as the interface hybridization is increased, the layer being driven from metallic to insulating. However, the intermediate small nite conductivity in the V = 2.0 vicinity is not observed, the conductivity decreases along with the temperature signalling the layer is insulating. As the singlet gap opens, the outer layer decouples from the interface and becomes conducting again.

The values of the conductivity are signicantly larger in that latter regime than at small V , which can be explained by the high density of carriers in the two-dimensional case because of the Van Hove singularity. Fewer features are observed on the correlated side. The outer layer (Fig. 4.11a) remains always insulating, the slight increase at V = 4.0 being likely a spurious artefact. At the interface (Fig. 4.11b), the conductivity seems nonetheless to converge to a non-zero value in the range V ≈ [1.5, 3.5] as in the adjacent noninteracting layer, before entering in the gapped singlet regime. Even though a more careful analysis would be required to enable any strong statement on the nature of these phases, a disordered state made of strongly coupled dimers and displaying a small nite conductivity seems reminiscent of the large eective masses found in similar models describing heavy-fermion behaviour. It would be particularly interesting to study the temperature scaling of the resistivity, which is known to be linear over several decades of energy in these systems [START_REF] Coleman | How do Fermi liquids get heavy and die?[END_REF]. In-plane conductivities in the 2 + 2-layer case as functions of V , at several inverse temperature β values: (a) The outer interacting layer σ +2 is always insulating, while in (b) the interacting layer at the interface the conductivity σ +1 seems, in the intermediate regime, to converge to a nite value in the low-T limit. Panel (c) shows the conductivity σ -1 in the metallic layer l = -1. At intermediate V is small but non-zero, but vanishes at V ≥ 4t due to dimer formation. (d) The in-plane conductivity σ -2 . This noninteracting layer becomes insulating for intermediate hybridization, t ≤ V 3t and then recovers when the pairs are fully formed and pinned at the interface. l as functions of V for a system of four correlated layers coupled to two metallic ones. At intermediate V antiferromagnetic order is suppressed in every correlated layer. At large V the order recovers in every correlated layer but the one at the interface. (b) Finitesize scaling of the in-plane structure factors S af l for a system of six correlated layers coupled to two metallic ones, at V = 2t. A systematic reduction of spin correlations is evident as the metallic interface is approached from the correlated side. Long range magnetic order is completely destroyed in the correlated layer at the junction.

The model we presented so far is four atomic layers thick. Although we addressed the question of the nite-size eects in the xy-plane and believe to have demonstrated that this is under control, the possibility of exploring accurately the penetration of the phenomena we described into the bulk of the model material is well beyond our reach. Nevertheless, we have been able to measure static properties for systems made of up to six Mott insulating layers, while keeping the metal two-layers thin. The latter choice was driven by the observation that no major penetration was seen even in the second metallic layer, and consequently we believe the expansion of the metal side would not aect signicantly the system. Fig. 4.12 represents the evolution of the AF structure when V is increased; we rst focus on the Mott side. The layer right at the interface undergoes an evolution similar to the one depicted in the thin case: the AF signal drops until reaching a small value that excludes the possibility of long-range magnetic order. One might argue the convergence toward this limit is slower than in the case with only two Mott layers, but this statement would require an extrapolation to the thermodynamic limit. More interesting is the point that the decrease of the structure factor in the layer adjacent to the interfacial one is much reduced in comparison with the thinner case. The nite-size extrapolation presented in Fig. 4.12 demonstrates that at V = 2.0 the order parameter is indeed suppressed at the interface but never vanishes, while magnetic order is restored upon entering the bulk.

No sign of enhanced order is observed in the metallic side; this is nontrivial since the additional interacting layers protect now the magnetism in the layer next to the interface: one could have instead envisaged, for instance, a consequent ordering in the metal. It is also interesting to note that in outer magnetic layers the AF structure factor takes a larger value than in inner layers. This is due to the fact magnetic correlations are enhanced at surface in comparison to the bulk, as it has previously shown experimentally [START_REF] Sinkovi¢ | Observation of Spin-Polarized Photoelectron Diraction[END_REF].

Summary

In this chapter, we presented results obtained by determinant QMC simulations for a metal-Mott insulator interface model. Attention was mostly given to the case of two single non-interacting layers coupled to two Mott insulating layers and, among the large number of parameters of the problem, we mostly focused on the role of the hybridization V between sites across the interface (see Fig. 4.13).

Two distinct phase transitions were found to occur upon increasing V . Starting from the decoupled system V = 0, in which the sides are respectively a paramagnetic metal and insulating antiferromagnet, increasing the interfacial coupling causes the magnetic order to vanish on the correlated side. This loss of magnetism is accompanied by a drop in the conductivity of the metallic side, leading to an intermediate state in which the whole thin interface is in a non-magnetic insulating state (Fig. 4.14). It is particularly interesting that such a transition can be driven, by only tuning the interfacial coupling, into layers that are not directly located at the junction. The nature of this intermediate state is also intriguing, and diers strikingly from other theoretical predictions that forecasted instead an antiferromagnetic ordering in the metal Figure 4.13: Sketch of the decoupled system at V 1.

[100] and the appearance of a quasi-particle peak in the correlated material [START_REF] Helmes | Kondo Proximity Eect: How Does a Metal Penetrate into a Mott Insulator?[END_REF]. A further characterization of this phase could be achieved by performing dierent measurements (for example dimer-dimer correlations), or by examining the eect of doping which is expected to lead to heavy-fermion physics.

Checking the behaviour of dierent geometries, like the honeycomb lattice, would also allow to understand to which extent this phenomenology is owed to the peculiarities of the cubic lattice. When the hybridization V is further increased, pairs of adjacent sites at the interface form singlet dimers that are essentially decoupled one from another (Fig. 4.15). While this singlet formation was to be expected, the simultaneous decoupling of the outer layers from the interface, accompanied by the recovering of their initial properties, is a non-trivial eect.

The suppression of the magnetism in the outer correlated layer was shown to occur within a relatively broad range of on-site repulsion, but that increasing this interaction eventually leads to a simple suppression of the antiferromagnetic order parameter instead of its vanishing. We nally considered the case of a thicker Mott insulating side by studying up to eight correlated layers coupled to two metallic one. The additional layers were observed to protect the magnetism in the vicinity of the interface, leading also to a suppression of the magnetism instead of its vanishing.

Conclusion

The focus of this work was to explore the properties of electrons in systems whose geometry consists of coupled layers. The motivation for studying such geometries arises from two elds. First, to describe the properties of twodimensional systems in which more than a single electronic band is taken into account. Second, to understand the electronic reconstruction that happens when two complex materials are coupled at an interface. In that context, our approach consisted of studying numerically dierent systems based on the Hubbard model, a milestone in theoretical condensed matter physics, that had success in capturing fundamental behavior of some phase transitions found in strongly correlated materials, such as metal-insulator transitions driven by electron-electron interaction. The numerical method we use, the Determinant Quantum Monte Carlo (DQMC), allows to explore accurately this model in nite-size clusters. In spite of its limitations, mostly due to the so-called numerical sign problem, the possibility of accounting for spatial correlations was shown in Chapter 2 to be crucial, and oers a remarkable advantage of DQMC over other methods used in this eld. The nite-temperature version we employ allows to describe the eect of thermal uctuations in the phase diagram, providing a deeper insight into the physics of these systems as was illustrated in Chapter 3.

A simple example of a multi-band structure is a band insulator, whose Fermi energy lies in the nite gap that splits the valence and the conduction bands. The geometry we studied in Chapter 2 is a model of a correlated band insulator, in which the non-interacting gap can be tuned by a simple pa-

rameter. An electronic interaction, namely an homogeneous on-site Coulomb repulsion, is the other parameter whose eect we chose to explore. This model had recently attracted interest and had been claimed to display a shrinking of the single-particle gap upon increasing the electronic interaction. Such behavior is highly non-trivial, since in the textbook example of the Mott transition, the interaction is known to control the inverse transition by driving the non-interacting metal into an insulating state. However, the recent discovery of an intermediate metallic phase in a similar system with an identical noninteracting dispersion relation, the ionic Hubbard model (IHM), opened the door to this possibility. In spite of these results, our analysis showed unambiguously that the consideration of spatial correlations does not lead to a narrowing of the single-particle gap, but rather to its monotonic growth. However, the spin gap was observed to shrink upon increasing the interaction, and eventually to close at the transition as magnetic order sets in. The evolution of the The bilayer model we studied in Chapter 3 can equivalently be thought of as the junction between a correlated material and a metal, providing a direct connection to the problem of oxide heterostructures. Thus, it was tantalizing to address the question of how the evolution of the interface upon tuning the coupling will aect the properties deeper into the materials. In addition, similar realizations of metal-Mott insulator interfaces have been studied during the past years, unveiling non-trivial and controversial properties. Chapter 4 was consequently devoted to the study of this interface, xing t f = 1 for simplicity and focusing on the eect of the interfacial hybridization V . In contrast with previous work, we found that the magnetic order in the correlated side vanishes upon increasing V , while no order appears in the metal. This eect is observed to occur not only in the layer located at the interface, the adjacent layer also becomes paramagnetic. Upon further increasing V , singlet pairs form across the interface as the outer correlated layer recovers its antiferromagnetic long-range order. The intermediate paramagnetic phase is also characterized by the appearance of a single-particle gap in the metallic side, leading to an intermediate homogeneous phase displaying no magnetic order and insulating properties. The role of the interaction strength on the correlated side was also investigated, and showed that a strong interaction leads to a suppression of magnetism instead of its vanishing. The case of a thicker correlated side was nally considered, showing that the additional correlated layers protect by proximity eect the magnetism in the vicinity of the interface. We restricted the geometries of our systems to the cubic lattice. Although congurations involving geometric frustration are not accessible to DQMC because of the numerical sign problem, considering other bipartite geometries could be interesting. In particular, the bidimensional honeycomb lattice offers the advantage of needing a nite critical interaction for the Mott metalinsulator transition. The role of the peculiarities of the square lattice could thus be determined. Additionaly, the honeycomb lattice bears its own characteristics, such as a linear dispersion in the vicinity of the Fermi energy that results in Dirac cones. The case of coupled graphene planes is an example of the problems that could be explored with this lattice. 
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 18 This dispersion relation is represented onFig.1.1, with the contour lines corresponding to the Fermi surface for a given chemical potential. Since this dispersion is continuous in the thermodynamic limit, no energy gap is present for any band lling; arbitrarily low energy excitations are available and the system is therefore metallic. The half-lling case µ = 0 presents the distinctive feature of having a square Fermi surface with side length √ 2π. When the Coulomb repulsion is nonzero charge excitations are gapped, making double occupancy unfavourable. Low-energy excitations are possible by destroying two quasi-particles located just below the surface and creating two other just above it, where the total momentum of these particles is conserved. Because of the peculiar shape of the Fermi surface, a great number of excitations involving a momentum transfer k = ±(π, π) are available. It can be shown that in the square lattice case this nesting of the Fermi surface leads to antiferromagnetic spin-density waves for any interaction U > 0 [4].

Figure 1 . 1 :

 11 Figure 1.1: Dispersion relation E(k x , k y ) of the non-interacting Hubbard model in the square lattice. At half-lling the Fermi sea at E f = 0 becomes a square nested contour that causes the antiferromagnetic susceptibility to diverge.

Figure 1 . 2 :

 12 Figure 1.2: In the strong coupling limit U → ∞, the half-lled Hubbard model maps onto the quantum Heisenberg model, in which the absence of charge uctuations gives way to a leading second-order antiferromagnetic exchange between nearest-neighbor spins.
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  calculations like density functional theory (DFT) are only valid when the interaction is small compared with the bandwidth. It is thus necessary to have recourse to alternative techniques, among which the Feynman's path integral formulation stands out by the deep insight it brings into quantum mechanics.The evaluation of the partition function is cumbersome because the kinetic term and the interaction term do not commute. In order to overcome this diculty, performing a Suzuki-Trotter decomposition allows us to write the partition function as the product of exponentials involving these terms separately: -∆τ T e -∆τ Û + O(∆τ 2 ),

Figure 1 . 3 :

 13 Figure 1.3: k-points in the rst Brillouin zone of a N = 6 × 6 square lattice. The four types of symbols specify the type of boundary condition (b x , b y ) chosen, b α = 0 corresponding to periodic BC and b α = 1 to anti-periodic BC.

  perature of the equilibrium statistical ensemble. It makes clear why the somewhat articial dimension added in Quantum Monte Carlo (or equivalently in the Path-integral formulation) is called an imaginary time. But it also has the foremost practical consequence of allowing the evaluation of spectral properties of our statistical system. In QMC, one can access correlation functions in imaginary time C(τ ), for example the time dependent Green's function 1 :

  Figure 1.4:

Figure 2 . 1 :

 21 Figure 2.1: Phase diagram of the ionic Hubbard model as obtained from DQMC simulations. At a given gap ∆, enhancing the interaction U rst drives a transition from a band insulator to a correlated metal, before the system goes to a Mott insulating phase. The dashed line is the strong coupling limit (t = 0).

  not belong to the 4f intermetallic compounds. A DMFT work proposed a description of these materials in terms of correlated covalent insulators described by a Hubbard hamiltonian[START_REF] Kune² | Temperature-dependent correlations in covalent insulators: Dynamical mean-eld approximation[END_REF], in which the local orbitals are half lled in contrast to the ionic models, and found good agreement with experimental data. Another subsequent DMFT paper by Sentef et al. on such a correlated covalent band insulator found an intervening metallic phase in between the BI and MI upon increasing the Coulomb repulsion[START_REF] Sentef | Correlations in a band insulator[END_REF].Motivated by these results, we study in what follows the eect of correlation in a covalent insulator similar to the one proposed by Sentef. Interestingly, the non-interacting Hamiltonian has exactly the same dispersion relation as the IHM, allowing us to pinpoint the origin of the dierences in the phase diagrams of both models.

  eycomb and square lattices -in which each site is connected to three or four nearest neighbors respectively-are textbook cases of the dramatic role played by the number of links per site. The dispersion relation in the former is characterized by the bonding and anti-bonding bands being connected at single points with linear dispersion in their vicinity, while the latter shows in the half-lled case a divergence in the density of states at the Fermi level and a nesting of the Fermi surface leading to an antiferromagnetic instability. Beyond these simple examples, it is possible to engineer a specic band structure in a particular geometry by setting non-isotropic hoppings, or allowing connections between non-nearest-neighbor sites.
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 22 Figure 2.2: Non-interacting dispersion relation of the Hubbard bilayer with opposite in-layer hopping signs. At half-lling the band gap minimum ∆ = 2V coincides with the square Fermi surface.
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 23 Figure 2.3: Preliminary phase diagram in the V -U plane. The dotted line shows the phase boundary we found by way of MFT. The BI/MI transition

  Figure 2.4:

Figure 2 . 5 :

 25 Figure 2.5: Main panel: Finite-size scaling of the AF structure factor at V = 0.5 for several values of the interaction U and at β = 10. The dotted lines are the polynomial ts to the data, showing the transition occurs in around U c = 4.1. The inset shows the convergence at low temperature of four characteristic values of U , for the cluster size N = 2 × 12 × 12.

8 Figure 2 . 6 :

 826 Figure 2.6: At V = 1.2 and β = 10 the system remains disordered up to U = 12, the maximum value of the interaction we could reach, although magnetism

8 Figure 2 . 7 :

 827 Figure 2.7: Antiferromagnetic structure factor at V = 1.2 and β = 10 up to U = 22 for small clusters. In comparison with the U = 12 extrapolation shown in Fig.2.6, it seems unlikely we could capture any magnetic transition within these parameters regime.
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 28 Figure 2.8: (a) Local moment m as a function of U for 8x8 layers at β = 15 (symbols). (b) rst derivative of the local moment with respect to U , ∂m/∂U , shows a peak at the transition to the Mott insulating state. (c) A close up view of (b) shows the peak is no longer present for any U above V c = 1.2.
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 29 Figure 2.9: Nearest-neighbor real space spin-spin correlations (a) across the layers and (b) within an individual plane. At small V < 1.2 the correlations converge to nite values characterizing the magnetically ordered phase, while for large V = 2.0, the system is made of almost uncorrelated singlets.
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 210 Figure 2.10: We obtain the single-particle gap by tting the exponential decay of the time-dependent Green function. The latter is shown in the main panel on a linear scale, and in the inset on a semi-log scale. The red line corresponds to the t that allows to extract the gap. Parameters are U = 4.0, V = 2.0 and β = 10.

2 .

 2 11a the dependence of both the single-particle gap and the spin gap upon increasing U , for three characteristic values of V ∈ {0.5, 1.0, 2.0}. These energy gaps were obtained by tting the exponential decrease of local correlation in imaginary time obtained through our DQMC

Figure 2 . 11 :

 211 Figure 2.11: Main panel: Gaps in the single particle spectral function and the spin-spin correlation function are shown as functions of interaction U for several values of interlayer hopping V . At weak U , the spin gap ∆ S is precisely twice the single particle gap ∆ sp , as expected in a Fermi liquid phase. The smaller panels at right show the nite size (top) and nite temperature (bottom) eects for the spin gap.
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 212 Figure 2.12: Top row: single particle spectral function in the presence (left) and absence (right) of AFM order. Bottom row: same as top row but for the spin spectral function. Results are computed on a N = 2 × 12 × 12 cluster at β = 20. Lines in the top panels are the corresponding energy bands when U = 0.

beyond V c ≈ 1 . 59 .

 159 The evolution of local moments upon increasing the interaction was shown to display an inexion point we attributed to the Mott transition. While at moderate V the inexion point coincides with the magnetic transition, these two markers decouple from V = 1.0, thus leading to an intermediate paramagnetic Mott insulator. Even though a further characterization of this intermediate phase was beyond the possibilities of this study, the strong local antiferromagnetic coupling between the bands in that region of the phase diagram hints at a Kondo insulating state. The single-particle gap evolution unequivocally eliminated the possibility of an intermediate metallic phase between the band insulating and the Mott insulating phases, underlining the importance of spatial correlations in the dynamics of this model.
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 213 Figure 2.13: Phase diagram we obtained for the correlated band insulator, including results found with other methods. The transition line computed
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 31 Fig. 3.1. The basic concept behind this phenomenon is the coupling of magnetic local moments to the conduction electrons through quantum tunneling, resulting in singlet bound states and therefore an increase of the resistivity.
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 31 Figure 3.1: In dilute AuFe alloys the resistivity increases at low temperature.
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 32 Figure 3.2: The inter-band hopping V drives a phase transition in the PAM from an antiferromagnetic ordered state to a singlet phase.
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 233 Figure 3.3: At small V , thermal eects destroy the magnetic order favored by the indirect RKKY coupling. At large V , it is the singlet formation that prevents magnetic order.
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 34 Figure 3.4: Density of states A f (ω) of interacting band in the PAM. As the temperature is decreased, ne structure becomes apparent: the initial gap in
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 35 Figure 3.5: Non-interacting band structure of the Hamiltonian given in Eq. (3.4), in the 1D case. It illustrates the distinct behavior of the two cases

Figure 3 . 6 :

 36 Figure 3.6: Evolution of the local f moment, m f , with t f and V . Results are at U f = 4t, and were obtained by QMC (left panels) and MFT (right panels). At βt = 4 (top panels), the moments are mostly formed and decreasing the temperature to β = 24 has no signicant eect. m f is largest for small values

Figure 3 . 7 :

 37 Figure 3.7: Near neighbor spin correlations in the f -band. The hopping term t f provides an exchange interaction in the f -band, which leads to antiferromagnetic correlations. V also causes antiferromagnetic interactions, but by a weaker RKKY coupling. There is signicant growth in the spin correlations as β increases, even well after the local moments have saturated (Fig. 3.6).
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 38 Figure3.8: The f -band long-range antiferromagnetic correlations shown in the t f -V plane for dierent inverse temperatures β. Because S f probes spin ordering at large distance, the convergence with increasing β is more gradual than for the near-neighbor spin correlations. As β increases, the paramagnetic region where V and t f are both small, and hence so too are the AF energy scales, shrinks. As with the local moment S f is peaked at small, positive t f .
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 392 Figure 3.9: The spectrum of the f -band at U f = 4, 8 (left and right panels respectively) as a function of interband hybridization V for inverse temperature β = 2. Four values of f -band hopping t f are shown. The green lines correspondto the edge of the non-interacting density of states, which delimit the band gap. At t f = ±0.2, two bands are separated at small V by a Slater gap of width U f corresponding to the cost of double occupancy. At larger V , a Kondo peak is visible at ω = 0 below a critical threshold V c . The triangular shaped regions at large hybridization correspond to the singlet formation that prevents the Kondo resonance and leads to a gap that is well described by the non-interacting dispersion relation.

Figure 3 . 10 :

 310 Figure 3.10: The left panels are the same as Fig. 3.9, except at much lower temperature β = 24. The smearing of the band gaps is greatly reduced. In addition, the Kondo resonance has been split by a gap associated with the formation of AF order. The insulating character of the t f < 0 case for all V
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 41 Figure 4.1: Annular dark eld image of an heterostructure alternating layers of LaTiO 3 (bright) and SrTiO 3 . The numbers indicate the thickness of the LaTiO 3 layers, which is controlled down to the unit cell scale. The top panel is a zoom on a sequence of 1 × 5 layers. From [88].
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 42 Figure 4.2:Schematic representation of the systems we consider. Nearestneighbor hoppings are equal to 1 everywhere but across the interface where it is labelled V . Layers with negative indices l = -1, -2, . . . , are non-interacting and thus metallic at V = 0. A non-zero repulsive interaction U l > 0 is set in the layers with positive indices l = +1, +2, . . . . This side is therefore insulating and antiferromagnetically ordered at V = 0.
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 43 Figure 4.3: Interlayer correlators c ⊥ (l, l ) as a function of the interface hoppingV . As V is increased, the correlator c ⊥ (-1, 1) drops, signalling the formation of an interfacial state decoupled from the bulk. Each layer is 10 × 10, half lled and at β = 10.

Figure 4 . 4 :

 44 Figure 4.4: Spin correlation between sites across the interface c ⊥ (-1, 1) for dierent values of the interaction U . The spin correlation at large V depends on U , which suppresses double occupancy.
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 45 Figure 4.5: In-plane spin correlations as a function of V . In the outer metallic layer l = -2 correlations are not aected by the evolution of the interface, while in the outer interacting layer l = 2 correlations at rst drop along with the interfacial layer l = 1 before decoupling. At large V both layers at the interface have vanishing in-plane correlation, signalling the dimers are decoupled from one another.
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 4748 Figure 4.7: In-plane antiferromagnetic structure factors S af l is shown as a function of the interface hopping V . For l = -1, -2 (metallic sheets) S af l

Figure 4 . 9 :

 49 Figure 4.9: The behavior of the AF structure factor in the outer correlated layer S af2 as a function of V depends on U , for 2 + 2-layers systems. From U 6, the magnetic order does not vanish at intermediate V although it is somewhat suppressed. Each plane is 10 × 10 and half-lled with β = 10.
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 410 Figure 4.10: (a) Spectral function A 2 (ω) in correlated layer l = 2. The Slater gap present at small V due to AF order vanishes at intermediate V and reappears at larger V . (b) In correlated layer l = 1, A 1 (ω) resembles A 2 (ω) but unlike l = 2 the large V behavior is a broader gap associated with the singlet energy scale. In both non-interacting layers A -1 (ω) (c) and A -2 (ω) (d) a gap opens as V increases. At large V , layer -2 recovers metallic properties while the singlet gap is visible in layer -1.
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 4 Figure 4.12: (a) In-plane structure factors S afl as functions of V for a system of four correlated layers coupled to two metallic ones. At intermediate V antiferromagnetic order is suppressed in every correlated layer. At large V the
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 414 Figure 4.14: At V ≈ 1, the four layers are disordered and insulating, despite the important dierence of local moment formation between both sides.

Figure 4 . 15 :

 415 Figure 4.15: When the interlayer coupling at the interface V is large, dimers are former and lead to the decoupling of the interface from the exterior layers, the latter recovering their initial properties (respectively an uncorrelated metal and a magnetic insulator).

  local moments, in which an inexion point characterizes the Mott transition, was shown to decouple from the magnetic transition where long-range order settles. The possibility for an intermediate paramagnetic correlated phase was thus open, even though its characterization was beyond the scope of our study.The absence of an intermediate metallic phase is a striking dierence with the IHM that is due to the spatial homogeneity of our model, in which the band gap stems from singlet formation.Multi-band models are also known to be essential in order to capture the subtle physics found in heavy-fermion compounds. These materials are characterized by the presence of localized magnetic moments whose coupling to the conduction electrons gives rise to a Kondo resonance, leading to intriguing properties such as huge eective electronic masses. The standard framework used to account for these phenomena is the periodic Anderson model (PAM), in which a periodic array of interacting localized electrons is coupled to a non-interacting conduction band. In Chapter 3, we extended this model by systematically exploring the eect of a nite nearest-neighbor hopping t f in the interacting band, thus interpolating the problem of the PAM with the case of a bilayer Hubbard model. By allowing t f to have an opposite sign to the conduction band hopping, the non-interacting limit of this model was also directly connected to the band insulator we presented in Chapter 2. A complex phase diagram was unveiled, showing in particular how the direct exchange allowed by the nite bandwidth leads to maximize local and long-range magnetic properties at t f ≈ 0.2. The analysis of the spectral functions allowed to reveal how the dierent energy scales compete in the model, displaying in particular a splitting of the Kondo resonance when antiferromagnetic order settles.

  These three studies demonstrate the broad variety of layered systems accessible through the Determinant Quantum Monte Carlo formalism. In spite of certain constraints such as the diculty to investigate doped phases, the exibility of this algorithm provides access to geometries that are beyond the reach of most analytical and numerical techniques. The ability to explore broad regions of the phase diagram of a given system allows to capture the qualitative behavior of, in principle, any observable of interest. Obviously, studying extensive sets of parameters puts limits to the size of the cluster, but performing nite size scaling for a few distinctive points allows to control the accuracy of the calculations.Given the perspectives oered by the eld of heterostructures, a number of extensions of our work are worth considering. For instance, the interface we studied had open boundary conditions in the direction orthogonal to the layers: by setting periodic boundary conditions, the problem of heterostructures made of periodic arrangement of layers could be addressed. The question of the transport properties across the layers could concurrently be studied. Synthesis and characterization of a wide variety of such structures are presently performed, and the choice of the geometry and parameters could aim at understanding specic experiments.

  Et cependant, notre prédiction s'est complètement réalisée, le bâton à physique a fait des merveilles [...].Alfred Jarry[START_REF] Jarry | Ubu roi: drame en cinq actes[END_REF] Ce travail a porté sur l'étude des propriétés d'électrons dans des systèmes composés de couches minces couplées. L'intérêt pour de telles géométries provient de deux domaines. D'une part, la description des propriétés de systèmes bidimensionnels dans lesquels plusieurs bandes électroniques sont prises en compte. Deuxièmement, comprendre les reconstructions électroniques qui ont lieu lorsque deux matériaux complexes sont en contact à une interface. Dans ce contexte, notre approche a été d'étudier numériquement différents systèmes basés sur le modèle de Hubbard, un important modèle en théorie de la matière condensée qui a permis de saisir le mécanisme fondamental de certaines transitions de phase des matériaux fortement corrélés, comme la transition métal-isolant engendrée par des interactions électron-électron. La méthode numérique que nous employons, le Monte Carlo Quantique du Déterminant (DQMC), permet d'explorer avec précision ce modèle pour des clusters de taille nie. Malgré certaines restrictions, dues pour la plupart au problème du signe, nous avons montré que la possibilité de rendre compte des corrélation spatiales est cruciale, et ore un avantage remarquable par rapport à d'autres méthodes utilisées dans ce domaine. La version à température nie que nous utilisons permet la description l'eet des uctuations thermiques dans le diagramme de phase, apportant une meilleure compréhension de la physique de ces systèmes comme nous l'avons illustré au Chapitre 3. Un exemple simple de structure de bande électronique est l'isolant de bande, dans lequel l'énergie de Fermi se situe dans le gap d'énergie séparant les bandes de valence et de conduction. gap à interaction nulle peut être ajusté au moyen d'un simple paramètre. Une interaction électronique, plus précisément une répulsion Coulombienne sur site, est l'autre paramètre dont nous avons étudié l'eet. Ce modèle a été récemment étudié, et il a été en particulier armé que la largeur du gap pouvait être réduite en augmentant la valeur de l'interaction électronique. Un tel scénario est hautement non-trivial, les interactions étant connue dans l'exemple classique de la transition de Mott pour au contraire rendre isolant un système métallique. Cependant, la découverte récente d'une phase conductrice intermédiaire dans un système similaire et ayant une relation de dispersion identique, le modèle ionique de Hubbard (IHM), avait ouvert la porte à une telle eventualité. Malgré ces résultats, notre analyse a montré sans ambiguïté que la prise en compte des corrélations spatiales ne conduit pas à un rétrécissement du gap, ce dernier croissant de façon monotone. Cependant, nous avons montré que le gap de spin se réduit lorsque l'interaction est augmentée, pour nalement se fermer lorsque la transition magnétique a lieu. L'évolution du moment magnétique, au cours de laquelle un point d'inexion signale la transition de Mott, se découple de la transition magnétique caractérisée par un ordre à longue distance. La possibilité d'une phase intermédiaire paramagnétique est donc envisageable, bien que sa caractérisation ait été hors de la portée de notre étude. L'absence d'une phase métallique intermédiaire constitue une diérence frappante par rapport au IHM due à l'homogénéité spatiale de notre modèle, pour lequel le gap d'énergie provient de la formation de singulets entre les bandes. Les modèles comprenant plusieurs bandes électroniques sont également importants pour saisir la physique des composés à fermions lourds. Ces matériaux sont caractérisés par la présence de moments magnétiques locaux dont le couplage avec la bande de conduction entraîne une résonance de Kondo, conduisant à des propriétés telles que des masses eectives considérables. Le cadre habituel pour rendre compte de ces phénomènes est le modèle périodique de Anderson (PAM), dans lequel un réseau périodique d'électrons localisés par une interaction est couplé à une bande conductrice sans interaction. Dans le Chapitre 3, nous avons étendu ce modèle en explorant systématiquement l'eet d'un terme de saut entre plus proches voisins t f dans la bande avec interaction, ce qui correspond à interpoler le PAM avec un modèle de Hubbard à deux bandes. En permettant à t f de prendre un signe opposé à celui de la bande de conduction, la limite sans interaction de ce modèle a été directement reliée au problème de l'isolant de bande présenté au Chapitre 2. Nos résultats ont conduit à un diagramme de phase complexe, montrant comment le couplage direct permet de maximiser les corrélations magnétiques locales et à longue distance aux alentours de t f ≈ 0.2. L'étude des fonctions spectrales révèle les diérentes échelles d'énergie en jeu dans le modèle, avec en particulier l'apparition d'un gap divisant la résonance de Kondo lié à l'établissement de l'ordre antiferromagnétique. Le modèle bicouche que nous avons étudié au Chapitre 3 peut décrire de façon équivalente la jonction entre un matériau corrélé et un métal, fournissant une connection directe avec le problème des hétérostructures d'oxydes. Il était donc tentant de poser la question de comment l'évolution d'une telle interface aecte les propriétés à l'intérieur des matériaux. De plus, des réalisations d'interfaces métal-isolant de Mott ont été étudiées au cours des dernières an-nées, laissant entrevoir des propriétés non-triviales et controversées. Nous avons donc étudié cette interface dans le Chapitre 4, en choisissant pour simplier t f = 1 et en se concentrant sur le rôle du couplage à l'interface V . En contradiction avec certains travaux réalisés précédemment, nous avons observé que l'ordre magnétique du côté corrélé est détruit lorsque V est augmenté, tandis que le côté métallique reste désordonné. Cet eet est visible non seulement dans la couche située directement à l'interface, mais également dans la couche corrélée adjacente qui devient elle aussi paramagnétique. Lorsque la valeur de V est encore augmentée, des singulets sont formés à travers l'interface tandis que la couche corrélée extérieure retrouve ses propriétés antiferromagnétiques. L'état paramagnétique intermédiaire est également caractérisé par l'apparition d'un gap d'énergie dans le côté métallique, résultant en une phase intermédiaire homogène qui est isolant et dépourvue d'ordre magnétique. Le rôle de la valeur de l'interaction a également été étudié, montrant qu'une forte interaction conduit à une diminution de l'ordre magnétique au lieu de sa disparition. Le cas d'une épaisseur plus importante du côté corrélé a nalement été considéré, montrant que les couches corrélées supplémentaires protègent par un eet de proximité le magnétisme au voisinage de l'interface. Ces trois études démontrent la grande diversité de systèmes en couches accessible par la méthode du DQMC. Malgré certaines contraintes, en particulier la diculté à explorer les phases dopées, la exibilité de cet algorithme permet d'accéder à des géometries hors d'atteinte de la plupart des méthodes analytiques et numériques existantes. La possibilité d'explorer de vastes région du diagramme de phase d'un système donné permet de saisir le comportement qualitatif de n'importe quelle observable d'intérêt. Naturellement, l'étude de nombreux jeux de paramètres implique de limiter la taille des clusters considérés, mais la possibilité d'extrapoler dans la limite thermodynamique pour certains points particuliers permet de contrôler la validité de ces résultats. Au regard des possibilités oertes par le domaines des hétérostructures, différentes extensions de ce travail sont à considérer. A titre d'exemple, l'interface que nous avons étudié avait des conditions aux bords ouvertes dans la direction perpendiculaire aux couches minces. En imposant des conditions périodiques, le problème d'hétérostuctures constituées d'arrangements périodiques de couches pourrait être attaqué. La question des propriétés de transport à travers ces couches pourrait être étudiée en parallèle. La synthèse et la caractérisation d'une grande variété de telles structures étant actuellement en cours, le choix d'une géométrie et de paramètres pourrait viser à comprendre certaines expériences. Nous avons restreint les géométries des systèmes considérés au cas du réseau cubique. Bien que les congurations qui impliquent une frustration géométrique ne soient pas accessibles par la méthode du DQMC à cause du problème du signe, l'étude d'autres réseaux bipartites serait intéressante. En particulier, le réseau en nid d'abeille ore l'avantage d'une transition de Mott à interaction nie. Le rôle joué par les spécicités du réseau carré pourraient par conséquent être déterminées. De plus, le réseau en nid d'abeille possède ses propres particularités, comme une relation de dispersion linéaire au voisinage de la surface de Fermi qui entraîne l'existence de cônes de Dirac. Le cas de plans de graphène couplés pourrait par exemple être étudié.Abstract: The properties of electrons in two dimensions (2D) raise fundamental questions that have been extensively explored by condensed matter theory. Extending standard frameworks such as the 2D Hubbard model by accounting for more than one electronic band oers the opportunity to access more complex phenomena, such as the interplay between transport and magnetism found in heavy-fermions materials. Such models are directly connected to the problem of coupled layers in complex materials known as heterostructures, which have been widely studied and synthesized in recent years, and are expected to lead to important applications. In that context, we study numerically several systems, by mean of the Determinant Quantum Monte Carlo Method (DQMC). We rst analyze the eect of electronic correlation in a band insulator, showing in particular the absence of an intermediate metallic phase.A second system consists of two coupled bands that modelize a heavy fermion model, in which the role of the bandwidth of the correlated band is systematically investigated. Finally, we consider the case of a metal-insulator interface, unveiling an intriguing intermediate phase as the interfacial coupling is tuned. Keywords: Condensed matter physics, Strongly correlated systems, Hubbard model, Heterostructures, Quantum Monte Carlo, Phase transitions. Résumé: Les propriétés d'électrons en deux dimensions (2D) soulèvent des questions fondamentales qui ont été largement explorées au moyen des techniques théoriques de la matière condensée. L'extension de modèles classiques tel le modèle de Hubbard en 2D, en incluant par exemple plusieurs bandes électroniques, ore la possibilité d'accéder à des phénomèmes plus complexes, comme l'interaction du transport électronique et du magnétisme observé dans les composés de fermions lourds. Ces modèles sont en lien direct avec la question de couches minces couplées, les hétérostructures, qui sont depuis peu l'objet d'intenses recherches et orent la possibilité d'intéressantes applications. Dans ce contexte, nous étudions numériquement diérents systèmes au moyen de la méthode du Monte Carlo Quantique du Déterminant. Tout d'abord, l'eet de la corrélation électronique dans un isolant de bande est évaluée, montrant en particulier l'absence d'une phase métallique intermédiaire. Un deuxième système est composé de deux bandes électroniques couplées, dans lequel l'eet de la largeur de bande de la partie corrélée est exploré de façon systématique. Finalement, nous étudions une interface métal-isolant, qui présente une phase intermédiaire surprenante lorsque le couplage à l'interface est ajusté. Keywords: Physique de la matière condensée, Systèmes fortement corrélés, Modèle de Hubbard, Hétérostructures, Monte Carlo Quantique, Transitions de phases.

The static Green's function G(0) was dened in Equation(1.38).

The three studies we present below have some limitations. First, the Hubbard model limited to nearest-neighbor hopping and on-site interaction is a minimal description of interacting fermions. In spite of the rich physics it generates, the possibility of including a Hund coupling is complicated because of the fermionic sign problem that appears when next-nearest-neighbor interactions are included in the hamiltonian[START_REF] Georges | Strong Correlations from Hundâs Coupling[END_REF]. Key branches of the eld will thus escape our scope, like the itinerant ferromagnetism metal phases that appear when Hund rules are accounted for. Even for this simple model, the sign problem will also restrict us to the half-lling case, while electron and hole dopings are known to engender unconventional properties, like high-T c superconductivity. The cubic lattice is convenient since it has only one site per unit cell, and more importantly for not being geometrically frustrated.Biparticity favours ordered phases, and the exotic liquid states found in frustrated lattices (like the triangular and Kagome lattices) will not be accessible.Another major peculiarity this lattice shows at half-lling is the divergence of the antiferromagnetic susceptibility owing to the nesting of the Fermi surface, which leads to a magnetic Mott insulator at arbitrary small Coulomb repulsion. This scenario is obviously not a generic one, and comparison to dierent

Please refer to Eq.(1.54) for the denition of A(ω).

The spin components were dened in Eq.(1.42).

A f (ω) was dened in Eq. (1.54).

Chapter 4

Metal-Mott insulator Interface

Introduction

In material science, surfaces are often known to bear physical properties that dier considerably from that of the bulk because of so-called structural reconstruction. Since the specic arrangement of the atoms in a bulk crystal arises from the minimization of the energy due to interactions between neighboring sites, it is natural to expect this structure to change at a surface where the local environment is modied and the coordination number is reduced.

Such modications of the lattice structure can obviously alter the electronic properties of the surface, a change in the inter-atomic distances resulting, for instance, in a smaller overlap of orbitals and therefore in a dierent hopping matrix element. By analogy with its lattice counterpart, the term electronic reconstruction was coined [START_REF] Hesper | Photoemission evidence of electronic stabilization of polar surfaces in K 3 C 60[END_REF][START_REF] Okamoto | Electronic reconstruction in correlated electron heterostructures[END_REF] to describe the modications of electronic properties at surfaces in comparison with those of the bulk. It was for example found that in the Ca 1.9 Sr 0.1 RuO 4 compound, the Mott transition occurs at a lower temperature at the surface due to the lattice distortion at the boundary [START_REF] Moore | Surface dynamics of the layered ruthenate Ca1.9Sr0.1RuO4[END_REF]. At interfaces, where materials with dierent intrinsic properties are in contact, the local environment is also modied at the surfaces. The problem can consequently become more complex than in the decoupled materials and the interfacial phase diagram is a priori non-trivial.

We shall review below some recent progress done in the eld of correlated heterostructures, with particular emphasis on the metal-Mott insulator structures that resemble the one we studied numerically. For more complete surveys of the eld, the reader can refer to the following works [START_REF] Mannhart | Interfaces in Materials with Correlated Electron Systems[END_REF][START_REF] Mannhart | Oxide Interfaces -An Opportunity for Electronics[END_REF][START_REF] Freericks | Transport in multilayered nanostructures: the dynamical mean-eld theory approach[END_REF][START_REF] Millis | Electronic Reconstruction at Surfaces and Interfaces of Correlated Electron Materials[END_REF], and to the additional references provided below.

Interfaces are at the core of integrated electronics, with metal oxide semiconductor eld-eect transistors (MOSFETs) as main building blocks. The miniaturization of these components is currently hitting the bottleneck of quantum mechanics, in particular because of the direct tunneling of the electrons through the thin SiO 2 dielectric layers in the components. Although recent achievements in semiconductor manufacturing -for example the integration of materials displaying better dielectric properties [START_REF] Tsymbal | Multifunctional Oxide Heterostructures[END_REF]-have broadened the possibilities of standard microelectronics, these improvements will not allow to