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Abstract

In this thesis, we study uniform controllability properties of semi-discrete approxi-
mations for parabolic systems.

In a first part, we address the minimization of the L%-norm (¢ > 2) of semidiscrete
controls for parabolic equation. As shown in [LT06], under the main approximation
assumptions that the discretized semigroup is uniformly analytic and that the degree of
unboundedness of control operator is lower than 1/2; uniform observability is achieved
in L? for semidiscrete approximations for the parabolic systems. Our goal is to overcome
the limitation of [LT06] about the order 1/2 of unboundedness of the control operator.
Namely, we show that the uniform observability property also holds in L? (¢ > 2) even
in the case of a degree of unboundedness greater than 1/2. Moreover, a minimization
procedure to compute the approximation controls is provided. An example of application
is implemented for the one-dimensional heat equation with Dirichlet boundary control.

The study of L9 optimality above is in a general context. However, the discrete ob-
servability inequalities that are obtained are not so precise than the ones derived then
with Carleman estimates. In a second part, in the discrete setting of one-dimensional
finite-differences we prove a Carleman estimate for a semi-discrete version of the parabolic
operator J; — 0y(c0,) which allows one to derive observability inequalities that are far
more precise. Here we consider in case that the diffusion coefficient has a jump which
yields a transmission problem formulation. Carleman estimate are L? weighted energy
estimates. Here the weight is chosen so as to accommodate the jump of the diffusion
coefficient. Moreover, there is a strong connexion between the Carleman large parameter
and the (small) discretization parameter . Consequence of this Carleman estimate, we
deduce consistent null-controllability results for classes of linear and semi-linear parabolic

equations.
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Chapter 1

Introduction

1.1 Controllability and observability
A control system takes the following form for an evolution equation
y(t) = Ay(t) + Bu(t), y(0) = wo.

The controllability problem is, roughly speaking, the following one. Given T" > 0 and
two states yp and yp, is it possible to steer the solution of the evolution systems from
the given initial state y(0) = yp to the final state y(T") = yr by means of a control v(¢)?

Here, B is the control operator.

We give examples of such control systems in case of systems of ordinary differential

equations and partial differential equations.

Example 1.1.1. The controlled harmonic oscillator
2 +x= u,

which may be written as a system in the following way



Then, A and B are matrices respectively

0 1 0
A= . B=

-1 0 1

Example 1.1.2. The heat equation

Oy — ANy = 1,v in Q CR”,
y=0 in (0,T) x 09,
y’t:ﬂ = Yo,

where w is an open subset of 2, an open set in R™.

Example 1.1.3. The wave equation

c 20y — Ny=v i  QCR™,
y=20 in (0,T) x 09,
Ylt=o = Yo, OYlt=0 = 1.

The main results of this thesis concern linear systems. In this section, we propose
to review some basic concepts and properties for controllability of linear control sys-
tems. First, we consider with finite-dimensional control systems. Then, we consider

with infinite-dimensional control systems modeled by partial differential equations.

1.1.1 Controllability of finite-dimensional linear control systems

We start the section by recalling some well known results in the finite-dimensional
context.

Let T > 0 be fixed. Consider the linear control system
y(t) = Ay(t) + Bu(t), (1.1.1)

where y(t) € R", A is a (n X n)- matrix, B is a (n X m)- matrix, with real coefficients,
and u(.) € L?(0,T;R™) .

Let xyp € R™. The systems (1.1.1) is said to be controllable from z¢ in time T if
and only if, for every x; € R", there exists u(.) € L?(0,T;R™) so that the solution x(.)
of (1.1.1), with x(0) = xo, associated with the control u(.), satisfies x(T") = z.



It is well known that the system (1.1.1) is controllable in time 7' if and only if the

n X n matrix

T
/ (T=DAp B (T-0A" gy
0

called Gramian of the system, is nonsingular (here, M* denotes the transpose of a matrix

M). Since we are in finite dimension, this is equivalent to the existence of a > 0 so that

T 2
| et i = apere. (1.1.2)

for every 1) € R™ (observability inequality).

It is also well known that, if such a linear system is controllable from zg in time
T > 0, then it is controllable in time T”, for every 7" > 0, and from every initial state
zy € R™. Indeed, another necessary and sufficient condition for the controllability to

hold is the Kalman condition
rank(B,AB,--- ,A"'B) = n,

which is independent on zg and T.

1.1.2 Controllability of infinite-dimensional linear control systems

In this section we give some known facts on controllability of infinite dimensional
linear control systems in Banach spaces. We refer the reader to the excellent textbook
[TWO7] (see also [CT06, SO5, EZ12] and references therein).

The notation L(E, F') stands for the set of linear continuous mappings from E to F,

where E and F are reflexive Banach spaces.

Let X be a reflexive Banach space. In what follows, we denote by ||| the norm on
X. Let S(t) denote a strongly continuous semigroup on X, of generator (A, D(A)). Let
X_1 denote the completion of X for norm ||z|_; = H(ﬁ[ - A)_le, where 5 € p(A) is
fixed. Note that X_; does not depend on the specific value of 5 € p(A). The space X_;
is isomorphic to (D(A*))’, the dual space of D(A*). The semigroup S(t) extends to a
semigroup on X _1, still denoted by S(t), whose generator is an extension of the operator

A, also denoted by A. With this notation, A is a linear operator from X to X_;.

Let U be a reflexive Banach space. Denote by ||.||; the norm on U. A linear con-
tinuous operator B : U — X _; is called the control operator. Note that B is said to be
bounded if B € L(U, X), and is called unbounded otherwise.



The control operator B is admissible for the semigroup S(t) if every solution of
y = Ay(t) + Bu(t), (1.1.3)

with y(0) = yo € X and u(.) € L*(0, +oo; U), satisfies y(t) € X, for every ¢t > 0. The

solution of equation (2.1.1) is understood in the mild sense, i.e,

T
y(t) = S(t)y(0) +/0 S(t — s)Bu(s)ds, (1.1.4)

for every t > 0.
For T > 0, define Ly : L2(0,T;U) — X_1 by

Lru = /OT S(T — s)Bu(s)ds. (1.1.5)

A control operator B € L(U, X_1) is admissible, if and only if ImLy C X, for some
(and hence for every) T' > 0.

In contrast to the case of linear finite-dimensional control systems there exist many
types of controllability properties. We provide three different notions (they all coincide
in the finite dimensional case).

Let B € L(U, X_;) denote an admissible control operator.

Definition 1.1.4. For yo € X, and T > 0, the system (2.1.1) is said to be exactly
controllable from yqo in time T if, for every y1 € X, there exists u(.) € L*(0,T;U) so
that the solution of (2.1.1) , with y(0) = yo, associated with the control u(.), satisfies
y(T) =y

Definition 1.1.5. The system (2.1.1) is said to be approzimately controllable from yo
in time T if, for every y1 € X and every e > 0, there ewists u(.) € L*(0,T;U) so
that the solution of (2.1.1) , with y(0) = yo, associated with the control u(.), satisfies
1y(T) = yillx <e.

Definition 1.1.6. For T > 0, the system (2.1.1) is said to be null controllable in time T

if, for every yo € X, there exists u(.) € L?(0,T;U) so that the solution of (2.1.1), with

y(0) = yo, associated with the control u(.), satisfies y(T') = 0.

Clearly, exact controllability implies null controllability and approximate controlla-

bility. However, the converse is false in general.



Let us now analyze the null controllability problem that we shall mostly study in this

thesis. We have the following theorem.

Theorem 1.1.7. System (2.1.1) is null-controllable in time T if and only if there exists

a >0 so that
T
/0 |B*S () [l dt > ||S(T) |5 (1.1.6)

for every 1» € D(A*). Inequality (1.1.6) is called an observation or observability inequal-

1ty.

For linear equations, null-controllability is achieved in general by the proof of such an
observability inequality. Several methods can be used to derive such an the observability
inequality including Carleman estimates, the method of multipliers, microlocal analysis...
At present, a powerful approach to prove the observability inequality for general parabolic
system is through the derivation of a global Carleman estimate which will be considered

in a part of this thesis.

1.2 Case of parabolic equations

In this section, we mention some tools to achieve controllability results for parabolic
equations. Firstly, we present the HUM method through which one can construct a
control for a general system. The second one that we use in this thesis is Carleman

estimate which yields observability inequality of heat type equations.

1.2.1 The HUM control

In this section, we refer for the well-known Hilbert Uniqueness Method (in short
HUM), introduced in [L.88], consisting of minimizing a cost function, namely, the L2-

norm of the control.

Assume that B is admissible and the control system (2.1.1) is null controllable in
time T'. We define the space H as the completion of D(€2) (with € is a domain where

System (2.1.1) acts on) with respect to the norm

ol = ( [ ' (00l )

5

1/2



Let yg € X. For every ¢ € H, set

1

T
Tw) = 5 [ 1Bl i+ (ST v ) x

The functional J is strictly convex, and, from the observability inequality (1.1.6), is
coercive in the space H. Then, it follows that J has a unique minimizer ¢ € H. Define
the control u by

u(t) = B*S(T —t)*¢

for every t € [0,7], and let y(.) be the solution of (2.1.1), such that y(0) = vy, associated
with the control u. Then, one has y(7") = 0, and moreover, u is the control of minimal
of L2-norm, among all controls whose associated trajectory satisfies y(T) = 0.

This proves that observability implies controllability, and gives a way to construct
the control of minimal of L?-norm. This is more or less the contents of the Hilbert

Uniqueness Method. Hence, in what follows, we refer to the control (1.2.1) as to the
HUM control.

Remark 1.2.1. From a theoretical viewpoint, the existence of the null control is due to
the obsevability inequality (1.1.6) and therefore is independent of how large the space H is.
Howewver, an efficient computing of the null control for a numerical approximation scheme
1s intimately related to this large space H that can hardly be approzimated by standard
techniques in numerical analysic. Recently, A. Munch and collaborators have developed
some feasible numericals for heat type equation such that the transmutation method,
variational approach, dual and primal algorithms allow to more efficiently compute the

null control (see in series [FCMO09], [FCM10], [MZ10], [PM10]).

1.2.2 Carleman estimates and null controllability in continuous case

Here, we shall mainly survey controllability results for parabolic equations, for which
Carleman estimates have now become an essential technique.
Let Q,w be connected non-empty open subsets of R" with w € 2. We consider the

following parabolic problem in (0,7") x Q, with 7' > 0,

Oy — Ay = 1,0 in@=(0,T) x Q,
y=20 on ¥=(0,T) x 09, (1.2.1)
y(0) = yo in Q.



For the above systems, the null controllability was proved independently by G. Lebeau-
L. Robbiano [LR95] on the one hand and A. Fursikov- O. Yu. Imanuvilov [FI196] on
the other hand. More precisely, the controllability result is stated through the following

Theorem.

Theorem 1.2.2. ([LR95, FI196]) Let w # 0 and T > 0. For all yo € L*(5Y), there exists
a control v € L*(Q) such that y(T) = 0 and vl 20y < CllvollL2(q) where C >0 only
depends on Q,w and T.

The two proofs of this result are different: one uses a local Carleman approach
and another uses a global Carleman approach. The approach of [LR95] is by means of
Carleman estimates for the elliptic operator (—0? — A;) in a domain Z = (0, Sp) x Q
with Sg > 0, these estimates are local as they apply to compactly supported functions
in Q. The second approach, introduced in [F196], is based on Carleman estimates for
the parabolic operator 9, — A. These estimates are said to be global for they apply
to functions that are defined in the whole domain (0,7") x Q with particular boundary

conditions, here homogeneous Dirichlet boundary conditions.

What is a Carleman estimate?

A local Carleman estimate is an L2-weighted estimate of the type
€™ Pull g2y = Clle™ vl 12 (1.2.2)

where P = P(z,D,) is a differential operator, ¢ = ¢(x) is a weight function, 7 > 0 is
a large parameter and v € CZ°(2). The weight of exponential from e”¥ allows one to
provide "strong” domination of the function v where ¢ is of smaller values. This can be

done by choosing the parameter 7 large.

For applications, the parameter 7 plays an essential role. The choice of the weight

function op(x) is important in order to adjust to given geometric configurations.

Estimates of the form (1.2.2) were first established by T. Carleman in 1939 [Car39]
for proving the unique continuation property of some elliptic partial differential equations
(PDE) in dimension two. Since then there have been many investigations for the use
of Carleman estimate used to study of inverse problems and controllability issues for
PDEs. Below, we shall mention two kinds of Carleman estimates which yield the null

controllability for linear parabolic equations.



Local Carleman estimates

We present a local Carleman estimate for an elliptic operator of order two, in the

simple case where P = —A = D.D.

Let ¢ be a real-valued function. We define the following conjugated operator P, =
e™Pe” ¥ to be considered as a semi-classical differential operator with large parameter
7. We have

P = A=+ (¢, v) +(v.7¢)
= D.D—‘T<,0,’2—|—2i<7'<p,,D>—I—TA(p.

Its full symbol is given by |¢|? — 72 |/ |* + 2iT (¢, €) +7 A . Its principal symbol is given

by (the same strength is given to 7 and |¢] in the semi-classical setting)
2 2 ..
pe = 0(Pp) = € =72 |¢/|” + 2im (¢, €) -
We define the following symmetric operators

Q2= (P, + P2)/2=D.D—|rg|*,
Q1= (P, — P;)/% = <7'g0/, D> + <D,7'g0/>

with respective principal symbols

q2 = ’6‘2_7-2‘90/ ’ Q1:2T<€)90/>'

We have p, = q2 +iq; and P, = Q2 + Q1.

We choose ¢ that satisfies the following assumption.

Assumption 1.2.3. (L.Hormander) Let V' be a bounded open set in R™. We say that
the weight function ¢ € C°(R™,R) satisfies the Hormander sub-elliptic assumption in
Vif || >0in V and

V(Qj‘,g) GVXan ptp(wvg) :0:>{QZ7Q1} (-raé.) ZC>O

Theorem 1.2.4. (L.Hérmander) Let V' be a bounded open set in R™ and let ¢ satisfy



the sub-ellipticity Assumption 1.2.3 in V., then there exist 79 > 0 and C > 0 such that

2 2 2

e

sl

< C'He“"/hPu‘
)

L2(R") L2(R™ L2(R")’

forue C2(V) and T > 9.

For the purpose of proving the null controllability of the heat equation, local Carleman

estimates given in Theorem 1.2.4 allow one to prove the following spectral inequality
2 C 2
[ull 720y < CeVF 72

where w is an open subset of 2, C' > 0 and u a linear combination of eigenfunctions of —A
associated to eigenvalues less than p > 0. The spectral inequality allows one to obtain
an iterative construction of the control function v working in increasingly larger finite-
dimensional subspaces. This yields the controllability result as stated in Theorem 1.2.2.
For more details we refer to the original approach of Lebeau and Robbiano [LR95]. See
also [LL11a] and [M10].

Global Carleman estimates

The approach of [F196] allows one to treat also the controllability of more general
parabolic equations by means of a global Carleman estimate. We refer to the surveys of
[FCGO6] and [LL11a] for some background introduction to global Carleman estimates.

The null controllability of the linear parabolic system (1.2.1) is equivalent to the
observability of the associated adjoint states. More precisely, for each ¢° € L?(Q), let us

consider the so-called adjoint system

—0g—Ng=0 in@Q=1(0,T) x Q,
g=0 on¥ = (0,T) x dQ, (1.2.3)
q(T)=¢° in Q.

Then (1.2.1) is null controllable with controls in L?((0,T) x w) if and only if there
exists C' > 0 such that

Ol <€ [ ol dat (1.2.4)
(0,7)xw

for all ¢ solution to (1.2.3), which is the observability inequality.

The global Carleman estimate that we present below can be very useful for proving



such an observability inequality. Here, we state a global estimate as derived by A.
Fursikov-O.Yu. Imanuvilov.

We choose a global weight function satisfying the following requirements

p(z) = M@ _ A with K > 1Y » W'(:U)‘ #0, =€ Q\wo,
V| =0,  Oa¥lon <0,  ¥(x)>0, ze€Q,

and we choose the positive parameter A sufficiently large. For the construction of such a
function ¢ we refer to [F196].

A global Carleman estimate is then of the following form.

Theorem 1.2.5. [F196] There exists K > 0, 19 > 0, depending on w,Q) such that

2
3 Hn(t)3/2e‘rn<quL2(Q) + 7 Hn(t)1/2efnqu’

2
L*(Q)
< K (17 (@ + 80) 22+ 7° [n(0)/ 2774

2
L2((0,T)Xw)>’

for > (T +T*7.

Note that the global aspect of the estimate imposes an ”observation” term over
(0,7) X w, with w € Q in the r.h.s of the estimate (compare with the form of a local
estimate above).

From this global Carleman estimate, one deduces the observability inequality (1.2.4)
(we refer to [FCGO6] for a proof). The null controllability of System (1.2.1) then follows.

1.3 Uniform observability and discrete controls

This section is devoted to analyzing controllability of parabolic sytems after dis-
cretization. If one considers controllability properties for parabolic differential equations,
a natural question is then that of uniform controllability after discretization. Above we
reviewed that controllability and observability are dual aspects of the same problem. We
shall therefore focus on uniform observability which is shown to hold when the observ-
ability constant of the discritized approximation system does not depend on step-size
h.

In the first part of this thesis, the main goal is to establish conditions to obtain an

uniform observability inequality in a general context. Furthermore, by making use of

10



this observability inequality, we provide some constructive way to compute a suitable
semi-discrete control function.

Because of the generality of the discrete schemes studied in this first part one can
hope to obtain sharper observability inequalities if considering particular schemes. In
a second part, specializing the analysis to finite-difference schemes we obtain improved
observability inequalities. This is done by means of discrete Carleman estimates.

Before stating the different results obtained here we wish to explain the reason why
there is no hope to obtain observability inequalities of the same quality as what is ob-

tained in the continuous case.

1.3.1 A counter-example to null-controllability

As mentioned in Theorem 1.2.2, the heat equation in a bounded domain is null
controllable from any open, non-empty subset of the domain or its boundary [F196,
LR95]. One can expect that with common numerical approximation schemes the heat
equation should be controllable, uniformly with respect to the discretization parameter
under similar weak geometric conditions for the location of the action of the control. A
positive uniform null controllability result is provided in [LLZ98] concerning the case of a
boundary control in 1D in the case of a finite-difference scheme. Yet, a counter-example
due to O. Kavian shows that the null controllability property fails to hold in 2D again for
a finite-difference semi-discretization scheme for the heat equation in a square where the
control acts on a strict subset of the domain. Here, we shall present this counter-example
for a distributed control.

Set 2 = [0,1] x [0,1]. We consider the following heat equation in (0,7") x §2, with
T>0

Oy —ANy=1,v in (0,T) x Q, Yoo =0 and  yli=o = vo, (1.3.1)

where v = v(z1,z9,t) is the control and 1, is the characteristic function of the set w
where the control is applied.
The Laplace operator is approximated by a five-point finite difference scheme. The

semi-discrete systems we consider is then

Oy— Ap y = 1,0, Yloa =0, Ylt=0 = Yo, (1.3.2)

where y is discrete in the space variable. Its values are known on the uniform mesh

of [0,1]%, h is the discrete step size in the both directions. In fact, there exists an

eigenvector ey of the discrete Laplacian A\, with corresponding eigenvalue A\gp = %,
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taking alternating values +1 along the diagonal and vanishing uniformly outside of this
diagonal. Assume that the control region w does not meet the diagonal of the domain
Q2 = [0,1] x [0,1] which yields (1,v,e9) = 0. We pick an initial state yo = eg. The
solution of (1.3.1) can be written as

T
y(t) = e treg + / e (T=9)br1 v, (1.3.3)
0

Starting with the eigenvector e, we introduce a family of eigenvectors (e;)j=1,.. n—1 of
the discrete Laplacian to constitute an orthonormal basic of the space of discrete function

(for the discrete L? norm). Thus, we can express the solution (1.3.3) in following form

y(t) = t)‘o’“eo—}—/ e~ (=5 (Lov,ej) ejds
0 p<j<N-1

_t)‘o”eo+/ Z ~=9DN (1,0, ;) ejds.
1<j<N-1

If system (1.3.1) is exactly null-controllable in time 7', i. e, y(7') = 0 for some control

v, it is equivalent to having (y(T),e;) = 0,Vj. Yet, we have

(W(T),e0) = <€_T’\Ok€07€0> /<Ze S)A um,ej)ej,eo>ds

J#0
= e Tz ||eg| 0. (1.3.4)

This constitute a contradiction for the expected null controllability.

Remark 1.3.1. o There is a positive counterpart of the example above provided in
[Zua06]. Namely, the null controllability result is shown to hold in case that the
control region w meets the diagonal of the domain (distributed control) or the control
is required to be supported everywhere on the boundary of the domain (boundary
control). We emphasize here that, despite the fact that no geometric restrictions
are needed for the continuous heat equation, in the sense that null controllability
holds from an arbitrarily small open subset of the boundary, this is not the case for

the semi-discrete heat equation.

e The result which we obtained in (1.3.4) is consistent with the result obtained in

[BHL10a-[BHL10b], [LT06] and [N12]. Namely, as shown in [BHL10a] in 1D as
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well as [BHL10b] in arbitrary dimension, one can prove that one can find a control

function v such that

[Wn(T)l 2y < Ce™ ™ yg| (1.3.5)

L2(9)

In comparison, in the result obtained in [LT06] and [N12], a weaker inequality of
the form (1.3.5) is proved with e= O/ replaced by h®, for some explicit B > 0. Yet,

it can be applied for general parabolic problems.

1.3.2 Optimal control in the L? framework

Consider an infinite dimensional linear control system

y(t) = Ay(t) + Bu(t), y(0) = yo, (1.3.6)

where the state y(t) belongs to a reflexive Banach space X, the control u(t) belongs to
a reflexive Banach space U, A : D(A) — X is an operator, with dense domain and B
is a control operator (in general, unbounded) on U. Discretizing this partial differential
equation by using, for instance, a finite-difference or a finite-element scheme, leads to a

family of finite dimensional linear control systems

Yn(t) = Anyn(t) + Brun(t), Yn(0) = Yon, (1.3.7)

where y,,(t) € X, and up(t) € Uy, for 0 < h < hg .
Here, we investigate a method by which we can achieve the control of minimal L9-
norm (¢ > 2). Namely, we will establish some conditions ensuring the existence and

convergence of the discrete control of the minimal L%-norm

T
mm;Amﬂowﬁ(q>m. (1.3.8)

Moreover, in the framework of parabolic equation, our goal is to study the uniform
controllability property of the family of discretized control systems (1.3.7) in L9 (¢ > 2).
In L2-setting, by using finite-difference schemes for space semi-discretization, some
relevant references concerning this problem have been in vestigated by many authors
in series of articles [1Z99], [LZ98], [LZ02], [NZ03], [Zua99], [Zua02], [Zua04], [Zua05],
[Zua06], [BHL10a], [BHL10b] and [LT06]. Recently, finite-element schemes for space
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semi-discretization where also studied on [M12]. As opposed to the results for space
semi-discretization only we also mention several works devoted to observability property
for time semidiscrete and fully discrete linear systems such as [EZZ08]|, [EV09], and
[BHL11].

The continuous framework

Firstly, we consider the problem of controls of the minimal L%-norm (g > 2) in the

continuous case. Namely, our aim is to minimize the following functional

Minimize J(u) = 1 [ ul?dt (¢ > 2)

Subject to u € £

(1.3.9)

where £ = {u € U : u steering System (1.3.6) from yo to y(7') = 0}.

In case of ¢ = 2, this corresponds the well-known Hilbert Uniqueness Method which
we presented in Section 1.2.1. However, this method is not appropriate for the case
q > 2. Fortunately, thanks to the Fenchel-Rockafellar duality theorem following the
approach of [CGL94], [GLHO08], the problem can be reduced to the minimization of the
corresponding conjugate function. More precisely, we state here our result in the case of

q > 2 as follows.
Theorem 1.3.2. 1. We have the identity:

e q ; - P
inf ~ | lul[*dt = = inf (= [ |[B*["dt+ < (0), 30 >),
0 0

ueEq YreX* P

where 1 is the solution of

FEquivalently, we have

I I
min— uth:—min/ B*S(T — t)*y||P dt+ < S(T)*,yo >).
mine [l at = —min( [ 1B 00 (1,50 >)
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2. If ugp is optimal of problem (1.3.9) then
uop(t) = | B*S(T — )" [P~ B*S(T — )",

where ¢ € H is the unique minimizer of the functional

1 T
J () = / IB*S(T — )" ¢[|” dt+ < S(T)"¢, yo >
P Jo

The space H is defined as the completion of D(Q) w.r.t the norm

1/p

T
ol = ([ 1880 = ool )

Remark 1.3.3. According to the above arguments, if the control u is defined by
a(t) = | B*S(T — t)*¢|[P~2 B*S(T — t)*¢, (1.3.10)

with ¢ minimizer of J*, for every t € [0,T] and if y(.) is the solution of (1.3.6), such
that y(0) = yo, associated with the control u, then we have y(T)=0. Therefore, u is
the control of minimal L1-norm (q > 2), among all controls whose associated trajectory

satisfies y(T') = 0.

The discrete case

Here, we address the minimization of the L%-norm (¢ > 2) of semidiscrete controls
for parabolic equations.

In this context, assume that the control operator B € L(U, D((—A*)?)). The degree
v is so-called the degree of unboundedness of the control operator B.

As shown in [LT06], under standard assumptions on the discretization process and
for a null-controllable parabolic system (1.3.6), if the degree of unboundedness of
the control operator B is lower than 1/2 then the semidiscrete approximation
models are uniformly controllable and moreover it is shown how approximated control
can be obtained using a minimization proceduce. The result of [LT06] is only satisfied
for Neumann control but not for Dirichlet control. The main goal of our work is to
overcome the limitation of [LT06] about the order 1/2 of unboundedness of the control

operator and further to extend the result for Dirichlet control . We study the existence
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of the minimum of the cost function of discretized control with power ¢ > 2 instead of
power ¢ = 2, in the case the operator A generates an analytic semigroup. Namely, we
show that the uniform controllability property also holds in L? (¢ > 2) even in the case
of a degree of unboundedness greater than 1/2.

In recent works in the L? setting, as in [LT06], uniform controllability is derived using
semigroup arguments and introducing a vanishing term of the form A ||¢y, (T)||%2 (@) for
some 3 > 0 in the observability inequality. Additionally, by means of discrete Carleman
inequalities, the authors of [BHL10a], [BHL10b], [BL12] obtain a weak uniform observ-
ability inequality for parabolic equations in arbitrary dimension. Moreover, the work of
[M12] yields an uniform observability inequality in the abstract setting of unitary groups
by using a finite-element semi-discretization.

Now, we state the following result of this thesis (see detail in Chapter 2).

Theorem 1.3.4. Under the main assumptions stated in Section 2.3, if the control system
y = Ay + Bu is null-controllable in time T > 0, with a control in L1 (q > 2) then there
exist B > 0,h1 > 0, and positive real numbers C, C’ satisfying

e

P T . »
X = / | Biet | dt+ o lenli, < Clenl%, (13.11)
h 0

for every h € (0,hy) and every vy € Xp, (where p,q are conjugate, i.e, % + % =1).
In these conditions, for every yo € X, and every h € (0, hy), there exists vy, € Xy, minimizing

the functional
[T tA* p L s p TA*
Tu(om) =5 [ | Bict | de+ ho ol + < n, Pra >x,0 (1< <2)
0
and the sequence (Qhuh)0<h<h1 , where the control uy, is defined by
A p—2 A*
up(t) = HB;;e(T—t) whH BT84, (1.3.12)

for every t € [0,T] converges weakly (up to a subsequence), in the space L1(0,T;U) to a control
u such that the solution of :

y = Ay + Bu, y(0) = yo, (1.3.13)

satisfies y(T') = 0. For every h € (0, hy), let y,(.) denote the solution of
Yn = Apyn + Brun, yn(0) = Pryo. (1.3.14)

Then,
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e the final state is given by
yn(T) = =h? [lonl" 2 o (1.3.15)

o The sequence (Pyyn)o<nen, converges strongly (up to subsequence) in the space L1(0,T; X),
to y(.).

Furthermore, there exists M > 0 such that

T
_ —1
/0 la(®) 5, < MP/OD [lyo|2L#D)

and, for every h € (0,hy),

T
_ —1
/0 lun(®)[E, < MPIE=D [gol 20D
_ —1
1 o, < MP/@D gl B/ PY

lyn (1) |, < MY @=IREP |y | L7 (1.3.16)

(The approximation operators such as Ay, A}, By, B}, and P, will be precisely given

in Section 2.3 of Chapter 2).
Remark 1.3.5. e Note that the result of [LT06] is only satisfied for Neumann con-
trol, but not for Dirichlet control. Our improvement now covers the case of Dirichlet

control.

o The left hand side of (1.3.11) is considered as a "weak’ uniform observability type in-

equality for (2.1.2). It is "weak’ because of the additional viscosity term hﬁHd)hHI)’(h.

o We observe from (1.3.15) that yn(T') is not equal to zero. Yet, yn(T') goes to zero
as the mesh size h — 0 and the error estimate is expressed by inequality (2.3.25).
This is consistent with the counter-example presented above.

Theorem 1.3.4 states that the controls u; defined by (2.3.22) tend to a control u
realizing null-controllability for System (1.3.13). A natural question arises: since there
exists a control u of minimal of L?-norm (¢ > 2) such that y(7") = 0 (see Section 2.2.2
for details), what assumptions are needed to have u = u? An answer is provided through
the following proposition. Apart from the condition on yo known in [LLT06], we here give

an extra condition on the control u defined by (2.2.22).

Proposition 1.3.6. With the notations of Theorem 1.3.4, if the sequence of real numbers

lenllx,, 0 < h < hi, is moreover bounded, then the control u is the unique control of
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minimal Li-norm, as defined by (2.2.22), such that y(T)=0. Moreover, the sequence
(Qnun)o<h<n, converges strongly (up to a subsequence) in the space L1(0,T;U) to the
control u.

A sufficient condition on yy € X, ensuring the boundedness of the sequence (HSDhHXh)0<h<h17
is the following : there exists n > 0 such that the control system y = Ay + Bu is null
controllable in time t, for every t € [T —n, T + 1], and the trajectory t — S(t)yo in X,
fort e [T —n, T +n], is not contained in a hyperplane of X.

Another sufficient condition ensuring the boundedness of the sequence (||¢nl| x, Jo<n<n
concerns the control function and in the following: there exists n > 0 such that the con-
trol system y = Ay + Bu is null controllable in time t, for every t € [T —n,T + 7],
and with the control u as defined in (2.2.22), the trajectory t — S(t — &) Bu(§) in X, for

te|T —n,T+n], every £ € (0,t) is not contained in a hyperplane of X.

Perspectives

One interesting open question is the following: how the above results change if we
remove the assumption of uniform analyticity of the discretized semigroup. Another
open question is to investigate whether these results still hold for semi-linear systems or

for nonlinear systems.

1.3.3 Carleman estimates in the discrete case

In the first part, we dealt within a very general framework, and derived a general
uniform observability inequality with a viscosity h®. The second part of the thesis fo-
cuses on heat type equations, for which Carleman estimates allow one to derive more

C/h in the case of general

precise observability inequalities with a better viscosity in e~
discrete schemes for parabolic equations. In this second part we shall only consider
finite-difference discretizations.

Let ©,w be connected non-empty open subsets of R” with w &€ 2. We consider the

following parabolic problem in (0,7") x Q, with 7" > 0
8ty - vx(cvxy) =1, in <07T> X Q, y’BQ =0 and y|t:0 = Yo, (1‘3'17)

where the diffusion coefficient ¢ satisfies ¢ = ¢(z) > ¢pin > 0.
In the continuous case Carleman estimates have many applications in the study

of inverse problems, control theory of PDEs [LR95, FI96], unique continuation results

18



[Rob91, FLI6, Tat95], and stabilization results [LR97, Bel03] to cite a few. One of the
recent applications of continuous Carleman estimates is to obtain controllability results
for parabolic equations. One expects that uniform controllability results can also be

obtained from discrete versions of Carleman estimates.

Let us consider the elliptic operator on €2 given by
A= —Va(cVy.),

with homogeneous Dirichlet boundary conditions on 9€2. We shall introduce a finite-
difference approximation of the operator A. For a mesh 91 that we shall describe in
Chapter 3, associated with a discretization step h, a consistent finite-difference approx-
imation of A is given by A™ = —D(cyD.). It acts on a finite dimensional space R™, of
dimension [90], and is selfadjoint for a suitable inner product in R™. In this section, we
present Carleman estimates for the discrete operator A™ or related operators in which

the diffusion coefficient ¢(x) is either smooth or discontinuous.

Smooth diffusion coefficients

An earlier attempt to derive discrete Carleman estimates for continuous diffusion
coefficients can be found in [KS91]. With the result presented in [KS91], there is no
connexion between the large Carleman parameter and the discretization step size. In
recent years, some authors derived discrete Carleman estimates firstly for elliptic opera-
tors in 1D [BHL10a] and secondly extended that result to arbitrary dimension [BHL10b].
Additionally, the authors of [BL12] prove discrete Carleman for parabolic operators. An
application of discrete Carleman estimate we mention below is to obtain a weak uniform

controllability for parabolic equations.

An important point in the proof of Carleman estimate is the construction of a suitable
weight function 1 whose gradient does not vanish in the complement of the observation
region. The weight function is chosen to be smooth in the case of a smooth diffusion
coefficient ¢(z). Namely, to treat Carleman estimate for semi-discrete elliptic operators
PP = 92 + A™ with the continuous diffusion coefficient ¢(x), the authors of [BHL10a]

choose a function 1 that satisfies the following property.

Assumption 1.3.7. Let Q be a smooth open and connected neighborhood of Q in R™
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and set Q = (0,T) x Q. The function v is in 02(5, R) and satisfies, for some ¢ > 0

>0 and |VY|>cin Q On,W(t,z) <0 in (0,T) x Vyq,

oy >con {0} x (Q\w) Ve =0 and Opp < —con {T} xQ,

where Vaq is a sufficiently small neighborhood of O in Q, in which the outward unit

normal ng to Q is extended from Of).

Such a function can be obtained by following the technique of [F196], i.e., making
use of Morse functions. With such a function v, we define the weight function ¢ := e V.
Now, we state the following discrete Carleman estimate for semi-discrete elliptic operators
PP = 02 + A™ as

Theorem 1.3.8. [BHL10a] For \ > 1 sufficient large, there exist C > 0 and sop > 1,
ho > 0, €9 > 0, depending on Q,w,T and ¢ such that we have

2
e*#(0:)9,1u(0, .)

2 2 2
s*le*PulT2ig) + 5 €70l 72(g) + 5 1€ Dull72g) + s £2(Q)

+5e” 7T [0pu(T, )72 gy + 822 [u(T, )| 720

< C( Hes"”PuHQLQ(Q) + se25¢(T>) | Du(T, .)]%Q(Q) +s

2
08,00, ) ’Lz(w) >(,1.3.18)

for s > 59, 0 < h < hg and sh < €y and for all u € C?([0,T] x C™VOM)  satisfying

ul{oyxQ, Ul(o,r)xa0 = 0.

Remark 1.3.9. In the course of the proof of this Carleman estimate, the Carleman large
parameter s has to be connected to the mesh size h: they obtained a condition of the form
sh < €, with €9 = €(Q,w,~y). This condition cannot be avoided as it would imply null
controllability for the associated heat equation in contradiction with the counter-example

presented in Section (1.3.1).

With this Carleman estimate they proved a Lebeau-Robbiano type inequality from

which the following controllability result can be deduced.

Theorem 1.3.10. /[BHL10a] There exit hg > 0, Cp > 0 and C1,Cy > 0, such that with

0 < h < hg, and all initial data yo € C™, there exists a semi-discrete control function v
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such that the solution to
2 _ oMm __ _
aty - D(CdDy) - IUJU? Yy - Oa y‘t:O = Yo, (1319)

satisfying ||UH%2(Q) <Cr |y0|%2(9) and furthermore |y(T)\%2(Q) < Cye= e/’ |y0|ig(9).

The observability estimate they then obtain is of the form

T 1
[2(0)[Z2(0) < Cr </0 / ’q(mzdt) T+ O (T ey

for any ¢ solution to the adjoint system (1.3.19). As compared to result (1.2.4) in
continuous case the observability estimate we state above is weak because of an additional

term. Yet this term is exponentialy small in the limit A — 0.

Next, we present a Carleman estimate for the semi-discrete parabolic operators Piﬁ =
—0; + A™. In comparison with the elliptic case, the choice of weight functions for
parabolic operators is a little different. Namely, the function ¢ = (x) fulfills the

following assumption

Yv>0in Q VY| >cin Q,
On, () < —¢ <0, O%p(z) > 0in Vg,

where Vyq is a sufficiently small neighborhood of 92 in Q, in which the outward unit
normal n, to  is extended from 9. Let K > ||¢|| ., and set

ple) = M@ — M <0, g(a) = MO,
rt,x) = e p(t x) = (r(t,2)) ", (1.3.20)

with
sty =710(t), T>0, Ot) = ((t+6T)(T + 6T —1t))7,

for 0 <9 < % From that, we state a Carleman estimate for the semi-discrete parabolic

operators as follows.

Theorem 1.3.11. [BL12] For the parameter A > 1 sufficiently large, there exist C, 1y >
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1, hg > 0,¢9 > 0, depending on w,wqy, T, c we have

2

L*(Q) )

12
1 —
027 Diu ‘

! He_éeﬁwatu”;(@ T Z () 12(Q)

i€[1,d]

2
<C
2@~ M <

+h?

H%eTewDiuH + ‘

2
+73 ’

3
02 eTWU‘

2
eTe‘meuH +73 ‘
L2(Q)

2
L%Q)) ’

forallT > 10(T+T?%),0<h<hgy, 0<6<1/2 and u € CL([0,T], RV satisfying

uloryxo0 =0, if Th(6T?)™ < €.

3
02 eTe‘Pu‘

L2((0,T)Xw)

+h?
L2(Q)

efégau‘t:T

679(,9 U‘t:O

Remark 1.3.12. Here, the parameter § is introduced to avoid the singularity of the
weight function at timest = 0 and t = T. This parameter connect to the other param-
eters through the condition Th(6T?)™' < ey which implies that s(t)h < ey similarly to
Theorem 1.3.8.

Some techniques, which the authors of [BHL10a] and [BL12] established for semi-
discrete elliptic and parabolic operators, shall be useful in obtaining a Carleman estimate

for a semi-discrete parabolic operator with discontinuous diffusion coefficients below.

Discontinuous diffusion coefficients

The question of controllability of partial differential systems with discontinuous co-
efficients and its dual counterpart, observability, are not fully solved yet. Here, we shall
consider a parabolic operator in which the higher-order terms have the form 0, — v (¢(x)V)
and the discontinuous coefficient refers here to the coefficient ¢ in the elliptic operator in
space x.

To our knowledge, in continuous case, this question was first addressed in [DOP02]
for a parabolic operator P = 9; — V(¢(x)V), with a monotonicity assumption: the ob-
servation takes place in the region where the diffusion coefficient c¢ is the ”lowest”. In
the one-dimensional case, the mononicity assumption was relaxed for general piecewise
C* coefficients [BDL07] and for coefficients with bounded variations [L07]. Recently, the
case of an arbitrary dimension without any monotonicity condition in the elliptic case
was solved in [LR10], in the parabolic case in [LR11].

Yet, the discrete analogues of these results are still to be developed.

In this thesis, we consider Carleman estimates for parabolic equations in case of

e the heat equation in one space dimension;

22



e a piecewise C'! coefficient ¢ with jumps at a finite number of points in €;
e a finite-difference discretization in space.

When considering a discontinuous coefficient ¢ the parabolic problem (1.3.17) can be
understood as a transmission problem. For instance, assume that ¢ exhibits a jump at

a € Q. Then we write

Oy — 0z (cOry) = 1v in (0,7) x ((0,a) U (a,1)),
Caxy’oﬁ = Ca&?y|a*a y‘cﬁ = y’a*a
ylon =0,  and Yli=0 = yo.

The second line is thus a transmission condition implying the continuity of the solution
and of the flux at x = a.

When one gives a finite-difference version of this transmission problem, a similar
condition can be given for the continuity of the solution. Yet, for the flux, it is only
achieved up to a consistent term. In what follows, in the finite-difference approximation,

we shall in fact write

y(a™) = y(a™) = ynta,
(CdDy)n+% - (CdDy)n+% = h(D(CdDy))ner

(the discrete notation will be given Section (3.1.1)). Note that the flux condition con-
verges to the continuous one if h — 0, h being the discretization parameter. This
difference between the continuous and the discrete case will be the source of several
technical points.

As mentioned above, the Carleman weight function is chosen to be smooth in the
case of a smooth diffusion coefficient ¢(z). However, in case of a non-smooth diffusion
coefficient, we shall introduce a particular type of weight functions, which are constructed
through the following lemma.

Set Q1 = (0,a),Q = (a,1). We enlarge the open intervals 4,9 to large open sets
Q1, Q.

Lemma 1.3.13. Let Qq, Q2 be a smooth open and connected neighborhoods of intervals

Q1, Q2 of R and let w C Qg be a non-empty open set. Then, there exists a function

Y € C(Q) such that



with v¥; € C(),i = 1,2, % > 0in Q9 =0 on T,9h # 0 in Qo \ w, Y] # 0 in O and

the function i satisfies the following trace properties, for some ag > 0,
(Au,u) > ag|ul* ueR?

with the matriz A defined by

a1l a2
a1 Q22

with

ar1 = [¢'+a;
age = [/ 52 (¢")(a") + [ () *Ha,
ai2 = a1 = [Cwl*]a(l/}/)(aJr%

(see the above notation introduced in Chapter 3).

Here, we choose a weight function that yields an observation in the region w € s in
the Carleman estimate below. This choice is of course arbitrary. Such a weight function

for continuous version can found in [BDLO7].

Choosing a function 1), as in the lemma above, we set the weight functions ¢(x), ¢(z), r(t, z)
and p(t,z) as given in (1.3.20). Now, we can state the semi-discrete Carleman estimate
for the operator P™ = —9, + A™ with a non-smooth diffusion coefficient ¢ as follows
(see details in Chapter 3).

Theorem 1.3.14. Let wy € Qo2 be a non-empty open set and we set f := D(cqDu). For
the parameter A\ > 1 sufficiently large, there exist C, 790 > 1, hg > 0, €9 > 0, depending
on wy so that the following estimate holds
2
1 Hﬁ_%eTW@tuH

L2(Qo)
2

L2(Qo)

+T‘

2 2
G%eTe‘PDuH + 73 ‘ H%eTgsou‘
L2(Qo)

L2(Qo)

<Cig (‘

2
3
eTe‘PPmu‘ 02 eTe‘Pu‘

L2 ((O,T) Xwo)

+T3‘

+ h_2 eTawu\t:T

70 2
e “"u\t:o
L2(Q0)

+h2

2
1.3.21
L2(QO)) » (1321
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for all 7 > 1o(T +T?), 0 < h < hg and Th(aT)™! < ¢ and for all u € C*(0,T;C™)
satisfying ulaq, = 0.

The proof is a combination of the derivation of a discrete Carleman estimate as in
[BHL10a, BL12] and tecniques of [BDLO07] for operators with discontinuous coefficients
in the one-dimensional case.

From the semi-discrete Carleman estimate we obtain above we deduce following weak

observability estimate

C

2 g 2
19(0)| 22 () < Cobs 9l 220, xwy T €7 1a(T)] 120 -
for any ¢ solution to the adjoint system
g+ AMg+ag =0, qloa = 0.

Here a is L potential function. A precise statement is given in Chapter 3.

Remark 1.3.15. Similarly to the result in continuous case [BDLO7] the observability
estimate we state here is weak because of an additional term that describes the obstruction
to the null-controllability *. This term is exponentially small in agreement with the results

obtained in [BHL10a, BHL10b] in the smooth coefficient case.

From the weak observability estimate given above we obtain a controllability result

for the linear operator P™. This result can be extended to classes of semi-linear equations
O+ AM)y +Gly) =1wv, y€(0,T)  yloo=0, y(0) =,
with G(x) = zg(x), where g € L*(R) and
lg(z)| < KIn"(e + |z]), =z €R, with 0<r<—.
We shall state controllability results with a control that satisfies

10l 22y < C'lyol -

Note that the size of the control function is uniform with respect to the discretization

parameter h.

!The counter-example we gave in Section (1.3.1) concerns dimensions greater than one. Yet Carleman
estimate are insensitive to dimension.
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Perspectives

In this second part, we prove a semi-discrete Carleman estimate for the operator
P = —9, + A™ with a non-smooth diffusion coefficient ¢ in one space dimension. A
similar question, in higher dimension, remains open.

Recently, the author [BDL11] proved Carleman estmiates for stratified media in R"
characterized by discontinuities of the coefficients in one direction. We expect to obtain
such a Carleman estimate for stratified media with a finite-difference semi-discretization

from combination of techniques of [BDL11] and techniques in the present thesis.
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Chapter 2

Uniform controllability of semidiscrete
approximations for parabolic systems in

Banach spaces

2.1 Introduction

Consider an infinite dimensional linear control system

y(t) = Ay(t) + Bu(t),  y(0) = o, (2.1.1)

where the state y(t) belongs to a reflexive Banach space X, the control u(¢) belongs to a
reflexive Banach space U, A : D(A) — X is an operator, with dense domain and B is a
control operator (in general, unbounded) on U. Such a framework for studying control
problems in the infinite dimensional setting has been well formalized in the textbook
[TWO07]. Discretizing this partial differential equation by using, for instance, a finite-
difference or a finite-element scheme, leads to a family of finite dimensional linear control

systems
Yn(t) = Apyn(t) + Brua(t), yn(0) = yon, (2.1.2)

where y,(t) € X, and up(t) € Uy, for 0 < h < hg .

The control system (2.1.1) is said to be null-controllable in time T if there exists a
solution y(.) of (2.1.1) associated with a control u such that y(7') = 0. We refer for the
well-known Hilbert Uniqueness Method (in short, HUM), introduced in [L88], consisting
of minimizing the L?-norm of the control. In this work, however, we investigate a method

by which we can achieve the control of minimal L%-norm (¢ > 2). In fact our problem



comes from an open problem of S. Labbé and E. Trélat in [LT06] where discretization
issues of the HUM method are investigated for parabolic systems in a general framework.
There is a limitation in the hypothesis in [LT06] following that the result of minimizing
the discrete control can be only obtained in L?-norm. Herein they refered to the condition
on the degree of unboundedness of control operator which is only satisfied for Newmann
control but not satisfied for Dirichlet control. This motivates us to find a solution to
overcome their limitation and to extend their results for Dirichlet control. Here, we
investigate a method to obtain the control of minimal L?-norm (q > 2). Namely, we will
establish some conditions ensuring the existence and convergence of the discrete control

of the minimal L9-norm

T
min(lz/o lun(®)l|%dt (g > 2). (2.1.3)

Necessary conditions for optimal control in a finite dimensional state spaces were
derived by Pontryagin et al. [PS62] (see also [T05]). The Maximum Principle as a
set of necessary conditions for optimal control in infinite dimensional space was studied
afterwards by many authors. Yet the Maximum Principle does not hold in general in
infinite dimensional spaces. Many contributions provide conditions to ensure that the
Maximum Principle remains true. Li and Yao [LYS85] used the Eidelheit separation
theorem and the Uhl theorem to extend the Maximum Principle to a large class of
problems in infinite dimensional spaces when the target set is convex and the final time
T is fixed. Additionally, the authors of [F87], [FF91], [LY91], by making use of Ekeland’s
variational principle, gave conditions on the reachable set and on the target set so as to
obtain an extension of Maximum Principle. Considering system (2.1.1) in the case the
final state and final time are fixed, the finite-codimensional condition of [F87], [FF91] and
[LY91] is not satisfied in general. As a consequence, here, we cannot adapt the Maximum
Principle. Yet, using the Fenchel-Rockafellar duality Theorem, following the approach
of [CGLY4], [GLHO8], the constrained minimization of the function can be replaced by
the unconstrained minimization problem of the corresponding conjugate function. This
is the direction we shall follow here.

If one consider controllability properties for parabolic differential equations, a natural
question is then that of the uniform controllability after discretization. In the framework
of parabolic equation, the main goal of this article is to establish conditions ensuring a
uniform controllability property of the family of discretized control systems (2.1.2) in L4

(¢ > 2) and to compute numerically the control function.

It is well known that controllabilty and observability are dual aspects of the same
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problem. We shall therefore focus on uniform observability which is shown to hold when
the observability constant of the finite-dimensional approximation systems does not de-
pend on h. Relevant references concerning observability of discretized equations are
[1Z99], [LZ98], [LZ02], [NZ03], [Zua99], [Zua02], [Zua04], [Zua05], [Zua06], [BHL10a],
[BHL10b] and [LT06]. For finite-difference schemes, a uniform observability property
holds for one-dimensional heat equation [LZ02], beam equation [LZ98], Schrodinger equa-
tions [Zua05], but does not hold for 1-D wave equations [IZ99]. This is due to the fact
that the discrete dynamics generates high frequency spurious solutions for which the
group velocity vanishes. To overcome these difficulties, Zuazua [Zua05] showed some
remedies such as Tychonoff’s regularization, multigrid method, mixed finite element and

filtering of high-frequency, etc.

To our knowledge, in the 1-D heat equation case, due to the fact that the dissipative
effect of the 1-D heat equation acts as a filtering mechanism by itself it is strong enough
to exclude high-frequency spurious oscillations [LZ98]. However, the situation is more
complex in multi-dimensional cases. A counter-example due to O. Kavian is shown in
[Zua06] for the simplest finite-difference semi-discretization scheme for the heat equation

in the square.

In recent works in the L? setting, by means of discrete Carleman inequalities, the au-
thors of [BHL10a], [BHL10b] obtain a weak uniform observability inequality for parabolic
equations in arbitrary dimension, by a adding term of the form e~Ch” e, (T)H%Q (@) In
the bound, a term that vanishes asymptotically as h — 0. Moreover, as in [LT06], the
uniform controllability is derived using semigroup arguments and introducing a vanishing
term of the form h® Hwh(T)H%z(Q) for some 5 > 0.

Apart from the results for space semi-discretization, we also mention several works
devoting to achieve observability property for time semidiscrete and fully discrete linear
systems such as [EZZ08], [EV09] and [BHL11].

The discretization framework in this paper is the same as in [LT06], [LT00]. According
to [LTO06], under standard assumptions on the discretization process and for a null-
controllable parabolic system (2.1.1), if the degree of unboundedness of the control
operator is lower than 1/2 then the semidiscrete approximation models are uniformly
controllable and moreover it is shown how approximated control can be obtained using
a minimization proceduce. The main goal of our work is to overcome the limitation of
[LT06] about the order 1/2 of unboundedness of the control operator. We study the
existence of the minimum of the cost function of discretized control with power ¢ > 2
instead of power ¢ = 2, in the case the operator A generates an analytic semigroup. Our
main result, Theorem 2.3.5, states that for null-controllable parabolic systems (2.1.1)

and under standard approximation assumptions, if the discretized semigroup is uniformly
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analytic, and if the degree of unboundedness of the control operator B with
respect to A is greater than 1/2, then a uniform observability inequality in LP
(1 < p < 2) is proved (p, q are conjugate). Moreover, a minimization procedure to
compute approximated controls is provided. A degree of unboundedness greater than
1/2 appears in standard situation for example if one considers boundary controls.

The outline of the paper is as follows. In Section 2, we briefly review some well-known
facts on controllability of linear partial differential equations in reflexive Banach spaces.
Furthermore, we consider the existence and uniqueness of solution of the minimization
problem in continuous case. By making use of the Fenchel-Rockafellar duality theorem,
we gives a constructive way to build the control of minimal LY-norm. The main result
is stated in Section 3 and proved in Section 4. An example of application and numer-
ical simulations are provided in Section 5, for the one-dimensional heat equation with

Dirichlet boundary control. An appendix is devoted to the proof of a technical lemma.

2.2 Preliminary

We shall first present some basic knowledges about controllability of infinite dimen-
sional linear control systems in reflexive Banach spaces. Second, we shall introduce a
method allowing to achieve the control of minimal L%-norm (¢ > 2) in the continuous
framework. This result in the continuous case will be the starting point for the study of

a similar approach in the discrete case in Section 3.

2.2.1 A short review on controllability of linear partial differential

equations in reflexive Banach spaces

For issues related to controllability in reflexive Banach spaces we refer the reader to
the excellent textbook [TWO07](see also [CT06, SO5] and references therein).

The notation L(E, F) stands for the set of linear continuous mappings from F to F,
where E and F' are reflexive Banach spaces.

Let X be a reflexive Banach space. In what follows, we denote by ||.|| y the norm on
X. Let S(t) denote a strongly continuous semigroup on X, of generator (A, D(A)). Let
X_1 denote the completion of X for norm ||z|_; = H(BI— A)_1x| , where 8 € p(A) is
fixed. Note that X_; does not depend on the specific value of 5 € p(A4). The space X_;
is isomorphic to (D(A*))’, the dual space of D(A*). The semigroup S(t) extends to a
semigroup on X _1, still denoted by S(t), whose generator is an extension of the operator
A, still denoted by A. With this notation, A is a linear operator from X to X_;.

Let U be a reflexive Banach space. Denote by ||.|;; the norm on U.
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A linear continuous operator B : U — X_; is admissible for the semigroup S(t) if
every solution of
y = Ay(t) + Bu(t), (2.2.1)

with y(0) = yo € X and u(.) € LY(0,+o0; U) (¢ > 2), satisfies y(t) € X, for every t > 0.

The solution of equation (2.2.1) is understood in the mild sense, i.e,

T
y(t) = S(t)y(0) —I—/O S(t — s)Bu(s)ds, (2.2.2)

for every t > 0.
For T > 0, define Ly : L9(0,T;U) — X_1 by

Lru = /OT S(T — s)Bu(s)ds. (2.2.3)

A control operator B € L(U, X_1) is admissible, if and only if ImLy C X, for some
(and hence for every) T' > 0.
The adjoint L} of Lt satisfies

Ly X* — (L9(0,T;U))* = LP(0,T; U*)
Lip(t) = B*S(T — t)* (2.2.4)

(p and q are conjugate) a.e on [0,T] for every ¢ € D(A*). Moreover, we have

T
IL3el = sup /0 (B*S(T — )", u(s))ds, (2.2.5)

flull;<1

for every ¥ € X* .
Let B € L(U, X_1) denote an admissible control operator.
We shall use the following lemma (for a proof we refer to [chapter 10, [TWO07]])

Lemma 2.2.1. Let Zy,Z,Z3 be reflexive Banach spaces and f € L(Z1,Z3) , g €

L(Zy,Z3). Then the following statements are equivalent:
o Imf C Img.
o There exists a constant C > 0 such that : || f*z|| 5, < C|lg*z|lz, for every z € Zs.

31



e There exists an operator h € L(Zy1, Zs) such that f = gh.

We now state the concept of exact null controllablity as follows.

For T > 0, System (2.2.1) is said to be null controllable in time T if for every
yo € X, there exists u(.) € LY(0,T;U) so that the corresponding solution of (2.2.1), with
y(0) = yo satisfies y(T) =0 .

According to [TWO07], System (2.2.1) is null controllable in time 7' if and only if
ImS(T) C ImLy. It follows from the above Lemma that there exists C' > 0 such that

T
ClISTYylly < L5 = pr < B*S(T — 5", u(s) > ds

[[ull,<1

T
< wpérww@—wwwwmﬁ

[[ullg<1

1

([ 1mswrvipar)’

Thus, system (2.2.1) is null controllable with a control in LP for the time T if and
only if

IN

T
/0 IB*S @) [Pt = C|S(T) ¥k - (2.2.6)

2.2.2 Minimal L%norm (q > 2) for the continous case

The Maximum Principle is a well-known method to tackle optimal control problems.
Applying the Maximum Principle built in infinite dimensional spaces, such as [F87],
[FF91] and [LY91] is not possible here. Unfortunately, the finite-codimensional condition
of [F87], [FF91] and [LY91] is an obstacle in adapting the Maximum Principle to our
problem.

The goal of this section is to show that, using duality arguments and the Fenchel-
Rockafellar theorem, we can obtain controls of minimal L%-norm (g > 2) for the contin-
uous framework.

Consider the system

Ay(t) + Bu(t) on Qr = (0,T) x Q,

Nagl
—~
~
~—
I

(2.2.7)
y(0) = yo,
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where B is admissible and A generates an analytic semigroup S(t) in the reflexive Banach
space X. Assume that system (2.2.7) is null controllable in time 7" > 0.

Our aim is to mimimize the following function

Minimize .J(u) = 1 [ Jul?dt (¢ > 2),

(2.2.8)
Subject to u € E,

where E = {u € LY(0,T;U) : u steering the system from yg to y(7") = 0}. Clearly, E is

nonempty.
Theorem 2.2.2. Problem (2.2.8) has a unique solution u.

Proof. First of all, we show the existence of the solution of the optimal control problem.

Consider a minimizing sequence (uy,)nen of controls on [0, 77, i.e,
T
/ |un]|? dt converges to inf J(u) as n — 4o0.
0

It follows that the sequence (up)nen is bounded in L4(0,T;U). Since U is reflexive
space and ¢ < 400, then L(0,T;U) is reflexive as well. Thus, up to a sequence, (u,)nen
converges weakly to some u in L9. Note that the trajectory y, (resp. y) associated with

the control u, (resp. u) on [0,T] through the system

Yn = Ayn + Buy, yn(o) = Yo,

and the solution of the above system is expressed in form
T
yn(t) = S(t)yo +/ S(T — s)Buy/(s)ds .
0
Passing to the limit, we find
y = Ay + Bu, y(0) = yo,
and the solution y associated with control u in the form

T
y(t) = S(t)yo + /0 S(T — s)Bu(s)ds.

33



As u, converges weakly to u in L7, we obtain the inequality

T T
A9 dt < liminf C()]|9 dt.
[ e < timint [ o

But (up)nen is a minimizing sequence, it follows

T T
/wwwzm/www,
0 vEFE 0

i.e, the control u is the minimizer of (2.2.8). This ensures the existence of an optimal

control.

Moreover, the cost function is strictly convex which yields uniqueness of the solution.

By making use of convex duality, the problem is reduced to the minimization of the

corresponding conjugate function as stated in the following theorem.

Theorem 2.2.3. 1. We have the identity:

e q : L - P
inf = [ |ul|dt = — inf *(f |B* P dt+ < 1(0), 50 > ) (2.2.9)
0 0

weE q YreX*\p

where 1 is the solution of

—th = A% (2.2.10)
W(T) = Y. (2.2.11)

Equivalently, we have

min~ /THqudt——min(l /THB*S(T—t)*prdH—<S(T)*¢ > )
ueEq Jo YeH\p Jo =)

(2.2.12)

2. If ugp is solution of the problem (2.2.8) then gy, is of the following form

uop(t) = |B*S(T — )" |"* B*S(T — t)"¢,
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where ¢ € H is the unique minimizer of the functional

1 T
LWWZ/IBW@—ﬂWWﬁ+<ﬂﬂ%ww»
D Jo

The space H is defined as the completion of D(Q2) w.r.t the norm

T 1/p
ol = ([ 1mse - oo a)

Proof. 1. Let § be solution of (2.2.7) with v = 0 and we introduce the operator
N € L(LYQr), X) with Nu = z,(.,T) for all uw € LY(Qr), where z, is solution to

2= Az+ Bu (2.2.13)

z(x,0) = 0. (2.2.14)

Accordingly, the solution y of (2.2.7) can be decomposed in the form

Y=z + 7. (2.2.15)

The adjoint N* is given as follows. For each ¢ € X*, N*iypr = B*Y where 1 is
solution of (2.2.10) — (2.2.11).

Let us introduce the following functions F' and G

F(z) = 0  for z=—y(T) |

+o00 otherwise

1 T
mmzjuwwt
q.Jo

Then, problem (2.2.8), where the infimum is taken over all u satisfying E, is equiv-

alent to the following minimization problem

ueLi?(fQT)(F(N“) +G(u). (2.2.16)
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System (2.2.7) is null controllable then there exists a control v € L7 such that z, =
—y(T'). With a such control, it follows F(Nu) + G(u) < oo and 0 € int(DomF —
NDomG).

Functions F* and G* are the convex conjugate of F' and G, respectively. Denote

7 = (T) and observe that
F*(¢r) = — <¢r,yr >,

for all ¢ € X*. Additionally,

1 T
G (w) = © / Jwll? dt.
P Jo

Therefore,

T
G*(N*p) + F*(—tbp) = ;/O B |P dt+ < dr(a), go(@) > . (2.2.17)

We have B is admissible then

T
G*(N*br) + F*(—pr) = ; /O IB*6|P dt+ < v (), grla) >

ClIelP + ol gzl < oo

IN

Futher, we can choose ¢ € DomF*, — By € DomG* which 9 is solution of (2.2.10) —
(2.2.11) with ¢(T") = 47 such that 0 € int(N*DomF™* + DomG*).

Then we can apply the duality theorem of W.Fenchel and T.R.Rockafellar (see e.g
Theorem 4.2 p.60 in [ET99]). It yields

B (F(Nw) + Gl)) = = inf (G"(N'0r) + F*(~r)), (22.18)

By means of multiplying the state equation (2.2.10) by 7 and then integrating by
parts, we obtain

< Yr,yr >=<(0),y0 > .
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Equation (2.2.17) can thus be written as follows

1 T
GH(N*r) + F*(=r) = - / | B di+ < (0), yo >

1 T
- - / |B*S(T — t) el di+ < S(T) dr,yo >,
0

where v is the solution of (2.2.10) — (2.2.11). It follows from (2.2.16) — (2.2.18) and from

the above equation that

infl/T Juf? de = —in (+ /T|B*1/;||pdt+<1/)(0) > )
0 - wr \p Jo > Yo 5

ueE q
where 1 is the solution of (2.2.10) — (2.2.11). It can be as well written as
: ]' T q : ]' T * * p *
min= [ ull?dt = —min(= [ IB*S(T — )" p|P dt+ < S(T) w0 > ).
0 YeH \D Jo

ueE q

. If we denote by (u,p), (¢r) the unique solutions to ”LHS of (2.2.12)” and "RHS of (2.2.12)”

respectively, then one finds

1 /7 1 T .
0= 5/ letopll” d + };/ 1Bz ||” di+ < ¢r(0), 50 > - (2.2.19)
0 0

We apply the Young inequality to the first two terms in the RHS of (2.2.19):

1

1
f/ l|lwop||* dt + f/ | B*or|” dt 2/ < Ugp, B*pr > dt. (2.2.20)
q Qr p Qr Qr

Then, the "RHS of (2.2.19)" > [, < top, B*pr > dt+ < ¢1(0),y0 >.

Furthermore, by multiplying the two sides of (2.2.10) by y and applying the Green formula,

we obtain

< B'or,u>+ < or(0),yo >= 0. (2.2.21)

On the one hand, "RHS of (2.2.19)” > 0 (due to (2.2.21)). On the other hand, "RHS
of (2.2.19)” =0 (due to (2.2.19)).
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This implies an equality in (2.2.20), i.e
luopll® = 1B |l” .

It follows that
Uop(t) = | B*S(T — t)* [P~ B*S(T — )",

where ¢ € H is the minimizer of the functional J*.

O]

Remark 2.2.4. The functional J* is convex, and from inequality (2.2.6), it is coercive
in space H. Then, it follows that J* has a unique minimizer ¢ € H. According to the

above arguments, the control u is defined by
u(t) = ||B*S(T—t)*cpHp_2 B*S(T —t)*¢, (2.2.22)

for every t € [0,T] and if y(.) is the solution of (2.2.8), such that y(0) = yo, associated
with the control u, then we have y(T)=0. Therefore, @ is the control of minimal LY-norm
(¢ > 2), among all controls whose associated trajectory satisfies y(T') = 0.

Here, we emphasize that observability in LP-norm (1 < p < 2) implies controllability
and gives a way to build the control of minimal Li-norm (q > 2). A similar result was

known in L?-norm through HUM (see [L88)).

2.3 Main result

We are concerned in this work with the uniform controllability property for semidis-
cretizations of parabolic systems. As shown in [LT06], this property is known to hold
if the degree of unboundedness of control operator v € [0,1/2). In this section, we also
establish some appropriate assumptions and conditions ensuring that the uniform con-
trollability still holds even in the case v € [1 /2, I%) It is the condition v € [1 /2, }D)
that motivates the study of minimal L¢-norm (g > 2) instead of L?-norm, with p and ¢
conjugate.

Let X and U be reflexive Banach spaces, and let A : D(A) — X be a linear op-
erator and self-adjoint, generating a strongly continuous semigroup S(t) on X. Let

B € L(U,D(A*)") be a control operator. We now express all assumptions that will be
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used in what follows. We keep most of the usual approximation assumptions as well as
the assumptions about analytic semigroup stated in [LT06]. However, assumptions on -y
such as (21), (22) and (30) in [LT06], do not hold if v > 1/2. To overcome this limitation,
here we give a remedy by means of replacing the above assumptions by other appropriate
conditions. This will be explained more clearly through Remark 3.1 below. We make the
following assumptions, of which (H1)-(H2) concern the continuous case and (H3)-(H4)
concern the discretization scheme.
(H1) The semigroup S(t) is analytic.

Therefore, (see [P83]) there exist positive real number C; and w such that

wt

W (&
IS@llx < e Nyl 1AS@yllx < i lyllx (2.3.1)

for all ¢ > 0 and y € D(A), and such that, if we set A = A —wI, for 6 € [0,1] and there
holds ot
|45y <% il (2:3.2)

for all t > 0 and y € D(A).

Of course, inequalities (2.3.1) hold as well if one replaces A by A*, S(t) by S(t)*, for
y € D(A").

Moreover, if p(A) denotes the resolvent set of A, then there exists § € (0,%) such
that p(A)DAs = {w+ pe?|0 > 0,]0] < Z +65}.

For A € p(A), denote by R(\, A) = (A — A)~! the resolvent of A . It follows from
the previous estimates that there exists Cy > 0 such that

C

IR Al < 52 ARG Alyix) < o (2.3.3)
for every A € Ag, and
A~ 02 A~ ~
< —= < 3.
oo, <% famna], e e

for every A € As + w. Similarly, inequalities (2.3.3) and (2.3.4) hold as well with A* and
A*.

(H2) The degree of unboundedness of B is 7. Assume that v € [1/27 %) (where p,q
are conjugate, i.e % + % =1 and 1 < p < 2). This means that

B e L(U,D((—A*))). (2.3.5)
In these conditions, the domain of B* is D(B*) = D((—A*)7), and there exists C3 > 0
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such that
1B < G| (A . (2:3.6)

for every ¢ € D((—A*)7).
(H3) We consider two families (Xp,)o<n<n, and (Up)o<h<n, of finite dimensional
spaces, where h is the discretization parameter.

For every h € (0,hq), there exist linear mappings P : D((—fl*)%)’ — X}, and

1

Py, : Xp — D((—A*)l) and (A*)_Fﬁi : D(—(A*)%) — D(—(A*)7) (resp., there exist
linear mappings Qp, : U — Uy, and Qp, : U, —» U ), satisfying the following requirements:
(Hs.1) For every h € (0, hg). The following properties hold

Phﬁh = ’idXh and Qth = idUh. (2.3,7)

(Hs2) There exist s > 0 and Cy > 0 such that there holds, for every h € (0, hg) ,

H( (Ao 2Phph)wH < O |4l (238)

R 41
H((—A*)W) (I 4" 2PhPh) wH < ORI Ay, (239
X
for every ¢ € D(A*) and

H(I - Qth)uHU —0, ash—0, (2.3.10)

for every u € U, and

|1 = Quan By < t=0)amyy, (2.3.11)

for every ¢ € D(A*).
For every h € (0, ho), the vector space X}, (resp. Up) is endowed with the norm ||. ||y,
(resp. |||y, ) defined by:

lynllx, = HﬁhthX for yn € X (vesp.|luplly, = HQhUhHU)-
Therefore, we have the properties

A
H h L(Xp,X)

_ HQ’IH —1 and H(A*)”*%H <Clzly, (2.3.12)

L(Up,U) X

1Prll(x,x,) < C5 and [ @ullpwp,) < Cs- (2.3.13)
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(Hs.3) For every h € (0, hg), there holds
Ph = ﬁh* and Qh == th*, (2.3.14)
where the adjoint operators are considered with respect to the pivot spaces X, U, X,

Uh.
(Hs.4) There exists Cg such that

"B*(A*)—Wéphwh

< Ch™ |9l x,, » (2.3.15)
U

for all h € (0, hp) and ¢y, € Xj.
For every h € (0, ho), we define the approximation operators Ay : X; — X of A*
and B} : X — Uy of B*, by

~ N~ 1
= P A*P, and Bf = QuB*(A*) 2P, (2.3.16)

(Hy4) The following properties hold:

(Hyq) Let Ap @ Xp — Xp be a finite dimensional approximation of A that satisfies
the requirement: the family of operators e*4" is uniformly analytic, in the sense that
there exists C7 > 0 such that

e ], x,) < Cre, (2.3.17)
wt
[ Anet ] < O (2.3.18)

for all ¢ > 0 and h € (0, ho).
(Hy2) There exists Cg > 0 such that, for every f € X and every h € (0, hg), the
respective solutions of A*1) = f and A}:wh = P, f satisfy

[1Phh = nllx, < Csh® || fllx - (2.3.19)

In other words, there holds Hthl*_l — Ah*ilPhH < Cgh? .
L(X,Xp)

Remark 2.3.1. Note that the result of [LT06] is satisfied for Newmann control but not

for Dirichlet control. Our improvement now covers the case of Dirichlet control.

Remark 2.3.2. In comparison with [LT06], the important point to note here is the
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appearance of (A*)77+% in (2.3.8), (2.3.9) and (2.3.15).

Note that inequality (22) of [LT06] makes sense fory < 3 and thus imPy, ¢ D((—A")'/?) ¢
D((=A*)).
1
2 X
ity (22) of [LT06], only makes sense if we add (A*)_VJF% so that Z-m(A*_‘YJFEph) C
D((—A*)Y). The choice of (A*)_VJF% seems to be the best adapted to our theory. This

In our context, on account of v > 5, inequality (2.3.9), which is similar to inequal-
modification of the assumptions of [LT06] allows us to overcome the limitation v < 1/2.

Remark 2.3.3. By means of the condition of the degree of unboundedness of operator

B and (2.3.6), B is admissible. Indeed, we have

T
ILpoll = sup / < B*S*(T = s),uls) > ds
Jull, <1 Jo
T 1
< ([ 15 say o)’
0
T N P 1
< 03(/ H(—A*)VS(t)wH dt)”
0
Tewt » %
< Cg(/o It "t
< Crl|v| (since py<1).

Remark 2.3.4. . Assumptions (Hs) (except for the inequalities (2.3.8), (2.3.9), (2.3.15))
and (Hy2) hold for most of the classical numerical approximation schemes, such as
Galerkin methods, centered finite-difference schemes,...Inequalities (2.3.8), (2.3.9) and (2.3.15)
have to be checked in each case. Moreover, as noted in [LT00], assumption (Hy1) of uni-

form analyticity is not standard, and has to be checked in each specific case as well.

The main result of the article is the following

Theorem 2.3.5. Under the previous assumptions, if the control system y = Ay + Bu is
null-controllable in time T > 0, then there exist B > 0, h1 > 0, and positive real numbers
C, C” satisfying

P

T
* * p
Cl|e e g/ HB,’:etAhwi-LHUdt—khﬁ||z/;h\|§(h < 'l (2.3.20)
h 0

Xn

for every h € (0,h1) and every ¥y € X5, (1 <p < 2).
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In these conditions, for every yo € X, and every h € (0, hy), there exists vy, € Xp minimizing

the functional
In(¥n) = / HB* tAhwhH dt + h'BHz/JhHXh—i— < ey, Puoyo >x,,(1<p<2) (2.3.21)
and the sequence (Qnup)o<h<n, » where the control uy, is defined by
un(t) = HB*e(T t) hcth =04 (2.3.22)

for every t € [0,T] converges weakly (up to a subsequence), in the space L1(0,T;U) to a control

u such that the solution of :

y = Ay + Bu, y(0) = yo, (2.3.23)

satisfies y(T) = 0. For every h € (0,hy), let yn(.) denote the solution of
Yn = Anyn + Brun, yn(0) = Pryo- (2.3.24)

Then,

e the final state is given by
un(T) = =12 |len|"~* on

o the sequence (Poyn)o<nen, converges strongly (up to subsequence) in the space L1(0,T;X),

to y(.).

Furthermore, there exists M > 0 such that
’ /(p-1)
[ s < 2 7,
and, for every h € (0,hq),

T
/0 ||Uh( )”P < Mp/(p 1) HyOHI;{/(I,,l)7
B nlli, < M7/ o5

lyn(T)llx, < MY E=DRAP ||| P70 (2.3.25)

Remark 2.3.6. In the course of the proof we shall find that B can be chosen according
to 0 < B < s(1— )0 where 0 satisfies 0 < 0+ (1 —0)y < ]13 . The numerical example of
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Section 5 seems to indicate that this range of values for B is far from optimal. Further
investigation are needed on this aspect. This is important as the choice of B has a large

impact on the convergence of the method when h — 0 (see (2.3.25)).

Remark 2.3.7. The left hand side of (2.3.20) is an uniform observability type inequality
for control System (2.3.24) with the additional viscosity term h° [Ynll, - Here, this is a
viscosity in hP which is quite bad for numerics but completely general. Futher, in more

particular cases (1D heat equation), we derive a better viscosity term, in e~/ (see detail

in Chapter 3).

Remark 2.3.8. Our objective is to investigate the results in [LT06] in the case v > 1/2.
Moreover, we mention here an upper bound for v < 1%' This constraint is derived from

the proof of the theorem hereinafter.

Remark 2.3.9. A similar result holds if the control system (2.1.1) is exactly controllable
in time T. However, due to assumption (Hi), the semigroup S(t) enjoys in general
reqularity properties. Therefore, the solution y(.) of the control system may belong to a
subspace of X, whatever the control u is. For instance, in the case of the heat equation
with a Dirichlet or Neumann boundary control, the solution is a smooth function of the
state variable x, as soon ast > 0, for every control and initial condition yo € L?. Hence,
exact controllability does not hold in this case L?>. That is why we only focus on exact
null-controllability.

Theorem 2.3.5 stated that the controls uy defined by (2.3.22) tend to a control u
realizing exact null-controllability for System (2.3.23). A question arises naturally that
under which assumptions the control u is the control, is defined by (2.2.22), such that
y(T) = 07 A answer will be expressed through the following proposition. Apart from

the condition on yp known in [LT06], we here give an extra condition on the control u

defined by (2.2.22).

Proposition 2.3.10. With the notations of Theorem 2.5.5, if the sequence of real num-
bers [lonllx, , 0 < h < hi, is moreover bounded, then the control u is the unique control
of minimal Li-norm, as defined by (2.2.22), such that y(T)=0. Moreover, the sequence
(Qhuh)g<h<h1 converges strongly (up to a subsequence) in the space L1(0,T;U) to the

control u.
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A sufficient condition on yy € X, ensuring the boundedness of the sequence (H@h‘|xh)0<h<h1:
is the following : there exists n > 0 such that the control system y = Ay + Bu is null
controllable in time t, for every t € [T'—n, T + n|], and the trajectory t — S(t)yo in X,
fort e [T —n, T+ nl, is not contained in a hyperplane of X.

Another sufficient condition also ensuring the boundedness of the sequence (|[¢nl| x, Jo<n<hy
concerns the control function and in the following : there exists n > 0 such that the con-
trol system y = Ay + Bu is null controllable in time t, for every t € [T —n,T + 7],
and with the control u as defined in (2.2.22), the trajectory t — S(t — {)Bu(&) in X, for

te [T —n,T+n, every £ € (0,t) is not contained in a hyperplane of X.

2.4 Proof of the main results

2.4.1 Proof of Theorem 2.3.5

Proof. For convenience, we first state the following useful approximation Lemma, whose
proof readily follows that of [LT06], [LT00]. The proof of this Lemma is provided in the

Appendix.

Lemma 2.4.1. There exists Cy > 0 such that, for all t € (0,T] and h € (0, hy), there
holds

* * hs
[CREA AIORI e T (2.4.1)
|@Bie i, < 2 (242)
h h h U — t,y h Xh’ B )
for every 0 € [0,1]
|@nBiie i — B*S (1) Pan|| < LA (2.4.3)
hZh h h¥'h U~ 9t9+(1—9)’y h Xh T

every ¥n € Xp.

We carry out proving the theorem as follows
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As the degree of unboundedness v of the control operator B is lower than % then

there exists 6 € (0,1) such that 0 < 0+ (1 — 0)y < %.
For all h € (0, ho) and v}, € X}, we have

[amesila = [ (|Gl - |5sw ] o

+ /0 ' HB*S(t)*ﬁhwthUdt. (2.4.4)

We estimate the two terms of right hand side of (2.4.4).

The control system is null controllable in time T, then there exists a positive real

number C > 0 such that

/OT HB*S(t)*ﬁhwthdt > ¢ “S(T)*Phwh“i. (2.4.5)

We introduce the following useful inequality which is employed along the proof
Y — 27| <p(yP 4+ 2P |y — 2, (2.4.6)
where y,z € RT,p > 1.

This inequality follows from applying the mean-value theorem for f(x) = zP(p >

1,z € R"). Indeed, there exists £ € (y, z) such that

P =22 = |f©)]ly— |
= p‘ﬁ(p‘”‘-ly—Z\

< plyP 42Ny — 2|

By making use of the above inequality as well as inequalities (2.3.13), (2.3.1), (2.3.17)
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and (2.4.1) yield

Xhn

‘HPhS(T)*ﬁWhH; = H TA*W)

< p(HPhS(T)*phwh Z;hl + HeTA’*‘”wh’ Zl)

’PhS(T)*Ph¢h” - He“?»wh} <
< (GO Il + Or [l ). || PaS(D)* Pt — ™|
<

Cp lenl, CoCsh® [lvnllx,
Crah® |[Unll,

IN

It follows from the above estimate and (2.3.13) that

[emin, — il < |Pus@) Praal|

S(XHSGUU%wﬁZ- (2.4.7)
Combining (2.4.5) with (2.4.7), we obtain

T - P
AHFawﬂmkﬁzq5

7"14"< p
eh‘
Py, .

- Cullunlk,  (248)

h

For the first term on the right hand side of (2.4.4), one has, using (2.3.6), (2.4.2), (2.4.3)

and applying inequality (2.4.6)

‘HQhBZ@tAWth - HB*S(f)*ph%Z)th ‘

< ol @i+ s A )
|| @ Biet i, — | 5ste PwhH |
Cpl et(

< p( gy b + G5 oy ol
x ||| @nBrettipn - B*s(t) PwhH |

< G0 15 Commra Il

_ hs(1=7)0

0+ (=07 (-1 HwhHXh
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Since v < % (p > 1) we have 0+ (1—60)y+~(p—1) < 1 and we can get, by integration,

o (| @nBret i Pun|) = IB=S@ 0l )dt| < Cash 0= s,
It leads to
T = A* p T
| [ @Bicttin ] ae= [ 1 serotpi - cih 0, @40
0 0

We choose a real number  such that 0 < 5 < s(1 —+)f. It is seen clearly that
inequality (2.3.20) follows by combining results (2.4.8), (2.4.9) with (2.4.4).

For h € (0, hq), the functional J;, is convex, and inequality (2.3.20), is coercive. It

therefore admits a minimum at ¢, € X} so that

0 = 7 Jn(pn) = Gu(T)on + B8 onlP o + €T Pyyo,

where G,(T fo HB* ety Hp et4n By, Biet4hdt is the Gramian of the semidiscrete
system.
2
The discrete control up(t HB* (T-t)A <thp Bye (T-t)Aj, ryp, is chosen then, the

solution yy(.) satisfies

T
yn(T) = eTAhyh(O)—i—/ e(T_t)AhBhuh(t)dt
0
= T4 Puyo + GL(T) e,

= —hP||lgnlPon

Note that, since J,(0) = 0, there must hold, at the minimum, J;(pp) < 0. Hence,

using observability inequality (2.3.20) and the Cauchy-Schwarz inequality, one gets

H TA* p

h‘Ph‘

IN

T a|IP
[ Bt + 12 lenls,

2H TA

Xn

IN

h‘PhH | Pryoll x, -
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and thus, we obtain

e ien ], < (i)w | Payo1 377 (2.4.10)

As a consequence, we have
/ |Bietian]! < Cve-npulE), (24.11)
and h? nghHXh < (%)1/(1)71) ||Phy0|\§(/}fp_1), and estimates (2.3.25) follow. O

2.4.2 Proof of Proposition 2.3.10

Proof. If the sequence (HPhcth >0 o is bounded then up to a subsequence, it
<h<hi

converges weakly to an element ¢ € X. It follows from estimate (2.4.3) that u(t) =
| B*S(T — t)*p||P~2 B*S(T — t)*¢ for every t € [0,T]. Moreover, Quuy, tends strongly to
uin L4(0,T;U). Indeed, for ¢t € [0,T],

Qnun(t) — u(t)
_ QhHB* (T— tA;;(th BreT=04i,,
—IB*S(T = t)"¢|["* B*S(T — t)*¢
p—2 . . .
= HB* - t)AhSOhH (QnBje ™% — B*S(T — t)* Py)en
* _(T'—t) p=2 * * (D
—l—HBhe h‘PhH B*S(T — t)*(Prpn — ¢)
+B*S(T — HB* (- W‘whH B S(T — ) |2, (2.4.12)
Since the @y, are bounded then the ||uy|| are bounded. It follows that HB* (T=)Aj, cthp 2
are bounded as well.
By making use of estimate (2.4.3), the first term of right hand side of (2.4.12) tends
to zero clearly. For the second term, for every t € [0,7] the operator B*S(T — t)*
compact, as a strong limit of finite rank operators and since phgoh — ¢ tends to weakly

to zero, it follows that the second term of the right hand side of (2.4.12) tends to zero.
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Furthermore, through inequality (2.4.6) we get

| Bre®-45 | — 1875 — )7l
< @-p)(|Bre® M|+ 1B S@ ~ 1y elP?)

<([| Bre=04igy — B*S(T — t)7g|).

It is seen easily that the third term tends to zero because of the unboundedness of

HB* (T=1) AchhH and estimate (2.4.3).

The control u is such that y(T)=0, hence the vector ¢ must be solution of V.J*(¢)) = 0,
where J is defined as in Theorem 2.2.3. Since J is convex, ¢ is the minimum of J*, that

is, u is the control such that y(7") = 0.

We next prove, by contradiction, that the sufficient conditions provided in the state-
ment of the proposition implies that the sequence (||¢n| y, Jo<n<n, is bounded. Since the
proof of the first sufficient condition is found in [LL.T06], we give here the proof only for
the second sufficient condition. If the sequence (||¢n|x, Jo<n<n, 18 not bounded, then,
up to subsequence, Pj(pn/ lnllx,) converges weakly to @ in X, as h tends to 0. For
every t € [T —n, T + 7|, the control system is null controllable in time t; and thus, from
estimate (2.4.11), the sequence fot < BZe(t_S)Aznph, Qnu(s) >y, ds is bounded, uniformly

for h € (0, h1). Thus, passing to the limit, one gets

¢
/ < ®,S(t — s)Bu(s) >x ds = 0.
0

This equality is equivalent to the fact that : there exists £ € (0,¢) such that <
O, S(t—&)Bu(&) >x= 0. This contradicts the fact that the trajectory t — S(t—&)Bu(§),

te [T —n,T+n] and every & € (0,t), is not contained in a hyperplane of X. O
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2.5 Numerical simulation for the heat equation with Dirich-

let boundary control

In this section, we give an example of a situation where the assumptions in Theo-
rem 2.3.5 are satisfied, and we provide comments numerical simulations to illustrate our
results.

Let Q C R™ be an open bounded domain with sufficiently smooth boundary I'. We

consider the Dirichlet mixed problem for the heat equation:
y=Ay+cyin (0,T) x Q

y(0,.) =yo in Q
y=uin (0,7) xI' =%,

with boundary control u € L8(0,T; L*(T)) and yo € L%(Q).
Set X = L?(Q) and U = L?(T'). It can be written in form (2.1.1): the self-adjoint

operator

A:D(A) = H*NH} — L*(Q).

is defined by Ay = Ay + c?y and the adjoint B* € L(D(A*),U) of the control operator
B is given by
o

B*y = 3, € D(A").

Moreover, according to [LT00] (Section 3.1), the degree of unboundedness of B is
y=3+e>1(e>0).

The conditions u € L5(0,T;L?(T")) and v > 1/2 exceed the hypothesis stated in
[LT06]. The results of [LT06] can not be applied to this example. The assumptions of
the results presented here are however satisfied as we shall see below. Constructing the

control as in Theorem 2.3.5 we shall observe the convergence to zero of yy(7T').

2.5.1 A one-dimensional finite-difference semi-discretized model

We introduce a semi-discretized model for the above heat equation through 1D finite-
difference.
For simplicity, we set Q = (0,1), I' = {0,1}, c=1 and T=1.

Given n € N we define h = %—i—l > 0. We consider the following mesh
Qn={x0=0; z; =1th, i=1,...n; xpy1 =1},
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which divides [0,1] into n+2 subintervals w; = (z,_1,2.,1) j = 0,...,n + 1 where
J—=377It3

Tj+ Tj41

T_1 = X9, T = xp4+1 and Tl = for j =0,...,n. Let Xuw; denote the
2 2

na 3
characteristic }Luantion of the interval w;. X}, is finite-dimensional subspace of X.

Let X}, denote the set of functions on I = (0,1) whose restriction to each subinterval
I;,1=0,...,n+ 1, is polynominal with degree less than or equal to two.

For every positive integer m, every strictly ordered vector X € R™ and every Y e
Z™, where Z is a reflexive Banach space, let X(f/) denote the Lagrange interpolation

polynom of Y at points X , that is

for every x € R. Note that

Cx(Y) (i) = wis 1=1,...,m
For every X € R""2, we use notation X.y;, = Z?Iol TiXw,
Define py, : R"2 — X}, by

n+1
pr(U) = Z Cap)jev, (Uj)jevinia
=0

for every U € R"*2.

Set X, = pp(R"+2).

Define P, (resp., Q) as the canonical injection from X into D((—A)'?) (resp.,
from Up, to U). For z;, € X} and up, € Uy, set, ﬁh(xh) = x5 and Qh(uh) = wuy. For
y € D((—A)Y2) = HY(Q), set Pyy = yp, and, for u € U, set, Qpu = up,.

We now consider the finite difference approximation of the above heat equation

y]: 2[y]+1+y]71_2y]]+yja O<t<T7 ]:]-avna

| =

y](o) = Yjo 7j = 17 ey T,
yo(t) = u;ll(t), Ynt1(t) = u}%(t) L0<t<T,

where y € R"™2 | yg € R"2; oyl w? € R.

We can write the above discrete system in following form
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Un = Apyn + Brup,

yr(0,.) = Pryo(.), (2.5.1)
where
d 1 0 0
d 1 0 O
0 1 d 1
1
Ah == ﬁ s
0 1 d 1 0
0 0 1 d
0 O 0 1 d
nxn
with d=h? — 2 and
0 0 .
1 U
Bh = 79 E 7uh = h )
h ( uj, )
0 O
nx2

and yoh = (Yor(j))1<j<n = (Yo(3h))1<j<n-

Next we check that assumptions (H3)-(H4) are fulfilled for the above system. As-
sumptions (Hs.1) and (Hs3) are satisfied. To check assumptions (H32) and (Hs4), we
recall the following usual approximation properties (see [LT00], Section 5) that are sat-

isfied by the usual discretization scheme

() 1Ty — yll gy < b~ ylgregays s <r 41, s—120, 0<i<l,

and the inverse approximation properties
. - 2
(i) [[ynll o) < ch™* llynllz (), 0 < a < 1.

_ _3
(i) A |y — TMayll e+ ||(T = T1,) 52 < eh* 2 |Ylleggy S <s<r+1, ye
(T) (©)

H3(Q).

L2(r)

1
<Ch™ 2 ||thL2(Q)7 Yn € Vp.

: 0
() Nonlzaqry + | 52
where r is the order of approximation (degree of polynomials) and IIj, is the orthogonal

projection of L?(Q2) onto V}, .
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By means of property (i), we easily get inequality (2.3.8)

IN

H(I YT

CR? |||l g2

Ch? 9]l peany
Ch* | A% x

L2(Q)

IN

IN

in the case s=2.

We next verify inequality (2.3.9) as follows

(o)

IN

C H(I (AT Py

D((=A*)7)

IN

Ch* 9l prary
CR D (| A,

IN

~

where we have employed property (i) with s=2 and where D(A*) = H*(Q2), D((—A*)7) =
HY(Q).
For inequality (2.3.11), we employ property (iii) with s=2 as

H(I — Qth)gf

ChM2 [[]] 2
< O [l pany
< CRY Ay -

H(I - Qth)B*df‘

LA L2(T)

A A

For inequality (2.3.15), by making use of property (iv) and inequality (2.3.12) we

have

1 A * “1+3 5
B*(A*)i'wriﬁh’(/)h a((A ) Phwh)

U ov
L2(T)
~ 1
< Ch—i'(A*> 2 B
12(Q)
3
< Ch ¥y,

Inequality (2.3.15) is thus satisfied for s=2, v = 3 + ¢. Moreover, assumption (Hy2)
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is satisfied with s=2 (see [LT00]).

The assumptions of Theorem 2.3.5 are thus adapted to this example, with 8 = 0.16,

for instance. Note that the choice of S comes from the proof of Theorem 2.3.5.

For greater convenience in numerical computations, we shall exploit spectral decom-

positions in what follows.

The solution of discrete system (2.5.1) at time T reads

T
yn(T) = eT4r Pyyo + / eT =04 By, (t)dt. (2.5.2)
0

As shown in Theorem 2.3.5, a control uy, is built as

B;;e(T—t)A;(L ©Oh,

* p72
un(t) = | BieT % |

where @y, is the minimizer of the functional

LT o ar I 1 *
Jh(wh) = p/o HBhetAhﬂJhHUdt + ];hﬂ”i/)hugg—h-l- < eTAhl/J}uPhyo >X, -

Replacing the above discrete control into (2.5.2) we obtain

T
* p_2 *
un(T) = T4 Py +/ HB,’;etAwhH ¢4 By BE e o
0

The eigenvectors and eigenvalues of the operator A are respectively given by
) .. 1
wi(j) = sin(jmhk), A\ = ﬁ(2€08(ﬂ'hl€) + (h?=2)) #0
for 1 <j,k<n.

We normalize the eigenvectors (wy)1<k<p and then consider them as an orthonormal
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basis of n-dimensional space X}. Exploiting the spectral decomposition we write

n

yn(T) = ZeT’\f < Pryo,w;j > w;
3=0
T n p=2 n
+ / ZB*et)‘j < pn,wj > wj ZetA"BhB;iet)‘j < pp,w;j > w;dt
0 =0 =0
= Ze”‘j < Ppyo, wj > w;
3=0
1T i 2 i 2\ 7
+ @/ ((Zet T < pnwy > wp)’ 4 (D €N < pnwy > wj(n)) )
0 =0 3=0
(Z 3 R (Lo (1) + wj (n)wy (n)) < on,w; > wk)dt, (2.5.3)
§=0 k=0

where ¢y, is minimizer of

(S|

T n n
In(¥n) = 1%/0 ((Z e < w; > wi (1)) + (O e <, w; > wj(ﬂ))2> dt

=0 =0
1 Sy
+5h5||¢h|\§}h +> et <y, w; >< Poyo,w; > (2.5.4)

=0

Equivalently we have

0 = VJa(tn)

T . -2 .
- / HB’*letA””hH ¢! By, Bire! b dt + hP|[yn]|P " + " Payo,
0

1 T n n p—2

= o [ (OCe™ <y > w2+ (X e™ < onwy > wi(m)?)
0 =0 =

X (Z Z Ot (4 (1w (1) 4 wy(n)wg(n)) < @, w; > wk)dt

=0 k=0

+ PP |lnlP e + Z e < Pyyo, wj > w;. (2.5.5)
7=0

Observe that thanks to the spectral decomposition the various expressions we just wrote are
quite straightforward to evaluate. Namely, expressions (2.5.3), (2.5.4) and (2.5.5) are useful for

the numerical computations below.

Note the using this spectral decomposition is classical (see eg. [MZ10] where it is also exploited
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2.5.2 Numerical simulation

The minimization procedure stated in Theorem 2.3.5 is implemented for d=1, using a simple
gradient method that has the advantage to not require complex computations. Moreover, this
method can be applied with any power p. We now describe the simple gradient method which

we employ as follows

1. Set iteration counter £ = 0, and make an initial guess, x( for the minimum.

2. Repeat:
3. Compute a ’descent direction’ d.
4. Choose ’step length’ ay, to ’loosely’” minimize h(a) = f(xx + ady) over v € R

5. Update 41 = + apdy and k =k + 1.
6. Stop criterion: ||/ f(zx)| < 1072

At step (4), in order to obtain an acceptable step length ay, we choose a line search algorithm
where the Wolfe condition is satisfied, that is f(z + ady) < f(zx) + ca 7 fi' di (note that
c = 10~* is chosen here). This condition ensures that the step length a yields a sufficient
decrease for f. However it is not sufficient on its own to ensure that a reasonable value is
generated, since all o small enough will satisfy the Wolfe condition. To avoid the selection of
steps that are too small, the additional curvature condition is usually imposed. For simplicity,
we impose in practice a > 1074,

At step (3), there are many methods to compute a ’descent direction’ dj, such as

1. The Fletcher-Reeves method where

IV f @rs )l
d = — d
k+1 V f(@p41) + 19 f @)

2. The BroydenFletcherGoldfarbShanno method (in short: BFGS method) where a direction
dj+1 is obtained by solving By11di+1 = — V7 f(zr4+1) where
ykyL  Bisksi By

Bi+1 = B + -
yl sy st Bysy,

with

Sk = Tk+1 — Tk,

Yk = Vf(@r41) — Vf(Tr).
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3. The Polak-Ribiere method where

VS (@es1) (7 fzrgr) — Vf (2r))

dy,.
17 £ @)l ’

diy1 = =V f(@rg1) +

All above methods lead to reasonable results. However, the best choice for our example turns
out to be the Polak-Ribi¢re method (in the sense that acceptable numerical results are obtained
in the shortest time).

Below we present the numerical results where the line search method at step (4) and Polak-

Ribiere method at step (3) have been used.

name n h Yo

ID-10 [ 10 | 0.1 | yo(2)
1ID-50 | 50 | 0.02 | yo(z) =e™®
1D-100 | 100 | 0.01 | yo(x)

1D-200 | 200 | 0.005 | yo(z) = e~
Table 1: Data for the one-dimensional heat equation.

name | fonlly | h7(8=0.16) | [Vl | yn(T)]
1D-10 7.3100e-07 | 0.7359 0.0089 | 0.0410
1D-50 8.9224e-07 | 0.5936 0.0098 | 0.0324
1D-100 | 9.1999e-07 | 0.5412 0.0084 | 0.0297
1D-200 | 9.2306e-07 | 0.4936 0.0076 | 0.0266

Table 2: Numerical results for one dimensional equation for 8 = 0.16.

Numerical simulations are carried out with a space-discretization step equal to 0.005, with
the data of Table 1. The numerical results are provided in Table 2 for 5 = 0.16 and Table 3 for
B = 2. Note that the fifth column corresponds to the numerical results as computed by (2.5.3).

The convergence of the method can be slow. According to the result of Theorem 2.3.5, the
final state y,(T) is equal to —h? ||gn||P " ¢p in which ¢, is the minimizer of .J,. We note that
the maximum value for 8 which the theorem asserts the convergence is very small. For such a
small value of 3 (here, 8 = 0.16), it follows from the estimate (2.3.25) that ||y (T)|| converges to
0 with order ’3/p = 0.1333’ which is quite small. Namely, in order to divide ||y, (7| by 10 then
one has to divide h by 32.10%%. To achieve sufficient precision one need to take h small which
lead to time consuming computation, which is reasonable for 1D problem.

Moreover, we provide the numerical results for § = 2 in Table 3 for reference. Although the
case § = 2 is not covered by our theory, the method seems to converge as well for this value of

beta. Naturally the greater the value of 3 is, the quicker the convergence is. This observation
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motivates further developments to improve the results we have presented here.

name | [lnl x WP =2) | IVl | llyn(D)]
1D-10 | 1.6037e-06 | 0.0215 0.0081 | 5.7311e-04
1D-50 | 3.3748¢-06 | 0.0015 0.0093 | 3.0939e-05

1D-100 | 3.9861e-06 | 4.6415e — 04 | 0.0064 | 6.2477e-06

1D-200 | 4.1893e-06 | 1.4620e — 04 | 0.0078 | 1.8722e-06
Table 3: Numerical results for one dimensional equation for 5 = 2.

2.6 Proof of Lemma 2.4.1

In comparison with Lemma 4.1 in [LT06], a different point in proof of this Lemma is the
A —ytd
appearance of (A*) e

Proof. e First of all, we will prove (2.4.2)

For every v € D(A*), one has

—y+3

HQhB;;etAZPhw — B*(4*) Py PyS(t)

< HQhB;:efA?iPth
U U

B s | (2.6.1)

+HB*(A*)
U

A —y+L L
We estimate each term of the right hand side of (2.6.1). Since B} = Q,B*(A*) V+2Ph

and thus, using (2.3.13) (2.3.15) (2.3.17) one gets

VTS B
B*(A*) 77 Bet A Py

IA

Cs

o
U U

IN

CsCeh™°

etAZ Phw‘

Xh
C2CsCrh™ "5 |Y]| - (2.6.2)

A\

On the other hand, it follows from (2.3.1), (2.3.13), (2.3.15) that

TRy

IN

HB*(A*> Csh ™| PuS(t) vl x,

U
< GsGeh™ (IS8 1l

< C1CsCsh™ e || - (2.6.3)

N
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Hence, combining (2.6.2), (2.6.3) with (2.6.1), there exists C1¢ > 0 such that

—v+3

HQhB;;efAZPhw — B*(A*) Py PyS(t)*

< Croh™ Y] - (2.6.4)
U

for every ¢ € D(A*), every t € [0,T], and every h € (0, hg).

Moreover, we get another estimate of this term. By using (2.3.6), (2.3.11), (2.3.13),
(2.3.15), (2.4.1) one gets

—v+3

QnB; e Pyip — B*(A*) Py P,S(t)

U

-v+3

3 A +% 5 * Y 5 *
= ||@nQnB*(A*) T Byt Py — B*(A*) 2 By PuS(t)

U

GnQnB(A") 7B P — PLS(1) )

IN

U

| @n@nB (A7) T BBy - DS

U

+|@an-nB sy,

+|[B*(I - (A*)_W%PhPh)S(t)*w

U

IN

CsCsh®

Py — PS04
h

+C5Cs || (—A) (A %ﬁhPh—I)S&)*w

.
+C T AS () Y

(—A)7((A*) 7JréPhPh—I)S(lf)wa

hs(l—

+C3

IN

C5CsCly
hs(l v)

[llx + (C3(Cs + 1) + 1)Cah™ = A*S () |

IN

Cui

191l x- (2.6.5)

Then, raising (2.6.4) to the power 1 —~, (2.6.5) to the power v and then multiplying both

result estimates, we obtain

—v+3 012

HQhB* A5 Py — B (A%) ﬁhphsawH 2 .
U

Hence,

Sk tAT C e A TTFE = .
@i o], < 2ol + [ a) T Amsiore (26.6)

U
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It follows from (2.3.2), (2.3.5), (2.3.9) that

—v+3 s

IN

B*(A¥) PoPyS(t)*) P Py)S(t)

HB*(I— (A*)

+[1B*S(®) "y
U U

A

ewt
< 013757”7/)“)(- (2.6.7)

Combining (2.6.6) with (2.6.7) and by setting ¢ = Py, we get (2.4.2).

e Finally, we prove (2.4.3). On the one hand, reasoning as above for obtaining (2.6.5), we

get
hs(1=7)

t

|@nBie 4Py - B*S @) | < Ol (2:6.8)
for every ¢ € D(A*), every t € [0,T] and every h € (0, hg).

On the other hand, from (2.4.2) and setting 1) = Py, one obtains

|@nBietipy — B s@rw| | < |QuBie i Py| + 1B S®) by
< Sl + G -dyso
< %Ilwh\\x- (2.6.9)

Raising (2.6.8) to the power 6, (2.6.9) to the power 1—6 and then multiplying both resulting

estimates, we obtain (2.4.3).

The proof of the inequality (2.4.1) is found in [LT06], [LT00].

2.7 Conclusion

We have shown that the appropriate duality techniques can be applied to solve (2.1.3), namely
the Fenchel-Rockafellar theorem.

Additionally, it is also stated that under appropriate standard assumptions on the discretiza-
tion process, for null controllable linear control system, if the semigroup of approximating system
is uniformly analytic, and if the degree of unboundedness of the control operator is greater than
% then a unform observability type inequality is proved. Our result overcomes the limitation of
[LT06] on the 1/2 of degree unboundedness of the control operator. As a consequence, a mini-
mization procedure was provided to build the aproximation controls in L¢ norm (¢ > 2). This is

implemented in the case of the one dimensional heat equation with Dirichlet boundary control.
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Note that, we only stress our problem on the case v > 1/2. Some relevant problems for
which v < 1/2 that can be found in [LT06] and [EV09]. More precisely, while authors of [LT06]
achieved the uniform observability result on space semidiscretization, authors of [EV09] provided
the result for suitable time-discretization schemes which can then be combined with the existing
ones on the observability of space semi-discrete systems, yielding observability properties for full
discretization schemes.

In this work, we dealt within a very general framework, and derived a general uniform observ-
ability inequality with a viscosity in h?. Next chapter, we investigate more particular equations
(1D heat equation), for which Carleman estimate allows one to untimately derive uniform ob-

servability inequality with a better viscosity in e=¢/".

62



Chapter 3

Carleman estimates for semi-discrete
parabolic operators with a discontinuous
diffusion coefficient and application to

controllability

3.1 Introduction and settings

Let 2, w be connected non-empty open interval of R with w € 2. We consider the following

parabolic problem in (0,7T") x Q, with T > 0,
Oy — 0x(cOpy) = 1,v in (0,T) x Q, ylag =0, and y|i—o = o, (3.1.1)

where the diffusion coefficient ¢ = ¢(z) > 0.

System (3.1.1) is said to be null controllable from yo € L2(f2) in time T if there exists
v e L%((0,T) x Q), such that y(T) = 0.

In the continuous framework, we refer to [F196] and [LR95] who proved such a controllability
result by means of a global/local Carleman observability estimates in the case the diffusion
coefficient ¢ is smooth. The authors of [BDLO07] produced this controllability result in the case of
a discontinuous coefficient in the one-dimensional case later extended to arbitrary dimension by
[LR10]. Additionally, a result of controllability in the case of a coeflicient with bounded variation
(BV) was shown in [FCZ02, LO7].

The authors of [LZ98] show that uniform controllability holds in the one-dimensional case



with constant diffusion coefficient ¢ and for a constant step size finite-difference scheme. Here,
”uniform” is meant with respect to the discretization parameter h. The situation becomes more
complex in higher dimension. In fact, a counter-example to null-controllability due to O. Kavian
is provided in [Zua06] for a finite-difference discretization scheme for the heat equation in a
square.

In recent works, by means of discrete Carleman estimate, the authors of [BHL10a], [BHL10b]
and [BL12] obtained weak observability inequalities in the case of a smooth diffusion coefficient
c(x). Such observability estimates are charaterized by an additional term that vanishes expo-
nentially fast. Morever, also with a constant diffusion coffiencient ¢, under the assumption that
the discretized semigroup is uniformly analytic and that the degree of unboundedness of control
operator is lower than 1/2, a uniform observability property of semi-discrete approximations for
System (3.1.1) is achieved in L? [LT06]. Besides that, such a result continues to hold even with
the condition that the degree of unboundedness of control operator is greater than 1/2 [N12].

In the case of a non-smooth coefficient, our aim is to investigate the uniform controllability
of System (3.1.1) after discretization. It is well known that controllability and observability are
dual aspects of the same problem. We shall therefore focus on uniform observability which is
shown to hold when the observability constant of the finite dimensional approximation systems
does not depend on the step-size h.

In the present paper we prove a Carleman estimate for aystem (3.1.1) in the case of:
e the heat equation in one space dimension;

e a piecewise C! coefficient ¢ with jumps at a finite number of points in §;

e a finite-difference discretization in space.

The main idea of the proof is combination of the derivation of a discrete Carleman estimate as
in [BHL10a, BL12] and tecniques of [BDL07] for operators with discontinuous coefficients in the
one-dimensional case. A similar question in n-dimensional case, n > 2, remains open, to our
knowledge.

When considering a discontinuous coefficient ¢ the parabolic problem (3.1.1) can be under-
stood as a transmission problem. For instance, assume that ¢ exhibits a jump at a € . Then

we write

Ory — 0z (cOry) = 1v in (0,7) x ((0,a) U (a,1)),
Ca;zcy|aJr = Caxy|a*7 y|aJr = y|aﬁ7
ylon =0,  and Yli=0 = Yo-
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The second line is thus a transmission condition implying the continuity of the solution and of
the flux at z = a.

When one gives a its finite-difference version of this transmission problem, a similar condition
can be given for the continuity of the solution. Yet, for the flux, it is only achieved up to a

consistent term. In what follows, in the finite-difference approximation, we shall in fact write

(the discrete notation will be given below). Note that the flux condition converges to the contin-
uous one if A — 0, h being the discretization parameter. This difference between the continuous
and the discrete case will be the source of several technical points.

An important point in the proof of Carleman estimate is the construction of a suitable weight
function ¥ whose gradient does not vanish in the complement of the observation region. The
weight function is chosen to be smooth in the case of a smooth diffusion coefficient ¢(z). In
general, the technique to construct such a function is based on Morse functions (see some details
in [F196]). In one space dimension, this construction is in fact straightforward. In the case
of a discontinuous diffusion coefficient, authors of [BDLO07] introduced an ad hoc transmission
condition on the weight function: its derivative exhibits jumps of its derivative at the singular
points of the coefficient. In this paper, we construct a weight function based on these techniques
in one-dimentional discrete case.

From the semi-discrete Carleman we obtain, we give an observability inequality for semi-
discrete parabolic problems with potential. As compared to the result in continuous case [BDL07]
the observability estimate we state here is weak because of an additional term that describes the
obstruction to the null-controllability. This term is exponentially small in agreement with the
results obtained in [BHL10a, BHL10Db] in the smooth coefficient case. A precise statement is
given in Section 3.6.

Finally, the observability inequality allows one to obtain controllability results for semi-
discrete parabolic with semi-linear terms. In continuous case, this was achieved in [BDLO07].
Taking advantage of one-dimensional situation, the results we state are uniform with respect to

the discretization parameter h (see Section 3.6).

3.1.1 Discrete settings

We restrict our analysis to one dimension in space. Let us consider the operator formally

defined by A = —9,(cd,.) on the open interval Q2 = (0,L) C R. We let a’ € Q and set 0y := (0, a’)

65



and Qs := (a’, L). The diffussion coefficient ¢ is assumed to be piecewise regular such that

0< Cmin S c é Cmazx (312)
Co in Ql,
Cc =
C1 in QQ,

with ¢; € C1(Q;),i = 1,2.

The domain of A is D(A) = {u € H}(Q); cO,uec HY(Q)}.

Let T > 0. We shall use the following notation ' = Q;UQs, @ = (0,T)xQ, Q' = (0,T) x &,
Q:=(0,T)xQ;, i=1,2,T ={0,L}, and ¥ = (0,7) x I. We also set S = {a’}. We consider

the following parabolic problem

O+ Ay = fin Q',

y(0,2) = yo(x) in

(real valued coefficient and solution), for yo € L?(Q2) and f € L?*(Q), with the following trans-

mission conditions at a’

y(a'™) = y(a™),

c(a'™)0zy(a’™) = c(a’™)0ay(a’™).

(TC)

Now, we introduce finite-difference approximations of the operator A. Let 0 = z{ < 2} <

<=0 <...<x 0 <X ,.0 = L. We refer to this discretization as to the primal

mesh M := (})1<i<ntm+1. Weset [ :=n+m+1. Weset hi , =aj, —z;and z} , =
- 2 2

(i +x7)/2,i=0,...,n+m+1,and b’ = maxo<i<nim1 h;+%. We call M := (.T;+%)O§i§n+m+l
the dual mesh and set h} = x;Jr% —x;% = (h;Jr% +h;7%)/2, i=0,...,n+m+1

In this paper, we shall address to some families of non uniform meshes, that will be precisely
defined in Section 3.1.2.

We introduce the following notation

[p1%]a = p1(a™) — pi(a™), (3.1.3)
xpala = paln+ 3) — paln + ), (3.1.4)
o1 % pala = (@) pan + ) — pr(a )paln + ). (3.1.5)

We follow some notation of [BHL10a] for discrete functions in the one-dimensional case. We

denote by C™ and C™ the sets of discrete functions defined on Mt and % respectively. If u € C™
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(resp. C™), we denote by u; (resp. u; 4 1) its value corresponding to x; (resp. z} ). Foru € c”
2

we define
n+m+1

= Y A wu € LX)
; ity i3
i=1

And for u € C™ we define [, u:= [, u™ (z)de = Hasany 127

For u € C™ we define
n+m+1

m o
u = U, Uiy
1=0

As above, for u € C™ | we define Jou =g u™ (z)dx = Z:-L:Jromﬂ h;+%ui+%. In particular

we define the following L? inner product on C™ (resp. C™)

(u,v) 2 :/Qum(z)vm(x)dx, resp. (4, )2 :/Quﬁ(x)vﬁ(x)dx.

oM — {u07un+m+2}-

For some v € C™, we shall need to associate boundary conditions u
The set of such extended discrete functions is denoted by C™“9™  Homogeneous Dirichlet
boundary conditions then consist in the choice ug = up4m+2 = 0, in short w9 = 0. We can

define translation operators 7%, a difference operator D and an averaging operator as the map

CIMUOM _y €M given by
(T+u)i+% = Ujit1, (T_’U,)H_% =u;, 1=0,...n+m+1,
1 _ - _
(Du)iys = T(TJF’U,*T Wipy, U= §(T++T u.
it3

We also define, on the dual mesh, translation operators 7+, a difference operator D and an

averaging operator as the map C™ ™ given by

3.1.2 Families of non-uniform meshes

In this paper, we address non-uniform meshes that are obtained as the smooth image of an

uniform grid.

More precisely, let 9 =]0, 1[ and let ¥ : R — R be an increasing map such that
Q) =Q, 9eC>® inf? >0and V(a)=2d (3.1.6)
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with a to be kept fixed in what follows and chosen such that a € (0,1) N Q, ie a = % with
p,q € N*. Clearly, we have ¢ > p. We impose the function ¢ to be affine on [a — §,a + §]
V|{a—s,a+4) (for some § > 0).

Given r € N* and set m = (¢ — p)r and n = pr. The parameter r is used to refine the mesh
when increased. Set a = z,1 = Zpr41. The interval Qo1 = [0, a] is then discretized with n = pr
interior grid points (excluding 0 and a). The interval Qgz = [a, 1] is discretized with m = (¢—p)r
exterior grid points (excluding a and 1). Let My = (4h)1<i<ntm+1 With h = m be uniform

mesh of Qg and M be the associated dual mesh. We define a non-uniform mesh 9t of Q as image

of 9y by the map 1, settings

z, =9(ih), Vie{0,..,n}U{n+2 . ,n+m+2}

z, = d =9Y(a). (3.1.7)

The dual mesh 91 and the general notation are then those of the previous section.

3.1.3 Main results

With the notation we have introduced, a consistent finite-difference approximation of Au

with homogeneous boundary condition is
Ay = —D(cqDu)

for u € CMVM satisfying u|gn = u?™ = 0. We have

Cd(xwé)‘wﬁr,l - ca(x;_1) S e
o it} i3 ,
(AT u); = — h , 1=1,..,n+m+1.
i

For a suitable weight function ¢ (to be defined below), the announced semi-discrete Carleman
estimate for the operator P™' = —9, + A™ with a discontinuous diffusion coefficient ¢, for the

non-uniform meshes we consider, is of the form

2 2 : 2
71 H@*%eﬁwatuH + 7 ‘ H%eTe‘pDuH + 73 ‘ Q%GTWUH
£2(Q) £2(Q) L@
0p M. (12 3|2 o0y
< Ch s <||€T PP ) + T ’ fe @u‘ L2((0,T) xw)

+h_2 |679wu|t:0’12(9) + h_2 ‘eTgipu|t:T|iz(Q)> )
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for properly chosen functions § = 6(t) and ¢ = @(x), for all 7 > 7o(T +T?), 0 < h < hg and
Th(aT)™ < €, 0 < a < T and for all u € C*(0,T;C™) where 79, ho, g only depend on the
data. We refer to Theorem 3.5.6 below for a precise result. The proof of this estimate will be
first carried out for piecewise uniform meshes (see Theorem 3.4.1), and then adapted to the case
of the non-uniform meshes we introduced in Section 3.1.2.

From the semi-discrete Carleman estimate we obtain allows we deduce following weak ob-

servability estimate
2 _c 2
19(0)] L2y < Cobs lall 20,7y xwy + € 1a(T)]12(q) »
for any ¢ solution to the adjoint system
dhqg+ AMg+ag=0,  qlog =0.

A precise statement is given in Section 3.6.
Moreover, from the weak observability estimate given above we obtain a controllability result

for the linear operator P™. This result can be extended to classes of semi-linear equations
0+ Ay +Gly) = Lo, y€(0,T)  ylon =0, y(0) = yo,
with G(x) = zg(z), where g € L*°(R) and

lg(z)] < KIn"(e + |z|), z€R, with 0<r< ;

We shall state controllability results with a control that satisfies

||”U||L2(Q) < Clyol .

Thanks to one space dimension the size of the control function is uniform with respect to the

discretization parameter h.

3.1.4 Sketch of proof of Theorem 3.4.1 (Carleman estimate for uniform

mesh)

The main idea of the proof lays in the combination of the derivation of a discrete Carleman
estimate as in [BHL10a, BL12] and techniques used in [BDLO07] to achieve such estimates for

operators with discontinuous coefficients in the one-dimensional case.
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We set v = e 5¢u yielding e*? Pe™5¢v = e5¢ f1 in Qf if Pu= f1

We obtain g = Av + Bv in Qj, with A and B ’essentially’ selfadjoint.

We write [|g]|7 = || Av]|3 + | Bv|| 32 +2(Av, Bv) > and the main part of the proof is dedicated
to computing the inner product (Av, Bv)z2(qy), involving (discrete) integration by parts.

We proceed with these computations separately in each domain Qg1, Q2. As in [BL12]
we obtain terms involving boundary points © = 0 and z = 1 such as v(0),v(1),0;v(0),0:v(1),
(DV)pyms s (DV)pgpmyz. In our case we obtain additional terms involving the jump point a
such as v(a),v(a), Vi1, Vpyz, (DV)py1,(Dv), 3. Main difficulties of our work come from
dealing with these new terms. To reduce the number of terms to control, we find relations among
connecting these various values at jump point allowing to focus our computations on terms only
involving v(a), dyv(a) and (Dv),, 1. Those relations are stated in Lemma 3.3.17. In the limit
h — 0 they give back the transmission conditions for the function v = e™*¥u used crucial way in
[BDLO7]. The idea of this technique comes from a similar technique shown in continuos case by
[BDLOT].

The discrete setting could allow computation on the whole €. Yet such computation would
yield constant that would depend on discrete derivatives of the diffusions coefficient, yielding
non-uniformity with respect to the discretization parameter h. This explains why we resort to
working on both Q4 and 2y separately and deal with the interface terms that appear. As in
[BDLO7] the weight function is chosen to obtain positive contributions for these terms.

Sketch of proof Theorem

1. We compute the inner product (Av, Bv) in a series of terms and collect them together in
an estimate (see Lemma 3.4.4-Lemma 3.4.12). In that estimate, we need to tackle two
parts: volume integrals, integrals involving boundary points and the jump point. Volume
integrals and boundary terms are dealt with similar to [BL12]. Terms at the jump point

require special case.

2. Treatment of terms the jump point

e Terms at jump point involving d;v : when treating the term Y7i3 we obtain a positive
integral of (9;v(a))? in the LHS of the estimate as shown in Lemma 3.4.15. We
keep this term in the LHS of the estimate.

e Other terms: We collect together the terms at the jump point that already exist in
the continuous case. As in [BDL07] we obtain a quadratic form because of the choice
of the weight function (jump of its slope). This allows us to obtain positive two

integrals involving v?(a), (DU)ZJrl in the LHS of our estimate (see Lemma 3.4.14).
2
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e The remaining terms at the jump point are placed in the RHS of estimate. After
that, we apply Young’s inequality to them (as shown in Lemma 3.4.16) and they
then can be absorded by the positive integrals involving v?(a), (Dv)i+l, (Oyv(a))? in

2

the LHS of estimate as described above.

3.1.5 Outline

In section 3.2, we construct the weight functions to be used in the Carleman estimate. In
section 3.3 we have gathered some preliminary discrete calculus results and we present how
transmission conditions can be expressed in the discretization scheme. Section 3.4 is devoted to
the proof the semi-discrete parabolic Carleman estimate in the case of a discontinuous diffusion
cofficient for piecewise uniform meshes in the one-dimensional case. To ease the reading, a large
number of proofs of intermediate estimates have been provided in Section 3.7. This result is then
extended to non-uniform meshes in Section 3.5. Finally, in Section 3.6, as consequences of the
Carleman estimate, we present the weak observability estimate and associated some controllability

results.

3.2 Weight functions

We shall first introduce a particular type of weight functions, which are constructed through
the following lemma.

We enlarge the open intervals Q4,5 to large open sets 0, Qo.

Lemma 3.2.1. Let fll, Qg be a smooth open and connected neighborhoods of intervals Q1, Qo of

R and let w C Qy be a non-empty open set. Then, there exists a function 1 € C(Q) such that

wl mn ﬁla
¥(z) = a
¢2 in QQa

with ¥; € C®°(Qy),i = 1,2, 1 >0 in Qo =0 on T, # 0 in Qg \ w, ¢} # 0 in Oy and the

function 1 satisfies the following trace properties, for some agy > 0,
(Au,u) > ag [u]> u e R?,
with the matrix A defined by

a1l a2

a21 a22
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with

ail = [W*]a%
ags = [e'+]% (") (@F) + [ (¢)* A w,
a1z = ag = [ o (V) (a'T),

(see the notation (3.1.3) - (3.1.5) introduced in Section 3.1.1).

Remark 3.2.2. Here we choose a weight function that yields an observation in the region w € (o

in the Carleman estimate of Section 3.4. This choice is of course arbitrary.

Proof. We refer to Lemma 1.1 in [BDLO7] for a similar proof. O

Choosing a function v, as in the previous lemma, for A > 0 and K > |[¢||__, we define the

following weight functions
o(r) = M@ _ A <0 ¢(z) = M@ (3.2.1)
r(t,x) = WD p(t,a) = (r(t,) 7Y,
with
sty =710@), 7>0, 0(t)=(t+a)(T+a—t)""!
for0<a<T.
We have
r[gla%(é’ =000)=0(T)=a YT +a)*, (3.2.2)
and mind > T~2. We note that
(0,7
040 = (2t — T)62. (3.2.3)

For the Carleman estimate and the observation/control results we choose here to treat the
case of an distributed-observation in w € . The weight function is of the form r = e*% with
¢ = e M, with « fulfilling the following assumption. Construction of such a weight function is

classical (see e.g [F196]).

Assumption 3.2.3. Let w € Q be an open set. Let Q be a smooth open and connected neigh-

borhood of Q in R. The function v = 1(x) is in CP (5, R), p sufficiently large, and satisfies, for
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some ¢ > 0,

v>0in Q, V| > ¢ in Q\wo,

Ontp(x) < —c <0,  9p(x) <0 in Vaq.

where Vg is a sufficiently small neighborhood of OQ in 0, in which the outward unit normal n

to Q is extended from 0.

3.3 Some preliminary discrete calculus results for uniform

meshes

Here, to prepare for Section 3.4, we only consider constant-step discretizations, i.e., h; 1= h,
1=0,....n+m+1.

We use here the following notation: Q¢ = (0,1), Qo1 = (0,a), Qo2 = (a,1), Q) = Qo1 U Qoz,
Qo =(0,T) x Qo, Q) = (0,T) x Qf, Qo; = (0,T) x Qo; with i =1,2 and 99 = {0, 1}.

This section aims to provide calculus rules for discrete operators such as D;, D; and also
to provide estimates for the successive applications of such operators on the weight functions.
To avoid cumbersome notation we introduce the following continuous difference and averaging

operators on continuous functions. For a function f defined on ¢ we set

(@)= fle+h/2), 7 f(z) = f(z—h/2),
Df(z) := (r* =7 ) f(2)/h,  fla)= (" +77)f(2)/2.

Remark 3.3.1. 7o iterate averaging symbols we shall sometimes write Af = f, and thus A% f =

I

3.3.1 Discrete calculus formulae

We present calculus results for finite-difference operators that were defined in the introductory

section. Proofs can be found in Appendix of [BHL10a] in the one-dimension case.

Lemma 3.3.2. Let the functions f1 and fy be continuously defined in a neighborhood of Q. We

have:

D(f1f2) =D(f1)f2 + fiD(f2).

Note that the immediate translation of the proposition to discrete functions fy, fo € C™ and

73



91,92 € C™ s
D(fif2) = D(f1)f2 + fiD(f2), D(g192) = D(g1)g2 + g1 D(g2).

Lemma 3.3.3. Let the functions f1 and fy be continuously defined in a neighborhood of Q. We

have:
2

fifa = fifa+ SoD(0R().

Note that the immediate translation of the proposition to discrete functions f1, fo € C™ and

g1,92 € C™ s

o o 2
Fifa= fifa " DUD(S), 5575 = G102 +

2
" D()D(g2).

Some of the following properties can be extended in such a manner to discrete functions. We

shall not always write it explicitly.

Averaging a function twice gives the following formula.

Lemma 3.3.4. Let the function f be continuously defined over R. We then have
2 h2
Af=f=f+ - oof

The following proposition covers discrete integrations by parts and related formula.

Proposition 3.3.5. Let f € C™VY gnd g € C™. We have the following formulae:

f(Dg):_/ (Df)g+fn+m+29n+m+%_fog%7
Qo Qo

- h h
f9="1[ f9—Sfntm+29nimez — 5f091-
/Qo Qo 2 +m+ +m+35 2 2
Lemma 3.3.6. Let f be a smooth function defined in a neighborhood of Q. We have

h T
Tif:fi§/0 Ouf(. £ oh/2)do,
1
Ajf=f+th2/ (1 —|o))d2f(. +1joh)do,
-1

1
. . . . 1
Dif=00f+ CJ’.hQ/ (1— o)/ oIt f(.+ ljoh)do, j=1,2, |; = 3 =1
-1
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3.3.2 Calculus results related to the weight functions

We now present some technical lemmata related to discrete operators performed on the
Carleman weight functions that is of the form e*%, p = e*¥ —e < where 1 satisfies the properties
listed in Section 3.2 in the domain €. For concision, we set r(t,z) = e*®#(®) and p = r~! with
s(t) = 76(t). From Section 3.2, we have ¢, =¥y, , V)o,, = V2|, Where ¢; € Cz(ﬁoi). Then

p = e~ %% can be replaced by

AK

p1=e *? with ¢ =1 — M in domain Qg

Moz _ MK

pr=e °P2 with g =c¢ in domain Qg2

And r = p~! is also replaced by

ry = pfl in domain Qg1

ro = p2_1 in domain = Qg2

The positive parameters 7 and h will be large and small respectively and we are particularly
interested in the dependence on 7,h and A in the following basic estimates in each domain Qg1
QOQ.

We assume 7 > 1 and A > 1.
Lemma 3.3.7. Let o, B €N, i=1,2. We have

07 (ridzp) = o (=sgi)*NHF ()27

+aB(spi) NPT, (1) + 52 La(a — 1)0, (1) = 05 (s%).
Let o € [-1,1], we have
o7 (Ti(t, D05 pi)(t, .+ O'h)) = Ox(s*(1 + (Sh)ﬁ))eOA(sh).

Provided 0 < Th(mazjy 70) < & we have 92 (ri(t,.)(0%p;)(t, .+ oh)) = Ox a(s!*). The same

expressions hold with r and p interchanged and with s changed into -s.

A proof is given in [BHL10a, proof of Lemma 3.7] in the time independent case. Additionally,
we provide a result below to the time-dependent case whose proof is refered to [BL12, proof of
Lemma 2.8]. Note that the condition 0 < Th(mazp rf) < & implies that s(t)h < R for all
te[0,T].
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Lemma 3.3.8. Let « € N, i1=1,2. We have
Ot (r;09 pi) = s“TOO\(1).
With Leibniz formula we have the following estimates
Corollary 3.3.9. Let o, 3,0 € N, i=1,2. We have

A(r2(05p)05pi) = (a4 B)°(—s¢y)* TENTATE (Gapy)tito
+ S(a+ B)(s¢)*TINTATTIO(1)
+

s (= 1) + (8 — 1)OA(1) = Ox(s*7).
The proofs of the following properties can be found in Appendix A of [BHL10a].
Proposition 3.3.10. Let o € N, i=1,2. Provided 0 < Th(mazxjy1)0) < &, we have

0% p; = 1,02 p; + 57Oy a(sh) = 8“0y 1(1),
i AR pi = 1,08 pi + 52Oy a(sh)? = 52Oy (1), k=0,1,2,
mAkDpi =71;0pp; + SO,\7§(Sh)2 =50,4(1), k=0,1,

riD?p; = riaipi + 32(9,\7;3(8/1)2 = 32(’),\3(1).
The same estimates hold with p; and r; interchanged.

Lemma 3.3.11. Let o, 3 € N and k = 1,2;5 = 1,2;i = 1,2. Provided 0 < Th(maxo 7 0) < 8,

we have

D*(92(r;:02 pi)) = OF TP (r;02 pi) + h*Ox a(s®),

AIDP (1,02 p;) = 05 (r;0% pi) + h2 O a(5%).

Let o € [~1,1], we have D*0P(ry(t,.)0%p;(t, . + ah)) = Oy a(s!®). The same estimates hold

with r; and p; interchanged.

Lemma 3.3.12. Leta, $,0 € Nandk =1,2;j =1,2;i = 1,2. Provided 0 < Th(mazjy10) < 8,

we have
AT (12(020:)02 pi) = DB(r2(D2 )92 ps) + H20xa(s7*F) = O a(s7+P),
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DRI = IO ) + IPOA AT = Or ()
Let 0,0’ € [-1,1]. We have

ATD (ri(t, )2 (0%pi(t,. + oh)) P pi(y, . + 0'h)) = Ox & (s*T7),

Dkﬁ‘;(ri(t .)2(8api(t, .+ O'h))a’ﬁpl(t, .+ U/h)) = 0)\’;{(8&-"_'8).
The same estimates hold with r; and p; interchanged.

Proposition 3.3.13. Let a« € N and k =0,1,2;5 =0,1,2;¢ = 1,2. Provided 0 < sh < R, we

have

DFA19% (r;Dp;) = OF T (r:00p:) + sOx.5(sh)? = sOx 1(1),
Dk(T’iDQpi) = 65(7"132,01) —+ 820A7§(Sh)2 = 820)\753(1),

riA%p; = 14+ Oy q(sh)?, DF(r;A%p;) = Oy x(sh)?.
The same estimates hold with r; and p; interchanged.

Proposition 3.3.14. Provided 0 < Th(mazxy10) < R and o is bounded, we have

Og(ri (., 2)(0%p:) (., x + oh)) = Ts0(t) Oy q(1),
By (riA%p;) = T(sh)*0(t)Ox a(1),
Ou(riD?p;) = Ts*0(t)Oy a(1).

The same estimates hold with r; and p; interchanged.

Proposition 3.3.15. Let o, S € Nand k=0,1,2;j=0,1,2;7 = 1,2, provided 0 < sh < K, we

have

AIDROP(r2(0%)Dps) = 5P (0% p)Dps) + 5T O w(sh)* = s* T Ox (1),
AIDROP(r?(0™)A%p;) = OEP(ri(0%pi)) + 5*Ox5((sh)?) = s*Ox a(1),
AIDROP(r2(0%)D?p;) = OFTP(r2(0%p)0%p;) + 5220 (sh)? = 5120, 4(1),
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and we have

AjDkaa(r?mD%Oi) = 8’;*”‘(7”12(8/01)82;)1) + SSOA,VQ(Sh)Q = 830)\”@(1),

AID*9%(r2Dp; A%p;) = 08T (r:0p;) + sOx .z (sh)? = sOx (1).

3.3.3 Transmission conditions

We consider here discrete version of the transmission conditions (TC) at the point a. For

u € C™ we set f := D(cqDu) we then have

u(a™) = u(at) = upqq,
(caDu)py 3 — (caDu)py g = hfnia

Remark 3.3.16. These transmission conditions provide the continuity for u and the discrete

flux at the singular point of coefficient up to a consistent factor.
From these conditions, we obtain the following lemma whose proof is given in Section 3.7.

Lemma 3.3.17. For the parameter A chosen sufficiently large and sh sufficiently small and with

u = pv we have
[xcqDv], = (cde)n_,_% — (Cde),H_% = Jivp41 + Jg(cde),H_% + J3h(rf)ns+1 (3.3.1)
where

J1 = (1 + OA,ﬁ(Sh))AS[*CQSZ/},]a + SOA7§(Sh),
Jo = O)\7_Q(Sh), J3 = (1 + O}wﬁ(sh)).

Furthermore, we have

E)tJl = ST@(t)O)\,ﬁ(Sh),
6tJ2 = T@(t)OA,ﬁ(sh), 8tJ3 = T9(t)(’))\ﬁ(sh)

For simplicity, (3.3.1) can be written in form
[xcaDv]q = As[xcot)'|qvni1 + To, (3.3.2)

where ro = AsOx g(sh)vni1 + Oxa(sh)(caDv), (1 + h(l + OAyvq(sh)) (rf)n+1-
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3.4 Carleman estimate for uniform meshes

In this section, we prove a Carleman estimate in case of picewise uniform meshes, i.e, constant-
step discretizations in each subinterval (0, a) and (a, 1). The case of non-uniform meshes is treated

in Section 3.5.

We let wy € Qg2 be a nonempty open subset. We set the operator P™ to be P™ = —9, +
A™ = —9, — D(cqD), continuous in the variable t € (0,7) with T > 0, and discrete in the
variable x € ().

The Carleman weight function is of the form r = €% with ¢ = e*¥ — e*

where 1 satisfies
the properties listed in Section 3.2 in the domain €. Here, to treat the semi-discrete case, we
use the enlarged neighborhoods Qm, Qoo of Qo1, Qo2 as introduced in Lemma 3.2.1. This allows
one to apply multiple discrete operators such as D and A on the weight functions. In particular,
we take 1) such that 9,9 > 0 in Vy and 0,% < 0 in V; where Vy and V; are neighborhoods of 0

and 1 respectively. This then yields on 02
(rDp)o <0, (rDp)ptm+2 >0 (3.4.1)

Theorem 3.4.1. Let wy € Qoz be a non-empty open set and we set f := D(cqDu). For the
parameter A > 1 sufficiently large, there exists C, 19 > 1, hg > 0, €9 > 0, depending on wy so

that the following estimate holds

2
_ 1
71 H9 279 9,u

. 2
‘ G%eTWu‘
L2(Qo)

L2(Qo)

—1—7‘

L 2
02 eTe‘/’DuH +73 ‘
L2(

Qo)

< Chx <||6T9LPPMUH2LQ(Q0) +7° Jorerteu 2

L2((0,T) xwo)

o s 2 oy 2
72 |l ) + B2 e Uiz [ ) ) (3.4.2)

for all 7 > 7o(T +T?), 0 < h < hg and Th(aT)™! < € and for all u € C>=(0,T;C™) satisfying

U,‘BQO = 0.

Remark 3.4.2. Observation was chosen in Qoo here. This is an arbitrary choice (see Re-

mark 3.2.2).

Proof. We set f; := —P™ = 9,u + D(cqDu) and f = D(cqDu). At first, we shall work with

the function v = ru, i.e., u = pv, that satisfies

r(@t(pv) + D(cdD(pv))) =rf; in Qp. (3.4.3)
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We have
ro¢(pv) = Opv + r(Op)v = Opv — 7(9:0) pu.

We write: g = Av + B,
where Av = Ajv + Asv + Azv, Bv = Bjv + Byv + Bav with
Ayv =1rpD(cqDv), Agv = cr(DDp)v, Azv = —71(0:0)pv,
Byv =2crDp Dv, Byv = —2sc¢”’v, Bsv = Ov,
h — = h? _
g=rf— Zer(Dcd)(T"‘DU — 7" Dv) — Z(Dcd)r(DDp)Dv

—hO(1)rDp Dv — (r(Dcg) Dp+ hO(1)r(DDp))o — 2sc(¢” v,

as derived in [BL12].

Equation (3.4.3) now reads Av 4+ Bv = g and we write

2 2 2
1A L2 (qr) + 1Bl L2 + 2(Av, Bu)r2(qy) = l9llz2(qy) - (3.4.4)

First we need an estimation of ||g||2LQ(Q(,J). The proof can be adapted from [BHL10a].

Lemma 3.4.3. For Th(maxy ) 0) < & we have

2 2 2 2
HgHLz(Q;)) < C/\,ﬁ(”?“fl“m(%)) + HSUHL2(Q6) +h? ||8Dv||L2(Q6) : (3.4.5)

Most of the remaining of the proof will be dedicated to computing the inner product (Av, Bv)r2(qr)-

0
Developing the inner-product (Av, Bv)rz2(qy), we set Ii; = (A;v, Bjv)r2(qy). The proofs of the

following lemmata are provided in Section 3.7.

Lemma 3.4.4 (Estimate of I11). For Th(maxym0) < & we have
I > _/ S>‘2(C2¢(¢/)2)d(Dv)2 — X1 + Y11,
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where X1 = fQ’ v11(Dv)? with v11 of the form sA¢O(1) + sOx g(sh) and
0

Yo =1 + v 47,
T
y® _ / (1 + Ox a(sh)) (cea)() (D) (1) (Do), 4
0

)

T
- / (1+ Ox a(sh)) (c2a) (0) (rDp) (0) (D)

ML

vieY = [ svolaelo) ()@ Do - (@)@ D2,

0

T T
v _ / SOx a(sh)2(Dv)? ,, — / SOxa(sh) (D)2, 5.

0 2 0

Lemma 3.4.5 (Estimate of I12). For Th(maxyy0) < &, the term I3 is of the following form

Ly = 2/Q sA2(®¢(¢')?)a(Dv)? — X1z + Y1,

with
T
Yie — / sA2(a)o(a) c(t’)? % caDul,
0
T

T
b [ bav@ ey + [ vy,
0 0

where 812,612 are of the form s(Ap(a)O(1) + Oy a(sh)?) and
X = [
Q

vig = sAPO(1) + 5Oz a(h + (sh)?).

V12(D'U)2+/ sOx,x(1)0Dv,
Qo

/
0

where

Lemma 3.4.6 (Estimate of I13). There exists €1(\) > 0 such that, for 0 < Th(maz 10) < €1()\),

the term I3 can be estimated from below in following way:
I3 > — Cra(1)(Du(T))? = X13 + Yis.
2
with

Xi3 _/QI (S(sh)+T(3h)29)ox,ﬁ(1)(DU)2+/ 57105 1 (sh)(9rv)?,
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Yis = —/O rﬁ(a+)8tv(a)(cde)n+% +/0 rﬁ(a‘)@tv(a)(cde)n+%.

Lemma 3.4.7 (Estimate of I>1). For Th(maxj 0) < &, the term I3 can be estimated as

Iy >3 / M3 ()M — Xy + Yau,
Q

/
0

with
Xo1 = / pi210* +/ va1(Dv)?,
Qo Q0
where
pa1 = (sA@)*O(1) + 520y a(1) + 530y q(sh)?, va1 = sOy a(sh)?,
and

Yo = Y'Q(ll’l) + Y2(11’21) + }/2(11,22) + }/'2(12))

T - T -
Yo = / Oxa(sh)*(rDp)(1)(Dv)2 ., 3 + / Ox,5(sh)*(rDp)(0)(Dv)

[S][=Y )

T
Y = [N @)« (07
0
T
Y = / (s°0x(1) + s°Ox a(sh)?) ((@L% + (77)i+g)7

0

T
Y2(12) :/ 320)\7ﬁ(sh)v2(a).
0

Lemma 3.4.8 (Estimate of Is2). For sh < R, we have

Iy = —2/ AN () 0? — Xog + Yoo,
Q

’
0

with
Yar =Yy + Y3,
W _ [T h? 3 h?
v = [ 00 (1)0(0) G (Do) + 8Os a(D(a) (D)
(2 T
Y22) 2/ 3(9,\7ﬁ(sh)2112(a),
0
and

X :/ M2zv2+/ V22(DU)2,
Q5 Qf

0
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where

22 = (S)\gb)SO(l) + 820)\,_@(1) + 530)\’_@(3]1)27 Vog = s(’),\,g(sh)Q.

Lemma 3.4.9 (Estimate of I»3). For Th(mazjo1)f) < &, the term Is3 can be estimated from

below in the following way

Iy3 > / s> (O/\»R(l)vlzmo + 0)\7.@(1)1}‘%:T) — Xo3 + Yog3,

(o]

with
Xoy = /TS290)\7_§(1)’U2+/ 571 Ox 1(sh)* (Byv)?
Qo Qo
+/ (sh)?sOx a(1)(Dv)?,
Qp
and

Yor =Yy + Y55 + Y55,
v = T2O Dayw(a) (o 20, «(D0(a) (5
2w =) A a&(1)0p0(a) 5 (T1.4) + 57 Ox(1)8r0(a) 5 (B g),

T
YQ(??) :/ sTH(’),\ﬁ(sh)vQ(a),
0

3 =
Yyy) = Oal(sh)*o*(@)|i=5.
Lemma 3.4.10 (Estimate of I31). For Th(mazxjr0) < &, we have

I3 = —X31 + Y3y,

with

X31=/
Q

T0s205 4(1)0? + / TOO a(sh)2(Dv)2,
a

;
and

Yo = v + v,

) T h T h

v = /O T050s a(1)u(a) 5 (D)1 + /0 T05°0s a(1)u(a) 5 (D)3,

T
v = / T0s20x «(1)v2(a).
0

Lemma 3.4.11 (Estimate of I32). [BL12] For Th(maxo1)0) < &, the term I3z can be estimated
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from below in the following way
.[32 = —X32 = / Ts29(’)>\7ﬁ(1)112.
Qp

Lemma 3.4.12 (Estimate of I33). [BL12, proof of Lemma 8.9] For Th(maxy m0) < &, the term

I33 can be estimated from below in the following way

1
I33 > — X33 = QT/Q/ p(076)v°.
0

Continuation of the proof of Theorem 4.1. Collecting the terms we have obtained in the pre-

vious lemmata, from (3.4.4) and (3.4.5) for 0 < Th(maz rb) < €1 (A) we find

HAU”%Q(Q()) + ||BU||%2(Q6) + 2/Q, 8>\2(C2¢(QZ}/)2)d(D,U)2 —+ 2‘/Q, 0233)\4¢3(¢I)4v2
0 0

+2(V)) + YY) +2(v 7Y + v ) 421

< C)\,ﬁ( ||7”f1||iz(Q/) + | S+t )+ (DU(T))2> +2X +2Y,
e 2

with

X = —<Y1(1272) =+ Y12 =+ }/2(11722) + Yv2(12) + Y22 + Y23 + Y31)7
X = X1+ Xip+ Xz + Xo1 + Xop + Xoz + X371 + X3o + X33

2 2
+Cx 5 ( [svllz2(qy) + h? IsDvllz2 (g )-

With the following lemma, we may in fact ignore the term Yl(l1 ) 4 Y2(11 D in the previous

inequality.

Lemma 3.4.13. For all X there exists 0 < e2(A\) < €1(A) such that for 0 < Th(maxy mb) < ea(N)
we have Yl(ll) + Y2(11’1) > 0.

Recalling that V¢ > C > 0 in Q\wp we may thus write

2 2
||AUHL2(Q6) + ||BU||L2(Q(’)) +/ s(Dv)? +/ s7v?
Qo Q0

+2(Y1(12’1) +Y2(11’21)) +2Yi5

T T
< C)\,ﬁ <||Tf1|2L2(Q6) + 2/ / S(DU)2 + 2/ / 532
0 wo 0 wo
+/Q sz(vﬁzo +vﬁ:T)+/

(D’U(T))2> +2X +2Y. (3.4.6)
2

/
0
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Lemma 3.4.14. With the function v satisfing the properties of Lemma 3.2.1 and for Th(maxy,1)0) <

R, we have
T T
Y(2 D Y(l 2) > Cag / s)\gb(a)(cde)iJr% + Cao/ PN (a)vl 1y + pu1 + poor,
0 0

with ag as given in Lemma 3.2.1 and where

T T T
Ly = / sOA(l)rg—i—/ 52(’),\(1)T0vn+1+/ sOx(L)ro(caDv),, 4 1

0 0 0

T T T
+ / SQOA,ﬁ(Sh)’UiHJF/ 5Oxa(sh)vn41(caDv),, 4 1 +/ sOx q(sh)rovny1,
0 0 0

with ro as given in Lemma 3.3.17 and

(

1 2
H1 *ul)ﬂt()

where

T T
plt = / SOA,R(Sh)(CdDU)i+% +/ sOx ﬁ(Sh)(Cde)nJrl’
0 0

T T
L) / $2 0 () (€aDV) 1y 3 vns1 + / 5205 5 (h) (€aDV) 1y L V1.
0 0

For a proof see Section 3.7.

Lemma 3.4.15. With 0 < e3(\) < e2(A) sufficiently small we obtain

Yi3 > /0 C,\}gh(atv(a))Q +A (ST@O}HK(S}L) + T2920A,g(sh))v2(a)

+ SO)\ﬁ(l)UQ( t 0 —|—/ O)\ﬁ sh)ﬁtv( )(CdDU ntld —|—/ O)\R )6{()( ) (Tfl)n-i-l-

where C) g is positive constant whose value depends on A and sh.

For a proof see Section 3.7.

If we choose Ay > Ay sufficiently large, then for A = Ao (fixed for the rest of the proof) and

0 < Th(max|o,7) 0) < €3, from (3.4.6) and Lemma 3.4.14 and Lemma 3.4.15, we can thus achieve
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the following inequality

/

||Av|i2(%)+||Bv||§2(%)+/@, s|Dv|2dt+/ St
0
T

T
+ COKO/ (CdDU) +1 —‘rCOéo/ 831} / C/\ Rh 8t1)( ))

C,\ﬁ<||7“f1||L2Q)+2/ s(Dv) +2/ / 5302
wo wo

s [ weE, i)+ | Doy sv2<a>|§f§>

IN

T

T
+ / (sTOO a(sh) + T?0%0, g (sh))v?(a) + Ox,a(sh)Ow(a)(caDv),, 4 1
0 0

T
+ [ OnaO@h(r i) +2X + 2V 22 , (3.47)
0

where Z = p, + pp with p, and pg are given as in Lemma 3.4.14 and where

X = //m;? + /’D(Dv)z

0 0

+ Xio+ X3+ Xo3 4+ X317 + X320 + X33,

with @i = 520, (1) + 530, a(sh) and ¥ of the form sOy g(sh).

By using the Young’s inequality, we estimate in turn all the terms of Y, Z and the two terms

at the RHS of (3.4.7) through the following Lemma whose proof can be found in Section 3.7.

Lemma 3.4.16. For sh < R, we have

T

T
OA,R(I)@U( ) (Tfl nt1 < 6/ O)\R (3tU( )) —|—C’€/ Oz\,ﬁ(l)h(rfl)%-s-la

0 0

T
/ On,a(sh)9v(a)(cgDv),, / Ox z(1)h(0pv(a) +C'€/ 5O a(sh)(caDv)2 1
0 2

T T T T
’Y1(12’2)‘ S/O 0411”721+1+/0 511h(3tv)i+1+/0 711(Cde)i+% +/O mih(rfi)ig,
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an = <830)\,§(8h)2 + ST2920)\,R(8h)4) Bi1 = Ox x(sh)?,

Y11 = 5Oy z(sh)? m1 = O x(sh)”.

T T T T
Y12 S/ 12Vl 44 —I—/ B12h(04v)2 44 +/ 712(CdDU)i+% "’/ m2h(r fi)ni1s
0 0 0 0

Q1 = (32@3(1) + STZ‘@?OA,R(sh)Q) Brz2 = Ox a(sh),

yi2 = Oy (1) Mo = Ox a(sh).
(1,22) T 2 T 2 T 2 T 2
Yy, < a1, + B21h(0pv);, 11 + '721(CdD'U)n+% + N1 h (7 f1)7415
0 0 0 0

Qg1 = (33(’),\,;3(1) + STQHQO,\,R(sh)4) Ba1 = Oy a(sh)?,

Yo1 = 50, a(sh)? n21 = Oy q(sh)®.
1 T T T T
‘Yz(z)‘ S/ agav +/ Bazh(Opv)i 11 +/ Y22(caDv)} +/ ool (r f1) 7415
0 0 0 0

Qg = (SQO,\,,@(Sh)Q + 5T292(9,\,ﬁ(sh)4) Baz = Oy a(sh)?,

Yoz = Oy a(sh)? 22 = Oy a(sh)®.

T

T T T
‘Yz(sl)’ S/ Q304 +/ 523h(3tﬂ(a))2+/ v23(caDv)} +/ Mool (r f1) 541
0 0 0 0
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Qo3 = (330A,§(1) + ST2920)\,ﬁ(8h)3> B2z = O a(sh),

Yoz = O a(sh)? 22 = Oy 1(sh)?.
X T T T T
‘Y3(1)‘ S/ Qg0 +/ Bash(Dev)7 4 +/ 723(CdDU)Z+% +/ a2k (rf1)2 41,
0 0 0 0

31 = (82T90)\$ﬁ(8h) + ST2920)\’;§(8h)) 523 = O)\’y{(sh),

Ya3 = sOx a(sh) n22 = Oy a(sh).

T

T T T
1 S/ vl +/ 51h(3tv)i+1+/ 'Yl(CdDU)iJr% +/ mh(rfi)y i1,
0 0 0 0

ay = (330,\,g(sh) + STQQQOM(sh)B‘) By = O.x(sh)?,

v1 = 8O a(sh) m = Ox.a(sh)*

T

T T T
oy S/o ar”i+1+/0 @’h(atv)iHJr/o 'Yr(Cde)th%Jr/o nrh(rfl)fu-p

ay = (SSOA7§(Sh) + ST202O€,)\7_Q(Sh)2 =+ 6830,\75;(1)) Br = OGJ\,ﬁ(Sh)’

Yr = <SOA7R(Sh) + 650)\753(1)) Ny = Oe’)\7ﬁ(5h).

Futhermore, we can estimate the term in X5 as follows

/ 50)\,53(1)’?}1)1} < /
Qp Q
S

/s(’),\,ﬁ(l)vz-i-/Q sOx,a(1)(Dv)?,

’
0

N

SN + [ s00a1)(DV)

/
0

IN

—2
sOsa(D) Tl + / 505 a(1)(Dv)?
QJ
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— 2
by Lemma 3.3.3 and as fﬂ/o Oxa(1) [o] = [o, Oxs(1)v*.

Observe that
1 <T°0 and |076| < CT?6°.

We can now choose €4 and hg sufficiently small, with 0 < e4 < e3(A\2), 0 < hg < hy(A2), and
72 > 1 sufficiently large, such that for 7 > 75(T + T?), 0 < h < hg, and Th(mazp 110) < e,
from (3.4.7) and Lemma 3.4.16 we get

2 2 2
140022y + 1 Bola oy + /Q slDof? + /Q
0

T T T
+ Cao/ s(cde)fH_l + Cao/ 531;2“ + C/\,ﬁ/ h(@tv(a))Z
0 2

0 0
2 g '
C)\’ﬁ (”Tfll/z(Qf)) +/ / S(D’U)2 +/ / 331)2
0 wo 0 wo

T
+h_2(/ vi:o +/ Ui:T) + Sv2(a)|€:(j;> +/ O)\,ﬁ(l)h(rfl)i+1
Q, Q 0

IN

_|_

/ s(’h,ﬁ(l)v?—i—/ s_l(’),\,ﬁ(Sh)(atv)z—k/ S2T90,\,R(1)U2.

0

(3.4.8)

where we used that (Dv)? < Ch=2((7%v)? + (77v)?) and the last three terms whose integral

taken on domain Qg come from the term in X715, X13 and Xo3 respectively.

As 7 > 7o(T + T?) then s > 75 > 0 and furthermore we observe that

1 2 1 2 1 2 1 2
Hsiﬁﬁtvl < C,\ﬁ(Hs*?Bv‘ —|—‘S§’U +’55Dv‘ )
L2(Qp) L2(Qp) L2(Qp) L2(Qp)
2 2
2 3 1
< C)xﬂ',ﬁ( HBU||L2(Q(’J) + HSQU‘ 12y ‘ SZDW‘ 12(Q}) )

We then add the following terms fOT hsv2,, and fOT hs~1(9;v(a))? on both the right hand
side and the left hand side of (3.4.8). This allows us to change the domain of integration from @y
to Qo for the discrete integrals on the primal mesh. No additional term is required for discrete
integrals on the dual mesh. For sh sufficiently small and s > 1 sufficiently large, these terms at
the right hand side are then absorbed by the terms at the left hand side. More precisely, with
0 < € < ¢4 sufficiently small and for 7 > 7(T + T2), 0 < h < hg, and 0 < Th(mazyp ) < €

we thus obtain
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_1
Hs 2040

2
+ / s(Dv)®>  + / 5302
12(Qo) .

Qo
2 g !
< Cs (||rf1||Lz<Qo>+ / / S<D”)2+/ /
0 wo 0 wo

+h’2(/ ot +/20 vi_,) + 505 a(1)v*(a) i:{). (3.4.9)

Qo <

Now we shall estimate the term sOx (1)v*(a)|,_,. We have
9 n+m-+1 5
sl = 2 e = Bl -
=
It follows that, as sh is bounded
500 AW < Crs sl iy € o 7 1o
< Cash? Hv|t:THiz(QU) :
Similarly, we treat the term sOy z(1)v*(a)|,_, as

[500,8(1)02(@)),y| < Crn B2 ][0, |32 -

Therefore, (3.4.9) can be written as

1 2 1 2 3 2
“3758,511’ + ‘ sﬁDv’ + ‘ sfv’
L2(Qo) L2(Qo) L2(Qo)
< O (Iriaqn + 5100 + st
s2Dv s2v
= AR U L2(Qo) £2((0,7) xwn) £2((0,7) xwo)
-2 2 2
w([ i [ ).
o o
1 2 . .
We next remove the volume norm ‘ 52 Dv‘ by proceeding as in the proof of The-
L2((0,T) xwo)
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orem 4.1 in [BHL10a] we thus write

L 2 L 2 ) 2
71 HH*EeTW(“)tu‘ + 7 ’ 95679“’Du” + 73 ‘ G%GTWU‘
L2(Qo) L2(Qo) L2(Qo)
2
< 700 PN 2 3’ 3 e ‘
Y (G S e
—2 | .70 2 —2 | .10 2
2% ulimo [0y B2 | ulizr ]y ) (3.4.10)

As we have maxf < -~ we see that a sufficient condition for 7h(max6) < ¢, then becomes
0,77 Ta 0,7]

)

Th(Ta)~! < €y. To finish the proof, we need to express all the terms in the estimate above in
terms of the original function u. We can proceed exactly as in the end of proof of Theorem 4.1

in [BHL10a].

3.5 Carleman estimates for regular non uniform meshes

In this section we focus on extending the above result to the class of non piecewise uni-
form meshes introduced in Section 3.1.2. We choose a function 9 satisfying (3.1.6) and further
V]{a—s,a+5) is chosen affine (for some 6 > 0 to remain fixed in the sequel). The way we proceed
here is similar to what is done in [BHL10a]. In this framework, we shall prove a non-uniform
Carleman estimate for the parabolic operator P™ = —9; + A™ on the mesh 9 by using the
result on uniform meshes of Section 3.4.

By using first-order Taylor formulae we obtain the following result.

Lemma 3.5.1. Let us define € R™ and ¢ € R™ as follows

;_;,_l — hl
2 4e€{0,....,n+m+1} <¢=ﬁ,i€{l,...7n+m+l}

Ci+% = h

These two discrete functions are connected to the geometry of the primal and dual meshes 9t and

M and we have

0 <infd’ < (1 <sup?’, Yi€e0,...,n+m+1
Qo 2 Qo

0 <infd’ < ¢, <sup?, Viel,....n+m+1
Qo Qo

_ 10", . 19"l
Dby < G 1P < g
Qo Qo

We introduce some notation. To any u € C™Y we associate the discrete function denoted

by Q%"u € CPoUMo (efined on the uniform mesh My which takes the same values as u at the
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. . . 1
corresponding nodes. More precisely, if u = Z?:Jrler 1 | o Wi, we let
i3 ity

n+m+1

N
Qnu= D Li_pyn+hymli
=1

m _ m o - m _ n+m+1
and (Qn°w)o = uo, (Do’ U)ntm+2 = Untmt2. Similarly, foru € C7 u =3 1[m;,m;+1]ui+%a
we set
o n+m-+1
By
Q'u= Z Liin, (i+1)h) Wit 3 -
i=0

The operators Qgﬂ and Q%O are invertible and we denote by Q%O and Qg—o their respective
inverses. We give commutation properties between these operators and discrete-difference oper-

ators through the following Lemmata whose proofs can be found in [BHL10a].

Lemma 3.5.2. [BHL10a, see the proof of Lemma 5.2/

1. For any u € C™VY and any v € (Cﬁ, we have

D(QRow) = QR (CDu),  DQRw = Q¢ (T Dv)

2. For any u € C™VY9M we have

DleaDu) = (€7 O, (D FID(Q5w) ).
Lemma 3.5.3. [BHL10a, see proof of Lemma 5.5/

For any v € C™ and any v € Cﬁ, we have

2
19/ —1 2 <‘ Mo
(SUSI;0 )7 ulpeq) < |Qu L2(90)

. — 2
< (1115079') Hulza

(sup )~ ol < | O
0

. n—1 2
L3(80) < (1n£019) v[Z2 ()

Futhermore, the same inequalities hold by replacing ) by w and Qg by wg, respectively.

For any continuous function f defined on 2 (resp. on Q) we denote by Ilon f = (f(2}))o<i<ntm+2 €
CTUIM the sampling of f on M (resp. Hon, f = (f(ih))o<i<nimre € C0U9M0 the sampling of

f on mo)

Lemma 3.5.4. [BHL10a, see the proof of Lemma 5.4]
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Let f be a continuous function defined on
Qi Tay f = o, (f © ).
In particular, for v € C™Y9M ye have
O ((Tan f ) = Tam, (f 0 9)(Q5°w).
Moreover, by making use of Taylor formulae we get the following result
Lemma 3.5.5. With { defined as in Lemma 3.5.1 we have
IDDv|| <00, [|DF]l <0, 0< W7l < o0

where v := —g—.
Qop' ¢

Proof. From the definition of (, Qg" and D acting on C™°_ D acting on C™o we have

_ 1 _
DD( —) .= (DDv);
( Q%OC )i
Vigl — 23 + V1
LU Ry — (R — L .
h W I
We find
W= o A wig — w9+ 1h) =9~ Dh)  Pipy — iy
S R T D) - 2 N 2 ’
W O((i+2)h) = 0(ih) V0 — Y,
G 2 -2
o D=9 =2h) 0= dis
e 2 2

By using Taylor formulae we write

Yo = Ui+ (20)9, + @ﬂy + (2?319;” + <22’1)419§4> +O(h%),
Vi = Ui — (2h)0, + (2’2’)219;’ - (2?319;” + <22’1)419§4> +O(h%),
Dip1 = 0+ W)+ h;ﬂ;’ + %319;" + %ﬁg‘*) +O(h%),
Vi = 9 — ho,+ %219;.' - %319;” + %ﬁf‘) +O(K).
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Thus we have

3
h, = 2h19’i+%19§”+0(h5),
2 3 4
Ry = 2h9;+ (2h) 9+ (22) VAE (222) 9@+ O(n°),
3 4
From (3.5.1) we obtain
_ 1 N
DD(——); = =,
oy D
where
N = h h;+1)h2 1 (h271 _h;)h/iJrl
4 2
= 19” h319;”f—(22f2 191(-4)+(9(h5))((2h)19§7 (23) 0+ O(h*))
4 2
— ﬁ;'fh%;”f (222) ﬁ§4)+0(h5))((2h)ﬂg+ (2h) V! + O(h?))
2h
- ) W)+ O(h?),
and

D =hx hi_; x hi x k= (20)4(9})* + O(h®).
Thus, we have

which proves the first result. Next, we proceed with the second result in the same manner as

above. We have

= Vitl =Vigl v — viei _ 1, h h hi_y—hi 4
(D); = . 2 = = ( 7 / ) = ; -
h 2h 2h hi hi_l hi by

By using the computations of h;_;,h; , above we find

—(20)*0" + O | 1Yl
(20)29% + O(h3) | ~ (inf ')

< o0,

which yields the second result.

Moreover, with the properties of ¢ shown as in Lemma 3.5.1 we can assert

0 <l 17l < o0
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O

From Lemmata 3.5.2 — 3.5.4 we thus obtain the following discrete Carleman estimate for the

operator P™ = —9; — D(cqD.) on the mesh M.

Theorem 3.5.6. Let w € Qo be a non-empty open set and we set f := D(cqDu). For the
parameter A > 1 sufficiently large, there exists C, 19 > 1, hg > 0, ¢g > 0, depending on w such
that for any mesh M obtained from ¥ by (3.1.6) — (3.1.7), we have

2 2 2
1 HG_%eTg‘Patu ‘ Q%eTWuH
L*(Q)

L2(Q)

+T‘

1
02 eTWDuH + 73 ‘

L2(Q)
2
<am(wﬁ%ﬂwﬁm”+#\

G%eTa‘Pu’

L2((0,T) xw)

2 r 2 Loy 2
Fh2 | U1y + Pl ) (352)

or all T > 19(1" + , 0<h < hg and Th(aT')™ < €y and for all u € , 1 satisfying
f ll T+T?,0<h<h d Th(aT)™? d f ll C>(0,T;C™ isfyi

’U,‘@Q =0.

Proof. We set w = ngu defined on the uniform mesh 9%,. By using Lemma 3.5.2 we have

QR (CP™u) = —(Q°C)dhw — D((gg%)pw). (3.5.3)

We observe that the right-hand side of (3.5.3) is a semi-discrete parabolic operator of the form
PP = ¢/(—0, — éD(ﬁdD.)) applied to w, where

Cd

¢ = e, @:Q?c

(3.5.4)
We set v := é = % and we find

v=v+h?*DDv =v+h?0O(1),

by using Lemma 3.3.3 and Lemma 3.5.5.

Thus, the operator P™ can be written in form as
Py = ¢'(— Qyw — vD(€4Dw) + h*O(1)D(¢qDw)).
Moreover, using Lemma 3.3.2 we have
vD(¢4Dw) = D(#¢qDw) — D(v)§4Dw.
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We set Pém“w = —0yw — D(0¢gDw) = —0yw — D(bgDw) with by = 7€4. From the properties
of ¥ and &; it follows that

0 < bmin <b<bmae and || D(ba)|_ < oo.

First, we shall obtain a Carleman estimate for Pomo. Then we shall deduce a Carleman

estimate for the operator
PMow = ¢ ( PYw + D(#)€aDw + h*O(1)D(£4Dw) ) (3.5.5)

Now, we consider the function ¢ o9 : (t,z) — ¢(¢,9(x)). By using the properties listed in
Lemma 3.2.1 and (3.1.6), we shall see that ¢ o9 is a suitable weight function associated to the
control domain wy = ¥~ (w) in Qo, i.e., that 1) o9 satisfies Lemma 3.2.1 for the domaims €y and
wp.

The important property to checking is the trace property. The remaining properties are left

to the reader. We set

B— bll b12 ’
b21 b22

with

biy =[(¢o ﬁ)/*]a
bay = [b(1h 0 9)'A]2 (¢ 0 9) (a™) + [b% (¢ 0 9)"* 4],
big = b1 = [b(v) o ﬂ)/*]a(dj o ﬂ)/(aJr)

where b = Q%OC,Q%O% = cg—f. Morever, we have ¥, (a) = 9'_(a) and (41 = ¥}, (recall that
m

V|[a—s,a+4) is an affine function). It follows that

b1 = [ (D)x]a? (a) = [+ (a),

bar = [ gfzb'ww'*]iw’w)<a+>ﬂ/<a+> +[(¢ ;19)2(&(19)19’)3*1@
= [t/ () s+ [P0 ol s
ba = bar =[50 (0)9' 4]0 9000 ()
= [t/ dart(a'*).

We can see that (Bw,w) = (Aw,w) > ag ||w||>. This means that ¢ o 9 satisfies the trace
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property.

Through Theorem 3.4.1, we obtained a discrete uniform Carleman estimate for Pém © and the
Carleman weight function is of the form ry = e5%°, with @y = o = e*¥0 — e where 1)y = o
on the uniform mesh 9%, . We can deduce the same result on the non-uniform mesh 9t. Namely,

through (3.4.2) we see that the following estimate holds

2 2 2
! HQ*%GTWOBth + T‘ G%eTWODw‘ + 73 ’ Q%eTWOw‘
L2(Qo) L2(Qo) L2(Qo)
<C eTWOPDﬁOw’ ’ + 73 ‘ 9%(376"9010’ ’
- O TllL2(Qo) L2((0,) xwo)
_ 2 _ 2
+h 2 |eT‘9§00w|t:O|L2(QO) +h 2 |670Lp0w‘t:T|L2(QU)) s (356)

and the constant C is uniform in h for 7 sufficiently large and with 7h(aT)~! < ¢, for ¢
sufficiently smaill. Note that, setting &y = (infq, ¥')eg, we see that the condition 7h'(aT) ™1 < &
on the size of the non-uniform mesh 9 implies the condition T7h(aT)™! < ¢ for the uniform

mesh 9.

From (3.5.5) — (3.5.6) we deduce the following Carleman estimate for P™

+T‘

3
02 eTWOw‘

2 2
71 HG*%GTWOEJ‘th G%eTe‘PODwH +73 ’
L2(Qo L2(Qo)

2
) L2(Qo)

<C (|‘679¢0P9ﬁ0wuiz(Qo) + HefagaoD(l;)idewHiz(Qo) e Hefwo[)(dew)Hiz(Qo)

2
3
02 679“’011}‘

+73 ‘
L2((0,T) X wo)

_ 2 _ 2
L h2 ’€T9¢ow|t:O‘L2(QU) +h2 ‘ewwowh—ﬂp(go)) )

(3.5.7)

Now, by using Lemma 3.5.5 we estimate HeTg“"’D(z?)dewHQLz(QO) in the RHS of (3.5.7) as

e D& g, < €l EDw s

We see that
§aDw = %<f+(§dDw) +7- (§dDw))-
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Hence we find

Jpp——
e %ngme(Qo)

C(lle7 4 (EaDw) 121y + €77 (EaDW)72 g )

IN

IA
Q

eSPoTF (5dD(Q%°u)) ‘ 2

2
e POF, (de(ngu))‘ L2(Qo))

L2(Qo)

+

IN
Q

eSPoE (gd Q?(CDU)) ‘ 2

’ e*PoT, (fdQ?(CDU))’ 2 L2(Qo))

L2(Qo)

+

IN
Q

spo= Ao 2
’ P07, Qﬁo (cdDu)’ ()

2
Mo sp=
’Qm (e TJF(CdDu))’ L2(Qo)

Clint )~ (197 (caDw)[Fq) + €7 (caDu)l}q) );

+

e’PoT_ Q?(cdDu) ’

2
LZ(QO))

+ H ng (ew?_ (cdDu)) ‘

(
(
(
(

IN
Q

2
L2(Qo) )

IA

by using (3.5.4) and Lemmata 3.5.2 — 3.5.4.

We treat [|e*¢7 (caDu)| 2 (the term [[e*?7_(caDu)l|2(q) can be treated similarly). We
find

||€Sw7__+(cdDu)”L2(Q) = Hrﬁ-(cdDU)”m(Q) < ||(T—7“)(CdDU)||L2(Q) <C ||(T—7')Du||L2(Q)' (3.5.8)

We have 7_r = r(pr_r) = (1 + Oy &(sh)) (due to Proposition 3.3.10). From that we can
write

- — =2 . — S
[e7% D()€aDwl| 2y, < Clinf &) [|e* Dull 1 g

which allows one to absorb by the term at the LHS of the Carleman estimate by choosing 7

sufficiently large.
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Next, we estimate h* HeT‘)“"OD( EaDw) ||L2 in the RHS of (3.5.7) as

(Qo)

ht ||670W0D(£dDw)H2L2(Q )

= n e*?° 71 (§aDw) — e™°T (dew)”m(Qo)

< O (€74 (EaDw) 12 gy + €77 (EaDW)2 g )

= Chz('es%ﬁ(de(ngu))‘;<Qo)+ 7 (€aD( Q' ))’;@o))
< on(] S%ﬁ(ﬁdQ%(cD“))’;(QOﬁ - (6 (CDU))‘;(Qw)
< O ([l O (capu) ;«go) e 05 (caD) ;«90))

< (o (rtapn)] o, o com), )

< Cn2(inf ') 7 (197 (caDu) [3aq) + €7 (caDw) () )

by using (3.5.4) and Lemmata 3.5.2 — 3.5.4. We proceed with an estimate as in (3.5.8). We thus
obtain

T N 2 : - S
ht|le QWOD(dew)HLz(QO) < Ch*(inf ')~ le “Dull 2 »
which allows one to absorb by the term in the LHS of Carleman estimate by choosing 7 sufficiently
large.

Futhermore, by using the previous Lemmata 3.5.1 — 3.5.4 and considering each term in (3.5.7)

separately, we see that we have the following estimates

e For the first term in LHS of (3.5.7)

Hg 2679<poatw‘ — HQ%O (9—%679<patu)’ 2

L2(Qo)

L?(Qo)

i

2
> (sup )~ ! HQ*%eTW@ u’
2 ( oy ) ez

0z eTWOw’

and a similar inequality holds for ‘
L2(Qo)

e For the second term of LHS of (3.5.7) we use Lemma 3.5.2 and Lemma 3.5.3 as follows

2

— ||6? o5t (e77%) Q2 (¢ D)

02 7090 Doy ’

ote7 D(Qw)|

L2(Qo) - ’

2(QO) L2(Q0)

R 2
N
0% Qg (Ce™% Du)

2
9z eTG‘PDu‘
L2(Qo)

L2(Q)

2|
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e By using (3.5.3) and Lemma 3.5.3 we have

2

0 P,

7% QR (CP™)|

2 _
— || o (eroe szu‘
£2(Qu) H ' (¢77CE )

(Qo) ‘

_ 2 2
HeTWCPm“HH(Q) < HeTQLPPXmuHm(Q)'

L2(Qo)

N

e For the third term of RHS of (3.5.7)

9 2
|eTW°w|t:0’Lz(QO) = ‘Q%“(eTth:o) L)
0

< ’679¢w|t=0|i2(9)

2

and a similar inequality holds for |679¢0w|t:T|iz(QO), ‘ G%eTe‘POw‘ (0T i)
L2((0,T) Xwo
o Finally, since ¥(wp) = w we have
§ om0%0 2 Mo (ps r0p 2
‘926 Du‘L2 = HQEm (B¢ Du)‘
((0,T) xwo) L2((0,T) xwo)

2
< ’ G%eTGSDDu‘
~ L2((0,T) xw

The proof is complete. O

3.6 Controllability results

The Carleman estimate proved in the previous Section allows to give observability estimate

that yields results of controllability to the trajectories for classes of semi-linear heat equations.

3.6.1 The linear case

We consider the following semi-discrete parabolic problem with potential
oy + ATy +ay=1,0, te(0,T) yloa=0 (3.6.1)
The adjoint system associated with the controlled system with potential (3.6.1) is given by
—0q+ Ay +ay =0, te(0,7) qloa =0 (3.6.2)

We assume that a piecewise C! diffusion coefficient ¢ satisfies (3.1.2) and Q = (0,1). From

Carleman estimate (3.4.2) we obtain a following observability estimate.
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Proposition 3.6.1. There exists positive constants Cy,C1 and Cy such that for all T > 0 and

all potential fucntion a, under the condition h < min(hg, hy) with
1 2\ -1
hi = Co(1+ 7 + [lall, )
any solution of (3.6.2) satisfies
2 & 2
14(0)] 120y < Cobs lll72((0,m) ¢y + €~ 7 7 1o [g(T)[ 120 - (3.6.3)
2

Remark 3.6.2. In comparision the observability inequality in continuous case which performed

in [BDLO7], we find that the observability inequality obtained here is weak since there is an
additional term depending upon h at right-hand-side of inequality (3.6.3).

From the result of Proposition 6.1 we deduce the following controllability result for sys-

tem (3.6.1).

Proposition 3.6.3. There exists positive constants C1,Ca, C3 and for T > 0 a map Lt :
R™ — L2(0,T;R™M) such that if h < min(hg, he) with

1 I
= Co(1+ 5 +Tllafl + llall%, )

for all initial data yo € R™, there exists a semi-discrete control function v given by v = Lq(yo)

such that the solution to (3.6.1) satisfies

[Y(T) |20y < Coe~ /" lolr2(q)

and

(vl r2(q) < Colyol 20

2
with Cy = C3 (1 F+Tllall o +lall2)
’ .

Note that the final state is of size e=/" |y, . () The proof of these proposition are given

in [BL12].
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3.6.2 The semilinear case
We consider the following semilinear semi-discrete control problem
(0 + Ay +Gy) =1ov, ye(0,T)  yloa =0, y(0)=1yo (3.6.4)
where w C Q. The function G : R — R is assumed of the form
G(z) = xzg(x), z €R, (3.6.5)

with g Lipschitz continuous. Here, we consider the function g in two cases: g € L*°(R) and the

more general case as

lg(z)| < KIn"(e+ |z]), = €R, with 0<r<= (3.6.6)

The results of semi-discrete parabolic with potential above allows one to obtain controllability

results for parabolic equation with semi-linear terms whose proofs are given in [BL12]

Theorem 3.6.4. (sublinear case) We assume that G satisfies (3.6.5) with g € L*(R) and c
satisfies (3.1.2). There exists positive constants Cy,Cy such that for all T > 0 and h chosen

sufficiently small, for all initial data yo € R™, there exists a semi-discrete control function v with

HU||L2(Q) < C|y0|L2(Q)

such that the solution to the semi-linear parabolic equation (3.6.4) satisfies

(T2 ) < Ce/h W0l 2 (o)
2
with Cy = ¢ (FF+Tlgl+lgl2)
Theorem 3.6.5. (superlinear case) Let Q = (0,1), ¢ satisfy (3.1.2) and G satisfy (3.6.5) -
(3.6.6). There exists Cy such that, for T > 0 and M > 0, there exists positive constants C, hg

such that for 0 < h < hg and for all initial data yo € R™ satisfying |yo|H1(Q) < M there ezists a

semi-discrete control function v such that the solution to the semi-linear parabolic equation

(8; — DeD)y + G(y) = 1,v, y € (0,7) yloa =0, y(0) =wo (3.6.7)
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satisfies

[Y(1)|p2(0) < Ce~“/m volz2(q)

where C = C(T, M).

Observe that the constants are uniform with respect to discretization parameter h.

3.7 Proofs of Lemma 3.3.17 and intermediate results in

Section 3.4

3.7.1 Proof of Lemma 3.3.17

We have

(cdDu)n+% — (cdDu)n+% = hfnJrl.

As Du = pDv 4+ Dpv we obtain

Tn-i-l (ﬁn-‘,—% <CDU)n+% - p~n+% (CDU)n-‘r% + (Dp)n-‘r% (Cﬁ)n-‘r% - (Dp)n-‘,-% (C’E)n-‘r%)

We write

_ Tn+1Pn+1 + Tnti1Pn L+ (((rF)2%p)r)n
Fut1Bnis = +1Pn+1 . +1Pn+2 ((« 2) P)T)nt1 — Ky,

’I“n+1(Cde)n+% = (7’7'+p)n+1 (CdTDp)n-i-%
= (rmp)nn ((Cdrap)n+g + (carDp)nys — (CdTap)n+%)

Koy ((cdrap)n+% + K22>7

where Ko1 = (r71p)p41 and Koo = (carDp), 13 — (Cardp)pz-

Similarly,

~ r +r L+ (((r7)%p)r
Fat1fg s = 7L+1pn+12 n+1Pn _ ((( 2) p) )n+1 = Ka,
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7’”+1(Cde)n+% = (TTip)nJrl(cerp)nJr%
= 7 Pur1 ((ardp)ay + (carDp)uyy — (cardp) gy )

= Ky ((cdrap)nJr% + K42),
where K41 = (r77p)pa1 and (chDp)n_,_% - (cdrﬁp)m_%-
Additionally,

L = v+ O() (Do), 4,

~ Un+4+2 — Un+1
(U)n+g = Un41+ % = Unt1 + O(h)(DU)n+g-

(ﬁ)n-&-% = Un+1 +

From (3.7.1) we thus write

K11(cde)n+§ — KBI(CdD'U)nJr%
( crdp)piz + Kzz) (Un+1 + O(h)(Dv),, ¢

(crdp)piy + K42) (Un-‘rl + O(h)(Dv),, 4
= h(rf)n+1-

+ K5

wlw
N—

— K ((

Nl
N—

Then

K ((cde)nJr% - (cde)n+%> + (K11 — Kz1)(caDv),, 1 1

Koi[xcrdplavnir + (Ko — Ka1)(erdp) g 1vns1 + (K21 K22 — K41 Kaz)vn g1
+ Ko ((crap)n+% + KQQ)O(h)(Dv)nJr% + Ky ((crap)wr% + K42)O(h)(Dv)n+%
= h(rfnt1-

Moreover, as rdp = —As¢p01) = sO,(1) we have

Ky ((caDv),iig = (caDv),py ) + (Kiy = Kan)(caDv),, . 4
= Ko Asked0U]avnir — Kvpir + (K21 Oa(sh) + Kar Kz O(h) ) ((€aDv),yy g = (€aDv),y )
(Kgl(’))\(sh) + Koy KopO(h) + K110x(sh) + K41K42(’)(h)) (caDv) s
h(rf)n+1,

_|_

_|_
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where

K = (K21 — K41)(cv"3p)n+% + Ko1 Koy — K41 Ky

= (Ko — K41)sO\(1) + Ko1 Koo — K41 Kyo.

From that, we can write

L((cde)m_% - (cde)n+%)

= Ko As[xcpo]avnt1 — Kvpge1 + H(cde)nJr% + h(rf)nt1,
where

L = K11 — K2105(sh) — K21 K2,0(h),
K = (Ko1 — K41)sO\(1) + K21 Koy — K41 K49,

H = K21(9>\(sh) + KQIKQQO(h) + K410)\(Sh) + K41K420(h) - K11 + K31.

As L =1+ Oy a(sh) # 0 (see below) then we read

(Cde)n—&-% - (CdDU)n-&-%

— (L*le/\s[*cqsaw]a - L*1K> Vpg1 + L’lH(cde)n+% + LW gt
We set
J1 = L™ Koy As[xcgpdnp], — LK,

Jy=L"'H, Jy=L"1.

We thus have

(cde)nJr% — (cde)n+% = J1Upt1 + Jg(cde)nJr% + J3h(rf)nt1 (3.7.2)
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By using Proposition 3.3.10 we find

Ky = PO o

2
Kz = o (((T_Q)zp)r)nﬂ =1+ O a(sh),
Ko = (r77p)ns1 = 1+ Oy a(sh),
Ky = (rt” p)ny1 = 1+ Oy a(sh),
Koz = (carDp)piz — (car0p)py3 = sOx.a(sh)?,
Ky = (cqrDp),, ;. (cdrap),H% = sO,\,g(sh)Q.

From that we estimate

K = (K21 — K41)sO\(1) + K21 Koy — K41 K49 = 5Oy a(sh),

H = K210 (sh) + Ko1K220(h) + Ky1Ox(sh) + Kot KasO(h) — K1y + Ko
— Oy a(sh),

L= K11 — K21 Ox(sh) + K21 K220(h) = 1 + O x(sh).

For sh sufficiently small we have L™! =1+ O, g(sh) and then we obtain

Ji = L7 Ko As[xcgpdnpl, — LK
= (1+ On.a(sh)) Aslxcd0u] + 5O s (5h),
Jo = L™ H = Oy a(sh),

Js =Lt =1+ 0, a(sh).

By using Proposition 3.3.14, Lemma 3.3.8 and Lemma 3.3.6 yield

ok = 0,((( (r+ JF)asr) = TO()Oxa(sh),
01 K31 = t( T n+1) Ta(t)O)\ I Sh)
0 K9 = 1‘(7'7'+ Vi1 = TO(t)Ox a(sh),

(
0K a1 = 0y(r7™ p)us1 = TO)O a(sh),
Ok = 0, ((carDp),iyy — (ardp),yy ) = sTO)Ox5(sh)?,
oK1z = 00 ( (

carDp)p 1 — cdrap)nJr%) = sTO(t)Ox x(sh)?,
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which give

L' =—-2 = (1 + O)\,ﬁ(Sh)> (0 K11 + 01 K210 (sh) + K21(9;s)Ox(h)
+8tK21K22(9(h) + atK22K21o(h))
= T@(t)O)\,ﬁ(Sh),

where sh sufficiently small and

oOH = 6tK21(’),\(sh) + Kgl(atS)O)\(h) + 8tK21K22(’)(h) + K216tK22(9(h)
+ 8tK410)\(Sh) + K4q (6t8)0)\(h) + 6tK41K420(h) =+ K418tK420(h/) — 8tK11 + 8tK31

= TO(t)Oxa(sh).

It follows that we have

8tJ1 = sTﬂ(t)OAﬁ(sh),
8tJ2 = Te(t)O)\,ﬁ(Sh), 8tJ3 = T@(t)O)\,ﬁ(Sh).

Furthermore, we can write (3.7.2) in the simple form

(cdDU)nJr% - (Cde>n+%
= As[*xcp0V]qUnt1 + ASOx s (sh)vp41

+ Orslsh)(caDv),py + (14 Ona(sh) ) h(r s,
which yields the conclusion.
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3.7.2 Proof of Lemma 3.4.4

By using Lemma 3.3.2 in each domain g1, g2 , we have

\V]

111 = /3 ﬁD(CdDU)ﬁU

o~

(caDv)Dv +2 / 2 DpD(caDv)Dv
Qo2

12 DpeaD(Dv)Dv + 2 / 2 Dp(Dea)(Do)?

01 01

er2p DpeaD(Dv)Dv + 2 / er2f Dp(Deg)(Do)?
Qo2

01

Il
2o

Il
S— — @\
<
3
]l

Qo2

2
S / er2f DpeaD(Dv)? +23 ) / or?} Dp(Dea)(Dv)2.
1=1 01 =1 07

+
o [\
—

We then apply a discrete integration by parts (Proposition 3.3.5) in each domain g1, Qo2
with Q01 = {0,a} and Qg2 = {a, 1} for the first two terms and we obtain

Iy

—Z o D(ccqr®p Dp)(Dv)? —|—ZZ/ er®p Dp(Deg)(Dv)?
T

T
[ @t DDy~ [ (o™ Do
T

T
+ [ i Do) D02, ~ [ (s DO)DY)

= N

—Z D(céqr?p Dp)(Dv) +2Z/ cr?p Dp(Deg)(Dv)? + Y.
Qosi

where

Vi = v 0 4y @

T T
Y = [ (s DAWD0R g — [ (cear®s Dp)ah (Do) g
0 0
v = / ' (¢ D)(a™)(Dv)? / " (ceurs Dp)(0)(Dv)
11 o d n+l o d

ol B

Lemma 3.7.1. (see Lemma B.3 in [BHL10a]) Provided sh < R we have

D(ciCairipi Dpi) = —s\*(cidi(0))?)a + sAdai O(1) + sOx x(sh),
cir piDp;i(Deai) = sAg;0(1) + sOx a((sh)?),
13 piDp; = 1idp; + 505 a((sh)?) = —sA¢it] + 505 1((sh)?),

7’1251D7p1 = Ti;irim = (]. + OA’ﬁ(Sh))Tim.
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Moreover, by Lemma 3.3.3 and Proposition 3.3.5 in each domain g1, 2 we obtain

J

_ B -
\p(Dv)2 — =Y BT, < \p(Dv)?
DV =53 BT < [ D)

’
0

sA¢(Dv)? < /

2

sA¢(Dv)? = /Q

’ /
0 0

since

BT, = s)«é(a)(Dv)iJr% + sA¢(a)(Dv)d >0

1
2

BT, = 5A¢(1)(Dv)i+m+% + 3A¢(a)(Dv)i+% >0
and ¢ = ¢ 4+ h2O,(1) then we can write

/Qm sA$(Dv)” < /Qo sA¢(Dv)? +/ SAR2O, (1)(Dv)?

Qo

Similarly, we have

/ SO)\VQ(Sh)z(m)z
Qo

< / s|Ox,a(sh)?| (Dv)? < / s|Ox,a(sh)?| (Dv)?.
Q Q
Thus
Iz = [ s (@6 P)aDo) - Xuu + Vi,
where X = fQ’ v11(Dv)? with v1; of the form sA¢O(1) + sOy a(sh) and
0
= 1+ v ¥
T
Y _ / (1+ Ox.a(h)) (c2a) (D DR (D)(D0)2, 0
0

T
_ / (1 4+ Oy a(sh)) (c2a)(0) (rDp) (0)(Dv)

ol N

T
v = / sAo(a)ea(a) (= () (@) (Dv)2, s + ()" )(Dv)2, 5 ),

T T
Y = /0 sOxa(sh)* (D)2, — /0 sOxa(sh)*(Dv)2, 5.

3.7.3 Proof of Lemma 3.4.5

We set ¢ = rped . By using a discrete integrations by parts (Proposition 3.3.5) and

Lemma 3.3.2 in each domain Qg7, Qg2 we have
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2
I, = —22/ squD(cqDv)
i=1 0%
2 2
= 22/ scjcd(Dv)Z—l—QZ/ sDqcq®Dv
=1 01 =1 01
T T
_ / sq(a_)v(a)(cde)n+%+/ sq(a+)v(a)(cde)n+%
0 0

2 2
= 2 Z/ sGcq(Dv)? + 2 Z/ sDqcq®Dvdt + Yo,
=1 01 =1 01

since v|aq, = 0 and with 0Q01 = {0,a}, Q2 = {a, 1}.

Lemma 3.7.2. (see the proof as given in Lemma 4.4 of [BHL10a]) Leti = 1,2. Provided sh < &

we have

7= N (¥))? 4+ A O(1),
4 = ripich; = N2ehi(¥))? + ApiO(1) + Oxa(sh)?,
G = N (cgi(¥i)?)a + ApiO(1) + Ox a((sh)? + h),

D = D(rifiy) ¢, + (rigy) D(cg, ) = Ox.a(1).

Note that the proof and the use of Lemma 3.7.2 are carried out in each domain Qg1, Q02
independently.
It follows that

2

2 2
Iio = QZ/ S)‘2(02¢(1//)2)d(DU)2 + Z/ V12(Dv>2 + Z/ sOA’ﬁ(l)f}Dv + Yio,
i=1 7 Qoi i=1 Y Qoi

i=1 "7 Qoi

Then
IMZQ/ NESW)2)a(DV)? — Xig + Yo,
Q

with
T
Vi = [ sVla)u(a)ie(v!)? «cuDul,
0
T —
+ / d12v(a)(cDv),, 1 3 + d12v(a)(cDv), 1,
0
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where 812,812 are of form s(Ad(a)O(1) + Oy x(sh)?) and
X9 = / 1/12(Dv)2 —|—/ sOx q(1)0Dwv,

where

vig = sAGO(1) + 5Oz a(h + (sh)?).

3.7.4 Proof of Lemma 3.4.6

We carry out a discrete integration by parts (Proposition 3.3.5) in each domain g1, Q02 with

9001 = {0,a} and 9Qy2 = {a, 1} as follows

I3

/ rﬁD(cde)Btv—i—/ rpD(cqDv)dsv

— D(rpdyv)cqgDv — D(rpdyv)cqDv
Qo1 Qo2

T T
| o )a@ede),.y - [ 0h)00wO) D)
0 0

+

1
2
T

T
+ [ RO DO s~ [ (PO caD)

— D(rpdyv)cqDv — D(rpdyv)cqDv
Qo1 Qo2

T T
+ [ R @ @Dy~ [ eR o@D,

—Z D(rp)dsvcqgDv — Z/ 7:) (0: Dv)cqgDv +Y13,
Qoi

Q1 Q2

by Lemma 3.3.2 and with

T T
Vi = / () (a™)Ov(a)(caDv) 3 — / (rp) (™) Bw(@)(caDv)nr

as ’U|aQO =0.

By applying Proposition 3.3.13 in each domain Qg1, Q2 we find

D(r;p;) = Oz a(sh),
rip; = 1+ Oy 5(sh)? = Oy 5(1).
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On the one hand, we have

Q1| < Z/ .510)\,_@(5}7])(8t6)2+z\/ ISOA,Q(Sh)(DU)z

g
S

2
5710, a(sh) (O)? + Z/ | 5Oz a(sh)(Dv)?

= / silOAﬁ(sh)(atv)g—}-/, 50x.a(sh)(Dv)?,

by (0;9)? <(9;9)? in each domain Qqy, Q2 and 2?21 fQOi Oxrs(1) (0:0)? = fQo Ox.5(1)(0,0)%
On the other hand, by an integrations by parts w.r.t ¢ we write as

Q2 = —*Z/ ._ﬁdatDU)

2
1 — _
= = E O ( rp ca(Dv)? —5 g TP cd.(Dv)2|§;OT

Qoi

We observe that for sh < €1()\) with €;(\) sufficiently small we have rp > 0 by Propo-
sition 3.3.13. The sign of the term at ¢ = T and t = 0 are thus prescribed. Furthermore,
Proposition 3.3.14 leads to 9;(r;p;) = T(sh)?00, (1), so that, for sh < & we obtain

2

@23 / TR0, (1)(DY) ~Cra() 3 / (Do)
Thus,
Iz > — o Coa(D)(Do(T))? = Xz + Via.
with

Xia = [ (s(sh) + T(sh)?6) On (1)(Dv)* + /Q 57 O s (sh) (B0)°.
T

T
Vo= [P )0w@ Do)y = [ 0P )0w(a) caD)
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3.7.5 Proof of Lemma 3.4.7

We set ¢ = c2r2(DDp)Dp. Observing that Dv = D9 we get

Iy = 2 / 2(DDp) Dy Dv +2 / 2(DDp)Dp’ Do
QOI_/_/ QOZﬁf_/
q q

_ B 2 B 2

- / 4D(D)? + / 4D (v)
Qo1 Qo2

= — | Dq®)?*- Dq(9)?
Qo1 Qo2

2 2
—_— h2
-5 j/ Dqv*+ j—/ (Dg)(Dv)? + Yy
: . — 4 Jo.
i=1 0i i=1 0i

2 2
. B2
- [ Daer S [ oo v v
Qoi

i=1 Y Qoi i=1

by means of Proposition 3.3.5, Lemma 3.3.2, Lemma 3.3.3 in each domain Qg1, Q2 independently

and where

Yo :}/’2(11)_1_}/2(12) :}6(1171)_'_}/2(1172)_'_}/2(12)’
T T
1,1 - -
= [ a0y~ [ a0)@)
(1.2) T T
Y = [ a2y - [ ey

0

ol N0

)

v =5 [ @0, -5 [ o)

Nl

ho[T 9 hof” 2
-5 [ OO =5 [ @D

:—g/o v2(a)(Dq)n+% _g/o U2(a)(DQ)n+%7

as v|ag, = 0.

We note that v, = %(Dv)%, Upymp = —%(Dv)n+m+g . On the one hand, by Proposi-

tion 3.3.10 we have ¢ = 520 g(1)rDp in each domain Qqy, Qo2. It follows that
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1,1 T _— T R
Yat = / S20x1(1)(rDp) (1)(D)2 4,15 + / s20x,2(1)(rDp)(0)()

ol B0

T - T .
= [ O EEDAMDUE, g + [ Orx(ehDRO)(D.

o= N

On the other hand, by Proposition 3.3.15, Corollary 3.3.9 we have ¢ = —c?(s¢\)?(')3 +
520,(1) + s30, a(sh)? in each domain Qo1, Q2. We thus obtain

T
D = [ @)’ (~ @0 )@ + G0 0

+ /T (32(9,\(1) + 830,\,:%(3}1)2) ((ﬁ)fwl - (ﬁ)?ﬂr%)

0 2
1,21 1,22
_ Y2(1' )4_}/2(1 ),

where .
Y = [C N @l W) w2l
0

Lemma 3.7.3. (see Lemma B.8 in [BHL10a]) Provided sh < & we have

qu = 830)\’.@(1)7

Dq; = =35°X'¢22 (W) + (sA¢:)>O(1) + s*Ox a(1) + s°Ox a(sh)’.

Note that the proof and the use of Lemma 3.7.3 are done in each domain g1, 2 separately.

We then obtain

(2) h T 2 h ’ 2
0 0

T
_ /0 20s(sh)v*(a).

We thus write 1o

12123/
Q

)\433¢302(’(/J/)4(’U)2 _ /

f121(v)? —/ v21(Dv)? + Yoy,
Qph Q

/ ’
0 0

where

Ho1 = (s)\qb)?’(’)(l) + SQOA’R(I) + 830)\’ﬁ(3h)2, Va1 = SOA’ﬁ(Sh)27
Yo = Y 4 Y4V v,
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3.7.6 Proof of Lemma 3.4.8

We set ¢ = c?r(DDp)¢" and by Lemma 3.3.4 we have © = v+ h?DDv/4 in each domain Qqy,

Qps. It follows that
Iy = —2/ sqﬁv—?/ sqUv
01 Qo2

h? -
—2/ squ—/ S—q(DDU)v
Qo1 Qo1 2

h? -
—2/ squ—/ S—q(DDv)v.
Qo2 Qo2 2

Applying a discrete integration by parts (Proposition 3.3.5) and Lemma 3.3.2 in each domain
Qo1, Qo2 yield

2 2
h2
Iy, = —22/ sqv2 + Z/ %D(QU)DU + Y2(21)
=1 0% 1=1 01
2 2 2
h? sh? -
= —22/ squ® + Z/ STqN(Dv)2 + Z/ TD((])UDU + Y2(21)
i=1 0i i=1 04 i=1 07
2 2 2
sh? _ sh?
= —22/ squ? + Z/ TQ(DU)Q + Z/ TD(Q)D(UQ) + Yz(zl)
i=1 0i i=1 0i i=1 04
2 2 sh? 2 sh? _ (1) (2)
= 23 [ s> [ e =3 [ Do vl v
i=1 Y Qoi i=1 Y Qoi i=1 Y Qoi
where

(1) T Sh2 _ T Sh2 +
v == [ St @Dy + [ aau@Do,.y,
T 2 T 2
sh sh
v = [ St @0ay - [ @00,
0 0
as v|an, = 0.

In each domain Qg1, Qo2, we have ¢ = O (1) and from Proposition 3.3.13 we have ¢ =

5205,(1) and Dg = 520, g(1). We thus obtain

) T h2 h2
v = /O $0x8(10(0) 5 (D0) 11 g + 5°0r,a(1)0(a) 5 (D0) 114,

T
Y2(22) :/ sOA,ﬁ(sh)%Q(a).
0
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Lemma 3.7.4. (see Lemma B.9 and Lemma B.10 in [BHL10a]) Provided sh < & we have

*riDDp; = 2(r;0%p; + 520y q(sh)?) = 2 (sAi) > ())? + sOx(1) + 52O a(sh)?,
h*DDg; = s(sh)Oy a(1).

Note that the proof and use of above Lemma 3.7.4 are done in each domain Qg1, {92 sepa-

rately.

Futhermore, we have ¢” = A?(1)")%¢ + A¢O(1) in each domain g1, Qoz. It follows that

st = (52002 (W)? + 505 (1) + $20r,a(5h)? ) (V206 + A0 (1)

= SN (WP + N33 0(1) + 5205 (1) + 5Oy 4(sh)?,

in each domain g1, Qg2.

We thus write I as

122:*2/
Q

0253>\4¢3(¢/)4,U2 4 /

p29v? + / Va9 (Dv)? + Yaa,
Q5 Q

’ /
0 0

where

Moo = (S)\d))dO(l) + 820)\"@(1) 4+ 530)\7_‘9{(5}02, Voo = SO,\7§(Sh)2,
Yoo = VP 4+ V2.

3.7.7 Proof of Lemma 3.4.9

By means of a discrete integration by parts (Proposition 3.3.5) in each domain Qg1, Qg2, we

obtain

Iy = cr(DDp)vdsw

i=1 0@
h T _ B h T _ - )
- 5 /0 (er(DDp))(0)0rv(0)0y — 5 /O (er(DDp))(a”)dpv(a)d, 1 1
T T
. /0 (er(DDp) (@t )w(a)i, 5 — 5 /0 (er (D) (V00 (1)ipms2
= Q1+Q2+Y23),
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by Lemma 3.3.3 and where

Q1= Z m 000,

1 7/ Qoi

_ 2 p2 _

= D(ecrDDp)(Dowv)o,
=37 [ DlerbDp)(Dow)

W _ _h [T x - . hoftoo o o
1/'231 = —5/0 (er(DDp))(a )Otv(a)vn+§ —5/0 (CT(DDp))(a+)8tv(a)vn+%

as Opvlaq, = 0.

With an integrations by parts w.r.t ¢ we have
18 —_— 13 —_—
Q=53 [ aleDDper+ 33 [ Ter(BDp) @IS
i=1 0i i=1 04
By means of Proposition 3.3.13 and Lemma 3.3.7 in each domain g1, Qg2 we get

eri(DDp)= 5205 a(1),

TZ‘DD/)Z‘ = 820,\);{(1),

and we further have

Lemma 3.7.5. (see Lemma A.1 in [BL12])
9:(cr:DDp;) = Ts*00, 4 (1).

Note that the proof and use of Lemma 3.7.5 are done in each domain g1, {292 separately.
It follows that

2 — —_—
Z/Q 57 (O)Hﬁ(l) U2|t=0 +O>\7ﬁ(1) let:T )
0i

i=1

2
0, = Z/ Ts?00y a(1) v* +
i=1 0i

as |17|2 §|v|2 in each domain Qg1, Qo2.

Moreover, we observe that 37, Ja,, Ora(1) v = Jo, Oxs(1)v?. Then,

Ql :/ TSQGOA,Q(I)UQ Jr/ SQ(OA,R(D F‘ho +(9/\7ﬁ(1) U2\t=T ) (3.7'3)
o Qo

‘We have
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T h,_ h, .
Yy = / S O0r 2 (1000(a) 5 (T13) + 5 Or 2 (1)0e0(a) 5 (T13).
0

By an integration by parts w.r.t ¢ and Lemma 3.3.2 in each domain g1, Qg2 we find

2

Z D(crDDp)o Dv—i—z D(crDDp)D(v)?|i=L .
i=1 QOZ Qo;

Q3 Q3

By means of Lemma 3.3.2 and a discrete intergration by parts in space (Proposition 3.3.5)

in each domain g1, 202 we see that

2 12
Qs = Z 0y(DD(crDDp))v? Z%/ D(crDDp)(00)Dv
QO’L i=1 Qoi
h2 ) _ h2 T )
-5 /. v™(a)0u(D(crDDp))py 1 + s/ v*(a)0y(D(crDDp)), ;3
2 ~ o)
= Z 0(DD(crDDp))v? Z 4/Q D(crDDp)(8,9)Dv + Yoy
=1 Qoi i=1 0@

as vlpn, = 0.

Lemma 3.7.6. (Lemma A.2 in [BL12]) Provided sh < 8 we have

h*DD(ciri(DDp;)) = s(sh)Ox (1),
hQat(DD(Cz’I“ZDDpl)) = T5290A,ﬁ(1)a
hat(D(CiTZ‘DDpi)) = TSZQO)\,K(l)u

D(cir;DDp;) = sQOAﬁ(l).

Note that all above terms are done in each domain g1, g2 separately.
We thus obtain .
Y2(32) = / sTOO a(sh)v?(a).
0
Applying the Young’s inequality and using that |8t17\2 §|5‘tv|2 in each domain Qg1, Qg2, we
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have

Q) > / Ts*00, «(1)v? + / s Oy a(sh)? |0w)” + / sOxz(sh)2(Dv)? + V2
5 b Q)
> /Tszﬁ(’))\,g(l)vz—i—/ s_IOA,R(sh)2|8tv|2+/ SO)\,Q(S}L)Q(DU)Q—'_}/Q(;)
(3.7.4)

as Y7y fo,. Oxs(1) 0w]* = [, Ox 2(1) [00]*.

By using Proposition 3.3.5, Lemma 3.7.6 in each domain g1, {92 separately yield

_ h? —

% = —Z [ DD(erDDp) ]
h‘2 2 N t=T h2 2 > t=T
+0%(@)(D(erDDp), [i=F — 02 (@) (D(erDDp)), 4 lih

= | sOnsh) @it + [ O (60 im0 + On.a(sh) 0 (@) i=E
Qp Q

_ / 5Ox.2(sh) (v) %=1 + / 5Ox m(5h) (v)2)1mo + Y, (3.7.5)
QL Q)

0

as v|apn, = 0 where

3 -
Y33 = Oxa(sh)*o*(a) (=5
Collecting (3.7.3), (3.7.4) and (3.7.5) we obtain

Iz > / 2 ((’),\ﬁ(l)vizo + (’),\,ﬁ(l)vﬁ:T) — Xog + Yas,
Qo

where Xo3 and Yo3 are as given in the statement of Lemma 3.4.9.

3.7.8 Proof of Lemma 3.4.10

By means of a discrete integration by parts (Proposition 3.3.5) in each domain Qg1, Qo2
separately, we get

I3, = =271 0)pcr DpvDv — 27’/ (0¢0)crDpvDu

Jou .
J,.

8) werDpv Dv — 27’/ (040) werDpv Dv + Y3(11)7
02

= =27
01
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with

h

T T
Vi =75 | @0Dren @) (D0 + 75 [ @0 erDpen) @) Do)y

as v|an, = 0.

We have pcr Dpv=pcrDp 0 + %D(gochip)Dv in each domain Qg1, Qg2. It follows that

2 2
—— h2 -
Iy = 7y / (06) (erDpg) D) ~ 3 1% / (0,0)D(cr Dpe) (Dv)? + YV
i=1 01 i=1 04
2 S E— 2 h2 _
= 7> [ @oDerDt -3y /Q (48)D(cr Dpg) (Dv)? + YY)
i=1 7 Qoi i=1 0i

T T
_ 7-/ (0:0)v?(a) (crﬁpw)n+l —|—T/ (0:0)v*(a) (crﬁp@)n+§
0 2 0 2
2 2 2
= 7> / (2:0)(D(crDpg))v? = Y7 / (2:0)D(crDp)(Dv)? + Yl + Y37
i=1 Y Qoi i=1 2 Qoi

by using a discrete integration by parts in each domain Qg1, 2 separately and

T T
VP =1 [ (@00 (@rDpe),y + 7 [ 0003 (@) (@Dpp), g
0 0
as v|ga = 0.

By using the Lipschitz continuity and Proposition 3.3.13 we get

D(criDpipi) = sOx g(1),

D(criDpip:) = sOx,5(1),

CT'iDipﬁpz': SO)\,ﬁ(]-),
criDp; = c(ridpi + 57O z(sh)?) = e(=sAgith] + 5O a(sh)*) = sOxa(1).

The proof is done in each domain 41, Qg2 separately. Note that mtaxﬁte =T62%

It thus follows that

131:/
Q

T0s*Oy q(1)v* + / TOO a(sh)*(Dv)? + Yay,
Q)

’
0
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where

Va1 = Y3(11) + Y;S(IQ)v

r h r h
Y'S(ll) = /(; TQSQOA’Q(l)U(a)§(DU)n+% +‘/0 T082OA,K(1)U(G)§(DU)7L+%7

T
v = / T0s*Ox 2(1)v*(a).
0

3.7.9 Proof of Lemma 3.4.13

We see that

1 1,1
Y 4y

T
| 0+ Ok @) DR (D0

ol RO

T
- / (1+ 5 a(sh)) (c2a) (0) (rDp)o(Dv)

T T
+ / O,\)R(Sh)z(TDp)O(DU)Q% + / O)\7R(Sh)2(7”Dp)1 (Dv)i+m+%.
0 0
Moreover, by (3.4.1) we have Yl(ll) + Y2(11 >0 for sh sufficiently small.

We next focus our attention on the trace term at ‘a’ on Y1(12 et Y2(11 21 as follows

3.7.10 Proof of Lemma 3.4.14

- Un+1 + Unt2 2
0y = (Mgt

2 h
n+d 5 )" = (vnt1 + 5(D0)syg)
2

= v+ 1 (Dv)iJr% + hvn41(Dv),, 4 3
= Ungit hiz(CdDU)iJrg + Unt1 (caDv),, 4 3. (3.7.6)
4(cd)n+% 2 (Cd)n+% 2
Similarly, we have
~\2 2 2 2 h
Oy =hert G, Py~ oy (P (1)
2
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We thus write Y2(11 21 as follows:

1,21
Yy

/0 (sMb(@)P[ (W) % |51

r 2
= /0 (sAo(a) <n+1+ n+3 CdDU)"+%+vn+12(6d)n+%(cde) %)
T
— A (3>\¢ <n+1—|— n+2 CDU)N+1 Un_;'_lm(CdD’U) +%>
T
= [ @R,
r 2 113 h2 2 113 h2 2
+ [ @ (@ e aParg ~ () >4(Cd)i+é<cdpv>n+)
T 213 (2013 h
+ [ @ (@ ey D — (V) g —(ebn), )e(a)
(3.7.8)
Moreover, the term Y1(12 D g given by
T
Y = [ o= v el Jaala) (Do, + v elateala) (D) )
0
" o cla”)ea(a) +clat)ca(a)
= /0 s)\¢(a)( YP'(a”) (ca?, (Cde)n+1 + ' (a™) (Cd)72L+% (CdD’U)n-‘r)
We estimate as
c(a™)eq(a) _ ((ca)ngs +OM)) ((ca)nst + (Ca)nts)
(ca)y s 2(ca)y s
€y + OR)) (2ca)ns s + OR))
o Q(Cd)i+%
= 1+4h0O(1)
Similarly,
L
n+%



We thus obtain Y1(12 )

T
YD = /0 3A¢(a)(—w’(a—)(1+h0(1))(cdm)i+%+¢'(a+)(1+h0(1))(cde)i+%)

T
— /O sAé(a)[Y) x (caDv)?],

T T
/0 sAd(a)y' (a")O(h)(caDv)} | 5 + /0 sAd(a)y' (a7)O(h)(caDv)} s (3.7.9)

+

Combining (3.7.8) with (3.7.9) we obtain

+

where

2,1 1,21
y 4y 12D

T T
/0 AS(@)[ % (caDv)?]a + / A3 () (1) Plav?,

0

T T
| shotas @h)omeann g + [ ol @ )0m b,

T 3 2113 + ? 2 2,113 — ? 2
| @y (@) e 4P ~ N (el )
T
3 2113 o 02 /3 a” c v ola
[ @30 (@)@ 5 — (@D = (@) (a) 5 — (D Jola)

2

M

T T
p= [ D« @D+ [N @) ok

0

and g can be written as

T T
/ SOA_]ﬁ(Sh)(CdD’U)i{FQ +/ sOAﬁ(sh)(cde)le
0 2 0 2

M1

T T
+ / 820)\’_ﬁ(5h)(CdD’U)n+%Un+1 +/ SZOA’ﬁ(Sh)(CdDU)n+%Un+1.
0 0

We can write

[(¥") % (caDv)?]a
= [(¥")¥a(caDv)s, 1 + [*(caDv)]30 (aF) + 2[x(caDv)]at’ (a¥) (caDV) g 3 -

Indeed, we have

() % (eaDv)la = (caDv)% 50/ (%) — (eaDv)? 4 ' (a7),
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and

(W) 4a(caDv)} 1 + [x(caDv)0" (@) + 2[x(caDv)]at’ (a™)(caDv) 1
(cde)i+%1//(a+) — (cde) el W' (a”)

P

(CdDU)i+%¢/(a+) + (CdD’U) /(aJF) — Q(CdDU)n+3 (CdDU)n_,'_%q)[}’(aJr)
(
(

+ o+

2(caDv)yy3(caDv) gt Y (at ) 2 cde)n+1 Y (a™)

(cde)fH_%qp’(a ) — (CdDU)nJer a”).

Moreover, by using Lemma 3.3.17, we obtain

(') * (caDv)?)a
= [W)¥alcaDv)2 5 + [eleaDv)]20/(a*) + 2x(caDv)]at (@) (caDv) .y
= [@)HalcaDv)2 4 + (N2s2lx(cot ) 202, + 18 + 2Asrofxegy ]avnﬂ)w'( )
+2(sABCoU v + 70 ) ' (@) (€aDV) 1y

which gives

T
po= [ @D,

T
b [ 20 root v (o (caDv)
0

T

[0t (leoow B (a) + [0 oL@
T T

" / SAB(@)! (at)rd +2 / S2A2(a) et |t (0 )rovns
T

+ 2/0 sA¢(a)1/1’(a+)ro(cde)n+%

Moreover, we have:

et la = et |y s — ot |y s = oo+ — cot|o- + hOA(1) = Ba)[et)'*]a + hOA(L),
[regw'2 = [con/s)2 + 2[ctrx|ahOs(1) + h20x(1) = ¢*(a)cw'*]% + hOA(1).
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We thus write p as

T
po= [ @ eaDo,
T
+ / 252 X%¢% (a) [ At (@ Yvns1(caDv) y 1
0

T
[ SN @ (@) + P )k

0

_|_

T T
/ SAG(a)y (a2 + 2 / SN2 (@) [/ *]utl! (@ ot
0 0
T

T
2 [ Ao @ ra(caDo) g + [ 2Onaloh)id,

+

T T
+ / SO)\7ﬁ(Sh)Un+1(CdDU)n+% +/ sOx q(sh)rovp41
0 0

T
= [ @ acaDori,
T
+ /282)\2¢2(a)[Cw/*]a¢/(a+)vn+1(Cde)nJr%
0
T ) .
[ e (for e @)+ [Pk

where p, can be written as

T T T
Ly / sO\(1)r2 +/ 520 (1)rvp41 +/ SOA(l)ro(cde),H_%
0 0 0

T
+ / SQOA’.Q(Sh)U,,21+1+/
0 0

T T
SO,\)_Q(Sh)Un+1(CdD'U)n+% —|—/ SOy a(sh)rovp41.
0

We have thus achieved
T
o= / sAé(a) (Au(t, a),u(t, a)) + U,
0

with u(t,a) = ((cde)7l+%,s)\¢(a)vn+1)t and the symmetric matrix A defined in Lemma 3.2.1.

From the choice made for the weight function 5 in Lemma 3.2.1 we find that:

T T
> Cao/o sAd)(a)(cde)iJr% + Cozo/o AP0 (a)v2 1y + fir,

with ag > 0.
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3.7.11 Proof of Lemma 3.4.15

By using Lemma 3.3.17 we have

Yis = —/0 rﬁ(a+)8tv(a)(cde)n+%+/0 rﬁ(a‘)atv(a)(Cde)n+%

T
—/ rp(a™)op(a) ((Cde)nJr% + J1vpt1 + J2(caDv),,y 1 + Jsh(rf)nﬂ)
0

T
n /0 ri(a”)dw(a)(caDv),, 1,

where Ji, J> and J3 are given as in Lemma 3.3.17.

Since Jo = Oy q(sh) and rp = 1+ O g(sh) we can write

T T
Yiz = /0 OA,ﬁ(sh)atv(a)(cde)n+% 7/0 rp(a™)Jiv(a)ow(a)
— /0 rp(a™)J30v(a)h(rf)ns1.

Futhermore, as f = f; — 0;(pv) we thus find

Yiz = /OOA,ﬁ(Sh)atU(a)(CdD”)n+%_/0 rp(a”)Jiv(a)drv(a)

T
- /O ri(a*) Jsd(@h(rfi — rd(pv), -

With an integration by parts w.r.t ¢ for the second term above we obtain

Y3

r 1 [T
/ OA,R(Sh)atv(a)(cde)n+% + 5/ o, (Tﬁ(a+)J1)v2(a)
0 0

1

= 5 @I — [ i) Tadn@hr i)

T
+ / rp(a®)J30pv(a)hrni1 (pOpv + Qepv)
0

T 1 (T B
/ OA,_Q(Sh)atU(a)(CdDU)n+; + 5/ O (Tp(a+)J1)1)2(a)
0 0
+ SO,\ _9’{ t 0 +/ OA _ﬁ 8,5’0 ) (Tfl)n+1
T 1
+ / (]. + O)\,ﬁ(sh)) (8,51)( )) + 5 / (a+)J3h(7’3tp)n+15't (1)2((1)),
0 0
where 75, J3 are of the form 1+ O, g(sh) and J; of the form sO, g(1).
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We apply an integration by parts in time for the last term

Y3

1,
/ Ox.a(sh)dv(a)(caDv), 1 + 2/ 3 (rp(a™)Jy)v?(a)

+ 50, s(1 M= o+/ Ox2(1)0ww(a)h(r f1)n+1

T
+ /0 (1 + O,\yg(sh))h(atv(a)) — %/0 Oy (rﬁ(aJr)Jg(r@tp)nH)hv2(a)

1 - _
+ §Tﬂ(a+)J3(Tatp)n+1h112(a7-)\i;g-

Moreover, we have

Os = s(2t —T)0 = sTOO(1),

Ohp = —p(x)(9es)p = —p(x)s(2t —T)0p,
rop = —p(x)s(2t —T)0 (3.7.10)
8t(r8tp) = ST2920(1),

by using (3.2.2)- (3.2.3).

Now we estimate the terms 9 (rp(a™)J1) and 9 (rp(a™)J5(rdip)ns1). By recalling dpJ; =
STOO x(sh), OpJs = TOO q(sh) as well as using Proposition 3.3.14 and (3.7.10) we obtain

8,5 (7’5(CL+)J1) = (’925 (Tﬁ(aJr))Jl + 7'5((1+)8t<]1
= ST@O,\VQ(S}L),

and

O (rp(a™)J3(rdip)nt1)
= 0 (rp(a®)) J5(rdep)ns1 + rp(a™)0rJ3(rdyp)ns1 + ro(a™) Js8y (rOep)nt1)
= sT?6°0, x(1).

Thus Y33 can be written
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T T
Yis = O)\,Q(Sh)atv(a)(Cde)n+L+/ sTOO a(sh)v?(a)
0
+ s0xa(1)v*(a)|iZ o+/ Ox.a(D)dw(a)h(rf1)ni1

T
+ /0 (1+O>\,ﬁ(sh))h(8tv(a)) +/ T26%0Oy a(sh)v?(a)

0
£ L+ O s(sOMA( — pla)s(t)(2t — )0 (a, ) ) E.

We observe that for 0 < sh < e3(\) with e3(A) sufficiently small we have
rp=1+ Oy a(sh) >0

Additionally, ¢(x) < 0 then the last term of Y33 are non-negative. From that, we estimate

Y13 as follows
T T
Yi3 > / C,\,gh(atv(a))Q —|—/ (ST@O}MK(S}L) + T292(9,\,ﬁ(sh))v2(a)
0 0

T
+s@ﬁmﬁ(t0+/<xﬁmmax%mg#+ Or (D0 (@)h(r f1 )i

0

3.7.12 Proof of Lemma 3.4.16

On the one hands, as f = f1 — 9;(pv) we write

(Tf)n+1 = (Tfl)n+1 - (Tat(pv))nH
:(%%H—@wmﬁ@@m)ﬂ

= (7fi)nt1 — (Op0)ng1 — STOON(1)vp41.
‘We thus obtain

[ fnsa|* < C((rfl)iH +(00)2 0 + s2T2920A(1)vi+1). (3.7.11)
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On the other hands,

[o1 % p2] = [p1%]a(p2) iz + p1(a™)[xp2a

and we recall

(CdD'U)n+% - (cdDU)nJr% = [xcaDvlo = AS[*C(bw/]aanrl + 7o,

where r( is given in Lemma 3.3.17 as

ro = $Ox g(sh)vpy1 + (’)A’ﬁ(sh)(cde)nJr% + hOx 2 (1) (rf)nt1,

‘We then have

(caDv)? = (cde)iJr% + [xcqDv)? + 2[xcaDv]a(caDv),, 4 1

n+%
= (cde)iJr% + )\232[*0(;5@&’]31)2“ + 18 4+ 2Xs[xed | aToUn 1

+2/\s[*c¢1//]avn+1(cde)M_% + 2ro(caDv)py 1

and we compute

7’3 = SZOA,R(Sh)QU72L+1 + OA,R(Sh)Q(CdDU)EH_% + hQOA,R(l)(Tf)fH-l
+50x,a(sh)*(caDv) 41 Vnt1 + SON a(sh)A(r f)nt1vn41

+O0x,a(sh)(caDv), 1 h(r f)ns1.

By applying Cauchy-Schwartz inequality we have

(cde)iJr% < O(l)(cde)i+% + s2Ox\(1)v2 1 + O(1)rg

15 < 5?Oxs(sh)?vn 41 + Oxa(sh)?(caDv); 1 + W Ox (1) (r )1,

SToUn4+1 < (SQOA’ﬁ(Sh) + SO)\’ﬁ(l))’UiJrl =+ OA7ﬁ(Sh)(CdDU)i+% + ho)\’ﬁ(sh)(/]’.f)i+17
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(3.7.12)

(3.7.13)

(3.7.14)

(3.7.15)

(3.7.16)



sQTOvnH < (ngA’R(sh) + 6830)\”@(1))’[}24»1 + SO,\’;{(Sh)(CdDU)i+% + CEhO)\’yg(Sh)(Tf)i+1,
(3.7.17)

sTOrguny1 < ($*TOON x(sh) + sT?0°Ox a(sh))vi 44

+ s(’))\}g(sh)(cde)i_ké +h0}\7_ﬁ(5h)(7"f)721+1, (3.7.18)

sro(cDv), 1 < s°Ox q(sh)v2 1 + (sOx a(sh) + ESOA,ﬁ(l))(CdDU)iJ’_% + CeOx q(sh)h(rf)? 1,
(3.7.19)

(Orv(a))re < (’),\ﬁ(l)h(atv(a))2 + s(’)Aﬁ(sh)(cde)fwé + 53(’),\79\(8}1)1),2”1 + OA,R(l)h(rf)i-i-l-
(3.7.20)

We estimate following terms

The first term, by using (3.7.14) we have

T
‘}/1(12’2)‘ = / sOA’ﬁ(sh)Q(cde)Z+; + 80y a(sh)*(cqDv)?
0 2

n—i—%

T T T
/ SOA,R(Sh)Q(CdDU)EL+% +/ 5O a(sh)?vp +/ sOx z(sh)?rg.
0 0 0

IN

Moreover, by using (3.7.15) we obtain

T
/ 5Oz a(sh)*rg
0
T T T
< / SSOA,VQ(Sh)ZL’U?L_H +/ SO)\VVQ(Sh)4(CdDU)i+l -l-/ hO)\VQ(Sh)S(Tf)EH_l.
0 0 2 0
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Then, by using (3.7.11) we estimate Yl(f’Q)

T T T
W < / SOx(sh)*v] 41 + / sOx.s(sh)*(caDv)} 4 + / hOxa(sh)*(rf)i 4
0 0 0
T T
< / (ssO)\,ﬁ(sh)z+5T202O>\7ﬁ(5h)4)vi+1+ / Ox a(sh)*h(0w)2
0 0

T T
+ /0 Sox,ﬁ(sh)Q(CdDU)i%Jr/o hOxa(sh)>(rf1)p41-

For the next term, using (3.7.12) and Lemma 3.3.17 we obtain

Y, = /O s(’)A(l)v(a)[mp/2 * (caDv)]a
T
+ /0 SOA,ﬁ(l)v(a)(ch)nJr% + SOA,ﬁ(l)v(a)(ch)nJr%

= /O sOxz(1)v(a)(caDv), 11 + sOxz(1)v(a) ((cde)n+% + s0\(1)v(a) + TQ)

T
_ /O sOx.a(1)0(@)(caDv) 41 + 5205 5(1)0*(@) + 5O 5(Do(a)ro.

Using (3.7.16) yields

T
/ sOy g(L)v(a)rg
0

T T T
< / (32O>\7g(sh) + SOA’;{(I)>U,2L+1 —|—/ OA,ﬁ(sh)(cde)iJrl + / hOA,ﬁ(sh)(rf)iH.
0 0 2 0

By using (3.7.11) we obtain

T T
V12| < /0 (SQOA,RO)+3T2‘92o/\,ﬁ(3h)2)v721+1+/0 Oxa(sh)h(Op)? 4

T T
+ / OAyﬁ(l)(cde)iJr% +/ OAﬁﬁ(Sh)h(Tfl)i_’_l.
0 0

Moreover, we have

Upyd = Ung1 — 2 (caDv),, 41 = vpt1 + O(h)(caDv), 1,

Cd)n-&-%
Bnys = Vot + O(h)(caDv), 3. (3.7.21)
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By using (3.7.21), (3.7.14) we obtain

IA

(02, + (02,5 < 002y +OW)(Dv), s +OH)(Dv)?,

IN

(0(1) + O(sh)?) vy 1 + O(h?)(cDv)?, 1 + O(h*)rg

Thus, we have the following estimate

2

v = /OT(520(1)+530A,R(sh)2)((a)i+l+(a)i+g)

= /OT s°Ox.(1) ((f’)fwé + (6)i+%>

IN

T T T
/ 53(’)>\7R(1)v,21+1 +/ SOA,g(sh)Q(cde)i+% —I—/ s(’),\ﬁ(sh)Qrg.
0 0 0

Futhermore, using (3.7.15) we have

T
/ s(9>\7ﬁ(sh)2r,§
0
T T T
< / 830)\,53(5}1)4’02_’_1 +/ SO)\VVQ(Sh)4(CdDU)i+l +/ hO)\,ﬁ(Sh)S(Tf)i_,'_l.
0 0 2 0

By using (3.7.11) we get

T T
v < / (s0n.a(1) + sT20%05 s(sh)*) o2, + / Oxa(sh)*h(0)7 4.4
0 0

T T
+ / SO,\ﬁ(Sh)zi(Cde)iJrl + / hO)\yﬁ(Sh)3(Tf1)%+1.
0 2 0

For the term Y2(21 ) we have

) T hQ h2
v = [ S0aUu@G (Do) + 50 a(D)0(a) g (DY),
0

T
_ /O (5O 8(8h)2(caDv) iy + 5O a(5)*(€aD0) 11 ) (a)

T
— /O (s(’),\,ﬁ(sh)Q(cde)nJr% + 52(9,\7g(sh)2v(a) + SOA,R(sh)%o)v(a)

T

T T
= / SO)\,Q(Sh)Qv(a)(Cde)n+% + / 320>\7§(8h)2v2(a) + / SO)\PQ(S}L)?’U(G,)T'O.
0 0 0
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Using (3.7.16) we achieve

/ sOAﬁ(sh)Qv(a)ro
0

T T T
< / 2Op.a(sh)*02,, + / O alsh)*(caDv)?, 1 + / hOx.a(sh)*(r )2 .
0 0 2 0

Using (3.7.11), we estimate YQ(QI) as:

T T
}}/’2(21) < / (sQOA,ﬁ(Sh)z + 3T2020)\7ﬁ(5h)4)’02+1 —+ / O)\Wq(sh)?’h(at’l))%_*_l
0 0

T T
+ /OO,\7R(sh)3(cde)fl+%+/o h(’),\,ﬁ(sh)g(rfl)iﬂ.

And, using (3.7.21) and Lemma 3.3.17 we obtain

o

Yz(al)Z/O SQOA,ﬁ(l)(atU(a))gﬁngr/o SQC’JA,K(l)((“)tv(a))gﬁn+
T ) h
= [ 2Ous)@(@)g (vuss + OWYeaDO )
+ [ P00 @w(@) (s001 + 0D, )
T T
= /(;SOA7§(Sh)(8tU(Q))U(Q)+/O (9/\,;&(5}1)2(@U(a))(CdDU)wﬁé
+ [ OO @) @Dy
T T
_ / 5O a(sh)(Dpv(a))v(a) + / O s (5h)2(Dr0(@)) (€aDV),y 3
0 0

+ /0 Ox.a(sh)*(0yv(a)) ((cde)nJr% + As[xed) ] qvn g1 + r0>.

In addition, with s, A enough large, sh enough small and with applying Young’s inequality
and (3.7.20) yield

T T T
/ 5O a(sh) (Brv(a))v(a) < / Or a(sh)h(Dw(a))? + / FOr (10 (a).
0 0 0

T T T
/ O)\yﬁ(sh)2(8t’l)(a))(0dDU)n+% < / O)H;Q(Sh)h(at’v(a))Q 4 / SOA’Q(Sh)Q(CdDU)i+%.
0 0 0
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T T T
/ OA’ﬁ(sh)g(atv(a))ro < / (’)Ayg(sl”L)Qh(Btv(a))2 + / SO)\,Q(Sh)B(CdD'U)i+%
0 0 0

T T
+ / s°Ox,a(sh)’(v)a 1, +/ Oxa(sh)*h(rf)a ;.
0 0

. . 1
Using (3.7.11), we estimate Y2(3)

T T
Y2(31) < / (83(9,\,;{(1)+ST2020>\,g(sh)3)vZ+1+/ (’),\,ﬁ(sh)h(&gv(a))2
0 0
T T
4 [ sOrs(shP Doty + [ OvalshPhera).
0 2 0

Applying Lemma 3.3.17 we have

1
Y3(1 )

T T
/ T932O)\7ﬁ(1)v(a)g(Dv)n+% +/ T9$2(9)\’ﬁ(1)v(a)g(Dv)n+%
0 0

T
| 51005 atshyota)(cae), .,
0

+ /OT ST0x a(sh)u(a) (sOx5(1)v(a) + 7o)

By using (3.7.18) we obtain

T T
/sTaoA,ﬁ(sh)vnHro < / (SQTGO,\ﬁ(Sh)?+ST2920>\7R(5h)2)vi+1
0 0

T T
+ / SOA,ﬁ(sh)Q(cde)iJrl +/ Ox.a(sh)*h(rf)? ;.
0 2 0

‘We have

T T T
/ sTOOx x(sh)(caDv),, 1 1vn41 < / sT?020y g(sh)v2q + / sOy q(sh) (cde)TQLJr%.
0 0 0

With (3.7.11) we thus estimate Yg(ll) as
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T T
‘Ygﬂ”l < /0 (52T9(9,\7ﬁ(sh)+sT2920)\7ﬁ(sh))va+1+ /0 Oxa(sh)h(w)2

T T
+ / sOxa(sh)(caDv)2, 4 + / Ons(sh)h(rf1)2 1.
0 0

Next, by using (3.7.14) we estimate ugl) as

T

T
(1) / sO,\’ﬁ(sh)(cde)fH_g + / s(’),\ﬁ(sh)(cde)fH_l
0 2 0 2

I

T T T
/ 80)\7ﬁ(sh)(0dD'U)721+% +/ s*Ox a(sh)vi, Jr/ 5Oz a(sh)r?
0 0 0

IN

By making use of (3.7.15) we have

T
/ s(’)A,ﬁ(sh)rg
0
T

T T
< / 530)\7ﬁ(8h)31172l+1 +/ SOAVR(Sh)B(CdDU)fH_% + (9>\7ﬁ(sh)2h(rf)i+1.
0 0 0

Using (3.7.11) we obtain

T T
ugn < / (ssoA,R(sh)+3T2e20A,ﬁ(sh)3)vg+1+/ Ox,ﬁ(sh)%(atv)iﬂ
0 0
T

T
+ / SO>\7R(5h)(cde)i+; +/ Oxyﬁ(sh)Zh(rfl)i_H.
0 2 0

By making use Lemma 3.3.17 we have

T T
N§2) = / 52O>\7ﬁ(sh)vn+1(cde)n+% —+ / 320A7ﬁ(8h)vn+1(CdD’U)n+%
0 0

T

T T
/ SQOA)ﬁ(Sh)'UnJ,_l(CdDU)nJ'_% +/ SBOA,ﬁ(sh)vZH —|—/ SQOA,R(sh)rovnH.
0 0 0

Applying Young’s inequality and using (3.7.17) yield

T

T T
/ S2OA7ﬁ(Sh)vn+1(Cde)n+% < / 830)\,ﬁ(5h)v121+1 + / SOA’ﬁ(Sh)(CdD'U)i+%.
0 0 0
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T
/ 820)\,ﬁ(3h)r0vn+1
0

T T T
< / s°Ox a(sh)*vh 4y +/ sOx a(sh)*(caDv)?2 , 1 +/ Ona(sh)*h(rf)i .
0 0 2 0

Using (3.7.11) we have

T T
'ugz) < / (SSO,\’R(Sh) + STQHZO)\}_@(S]I)3>UEL+1 +/ (’),\ﬁ(sh)Qh(atv)iH
0 0
T

T
+ /SOA,R(Sh)(CdDU)i+;+/ Oxa(sh)*h(rfi)i ;.
0 2 0
‘We thus obtain
T T
o < / (530A,ﬁ(sh)+sT2920A,R(sh)3)v3+l+ / Ox.1(sh)2h(v)2 4,
0 0

T T
+ / sOA,g(sh)(cde)i+l +/ O>\7ﬁ(sh)2h(rf1)i+1.
0 2 0

Now, we estimate some terms of u,.. By using (3.7.15)- (3.7.19) we have

T
/ s(’),\(l)rg
0

T T T
< / 830)\75?{(811)21)721_;’_1 +/ SOA,ﬁ(Sh)2(CdDU)i+; +/ OA,ﬁ(Sh)h(rf)iH-
0 0 2 0

T T
/ 20NV rovpy1 < / (SsoA’ﬁ(Sh) —l—esg(’)A’R(l))vaH
0 0

T T
+ / SO a(sh)(caDv)? ., + C. / Ons(sWh(rf)2.s.
0 2 0

IN

T T T
/ SOA(D)ro(caDv),. 4 / SOna(sh)?,y + C. / Ors(shh(rf)2 .,
0 0 0
T
+ / (soA,ﬁ(sh)+esok,ﬁ(1))(cdm)i+l.
0 2
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T T T
/ sC’)A’ﬁ(sh)vnH(cde)nJr% < / SOAJ{(Sh)(CdDU)i_"_% +/ SO)\’R(S]'L)U721+1.
0 0 0

Using (3.7.11) we have:

IN

T
7. / (SSOA,Q(Sh) + STQHZOE’,\)_Q(Sh)2 + 683(’))\’;3(1))1131“
0

T T
+ / OE,A,R(Sh)h(aﬂ)iHJr/ Ocxa(sh)h(rfi)i
0 0

_|_

/OT (SOA,K(Sh) + esOA,ﬁ(l)) (Cde)fz+§'
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Thi-Nhu-Thuy NGUYEN
Contrélabilité uniforme des équations aux dérivées
partielles disécrétisées

Résumé :

Dans cette thése, nous étudions les propriétés de contrélabilité uniforme des semi-
discrets approximations de systémes paraboliques. Dans une premiére partie, nous nous
intéressons a la minimisation de L%norme (¢ > 2) des controles semidiscrete pour I'équation
parabolique. Notre objectif est de dépasser la limitation de [LT06] a propos de I'ordre 1/2
de I'absence de limites d'opérateur de controle. Plus précisément, nous montrons que la
propriété d'observabilité uniforme est également titulaire dans L? (¢ > 2), méme dans le cas
d'un degré d'absence de limites supérieure & 1/2. En outre, une procédure de minimisation
pour calculer les commandes d’approximation est fournie. L'étude de I'optimalité L7 dans la
premiére partie est dans un contexte general Cependant, les inégalités d’observabilité discrets
qui sont obtenus ne sont pas aussi précises que celles dérivées puis avec des estimations de
Carleman. Dans une seconde partie, dans le contexte particulier de unidimensionnels-finis
différences nous démontrons une inégalité de Carleman pour une version semi-discret de
I'opérateur parabole 9, — 0,(c0,) qui permet pour dériver les inégalités d’observabilité qui
sont beaucoup plus précis. On considére ici que dans le cas ou le coefficient de diffusion a un
saut qui donne une formulation du probléme de transmission. Conséquence de cette inégalité
de Carleman, on en déduit cohérentes nul contrélabilité des résultats pour les classes de
linéaires et semi-linéaire des équations paraboliques.

Mots clés : Controlabilité, inégalité d'observabilité discrétisation, inégalité de Carleman.

Contrélabilité uniforme des équations aux dérivées partielles disécrétisées

Abstract :

In this thesis, we study uniform controllability properties of semi-discrete approximations
for parabolic systems. In a first part, we address the minimization of the L%-norm (¢ > 2)
of semidiscrete controls for parabolic equation. Our goal is to overcome the limitation of
[LT06] about the order 1/2 of unboundedness of the control operator. Namely, we show that
the uniform observability property also holds in L? (¢ > 2) even in the case of a degree
of unboundedness greater than 1/2. Moreover, a minimization procedure to compute the
approximation controls is provided. The study of L? optimality in the first part is in a general
context. However, the discrete observability inequalities that are obtained are not so precise
than the ones derived then with Carleman estimates. In a second part, in the discrete setting
of one-dimensional finite-differences we prove a Carleman estimate for a semi-discrete version
of the parabolic operator 9, — 9,(cd,) which allows one to derive observability inequalities
that are far more precise. Here we consider in case that the diffusion coefficient has a jump
which yields a transmission problem formulation. Consequence of this Carleman estimate,
we deduce consistent null-controllability results for classes of linear and semi-linear parabolic
equations.

Keywords : Controllability, discretization, observability inequality, Carleman estimate.
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