
HAL Id: tel-00918593
https://theses.hal.science/tel-00918593

Submitted on 13 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static analysis of numerical properties in the presence of
pointers
Zhoulai Fu

To cite this version:
Zhoulai Fu. Static analysis of numerical properties in the presence of pointers. Other [cs.OH].
Université de Rennes; Université européenne de Bretagne (2007-2016), 2013. English. �NNT :
2013REN1S060�. �tel-00918593�

https://theses.hal.science/tel-00918593
https://hal.archives-ouvertes.fr

ANNÉE 2013

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale MATISSE

présentée par

Zhoulai FU

préparée à l’unité de recherche IRISA – UMR6074

Institut de Recherche en Informatique et Système Aléatoires
Composante universitaire : Université de Rennes 1

Static Analysis of

Numerical Properties

in the Presence

of Pointers

Thèse soutenue à Rennes
le 22 Juillet, 2013

devant le jury composé de :

Mario SUDHOLT
Professeur, École de Mines de Nante / rapporteur

Laurent MAUBORGNE
Chargé de recherche, IMDEA Software / rapporteur

Antoine MINE
Chargé de recherche, ENS Ulm/ examinateur

Sophie Pinchinat
Professeur, ISTIC, Université de Rennes 1 / exami-
nateur

David PICHARDIE
Chargé de recherche, INRIA/ co-directeur de thèse

Thomas JENSEN
Directeur de recherche, INRIA/ directeur de thèse

1

Acknowledgment

The present thesis has been done in the frame of my PhD contract with Uni-

versité de Rennes 1, in cooperation with INRIA, Rennes, France. I appreciate

the grant AMX from the French Ministry of Research. I also received finan-

cial support from AX – l’association des anciens élèves et diplômés de l’école

polytechnique. Sincere acknowledgments are due to my fellow alumni Vin-

cent Mignotte, Yves Stierlé and Nicolas Zarpas. The discussions with them

at 5 rue Descartes, Paris, turned out to be a crucial point in my professional

life that provided me encouragement to continue with my research career.

Thanks to my supervisors Thomas Jensen and David Pichardie for proof-

reading my thesis. I would also like to thank them for their generously

supporting me to attend two summer schools. There are certainly things

beyond financials — my PhD was never smooth, but looking back, I have

grown up, learned to be positive, and learned to be independent.

I am profoundly grateful to Laurent Mauborgne. Near the end of my PhD

Laurent invited me to his lab. He listened to me and gave me full confidence.

It was a pleasure to work with someone with such humor, humanity, and

fierce intelligence. Thank you, Laurent.

Sincere thanks are due to Scott Livingston, with whom I was lucky enough

to have as an officemate and friend at IMDEA Software, Madrid. I learned

from Scott a sense of altruism, dignity and respect toward life, even including

animals, like bats, which had been large concepts for my humble mind.

I am also indebted to many people for their perspective and technique

guide. They don’t necessarily know me personally. Thanks to Patrick Cousot

for allowing me to take his abstract interpretation course as an auditing

student at ENS, Paris. Thanks to Eric Bodden, Laurie Hendren, Patrick

Lam and others who replied quickly and clearly to my questions on McGill’s

Soot mailing list. Thanks to Roberto Bagnara, Enea Zaffanella and other

PPL development team members who helped me to use their library.

My parents, as well as other family members of mine, have supported me

at all times in my life. I owe them life-long, infinitely.

At last, I wish to express my deepest gratitude to Fang, my wife, for her

unconditional love and support. “You and I have memories „ longer than

the road that stretches out ahead...” (The Beatles – Two of Us)

2

Résumé

Le rythme rapide et furieux de l’évolution de la technologie informatique,

tant pour hardware et les logiciels, est devenu un article de foi pour beaucoup.

Le problème de la fiabilité se pose depuis la construction d’ENIAC, le premier

calculateur électronique qui est Turing complet : ses tubes à vide brûlés

chaque jour, laissant l’ordinateur fréquemment non-opérationnel. Depuis les

années 70, les systèmes informatiques deviennent plus en plus complexe et

empiètent massivement sur notre vie quotidienne à travers toutes sortes de

systèmes embarqués, ordinateurs portables, téléphones mobiles et réseaux

informatiques. Aujourd’hui, la fiabilité du logiciel est un attribut essentiel de

la qualité du logiciel. Si la production de logiciel fiable est depuis longtemps

la préoccupation d’ingénieurs, elle devient à ce jour une branche de sujets de

recherche riche en applications, dont l’analyse statique.

Nous considérons le problème de l’analyse statique des propriétés numé-

riques en présence d’accèss au tas. L’objectif n’est pas d’étudier une nouvelle

analyse statique mais de combiner l’anlayses numérique et l’analyses de poin-

teur. Afin d’exploiter des analyses existantes, nous avons définit un nouveau

domain abstrait, NumP, qui consiste de produit d’une abstraction standard

de pointeurs et une abstraction numérique qui extend domaines abstraits

numériques pour permettre d’exprimer des relations entre des éléments du

tas, des champs et de variables numériques. Le domaine abstrait NumP est

développé à l’aide de la théorie d’interprétation abstraite.

Une deuxème contribution porte sur l’amélioration d’analyse de type

points-to. Cette étude est motivée par l’observation que des graphes résul-

tant d’analyses points-to contiennent souvent des liens qui ne peuvent pas

1

correspondre à une vraie relation de référene pendant l’execution. Nous consi-

dérons des situations dans lesquelles un pointeur est un alias d’un second qui

limite les cibles du premier à un sous-ensemble strict des cibles identifiées

par l’analyse points-to. À cette fin, nous proposons l’utilisation d’une ana-

lyse de must aliases afin d’éliminer les liens correspondant à des références

redondantes. Partant d’une définition sémantique de ces liens, les résultats

principaux de ce travail consistent en une condition nécessaire caractérisant

ces liens. Nous avons formalisé cette combinaison en nous appuyant sur la

notion de bisimulation, bien connue en vérification de modèles ou théorie

de jeu. Un algorithme de complexité polynomiale est proposé et prouvé cor-

rect. Nous avons aussi démontré que le problème pour trouver la conditon

nécessaire et suffisante est NP-dur.

Sur la partie de validation, nous présentons notre approche dans le contexte

de l’analyse de programme Java. Cette analyse est implémentée par combiner

SOOT qui fournit des analyses de pointeurs, et bibliothèque PPL (Parma

Polyhedra Library) qui est une librarie de domaines abstraits numériques.

Notre expériences sur l’algorithme Bellman-Ford explorent les combinaisons

de quatre analyses existantes, deux analyses numériques sur des intervalles et

des polyèdres de la PPL et deux analyses de points-to fournies par SOOT. Les

résultats expérimentaux sur les benchmarks de Dacapo montrent notamment

que notre anlayse permet d’inférer un nombre significativement plus grand

d’invariants que l’utilisation des deux analyses existantes (29 fois plus d’in-

variants en moyenne). En outre, le surcôut en temps de la nouvelle analyse

est limité (13% en moyenne).

2

5

Contents

1 Introduction 12

1.1 Context of the Problem . 12

1.2 Objectives and Methods . 15

1.2.1 Numˆ Pter . 15

1.2.2 Pter ˆMust . 16

1.3 Contributions . 17

1.4 Plan . 18

2 Background 19

2.1 Some Definitions in Lattice Theory 19

2.2 The Languages WHILEnp, WHILEn and WHILEp 21

2.3 Elements of Abstract Interpretation 22

2.4 Static Numerical Analysis . 25

2.5 Points-to Analysis . 27

3 Lifting Numerical Abstract Domains 32

3.1 Introduction . 32

3.1.1 Objectives and Contributions 34

3.2 Semantics Abstraction . 35

3.2.1 An Isomorphic Operational Semantics 36

3.2.2 Cartesian Abstraction 37

3.2.3 The Abstract Domain NumP 38

3.3 Transfer Functions . 39

6

CONTENTS

3.4 Proof of Soundness . 43

3.4.1 Preliminaries . 43

3.4.2 Proof . 45

3.5 Related Work . 47

3.6 Conclusion . 49

4 Enhancing Points-to Analysis 50

4.1 Introduction . 50

4.1.1 Motivating Example 50

4.1.2 Backward-simulation 52

4.1.3 Contribution . 58

4.2 Redundancy Elimination of Points-to Graph 59

4.2.1 Must-graph and the Non-standard points-to graph . . 59

4.2.2 Redundancy Elimination in a Semantics-based View . . 60

4.2.3 Toward the Soundness Condition 63

4.3 Backward-simulation and Fuzzy Nodes 66

4.4 Algorithm of Redundancy Elimination 70

4.5 Incompleteness . 73

4.6 Comparison with Related work 78

4.7 Conclusions . 79

5 Prototyping NumP 81

5.1 Design issues . 81

5.1.1 Reused components . 81

5.1.2 Precision/cost trade-off 82

5.2 Implementation . 83

5.2.1 Architecture . 83

5.2.2 Work-flow . 84

5.3 Experimental Results . 89

5.3.1 Bellman-Ford . 89

5.3.2 Dacapo . 91

7

CONTENTS

6 Conclusions 93

Bibliography 95

8

List of Figures

1.1 Illustration of alias. 14

1.2 Example program (left) and the semantics actions for its anal-

yse(right). The variable “delta” is the symbolic variable. . . . 16

2.1 The formal syntax of WHILEnp (left), and an example program

(right). 21

3.1 Structural Operational semantics ĄÝÑ5 : WHILEnp Ñ pĆState ˆ
ĆStateq . 36

3.2 r|¨|s6 : WHILEnp Ñ pA6 Ñ A6q. The notation p̃ $ yp.fn ó d

means that d P tpppypq, fnq | p P p̃u 37

3.3 Semantics abstraction of memory states at the loop entry of

the example program in Fig. 2.1 (right, l. 3). Heap locations

are depicted as rectangles labeled by references. The value of

each pointer variable is depicted as an arrow from the variable

name to the referenced rectangle. The symbol ˛ is for the null

pointer. We have omitted the range 1 ď k ď 8 of the script k

occurring in the first three rows. The label for the field “next”

on the directed edges is not drawn for the first three rows. . . 40

3.4 Semantics abstraction toward NumP takes three steps. 41

9

LIST OF FIGURES

4.1 The example analyzed code. The program first creates two

linked lists (from ℓ10 to ℓ40 where List has a field f), non-

deterministically assigns to variable x the references of the two

lists (from ℓ50 to ℓ90). At last, an instruction accessing the

heap is performed under the condition that x, y hold the same

reference value. 53

4.2 Compare standard points-to analyzer and ours. From the first

column to the third column: line number, standard points-to

analyzer, our analyzer and must-alias analyzer. The graph

corresponds to the result before the indicated line number.

Labels of the arcs with the same pair of source and targets are

grouped together. 54

4.3 Possible concrete environments for points-to graph in the first

row of Fig. 4.2. Here, we have assumed that: r10, r15 are

abstracted as h1; r20, r25 are abstracted as h2; r30, r35 are ab-

stracted as h3; and r40 is abstracted as h4. 55

4.4 Backward-simulation . 58

4.5 Points-to graph (left) and must-graph (right). Redundant arcs

are h1

f
ÝÑ h2 and h2

f
ÝÑ h3. 58

4.6 Incompleteness: points-to graph (left) and must-graph (right). 73

4.7 A Hamilton graph G . 75

4.8 From left to right, the points-to graph Θ and the must graph

µ constructed from the graph G. 75

4.9 The reduced minimal points-to graph Θ̄. 76

5.1 The architecture of the prototype represented as class diagram

of UML . 84

5.2 The work-flow of the prototype represented as action diagram

of UML . 84

5.3 An example in Java. The program passes an array of integers

to a list of Unsigned numbers. Unsigned is a superclass of

Pos and Neg. It has one field val of integer type. The class

List has two fields, item of type Unsigned, and next of type

List. 86

10

List of Tables

3.1 Post-conditions of a.val = b.val + c.val, assuming b.val P

r3, 6s, c.val P r4, 8s. Columns 2-6 show 5 aliasing relations

between 3 variables. Column 7 joins the results. 33

5.1 Case study on Bellman-Ford 90

5.2 Performance test of NumP for the Dacapo-2006-MR2 benchmark 92

11

Chapter 1

Introduction

1.1 Context of the Problem

The fast and furious pace of change in computing technology, both for hard-

ware and software, has become an article of faith for many. The reliability

of the first Turing-complete electronic computer ENIAC was more about a

question of hardware. Its vacuum tubes burned out every day, leaving the

computer frequently non-operational. In 70 years, the computer systems

are booming exponentially, with their performance and programs size mul-

tiplied by millions. These systems are becoming increasingly complex and

massively impinge on our daily life through all kinds of embedded systems,

laptops, mobile phones and computer network. To date, software reliability

is a key attribute of software quality.

Software reliability is defined by ANSI1 as the probability of failure-free

software operation for a specified period of time in a specified environment.

The term failure in this definition means any departure from the required

function of the system. In safety-critical systems, software failures are fatal.

Some disasters are caused by infamous computer arithmetic errors. The

Patriot missile failed to intercept a scud missile because of the inaccuracy in

a floating point calculation. Patriot measured time in tenths of second and its

internal computing system calculated the measured time by 1{10 to produce

the time in seconds. However, using its 24-bit register the non-terminating

1Standard Glossary of Software Engineering Terminology, ANSI/IEEE, 1991

12

CHAPTER 1. INTRODUCTION

binary expansion of 1{10 has to be truncated, which introduced an error of

about 0.000000095 decimal. The tiny rounding error when accumulated with

more than 100 running hours, was large enough to miss the incoming scud.

The Patriot failure cost 28 lives.2

Another well-known computer-made tragedy was the destruction of Ari-

ane 501 in 1996. It is caused by wrong conversion of a 64-bit floating point

number relating to the horizontal velocity of the rocket to a 16 bit signed

integer. The velocity was recorded by a number larger than 32, 767 which is

the largest number in a 16-bit signed integer. By consequence, the conversion

failed due to the run-time error of integer overflow. The failure resulted in a

loss of more than 370 million U.S dollars [29].

In computer systems that are not safety-critical, a certain failure rate

may be tolerable. Still, this is a question of money and service quality. Poor

services may be the primary complaints of disgruntled clients. Significant

financial consequences can be caused for the manufacturers because correct

systems are essential for their survival. For example, Intel’s highly promoted

Pentium chip P5 is found inaccurate when dividing floating-point numbers

that occur within a specific range. This design woe, known as the Pentium

FDIV bug 3, caused Intel a loss of approximately 475 million U.S. dollars

to replace faulty processors, and severely damaged its reputation as reliable

chip-maker.

To sum up, the reliability of computer-based systems crucially depend

on the correctness of its computing. Can man, who created the computer,

be capable of preventing machine-made misfortune? The theory of Static

analysis strives to achieve this ambition.

While a large range of properties can be considered by methodologies of

static analyses, this thesis focuses on the static analysis of numerical prop-

erties. A simple example can be the automatic discovery of the signs of pro-

gram variables. A more advanced example would be the discovery of linear

relations of program variables, or even non-linear relations. These kinds of

2 GAO. 1992. Patriot Missile Software Problem. Report of

the Information Management and Technology Division. Available at

http://www.fas.org/spp/starwars/gao/im92026.htm.
3Discovered by Thomas Nicely, more information about the bug can be found at

http://www.trnicely.net/pentbug/pentbug.html

13

CHAPTER 1. INTRODUCTION

x // −42 // 0 // −17 // . . .

z

==

y

bb

Figure 1.1: Illustration of alias.

analyses are usually necessary to verify program safety conditions involving

numerical computations, such as division by zero, array index out-of-bound,

or buffer overflow.

Dated back to 1978, Cousot and Halbwachs showed how to determine

at compile-time linear relations among program variables [26]. This kind of

endeavor, technically called static numerical analysis, keeps continuing with

further development of abundant numerical abstract domains [56, 17] that

vary with different precision/efficiency trade-off.

These analyses have been successfully used in practice. Some libraries of

abstract domains have been developed, such as PPL, Polyglot or Apron, to

list a few. On the other hand, the more and more complex data structures

in high-level programming languages make the usage of pointer ubiquitous.

Pointers change the way we look at static numerical analysis.

Pointers may introduce alias problems. An alias occurs when a storage

location is pointed-to by pointers of different names. For instance, Fig. 1.1

represents the data structure of a linked list. Each node has a field val

that stores an integer and a field next that stores the reference of its suc-

cessor node. In the figure, both variables x and z point to the first node; y

points to the third node. The alias relation contains px, zq, px.next.next, yq,

pz.next.next, yq, etc.

To a programmer, this alias problem sounds to be a frequent issue: an

operation of program modifies the properties of a target and unintentionally

changes something that does not appear in the operation. For example, a

store statement may appear to only modify the value of x.f , but each field

reference y.f such that y and x hold equal reference before the operation will

also be affected.

14

CHAPTER 1. INTRODUCTION

1.2 Objectives and Methods

To analyze numerical properties in the presence of pointers, we have inte-

grated pointer analyses with traditional static numerical analysis.The chal-

lenge lies in how to combine the component analyses. We have extensively

employed the semantics approximation framework abstract interpretation [24]

to uniformly combine pointer analyses and traditional numerical analysis.

Two pointer analyses are considered in this context. They are points-to

analysis and must-alias analysis. Below we write Num (sans-serif font) for

traditional static numerical analysis, Pter for points-to analysis, and Must

for must-alias analysis. The long-term objective of this work is to design a

new analysis A that integrates the traditional static numerical analysis with

the two aforementioned pointer analyses.

A = Numˆ Pter ˆMust

This thesis presents how we combine Num with Pter, and Pter with Must,

the combination of the three components are left as future work. Below we

show the basic ideas through two examples.

1.2.1 Numˆ Pter

The example in Fig. 1.2 allocates a list of memory cells on the heap to store

integers ranging from −5 to 2. Suppose that we want to infer the property

holding at the loop entry:

• The value of hd.nextk.val for any k is in the range of −5 to 2

Traditional numerical abstract domains are able to reason on properties

between scalar variables. They can by no way infer the properties of the

quantified hd.nextk.val which does not even appear literally in the program.

The solution is to correlate these hd.nextk.val semantically with some pro-

gram identifier that is syntactically contained in the program. This is where

a pointer analysis comes in. In words, we use the pointer analysis to treat

the concrete program as a sequence of abstract semantics actions specified

on the right of Fig. 1.2. The symbolic variable δ represents elem.val and

is treated in a similar way as scalar variable. However, the semantic action

15

CHAPTER 1. INTRODUCTION

1 i n t i = - 5 ;

2 A hd = nul l , elem = nu l l ;

3 while (i < 3) {
4 elem = new Node () ; // h

5 elem . va l = i ;

6 elem . next = hd ;

7 hd = elem ;

8 i = i + 1;

9 }

1 i n t i = - 5 ;

2 while (i < 3) {
3 δ = i ;

4 i = i + 1;

5 }

Figure 1.2: Example program (left) and the semantics actions for its anal-

yse(right). The variable “delta” is the symbolic variable.

δ = i is to be considered as accumulating, rather than updating, the values of

i to δ. Using traditional numerical analysis, we are able to obtain δ P r−5, 2s

at the entry of the loop. The final step consists in correlating the values

of hd.nextk.val with δ. This step relies on both points-to analysis and the

semantics with regard to δ: δ represents all the concrete references associated

with h and labeled by f . In addition, the points-to analysis tells that each

hd.nextk only holds references allocated at h. The correctness of these steps

can be guaranteed using the theory of abstract interpretation.

1.2.2 Pter ˆMust

In practice, pointer analyses are mostly flow-insensitive. This category of

pointer analyses do not distinguish program flows and may cause imprecision

for the combined numerical analysis presented above.

Consider the Java snippet below. Assume that f is a class field. The

flow-insensitive points-to analysis would reason that f may be equal to a or

b for all the program points. This is imprecise because at l. 5 and l. 6 we

have f and b must not be equal, and f and a must not be equal at l. 9 and

l. 10. Due to this imprecision, the static numerical analysis presented above

would tell that f.val would be in the range of r10, 20s at l. 6 and at l. 10.

16

CHAPTER 1. INTRODUCTION

This imprecision can be recovered using must-alias analysis. Consider

the case at l. 6. We have f and a must be equal before the line. This

information, combined with the fact that a and b can not be equal for the

whole program (obtained from points-to analysis) ensures that f and b can

not be equal at l. 6. The using of must-alias analysis allows us to refine the

flow-insensitive analysis, which in turn makes the static numerical analysis

more precise. Here, the refined points-to analysis combined with traditional

numerical analysis infers that the possible values of f.val will be 10 at l .6

and 20 at l .10.

1 a = new A() ;

2 b = new A() ;

3 i f (. . .) {
4 f = a ;

5 f . v a l =10;

6 }
7 else {
8 f = b ;

9 f . v a l =20;

10 }

1.3 Contributions

We have developed a new abstract domain that combines traditional ab-

stract domain with points-to analysis. This new abstract domain allows us

to express a new category of numerical properties that cannot be expressed

by traditional numerical domain, such as x.f + y.g < aris. This abstract

domain has a modular design and is built from its component abstract do-

mains in a black-box manner. This is meaningful because the soundness of

the component analyses can be proved based on the soundness of its com-

ponents, and the implementation of the combined analysis can be achieved

effortlessly using the existing implementations of its components .

Our second contribution is an algorithm to remove a part of redundancy in

flow-insensitive points-to analysis using must-alias analysis. The algorithm

computes the reduced product of the domains of must-alias analysis and

17

CHAPTER 1. INTRODUCTION

points-to analysis. This allows us to refine the points-to analysis a posterior.

We have experimented with several prototypes to test the effectiveness

of these approaches. Our first implementation consists of a wrapping of ab-

stract domains in PPL, using SOOT [70] as the front-end. This implementa-

tion scales up to program with more than 350 KLoc. Although many existing

numerical domains have been developed in the form of libraries, like PPL,

NEWPOLKA and APRON etc, to the best of our knowledge little relevant

work has been done for Java communities and scale up to real-life programs.

Based on this implementation, we integrate points-to analysis with tradi-

tional numerical domain. The prototype shows that the combined analysis

discovers significantly more numerical invariants than traditional static nu-

merical analysis. In addition, the time overhead of the combined analyses is

little and thus makes it scalable to large program as long as its component

analyses are scalable.

1.4 Plan

This thesis is organized as follows. Chapter 2 is the background for under-

standing this thesis. Chapter 3 gives the theoretical framework of numerical

analysis in the presence of pointers. Chapter 4 presents our theoretical study

of partial redundancy elimination of points-to graph in the presence of must-

alias. Conclusion and future work are shown in Chapter 5.

18

Chapter 2

Background

We use standard notations in predicate calculus (e.g. Enderton’s [31]) and

set theory (e.g. Bourbaki’s [10]). Preliminary concepts on lattice theory

will be first introduced. A standard reference is Birkhoff’s book [6]. Basic

notations on the theory of abstract interpretation will then be covered. The

references for this subject can be Cousot’s thesis in 1978 [20] or [25] of Cousot

and Cousot. At last, we present the static numerical analysis and points-to

analysis as two instances of the abstract interpretation framework.

2.1 Some Definitions in Lattice Theory

Let U be a set. The set of all subsets of U will be denoted by ℘pUq. The set of

all integers, will be denoted by Z. The cardinal of a set U is denoted by |U |.
Given two sets A and B, a relation R is a subset of AˆB. We write a R b for

pa, bq P R. The relation R is called a function, if for each a P A, there exists a

unique b P B such that aRb, i.e., @a, a1 P A, b P B : b R a^b R a1 ùñ a = a1.

This function is said to have type AÑ B.

Definition 2.1.1. The post-image (resp. pre-image) of a relation R Ď AˆB

is a function of type ℘pAq Ñ ℘pBq (resp. ℘pBq Ñ ℘pAq):

postrRspA1q fi tb P B | Da : pa, bq P R ^ a P A1u (post-image)

prerRspB1q fi ta P A | Db : pa, bq P R ^ b P B1u (pre-image)

19

CHAPTER 2. BACKGROUND

Definition 2.1.2 (Semilattice). A semilattice pD,\q is the set D equipped

with a join operation \ such that for all a, b, c P D

a\ a = a (idempotent)

a\ b = b\ a (commutative)

a\ pb\ cq = pa\ bq \ a (associative)

The concept of partially ordered set can then be derived from that of

semilattice.

Definition 2.1.3 (Partial order). Given a semilattice pD,\q, the partial

order Ď is defined to be the maximal relation on D s.t. for each a, b P D,

a Ď b if and only if a\ b = b. A set D equipped with a partial order Ď is said

to be a poset. An element d P D is an upper bound of D1 iff each d1 P D1

satisfies d1 Ď d; d is called the supremum of D1 if d is an upper bound, and

for any upper bound d1 of D1, the condition d Ď d1 holds.

The dual definitions of lower bound and infimum are omitted. It can

be verified that the relation Ď, is reflexive (@a : a Ď a = a), transitive

(@a, b : a Ď b^ b Ď a ùñ a = b), and anti-symmetric (@a, b, c : a Ď b^ b Ď

c ùñ a Ď c).

The complete lattice is a semilattice with a “complete join”:

Definition 2.1.4 (Complete lattice). A semilattice pD,\q is complete if

and only if any subset of D has supremum. The complete lattice can be

denoted as pD,Ď,\,[,K,Jq, where Ď is the partial order derived from \

as above. The complete meet [is defined as the supremum of the lower

bounds: [D1 fi \ta P D | @d, a Ď du At last, K and J are the infimum and

supremum of D.

Definition 2.1.5 (Fixpoints). Given a function f defined over a poset

pD,Ďq, an element d P D is fixpoint, post-fixpoint, or pre-fixpoint of f ,

if fpdq = d, fpdq Ď d or d Ď fpdq respectively. The least fixpoint of f is

denoted by lfp f .

20

CHAPTER 2. BACKGROUND

sn ::= xn = k | xn = yn

| xn = yn ˛ zn | xn ’ yn

sp ::= xp = new | xp = xp.fp

| xp = yp | xp.fp = yp

snp ::= xp.fn = yn | xn = yp.fn

s ::= sn | sp | snp

1 i n t i = - 5 ;

2 A hd = nul l , elem = nu l l ;

3 while (i < 3) {
4 elem = new Node () ; // h

5 elem . va l = i ;

6 elem . next = hd ;

7 hd = elem ;

8 i = i + 1;

9 }

Figure 2.1: The formal syntax of WHILEnp (left), and an example program

(right).

A main result from Tarski [68] is that a monotonic function defined over

a complete lattice admits a least fixpoint:

Theorem 2.1.1 (Tarski’s fixpoint theorem). Given a monotone function f

over a complete lattice pD,Ď,K,\q, the set F = td P D|fpdq = du is a

non-empty complete lattice w.r.t. the order Ď. Furthermore lfp f = [td P

D|fpdq Ď du

2.2 The Languages WHILEnp, WHILEn andWHILEp

Consider an imperative language that mixes pointer and numerical oper-

ations. The language will be denoted by WHILEnp. The left of Fig. 2.1

gives its formal syntax. In the figure, we write k for constant values, ˛

for an arithmetic operator+, −, ∗ and z, and the symbol ’ belonging to

t<,ą,ď,ě,==,‰u denotes a comparison operator. We assume two sets of

variables: numerical variables and pointer variables. Variables x, y, z and

field f are subscripted with n or p to indicate whether they are numerical

values or pointers. An example program is shown on the right of Fig. 2.1.

We shall useWHILEn to refer to basic statements only involving numerical

variables and use the meta-variables sn to range over those statements. Sim-

21

CHAPTER 2. BACKGROUND

ilarly, we let WHILEp be the statements that only use pointer variables and

let sp range over those statements . Thus, the basic statements of WHILEnp

include those in WHILEn and WHILEp, and two more statements in the forms

of xp.fn = yn and xn = yp.fn, where xp, yp are pointer variables, xn, yn are

numerical variables and fn is a numerical field. We let snp range over the

two extra assignments statements belonging to WHILEnp. Finally, we use

meta-variable s to range over all the statements of WHILEnp, i.e., sn, sp and

snp.

The following syntactical categories of these languages will be used in

this thesis. We write Varn, Var p, Fldn and Fldp for the variables and fields

of type n or p. We write Ref for the set of concrete references of program

memories. It is supposed to be an infinite enumerate set.

2.3 Elements of Abstract Interpretation

Abstract interpretation, introduced in the late 1970’s [24] by P. Cousot and

R. Cousot, is a framework of semantics approximation. We briefly review

the major terminology of this theory.

Informally, abstract interpretation aims to construct two different mean-

ings for a programming language where the first gives the usual meaning of

programs in the language, and the second can be used to answer certain ques-

tions about the runtime behavior of programs in the language. The standard

meaning of programs, called concrete semantics, can be typically described

by their input-output function, and the standard interpretation will then be a

function which maps programs to their input-output functions. The abstract

meaning, called abstract semantics will be defined by a function which maps

programs to mathematical objects of a particular universe, called abstract

semantics domain.

Mathematically, the semantics of a program P can often be expressed

by a least fixpoint lfp t r|P |s that is the least solution to a constraint system

X = t r|P |s pXq computed on a complete lattice.

Example 2.3.1. Consider a loop that increments the value of x:

1 x=0;

22

CHAPTER 2. BACKGROUND

2 while (x<10){
3 x = x+1;

4 }

To infer possible values of x before each program point (from 1 to 5), we can

construct the following constraint system.

X1 =H

X2 Ě t0u YX4

X3 Ě X2 X p−8, 10q

X4 Ě tx+ 1|x P X4u

X5 Ě X2 X r10,8q

The analysis of this problem amounts to solving the least fixpoint of the

constraints system on the domain of Π5
i=1pXi Ñ Intvq, in which Intv is the

set of intervals.

The soundness of the abstract semantics is described using a concretiza-

tion function γ : A7 Ñ A5, giving the meaning of the abstract elements in

terms of concrete elements. We say that the abstract semantics lfpt7 r|P |s is

sound with respect to the concrete semantics lfpt5 r|P |s, or say that the latter

is approximated by the former, if lfpt5 r|P |s Ď5 γplfpt7 r|P |s). In this paper, we

frequently verify a stronger soundness condition in the form of

t5 r|P |s ˝ γ Ď
5 γ ˝ t7 r|P |s (2.1)

By “being sound”, we always refer to partial soundness, i.e., if P terminates,

then (2.1) holds.

We introduce the concept of Galois connection.

Definition 2.3.1 (Galois connection). Consider two posets pA5,Ď5q and

pA7,Ď7q. If functions α : A5 Ñ A7 and γ : A7 Ñ A5 satisfy, for each

a5 P A5 and a7 P A7,

a5
Ď

5 γpa7q iff. αpa5q Ď
7 a7

then the quadruple

pA5, α, γ, A7q

is called a Galois connection.

23

CHAPTER 2. BACKGROUND

In terms of abstract interpretation, the sets A5, A7 are often called con-

crete domain and abstract domain respectively, and the functions t5 P A5 Ñ

A5, t7 P A7 Ñ A7 are called (global) concrete transfer function and (global)

abstract transfer function.

Example 2.3.2 (Cartesian abstraction). Given 2 posets A and B, then we

have the Galois connection p℘pAˆBq, αˆ, γˆ, ℘pAq ˆ ℘pBqq where

αˆ
fi λR.ppostrfsts R, postrsnds Rq (2.2)

γˆ
fi λpA0, B0q.A0 ˆB0 (2.3)

Example 2.3.3 (Composition of Galois connections). Given 2 Galois con-

nections pA5, α1, γ1, A
6q and pA6, α2, γ2, A

7q, then pA5, α3, γ3, A
7q is also a Ga-

lois connection, with α3 fi α2 ˝ α1 and γ3 fi γ1 ˝ γ2.

Theorem 2.3.1 (Approximation of Fixpoint [25]). Given two complete lat-

tices pA5,Ď5q and pA7,Ď7q and the Galois Connection pA5, α, γ, A7q. Let t5

and t7 be monotonic functions defined respectively on A5 and A7. If the con-

dition

t5 ˝ γ Ď
5 γ ˝ t7

holds, then we have an approximation of the least fix point of t5 by the least

fix point of t7:

lfpt5
Ď γplfpt7q

The computation of lfpt7 is problem-dependent: if the iterates t7kpK7q for

k = 0, 1 . . . , started from some initial K7 become eventually stable (A7 is

said to enjoy the ascending chain condition), then lfpt7 can be computed

using brute force. This is a typical case for data-flow analysis. In case that

the iterates converge slowly or do not converge, the algorithm to compute

the fix point of t7 may involve an extrapolation strategy. In [24], Cousot

introduced an operator called widening to guarantee fast termination of fix

point computation.

Definition 2.3.2. A widening ▽ is an operator of type A7 ˆ A7 Ñ A7 such

that

@a7
1, a

7
2 P A

7 : a7
1 Ď

7 a
7
1 ▽ a

7
2 ^ a

7
2 Ď

7 a
7
1 ▽ a

7
2

24

CHAPTER 2. BACKGROUND

and for all increasing chains a7
0 Ď7 a

7
1 Ď7 . . ., the increasing chain defined by

w0 = a
7
0, w1 = w0 ▽ a

7
1 . . . wi+1 = wi ▽ a

7
i+1

is not strictly increasing.

Theorem 2.3.2 (Kleene iteration with widening [24]). The following itera-

tion sequence

X0 = K
7

Xi+1 =

#
Xi, if t7pXiq Ď7 Xi

Xi ▽ t7pXiq otherwise

is ultimately stationary and its limit is a post-fixpoint for t7.

2.4 Static Numerical Analysis

The target language of this static analysis is WHILEn. The tracked informa-

tion is called numerical properties. We distinguish two kinds:

• Global numerical properties refer to properties related to the whole

program, including program execution time, consumed memories. An

example is the static worst-case execution time (WCET) analysis. It is

remarkably difficult to determine tight WCET bounds due to hardware

complications and architectural features like instruction pipelines. A

well-known WCET analyzer is aiT by AbsInt1.

• Local numerical properties are those associated with program identi-

fiers, in particular program variables. This category of analysis is de-

manded for the automatic detection of some well-known run-time errors

like division by zero or array index out of bound. The algorithm de-

veloped by Karr in 1976 computes for each program control point the

affine relations that hold among the program variables whenever the

control point is reached [44]. An affine relation is a property of the form

1 http://www.absint.com

25

http://www.absint.com

CHAPTER 2. BACKGROUND

Σk
i=1ci xi = c where xi are program variables and ci, c are constant. In

1978, Cousot and Halbwachs [26] presented an eminent generalization

of Karr’s approach. They introduced the theory of abstract interpreta-

tion, and brought the designing of various numerical abstract domains

into the mainstream. By using polyhedra instead of affine relations as

space of approximation, their analysis allows us to specify programs

with affine inequalities Σk
i=1ci xi ď c.

This thesis considers the second category of numerical properties. We

use the term numerical property, for any conjunction of formulae in some

decidable theory of arithmetic. A numerical property can be loosely seen as

a geometric shape. For example, the numerical property tx2 + y2 ď 1, x ď

0, y ď 0u is composed of the conjunction of three arithmetic formulae,

representing a quart of the unit disc. Each formula of a numerical property

is assumed to be quantifier-free. The constant values in the formula are

integers.

Certain classes of numerical properties with a uniform geometric feature

are called abstract numerical domains. The “interval”, “octagon”, or “poly-

hedral” abstract domains are thus named after their represented geometric

shapes. In this paper, an abstract numerical domain is considered as a subset

of the universe of numerical properties.

As usual, an environment is a partial mapping from program variables to

their associated values. In our context, we consider numerical environment

of integer values,

Num fi Varn Ñ ZK

where Varn is the set of scalar variables holding numerical values.

The relationship between a numerical environment n and a numerical

property n̄ is formalized by the concept of valuation. We say that n is a

valuation of n̄, denoted by n |ù n̄, if n̄ becomes a tautology after each of its

free variables, if any, has been replaced by its corresponding value in n.

Definition 2.4.1 (Interface of the traditional numerical analyzer).

pWHILEn, ℘pNumq, r|¨|s
6
n , γn,Num

7, r|¨|s7nq

26

CHAPTER 2. BACKGROUND

The concrete numerical domain and the abstract numerical domain for the

language WHILEn are respectively ℘pNumq and Num7. They are related by

the concretization function γn : Num7 Ñ ℘pNumq defined by

γnpn̄q = tn P Num | n |ù n̄u (2.4)

The partial order Ď is consistent with the monotonicity of γn, i.e., n̄1 Ď n̄2
implies γnpn̄1q Ď γnpn̄2q. For each statement sn of WHILEn, the concrete

semantics r|sn|s
6
n is assumed to be the powerset lifting r|sn|s

6
n fi postr

Num
ÝÑ psnqs

of some standard operational semantics:

Num
ÝÑ: WHILEn Ñ ℘pNum ˆ Numq (2.5)

The abstract semantics r|¨|s7n satisfies the soundness condition:

r|¨|s6n ˝ γn Ď γn ˝ r|¨|s
7
n (2.6)

At last, we assume the availability of a join operator \ and a widening oper-

ator ▽. The join operator is assumed to be sound with regard to the partial

order Ď, and ▽ is assumed to be sound as specified in Sect. 4 of [23].

2.5 Points-to Analysis

The imperative language WHILEp provides basic pointer operations like dy-

namic allocation, pointer assignments, field store and field load. Classical

store-based semantics models the memory as the environment and the store.

Roughly speaking, variable assignment modifies the environment and the

store is modified by indirect access of memory. The environment is most

commonly thought of as a partial mapping from program variables to loca-

tions, and the store is specified by a partial mapping from locations to values.

Conventionally, the model also needs to know the usage status of allocated

locations. Each state of the store-based semantic domain used in this thesis

is assumed to be garbage-free, namely, each allocated location is reachable in

a sense that we shall make precise below.

The points-to analysis [30] is a dataflow analysis widely used for the

static pointer analysis. The essential idea of points-to analysis is to partition

27

CHAPTER 2. BACKGROUND

the concrete memory references Ref into a finite set of abstract references

H, and then summarize the run-time pointer relations via elements of H

and program variables. The result of the analysis is often expressed by a

graph-like structure, called points-to graph. The memory partition process

mentioned above is sometimes called a naming scheme. A popular naming

scheme, known as k-CFA [63], is based on the k most recent call sites on the

stack of the thread creating the object. Pointer analyses have been surveyed

by numerous authors [37, 57, 59]. The 5-page survey of Hind and Pioli [41]

is mostly cited; different axes balancing between efficiency and effectiveness

are identified, with so called equality-based [66], subset-based [1] and flow-

sensitive [18] variations. several directions for the then- future research are

also discussed: How to improve the efficiency without affecting scalability or

vice-versa, how to design an analysis for a client’s needs, are flow-sensitive

or context-sensitive analyses worth more investigation, which heap modeling

shall we choose, etc.

For type-safe languages like Java, the flow-insensitive analysis is of poly-

nomial complexity [13], but the analysis is difficult in general. The NP-

hardness of a flow-insensitive analysis is shown by Horwitz [42] for programs

without dynamic memory allocation and when all the variables are scalars

and arbitrary number of dereferencing is allowed. Many techniques have

been proposed to optimize points-to analyses. The online cycle elimination

of Fahndrich et al. [32] represents points-to analysis as a graph problem and

collapse cycles into single nodes since each element of the cycle has the same

points-to information. Lazy Cycle Detection proposed by Hardekopt and Lin

[38, 39] find the cycles using heuristics, so that the complexity overhead of

Fahndrich can be greatly reduced.

Another dimension that improves points-to analysis is by using efficient

data structures. In particular, BDD[11] was found to be much more space-

efficient than traditional storage of points-to information[75]. This finding

was then exploited by Berndl et al. [4] and Whaley and Lam [73] for efficient

points-to analysis algorithms using BDDs for Java.

The challenge of points-to analysis, as in other static analysis, is to im-

prove the precision of analysis without sacrificing the scalability. Lhotak and

Chung [49] propose a Strong Update analysis combining both features: it

is efficient like flow-insensitive analysis, with the same worst-case bounds,

28

CHAPTER 2. BACKGROUND

yet its precision benefits from strong updates like flow-sensitive analysis.

The key insight is that strong updates are applicable when the dereferenced

points-to set is a singleton, and a singleton set is cheap to analyze. Hence

the analysis focuses on flow sensitivity on singleton sets. Larger sets, which

will not lead to strong updates, are modeled flow insensitively to maintain

efficiency. De and D’Souza [27] propose to represent points-to information

as maps, rather than points-to graph from access paths to sets of abstract

objects.Their approach is similar to the classic k-limiting approach which

truncate analysis targets by a predefined bound k: Their method finally

leads to a flow-sensitive pointer analysis algorithm for Java that can per-

form strong updates on heap-based pointers. Recently, Khedker, Mycroft

and Rawat [45] propose a lazy points-to analysis based on liveness analysis.

They argue that the vast majority of points-to pairs calculated by existing

algorithms are never used by any client analysis or transformation because

they involve dead variables. They reformulate a flow- and context- sensitive

points-to analysis in terms of a joint points-to and liveness analysis so that

potentially unused points-to relations will not be computed.

Concrete semantics We assume that a naming scheme can be interfaced

with a function

⊲ P Ref Ñ H (2.7)

In this presentation, we use a simple and standard naming scheme to name

heap elements after the program point of the statement that allocates them

(which is typical for the context-insensitive variant of points-to analysis).

The elements of H will also be called allocation sites or abstract references.

Let Var p, Ref , and Fldp be the set of pointer variables, references, and

fields for pointer references. A state σ of the store-based semantics is a pair

of partial mappings ρ from Var p to Ref , called environments, and partial

mappings ~ from Ref ˆFldp to Ref , called stores. The store-based semantics

domain will be denoted by Pter .

Pter fi tpρ, ~q | ρ P Var p Ñ Ref K, ~ P Ref ˆ Fldp Ñ Ref Ku

Given pρ, ~q P Pter , we say r P Ref is reachable if there exists x P Var p
such that ρpxq = r, or there exists some reachable r1 P R and f P Fldp

29

CHAPTER 2. BACKGROUND

s.t. ~pr1, fq = r. The state pρ, ~q is called garbage-free if each reference in

tr P Ref | pr, fq P domp~qu is reachable.

The concrete semantics domain is defined to be the collection of subsets

of garbage-free states in Pter .

The effect of a statement sp of WHILEp can be modeled as the operational

semantics on Pter . We write xsp, σy
Pter
ÝÑ σ1 if σ is the state before sp then

σ1 can be a state after sp under the condition that sp terminates. Since we

are only interested in garbage-free states, below we assume the operator of

garbage collection is available, denoted by gc

xx = null, pρ, ~qy
Pter
ÝÑ gcpρrxÑ Ks, ~q (2.8)

xx = new, pρ, ~qy
Pter
ÝÑ gcpρrxÑ rfreshs, ~q for rfresh R reachablepρ, ~q (2.9)

xx = y, pρ, ~qy
Pter
ÝÑ gcpρrxÑ ρpyqs, ~q (2.10)

xx = y.f, pρ, ~qy
Pter
ÝÑ gcpρrxÑ ~pρpyq, fqs, ~q for pρpyq, fq P domp~q

(2.11)

xx.f = y, pρ, ~qy
Pter
ÝÑ gcpρ, ~rpρpxq, fq Ñ ρpyqsq for ρpxq ‰ K (2.12)

xx == y, pst, ~qy
Pter
ÝÑ gcpρ, ~q for ρpxq = ρpyq (2.13)

xx ‰ y, pst, ~qy
Pter
ÝÑ gcpρ, ~q for ρpxq ‰ ρpyq (2.14)

The concrete semantics is defined to be the powerset lifting of the oper-

ational semantics.

Abstract semantics Let p7 be a graph-like data structure composed of

two kinds of arcs: x Ñ h and h1 f
ÝÑ h, where x and f range over variables

and fields inWHILEp and h1, h range over abstract references of the underlined

naming scheme. Let us call this data structure points-to graph and denote

by arcpp7q for the set of its arcs.

Given a set of concrete states p̃ P ℘pPterq, its abstraction can be processed

as follows: whenever there exists an pρ, ~q P p̃ s.t. ρpxq = r and r ⊲ h for

some variable x, concrete reference r and abstract reference h, there must be

an arc x Ñ h in the points-to graph; if ~pr1, fq = r for some concrete state

pρ, ~q and r1
⊲ h1 and r⊲ h for abstract references h, h1 , then there must be

an arc h1 f
ÝÑ h in the points-to graph. Because H, Fldp, Var p are assumed

30

CHAPTER 2. BACKGROUND

to be finite set, there esists a smallest points-to graph that abstracts a given

subset of Pter . The set of these points-to graphs can be defined as

Pter 7
fi pVar p ˆ Fldpq ˆ pH ˆ Fldp ˆHq

It can be shown that this smallest, or called best abstraction in the ter-

minology of abstract interpretation, consists of a points-to graph without

garbage. By abuse of language, we write Pter 7 for garbage-free points-to

graphs.

The relationship between Pter 7 and its concrete counterpart ℘pPterq can

be formalized with the concretization function γp defined as

γppp
7q fi tpρ, ~q P Pter | ρpxq = r, r ⊲ hñ xÑ h P arcpρ, ~q

~pr1, fq = r ^ r1
⊲ h1 ^ r ⊲ hñ h1 f

ÝÑ h P arcpρ, ~qu (2.15)

The abstract semantics of points-to analysis is usually specified in the style

of constraints system. Below, let p7 Q a a shortcut for a P arcpp7q. The

constraint system can be specified as

x=y
p7 Q y Ñ h

p7 Q xÑ h
x=y.f

p7 Q y Ñ h1 p7 Q h1 f
ÝÑ h

p7 Q xÑ h
(2.16)

x=new
p7 Q xÑ rfresh

x.f=y
p7 Q xÑ h1 p7 Q x

f
ÝÑ h

p7 Q h1 f
ÝÑ h

(2.17)

(2.18)

We write r|¨|s7p for the abstract transfer function derived from the constraint

system above.

Definition 2.5.1. The points-to analysis can be defined as the tuple

pWHILEp, ℘pPterq, r|¨|s
6
p , γp,Pter

7, r|¨|s7pq

31

Chapter 3

Lifting Numerical Abstract

Domains to Heap-manipulating

Programs

3.1 Introduction

The static analysis of numerical properties of program variables can draw

on a rich body of techniques including abstract domains of intervals [21],

polyhedron [26], octagons [56] which have found their way into mature im-

plementations. In a similar way, the analysis of properties describing the

shape of data structures in the heap has flourished into a rich set of points-to

and alias analyses which also have provided a range of production-quality

analyzers. However, these two types of analyses do not always integrate so

well. Numerical properties such as x.v + y.w ď aris (where x.v and y.w are

Java field references of type int and aris is an array reference of type int)

are alien [?] to traditional numerical domains and would thus be coarsely

over-approximated as unknown, representing no information.

When extending numerical analyses to entities such as x.v we are imme-

diately faced with the problem that pointers introduce aliases which make

program reasoning harder. As an example, consider the effect of the assign-

32

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

Table 3.1: Post-conditions of a.val = b.val + c.val, assuming b.val P

r3, 6s, c.val P r4, 8s. Columns 2-6 show 5 aliasing relations between 3 vari-

ables. Column 7 joins the results.

a{b{c ab{c ac{b bc{a abc join

a.val [7,14] [7,14] [7,14] [8,12] [8,12] [7,14]

b.val [3,6] [7,14] [3,6] [4,6] [8,12] [3,14]

c.val [4,8] [4,8] [7,14] [4,6] [8,12] [4,14]

ment

a.val = b.val + c.val (3.1)

The variables a, b, c are bound to objects with the numerical field val. As-

suming that b.val P r3, 6s and c.val P r4, 8s hold before the statement, we can

derive different properties for their values after the assignment depending on

the knowledge we have about aliasing between the references a, b and c.

In particular, the values of b.val or c.val may be updated if the condition

a = b or a = c holds before the statement. The following approach considers

the potential aliases among variables a, b and c. There are five possible alias

relations, as shown on columns 2-6 of the first row in Tab. 3.1, where we

use ’/’ to mean the partitions of variables induced by aliasing. For example,

in the case of ab{c, the alias relation is a = b ‰ c, and thus a.val, b.val

are two names that must be updated simultaneously. We obtain a.val P

r7, 14s, b.val P r7, 14s and c.val P r4, 8s. The last column of the table shows

the post-conditions by joining the results in columns 2-6.

Analyzing the statement for every possible alias relation between variables

in turn and taking the conservative join of obtained results gives a sound

result. However, this naive approach is not feasible as the number of aliasing

relations among N variables quickly becomes large1. A better solution is

to combine traditional static numerical analysis with points-to analyses that

can provide information about aliasing relations and hence rule out some

1The number of aliasing relations is the number of partitions of a n-element set (known

as the Bell number) and is asymptotically Opǫnn!q for any positive ǫ [12]

33

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

spurious aliases. This chapter is concerned with developing a theoretical

foundation for combining pointer analysis with static numerical analysis.

3.1.1 Objectives and Contributions

The goal is not to define new pointer and numerical analyses but to pro-

vide the necessary theory for interfacing existing analyses with each other.

We shall be following the methodology of abstract interpretation [25] when

constructing the theory. The contributions of the paper are both theoretical

and practical. On the theoretical side, we propose a new abstract domain

combining traditional static numerical domains and points-to analysis. The

abstract domain is constructed in three steps:

1. the first is a lattice isomorphism in which the references in the heap

part of the state are re-injected into (and hence made explicit in) the

numerical part of the state,

2. the second is a Cartesian (attribute-independent) abstraction [25] of

the numerical and the heap part of the state,

3. the third is the application of the abstractions of the existing domains.

Thus, it is the first step that makes the combination possible, by prepar-

ing the re-use of the abstract pointer values when extending the numerical

domains to cover properties about heap values. We define and prove the

correctness of the transfer functions for this new combined domain.

On the practical side, we have experimented with the combination of

several existing domains by implementing a combined static numerical and

pointer analysis, using the Java Optimization Framework SOOT [70] as the

front-end, and relying on the abstract domains from existing static analy-

sis libraries such as the Parma Polyhedra Library PPL [2] and the SOOT

Pointer Analysis Research Kit SPARK [50]. This prototype analyzer, called

NumP, has been run on programs in the Dacapo-2006-MR2 [7] benchmark

suite. The largest among them, chart, has several hundreds of KLOC in

Jimple [71]. Our experiments confirm that a combined analysis is feasible

even for large-sized programs and that it discovers significantly more pro-

gram properties than what is possible by pure numerical analysis, and this

34

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

at a cost that is comparable to the cost of running the numerical and pointer

analysis separately.

In addition, the goal of modular re-use of static analyses has been attained

as the implementation of our prototype is mainly based on the existing imple-

mentations of traditional numerical and pointer analyses. We have instanced

NumP with a context-insensitive and a context sensitive points-to analyses

on one side, and an interval and a polyhedral abstract domains on the other

side.

Notation Let A, B be two sets. Given a relation R Ď A ˆ B, we write

postrRs P ℘pAq Ñ ℘pBq for the function λA1.tb | Da P A1 : pa, bq P Ru.

We use fst and snd as the operators that extract the first and the second

components of a pair respectively. For a given set U , the notation UK means

the disjoint union U Y tKu. Given a mapping m P A Ñ BK, we express the

fact that m is undefined in a point x by mpxq = K. The set of integers is

denoted by Z. We write “fi” for “defined as”.

3.2 Semantics Abstraction

The store-based semantics for heap reasoning is standard. We follow the

notations of [60], in which a state keeps track of the allocated references

A P ℘pRef q, and a pair of an environment ρ and a heap hp.

pA, ρ, hpq P State = ℘pRef q ˆ

Envhkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkj
pVarn Ñ ZKq ˆ pVar p Ñ Ref Kq

ˆ ppRef ˆ Fldnq Ñ ZKq ˆ ppRef ˆ Fldpq Ñ Ref Kqlooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon
Heap

Write A5 for the powerset of State. In the context of WHILEnp, the variables

and fields are typed. Let ÝÑ5: S Ñ ℘pState ˆ Stateq denote its structural

operational semantics (omitted).

35

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

xsn, ny
Num
ÝÑ n1

xsn, pn, pqyĄÝÑ5pn1, pq

ppypq = r d = pr, fnq xd = xn, ny
Num
ÝÑ n1

xyp.fn = xn, pn, pqyĄÝÑ5pn1, pq

xsp, py
Pter
ÝÑ p1

xsp, pn, pqyĄÝÑ5pn, p1q

ppypq = r d = pr, fnq xxn = d, ny
Num
ÝÑ n1

xxn = yp.fn, pn, pqyĄÝÑ5pn1, pq

Figure 3.1: Structural Operational semantics ĄÝÑ5 : WHILEnp Ñ pĆState ˆ
ĆStateq

3.2.1 An Isomorphic Operational Semantics

The lemma below shows that we can express the structural operational se-

mantics (SOS for short) of WHILEnp in terms of the SOSs of WHILEn and

WHILEp.

Lemma 3.2.1 (Isomorphic store-based semantics of WHILEnp). Let Num

and Pter be the sets of concrete states of WHILEn and WHILEp, as specified

in Chap. 2. Let D denote the set of the pairs of concrete references in Ref

and the numerical fields in Fldn.

D fi Ref ˆ Fldn (3.2)

Let NumrDYVarns be the set that extends Num over DYVar, i.e., NumrDY

Varns fi pD Y Varnq Ñ ZK. Then a concrete state of WHILEnp is also an

element in ĆState, with
ĆState fi NumrD Y Varns ˆ Pter (3.3)

In addition, The SOS of WHILEnp, denoted by ĄÝÑ5, can be expressed by the

SOSs of WHILEn and WHILEp. (Fig. 3.1, in which
Pter
ÝÑ is the SOS of WHILEp,

and
Num
ÝÑ is the SOS of WHILEn over D Y Varn).

Let ĂA5 be the power-set of ĆState, we define the collecting semantics [22]

as the lifting of the operational semantics ĄÝÑ5psq to power-sets, i.e., r|s|s5̃ fi

postrĄÝÑ5psqs.

36

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

3.2.2 Cartesian Abstraction

Lemma 3.2.2 (Cartesian Abstraction). Let A6 fi ℘pNumrD Y Varnsq ˆ

℘pPterq and pĂA5, αˆ, γˆ, A6q be the Cartesian abstraction [25], i.e., αˆ fi

λR : ĂA5.ppostrfsts R, postrsnds Rq and γˆ fi λpA0, B0q : A
6.A0 ˆB0.

The transfer functions r|¨|s6 : WHILEnp Ñ pA6 Ñ A6q defined in Fig. 3.2 is

the best transformer [25] of r|¨|s5̃, that is, @s P WHILEnp : r|s|s
6 = αˆ˝r|s|s5̃˝γˆ.

r|sp|s
6 pñ, p̃q fi pñ, r|sp|s

6
p
pp̃qq r|sn|s

6 pñ, p̃q fi pr|sn|s
6
n pñq, p̃q

r|xn = yp.fn|s
6 pñ, p̃q fi

¨
˝

¨
˝ ď

p̃ $ yp.fn ó d

r|xn = d|s6n pñq

˛
‚, p̃

˛
‚

r|yp.fn = xn|s
6 pñ, p̃q fi

¨
˝

¨
˝ ď

p̃ $ yp.fn ó d

r|d = xn|s
6
n pñq

˛
‚, p̃

˛
‚

Figure 3.2: r|¨|s6 : WHILEnp Ñ pA6 Ñ A6q. The notation p̃ $ yp.fn ó d means

that d P tpppypq, fnq | p P p̃u

Proof for the case of yp.fn = xn.

αˆ ˝ r|yp.fn = xn|s
5̃ ˝ γˆpñ, p̃q

=αˆ ˝ r|yp.fn = xn|s
5̃ pñˆ p̃q (Def. γˆ)

=αˆptĄÝÑ5pyp.fn = xnqpn, pq | pn, pq P ñˆ p̃uq (Def. r|¨|s5̃)

=αˆptp
Num
ÝÑ pd = xnqpnq, pq | pn, pq P ñˆ p̃, d = pppypq, fnquq (Def. ĄÝÑ5)

=pt
Num
ÝÑ pd = xnqpnq | pn, pq P ñˆ p̃, p̃ $ yp.fn ó du, p̃q (Def. αˆ)

= r|yp.fn = xn|s
6 pñ, p̃q (Def r|¨|s6)

37

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

3.2.3 The Abstract Domain NumP

Definition 3.2.1 (Symbolic variable). A symbolic variable δ is a pair of

abstract reference h P H and numeric field fn P Fldn. The set of symbolic

variables is denoted by ∆.

∆ fi H ˆ Fldn (3.4)

The role of symbolic variables is formalized via the notion of instantiation.

Definition 3.2.2 (Instantiation).

Ins⊲ fi tσ : ∆Ñ D | σph, fnq = pr, gnq ñ h = ⊲prq ^ fn = gnu (3.5)

Notation Let Num7r∆ Y Varns and Num7rD Y Varns denote the extensions

of Num7 over ∆ Y Varn and D Y Varn respectively. Given σ P Ins⊲, we

denote by rσs the capture-avoiding substitution operator of type Num7r∆Y

Varns Ñ Num7rD Y Varns that replaces all the free occurrences of δ in

n7 P Num7r∆Y Varns with σpδq.

Definition 3.2.3. The semantics of elements in Num7r∆YVarns is defined

by the concretization function γδ : Num
7r∆Y Varns Ñ ℘pNumrD Y Varnsq

γδpn
7q fi tn P NumrD Y Varns | @σ P Ins⊲, n P γn ˝ rσspn

7qu

Read it as follows: a numerical environment n over D Y Varn is in the

concretization of the numerical property n7 over ∆YVarn if and only if n is

in the concretization of each instance of n7.

Example 3.2.1. Consider n7 P Num7r∆ Y Varns to be a system of linear

inequalities AX ď B with A and B being a numerical matrix and a vector

respectively, and X is a vector on ∆ Y Varn. Without loss of generality, we

write X as the vector pδ1 . . . δm, z1 . . . zlq for δi P ∆ and zj P Varn. Then

AX ď B represents the conjunction of all AX̄ ď B in which X̄ can be any

pd1 . . . dm, z1 . . . zlq in which zi remains the same as in X and there exists an

instantiation σ P Ins⊲ s.t. σpδiq = di for any 1 ď i ď m.

38

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

Definition 3.2.4 (The abstract domain NumP and its concretization). The

abstract domain NumP is defined to be

NumP fi Num7r∆Y Varns ˆ Pter 7 (3.6)

The concretization function γq of type NumP Ñ A6 is defined as λpn7, p7q.pγδpn
7q,

γppp
7qq where γp is the concretization function of the underlying points-to an-

laysis.

Example 3.2.2. Revisit the program in Fig. 2.1 (right). A list of integers

ranging from −5 to 2 is stored iteratively on the heap. At each iteration,

a memory cell, bound to variable elem, is allocated. The cell consists of a

numerical field val and a reference field next. The head of the list is always

pointed to by variable hd.

Fig. 3.3 shows the memory states that arise at the loop entry (l. 3 of

the source code) as well as the process of the semantics abstraction in three

steps. The first row illustrates the concrete heap states. The second row is

an isomorphic version that separates numerical and pointer information. The

third row is the abstract state obtained by performing Cartesian abstraction

over the second row. The last row shows the abstract state of our abstract

domain. Note that each state, pnk, pkq of the second row is a concretization

of the abstract state pn7, p7q. In particular, the ph, valq Ñ r−5, 2s part is to

be interpreted as: the numerical values stored at pr, valq must be in the range

from −5 to 2, whenever the memory cell referred by r is allocated at h.

The semantics abstraction process is summarized in Fig. 3.4. Starting

from the standard concrete store-based domain A5, we find an isomorphic

form ĂA5. Then the Cartesian abstraction gives rise to a pair of well studied

concrete domains of traditional numerical and points-to analyses. We then

“plug in” the existing abstract domains and reuse those abstractions as black-

boxes.

3.3 Transfer Functions

Let pn7, p7q be a state of NumP . We are concerned with how it should be

updated by statements of WHILEnp. Let r|s|s7 pn7, p7q be the state just after

39

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

tpAK , ρk, hpkqu =

$
’’&
’’%

elem
hd

// ˛

i Ñ −5

;

elem
hd

r1// −5 // ˛

i Ñ −4

; . . .

elem
hd

r8// 2 // −5 // ˛

i Ñ 3

,
//.
//-

tpnk, pkqu =

$
’’&
’’%

i Ñ −5

elem
hd

// ˛
;

pr1, valq Ñ −5

i Ñ −4

elem
hd

r1// // ˛

; . . .

pr8, valq Ñ 2; . . . pr1, valq Ñ −5

i Ñ 3

elem
hd

r8// // // ˛

,
////.
////-

ptnku, tpkuq =

¨
˚̊
˚̊
˝

pr1, valq Ñ −5

pr2, valq Ñ −4
...

pr8, valq Ñ 2

i Ñ −5
...

i Ñ 2

i Ñ 3

,

elem
hd

r8// == >> ?? >>
r7// // // r1// // ˛

˛
‹‹‹‹‚

pn7, p7q =

˜
ph, valq Ñ r−5, 2s; i Ñ r−5, 3s,

elem
hd

// h

next

QQ
¸

Figure 3.3: Semantics abstraction of memory states at the loop entry of

the example program in Fig. 2.1 (right, l. 3). Heap locations are depicted

as rectangles labeled by references. The value of each pointer variable is

depicted as an arrow from the variable name to the referenced rectangle.

The symbol ˛ is for the null pointer. We have omitted the range 1 ď k ď 8

of the script k occurring in the first three rows. The label for the field “next”

on the directed edges is not drawn for the first three rows.

the execution of some statement s. Below, we explain how their abstract

semantics should be defined following the three categories sn, sp, and snp
(See Chap. 2 for the three categories). Note that the points-to component

of our abstraction is described in a flow-sensitive style but is relatively easy to

be adapted for a flow-insensitive points-to analysis. The proof of soundness

is sketched at the end of the section.

40

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

A5
fi ℘p℘pRef q ˆ Env ˆ Heapq

ÓÒ Isomorphism
ĂA5 fi ℘pNumrD Y Varns ˆ Pterq

ÓÒ Cartesian abstraction

A6
fi ℘pNumrD Y Varnsq ˆ ℘pPterq

ÓÒ Reuse existing domains

NumP fi Num7r∆ Y Varns ˆ Pter 7

Figure 3.4: Semantics abstraction toward NumP takes three steps.

Transfer function for sn

It is sound to assume that assignments or assertions of numerical variables

have no effect on the heap. If sn is an assignment in WHILEn, it can be

treated in the same way as in traditional numerical analysis using its abstract

transfer function r|¨|s7n The transfer function for updating pn7, p7q with sn can

be defined as:

r|sn|s
7 pn7, p7q fi r|sn|s

7
n n

7, p7 (3.7)

If sn is an assertion in WHILEn, p
7 may be refined. For example, consider

the compound statement2 if (a > 0) p = q where p and q are reference

variables and a is a numerical variable. Although it should be possible to

perform a dead-code elimination using inferred numerical relations, similar

to Pioli’s conditional constant propagation [58], we still use the Eq. (3.7) for

the ease of implementation.

Transfer function for sp

It is also sound to assume that sp has no effect upon n7. Yet the reasoning

is different from the above case. For example, if n7, p7 is the state shown on

the last row of Fig. 3.3, how can we tell whether an assignment of pointers

modifies n7 or not? Recall that the intended semantics of ph, valq Ñ r−5, 2s

2This term is used here to be distinguished from basic statements as sn, sp or snp.

Note that sn is the assertion, not the whole if-statement.

41

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

is that every values stored in each pr,valq satisfying r⊲h must be in the range

of r−5, 2s. That is to say, n7 represents a fact about the numerical content

stored in the corresponded concrete references. A pointer assignment can by

no means modify any numerical values stored in the heap. The algorithm to

update pn7, p7q with sp can be written as:

r|sp|s
7 pn7, p7q fi n7, r|sp|s

7
p
p7 (3.8)

Transfer function of snp

The transfer function for snp is more interesting. Consider an assignment

xn = yp.fn. Assume that the state before the assignment is pn7, p7q with

n7 = tph1, valq Ñ r0, 5s, ph2, valq Ñ r10, 20su and p7 = tpyp, h1q, pyp, h2qu.

Since yp points to h1, h2 and thus yp.fn is bound with a subset of values

stored at pr, fnq so that r ⊲ h1 or r ⊲ h2, we know that at run-time the

assignment updates xn to a value that is either in r0, 5s or in r10, 20s. In the

context of the non-relational abstract domain, the semantics of xn = yp.fn
can be approximated by the join of the effects of the assignment of symbolic

variables, xn = ph, fnq, for all h such that yp points to h.

r|xn = yp.fn|s
7 pn7, p7q fi

¨
˝

¨
˝ ğ

p7$yp.fnóδ

r|xn = δ|s7n pn
7q

˛
‚, p7

˛
‚ (3.9)

where we write p7 $ yp.fn ó δ to mean that δ is some symbolic variable

ph, fnq with h pointed to by xp. i.e., Dh : δ = ph, fnq ^ h P p7pxpq. Assume

that p7pyp.fnq is a singleton tδu.

Now, consider an assignment yp.fn = xn with yp pointing to the abstract

h of the points-to graph. We regard yp.fn = xn as an assignment to symbolic

variable ph, fnq = xn. By ph, fnq = xn, we actually mean that the field fn of

one of the concrete objects represented by h is to be updated to the value of

xn, while the other concrete objects represented by h remain unchanged. In

practice, we rewrite the symbolic variable ph, fnq as some (fictitious) scalar

variable, say δ, and symbolically execute λc : c \ r|δ = xn|s
7
n pcq using tradi-

tional numerical analyses, e.g. interval analysis, equipped with the abstract

42

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

semantics r|¨|s7n of assignment and the abstract operator of join \.

r|yp.fn = xn|s
7 pn7, p7q fi

¨
˝

¨
˝ ğ

p7$yp.fnóδ

n7 \ r|δ = xn|s
7
n pn

7q

˛
‚, p7

˛
‚ (3.10)

Note that it is not necessary to compute transfer functions for assertions

involving field expressions for they are transformed beforehand by our front-

end SOOT to assertions in WHILEn or in WHILEp. For instance, a source

code if (x.f>0) ..., is transformed to a = x.f; if (a>0) before

our analysis.

Join and Widening

The join of two facts is defined as the set of all facts that are implied inde-

pendently by both. The join of pn7
1, p

7
1q and pn

7
2, p

7
2q is the join of n7

1 and n
7
2,

paired with the join of p7
1 and p7

2.

pn7
1, p

7
1q \

7 pn7
2, p

7
2q = pn

7
1 \ n

7
2, p

7
1 Y p7

2q (3.11)

When computing the fixpoint, the iterates of our numerical points-to domain

do not necessarily converge because of its numerical components. We perform

a piecewise widening for the numerical part.

pn7
1, p

7
1q▽

7 pn7
2, p

7
2q = pn

7
1 ▽ n

7
2, p

7
1 Y p7

2q (3.12)

Theorem 3.3.1 (Soundness). The transfer functions r|¨|s7 : WHILEnp Ñ

pNumP Ñ NumPq, defined in (3.7), (3.8), (3.9) and (3.10), are sound with

respect to r|¨|s6: for any statement s of WHILEnp and abstract state pn7, p7q of

NumP, r|s|s6 ˝ γqpn7, p7q Ďγq ˝ r|s|s7 pn7, p7q.

3.4 Proof of Soundness

3.4.1 Preliminaries

Notations Given n P Num, its definition domain is denoted by dompnq.

Given n7 P Num7, its free variable, denoted by FV pn7q, is the union of the

43

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

free variables of each formula in n7. The space of bijective functions from A

to rA is denoted by by AØ Ã.

Definition 3.4.1 (Variable substitution). Given n P Num and a bijective

function σ : dompnq Ø Ądom from n’s definition domain to some isomorphic
Ądom, we define the operator of variable substitution, written as rσs, to be a

mapping of type NumÑ Num defined as

rσs fi λn.pn ˝ σ−1q (3.13)

The definition above requires that σ be bijective, and the domain of the

mapping σ be the domain of the numerical environment n. This requirement

makes the operator rσs a bijection.

Lemma 3.4.1. Given n P Num, σ P dompnq Ø Ądom, we have rσs−1 = rσ−1s

A substitution of numerical properties is to be understood as the usual

capture-avoiding substitution in lambda logic. Again, this substitution will

be specified by a bijective function. Although not necessary, we require the

definition domain of the specified function be exactly the same as the set of

the free variables of the considered numerical property.

Definition 3.4.2 (Substitution of numerical properties). Let n7 P Num7 and

σ P FV pn7q Ø ĄFV be a bijection. By abuse of language, we denote by rσsn7

the capture-avoiding substitution using σ of each of its formula.

It can be seen that Lem. 3.4.1 holds for the overloaded rσs as well. For

instance, let n7 be tx+ y < 5, z < 10u, σ = tpx, aq, py, bq, pz, cqu, then rσsn7 is

ta+ b < 5, c < 10u. Applying rσ−1s to the latter, we immediately obtain n7.

The following lemma states that the operation of substitution preserves

the relation of valuation. For example, let n = tpx, 2q, py, 3q, pz, 5qu, n7 = tx+

y = z, y ď zu, and σ = tpx, aq, py, bq, pz, cqu, then n |ù n7 and rσsn |ù rσsn7.

44

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

Lemma 3.4.2 (Substitution). Given n P Num, n7 P Num7 and a bijective σ

s.t. dompnq = dompσq = FV pn7q, then n |ù n7 ñ rσsn |ù rσsn7.

This lemma requires that the definition domain of n equals to the set

of the free variables in n7. To apply the lemma of substitution for the case

where n has more defined variables than n7’s free variables and n |ù n7, we

can restrict the definition domain of n to the free variables in n7 so that the

restricted n is a valuation of n7. This is stated by the lemma below.

Lemma 3.4.3 (Restriction). n |ù n7 ñ n|FV pn7q |ù n7.

3.4.2 Proof

Proof of Thm. 3.3.1. Take an arbitrary n7 P Num7r∆ Y Varns and an arbi-

trary p7 P Pter 7, we will prove that for all s P WHILEnp,

r|s|s6 pγqpn7, p7qq 9Ď γqpr|s|s7 pn7, p7qq (3.14)

The correctness for the case of sn is an immediate consequence following

the assumed soundness of r|sn|s
7
n with regard to r|sn|s

6
n. We also obtain the

correctness for the case of sp because the soundness of r|sp|s
7
p
with regard to

r|sp|s
6
p
is assumed. The proof for the case of xn = yp.fn is analogous to the

case of xp.fn = yn that given below: Denote the left and the right parts of

(3.14) lhs and rhs respectively. By the definition of r|¨|s6 and r|¨|s7, we have

lhs =

¨
˚̋

¨
˚̋ ď

γppp
7q $ xp.fn ó d

r|d = yn|s
6
n pγδpn

7qq

˛
‹‚, γppp

7q

˛
‹‚ (3.15)

rhs =

¨
˝γδ

¨
˝ ğ

p7$xp.fnóδ

n7 \ r|δ = yn|s
7
n pn

7q

˛
‚, γppp

7q

˛
‚ (3.16)

Take an arbitrary d s.t. γppp
7q $ xp.fn ó d and let δ = ⊲pd). We will prove

r|d = yn|s
6
n ˝ γδpn

7q Ď γδpn
7 \ r|δ = yn|s

7
n pn

7qq (3.17)

45

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

By the Def. of γδ, it suffices to prove a stronger condition:

@σ P Ins⊲ : r|d = yn|s
6
n ˝ γn ˝ rσspn

7q Ď γn ˝ rσspn
7 \ r|δ = yn|s

7
n pn

7qq (3.18)

Let the left and the right parts of (3.18) denoted by lhs1 and rhs1 re-

spectively. Take an arbitrary σ P Ins⊲, let σ fi tpδi, diqu1ďiď|∆|. Take an

arbitrary n P NumrD Y Varns satisfying

n P lhs1 (3.19)

we want to show

n P rhs1 (3.20)

By Eq. (3.19) and the correctness of r|¨|s7n, we have
Num
ÝÑ pd = ynqpnq |ù

rσsn7. Below we will write

nrd ÞÑ yns

namely n updated with d = yn, for
Num
ÝÑ pd = ynqpnq. We have

nrd ÞÑ yns |ù rσsn
7 (3.21)

Thus, by Lem. 3.4.2, we have3

rσ−1spnrd ÞÑ ynsq |ù n7 (3.22)

We continue the proof following whether σ maps δ to d.

• Case I : pδ, dq P σ. Since d P dompσ−1q, (3.22) implies

prσ−1snqrδ ÞÑ yns |ù n7 (3.23)

By the soundness of r|¨|s7n, we have

rσ−1sn |ù r|δ = yn|s
7
n n

7 (3.24)

• Case II pδ, dq R σ. Since d R dompσ−1q, (3.22) implies

rσ−1sn |ù n7 (3.25)

due to Lem. 3.4.3.

Combining the two cases, we obtain (3.20) following Lem. 3.4.2.

3Although σ is not a bijection, it is guaranteed to be injective. Thus σ−1 is still

well-defined.

46

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

3.5 Related Work

While a large number of articles cover issues related to pointer analyses and

to numerical abstractions, the program analyses where both pointers and

numeric values are taken into account are comparatively few.

Our work was initially inspired by Chang and Leino’s congruence-closure

abstract domain [?]. Their combined abstract domain extends the properties

representable by a given abstract domain to schema over arbitrary terms,

and not just variables. They deal with alias problem using an ad-hoc heap

succession abstract domain while we allow to reuse off-the-shell points-to

analyses.

Points-to analysis is well known, and many variants have been published

(see [40] for a survey). It offers a large spectrum of tradeoffs between pre-

cision and scalability with so called equality-based [66], subset-based [1] and

flow-sensitive [18] variations. Points-to analyses are relatively imprecise com-

pared to more advanced shape analysis techniques, but they scale well to

large programs. Most analyses that combine numerical and pointer infor-

mation tend to comply with similar simple pointer analyses (TVLA shown

below is clearly an exception). Logozzo’s Cibai (Class Invariants By Abstract

Interpretation) [53] is a modular analysis that combines a type-based pointer

analysis and octagons. Sotin and Jeannet [65] extend their generic numerical

analyzer Interproc to deal with programs in the presence of pointers to the

stack. Miné’s [55] shows the power of this simple abstraction by extending

it to pointer arithmetic, union types and records of stack variables. The

resulted abstraction is integrated to ASTREE [8] and is able to deal with a

subset C program that does not have dynamic memory allocation.

The book of Simon [64] gives an extensive study of numeric analysis to

avoid buffer-overflows problems in C programs. The author combines ad-hoc

numerical domains and a manually refined flow-sensitive points-to analysis.

The combination of Simon’s work have mutual effect between the heap do-

main and the numeric domains. His analysis is more precise than that of

Miné’s and the analysis in this paper, but requires important implementa-

tion efforts compare to our modular analysis.

A more sophisticated heap abstraction is shape analysis [61]. The TVLA [48]

framework based on shape analysis uses canonical abstraction to create bounded-

47

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

size representations of memory states. The analyses of this family are precise

and expressive. TVLA users are demanded to specify the concrete heap using

first-order predicates with transitive closure, or user-defined instrumentation

predicates like IsNotNull. Then TVLA automatically derives an abstract

semantics based on the users’ specification. The numerical abstraction of

Gopan et al. [36] allows the integration of TVLA with existing numerical do-

mains. The recent TVAL+ [34] uses TVLA on top of SAMPLE (Static Analysis

of Multiple LanguagEs), and can be combined with any existing numerical

analyses in SAMPLE. The static verifier DESKCHECK [54] combines TVLA

and numerical domains. It is sufficiently precise and expressive to check

quantified invariants over both heap objects and numeric values. Besides the

burden for users to specify the program (a problem that XISA [15] attempts

to remedy), the major issue of the shape-analysis-based approaches lies in

their scalability. In contrast, our experiments show our capability to run over

large programs.

Pioli and Hind [58] show the mutual dependence of conditional constant

analysis and pointer analysis. The combination is specifically designed for

the conditional constant analysis and is not generalized to standard numer-

ical domains. In particular, this approach does not directly cooperate with

standard numerical domains because their method relies on the particular

feature of conditional constant analysis that is able to partially eliminate

infeasible branches.

In a somewhat different strand of work, numerical domains have been used

to enhance pointer analysis. Deutsch [28] uses a parametrized numerical do-

main to improve the accuracy of alias analysis in the presence of recursive

pointer data structures. The key idea is to quantify the symbolic field ref-

erences with integer coefficients denoting positions in data structures. This

analysis is able to express properties for cyclic structures such as “for any k,

the k-th element of list l of length len, is aliased to its pk+ lenq-th element”.

Venet [72] develops the structure called the abstract fiber bundle to formal-

ize the idea of embedding an abstract numerical lattice within a symbolic

structure. The structure enables the using of the large number of existing

numerical abstractions to encode a broad spectrum of symbolic properties.

48

CHAPTER 3. LIFTING NUMERICAL ABSTRACT DOMAINS

3.6 Conclusion

The primary objective of this work has been the automatic discovery of nu-

merical invariants in Java-like programs, which are generally pointer-aware.

We have proposed a methodology for combining numerical analyses and

points-to analysis, developed using an approach based on concepts from ab-

stract interpretation. In particular, we have shown how the abstract domain

used in points-to analysis can be used to lift a numerical domain to encompass

values stored in the heap. The new abstract domain and the accompanying

transfer functions have been specified formally. Their correctness are proved.

Moreover, the modular way in which the abstract domains are combined via

some well-defined interfaces is reflected in the modular construction of a

prototype implementation of the analysis framework. This modularity has

enabled us to experiment with different choices for the tradeoff between ef-

ficiency and accuracy by tuning the granularity of the abstraction and the

complexity of the abstract operators. Concretely, the derived abstract se-

mantics allows us to combine existing numerical domains (interval domains,

polyhedron etc.) with existing points-to analyses. The modular analyzer

uses PPL and SPARK and shows a clear precision enhancement with low

time overhead.

Further work will address the issue of how the framework can accommo-

date analysis features such as strong updates. Also, the analyzer is currently

only working intra-procedurally. We would like to develop the theory further

so as to be able to build interprocedural analyses using our methodology.

Finally, another interesting issue that deserves investigation is the possibility

of exploiting other combinations such as points-to and must-alias analysis in

order to fine-tune the points-to analysis and a fortiori the lifted numerical

analysis.

49

Chapter 4

Enhancing Points-to Analysis

by Must-Alias

4.1 Introduction

We find that a part of redundant arcs in points-to graph can be removed in

the presence ofmust-alias. In [47], Landi definesmust alias as the aliases that

occur on all executions of the program. Must-alias analysis tracks a subset

of this information. The detected aliases hold for all program executions, but

all the must aliases are not detected. Unlike points-to analysis, must-alias

analysis is seldom a subject of serious consideration, although it is sometimes

used to perform strong update that sharpens some dependent analysis, as in

the the typestate verification [35]. The focus of this chapter is neither points-

to analysis or must-alias analysis, but their combination — we introduce

and study the problem of redundancy elimination of points-to graph in the

presence of must-alias.

4.1.1 Motivating Example

The Java-like snippet shown in Fig. 4.1 is our example program.

Two graph-like structures, points-to graph and must-graph, will be used

to represent memory abstractions. The must-alias will be represented by a

data structure called must-graph. It is a graph-like structure inspired from

50

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

the e-graph in [?], or the heap abstraction of [33]. The must-graph is a rooted

directed graph where a node is an integer, and an arc is labeled by a variable

if the arc starts from the root, or fields if the arc starts from a non-root

node. The integer nodes of the must-graph are purely symbolic: two access

paths are aliased whenever they lead to the same node in the must-graph.

The points-to graph used here is similar as, but slightly different from the

traditional one introduced earlier in the sense that the points-to graph of this

chapter has an extra node, “the root” so that an arc started by variable x to

a node h is written as an arc started by the root to h with the variable x as

its label.

Below, we illustrate how must-alias can be used to perform redundancy

elimination on points-to graph. Let us consider the points-to graphs before

lines ℓ100, ℓ110 and ℓ120.

Before the line ℓ100, the standard points-to graph and ours give the same

results. From lines ℓ10 to ℓ40 the program creates two lists of 2 elements

linked by the field f , separately assigned to variable y and z. Following lines

from ℓ50 to ℓ90 the program non-deterministically assigns to the variable x

the references of the 2 lists. Here, no must-alias is detected.

Then before line ℓ110 an if-guard has been passed. Such test is ignored

by the standard points-to analysis. Our analyzer, however, will extract the

must-alias between x and y. This extraction itself is very simple that should

not incur complexity overhead, but the extracted must-alias has sufficient

information to remove a redundant arc.

Our analyzer will process in 2 steps. The first step is points-to graph prop-

agation. Our analyzer uses the same transfer function as that of standard

points-to analysis. The transfer function is a rule of propagation. Clearly,

before line ℓ110, our analyzer gives the same points-to graph after propaga-

tion as the standard analyzer because our analyzer and the standard analyzer

have the same points-to graph before line ℓ100, but our analyzer goes further

by performing the second step that is the redundancy elimination. Our an-

alyzer will detect redundant arcs using must-alias. Here, the redundant arc

˝
x
ÝÑ h3 will be detected. Intuitively, since x, y must alias, and y does not

point-to h3 (because y points-to h1 only), we have x cannot point to h3.

Before line ℓ120, the standard points-to analysis will simply add an arc

from h1 to h3, unaware of the redundant arc from h1 to h2 (we will see

51

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

why it is redundant below). This analysis reasons conservatively: h1 might

be associated with more than one concrete object, so this analysis will not

remove any arc emanating from h1. By the same reason, it also adds a self-

cycle on h3. Finally, this analysis adds 2 arcs, h1

f
ÝÑ h3 and h3

f
ÝÑ h3. The

obtained points-to graph is shown in Fig.4.2 (third row, first column).

Our analyzer processes in 2 steps as aforementioned. The first step is

the propagation. It adds h1

f
ÝÑ h3 to the points-to graph. However, it will

not add a self-cycle on h3 because, at this time, our analyzer has already a

refined points-to graph as input that does not contain the arc ˝
x
ÝÑ h3. For the

second step, our analyzer performs an extra redundancy elimination using

must-alias. The must-alias analyzer detects: at line ℓ120, x.f , z must alias,

and x, y must alias, and by consequence, y.f and z must-alias (Fig. 4.2 third

line, third column). This information will guarantee the sound redundancy

elimination of h1

f
ÝÑ h2. Intuitively, h1 is accessible by at most x and y, and

both x.f and y.f must point to h3.

The above reasoning seems to be ad-hoc. This heuristic should be for-

malized and verified. We are faced with 2 questions.

1. What are the exact meanings of the points-to graph, must alias, and

the so-called “redundancy”?

2. Under which conditions can a redundancy elimination be safely per-

formed?

In the following, we give a quick overview of our methodology that answers

the two questions.

4.1.2 Backward-simulation

The reply to the 1st question requires a semantically-based formalization.

We have seen that both points-to graph and must-graph are rooted directed

graph. Semantically, they are abstractions of concrete memory information.

To formalize the semantics of points-to graph, we will use a concretization

function γ (in terms of abstract interpretation) that assigns to the points-to

graph and must-graph their abstracted concrete environments.

52

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

ℓ10 y = new L i s t //h1

ℓ20 y . f = new L i s t //h2

ℓ30 z = new L i s t //h3

ℓ40 z . f = new L i s t //h4

ℓ50 i f (?) then

ℓ60 x = y

ℓ70 else

ℓ80 x = z

ℓ90 end i f

ℓ100 i f (x == y)

ℓ110 x . f = z

ℓ120 end i f

Figure 4.1: The example analyzed code. The program first creates two linked

lists (from ℓ10 to ℓ40 where List has a field f), non-deterministically assigns

to variable x the references of the two lists (from ℓ50 to ℓ90). At last, an

instruction accessing the heap is performed under the condition that x, y

hold the same reference value.

53

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

ℓ100 h1

f // h2

˝

xy >>

xz

h3

f
// h4

h1

f // h2

˝

xy >>

xz

h3

f
// h4

˝

ℓ110 h1

f // h2

˝

xy >>

xz

h3

f
// h4

h1

f // h2

˝

xy >>

z

h3

f
// h4

˝
xy// 1

ℓ120 h1

f //

f

��

h2

˝

xy >>

xz

h3

f
//

f

WW h4

h1

f

��
˝

xy >>

z

h3

f
// h4

1

f

��
˝

xy @@

z ��
2

standard analyzer our analyzer must-alias

Figure 4.2: Compare standard points-to analyzer and ours. From the first

column to the third column: line number, standard points-to analyzer, our

analyzer and must-alias analyzer. The graph corresponds to the result before

the indicated line number. Labels of the arcs with the same pair of source

and targets are grouped together.

54

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

r10
f // r20

˝

x
>>

xz !!

y // r15
f // r25

r30
f

// r40

(a)

r10
f // r20

˝

xy ==

z !!
r30

(b)

r10
f // r20

˝

y ==

xz !!
r30

(c)

r10
f // r20

˝

y ==

z !!
x
// r35 f

##
r30

f
// r40

(d)

Figure 4.3: Possible concrete environments for points-to graph in the first

row of Fig. 4.2. Here, we have assumed that: r10, r15 are abstracted as h1;

r20, r25 are abstracted as h2; r30, r35 are abstracted as h3; and r40 is abstracted

as h4.

55

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

For example, consider the points-to graph at line ℓ100 (Fig. 4.2, first

row). The concrete environments the points-to graph represents can be any

one of Fig. 4.3, in which the concrete reference rc1 is abstracted as the

abstract reference hc
1 for c being the first digit of c1. Remark that each

abstract reference can represent more than one concrete reference (e.g. Fig

4.3(a)). This semantics view explains why the standard points-to analysis

cannot remove the arc h1

f
ÝÑ h4 when x.f = z is performed at line ℓ110.

Compared with points-to graph, the semantics of must-graph has a de-

terminist characteristic: the variables that reach the same node in the must-

graph are guaranteed to share the same reference value at run-time (This

can be easily extended to cases with access path, Def. 4.2.3). Further, the

must-graph is only partially specifies the concrete memory: it is possible to

have two access path that must-alias in the concrete memory whereas their

aliasing is not recorded by the must-graph.

Details on our problem formulation can be found in Sect. 4.2. Let µ, Θ

be a must-graph and a points-to graph respectively, and γpµq, γpΘq be their

represented concrete environments, then the semantics of the points-to graph

in the presence of the must-graph is formulated as γpµq X γpΘq, denoted by

γpµ,Θq. Then an arc h1 f
ÝÑ h is defined redundant if and only if γpµ,Θq

remains the same if the points-to graph Θ is deprived of the arc h1 f
ÝÑ h.

The problem indicated by the chapter’s title – redundancy elimination of

points-to graph using must-alias – is then formalized as the computation of

the minimal sub- points-to graph of Θ, Θ̄ such that γpµ, Θ̄q = γpµ,Θq.

With this semantics-based formulation, we will be able to reply to the 2nd

question mentioned above. The theoretical study on the redundancy elimi-

nation is shown in Sect. 4.3. In essence, we aim at a sufficient condition for

redundant points-to arcs. We define an arc being essential as the exact

converse of being redundant. Then our goal is turned to find necessary con-

ditions of an arc being essential. It turns out the found necessary condition

is closely related with the concept of backward-simulation. Similar terms

like “simulation”, “bisimulation” etc., are frequently used in the theory of

the Calculus for Communicating Systems (CCS), model checking and game

theory.

1 The null pointer is omitted in the drawings of environments.

56

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

Definition 4.1.1 (Backward-simulation). Given a must-graph µ and a points-

to graph Θ, a relation R between nodepµq and nodepΘq is a backward-simulation

if and only if

For any node n of must-graph and node h of points-to graph,

whenever n R h we have, for any incoming arc of n of label f ,

written as n1 f
ÝÑ n, we can find a corresponding incoming arc of

h with the same label f , written as h1 f
ÝÑ h, such that n1 R h1.

A node n P nodepµq is backward-simulated by h P nodepΘq, denoted by

n ∽ h, if and only if there exists a backward simulation R such that n R H.

∽ can be equivalently defined to be the greatest fixpoint of its associated

functional F∽ defined as

F∽pRq fi tpn, hq | @n1 f
ÝÑ n, Dh1 f

ÝÑ h : n1Rh1u (4.1)

An important convention is, the root of must-graph is backward-simulated

by the root of points-to graph: ˝ ∽ ˝. 2

Three observations are immediate.

1. the empty relation is also a backward-simulation.

2. The union of two backward-simulation is still a backward-simulation.

3. ∽ is the union of all backward-simulations.

In this presentation, when we say “compute backward-simulation”, we

are interested in the maximal one w.r.t. the set inclusion order Ď.

Illustration of backward-simulation can be found in Fig. 4.4. If n of

must-graph is backward-simulated by an h of points-to graph, each incoming

arc of n denoted by n1 f
ÝÑ n, must have a corresponding incoming arc of h

denoted by h1 g
ÝÑ h s.t. their labels are the same (f = g), and their sources

are backward-simulated.

2This convention is necessary because the root is not considered as a graph node in

this presentation. This convention has no conflict with the above definition of backward-

simulation because a root has no incoming arc.

57

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

h n

hq

fs

@@

hp

ft

GG

h1

f1

OO

n1
1

f1

@@

n1
2

f1

GG

n1
t

ft

OO

n1
s

fs

WW

Figure 4.4: Backward-simulation

h1

f

��

f // h2

f

}}

˝

x

@@

xz
��

y // h5

h3
f

//

f

OO

h4

2

˝

y
@@

x // 1

f

OO

Figure 4.5: Points-to graph (left) and must-graph (right). Redundant arcs

are h1

f
ÝÑ h2 and h2

f
ÝÑ h3.

Consider the example in Fig. 4.5. The points-to graph (left) has 2 redun-

dant arcs h1

f
ÝÑ h2 and h2

f
ÝÑ h3 in the presence of the must-graph (right),

but h3

f
ÝÑ h4 is not redundant because h3 is shared by z.

Write n ∽ h if n is backward-simulated by h. We have 1 ∽ h1, 1 ∽ h3, 2 ∽

h4, 2 ∽ h5. We will show how the information from ∽ can be used to remove

the redundant arcs in Sect. 4.3 and 4.4.

4.1.3 Contribution

In this chapter, we introduce the problem of redundancy elimination of

points-to graph using must-alias.

• We propose and prove the soundness of a procedure for the problem.

58

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

• We show the polynomial complexity of our algorithm is polynomial

w.r.t. the size of the input points-to graph and must-graph. This

means our approach introduces acceptable complexity overhead.

Outline We formalize the problem in Sect. 4.2. Theoretical results are

shown in Sect. 4.3. We give the algorithm in Sect. 4.4 and show its incom-

pleteness in Sect. 4.5.

4.2 Redundancy Elimination of Points-to Graph

In this section, we shall formalize the problem. The syntax of points-to graph

slightly differs from the earlier chapters.

We will investigate the mathematical notations and data structures that

occur throughout the presentation. Then we specify the semantics of the

must-graph and points-to graph. The semantics is defined via concretization

function. In particular, we introduce the definition of common environment

and essential arc. The latter is an exact converse of redundant arc. In the

last subsection, we give a lemma that reveals an equivalent condition of an

arc being essential.

4.2.1 Must-graph and the Non-standard points-to graph

We have seen various graph representations in Sect. 4.1. Our problem will

be modeled in terms of graph glossary. In general, an arc-labeled directed

graph (called graph henceforth), G, is defined to be a set of nodes together

with a set of labeled arcs joining certain pairs of nodes. An arc labeled f

from v1 to v is denoted by v1 f
ÝÑ v. The source and the target of the arc are

v1 and v respectively. An incoming arc (resp. outgoing arc) of node v is an

arc that has v as its target (resp. source). Such graph is determinist if each

node has at most one outgoing arc for a certain label.

In our presentation, a graph is rooted. We assume a single artificial root.

By convention, we exclude the root to be considered as a node of graph. Each

node is assumed to be reachable from one of the roots. An access path is

59

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

defined to be a sequence of labels. The length of an access path is its number

of labels. An empty access path is an access path of length 0.

We will use the following notations. The set of nodes and the set of

arcs of a graph G are denoted by nodepGq and arcpGq respectively. The

universe of labels is denoted by Σ. The root is denoted by ˝. We write

v
f
ÝÑ J to represent the predicate that no outgoing arc of label f exists from

v. For an access path ~u fi f0.f1.fn, ~u.f means f0.f1.fn.f . Given G, a

non-empty access path ~u evaluates to the set of nodes it eventually reaches,

denoted by Gp~uq. The result of Gp~uq is a set. We write Gp~uq = J if ~u

evaluates to an empty set. We write Gp~uq = v if ~u evaluates to the singleton

set tvu. The empty access path is denoted by ǫ. By convention, the empty

access path evaluates to the graph root: Gpǫq = ˝.

We will use the following primary domains. Ref fi tr1, r2 . . .u is an enu-

merable set of concrete references, representing physical memories, ranged

over by r. H fi th1, h2 . . .u is an enumerable set of abstract references, ranged

over by h. Each concrete reference r is abstracted by an abstract reference

h, written as ⊲prq = h or r ⊲ h. At last, N fi t1, 2 . . .u is a finite set of

uninterpreted symbols used for must-graph, ranged over by n .

We can now define the environment, the points-to graph, and the must-

graph in terms of the above notations.

Definition 4.2.1. The environment Env ranged over by ρ, the points-to

graph Pto ranged over by Θ, and the must-graph Must ranged over by µ, are

defined to be graphs with their nodes belonging to Ref , H and N respectively.

The environment and the must-graph are deterministic: Given a source s

and a label l, if s
l
ÝÑ t1 and s

l
ÝÑ t2 are two arcs, t1 and t2 must be the same

node.

4.2.2 Redundancy Elimination in a Semantics-based

View

Semantically, a points-to graph Θ is an over-approximation of the concrete

environment: If there is an arc r1 f
ÝÑ r in the environment ρ, there must be

an arc h1 f
ÝÑ h of points-to graph with r1

⊲ h1 and r⊲ h. Since the nodes are

60

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

reachable by root, we represent this semantics by the concretization function

γ : PtoÑ ℘pEnvq.

Definition 4.2.2 (Semantics of points-to graph).

γpΘq fi tρ | pρp~uq⊲ h1 ^ ρp~u.fq⊲ h ùñ h1 f
ÝÑ h P arcpΘqu (4.2)

It is worth noting that the points-to graph thus defined only captures

reachable cells.

Definition 4.2.3 (Semantics of must-graph).

γpµq fi tρ | pµp~uq = µp~vq ‰ J ùñ pρp~uq = ρp~vqq _ pρp~uq = J ^ ρp~vq = Jqu

(4.3)

By abuse of language, we have used a single γ to mean the semantics of

µ, Θ, and pµ,Θq. A must-graph records an under-approximation of concrete

must-alias. Its nodes are purely symbolic. If two access paths evaluate to

the same symbolic value, they are either both undefined, or evaluate to the

same value in the concrete environments.

Definition 4.2.4 (Semantics of the pair pµ,Θq and common environment).

Given the pair pµ,Θq, its semantics is the intersection of the semantics of µ

and Θ.

γpµ,Θq fi γpµq X γpΘq

A common environment is defined to be an environment ρ P γpρ,Θq.

Now we can specify the meaning of redundant arcs. Given a points-to

graph Θ and its arc h1 f
ÝÑ h, define reducepΘ, h1 f

ÝÑ hq as an operation that

not only eliminates h1 f
ÝÑ h from the graph, but also eliminates the caused

61

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

garbage. For example, in Fig. 4.4, reducepΘ, h1

f
ÝÑ h2q is the sub- points-to

graph of Θ that does not contain h1

f
ÝÑ h2 and h2

f
ÝÑ h3. The latter is the

garbage due to the removal of h1 f
ÝÑ h.

Remark. This step of garbage collection in the definition of reduce is neces-

sary. Recall that the nodes of points-to graph are assumed to be reachable

from the root. So, if we simply “pull out” an arc from a points-to graph,

the resulted graph may contain nodes that are no more reachable from the

root. Besides, it is worth noting that reduce is only used as a mathematical

notation, not for our algorithm.

Definition 4.2.5 (Essential arc). The points-to arc h1 f
ÝÑ h of a points-

to graph ~u is called essential in the presence of a must-graph Θ, if the

semantics of pµ,Θq, i.e., γpµ,Θq, gets changed by removing the considered

points-to arc h1 f
ÝÑ h from the points-to graph Θ.

essentialµ,Θph
1 f
ÝÑ hqq fi h1 f

ÝÑ h P arcpΘq ^ γpµ, Θ̄q ‰ γpµ,Θq (4.4)

where Θ̄ is obtained by removing h1 f
ÝÑ h from Θ.

Θ̄ fi reducepΘ, h1 f
ÝÑ hq

Our goal is turned to find the necessary conditions of an arc being es-

sential, because the contra-position of such necessary condition will be a

sufficient condition to soundly remove arcs of points-to graph. The following

lemma gives a such necessary condition of an arc being essential. Intuitively,

an arc is essential if it can be “passed through” by some common environment

ρ P γpµ,Θq.

Finally, we are able to define our problem indicated by the chapter’s title.

Definition 4.2.6 (Problem of redundancy elimination and reduced minimal

points-to graph). Let pµ,Θq be a pair of must-graph and points-to graph. The

problem of redundancy elimination of points-to graph using must-alias is to

62

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

find the minimal sub- points-to graph Θ̄, called reduced minimal points-to

graph such that the concretization is preserved.

reducedpµ,Θq fi mintΘ̄ Ď Θ | γpµ,Θq = γpµ, Θ̄qu (4.5)

The fact that such minimal points-to graph exists and is unique will

be shown in Lem. 4.2.2 below, which gives an equivalent condition that

determines whether an arc is essential.

4.2.3 Toward the Soundness Condition

We first define chain of points-to graph that will be used to prove Lem. 4.2.2.

Definition 4.2.7 (Chain of points-to arc). A chain of points-to arc from

a node h0 to a node hm is a sequence of arcs, h0

f1ÝÑ h1, h1

f2ÝÑ h2,. . . ,

h0

fmÝÑ hm, where the target of the edge hi−1

fi−1

ÝÝÑ hi equals the source of the

edge hi
fiÝÑ hi+1. The arc chain is said to have the source n0, target nm, and

length m ě 0.

Lemma 4.2.1. Let ρ be an environment of a points-to graph Θ, h be a node

of Θ, ~u fi f1.f2. . . . fn be a non-empty access path s.t.

ρp~uq⊲ h

Then we have a chain of points-to arc from ˝ to h,

˝
f1ÝÑ h1, h1

f2ÝÑ h2, h2

f3ÝÑ h3 . . . hn−1

fnÝÑ h

such that ρpf1 . . . fkq⊲ hk for 1 ď k ď n.

The proof for the above lemma is simple by induction (omitted). The

following result plays a kernel role for the next section. The lemma basically

states that an arc is essential if and only if it can be “passed through” by a

common environment.

63

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

Lemma 4.2.2. Let pµ,Θq be a pair of must-graph and points-to graph. A

points-to arc h1 f
ÝÑ h is essential if and only if, for some common environment

ρ P γpµ,Θq and an access path ~u, we have

ρp~uq⊲ h1 ^ ρp~u.fq⊲ h (4.6)

Proof of Lem. 4.2.2. First, we prove that the ðù part by the semantics of

points-to graph. Let ρ P γpΘ, µq be a common environment and ~u be an

access path. Assume

ρp~uq⊲ h1 ^ ρp~u.fq⊲ h (A)

It suffices to show that ρ is not an environment of Θ̄, recalling the notion of

essential arc (Def. 4.2.5) and common environment (Def. 4.2.4). Assume by

contradiction that ρ P γpΘ̄q. By (A) and the semantics of points-to graph,

we have h1 f
ÝÑ h as an arc of Θ̄. This contradicts the definition of Θ̄.

Now prove the ùñ part. Let the points-to arc h1 f
ÝÑ h be an essential arc,

and let Θ̄ fi reducepΘ, h1 f
ÝÑ hq. The definition of essential arc (Def. 4.2.5)

tells the existence of an environment that belongs to γpµ, Θ̄q but does not

belong to γpµ,Θq. Therefore we can find some ρ∗ s.t.

ρ∗ P γpΘq ^ ρ∗ R γpΘ̄q

.

Recall that ρ∗ P γpΘq means, for each h1, f, h, ~u,

ρ∗p~uq⊲ h1 ^ ρ∗p~u.fq⊲ h ùñ h1 f
ÝÑ h P arcpΘq (4.7)

and ρ∗ R γpΘ̄q means, for some h1
∗, f∗, h∗, ~u∗,

ρ∗p~u∗q⊲ h1
∗ ^ ρ∗p~u∗.f∗q⊲ h∗ ^ h1

∗
f∗ÝÑ h∗ R arcpΘ̄q (4.8)

Combining the two, we have h1
∗

f∗ÝÑ h∗ P arcpΘq and h1
∗

f∗ÝÑ h∗ R arcpΘ̄q.

Recall that Θ̄ is obtained by removing h1 f
ÝÑ h and its consequence garbage

from Θ, we only need to discuss two cases.

• Case I: The arc h1
∗

f
ÝÑ h∗ is exactly h1 f

ÝÑ h. We conclude immediately

from (4.8).

64

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

• Case II: The arc h1
∗

f
ÝÑ h∗ will become the garbage once h1 f

ÝÑ h is

removed from Θ.

Write3 ~u∗ as f1.f2 Due to Lem. 4.2.1 and ρ∗p~u∗q ⊲ h1
∗, we have a

chain C of points-to arc from ˝ to h1
∗ s.t.

ρ∗pf0.f1 . . . fkq⊲ hk

On the other hand, case II implies that any chain of points-to arcs from

˝ to h∗

˝
f1ÝÑ h1, h1

f2ÝÑ h2, h2

f3ÝÑ h3.hn−2

fnÝÑ h∗ (4.9)

must contain h1 f
ÝÑ h. Otherwise, if h1 f

ÝÑ h is not one of the arcs in

the chain (4.9), then the node h1
∗ is still reachable through the chain C,

noting that the removal of h1 f
ÝÑ h will not make any arc of the chain

become garbage. This contradicts the assumption of case II.

Thus, we can find a prefix of ~u, ~upre, such that

ρ∗p~upreq⊲ h1 ^ ρ∗p~upre.fq⊲ h

We conclude for case II.

Road-map We have expressed an equivalent condition for an arc being

essential in the form of

ρp~uq⊲ h1 ^ ρp~u.fq⊲ h (C)

The following work is to study the consequence of ρp~uq⊲ h by which we will

obtain the necessary condition for an arc being essential. Thus, whenever we

are asked whether an points-arc is redundant, we verify whether the necessary

condition is satisfied. A part of redundant arcs can be eliminated in this way.

It is clear that we are required to find necessary conditions that can be

easily checked. Moreover, it is desirable that this approach gives a complete

3We only prove the case for a non-empty ~u.

65

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

solution, in the sense that the obtained necessary condition is as strong as

its premise (the above C). Here we preview that the desire to be complete

should be very difficult to achieve, because we have shown (Sect. 4.5) the

NP-hardness of the problem of redundancy elimination of points-to graph.

Next, let us go through a theoretical intermezzo.

4.3 Backward-simulation and Fuzzy Nodes

Given pµ,Θq, and h P nodepΘq, the goal of this section is to find the necessary

condition of ρp~uq⊲h for some ρ P γpµ,Θq and some access path ~u. Depending

on whether the access path has an evaluation in the must-graph (i.e. whether

µp~uq = J), we will consider separately

ρp~uq⊲ h^ µp~uq ‰ J (4.10)

and

ρp~uq⊲ h^ µp~uq = J (4.11)

The following lemma gives the necessary condition of (4.10).

Lemma 4.3.1. A node n of µ is backward-simulated by a node h of Θ, if for

some common environment ρ P γpµ,Θq and access path ~u s.t. µp~uq ‰ J, the

assertion ρp~uq⊲ h holds.

@ρ P γpµ,Θq, @µ, @n P nodepµq : ρp~uq ⊲ h ^ µp~uq = n ùñ n ∽ h (4.12)

The proof for this lemma is tedious. It may be skipped upon a first

reading.

Proof. Define

Rpρ, ~uq fi tpn, hq | ρp~uq⊲ h^ µp~uq = nu

The goal is to prove, for any access path ~u P Σ∗ and ρ P γpµ,Θq, we have

Rpρ, ~uq Ď∽.

66

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

Since ∽ is the greatest fixpoint of its associated functional F∽ by Def.

4.1.1, it suffices to show 4

Rpρ, ~uq Ď F∽pRpρ, ~uqq

Take an arbitrary access path ~u, an environment ρ P γpµ,Θq, a node n of

must-graph µ and a node h of points-to graph Θ such that

nRpρ, ~uqh (4.13)

we are engaged to prove

@n1, f : n1 f
ÝÑ n P arcpµq ùñ Dh1 : h1 f

ÝÑ h P arcpΘq ^ n1 Rpρ, ~uq h1 (4.14)

Recall that we have assumed that each node is reachable from the root.

This means, given any n1, f s.t. n1 f
ÝÑ n, there exists some ~u1 s.t. µp~u1q = n1.

The relationship among n, n1, ~u, ~u1 can be illustrated by the must-graph

n1 f // n

˝

~u1
??

~u

77

It follows that ρp~u1q ‰ J. This is because, if it is not the case, we have

ρp~u1.fq = J and thus

ρp~uq = J (4.15)

following the semantics of must-graph. But (4.15) contradicts the fact ρp~uq⊲

h implied from 4.13.

By Lem.4.2.1, we can find h1 P nodepΘq s.t. ρp~u1q ⊲ h1. Now we verify

the conclusion part of (4.14): we have n1 Rpρ, ~uq h1 by the definition of

R. To show h1 f
ÝÑ h, recall the semantics of points-to graph. It suffices to

show ρp~u1.fq ⊲ h. This is true following ρp~uq ⊲ h and µp~uq = µp~u1.fq, since

ρ∗ P γpµq implies ρpµ1.fq = ρpµq. This completes the proof for (4.14) under

the assumption nRpρ, ~uqh. The proof is completed.

4 Tarski’s fixpoint theorem, or co-inductive proof principle: the greatest fix point of a

monotone function over a complete lattice is its greatest pre-fixpoint.

67

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

Below we introduce ”fuzzy nodes”. This will be used to find the necessary

condition of (4.11).

Definition 4.3.1 (Fuzzy node). A fuzzy node h is a points-to node that has

an incoming arc h1 f
ÝÑ h labeled f such that h1 is backward-simulated by a

must-node n, and this node n does not have an outgoing arc labeled f .

fuzzyphq fi Dh1 f
ÝÑ h, Dn1 P nodepµq : n1

∽ h1 ^ n1 f
ÝÑ J (4.16)

Revisit the example of Fig. 4.5. The node h3 is a fuzzy node. This is

becasue these esists an points-to arc from the root to h3 labeled z, yet in

the must-graph there is no arc labeled by z and orignated from the root

(remind that the root in the must-graph is back-simulated with the root in

the points-to graph, according to our convention.)

Lemma 4.3.2 (Fuzzy node). Let ρ P γpµ,Θq be a common environment,

and ~u be an access path such that

ρp~uq⊲ h^ µp~uq = J

Then h is reachable by a fuzzy node h̃

Dh̃ : fuzzyph̃q ^ h̃Ñ∗ h

Proof. By µp~uq = J, we have a strict prefix of ~u, denoted u1.f such that5

µp~u1q ‰ J ^ µp~u1.fq = J (4.17)

By Lem. 4.2.1, we have h̃ P nodepΘq s.t.

h̃Ñ∗ h^ ρp~u1q⊲ h̃ (4.18)

5Here ~u1 may be an empty access path which causes µp~u1q = ˝.

68

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

Let n1 P nodepµq be µp~u1q since µp~u1q ‰ J by (4.17). Following Lem. 4.2.2,

we obtain

n1
∽ h̃

Note n1 f
ÝÑ J by (4.17). By the definition of fuzzy nodes, we obtain

fuzzyph̃q (4.19)

We conclude combining (4.18) and (4.19).

Finally, we can give a necessary condition for an arc being essential. This

theorem can be directly translated to an algorithm that finds redundant

points-to arc in the presence of must-alias.

Theorem 4.3.1. Let pµ,Θq be a must-graph and points-to graph. If a points-

to arc h1 f
ÝÑ h is essential, then one of the following assertions must hold.

paq Dn1, n P nodepµq : n1 f
ÝÑ n^ n1

∽ h1 ^ n ∽ h

pbq Dn1 P nodepµq : n1 f
ÝÑ J^ n1

∽ h1

pcq Dh̃ P nodepΘq : fuzzyph̃q ^ h̃Ñ∗ h1

Proof. By Lem. 4.2.2 , we have ρp~uq⊲h1 and ρp~u.fq⊲h for some ρ P γxµ,Θy

and ~u. Logically, we have 3 disjunctive cases:

• Case 1: Dn1, n P nodepµq, µp~uq = n1, µp~u.fq = n

• Case 2: Dn1 P nodepµq, µp~uq = n1, µp~u.fq = J

• Case 3: µp~uq = J

Case 1 and case 2 imply (a) and (b) respectively due to the lemma of

backward-simulation (Lem. 4.3.1). Case 3 implies (c) due to the lemma

of fuzzy node (Lem. 4.3.2).

69

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

4.4 Algorithm of Redundancy Elimination

A direct implementation following Thm. 4.3.1 is presented in Algorithm 1.

Here we describe different parts of the algorithm and show its worst-case

complexity. We use these notations: |Θ| and |µ| for the number of nodes

of Θ and µ respectively; }Θ} and }µ} for the number of arcs of Θ and µ

respectively. Denote | ∽µ,Θ | as the size of the backward simulation. It is

clear

| ∽µ,Θ | ď |µ|ˆ |Θ| (4.20)

• From line 1 to 11, the algorithm computes the backward-simulation,

which is given by backsim at the end of the while loop (at line 12).

To see this, denote backsimk to be the content of backsim when the

while loop starts its k -th iteration (at line 2) and we have

backsim1 = nodepµq ˆ nodepΘq

backsimk+1 = tpn, hq | @n1 f
ÝÑ n, Dh1 f

ÝÑ h : n1 backsimk h1u

Thus backsim computes the greatest fix point of F∽ defined in Def.

4.1.1.

The worst-case complexity for this part is Op}Θ} ¨ }µ} ¨ | ∽µ,Θ |q. This
is because the outside while loop (from line 2 to 11) at most iterates

| ∽µ,Θ | times, and its inner loop at most iterates over all the arcs of µ

and Θ.

• From line 12 to 18, the algorithm computes the fuzzy nodes of Def.

4.3.1.

It is clear that the worst-case complexity for this part isOp}Θ}¨| ∽µ,Θ |q.

• From line 19 to 24, the algorithm computes the reachable nodes of the

fuzzy nodes, i.e., the h satisfying condition (c) of Thm. 4.3.1,

th | Dh̃ P nodepΘq : fuzzyph̃q ^ h̃Ñ∗ hu

The reachable nodes are marked via the boolean array visited. At

line 24, we use traversal(h,visited) to mean a standard procedure

70

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

like depth-first traversal that traverses and marks the nodes of points-

to graph reachable from the node h. The procedure is assumed to visit

the nodes that are not marked by visited.

The worst-case complexity for this part is Op}Θ} + |Θ|q. This is the

complexity for a standard traversal like depth-first iteration. Although

there may be more than 1 fuzzy node, each traversal will mark the

visited nodes so that they will not be visited for the following traversals

of the remained fuzzy nodes.

• From line 25 to 31, the algorithm computes redundant arc by putting

together the arcs that do not satisfy the conditions (a), (b) or (c) in

Thm. 4.3.1.

Finally, we conclude that the worst-case complexity for the algorithm is

dominated by the program from line 1 to 11, which is Op}Θ}¨}µ}¨| ∽µ,Θ |q. We

have the following conclusion following a conservative estimation of | ∽µ,Θ |,
cf. (4.20).

Theorem 4.4.1. The worst-complexity of Algorithm 1 is quartic.

Op}Θ} ¨ }µ} ¨ |Θ| ¨ |µ|q

At last, as a case study, we review the 2nd example of Sect. 4.1 (Fig. 4.5).

We have 1 ∽ h1, 1 ∽ h3, 2 ∽ h4, 2 ∽ h5. The fuzzy node is h3. By Thm.

4.3.1, we immediately obtain the redundant arcs h1

f
ÝÑ h2 and h2

f
ÝÑ h3.

Discussion. In general, must-graph in real programs is very small compared

to points-to graph. On the one hand, must-analysis is expensive. The am-

bition to produce a precise large must-alias may not be realistic; On the

other hand, at each merge point of program, must-alias analysis will become

smaller because it consists of intersection instead of union at merge points.

In the examples in Sect. 4.1, the must-graph has at most 2 nodes. In condi-

tion that the must-graph is much smaller than points-to graph, we have an

algorithm of complexity Op}Θ} ¨ |Θ|q.

71

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

Algorithm 1 Redundancy elimination of points-to graph using must-

alias

Input: must graph µ, points-to graph Θ

Output: redundant (redundant arcs)

1: backsimÐ nodepµq ˆ nodepΘq Y tp˝, ˝qu

2: while backsim changes do

3: for each arc of µ, n1 f
ÝÑ n do

4: H ÐH

5: for each arc of Θ labeled by f , h1 f
ÝÑ h do

6: if pn1, h1q P backsim then

7: HY = thu

8: end for

9: backsimpnq X = H

10: end for

11: end while

12: fuzzy ÐH

13: for each pn1, h1q P backsim do

14: for each outgoing arc of h1, h1 f
ÝÑ h do

15: if n1 f
ÝÑ J then

16: fuzzyY = thu

17: end for

18: end for

19: for each h P nodepΘq do

20: visitedrhs Ð false

21: end for

22: for each h P fuzzy do

23: traversal(h,visited)

24: end for

25: redundantÐH

26: for each h1 f
ÝÑ h P arcpΘq s.t. not visitedrh1s do

27: for each n1 s.t. n1 backsim h1 do

28: if notpn1 f
ÝÑ Jq and not ppn1 f

ÝÑ n q and pn backsim hqq then

29: redundantY = th1 f
ÝÑ hu

30: end for

31: end for

72

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

4.5 Incompleteness

Consider the following points-to graph (Fig. 4.6 left) and must- graph (Fig.

4.6 right).

h1

f // h3

j

˝

x

@@

x
��

h5

h2

g // h4

k
>>

2
j

��
˝ x // 1

f
@@

g

��

4

3

k

@@

Figure 4.6: Incompleteness: points-to graph (left) and must-graph (right).

We obtain the backward-simulation

1 ∽ h1, 1 ∽ h2, 2 ∽ h3, 3 ∽ h4, 4 ∽ h5

None of the nodes is fuzzy. By our algorithm, all arcs should be preserved.

However, the arcs h3

j
ÝÑ h5 and h4

k
ÝÑ h5 could have been removed. This is

because, the must graph requires x.f.j = x.g.k. By consequence, informally,

x.f.j must follow the flow ˝
x
ÝÑ h1

f
ÝÑ h3

j
ÝÑ h5, and x.g.k must follow the flow

˝
x
ÝÑ h2

g
ÝÑ h4

k
ÝÑ h5, but it is impossible because x cannot simultaneously

point to h1 and h2. (Remind the concrete environment is modeled to be

determinist.)

In the following we show it is NP-hard to find a complete algorithm.

Theorem 4.5.1. The problem of Redundancy Elimination of Points-to graph

with Must-alias (called REPMin this section) is NP-hard.

We will use the following notations and conventions in the section. Given

a must-graph µ and a points-to graph Θ, their concretizations are denoted

by γµ (Def. 4.2.3) and γΘ (Def. 4.2.2) respectively. The construction process

(to be defined shortly) of the graph G is denoted by pµ,Θq = ΦpGq. The

73

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

reduced minimal points-to graph (Def. 4.2.6) of Θ is denoted by Θ̄. Given

a graph G, the number of nodes is denoted by |G|. For the rooted graphs

µ and Θ, their roots are not counted as nodes. For k ě 0, we write x.fk to

mean the access path x.

khkkikkj
f.f By convention, x.f 0 means x.

To prove REPM is NP-hard, we will prove that the problem of Hamilton

circuit is reducible to the REPM. Classically, the problem of Hamilton circuit

is, given a graph G with n nodes, to determine if G has a Hamilton circuit.

It is known that Hamilton circuit problem is NP-complete for both directed

graph and undirected graph. Here we only consider directed graph with at

least 2 nodes.

That is to say, given a question, “Does the directed graph G contain a

Hamilton circuit?”, we answer this question in a polynomial procedure using

the oracle machine solving REPM.

The process of reduction is as follows. Given a directed graph G with

|G| nodes v1 . . . v|G|, we construct Θ to be the points-to graph started by the

arc ˝
x
ÝÑ h1 where the node h1 will be connected to an arbitrary node of G,

say, v1; each arc of Θ, except the one connected to the root, is labeled f

and the other nodes in G are renamed h2, . . . , h|G|. We construct µ to be the

points-to graph started by the arc ˝
x
ÝÑ 1 where the node 1 will be connected

to an arbitrary node of a directed cycle composed of |G| nodes, and the other

nodes of this cycle are named 2, . . . , |G|; each arc, except the one connected

to the root, is labeled f . This process, denoted by pµ,Θq = ΦpGq, guarantees

the relation between the nodes numbers: |G| = |µ |ù |Θ|.

For example, Fig. 4.7 is the graph G upon which we will determine the

existence of a Hamilton circuit. Fig. 4.8 is the corresponding constructed Θ

(The label f is not drawn.) and µ.

We will use the following algorithm to determine whether G has a Hamil-

ton circuit, assuming an oracle machine that solves REPM.

Input: The directed graph G with at least 2 nodes.

Output: : “Yes/No” if G contains a Hamilton circuit or not.

Construct the points-to graph Θ and the must graph µ using the above

mentioned procedure.

Find the reduced minimal points-to graph Θ̄, using the oracle machine

that solves REPM.

74

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

if the nodes number of Θ̄ equals to that of G then

output “Yes”.

else

output “No”.

For example, the reduced minimal points-to graph in question is shown

in Fig 4.9. The procedure answers “yes” since it contains as many nodes as

G.

''

//�� ��

��//

__ ??

oogg

Figure 4.7: A Hamilton graph G

In the following, we assume pµ,Θq to be the must-graph and points-to

graph constructed by the indicated process above, and Θ̄ be the reduced

minimal points-to graph.

Lemma 4.5.1. If G contains a Hamilton circuit, then Θ̄ and G have equal

number of nodes: |Θ̄| = |G|.

Proof. It is clear |Θ̄| ď |G|, since |Θ̄| ď |Θ| and |Θ| = |G|. We prove

|Θ̄| ě |G|. Assume that G’s Hamilton circuit in terms of Θ’s nodes is

h1

''

// h2

zz ��

˝ x // h3

//

``

h4

>>

h5
oojj

4

f��
5

f
��

3
f

^^

˝ x // 1
f

// 2

f

OO

Figure 4.8: From left to right, the points-to graph Θ and the must graph µ

constructed from the graph G.

75

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

h1

''

h2

˝ x // h3

``

h4

>>

h5jj

Figure 4.9: The reduced minimal points-to graph Θ̄.

h1, h2, . . . , h|G|, h1. Construct ρ∗ to be a graph that substitutes the nodes

hi of Θ P Env to an arbitrary ri such that ri ⊲ hi. The arcs of ρ are chosen

to be the circuit

r1
f
ÝÑ r2, r2

f
ÝÑ r3, . . . , r|G|

f
ÝÑ r1

By the definition of γmust and γpto, we verify that ρ∗ P γmustpµq and ρ∗ P

γptopµq. Thus ρ∗ P γpµ,Θq. It is also straightforward to establish that, for

any access path ~u and h1, h P nodespΘq, we have pρ∗p~uq ⊲ h1 ^ ρ∗p~u.fq ⊲

h ùñ h1 f
ÝÑΘ hq. By Lem. 4.2.2, we conclude that all the arcs of the

Hamilton circuit are essential, thus they must be included in Θ̄. We obtain

|Θ̄| ě |G|.

Lemma 4.5.2. If G does not contain a Hamilton circuit, then there must be

redundant arcs in Θ.

Proof. Proof by contradiction. Assume that no redundant arc is contained

in Θ. By Lem. 4.2.2, each node of Θ can be reached by an environment of

γpµ,Θq. We have,

|G| = #th | Dρ P γpµ,Θq, D0 ď i < |G|, ρpx.f iq⊲ hu (4.21)

This is because, for an arbitrary arc h1 f
ÝÑ h of Θ, there exists an access

path ~u and an environment ρ P γpµ,Θq, such that ρp~uq⊲ h1 and ρp~u.fq⊲ h.

Thus we have (4.21) noting that the space of the considered access paths is

tx.f i, i ě 0u, and we also obtain the constraints due to the must graph µ:

ρpx.f iq = ρpx.f i+|G|q for any i ě 0 and ρ P γpµq.

76

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

Since G does not have Hamilton circuit,

@ρ P γpµ,Θq, Dn,m P Z, 0 ď n < m < |G| ^ ⊲pρpx.fnqq = ⊲pρpx.fmq

(4.22)

This is because, the sequence hsi defined to satisfy ρpx.f iq⊲hsi for 0 ď i < |G|
must have repetitive element. Otherwise, the sequence composes a Hamilton

circuit. Noting that ρpx.f iq ⊲ hsi and ρpx.f i+1q ⊲ hsi+1
imply hsi

f
ÝÑ hsi+1

by the concretization of the points-to graph, and ρpxq = ρpx.f |G|q by the

concretization of the must-graph.

Combining (4.21) and (4.22), we obtain the contradiction |G| < |G|.

Lemma 4.5.3. If G has at least 2 nodes and does not contain any Hamilton

circuit, then the nodes number in Θ̄ is strictly less than that of G, i.e. |Θ̄| <
|G|.

Proof. Define the predicate P pkq for k ě 2, which holds if and only if the

above proposition is true for the graph G of k nodes, i.e.

P pkq fi @G, @pµ,Θq, @Θ̄ : ΦpGq = pµ,Θq^

Θ̄ = reducedpµ,Θq^ | G |= k ^ HamiltonpGq ùñ |Θ̄| < |G| (4.23)

P p2q is trivially true. Assume that P pkq holds for 2 ď k < K, we need

to prove P pKq. That is to say, given an arbitrary graph G with k nodes,

assume G does not contain a Hamilton circuit, let Θ̄ be the reduced minimal

points-to graph of Θ constructed from Φ. We are engaged to prove that Θ̄

contains strictly less nodes than G does.

By Lem. 4.5.2, we have a strict subgraph Θ̃ Ĺ Θ such that γpµ,Θq =

γpµ, Θ̃q. Let G̃ be G with corresponding arcs of ΘzΘ̃ removed.

• Case I: |G̃| < |G|, we conclude directly from the two facts |G̃| = |Θ̃|
(by construction) and |Θ̄| ď |Θ̃| (Θ̄ is the reduced minimal graph).

• Case II: |G̃| = |G|, we have (a) G̃ does not contain a Hamilton circuit.

This is because, otherwise, G will contain a Hamilton circuit as well,

noting that G has the same nodes as G̃ and yet more arcs than G̃. We

77

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

also have (b) pΘ̃, µq = ΦpG̃q (Keep in mind that µ is constructed to

contain |G| nodes, thus contains |G̃| nodes). Therefore, it is eligible to

apply the hypothesis of induction. We conclude |Θ̄| < |G|.

4.6 Comparison with Related work

Various methods of optimization have been proposed dealing with the preci-

sion/efficiency trade-off. We classify these approaches in 3 major categories.

• Semantics abstraction. This category includes the various traditional

points-to analyses that are sensitive or insensitive to particular aspects

of the program semantics [52, 16, 1]. Examples are context-sensitive

/insensitive analysis flow-sensitive /insensitive analysis, or path sensi-

tive /insensitive analysis, etc. The disadvantage of this approach is it

sacrifice the precision when it tries to scale up, or vice-verse.

• Data structure designing. This category notably includes the use of bi-

nary decision diagram (BDD) as a compact representation [5] of point-

to graph.

• Redundancy elimination. Examples are partial on-line cycle elimination[32]

and projection merging [67]. Both simplify the points-to graph by de-

tecting redundant points-to relations. The issues of this approach are

how to avoid complexity overhead, and how to ensure soundness.

Our work belongs to the 3rd category.

The use of must-alias to refine points-to analysis should date back to the

original work [30], in which precise killing information is obtained by definite

points-to information. The work is limited to C’s stack variables. The heap

is abstracted as one cell. Choi et al [19] showed how must-alias information

can help to yield precise alias. Their analysis is also based on C and the alias

information is represented in alias pairs, which is considered inefficient.

Sagiv et al [62] gave simultaneous collection of both universal and exis-

tential properties of programs, and showed how to use universal assertions to

78

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

improve the accuracy of existential assertion. The pointer equality problem

is used as an example. Compared to theirs, our work focuses on the pruning

of points-to graph. We propose an algorithm to remove redundant arcs in an

efficient way.

An algorithm of must-alias is presented in [46], but it handles only single

level pointers and cannot be extended to general cases without complexity

explosion. In [9], the must-alias is computed based on the concept of instance

keys. However, they can only deal with local variables. Must-alias concerns

only local variable. Although we do not provide an explicit must-alias ana-

lyzer in this paper, the must-graph presented in this paper is similar to the

e-graph in [14], or as storeless structure in [43].

4.7 Conclusions

The objective of this work is to refine points-to analysis using must-alias

information. This work is theoretical, and is ahead-of-time because of the

lack of a must-alias analyzer in practice for now.

We have established an algorithm of polynomial complexity that removes

redundant points-to relations with the help of must-alias relation. We start

by formalizing the interfaces of the information obtained from points-to anal-

ysis and must-alias analysis as rooted directed graph. Then the semantics of

the two graph are specified by a concretization function in the sense of ab-

stract interpretation. This semantics-based problem formalization allows us

to deduce an algorithm that is proved correct with regard to this semantics.

We give the pseudocode of the algorithm which is of polynomial complexity.

This argues that the approach has a reasonable complexity overhead.

Pointer analysis has often been presented in an informal way. Numerous

studies have been done for the optimization of existing mainstream pointer

analysis. Unfortunately, many of these works lack rigorous formalization,

which make them less trust-able and more error-prone. The semantics-based

approach of this work leads to a fully proved algorithm which provides a

79

CHAPTER 4. ENHANCING POINTS-TO ANALYSIS

solid way to solve the problem. In particular, the semantics-based approach

is mandatory for this problem where one of the component analyses, i.e.,

must-alias analysis, has not yet been fully studied or implemented in practice.

For future work, we promote a theoretical research for the analysis of

must-alias, and a field study for the combination of must-alias with points-to

analysis. Experimental results are desired so we can evaluate the benefits of

this combination in real-life programs.

80

Chapter 5

Prototyping NumP

We have implemented a prototype for the abstract domain NumP . Below,

we write NumP (in sans-serif font) for the prototype. NumP uses SOOT [69]

as the front-end. It modularly combines the pointer analyses in SPARK [50],

and the abstract numerical domains implemented in PPL [2].

We first implement the traditional static numerical analyzer for Java. The

implementation will be denoted by Num. This is done by wrapping abstract

domains in PPL. Num either skips unrecognized statements or conservatively

approximates them using the operator of unconstraint in PPL. The flow-

insensitive points-to analyses are directly available in SOOT. They will be

denoted by Pter subsequently. The input program is a set of Java classes

with a class main indicating the entry point used for call-graph construction.

To ensure extensibility and re-usability, the implementation extensively

employs standard object-oriented technologies. As experimental study, we

compare NumP with its component analyses for precision and cost.

5.1 Design issues

5.1.1 Reused components

A modular designing is essential to make the analysis easy to implement and

to maintain. In particular, code duplication should be avoided regarding

to the two major components of the analysis, namely, pointer analysis and

81

CHAPTER 5. PROTOTYPING NUMP

numerical analysis.

• PPL [3], the Parma Polyhedra Library, is a set of implementations ma-

nipulating numerical information that can be represented by points in

some n-dimensional vector space. It provides a large amount of nu-

merical abstract domains ready for use, including the non-relational

interval abstract domain, the relational polyhedral (convex or not) ab-

stract domains, the weakly-relational octagon abstract domains, and

some categories of combined domains, like the powerset construction.

The library is written in C++ , and is ported to Java among others

languages. We encapsulate (in the sense of object-oriented technol-

ogy) the abstract domains provided by PPL as a back-end to compute

transfer functions, widening, narrowing and join, etc.

• SOOT [70] is an open-source toolkit for Java program transformation

and optimization. In this implementation, two use cases of SOOT can

be found: (1) We use SOOT as the front end to transform code sources

or their bytecodes into the Jimple intermediate representation. (2) More

than one variants of pointer analyses from SOOT can be borrowed

to our implementation, including the field-insensitive/field-sensitive,

context-insensitive/context-sensitive, subset-based/union-based, or demand-

driven variants.

5.1.2 Precision/cost trade-off

The balance between the precision and the cost is one major concern for the

designing of any static analysis.

Regarding to the pointer analysis part of the prototype, we use the flow-

insensitive points-to analysis because it can statically infer a relatively pre-

cise pointer behavior with affordable time and memory consumption. In the

family of flow-insensitive points-to analysis, we may choose to switch on/off

the context-sensitivity, field-sensitivity and some other relevant options that

influence the performance of the analysis such as subset-based or equality

based algorithm. However, we believe it is important to stay with the cate-

gory of flow-insensitive category, for to the best of our knowledge there has

82

CHAPTER 5. PROTOTYPING NUMP

been no flow-sensitive points-to analyses available that are able to run on

large programs in Java.

For the numerical analysis part, while we leave the different numerical

domains as possible instance of NumP , we will only apply these abstract

domains in an intra-procedural way. It is known that the complexity of

the operations of numerical domains are mainly decided by the number of

variables as well as the line numbers of the analyzed programs. This means,

to analyze a large program intra-procedurally has a exponential gain on time

in terms of numbers of program procedures/methods.

5.2 Implementation

The abstract domain is implemented to test on its performance. The modular

designing has to be respected for the ease of implementation.

5.2.1 Architecture

The structure of the analysis is shown in Fig. 5.1 as a UML class diagram:

each rectangle represents a Java class, and the arrows indicate the relation

between classes. Two kinds of class relations are recorded here: the solid-

headed arrow called the has a relation, and the hollow-headed arrow standing

for inheritance, or the is a relation. The analysis depicted as the left-most

rectangle takes a generic structure in the sense that it is composed of the

abstract domain NumP that implements abstract operators and the language

parser WHILEnp. The kernel architecture is the encapsulation of traditional

pointer analysis Pter as its component (the arrow from NumP to Pter , and

the inheritance (the arrow from NumP to Num. PPL and SOOT are used as

the back-ends of Num and Pter respectively (the arrows from Num to PPL

and the arrow from Pter to SOOT). In addition, SOOT also provides the

front-end functionality as the language parser (the arrow from WHILEnp to

SOOT).

83

CHAPTER 5. PROTOTYPING NUMP

Figure 5.1: The architecture of the prototype represented as class diagram

of UML

5.2.2 Work-flow

The analysis runs in three steps. First, it computes a global points-to graph

using Pter. Then, it transforms each input class into Jimple codes using

SOOT and enriches the intermediary representation with symbolic variables.

At last, NumP performs a static numerical analysis of each transformed input

class using an extended version of Num that takes symbolic variables into ac-

count. In this prototype, the side effects of function calls are not considered.

The output of NumP is the invariants before each Jimple statement. The

work-flow is shown as the prototype action diagram in Fig. 5.2

Figure 5.2: The work-flow of the prototype represented as action diagram of

UML

As an illustrative example, consider the Java snippet in Listing. 5.1. In

this example, an abstract class Unsigned uses unsigned numbers to represent

both positive and negative values. Unsigned has two subclasses Pos and Neg

for this purpose. It is the responsibility of clients to ensure the underlined

contract, i.e., objects of type Unsigned must hold non-negative values. The

Java source code takes an array buf and passes the elements to the list elem

84

CHAPTER 5. PROTOTYPING NUMP

of type List. The List has a field item for data type Unsigned and a field

next of type List. The compound condition structure (l. 7-14 of Listing. 5.1)

creates an object of class Pos or Neg according to whether n is positive or

not. For both cases, data.val will be assigned to the absolute values of n so

that the assumed property of unsignedness can be preserved. From l. 15 to

l. 19, the program allocates a new cell to store data and link it to the list

created from the precedent iteration.

Our analysis is able to infer the following properties at the end of the

program (l .21).

• Prop1 Each list element of hd is in the range of 0 to 9:

@l ě 0, hd.nextl.item.val P r0.9s

• Prop2 Each array element of buf is in the range of -9 to 7: buf r∗s P
r−9, 7s

• Prop3 The loop index idx is equal to or larger than the length of the

array buf: idx ě buf .length.

We start with a flow-insensitive points-to analysis. A single points-to

graph for the whole program can be obtained. The graph has two kinds of

arcs. Unlabeled arcs v Ñ h from a variable v to an allocation site h, and

labeled arcs h
f
ÝÑ h1 between allocation sites h, h1 with field f as label.

Variable names buf

��

data

�� ##

elem

''

hd

��
allocation sites h1 h2 h3 h4

next

kk
item

qq

item

jj

Semantically, the points-to graph disambiguates the heap and tells what

must not alias. In line with this semantics, we derive a symbolic variable δh,val
for each pair of heap location h and field val. The key insight is, numerical

values bound to syntactically distinct symbolic variables are guaranteed to

be stored at different concrete heap locations. It is therefore reasonable to

deal with symbolic variables like with scalar variables.

85

CHAPTER 5. PROTOTYPING NUMP

We associate buf ris at l. 1 of Listing. 5.1 with a symbolic variable δh1,r∗s,

and buf.length at l. 5 with δh1,length . Because variable data points to h2 and

h3, we associate data.val at l. 9 and l. 13 with both symbolic variables δh2,val

and δh3,val, reflecting the fact that data may be bound to an object Pos or

Neg. Listing 5.2 illustrates the semantics actions taken by our analysis. It is

1 i n t [] buf = { - 9 ,7 ,3 , - 5} ; // h1
2 Unsigned data = nu l l ;

3 L i s t hd = nu l l ;

4 i n t idx = 0 ;

5 while (idx < buf . l ength){
6 i n t n = buf [i dx] ;

7 i f (n > 0){
8 data = new Pos () ; // h2

9 data . v a l = n ;

10 }
11 else {
12 data = new Neg () ; / / h3

13 data . v a l = -n ;

14 }
15 L i s t elem = new L i s t () ; / / h4

16 elem . item = data ;

17 elem . next = hd ;

18 hd = elem ;

19 idx = idx + 1 ;

20 }
21 r e turn ;

Listing 5.1: A Java snippet

1 δh1,length
.
= 4 ;

2 δh1,r∗s
.
= - 9 ;

3 δh1,r∗s
.
= 7 ;

4 δh1,r∗s
.
= 3 ;

5 δh1,r∗s
.
= - 5 ;

6 idx = 0 ;

7 while (idx < δh1,length){
8 n = δh1,r∗s ;

9 i f (n > 0)

10 δh2,val
.
= n ;

11 δh3,val
.
= n ;

12 e l s e

13 δh2,val
.
= - n ;

14 δh3,val
.
= - n ;

15 i d x = idx + 1;

16 }

Listing 5.2: Semantics actions

Figure 5.3: An example in Java. The program passes an array of integers

to a list of Unsigned numbers. Unsigned is a superclass of Pos and Neg. It

has one field val of integer type. The class List has two fields, item of type

Unsigned, and next of type List.

86

CHAPTER 5. PROTOTYPING NUMP

worth noting that more than one run-time heap locations may be associated

with the same symbolic variable, e.g., δh1,r∗s corresponds to all heap locations

of the array buf . By updating the symbolic variable to −9, 7, 3 and −5

successively, we perform a weak update (syntactically noted
.
= in Listing

5.2), i.e., accumulating values rather than overwriting them.

Finally, the analysis of the program in Listing 5.1 can be treated as an ex-

tended numerical analysis, with its semantics actions specified in Listing 5.2.

This analysis is called “extended” because it not only deals with scalar vari-

ables, but also deals with symbolic variables. By performing an extended

polyhedral analysis, we are able to infer the four invariants at the end of the

program: δh2,val P r0, 9s, δh3,val P r0, 9s, δh1,r∗s P r−9, 7s and δh1,length−idx ď 0,

which imply Prop1, Prop2 and Prop3 respectively.

Below, we give the analysis results from our analysis. On the right is the

intermediate Jimple statement. On the left is the deduced constraints.

87

CHAPTER 5. PROTOTYPING NUMP

In JimpleStmt

--------------- -----------------

{true} r0 := @parameter0: java.lang.String[]

{true} $r4 = newarray (int)[4]

{true} #d_0_$r4[0] = -9

{#d_0 = -9} #d_0_$r4[1] = 7

{#d_0 >= -9, -#d_0 >= -7} #d_0_$r4[2] = 3

{#d_0 >= -9, -#d_0 >= -7} #d_0_$r4[3] = -5

{#d_0 >= -9, -#d_0 >= -7} r1 = $r4

{#d_0 >= -9, -#d_0 >= -7} n0 = null

{#d_0 >= -9, -#d_0 >= -7} r2 = null

{#d_0 >= -9, -#d_0 >= -7} i0 = 0

{i0 = 0, #d_0 >= -9, -#d_0 >= -7} goto [?= $i3 = #d_1_r1.<LEN>]

{$i3 - #d_1 = 0, -#d_0 >= -7, -#d_5 >= -9,

-#d_8 >= -9, #d_8 >= 0, #d_5 >= 0, #d_0 >= -9,

i0 >= 0, -i0 + $i3 > 0} i1 = #d_0_r1[i0]

{$i3 - #d_1 = 0, i1 - #d_0 = 0, i0 >= 0, -i0 + #d_1 > 0,

-#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_0 >= -9,

#d_5 >= 0, #d_8 >= 0} if i1 <= 0 goto $r7 = new unsigned4.Neg

{$i3 - #d_1 = 0, i1 - #d_0 = 0, -i0 + $i3 > 0,

-i1 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0,

#d_5 >= 0, i1 > 0, i0 >= 0} $r5 = new unsigned4.Pos

{$i3 - #d_1 = 0, i1 - #d_0 = 0, -i0 + $i3 > 0,

-i1 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0,

#d_5 >= 0, i1 > 0, i0 >= 0} specialinvoke $r5.<unsigned4.Pos: void <init>()>()

{$i3 - #d_1 = 0, i1 - #d_0 = 0, -i0 + $i3 > 0,

-i1 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0,

#d_5 >= 0, i1 > 0, i0 >= 0} r6 = $r5

{$i3 - #d_1 = 0, i1 - #d_0 = 0, -i0 + $i3 > 0,

-i1 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0,

#d_5 >= 0, i1 > 0, i0 >= 0} #d_5_8_r6.val = i1

{i1 - #d_0 = 0, i0 >= 0, -i0 + $i3 > 0, #d_1 > 0,

-#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0,

#d_0 > 0, #d_5 >= 0} goto [?= $r8 = new unsigned4.List]

{$i3 - #d_1 = 0, i1 - #d_0 = 0, -i0 + $i3 > 0,

-i1 >= 0, -#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0,

#d_5 >= 0, i1 >= -9, i0 >= 0} $r7 = new unsigned4.Neg

{$i3 - #d_1 = 0, i1 - #d_0 = 0, -i0 + $i3 > 0, -i1 >= 0,

-#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0, #d_5 >= 0, i1 >= -9,

i0 >= 0} specialinvoke $r7.<unsigned4.Neg: void <init>()>()

{$i3 - #d_1 = 0, i1 - #d_0 = 0, -i0 + $i3 > 0, -i1 >= 0,

-#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0, #d_5 >= 0, i1 >= -9,

i0 >= 0} r6 = $r7

{$i3 - #d_1 = 0, i1 - #d_0 = 0, -i0 + $i3 > 0, -i1 >= 0,

-#d_5 >= -9, -#d_8 >= -9, #d_8 >= 0, #d_5 >= 0,

i1 >= -9, i0 >= 0} $i2 = neg i1

{$i3 - #d_1 = 0, i1 + $i2 = 0, i1 - #d_0 = 0,

i0 >= 0, -i0 + #d_1 > 0, -i1 >= 0, -#d_5 >= -9,

-#d_8 >= -9, i1 >= -9, #d_5 >= 0, #d_8 >= 0} #d_5_8_r6.val = $i2

{i1 - #d_0 = 0, i0 >= 0, -i0 + $i3 > 0, #d_1 > 0,

-#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9,

#d_5 >= 0, #d_0 >= -9, #d_8 >= 0} $r8 = new unsigned4.List

{i1 - #d_0 = 0, i0 >= 0, -i0 + $i3 > 0,

#d_1 > 0, -#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9,

88

CHAPTER 5. PROTOTYPING NUMP

#d_5 >= 0, #d_0 >= -9, #d_8 >= 0} specialinvoke $r8.<unsigned4.List: void <init>()>()

{i1 - #d_0 = 0, i0 >= 0, -i0 + $i3 > 0,

#d_1 > 0, -#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9,

#d_5 >= 0, #d_0 >= -9, #d_8 >= 0} r3 = $r8

{i1 - #d_0 = 0, i0 >= 0, -i0 + $i3 > 0, #d_1 > 0,

-#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_5 >= 0,

#d_0 >= -9, #d_8 >= 0} r3.<unsigned4.List: unsigned4.Unsigned item> = r6

{i1 - #d_0 = 0, i0 >= 0, -i0 + $i3 > 0, #d_1 > 0,

-#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_5 >= 0,

#d_0 >= -9, #d_8 >= 0} r3.<unsigned4.List: unsigned4.List next> = r2

{i1 - #d_0 = 0, i0 >= 0, -i0 + $i3 > 0, #d_1 > 0,

-#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_5 >= 0,

#d_0 >= -9, #d_8 >= 0} r2 = r3

{i1 - #d_0 = 0, i0 >= 0, -i0 + $i3 > 0, #d_1 > 0,

-#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_5 >= 0,

#d_0 >= -9, #d_8 >= 0} i0 = i0 + 1

{-#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9, #d_0 >= -9,

#d_5 >= 0, i0 >= 0, #d_8 >= 0} $i3 = #d_1_r1.<LEN>

{$i3 - #d_1 = 0, -#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9,

#d_5 >= 0, #d_0 >= -9, #d_8 >= 0, i0 >= 0} if i0 < $i3 goto i1 = #d_0_r1[i0]

{$i3 - #d_1 = 0, -#d_0 >= -7, -#d_5 >= -9, -#d_8 >= -9,

#d_8 >= 0, #d_5 >= 0, #d_0 >= -9, i0 >= 0, i0 - $i3 >= 0} return

~end~.

5.3 Experimental Results

5.3.1 Bellman-Ford

A case study is carried out on a small program, Bellman-Ford, taken from

the benchmarking of Jchord [51]1. Its small size (< 500 LOC in Jimple

IR) allows us to run different combined analyses, including the expensive

polyhedral numerical analysis and the context-sensitive points-to analysis.

The objective here is to “plug in” various combinations and evaluate their

precision/cost tradeoff.

It is hard to compare the precision between NumP and Num. One metric

that we find reasonable is the total number of constraints contained in the in-

ferred invariants. Recall that NumP uses exactly the same transfer functions

from Num for statements in WHILEn, and is able to deal with statements

that are in WHILEnp but are not in WHILEn. We count the number of non-

trivial invariants (an invariant is trivial if it is true) generated by PPL. An

1See http://code.google.com/p/jchord/source/browse/trunk/test/bench/bellman-

ford/src/BellmanFord.java?r=1550.

89

CHAPTER 5. PROTOTYPING NUMP

Table 5.1: Case study on Bellman-Ford

Analysis invariants time (s)

Num intv 984 3.54

poly 1141 5.82

Pter spark 0 54.45

geom 0 114.24

NumP intv + spark 1180 77.84

intv + geom 1124 112.32

poly + spark 1460 92.68

poly + geom 1661 115.40

invariant in PPL is a conjunction of unit inequalities. In our context, these

invariants may involve symbolic variables. We count K + 2 times for an in-

variant expressed as tx ď 3, y ď 4, δ ď 5u if δ represents K field expressions

that literally appear in the program.

The first two columns of Tab. 5.1 show the instanced analyses, with intv

denoting the interval abstract domain (Int64 Box from PPL), poly denoting

the polyhedral abstract domain (NNC Polyhedron from PPL), spark denoting

the flow-insensitive, context-insensitive points-to analysis used by default

in SOOT (from SPARK), and geom denoting the flow-insensitive, context-

sensitive points-to anlaysis using geometric encoding algorithm [74] (from

SPARK).

The last two columns show the number of inferred invariants and the time

consumed by each analysis. The results confirm the expectation viz., that

the numerical analysis combined with pointer analysis infers more invariants

than the numerical analysis only, and is more expensive. The best precision is

obtained by polyhedral analysis combined with geometric encoding points-to

analysis, which is also the most time-consuming. For this small program, the

time spent by interval and polyhedral analyses is negligible compared with

pointer analysis. This is because Num is intra-procedural so its complexity

depends only on the length and the variable number of the program itself,

whereas the points-to analysis is inter-procedural so its complexity depends

90

CHAPTER 5. PROTOTYPING NUMP

on its dependent classes which are more than 10000 for this small program.

Also note that the time spent by NumP is not necessarily more than the

addition of its component analyses (compare poly, geom and their combined

poly + geom for example). This might be due to the fact that we are using

SOOT front-end which transfers programs to Jimple before each analyses.

Below, we use the invariant number and the consumed time as two per-

formance indicators.

5.3.2 Dacapo

We use Dacapo-2006-MR2 to evaluate our analysis on real-world programs.

Tab. 5.2 gives our experimental results for the combined intv +spark. We

have also tried with polyhedral analysis in which case neither NumP nor Num

is able to run over any of the benchmarks. Column 1 of the table gives the

eight chosen benchmarks. In column 2, iNum and iNumP are the invariants

numbers discovered by Num and by NumP respectively. The invariants num-

ber is the total non-trivial invariants collected from each individual method.

We use

qi fi iNumP{iNum − 1 (5.1)

as the indicator for the precision enhancement.

In column 3, we show the time consumed by NumP, Num and Pter. tNumP.

What we really care about is the time spent by NumP compared with its

combined components. The time overhead is quantified with qt defined as

qt fi tNumP{ptNum + tPterq− 1 (5.2)

where tNum, tPter and tNumP are the total time spent by the analyzers (in

seconds).

In Tab. 5.2, NumP gives an average of 29.6ˆ precision enhancement with

a time overhead of 0.13. This is meaningful: (1) Traditional Num is shown

insufficient to analyze numerical properties in real-world programs because

a large number of the numerical invariants involved in the program logic

are not expressible by scalar variables. It is with the help of a combined

pointer analysis that these alien invariants to Num may be discovered. (2)

91

CHAPTER 5. PROTOTYPING NUMP

Table 5.2: Performance test of NumP for the Dacapo-2006-MR2 benchmark

Benchmark Invariants Numbers Analysis Time (s)

iNum iNumP qi tNum tPter tNumP qt
bloat 70238 650091 8.3 16.6 62.6 98.8 0.25

chart 76972 905011 10.8 18.5 137.6 158.1 0.01

eclipse 58377 80875 0.4 14.8 40.5 56.1 0.01

fop 69170 12354926 177.6 23.2 136.3 300.4 0.88

hsqldb 154151 3328080 20.6 30.6 277.9 345.7 0.12

jython 105775 460900 3.4 181.6 134.5 204.4 -0.35

pmd 50023 425933 7.5 15.61 120.0 140.0 0.03

xalan 109147 1050445 8.6 17.02 91.9 122.1 0.12

MEAN 86732 2407033 29.6 39.7 125.2 178.2 0.13

The proposed NumP has the full capability to achieve this ambition because

it has little complexity overhead compared to its component analyses.

.

92

Chapter 6

Conclusions

In this thesis, we presented a static analysis that is able to infer numerical

properties in programs with pointers. The analysis has a modular construc-

tion which allows us to deal with the tradeoff between efficiency and accuracy

by tuning the granularity of abstraction and the complexity of the abstract

operators.

As a first contribution, we provided the theoretical framework about the

combination of numerical analysis and pointer analysis. We provided formal

definition of the combined operators through the operators already intro-

duced in the literature. We proved that the derived abstract operators are

correct by construction using the theory of abstract interpretation.

A second contribution of this thesis is the theoretical development of an

algorithm of partial redundancy elimination of points-to graph by taking

advantage of must alias analysis. By tracking must-alias information, for

example, that can be gleaned from conditionals and assignments, it is possible

to refine points-to graph during its synthesis. We formalized the algorithm,

proved its correctness, and showed its incompleteness.

Through the combination of the pointer analysis and the numerical anal-

yses, we obtained a strictly more accurate analysis and more precise results.

The main goal of this refinement consists in the automatic discovery of nu-

merical invariants in Java-like programs, which are in general pointer-aware.

This permits to make applicable our analysis to practical cases. Moreover,

we afforded a modular construction which allows to deal with the tradeoff

93

CHAPTER 6. CONCLUSIONS

between efficiency and accuracy by tuning the granularity of the abstraction

and the complexity of the abstract operators. Notice that further refinement

may be possible by enhancing the points-to graph using must-alias.

Another contribution of this thesis is the NumP tool: a new tool which

aims at numerical properties of Java-like programs. NumP is written in Java,

and to be used for Java. We have successfully combined the pointer analyses

in SPARK, and the numerical abstract domains in PPL to modular generate

a static numerical analyzer in the presence of pointers. The using of object-

oriented technologies and design patterns makes the prototype NumP fully

extensible to a large range of numerical domains and pointer analyses engines.

The preliminary results gave us the confirmation of theoretical results about

efficiency and accuracy.

Possible future works include:

In theory, we need to leverage the current static numerical analysis to

enable strong update. Note that precision of the NumP is affected by the

weak update algorithm used in this approach. This may be where we can

connect the must-alias analysis and NumP.

In practice, the static numerical analyzer NumP needs to be further de-

veloped to take side effects of function calls into account This can be ei-

ther achieved with a fully inter-procedural analysis with context sensitivity

taken into account or not following the incurred complexity, or we can adopt

a cheaper side-effect analysis to conservatively simulate the side-effects of

procedure invocation. As usual, in-lining may be performed prior to the

inter-procedural.

94

Bibliography

[1] L. O. Andersen. Program Analysis and Specialization for the C Pro-

gramming Language. PhD thesis, DIKU, University of Copenhagen,

May 1994. (DIKU report 94/19).

[2] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library:

Toward a complete set of numerical abstractions for the analysis and

verification of hardware and software systems. Technical Report 457,

Dipartimento di Matematica, Università di Parma, Italy, 2006.

[3] Roberto Bagnara, Elisa Ricci, Enea Zaffanella, and Patricia M. Hill.

Possibly not closed convex polyhedra and the parma polyhedra library.

In Proceedings of the 9th International Symposium on Static Analysis,

SAS ’02, pages 213–229. Springer-Verlag, 2002.

[4] Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie Hendren, and Navin-

dra Umanee. Points-to analysis using bdds. In Proceedings of the ACM

SIGPLAN 2003 conference on Programming language design and imple-

mentation, PLDI ’03, pages 103–114, New York, NY, USA, 2003. ACM.

[5] Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie J. Hendren, and Navin-

dra Umanee. Points-to analysis using bdds. In PLDI, pages 103–114,

2003.

[6] Garrett Birkhoff. Lattice theory. In Colloquium Publications, volume 25.

Amer. Math. Soc., 3. edition, 1967.

[7] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,

95

BIBLIOGRAPHY

A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Ste-

fanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann. The

DaCapo benchmarks: Java benchmarking development and analysis. In

OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN confer-

ence on Object-Oriented Programing, Systems, Languages, and Applica-

tions, pages 169–190, New York, NY, USA, October 2006. ACM Press.

[8] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,

D. Monniaux, and X. Rival. A static analyzer for large safety-critical

software. In Proceedings of the ACM SIGPLAN 2003 Conference on

Programming Language Design and Implementation (PLDI’03), pages

196–207, San Diego, California, USA, June 7–14 2003. ACM Press.

[9] Eric Bodden, Patrick Lam, and Laurie Hendren. Instance keys: A tech-

nique for sharpening whole-program pointer analyses with intraproce-

dural information. Technical Report SABLE-TR-2007-8, October 2007.

[10] Nicolas Bourbaki. Elments de mathmatique. Thorie des ensembles. Her-

mann, Paris, 1970.

[11] Randal E. Bryant. Graph-based algorithms for boolean function manip-

ulation. IEEE Trans. Comput., 35(8):677–691, August 1986.

[12] Peter J. Cameron. Notes on counting. Available at

http://www.maths.qmw. ac.uk/pjc/notes/counting.pdf.

[13] V.T. Chakaravarthy. New results on the computability and complexity

of points–to analysis. In ACM SIGPLAN Notices, volume 38, pages

115–125. ACM, 2003.

[14] Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation

with alien expressions and heap structures. In VMCAI ’05, pages 147–

163, 2005.

[15] Bor-Yuh Evan Chang, Xavier Rival, and George C. Necula. Shape anal-

ysis with structural invariant checkers. In SAS, pages 384–401, 2007.

[16] Ramkrishna Chatterjee, Barbara G. Ryder, and William Landi. Rele-

vant context inference. In POPL, pages 133–146, 1999.

96

BIBLIOGRAPHY

[17] Liqian Chen, Antoine Miné, Ji Wang, and Patrick Cousot. Interval

polyhedra: An abstract domain to infer interval linear relationships. In

SAS, pages 309–325, 2009.

[18] Jong-Deok Choi, Michael G. Burke, and Paul R. Carini. Efficient flow-

sensitive interprocedural computation of pointer-induced aliases and side

effects. In POPL, pages 232–245, 1993.

[19] Jong-Deok Choi, Michael G. Burke, and Paul R. Carini. Efficient flow-

sensitive interprocedural computation of pointer-induced aliases and side

effects. In POPL ’93, pages 232–245, 1993.

[20] P. Cousot. Méthodes itératives de construction et d’approximation de

points fixes d’opérateurs monotones sur un treillis, analyse sémantique

de programmes (in French). Thèse d’État ès sciences mathématiques,

Université Joseph Fourier, Grenoble, France, 21 March 1978.

[21] P. Cousot and R. Cousot. Static determination of dynamic properties

of programs. In Proceedings of the Second International Symposium on

Programming, pages 106–130. Dunod, Paris, France, 1976.

[22] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal

of Logic and Computation, 2(4):511–547, 1992.

[23] P. Cousot and R. Cousot. Comparing the Galois connection and widen-

ing/narrowing approaches to abstract interpretation, invited paper. In

M. Bruynooghe and M. Wirsing, editors, Proceedings of the Interna-

tional Workshop Programming Language Implementation and Logic Pro-

gramming, PLILP ’92,, Leuven, Belgium, 13–17 August 1992, Lecture

Notes in Computer Science 631, pages 269–295. Springer-Verlag, Berlin,

Germany, 1992.

[24] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified

lattice model for static analysis of programs by construction or approx-

imation of fixpoints. In POPL, pages 238–252, 1977.

[25] Patrick Cousot and Radhia Cousot. Systematic design of program anal-

ysis frameworks. In POPL, pages 269–282, 1979.

97

BIBLIOGRAPHY

[26] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear

restraints among variables of a program. In POPL, pages 84–96, 1978.

[27] Arnab De and Deepak D’Souza. Scalable flow-sensitive pointer analysis

for java with strong updates. In ECOOP, pages 665–687, 2012.

[28] A. Deutsch. A storeless model of aliasing and its abstractions using

finite representations of right-regular equivalence relations. In ICCL,

pages 2–13, 1992.

[29] Mark Dowson. The ariane 5 software failure. SIGSOFT Softw. Eng.

Notes, 22(2):84–, March 1997.

[30] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-

sensitive interprocedural points-to analysis in the presence of function

pointers. In PLDI, pages 242–256, 1994.

[31] Herbert B. Enderton. A mathematical introduction to logic. Academic

Press, 1972.

[32] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su, and Alexander

Aiken. Partial online cycle elimination in inclusion constraint graphs.

In PLDI, pages 85–96, 1998.

[33] Manuel Fähndrich and Francesco Logozzo. Static contract checking with

abstract interpretation. In FoVeOOS, pages 10–30, 2010.

[34] Pietro Ferrara, Raphael Fuchs, and Uri Juhasz. Tval+ : Tvla and value

analyses together. In SEFM, pages 63–77, 2012.

[35] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Em-

manuel Geay. Effective typestate verification in the presence of aliasing.

ACM Trans. Softw. Eng. Methodol., 17(2), 2008.

[36] Denis Gopan, Frank DiMaio, Nurit Dor, Thomas W. Reps, and Shmuel

Sagiv. Numeric domains with summarized dimensions. In TACAS, pages

512–529, 2004.

[37] Tobias Gutzmann. Towards a Gold Standard for Points-to Analysis.

PhD thesis, Linnæus University, 2010.

98

BIBLIOGRAPHY

[38] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and

accurate pointer analysis for millions of lines of code. In Proceedings of

the 2007 ACM SIGPLAN conference on Programming language design

and implementation, PLDI ’07, pages 290–299, New York, NY, USA,

2007. ACM.

[39] Ben Hardekopf and Calvin Lin. Semi-sparse flow-sensitive pointer anal-

ysis. SIGPLAN Not., 44(1):226–238, January 2009.

[40] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In

Proc. of PASTE 2001, pages 54–61. ACM, 2001.

[41] Michael Hind and Anthony Pioli. Which pointer analysis should I use.

In In Proceedings of the 2000 ACM SIGSOFT International Symposium

on Software Testing and Analysis, pages 113–123, 2000.

[42] Susan Horwitz. Precise flow-insensitive may-alias analysis is NP-hard.

ACM Trans. Program. Lang. Syst., 19(1):1–6, January 1997.

[43] H.B.M Jonkers. Abstract storage structures. In De Bakker and Van

Vliet, editors, Algorithmic languages, pages 321–343, IFIP, 1981.

[44] Michael Karr. Affine relationships among variables of a program. Acta

Inf., 6:133–151, 1976.

[45] Uday P. Khedker, Alan Mycroft, and Prashant Singh Rawat. Liveness-

based pointer analysis. In SAS, pages 265–282, 2012.

[46] W.A. Landi. Interprocedural aliasing in the presence of pointers, 1992.

Technical Report LCSR-TR-174 and PhD Thesis.

[47] William Landi. Undecidability of static analysis. LOPLAS, 1(4):323–

337, 1992.

[48] Tal Lev-Ami and Shmuel Sagiv. Tvla: A system for implementing static

analyses. In SAS, pages 280–301, 2000.

[49] Ondrej Lhoták and Kwok-Chiang Andrew Chung. Points-to analysis

with efficient strong updates. In POPL ’11: Proceedings of the 38th

annual ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, pages 3–16, New York, NY, USA, 2011. ACM.

99

BIBLIOGRAPHY

[50] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis

using Spark. In G. Hedin, editor, Compiler Construction, 12th Inter-

national Conference, volume 2622 of LNCS, pages 153–169, Warsaw,

Poland, April 2003. Springer.

[51] Percy Liang and Mayur Naik. Scaling abstraction refinement via prun-

ing. In Proceedings of the 32nd ACM SIGPLAN conference on Program-

ming language design and implementation, PLDI ’11, pages 590–601,

New York, NY, USA, 2011. ACM.

[52] V. Benjamin Livshits and Monica S. Lam. Tracking pointers with path

and context sensitivity for bug detection in c programs. In ESEC /

SIGSOFT FSE, pages 317–326, 2003.

[53] Francesco Logozzo. Cibai: An abstract interpretation-based static ana-

lyzer for modular analysis and verification of java classes. In VMCAI,

pages 283–298, 2007.

[54] Bill McCloskey, Thomas W. Reps, and Mooly Sagiv. Statically inferring

complex heap, array, and numeric invariants. In SAS, pages 71–99, 2010.

[55] Antoine Miné. Field-sensitive value analysis of embedded c programs

with union types and pointer arithmetics. In LCTES, pages 54–63,

2006.

[56] Antoine Miné. The octagon abstract domain. Higher-Order and Sym-

bolic Computation, 19(1):31–100, 2006.

[57] Rupesh Nasre. Scaling context–sensitive points–to analysis. PhD thesis,

Computer Science and Automation, Indian Institute of Science, BAN-

GALORE 560 012l, 2012.

[58] Anthony Pioli and Michael Hind. Combining interprocedural pointer

analysis and conditional constant propagation. Technical report, IBM

T. J. Watson Research Center, 1999.

[59] Derek Rayside. Points-to analysis, 2005.

www.cs.utexas.edu/ pingali/CS395T/2012sp/lectures/points-to.pdf.

100

BIBLIOGRAPHY

[60] Noam Rinetzky, Jörg Bauer, Thomas Reps, Mooly Sagiv, and Reinhard

Wilhelm. A semantics for procedure local heaps and its abstractions. In

Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Prin-

ciples of programming languages, POPL ’05, pages 296–309, New York,

NY, USA, 2005. ACM.

[61] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape

analysis via 3-valued logic. In Proceedings of the 26th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, POPL

’99, pages 105–118, New York, NY, USA, 1999. ACM.

[62] Shmuel Sagiv, Nissim Francez, Michael Rodeh, and Reinhard Wilhelm.

A logic-based approach to program flow analysis. Acta Inf., 35(6):457–

504, 1998.

[63] Olin Shivers. Control-flow analysis of higher-order languages. Technical

report, 1991.

[64] A. Simon. Value-Range Analysis of C Programs. Springer, August 2008.

[65] Pascal Sotin and Bertrand Jeannet. Precise interprocedural analysis in

the presence of pointers to the stack. In ESOP’11 : Proceedings of the

20th European Symposium on Programming, pages 459–479, 2011.

[66] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proc.

of POPL 1996, pages 32–41. ACM Press, 1996.

[67] Zhendong Su, Manuel Fähndrich, and Alexander Aiken. Projection

merging: Reducing redundancies in inclusion constraint graphs. In

POPL, pages 81–95, 2000.

[68] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.

Pacific Journal of Mathematics, 5(2):285–309, 1955.

[69] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. Soot - a java bytecode optimization frame-

work. In Proceedings of the 1999 conference of the Centre for Advanced

Studies on Collaborative research, CASCON ’99, pages 13–. IBM Press,

1999.

101

BIBLIOGRAPHY

[70] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick

Lam, and Vijay Sundaresan. Soot - a java bytecode optimization frame-

work. In CASCON, page 13, 1999.

[71] Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying java byte-

code for analyses and transformations. Technical report, Sable Research

Group, McGill University, July 1998.

[72] Arnaud Venet. Towards the integration of symbolic and numerical static

analysis. In VSTTE, pages 227–236, 2005.

[73] John Whaley and Monica S. Lam. Cloning-based context-sensitive

pointer alias analysis using binary decision diagrams. In PLDI, pages

131–144, 2004.

[74] Xiao Xiao and Charles Zhang. Geometric encoding: forging the high

performance context sensitive points-to analysis for java. In ISSTA,

pages 188–198, 2011.

[75] Jianwen Zhu. Symbolic pointer analysis. In Proceedings of the 2002

IEEE/ACM international conference on Computer-aided design, IC-

CAD ’02, pages 150–157, New York, NY, USA, 2002. ACM.

102

	Introduction
	Context of the Problem
	Objectives and Methods
	NumPter
	PterMust

	Contributions
	Plan

	Background
	Some Definitions in Lattice Theory
	The Languages WHILEnp, WHILEn and WHILEp
	Elements of Abstract Interpretation
	Static Numerical Analysis
	Points-to Analysis

	Lifting Numerical Abstract Domains
	Introduction
	Objectives and Contributions

	Semantics Abstraction
	An Isomorphic Operational Semantics
	Cartesian Abstraction
	The Abstract Domain NumP

	Transfer Functions
	Proof of Soundness
	Preliminaries
	Proof

	Related Work
	Conclusion

	Enhancing Points-to Analysis
	Introduction
	Motivating Example
	Backward-simulation
	Contribution

	Redundancy Elimination of Points-to Graph
	 Must-graph and the Non-standard points-to graph
	Redundancy Elimination in a Semantics-based View
	Toward the Soundness Condition

	Backward-simulation and Fuzzy Nodes
	Algorithm of Redundancy Elimination
	Incompleteness
	Comparison with Related work
	Conclusions

	Prototyping NumP
	Design issues
	Reused components
	Precision/cost trade-off

	Implementation
	Architecture

	Experimental Results
	Bellman-Ford
	Dacapo

	Conclusions
	Bibliography

