Eric Bodden

Laurie Hendren

The present thesis has been done in the frame of my PhD contract with Université de Rennes 1, in cooperation with INRIA, Rennes, France. I appreciate the

Résumé

Le rythme rapide et furieux de l'évolution de la technologie informatique, tant pour hardware et les logiciels, est devenu un article de foi pour beaucoup. Le problème de la fiabilité se pose depuis la construction d'ENIAC, le premier calculateur électronique qui est Turing complet : ses tubes à vide brûlés chaque jour, laissant l'ordinateur fréquemment non-opérationnel. Depuis les années 70, les systèmes informatiques deviennent plus en plus complexe et empiètent massivement sur notre vie quotidienne à travers toutes sortes de systèmes embarqués, ordinateurs portables, téléphones mobiles et réseaux informatiques. Aujourd'hui, la fiabilité du logiciel est un attribut essentiel de la qualité du logiciel. Si la production de logiciel fiable est depuis longtemps la préoccupation d'ingénieurs, elle devient à ce jour une branche de sujets de recherche riche en applications, dont l'analyse statique.

Nous considérons le problème de l'analyse statique des propriétés numériques en présence d'accèss au tas. L'objectif n'est pas d'étudier une nouvelle analyse statique mais de combiner l'anlayses numérique et l'analyses de pointeur. Afin d'exploiter des analyses existantes, nous avons définit un nouveau domain abstrait, NumP, qui consiste de produit d'une abstraction standard de pointeurs et une abstraction numérique qui extend domaines abstraits numériques pour permettre d'exprimer des relations entre des éléments du tas, des champs et de variables numériques. Le domaine abstrait NumP est développé à l'aide de la théorie d'interprétation abstraite.

Une deuxème contribution porte sur l'amélioration d'analyse de type points-to. Cette étude est motivée par l'observation que des graphes résultant d'analyses points-to contiennent souvent des liens qui ne peuvent pas 1 correspondre à une vraie relation de référene pendant l'execution. Nous considérons des situations dans lesquelles un pointeur est un alias d'un second qui limite les cibles du premier à un sous-ensemble strict des cibles identifiées par l'analyse points-to. À cette fin, nous proposons l'utilisation d'une analyse de must aliases afin d'éliminer les liens correspondant à des références redondantes. Partant d'une définition sémantique de ces liens, les résultats principaux de ce travail consistent en une condition nécessaire caractérisant ces liens. Nous avons formalisé cette combinaison en nous appuyant sur la notion de bisimulation, bien connue en vérification de modèles ou théorie de jeu. Un algorithme de complexité polynomiale est proposé et prouvé correct. Nous avons aussi démontré que le problème pour trouver la conditon nécessaire et suffisante est NP-dur. Sur la partie de validation, nous présentons notre approche dans le contexte de l'analyse de programme Java. Cette analyse est implémentée par combiner SOOT qui fournit des analyses de pointeurs, et bibliothèque PPL (Parma Polyhedra Library) qui est une librarie de domaines abstraits numériques. Notre expériences sur l'algorithme Bellman-Ford explorent les combinaisons de quatre analyses existantes, deux analyses numériques sur des intervalles et des polyèdres de la PPL et deux analyses de points-to fournies par SOOT. Les résultats expérimentaux sur les benchmarks de Dacapo montrent notamment que notre anlayse permet d'inférer un nombre significativement plus grand d'invariants que l'utilisation des deux analyses existantes (29 fois plus d'invariants en moyenne). En outre, le surcôut en temps de la nouvelle analyse est limité (13% en moyenne). 6 Ñ A 6 q. The notation p $ y p .f n ó d means that d P tpppy p q, f n q | p P pu 3.3 Semantics abstraction of memory states at the loop entry of the example program in Fig. 2.1 (right, l. 3). Heap locations are depicted as rectangles labeled by references. The value of each pointer variable is depicted as an arrow from the variable name to the referenced rectangle. The symbol ˛is for the null pointer. We have omitted the range 1 ď k ď 8 of the script k occurring in the first three rows. The label for the field "next" on the directed edges is not drawn for the first three rows. . . The fast and furious pace of change in computing technology, both for hardware and software, has become an article of faith for many. The reliability of the first Turing-complete electronic computer ENIAC was more about a question of hardware. Its vacuum tubes burned out every day, leaving the computer frequently non-operational. In 70 years, the computer systems are booming exponentially, with their performance and programs size multiplied by millions. These systems are becoming increasingly complex and massively impinge on our daily life through all kinds of embedded systems, laptops, mobile phones and computer network. To date, software reliability is a key attribute of software quality. Software reliability is defined by ANSI 1 as the probability of failure-free software operation for a specified period of time in a specified environment. The term failure in this definition means any departure from the required function of the system. In safety-critical systems, software failures are fatal. Some disasters are caused by infamous computer arithmetic errors. The Patriot missile failed to intercept a scud missile because of the inaccuracy in a floating point calculation. Patriot measured time in tenths of second and its internal computing system calculated the measured time by 1{10 to produce the time in seconds. However, using its 24-bit register the non-terminating binary expansion of 1{10 has to be truncated, which introduced an error of about 0.000000095 decimal. The tiny rounding error when accumulated with more than 100 running hours, was large enough to miss the incoming scud. The Patriot failure cost 28 lives. 2 Another well-known computer-made tragedy was the destruction of Ariane 501 in 1996. It is caused by wrong conversion of a 64-bit floating point number relating to the horizontal velocity of the rocket to a 16 bit signed integer. The velocity was recorded by a number larger than 32, 767 which is the largest number in a 16-bit signed integer. By consequence, the conversion failed due to the run-time error of integer overflow. The failure resulted in a loss of more than 370 million U.S dollars [START_REF] Dowson | The ariane 5 software failure[END_REF].

In computer systems that are not safety-critical, a certain failure rate may be tolerable. Still, this is a question of money and service quality. Poor services may be the primary complaints of disgruntled clients. Significant financial consequences can be caused for the manufacturers because correct systems are essential for their survival. For example, Intel's highly promoted Pentium chip P5 is found inaccurate when dividing floating-point numbers that occur within a specific range. This design woe, known as the Pentium FDIV bug 3 , caused Intel a loss of approximately 475 million U.S. dollars to replace faulty processors, and severely damaged its reputation as reliable chip-maker.

To sum up, the reliability of computer-based systems crucially depend on the correctness of its computing. Can man, who created the computer, be capable of preventing machine-made misfortune? The theory of Static analysis strives to achieve this ambition.

While a large range of properties can be considered by methodologies of static analyses, this thesis focuses on the static analysis of numerical properties. A simple example can be the automatic discovery of the signs of program variables. A more advanced example would be the discovery of linear relations of program variables, or even non-linear relations. These kinds of analyses are usually necessary to verify program safety conditions involving numerical computations, such as division by zero, array index out-of-bound, or buffer overflow. Dated back to 1978, Cousot and Halbwachs showed how to determine at compile-time linear relations among program variables [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF]. This kind of endeavor, technically called static numerical analysis, keeps continuing with further development of abundant numerical abstract domains [START_REF] Miné | The octagon abstract domain[END_REF][START_REF] Chen | Interval polyhedra: An abstract domain to infer interval linear relationships[END_REF] that vary with different precision/efficiency trade-off.

x G G -42 G G 0 G G -17 G G . . .
These analyses have been successfully used in practice. Some libraries of abstract domains have been developed, such as PPL, Polyglot or Apron, to list a few. On the other hand, the more and more complex data structures in high-level programming languages make the usage of pointer ubiquitous. Pointers change the way we look at static numerical analysis.

Pointers may introduce alias problems. An alias occurs when a storage location is pointed-to by pointers of different names. For instance, Fig. 1.1 represents the data structure of a linked list. Each node has a field val that stores an integer and a field next that stores the reference of its successor node. In the figure, both variables x and z point to the first node; y points to the third node. The alias relation contains px, zq, px.next.next, yq, pz.next.next, yq, etc.

To a programmer, this alias problem sounds to be a frequent issue: an operation of program modifies the properties of a target and unintentionally changes something that does not appear in the operation. For example, a store statement may appear to only modify the value of x.f , but each field reference y.f such that y and x hold equal reference before the operation will also be affected.

Objectives and Methods

To analyze numerical properties in the presence of pointers, we have integrated pointer analyses with traditional static numerical analysis.The challenge lies in how to combine the component analyses. We have extensively employed the semantics approximation framework abstract interpretation [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF] to uniformly combine pointer analyses and traditional numerical analysis. Two pointer analyses are considered in this context. They are points-to analysis and must-alias analysis. Below we write Num (sans-serif font) for traditional static numerical analysis, Pter for points-to analysis, and Must for must-alias analysis. The long-term objective of this work is to design a new analysis A that integrates the traditional static numerical analysis with the two aforementioned pointer analyses.

A = Num ˆPter ˆMust

This thesis presents how we combine Num with Pter, and Pter with Must, the combination of the three components are left as future work. Below we show the basic ideas through two examples.

Num ˆPter

The example in Fig. 1.2 allocates a list of memory cells on the heap to store integers ranging from -5 to 2. Suppose that we want to infer the property holding at the loop entry:

• The value of hd.next k .val for any k is in the range of -5 to 2

Traditional numerical abstract domains are able to reason on properties between scalar variables. They can by no way infer the properties of the quantified hd.next k .val which does not even appear literally in the program. The solution is to correlate these hd.next k .val semantically with some program identifier that is syntactically contained in the program. This is where a pointer analysis comes in. In words, we use the pointer analysis to treat the concrete program as a sequence of abstract semantics actions specified on the right of Fig. 1.2. The symbolic variable δ represents elem.val and is treated in a similar way as scalar variable. However, the semantic action 1 i n t i = -5 ; 2 A hd = n u l l , elem = n u l l ; 3 while (i < 3) {

8 i = i + 1 ; 9 } 1 i n t i = -5 ; 2 while (i < 3) { 3 δ = i ; 4 i = i + 1 ; 5 } Figure 1.2:
Example program (left) and the semantics actions for its analyse(right). The variable "delta" is the symbolic variable. δ = i is to be considered as accumulating, rather than updating, the values of i to δ. Using traditional numerical analysis, we are able to obtain δ P r-5, 2s at the entry of the loop. The final step consists in correlating the values of hd.next k .val with δ. This step relies on both points-to analysis and the semantics with regard to δ: δ represents all the concrete references associated with h and labeled by f . In addition, the points-to analysis tells that each hd.next k only holds references allocated at h. The correctness of these steps can be guaranteed using the theory of abstract interpretation.

Pter ˆMust

In practice, pointer analyses are mostly flow-insensitive. This category of pointer analyses do not distinguish program flows and may cause imprecision for the combined numerical analysis presented above.

Consider the Java snippet below. Assume that f is a class field. The flow-insensitive points-to analysis would reason that f may be equal to a or b for all the program points. This is imprecise because at l. 5 and l. 6 we have f and b must not be equal, and f and a must not be equal at l. 9 and l. 10. Due to this imprecision, the static numerical analysis presented above would tell that f.val would be in the range of r10, 20s at l. 6 and at l. 10. This imprecision can be recovered using must-alias analysis. Consider the case at l. 6. We have f and a must be equal before the line. This information, combined with the fact that a and b can not be equal for the whole program (obtained from points-to analysis) ensures that f and b can not be equal at l. 6. The using of must-alias analysis allows us to refine the flow-insensitive analysis, which in turn makes the static numerical analysis more precise. Here, the refined points-to analysis combined with traditional numerical analysis infers that the possible values of f.val will be 10 at l .6 and 20 at l .10.

a = new A () ; b = new A () ; i f (. . .) { f = a ; f . v a l =10; } e l s e { f = b ; f . v a l =20; } 1.

Contributions

We have developed a new abstract domain that combines traditional abstract domain with points-to analysis. This new abstract domain allows us to express a new category of numerical properties that cannot be expressed by traditional numerical domain, such as x.f + y.g < aris. This abstract domain has a modular design and is built from its component abstract domains in a black-box manner. This is meaningful because the soundness of the component analyses can be proved based on the soundness of its components, and the implementation of the combined analysis can be achieved effortlessly using the existing implementations of its components .

Our second contribution is an algorithm to remove a part of redundancy in flow-insensitive points-to analysis using must-alias analysis. The algorithm computes the reduced product of the domains of must-alias analysis and points-to analysis. This allows us to refine the points-to analysis a posterior.

We have experimented with several prototypes to test the effectiveness of these approaches. Our first implementation consists of a wrapping of abstract domains in PPL, using SOOT [START_REF] Vallée-Rai | Soot -a java bytecode optimization framework[END_REF] as the front-end. This implementation scales up to program with more than 350 KLoc. Although many existing numerical domains have been developed in the form of libraries, like PPL, NEWPOLKA and APRON etc, to the best of our knowledge little relevant work has been done for Java communities and scale up to real-life programs. Based on this implementation, we integrate points-to analysis with traditional numerical domain. The prototype shows that the combined analysis discovers significantly more numerical invariants than traditional static numerical analysis. In addition, the time overhead of the combined analyses is little and thus makes it scalable to large program as long as its component analyses are scalable.

Plan

This thesis is organized as follows. Chapter 2 is the background for understanding this thesis. Chapter 3 gives the theoretical framework of numerical analysis in the presence of pointers. Chapter 4 presents our theoretical study of partial redundancy elimination of points-to graph in the presence of mustalias. Conclusion and future work are shown in Chapter 5.

Chapter 2 Background

We use standard notations in predicate calculus (e.g. Enderton's [START_REF] Herbert | A mathematical introduction to logic[END_REF]) and set theory (e.g. Bourbaki's [START_REF] Bourbaki | Elments de mathmatique. Thorie des ensembles[END_REF]). Preliminary concepts on lattice theory will be first introduced. A standard reference is Birkhoff's book [START_REF] Birkhoff | Lattice theory[END_REF]. Basic notations on the theory of abstract interpretation will then be covered. The references for this subject can be Cousot's thesis in 1978 [START_REF] Cousot | Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique de programmes[END_REF] or [START_REF] Cousot | Systematic design of program analysis frameworks[END_REF] of Cousot and Cousot. At last, we present the static numerical analysis and points-to analysis as two instances of the abstract interpretation framework.

Some Definitions in Lattice Theory

Let U be a set. The set of all subsets of U will be denoted by ℘pU q. The set of all integers, will be denoted by Z. The cardinal of a set U is denoted by |U |. Given two sets A and B, a relation R is a subset of AˆB. We write a R b for pa, bq P R. The relation R is called a function, if for each a P A, there exists a unique b P B such that aRb, i.e., @a,

a 1 P A, b P B : b R a^b R a 1 ùñ a = a 1 . This function is said to have type A Ñ B.
a \ b = b \ a (commutative) a \ pb \ cq = pa \ bq \ a (associative)
The concept of partially ordered set can then be derived from that of semilattice. The complete lattice is a semilattice with a "complete join": A main result from Tarski [START_REF] Tarski | A lattice-theoretical fixpoint theorem and its applications[END_REF] is that a monotonic function defined over a complete lattice admits a least fixpoint: Theorem 2.1.1 (Tarski's fixpoint theorem). Given a monotone function f over a complete lattice pD, Ď, K, \q, the set F = td P D|f pdq = du is a non-empty complete lattice w.r.t. the order Ď. Furthermore lfp f = [td P D|f pdq Ď du 2.2 The Languages WHILE np , WHILE n and WHILE p Consider an imperative language that mixes pointer and numerical operations. The language will be denoted by WHILE np . The left of Fig. 2.1 gives its formal syntax. In the figure, we write k for constant values, for an arithmetic operator+, -, * and z, and the symbol ' belonging to t<, ą, ď, ě, ==, ‰u denotes a comparison operator. We assume two sets of variables: numerical variables and pointer variables. Variables x, y, z and field f are subscripted with n or p to indicate whether they are numerical values or pointers. An example program is shown on the right of Fig. 2.1.

We shall use WHILE n to refer to basic statements only involving numerical variables and use the meta-variables s n to range over those statements. Sim-ilarly, we let WHILE p be the statements that only use pointer variables and let s p range over those statements . Thus, the basic statements of WHILE np include those in WHILE n and WHILE p , and two more statements in the forms of x p .f n = y n and x n = y p .f n , where x p , y p are pointer variables, x n , y n are numerical variables and f n is a numerical field. We let s np range over the two extra assignments statements belonging to WHILE np . Finally, we use meta-variable s to range over all the statements of WHILE np , i.e., s n , s p and s np .

The following syntactical categories of these languages will be used in this thesis. We write Var n , Var p , Fld n and Fld p for the variables and fields of type n or p. We write Ref for the set of concrete references of program memories. It is supposed to be an infinite enumerate set.

Elements of Abstract Interpretation

Abstract interpretation, introduced in the late 1970's [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF] by P. Cousot and R. Cousot, is a framework of semantics approximation. We briefly review the major terminology of this theory.

Informally, abstract interpretation aims to construct two different meanings for a programming language where the first gives the usual meaning of programs in the language, and the second can be used to answer certain questions about the runtime behavior of programs in the language. The standard meaning of programs, called concrete semantics, can be typically described by their input-output function, and the standard interpretation will then be a function which maps programs to their input-output functions. The abstract meaning, called abstract semantics will be defined by a function which maps programs to mathematical objects of a particular universe, called abstract semantics domain.

Mathematically, the semantics of a program P can often be expressed by a least fixpoint lfp t r|P |s that is the least solution to a constraint system X = t r|P |s pXq computed on a complete lattice.

}

To infer possible values of x before each program point (from 1 to 5), we can construct the following constraint system.

X 1 = H X 2 Ě t0u Y X 4 X 3 Ě X 2 X p-8, 10q X 4 Ě tx + 1|x P X 4 u X 5 Ě X 2 X r10, 8q
The analysis of this problem amounts to solving the least fixpoint of the constraints system on the domain of Π 5 i=1 pX i Ñ Intv q, in which Intv is the set of intervals.

The soundness of the abstract semantics is described using a concretization function γ : A 7 Ñ A 5 , giving the meaning of the abstract elements in terms of concrete elements. We say that the abstract semantics lfpt 7 r|P |s is sound with respect to the concrete semantics lfpt 5 r|P |s, or say that the latter is approximated by the former, if lfpt 5 r|P |s Ď 5 γplfpt 7 r|P |s). In this paper, we frequently verify a stronger soundness condition in the form of t 5 r|P |s ˝γ Ď 5 γ ˝t7 r|P |s (2.1)

By "being sound", we always refer to partial soundness, i.e., if P terminates, then (2.1) holds. We introduce the concept of Galois connection.

Definition 2.3.1 (Galois connection). Consider two posets pA 5 , Ď 5 q and pA 7 , Ď 7 q. If functions α : A 5 Ñ A 7 and γ : A 7 Ñ A 5 satisfy, for each a 5 P A 5 and a 7 P A 7 , a 5 Ď 5 γpa 7 q iff. αpa 5 q Ď 7 a 7

then the quadruple pA 5 , α, γ, A 7 q is called a Galois connection.

In terms of abstract interpretation, the sets A 5 , A 7 are often called concrete domain and abstract domain respectively, and the functions t 5 P A 5 Ñ A 5 , t 7

γ ˆfi λpA 0 , B 0 q.A 0 ˆB0 (2.3)
Example 2.3.3 (Composition of Galois connections). Given 2 Galois connections pA 5 , α 1 , γ 1 , A 6 q and pA 6 , α 2 , γ 2 , A 7 q, then pA 5 , α 3 , γ 3 , A 7 q is also a Galois connection, with α 3 fi α 2 ˝α1 and γ 3 fi γ 1 ˝γ2 .

Theorem 2.3.1 (Approximation of Fixpoint [START_REF] Cousot | Systematic design of program analysis frameworks[END_REF]). Given two complete lattices pA 5 , Ď 5 q and pA 7 , Ď 7 q and the Galois Connection pA 5 , α, γ, A 7 q. Let t 5 and t 7 be monotonic functions defined respectively on A 5 and A 7 . If the condition t 5 ˝γ Ď 5 γ ˝t7

holds, then we have an approximation of the least fix point of t 5 by the least fix point of t 7 : lfpt 5 Ď γplfpt 7 q

The computation of lfpt 7 is problem-dependent: if the iterates t 7k pK 7 q for k = 0, 1 . . . , started from some initial K 7 become eventually stable (A 7 is said to enjoy the ascending chain condition), then lfpt 7 can be computed using brute force. This is a typical case for data-flow analysis. In case that the iterates converge slowly or do not converge, the algorithm to compute the fix point of t 7 may involve an extrapolation strategy. In [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF], Cousot introduced an operator called widening to guarantee fast termination of fix point computation. Definition 2.3.2. A widening ▽ is an operator of type A 7 ˆA7 Ñ A 7 such that @a 7 1 , a 7 2 P A 7 :

a 7 1 Ď 7 a 7 1 ▽ a 7 2 ^a7 2 Ď 7 a 7 1 ▽ a 7 2
and for all increasing chains a 7 0 Ď 7 a 7 1 Ď 7 . . ., the increasing chain defined by

w 0 = a 7 0 , w 1 = w 0 ▽ a 7 1 . . . w i+1 = w i ▽ a 7 i+1
is not strictly increasing.

Theorem 2.3.2 (Kleene iteration with widening [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF]). The following iteration sequence

X 0 = K 7 X i+1 = # X i , if t 7 pX i q Ď 7 X i X i ▽ t 7 pX i q otherwise
is ultimately stationary and its limit is a post-fixpoint for t 7 .

Static Numerical Analysis

The target language of this static analysis is WHILE n . The tracked information is called numerical properties. We distinguish two kinds:

• Global numerical properties refer to properties related to the whole program, including program execution time, consumed memories. An example is the static worst-case execution time (WCET) analysis. It is remarkably difficult to determine tight WCET bounds due to hardware complications and architectural features like instruction pipelines. A well-known WCET analyzer is aiT by AbsInt1 .

• Local numerical properties are those associated with program identifiers, in particular program variables. This category of analysis is demanded for the automatic detection of some well-known run-time errors like division by zero or array index out of bound. The algorithm developed by Karr in 1976 computes for each program control point the affine relations that hold among the program variables whenever the control point is reached [START_REF] Karr | Affine relationships among variables of a program[END_REF]. An affine relation is a property of the form Σ k i=1 c i x i = c where x i are program variables and c i , c are constant. In 1978, Cousot and Halbwachs [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF] presented an eminent generalization of Karr's approach. They introduced the theory of abstract interpretation, and brought the designing of various numerical abstract domains into the mainstream. By using polyhedra instead of affine relations as space of approximation, their analysis allows us to specify programs with affine inequalities Σ k i=1 c i x i ď c.

This thesis considers the second category of numerical properties. We use the term numerical property, for any conjunction of formulae in some decidable theory of arithmetic. A numerical property can be loosely seen as a geometric shape. For example, the numerical property tx 2 + y 2 ď 1, x ď 0, y ď 0u is composed of the conjunction of three arithmetic formulae, representing a quart of the unit disc. Each formula of a numerical property is assumed to be quantifier-free. The constant values in the formula are integers.

Certain classes of numerical properties with a uniform geometric feature are called abstract numerical domains. The "interval", "octagon", or "polyhedral" abstract domains are thus named after their represented geometric shapes. In this paper, an abstract numerical domain is considered as a subset of the universe of numerical properties.

As usual, an environment is a partial mapping from program variables to their associated values. In our context, we consider numerical environment of integer values,

Num fi Var n Ñ Z K
where Var n is the set of scalar variables holding numerical values. The relationship between a numerical environment n and a numerical property n is formalized by the concept of valuation. We say that n is a valuation of n, denoted by n |ù n, if n becomes a tautology after each of its free variables, if any, has been replaced by its corresponding value in n. pWHILE n , ℘pNumq, r|¨|s 6 n , γ n , Num 7 , r|¨|s 7 n q

The concrete numerical domain and the abstract numerical domain for the language WHILE n are respectively ℘pNumq and Num 7 . They are related by the concretization function γ n : Num 7 Ñ ℘pNumq defined by

γ n pnq = tn P Num | n |ù nu (2.4)
The partial order Ď is consistent with the monotonicity of γ n , i.e., n1 Ď n2 implies γ n pn 1 q Ď γ n pn 2 q. For each statement s n of WHILE n , the concrete semantics r|s n |s 6 n is assumed to be the powerset lifting r|s n |s 6 n fi postr Num ÝÑ ps n qs of some standard operational semantics:

Num ÝÑ: WHILE n Ñ ℘pNum ˆNumq (2.5)
The abstract semantics r|¨|s 7 n satisfies the soundness condition:

r|¨|s 6 n ˝γn Ď γ n ˝r|¨|s 7 n (2.6)
At last, we assume the availability of a join operator \ and a widening operator ▽. The join operator is assumed to be sound with regard to the partial order Ď, and ▽ is assumed to be sound as specified in Sect. 4 of [START_REF] Cousot | Comparing the Galois connection and widening/narrowing approaches to abstract interpretation[END_REF].

Points-to Analysis

The imperative language WHILE p provides basic pointer operations like dynamic allocation, pointer assignments, field store and field load. Classical store-based semantics models the memory as the environment and the store.

Roughly speaking, variable assignment modifies the environment and the store is modified by indirect access of memory. The environment is most commonly thought of as a partial mapping from program variables to locations, and the store is specified by a partial mapping from locations to values. Conventionally, the model also needs to know the usage status of allocated locations. Each state of the store-based semantic domain used in this thesis is assumed to be garbage-free, namely, each allocated location is reachable in a sense that we shall make precise below.

The points-to analysis [START_REF] Emami | Contextsensitive interprocedural points-to analysis in the presence of function pointers[END_REF] is a dataflow analysis widely used for the static pointer analysis. The essential idea of points-to analysis is to partition the concrete memory references Ref into a finite set of abstract references H, and then summarize the run-time pointer relations via elements of H and program variables. The result of the analysis is often expressed by a graph-like structure, called points-to graph. The memory partition process mentioned above is sometimes called a naming scheme. A popular naming scheme, known as k-CFA [START_REF] Shivers | Control-flow analysis of higher-order languages[END_REF], is based on the k most recent call sites on the stack of the thread creating the object. Pointer analyses have been surveyed by numerous authors [START_REF] Gutzmann | Towards a Gold Standard for Points-to Analysis[END_REF][START_REF] Nasre | Scaling context-sensitive points-to analysis[END_REF][START_REF] Rayside | Points-to analysis[END_REF]]. The 5-page survey of Hind and Pioli [START_REF] Hind | Which pointer analysis should I use[END_REF] is mostly cited; different axes balancing between efficiency and effectiveness are identified, with so called equality-based [START_REF] Steensgaard | Points-to analysis in almost linear time[END_REF], subset-based [START_REF] Andersen | Program Analysis and Specialization for the C Programming Language[END_REF] and flowsensitive [START_REF] Choi | Efficient flowsensitive interprocedural computation of pointer-induced aliases and side effects[END_REF] variations. several directions for the then-future research are also discussed: How to improve the efficiency without affecting scalability or vice-versa, how to design an analysis for a client's needs, are flow-sensitive or context-sensitive analyses worth more investigation, which heap modeling shall we choose, etc.

For type-safe languages like Java, the flow-insensitive analysis is of polynomial complexity [START_REF] Chakaravarthy | New results on the computability and complexity of points-to analysis[END_REF], but the analysis is difficult in general. The NPhardness of a flow-insensitive analysis is shown by Horwitz [START_REF] Horwitz | Precise flow-insensitive may-alias analysis is NP-hard[END_REF] for programs without dynamic memory allocation and when all the variables are scalars and arbitrary number of dereferencing is allowed. Many techniques have been proposed to optimize points-to analyses. The online cycle elimination of Fahndrich et al. [START_REF] Fähndrich | Partial online cycle elimination in inclusion constraint graphs[END_REF] represents points-to analysis as a graph problem and collapse cycles into single nodes since each element of the cycle has the same points-to information. Lazy Cycle Detection proposed by Hardekopt and Lin [START_REF] Hardekopf | The ant and the grasshopper: fast and accurate pointer analysis for millions of lines of code[END_REF][START_REF] Hardekopf | Semi-sparse flow-sensitive pointer analysis[END_REF] find the cycles using heuristics, so that the complexity overhead of Fahndrich can be greatly reduced.

Another dimension that improves points-to analysis is by using efficient data structures. In particular, BDD [START_REF] Bryant | Graph-based algorithms for boolean function manipulation[END_REF] was found to be much more spaceefficient than traditional storage of points-to information [START_REF] Zhu | Symbolic pointer analysis[END_REF]. This finding was then exploited by Berndl et al. [4] and Whaley and Lam [START_REF] Whaley | Cloning-based context-sensitive pointer alias analysis using binary decision diagrams[END_REF] for efficient points-to analysis algorithms using BDDs for Java.

The challenge of points-to analysis, as in other static analysis, is to improve the precision of analysis without sacrificing the scalability. Lhotak and Chung [START_REF] Lhoták | Points-to analysis with efficient strong updates[END_REF] propose a Strong Update analysis combining both features: it is efficient like flow-insensitive analysis, with the same worst-case bounds, yet its precision benefits from strong updates like flow-sensitive analysis.

The key insight is that strong updates are applicable when the dereferenced points-to set is a singleton, and a singleton set is cheap to analyze. Hence the analysis focuses on flow sensitivity on singleton sets. Larger sets, which will not lead to strong updates, are modeled flow insensitively to maintain efficiency. De and D'Souza [START_REF] De | Scalable flow-sensitive pointer analysis for java with strong updates[END_REF] propose to represent points-to information as maps, rather than points-to graph from access paths to sets of abstract objects.Their approach is similar to the classic k-limiting approach which truncate analysis targets by a predefined bound k: Their method finally leads to a flow-sensitive pointer analysis algorithm for Java that can perform strong updates on heap-based pointers. Recently, Khedker, Mycroft and Rawat [START_REF] Uday | Livenessbased pointer analysis[END_REF] propose a lazy points-to analysis based on liveness analysis. They argue that the vast majority of points-to pairs calculated by existing algorithms are never used by any client analysis or transformation because they involve dead variables. They reformulate a flow-and context-sensitive points-to analysis in terms of a joint points-to and liveness analysis so that potentially unused points-to relations will not be computed.

Concrete semantics

We assume that a naming scheme can be interfaced with a function

⊲ P Ref Ñ H (2.7)
In this presentation, we use a simple and standard naming scheme to name heap elements after the program point of the statement that allocates them (which is typical for the context-insensitive variant of points-to analysis).

The elements of H will also be called allocation sites or abstract references.

Let Var p , Ref , and Fld p be the set of pointer variables, references, and fields for pointer references. A state σ of the store-based semantics is a pair of partial mappings ρ from Var p to Ref , called environments, and partial mappings from Ref ˆFld p to Ref , called stores. The store-based semantics domain will be denoted by Pter .

Pter fi tpρ, q | ρ P Var p Ñ Ref K , P Ref ˆFld p Ñ Ref K u
Given pρ, q P Pter , we say r P Ref is reachable if there exists x P Var p such that ρpxq = r, or there exists some reachable r 1 P R and f P Fld p s.t. pr 1 , f q = r. The state pρ, q is called garbage-free if each reference in tr P Ref | pr, f q P domp qu is reachable.

The concrete semantics domain is defined to be the collection of subsets of garbage-free states in Pter .

The effect of a statement s p of WHILE p can be modeled as the operational semantics on Pter . We write xs p , σy Pter ÝÑ σ 1 if σ is the state before s p then σ 1 can be a state after s p under the condition that s p terminates. Since we are only interested in garbage-free states, below we assume the operator of garbage collection is available, denoted by gc

xx = null, pρ, qy Pter ÝÑ gcpρrx Ñ Ks, q (2.8) xx = new, pρ,

qy

Pter ÝÑ gcpρrx Ñ r fresh s, q for r fresh R reachablepρ, q (2.9)

xx = y, pρ, qy Pter ÝÑ gcpρrx Ñ ρpyqs, q (2.10) xx = y.f, pρ, qy
Pter ÝÑ gcpρrx Ñ pρpyq, f qs, q for pρpyq, f q P domp q (2.11)

xx.f = y, pρ, qy Pter ÝÑ gcpρ, rpρpxq, f q Ñ ρpyqsq for ρpxq ‰ K (2.12)
xx == y, pst, qy Pter ÝÑ gcpρ, q for ρpxq = ρpyq (2.13)

xx ‰ y, pst, qy

Pter ÝÑ gcpρ, q for ρpxq ‰ ρpyq (2.14)

The concrete semantics is defined to be the powerset lifting of the operational semantics.

Abstract semantics Let p 7 be a graph-like data structure composed of two kinds of arcs: x Ñ h and h 1 f Ý Ñ h, where x and f range over variables and fields in WHILE p and h 1 , h range over abstract references of the underlined naming scheme. Let us call this data structure points-to graph and denote by arcpp 7 q for the set of its arcs.

Given a set of concrete states p P ℘pPter q, its abstraction can be processed as follows: whenever there exists an pρ, q P p s.t. ρpxq = r and r ⊲ h for some variable x, concrete reference r and abstract reference h, there must be an arc x Ñ h in the points-to graph; if pr 1 , f q = r for some concrete state pρ, q and r 1 ⊲ h 1 and r ⊲ h for abstract references h, h 1 , then there must be an arc h 1 f Ý Ñ h in the points-to graph. Because H, Fld p , Var p are assumed to be finite set, there esists a smallest points-to graph that abstracts a given subset of Pter . The set of these points-to graphs can be defined as Pter 7 fi pVar p ˆFld p q ˆpH ˆFld p ˆHq

It can be shown that this smallest, or called best abstraction in the terminology of abstract interpretation, consists of a points-to graph without garbage. By abuse of language, we write Pter 7 for garbage-free points-to graphs.

The relationship between Pter 7 and its concrete counterpart ℘pPter q can be formalized with the concretization function γ p defined as

γ p pp 7 q fi tpρ, q P Pter | ρpxq = r, r ⊲ h ñ x Ñ h P arcpρ, q pr 1 , f q = r ^r1 ⊲ h 1 ^r ⊲ h ñ h 1 f Ý Ñ h P arcpρ, qu (2.15)
The abstract semantics of points-to analysis is usually specified in the style of constraints system. Below, let p 7 Q a a shortcut for a P arcpp 7 q. The constraint system can be specified as

x=y p 7 Q y Ñ h p 7 Q x Ñ h x=y.f p 7 Q y Ñ h 1 p 7 Q h 1 f Ý Ñ h p 7 Q x Ñ h (2.16) x=new p 7 Q x Ñ r fresh x.f=y p 7 Q x Ñ h 1 p 7 Q x f Ý Ñ h p 7 Q h 1 f Ý Ñ h (2.17) (2.18)
We write r|¨|s 7 p for the abstract transfer function derived from the constraint system above. Definition 2.5.1. The points-to analysis can be defined as the tuple pWHILE p , ℘pPter q, r|¨|s 6 p , γ p , Pter 7 , r|¨|s 7 p q

Chapter 3

Lifting Numerical Abstract Domains to Heap-manipulating Programs

Introduction

The static analysis of numerical properties of program variables can draw on a rich body of techniques including abstract domains of intervals [START_REF] Cousot | Static determination of dynamic properties of programs[END_REF], polyhedron [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF], octagons [START_REF] Miné | The octagon abstract domain[END_REF] which have found their way into mature implementations. In a similar way, the analysis of properties describing the shape of data structures in the heap has flourished into a rich set of points-to and alias analyses which also have provided a range of production-quality analyzers. However, these two types of analyses do not always integrate so well. Numerical properties such as x.v + y.w ď aris (where x.v and y.w are Java field references of type int and aris is an array reference of type int) are alien [?] to traditional numerical domains and would thus be coarsely over-approximated as unknown, representing no information. When extending numerical analyses to entities such as x.v we are immediately faced with the problem that pointers introduce aliases which make program reasoning harder. As an example, consider the effect of the assign- The variables a, b, c are bound to objects with the numerical field val. Assuming that b.val P r3, 6s and c.val P r4, 8s hold before the statement, we can derive different properties for their values after the assignment depending on the knowledge we have about aliasing between the references a, b and c.

In particular, the values of b.val or c.val may be updated if the condition a = b or a = c holds before the statement. The following approach considers the potential aliases among variables a, b and c. There are five possible alias relations, as shown on columns 2-6 of the first row in Tab. 3.1, where we use '/' to mean the partitions of variables induced by aliasing. For example, in the case of ab{c, the alias relation is a = b ‰ c, and thus a.val, b.val are two names that must be updated simultaneously. We obtain a.val P r7, 14s, b.val P r7, 14s and c.val P r4, 8s. The last column of the table shows the post-conditions by joining the results in columns 2-6.

Analyzing the statement for every possible alias relation between variables in turn and taking the conservative join of obtained results gives a sound result. However, this naive approach is not feasible as the number of aliasing relations among N variables quickly becomes large 1 . A better solution is to combine traditional static numerical analysis with points-to analyses that can provide information about aliasing relations and hence rule out some spurious aliases. This chapter is concerned with developing a theoretical foundation for combining pointer analysis with static numerical analysis.

Objectives and Contributions

The goal is not to define new pointer and numerical analyses but to provide the necessary theory for interfacing existing analyses with each other. We shall be following the methodology of abstract interpretation [START_REF] Cousot | Systematic design of program analysis frameworks[END_REF] when constructing the theory. The contributions of the paper are both theoretical and practical. On the theoretical side, we propose a new abstract domain combining traditional static numerical domains and points-to analysis. The abstract domain is constructed in three steps:

1. the first is a lattice isomorphism in which the references in the heap part of the state are re-injected into (and hence made explicit in) the numerical part of the state, 2. the second is a Cartesian (attribute-independent) abstraction [START_REF] Cousot | Systematic design of program analysis frameworks[END_REF] of the numerical and the heap part of the state, 3. the third is the application of the abstractions of the existing domains.

Thus, it is the first step that makes the combination possible, by preparing the re-use of the abstract pointer values when extending the numerical domains to cover properties about heap values. We define and prove the correctness of the transfer functions for this new combined domain.

On the practical side, we have experimented with the combination of several existing domains by implementing a combined static numerical and pointer analysis, using the Java Optimization Framework SOOT [START_REF] Vallée-Rai | Soot -a java bytecode optimization framework[END_REF] as the front-end, and relying on the abstract domains from existing static analysis libraries such as the Parma Polyhedra Library PPL [START_REF] Bagnara | The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems[END_REF] and the SOOT Pointer Analysis Research Kit SPARK [START_REF] Lhoták | Scaling Java points-to analysis using Spark[END_REF]. This prototype analyzer, called NumP, has been run on programs in the Dacapo-2006-MR2 [START_REF] Blackburn | The DaCapo benchmarks: Java benchmarking development and analysis[END_REF] benchmark suite. The largest among them, chart, has several hundreds of KLOC in Jimple [START_REF] Vallee-Rai | Jimple: Simplifying java bytecode for analyses and transformations[END_REF]. Our experiments confirm that a combined analysis is feasible even for large-sized programs and that it discovers significantly more program properties than what is possible by pure numerical analysis, and this at a cost that is comparable to the cost of running the numerical and pointer analysis separately.

In addition, the goal of modular re-use of static analyses has been attained as the implementation of our prototype is mainly based on the existing implementations of traditional numerical and pointer analyses. We have instanced NumP with a context-insensitive and a context sensitive points-to analyses on one side, and an interval and a polyhedral abstract domains on the other side.

Notation Let A, B be two sets. Given a relation R Ď A ˆB, we write postrRs P ℘pAq Ñ ℘pBq for the function λA 1 .tb | Da P A 1 : pa, bq P Ru. We use fst and snd as the operators that extract the first and the second components of a pair respectively. For a given set U , the notation U K means the disjoint union U Y tKu. Given a mapping m P A Ñ B K , we express the fact that m is undefined in a point x by mpxq = K. The set of integers is denoted by Z. We write "fi" for "defined as".

Semantics Abstraction

The store-based semantics for heap reasoning is standard. We follow the notations of [START_REF] Rinetzky | A semantics for procedure local heaps and its abstractions[END_REF], in which a state keeps track of the allocated references A P ℘pRef q, and a pair of an environment ρ and a heap hp. pA, ρ, hpq

P State = ℘pRef q ˆEnv hkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj pVar n Ñ Z K q ˆpVar p Ñ Ref K q ˆppRef ˆFld n q Ñ Z K q ˆppRef ˆFld p q Ñ Ref K q looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon Heap Write A 5 for
ppy p q = r d = pr, f n q xx n = d, ny Num ÝÑ n 1 xx n = y p .f n , pn, pqyĄ ÝÑ 5 pn 1 , pq Figure 3.1: Structural Operational semantics Ą ÝÑ 5 : WHILE np Ñ p Ć State Ć Stateq

An Isomorphic Operational Semantics

The lemma below shows that we can express the structural operational semantics (SOS for short) of WHILE np in terms of the SOSs of WHILE n and WHILE p .

Let Ă

A 5 be the power-set of Ć State, we define the collecting semantics [START_REF] Cousot | Abstract interpretation frameworks[END_REF] as the lifting of the operational semantics Ą ÝÑ 5 psq to power-sets, i.e., r|s|s 5 fi postrĄ ÝÑ 5 psqs.

Cartesian Abstraction

Lemma 3.2.2 (Cartesian Abstraction). Let A 6 fi ℘pNumrD Y Var n sq ℘pPter q and p Ă A 5 , α ˆ, γ ˆ, A 6 q be the Cartesian abstraction [START_REF] Cousot | Systematic design of program analysis frameworks[END_REF], i.e., α ˆfi λR : Ă A 5 .ppostrfsts R, postrsnds Rq and γ ˆfi λpA 0 , B 0 q : A 6 .A 0 ˆB0 . The transfer functions r|¨|s 6 : WHILE np Ñ pA 6 Ñ A 6 q defined in Fig. 3 s to be a system of linear inequalities AX ď B with A and B being a numerical matrix and a vector respectively, and X is a vector on ∆ Y Var n . Without loss of generality, we write X as the vector pδ 1 . . . δ m , z 1 . . . z l q for δ i P ∆ and z j P Var n . Then AX ď B represents the conjunction of all A X ď B in which X can be any pd 1 . . . d m , z 1 . . . z l q in which z i remains the same as in X and there exists an instantiation σ P Ins ⊲ s.t. σpδ i q = d i for any 1 ď i ď m. The concretization function γ of type NumP Ñ A 6 is defined as λpn 7 , p 7 q.pγ δ pn 7 q, γ p pp 7 qq where γ p is the concretization function of the underlying points-to anlaysis.

Ins ⊲ fi tσ : ∆ Ñ D | σph, f n q = pr, g n q ñ h = ⊲prq ^fn = g n u (3.
Example 3.2.2. Revisit the program in Fig. 2.1 (right). A list of integers ranging from -5 to 2 is stored iteratively on the heap. At each iteration, a memory cell, bound to variable elem, is allocated. The cell consists of a numerical field val and a reference field next. The head of the list is always pointed to by variable hd. Fig. 3.3 shows the memory states that arise at the loop entry (l. 3 of the source code) as well as the process of the semantics abstraction in three steps. The first row illustrates the concrete heap states. The second row is an isomorphic version that separates numerical and pointer information. The third row is the abstract state obtained by performing Cartesian abstraction over the second row. The last row shows the abstract state of our abstract domain. Note that each state, pn k , p k q of the second row is a concretization of the abstract state pn 7 , p 7 q. In particular, the ph, valq Ñ r-5, 2s part is to be interpreted as: the numerical values stored at pr, valq must be in the range from -5 to 2, whenever the memory cell referred by r is allocated at h. The semantics abstraction process is summarized in Fig. 3.4. Starting from the standard concrete store-based domain A 5 , we find an isomorphic form Ă A 5 . Then the Cartesian abstraction gives rise to a pair of well studied concrete domains of traditional numerical and points-to analyses. We then "plug in" the existing abstract domains and reuse those abstractions as blackboxes.

Transfer Functions

Let pn 7 , p 7 q be a state of NumP . We are concerned with how it should be updated by statements of WHILE np . Let r|s|s 7 pn 7 , p 7 q be the state just after

tpA K , ρ k , hp k qu = $ ' ' & ' ' % elem hd G G į Ñ -5 ; elem hd r1 G G -5 G G į Ñ -4 ; . . . elem hd r8 G G 2 G G -5 G G į Ñ 3 , / / . / / - tpn k , p k qu = $ ' ' & ' ' % i Ñ -5 elem hd G G ˛; pr 1 , valq Ñ -5 i Ñ -4 elem hd r1 G G G G ˛;
. . .

pr 8 , valq Ñ 2; . . . pr 1 , valq Ñ -5 i Ñ 3 elem hd r8 G G G G G G ˛, / / / / . / / / / - ptn k u, tp k uq = ¨pr 1 , valq Ñ -5 pr 2 , valq Ñ -4 . . . pr 8 , valq Ñ 2 i Ñ -5 . . . i Ñ 2 i Ñ 3 , elem hd r8 G G a a b b c c b b r7 G G G G G G r1 G G G G ˛‹ ‹ ‹ ‹ ' pn 7 , p 7 q = ˜ph, valq Ñ r-5, 2s; i Ñ r-5, 3s, elem hd G G h next Figure 3.
3: Semantics abstraction of memory states at the loop entry of the example program in Fig. 2.1 (right, l. 3). Heap locations are depicted as rectangles labeled by references. The value of each pointer variable is depicted as an arrow from the variable name to the referenced rectangle. The symbol ˛is for the null pointer. We have omitted the range 1 ď k ď 8 of the script k occurring in the first three rows. The label for the field "next" on the directed edges is not drawn for the first three rows. the execution of some statement s. Below, we explain how their abstract semantics should be defined following the three categories s n , s p , and s np (See Chap. 2 for the three categories). Note that the points-to component of our abstraction is described in a flow-sensitive style but is relatively easy to be adapted for a flow-insensitive points-to analysis. The proof of soundness is sketched at the end of the section.

Transfer function for s n

It is sound to assume that assignments or assertions of numerical variables have no effect on the heap. If s n is an assignment in WHILE n , it can be treated in the same way as in traditional numerical analysis using its abstract transfer function r|¨|s 7 n The transfer function for updating pn 7 , p 7 q with s n can be defined as:

r|s n |s 7 pn 7 , p 7 q fi r|s n |s 7 n n 7 , p 7 (3.7)

If s n is an assertion in WHILE n , p 7 may be refined. For example, consider the compound statement2 if (a > 0) p = q where p and q are reference variables and a is a numerical variable. Although it should be possible to perform a dead-code elimination using inferred numerical relations, similar to Pioli's conditional constant propagation [START_REF] Pioli | Combining interprocedural pointer analysis and conditional constant propagation[END_REF], we still use the Eq. (3.7) for the ease of implementation.

Transfer function for s p

It is also sound to assume that s p has no effect upon n 7 . Yet the reasoning is different from the above case. For example, if n 7 , p 7 is the state shown on the last row of Fig. 3.3, how can we tell whether an assignment of pointers modifies n 7 or not? Recall that the intended semantics of ph, valq Ñ r-5, 2s

is that every values stored in each pr , valq satisfying r⊲h must be in the range of r-5, 2s. That is to say, n 7 represents a fact about the numerical content stored in the corresponded concrete references. A pointer assignment can by no means modify any numerical values stored in the heap. The algorithm to update pn 7 , p 7 q with s p can be written as:

r|s p |s 7 pn 7 , p 7 q fi n 7 , r|s p |s 7 p p 7 (3.8)

Transfer function of s np

The transfer function for s np is more interesting. Consider an assignment x n = y p .f n . Assume that the state before the assignment is pn 7 , p 7 q with n 7 = tph1, valq Ñ r0, 5s, ph 2 , valq Ñ r10, 20su and p 7 = tpy p , h 1 q, py p , h 2 qu. Since y p points to h 1 , h 2 and thus y p .f n is bound with a subset of values stored at pr, f n q so that r ⊲ h 1 or r ⊲ h 2 , we know that at run-time the assignment updates x n to a value that is either in r0, 5s or in r10, 20s. In the context of the non-relational abstract domain, the semantics of x n = y p .f n can be approximated by the join of the effects of the assignment of symbolic variables, x n = ph, f n q, for all h such that y p points to h.

r|x n = y p .f n |s 7 pn 7 , p 7 q fi ¨¨ğ p 7 $yp.fnóδ r|x n = δ|s 7 n pn 7 q ', p 7 ' (3.9)

where we write p 7 $ y p .f n ó δ to mean that δ is some symbolic variable ph, f n q with h pointed to by x p . i.e., Dh : δ = ph, f n q ^h P p 7 px p q. Assume that p 7 py p .f n q is a singleton tδu. Now, consider an assignment y p .f n = x n with y p pointing to the abstract h of the points-to graph. We regard y p .f n = x n as an assignment to symbolic variable ph, f n q = x n . By ph, f n q = x n , we actually mean that the field f n of one of the concrete objects represented by h is to be updated to the value of x n , while the other concrete objects represented by h remain unchanged. In practice, we rewrite the symbolic variable ph, f n q as some (fictitious) scalar variable, say δ, and symbolically execute λc : c \ r|δ = x n |s 7 n pcq using traditional numerical analyses, e.g. interval analysis, equipped with the abstract semantics r|¨|s 7 n of assignment and the abstract operator of join \. r|y p .f n = x n |s 7 pn 7 , p 7 q fi ¨¨ğ p 7 $yp.fnóδ

n 7 \ r|δ = x n |s 7 n pn 7 q ', p 7 ' (3.10)
Note that it is not necessary to compute transfer functions for assertions involving field expressions for they are transformed beforehand by our frontend SOOT to assertions in WHILE n or in WHILE p . For instance, a source code if (x.f>0) ..., is transformed to a = x.f; if (a>0) before our analysis.

Join and Widening

The join of two facts is defined as the set of all facts that are implied independently by both. The join of pn 7 1 , p 7 1 q and pn 7 2 , p 7 2 q is the join of n 7 1 and n 7 2 , paired with the join of p 7

1 and p 7 2 .

pn 7 1 , p 7 1 q \ 7 pn 7 2 , p 7 2 q = pn 7 1 \ n 7 2 , p 7 1 Y p 7 2 q (3.11)
When computing the fixpoint, the iterates of our numerical points-to domain do not necessarily converge because of its numerical components. We perform a piecewise widening for the numerical part.

pn 7 1 , p 7 1 q ▽ 7 pn 7 2 , p 7 2 q = pn 7 1 ▽ n 7 2 , p 7 1 Y p 7 2 q (3.12)
Theorem 3.3.1 (Soundness). The transfer functions r|¨|s 7 : WHILE np Ñ pNumP Ñ NumP q, defined in (3.7), (3.8), (3.9) and (3.10), are sound with respect to r|¨|s 6 : for any statement s of WHILE np and abstract state pn 7 , p 7 q of NumP , r|s|s 6 ˝γ pn 7 , p 7 q Ďγ ˝r|s|s 7 pn 7 , p 7 q.

3.4 Proof of Soundness

Preliminaries

Notations Given n P Num, its definition domain is denoted by dompnq.

Given n 7 P Num 7 , its free variable, denoted by FV pn 7 q, is the union of the free variables of each formula in n 7 . The space of bijective functions from A to r A is denoted by by A Ø Ã.

Definition 3.4.1 (Variable substitution). Given n P Num and a bijective function σ : dompnq Ø Ą dom from n's definition domain to some isomorphic Ą dom, we define the operator of variable substitution, written as rσs, to be a mapping of type N um Ñ Num defined as rσs fi λn.pn ˝σ-1 q

(3.13)

The definition above requires that σ be bijective, and the domain of the mapping σ be the domain of the numerical environment n. This requirement makes the operator rσs a bijection. Lemma 3.4.1. Given n P Num, σ P dompnq Ø Ą dom, we have rσs -1 = rσ -1 s A substitution of numerical properties is to be understood as the usual capture-avoiding substitution in lambda logic. Again, this substitution will be specified by a bijective function. Although not necessary, we require the definition domain of the specified function be exactly the same as the set of the free variables of the considered numerical property. Definition 3.4.2 (Substitution of numerical properties). Let n 7 P Num 7 and σ P FV pn 7 q Ø Ą FV be a bijection. By abuse of language, we denote by rσsn 7 the capture-avoiding substitution using σ of each of its formula.

It can be seen that Lem. 3.4.1 holds for the overloaded rσs as well. For instance, let n 7 be tx + y < 5, z < 10u, σ = tpx, aq, py, bq, pz, cqu, then rσsn 7 is ta + b < 5, c < 10u. Applying rσ -1 s to the latter, we immediately obtain n 7 .

The following lemma states that the operation of substitution preserves the relation of valuation. For example, let n = tpx, 2q, py, 3q, pz, 5qu, n 7 = tx+ y = z, y ď zu, and σ = tpx, aq, py, bq, pz, cqu, then n |ù n 7 and rσsn |ù rσsn 7 . Lemma 3.4.2 (Substitution). Given n P Num, n 7 P Num 7 and a bijective σ s.t. dompnq = dompσq = FV pn 7 q, then n |ù n 7 ñ rσsn |ù rσsn 7 .

This lemma requires that the definition domain of n equals to the set of the free variables in n 7 . To apply the lemma of substitution for the case where n has more defined variables than n 7 's free variables and n |ù n 7 , we can restrict the definition domain of n to the free variables in n 7 so that the restricted n is a valuation of n 7 . This is stated by the lemma below.

Proof

Proof of Thm. 3.3.1. Take an arbitrary n 7 P Num 7 r∆ Y Var n s and an arbitrary p 7 P Pter 7 , we will prove that for all s P WHILE np , r|s|s 6 pγ pn 7 , p 7 qq 9

Ď γ pr|s|s 7 pn 7 , p 7 qq (

The correctness for the case of s n is an immediate consequence following the assumed soundness of r|s n |s 7 n with regard to r|s n |s 6 n . We also obtain the correctness for the case of s p because the soundness of r|s p |s 7 p with regard to r|s p |s 6 p is assumed. The proof for the case of x n = y p .f n is analogous to the case of x p .f n = y n that given below: Denote the left and the right parts of (3.14) lhs and rhs respectively. By the definition of r|¨|s 6 and r|¨|s 7 , we have

lhs = ¨¨ď γ p pp 7 q $ x p .f n ó d r|d = y n |s 6 n pγ δ pn 7 qq ‹ ', γ p pp 7 q ‹ ' (3.15) rhs = ¨γδ ¨ğ p 7 $xp.fnóδ n 7 \ r|δ = y n |s 7 n pn 7 q ', γ p pp 7 q ' (3.16)
Take an arbitrary d s.t. γ p pp 7 q $ x p .f n ó d and let δ = ⊲pd). We will prove r|d = y n |s 6 n ˝γδ pn 7 q Ď γ δ pn 7 \ r|δ = y n |s 7 n pn 7 qq (3.17)

By the Def. of γ δ , it suffices to prove a stronger condition: @σ P Ins ⊲ : r|d = y n |s 6 n ˝γn ˝rσspn 7 q Ď γ n ˝rσspn 7 \ r|δ = y n |s 7 n pn 7 qq (3.18) Let the left and the right parts of (3.18) denoted by lhs 1 We continue the proof following whether σ maps δ to d.

• Case I : pδ, dq P σ. Since d P dompσ -1 q, (3.22) implies

prσ -1 snqrδ Þ Ñ y n s |ù n 7 (3.23)
By the soundness of r|¨|s 7 n , we have rσ -1 sn |ù r|δ = y n |s 7 n n 7 (3.24)

• Case II pδ, dq R σ. Since d R dompσ -1 q, (3

Related Work

While a large number of articles cover issues related to pointer analyses and to numerical abstractions, the program analyses where both pointers and numeric values are taken into account are comparatively few.

Our work was initially inspired by Chang and Leino's congruence-closure abstract domain [?]. Their combined abstract domain extends the properties representable by a given abstract domain to schema over arbitrary terms, and not just variables. They deal with alias problem using an ad-hoc heap succession abstract domain while we allow to reuse off-the-shell points-to analyses.

Points-to analysis is well known, and many variants have been published (see [START_REF] Hind | Pointer analysis: haven't we solved this problem yet?[END_REF] for a survey). It offers a large spectrum of tradeoffs between precision and scalability with so called equality-based [START_REF] Steensgaard | Points-to analysis in almost linear time[END_REF], subset-based [START_REF] Andersen | Program Analysis and Specialization for the C Programming Language[END_REF] and flow-sensitive [START_REF] Choi | Efficient flowsensitive interprocedural computation of pointer-induced aliases and side effects[END_REF] variations. Points-to analyses are relatively imprecise compared to more advanced shape analysis techniques, but they scale well to large programs. Most analyses that combine numerical and pointer information tend to comply with similar simple pointer analyses (TVLA shown below is clearly an exception). Logozzo's Cibai (Class Invariants By Abstract Interpretation) [START_REF] Logozzo | Cibai: An abstract interpretation-based static analyzer for modular analysis and verification of java classes[END_REF] is a modular analysis that combines a type-based pointer analysis and octagons. Sotin and Jeannet [START_REF] Sotin | Precise interprocedural analysis in the presence of pointers to the stack[END_REF] extend their generic numerical analyzer Interproc to deal with programs in the presence of pointers to the stack. Miné's [START_REF] Miné | Field-sensitive value analysis of embedded c programs with union types and pointer arithmetics[END_REF] shows the power of this simple abstraction by extending it to pointer arithmetic, union types and records of stack variables. The resulted abstraction is integrated to ASTREE [START_REF] Blanchet | A static analyzer for large safety-critical software[END_REF] and is able to deal with a subset C program that does not have dynamic memory allocation.

The book of Simon [START_REF] Simon | Value-Range Analysis of C Programs[END_REF] gives an extensive study of numeric analysis to avoid buffer-overflows problems in C programs. The author combines ad-hoc numerical domains and a manually refined flow-sensitive points-to analysis. The combination of Simon's work have mutual effect between the heap domain and the numeric domains. His analysis is more precise than that of Miné's and the analysis in this paper, but requires important implementation efforts compare to our modular analysis.

A more sophisticated heap abstraction is shape analysis [START_REF] Sagiv | Parametric shape analysis via 3-valued logic[END_REF]. The TVLA [48] framework based on shape analysis uses canonical abstraction to create bounded-size representations of memory states. The analyses of this family are precise and expressive. TVLA users are demanded to specify the concrete heap using first-order predicates with transitive closure, or user-defined instrumentation predicates like IsNotNull. Then TVLA automatically derives an abstract semantics based on the users' specification. The numerical abstraction of Gopan et al. [START_REF] Gopan | Numeric domains with summarized dimensions[END_REF] allows the integration of TVLA with existing numerical domains. The recent TVAL+ [START_REF] Ferrara | Tval+ : Tvla and value analyses together[END_REF] uses TVLA on top of SAMPLE (Static Analysis of Multiple LanguagEs), and can be combined with any existing numerical analyses in SAMPLE. The static verifier DESKCHECK [START_REF] Mccloskey | Statically inferring complex heap, array, and numeric invariants[END_REF] combines TVLA and numerical domains. It is sufficiently precise and expressive to check quantified invariants over both heap objects and numeric values. Besides the burden for users to specify the program (a problem that XISA [START_REF] Chang | Shape analysis with structural invariant checkers[END_REF] attempts to remedy), the major issue of the shape-analysis-based approaches lies in their scalability. In contrast, our experiments show our capability to run over large programs.

Pioli and Hind [START_REF] Pioli | Combining interprocedural pointer analysis and conditional constant propagation[END_REF] show the mutual dependence of conditional constant analysis and pointer analysis. The combination is specifically designed for the conditional constant analysis and is not generalized to standard numerical domains. In particular, this approach does not directly cooperate with standard numerical domains because their method relies on the particular feature of conditional constant analysis that is able to partially eliminate infeasible branches.

In a somewhat different strand of work, numerical domains have been used to enhance pointer analysis. Deutsch [START_REF] Deutsch | A storeless model of aliasing and its abstractions using finite representations of right-regular equivalence relations[END_REF] uses a parametrized numerical domain to improve the accuracy of alias analysis in the presence of recursive pointer data structures. The key idea is to quantify the symbolic field references with integer coefficients denoting positions in data structures. This analysis is able to express properties for cyclic structures such as "for any k, the k-th element of list l of length len, is aliased to its pk + lenq-th element". Venet [START_REF] Venet | Towards the integration of symbolic and numerical static analysis[END_REF] develops the structure called the abstract fiber bundle to formalize the idea of embedding an abstract numerical lattice within a symbolic structure. The structure enables the using of the large number of existing numerical abstractions to encode a broad spectrum of symbolic properties.

Conclusion

The primary objective of this work has been the automatic discovery of numerical invariants in Java-like programs, which are generally pointer-aware. We have proposed a methodology for combining numerical analyses and points-to analysis, developed using an approach based on concepts from abstract interpretation. In particular, we have shown how the abstract domain used in points-to analysis can be used to lift a numerical domain to encompass values stored in the heap. The new abstract domain and the accompanying transfer functions have been specified formally. Their correctness are proved. Moreover, the modular way in which the abstract domains are combined via some well-defined interfaces is reflected in the modular construction of a prototype implementation of the analysis framework. This modularity has enabled us to experiment with different choices for the tradeoff between efficiency and accuracy by tuning the granularity of the abstraction and the complexity of the abstract operators. Concretely, the derived abstract semantics allows us to combine existing numerical domains (interval domains, polyhedron etc.) with existing points-to analyses. The modular analyzer uses PPL and SPARK and shows a clear precision enhancement with low time overhead.

Further work will address the issue of how the framework can accommodate analysis features such as strong updates. Also, the analyzer is currently only working intra-procedurally. We would like to develop the theory further so as to be able to build interprocedural analyses using our methodology. Finally, another interesting issue that deserves investigation is the possibility of exploiting other combinations such as points-to and must-alias analysis in order to fine-tune the points-to analysis and a fortiori the lifted numerical analysis.

the e-graph in [?], or the heap abstraction of [START_REF] Fähndrich | Static contract checking with abstract interpretation[END_REF]. The must-graph is a rooted directed graph where a node is an integer, and an arc is labeled by a variable if the arc starts from the root, or fields if the arc starts from a non-root node. The integer nodes of the must-graph are purely symbolic: two access paths are aliased whenever they lead to the same node in the must-graph. The points-to graph used here is similar as, but slightly different from the traditional one introduced earlier in the sense that the points-to graph of this chapter has an extra node, "the root" so that an arc started by variable x to a node h is written as an arc started by the root to h with the variable x as its label.

Below, we illustrate how must-alias can be used to perform redundancy elimination on points-to graph. Let us consider the points-to graphs before lines ℓ100, ℓ110 and ℓ120.

Before the line ℓ100, the standard points-to graph and ours give the same results. From lines ℓ10 to ℓ40 the program creates two lists of 2 elements linked by the field f , separately assigned to variable y and z. Following lines from ℓ50 to ℓ90 the program non-deterministically assigns to the variable x the references of the 2 lists. Here, no must-alias is detected.

Then before line ℓ110 an if-guard has been passed. Such test is ignored by the standard points-to analysis. Our analyzer, however, will extract the must-alias between x and y. This extraction itself is very simple that should not incur complexity overhead, but the extracted must-alias has sufficient information to remove a redundant arc.

Our analyzer will process in 2 steps. The first step is points-to graph propagation. Our analyzer uses the same transfer function as that of standard points-to analysis. The transfer function is a rule of propagation. Clearly, before line ℓ110, our analyzer gives the same points-to graph after propagation as the standard analyzer because our analyzer and the standard analyzer have the same points-to graph before line ℓ100, but our analyzer goes further by performing the second step that is the redundancy elimination. Our analyzer will detect redundant arcs using must-alias. Here, the redundant arc ˝x Ý Ñ h 3 will be detected. Intuitively, since x, y must alias, and y does not point-to h 3 (because y points-to h 1 only), we have x cannot point to h 3 .

Before line ℓ120, the standard points-to analysis will simply add an arc from h 1 to h 3 , unaware of the redundant arc from h 1 to h 2 (we will see why it is redundant below). This analysis reasons conservatively: h 1 might be associated with more than one concrete object, so this analysis will not remove any arc emanating from h 1 . By the same reason, it also adds a selfcycle on h 3 . Finally, this analysis adds 2 arcs, h 1 f Ý Ñ h 3 and h 3 f Ý Ñ h 3 . The obtained points-to graph is shown in Fig. 4.2 (third row, first column).

Our analyzer processes in 2 steps as aforementioned. The first step is the propagation. It adds h 1 f Ý Ñ h 3 to the points-to graph. However, it will not add a self-cycle on h 3 because, at this time, our analyzer has already a refined points-to graph as input that does not contain the arc ˝x Ý Ñ h 3 . For the second step, our analyzer performs an extra redundancy elimination using must-alias. The must-alias analyzer detects: at line ℓ120, x.f , z must alias, and x, y must alias, and by consequence, y.f and z must-alias (Fig. 4.2 third line, third column). This information will guarantee the sound redundancy elimination of h 1 f Ý Ñ h 2 . Intuitively, h 1 is accessible by at most x and y, and both x.f and y.f must point to h 3 .

The above reasoning seems to be ad-hoc. This heuristic should be formalized and verified. We are faced with 2 questions.

1. What are the exact meanings of the points-to graph, must alias, and the so-called "redundancy"?

2. Under which conditions can a redundancy elimination be safely performed?

In the following, we give a quick overview of our methodology that answers the two questions.

Backward-simulation

The reply to the 1 st question requires a semantically-based formalization.

We have seen that both points-to graph and must-graph are rooted directed graph. Semantically, they are abstractions of concrete memory information.

To formalize the semantics of points-to graph, we will use a concretization function γ (in terms of abstract interpretation) that assigns to the points-to graph and must-graph their abstracted concrete environments.

ℓ10 y = new L i s t // h1 ℓ20 y . f = new L i s t // h2 ℓ30 z = new L i s t // h3 ℓ40 z . f = new L i s t // h4 ℓ50 i f (?) then ℓ60
x = y ℓ70 e l s e ℓ80 x = z ℓ90 end i f ℓ100 i f (x == y) ℓ110

x . f = z ℓ120 end i f The example analyzed code. The program first creates two linked lists (from ℓ10 to ℓ40 where List has a field f), non-deterministically assigns to variable x the references of the two lists (from ℓ50 to ℓ90). At last, an instruction accessing the heap is performed under the condition that x, y hold the same reference value. For example, consider the points-to graph at line ℓ100 (Fig. 4.2, first row). The concrete environments the points-to graph represents can be any one of Fig. 4.3, in which the concrete reference r c1 is abstracted as the abstract reference h c 1 for c being the first digit of c 1 . Remark that each abstract reference can represent more than one concrete reference (e.g. Fig 4.3(a)). This semantics view explains why the standard points-to analysis cannot remove the arc h 1 f Ý Ñ h 4 when x.f = z is performed at line ℓ110. Compared with points-to graph, the semantics of must-graph has a determinist characteristic: the variables that reach the same node in the mustgraph are guaranteed to share the same reference value at run-time (This can be easily extended to cases with access path, Def. 4.2.3). Further, the must-graph is only partially specifies the concrete memory: it is possible to have two access path that must-alias in the concrete memory whereas their aliasing is not recorded by the must-graph.

ℓ100 h 1 f G G h 2 xy b b xz 2 2 h 3 f G G h 4 h 1 f G G h 2 xy b b xz 2 2 h 3 f G G h 4 l110 h 1 f G G h 2 xy b b xz 2 2 h 3 f G G h 4 h 1 f G G h 2 xy b b z 2 2 h 3 f G G h 4 ˝xy G G 1 ℓ120 h 1 f G G f h 2 xy b b xz 2 2 h 3 f G G f h 4 h 1 f xy b b z 2 2 h 3 f G G h 4
Details on our problem formulation can be found in Sect. 4.2. Let µ, Θ be a must-graph and a points-to graph respectively, and γpµq, γpΘq be their represented concrete environments, then the semantics of the points-to graph in the presence of the must-graph is formulated as γpµq X γpΘq, denoted by γpµ, Θq. Then an arc h 1 f Ý Ñ h is defined redundant if and only if γpµ, Θq remains the same if the points-to graph Θ is deprived of the arc h 1 f Ý Ñ h. The problem indicated by the chapter's title -redundancy elimination of points-to graph using must-alias -is then formalized as the computation of the minimal sub-points-to graph of Θ, Θ such that γpµ, Θq = γpµ, Θq.

With this semantics-based formulation, we will be able to reply to the 2 nd question mentioned above. The theoretical study on the redundancy elimination is shown in Sect. 4.3. In essence, we aim at a sufficient condition for redundant points-to arcs. We define an arc being essential as the exact converse of being redundant. Then our goal is turned to find necessary conditions of an arc being essential. It turns out the found necessary condition is closely related with the concept of backward-simulation. Similar terms like "simulation", "bisimulation" etc., are frequently used in the theory of the Calculus for Communicating Systems (CCS), model checking and game theory. For any node n of must-graph and node h of points-to graph, whenever n R h we have, for any incoming arc of n of label f , written as n 1 f Ý Ñ n, we can find a corresponding incoming arc of h with the same label f , written as

h 1 f Ý Ñ h, such that n 1 R h 1 .
A node n P nodepµq is backward-simulated by h P nodepΘq, denoted by n ∽ h, if and only if there exists a backward simulation R such that n R H.

∽ can be equivalently defined to be the greatest fixpoint of its associated functional F ∽ defined as

F ∽ pRq fi tpn, hq | @n 1 f Ý Ñ n, Dh 1 f Ý Ñ h : n 1 Rh 1 u (4.1)
An important convention is, the root of must-graph is backward-simulated by the root of points-to graph: ˝∽ ˝. [START_REF] Bagnara | The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems[END_REF] Three observations are immediate.

1. the empty relation is also a backward-simulation.

2. The union of two backward-simulation is still a backward-simulation.

3. ∽ is the union of all backward-simulations.

In this presentation, when we say "compute backward-simulation", we are interested in the maximal one w.r.t. the set inclusion order Ď.

Illustration of backward-simulation can be found in Fig. 4.4. If n of must-graph is backward-simulated by an h of points-to graph, each incoming arc of n denoted by n 1 f Ý Ñ n, must have a corresponding incoming arc of h denoted by h 1 g Ý Ñ h s.t. their labels are the same (f = g), and their sources are backward-simulated. Consider the example in Fig. 4.5. The points-to graph (left) has 2 redundant arcs

h n h q fs d d h p ft q q h 1 f 1 y y n 1 1 f 1 d d n 1 2 f 1 q q n 1 t ft y y n 1 s fs Figure 4.4: Backward-simulation h 1 f f G G h 2 f } } ˝x d d xz 0 0 y G G h 5 h 3 f G G f y y h 4 2 ˝y d d x G G 1 f y y
h 1 f Ý Ñ h 2 and h 2 f Ý Ñ h 3 in the presence of the must-graph (right), but h 3 f Ý Ñ h 4 is not redundant because h 3 is shared by z. Write n ∽ h if n is backward-simulated by h. We have 1 ∽ h 1 , 1 ∽ h 3 , 2 ∽ h 4 , 2 ∽ h 5 .
We will show how the information from ∽ can be used to remove the redundant arcs in Sect. 4.3 and 4.4.

Contribution

In this chapter, we introduce the problem of redundancy elimination of points-to graph using must-alias.

• We propose and prove the soundness of a procedure for the problem.

• We show the polynomial complexity of our algorithm is polynomial w.r.t. the size of the input points-to graph and must-graph. This means our approach introduces acceptable complexity overhead.

Outline We formalize the problem in Sect. 4.2. Theoretical results are shown in Sect. 4.3. We give the algorithm in Sect. 4.4 and show its incompleteness in Sect. 4.5.

Redundancy Elimination of Points-to Graph

In this section, we shall formalize the problem. The syntax of points-to graph slightly differs from the earlier chapters. We will investigate the mathematical notations and data structures that occur throughout the presentation. Then we specify the semantics of the must-graph and points-to graph. The semantics is defined via concretization function. In particular, we introduce the definition of common environment and essential arc. The latter is an exact converse of redundant arc. In the last subsection, we give a lemma that reveals an equivalent condition of an arc being essential.

Must-graph and the Non-standard points-to graph

We have seen various graph representations in Sect. 4.1. Our problem will be modeled in terms of graph glossary. In general, an arc-labeled directed graph (called graph henceforth), G, is defined to be a set of nodes together with a set of labeled arcs joining certain pairs of nodes. An arc labeled

f from v 1 to v is denoted by v 1 f Ý Ñ v.
The source and the target of the arc are v 1 and v respectively. An incoming arc (resp. outgoing arc) of node v is an arc that has v as its target (resp. source). Such graph is determinist if each node has at most one outgoing arc for a certain label.

In our presentation, a graph is rooted. We assume a single artificial root. By convention, we exclude the root to be considered as a node of graph. Each node is assumed to be reachable from one of the roots. An access path is defined to be a sequence of labels. The length of an access path is its number of labels. An empty access path is an access path of length 0.

We will use the following notations. The set of nodes and the set of arcs of a graph G are denoted by nodepGq and arcpGq respectively. The universe of labels is denoted by Σ. The root is denoted by ˝. We write v f Ý Ñ J to represent the predicate that no outgoing arc of label f exists from v. For an access path u fi f 0 .f 1f n , u.f means f 0 .f 1f n .f . Given G, a non-empty access path u evaluates to the set of nodes it eventually reaches, denoted by Gp uq. The result of Gp uq is a set. We write Gp uq = J if u evaluates to an empty set. We write Gp uq = v if u evaluates to the singleton set tvu. The empty access path is denoted by ǫ. By convention, the empty access path evaluates to the graph root: Gpǫq = ˝. We will use the following primary domains. Ref fi tr 1 , r 2 . . .u is an enumerable set of concrete references, representing physical memories, ranged over by r. H fi th 1 , h 2 . . .u is an enumerable set of abstract references, ranged over by h. Each concrete reference r is abstracted by an abstract reference h, written as ⊲prq = h or r ⊲ h. At last, N fi t1, 2 . . .u is a finite set of uninterpreted symbols used for must-graph, ranged over by n .

We can now define the environment, the points-to graph, and the mustgraph in terms of the above notations. Definition 4.2.1. The environment Env ranged over by ρ, the points-to graph P to ranged over by Θ, and the must-graph M ust ranged over by µ, are defined to be graphs with their nodes belonging to Ref , H and N respectively. The environment and the must-graph are deterministic: Given a source s and a label l, if s l Ý Ñ t 1 and s l Ý Ñ t 2 are two arcs, t 1 and t 2 must be the same node.

Redundancy Elimination in a Semantics-based View

Semantically, a points-to graph Θ is an over-approximation of the concrete environment: If there is an arc r 1 f Ý Ñ r in the environment ρ, there must be an arc h 1 f Ý Ñ h of points-to graph with r 1 ⊲ h 1 and r ⊲ h. Since the nodes are reachable by root, we represent this semantics by the concretization function γ : P to Ñ ℘pEnvq.

Definition 4.2.2 (Semantics of points-to graph).

γpΘq fi tρ | pρp uq ⊲ h 1 ^ρp u.f q ⊲ h ùñ h 1 f Ý Ñ h P arcpΘqu (4.2)
It is worth noting that the points-to graph thus defined only captures reachable cells. By abuse of language, we have used a single γ to mean the semantics of µ, Θ, and pµ, Θq. A must-graph records an under-approximation of concrete must-alias. Its nodes are purely symbolic. If two access paths evaluate to the same symbolic value, they are either both undefined, or evaluate to the same value in the concrete environments. Definition 4.2.4 (Semantics of the pair pµ, Θq and common environment). Given the pair pµ, Θq, its semantics is the intersection of the semantics of µ and Θ.

γpµ, Θq fi γpµq X γpΘq A common environment is defined to be an environment ρ P γpρ, Θq. Now we can specify the meaning of redundant arcs. Given a points-to graph Θ and its arc h 1 f Ý Ñ h, define reducepΘ, h 1 f Ý Ñ hq as an operation that not only eliminates h 1 f Ý Ñ h from the graph, but also eliminates the caused garbage. For example, in Fig. 4.4, reducepΘ,

h 1 f Ý Ñ h2q is the sub-points-to graph of Θ that does not contain h 1 f Ý Ñ h 2 and h 2 f Ý Ñ h 3 .
The latter is the garbage due to the removal of h 1 f Ý Ñ h. Remark. This step of garbage collection in the definition of reduce is necessary. Recall that the nodes of points-to graph are assumed to be reachable from the root. So, if we simply "pull out" an arc from a points-to graph, the resulted graph may contain nodes that are no more reachable from the root. Besides, it is worth noting that reduce is only used as a mathematical notation, not for our algorithm. Definition 4.2.5 (Essential arc). The points-to arc h 1 f Ý Ñ h of a pointsto graph u is called essential in the presence of a must-graph Θ, if the semantics of pµ, Θq, i.e., γpµ, Θq, gets changed by removing the considered points-to arc h 1 f Ý Ñ h from the points-to graph Θ.

essential µ,Θ ph 1 f Ý Ñ hqq fi h 1 f Ý Ñ h P arcpΘq ^γpµ, Θq ‰ γpµ, Θq (4.4)
where Θ is obtained by removing

h 1 f Ý Ñ h from Θ. Θ fi reducepΘ, h 1 f Ý Ñ hq
Our goal is turned to find the necessary conditions of an arc being essential, because the contra-position of such necessary condition will be a sufficient condition to soundly remove arcs of points-to graph. The following lemma gives a such necessary condition of an arc being essential. Intuitively, an arc is essential if it can be "passed through" by some common environment ρ P γpµ, Θq.

Finally, we are able to define our problem indicated by the chapter's title.

Definition 4.2.6 (Problem of redundancy elimination and reduced minimal points-to graph). Let pµ, Θq be a pair of must-graph and points-to graph. The problem of redundancy elimination of points-to graph using must-alias is to find the minimal sub-points-to graph Θ, called reduced minimal points-to graph such that the concretization is preserved.

reducedpµ, Θq fi mint Θ Ď Θ | γpµ, Θq = γpµ, Θqu (4.5)
The fact that such minimal points-to graph exists and is unique will be shown in Lem. 4.2.2 below, which gives an equivalent condition that determines whether an arc is essential.

Toward the Soundness Condition

We first define chain of points-to graph that will be used to prove Lem. 4.2.2. Definition 4.2.7 (Chain of points-to arc). A chain of points-to arc from a node h 0 to a node h m is a sequence of arcs, h 0

f 1 Ý Ñ h 1 , h 1 f 2 Ý Ñ h 2 ,. . . , h 0 fm ÝÑ h m , where the target of the edge h i-1 f i-1 ÝÝÑ h i equals the source of the edge h i f i Ý Ñ h i+1 .
The arc chain is said to have the source n 0 , target n m , and length m ě 0. Lemma 4.2.1. Let ρ be an environment of a points-to graph Θ, h be a node of Θ, u fi f 1 .f 2 f n be a non-empty access path s.t.

ρp uq ⊲ h

Then we have a chain of points-to arc from ˝to h,

˝f1 Ý Ñ h 1 , h 1 f 2 Ý Ñ h 2 , h 2 f 3 Ý Ñ h 3 . . . h n-1 fn Ý Ñ h such that ρpf 1 . . . f k q ⊲ h k for 1 ď k ď n.
The proof for the above lemma is simple by induction (omitted). The following result plays a kernel role for the next section. The lemma basically states that an arc is essential if and only if it can be "passed through" by a common environment. Lemma 4.2.2. Let pµ, Θq be a pair of must-graph and points-to graph. A points-to arc h 1 f Ý Ñ h is essential if and only if, for some common environment ρ P γpµ, Θq and an access path u, we have

ρp uq ⊲ h 1 ^ρp u.f q ⊲ h (4.6)
Proof of Lem. 4.2.2. First, we prove that the ðù part by the semantics of points-to graph. Let ρ P γpΘ, µq be a common environment and u be an access path. Assume

ρp uq ⊲ h 1 ^ρp u.f q ⊲ h (A)
It suffices to show that ρ is not an environment of Θ, recalling the notion of essential arc (Def. 4.2.5) and common environment (Def. 4.2.4). Assume by contradiction that ρ P γp Θq. By (A) and the semantics of points-to graph, we have h 1 f Ý Ñ h as an arc of Θ. This contradicts the definition of Θ. Now prove the ùñ part. Let the points-to arc h 1 f Ý Ñ h be an essential arc, and let Θ fi reducepΘ, h 1 f Ý Ñ hq. The definition of essential arc (Def. 4.2.5) tells the existence of an environment that belongs to γpµ, Θq but does not belong to γpµ, Θq. Therefore we can find some ρ * s.t.

ρ * P γpΘq ^ρ * R γp Θq .
Recall that ρ * P γpΘq means, for each h 1 , f, h, u,

ρ * p uq ⊲ h 1 ^ρ * p u.f q ⊲ h ùñ h 1 f Ý Ñ h P arcpΘq (4.7)
and ρ * R γp Θq means, for some

h 1 * , f * , h * , u * , ρ * p u * q ⊲ h 1 * ^ρ * p u * .f * q ⊲ h * ^h1 * f * Ý Ñ h * R arcp Θq (4.8)
Combining the two, we have

h 1 * f * Ý Ñ h * P arcpΘq and h 1 * f * Ý Ñ h * R arcp Θq. Recall that Θ is obtained by removing h 1 f
Ý Ñ h and its consequence garbage from Θ, we only need to discuss two cases.

• Case I: The arc h 1 * f Ý Ñ h * is exactly h 1 f Ý Ñ h.
We conclude immediately from (4.8).

• Case II: The arc

h 1 * f Ý Ñ h * will become the garbage once h 1 f Ý Ñ h is removed from Θ.
Write3 u * as f 1 .f 2 Due to Lem. 4.2.1 and ρ * p u * q ⊲ h 1 * , we have a chain C of points-to arc from ˝to h 1 * s.t.

ρ * pf 0 .f 1 . . . f k q ⊲ h k
On the other hand, case II implies that any chain of points-to arcs from

˝to h * ˝f1 Ý Ñ h 1 , h 1 f 2 Ý Ñ h 2 , h 2 f 3 Ý Ñ h 3h n-2 fn Ý Ñ h * (4.9) must contain h 1 f Ý Ñ h. Otherwise, if h 1 f Ý Ñ h
is not one of the arcs in the chain (4.9), then the node h 1 * is still reachable through the chain C, noting that the removal of h 1 f Ý Ñ h will not make any arc of the chain become garbage. This contradicts the assumption of case II. Thus, we can find a prefix of u, u pre , such that ρ * p u pre q ⊲ h 1 ^ρ * p u pre .f q ⊲ h We conclude for case II.

Road-map

We have expressed an equivalent condition for an arc being essential in the form of

ρp uq ⊲ h 1 ^ρp u.f q ⊲ h (C)
The following work is to study the consequence of ρp uq ⊲ h by which we will obtain the necessary condition for an arc being essential. Thus, whenever we are asked whether an points-arc is redundant, we verify whether the necessary condition is satisfied. A part of redundant arcs can be eliminated in this way.

It is clear that we are required to find necessary conditions that can be easily checked. Moreover, it is desirable that this approach gives a complete solution, in the sense that the obtained necessary condition is as strong as its premise (the above C). Here we preview that the desire to be complete should be very difficult to achieve, because we have shown (Sect. 4.5) the NP-hardness of the problem of redundancy elimination of points-to graph. Next, let us go through a theoretical intermezzo.

Backward-simulation and Fuzzy Nodes

Given pµ, Θq, and h P nodepΘq, the goal of this section is to find the necessary condition of ρp uq⊲h for some ρ P γpµ, Θq and some access path u. Depending on whether the access path has an evaluation in the must-graph (i.e. whether µp uq = J), we will consider separately

ρp uq ⊲ h ^µp uq ‰ J (4.10)
and

ρp uq ⊲ h ^µp uq = J (4.11)
The following lemma gives the necessary condition of (4.10).

Lemma 4.3.1. A node n of µ is backward-simulated by a node h of Θ, if for some common environment ρ P γpµ, Θq and access path u s.t. µp uq ‰ J, the assertion ρp uq ⊲ h holds.

@ρ P γpµ, Θq, @µ, @n P nodepµq : ρp uq ⊲ h ^µp uq = n ùñ n ∽ h (4.12)

The proof for this lemma is tedious. It may be skipped upon a first reading.

Proof. Define

Rpρ, uq fi tpn, hq | ρp uq ⊲ h ^µp uq = nu

The goal is to prove, for any access path u P Σ * and ρ P γpµ, Θq, we have Rpρ, uq Ď∽.

Since ∽ is the greatest fixpoint of its associated functional F ∽ by Def. 4.1.1, it suffices to show 4Rpρ, uq Ď F ∽ pRpρ, uqq Take an arbitrary access path u, an environment ρ P γpµ, Θq, a node n of must-graph µ and a node h of points-to graph Θ such that nRpρ, uqh

we are engaged to prove

@n 1 , f : n 1 f Ý Ñ n P arcpµq ùñ Dh 1 : h 1 f Ý Ñ h P arcpΘq ^n1 Rpρ, uq h 1 (4.14)
Recall that we have assumed that each node is reachable from the root. This means, given any n 1 , f s.t. n 1 f Ý Ñ n, there exists some u 1 s.t. µp u 1 q = n 1 . The relationship among n, n 1 , u, u 1 can be illustrated by the must-graph

n 1 f G G n ˝ u 1 c c u U U
It follows that ρp u 1 q ‰ J. This is because, if it is not the case, we have ρp u 1 .f q = J and thus ρp uq = J (4.15)

following the semantics of must-graph. But (4.15) contradicts the fact ρp uq⊲ h implied from 4.13. By Lem.4.2.1, we can find h 1 P nodepΘq s.t. ρp u 1 q ⊲ h 1 . Now we verify the conclusion part of (4.14): we have n 1 Rpρ, uq h 1 by the definition of R. To show h 1 f Ý Ñ h, recall the semantics of points-to graph. It suffices to show ρp u 1 .f q ⊲ h. This is true following ρp uq ⊲ h and µp uq = µp u 1 .f q, since ρ * P γpµq implies ρpµ 1 .f q = ρpµq. This completes the proof for (4.14) under the assumption nRpρ, uqh. The proof is completed.

Below we introduce "fuzzy nodes". This will be used to find the necessary condition of (4.11). Definition 4.3.1 (Fuzzy node). A fuzzy node h is a points-to node that has an incoming arc h 1 f Ý Ñ h labeled f such that h 1 is backward-simulated by a must-node n, and this node n does not have an outgoing arc labeled f .

fuzzyphq fi Dh 1 f Ý Ñ h, Dn 1 P nodepµq : n 1 ∽ h 1 ^n1 f Ý Ñ J (4.16)
Revisit the example of Fig. 4.5. The node h 3 is a fuzzy node. This is becasue these esists an points-to arc from the root to h 3 labeled z, yet in the must-graph there is no arc labeled by z and orignated from the root (remind that the root in the must-graph is back-simulated with the root in the points-to graph, according to our convention.) Lemma 4.3.2 (Fuzzy node). Let ρ P γpµ, Θq be a common environment, and u be an access path such that ρp uq ⊲ h ^µp uq = J Then h is reachable by a fuzzy node h

D h : fuzzyp hq ^h Ñ * h
Proof. By µp uq = J, we have a strict prefix of u, denoted u 1 .f such that5 µp u 1 q ‰ J ^µp u 1 .f q = J (4.17)

By Lem. 4.2.1, we have h P nodepΘq s.t.

h Ñ * h ^ρp u 1 q ⊲ h (4.18)

Let n 1 P nodepµq be µp u 1 q since µp u 1 q ‰ J by (4.17). Following Lem. 4.2.2, we obtain (4.17). By the definition of fuzzy nodes, we obtain fuzzyp hq (

n 1 ∽ h Note n 1 f Ý Ñ J by
We conclude combining (4.18) and (4. [START_REF] Choi | Efficient flowsensitive interprocedural computation of pointer-induced aliases and side effects[END_REF]).

Finally, we can give a necessary condition for an arc being essential. This theorem can be directly translated to an algorithm that finds redundant points-to arc in the presence of must-alias. Theorem 4.3.1. Let pµ, Θq be a must-graph and points-to graph. If a pointsto arc h 1 f Ý Ñ h is essential, then one of the following assertions must hold.

paq Dn 1 , n P nodepµq :

n 1 f Ý Ñ n ^n1 ∽ h 1 ^n ∽ h pbq Dn 1 P nodepµq : n 1 f Ý Ñ J ^n1 ∽ h 1 pcq D h P nodepΘq : fuzzyp hq ^h Ñ * h 1
Proof. By Lem. 4.2.2 , we have ρp uq ⊲ h 1 and ρp u.f q ⊲ h for some ρ P γxµ, Θy and u. Logically, we have 3 disjunctive cases:

• Case 1: Dn 1 , n P nodepµq, µp uq = n 1 , µp u.f q = n • Case 2: Dn 1 P nodepµq, µp uq = n 1 , µp u.f q = J • Case 3: µp uq = J

Algorithm of Redundancy Elimination

A direct implementation following Thm. 4.3.1 is presented in Algorithm 1.

Here we describe different parts of the algorithm and show its worst-case complexity. We use these notations: |Θ| and |µ| for the number of nodes of Θ and µ respectively; }Θ} and }µ} for the number of arcs of Θ and µ respectively. Denote | ∽ µ,Θ | as the size of the backward simulation. It is clear

| ∽ µ,Θ | ď |µ| ˆ|Θ| (4.20)
• From line 1 to 11, the algorithm computes the backward-simulation, which is given by backsim at the end of the while loop (at line 12).

To see this, denote backsim k to be the content of backsim when the while loop starts its k -th iteration (at line 2) and we have

backsim 1 = nodepµq ˆnodepΘq backsim k+1 = tpn, hq | @n 1 f Ý Ñ n, Dh 1 f Ý Ñ h : n 1 backsim k h 1 u
Thus backsim computes the greatest fix point of F ∽ defined in Def. 4.1.1.

The worst-case complexity for this part is Op}Θ} ¨}µ} ¨| ∽ µ,Θ |q. This is because the outside while loop (from line 2 to 11) at most iterates | ∽ µ,Θ | times, and its inner loop at most iterates over all the arcs of µ and Θ.

• From line 12 to 18, the algorithm computes the fuzzy nodes of Def. 4.3.1.

It is clear that the worst-case complexity for this part is Op}Θ}¨| ∽ µ,Θ |q.

• From line 19 to 24, the algorithm computes the reachable nodes of the fuzzy nodes, i.e., the h satisfying condition (c) of Thm. The reachable nodes are marked via the boolean array visited. At line 24, we use traversal(h,visited) to mean a standard procedure like depth-first traversal that traverses and marks the nodes of pointsto graph reachable from the node h. The procedure is assumed to visit the nodes that are not marked by visited.

The worst-case complexity for this part is Op}Θ} + |Θ|q. This is the complexity for a standard traversal like depth-first iteration. Although there may be more than 1 fuzzy node, each traversal will mark the visited nodes so that they will not be visited for the following traversals of the remained fuzzy nodes.

• From line 25 to 31, the algorithm computes redundant arc by putting together the arcs that do not satisfy the conditions (a), (b) or (c) in Thm. 4.3.1.

Finally, we conclude that the worst-case complexity for the algorithm is dominated by the program from line 1 to 11, which is Op}Θ}¨}µ}¨| ∽ µ,Θ |q. We have the following conclusion following a conservative estimation of | ∽ µ,Θ |, cf. (4.20).

Op}Θ} ¨}µ} ¨|Θ| ¨|µ|q

At last, as a case study, we review the 2 nd example of Sect. 4.1 (Fig. 4.5). We have 1 ∽ h 1 , 1 ∽ h 3 , 2 ∽ h 4 , 2 ∽ h 5 . The fuzzy node is h 3 . By Thm.

4.3.1, we immediately obtain the redundant arcs h

1 f Ý Ñ h 2 and h 2 f Ý Ñ h 3 .
Discussion. In general, must-graph in real programs is very small compared to points-to graph. On the one hand, must-analysis is expensive. The ambition to produce a precise large must-alias may not be realistic; On the other hand, at each merge point of program, must-alias analysis will become smaller because it consists of intersection instead of union at merge points.

In the examples in Sect. 4.1, the must-graph has at most 2 nodes. In condition that the must-graph is much smaller than points-to graph, we have an algorithm of complexity Op}Θ} ¨|Θ|q.

Algorithm 1 Redundancy elimination of points-to graph using mustalias Input: must graph µ, points-to graph Θ Output: redundant (redundant arcs) H Ð H

5:

for each arc of Θ labeled by f ,

h 1 f Ý Ñ h do 6:
if pn 1 , h 1 q P backsim then end for 11: end while 12: f uzzy Ð H 13: for each pn 1 , h 1 q P backsim do 14:

for each outgoing arc of h 1 , h for each n 1 s.t. n 1 backsim h 1 do

28:

if notpn 1 f Ý Ñ Jq and not ppn 1 f Ý Ñ n q and pn backsim hqq then 29:

redundantY = th 1 f Ý Ñ hu 30:
end for 31: end for We obtain the backward-simulation

h 1 f G G h 3 j 2 2 ˝x d d x 0 0 h 5 h 2 g G G h 4 k b b 2 j 0 0 ˝x G G 1 f d d g 0 0 4 3 k d d
1 ∽ h 1 , 1 ∽ h 2 , 2 ∽ h 3 , 3 ∽ h 4 , 4 ∽ h 5
None of the nodes is fuzzy. By our algorithm, all arcs should be preserved. However, the arcs h 3 j Ý Ñ h 5 and h 4 k Ý Ñ h 5 could have been removed. This is because, the must graph requires x.f.j = x.g.k. By consequence, informally, x.f.j must follow the flow ˝x Ý Ñ h 1 f Ý Ñ h 3 j Ý Ñ h 5 , and x.g.k must follow the flow

˝x Ý Ñ h 2 g Ý Ñ h 4 k Ý Ñ h 5 ,
but it is impossible because x cannot simultaneously point to h 1 and h 2 . (Remind the concrete environment is modeled to be determinist.)

In the following we show it is NP-hard to find a complete algorithm. We will use the following notations and conventions in the section. Given a must-graph µ and a points-to graph Θ, their concretizations are denoted by γ µ (Def. 4.2.3) and γ Θ (Def. 4.2.2) respectively. The construction process (to be defined shortly) of the graph G is denoted by pµ, Θq = ΦpGq. The reduced minimal points-to graph (Def. 4.2.6) of Θ is denoted by Θ. Given a graph G, the number of nodes is denoted by |G|. For the rooted graphs µ and Θ, their roots are not counted as nodes. For k ě 0, we write x.f k to mean the access path x. k hkkik kj f.f By convention, x.f 0 means x. To prove RE PM is NP-hard, we will prove that the problem of Hamilton circuit is reducible to the RE PM . Classically, the problem of Hamilton circuit is, given a graph G with n nodes, to determine if G has a Hamilton circuit. It is known that Hamilton circuit problem is NP-complete for both directed graph and undirected graph. Here we only consider directed graph with at least 2 nodes.

That is to say, given a question, "Does the directed graph G contain a Hamilton circuit?", we answer this question in a polynomial procedure using the oracle machine solving RE PM .

The process of reduction is as follows. Given a directed graph G with |G| nodes v 1 . . . v |G| , we construct Θ to be the points-to graph started by the arc ˝x Ý Ñ h 1 where the node h 1 will be connected to an arbitrary node of G, say, v 1 ; each arc of Θ, except the one connected to the root, is labeled f and the other nodes in G are renamed h 2 , . . . , h |G| . We construct µ to be the points-to graph started by the arc ˝x Ý Ñ 1 where the node 1 will be connected to an arbitrary node of a directed cycle composed of |G| nodes, and the other nodes of this cycle are named 2, . . . , |G|; each arc, except the one connected to the root, is labeled f . This process, denoted by pµ, Θq = ΦpGq, guarantees the relation between the nodes numbers: |G| = |µ |ù |Θ|.

For example, Fig. 4.7 is the graph G upon which we will determine the existence of a Hamilton circuit. Fig. 4.8 is the corresponding constructed Θ (The label f is not drawn.) and µ.

We will use the following algorithm to determine whether G has a Hamilton circuit, assuming an oracle machine that solves RE PM . Input: The directed graph G with at least 2 nodes. Output: : "Yes/No" if G contains a Hamilton circuit or not.

Construct the points-to graph Θ and the must graph µ using the above mentioned procedure.

Find the reduced minimal points-to graph Θ, using the oracle machine that solves RE PM .

if the nodes number of Θ equals to that of G then output "Yes". else output "No".

For example, the reduced minimal points-to graph in question is shown in Fig 4 .9. The procedure answers "yes" since it contains as many nodes as G. In the following, we assume pµ, Θq to be the must-graph and points-to graph constructed by the indicated process above, and Θ be the reduced minimal points-to graph. h 1 , h 2 , . . . , h |G| , h 1 . Construct ρ * to be a graph that substitutes the nodes h i of Θ P Env to an arbitrary r i such that r i ⊲ h i . The arcs of ρ are chosen to be the circuit

9 9 G G 1 1 G G c c o o g g
h 1 9 9 G G h 2 z z 2 2 ˝x G G h 3 G G h 4 b b h 5 o o j j 4 f Ð Ð 5 f 3 f ˝x G G 1 f G G 2 f y y
r 1 f Ý Ñ r 2 , r 2 f Ý Ñ r 3 , . . . , r |G| f Ý Ñ r 1
By the definition of γ must and γ pto , we verify that ρ * P γ must pµq and ρ * P γ pto pµq. Thus ρ * P γpµ, Θq. It is also straightforward to establish that, for any access path u and h 1 , h P nodespΘq, we have pρ * p uq ⊲ h 1 ^ρ * p u.f q ⊲ h ùñ h 1 f Ý Ñ Θ hq. By Lem. 4.2.2, we conclude that all the arcs of the Hamilton circuit are essential, thus they must be included in Θ. We obtain | Θ| ě |G|. Proof. Proof by contradiction. Assume that no redundant arc is contained in Θ. By Lem. 4.2.2, each node of Θ can be reached by an environment of γpµ, Θq. We have,

|G| = #th | Dρ P γpµ, Θq, D0 ď i < |G|, ρpx.f i q ⊲ hu (4.21)
This is because, for an arbitrary arc h 1 f Ý Ñ h of Θ, there exists an access path u and an environment ρ P γpµ, Θq, such that ρp uq ⊲ h 1 and ρp u.f q ⊲ h. Thus we have (4.21) noting that the space of the considered access paths is tx.f i , i ě 0u, and we also obtain the constraints due to the must graph µ: ρpx.f i q = ρpx.f i+|G| q for any i ě 0 and ρ P γpµq.

Since G does not have Hamilton circuit, @ρ P γpµ, Θq, Dn, m P Z, 0 ď n < m < |G| ^⊲pρpx.f n qq = ⊲pρpx.f m q (4. [START_REF] Cousot | Abstract interpretation frameworks[END_REF] This is because, the sequence h s i defined to satisfy ρpx.f i q⊲h s i for 0 ď i < |G| must have repetitive element. Otherwise, the sequence composes a Hamilton circuit. Noting that ρpx.f i q ⊲ h s i and ρpx.f i+1 q ⊲ h s i+1 imply h s i f Ý Ñ h s i+1 by the concretization of the points-to graph, and ρpxq = ρpx.f |G| q by the concretization of the must-graph.

Combining P p2q is trivially true. Assume that P pkq holds for 2 ď k < K, we need to prove P pKq. That is to say, given an arbitrary graph G with k nodes, assume G does not contain a Hamilton circuit, let Θ be the reduced minimal points-to graph of Θ constructed from Φ. We are engaged to prove that Θ contains strictly less nodes than G does. By Lem. 4.5.2, we have a strict subgraph Θ Ĺ Θ such that γpµ, Θq = γpµ, Θq. Let G be G with corresponding arcs of Θz Θ removed. • Case II: | G| = |G|, we have (a) G does not contain a Hamilton circuit. This is because, otherwise, G will contain a Hamilton circuit as well, noting that G has the same nodes as G and yet more arcs than G. We also have (b) p Θ, µq = Φp Gq (Keep in mind that µ is constructed to contain |G| nodes, thus contains | G| nodes). Therefore, it is eligible to apply the hypothesis of induction. We conclude | Θ| < |G|.

Comparison with Related work

Various methods of optimization have been proposed dealing with the precision/efficiency trade-off. We classify these approaches in 3 major categories.

• Semantics abstraction. This category includes the various traditional points-to analyses that are sensitive or insensitive to particular aspects of the program semantics [START_REF] Livshits | Tracking pointers with path and context sensitivity for bug detection in c programs[END_REF][START_REF] Chatterjee | Relevant context inference[END_REF][START_REF] Andersen | Program Analysis and Specialization for the C Programming Language[END_REF]. Examples are context-sensitive /insensitive analysis flow-sensitive /insensitive analysis, or path sensitive /insensitive analysis, etc. The disadvantage of this approach is it sacrifice the precision when it tries to scale up, or vice-verse.

• Data structure designing. This category notably includes the use of binary decision diagram (BDD) as a compact representation [START_REF] Berndl | Points-to analysis using bdds[END_REF] of pointto graph.

• Redundancy elimination. Examples are partial on-line cycle elimination [START_REF] Fähndrich | Partial online cycle elimination in inclusion constraint graphs[END_REF] and projection merging [START_REF] Su | Projection merging: Reducing redundancies in inclusion constraint graphs[END_REF]. Both simplify the points-to graph by detecting redundant points-to relations. The issues of this approach are how to avoid complexity overhead, and how to ensure soundness.

Our work belongs to the 3 rd category. The use of must-alias to refine points-to analysis should date back to the original work [START_REF] Emami | Contextsensitive interprocedural points-to analysis in the presence of function pointers[END_REF], in which precise killing information is obtained by definite points-to information. The work is limited to C's stack variables. The heap is abstracted as one cell. Choi et al [START_REF] Choi | Efficient flowsensitive interprocedural computation of pointer-induced aliases and side effects[END_REF] showed how must-alias information can help to yield precise alias. Their analysis is also based on C and the alias information is represented in alias pairs, which is considered inefficient. Sagiv et al [START_REF] Sagiv | A logic-based approach to program flow analysis[END_REF] gave simultaneous collection of both universal and existential properties of programs, and showed how to use universal assertions to improve the accuracy of existential assertion. The pointer equality problem is used as an example. Compared to theirs, our work focuses on the pruning of points-to graph. We propose an algorithm to remove redundant arcs in an efficient way.

An algorithm of must-alias is presented in [START_REF] Landi | Interprocedural aliasing in the presence of pointers[END_REF], but it handles only single level pointers and cannot be extended to general cases without complexity explosion. In [START_REF] Bodden | Instance keys: A technique for sharpening whole-program pointer analyses with intraprocedural information[END_REF], the must-alias is computed based on the concept of instance keys. However, they can only deal with local variables. Must-alias concerns only local variable. Although we do not provide an explicit must-alias analyzer in this paper, the must-graph presented in this paper is similar to the e-graph in [START_REF] Bor-Yuh | Abstract interpretation with alien expressions and heap structures[END_REF], or as storeless structure in [START_REF] Jonkers | Abstract storage structures[END_REF].

Conclusions

The objective of this work is to refine points-to analysis using must-alias information. This work is theoretical, and is ahead-of-time because of the lack of a must-alias analyzer in practice for now.

We have established an algorithm of polynomial complexity that removes redundant points-to relations with the help of must-alias relation. We start by formalizing the interfaces of the information obtained from points-to analysis and must-alias analysis as rooted directed graph. Then the semantics of the two graph are specified by a concretization function in the sense of abstract interpretation. This semantics-based problem formalization allows us to deduce an algorithm that is proved correct with regard to this semantics. We give the pseudocode of the algorithm which is of polynomial complexity. This argues that the approach has a reasonable complexity overhead.

Pointer analysis has often been presented in an informal way. Numerous studies have been done for the optimization of existing mainstream pointer analysis. Unfortunately, many of these works lack rigorous formalization, which make them less trust-able and more error-prone. The semantics-based approach of this work leads to a fully proved algorithm which provides a solid way to solve the problem. In particular, the semantics-based approach is mandatory for this problem where one of the component analyses, i.e., must-alias analysis, has not yet been fully studied or implemented in practice.

For future work, we promote a theoretical research for the analysis of must-alias, and a field study for the combination of must-alias with points-to analysis. Experimental results are desired so we can evaluate the benefits of this combination in real-life programs.

Chapter 5 Prototyping NumP

We have implemented a prototype for the abstract domain NumP . Below, we write NumP (in sans-serif font) for the prototype. NumP uses SOOT [START_REF] Vallée-Rai | Soot -a java bytecode optimization framework[END_REF] as the front-end. It modularly combines the pointer analyses in SPARK [START_REF] Lhoták | Scaling Java points-to analysis using Spark[END_REF], and the abstract numerical domains implemented in PPL [START_REF] Bagnara | The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems[END_REF].

We first implement the traditional static numerical analyzer for Java. The implementation will be denoted by Num. This is done by wrapping abstract domains in PPL. Num either skips unrecognized statements or conservatively approximates them using the operator of unconstraint in PPL. The flowinsensitive points-to analyses are directly available in SOOT. They will be denoted by Pter subsequently. The input program is a set of Java classes with a class main indicating the entry point used for call-graph construction.

To ensure extensibility and re-usability, the implementation extensively employs standard object-oriented technologies. As experimental study, we compare NumP with its component analyses for precision and cost.

Design issues

Reused components

A modular designing is essential to make the analysis easy to implement and to maintain. In particular, code duplication should be avoided regarding to the two major components of the analysis, namely, pointer analysis and numerical analysis.

• PPL [START_REF] Bagnara | Possibly not closed convex polyhedra and the parma polyhedra library[END_REF], the Parma Polyhedra Library, is a set of implementations manipulating numerical information that can be represented by points in some n-dimensional vector space. It provides a large amount of numerical abstract domains ready for use, including the non-relational interval abstract domain, the relational polyhedral (convex or not) abstract domains, the weakly-relational octagon abstract domains, and some categories of combined domains, like the powerset construction.

The library is written in C++ , and is ported to Java among others languages. We encapsulate (in the sense of object-oriented technology) the abstract domains provided by PPL as a back-end to compute transfer functions, widening, narrowing and join, etc.

• SOOT [START_REF] Vallée-Rai | Soot -a java bytecode optimization framework[END_REF] is an open-source toolkit for Java program transformation and optimization. In this implementation, two use cases of SOOT can be found: (1) We use SOOT as the front end to transform code sources or their bytecodes into the Jimple intermediate representation.

(2) More than one variants of pointer analyses from SOOT can be borrowed to our implementation, including the field-insensitive/field-sensitive, context-insensitive/context-sensitive, subset-based/union-based, or demanddriven variants.

Precision/cost trade-off

The balance between the precision and the cost is one major concern for the designing of any static analysis.

Regarding to the pointer analysis part of the prototype, we use the flowinsensitive points-to analysis because it can statically infer a relatively precise pointer behavior with affordable time and memory consumption. In the family of flow-insensitive points-to analysis, we may choose to switch on/off the context-sensitivity, field-sensitivity and some other relevant options that influence the performance of the analysis such as subset-based or equality based algorithm. However, we believe it is important to stay with the category of flow-insensitive category, for to the best of our knowledge there has been no flow-sensitive points-to analyses available that are able to run on large programs in Java.

For the numerical analysis part, while we leave the different numerical domains as possible instance of NumP , we will only apply these abstract domains in an intra-procedural way. It is known that the complexity of the operations of numerical domains are mainly decided by the number of variables as well as the line numbers of the analyzed programs. This means, to analyze a large program intra-procedurally has a exponential gain on time in terms of numbers of program procedures/methods.

Implementation

The abstract domain is implemented to test on its performance. The modular designing has to be respected for the ease of implementation.

Architecture

The structure of the analysis is shown in Fig. 5.1 as a UML class diagram: each rectangle represents a Java class, and the arrows indicate the relation between classes. Two kinds of class relations are recorded here: the solidheaded arrow called the has a relation, and the hollow-headed arrow standing for inheritance, or the is a relation. The analysis depicted as the left-most rectangle takes a generic structure in the sense that it is composed of the abstract domain NumP that implements abstract operators and the language parser WHILE np . The kernel architecture is the encapsulation of traditional pointer analysis Pter as its component (the arrow from NumP to Pter , and the inheritance (the arrow from NumP to Num. PPL and SOOT are used as the back-ends of Num and Pter respectively (the arrows from Num to PPL and the arrow from Pter to SOOT). In addition, SOOT also provides the front-end functionality as the language parser (the arrow from WHILE np to SOOT). creates an object of class Pos or Neg according to whether n is positive or not. For both cases, data.val will be assigned to the absolute values of n so that the assumed property of unsignedness can be preserved. From l. 15 to l. 19, the program allocates a new cell to store data and link it to the list created from the precedent iteration.

Our analysis is able to infer the following properties at the end of the program (l .21).

• Prop1 Each list element of hd is in the range of 0 to 9: @l ě 0, hd.next l .item.val P r0.9s

• Prop2 Each array element of buf is in the range of -9 to 7: buf r * s P r-9, 7s

• Prop3 The loop index idx is equal to or larger than the length of the array buf: idx ě buf .length.

We start with a flow-insensitive points-to analysis. A single points-to graph for the whole program can be obtained. The graph has two kinds of arcs. Unlabeled arcs v Ñ h from a variable v to an allocation site h, and labeled arcs h f Ý Ñ h 1 between allocation sites h, h 1 with field f as label. Semantically, the points-to graph disambiguates the heap and tells what must not alias. In line with this semantics, we derive a symbolic variable δ h,val for each pair of heap location h and field val. The key insight is, numerical values bound to syntactically distinct symbolic variables are guaranteed to be stored at different concrete heap locations. It is therefore reasonable to deal with symbolic variables like with scalar variables.

We associate buf ris at l. 1 of Listing. 5.1 with a symbolic variable δ h 1 ,r * s , and buf.length at l. 5 with δ h 1 ,length . Because variable data points to h 2 and h 3 , we associate data.val at l. 9 and l. 13 with both symbolic variables δ h 2 ,val and δ h 3 ,val , reflecting the fact that data may be bound to an object Pos or Neg. Listing 5.2 illustrates the semantics actions taken by our analysis. It is i n t [] buf = { -9 , 7 , 3 , -5} ; / / h1 Unsigned data = n u l l ; L i s t hd = n u l l ; i n t i d x = 0 ; while (i d x < buf . l e n g t h) { invariant in PPL is a conjunction of unit inequalities. In our context, these invariants may involve symbolic variables. We count K + 2 times for an invariant expressed as tx ď 3, y ď 4, δ ď 5u if δ represents K field expressions that literally appear in the program.

The first two columns of Tab. 5.1 show the instanced analyses, with intv denoting the interval abstract domain (Int64 Box from PPL), poly denoting the polyhedral abstract domain (NNC Polyhedron from PPL), spark denoting the flow-insensitive, context-insensitive points-to analysis used by default in SOOT (from SPARK), and geom denoting the flow-insensitive, contextsensitive points-to anlaysis using geometric encoding algorithm [START_REF] Xiao | Geometric encoding: forging the high performance context sensitive points-to analysis for java[END_REF] (from SPARK).

The last two columns show the number of inferred invariants and the time consumed by each analysis. The results confirm the expectation viz., that the numerical analysis combined with pointer analysis infers more invariants than the numerical analysis only, and is more expensive. The best precision is obtained by polyhedral analysis combined with geometric encoding points-to analysis, which is also the most time-consuming. For this small program, the time spent by interval and polyhedral analyses is negligible compared with pointer analysis. This is because Num is intra-procedural so its complexity depends only on the length and the variable number of the program itself, whereas the points-to analysis is inter-procedural so its complexity depends on its dependent classes which are more than 10000 for this small program. Also note that the time spent by NumP is not necessarily more than the addition of its component analyses (compare poly, geom and their combined poly + geom for example). This might be due to the fact that we are using SOOT front-end which transfers programs to Jimple before each analyses.

Below, we use the invariant number and the consumed time as two performance indicators.

Dacapo

We use Dacapo-2006-MR2 to evaluate our analysis on real-world programs. Tab. 5.2 gives our experimental results for the combined intv +spark. We have also tried with polyhedral analysis in which case neither NumP nor Num is able to run over any of the benchmarks. Column 1 of the table gives the eight chosen benchmarks. In column 2, i Num and i NumP are the invariants numbers discovered by Num and by NumP respectively. The invariants number is the total non-trivial invariants collected from each individual method. We use q i fi i NumP {i Num -1

(5.1)

as the indicator for the precision enhancement.

In column 3, we show the time consumed by NumP, Num and Pter. t NumP . What we really care about is the time spent by NumP compared with its combined components. The time overhead is quantified with q t defined as q t fi t NumP {pt Num + t Pter q -1 (5.2)

where t Num , t Pter and t NumP are the total time spent by the analyzers (in seconds). In Tab. 5.2, NumP gives an average of 29.6ˆprecision enhancement with a time overhead of 0.13. This is meaningful: (1) Traditional Num is shown insufficient to analyze numerical properties in real-world programs because a large number of the numerical invariants involved in the program logic are not expressible by scalar variables. It is with the help of a combined pointer analysis that these alien invariants to Num may be discovered. (2) The proposed NumP has the full capability to achieve this ambition because it has little complexity overhead compared to its component analyses. .

Chapter 6 Conclusions

In this thesis, we presented a static analysis that is able to infer numerical properties in programs with pointers. The analysis has a modular construction which allows us to deal with the tradeoff between efficiency and accuracy by tuning the granularity of abstraction and the complexity of the abstract operators.

As a first contribution, we provided the theoretical framework about the combination of numerical analysis and pointer analysis. We provided formal definition of the combined operators through the operators already introduced in the literature. We proved that the derived abstract operators are correct by construction using the theory of abstract interpretation.

A second contribution of this thesis is the theoretical development of an algorithm of partial redundancy elimination of points-to graph by taking advantage of must alias analysis. By tracking must-alias information, for example, that can be gleaned from conditionals and assignments, it is possible to refine points-to graph during its synthesis. We formalized the algorithm, proved its correctness, and showed its incompleteness.

Through the combination of the pointer analysis and the numerical analyses, we obtained a strictly more accurate analysis and more precise results. The main goal of this refinement consists in the automatic discovery of numerical invariants in Java-like programs, which are in general pointer-aware. This permits to make applicable our analysis to practical cases. Moreover, we afforded a modular construction which allows to deal with the tradeoff 93 CHAPTER 6. CONCLUSIONS between efficiency and accuracy by tuning the granularity of the abstraction and the complexity of the abstract operators. Notice that further refinement may be possible by enhancing the points-to graph using must-alias.

Another contribution of this thesis is the NumP tool: a new tool which aims at numerical properties of Java-like programs. NumP is written in Java, and to be used for Java. We have successfully combined the pointer analyses in SPARK, and the numerical abstract domains in PPL to modular generate a static numerical analyzer in the presence of pointers. The using of objectoriented technologies and design patterns makes the prototype NumP fully extensible to a large range of numerical domains and pointer analyses engines. The preliminary results gave us the confirmation of theoretical results about efficiency and accuracy.

Possible future works include:

In theory, we need to leverage the current static numerical analysis to enable strong update. Note that precision of the NumP is affected by the weak update algorithm used in this approach. This may be where we can connect the must-alias analysis and NumP.

In practice, the static numerical analyzer NumP needs to be further developed to take side effects of function calls into account This can be either achieved with a fully inter-procedural analysis with context sensitivity taken into account or not following the incurred complexity, or we can adopt a cheaper side-effect analysis to conservatively simulate the side-effects of procedure invocation. As usual, in-lining may be performed prior to the inter-procedural.

3 . 4 1 fÝ Ñ h 2 and h 2 fÝ Ñ h 3 1 Introduction 1 . 1

 34123111 Semantics abstraction toward NumP takes three steps. 4.1 The example analyzed code. The program first creates two linked lists (from ℓ10 to ℓ40 where List has a field f), nondeterministically assigns to variable x the references of the two lists (from ℓ50 to ℓ90). At last, an instruction accessing the heap is performed under the condition that x, y hold the same reference value. 4.2 Compare standard points-to analyzer and ours. From the first column to the third column: line number, standard points-to analyzer, our analyzer and must-alias analyzer. The graph corresponds to the result before the indicated line number. Labels of the arcs with the same pair of source and targets are grouped together. 4.3 Possible concrete environments for points-to graph in the first row of Fig. 4.2. Here, we have assumed that: r 10 , r 15 are abstracted as h 1 ; r 20 , r 25 are abstracted as h 2 ; r 30 , r 35 are abstracted as h 3 ; and r 40 is abstracted as h 4 4.4 Backward-simulation . 4.5 Points-to graph (left) and must-graph (right). Redundant arcs are h . 4.6 Incompleteness: points-to graph (left) and must-graph (right). 4.7 A Hamilton graph G . 4.8 From left to right, the points-to graph Θ and the must graph µ constructed from the graph G. 4.9 The reduced minimal points-to graph Θ. 5.1 The architecture of the prototype represented as class diagram of UML . 5.2 The work-flow of the prototype represented as action diagram of UML . 5.3 An example in Java. The program passes an array of integers to a list of Unsigned numbers. Unsigned is a superclass of Pos and Neg. It has one field val of integer type. The class List has two fields, item of type Unsigned, and next of type List. .Chapter Context of the Problem

2 GAO

 2

Figure 1 . 1 :

 11 Figure 1.1: Illustration of alias.

Definition 2 . 1 . 1 .

 211 The post-image (resp. pre-image) of a relation R Ď AˆB is a function of type ℘pAq Ñ ℘pBq (resp. ℘pBq Ñ ℘pAq): postrRspA 1 q fi tb P B | Da : pa, bq P R ^a P A 1 u (post-image) prerRspB 1 q fi ta P A | Db : pa, bq P R ^b P B 1 u (pre-image) Definition 2.1.2 (Semilattice). A semilattice pD, \q is the set D equipped with a join operation \ such that for all a, b, c P D a \ a = a (idempotent)

Definition 2 . 1 . 3 (

 213 Partial order). Given a semilattice pD, \q, the partial order Ď is defined to be the maximal relation on D s.t. for each a, b P D, a Ď b if and only if a \ b = b. A set D equipped with a partial order Ď is said to be a poset. An element d P D is an upper bound of D 1 iff each d 1 P D 1 satisfies d 1 Ď d; d is called the supremum of D 1 if d is an upper bound, and for any upper bound d 1 of D 1 , the condition d Ď d 1 holds. The dual definitions of lower bound and infimum are omitted. It can be verified that the relation Ď, is reflexive (@a : a Ď a = a), transitive (@a, b : a Ď b ^b Ď a ùñ a = b), and anti-symmetric (@a, b, c : a Ď b ^b Ď c ùñ a Ď c).

s 4 elemFigure 2 . 1 :

 421 Figure 2.1: The formal syntax of WHILE np (left), and an example program (right).

Example 2 . 3 . 1 .

 231 Consider a loop that increments the value of x:

Definition 2 . 4 . 1 (

 241 Interface of the traditional numerical analyzer).

Lemma

Definition 3 . 2 . 4 (

 324 The abstract domain NumP and its concretization). The abstract domain NumP is defined to be NumP fi Num 7 r∆ Y Var n s ˆPter7 (3.6)

A 5

 5 fi ℘p℘pRef q ˆEnv ˆHeapq ÓÒ Isomorphism Ă A 5 fi ℘pNumrD Y Var n s ˆPter q ÓÒ Cartesian abstraction A 6 fi ℘pNumrD Y Var n sq ˆ℘pPter q ÓÒ Reuse existing domains NumP fi Num 7 r∆ Y Var n s ˆPter7

Figure 3 . 4 :

 34 Figure 3.4: Semantics abstraction toward NumP takes three steps.

Lemma 3 . 4 . 3 (

 343 Restriction). n |ù n 7 ñ n |FV pn 7 q |ù n 7 .

.22) implies rσ -1 sn |ù n 7 (3 . 25)

 7325 due to Lem. 3.4.3. Combining the two cases, we obtain (3.20) following Lem. 3.4.2.

Figure 4 . 1 :

 41 Figure 4.1:The example analyzed code. The program first creates two linked lists (from ℓ10 to ℓ40 where List has a field f), non-deterministically assigns to variable x the references of the two lists (from ℓ50 to ℓ90). At last, an instruction accessing the heap is performed under the condition that x, y hold the same reference value.

1 f xy d d z 0 0 2 standardFigure 4 . 2 : 10 f G G r 20 ˝x b b xz 3 3 yFigure 4 . 3 :

 124210343 Figure 4.2: Compare standard points-to analyzer and ours. From the first column to the third column: line number, standard points-to analyzer, our analyzer and must-alias analyzer. The graph corresponds to the result before the indicated line number. Labels of the arcs with the same pair of source and targets are grouped together.

Definition 4 . 1 . 1 (

 411 Backward-simulation). Given a must-graph µ and a pointsto graph Θ, a relation R between nodepµq and nodepΘq is a backward-simulation if and only if

Figure 4 . 5 : 1 fÝ Ñ h 2 and h 2 fÝ Ñ h 3 .

 45123 Figure 4.5: Points-to graph (left) and must-graph (right). Redundant arcs are h 1 f Ý Ñ h 2 and h 2 f Ý Ñ h 3 .

Definition 4 . 2 . 3 (

 423 Semantics of must-graph).γpµq fi tρ | pµp uq = µp vq ‰ J ùñ pρp uq = ρp vqq _ pρp uq = J ^ρp vq = Jqu (4.3)

Case 1

 1 and case 2 imply (a) and (b) respectively due to the lemma of backward-simulation (Lem. 4.3.1). Case 3 implies (c) due to the lemma of fuzzy node (Lem. 4.3.2).

4 . 3 . 1 ,

 431 th | D h P nodepΘq : fuzzyp hq ^h Ñ * hu

Theorem 4 . 4 . 1 .

 441 The worst-complexity of Algorithm 1 is quartic.

Figure 4 . 6 :

 46 Figure 4.6: Incompleteness: points-to graph (left) and must-graph (right).

Theorem 4 . 5 . 1 .

 451 The problem of Redundancy Elimination of Points-to graph with Must-alias (called RE PM in this section) is NP-hard.

Figure 4 . 7 :

 47 Figure 4.7: A Hamilton graph G

Lemma 4 . 5 . 1 .

 451 If G contains a Hamilton circuit, then Θ and G have equal number of nodes: | Θ| = |G|. Proof. It is clear | Θ| ď |G|, since | Θ| ď |Θ| and |Θ| = |G|. We prove | Θ| ě |G|. Assume that G's Hamilton circuit in terms of Θ's nodes is

Figure 4 . 8 :Figure 4 . 9 :

 4849 Figure 4.8: From left to right, the points-to graph Θ and the must graph µ constructed from the graph G.

Lemma 4 . 5 . 2 .

 452 If G does not contain a Hamilton circuit, then there must be redundant arcs in Θ.

•

 Case I: | G| < |G|, we conclude directly from the two facts | G| = | Θ| (by construction) and | Θ| ď | Θ| (Θ is the reduced minimal graph).

Figure 5 . 1 : 2 Figure 5 . 2 :

 51252 Figure 5.1: The architecture of the prototype represented as class diagram of UML

8 n = δ h 1 ,Figure 5 . 3 :

 8153 Figure 5.3: An example in Java. The program passes an array of integers to a list of Unsigned numbers. Unsigned is a superclass of Pos and Neg. It has one field val of integer type. The class List has two fields, item of type Unsigned, and next of type List.

 Contributions . 1.4 Plan . Introduction . 3.1.1 Objectives and Contributions 3.2 Semantics Abstraction . 3.2.1 An Isomorphic Operational Semantics 3.2.2 Cartesian Abstraction 3.2.3 The Abstract Domain NumP 3.3 Transfer Functions . Stateq . 3.2 r|¨|s 6 : WHILE np Ñ pA

	3 Lifting Numerical Abstract Domains 6 Conclusions Bibliography 3.1 CONTENTS List of Figures	93 95

Contents 1 Introduction 1.1 Context of the Problem . 1.2 Objectives and Methods . 1.2.1 Num ˆPter . 1.2.2 Pter ˆMust . 1.3 2 Background 2.1 Some Definitions in Lattice Theory 2.2 The Languages WHILE np , WHILE n and WHILE p 2.3 Elements of Abstract Interpretation 2.4 Static Numerical Analysis . 2.5 Points-to Analysis . 1.1 Illustration of alias. 1.2 Example program (left) and the semantics actions for its analyse(right). The variable "delta" is the symbolic variable. . . . 2.1 The formal syntax of WHILE np (left), and an example program (right). 3.1 Structural Operational semantics Ą ÝÑ 5 : WHILE np Ñ p Ć State Ć

 Definition 2.1.4 (Complete lattice). A semilattice pD, \q is complete if and only if any subset of D has supremum. The complete lattice can be denoted as pD, Ď, \, [, K, Jq, where Ď is the partial order derived from \ as above. The complete meet [is defined as the supremum of the lower bounds: [D 1 fi \ta P D | @d, a Ď du At last, K and J are the infimum and supremum of D.

	Definition 2.1.5 (Fixpoints). Given a function f defined over a poset
	pD, Ďq, an element d P D is fixpoint, post-fixpoint, or pre-fixpoint of f ,
	if f pdq = d, f pdq Ď d or d Ď f pdq respectively. The least fixpoint of f is
	denoted by lfp f .

 P A 7 Ñ A 7 are called (global) concrete transfer function and (global) abstract transfer function.

	Example 2.3.2 (Cartesian abstraction). Given 2 posets A and B, then we
	have the Galois connection p℘pA ˆBq, α ˆ, γ ˆ, ℘pAq ˆ℘pBqq where	
	α ˆfi λR.ppostrfsts R, postrsnds Rq	(2.2)

Table 3 .

 3 1: Post-conditions of a.val = b.val + c.val, assuming b.val P r3, 6s, c.val P r4, 8s. Columns 2-6 show 5 aliasing relations between 3 variables. Column 7 joins the results.

	a{b{c ab{c	ac{b	bc{a	abc	join
	a.val [7,14] [7,14] [7,14] [8,12] [8,12] [7,14]
	b.val [3,6] [7,14] [3,6] [4,6] [8,12] [3,14]
	c.val [4,8] [4,8] [7,14] [4,6] [8,12] [4,14]

ment a.val = b.val + c.val (3.1)

 the powerset of State. In the context of WHILE np , the variables and fields are typed. Let ÝÑ 5 : S Ñ ℘pState ˆStateq denote its structural operational semantics (omitted).

	xs n , ny

Num

ÝÑ n 1 xs n , pn, pqyĄ ÝÑ 5 pn 1 , pq ppy p q = r d = pr, f n q xd = x n , ny Num ÝÑ n 1 xy p .f n = x n , pn, pqyĄ ÝÑ 5 pn 1 , pq xs p , py Pter ÝÑ p 1 xs p , pn, pqyĄ ÝÑ 5 pn, p 1 q

 3.2.1 (Isomorphic store-based semantics of WHILE np). Let Num and Pter be the sets of concrete states of WHILE n and WHILE p , as specified in Chap. 2. Let D denote the set of the pairs of concrete references in Ref and the numerical fields in Fld n . In addition, The SOS of WHILE np , denoted by Ą ÝÑ 5 , can be expressed by the SOSs of WHILE n and WHILE p . (Fig. 3.1, in which

	Pter ÝÑ is the SOS of WHILE p ,
	and

D fi Ref ˆFld n (3.2) Let NumrDYVar n s be the set that extends Num over DYVar , i.e., NumrDY Var n s fi pD Y Var n q Ñ Z K . Then a concrete state of WHILE np is also an element in Ć State, with Ć State fi NumrD Y Var n s ˆPter (3.3) Num ÝÑ is the SOS of WHILE n over D Y Var n).

 .2 is the best transformer[START_REF] Cousot | Systematic design of program analysis frameworks[END_REF] of r|¨|s 5, that is, @s P WHILE np : r|s|s 6 = α ˆ˝r|s|s 5 ˝γˆ. r|s p |s 6 pñ, pq fi pñ, r|s p |s 6 p ppqq r|s n |s 6 pñ, pq fi pr|s n |s 6 = r|y p .f n = x n |s 6 pñ, pq (Def r|¨|s 6) 3.2.3 The Abstract Domain NumP Definition 3.2.1 (Symbolic variable). A symbolic variable δ is a pair of abstract reference h P H and numeric field f n P Fld n . The set of symbolic variables is denoted by ∆. ∆ fi H ˆFld n (3.4)The role of symbolic variables is formalized via the notion of instantiation.

	Definition 3.2.2 (Instantiation).

n pñq, pq r|x n = y p .f n |s 6 pñ, pq fi ¨¨ď p $ y p .f n ó d r|x n = d|s 6 n pñq ', p' r|y p .f n = x n |s 6 pñ, pq fi ¨¨ď p $ y p .f n ó d r|d = x n |s 6 n pñq ', p' Figure 3.2: r|¨|s 6 : WHILE np Ñ pA 6 Ñ A 6 q. The notation p $ y p .f n ó d means that d P tpppy p q, f n q | p P pu Proof for the case of y p .f n = x n . α ˆ˝r|y p .f n = x n |s 5 ˝γˆp ñ, pq =α ˆ˝r|y p .f n = x n |s 5 pñ ˆpq (Def. γ ˆ) =α ˆptĄ ÝÑ 5 py p .f n = x n qpn, pq | pn, pq P ñ ˆpuq (Def. r|¨|s 5) =α ˆptp Num ÝÑ pd = x n qpnq, pq | pn, pq P ñ ˆp, d = pppy p q, f n quq (Def. Ą ÝÑ 5) =pt Num ÝÑ pd = x n qpnq | pn, pq P ñ ˆp, p $ y p .f n ó du, pq (Def. α ˆ)

 and rhs 1 respectively. Take an arbitrary σ P Ins ⊲ , let σ fi tpδ i , d i qu 1ďiď|∆| . Take an arbitrary n P NumrD Y Var n s satisfying

	n P lhs 1	(3.19)
	we want to show	
	n P rhs 1	(3.20)
	By Eq. (3.19) and the correctness of r|¨|s 7 n , we have	

Num ÝÑ pd = y n qpnq |ù rσsn 7 . Below we will write nrd Þ Ñ y n s namely n updated with d = y n , for Num ÝÑ pd = y n qpnq. We have nrd Þ Ñ y n s |ù rσsn 7 (3.21) Thus, by Lem. 3.4.2, we have 3 rσ -1 spnrd Þ Ñ y n sq |ù n 7 (3.22)

1 :

 1 backsim Ð nodepµq ˆnodepΘq Y tp˝, ˝qu 2: while backsim changes do

	3:	for each arc of µ, n 1 f Ý Ñ n do
	4:	

 (4.21) and (4.22), we obtain the contradiction |G| < |G|.Lemma 4.5.3. If G has at least 2 nodes and does not contain any Hamilton circuit, then the nodes number in Θ is strictly less than that of G, i.e. | Θ| < |G|.

Proof. Define the predicate P pkq for k ě 2, which holds if and only if the above proposition is true for the graph G of k nodes, i.e. P pkq fi @G, @pµ, Θq, @ Θ : ΦpGq = pµ, ΘqΘ = reducedpµ, Θq^| G |= k ^ HamiltonpGq ùñ | Θ| < |G| (4.23)

Table 5 .

 5 1: Case study on Bellman-Ford

		Analysis	invariants time (s)
	Num	intv	984	3.54
		poly	1141	5.82
	Pter	spark	0	54.45
		geom	0	114.24
	NumP intv + spark	1180	77.84
		intv + geom	1124	112.32
		poly + spark	1460	92.68
		poly + geom	1661	115.40

Table 5 .

 5 2: Performance test of NumP for the Dacapo-2006-MR2 benchmark

	Benchmark	Invariants Numbers	Analysis Time (s)
		i Num	i NumP	q i	t Num t Pter t NumP	q t
	bloat	70238	650091	8.3 16.6 62.6 98.8 0.25
	chart	76972	905011 10.8 18.5 137.6 158.1 0.01
	eclipse	58377	80875	0.4 14.8 40.5 56.1 0.01
	fop	69170 12354926 177.6 23.2 136.3 300.4 0.88
	hsqldb	154151 3328080 20.6 30.6 277.9 345.7 0.12
	jython	105775	460900	3.4 181.6 134.5 204.4 -0.35
	pmd	50023	425933	7.5 15.61 120.0 140.0 0.03
	xalan	109147 1050445	8.6 17.02 91.9 122.1 0.12
	MEAN	86732 2407033 29.6 39.7 125.2 178.2 0.13

Standard Glossary of Software Engineering Terminology, ANSI/IEEE, 1991

Available at http://www.fas.org/spp/starwars/gao/im92026.htm.3 Discovered by Thomas Nicely, more information about the bug can be found at http://www.trnicely.net/pentbug/pentbug.html

http://www.absint.com

The number of aliasing relations is the number of partitions of a n-element set (known as the Bell number) and is asymptotically Opǫ n n!q for any positive ǫ[START_REF] Peter | Notes on counting[END_REF]

This term is used here to be distinguished from basic statements as s n , s p or s np . Note that s n is the assertion, not the whole if-statement.

Although σ is not a bijection, it is guaranteed to be injective. Thus σ -1 is still well-defined.

The null pointer is omitted in the drawings of environments.

This convention is necessary because the root is not considered as a graph node in this presentation. This convention has no conflict with the above definition of backwardsimulation because a root has no incoming arc.

We only prove the case for a non-empty u.

Tarski's fixpoint theorem, or co-inductive proof principle: the greatest fix point of a monotone function over a complete lattice is its greatest pre-fixpoint.

Here u 1 may be an empty access path which causes µp u 1 q = ˝.

grant AMX from the French Ministry of Research. support from AX -l'association

List of Tables

Enhancing Points-to Analysis by Must-Alias

Introduction

We find that a part of redundant arcs in points-to graph can be removed in the presence of must-alias. In [START_REF] Landi | Undecidability of static analysis[END_REF], Landi defines must alias as the aliases that occur on all executions of the program. Must-alias analysis tracks a subset of this information. The detected aliases hold for all program executions, but all the must aliases are not detected. Unlike points-to analysis, must-alias analysis is seldom a subject of serious consideration, although it is sometimes used to perform strong update that sharpens some dependent analysis, as in the the typestate verification [START_REF] Fink | Effective typestate verification in the presence of aliasing[END_REF]. The focus of this chapter is neither pointsto analysis or must-alias analysis, but their combination -we introduce and study the problem of redundancy elimination of points-to graph in the presence of must-alias.

Motivating Example

The Java-like snippet shown in Fig. 4.1 is our example program. Two graph-like structures, points-to graph and must-graph, will be used to represent memory abstractions. The must-alias will be represented by a data structure called must-graph. It is a graph-like structure inspired from worth noting that more than one run-time heap locations may be associated with the same symbolic variable, e.g., δ h 1 ,r * s corresponds to all heap locations of the array buf . By updating the symbolic variable to -9, 7, 3 and -5 successively, we perform a weak update (syntactically noted . = in Listing 5.2), i.e., accumulating values rather than overwriting them.

Finally, the analysis of the program in Listing 5.1 can be treated as an extended numerical analysis, with its semantics actions specified in Listing 5.2. This analysis is called "extended" because it not only deals with scalar variables, but also deals with symbolic variables. By performing an extended polyhedral analysis, we are able to infer the four invariants at the end of the program: δ h 2 ,val P r0, 9s, δ h 3 ,val P r0, 9s, δ h 1 ,r * s P r-9, 7s and δ h 1 ,length -idx ď 0, which imply Prop1, Prop2 and Prop3 respectively.

Below, we give the analysis results from our analysis. On the right is the intermediate Jimple statement. On the left is the deduced constraints.

-i1 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0, #d_5 >= 0, i1 > 0, i0 >= 0} r6 = $r5 {$i3 -#d_1 = 0, i1 -#d_0 = 0, -i0 + $i3 > 0, -i1 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0, #d_5 >= 0, i1 > 0, i0 >= 0} #d_5_8_r6.val = i1 {i1 -#d_0 = 0, i0 >= 0, -i0 + $i3 > 0, #d_1 > 0, -#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0, #d_0 > 0, #d_5 >= 0} goto [?= $r8 = new unsigned4.List] {$i3 -#d_1 = 0, i1 -#d_0 = 0, -i0 + $i3 > 0, -i1 >= 0, -#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0, #d_5 >= 0, i1 >= -9, i0 >= 0} $r7 = new unsigned4.Neg {$i3 -#d_1 = 0, i1 -#d_0 = 0, -i0 + $i3 > 0, -i1 >= 0, -#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0, #d_5 >= 0, i1 >= -9, i0 >= 0} specialinvoke $r7.<unsigned4.Neg: void <init>()>()

-#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_5 >= 0, #d_0 >= -9, #d_8 >= 0} $r8 = new unsigned4.List {i1 -#d_0 = 0, i0 >= 0, -i0 + $i3 > 0, #d_1 > 0, -#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_5 >= 0, #d_0 >= -9, #d_8 >= 0} specialinvoke $r8.<unsigned4.List: void <init>()>() {i1 -#d_0 = 0, i0 >= 0, -i0 + $i3 > 0, #d_1 > 0, -#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_5 >= 0, #d_0 >= -9, #d_8 >= 0} r3 = $r8 {i1 -#d_0 = 0, i0 >= 0, -i0 + $i3 > 0, #d_1 > 0, -#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_5 >= 0, #d_0 >= -9, #d_8 >= 0} r3.<unsigned4.List: unsigned4.Unsigned item> = r6 {i1 -#d_0 = 0, i0 >= 0, -i0 + $i3 > 0, #d_1 > 0, -#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_5 >= 0, #d_0 >= -9, #d_8 >= 0} r3.<unsigned4.List: unsigned4.List next> = r2 {i1 -#d_0 = 0, i0 >= 0, -i0 + $i3 > 0, #d_1 > 0, -#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_5 >= 0, #d_0 >= -9, #d_8 >= 0} r2 = r3 {i1 -#d_0 = 0, i0 >= 0, -i0 + $i3 > 0, #d_1 > 0, -#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_5 >= 0, #d_0 >= -9, #d_8 >= 0} i0 = i0 + 1 {-#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_0 >= -9, #d_5 >= 0, i0 >= 0, #d_8 >= 0} $i3 = #d_1_r1.<LEN> {$i3 -#d_1 = 0, -#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_5 >= 0, #d_0 >= -9, #d_8 >= 0, i0 >= 0} if i0 < $i3 goto i1 = #d_0_r1[i0] {$i3 -#d_1 = 0, -#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0, #d_5 >= 0, #d_0 >= -9, i0 >= 0, i0 -$i3 >= 0} return ~end~.

Experimental Results

Bellman-Ford

A case study is carried out on a small program, Bellman-Ford, taken from the benchmarking of Jchord [51] 1 . Its small size (< 500 LOC in Jimple IR) allows us to run different combined analyses, including the expensive polyhedral numerical analysis and the context-sensitive points-to analysis. The objective here is to "plug in" various combinations and evaluate their precision/cost tradeoff.

It is hard to compare the precision between NumP and Num. One metric that we find reasonable is the total number of constraints contained in the inferred invariants. Recall that NumP uses exactly the same transfer functions from Num for statements in WHILE n , and is able to deal with statements that are in WHILE np but are not in WHILE n . We count the number of nontrivial invariants (an invariant is trivial if it is true) generated by PPL. An