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Chapter 1

Introdu
tion

When you're making the attempt to analyze se
urities and make investment de
isions,

the strategies you will use most likely �nd themselves in three very broad 
ategories:

fundamental analysis, te
hni
al analysis and mathemati
al analysis. Fundamental

analysis involves analyzing the 
hara
teristi
s of a 
ompany in order to estimate its

value. The te
hni
al analysis (sometimes 
alled the 
hartist analysis) looks at the

past pri
e movement and uses this data to predi
t its future pri
e movements. The

mathemati
al analysis is based on mathemati
al models.

In our study, we fo
us on the 
hartist analysis and the mathemati
al analysis. The main

hypothesis of te
hni
al analysis is that all the information is 
ontained inside the re
ords

of pri
es. They do not worry about the value of the sto
k, but stri
tly past pri
es or

volumes. The analysis of the 
harts is su�
ient to predi
t the future pri
e movements,

this hypothesis 
ontra
ts most of mathemati
al models, whi
h are essentially Markov.

So, te
hni
al analysis seems to have limited theoreti
al justi�
ations and their e�
ien
y

is questionable. For that we aim to analyse mathemati
ally a 
hartist indi
ator widely

used by the pra
titioners in the trading market, then we study the performan
e of

this indi
ator in a universe that is governed by a sto
hasti
 di�erential equations, for

a pra
titioner seeking to maximize an obje
tive fun
tion (for instan
e, the expe
ted

utility of the wealth at a 
ertain maturity). We 
ompare the performan
e of trader who

uses a 
hartist analysis te
hnique with a trader who uses a portfolio allo
ation strategy

whi
h is optimal when the mathemati
al model is perfe
tly spe
i�ed and 
alibrated.

To 
ompare the performan
e of 
hartist strategies and mathemati
al strategies, we will

be able to provide a 
on
eptual framework where their performan
e 
an be 
ompared.

If one 
onsiders a non-stationary �nan
ial e
onomy. The problem that it is impossible

to spe
ify and 
alibrate models whi
h 
an 
apture all the sour
es of instability during

a long time interval. For that one 
an only pretend to divide a long investment period

into sub-periods su
h that, in ea
h one of these sub-periods, the market 
an reasonably

be supposed to follow some parti
ular model, that is a sto
hasti
 di�erential system.
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Therefore, one 
an only use small amounts of data during ea
h sub-period to 
alibrate

the model, and the 
alibration errors 
an be substantial. However, any investment

strategy's performan
e depends on the underlying model for the market evolution,

and also on the values of the parameters involved in the model. Thus, in a non-

stationary e
onomy, one 
an use strategies whi
h have been optimally designed under

the assumption that the market is well des
ribed by a pres
ribed model, but these

strategies are extremely misleading in pra
ti
e be
ause the pres
ribed model does not

�t the a
tual evolution of the market. In su
h a situation, some te
hni
ians propose

that, in a non-stationary e
onomy, te
hni
al analysis may be a better indi
ator to


apture some basi
 trends of the market without assuming model dependen
y.

In order to understand this problem, re
ently some mathemati
ians are interested by

this subje
t, like Talay and al [5℄. In this arti
le, they have 
ompared the performan
e

of the trading strategies based on the simple moving average rule with the trading

strategies designed from mathemati
al models, like a modi�ed Bla
k-S
holes su
h that

the instantaneous expe
ted rate of return of the sto
k 
hanges on
e at an unknown

random time. They have made expli
it the trader's expe
ted logarithmi
 utility of

wealth, but unfortunately, the expli
it formulae are not propitious to mathemati
al


omparisons. Therefore by Monte Carlo numeri
al experiments, they have observed

from these experiments that te
hni
al analysis te
hniques may overperform mathemat-

i
al te
hniques in the 
ase of parameter misspe
i�
ations.

In my thesis, we examine and model the performan
e for another 
hartist te
hnique

designed to dete
t 
hanges in the "volatility term". We study the performan
e of the

Bollinger Bands te
hnique in a modi�ed Bla
k-S
holes model su
h that the volatility


hanges at an unknown and unobservable random time τ (whi
h is independent of the

Brownian motion governing the pri
e). My thesis in divided into two parts: The �rst

part is devoted to a theoreti
al study of the Bollinger Bands indi
ator with numeri
al

results. In the se
ond part, we deal with a optimal portfolio allo
ation problem with

random time 
hange to provide analyti
al formulae for portfolios managed by means

of mathemati
al model.

In 
hapter 2, we introdu
e the Bollinger Bands te
hnique and we present the mathe-

mati
al framework to study this indi
ator. We deal with a 
ontinuous �nan
ial market

with two asset. A risk free asset with dynami
s:

{
dS0

t = S0
t rdt,

S0
0 = 1.

and a risky asset with dynami
s:

{
dSt = µStdt+ St (σ1 + (σ0 − σ1)1t6τ ) dBt,
S0 = S0.

(1.0.1)
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where (Bt)t∈[0,T ] is a one-dimensional Brownian motion. The random time of the volatil-

ity 
hange τ is independent ofB and at this time τ , whi
h is neither known, nor dire
tly

observable, the instantaneous volatility rate 
hanges from σ0 to σ1.

We are interested in this 
hapter to the Bollinger Bandwidth indi
ator (BWI) whi
h
is derived from the Bollinger indi
ator and it is given by:

BWIt = 4

√
√
√
√
√δ

∫ t

t−δ
S2
udu

(∫ t

t−δ
Sudu

)2 − 1.

The parameter δ denotes the size of the time window used to 
ompute the moving

average for the Bollinger Bands.

We prove some identities in law whi
h will be useful in next 
hapters in order to show

that the Bandwidth indi
ator 
an be useful to dete
t the 
hange time at wit
h the

volatility 
hanges his value.

In 
hapter 3, we are interested by an asymptoti
 analysis of the Bollinger Bands in

the 
ase of small volatilities. We show that the density behavior of the Bandwidth

indi
ator (BWI) depends on the value of the volatility, this implies that (BWI) 
an
dete
t the volatility 
hange.

In 
hapter 4, we show that the Bandwidth indi
ator 
an be also used to dete
t a 
hange

in the volatility term in the 
ase of large value of volatilities. Of 
ourse this situation

of large value is not realisti
 in the �nan
e 
ontext but 
an be arise in the physi
s


ontext, like statisti
al me
hani
s of disordered systems.

We are interested in this 
hapter by the Normalized indi
ator (NIt) de�ned in fun
tion

of the Bandwidth indi
ator as follows:

NIt :=
1

δ

(
(BWIt)

2

16
+ 1

)

(1.0.2)

We aim to show that the normalized indi
ator 
an dete
t a 
hange in the volatility

term, that is we show that the behavior of its probability density depends on the value

of the volatility. For simplifying the mathemati
al study, we 
an assume that the pri
e

pro
ess (St) evolves a

ording to:

dSt = St (µdt+ σdBt) .

We �rst show that the law of NIt does not depend of time t and it equals in law to

σ2k
(µ̃)

σ2δ where µ̃ = µ
σ2 − 1

2
and k

(µ̃)
t is given in fun
tion of exponential fun
tionals of
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Brownian motion with drift as follows:

∫ t

0

exp(2µ̃s+ 2Bs)ds

(∫ t

0

exp(µ̃s+Bs)ds

)2 .

The important result in this 
hapter is given in proposition 4.1.1 whi
h proves that from

a 
ertain value of t, the variable k
(µ̃)
t 
onverges to that of k

(−|µ̃|)
∞ , whi
h is well de�ned.

This result have been showed by a te
hni
al method whi
h 
onsists in �nding an upper

and lower bounds for the 
umulative distribution fun
tion of the variable log(k
(µ̃)
t )

and to prove that for large t, these bounds 
onverges to the 
umulative distribution

fun
tion of the variable log(k
(−|µ̃|)
∞ ). Thanks to the equality in law NIt

L
= σ2k

(µ̃)

σ2δ, we

show that the distribution fun
tion of the normalized variable NIδ 
onverges to that

of the variable σ2k
(−|µ̃|)
∞ for large value of σ2δ.

So we are interested by studying the law of the variable k
(−|µ̃|)
∞ in order to dedu
e that

the behavior of the density of the variable NIδ depends on the value of σ.

From Yor [34℄, the law of the variable k
(−|µ̃|)
∞ has 
hara
terized by its Lapla
e transform.

But unfortunately, it is not easy to invert this formula in order to obtain the density of

k
(−|µ̃|)
∞ . Thanks to Tauberian theory, whi
h enables us to �nd a 
onne
tion between the

behavior properties of the Lapla
e transform at in�nity (resp.at zero) and the behavior

properties of the 
orresponding 
umulative distribution fun
tion near zero (resp.near

in�nity), we dedu
e the behavior of the 
umulative distribution fun
tion P[k
(−|µ̃|)
∞ 6 x]

for small x and the behavior of P[k
(−|µ̃|)
∞ > x] for large x. Therefore the behavior of

P[NIδ 6 x] for small x and the behavior of P[NIδ > x] for large x are straightforward


onsequen
e and we show that these behaviors are dependent of the value of σ.

In 
hapter 5, we aim to 
ompare two indi
ators designed to dete
t a volatility 
hange:

the Bollinger bands and the quadrati
 variation indi
ators. It is well known in the

literature that the quadrati
 variation indi
ator is a optimal estimator of the volatility

if we sele
t the time in
rement as small as possible. So our aim in this 
hapter is

to 
ompare the performan
e of these two indi
ators in the 
ase of large value for the

time in
rement. We 
onsider a trader who does not perfe
tly dete
t τ but, at least,

uses one of these two indi
ators to dete
t τ and then to de
ide when he reinvests his

portfolio. We assume that τ has a exponential law with parameter λ. We show, in the


ase of large value of time in
rement, that for large value of λ, Bollinger bands 
an
overperform and dete
t the 
hange time τ faster than quadrati
 variation indi
ator.

In 
hapter 6, we examine the performan
e of a trader whose strategy is based on

mathemati
al models. We study the optimal portfolio allo
ation strategy in the 
ase

where the model has a 
hange in the volatility term at a random variable τ .
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We want to exhibit a mathemati
al optimal strategy from the sto
hasti
 
ontrol theory,

but it appears that we have some di�
ulties whi
h 
ome from the fa
t that the trader's

strategy needs to be adapted to the �ltration generated by the pri
e pro
ess, whi
h

is di�erent from the Brownian �ltration due to the time 
hange τ and it is right-

dis
ontinuity. So we will resolve the optimization problem by using a spe
i�
 feature

of the 
hange time τ .

We �rst use the density approa
h whi
h have been introdu
ed by Pham and Jiao in

[17℄. We show with this approa
h how we 
an separate the initial optimisation problem

into a problem after the 
hange time and a problem before the 
hange time, by relying

on the density hypothesis on the 
hange time τ . We show that the pair value fun
tion

is a unique vis
osity solution of a Hamilton-Ja
obi Bellman system.

We se
ond show by veri�
ation theorem that under smoothness assumptions on the

value fun
tion, the pair value fun
tion is a solution of a Hamilton-Ja
obi Bellman

system and the optimal strategy of the trader is to follow the optimal strategy whi
h


hara
terizes the value fun
tion before the 
hange time and then to swit
h when the


hange o

urs to the optimal strategy whi
h 
hara
terizes the value fun
tion after the


hange time.
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Chapter 2

The Bollinger Bands indi
ator in

te
hni
al analysis

We present in this 
hapter the Bollinger Bands indi
ator, designed to dete
t the time

at whi
h the volatility of the sto
k swit
hes. We des
ribe the basi
 setting underlying

our mathemati
al modeling. Finally we prove some identities in law whi
h will be

useful to prove in next 
hapters that the Bollinger Bands 
an be used to dete
t the

time 
hange of the volatility.

2.1 Te
hni
al analysis

Te
hni
al analysis is a method of predi
ting pri
e movements and future market trends

by studying 
harts of past market a
tion. This is done by 
omparing 
urrent pri
es with

histori
al pri
es to predi
t a reasonable out
ome. The basis of modern-day te
hni
al

analysis 
an be tra
ed ba
k to the Dow Theory, developed around 1900 by Charles

Dow. It in
ludes prin
iples su
h as the trending nature of pri
es, 
on�rmation and

divergen
e, support and resistan
e. Te
hni
al analysts, or 
hartists, use a number of

tools to help them identify potential trades.

The te
hni
al analyst (or the Dow Theory) believes that all the relevant market in-

formation is re�e
ted (or dis
ounted) in the averages, hen
e no other information is

needed to make trading de
isions. Wat
hing �nan
ial markets, it be
omes obvious that

there are trends, momentum and patterns that repeat over time, not exa
tly the same

way but similar.

A very large number of te
hni
al indi
ators have been developed over the years, in-


luding the widely used overbought/oversold indi
ators su
h as the Relative Strength

Index, and the trend following indi
ators su
h as Moving Averages. While te
hni
al

analysis 
an be a great help in trading the market, no te
hni
al indi
ator is infallible.

Further, te
hni
al analysis is only as good as its interpreter. A signi�
ant of time
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CHAPTER 2. THE BOLLINGER BANDS INDICATOR IN TECHNICAL

ANALYSIS

must be spent in learning the prin
iples of te
hni
al analysis, and in how to properly

interpret the various 
harts and other te
hni
al indi
ators.

Te
hni
al Analysis is based on three Prin
iples:

The �rst prin
iple is that the market dis
ounts everything. At any time, anything that


an or 
ould a�e
t a 
ompany will be re�e
ted in the sto
k pri
e in
luding fundamental,

politi
al and psy
hologi
al fa
tors. Pri
e a
tion should re�e
t shifts in supply and

demand. If demand ex
eeds supply, pri
es should rise. If supply ex
eeds demand,

pri
es should fall.

Se
ondly, te
hni
al analysis is based on the premise that pri
es move in trends. This

means that on
e a trend in the dire
tion of a share pri
e has been established, the next

move in share pri
es is more likely to be in the same dire
tion as that trend rather than

in a di�erent dire
tion. In other words, if a share pri
e is �rmly established in a upward

trend, the share pri
e is more likely to 
ontinue in
reasing rather than de
rease in the

next trading period. Most te
hni
al trading strategies are based on this assumption.

The last prin
iple is that history repeats itself. Chartists believe that the histori
al

data will show repetitive patterns in pri
e movement. Sin
e these patterns have worked

well in the past, it is assumed that they will 
ontinue to work well in the future.

A very large number of te
hni
al analysis indi
ators are used by pra
itioners. For

example:

• Moving average indi
ators (MA): The MA indi
ators are pre
isely 
al
ulated

a

ording to spe
i�
 mathemati
al formulae. This makes moving averages an

obje
tive way to determine the 
urrent trend dire
tion of a market, and anti
ipate

its most likely future dire
tion. Mathemati
ally, moving averages �lter out the

random "noise" in market data by smoothing out �u
tuations and short-term

volatility in pri
e movement. Graphi
ally superimposing a moving average on a

pri
e 
hart makes it easy to visualize the underlying trend within the data.

• Moving average 
onvergen
e/divergen
e (MACD): The MACD is a trend fol-

lowing momentum indi
ator that shows the relationship between two moving

averages of pri
es. The MACD is the di�eren
e between a 26-day and 12-day

exponential moving average. A 9-day exponential moving average, 
alled the

"signal" line is plotted on top of the MACD to show buy/sell opportunities. The

basi
 MACD trading rule is to sell when the MACD falls below its signal line.

Similarly, a buy signal o

urs when the MACD rises above its signal line. It is

also popular to buy/sell when the MACD goes above/below zero.

There is also the relative strength index, momentun, Bollinger Bands, et
.... Here

we limit ourselves to the Bollinger Bands te
hnique be
ause it is often used to dete
t


hanges in the volatility.
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2.1.1 Bollinger Bands

Bollinger Bands is a te
hni
al trading tool 
reated by John Bollinger in the early

1980s and it's one of the most popular trading band te
hnique. Trading bands be
ame

even more attra
tive when Bollinger suggested 
on
entrating on volatility. Standard

deviation was sele
ted as the best measure for volatility be
ause of its sensitivity to

extreme deviations.

Denote by (St) the pri
e pro
ess. The Bollinger Bands are fully des
ribed as follows:

• A δ-period simple moving average MAδ
t

MAδ
t =

1

δ

δ−1∑

k=0

St−k.

• A standard deviation Y δ
t

(Y δ
t )

2 =
1

δ

δ−1∑

k=0

(St−k −MAδ
t )

2.

• An upper band UBδ
t at 2 times a δ-period standard deviation above the moving

average

UBδ
t =MAδ

t + 2Y δ
t .

• A lower band LBδ
t at 2 times a δ-period standard deviation below the moving

average

LBδ
t =MAδ

t − 2Y δ
t .

In 
ontinuous time we have the following extension:

MAδ
t =

1

δ

∫ t

t−δ

Sudu

(Y δ
t )

2 =
1

δ

∫ t

t−δ

(Su −MAδ
t )

2du

UBδ
t =MAδ

t + 2Y δ
t

LBδ
t =MAδ

t − 2Y δ
t
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(a) σ = 0.05, µ = 0.2 (b) σ = 0.25, µ = 0.2

τ

(
) σ0=0.05, σ1=0.25, µ=0.2 and τ=0.6

Figure 2.1: Typi
al traje
tories of the pri
e (red), a moving average of size δ = 0.2

(green) and the 
orresponding lower (pink) and upper (blue) Bollinger bands.

Numeri
al illustrations:

In Fig.2.1(a) and Fig.2.1(b) we present a typi
al Bollinger bands where the pri
e S has

no 
hange in his volatility term and satis�es:

dSt = St (µdt+ σdBt) .

In Fig.2.1(
), we present a Bollinger Bands where the volatility of the pri
e pro
ess


hanges its value at time τ from a small volatility σ0 = 0.05 to a large volatility

σ1 = 0.25. In this example, the 
hange of volatility o

urs at τ = 0.6.

Remark 2.1.1. Bollinger bands are plotted above and below the moving average pri
e

at standard deviation level. Sin
e standard deviation is a measure of volatility, the

bands adjust a

ording the market volatility. Their band width expands during volatile

markets and 
ontra
ts during less a
tive periods.
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2.1.2 Bandwidth indi
ator

An important indi
ator derived from the Bollinger Bands is the Bandwidth indi
ator

BWI. This indi
ator is a relative measure of the width of the Bollinger Bands.

BWIt =
UBδ

t − LBδ
t

MAδ
t

=
4Y

(δ)
t

MAδ
t

= 4

√
√
√
√
√δ

∫ t

t−δ
S2
udu

(∫ t

t−δ
Sudu

)2 − 1.

In next se
tion we will give a theoreti
al study for this indi
ator in order to show in

next 
hapter that this indi
ator 
an be used to dete
t a 
hange in the volatility term

in two 
ases: the 
ase of small volatilities and the 
ase of large volatilities. We show

that we have di�erent behaviors for the density of the Bandwidth indi
ator for di�erent

values of volatilities.

We des
ribe in the next se
tion the basi
 setting underlying our mathemati
al modeling.

2.2 A mathemati
al framework to study the Band-

width indi
ator

We deal with the following model for a �nan
ial market, in whi
h two assets are traded


ontinuously. The �rst one is a risk free asset, typi
ally a bond (or bank a

ount),

whose pri
e evolves a

ording to the following equation:

dS0
t = S0

t rdt, (2.2.1)

S0
0 = 1.

The se
ond is a risky asset with pri
e des
ribed by the linear sto
hasti
 di�erential

equation:

dSt = µStdt+ St (σ1 + (σ0 − σ1)1t6τ ) dBt, (2.2.2)

S0 = S0.

where (Bt)t∈[0,T ] is a one-dimensional Brownian motion on a given probability spa
e

(Ω,F , P ). The random time τ is independent of B and at this time τ , whi
h is neither
known, nor dire
tly observable, the instantaneous volatility rate 
hanges from σ0 to σ1.

A simple 
omputation shows that:

St = S0 exp

((

µ− 1

2
σ2
0

)

t+ σ0Bt + (σ1 − σ0) (Bt − Bτ )1τ<t −
1

2

(
σ2
1 − σ2

0

)
(t− τ)+

)

.

(2.2.3)
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In Fig.2.2(a) and 2.2(b), we illustrate a typi
al traje
tories of the pri
e without a


hange in the di�usion term, that is the pro
ess (S) satis�es:

dSt = St (µdt+ σdBt) . (2.2.4)

In Fig. 2.2(
), we illustrate the traje
tory of S whi
h satis�es (2.2.2) with σ0 = 0.05,
σ1 = 0.25, µ = 0.2 and the 
hange time τ is equal to 0.6.

(a) σ = 0.05,µ = 0.2 (b) σ = 0.25,µ = 0.2

τ

(
) σ0 = 0.05,σ1 = 0.25,µ = 0.2 and τ = 0.6

Figure 2.2: Typi
al traje
tories of the sto
k pri
e

2.3 Some identities in law

In this se
tion we show a 
olle
tion of identities in law whi
h will be useful in the next


hapter to analyze asymptoti
 behaviors of the Bandwidth Bands BWI. We aim in

the next 
hapter to prove that the behavior of the probability density fun
tion of BWI
depends on the value of the volatility. So for more understanding this result, we 
an

�rst assume that the pri
e pro
ess (St) hasn't a 
hange in its volatility term and it

evolves a

ording to (2.2.4).
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Lemma 2.3.1. Assume (St) evolves a

ording to the 
lassi
al Bla
k and S
holes equa-

tion (2.2.4) with a 
onstant volatility, then the law of BWIt does not depend on time

t and
BWIt

L
= BWIδ.

Proof :

We have:

BWIt = 4

√
√
√
√
√δ

∫ t

t−δ
S2
udu

(∫ t

t−δ
Sudu

)2 − 1

Use the 
hange of variable s→ u− (t− δ) and the identity in law

(Bs+(t−δ) − Bt−δ ; s > 0)
L
= (Bs ; s > 0)

it follows that the law of BWI is independent of the time t and the initial 
ondition

S0. ∀t > 0,

BWIt
L
= 4

√
√
√
√
√
√
√
√

δ

∫ δ

0

S2
udu

(∫ δ

0

Sudu

)2 − 1 := BWIδ. (2.3.1)

�

Let us now de�ne the pro
ess (kνt )t>0 by

k
(ν)
t :=

A
(ν)
2,t

(

A
(ν)
1,t

)2 (2.3.2)

where A
(ν)
1,t and A

(ν)
2,t are the exponential fun
tional of Brownian motion de�ned by:

A
(ν)
1,t :=

∫ t

0

exp(Bs + νs)ds and A
(ν)
2,t :=

∫ t

0

exp(2Bs + 2νs)ds.

We now show that the law of BWIδ 
an be expressed in terms of the exponential

fun
tionals of Brownian motion.
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Proposition 2.3.2. Assume (St) evolves a

ording to equation (2.2.4), then we have:

BWIδ
L
= 4

√

(σ2δ)k
(µ̃)

σ2δ − 1, (2.3.3)

where µ̃ = µ
σ2 − 1

2
.

Proof :

We have:

BWIδ = 4

√
√
√
√
√
√
√
√

δ

∫ δ

0

S2
udu

(∫ δ

0

Sudu

)2 − 1

= 4

√
√
√
√
√
√
√
√

δ

∫ δ

0

exp

(

2

(

µ− 1

2
σ2

)

u+ 2σBu

)

du

(∫ δ

0

exp

((

µ− 1

2
σ2

)

u+ σBu

)

du

)2 − 1

Using the following 
hange of variable

s→ σ2u and µ̃ =
µ

σ2
− 1

2

and by the s
aling property of Brownian motion we obtain:

BWIδ
L
= 4

√
√
√
√
√
√
√
√
√

σ2δ

∫ σ2δ

0

exp
(

2µ̃s+ 2Bs

)

ds

(
∫ σ2δ

0

exp (µ̃s+Bs) ds

)2 − 1 = 4

√

(σ2δ)k
(µ̃)

σ2δ − 1. (2.3.4)

�

2.3.1 Properties of integral fun
tionals of Brownian motion with

drift

The above pro
ess A
(ν)
1,t and A

(ν)
2,t are 
alled exponential fun
tional of Brownian motion

and have been studied by a number of authors, e.g, Yor [21℄, Dufresne [13℄ and Donati-

Martin et al [11℄. In the literature, there are several studies 
on
ern the law of A
(ν)
1,t



2.3. SOME IDENTITIES IN LAW 17

or A
(ν)
2,t for �xed t and for t → ∞. In our next 
hapter, we will be interested by limit

distributions of these pro
esses.

Noti
e that from the 
hange of variable u = t
4
and the s
aling property of the Brownian

motion, we have

A
(ν)
1,t
L
= 4A

(2ν)

2, t
4

. (2.3.5)

We introdu
e the Brownian motion with 
onstant drift γ ∈ R, (B
(γ)
t := Bt + γt)t>0.

For γ > 0 and f a non-negative Borel measurable fun
tion f , we set:

A(γ)
∞ (f) =

∫ ∞

0

f(B(γ)
s )ds

We show that for ν < 0, A
(ν)
2,∞ is �nite. For that, we need the following theorem given

in [21℄, whi
h provides a ne
essary and su�
ient 
ondition in order that Aγ
∞(f) de�ned

below is almost surely �nite.

Theorem 2.3.3. Let γ > 0 and f be a non-negative and lo
ally integrable Borel fun
-

tion on R. Then A
(γ)
∞ (f) is almost surely �nite if and only if

∫ ∞

0

f(y)dy <∞.

So for ν < 0, we have:

A
(ν)
2,∞ =

∫ ∞

0

exp(2B(ν)
s )ds

L
=

∫ ∞

0

exp(−2B(−ν)
s )ds =

∫ ∞

0

f(B(−ν)
s )ds

where f(x) = exp(−2x) veri�es theorem 2.3.3. Thus for ν < 0, A
(ν)
2,∞ is almost sure

�nite.

The following result shows that the integral (at in�nity) of the exponential of Brownian

motion with negative drift is distributed as the inverse of a gamma variable.

Proposition 2.3.4. For ν < 0, A
(ν)
2,∞ is almost surely �nite and is distributed as

1
2γ−ν

,

where γ−ν denotes a gamma random variable with parameter −ν.

Remark 2.3.5. From (2.3.5) and the above proposition, we have that for ν < 0, A
(ν)
1,∞

is almost surely �nite and is distributed as

2
γ−2ν

.

In next 
hapter we will be interested by two important results 
on
erning the variable

k
(ν)
t . The �rst one is the following equality in law and the se
ond one is the law of k

(ν)
∞

for ν < 0.
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Proposition 2.3.6. For ν ∈ R, we have:

k
(ν)
t
L
= k

(−ν)
t

Proof :

Using the identity in law (Bt −Bt−s ; 0 6 s 6 t)
L
= (Bs ; 0 6 s 6 t), we obtain:

k
(ν)
t =

∫ t

0

exp(2Bs + 2νs)ds

(∫ t

0

exp(Bs + νs)ds

)2

L
=

∫ t

0

exp
(

2 (Bt −Bt−s) + 2νs
)

ds

(∫ t

0

exp
(

(Bt − Bt−s) + νs
)

ds

)2

=

exp (2Bt + 2νt)

∫ t

0

exp
(

− 2Bt−s − 2ν(t− s)
)

ds

exp (2Bt + 2νt)
(∫ t

0

exp
(

−Bt−s − ν(t− s)
)

ds
)2

=

∫ t

0

exp (−2Bu − 2νu) du

(∫ t

0

exp (−Bu − νu) du
)2

L
=

∫ t

0

exp (2Bu − 2νu) du

(∫ t

0

exp (Bu − νu) du
)2 = k

(−ν)
t .

The last equality 
omes from the symmetri
 property of the Brownian motion.

�

In [34℄, Yor has 
hara
terized the law of k
(ν)
∞ by its Lapla
e transform as following:

Proposition 2.3.7. Let ν < 0; the Lapla
e transform of k
(ν)
∞ =

A
(ν)
2,∞

(A
(ν)
1,∞)2

is given by:

∀λ > 0, E

[

e−λk
(ν)
∞

]

=

√

λ/2

sinh(
√

λ/2)(cosh(
√

λ/2))−2ν
. (2.3.6)
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Chapter 3

Asymptoti
 analysis of the Bandwidth

indi
ator in the 
ase of small

volatilities

We aim in this 
hapter to prove that the Bollinger Bandwidth indi
ator 
an dete
t the

time 
hange in the 
ase of small volatilities. We show that the density behavior of the

Bandwidth indi
ator depends on the value of the volatility, and the di�eren
e between

the behaviors be
omes more signi�
ant when the quotient between the volatilities is

greater than a �xed level.

3.1 Asymptoti
 
onvergen
e in law for the Bandwidth

indi
ator

In order to understand in the sequel how the density behavior of the Bandwidth indi-


ator depends on the volatility, we 
an assume that the pri
e pro
ess evolves a

ording

to:

dSt = St(µdt+ σdBt),

where µ and σ are 
onstants.

We show in this se
tion that for small value of σ2δ, the Bandwidth indi
ator normalized

by

√
σ2δ 
onverges in law to a quadrati
 additive fun
tionals of Brownian motion.

Proposition 3.1.1. For small σ2δ, we have the following:

BWIδ√
σ2δ

L−→
σ2δ → 0

4×

√
∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

. (3.1.1)
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Proof :

To simplify the notation, let ǫ = σ2δ. From (2.3.3), we have:

BWIδ
L
= 4

√

ǫk
(µ̃)
ǫ − 1

We have:

1

ǫ

(
ǫ k(µ̃)ǫ − 1

)
=

1

ǫ







ǫ

∫ ǫ

0

exp
(

2µ̃s+ 2Bs

)

ds

(∫ ǫ

0

exp (µ̃s+Bs) ds

)2 − 1








=
1

ǫ

∫ 1

0

exp(2µ̃θǫ+ 2Bθǫ)dθ

(∫ 1

0

exp(µ̃θǫ+Bθǫ)dθ

)2 −
1

ǫ
(
hange of variable θ = s

ǫ
)

L
=

1

ǫ

∫ 1

0

exp(2µ̃θǫ+ 2
√
ǫBθ)dθ

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ

)2 −
1

ǫ
(from s
aling property).

(3.1.2)

It obviously su�
es to prove that for small ǫ:

1

ǫ

∫ 1

0

exp(2µ̃θǫ+ 2
√
ǫBθ)dθ

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ

)2 −
1

ǫ

onverges almost surely to

∫ 1

0

B2
θdθ −

(∫ 1

0

Bθdθ

)2

. (3.1.3)

Indeed, we have:

1

ǫ

∫ 1

0

exp(2µ̃θǫ+ 2
√
ǫBθ)dθ

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ

)2 −
1

ǫ

=

1
ǫ

∫ 1

0

exp(2µ̃θǫ+ 2
√
ǫBθ)dθ −

1

ǫ

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ

)2

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ

)2 .
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The denominator 
onverges almost surely to 1, and

1

ǫ

∫ 1

0

exp(2µ̃θǫ+ 2
√
ǫBθ)dθ −

1

ǫ

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ

)2

=

∫ 1

0

(
exp(µ̃θǫ+

√
ǫBθ)− 1√

ǫ

)2

dθ −
(

1√
ǫ

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ − 1

))2

.

As

1√
ǫ

(

exp(µ̃θǫ+
√
ǫBθ)− 1

)
a.s−→

ǫ→ 0
Bθ,

Then the result follows.

�

Numeri
al illustration

We now illustrate numeri
ally the above 
onvergen
e in law. For that we are interested

by the kernel density estimator whi
h is a non-parametri
 estimation of the probability

density of a random variable:

Let X1, X2, .......Xn be a sample drawn of size n from a random variable with density

f . A kernel density estimation of f at the point x is

f̃h(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)

(3.1.4)

where the kernel K satis�es

∫

K(x)dx = 1 and h > 0 is a smoothing parameter.

A popular 
hoi
e of K is the Gaussian kernel, namely,

K(y) =
1√
2π

exp

(−y2
2

)

.

For simplifying the notation, let Q be the random variable de�ned by:

Q =

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

.

In �gure 3.1, we illustrate in blue the estimated density of the variable 4
√
Q. We �rst

estimate the sum of integrals

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

by dis
retization and then we

estimate the density of 4
√
Q as in (3.1.4). In red and green, we illustrate respe
tively

as in (3.1.4) the estimated density of

BWIδ
σ2δ

for di�erent value of σ. In red, σ = 0.08
and in green σ = 0.2, where we have �xed µ = 0.1 and δ = 0.1.
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Figure 3.1: Estimated Densities of 4
√
Q (blue), BWI/

√
σ2δ (green) with σ = 0.2, δ =

0.1 and BWI/
√
σ2δ (red) with σ = 0.08, δ = 0.1.

3.2 Theoreti
al study of the law of Q.

In Donati-Martin and Yor [12℄, Rogers et al [7℄, the law of

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

is 
hara
terized by its Lapla
e transform. Then the density of this variable 
an be

obtained by inverting its Lapla
e transform, but unfortunately, the expli
it formula

is not propitious to study the behavior of this density. On the other hand, we show

that

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

has an unimodal distribution. We �rst show that this

variable is a generalized gamma 
onvolution and a self-de
omposable random variable.

Therefore from Sato [28℄, we 
an dedu
e that this random variable has a unimodal

distribution.

We now give some de�nitions and results whi
h will be useful in the sequel. We will

be interested by two families of random variables de�ned as follows:

De�nition 3.2.1. A random variable X is said to be self-de
omposable if for ea
h

0 < u < 1 there is the equality in distribution

X
d
= uX + Y

for some random variable Y independent of X. We denote by S the set of self-

de
omposable random variables, taking values in R+.

De�nition 3.2.2. A positive random variable X is 
alled a generalized gamma 
on-

volution GGC if it is a limit distribution for sums of independent gamma distributed

random variables and the gamma distributions may have di�erent shape and s
ale pa-

rameters. We denote by G the set of positive generalized gamma 
onvolution (GGC)
random variables.
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A important result about these families is the following stri
t in
lusions whi
h are

mentioned in Yor et al [15℄ and Sato [28℄:

G ⊂ S. (3.2.1)

We now present a result 
on
erning the unimodality of a self-de
omposable distribution

on R. This study has been an open problem for many years, sin
e the 1940s. The

a�rmative answer was given in the symmetri
 
ase by Wintner [29℄ in 1956, in the

one-sided 
ase Wolfe [30℄ in 1971, and �nally in the general 
ase by Yamazato [31℄ in

1978. This result of Yamazato is given in Sato [28, p.404,Th 53.1℄ as follows:

Theorem 3.2.3. If X is a self-de
omposable random variable on R, then its distribu-

tion is unimodal.

Appli
ation: study of the law of

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

An important studies have been done by Donati-Martin and Yor [12℄, Rogers et al [7℄

about the law of a quadrati
 fun
tional of Brownian motion by 
omputing its Lapla
e

transform Φ(λ) given below. In [12℄, they have used Fubini's theorem for double Wiener

integrals in order to 
ompute the Lapla
e transform Φ(λ). In [7℄, Rogers and al have

used another te
hnique whi
h is based on Ray-Knight theorem for Brownian motion.

The Lapla
e transform Φ(λ) of the variable

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

is given as follows:

Φ(λ) =

( √

λ/2

sinh(
√

λ/2)

)1/2

. (3.2.2)

Let us introdu
e the random variable Sh de�ned in [3℄ by

Sh :=
2

π2

∞∑

n=0

Γh,n

n2
(3.2.3)

for independent random variables Γh,n with gamma law of parameter h.

This variable is also used in next 
hapter where we present more properties and results

for this law.

We now show that

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

is equal in law to a limit of sums of

independent gamma variables with di�erent parameters.
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Proposition 3.2.4. Let (Bt) be a one dimensional Brownian motion, we have the

identity in law

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2
L
= S1/2. (3.2.4)

where the random variable S1/2 is de�ned in (3.2.3).

Proof :

Remind that the distribution of the gamma variables Γh,n is 
hara
terized by the

Lapla
e transform

E
[
e−λΓh,n

]
= (1 + λ)−h (λ > −1) (3.2.5)

and from [8] we have the following Euler's formula:

sinh(z) = z
∞∏

n=1

(

1 +
z2

n2π2

)

. (3.2.6)

From (3.2.3), we have

E
[
e−λS1/2

]
= E

[ ∞∏

n=1

e−
λΓ1/2,n

2n2π2

]

=
∞∏

n=1

(

E

[

e−
λΓ1/2,n

2n2π2

])
(
be
ause Γ1/2,n are independents

)

=

∞∏

n=1

(

1 +
λ

2π2n2

)−1/2

(from (3.2.5))

=

( √

λ/2

sinh(
√

λ/2)

)1/2

(from (3.2.6)).

we then have that the Lapla
e transform of S1/2 is equal to (3.2.2). Therefore the result

follows.

�

Remark 3.2.5. Noti
e that the density of

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2


an be obtained

as the sum of two in�nite series by inverting its Lapla
e transform and using Lévy's

formula (4.2.4) given in next 
hapter. Unfortunately, it is not easy to study its behavior

by relying on this 
ompli
ated formula, but relying on the above equality in law, we

show that the distribution of

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

is unimodal and we give an

approximation for its mode.
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Proposition 3.2.6. The distribution of

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

is unimodal.

Proof :

From the equality in law (3.2.4) and the de�nition of S1/2 as a limit of sums of in-

dependent gamma distribution, we 
an dedu
e from de�nition 3.2.2 that

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

belongs to the set G. Thus from (3.2.1) it also belongs to the set S,

therefore the result follows from theorem 3.2.3.

�

Let X be a random variable with distribution fun
tion µ and �nite mean m. The


entral absolute moment γp of order p is de�ned by:

γp := E [(X −m)p] .

We now present a result given by Sato in [27℄ about a relation for a unimodal distri-

bution between its mode and the 
entral absolute moment γp of order p.

Proposition 3.2.7 (Sato [27℄). For p > 1, if µ is a unimodal distribution with mode

a and has �nite mean m, then

| a−m |6 (p+ 1)1/pγ1/pp . (3.2.7)

Proposition 3.2.8. The mode a of

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

satis�es:

| a− 1

6
|6 0.25. (3.2.8)

Proof :

Let us denote by a andm respe
tively the mode and the mean of

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

.

From 3.2.7, we have for even order 2p

| a−m |6 (2p+ 1)1/2pγ
1/2p
2p .

The mean m is 
al
ulated as follows
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m : = E

[
∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2
]

=
1

2
− E

[(∫ 1

0

Bsds

)2
]

=
1

2
− E

[(

B1 −
∫ 1

0

sdBs

)2
]

=
1

2
− E

[(∫ 1

0

(1− s)dBs

)2
]

=
1

2
− 1

3
=

1

6
.

We now 
ompute the 
entral absolute moment

γ2p := E





((
∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2
)

−m
)2p


 .

Observe,

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

−m =

∫ 1

0

(
B2

s − s
)
ds−

(∫ 1

0

Bsds

)2

+
1

3

Applying It�'s formula to (tB2
t ) between 0 and 1, we have

∫ 1

0

(
B2

s − s
)
ds = B2

1 − 2

∫ 1

0

sds− 2

∫ 1

0

sBsdBs

= 2

∫ 1

0

BsdBs − 2

∫ 1

0

sBsdBs

= 2

∫ 1

0

Bs(1− s)dBs.

and

(∫ 1

0

Bsds

)2

=

(∫ 1

0

(1− s)dBs

)2

(Applying It� to (tBt) between 0 and 1)

= 2

∫ 1

0

∫ s

0

(1− θ) dBθ (1− s) dBs +

∫ 1

0

(1− s)2 ds

= 2

∫ 1

0

∫ s

0

(1− θ) dBθ (1− s) dBs +
1

3
.
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Therefore

(
∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2
)

−m = 2

∫ 1

0

(1− s)
(

Bs −
∫ s

0

(1− θ) dBθ

)

dBs

= 2

∫ 1

0

(1− s)
∫ s

0

θdBθdBs.

Finally for p = 1, one obtains:

E





((
∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2
)

−m
)2


 = 4E

[
∫ 1

0

(1− s)2
(∫ s

0

θdBθ

)2

ds

]

=
4

3

∫ 1

0

(1− s)2s3ds ≈ 0.022.

Then for p = 1, the result (3.2.8) follows. �

Remark 3.2.9. The result in (3.2.8) 
an be re�ned by 
hoosing another order p. We

will use in this 
ase the Burkholder-Davis-Gundy (BDG) inequalities (
urrent 
al
ula-

tions will be inserted in the �nal version of the manus
ript).

In �gure 3.2 we use (3.1.4) to estimate the density of

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

where

h = 10−3
. We observe that the mode is into the interval 
al
ulated in (3.2.8).
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Figure 3.2: Estimated Density of

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

.

3.3 Dete
tion 
hange in the 
ase of small volatilities

We now aim to show how the Bandwidth indi
ator 
an dete
t a 
hange of volatilities.

This result is 
on�rmed as long as the quotient between σ0 and σ1 is greater than or

equal to 1.8.
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Figure 3.3: Estimated Density of BWIδ
for di�erent values of σ, δ = 0.1.

In �gure 3.3 we use (3.1.4) to estimate the density of the Bandwidth indi
ator for

di�erent value of σ. For ea
h value of σ, we have simulated 107 traje
tories of BWIδ,
with δ = 0.1, µ = 0.1 and h = 10−3

. It is 
lear from this �gure that we have di�erent

behaviors of the tail for di�erent values of the volatility, and this di�eren
e be
omes
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more signi�
ant when the quotient between σ0 and σ1 is greater than or equal to 1.8.
To better understand this result, we now 
omment it.

In order to show that the Bandwidth indi
ator 
an dete
t a 
hange of volatilities, we

show that for:

{
σmin �xed

σmax �xed

we 
an �nd α and β su
h that, for example,

i) ∀σ0 6 σmin, we have:

P [BWIδ(σ0) 6 α] is large and P [BWIδ(σ0) > β] is small,

and

ii) ∀σ1 > σmax, we have:

P [BWIδ(σ1) 6 α] is small and P [BWIδ(σ1) > β] is large.

We remind the notation Q =

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

. Let us �rst �nd q1, q2, q3 and

q4 su
h that:

P [Q 6 q1] is large and P [Q > q2] is small, (3.3.1)

and

P [Q 6 q3] is small and P [Q > q4] is large. (3.3.2)

So from �gure 3.2, we 
an dedu
e that:

q1 > 0.3 , q2 > 0.35 , q3 6 0.1 , q4 6 0.15.

Then from proposition (3.1.1), the inequalities in i) and ii) be
ome:

P

[

Q 6
α2

16σ2
0δ

]

is large and P

[

Q >
β2

16σ2
0δ

]

is small,

and
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P

[

Q 6
α2

16σ2
1δ

]

is small and P

[

Q >
β2

16σ2
1δ

]

is large.

Suppose for example that σmin = 0.08 and σmax = 0.15, then if we take σ0 = σmin and

σ1 = σmax in the above inequalities, we 
an dedu
e from (3.3.1) and (3.3.2) that α and

β verify:

α2

16σ2
minδ

> q1 ,
β2

16σ2
minδ

> q2 ,
α2

16σ2
maxδ

6 q3 ,
β2

16σ2
maxδ

6 q4. (3.3.3)

By 
onsequent

0.055 6 α 6 0.06,

and

0.059 6 β 6 0.073.

Then if we observe an event with a large probability in a 
ase and with small proba-

bility in another 
ase, then we 
an dedu
e in whi
h regime of volatility we are. This

observation be
omes more signi�
ant, that is the di�eren
e between the probabilities

in the two 
ases be
omes more large, if the quotient between the two volatilities is

greater than or equal to 1.8. This result 
an be dedu
ed from (3.3.3).
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Asymptoti
 analysis of the Bandwidth

indi
ator in the 
ase of large

volatilities

In the previous 
hapter, we have done an asymptoti
 analysis of the Bollinger Band-

width indi
ator in the 
ase of small value of σ2δ. We have showed that the Bandwidth

indi
ator has the 
apa
ity to dete
t a regime 
hange in volatility in this 
ase.

In this 
hapter, we aim to show that the Bandwidth indi
ator 
an be also used to

dete
t a regime 
hange in the di�usion term in the 
ase of large value of σ2δ.

We are interested in this 
hapter to the normalized indi
ator (NIt) de�ned as:

NIt :=
1

δ

(
(BWIt)

2

16
+ 1

)

(4.0.1)

where (BWIt) is the Bandwidth indi
ator de�ned in 
hapter 1.

We �rst show that the law of NIt does not depend on time t and it satis�es:

NIt
L
= NIδ

L
= σ2k

(µ̃)
σ2δ.

where the variable k is de�ned in (2.3.2) and µ̃ = µ
σ2 − 1

2
.

Then we prove that for large value of σ2δ, the 
umulative distribution fun
tion of NIδ

onverges to that of σ2k

−|µ̃|
∞ . We study the behavior of the 
umulative distribution

fun
tion of k
−|µ̃|
∞ , whi
h 
an be useful to study and 
ompare the tails-behavior of NIδ

for di�erent value of σ. We make expli
it the density and the 
umulative distribution

fun
tion of k
−|µ̃|
∞ . Due to the 
omplexity of these formulae, we have not yet su

eeded

to use them in order to study the behavior of the 
umulative distribution fun
tion of

k
−|µ̃|
∞ . We therefore use Tauberian theory whi
h allows us to dedu
e the behavior of the


umulative distribution fun
tion of k
−|µ̃|
∞ from the behavior of its Lapla
e transform.
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4.1 Asymptoti
 
onvergen
e of the 
umulative distri-

bution fun
tion of the Bollinger normalized indi-


ator

To simplify the mathemati
al study, we suppose that the pri
e pro
ess (St) evolves
a

ording to:

dSt = St (µdt+ σdBt) .

Then from the 
hange of variables s → σ2u, µ̃ = µ
σ2 − 1

2
and the s
aling property

of Brownian motion, we prove that the law of the normalized indi
ator NI does not

depend on time t and it satis�es:

NIt
L
= NIδ

L
= σ2k

(µ̃)

σ2δ.

We desire to show that the normalized Bandwidth indi
ator 
an dete
t a 
hange in the


onstant 
oe�
ient σ for the 
ase of large value for σ2δ. So we need to 
ompare the

tail behaviors of the distribution of NI for di�erent values of σ.

In next se
tion, we show the 
onvergen
e of the 
umulative distribution fun
tion of

NIδ to that of σ
2k

−|µ̃|
∞ .

Let us start with exhibiting an upper and lower bounds for the 
umulative distribution

fun
tion of log(k
(µ̃)
t ) for large t. Then thanks to the above equality in law, the upper

and lower bounds for the 
umulative distribution fun
tion of NIδ are straightforward

onsequen
e.

4.1.1 Upper and lower bounds for the 
umulative distribution

fun
tion of log(k
(ν)
t ) for large t

Proposition 4.1.1. For x ∈ R,ǫ,ǫ′ and ϑ ∈ R+
, ∃t0 > 0 su
h that for t > t0 one has:

• For |ν| > 2,

P

[

log(k(−|ν|)
∞ ) 6 x− 2ǫ

′
]

− (1 + ϑ)

ǫ′

(−2|ν|+ 2

−2|ν|+ 1

)

e
1
2
(−2|ν|+1)t 6 P

[

log(k
(ν)
t ) 6 x

]

6

P

[

log(k(−|ν|)
∞ ) 6 x+ ǫ

]

+
(1 + ϑ)

ǫ

(−|ν|+ 2

−|ν|+ 1

)

e2(−|ν|+1)t
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• For |ν| < 1,

P

[

log(k(−|ν|)
∞ ) 6 x− 2ǫ

′
]

− (1 + ϑ)

ǫ′
e−|ν|2t/2 (2π

t

)3/2

4|ν|2(1− cos(2π|ν|)) 6 P

[

log(k
(ν)
t ) 6 x

]

6

P
[
log(k(−|ν|)

∞ ) 6 x+ ǫ
]
+

(1 + ϑ)

ǫ

e−|ν|2t/2 ( π
2t

)3/2

|ν|2(1− cos(π|ν|))

• For 1 < |ν| < 2,

P

[

log(k(−|ν|)
∞ ) 6 x− 2ǫ

′
]

− (1 + ϑ)

ǫ′

(−2|ν|+ 2

−2|ν|+ 1

)

e
1
2
(−2|ν|+1)t 6 P

[

log(k
(ν)
t ) 6 x

]

6

P

[

log(k(−|ν|)
∞ ) 6 x+ ǫ

]

+
(1 + ϑ)

ǫ

e−|ν|2t/2 ( π
2t

)3/2

|ν|2(1− cos(π|ν|))

• For |ν| = 1,

P

[

log(k(−|ν|)
∞ ) 6 x− 2ǫ

′
]

− (1 + ϑ)

ǫ′
1

√

(1
2
πt)

e
−1
2
t 6P

[

log(k
(ν)
t ) 6 x

]

6 P

[

log(k(−|ν|)
∞ ) 6

x+ ǫ
]

+
(1 + ϑ)

ǫ

e−|ν|2t/2 ( π
2t

)3/2

ν2(1− cos(π|ν|))

• For |ν| = 2,

P

[

log(k(−|ν|)
∞ ) 6 x− 2ǫ

′
]

− (1 + ϑ)

ǫ′

(−2|ν|+ 2

−2|ν|+ 1

)

e
1
2
(−2|ν|+1)t 6 P

[

log(k
(ν)
t ) 6 x

]

6

P

[

log(k(−|ν|)
∞ ) 6 x+ ǫ

]

+
(1 + ϑ)

ǫ

1
√

(2πt)
e−2t

Proof :

i) Suppose that ν < 0:

We aim to �nd an upper and a lower bound for the 
umulative distribution fun
tion

of log(k
(ν)
t ) in terms of the 
umulative distribution fun
tion of the limit distribution

log(k
(ν)
∞ ).

• First step: the upper bound for P

[

log(k
(ν)
t ) 6 x

]

.
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∀ǫ > 0, we have:

P

[

log(k
(ν)
t ) 6 x

]

= P

[

log
(

A
(ν)
2,t

)

6 x+ log

((

A
(ν)
1,t

)2
)]

6 P

[

log
(

A
(ν)
2,t

)

6 x+ log

((

A
(ν)
1,∞

)2
)]

(As A
(ν)
1,t is an in
reasing pro
esses)

6 P

[

log
(

A
(ν)
2,∞

)

6 x+ log

((

A
(ν)
1,∞

)2
)

+
(

log
(

A
(ν)
2,∞

)

− log
(

A
(ν)
2,t

))]

6 P

[

log
(

A
(ν)
2,∞

)

6 x+ log

((

A
(ν)
1,∞

)2
)

+ ǫ

]

+ P

[(

log
(

A
(ν)
2,∞

)

− log
(

A
(ν)
2,t

))

> ǫ
]

6 P

[

log
(

A
(ν)
2,∞

)

6 x+ log

((

A
(ν)
1,∞

)2
)

+ ǫ

]

+
1

ǫ

(

E

[

log
(

A
(ν)
2,∞

)

− log
(

A
(ν)
2,t

)])

The last inequality 
omes from the Markov inequality.

Therefore:

P

[

log
(

k
(ν)
t

)

6 x
]

6 P
[
log
(
k(ν)∞
)
6 x+ ǫ

]
+
1

ǫ

(

E

[

log
(

A
(ν)
2,∞

)

− log
(

A
(ν)
2,t

)])

(4.1.1)

In [9], the last term
(

E

[

log
(

A
(ν)
2,∞

)

− log
(

A
(ν)
2,t

)])

is well des
ribed for large t:

E

[

log
(

A
(ν)
2,∞

)]

− E

[

log
(

A
(ν)
2,t

)]

∼
t→∞







(
ν+2
ν+1

)
e2(ν+1)t

if ν < −2
1√
(2πt)

e−2t
if ν = −2

1
ν2(1−cos(−πν))

(
π
2t

)3/2
e−ν2t/2

if −2 < ν < 0

• Se
ond step: the lower bound for P

[

log
(

k
(ν)
t

)

6 x
]
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Let ξ ∈ R , we have:

P

[

log
(

A
(ν)
2,∞

)

− log
(

A
(ν)
1,∞

)2

6 x+ ξ

]

=

P

[

log
(

A
(ν)
2,∞

)

− log

((

A
(ν)
1,∞

)2
)

6 x+ ξ; log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

)

< ǫ
′

]

+ P

[

log
(

A
(ν)
2,∞

)

− log

((

A
(ν)
1,∞

)2
)

6 x+ ξ; log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

)

> ǫ
′

]

6P

[

log
(

A
(ν)
2,∞

)

6 2 log
((

A
(ν)
1,t

))

+ x+ ξ + 2ǫ
′
]

+ P

[

log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

)

> ǫ
′
]

6P

[

log
(

A
(ν)
2,∞

)

− log

((

A
(ν)
1,t

)2
)

6 x

]

+
1

ǫ′
E

[

log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

)]

where the last inequality is obtained by 
hoosing ξ = −2ǫ′ and using Markov inequality.

Therefore:

P

[

log
(

A
(ν)
2,∞

)

− log

((

A
(ν)
1,t

)2
)

6 x

]

>P

[

log
(

A
(ν)
2,∞

)

− log

((

A
(ν)
1,∞

)2
)

6 x− 2ǫ
′

]

− 1

ǫ′
E

[

log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

) ]

As A
(ν)
2,t is an in
reasing pro
ess, we dedu
e:

P

[

log
(

A
(ν)
2,t

)

− log

((

A
(ν)
1,t

)2
)

6 x

]

>P

[

log
(

A
(ν)
2,∞

)

− log

((

A
(ν)
1,t

)2
)

6 x− 2ǫ
′

]

− 1

ǫ′

[

log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

)]

Finally we have the following inequality

P

[

log
(

k
(ν)
t

)

6 x
]

> P

[

log
(
k(ν)∞
)
6 x− ǫ′

]

− 2

ǫ′
E

[

log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

)]

(4.1.2)

As above, from [9], the term E

[

log(A
(ν)
1,∞)− log(A

(ν)
1,t )
]

satis�es

E[log(A
(ν)
1,∞)]− E[log(A

(ν)
1,t )] ∼

t→∞







(
2ν+2
2ν+1

)
e

1
2
(2ν+1)t

if ν < −1
1√
( 1
2
πt)
e

−1
2
t

if ν = −1
1

4ν2(1−cos(−2πν))

(
2π
t

)3/2
e−ν2t/2

if −1 < ν < 0

This 
ompletes the proof of proposition 4.1.1 for ν < 0.
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ii) In view of proposition 2.3.6, we 
an repeat the above two steps for ν > 0 by

repla
ing ν by −ν. This ends the proof of proposition 4.1.1.

�

Numeri
al examples:

We illustrate in �gure 4.1 and 4.2 the above result about the 
onvergen
e of

P

[

log(k
(ν)
t ) 6 x

]

to P

[

log(k
(ν)
∞ ) 6 x

]

in the 
ase where |ν| > 2. We plot in green the


umulative distribution fun
tion P

[

log(k
(ν)
t ) 6 x

]

for di�erent values of t. We plot in

red the 
umulative distribution fun
tion P

[

log(k
(−|ν|)
∞ ) 6 x

]

, we plot in blue the lower

bound and in pink the upper bound.

In �gure 4.1, we suppose that ν = −3 and we illustrate the 
umulative distribution

fun
tion of P

[

log(k
(ν)
t ) 6 x

]

for di�erent values of t, when we assume that the variable

k
(ν)
t with the terminal time t = 10 approximates well the the variable k

(ν)
∞ . We observe

satisfying results from t > 2 as it is showed in �gure c) and d).

In �gure 4.2, we suppose that ν = −5. We observe satisfying results from t > 0.8 as it
is showed in �gure a),b),c) and d).
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Figure 4.1: Convergen
e of the 
umulative distribution fun
tion for ν = −3
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Figure 4.2: Convergen
e of the 
umulative distribution fun
tion for ν = −5

We now dedu
e an upper and lower bounds for the 
umulative distribution fun
tion of

NIδ.

4.1.2 Upper and lower bounds for the 
umulative distribution

fun
tion of NIδ

As already noti
ed,

NIδ
L
= σ2k

(µ̃)
σ2δ. (4.1.3)

Therefore, from proposition 4.1.1, we 
an dedu
e that for a large value of σ2δ we have:

Corollary 4.1.2. For θ, ǫ ǫ′ and ϑ ∈ R+
, ∃t0 > 0 su
h that for t > t0 one has:

• For |µ̃| > 2,

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

− 2ǫ
′
]

− (1 + ϑ)

ǫ′

(−2|µ̃|+ 2

−2|µ̃|+ 1

)

e
1
2
(−2|µ̃|+1)σ2δ 6 P [NIδ 6 θ] 6

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

+ ǫ
]

+
(1 + ϑ)

ǫ

(−|µ̃|+ 2

−|µ̃|+ 1

)

e2(−|µ̃|+1)σ2δ



38

CHAPTER 4. ASYMPTOTIC ANALYSIS OF THE BANDWIDTH

INDICATOR IN THE CASE OF LARGE VOLATILITIES

• For |µ̃| < 1,

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

− 2ǫ
′
]

− (1 + ϑ)

ǫ′
e−|µ̃|2(σ2δ)/2

(
2π
σ2δ

)3/2

4|µ̃|2(1− cos(2π|µ̃|)) 6 P [NIδ 6 θ] 6

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

+ ǫ
]

+
(1 + ϑ)

ǫ

e−|µ̃|2σ2δ/2
(

π
2σ2δ

)3/2

|µ̃|2(1− cos(π|µ̃|))

• For 1 < |µ̃| < 2,

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

− 2ǫ
′

]

− (1 + ϑ)

ǫ′

(−2|µ̃|+ 2

−2|µ̃|+ 1

)

e
1
2
(−2|µ̃|+1)σ2δ 6 P [NIδ 6 θ] 6

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

+ ǫ
]

+
(1 + ϑ)

ǫ

e−|µ̃|2σ2δ/2
(

π
2σ2δ

)3/2

|µ̃|2(1− cos(π|µ̃|))

• For |µ̃| = 1,

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

− 2ǫ
′
]

− (1 + ϑ)

ǫ′
1

√

(1
2
πσ2δ)

e
−1
2
σ2δ

6 P [NIδ 6 θ] 6

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

+ ǫ

]

+
(1 + ϑ)

ǫ

e−|µ̃|2σ2δ/2
(

π
2σ2δ

)3/2

|µ̃|2(1− cos(π|µ̃|))

• For |µ̃| = 2,

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

− 2ǫ
′

]

− (1 + ϑ)

ǫ′

(−2|µ̃|+ 2

−2|µ̃|+ 1

)

e
1
2
(−2|µ̃|+1)σ2δ

6 P [NIδ 6 θ] 6

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

+ ǫ
]

+
(1 + ϑ)

ǫ

e−2σ2δ

√

(2πσ2δ)

Observation 4.1.3. First from (4.1.3) we have

NIδ
L
= σ2k

(µ̃)

σ2δ.

also from the above numeri
al examples, we 
an dedu
e for example that for µ̃ = −3,
the 
umulative distribution fun
tion of the indi
ator NI whi
h is equal to P[σ2k

(µ̃)

σ2δ 6 x],


onverges to P[σ2k
(−|µ̃|)
∞ 6 x] and the limit is quasi-rea
hed when σ2δ > 2.

Similarly, in the 
ase where µ̃ = −5 we dedu
e that the 
umulative distribution fun
tion

P[NIδ 6 x] 
an be well approximated by P[σ2k
(−|µ̃|)
∞ 6 x] when σ2δ > 0.8.

We are now interested by the variable k
(−|µ̃|)
∞ . We wish to make expli
it the density of

this variable to dedu
e the behavior of its 
umulative distribution fun
tion P[k
(−|µ̃|)
∞ 6 x]

for small x and the behavior of 1− P[k
(−|µ̃|)
∞ 6 x] for large x.
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4.2 The density of the random variable k
(−|µ̃|)
∞

In this se
tion, we aim to study the probability density fun
tion of the random variable

k
(−|µ̃|)
∞ . From proposition 2.3.7, the law of this variable has been 
hara
terized by its

Lapla
e transform as follows:

∀λ > 0, E

[

e−λk
(−|µ̃|)
∞

]

=

√

λ/2

sinh(
√

λ/2)(cosh(
√

λ/2))2|µ̃|
(4.2.1)

Then the density of the variable k
(−|µ̃|)
∞ 
an be obtained by inverting its Lapla
e trans-

form. Unfortunately, the formula (4.2.1) is not easy to invert. So we will make expli
it

the density as the 
onvolution of two densities. Before proving this result in proposition

4.2.6, we need to study the laws of the random variables Sh and Ch de�ned in [3℄ by:

Sh :=
1

2π2

∞∑

n=1

Γh,n

n2
and Ch :=

1

2π2

∞∑

n=1

Γh,n

(n− 1
2
)2
,

where (Γh,n)n>0 are independent random variables with gamma law of parameter h,
that is, the density of Γh,n is given by

g(x) = Γ(h)−1xh−1e−x (h > 0, x > 0).

where Γ(h) is a normalizing 
onstant.

Remind that the distribution of the gamma variables Γh,n is 
hara
terized by the

Lapla
e transform

E
[
e−λΓh,n

]
= (1 + λ)−h (λ > −1) (4.2.2)

and from [8] we have the following Euler's formulae:

sinh(z) = z
∞∏

n=1

(

1 +
z2

n2π2

)

and cosh(z) =
∞∏

n=1

(

1 +
z2

(n− 1
2
)2π2

)

(4.2.3)

Proposition 4.2.1. The Lapla
e transforms of Sh and Ch are given for λ > 0 by

E
[
e−λSh

]
=

( √

λ/2

sinh(
√

λ/2)

)h

and E
[
e−λCh

]
=

1
(

cosh
(√

λ/2
))h

.
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Proof :

From the de�nition of the variable Sh, we have

E
[
e−λSh

]
= E

[ ∞∏

n=1

e−
λΓh,n

2n2π2

]

=

∞∏

n=1

(

E

[

e−
λΓh,n

2n2π2

])
(
be
ause Γh,n are independent

)

=

∞∏

n=1

(

1 +
λ

2π2n2

)−h

(from (4.2.2))

=

( √

λ/2

sinh(
√

λ/2)

)h

(from (4.2.3)).

Similarly for the random variable Ch, we have

E
[
e−λCh

]
= E

[ ∞∏

n=1

e
− λΓh,n

2π2(n− 1
2 )2

]

=

∞∏

n=1

(

E

[

e
− λΓh,n

2π2(n− 1
2 )2

])

=

∞∏

n=1

(

1 +
λ

2π2(n− 1
2
)2

)−h

(from (4.2.2))

=
1

(

cosh(
√

λ/2)
)h

(from (4.2.3)).

�

The following lemma 
an be proven from the formula (4.2.1) and using the indepen-

den
e between the random variables S1 and C2|µ̃|.

Lemma 4.2.2. As S1 and C2|µ̃| are independent, then

k(−|µ̃|)
∞

L
= S1 + C2|µ̃|

Thus from the above lemma, the density fun
tion of k
(−|µ̃|)
∞ 
an be obtained as the


onvolution between the density of the variable S1 and the density of C2|µ̃|.

4.2.1 Probability densities of S1 and C2|µ̃|

We denote by fS1 (resp.fC2|µ̃|
) the probability density fun
tion of the random variable

S1 (resp.C2|µ̃|). We aim in this paragraph to make expli
it these two densities.
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We re
all the Lévy's formula in [19℄

∫ ∞

0

e−
λ2

2
te−

y2

2t
y√
2πt3

dt = e−λy (y > 0), (4.2.4)

and the Binomial expansion

1

(1− x)h =
1

Γ(h)

∞∑

n=0

Γ(n+ h)

Γ(n+ 1)
xn (h > 0, |x| < 1), (4.2.5)

Therefore we 
an dedu
e the following expansion formulae whi
h will be useful to


ompute the densities fS1 and fC2|µ̃|
.

(
x

sinh(x)

)h

=
2hxh

(ex − e−x)h
=

2hxhe−hx

(1− e−2x)h
= 2hxhe−xh 1

Γ(h)

∞∑

n=0

Γ(n + h)

Γ(n+ 1)
e−2nx

=
2hxh

Γ(h)

∞∑

n=0

Γ(n+ h)

Γ(n+ 1)
e−(2n+h)x

(4.2.6)

and

(
1

cosh(x)

)h

=
2h

(ex + e−x)h
=

2he−hx

(1 + e−2x)h
= 2he−xh 1

Γ(h)

∞∑

n=0

(−1)nΓ(n+ h)

Γ(n+ 1)
e−2nx

=
2h

Γ(h)

∞∑

n=0

(−1)nΓ(n+ h)

Γ(n+ 1)
e−(2n+h)x

(4.2.7)

Remark that from the formula (4.2.4), we obtain:

∫ ∞

0

pt(y)e
−λ2

2
tdt = λe−λy (y > 0), (4.2.8)

where pt(y) is given by:

pt(y) =
∂2

∂y2

(
1√
2πt

e−
y2

2t

)

. (4.2.9)

Now we are in a position to invert the Lapla
e transforms of C2|µ̃| and S1.
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Proposition 4.2.3. The density fC2|µ̃|
is given by

fC2|µ̃|
(t) =

22|µ̃|

Γ(2|µ̃|)

∞∑

n=0

(−1)nΓ(n + 2|µ̃|)
Γ(n + 1)

(2n+ 2|µ̃|)
2
√
2πt3

e−
((2n+2|µ̃|)/2)2

2t

Proof :

From proposition 4.2.1 we have

E
[
e−λC2|µ̃|

]
=

1
(

cosh
(√

λ/2
))2|µ̃| .

So by applying the expansion formula (4.2.7), we obtain that

E
[
e−λC2|µ̃|

]
=

22|µ̃|

Γ(2|µ̃|)

∞∑

n=0

(−1)nΓ(n+ 2|µ̃|)
Γ(n+ 1)

e−(2n+2|µ̃|)
√

λ/2. (4.2.10)

Finally the density fC2|µ̃|

an be obtained by inverting its Lapla
e transform in (4.2.10)

using Lévy formula (4.2.4):

fC2|µ̃|
(t) = Φ−1

λ






1
(

cosh
(√

λ/2
))2|µ̃|




 (t)

= Φ−1
λ

(

22|µ̃|

Γ(2|µ̃|)

∞∑

n=0

(−1)nΓ(n+ 2|µ̃|)
Γ(n+ 1)

e−(2n+2|µ̃|)
√

λ/2

)

(t)

=
22|µ̃|

Γ(2|µ̃|)

∞∑

n=0

(−1)nΓ(n+ 2|µ̃|)
Γ(n+ 1)

Φ−1
λ

(

e−(2n+2|µ̃|)
√

λ/2
)

(t)

=
22|µ̃|

Γ(2|µ̃|)

∞∑

n=0

(−1)nΓ(n+ 2|µ̃|)
Γ(n+ 1)

(2n+ 2|µ̃|)
2
√
2πt3

e−
((2n+2|µ̃|)/2)2

2t

where Φ−1
λ denotes the inverse Lapla
e transform de�ned by:

Φ−1
λ (f(λ))(t) =

1

2πi
lim
T→∞

∫ χ+iT

χ−iT

eλtf(λ)dλ.

�
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We now aim to make expli
it the density of fS1. Similarly to the above argument, the

density fS1 
an be obtained by inverting its Lapla
e transform as follows:

From proposition 4.2.1 we have

E
[
e−λS1

]
=

( √

λ/2

sinh(
√

λ/2)

)

.

By applying the expansion formula (4.2.6), we obtain that

E
[
e−λS1

]
=

( √

λ/2

sinh(
√

λ/2)

)

= 2

∞∑

n=0

√

λ/2e−(2n+1)
√

λ/2
(4.2.11)

Then the density fS1 
an be obtained as follows:

fS1(t) = Φ−1
λ

(

2
∞∑

n=0

√

λ/2e−(2n+1)
√

λ/2

)

(t)

=

∞∑

n=0

Φ−1
λ

(√
2λe−

(2n+1)
2

√
2λ
)

(t)

=

∞∑

n=0

pt

(
2n+ 1

2

)

(4.2.12)

The last equality is dedu
ed from (4.2.8), where pt is as in (4.2.9).

Remark that H(t, y) := 1√
2πt

exp(−(y2/2t)) satis�es the heat equation

∂

∂t
H(t, y) =

1

2

∂2

∂y2
H(t, y).

Then

fS1(t) = 2

∞∑

n=0

∂

∂t
H(t, (2n+ 1)/2)

= −
(

1

2πt3

)1/2 ∞∑

n=0

e−
(n+1

2 )2

2t +

(
1

2πt3

)1/2 (n+ 1
2
)2

t

∞∑

n=0

e−
(n+1

2 )2

2t

= −1
2

(
1

2πt3

)1/2 ∞∑

n=−∞
e−

(n+1
2 )2

2t +
1

2t

(
1

2πt3

)1/2 ∞∑

n=−∞

(

n+
1

2

)2

e−
(n+1

2 )2

2t
(4.2.13)
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Unfortunately, this formula is not propitious to mathemati
al analysis. We therefore

obtain a simple formula for fS1 by using a result obtained in [3℄, whi
h proves a relation

between the densities fS1 and fC2 . The proof of this result relies on the fa
t that the

densities of Ch and Sh for h = 1; 2 
an be also given by in�nite series related to the

derivatives of Ja
obi's theta fun
tion.

Let us start with the Ja
obi's theta fun
tions

θ(t) :=
∞∑

n=−∞
e−n2πt , θ0(t) :=

∞∑

n=−∞
(−1)ne−πn2t

(4.2.14)

and

θ1(t) :=

∞∑

n=−∞
e−π(n+1/2)2t

(4.2.15)

We re
all the Ja
obi's theta fun
tion identity (Poisson summation formula):

1√
πt

∞∑

n=−∞
e−(n+x)2/t =

∞∑

n=−∞
cos(2nπx)e−n2π2t (x ∈ R, t > 0). (4.2.16)

Remark that by repla
ing x by 1/2 and t by = t/π in equation (4.2.16) we have the

identity

θ1(1/t) =
√
t θ0(t) (4.2.17)

Now we have the in�nite series formulas for the densities fS1 and fC2 .

Proposition 4.2.4. The densities fS1 and fC2 are given by

fS1(t) =
d

dt

∞∑

n=−∞
(−1)ne−π2n22t = 2π θ

′

0(2tπ) (4.2.18)

and

fC2(t) =

∞∑

n=−∞

(

4π2

(

n+
1

2

)2

t− 1

)

e−2(n+ 1
2)

2
π2t

(4.2.19)
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Proof :

From (4.2.13), we have:

fS1(t) = −
1

2

(
1

2πt3

)1/2 ∞∑

n=−∞
e−

(n+1
2 )2

2t +
1

2t

(
1

2πt3

)1/2 ∞∑

n=−∞

(

n+
1

2

)2

e−
(n+1

2 )2

2t

On the other hand we have:

2πθ
′

0(2tπ) =
d

dt
(θ0(2tπ))

=
d

dt

((
1

2tπ

)1/2

θ1

(
1

2tπ

))

(from 4.2.17)

= −1
2

(
1

2πt3

)1/2

θ1

(
1

2tπ

)

− 1

2πt

(
1

2πt3

)1/2

θ
′

1

(
1

2tπ

)

= −1
2

(
1

2πt3

)1/2 ∞∑

n=−∞
e−

(n+1
2 )2

2t +
1

2t

(
1

2πt3

)1/2 ∞∑

n=−∞

(

n+
1

2

)2

e−
(n+1

2 )2

2t

Therefore (4.2.18) is dedu
ed.

Similarly from proposition 4.2.3 and by using the same 
al
ulus as above, we 
an dedu
e

that:

fC2(t) =

∞∑

n=−∞

(

4π2

(

n +
1

2

)2

t− 1

)

e−2(n+ 1
2)

2
π2t

�

Finally we have the relation between fS1 and fC2 .

Corollary 4.2.5. The densities fS1 and fC2 satisfy the following relation:

fS1(t) =

(
1

8πt3

)1/2

fC2

(
1

4π2t

)

Proof :

From proposition 4.2.4 and using the Ja
obi's theta identity (4.2.16), fS1(t) 
an be

written as:

fS1(t) =
d

dt

((
1

2πt

)1/2 ∞∑

n=−∞
e−

(n+1
2)

2

2t

)

(4.2.20)
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Therefore from (4.2.20) and (4.2.19), we 
an dedu
e the above relation. �

Now the density f of the random variable k
(−|µ̃|)
∞ 
an be obtained expli
itly as:

Proposition 4.2.6. The density f of the random variable k
(µ̃)
∞ is given by

f(t) =
(

fS1 ∗ fC2|µ̃|

)

(t) (4.2.21)

where

fS1(t) = 4π2
∞∑

n=0

(−1)n (n+ 1)2 e−2(n+1)2π2t
(4.2.22)

and

fC2|µ̃|
(t) =

22|µ̃|

Γ(2|µ̃|)

∞∑

n=0

(−1)nΓ(n + 2|µ̃|)
Γ(n + 1)

(2n+ 2|µ̃|)
2
√
2πt3

e−
(n+|µ̃|)2

2t
(4.2.23)

Proof :

The result follows from the identity in law in lemma 4.2.2.

The formula (4.2.22) is dedu
ed from 
orollary 4.2.5 and proposition 4.2.3.

�

The formula (4.2.21) is not propitious to mathemati
al study of the behavior of the


umulative distribution fun
tion of k
(−|µ̃|)
∞ . We thus now use a result due to Yor [34,

p.370℄ on the joint law of

(
1
4
A

(ν)
2,∞, A

(ν)
1,∞

)

for ν < 0.

4.3 The 
umulative distribution fun
tion of k
(−|µ̃|)
∞

We use in this se
tion two important results proved by Yor, in order to prove our result

in theorem 4.3.9. The �rst one 
on
erns the identity in law in theorem 4.3.3, and

the se
ond one is the extension of the 
lassi
al Ray-Knight formula to the perturbed

Brownian motion Xγ
( see theorem 4.3.4).

4.3.1 Re�e
ting Brownian motion perturbed by its lo
al time

at zero

Let (Bt) denote a one-dimensional Brownian motion started from 0 and (lt(B), t > 0)
its lo
al time pro
ess at level 0. For �xed γ > 0, the perturbed re�e
ting Brownian

motion (Xγ
t ) is de�ned for all t > 0 by

Xγ
t =| Bt | −γlt(B)
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where we have the following notations:

• (lt(B), t > 0) is the lo
al time pro
ess of B at level 0,

• (lxt (X
γ), t > 0) is the lo
al time pro
ess of Xγ

at level x,

• (τγu , u > 0) is the right 
ontinuous inverse of the lo
al time at 0, (l0t (X
γ), t > 0)

of Xγ
.

De�nition 4.3.1. (Bessel pro
esses)

For every ρ > 0 and x > 0, the unique strong solution to the equation

Yt = x+ ρt + 2

∫ t

0

√

YsdBs

is 
alled the square of a ρ-dimensional Bessel pro
ess started at x and is denoted by

BESQρ(x)

Remark 4.3.2. Denote the law of BESQρ(x) by Qρ
x. We 
all the number ρ the di-

mension of BESQρ
, and ν = ρ/2 − 1 is 
alled the index of the pro
ess BESQρ

. Also

we denote by BESQρ
t (x, y) the Bessel square bridge of dimension ρ > 0 from x to y

on [0, t]. The law of BESQρ
t (x, y) denoted by Qρ

t (x, y) is viewed as the Qρ
x 
onditional

distribution of (Yu, 0 6 u 6 t) given Yt = y , i.e:

Qρ
t (x, y) = Qρ

x [Y |Ly = t] (4.3.1)

where Ly = sup{u : Yu = y}.

We now state the following result due to Yor [34, p.370℄ on the joint law of

(
1
4
A

(ν)
2,∞, A

(ν)
1,∞

)

for ν < 0.

Theorem 4.3.3. Let ν < 0 and de�ne γ = − 1
2ν
.

Then the following identity in law holds:

(
1
4
A

(ν)
2,∞, A

(ν)
1,∞

) L
=

(
∫ τγ1

0

1(Xγ
u60)du, γlτγ1 (B)

)
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A se
ond important result due to Yor [33, p.118℄ 
on
erns the extended Ray-Knight

theorem for the 
ase of perturbed Brownian motion Xγ
. This result shows that the

lo
al time of Xγ
in the spa
e variable up to time τγs is a Bessel square pro
ess of

dimension that depends on γ.

Theorem 4.3.4. (Ray-Knight Theorem)

Fix s > 0. The pro
esses (lx
τγs
(Xγ), x > 0) and (l−x

τγs
(Xγ), x > 0) are independent, and

their respe
tive laws are Q0
s and Q

2− 2
γ

s , where Q
2− 2

γ
s denotes the law of the square of the

Bessel pro
ess starting from s, with dimension 2− 2
γ
, and absorbed at 0.

We now state some lemmas whi
h will be important to prove our result in proposition

4.3.9.

Lemma 4.3.5.

−γlτγs (B) = inf{Xγ
u , u 6 τγs } (4.3.2)

Proof :

Let t be �xed and gt = sup{s 6 t/Bs = 0}. Then Bs 6= 0 for s ∈ (gt, t).

As the lo
al time of B at level 0 is 
onstant until (Bt) hits 0, we 
an dedu
e that for

all t we have:
lgt(B) = lt(B)

As the above equality is true for all t, so we have lg
τ
γ
s
(B) = lτγs (B). Then

Bg
τ
γ
s
= 0⇒ Xg

τ
γ
s
= −γlτγs (B).

For u ∈ [0, τγs ], we have X
γ
u > −γlu(B) > −γlτγs (B). Then

inf{Xγ
u , u 6 τγs } = −γlτγs (B)

�

The following two lemmas are given in [24℄:

Lemma 4.3.6. Assume ρ < 2. Let Z be BESQρ(x) for x > 0 and let T0 be the

�rst hitting time of 0 : T0 = inf{s|Zs = 0}. Conditionally on {T0 = t}, the pro
ess

(Zs, 0 6 s 6 t) is a BESQ4−ρ
t (x, 0).

Lemma 4.3.7. The random variables M = − inf{Xγ
t |0 6 t 6 τγx } and T0 = inf{t|Yt =

0} where Y is BESQ2−2/γ(x) are equal in law.
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Let T0 be the �rst hitting time of 0 by (l−y
τγs
(Xγ), y > 0).

Proposition 4.3.8. Conditionally on {T0 = t} the law of

(

ly−t
τγs

; 0 6 y 6 t
)

is Q
2+ 2

γ

t (0, s).

Proof :

From theorem 4.3.4, (l−y
τγs
(Xγ), y > 0) is BESQ

2− 2
γ

s . Then from lemma 4.3.6, 
ondi-

tionally on {T0 = t} the pro
ess (l−y
τγs
(Xγ), y > 0) is a BESQ

2+ 2
γ

t (s, 0). To 
on
lude the

proof we observe that the pro
ess (l
−(t−y)

τγs
(Xγ), 0 6 y 6 t) is also Bessel square bridge

but s and 0 inter
hanged. Therefore (ly−t
τγs

(Xγ), 0 6 y 6 t) := (l
−(t−y)

τγs
(Xγ), 0 6 y 6 t)

is BESQ
2+ 2

γ

t (0, s) with law Q
2+ 2

γ

t (0, s) . �

Theorem 4.3.9. De�ne γ = 1
2|µ̃| ; then one has

P
[
k(−|µ̃|)
∞ 6 u

]
=

∫ ∞

0

∫ γ2b2u/4

0

h(z)dz.q(b)db (4.3.3)

where

h(x) = 2(γb)1+
1
γ e

1
2γbΦ−1

λ






(2λ)(
1
2
+ 1

2γ
)

(

sinh(γb
√
2λ)
)1+ 1

γ

exp

(

−1
2

√
2λ cosh(γb

√
2λ)

sinh(γb
√
2λ)

)



 (x) ,

and

q(x) =
1

2γΓ(1/γ)
x−

1
γ
−1e−

1
x .

Φ−1
λ denotes the inverse Lapla
e transform.

Proof :

In the following, we denote by q the density fun
tion of lτγ1 .

P
[
k(−|µ̃|)
∞ 6 u

]
= P

[

A
(−|µ̃|)
2,∞

(A
(−|µ̃|)
1,∞ )2

6 u

]

= P








4

∫ τγ1

0

1(Xγ
v60)dv

(γlτγ1 )
2

6 u








(from theorem 4.3.3)

=

∫ ∞

0

P

[

4

γ2b2

∫ τγ1

0

1(Xγ
v60)dv 6 u | lτγ1 (B) = b

]

.q(b)db

=

∫ ∞

0

P

[
∫ τγ1

0

1(Xγ
v60)dv 6

γ2b2u

4
| lτγ1 (B) = b

]

.q(b)db (4.3.4)
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• First step: We 
ompute P

[
∫ τγ1

0

1(Xγ
v60)dv 6

γ2b2u

4
| lτγ1 (B) = b

]

:

By the o

upation times formula, one �nds that

P

[
∫ τγ1

0

1(Xγ
v 60)dv 6

γ2b2u

4
| lτγ1 (B) = b

]

= P

[
4

γ2b2

∫ 0

−∞
ly
τγ1
(Xγ)dy 6 u | lτγ1 (B) = b

]

= P






4

γ2b2

∫ 0

inf
06v6τγ1

(Xγ
v )
ly
τγ1
(Xγ)dy 6 u | lτγ1 (B) = b






= P

[
4

γ2b2

∫ 0

−γb

ly
τγ1
(Xγ)dy 6 u | lτγ1 (B) = b

]

(from lemma.4.3.2 )

= P

[
4

γ2b2

∫ γb

0

l
(−y)

τγ1
(Xγ)dy 6 u | lτγ1 (B) = b

]

= P

[
4

γ2b2

∫ γb

0

l
(−y)

τγ1
(Xγ)dy 6 u | T0 := inf{x > 0, l−x

τγ1
(Xγ) = 0} = γb

]

= P

[
4

γ2b2

∫ γb

0

l
(z−γb)

τγ1
(Xγ)dz 6 u | T0 = γb

]

(
hange of variable z = γb− y )

= P

[
4

γ2b2

∫ γb

0

Yzdz 6 u | Yγb = 1

]

, (4.3.5)

where Y is the square of (2 + 2
γ
)-dimensional Bessel pro
ess started at 0. From

proposition 4.3.8, 
onditionally on T0 = γb , the pro
ess (l
(z−γb)

τγ1
(Xγ), 0 6 z 6 γb)

is a Bessel bridge Q
2+ 2

γ

γb (0, 1). Then the last equality (4.3.5) is dedu
ed from

remark 4.3.2.

So �nally, from (4.3.5) we obtain that

P

[
∫ τγ1

0

1(Xγ
v60)dv 6

γ2b2u

4
| lτγ1 (B) = b

]

=

∫ γ2b2u/4

0

f∫ γb
0 Yvdv

(z | Yγb = 1)dz

=

∫ γ2b2u/4

0

f(
∫ γb
0 Yvdv,Yγb)

(z, 1)

fYγb
(1)

dz

(4.3.6)

where
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� f∫ γb
0 Yvdv

(z | Yγb = 1) is the 
onditional probability density fun
tion of

∫ γb

0
Yvdv given the value 1 of Yγb.

� f
(
∫ γb
0 Yvdv,Yγb)

(z, 1) gives the joint density of

∫ γb

0
Yvdv and Yγb, and fYγb

(1)

gives the marginal density for Yγb.

�

From lemma 4.6.15 and equation (4.6.12) in Appendix B, we obtain

fYγb
(1) =

(γb)−1− 1
γ e−

1
2γb

2Γ( 1
γ
+ 1)

. (4.3.7)

In addition, from lemma 4.6.15, we obtain

f(
∫ γb
0

Yzdz,Yγb)
(z, 1) = lim

x→0

1

x
1
γ

isz

(
1

γ
, γb, 0, (x2 + 1)/2, x/2

)

=
1

Γ( 1
γ
+ 1)

Φ−1
λ






(2λ)(
1
2
+ 1

2γ
)

(

sinh(γb
√
2λ)
)1+ 1

γ

exp

(

−1
2

√
2λ cosh(γb

√
2λ)

sinh(γb
√
2λ)

)



 (z) (4.3.8)

where Φ−1
λ denotes the inverse Lapla
e transform. The equation (4.3.8) is dedu
ed from

the linearity of the inverse Lapla
e transform and from the dominated 
onvergen
e

theorem.

Finally, from (4.3.4) and (4.3.6) we obtain equality (4.3.3).

Remark 4.3.10. From proposition 4.2.6 and theorem 4.3.4, the density and the 
u-

mulative distribution fun
tion of the random variable k
(−|µ̃|)
∞ are given expli
itly. But

unfortunately, the expli
it formulae are not propitious to study the behavior of the


umulative distribution fun
tion P[k
(−|µ̃|)
∞ 6 x]. In next se
tion, we aim to use Taube-

rian theory whi
h enables us to �nd 
onne
tions between the behavior properties of the

Lapla
e transform at in�nity (resp.at zero) and the behavior properties of the 
orre-

sponding 
umulative distribution fun
tion near zero (resp.near in�nity).
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4.4 Tails behavior of the distribution of k
(−|µ̃|)
∞

We are now interested to use Tauberian theory to study the behavior of the Lapla
e

transform of k
(−|µ̃|)
∞ for large λ (respe
tively for small λ), in order to dedu
e the behavior

of P[k
−|µ̃|
∞ 6 x] for small x (respe
tively the behavior of 1− P[k

−|µ̃|
∞ 6 x] for large x).

Before proving our main result, let us remind some de�nitions and results 
on
erning

Tauberian theory. We refer to [4℄.

4.4.1 Lapla
e transform and Tauberian theorems

De�nition 4.4.1. Let µ be a measure on [0,∞) and �nite on bounded sets. The

Lapla
e transform µ̂(λ) of µ is the real-valued fun
tion de�ned for λ > c by

µ̂(λ) :=

∫ ∞

0

e−λxµ(dx),

where c = inf
{

λ ∈ R :

∫ ∞

0

e−λxµ(dx) <∞
}

Noti
e that in the 
ase where µ is a �nite measure, then µ̂ is de�ned at least for all

λ > 0.

This se
tion is de
omposed in two parts: In the �rst part I), we re
all Bruijn's Taube-
rian theorem, whi
h proves that the behavior of the Lapla
e transform µ̂(λ) for large
λ is limited to the behavior of µ[0, x] for small x. In the se
ond part II), we state

two Tauberian results: Karamata's Tauberian theorem 4.4.4 and analyti
 Tauberian

theorem 4.4.7. These two results 
an be used to obtain the behavior of µ[x,∞) for
large x.

I) Bruijn's Tauberian Theorem

In this se
tion, Rα(0+) denotes the 
lass of regularly varying fun
tions at origin with

index α (see de�nition 4.6.1 in Appendix B ). And

←−
f denotes the generalized inverse

of f given by

←−
f (x) := sup{t : f(t) > x}

The following theorem is given in [4, p.254℄.
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Theorem 4.4.2. (Bruijn's Tauberian theorem).

Let µ be a measure on (0,∞) and �nite on bounded sets, whose Lapla
e transform

µ̃(λ) :=

∫ ∞

0

e−λxdµ(x)

is well de�ned for all λ > 0. If α < 0, φ ∈ Rα(0+), put ψ(λ) = φ(λ)
λ
∈ Rα−1(0+); then

for B > 0,

− log µ(0, x] ∼
x→0+

B
←−
φ (1/x)

(4.4.1)

if and only if

− log µ̃(λ) ∼
λ→∞

(1− α)( B
−α

)
α

α−1

←−
ψ (λ)

(4.4.2)

Remark 4.4.3. Noti
e that in the 
ase where µ = P ◦ X−1
is the distribution of a

non-negative random variable X, then µ̂(λ) is also referred as the Lapla
e transform

of X,

µ̂(λ) = E
[
e−λX

]
,

and

µ(0, x] = P[X 6 x].

II) Karamata's and analyti
 Tauberian Theorems

Details of this part are provided in paragraph 4.6, appendix B.

Let X be a positive random variable with distribution fun
tion F and denote by F̂ its

Lapla
e transform. Then we have the following result:

Theorem 4.4.4. (Karamata's Tauberian theorem)

Let l be a slowly varying at in�nity (see de�nition 4.6.2 in Appendix B), then

a) For 0 6 α < 1, the following are equivalent

i) 1− F̂ (λ) ∼ λαl(1/λ) (λ→ 0)

ii) 1− F (x) ∼ l(x)

xαΓ(1− α) (x→∞)
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b) For α = 1, the following are equivalent

i) 1− F̂ (λ) ∼ λαl(1/λ) (λ→ 0)

ii)

∫ x

0

(1− F (t))dt ∼ l(x) (x→∞)

Proof :

The proof is given in Appendix B, se
tion 4.6. �

Remark 4.4.5. Interpretation The interpretation of this theorem lies dire
tly to the

argument if "the �rst moment is �nite", that is the Lapla
e transform is di�erentiable

at the origin (see remark 4.6.11 ). So in the 
ase when the Lapla
e transform is

di�erentiable e at the origin, F̂ (s) may be expanded in a Taylor series and then near

to the origin, 1 − F̂ (λ) is equivalent to Aλ + o(λ) (A is a 
onstant). Then α is equal

to 1 in the above theorem, therefore we 
an dedu
e from b) an information 
on
erning

the integrated tail of F but we don't have an information 
on
erning the tail behavior

of F .

In appendix B (paragraph 4.6), we 
onsider the 
ase of the exponential law in order to

understand the limitation of this theorem.

We now present the analyti
 Tauberian theorem whi
h des
ribes the asymptoti
 be-

havior of the tail probability based on analyti
 properties of the Lapla
e-Stieltjes trans-

form. In [23℄ and [22℄, Nakagawa has proved that if the abs
issa of 
onvergen
e of the

Lapla
e-Stieltjes transform is negative and the singularities of this transform on the

axis of 
onvergen
e are only a �nite number of poles, then the tail probability de
ays

exponentially fast with a 
onstant related to the abs
issa of 
onvergen
e.

Let X be a non-negative random variable with probability distribution fun
tion

F (x) = P [X 6 x] .

The Lapla
e-Stieltjes transform Φ of the distribution fun
tion F is de�ned by:

Φ(s) :=

∫ ∞

0

e−sxdF (x), (4.4.3)

where s ∈ C.
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De�nition 4.4.6. The abs
issa of 
onvergen
e of Φ(s) is de�ned as the real number

a0 su
h that the integral (4.4.3) 
onverges for Re(s) > a0 and diverges for Re(s) < a0.
The line Re(s) = a0 is 
alled the axis of 
onvergen
e of Φ(s).

Now we present the main theorem in Nakagawa [22℄:

Theorem 4.4.7. (Analyti
 Tauberian theorem)

If −∞ < a0 < 0 and the singularities of Φ(s) on the axis of 
onvergen
e Re(s) = a0
are only a �nite number of poles, then we have:

lim
x→∞

1

x
log P[X > x] = a0

Remark 4.4.8. The assumption of theorem 4.4.7 implies that there exists an open

neighborhood U of Re(s) = a0 su
h that Φ(s) is analyti
 on U ex
ept for the �nite

number of poles on Re(s) = a0.

4.4.2 The behavior of F̃ (x) for small x

Let us denote by F̃ the 
umulative distribution fun
tion of k
(−|µ̃|)
∞ :

F̃ (x) = P
[
k(−|µ̃|)
∞ 6 x

]
,

and

1− F̃ (x) = P
[
k(−|µ̃|)
∞ > x

]
.

Proposition 4.4.9. The behavior of the 
umulative distribution fun
tion F̃ for small

x is given by:

− log F̃ (x) ∼
x→0+

B

x
, (4.4.4)

where B = 1
8
(1 + 2|µ̃|)2 is a positive 
onstant.

Proof :

Let

φ(x) =
1

x
, ψ(x) =

1

x2
and B =

1

8
(1 + 2|µ̃|)2

We have φ ∈ R−1(0+) and ψ(x) = φ(x)
x
∈ R−2(0+).
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From (4.2.1), we have:

E

[

e−λk
(−|µ̃|)
∞

]

=

√

λ/2

sinh
(√

λ/2
)(

cosh(
√

λ/2)
)2|µ̃|

Then

− logE
[

e−λk
(−|µ̃|)
∞

]

= − log(
√

λ/2) + log
(

sinh
(√

λ/2
))

+ 2|µ̃| log
(

cosh
(√

λ/2
))

= − log(
√

λ/2) + log

(

e
√

λ/2

2

(

1− e−2
√

λ/2
)
)

+ 2|µ̃| log
(

e
√

λ/2

2

(

1 + e−2
√

λ/2
)
)

= − log(
√

λ/2)− (1 + 2|µ̃|) log 2 + (1 + 2|µ̃|)
√

λ/2

+ log
(

1− e−2
√

λ/2
)

+ 2|µ̃| log
(

1 + e−2
√

λ/2
)

∼
λ→∞

(1 + 2|µ̃|)√
2

√
λ (be
ause

log(x)

x
→ 0 as x→∞)

∼
λ→∞

2
√
B

←−
ψ (λ)

where

←−
ψ is the inverse fun
tion of ψ.

Then − logE
[

e−λk
(−|µ̃|)
∞

]

satis�es the equivalen
e (4.4.2) in proposition 4.4.2 with α =

−1 (be
ause φ ∈ R−1(0+)). Then from proposition 4.4.2 we have:

− log F̃ (x) ∼
x→0+

B

x

�

4.4.3 The behavior of 1− F̃ (x) for large x

By applying Karamata's Tauberian theorem 4.4.4 with the random variable k
(−|µ̃|)
∞ , we

�nd that the index α is equal to 1. So we are in the 
ase b) in proposition 4.4.4 and

then we 
an't dedu
e an equivalent for 1− F̃ (x) for large x.
So we aim to use the analyti
 Tauberian theorem 4.4.7 in order to dedu
e the behavior

of 1− F̃ (x) for large x.
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In the sequel, we denote respe
tively by Φ1(λ) and Φ2(λ) the Lapla
e transform of

S1 and C2|µ̃|.

Lemma 4.4.10. The abs
issa of 
onvergen
e of Φ1 and Φ2 are given respe
tively by

a1 = −2π2
and a2 = −

π2

2
(4.4.5)

Proof :

From the de�nition of the variable S1, we have

Φ1(λ) := E
[
e−λS1

]
= E

[ ∞∏

n=1

exp(− λΓ1,n

2n2π2
)

]

=

∞∏

n=1

(

E

[

exp(− λΓ1,n

2n2π2
)

])
(
be
ause Γ1,n are independent

)

(4.4.6)

=
∞∏

n=1

(

1 +
λ

2π2n2

)−1

(if λ > −2π2
) (4.4.7)

The 
ondition λ > −2π2
in (4.4.7) is dedu
ed from (4.2.2), this 
ondition ensures that

ea
h term in the in�nite produ
t in (4.4.6) is �nite and is equal to

(
1 + λ

2π2n2

)−1
.

We now prove that λ = −2π2
is the abs
issa of 
onvergen
e of Φ1.

i) We �rst proof that for λ > −2π2
, Φ1(λ) is �nite. In fa
t, for λ > −2π2

the

Lapla
e transform Φ1(λ) is expli
itly given by the produ
t (4.4.7) whi
h is �nite.

Indeed,

log

( ∞∏

n=1

(

1 +
λ

2π2n2

)−1
)

=

∞∑

n=1

log

((

1 +
λ

2π2n2

)−1
)

.

Noti
e that the general term of this series is equivalent to

C
n2 , where C is a


onstant. Then the above series is 
onvergent.

ii) It remains to proof that for λ < −2π2
, the Lapla
e transform Φ1(λ) is in�nite.

From (4.4.6) we have:

Φ1(λ) =
∞∏

n=1

(

E

[

exp(− λΓ1,n

2n2π2
)

])
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For λ < −2π2
there exists n0 ∈ N su
h that −2(n0 + 1)2π2 6 λ < −2n2

0π
2
.

Then

∞∏

n=1

(

E

[

exp(− λΓ1,n

2n2π2
)

])

=

n0∏

n=1

(

E

[

exp(− λΓ1,n

2n2π2
)

])

︸ ︷︷ ︸

=∞

∞∏

n=n0+1

(

E

[

exp(− λΓ1,n

2n2π2
)

])

︸ ︷︷ ︸

<∞

is not �nite.

Noti
e that the �rst produ
t on the right hand-side is in�nite. In fa
t, for ea
h

1 6 n 6 n0, the expe
tation E

[

exp(− λΓ1,n

2n2π2 )
]

is in�nite, then the produ
t is

in�nite.

The se
ond produ
t on the right hand-side is �nite be
ause for ea
h n > n0 + 1,
we have

λ
2π2n2 > −1 and then:

∞∏

n=n0+1

(

E

[

exp(− λΓ1,n

2n2π2
)

])

=

∞∏

n=n0+1

(

1 +
λ

2π2n2

)−1

where we prove by the same argument as in 
ase i) that the last produ
t is �nite.

Similarly for the random variable C2|µ̃|. We have:

E
[
e−λC2|µ̃|

]
= E

[ ∞∏

n=1

exp

(

− λΓ2|µ̃|,n

2π2(n− 1
2
)2

)]

=

∞∏

n=1

(

E

[

exp(− λΓ2|µ̃|,n

2π2(n− 1
2
)2
)

])
(
be
ause Γ2|µ̃|,n are independent

)

(4.4.8)

=

∞∏

n=1

(

1 +
λ

2π2(n− 1
2
)2

)−2|µ̃|
(
if λ > −π

2

2

)
. (4.4.9)

Similarly by the same argument in the 
ase of the random variable S1, we 
an dedu
e

that a2 = −π2

2
is the abs
issa of 
onvergen
e of C2|µ̃|.

�

Now we have the following theorem whi
h states that the tail probability de
ays expo-

nentially.
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Proposition 4.4.11. We have

lim
x→∞

1

x
log[1− F̃ (x)] = −π

2

2
(4.4.10)

Proof :

From the equality in law in lemma 4.2.2, we 
an dedu
e that:

E

[

eλk
(−|µ̃|)
∞

]

= E
[
eλ(S1+C2|µ̃|)

]
(for λ ∈ R),

So E

[

eλk
µ̃
∞

]

is �nite i� E
[
eλ(S1+C2|µ̃|)

]
is �nite. Then from lemma 4.4.10, we dedu
e

that a0 = −π2

2
is the abs
issa of 
onvergen
e of k

(−|µ̃|)
∞ . As the zeros of the hyperboli


sine and the hyperboli
 
osine fun
tions are imaginar 
omplex numbers, then we have

the sole singularity −π2

2
at the axis of 
onvergen
e Re(λ) = −π2

2
.

Therefore from theorem 4.4.7, we dedu
e that

lim
x→∞

1

x
log[1− F̃ (x)] = −π

2

2

�

4.5 Appli
ation to the dete
tion a 
hange in the 
on-

stant 
oe�
ient σ

We now show how the normalized indi
ator NI 
an dete
t a regime 
hange in σ. For
that we aim to 
ompare the behavior of its tails for di�erent σ. To emphasize the

dependen
e of the normalized indi
ator of the 
onstant 
oe�
ient σ, we will use the

notation NIδ(σ).

• Compare the behavior of P[NIδ 6 x] for small x

From 
orollary 4.1.2, the behavior of the 
umulative distribution fun
tion of NIδ 
an
be dedu
ed from that of k

(µ̃)
∞ . Then from proposition 4.4.9, the behavior of P[NIδ 6 x]

for small x is given by:

− log P[NIδ 6 x] = − log P
[

k−|µ̃|
∞ 6

x

σ2

]

∼
x→0+

(1 + 2|µ̃|)2 σ2

8x
. (4.5.1)

We remark that for σ0 less than σ1, P[NIδ(σ0) 6 x] de
ays exponentially to zero just

a little faster than P[NIδ(σ1) 6 x].
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• Compare the behavior of P[NIδ > x] for large x

Similarly as above, we 
an dedu
ed from 
orollary 4.1.2 and proposition 4.4.11 that:

lim
x→∞

1

x
log P[NIδ > x] = lim

x→∞

1

x
logP

[

k−|µ̃|
∞ >

x

σ2

]

= − π2

2σ2
. (4.5.2)

Also we remark that for σ0 less than σ1, P[NIδ(σ0) > x] de
ays exponentially to zero

faster than P[NIδ(σ1) > x].

We have showed that the tails behavior depend on the value of σ. So we 
an dedu
e

that we have di�erent behavior of these tails for di�erent value of σ. Therefore we 
an
dedu
e that the normalized indi
ator NI has the 
apa
ity to dete
t a regime 
hange

in σ.

Numeri
al results:

We now show numeri
ally the above result by estimating the density of the variable

NIδ in order to verify that the behavior of its tails for di�erent value of σ behaves like

what we have got in (4.5.1) and (4.5.2).

Noti
e that we will be 
areful about the 
hoi
e of the parameters µ,σ0, σ1 and δ as in
observation 4.1.3 in order to have the 
onvergen
e of the 
umulative distribution of NIδ
to that of σ2k

(−|µ̃|)
∞ and then to dedu
e from (4.4.11) and (4.4.4) the two equivalents

(4.5.1) and (4.5.2).

First we illustrate in �gures 4.3(a) and 4.3(b) the estimated densities of the random

variableNIδ in the 
ase where µ̃ = −3. Then from observation 4.1.3, the approximation

of P[NIδ 6 x] by P[σ2k
(−|µ̃|)
∞ 6 x] is good when

σ2δ > 2. (4.5.3)

In �gure 4.3(a), we estimate the density of NIδ(σ0) and NIδ(σ1) for small δ = 0.8,
where σ0 = 1.5 and σ1 = 2.5. In �gure 4.3(b), we estimate the density of NIδ(σ0) and
NIδ(σ1) for large δ = 2, where σ0 = 1 and σ1 = 1.5. Noti
e that σ0 and σ1 are sele
ted
su
h that σ2

0δ and σ
2
1δ satisfy (4.5.3).

Se
ond we illustrate in �gures 4.3(d) and 4.3(
) the estimated densities of the random

variable NIδ in the 
ase where µ̃ = −5. Similarly as above, we 
an dedu
e from

observation 4.1.3 that the 
umulative distribution fun
tion of NI is 
lose to that of

σ2k
(−|µ̃|)
∞ when

σ2δ > 0.8. (4.5.4)
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In �gure 4.3(d), we estimate the density of NIδ(σ0) and NIδ(σ1) for small δ = 0.8,
where σ0 = 1 and σ1 = 1.5. In �gure 4.3(
), we estimate the density of NIδ(σ0) and
NIδ(σ1) for large δ = 2, where σ0 = 0.6 and σ1 = 1.2. Here σ0 and σ1 are sele
ted su
h

that σ2
0δ and σ

2
1δ satisfy (4.5.4).
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Figure 4.3: Esitmated density of NI indi
ator

From the above numeri
al example, we remark that the right tail probability of NI
de
ays exponentially fast to zero with small σ0 than the right tail probability of NI
with σ1 and this result is theoreti
ally proved in (4.5.2). The left tail probability of

NI with σ0 de
ays to zero a little faster than the left tail probability of NI with σ1,
also this result is given theoreti
ally in (4.5.1).



62

CHAPTER 4. ASYMPTOTIC ANALYSIS OF THE BANDWIDTH

INDICATOR IN THE CASE OF LARGE VOLATILITIES

4.6 Appendix B

Tauberian Theory

De�nition 4.6.1. A measurable fun
tion f : (0,∞) → (0,∞) is regularly varying at

the origin with index α, and we write f ∈ Rα(0+) if for every a > 0,

lim
x→0

f(ax)

f(x)
= aα

De�nition 4.6.2. A measurable fun
tion f : (0,∞) → (0,∞) is slowly varying at

in�nity if for every a > 0, lim
x→∞

f(ax)

f(x)
→ 1

De�nition 4.6.3. A measurable fun
tion f : (0,∞) → (0,∞) is regularly varying at

∞ if for every a > 0, the limit lim
x→∞

f(ax)

f(x)
exists.

Lemma 4.6.4. (Chara
terization of a regularly varying fun
tion [2, p.9℄).

If the fun
tion f is regularly varying at in�nity, then there exists a real number ρ, 
alled
the index, su
h that

lim
x→∞

f(ax)

f(x)
= aρ (4.6.1)

for every a > 0. Moreover, l(x) = f(x)x−ρ
is slowly varying at ∞.

Proposition 4.6.5. If l is slowly varying, X is so large that l(x) is lo
ally bounded in

[X,∞], and α > −1, then
∫ x

X

tαl(t)dt ∼ xα+1l(x)/ (α + 1)

Proof :

We refer to [4, p.26℄. �

De�nition 4.6.6. A fun
tion f on [0,∞) is said to be ultimately monotone if it is

monotone on some [x0,∞) for some x0 > 0.

If U : R → R has lo
ally bounded variation, is right-
ontinuous, and vanishes on

(−∞, 0), we de�ne its Lapla
e -Stieltjes transform Û by:

Û(λ) =

∫ ∞

0

e−λxdU(x)
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where the integral 
onverges absolutely for s > c or more generally for all 
omplex

s = a+ ib with a > c. The 
onstant c is de�ned as:

c = inf{a ∈ R :

∫ ∞

0

e−axdF (x) <∞}

and dU denote the asso
iated Stieltjes measure for U .

The most important 
ase is when U is non-de
reasing on R, with U = 0 on (−∞, 0).
For su
h U , statements about Û are to be 
onsidered to in
lude the assertion that it

is �nite for the arguments in question.

We now present a theorem from [1, p.58℄.

Theorem 4.6.7. Let X is a Bana
h spa
e and U : R 7→ X be a lo
al bounded semi-

variation. Assume c <∞. Then

Ũ (n) =

∫ ∞

0

e−λt(−t)ndU(x).

where Ũ (n)
denotes the nth

derivative of Ũ .

We now give Karamata Tauberian Theorem from [4, p.37℄

Theorem 4.6.8. (Karamata Tauberian Theorem). Let U be a non-de
reasing right-


ontinuous fun
tion on R with U(x) = 0 for all x < 0. If l varies slowly and c > 0,ρ >
0, the following are equivalent:

U(x) ∼ cxρl(x)

Γ(1 + ρ)
(x→∞) (4.6.2)

Û(λ) ∼ cλ−ρl(1/λ) (λ→ 0+) (4.6.3)

Suppose that U is absolutely 
ontinuous with density u, say:

U(x) =

∫ x

0

u(y)dy

When U has a density U ′ = u it is desirable to obtain estimate of u. This problem


annot be treated in full generality, so we may obtain a "di�erentiated form" of the

asymptoti
 relation under the "ultimately monotone" 
ondition as we show in the next

theorem.

Theorem 4.6.9. (Monotone Density Theorem).

Let U(x) =

∫ x

0

u(y)dy. If U(x) ∼ cxρl(x) (x → ∞), where c ∈ R,ρ > 0, l is slowly

varying at in�nity and if u is ultimately monotone, then

u(x) ∼ ρxρ−1l(x) (x→∞) (4.6.4)
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Proof :

We refer to [4, p.39℄. �

Conversely, if we have (4.6.4), then Proposition 4.6.5 on "integrating asymptoti
 rela-

tions" yields U(x) ∼ cxρl(x) (x→∞) even if u is not ultimately monotone.

Appli
ation to probability theory

In this statement we are interested by the probability 
ase i.e where U is the 
umulative

distribution fun
tion of a real random variables.

Let X be a non-negative random variable with distribution fun
tion F (x) := P[X 6 x].
The indu
ed law of X on R is the Lebesgue-Stieltjes measure dF (x) = P[X ∈ dx]. We

shall identify the law with F .

For F supported by [0,∞), the Lapla
e-Stieltjes transform

F̂ (λ) := E
[
e−λX

]
=

∫ ∞

0

e−λxdF (x).

is �nite for all λ > 0.

Preliminaries

Here we list some elementary properties whi
h are useful in the proof of theorem 4.6.14.

Lemma 4.6.10. Let X be a positive random variable with probability distribution fun
-

tion F . Let F̂ its Lapla
e transform, then F̂ possesses derivatives of all orders given

by

F̂ (n)(λ) = (−1)n
∫ ∞

0

e−λxxndF (x).

Proof :

Apply theorem 4.6.7. �

Remark 4.6.11. The above lemma implies that F possesses a �nite nth
moment if

and only of a �nite limit F̂ (n)(0) exists. For n = 1, E[X ] = −F̂ (1)(0) and for n = 2,
E[X2] = −F̂ (2)(0).

Lemma 4.6.12. For any α > 0

∫ ∞

0

xαdF (x) = α

∫ ∞

0

xα−1(1− F (x))dx (4.6.5)
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Proof :

We have that:

∫ ∞

0

xα−1 (1− F (x)) dx =

∫ ∞

0

xα−1

∫ ∞

x

dF (y)dx =

∫ ∞

0

xα−1

∫ ∞

0

1(y>x)dF (y)dx

=Fubini
∫ ∞

0

∫ ∞

0

xα−11(y>x)dxdF (y)

=
1

α

∫ ∞

0

yαdF (y)

Then (4.6.5) follows. �

Lemma 4.6.13.

∫ ∞

0

e−λx (1− F (x)) dx =
1− F̂ (λ)

λ
(4.6.6)

Proof :

Integrating by parts F̂ (λ) =

∫ ∞

0

e−λxdF (x), we get:

F̂ (λ)

λ
=

∫ ∞

0

e−λxF (x)dx

Then

1− F̂ (λ)
λ

=

∫ ∞

0

e−λx (1− F (x)) dx

�

Let X be a positive random variable with distribution fun
tion F and denote by F̂ its

Lapla
e transform. Then we have the following result:

Theorem 4.6.14. Let l is a slowly varying at in�nity, then

a) For 0 6 α < 1, the following are equivalent

i) 1− F̂ (λ) ∼ λαl(1/λ) (λ→ 0)

ii) 1− F (x) ∼ l(x)

xαΓ(1− α) (x→∞)

b) For α = 1, the following are equivalent

i) 1− F̂ (λ) ∼ λαl(1/λ) (λ→ 0)
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ii)







∫ x

0

tdF (t) ∼ l(x) (x→∞)

∫ x

0

(1− F (t))dt ∼ l(x) (x→∞)

Proof :

From (4.6.6), we remark that

1−F̂ (λ)
λ

is the Lapla
e transform of the fun
tion

∫ x

0

(1− F (t)) dt.

• 0 6 α < 1:

From i) we have that 1−F̂ (λ)
λ
∼ λα−1l(1/λ), then by Karamata's Tauberian The-

orem 4.6.8 we dedu
e that i) is equivalent to:

∫ x

0

(1− F (t)) dt ∼
x→∞

x1−αl(x)

Γ(2− α)

As 1 − F (t) is ultimately monotone and α < 1, then by the monotone density

theorem 4.6.9 we get:

1− F (x) ∼
x→∞

(1− α)
Γ(2− α)x

−αl(x) =
1

Γ(1− α)x
−αl(x)

Therefore i) implies ii). Conversely an integration shows that ii) implies i), hen
e
the equivalen
e between i) and ii) in a).

• α = 1:

From i) we have that 1−F̂ (λ)
λ
∼ l(1/λ), then by Karamata's Tauberian Theorem

4.6.8 we dedu
e that i) is equivalent to:

∫ x

0

(1− F (t)) dt ∼
x→∞

l(x)

On the other hand, noti
e that from (4.6.5) the two statement in ii) are equal as
x→∞. Then i) implies ii) in b).
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�

Appli
ation: The 
ase of the exponential law

We now aim to apply the above theorem 4.6.14 to the exponential law.

Let X be a exponential random variable with parameter µ = 1 and l(x) = x
1+x

.

We have:

1− F̂ (λ) = λ

1 + λ
= λl(1/λ) (4.6.7)

As l is slowly varying fun
tion at in�nity, then from 4.6.14 we have:

∫ x

0

(1− F (t))dt ∼
x→∞

l(x)

So we have an information about the integrated tail probability for large x, but we

don't have an equivalent for the tail probability 1− F (x) for large x.
So we aim to de�ne another random variable Y in fun
tion of X su
h that its �rst

moment is in�nite and we apply again the theorem 4.6.14 in order to get an information

about the tail probability of Y .

Let Y = eβX , where β > 1 and X be the exponential law with parameter µ = 1. We

remark that the �rst moment of Y is in�nite.

As above, we denote by FY the distribution fun
tion of Y and by F̂Y its Lapla
e

transform.Then for λ > 0, we have:

F̂Y (λ) = E[e−λY ] = E[e−λeβX

] =

∫ ∞

0

e−λeβx

e−xdx

Using the 
hange of variable u = eβx, we obtain that

F̂Y (λ) =
1

β

∫ ∞

1

e−λu

u
1
β
+1
du

Firstly, we aim to �nd a slowly varying fun
tion l at in�nity su
h that

1− F̂Y (λ) ∼ λαl(1/λ) (λ→ 0)

where 0 6 α < 1.

We have:

1− F̂Y (λ) = 1− 1

β

∫ ∞

1

e−λu

u
1
β
+1
du =

1

β

∫ ∞

1

1− e−λu

u
1
β
+1

du (4.6.8)
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Let f(x) = 1
β

∫ ∞

1

1− e−u
x

u
1
β
+1

du. Then for a > 0, we have:

lim
x→∞

f(ax)

f(x)
= lim

x→∞

∫ ∞

1

1− e− u
ax

u
1
β
+1

du

∫ ∞

1

1− e−u
x

u
1
β
+1

du

= lim
x→∞

1

a1/β

( 1
x
)1/β

∫ ∞

1/ax

1− e−ζ

ζ
1
β
+1

dζ

( 1
x
)1/β

∫ ∞

1/x

1− e−v

v
1
β
+1

dv

→ 1

a1/β

The last equality 
omes from the 
hange of variable ζ = u
ax

in the numerator and v = u
x

in the denominator.

As lim
x→∞

f(ax)

f(x)
=

1

a1/β
, then from lemma 4.6.4, the fun
tion l(x) = x1/βf(x) is slowly

varying at in�nity.

From (4.6.8), we have that:

1− F̂ (λ) = λ1/βl(1/λ)

where 1/β is less than 1.

Then from theorem 4.6.14, the tail behavior of FY near in�nity is given by:

1− FY (x) ∼
l(x)

x1/βΓ(1− 1/β)
∼ 1

Γ(1− 1/β)
f(x) (x→∞)

∼ 1

Γ(1− 1/β)

1

β

∫ ∞

1

1− e−u
x

u
1
β
+1

du (4.6.9)

On the other hand, we have:

1− FY (x) = P[Y > x] = P[X >
1

β
log(x)] =

1

x1/β
(4.6.10)

Finally we 
he
k that (4.6.9) is equivalent to (4.6.10) at in�nity. Let δ = 1
x
, then

∫ ∞

1

1− e−u
x

u
1
β
+1

du =

∫ ∞

1

1− e−δu

u
1
β
+1

du = δ
1
β

∫ ∞

δ

1− e−ζ

ζ
1
β
+1

dζ, (4.6.11)

where the last equality 
omes from the 
hange of variable ζ = δu.

As δ
1
β

∫ ∞

δ

1− e−ζ

ζ
1
β
+1

dζ = δ
1
β

[
∫ ∞

0

1− e−ζ

ζ
1
β
+1

dζ −
∫ δ

0

1− e−ζ

ζ
1
β
+1

dζ

]

,

so, when x→∞ (i.e δ near to 0), (4.6.11) is equivalent to

δ
1
β
[
A +O(δ1/β)

]
∼ A.δ1/β +O

(
δ2/β

)
∼ A.

1

x1/β
+O

(
1

x2/β

)

where A is a 
onstant. Therefore the equivalen
e between (4.6.9) and (4.6.10) is proven.
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Joint density of Bessel pro
ess and the integral of its square

The following Lemma is given in [6℄(formulae 1.9.8 p.378 and 1.0.6 p.373)

Lemma 4.6.15. Let R
(n)
s be a n-dimensional Bessel pro
ess started at x, then

Px

[∫ t

0

(
R(n)

s

)2
ds ∈ dz, R(n)

t ∈ dy
]

=
yν+1

x
isz
(
ν, t, 0, (x2 + y2)/2, xy/2

)
dzdy

and

Px

[

R
(n)
t ∈ dy

]

= yν+1x−νt−1e−(x2+y2)/2tIν(xy/t)dy

when ν = (n/2)− 1 is 
alled the index of the Bessel pro
ess R.

Spe
ial fun
tions

These fun
tions are de�ned in [6℄.

Spe
ial Inverse Lapla
e Transforms:

isz(ν, t, r, y, x) := L−1
a

[
√
2a

sh(t
√
2a)

exp
(
− r
√
2a− y

√
2a ch(t

√
2a)

sh(t
√
2a)

)
Iν
( 2x

√
2a

sh(t
√
2a)

)]

where

Iν(x) :=
∞∑

k=0

(x/2)ν+2k

k!Γ(ν + k + 1)

and

Iν(x) ≃
1

Γ(ν + 1)
(x/2)ν as x→ 0 (4.6.12)

Error fun
tion

Erfc(x) :=
2√
π

∫ x

0

e−v2dv

and

Erfc(x) ≈ 1√
πx
e−x2

(as x→∞)
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Gamma fun
tions The in
omplete gamma fun
tion is de�ned as:

Γ(s, x) :=

∫ ∞

x

us−1e−uds

and the gamma fun
tion is de�ned as:

γ(x) :=

∫ ∞

0

ux−1e−udu, (x > 0)
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Quadrati
 variation estimator and

Bollinger Bands indi
ator

We have showed in previous 
hapters that the Bollinger Bandwidth indi
ator 
an be

used as an estimator to dete
t the 
hange time at whi
h the volatility 
hanges its value.

Also it is well known in the literature that the quadrati
 variation is an estimator of

the volatility, that is, 
an be used to dete
t the 
hange time of the volatility. But the

quadrati
 variation estimator is optimal if we sele
t the time in
rement as small as

possible.

We 
onsider the 
ase of a trader who does not perfe
tly dete
t τ but, at least, uses an

optimal dete
tion pro
edures to de
ide when he reinvests his portfolio. So we assume

that the trader uses one of the above estimators in order to dete
t the 
hange time,

and then we are interested in this 
hapter to 
ompare the performan
e of the various

dete
tion strategies in the 
ase of large value for the time in
rement.

We assume that the 
hange time τ has an exponential law with parameter λ. We show

that in the 
ase of large time in
rement (∆ = 10−2
), the optimal trading strategy based

on Bollinger Bands indi
ator 
an overperfom that of quadrati
 variation indi
ator in

the 
ase of large value for λ. Also we show that in this 
ase of large λ, Bollinger Bands

an dete
t the 
hange time faster than quadrati
 variation.

5.1 Dete
tion methods for the 
hange time

We show in this se
tion how 
an dete
t the 
hange time of the volatility using respe
-

tively the Bollinger Bandwidth and the quadrati
 variation estimators.

Let us start by a short abstra
t about the quadrati
 variation.

We assume that the pri
e pro
ess (St) evolves a

ording to,
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dSt = St (µdt+ σdBt) . (5.1.1)

where µ and σ are 
onstants.

Then the log-pri
e pro
ess Yt = log(St) satis�es:

d logSt =

(

µ− 1

2
σ2

)

dt+ σdBt.

The main obje
t of interest is the quadrati
 variation QV :

QVt := 〈Y, Y 〉t =
∫ t

0

σ2ds = σ2t.

over a �xed time period [0, t]. The usual estimator of the QVt is the realized volatility

(RV ), whi
h is simply the sum of observed squared log-returns

RVt =

n−1∑

k=0

(
Ytk+1

− Ytk
)2

where we 
onsider a regular partition of the interval [0, t] with time in
rements ∆:

0 = t0 < t1 < ................ < tn = t, tk = k∆.

(tk, k = 0, 1....n) are the times at whi
h the pri
e of the asset is available during period

t, and n is the number of intra-period observations used in 
omputing the estimator.

In theory, sampling at in
reasingly higher frequen
y should deliver, at the limit, a


onsistent estimator of the quadrati
 variation. Further, the RVt 
onverges to the

quadrati
 variation QVt, and this 
onvergen
e it is optimal by sele
ting ∆ as small as

possible. Unfortunately this theory 
annot be applied dire
tly to real �nan
ial data.

We now return to our underlying mathemati
al model whi
h assume that the pri
e

pro
ess satis�es the following SDE:

dSt = µStdt+ St (σ1 + (σ0 − σ1)1t6τ ) dBt, (5.1.2)

We present in this se
tion two methods for 
omputing the stopping rule (alarm time)

τ̃ whi
h dete
ts the instant τ at whi
h the volatility 
hanges its value. The �rst one

is based on the quadrati
 variation estimator and the se
ond one, is based on the

Bollinger Bandwidth indi
ator.



5.1. DETECTION METHODS FOR THE CHANGE TIME 73

We �rst suppose that the trader uses the quadrati
 variation estimator and at ea
h

time tk he knows the last δ observations. Then the estimated σ̂ at ea
h time tk 
an be

obtained by:

σ̂2
tk
=

1

V∆

N∑

i=0

(
Y(k+i)∆ − Y(k−i−1)∆

)2
:=

1

N∆
RVtk , (tk = k∆). (5.1.3)

where tk ∈ {t − δ, ..., t} and the parameter δ is the size of the time window used to


ompute the (5.1.3), and is also the size of the time window used to 
ompute the

moving average for the Bollinger Bands.

For simplifying the notations, we denote in the sequel by τ̃Q the alarm time τ̃ 
omputed

by using quadrati
 variation estimator. Then τ̃Q 
an be expressed by:

τ̃Q = inf{tk;
1

N∆
RVtk > ̺}, (5.1.4)

where ̺ is a threshold to be 
ontrolled and it depends on σ0 and σ1. Indeed, the

threshold ̺ 
an be de�ned as:

̺ = c σ2
0 + (1− c)σ2

1 c ∈]0, 1[. (5.1.5)

We now assume that the trader uses Bollinger bands estimator to estimate the time

τ . Here we denote by τ̃B, the alarm time τ̃ dete
ted by using the Bollinger Bands

indi
ator. Then τ̃B 
an be expressed by:

τ̃B = inf{tk/BWItk > β} (5.1.6)

where β is a 
onstant to be �xed. For �rst intuition, the value of β 
an be 
hosen as

in se
tion 3.3 in 
hapter 1.

Noti
e that the alarms time τ̃Q and τ̃B 
an o

ur before the instant τ , that is it


orresponds to a false alarm, or after τ . So, the amount of time whi
h τ̃Q and τ̃B miss

the true time 
hange τ is given by |τ̃Q − τ | and |τ̃B − τ |. We restri
t ourselves to the

dete
tion pro
edure introdu
ed by Karatzas whi
h 
onsists in minimizing respe
tively

the amount |τ̃Q − τ | and |τ̃B − τ |.
The Karatzas's dete
tion method 
onsists in 
omputing the optimal stopping rule

(alarm time) τ̃Q that minimizes the expe
ted miss

EK(Q) = E[ |τ̃Q − τ | ], (5.1.7)

and

EK(B) = E[ |τ̃B − τ | ]. (5.1.8)
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As the alarm times τ̃Q and τ̃B depend respe
tively on the thresholds ̺ and β, then the

expe
ted miss EK(Q) and EK(B) 
an be in�uen
e by the 
hoi
e of these parameters.

So it must 
hoose the good parameters in order to minimize EK(Q) and EK(B). But
as the trader's goal is to maximize his gain, so it will be better to 
hoi
e the optimal

parameters c, β and δ as the parameters with whi
h the trader maximizes the expe
ted

utility of his terminal wealth E[log(WT )].

5.2 Compare the performan
e of the various dete
-

tion strategies

We 
ompare the performan
e of two mathemati
al dete
ted strategies aimed at de-

te
ting the time at whi
h the volatility 
hanges. We aim to 
ompare the performan
e

of traders who use one of the two volatility estimators to dete
t τ in order to de
ide

his portfolio investment strategy. Supposing that σ0 is less than σ1, then his strategy


onsists in putting all his money in the sto
k until the dete
ted time, and in the bond

after this time.

Consider a trader who takes de
isions at dis
rete times of a regular partition of the

interval [0, T ] with step ∆ = T
N
.

0 = t0 < t1 < ................ < tN = T, tk = k∆.

We denote by πQ
tk
(resp.πB

tk
) ∈ {0, 1} the proportion of the agent's wealth invested in

the risky asset at time tk, k ∈ [1, N ], using respe
tively the quadrati
 variation and

Bollinger Bands indi
ators to dete
t the 
hange time τ . Consequently,

πQ
tk
= 1(tk<τ̃Q), (5.2.1)

and the 
orresponding wealth WQ
tk
at time tk satis�es:

WQ
tk+1

=WQ
tk

[

Stk+1

Stk

πQ
tk
+
S0
tk+1

S0
tk

(1− πQ
tk
)

]

(5.2.2)

Similarly we have:

πB
tk
= 1(tk<τ̃B), (5.2.3)

and the 
orresponding wealth WB
tk
at time tk satis�es:

WB
tk+1

= WB
tk

[

Stk+1

Stk

πB
tk
+
S0
tk+1

S0
tk

(1− πB
tk
)

]

. (5.2.4)

The parameters used in this numeri
al example is des
ribed below:
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µ = 0.01 σ0 = 0.05 σ1 = 0.2
r = 0 T = 2 τ = 0.6

τ

(a) A typi
al traje
tory of the sto
k pri
e
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(b) Proportion of the wealth invested in the

risky asset

Figure 5.1: A nominal traje
tory
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Figure 5.2: Time evolution of the wealth.

Fig.5.1(a) shows the underlying traje
tory of the sto
k pri
e, when the 
hange o

urs at

τ = 0.6. Figs 5.1(b) shows the allo
ation strategies of traders using quadrati
 variation
and, respe
tively, Bollinger Bands estimators dete
tion methods. In Fig 5.2(a), we

show the time evolution of the wealth.

We aim to 
ompute the optimal parameters for ea
h method, this means we aim to
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ompute the optimal parameters c and δ of the quadrati
 variation estimator whi
h

maximize E[U(WQ
T )]. Similarly we 
ompute the optimal parameters β and δ of the

Bollinger Bands estimator whi
h maximize E[U(WB
T )]. Finally we 
ompare the optimal

E[U(WQ
T )] and E[U(WB

T )] whi
h are 
omputed with the optimal parameters.

5.2.1 Comparison results for large data ∆ = 10−2

We �rst assume that the trader displays a logarithmi
 utility fun
tion and we assume

that τ is deterministi
. The parameters used to obtain the following results are given

by:

µ = 0.01 σ0 = 0.05 σ1 = 0.2 ∆ = 10−2

r = 0 T = 2 τ = 0.6

• Results about quadrati
 variation estimator

Empiri
al determination of a good weight c

One 
an optimize the 
hoi
e of c by means of Monte Carlo simulations. For ea
h δ, we
have simulated 106 traje
tories of the asset pri
e and 
omputed the time evolution of

the expe
tation logarithm of wealth for di�erent value of c. Then the optimal 
hoi
e of

c is that maximize the E[log(WQ
T )]. In tabular 5.1, we show some optimal c for di�erent

value of δ.

δ optimal weight c
0.03 0.76

0.05 0.70

0.06 0.70

0.08 0.77

0.1 0.82

0.12 0.87

Table 5.1

Empiri
al determination of a good windowing δ

In this paragraph we aim to determine the optimal 
hoi
e of δ. From the previous

paragraph we have 
omputed for di�erent δ, the optimal asso
iated 
hoi
e of the weight
c. So now in this paragraph we 
ompute by Monte Carlo simulations the expe
tation

E[log(WQ
t )] for di�erent value of δ by �xing for ea
h δ the asso
iated optimal 
hoi
e of

c. In all our simulations, the Monte Carlo error on E[log(WQ
t )] is of order 3× 10−5

.
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Then from �gure 5.3 the optimal 
hoi
e of δ is around 0.05 and the optimal asso
iated


hoi
e of c is around 0.7.
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Figure 5.3: Comparison of the expe
ted values of the logarithm of wealth for di�erent

value of δ and for deterministi
 τ .

• Results about Bollinger Bands estimator

Empiri
al determination of a good level β

Similarly as in the quadrati
 variation 
ase, one 
an optimize the 
hoi
e of β by means

of Monte Carlo simulations. We present below for some δ the asso
iated optimal

threshold β.

δ optimal β
0.03 0.043
0.05 0.061
0.06 0.058
0.08 0.061
0.1 0.059
0.12 0.064

Table 5.2

Empiri
al determination of a good windowing δ

We now aim to determine the optimal 
hoi
e of δ. Similarly we 
ompute by Monte

Carlo simulations expe
ted logarithm of wealth E[log(WB
t )] for di�erent value of δ by
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�xing for ea
h δ its optimal 
hoi
e of β as in tabular 5.2. In all our simulations, the

Monte Carlo error on E[log(WB
t )] is also of order 3× 10−5

.

Then from �gure 5.4 the optimal 
hoi
e of δ is around 0.03 and the optimal asso
iated


hoi
e of β is around 0.043.
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Figure 5.4: Comparison of the expe
ted values of the logarithm of wealth for di�erent

value of δ and for deterministi
 τ .

• Comparison of performan
e when the traders use optimal strategy

with quadrati
 variation and Bollinger Bands.

Finally we aim to 
ompare the performan
es of optimal trading strategy based on the

quadrati
 variation estimator with optimal trading strategy based on Bollinger Bands

estimator. In �gure 5.5, we illustrate the expe
ted logarithm of wealth E[log(WQ
t )]

and E[log(WB
t )] when we have taken for both the optimal value of δ. We remark

that quadrati
 variation indi
ator 
an overperform Bollinger Bands indi
ator but the

di�eren
e between their performan
es is not large (not too signi�
ant).
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Figure 5.5: Comparison between quadrati
 variation and Bollinger Bands for logarithm

utility and for deterministi
 τ .

To 
on
lude this analysis, we examine the e�e
ts of the utility fun
tions on the optimal


hoi
e of δ for both of estimators. We now assume that the trader displays a power

utility fun
tion like U(x) = x1/2. As in the 
ase of logarithm utility fun
tion, we


ompute the optimal trading strategy based on quadrati
 variation estimator and the

optimal trading strategy based on Bollinger Bands estimator, that is we 
ompute for

both estimators the optimal 
hoi
e of δ. From Monte Carlo simulations, the optimal


hoi
e of delta for quadrati
 variation is δ = 0.06 and the optimal delta for Bollinger

Bands is δ = 0.05.
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Figure 5.6: Comparison between quadrati
 variation and Bollinger Bands for power

utility and for deterministi
 τ .

It is 
lear from this �gure that the optimal trading strategies have the same perfor-

man
es.
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• Comparison of performan
es where τ has an exponential law with pa-

rameter λ

We assume that the trader displays a power utility and we aim to examine the e�e
t

of the parameter λ on the performan
es of the strategies.
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(a) µ = 0.01, σ0 = 0.05, σ1 = 0.2, λ = 1
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Figure 5.7: Comparison of performan
es for di�erent λ.

In the above �gures, we 
ompare the performan
es of optimal trading strategies based

respe
tively on quadrati
 variation and Bollinger Bands indi
ators, when we have taken

the optimal 
hoi
e of δ for both indi
ators.

In �gures 5.7(a) and 5.7(b), we take a small value of σ0 and σ1, and we 
hange the

value of λ. We remark that for λ = 1, the performan
es are almost equal and for λ = 2,
the performan
es are also almost equal, but the Bollinger Bands slightly overperfoms

the quadrati
 variation indi
ator. From tabular 5.3, we have the expe
ted miss of

the dete
tion time τ given respe
tively for quadrati
 variation as in (5.1.7), and for

bollinger Bands as in (5.1.8). We remark that in the 
ase of λ = 2, the expe
ted
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miss EK(B) of Bollinger Bands is smaller than the expe
ted miss EK(Q) of quadrati

variation, that means that Bollinger Bands 
an dete
t the 
hange time τ faster than

quadrati
 variation.

In �gures 5.7(c) and 5.7(d), we take a large value of σ0 and σ1, and we 
hange the value
of λ. We remark that for λ = 1, the quadrati
 variation overperfoms the Bollinger

Bands indi
ator, but for λ = 6, the performan
es are almost equal and Bollinger

Bands slightly overperfoms the quadrati
 variation indi
ator. Also from tabular 5.4,

we remark that for λ = 6, the expe
ted miss EK(B) is smaller than EK(Q).

λ EK(Q) EK(B)
1 0.237 0.267
2 0.124 0.105

Table 5.3: The expe
ted miss EK(Q) and EK(B) 
orresponding to �gures 5.7(a) and
5.7(b)

.

λ EK(Q) EK(B)
1 0.291 0.366
6 0.097 0.089

Table 5.4: The expe
ted miss EK(Q) and EK(B) 
orresponding to �gures 5.7(c) and
5.7(d).
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5.2.2 Comparison result for small data ∆ = 10−4

As we have said that it is well known in the literature that quadrati
 variation indi
ator

is an optimal estimator of the volatility in the 
ase of small value of time in
rement ∆.
So in this se
tion we just give an simple example whi
h show 
learly how the optimal

trading strategy based on quadrati
 variation overperfom the trading strategy based

on Bollinger Bands. We assume that the 
hange time is deterministi
, τ = 0.6.
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Figure 5.8: Comparison of performan
es for ∆ = 10−4
.
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Portfolio allo
ation problem
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Chapter 6

Optimal portfolio allo
ation problem

with random time 
hange

6.1 Introdu
tion

The obje
tive of this 
hapter is to study the optimal portfolio allo
ation strategy in

the 
ase where the model has a 
hange of volatility at a random time τ . We aim to

make expli
it the optimal wealth and strategy in the 
ase where the model is perfe
tly

known by the trader. Of 
ourse this situation is unrealisti
. But, it is worth 
omput-

ing the best performan
e that one 
an expe
t within our setting. This performan
e

represents an optimal ben
hmark for mis-spe
i�ed allo
ation strategies relying either

on a mathemati
al model or on te
hni
al analysis.

We want to exhibit the mathemati
al optimal strategy issued from the sto
hasti
 
on-

trol theory. But, it appears that we 
an't apply the 
lassi
al sto
hasti
 
ontrol theory

without 
are be
ause:

• The di�usion 
oe�
ient of the dynami
s of the risky asset 
hanges at the random

time τ . This 
hange makes the �ltration generated by the pri
es di�erent from

the �ltration generated by the Brownian motion.

• The trader's strategy needs to be adapted to the �ltration generated by the pri
es.

In order to 
ir
umvent the di�
ulties of our optimal allo
ation problem, we will use a

te
hniques whi
h with we 
an take in a

ount the 
hange time τ in order to de
ompose

the initial allo
ation problem into an allo
ation problem before the 
hange of volatility

and an allo
ation problem after the 
hange of volatility.
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6.2 Des
ription of the mathemati
al model

The �nan
ial market 
onsists of one risky asset and a bank a

ount. The bank a

ount

has dynami
s {
dS0

t = S0
t rdt

S0
0 = 1

and the risky asset has dynami
s

{
dSt

St
= µ(St)dt+

(

σ1(St) + (σ0(St)− σ1(St))1t6τ

)

dBt

S0 = S0
(6.2.1)

where (Bt)t∈[0,T ] is a one-dimensional Brownian motion on a given probability spa
e

(Ω, F,P)(below we will pre
ise the �ltration). At the random time τ , whi
h is neither

known, nor dire
tly observable, the di�usion term 
hanges from the fun
tion σ0 to the

fun
tion σ1. we also assume that the Brownian motion (Bt)t>0 and the random variable

τ are independent.

We now take su�
ient assumptions on the 
oe�
ients in order that (6.2.1) has a

solution. These are standard assumptions that we should be able to show by Feller's

test for explosions that the solution of (6.2.1) does not explode, that is, the solution

does not tou
h 0 or ∞ in �nite time.

Let the 
oe�
ients σ0, σ1, µ : (0,∞) 7→ R satisfy the following 
onditions:

i) ∃ c, C > 0 su
h that, ∀x, we have 0 < c 6 σ2
0(x) < σ2

1(x) 6 C,

ii) µ, σ0 and σ1 are 
ontinuous and bounded,

iii) v0(0+) = v0(∞) =∞, where v0 is a fun
tion de�ned on (0,∞) as follows:

v0(x) =

∫ x

1

exp

(

−2
∫ y

1

µ(u)

σ2
0(u)u

du

)∫ y

1

2

exp

(

−2
∫ z

1

µ(u)

σ2
0(u)u

du

)

σ2
0(z)z

2

dzdy,

iv) v1(0+) = v1(∞) =∞, where v1 is a fun
tion de�ned on (0,∞) as follows:

v1(x) =

∫ x

1

exp

(

−2
∫ y

1

µ(u)

σ2
1(u)u

du

)∫ y

1

2

exp

(

−2
∫ z

1

µ(u)

σ2
1(u)u

du

)

σ2
1(z)z

2

dzdy.

Then from Feller's test for explosions given in [18, p.348℄ and under the above assump-

tions, we 
an dedu
e that the explosion time is in�nite and therefore the solution of

(6.2.1) does not explode.
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6.3 Sto
hasti
 di�erential equation for (St)

We aim in this se
tion to de�ne a �ltration G, su
h that the sto
hasti
 integral in the

pri
e dynami
 is well de�ned in G.

Let us introdu
e the pro
ess Zt = 1t>τ , 0 6 t 6 T and FZ = (FZ
t )t∈[0,T ] be the �ltration

generated by this pro
ess. We also denote by FB = (FB
t )t∈[0,T ] the �ltration generated

by the Brownian motion B. We de�ne the enlarged progressive �ltration G = (Gt)t∈[0,T ]

as:

G = F
B ∨ F

Z .

We now prove that (Bt)t>0 is a G Brownian motion. This result 
an be dedu
ed from

Ja
od's 
ountable expansion theorem (see Protter [25℄, 
hap.II,theorem 5). Here, we

give an elementary proof with re�e
ts our simple setting.

Proposition 6.3.1. (Bt)t>0 is a G Brownian motion .

Proof :

By Levy 
hara
terization of Brownian motion, it's enough to show that (Bt)t>0 is


ontinuous G lo
al-martingale with:

< B >t= t a.s. (6.3.1)

We obviously have only to prove that Bt is G martingale. ∀0 6 s 6 t,

E[Bt|Gs] = E[(Bt − Bs +Bs)|Gs]

=E[(Bt − Bs)|Gs] + E[Bs|Gs]

As Gs = FB
s ∨ σ(1θ>τ , θ 6 s) and (Bs) and τ are independent, we have:

E[(Bt − Bs)|Gs] = E[(Bt − Bs)|FB
s ] = 0

Furthermore, (B) is G-adapted, therefore (Bt)t>0 is a G Brownian motion.

�

From the de�nition of the pro
ess (Zt), the dynami
s of the pri
e pro
ess (St) 
an be

obviously expressed in terms of Z as follows:

dSt

St

= µ(St)dt+
(

σ0(St)(1− Zt) + σ1(St)Zt

)

dBt. (6.3.2)

As Zt is G-adapted and (Bt) is a G-Brownian motion, then the sto
hasti
 integral in

the above dynami
 (6.3.2) is well de�ned in the �ltration G.

In the sequel, the �ltration generated by the pri
e is denoted by FS = (FS
t )t∈[0,T ].
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Lemma 6.3.2. The pro
ess (Zt) is F
S
-adapted.

Proof :

Let Yt = log(St) and denote by g(t) the left-derivative of the quadrati
 variation for

the pro
ess Y at time t:

g(t) =







σ2
0(St) if Zt = 0

σ2
1(St) if Zt = 1

(6.3.3)

then Zt = 1g(t)=σ2
1(St). As g(t) is the left-derivative of the quadrati
 variation for the

pro
ess Y , thus it is FS
-adapted, and therefore the result follows. �

Lemma 6.3.3. The �ltration generated by the observations F
S

is equal to the aug-

mented �ltration G = FB ∨ FZ
.

Proof :

From lemma 6.3.2, (Zt) is F
S
-adapted. Furthermore, we have

log(St) =

∫ t

0

(

µ(Sθ)−
1

2

(

σ2
0(Sθ)(1−Zθ)+σ

2
1(Sθ)Zθ

))

dθ+

∫ t

0

(σ0(Sθ)(1−Zθ)+σ1(Sθ)Zθ)dBθ.

Remark that under the assumption i) on σ0 and σ1, that is, ∀x, 0 < c 6 σ2
0(x) < σ2

1(x),
we have that the integrand in the sto
hasti
 integral is bounded below by a stri
tly

positive 
onstant. Then it is enough to di�erentiate the above equation and divide by

the integrand of the sto
hasti
 integral (whi
h is stri
tly greater than zero), in order

to dedu
e that (Bt) is written in terms of FS
-adapted pro
esses, therefore it is FS

-

adapted, and so G := FB ∨ FZ ⊂ FS
. The other in
lusion is obvious. Therefore the

result follows.

�

6.4 Right-dis
ontinuity of the �ltration (FS
t )t>0

The obje
tive of this se
tion is to prove that (FS
t ) is not a right 
ontinuous �ltration.

This 
ould follow from results in the general theory of sto
hasti
 pro
esses. We propose

here a simple proof adapted to our framework.

The following proposition stated, e.g.,in Karatzas and Shreve in [18, p.6℄ will be useful

to prove the dis
ontinuity of the �ltration (FS
t ). It is known as Galmarino test. A



6.4. RIGHT-DISCONTINUITY OF THE FILTRATION (FS
T )T>0 89

proof 
an be found in Della
herie and Meyer [10, p.234℄, or in Revuz and Yor [26,


hap.I, se
tion 4℄ for the 
anoni
al spa
e framework. Here we give a di�erent proof.

Proposition 6.4.1. Let X be a sto
hasti
 pro
ess and T an (FX
t ) stopping time.

Suppose that for some pair w0, w
′
0 ∈ Ω, we have Xt(w0) = Xt(w

′
0) ∀t ∈ [0, T (w0)] ∩

[0,∞[. Then T (w0) = T (w′
0).

Proof :

We denote θ0 = T (w0). Let us de�ne :

Dw0,w′
0
= {A ∈ FX

θ0
/w0 ∈ A⇐⇒ w′

0 ∈ A}

Dw0,w′
0
is the set of elements A ∈ FX

θ0
su
h that : (w0 ∈ A and w′

0 ∈ A) or (w0 6∈
A and w′

0 6∈ A).

We split the proof into two steps:

• First step: Dw0,w′
0
is a σ-algebra

We have:

� Ω ∈ Dw0,w′
0
.

� Dw0,w′
0
is 
losed under 
omplementation.

� Dw0,w′
0
is 
losed under 
ountable unions. We show that if ∀n ∈ N, An ∈

Dw0,w′
0
then ∪n∈NAn ∈ Dw0,w′

0
. In fa
t:

i) ∀n ∈ N, An ∈ Dw0,w′
0
⇒ An ∈ FX

θ0
and therefore ∪n∈NAn ∈ FX

θ0
.

ii) It remains to prove that w0 ∈ ∪n∈NAn ⇐⇒ w
′

0 ∈ ∪n∈NAn.

If w0 ∈ ∪n∈NAn, then there exists a n0 su
h that w0 ∈ An0 . As An0 ∈ Dw,w0,

then w′
0 ∈ An0 . This implies that w′

0 ∈ ∪n∈NAn.

Hen
e from i) and ii), ∪n∈NAn ∈ Dw0,w′
0
. Therefore Dw0,w′

0
is a σ-algebra.

• Se
ond step: FX
θ0
⊂ Dw0,w′

0

By hypotheses, ∀t 6 θ0 we have Xt(w0) = Xt(w
′
0). Then ∀C Borel set in R,

we have {Xt ∈ C} ∈ Dw0,w′
0
. This implies that Xt is Dw0,w′

0
measurable for

all 0 6 t 6 θ0. As FX
θ0

is the smallest σ-algebra with respe
t to whi
h Xt is

measurable for every 0 6 t 6 θ0, therefore we 
on
lude that FX
θ0
⊂ Dw0,w′

0
.
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Let us de�ne the set:

Qθ0 = {w ∈ Ω;T (w) = θ0}

To end the proof, we must be able to show that Qθ0 ∈ Dw0,w′
0
.

As T is an stopping time, we have Iθ0 := {w ∈ Ω;T (w) 6 θ0} ∈ FX
θ0
. Also we have

Jθ0 := {w ∈ Ω;T (w) < θ0} ∈ FX
θ0
, be
ause Jθ0 = ∪n∈N{w ∈ Ω;T (w) 6 θ0 − 1

n
} ∈ FX

θ0
.

As Qθ0 = Iθ0 ∩ Jc
θ0
, then Qθ0 ∈ FX

θ0
⊂ Dw0,w′

0
. As w0 ∈ Qθ0 and Qθ0 ∈ Dw0,w′

0
, then w′

0

∈ Qθ0 . Hen
e T (w0) = T (w′
0).

�

Let us denote by ΩB and ΩZ respe
tively the spa
e for the Brownian motion (Bt) and
the pro
ess (Zt).

Proposition 6.4.2. Suppose that the underlying probability spa
e is the 
anoni
al prod-

u
t spa
e Ω = ΩB × ΩZ . Let St be a solution of (6.2.1). Then τ is an (FS
t+) stopping

time but not an (FS
t ) stopping time.

Proof :

We split the proof into two steps:

• First step: we prove that τ is an (FS
t+) stopping time.

For t > 0, we have ∀ θ > t, {τ 6 t} ⊂ {τ < θ} = {g(θ) = σ2
1(Sθ)} ∈ FS

θ . Then

{τ 6 t} ⊂
⋂

θ>t

{
g(θ) = σ2

1(Sθ)
}
∈ FS

t+ . Thus τ is an (FS
+) stopping time.

• Se
ond step: we prove that τ is not an (FS
t ) stopping time.

We re
all that our probability spa
e is the 
anoni
al spa
e. Let w0 = (w, ŵ), w1 =
(w, w̃) ∈ Ω and assume that τ(ŵ) < τ(w̃), this is possible be
ause τ is not

deterministi
. We also 
onsider the pro
ess Yt de�ned in Ω as below:

For w∗ = (w,w′) ∈ Ω,

Yt(w
∗) := log(St)(w

∗) =

∫ t∧τ(w′)

0

σ0(Sθ(w))dBθ(w) +

∫ t

t∧τ(w′)

σ1(Sθ(w,w
′))dBθ(w)

+

∫ t∧τ(w′)

0

(

µ(Sθ(w))−
1

2
σ2
0(Sθ(w))

)

dθ +

∫ t

t∧τ(w′)

(

µ(Sθ(w))−
1

2
σ2
1(Sθ(w))

)

dθ.
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Noti
e that the traje
tories Yt(w0) and Yt(w1) are equal until τ(ŵ), so if we assume

that τ is an FS
stopping time, then we 
an dedu
e from proposition 6.4.1 that

τ(ŵ) = τ(w̃), whi
h exhibits a 
ontradi
tion with the assumption τ(ŵ) < τ(w̃).
Thus τ is not an FS

-stopping time.

�

Corollary 6.4.3. Within the framework of proposition 6.4.2, the �ltration (FS
t )t>0 is

right-dis
ontinuous.

Proof :

For that we prove that there exists a set A ∈ FS
t+ but A 6∈ FS

t . On the one side,

from proposition 6.4.2, τ is not an (FS
t ) stopping time, then there exists t1 su
h that

{τ 6 t1} 6∈ FS
t1
. On the other hand, τ is an (FS

t+) stopping time, thus {τ 6 t1} ∈ FS
t+1
.

Therefore, we 
an 
hoose A = {τ 6 t1}.
�

6.5 The optimal portfolio allo
ation strategy under a


hange of volatility

In this se
tion our aim is to make expli
it the optimal wealth and strategy for a trader

who knows all the parameters of the mathemati
al model. As the main di�eren
e with

the 
lassi
al sto
hasti
 
ontrol theory 
omes from the dis
ontinuity of the �ltration

generated by the pri
es or more pre
isely from the 
hange at time τ , so we aim to

resolve this 
ontrol problem by using a spe
i�
 feature of the 
hange time τ .

De�nition 6.5.1. (Trading strategy) A trading strategy is a two-dimensional sto
hasti


pro
ess h = {(H0
t , Ht) , t ∈ [0, T ]} satisfying

• h is progressively measurable

• h is adapted, i.e. ∀ t ht is FS
t -measurable.

The �nan
ial interpretation of the trading strategy is that H0
t is the number of bonds

held by the trader at time t and Ht is the number of sto
ks that he holds at time t.
So, the wealth pro
ess (Wt, t > 0) of the portfolio is su
h that for all t,

Wt = H0
t S

0
t +HtSt.
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De�nition 6.5.2. A pair (H0
t ;Ht) is 
alled self-�nan
ing if the 
orresponding wealth

pro
ess Wt is a 
ontinuous and adapted pro
ess su
h that

Wt = W0 +

∫ t

0

H0
udS

0
u +

∫ t

0

HudSu. (6.5.1)

This means that the 
omposition of the portfolio 
hanges from time t to time t + ∆t
with no endowment.

Let πt be the fra
tion of the 
urrent wealth Wt that the trader de
ides to invest in

the risky asset at time t, so 1 − πt is the fra
tion of wealth invested in the bond. we

suppose that the trading strategy is self-�nan
ing, then the wealth pro
ess satis�es the

following SDE :

dW π
t = H0

t dS
0
t +HtdSt

= rH0
t S

0
t dt+HtSt (µ(St)dt+ (σ0(St) + (σ1(St)− σ0(St))Zt)dBt)

= W π
t [(1− πt) rdt+ πt (µ(St)dt+ (σ0(St) + (σ1(St)− σ0(St))Zt)dBt)] . (6.5.2)

Let us denote by E
ζ,z
t,x the expe
tation operator 
onditional on Wt = x, St = ζ and

Zt = z. We 
onsider a utility fun
tion U whi
h is, either the logarithmi
 utility

fun
tion, or an element of the set U of the in
reasing and 
on
ave fun
tions of 
lass

C1 ((0,+∞);R) whi
h satisfy: U(0) = 0, and there exist real numbers K > 0 and

0 6 α 6 1 su
h that

0 < U
′

(x) 6 K
(
1 + x−α

)
for all x > 0.

The performan
e of an admissible trading strategy π asso
iated with a wealth pro
ess

W , is measured over the �nite horizon T by the 
ost fun
tion J de�ned as:

J(t, x, ζ, z, π) = E
ζ,z
t,x [U(W

π
T )]

and the investor's obje
tive is to maximize his expe
ted utility of wealth at the terminal

time T . He solves the following optimization problem :

V (t, x, ζ, z) = sup
π∈A

J(t, x, ζ, z, π), (6.5.3)

where A denotes the set of the admissible 
ontrols (πt)t∈[0,T ] whi
h are F
S
-adapted,

take their values in a 
ompa
t U ⊂ R.
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In the following, the fun
tion V (t, x, ζ, 0) will be interpreted as the value fun
tion

before the 
hange time, that is, z = 0 and the fun
tion V (t, x, ζ, 1) will be interpreted
as the value fun
tion after the 
hange time, that is, z = 1.

First, we present the density approa
h whi
h have been introdu
ed by Pham and Jiao

in [17℄. We shall work in this approa
h with a density hypothesis on the 
onditional

law of τ given the �ltration generated by the Brownian motion. We show that the pair

(V (t, x, ζ, 0), V (t, x, ζ, 1)) is the unique vis
osity solution of a Hamilton-Ja
obi-Bellman

system.

Se
ond, we show by veri�
ation theorem that under smoothness assumptions on the

value fun
tion, the pair (V (t, x, ζ, 0), V (t, x, ζ, 1)) is solution of a Hamilton-Ja
obi-

Bellman system.

6.5.1 Density approa
h

In this approa
h, Pham and Jiao [17℄ have taken bene�t of the spe
i�
 feature of the


hange time τ and how we 
an separate the initial optimisation problem into a problem

after the 
hange-time and a problem before the 
hange time, by relying on the density

hypothesis on the 
hange time τ .

They introdu
e the enlarged progressive �ltration G
′
= FB ∨ FD

, where FD
is the

�ltration generated by the pro
ess Dt = 1t>τ 0 6 t 6 T . Then the optimal investment

problem is to maximize the expe
ted utility of wealth at the terminal time T over all

the admissible strategy π ∈ A′
, where A′

is the set of a G
′
-predi
table pro
esses.

The main advantage of the set A′
is that we 
an use the following important result

given in [14℄ and [16℄ about the de
omposition of any G
′
-predi
table pro
ess. Let L

be a G
′
-adapted pro
ess. Then there exists an FB

-adapted pro
ess Lb
, and a family

of pro
esses {La
t (θ), θ 6 t 6 T, θ ∈ [0, T ]}, where La

t (θ) is measurable with respe
t to

FB
t ⊗ B(R+), su
h that

Lt = Lb
t1t6τ + La

t (τ)1t>τ , ∀t ∈ [0, T ]. (6.5.4)

Density hypothesis:

For any t ∈ [0, T ], the 
onditional distribution of ζ given FB
t admits a density with

respe
t to the Lebesgue measure, i.e. there exists a family of FB
t ⊗B(R+) measurable

positive fun
tion (w, θ)→ αt(w, θ) whi
h satis�es

P
[
ζ ∈ dθ|FB

t

]
= αt(θ)dθ, t ∈ [0, T ] (DH)

The family αt(.) is 
alled the 
onditional density of ζ with respe
t to Lebesgue measure

given FB
t .
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By de�nition of the 
onditional expe
tation, we have for any (bounded) Borel fun
tion

f ,

E
[
f(ζ)|FB

t

]
=

∫ ∞

0

f(θ)αt(θ)dθ a.s.

The 
onditional distribution of ζ is also 
hara
terized by the survival probability fun
-

tion

G(t) = P(ζ > t|FB
t ) =

∫ ∞

t

αt(θ)dθ.

In the sequel, q denotes the density of the 
hange time τ . As the 
hange time τ
is supposed independent of the Brownian motion B, then αt(θ) is simply a known

deterministi
 fun
tion q(θ) of θ ∈ R+
and the survival probability is a deterministi


fun
tion given as:

G(t) = P[τ > t|FB
t ] = P[τ > t] =

∫ ∞

t

q(θ)dθ. (6.5.5)

In the sequel we will use the notation G(t, s) and q(t, s) in order to des
ribe the survival
probability and the density of τ at time s su
h that τ > t.

Let us introdu
e the following pro
esses:

dS
(0)
t = S

(0)
t

[

µ(S
(0)
t )dt+ σ0(S

(0)
t )dBt

]

, (6.5.6)

dS
(1)
t = S

(1)
t

[

µ(S
(1)
t )dt+ σ1(S

(1)
t )dBt

]

, (6.5.7)

and

dW π(0)

t =W π(0)

t

[((

µ(S
(0)
t )− r

)

π
(0)
t + r

)

dt+ π
(0)
t σ0(S

(0)
t )dBt

]

, (6.5.8)

dW π(1)

t =W π(1)

t

[((

µ(S
(1)
t )− r

)

π
(1)
t + r

)

dt+ π
(1)
t σ1(S

(1)
t )dBt

]

, (6.5.9)

where π(0)
is FB

-adapted, representing the proportion of wealth invested before the


hange, and π
(1)
t is F

B
-adapted, representing the proportion of wealth invested after

the 
hange at time τ .
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Noti
e that with this approa
h, the set of admissible strategies is the set A′
of G

′
-

predi
tible pro
esses. So we �rst solve this problem under the 
onstraint that π ∈ A′
;

then, from the de�nition of A′
, we 
an dedu
e that the optimal strategy π given by

πt = π
(0)
t 1t6τ + π

(1)
t 1t>τ ,

is a FS
-adapted pro
ess and thus belongs to the set A.

We now present the main result obtained in [17℄ namely the de
omposition of the

maximisation problem into two problems as follows.

V (t, x, ζ, 0) = sup
π(0)∈A(0)

E
ζ,0
t,x

[

U
(

W π(0)

T

)

G(t, T ) +

∫ T

t

V (θ,W π(0)

θ , S
(0)
θ , 1)q(t, θ)dθ,

]

.

where A(0)
is the set of the proportion of wealth invested before the 
hange time; A(0)

is a FB
-adapted pro
ess and G the survival probability. Noti
e that the integrand of

the integral is des
ribed in terms of the value fun
tion after the rupture.

In the sequel, we shall study these two optimisation problems in the parti
ular 
ase of

the exponential law of τ with parameter λ.

In this 
ase for the law of τ , the above de
omposition 
an be rewritten as follows:

V (t, x, ζ, 0) = sup
π(0)∈A(0)

E
ζ,0
t,x

[

U
(

W π(0)

T

)

e−λ(T−t) +

∫ T

t

V (θ,W π(0)

θ , S
(0)
θ , 1)λe−λ(θ−t)dθ

]

.

We show in the above equation how the solution of the before-
hange time problem

V (t, x, ζ, 0) depends on the solution of the after-
hange time problem V (t, x, ζ, 1). Ea
h
of these optimisation problems is performed in market model driven by the Brownian

motion and with 
oe�
ients adapted with respe
t to the Brownian referen
e �ltration.

Let us now 
onsider the system

(S)







∂v
∂t
(t, x, ζ, 0) + sup

π∈U
L(0)

π v(t, x, ζ, 0) + λ (v(t, x, ζ, 1)− v(t, x, ζ, 0)) = 0

∂v
∂t
(t, x, ζ, 1) + sup

π∈U
L(1)

π v(t, x, ζ, 1) = 0

with the boundary 
ondition

v(T, x, ζ, z) = U(x), x, ζ ∈ R
+, z ∈ {0, 1}. (6.5.10)



96

CHAPTER 6. OPTIMAL PORTFOLIO ALLOCATION PROBLEM WITH

RANDOM TIME CHANGE

where

L(0)
π v(t, x, ζ, 0) =x(πµ(ζ) + (1− π)r)∂v

∂x
+

1

2
x2π2σ2

0(ζ)
∂2v

∂2x
+ ζµ(ζ)

∂v

∂ζ

+
1

2
σ2
0(ζ)ζ

2∂
2v

∂ζ2
, (6.5.11)

and

L(1)
π v(t, x, ζ, 1) =x(πµ(ζ) + (1− π)r)∂v

∂x
+

1

2
x2π2σ2

1(ζ)
∂2v

∂2x
+ ζµ(ζ)

∂v

∂ζ

+
1

2
σ2
1(ζ)ζ

2∂
2v

∂ζ2
. (6.5.12)

6.5.2 Existen
e and Uniqueness of the vis
osity solution

Under the assumptions on the utility fun
tion U , we 
an easily show that there exists

a 
onstant C su
h that, for all positive real numbers x, x̄ we have:

| U(x)− U(x̄) |6 C | x− x̄ |
(
1 + x−α + x̄−α

)
.

As in the 
lassi
al 
ase, we 
an show from the above inequality and under the bounded

and 
ontinuous assumptions on the fun
tions µ, σ0 and σ1 that the value fun
tions

V (t, x, ζ, 0) and V (t, x, ζ, 1) are 
ontinuous on [0, T ]× R+ × R+ × {0, 1}.

De�nition 6.5.3. A pair of 
ontinuous fun
tions (v(t, x, ζ, 0), v(t, x, ζ, 1)) on [0, T ]×
R+ × R+

is a vis
osity supersolution (resp. subsolution) to HJB system (S) if

∂Φ

∂t
(t̄, x̄, ζ̄, 0) + L(0)

π Φ(t̄, x̄, ζ̄, 0) + λ
(
Φ(t̄, x̄, ζ̄, 1)− Φ(t̄, x̄, ζ̄, 0)

)
> (resp. 6) 0

∂Φ

∂t
(t̄, x̄, ζ̄, 1) + L(1)

π Φ(t̄, x̄, ζ̄, 1) > (resp. 6) 0,

for all C2
pair fun
tions (Φ(t, x, ζ, 0),Φ(t, x, ζ, 1)) on [0, T ]×R+×R+

and any (t̄, x̄, ζ̄)
su
h that (Φ(t̄, x̄, ζ̄, 0),Φ(t̄, x̄, ζ̄, 1)) = (v(t̄, x̄, ζ̄, 0), v(t̄, x̄, ζ̄, 1)) and v > (resp.6) Φ on

[0, T ]× R+ × R+
.

De�nition 6.5.4. A pair of 
ontinuous fun
tions (v(t, x, ζ, 0), v(t, x, ζ, 1)) on [0, T ]×
R+ × R+

is a vis
osity solution to the above HJB system (S) if it is both a vis
osity

supersolution and subsolution to this system.
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Theorem 6.5.5. Assume that σ0 and σ1 are in C
1
b (R). Then the pair (V (t, x, ζ, 0), V (t, x, ζ, 1))

is the unique vis
osity solution of the HJB system (S) and satisfying the boundary 
on-

dition (6.5.10).

Proof :

We �rst prove the existen
e of a vis
osity solution of system (S). By trun
ation of

the 
oe�
ients of the SDE satis�ed by (St), we obtain that the pro
ess (W π(1)

t , S
(1)
t )

satisfy the 
lassi
al assumptions whi
h ensure that the value fun
tion V (t, x, ζ, 1) is a
vis
osity solution to the se
ond HJB of system (S) (
f.theorem 5.2 of [32, 
hap.4℄). We

therefore 
on
lude the existen
e result by the stability result given in proposition I.3
of Lions [20℄.

Similarly, we 
an 
on
lude that the value fun
tion V (t, x, ζ, 0) is a vis
osity solution of

the �rst HJB of system (S).

We now prove the uniqueness of the vis
osity solution of HJB system (S). As the value
fun
tions V (t, x, ζ, 0) and V (t, x, ζ, 1) are 
ontinuous and lips
hitz, then by applying

theorem 6.2 in 
hapter IV of [32℄, the uniqueness follows.

�

6.5.3 A veri�
ation theorem

Under smoothness assumptions on the value fun
tion, we show by veri�
ation theorem

that the pair (V (t, x, ζ, 0), V (t, x, ζ, 1)) is a solution of the above HJB system. We

assume that τ follows an exponential law with parameter λ, that is the pro
ess (Zt) is
an absorbed Markov pro
ess at state 1.

We start by making expli
it the in�nitesimal operator of the R+ × R+ × {0, 1} val-
ued pro
ess (W π, S, Z). Then we show our veri�
ation theorem 6.5.6 and we prove

that the optimal trading strategy is to follow the optimal strategy whi
h 
hara
terizes

V (t, x, ζ, 0) and then to swit
h when the 
hange o

urs to the optimal strategy whi
h


hara
terizes V (t, x, ζ, 1).

Let v be a smooth fun
tion de�ned on [0, T ]× R+ × R+ × {0, 1}. Let πt = p ∈ U, ∀t.
By applying It�'s formula to the pro
ess (W π, S, Z), we obtain that its in�nitesimal

operator Lπ is

Lπv(t, x, ζ, z) =

{

L(0)
π v(t, x, ζ, 0) + λ(v(t, x, ζ, 1)− v(t, x, ζ, 0)) if z = 0

L(1)
π v(t, x, ζ, 1) if z = 1

where L(0)
π and L(1)

π are de�ned respe
tively as in (6.5.11) and (6.5.12) and they are the

in�nitesimal operators asso
iated to the pro
ess (W π, S) respe
tively for �xed z = 0
and z = 1.
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In the sequel, we aim to show that a smooth solution (v(t, x, ζ, 0), v(t, x, ζ, 1)) of the
Hamilton-Ja
obi-Bellman system (S), 
oin
ides with the pair of value fun
tions

(V (t, x, ζ, 0), V (t, x, ζ, 1)). The proof of this result is de
omposed in two parts : for the

part 
on
erning the fun
tion V (t, x, ζ, 1), the proof is simple and relies essentially on

It�'s formula. For the part 
on
erning V (t, x, ζ, 0), the proof is more te
hni
al be
ause

of the volatility 
hange at time τ .

As π
(0)
t is FB

-adapted, then there exists a measurable fun
tion ρ de�ned on the 
anon-

i
al spa
e su
h that:

π
(0)
t = ρ(Bθ, θ 6 t).

Let us introdu
e θ
(0)
n whi
h will be useful in the sequel:

θ(0)n = inf{s > t :

∫ s

t

∣
∣
∣
∣

∂v

∂x

(

u,W π(0)

u , S(0)
u , 0

)

W π(0)

u π(0)
u σ0(S

(0)
u )

∣
∣
∣
∣

2

du > n}

Theorem 6.5.6. (Veri�
ation theorem)

a) Suppose that there exists a pair of fun
tions (v(t, x, ζ, 0), v(t, x, ζ, 1)) in C1,2([0, T [×R+×
R+) ∩ C([0, T ]× R+ × R+), satisfying the HJB system (S):







∂v
∂t
(t, x, ζ, 0) + sup

π∈U
L(0)

π v(t, x, ζ, 0) + λ(v(t, x, ζ, 1)− v(t, x, ζ, 0)) = 0

∂v
∂t
(t, x, ζ, 1) + sup

π∈U
L(1)

π v(t, x, ζ, 1) = 0

with boundary 
ondition v(T, x, ζ, z) = U(x), x, ζ ∈ R+, z ∈ {0, 1}

Then, for all t ∈ [0, T ], x, ζ ∈ R+

{
V (t, x, ζ, 0) 6 v(t, x, ζ, 0)
V (t, x, ζ, 1) 6 v(t, x, ζ, 1)

b) Assume there exists a maximizer (π
(0)
∗ (t, x, ζ), π

(1)
∗ (t, x, ζ)) of

(p0, p1)→
(
L(0)

p0 v(t, x, ζ, 0),L(1)
p1 v(t, x, ζ, 1)

)

su
h that







∂v
∂t
(t, x, ζ, 0) + L(0)

π
(0)
∗

v(t, x, ζ, 0) + λ(v(t, x, ζ, 1)− v(t, x, ζ, 0)) = 0

∂v
∂t
(t, x, ζ, 1) + L(1)

π
(1)
∗

v(t, x, ζ, 1) = 0
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and V (t, x, ζ, 0) = V (t, x, ζ, 1) = U(x).

Then (V (t, x, ζ, 0), V (t, x, ζ, 1)) = (v(t, x, ζ, 0), v(t, x, ζ, 1)) for all t ∈ [0, T ], x, ζ ∈
R+

and π∗
de�ned as:

π∗
t = π(0)

∗ (t,W π∗

t , St)1Zt=0 + π(1)
∗ (t,W π∗

t , St)1Zt=1. (6.5.13)

is the optimal strategy.

Proof :

I) Show that for all t ∈ [0, T ], x, ζ ∈ R+
we have : V (t, x, ζ, 1) 6 v(t, x, ζ, 1)

Let π ∈ A be an arbitrary 
ontrol pro
ess and de�ne the stopping time τn = T ∧ αn

where :

αn = inf{s > t :

∫ s

t

∣
∣
∣
∣

∂v

∂x
(u,W π

u , Su, 1)W
π
u πuσ1(Su)

∣
∣
∣
∣

2

du > n}

As v(t, x, ζ, 1) is smooth, by applying It�'s formula to s 7→ v(s,W π
s , Ss, 1) between t

and τn, we obtain:

E
ζ,1
t,x

[
v(τn,W

π
τn , Sτn , 1)

]
= v(t, x, ζ, 1) + E

ζ,1
t,x

[∫ τn

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, 1)dθ

]

+ E
ζ,1
t,x

[∫ τn

t

∂v

∂x
(θ,W π

θ , Sθ, 1)σ1(Sθ)πuW
π
θ dBθ

]

6 v(t, x, ζ, 1) (6.5.14)

From the de�nition of τn, the expe
tation of the sto
hasti
 integral 
an
els. The last

inequality 
omes from the fa
t that v(t, x, ζ, 1) veri�es the se
ond HJB equation. We

now take n→∞, τn → T , then by Fatou lemma we have:

E
ζ,1
t,x

[

lim
n

inf v
(
τn,W

π
τn , Sτn, Zτn

)]

6 lim
n

inf Eζ,1
t,x

[
v
(
τn,W

π
τn , Sτn , Zτn

)]
6 v(t, x, ζ, 1)

Therefore from the boundary 
ondition, we obtain that:

V (t, x, ζ, 1) := E
ζ,1
t,x [U(W

π
T )] 6 v(t, x, ζ, 1).



100

CHAPTER 6. OPTIMAL PORTFOLIO ALLOCATION PROBLEM WITH

RANDOM TIME CHANGE

II) Now we show that for all t ∈ [0, T ], x, ζ ∈ R
+ × R

+
we have: V (t, x, ζ, 0) 6

v(t, x, ζ, 0)

Let us introdu
e the stopping time Tn = T ∧ θn where :

θn = inf
{

s > t :

∫ s

t

∣
∣
∣
∣

∂v

∂x
(u,W π

u , Su, 0)W
π
u πu(σ0(Su)(1− Zu) + σ1(Su)Zu)

∣
∣
∣
∣

2

du > n
}

By It� formula, we have:

E
ζ,0
t,x

[
v
(
Tn,W

π
Tn
, STn , ZTn

)]
= v(t, x, ζ, 0) + E

ζ,0
t,x

[∫ Tn

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

]

+ E
ζ,0
t,x

[∫ Tn

t

(
∂v

∂x
(θ,W π

θ , Sθ, Zθ)W
π
θ πθ(σ0(1− Zθ) + σ1Zθ)

)

dBθ

]

+ E
ζ,0
t,x

[

(v(τ,W π
τ , Sτ , 1)− v(τ,W π

τ , Sτ , 0))1τ6Tn

]

=: v(t, x, ζ, 0) + A+B + C. (6.5.15)

From the de�nition of Tn, the expe
tation of the sto
hasti
 integral term 
an
els. It

remains to make expli
it the terms A and C.

We start by making expli
it the term A:

A = E
ζ,0
t,x

[(∫ Tn

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ6Tn

]

+ E
ζ,0
t,x

[(∫ Tn

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ>Tn

]

= E
ζ,0
t,x

[(∫ τ

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ6Tn

]

+ E
ζ,0
t,x

[(∫ Tn

τ

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ6Tn

]

+ E
ζ,0
t,x

[(∫ Tn

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ>Tn

]

= A1
n + A2

n + A3
n.
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i) Make expli
it the term A1
n:

Re
all that Tn = T ∧ θn, then we have

A1
n := E

ζ,0
t,x

[(∫ τ

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ6Tn

]

= E
ζ,0
t,x

[(∫ τ

t

(
∂v

∂θ
+ L(0)

π(0)v

)

(θ,W π(0)

θ , S
(0)
θ , 0)dθ

)

1
τ6T∧θ(0)n

]

As π(0),W π(0)
, S(0)

and θ
(0)
n are fun
tionals of (Bθ, θ > 0), then by independen
e of

(Bθ, θ > 0) and τ , we therefore have:

A1
n = E

B

[
∫ T∧θ(0)n

t

∫ s

t

(
∂v

∂θ
+ L(0)

π(0)v

)

(θ,W π(0)

θ (x), S
(0)
θ , 0)dθ.λe−λ(s−t)ds

]

where W π(0)

θ (x) is the solution of the SDE (6.5.8) with initial 
ondition W π(0)

t (x) = x
and EB

is the expe
ted operator w.r.t the law of (Bθ, θ > 0).

As v(t, x, ζ, 0) is solution of the �rst HJB of system (S), then

A1
n 6 E

B

[
∫ T∧θ(0)n

t

∫ s

t

−λ
(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.λe−λ(s−t)ds

]

.

ii) Make expli
it the term A2
n:

A2
n := E

ζ,0
t,x

[(∫ Tn

τ

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ6Tn

]

= E
ζ,0
t,x

[(∫ Tn

τ

(
∂v

∂θ
+ L(1)

π v

)

(θ,W π
θ , Sθ, 1)dθ

)

1τ6Tn

]

(from the de�nition of Lπ)

6 0.

Where the last inequality 
omes from the fa
t that v(t, x, ζ, 1) is solution of the se
ond
HJB equation of system (S).

iii) Make expli
it the term A3
n:
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As above we 
an dedu
e that:

A3
n = E

B

[
∫ T∧θ(0)n

t

(
∂v

∂θ
+ L(0)

π(0)v

)

(θ,W π(0)

θ (x), S
(0)
θ , 0)dθ.e−λ(T∧θ(0)n −t)

]

6 E
B

[
∫ T∧θ(0)n

t

−λ
(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.e−λ(T∧θ(0)n −t)

]

.

Therefore

A := A1
n + A2

n + A3
n

6 E
B

[
∫ T∧θ(0)n

t

∫ s

t

−λ
(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.λe−λ(s−t)ds

]

+ E
B

[
∫ T∧θ(0)n

t

−λ
(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.e−λ(T∧θ(0)n −t)

]

.

It remains to make expli
it the term C. Indeed,

C = E
ζ,0
t,x

[

(v(τ,W π
τ , Sτ , 1)− v(τ,W π

τ , Sτ , 0))1τ6Tn

]

= E
B

[
∫ T∧θ(0)n

t

(

v(s,W π(0)

s (x), S(0)
s , 1)− v(s,W π(0)

s (x), S(0)
s , 0)

)

.λe−λ(s−t)ds

]

= E
B

[
∫ T∧θ(0)n

t

(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.λe−λ(T∧θ(0)n −t)

]

+ E
B

[
∫ T∧θ(0)n

t

∫ s

t

(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.λ2e−λ(s−t)ds

]

.

Where the last equality is given from an integration by part.

Noti
e that A+ C is equal to zero, then from (6.5.15) we obtain:

E
ζ,0
t,x

[
v
(
Tn,W

π
Tn
, STn , ZTn

)]
6 v(t, x, ζ, 0).

We now take the limit as n in
reases to in�nity. Sin
e Tn → T a.s and from the

boundary 
ondition, we 
an dedu
e from Fatou lemma that

V (t, x, ζ, 0) 6 v(t, x, ζ, 0).
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We now prove the statement b). By repeating the above argument in I), we observe that

the 
ontrol π
(1)
∗ a
hieves equality in (6.5.14) and therefore V (t, x, ζ, 1) = v(t, x, ζ, 1).

Similarly, by repeating the above steps in II) , we 
an 
on
lude that V (t, x, ζ, 0) =
v(t, x, ζ, 0) and thus the optimal 
ontrol is given by (6.5.13).

�

Remark 6.5.7. Noti
e that under some assumptions on the density q of τ , the above

veri�
ation theorem still appli
able.

Indeed, if we rewrite the terms A and C in terms of the density q, we obtain:

A = E
B

[
∫ T∧θ(0)n

t

∫ s

t

(
∂v

∂θ
+ L(0)

π(0)v

)

(θ,W π(0)

θ (x), S
(0)
θ , 0)dθ.q(s)ds

]

+ E
B

[
∫ T∧θ(0)n

t

(
∂v

∂θ
+ L(0)

π(0)v

)

(θ,W π(0)

θ (x), S
(0)
θ , 0)dθ.P[τ > T ∧ θ(0)n ]

]

and

C = E
B

[
∫ T∧θ(0)n

t

(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.q(T ∧ θ(0)n )

]

− E
B

[
∫ T∧θ(0)n

t

∫ s

t

(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.q
′

(s)ds

]

We 
an noti
e from the above 
ase with exponential law that the �rst term in A was


ompensated with the se
ond term of C and the se
ond term in A was 
ompensated with

the �rst term of C. So this leads us to do the same with this 
ase. Thus we 
an dedu
e

the following assumptions on q:

• q′
(x) < 0 ∀x,

• − q
′
(x)

q(x)
6 α ∀x,

• q(x) > β

∫ ∞

x

q(s)ds ∀x.

6.5.4 Appli
ation

In this se
tion, we present a parti
ular example for the dynami
s of the pri
e pro
ess

(St), where the 
oe�
ients µ, σ0 and σ1 are 
onstants.
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We 
onsider the following dynami
s of (St):

dSt = µStdt+ St (σ1 + (σ0 − σ1)1t6τ ) dBt.

Therefore the wealth pro
ess satis�es the following SDE:

dW π
t = W π

t [(1− πt) rdt+ πt (µdt+ (σ0 + (σ1 − σ0)Zt)dBt)] .

and the optimization problem be
omes:

V (t, x, z) = sup
π∈A

J(t, x, z, π),

where

J(t, x, z, π) = E
z
t,x [U(W

π
T )] .

As the 
oe�
ients µ, σ0 and σ1 do not depend on the pri
e St, then the parameter ζ
does not appear in the above SDE of the wealth pro
ess and thus in the value fun
tion.

In this parti
ular example, the HJB system be
omes:

(S)







∂v
∂t
(t, x, 0) + sup

π∈U
L(0)

π v(t, x, 0) + λ (v(t, x, 1)− v(t, x, 0)) = 0

∂v
∂t
(t, x, 1) + sup

π∈U
L(1)

π v(t, x, 1) = 0

with the boundary 
ondition

v(T, x, z) = U(x), x ∈ R
+, z ∈ {0, 1}. (6.5.16)

where

L(0)
π v(t, x, 0) = x(πµ+ (1− π)r)∂v

∂x
+

1

2
x2π2σ2

0

∂2v

∂2x
,

and

L(1)
π v(t, x, 1) =x(πµ+ (1− π)r)∂v

∂x
+

1

2
x2π2σ2

1

∂2v

∂2x
.

We now 
onsider the power utility fun
tion whi
h with we obtain an expli
it smooth

solution of the above system (S). Then by veri�
ation theorem, we show that the value

fun
tion is solution of the HJB system and we make expli
it the optimal strategy.

Let the power utility fun
tion U(x) = xγ

γ
, 0 < γ < 1. We �rst solve the se
ond equation

of the system (S) and then we dedu
e the solution of the �rst equation of (S).



6.5. OPTIMAL PORTFOLIO ALLOCATION STRATEGY 105

For the se
ond equation, we 
an resolve it easily as in the 
ase of the Merton example.

Therefore we obtain that:

v(t, x, 1) =
xγ

γ
exp

(

γ

(

r +
(µ− r)2

2 (1− γ)σ2
1

)

(T − t)
)

=
xγ

γ
exp (γρ(T − t)) ,

where

ρ = sup
p1∈U

[p1(µ− r) + r +
1

2
p21σ

2
1(γ − 1)] = r +

1

2

(µ− r)2
(1− γ1)2σ2

.

.

It remains to solve the �rst equation of (S). Similarly, we shall look for a solution

of the form v(t, x, 0) = xγψ(t). Plugging into in the �rst equation of (S), we get a

di�erential equation for ψ:

ψ′(t) + (γρ0 − λ)ψ(t) =
−λ
γ

exp(γρ(T − t))

where

ρ0 = sup
p0∈U

[p0(µ− r) + r +
1

2
p20σ

2
0(γ − 1)] = r +

1

2

(µ− r)2
(1− γ)2σ2

0

.

As V (T, x, 0) = U(x), we obtain that ψ(T ) = 1
γ
and therefore the unique solution of

the �rst equation of (S) is given by

ψ(t) =
1

γ

[(
λ

ζ
+ 1

)

exp ((γρ0 − λ) (T − t))−
λ

ζ
exp (γρ (T − t))

]

.

where ζ is a 
onstant: ζ = (γρ0 − γρ− λ) and ρ0, ρ are given by:

ρ0 = r +
(µ− r)2

2(1− γ)σ2
0

,

ρ = r +
(µ− r)2

2(1− γ)σ2
1

.

Therefore,

v(t, x, 0) =
xγ

γ

[(
λ

ζ
+ 1

)

exp ((γρ0 − λ) (T − t))−
λ

ζ
exp (γρ (T − t))

]

.

Consider now the strategy pro
esses (π∗
t )t>0 de�ned by

π∗
t =

{
µ−r

σ2
0(1−γ)

if Zt = 0
µ−r

σ2
1(1−γ)

if Zt = 1
(6.5.17)
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Noti
e that the fun
tions v(t, x, 0) and v(t, x, 1) are smooth. Then from Theorem 6.5.6

we dedu
e that for the power utility fun
tion the pair of value fun
tions (V (t, x, 0), V (t, x, 1))
is solution of the HJB system (S) and is given expli
itly by (V (t, x, 0), V (t, x, 1)) =
(v(t, x, 0), v(t, x, 1)) and the optimal strategy is given by π∗

t :

π∗
t =

µ− r
σ2
0(1− γ)

1Zt=0 +
µ− r

σ2
1(1− γ)

1Zt=1.

As Zt is F
S
-adapted, we 
an dedu
e that π∗

t is also FS
adapted, then π∗ ∈ A.

6.6 Perspe
tives

We plan to 
onsider the more realisti
 
ase where there are a sequen
e (τn) of 
hange
times and a sequen
e (θn) of de
ision times at whi
h the trader reinvests his portfolio,

either in the risky asset (St) or in the bank a

ount (S0
t ). We study this 
ase with the

presen
e of the transa
tion 
osts. We begin a new study for this problem, with a �rst

di�
ulty in the identi�
ation of the Hamilton-Ja
obi-Bellman system 
orresponding

to this new framework and studying the impa
t of the parameter of the 
hange times

laws on the strategies and their performan
es.
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