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Chapter 1

Introduction

When you’re making the attempt to analyze securities and make investment decisions,
the strategies you will use most likely find themselves in three very broad categories:
fundamental analysis, technical analysis and mathematical analysis. Fundamental
analysis involves analyzing the characteristics of a company in order to estimate its
value. The technical analysis (sometimes called the chartist analysis) looks at the
past price movement and uses this data to predict its future price movements. The
mathematical analysis is based on mathematical models.

In our study, we focus on the chartist analysis and the mathematical analysis. The main
hypothesis of technical analysis is that all the information is contained inside the records
of prices. They do not worry about the value of the stock, but strictly past prices or
volumes. The analysis of the charts is sufficient to predict the future price movements,
this hypothesis contracts most of mathematical models, which are essentially Markov.
So, technical analysis seems to have limited theoretical justifications and their efficiency
is questionable. For that we aim to analyse mathematically a chartist indicator widely
used by the practitioners in the trading market, then we study the performance of
this indicator in a universe that is governed by a stochastic differential equations, for
a practitioner seeking to maximize an objective function (for instance, the expected
utility of the wealth at a certain maturity). We compare the performance of trader who
uses a chartist analysis technique with a trader who uses a portfolio allocation strategy
which is optimal when the mathematical model is perfectly specified and calibrated.

To compare the performance of chartist strategies and mathematical strategies, we will
be able to provide a conceptual framework where their performance can be compared.
If one considers a non-stationary financial economy. The problem that it is impossible
to specify and calibrate models which can capture all the sources of instability during
a long time interval. For that one can only pretend to divide a long investment period
into sub-periods such that, in each one of these sub-periods, the market can reasonably
be supposed to follow some particular model, that is a stochastic differential system.
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Therefore, one can only use small amounts of data during each sub-period to calibrate
the model, and the calibration errors can be substantial. However, any investment
strategy’s performance depends on the underlying model for the market evolution,
and also on the values of the parameters involved in the model. Thus, in a non-
stationary economy, one can use strategies which have been optimally designed under
the assumption that the market is well described by a prescribed model, but these
strategies are extremely misleading in practice because the prescribed model does not
fit the actual evolution of the market. In such a situation, some technicians propose
that, in a non-stationary economy, technical analysis may be a better indicator to
capture some basic trends of the market without assuming model dependency.

In order to understand this problem, recently some mathematicians are interested by
this subject, like Talay and al [5]. In this article, they have compared the performance
of the trading strategies based on the simple moving average rule with the trading
strategies designed from mathematical models, like a modified Black-Scholes such that
the instantaneous expected rate of return of the stock changes once at an unknown
random time. They have made explicit the trader’s expected logarithmic utility of
wealth, but unfortunately, the explicit formulae are not propitious to mathematical
comparisons. Therefore by Monte Carlo numerical experiments, they have observed
from these experiments that technical analysis techniques may overperform mathemat-
ical techniques in the case of parameter misspecifications.

In my thesis, we examine and model the performance for another chartist technique
designed to detect changes in the "volatility term". We study the performance of the
Bollinger Bands technique in a modified Black-Scholes model such that the volatility
changes at an unknown and unobservable random time 7 (which is independent of the
Brownian motion governing the price). My thesis in divided into two parts: The first
part is devoted to a theoretical study of the Bollinger Bands indicator with numerical
results. In the second part, we deal with a optimal portfolio allocation problem with
random time change to provide analytical formulae for portfolios managed by means
of mathematical model.

In chapter 2, we introduce the Bollinger Bands technique and we present the mathe-
matical framework to study this indicator. We deal with a continuous financial market
with two asset. A risk free asset with dynamics:

dS? = SOrdt,
SO =1.

and a risky asset with dynamics:

{ dSt = IUStdt + St (01 + (UO — 0'1) ]lth) dBt, (1 0 1)

Sp = S°.



where (By),c (o 7 I8 @ one-dimensional Brownian motion. The random time of the volatil-
ity change 7 is independent of B and at this time 7 , which is neither known, nor directly
observable, the instantaneous volatility rate changes from oy to ;.

We are interested in this chapter to the Bollinger Bandwidth indicator (BWI) which
is derived from the Bollinger indicator and it is given by:

5 [ S2du

<];t_6 Sudu> i

BWI, =4 -1

The parameter § denotes the size of the time window used to compute the moving
average for the Bollinger Bands.

We prove some identities in law which will be useful in next chapters in order to show
that the Bandwidth indicator can be useful to detect the change time at witch the
volatility changes his value.

In chapter 3, we are interested by an asymptotic analysis of the Bollinger Bands in
the case of small volatilities. We show that the density behavior of the Bandwidth
indicator (BW1I) depends on the value of the volatility, this implies that (BW1I) can
detect the volatility change.

In chapter 4, we show that the Bandwidth indicator can be also used to detect a change
in the volatility term in the case of large value of volatilities. Of course this situation
of large value is not realistic in the finance context but can be arise in the physics
context, like statistical mechanics of disordered systems.

We are interested in this chapter by the Normalized indicator (NI;) defined in function
of the Bandwidth indicator as follows:

NI, := % <% + 1) (1.0.2)

We aim to show that the normalized indicator can detect a change in the volatility
term, that is we show that the behavior of its probability density depends on the value
of the volatility. For simplifying the mathematical study, we can assume that the price
process (S;) evolves according to:

dSt = St (,Udt + UdBt) .

We first show that the law of NI, does not depend of time ¢ and it equals in law to

02/5[(,[;25 where 1 = 55 — % and k;gﬂ ) is given in function of exponential functionals of



4 CHAPTER 1. INTRODUCTION

Brownian motion with drift as follows:

t
/ exp(2/is + 2By)ds
0

</0t exp(fis + Bs)ds)2 |

The important result in this chapter is given in proposition 4 1 1 which proves that from
a certain value of ¢, the variable £, () converges to that of k1D , which is well defined.
This result have been showed by a technical method which con51sts in finding an upF
and lower bounds for the cumulative distribution function of the variable log(k

and to prove that for large ¢, these bounds converges to the cumulative dlstrlbutlon

function of the variable log(k( M)). Thanks to the equality in law NI, £ a2k(’;‘§, we
show that the distribution function of the normalized variable NIs converges to that
of the variable o2k$ ™ for large value of 025.

So we are interested by studying the law of the variable LS in order to deduce that
the behavior of the density of the variable NIs depends on the value of o.

From Yor [34], the law of the variable k55" has characterized by its Laplace transform.
But unfortunately, it is not easy to invert this formula in order to obtain the density of
kS Thanks to Tauberian theory, which enables us to find a connection between the
behavior properties of the Laplace transform at infinity (resp.at zero) and the behavior
properties of the corresponding cumulative distribution function near zero (resp.near

infinity), we deduce the behavior of the Cumulatlve distribution function P[k( D < x|
for small  and the behavior of IP’[k:( 1D x] for large x. Therefore the behavior of

P[N s < z] for small x and the behavior of P[NIs > z| for large z are straightforward
consequence and we show that these behaviors are dependent of the value of o.

In chapter 5, we aim to compare two indicators designed to detect a volatility change:
the Bollinger bands and the quadratic variation indicators. It is well known in the
literature that the quadratic variation indicator is a optimal estimator of the volatility
if we select the time increment as small as possible. So our aim in this chapter is
to compare the performance of these two indicators in the case of large value for the
time increment. We consider a trader who does not perfectly detect 7 but, at least,
uses one of these two indicators to detect 7 and then to decide when he reinvests his
portfolio. We assume that 7 has a exponential law with parameter \. We show, in the
case of large value of time increment, that for large value of A, Bollinger bands can
overperform and detect the change time 7 faster than quadratic variation indicator.

In chapter 6, we examine the performance of a trader whose strategy is based on
mathematical models. We study the optimal portfolio allocation strategy in the case
where the model has a change in the volatility term at a random variable 7.



We want to exhibit a mathematical optimal strategy from the stochastic control theory,
but it appears that we have some difficulties which come from the fact that the trader’s
strategy needs to be adapted to the filtration generated by the price process, which
is different from the Brownian filtration due to the time change 7 and it is right-
discontinuity. So we will resolve the optimization problem by using a specific feature
of the change time 7.

We first use the density approach which have been introduced by Pham and Jiao in
[17]. We show with this approach how we can separate the initial optimisation problem
into a problem after the change time and a problem before the change time, by relying
on the density hypothesis on the change time 7. We show that the pair value function
is a unique viscosity solution of a Hamilton-Jacobi Bellman system.

We second show by verification theorem that under smoothness assumptions on the
value function, the pair value function is a solution of a Hamilton-Jacobi Bellman
system and the optimal strategy of the trader is to follow the optimal strategy which
characterizes the value function before the change time and then to switch when the
change occurs to the optimal strategy which characterizes the value function after the
change time.
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Technical Analysis






Chapter 2

The Bollinger Bands indicator in
technical analysis

We present in this chapter the Bollinger Bands indicator, designed to detect the time
at which the volatility of the stock switches. We describe the basic setting underlying
our mathematical modeling. Finally we prove some identities in law which will be
useful to prove in next chapters that the Bollinger Bands can be used to detect the
time change of the volatility.

2.1 Technical analysis

Technical analysis is a method of predicting price movements and future market trends
by studying charts of past market action. This is done by comparing current prices with
historical prices to predict a reasonable outcome. The basis of modern-day technical
analysis can be traced back to the Dow Theory, developed around 1900 by Charles
Dow. It includes principles such as the trending nature of prices, confirmation and
divergence, support and resistance. Technical analysts, or chartists, use a number of
tools to help them identify potential trades.

The technical analyst (or the Dow Theory) believes that all the relevant market in-
formation is reflected (or discounted) in the averages, hence no other information is
needed to make trading decisions. Watching financial markets, it becomes obvious that
there are trends, momentum and patterns that repeat over time, not exactly the same
way but similar.

A very large number of technical indicators have been developed over the years, in-
cluding the widely used overbought/oversold indicators such as the Relative Strength
Index, and the trend following indicators such as Moving Averages. While technical
analysis can be a great help in trading the market, no technical indicator is infallible.
Further, technical analysis is only as good as its interpreter. A significant of time
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must be spent in learning the principles of technical analysis, and in how to properly
interpret the various charts and other technical indicators.

Technical Analysis is based on three Principles:

The first principle is that the market discounts everything. At any time, anything that
can or could affect a company will be reflected in the stock price including fundamental,
political and psychological factors. Price action should reflect shifts in supply and
demand. If demand exceeds supply, prices should rise. If supply exceeds demand,
prices should fall.

Secondly, technical analysis is based on the premise that prices move in trends. This
means that once a trend in the direction of a share price has been established, the next
move in share prices is more likely to be in the same direction as that trend rather than
in a different direction. In other words, if a share price is firmly established in a upward
trend, the share price is more likely to continue increasing rather than decrease in the
next trading period. Most technical trading strategies are based on this assumption.

The last principle is that history repeats itself. Chartists believe that the historical
data will show repetitive patterns in price movement. Since these patterns have worked
well in the past, it is assumed that they will continue to work well in the future.

A very large number of technical analysis indicators are used by pracitioners. For
example:

e Moving average indicators (MA): The MA indicators are precisely calculated
according to specific mathematical formulae. This makes moving averages an
objective way to determine the current trend direction of a market, and anticipate
its most likely future direction. Mathematically, moving averages filter out the
random "noise" in market data by smoothing out fluctuations and short-term
volatility in price movement. Graphically superimposing a moving average on a
price chart makes it easy to visualize the underlying trend within the data.

e Moving average convergence/divergence (MACD): The MACD is a trend fol-
lowing momentum indicator that shows the relationship between two moving
averages of prices. The MACD is the difference between a 26-day and 12-day
exponential moving average. A 9-day exponential moving average, called the
"signal" line is plotted on top of the MACD to show buy/sell opportunities. The
basic MACD trading rule is to sell when the MACD falls below its signal line.
Similarly, a buy signal occurs when the MACD rises above its signal line. It is
also popular to buy/sell when the MACD goes above/below zero.

There is also the relative strength index, momentun, Bollinger Bands, etc.... Here
we limit ourselves to the Bollinger Bands technique because it is often used to detect
changes in the volatility.
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2.1.1 Bollinger Bands

Bollinger Bands is a technical trading tool created by John Bollinger in the early
1980s and it’s one of the most popular trading band technique. Trading bands became
even more attractive when Bollinger suggested concentrating on volatility. Standard
deviation was selected as the best measure for volatility because of its sensitivity to
extreme deviations.

Denote by (S;) the price process. The Bollinger Bands are fully described as follows:

e A #-period simple moving average M A?

k=
MAS = 5D S
k=0
e A standard deviation Y,
=
(V3 = 5 S (Simi = MAY)
k=0

e An upper band UB? at 2 times a J-period standard deviation above the moving

average
UB) = MA? 4 2Y7.

e A lower band LB? at 2 times a d-period standard deviation below the moving
average

LB’ = MA? —2Y°.
In continuous time we have the following extension:
1 t
MA? =~ / Sydu
0 Ji-s

1 t
07F =5 [ (Su=MAYdu

UB) = MAS 4 2Y)

LB? = MA? —2Y?
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Figure 2.1: Typical trajectories of the price (red), a moving average of size § = 0.2
(green) and the corresponding lower (pink) and upper (blue) Bollinger bands.

Numerical illustrations:

In Fig.2.1(a) and Fig.2.1(b) we present a typical Bollinger bands where the price S has
no change in his volatility term and satisfies:

dSt = St (Mdt + O'dBt> .

In Fig.2.1(c), we present a Bollinger Bands where the volatility of the price process
changes its value at time 7 from a small volatility og = 0.05 to a large volatility
o1 = 0.25. In this example, the change of volatility occurs at 7 = 0.6.

Remark 2.1.1. Bollinger bands are plotted above and below the moving average price
at standard deviation level. Since standard deviation is a measure of volatility, the
bands adjust according the market volatility. Their band width expands during volatile
markets and contracts during less active periods.
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2.1.2 Bandwidth indicator

An important indicator derived from the Bollinger Bands is the Bandwidth indicator
BW . This indicator is a relative measure of the width of the Bollinger Bands.

UB) — LB} 4" 5 [ S2du

BWI, = e [ ==k
MAt MAt <ftt_5 SudU)

— 1.

In next section we will give a theoretical study for this indicator in order to show in
next chapter that this indicator can be used to detect a change in the volatility term
in two cases: the case of small volatilities and the case of large volatilities. We show
that we have different behaviors for the density of the Bandwidth indicator for different
values of volatilities.

We describe in the next section the basic setting underlying our mathematical modeling.

2.2 A mathematical framework to study the Band-
width indicator

We deal with the following model for a financial market, in which two assets are traded
continuously. The first one is a risk free asset, typically a bond (or bank account),
whose price evolves according to the following equation:

dsp = SPrdt, (2.2.1)
Sy =1.

The second is a risky asset with price described by the linear stochastic differential
equation:

dSt = /LStdt + St (0'1 + (O’O - 0'1) ]lth) dBt, (222)
Sy = S°.
where (Bt)te[O,T} is a one-dimensional Brownian motion on a given probability space

(Q, F, P). The random time 7 is independent of B and at this time 7 , which is neither
known, nor directly observable, the instantaneous volatility rate changes from o to ;.

A simple computation shows that:

1 1
St = SO exp ((M — 50’3) t+ UOBt + (0'1 — UO) (Bt - BT) ﬂ7<t — 5 (0’% - O'g) (t — ’7’)+) .
(2.2.3)
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In Fig.2.2(a) and 2.2(b), we illustrate a typical trajectories of the price without a
change in the diffusion term, that is the process (.5) satisfies:

In Fig. 2.2(c), we illustrate the trajectory of S which satisfies (2.2.2) with oy = 0.05,
o1 = 0.25, p = 0.2 and the change time 7 is equal to 0.6.

150 140

Pric'e-with—sigma':()‘()ﬁ — Pricle-with-sigma.:O,Zﬁ —

145 Y, 135 1
140 1 130 + ]
135 M/ ] 125 | m
130 t .
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(a) o =0.05,u = 0.2 (b) 0 =025, =0.2
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Price
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time-years

(c) 00 =0.05,00 =0.25,, =0.2 and 7 = 0.6

Figure 2.2: Typical trajectories of the stock price

2.3  Some identities in law

In this section we show a collection of identities in law which will be useful in the next
chapter to analyze asymptotic behaviors of the Bandwidth Bands BWI. We aim in
the next chapter to prove that the behavior of the probability density function of BW I
depends on the value of the volatility. So for more understanding this result, we can
first assume that the price process (S;) hasn’t a change in its volatility term and it
evolves according to (2.2.4).
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Lemma 2.3.1. Assume (S;) evolves according to the classical Black and Scholes equa-
tion (2.2.4) with a constant volatility, then the law of BW I, does not depend on time
t and

BWI, £ BWI;.

Proof :

We have:

5 [, S2du
(ftt_a Sudu>2

Use the change of variable s — u — (t — 0) and the identity in law

BWI, =4 —1

L
(Bst(t—5) — Bi—s 15 2 0) = (Bs ;5 2 0)

it follows that the law of BW I is independent of the time ¢ and the initial condition
So. Vt >0,

4
r / S2du
BWIL, =4 |6—2——— —1 :=BWI,. (2.3.1)

( / 6 Sudu)

0J
Let us now define the process (k});>o by
A(V)
) = 2 (2.3.2)

where Aﬁfﬁ and Agjt) are the exponential functional of Brownian motion defined by:

t t
A§”2 = / exp(Bs + vs)ds and Ag”t) = / exp(2Bs + 2vs)ds.
0 0

We now show that the law of BW s can be expressed in terms of the exponential
functionals of Brownian motion.
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Proposition 2.3.2. Assume (S;) evolves according to equation (2.2.4), then we have:

BWI; £4 (028)k%) — 1, (2.3.3)
where i = 4 — 3.
Proof :
We have:
5
/ S2du
BWIs=4 |6—"0— — 1

| ([ sute)

5
/ exp (2 (,u — 102) U+ QUBu) du
522 2
b 1
</ exp (<,u — —02) U+ O’Bu) du)
0 2

Using the following change of variable

-1

2

s—o’u  and ﬁ:%

1
2

and by the scaling property of Brownian motion we obtain:

028
/ exp <2ﬂs + 2Bs> ds
L 02629

BWIs =4
%5
\ </ exp (fis + Bs) ds)
0

—1=4y/(020)k"). — 1. (2.3.4)

2 02§

O

2.3.1 Properties of integral functionals of Brownian motion with
drift

The above process Aﬁfﬁ and Agjt) are called exponential functional of Brownian motion
and have been studied by a number of authors, e.g, Yor [21], Dufresne [13] and Donati-

Martin et al [11]. In the literature, there are several studies concern the law of A§”2
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or Ag”t) for fixed ¢ and for ¢t — oco. In our next chapter, we will be interested by limit
distributions of these processes.

Notice that from the change of variable u = i

motion, we have

and the scaling property of the Brownian
AY) 4A(2g). (2.3.5)

We introduce the Brownian motion with constant drift v € R, (Btm = By + 7t)i=0.

For v > 0 and f a non-negative Borel measurable function f, we set:

AD(f) = / " B ds

We show that for v < 0, Agjgo is finite. For that, we need the following theorem given
in [21], which provides a necessary and sufficient condition in order that AY_(f) defined
below is almost surely finite.

Theorem 2.3.3. Let v > 0 and f be a non-negative and locally integrable Borel func-
tion on R. Then Ag)(f) is almost surely finite if and only if/ f(y)dy < oo.
0

So for v < 0, we have:

Ay = / exp(2BY)ds £ / exp(—2B{™))ds = / F(BE")ds
0

0 0

where f(x) = exp(—2z) verifies theorem 2.3.3. Thus for v < 0, Ag’go is almost sure
finite.

The following result shows that the integral (at infinity) of the exponential of Brownian
motion with negative drift is distributed as the inverse of a gamma variable.

Proposition 2.3.4. Forv <0, AY) is almost surely finite and is distributed as %,

2,00
where v_, denotes a gamma random variable with parameter —u.

Remark 2.3.5. From (2.3.5) and the above proposition, we have that for v < 0, Ag”go

s almost surely finite and is distributed as %

In next chapter we will be interested by two important results concerning the variable
k,g”). The first one is the following equality in law and the second one is the law of LY
for v < 0.
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Proposition 2.3.6. For v € R, we have:

kt(u) L /ft(_y)

Proof :

I

Using the identity in law (B; — By_s ;0 < s <t) = (B ;0 < s < t), we obtain:

t
/ exp(2B; + 2vs)ds
0

( /0 Cexp(B. 1t l/s)ds)

t
/ exp (2 (B — B;_) + 2VS) ds
0

< /0 e <(Bt — B, + us) ds)2

¢
exp (2B; + 2vt) / exp ( — 2By —2u(t — s))ds
0

kY = ;

I~

exp (2B; + 2vt) (/Ot exp < — By —v(t— s)>d8>2

t
/ exp (—2B, — 2vu) du
0

e (=B, — vu) du 2
yi )

¢
/ exp (2B, — 2vu) du
0

< /0 "exp (B — 1) du)

The last equality comes from the symmetric property of the Brownian motion.

s =k

O
In [34], Yor has characterized the law of kY by its Laplace transform as following:
)
Proposition 2.3.7. Let v < 0; the Laplace transform of LY = (;27’)"‘32 s given by:
v A2
YA > 0, E [e_)‘k‘(’o)] _ / . (2.3.6)
sinh(4/A/2)(cosh(1/\/2))~%
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Chapter 3

Asymptotic analysis of the Bandwidth
indicator in the case of small
volatilities

We aim in this chapter to prove that the Bollinger Bandwidth indicator can detect the
time change in the case of small volatilities. We show that the density behavior of the
Bandwidth indicator depends on the value of the volatility, and the difference between
the behaviors becomes more significant when the quotient between the volatilities is
greater than a fixed level.

3.1 Asymptotic convergence in law for the Bandwidth
indicator

In order to understand in the sequel how the density behavior of the Bandwidth indi-
cator depends on the volatility, we can assume that the price process evolves according

to:
dSt = St(udt + UdBt),

where 1 and o are constants.

We show in this section that for small value of 02§, the Bandwidth indicator normalized
by Vo2 converges in law to a quadratic additive functionals of Brownian motion.

Proposition 3.1.1. For small 025, we have the following:

2

B I 1 1
Wl £, 44 \// B2ds — (/ Bsds) . (3.1.1)
026 525 = 0 0 0
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Proof :
To simplify the notation, let € = 025. From (2.3.3), we have:

BW I £ 4/ ek® 1

We have:

exp(2pife +2Byc)df
_ - (change of variable § = £)

0
1 2 € €
(/ exp(fife + Bge)dQ)
0
1

/ exp(2fife + 2+/eBy)df
0

5 — — (from scaling property).
€

(/01 exp(jife + ﬁBg)dé’)
(3.1.2)

It obviously suffices to prove that for small e:

1
] / exp(2fife + 2v/eBy)db
0

€

1 1 1 2
- 5 — — converges almost surely to / Bjdo — </ Bgd@) .(3.1.3)
€
< / exp(/we—l—\/EBg)dQ) ’ ’
0

Indeed, we have:
1
/ exp(2fife + 2+/eBy)df
0

( /0 ' exp(fife + ﬁBg)dH)

1

a |

2

2

1 1/ 1
2 / exp(2/ife + 2v/eBg)dh — = </ exp(jife + \/EBg)dQ)
0 € \Jo

(/01 exp(jifle + \/EBg)db’)Q
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The denominator converges almost surely to 1, and

1 1
1/ exp(2ife + 2+/eBg)df — ! (/ exp(fbe + \/EBg)dH)
€Jo € \Jo

2

_ /01 <eXp<ﬁ9€ ?fBe) - 1)2d8 - (% (/01 exp(fifle + /eBy)do — 1)) .

2

€

<exp([u96 +/€By) — 1) ﬂo By,

<=

Then the result follows.

Numerical illustration

We now illustrate numerically the above convergence in law. For that we are interested
by the kernel density estimator which is a non-parametric estimation of the probability
density of a random variable:

Let X, Xo, ....... X, be a sample drawn of size n from a random variable with density
f. A kernel density estimation of f at the point x is

Falz) = %XZ;K (l" _hX) (3.1.4)

where the kernel K satisfies /K(a:)dx =1 and h > 0 is a smoothing parameter.

A popular choice of K is the Gaussian kernel, namely,
1 —y?
K(y) = —=exp 5 )

For simplifying the notation, let () be the random variable defined by:

2

Q:/Oleds— </0138ds) :

In figure 3.1, we illustrate in blue the estimated density of the variable 4,/Q. We first

1 1 2
estimate the sum of integrals / BZds — (/ Bsds) by discretization and then we
0 0
estimate the density of 4,/Q as in (3.1.4). In red and green, we illustrate respectively

as in (3.1.4) the estimated density of Z5% for different value of o. In red, o = 0.08
and in green o = 0.2, where we have fixed © = 0.1 and § = 0.1.
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0.9
0.8
0.7
0.6
0.5
0.4
03 r
02 r
0.1

" E-D-of B‘WI/sc‘m(ep‘silon)‘
E-D-of BWI/sqrt(epsilon) ]
E-D-of 4.5qrt(Q) -~ |

Estimated Density

Data

Figure 3.1: Estimated Densities of 4,/Q (blue), BWI/\/ d (green) with 0 =0.2,8 =
0.1 and BWI/vo?%) (red) with 0 = 0.08,§ = 0.1

3.2 Theoretical study of the law of ().

1 1 2
In Donati-Martin and Yor [12]|, Rogers et al [7], the law of/ BZds — (/ Bsds)
0

0
is characterized by its Laplace transform. Then the density of this variable can be
obtained by inverting its Laplace transform, but unfortunately, the explicit formula

is not propitious to study the behavior of this density. On the other hand, we show
2

1 1
that / BZds — (/ Bsds) has an unimodal distribution. We first show that this
0 0

variable is a generalized gamma convolution and a self-decomposable random variable.
Therefore from Sato 28], we can deduce that this random variable has a unimodal
distribution.

We now give some definitions and results which will be useful in the sequel. We will
be interested by two families of random variables defined as follows:

Definition 3.2.1. A random variable X is said to be self-decomposable if for each
0 < u < 1 there is the equality in distribution

XLux+v

for some random wvariable Y independent of X. We denote by S the set of self-
decomposable random variables, taking values in R, .

Definition 3.2.2. A positive random variable X is called a generalized gamma con-
volution GGC' if it is a limit distribution for sums of independent gamma distributed
random variables and the gamma distributions may have different shape and scale pa-
rameters. We denote by G the set of positive generalized gamma convolution (GGC')
random variables.
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A important result about these families is the following strict inclusions which are
mentioned in Yor et al [15] and Sato [28]:

GcCS. (3.2.1)

We now present a result concerning the unimodality of a self-decomposable distribution
on R. This study has been an open problem for many years, since the 1940s. The
affirmative answer was given in the symmetric case by Wintner [29] in 1956, in the
one-sided case Wolfe [30] in 1971, and finally in the general case by Yamazato [31] in
1978. This result of Yamazato is given in Sato [28, p.404,Th 53.1| as follows:

Theorem 3.2.3. If X is a self-decomposable random variable on R, then its distribu-
tion s unimodal.

2

1 1
Application: study of the law of / Bids — ( / Bsds>
0 0

An important studies have been done by Donati-Martin and Yor [12], Rogers et al |7]
about the law of a quadratic functional of Brownian motion by computing its Laplace
transform ®(\) given below. In [12], they have used Fubini’s theorem for double Wiener
integrals in order to compute the Laplace transform ®(X). In [7], Rogers and al have

used another technique which is based on Ray-Knight theorem for Brownian motion.
2

1 1
The Laplace transform ®(\) of the variable / B%ds— ( / Bsds) is given as follows:
0 0

1/2
- /2
B(\) = (Th( W)) . (3.2.2)

Let us introduce the random variable Sy, defined in [3]| by

2 o=Thn
Sp = P; g5 (3.2.3)

for independent random variables I';, ,, with gamma law of parameter h.

This variable is also used in next chapter where we present more properties and results
for this law.

1 1 2
We now show that / BZds — (/ Bsds) is equal in law to a limit of sums of
0 0

independent gamma variables with different parameters.
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Proposition 3.2.4. Let (B;) be a one dimensional Brownian motion, we have the

identity in law
1 1 2 ,
0 0

where the random variable Sy is defined in (3.2.3).

Proof :
Remind that the distribution of the gamma variables I',,, is characterized by the
Laplace transform

E[e ] =(1+A)7" (A>-1) (3.2.5)

and from [8] we have the following Euler’s formula:

sinh(z) = 2 ﬁ (1 + nf;) . (3.2.6)

n=1

From (3.2.3), we have

S > _)‘FI/Q n
E[ 2] = | He 22
n=1
s Ay o g
= H <E |:6_ 2nZr2 ]) (because 'y /2, are independents )
n=1

_ loj (1 + 272”2)_1/2 (from (3.2.5))

1/2
= i rom
_ (mh( A/2>> (from (3.2.6)).

we then have that the Laplace transform of Sy ; is equal to (3.2.2). Therefore the result
follows.

O

1 1 2
Remark 3.2.5. Notice that the density of/ Bids — (/ Bsds) can be obtained
0

0
as the sum of two infinite series by inverting its Laplace transform and using Lévy’s
formula (4.2.4) given in next chapter. Unfortunately, it is not easy to study its behavior
by relying on this complicated formula, but relying on the above equality in law, we

1 1 2
show that the distribution of/ Bids — (/ Bsds) 15 unimodal and we give an
0 0

approximation for its mode.
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2

1 1
Proposition 3.2.6. The distribution of/ B2ds — </ Bsds) is unimodal.
0 0

Proof :
From the equality in law (3.2.4) and the definition of Sj); as a limit of sums of in-

1
dependent gamma distribution, we can deduce from definition 3.2.2 that / Bids —

0
2

1

(/ Bsds ) belongs to the set G. Thus from (3.2.1) it also belongs to the set 5,
0

therefore the result follows from theorem 3.2.3.

O

Let X be a random variable with distribution function p and finite mean m. The
central absolute moment -, of order p is defined by:

Y = E[(X —m)F].

We now present a result given by Sato in [27] about a relation for a unimodal distri-
bution between its mode and the central absolute moment -, of order p.

Proposition 3.2.7 (Sato [27]). For p > 1, if p is a unimodal distribution with mode
a and has finite mean m, then

la—m|< (p+1)"P)7. (3.2.7)

1 1 2
Proposition 3.2.8. The mode a of/ B?ds — </ Bsds) satisfies:
0 0

1
la— 1< 025 (3.2.8)

Proof :

1 1 2
Let us denote by a and m respectively the mode and the mean of/ Bids— (/ Bsds) .
0

0
From 3.2.7, we have for even order 2p

la—m|< (2p+ 1)1/21’721;21”.

The mean m is calculated as follows
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We now compute the central absolute moment

el )
/Oleds— </OlBsds)2—m:/Ol (B2 — s)ds — </0138d8)2+%

Applying 1t6’s formula to (¢B?) between 0 and 1, we have
1 1 1

/ (Bg—s)dSZBf—z/ sds—2/ sB,dB,
0 0 0

1 1
= 2/ B.dB, — 2/ sBsd B
0 0

1
= 2/ Bs(1 — s)dBs.
0

Observe,

and

2
< B ds) (/ (1 —s)dB ) (Applying It6 to (tB;) between 0 and 1)

1
— // 0)dBy (1 — s) dB; +/(1—s)2ds
0
1
:2// ng 1—S)dB + -
0 3
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Therefore

(/OlBids— (/OlBsds)2> —m:2/01(1—s) (BS—/OS(l_e)dB(,)dBS
:2/01(1—3)/089ngst.

Finally for p = 1, one obtains:

E ((/0133d3_</0138ds)2)_m>2 - /01(1—3)2</059d39)2ds]

1
= —/ (1 —5)?s*ds ~ 0.022.
0

3

Then for p = 1, the result (3.2.8) follows.

Remark 3.2.9. The result in (3.2.8) can be refined by choosing another order p. We
will use in this case the Burkholder-Davis-Gundy (BDG) inequalities (current calcula-

tions will be inserted in the final version of the manuscript).

2

1 1

In figure 3.2 we use (3.1.4) to estimate the density of/ BZds — (/ Bsds) where
0 0

h =1073. We observe that the mode is into the interval calculated in (3.2.8).
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1 1 2
Figure 3.2: Estimated Density of/ Bids — (/ Bsds) .
0 0

3.3 Detection change in the case of small volatilities

We now aim to show how the Bandwidth indicator can detect a change of volatilities.

This result is confirmed as long as the quotient between oy and o; is greater than or
equal to 1.8.

50

T T T

Density-with-sigma=0.2 ———
Density-with-sigma=0.15
Density-with-sigma=0.08 -
40 | Density-with-sigma=0.05

Density of BWI

-0.05 6 0.‘05 (;1 0.‘15 0.2 0.‘25 0.3
Data

Figure 3.3: Estimated Density of BW [

for different values of o, 6 = 0.1.

In figure 3.3 we use (3.1.4) to estimate the density of the Bandwidth indicator for
different value of o. For each value of o, we have simulated 107 trajectories of BW I3,
with 6 = 0.1, x = 0.1 and h = 1073. It is clear from this figure that we have different
behaviors of the tail for different values of the volatility, and this difference becomes
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more significant when the quotient between oy and oy is greater than or equal to 1.8.
To better understand this result, we now comment it.

In order to show that the Bandwidth indicator can detect a change of volatilities, we
show that for:

{ Omin  fixed

Omae  fixed

we can find « and S such that, for example,

i) Yoo < Opin, we have:
P[BW Is(00) < a]is large and P[BW Is(0g) > []is small,

and

ii) Vo1 = 0ymas, we have:

P[BWIs(o1) < a]is small and P[BWls(oy) > []is large.

1 1 2
We remind the notation ) = / Bids — </ Bsds) . Let us first find ¢, g2, g3 and
0 0

q4 such that:

P[Q < ¢1]is large and P[Q > ¢o]is small, (3.3.1)

and

P[Q < gs]is small and P[Q > g4]is large. (3.3.2)

So from figure 3.2, we can deduce that:

q1 > 0.3 y 42 > 0.35 , 43 < 0.1 y da < 0.15.

Then from proposition (3.1.1), the inequalities in ¢) and i) become:

OéQ

16030

2

16020

P {Q < } is large and P {Q > } is small,

and
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2

16026

2
P {Q < %‘%5] is small and P [Q >

} is large.

Suppose for example that ,,;, = 0.08 and 0,,,, = 0.15, then if we take o¢g = 0,,,;, and
01 = Opmaz 10 the above inequalities, we can deduce from (3.3.1) and (3.3.2) that o and
B verify:

By consequent
0.055 < a < 0.06,

and
0.059 < 5 < 0.073.

Then if we observe an event with a large probability in a case and with small proba-
bility in another case, then we can deduce in which regime of volatility we are. This
observation becomes more significant, that is the difference between the probabilities
in the two cases becomes more large, if the quotient between the two volatilities is
greater than or equal to 1.8. This result can be deduced from (3.3.3).
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Chapter 4

Asymptotic analysis of the Bandwidth
indicator in the case of large
volatilities

In the previous chapter, we have done an asymptotic analysis of the Bollinger Band-
width indicator in the case of small value of 025. We have showed that the Bandwidth
indicator has the capacity to detect a regime change in volatility in this case.

In this chapter, we aim to show that the Bandwidth indicator can be also used to
detect a regime change in the diffusion term in the case of large value of o24.

We are interested in this chapter to the normalized indicator (NI;) defined as:

NI, = % (% + 1) (4.0.1)

where (BW ;) is the Bandwidth indicator defined in chapter 1.
We first show that the law of NI; does not depend on time ¢ and it satisfies:

NI E NI E o2

where the variable £ is defined in (2.3.2) and i = f5 — %

Then we prove that for large value of 029, the cumulative distribution function of NIs
converges to that of o2k A We study the behavior of the cumulative distribution
function of k;oo‘“‘, which can be useful to study and compare the tails-behavior of N/
for different value of 0. We make explicit the density and the cumulative distribution
function of kx”. Due to the complexity of these formulae, we have not yet succeeded
to use them in order to study the behavior of the cumulative distribution function of
ksd®!. We therefore use Tauberian theory which allows us to deduce the behavior of the
cumulatlve distribution function of k M from the behavior of its Laplace transform.
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4.1 Asymptotic convergence of the cumulative distri-
bution function of the Bollinger normalized indi-
cator

To simplify the mathematical study, we suppose that the price process (5;) evolves
according to:

dSt = St (,udt + O'dBt> .

2 1% 1

Then from the change of variables s — o“u, i = % — 5 and the scaling property
of Brownian motion, we prove that the law of the normalized indicator NI does not
depend on time ¢ and it satisfies:

NI, £ NI; £ 521

028"

We desire to show that the normalized Bandwidth indicator can detect a change in the
constant coefficient o for the case of large value for 025. So we need to compare the
tail behaviors of the distribution of NI for different values of o.

In next section, we show the convergence of the cumulative distribution function of
NI to that of o2k,

Let us start with exhibiting an upper and lower bounds for the cumulative distribution
function of log(k,g“)) for large t. Then thanks to the above equality in law, the upper
and lower bounds for the cumulative distribution function of NIs are straightforward

consequence.

4.1.1 Upper and lower bounds for the cumulative distribution

function of log(k!")) for large ¢

Proposition 4.1.1. For x € Ry, and ¥ € Rt, 3ty > 0 such that for t >ty one has:

e Forl|v| > 2,

’ ]_ 79 —2 2 1
P 1og(k<(;"’|)) <z— 26} . ( "7 ) ( 2}”} i 1) ez (21t <P [log(k:t(")) < x} <
—2|v

€
e 5D (152
€ —|v|+1
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For |v| <1,

. /2

) / 1+9) e v|2t/2 (2_7r)3

Pl k;<'”><—2}—( t
og(ke ") < w —2€ ¢ 4V]2(1 — cos(2m|v]))

(1+9) e MPuz(z)™
e |v|2(1 = cos(r|v]))

<P [log(k") <2 <

P [log(kS") <z + €] +

For 1 <|v| <2,

/ 1+ -2 2 1 »
P [log(kc(;‘yl)) <x— 26} — ( :_, ) (_Qm i 1) e2( P2t £ [log(k‘g )) < x} <

T ~\3/2
(1+0) e (5)

e [vP(1 = cos(m|v]))

P[log(kf;‘”')) <z+ e] +

For |v| =1,

1+9) 1

P [1og(kgg‘”|>) <z 26’} _{ e
€ Lt

e7! <P [log(kt(”)) < x} < P[log(kg‘””) <

(1L+v) e (5)Y

e v23(1 —cos(m|v]))

x—l—e] +

For |v| =2,

P [log(kC)) <@ —2¢] - AF9) (ZI+2) samion ¢ p log(k{") < 2 <
—2lv|+1
1+ 9 1
P[log(kf;‘”')) <+ e] + (1+9) e
€ (2mt)

Proof :

i) Suppose that v < 0:

We aim to find an upper and a lower bound for the cumulative distribution function
of log(k:gy)) in terms of the cumulative distribution function of the limit distribution

log(kY)).

e First step: the upper bound for P log(k‘f’)) < x]
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Ve > 0, we have:

Aé”f) <z +log ((Ag”) )2) (As A§”2 is an increasing processes)
Agg@)z) + (tog (AL2,) — o (A;g))]

)|+ B[ (s (452) 1o (452)) >
) o el (4£2) -be ()

The last inequality comes from the Markov inequality.

Therefore:

P [log <k,§y)> < x] < P [log (k‘g)) <z + € —i—% (E [log (Ag”;) —log (Agjt))]) (4.1.1)

In [9], the last term (E [log (Ag”&) — log (Agjt))]) is well described for large t:

(222) 2y ity < -2
y y 1 ot e
E [log (Aégoﬂ —E [log <Agt)>} o Ve if v =—2
* \3/2 _, )
m(%)/e 22 < <0

e Second step: the lower bound for P [log (k:t(")> < x}
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Let £ € R, we have:
P {log (AL ~tog (Agfgo)z <z +5} _

P [toe (452) ~tog  (412)") < o+ €51om (AL — o (417) <

2 log (A5) —tox ( (1)) < -+ ilog (40) 1o

<P |log (AL, ) < 21og (A1) +o+¢+2¢| + P log (A1) —1og (A1) > €

g
<P {log < ) log ((Agvt))z) < x} + %E [log <A§V20) —log <A§7t)>}

where the last inequality is obtained by choosing & = —2¢ and using Markov inequality.
Therefore:

v) )’ (v) ) \? /
P {log (A;oo) — log <<A17t> ) < x} >P {log <A ) log ((Allfoo) ) <z-— 2€:|
1 (v) (v)
— ?E[log <A1,oo> log <A1 t) ]
As Agjt) is an increasing process, we deduce:
2 2 ,
P {log <A ) log <<A(V)> ) < x} >P [log <Ag’20> — log ((A§”2> ) <z — 26]
1
— = [log (4.) ~ 1og (A1)
p , ,
Finally we have the following inequality

P [log (k:ﬁ”) < x] >P [log (k) <z — e’} . 51@ [log (Agfgo) ~log (A@)} (4.1.2)

(3e87) e2 vVt ifv < —1
v v 1 =1 . _
Ellog(A%)] — Eflog(A{))] ~ § 73ma®” y iy 1
1 ™ _,ﬂ .
sz (7)) 12 -1 < v <0

This completes the proof of proposition 4.1.1 for v < 0.
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ii) In view of proposition 2.3.6, we can repeat the above two steps for v > 0 by
replacing v by —v. This ends the proof of proposition 4.1.1.

Numerical examples:

We illustrate in figure 4.1 and 4.2 the above result about the convergence of

P log(k,gy)) < x] to P [log(k:gé)) < x] in the case where |v| > 2. We plot in green the

cumulative distribution function P [log(k‘iy)) < x} for different values of t. We plot in

(=)

red the cumulative distribution function P [log(koo ) < :17] , we plot in blue the lower

bound and in pink the upper bound.
In figure 4.1, we suppose that v = —3 and we illustrate the cumulative distribution

function of [P log(k:t(y)) < :17] for different values of ¢, when we assume that the variable

kt(”) with the terminal time £ = 10 approximates well the the variable kY. We observe
satisfying results from ¢ > 2 as it is showed in figure ¢) and d).

In figure 4.2, we suppose that v = —5. We observe satisfying results from ¢t > 0.8 as it
is showed in figure a),b),c) and d).
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time t=0.8
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terminal-time=10 ——
time t=1
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Cumulative distribution function
Cumulative distribution function

0 Sl ] 0
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25 2 -5 -1 05 0 05 1 15 2

Figure 4.1: Convergence of the cumulative distribution function for v = —3
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"terminal-time=10 —— | ' ' " terminal-time=10 —— | ' '

B Lr time t=0.8 ] 5 1 tmet=l
2 lower-bound / k=t lower-bound /
E 08 L upper-bound é 0.8 upper-bound
= = 4
£ ) £ /
2 06} / ERRY /
E g 4
2 /il 2 [
T; 04 | ";, 04 /
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0p L L L - ‘w L 1 0
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(¢) (d)
Figure 4.2: Convergence of the cumulative distribution function for v = —5

We now deduce an upper and lower bounds for the cumulative distribution function of
NI;.

4.1.2 Upper and lower bounds for the cumulative distribution
function of NI;

As already noticed,

L o @

NIs = o?k%).. 4.1.3
o028

Therefore, from proposition 4.1.1, we can deduce that for a large value of 025 we have:

Corollary 4.1.2. For 0,¢ ¢ and ¢ € RT, 3ty > 0 such that for t >ty one has:

o For || > 2,
. 0 / 1+9) [ =2\ 2 1 -
P log(kf;‘“‘)) < log (_2) . 26] . ( + ) (_2:51 i 1) 65(—2IM+1)025 < IP’[NL; < 9] <

P[105(C ) < log (2 ) + ¢ + LD (ZHLE2Y o
o € —|al+1
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For |j| <1,
—11312(52 /2
0 1 (149) e Bz 2;)3
P|log(kC1)) <log [ — ) — 2¢ | — 7
[og(k ) < log (02) e} T AR —cos(an i) S
252 /2
i 0 (1+19)e|“| 5/2(W>3
Pl log(kC1M) < log [ = s
[ og(ks ") <log | — +e] e T eonta D)

<P[NI; < 0] <

For 1< |a| <2,
0 ) 149) [ =2|a] +2\ 1/ .-
P log(k —IAD) )<log|— | —2¢| — ( —ij ) |'lf| i 2 (—2al+1)o? P[NI; < 0] <
o2 € —2|p]+1
_il262 T \3/2
(1+0) e oo (555)
e |a*(L — cos(m|al))

P[log(k‘gw)) < log <%) + e} +

e For|n| =1,
0 / 1+9 1 -
P[log(k Sy < log (—2) —26} _ ! i ) e <PINI; < 0] <
g € (3m020)
i /2
0 (1+0) e liPeral2 (2]
: [log(k ) < log (a_) “} e TAE = cos(x i)
o For || =2,

P [bg(kég“) < log (ﬁ) - 26/] R/ (_Z:“: jf) A PINT; < ] <
¢ —2|fi

(1+9) e 27

P log(k;'™) < log <f ) e+

€ (2ma20)
Observation 4.1.3. First from (4.1.3) we have
NI £ 2B
also from the above numerical examples, we can deduce for example that for i = —3,
the cumulative distribution function of the indicator N1 which is equal to IP’[ 2k§’§ < z],
converges to Plo 251D < x| and the limit is quasi-reached when 0% >
Similarly, in the case where i = —5 we deduce that the cumulative distribution function

P[N s < z| can be well approzimated by IP’[U%SW) < z] when %6 > 0.8.

We are now interested by the variable kS We wish to make explicit the dens1ty of

this variable to deduce the behavior of its cumulatlve distribution function IP’[k S < x]
for small = and the behavior of 1 — IP’[k;éo ) < x] for large .
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4.2 The density of the random variable kS

In this section, we aim to study the probability density function of the random variable
kS From proposition 2.3.7, the law of this variable has been characterized by its
Laplace transform as follows:

A2
sinh(y/A/2)(cosh(y/A/2))2IA

VA > 0, E [e—”fég‘ﬂ”} - (4.2.1)

Then the density of the variable £ can be obtained by inverting its Laplace trans-
form. Unfortunately, the formula (4.2.1) is not easy to invert. So we will make explicit
the density as the convolution of two densities. Before proving this result in proposition
4.2.6, we need to study the laws of the random variables S, and Cj, defined in 3| by:

1 > th 1 - th
Sp = — : d O, :=— —
h 272 — n? at h 22 HZ:; (n— %)27

where (I'y.,)n>0 are independent random variables with gamma law of parameter h,
that is, the density of Iy, ,, is given by

g(x) =T (h) ta"te™ (h >0,z >0).
where I'(h) is a normalizing constant.

Remind that the distribution of the gamma variables I',, is characterized by the
Laplace transform

E[eMrn] =1+ A" (A>—1) (4.2.2)

and from [8] we have the following Euler’s formulae:

sinh(z) = 2 ﬁ (1 + nj;) and cosh(z) = E[l (1 + ﬁ) (4.2.3)

Proposition 4.2.1. The Laplace transforms of Sy, and Cy, are given for A > 0 by

E [6_)‘5’1} = <i) and E [e_’\ch} = ! -
sinh(4/\/2) (cosh( )\/2>>
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Proof :
From the definition of the variable S,, we have

AT,
E [e_ 2n2w2}) (because 'y, are independent )

(from (4.2.2))

= i h rom
- <snﬂm A/2)> (from (4.2.3)).

Similarly for the random variable C}, we have
AFh ,n
H 272 (n— 7 ]

oo AT
)
1

E —)\Ch _

(from (4.2.2))

I
—8
VR
—_
_I._
[\@)
3
[\
f >
|—
e
N—
L

— - (from (4.2.3)).

O

The following lemma can be proven from the formula (4.2.1) and using the indepen-
dence between the random variables Sy and Cjy).

Lemma 4.2.2. As S; and Cys are independent, then

FCID Loy Cop

Thus from the above lemma, the density function of kS can be obtained as the

convolution between the density of the variable S; and the density of Cyy).

4.2.1 Probability densities of S; and Cy

We denote by fs, (resp.fc, ) the probability density function of the random variable
S1 (resp.Cypp). We aim in this paragraph to make explicit these two densities.
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We recall the Lévy’s formula in [19]

TN 2y Y
e 2te B ——dt ="V > 0), 4.2.4
/ L (v>0) (12.9)
and the Binomial expansion
1 1 &T(n+h)
= " h>0 <1 4.2.5
(I—aF  T(h) ; Fn+1)" (>0, fzf < 1), (4.2:5)

Therefore we can deduce the following expansion formulae which will be useful to
compute the densities fg, and fomm'

( x )h _ 2hgh _ 2 ghe=he _ ohghg-ah 1 f: I'(n+ h) o—2nz
sinh(x) (e — e—:c)h (1— 6—2:c)h I'(h) —~ I'(n+1)
gl S T(n + h)
_ —(2n+h)z 4.9
T(h) ; T(n+1) (426)
and
h h h,—ha >
( 1 ) _ 2 __ 2"e __ g 1 Z(_l)nF(n—l—h)e_Qm
cosh(z) (6% 4 e2) (14 e—22) I'(h) &~ I'(n+1)
2h & L(n+h)
_ —1)" —(2n+h)x
T(h) ;( S T
(4.2.7)
Remark that from the formula (4.2.4), we obtain:
o0 2
/ pe(y)e” Tldt = e (y>0), (4.2.8)
0
where p;(y) is given by:
0° 1
=== BEC 4.2.9
nto) = 5 (=) (129

Now we are in a position to invert the Laplace transforms of Cy; and S;.
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Proposition 4.2.3. The density fc,, is given by

22| - (n + 210) (2n + 2|a|) _ «ent21ans2?
n:O wt

Proof :

From proposition 4.2.1 we have

1

<cosh ( A/Q))mﬂ'

So by applying the expansion formula (4.2.7), we obtain that

E [6—/\02\m] -

o0

2
E [¢=2Cain] = 2 " Z M e~ (232 (4.2.10)
Fin+1)

n=0

Finally the density fc, , can be obtained by inverting its Laplace transform in (4.2.10)
using Lévy formula (4.2.4):

(t)

_ -1 22 & B (n+2\ﬂ|) (2n+2li)\ /A2
"\ e &) T "
_ 2 & RL(n+20a)) -y —(2n+2|ji))/A/2
=Ty Y T B (V) 0
2P &K nF(n—i—Q\ﬁ\)(Qn—i—Q\u\) (@n+2121)/2)?
e =V T D avee

where q);l denotes the inverse Laplace transform defined by:

x+iT

B0 = 5 fim [
X—1
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We now aim to make explicit the density of fs,. Similarly to the above argument, the
density fg, can be obtained by inverting its Laplace transform as follows:

From proposition 4.2.1 we have

E [e%] = A/2
sinh(y/A/2) |

By applying the expansion formula (4.2.6), we obtain that

i . \/)\7/2 _ = —(2n+1)\/)\_/2
E[e™%] = (Fh(\/ﬁ)) - 2; VA 2e (4.2.11)

Then the density fs, can be obtained as follows:
fSl (22 / —(2n+1) ) (t)
~S ey (Ve “5) o)
n=0

[e.e]

_ ;pt (2"; 1) (4.2.12)

The last equality is deduced from (4.2.8), where p; is as in (4.2.9).

Remark that H(t,y) := F exp(—(y?/2t)) satisfies the heat equation

0 1 o?

o1 v) = §a2H( v)
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Unfortunately, this formula is not propitious to mathematical analysis. We therefore
obtain a simple formula for fg, by using a result obtained in [3], which proves a relation
between the densities fs, and fr,. The proof of this result relies on the fact that the
densities of C}, and S}, for h = 1;2 can be also given by infinite series related to the
derivatives of Jacobi’s theta function.

Let us start with the Jacobi’s theta functions

0(t):= > ™™ L hh(t) = Y (—1)re ™ (4.2.14)
and
Or(t) = Y e Tt/ (4.2.15)

We recall the Jacobi’s theta function identity (Poisson summation formula):
[ee]

1 [e.e]
N Z e~ (et — Z cos(2nmx)e ! (x € R,t > 0). (4.2.16)
T

n=—oo n=-—o00

Remark that by replacing x by 1/2 and ¢ by = t/7 in equation (4.2.16) we have the
identity

01(1/t) =Vt (1) (4.2.17)

Now we have the infinite series formulas for the densities fg, and fe,.

Proposition 4.2.4. The densities fs, and fo, are given by

d < 22 :
= D (=1)re™ = 27 6 (2tm) (4.2.18)

n=—oo

fsl (t)

and

feu(t) = f: (47r2 <n+%) t—1) e~2(mtd) (4.2.19)

n=—oo
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Proof :
From (4.2.13), we have:
1/ 1\ & o2 11\ 1\? 32
fa () = =5 (w) _Z e = +E(W) n_Z <”+§) ¢

On the other hand we have:

1/2 1
) 01 (%)> (from 4.2.17)

1 \"? o (1L 1 1 \"? e
273 "\ otr 2t \ 27t3 Y\ 2t

1\ & e 11\ 1\? iy
(mw) Do mles) X ()
™

n=—oo

ol (2tm) =

Therefore (4.2.18) is deduced.

Similarly from proposition 4.2.3 and by using the same calculus as above, we can deduce
that:

n=—oo

Jfeu(t) = i <47r2 (n + %)zt . 1) o-2(nt3) m2t

Finally we have the relation between fs, and fe,.

Corollary 4.2.5. The densities fs, and fc, satisfy the following relation:

1 \? 1
fs.(t) = (w) fes <m)
Proof :

From proposition 4.2.4 and using the Jacobi’s theta identity (4.2.16), fg,(t) can be

written as:
d{/1\? & ()
fsi(t) = ((2715) Y e ) (4.2.20)

n=—oo
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Therefore from (4.2.20) and (4.2.19), we can deduce the above relation. O

Now the density f of the random variable LS can be obtained explicitly as:

Proposition 4.2.6. The density [ of the random variable kD s given by

£0) = (fs % feup ) O (12.21)
where -
fau(t) = 472> (=)™ (n 4 1)% e 20 (4.2.22)
n=0
and .
22n & I'(n+2|a]) (2n +2|4]) _ etan?
() = — 1" R 4.2.23
feun®) = iy 2V T ) 2vaes ¢ (4.2.29)
Proof :
The result follows from the identity in law in lemma 4.2.2.
The formula (4.2.22) is deduced from corollary 4.2.5 and proposition 4.2.3.
0

The formula (4.2.21) is not propitious to mathematical study of the behavior of the
cumulative distribution function of k%", We thus now use a result due to Yor [34,

p.370] on the joint law of <iA(V) Ag”go) for v < 0.

2,007

4.3 The cumulative distribution function of k"

We use in this section two important results proved by Yor, in order to prove our result
in theorem 4.3.9. The first one concerns the identity in law in theorem 4.3.3, and
the second one is the extension of the classical Ray-Knight formula to the perturbed
Brownian motion X7 ( see theorem 4.3.4).

4.3.1 Reflecting Brownian motion perturbed by its local time
at zero

Let (B;) denote a one-dimensional Brownian motion started from 0 and (I(B),t > 0)

its local time process at level 0. For fixed v > 0, the perturbed reflecting Brownian
motion (X,) is defined for all ¢ > 0 by

X{ =| Bi | =7l(B)



4.3. THE CUMULATIVE DISTRIBUTION FUNCTION OF K" A7

where we have the following notations:

e (I;(B),t > 0) is the local time process of B at level 0,
e (I7(X7),t>0) is the local time process of X7 at level z,

e (77, u > 0) is the right continuous inverse of the local time at 0, (I9(X7), t > 0)
of X7.

Definition 4.3.1. (Bessel processes)

For every p > 0 and x > 0, the unique strong solution to the equation

t
Yt:x—i-pt—i-Q/ V Y.dB;
0

s called the square of a p-dimensional Bessel process started at x and 1s denoted by

BESQ* ()

Remark 4.3.2. Denote the law of BESQP(x) by Q2. We call the number p the di-
mension of BESQP, and v = p/2 — 1 is called the index of the process BESQP. Also
we denote by BESQY(x,y) the Bessel square bridge of dimension p > 0 from x to y
on [0,t]. The law of BESQY(x,y) denoted by QF(x,y) is viewed as the Q° conditional
distribution of (V,,0 <u <t) given Y, =y , i.e:

Q7 (z,y) = QLY |Ly =] (4.3.1)

where L, = sup{u:Y, = y}.

We now state the following result due to Yor [34, p.370] on the joint law of <iAgjgo, Ag”go)
for v < 0.

Theorem 4.3.3. Let v < 0 and define v = —%.

Then the following identity in law holds:

yom L[
<iAg,go7Ag,go> = (/0 ]I(X:[QO)dua’le;/(B)>



CHAPTER 4. ASYMPTOTIC ANALYSIS OF THE BANDWIDTH
48 INDICATOR IN THE CASE OF LARGE VOLATILITIES

A second important result due to Yor 33, p.118| concerns the extended Ray-Knight
theorem for the case of perturbed Brownian motion X7. This result shows that the
local time of X7 in the space variable up to time 7. is a Bessel square process of
dimension that depends on 7.

Theorem 4.3.4. (Ray-Knight Theorem)
Fiz s > 0. The processes (1%, (X7), x > 0) and (I(X7), x > 0) are independent, and

92 92
their respective laws are Q° and Qs ", where Qs " denotes the law of the square of the

Bessel process starting from s, with dimension 2 — %, and absorbed at 0.

We now state some lemmas which will be important to prove our result in proposition
4.3.9.

Lemma 4.3.5.

—yl2(B) = inf{X], u<7]} (4.3.2)

Proof :
Let ¢ be fixed and g, = sup{s < t/B; = 0}. Then B, # 0 for s € (g, 1).

As the local time of B at level 0 is constant until (B;) hits 0, we can deduce that for
all ¢ we have:
lg,(B) = l/(B)

As the above equality is true for all ¢, so we have I, . (B) = l.(B). Then
By, =0= X, =—:(B).

For u € [0, 77], we have X > —~l,(B)

\%

—vl,2(B). Then

The following two lemmas are given in [24]:

Lemma 4.3.6. Assume p < 2. Let Z be BESQ(x) for x > 0 and let Ty be the
first hitting time of 0 : Ty = inf{s|Zs = 0}. Conditionally on {Ty = t}, the process
(Z,,0 < s <t)is a BESQ; "(x,0).

Lemma 4.3.7. The random variables M = —inf{X/|0 <t < 7]} and Ty = inf{t|Y; =
0} where Y is BESQ?**"(x) are equal in law.
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Let Ty be the first hitting time of 0 by (I Y(X7),y = 0).

2
Proposition 4.3.8. Conditionally on {Ty = t} the law of <lff§t; 0<y< t) is Q?Jr” (0, s).
Proof : , 2
From theorem 4.3.4, (I //(X7),y > 0) is BESQ; . Then from lemma 4.3.6, condi-

tionally on {7y = t} the process (I //(X7),y > 0) is a BESQt ( 0). To conclude the
proof we observe that the process (lﬂ( v (X7),0 <y < t) is also Bessel square bridge
but s and 0 interchanged. Therefore (lff;t(XV), 0<y<t) = (ng( )(XV), 0<y<t

2 2
is BESQ. 7 (0, 5) with law Q. (0, 5) . 0

Theorem 4.3.9. Define v = % then one has

P [k / / e (4.3.3)

where

h(z) = 2('yb)er2vb<I> !

(2)\)(%+%) exp (_1 V2 cosh(’yln/ﬁ)) (z)

<sinh(7b\/ﬁ)>1+7 2 sinh(vb\/ﬁ)
and 1
C](Qf) = Wx_;_ s

(13;1 denotes the inverse Laplace transform.

Proof :
In the following, we denote by ¢ the density function of [.».

] 41D
P[kg'“‘)gu]zﬁ” %iu
(Al ")?

B 2

1
4 / ]]‘(X;YQO)d,U
0

=P <u from theorem 4.3.3
R ( )

~

o0 4 Tl
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Tiy 2b2
e First step: We compute P [/ I xy<o)dv < i ; u | l2(B) =
0
By the occupation times formula, one finds that
g v2b*u 4 0
0 Y0* S oo
pl 2 [ (X dy < | 1 (B) = b
- v y ~ (4 7 -
7?0 J inf (X)) 7 '
| 0o
4 ’ Y (X
=P T blT; (XM)dy <ul|lo(B)=>0] (fromlemma.4.3.2)
L -
(4 [
-P| 5 /0 59 (X dy < | 1 (B) = b}
: 4 " (=v) ; -
=P S | Ly (X")dy < ul|Tp:= mf{x}O,lT17 (X7)=0}=~b
(4" e
=P peis L7 XM)dz <u | Ty = 'yb] (change of variable z = vb — y )
LY o !
- b

where

Y is the square of (2 + %)—dimensional Bessel process started at 0. From

proposition 4.3.8, conditionally on Ty = vb , the process (l(z_wb) (X7),0 < z < 7b)

isa B

.
1

2
essel bridge Qi:”(o, 1). Then the last equality (4.3.5) is deduced from

remark 4.3.2.

So finally, from (4.3.5) we obtain that

|

where

Tiy 2b2U
/ Lxydv < - | (B)=0b
0

~v2b2u/4
- /0 Frvyanl® | Yoo = 1)dz

dz

_ /"72b2u/4 f(fow Yvdv,YWb)(Z’ 1)
0

fbe(l)
(4.3.6)

b
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- f 1Y, w(Z | Yy = 1) is the conditional probability density function of
fovb Y,dv given the value 1 of Y.

- f(f%deyb)(z,l) gives the joint density of fowb Yydv and Y, and fy (1)
o TvaU Yy
gives the marginal density for Y.

O
From lemma 4.6.15 and equation (4.6.12) in Appendix B, we obtain
() e
1) = 4.3.7

In addition, from lemma 4.6.15, we obtain

1 /1 )
f(fo’Yb Y.dz,Y,p) (Zv 1) = lim 15z (;7 /}/bv 07 (JI + 1)/27 .73/2)

z—0 v

3 2 sinh(ybv/2))

1 o1 (2))zF27) o (_l\/ﬁ cosh(ybv/2))
2] (sinh(vb@)) K

) (2)  (4.3.8)

where @, denotes the inverse Laplace transform. The equation (4.3.8) is deduced from
the linearity of the inverse Laplace transform and from the dominated convergence
theorem.

Finally, from (4.3.4) and (4.3.6) we obtain equality (4.3.3).

Remark 4.3.10. From proposition 4.2.6 and theorem %.3.4, the density and the cu-
mulative distribution function of the random variable LS gre given explicitly. But
unfortunately, the explicit formulae are not propitious to study the behavior of the
cumulative distribution function P[kég'm) < z]. In next section, we aim to use Taube-
rian theory which enables us to find connections between the behavior properties of the
Laplace transform at infinity (resp.at zero) and the behavior properties of the corre-
sponding cumulative distribution function near zero (resp.near infinity).
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4.4 Tails behavior of the distribution of k"

We are now interested to use Tauberian theory to study the behavior of the Laplace
transform of k'™ for large A (respectively for small A), in order to deduce the behavior

of IP’[k:O_OW < z] for small x (respectively the behavior of 1 — IP’[k:O_OW < z] for large ).

Before proving our main result, let us remind some definitions and results concerning
Tauberian theory. We refer to [4].

4.4.1 Laplace transform and Tauberian theorems

Definition 4.4.1. Let 1 be a measure on [0,00) and finite on bounded sets. The
Laplace transform i(X) of p is the real-valued function defined for X = ¢ by

i) = [P utn)

where ¢ = inf {)\ eR: / e M u(dr) < oo}
0

Notice that in the case where y is a finite measure, then /i is defined at least for all
A= 0.

This section is decomposed in two parts: In the first part I), we recall Bruijn’s Taube-
rian theorem, which proves that the behavior of the Laplace transform ji(\) for large
A is limited to the behavior of u[0,z] for small z. In the second part 1), we state
two Tauberian results: Karamata’s Tauberian theorem 4.4.4 and analytic Tauberian
theorem 4.4.7. These two results can be used to obtain the behavior of ulx, o) for
large z.

I) Bruijn’s Tauberian Theorem

In this section, R,(0+) denotes the class of regularllvarying functions at origin with

index « (see definition 4.6.1 in Appendix B ). And f denotes the generalized inverse
of f given by

F(2) = sup{t : f(t) > @)

The following theorem is given in [4, p.254].
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Theorem 4.4.2. (Bruijn’s Tauberian theorem,).

Let 11 be a measure on (0,00) and finite on bounded sets, whose Laplace transform

i) = [ e aua)
is well defined for all A > 0. If « <0, ¢ € R,(0+), put (\) = @ € Ro_1(0+); then
for B >0,
—log (0, 2] ~ é (4.4.1)
0t (1))
if and only of

e
)a—l

(4.4.2)

_ o)(Z
—log fi(A) [ Z()\;

Remark 4.4.3. Notice that in the case where p = P o X~ is the distribution of a

non-negative random variable X, then [i(\) is also referred as the Laplace transform
of X,
a) =E[e ],

and
(0, 2] =P[X < 2.

II) Karamata’s and analytic Tauberian Theorems

Details of this part are provided in paragraph 4.6, appendix B.

Let X be a positive random variable with distribution function F' and denote by F its
Laplace transform. Then we have the following result:

Theorem 4.4.4. (Karamata’s Tauberian theorem)

Let | be a slowly varying at infinity (see definition 4.6.2 in Appendiz B), then

a) For 0 < o < 1, the following are equivalent

A

i) 1— F(\) ~ A1/ (A = 0)

()

i) 1 — F(z) ~ =T0—a)

(x — 00)
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b) For a =1, the following are equivalent

A

D) 1= () ~ A%(1/) () 0)
i) /0 (1= F(t))dt ~ I(x) (z = o)

Proof :
The proof is given in Appendix B, section 4.6. 0

Remark 4.4.5. Interpretation The interpretation of this theorem lies directly to the
argument if "the first moment is finite", that is the Laplace transform is differentiable
at the origin (see remark 4.6.11 ). So in the case when the Laplace transform is
differentiable e at the origin, F(s) may be expanded in a Taylor series and then near
to the origin, 1 — F()\) is equivalent to AN+ o(X\) (A is a constant). Then « is equal
to 1 in the above theorem, therefore we can deduce from b) an information concerning
the integrated tail of F but we don’t have an information concerning the tail behavior

of F.

In appendiz B (paragraph 4.6), we consider the case of the exponential law in order to
understand the limitation of this theorem.

We now present the analytic Tauberian theorem which describes the asymptotic be-
havior of the tail probability based on analytic properties of the Laplace-Stieltjes trans-
form. In [23| and [22|, Nakagawa has proved that if the abscissa of convergence of the
Laplace-Stieltjes transform is negative and the singularities of this transform on the
axis of convergence are only a finite number of poles, then the tail probability decays
exponentially fast with a constant related to the abscissa of convergence.

Let X be a non-negative random variable with probability distribution function

F(z)=P[X < z].

The Laplace-Stieltjes transform ® of the distribution function F' is defined by:

O(s) := /000 e *dF(x), (4.4.3)

where s € C.
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Definition 4.4.6. The abscissa of convergence of ®(s) is defined as the real number
ag such that the integral (4.4.3) converges for Re(s) > ag and diverges for Re(s) < ag.
The line Re(s) = aq is called the azis of convergence of ®(s).

Now we present the main theorem in Nakagawa |22]:

Theorem 4.4.7. (Analytic Tauberian theorem)

If —00 < ag < 0 and the singularities of ®(s) on the axis of convergence Re(s) = ay
are only a finite number of poles, then we have:

1
lim —log P[X > 2| = ay

r—00 U

Remark 4.4.8. The assumption of theorem 4.4.7 implies that there exists an open
neighborhood U of Re(s) = ag such that ®(s) is analytic on U except for the finite
number of poles on Re(s) = ay.

4.4.2 The behavior of F(z) for small z

Let us denote by F' the cumulative distribution function of kS IED,

p(x) —P [k(—\ﬂ\) < x} ’
and

1—]5(3:):1P>[/€g‘ﬁ‘)>x].

Proposition 4.4.9. The behavior of the cumulative distribution function F for small
x 1§ gien by:

- B
—log F(z) o 3 (4.4.4)
where B = & (1 + 21i)? is a positive constant.
Proof :
Let ) )
d(r) =2 (@)= — and B = (142l

We have ¢ € R_1(0+) and ¢(z) = 22 € R_,(0+).

T
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From (4.2.1), we have:

_)\k(()g\ﬂ\) )\/2
E [e = o

sinh< )\/2) <cosh( )\/2)) g

Then
—logE [e"\kgw} = —log(\/A\/2) + log (sinh ( )\/2)) + 2|/i| log <cosh < )\/2))

= —log(\/A\/2) + log (6\/;_/2 <1 — 6_2\/A_/2>>

£/2

+2|i| log (6 <1+e_2\/)‘_/2>>

— —log(y/3/3) — (14 20jl) log2 + (1 + 21l) /A2
+ log (1 — 6_2\/)\_/2) + 2|/i] log (1 + 6_2\/’\_/2)

~ M\/X (because log(x) — 0asz — )
A—00 \/§ xT
2vB
A—ro00 w ()\)

%
where v is the inverse function of 1.

Then —logE [e‘”“égw} satisfies the equivalence (4.4.2) in proposition 4.4.2 with a =
—1 (because ¢ € R_1(0+)). Then from proposition 4.4.2 we have:

~ B
—log F'(z) et

4.4.3 The behavior of 1 — F(x) for large x

By applying Karamata’s Tauberian theorem 4.4.4 with the random variable LG D, we
find that the index « is equal to 1. So we are in the case b) in proposition 4.4.4 and

then we can’t deduce an equivalent for 1 — F'(x) for large x.

So we aim to use the analytic Tauberian theorem 4.4.7 in order to deduce the behavior

of 1 — F(x) for large x.
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In the sequel, we denote respectively by ®;(\) and ®5(\) the Laplace transform of
Sl and Cg‘m.

Lemma 4.4.10. The abscissa of convergence of ®1 and ®o are given respectively by

2
2 and  ay = —% (4.4.5)

ay = —2m

Proof :
From the definition of the variable S;, we have

n=1
— ﬁ E |exp(— Al 1 ) (because I'y,, are independent )
vt 2n2m? ’
(4.4.6)
[e’e) )\ —1
_ : 2
= El (1 + W) (if A > —27?) (4.4.7)

The condition A > —272 in (4.4.7) is deduced from (4.2.2), this condition ensures that
each term in the infinite product in (4.4.6) is finite and is equal to (1 + #)_1

We now prove that A = —272 is the abscissa of convergence of ®.

i) We first proof that for A > —27% ®;(\) is finite. In fact, for A > —272 the
Laplace transform ®;(\) is explicitly given by the product (4.4.7) which is finite.

Indeed,
log (f[ <1+ %2712) ) Zlog (( An )_1> .

n=1
Notice that the general term of this series is equivalent to 2, where C' is
constant. Then the above series is convergent.

ii) It remains to proof that for A < —27%, the Laplace transform ®,()) is infinite.

From (4.4.6) we have:
H ex Al i )
vt p(= 2n?m?
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For A < —27? there exists ng € N such that —2(ng + 1)*7% < A\ < —2n3w?,

Then

is not finite.

Notice that the first product on the right hand-side is infinite. In fact, for each
AT,
T 2n2x2

1 < n < ng, the expectation E [exp( )] is infinite, then the product is

infinite.

The second product on the right hand-side is finite because for each n > ng + 1,

we have Lﬂg > —1 and then:

I (e[ecii])- 11 (o)

n=ng+1 n=ng+1

where we prove by the same argument as in case i) that the last product is finite.

Similarly for the random variable Cy;. We have:

A " AL n
E [e %] = E exp <— A )
[ ] g 2m2(n — 3)?
= AT 270,
= 11 (E [exp(—m)]) (because ['y)5,» are independent )
(4.4.8)
00 A =2l T2
= 1+ ———= if A>——) . 449
I1(* 5 1) (it2>~7) (19

Similarly by the same argument in the case of the random variable S;, we can deduce
2 . .
that ay = —7- is the abscissa of convergence of Cyy).

4

Now we have the following theorem which states that the tail probability decays expo-
nentially.
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Proposition 4.4.11. We have

lim log[l — F(z)] = —— (4.4.10)

T—0o0 U 2

Proof :
From the equality in law in lemma 4.2.2, we can deduce that:
E [eM "] = B [X0tCan] (for A € R),

So E [e)‘kgo} is finite ifft [E [e’\(51+02\ﬂ\)] is finite. Then from lemma 4.4.10, we deduce

that ag = —“—22 is the abscissa of convergence of LS As the zeros of the hyperbolic

sine and the hyperbolic cosine functions are imaginar complex numbers, then we have

the sole singularity —“—22 at the axis of convergence Re(\) = —%2 .

Therefore from theorem 4.4.7, we deduce that

lim = log[l — F(x)] = -

T—00 I 2

4.5 Application to the detection a change in the con-
stant coefficient o

We now show how the normalized indicator NI can detect a regime change in 0. For
that we aim to compare the behavior of its tails for different ¢. To emphasize the
dependence of the normalized indicator of the constant coefficient o, we will use the
notation N/s(o).

e Compare the behavior of P[N s < z| for small

From corollary 4.1.2, the behavior of the cumulative distribution function of N/; can
be deduced from that of &%), Then from proposition 4.4.9, the behavior of P[N s < z]
for small x is given by:

@y Q2o

- o i
log P[NIs < z] log P [koo S 02} 20+ 8

(4.5.1)

We remark that for oy less than o1, P[Ns(00) < z] decays exponentially to zero just
a little faster than P[NIs(oq) < z].
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e Compare the behavior of P[NIs > z| for large «

Similarly as above, we can deduced from corollary 4.1.2 and proposition 4.4.11 that:

€T 7T2

lim llogIP’[NL; > x| = lim llogIP’ [k;)'m > —] = (4.5.2)

T—00 T—00 T o2 202°

Also we remark that for og less than o1, P[NIs5(0g) > z] decays exponentially to zero
faster than P[NIs(oy) > x].

We have showed that the tails behavior depend on the value of 0. So we can deduce
that we have different behavior of these tails for different value of o. Therefore we can
deduce that the normalized indicator NI has the capacity to detect a regime change
in o.

Numerical results:

We now show numerically the above result by estimating the density of the variable
N1j in order to verify that the behavior of its tails for different value of o behaves like
what we have got in (4.5.1) and (4.5.2).

Notice that we will be careful about the choice of the parameters u,00, o1 and § as in
observation 4.1.3 in order to have the convergence of the cumulative distribution of NI
to that of 02k%!™ and then to deduce from (4.4.11) and (4.4.4) the two equivalents
(4.5.1) and (4.5.2).

First we illustrate in figures 4.3(a) and 4.3(b) the estimated densities of the random
variable NIs in the case where ji = —3. Then from observation 4.1.3, the approximation
of P[NI; < z] by Plo2k$S!™ < 2] is good when

o5 > 2. (4.5.3)

In figure 4.3(a), we estimate the density of Nls(oy) and Nls(oy) for small § = 0.8,
where og = 1.5 and oy = 2.5. In figure 4.3(b), we estimate the density of Ns(og) and
NIs(oq) for large 6 = 2, where 0g = 1 and oy = 1.5. Notice that oy and o, are selected
such that 020 and 074 satisfy (4.5.3).

Second we illustrate in figures 4.3(d) and 4.3(c) the estimated densities of the random
variable NI; in the case where i = —5. Similarly as above, we can deduce from
observation 4.1.3 that the cumulative distribution function of NI is close to that of
o2k$S™ when

0?0 > 0.8. (4.5.4)



4.5. APPLICATION TO THE DETECTION A CHANGE IN THE CONSTANT
COEFFICIENT o 61

In figure 4.3(d), we estimate the density of Ns(og) and Nls(oy) for small § = 0.8,
where 0y = 1 and oy = 1.5. In figure 4.3(c), we estimate the density of NIs(oy) and
Nls(oq) for large 6 = 2, where oy = 0.6 and 07 = 1.2. Here og and oy are selected such
that o3d and 0?4 satisfy (4.5.4).

0.25 T T T T T T T 0.6 T T T T T T T
Density of NI with sigma=1.5 —— Density of NI with sigma=1 ———
/\ Density of NI with sigma=2.5 05 ﬁﬁ?nsily of NI with sigma=1.5
0.2 4 a \ ]
2 K \\ > // \
Z I Z04f ‘ \
2 0.15 | \ A “\ \
E | T 03] |
Pl .
Z / \ Z 02 \
0.05 - / 4 o1 | \
| \ / \
0 5 10 15 20 25 30 35 40 45 -2 0 2 4 6 g8 10 12 14 16
Data Data

(a) 6 =0.8,00 =1.5,00 =25and u=-15 (b) § =2,00 =1,01 =1.5and p = —6

0.45 ; T : . . . ; . 1 ; . ; . .
ensity of NI with sigma=1 ——— Density of NI with sigma=0.6 ———
04 er\sity of NI with sigma=1.5 4 09 Den%y of NI with sigma=1.2 1
035 F | - 08 B | ‘\‘
> > L |
I Lol
Q025+ | 1 a ||
3 | 3 05f |
2 o2} s 1 £ [
£ | £ 04y b
g 05y \ 1 & 03} |
01t \ 1 02 | \
0.05 ] \ 1 0.1 / \
0 L . ; T . . 0 s .
0 2 4 6 8 100 12 14 16 18 -2 0 2 4 6 8 10 12
Data Data

(¢) 6=08,00=1,00 =15and p=—-6 (d) 6 =2,00=0.6,01 =1.2 and y=—6

Figure 4.3: Esitmated density of N/ indicator

From the above numerical example, we remark that the right tail probability of NI
decays exponentially fast to zero with small oy than the right tail probability of NI
with o1 and this result is theoretically proved in (4.5.2). The left tail probability of
NI with oq decays to zero a little faster than the left tail probability of NI with oy,
also this result is given theoretically in (4.5.1).
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4.6 Appendix B

Tauberian Theory

Definition 4.6.1. A measurable function f : (0,00) — (0,00) is reqularly varying at
the origin with index o, and we write f € R, (0+) if for every a > 0,

flar) _ .

7 @)

Definition 4.6.2. A measurable function f : (0,00) — (0,00) is slowly varying at

infinity if for every a > 0, lim f(az) — 1
T—00 f(x)

Definition 4.6.3. A measurable function f : (0,00) — (0,00) is reqularly varying at

oo if for every a > 0, the limit lim f(az)

z—oo f(x)
Lemma 4.6.4. (Characterization of a reqularly varying function [2, p.9]).

exists.

If the function f is regularly varying at infinity, then there exists a real number p, called
the index, such that
lim flaz) =a’
£—00 f(x)

for every a > 0. Moreover, l(x) = f(x)x™" is slowly varying at oo.

(4.6.1)

Proposition 4.6.5. If [ is slowly varying, X is so large that [(z) is locally bounded in
(X, 00], and o > —1, then

/I tl(t)dt ~ 2 (2)/ (a0 + 1)

X

Proof :
We refer to [4, p.26]. O

Definition 4.6.6. A function f on [0,00) is said to be ultimately monotone if it is
monotone on some [xy,00) for some xy = 0.

If U : R — R has locally bounded variation, is right-continuous, and vanishes on
(—00,0), we define its Laplace -Stieltjes transform U by:

o0\ = /0 e U (a)
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where the integral converges absolutely for s > ¢ or more generally for all complex
s = a+ b with a > c. The constant c is defined as:

c=inf{a e R: / e dF(x) < oo}
0

and dU denote the associated Stieltjes measure for U.

The most important case is when U is non-decreasing on R, with U = 0 on (—o0,0).
For such U, statements about U are to be considered to include the assertion that it
is finite for the arguments in question.

We now present a theorem from |1, p.58|.

Theorem 4.6.7. Let X s a Banach space and U : R — X be a local bounded semi-
variation. Assume ¢ < oco. Then

o :/ e M(—t)"dU ().
0
where U™ denotes the n' derivative of U.

We now give Karamata Tauberian Theorem from [4, p.37|

Theorem 4.6.8. (Karamata Tauberian Theorem). Let U be a non-decreasing right-
continuous function on R with U(x) =0 for all x < 0. Ifl varies slowly and ¢ = 0,p >
0, the following are equivalent:

U(z) ~ % (z — 00) (4.6.2)
UA) ~eX™PI(L/A) (A= 0+) (4.6.3)

Suppose that U is absolutely continuous with density u, say:
U) = [ ulw)iy
0

When U has a density U’ = wu it is desirable to obtain estimate of w. This problem
cannot be treated in full generality, so we may obtain a "differentiated form" of the
asymptotic relation under the "ultimately monotone" condition as we show in the next
theorem.

Theorem 4.6.9. (Monotone Density Theorem).

T

Let U(x) = / u(y)dy. If U(x) ~ caxPl(xz) (z — o0), where ¢ € R,p > 0, [ is slowly
Q
varying at infinity and if u is ultimately monotone, then

u(x) ~ px*(z) (v — o0) (4.6.4)
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Proof :
We refer to [4, p.39]. O

Conversely, if we have (4.6.4), then Proposition 4.6.5 on "integrating asymptotic rela-
tions" yields U(z) ~ cz”l(z) (x — oo) even if u is not ultimately monotone.

Application to probability theory
In this statement we are interested by the probability case i.e where U is the cumulative
distribution function of a real random variables.

Let X be a non-negative random variable with distribution function F'(z) := P[X < z].
The induced law of X on R is the Lebesgue-Stieltjes measure dF'(z) = P[X € dx]. We
shall identify the law with F'.

For F supported by [0, 00), the Laplace-Stieltjes transform

FQ)=E[e™] = / e MdF (z).
0

is finite for all A > 0.

Preliminaries

Here we list some elementary properties which are useful in the proof of theorem 4.6.14.

Lemma 4.6.10. Let X be a positive random variable with probability distribution func-
tion F. Let F its Laplace transform, then F' possesses derivatives of all orders given

by
FM()) = (—1)"/ e A" dF ().

Proof :
Apply theorem 4.6.7. U

Remark 4.6.11. The above lemma implies that F' possesses qﬁm’te n'™ moment if
and only of a finite limit F®)(0) exists. Forn =1, E[X] = —F®(0) and for n = 2,
E[X? = —F®(0).

Lemma 4.6.12. For any o > 0

/OOO rdF(z) = Oz/oOo 271 — F(z))dx (4.6.5)
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Proof :
We have that:

/ v (1 — F(z)) dz :/ xo‘_l/ dF (y)dz :/ xa_l/ Lysa)dF (y)dx
0 0 z 0 0
:Fllblnl/ / xa_ll(y>x)dxdF(y)
o Jo
1

== /Ooo y“dF(y)

Then (4.6.5) follows. O

Lemma 4.6.13.
/ e (1 — F(z)) dp — A (4.6.6)
i X

Proof : -
Integrating by parts F(\) = / e MdF (), we get:
0

F()‘> _ > -z
T—/O e “F(x)dx
Then ) .
1‘5“ :/0 e (1= F(z) da

O

Let X be a positive random variable with distribution function F' and denote by F its
Laplace transform. Then we have the following result:

Theorem 4.6.14. Let | is a slowly varying at infinity, then

a) For 0 < o < 1, the following are equivalent

A

i) 1= F(\) ~ AY(1/N) (A—0)
’ ()
m)l—F(x)wm (x — 00)

b) For a =1, the following are equivalent

A

i) 1— F(\) ~ A1/ (A = 0)
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/uw@Nu@ (z = 00)
0
i)
K/ﬂ—ﬂMﬁwM) (z = o)
0
Proof :

From (4.6.6), we remark that %(’\) is the Laplace transform of the function

./%1—F@ﬁﬁ.

e 0<ax<l:

From i) we have that %(A) ~ A71(1/)), then by Karamata’s Tauberian The-
orem 4.6.8 we deduce that 7) is equivalent to:

il (x)
z—oo ['(2 — )

‘/21—F@»ﬁ

As 1 — F(t) is ultimately monotone and o < 1, then by the monotone density
theorem 4.6.9 we get:

1— F(x) o~ %x_al(x) = ﬁx_o‘l(as)

Therefore i) implies 7i). Conversely an integration shows that ¢7) implies 7), hence
the equivalence between i) and ii) in a).
e av=1:

From ¢) we have that %(’\) ~ [(1/X), then by Karamata’s Tauberian Theorem
4.6.8 we deduce that 7) is equivalent to:

‘Aﬂ1_pa»ﬁ ~ ()

T—r00

On the other hand, notice that from (4.6.5) the two statement in i) are equal as
x — 00. Then 4) implies ii) in b).
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O
Application: The case of the exponential law
We now aim to apply the above theorem 4.6.14 to the exponential law.
Let X be a exponential random variable with parameter p =1 and I(z) = .
We have: \
1—F() = —"—=X(1/A 4.6.7
() = 125 = N/ (16.7)

As [ is slowly varying function at infinity, then from 4.6.14 we have:

T—r00

/Or(l—F(t))dt ~ I(x)

So we have an information about the integrated tail probability for large z, but we
don’t have an equivalent for the tail probability 1 — F'(x) for large x.

So we aim to define another random variable Y in function of X such that its first
moment is infinite and we apply again the theorem 4.6.14 in order to get an information
about the tail probability of Y.

Let Y = €%, where 8 > 1 and X be the exponential law with parameter p = 1. We
remark that the first moment of Y is infinite.

As above, we denote by Fy the distribution function of Y and by Fy its Laplace
transform.Then for A > 0, we have:

~

Fy(\) =E[e™M] = E[e_)‘eﬁx] = / e e dy
0

Using the change of variable u = €%, we obtain that

R 1 00 6—)\u
Fy(\) =— / ——du
Y( ) 6 1 uE—H
Firstly, we aim to find a slowly varying function [ at infinity such that
1—Fy(A) ~ A1) (A=0)

where 0 < o < 1.
We have:

. 1 [ e Au 1 [ — e
1— B )\:1——/ 1—du:—/ = du 16.8
Y( ) 5 1 uE+1 5 1 =+1 ( )
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u

0] _ %
Let f(z) = % 16 du. Then for a > 0, we have:
-

unB
oo —u o _ €
1 — e ax 1 1/6/ 1—e
—du z 1 dg
: f(CL,I) . /1 u%—i_l . 1 ( ) 1/ax CEJ'_I 1
lim = lim = = lim = — —
T—00 f(x) T—00 1 —ez T—00 al/ﬁ 1\1 1—e" al/ﬁ
Ene e [T
1 us Tl 1z vBT

The last equality comes from the change of variable ¢ = - in the numerator and v =
in the denominator.

1
As lim Jaz) = ——, then from lemma 4.6.4, the function I(z) = 2'/% f(z) is slowly
L)

varying at infinity.
From (4.6.8), we have that:

1—F(\) = XP11/))
where 1/f is less than 1.

Then from theorem 4.6.14, the tail behavior of Fy near infinity is given by:
() 1

1 - F ~ ~Y
1 1 [®1l—e=
~—_— —du 4.6.9
A, A 1469
On the other hand, we have:
1 1
1 —Fy(z) =PY >z =PX > 3 log(z)] = oy (4.6.10)
Finally we check that (4.6.9) is equivalent to (4.6.10) at infinity. Let 6 = 1, then
00 1 _ —% 00 1 o0 1 _ —C
/ = / " = 65 / ©ac, (4.6.11)
1 U/E+1 1 uﬁ 5 <E+1

where the last equality comes from the change of variable ( = du.

1 ©1—e¢ 1 11— —
As 56/ 1 16 dc = 5 / 1—e" C / 1—e™
5 <§+1 0 Cﬁ+1 ﬁ—i-l

so, when z — oo (i.e 4 near to 0), (4.6.11) is equivalent to

55 [A+0(8"%)] ~ A% + 0 (5%) ~ A. % +0 ( 21/5)

where A is a constant. Therefore the equivalence between (4.6.9) and (4.6.10) is proven.
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Joint density of Bessel process and the integral of its square

The following Lemma is given in [6](formulae 1.9.8 p.378 and 1.0.6 p.373)

Lemma 4.6.15. Let R\ be a n-dimensional Bessel process started at x, then

t
P, { / (R0 ds € dz, R € dy}
0

and

v+1
_ is. (v, 1,0, (2° + y*) /2, zy/2) dzdy
x

]P):c [Rgn) c dy} — yu TV 1 —(z +y? )/2tL,(xy/t)dy

when v = (n/2) — 1 is called the index of the Bessel process R.

Special functions

These functions are defined in [6].

Special Inverse Laplace Transforms:

VI (g W2, (2]

is, (v, t,r oy, x) = L°

Sh(iv/2a) h(iv/2a) Sh(iv/2a)
where
.T/Q 1/+2k
k'F (v+k+1)
and
L)~ — (x/2) -0 (4.6.12)
Vx_r(y+1)x as T 6.
Error function 5 .
Erfc —/ e " dv
=7,
and )
Erfe(r) ~ e’ (as © — 00)




CHAPTER 4. ASYMPTOTIC ANALYSIS OF THE BANDWIDTH
70 INDICATOR IN THE CASE OF LARGE VOLATILITIES

Gamma functions The incomplete gamma function is defined as:

and the gamma function is defined as:

v(x) = / u” e du, (x >0)
0
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Chapter 5

Quadratic variation estimator and
Bollinger Bands indicator

We have showed in previous chapters that the Bollinger Bandwidth indicator can be
used as an estimator to detect the change time at which the volatility changes its value.
Also it is well known in the literature that the quadratic variation is an estimator of
the volatility, that is, can be used to detect the change time of the volatility. But the
quadratic variation estimator is optimal if we select the time increment as small as
possible.

We consider the case of a trader who does not perfectly detect 7 but, at least, uses an
optimal detection procedures to decide when he reinvests his portfolio. So we assume
that the trader uses one of the above estimators in order to detect the change time,
and then we are interested in this chapter to compare the performance of the various
detection strategies in the case of large value for the time increment.

We assume that the change time 7 has an exponential law with parameter \. We show
that in the case of large time increment (A = 1072), the optimal trading strategy based
on Bollinger Bands indicator can overperfom that of quadratic variation indicator in
the case of large value for A\. Also we show that in this case of large A, Bollinger Bands
can detect the change time faster than quadratic variation.

5.1 Detection methods for the change time

We show in this section how can detect the change time of the volatility using respec-
tively the Bollinger Bandwidth and the quadratic variation estimators.

Let us start by a short abstract about the quadratic variation.

We assume that the price process (S;) evolves according to,
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where 1 and o are constants.

Then the log-price process Y; = log(S;) satisfies:
L,
dlog Sy = ( p — 3 dt + odB;.
The main object of interest is the quadratic variation QV:

t
QV: = ()Y), = / o’ds = ot.
0

over a fixed time period [0,%]. The usual estimator of the QV;} is the realized volatility
(RV'), which is simply the sum of observed squared log-returns

3
—

RV, =S (Yi., - Y3)°
0

e
i

where we consider a regular partition of the interval [0,¢] with time increments A:

0=ty <ty < .coovrrrrieiiinn <t,=t, tr = kKA.

(tg, k = 0,1...n) are the times at which the price of the asset is available during period
t, and n is the number of intra-period observations used in computing the estimator.
In theory, sampling at increasingly higher frequency should deliver, at the limit, a
consistent estimator of the quadratic variation. Further, the RV; converges to the
quadratic variation QV;, and this convergence it is optimal by selecting A as small as
possible. Unfortunately this theory cannot be applied directly to real financial data.

We now return to our underlying mathematical model which assume that the price
process satisfies the following SDE:

dSt = IUStdt + St (01 + (UO - Ul) ]lth) dBt, (512)

We present in this section two methods for computing the stopping rule (alarm time)
7 which detects the instant 7 at which the volatility changes its value. The first one
is based on the quadratic variation estimator and the second one, is based on the
Bollinger Bandwidth indicator.
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We first suppose that the trader uses the quadratic variation estimator and at each
time ¢; he knows the last § observations. Then the estimated ¢ at each time ¢, can be
obtained by:

N

. 1 2

o7, = VA Y (Ywroa = Yoina) = NARWk> (tk = kA). (5.1.3)
i=0

where ¢, € {t —J,...,t} and the parameter § is the size of the time window used to

compute the (5.1.3), and is also the size of the time window used to compute the

moving average for the Bollinger Bands.

For simplifying the notations, we denote in the sequel by 7% the alarm time 7 computed
by using quadratic variation estimator. Then 7% can be expressed by:

79 = inf{ty; — RV}, > o}, (5.1.4)

NA

where p is a threshold to be controlled and it depends on oy and oy. Indeed, the
threshold o can be defined as:

o=coj+(1-c)o} c€]0,1]. (5.1.5)

We now assume that the trader uses Bollinger bands estimator to estimate the time
7. Here we denote by 77, the alarm time 7 detected by using the Bollinger Bands
indicator. Then 72 can be expressed by:

— inf{t,/BWI, > S} (5.1.6)

where (3 is a constant to be fixed. For first intuition, the value of 5 can be chosen as
in section 3.3 in chapter 1.

Notice that the alarms time 79 and 72 can occur before the instant 7, that is it
corresponds to a false alarm, or after 7. So, the amount of time which 7¢ and 7% miss
the true time change 7 is given by |79 — 7| and |77 — 7|. We restrict ourselves to the
detection procedure introduced by Karatzas which consists in minimizing respectively
the amount |79 — 7| and |72 — 7|.

The Karatzas’s detection method consists in computing the optimal stopping rule
(alarm time) 79 that minimizes the expected miss

EK(Q) =E[ 7% - 1] ], (5.1.7)

and

EK(B) =E[ |75 —1]. (5.1.8)
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As the alarm times 7¢ and 72 depend respectively on the thresholds ¢ and f3, then the
expected miss FK(Q) and FK(B) can be influence by the choice of these parameters.
So it must choose the good parameters in order to minimize FK (@) and EK(B). But
as the trader’s goal is to maximize his gain, so it will be better to choice the optimal
parameters ¢, § and ¢ as the parameters with which the trader maximizes the expected
utility of his terminal wealth E[log(Wr)].

5.2 Compare the performance of the various detec-
tion strategies

We compare the performance of two mathematical detected strategies aimed at de-
tecting the time at which the volatility changes. We aim to compare the performance
of traders who use one of the two volatility estimators to detect 7 in order to decide
his portfolio investment strategy. Supposing that oq is less than oy, then his strategy
consists in putting all his money in the stock until the detected time, and in the bond
after this time.

Consider a trader who takes decisions at discrete times of a regular partition of the
interval [0, 7] with step A = L.

O=tg<ti < .veoorrrnniin. <tN:T, tk:k’A

We denote by thk (resp.m/’) € {0,1} the proportion of the agent’s wealth invested in
the risky asset at time tg, k € [1, N], using respectively the quadratic variation and
Bollinger Bands indicators to detect the change time 7. Consequently,

Wfﬁ = L, <79), (5.2.1)

and the corresponding wealth Wtff at time j satisfies:

Sy SY
Wi = Wi | = + — (1= mp)) (5.2.2)
Stk Stk
Similarly we have:
i, = Li<r8), (5.2.3)

and the corresponding wealth Wtf at time t;, satisfies:

WB

tpa1

=Wp Stiss + i (1—7P) (5.2.4)
— YV Stk Tty S? Tty ' e
k

The parameters used in this numerical example is described below:
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n = 0.01 og = 0.05 01 = 0.2

r=20 T=2 7=0.6
1.1 - . : ‘ :
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(a) A typical trajectory of the stock price (b) Proportion of the wealth invested in the
risky asset

Figure 5.1: A nominal trajectory

Qv trader
Bollinger Bands trader

Wealth W_t

Figure 5.2: Time evolution of the wealth.

Fig.5.1(a) shows the underlying trajectory of the stock price, when the change occurs at
7 = 0.6. Figs 5.1(b) shows the allocation strategies of traders using quadratic variation
and, respectively, Bollinger Bands estimators detection methods. In Fig 5.2(a), we
show the time evolution of the wealth.

We aim to compute the optimal parameters for each method, this means we aim to
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compute the optimal parameters ¢ and ¢ of the quadratic variation estimator which
maximize E[U(W¢)]. Similarly we compute the optimal parameters 3 and § of the
Bollinger Bands estimator which maximize E[U(W.F)]. Finally we compare the optimal
E[U(W)] and E[U(W#)] which are computed with the optimal parameters.

5.2.1 Comparison results for large data A = 1072

We first assume that the trader displays a logarithmic utility function and we assume

that 7 is deterministic. The parameters used to obtain the following results are given
by:

pu=2001]00=005]0,=02|A=10"2
7”:0 T:2 T:06

e Results about quadratic variation estimator

Empirical determination of a good weight ¢

One can optimize the choice of ¢ by means of Monte Carlo simulations. For each §, we
have simulated 10° trajectories of the asset price and computed the time evolution of
the expectation logarithm of wealth for different value of ¢. Then the optimal choice of
¢ is that maximize the E[log(W2)]. In tabular 5.1, we show some optimal ¢ for different
value of ¢.

) optimal weight ¢

0.03 0.76

0.05 0.70

0.06 0.70

0.08 0.77

0.1 0.82

0.12 0.87
Table 5.1

Empirical determination of a good windowing ¢

In this paragraph we aim to determine the optimal choice of . From the previous
paragraph we have computed for different 9§, the optimal associated choice of the weight
c. So now in this paragraph we compute by Monte Carlo simulations the expectation
E[log(W2)] for different value of ¢ by fixing for each § the associated optimal choice of
c. In all our simulations, the Monte Carlo error on E[log(W?)] is of order 3 x 1075.
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Then from figure 5.3 the optimal choice of ¢ is around 0.05 and the optimal associated
choice of ¢ is around 0.7.

0.006
0.005 |
30004 |
o
< 4
z 0003 ¢
B /
= oo002| / EllogWrQ u]withdelta=0.03 —— |
= /" Ellog(W"Q 0] with delta=0.05
/ E[log(WAQ_t)] with delta=0.06
0001 |/ Ellog(WrQ )] with delta=0.08
E[log(W”Q_t)] with delta=0.1
oL E[log(WAQ_t)] with delta=0.12
0 0.5 1 15 2

Time

Figure 5.3: Comparison of the expected values of the logarithm of wealth for different
value of ¢ and for deterministic 7.

e Results about Bollinger Bands estimator

Empirical determination of a good level

Similarly as in the quadratic variation case, one can optimize the choice of 5 by means
of Monte Carlo simulations. We present below for some ¢ the associated optimal
threshold /5.

) optimal /3
0.03 0.043
0.05 0.061
0.06 0.058
0.08 0.061
0.1 0.059
0.12 0.064
Table 5.2

Empirical determination of a good windowing ¢

We now aim to determine the optimal choice of §. Similarly we compute by Monte
Carlo simulations expected logarithm of wealth E[log(W/7)] for different value of J by
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fixing for each ¢ its optimal choice of § as in tabular 5.2. In all our simulations, the
Monte Carlo error on E[log(W /)] is also of order 3 x 1075.

Then from figure 5.4 the optimal choice of ¢ is around 0.03 and the optimal associated
choice of 3 is around 0.043.

0.006
0.005
EI 0.004
m
<
= 0.003 r
K
5- 0.002 - E[log(WAB_t)] with delta=0.03 —— |
’ /7 E[log(WAB_t)] with delta=0.05
/ E[log(WAB_t)] with delta=0.06
0.001 + / E[log(W”B_t)] with delta=0.08 B
/ E[log(W”B_t)] with delta=0.1
o L E[log(W"B_)] with delta=0.12
0 0.5 1 1.5 2
Time

Figure 5.4: Comparison of the expected values of the logarithm of wealth for different
value of ¢ and for deterministic 7.

e Comparison of performance when the traders use optimal strategy
with quadratic variation and Bollinger Bands.

Finally we aim to compare the performances of optimal trading strategy based on the
quadratic variation estimator with optimal trading strategy based on Bollinger Bands
estimator. In figure 5.5, we illustrate the expected logarithm of wealth E[log(1V?)]
and E[log(W;?)] when we have taken for both the optimal value of §. We remark
that quadratic variation indicator can overperform Bollinger Bands indicator but the
difference between their performances is not large (not too significant).
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0.006

0.005

0.004

0.003

E[log(W_t)]

0.002

0.001

E[log(W”B_t)] with delta=0.03 —— |
E[ng(W"Q_t)] With delta:O.QS """"""

0 0.5 1 1.5 2

Time

Figure 5.5: Comparison between quadratic variation and Bollinger Bands for logarithm
utility and for deterministic 7.

To conclude this analysis, we examine the effects of the utility functions on the optimal
choice of 0 for both of estimators. We now assume that the trader displays a power
utility function like U(z) = 2'/2. As in the case of logarithm utility function, we
compute the optimal trading strategy based on quadratic variation estimator and the
optimal trading strategy based on Bollinger Bands estimator, that is we compute for
both estimators the optimal choice of . From Monte Carlo simulations, the optimal
choice of delta for quadratic variation is 6 = 0.06 and the optimal delta for Bollinger
Bands is 0 = 0.05.

1.003

1.0025

1.002 +

1.0015

E[sqrt(W_t)]

1.001

1.0005 1
E[sqrt(WAQ_t)] with delta=0.06 ———
E[sqrt(W"B_t)] with delta=0.05 —

0 0.5 1 1.5 2

Time

Figure 5.6: Comparison between quadratic variation and Bollinger Bands for power
utility and for deterministic 7.

It is clear from this figure that the optimal trading strategies have the same perfor-
mances.
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e Comparison of performances where 7 has an exponential law with pa-
rameter \

We assume that the trader displays a power utility and we aim to examine the effect

of the parameter A on the performances of the strategies.

1.0045 1.0025
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= 1.003 -

- S 10015 |

= 1.0025 2

£ 5
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Z 00 Z 1.001 |

= 10015 t o
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1.0005 E[sqrt(WAQ_t)] with delta=0.07 ——— 4 E[sqrt(WAQ_t)] with delta=0.07 ———

E[sqrt(WAB_t)] with delta=0.07 | E[sqrt(WAB_0)] with delta=0.05

(a) p=0.01,00 = 0.05,00 = 0.2, A =1
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Time
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Time

(b) = 0.01,00 = 0.05,01 = 0.2, A = 2
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1
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Figure 5.7: Comparison of performances for different \.

In the above figures, we compare the performances of optimal trading strategies based
respectively on quadratic variation and Bollinger Bands indicators, when we have taken
the optimal choice of ¢ for both indicators.

In figures 5.7(a) and 5.7(b), we take a small value of oy and oy, and we change the
value of \. We remark that for A = 1, the performances are almost equal and for A = 2,
the performances are also almost equal, but the Bollinger Bands slightly overperfoms
the quadratic variation indicator. From tabular 5.3, we have the expected miss of
the detection time 7 given respectively for quadratic variation as in (5.1.7), and for
bollinger Bands as in (5.1.8). We remark that in the case of A = 2, the expected
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miss E K (B) of Bollinger Bands is smaller than the expected miss FK(Q) of quadratic
variation, that means that Bollinger Bands can detect the change time 7 faster than
quadratic variation.

In figures 5.7(c) and 5.7(d), we take a large value of oy and oy, and we change the value
of A\. We remark that for A = 1, the quadratic variation overperfoms the Bollinger
Bands indicator, but for A = 6, the performances are almost equal and Bollinger
Bands slightly overperfoms the quadratic variation indicator. Also from tabular 5.4,
we remark that for A = 6, the expected miss EFK(B) is smaller than EK(Q).

N[ EK(Q) | EK(B)

11 0.237 0.267

2| 0.124 0.105
Table 5.3: The expected miss EK(Q) and EK(B) corresponding to figures 5.7(a) and
5.7(b)

A EK(Q) | EK(B)

11 0.291 0.366

6 | 0.097 0.089

Table 5.4: The expected miss EK(Q) and EK(B) corresponding to figures 5.7(c) and
5.7(d).
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5.2.2 Comparison result for small data A = 10~*

As we have said that it is well known in the literature that quadratic variation indicator
is an optimal estimator of the volatility in the case of small value of time increment A.
So in this section we just give an simple example which show clearly how the optimal
trading strategy based on quadratic variation overperfom the trading strategy based
on Bollinger Bands. We assume that the change time is deterministic, 7 = 0.6.

0.006
0.005
= 0.004
i
S
% 0.003
2
M 0002 |
0.001 |
E[log(W"Q_t)] with delta=0.12 ———
0 Ellog(W"B_0)] with delta=0.05 —
0 0.5 1 1.5 2

Time

(a) 1 =0.01,00 = 0.05,01 = 0.2

Figure 5.8: Comparison of performances for A = 1074,
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Chapter 6

Optimal portfolio allocation problem
with random time change

6.1 Introduction

The objective of this chapter is to study the optimal portfolio allocation strategy in
the case where the model has a change of volatility at a random time 7. We aim to
make explicit the optimal wealth and strategy in the case where the model is perfectly
known by the trader. Of course this situation is unrealistic. But, it is worth comput-
ing the best performance that one can expect within our setting. This performance
represents an optimal benchmark for mis-specified allocation strategies relying either
on a mathematical model or on technical analysis.

We want to exhibit the mathematical optimal strategy issued from the stochastic con-
trol theory. But, it appears that we can’t apply the classical stochastic control theory
without care because:

e The diffusion coefficient of the dynamics of the risky asset changes at the random
time 7. This change makes the filtration generated by the prices different from
the filtration generated by the Brownian motion.

e The trader’s strategy needs to be adapted to the filtration generated by the prices.

In order to circumvent the difficulties of our optimal allocation problem, we will use a
techniques which with we can take in account the change time 7 in order to decompose
the initial allocation problem into an allocation problem before the change of volatility
and an allocation problem after the change of volatility.
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6.2 Description of the mathematical model

The financial market consists of one risky asset and a bank account. The bank account
has dynamics
dSY = SPrdt
e

and the risky asset has dynamics

{s_ a (S0)dt + (04(50) + (00(5) — 01(5)) e ) dBy (6.2.1)

where (Bt),cjo 7 is a one-dimensional Brownian motion on a given probability space
(Q, F,P)(below we will precise the filtration). At the random time 7 , which is neither
known, nor directly observable, the diffusion term changes from the function oy to the
function 0. we also assume that the Brownian motion (B;),., and the random variable
7 are independent.

We now take sufficient assumptions on the coefficients in order that (6.2.1) has a
solution. These are standard assumptions that we should be able to show by Feller’s
test for explosions that the solution of (6.2.1) does not explode, that is, the solution
does not touch 0 or oo in finite time.

Let the coefficients og, o1, 1t : (0,00) — R satisfy the following conditions:

i) 3¢,C >0 such that, Vo, we have 0 < ¢ < 02(z) < oi(z) < C,

ii) p, og and oy are continuous and bounded,

iii) vo(04) = vp(00) = 0o, where vy is a function defined on (0, c0) as follows:
@ y y 9

vo(z) = / exp (—2/ ;;(u) du) / - dzdy,
1 1 op(uu U exp (_2/ f1(w) du) 2
1

™) 7

iv) v1(0+) = v1(00) = oo, where v is a function defined on (0, c0) as follows:

v () = /jexp <_2 /1 ’ U’%‘((Z;udu) /1 ’ - (_2/: M?u) du) : dzdy.

™) 1

Then from Feller’s test for explosions given in [18, p.348| and under the above assump-
tions, we can deduce that the explosion time is infinite and therefore the solution of
(6.2.1) does not explode.
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6.3 Stochastic differential equation for (.5;)

We aim in this section to define a filtration G, such that the stochastic integral in the
price dynamic is well defined in G.

Let us introduce the process Z; = 1;5,,0 < t < T and FZ = (F7)e0,17 be the filtration
generated by this process. We also denote by F? = (JT';gB)te[O,T} the filtration generated
by the Brownian motion B. We define the enlarged progressive filtration G = (G;)icpo,n)
as:

G =TFB Vv F?.

We now prove that (B;)s0 is a G Brownian motion. This result can be deduced from
Jacod’s countable expansion theorem (see Protter [25], chap.Il,theorem 5). Here, we
give an elementary proof with reflects our simple setting.

Proposition 6.3.1. (B;):>o is a G Brownian motion .

Proof :
By Levy characterization of Brownian motion, it’s enough to show that (B;);>o is
continuous G local-martingale with:

<B>=t a.s. (6.3.1)
We obviously have only to prove that B; is G martingale. VO < s < ¢,
E[Bi|G,] = E[(B; — B, + B;) |9
=E[(B; — B:)|Gs] + E[B;|G]

As G, = FBV o(14>,,0 < s) and (B,) and 7 are independent, we have:
E[(B, — B,)|G,] = E[(B; — B,)|F] = 0

Furthermore, (B) is G-adapted, therefore (B;);>o is a G Brownian motion.
0J

From the definition of the process (Z;), the dynamics of the price process (S;) can be
obviously expressed in terms of Z as follows:
s,
= = ulSi)dt + (00(St)(1 ~Z)+ al(St)Zt)dBt. (6.3.2)
t

As Z; is G-adapted and (B;) is a G-Brownian motion, then the stochastic integral in
the above dynamic (6.3.2) is well defined in the filtration G.

In the sequel, the filtration generated by the price is denoted by F* = (-ES)tE[O,T}.
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Lemma 6.3.2. The process (Z;) is F°-adapted.

Proof :

Let Y; = log(S;) and denote by g¢(t) the left-derivative of the quadratic variation for
the process Y at time t:

U%(St) if Zt =0

g(t) = (6.3.3)
o?(Sy) if Z; =1

then Z; = 1y4—02(s,)- As g(t) is the left-derivative of the quadratic variation for the
process Y, thus it is F®-adapted, and therefore the result follows. O

Lemma 6.3.3. The filtration generated by the observations F° is equal to the aug-
mented filtration G = FB v FZ.

Proof :
From lemma 6.3.2, (Z;) is F¥-adapted. Furthermore, we have

log(S;) = /0 t (M(s(,)—% (0—3(59)(1—29)+a§(59)z(,))de+ /0 t(ao(Sg)(l—Z(;)Jral(Sg)Zg)ng.

Remark that under the assumption ) on ¢y and o1, that is, Vz,0 < ¢ < 03 (z) < oi(x),
we have that the integrand in the stochastic integral is bounded below by a strictly
positive constant. Then it is enough to differentiate the above equation and divide by
the integrand of the stochastic integral (which is strictly greater than zero), in order
to deduce that (B;) is written in terms of F®-adapted processes, therefore it is F°-
adapted, and so G := FP vV F# C FS. The other inclusion is obvious. Therefore the
result follows.

4

6.4 Right-discontinuity of the filtration (ES )i=0

The objective of this section is to prove that () is not a right continuous filtration.
This could follow from results in the general theory of stochastic processes. We propose
here a simple proof adapted to our framework.

The following proposition stated, e.g.,in Karatzas and Shreve in [18, p.6| will be useful
to prove the discontinuity of the filtration (F°). It is known as Galmarino test. A
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proof can be found in Dellacherie and Meyer [10, p.234], or in Revuz and Yor |26,
chap.I, section 4| for the canonical space framework. Here we give a different proof.

Proposition 6.4.1. Let X be a stochastic process and T an (F;X) stopping time.
Suppose that for some pair wy,wy € €, we have X (wy) = Xi(wy) ¥t € [0,T(wo)] N
[0,00[. Then T'(wo) = T'(wy).

Proof :

We denote 0y = T'(wp). Let us define :
Doy, = {A € Fpy Jwy € A<= wj € A}

Doy, is the set of elements A € FjX such that : (wo € A and wy € A) or (wo ¢
A and wj, ¢ A).

We split the proof into two steps:

o First step: Dy, .y 18 a o-algebra

We have:

- Qe Dwo,w(/).

— Dy, is closed under complementation.
wo, W

— Dy is closed under countable unions. We show that if Vn € N, A, €
Dwo,w(’) then UnENAn S Dwo,w(’)- In fact:

i) vne N, A, € Doyo oy = A, € .7-"9)5 and therefore U,,cyA,, € .7:9)5.

ii) It remains to prove that wy € UpenA, <= wy € UpenA,.

If wy € UpenAy, then there exists a ng such that wy € A,,. As A,; € Dy oy
then wj € A,,,. This implies that w{ € UpenA,.

Hence from 7) and i), UpenAn € Dyguy. Therefore Dy, .y is a o-algebra.

e Second step: .7:55 C D

By hypotheses, Vt < 6y we have X;(wy) = Xi(w(). Then VC Borel set in R,
we have {X; € C} € Dyguy- This implies that X; is Dy, . measurable for
all 0 <t < 6y. As .7-"55 is the smallest o-algebra with respect to which X; is
measurable for every 0 <t < 6y, therefore we conclude that fe)g C Do -
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Let us define the set:
Qo = {w € ;T (w) = 6y}

To end the proof, we must be able to show that Qa, € Doy -
As T is an stopping time, we have [y, := {w € Q;T(w) < 6y} € f(fg. Also we have
Jo, = {w € Q;T(w) < by} € Fy, because Jp, = U,en{w € Q;T(w) <0 — =} € Fy.

As Qp, = Iy, N Jg,, then Qp, € f@)(f C Duguy- As wo € Qg, and Qg, € Dy uy, then wy
€ Qy,- Hence T'(wy) = T'(wy).

O

Let us denote by Qg and Q respectively the space for the Brownian motion (B;) and
the process (Z;).

Proposition 6.4.2. Suppose that the underlying probability space is the canonical prod-
uct space Q@ = Qp x Qz. Let Sy be a solution of (6.2.1). Then 7 is an (F2.) stopping
time but not an (F?°) stopping time.

Proof :
We split the proof into two steps:

e First step: we prove that 7 is an (2 ) stopping time.

For t > 0, we have V 0 > ¢, {7 <t} C {r <0} = {g(0) = 0}(Sy)} € F;. Then
{r <t} C ﬂ {g(6) = 07(Ss)} € F. Thus 7 is an (F7) stopping time.

0>t

e Second step: we prove that 7 is not an (F°) stopping time.

We recall that our probability space is the canonical space. Let wy = (w, W), w; =
(w,w) € Q and assume that 7(w) < 7(w), this is possible because 7 is not
deterministic. We also consider the process Y; defined in €2 as below:

For w* = (w,w’) € Q,

tAT(w') t
Yi(w") = log(S,) (") = / o Sow)dBo(w)+ [ a(Su(w,u)aBaw)

AT(w’)

. /Owaw (M(Se(w)) - %—S(&;(w))) 6 + /t t (M(s(,(w» _ %gf(s(,(w))) 50

AT(w’)
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Notice that the trajectories Y;(wg) and Y;(w;) are equal until 7(w), so if we assume
that 7 is an F¥ stopping time, then we can deduce from proposition 6.4.1 that
7(w) = 7(w), which exhibits a contradiction with the assumption 7(w) < 7(w).
Thus 7 is not an F®-stopping time.

O

Corollary 6.4.3. Within the framework of proposition 6.4.2, the filtration (F)eo is
right-discontinuous.

Proof :

For that we prove that there exists a set A € .Fti but A ¢ F°. On the one side,
from proposition 6.4.2, 7 is not an (F7) stopping time, then there exists ¢; such that
{r <t} ¢ 7. On the other hand, 7 is an (F}}) stopping time, thus {7 <t} € F.
Therefore, we can choose A = {7 < {;}. 1

O

6.5 The optimal portfolio allocation strategy under a
change of volatility

In this section our aim is to make explicit the optimal wealth and strategy for a trader
who knows all the parameters of the mathematical model. As the main difference with
the classical stochastic control theory comes from the discontinuity of the filtration
generated by the prices or more precisely from the change at time 7, so we aim to
resolve this control problem by using a specific feature of the change time 7.

Definition 6.5.1. (Trading strategy) A trading strategy is a two-dimensional stochastic
process h = {(HY, Hy) ,t € [0, T} satisfying

e h is progressively measurable

o h is adapted, i.e. ¥ t hy is F-measurable.

The financial interpretation of the trading strategy is that H) is the number of bonds
held by the trader at time ¢ and H, is the number of stocks that he holds at time t.
So, the wealth process (W;,t > 0) of the portfolio is such that for all ¢,

W, = H)S} + H,S,.
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Definition 6.5.2. A pair (H?; H;) is called self-financing if the corresponding wealth
process Wy is a continuous and adapted process such that

t t
m:WO+/ H3d52+/ H,dS,,. (6.5.1)
0 0

This means that the composition of the portfolio changes from time ¢ to time t + At
with no endowment.

Let m; be the fraction of the current wealth W, that the trader decides to invest in
the risky asset at time ¢, so 1 — m; is the fraction of wealth invested in the bond. we
suppose that the trading strategy is self-financing, then the wealth process satisfies the
following SDE :

dWT = HdS? + H,dS,
= rH)SPdt + H, S, (u(S;)dt + (00(S;) + (01(S;) — 00(Sy)) Z,)dBy)
= W[ [(1 = m) rdt + 7, (u(Sy)dt + (00(Sy) + (01(Sy) — 00(S:)) Z,)dB,)] . (6.5.2)

Let us denote by Efj the expectation operator conditional on W, = z,5;, = ( and
Zy = z. We consider a utility function U which is, either the logarithmic utility
function, or an element of the set & of the increasing and concave functions of class
C' ((0, +00); R) which satisfy: U(0) = 0, and there exist real numbers K > 0 and
0 < a < 1 such that

0<U'(z) <K (1+27) forallz>0.

The performance of an admissible trading strategy 7 associated with a wealth process
W, is measured over the finite horizon 7" by the cost function J defined as:

J(t, 2, ¢, z,m) = EpZ [UWE)]

and the investor’s objective is to maximize his expected utility of wealth at the terminal
time T'. He solves the following optimization problem :

V(t,z,(,z) =sup J(t,x,(, z,m), (6.5.3)
TeA

where A denotes the set of the admissible controls (m)ecjo. 71 which are F*-adapted,
take their values in a compact U C R.
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In the following, the function V' (¢,x,(,0) will be interpreted as the value function
before the change time, that is, z = 0 and the function V (¢, z,{, 1) will be interpreted
as the value function after the change time, that is, z = 1.

First, we present the density approach which have been introduced by Pham and Jiao
in [17]. We shall work in this approach with a density hypothesis on the conditional
law of 7 given the filtration generated by the Brownian motion. We show that the pair
(V(t,z,(,0),V(t,x,(, 1)) is the unique viscosity solution of a Hamilton-Jacobi-Bellman
system.

Second, we show by verification theorem that under smoothness assumptions on the
value function, the pair (V(¢,z,(,0),V(¢t,z,¢,1)) is solution of a Hamilton-Jacobi-
Bellman system.

6.5.1 Density approach

In this approach, Pham and Jiao [17] have taken benefit of the specific feature of the
change time 7 and how we can separate the initial optimisation problem into a problem
after the change-time and a problem before the change time, by relying on the density
hypothesis on the change time 7.

They introduce the enlarged progressive filtration G° = FF v FP, where FP is the
filtration generated by the process Dy = 14>, 0 < ¢ < T'. Then the optimal investment
problem is to maximize the expected utility of wealth at the terminal time 7" over all
the admissible strategy = € A’, where A’ is the set of a G -predictable processes.

The main advantage of the set A’ is that we can use the following important result
given in [14] and [16] about the decomposition of any G'-predictable process. Let L
be a G'-adapted process. Then there exists an FP-adapted process L°, and a family
of processes {L¢(0), 0 <t <T,0 €[0,T]}, where L{(#) is measurable with respect to
FB @ B(R"), such that

L= Ly + L) sr,  VEE[0,T]. (6.5.4)

Density hypothesis:

For any t € [0,7], the conditional distribution of ¢ given F? admits a density with
respect to the Lebesgue measure, i.e. there exists a family of 77 @ B(R™) measurable
positive function (w, ) — a;(w,#) which satisfies

P [¢ € dO|F]] = au(0)dl,  t €[0,T] (DH)

The family oy (.) is called the conditional density of ¢ with respect to Lebesgue measure
given FB.
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By definition of the conditional expectation, we have for any (bounded) Borel function

3
E[£()|FF] = / " O)au(0)d8

The conditional distribution of ( is also characterized by the survival probability func-
tion

Glt) = P(C > t|FP) = /t " a(0)d6.

In the sequel, ¢ denotes the density of the change time 7. As the change time 7
is supposed independent of the Brownian motion B, then «;(6) is simply a known
deterministic function ¢(#) of § € R* and the survival probability is a deterministic
function given as:

Gt) = Plr > || = Plr > 1] = /OO 4(6)db. (6.5.5)

In the sequel we will use the notation G(¢, s) and ¢(t, s) in order to describe the survival
probability and the density of 7 at time s such that 7 > t.

Let us introduce the following processes:

45 = 5O :,u(St(O))dt n aO(St(O))dBt: , (6.5.6)
ds® = s :,u(St(l))dt v al(St(l))dBt: , (6.5.7)
and
awr” = wr {((u(sg(’)) - 7’) 74 7’) dt + m® ao(St(O))dBt] , (6.5.8)
th’T(D = Wt”(l) [((,u(St(l)) - 7’) M+ 7’) dt + ﬂfl)al(St(l))dBt] : (6.5.9)

where 7 is FB-adapted, representing the proportion of wealth invested before the
change, and 7r§1) is FB-adapted, representing the proportion of wealth invested after
the change at time 7.
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Notice that with this approach, the set of admissible strategies is the set A of G -
predictible processes. So we first solve this problem under the constraint that = € A’;
then, from the definition of A’, we can deduce that the optimal strategy 7 given by

T = W,go)]ltgr + 7Tlgl)]ltw-a

is a F¥-adapted process and thus belongs to the set A.

We now present the main result obtained in [17| namely the decomposition of the
maximisation problem into two problems as follows.

T
V(t,2,(,0)= sup E {U (wi) G )+ / Vo, w5, 55, Dqt,0)de, | .
W(O)EA(O) t

where A© is the set of the proportion of wealth invested before the change time; A©
is a FP-adapted process and G the survival probability. Notice that the integrand of
the integral is described in terms of the value function after the rupture.

In the sequel, we shall study these two optimisation problems in the particular case of
the exponential law of 7 with parameter .

In this case for the law of 7, the above decomposition can be rewritten as follows:

T
V(t,2,(,0)= sup Ep) {U (W) e 0 / Ve, Wy, 557 1)ae0-0qg)| .
7(0) . A(0) t

We show in the above equation how the solution of the before-change time problem
V(t,x,(,0) depends on the solution of the after-change time problem V (¢, z,(, 1). Each
of these optimisation problems is performed in market model driven by the Brownian
motion and with coefficients adapted with respect to the Brownian reference filtration.

Let us now consider the system

&a(t,x,¢,0) +sup LOv(t,2,¢,0) + A (v(t, z, ¢, 1) — v(t, 2,(,0)) = 0
mel
5) %(t,2,¢, 1) +sup LOv(t, 2,¢,1) =0
el

with the boundary condition

(T, z,(,2) =U(x), x,(eR" ze{0,1}. (6.5.10)
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where
£0u(,7,,0) =e(mu(C) + (L= ) 32 + 3w T + CulO) e
N 1%(0 zgz;)’ (6.5.11)
and
£, 1) =e(mu(Q) + (L= ) 32 + 52t O T + CulO) e
. 101(0 zgz (6.5.12)

6.5.2 Existence and Uniqueness of the viscosity solution

Under the assumptions on the utility function U, we can easily show that there exists
a constant C' such that, for all positive real numbers x, £ we have:

| U(z) - U@) |<Clo—z| (1+a+7).

As in the classical case, we can show from the above inequality and under the bounded
and continuous assumptions on the functions u,o9 and o; that the value functions
V(t,z,(,0) and V(t,x,(,1) are continuous on [0, 7] x RT x RT x {0, 1}.

Definition 6.5.3. A pair of continuous functions (v(t,x,(,0),v(t,z,(, 1)) on [0,T] x
R* x R is a viscosity supersolution (resp. subsolution) to HIB system (S) if

%cf (£.7,C,0) + LO®(T,2,(,0) + A (®(F,2,{, 1) — B(F,2,(,0)) > (resp. <) 0
P70 1) + LOBER 1) > (resp. <) 0

g 5)

for all C? pair functions (®(t, 7,¢,0), (t,
such that (®(t,7,(,0), ®(t,7,(, 1)) = (v(t
[0,7T] x Rt x ]R*.

x,(, 1)) on [0,T] xRT xR* and any (t, z,
(t,72,(,1)) and v = (resp.<) ® o

Definition 6.5.4. A pair of continuous functions (v(t,z,(,0),v(t,x,(, 1)) on [0,T] X
R* x RT is a viscosity solution to the above HJIB system (S) if it is both a viscosity
supersolution and subsolution to this system.
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Theorem 6.5.5. Assume that oy and oy are in CH(R). Then the pair (V (t,z,¢,0), V(t,z,(, 1))
is the unique viscosity solution of the HJB system (S) and satisfying the boundary con-
dition (6.5.10).

Proof :

We first prove the existence of a viscosity solution of system (S). By truncation of
the coefficients of the SDE satisfied by (S;), we obtain that the process (W7, St(l))
satisfy the classical assumptions which ensure that the value function V(¢,z,(, 1) is a
viscosity solution to the second HJB of system (5) (cf.theorem 5.2 of [32, chap.4]). We

therefore conclude the existence result by the stability result given in proposition 7.3
of Lions [20].

Similarly, we can conclude that the value function V (¢, z, (,0) is a viscosity solution of
the first HIJB of system (5).

We now prove the uniqueness of the viscosity solution of HJB system (S). As the value
functions V(¢,z,(,0) and V(¢,2,(, 1) are continuous and lipschitz, then by applying
theorem 6.2 in chapter IV of [32], the uniqueness follows.

O

6.5.3 A verification theorem

Under smoothness assumptions on the value function, we show by verification theorem
that the pair (V(¢,2,¢,0),V(t,2,(,1)) is a solution of the above HJB system. We
assume that 7 follows an exponential law with parameter A, that is the process (Z;) is
an absorbed Markov process at state 1.

We start by making explicit the infinitesimal operator of the RT™ x Rt x {0,1} val-
ued process (W7, S, 7). Then we show our verification theorem 6.5.6 and we prove
that the optimal trading strategy is to follow the optimal strategy which characterizes
V(t,z,(,0) and then to switch when the change occurs to the optimal strategy which
characterizes V (t,x,(, 1).

Let v be a smooth function defined on [0,7] x RT x R x {0,1}. Let m, = p € U, Vt.
By applying Ito’s formula to the process (W™, S, Z), we obtain that its infinitesimal
operator L, is

(0) _ i =
Lot 2,C, %) = E?l)v(t,x,C,O) + ANo(t,z,(, 1) —o(t,z,(,0)) ?f z2=0
Lr'v(t,x,(, 1) if z=1
where £ and £ are defined respectively as in (6.5.11) and (6.5.12) and they are the
infinitesimal operators associated to the process (W7, S) respectively for fixed z = 0
and z = 1.
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In the sequel, we aim to show that a smooth solution (v(¢,z,(,0),v(t,z,(, 1)) of the
Hamilton-Jacobi-Bellman system (S), coincides with the pair of value functions

(V(t,z,(,0),V(t,x,(,1)). The proof of this result is decomposed in two parts : for the
part concerning the function V (¢, z,(, 1), the proof is simple and relies essentially on
Ito’s formula. For the part concerning V (¢, x, (,0), the proof is more technical because
of the volatility change at time 7.

As ’/Tt(o) is FB-adapted, then there exists a measurable function p defined on the canon-
ical space such that:
" = p(By, 0 < 1).

Let us introduce 6 which will be useful in the sequel:

2
g—” (u wr? 5o, 0) W10 50(S®)| du > n}
xr

u

00 —inf{s >1¢: /
t

Theorem 6.5.6. (Verification theorem)
a) Suppose that there exists a pair of functions (v(t,z,¢,0),v(t,z,(, 1)) in CH2([0, T[xRT x
RT)NC([0,T] x RT x RY), satisfying the HIB system (S):
%(ta Z, Ca O) + sup ‘CSrO),U(t? €, C? O) + )\(U(t7 Z, <7 1) - U(ta T, Ca O)) =0
el
(

%(t, z,(, 1)+ Slelg Eﬂl)v(t, z,(,1)=0

with boundary condition v(T,x,(, z) = U(z), z,( € RT, z€{0,1}

Then, for allt € [0,T),z,¢ € RT

b) Assume there exists a mazimizer (Wio) (t,z,(), Wil)(t,x, ) of

(po,p1) = (LQv(t,x,¢,0), LPv(t, 2, ¢, 1))
such that

G (6,2,¢.0) + LG 0(t,2,¢.0) + A(v(t, 2, ¢, 1) = o(t,2,¢,0) = 0

2t 2, ¢ 1) + Lt 2, ¢,1) = 0
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and V(t,x,(,0) =V (t,z,(, 1) = U(x).

Then (V (t,z,(,0),V(t,z,(, 1)) = (v(t,z,(,0),v(t,x,(, 1)) forallt € [0,T),z,( €
Rt and 7 defined as:

7 =70, W Sz + 71 (6, W, SN 7,21 (6.5.13)
15 the optimal strategy.

Proof :

I) Show that for all t € [0, T], z,¢ € RT we have : V(t,z,(,1) < wv(t,z,(, 1)

Let m € A be an arbitrary control process and define the stopping time 7, = T A «,,
where :

@ (u, W, Sy, 1) Wim,o1(Sy)

>
e du > n}

an:inf{s>t:/
¢

As v(t,z,(,1) is smooth, by applying [td’s formula to s — wv(s, WT, S5, 1) between ¢
and 7,,, we obtain:

ov

B (o W2 o) = ot G ) 4 B2 [ (55 £o0 ) 0,197, 50, 1)
t

+ Egjwl |:/ n %(9? Waﬂa S@; 1)0—1(59)7TUW9W(ZBQ:|
t
<otz ¢1) (6.5.14)

From the definition of 7,,, the expectation of the stochastic integral cancels. The last
inequality comes from the fact that v(¢,z,(, 1) verifies the second HJB equation. We
now take n — oo, 7, — T', then by Fatou lemma we have:

E§§ [lim inf v (Tn, Wr.,S., ZTn)] < lim inf E§§ [U (Tn, WIS, ZTn)] <ot z, ¢, 1)

Therefore from the boundary condition, we obtain that:

V(t,z, ¢, 1) = Eg [UWE)] < olt,z,(,1).
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II) Now we show that for all ¢ € [0,T], z,{ € Rt x Rt we have: V(t,2,(,0) <
v(t,z, ¢, 0)

Let us introduce the stopping time 7T,, = T' A ,, where :

0,, = inf {s >t / %(u, Wi, Sy, Wi, (00(Su)(1 — Zy) + 01(Su) Zy)| du>n }
t
By It6 formula, we have:
€0 - col [T (0w .
E;, [U (Tn, Wz, St,. ZTn)] =v(t,z,¢,0) + E; g7 + Lo | (0, W], Sy, Zy)db
t

(9
+ Eg’:? |:/ (8—2(9, Wér, Sg, Z@)WJ?T@(O’()(l — Z@) + Ulzg)) ng:|
t

+ESY [ (v(r, W7, S, 1) — v(r, W™, S,,0)) lngTn]

= v(t,z,(,0)+ A+ B+ C. (6.5.15)

From the definition of 7T;,, the expectation of the stochastic integral term cancels. It
remains to make explicit the terms A and C.

We start by making explicit the term A:

_ o (v .
t
) In ov -
+ Et,x % + E’]TU (8, W9 5 S@, Z@)d& ]]-T>Tn
t
J— Cvo ! @ ™
= Et’x 69 + ET(/U (8, We 9 S@, Z@)d& ]ngTn
t
¢,0 In 821 -
+E, 5 T Lxv ) (0.W5. 5o, Zg)db | 1<,
0 In ov -
+ Et,x % + »Cﬂ-’U (0, W9 5 Sg, Ze)d& >Th
t

= AL+ A2 + A3

1
1
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i) Make explicit the term Al:

Recall that T,, =T A 6,,, then we have

Al = E§§ {(/ (gg +L v) (0, Wy, Sy, Ze)de) ]lrng}
¢

T (0
= Eg’g {(/ (a—g + L (O)U) (‘9 WW(O) SéO)’O)de) ]lTST/\egzO):|
t

As 7@ W SO and 6 are functionals of (Bg,0 > 0), then by independence of
(By,0 > 0) and 7, we therefore have:

T/\6'
/ / < +L (O)U) 0, Wr (x ),Sé”,@)d@.Ae—Ms—”ds]

where W7 (z) is the solution of the SDE (6.5.8) with initial condition W7 (z) = z
and EP is the expected operator w.r.t the law of (By, 0 > 0).

EB

As v(t,z,(,0) is solution of the first HIB of system (), then

A
< EP / / w0, Wg” (2), S, 1) — o0, W7 (x ),55”,0)) de.Ae—Ms—ﬂds] .

ii) Make explicit the term AZ:

A2 =EpY [(/ (gz + Eﬂv) (0, W[, S, Z(,)dﬁ) ]ngTn]

Tn
= EjY K / <% + c;%) (0, W[, Sy, 1)d6) ]17@] (from the definition of L)

Where the last inequality comes from the fact that v(¢, x, (, 1) is solution of the second
HJB equation of system (.5).

iii) Make explicit the term A3:
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As above we can deduce that:

%_‘_

[ A0 oy o o
A} =E" / ( cff?o)v) 0, W7 (z), S, 0)df.eATA0" 1)
t

[ A0
<EP / =2 (000,05 (@), 57,1) = (0, W5 (@), 5§, 0)) de.e—MTN’é“—t)] |
t

Therefore
A= Aib + A?L + Ai
A 1
S EY / / —A <U(67 Wg(O) (l’>7 Séo), 1) - U(Q, Wgr(o) (JJ), Séo)’ 0)) d‘g')\e—)\(s—t)dsl
t t
(0)
B T N0y, (0 (0) (0) (0) AT )
4 E 2 (000, W7 @), S50, 1) = w0, W7 (@), 5,0) ) d.c ,

It remains to make explicit the term C'. Indeed,

C =ESY [ (0(r, W, S, 1) — v(r, W™, S, 0)) 1<,

+EB

[ A0
/ <U(S, W;ﬂO) (x)> S§0)7 1) _ 0(37 WSW(O) (:17), S(O), O)) .)\e—A(s—t)dS]
t

0)

o wr® (0) () (0) ~\TAO —t)
<v(«9, g (x),S,7, 1) —v(@, W5 "(x),5, ,0)) df.\e "
t

T/\QS?) s
/ / <v(«9, Wi (@), S, 1) — v(0, Wi (), S,§0>,0)) dé’.)?e‘“s_t)ds] .
t t

Where the last equality is given from an integration by part.

Notice that A + C' is equal to zero, then from (6.5.15) we obtain:

ES? [v (T, WE , St,,, Z1,)] < v(t,x,¢,0).

We now take the limit as n increases to infinity. Since 7,, — T a.s and from the
boundary condition, we can deduce from Fatou lemma that

V(t,z,(,0) < ov(t,z,(,0).
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We now prove the statement b). By repeating the above argument in I'), we observe that

the control 7' achieves equality in (6.5.14) and therefore V' (t,z,(,1) = v(t,z,(, 1).
Similarly, by repeating the above steps in I7) , we can conclude that V (¢, z,¢,0) =
v(t,x,¢,0) and thus the optimal control is given by (6.5.13).

O
Remark 6.5.7. Notice that under some assumptions on the density q of T, the above
verification theorem still applicable.

Indeed, if we rewrite the terms A and C' in terms of the density q, we obtain:

o Qv (0)
A:ﬁﬁu/ /nﬁﬁ+£%w)ﬁwg(mxﬁumwﬂ@$]
t t
o 9y (0)
+ EB / <% -+ Egr%)v) (97 W(f (33)7 Sé0)7 O)dQ]P)[T > T A 920)]]
t

and

C =EB

t

NI
[ (w5 @), 50,0 ~ o697 (@), 5°.0)) do.a(T 1 65?’)]

T/\@,(,LO) s
—E® / / <U(«9, Wérm) (x), S(go)’ 1) — (6, W;(O) (2), 550)7 0)> d«9.q/(s)ds
t t

We can notice from the above case with exponential law that the first term in A was
compensated with the second term of C and the second term in A was compensated with
the first term of C'. So this leads us to do the same with this case. Thus we can deduce
the following assumptions on q:

e ¢(r)<0 Va,

q(z) Sa v,
e q(x) > ﬁ/ q(s)ds V.

6.5.4 Application

In this section, we present a particular example for the dynamics of the price process
(S;), where the coefficients 1, 09 and oy are constants.
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We consider the following dynamics of (.S;):

dSt = MStdt + St (0'1 + (O’o - 0'1) ]lth) dBt

Therefore the wealth process satisfies the following SDE:

AW =W/ [(1 — m) rdt + 7 (pudt + (o0 + (01 — 00) Z4)dBy)] .

and the optimization problem becomes:

V(t,z,z) =sup J(t,x, z,m),
TeEA

where

J(t,z,z,m) =Ef [UWF)].

As the coefficients pu, 0o and o7 do not depend on the price Sy, then the parameter
does not appear in the above SDE of the wealth process and thus in the value function.

In this particular example, the HJB system becomes:

ot m
(S) v ey (1)
Stz 1) +sup L v(t,2,1) =0
el
with the boundary condition
vo(T,z,2) =U(z), zeR" 2€{0,1}. (6.5.16)
where
0 1 0?
LO(t,2,0) = x(mp+ (1 — w)r)a—i + §x27r2a(2)aTZ,

and

1 2
LWt 2,1) =z(mp + (1 — W)T)g—z + 5332 20%%.

We now consider the power utility function which with we obtain an explicit smooth
solution of the above system (5). Then by verification theorem, we show that the value
function is solution of the HJB system and we make explicit the optimal strategy.

Let the power utility function U(z) = %, 0 < v < 1. We first solve the second equation
of the system (S) and then we deduce the solution of the first equation of (.5).
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For the second equation, we can resolve it easily as in the case of the Merton example.
Therefore we obtain that:

_a (p—r)°
v(t,x, 1) = Fexp (7 (7’ + m) (T — t))

where

1
p=sup[p(u—r)+r+ Spioi(y =D =r+ 51 )
p1

It remains to solve the first equation of (S). Similarly, we shall look for a solution
of the form v(¢,z,0) = 27¢(t). Plugging into in the first equation of (5), we get a
differential equation for :

¢/a>—%<vpo——A>¢mt>=:i;5exp<vp<7“—-w>

where

1, 1 (p—r)*
Po ;i%[po(u oy - Dl =r+5aT )22

As V(T,2,0) = U(z), we obtain that ¢(7T) = % and therefore the unique solution of
the first equation of (S) is given by

wa»:%[(%+w)emw«wO—A>af—w>—gemvaa“—w>.

where ( is a constant: ¢ = (ypo —yp — A) and py, p are given by:

B (nw—r)
ATy et
B (p—r)?
A T g =

Therefore,

Y

Mtxﬂ)=§%{(%+ﬁ)emﬂCWo—A)U“—ﬂ)—%emﬂvpﬁ“—ﬂ)-

Consider now the strategy processes (7, );>o defined by

A i 7, =0
«_ ) oy ! t
7= { ol itz -1 (6.5.17)

of(1—v)
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Notice that the functions v(t, z,0) and v(¢, x, 1) are smooth. Then from Theorem 6.5.6
we deduce that for the power utility function the pair of value functions (V (¢, z,0), V (¢, z, 1))
is solution of the HJB system (S) and is given explicitly by (V (¢,z,0),V(t,z,1)) =
(v(t,z,0),v(t,z,1)) and the optimal strategy is given by m;:

* H

—r ,LL
7Tt = 7]1th0+ 0_2

— T
1,4
og(1—7) )

1(1—7

As Z; is FS-adapted, we can deduce that 7} is also F° adapted, then 7 € A.

6.6 Perspectives

We plan to consider the more realistic case where there are a sequence (7,,) of change
times and a sequence (6,,) of decision times at which the trader reinvests his portfolio,
either in the risky asset (S;) or in the bank account (S?). We study this case with the
presence of the transaction costs. We begin a new study for this problem, with a first
difficulty in the identification of the Hamilton-Jacobi-Bellman system corresponding
to this new framework and studying the impact of the parameter of the change times
laws on the strategies and their performances.
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