
HAL Id: tel-00919185
https://theses.hal.science/tel-00919185v2

Submitted on 21 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New algorithmic and bioinformatic approaches for the
analysis of data from high throughput sequencing

Evguenia Kopylova

To cite this version:
Evguenia Kopylova. New algorithmic and bioinformatic approaches for the analysis of data from high
throughput sequencing. Bioinformatics [q-bio.QM]. Université des Sciences et Technologie de Lille -
Lille I, 2013. English. �NNT : �. �tel-00919185v2�

https://theses.hal.science/tel-00919185v2
https://hal.archives-ouvertes.fr

Algorithmes bio-informatiques pour l’analyse
de données de séquençage à haut débit

New algorithmic and bioinformatic approaches for the

analysis of data from high throughput sequencing

THÈSE

présentée et soutenue publiquement le 11 décembre 2013

pour l’obtention du

Doctorat de l’Université de Lille 1 – Sciences et Technologies

(spécialité informatique)

par

Evguenia Kopylova

Composition du jury

Rapporteurs : Veli Mäkinen, Professor University of Helsinki

Thierry Lecroq, Professor LITIS, University of Rouen

Examinateurs : Laurent Noé, Assistant Professor, co-encadrant de thèse LIFL, CNRS, Univ. Lille 1, Inria

Olivier Jaillon, Researcher CEA LABIS, Genoscope

Joachim Niehren, DR Inria Lille Inria

Hélène Touzet, DR CNRS, directrice de thèse LIFL, CNRS, Univ. Lille 1, Inria

UNIVERSITÉ DE LILLE 1 – SCIENCES ET TECHNOLOGIES

ÉCOLE DOCTORALE SCIENCES POUR L’INGÉNIEUR

Laboratoire d’Informatique Fondamentale de Lille — UMR 8022

U.F.R. d’I.E.E.A. – Bât. M3 – 59655 VILLENEUVE D’ASCQ CEDEX

Tél. : +33 (0)3 28 77 85 41 – Télécopie : +33 (0)3 28 77 85 37 – email : direction@lifl.fr

mailto:evguenia.kopylova@lifl.fr
http://www.cs.helsinki.fi/u/vmakinen/
http://www-igm.univ-mlv.fr/~lecroq/
http://www.lifl.fr/~noe/
http://www.genoscope.cns.fr/spip/
http://researchers.lille.inria.fr/~niehren/
http://www.lifl.fr/~touzet/

2

Contents

Acknowledgments 7

Papers 9

Introduction 11

1 Background to DNA sequence analysis 15

1.1 Overview . 15

1.2 Sequence alignment . 16

1.2.1 Foundation . 16

1.2.2 Dynamic programming for sequence alignment 17

1.2.3 Choosing alignment parameters for nucleotide sequences 21

1.2.4 Significance of alignment scores . 23

1.3 Next generation sequencing . 25

1.3.1 1st generation Sanger sequencing . 25

1.3.2 2nd and 3rd generation sequencing . 27

1.4 Tools for high-throughput read mapping . 29

1.4.1 Heuristic seed alignment . 31

1.4.2 Indexing using hash tables . 32

1.4.3 Indexing using suffix trees . 33

2 New approximate seeding technique and supporting data structures 39

2.1 The Levenshtein automaton . 40

2.1.1 Application in biological sequence alignment 42

2.2 Indexing with the Burst trie . 42

2.2.1 The Burst trie . 46

3

4 Contents

2.2.2 Improvement: Lookup table & mini-burst tries 47

2.2.3 Implementation . 48

2.2.4 Searching for matching seeds in the reference index 50

2.3 Extending seeds into longer matches using the LIS 50

2.4 Conclusion . 51

3 SortMeRNA: a filter for metatranscriptomic data 53

3.1 Application context: metatranscriptomics analysis 54

3.2 SortMeRNA . 54

3.2.1 Principle of the algorithm . 55

3.2.2 Parameter setting . 57

3.2.3 Availability . 61

3.3 Performance results . 61

3.3.1 Test 1: simulated 16S rRNA reads . 64

3.3.2 Test 2: simulated 23S rRNA reads . 64

3.3.3 Test 3: photosynthetic microbial community 67

3.3.4 Test 4: tidal salt marsh creek . 68

3.4 Discussion . 68

Conclusion 71

Bibliography 73

List of Figures 83

List of Tables 89

Acknowledgments

These three years of my doctoral studies frame one of the most challenging and exhilarating
periods in my life. There hasn’t been a day where my mind wasn’t wrapped around an exciting
new problem and the perpetual drive to conquer it. All of the work resulting from this thesis
could not have been possible without the great support I received from my family, supervisors,
friends, colleagues and my dearest fiancé. Here I would like to take the opportunity to thank
these people.

Tout d’abord, je voudrais dire un grand merci à mes deux directeurs de thèse - Hélène Touzet
et Laurent Noé. Nos fréquentes discussions sur les algorithmes et les codes développés dans cette
thèse nous ont permis d’améliorer et d’accélérer nos recherches dans leur ensemble. Mon séjour
en France était très agréable grâce à leur aide avec la langue, la culture et l’encouragement
quotidien. En plus, je tiens à remercier tous les membres de l’équipe Bonsai ! D’une manière ou
d’une autre chacun d’eux a eu une influence positive sur ma vie et je suis très reconnaissante
pour cela. Un grand merci à Jean-Frédéric pour tous ces rires et les desserts savoureux qu’il a
preparés !

Je tiens à remercier Corinne Da Silva, Eric Pelletier, Jean-Marc Aury et Olivier Jaillon de
l’équipe LABIS au Genoscope pour les discussions fructueuses sur SortMeRNA et leurs sugges-
tions utiles pour son amélioration.

I would like to thank Veli Mäkinen and Thierry Lecroq for their helpful suggestions and
corrections to my manuscript, as well as Olivier Jaillon and Joachim Niehren for agreeing to
participate in the thesis committee.

I would like to thank all of my friends here in Lille for making my stay so fun! Gracias Karen
for being there from the start to the finish! Danke Anke and Philipp for introducing us to the
Feuerzangenbowle and for hosting the international dinners! Dziękuję to Ewa for all the support
and smiles you always radiate! 谢谢 to Di and Wei for always surprising us with new Chinese
delicacies!

✗ ❤♦q✉ ♣♦❜❧❛❣♦❞❛r✐t⑦ ✈s✘ ♠♦✘ s❡♠⑦✘ ③❛ ✐❤ ❧✘❜♦✈⑦ ✐ ♣♦st♦✤♥♥✉✘ ♣♦❞❞❡r✙❦✉✳ ◆❡s♠♦tr✤

♥❛ t♦✱ qt♦ ✈s❡ ♠♦✐ r♦❞♥②❡ ❧✘❞✐ ❜②❧✐ ❞❛❧❡❦♦ ♦t ♠❡♥✤✱ ♦♥✐ ✈s❡❣❞❛ ❞❡r✙❛❧✐ s♦ ♠♥♦❅✐ t❡s♥②❅✐

❦♦♥t❛❦t q❡r❡③ s❦❛②♣ ✐ ♣♦qt♦✈②❡ ♦t❦r②t❦✐✳ ❇❡③ ♥✐❤ ♠♥❡ ❜②❧♦ ❜② ❣♦r❛③❞♦ t✤✙❡❧❡②❡ ♣r♦❅✐t✐

t♦t ♣✉t⑦✱ ❣❞❡ ✤ s❡❅✐q❛s✳

Finalmente, vorrei ringraziare il mio caro fidanzato, Fabio. La sua presenza e il sostegno
durante questo dottorato ha liberato la mia mente mettendo da parte gli algoritmi di tanto in
tanto per godersi la vita. Quest’uomo è sempre pieno di energia e non ho parole per esprimere il
positivo effetto che ha avuto sulla mia vita. E così, la vita è bella!

5

6 Acknowledgments

Papers

Published

1. E. Kopylova, L. Noé and H. Touzet. SortMeRNA: fast and accurate filtering of ribosomal
RNAs in metatranscriptomic data. Bioinformatics, 28(24):3211-7, 2012.

Submitted

2. E. Kopylova, L. Noé, C. Da Silva, J.-F. Berthelot, A. Alberti, J.-M. Aury and H. Touzet. De-
ciphering metatranscriptomic data. Editor E. Picardi. Book chapter in Methods in Molec-
ular Biology. In Press, 2013.

3. E. Kopylova, L. Noé, M. Salson and H. Touzet. Universal read mapping of genomic and
metagenomic data using SortMeDNA. (Submitted).

7

8 Papers

Introduction

A genome is a sequence of DNA nucleotides which encodes complex instructions to build and
develop an organism, with a copy existing in every cell of the organism’s body. Although an
organism will commence with a genome inherited from its parents, throughout its lifetime, the
genome will frequently experience changes, known as mutations, in the nucleotide sequence during
replication and in response to the surrounding environment. These changes can manifest as single
nucleotide polymorphisms (SNP) or through insertions or deletions of nucleotides in the genome.
Somatic mutations occur in the non-reproductive cells of an organism and are not transmitted to
the offspring. Germ-line mutations, on the other hand, occur in the gamete cells of an organism
and are hereditary. If a mutation occurs in a protein coding region of the genome, it may alter
the behavior of the protein and ordinarily cause harm to the organism. For example, a deletion
of three nucleotides, namely the amino acid phenylalanine, in the human gene CFTR causes
irregular folding of the synthesized protein and leads to a critical genetic disorder known as
cystic fibrosis. Being able to discover, understand and cure such detrimental changes is one of
the leading reasons for which biological sequence analysis is indispensable to humanity. On the
contrary, sometimes mutations can lead to favorable changes, as for example the single nucleotide
mutation which disables the production of the toxic hydrogen cyanide found in wild almonds,
yielding to the sweet domesticated almonds popularly consumed today [Heppner, 1923].

Even more, the development of revolutionary sequencing technologies used to unveil the
sequences of DNA molecules can now be applied to entire microbial communities in an exciting
new field named metagenomics. One influential application of metagenomics is the diagnosis
of pathogenic diseases, which can be used to detect candidate pathogens responsible for an
infection, such as was shown in the discovery of bacteria C. jejuni causing acute diarrhea in
an infected patient [Nakamura et al., 2008]. Another study in [Chan et al., 2013] focused on the
stress responses of microbial communities in the McMurdo Dry Valleys of Antarctica in order to
identify functional traits that motivate prosperity of these communities in the much threatened
biome. In reality, applications of biological sequence analysis are innumerable, and new software
and technologies are being developed every day to facilitate their studies.

The layout of nucleotides in a DNA molecule can be determined using sequencing technolo-
gies which exploit advanced techniques to read and record each nucleotide one letter at a time.
The principal limitation to all of these methods is that the sequence cannot be read in one
go, but must be randomly split into millions of overlapping fragments which are individually
sequenced to produce reads. In the final step, the sequenced reads are either reassembled back
into the original sequence, an approach known as de novo assembly, or aligned against an ex-
isting reference sequence, known as read mapping, using appropriate bioinformatic tools. With
the arrival of next-generation sequencing technologies, gigabytes of DNA material can be se-
quenced in parallel within very short time periods [Qin et al., 2009]. Big data brings along big

9

10 Introduction

challenges for the management and analysis of millions (to even billions) of short sequenced
reads [Wandelt et al., 2012]. Morever, different read lengths and sequencing error rates must
be taken into account when developing bioinformatic tools applicable to data from multiple
sequencing platforms. The objective of this thesis is to design and implement new algorithms
for the analysis of data produced by (next-generation) high-throughput sequencing technologies
(HTS). More precisely, we concentrate on algorithms for performing genomic sequence alignment,
a common application in whole-genome resequencing, and also for aligning metatranscriptomic
and metagenomic data, that is the RNA and DNA belonging to thousands of different species
directly extracted from their environment.

Metatranscriptomics is the study of total RNA extracted from microorganisms in a com-
munity. Total RNA is a composition of many subgroups including messenger RNA (mRNA),
ribosomal RNA (rRNA), transfer RNA (tRNA) and other small non-coding RNA. Given that
the former three RNA groups (rRNA, mRNA and tRNA) are chief participants in the synthesis
of proteins, studying them can help to determine the activity and composition of the consti-
tuting species. The concentration and diversity of mRNA present in a sample can shed light
on the actively expressed genes at the period of sampling. Changes in the environment, such
as nutrient availability, temperature fluctuations and stress, can heavily influence normal gene
expression. By tracking these changes, scientists can identify the cause and effect of threatened
or thriving ecosystems and take measures to restore them. Another group of closely studied RNA
is rRNA, which makes up to 90% of total RNA and is responsible for translating mRNA into
protein. Ribosomal RNA is an ideal candidate for taxonomic analyses due to its presence in all
cells and highly conserved structure. Depending on the question asked, it is often required that
the sequenced reads from total RNA are sorted into their appropriate subgroups prior to further
analysis. In this thesis, we introduce a new software tool called SortMeRNA to rapidly filter
rRNA reads from metatranscriptomic data using a reference database of known rRNAs.

Another leading application of NGS is metagenomics, the study of total DNA retrieved from
an environment. Whereas metatranscriptomic data renders information on the actively tran-
scribed genes in a community, metagenomics provides the entire collection of genes and all other
noncoding DNA within. The main goal of metagenomics is to obtain the complete genome se-
quences of all organisms in order to study their individual roles, whole-genome species diversity
and symbiotic relationships of a community. Nowadays, metagenomic studies are popular in
medicine, agriculture, biotechnology and environmental genomics. Global projects such as Tara
Oceans or Tara Oceans Polar Circle endeavor on yearly expeditions to study marine ecosystems
by collecting plankton from waters all over the world. An important subgroup of marine plank-
ton, phytoplankton, is responsible for producing half of the total oxygen on earth, consequently
changes to its population will directly affect all other organisms higher in the food chain hier-
archy. In [Boyce et al., 2010], it has been reported that nearly 40% of surface phytoplankton in
the northern hemisphere have vanished since 1950, and our understanding of how to replenish
this loss is vital to sustain a healthy planet. MetaHIT [Ehrlich, 2011] is another metagenomic
project focusing on the human intestinal microbiota and its connection to health and disease.
The MetaHIT consortium hosts a broad database of publicly available draft genomes and partial
sequences for the bacteria commonly found in the human intestinal tract. One of the great-
est challenges in such large-scale projects is the ability to store, sort through and analyze the
enourmous amounts of sequenced data. In this thesis, we introduce a second software tool called
SortMeDNA, which has been designed to align large-scale sequenced data against a database of
known reference sequences with accuracy and speed.

Life on planet earth evolves at an accelerated pace as a result of our strong curiosity and innate

11

vivacity for growth and expantion. Understanding the biological building blocks of organisms is
not only useful for modern day activites, but can be in the future applied to stimulating life on
other planets. The Space Biosciences Division at NASA is actively exploring areas of research such
as atmosphere revitalization, sources for biofuel [Buckwalter et al., 2013] and biological systems
capable of self-producing natural resources. Given the hostile environments on other planets such
as Mars, any signs of life would probably resemble single-celled microorganisms such as archaea
known today [Morozova et al., 2007], therefore their current study through metatranscriptomics
and metagenomics may one day offer advantages beyond our own world.

⋆ ⋆ ⋆

Contribution

The works of this thesis were supported by the ANR Project MAPPI (grant ANR-2010-COSI-
004). Project MAPPI is a three-year collaboration between the teams LIAFA at the University
of Paris-Diderot, IRISA in Rennes and the French National Sequencing Center (Genoscope) in
Évry to develop bioinformatic tools for the analysis of metatranscriptomic and metagenomic
data produced by the Tara Oceans expedition.

In this thesis we develop a new type of approximate seed allowing up to 1 error: The error
can either be a mismatch or an indel, and its position in the seed is not predetermined. This
unique feature gives the seed flexibility for different error types, such as indels in 454 reads,
unpredictable error distribution, as readily observed with PacBio reads and capturing similarities
between distant related species. Furthermore, we introduce an indexing data structure specifically
tailored to perform fast queries in large texts using this approximate seed. We show the efficiency
of our method with two developed software tools, SortMeRNA for filtering ribosomal RNA from
metatranscriptomic data (see Chapter 3), and SortMeDNA for mapping reads from metagenomic
and genomic sequences generated by second- and third-generation technologies (see Chapter ??).

Structure of this thesis

This thesis is organized into four main chapters.

• Chapter 1 gives an introduction to sequence alignment, methods of traditional sequencing
and the arrival of high-throughput sequencing technologies. Furthermore, new computa-
tional challenges for mapping gigabytes of high-throughput reads are discussed as well
current algorithms and software aimed at solving them.

• Chapter 2 presents the new approximate seed and the supporting data structures used
to quickly search for short regions of similarity between two sequences.

• Chapter 3 presents the software SortMeRNA which implements the techniques of Chap-
ter 2 to quickly and accurately filter rRNA fragments produced by high-throughput se-
quencing technologies.

12 Introduction

• Chapter ?? presents the software SortMeDNA for read mapping which extends the algo-
rithm of SortMeRNA to perform full alignments of high-throughput genomic or metage-
nomic sequences. SortMeDNA also applies statistical analysis to evaluate the significance
of each alignment.

• Conclusion summarizes our findings and gives perspectives for future works.

Chapter 1

Background to DNA sequence analysis

Contents

1.1 Overview . 15

1.2 Sequence alignment . 16

1.2.1 Foundation . 16

1.2.2 Dynamic programming for sequence alignment 17

1.2.3 Choosing alignment parameters for nucleotide sequences 21

1.2.4 Significance of alignment scores . 23

1.3 Next generation sequencing . 25

1.3.1 1st generation Sanger sequencing . 25

1.3.2 2nd and 3rd generation sequencing . 27

1.4 Tools for high-throughput read mapping 29

1.4.1 Heuristic seed alignment . 31

1.4.2 Indexing using hash tables . 32

1.4.3 Indexing using suffix trees . 33

1.1 Overview

Biological sequence alignment is a method used to identify regions of similarity between organ-
isms at the genomic, protein or structural level. Numerous applications include tracking species
diversity and evolution, identifying new strains of bacteria or viruses, and predicting functional
roles of organisms based on the similar genes they share. In genomic sequence alignment, the
sequences used for comparison are derived from deoxyribonucleic acid (DNA) or ribonucleic acid

(RNA) strands, which are long chains of nucleotides present in every cell of an organism. These
chains are defined on the alphabet {A,C,G,T/U} and comprise both coding regions such as
protein coding genes, and noncoding regions such as repetitive DNA, telomeres, and noncoding
RNA. The most recurring form of RNA is a single, linear strand of nucleotides, whereas for
DNA, it is a double stranded helix whose two strands run in opposite directions of one another.
In protein sequence alignment, the sequences used for comparison are long chains of amino acids,
frequently defined on a 20 letter alphabet. An amino acid is encoded by 3 nucleotides, collectively
known as a codon, and some amino acids are encoded by more than one codon (ex. codons UCU

13

14 Chapter 1. Background to DNA sequence analysis

and UCA both encode for amino acid Serine). Sequence alignment is the most commonly used
method to compare two sequences by arranging them in a manner as to highlight their regions of
similarity. Furthermore, secondary and tertiary structure information can complement sequence
alignment to achieve a higher accuracy, such as reported for rRNA [Letsch et al., 2010] and pro-
tein molecules [Russell and Barton, 1992]. In this thesis, we focus exclusively on the sequence
alignment between nucleotide sequences and apply our algorithms to DNA and RNA sequences
generated by high-throughput sequencing technologies. In Section 1.2, we discuss the history
and foundation of sequence alignment and demonstrate the fundamental algorithm behind most
of today’s alignment tools. In Section 1.3 we introduce Sanger sequencing, the pioneering 1st

generation sequencing technology still used for small-scale DNA projects such as small bacte-
rial or viral genomes [Yan et al., 2013] or hypervariable regions such as in mitochondrial DNA
[Lemay et al., 2013]. We then go on to describe some of the leading 2nd and 3rd generation se-
quencing technologies which are vastly applied for large-scale studies such as eukaryotic genome
resequencing [Nystedt et al., 2013] and environmental genomics [Hingamp et al., 2013].

To this day, all sequencing technologies depend upon bioinformatic tools to post-process their
sequenced data. These two fields crisscross in a manner that one’s success will often lead to the
other’s. Improvements in the data generated by sequencing technologies, such as longer read
lengths and reduced error-rates, correspondingly improve the performance and accuracy of ex-
isting sequence alignment tools. On the other hand, new improvements in software tools, such as
better algorithms for error handling and faster speeds, stimulate research for novel methods of
sequencing. In any respect, both research areas are continually evolving to provide the most ef-
fective and low-cost approaches to whole-genome analysis. In Section 1.4, we describe the leading
bioinformatic tools used for mapping data issued by high-throughput sequencing technologies.

1.2 Sequence alignment

1.2.1 Foundation

Intuitively, short and closely related sequences, such as the phrases lalunaebella and
laluneestbelle can be easily aligned by hand. In fact, they can be aligned in any of the
following forms shown in Figure 1.1, using either the entire sequences for alignment or only their
selected regions.

Figure 1.1: Global (1-2) and local (3-4) alignments for strings lalunaebella and laluneestbelle.

target LALUNAE---BELLA LALUNAE--BELLA LALUNEE LALUNAE--BELL

|||*| | ||||* |||||*| ||||* |||||*| |||||*| ||||

query LALUN-EESTBELLE LALUNEESTBELLE LALUNAE LALUNEESTBELL

(1) (2) (3) (4)

For any given alignment, one can associate mismatches (noted by *) to substitutions in bi-
ology, and gaps (noted by -) as indel (insertion and deletion) mutations. The regions where the
sequences match exactly (noted by |) depict areas of high conservation. A global alignment will
span the length of the entire target sequence (see Figure 1.1 (1),(2)), whereas a local alignment

will only consider regions of high similarity between the sequences (see Figure 1.1 (3),(4)). If an
alignment is found to be significant, it may represent a highly conserved region between two se-
quences which can help to compute their evolutionary distances or identify homologies based on,

1.2. Sequence alignment 15

for example, overlapping sequence motifs [Kumar and Filipski, 2007]. Normally, for highly diver-
gent sequences having undergone more complicated genome rearrangements, such as duplications
and inversions of thousands of nucleotides [Lupski and Stankiewics, 2005], local alignment will
be a better choice as it will localize isolated regions of similarity and will not expect them to
have the same order and orientation on the sequences. If however the order and orientation of
similarity regions are important, for instance during the construction of phylogenetic trees using
metabolic pathways [Ma et al., 2013], then global alignment would be better-suited for the task.
In practice, local alignment is a more popular approach due to its wide range of applicability
and the fact that relatively few highly similar complete genomes or sequences are available to
examine in full-length.

Apart from the type of alignment one must consider, how do we distinguish the best, or
most biologically significant alignment? Logically, the correct alignment would be the one that
captures the true changes made throughout time for a pair of sequences sharing a common
ancestor. However, this is often not possible for nucleotide sequences, since these changes are
introduced over long periods (up to millions of years) and depend on many different environmental
and hereditary factors. Instead, we opt to search for an optimal alignment which maximizes
the number of similarities between two sequences, and applies an alignment scoring scheme to
do so. The scoring scheme assigns nucleotide matches, mismatches and gaps in an alignment
with reward and penalty values, respectively, and at the end of an alignment the values are
summed to yield an overall score. The alignment with the highest score is considered to be the
optimal alignment. For protein alignments, it is customary to use log-odds matrices such as
PAM [Dayhoff and Schwartz, 1978] or BLOSUM [Henikoff and Henikoff, 1992] to set the scores
for substitutions, whereas the gap open and gap extension penalties are left for the users to decide,
although techniques such as inverse parametric sequence alignment [Kim and Kececioglu, 2007]
can be used to set these parameters based on biologically correct reference alignments. To a much
lesser degree, few works have been published on the assessment of optimal alignment parameters
for nucleotide sequences. In Subsection 1.2.3, we describe the few experiments made (based on
observed evolutionary patterns) to address this question and give a general guideline for choosing
appropriate parameters.

1.2.2 Dynamic programming for sequence alignment

Dynamic programming is a method of dividing complex problems into several smaller subprob-
lems and solving each one individually, then combining the results to give a complete (and
optimal) solution to the original problem. Often, this method will reduce the computation from
exponential to polynomial time in a problem involving recursion, by effectively reducing the num-
ber of repetitive calls made to reach the final solution. In bioinformatics, dynamic programming
is the method of choice for finding an alignment between two sequences. The first global se-
quence alignment algorithm, known as the Needleman-Wunsch [Needleman and Wunsch, 1970]
algorithm, was developed in 1970 for aligning two proteins in full-length, although it can be
equally applied to nucleotide sequences. This dynamic programming algorithm guarantees to
find the correct optimal alignment between two sequences of lengths n in O(n2) time. A modi-
fied version of the algorithm by Smith & Waterman [Smith and Waterman, 1981] was introduced
a decade later to search for an optimal local alignment. The root idea behind both algorithms is
to explore the space of all alignments without having to actually list them, as that would require
exponential time, by progressively computing the maximum scoring alignment along the lengths
of the two sequences.

16 Chapter 1. Background to DNA sequence analysis

Under a linear gap penalty model, the cost of introducing a gap is independent of any previous
gaps and it can be computed using a linear function γ(l) = −ld where l is the length of the gap and
d is the penalty score. The setup to this algorithm is a 2-dimensional (n×m) table representing
all possible pairs of residues between the two sequences. For the Smith-Waterman algorithm, the
entries in the alignment table M are computed using the rules listed in Figure 1.2.

Figure 1.2: Rules to construct the Smith-Waterman alignment table M of size n×m under a linear gap penalty

model

(1) M(i, 0) = 0, ∀i ∈ [0,m]

(2) M(0, j) = 0, ∀j ∈ [0, n]

(3) M(i, j) = max

0

M(i− 1, j − 1) + w(xi, yj) if match xi with yi

M(i− 1, j) + d if insertion in x

M(i, j − 1) + d if insertion in y

∀i ∈ [1,m], ∀j ∈ [1, n], d < 0

The function w(xi, yi) usually returns a positive score for a match if xi = yi or a negative score
for a substitution if xi 6= yi. The parameter d is the score for opening a gap (ex. introducing an
insertion or deletion with respect to the query sequence). For a guide to choosing values for the
alignment scores (match, mismatch, insertion, deletion), see subsection 1.2.3. In the following
example, we will use the values match = 2, mismatch = -3, gap = -5 and go on to align the
sequences,

target = ATAGCCTTT and query = ATCGCCTT. (1.1)

To begin with the table construction, we place the target sequence on the horizontal axis of the
table and the query sequence on the vertical axis, as illustrated in Figure 1.3.

The first row and first column entries are all set to 0, in order to simulate an alignment
of all letters with a null character, and the remainder of the computation begins at the first
empty cell in the top left corner of the table. The table values in Figure 1.3 are computed in
the left to right, top to bottom manner beginning from M(1, 1). At each new cell, the optimal
score is updated using the previously computed values (see Figure 1.2 for the complete set of
rules) and an arrow is placed from the current active cell to the cell used in the computation
(the green arrow in Figure 1.3 signifies the value ‘1’ was used to obtain the score, such that
M(4, 4) = M(3, 3) + 2 = 1 + 2 = 3). Once the table has been filled in, the arrows are used
to trace back a path for an alignment. The optimal local alignment begins from the highest
computed value in the table, being the value 11 in Figure 1.4. To output the optimal alignment,
we follow the arrows until we reach the end of the path. For our example, the optimal scoring
path between the two sequences in our example is 11 → 9 → 7 → 5 → 3 → 1 → 4 → 2, which
yields the local alignment shown in Figure 1.5.

Under an affine gap penalty model, the location of gaps relative to one another is considered
since in biology gaps spanning multiple residues (multiple base insertions or deletions) are more
likely to occur than as single residue mutations. A more fitting gap penalty for this property

1.2. Sequence alignment 17

Figure 1.3: Construction of Smith-Waterman table using dynamic programming

A A A T A G C C T T T j

A 0 0 0 0 0 0 0 0 0 0

A 0 2 0 2 0 0 0 0 0 0

T 0 0 4 0 0 0 0 2 2 2

C 0 0 0 1 0 2 2 0 0 0

G 0 0 0 0 3

C

C

T

T

i

M(i − 1, j − 1) + w(ai, bj) M(i − 1, j) + w(ai, −)

M(i, j − 1) + w(−, bj) 3

Figure 1.4: Optimal alignment trace back using Smith-Waterman table

A A A T A G C C T T T j

A 0 0 0 0 0 0 0 0 0 0

A 0 2 0 2 0 0 0 0 0 0

T 0 0 4 0 0 0 0 2 2 2

C 0 0 0 1 0 2 2 0 0 0

G 0 0 0 0 3 0 0 0 0 0

C 0 0 0 0 0 5 2 0 0 0

C 0 0 0 0 0 2 7 2 0 0

T 0 0 2 0 0 0 2 9 4 2

T 0 0 2 0 0 0 0 4 11 6

i

follows the form γ(l) = d+ (l − 1)e for l ≥ 1, where l is the length of the gap, d is the score for
opening a gap and e is the score for extending a gap such that d > e. In this setup, additional
gaps are penalized less than the initial ones. The recurrence relation shown in Figure 1.2 can be

18 Chapter 1. Background to DNA sequence analysis

Figure 1.5: Optimal local alignment for sequences ATAGCCTTT and ATCGCCTT using the Smith-Waterman algo-
rithm.

target ATAGCCTT

||*|||||

query ATCGCCTT

modified to the one shown in Figure 1.6. Now, instead of keeping track only of the best score
given that xi is aligned with yj , we must also keep track of two other tables: Ix and Iy. The
table Ix keeps track of the best score given that xi is aligned with a gap, and similarly the table
Iy keeps track of the best score given that yj is aligned with a gap. The recurrence relation in
Figure 1.6 can be represented as a finite state automaton (FSA) shown in Figure 1.7. For every
cell M(i, j) the FSA is traversed to a new state (M, Ix or Iy) from the previous one depending
on the next pair of residues (xi, yj) used for the alignment. Similar to the linear gap penalty
model, the time required to align two sequences is O(n2). Ideally, the gap penalty model should
follow a concave-like curve such that every new additional gap receives a slightly lower penalty
than the previous one. However, the dynamic programming algorithm would require more time
to align two sequences since for each new cell (xi, yj) we must consider every previous cell in the
column and every previous cell in the row (extra i+ j + 1 computations), and not only the one
previous computation. Therefore, the affine gap penalty model is the most practiced in biological
sequence alignment and can be implemented using the algorithm described in [Gotoh, 1982].

Figure 1.6: Rules to construct the Smith-Waterman alignment table M of size n×m under an affine gap penalty

model

(1) M(i, 0) = 0, Ix(i, 0) = −∞, Iy(i, 0) = −∞ ∀i ∈ [0,m]

(2) M(0, j) = 0, Ix(0, j) = −∞, Iy(0, j) = −∞ ∀j ∈ [0, n]

(3) M(i, j) = max

0

M(i− 1, j − 1) + w(xi, yj) if match xi with yi

Ix(i− 1, j − 1) + w(xi, yi) if insertion in x

Iy(i− 1, j − 1) + w(xi, yi) if insertion in y

Ix(i, j) = max

{

M(i− 1, j) + d if open gap in x

Ix(i− 1, j) + e if extend gap in x

Iy(i, j) = max

{

M(i, j − 1) + d if open gap in y

Iy(i, j − 1) + e if extend gap in y

∀i ∈ [1,m], ∀j ∈ [1, n], d < 0, e < 0

Although dynamic programming offers an important speedup over the naive recursion ap-
proach, it remains slow for aligning large eukaryotic genomes and when searching a large file of
reads against a large database. To resolve this problem, significant efforts have been dedicated
to improve the algorithm’s performance using single instruction, multiple data (SIMD) par-
allelism. This accelerated approach has been reported to gain more than six times the speed
over the traditional one [Farrar, 2007, Rognes, 2011] and has been implemented into many
modern alignment software such as Novoalign (Novocraft), SHRiMP2 [David et al., 2011] and

1.2. Sequence alignment 19

Figure 1.7: A diagram of the relationships between the three states used for affine gap align-
ment [Durbin et al., 1998] (note d < 0 and e < 0)

Ix

M

Iy

e

w(xi, yj)

w(xi, yj)

d

d

w(xi, yj)
e

Bowtie2 [Langmead and Salzberg, 2012]. Another acceleration used by all these tools is that none
of them apply the dynamic programming algorithm to the entire search space of two sequences,
but only to subregions showing potential to generate a high scoring alignment. In Section 1.4
we discuss the common heuristics used by many current read mapping tools and the efficacy of
these approaches for different alignment applications.

1.2.3 Choosing alignment parameters for nucleotide sequences

The Smith-Waterman sequence alignment parameters aim to maximize the score for true ho-
mologies of highly similar or distantly related species. Frequently, two different sets of param-
eters will produce two different results, especially if the query and reference data experience
high rates of divergence. Since the start of the new millennium, very few investigations have
been made into understanding the behavior of different alignment parameters for varying sets
of data [Chiaromonte et al., 2002, Frith et al., 2010]. However, biological evolution suggests that
substitution mutations occur more frequently than indels [Saitou and Ueda, 1994, Iengar, 2012],
and thus should have a lower penalty in the scoring scheme. As a rule of thumb, a match
should have a positive score and the mismatch, gap open and gap extend parameters should
have negative scores such that the expected overall score for aligning two random sequences
is negative. A simple model for a nucleotide scoring scheme is match=1, mismatch=-1, gap
open=-2 and gap extend=-1. Interestingly, even though this model does not take into consid-
eration any relationships between nucleotide bonds or mutation biases, it has been shown to
work reasonably well on various data [Frith et al., 2010]. Indeed, more sophisticated models can
be developed based on nucleotide compositions of known species to help increase accuracy of
the results [States et al., 1991]. Certain types of models begin to consider biological and statis-
tical properties of substitution mutations, as these are subject to certain biases in some species
and do not come about as completely random events. For example, one of the species known
to cause severe malaria in humans, the Plasmodium falciparum, has shown to experience a sig-
nificant increase in mutations for two genes associated to sulfadoxine-pyrimethamine (drug)
resistance [Ahmed et al., 2004].

Some of the commonly studied biases include CpG density, G+C content and transi-
tion/transversion ratios. A CpG site is a region of DNA where a C nucleotide is followed by
a G nucleotide, or vice versa, along the same strand of DNA (this is different from a base-pair).

20 Chapter 1. Background to DNA sequence analysis

The CpG density shows a bias when the observed number of CpG dinucleotide sites does not
correlate with the expected number (based on the G+C content), as witnessed in the subfami-
lies of HIV [Kypr et al., 1989] and the human genome [Sved and Bird, 1990]. A scoring scheme
may be refined for acknowledging the presence of CpG dinucleotides by giving lower mismatch
scores to more probable mutations of adjacent nucleotides, such as CpG→TpG (or comple-
mentary CpA), a common mutation caused by the methylation of cytosine and its subsequent
deamination into thymine [Jabbari and Bernardi, 2004]. It has also been shown that mutations
of CpG sites can affect the mutation rate of non-CpG DNA [Walser et al., 2008], a possible
aftermath of incorrect DNA reparation of the deaminated nucleotide. However, the latter ob-
servation is largely specific to the sequence in question and would require strong knowledge of
its evolutionary origins in order to be scored effectively. Another often recognized bias is related
to the G+C (or A+T) content, which is simply the skewed percentage of nucleotides being ei-
ther G or C in a genome. The G+C content can vary significantly between different genomes,
such as the G+C rich actinobacteria or A+T rich firmicutes, and this characteristic can be in-
corporated into a scoring matrix by assigning higher scores to matches between less frequent
residue pairs (eg. if G+C rich, assign higher scores to matches between A-A and T-T and lower
scores to matches between G-G and C-C [Frith et al., 2010]). Lastly, the transition/transversion
bias refers to the greater likelihood of seeing a mutation from a purine to a purine (A↔G),
or a pyrimidine to a pyrimidine (C↔T) nucleotide, than from the purine to a pyrimidine or
vice versa, the possibilities are illustrated in Figure 1.8. The expected ratio for a transition to
transversion mutation is 1:2, however in vertebrate genomes transition mutations are more likely
to occur than transversions (driven by methylation) [Zhao and Boerwinkle, 2002], thus a scoring
matrix can be adjusted to consider this property by giving higher scores for a transition (i.e.
A→G) mutation than for a transversion (i.e. A→T) mutation. However, it was also shown in
[Yang and Yoder, 1999] that for a group of eutherian species the transition-transversion ratio
approaches 1 for levels of divergence ≥ 20% due to a saturation of transitions. Investigations
into using sequence specific transition-transversion substitution matrices have been presented us-
ing the tool DNAlignTT [Agrawal and Huang, 2008], which reported comparable and sometimes
significantly better results over the trivial match/mismatch scoring scheme in their preliminary
results.

Essentially, the substitution scores of a scoring matrix are derived from log-odds ratios
[Karlin and Altschul, 1990], which compare the probabilities of aligning two bases as a result
of evolution versus as a result of a random alignment. The biases discussed in this section can
be used to construct a simple 4× 4 matrix, being the safest choice for data with unknown prop-
erties, or a 16 × 16 matrix if considering dinucleotide properties [Salama and Stekel, 2013]. For
coding regions, an amino acid scoring matrix can be used which aligns amino acids rather than
individual nucleotides. Along with an appropriate scoring scheme, it is important to choose an
alignment cutoff score, a score which will capture enough biological homologies but also dismiss
artificial alignments which happen to arise by chance. A good measure of alignment significance
is the expectation value (E-value) which gives the expected number of alignments between two
random sequences of lengths m and n having a certain alignment score. In the following Subsec-
tion 1.2.4, we will discuss the E-value and its application in our software SortMeDNA, further
described in Chapter ??.

1.2. Sequence alignment 21

Figure 1.8: Transition and transversion mutations

A G

C T

transition

transversion

1.2.4 Significance of alignment scores

The purchasing power of a dollar can define its relative value, so what then defines the rela-
tive value of a sequence alignment? Well, we can begin by asking how many random sequence
alignments can statistically exist that achieve the same score as the homology at question. In
[Gordon et al., 1986, Karlin and Altschul, 1990] it was proven that the distribution of the Smith-
Waterman ungapped local alignment scores between two infinitely long random sequences (each
successive character follows a Markovian model) follow the extreme value distribution type I,
otherwise known as the Gumbel distribution. Moreover, the latter paper goes on to describe the
expectation value (E-value), that is the number of random alignments expected to exist between
two sequences of lengths m and n having a score S or greater. The equation for this calculation
is given by,

E = Kmne−λS (1.2)

where K and λ are the Gumbel parameters, m and n are the lengths of the query and reference
sequences, respectively, and S is their Smith-Waterman local alignment score. The logic behind
Equation 1.2 follows the same principle as observing the longest run of heads (or tails) in a game of
coin toss. During an alignment between two random sequences, we can consider a match between
two letters as throwing a head and a mismatch as throwing a tail. Because of the randomness
property, every subsequent comparison between two letters will yield a result independent from
any previous one, synonymous to each new toss of an unbiased coin.

Although it has not been proven that an alignment involving gaps also follows the Gum-
bel distribution, it has been heavily conjectured to be the case through simulation analysis
[Altschul and Gish, 1996]. The Gumbel parameters K and λ are the scaling factors and are com-
puted using the background nucleotide frequencies of the reference sequence n and an alignment
scoring matrix (including indel costs). The most straightforward approach to compute these val-
ues is to simulate many random sequences of lengths n and m, align them and fit the values
K and λ onto the resulting score distribution [Waterman and Vingron, 1994]. However, this ap-
proach is inefficient since it requires thousands of random alignments to arrive at an accurate
estimation. Various faster and on-the-fly methods have been developed to alleviate this time con-
straint by using the ‘islands method’ [Olsen et al., 1999], global alignment [Sheetlin et al., 2005]
or importance sampling [Park et al., 2009] techniques.

The first, and still one of the few, local alignment tools that effectively applies this statistical
measure for evaluating alignment score significance is BLAST [Altschul et al., 1990]. BLAST
computes the E-value per query, meaning that the length m is for one query and n for the entire

22 Chapter 1. Background to DNA sequence analysis

reference database. It is also possible to compute the E-value for the entire search space, meaning
the length m will represent all of query sequences and n, as in BLAST, will represent the entire
reference database. When computing the E-value, it is also important to consider alignments
carried out on the edges of either the query or reference sequences, where an alignment may run
out of sequence before reaching the threshold score. To account for this boundary condition, we
also compute the finite-size correction which adjusts the lengths of m and n by subtracting from
them the minimal length l required to achieve a significant score. When computing the length
correction per read, the relative entropy is used to take into account the nucleotide distributions
for both the query and reference sequence. However, when computing it for the entire set of
reads, the entropy of the reference sequence alone can be used. Although this approach is not
theoretically optimal [Wang and Samudrala, 2006], it allows to compute the length correction one
time and apply it to the global computation of the E-value for all reads. Below we outline the steps
taken to compute the E-value for the entire search space, which apart from approximating the
length correction using entropy (rather than relative entropy), closely follow those for BLASTN
[Korf et al., 2003].

Let M and N define the total number of query and reference sequences in our search space,
respectively. Then, we can represent the m and n values in Equation 1.2 as,

m =

M
∑

i=1

mi n =

N
∑

i=1

ni (1.3)

Considering the finite-size correction, we must additionally subtract this value l from every
query and reference sequence,

m′ = m− (l ×M) n′ = n− (l ×N) (1.4)

The length correction l is given by,

l =
ln(Kmn)

H
(1.5)

If l > m then set m′ = 1
k
. The parameter H represents the relative Shannon entropy,

H = −
4

∑

i=1

i
∑

j=1

qij ln
qij

pipj
(1.6)

for which qij are the pair-wise frequencies of the aligned region and pi, pj are the background
frequencies of nucleotides in the reference database. However, since we would like to compute the
E-value for all query sequences rather than per query, we assume that the pair-wise frequency
probabilities are unknown or resemble the background frequencies of the reference database (see
[Wang and Samudrala, 2006]). We use the Shannon entropy instead,

H = −
4

∑

i=1

pi ln pi (1.7)

Therefore, the E-value with length correction for m and n is,

1.3. Next generation sequencing 23

E = Km′n′e−λS (1.8)

1.3 Next generation sequencing

1.3.1 1st generation Sanger sequencing

The first complete genome, the φX174 virus, was sequenced in 1977 [Sanger et al., 1977] us-
ing a chain termination technique developed by Frederick Sanger. The original method required
four reaction mixtures to be set up each containing single-stranded copies of a DNA template,
DNA polymerase enzymes responsible for DNA replication, DNA primers (short DNA sequences
complementary to the 5’ end of the template sequence) and equal amounts of all four types of
nucleotides. In addition, small amounts of one type of modified nucleotide are added to each reac-
tion mixture. The modified nucleotides lack the hydroxyl group (in the sugar molecule) required
for bonding of adjacent nucleotides during replication. Depending on the variant preferred, ei-
ther the normal nucleotides, the modified nucleotides or the DNA primers are also radioactively
labeled in order to see the DNA molecule in the final step.

The chain termination method begins with a single-stranded DNA template to which a primer
is annealed at the 5’ end (DNA can only be synthesized from the 5’→3’ direction). As the DNA
polymerase gradually incorporates normal nucleotides to form the complementary strand, the
synthesis reaction proceeds until a modified nucleotide is integrated into the chain, terminating
elongation and essentially exposing which of A,C,G or T nucleotides resides at that position.
Therefore, in order to determine the position of every single nucleotide in a strand of DNA, this
method must be applied to many copies of the same strand (in each reaction mixture) obtainable
via plasmid vectors or the polymerase chain reaction (PCR). The final step of sequencing involves
denaturing the elongated DNA fragments from their template strands and passing them through a
gel electrophoresis setup (different lane for each reaction mixture), which separates the fragments
according to length differing in size by 1 bp. Since each fragment is radioactively labeled (via
primer, normal nucleotides or modified nucleotide), all that remains to do is read the radioactive
bands from the start 5’→3’ in the four lanes of gel to determine the complete sequence of
the original DNA strand. In 1986, an automated variation to the Sanger method was described
[Smith et al., 1986] where the modified nucleotides are fluorescently labeled with a different color
to distinguish each type and added simultaneously into one reaction mixture. Afterwards, during
electrophoresis a laser excites the atoms in the fluorescent labels to produce visible light which is
translated by a computer into its corresponding nucleotide. Refer to Figure 1.9 for an illustration
of the automated method. The main limitation to this approach of sequencing is that it can only
be applied to short DNA sequences (∼800 bp back then and ∼2,645 bp today using Novex R©

precast gels by Life Technologies), in order to maintain a high resolution during gel electrophoresis
for a pair of sequences differing in length by 1 bp. Therefore, even a genome as small as the one of
the φX174 virus had to be sequenced using a whole-genome shotgun approach, where the entire
molecule was randomly sheared into smaller, possibly overlapping DNA fragments (∼500 bp) to
be individually sequenced using the chain termination method and finally reassembled back into
the original genome using computational approaches [Staden, 1979].

24 Chapter 1. Background to DNA sequence analysis

Figure 1.9: Sanger sequencing using the chain termination method, automated version using fluorescently labeled
nucleotides and computer reading

EJEC
T

DVD-R
W

DVD-R
W

USB

SATA

PH
ON

E
M
IC

LI
NE

-IN

AUDIO

POWER

CARD
READ

ER

NumLock
CapsLock

ScrollLock

NumLock
7

4
1

/
8

5
2

*
9

6
3

0

-
+ScrollLock

ScrnPrint
SysRq

Pause
Break

Home
End

PageDown
PageUp

Insert
Delete

Enter

End

Home
PgUp

PgDn
Del.

Ins

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

Esc
1 2 3 4 5 6 7 8 9 0()

*&^%$#@!
`~

-_ =+ \|

Ctrl

Ctrl
Alt

A S D F G H J K L

CapsLock

;: '"

Z X C V B N M

Shift

Shift

/?
.>

,< Alt Gr

Q W E R T Y U I O P [{]}

Tab

LCD-Pro

SELECT

MENU

- +

Capillary gel

Laser Detector

G G G G GC C C CA AT T T T T TT

Chromatograph

Deoxyadenosine triphosphate

Dideoxyadenosine triphosphate

Primer

Template

3′

5′

5′

5′

5′

5′

5′

5′

5′

5′

5′

3′

3′

3′

3′

3′

3′

3′

3′

3′

3′

5′

① Reaction mixture
‣ Primer and DNA template
‣ ddNTPs with flourochromes

‣ DNA polymerase
‣ dNTPs (dATP, dCTP, dGTP, and dTTP)

② Primer elongation
and chain termination

③ Capillary gel electrophoresis
separation of DNA fragments

④ Laser detection of flourochromes
and computational sequence analysis

ddTTP
ddCTP
ddATP
ddGTP

ddNTPs

http://commons.wikimedia.org/wiki/File:Sanger-sequencing.svg

Milestones using Sanger sequencing

The first bacterial genome, Haemophilus influenzae, was entirely sequenced using the whole-
genome shotgun sequencing approach and afterwards reassembled with the TIGR assembler
[Fleischmann et al., 1995]. The sequencing of the first eukaryotic genome, the yeast Saccha-

romyces cerevisiae, was an international collaboration effort that commenced in 1989 and was
completed seven years later [Goffeau et al., 1996]. Due to large computational resources required
for assembling many small DNA fragments (and concerns of the authenticity of the results), the
sequencing of S. cerevisiae was done in a hierarchical approach. Complete chromosomes were
initially split up into ordered and slightly overlapping sections using BAC clones, and each sec-
tion was then individually shotgunned into smaller fragments which were finally sequenced and
reassembled back into the original parent sections. The Human Genome Project (HGP) was an-
other international collaboration to sequence the first human genome using Sanger sequencing,
beginning in 1990 and completing 13 years later with an estimated cost of $2.7 billion. The same
hierarchical shotgun sequencing approach (as for S. cerevisiae) was used to sequence the 3 billion
base-pair genome [Consortium, 2001]. Although a remarkable accomplishment for mankind, at
that rate and cost personalized genome sequencing was unrealistic for large-scale and commercial
applications. During the same time period, another team took on the challenge to sequence the
human genome using whole-genome shotgun sequencing [Venter et al., 2001], largely omitting
the map-based (BAC clones) sequencing steps. Localized regional shotgun sequencing was also
performed to improve resolution by first sorting reads to known BAC contigs (derived from the

http://commons.wikimedia.org/wiki/File:Sanger-sequencing.svg

1.3. Next generation sequencing 25

HGP) and then individually assembling them.

1.3.2 2nd and 3rd generation sequencing

Although the Sanger method can produce average read lengths of 850 bp having 99% consensus
accuracy, the thoughput per run is less than 24 Kb (for a modern 24-capillary 3500xL Genetic
Analyzer system) and can take up to 6 hours to prepare and run. The new millenium has brought
forth many new state-of-the-art technologies which can sequence the entire human genome within
two days under $10,000 (rapid run mode using the Illumina HiSeq 2500 system), allbeit often
with significantly shorter read lengths and a higher error rate (at the time of writing).

Sequencing-by-synthesis is a technique used to sequence a single strand of DNA in real-
time, by incorporating free nucleotides into a growing chain using DNA polymerase and im-
mediately recording which nucleotide was added. In 1996, a sequencing-by-synthesis setup
was used to sequence 15 bases of a 291 bp DNA template [Ronaghi et al., 1996] in real-
time, setting a world record for this alternative approach to Sanger sequencing. Today, this
cutting-edge principle is the foundation of all high-throughput sequencing technologies, such
as 454 (Roche), Illumina (Solexa) and Ion Torrent (Life Technologies), adept for generat-
ing millions of high quality reads of lengths 100-1000 bp within several days. Similarly to
Sanger sequencing, all sequencing-by-synthesis technologies employ DNA polymerase to grad-
ually incorporate free nucleotides into a growing strand of complementary DNA. Per contra,
the detection of incorporated nucleotides is performed using variant techniques other than
the Sanger method and the entire sequencing process is massively parallelized. For 454, the
method of detection is pyrosequencing [Ronaghi et al., 1998, Nyrén, 2007], for Ion Torrent it
is the detection of hydrogen ions [Rothberg et al., 2011] and for Illumina it is nucleotide dye-
termination [Bentley et al., 2008]. All of these techniques are performed over millions of ampli-
fied clones (derived via emulsion PCR using beads or clusters) for DNA fragments obtained via
whole-genome shotgun sequencing, in order to provide a sufficient signal for detecting nucleotide
incorporation. Moreover, the flow cells on which sequencing reactions take place, are optimized
to permit massively parallel sequencing of millions of different DNA fragments simultaneously.
The diagrams (A) and (B) in Figure 1.10 illustrate the general setup for Ion Torrent and Illu-
mina platforms. In the following paragraphs we will give a short summary of each technique and
highlight the steps most susceptible to sequencing errors and the factors limiting the production
of long reads, as error types and read lengths vary between technologies (see Table 1.1) and are
important to consider during the development of software for sequence analysis.

454 and Ion Torrent sequencing are based on detecting by-products of a synthesis reac-
tion. During the synthesis of a DNA molecule, free nucleotides are incorporated in their natural
triphosphate forms in cycles over a sequencing flow cell. Upon bonding of a free nucleotide to the
next unpaired base in the template strand, two by-products, a pyrophosphate (two phosphate
groups bonded together) and a positively charged hydrogen ion, are released. Each by-product
is exclusively used by the 454 and Ion Torrent technologies, respectively, to detect the incor-
poration of a base. In the case of 454, the release of a high-energy pyrophosphate molecule
triggers a series of catalytic reactions which ultimately end with an emission of visible light.
The intensity of light emitted is proportional to the number of nucleotides incorporated into
the DNA chain and can be detected by a charge-coupled device (CCD) camera. In the case of
Ion Torrent, the release of a positively charged hydrogen ion decreases the pH of the solution
(since pH = −log10(H+)), and the change in ion concentration can be detected using a silicon
substrate chip (see Figure 1.10(A)). In both cases, the addition of different types of nucleotides

26 Chapter 1. Background to DNA sequence analysis

Figure 1.10: Second and third generation sequencing technologies

TA C
G

T

A

C GT A C

G

T A CG

light

DNA polymerase

fluorochromes

(A) Ion Torrent PGM

A A AA AA
A AA

H+

bead

DNA polymerase

TA C
GG C

C

C

cluster
DNA polymerase

(B) Illumina (C) PacBio RS

Ion Torrent and PacBio images taken from http://en.wikipedia.org/wiki/File:

From_second_to_fourth-generation_sequencing,_illustration_on_TAGGCT_template.svg, Illumina

individually incorporated

is performed sequentially, in order to recognize which nucleotide was incorporated during the
detection of a light signal or the change in ion concentration. One limitation to both methods is
a higher error rate for detecting long homopolymers (a run of identical bases), which is caused
by an over- or under-call of the signal for the incorporated nucleotides. These types of errors
often manifest themselves as insertions or deletions of nucleotides and can sometimes lead to
incorrect estimations of biodiversity for environmental studies [Fonseca et al., 2010]. Whether a
nucleotide was incorporated or not, the flow cell must be thoroughly washed over to remove all
unincorporated nucleotides before new enzymes and regents can be added for the next cycle (this
will ensure synchronized signals and reduce byproduct accumulation which is known to inhibit
DNA polymerase [Mashayekhi and Ronaghi, 2007]).

Illumina sequencing uses fluorescently labeled nucleotides (different ‘color’ for each type)
which work to serve two purposes: firstly, the label prohibits further elongation of the comple-
mentary strand such that a single nucleotide can be incorporated at each flow cycle (this avoids
the over- or under-call of bases as in 454 and Ion Torrent) and secondly, its proper color allows
for the identification of the incorporated nucleotide (here a miscall of a base can occur leading
to a substitution error). Illumina’s labeled nucleotides have the property of having reversible
terminators, meaning that when the incorporated nucleotide is recorded by a camera based on
its color, an enzyme can cleave off the fluorescent label to reinstituate synthesis. Because se-
quencing is carried out in a base-by-base manner, this technology produces far fewer errors at
homopolymer and repetitive sequence regions than both 454 and Ion Torrent.

All of the three aforementioned sequencing approaches have limitations to the read lengths
produced (see Table 1.1), some of these limiting factors attribute to nucleotide misincorporation
by DNA polymerase or a reduced signal due to lost DNA fragments (∼0.1%) washed away during
each cycle [Mashayekhi and Ronaghi, 2007], as well as the complex management of massively
parallelized setups. In terms of sequencing errors, it has been estimated that nowadays the
Illumina technology has the lowest error rates in one round of sequencing at 0.1 errors per 100
bases, in comparison to 0.38 and 1.5 errors per 100 bases for 454 and Ion Torrent, respectively
[Loman et al., 2012]. Error types occur mostly as substitutions for Illumina (frequently sequence-
specific for GGC motifs and inverted repeats [Nakamura et al., 2011]) and homopolymer indels

http://en.wikipedia.org/wiki/File:From_second_to_fourth-generation_sequencing,_illustration_on_TAGGCT_template.svg
http://en.wikipedia.org/wiki/File:From_second_to_fourth-generation_sequencing,_illustration_on_TAGGCT_template.svg

1.4. Tools for high-throughput read mapping 27

for 454 and Ion Torrent.

PacBio single-molecule sequencing is a recent1 technology capable of generating average read
lengths of 4600 bp (possible up to 24Kb). This advanced technology uses fluorescent labels at-
tached to the terminal phosphate group of free nucleotides (as opposed to the actual base) which
are cleaved off by DNA polymerase during replication (see Figure 1.10(C)). The single strand of
DNA to be sequenced is passed through a single DNA polymerase molecule attached to a zero-

mode waveguide (ZMW) at the bottom of a chamber. The ZMW is a structure sensitive enough
to detect the incorporation of single nucleotides [Levene et al., 2003]. During sequencing, all four
types of nucleotides are introduced into the chamber simultaneously at equal amounts. When one
of the four nucleotides is being incorporated into the chain, its distinct fluorescent label excites
for several milliseconds and this illumination signal is recorded by the ZMW. Thusly, the entire
strand of DNA can be sequenced continuously using a single strand of DNA without the need for
PCR amplification as for other technologies (known to cause sequence-specific biased coverage
[Ross et al., 2013]), or cyclic washing of flow cells. Although the error rates are much higher
than for other technologies, nearly 15% (mostly indels), they appear to be independent of the
sequencing context and can be resolved by multiple rounds of resequencing [Roberts et al., 2013].
Of all today’s technologies, PacBio delivers the least invasive method for eavesdroping on nat-
ural DNA replication while delivering very long reads in a short time period (see Table 1.1).
Small bacterial genomes are already being fully sequenced and assembled using this technol-
ogy [Nicholsona et al., 2013, Khosravi et al., 2013], since the long reads can cover complete gene
transcripts and low complexity regions.

1.4 Tools for high-throughput read mapping

The arrival of high-throughput sequencing technologies has introduced new problems for read
mapping. Firstly, the low cost of sequencing has allowed many smaller laboratories worldwide
to invest in personal machines and sequence their own data. However, not every laboratory has
the sufficient computational resources capable of analyzing such large amount of throughput
data. Secondly, all of today’s technologies are susceptible to sequencing errors in the form of
substitutions, insertions and deletions (see Section 1.3.2). Moreover, naturally occurring errors
may exist in distant homologies and being able to consider them is an important characteristic
for aligning divergent species.

In the context of speed, SSEARCH [Smith and Waterman, 1981, Pearson, 1991] is a tool
which provides a modern implementation of the exhaustive Smith-Waterman sequence alignment,
however to align 1000 Illumina reads of length 100 nt against human chromosome 21 takes about
a half-hour (using one thread on an Intel Xeon CPU @ 2.67GHz). Given that a typical Illumina
MiSeq machine can generate 15 million reads within 2 days (see Figure 1.1), using SSEARCH to
map all of these reads against the same chromosome would take roughly 1 year. New heuristics
have been developed to accelerate this search by first locating short regions of similarity called
seeds between the query and reference and then extending the seeds into longer alignments
using the Smith-Waterman algorithm (see Figure 1.11). In other words, a seed gives a clue for a
potential alignment. To highlight the speedup gained with heuristic approaches in regard to the
full dynamic programming algorithm, Bowtie2 [Langmead and Salzberg, 2012] takes less than a
minute to index human chromosome 21 and only about 0.2 seconds to align the same set of 1000

1(11/04/2013, GlobeNewswire) Photo Release – Pacific Biosciences Launches the PacBio(R) RS II Sequencing
System

28
C

h
a
p
ter

1
.

B
a
ck

g
ro

u
n
d

to
D

N
A

seq
u
en

ce
a
n
a
ly

sis
Table 1.1: Specifications for various sequencing-by-synthesis technologies (taken from each company’s official website 09/2013)

Platform Read length (bp) Reads per run Run time Base call accuracy Application

2nd generation

Illumina1

MiSeq
(paired-end)

250x2 15 million 39 hrs 99.9% for >75%
of bases

Targeted, genome,
metagenomics,
transcriptomics,
epigenetics

HiSeq 2500
(high output, paired-end)

100x2 6 billion 11 days 99.9% for >80%
of bases

(same as MiSeq)

Roche/4542

GS Junior ∼400 ∼100,000 10 hrs 99% at first 400
bases

Targeted, genome,
metagenomics, tran-
scriptomics

GS FLX XL+ up to 1000
(average 700)

∼1,000,000 23 hrs 99.997% consensus
at 15x coverage

(same as GS Junior)

Ion Torrent3

Ion PGM
(Ion 318 Chip v2)

200-400 4-5.5 million 4.4-7.3 hrs 99% expected Exome, methylation,
genome, transcrip-
tomics

Ion Proton up to 200 60-80 million 2-4 hrs 99% expected (same as Ion PGM)
3rd generation

Pacific BioScience4

PacBio RS II up to 23,297
(average 4,606)

47,197 30 min - 2 hrs 99.999% consensus
at 30x coverage

de novo assembly,
targeted

1www.illumina.com
2www.454.com
3www.lifetechnologies.com
4www.pacificbiosciences.com

www.illumina.com
www.454.com
www.lifetechnologies.com
www.pacificbiosciences.com

1.4. Tools for high-throughput read mapping 29

Figure 1.11: Seed-and-extend strategy to reduce the amount of search space examined by the dynamic program-
ming algorithm for aligning sequences x and y

A A A T A G C C T T T A C C A j

A ❆ ❆ ❆ ❆

A ❆ ❆ ❆ ❆

T ❆ ❆ ❆ ❆

C ❆ ❆ ❆ ❆

G

C

C

T

T

T

C ❆ ❆ ❆ ❆

A ❆ ❆ ❆ ❆

i ❆ ❆ ❆ ❆

G C C T T T

G C C T T T

seed

dynamic

programming

(extend)

dynamic

programming

(extend)

Illumina reads (or 50 minutes for the entire 15 million reads).

In the context of errors, many existing alignment tools have been optimized for genome
resequencing (∼99% sequence similarity) and adopt an exact match seed model. However, for
applications such as metagenomics or metatranscriptomics where the reference sequences may
share ∼75-98% similarity to the query, these tools are no longer sensitive enough.

Most of today’s read mapping tools use a seed-and-extend approach coupled with a query
and/or reference index to facilitate rapid alignment of HTS data or sequences to large-scale
databases. In the following subsections we will describe the early techniques of using suffix
trees and enhanced suffix arrays to align sequences using exact contiguous seeds, as well as the
FM-index now used in many of the recent alignment tools for its near-linear time search and
compressed structure [Chacón et al., 2013]. Furthermore, we will discuss the advantages of using
hash tables for implementing exact noncontiguous seeds, that is seeds allowing mismatch errors,
and the enhanced sensitivity achieved by these tools for aligning more distantly related species.
Finally, we will outline our motivation for a new indexing structure implementing approximate

seeds allowing mismatch and gap errors, for a further improvement in aligning sequences exhibit-
ing high indel error rates or distant homologies.

1.4.1 Heuristic seed alignment

Typically there are three types of seeds that are continuously studied in pattern matching al-
gorithms. The first type of seed we will call the exact contiguous seed, simply meaning the
match must be contiguous and share no errors between the query and the reference sequence.
All indexing data structures used today can easily support exact contiguous seeds, including
the suffix tree, (enhanced) suffix array, the FM-index and hash tables which are all discussed in

30 Chapter 1. Background to DNA sequence analysis

the following subsections. Although exact matching algorithms are very fast, it has been shown
in [Ma et al., 2002] that exact noncontiguous seeds or spaced seeds which allow mismatches at
some predefined positions can improve sensitivity and help recognize distant homologies (pro-
vided that not too many indels are present). A spaced seed is defined by its size and weight. For
example, a spaced seed of size 16 and weight 12 searches for k-mers (matches of length k) of
length 16 but where only 12 of the predefined positions require to have an exact match. The most
efficient indexing data structure by now which can support multiple predefined mismatches in
the seed is based on hash tables. Suffix trees, the enhanced suffix array and the FM-index allow
for mismatches also (not predefined to any positions) but the underlying backtracking algorithm
can often render their search algorithms considerably slower, especially for a larger number of
mismatches. However, sometimes even exact noncontiguous seeds are not sensitive enough to
spot distant homologies (ex. environmental studies), or insertion/deletion errors specific to se-
quencing technologies such as 454, Ion Torrent and PacBio. In these contexts, approximate seeds

allowing mismatch and indel errors anywhere in the seed would serve as an optimal choice (but
at some computational cost) and the few tools today that explicitly implement them are based
on some variant of the suffix tree.

1.4.2 Indexing using hash tables

A common practice in biological sequence alignment is to find all exact occurrences of a k-mer
in a fixed text of length n, which can often be large and repetitive such as the human genome or
a ribosomal RNA database. A naïve approach would take O((n − k + 1)k) time by placing the
k-mer at all possible positions (n− k + 1) in the text n. The fastest alternative to this problem
requires only constant O(z) time where z is the number of occurrences of a k-mer, by indexing
the text in a lookup table (or perfect hash table).

Shortly following the publication of the Smith-Waterman dynamic programming algorithm,
a paper emerged introducing the idea of using a lookup table to efficiently index and search
nucleotide sequences [Dumas and Ninio, 1982]. By translating each consecutive pair of overlap-
ping nucleotides into a number (for example, AC = 15) and using it as a lookup index in a
table2 storing the original positions of each dinucleotide, the authors could quickly identify all
positions of any dinucleotide within the original sequence. This method was later extended to
exact overlapping k-mers [Wilbur and Lipman, 1983], being substrings of length k, and used
to find regions of high similarity between two sequences prior to extending them to full align-
ments using dynamic programming. For example, by using a 2-bits-per-nucleotide encoding where
A=00, C=01, G=10 and T=11, we can encode the string x = tatagata to a binary number
x = 1100110010001100 and subsequently use the decimal form x = 52364 as an index to a
table. FASTA [Pearson and Lipman, 1988] and BLAST [Altschul et al., 1990] (BLASTN is the
nucleotide version to which we will refer to from now on) are two established families of programs
which index every query independently using contiguous k-mers and maintain an auxiliary lookup
table for a list of their occurrences (for nucleotide sequences). Afterwards, a reference database
is scanned for k-mers in common with the query using the lookup table and the best matching
regions are extended into a full alignment. In this manner, only small subparts of the entire
O(n2) search space are actually aligned, thus gaining a lot of time (see Figure 1.11). Although
this heuristic method cannot guarantee to find all local alignments in contrast to the full dy-
namic programming algorithm, it has shown to be a good approximation in many applications

2The index was used to search the last occurrence of a dinucleotide in the primary lookup table, however a
secondary table was also required to search for all preceding positions.

1.4. Tools for high-throughput read mapping 31

[Lipman and Pearson, 1985, Pearson and Lipman, 1988, Lam et al., 2008].

Since both FASTA and BLASTN localize their indexing to individual queries and the size
of the k-mers is relatively small (smaller k-mers = more hits in the database), both of these
tools are subject to long processing times for large data. For this reason, recently developed
HTS alignment tools focus on indexing the full set of queries (MAQ [Li et al., 2008]), or the
full set of reference sequences (Novoalign [Novocraft], GNUMAP [Clement et al., 2010] and
SHRiMP2 [David et al., 2011]), or both at the same time (BWA-SW [Li and Durbin, 2009] but
using trees). Although searching for each k-mer occurrence of a query in a reference sequence
can be done in constant time using this structure, the memory requirement to index the human
genome is > 15Gb (for Novoalign, SHRiMP2 and BFAST [Homer et al., 2009]). BFAST applies
a two-level hash system for long k-mers, where only the first p < k nucleotides are hashed and
the remaining parts are stored in a complementary bucket. During a lookup, the first p charac-
ters are used to index the hash table and then a binary search is performed on the tails in the
complementary bucket, resulting in a lookup time slightly inferior to O(1).

1.4.3 Indexing using suffix trees

An alternative to using a hash table to search for all k-mer occurrences is to use a suffix tree, which
requires only O(k+ z) time (where z is the number of occurrences of the k-mer). One advantage
of suffix trees over hash tables is that they can be used with a collection of strings of varying
lengths and they also support approximate string matching [Navarro and Baeza-Yates, 2000,
Russo et al., 2009]. Another advantage is that identical prefices of suffices are clustered into one
path, thus greatly reducing the number of comparisons. Also, a tree traversal is rapid and can
be performed in various modes to accommodate different applications [Gusfield, 1997]. The main
drawback of a suffix tree is the large amount of memory it requires, with the most efficient
implementation to date consuming 12-17 bytes per nucleotide [Kurtz, 1999, Kurtz et al., 2004].
For this reason, several more compact versions of the suffix tree have been developed, namely
the enhanced suffix array and the suffix array-like FM-index. In the following subsections we will
briefly describe these data structures and the software tools which implement them.

1.4.3.1 Suffix tree

Suffix trees have been used since the 1970’s [Weiner, 1973, McCreight, 1976] to efficiently store all
prefices or suffices of a string in a non-redundant manner. There exist both linear time methods
for constructing a suffix tree [Ukkonen, 1995] on a constant-size alphabet (online-construction)
and for any alphabet [Farach, 1997]. A suffix tree can represent all of the substrings of a string
in an easily accessible format. For example, the suffix tree for the string x = tatagata$ is shown
in Figure 1.12. Every leaf node corresponds to a suffix and its label remarks the starting position
of the suffix within the original string. Appending the special character ‘$’ to a string before
constructing its suffix tree ensures that a preorder traversal yields the suffix nodes in lexico-
graphical order, as ‘$’ is considered to be the lexicographically least character. To search a k-mer
in the tree, one must begin at the root node (marked with ‘start’) and trace a path through the
branches whose characters match exactly to the query. If all letters of a k-mer are exhausted
during tree traversal at a non-leaf node j, then the number of occurrences of the k-mer in the
string correspond to the number of terminal leaf nodes branching from j. To find all positions at
which the k-mer occurs at, the suffix tree must also contain (a) a lexicographical linking between
all leaf nodes (the dashed green arrows in Figure 1.12) (b) the paired information of the first and

32 Chapter 1. Background to DNA sequence analysis

Figure 1.12: Illustration of the suffix tree for the sequence x = tatagata$. The leaf nodes hold
the starting position (in color red) of each suffix in x. A preorder traversal of this suffix tree be-
ginning from the root node (marked as start) yields all suffices of x in lexicographical order, being
{$,a$,agata$,ata$,atagata$,gata$,ta$,tagata$,tatagata$}. To search for all occurrences of a string, we begin at
the root node and follow the edges that match to the characters of our string. The string (or at least its prefix)
exists in the tree if we exhaust all of the characters before or at a leaf node. For example, if we search the string
s = ata, we will finish at the inner node marked with [6,2]. The green dashed path links together all leaf nodes in
lexicographical order and the [x,y] label at each inner node (except the root) gives the first and last position of a
leaf node reachable from the current inner node. Both of these are optional as they are only useful for finding all
of the locations at which s occurs (other methods exist too). To find all positions at which s occurs, we descend
to the first lexicographically least leaf node and output its position (being 6). Then we follow the paths linking
the leaf nodes and output their positions until we reach the last position (being 2).

start

[8,2]

9 5

[7,1]

48

[6,2] 37 1

6 2

a
$

gata$

ta

$
gata$

ta
$

gata$
tagata$

$ gata$

last suffix position amongst all paths branching from j (the three green paired numbers [x,y] in
Figure 1.12). In this manner, all occurrences of a k-mer and its positions in the original string can
be recuperated. Otherwise, if at some node l no more outgoing branches match to the remaining
unmatched characters in a k-mer, then the k-mer does not exist in the string.

OASIS [Meek et al., 2003] and MUMmer [Kurtz et al., 2004] are two sequence alignment
tools that index the reference database using a suffix tree. Both of these tools require 12 to 17
bytes per nucleotide and are practical for whole-genome alignment of smaller bacterial genomes,
as the resulting index can reside comfortably in a low-memory machine (>36 Gb required for
the human genome) and maintain better cache locality. Another compromise to using a suffix
tree-based aligner is that the index is often rebuilt for each new run, which can become time
consuming for aligning large collections of high throughput reads. In a different application called
RISOTTO [Pisanti et al., 2006], suffix trees were also used to quickly extract repeated patterns
(functional elements in genetic sequences or entire genes) from a text allowing mismatch errors.

1.4. Tools for high-throughput read mapping 33

1.4.3.2 Suffix array

A suffix array (SA) is a sorted array of all suffices’ starting positions in a string. It was first
introduced in [Gonnet et al., 1992, Manber and Myers, 1993] as a space-efficient alternative to a
suffix tree for finding all occurrences of a pattern of length k in a text of length n in O(k log(n))
time (using a simple binary search algorithm). The slower search time (compared to querying a
suffix tree) is compensated by a three- to five-fold decrease in memory, requiring only 4 bytes
per nucleotide in its basic form. An indirect approach for constructing a suffix array is to simply
traverse a suffix tree using preorder traversal and record the values stored at each leaf node. For
example, a preorder traversal of the tree in Figure 1.12 will yield the suffix array {9,8,4,6,2,5,7,3,1}
shown in Figure 1.13. However, more direct and lightweight methods to contruct the suffix array
have been introduced since [Puglisi et al., 2007].

1.4.3.3 Enhanced suffix array

In [Abouelhoda et al., 2004] it was shown that every suffix tree algorithm can be replaced with
an equivalent algorithm based on an enhanced suffix array, a data structure consisting of a
suffix array and additional tables which help to navigate it. The ESA was primarily invented
to be a space efficient alternative to the suffix tree, although this depends on the memory re-
quirements of additional tables. Using an enhanced suffix array, the time to search a pattern
of length k in a text of length n can be reduced back down to O(k + z), equivalent to a suf-
fix tree. One of the routinely used auxiliary tables is the Longest Common Prefix array which
stores the lengths of the longest common prefices between successive suffices of a suffix array, or
LCP[i] = lcp(x[SA[i-1]..n],x[SA[i]..n]) for 1 < i ≤ n. For example, the LCP for position i = 5 in
the string x = tatagata$ in Figure 1.13 is computed between the suffices ‘ata$’ and ‘atagata$’,
such that LCP[5] = lcp(ata$,atagata$) = 3. Both tools Vmatch [Abouelhoda et al., 2004] and
Segemehl [Hoffmann et al., 2009] use enhanced suffix arrays rather than suffix trees to align short
sequences, where Vmatch reports using ∼7 bytes per nucleotide and Segemehl ∼13 bytes per nu-
cleotide. The difference in the memory requirements is due to the fact that Segemehl supports
non-exact read mapping using a conceptual suffix-interval tree and thus their enhanced suffix
array data structure is slightly more complex. In the same (2004) paper, it was shown that the
enhanced suffix array can be combined together with another data structure called the Burrows-

Wheeler Transform (BWT) [Burrows and Wheeler, 1994] to efficiently locate repetitive regions
in a sequence. The BWT is a reversible rearrangement of characters in a string with the property
of grouping together identical characters to facilitate more efficient text compression, such as
done in the tool bzip2. Figure 1.14 shows how to obtain the BWT of the string x = tatagata$. In
the following subsection we will describe the latest FM-index data structure which strategically
combines the BWT and the suffix array to provide fast query searches with the added benefit of
a compressed index.

1.4.3.4 FM-index

The FM-index is a compressed suffix array-like data structure which is based on the Burrows-
Wheeler Transform and stems roots from traditional suffix trees and enhanced suffix arrays.
In [Ferragina and Manzini, 2000], it was shown that the suffix array implicitly resides within the
BWT and a new data structure called the FM-index can be used to perform fast searches on
a compressed index. The equivalence property between the suffix array and BWT can be intu-

34 Chapter 1. Background to DNA sequence analysis

Figure 1.13: Illustration of the enhanced suffix array (ESA) for the sequence x = tatagata$. The ESA consists of
a suffix array (SA) and additional tables such as the longest-common-prefix (LCP) or Burrows-Wheeler-Transform
(BWT). The SA is a list of positions of all suffices of x in lexicographical order. A preorder traversal of the suffix
tree in Figure 1.12 will yield the same list as given in the SA[i] column. The LCP array stores the length of the
longest common prefix between a pair of consecutive suffices in the suffix array. For example, LCP[5] = 3 because
x[SA[5]..9] = atagata$ and x[SA[4]..9] = ata$. The construction of the BWT array is given in Figure 1.14. The
BWT is frequently used to quicken navigation of the suffix array.

i SA[i] LCP[i] BWT[i] x[SA[i]..9]

1 9 0 a $
2 8 0 t a$
3 4 1 t agata$
4 6 1 g ata$
5 2 3 t atagata$
6 5 0 a gata$
7 7 0 a ta$
8 3 2 a tagata$
9 1 2 tatagata$

itively seen by looking at Step 2 of Figure 1.14, where the permuted strings of x = tatagata$
contain within them all suffices of the suffix array in x[SA[i]..9] of Figure 1.13. By using two aux-
iliary tables supporting last-to-first BWT column mapping (see [Ferragina and Manzini, 2000])
along with the BWT, a binary search algorithm can be performed to quickly find all locations
of a pattern of length k in the index of length n in O(k + z logǫ n) time (where z is the num-
ber of occurrences as before and ǫ > 0 is chosen at the time the FM-index is built). In most
implementations, the FM-index requires only 0.5-2 bytes per nucleotide [Li and Homer, 2010]
which makes it the smallest indexing data structure currently employed for performing exact
pattern matching (and approximate with performance compromises, see Section 1.4.1) in bi-
ological sequence analysis. Almost all recent HTS alignment tools use the FM-index includ-
ing Bowtie [Langmead et al., 2009], BWA-SW [Li and Durbin, 2009], SOAP2 [Li et al., 2009],
Bowtie2 and GEM [Marco-Sola et al., 2012]

1.4. Tools for high-throughput read mapping 35

Figure 1.14: Construction of the Burrows-Wheeler Transform for the sequence x = tatagata$. In bioinformatics,
the BWT is often simultaneously used for text compression and indexing. To construct the BWT of x, first all
rotations of x are determined (Step 1). Next, the rotations are sorted lexicographically (Step 2) and the last
character of each rotation is taken to construct the BWT (Step 3). The resulting string BWT = attgtaa$ groups
together runs of similar characters which can be easier compressed using run-length encoding. Morever, the BWT
can be reversed into the original string x using a simple inverse transformation algorithm (time to compute same
as sorting in Step 2).

Step 1:

generate all rotations

Step 2:

sort sequences

lexicographically

Step 3:

print last character of

every sorted sequence

tatagata$ $tatagata

attgtaaa$

atagata$t a$tatagat
tagata$ta agata$tat
agata$tat ata$tatag
gata$tata atagata$t
ata$tatag gata$tata
ta$tataga ta$tataga
a$tatagat tagata$ta
$tatagata tatagata$

36 Chapter 1. Background to DNA sequence analysis

Chapter 2

New approximate seeding technique

and supporting data structures

Contents

2.1 The Levenshtein automaton . 40

2.1.1 Application in biological sequence alignment 42

2.2 Indexing with the Burst trie . 42

2.2.1 The Burst trie . 46

2.2.2 Improvement: Lookup table & mini-burst tries 47

2.2.3 Implementation . 48

2.2.4 Searching for matching seeds in the reference index 50

2.3 Extending seeds into longer matches using the LIS 50

2.4 Conclusion . 51

In this chapter we will describe a novel approximate seeding technique that can detect whether
two strings W and V have an edit distance d(W,V) ≤ 1. The edit distance d(W,V) measures the
amount of difference between two strings. It is defined as the minimum number of edit operations
needed to transform one string into the other – with allowable edit operations being insertion,
deletion or substitution of a single character. Figure 2.1 shows various examples of strings W

and V with edit distance d(W,V) = 1.

W = A-CCTGA CTAGGATAA GACACATT

| ||||| ||||*|||| ||||| ||

V = ATCCTGA CTAGCATAA GACAC-TT

Figure 2.1: Example of edit distance d = 1 for various strings.

We apply this seeding technique in approximate pattern matching for querying a string in a
large text allowing up to 1 error of any type. Given a query W and a reference text R, we want
to find all occurrences of R[i, j] such that d(W,R[i, j]) ≤ 1.

In Section 2.1 we describe the technicalities of our novel seeding method using the universal
Levenshtein automaton for d = 1. In Section 2.2.1 we go on to describe the indexing data
structures used together with the universal Levenshtein automaton to find k-mers allowing up
to 1 error in a reference text.

37

38 Chapter 2. New approximate seeding technique and supporting data structures

2.1 The Levenshtein automaton

The classical nondeterministic Levenshtein automaton for a pattern p and a number of errors
d recognizes the set of strings which are at most edit distance d to p (see Figure 2.2). This
automaton is not suitable for large-scale computations because of the presence of multiple ac-
tive states (enhanced by epsilon transitions) which represent all feasible scenarios of alignments
between two strings. Epsilon transitions allow for states to be activated without consuming any
input character. In the Levenshtein automaton their purpose is to consider possible deletions of
characters in both strings. For example, prior to searching the query q = ctga in the automaton
for the pattern p = acctga of Figure 2.2, the states 0#0,1#1 and 2#2 will be activated before the
first letter q[0] = c is input into the automaton. In this manner, active state 2#2 considers two
possible deletions in q prior to evaluating a state transition for input letter c (which would result
in a match from 2#2 → 3#2).

Figure 2.2: The nondeterministic Levenshtein automaton for p = acctga and d = 2. The s#e notation for each
state corresponds to s number of characters read in the pattern p and e number of errors recorded. The initial
state is 0#0 and the six final states are 4#0, 5#0, 5#1, 6#0, 6#1 and 6#2. Each non-final state has three outgoing
arcs, one for each type of edit operation.

0#2 1#2 2#2 3#2 4#2 5#2 6#2

0#1 1#1 2#1 3#1 4#1 5#1 6#1

0#0 1#0 2#0 3#0 4#0 5#0 6#0

a c c t g a

Σ Σ Σ Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

ǫ ǫ ǫ ǫ ǫ ǫ

ǫ ǫ ǫ ǫ ǫ ǫ

deletion

ǫ

substitution insertion

Σ

match

A common solution to deal with the multiple active states is to transform the nonde-
terministic automaton into an equivalent deterministic one using classical powerset construc-
tion [Hopcroft et al., 2004], which will contruct a new deterministic state for every possible set
of nondeterministic active states. However, the resulting automaton may be exponential in the
length of p and it will continue to be limited to representing strings of that defined length. In
[Schulz and Mihov, 2002] and [Mihov and Schulz, 2004] a universal Levenshtein automaton was
introduced based upon insightful observations of the classical one. The term universal conveys
its one-time construction and independency of p, thus it can be applied to any pair of strings of
arbitrary lengths. The intuition arises from the symmetry of the nondeterministic automaton,
which applies the same set of transition rules to every new input character and each new set of
active states is a subset of a known bounded superset. Formally, these bounded supersets are
called symbolic triangular areas and defined in Definition 1.

Definition 1. [Mihov and Schulz, 2004] Let p denote a pattern of length ρ and A(p, d) the
nondeterministic Levenshtein automaton for error d. The triangular area of a state λ of
A(p, d) consists of all states β of A(p, d) that can be reached from λ using a (potentially empty)

2.1. The Levenshtein automaton 39

sequence of u upward transitions and, in addition, h ≤ u horizontal or reverse (i.e., leftward)
horizontal transitions. Let 0 ≤ i ≤ ρ. By triangular area i, we mean the triangular area of
state i0. For j = 1, . . . , d, by triangular area ρ+ j, we mean the triangular area of state ρj .

To highlight the idea behind this principle, let us search any query in the generic nondeter-
ministic automaton for ρ = 7 and d = 2 illustrated in Figure 2.3 (meaning the same Levenshtein
automaton for d = 2 can be applied to any pattern p of length ρ = 7). After reading the 2nd

character in our query, the set of all possible active states is bounded by the yellow symbolic
triangular area (A). By reading the 3rd character, the symbolic triangular area will shift one
position to the right. The semantics of the Levenshtein automaton transitions enforce that the
horizontal span of all reachable states is ≤ 2d + 1. For example for d = 2, the base of the tri-
angular area will span 5 states (see Figure 2.3). The new set of active states for each triangular
area only depends on the previous set of active states and the new transitions taken by reading
any character. As long as the number of characters read is < ρ − d, the new subset of active
states will always contain non-accepting (I states). Beginning at the (ρ− d)th character, the tri-
angular area will also contain accepting states (M states), see Figure 2.4. Together, these general
observations have led to the formulation of a universal Levenshtein automaton. In full generality,
the size of the automaton is exponential in a function of d. More specifically, the total number
of deterministic states is classified by O((d + 1)24d−log2

√
2d+1) [Mitankin, 2005]. Therefore, the

automaton grows quickly for higher number of errors, where for d = 1 there are only 14 states
and for d = 2 or d = 3 there are already 90 or 602 states respectively.

A set of characteristic vectors symbolizing the homology of p and a word W serve as the
alphabet to the automaton and must be precomputed using Definition 2.

Definition 2. [Mihov and Schulz, 2004] The characteristic vector ~χ(w, V) of a symbol w ∈
∑

in a word V = v1 . . . vn ∈
∑∗ is the bitvector of length n where the ith bit is set to 1 iff w = vi.

The length of the bitvectors is ≤ (2d+ 1) + 1, where 2d+ 1 is the longest span of reachable
states in the nondeterministic Levenshtein automaton and the additional sum of 1 is for the last
bit to identify the transition between non-accepting and accepting states.

Let d = 1, the input word W = acaga and the pattern p = $actaga (d number of $ characters
are added to the prefix to standardize the length of bitvectors obtained for the initial characters),
then χ1(a, $act) = 0100, χ2(c, acta) = 0100, χ3(a, ctag) = 0010, χ4(g, taga) = 0010, χ5(a, aga) =
101 are the computed characteristic bitvectors. It follows that {χ1, . . . , χ5} is the characteristic

bitvector array carrying the similarity information of W and p.

Beginning from χ1 to χ|W |, the bitvectors are sequentially passed into the universal Lev-
enshtein automaton and serve as the new alphabet (rather than the letters themselves). Each
bitvector leads to a transition between states in constant time (provided that the bitvector fits
into a computer word) corresponding to the number of errors encountered thus far. If some χi

reaches a failure state, greater than d errors exist between W and p, and the strings are rejected.
The automaton only recognizes two strings if the input of the last bitvector χ|W | leads to a
final state. An example of bitvector computations and automaton traversal for the two words
p = acctga and W = atcctga is shown in Figure 2.5.

The mathematics behind constructing this automaton are well described in
[Schulz and Mihov, 2002, Mihov and Schulz, 2004], however here we also give a simple ex-
ample of how the universal property can be identified using a classical non-deterministic
Levenshtein automaton. Figure 2.6 illustrates a sequence of snapshots for the active states of

40 Chapter 2. New approximate seeding technique and supporting data structures

a non-deterministic Levenshtein automaton for d = 1 for the word W = acgt and the input
pattern p = agt as p is introduced into the automaton character by character. The universal
Levenshtein automaton determinizes the active states in the yellow triangle, and the changes of
transitions are carried out using characteristic bitvectors (in red) rather than individual letters
of the input pattern.

2.1.1 Application in biological sequence alignment

The ability of the universal Levenshtein automaton to quickly recognize two strings with edit dis-
tance ≤ d is an extremely valuable property for developing new approximate seeds allowing indel
errors. We chose to work with d = 1 as the corresponding automaton is very small and the search
time is up to 20x faster than for d = 2 and 60x faster than for d = 3 [Mihov and Schulz, 2004].
However, higher error automata may be useful for more specialized applications such as tracking
dinucleotide mutations or identifying variations in protein coding regions. Our approach to using
a universal seed with d = 1 is to search for short k-mer matches for k ∈ [8, 26] between a read and
a database of reference sequences allowing up to 1 error. Since the input to the universal Leven-
shtein automaton is a series of characteristic bitvectors computed from two strings (rather than
the strings themselves), we had to determine a clever technique to quickly build these bitvectors
between any k-mer on the read and those found in the reference database. For this, we devised
the dynamic bitvector table which is illustrated in Figure 2.7.

Going back to the problem of finding all approximate k-mer occurrences in a text (see Sec-
tion 1.4.1), we can precompute a bitvector table of size 4k (for DNA text) and use it to retrieve
any combination of characteristic bitvectors for all 4k+1 possible matches (a match is defined to
have ≤ 1 error to the k-mer) in the text without actually ever seeing the text. During the search
for a k-mer in a text, we can quickly retrieve the correct bitvector corresponding to a character
being observed in the text without needing to recompute the bitvector for every new candidate.
Initially, the dynamic bitvector table is computed for the first k-mer on the read where this k-mer
is equivalent to the word V in Definition 2 and each input symbol w ∈ {a, c, g, t} belongs to a
k-mer in the reference text (see Figure 2.7). Thusly, in order to search for all k-mers on the read
in the reference text, the bitvector table can be shifted by one position to the right on the read
and updated using bitwise operations to remove the first character of the preceding k-mer and
add a new character to the suffix. This operation can be seen in Figure 2.8.

By continuously shifting the bitvector table along the read, a new characteristic bitvector
table can be quickly precomputed for each k-mer using the previous one and used to search the
reference text. As discussed in Section 1.4, naïvely searching for a query k-mer in a large text by
comparing each k-mer against all possible candidates is extremely inefficient, thus we have also
developed a new lossless text indexing data structure for rapidly listing all k-mer matches. This
reference index is constructed one time and may be reused for any set of reads. The following
subsections describe this indexing data structure and its main utilization in searching for seeds.

2.2 Indexing with the Burst trie

In Section 1.4.3 we have seen that tree-like index data structures, such as the suffix tree, are
suitable for approximate seeds. However, suffix trees require large memory resources and more
suitable data structures exist for searching large collections of identical length strings. Here, we
propose to use an alternative data structure, namely the Burst trie [Heinz et al., 2002]. Futher-

2.2. Indexing with the Burst trie 41

Figure 2.3: Symbolic triangular area for non-accepting states of type I. The yellow symbolic triangle (A)
represents the set of all possible active states after the 2

nd letter x2 of an input word was read by the automaton.
Similarly, after reading the 3

rd letter x3, the triangular area shifts one position to the right. The new triangular
area (B) will encompass all new states reached by transitions from triangular area (A). Since neither (A) nor (B)
contain a final state of type M , they fall under the same name of “symbolic triangular area for non-accepting
states of type I”.

(I−2)#2 (I−1)#2
I#2 (I+1)#2 (I+2)#2

5#2 6#2

0#1(A) (I−1)#1
I#1 (I+1)#1

4#1 5#1 6#1

0#0 1#0 I#0 3#0 4#0 5#0 6#0

x1 x2 x3 x4 x5 x6

Σ
Σ

Σ
Σ

Σ Σ Σ

Σ
Σ Σ Σ

Σ
Σ Σ

ǫ ǫ ǫ ǫ ǫ ǫ

ǫ ǫ ǫ ǫ ǫ ǫ

0#2 (I−2)#2 (I−1)#2
I#2 (I+1)#2 (I+2)#2

6#2

0#1(B) 1#1 (I−1)#1
I#1 (I+1)#1

5#1 6#1

0#0 1#0 2#0 I#0 4#0 5#0 6#0

x1 x2 x3 x4 x5 x6

Σ Σ
Σ

Σ
Σ

Σ Σ

Σ
Σ

Σ Σ Σ
Σ

Σ

ǫ ǫ ǫ ǫ ǫ ǫ

ǫ ǫ ǫ ǫ ǫ ǫ

Figure 2.4: Symbolic triangular area for accepting states of type M . The yellow symbolic triangle
represents all possible active states after the 4

th letter x4 was read by the automaton. This triangular area
encompasses three of the six final non-deterministic states {(M − 2)#0,(M − 1)#1 and M#2} and is known as the
accepting-state triangular area. All deterministic states derived from this area will form accepting states in the
universal Levenshtein automaton for d = 2.

0#2 1#2 (M−4)#2 (M−3)#2 (M−2)#2 (M−1)#2
M#2

0#1(C) 1#1 2#1 (M−3)#1 (M−2)#1 (M−1)#1
6#1

0#0 1#0 2#0 3#0 (M−2)#0
5#0 6#0

x1 x2 x3 x4 x5 x6

Σ Σ Σ
Σ

Σ
Σ

Σ

Σ Σ
Σ

Σ Σ Σ
Σ

ǫ ǫ ǫ ǫ ǫ ǫ

ǫ ǫ ǫ ǫ ǫ ǫ

42 Chapter 2. New approximate seeding technique and supporting data structures

Figure 2.5: Conceptual example of the universal deterministic Levenshtein automaton for d = 1 (not all of the
transitions are shown). To see whether the word W = atcctga and the pattern p = acctga have Levenshtein
distance ≤ 1, we first compute the set of characteristic bitvectors representing them using Definition 2. The
resulting characteristic bitvector array is χ = {0100, 0001, 1100, 1000, 100, 10, 1}. In the universal Levenshtein
automaton, the I states are the deterministic non-accepting states of the symbolic triangular area shown in
Figure 2.3. Similarly, the M states are the deterministic accepting states of the symbolic triangular area shown in
Figure 2.4. The transitions between states are made using one bitvector from the characteristic bitvector array.
For each transition, the x character in the bitvector is a joker and will accept both a ‘0’ or a ‘1’ in its corresponding
position. Moreover, if the joker character is found inside brackets, i.e. (x), then it is not obligatory to exist in the
bitvector. For example, the transition labeled as x1x(x) will accept the bitvectors 0101, 1100 and 111 (amongst
other possibilities). However, it will not accept the bitvectors 1001, 1000 and 11 (amongst other possibilities).
Beginning from the initial state (labeled ‘start’), each bitvector in χ is input to the automaton in order and the
transitions are followed accordingly. If the last bitvector transition leads to an M state, then W and p match
with d ≤ 1. Otherwise if a null state is reached (meaning there does not exist a transition from the current state
corresponding the next bitvector) or an I state is reached using the last bitvector in χ, then W and p do not
match with d ≤ 1.

{I#1}

{I#1, (I + 1)#1}

{(I + 1)#1}

{(I − 1)#1, I#1, (I + 1)#1}

{(I − 1)#1, (I + 1)#1}

{(M − 2)#1,M#1}

{(I − 1)#1, I#1}

{(I − 1)#1} {M#1}

{(M − 2)#1, (M − 1)#1,M#1}

{(M − 1)#1,M#1}

{I#0}start {(M − 1)#0}

{M#0}

x01x

x1xx

(a)

x00(x)

(b)

x01

x1x

x0

x1
x

111x

111

101(x)

011x

001x

101

010(x)

001

x11x

x10(x)

x01x

x1x(x)

11x(x)

(c)
10(x)(x)

(d)

1x(x)(x)

(e f) 1

(g)

xx1x

1x1x

Step Precomputed bitvectors State transitions

(a) χ1(a, $acc) = 0100 {I#0}
0100

−−→ {I#0}

(b) χ2(t, acct) = 0001 {I#0}
0001

−−→ {(I − 1)#1, I#1}

(c) χ3(c, cctg) = 1100 {(I − 1)#1, I#1}
1100

−−→ {(I − 1)#1, I#1}

(d) χ4(c, ctga) = 1000 {(I − 1)#1, I#1}
1000

−−→ {(I − 1)#1}

(e) χ5(t, tga) = 100 {(I − 1)#1}
100

−−→ {(I − 1)#1}

(f) χ6(g, ga) = 10 {(I − 1)#1}
10

−−→ {(I − 1)#1}

(g) χ8(a, a) = 1 {(I − 1)#1}
1

−−→ {M#1}

2.2. Indexing with the Burst trie 43

Figure 2.6: A non-deterministic Levenshtein automaton for the word w = acgt. The s#e notation for each state
corresponds to s number of characters read in the pattern p and e number of errors recorded. The initial state is
0#0, the final states are 3#0, 4#0 and 4#1, and the active states are illustrated in blue color. The yellow triangle
represents the boundary of all possible active states after a character is consumed by the automaton. The pattern
p to be consumed is agt. The red binary sequences are the characteristic bitvectors between the input pattern agt

and the automaton word acgt, defined in Section 2.3 of the paper. If a bit of a bitvector is set to 1, the match
transition is possible for active states in the adjacent left column of the bit in the automaton. Otherwise, if a bit
is set to 0, the match transition is not permitted. Each step corresponds to consuming one character of agt by
the automaton.

possible state transitions
deletion

ǫ
substitution insertion

Σ

match

0#1 1#1 2#1 3#1 4#1

0#0 1#0 2#0 3#0 4#0
a c g t

1 0 0

Σ Σ Σ Σ Σǫ ǫ ǫ ǫ =⇒
0#1 1#1 2#1 3#1 4#1

0#0 1#0 2#0 3#0 4#0
a c g t

Σ Σ Σ Σ Σǫ ǫ ǫ ǫ

Step 1. (a, $acg) = 0100 no accepting state

0#1 1#1 2#1 3#1 4#1

0#0 1#0 2#0 3#0 4#0
a c g t

0 0 1 0

Σ Σ Σ Σ Σǫ ǫ ǫ ǫ =⇒
0#1 1#1 2#1 3#1 4#1

0#0 1#0 2#0 3#0 4#0
a c g t

Σ Σ Σ Σ Σǫ ǫ ǫ ǫ

Step 2. (g, acgt) = 0010 no accepting state

0#1 1#1 2#1 3#1 4#1

0#0 1#0 2#0 3#0 4#0
a c g t

0 0 1

Σ Σ Σ Σ Σǫ ǫ ǫ ǫ =⇒
0#1 1#1 2#1 3#1 4#1

0#0 1#0 2#0 3#0 4#0
a c g t

Σ Σ Σ Σ Σǫ ǫ ǫ ǫ

Step 3. (t, cgt) = 001 at least one activated accepting state (accept)

44 Chapter 2. New approximate seeding technique and supporting data structures

Figure 2.7: The precomputed bitvector table for pattern p = $actaga covering all possibilities of q for d = 1. The
first bit in each entry of column i = 0 represents the $ symbol and is always set to ‘0’. If the query q = actag was
being searched, then the highlighted set of bitvectors 0100, 0100, 0010, 0010, 101 would be passed to the universal
Levenshtein automaton.

actatgaa

read
a

0

c

1

t

2

a

3
g
4

a

5

t t g a t c t

depth of k-mer

a

c

g

t

q

0100 1001 0010 0101 101 01

0010 0100 1000 0000 000 00

0000 0000 0001 0010 010 10

0001 0010 0100 1000 000 00

Figure 2.8: The modification of the bitvector table from pattern p1 = $actaga to p2 = $ctagaa for d = 1.
Columns 0-2 of p2 are equal to columns 1-3 of p1, except for column 0, where the most significant bit (MSB)
of every bitvector represents the symbol $ and is set to ‘0’. Column 3 of p2 equals to column 4 of p1 with an
additional bit appended. The appended bit is set to ‘1’ in the bitvector corresponding to the newly appended
character, otherwise it is set to 0. Column 4 of p2 is equal to column 3 of p2, although the MSB is not considered.
The same rule applies to column 5 of p2, where the two MSBs of the column 3 bitvectors are not considered.

p1 : $

i

a

0

c

1

t

2

a

3
g
4

a

5

depth of k-mer

a

c

g

t

w

0100 1001 0010 0101 101 01

0010 0100 1000 0000 000 00

0000 0000 0001 0010 010 10

0001 0010 0100 1000 000 00

a

c

g

t

w

0001 0010 0101 1011 011 11

0100 1000 0000 0000 000 00

0000 0001 0010 0100 100 00

0010 0100 1000 0000 000 00

p2 : $

i

c

0

t

1

a

2

g

3

a

4

a

5

more, we explain how to optimize this data structure for searching words of length k allowing
up to one error.

2.2.1 The Burst trie

The Burst trie is a fast and versatile data structure which effectively stores large numbers of
strings such as an rRNA database or large collections of genomic sequences. Given a sequence
x = ab, the Burst trie can store the prefix a as a link of trie nodes and the suffix b as an array of
characters appended to the last trie node: this extension to the last node is called a “bucket” (see

2.2. Indexing with the Burst trie 45

Figure 2.9). Normally, subtrees become more sparse in the depth of a trie and representing them
as reduced “buckets” of contiguous memory preserves space and boosts cache-efficiency. When
the number of sequences sharing a common prefix a reaches a fixed threshold, the appended
bucket of suffixes bursts to form a new trie node and smaller sub-buckets. To optimize memory
access during subtree traversal, the threshold size of a bucket should be less than the lower level
cache. A systematic use of this trie can be observed in the fastest sorting algorithm for large sets
of strings, the Burstsort [Sinha and Zobel, 2004].

Figure 2.9: Let k = 16, the Burst trie below is constructed on the first six 17-mers of a reference sequence. The
‘char flag’ describes whether a pointer is set to a trie node ‘1’, a bucket ‘2’ or neither ‘0’. Additional information
on the origin of the 17-mer directly follows each element, as shown in the dashed bucket.

A

0

rRNAi C

1

T

2

A

3

G

4

A

5

A

6

T

7

G

8

A

10

G

11

T

12

T

13

T

14

G

15

A

16

T

17

C

18

T

19

G

20

G

21

C

22

T

23

C

24

A

25
. . .

A C T A G A A T G A G T T T G A T

C T A G A A T G A G T T T G A T C

T A G A A T G A G T T T G A T C T

17−mer # 3

A

0

C

1

G

2

T

3

1 2 2 2

null null null

null

char flag

trienode* child node

void* bucket

tagaatgagtttgatc

2

agaatgagtttgatct

2

aatgagtttgatctgg

2

A

0

C

1

G

2

T

3

2 2 2 0

null null null null

null

tgagtttgatctggc

tagaatgatttgat

aatgagtttgatctg

2.2.2 Improvement: Lookup table & mini-burst tries

We use an additional optimization to improve access into the Burst trie. Since we consider at
most one error between the window and the database, we have this simple property: For every
two words of length ∼ k such that the edit distance between them is bounded by 1, there
exists a common substring of length k

2 which is either a prefix or a suffix of the two words.
We apply this property to construct a lookup table storing all k

2 -mers existing in the reference
database. Note that for k ∈ [8, 26], transposing the nucleotide alphabet onto a binary equivalent,
such that {a, c, g, t} = {00, 01, 10, 11}, we can represent each k

2 -mer in k bits which maps to a
unique integer value. Upon completion of the forward and reverse Burst tries, a scan of each
trie is performed to record the existence of all k

2 -mers and, if present, associated pointers to the
trie node representing the immediate letter following the prefix. The precomputed lookup table

46 Chapter 2. New approximate seeding technique and supporting data structures

quickly determines whether an exact match of the prefix or suffix exists in the Burst tries and
furthermore it provides us with direct access to the remaining part of the word in the Burst trie.

2.2.3 Implementation

Following a similar method of an array-structured trie as described in [Sinha et al., 2006], our
Burst trie is assembled exactly on the nucleotide alphabet {a, c, g, t}. As illustrated in Figure 2.9,
the trie stores every unique (k+1)-mer substring in a reference database, since we look at seeds
of length k with at most 1 error between any two words (note that the extra nucleotide for a
reference (k+1)-mer is to account for a possible insertion or deletion of a nucleotide in the query
k-mer). The information on whether the (k + 1)-mer belongs to a forward strand, the reverse-
complement or both (strand), and its origin (hashid) follows each entry in a bucket (not shown
in Figure 2.9). When the exact location of the (k + 1)-mer needs to be found in the reference
database, the hashid value serves as an index in a complementary table storing this information.
For databases containing highly conserved sequences, such as the 16 rRNA for which nearly one-
quarter of the positions are 99− 100% conserved [Cannone et al., 2002, Mears et al., 2002], this
data structure moderates the size of the tree since many identical or closely similar substrings
are shared between sequences.

In our initial implementation of the index we constructed one Burst trie on all possible unique
(k+1)-mers in the reference database and used a k

2 -mer lookup table to quickly access different
nodes of the Burst trie. However, this approach can be further improved by “cutting off” the trie
nodes from the root of the Burst trie to depth k and replacing them by a lookup table. Then,
every entry in the lookup table is connected to a separate (mini) burst trie, which represent
the children nodes (below depth k) of the original full trie. In the following subsections we will
describe how such a data structure can be easily computed directly, without the prior need to
explicitly construct a full Burst trie, to both reduce the memory requirements and speed up the
search by optimizing calls to the local cache.

Index construction for the reference database

To find all occurrences of a k-mer in a reference database with an edit distance of at most 1,
we apply the pigeonhole principle to divide the k-mer into two equal parts, such that at least
one part will match with 0 error. This property allows us to take advantage of the following
arborescent data structure setup:

1. build a (k2)-mer exact match lookup table (see Figure 2.10(2a))

2. connect each entry in the lookup table to a mini-burst trie storing the remaining k
2 + 1

characters and allowing search up to one error (see Figure 2.10(2b/c))

The arborescent index was inspired by the burst trie data structure, but with a twist to index
the prefixes of strings with a lookup table and the suffixes in a collection of branching (mini)
burst tries. The burst trie data structure was chosen due to its relatively low memory footprint
and fast access to each entry.

The (k2)-mer lookup table and the (k2 +1)-mer mini-burst tries work hand-in-hand to store all
unique (k + 1)-mers of the reference database, and a separate list of positions gives occurrences
for all unique (k + 1)-mers. The (k2)-mer lookup table is accessed by converting a (k2)-mer into

2.2. Indexing with the Burst trie 47

a unique decimal value using 2 bits per nucleotide encoding, where A = 00, C = 01, G = 10
and T = 11. For example the lookup index i for the string x = ACTAGTATT would be
i = 000111001011001111 = 29391.

This arborescent data structure was designed to optimally enumerate all (k+1)-mer sequences
which match to a k-mer query sequence allowing up to 1 error, note that the extra nucleotide
for a reference (k + 1)-mer is to account for a possible insertion or deletion of a nucleotide in
the query k-mer. The original positions of all (k + 1)-mers in the reference index are stored in a
separate inverted list of positions. The index for this list is computed using the CHM minimal
perfect hash function (CMPH library [Reis et al., 2012]) and stored next to each (k2 + 1)-mer
entry in the mini-burst trie leaves. In future implementations, the size of this auxiliary positions
list can possibly be reduced in size by using a pairing function [Lisi, 2007].

Figure 2.10: Lookup table and mini-burst trie index

2. Index the reference database

GACTCCTATTCCA. . . AATA

1. For each 19-mer in the reference database

9-mer 10-mer

9-mer ptr

0 •

1 •

2 •

.

m = w[1..9] •

.

2k − 1 •

2a. lookup table

9-mer 10-mer

A C G T

2b. mini-burst trie # 1

A C G T

ta. . . gtat

gt. . . acaa

gt. . . acta

A C G T

gt. . . acga

cc. . . ctgc

tt. . . gagc

A C G T

2c. mini-burst trie # 2

A C G T

gt. . . agca

ca. . . aata

aa. . . ccag

A C G T

cgt. . . cag

. . . cagctg

NULL

Due to the dynamic nature of index construction (self-adjusting tree composed of trie nodes
and bucket nodes), one cannot precisely calculate the size of the index before it is built. How-
ever, from multiple simulations on varying data, the estimated size has shown to be inferior to

48 Chapter 2. New approximate seeding technique and supporting data structures

100×(length of reference sequence) bytes. To keep the index of a practical size, it can be divided
into multiple subparts. During the mapping of reads, each index subpart can be sequentially
loaded and processed in memory, always maintaining the memory for the index below its desig-
nated threshold. Although the optimal mapping time is achieved if the index can be constructed
in one part, the overhead time with processing multiple subparts is not impractical. Thus, the
index fragmentation feature nonetheless allows convenient utilization of this data structure.

2.2.4 Searching for matching seeds in the reference index

The search for a k-mer seed in the indexed database is performed in two steps. Firstly, the k-mer
is split into two equal parts and the first part is directly searched in the (k2)-mer lookup table
(with 0 errors). Then, if the (k2)-mer exists, a pointer redirects the remaining of the search to
a corresponding mini-burst trie (allowing up to 1 error). Here, a parallel traversal is performed
between the second part of the k-mer against all entries in the mini-burst trie using the universal
Levenshtein automaton for edit distance d = 1. At every depth of the mini-burst trie, we assume
that the symbol q in χi(q, V) appears as one of {a, c, g, t} with equal probability. Following a
pre-order path, the traversal of the Burst trie begins at the root node. Through knowledge of the
nucleotide letter and the depth of the node being visited, the coinciding bitvector is accessed in
the precomputed bitvector table, indifferent to whether the node is a trie node or a character in
the bucket. Subsequently, the bitvector is passed to the universal Levenshtein automaton which
decides whether to continue traversal of the current subtree or backtrack to the first branching
point with a non-failure Levenshtein state and recommence traversal of a new substree. In this
manner, a complete traversal of the mini-burst trie remains unlikely as backtracking occurs
each time the edit distance between the pattern and a traversed branch exceeds k. To further
speed up Burst trie traversal for every k-mer, a ‘backwards dictionary’ approach as described in
[Mihov and Schulz, 2004] was implemented. This means that we build mini-burst tries for the
forward and reverse sense of (k + 1)-mer in the reference database so that it can be traversed
quickly from both ends.

2.3 Extending seeds into longer matches using the LIS

The Smith-Waterman dynamic programming algorithm is the most precise method to score a
homology between two sequences and is used in the majority of short-read alignment tools after
the intial seeding step. Here we describe our method to use the collection of matching seeds
accumulated during mini-burst trie traversal to isolate longer homologous regions between the
read and a reference sequence prior to performing localized Smith-Waterman alignment. We begin
by binning the seeds to their corresponding reference sequences by using the (k + 1)-mer list of
positions to link each matching seed to the original location on a reference sequence as illustrated
in Figure 2.11. Next, we isolate regions of length equal to the read on each reference sequence
containing a threshold number of matching seeds (by default 2). The next step involves computing
variant of the longest increasing subsequence (LIS) on the seeds’ positions on the read relative to
a region on the reference sequence, as shown in Steps 3-4 of Figure 2.11. The LIS is the longest
subsequence of elements in a sequence where the elements in the subsequence are in increasing
(sorted) order. For example for the given the sequence of integers {7, 1, 9, 6, 42, 23, 40, 26} one
possible LIS is {1, 6, 23, 40}. By first sorting the (position on reference - position on read) k-mer
positions using the ‘position on reference’ as a key and then computing the LIS on the reads’

2.4. Conclusion 49

positions, we try to reassemble our collection of k-mers into a longer contiguous region common
to both sequences. Finally, if the LIS is composed of a threshold number of seeds (by default 2),
we proceed to the final step of Smith-Waterman alignment beginning near the LIS.

2.4 Conclusion

In this chapter we introduced a novel approximate seeding technique along with the complemen-
tary machinery optimized for its efficiency. We described a new index data structure never used
before in short-read sequence alignment which can accommodate seeds allowing up to 1 error
of any type. Moreover, the error is not restricted to any predefined position in the seed which
gives it flexibility for unpredictable error distribution. The tradeoff for maintaining such seeds
is the size of the new index data structure which is able to accomodate searches with insertions
and deletions, requiring more space than the BWT. However, due to the malleability of the data
structures used, the index can be divided into multiple subparts without significant effects on its
performance.

⋆ ⋆ ⋆

50
C

h
a
p
ter

2
.

N
ew

a
p
p
ro

x
im

a
te

seed
in

g
tech

n
iq

u
e

a
n
d

su
p
p
o
rtin

g
d
a
ta

stru
ctu

res

Figure 2.11: How to extend multiple k-mer matches into a longer homologous region using the longest increasing subsequence of k-mer positions

A

1
Step 1. For each k-mer on the read,
collect the list of positions where it
appears on the reference

G

2

C

3

C

4

A

5

T

6

G

7

C

8

A

9

T

10

G

11

T

12

C

13

T

14

A

15

A

16

G

17

T

18

A

19

T

20

A

21

A

22

G

23

C

24

C

25

A G C C A T G C A T G T C T A A G T → 9, 30, 400
G C C A T G C A T G T C T A A G T A → 10, 31, 430

C C A T G C A T G T C T A A G T A T → 3, 11, 32, 80
C A T G C A T G T C T A A G T A T A → 4, 12, 432 (positions on reference)

18-mer of window # 4

30-1

9-1

3-3

4-4

11-3

10-2 12-4

400-1

32-3

31-2 80-3

430-2

432-4

Step 2. Sort all lists by position on
the reference using quicksort, or a
self-balancing tree, or a min-heap ar-
ray (the key is the position on refer-
ence, the value is the position on the
read)

A

1
Step 3. Using a double-ended queue
of the length of the read, push into
the queue the smallest reference posi-
tions fitting within the range of read’s
length

A

2

A

3

A

4

A

5

A

6

A

7

A

8

A

9

A

10

A

11

A

12

A

13

A

14

A

15

A

16

A

17

A

18

A

19

A

20

A

21

A

22

A

23

A

24

A

25

A

26

A

27

A

28

A

29

A

30

A

31

A

32

A

33

A

34

A

35

A

36

A

37
. . .

3-3 4-4 9-1 10-2 11-3 12-4

queue of read’s length

← push into queue smallest position

9-1 10-2 11-3 12-4 = longest increasing subsequenceStep 4. If the number of elements
in the queue is greater than thresh-
old r, find the longest-increasing-
subsequence of the corresponding
read k-mer positions

Step 5. Apply Smith-Waterman
alignment starting near the first posi-
tion of the LIS

9-1

Chapter 3

SortMeRNA: a filter for

metatranscriptomic data

Contents

3.1 Application context: metatranscriptomics analysis 54

3.2 SortMeRNA . 54

3.2.1 Principle of the algorithm . 55

3.2.2 Parameter setting . 57

3.2.3 Availability . 61

3.3 Performance results . 61

3.3.1 Test 1: simulated 16S rRNA reads . 64

3.3.2 Test 2: simulated 23S rRNA reads . 64

3.3.3 Test 3: photosynthetic microbial community 67

3.3.4 Test 4: tidal salt marsh creek . 68

3.4 Discussion . 68

In this chapter, we present a first example for an application of the approximate seeding
framework introduced in Chapter 2. We designed an efficient filter to rapidly sort through millions
of reads generated by metatranscriptomic sequencing projects and identify the ribosomal RNA
fragments within. This classification step is a prerequisite to any further bioinformatic analysis.

The method is implemented in a software called SortMeRNA, that was released in October
2012 and published in the journal Bioinformatics [Kopylova et al., 2012]. It is now used in pro-
duction by Genoscope (French National Center for Sequencing) to process data from Tara Oceans.
It has also been integrated in two published computational pipelines [Leimena et al., 2013,
Krohn-Molt et al., 2013] and received excellent feedback from multiple research laboratories
worldwide3.

This chapter is organized as follows. In Section 3.1, we present the biological context of
metatranscriptome sequencing projects and the computational challenges posed by this new sort

3Umeå University (Sweden), Leibniz Institute DSMZ (Germany), NGS department of Campus Science Support
Facilities GmbH (Austria), Oxford Centre for Integrative Systems Biology (Great Britain), Laboratoire d’Ecologie
Alpine (Grenoble), PRABI (Lyon), Wageningen University (Netherlands), SciLifeLab (Stockholm), SCELSE (Sin-
gapore), ..

51

52 Chapter 3. SortMeRNA: a filter for metatranscriptomic data

of data. In Section 3.2, we describe the algorithm behind SortMeRNA. In Section 3.3, we provide
performance results on simulated and real data, with a comprehensive comparison with other
software programs. In Section 3.4, we conclude the chapter with a discussion on the overall
results.

3.1 Application context: metatranscriptomics analysis

The transcriptome of an organism consists of the set of total RNA, which regularly varies and
harmonizes with external environmental conditions and the metatranscriptome is an ensemble
of all RNA molecules found within a microbial community. Metatranscriptomic profiling via
next-generation sequencing provides an authentic representation of species richness within a
community at the time of the sampling. It becomes particularly important for samples which
cannot be cultivated outside their native environment.

The initial challenge of metatranscriptomic sequenced data analysis is to sort apart the RNA
fragments based on their biological significance. Phylogenetic structure of a community is pri-
marily established using the 16S and 18S ribosomal RNA (rRNA) genes, which remain highly
conserved among different species of bacteria, archaea and eukarya [Janda and Abbott, 2007].
Other inquiries can be made regarding the functionality of a community by studying the messen-
ger RNA (mRNA) of the actively transcribed genes. Thus, it is of primary interest to sort out the
rRNA from the mRNA in the total RNA for answering the most basic questions regarding the
species composition, gene regulation and protein information of a metatranscriptome. Subject
to prokaryotic or eukaryotic cells, the rRNA content can represent up to 80-85% of total RNA
and the protein coding mRNA as little as 1-6% [Sorek and Cossart, 2010]. If one wants to focus
exclusively on mRNA, there exist prior-to-sequencing methods to help isolate and enrich mRNA
from the total RNA. These methods focus on the depletion of rRNA with technologies such as
subtractive hybridization (Life Technologies), exonuclease digestion [Boissinot et al., 2007] and
the duplex-specific nuclease treatment (DSN) [Yi et al., 2011]. However, even selective removal
of rRNA genes does not guarantee definite depletion, and some rRNA genes can still remain in
the metatranscriptomic sample. Alternatively, if the goal is to sort apart RNA without any loss
of information, in the case of studying rRNA for species identification, non-invasive methods for
separating RNA are also preferred. So there is a need for computational tools able to efficiently
catalog families of rRNA sequences in metatranscriptomis datasets.

3.2 SortMeRNA

The goal of SortMeRNA is to solve the following problem: Given a large set of metatranscrip-
tomic reads, how to rapidly isolate the reads belonging to rRNA sequences. Multiple software have
been recently developed to address this issue. All of them take advantage of the fact that rRNA
sequences are homologs and that the primary structure is well conserved within a biological do-
main (archaea, bacteria or eukarya). Their major difference is the method used to compare reads
against a database of rRNA sequences. The first set of programs, Meta-RNA [Huang et al., 2009],
SSU-ALIGN [Nawrocki et al., 2009] and rRNASelector [Lee et al., 2011] share a common ap-
proach to represent a rRNA database as a probabilistic model. Both Meta-RNA and rRNASelec-
tor use prebuilt Hidden Markov Models (HMM) and consequently sort reads against the database
with the HMMER3 package [Eddy, 2011] whereas SSU-ALIGN uses Covariance Models to sup-

3.2. SortMeRNA 53

port secondary structure information. Alternative tools such as BLASTN [Altschul et al., 1990],
used in numerous home-made workflows, and riboPicker [Schmieder et al., 2012] exploit a vari-
ation of the seed-and-extend strategy. The tool riboPicker implements a modified version of the
Burrows-Wheeler Aligner [Li and Durbin, 2009]. In this context however, reads should be com-
pared against large rRNA databases to achieve a good sensitivity level. In all cases, computational
time is still an issue to handle large collections of reads.

3.2.1 Principle of the algorithm

SortMeRNA uses a seeding strategy, just like BLASTN and riboPicker. The novelty is that it
combines two main fundamentals to achieve a high sensitivity and fast speed. First, it uses
approximate seeds, instead of exact seeds as riboPicker does. We will see in Section 3.3 that
it allows us to override some limitations of riboPicker on the sensitivity. Second, the rRNA
database is stored in a text index. This allows us to take advantage of redundancy between
homolog sequences, as HMMs do, and to build a compressed model of all rRNA sequences. This
yields a significant speed up in the computational time, compared to BLASTN.

The algorithm is a straightforward application of the approximate seed framework presented
in Chapter 2. Let k be the size of the seed.

1. The reference database is composed of a collection of rRNA sequences that are indexed
in the look up table and the mini burst tries. A multiple sequence alignment of an rRNA
database can clearly define areas of high nucleotide conservation and emphasize the evo-
lutionary origins shared between organisms. Figure 3.1 shows such an example of different
levels of conservation. Since we are interested in well-conserved regions of the rRNA se-
quences, before a k-mer is traversed in the mini-burst trie its prefix or suffix must exist a
threshold β4 number of times in the lookup table. This notion enforces that a read matches
closely to one region in a database rather than multiple scattered ones leading to a false
alignment.

2. We scan each read with a sliding window of length k (the size of the seed), position by
position, and count the number of windows present in the reference database, with up to
one error. This is done with the universal Levenshtein automaton.

SortMeRNA does not implement an extension phase. The accepted reads are those which
have more than a threshold ratio r of windows with a match in the database. This threshold is
proportional to the length of the read.

The performances of the algorithm heavily depend on two parameters: The size k of the
sliding window, and the minimal proportion r of accepted windows in a read. To find a robust
choice for k and r, we ran the algorithm for several values of k and r on different rRNA databases
and for several sets of reads. We discuss the choice for paramater settings in the remaining of
this section.

4The algorithm to compute β ascertains that each read (in the set of reads provided by the user) has at least
ratio r seeds, of which at least one k

2
-mer has an occurrence greater than β in the rRNA database

54 Chapter 3. SortMeRNA: a filter for metatranscriptomic data

Figure 3.1: 18S rRNA secondary structure diagram showing the high conservation (blue areas) of nucleotides
in the primary structure. This diagram was generated by SSU-ALIGN for a multiple alignment of 308 eukaryotic
18S rRNA.

model #pos #bps
------- ---- ----
eukarya 1881 448

 #seqs

 308

description

information content per position

alignment file: CRW_plus_mix/CRW_plus_mix.eukarya.stk page 2

created by the SSU-ALIGN package (http://eddylab.org/software.html)
structure diagram derived from CRW database (http://www.rna.ccbb.utexas.edu/)

5’

3’

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

LEGEND count
-------------------------------------- -----

100% gaps 0

information content (bits):

[0.000-0.400) 172

[0.400-0.800) 205

[0.800-1.200) 238

[1.200-1.600) 259

[1.600-1.990) 677

[1.990-2.000] 330

3.2. SortMeRNA 55

3.2.2 Parameter setting

To estimate best values for k and r, we purposely designed four rRNA databases differing in terms
of similarity and the rRNA subunit. We also generated several sets of simulated reads, that should
be classified either as rRNA reads, or as non-rRNA reads, and for which the classification results
are known.

3.2.2.1 Construction of rRNA databases

We use the SILVA databases [Pruesse et al., 2007] that administer a comprehensive set of qual-
ity checked rRNAs, including a software tool ARB [Ludwig et al., 2004] to aid with phyloge-
netic analyses of the data via graphical representation. From SILVA, we purposely designed four
databases with distinctive features: Small 16S and large 23S subunit, varying identity percentage
and from distinct phylogeny tree subparts.

Set 1 : 80% identity 16S rRNA bacteria & archaea (2262 sequences)
Set 2 : 80% identity 16S rRNA bacteria & archaea+truncated phylogeny tree (2187 sequences)
Set 3 : 95% identity 23S rRNA bacteria & archaea (1969 sequences)
Set 4 : 95% identity 23S rRNA bacteria & archaea+truncated phylogeny tree (1906 sequences)

Each database was constructed by applying the ARB package and UCLUST [Edgar, 2010] to
the small 16S and large 23S subunit databases from SILVA. The procedure is as follows (see also
Figure 3.2, Figure 3.3, Figure 3.4, Figure 3.5 for each Set),

1. use the ARB package to extract the phylogeny trees of 16S rRNA and 23S rRNA bacteria
& archaea databases in fasta and xml formats,

2. for Set 2 and Set 4, remove a branch in the phylogenetic tree to induce missing species (see
Figures 3.3 and 3.5)

3. remove all occurrences of rRNA other than 16S or 23S using description information in the
xml format

4. remove long sequences (1600 for 16S rRNA and 5000 for 23S rRNA) and those having
> 1% of ambiguous N’s,

5. apply UCLUST on the filtered set of rRNAs to create representative 16S and 23S rRNA
databases with identity x%.

The identity percentage x refers to the definition of clusters used by UCLUST: Each clus-
ter is defined by a representative sequence, and each sequence in a cluster matches the
representative sequence according to the identity threshold. Finally, each database is con-
stituted by the set of representative sequences. By construction, every pair of sequences in
the representative database has an identity percentage lower than the threshold x.

3.2.2.2 Simulated reads

We generated simulated reads to be able to estimate the selectivity and the sensitivity of Sort-
MeRNA with varying parameter values. For that, we applied MetaSim [Richter et al., 2008] using
provided error models: Roche 454 and Illumina. MetaSim’s maximum length error model for the

56 Chapter 3. SortMeRNA: a filter for metatranscriptomic data

Figure 3.2: Construction of Set 1 – 16S rRNA database with 80% identity

SILVA SSU Ref
NR 108 database
(376,437 rRNA, 99% id.)

16S bacteria & archaea
(338,890 rRNA)

18S eukarya
(37,547 rRNA)

335,352 rRNA

representative 16S
rRNA database
(2,262 sequences)

300,000 Roche 454 reads (≥ 200nt)
1,000,000 Illumina reads (100nt)

ARB package

remove 23S partial sequences; PRIN-
SEQ filter ≤ 1% ambiguous N’s and
max. len. 1600

UCLUST filter, ≥ 80% identityMetaSim simulated reads

Figure 3.3: Construction of Set 2 – 16S rRNA database with 80% identity + truncated phylo. tree

SILVA SSU Ref 108 NR
16S bacteria & archaea

(338,890 rRNA)

‘Firmicutes’ branch
from phylogeny tree

(9,184 rRNA)

All other branches
from phylogeny tree

(329,750 rRNA)

326,582 rRNA8,770 rRNA

representative 16S
rRNA database
(2,187 sequences)

300,000 Roche 454 reads (≥ 200nt)
1,000,000 Illumina reads (100nt)

ARB package

remove 23S partial sequences; PRIN-

SEQ filter ≤ 1% ambiguous N’s and

max. len. 1600

UCLUST filter, ≥ 80% identityMetaSim simulated reads

3.2. SortMeRNA 57

Figure 3.4: Construction of Set 3 – 23S rRNA database with 95% identity

SILVA LSU Ref 108
23S bac/arc
(15,037 rRNA)

14,125 rRNA

representative 23S
rRNA database
(1,969 sequences)

300,000 Roche 454 reads (≥ 200nt)
1,000,000 Illumina reads (100nt)

remove 5S/16S/28S/26S partial se-

quences; PRINSEQ filter ≤ 1% ambigu-

ous N’s and max. len. 5000

MetaSim simulated reads UCLUST filter, ≥ 95% identity

Figure 3.5: Construction of Set 4 – 23S rRNA database with 95% identity + truncated phylogenetic tree. Section
of phylogenetic tree: 36 Planctomycetes, 14 Fibrobacteres, 44 Verrucomicrobia, 21 Chloroflexi_1, 6 Candidate
division TM7, and 9 Lentisphaerae.

SILVA LSU Ref 108
23S bac/arc
(15,037 rRNA)

All other branches
from phylogeny tree

(14,907 rRNA)

removed branches
of phylogeny tree*

(130 rRNA)

14,020 rRNA105 rRNA

representative 23S
rRNA database
(1,906 sequences)

300,000 Roche 454 reads (≥ 200nt)
1,000,000 Illumina reads (100nt)

ARB package

UCLUST filter, ≥ 95% identityMetaSim simulated reads

remove 5S/16S/18S/23S partial se-

quences; PRINSEQ filter ≤ 1% ambigu-

ous N’s and max. len. 5000

58 Chapter 3. SortMeRNA: a filter for metatranscriptomic data

Illumina technology is 80nt, in order to adapt this model for 100nt the last probability value of
the 80th position was extended by 20nt. In practice, MetaSim had simulated Roche 454 reads
with 2.8-3% sequencing error rate of which approximately 79% were insertions and 21% dele-
tions. Additionally, for Illumina reads, the sequencing error rate was 1.2% of which 100% were
substitutions.

Generation of Roche 454 and Illumina rRNA reads. We started from sequences of the SILVA
database that have not been already selected in the representative sets (Set 1 to Set 4).

1. apply MetaSim on the filtered set of rRNAs of SILVA not belonging to the representative
databases to create 300,000 Roche 454 reads of ≥ 200nt and 1,000,000 Illumina reads of
100nt.

In the MetaSim simulator settings, the parameters ‘Mean’ (mean length of clone) and
‘Second Parameter’ (standard deviation of clone length) as defined in the user manual,
were set to 1000 and 100 respectively. The default values are 2000 and 200, however since
many rRNA sequences are shorter than 2000 nt, we reduced this value to 1000 and the
standard deviation to 100.

2. filter out ‘circular’ reads produced by MetaSim, approximately 10% of the reads.

3. filter out reads shorter than 200nt (only for Roche 454) and reads with > 1% of ambiguous
character N (both Roche 454 & Illumina).

Generation of Roche 454 and Illumina non-rRNA reads We started from the NCBI complete
bacterial genomes: ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/

1. find all locations of rRNAs on the complete NCBI bacterial genomes in the Genbank file
format,

2. mask the locations of rRNA in the Fasta file format by a contiguous sequence of N’s (+150nt
to cover misannotation)

3. run MetaSim on the NCBI complete bacterial genomes with masked rRNAs to create
1,000,000 Roche 454 reads of ≥ 200nt and 1,000,000 Illumina reads of 100nt,

4. filter out ‘circular’ reads produced by MetaSim, approximately 10% of the reads.

In the MetaSim simulator settings, the parameters ‘Mean’ (mean length of clone) and
‘Second Parameter’ (standard deviation of clone length) as defined in the user manual,
were set to 2000 and 200 respectively. These default values work well since the average
length of a bacterial genome exceeds 2000 nt.

5. filter out reads shorter than 200nt (only for Roche 454) and reads with > 1% of ambiguous
character N (both Roche 454 & Illumina).

Note that some rRNA genes are not annotated and therefore missed during the masking
process. This explains that there may be some rRNA fragments in the generated reads, which
will impact the selectivity for all programs.

ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/

3.3. Performance results 59

3.2.2.3 Choice of values for k and r

To estimate robust values for k and r, we ran SortMeRNA on Set 1 to Set 4 and varied the
parameters k ∈ [14, 16, 18, 20] and r ∈ [0.05, 0.10, 0.15, . . . , 0.95]. The acceptance rule is as fol-
lows. Let ℓ be the length of a read, and ǫ the number of accepted windows for this read. A read
is classified as rRNA if the number of accepted windows divided by the number of total full
windows on a read is greater or equal to r,

ǫ

ℓ− k + 1
≥ r.

The results for Roche 454 reads are demonstrated in Figure 3.6 and those for Illumina reads
in Figure 3.7. The main conclusion is that k = 18, r = 0.15 for Roche 454 reads and k = 18,
r = 0.25 for Illumina reads give best sensitivity/selectivity balance for all rRNA databases.
Moreover, as shown in the Matthews correlation coefficient tables, varying r within short ranges
does not significantly affect the results. We use these values as default settings in all subsequent
analyses of Section 3.3.

3.2.3 Availability

SortMeRNA is written in C++ and freely distributed under the GPL license as a stand-alone
version or as a Galaxy wrapper. Galaxy is an open, web-based platform that provides users with a
graphical workflow management system, and emphasizes accessibility, reproducibility and trans-
parency [Goecks et al., 2010]. Both distributions, including the user manual with installation
instructions, can be downloaded from http://bioinfo.lifl.fr/RNA/sortmerna/.

The software uses OpenMP functions to parallelize filtering of the reads. The input criteria
are a fasta/fastq file of letter space reads produced by Roche 454 or Illumina technologies, and a
fasta file of rRNA sequences. There are eight rRNA databases included in the software package
covering the small (16S/18S), large (23S/28S) and 5/5.8S ribosomal subunit rRNAs, which were
all derived from the SILVA and RFAM databases. Additionally, the user can work with their own
RNA databases.

SortMeRNA supports multi-threading and has been tested on Linux (Ubuntu, Fedora, Cen-
tOS and Debian) and Mac OS 10.6.8 systems. For compilation, a g++ compiler version 4.3 or
higher is required.

3.3 Performance results

The performance of SortMeRNA was measured in terms of sensitivity, selectivity and real-data
analysis compared to the previously mentioned software SSU-ALIGN, Meta-RNA, rRNASelector,
riboPicker and BLASTN.

For evaluating all software on an equal basis, another two databases were created: One for
16S rRNA, and one for 23S rRNA.

Set 5 : 85% identity 16S rRNA bacteria & archaea (7659 rRNA), see Figure 3.8
Set 6 : 98% identity 23S rRNA bacteria & archaea (2811 rRNA), see Figure 3.9

The 16S rRNA database was used by SortMeRNA, riboPicker, BLASTN and SSU-ALIGN
in Test 1 and Test 3, and the 23S rRNA database by SortMeRNA, riboPicker and BLASTN in

http://bioinfo.lifl.fr/RNA/sortmerna/

60 Chapter 3. SortMeRNA: a filter for metatranscriptomic data

Figure 3.6: SortMeRNA results by varying parameters k (length of the sliding window) and r (ratio of accepted
windows) on Set 1 to Set 4 for Roche 454 simulated reads. For each graph, the horizontal axis is for the sensitivity,
and the vertical axis is for the selectivity. Each curve corresponds to a different value for k: k = 14, 16, 18, 20.
Each dot on a curve corresponds to a different value for r. Below: Matthews correlation coefficients for k = 18
and various values of r.

 0.99995

 0.999955

 0.99996

 0.999965

 0.99997

 0.999975

 0.99998

 0.999985

 0.99999

 0.999995

 1

 0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 1

sensitivity

16S 80% identity (454 reads)

s = 20

0.05

0.1
0.15

s = 18
0.05

0.150.2
0.25

s = 16

0.150.2
0.25

0.3
0.35

s = 14

0.5

0.55

 0.999975

 0.99998

 0.999985

 0.99999

 0.999995

 1

 0.9975 0.998 0.9985 0.999 0.9995 1

s
e

le
c
ti
v
it
y

sensitivity

16S 80% identity + truncated tree (454 reads)

s = 20

0.05

0.15

0.2

s = 18

0.150.20.25

s = 16

0.15

0.25

0.3

0.35

s = 14

0.5

0.55

Set 1: 80% identity 16S rRNA Set 2: 80% identity 16S rRNA, truncated tree

 0.9997

 0.99975

 0.9998

 0.99985

 0.9999

 0.99995

 1

 0.9998 0.99982 0.99984 0.99986 0.99988 0.9999 0.99992 0.99994 0.99996 0.99998 1

sensitivity

23S 95% identity (454 reads)

s = 20

0.15

0.2

0.25

s = 18

0.1

0.15

0.2
0.25

s = 16

0.3

0.35

s = 14

0.55

 0.9994

 0.9995

 0.9996

 0.9997

 0.9998

 0.9999

 1

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

s
e
le

c
ti
v
it
y

sensitivity

23S 95% identity + truncated tree (454 reads)

s = 20

0.05

0.1

0.15

s = 18

0.05

0.1

0.15
0.2

s = 16

0.2

0.25
0.3

s = 14

0.5

0.55

Set 3: 95% identity 23S rRNA Set 4: 95% identity 23S rRNA, truncated tree

Matthews correlation coefficient

r 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Set 1 0.9999 0.9999 0.99985 0.99976 0.99959 0.99933 0.99895
Set 2 0.99987 0.99982 0.99971 0.99945 0.99889 0.99773 0.99536
Set 3 0.99895 0.99958 0.99973 0.99977 0.99977 0.99973 0.99970
Set 4 0.98834 0.98417 0.97512 0.96131 0.93811 0.89803 0.84026

3.3. Performance results 61

Figure 3.7: SortMeRNA results by varying parameters k (length of the sliding window) and r (ratio of accepted
windows) on Set 1 to Set 4 for Illumina simulated reads. For each graph, the horizontal axis is for the sensitivity,
and the vertical axis is for the selectivity. Each curve corresponds to a different value for k: s = 14, 16, 18, 20.
Each dot on a curve corresponds to a different value for r. Below: Matthews correlation coefficients for k = 18
and various values of r.

 0.99994

 0.99995

 0.99996

 0.99997

 0.99998

 0.99999

 1

 0.98 0.985 0.99 0.995 1

s
e
le

c
ti
v
it
y

sensitivity

16S 80% identity (Illumina reads)

s = 20

0.1

0.15

0.25
0.3

s = 18

0.15

0.2

0.25
0.3

0.35

s = 16

0.3

0.35

0.4
0.45

0.5

s = 14

0.65

 0.99994

 0.99995

 0.99996

 0.99997

 0.99998

 0.99999

 1

 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

sensitivity

16S 80% identity + truncated tree (Illumina reads)

s = 20

0.1

0.15
0.2

0.25

s = 18

0.15

0.2

0.30.35

s = 16
0.25

0.3

0.4
0.450.5

s = 14

0.65

0.7

Set 1: 80% identity 16S rRNA Set 2: 80% identity 16S rRNA, truncated tree

 0.996

 0.9965

 0.997

 0.9975

 0.998

 0.9985

 0.999

 0.9995

 1

 0.9986 0.9988 0.999 0.9992 0.9994 0.9996 0.9998 1

s
e

le
c
ti
v
it
y

sensitivity

23S 95% identity (Illumina reads)

s = 20

0.05

0.2

s = 18

0.15
0.20.250.3

s = 16

0.2

0.25

0.3

0.35
0.4

s = 14

0.6

 0.997

 0.9975

 0.998

 0.9985

 0.999

 0.9995

 1

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

s
e

le
c
ti
v
it
y

sensitivity

23S 95% identity + truncated tree (Illumina reads)

s = 20

0.05

0.1

s = 18

0.1

0.15
0.20.25

s = 16

0.3

0.35
0.4

s = 14

0.6

0.65

Set 3: 95% identity 23S rRNA Set 4: 95% identity 23S rRNA, truncated tree

Matthews correlation coefficient

r 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Set 1 0.99598 0.99856 0.99795 0.99670 0.99489 0.99240 0.98674
Set 2 0.99366 0.99395 0.98982 0.98401 0.97600 0.96401 0.94588
Set 3 0.99306 0.99863 0.99905 0.99901 0.99883 0.99849 0.99792
Set 4 0.94040 0.92567 0.90233 0.87242 0.84096 0.80262 0.75228

62 Chapter 3. SortMeRNA: a filter for metatranscriptomic data

Test 2 and Test 4. SSU-ALIGN was written for aligning small ribosomal subunits and does not
provide models for 23S rRNA. The tool riboPicker was also tested with a more comprehensive
database made available from their website: All 16S and 23S rRNA sequences taken from SILVA,
RDP-II, Greengenes, NCBI archaeal and bacterial genomes, and HMP (3,232,371 16S and 19,602
23S unique sequences). The results for this larger database are indicated by riboPicker∗ in the
subsequent tables and figures. For Meta-RNA and rRNASelector, we used the HMMs provided
with the software.

All tests were performed on an Intel(R) Xeon(R) CPU W3520 2.67GHz machine with L1
cache size of 32 KB, L2 cache size of 256 KB and L3 cache size of 8192 KB. Since riboPicker and
SSU-ALIGN do not provide a direct option for multi-threading, all tests were carried out using
one thread.

3.3.1 Test 1: simulated 16S rRNA reads

Sensitivity for 16S rRNA. 300,000 Roche 454 and 1,000,000 Illumina 16S rRNA reads were
simulated in the same manner as described in Section 3.2.2.2. The performance results can be
viewed in Table 3.1. All software programs except riboPicker and SSU-ALIGN have a sensitivity
level higher than 97%, and even higher than 99% for BLASTN and SortMeRNA. The sensitivity
for riboPicker is very low (56%) because BWA-SW works well with error rates 2%-3% for 100-
200nt reads, and loses sensitivity for new species. As expected, the sensitivity increases with a
larger database (indicated riboPicker∗). Considering the computation time, SortMeRNA runs
in less than 2 minutes, or 72x faster than the next fastest tool with proportionate sensitivity
(Meta-RNA). Note also that BLASTN executes at a very slow speed (several hours), because
reads should be compared against all of sequences in the representative database.

Selectivity for 16S rRNA. 1,000,000 Roche 454 and 1,000,000 Illumina non-16S rRNA reads
were simulated in the same manner as described in Section 3.2.2.2. The performance results can
be viewed in Table 3.2. All programs have a selectivity level higher than 99.98%. The number
of false positives for the HMM-based programs remains comparable to SortMeRNA for both
Illumina and Roche 454 reads. The difference in the simulated data results between Meta-RNA
and rRNASelector can be attributed to the number of bacteria vs. archaea rRNA sequences used
in the construction of the HMMs, as well as additional parameter settings in rRNASelector.
riboPicker∗ and BLASTN show the lowest selectivity. Concerning the running time, the order
of the fastest programs is rRNASelector, Meta-RNA and SortMeRNA. Both rRNASelector and
Meta-RNA use the HMMER3 package, which applies a pre-filter to quickly reject sequences which
would score very low in the HMM. This acceleration heuristic gives these programs a competitive
advantage on the artificial dataset for selectivity where all of the sequences are negative.

3.3.2 Test 2: simulated 23S rRNA reads

Similarly, we generated rRNA and non-rRNA reads for 23S rRNAs using the same protocol, as
described in Section 3.2.2.2. Results are analogous as those of Test 1 in terms of accuracy and
running time. They can be found in Table 3.3 and Table 3.4.

3.3. Performance results 63

Figure 3.8: Construction of Set 5 – representative 16S rRNA database with 85% identity

SILVA SSU Ref
NR 108 database
(376,437 rRNA, 99% id.)

16S bacteria & archaea
(338,890 rRNA)

18S eukarya
(37,547 rRNA)

335,352 rRNA

representative 16S
rRNA database
(7,659 sequences)

300,000 Roche 454 reads (≥ 200nt)
1,000,000 Illumina reads (100nt)

ARB package

remove 23S partial sequences; PRIN-
SEQ filter ambiguous N’s and max. len.
1600

UCLUST filter, ≥ 85% identityMetaSim simulated reads

Figure 3.9: Construction of Set 6 – representative 23S rRNA database with 98% identity

SILVA LSU Ref 108
23S bac/arc
(15,037 rRNA)

14,125 rRNA

representative 23S
rRNA database
(2,811 sequences)

300,000 Roche 454 reads (≥ 200nt)
1,000,000 Illumina reads (100nt)

remove 5S/16S/28S/26S partial se-

quences; PRINSEQ filter ≤ 1% ambigu-

ous N’s and max. len. 5000

MetaSim simulated reads UCLUST filter, ≥ 98% identity

64 Chapter 3. SortMeRNA: a filter for metatranscriptomic data

Table 3.1: TEST 1, SENSITIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and 300,000 Roche 454
(≥ 200nt) rRNA reads against a representative 16S rRNA database of 7,659 sequences.

Illumina Roche 454
rRNA run time memory sensitivity rRNA run time memory sensitivity

(hrs:min) (%) (%) (%) (%)

SortMeRNA 998615 0:02 8.5 99.861 299979 0:02 6.3 99.993
riboP icker 558607 0:19 6.8 55.860 123024 0:19 5.6 41.008
riboP icker ∗ 999941 6:33 35.3 99.994 299999 9:00 34 99.999
BLASTN 995322 23:52 3.0 99.532 299978 18:35 1.4 99.992
Meta-RNA 983332 2:00 33.3 98.333 299980 1:57 12.9 99.993
rRNASelector 974118 1:47 17.4 97.411 299976 2:00 7 99.992
SSU -ALIGN 971221 6:49 0.1 97.122 299902 5:50 0.1 99.967

Table 3.2: TEST 1, SELECTIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and 1,000,000 Roche 454
(≥ 200nt) non-rRNA reads against a representative 16S rRNA database of 7,659 sequences.

Illumina Roche 454
rRNA run time memory sensitivity rRNA run time memory sensitivity

(hrs:min) (%) (%) (hrs:min) (%) (%)

SortMeRNA 17 0:02 7.6 99.9983 13 0:04 10.2 99.9987
riboP icker 7 0:10 6.7 99.9993 3 0:30 16.8 99.9997
riboP icker ∗ 158 0:57 35.1 99.9842 53 2:43 45.2 99.9947
BLASTN 33 0:14 0.3 99.9967 33 0:16 0.3 99.9967
Meta-RNA 11 0:02 0.1 99.9989 11 0:04 0.2 99.9989
rRNASelector 10 0:01 0.1 99.9990 11 0:03 0.2 99.9989
SSU -ALIGN 8 3:51 0.1 99.9992 11 10:30 0.1 99.9989

Table 3.3: TEST 2, SENSITIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and 300,000 Roche 454
(≥ 200nt) rRNA reads against a representative 98% identity 23S rRNA database of 2,811 sequences.

Illumina Roche 454
rRNA run time memory sensitivity rRNA run time memory sensitivity

(hrs:min) (%) (%) (hrs:min) (%) (%)

SortMeRNA 999909 0:01 7.2 99.909 300000 0:01 4.7 100
riboP icker 659494 0:19 6.7 65.949 213989 0:21 5.6 71.329
riboP icker ∗ 986917 1:26 8.4 98.691 296584 1:46 7.3 98.861
BLASTN 999549 15:10 2.7 99.954 299999 11:25 1.3 99.999
Meta-RNA 936314 4:25 31.8 93.631 298918 4:29 13.1 99.639
rRNASelector 908344 4:7 16.4 90.834 298733 4:37 7.2 99.577

* Searching through all 23S rRNA databases provided by SILVA (only 23S), NCBI archaeal and bacterial genomes,
and HMP.

3.3. Performance results 65

Table 3.4: TEST 2, SELECTIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and 300,000 Roche 454
(≥ 200nt) non-rRNA reads against a representative 98% identity 23S rRNA database of 2,811 sequences

Illumina Roche 454
rRNA run time memory sensitivity rRNA run time memory sensitivity

(hrs:min) (%) (%) (hrs:min) (%) (%)

SortMeRNA 243+ 0:01 6.3 99.9757 112+ 0:03 8.9 99.9888
riboP icker 39+ 0:10 6.6 99.9961 24+ 0:32 16.7 99.9976
riboP icker ∗ 103 0:30 8.2 99.9897 54 1:32 18.3 99.9946
BLASTN 310+ 0:26 0.3 99.9690 571+ 0:26 0.2 99.9429
Meta-RNA 36 0:03 0.1 99.9964 29 0:06 0.3 99.9971
rRNASelector 34 0:02 0.1 99.9966 29 0:06 0.3 99.9971

* Searching through all 23S rRNA databases provided by SILVA (only 23S), NCBI archaeal and bacterial genomes,
and HMP. + SortMeRNA, riboPicker and BLASTN use the same database (Set 6). riboPicker∗ searches through
a database with 19,602 23S rRNA sequences, and both Meta-RNA and rRNASelector use prebuilt HMM models.
For SortMeRNA, 82% of the 243 Illumina reads and 100% of the 112 Roche 454 reads are in common with the
310 and 571 reads classified by BLASTN. For riboPicker, 97% of the 39 Illumina reads and 100% of the 24 Roche
454 reads are in common with the 310 and 571 reads classified by BLASTN. The majority of these reads map to
mRNA. Further investigation showed that due to misannotation, the database for Set 6 was contaminated with
several mRNA, and hence the classified reads were correctly spotted in the database.

3.3.3 Test 3: photosynthetic microbial community

The metatranscriptomic dataset SRR106861 of a photosynthetic microbial community from 454
sequencing was downloaded from the NCBI Sequence Read Archive. We filtered this read set
to remove any bias caused by shorter reads (<200nt), as well as low-quality reads which have
more than 1% of the ambiguous character N. The reason for eliminating shorter reads is that
riboPicker, Meta-RNA, rRNASelector and SSU-ALIGN require longer reads to achieve a higher
sensitivity. In general, this length is suggested to be ≥ 200nt for Roche 454 reads.

The results can be viewed in Table 3.5, and the overlap of the results between tools in a Venn
diagram displayed in Figure 3.10. The results obtained with SortMeRNA adhere to the accuracy
of the HMM-based programs and are computed in a fraction of the time. riboPicker finds only
a subpart of all potential rRNAs, which confirms its low sensitivity for small databases. The
majority of 16S rRNA reads found only by riboPicker∗ (1,298) map to mRNA.

Table 3.5: TEST 3: Runtime for the SRR106861 metatranscriptome of 105,873 reads against a 16S rRNA
database of 7,659 sequences.

rRNA run time memory
(hrs:min) (%)

SortMeRNA 27046 < 0:01 4.8
riboP icker 11389 0:04 2.3
riboP icker ∗ 27195 0:39 30.8
BLASTN 27061 1:29 0.6
Meta-RNA 27111 0:11 1.8
rRNASelector 27085 0:11 0.8

66 Chapter 3. SortMeRNA: a filter for metatranscriptomic data

Figure 3.10: TEST 3: Venn diagram for reads classified as 16S rRNA by BLASTN, Meta-RNA, SortMeRNA
and riboPicker∗ in the SRR106861 metatranscriptome.

BLASTN

27, 061 reads

Meta-RNA

27, 111 reads

SortMeRNA

27, 046 reads

riboPicker∗

27, 195 reads

25,893

01, 104

4 0

38 0

46
1 0

0

17 26

1, 2986

3.3.4 Test 4: tidal salt marsh creek

Similarly, we retrieved the dataset SRR013513 of a tidal salt marsh creek from 454 sequencing
from the NCBI Sequence Read Archive. We removed low quality and short reads using the same
cleaning procedure as in Test 3.

Results are available in Table 3.6 and Figure 3.11. Approximately 99% of the excess reads of
Meta-RNA (12,112) and rRNASelector likewise map to 28S, along with 83% of the (624) reads
found only by BLASTN and Meta-RNA. The (537) reads found only by BLASTN map to 16S
rRNA, ncRNA and mRNA.

Table 3.6: TEST 4: Runtime for the SRR013513 metatranscriptome of 207,368 reads against a 23S rRNA
database of 2,811 sequences.

rRNA run time memory
(hrs:min) (%)

SortMeRNA 94395 < 0:01 3.8
riboP icker 71937 0:10 3.9
riboP icker ∗ 84152 0:36 5.5
BLASTN 94439 3:42 0.9
Meta-RNA 106698 1:33 4.8
rRNASelector 107900 1:36 3

3.4 Discussion

SortMeRNA has shown to be a rapid and efficient filter which can sort a large set of metatran-
scriptomic reads with high accuracy comparable to the HMM-based programs and a significantly
lower running time. SortMeRNA implements our approximate seeds and this important charac-

3.4. Discussion 67

Figure 3.11: TEST 4: Venn diagram for reads classified as 23S rRNA by BLASTN, Meta-RNA, SortMeRNA
and riboPicker∗ in the SRR013513 metatranscriptome.

BLASTN

94, 439 reads

Meta-RNA

106, 698 reads

SortMeRNA

94, 395 reads

riboPicker∗

84, 152 reads

83,960

08, 851

0 139

1, 151 38

624
290 0

1

537 12, 112

143

teristic renders the algorithm robust to errors of different types of sequencers while providing
the ability to discover new rRNA sequences from unknown species. The method used by the
algorithm is universal and flexible. The database can be constructed on any family of sequences
that show some conservation at the nucleic acid level, which can be useful for identifying other
families, such as transfer RNAs, or sequencing adapters. Moreover, the algorithm does not re-
quire a multiple sequence alignment file to build the database, as HMM-based programs do, and
this is an advantage when sequences are hard to align or only partial sequences are available.
Another advantage of SortMeRNA is the small number of parameter settings required by the
program, most of which are precomputed using statistical analysis of the rRNA database.

In [Kopylova et al., 2013], we discuss in more detail how to use SortMeRNA in a global
strategy for analyzing metatranscriptomic data: How to clean the data prior to the classification,
how to map and assemble the filtered reads to proceed to the reconstruction of mRNA transcripts
for functional analyses and phylogenetic classification of a community using the ribosomal RNA.

68 Chapter 3. SortMeRNA: a filter for metatranscriptomic data

Conclusion

In this thesis, we have introduced a novel seeding technique for approximate seeds and the sup-
porting indexing data structures used to quickly locate short regions of similarity between two
sequences. In Chapter 3 we presented SortMeRNA, an efficient filter implementing approximate
seeds to quickly remove ribosomal fragments from metatranscriptomic data. Nowadays, Sort-
MeRNA is the fastest algorithm to filter ribosomal RNA with an accuracy comparable to the
probabilistic HMM tools. In Chapter ?? we presented SortMeDNA, a read mapping tool that
can align genomic and metagenomic data generated by second- and third-generation sequencing.
SortMeDNA applies statistical analysis to verify the significance of an alignment since when map-
ping reads against distantly divergent species the chances of seeing random alignments reaching
a threshold score increase.

Advancements in DNA sequencing techniques will one day provide technologies that skip the
whole-genome shotgunning step and sequence complete genomes in one go. This trend is already
visible with the 4,000-20,000 bp reads produced by PacBio, and entire DNA strand sequencing for
the Lambda phage genome of 48,000 bp (both strands) by GridION [GridION, 2012]. However,
although short read mapping tools may no longer be necessary, the algorithms behind them can
prove to be invaluable for other sequence analysis applications. Genetic sequence databases such
as GenBank [Benson et al., 2005], RefSeq [Pruitt et al., 2009] and Ensembl [Flicek et al., 2013]
are growing at an expontential rate, with GenBank storing over 150 billion nucleotide bases
in August, 2013 (see GenBank release notes for release 197.0). What is more, the databases
are composed of a variety of sequences including whole genomes, metagenomic sequences, ri-
bosomal, chloroplast, mitochondrial and uncultured sequences. Sorting through and analyzing
all of this data can only be done by extremely efficient software and large computational re-
sources. Finding DNA sequence variations [Cheng et al., 2013], making genetic diagnoses of dis-
eases, studying microbial pathogens responsible for crop losses [Newton et al., 2010] and plant
biology, as well as understanding the vast network and interdependancy of environmental com-
munities [Fierera et al., 2012] are just a few possibilities of where new bioinformatic analysis
tools can evolve. In the meantime, as high-throughput short read technologies still dominate the
market, new software tools capable of quickly and accurately analyzing their data are essential.

Both of our tools offer a good balance between speed and sensitivity, which is important for
the analysis of high-throughput data for new applications in metatranscriptomics and metage-
nomics. The compromise to this feature is the much larger index required for implementing an ap-
proximate seed search, especially for large and repetitive eukaryotic genomes. Since SortMeRNA
works with highly conserved ribosomal sequences, it requires a small representative database to
achieve a very high sensitivity. By using either the 8,000 16S rRNA representative sequences
provided with the SortMeRNA distribution or the 400,000 16S rRNA sequences available in the
original SILVA databases, the differences in the number of reads classified by SortMeRNA will

69

70 Conclusion

be very small. SortMeDNA on the other hand is capable of managing the amount of memory
loaded in RAM by internally splitting the index into multiple subparts. Investigations into re-
ducing the size of the index are important to consider for future improvements of both tools.
Perhaps a compressed version of the burst trie can be devised, or a completely different data
structure similar to an enhanced suffix array or the BWT can be adopted. Compressed full-text
indices such as the BWT or the compressed suffix array may deliver the most promising algo-
rithms for future generation software as they are able to simultaneously compress and index a
text [Navarro and Mäkinen, 2007]. It was also shown in [Russo et al., 2009] that it is possible
to perform approximate string matching (up to d = 6) using compressed indices such as the
Lempel-Ziv and suffix array self indices.

A possible extension to the seed model could be adding weights to the transitions of the
universal Levenshtein automaton. Currently, seeds having a mismatch error or an indel error
are scored equally, however as in the Smith-Waterman scoring matrix, options giving different
weights to mismatches and indels can influence the results (for example fewer false positives by
filtering out low probability matches). Furthermore, having a weighted automaton could also be
exploited for seeds allowing 2 or even 3 errors. Although these latter options are not yet available
in our tools, they could prove to be useful than the 1-error model in studies involving many
low-complexity sequences or to discover more distant species.

Bibliography

[Abouelhoda et al., 2004] Abouelhoda, M., Kurtz, S., and Ohlebusch, E. (2004). Replacing suffix trees
with enhanced suffix arrays. J Discrete Algorithms, 2:53–86.

[Agrawal and Huang, 2008] Agrawal, A. and Huang, X. (2008). DNAlignTT: pairwise DNA alignment
with sequence specific transition-transversion ratio. In IEEE Intl Conf EIT, pages 457–459.

[Ahmed et al., 2004] Ahmed, A., Bararia, D., Vinayak, S., Yameen, M., Biswas, S., Dev, V., Kumar,
A., Ansari, M., and Sharma, Y. (2004). Plasmodium falciparum isolates in India exhibit a progres-
sive increase in mutations associated with sulfadoxine-pyrimethamine resistance. Antimicrob Agents
Chemother, 48:879–889.

[Altschul and Gish, 1996] Altschul, S. and Gish, W. (1996). Local alignment statistics. Methods Enzymol,
266:460–480.

[Altschul et al., 1990] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990).
Basic Local Alignment Search Tool. J Mol Biol, 215:403–410.

[Benson et al., 2005] Benson, D., Karsch-Mizrachi, I., Lipman, D., Ostell, J., and Wheeler, D. (2005).
GenBank. Nucl Acids Res, 33:D34–D38.

[Bentley et al., 2008] Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J.,
Brown, C. G., Hall, K. P., Evers, D. J., Barnes, C. L., Bignell, H. R., Boutell, J. M., Bryant, J., Carter,
R. J., Keira Cheetham, R., Cox, A. J., Ellis, D. J., Flatbush, M. R., Gormley, N. A., Humphray,
S. J., Irving, L. J., Karbelashvili, M. S., Kirk, S. M., Li, H., Liu, X., Maisinger, K. S., Murray, L. J.,
Obradovic, B., Ost, T., Parkinson, M. L., Pratt, M. R., Rasolonjatovo, I. M. J., Reed, M. T., Rigatti,
R., Rodighiero, C., Ross, M. T., Sabot, A., Sankar, S. V., Scally, A., Schroth, G. P., Smith, M. E.,
Smith, V. P., Spiridou, A., Torrance, P. E., Tzonev, S. S., Vermaas, E. H., Walter, K., Wu, X., Zhang,
L., Alam, M. D., Anastasi, C., Aniebo, I. C., Bailey, D. M. D., Bancarz, I. R., Banerjee, S., Barbour,
S. G., Baybayan, P. A., Benoit, V. A., Benson, K. F., Bevis, C., Black, P. J., Boodhun, A., Brennan,
J. S., Bridgham, J. A., Brown, R. C., Brown, A. A., Buermann, D. H., Bundu, A. A., Burrows, J. C.,
Carter, N. P., Castillo, N., Chiara E. Catenazzi, M., Chang, S., Neil Cooley, R., Crake, N. R., Dada,
O. O., Diakoumakos, K. D., Dominguez-Fernandez, B., Earnshaw, D. J., Egbujor, U. C., Elmore,
D. W., Etchin, S. S., Ewan, M. R., Fedurco, M., Fraser, L. J., Fuentes Fajardo, K. V., Scott Furey,
W., George, D., Gietzen, K. J., Goddard, C. P., Golda, G. S., Granieri, P. A., Green, D. E., Gustafson,
D. L., Hansen, N. F., Harnish, K., Haudenschild, C. D., Heyer, N. I., Hims, M. M., Ho, J. T., Horgan,
A. M., Hoschler, K., Hurwitz, S., Ivanov, D. V., Johnson, M. Q., James, T., Huw Jones, T. A., Kang,
G.-D., Kerelska, T. H., Kersey, A. D., Khrebtukova, I., Kindwall, A. P., Kingsbury, Z., Kokko-Gonzales,
P. I., Kumar, A., Laurent, M. A., Lawley, C. T., Lee, S. E., Lee, X., Liao, A. K., Loch, J. A., Lok,
M., Luo, S., Mammen, R. M., Martin, J. W., McCauley, P. G., McNitt, P., Mehta, P., Moon, K. W.,
Mullens, J. W., Newington, T., Ning, Z., Ling Ng, B., Novo, S. M., O’Neill, M. J., Osborne, M. A.,
Osnowski, A., Ostadan, O., Paraschos, L. L., Pickering, L., Pike, A. C., Pike, A. C., Chris Pinkard, D.,
Pliskin, D. P., Podhasky, J., Quijano, V. J., Raczy, C., Rae, V. H., Rawlings, S. R., Chiva Rodriguez,
A., Roe, P. M., Rogers, J., Rogert Bacigalupo, M. C., Romanov, N., Romieu, A., Roth, R. K., Rourke,
N. J., Ruediger, S. T., Rusman, E., Sanches-Kuiper, R. M., Schenker, M. R., Seoane, J. M., Shaw,
R. J., Shiver, M. K., Short, S. W., Sizto, N. L., Sluis, J. P., Smith, M. A., Ernest Sohna Sohna, J.,

71

72 Bibliography

Spence, E. J., Stevens, K., Sutton, N., Szajkowski, L., Tregidgo, C. L., Turcatti, G., vandeVondele,
S., Verhovsky, Y., Virk, S. M., Wakelin, S., Walcott, G. C., Wang, J., Worsley, G. J., Yan, J., Yau,
L., Zuerlein, M., Rogers, J., Mullikin, J. C., Hurles, M. E., McCooke, N. J., West, J. S., Oaks, F. L.,
Lundberg, P. L., Klenerman, D., Durbin, R., and Smith, A. J. (2008). Accurate whole human genome
sequencing using reversible terminator chemistry. Nature, 456:53–59.

[Boissinot et al., 2007] Boissinot, K., Huletsky, A., Peytavi, R., Turcotte, S., Veillette, V., Boissinot, M.,
Picard, F., Martel, E., and Bergeron, M. (2007). Rapid exonuclease digestion of PCR-amplified targets
for improved microarray hybridization. Clin Chem, 53:2020–2023.

[Boyce et al., 2010] Boyce, D. G., Lewis, M. R., and Worm, B. (2010). Global phytoplankton decline
over the past century. Nature, 466:591–596.

[Buckwalter et al., 2013] Buckwalter, P., Embaye, T., Gormly, S., and Trent, J. D. (2013). Dewatering
microalgae by forward osmosis. Desalination, 312:19–22.

[Burrows and Wheeler, 1994] Burrows, M. and Wheeler, D. (1994). A block-sorting lossless data com-
pression algorithm. Technical report.

[Cannone et al., 2002] Cannone, J., Subramanian, S., Schnare, M., Collett, J., D’Souza, L., and Du, Y.
(2002). The comparative RNA web (CRW) site: An online database of comparative sequence and
structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics, 3:15.

[Chacón et al., 2013] Chacón, A., Moure, J.-C., Espinosa, A., and Hernández, P. (2013). n-step FM-
index for faster pattern matching. In International Conference on Computational Science, ICCS,
pages 70–79.

[Chan et al., 2013] Chan, Y., Van Nostrand, J., Zhou, J., Pointing, S., and Farrell, R. (2013). Functional
ecology of an Antarctic Dry Valley. Proc Natl Acad Sci, 110:8990–8995.

[Cheng et al., 2013] Cheng, L., Connor, T., Sirén, J., Aanensen, D., and Corander, J. (2013). Hierarchical
and spatially explicit clustering of DNA sequences with BAPS software. Mol Biol Evol, 30:1224–1228.

[Chevenet et al., 2006] Chevenet, F., Brun, C., Banuls, A., Jacq, B., and Christen, R. (2006). Treedyn:
towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics, 7.

[Chiaromonte et al., 2002] Chiaromonte, F., Yap, V., and Miller, W. (2002). Scoring pairwise genomic
sequence alignments. Pac Symp Biocomput, pages 115–26.

[Chin et al., 2011] Chin, C. S., Sorenson, J., Harris, J. B., Robins, W. P., Charles, R. C., Jean-Charles,
R. R., Bullard, J., Webster, D. R., Kasarskis, A., Peluso, P., Paxinos, E. E., Yamaichi, Y., Calderwood,
S. B., Mekalanos, J. J., Schadt, E. E., and Waldor, M. K. (2011). The origin of the haitian cholera
outbreak strain. New England Journal of Medicine, 364:33–42.

[Clement et al., 2010] Clement, N., Snell, Q., Clement, M., Hollenhorst, P., Purwar, J., Graves, B.,
Cairns, B., and Johnson, E. (2010). The GNUMAP algorithm: unbiased probabilistic mapping of
oligonucleotides from next-generation sequencing. Bioinformatics, 26:38–45.

[Consortium, 2001] Consortium, I. H. G. S. (2001). Initial sequencing and analysis of the human genome.
Nature, 409:860–921.

[David et al., 2011] David, M., Dzamba, M., Lister, D., Ilie, L., and Brudno, M. (2011). SHRiMP2:
Sensitive yet practical short read mapping. Bioinformatics, 27:1011–1012.

[Dayhoff and Schwartz, 1978] Dayhoff, M. O. and Schwartz, R. M. (1978). Chapter 22: A model of
evolutionary change in proteins. In Atlas of Protein Sequence and Structure.

[Dumas and Ninio, 1982] Dumas, J. and Ninio, J. (1982). Efficient algorithms for folding and comparing
nucleic acid sequences. Nucl Acids Res, 10:197–206.

[Durbin et al., 1998] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological sequence
analysis: probabilistic models of proteins and nucleic acids, chapter Pairwise alignment. Cambridge
University Press.

73

[Eddy, 2011] Eddy, S. R. (2011). Accelerated profile HMM searches. PLoS Comput Biol, 7(10):e1002195.

[Edgar, 2010] Edgar, R. (2010). Search and clustering orders of magnitude faster than blast. Bioinfor-
matics, 26(19):2460–2461.

[Ehrlich, 2011] Ehrlich, S. D. (2011). MetaHIT: The European Union Project on Metagenomics of the
Human Intestinal Tract, pages 307–316. Springer, London.

[English et al., 2012] English, A. C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J., Qin, X., Muzny,
D. M., Reid, J. G., Worley, K. C., and Gibbs, R. A. (2012). Mind the gap: upgrading genomes with
pacific biosciences rs long-read sequencing technology. PLoS ONE, 7:doi:10.1371/journal.pone.0047768.

[Farach, 1997] Farach, M. (1997). Optimal suffix tree construction with large alphabets. In 38th IEEE
Symposium on Foundations of Computer Science, pages 137–143.

[Farrar, 2007] Farrar, M. (2007). Striped Smith-Waterman speeds database searches six times over other
SIMD implementations. Bioinformatics, 23:156–161.

[Felsenstein, 1989] Felsenstein, J. (1989). Phylip - phylogeny inference package. Cladistics, 5:164–166.

[Ferragina and Manzini, 2000] Ferragina, P. and Manzini, G. (2000). Opportunistic data structures with
applications. FOCS ’00 Proceedings of the 41st Annual Symposium on Foundations of Computer
Science, pages 390–398.

[Fierera et al., 2012] Fierera, N., Leff, J., Adams, B., Nielsen, U., Bates, S., Lauber, C., Owense, S.,
Gilbert, J., Wall, D., and Caporaso, J. (2012). Cross-biome metagenomic analyses of soil microbial
communities and their functional attributes. Proc Natl Acad Sci, 109:doi:10.1073/pnas.1215210110.

[Fleischmann et al., 1995] Fleischmann, R., Adams, M., White, O., Clayton, R., Kirkness, E., Kerlavage,
A., Bult, C., Tomb, J., Dougherty, B., and Merrick, J.M., e. a. (1995). Whole-genome random sequenc-
ing and assembly of Haemophilus influenzae rd. Science, 269:496–512.

[Flicek et al., 2013] Flicek, P., Ahmed, I., Amode, M., Barrell, D., Beal, K., Brent, S., Carvalho-Silva, D.,
Clapham, P., Coates, G., Fairley, S., Fitzgerald, S., Gil, L., Garcia-Giron, C., Gordon, L., Hourlier, T.,
Hunt, S., Juettemann, T., Kähäri, A., Keenan, S., Komorowska, M., Kulesha, E., Longden, I., Maurel,
T., McLaren, W., Muffato, M., Nag, R., Overduin, B., Pignatelli, M., Pritchard, B., Pritchard, E.,
Riat, H., Ritchie, G., Ruffier, M., Schuster, M., Sheppard, D., Sobral, D., Taylor, K., Thormann, A.,
Trevanion, S., White, S., Wilder, S., Aken, B., Birney, E., Cunningham, F., Dunham, I., Harrow, J.,
Herrero, J., Hubbard, T., Johnson, N., Kinsella, R., Parker, A., Spudich, G., Yates, A., Zadissa, A.,
and Searle, S. (2013). GenBank. Nucl Acids Res, 41:D48–D55.

[Fonseca et al., 2010] Fonseca, V., Carvalho, G., Sung, W., Johnson, H., Power, D., Neill, S., Packer,
M., Blaxter, M., Lambshead, P., Thomas, W., and Creer, S. (2010). Second-generation environmental
sequencing unmasks marine metazoan biodiversity. Nat Commun, 1:doi:10.1038/ncomms1095.

[Frith et al., 2010] Frith, M. C., Hamada, M., and Horton, P. (2010). Parameters for accurate genome
alignment. BMC Bioinformatics, 11.

[Goecks et al., 2010] Goecks, J., Nekrutenko, A., Taylor, J., and Team, T. G. (2010). Galaxy: a compre-
hensive approach for supporting accessible, reproducible, and transparent computational research in
the life sciences. Genome Biol, 11(8):R86.

[Goffeau et al., 1996] Goffeau, A., Barrell, B., Bussey, H., Davis, R., Dujon, B., Feldmann, H., Galibert,
F., Hoheisel, J., Jacq, C., Johnston, M., Louis, E., Mewes, H., Murakami, Y., Philippsen, P., Tettelin,
H., and Oliver, S. (1996). Life with 6000 genes. Science, 274:563–567.

[Gonnet et al., 1992] Gonnet, G., Baeza-Yates, R., and Snider, T. (1992). New indices for text: PAT trees
and PAT arrays. In Information Retrieval: Data Structures and Algorithms, chapter 5, pages 66–82.

[Gordon et al., 1986] Gordon, L., Schilling, M. F., and Waterman, M. S. (1986). An extreme value theory
for long head runs. Probab Th Rel Fields, 72:279–287.

74 Bibliography

[Gotoh, 1982] Gotoh, O. (1982). An improved algorithm for matching biological sequences. J Mol Biol,
162:705–708.

[GridION, 2012] GridION, O. N. (2012). Oxford nanopore introduces DNA ‘strand sequencing’ on the
high-throughput GridION platform and presents MinION, a sequencer the size of a USB memory stick.
https://www.nanoporetech.com/news/press-releases/view/39. [Online; accessed 10-Oct-2013].

[Gusfield, 1997] Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, New York.

[Hatem et al., 2013] Hatem, A., Bozda, D., Toland, A., and Catalyurek, U. (2013). Benchmarking short
sequence mapping tools. BMC Bioinformatics, 14:doi:10.1186/1471–2105–14–184.

[Heinz et al., 2002] Heinz, S., Zobel, J., and Williams, H. E. (2002). Burst tries: A fast, efficient data
structure for string keys. ACM Transactions on Information Systems, 20:192–223.

[Henikoff and Henikoff, 1992] Henikoff, S. and Henikoff, J. G. (1992). Amino acid substitution matrices
from protein blocks. In Proc Natl Acad Sci, volume 89.

[Heppner, 1923] Heppner, M. J. (1923). The factor for bitterness in the sweet almond. Genetics, 8:390–
391.

[Hingamp et al., 2013] Hingamp, P., Grimsley, N., Acinas, S. G., Clerissi, C., Subirana, L., Poulain, J.,
Ferrera, I., Sarmento, H., Villar, E., Lima-Mendez, G., Faust, K., Sunagawa, S., Claverie, J. M., Moreau,
H., Desdevises, Y., Bork, P., Raes, J., de Vargas, C., Karsenti, E., Kandels-Lewis, S., Jaillon, O., Not,
F., Pesant, S., Wincker, P., and Ogata, H. (2013). Exploring nucleo-cytoplasmic large DNA viruses in
Tara Oceans microbial metagenomes. ISME J, page doi: 10.1038/ismej.2013.59.

[Hoffmann et al., 2009] Hoffmann, S., Otto, C., Kurtz, S., Sharma, C., Khaitovich, P., Vogel, J., Stadler,
P., and Hackermüller, J. (2009). Fast mapping of short sequences with mismatches, insertions and
deletions using index structures. PLoS Comput Biol, 5:doi:10.1371/journal.pcbi.1000502.

[Holtgrewe, 2010] Holtgrewe, M. (2010). Mason - a read simulator for second generation sequencing data.
Technical Report TR-B-10-06.

[Holtgrewe et al., 2011] Holtgrewe, M., Emde, A. K., Weese, D., and Reinert, K. (2011). A novel
and well-defined benchmarking method for second generation read mapping. BMC Bioinformatics,
12:doi:10.1186/1471–2105–12–21.

[Homer et al., 2009] Homer, N., Merriman, B., and Nelson, S. (2009). BFAST: An alignment tool for
large scale genome resequencing. PLoS ONE, 4:doi:10.1371/journal.pone.0007767.

[Hopcroft et al., 2004] Hopcroft, J., Motwani, R., and Ullman, J. (2004). Chapter 2.3.5 Equivalence of
deterministic and nondeterministic finite automata. Pearson Education, Boston, MA, 3 edition.

[Huang et al., 2009] Huang, Y., Gilna, P., and Li, W. (2009). Identification of ribosomal RNA genes in
metagenomic fragments. Bioinformatics, 25:1338–1340.

[Iengar, 2012] Iengar, P. (2012). An analysis of substitution, deletion and insertion mutations in cancer
genes. Nucl Acids Res, 40:6401–6413.

[Jabbari and Bernardi, 2004] Jabbari, K. and Bernardi, G. (2004). Cytosine methylation and CpG, TpG
(CpA) and TpA frequencies. Gene, 26:143–149.

[Janda and Abbott, 2007] Janda, J. and Abbott, S. (2007). 16s rRNA gene sequencing for bacterial
identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J Clin Microbiol, 45:2761–2764.

[Kallmeyer et al., 2012] Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C., and D’Hondt, S.
(2012). Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl
Acad Sci, 109:16213–16216.

[Karlin and Altschul, 1990] Karlin, S. and Altschul, S. F. (1990). Methods for assessing the statistical
significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci,
87:2264–2268.

https://www.nanoporetech.com/news/press-releases/view/39

75

[Khosravi et al., 2013] Khosravi, Y., Rehvathy, V., Wee, Y., Wang, S., Baybayan, P., Singh, S., Ashby,
M., Ong, J., Amoyo, A., Seow, S., Choo, S., Perkins, T., Chua, E., Tay, A., Marshall, B., Loke, M.,
Goh, K., Pettersson, S., and Vadivelu, J. (2013). Comparing the genomes of helicobacter pylori clinical
strain UM032 and Mice-adapted derivatives. Gut Pathogens, 5:doi:10.1186/1757–4749–5–25.

[Kim and Kececioglu, 2007] Kim, E. and Kececioglu, J. (2007). Inverse sequence alignment from partial
examples. In Algorithms in Bioinformatics, 7th International Workshop (WABI), pages 359–370.

[Kopylova et al., 2013] Kopylova, E., Noé, L., Da Silva, C., Berthelot, J.-F., Alberti, A., Aury, J.-M., and
Touzet, H. (2013). Deciperhing metatranscriptomic data. In Picardi, E., editor, Methods in Molecular
Biology, page (to appear).

[Kopylova et al., 2012] Kopylova, E., Noé, L., and Touzet, H. (2012). SortMeRNA: fast and accurate
filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics, 28:3211–3217.

[Korf et al., 2003] Korf, I., Yandell, M., and Bedell, J. (2003). Chapter 4 Sequence Similarity, pages
55–71. O’Reilly, Sebastopol, CA.

[Krohn-Molt et al., 2013] Krohn-Molt, I., Wemheuer, B., Alawi, M., Poehlein, A., Güllert, S., Schmeisser,
C., Pommerening-Röser, A., Grundhoff, A., Daniel, R., Hanelt, D., and Streit, W. R. (2013).
Metagenome survey of a multispecies and algae-associated biofilm reveals key elements of bacterial-
algae interactions in photobioreactors. Applied and Environmental Microbiology.

[Kumar and Filipski, 2007] Kumar, S. and Filipski, A. (2007). Multiple sequence alignment: In pursuit
of homologous DNA positions. Genome Res, 17:127–135.

[Kurtz, 1999] Kurtz, S. (1999). Reducing the space requirement of suffix trees. Softw Pract Exper,
29:1149–1171.

[Kurtz et al., 2004] Kurtz, S., Phillippy, A., Delcher, A., Smoot, M., Shumway, M., Antonescu, C.,
and Salzberg, S. (2004). Versatile and open software for comparing large genomes. Genome Biol,
5:doi:10.1186/gb–2004–5–2–r12.

[Kypr et al., 1989] Kypr, J., Mrázek, J., and Reich, J. (1989). Nucleotide composition bias and CpG
dinucleotide content in the genomes of HIV and HTLV 1/2. Biochimica et Biophysica Acta, 1009:280–
282.

[Lam et al., 2008] Lam, T., Sung, W., Tam, S., Wong, C., and Yiu, S. (2008). Compressed indexing and
local alignment of DNA. Bioinformatics, 24:791–797.

[Langmead and Salzberg, 2012] Langmead, B. and Salzberg, S. (2012). Fast gapped-read alignment with
bowtie 2. Nat Methods, 9:357–359.

[Langmead et al., 2009] Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. (2009). Ultrafast
and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol,
10:doi:10.1186/gb–2009–10–3–r25.

[Lee et al., 2011] Lee, J., Yi, H., and Chun, J. (2011). rRNAselector: a computer program for selecting
ribosomal RNA encoding sequences from metagenomic and metatranscriptomic shotgun libraries. J
Microbiol, 49:689–91.

[Leimena et al., 2013] Leimena, M., Ramiro-Garcia, J., Davids, M., van den Bogert, B., Smidt, H., Smid,
E., Boekhorst, J., Zoetendal, E., Schaap, P., and Kleerebezem, M. (2013). A comprehensive metatran-
scriptome analysis pipeline and its validation using human small intestine microbiota datasets. BMC
Genomics, 14(1):530.

[Lemay et al., 2013] Lemay, M., Henry, P., Lamb, C., Robson, K., and M.A., R. (2013). Novel genomic
resources for a climate change sensitive mammal: characterization of the American pika transcriptome.
BMC Genomics, 14:doi: 10.1186/1471–2164–14–311.

[Letsch et al., 2010] Letsch, H. O., Kück, P., Stocsits, R., and Misof, B. (2010). The impact of rRNA
secondary structure consideration in alignment and tree reconstruction: Simulated data and a case
study on the phylogeny of hexapods. Mol Biol Evol, 27:2507–2521.

76 Bibliography

[Levene et al., 2003] Levene, M., Korlach, J., Turner, S., Foquet, M., Craighead, H., and Webb, W.
(2003). Zero-mode waveguides for single-molecule analysis at high concentrations. Science, 5607:682–
686.

[Li, 2012] Li, H. (2012). Whole genome simulation. http://sourceforge.net/apps/mediawiki/dnaa/
index.php?title=Whole_Genome_Simulation.

[Li and Durbin, 2009] Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with
Burrows-Wheeler Transform. Bioinformatics, 25:1754–60.

[Li and Homer, 2010] Li, H. and Homer, N. (2010). A survey of sequence alignment algorithms for next-
generation sequencing. Briefings in Bioinformatics, 11:473–483.

[Li et al., 2008] Li, H., Ruan, J., and Durbin, R. (2008). Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Res, 18:1851–1858.

[Li et al., 2009] Li, R., Yu, C., and Li, Y. (2009). SOAP2: an improved ultrafast tool for short read
alignment. Bioinformatics, 25:1966–1967.

[Lipman and Pearson, 1985] Lipman, D. and Pearson, W. (1985). Rapid and sensitive protein similarity
searches. Science, 227:1435–1441.

[Lisi, 2007] Lisi, M. (2007). Some remarks on the cantor pairing function. Le Matematiche, LXII:55–65.

[Loman et al., 2012] Loman, N., Misra, R., Dallman, T., Constantinidou, C., Gharbia, S., Wain, J., and
Pallen, M. (2012). Performance comparison of benchtop high-throughput sequencing platforms. Nat
Biotechnol, 30:434–439.

[Ludwig et al., 2004] Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Buchner, A., Lai, T.,
Foè, W., Brettske, I., Gerber, S., Ginhart, A., Gross, O., Grumann, S., Hermann, S., Jost, R., Nig, A.,
Liss, T., Ûmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, R., Stuckmann, N.,
Vilbig, E., Lenke, M., Ludwig, T., and Bode, A. (2004). ARB: A software environment for sequence
data. Nucl Acids Res, 32:1363–1371.

[Lupski and Stankiewics, 2005] Lupski, J. and Stankiewics, P. (2005). Genomic disorders: Molecular
mechanisms for rearrangements and conveyed phenotypes. PLoS Genet, 1:e49.

[Ma et al., 2002] Ma, B., Tromp, J., and Li, M. (2002). PatternHunter: faster and more sensitive homol-
ogy search. Bioinformatics, 18:440–445.

[Ma et al., 2013] Ma, C.-Y., Lin, S.-H., Lee, C.-C., Tang, C. Y., Berger, B., and Liao, C.-S. (2013). Recon-
struction of phyletic trees by global alignment of multiple metabolic networks. BMC Bioinformatics,
14:S12.

[Manber and Myers, 1993] Manber, U. and Myers, E. (1993). Suffix arrays: a new method for on-line
string searches. SIAM J Comput, 22:935–948.

[Marco-Sola et al., 2012] Marco-Sola, S., Sammeth, M., Guigó, R., and Ribeca, P. (2012). The GEM
mapper: fast, accurate and versatile alignment by filtration. Nat Methods, 9:1185–1188.

[Mashayekhi and Ronaghi, 2007] Mashayekhi, F. and Ronaghi, M. (2007). Analysis of read length limit-
ing factors in pyrosequencing chemistry. Anal Biochem, 363:275–287.

[McCreight, 1976] McCreight, E. (1976). A space-economical suffix tree construction algorithm. J ACM,
23:262–272.

[Mears et al., 2002] Mears, J., Cannone, J., Stagg, S., Gutell, R., Agrawal, R., and Harvey, S. (2002).
Modeling a minimal ribosome based on comparative sequence analysis. J Mol Biol, 321:215–34.

[Meek et al., 2003] Meek, C., Patel, J. M., and Kasetty, S. (2003). OASIS: An online and accurate
technique for local-alignment searches on biological sequences. In In VLDB, pages 910–921.

[Mihov and Schulz, 2004] Mihov, S. and Schulz, K. (2004). Fast approximate search in large dictionaries.
J Comput Ling, 30:451–477.

http://sourceforge.net/apps/mediawiki/dnaa/index.php?title=Whole_Genome_Simulation
http://sourceforge.net/apps/mediawiki/dnaa/index.php?title=Whole_Genome_Simulation

77

[Mitankin, 2005] Mitankin, P. (2005). Universal Levenshtein automata. building and properties. Master’s
thesis, Sofia University, Bulgaria.

[Morozova et al., 2007] Morozova, D., Mohlmann, D., and Wagner, D. (2007). Survival of methanogenic
archaea from siberian permafrost under simulated martian thermal conditions. Orig Life Evol Biosph,
37:189–200.

[Nakamura et al., 2011] Nakamura, K., Oshima, T., Morimoto, T., Ikeda, S., Yoshikawa, H., Shiwa,
Y., Ishikawa, S., Linak, M., Hirai, A., Takahashi, H., Altaf-Ul-Amin, M., Ogasawara, N., and
Kanaya, S. (2011). Sequence-specific error profile of Illumina sequencers. Nucl Acids Res, 39:doi:
10.1093/nar/gkr344.

[Nakamura et al., 2008] Nakamura, S., Maeda, N., Miron, I., Yoh, M., Izutsu, K., Kataoka, C., Honda,
T., Yasunaga, T., Nakaya, T., Kawai, J., Hayashizaki, Y., Horii, T., and Iida, T. (2008). Metagenomic
diagnosis of bacterial infections. Emerg Infect Dis, 14:1784–1786.

[Navarro and Baeza-Yates, 2000] Navarro, G. and Baeza-Yates, R. (2000). A hybrid indexing method for
approximate string matching. J of Discrete Algorithms, 1:205–239.

[Navarro and Mäkinen, 2007] Navarro, G. and Mäkinen, V. (2007). Compressed full-text indexes. ACM
Comput Surv, 39:doi:10.1145/1216370.1216372.

[Nawrocki et al., 2009] Nawrocki, E., Kolbe, D., and Eddy, S. (2009). Infernal 1.0: inference of RNA
alignments. Bioinformatics, 25:1335–7.

[Needleman and Wunsch, 1970] Needleman, S. and Wunsch, C. (1970). A general method applicable to
the search for similarities in the amino acid sequence of two proteins. J Mol Biol, 48:443–453.

[Newton et al., 2010] Newton, A., Fitt, B., Atkins, S., Walters, D., and Daniell, T. (2010). Pathogenesis,
parasitism and mutualism in the trophic space of microbe-plant interactions. Trends Microbiol, 18:365–
373.

[Nicholsona et al., 2013] Nicholsona, W., Leonarda, M., Fajardo-Cavazosa, P., Panayotovab, N.,
Farmerieb, W., Tripletta, E., and Schuergerc, A. (2013). Complete genome sequence of serratia lique-
faciens strain ATCC 27592. Genome Announc, 1:doi: 10.1128/genomeA.00548–13.

[Nyrén, 2007] Nyrén, P. (2007). The history of pyrosequencing. Methods Mol Biol, 373:1–14.

[Nystedt et al., 2013] Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, Lin, Y. C., Scofield, D. G.,
Vezzi, F., Delhomme, N., Giacomello, S., Alexeyenko, A., Vicedomini, R., Sahlin, K., Sherwood, E.,
Elfstrand, M., Gramzow, L., Holmberg, K., Hallman, J., Keech, O., Klasson, L., Koriabine, M., Ku-
cukoglu, M., Kaller, M., Luthman, J., and Lysholm (2013). The Norway spruce genome sequence and
conifer genome evolution. Nature, 497:579–584.

[Olsen et al., 1999] Olsen, R., Bundschuh, R., and Hwa, T. (1999). Rapid assessment of extremal statistics
for gapped local alignment. Proc Int Conf Intell Syst Mol Biol, pages 211–222.

[Ouyang and Buell, 2004] Ouyang, S. and Buell, C. R. (2004). The TIGR plant repeat databases: a
collective resource for the identification of repetitive sequences in plants. Nucl Acids Res, 32:D360–
363.

[Park et al., 2009] Park, Y., Sheetlin, S., and Spouge, J. L. (2009). Estimating the Gumbel scale param-
eter for local alignment of random sequences by importance sampling with stopping times. Ann Stat,
37:3697.

[Pearson, 1991] Pearson, W. (1991). Searching protein sequence libraries: Comparison of the sensitivity
and selectivity of the Smith-Waterman and FASTA algorithms. Genomics, 11:635–650.

[Pearson and Lipman, 1988] Pearson, W. and Lipman, D. (1988). Improved tools for biological sequence
comparison. Proc Natl Acad Sci, 85:2444–2448.

[Pisanti et al., 2006] Pisanti, N., Carvalho, A., Marsan, L., and Sagot, M.-F. (2006). Risotto: Fast ex-
traction of motifs with mismatches. In Proceedings of the 7th Latin American Theoretical Informatics
Symposium, volume 3887.

78 Bibliography

[Pruesse et al., 2007] Pruesse, E., Quast, C., Knittel, K., Fuchs, B., Ludwig, W., Peplies, J., and Glöckner,
F. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA
sequence data compatible with ARB. Nucl Acids Res, 35:7188–7196.

[Pruitt et al., 2009] Pruitt, K., Tatusova, T., Klimke, W., and Maglott, D. (2009). NCBI reference se-
quences: current status, policy and new initiatives. Nucl Acids Res, 37:D32–D36.

[Puglisi et al., 2007] Puglisi, S., Smyth, W., and Turpin, A. (2007). A taxonomy of suffix array construc-
tion algorithms. ACM Computing Surveys, 39:1–31.

[Qi et al., 2004] Qi, J., Luo, H., and Hao, B. (2004). CVTree: a phylogenetic tree reconstruction tool
based on whole genomes. Nucl Acids Res, 1:W45–7.

[Qin et al., 2009] Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T.,
Pons, N., Levenez, F., Yamada, T., Mende, D., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang,
H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J.-M., Hansen, T., Le Paslier, D.,
Linneberg, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu,
C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Dore,
J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Bork, P., Ehrlich, S. D.,
and Wang, J. (2009). A human gut microbial gene catalogue established by metagenomic sequencing.
Nature, 464:59–65.

[Reis et al., 2012] Reis, D. C., Belazzougui, D., Botelho, F. C., and Ziviani, N. (2012). CMPH: C Minimal
Perfect Hashing library.

[Richter et al., 2008] Richter, D. C., Ott, F., Auch, A. F., Schmid, R., and Huson, D. H. (2008). MetaSim–
a sequencing simulator for genomics and metagenomics. PLoS ONE, 3(10):e3373.

[Roberts et al., 2013] Roberts, R. J., Carneiro, M. O., and Schatz, M. C. (2013). The advantages of
SMRT sequencing. Genome Biol, 14:405.

[Rognes, 2011] Rognes, T. r. (2011). Faster Smith-Waterman database searches with intersequence SIMD
parallelisation. BMC Bioinformatics, 12:221.

[Ronaghi et al., 1996] Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlén, M., and Nyrén, P. (1996).
Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem, 242:84–89.

[Ronaghi et al., 1998] Ronaghi, M., Uhlén, M., and Nyrén, P. (1998). A sequencing method based on
real-time pyrophosphate. Science, 281:363–365.

[Ross et al., 2013] Ross, M., Russ, C., Costello, M., Hollinger, A., Lennon, N., Hegarty, R., Nusbaum,
C., and Jaffe, D. (2013). Characterizing and measuring bias in sequence data. Genome Biol,
14:doi:10.1186/gb–2013–14–5–r51.

[Rothberg et al., 2011] Rothberg, J., Hinz, W., Rearick, T., Schultz, J., Mileski, W., Davey, M., Leamon,
J., Johnson, K., Milgrew, M., Edwards, M., Hoon, J., Simons, J., Marran, D., Myers, J., Davidson, J.,
Branting, A., Nobile, J., Puc, B., Light, D., Clark, T., Huber, M., Branciforte, J., Stoner, I., Cawley,
S., Lyons, M., Fu, Y., Homer, N., Sedova, M., Miao, X., Reed, B., Sabina, J., Feierstein, E., Schorn,
M., Alanjary, M., Dimalanta, E., Dressman, D., Kasinskas, R., Sokolsky, T., Fidanza, J., Namsaraev,
E., McKernan, K., Williams, A., Roth, G., and Bustillo, J. (2011). An integrated semiconductor device
enabling non-optical genome sequencing. Nature, 475:348–352.

[Russell and Barton, 1992] Russell, R. and Barton, G. (1992). Multiple protein sequence alignment from
tertiary structure comparison: assignment of global and residue confidence levels. Proteins, 14:309–323.

[Russo et al., 2009] Russo, L., Navarro, G., Oliveira, A., and Morales, P. (2009). Approximate string
matching with compressed indexes. Algorithms, 2:1105–1136.

[Saitou and Ueda, 1994] Saitou, N. and Ueda, S. (1994). Evolutionary rates of insertion and deletion in
noncoding nucleotide sequences of Primates. Mol Biol and Evol, 11:504–512.

79

[Salama and Stekel, 2013] Salama, R. and Stekel, D. (2013). A non-independent energy-based multiple
sequence alignment improves prediction of transcription factor binding sites. Bioinformatics, page
doi:10.1093/bioinformatics/btt463.

[Sanger et al., 1977] Sanger, F., Air, G., Barrell, B., Brown, N., Coulson, A., Fiddes, J., Hutchison, C.,
Slocombe, P., and Smith, M. (1977). Nucleotide sequence of bacteriophage φX174 DNA. Nature,
265:687–695.

[Schmieder et al., 2012] Schmieder, R., Lim, Y., and Edwards, R. (2012). Identification and removal of
ribosomal RNA sequences from metatranscriptomes. Bioinformatics, 28:433–435.

[Schulz and Mihov, 2002] Schulz, K. and Mihov, S. (2002). Fast string correction with Levenshtein au-
tomata. IJDAR, 5:67–85.

[Segata and Huttenhower, 2011] Segata, N. and Huttenhower, C. (2011). Toward an efficient method
of identifying core genes for evolutionary and functional microbial phylogenies. PLoS ONE,
6:doi:10.1371/journal.pone.0024704.

[Sheetlin et al., 2005] Sheetlin, S., Park, Y., and Spouge, J. L. (2005). The Gumbel pre-factor k for
gapped local alignment can be estimated from simulations of global alignment. Nucl Acids Res, 33:4987–
4994.

[Sinha and Zobel, 2004] Sinha, R. and Zobel, J. (2004). Cache-conscious sorting of large sets of strings
with dynamic tries. ACM JEA, 9.

[Sinha et al., 2006] Sinha, R., Zobel, J., and Ring, D. (2006). Cache-efficient string sorting using copying.
ACM JEA, 11.

[Smit et al., 2008] Smit, A., Hubley, R., and Green, P. (2008). Repeatmasker open-3.0. http://www.

repeatmasker.org.

[Smith et al., 1986] Smith, L., Sanders, J., Kaiser, R., Hughes, P., Dodd, C., Connell, C., Heiner, C.,
Kent, S., and Hood, L. (1986). Fluorescence detection in automated DNA sequence analysis. Nature,
321:674–679.

[Smith and Waterman, 1981] Smith, T. and Waterman, M. (1981). Identification of common molecular
subsequences. J Mol Biol, 147:195–197.

[Sorek and Cossart, 2010] Sorek, R. and Cossart, P. (2010). Prokaryotic transcriptomics: a new view on
regulation, physiology and pathogenicity. Nat Rev Genet, 11:9–16.

[Staden, 1979] Staden, R. (1979). A strategy of DNA sequencing employing computer programs. Nucl
Acids Res, 6.

[States et al., 1991] States, D., Gish, W., and Altschul, S. (1991). Improved sensitivity of nucleic acid
database searches using application-specific scoring matrices. Methods, 3:66–70.

[Sved and Bird, 1990] Sved, J. and Bird, A. (1990). The expected equilibrium of the CpG dinucleotide
in vertebrate genomes under a mutation model. Proc Natl Acad Sci, 87:4692–4696.

[Turnbaugh et al., 2007] Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R.,
and Gordon, J. I. (2007). The human microbiome project. Nature, 449:804–810.

[Ukkonen, 1995] Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica, 14:249–260.

[Venter et al., 2001] Venter, J., Adams, M., Myers, E., Li, P., Mural, R., Sutton, G., Smith, H., Yandell,
M., Evans, C., and Holt, R. (2001). The sequence of the human genome. Science, 291:1304–1351.

[Walser et al., 2008] Walser, J., Ponger, L., and Furano, A. (2008). CpG dinucleotides and the mutation
rate of non-CpG DNA. Genome Res, 18:1403–1414.

[Wandelt et al., 2012] Wandelt, S., Rheinländer, A., Bux, M., Thalheim, L., Haldemann, B., and Leser,
U. (2012). Data management challenges in next generation sequencing. Datenbank-Spektrum, 12:161–
171.

http://www.repeatmasker.org
http://www.repeatmasker.org

80 Bibliography

[Wang and Samudrala, 2006] Wang, K. and Samudrala, R. (2006). Incorporating background frequency
improves entropy-based residue conservation measures. BMC Bioinformatics, 7:385.

[Waterman and Vingron, 1994] Waterman, M. S. and Vingron, M. (1994). Rapid and accurate estimates
of statistical significance for sequence data base searches. Proc Natl Acad Sci, 91:4625–4628.

[Weiner, 1973] Weiner, P. (1973). Linear pattern matching algorithms. 14th Annual IEEE Symp Switch-
ing & Automata Theory, pages 1–11.

[Wilbur and Lipman, 1983] Wilbur, W. and Lipman, D. (1983). Rapid similarity searches of nucleic acid
and protein data banks. Proc Natl Acad Sci, 80:726–730.

[Wommack et al., 2008] Wommack, K. E., Bhavsar, J., and Ravel, J. (2008). Metagenomics: read length
matters. Appl Environ Microbiol, 74:1453–1463.

[Yan et al., 2013] Yan, Y., Xin, A., Zhu, G., Huang, H., Liu, Q., Shao, Z., Zang, Y., Chen, L., Sun, Y.,
and Gao, H. (2013). Complete genome sequence of a novel natural recombinant porcine reproductive
and respiratory syndrome virus isolated from a pig farm in yunnan province, southwest china. Genome
Announc, 1:doi: 10.1128/genomeA.00003–12.

[Yang and Yoder, 1999] Yang, Z. and Yoder, A. (1999). Estimation of the transition/transversion rate
bias and species sampling. J Mol Evol, 48:274–283.

[Yi et al., 2011] Yi, H., Cho, Y., Won, S., Lee, J., Jin, Y., Kim, S., Schroth, G., Luo, S., and J., C.
(2011). Duplex-specific nuclease efficiently removes rRNA for prokaryotic RNA-seq. Nucl Acids Res,
39:doi:10.1093/nar/gkr617.

[Zhao et al., 2012] Zhao, M., Lee, W. P., Garrison, E., and Marth, G. T. (2012). SSW library: An SIMD
smith-waterman C/C++ library for use in genomic applications. http://arxiv.org/abs/1208.6350.

[Zhao and Boerwinkle, 2002] Zhao, Z. and Boerwinkle, E. (2002). Neighboring-nucleotide effects on single
nucleotide polymorphisms: A study of 2.6 million polymorphisms across the human genome. Genome
Res, 12:1679–1686.

http://arxiv.org/abs/1208.6350

List of Figures

1.1 Global (1-2) and local (3-4) alignments for strings lalunaebella and
laluneestbelle. 16

1.2 Rules to construct the Smith-Waterman alignment table M of size n×m under a
linear gap penalty model . 18

1.3 Construction of Smith-Waterman table using dynamic programming 19

1.4 Optimal alignment trace back using Smith-Waterman table 19

1.5 Optimal local alignment for sequences ATAGCCTTT and ATCGCCTT using the Smith-
Waterman algorithm. 20

1.6 Rules to construct the Smith-Waterman alignment table M of size n ×m under
an affine gap penalty model . 20

1.7 A diagram of the relationships between the three states used for affine gap align-
ment [Durbin et al., 1998] (note d < 0 and e < 0) 21

1.8 Transition and transversion mutations . 23

1.9 Sanger sequencing using the chain termination method, automated version using
fluorescently labeled nucleotides and computer reading 26

1.10 Second and third generation sequencing technologies 28

1.11 Seed-and-extend strategy to reduce the amount of search space examined by the
dynamic programming algorithm for aligning sequences x and y 31

81

82 List of Figures

1.12 Illustration of the suffix tree for the sequence x = tatagata$. The leaf
nodes hold the starting position (in color red) of each suffix in x.
A preorder traversal of this suffix tree beginning from the root node
(marked as start) yields all suffices of x in lexicographical order, being
{$,a$,agata$,ata$,atagata$,gata$,ta$,tagata$,tatagata$}. To search for all occur-
rences of a string, we begin at the root node and follow the edges that match to
the characters of our string. The string (or at least its prefix) exists in the tree
if we exhaust all of the characters before or at a leaf node. For example, if we
search the string s = ata, we will finish at the inner node marked with [6,2]. The
green dashed path links together all leaf nodes in lexicographical order and the
[x,y] label at each inner node (except the root) gives the first and last position
of a leaf node reachable from the current inner node. Both of these are optional
as they are only useful for finding all of the locations at which s occurs (other
methods exist too). To find all positions at which s occurs, we descend to the first
lexicographically least leaf node and output its position (being 6). Then we follow
the paths linking the leaf nodes and output their positions until we reach the last
position (being 2). 34

1.13 Illustration of the enhanced suffix array (ESA) for the sequence x = tatagata$.
The ESA consists of a suffix array (SA) and additional tables such as the longest-
common-prefix (LCP) or Burrows-Wheeler-Transform (BWT). The SA is a list
of positions of all suffices of x in lexicographical order. A preorder traversal of
the suffix tree in Figure 1.12 will yield the same list as given in the SA[i] col-
umn. The LCP array stores the length of the longest common prefix between a
pair of consecutive suffices in the suffix array. For example, LCP[5] = 3 because
x[SA[5]..9] = atagata$ and x[SA[4]..9] = ata$. The construction of the BWT array
is given in Figure 1.14. The BWT is frequently used to quicken navigation of the
suffix array. 36

1.14 Construction of the Burrows-Wheeler Transform for the sequence x = tatagata$.
In bioinformatics, the BWT is often simultaneously used for text compression
and indexing. To construct the BWT of x, first all rotations of x are determined
(Step 1). Next, the rotations are sorted lexicographically (Step 2) and the last
character of each rotation is taken to construct the BWT (Step 3). The resulting
string BWT = attgtaa$ groups together runs of similar characters which can be
easier compressed using run-length encoding. Morever, the BWT can be reversed
into the original string x using a simple inverse transformation algorithm (time to
compute same as sorting in Step 2). 37

2.1 Example of edit distance d = 1 for various strings. 39

2.2 The nondeterministic Levenshtein automaton for p = acctga and d = 2. The s#e

notation for each state corresponds to s number of characters read in the pattern
p and e number of errors recorded. The initial state is 0#0 and the six final states
are 4#0, 5#0, 5#1, 6#0, 6#1 and 6#2. Each non-final state has three outgoing arcs,
one for each type of edit operation. 40

83

2.3 Symbolic triangular area for non-accepting states of type I. The yellow
symbolic triangle (A) represents the set of all possible active states after the 2nd

letter x2 of an input word was read by the automaton. Similarly, after reading
the 3rd letter x3, the triangular area shifts one position to the right. The new
triangular area (B) will encompass all new states reached by transitions from
triangular area (A). Since neither (A) nor (B) contain a final state of type M ,
they fall under the same name of “symbolic triangular area for non-accepting
states of type I”. 43

2.4 Symbolic triangular area for accepting states of type M . The yellow
symbolic triangle represents all possible active states after the 4th letter x4 was
read by the automaton. This triangular area encompasses three of the six final
non-deterministic states {(M − 2)#0,(M − 1)#1 and M#2} and is known as the
accepting-state triangular area. All deterministic states derived from this area will
form accepting states in the universal Levenshtein automaton for d = 2. 43

2.5 Conceptual example of the universal deterministic Levenshtein automaton for
d = 1 (not all of the transitions are shown). To see whether the word W = atcctga
and the pattern p = acctga have Levenshtein distance ≤ 1, we first compute the
set of characteristic bitvectors representing them using Definition 2. The result-
ing characteristic bitvector array is χ = {0100, 0001, 1100, 1000, 100, 10, 1}. In the
universal Levenshtein automaton, the I states are the deterministic non-accepting
states of the symbolic triangular area shown in Figure 2.3. Similarly, the M states
are the deterministic accepting states of the symbolic triangular area shown in
Figure 2.4. The transitions between states are made using one bitvector from the
characteristic bitvector array. For each transition, the x character in the bitvector
is a joker and will accept both a ‘0’ or a ‘1’ in its corresponding position. Moreover,
if the joker character is found inside brackets, i.e. (x), then it is not obligatory
to exist in the bitvector. For example, the transition labeled as x1x(x) will ac-
cept the bitvectors 0101, 1100 and 111 (amongst other possibilities). However,
it will not accept the bitvectors 1001, 1000 and 11 (amongst other possibilities).
Beginning from the initial state (labeled ‘start’), each bitvector in χ is input to
the automaton in order and the transitions are followed accordingly. If the last
bitvector transition leads to an M state, then W and p match with d ≤ 1. Other-
wise if a null state is reached (meaning there does not exist a transition from the
current state corresponding the next bitvector) or an I state is reached using the
last bitvector in χ, then W and p do not match with d ≤ 1. 44

2.6 A non-deterministic Levenshtein automaton for the word w = acgt. The s#e

notation for each state corresponds to s number of characters read in the pattern
p and e number of errors recorded. The initial state is 0#0, the final states are
3#0, 4#0 and 4#1, and the active states are illustrated in blue color. The yellow
triangle represents the boundary of all possible active states after a character is
consumed by the automaton. The pattern p to be consumed is agt. The red binary
sequences are the characteristic bitvectors between the input pattern agt and the
automaton word acgt, defined in Section 2.3 of the paper. If a bit of a bitvector
is set to 1, the match transition is possible for active states in the adjacent left
column of the bit in the automaton. Otherwise, if a bit is set to 0, the match
transition is not permitted. Each step corresponds to consuming one character of
agt by the automaton. 45

84 List of Figures

2.7 The precomputed bitvector table for pattern p = $actaga covering all possibilities
of q for d = 1. The first bit in each entry of column i = 0 represents the $ symbol
and is always set to ‘0’. If the query q = actag was being searched, then the
highlighted set of bitvectors 0100, 0100, 0010, 0010, 101 would be passed to the
universal Levenshtein automaton. 46

2.8 The modification of the bitvector table from pattern p1 = $actaga to p2 = $ctagaa
for d = 1. Columns 0-2 of p2 are equal to columns 1-3 of p1, except for column
0, where the most significant bit (MSB) of every bitvector represents the symbol
$ and is set to ‘0’. Column 3 of p2 equals to column 4 of p1 with an additional
bit appended. The appended bit is set to ‘1’ in the bitvector corresponding to
the newly appended character, otherwise it is set to 0. Column 4 of p2 is equal
to column 3 of p2, although the MSB is not considered. The same rule applies to
column 5 of p2, where the two MSBs of the column 3 bitvectors are not considered. 46

2.9 Let k = 16, the Burst trie below is constructed on the first six 17-mers of a
reference sequence. The ‘char flag’ describes whether a pointer is set to a trie
node ‘1’, a bucket ‘2’ or neither ‘0’. Additional information on the origin of the
17-mer directly follows each element, as shown in the dashed bucket. 47

2.10 Lookup table and mini-burst trie index . 49

2.11 How to extend multiple k-mer matches into a longer homologous region using the
longest increasing subsequence of k-mer positions 52

3.1 18S rRNA secondary structure diagram showing the high conservation (blue areas)
of nucleotides in the primary structure. This diagram was generated by SSU-
ALIGN for a multiple alignment of 308 eukaryotic 18S rRNA. 56

3.2 Construction of Set 1 – 16S rRNA database with 80% identity 58

3.3 Construction of Set 2 – 16S rRNA database with 80% identity + truncated phylo.
tree . 58

3.4 Construction of Set 3 – 23S rRNA database with 95% identity 59

3.5 Construction of Set 4 – 23S rRNA database with 95% identity + truncated phylo-
genetic tree. Section of phylogenetic tree: 36 Planctomycetes, 14 Fibrobacteres, 44
Verrucomicrobia, 21 Chloroflexi_1, 6 Candidate division TM7, and 9 Lentisphaerae. 59

3.6 SortMeRNA results by varying parameters k (length of the sliding window) and
r (ratio of accepted windows) on Set 1 to Set 4 for Roche 454 simulated reads.
For each graph, the horizontal axis is for the sensitivity, and the vertical axis is for
the selectivity. Each curve corresponds to a different value for k: k = 14, 16, 18, 20.
Each dot on a curve corresponds to a different value for r. Below: Matthews
correlation coefficients for k = 18 and various values of r. 62

3.7 SortMeRNA results by varying parameters k (length of the sliding window) and
r (ratio of accepted windows) on Set 1 to Set 4 for Illumina simulated reads. For
each graph, the horizontal axis is for the sensitivity, and the vertical axis is for
the selectivity. Each curve corresponds to a different value for k: s = 14, 16, 18, 20.
Each dot on a curve corresponds to a different value for r. Below: Matthews
correlation coefficients for k = 18 and various values of r. 63

3.8 Construction of Set 5 – representative 16S rRNA database with 85% identity . . 65

85

3.9 Construction of Set 6 – representative 23S rRNA database with 98% identity . . 65

3.10 TEST 3: Venn diagram for reads classified as 16S rRNA by BLASTN, Meta-RNA,
SortMeRNA and riboPicker∗ in the SRR106861 metatranscriptome. 68

3.11 TEST 4: Venn diagram for reads classified as 23S rRNA by BLASTN, Meta-RNA,
SortMeRNA and riboPicker∗ in the SRR013513 metatranscriptome. 69

86 List of Figures

List of Tables

1.1 Specifications for various sequencing-by-synthesis technologies (taken from each
company’s official website 09/2013) . 30

3.1 TEST 1, SENSITIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and
300,000 Roche 454 (≥ 200nt) rRNA reads against a representative 16S rRNA
database of 7,659 sequences. 66

3.2 TEST 1, SELECTIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and
1,000,000 Roche 454 (≥ 200nt) non-rRNA reads against a representative 16S
rRNA database of 7,659 sequences. 66

3.3 TEST 2, SENSITIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and
300,000 Roche 454 (≥ 200nt) rRNA reads against a representative 98% identity
23S rRNA database of 2,811 sequences. 66

3.4 TEST 2, SELECTIVITY. 1,000,000 of MetaSim simulated Illumina (100nt) and
300,000 Roche 454 (≥ 200nt) non-rRNA reads against a representative 98%
identity 23S rRNA database of 2,811 sequences 67

3.5 TEST 3: Runtime for the SRR106861 metatranscriptome of 105,873 reads against
a 16S rRNA database of 7,659 sequences. 67

3.6 TEST 4: Runtime for the SRR013513 metatranscriptome of 207,368 reads against
a 23S rRNA database of 2,811 sequences. 68

87

	Table of contents
	Acknowledgments
	Papers
	Introduction
	1 Background to DNA sequence analysis
	1.1 Overview
	1.2 Sequence alignment
	1.2.1 Foundation
	1.2.2 Dynamic programming for sequence alignment
	1.2.3 Choosing alignment parameters for nucleotide sequences
	1.2.4 Significance of alignment scores

	1.3 Next generation sequencing
	1.3.1 1st generation Sanger sequencing
	1.3.2 2nd and 3rd generation sequencing

	1.4 Tools for high-throughput read mapping
	1.4.1 Heuristic seed alignment
	1.4.2 Indexing using hash tables
	1.4.3 Indexing using suffix trees

	2 New approximate seeding technique and supporting data structures
	2.1 The Levenshtein automaton
	2.1.1 Application in biological sequence alignment

	2.2 Indexing with the Burst trie
	2.2.1 The Burst trie
	2.2.2 Improvement: Lookup table & mini-burst tries
	2.2.3 Implementation
	2.2.4 Searching for matching seeds in the reference index

	2.3 Extending seeds into longer matches using the LIS
	2.4 Conclusion

	3 SortMeRNA: a filter for metatranscriptomic data
	3.1 Application context: metatranscriptomics analysis
	3.2 SortMeRNA
	3.2.1 Principle of the algorithm
	3.2.2 Parameter setting
	3.2.3 Availability

	3.3 Performance results
	3.3.1 Test 1: simulated 16S rRNA reads
	3.3.2 Test 2: simulated 23S rRNA reads
	3.3.3 Test 3: photosynthetic microbial community
	3.3.4 Test 4: tidal salt marsh creek

	3.4 Discussion

	Conclusion
	Bibliography
	List of Figures
	List of Tables

