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Chapter 1

Introdution

When you're making the attempt to analyze seurities and make investment deisions,

the strategies you will use most likely �nd themselves in three very broad ategories:

fundamental analysis, tehnial analysis and mathematial analysis. Fundamental

analysis involves analyzing the harateristis of a ompany in order to estimate its

value. The tehnial analysis (sometimes alled the hartist analysis) looks at the

past prie movement and uses this data to predit its future prie movements. The

mathematial analysis is based on mathematial models.

In our study, we fous on the hartist analysis and the mathematial analysis. The main

hypothesis of tehnial analysis is that all the information is ontained inside the reords

of pries. They do not worry about the value of the stok, but stritly past pries or

volumes. The analysis of the harts is su�ient to predit the future prie movements,

this hypothesis ontrats most of mathematial models, whih are essentially Markov.

So, tehnial analysis seems to have limited theoretial justi�ations and their e�ieny

is questionable. For that we aim to analyse mathematially a hartist indiator widely

used by the pratitioners in the trading market, then we study the performane of

this indiator in a universe that is governed by a stohasti di�erential equations, for

a pratitioner seeking to maximize an objetive funtion (for instane, the expeted

utility of the wealth at a ertain maturity). We ompare the performane of trader who

uses a hartist analysis tehnique with a trader who uses a portfolio alloation strategy

whih is optimal when the mathematial model is perfetly spei�ed and alibrated.

To ompare the performane of hartist strategies and mathematial strategies, we will

be able to provide a oneptual framework where their performane an be ompared.

If one onsiders a non-stationary �nanial eonomy. The problem that it is impossible

to speify and alibrate models whih an apture all the soures of instability during

a long time interval. For that one an only pretend to divide a long investment period

into sub-periods suh that, in eah one of these sub-periods, the market an reasonably

be supposed to follow some partiular model, that is a stohasti di�erential system.
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Therefore, one an only use small amounts of data during eah sub-period to alibrate

the model, and the alibration errors an be substantial. However, any investment

strategy's performane depends on the underlying model for the market evolution,

and also on the values of the parameters involved in the model. Thus, in a non-

stationary eonomy, one an use strategies whih have been optimally designed under

the assumption that the market is well desribed by a presribed model, but these

strategies are extremely misleading in pratie beause the presribed model does not

�t the atual evolution of the market. In suh a situation, some tehniians propose

that, in a non-stationary eonomy, tehnial analysis may be a better indiator to

apture some basi trends of the market without assuming model dependeny.

In order to understand this problem, reently some mathematiians are interested by

this subjet, like Talay and al [5℄. In this artile, they have ompared the performane

of the trading strategies based on the simple moving average rule with the trading

strategies designed from mathematial models, like a modi�ed Blak-Sholes suh that

the instantaneous expeted rate of return of the stok hanges one at an unknown

random time. They have made expliit the trader's expeted logarithmi utility of

wealth, but unfortunately, the expliit formulae are not propitious to mathematial

omparisons. Therefore by Monte Carlo numerial experiments, they have observed

from these experiments that tehnial analysis tehniques may overperform mathemat-

ial tehniques in the ase of parameter misspei�ations.

In my thesis, we examine and model the performane for another hartist tehnique

designed to detet hanges in the "volatility term". We study the performane of the

Bollinger Bands tehnique in a modi�ed Blak-Sholes model suh that the volatility

hanges at an unknown and unobservable random time τ (whih is independent of the

Brownian motion governing the prie). My thesis in divided into two parts: The �rst

part is devoted to a theoretial study of the Bollinger Bands indiator with numerial

results. In the seond part, we deal with a optimal portfolio alloation problem with

random time hange to provide analytial formulae for portfolios managed by means

of mathematial model.

In hapter 2, we introdue the Bollinger Bands tehnique and we present the mathe-

matial framework to study this indiator. We deal with a ontinuous �nanial market

with two asset. A risk free asset with dynamis:

{
dS0

t = S0
t rdt,

S0
0 = 1.

and a risky asset with dynamis:

{
dSt = µStdt+ St (σ1 + (σ0 − σ1)1t6τ ) dBt,
S0 = S0.

(1.0.1)
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where (Bt)t∈[0,T ] is a one-dimensional Brownian motion. The random time of the volatil-

ity hange τ is independent ofB and at this time τ , whih is neither known, nor diretly

observable, the instantaneous volatility rate hanges from σ0 to σ1.

We are interested in this hapter to the Bollinger Bandwidth indiator (BWI) whih
is derived from the Bollinger indiator and it is given by:

BWIt = 4

√
√
√
√
√δ

∫ t

t−δ
S2
udu

(∫ t

t−δ
Sudu

)2 − 1.

The parameter δ denotes the size of the time window used to ompute the moving

average for the Bollinger Bands.

We prove some identities in law whih will be useful in next hapters in order to show

that the Bandwidth indiator an be useful to detet the hange time at with the

volatility hanges his value.

In hapter 3, we are interested by an asymptoti analysis of the Bollinger Bands in

the ase of small volatilities. We show that the density behavior of the Bandwidth

indiator (BWI) depends on the value of the volatility, this implies that (BWI) an
detet the volatility hange.

In hapter 4, we show that the Bandwidth indiator an be also used to detet a hange

in the volatility term in the ase of large value of volatilities. Of ourse this situation

of large value is not realisti in the �nane ontext but an be arise in the physis

ontext, like statistial mehanis of disordered systems.

We are interested in this hapter by the Normalized indiator (NIt) de�ned in funtion

of the Bandwidth indiator as follows:

NIt :=
1

δ

(
(BWIt)

2

16
+ 1

)

(1.0.2)

We aim to show that the normalized indiator an detet a hange in the volatility

term, that is we show that the behavior of its probability density depends on the value

of the volatility. For simplifying the mathematial study, we an assume that the prie

proess (St) evolves aording to:

dSt = St (µdt+ σdBt) .

We �rst show that the law of NIt does not depend of time t and it equals in law to

σ2k
(µ̃)

σ2δ where µ̃ = µ
σ2 − 1

2
and k

(µ̃)
t is given in funtion of exponential funtionals of



4 CHAPTER 1. INTRODUCTION

Brownian motion with drift as follows:

∫ t

0

exp(2µ̃s+ 2Bs)ds

(∫ t

0

exp(µ̃s+Bs)ds

)2 .

The important result in this hapter is given in proposition 4.1.1 whih proves that from

a ertain value of t, the variable k
(µ̃)
t onverges to that of k

(−|µ̃|)
∞ , whih is well de�ned.

This result have been showed by a tehnial method whih onsists in �nding an upper

and lower bounds for the umulative distribution funtion of the variable log(k
(µ̃)
t )

and to prove that for large t, these bounds onverges to the umulative distribution

funtion of the variable log(k
(−|µ̃|)
∞ ). Thanks to the equality in law NIt

L
= σ2k

(µ̃)

σ2δ, we

show that the distribution funtion of the normalized variable NIδ onverges to that

of the variable σ2k
(−|µ̃|)
∞ for large value of σ2δ.

So we are interested by studying the law of the variable k
(−|µ̃|)
∞ in order to dedue that

the behavior of the density of the variable NIδ depends on the value of σ.

From Yor [34℄, the law of the variable k
(−|µ̃|)
∞ has haraterized by its Laplae transform.

But unfortunately, it is not easy to invert this formula in order to obtain the density of

k
(−|µ̃|)
∞ . Thanks to Tauberian theory, whih enables us to �nd a onnetion between the

behavior properties of the Laplae transform at in�nity (resp.at zero) and the behavior

properties of the orresponding umulative distribution funtion near zero (resp.near

in�nity), we dedue the behavior of the umulative distribution funtion P[k
(−|µ̃|)
∞ 6 x]

for small x and the behavior of P[k
(−|µ̃|)
∞ > x] for large x. Therefore the behavior of

P[NIδ 6 x] for small x and the behavior of P[NIδ > x] for large x are straightforward

onsequene and we show that these behaviors are dependent of the value of σ.

In hapter 5, we aim to ompare two indiators designed to detet a volatility hange:

the Bollinger bands and the quadrati variation indiators. It is well known in the

literature that the quadrati variation indiator is a optimal estimator of the volatility

if we selet the time inrement as small as possible. So our aim in this hapter is

to ompare the performane of these two indiators in the ase of large value for the

time inrement. We onsider a trader who does not perfetly detet τ but, at least,

uses one of these two indiators to detet τ and then to deide when he reinvests his

portfolio. We assume that τ has a exponential law with parameter λ. We show, in the

ase of large value of time inrement, that for large value of λ, Bollinger bands an
overperform and detet the hange time τ faster than quadrati variation indiator.

In hapter 6, we examine the performane of a trader whose strategy is based on

mathematial models. We study the optimal portfolio alloation strategy in the ase

where the model has a hange in the volatility term at a random variable τ .
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We want to exhibit a mathematial optimal strategy from the stohasti ontrol theory,

but it appears that we have some di�ulties whih ome from the fat that the trader's

strategy needs to be adapted to the �ltration generated by the prie proess, whih

is di�erent from the Brownian �ltration due to the time hange τ and it is right-

disontinuity. So we will resolve the optimization problem by using a spei� feature

of the hange time τ .

We �rst use the density approah whih have been introdued by Pham and Jiao in

[17℄. We show with this approah how we an separate the initial optimisation problem

into a problem after the hange time and a problem before the hange time, by relying

on the density hypothesis on the hange time τ . We show that the pair value funtion

is a unique visosity solution of a Hamilton-Jaobi Bellman system.

We seond show by veri�ation theorem that under smoothness assumptions on the

value funtion, the pair value funtion is a solution of a Hamilton-Jaobi Bellman

system and the optimal strategy of the trader is to follow the optimal strategy whih

haraterizes the value funtion before the hange time and then to swith when the

hange ours to the optimal strategy whih haraterizes the value funtion after the

hange time.
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Part I

Tehnial Analysis
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Chapter 2

The Bollinger Bands indiator in

tehnial analysis

We present in this hapter the Bollinger Bands indiator, designed to detet the time

at whih the volatility of the stok swithes. We desribe the basi setting underlying

our mathematial modeling. Finally we prove some identities in law whih will be

useful to prove in next hapters that the Bollinger Bands an be used to detet the

time hange of the volatility.

2.1 Tehnial analysis

Tehnial analysis is a method of prediting prie movements and future market trends

by studying harts of past market ation. This is done by omparing urrent pries with

historial pries to predit a reasonable outome. The basis of modern-day tehnial

analysis an be traed bak to the Dow Theory, developed around 1900 by Charles

Dow. It inludes priniples suh as the trending nature of pries, on�rmation and

divergene, support and resistane. Tehnial analysts, or hartists, use a number of

tools to help them identify potential trades.

The tehnial analyst (or the Dow Theory) believes that all the relevant market in-

formation is re�eted (or disounted) in the averages, hene no other information is

needed to make trading deisions. Wathing �nanial markets, it beomes obvious that

there are trends, momentum and patterns that repeat over time, not exatly the same

way but similar.

A very large number of tehnial indiators have been developed over the years, in-

luding the widely used overbought/oversold indiators suh as the Relative Strength

Index, and the trend following indiators suh as Moving Averages. While tehnial

analysis an be a great help in trading the market, no tehnial indiator is infallible.

Further, tehnial analysis is only as good as its interpreter. A signi�ant of time
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ANALYSIS

must be spent in learning the priniples of tehnial analysis, and in how to properly

interpret the various harts and other tehnial indiators.

Tehnial Analysis is based on three Priniples:

The �rst priniple is that the market disounts everything. At any time, anything that

an or ould a�et a ompany will be re�eted in the stok prie inluding fundamental,

politial and psyhologial fators. Prie ation should re�et shifts in supply and

demand. If demand exeeds supply, pries should rise. If supply exeeds demand,

pries should fall.

Seondly, tehnial analysis is based on the premise that pries move in trends. This

means that one a trend in the diretion of a share prie has been established, the next

move in share pries is more likely to be in the same diretion as that trend rather than

in a di�erent diretion. In other words, if a share prie is �rmly established in a upward

trend, the share prie is more likely to ontinue inreasing rather than derease in the

next trading period. Most tehnial trading strategies are based on this assumption.

The last priniple is that history repeats itself. Chartists believe that the historial

data will show repetitive patterns in prie movement. Sine these patterns have worked

well in the past, it is assumed that they will ontinue to work well in the future.

A very large number of tehnial analysis indiators are used by praitioners. For

example:

• Moving average indiators (MA): The MA indiators are preisely alulated

aording to spei� mathematial formulae. This makes moving averages an

objetive way to determine the urrent trend diretion of a market, and antiipate

its most likely future diretion. Mathematially, moving averages �lter out the

random "noise" in market data by smoothing out �utuations and short-term

volatility in prie movement. Graphially superimposing a moving average on a

prie hart makes it easy to visualize the underlying trend within the data.

• Moving average onvergene/divergene (MACD): The MACD is a trend fol-

lowing momentum indiator that shows the relationship between two moving

averages of pries. The MACD is the di�erene between a 26-day and 12-day

exponential moving average. A 9-day exponential moving average, alled the

"signal" line is plotted on top of the MACD to show buy/sell opportunities. The

basi MACD trading rule is to sell when the MACD falls below its signal line.

Similarly, a buy signal ours when the MACD rises above its signal line. It is

also popular to buy/sell when the MACD goes above/below zero.

There is also the relative strength index, momentun, Bollinger Bands, et.... Here

we limit ourselves to the Bollinger Bands tehnique beause it is often used to detet

hanges in the volatility.
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2.1.1 Bollinger Bands

Bollinger Bands is a tehnial trading tool reated by John Bollinger in the early

1980s and it's one of the most popular trading band tehnique. Trading bands beame

even more attrative when Bollinger suggested onentrating on volatility. Standard

deviation was seleted as the best measure for volatility beause of its sensitivity to

extreme deviations.

Denote by (St) the prie proess. The Bollinger Bands are fully desribed as follows:

• A δ-period simple moving average MAδ
t

MAδ
t =

1

δ

δ−1∑

k=0

St−k.

• A standard deviation Y δ
t

(Y δ
t )

2 =
1

δ

δ−1∑

k=0

(St−k −MAδ
t )

2.

• An upper band UBδ
t at 2 times a δ-period standard deviation above the moving

average

UBδ
t =MAδ

t + 2Y δ
t .

• A lower band LBδ
t at 2 times a δ-period standard deviation below the moving

average

LBδ
t =MAδ

t − 2Y δ
t .

In ontinuous time we have the following extension:

MAδ
t =

1

δ

∫ t

t−δ

Sudu

(Y δ
t )

2 =
1

δ

∫ t

t−δ

(Su −MAδ
t )

2du

UBδ
t =MAδ

t + 2Y δ
t

LBδ
t =MAδ

t − 2Y δ
t



12

CHAPTER 2. THE BOLLINGER BANDS INDICATOR IN TECHNICAL

ANALYSIS

(a) σ = 0.05, µ = 0.2 (b) σ = 0.25, µ = 0.2

τ

() σ0=0.05, σ1=0.25, µ=0.2 and τ=0.6

Figure 2.1: Typial trajetories of the prie (red), a moving average of size δ = 0.2

(green) and the orresponding lower (pink) and upper (blue) Bollinger bands.

Numerial illustrations:

In Fig.2.1(a) and Fig.2.1(b) we present a typial Bollinger bands where the prie S has

no hange in his volatility term and satis�es:

dSt = St (µdt+ σdBt) .

In Fig.2.1(), we present a Bollinger Bands where the volatility of the prie proess

hanges its value at time τ from a small volatility σ0 = 0.05 to a large volatility

σ1 = 0.25. In this example, the hange of volatility ours at τ = 0.6.

Remark 2.1.1. Bollinger bands are plotted above and below the moving average prie

at standard deviation level. Sine standard deviation is a measure of volatility, the

bands adjust aording the market volatility. Their band width expands during volatile

markets and ontrats during less ative periods.
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2.1.2 Bandwidth indiator

An important indiator derived from the Bollinger Bands is the Bandwidth indiator

BWI. This indiator is a relative measure of the width of the Bollinger Bands.

BWIt =
UBδ

t − LBδ
t

MAδ
t

=
4Y

(δ)
t

MAδ
t

= 4

√
√
√
√
√δ

∫ t

t−δ
S2
udu

(∫ t

t−δ
Sudu

)2 − 1.

In next setion we will give a theoretial study for this indiator in order to show in

next hapter that this indiator an be used to detet a hange in the volatility term

in two ases: the ase of small volatilities and the ase of large volatilities. We show

that we have di�erent behaviors for the density of the Bandwidth indiator for di�erent

values of volatilities.

We desribe in the next setion the basi setting underlying our mathematial modeling.

2.2 A mathematial framework to study the Band-

width indiator

We deal with the following model for a �nanial market, in whih two assets are traded

ontinuously. The �rst one is a risk free asset, typially a bond (or bank aount),

whose prie evolves aording to the following equation:

dS0
t = S0

t rdt, (2.2.1)

S0
0 = 1.

The seond is a risky asset with prie desribed by the linear stohasti di�erential

equation:

dSt = µStdt+ St (σ1 + (σ0 − σ1)1t6τ ) dBt, (2.2.2)

S0 = S0.

where (Bt)t∈[0,T ] is a one-dimensional Brownian motion on a given probability spae

(Ω,F , P ). The random time τ is independent of B and at this time τ , whih is neither
known, nor diretly observable, the instantaneous volatility rate hanges from σ0 to σ1.

A simple omputation shows that:

St = S0 exp

((

µ− 1

2
σ2
0

)

t+ σ0Bt + (σ1 − σ0) (Bt − Bτ )1τ<t −
1

2

(
σ2
1 − σ2

0

)
(t− τ)+

)

.

(2.2.3)
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In Fig.2.2(a) and 2.2(b), we illustrate a typial trajetories of the prie without a

hange in the di�usion term, that is the proess (S) satis�es:

dSt = St (µdt+ σdBt) . (2.2.4)

In Fig. 2.2(), we illustrate the trajetory of S whih satis�es (2.2.2) with σ0 = 0.05,
σ1 = 0.25, µ = 0.2 and the hange time τ is equal to 0.6.

(a) σ = 0.05,µ = 0.2 (b) σ = 0.25,µ = 0.2

τ

() σ0 = 0.05,σ1 = 0.25,µ = 0.2 and τ = 0.6

Figure 2.2: Typial trajetories of the stok prie

2.3 Some identities in law

In this setion we show a olletion of identities in law whih will be useful in the next

hapter to analyze asymptoti behaviors of the Bandwidth Bands BWI. We aim in

the next hapter to prove that the behavior of the probability density funtion of BWI
depends on the value of the volatility. So for more understanding this result, we an

�rst assume that the prie proess (St) hasn't a hange in its volatility term and it

evolves aording to (2.2.4).
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Lemma 2.3.1. Assume (St) evolves aording to the lassial Blak and Sholes equa-

tion (2.2.4) with a onstant volatility, then the law of BWIt does not depend on time

t and
BWIt

L
= BWIδ.

Proof :

We have:

BWIt = 4

√
√
√
√
√δ

∫ t

t−δ
S2
udu

(∫ t

t−δ
Sudu

)2 − 1

Use the hange of variable s→ u− (t− δ) and the identity in law

(Bs+(t−δ) − Bt−δ ; s > 0)
L
= (Bs ; s > 0)

it follows that the law of BWI is independent of the time t and the initial ondition

S0. ∀t > 0,

BWIt
L
= 4

√
√
√
√
√
√
√
√

δ

∫ δ

0

S2
udu

(∫ δ

0

Sudu

)2 − 1 := BWIδ. (2.3.1)

�

Let us now de�ne the proess (kνt )t>0 by

k
(ν)
t :=

A
(ν)
2,t

(

A
(ν)
1,t

)2 (2.3.2)

where A
(ν)
1,t and A

(ν)
2,t are the exponential funtional of Brownian motion de�ned by:

A
(ν)
1,t :=

∫ t

0

exp(Bs + νs)ds and A
(ν)
2,t :=

∫ t

0

exp(2Bs + 2νs)ds.

We now show that the law of BWIδ an be expressed in terms of the exponential

funtionals of Brownian motion.
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Proposition 2.3.2. Assume (St) evolves aording to equation (2.2.4), then we have:

BWIδ
L
= 4

√

(σ2δ)k
(µ̃)

σ2δ − 1, (2.3.3)

where µ̃ = µ
σ2 − 1

2
.

Proof :

We have:

BWIδ = 4

√
√
√
√
√
√
√
√

δ

∫ δ

0

S2
udu

(∫ δ

0

Sudu

)2 − 1

= 4

√
√
√
√
√
√
√
√

δ

∫ δ

0

exp

(

2

(

µ− 1

2
σ2

)

u+ 2σBu

)

du

(∫ δ

0

exp

((

µ− 1

2
σ2

)

u+ σBu

)

du

)2 − 1

Using the following hange of variable

s→ σ2u and µ̃ =
µ

σ2
− 1

2

and by the saling property of Brownian motion we obtain:

BWIδ
L
= 4

√
√
√
√
√
√
√
√
√

σ2δ

∫ σ2δ

0

exp
(

2µ̃s+ 2Bs

)

ds

(
∫ σ2δ

0

exp (µ̃s+Bs) ds

)2 − 1 = 4

√

(σ2δ)k
(µ̃)

σ2δ − 1. (2.3.4)

�

2.3.1 Properties of integral funtionals of Brownian motion with

drift

The above proess A
(ν)
1,t and A

(ν)
2,t are alled exponential funtional of Brownian motion

and have been studied by a number of authors, e.g, Yor [21℄, Dufresne [13℄ and Donati-

Martin et al [11℄. In the literature, there are several studies onern the law of A
(ν)
1,t



2.3. SOME IDENTITIES IN LAW 17

or A
(ν)
2,t for �xed t and for t → ∞. In our next hapter, we will be interested by limit

distributions of these proesses.

Notie that from the hange of variable u = t
4
and the saling property of the Brownian

motion, we have

A
(ν)
1,t
L
= 4A

(2ν)

2, t
4

. (2.3.5)

We introdue the Brownian motion with onstant drift γ ∈ R, (B
(γ)
t := Bt + γt)t>0.

For γ > 0 and f a non-negative Borel measurable funtion f , we set:

A(γ)
∞ (f) =

∫ ∞

0

f(B(γ)
s )ds

We show that for ν < 0, A
(ν)
2,∞ is �nite. For that, we need the following theorem given

in [21℄, whih provides a neessary and su�ient ondition in order that Aγ
∞(f) de�ned

below is almost surely �nite.

Theorem 2.3.3. Let γ > 0 and f be a non-negative and loally integrable Borel fun-

tion on R. Then A
(γ)
∞ (f) is almost surely �nite if and only if

∫ ∞

0

f(y)dy <∞.

So for ν < 0, we have:

A
(ν)
2,∞ =

∫ ∞

0

exp(2B(ν)
s )ds

L
=

∫ ∞

0

exp(−2B(−ν)
s )ds =

∫ ∞

0

f(B(−ν)
s )ds

where f(x) = exp(−2x) veri�es theorem 2.3.3. Thus for ν < 0, A
(ν)
2,∞ is almost sure

�nite.

The following result shows that the integral (at in�nity) of the exponential of Brownian

motion with negative drift is distributed as the inverse of a gamma variable.

Proposition 2.3.4. For ν < 0, A
(ν)
2,∞ is almost surely �nite and is distributed as

1
2γ−ν

,

where γ−ν denotes a gamma random variable with parameter −ν.

Remark 2.3.5. From (2.3.5) and the above proposition, we have that for ν < 0, A
(ν)
1,∞

is almost surely �nite and is distributed as

2
γ−2ν

.

In next hapter we will be interested by two important results onerning the variable

k
(ν)
t . The �rst one is the following equality in law and the seond one is the law of k

(ν)
∞

for ν < 0.
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Proposition 2.3.6. For ν ∈ R, we have:

k
(ν)
t
L
= k

(−ν)
t

Proof :

Using the identity in law (Bt −Bt−s ; 0 6 s 6 t)
L
= (Bs ; 0 6 s 6 t), we obtain:

k
(ν)
t =

∫ t

0

exp(2Bs + 2νs)ds

(∫ t

0

exp(Bs + νs)ds

)2

L
=

∫ t

0

exp
(

2 (Bt −Bt−s) + 2νs
)

ds

(∫ t

0

exp
(

(Bt − Bt−s) + νs
)

ds

)2

=

exp (2Bt + 2νt)

∫ t

0

exp
(

− 2Bt−s − 2ν(t− s)
)

ds

exp (2Bt + 2νt)
(∫ t

0

exp
(

−Bt−s − ν(t− s)
)

ds
)2

=

∫ t

0

exp (−2Bu − 2νu) du

(∫ t

0

exp (−Bu − νu) du
)2

L
=

∫ t

0

exp (2Bu − 2νu) du

(∫ t

0

exp (Bu − νu) du
)2 = k

(−ν)
t .

The last equality omes from the symmetri property of the Brownian motion.

�

In [34℄, Yor has haraterized the law of k
(ν)
∞ by its Laplae transform as following:

Proposition 2.3.7. Let ν < 0; the Laplae transform of k
(ν)
∞ =

A
(ν)
2,∞

(A
(ν)
1,∞)2

is given by:

∀λ > 0, E

[

e−λk
(ν)
∞

]

=

√

λ/2

sinh(
√

λ/2)(cosh(
√

λ/2))−2ν
. (2.3.6)
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Chapter 3

Asymptoti analysis of the Bandwidth

indiator in the ase of small

volatilities

We aim in this hapter to prove that the Bollinger Bandwidth indiator an detet the

time hange in the ase of small volatilities. We show that the density behavior of the

Bandwidth indiator depends on the value of the volatility, and the di�erene between

the behaviors beomes more signi�ant when the quotient between the volatilities is

greater than a �xed level.

3.1 Asymptoti onvergene in law for the Bandwidth

indiator

In order to understand in the sequel how the density behavior of the Bandwidth indi-

ator depends on the volatility, we an assume that the prie proess evolves aording

to:

dSt = St(µdt+ σdBt),

where µ and σ are onstants.

We show in this setion that for small value of σ2δ, the Bandwidth indiator normalized

by

√
σ2δ onverges in law to a quadrati additive funtionals of Brownian motion.

Proposition 3.1.1. For small σ2δ, we have the following:

BWIδ√
σ2δ

L−→
σ2δ → 0

4×

√
∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

. (3.1.1)
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Proof :

To simplify the notation, let ǫ = σ2δ. From (2.3.3), we have:

BWIδ
L
= 4

√

ǫk
(µ̃)
ǫ − 1

We have:

1

ǫ

(
ǫ k(µ̃)ǫ − 1

)
=

1

ǫ







ǫ

∫ ǫ

0

exp
(

2µ̃s+ 2Bs

)

ds

(∫ ǫ

0

exp (µ̃s+Bs) ds

)2 − 1








=
1

ǫ

∫ 1

0

exp(2µ̃θǫ+ 2Bθǫ)dθ

(∫ 1

0

exp(µ̃θǫ+Bθǫ)dθ

)2 −
1

ǫ
(hange of variable θ = s

ǫ
)

L
=

1

ǫ

∫ 1

0

exp(2µ̃θǫ+ 2
√
ǫBθ)dθ

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ

)2 −
1

ǫ
(from saling property).

(3.1.2)

It obviously su�es to prove that for small ǫ:

1

ǫ

∫ 1

0

exp(2µ̃θǫ+ 2
√
ǫBθ)dθ

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ

)2 −
1

ǫ
onverges almost surely to

∫ 1

0

B2
θdθ −

(∫ 1

0

Bθdθ

)2

. (3.1.3)

Indeed, we have:

1

ǫ

∫ 1

0

exp(2µ̃θǫ+ 2
√
ǫBθ)dθ

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ

)2 −
1

ǫ

=

1
ǫ

∫ 1

0

exp(2µ̃θǫ+ 2
√
ǫBθ)dθ −

1

ǫ

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ

)2

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ

)2 .
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The denominator onverges almost surely to 1, and

1

ǫ

∫ 1

0

exp(2µ̃θǫ+ 2
√
ǫBθ)dθ −

1

ǫ

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ

)2

=

∫ 1

0

(
exp(µ̃θǫ+

√
ǫBθ)− 1√

ǫ

)2

dθ −
(

1√
ǫ

(∫ 1

0

exp(µ̃θǫ+
√
ǫBθ)dθ − 1

))2

.

As

1√
ǫ

(

exp(µ̃θǫ+
√
ǫBθ)− 1

)
a.s−→

ǫ→ 0
Bθ,

Then the result follows.

�

Numerial illustration

We now illustrate numerially the above onvergene in law. For that we are interested

by the kernel density estimator whih is a non-parametri estimation of the probability

density of a random variable:

Let X1, X2, .......Xn be a sample drawn of size n from a random variable with density

f . A kernel density estimation of f at the point x is

f̃h(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)

(3.1.4)

where the kernel K satis�es

∫

K(x)dx = 1 and h > 0 is a smoothing parameter.

A popular hoie of K is the Gaussian kernel, namely,

K(y) =
1√
2π

exp

(−y2
2

)

.

For simplifying the notation, let Q be the random variable de�ned by:

Q =

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

.

In �gure 3.1, we illustrate in blue the estimated density of the variable 4
√
Q. We �rst

estimate the sum of integrals

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

by disretization and then we

estimate the density of 4
√
Q as in (3.1.4). In red and green, we illustrate respetively

as in (3.1.4) the estimated density of

BWIδ
σ2δ

for di�erent value of σ. In red, σ = 0.08
and in green σ = 0.2, where we have �xed µ = 0.1 and δ = 0.1.
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Figure 3.1: Estimated Densities of 4
√
Q (blue), BWI/

√
σ2δ (green) with σ = 0.2, δ =

0.1 and BWI/
√
σ2δ (red) with σ = 0.08, δ = 0.1.

3.2 Theoretial study of the law of Q.

In Donati-Martin and Yor [12℄, Rogers et al [7℄, the law of

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

is haraterized by its Laplae transform. Then the density of this variable an be

obtained by inverting its Laplae transform, but unfortunately, the expliit formula

is not propitious to study the behavior of this density. On the other hand, we show

that

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

has an unimodal distribution. We �rst show that this

variable is a generalized gamma onvolution and a self-deomposable random variable.

Therefore from Sato [28℄, we an dedue that this random variable has a unimodal

distribution.

We now give some de�nitions and results whih will be useful in the sequel. We will

be interested by two families of random variables de�ned as follows:

De�nition 3.2.1. A random variable X is said to be self-deomposable if for eah

0 < u < 1 there is the equality in distribution

X
d
= uX + Y

for some random variable Y independent of X. We denote by S the set of self-

deomposable random variables, taking values in R+.

De�nition 3.2.2. A positive random variable X is alled a generalized gamma on-

volution GGC if it is a limit distribution for sums of independent gamma distributed

random variables and the gamma distributions may have di�erent shape and sale pa-

rameters. We denote by G the set of positive generalized gamma onvolution (GGC)
random variables.
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A important result about these families is the following strit inlusions whih are

mentioned in Yor et al [15℄ and Sato [28℄:

G ⊂ S. (3.2.1)

We now present a result onerning the unimodality of a self-deomposable distribution

on R. This study has been an open problem for many years, sine the 1940s. The

a�rmative answer was given in the symmetri ase by Wintner [29℄ in 1956, in the

one-sided ase Wolfe [30℄ in 1971, and �nally in the general ase by Yamazato [31℄ in

1978. This result of Yamazato is given in Sato [28, p.404,Th 53.1℄ as follows:

Theorem 3.2.3. If X is a self-deomposable random variable on R, then its distribu-

tion is unimodal.

Appliation: study of the law of

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

An important studies have been done by Donati-Martin and Yor [12℄, Rogers et al [7℄

about the law of a quadrati funtional of Brownian motion by omputing its Laplae

transform Φ(λ) given below. In [12℄, they have used Fubini's theorem for double Wiener

integrals in order to ompute the Laplae transform Φ(λ). In [7℄, Rogers and al have

used another tehnique whih is based on Ray-Knight theorem for Brownian motion.

The Laplae transform Φ(λ) of the variable

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

is given as follows:

Φ(λ) =

( √

λ/2

sinh(
√

λ/2)

)1/2

. (3.2.2)

Let us introdue the random variable Sh de�ned in [3℄ by

Sh :=
2

π2

∞∑

n=0

Γh,n

n2
(3.2.3)

for independent random variables Γh,n with gamma law of parameter h.

This variable is also used in next hapter where we present more properties and results

for this law.

We now show that

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

is equal in law to a limit of sums of

independent gamma variables with di�erent parameters.
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Proposition 3.2.4. Let (Bt) be a one dimensional Brownian motion, we have the

identity in law

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2
L
= S1/2. (3.2.4)

where the random variable S1/2 is de�ned in (3.2.3).

Proof :

Remind that the distribution of the gamma variables Γh,n is haraterized by the

Laplae transform

E
[
e−λΓh,n

]
= (1 + λ)−h (λ > −1) (3.2.5)

and from [8] we have the following Euler's formula:

sinh(z) = z
∞∏

n=1

(

1 +
z2

n2π2

)

. (3.2.6)

From (3.2.3), we have

E
[
e−λS1/2

]
= E

[ ∞∏

n=1

e−
λΓ1/2,n

2n2π2

]

=
∞∏

n=1

(

E

[

e−
λΓ1/2,n

2n2π2

])
(
beause Γ1/2,n are independents

)

=

∞∏

n=1

(

1 +
λ

2π2n2

)−1/2

(from (3.2.5))

=

( √

λ/2

sinh(
√

λ/2)

)1/2

(from (3.2.6)).

we then have that the Laplae transform of S1/2 is equal to (3.2.2). Therefore the result

follows.

�

Remark 3.2.5. Notie that the density of

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

an be obtained

as the sum of two in�nite series by inverting its Laplae transform and using Lévy's

formula (4.2.4) given in next hapter. Unfortunately, it is not easy to study its behavior

by relying on this ompliated formula, but relying on the above equality in law, we

show that the distribution of

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

is unimodal and we give an

approximation for its mode.
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Proposition 3.2.6. The distribution of

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

is unimodal.

Proof :

From the equality in law (3.2.4) and the de�nition of S1/2 as a limit of sums of in-

dependent gamma distribution, we an dedue from de�nition 3.2.2 that

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

belongs to the set G. Thus from (3.2.1) it also belongs to the set S,

therefore the result follows from theorem 3.2.3.

�

Let X be a random variable with distribution funtion µ and �nite mean m. The

entral absolute moment γp of order p is de�ned by:

γp := E [(X −m)p] .

We now present a result given by Sato in [27℄ about a relation for a unimodal distri-

bution between its mode and the entral absolute moment γp of order p.

Proposition 3.2.7 (Sato [27℄). For p > 1, if µ is a unimodal distribution with mode

a and has �nite mean m, then

| a−m |6 (p+ 1)1/pγ1/pp . (3.2.7)

Proposition 3.2.8. The mode a of

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

satis�es:

| a− 1

6
|6 0.25. (3.2.8)

Proof :

Let us denote by a andm respetively the mode and the mean of

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

.

From 3.2.7, we have for even order 2p

| a−m |6 (2p+ 1)1/2pγ
1/2p
2p .

The mean m is alulated as follows
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m : = E

[
∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2
]

=
1

2
− E

[(∫ 1

0

Bsds

)2
]

=
1

2
− E

[(

B1 −
∫ 1

0

sdBs

)2
]

=
1

2
− E

[(∫ 1

0

(1− s)dBs

)2
]

=
1

2
− 1

3
=

1

6
.

We now ompute the entral absolute moment

γ2p := E





((
∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2
)

−m
)2p


 .

Observe,

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

−m =

∫ 1

0

(
B2

s − s
)
ds−

(∫ 1

0

Bsds

)2

+
1

3

Applying It�'s formula to (tB2
t ) between 0 and 1, we have

∫ 1

0

(
B2

s − s
)
ds = B2

1 − 2

∫ 1

0

sds− 2

∫ 1

0

sBsdBs

= 2

∫ 1

0

BsdBs − 2

∫ 1

0

sBsdBs

= 2

∫ 1

0

Bs(1− s)dBs.

and

(∫ 1

0

Bsds

)2

=

(∫ 1

0

(1− s)dBs

)2

(Applying It� to (tBt) between 0 and 1)

= 2

∫ 1

0

∫ s

0

(1− θ) dBθ (1− s) dBs +

∫ 1

0

(1− s)2 ds

= 2

∫ 1

0

∫ s

0

(1− θ) dBθ (1− s) dBs +
1

3
.
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Therefore

(
∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2
)

−m = 2

∫ 1

0

(1− s)
(

Bs −
∫ s

0

(1− θ) dBθ

)

dBs

= 2

∫ 1

0

(1− s)
∫ s

0

θdBθdBs.

Finally for p = 1, one obtains:

E





((
∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2
)

−m
)2


 = 4E

[
∫ 1

0

(1− s)2
(∫ s

0

θdBθ

)2

ds

]

=
4

3

∫ 1

0

(1− s)2s3ds ≈ 0.022.

Then for p = 1, the result (3.2.8) follows. �

Remark 3.2.9. The result in (3.2.8) an be re�ned by hoosing another order p. We

will use in this ase the Burkholder-Davis-Gundy (BDG) inequalities (urrent alula-

tions will be inserted in the �nal version of the manusript).

In �gure 3.2 we use (3.1.4) to estimate the density of

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

where

h = 10−3
. We observe that the mode is into the interval alulated in (3.2.8).
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Figure 3.2: Estimated Density of

∫ 1

0

B2
sds−

(∫ 1

0

Bsds

)2

.

3.3 Detetion hange in the ase of small volatilities

We now aim to show how the Bandwidth indiator an detet a hange of volatilities.

This result is on�rmed as long as the quotient between σ0 and σ1 is greater than or

equal to 1.8.
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Figure 3.3: Estimated Density of BWIδ
for di�erent values of σ, δ = 0.1.

In �gure 3.3 we use (3.1.4) to estimate the density of the Bandwidth indiator for

di�erent value of σ. For eah value of σ, we have simulated 107 trajetories of BWIδ,
with δ = 0.1, µ = 0.1 and h = 10−3

. It is lear from this �gure that we have di�erent

behaviors of the tail for di�erent values of the volatility, and this di�erene beomes
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more signi�ant when the quotient between σ0 and σ1 is greater than or equal to 1.8.
To better understand this result, we now omment it.

In order to show that the Bandwidth indiator an detet a hange of volatilities, we

show that for:

{
σmin �xed

σmax �xed

we an �nd α and β suh that, for example,

i) ∀σ0 6 σmin, we have:

P [BWIδ(σ0) 6 α] is large and P [BWIδ(σ0) > β] is small,

and

ii) ∀σ1 > σmax, we have:

P [BWIδ(σ1) 6 α] is small and P [BWIδ(σ1) > β] is large.

We remind the notation Q =

∫ 1

0

B2
sds −

(∫ 1

0

Bsds

)2

. Let us �rst �nd q1, q2, q3 and

q4 suh that:

P [Q 6 q1] is large and P [Q > q2] is small, (3.3.1)

and

P [Q 6 q3] is small and P [Q > q4] is large. (3.3.2)

So from �gure 3.2, we an dedue that:

q1 > 0.3 , q2 > 0.35 , q3 6 0.1 , q4 6 0.15.

Then from proposition (3.1.1), the inequalities in i) and ii) beome:

P

[

Q 6
α2

16σ2
0δ

]

is large and P

[

Q >
β2

16σ2
0δ

]

is small,

and
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P

[

Q 6
α2

16σ2
1δ

]

is small and P

[

Q >
β2

16σ2
1δ

]

is large.

Suppose for example that σmin = 0.08 and σmax = 0.15, then if we take σ0 = σmin and

σ1 = σmax in the above inequalities, we an dedue from (3.3.1) and (3.3.2) that α and

β verify:

α2

16σ2
minδ

> q1 ,
β2

16σ2
minδ

> q2 ,
α2

16σ2
maxδ

6 q3 ,
β2

16σ2
maxδ

6 q4. (3.3.3)

By onsequent

0.055 6 α 6 0.06,

and

0.059 6 β 6 0.073.

Then if we observe an event with a large probability in a ase and with small proba-

bility in another ase, then we an dedue in whih regime of volatility we are. This

observation beomes more signi�ant, that is the di�erene between the probabilities

in the two ases beomes more large, if the quotient between the two volatilities is

greater than or equal to 1.8. This result an be dedued from (3.3.3).
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Chapter 4

Asymptoti analysis of the Bandwidth

indiator in the ase of large

volatilities

In the previous hapter, we have done an asymptoti analysis of the Bollinger Band-

width indiator in the ase of small value of σ2δ. We have showed that the Bandwidth

indiator has the apaity to detet a regime hange in volatility in this ase.

In this hapter, we aim to show that the Bandwidth indiator an be also used to

detet a regime hange in the di�usion term in the ase of large value of σ2δ.

We are interested in this hapter to the normalized indiator (NIt) de�ned as:

NIt :=
1

δ

(
(BWIt)

2

16
+ 1

)

(4.0.1)

where (BWIt) is the Bandwidth indiator de�ned in hapter 1.

We �rst show that the law of NIt does not depend on time t and it satis�es:

NIt
L
= NIδ

L
= σ2k

(µ̃)
σ2δ.

where the variable k is de�ned in (2.3.2) and µ̃ = µ
σ2 − 1

2
.

Then we prove that for large value of σ2δ, the umulative distribution funtion of NIδ
onverges to that of σ2k

−|µ̃|
∞ . We study the behavior of the umulative distribution

funtion of k
−|µ̃|
∞ , whih an be useful to study and ompare the tails-behavior of NIδ

for di�erent value of σ. We make expliit the density and the umulative distribution

funtion of k
−|µ̃|
∞ . Due to the omplexity of these formulae, we have not yet sueeded

to use them in order to study the behavior of the umulative distribution funtion of

k
−|µ̃|
∞ . We therefore use Tauberian theory whih allows us to dedue the behavior of the

umulative distribution funtion of k
−|µ̃|
∞ from the behavior of its Laplae transform.
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4.1 Asymptoti onvergene of the umulative distri-

bution funtion of the Bollinger normalized indi-

ator

To simplify the mathematial study, we suppose that the prie proess (St) evolves
aording to:

dSt = St (µdt+ σdBt) .

Then from the hange of variables s → σ2u, µ̃ = µ
σ2 − 1

2
and the saling property

of Brownian motion, we prove that the law of the normalized indiator NI does not

depend on time t and it satis�es:

NIt
L
= NIδ

L
= σ2k

(µ̃)

σ2δ.

We desire to show that the normalized Bandwidth indiator an detet a hange in the

onstant oe�ient σ for the ase of large value for σ2δ. So we need to ompare the

tail behaviors of the distribution of NI for di�erent values of σ.

In next setion, we show the onvergene of the umulative distribution funtion of

NIδ to that of σ
2k

−|µ̃|
∞ .

Let us start with exhibiting an upper and lower bounds for the umulative distribution

funtion of log(k
(µ̃)
t ) for large t. Then thanks to the above equality in law, the upper

and lower bounds for the umulative distribution funtion of NIδ are straightforward
onsequene.

4.1.1 Upper and lower bounds for the umulative distribution

funtion of log(k
(ν)
t ) for large t

Proposition 4.1.1. For x ∈ R,ǫ,ǫ′ and ϑ ∈ R+
, ∃t0 > 0 suh that for t > t0 one has:

• For |ν| > 2,

P

[

log(k(−|ν|)
∞ ) 6 x− 2ǫ

′
]

− (1 + ϑ)

ǫ′

(−2|ν|+ 2

−2|ν|+ 1

)

e
1
2
(−2|ν|+1)t 6 P

[

log(k
(ν)
t ) 6 x

]

6

P

[

log(k(−|ν|)
∞ ) 6 x+ ǫ

]

+
(1 + ϑ)

ǫ

(−|ν|+ 2

−|ν|+ 1

)

e2(−|ν|+1)t
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• For |ν| < 1,

P

[

log(k(−|ν|)
∞ ) 6 x− 2ǫ

′
]

− (1 + ϑ)

ǫ′
e−|ν|2t/2 (2π

t

)3/2

4|ν|2(1− cos(2π|ν|)) 6 P

[

log(k
(ν)
t ) 6 x

]

6

P
[
log(k(−|ν|)

∞ ) 6 x+ ǫ
]
+

(1 + ϑ)

ǫ

e−|ν|2t/2 ( π
2t

)3/2

|ν|2(1− cos(π|ν|))

• For 1 < |ν| < 2,

P

[

log(k(−|ν|)
∞ ) 6 x− 2ǫ

′
]

− (1 + ϑ)

ǫ′

(−2|ν|+ 2

−2|ν|+ 1

)

e
1
2
(−2|ν|+1)t 6 P

[

log(k
(ν)
t ) 6 x

]

6

P

[

log(k(−|ν|)
∞ ) 6 x+ ǫ

]

+
(1 + ϑ)

ǫ

e−|ν|2t/2 ( π
2t

)3/2

|ν|2(1− cos(π|ν|))

• For |ν| = 1,

P

[

log(k(−|ν|)
∞ ) 6 x− 2ǫ

′
]

− (1 + ϑ)

ǫ′
1

√

(1
2
πt)

e
−1
2
t 6P

[

log(k
(ν)
t ) 6 x

]

6 P

[

log(k(−|ν|)
∞ ) 6

x+ ǫ
]

+
(1 + ϑ)

ǫ

e−|ν|2t/2 ( π
2t

)3/2

ν2(1− cos(π|ν|))

• For |ν| = 2,

P

[

log(k(−|ν|)
∞ ) 6 x− 2ǫ

′
]

− (1 + ϑ)

ǫ′

(−2|ν|+ 2

−2|ν|+ 1

)

e
1
2
(−2|ν|+1)t 6 P

[

log(k
(ν)
t ) 6 x

]

6

P

[

log(k(−|ν|)
∞ ) 6 x+ ǫ

]

+
(1 + ϑ)

ǫ

1
√

(2πt)
e−2t

Proof :

i) Suppose that ν < 0:

We aim to �nd an upper and a lower bound for the umulative distribution funtion

of log(k
(ν)
t ) in terms of the umulative distribution funtion of the limit distribution

log(k
(ν)
∞ ).

• First step: the upper bound for P

[

log(k
(ν)
t ) 6 x

]

.
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∀ǫ > 0, we have:

P

[

log(k
(ν)
t ) 6 x

]

= P

[

log
(

A
(ν)
2,t

)

6 x+ log

((

A
(ν)
1,t

)2
)]

6 P

[

log
(

A
(ν)
2,t

)

6 x+ log

((

A
(ν)
1,∞

)2
)]

(As A
(ν)
1,t is an inreasing proesses)

6 P

[

log
(

A
(ν)
2,∞

)

6 x+ log

((

A
(ν)
1,∞

)2
)

+
(

log
(

A
(ν)
2,∞

)

− log
(

A
(ν)
2,t

))]

6 P

[

log
(

A
(ν)
2,∞

)

6 x+ log

((

A
(ν)
1,∞

)2
)

+ ǫ

]

+ P

[(

log
(

A
(ν)
2,∞

)

− log
(

A
(ν)
2,t

))

> ǫ
]

6 P

[

log
(

A
(ν)
2,∞

)

6 x+ log

((

A
(ν)
1,∞

)2
)

+ ǫ

]

+
1

ǫ

(

E

[

log
(

A
(ν)
2,∞

)

− log
(

A
(ν)
2,t

)])

The last inequality omes from the Markov inequality.

Therefore:

P

[

log
(

k
(ν)
t

)

6 x
]

6 P
[
log
(
k(ν)∞
)
6 x+ ǫ

]
+
1

ǫ

(

E

[

log
(

A
(ν)
2,∞

)

− log
(

A
(ν)
2,t

)])

(4.1.1)

In [9], the last term
(

E

[

log
(

A
(ν)
2,∞

)

− log
(

A
(ν)
2,t

)])

is well desribed for large t:

E

[

log
(

A
(ν)
2,∞

)]

− E

[

log
(

A
(ν)
2,t

)]

∼
t→∞







(
ν+2
ν+1

)
e2(ν+1)t

if ν < −2
1√
(2πt)

e−2t
if ν = −2

1
ν2(1−cos(−πν))

(
π
2t

)3/2
e−ν2t/2

if −2 < ν < 0

• Seond step: the lower bound for P

[

log
(

k
(ν)
t

)

6 x
]



4.1. ASYMPTOTIC CONVERGENCE OF THE CUMULATIVE

DISTRIBUTION FUNCTION 35

Let ξ ∈ R , we have:

P

[

log
(

A
(ν)
2,∞

)

− log
(

A
(ν)
1,∞

)2

6 x+ ξ

]

=

P

[

log
(

A
(ν)
2,∞

)

− log

((

A
(ν)
1,∞

)2
)

6 x+ ξ; log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

)

< ǫ
′

]

+ P

[

log
(

A
(ν)
2,∞

)

− log

((

A
(ν)
1,∞

)2
)

6 x+ ξ; log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

)

> ǫ
′

]

6P

[

log
(

A
(ν)
2,∞

)

6 2 log
((

A
(ν)
1,t

))

+ x+ ξ + 2ǫ
′
]

+ P

[

log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

)

> ǫ
′
]

6P

[

log
(

A
(ν)
2,∞

)

− log

((

A
(ν)
1,t

)2
)

6 x

]

+
1

ǫ′
E

[

log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

)]

where the last inequality is obtained by hoosing ξ = −2ǫ′ and using Markov inequality.

Therefore:

P

[

log
(

A
(ν)
2,∞

)

− log

((

A
(ν)
1,t

)2
)

6 x

]

>P

[

log
(

A
(ν)
2,∞

)

− log

((

A
(ν)
1,∞

)2
)

6 x− 2ǫ
′

]

− 1

ǫ′
E

[

log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

) ]

As A
(ν)
2,t is an inreasing proess, we dedue:

P

[

log
(

A
(ν)
2,t

)

− log

((

A
(ν)
1,t

)2
)

6 x

]

>P

[

log
(

A
(ν)
2,∞

)

− log

((

A
(ν)
1,t

)2
)

6 x− 2ǫ
′

]

− 1

ǫ′

[

log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

)]

Finally we have the following inequality

P

[

log
(

k
(ν)
t

)

6 x
]

> P

[

log
(
k(ν)∞
)
6 x− ǫ′

]

− 2

ǫ′
E

[

log
(

A
(ν)
1,∞

)

− log
(

A
(ν)
1,t

)]

(4.1.2)

As above, from [9], the term E

[

log(A
(ν)
1,∞)− log(A

(ν)
1,t )
]

satis�es

E[log(A
(ν)
1,∞)]− E[log(A

(ν)
1,t )] ∼

t→∞







(
2ν+2
2ν+1

)
e

1
2
(2ν+1)t

if ν < −1
1√
( 1
2
πt)
e

−1
2
t

if ν = −1
1

4ν2(1−cos(−2πν))

(
2π
t

)3/2
e−ν2t/2

if −1 < ν < 0

This ompletes the proof of proposition 4.1.1 for ν < 0.
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ii) In view of proposition 2.3.6, we an repeat the above two steps for ν > 0 by

replaing ν by −ν. This ends the proof of proposition 4.1.1.

�

Numerial examples:

We illustrate in �gure 4.1 and 4.2 the above result about the onvergene of

P

[

log(k
(ν)
t ) 6 x

]

to P

[

log(k
(ν)
∞ ) 6 x

]

in the ase where |ν| > 2. We plot in green the

umulative distribution funtion P

[

log(k
(ν)
t ) 6 x

]

for di�erent values of t. We plot in

red the umulative distribution funtion P

[

log(k
(−|ν|)
∞ ) 6 x

]

, we plot in blue the lower

bound and in pink the upper bound.

In �gure 4.1, we suppose that ν = −3 and we illustrate the umulative distribution

funtion of P

[

log(k
(ν)
t ) 6 x

]

for di�erent values of t, when we assume that the variable

k
(ν)
t with the terminal time t = 10 approximates well the the variable k

(ν)
∞ . We observe

satisfying results from t > 2 as it is showed in �gure c) and d).

In �gure 4.2, we suppose that ν = −5. We observe satisfying results from t > 0.8 as it
is showed in �gure a),b),c) and d).
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Figure 4.1: Convergene of the umulative distribution funtion for ν = −3
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Figure 4.2: Convergene of the umulative distribution funtion for ν = −5

We now dedue an upper and lower bounds for the umulative distribution funtion of

NIδ.

4.1.2 Upper and lower bounds for the umulative distribution

funtion of NIδ

As already notied,

NIδ
L
= σ2k

(µ̃)
σ2δ. (4.1.3)

Therefore, from proposition 4.1.1, we an dedue that for a large value of σ2δ we have:

Corollary 4.1.2. For θ, ǫ ǫ′ and ϑ ∈ R+
, ∃t0 > 0 suh that for t > t0 one has:

• For |µ̃| > 2,

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

− 2ǫ
′
]

− (1 + ϑ)

ǫ′

(−2|µ̃|+ 2

−2|µ̃|+ 1

)

e
1
2
(−2|µ̃|+1)σ2δ 6 P [NIδ 6 θ] 6

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

+ ǫ
]

+
(1 + ϑ)

ǫ

(−|µ̃|+ 2

−|µ̃|+ 1

)

e2(−|µ̃|+1)σ2δ
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• For |µ̃| < 1,

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

− 2ǫ
′
]

− (1 + ϑ)

ǫ′
e−|µ̃|2(σ2δ)/2

(
2π
σ2δ

)3/2

4|µ̃|2(1− cos(2π|µ̃|)) 6 P [NIδ 6 θ] 6

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

+ ǫ
]

+
(1 + ϑ)

ǫ

e−|µ̃|2σ2δ/2
(

π
2σ2δ

)3/2

|µ̃|2(1− cos(π|µ̃|))

• For 1 < |µ̃| < 2,

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

− 2ǫ
′

]

− (1 + ϑ)

ǫ′

(−2|µ̃|+ 2

−2|µ̃|+ 1

)

e
1
2
(−2|µ̃|+1)σ2δ 6 P [NIδ 6 θ] 6

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

+ ǫ
]

+
(1 + ϑ)

ǫ

e−|µ̃|2σ2δ/2
(

π
2σ2δ

)3/2

|µ̃|2(1− cos(π|µ̃|))

• For |µ̃| = 1,

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

− 2ǫ
′
]

− (1 + ϑ)

ǫ′
1

√

(1
2
πσ2δ)

e
−1
2
σ2δ

6 P [NIδ 6 θ] 6

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

+ ǫ

]

+
(1 + ϑ)

ǫ

e−|µ̃|2σ2δ/2
(

π
2σ2δ

)3/2

|µ̃|2(1− cos(π|µ̃|))

• For |µ̃| = 2,

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

− 2ǫ
′

]

− (1 + ϑ)

ǫ′

(−2|µ̃|+ 2

−2|µ̃|+ 1

)

e
1
2
(−2|µ̃|+1)σ2δ

6 P [NIδ 6 θ] 6

P

[

log(k(−|µ̃|)
∞ ) 6 log

(
θ

σ2

)

+ ǫ
]

+
(1 + ϑ)

ǫ

e−2σ2δ

√

(2πσ2δ)

Observation 4.1.3. First from (4.1.3) we have

NIδ
L
= σ2k

(µ̃)

σ2δ.

also from the above numerial examples, we an dedue for example that for µ̃ = −3,
the umulative distribution funtion of the indiator NI whih is equal to P[σ2k

(µ̃)

σ2δ 6 x],

onverges to P[σ2k
(−|µ̃|)
∞ 6 x] and the limit is quasi-reahed when σ2δ > 2.

Similarly, in the ase where µ̃ = −5 we dedue that the umulative distribution funtion

P[NIδ 6 x] an be well approximated by P[σ2k
(−|µ̃|)
∞ 6 x] when σ2δ > 0.8.

We are now interested by the variable k
(−|µ̃|)
∞ . We wish to make expliit the density of

this variable to dedue the behavior of its umulative distribution funtion P[k
(−|µ̃|)
∞ 6 x]

for small x and the behavior of 1− P[k
(−|µ̃|)
∞ 6 x] for large x.
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4.2 The density of the random variable k
(−|µ̃|)
∞

In this setion, we aim to study the probability density funtion of the random variable

k
(−|µ̃|)
∞ . From proposition 2.3.7, the law of this variable has been haraterized by its

Laplae transform as follows:

∀λ > 0, E

[

e−λk
(−|µ̃|)
∞

]

=

√

λ/2

sinh(
√

λ/2)(cosh(
√

λ/2))2|µ̃|
(4.2.1)

Then the density of the variable k
(−|µ̃|)
∞ an be obtained by inverting its Laplae trans-

form. Unfortunately, the formula (4.2.1) is not easy to invert. So we will make expliit

the density as the onvolution of two densities. Before proving this result in proposition

4.2.6, we need to study the laws of the random variables Sh and Ch de�ned in [3℄ by:

Sh :=
1

2π2

∞∑

n=1

Γh,n

n2
and Ch :=

1

2π2

∞∑

n=1

Γh,n

(n− 1
2
)2
,

where (Γh,n)n>0 are independent random variables with gamma law of parameter h,
that is, the density of Γh,n is given by

g(x) = Γ(h)−1xh−1e−x (h > 0, x > 0).

where Γ(h) is a normalizing onstant.

Remind that the distribution of the gamma variables Γh,n is haraterized by the

Laplae transform

E
[
e−λΓh,n

]
= (1 + λ)−h (λ > −1) (4.2.2)

and from [8] we have the following Euler's formulae:

sinh(z) = z
∞∏

n=1

(

1 +
z2

n2π2

)

and cosh(z) =
∞∏

n=1

(

1 +
z2

(n− 1
2
)2π2

)

(4.2.3)

Proposition 4.2.1. The Laplae transforms of Sh and Ch are given for λ > 0 by

E
[
e−λSh

]
=

( √

λ/2

sinh(
√

λ/2)

)h

and E
[
e−λCh

]
=

1
(

cosh
(√

λ/2
))h

.
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Proof :

From the de�nition of the variable Sh, we have

E
[
e−λSh

]
= E

[ ∞∏

n=1

e−
λΓh,n

2n2π2

]

=

∞∏

n=1

(

E

[

e−
λΓh,n

2n2π2

])
(
beause Γh,n are independent

)

=

∞∏

n=1

(

1 +
λ

2π2n2

)−h

(from (4.2.2))

=

( √

λ/2

sinh(
√

λ/2)

)h

(from (4.2.3)).

Similarly for the random variable Ch, we have

E
[
e−λCh

]
= E

[ ∞∏

n=1

e
− λΓh,n

2π2(n− 1
2 )2

]

=

∞∏

n=1

(

E

[

e
− λΓh,n

2π2(n− 1
2 )2

])

=

∞∏

n=1

(

1 +
λ

2π2(n− 1
2
)2

)−h

(from (4.2.2))

=
1

(

cosh(
√

λ/2)
)h

(from (4.2.3)).

�

The following lemma an be proven from the formula (4.2.1) and using the indepen-

dene between the random variables S1 and C2|µ̃|.

Lemma 4.2.2. As S1 and C2|µ̃| are independent, then

k(−|µ̃|)
∞

L
= S1 + C2|µ̃|

Thus from the above lemma, the density funtion of k
(−|µ̃|)
∞ an be obtained as the

onvolution between the density of the variable S1 and the density of C2|µ̃|.

4.2.1 Probability densities of S1 and C2|µ̃|

We denote by fS1 (resp.fC2|µ̃|
) the probability density funtion of the random variable

S1 (resp.C2|µ̃|). We aim in this paragraph to make expliit these two densities.
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We reall the Lévy's formula in [19℄

∫ ∞

0

e−
λ2

2
te−

y2

2t
y√
2πt3

dt = e−λy (y > 0), (4.2.4)

and the Binomial expansion

1

(1− x)h =
1

Γ(h)

∞∑

n=0

Γ(n+ h)

Γ(n+ 1)
xn (h > 0, |x| < 1), (4.2.5)

Therefore we an dedue the following expansion formulae whih will be useful to

ompute the densities fS1 and fC2|µ̃|
.

(
x

sinh(x)

)h

=
2hxh

(ex − e−x)h
=

2hxhe−hx

(1− e−2x)h
= 2hxhe−xh 1

Γ(h)

∞∑

n=0

Γ(n + h)

Γ(n+ 1)
e−2nx

=
2hxh

Γ(h)

∞∑

n=0

Γ(n+ h)

Γ(n+ 1)
e−(2n+h)x

(4.2.6)

and

(
1

cosh(x)

)h

=
2h

(ex + e−x)h
=

2he−hx

(1 + e−2x)h
= 2he−xh 1

Γ(h)

∞∑

n=0

(−1)nΓ(n+ h)

Γ(n+ 1)
e−2nx

=
2h

Γ(h)

∞∑

n=0

(−1)nΓ(n+ h)

Γ(n+ 1)
e−(2n+h)x

(4.2.7)

Remark that from the formula (4.2.4), we obtain:

∫ ∞

0

pt(y)e
−λ2

2
tdt = λe−λy (y > 0), (4.2.8)

where pt(y) is given by:

pt(y) =
∂2

∂y2

(
1√
2πt

e−
y2

2t

)

. (4.2.9)

Now we are in a position to invert the Laplae transforms of C2|µ̃| and S1.
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Proposition 4.2.3. The density fC2|µ̃|
is given by

fC2|µ̃|
(t) =

22|µ̃|

Γ(2|µ̃|)

∞∑

n=0

(−1)nΓ(n + 2|µ̃|)
Γ(n + 1)

(2n+ 2|µ̃|)
2
√
2πt3

e−
((2n+2|µ̃|)/2)2

2t

Proof :

From proposition 4.2.1 we have

E
[
e−λC2|µ̃|

]
=

1
(

cosh
(√

λ/2
))2|µ̃| .

So by applying the expansion formula (4.2.7), we obtain that

E
[
e−λC2|µ̃|

]
=

22|µ̃|

Γ(2|µ̃|)

∞∑

n=0

(−1)nΓ(n+ 2|µ̃|)
Γ(n+ 1)

e−(2n+2|µ̃|)
√

λ/2. (4.2.10)

Finally the density fC2|µ̃|
an be obtained by inverting its Laplae transform in (4.2.10)

using Lévy formula (4.2.4):

fC2|µ̃|
(t) = Φ−1

λ






1
(

cosh
(√

λ/2
))2|µ̃|




 (t)

= Φ−1
λ

(

22|µ̃|

Γ(2|µ̃|)

∞∑

n=0

(−1)nΓ(n+ 2|µ̃|)
Γ(n+ 1)

e−(2n+2|µ̃|)
√

λ/2

)

(t)

=
22|µ̃|

Γ(2|µ̃|)

∞∑

n=0

(−1)nΓ(n+ 2|µ̃|)
Γ(n+ 1)

Φ−1
λ

(

e−(2n+2|µ̃|)
√

λ/2
)

(t)

=
22|µ̃|

Γ(2|µ̃|)

∞∑

n=0

(−1)nΓ(n+ 2|µ̃|)
Γ(n+ 1)

(2n+ 2|µ̃|)
2
√
2πt3

e−
((2n+2|µ̃|)/2)2

2t

where Φ−1
λ denotes the inverse Laplae transform de�ned by:

Φ−1
λ (f(λ))(t) =

1

2πi
lim
T→∞

∫ χ+iT

χ−iT

eλtf(λ)dλ.

�
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We now aim to make expliit the density of fS1. Similarly to the above argument, the

density fS1 an be obtained by inverting its Laplae transform as follows:

From proposition 4.2.1 we have

E
[
e−λS1

]
=

( √

λ/2

sinh(
√

λ/2)

)

.

By applying the expansion formula (4.2.6), we obtain that

E
[
e−λS1

]
=

( √

λ/2

sinh(
√

λ/2)

)

= 2

∞∑

n=0

√

λ/2e−(2n+1)
√

λ/2
(4.2.11)

Then the density fS1 an be obtained as follows:

fS1(t) = Φ−1
λ

(

2
∞∑

n=0

√

λ/2e−(2n+1)
√

λ/2

)

(t)

=

∞∑

n=0

Φ−1
λ

(√
2λe−

(2n+1)
2

√
2λ
)

(t)

=

∞∑

n=0

pt

(
2n+ 1

2

)

(4.2.12)

The last equality is dedued from (4.2.8), where pt is as in (4.2.9).

Remark that H(t, y) := 1√
2πt

exp(−(y2/2t)) satis�es the heat equation

∂

∂t
H(t, y) =

1

2

∂2

∂y2
H(t, y).

Then

fS1(t) = 2

∞∑

n=0

∂

∂t
H(t, (2n+ 1)/2)

= −
(

1

2πt3

)1/2 ∞∑

n=0

e−
(n+1

2 )2

2t +

(
1

2πt3

)1/2 (n+ 1
2
)2

t

∞∑

n=0

e−
(n+1

2 )2

2t

= −1
2

(
1

2πt3

)1/2 ∞∑

n=−∞
e−

(n+1
2 )2

2t +
1

2t

(
1

2πt3

)1/2 ∞∑

n=−∞

(

n+
1

2

)2

e−
(n+1

2 )2

2t
(4.2.13)
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Unfortunately, this formula is not propitious to mathematial analysis. We therefore

obtain a simple formula for fS1 by using a result obtained in [3℄, whih proves a relation

between the densities fS1 and fC2 . The proof of this result relies on the fat that the

densities of Ch and Sh for h = 1; 2 an be also given by in�nite series related to the

derivatives of Jaobi's theta funtion.

Let us start with the Jaobi's theta funtions

θ(t) :=
∞∑

n=−∞
e−n2πt , θ0(t) :=

∞∑

n=−∞
(−1)ne−πn2t

(4.2.14)

and

θ1(t) :=

∞∑

n=−∞
e−π(n+1/2)2t

(4.2.15)

We reall the Jaobi's theta funtion identity (Poisson summation formula):

1√
πt

∞∑

n=−∞
e−(n+x)2/t =

∞∑

n=−∞
cos(2nπx)e−n2π2t (x ∈ R, t > 0). (4.2.16)

Remark that by replaing x by 1/2 and t by = t/π in equation (4.2.16) we have the

identity

θ1(1/t) =
√
t θ0(t) (4.2.17)

Now we have the in�nite series formulas for the densities fS1 and fC2 .

Proposition 4.2.4. The densities fS1 and fC2 are given by

fS1(t) =
d

dt

∞∑

n=−∞
(−1)ne−π2n22t = 2π θ

′

0(2tπ) (4.2.18)

and

fC2(t) =

∞∑

n=−∞

(

4π2

(

n+
1

2

)2

t− 1

)

e−2(n+ 1
2)

2
π2t

(4.2.19)
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Proof :

From (4.2.13), we have:

fS1(t) = −
1

2

(
1

2πt3

)1/2 ∞∑

n=−∞
e−

(n+1
2 )2

2t +
1

2t

(
1

2πt3

)1/2 ∞∑

n=−∞

(

n+
1

2

)2

e−
(n+1

2 )2

2t

On the other hand we have:

2πθ
′

0(2tπ) =
d

dt
(θ0(2tπ))

=
d

dt

((
1

2tπ

)1/2

θ1

(
1

2tπ

))

(from 4.2.17)

= −1
2

(
1

2πt3

)1/2

θ1

(
1

2tπ

)

− 1

2πt

(
1

2πt3

)1/2

θ
′

1

(
1

2tπ

)

= −1
2

(
1

2πt3

)1/2 ∞∑

n=−∞
e−

(n+1
2 )2

2t +
1

2t

(
1

2πt3

)1/2 ∞∑

n=−∞

(

n+
1

2

)2

e−
(n+1

2 )2

2t

Therefore (4.2.18) is dedued.

Similarly from proposition 4.2.3 and by using the same alulus as above, we an dedue

that:

fC2(t) =

∞∑

n=−∞

(

4π2

(

n +
1

2

)2

t− 1

)

e−2(n+ 1
2)

2
π2t

�

Finally we have the relation between fS1 and fC2 .

Corollary 4.2.5. The densities fS1 and fC2 satisfy the following relation:

fS1(t) =

(
1

8πt3

)1/2

fC2

(
1

4π2t

)

Proof :

From proposition 4.2.4 and using the Jaobi's theta identity (4.2.16), fS1(t) an be

written as:

fS1(t) =
d

dt

((
1

2πt

)1/2 ∞∑

n=−∞
e−

(n+1
2)

2

2t

)

(4.2.20)
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Therefore from (4.2.20) and (4.2.19), we an dedue the above relation. �

Now the density f of the random variable k
(−|µ̃|)
∞ an be obtained expliitly as:

Proposition 4.2.6. The density f of the random variable k
(µ̃)
∞ is given by

f(t) =
(

fS1 ∗ fC2|µ̃|

)

(t) (4.2.21)

where

fS1(t) = 4π2
∞∑

n=0

(−1)n (n+ 1)2 e−2(n+1)2π2t
(4.2.22)

and

fC2|µ̃|
(t) =

22|µ̃|

Γ(2|µ̃|)

∞∑

n=0

(−1)nΓ(n + 2|µ̃|)
Γ(n + 1)

(2n+ 2|µ̃|)
2
√
2πt3

e−
(n+|µ̃|)2

2t
(4.2.23)

Proof :

The result follows from the identity in law in lemma 4.2.2.

The formula (4.2.22) is dedued from orollary 4.2.5 and proposition 4.2.3.

�

The formula (4.2.21) is not propitious to mathematial study of the behavior of the

umulative distribution funtion of k
(−|µ̃|)
∞ . We thus now use a result due to Yor [34,

p.370℄ on the joint law of

(
1
4
A

(ν)
2,∞, A

(ν)
1,∞

)

for ν < 0.

4.3 The umulative distribution funtion of k
(−|µ̃|)
∞

We use in this setion two important results proved by Yor, in order to prove our result

in theorem 4.3.9. The �rst one onerns the identity in law in theorem 4.3.3, and

the seond one is the extension of the lassial Ray-Knight formula to the perturbed

Brownian motion Xγ
( see theorem 4.3.4).

4.3.1 Re�eting Brownian motion perturbed by its loal time

at zero

Let (Bt) denote a one-dimensional Brownian motion started from 0 and (lt(B), t > 0)
its loal time proess at level 0. For �xed γ > 0, the perturbed re�eting Brownian

motion (Xγ
t ) is de�ned for all t > 0 by

Xγ
t =| Bt | −γlt(B)
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where we have the following notations:

• (lt(B), t > 0) is the loal time proess of B at level 0,

• (lxt (X
γ), t > 0) is the loal time proess of Xγ

at level x,

• (τγu , u > 0) is the right ontinuous inverse of the loal time at 0, (l0t (X
γ), t > 0)

of Xγ
.

De�nition 4.3.1. (Bessel proesses)

For every ρ > 0 and x > 0, the unique strong solution to the equation

Yt = x+ ρt + 2

∫ t

0

√

YsdBs

is alled the square of a ρ-dimensional Bessel proess started at x and is denoted by

BESQρ(x)

Remark 4.3.2. Denote the law of BESQρ(x) by Qρ
x. We all the number ρ the di-

mension of BESQρ
, and ν = ρ/2 − 1 is alled the index of the proess BESQρ

. Also

we denote by BESQρ
t (x, y) the Bessel square bridge of dimension ρ > 0 from x to y

on [0, t]. The law of BESQρ
t (x, y) denoted by Qρ

t (x, y) is viewed as the Qρ
x onditional

distribution of (Yu, 0 6 u 6 t) given Yt = y , i.e:

Qρ
t (x, y) = Qρ

x [Y |Ly = t] (4.3.1)

where Ly = sup{u : Yu = y}.

We now state the following result due to Yor [34, p.370℄ on the joint law of

(
1
4
A

(ν)
2,∞, A

(ν)
1,∞

)

for ν < 0.

Theorem 4.3.3. Let ν < 0 and de�ne γ = − 1
2ν
.

Then the following identity in law holds:

(
1
4
A

(ν)
2,∞, A

(ν)
1,∞

) L
=

(
∫ τγ1

0

1(Xγ
u60)du, γlτγ1 (B)

)
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A seond important result due to Yor [33, p.118℄ onerns the extended Ray-Knight

theorem for the ase of perturbed Brownian motion Xγ
. This result shows that the

loal time of Xγ
in the spae variable up to time τγs is a Bessel square proess of

dimension that depends on γ.

Theorem 4.3.4. (Ray-Knight Theorem)

Fix s > 0. The proesses (lx
τγs
(Xγ), x > 0) and (l−x

τγs
(Xγ), x > 0) are independent, and

their respetive laws are Q0
s and Q

2− 2
γ

s , where Q
2− 2

γ
s denotes the law of the square of the

Bessel proess starting from s, with dimension 2− 2
γ
, and absorbed at 0.

We now state some lemmas whih will be important to prove our result in proposition

4.3.9.

Lemma 4.3.5.

−γlτγs (B) = inf{Xγ
u , u 6 τγs } (4.3.2)

Proof :

Let t be �xed and gt = sup{s 6 t/Bs = 0}. Then Bs 6= 0 for s ∈ (gt, t).

As the loal time of B at level 0 is onstant until (Bt) hits 0, we an dedue that for

all t we have:
lgt(B) = lt(B)

As the above equality is true for all t, so we have lg
τ
γ
s
(B) = lτγs (B). Then

Bg
τ
γ
s
= 0⇒ Xg

τ
γ
s
= −γlτγs (B).

For u ∈ [0, τγs ], we have X
γ
u > −γlu(B) > −γlτγs (B). Then

inf{Xγ
u , u 6 τγs } = −γlτγs (B)

�

The following two lemmas are given in [24℄:

Lemma 4.3.6. Assume ρ < 2. Let Z be BESQρ(x) for x > 0 and let T0 be the

�rst hitting time of 0 : T0 = inf{s|Zs = 0}. Conditionally on {T0 = t}, the proess

(Zs, 0 6 s 6 t) is a BESQ4−ρ
t (x, 0).

Lemma 4.3.7. The random variables M = − inf{Xγ
t |0 6 t 6 τγx } and T0 = inf{t|Yt =

0} where Y is BESQ2−2/γ(x) are equal in law.
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Let T0 be the �rst hitting time of 0 by (l−y
τγs
(Xγ), y > 0).

Proposition 4.3.8. Conditionally on {T0 = t} the law of

(

ly−t
τγs

; 0 6 y 6 t
)

is Q
2+ 2

γ

t (0, s).

Proof :

From theorem 4.3.4, (l−y
τγs
(Xγ), y > 0) is BESQ

2− 2
γ

s . Then from lemma 4.3.6, ondi-

tionally on {T0 = t} the proess (l−y
τγs
(Xγ), y > 0) is a BESQ

2+ 2
γ

t (s, 0). To onlude the

proof we observe that the proess (l
−(t−y)

τγs
(Xγ), 0 6 y 6 t) is also Bessel square bridge

but s and 0 interhanged. Therefore (ly−t
τγs

(Xγ), 0 6 y 6 t) := (l
−(t−y)

τγs
(Xγ), 0 6 y 6 t)

is BESQ
2+ 2

γ

t (0, s) with law Q
2+ 2

γ

t (0, s) . �

Theorem 4.3.9. De�ne γ = 1
2|µ̃| ; then one has

P
[
k(−|µ̃|)
∞ 6 u

]
=

∫ ∞

0

∫ γ2b2u/4

0

h(z)dz.q(b)db (4.3.3)

where

h(x) = 2(γb)1+
1
γ e

1
2γbΦ−1

λ






(2λ)(
1
2
+ 1

2γ
)

(

sinh(γb
√
2λ)
)1+ 1

γ

exp

(

−1
2

√
2λ cosh(γb

√
2λ)

sinh(γb
√
2λ)

)



 (x) ,

and

q(x) =
1

2γΓ(1/γ)
x−

1
γ
−1e−

1
x .

Φ−1
λ denotes the inverse Laplae transform.

Proof :

In the following, we denote by q the density funtion of lτγ1 .

P
[
k(−|µ̃|)
∞ 6 u

]
= P

[

A
(−|µ̃|)
2,∞

(A
(−|µ̃|)
1,∞ )2

6 u

]

= P








4

∫ τγ1

0

1(Xγ
v60)dv

(γlτγ1 )
2

6 u








(from theorem 4.3.3)

=

∫ ∞

0

P

[

4

γ2b2

∫ τγ1

0

1(Xγ
v60)dv 6 u | lτγ1 (B) = b

]

.q(b)db

=

∫ ∞

0

P

[
∫ τγ1

0

1(Xγ
v60)dv 6

γ2b2u

4
| lτγ1 (B) = b

]

.q(b)db (4.3.4)
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• First step: We ompute P

[
∫ τγ1

0

1(Xγ
v60)dv 6

γ2b2u

4
| lτγ1 (B) = b

]

:

By the oupation times formula, one �nds that

P

[
∫ τγ1

0

1(Xγ
v 60)dv 6

γ2b2u

4
| lτγ1 (B) = b

]

= P

[
4

γ2b2

∫ 0

−∞
ly
τγ1
(Xγ)dy 6 u | lτγ1 (B) = b

]

= P






4

γ2b2

∫ 0

inf
06v6τγ1

(Xγ
v )
ly
τγ1
(Xγ)dy 6 u | lτγ1 (B) = b






= P

[
4

γ2b2

∫ 0

−γb

ly
τγ1
(Xγ)dy 6 u | lτγ1 (B) = b

]

(from lemma.4.3.2 )

= P

[
4

γ2b2

∫ γb

0

l
(−y)

τγ1
(Xγ)dy 6 u | lτγ1 (B) = b

]

= P

[
4

γ2b2

∫ γb

0

l
(−y)

τγ1
(Xγ)dy 6 u | T0 := inf{x > 0, l−x

τγ1
(Xγ) = 0} = γb

]

= P

[
4

γ2b2

∫ γb

0

l
(z−γb)

τγ1
(Xγ)dz 6 u | T0 = γb

]

(hange of variable z = γb− y )

= P

[
4

γ2b2

∫ γb

0

Yzdz 6 u | Yγb = 1

]

, (4.3.5)

where Y is the square of (2 + 2
γ
)-dimensional Bessel proess started at 0. From

proposition 4.3.8, onditionally on T0 = γb , the proess (l
(z−γb)

τγ1
(Xγ), 0 6 z 6 γb)

is a Bessel bridge Q
2+ 2

γ

γb (0, 1). Then the last equality (4.3.5) is dedued from

remark 4.3.2.

So �nally, from (4.3.5) we obtain that

P

[
∫ τγ1

0

1(Xγ
v60)dv 6

γ2b2u

4
| lτγ1 (B) = b

]

=

∫ γ2b2u/4

0

f∫ γb
0 Yvdv

(z | Yγb = 1)dz

=

∫ γ2b2u/4

0

f(
∫ γb
0 Yvdv,Yγb)

(z, 1)

fYγb
(1)

dz

(4.3.6)

where
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� f∫ γb
0 Yvdv

(z | Yγb = 1) is the onditional probability density funtion of

∫ γb

0
Yvdv given the value 1 of Yγb.

� f
(
∫ γb
0 Yvdv,Yγb)

(z, 1) gives the joint density of

∫ γb

0
Yvdv and Yγb, and fYγb

(1)

gives the marginal density for Yγb.

�

From lemma 4.6.15 and equation (4.6.12) in Appendix B, we obtain

fYγb
(1) =

(γb)−1− 1
γ e−

1
2γb

2Γ( 1
γ
+ 1)

. (4.3.7)

In addition, from lemma 4.6.15, we obtain

f(
∫ γb
0

Yzdz,Yγb)
(z, 1) = lim

x→0

1

x
1
γ

isz

(
1

γ
, γb, 0, (x2 + 1)/2, x/2

)

=
1

Γ( 1
γ
+ 1)

Φ−1
λ






(2λ)(
1
2
+ 1

2γ
)

(

sinh(γb
√
2λ)
)1+ 1

γ

exp

(

−1
2

√
2λ cosh(γb

√
2λ)

sinh(γb
√
2λ)

)



 (z) (4.3.8)

where Φ−1
λ denotes the inverse Laplae transform. The equation (4.3.8) is dedued from

the linearity of the inverse Laplae transform and from the dominated onvergene

theorem.

Finally, from (4.3.4) and (4.3.6) we obtain equality (4.3.3).

Remark 4.3.10. From proposition 4.2.6 and theorem 4.3.4, the density and the u-

mulative distribution funtion of the random variable k
(−|µ̃|)
∞ are given expliitly. But

unfortunately, the expliit formulae are not propitious to study the behavior of the

umulative distribution funtion P[k
(−|µ̃|)
∞ 6 x]. In next setion, we aim to use Taube-

rian theory whih enables us to �nd onnetions between the behavior properties of the

Laplae transform at in�nity (resp.at zero) and the behavior properties of the orre-

sponding umulative distribution funtion near zero (resp.near in�nity).
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4.4 Tails behavior of the distribution of k
(−|µ̃|)
∞

We are now interested to use Tauberian theory to study the behavior of the Laplae

transform of k
(−|µ̃|)
∞ for large λ (respetively for small λ), in order to dedue the behavior

of P[k
−|µ̃|
∞ 6 x] for small x (respetively the behavior of 1− P[k

−|µ̃|
∞ 6 x] for large x).

Before proving our main result, let us remind some de�nitions and results onerning

Tauberian theory. We refer to [4℄.

4.4.1 Laplae transform and Tauberian theorems

De�nition 4.4.1. Let µ be a measure on [0,∞) and �nite on bounded sets. The

Laplae transform µ̂(λ) of µ is the real-valued funtion de�ned for λ > c by

µ̂(λ) :=

∫ ∞

0

e−λxµ(dx),

where c = inf
{

λ ∈ R :

∫ ∞

0

e−λxµ(dx) <∞
}

Notie that in the ase where µ is a �nite measure, then µ̂ is de�ned at least for all

λ > 0.

This setion is deomposed in two parts: In the �rst part I), we reall Bruijn's Taube-
rian theorem, whih proves that the behavior of the Laplae transform µ̂(λ) for large
λ is limited to the behavior of µ[0, x] for small x. In the seond part II), we state

two Tauberian results: Karamata's Tauberian theorem 4.4.4 and analyti Tauberian

theorem 4.4.7. These two results an be used to obtain the behavior of µ[x,∞) for
large x.

I) Bruijn's Tauberian Theorem

In this setion, Rα(0+) denotes the lass of regularly varying funtions at origin with

index α (see de�nition 4.6.1 in Appendix B ). And

←−
f denotes the generalized inverse

of f given by

←−
f (x) := sup{t : f(t) > x}

The following theorem is given in [4, p.254℄.
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Theorem 4.4.2. (Bruijn's Tauberian theorem).

Let µ be a measure on (0,∞) and �nite on bounded sets, whose Laplae transform

µ̃(λ) :=

∫ ∞

0

e−λxdµ(x)

is well de�ned for all λ > 0. If α < 0, φ ∈ Rα(0+), put ψ(λ) = φ(λ)
λ
∈ Rα−1(0+); then

for B > 0,

− log µ(0, x] ∼
x→0+

B
←−
φ (1/x)

(4.4.1)

if and only if

− log µ̃(λ) ∼
λ→∞

(1− α)( B
−α

)
α

α−1

←−
ψ (λ)

(4.4.2)

Remark 4.4.3. Notie that in the ase where µ = P ◦ X−1
is the distribution of a

non-negative random variable X, then µ̂(λ) is also referred as the Laplae transform

of X,

µ̂(λ) = E
[
e−λX

]
,

and

µ(0, x] = P[X 6 x].

II) Karamata's and analyti Tauberian Theorems

Details of this part are provided in paragraph 4.6, appendix B.

Let X be a positive random variable with distribution funtion F and denote by F̂ its

Laplae transform. Then we have the following result:

Theorem 4.4.4. (Karamata's Tauberian theorem)

Let l be a slowly varying at in�nity (see de�nition 4.6.2 in Appendix B), then

a) For 0 6 α < 1, the following are equivalent

i) 1− F̂ (λ) ∼ λαl(1/λ) (λ→ 0)

ii) 1− F (x) ∼ l(x)

xαΓ(1− α) (x→∞)
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b) For α = 1, the following are equivalent

i) 1− F̂ (λ) ∼ λαl(1/λ) (λ→ 0)

ii)

∫ x

0

(1− F (t))dt ∼ l(x) (x→∞)

Proof :

The proof is given in Appendix B, setion 4.6. �

Remark 4.4.5. Interpretation The interpretation of this theorem lies diretly to the

argument if "the �rst moment is �nite", that is the Laplae transform is di�erentiable

at the origin (see remark 4.6.11 ). So in the ase when the Laplae transform is

di�erentiable e at the origin, F̂ (s) may be expanded in a Taylor series and then near

to the origin, 1 − F̂ (λ) is equivalent to Aλ + o(λ) (A is a onstant). Then α is equal

to 1 in the above theorem, therefore we an dedue from b) an information onerning

the integrated tail of F but we don't have an information onerning the tail behavior

of F .

In appendix B (paragraph 4.6), we onsider the ase of the exponential law in order to

understand the limitation of this theorem.

We now present the analyti Tauberian theorem whih desribes the asymptoti be-

havior of the tail probability based on analyti properties of the Laplae-Stieltjes trans-

form. In [23℄ and [22℄, Nakagawa has proved that if the absissa of onvergene of the

Laplae-Stieltjes transform is negative and the singularities of this transform on the

axis of onvergene are only a �nite number of poles, then the tail probability deays

exponentially fast with a onstant related to the absissa of onvergene.

Let X be a non-negative random variable with probability distribution funtion

F (x) = P [X 6 x] .

The Laplae-Stieltjes transform Φ of the distribution funtion F is de�ned by:

Φ(s) :=

∫ ∞

0

e−sxdF (x), (4.4.3)

where s ∈ C.
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De�nition 4.4.6. The absissa of onvergene of Φ(s) is de�ned as the real number

a0 suh that the integral (4.4.3) onverges for Re(s) > a0 and diverges for Re(s) < a0.
The line Re(s) = a0 is alled the axis of onvergene of Φ(s).

Now we present the main theorem in Nakagawa [22℄:

Theorem 4.4.7. (Analyti Tauberian theorem)

If −∞ < a0 < 0 and the singularities of Φ(s) on the axis of onvergene Re(s) = a0
are only a �nite number of poles, then we have:

lim
x→∞

1

x
log P[X > x] = a0

Remark 4.4.8. The assumption of theorem 4.4.7 implies that there exists an open

neighborhood U of Re(s) = a0 suh that Φ(s) is analyti on U exept for the �nite

number of poles on Re(s) = a0.

4.4.2 The behavior of F̃ (x) for small x

Let us denote by F̃ the umulative distribution funtion of k
(−|µ̃|)
∞ :

F̃ (x) = P
[
k(−|µ̃|)
∞ 6 x

]
,

and

1− F̃ (x) = P
[
k(−|µ̃|)
∞ > x

]
.

Proposition 4.4.9. The behavior of the umulative distribution funtion F̃ for small

x is given by:

− log F̃ (x) ∼
x→0+

B

x
, (4.4.4)

where B = 1
8
(1 + 2|µ̃|)2 is a positive onstant.

Proof :

Let

φ(x) =
1

x
, ψ(x) =

1

x2
and B =

1

8
(1 + 2|µ̃|)2

We have φ ∈ R−1(0+) and ψ(x) = φ(x)
x
∈ R−2(0+).
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From (4.2.1), we have:

E

[

e−λk
(−|µ̃|)
∞

]

=

√

λ/2

sinh
(√

λ/2
)(

cosh(
√

λ/2)
)2|µ̃|

Then

− logE
[

e−λk
(−|µ̃|)
∞

]

= − log(
√

λ/2) + log
(

sinh
(√

λ/2
))

+ 2|µ̃| log
(

cosh
(√

λ/2
))

= − log(
√

λ/2) + log

(

e
√

λ/2

2

(

1− e−2
√

λ/2
)
)

+ 2|µ̃| log
(

e
√

λ/2

2

(

1 + e−2
√

λ/2
)
)

= − log(
√

λ/2)− (1 + 2|µ̃|) log 2 + (1 + 2|µ̃|)
√

λ/2

+ log
(

1− e−2
√

λ/2
)

+ 2|µ̃| log
(

1 + e−2
√

λ/2
)

∼
λ→∞

(1 + 2|µ̃|)√
2

√
λ (beause

log(x)

x
→ 0 as x→∞)

∼
λ→∞

2
√
B

←−
ψ (λ)

where

←−
ψ is the inverse funtion of ψ.

Then − logE
[

e−λk
(−|µ̃|)
∞

]

satis�es the equivalene (4.4.2) in proposition 4.4.2 with α =

−1 (beause φ ∈ R−1(0+)). Then from proposition 4.4.2 we have:

− log F̃ (x) ∼
x→0+

B

x

�

4.4.3 The behavior of 1− F̃ (x) for large x

By applying Karamata's Tauberian theorem 4.4.4 with the random variable k
(−|µ̃|)
∞ , we

�nd that the index α is equal to 1. So we are in the ase b) in proposition 4.4.4 and

then we an't dedue an equivalent for 1− F̃ (x) for large x.
So we aim to use the analyti Tauberian theorem 4.4.7 in order to dedue the behavior

of 1− F̃ (x) for large x.
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In the sequel, we denote respetively by Φ1(λ) and Φ2(λ) the Laplae transform of

S1 and C2|µ̃|.

Lemma 4.4.10. The absissa of onvergene of Φ1 and Φ2 are given respetively by

a1 = −2π2
and a2 = −

π2

2
(4.4.5)

Proof :

From the de�nition of the variable S1, we have

Φ1(λ) := E
[
e−λS1

]
= E

[ ∞∏

n=1

exp(− λΓ1,n

2n2π2
)

]

=

∞∏

n=1

(

E

[

exp(− λΓ1,n

2n2π2
)

])
(
beause Γ1,n are independent

)

(4.4.6)

=
∞∏

n=1

(

1 +
λ

2π2n2

)−1

(if λ > −2π2
) (4.4.7)

The ondition λ > −2π2
in (4.4.7) is dedued from (4.2.2), this ondition ensures that

eah term in the in�nite produt in (4.4.6) is �nite and is equal to

(
1 + λ

2π2n2

)−1
.

We now prove that λ = −2π2
is the absissa of onvergene of Φ1.

i) We �rst proof that for λ > −2π2
, Φ1(λ) is �nite. In fat, for λ > −2π2

the

Laplae transform Φ1(λ) is expliitly given by the produt (4.4.7) whih is �nite.

Indeed,

log

( ∞∏

n=1

(

1 +
λ

2π2n2

)−1
)

=

∞∑

n=1

log

((

1 +
λ

2π2n2

)−1
)

.

Notie that the general term of this series is equivalent to

C
n2 , where C is a

onstant. Then the above series is onvergent.

ii) It remains to proof that for λ < −2π2
, the Laplae transform Φ1(λ) is in�nite.

From (4.4.6) we have:

Φ1(λ) =
∞∏

n=1

(

E

[

exp(− λΓ1,n

2n2π2
)

])
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For λ < −2π2
there exists n0 ∈ N suh that −2(n0 + 1)2π2 6 λ < −2n2

0π
2
.

Then

∞∏

n=1

(

E

[

exp(− λΓ1,n

2n2π2
)

])

=

n0∏

n=1

(

E

[

exp(− λΓ1,n

2n2π2
)

])

︸ ︷︷ ︸

=∞

∞∏

n=n0+1

(

E

[

exp(− λΓ1,n

2n2π2
)

])

︸ ︷︷ ︸

<∞

is not �nite.

Notie that the �rst produt on the right hand-side is in�nite. In fat, for eah

1 6 n 6 n0, the expetation E

[

exp(− λΓ1,n

2n2π2 )
]

is in�nite, then the produt is

in�nite.

The seond produt on the right hand-side is �nite beause for eah n > n0 + 1,
we have

λ
2π2n2 > −1 and then:

∞∏

n=n0+1

(

E

[

exp(− λΓ1,n

2n2π2
)

])

=

∞∏

n=n0+1

(

1 +
λ

2π2n2

)−1

where we prove by the same argument as in ase i) that the last produt is �nite.

Similarly for the random variable C2|µ̃|. We have:

E
[
e−λC2|µ̃|

]
= E

[ ∞∏

n=1

exp

(

− λΓ2|µ̃|,n

2π2(n− 1
2
)2

)]

=

∞∏

n=1

(

E

[

exp(− λΓ2|µ̃|,n

2π2(n− 1
2
)2
)

])
(
beause Γ2|µ̃|,n are independent

)

(4.4.8)

=

∞∏

n=1

(

1 +
λ

2π2(n− 1
2
)2

)−2|µ̃|
(
if λ > −π

2

2

)
. (4.4.9)

Similarly by the same argument in the ase of the random variable S1, we an dedue

that a2 = −π2

2
is the absissa of onvergene of C2|µ̃|.

�

Now we have the following theorem whih states that the tail probability deays expo-

nentially.
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Proposition 4.4.11. We have

lim
x→∞

1

x
log[1− F̃ (x)] = −π

2

2
(4.4.10)

Proof :

From the equality in law in lemma 4.2.2, we an dedue that:

E

[

eλk
(−|µ̃|)
∞

]

= E
[
eλ(S1+C2|µ̃|)

]
(for λ ∈ R),

So E

[

eλk
µ̃
∞

]

is �nite i� E
[
eλ(S1+C2|µ̃|)

]
is �nite. Then from lemma 4.4.10, we dedue

that a0 = −π2

2
is the absissa of onvergene of k

(−|µ̃|)
∞ . As the zeros of the hyperboli

sine and the hyperboli osine funtions are imaginar omplex numbers, then we have

the sole singularity −π2

2
at the axis of onvergene Re(λ) = −π2

2
.

Therefore from theorem 4.4.7, we dedue that

lim
x→∞

1

x
log[1− F̃ (x)] = −π

2

2

�

4.5 Appliation to the detetion a hange in the on-

stant oe�ient σ

We now show how the normalized indiator NI an detet a regime hange in σ. For
that we aim to ompare the behavior of its tails for di�erent σ. To emphasize the

dependene of the normalized indiator of the onstant oe�ient σ, we will use the

notation NIδ(σ).

• Compare the behavior of P[NIδ 6 x] for small x

From orollary 4.1.2, the behavior of the umulative distribution funtion of NIδ an
be dedued from that of k

(µ̃)
∞ . Then from proposition 4.4.9, the behavior of P[NIδ 6 x]

for small x is given by:

− log P[NIδ 6 x] = − log P
[

k−|µ̃|
∞ 6

x

σ2

]

∼
x→0+

(1 + 2|µ̃|)2 σ2

8x
. (4.5.1)

We remark that for σ0 less than σ1, P[NIδ(σ0) 6 x] deays exponentially to zero just

a little faster than P[NIδ(σ1) 6 x].
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• Compare the behavior of P[NIδ > x] for large x

Similarly as above, we an dedued from orollary 4.1.2 and proposition 4.4.11 that:

lim
x→∞

1

x
log P[NIδ > x] = lim

x→∞

1

x
logP

[

k−|µ̃|
∞ >

x

σ2

]

= − π2

2σ2
. (4.5.2)

Also we remark that for σ0 less than σ1, P[NIδ(σ0) > x] deays exponentially to zero

faster than P[NIδ(σ1) > x].

We have showed that the tails behavior depend on the value of σ. So we an dedue

that we have di�erent behavior of these tails for di�erent value of σ. Therefore we an
dedue that the normalized indiator NI has the apaity to detet a regime hange

in σ.

Numerial results:

We now show numerially the above result by estimating the density of the variable

NIδ in order to verify that the behavior of its tails for di�erent value of σ behaves like

what we have got in (4.5.1) and (4.5.2).

Notie that we will be areful about the hoie of the parameters µ,σ0, σ1 and δ as in
observation 4.1.3 in order to have the onvergene of the umulative distribution of NIδ
to that of σ2k

(−|µ̃|)
∞ and then to dedue from (4.4.11) and (4.4.4) the two equivalents

(4.5.1) and (4.5.2).

First we illustrate in �gures 4.3(a) and 4.3(b) the estimated densities of the random

variableNIδ in the ase where µ̃ = −3. Then from observation 4.1.3, the approximation

of P[NIδ 6 x] by P[σ2k
(−|µ̃|)
∞ 6 x] is good when

σ2δ > 2. (4.5.3)

In �gure 4.3(a), we estimate the density of NIδ(σ0) and NIδ(σ1) for small δ = 0.8,
where σ0 = 1.5 and σ1 = 2.5. In �gure 4.3(b), we estimate the density of NIδ(σ0) and
NIδ(σ1) for large δ = 2, where σ0 = 1 and σ1 = 1.5. Notie that σ0 and σ1 are seleted
suh that σ2

0δ and σ
2
1δ satisfy (4.5.3).

Seond we illustrate in �gures 4.3(d) and 4.3() the estimated densities of the random

variable NIδ in the ase where µ̃ = −5. Similarly as above, we an dedue from

observation 4.1.3 that the umulative distribution funtion of NI is lose to that of

σ2k
(−|µ̃|)
∞ when

σ2δ > 0.8. (4.5.4)
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In �gure 4.3(d), we estimate the density of NIδ(σ0) and NIδ(σ1) for small δ = 0.8,
where σ0 = 1 and σ1 = 1.5. In �gure 4.3(), we estimate the density of NIδ(σ0) and
NIδ(σ1) for large δ = 2, where σ0 = 0.6 and σ1 = 1.2. Here σ0 and σ1 are seleted suh

that σ2
0δ and σ

2
1δ satisfy (4.5.4).
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Figure 4.3: Esitmated density of NI indiator

From the above numerial example, we remark that the right tail probability of NI
deays exponentially fast to zero with small σ0 than the right tail probability of NI
with σ1 and this result is theoretially proved in (4.5.2). The left tail probability of

NI with σ0 deays to zero a little faster than the left tail probability of NI with σ1,
also this result is given theoretially in (4.5.1).
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4.6 Appendix B

Tauberian Theory

De�nition 4.6.1. A measurable funtion f : (0,∞) → (0,∞) is regularly varying at

the origin with index α, and we write f ∈ Rα(0+) if for every a > 0,

lim
x→0

f(ax)

f(x)
= aα

De�nition 4.6.2. A measurable funtion f : (0,∞) → (0,∞) is slowly varying at

in�nity if for every a > 0, lim
x→∞

f(ax)

f(x)
→ 1

De�nition 4.6.3. A measurable funtion f : (0,∞) → (0,∞) is regularly varying at

∞ if for every a > 0, the limit lim
x→∞

f(ax)

f(x)
exists.

Lemma 4.6.4. (Charaterization of a regularly varying funtion [2, p.9℄).

If the funtion f is regularly varying at in�nity, then there exists a real number ρ, alled
the index, suh that

lim
x→∞

f(ax)

f(x)
= aρ (4.6.1)

for every a > 0. Moreover, l(x) = f(x)x−ρ
is slowly varying at ∞.

Proposition 4.6.5. If l is slowly varying, X is so large that l(x) is loally bounded in

[X,∞], and α > −1, then
∫ x

X

tαl(t)dt ∼ xα+1l(x)/ (α + 1)

Proof :

We refer to [4, p.26℄. �

De�nition 4.6.6. A funtion f on [0,∞) is said to be ultimately monotone if it is

monotone on some [x0,∞) for some x0 > 0.

If U : R → R has loally bounded variation, is right-ontinuous, and vanishes on

(−∞, 0), we de�ne its Laplae -Stieltjes transform Û by:

Û(λ) =

∫ ∞

0

e−λxdU(x)
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where the integral onverges absolutely for s > c or more generally for all omplex

s = a+ ib with a > c. The onstant c is de�ned as:

c = inf{a ∈ R :

∫ ∞

0

e−axdF (x) <∞}

and dU denote the assoiated Stieltjes measure for U .

The most important ase is when U is non-dereasing on R, with U = 0 on (−∞, 0).
For suh U , statements about Û are to be onsidered to inlude the assertion that it

is �nite for the arguments in question.

We now present a theorem from [1, p.58℄.

Theorem 4.6.7. Let X is a Banah spae and U : R 7→ X be a loal bounded semi-

variation. Assume c <∞. Then

Ũ (n) =

∫ ∞

0

e−λt(−t)ndU(x).

where Ũ (n)
denotes the nth

derivative of Ũ .

We now give Karamata Tauberian Theorem from [4, p.37℄

Theorem 4.6.8. (Karamata Tauberian Theorem). Let U be a non-dereasing right-

ontinuous funtion on R with U(x) = 0 for all x < 0. If l varies slowly and c > 0,ρ >
0, the following are equivalent:

U(x) ∼ cxρl(x)

Γ(1 + ρ)
(x→∞) (4.6.2)

Û(λ) ∼ cλ−ρl(1/λ) (λ→ 0+) (4.6.3)

Suppose that U is absolutely ontinuous with density u, say:

U(x) =

∫ x

0

u(y)dy

When U has a density U ′ = u it is desirable to obtain estimate of u. This problem

annot be treated in full generality, so we may obtain a "di�erentiated form" of the

asymptoti relation under the "ultimately monotone" ondition as we show in the next

theorem.

Theorem 4.6.9. (Monotone Density Theorem).

Let U(x) =

∫ x

0

u(y)dy. If U(x) ∼ cxρl(x) (x → ∞), where c ∈ R,ρ > 0, l is slowly

varying at in�nity and if u is ultimately monotone, then

u(x) ∼ ρxρ−1l(x) (x→∞) (4.6.4)
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Proof :

We refer to [4, p.39℄. �

Conversely, if we have (4.6.4), then Proposition 4.6.5 on "integrating asymptoti rela-

tions" yields U(x) ∼ cxρl(x) (x→∞) even if u is not ultimately monotone.

Appliation to probability theory

In this statement we are interested by the probability ase i.e where U is the umulative

distribution funtion of a real random variables.

Let X be a non-negative random variable with distribution funtion F (x) := P[X 6 x].
The indued law of X on R is the Lebesgue-Stieltjes measure dF (x) = P[X ∈ dx]. We

shall identify the law with F .

For F supported by [0,∞), the Laplae-Stieltjes transform

F̂ (λ) := E
[
e−λX

]
=

∫ ∞

0

e−λxdF (x).

is �nite for all λ > 0.

Preliminaries

Here we list some elementary properties whih are useful in the proof of theorem 4.6.14.

Lemma 4.6.10. Let X be a positive random variable with probability distribution fun-

tion F . Let F̂ its Laplae transform, then F̂ possesses derivatives of all orders given

by

F̂ (n)(λ) = (−1)n
∫ ∞

0

e−λxxndF (x).

Proof :

Apply theorem 4.6.7. �

Remark 4.6.11. The above lemma implies that F possesses a �nite nth
moment if

and only of a �nite limit F̂ (n)(0) exists. For n = 1, E[X ] = −F̂ (1)(0) and for n = 2,
E[X2] = −F̂ (2)(0).

Lemma 4.6.12. For any α > 0

∫ ∞

0

xαdF (x) = α

∫ ∞

0

xα−1(1− F (x))dx (4.6.5)



4.6. APPENDIX B 65

Proof :

We have that:

∫ ∞

0

xα−1 (1− F (x)) dx =

∫ ∞

0

xα−1

∫ ∞

x

dF (y)dx =

∫ ∞

0

xα−1

∫ ∞

0

1(y>x)dF (y)dx

=Fubini
∫ ∞

0

∫ ∞

0

xα−11(y>x)dxdF (y)

=
1

α

∫ ∞

0

yαdF (y)

Then (4.6.5) follows. �

Lemma 4.6.13.

∫ ∞

0

e−λx (1− F (x)) dx =
1− F̂ (λ)

λ
(4.6.6)

Proof :

Integrating by parts F̂ (λ) =

∫ ∞

0

e−λxdF (x), we get:

F̂ (λ)

λ
=

∫ ∞

0

e−λxF (x)dx

Then

1− F̂ (λ)
λ

=

∫ ∞

0

e−λx (1− F (x)) dx

�

Let X be a positive random variable with distribution funtion F and denote by F̂ its

Laplae transform. Then we have the following result:

Theorem 4.6.14. Let l is a slowly varying at in�nity, then

a) For 0 6 α < 1, the following are equivalent

i) 1− F̂ (λ) ∼ λαl(1/λ) (λ→ 0)

ii) 1− F (x) ∼ l(x)

xαΓ(1− α) (x→∞)

b) For α = 1, the following are equivalent

i) 1− F̂ (λ) ∼ λαl(1/λ) (λ→ 0)
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ii)







∫ x

0

tdF (t) ∼ l(x) (x→∞)

∫ x

0

(1− F (t))dt ∼ l(x) (x→∞)

Proof :

From (4.6.6), we remark that

1−F̂ (λ)
λ

is the Laplae transform of the funtion

∫ x

0

(1− F (t)) dt.

• 0 6 α < 1:

From i) we have that 1−F̂ (λ)
λ
∼ λα−1l(1/λ), then by Karamata's Tauberian The-

orem 4.6.8 we dedue that i) is equivalent to:

∫ x

0

(1− F (t)) dt ∼
x→∞

x1−αl(x)

Γ(2− α)

As 1 − F (t) is ultimately monotone and α < 1, then by the monotone density

theorem 4.6.9 we get:

1− F (x) ∼
x→∞

(1− α)
Γ(2− α)x

−αl(x) =
1

Γ(1− α)x
−αl(x)

Therefore i) implies ii). Conversely an integration shows that ii) implies i), hene
the equivalene between i) and ii) in a).

• α = 1:

From i) we have that 1−F̂ (λ)
λ
∼ l(1/λ), then by Karamata's Tauberian Theorem

4.6.8 we dedue that i) is equivalent to:

∫ x

0

(1− F (t)) dt ∼
x→∞

l(x)

On the other hand, notie that from (4.6.5) the two statement in ii) are equal as
x→∞. Then i) implies ii) in b).
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�

Appliation: The ase of the exponential law

We now aim to apply the above theorem 4.6.14 to the exponential law.

Let X be a exponential random variable with parameter µ = 1 and l(x) = x
1+x

.

We have:

1− F̂ (λ) = λ

1 + λ
= λl(1/λ) (4.6.7)

As l is slowly varying funtion at in�nity, then from 4.6.14 we have:

∫ x

0

(1− F (t))dt ∼
x→∞

l(x)

So we have an information about the integrated tail probability for large x, but we

don't have an equivalent for the tail probability 1− F (x) for large x.
So we aim to de�ne another random variable Y in funtion of X suh that its �rst

moment is in�nite and we apply again the theorem 4.6.14 in order to get an information

about the tail probability of Y .

Let Y = eβX , where β > 1 and X be the exponential law with parameter µ = 1. We

remark that the �rst moment of Y is in�nite.

As above, we denote by FY the distribution funtion of Y and by F̂Y its Laplae

transform.Then for λ > 0, we have:

F̂Y (λ) = E[e−λY ] = E[e−λeβX

] =

∫ ∞

0

e−λeβx

e−xdx

Using the hange of variable u = eβx, we obtain that

F̂Y (λ) =
1

β

∫ ∞

1

e−λu

u
1
β
+1
du

Firstly, we aim to �nd a slowly varying funtion l at in�nity suh that

1− F̂Y (λ) ∼ λαl(1/λ) (λ→ 0)

where 0 6 α < 1.

We have:

1− F̂Y (λ) = 1− 1

β

∫ ∞

1

e−λu

u
1
β
+1
du =

1

β

∫ ∞

1

1− e−λu

u
1
β
+1

du (4.6.8)
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Let f(x) = 1
β

∫ ∞

1

1− e−u
x

u
1
β
+1

du. Then for a > 0, we have:

lim
x→∞

f(ax)

f(x)
= lim

x→∞

∫ ∞

1

1− e− u
ax

u
1
β
+1

du

∫ ∞

1

1− e−u
x

u
1
β
+1

du

= lim
x→∞

1

a1/β

( 1
x
)1/β

∫ ∞

1/ax

1− e−ζ

ζ
1
β
+1

dζ

( 1
x
)1/β

∫ ∞

1/x

1− e−v

v
1
β
+1

dv

→ 1

a1/β

The last equality omes from the hange of variable ζ = u
ax

in the numerator and v = u
x

in the denominator.

As lim
x→∞

f(ax)

f(x)
=

1

a1/β
, then from lemma 4.6.4, the funtion l(x) = x1/βf(x) is slowly

varying at in�nity.

From (4.6.8), we have that:

1− F̂ (λ) = λ1/βl(1/λ)

where 1/β is less than 1.

Then from theorem 4.6.14, the tail behavior of FY near in�nity is given by:

1− FY (x) ∼
l(x)

x1/βΓ(1− 1/β)
∼ 1

Γ(1− 1/β)
f(x) (x→∞)

∼ 1

Γ(1− 1/β)

1

β

∫ ∞

1

1− e−u
x

u
1
β
+1

du (4.6.9)

On the other hand, we have:

1− FY (x) = P[Y > x] = P[X >
1

β
log(x)] =

1

x1/β
(4.6.10)

Finally we hek that (4.6.9) is equivalent to (4.6.10) at in�nity. Let δ = 1
x
, then

∫ ∞

1

1− e−u
x

u
1
β
+1

du =

∫ ∞

1

1− e−δu

u
1
β
+1

du = δ
1
β

∫ ∞

δ

1− e−ζ

ζ
1
β
+1

dζ, (4.6.11)

where the last equality omes from the hange of variable ζ = δu.

As δ
1
β

∫ ∞

δ

1− e−ζ

ζ
1
β
+1

dζ = δ
1
β

[
∫ ∞

0

1− e−ζ

ζ
1
β
+1

dζ −
∫ δ

0

1− e−ζ

ζ
1
β
+1

dζ

]

,

so, when x→∞ (i.e δ near to 0), (4.6.11) is equivalent to

δ
1
β
[
A +O(δ1/β)

]
∼ A.δ1/β +O

(
δ2/β

)
∼ A.

1

x1/β
+O

(
1

x2/β

)

where A is a onstant. Therefore the equivalene between (4.6.9) and (4.6.10) is proven.
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Joint density of Bessel proess and the integral of its square

The following Lemma is given in [6℄(formulae 1.9.8 p.378 and 1.0.6 p.373)

Lemma 4.6.15. Let R
(n)
s be a n-dimensional Bessel proess started at x, then

Px

[∫ t

0

(
R(n)

s

)2
ds ∈ dz, R(n)

t ∈ dy
]

=
yν+1

x
isz
(
ν, t, 0, (x2 + y2)/2, xy/2

)
dzdy

and

Px

[

R
(n)
t ∈ dy

]

= yν+1x−νt−1e−(x2+y2)/2tIν(xy/t)dy

when ν = (n/2)− 1 is alled the index of the Bessel proess R.

Speial funtions

These funtions are de�ned in [6℄.

Speial Inverse Laplae Transforms:

isz(ν, t, r, y, x) := L−1
a

[
√
2a

sh(t
√
2a)

exp
(
− r
√
2a− y

√
2a ch(t

√
2a)

sh(t
√
2a)

)
Iν
( 2x

√
2a

sh(t
√
2a)

)]

where

Iν(x) :=
∞∑

k=0

(x/2)ν+2k

k!Γ(ν + k + 1)

and

Iν(x) ≃
1

Γ(ν + 1)
(x/2)ν as x→ 0 (4.6.12)

Error funtion

Erfc(x) :=
2√
π

∫ x

0

e−v2dv

and

Erfc(x) ≈ 1√
πx
e−x2

(as x→∞)
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CHAPTER 4. ASYMPTOTIC ANALYSIS OF THE BANDWIDTH

INDICATOR IN THE CASE OF LARGE VOLATILITIES

Gamma funtions The inomplete gamma funtion is de�ned as:

Γ(s, x) :=

∫ ∞

x

us−1e−uds

and the gamma funtion is de�ned as:

γ(x) :=

∫ ∞

0

ux−1e−udu, (x > 0)
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Chapter 5

Quadrati variation estimator and

Bollinger Bands indiator

We have showed in previous hapters that the Bollinger Bandwidth indiator an be

used as an estimator to detet the hange time at whih the volatility hanges its value.

Also it is well known in the literature that the quadrati variation is an estimator of

the volatility, that is, an be used to detet the hange time of the volatility. But the

quadrati variation estimator is optimal if we selet the time inrement as small as

possible.

We onsider the ase of a trader who does not perfetly detet τ but, at least, uses an

optimal detetion proedures to deide when he reinvests his portfolio. So we assume

that the trader uses one of the above estimators in order to detet the hange time,

and then we are interested in this hapter to ompare the performane of the various

detetion strategies in the ase of large value for the time inrement.

We assume that the hange time τ has an exponential law with parameter λ. We show

that in the ase of large time inrement (∆ = 10−2
), the optimal trading strategy based

on Bollinger Bands indiator an overperfom that of quadrati variation indiator in

the ase of large value for λ. Also we show that in this ase of large λ, Bollinger Bands
an detet the hange time faster than quadrati variation.

5.1 Detetion methods for the hange time

We show in this setion how an detet the hange time of the volatility using respe-

tively the Bollinger Bandwidth and the quadrati variation estimators.

Let us start by a short abstrat about the quadrati variation.

We assume that the prie proess (St) evolves aording to,
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dSt = St (µdt+ σdBt) . (5.1.1)

where µ and σ are onstants.

Then the log-prie proess Yt = log(St) satis�es:

d logSt =

(

µ− 1

2
σ2

)

dt+ σdBt.

The main objet of interest is the quadrati variation QV :

QVt := 〈Y, Y 〉t =
∫ t

0

σ2ds = σ2t.

over a �xed time period [0, t]. The usual estimator of the QVt is the realized volatility

(RV ), whih is simply the sum of observed squared log-returns

RVt =

n−1∑

k=0

(
Ytk+1

− Ytk
)2

where we onsider a regular partition of the interval [0, t] with time inrements ∆:

0 = t0 < t1 < ................ < tn = t, tk = k∆.

(tk, k = 0, 1....n) are the times at whih the prie of the asset is available during period

t, and n is the number of intra-period observations used in omputing the estimator.

In theory, sampling at inreasingly higher frequeny should deliver, at the limit, a

onsistent estimator of the quadrati variation. Further, the RVt onverges to the

quadrati variation QVt, and this onvergene it is optimal by seleting ∆ as small as

possible. Unfortunately this theory annot be applied diretly to real �nanial data.

We now return to our underlying mathematial model whih assume that the prie

proess satis�es the following SDE:

dSt = µStdt+ St (σ1 + (σ0 − σ1)1t6τ ) dBt, (5.1.2)

We present in this setion two methods for omputing the stopping rule (alarm time)

τ̃ whih detets the instant τ at whih the volatility hanges its value. The �rst one

is based on the quadrati variation estimator and the seond one, is based on the

Bollinger Bandwidth indiator.
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We �rst suppose that the trader uses the quadrati variation estimator and at eah

time tk he knows the last δ observations. Then the estimated σ̂ at eah time tk an be

obtained by:

σ̂2
tk
=

1

V∆

N∑

i=0

(
Y(k+i)∆ − Y(k−i−1)∆

)2
:=

1

N∆
RVtk , (tk = k∆). (5.1.3)

where tk ∈ {t − δ, ..., t} and the parameter δ is the size of the time window used to

ompute the (5.1.3), and is also the size of the time window used to ompute the

moving average for the Bollinger Bands.

For simplifying the notations, we denote in the sequel by τ̃Q the alarm time τ̃ omputed

by using quadrati variation estimator. Then τ̃Q an be expressed by:

τ̃Q = inf{tk;
1

N∆
RVtk > ̺}, (5.1.4)

where ̺ is a threshold to be ontrolled and it depends on σ0 and σ1. Indeed, the

threshold ̺ an be de�ned as:

̺ = c σ2
0 + (1− c)σ2

1 c ∈]0, 1[. (5.1.5)

We now assume that the trader uses Bollinger bands estimator to estimate the time

τ . Here we denote by τ̃B, the alarm time τ̃ deteted by using the Bollinger Bands

indiator. Then τ̃B an be expressed by:

τ̃B = inf{tk/BWItk > β} (5.1.6)

where β is a onstant to be �xed. For �rst intuition, the value of β an be hosen as

in setion 3.3 in hapter 1.

Notie that the alarms time τ̃Q and τ̃B an our before the instant τ , that is it

orresponds to a false alarm, or after τ . So, the amount of time whih τ̃Q and τ̃B miss

the true time hange τ is given by |τ̃Q − τ | and |τ̃B − τ |. We restrit ourselves to the

detetion proedure introdued by Karatzas whih onsists in minimizing respetively

the amount |τ̃Q − τ | and |τ̃B − τ |.
The Karatzas's detetion method onsists in omputing the optimal stopping rule

(alarm time) τ̃Q that minimizes the expeted miss

EK(Q) = E[ |τ̃Q − τ | ], (5.1.7)

and

EK(B) = E[ |τ̃B − τ | ]. (5.1.8)
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As the alarm times τ̃Q and τ̃B depend respetively on the thresholds ̺ and β, then the

expeted miss EK(Q) and EK(B) an be in�uene by the hoie of these parameters.

So it must hoose the good parameters in order to minimize EK(Q) and EK(B). But
as the trader's goal is to maximize his gain, so it will be better to hoie the optimal

parameters c, β and δ as the parameters with whih the trader maximizes the expeted

utility of his terminal wealth E[log(WT )].

5.2 Compare the performane of the various dete-

tion strategies

We ompare the performane of two mathematial deteted strategies aimed at de-

teting the time at whih the volatility hanges. We aim to ompare the performane

of traders who use one of the two volatility estimators to detet τ in order to deide

his portfolio investment strategy. Supposing that σ0 is less than σ1, then his strategy

onsists in putting all his money in the stok until the deteted time, and in the bond

after this time.

Consider a trader who takes deisions at disrete times of a regular partition of the

interval [0, T ] with step ∆ = T
N
.

0 = t0 < t1 < ................ < tN = T, tk = k∆.

We denote by πQ
tk
(resp.πB

tk
) ∈ {0, 1} the proportion of the agent's wealth invested in

the risky asset at time tk, k ∈ [1, N ], using respetively the quadrati variation and

Bollinger Bands indiators to detet the hange time τ . Consequently,

πQ
tk
= 1(tk<τ̃Q), (5.2.1)

and the orresponding wealth WQ
tk
at time tk satis�es:

WQ
tk+1

=WQ
tk

[

Stk+1

Stk

πQ
tk
+
S0
tk+1

S0
tk

(1− πQ
tk
)

]

(5.2.2)

Similarly we have:

πB
tk
= 1(tk<τ̃B), (5.2.3)

and the orresponding wealth WB
tk
at time tk satis�es:

WB
tk+1

= WB
tk

[

Stk+1

Stk

πB
tk
+
S0
tk+1

S0
tk

(1− πB
tk
)

]

. (5.2.4)

The parameters used in this numerial example is desribed below:
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µ = 0.01 σ0 = 0.05 σ1 = 0.2
r = 0 T = 2 τ = 0.6

τ

(a) A typial trajetory of the stok prie
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Figure 5.1: A nominal trajetory
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Figure 5.2: Time evolution of the wealth.

Fig.5.1(a) shows the underlying trajetory of the stok prie, when the hange ours at

τ = 0.6. Figs 5.1(b) shows the alloation strategies of traders using quadrati variation
and, respetively, Bollinger Bands estimators detetion methods. In Fig 5.2(a), we

show the time evolution of the wealth.

We aim to ompute the optimal parameters for eah method, this means we aim to
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ompute the optimal parameters c and δ of the quadrati variation estimator whih

maximize E[U(WQ
T )]. Similarly we ompute the optimal parameters β and δ of the

Bollinger Bands estimator whih maximize E[U(WB
T )]. Finally we ompare the optimal

E[U(WQ
T )] and E[U(WB

T )] whih are omputed with the optimal parameters.

5.2.1 Comparison results for large data ∆ = 10−2

We �rst assume that the trader displays a logarithmi utility funtion and we assume

that τ is deterministi. The parameters used to obtain the following results are given

by:

µ = 0.01 σ0 = 0.05 σ1 = 0.2 ∆ = 10−2

r = 0 T = 2 τ = 0.6

• Results about quadrati variation estimator

Empirial determination of a good weight c

One an optimize the hoie of c by means of Monte Carlo simulations. For eah δ, we
have simulated 106 trajetories of the asset prie and omputed the time evolution of

the expetation logarithm of wealth for di�erent value of c. Then the optimal hoie of

c is that maximize the E[log(WQ
T )]. In tabular 5.1, we show some optimal c for di�erent

value of δ.

δ optimal weight c
0.03 0.76

0.05 0.70

0.06 0.70

0.08 0.77

0.1 0.82

0.12 0.87

Table 5.1

Empirial determination of a good windowing δ

In this paragraph we aim to determine the optimal hoie of δ. From the previous

paragraph we have omputed for di�erent δ, the optimal assoiated hoie of the weight
c. So now in this paragraph we ompute by Monte Carlo simulations the expetation

E[log(WQ
t )] for di�erent value of δ by �xing for eah δ the assoiated optimal hoie of

c. In all our simulations, the Monte Carlo error on E[log(WQ
t )] is of order 3× 10−5

.
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Then from �gure 5.3 the optimal hoie of δ is around 0.05 and the optimal assoiated

hoie of c is around 0.7.
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Figure 5.3: Comparison of the expeted values of the logarithm of wealth for di�erent

value of δ and for deterministi τ .

• Results about Bollinger Bands estimator

Empirial determination of a good level β

Similarly as in the quadrati variation ase, one an optimize the hoie of β by means

of Monte Carlo simulations. We present below for some δ the assoiated optimal

threshold β.

δ optimal β
0.03 0.043
0.05 0.061
0.06 0.058
0.08 0.061
0.1 0.059
0.12 0.064

Table 5.2

Empirial determination of a good windowing δ

We now aim to determine the optimal hoie of δ. Similarly we ompute by Monte

Carlo simulations expeted logarithm of wealth E[log(WB
t )] for di�erent value of δ by
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�xing for eah δ its optimal hoie of β as in tabular 5.2. In all our simulations, the

Monte Carlo error on E[log(WB
t )] is also of order 3× 10−5

.

Then from �gure 5.4 the optimal hoie of δ is around 0.03 and the optimal assoiated

hoie of β is around 0.043.
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Figure 5.4: Comparison of the expeted values of the logarithm of wealth for di�erent

value of δ and for deterministi τ .

• Comparison of performane when the traders use optimal strategy

with quadrati variation and Bollinger Bands.

Finally we aim to ompare the performanes of optimal trading strategy based on the

quadrati variation estimator with optimal trading strategy based on Bollinger Bands

estimator. In �gure 5.5, we illustrate the expeted logarithm of wealth E[log(WQ
t )]

and E[log(WB
t )] when we have taken for both the optimal value of δ. We remark

that quadrati variation indiator an overperform Bollinger Bands indiator but the

di�erene between their performanes is not large (not too signi�ant).
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Figure 5.5: Comparison between quadrati variation and Bollinger Bands for logarithm

utility and for deterministi τ .

To onlude this analysis, we examine the e�ets of the utility funtions on the optimal

hoie of δ for both of estimators. We now assume that the trader displays a power

utility funtion like U(x) = x1/2. As in the ase of logarithm utility funtion, we

ompute the optimal trading strategy based on quadrati variation estimator and the

optimal trading strategy based on Bollinger Bands estimator, that is we ompute for

both estimators the optimal hoie of δ. From Monte Carlo simulations, the optimal

hoie of delta for quadrati variation is δ = 0.06 and the optimal delta for Bollinger

Bands is δ = 0.05.
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Figure 5.6: Comparison between quadrati variation and Bollinger Bands for power

utility and for deterministi τ .

It is lear from this �gure that the optimal trading strategies have the same perfor-

manes.
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• Comparison of performanes where τ has an exponential law with pa-

rameter λ

We assume that the trader displays a power utility and we aim to examine the e�et

of the parameter λ on the performanes of the strategies.
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(a) µ = 0.01, σ0 = 0.05, σ1 = 0.2, λ = 1
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(b) µ = 0.01, σ0 = 0.05, σ1 = 0.2, λ = 2

 1

 1.001

 1.002

 1.003

 1.004

 1.005

 1.006

 1.007

 0  0.5  1  1.5  2

E
[s

q
rt

(W
_
t)

]

Time

E[sqrt(W^Q_t)] with delta=0.1
E[sqrt(W^B_t)] with delta=0.05

() µ = 0.02, σ0 = 0.15, σ1 = 0.3, λ = 1

 1

 1.0002

 1.0004

 1.0006

 1.0008

 1.001

 1.0012

 0  0.5  1  1.5  2

E
[s

q
rt

(W
_
t)

]

Time

E[sqrt(W^Q_t)] with delta=0.06
E[sqrt(W^B_t)] with delta=0.03

(d) µ = 0.02, σ0 = 0.15, σ1 = 0.3, λ = 6

Figure 5.7: Comparison of performanes for di�erent λ.

In the above �gures, we ompare the performanes of optimal trading strategies based

respetively on quadrati variation and Bollinger Bands indiators, when we have taken

the optimal hoie of δ for both indiators.

In �gures 5.7(a) and 5.7(b), we take a small value of σ0 and σ1, and we hange the

value of λ. We remark that for λ = 1, the performanes are almost equal and for λ = 2,
the performanes are also almost equal, but the Bollinger Bands slightly overperfoms

the quadrati variation indiator. From tabular 5.3, we have the expeted miss of

the detetion time τ given respetively for quadrati variation as in (5.1.7), and for

bollinger Bands as in (5.1.8). We remark that in the ase of λ = 2, the expeted
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miss EK(B) of Bollinger Bands is smaller than the expeted miss EK(Q) of quadrati
variation, that means that Bollinger Bands an detet the hange time τ faster than

quadrati variation.

In �gures 5.7(c) and 5.7(d), we take a large value of σ0 and σ1, and we hange the value
of λ. We remark that for λ = 1, the quadrati variation overperfoms the Bollinger

Bands indiator, but for λ = 6, the performanes are almost equal and Bollinger

Bands slightly overperfoms the quadrati variation indiator. Also from tabular 5.4,

we remark that for λ = 6, the expeted miss EK(B) is smaller than EK(Q).

λ EK(Q) EK(B)
1 0.237 0.267
2 0.124 0.105

Table 5.3: The expeted miss EK(Q) and EK(B) orresponding to �gures 5.7(a) and
5.7(b)

.

λ EK(Q) EK(B)
1 0.291 0.366
6 0.097 0.089

Table 5.4: The expeted miss EK(Q) and EK(B) orresponding to �gures 5.7(c) and
5.7(d).
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5.2.2 Comparison result for small data ∆ = 10−4

As we have said that it is well known in the literature that quadrati variation indiator

is an optimal estimator of the volatility in the ase of small value of time inrement ∆.
So in this setion we just give an simple example whih show learly how the optimal

trading strategy based on quadrati variation overperfom the trading strategy based

on Bollinger Bands. We assume that the hange time is deterministi, τ = 0.6.
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Part II

Portfolio alloation problem
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Chapter 6

Optimal portfolio alloation problem

with random time hange

6.1 Introdution

The objetive of this hapter is to study the optimal portfolio alloation strategy in

the ase where the model has a hange of volatility at a random time τ . We aim to

make expliit the optimal wealth and strategy in the ase where the model is perfetly

known by the trader. Of ourse this situation is unrealisti. But, it is worth omput-

ing the best performane that one an expet within our setting. This performane

represents an optimal benhmark for mis-spei�ed alloation strategies relying either

on a mathematial model or on tehnial analysis.

We want to exhibit the mathematial optimal strategy issued from the stohasti on-

trol theory. But, it appears that we an't apply the lassial stohasti ontrol theory

without are beause:

• The di�usion oe�ient of the dynamis of the risky asset hanges at the random

time τ . This hange makes the �ltration generated by the pries di�erent from

the �ltration generated by the Brownian motion.

• The trader's strategy needs to be adapted to the �ltration generated by the pries.

In order to irumvent the di�ulties of our optimal alloation problem, we will use a

tehniques whih with we an take in aount the hange time τ in order to deompose

the initial alloation problem into an alloation problem before the hange of volatility

and an alloation problem after the hange of volatility.
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CHAPTER 6. OPTIMAL PORTFOLIO ALLOCATION PROBLEM WITH

RANDOM TIME CHANGE

6.2 Desription of the mathematial model

The �nanial market onsists of one risky asset and a bank aount. The bank aount

has dynamis {
dS0

t = S0
t rdt

S0
0 = 1

and the risky asset has dynamis

{
dSt

St
= µ(St)dt+

(

σ1(St) + (σ0(St)− σ1(St))1t6τ

)

dBt

S0 = S0
(6.2.1)

where (Bt)t∈[0,T ] is a one-dimensional Brownian motion on a given probability spae

(Ω, F,P)(below we will preise the �ltration). At the random time τ , whih is neither

known, nor diretly observable, the di�usion term hanges from the funtion σ0 to the

funtion σ1. we also assume that the Brownian motion (Bt)t>0 and the random variable

τ are independent.

We now take su�ient assumptions on the oe�ients in order that (6.2.1) has a

solution. These are standard assumptions that we should be able to show by Feller's

test for explosions that the solution of (6.2.1) does not explode, that is, the solution

does not touh 0 or ∞ in �nite time.

Let the oe�ients σ0, σ1, µ : (0,∞) 7→ R satisfy the following onditions:

i) ∃ c, C > 0 suh that, ∀x, we have 0 < c 6 σ2
0(x) < σ2

1(x) 6 C,

ii) µ, σ0 and σ1 are ontinuous and bounded,

iii) v0(0+) = v0(∞) =∞, where v0 is a funtion de�ned on (0,∞) as follows:

v0(x) =

∫ x

1

exp

(

−2
∫ y

1

µ(u)

σ2
0(u)u

du

)∫ y

1

2

exp

(

−2
∫ z

1

µ(u)

σ2
0(u)u

du

)

σ2
0(z)z

2

dzdy,

iv) v1(0+) = v1(∞) =∞, where v1 is a funtion de�ned on (0,∞) as follows:

v1(x) =

∫ x

1

exp

(

−2
∫ y

1

µ(u)

σ2
1(u)u

du

)∫ y

1

2

exp

(

−2
∫ z

1

µ(u)

σ2
1(u)u

du

)

σ2
1(z)z

2

dzdy.

Then from Feller's test for explosions given in [18, p.348℄ and under the above assump-

tions, we an dedue that the explosion time is in�nite and therefore the solution of

(6.2.1) does not explode.
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6.3 Stohasti di�erential equation for (St)

We aim in this setion to de�ne a �ltration G, suh that the stohasti integral in the

prie dynami is well de�ned in G.

Let us introdue the proess Zt = 1t>τ , 0 6 t 6 T and FZ = (FZ
t )t∈[0,T ] be the �ltration

generated by this proess. We also denote by FB = (FB
t )t∈[0,T ] the �ltration generated

by the Brownian motion B. We de�ne the enlarged progressive �ltration G = (Gt)t∈[0,T ]

as:

G = F
B ∨ F

Z .

We now prove that (Bt)t>0 is a G Brownian motion. This result an be dedued from

Jaod's ountable expansion theorem (see Protter [25℄, hap.II,theorem 5). Here, we

give an elementary proof with re�ets our simple setting.

Proposition 6.3.1. (Bt)t>0 is a G Brownian motion .

Proof :

By Levy haraterization of Brownian motion, it's enough to show that (Bt)t>0 is

ontinuous G loal-martingale with:

< B >t= t a.s. (6.3.1)

We obviously have only to prove that Bt is G martingale. ∀0 6 s 6 t,

E[Bt|Gs] = E[(Bt − Bs +Bs)|Gs]

=E[(Bt − Bs)|Gs] + E[Bs|Gs]

As Gs = FB
s ∨ σ(1θ>τ , θ 6 s) and (Bs) and τ are independent, we have:

E[(Bt − Bs)|Gs] = E[(Bt − Bs)|FB
s ] = 0

Furthermore, (B) is G-adapted, therefore (Bt)t>0 is a G Brownian motion.

�

From the de�nition of the proess (Zt), the dynamis of the prie proess (St) an be

obviously expressed in terms of Z as follows:

dSt

St

= µ(St)dt+
(

σ0(St)(1− Zt) + σ1(St)Zt

)

dBt. (6.3.2)

As Zt is G-adapted and (Bt) is a G-Brownian motion, then the stohasti integral in

the above dynami (6.3.2) is well de�ned in the �ltration G.

In the sequel, the �ltration generated by the prie is denoted by FS = (FS
t )t∈[0,T ].



88

CHAPTER 6. OPTIMAL PORTFOLIO ALLOCATION PROBLEM WITH

RANDOM TIME CHANGE

Lemma 6.3.2. The proess (Zt) is F
S
-adapted.

Proof :

Let Yt = log(St) and denote by g(t) the left-derivative of the quadrati variation for

the proess Y at time t:

g(t) =







σ2
0(St) if Zt = 0

σ2
1(St) if Zt = 1

(6.3.3)

then Zt = 1g(t)=σ2
1(St). As g(t) is the left-derivative of the quadrati variation for the

proess Y , thus it is FS
-adapted, and therefore the result follows. �

Lemma 6.3.3. The �ltration generated by the observations F
S

is equal to the aug-

mented �ltration G = FB ∨ FZ
.

Proof :

From lemma 6.3.2, (Zt) is F
S
-adapted. Furthermore, we have

log(St) =

∫ t

0

(

µ(Sθ)−
1

2

(

σ2
0(Sθ)(1−Zθ)+σ

2
1(Sθ)Zθ

))

dθ+

∫ t

0

(σ0(Sθ)(1−Zθ)+σ1(Sθ)Zθ)dBθ.

Remark that under the assumption i) on σ0 and σ1, that is, ∀x, 0 < c 6 σ2
0(x) < σ2

1(x),
we have that the integrand in the stohasti integral is bounded below by a stritly

positive onstant. Then it is enough to di�erentiate the above equation and divide by

the integrand of the stohasti integral (whih is stritly greater than zero), in order

to dedue that (Bt) is written in terms of FS
-adapted proesses, therefore it is FS

-

adapted, and so G := FB ∨ FZ ⊂ FS
. The other inlusion is obvious. Therefore the

result follows.

�

6.4 Right-disontinuity of the �ltration (FS
t )t>0

The objetive of this setion is to prove that (FS
t ) is not a right ontinuous �ltration.

This ould follow from results in the general theory of stohasti proesses. We propose

here a simple proof adapted to our framework.

The following proposition stated, e.g.,in Karatzas and Shreve in [18, p.6℄ will be useful

to prove the disontinuity of the �ltration (FS
t ). It is known as Galmarino test. A
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proof an be found in Dellaherie and Meyer [10, p.234℄, or in Revuz and Yor [26,

hap.I, setion 4℄ for the anonial spae framework. Here we give a di�erent proof.

Proposition 6.4.1. Let X be a stohasti proess and T an (FX
t ) stopping time.

Suppose that for some pair w0, w
′
0 ∈ Ω, we have Xt(w0) = Xt(w

′
0) ∀t ∈ [0, T (w0)] ∩

[0,∞[. Then T (w0) = T (w′
0).

Proof :

We denote θ0 = T (w0). Let us de�ne :

Dw0,w′
0
= {A ∈ FX

θ0
/w0 ∈ A⇐⇒ w′

0 ∈ A}

Dw0,w′
0
is the set of elements A ∈ FX

θ0
suh that : (w0 ∈ A and w′

0 ∈ A) or (w0 6∈
A and w′

0 6∈ A).

We split the proof into two steps:

• First step: Dw0,w′
0
is a σ-algebra

We have:

� Ω ∈ Dw0,w′
0
.

� Dw0,w′
0
is losed under omplementation.

� Dw0,w′
0
is losed under ountable unions. We show that if ∀n ∈ N, An ∈

Dw0,w′
0
then ∪n∈NAn ∈ Dw0,w′

0
. In fat:

i) ∀n ∈ N, An ∈ Dw0,w′
0
⇒ An ∈ FX

θ0
and therefore ∪n∈NAn ∈ FX

θ0
.

ii) It remains to prove that w0 ∈ ∪n∈NAn ⇐⇒ w
′

0 ∈ ∪n∈NAn.

If w0 ∈ ∪n∈NAn, then there exists a n0 suh that w0 ∈ An0 . As An0 ∈ Dw,w0,

then w′
0 ∈ An0 . This implies that w′

0 ∈ ∪n∈NAn.

Hene from i) and ii), ∪n∈NAn ∈ Dw0,w′
0
. Therefore Dw0,w′

0
is a σ-algebra.

• Seond step: FX
θ0
⊂ Dw0,w′

0

By hypotheses, ∀t 6 θ0 we have Xt(w0) = Xt(w
′
0). Then ∀C Borel set in R,

we have {Xt ∈ C} ∈ Dw0,w′
0
. This implies that Xt is Dw0,w′

0
measurable for

all 0 6 t 6 θ0. As FX
θ0

is the smallest σ-algebra with respet to whih Xt is

measurable for every 0 6 t 6 θ0, therefore we onlude that FX
θ0
⊂ Dw0,w′

0
.
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Let us de�ne the set:

Qθ0 = {w ∈ Ω;T (w) = θ0}

To end the proof, we must be able to show that Qθ0 ∈ Dw0,w′
0
.

As T is an stopping time, we have Iθ0 := {w ∈ Ω;T (w) 6 θ0} ∈ FX
θ0
. Also we have

Jθ0 := {w ∈ Ω;T (w) < θ0} ∈ FX
θ0
, beause Jθ0 = ∪n∈N{w ∈ Ω;T (w) 6 θ0 − 1

n
} ∈ FX

θ0
.

As Qθ0 = Iθ0 ∩ Jc
θ0
, then Qθ0 ∈ FX

θ0
⊂ Dw0,w′

0
. As w0 ∈ Qθ0 and Qθ0 ∈ Dw0,w′

0
, then w′

0

∈ Qθ0 . Hene T (w0) = T (w′
0).

�

Let us denote by ΩB and ΩZ respetively the spae for the Brownian motion (Bt) and
the proess (Zt).

Proposition 6.4.2. Suppose that the underlying probability spae is the anonial prod-

ut spae Ω = ΩB × ΩZ . Let St be a solution of (6.2.1). Then τ is an (FS
t+) stopping

time but not an (FS
t ) stopping time.

Proof :

We split the proof into two steps:

• First step: we prove that τ is an (FS
t+) stopping time.

For t > 0, we have ∀ θ > t, {τ 6 t} ⊂ {τ < θ} = {g(θ) = σ2
1(Sθ)} ∈ FS

θ . Then

{τ 6 t} ⊂
⋂

θ>t

{
g(θ) = σ2

1(Sθ)
}
∈ FS

t+ . Thus τ is an (FS
+) stopping time.

• Seond step: we prove that τ is not an (FS
t ) stopping time.

We reall that our probability spae is the anonial spae. Let w0 = (w, ŵ), w1 =
(w, w̃) ∈ Ω and assume that τ(ŵ) < τ(w̃), this is possible beause τ is not

deterministi. We also onsider the proess Yt de�ned in Ω as below:

For w∗ = (w,w′) ∈ Ω,

Yt(w
∗) := log(St)(w

∗) =

∫ t∧τ(w′)

0

σ0(Sθ(w))dBθ(w) +

∫ t

t∧τ(w′)

σ1(Sθ(w,w
′))dBθ(w)

+

∫ t∧τ(w′)

0

(

µ(Sθ(w))−
1

2
σ2
0(Sθ(w))

)

dθ +

∫ t

t∧τ(w′)

(

µ(Sθ(w))−
1

2
σ2
1(Sθ(w))

)

dθ.
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Notie that the trajetories Yt(w0) and Yt(w1) are equal until τ(ŵ), so if we assume

that τ is an FS
stopping time, then we an dedue from proposition 6.4.1 that

τ(ŵ) = τ(w̃), whih exhibits a ontradition with the assumption τ(ŵ) < τ(w̃).
Thus τ is not an FS

-stopping time.

�

Corollary 6.4.3. Within the framework of proposition 6.4.2, the �ltration (FS
t )t>0 is

right-disontinuous.

Proof :

For that we prove that there exists a set A ∈ FS
t+ but A 6∈ FS

t . On the one side,

from proposition 6.4.2, τ is not an (FS
t ) stopping time, then there exists t1 suh that

{τ 6 t1} 6∈ FS
t1
. On the other hand, τ is an (FS

t+) stopping time, thus {τ 6 t1} ∈ FS
t+1
.

Therefore, we an hoose A = {τ 6 t1}.
�

6.5 The optimal portfolio alloation strategy under a

hange of volatility

In this setion our aim is to make expliit the optimal wealth and strategy for a trader

who knows all the parameters of the mathematial model. As the main di�erene with

the lassial stohasti ontrol theory omes from the disontinuity of the �ltration

generated by the pries or more preisely from the hange at time τ , so we aim to

resolve this ontrol problem by using a spei� feature of the hange time τ .

De�nition 6.5.1. (Trading strategy) A trading strategy is a two-dimensional stohasti

proess h = {(H0
t , Ht) , t ∈ [0, T ]} satisfying

• h is progressively measurable

• h is adapted, i.e. ∀ t ht is FS
t -measurable.

The �nanial interpretation of the trading strategy is that H0
t is the number of bonds

held by the trader at time t and Ht is the number of stoks that he holds at time t.
So, the wealth proess (Wt, t > 0) of the portfolio is suh that for all t,

Wt = H0
t S

0
t +HtSt.
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De�nition 6.5.2. A pair (H0
t ;Ht) is alled self-�naning if the orresponding wealth

proess Wt is a ontinuous and adapted proess suh that

Wt = W0 +

∫ t

0

H0
udS

0
u +

∫ t

0

HudSu. (6.5.1)

This means that the omposition of the portfolio hanges from time t to time t + ∆t
with no endowment.

Let πt be the fration of the urrent wealth Wt that the trader deides to invest in

the risky asset at time t, so 1 − πt is the fration of wealth invested in the bond. we

suppose that the trading strategy is self-�naning, then the wealth proess satis�es the

following SDE :

dW π
t = H0

t dS
0
t +HtdSt

= rH0
t S

0
t dt+HtSt (µ(St)dt+ (σ0(St) + (σ1(St)− σ0(St))Zt)dBt)

= W π
t [(1− πt) rdt+ πt (µ(St)dt+ (σ0(St) + (σ1(St)− σ0(St))Zt)dBt)] . (6.5.2)

Let us denote by E
ζ,z
t,x the expetation operator onditional on Wt = x, St = ζ and

Zt = z. We onsider a utility funtion U whih is, either the logarithmi utility

funtion, or an element of the set U of the inreasing and onave funtions of lass

C1 ((0,+∞);R) whih satisfy: U(0) = 0, and there exist real numbers K > 0 and

0 6 α 6 1 suh that

0 < U
′

(x) 6 K
(
1 + x−α

)
for all x > 0.

The performane of an admissible trading strategy π assoiated with a wealth proess

W , is measured over the �nite horizon T by the ost funtion J de�ned as:

J(t, x, ζ, z, π) = E
ζ,z
t,x [U(W

π
T )]

and the investor's objetive is to maximize his expeted utility of wealth at the terminal

time T . He solves the following optimization problem :

V (t, x, ζ, z) = sup
π∈A

J(t, x, ζ, z, π), (6.5.3)

where A denotes the set of the admissible ontrols (πt)t∈[0,T ] whih are F
S
-adapted,

take their values in a ompat U ⊂ R.



6.5. OPTIMAL PORTFOLIO ALLOCATION STRATEGY 93

In the following, the funtion V (t, x, ζ, 0) will be interpreted as the value funtion

before the hange time, that is, z = 0 and the funtion V (t, x, ζ, 1) will be interpreted
as the value funtion after the hange time, that is, z = 1.

First, we present the density approah whih have been introdued by Pham and Jiao

in [17℄. We shall work in this approah with a density hypothesis on the onditional

law of τ given the �ltration generated by the Brownian motion. We show that the pair

(V (t, x, ζ, 0), V (t, x, ζ, 1)) is the unique visosity solution of a Hamilton-Jaobi-Bellman

system.

Seond, we show by veri�ation theorem that under smoothness assumptions on the

value funtion, the pair (V (t, x, ζ, 0), V (t, x, ζ, 1)) is solution of a Hamilton-Jaobi-

Bellman system.

6.5.1 Density approah

In this approah, Pham and Jiao [17℄ have taken bene�t of the spei� feature of the

hange time τ and how we an separate the initial optimisation problem into a problem

after the hange-time and a problem before the hange time, by relying on the density

hypothesis on the hange time τ .

They introdue the enlarged progressive �ltration G
′
= FB ∨ FD

, where FD
is the

�ltration generated by the proess Dt = 1t>τ 0 6 t 6 T . Then the optimal investment

problem is to maximize the expeted utility of wealth at the terminal time T over all

the admissible strategy π ∈ A′
, where A′

is the set of a G
′
-preditable proesses.

The main advantage of the set A′
is that we an use the following important result

given in [14℄ and [16℄ about the deomposition of any G
′
-preditable proess. Let L

be a G
′
-adapted proess. Then there exists an FB

-adapted proess Lb
, and a family

of proesses {La
t (θ), θ 6 t 6 T, θ ∈ [0, T ]}, where La

t (θ) is measurable with respet to

FB
t ⊗ B(R+), suh that

Lt = Lb
t1t6τ + La

t (τ)1t>τ , ∀t ∈ [0, T ]. (6.5.4)

Density hypothesis:

For any t ∈ [0, T ], the onditional distribution of ζ given FB
t admits a density with

respet to the Lebesgue measure, i.e. there exists a family of FB
t ⊗B(R+) measurable

positive funtion (w, θ)→ αt(w, θ) whih satis�es

P
[
ζ ∈ dθ|FB

t

]
= αt(θ)dθ, t ∈ [0, T ] (DH)

The family αt(.) is alled the onditional density of ζ with respet to Lebesgue measure

given FB
t .
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By de�nition of the onditional expetation, we have for any (bounded) Borel funtion

f ,

E
[
f(ζ)|FB

t

]
=

∫ ∞

0

f(θ)αt(θ)dθ a.s.

The onditional distribution of ζ is also haraterized by the survival probability fun-

tion

G(t) = P(ζ > t|FB
t ) =

∫ ∞

t

αt(θ)dθ.

In the sequel, q denotes the density of the hange time τ . As the hange time τ
is supposed independent of the Brownian motion B, then αt(θ) is simply a known

deterministi funtion q(θ) of θ ∈ R+
and the survival probability is a deterministi

funtion given as:

G(t) = P[τ > t|FB
t ] = P[τ > t] =

∫ ∞

t

q(θ)dθ. (6.5.5)

In the sequel we will use the notation G(t, s) and q(t, s) in order to desribe the survival
probability and the density of τ at time s suh that τ > t.

Let us introdue the following proesses:

dS
(0)
t = S

(0)
t

[

µ(S
(0)
t )dt+ σ0(S

(0)
t )dBt

]

, (6.5.6)

dS
(1)
t = S

(1)
t

[

µ(S
(1)
t )dt+ σ1(S

(1)
t )dBt

]

, (6.5.7)

and

dW π(0)

t =W π(0)

t

[((

µ(S
(0)
t )− r

)

π
(0)
t + r

)

dt+ π
(0)
t σ0(S

(0)
t )dBt

]

, (6.5.8)

dW π(1)

t =W π(1)

t

[((

µ(S
(1)
t )− r

)

π
(1)
t + r

)

dt+ π
(1)
t σ1(S

(1)
t )dBt

]

, (6.5.9)

where π(0)
is FB

-adapted, representing the proportion of wealth invested before the

hange, and π
(1)
t is F

B
-adapted, representing the proportion of wealth invested after

the hange at time τ .
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Notie that with this approah, the set of admissible strategies is the set A′
of G

′
-

preditible proesses. So we �rst solve this problem under the onstraint that π ∈ A′
;

then, from the de�nition of A′
, we an dedue that the optimal strategy π given by

πt = π
(0)
t 1t6τ + π

(1)
t 1t>τ ,

is a FS
-adapted proess and thus belongs to the set A.

We now present the main result obtained in [17℄ namely the deomposition of the

maximisation problem into two problems as follows.

V (t, x, ζ, 0) = sup
π(0)∈A(0)

E
ζ,0
t,x

[

U
(

W π(0)

T

)

G(t, T ) +

∫ T

t

V (θ,W π(0)

θ , S
(0)
θ , 1)q(t, θ)dθ,

]

.

where A(0)
is the set of the proportion of wealth invested before the hange time; A(0)

is a FB
-adapted proess and G the survival probability. Notie that the integrand of

the integral is desribed in terms of the value funtion after the rupture.

In the sequel, we shall study these two optimisation problems in the partiular ase of

the exponential law of τ with parameter λ.

In this ase for the law of τ , the above deomposition an be rewritten as follows:

V (t, x, ζ, 0) = sup
π(0)∈A(0)

E
ζ,0
t,x

[

U
(

W π(0)

T

)

e−λ(T−t) +

∫ T

t

V (θ,W π(0)

θ , S
(0)
θ , 1)λe−λ(θ−t)dθ

]

.

We show in the above equation how the solution of the before-hange time problem

V (t, x, ζ, 0) depends on the solution of the after-hange time problem V (t, x, ζ, 1). Eah
of these optimisation problems is performed in market model driven by the Brownian

motion and with oe�ients adapted with respet to the Brownian referene �ltration.

Let us now onsider the system

(S)







∂v
∂t
(t, x, ζ, 0) + sup

π∈U
L(0)

π v(t, x, ζ, 0) + λ (v(t, x, ζ, 1)− v(t, x, ζ, 0)) = 0

∂v
∂t
(t, x, ζ, 1) + sup

π∈U
L(1)

π v(t, x, ζ, 1) = 0

with the boundary ondition

v(T, x, ζ, z) = U(x), x, ζ ∈ R
+, z ∈ {0, 1}. (6.5.10)
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where

L(0)
π v(t, x, ζ, 0) =x(πµ(ζ) + (1− π)r)∂v

∂x
+

1

2
x2π2σ2

0(ζ)
∂2v

∂2x
+ ζµ(ζ)

∂v

∂ζ

+
1

2
σ2
0(ζ)ζ

2∂
2v

∂ζ2
, (6.5.11)

and

L(1)
π v(t, x, ζ, 1) =x(πµ(ζ) + (1− π)r)∂v

∂x
+

1

2
x2π2σ2

1(ζ)
∂2v

∂2x
+ ζµ(ζ)

∂v

∂ζ

+
1

2
σ2
1(ζ)ζ

2∂
2v

∂ζ2
. (6.5.12)

6.5.2 Existene and Uniqueness of the visosity solution

Under the assumptions on the utility funtion U , we an easily show that there exists

a onstant C suh that, for all positive real numbers x, x̄ we have:

| U(x)− U(x̄) |6 C | x− x̄ |
(
1 + x−α + x̄−α

)
.

As in the lassial ase, we an show from the above inequality and under the bounded

and ontinuous assumptions on the funtions µ, σ0 and σ1 that the value funtions

V (t, x, ζ, 0) and V (t, x, ζ, 1) are ontinuous on [0, T ]× R+ × R+ × {0, 1}.

De�nition 6.5.3. A pair of ontinuous funtions (v(t, x, ζ, 0), v(t, x, ζ, 1)) on [0, T ]×
R+ × R+

is a visosity supersolution (resp. subsolution) to HJB system (S) if

∂Φ

∂t
(t̄, x̄, ζ̄, 0) + L(0)

π Φ(t̄, x̄, ζ̄, 0) + λ
(
Φ(t̄, x̄, ζ̄, 1)− Φ(t̄, x̄, ζ̄, 0)

)
> (resp. 6) 0

∂Φ

∂t
(t̄, x̄, ζ̄, 1) + L(1)

π Φ(t̄, x̄, ζ̄, 1) > (resp. 6) 0,

for all C2
pair funtions (Φ(t, x, ζ, 0),Φ(t, x, ζ, 1)) on [0, T ]×R+×R+

and any (t̄, x̄, ζ̄)
suh that (Φ(t̄, x̄, ζ̄, 0),Φ(t̄, x̄, ζ̄, 1)) = (v(t̄, x̄, ζ̄, 0), v(t̄, x̄, ζ̄, 1)) and v > (resp.6) Φ on

[0, T ]× R+ × R+
.

De�nition 6.5.4. A pair of ontinuous funtions (v(t, x, ζ, 0), v(t, x, ζ, 1)) on [0, T ]×
R+ × R+

is a visosity solution to the above HJB system (S) if it is both a visosity

supersolution and subsolution to this system.
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Theorem 6.5.5. Assume that σ0 and σ1 are in C
1
b (R). Then the pair (V (t, x, ζ, 0), V (t, x, ζ, 1))

is the unique visosity solution of the HJB system (S) and satisfying the boundary on-

dition (6.5.10).

Proof :

We �rst prove the existene of a visosity solution of system (S). By trunation of

the oe�ients of the SDE satis�ed by (St), we obtain that the proess (W π(1)

t , S
(1)
t )

satisfy the lassial assumptions whih ensure that the value funtion V (t, x, ζ, 1) is a
visosity solution to the seond HJB of system (S) (f.theorem 5.2 of [32, hap.4℄). We

therefore onlude the existene result by the stability result given in proposition I.3
of Lions [20℄.

Similarly, we an onlude that the value funtion V (t, x, ζ, 0) is a visosity solution of

the �rst HJB of system (S).

We now prove the uniqueness of the visosity solution of HJB system (S). As the value
funtions V (t, x, ζ, 0) and V (t, x, ζ, 1) are ontinuous and lipshitz, then by applying

theorem 6.2 in hapter IV of [32℄, the uniqueness follows.

�

6.5.3 A veri�ation theorem

Under smoothness assumptions on the value funtion, we show by veri�ation theorem

that the pair (V (t, x, ζ, 0), V (t, x, ζ, 1)) is a solution of the above HJB system. We

assume that τ follows an exponential law with parameter λ, that is the proess (Zt) is
an absorbed Markov proess at state 1.

We start by making expliit the in�nitesimal operator of the R+ × R+ × {0, 1} val-
ued proess (W π, S, Z). Then we show our veri�ation theorem 6.5.6 and we prove

that the optimal trading strategy is to follow the optimal strategy whih haraterizes

V (t, x, ζ, 0) and then to swith when the hange ours to the optimal strategy whih

haraterizes V (t, x, ζ, 1).

Let v be a smooth funtion de�ned on [0, T ]× R+ × R+ × {0, 1}. Let πt = p ∈ U, ∀t.
By applying It�'s formula to the proess (W π, S, Z), we obtain that its in�nitesimal

operator Lπ is

Lπv(t, x, ζ, z) =

{

L(0)
π v(t, x, ζ, 0) + λ(v(t, x, ζ, 1)− v(t, x, ζ, 0)) if z = 0

L(1)
π v(t, x, ζ, 1) if z = 1

where L(0)
π and L(1)

π are de�ned respetively as in (6.5.11) and (6.5.12) and they are the

in�nitesimal operators assoiated to the proess (W π, S) respetively for �xed z = 0
and z = 1.
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In the sequel, we aim to show that a smooth solution (v(t, x, ζ, 0), v(t, x, ζ, 1)) of the
Hamilton-Jaobi-Bellman system (S), oinides with the pair of value funtions

(V (t, x, ζ, 0), V (t, x, ζ, 1)). The proof of this result is deomposed in two parts : for the

part onerning the funtion V (t, x, ζ, 1), the proof is simple and relies essentially on

It�'s formula. For the part onerning V (t, x, ζ, 0), the proof is more tehnial beause

of the volatility hange at time τ .

As π
(0)
t is FB

-adapted, then there exists a measurable funtion ρ de�ned on the anon-

ial spae suh that:

π
(0)
t = ρ(Bθ, θ 6 t).

Let us introdue θ
(0)
n whih will be useful in the sequel:

θ(0)n = inf{s > t :

∫ s

t

∣
∣
∣
∣

∂v

∂x

(

u,W π(0)

u , S(0)
u , 0

)

W π(0)

u π(0)
u σ0(S

(0)
u )

∣
∣
∣
∣

2

du > n}

Theorem 6.5.6. (Veri�ation theorem)

a) Suppose that there exists a pair of funtions (v(t, x, ζ, 0), v(t, x, ζ, 1)) in C1,2([0, T [×R+×
R+) ∩ C([0, T ]× R+ × R+), satisfying the HJB system (S):







∂v
∂t
(t, x, ζ, 0) + sup

π∈U
L(0)

π v(t, x, ζ, 0) + λ(v(t, x, ζ, 1)− v(t, x, ζ, 0)) = 0

∂v
∂t
(t, x, ζ, 1) + sup

π∈U
L(1)

π v(t, x, ζ, 1) = 0

with boundary ondition v(T, x, ζ, z) = U(x), x, ζ ∈ R+, z ∈ {0, 1}

Then, for all t ∈ [0, T ], x, ζ ∈ R+

{
V (t, x, ζ, 0) 6 v(t, x, ζ, 0)
V (t, x, ζ, 1) 6 v(t, x, ζ, 1)

b) Assume there exists a maximizer (π
(0)
∗ (t, x, ζ), π

(1)
∗ (t, x, ζ)) of

(p0, p1)→
(
L(0)

p0 v(t, x, ζ, 0),L(1)
p1 v(t, x, ζ, 1)

)

suh that







∂v
∂t
(t, x, ζ, 0) + L(0)

π
(0)
∗

v(t, x, ζ, 0) + λ(v(t, x, ζ, 1)− v(t, x, ζ, 0)) = 0

∂v
∂t
(t, x, ζ, 1) + L(1)

π
(1)
∗

v(t, x, ζ, 1) = 0
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and V (t, x, ζ, 0) = V (t, x, ζ, 1) = U(x).

Then (V (t, x, ζ, 0), V (t, x, ζ, 1)) = (v(t, x, ζ, 0), v(t, x, ζ, 1)) for all t ∈ [0, T ], x, ζ ∈
R+

and π∗
de�ned as:

π∗
t = π(0)

∗ (t,W π∗

t , St)1Zt=0 + π(1)
∗ (t,W π∗

t , St)1Zt=1. (6.5.13)

is the optimal strategy.

Proof :

I) Show that for all t ∈ [0, T ], x, ζ ∈ R+
we have : V (t, x, ζ, 1) 6 v(t, x, ζ, 1)

Let π ∈ A be an arbitrary ontrol proess and de�ne the stopping time τn = T ∧ αn

where :

αn = inf{s > t :

∫ s

t

∣
∣
∣
∣

∂v

∂x
(u,W π

u , Su, 1)W
π
u πuσ1(Su)

∣
∣
∣
∣

2

du > n}

As v(t, x, ζ, 1) is smooth, by applying It�'s formula to s 7→ v(s,W π
s , Ss, 1) between t

and τn, we obtain:

E
ζ,1
t,x

[
v(τn,W

π
τn , Sτn , 1)

]
= v(t, x, ζ, 1) + E

ζ,1
t,x

[∫ τn

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, 1)dθ

]

+ E
ζ,1
t,x

[∫ τn

t

∂v

∂x
(θ,W π

θ , Sθ, 1)σ1(Sθ)πuW
π
θ dBθ

]

6 v(t, x, ζ, 1) (6.5.14)

From the de�nition of τn, the expetation of the stohasti integral anels. The last

inequality omes from the fat that v(t, x, ζ, 1) veri�es the seond HJB equation. We

now take n→∞, τn → T , then by Fatou lemma we have:

E
ζ,1
t,x

[

lim
n

inf v
(
τn,W

π
τn , Sτn, Zτn

)]

6 lim
n

inf Eζ,1
t,x

[
v
(
τn,W

π
τn , Sτn , Zτn

)]
6 v(t, x, ζ, 1)

Therefore from the boundary ondition, we obtain that:

V (t, x, ζ, 1) := E
ζ,1
t,x [U(W

π
T )] 6 v(t, x, ζ, 1).
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II) Now we show that for all t ∈ [0, T ], x, ζ ∈ R
+ × R

+
we have: V (t, x, ζ, 0) 6

v(t, x, ζ, 0)

Let us introdue the stopping time Tn = T ∧ θn where :

θn = inf
{

s > t :

∫ s

t

∣
∣
∣
∣

∂v

∂x
(u,W π

u , Su, 0)W
π
u πu(σ0(Su)(1− Zu) + σ1(Su)Zu)

∣
∣
∣
∣

2

du > n
}

By It� formula, we have:

E
ζ,0
t,x

[
v
(
Tn,W

π
Tn
, STn , ZTn

)]
= v(t, x, ζ, 0) + E

ζ,0
t,x

[∫ Tn

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

]

+ E
ζ,0
t,x

[∫ Tn

t

(
∂v

∂x
(θ,W π

θ , Sθ, Zθ)W
π
θ πθ(σ0(1− Zθ) + σ1Zθ)

)

dBθ

]

+ E
ζ,0
t,x

[

(v(τ,W π
τ , Sτ , 1)− v(τ,W π

τ , Sτ , 0))1τ6Tn

]

=: v(t, x, ζ, 0) + A+B + C. (6.5.15)

From the de�nition of Tn, the expetation of the stohasti integral term anels. It

remains to make expliit the terms A and C.

We start by making expliit the term A:

A = E
ζ,0
t,x

[(∫ Tn

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ6Tn

]

+ E
ζ,0
t,x

[(∫ Tn

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ>Tn

]

= E
ζ,0
t,x

[(∫ τ

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ6Tn

]

+ E
ζ,0
t,x

[(∫ Tn

τ

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ6Tn

]

+ E
ζ,0
t,x

[(∫ Tn

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ>Tn

]

= A1
n + A2

n + A3
n.
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i) Make expliit the term A1
n:

Reall that Tn = T ∧ θn, then we have

A1
n := E

ζ,0
t,x

[(∫ τ

t

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ6Tn

]

= E
ζ,0
t,x

[(∫ τ

t

(
∂v

∂θ
+ L(0)

π(0)v

)

(θ,W π(0)

θ , S
(0)
θ , 0)dθ

)

1
τ6T∧θ(0)n

]

As π(0),W π(0)
, S(0)

and θ
(0)
n are funtionals of (Bθ, θ > 0), then by independene of

(Bθ, θ > 0) and τ , we therefore have:

A1
n = E

B

[
∫ T∧θ(0)n

t

∫ s

t

(
∂v

∂θ
+ L(0)

π(0)v

)

(θ,W π(0)

θ (x), S
(0)
θ , 0)dθ.λe−λ(s−t)ds

]

where W π(0)

θ (x) is the solution of the SDE (6.5.8) with initial ondition W π(0)

t (x) = x
and EB

is the expeted operator w.r.t the law of (Bθ, θ > 0).

As v(t, x, ζ, 0) is solution of the �rst HJB of system (S), then

A1
n 6 E

B

[
∫ T∧θ(0)n

t

∫ s

t

−λ
(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.λe−λ(s−t)ds

]

.

ii) Make expliit the term A2
n:

A2
n := E

ζ,0
t,x

[(∫ Tn

τ

(
∂v

∂θ
+ Lπv

)

(θ,W π
θ , Sθ, Zθ)dθ

)

1τ6Tn

]

= E
ζ,0
t,x

[(∫ Tn

τ

(
∂v

∂θ
+ L(1)

π v

)

(θ,W π
θ , Sθ, 1)dθ

)

1τ6Tn

]

(from the de�nition of Lπ)

6 0.

Where the last inequality omes from the fat that v(t, x, ζ, 1) is solution of the seond
HJB equation of system (S).

iii) Make expliit the term A3
n:
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As above we an dedue that:

A3
n = E

B

[
∫ T∧θ(0)n

t

(
∂v

∂θ
+ L(0)

π(0)v

)

(θ,W π(0)

θ (x), S
(0)
θ , 0)dθ.e−λ(T∧θ(0)n −t)

]

6 E
B

[
∫ T∧θ(0)n

t

−λ
(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.e−λ(T∧θ(0)n −t)

]

.

Therefore

A := A1
n + A2

n + A3
n

6 E
B

[
∫ T∧θ(0)n

t

∫ s

t

−λ
(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.λe−λ(s−t)ds

]

+ E
B

[
∫ T∧θ(0)n

t

−λ
(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.e−λ(T∧θ(0)n −t)

]

.

It remains to make expliit the term C. Indeed,

C = E
ζ,0
t,x

[

(v(τ,W π
τ , Sτ , 1)− v(τ,W π

τ , Sτ , 0))1τ6Tn

]

= E
B

[
∫ T∧θ(0)n

t

(

v(s,W π(0)

s (x), S(0)
s , 1)− v(s,W π(0)

s (x), S(0)
s , 0)

)

.λe−λ(s−t)ds

]

= E
B

[
∫ T∧θ(0)n

t

(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.λe−λ(T∧θ(0)n −t)

]

+ E
B

[
∫ T∧θ(0)n

t

∫ s

t

(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.λ2e−λ(s−t)ds

]

.

Where the last equality is given from an integration by part.

Notie that A+ C is equal to zero, then from (6.5.15) we obtain:

E
ζ,0
t,x

[
v
(
Tn,W

π
Tn
, STn , ZTn

)]
6 v(t, x, ζ, 0).

We now take the limit as n inreases to in�nity. Sine Tn → T a.s and from the

boundary ondition, we an dedue from Fatou lemma that

V (t, x, ζ, 0) 6 v(t, x, ζ, 0).
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We now prove the statement b). By repeating the above argument in I), we observe that

the ontrol π
(1)
∗ ahieves equality in (6.5.14) and therefore V (t, x, ζ, 1) = v(t, x, ζ, 1).

Similarly, by repeating the above steps in II) , we an onlude that V (t, x, ζ, 0) =
v(t, x, ζ, 0) and thus the optimal ontrol is given by (6.5.13).

�

Remark 6.5.7. Notie that under some assumptions on the density q of τ , the above

veri�ation theorem still appliable.

Indeed, if we rewrite the terms A and C in terms of the density q, we obtain:

A = E
B

[
∫ T∧θ(0)n

t

∫ s

t

(
∂v

∂θ
+ L(0)

π(0)v

)

(θ,W π(0)

θ (x), S
(0)
θ , 0)dθ.q(s)ds

]

+ E
B

[
∫ T∧θ(0)n

t

(
∂v

∂θ
+ L(0)

π(0)v

)

(θ,W π(0)

θ (x), S
(0)
θ , 0)dθ.P[τ > T ∧ θ(0)n ]

]

and

C = E
B

[
∫ T∧θ(0)n

t

(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.q(T ∧ θ(0)n )

]

− E
B

[
∫ T∧θ(0)n

t

∫ s

t

(

v(θ,W π(0)

θ (x), S
(0)
θ , 1)− v(θ,W π(0)

θ (x), S
(0)
θ , 0)

)

dθ.q
′

(s)ds

]

We an notie from the above ase with exponential law that the �rst term in A was

ompensated with the seond term of C and the seond term in A was ompensated with

the �rst term of C. So this leads us to do the same with this ase. Thus we an dedue

the following assumptions on q:

• q′
(x) < 0 ∀x,

• − q
′
(x)

q(x)
6 α ∀x,

• q(x) > β

∫ ∞

x

q(s)ds ∀x.

6.5.4 Appliation

In this setion, we present a partiular example for the dynamis of the prie proess

(St), where the oe�ients µ, σ0 and σ1 are onstants.
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We onsider the following dynamis of (St):

dSt = µStdt+ St (σ1 + (σ0 − σ1)1t6τ ) dBt.

Therefore the wealth proess satis�es the following SDE:

dW π
t = W π

t [(1− πt) rdt+ πt (µdt+ (σ0 + (σ1 − σ0)Zt)dBt)] .

and the optimization problem beomes:

V (t, x, z) = sup
π∈A

J(t, x, z, π),

where

J(t, x, z, π) = E
z
t,x [U(W

π
T )] .

As the oe�ients µ, σ0 and σ1 do not depend on the prie St, then the parameter ζ
does not appear in the above SDE of the wealth proess and thus in the value funtion.

In this partiular example, the HJB system beomes:

(S)







∂v
∂t
(t, x, 0) + sup

π∈U
L(0)

π v(t, x, 0) + λ (v(t, x, 1)− v(t, x, 0)) = 0

∂v
∂t
(t, x, 1) + sup

π∈U
L(1)

π v(t, x, 1) = 0

with the boundary ondition

v(T, x, z) = U(x), x ∈ R
+, z ∈ {0, 1}. (6.5.16)

where

L(0)
π v(t, x, 0) = x(πµ+ (1− π)r)∂v

∂x
+

1

2
x2π2σ2

0

∂2v

∂2x
,

and

L(1)
π v(t, x, 1) =x(πµ+ (1− π)r)∂v

∂x
+

1

2
x2π2σ2

1

∂2v

∂2x
.

We now onsider the power utility funtion whih with we obtain an expliit smooth

solution of the above system (S). Then by veri�ation theorem, we show that the value

funtion is solution of the HJB system and we make expliit the optimal strategy.

Let the power utility funtion U(x) = xγ

γ
, 0 < γ < 1. We �rst solve the seond equation

of the system (S) and then we dedue the solution of the �rst equation of (S).



6.5. OPTIMAL PORTFOLIO ALLOCATION STRATEGY 105

For the seond equation, we an resolve it easily as in the ase of the Merton example.

Therefore we obtain that:

v(t, x, 1) =
xγ

γ
exp

(

γ

(

r +
(µ− r)2

2 (1− γ)σ2
1

)

(T − t)
)

=
xγ

γ
exp (γρ(T − t)) ,

where

ρ = sup
p1∈U

[p1(µ− r) + r +
1

2
p21σ

2
1(γ − 1)] = r +

1

2

(µ− r)2
(1− γ1)2σ2

.

.

It remains to solve the �rst equation of (S). Similarly, we shall look for a solution

of the form v(t, x, 0) = xγψ(t). Plugging into in the �rst equation of (S), we get a

di�erential equation for ψ:

ψ′(t) + (γρ0 − λ)ψ(t) =
−λ
γ

exp(γρ(T − t))

where

ρ0 = sup
p0∈U

[p0(µ− r) + r +
1

2
p20σ

2
0(γ − 1)] = r +

1

2

(µ− r)2
(1− γ)2σ2

0

.

As V (T, x, 0) = U(x), we obtain that ψ(T ) = 1
γ
and therefore the unique solution of

the �rst equation of (S) is given by

ψ(t) =
1

γ

[(
λ

ζ
+ 1

)

exp ((γρ0 − λ) (T − t))−
λ

ζ
exp (γρ (T − t))

]

.

where ζ is a onstant: ζ = (γρ0 − γρ− λ) and ρ0, ρ are given by:

ρ0 = r +
(µ− r)2

2(1− γ)σ2
0

,

ρ = r +
(µ− r)2

2(1− γ)σ2
1

.

Therefore,

v(t, x, 0) =
xγ

γ

[(
λ

ζ
+ 1

)

exp ((γρ0 − λ) (T − t))−
λ

ζ
exp (γρ (T − t))

]

.

Consider now the strategy proesses (π∗
t )t>0 de�ned by

π∗
t =

{
µ−r

σ2
0(1−γ)

if Zt = 0
µ−r

σ2
1(1−γ)

if Zt = 1
(6.5.17)



106

CHAPTER 6. OPTIMAL PORTFOLIO ALLOCATION PROBLEM WITH

RANDOM TIME CHANGE

Notie that the funtions v(t, x, 0) and v(t, x, 1) are smooth. Then from Theorem 6.5.6

we dedue that for the power utility funtion the pair of value funtions (V (t, x, 0), V (t, x, 1))
is solution of the HJB system (S) and is given expliitly by (V (t, x, 0), V (t, x, 1)) =
(v(t, x, 0), v(t, x, 1)) and the optimal strategy is given by π∗

t :

π∗
t =

µ− r
σ2
0(1− γ)

1Zt=0 +
µ− r

σ2
1(1− γ)

1Zt=1.

As Zt is F
S
-adapted, we an dedue that π∗

t is also FS
adapted, then π∗ ∈ A.

6.6 Perspetives

We plan to onsider the more realisti ase where there are a sequene (τn) of hange
times and a sequene (θn) of deision times at whih the trader reinvests his portfolio,

either in the risky asset (St) or in the bank aount (S0
t ). We study this ase with the

presene of the transation osts. We begin a new study for this problem, with a �rst

di�ulty in the identi�ation of the Hamilton-Jaobi-Bellman system orresponding

to this new framework and studying the impat of the parameter of the hange times

laws on the strategies and their performanes.
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