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Introduction

Dimensionality is of fundamental importance in physics. From a theoretical
perspective, the properties of a given model often change dramatically upon
changing its number of spatial dimensions. A textbook example is the isotropic
quantum Heisenberg model, which displays no spontaneous magnetization at
�nite temperature in two dimensions, while in the three dimensional case there
is a �nite critical temperature below which the system is ordered. This result
can be generalized by way of the Mermin-Wagner theorem, which states that
no continuous symmetry can be spontaneuously broken at �nite temperature
when the dimension is lower than or equal to 2, provided that the interactions
are short-ranged.

While the study of dimensions other than 3 might seem irrelevant at �rst
sight, there are plenty of experimentally accessible systems whose properties
are mainly ruled by low-dimensional phenomena. For instance, many bulk crys-
tals are arranged in non-isotropic structures in which interactions will mostly
happen within chains or layers, leading to e�ective one- or two-dimensional
physical properties. Moreover, among such low-dimensional systems appear
some of the most intriguing and technologically promising materials, as the
recently discovered layered high-temperature superconductors pnictides.

The �eld we are interested in here is condensed matter physics, which aims
at describing the collective properties of a large number of atoms. Given that
very few exact solutions are known for quantum systems beyond the most
simple case of the hydrogen atom, this task implies the use of approximations
that simplify the complexity of the problem. The notion of energy scale is
therefore of crucial importance in order to neglect the degrees of freedom that
will take no part in the phenomena under consideration. For instance, con-
densed matter theory can in most cases ignore the structure of the atomic
nuclei that involve energies considerably larger than the electronic properties
of interest. E�ective models involving only the essential degrees of freedom can
therefore be derived, but even these are in general extremely intricate. While
many exact solutions can be computed analytically for quantum systems in
one dimension or in�nite dimensions, only approximate results can in general
be obtained for intermediate dimensions. The advances made during the last
decades in both computer performance and algorithms have made numerical
simulations an unavoidable tool for understanding such models.

This work is devoted to describing physical systems in which a few two-
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dimensional electronic layers are coupled together. While 2D systems have
been the object of intensive research -largely motivated by the fact that high-
temperature superconducting cuprates are essentially made of weakly coupled
layers- much less has been done on the case of layered systems. The latter
can equivalently describe 2D models in which more than one electronic band
is involved, or a layered material in which atomic planes are coupled and form
a complex heterostructure. In spite of several limitations, which we will detail
later on, the numerical technique we employ can compute �exact� properties
of quantum clusters at �nite temperature that take into account spatial cor-
relations, thus providing an important complementary alternative to other
methods.

The tools and methods will be presented in Chapter 1. After brie�y intro-
ducing the formalism of second quantization, we will derive the e�ective model
that will be our theoretical framework, the Hubbard model. A few noteworthy
physical limits of the latter will be discussed, before we present the numerical
method called the Determinant Quantum Monte Carlo (DQMC). Our focus
will be mainly on explaining the underlying concepts rather than on presenting
detailed derivations of the formalisms. A section will be devoted to introducing
the physical measurements that we will use in the subsequent chapters, which
will o�er the opportunity to illustrate a few standard results on the Hubbard
model, as well as to underline some limitations and �tricks of the trade� of our
numerical method. We will �nally succinctly comment on a few other major
methods used to study the Hubbard model, focusing on their advantages and
drawbacks against the DQMC method.

The study of a �rst system will be presented in the second Chapter, where
two Hubbard planes will generate two electronic bands separated by a band gap
of tunable width. Motivated by recent investigations on the e�ect of electronic
correlation in band insulators, a particular realization of such a correlated
insulator will be analyzed. The results will be systematically compared against
those published a few years ago for the same hamiltonian by means of the
Dynamical Mean Field Theory (DMFT) technique, showing in particular a
strong disagreement with this work as we found no shrinking of the energy
gap upon increasing the electronic repulsion. Comparisons will also be made
against work previoulsy done on a very similar system, the Ionic Hubbard
Model, in which a metallic phase was found in between two insulating phases,
drawing much attention and controversy.

Chapter 3 will be devoted to another multi-orbital two-dimensional system.
The Periodic Anderson Model (PAM) is a theoretical milestone in the study
of the coupling of electronic transport with magnetism that has been used to
describe the behaviour of an important class of correlated compounds known
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as heavy fermions. We will extend this model by allowing a tunable mobility in
the magnetic band, therefore exploring a broad spectrum of physical phenom-
ena related to the interplay of transport and magnetism. In particular, it will
be shown that magnetic moments and correlations are maximized for a �nite
bandwidth f -band. The temperature dependence will be discussed, revealing
the distinct energy scales of the model.

In Chapter 4, several Hubbard planes will no longer describe several or-
bitals of a two-dimensional system but rather the atomic layers of a few unit
cells thick heterostructure. The latter will be made of a thin interface between
a metal and a correlated insulator. After a brief introduction of the recent
massive interest in correlated heterostructures and their potential applications
in the �eld of micro-electronics, we will present di�erent works previously done
on similar systems through alternative theoretical methods as well as experi-
mental investigations. It will be shown that, as the coupling at the interface
is tuned, the system undergoes a transition to an unexpected insulating para-
magnetic state that involves atomic layers not directly at the interface, before
another transition at large coupling in which the interface decouples from the
bulk, the latter recovering its initial properties. The e�ect of the correlation
strength and of the interface thickness on the propagation of the intermediate
state into the materials will be �nally discussed.

The last chapter has our conclusions and perspectives for future work.





Introduction en français

�[...] D'abord, nous allons faire le chapitre

des �nances, ensuite nous parlerons d'un pe-

tit système que j'ai imaginé pour faire venir

le beau temps et conjurer la pluie.�

� Alfred Jarry [1]

La notion de dimensionalité a une importance fondamentale en physique.
D'un point de vue théorique, les propriétés d'un modèle donné varient sou-
vent de façon spectaculaire en fonction du nombre de dimensions spatiales.
Un exemple classique est le modèle de Heisenberg quantique isotrope, qui n'a
pas d'aimantation spontanée à température �nie en deux dimensions, tandis
qu'il existe en trois dimensions une température critique non nulle en deçà de
laquelle le système est ordonné. Ce résultat peut être généralisé au moyen du
théorème de Mermin-Wagner, qui établit qu'il ne peut y avoir de brisure spon-
tanée de symétrie continue à température �nie dans un système de dimension
inférieure ou égale à 2, tant que les interactions sont de courte portée.

Bien qu'au premier abord l'étude de dimensions autres que 3 puisse sembler
peu pertinente, il existe de nombreux systèmes accessibles expérimentalement
dont les propriétés sont dominées par des phénomènes de basse dimensionnal-
ité. Par exemple, de nombreux cristaux présentent des structures non-isotropes
dans lesquelles les interactions ont lieu au sein de chaînes ou de plans, con-
duisant à des propriétés e�ectives en une ou deux dimensions. De plus, parmi
ces systèmes de basse dimensionalité �gurent des matériaux aux propriétés
fascinantes qui o�rent la possibilité d'applications prometteuses, tels les �pnic-
tides� dont la supraconductivité à haute température n'a été découverte que
récemment.

Le domaine qui nous intéresse est celui de la physique de la matière conden-
sée, qui vise à décrire les propriétés collectives d'un grand nombre d'atomes.
Étant donné qu'il n'existe que très peu de solutions mathématiques exactes
pour des systèmes quantiques au-delà de l'atome d'hydrogène, cette tâche im-
pose d'avoir recours à des approximations qui réduisent la complexité du prob-
lème. La notion d'échelle d'énergie est par conséquent cruciale a�n de négliger
les degrés de liberté qui ne contribuent pas aux phénomènes considérés. En
matière condensée, par exemple, on peux en général ignorer la structure in-
terne des noyaux atomiques, qui implique des énergies beaucoup plus élevées
que les propriétés électroniques auxquelles on s'intéresse. Des modèles e�ectifs
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n'incluant que les degrés de liberté nécessaires peuvent donc être dérivés, mais
ceux-ci demeurent souvent d'une grande complexité. Bien que de nombreuses
solutions exactes existent en une dimension ou en dimension in�nie, seuls des
résultats approchés peuvent en général être obtenus en dimensions intermédi-
aires. Les progrès qu'ont connu au cours des dernières décennies les perfor-
mances des ordinateurs et des algorithmes font des simulations numériques un
outil incontournable pour la compréhension de ces modèles.

Ce travail porte sur des systèmes physiques dans lesquels plusieurs couches
électroniques sont couplées. Tandis que les systèmes 2D ont été l'objet de
nombreux travaux, en grande partie motivés par le fait que les cuprates supra-
conducteurs à haute température sont composés de plans faiblement couplés,
les systèmes en couches demeurent dans une large mesure inexplorés. Ces
derniers peuvent décrire, de façon équivalente, des modèles 2D dans lesquels
plusieurs bandes d'énergie sont prises en compte, ou des matériaux constitués
de couches bidimensionnelles dans lesquels les plans atomiques couplés com-
posent des hétérostructures complexes. En dépit de certaines restrictions qui
seront discutées plus loin, la technique numérique que nous utilisons permet
de calculer de façon �exacte� les propriétés d'agrégats quantiques à tempéra-
ture �nie en prenant en compte les corrélations spatiales, o�rant ainsi une
alternative complémentaire d'autres méthodes.

Les outils et méthodes seront présentés au Chapitre 1. Après avoir introduit
le formalisme de la seconde quanti�cation, nous dériverons le modèle e�ectif qui
nous servira de base, le modèle de Hubbard. Quelques limites physiques nota-
bles de ce dernier seront discutées, puis nous présenterons l'algorithme appelé
Monte Carlo Quantique du déterminant (DQMC). Notre but sera principale-
ment d'expliquer les concepts sous-jacents plutôt que de présenter une déri-
vation détaillée des formalismes. Une section sera dédiée à la description des
mesures physiques que nous emploierons au cours des chapitres suivants, ce qui
nous o�rira l'opportunité d'illustrer quelques résultats classiques concernant le
modèle de Hubbard, ainsi que certaines limites et subtilités de notre méthode
numérique. Pour �nir, nous évoquerons succinctement quelques autres méth-
odes utilisées pour étudier le modèle de Hubbard, en nous concentrant sur
leurs avantages et inconvénients par rapport à la méthode DQMC.

L'étude d'un premier système sera présentée au cours du second chapitre,
dans lequel deux plans de Hubbard engendreront deux bandes d'énergie sé-
parées par une bande interdite (ou gap) de largeur ajustable. Une réalisation
particulière d'un tel système sera étudiée, et motivée par de récentes recherches
sur les e�ets de la corrélation électronique dans les isolants de bande. Les ré-
sultats seront comparés de façon systématique à ceux publiés il y a quelques
années pour le même hamiltonien au moyen de la Théorie du Champ Moyen



7

Dynamique (DMFT), démontrant en particulier un important désaccord au
sujet du comportement du gap d'énergie lorsque la répulsion électronique est
augmentée. On fera également la comparaison avec un modèle très similaire, le
modèle de Hubard ionique, dans lequel une phase métallique avait été trouvée
entre les deux phases isolantes.

Le Chapitre 3 sera dédié à un autre modèle bidimensionnel comprenant
plusieurs orbitales. Le modèle périodique d'Anderson (PAM) est un jalon
théorique essentiel pour l'étude du couplage entre transport électronique et
magnétisme qui a permit la description d'une classe importante de matériaux
correlés appelés fermions lourds. Nous étendrons ce modèle en permettant
une mobilité électronique ajustable dans la bande magnétique, permettant par
conséquent d'explorer une large gamme de phénomènes physiques engendrés
par la présence simultanée de transport électronique et de magnétisme. En
particulier, nous montrerons que la formation de moments locaux ainsi que
les corrélations magnétiques sont maximisées quand la largeur de bande est
étroite mais non-nulle. La dépendance en température sera également discutée,
révélant les di�érentes échelles d'énergie du modèle.

Dans le dernier chapitre, les plans de Hubbard ne décriront pas les plusieurs
orbitales d'un système bidimensionnel, mais plutôt les couches atomiques d'une
hétérostructure épaisse de quelques cellules unité. Cette dernière sera com-
posée d'une interface mince entre un métal et un isolant corrélé. Après une
brève mention du récent intérêt porté aux hétérostructures corrélées et de leurs
possibles applications dans le domaine de la micro-électronique, nous présen-
terons di�érents travaux e�ectués sur des systèmes similaires à l'aide d'autres
méthodes théoriques, ainsi que des études expérimentales. Nous montrerons
que, en ajustant le couplage à l'interface, le système présente une transition
vers un état isolant paramagnétique qui implique des couches atomiques qui
ne sont pas en contact direct avec l'interface. Dans le régime de couplage fort,
on observera une autre transition dans laquelle l'interface se découple du vol-
ume, ce dernier recouvrant ses propriétés initiales. Les e�ets de la valeur de la
corrélation et de l'épaisseur de la structure considérée sur la pénétration de la
phase paramagnétique intermédiaire seront �nalement discutés.

Le dernier chapitre résume nos conclusions et les perspectives de développe-
ment ultérieur.





Chapter 1

Model and Methods

1.1 Introduction

The standard properties of metals are well described within the framework of
the Fermi gas, in which the degrees of freedom of independent electrons are
mainly ruled by the Pauli exclusion principle that leads the available particle-
hole excitations to be restricted in the vicinity kBT of the Fermi energy, so that
only few of the total number of electrons are involved in the thermodynamic
properties. Since in most metals the Coulomb interaction between electrons
is typically of the order of magnitude of the kinetic energy, it is far from
trivial that this description is relevant for describing even simple metals. The
Fermi liquid theory, developed early on by Landau, addresses this question by
acknowledging that the eigenstates of the interacting case shall be adiabatically
connected to the eigenstates of the noninteracting problem. The excitations
will therefore be described in terms of quasi-particles that share the same
equilibrium properties as the non-interacting electrons but with �renormalized�
parameters (such as the mass).

Although the Fermi liquid theory has proven to be extremely helpful in ac-
counting for the thermodynamic properties of metals, there are broad classes of
models and compounds in which this description breaks down. In particular
the electron scattering, that scales as the square of the temperature T pre-
dicted in the Fermi liquid context, is not compatible with the linear resistivity
observed in doped cuprates. In order to deal with non-Fermi liquid behavior,
it is necessary to go beyond the picture drawn by Landau and to deal with
electronic correlation in a non-pertubative way. Because of the complexity of
the problem, it is often necessary to have recourse to e�ective models that are
simpler than the exact problem but capture nonetheless some of its funda-
mental properties. The analysis of these models remains usually cumbersome,
so that approximate analytical or numerical methods are required in order to
study them.

After introducing brie�y the formalism of second quantization, the goal of
this chapter is to present the particular model we will focus on, known as the
Hubbard model, as well as the numerical method we shall use throughout this
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work, the Determinant Quantum Monte Carlo method. Some general proper-
ties of the Hubbard model will also be discussed, with a special emphasis on
the advantages and limitations inherent to these model and numerical method.

1.2 Electrons on a lattice

The goal of this section is to introduce the tools we will be using below. We
shall therefore not get into unnecessary details, and refer the reader the existing
references for further details and rigour (see for example the books by Mahan
[2] or Coleman [3]).

1.2.1 Second quantization

In quantum mechanics, ��rst quantization� refers to the formalism in which
a system of N particles is described by means of a wavefunction Ψ, whose
evolution is determined by the Schrödinger equation

i~
∂

∂t
Ψ = ĤΨ. (1.1)

When dealing with the statistical properties of an open system, the �rst
quantization formulation is cumbersome and it is convenient to turn to a for-
malism in which the basis set is made of products of the independent par-
ticles wavefunctions, called second quantization. The vector Φ{n1,...,ni,... } =

|n1, n2, . . . , ni, . . .〉 then de�nes the state with ni particles in the state i, the
full set of all possible occupation numbers generating a complete basis set for
the many-body system. This basis can be obtained by de�ning the vacuum
state |0〉, and a set of operators {c†i} that create a particle in a given state:

Φ{ni} =
∏
i

(c†i )
ni |0〉 . (1.2)

The {c†i} operators are called creation operators, while their adjoints {ci} are
called destruction operators for they remove particles from the system.

In order to enforce the symmetry of the state upon permutation of two
particles, one must impose commutation relation between operators. We will
focus on the antisymmetric case of fermions, the symmetric bosonic case be-
ing obtained in a similar manner. Let us �rst introduce the anticommutator
between operators Â and B̂:

{Â, B̂} = ÂB̂ + B̂Â (1.3)
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We then de�ne the anticommutation relation for the fermionic creation and
destruction operators{

{c†i,σ, cj,σ′} = δi,jδσ,σ′

{c†i,σ, c
†
j,σ′} = {ci,σ, cj,σ′} = 0.

(1.4)

The Pauli exclusion principle ensures immediately from these de�nitions,
enforcing no state can be occupied by more than one particle (ni ∈ 0, 1):

c†i,σc
†
i,σ = −c†i,σc

†
i,σ = 0. (1.5)

1.2.2 Hubbard model

In order to describe the electronic properties of a crystal, a simple model
consists of considering electrons on a lattice. When the Coulomb interaction
between the electrons is not taken into account this model can be easily solved
and describes satisfactorily a broad class of metallic compounds. The only
interaction we thus take temporarily into account is the e�ective potential
generated by the mean electronic background and the underlying ionic lattice,
V (r). For the sake of simplicity we also consider only one electronic band,
and shall consider multi-band systems at a later stage. When the lattice is
translationally invariant, Bloch theorem tells us the wavefunctions that are
solutions of the Schrödinger equation for this problem are Bloch states, namely
functions that are can be written as:

ψk(r) = eik·ruk(r), (1.6)

where k denotes a momentum and uk(r) is a function that has the same peri-
odicity as the ionic potential.

The Schrödinger equation then reads:

H0ψk(r) = [− ~2

2m
∇2 + V (r)]ψk(r) = Ekψk(r). (1.7)

Because of the Pauli principle, each eigen-energy Ek can be occupied by at
most two electrons, corresponding to the spin states σ ∈ {↑, ↓}. The maximum
of the eigen-energies that are occupied is called the Fermi energy, EF , and
depends on the number of electrons present in the system. The Fermi energy
de�nes, in momentum space, the Fermi surface around which most electronic
processes occur at low temperature. It is now convenient to switch to the
second quantization formalism and de�ne the �eld operator Ψσ(r) that destroys
an electron of spin σ at the position r:

Ψσ(r) =
∑
k,σ

ψk(r)ck,σ. (1.8)
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The �eld operators obey the canonical anticommutation relations if the Bloch
states are normalized. It is possible to show that the free electron Hamiltonian
operator takes, in this language, the diagonal form in momentum space:

Ĥ0 =
∑
k,σ

Ekc
†
k,σck,σ =

∑
k,σ

Eknk,σ. (1.9)

We introduced in the last equation the number operator nk,σ that counts the
number of electrons with momentum k and spin σ, and that in the fermionic
case takes the values 0 or 1. Let us now add to this non-interacting system
the Coulomb interaction. To do so, it is convenient to introduce localized
states centered on an atomic site labelled i of coordinates Ri, called Wannier
functions, and relate them to the non-local Bloch states through the Fourier
transform

φi(r) =
1

N

∑
k

e−ik·Riψk(r), (1.10)

where N is the number of sites. By de�ning the creation and destruction oper-
ators for Wannier states as the Fourier transforms of the respective operators
for Bloch states, we can now write the �eld operators equivalently in term of
localized or delocalized operators:

Ψσ(r) =
∑
k,σ

ψk(r)ck,σ =
∑
i,σ

φi (r)ci,σ. (1.11)

The non-interacting Hamiltonian can then be rewritten in real space as

Ĥ0 =
∑
i,j,σ

ti,jc
†
i,σcj,σ, (1.12)

where we introduced the hopping term that accounts for the kinetic energy
betwen the sites i and j

ti,j =
1

N

∑
k

eik·(Ri−Rj)Ek. (1.13)

The set of Wannier functions makes it possible to account for the electron-
electron interaction. The interaction term representing the Coulomb repulsion
V (|r− r′|) reads in terms of �eld operators

Û =

∫
drdr′Ψ†σ(r)Ψ†σ′(r

′)V (|r− r′|)Ψσ′(r
′)Ψσ(r)

=
∑
i,j,k,l

Ui,j,k,lc
†
i,σc
†
j,σ′ck,σ′cl,σ, (1.14)
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with

Ui,j,k,l =

∫
drdr′φ∗i (r)φ

∗
j(r
′)V (|r− r′|)φk(r

′)φl (r). (1.15)

We will now make two assumptions. First, the electron overlap will be
neglected beyond nearest-neighbors, which is reasonable since the Wannier
functions are tightly localized on the ionic centers. Second, we will restrict the
Coulomb repulsion to its on-site component and neglect any further electron-
electron interaction. Finally, the band �lling is allowed to be tuned by adding
a chemical potential term µ. The Hubbard model then reads

Ĥ =
∑
〈i,j〉,σ

ti,j(c
†
i,σcj,σ + c†j,σci,σ) +

∑
i

Uini,↑ni,↓ − µ
∑
i,σ

ni,σ. (1.16)

In spite of its appearant lack of complexity, the analysis of this model proves
to be di�cult and has kept physicists busy for decades.

1.2.2.1 Particle-hole symmetry

A lattice is said to be bipartite when two sublattices A and B can be de�ned
such as every site belonging to one of the sublattices is connected only to sites
belonging to the other sublattice. For instance this is the case for the square
and the honeycomb lattices, while the triangular or the Kagome lattices are
not bipartite.

In the case of a bipartite lattice, the Hubbard model has a particle-hole
symmetry, which means its properties can equivalently be described in terms
of creation and destruction operators for electrons -what we did up to now- or
in terms of operators acting on �holes�, namely on the absence of an electron:{

hi → (−1)ic†i

h†i → (−1)ici
(1.17)

where the sign of the term (−1)i depends on the sublattice in which is located
the site i. Upon these transformations the Hubbard Hamiltonian becomes:

Ĥ =
∑
〈i,j〉,σ

ti,j(h
†
i,σhj,σ + h.c.) +

∑
i

Uimi,↑mi,↓ − µ
∑
i,σ

mi,σ +
∑
i,σ

Ui(
1

2
−mi,σ)

where we introduced the notation mi,σ = h†i,σhi,σ for the number of holes at
the site i and with spin σ.

The transformations thus add an extra term that cancels at half-�lling
ni,↑ = ni,↓ = 1

2
. In that important special case, the Hubbard model is therefore

unchanged upon the particle-hole transformation. More generally it is possible
to demonstrate that the phase diagram of the model is symmetric about half-
�lling.
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1.2.3 Noteworthy limits

1.2.3.1 Non-interacting case

We now go back to the situation in which the electrons do not interact, namely
in our Hubbard model when the local interaction Ui is zero everywhere. The
non-interacting Hamiltonian being diagonal in momentum space, it is natural
to consider the dispersion relation E(k) in order to gain some insight into
the band structure it generates. The latter depends on the parameters of
the model such as the dimension, the geometry of the lattice and the speci�c
pattern of hopping between each pair of sites. For the sake of simplicity we
shall focus on the case of the two-dimensional square lattice with homogeneous
nearest-neighbor hopping −t.

Ĥ0 =
∑
〈a,b〉,σ

ta,b(c
†
a,σcb,σ + h.c.)

= −t
∑
a,σ

[(c†a,σca+x,σ + c†a,σca−x,σ + c†a,σca+y,σ + c†a,σca−y,σ) + h.c.]

= − t

N

∑
a,σ

∑
kx,k′x,ky ,k

′
y

eikxae−ik
′
x(a+1)c†kx,σck′x,σ + . . .

= −2t
∑
kx,ky ,σ

cos(kx)c
†
kx,σ

ckx,σ + cos(ky)c
†
ky ,σ

cky ,σ. (1.18)

This dispersion relation is represented on Fig.1.1, with the contour lines
corresponding to the Fermi surface for a given chemical potential. Since this
dispersion is continuous in the thermodynamic limit, no energy gap is present
for any band �lling; arbitrarily low energy excitations are available and the
system is therefore metallic.

The half-�lling case µ = 0 presents the distinctive feature of having a square
Fermi surface with side length

√
2π. When the Coulomb repulsion is non-

zero charge excitations are gapped, making double occupancy unfavourable.
Low-energy excitations are possible by destroying two quasi-particles located
just below the surface and creating two other just above it, where the total
momentum of these particles is conserved. Because of the peculiar shape of the
Fermi surface, a great number of excitations involving a momentum transfer
k = ±(π, π) are available. It can be shown that in the square lattice case this
�nesting� of the Fermi surface leads to antiferromagnetic spin-density waves
for any interaction U > 0 [4].

It is also worth noting that, in the half-�lled square lattice, the density
of states N(ω), which counts the number of disctinct quantum states at an
energy ω, diverges at the Fermi energy. Such a divergence, known as Van
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Figure 1.1: Dispersion relation E(kx, ky) of the non-interacting Hubbard
model in the square lattice. At half-�lling the Fermi sea at Ef = 0 becomes
a square �nested� contour that causes the antiferromagnetic susceptibility to
diverge.

Hove singularity, implies that a great number of electrons are available for
low-energy excitations.

1.2.3.2 Strong interaction limit

Another important limit is the one in which the on-site repulsion is much larger
than the bandwidth t/U → 0. In the large U limit, the ground-state minimizes
the number of doubly occupied sites Nd: at or below half-�lling there is no
double occupancy, while above half-�lling there is no empty site. It is then
tempting to reduce the complexity of the problem by deriving an e�ective low-
energy model that excludes the sectors with more than the minimal number
of double occupancies, leading to a reduction of the dimension of the Hilbert
space from 4N to 3N (see for example the book by Auerbach [5]).

We de�ne the projectors into the sectors of single occupancy P̂1 (the sector
of empty sites gives a zero contribution to the Hamiltonian)

P̂1 =
N∏
i=1

(1− ni,↑ni,↓). (1.19)

The Hubbard hamiltonian becomes in the strong coupling limit the t − J
hamiltonian

Ĥt−J = −t
∑
〈i,j〉,σ

P̂1(c†i,σcj,σ + h.c.)P̂1 + J
∑
〈i,j〉

(Si · Sj −
ninj

4
). (1.20)
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where we introduced the spin operators {Si}, and the coupling J ∼ 4t2/U . The
�rst term in Eq.(1.20) is the kinetic term of the Hubbard model projected into
the subspace of non doubly occupied states. The second term derives from the
second order perturbative expansion of the interaction term, corresponding to
the virtual hopping of an electron into a doubly occupied state. Because of the
Pauli principle, such a process can happen only if the adjacent electrons carry
di�erent spins, leading to antiferromagnetism as suggested by the positive sign
of coupling J . Hopping terms involving three sites have been here neglected.

At half-�lling, every site is singly occupied so the hopping term would
necessarily lead to a doubly occupied state; the kinetic term then vanishes and
the model becomes the quantum Heisenberg hamiltonian

ĤH = J
∑
〈i,j〉

(Si · Sj −
ninj

4
). (1.21)

Figure 1.2: In the strong coupling limit U →∞, the half-�lled Hubbard model
maps onto the quantum Heisenberg model, in which the absence of charge
�uctuations gives way to a leading second-order antiferromagnetic exchange
between nearest-neighbor spins.

1.3 Monte Carlo methods

The term Monte Carlo method is used to describe a broad range of numerical
techniques in which the resolution of the problem is based on performing a
stochastic sampling of the con�gurations of the system. The name is said to
be a reference to the �Casino de Monte Carlo�, alluding to the randomness
of the sampling. This class of methods is applied in a great number of �elds
going from physical sciences to �nance.

In statistical physics, the most important probability distribution is the
Boltzmann distribution which gives the probability to measure a state in a
given system. In the grand-canonical ensemble -that is when both energy and
particle number �uctuate in the vicinity of an equilibrium determined by the
temperature T and chemical potential µ- the Boltzmann weight is given by:

Pi = P (Ei, Ni) =
e−β(Ei−µNi)∑
j e
−β(Ej−µNj)

≡ 1

Z
e−β(Ei−µNi). (1.22)
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The physical properties of such a �nite temperature system are determined
for a given observable Ô by the average value it takes over all the states i of
the system weighted by the Boltzmann distribution:

〈Ô〉 =

∑
j Oje

−β(Ej−µNj)∑
j e
−β(Ej−µNj)

(1.23)

A major di�culty arises from the fact that the value of the partition func-
tion Z is in general not known, and would require exploring the whole con�gu-
ration space of the system which is intractable in practice. A way to circumvent
this di�culty is to evaluate only the ratio of the probability of two con�gura-
tions, for example by employing the Metropolis algorithm. Here we review the
basic concepts behind it.

The goal is to perform a �nite sampling of the con�guration space through
a random process known as a Markov chain, in which at each step the choice
of the next sample does not depend on the history of the chain and is fully
characterized by the probability distribution P (i → j) of the transition be-
tween two con�gurations i and j. The Boltzmann distribution {Pi} will be the
stationary distribution described by the Markov process if the detailed balance
condition is ful�lled:

PiP (i→ j) = PjP (j → i). (1.24)

When generating a new con�guration, an acceptance probability A(i→ j)

will thus be de�ned such as to satisfy the detailed balance condition. The
Metropolis probability is one possible choice for that acceptance, and is de�ned
by

A(i→ j) = min(1,
Pj
Pi

) = min(1, e−β[(Ej−µNj)−(Ei−µNi)]) (1.25)

1.3.1 Quantum Monte Carlo

When the temperature is low enough �more precisely when the quantum �uc-
tucations ~ω are larger than the thermal �uctuations kBT� the statistical
system can no longer be viewed as composed of classical particles and quan-
tum properties have to be taken into account. It would be deceptive to believe
that such a temperature is necessarily close to the absolute zero. For instance,
the Pauli principle that prevents fermions from occupying the same state leads
in metals to characteristic Fermi energies of order T ∼ 104K. In such cases,
one has to worry about the quantum description of the states, which are then
described by operators that make the direct way of sampling con�gurations
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used for classical systems impracticable and require using more sophisticated
methods.

A tight-binding Hamiltonian can typically be written in the form

Ĥ = T̂ + Û , (1.26)

where Û is the interaction term (typically the electron-electron Coulomb re-
pulsion), and T̂ is a kinetic term Ĥ0 − µN̂ (N̂ is the number operator that
measures the number of particles). While the �rst term is usually diagonaliz-
able in real-space, and the second term in the momentum-space, the general
problem admits in most cases no trivial solution. Perturbation theory is the
method of choice when one of the terms dominates, allowing a perturbative
expansion in the vicinity of its exact solution, but this approach is bound to
fail when both terms are of the same order. By the same token, �rst principle
calculations like density functional theory (DFT) are only valid when the in-
teraction is small compared with the bandwidth. It is thus necessary to have
recourse to alternative techniques, among which the Feynman's path integral
formulation stands out by the deep insight it brings into quantum mechanics.

The evaluation of the partition function is cumbersome because the ki-
netic term and the interaction term do not commute. In order to overcome
this di�culty, performing a Suzuki-Trotter decomposition allows us to write
the partition function as the product of exponentials involving these terms
separately:

Z = Tr e−βĤ (1.27)

= Tr

(
L∏
l=1

e−∆τĤ

)

= Tr

(
L∏
l=1

e−∆τ T̂ e−∆τ Û

)
+O(∆τ 2),

where we introduced the L imaginary time steps ∆τ = βL. The systematic
�Trotter error� O(∆τ 2) can in principle be made arbitrarily small by decreasing
the time step, up to an additional computational cost.

Among the number of QMC methods that are available, the Determinant
QMC is the one of choice for fermionic systems. We will describe it brie�y
in the next section, but we suggest the interested reader to refer, for further
details, to the original work by Blankenbecler et al. [6], to the chapter by Loh
and Gubernatis [7] or to the study of the 2D Hubbard model by White et al.
[8]. The particular implementation we used, the quantum electron simulation

toolbox (QUEST), can be found at http://quest.ucdavis.edu/.

http://quest.ucdavis.edu/
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1.3.2 Determinant QMC

When dealing with quadratic forms of fermionic operators, that is operators
that can be written

Ĥl =
∑
i,j

(Hl)ij c
†
icj, (1.28)

the trace over the product of exponentials of such operators can be evaluated
straightforwardly by means of a determinant

Tr
(
eĤ1eĤ2 . . . eĤL

)
= det

(
1 + e−ĤL . . . e−Ĥ2e−Ĥ1

)
. (1.29)

The latter equality requires the use of algebras that account for the fermionic
anticommutation relations, known as Grassman algebras. For a rigorous deriva-
tion the reader can refer, for instance, to the book by Negele and Orland [9].
While the kinetic term T̂ already has a quadratic form, the interaction term Û
is quartic in fermionic operators. It is therefore necessary to transform it into a
quadratic form by performing a discrete Hubbard-Stratonovich transformation

e−∆τU(ni,↑− 1
2

)(ni,↓− 1
2

) = C
∑

hi,l=±1

eλhi,l(ni,↑−ni,↓), (1.30)

where cosh(λ) = e
∆τU

2 and C = 1
2
e−

∆τU
4 . The quartic term is consequently

decoupled into a quadratic form by the introduction of an auxiliary Ising-like
bosonic �eld {hi,l} known as the Hubbard-Stratonovich �eld, that couples to
the local magnetization at site i, (ni,↑ − ni,↓), at every time slice l. Coupling
the auxiliary �eld to the spin component Sz breaks the SU(2) invariance of
the hamiltonian, which is theoretically restored after sampling over the whole
con�guration space. Other choices of decomposition are also possible.

The partition function, now expressed in terms of quadratic forms only,
can be written as a sum over every possible Hubbard-Stratonovich �eld

Z = CLNTrh [det(M↑) det(M↓)] , (1.31)

where we introduced the trace Trh over the Ising �eld h = ±1 and the matrices

Mσ = 1 + e−Ke−Vσ(L) . . . e−Ke−Vσ(1), (1.32)

with the kinetic term reading in one dimension

K = −∆τ


µ t 0 t

t µ t . . . 0

0 t µ 0

. . . . . .

t 0 0 µ

 (1.33)
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and the interaction term

(Vσ(l))ij = −λσi,lδi,j. (1.34)

The Metropolis ratio of the Boltzmann weights that determines the accep-
tance probability of a Markov step from a con�guration i to a con�guration j
thus becomes the product of determinants

r(i→ j) =
det(M↑(j)) det(M↓(j))

det(M↑(i)) det(M↓(i))
. (1.35)

Since this quantity is not always positive, its absolute value is usually taken
as the Boltzmann weight. This might render the numerical convergence tough
because of a numerical sign problem, one of the main limitations of QMC
methods.

1.3.3 Limitations and tricks

1.3.3.1 The sign problem

In the Determinant QMC formalism we presented, there is a priori no reason
for the determinants involved in the de�nition of the partition function to be
positive, leading to the possibility of negative Boltzmann weights Pi with no
physical meaning. A solution consists in taking the absolute value of these
weights when computing the expectation value of an observable Ô:

〈Ô〉 =

∑
iOiPi∑
i Pi

=

∑
iOi|Pi|sgn(Pi)∑
i |Pi|sgn(Pi)

. (1.36)

The problem arises from the fact the average sign decreases exponentially
[10], thus leading to large �uctuations and a slow convergence of the measure-
ments ∑

i Pi∑
i |Pi|

∼ e−β∆F , (1.37)

where we introduced the di�erence in the free energy ∆F involved by taking
the absolute value of the determinants. Since the free energy is an extensive
quantity, both decreasing the temperature and increasing the size of the lat-
tice cluster worsen the problem, when one is usually precisely interested in
understanding the low-temperature properties of the system in the thermody-
namic limit. It can be shown that, among the multiple possible choices for
the Hubbard-Stratonovich transformation, none can systematically give the
square of a determinant and thus a positive weight [11].
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Fortunately, the sign problem is not a concern in several important cases.
One is the attractive Hubbard model U < 0, where the determinant for the two
spin species are equal and consequently their product is always positive. In
the repulsive case at half-�lling, both determinants always have the same sign,
thus also leading to well de�ned Boltzmann weights. Although every study
presented in this work is performed at half-�lling, and will be consequently
devoid of any sign problem, this important limitation of the method should be
kept in mind.

1.3.3.2 Boundary conditions

Because the DQMC algorithm computes properties of a �nite cluster, a choice
has to be made about the boundary conditions (BC). Even though any choice
leads to the same result in the thermodynamic limit, the choice of periodic
boundary conditions allows in general a better convergence. Periodic condi-
tions allow the choice of a phase factor at each boundary, which once again
does not a�ect the computed physical properties for an arbitrarily large cluster.

The real-space correlations computed by our algorithm can be equivalently
computed in the reciprocal momentum-space by way of a numerical Fourier
transform. All the information about spatial correlations will then be described
within the �rst Brillouin zone, which in the case of the square lattice belongs
to {kx, ky} ∈ [−π, π[2. The number of k-points sampled in this interval is equal
to the number N of sites of the cluster under consideration. Increasing the
size of the cluster thus improves the sampling of the Brillouin zone.

The e�ect of changing the phase factors at the boundaries is to shift the
position of the k-points in the Brillouin zone. By averaging independent simu-
lations performed under di�erent choices of boundary conditions, it is therefore
possible to increase the number of points sampled in the momentum-space at
a linear numerical cost, better than by increasing the size of the cluster (whose
numerical cost scales as N3) [12]. This is illustrated in Fig.1.3, in which the
k-points for a small N = 6 × 6 cluster are drawn for four di�erent choices of
boundary conditions.

1.4 Measurement of physical quantities

1.4.1 Static and dynamical measurements

A central quantity in statistical physics is the two-point correlator called
Green's function, which is the response function to an elementary excitation.
In DQMC, the Green's function can be easily extracted from the matrices used
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Figure 1.3: k-points in the �rst Brillouin zone of a N = 6 × 6 square lat-
tice. The four types of symbols specify the type of boundary condition (bx, by)

chosen, bα = 0 corresponding to periodic BC and bα = 1 to anti-periodic BC.
Averaging results over di�erent sets of BC allows a better sampling of the
momentum-space.

to perform the stochastic evolution:

Gσ
i,j = 〈ci,σc

†
jσ〉 =

(
M−1

σ

)
ij
. (1.38)

For instance, the kinetic energy can be computed straightforwardly from
the Green function:

〈Ĥ0〉 = 〈
∑
〈i,j〉,σ

ti,j(h
†
i,σhj,σ + h.c.)〉 =

∑
〈i,j〉,σ

ti,j(G
σ
i,j +Gσ

j,i). (1.39)

General physical properties are determined by way of correlation functions
of observables Ô

C(r) = 〈Ôi+rÔ
†
i 〉 − 〈Ôi+r〉〈Ô

†
i 〉, (1.40)

where 〈·〉 is the statistical average in the grand-canonical ensemble. Such cor-
relation functions provide information about how an elementary perturbation
at a site will a�ect the state of another site located at a distance r. Since in
our de�nition we subtracted the uncorrelated value, the correlation function
vanishes when the observable does not couple the distant sites.



1.4. Measurement of physical quantities 23

Evaluating from the Green function the expectation value of physical quan-
tities that involve more than two fermionic operators is made straightforward
by using Wick's theorem. The latter gives the rules how to write such expec-
tation values as a sum of products of two-point correlation functions. In the
case of correlation functions involving four fermionic operators, it writes

〈c†i,αcj,βc
†
k,γcl,δ〉 = δαβδγδ(δij −Gα

j,i)(δkl −Gα
l,k) + δαδδγβ(δil −Gα

l,i)G
α
j,k.

1.4.1.1 Time-dependent measurements

As we noted in a previous section, Quantum Monte Carlo methods account for
quantum �uctuations by considering an additional �imaginary time� dimension.
It is therefore possible to measure correlations at di�erent imaginary times, in
particular the Green function 〈c†i,σ(τ)cj,σ(0)〉. By applying the Wick theorem, it
is then possible to compute the imaginary time dependence of any observable.

The interest of computing time-dependent correlation functions stems from
the possibility of extracting from them information about the real-time cor-
relations (and consequently the energy spectrum), by means of the analytic

continuation we shall brie�y review below.

1.4.2 Long-range order

A physical system can be driven from a state to another upon changing a pa-
rameter such as pressure, chemical doping, external electric or magnetic �eld,
etc., this phenomenon being called a phase transition. Temperature can also
drive a thermal phase transition by increasing the thermal �uctuations in the
system. Two phases of matter can in general be distinguished by a quantity
that takes a �nite value in one phase and vanishes in the other, the order
parameter. For instance, an external magnetic �eld can align the disordered
moments in a paramagnet, leading to a ferromagnetic order that breaks the
rotational invariance of the moments. The order parameter is, in that case, the
magnetization of the system. Such a transition is due to an external �eld that
changes the symmetry of the hamiltonian and consequently drives an explicit
symmetry breaking. When a transition breaks the symmetry of the hamil-
tonian in the absence of an external �eld, a spontaneous symmetry breaking
occurs, an example being the order to disorder transition of a ferromagnet
upon increasing the temperature. Some phase transitions can also occur with
no symmetry breaking.

The order parameter that characterizes the transition is not always straight-
forward to determine. A way to characterize ordered phases is to look at the
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spatial Fourier transform of real-space correlation functions, known as struc-
ture factors. We will be mostly interested in magnetic order, which will be
determined through the magnetic structure factor S(k):

S(k) = 1
N
eik·RS(R),

S(R) = 1
3N

∑
α={x,y,z}

∑
r

〈σαr+Rσ
α
r 〉.

(1.41)

where we introduced the three spatial components of the spin operators:
σxr = c†r↑cr↓ + c†r↓cr↑
σyr = i(−c†r↑cr↓ + c†r↓cr↑)

σzr = c†r↑cr↑ − c
†
r↓cr↓.

(1.42)

Ferromagnetism is then seen as a peak in the magnetic structure factor at
the wave-vector k = 0, and antiferromagnetism as a peak at k = π. It is useful
to introduce a notation for the important particular point that characterizes
antiferromagnetism,

Saf ≡ S(π). (1.43)

Complex types of order will lead to more intricate structures. Inhomo-
geneities in the charge distribution can equivalently be determined by way of
a charge structure factor.

1.4.3 Analytic continuation

In the non-relativistic formalism the evolution of a quantum system described
by a wave function |Ψ〉 is determined by the Schrödinger equation

i~
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 . (1.44)

This leads to a time-dependent solution that reads in the basis of eigenstates
of the Hamiltonian {|n〉} as the linear sum of oscillating terms of frequency
En/~, where En is an eigenenergy and ~ the reduced Planck constant:

|Ψ(t)〉 = |Ψ0〉 e−itĤ/~ =
∑
n

〈n|Ψ0|n〉e−itEn/~, (1.45)

with |Ψ0〉 ≡ |Ψ(t = 0)〉. This evolution in time bears a formal -and deep- re-
semblance to the probability distribution of a statistical system at equilibrium.
(For the sake of simplicity we consider here the canonical ensemble case.)

〈Ô〉0 =
∑
n

1

Z
〈n|Ô|n〉e−βEn ; Z ≡ 1∑

n e
−βEn

, β ≡ kBT. (1.46)
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The similarity is evidenced by performing a Wick rotation it/~→ β, that
replaces the real time of the quantum mechanical system by the inverse tem-
perature of the equilibrium statistical ensemble. It makes clear why the some-
what arti�cial dimension added in Quantum Monte Carlo (or equivalently in
the Path-integral formulation) is called an imaginary time. But it also has the
foremost practical consequence of allowing the evaluation of spectral properties
of our statistical system.

In QMC, one can access correlation functions in imaginary time C(τ), for
example the time dependent Green's function1:

Gσ
i,j(τ) = 〈ci,σ(τ)c†jσ(0)〉 (1.47)

Under some mathematical assumptions such as the analyticity of the corre-
lation function, this function of a real variable admits a continuation over the
whole complex plane that is uniquely determined by its expression on the real
axis. This allows us to relate the correlation function to a �spectral function�
A(ω).

We want to compute the time-dependent correlation function of an operator
Ô, which is

C(τ) = 〈Ô(τ)Ô†(0) + Ô†(τ)Ô(0)〉 (1.48)

=
1

Z
Tr
[
e−βH

(
Ô(τ)Ô†(0) + Ô†(τ)Ô(0)

)]
=

1

Z

∑
n

〈n| e−βHeτHÔe−τHÔ† + e−βHeτHÔ†e−τHÔ |n〉

=
1

Z

∑
n,m

e−(β−τ)Ene−τEm
(
〈n| Ô |m〉 〈m| Ô† |n〉+ 〈n| Ô† |m〉 〈m| Ô |n〉

)
=

1

Z

∑
n,m

(
e−βEne−τ(Em−En) + e−βEme−τ(En−Em)

) ∣∣ 〈m| Ô† |n〉 ∣∣2,
where |n〉 and |m〉 are eigenstates of the Hamiltonian.

By performing a Fourier transform one obtains

C(ω) =

∫ β

0

dτe−iωτC(τ) (1.49)

=
1

Z

∑
n,m

e−βEn + e−βEm

ω + En − Em + i0+

∣∣〈m|Ô|n〉∣∣2.
1The static Green's function G(0) was de�ned in Equation (1.38).
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We then de�ne the spectral function

A(ω) = − 1

π
ImC(ω) (1.50)

=
1

Z

∑
n,m

(
e−βEn + e−βEm

) ∣∣〈m|Ô|n〉∣∣2δ(ω + En − Em)

=
1 + e−βω

Z

∑
n,m

e−βEn
∣∣〈m|Ô|n〉∣∣2δ(ω + En − Em),

which veri�es the sum rule ∫ +∞

−∞
dωA(ω) = 1, (1.51)

C(τ) =

∫ +∞

−∞
dωA(ω)

e−τω

1 + e−βω
. (1.52)

A(ω) is a function of energy and determines the available excitations cor-
responding to the real-time correlation function. When one disposes of statis-
tically noisy data, inverting the above relation is a mathematically ill-posed
problem and the simple possibility of �tting the integral of a trial function
A(ω) to C(τ) does not lead to satisfactory results. The Maximum Entropy
Method (MaxEnt) [6, 13] addresses that question by adding a constraint that
enforces the likelihood of the solution by taking into account both the good-
ness of �t χ2 and the information entropy S. The likelihood of a given spectral
function A is then given by

P [A] ∼ eαS−χ
2

, (1.53)

where α is a positive parameter that tunes the respective importance of min-
imizing the goodness of �t and maximizing the information entropy. In prac-
tice, one averages the spectra obtained with a given distribution of α [13]. This
method has been more recently extended into the more general stochastic ana-
lytic continuation approach. The latter consists of generating a solution �ther-
mally� averaged over di�erent trial spectral functions, the Boltzmann weight
of each function corresponding to its goodness of �t [14, 15].

1.4.4 Spectral functions

Spectral functions provide information about the excitations available to the
many-body system, thus bringing insight into the properties of the underlying
phases. Throughout this work we will be particularly interested in the single-
particle and the spin-spin spectral functions.
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1.4.4.1 Single-particle excitations

The single-particle spectral function A(ω,k) can be extracted from the time-
dependent Green function:

G(τ,k) =

∫ β

0

dωA(ω,k)
e−τω

1 + e−βω
. (1.54)

An important point is that this quantity is experimentally accessible by
means of angle-resolved photo-emission spectroscopy (ARPES). This technique
is based on photo-emission spectroscopy: when light falls on a sample, pho-
tons can be absorbed only at energies corresponding to the energy di�erence
between available excited and occupied states. The density of states of the
material considered can consequently be deduced from the absorption spec-
trum because of the law of conservation of energy. Re�nement of this method
allows to extract the momentum dependence of this absorption, by probing
the angular dependence of the absorption and considering the conservation of
total momentum.

1.4.4.2 Spin-wave excitations

Spin excitations can be probed experimentally by scattering neutrons, which
have a typical wavelength comparable to the interatomic distance in materi-
als and thus are di�racted [16]. Because they are neutral particles, neutrons
can penetrate into the sample and reveal di�erent properties of the bulk. In
particular, magnetic order can be accessed because the spin of the incident neu-
tron interacts with the magnetic degrees of freedom of the material. Inelastic
scattering allows to access the momentum dependence of these excitations,
providing the dynamic structure factor S(ω,k).

1.4.4.3 Finite-size e�ects on the DOS

Finite-size e�ects can lead to undesirable e�ects on the spectra obtained by
way of analytic continuation, in particular at U = 0 as illustrated in Fig.1.4
for the single-particle spectral function A(ω). Because of the high symmetry
of the lattice, the eigen-energies of the hamiltonian take only a few values that
are highly degenerate. The exact density of states for the �nite cluster thus
displays only a few peaks, di�ering dramatically from the smooth curve one
obtains in the thermodynamic limit. Because the analytic continuation tends
to prefer smooth solutions, it fails to reproduce the discrete spectrum. The
result consequently di�ers from both the �nite cluster exact solution and the
thermodynamic spectrum. By the same token, arti�cial small gaps due to the
discrete spectrum of the small cluster can appear in the extracted data.
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Figure 1.4: On a N = 8 × 8 cluster, symmetries lead to highly degenerate
spectra with only few peaks (continuous line). Analytic continuation of these
discrete spectra gives the correct peak at the Fermi energy but spurious features
are observed (dashed line). Exact diagonalization on a large clusterN = 32×32

in which the degeneracy is lifted by a small magnetic �eld gives, in comparison,
spectra close to the one expected in the thermodynamic limit.

The analytic continuation of clusters of di�erent sizes can help detect such
a problem. However, interactions between fermions tend to lift the degeneracy
of the spectrum and therefore su�er from �nite size e�ect in a much lesser
extent than the non-interacting case,

1.4.5 Electrical conductivity

Information about the transport properties can be obtained by computing
the electrical conductivity. We �rst introduce the current operator in the x̂
direction at site l

jx(l, τ) = eHτ

(
it
∑
σ

[
c†l+x̂,σcl,σ + c†l,σcl+x̂,σ

])
e−Hτ . (1.55)

In momentum space, the current-current correlation function can then be
de�ned as

Λxx(k, iωn) =
1

N

∑
l

∫ β

0

dτ〈jx(l, τ)jx(0, 0)〉eik·le−iωnτ (1.56)

where we introduced the Matsubara frequency ωn = 2πn
β
.
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The direct current (dc) conductivity we are interested in is de�ned from
the static component of the imaginary part of the analytic continuation of the
current-current correlation into real frequencies

σdc =
1

ω
ImΛxx(q = 0, ω). (1.57)

The �uctuation-dissipation theorem relates the current-current correlation
we obtain in DQMC to its real frequency dependence through a bosonic kernel:

Λxx(q, τ) =

∫ +∞

−∞

dω

π

e−τω

1− e−βω
ImΛxx(q, ω). (1.58)

Although it is, in principle, possible to invert numerically this Laplace
transform by way of the Maximum Entropy Method or a related technique,
it can be convenient to estimate the dc conductivity from its low frequency
dependency σdc ≈ 1

ω
ImΛxx(0, ω), this relation being valid at low temperature

[17, 18]. By integrating the previous relation one �nally obtains:

σdc =
β2

π
Λxx(0, τ =

β

2
). (1.59)

1.5 Assessment of the theoretical framework

The three studies we present below have some limitations. First, the Hub-
bard model limited to nearest-neighbor hopping and on-site interaction is a
minimal description of interacting fermions. In spite of the rich physics it
generates, the possibility of including a Hund coupling is complicated because
of the fermionic sign problem that appears when next-nearest-neighbor inter-
actions are included in the hamiltonian [19]. Key branches of the �eld will
thus escape our scope, like the itinerant ferromagnetism metal phases that
appear when Hund rules are accounted for. Even for this simple model, the
sign problem will also restrict us to the half-�lling case, while electron and
hole dopings are known to engender unconventional properties, like �high-Tc�
superconductivity. The cubic lattice is convenient since it has only one site
per unit cell, and more importantly for not being geometrically frustrated.
Biparticity favours ordered phases, and the �exotic� liquid states found in frus-
trated lattices (like the triangular and Kagome lattices) will not be accessible.
Another major peculiarity this lattice shows at half-�lling is the divergence of
the antiferromagnetic susceptibility owing to the nesting of the Fermi surface,
which leads to a magnetic Mott insulator at arbitrary small Coulomb repul-
sion. This scenario is obviously not a generic one, and comparison to di�erent
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geometries with �nite critical interaction would have been bene�cial. However,
these limitations should be balanced against the following considerations.

In contrast with spin models, the Hubbard hamiltonian takes into account
the charge �uctuations inherent to �nite interaction. This point is fundamental
to capture the interplay of transport and magnetism that underlies the physics
related to the �Kondo e�ect�, in particular the broad �eld of heavy-fermions
related physics. While Kondo-Heisenberg hamiltonians allow to work within a
sub-space of the Hubbard hamiltonian and therefore to simplify the complexity,
charge �uctuations can not be neglected for mildly interacting systems.

Few alternative techniques are available for the study of strongly correlated
electronic systems. Most of the exact results known for the Hubbard model
apply to the one-dimensional case, for which real-space density-matrix renor-
malization techniques are also essentially restricted. On the other extreme
stand mean �eld theories, which are exact in the limit of in�nite dimensions,
but are often unable to describe the phases that exist in low dimension. Be-
longing to this category is dynamical mean-�eld theory (DMFT) [20], which
is able to compute self-consistently the dynamical properties of the quantum
problem at the cost of neglecting spatial correlations in its single-site version.
Cluster extensions of DMFT o�er promising prospects, but the small size of
the clusters considered imposes a spatial cut-o� whose e�ects are cumbersome
to evaluate a priori.

On the other hand, Determinant QMC can, in principle, generate exact
results for �nite clusters containing hundreds of sites. Working in the grand-
canonical ensemble allows to study the temperature dependence of the phase
diagram and capture transitions driven by thermal �uctuations. Making the
choice of avoiding any sign problem allows to attain low temperatures and to
converge quickly. It is therefore possible to explore broad regions of the phase
space, and to reach clusters large enough so to perform �nite-size extrapolation.



Chapter 2

Correlations in a band insulator

2.1 Motivations

Band theory allows us to explain the sharp distinction of the electronic proper-
ties in materials between metals and insulators, depending on the �lling of the
band. When an electronic band is entirely �lled, a �nite energy is needed in
order to access the �rst available excited state, leading to insulating properties.
On the other hand, when the band is only partially �lled excitations are ac-
cessible at an arbitrary small energy cost, thus displaying metallic properties.
Materials being described within that framework o�er few opportunities for
information technology applications since their conductivities are essentially
not tunable. However, the intermediate case of semiconductors in which the
band gap is small has allowed the development of integrated electronics in
which logical properties can be obtained from interfaces of doped metal-oxyde
semiconductors. As the miniaturization of transistor integration following the
exponential �Moore's law� [21] approaches the limit of few atomic sizes where
quantum e�ects become predominant, new ways of controlling the electronic
properties of materials are needed in order to ensure further progress in the
�eld of information technology. In that context, it is natural to look for ma-
terials displaying phase transitions that could be controlled by simple exper-
imental parameters such as electric or magnetic �elds. In the last decades,
much attention has been focused on metal-insulator transitions driven by local
electron-electron interactions, in particular the Mott transition that occurs in
the Hubbard model as we previously discussed. However, other types of tran-
sitions have more recently been investigated and o�er promising prospects.

2.1.1 Anderson-Mott transition

A crystal is not necessarily made of identical sites and can therefore include
some degree of disorder. A typical realization of such a situation is when an
alloy contains some proportion of impurities or defects randomly distributed
in the crystal. This situation can be described by the Anderson model, a
tight-biding hamiltonian which allows the energy of the sites to vary locally
according to a given distribution of width ∆µ. The electronic properties of this
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model are based on the competition between the completely delocalized plane-
waves found in the perfect crystal and the tendency of electrons to localize at
the sites of lower energy, sometimes leading to an insulating transition called
the Anderson localization (or strong localization) [22]. Dimensionality is a
crucial factor in this model: in one dimension the localization is triggered as
soon randomness is allowed ∆µ 6= 0, while a metal-insulator transition has
been reported in three dimension by theoretical and experimental works.

In the two-dimensional case, the localization occurs only marginally. It
is thus relevant to ask whether an on-site repulsion could screen the disorder
and lead to a metallic state, a question that has been addressed early on by
Anderson [23] and has been the subject of considerable investigation since
then [24, 25, 26]. Quantum Monte Carlo studies have found signs of a such a
transition at �nite temperature [27, 28], although it has been argued a metallic
state can not survive at zero temperature in the ground-state [29, 30]. In
the limit of in�nite dimension, single-site DMFT has provided several results
that demonstrate a metal-insulator transition driven by the correlations at
intermediate interaction [31, 32, 33].

Even though we shall not consider the role of disorder in the present work,
it is important to keep in mind the variety of ways in which a non-interacting
insulating state can be achieved and the fact that the role of including corre-
lation in such models remains highly controversial.

2.1.2 Bilayer models

Another way to realize a band insulator is to consider a bilayer Hubbard model
in which the orbitals are connected through a local hopping term V . The e�ect
of the latter is to split the two original bands, which overlap at small V . In the
non-interacting limit, this model is consequently characterized by the opening
of a band gap at a critical Vc from which singlet dimers are formed across the
bands, the �nite energy needed to break these pairs being the width of the
gap.

Determinant QMC studies have yielded a phase diagram in which three
phases can be distinguished, namely a paramagnetic metal at small interaction,
and two insulating phases distinguished by the presence or absence of magnetic
order [34, 35]. In spite of displaying no intermediate metallicity in between
these two insulating phases, this model demonstrates that bilayer models can
lead to richer phase diagrams than the single metal-insulating transition known
in the single-band Hubbard model. The pair excitation spectra of a similar
model was recently explored within a DMFT study [36], in which the role
of double occupancy in the metallicity of the doped phases was underlined.



2.1. Motivations 33

Models including more than two orbitals were also shown to display complex
phase diagram. For example, a three-band Hubbard model, including spin-
orbit interaction and Hund's rules coupling, was found to have an intermediate
band insulating phase in between the Mott-metal transition [37].

2.1.3 The ionic Hubbard model

Figure 2.1: Phase diagram of the ionic Hubbard model as obtained from
DQMC simulations. At a given gap ∆, enhancing the interaction U �rst drives
a transition from a band insulator to a correlated metal, before the system goes
to a Mott insulating phase. The dashed line is the strong coupling limit (t = 0).
From [38].

Another possibility is to consider the e�ect of local interactions in a band
insulator. This case has been extensively studied in the framework of the Ionic
Hubbard Model [39], in which adjacent sites have a di�erence in chemical
potential ∆ due to crystal �eld splitting. In the non-interacting limit, this
model has a band gap ∆ owing to the energy cost when an electron hops
from one site to another. Interest in this model was �rst triggered by organic
compounds [40] that can be described in a minimal way by the one-dimensional
version of the IHM [41, 42, 43]:

ĤIHM = − t
∑
〈i,j〉,σ

(c†i,σcj,σ + c†j,σci,σ) (2.1)

+ U
∑
i

ni,↑ni,↓ +
∑
i,σ

((−1)i
∆

2
− µ)ni,σ.
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The two-dimensional version of this model has then been studied and led
to controversial results. Intermediate phases in between the band insulating
and the Mott insulating states were indeed found, but the nature of this phase
was claimed to be metallic by DMFT [44] and DQMC [38, 45], while a cluster
DMFT study found it to be insulating with bond order [46]. An experimental
illustration of the metal-insulator transition found in the 2D IHM was demon-
strated on the compound SrRu1−xTixO3 by photoemission spectroscopy [47].

2.2 A correlated band insulator

The models we have brie�y reviewed in the former section show us there are
multiple ways to approach the question of correlated insulators. In the last
example, the Ionic Hubbard model, a non-interacting insulating phase stems
from the ionicity of the system. Band insulating properties can alternatively
arise from electronic hybridization, as in materials like FeSi [48] or FeSb2 [49]
which display transport properties similar to Kondo insulators while they do
not belong to the 4f intermetallic compounds. A DMFT work proposed a de-
scription of these materials in terms of correlated covalent insulators described
by a Hubbard hamiltonian [50], in which the local orbitals are half �lled in
contrast to the ionic models, and found good agreement with experimental
data. Another subsequent DMFT paper by Sentef et al. on such a correlated
covalent band insulator found an intervening metallic phase in between the BI
and MI upon increasing the Coulomb repulsion [51].

Motivated by these results, we study in what follows the e�ect of correlation
in a covalent insulator similar to the one proposed by Sentef. Interestingly, the
non-interacting Hamiltonian has exactly the same dispersion relation as the
IHM, allowing us to pinpoint the origin of the di�erences in the phase diagrams
of both models.

2.2.1 Hamiltonian

The band structure of a non-interacting tight-binding hamiltonian is deter-
mined by its particular pattern of hopping terms. The two-dimensional hon-
eycomb and square lattices -in which each site is connected to three or four
nearest neighbors respectively- are textbook cases of the dramatic role played
by the number of links per site. The dispersion relation in the former is charac-
terized by the bonding and anti-bonding bands being connected at single points
with linear dispersion in their vicinity, while the latter shows in the half-�lled
case a divergence in the density of states at the Fermi level and a nesting of the
Fermi surface leading to an antiferromagnetic instability. Beyond these simple
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examples, it is possible to �engineer� a speci�c band structure in a particular
geometry by setting non-isotropic hoppings, or allowing connections between
non-nearest-neighbor sites.

-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5

-3
-2

-1
 0

 1
 2

 3 -3
-2

-1
 0

 1
 2

 3

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

E(kx,ky)

f(x,y)
-f(x,y)

kx

ky

E(kx,ky)

Figure 2.2: Non-interacting dispersion relation of the Hubbard bilayer with
opposite in-layer hopping signs. At half-�lling the band gap minimum ∆ = 2V

coincides with the square Fermi surface.

In principle many choices are possible in order to realize a band insulator.
We chose the following bilayer hamiltonian:

Ĥ = −
∑
〈jk〉,l,σ

tl (c
†
j,l,σck,l,σ + c†k,l,σcj,l,σ)− V

∑
j,σ

(c†j,1,σcj,2,σ + c†j,2,σcj,1,σ)

+ U
∑
j,l

(nj,l,↑ −
1

2
)(nj,l,↓ −

1

2
)−

∑
j,l,σ

µlnj,l,σ. (2.2)

Electrons are labelled by their coordinate at the site j of the layer l on
a cubic lattice. The chemical potential µ is set to zero so the system is at
half-�lling, while the on-site Coulomb interaction is chosen to be repulsive
U > 0. In-plane hopping have opposite signs, t1 = −t2 ≡ t, and t will
be taken as the unit of energy. The non-interacting dispersion relation reads
Eq = ±

√
ε2
q + V 2, where εq = −2t(cos(qx)+cos(qy)). It has a band gap at any

inter-plane hopping V > 0, and the gap reaches the minimum width 2V along
the Fermi surface parametrized in momentum-space by ky = ±π(1 − |kx|).
The bandwidth is a monotonically decreasing function of the perpendicular
hopping: W = (V 2 + 16t2)1/2 − V . In the decoupled case V = 0 each plane is
known to show a magnetic instablility due to the nesting of the Fermi surface
of the square lattice, leading to AF long-range order (LRO) at any U > 0.
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This system has been previously studied within the dynamical mean-�eld
theory (DMFT) formalism [20], although one should note that semi-circular
electronic bands were used. They found a transition from a band insulator
to a correlated insulator when increasing U , with a coexistence region at low
temperature. The signal for the transition was a discontinuity in the double
occupancy. A main result of that paper is the shrinking of the single-particle
gap upon increasing the on-site correlation when approaching the transition.
One of our motivations for studying this system was to �nd a possible metallic
phase around the insulator-insulator transition.

2.2.2 Preliminary phase diagram

The phase diagram is sketched qualitatively in Fig.2.3. In the in�nite-U limit
our system is indeed the bilayer Heisenberg model, which is known to display
antiferromagnetic order up to a critical interlayer hybridization Vc ≈ 1.59

beyond which singlet formation destroys magnetism [52, 53]. No magnetic
transition is thus expected beyond this value.
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Figure 2.3: Preliminary phase diagram in the V − U plane. The dotted line
shows the phase boundary we found by way of MFT. The BI/MI transition
obtained by DMFT at V = 0.5 is shown by the square symbol [51]. The
Heisenberg critical hybridization, Vc, above which the transition to an ordered
phase is prevented by singlet formation [53] is represented as a dashed line.

In order to draw a �rst boundary between the band insulating and Mott
insulating phases, we performed a mean �eld calculation. In that framework
the transition is characterized by the formation of local moments. The phase
boundary we obtained is shown as a dotted line; at V = 0.5 the transition
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is found to occur at a much weaker interaction than in DMFT. The Mott
transition was studied in DMFT only at the value V = 0.5, where the critical
interaction is U ≈ 5.5.

2.3 Magnetism

An important property that was not accessible in the previous single-site
DMFT work is magnetism. An onset of magnetic order is to be expected
since as the interaction is increased the underlying band structure becomes
less relevant and the model progresses toward the Heisenberg limit. However
as previously noted, this magnetic transition happens only below a critical
Vc ≈ 1.59 beyond which well-formed pairs prevent the onset of magnetic or-
der.
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Figure 2.4: Antiferromagnetic structure factor in the V − U plane, for a
N = 2 × 10 × 10 cluster at inverse temperature β = 30. The interaction Uc
from which magnetic order arises grows with the width of the gap 2V . Finite-
size e�ects smooth out the transition, hence the need to perform �nite-size
extrapolation in order to estimate where the thermodynamic transition takes
place.

The antiferromagnetic structure factor (see Eq.(1.43)) in the V −U plane is
represented in Fig.2.4. As the non-interacting band gap increases the critical
interaction needed to trigger the magnetic transition increases monotonically,
re�ecting the fact that the hybridization across the planes tends to destabilize
the tendency toward order. The importance of temperature should be noted:
while at V = 0 the system is made of two decoupled Hubbard planes and
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magnetic order should thus be expected at any nonzero interaction U > 0,
thermal �uctuations destroy this order and lead to a paramagnetic state at
small �nite U .

Going beyond these qualitative trends and determining the actual phase
boundary requires us to perform �nite-size scaling of the antiferromagnetic
structure factor. We �rst focus on the V = 0.5 value. As shown in Fig.2.5 the
transition can be located precisely and occurs around Uc ≈ 4.2, which should
be contrasted with the higher value U ≈ 5.5 found in DMFT; this discrepancy
can be explained by the fact that we take into account non-local correlations
that contribute to the transition.
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Figure 2.5: Main panel: Finite-size scaling of the AF structure factor at
V = 0.5 for several values of the interaction U and at β = 10. The dotted
lines are the polynomial �ts to the data, showing the transition occurs in
around Uc = 4.1. The inset shows the convergence at low temperature of four
characteristic values of U , for the cluster size N = 2× 12× 12.

The inset in Fig.2.5 shows the AF structure factor dependence on temper-
ature at a �xed size N = 2 × 12 × 12. While Saf (see Eq.(1.43)) shows no
sensitivity to temperature in the disordered phase, high temperature destroy
the magnetic order for points above the magnetic transition and the structure
factor converges only below a critical temperature. In that example the β = 10

data seem to overestimate slightly the ground-state value, although this is not
expected to shift signi�cantly the critical interaction we found for the transi-
tion. However, determining the precise value of the order parameter at a given
interaction would require to go to lower temperatures.

For larger V , the critical interaction needed for the onset of order grows
larger and �uctuations make numerical simulations cumbersome. This is illus-
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Figure 2.6: At V = 1.2 and β = 10 the system remains disordered up to U =

12, the maximum value of the interaction we could reach, although magnetism
seems to be at the point of appearing. The inset shows no di�erence in the
extrapolation is found upon slightly decreasing the temperature.

trated in Fig.2.6 for the case of V = 1.2. It shows that in spite of being larger
than at U = 10, the structure factor does not extrapolate to a �nite value
in the thermodynamic limit at U = 12, even though the Heisenberg limit is
known to be ordered. Upon further increasing U (Fig.2.7), the structure factor
seems not to grow signi�cantly anymore although large �uctuations make any
strong statement di�cult. Consequently, the magnetic boundary in our phase
diagram will be limited to moderate values of U , the question of its detailed
shape when approaching the Heisenberg limit being beyond the reach of our
algorithm.

2.4 Local moments

Now that we determined the magnetic transition boundary we turn to the
behavior of local moments m, which are related to the double occupancy d by
(and using the z-component of the spin operator σzj that was de�ned in Eq.
(1.42)):

m =
1

N

∑
j

〈(σzj )2〉 = 1− 2

N

∑
j

〈nj ↑nj ↓〉 = 1− 2d. (2.3)

Our interest was at �rst driven by the fact that DMFT characterizes the
transition by a discontinuity in double occupancy. Even though we found this
discontinuity to be an artifact, the derivative of double occupancy with respect
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Figure 2.7: Antiferromagnetic structure factor at V = 1.2 and β = 10 up to
U = 22 for small clusters. In comparison with the U = 12 extrapolation shown
in Fig.2.6, it seems unlikely we could capture any magnetic transition within
these parameters regime.

to the interaction is indeed a susceptibility and is then expected to characterize
the transition.

Fig.2.8a shows that upon increasing the interaction the local moments un-
dergo a monotonic increase from the uncorrelated value 1/2. For small values
of V an in�exion point is observed that can be better distinguished as a maxi-
mum in the derivative ∂m/∂U , as illustrated in Fig.2.8b. The position of these
maxima can be located rather precisely, and for instance at V = 0.5 it indeed
coincides within error bars with the critical interaction Uc ≈ 4.2.

At large hybridization, for example at V = 2.0, no maximum is found in the
derivative. This can be explained by the fact that we know from the Heisen-
berg model limit no magnetic transition will ever happen beyond Vc = 1.59,
so no phase transition is expected there. In order to capture where this max-
imum vanishes we show a close-up view in Fig.2.8c. Surprisingly, the critical
interaction at which the maximum occurs is reduced upon increasing the hy-
bridization in the range V = [1.0, 1.2], while no peak is visible for any U above
V ≈ 1.2. There is therefore a region of the phase diagram were the in�ex-
ion point of the moments does not match the magnetic transition anymore.
Although we veri�ed that the results have converged, it is numerically cum-
bersome to conclude whether the decoupling of the behavior of local moments
from the magnetic ordering is an actual transition or a crossover. This opens
the door to a possible intermediate featureless Mott insulating state in which
no symmetry would be broken.
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Figure 2.8: (a) Local moment m as a function of U for 8x8 layers at β = 15

(symbols). (b) �rst derivative of the local moment with respect to U , ∂m/∂U ,
shows a peak at the transition to the Mott insulating state. (c) A close up
view of (b) shows the peak is no longer present for any U above Vc = 1.2.

2.5 Spin correlations

The study of real space spin correlations brings further insight into the di�erent
regimes of the phase diagram. Fig. 2.9a shows the nearest-neighbor correlation
across the layers 〈σj1 · σj2〉 as a function of U (see Eq.1.42 for the de�nition of
the spin operator σ). The increase in absolute value of this correlation upon
increasing V is a well-known feature of bilayer models that characterizes sin-
glet bound-state formation leading to the destruction of magnetic order. Here
we see that increasing the interaction also enhances short-ranged correlation
(Fig. 2.9b). This can be interpreted as concomitant to the formation of local
moments, as a reduced proportion of double occupancies and vacancies favours
spin correlation. The evolution exhibits a kink for an interaction value that
corresponds to that found for the magnetic transition, as well as the in�exion
point in local moments. It is worth noting that within the magnetic phase the
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increase of correlation is slower than in the paramagnetic phase, the correla-
tion being even suppressed at intermediate V upon entering the Mott phase.
This peculiarity can be understood as the competition between AFLRO and
singlets.
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Figure 2.9: Nearest-neighbor real space spin-spin correlations (a) across the
layers and (b) within an individual plane. At small V < 1.2 the correlations
converge to �nite values characterizing the magnetically ordered phase, while
for large V = 2.0, the system is made of almost uncorrelated singlets.

The right panel Fig.2.9b presents the intra-plane real space nearest-neighbor
spin correlations. This quantity decreases very slightly upon increasing U until
the magnetic transition, where it sharply drops before saturating. At V = 2.0,
where no transition is expected the correlation experiences no such drop and
remains small at any U .

The comparison of the two panels gives us a hint of the discrepancy between
our calculations and the single site DMFT study: at small U the correlation
across the layers (left panel) grows faster than the in-plane correlation, indicat-
ing the di�erence in our study is more likely to be attributed to the inclusion
of inter-layer short range correlations than to the short-ranged magnetic order
within the planes.
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2.6 Energy gaps and spectral functions

We now present results on the energy spectra of the correlated insulator. The
single-particle gap ∆sp and the spin gap ∆S will be extracted by exponential
�ts of the time-dependent correlation functions corresponding to these excita-
tions, which clearly follows from the expression we obtained in Eq.(1.49). This
method is illustrated in Fig.2.10 for the case of the single-particle gap.
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Figure 2.10: We obtain the single-particle gap by �tting the exponential decay
of the time-dependent Green function. The latter is shown in the main panel
on a linear scale, and in the inset on a semi-log scale. The red line corresponds
to the �t that allows to extract the gap. Parameters are U = 4.0, V = 2.0 and
β = 10.

Band insulators are characterized by displaying a gap to all excitations. In
contrast, a Mott insulator at half �lling is gapped to charge excitations due
to the energy cost of double occupancy, but might have low-energy excitations
in other sectors. In particular, magnetic long-range order is expected to allow
long wavelength Goldstone modes with arbitrarily small energies in the ther-
modynamic limit. The behavior of gaps at the transition between a BI and
a MI is therefore expected to be non-trivial, and intervening metallic phases
were indeed previoulsy reported in both the IHM and the system we presently
study.

We plot in Fig. 2.11a the dependence of both the single-particle gap
and the spin gap upon increasing U , for three characteristic values of V ∈
{0.5, 1.0, 2.0}. These energy gaps were obtained by �tting the exponential
decrease of local correlation in imaginary time obtained through our DQMC
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Figure 2.11: Main panel: Gaps in the single particle spectral function and
the spin-spin correlation function are shown as functions of interaction U for
several values of interlayer hopping V . At weak U , the spin gap ∆S is pre-
cisely twice the single particle gap ∆sp, as expected in a Fermi liquid phase.
The smaller panels at right show the �nite size (top) and �nite temperature
(bottom) e�ects for the spin gap.

simulations. The gap was estimated to vanish when the data allowed no expo-
nential �tting and the correlation appeared to decrease as a power law, hinting
at low-energy excitations.

In striking contrast with DMFT, which �nds that the single-particle gap,
∆sp, shrinks in the band insulating phase upon increasing the interaction, we
�nd this gap to increase monotonically from its non-interacting value ∆0

sp = V .
More precisely, the gap remains roughly constant at low interaction U ≤ 2

where the system is still clearly in the band insulating regime, before it steadily
increases toward the Heisenberg limit 2∆sp = U . The evolution of the spin
excitation gap ∆S is opposite, the interaction suppressing the gap continuously
from the non-interacting value ∆0. While small Coulomb repulsion, U ≤ 2,
does not a�ect signi�cantly its value, a further increase of the interaction
monotonically suppresses the gap which �nally closes at a critical interaction
corresponding to the onset of magnetic order where spin density waves are
expected. At V = 2.0, dimers across the interface prevent the transition to an
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ordered phase so the spin gap should not vanish even in the in�nite-U limit.
The upper right panel (Fig. 2.11b) demonstrates that �nite size e�ects

are small when estimating the spin gap ∆S. However, to get a more precise
value for the gap would require a huge computational e�ort. The lower right
panel shows the dependence of the spin gap on decreasing temperature. In
spite of the di�culty of getting very precise values, the global behaviour gives
con�dence that the values we obtained at β = 20 are reliable to show that the
suppression of the gap is a feature of our model.
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spin spectral function. Results are computed on a N = 2 × 12 × 12 cluster
at β = 20. Lines in the top panels are the corresponding energy bands when
U = 0.

A deeper insight into the underlying low-energy physics in the Mott in-
sulating phase can be gained by looking at the spectral functions resolved
in momentum space. We show such functions in Fig. 2.12, where the color
scale represents the spectral weight, the vertical axis is the energy, while the
horizontal axis follows high symmetry lines of the �rst Brillouin zone.

Let us �rst focus on the case {V = 0.5, U = 6.0} shown in the left panels.
The upper left panel Fig. 2.12a shows the single-particle spectrum at small V ,
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at an interaction that ensures the Mott phase is fully attained. The black line
represents the non-interacting exact result, in which we recognize the minimum
gap ∆0 = 2V at the points belonging to the Fermi surface ky = ±π(1− |kx|).
In spite of being of the order of magnitude of the bandwidth, the interaction
mainly shifts the spectral functions as the gap becomes larger, so that no
signi�cant transfer of spectral weight is noticed between the two insulating
phases. The lower left panel shows the spin wave dispersion at the same point
of the phase diagram. The standard dispersion expected for an antiferromagnet
is retrieved, with the gap closing at the instability point (π, π).

A sharp contrast to this �rst example is o�ered by looking at another
point of the Mott phase, but this time in the region were no magnetic order
is possible and at larger interaction {V = 1.5, U = 10.0}. The single-particle
spectrum shown in the upper right panel displays �in addition to the already
stated broadening of the gap with respect to the non-interacting value� a strong
important �attening of the bands. This tendency can be accounted for by the
fact that the local interaction attenuates the peculiarity of the non-interacting
dispersion due to the hopping pattern. The spin wave dispersion (lower right
panel) also di�ers from the magnetic phase of the Mott insulator in that no
closing of the spin gap is anymore in the disordered region.

2.7 Conclusions

The results we presented above can be summarized in the phase diagram shown
in Fig.2.13. Finite-size extrapolation of the magnetic structure factor allowed
us to determine the boundary where antiferromagnetic long-range order sets in.
Although we were not able to establish this phase boundary above V = 1.0 be-
cause of the large critical interaction involved, the asymptotic behavior can be
deduced from the in�nite-U case where no long-range order can be achieved
beyond Vc ≈ 1.59. The evolution of local moments upon increasing the in-
teraction was shown to display an in�exion point we attributed to the Mott
transition. While at moderate V the in�exion point coincides with the mag-
netic transition, these two markers decouple from V = 1.0, thus leading to an
intermediate paramagnetic Mott insulator. Even though a further character-
ization of this intermediate phase was beyond the possibilities of this study,
the strong local antiferromagnetic coupling between the bands in that region
of the phase diagram hints at a Kondo insulating state. The single-particle gap
evolution unequivocally eliminated the possibility of an intermediate metallic
phase between the band insulating and the Mott insulating phases, underlining
the importance of spatial correlations in the dynamics of this model.
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Chapter 3

Finite bandwidth in a

heavy-fermion model

3.1 Introduction

The work presented in this chapter is related to the �eld of heavy-fermion
materials which represents an important part of condensed matter physics.
Although we are going to introduce some basic concepts that are essential
for the comprehension of the results we present, an extensive review of this
complex �eld falls clearly beyond the scope of this work. We therefore refer
the reader to more comprehensive works, like the early article by Fisk et al.

[54], the book by Hewson [55] on the Kondo problem, the review of results in
the limit of in�nite dimensions by Georges et al. [20], and the other references
given throughout the chapter.

3.1.1 Resistivity minimum

In most materials the electrical resistivity can be accounted for by the scatter-
ing of the conduction electrons by phonons, the vibrations of the underlying
ionic lattice. Because the phonon modes associated with these vibrations be-
come more accessible when thermal �uctuations are important, this scattering
process leads usually to a resistivity that decreases monotonically upon lower-
ing the temperature. However, in the early thirties, materials were discovered
displaying a resistivity minimum at �nite temperature [56, 57], associated with
the presence of magnetic impurities. The increase of resistivity at very low
temperature was not understood, hence calling for further development of the
theory.

The theoretical breakthrough came in 1964 from the work of Jun Kondo
[58], who by taking into account spin �ip scattering and computing higher order
corrections unveiled a logarithmic contribution to the resistivity. This calcula-
tion led to an impressive agreement with experimental data, as illustrated in
Fig. 3.1. The basic concept behind this phenomenon is the coupling of mag-
netic local moments to the conduction electrons through quantum tunneling,
resulting in singlet bound states and therefore an increase of the resistivity.
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Figure 3.1: In dilute AuFe alloys the resistivity increases at low temperature.
The comparison of experimental data and the theoretical expression derived
by Kondo leads to excellent agreement. From [58].

The energy scale below which the �free� magnetic moments will be screened
by the conduction electron is known as the Kondo temperature

TK ∼ We−
1

2ρJ , (3.1)

where W is the bandwidth of the conduction sea, ρ is the density of states at
the Fermi level and J the coupling between the impurities and the conduction
electrons.

3.1.2 Heavy-fermions

The coupling of local moments to conduction electrons attracted attention a
decade later following the discovery of Cerium based compounds (for instance
CeAl3) with unexpected lack of magnetic order, and displaying huge e�ective
masses at low temperature that are typically of the order of 100 times the free
electron mass [59]. Other intriguing properties are observed in these materials,
such as magnetism and unconventional superconductivity [54]. Theoretical
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insight into this problem was gained by studying models in which each unit
cell is coupled to a magnetic moment localized in the vicinity of the nuclei,
forming a dense array of Kondo-like impurities known as the Kondo lattice
[60]. The possibility for localized electrons to tunnel into the conducting band
creates a resonance in their density of states that leads to the rich physics
observed in these rare-earth or actinide materials.

As in the single impurity problem, the temperature plays an important role
in the phenomenology of heavy-fermion compounds. When the temperature is
larger than the Coulomb repulsion T > U , the thermal �uctuations dominate
the overall behaviour. As the temperature is decreased, the interaction will
prevent charge �uctuations and thus lead to the formation of well localized
moments, and, under certain conditions, to magnetic long-range order. Upon
cooling the system further below the Kondo temperature, the spin will tun-
nel to the conduction sea and generate an entangled state that screens the
local moments. This strong temperature dependence will be illustrated in a
following section by studying the periodic Anderson model (PAM).

An important framework for the understanding of heavy-fermion phenomenol-
ogy is the Kondo lattice model (KLM) [60], which describes a periodic array of
spins that interact with a conduction band through a Heisenberg interaction
J :

ĤK =
∑
kσ

εkc
†
kσckσ + J

∑
i

Si · si, (3.2)

where εk is the dispersion relation of the conduction band. This model can
be derived in the strong coupling limit from the PAM by mean of a Schrie�er-
Wol� transformation [61]. Quantum Monte Carlo studies of the KLM have
been performed in the last decade both in the absence [62] or presence [63]
of an external magnetic �eld. As was found by Doniach [60], a weak anti-
ferromagnetic interaction between the spins is mediated by the conduction
band. In the case of the square lattice, the nesting of the Fermi surface makes
the system unstable to antiferromagnetic excitations and long-range order is
therefore induced by this interaction. This indirect interaction is named af-
ter Ruderman-Kittel-Kasuya-Yosida (RKKY), and was �rst discussed in the
context of nuclear physics.

The model we will consider throughout this chapter is the following two-
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band fermionic Hubbard Hamiltonian:

Ĥ = −
∑
〈j,k〉lσ

tl (c
†
j l σck l σ + h.c.) (3.3)

− V
∑
j,σ

(c†j f σcj d σ + h.c.)

+
∑
j l

Ul(nj l ↑ −
1

2
)(njl↓ −

1

2
)− µ

∑
j l σ

nj l σ.

Equation (3.4) describes a two-dimensional square lattice with electronic
bands l = d and l = f . The coordinates (j, l) label the spatial site and the
band, respectively; σ ∈ {↑, ↓} denotes the spin of the electron. The �rst two
terms are respectively the intra-band and inter-band kinetic energies. The
nearest-neighbor hopping matrix element in the d-band will be chosen to be
the unit of energy in the remainder of this work, td = 1, while its f -band
counterpart, tf , will be allowed to vary. The inter-band hybridization, V ,
controls the singlet formation and will be another tunable parameter. The
on-site repulsion Ul is chosen to be constant within a band: the f -band will
include a moderate repulsive interaction, Uf > 0, while the d-band will be non-
interacting, Ud = 0. The chemical potential µ is set to zero, the system being
then at commensurate �lling for both bands d and f . This latter choice em-
phasizes Mott and antiferromagnetic physics, and also avoids any sign problem
in our DQMC simulations.

3.2 The Periodic Anderson Model

When the nearest-neighbor hopping in the f -band is chosen to be zero, tf = 0,
the hamiltonian in Eq. (3.4) describes the periodic Anderson model (PAM).
Even though the properties of this model are well known (see for instance [64]),
we will brie�y present, for pedagogical purpose, a few results we obtained at
a moderate interaction U = 4 for a small lattice N = 8× 8, in a broad range
of temperatures.

At V = 0, the d-orbital is a metal while the f -orbital is made of independent
electrons, insulating and not ordered. As we already observed in the bilayer
model studied in Chapter 2, the hybridization V between the orbitals favors the
formation of two-site singlets that are characterized by an antiferromagnetic
coupling. This tendency is observable in Fig. 3.2, in which the inter-band spin
correlation, c⊥ = 〈σxi,fσxi,d〉 1, is represented as a function of V for several inverse

1The spin operator σx was de�ned in Eq.1.42.
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temperatures β. While at high temperature singlet formation is impaired by
thermal �uctuations, the low temperature limit shows a rapid appearance of
an AF correlation that saturates at large V .
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Figure 3.2: The inter-band hopping V drives a phase transition in the PAM
from an antiferromagnetic ordered state to a singlet phase.

The magnetic properties of the PAM can be quanti�ed by looking at the
antiferromagnetic structure factor Saf that we de�ned in Eq.(1.43). Although
we will not perform an extrapolation to the thermodynamic limit, the consid-
eration of that small cluster is su�cient to capture the general tendencies of
the model. As we previously mentioned, the RKKY interaction is a weak cou-
pling between the magnetic moments mediated by the conduction electrons,
and favors AF order. Two phenomena will tend to destroy this tendency
toward magnetic order, namely thermal �uctuations and singlet formation.
Consequently, while the zero-temperature phase diagram predicts the mag-
netic phase to exist in the whole V = [0, Vc] region prior to the appearance of
singlets, the AF structure factor vanishes also in the small V limit where the
RKKY coupling JRKKY ∼ V 4/U2

fW is small (here W is the bandwidth). As a
result, the AF structure factor at �nite temperature is characterized by a peak
below Vc, that broadens toward small V as the temperature is decreased.

The role of temperature is made clearer by investigating the spectral func-
tions2 corresponding to single-particle excitations in the f -band, Af (ω). At
�rst, as the temperature is decreased, the Hubbard gap separating the bands
and corresponding to the cost of double occupancy appears. From β = 4, a
peak at the Fermi energy signals the Kondo resonance due to the coupling
of moments to the conduction band. Finally, as the temperature is further
lowered below the RKKY temperature, the Kondo peak gets split by a small

2Please refer to Eq.(1.54) for the de�nition of A(ω).
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gap due to antiferromagnetic order. The temperature at which this gap forms
is concomitant with the magnetic ordering that we previously deduced from
the peak in the AF structure factor.
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Figure 3.4: Density of states Af (ω) of interacting band in the PAM. As the
temperature is decreased, �ne structure becomes apparent: the initial gap in
between the broad Hubbard bands is followed by the onset of a Kondo reso-
nance at the Fermi level, which is eventually split as magnetic order emerges.
Parameters are V = 0.8, U = 4, and the lattice size is N = 10× 10.
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3.3 Finite f-orbital bandwidth

The PAM is a priori a richer model than its in�nite-Uf limit, the Kondo
lattice model, allowing, in particular, charge �uctuations in the correlated
band. However, the choice tf = 0 leads to a �at band, a peculiar case that is
not necessarily seen in real compounds. An important point to be considered
is that a non-zero hopping tf will allow antiferromagnetism to appear through
direct exchange. It is then natural to address the question of how this alternate
magnetic coupling will a�ect the tendency to order, which is already favored
in the PAM by the indirect RKKY coupling.

The hamiltonian we will consider further is the one given in Eq.(3.4). For
convenience, we introduce the ratio between the bandwidths α = tf/td. Several
numerical studies have been performed on this model with tf 6= 0 (sometimes
called �actinide hamiltonian�). To our knowledge, the �rst paper on it was
by Continentino et al. who computed the thermodynamic properties beyond
the mean-�eld level [67], but without discussing the speci�c role played by the
f -orbital bandwidth.

It was subsequently studied, within the single-site DMFT and the numerical
renormalization group (NRG) methods, by Shimizu et al. [68] who considered
the cases of both positive and negative α. As we shall discuss in the next
section, these choices lead to very distinct non-interacting limits: when α > 0

there is a metal-insulator transition at �nite hybridization V , while α < 0

has a band gap at any V . At half-�lling, they found that these features of
the density of states are not modi�ed in the interacting case, the widths of
the gaps being merely renormalized. As our results will show, this is not
always true when one accounts for the spatial correlations (or equivalently
the momentum dependence of the self-energy, in the DMFT language). In
another single-site DMFT study [69], de' Medici et al. found that, whenever
the interband hybridization is nonzero, V > 0, there is no longer a Mott
transition in the f -band at T = 0. At �nite-T , the �rst-order transition is still
present. Some important discrepancies with our framework should be noted,
making cumbersome a direct comparison with our results. First, the model
used in this paper has a nonzero critical interaction U c

f > 0; second, single-site
DMFT forbids any magnetism to be accounted for.

A few works have compared results from this model to experimental values.
For example, Sakai et al. included the e�ect of the crystal �eld and the spin-
orbit coupling, and were able to retrieve the Kondo temperature of Cerium-
based compounds [70]. The relative importance of the inter-band hybridization
V and the f -band hopping tf was also evaluated [71], estimating that V > tf
in several elements of the actinide series. Finally, interband interaction was



56 Chapter 3. Finite bandwidth in a heavy-fermion model

recently shown to engender a charge density wave (CDW) phase analogous to
the one �nd in several compounds [72].

3.3.1 Non-interacting Limit

In the non-interacting limit, Uf = 0, the regions with positive and negative
tf/td have quite distinct behavior. The former is a metal with two overlapping
bands, up to a critical inter-orbital hybridization above which it crosses into
a band insulator, while the latter is always a band insulator. Such behavior
is easily understood in terms of the dispersion and ensuing crossing of the
independent f and d bands.
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Figure 3.5: Non-interacting band structure of the Hamiltonian given in
Eq. (3.4), in the 1D case. It illustrates the distinct behavior of the two cases
when td and tf have same or opposite signs. In the former situation (black
curves), there are two overlapping bands as long as the interband hopping V
is not too large, and the half-�lled system is a metal up to a critical Vc. In the
latter case (red curves), a gap opens between the bands and the system is an
insulator at half-�lling for all V .

For simplicity, we de�ne x(k) = cos kx + cos ky. The two bands are then
given by

E±(k) = −(tf + td)x±
√

(td − tf )2x2 + V 2 (3.4)

As in our previous models, a particle-hole symmetry enforces half-�lling at
µ = 0, and the system is metallic only if the equation E±(k) = 0 is satis�ed
for some value of k. For this to happen, this equation must possess a real
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solution x(k) such that x2 < 4, that is{
tf/td > 0

2|V | <
√
W1W2

(3.5)

where W1 and W2 are the bandwidths of the two distinct layers. For the two
dimensional case, Eq. (3.4) implies that the metal-insulator transition happens
when |Vc| = 4

√
tf . The Fermi surface is given by the equation

± 2
√
tf td(cos kx + cos ky) = |V | (3.6)

There is a (π, π) nesting between the two branches of the Fermi surface. Con-
sequently, the metal is expected to be highly susceptible to the formation of
long-range magnetic order at T = 0 and for arbitrarily weak repulsion, as was
previously discussed for the 2D Hubbard model.

The non-interacting phase diagram is illustrated in the inset of Fig. 3.5,
while the main panel shows the dispersion relation, for one dimensional geome-
try, at two particular points. At {tf = 0.5, V = 0.2}, the hybridization is below
the transition Vc and the two bands overlap, leading to metallic properties. At
{tf = −0.5, V = 0.2}, the two intra-orbital hopping terms have opposite signs,
and consequently the bands are separated by a gap for an arbitrarily small
hybridization.

3.3.2 Mean �eld theory

The �nite-temperature statistical properties of this system will be computed
with two methodologies. The �rst is the QMC method we already presented in
Chapter 1, the second is mean �eld theory (MFT) that we shall brie�y describe
now.

The method consists of decoupling the on-site interaction

Un↑n↓ → U(n↑〈n↓〉+ 〈n↑〉n↓ − 〈n↑〉〈n↓〉), (3.7)

with mean-�eld ansatz 
〈n↑iαn

↓
iα〉 = 0

〈n↑iα〉+ 〈n↓iα〉 = 1

〈n↑iα〉 − 〈n
↓
iα〉 = 2mα.

(3.8)

By introducing the mean-�eld eigenvalues of a single layer

Ek± = ±
√
ε2
k + (Um)2, (3.9)
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we can conveniently express those of the bilayer as

λ = ±1

2

[
E2
k,d + E2

k,f + 2V 2 ±
√

(E2
k,d − E2

k,f )
2 + 4V 2E2

]1/2

(3.10)

where we omitted the ± subscript (since Ek± always enter as squares) and we
de�ned

E2 =

(∑
α

εk,α

)2

+

(∑
α

mαUα

)2

. (3.11)

It is easy to verify that when mfmd < 0 (antiferromagnetic order) the equa-
tion λ = 0 does not admit any real solution regardless of the value of k. This
implies that the Fermi surface is fully gapped and suggests that such an anti-
ferromagnetic solution is the correct mean �eld solution at moderate U values.
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Figure 3.6: Evolution of the local f moment, mf , with tf and V . Results are
at Uf = 4t, and were obtained by QMC (left panels) and MFT (right panels).
At βt = 4 (top panels), the moments are mostly formed and decreasing the
temperature to β = 24 has no signi�cant e�ect. mf is largest for small values
of these two kinetic terms, since this minimizes the quantum �uctuations. The
asymmetry with respect to the PAM limit, tf = 0, re�ects the non-interacting
metal-insulator boundary (green line).
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3.4 Magnetic properties

The key ingredient for magnetism is the formation of magnetic moments. We
recall that the local moment on the f -band, mf , is related to the double
occupancy D by:

m =
1

N

∑
j

〈(σzjf )2〉 = 1− 2

N

∑
j

〈n↑jfn
↓
jf〉 = 1− 2D. (3.12)

The evolution of mf as a function of the nearest-neighbor hopping tf and
of the hybridization V is presented in Fig. 3.6. The results obtained by both
MFT and QMC are shown for two temperatures, β = 4 and β = 24. A
�rst observation is that there is almost no di�erence when the temperature
is decreased, showing that at β = 4 the moments have already converged to
their ground-state value. A second striking feature is that MFT captures the
general behavior of moments, and little di�erence is seen with respect to the
QMC data. However, the transition is made arti�cially abrupt by the mean
�eld treatment, which also leads to the uncorrelated value mf = 1/2 at large
{tf , V } while the e�ect of correlation is still visible in the QMC results.

Local moments in the f -band are found to be fully formed when both tf
and V are small. Indeed, when the kinetic terms are much smaller than the
interaction, the f -orbital is almost a two-dimensional Heisenberg model with
localized spins. At �xed tf , moments are monotonically suppressed upon in-
creasing the hybridization that tends to create entangled singlet pairs. At
constant hybridization V , increasing |tf | amounts to diminish the e�ective re-
pulsion since the bandwidth is made larger, which consequently delocalizes the
electrons. This evolution of the moments reaches a maximum at small posi-
tive tf , and these maxima roughly follow the non-interacting metal-insulator
boundary. We shall see this asymmetry is also present in long-range magnetic
correlations.

We now move to the nearest-neighbor spin correlation in the f -band, 〈~σj f ·
~σj+1,f〉 3. The QMC results for these short-range correlations are plotted in
Fig. 3.7, showing three temperatures β = {4, 12, 36}. We �rst underline the
fact that at large tf and V , the absence of localized moments prevents any spin
correlation. Beyond this observation, the behavior of this correlation di�ers in
several ways from the evolution of the moments.

In the limit V = tf = 0, the localized spins are completely decoupled
and there is consequently no correlation between neighbors. On the constant
V = 0 line, increasing the bandwidth allows the spin to couple through a di-
rect exchange J ∼ t2f/Uf that favors antiferromagnetism, independently from

3The spin components were de�ned in Eq. (1.42).
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Figure 3.7: Near neighbor spin correlations in the f -band. The hopping term
tf provides an exchange interaction in the f -band, which leads to antiferro-
magnetic correlations. V also causes antiferromagnetic interactions, but by a
weaker RKKY coupling. There is signi�cant growth in the spin correlations
as β increases, even well after the local moments have saturated (Fig. 3.6).

the sign of tf . At large |tf |, the interaction becomes weak with respect to the
kinetic energy and the correlation is thus suppressed. At tf = 0, no direct
exchange is possible between the moments, and the antiferromagnetic correla-
tion if mediated by the conduction electrons. At low temperature, this indirect
RKKY exchange is at �rst enhanced by increasing the hybridization between
orbitals, but is eventually stopped when singlets form. The temperature de-
pendence is much larger than for moments, because the energy scales of the
exchange interactions are both smaller than the interaction Uf that prevents
double occupancy.

Beyond these nearest-neighbor correlations, it is interesting to track the
magnetic long-range correlations in the f -band. We de�ne

Sf =
1

3N ′

′∑
j,k

〈σzk fσzj f + 2σ−k fσ
+
j f 〉 (−1)|k−j|. (3.13)

This quantity is related to the antiferromagnetic structure factor, which was
de�ned in Eq. (1.43). However the prime symbols in the sum and in the num-
ber of sites N ′ indicate that we omitted contributions from local and nearest
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neighbor correlations in order to better single out the long range behaviour.
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Figure 3.8: The f -band long-range antiferromagnetic correlations shown in
the tf -V plane for di�erent inverse temperatures β. Because Sf probes spin
ordering at large distance, the convergence with increasing β is more gradual
than for the near-neighbor spin correlations. As β increases, the paramagnetic
region where V and tf are both small, and hence so too are the AF energy
scales, shrinks. As with the local moment Sf is peaked at small, positive tf .

The temperature dependence of the long-range magnetic correlations is
stronger than in the nearest-neighbor case. At β = 4, Sf is essentially zero
in the whole tf − V plane, and magnetic order is still not completely settled
at β = 24. Even though we did not �nely determined the magnetic boundary
by performing an extrapolation to the thermodynamic limit, the behavior of
the truncated structure factor on this small N = 8 × 8 cluster is su�cient to
capture its dominant features.

As for nearest-neighbor correlations, we can relate the vanishing of mag-
netism when tf or V are large to the suppression of local moments. The hy-
bridization V destroys AF order by forming singlets, while large |tf | delocalizes
the electrons and consequently also defeats magnetic order. The asymmetry
relative to tf = 0 is also noticeable here, leading to a stronger magnetic order
around tf = 0.2. The �hole� when tf and V are both small can be understood
from a strong coupling perspective. Decreasing the bandwidth weakens the di-
rect exchange between moments, while decreasing the hybridization suppresses
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the indirect exchange mediated by the d-band. Consequently, magnetic order
should be found for arbitrary small kinetic energies in the T = 0 limit only.

3.5 Spectral functions

As we have discussed in the beginning of this chapter, the spectrum of ex-
citations of the PAM at half-�lling displays complex features that re�ect the
interplay of antiferromagnetic order, the formation of a Mott insulator, and
the emergence of Kondo singlets. The former two e�ects suppress the density
of states at the Fermi level, giving rise to a gap. In the latter phenomenon,
the screening of local moments in the f -band is associated with a Kondo res-
onance (peak) at the Fermi level. The temperature a�ects these competing
possibilities. For example, a Kondo resonance might �rst form as T is lowered,
followed by a splitting of that resonance as AF order becomes established. In
addition to such correlation e�ects, the spectral function of our Hamiltonian
also exhibits the in�uence of the non-interacting band structure which can be
either gapped or metallic. In order to understand how the energy spectrum
of the PAM is modi�ed by a �nite bandwidth, we will present in what follows
results for the single-particle spectral function in the f -band, Af (ω)4.

In Fig. 3.9 is presented Af (ω) at a �high� temperature, β = 2, for which we
proved there is no magnetic order. Four values of the hopping tf are shown,
{−0.9,−0.2,+0.2,+0.9}, for each one of which the results are compared for
two values of the interaction Uf = {4.0, 8.0}. In green we plot the edges of
the non-interacting bands, de�ned by Max [E−(k)] and Min [E+(k)], which
delimit the band gap at U = 0. At large V , for both Uf = 4 and Uf = 8,
this non-interacting gap is not signi�cantly altered by the interaction. In the
V = 0 limit, the f -band is a simple 2D Hubbard model and a Mott gap is
expected at any non-zero repulsion because of the nesting of the Fermi surface
and the divergence of the non-interacting density of states (DOS). This Mott
gap is clearly visible in the |tf | = 0.2 panels, separating by the energetic cost of
double occupancy the two bands centered at −Uf/2 and +Uf/2. At �nite V , a
Kondo peak appears around ω = 0. This resonance is eventually destroyed at
larger V , when the systems goes to the paramagnetic singlet phase. Strikingly,
little di�erence is observed at small V between the tf ± 0.2 cases, in spite of
their di�erence in the non-interacting limit where one is metallic and the other
insulating. Since the interaction localizes the electrons in f -band, the screening
by the d-band is largely independent of the sign of the hopping tf .

The situation is clearly di�erent at tf ± 0.9. At Uf = 4, a peak at the

4Af (ω) was de�ned in Eq. (1.54).
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Fermi energy is visible all the way down to the decoupled limit V = 0, and the
lobes at −Uf/2 and +Uf/2 are barely distinguishable. This indicates that, at
Uf = 4, the temperature β = 2 is too high for the local moments to form and
the Mott gap to appear. This interpretation is supported by the fact that,
upon increasing the interaction up to Uf = 8, the Mott gap becomes visible.
The di�erences in the non-interacting limit between positive and negative tf
persist when the interaction is plugged in. At tf ± 0.9, a negative tf leads to a
band gap at any V , while a positive value keeps system metallic up to a critical
hybridization Vc ≈ 3.8. This observation can be made clearer by looking at
the low temperature spectra.

The upper panels in Fig.3.10 are the β = 24 counterpart of the previous
�gure, at Uf = 4. At tf = 0.2, the Kondo resonance is now split, concomitantly
with the establishment of long-range magnetic order. We already observed this
phenomenon in the PAM, and a small positive hopping in the f -band leaves
it qualitatively unchanged. At larger bandwith, for instance tf = 0.9, there is
a broader range where free electrons can screen local moments, leading to a
split resonance that survives up to V ≈ 3.8. When the hopping term is neg-
ative, the gap in the non-interacting density of states prevents the scattering
of conduction electrons into f -band.

The mean �eld results shown in the lower panels of Fig.3.10 show an overall
agreement with the QMC results. A notable di�erence is the gap at moderate
V , which in the case of MFT is not independent of the value of V , and is
larger than the gap extracted from QMC. This can be explained by the fact
that MFT can not access to the Kondo screening and thus captures only an
antiferromagnetic Mott insulator.

3.6 Conclusion

Starting from a standard model for heavy-fermion physics, the periodic An-
derson model, this part was devoted to study how a �nite bandwidth in the
interacting band modi�es the magnetic and spectral properties. After intro-
ducing a few basic notions of the �eld, we presented some results we obtained
for the PAM, underlining how tuning the temperature reveals the di�erent
energy scales of the model. We then reported several studies previously done
on similar hamiltonians, before discussing the results we obtained by way of
Determinant QMC and mean �eld theory (MFT). By allowing the sign of the
nearest neighbor hopping in the f -band, tf , to have the same or opposite as the
hopping in the non-interacting d-band, we started from a rich non-interacting
phase diagram. In the latter, a metal-insulator transition upon increasing the
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interband hybridization V exists only for positive tf , while the negative case
leads to a band gap at any V . The interacting phase diagram re�ected this
non-trivial starting point. In particular, it was shown that both local moments
and long-range antiferromagnetic correlations are maximized at small positive
tf , in correspondance with the U = 0 metal-insulator transition. Finally, the
single-particle spectral functions reveals several features that come on top of
the non-interacting band structure. While most properties are captured by a
mean �eld treatment, a Kondo resonance is found by DQMC at intermediate
temperature for both negative and positive tf . This resonance gets eventually
split at lower T , for positive tf only.
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Figure 3.9: The spectrum of the f -band at Uf = 4, 8 (left and right panels
respectively) as a function of interband hybridization V for inverse temperature
β = 2. Four values of f -band hopping tf are shown. The green lines correspond
to the edge of the non-interacting density of states, which delimit the band
gap. At tf = ±0.2, two bands are separated at small V by a Slater gap
of width Uf corresponding to the cost of double occupancy. At larger V , a
Kondo peak is visible at ω = 0 below a critical threshold Vc. The triangular
shaped regions at large hybridization correspond to the singlet formation that
prevents the Kondo resonance and leads to a gap that is well described by the
non-interacting dispersion relation.
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Figure 3.10: The left panels are the same as Fig. 3.9, except at much lower
temperature β = 24. The smearing of the band gaps is greatly reduced. In
addition, the Kondo resonance has been split by a gap associated with the
formation of AF order. The insulating character of the tf < 0 case for all V
is more apparent at this lower temperature. The right panels show the MFT
results for same parameters. These mean �eld results capture correctly most
of the spectral properties, except the narrow constant gap at intermediate V
when tf is positive.



Chapter 4

Metal-Mott insulator Interface

4.1 Introduction

In material science, surfaces are often known to bear physical properties that
di�er considerably from that of the bulk because of so-called structural recon-

struction. Since the speci�c arrangement of the atoms in a bulk crystal arises
from the minimization of the energy due to interactions between neighbor-
ing sites, it is natural to expect this structure to change at a surface where
the local environment is modi�ed and the coordination number is reduced.
Such modi�cations of the lattice structure can obviously alter the electronic
properties of the surface, a change in the inter-atomic distances resulting, for
instance, in a smaller overlap of orbitals and therefore in a di�erent hopping
matrix element. By analogy with its lattice counterpart, the term electronic

reconstruction was coined [73, 74] to describe the modi�cations of electronic
properties at surfaces in comparison with those of the bulk. It was for example
found that in the Ca1.9Sr0.1RuO4 compound, the Mott transition occurs at a
lower temperature at the surface due to the lattice distortion at the boundary
[75]. At interfaces, where materials with di�erent intrinsic properties are in
contact, the local environment is also modi�ed at the surfaces. The problem
can consequently become more complex than in the decoupled materials and
the interfacial phase diagram is a priori non-trivial.

We shall review below some recent progress done in the �eld of correlated
heterostructures, with particular emphasis on the metal-Mott insulator struc-
tures that resemble the one we studied numerically. For more complete surveys
of the �eld, the reader can refer to the following works [76, 77, 78, 79], and to
the additional references provided below.

Interfaces are at the core of integrated electronics, with metal oxide semi-
conductor �eld-e�ect transistors (MOSFETs) as main building blocks. The
miniaturization of these components is currently hitting the bottleneck of quan-
tum mechanics, in particular because of the direct tunneling of the electrons
through the thin SiO2 dielectric layers in the components. Although recent
achievements in semiconductor manufacturing -for example the integration of
materials displaying better dielectric properties [80]- have broadened the pos-
sibilities of �standard� microelectronics, these improvements will not allow to
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bypass the intrinsic limitations of the nanometer scale. Overcoming these di�-
culties is a major technological challenge that requires a deeper understanding
of the many-body properties of strongly correlated electronic systems as well
as the improvement of the technological ability to synthesize and control them.

The �eld of strongly correlated electronic systems o�ers a huge diversity of
quantum phases, whose transport and magnetic properties are expected to lead
to technological application. Phase transitions o�er the advantage of access-
ing phases with very di�erent physical properties within the same material by
tuning a simple parameter, for instance magnetic or electric �elds [81], the car-
rier densities or hydrostatic pressure. The last decades have seen considerable
advances in this �eld, eventually leading to mainstream applications.

The giant magnetoresistance (GMR) e�ect o�ers a striking example of how
fundamental magnetic properties of materials can �nd application in mass-
market technology. Discovered independently in 1988 by Fert [82] and Grün-
berg [83], the GMR takes advantage of the spin polarization shown by some
ferromagnets, namely in which the two spin species display di�erent densities
of states at the Fermi level. It was shown by these early works that electrical
conductivity in layered heterostructures (grown epitaxially or by simple sput-
tering) alternating such ferromagnets with nonmagnetic layers, shows strong
magnetic-�eld dependence. These structures work as �spin valves� that allow
to switch electric current by varying the applied magnetic �eld and have led
in 1997 to the release by IBM of the �rst hard drive disk using a GMR head.
More extensive reviews on �spintronics� can be found among the many works
that have been published in the �eld lately (for instance see [80, 84, 85]).

The growth of thin �lms has attained high precision with deposition tech-
niques such as pulsed laser deposition and molecular beam epitaxy (MBE).
The latter consists of sublimating elements that will eventually condense on a
substrate wa�er. This process can be monitored through re�ection high-energy
electron di�raction or other techniques [86] and leads to the fabrication of het-
erostructures made of layers whose thickness is controlled with great precision.
In addition, detailed stuctural properties such as the crystalline orientation or
the epitaxial strain can be chosen during the growth [87], leading to a great
number of accessible functional properties.

In order to illustrate the current possibilities of thin-�lm oxyde heterostruc-
tures, we shall brie�y review the case of LaTiO3/SrTiO3 and related junctions,
which have been under close scrutiny during the last decade. In the bulk limit,
SrTiO3 and LaTiO3 are both insulators. While in the former insulating prop-
erties arise from the band structure and is consequently a conventional band
insulator, the latter is a Mott insulator in which transport vanishes because
of the strong Coulomb repulsion between electrons. Ohtomo et al. [88] built
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heterostructures alternating thin �lms of these two materials by pulsed laser
deposition. This technique allowed them to design superlattices in which the
thickness of the �lms are controlled down to the unit cell scale (Fig.4.1). It
was later discovered that in the similar heterostructure, LaAlO3/SrTiO3, a
two-dimensional electron gas with high carrier mobility can be created by
electron-doping the interface, while its hole-doped counterpart is insulating
[89]. The conductivity of this 2D state can be tuned by applying a gate volt-
age that drives a metal-insulator transition [90], opening the door for possible
applications. Superconductivity was also discovered at that interface, with
an unexpected increase of the critical temperature by applying an external
magnetic �eld [91].

Figure 4.1: Annular dark �eld image of an heterostructure alternating layers
of LaTiO3 (bright) and SrTiO3. The numbers indicate the thickness of the
LaTiO3 layers, which is controlled down to the unit cell scale. The top panel
is a zoom on a sequence of 1× 5 layers. From [88].
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4.1.1 Theoretical methods

On the theoretical side several methods are in principle available, but each
has advantages and limitations. Among the most successful are techniques
related to the density functional theory such as the local density approximation
(LDA), which can make allowance for local Coulomb interaction in the so-called
LDA+U method [92]. The latter has led to results showing good agreement
with experiments [93]. Regarding model Hamiltonians such as the Hubbard
model, dynamical mean �eld theory (DMFT) can be applied to interfaces or
heterostructures involving a large number of atomic layers [94], while its cluster
extensions allow, to a certain extent, to take into account spatial correlations.

These spatial correlations are described better by way of Quantum Monte
Carlo techniques, but a major obstacle is the number of sites available to sim-
ulations. While the single band Hubbard model in two-dimensions has been
extensively studied by means of QMC methods, little has been done in the
�eld of heterostructures. Recent progress in both the numerical e�ciency of
algorithms and the computational power of workstations has made it possible
to deal with the case of multi-orbital 2D systems, such as the periodic An-
derson model. In principle, such a plane involving two electronic orbitals can
equivalently describe the coupling of two adjacent planes in which only one
orbital is taken into account. It is then tantalizing to go further and try to
understand the properties of thicker systems involving more than two atomic
planes. Even though the accessible geometries are restricted, by numerical
limitations, to a few layers, the perspectives o�ered by these models to under-
stand better the electronic properties at interfaces or other heterostructures
that are already accessible experimentally, make this �eld very exciting. Be-
cause theoretical models allow to explore systematically vast regions of the
phase diagrams, such studies could potentially lead to the design of thin �lms
with novel properties.

4.1.2 Metal-Mott Insulator Interface

The properties of the metal-semiconductor junction have been understood
since 1938 [95] in terms of a Schottky potential barrier that originates from the
di�erence between the Fermi energy and the valence band of the insulator, and
which have been massively applied in electronics for diode fabrication. Much
less is known about the interface of a metal with a strongly correlated Mott
insulator. This question was addressed for the one-dimensional case by Yone-
mitsu et al. in 2007 [96]. In this work, a strong suppression of the potential
barrier was observed when the band insulator is replaced by an organic Mott
insulator, and explained by way of a simple 1D Hubbard model. The same
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model was recently examined through density-matrix renormalization-group
(DMRG) calculations [97] in order to understand the transport properties
across the junction, motivated by potential applications of strongly correlated
materials to solar cells. This last study found the charge transfer at the in-
terface to be enhanced over the metal-band insulating case. Another DMRG
paper had previously unveiled the possibility of creating a two-dimensional
electron gas in the proximity of that interface [98].

This interface was subsequently studied in the three dimensional case in
terms of a Hubbard model on a cubic lattice at half-�lling. The single-site
DMFT analysis [99] by Helmes et al. has shown the appearance of a quasi-
particle peak at the Fermi level in the correlated side that propagates a few
unit-cells deep, opening the possibility for an insulator-metal transition driven
by the interfacial coupling. They, however, concluded this �Kondo proximity
e�ect� would be eventually defeated by magnetism, which they could not ac-
count for through their single-site technique. A spin-wave analysis of a similar
t−J Hamiltonian later found an induced magnetic order in the non-interacting
side, decaying exponentially from the junction with a correlation length of a
few unit cells [100]. Another peculiar feature was found in epitaxially grown
superlattices made up of thin layers of the paramagnetic metal CaRuO3 and
the antiferromagnet CaMnO3, were ferromagnetism appears [101]. Although
controversial, the explanation for this phenomenon was claimed to involve
double-exchange, and thus our simple Hubbard model is unlikely to capture
this property.

Transport properties at junctions between metals and strongly correlated
transition metal oxydes have also attracted much attention in the context of
solid-state memory applications, where a resistance switching could be con-
trolled by an electric �eld. This colossal electroresistance e�ect was exper-
imentally demonstrated for a broad class of materials [102, 103], and it was
also shown that its properties can be tuned by carrier doping [104]. In a recent
experiment on a Cu/CuO interface [105], Munakata and coworkers surmised
from magnetoresistance measurements showing a quenching of magnetic im-
purities that a magnetic ordering in the metallic copper side was plausible,
and could be explained by a RKKY magnetic interaction mediated by the
conduction band.

In the past few years, theoretical work has also investigated a related sys-
tem, namely a few lattice sizes thick Mott insulating barrier inserted in between
two semi-in�nite metallic leads. In 2007, a �rst inhomogeneous DMFT study
by Okamoto [106] showed that a paramagnetic Mott insulating barrier in the
strong coupling regime has current-voltage characteristics that resemble those
of the metal-semiconductor-metal heterostructures. Another DMFT work later



72 Chapter 4. Metal-Mott insulator Interface

found the appearance of a Fermi liquid phase in the correlated barrier at zero
temperature, but also showed this phase was fragile against perturbation, such
as disorder and voltage or thermal �uctuations [107], this fragility o�ering
numerous possibilities for applications. In-plane spatial correlations for this
model were recently considered in the framework of the Hartree-Fock method
[108]. This work showed that in the vicinity of the junction the gap closes in
the Mott phase, this e�ect being suppressed as the Coulomb repulsion U or
the thickness of the barrier are increased.

4.2 Metal-Mott insulator interface

In the previous section, we reviewed several works done on the Metal-Mott in-
sulator interface, their most striking feature being the diversity of the results
obtained. This is not a surprise, considering that the models and ranges of pa-
rameters studied vary considerably. Of similar importance are the peculiarities
of the di�erent methods employed, which in general involve intrinsic approxi-
mations that are known to generate irrelevant (or even deceptive) features.

Despite its own limitations, the Determinant QMC o�ers a complementary
insight into the �eld. It can in particular compute the exact thermodynamic
properties of the Hubbard model at �nite temperatures on �nite clusters. The
single fact that it often leads, for similar models, to di�erent conclusions than
DMFT calculations is valuable, since it allows a critical evaluation of the results
produced by both methods. Even though the particular system we will study
below does not necessarily bear every feature that should be accounted for in a
realistic model, the observation of non-trivial phase transitions in that simple
model o�ers the perspective of further developments.

4.2.1 Hamiltonian

The interface we consider is described by the following Hamiltonian:

Ĥ = −
∑
〈ij〉,l,σ

tl (c
†
ilσcjlσ + h.c.)−

∑
i,〈ll′〉,σ

tll′(c
†
ilσcil′σ + h.c.) (4.1)

−
∑
i,l,σ

µlnilσ +
∑
i,l

Ul (nil↑ −
1

2
)(nil↓ −

1

2
).

This equation describes, in the grand-canonical formalism, electrons of spin
σ ∈ {↑, ↓} on a cubic lattice whose coordinates are labelled by indeces (i, l)

that indicate a site on the layer l with in-plane coordinates i. The layers on the
metal side will be labelled with negative integers l ∈ {−1,−2, . . . } while the
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correlated layers will bear a positive label l ∈ {+1,+2, . . . }. The intra-plane
hoppings tl are chosen to be homogeneously equal to 1 and will be taken as
the unit of energy through this chapter. The interlayer hybridizations between
sites belonging to adjacent layers tll′ will be chosen to be equal to 1, with the
exception of the interface where we de�ne t−1,+1 = V , which will be the main
tunable parameter we will consider. The local Coulomb interaction is zero on
the metallic side Ul<0 = 0 and positive on the correlated side Ul>0 > 0. Finally,
the chemical potential will be homogeneously set to zero µl = 0, putting the
system at half-�lling and avoiding any numerical sign problem in this work.
Unless otherwise mentioned, the case of two non-interacting layers coupled to
two interacting ones will be considered. For the sake of clarity, a sketch of the
geometry is drawn in Fig.4.2.

Figure 4.2: Schematic representation of the systems we consider. Nearest-
neighbor hoppings are equal to 1 everywhere but across the interface where it
is labelled V . Layers with negative indices l = −1,−2, . . . , are non-interacting
and thus metallic at V = 0. A non-zero repulsive interaction Ul > 0 is set in
the layers with positive indices l = +1,+2, . . . . This side is therefore insulating
and antiferromagnetically ordered at V = 0.

4.3 Spin correlations and singlet formation

In order to understand the major trends in that interface we start by examining
the nearest-neighbor spin correlator between layers l and l′ (we recall the spin
operator σx was de�ned in Eq.(1.42)):

c⊥(l, l′) = 〈σxi,lσxi,l′〉, (4.2)

shown in Fig.4.3. Starting from the trivial V = 0 case where the two sides
are not correlated, the layers right at the interface (l, l′) = (−1, 1) acquire an
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Figure 4.3: Interlayer correlators c⊥(l, l′) as a function of the interface hopping
V . As V is increased, the correlator c⊥(−1, 1) drops, signalling the formation
of an interfacial state decoupled from the �bulk�. Each layer is 10 × 10, half
�lled and at β = 10.

antiferromagnetic coupling as V is increased. As pairs form, this correlation
converges to a value that characterizes the singlet state formed between each
pair of sites across the interface. This singlet formation goes along with the
decoupling of the outer layers: the spin correlation with the adjacent interfacial
layer starts from a non-zero value at V = 0, this value being higher on the
correlated side because of its antiferromagnetic order. As V is increased and
singlets are formed, the spin correlation vanishes on both sides. This leads us
to the picture, at large V , of a two-layer strongly coupled interface that does
not �see� the bulk anymore.
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Figure 4.4: Spin correlation between sites across the interface c⊥(−1, 1) for
di�erent values of the interaction U . The spin correlation at large V depends
on U , which suppresses double occupancy.
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We draw in Fig.4.4 the spin correlations between sites across the interface
for di�erent values of the interaction U . It shows the striking feature that
singlet formation does not strongly depend on the interaction, the antiferro-
magnetic correlation converging to its strong coupling value around V = 4.
It is important to note that the singlet pairs that are formed in the large-V
limit di�er by their amount of double occupancy (or equivalently by the local
moment formation), which is dependent on the strength of the interaction on
the correlated side. When U is large, the antiferromagnetic coupling is thus
larger because local moments are enhanced.
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Figure 4.5: In-plane spin correlations as a function of V . In the outer metallic
layer l = −2 correlations are not a�ected by the evolution of the interface, while
in the outer interacting layer l = 2 correlations at �rst drop along with the
interfacial layer l = 1 before decoupling. At large V both layers at the interface
have vanishing in-plane correlation, signalling the dimers are decoupled from
one another.

This scenario is con�rmed by examining the near-neighbor spin correlator
cx(l) = 〈σxi,lσxi+1,l〉 within each layer l (Fig.4.5). When V = 0, the sites in
the metal are only slightly antiferromagnetically coupled, which maximizes
the kinetic energy since no hopping is possible between two neighbor electrons
of the same species because of the Pauli principle. On the other side, the
Mott insulator has a much larger antiferromagnetic correlation as expected in
an ordered phase. Surprisingly, the spin correlations in both antiferromagnet
layers at �rst drop upon increasing V . Right at the interface the in-plane
correlation eventually becomes zero, signalling that in the strong coupling
limit the singlets at the interface are independent of each other. Interestingly,
the outer correlated plane experiences non-monotonic evolution in which, after
�rst decreasing, it recovers its short-range antiferromagnetic correlation. The
outer metal plane is not signi�cantly a�ected by the tuning of the interfacial
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hybridization.
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Figure 4.6: V -dependence of local moments, ml =
∑

i〈(σzil)2〉/N , on each
layer, when two metallic layers are coupled to two correlated ones. As dimers
form at the interface, moments in the outer interacting layer increase due to
the decoupling from the interface.

These observations are supported by the evolution undergone by the local
moments (Fig.4.6). The layers at the interface are driven to a common value
characteristic of the singlet pairs they form, the behavior of the outer Mott
plane is non-monotonic with moments being at �rst suppressed before recover-
ing, while electrons in the outer metallic plane remain essentially non-localized.

4.4 Suppression of magnetic order

We just saw how the short range correlations are modi�ed upon tuning the hy-
bridization across the interface. The next question we address is what happens
to the long-range order that exists in the Mott phase prior to connecting it to
the metal side. The antiferromagnetic structure factor (AFSF) was de�ned as
Saf in Eq.(1.43), and characterizes the magnetic order. The dependence of Saf

on V is plotted in Fig.4.7 for the case of a relatively large lattice (N = 14×14).
While the layers in the metal side l < 0 remain clearly disordered (not need-
ing any �nite-size scaling), the AFSF in the correlated side drops abruptely
in both layers as soon as V is increased. After reaching a minimum around
V ≈ 1.5 the outer correlated layer l = 2 recovers a high signal as V gets
larger. Concurrently, the interfacial correlated layer l = 1 remains disordered
as singlet pairs destroy moments, thus preventing direct exchange.

As usual it is necessary to perform a �nite-size scaling in order to determine
whether the structure factor converges in the thermodynamic limit to a �nite
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2 of the correlated
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in the thermodynamic limit which vanishes for intermediate V and is recovered
for large V . The inset shows the inverse temperature dependence for a 10×10

layer. Saf
2 reaches its ground state value at β = 10.

order parameter. This extrapolation for the outer correlated layer l = 2 is
shown in the main panel of Fig.4.8. This analysis con�rms the actual vanishing
of magnetic order at V = 2.0, as well as its resurgence in the large coupling
limit. The inset of Fig.4.8 shows the convergence of the AF structure factor
upon decreasing the temperature, validating the choice of β = 10 for this study.

We also investigated whether this non-monotonic magnetic behavior of the
outer Mott plane is found for other choices of the on-site repulsion Ul>0 in the
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Figure 4.9: The behavior of the AF structure factor in the outer correlated
layer Saf2 as a function of V depends on U , for 2 + 2-layers systems. From
U & 6, the magnetic order does not vanish at intermediate V although it is
somewhat suppressed. Each plane is 10× 10 and half-�lled with β = 10.

range U ∈ [2t, 6t]. As shown in Fig.4.9, this phenomenon is observed on a
rather broad range. At weak interaction, thermal �uctuations make the AF
structure factor small, including at small V , even though we know magnetic
order is to be expected at any U > 0 because of the nesting of the Fermi
surface. As U is increased, the range in which suppression of magnetic order
occurs gets smaller. Although performing �nite-size extrapolation was beyond
the possibilities of this study, there seems to be no complete vanishing of order
from U ≈ 6 but, instead, a mere suppression of the order parameter. Since
a derivation of one-band Hubbard models for Cu-O cuprate planes estimated
the local Coulomb repulsion to be of the order of the bandwidth W ≈ 8t [109],
the suppression of magnetism should be looked for in weaker Mott insulators,
like organic compounds.

4.5 Spectral functions

The previous �ndings indicated the existence, at intermediate coupling, of a
phase in which the whole system is disordered, including the planes that are
not directly in contact with the interface. This phase is an intermediate state
before the interface is driven into strongly correlated dimers that decouple
from the outer layers. To characterize better the di�erent phases, we now
investigate the spectral functions Al(ω) in each plane (Fig.4.10) for three values
of V corresponding to each regime. The de�nition of the spectral function can
be found in Eq.(1.54).

The outer correlated layer (Fig.4.10a) is initially gapped, as expected from
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Figure 4.10: (a) Spectral function A2(ω) in correlated layer l = 2. The
Slater gap present at small V due to AF order vanishes at intermediate V and
reappears at larger V . (b) In correlated layer l = 1, A1(ω) resembles A2(ω)

but unlike l = 2 the large V behavior is a broader gap associated with the
singlet energy scale. In both non-interacting layers A−1(ω) (c) and A−2(ω) (d)
a gap opens as V increases. At large V , layer −2 recovers metallic properties
while the singlet gap is visible in layer −1.

a Mott insulator. The two external peaks correspond to the Mott gap whose
width corresponds to the energy cost of double occupancy U = 4. This gap is
narrowed due to antiferromagnetic order to a so-called Slater gap. At inter-
mediate V = 2.0, the plane remains insulating but the gap is smaller. Finally
at strong coupling the initial gap is recovered as the plane decouples from the
interface. In the interfacial correlated layer (Fig.4.10b) the evolution is at �rst
similar: the Slater gap shrinks upon increasing V as the system becomes disor-
dered. However, at strong coupling singlet formation leads to a large gap that
corresponds to the amount of energy needed to break the singlet pairs E ≈ V .

We turn now to the spectral properties on the metallic side. In the non-
interacting two-dimensional case a Van Hove singularity is present at the Fermi
level. Here at V = 0.2 a dip in the density of states foreshadows the appearance
of a gap in the intermediate phase. At strong coupling the singlet gap is
perfectly visible. The outer non-interacting plane shows roughly the same
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behavior at small and medium coupling, while a peak at the Fermi level at V =

6.0 illustrates the decoupling from the interface and the recovery of metallic
properties.

4.6 dc Conductivity

Since the dc conductivity, which was de�ned in Eq.(1.59), is experimentally
measured within a whole sample, the in-plane conductivity in a monolayer
of an heterostructure is not likely to be accessible. The total conductivity
will involve the sum of all intra-layer and inter-layer contributions. However,
accessing the in-layer conductivity is relevant in order to understand accurately
the underlying microscopic transport properties.

The in-plane dc conductivities in each layer of the (2 + 2)-system are pre-
sented in Fig. 4.11, as a function of the interface hybridization V . These
measurements were performed at several temperatures in order to check qual-
itatively the convergence in the low-temperature limit: when the conductivity
increases upon lowering the temperature one expects a metallic ground-state,
while if the conductivity decreases the ground-state should be insulating.

Let us �rst consider the conductivity in the non-interacting layer located
right at the interface (Fig.4.11c). When the coupling to the interacting side
is small (V = 0.2) the conductivity increases upon lowering the temperature
from β = 8 to β = 16, signalling the metallicity of the layer. As the interface
coupling is increased the conductivity drops down to small values, and now
decreases with the temperature, thus clearly signalling an insulating state at
V = 1.0. This insulating transition is concomitant with the magnetic transi-
tion we previously described. Interestingly, as the coupling at the interface is
further enhanced the conductivity rises slightly and seems to tend to a small
but �nite value at low temperature. As the singlet gap opens around V = 4.0

the conductivity eventually goes to zero, since moving a particle in that regime
requires a �nite energy in order to break a dimer.

The outer non-interacting layer (Fig.4.11d) shows a similar drop in the
conductivity as the interface hybridization is increased, the layer being driven
from metallic to insulating. However, the intermediate small �nite conductivity
in the V = 2.0 vicinity is not observed, the conductivity decreases along with
the temperature signalling the layer is insulating. As the singlet gap opens,
the outer layer decouples from the interface and becomes conducting again.
The values of the conductivity are signi�cantly larger in that latter regime
than at small V , which can be explained by the high density of carriers in the
two-dimensional case because of the Van Hove singularity.
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Fewer features are observed on the correlated side. The outer layer (Fig.4.11a)
remains always insulating, the slight increase at V = 4.0 being likely a spurious
artefact. At the interface (Fig.4.11b), the conductivity seems nonetheless to
converge to a non-zero value in the range V ≈ [1.5, 3.5] as in the adjacent non-
interacting layer, before entering in the gapped singlet regime. Even though a
more careful analysis would be required to enable any strong statement on the
nature of these phases, a disordered state made of strongly coupled dimers and
displaying a small �nite conductivity seems reminiscent of the large e�ective
masses found in similar models describing heavy-fermion behaviour. It would
be particularly interesting to study the temperature scaling of the resistivity,
which is known to be linear over several decades of energy in these systems
[110].
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Figure 4.11: In-plane conductivities in the 2 + 2-layer case as functions of
V , at several inverse temperature β values: (a) The outer interacting layer
σ+2 is always insulating, while in (b) the interacting layer at the interface the
conductivity σ+1 seems, in the intermediate regime, to converge to a �nite value
in the low-T limit. Panel (c) shows the conductivity σ−1 in the metallic layer
l = −1. At intermediate V is small but non-zero, but vanishes at V ≥ 4t due
to dimer formation. (d) The in-plane conductivity σ−2. This noninteracting
layer becomes insulating for intermediate hybridization, t ≤ V . 3t and then
recovers when the pairs are fully formed and pinned at the interface.
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Figure 4.12: (a) In-plane structure factors Saf
l as functions of V for a system

of four correlated layers coupled to two metallic ones. At intermediate V
antiferromagnetic order is suppressed in every correlated layer. At large V the
order recovers in every correlated layer but the one at the interface. (b) Finite-
size scaling of the in-plane structure factors Saf

l for a system of six correlated
layers coupled to two metallic ones, at V = 2t. A systematic reduction of
spin correlations is evident as the metallic interface is approached from the
correlated side. Long range magnetic order is completely destroyed in the
correlated layer at the junction.

The model we presented so far is four atomic layers thick. Although we
addressed the question of the �nite-size e�ects in the xy-plane and believe
to have demonstrated that this is under control, the possibility of exploring
accurately the penetration of the phenomena we described into the bulk of the
model material is well beyond our reach. Nevertheless, we have been able to
measure static properties for systems made of up to six Mott insulating layers,
while keeping the metal two-layers thin. The latter choice was driven by the
observation that no major penetration was seen even in the second metallic
layer, and consequently we believe the expansion of the metal side would not
a�ect signi�cantly the system.
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Fig.4.12 represents the evolution of the AF structure when V is increased;
we �rst focus on the Mott side. The layer right at the interface undergoes an
evolution similar to the one depicted in the thin case: the AF signal drops
until reaching a small value that excludes the possibility of long-range mag-
netic order. One might argue the convergence toward this limit is slower than
in the case with only two Mott layers, but this statement would require an
extrapolation to the thermodynamic limit. More interesting is the point that
the decrease of the structure factor in the layer adjacent to the interfacial one
is much reduced in comparison with the thinner case. The �nite-size extrapo-
lation presented in Fig.4.12 demonstrates that at V = 2.0 the order parameter
is indeed suppressed at the interface but never vanishes, while magnetic order
is restored upon entering the bulk.

No sign of enhanced order is observed in the metallic side; this is non-
trivial since the additional interacting layers protect now the magnetism in
the layer next to the interface: one could have instead envisaged, for instance,
a consequent ordering in the metal. It is also interesting to note that in �outer�
magnetic layers the AF structure factor takes a larger value than in �inner�
layers. This is due to the fact magnetic correlations are enhanced at surface
in comparison to the bulk, as it has previously shown experimentally [111].

4.8 Summary

In this chapter, we presented results obtained by determinant QMC simula-
tions for a metal-Mott insulator interface model. Attention was mostly given
to the case of two single non-interacting layers coupled to two Mott insulating
layers and, among the large number of parameters of the problem, we mostly
focused on the role of the hybridization V between sites across the interface
(see Fig.4.13).

Two distinct phase transitions were found to occur upon increasing V .
Starting from the decoupled system V = 0, in which the sides are respectively
a paramagnetic metal and insulating antiferromagnet, increasing the interfa-
cial coupling causes the magnetic order to vanish on the correlated side. This
loss of magnetism is accompanied by a drop in the conductivity of the metallic
side, leading to an intermediate state in which the whole thin interface is in
a non-magnetic insulating state (Fig.4.14). It is particularly interesting that
such a transition can be driven, by only tuning the interfacial coupling, into
layers that are not directly located at the junction. The nature of this inter-
mediate state is also intriguing, and di�ers strikingly from other theoretical
predictions that forecasted instead an antiferromagnetic ordering in the metal
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Figure 4.13: Sketch of the decoupled system at V � 1.

[100] and the appearance of a quasi-particle peak in the correlated material
[99]. A further characterization of this phase could be achieved by performing
di�erent measurements (for example dimer-dimer correlations), or by exam-
ining the e�ect of doping which is expected to lead to heavy-fermion physics.
Checking the behaviour of di�erent geometries, like the honeycomb lattice,
would also allow to understand to which extent this phenomenology is owed
to the peculiarities of the cubic lattice.

Figure 4.14: At V ≈ 1, the four layers are disordered and insulating, despite
the important di�erence of local moment formation between both sides.

When the hybridization V is further increased, pairs of adjacent sites at the
interface form singlet dimers that are essentially decoupled one from another
(Fig.4.15). While this singlet formation was to be expected, the simultaneous
decoupling of the outer layers from the interface, accompanied by the recover-
ing of their initial properties, is a non-trivial e�ect.

The suppression of the magnetism in the outer correlated layer was shown
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Figure 4.15: When the interlayer coupling at the interface V is large, dimers
are former and lead to the decoupling of the interface from the exterior layers,
the latter recovering their initial properties (respectively an uncorrelated metal
and a magnetic insulator).

to occur within a relatively broad range of on-site repulsion, but that increasing
this interaction eventually leads to a simple suppression of the antiferromag-
netic order parameter instead of its vanishing. We �nally considered the case
of a thicker Mott insulating side by studying up to eight correlated layers cou-
pled to two metallic one. The additional layers were observed to protect the
magnetism in the vicinity of the interface, leading also to a suppression of the
magnetism instead of its vanishing.



Conclusion

The focus of this work was to explore the properties of electrons in systems
whose geometry consists of coupled layers. The motivation for studying such
geometries arises from two �elds. First, to describe the properties of two-
dimensional systems in which more than a single electronic band is taken into
account. Second, to understand the electronic reconstruction that happens
when two complex materials are coupled at an interface. In that context,
our approach consisted of studying numerically di�erent systems based on the
Hubbard model, a milestone in theoretical condensed matter physics, that had
success in capturing fundamental behavior of some phase transitions found
in strongly correlated materials, such as metal-insulator transitions driven by
electron-electron interaction. The numerical method we use, the Determinant
Quantum Monte Carlo (DQMC), allows to explore accurately this model in
�nite-size clusters. In spite of its limitations, mostly due to the so-called
numerical sign problem, the possibility of accounting for spatial correlations
was shown in Chapter 2 to be crucial, and o�ers a remarkable advantage of
DQMC over other methods used in this �eld. The �nite-temperature version
we employ allows to describe the e�ect of thermal �uctuations in the phase
diagram, providing a deeper insight into the physics of these systems as was
illustrated in Chapter 3.

A simple example of a multi-band structure is a band insulator, whose
Fermi energy lies in the �nite gap that splits the valence and the conduction
bands. The geometry we studied in Chapter 2 is a model of a correlated
band insulator, in which the non-interacting gap can be tuned by a simple pa-
rameter. An electronic interaction, namely an homogeneous on-site Coulomb
repulsion, is the other parameter whose e�ect we chose to explore. This model
had recently attracted interest and had been claimed to display a shrinking
of the single-particle gap upon increasing the electronic interaction. Such be-
havior is highly non-trivial, since in the textbook example of the Mott transi-
tion, the interaction is known to control the inverse transition by driving the
non-interacting metal into an insulating state. However, the recent discovery
of an intermediate metallic phase in a similar system with an identical non-
interacting dispersion relation, the ionic Hubbard model (IHM), opened the
door to this possibility. In spite of these results, our analysis showed unambigu-
ously that the consideration of spatial correlations does not lead to a narrowing
of the single-particle gap, but rather to its monotonic growth. However, the
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spin gap was observed to shrink upon increasing the interaction, and eventu-
ally to close at the transition as magnetic order sets in. The evolution of the
local moments, in which an in�exion point characterizes the Mott transition,
was shown to decouple from the magnetic transition where long-range order
settles. The possibility for an intermediate paramagnetic correlated phase was
thus open, even though its characterization was beyond the scope of our study.
The absence of an intermediate metallic phase is a striking di�erence with the
IHM that is due to the spatial homogeneity of our model, in which the band
gap stems from singlet formation.

Multi-band models are also known to be essential in order to capture the
subtle physics found in heavy-fermion compounds. These materials are char-
acterized by the presence of localized magnetic moments whose coupling to
the conduction electrons gives rise to a Kondo resonance, leading to intriguing
properties such as huge e�ective electronic masses. The standard framework
used to account for these phenomena is the periodic Anderson model (PAM),
in which a periodic array of interacting localized electrons is coupled to a
non-interacting conduction band. In Chapter 3, we extended this model by
systematically exploring the e�ect of a �nite nearest-neighbor hopping tf in
the interacting band, thus interpolating the problem of the PAM with the case
of a bilayer Hubbard model. By allowing tf to have an opposite sign to the
conduction band hopping, the non-interacting limit of this model was also di-
rectly connected to the band insulator we presented in Chapter 2. A complex
phase diagram was unveiled, showing in particular how the direct exchange al-
lowed by the �nite bandwidth leads to maximize local and long-range magnetic
properties at tf ≈ 0.2. The analysis of the spectral functions allowed to reveal
how the di�erent energy scales compete in the model, displaying in particular
a splitting of the Kondo resonance when antiferromagnetic order settles.

The bilayer model we studied in Chapter 3 can equivalently be thought of
as the junction between a correlated material and a metal, providing a direct
connection to the problem of oxide heterostructures. Thus, it was tantalizing
to address the question of how the evolution of the interface upon tuning the
coupling will a�ect the properties deeper into the materials. In addition, simi-
lar realizations of metal-Mott insulator interfaces have been studied during the
past years, unveiling non-trivial and controversial properties. Chapter 4 was
consequently devoted to the study of this interface, �xing tf = 1 for simplic-
ity and focusing on the e�ect of the interfacial hybridization V . In contrast
with previous work, we found that the magnetic order in the correlated side
vanishes upon increasing V , while no order appears in the metal. This e�ect
is observed to occur not only in the layer located at the interface, the adjacent
layer also becomes paramagnetic. Upon further increasing V , singlet pairs form



89

across the interface as the outer correlated layer recovers its antiferromagnetic
long-range order. The intermediate paramagnetic phase is also characterized
by the appearance of a single-particle gap in the metallic side, leading to an
intermediate homogeneous phase displaying no magnetic order and insulating
properties. The role of the interaction strength on the correlated side was
also investigated, and showed that a strong interaction leads to a suppression
of magnetism instead of its vanishing. The case of a thicker correlated side
was �nally considered, showing that the additional correlated layers protect
by proximity e�ect the magnetism in the vicinity of the interface.

These three studies demonstrate the broad variety of layered systems ac-
cessible through the Determinant Quantum Monte Carlo formalism. In spite
of certain constraints such as the di�culty to investigate doped phases, the
�exibility of this algorithm provides access to geometries that are beyond the
reach of most analytical and numerical techniques. The ability to explore
broad regions of the phase diagram of a given system allows to capture the
qualitative behavior of, in principle, any observable of interest. Obviously,
studying extensive sets of parameters puts limits to the size of the cluster, but
performing �nite size scaling for a few distinctive points allows to control the
accuracy of the calculations.

Given the perspectives o�ered by the �eld of heterostructures, a number of
extensions of our work are worth considering. For instance, the interface we
studied had open boundary conditions in the direction orthogonal to the lay-
ers: by setting periodic boundary conditions, the problem of heterostructures
made of periodic arrangement of layers could be addressed. The question of
the transport properties across the layers could concurrently be studied. Syn-
thesis and characterization of a wide variety of such structures are presently
performed, and the choice of the geometry and parameters could aim at un-
derstanding speci�c experiments.

We restricted the geometries of our systems to the cubic lattice. Although
con�gurations involving geometric frustration are not accessible to DQMC be-
cause of the numerical sign problem, considering other bipartite geometries
could be interesting. In particular, the bidimensional honeycomb lattice of-
fers the advantage of needing a �nite critical interaction for the Mott metal-
insulator transition. The role of the peculiarities of the square lattice could
thus be determined. Additionaly, the honeycomb lattice bears its own char-
acteristics, such as a linear dispersion in the vicinity of the Fermi energy that
results in �Dirac cones�. The case of coupled graphene planes is an example of
the problems that could be explored with this lattice.





Conclusion en français

�Et cependant, notre prédiction s'est

complètement réalisée, le bâton à

physique a fait des merveilles [...].�

� Alfred Jarry [1]

Ce travail a porté sur l'étude des propriétés d'électrons dans des systèmes
composés de couches minces couplées. L'intérêt pour de telles géométries
provient de deux domaines. D'une part, la description des propriétés de sys-
tèmes bidimensionnels dans lesquels plusieurs bandes électroniques sont prises
en compte. Deuxièmement, comprendre les �reconstructions� électroniques
qui ont lieu lorsque deux matériaux complexes sont en contact à une inter-
face. Dans ce contexte, notre approche a été d'étudier numériquement dif-
férents systèmes basés sur le modèle de Hubbard, un important modèle en
théorie de la matière condensée qui a permis de saisir le mécanisme fondamen-
tal de certaines transitions de phase des matériaux fortement corrélés, comme
la transition métal-isolant engendrée par des interactions électron-électron. La
méthode numérique que nous employons, le Monte Carlo Quantique du Déter-
minant (DQMC), permet d'explorer avec précision ce modèle pour des clusters
de taille �nie. Malgré certaines restrictions, dues pour la plupart au �problème
du signe�, nous avons montré que la possibilité de rendre compte des corrélation
spatiales est cruciale, et o�re un avantage remarquable par rapport à d'autres
méthodes utilisées dans ce domaine. La version à température �nie que nous
utilisons permet la description l'e�et des �uctuations thermiques dans le dia-
gramme de phase, apportant une meilleure compréhension de la physique de
ces systèmes comme nous l'avons illustré au Chapitre 3.

Un exemple simple de structure de bande électronique est l'isolant de
bande, dans lequel l'énergie de Fermi se situe dans le gap d'énergie séparant les
bandes de valence et de conduction. gap à interaction nulle peut être ajusté au
moyen d'un simple paramètre. Une interaction électronique, plus précisément
une répulsion Coulombienne sur site, est l'autre paramètre dont nous avons
étudié l'e�et. Ce modèle a été récemment étudié, et il a été en particulier
a�rmé que la largeur du gap pouvait être réduite en augmentant la valeur
de l'interaction électronique. Un tel scénario est hautement non-trivial, les
interactions étant connue dans l'exemple classique de la transition de Mott
pour au contraire rendre isolant un système métallique. Cependant, la décou-
verte récente d'une phase conductrice intermédiaire dans un système similaire
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et ayant une relation de dispersion identique, le modèle ionique de Hubbard
(IHM), avait ouvert la porte à une telle eventualité. Malgré ces résultats,
notre analyse a montré sans ambiguïté que la prise en compte des corrélations
spatiales ne conduit pas à un rétrécissement du gap, ce dernier croissant de
façon monotone. Cependant, nous avons montré que le gap de spin se réduit
lorsque l'interaction est augmentée, pour �nalement se fermer lorsque la tran-
sition magnétique a lieu. L'évolution du moment magnétique, au cours de
laquelle un point d'in�exion signale la transition de Mott, se découple de la
transition magnétique caractérisée par un ordre à longue distance. La possi-
bilité d'une phase intermédiaire paramagnétique est donc envisageable, bien
que sa caractérisation ait été hors de la portée de notre étude. L'absence
d'une phase métallique intermédiaire constitue une di�érence frappante par
rapport au IHM due à l'homogénéité spatiale de notre modèle, pour lequel le
gap d'énergie provient de la formation de singulets entre les bandes.

Les modèles comprenant plusieurs bandes électroniques sont également im-
portants pour saisir la physique des composés à �fermions lourds�. Ces matéri-
aux sont caractérisés par la présence de moments magnétiques locaux dont
le couplage avec la bande de conduction entraîne une �résonance de Kondo�,
conduisant à des propriétés telles que des masses e�ectives considérables. Le
cadre habituel pour rendre compte de ces phénomènes est le modèle périodique
de Anderson (PAM), dans lequel un réseau périodique d'électrons localisés par
une interaction est couplé à une bande conductrice sans interaction. Dans
le Chapitre 3, nous avons étendu ce modèle en explorant systématiquement
l'e�et d'un terme de saut entre plus proches voisins tf dans la bande avec in-
teraction, ce qui correspond à interpoler le PAM avec un modèle de Hubbard
à deux bandes. En permettant à tf de prendre un signe opposé à celui de la
bande de conduction, la limite sans interaction de ce modèle a été directement
reliée au problème de l'isolant de bande présenté au Chapitre 2. Nos résul-
tats ont conduit à un diagramme de phase complexe, montrant comment le
couplage direct permet de maximiser les corrélations magnétiques locales et
à longue distance aux alentours de tf ≈ 0.2. L'étude des fonctions spectrales
révèle les di�érentes échelles d'énergie en jeu dans le modèle, avec en partic-
ulier l'apparition d'un gap divisant la résonance de Kondo lié à l'établissement
de l'ordre antiferromagnétique.

Le modèle bicouche que nous avons étudié au Chapitre 3 peut décrire de
façon équivalente la jonction entre un matériau corrélé et un métal, fournissant
une connection directe avec le problème des hétérostructures d'oxydes. Il était
donc tentant de poser la question de comment l'évolution d'une telle inter-
face a�ecte les propriétés à l'intérieur des matériaux. De plus, des réalisations
d'interfaces métal-isolant de Mott ont été étudiées au cours des dernières an-
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nées, laissant entrevoir des propriétés non-triviales et controversées. Nous
avons donc étudié cette interface dans le Chapitre 4, en choisissant pour sim-
pli�er tf = 1 et en se concentrant sur le rôle du couplage à l'interface V . En
contradiction avec certains travaux réalisés précédemment, nous avons observé
que l'ordre magnétique du côté corrélé est détruit lorsque V est augmenté, tan-
dis que le côté métallique reste désordonné. Cet e�et est visible non seulement
dans la couche située directement à l'interface, mais également dans la couche
corrélée adjacente qui devient elle aussi paramagnétique. Lorsque la valeur de
V est encore augmentée, des singulets sont formés à travers l'interface tandis
que la couche corrélée extérieure retrouve ses propriétés antiferromagnétiques.
L'état paramagnétique intermédiaire est également caractérisé par l'apparition
d'un gap d'énergie dans le côté métallique, résultant en une phase intermédi-
aire homogène qui est isolant et dépourvue d'ordre magnétique. Le rôle de la
valeur de l'interaction a également été étudié, montrant qu'une forte interac-
tion conduit à une diminution de l'ordre magnétique au lieu de sa disparition.
Le cas d'une épaisseur plus importante du côté corrélé a �nalement été con-
sidéré, montrant que les couches corrélées supplémentaires protègent par un
�e�et de proximité� le magnétisme au voisinage de l'interface.

Ces trois études démontrent la grande diversité de systèmes en couches
accessible par la méthode du DQMC. Malgré certaines contraintes, en partic-
ulier la di�culté à explorer les phases dopées, la �exibilité de cet algorithme
permet d'accéder à des géometries hors d'atteinte de la plupart des méthodes
analytiques et numériques existantes. La possibilité d'explorer de vastes région
du diagramme de phase d'un système donné permet de saisir le comportement
qualitatif de n'importe quelle observable d'intérêt. Naturellement, l'étude de
nombreux jeux de paramètres implique de limiter la taille des clusters con-
sidérés, mais la possibilité d'extrapoler dans la limite thermodynamique pour
certains points particuliers permet de contrôler la validité de ces résultats.

Au regard des possibilités o�ertes par le domaines des hétérostructures, dif-
férentes extensions de ce travail sont à considérer. A titre d'exemple, l'interface
que nous avons étudié avait des conditions aux bords ouvertes dans la direc-
tion perpendiculaire aux couches minces. En imposant des conditions péri-
odiques, le problème d'hétérostuctures constituées d'arrangements périodiques
de couches pourrait être attaqué. La question des propriétés de transport à
travers ces couches pourrait être étudiée en parallèle. La synthèse et la car-
actérisation d'une grande variété de telles structures étant actuellement en
cours, le choix d'une géométrie et de paramètres pourrait viser à comprendre
certaines expériences.

Nous avons restreint les géométries des systèmes considérés au cas du
réseau cubique. Bien que les con�gurations qui impliquent une frustration
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géométrique ne soient pas accessibles par la méthode du DQMC à cause du
problème du signe, l'étude d'autres réseaux bipartites serait intéressante. En
particulier, le réseau �en nid d'abeille� o�re l'avantage d'une transition de Mott
à interaction �nie. Le rôle joué par les spéci�cités du réseau carré pourraient
par conséquent être déterminées. De plus, le réseau �en nid d'abeille� possède
ses propres particularités, comme une relation de dispersion linéaire au voisi-
nage de la surface de Fermi qui entraîne l'existence de �cônes de Dirac�. Le cas
de plans de graphène couplés pourrait par exemple être étudié.
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Abstract: The properties of electrons in two dimensions (2D) raise fun-
damental questions that have been extensively explored by condensed matter
theory. Extending standard frameworks such as the 2D Hubbard model by
accounting for more than one electronic band o�ers the opportunity to access
more complex phenomena, such as the interplay between transport and mag-
netism found in heavy-fermions materials. Such models are directly connected
to the problem of coupled layers in complex materials known as heterostruc-
tures, which have been widely studied and synthesized in recent years, and
are expected to lead to important applications. In that context, we study nu-
merically several systems, by mean of the Determinant Quantum Monte Carlo
Method (DQMC). We �rst analyze the e�ect of electronic correlation in a band
insulator, showing in particular the absence of an intermediate metallic phase.
A second system consists of two coupled bands that modelize a heavy fermion
model, in which the role of the bandwidth of the correlated band is systemati-
cally investigated. Finally, we consider the case of a metal-insulator interface,
unveiling an intriguing intermediate phase as the interfacial coupling is tuned.

Keywords: Condensed matter physics, Strongly correlated systems, Hub-

bard model, Heterostructures, Quantum Monte Carlo, Phase transitions.

Résumé: Les propriétés d'électrons en deux dimensions (2D) soulèvent
des questions fondamentales qui ont été largement explorées au moyen des
techniques théoriques de la matière condensée. L'extension de modèles clas-
siques tel le modèle de Hubbard en 2D, en incluant par exemple plusieurs
bandes électroniques, o�re la possibilité d'accéder à des phénomèmes plus
complexes, comme l'interaction du transport électronique et du magnétisme
observé dans les composés de fermions lourds. Ces modèles sont en lien di-
rect avec la question de couches minces couplées, les hétérostructures, qui sont
depuis peu l'objet d'intenses recherches et o�rent la possibilité d'intéressantes
applications. Dans ce contexte, nous étudions numériquement di�érents sys-
tèmes au moyen de la méthode du Monte Carlo Quantique du Déterminant.
Tout d'abord, l'e�et de la corrélation électronique dans un isolant de bande est
évaluée, montrant en particulier l'absence d'une phase métallique intermédi-
aire. Un deuxième système est composé de deux bandes électroniques couplées,
dans lequel l'e�et de la largeur de bande de la partie corrélée est exploré de
façon systématique. Finalement, nous étudions une interface métal-isolant, qui
présente une phase intermédiaire surprenante lorsque le couplage à l'interface
est ajusté.

Keywords: Physique de la matière condensée, Systèmes fortement cor-

rélés, Modèle de Hubbard, Hétérostructures, Monte Carlo Quantique, Transi-

tions de phases.
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